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Abstract 
Recent high-throughput microscopy advancements have made it possible to perform 

multiplexed time-lapse imaging in a single experimental run. However, despite these 

technological improvements, a major gap remains in the practical application and 

optimization of multiplexed time-lapse imaging for studying dynamic biological 

processes in vivo. This is particularly evident when quantifying complex dynamic 

phenotypes, such as regeneration and cell migration, in small model organisms like 

zebrafish. Challenges in sample preparation, spatiotemporal sampling, and the lack 

of dedicated imaging protocols and bioimage analysis tools aggravate this problem. 

Zebrafish, with their genetic accessibility and optical transparency, provide an 

excellent model for live imaging and high-content screening. However, it lacks 

dedicated protocols and solutions to multiplexed time-lapse imaging screening 

experiments, hindering it from fully exploiting its potential. 

To address these challenges and bridge this gap, I established a benchmark high-

throughput screening platform for quantifying kidney regeneration in zebrafish 

embryos post-laser-induced injury. This platform integrates multiple components, 

optimized sample mounting strategies to ensure optimal imaging conditions over 

extended periods, a high-throughput laser-induced injury workflow, and a smart 

imaging framework that seamlessly integrates lasering and imaging to capture 

regenerating renal tubules efficiently. This followed a dedicated image processing 

pipeline that allows the detection and tracking of regenerating tissues. Utilizing open-

source tools such as Fiji, Python, and KNIME, I built analysis workflows capable of 

stabilizing images, segmenting key regions of interest, and quantitatively assessing 

regeneration dynamics across hundreds of embryos. Finally, the platform was 

validated through experiments under different environmental conditions to verify the 

platform’s ability to assess regeneration efficiency and variability at an unprecedented 

scale. 

In conclusion, using the established high-throughput platform, I set a new benchmark 

for multiplexed time-lapse imaging in zebrafish-based screening. The platform's 

protocol components and flexible analysis workflows can be applied to other dynamic 

phenotypes. Ultimately, through this thesis, I present a comprehensive methodology 

and versatile tools for long-term imaging and set a precedent for investigating 

dynamic phenomena across biology.  
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Zusammenfassung 
Jüngste Fortschritte in der Hochdurchsatz-Mikroskopie ermöglichen die 

Durchführung multipler mehrdimensionaler Zeitrafferexperimente in einem einzigen 

Durchlauf. Trotz dieser technologischen Entwicklungen bleibt die praktische 

Anwendung und Optimierung dieser Methoden eine Herausforderung, insbesondere 

für die Untersuchung dynamischer biologischer Prozesse in vivo. Die Quantifizierung 

komplexer Phänotypen wie Regeneration und Zellmigration gestaltet sich besonders 

schwierig in kleinen Modellorganismen wie dem Zebrafisch. Herausforderungen in der 

Probenvorbereitung, räumlich-zeitlichen Abtastung sowie das Fehlen spezialisierter 

Bildgebungsprotokolle und Bioimage-Analysewerkzeuge begrenzen die effiziente 

Nutzung dieser Technologie. Obwohl der Zebrafisch durch seine genetische 

Zugänglichkeit und optische Transparenz ein ideales Modell für Live-Bildgebung und 

Hochdurchsatz-Screening darstellt, fehlen standardisierte Protokolle und Lösungen 

für multiplexe Zeitrafferbildgebung, was sein Potenzial für Hochdurchsatzstudien 

eingeschränkt. 

Um diese Lücke zu schließen, habe ich eine hochdurchsatzfähige Screening-Plattform 

entwickelt, die als neuer Benchmark für die Quantifizierung der Nierenregeneration 

in Zebrafisch-Embryonen nach laserinduzierter Schädigung dient. Diese Plattform 

kombiniert eine optimierte Probenvorbereitung, eine Hochdurchsatz-

Laserschädigungsstrategie sowie ein intelligentes Imaging-Framework, das Lasern und 

Bildaufnahme nahtlos integriert, um regenerierende Nierentubuli effizient zu erfassen. 

Es folgte eine spezielle Bildverarbeitungspipeline, die die Erkennung und Verfolgung 

von regenerierendem Gewebe ermöglicht. Mithilfe von Open-Source-Tools wie Fiji, 

Python und KNIME habe ich Analyse-Workflows entwickelt, die Bildstabilisierung, 

Segmentierung relevanter Regionen und die quantitative Bewertung der 

Regenerationsdynamik über Hunderte von Embryonen ermöglichen. Die Plattform 

wurde unter verschiedenen Umweltbedingungen validiert und ihre Zuverlässigkeit für 

die Analyse der Regenerationseffizienz und -variabilität bestätigt. 

Zusammenfassend stellt diese Hochdurchsatz-Plattform einen neuen Standard für 

multiplexe Zeitrafferbildgebung in Zebrafisch-Screenings dar. Die modularen 

Protokollkomponenten und flexiblen Analyse-Workflows sind auch auf andere 

dynamische Phänotypen übertragbar. Diese Arbeit liefert eine umfassende 

Methodologie und vielseitige Werkzeuge für die Langzeitbildgebung und setzt einen 

neuen Maßstab für die Untersuchung dynamischer biologischer Prozesse.  
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1 
Introduction 

 

1.1. Microscopy in biomedical sciences 

From the molecular level within cells to the complex interactions within ecosystems, 

biology is surrounded by constant change and adaptation across various scales and 

timescales. Constant visualization of these processes helps us as researchers to deepen 

our understanding of nature and biology. Microscopy is a powerful tool in this 

venture, enabling the study of biological phenomena at various scales—from single 

cells to whole organisms. Since the discovery of the first microscopes in the 1600s, 

which led to the discovery of cells and the development of cell theory (Hooke et al., 

1665), microscopy has evolved dramatically.  

The techniques in microscopy can be broadly divided into two categories light and 

electron microscopy. Light microscopy uses visible light to image, while electron 

microscopy employs accelerated electron beams, revealing molecular-level structural 

details and offering much higher resolution. Light microscopy is particularly popular 

in life science research due to its flexibility and accessibility (Reigoto et al., 2021). 

Light microscopy includes a range of techniques, from bright-field microscopy to 

advanced super-resolution microscopy. Advances in light microscopy, along with the 

development and constant evolution of fluorophores and fluorescent proteins, have 

enabled the labeling and detection of multiple endogenous molecules within the 

sample (Hmeljak & Agullo-Pascual, 2021). Intravital microscopy opened the avenues 

to image within the living specimens, although those techniques were initially invasive 

(physically disrupting, damaging, or altering the observed sample, potentially 
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affecting its viability). Continuous efforts and innovations to reduce the invasiveness 

of intravital microscopy techniques have led to the ability to image the samples at 

the most optimal physiological conditions for the sample (Scherf & Huisken, 2015). 

These developments have opened up new directions in biomedical research. It enables 

capturing dynamic processes with 2D or 3D imaging and observing living cells, 

tissues, or whole organisms at various scales. In recent decades, microscopy has 

transformed from a primarily qualitative tool to a high-throughput, quantitative 

discipline (Mattiazzi Usaj et al., 2016). For instance, the development of an 

automated screening platform by Opris¸oreanu et al., 2021, using advanced 

microscopy techniques, identified synapse-stabilizing compounds in juvenile zebrafish 

models. This combination of high-throughput analysis and automated imaging 

improves our knowledge of complex biological systems and helps us find possible 

treatment approaches. 

 

1.1.1. Capturing dynamic processes 

A detailed exploration of complex biological systems was possible due to the improved 

spatial resolution of microscopy methods.  But as biology is naturally dynamic, one 

must consider temporal elements to understand these systems fully. This led to the 

development of time-lapse microscopy (TLM), a powerful and constantly evolving 

microscopy technique enabling researchers to capture the dynamics of biological 

events. For instance C. C. Wong et al., 2010 showed how TLM distinguished two 

morphologically identical embryos. Although both embryos appeared identical 

morphologically, TLM revealed that one followed a typical developmental pattern, 

while the other showed abnormal cell division and fragmentation. This critical 

information is undetectable in an endpoint/fixed-timepoint imaging assay, 

underscoring the value of temporal aspects in studying biological processes (C. Wong 

et al., 2013). 

The first basic TLM was pioneered in the twentieth century, starting with basic glass 

tissue chambers and manual image capture. Over the years, TLM gradually evolved 

and became a potent tool for the quantitative and qualitative assessment of diverse 

biological events, including embryonic development, physiology, and immune cell 

dynamics (Collins et al., 2018). Recent developments concentrate on further 

enhancing TLM's spatial and temporal resolution to investigate dynamic biological 

processes in greater detail. The integration of TLM with cutting-edge imaging 



Introduction 

3 

 

technologies, including confocal, multiphoton, and light-sheet microscopy, has paved 

the way for significant innovations, including Förster Resonance Energy Transfer 

(FRET), multiplexed/multifield TLM, and in-toto imaging. The study by Keller et 

al., 2008 marks a good example, they pioneered an advanced form of Light-Sheet 

Fluorescence Microscope (LSFM), Digital Scanned Light-Sheet Microscope (DSLM). 

Which enabled them to record long-term and high-resolution images of zebrafish 

embryonic development with little phototoxicity. This made the visualization of 

cellular dynamics possible over a long time, illuminating important new directions 

on morphogenesis, cell lineage specification, and developmental robustness. 

While TLM offers invaluable insights into biological processes, there are still pressing 

challenges, such as the integration of advanced sub-diffraction techniques such as 

STED, STORM, and PALM to improve the spatial resolution in TLM, have 

significant drawbacks (Culley et al., 2018). They require very high-power illumination 

that potentially damages the sample with long-term exposure. Rapid movements 

during live imaging often pose the issue of samples losing focus while imaging, making 

it hard to track and analyze their dynamics (Samereier et al., 2010). This shows the 

need to optimize and develop new techniques to capture these ultra-fast rapid 

movements. Finally, maintaining the physiological conditions, although recent 

improvements have reduced the invasiveness of TLM, still poses some disruption to 

the samples (Nagy et al., 2012). 

Despite the advancing technology, one key consideration in microscopy is often a 

necessary trade-off in choosing the optimal technique. Usually, this trade-off consists 

of balancing spatial and temporal characteristics, signal sensitivity, and phototoxicity 

and prioritizing one aspect inevitably compromises others (Scherf & Huisken, 2015). 

Recent attempts have adopted a more systematic strategy by using computational 

solutions, such as adaptive optics and deep learning-based image restoration, which 

are actively working toward reducing these trade-offs and stretching the limits of live-

cell imaging. We are steadily progressing towards unraveling complex biological 

processes by pushing the limits, which makes the future of live imaging exciting and 

challenging (Balasubramanian et al., 2023). 
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1.2. Microscopy-based screening in biomedical sciences 

Microscopy is a continuously evolving field that advances analytical power, imaging 

speed, and resolution. Early advances concentrated mostly on enhancing image 

quality and technical precision, providing valuable biological insights, but they 

remained limited in their scalability. This challenge was recognized by researchers 

from systems biology, drug discovery, and functional genomics, often dealing with 

large-scale studies. This motivated the development of high-throughput imaging 

techniques (Oheim, 2007; Pepperkok & Ellenberg, 2006; Zanella et al., 2010). Two 

main technical developments, automation, and parallel acquisition, made high-

throughput imaging a reality. Developments in automation streamlined multiple steps 

of the microscopy workflow, including sample handling, image acquisition, and data 

analysis.  

High throughput imaging screens were first utilized for cell-based assays in the  1980s 

(Deindoerfer et al., 1982), primarily for drug detection, which was further expanded 

to phenotypic screening with further advances in automated microscopes (Vaisberg 

et al., 2006). Microscopy-based screening allows researchers to explore heterogeneity 

in complex biological systems that might be missed in smaller-scale imaging 

experiments. This broader dataset provides a robust statistical foundation that helps 

researchers manage biological variability. It also enables the detection of rare events 

that are too infrequent to appear in lower-throughput assays. Automated and 

standardized procedures helped to lower biases and assure experimental consistency 

(Oheim, 2007, 2011; Way et al., 2023).  

Widefield and confocal microscopy are the primary methods for high-throughput 

imaging of biological specimens among diverse microscopy techniques. Classical 

screens span from chemical to genetic screens. While genetic screens identify genes 

involved in particular biological processes such embryogenesis (Driever et al., 1996; 

Sönnichsen et al., 2005), chemical screens consist of libraries of small molecules to 

identify therapeutic compounds, toxic molecules, or modulators of signaling pathways 

(Rennekamp & Peterson, 2015; Richter et al., 2017). Within the last couple of decades 

beyond cell systems, microscopy-based screening emerged in small organisms screens 

such as in zebrafish larvae (Pandey et al., 2019; Rennekamp & Peterson, 2015; Richter 

et al., 2017) and organoid screens (Lukonin et al., 2020). In addition to the broad 

use of microscopy-based screening in imaging fluorescently labeled biological 

specimens (Esner et al., 2018; Futamura et al., 2012), it is also widely applied in 

histology and digital pathology with whole-slide imaging (Pantanowitz et al., 2011). 
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The current generation of screening-based microscopy has significantly enhanced 

high-throughput imaging and quantitative biological analysis. Advanced automated 

microscopy systems offer precise control over stage movement, focusing, illumination, 

and magnification, allowing simultaneous acquisition of multiple channels, improved 

autofocusing, and shorter acquisition times. Using sCMOS cameras in current-

generation microscope chips over earlier CCDs increased pixel density, enabling the 

capture of larger areas with fewer fields (Hale & Nojima, 2016). These advances have 

enabled the imaging of small organisms/cells over relatively long periods (hours, 

days). Such time-lapse imaging enables the visualization of complex dynamic 

biological processes on larger sample sizes, providing a step change in increased 

robustness to unravel spatiotemporal aspects of the system (Čapek et al., 2023). 

 

1.2.1. Challenges with microscopy-based screening in small 

organisms 

Microscopy-based screening was introduced to address the complexity of biological 

systems in the throughput context, and since its outset, it has evolved significantly. 

Beginning with cells, we can now screen small organisms such as zebrafish embryos, 

but this evolution also presents new challenges. Three main areas define the 

challenges: sample/specimen handling, optics, and acquired data management and 

analysis (Bullen, 2008; Way et al., 2023). Specimen handling deals with the processes 

from specimen collection to imaging preparation. For instance, zebrafish embryo 

screening includes animal husbandry, embryo culture, micromanipulation, and 

treatment (e.g., drugs and anesthetics). Even for experienced researchers, handling 

thousands of embryos offers major logistical difficulties (Gehrig et al., 2018), making 

these procedures time-consuming. Recent advancements in automation have 

introduced systems for embryo sorting and culturing (Breitwieser et al., 2018), and 

automated robots are used to treat and load the embryos in the imaging plate 

(Letamendia et al., 2012; Pardo-Martin et al., 2010), significantly reducing manual 

labor. These systems are typically expensive and complex, in most laboratories 

majority of these steps are still performed manually.  

Consistent specimen orientation demands dedicated mounting strategies. There are 

existing tools developed for zebrafish embryos that create agarose cavities within 

microtiter plate wells, therefore enabling consistent embryo positioning (Wittbrodt 

et al., 2014; Gehrig et al., 2018). However, these techniques have limited flexibility in 
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orientation, which often causes a bottleneck for experiments requiring specific 

specimen alignment. Additionally, the use of agarose can compromise image 

resolution during acquisition. Automated technologies enabling automated detection 

and rotational orientation in glass capillaries, followed by whole-specimen imaging, 

was a great substitute for these limitations (Pulak, 2016; Guo et al., 2017). While 

these techniques are adequate, these setups are complex, and the possibility of time-

lapse acquisition is often challenging, which is crucial for studies looking at the 

dynamic aspects of  morphological and developmental processes (Gehrig et al., 2018). 

Tissue pigmentation typically limits imaging deeper features even with optimized 

mounting. Pigment-mutant transgenic lines (Harrold et al., 2016), genetic 

modification (Lischik et al., 2019), or pharmacological therapies (such as PTU) can 

help to control pigment-related problems. While screening for dynamic aspects, 

maintaining a stable specimen orientation throughout imaging is a key challenge, 

which demands optimal immobilization strategies. Commonly used  immobilization 

strategies include anesthetic agents (Tricaine) and genetic manipulation techniques 

(Lischik et al., 2019) offer an optimal solution, but they also pose risks. Over time, 

anesthetics can lose effectiveness and become lethal, and genetic manipulation 

techniques can interfere with normal development. Thus, maintaining specimen 

stability while minimizing possible health effects depends on carefully optimizing the 

immobilization strategies. 

Compared to flat cell cultures small organisms are large three-dimensional objects, 

posing challenges to microscopy-based screens. While these techniques are currently 

developing in the framework of microscope-based screening, recent developments in 

microscopy technology seek to raise depth resolution and capture more complex 3D 

structures (Way et al., 2023). In the current scenario, multiphoton and light-sheet 

microscopy are widely used for imaging 3D objects, but these methods are still slow 

and lack throughput in the context of screening (Kumar et al., 2007; Stelzer, 2015). 

Ongoing advances seek to improve the throughput aspect of these widely used 

techniques (Way et al., 2023).  

Despite the technological developments in microscopy for capturing dynamics in 

small organisms, considerable challenges persist in applying high-throughput 

screening to study these dynamics at scale. The challenges inherent to time-lapse 

microscopy and screening small organisms are further compounded. These challenges 

include the variability in orientation, size, morphology, and expression patterns across 

specimens and within image sequences (See Figure 1), which limits the capture of 

consistent, high-quality images over time. This also hinders the tracking and 
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identifying of subregions within dynamic targets, making automated analysis difficult 

due to inconsistent feature detection. These issues limit building a robust and precise 

imaging workflow for screening different dynamical biological processes. Another 

interesting domain that screening lacks and is gradually growing is integrating 

different subsystems to perturb specimens. For instance, laser ablation induces injury 

or photoactivation to the specimen. Integrating these technologies will allow us to 

utilize them to study complex dynamic processes like regeneration and cell migration 

at a large scale. While these techniques are well-established in classical microscopy, 

bridging them with high-throughput screening demands optimized methodology and 

protocols to envision it (Muzzey & van Oudenaarden, 2009).  

With the advancement of microscopy techniques, small-organism screening can now 

generate large, multidimensional datasets (3D, channels, time), often spanning 

several gigabytes to terabytes, depending on the scale of the study (M. Chen, 2021).  

However, alongside improvements in acquisition, there is a growing need for advanced 

analytical tools and workflows to handle these vast datasets. Classically, in screening, 

most software tools are designed for analyzing cell-based systems and are not widely 

applicable to alternative biological models. In whole-organism screening, data 

analysis presents distinct challenges, requiring specialized solutions for storage, data 

handling, visualization, and interpretation (discussed in Section 1.3.2). Unlike cell-

based assays, whole-organism imaging demands customized computational pipelines 

that manage specimen morphology, movement, and spatial complexity. Given the 

importance of optimizing the acquisition, it is essential to integrate analysis 

optimization into experimental planning from the beginning, rather than treating it 

as a post-processing step (Gehrig et al., 2018). 

So far, acquiring multiplexed time-lapse screens in a single run is feasible. However, 

there remains a gap in this technology's practical application and optimization. To 

improve this situation, as part of my thesis, I developed innovative tools, protocols, 

and software to harness the full potential of these imaging technologies. This included 

creating novel protocols and versatile analysis workflows for long-term screening of 
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dynamic processes, specifically focusing on regeneration and immune responses in 

zebrafish embryos. 

 

1.3. Bioimage analysis: Image analysis for microscopy 

Traditional photographic cameras used films to acquire images, resulting in analog 

images. However, by the 1980s charge coupled cameras (CCD) were developed, 

enabling digital image capture (McNamara et al., 2005). In digital images, typically, 

a sensor collects the photons from the light signal, and a detector within the sensor 

detects and stores this information as a discrete 2-dimensional array of values known 

as pixels, arranged following a grid, forming the image matrix. For many applications 

including microscopy, the sensor is generally a camera, and the resulting acquired 

images are digital images with similar characteristics. The age-old idiom “Seeing is 

believing” marks the importance of images in multiple facets of life. Given the fact 

that nearly half of the human brain is involved in processing vision, our reliance on 

images is natural (Frisby & Stone, 2010). However, just a subjective interpretation 

of what one sees in an image can deter scientific reproducibility and reasoning (North, 

2006). The past few decades saw a surge in the development and use of a wide array 

of imaging modalities, but this was not achievable without rapid advances in 

Figure 1:Schematic representing heterogeneity and dynamic changes in biological specimens 

Heterogeneous behaviors and dynamic properties of biological specimens are illustrated across multiple dimensions. 

A) Heterogeneity in expression patterns: Specimens display variation in the intensity and distribution of marker 

expression. B) Heterogeneity in orientation: Individual specimens exhibit diverse orientations in spatial 

arrangements. C) Specimen movement over time: Temporal imaging captures the dynamic relocation of specimens 

within a defined field. D) Specimen growth over time: Temporal progression shows the morphological expansion of 

specimens. Created with BioRender.com. 

https://www.biorender.com/
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computing technology. From sophisticated signal reconstruction to large data 

management, computers are indispensable in contemporary microscopy. A branch of 

artificial intelligence, computer vision lets machines independently and statistically 

evaluate visual data. From daily life situations like image processing in cellphones to 

image-based medical diagnostics, digital image analysis has been applied in many 

different disciplines. 

Image analysis is done by building workflows or pipelines with successive simple or 

complex operations (Berthold et al., 2009). There is no single-shot solution or 

approach while dealing with image analysis, it is much like how human vision 

processes information (Meijering et al., 2016). The general mechanisms by which we 

perceive and analyze image features have been extensively studied in computer vision 

(Marr, 2010). The perceived information can be qualitative, such as reporting the 

absence or presence of an object, or quantitative, such as the count or spatial 

information about the object. Within the realm of biology, response to the growing 

need for powerful automated solutions in image processing and analysis gave rise to 

the field of bioimage informatics/bioimage analysis (Meijering et al., 2016; Peng et 

al., 2016). Bioimage analysis is a multidisciplinary field where computer vision meets 

biology (Danuser, 2011) involving collaborations among a diverse group of experts, 

including biologists, microscopists, engineers, clinicians, and physicists (Schlaeppi et 

al., 2022). Bioimage analysis research and techniques are beyond the automation of 

image interpretation. It enhances the objectivity, reproducibility, and sensitivity of 

the interpretations, which, at a human level with pre-conceived ideas, we tend to fail 

to depend on prior experiences (Meijering et al., 2016). 

The first step in analyzing image data is to reduce imaging artifacts and noise by 

preprocessing the image. Background subtraction is a widely used preprocessing 

technique that removes noisy background elements to enhance the foreground 

elements. Another prominent example is deconvolution, which tries to undo the signal 

blurring by any microscope to make the image sharper (Sarder & Nehorai, 2006). 

The following common step is to detect the object of interest or various types of 

objects in the preprocessed image. There is a broad range of object detection 

techniques; for instance, template matching is a technique where a template 

containing the object of interest is provided, and the object is searched for within the 

image (Thomas & Gehrig, 2020a). With the detected object of interest, the following 

step is segmentation, which aims to classify and group pixels as either the object of 

interest or the background. Segmentation is often the most challenging aspect of 

bioimage analysis (Meijering, 2012). Upon successful segmentation, the forthcoming 
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step is to compute a host of quantifications, analytics, and visualizations. This forms 

a generalized scheme for most bioimage analysis workflows, where each step is 

interrelated and contributes to a positive feedback loop, enhancing the overall 

workflow (See Figure 2)(Meijering et al., 2016; Pincus & Theriot, 2007). Recently, 

machine learning and deep learning-based techniques have been increasingly applied 

to microscopy, refining bioimage analysis pipelines and solving more complex 

problems (Jan et al., 2024; Ma et al., 2024; von Chamier et al., 2021). 

 

1.3.1. Bioimage analysis: When image analysis meets dynamics  

Early microscopes using computers had a single experiment that resulted in 200x200 

pixels of images and accounted for 40 kilobytes of memory (Prewitt & Mendelsohn, 

1966). In the current scenario, the advances in spatial, temporal, multiplexing, and 

throughput imaging result in terabytes of data. Analyzing this manually is labor-

intensive and nearly impossible, highlighting the need for automated analysis tools 

and solutions (Meijering et al., 2016).  

The imaging data for a dynamic process consists of a series of images (with or without 

a z-dimension) at different timepoints; the first step is to convert this raw data to 

biologically meaningful information. For instance, after imaging fluorescently labeled 

cells (e.g., nuclei) over time, the raw images are stitched sequentially according to 

respective timepoints to create a consolidated movie that captures the process (Yao 

et al., 2017). These general image analysis functions involve visualization, 

colocalization, and basic quantification using commercial microscope software like 

ZEN (Zeiss) or Imaris (Bitplane). Open-source tools like FIJI/ImageJ (Schindelin et 

al., 2012) and, more recently, Napari (Sofroniew et al., 2024) have also been widely 

used for these purposes (Coutu & Schroeder, 2013). Object tracking is crucial for 

analyzing dynamic processes starting from the image preprocessing step. Apart from 

the basic preprocessing techniques applied in static image analysis, an additional step 

of image registration is used to adjust for jitter and motion artifacts during imaging, 

guaranteeing accurate and strong quantification downstream. With the additional 

complication of tracking changes over time, quantitative image analysis of dynamic 

processes follows the same ideas as stationary image analysis (See Figure 2) (Coutu 

& Schroeder, 2013; Meijering, n.d.; Meijering et al., 2016). Recent advances in 

integrating machine learning and deep learning techniques in the image analysis of 

dynamic processes have significantly enhanced the field, particularly in the 
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segmentation and tracking of dynamically active objects of interest (Hallou et al., 

2021).   

1.3.2. Bioimage analysis: Challenges and considerations  

Bioimage analysis is crucial in the current life sciences context, especially with the 

advances in microscopy, both need to be in tandem for complex biological insights. 

In the current scenario, extracting meaningful information from the unfathomable 

amounts of acquired image data from multiple imaging experiments proves to be a 

bottleneck rather than the technology to acquire the image (Levet et al., 2021). 

Traditional bioimage analysis approaches failed to analyze this sheer amount of data 

resulting from these experiments, creating critical challenges in data accessibility and 

demanding adaptive data analysis approaches (Peng et al., 2016). Although bioimage 

analysis is steadily progressing, limitations persist, particularly for instance, while 

analyzing intricate biological systems where factors like overlapping structures or low 

signal-to-noise ratios obscure critical details. (Lucas et al., 2021; Meijering et al., 

2016).   

While studying dynamic processes, the limitations persisting in the static image 

analysis are compounded with dynamic artifacts, including variability in orientation, 

size, morphology, and expression patterns across specimens and within image 

sequences (See Figure 1). This hinders the development of a robust segmentation and 

tracking pipeline for dynamically evolving samples. High throughput imaging is 

advantageous regarding the number of samples being imaged rapidly and the 

heterogeneous data produced, adding to the experimental robustness. However, these 

key features become significant bottlenecks during post-imaging analysis; the 

heterogeneous profiles and the frequent technical artifacts (variability in the size of 

objects, expression pattern, and movement artifacts) from numerous image samples 

cause hindrances to the automated analysis pipelines. Within the current frameworks, 

integrating interactive quality control for extensive multiplexed imaging data remains 

a significant challenge (Vierdag & Saka, 2024). Additionally, the recent advances in 

implementing machine learning and deep learning tools in bioimage analysis have 

improved sample tracking and segmentation (Gómez-de-Mariscal et al., 2021). 

However, creating generalizable models for tracking remains challenging due to lack 

of large, diverse annotated datasets of time-lapse cell movies, which demands large-

scale expert-assisted annotations (Jan et al., 2024). Additionally, these tools often 

require coding expertise, which can be a barrier for life scientists, although significant 

research efforts are underway to make it code-free. Finally, these dynamic, high-
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throughput imaging experiments generate massive datasets, which demand 

substantial computational power to store and process. This requirement often limits 

the feasibility of many experiments (Gómez-de-Mariscal et al., 2021; Jan et al., 2024).  

Bioimage analysis encountered significant challenges during the early days due to the 

lack of a standardized direction. Efforts were primarily focused on creating isolated 

custom solutions and not sharing the source code (Levet et al., 2021). This led to a 

competitive environment where novelty was prioritized over reproducibility. The race 

toward achieving novelty undervalued building analysis workflows using existing 

tools, leading to a flood of redundant tools with overlapping functionalities (Levet et 

al., 2021; Schlaeppi et al., 2022).  A 2018 study (Serghiou & Ioannidis, 2018) revealed 

that of 204 preprints analyzed, only 44% shared code or data, and just 26% were 

reproducible. Consequently, the multitude of computational solutions requiring 

substantial computational expertise and customization created a bottleneck for life 

scientists, the primary end users (Levet et al., 2021).  This highlighted the need for 

improved organization, collaboration efforts, and resource accessibility. In recent 

years, initiatives have emerged to build “bridge scientists” who will better flourish in 

this field through their multidisciplinary skills. (Schlaeppi et al., 2022; Soda, 2014) 

Ultimately, resulting in better outcomes that fulfill the needs of end users. The field 

is currently focusing on enriching existing open-source software by building plugins 

and additional packages for tools like FIJI (Schindelin et al., 2012), CellProfiler, and 

Napari (Sofroniew et al., 2024) and reserving the creation of new software for 

situations where it is truly essential. Forums and communities like NEUBIAS (Cimini 

et al., 2020) promote open-source tool development, data-sharing standards, and 

FAIR (Findable, Accessible, Interoperable, and Reusable) principles However, there 

still exists a void, which requires further research to develop open-source tools and 

strengthen workflow pipelines, emphasizing the robustness and reproducibility of the 

methodologies (Meijering et al., 2016; Schlaeppi et al., 2022; Soda, 2014). As part of 

my thesis, I sought to address this gap by creating flexible image analysis workflows 

to study dynamic processes using open-source tools such as Fiji, Python, and 

KNIME. Specifically, I established a generally applicable set of protocols and tools 

for analyzing dynamic features like regeneration and immune responses, in zebrafish 
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embryos. Additionally, the tools I developed hold the potential to extend to feedback 

microscopy applications, thereby advancing smart imaging techniques. 

 

1.4. Zebrafish as a model system for microscopy-based 

screening 

The zebrafish (Danio rerio) ,a tropical freshwater vertebrate that has emerged as a 

powerful model for studying vertebrate biology (Dooley & Zon, 2000). The model 

was found due to its tractability to large-scale forward genetic approaches, as its 

external development enables precise morphological observations of extensive 

populations of developing embryos (Garcia et al., 2016). From the early 1970s, 

zebrafish have been a model system for research on genetic disorders, development 

biology, and vertebrate evolution (Streisinger et al., 1981). Genomic studies that 

compare zebrafish genome to the human reference genome have demonstrated that 

70% of the zebrafish genome contains orthologs to human genes, with 86% of known 

drug targets also preserved (Gunnarsson et al., 2008; Howe et al., 2013). Zebrafish 

embryos and larvae are preferred over adults due to their low maintenance cost, brief 

maturation time, easy breeding, small sizes, and transparency, making it an excellent 

model for microscopy and a go-to small organism model for high throughput 

screening. Furthermore, they have broader phylogenetic similarities with humans 

Figure 2: Schematic representing workflow for the image-based analysis of biological specimens.  The 

figure demonstrates a typical workflow for analyzing biological images, from preprocessing to visualization. 

Preprocessing: Initial adjustments enhance image quality for subsequent analysis. Detection: Key features 

or regions of interest are identified within the image (yellow outlines highlight detected regions). 

Segmentation: Images are processed to separate distinct regions, such as cellular structures, creating binary 

or labeled outputs for analysis. Quantification, Analytics, Visualization: Extracted data is analyzed for 

distribution patterns, spatial relationships, or other metrics, and results are presented as histograms, 

heatmaps, or annotated images. Adapted from Meijering et al., 2016. 
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than adults (Garcia et al., 2016). These attributes qualify them for the 3Rs principle 

(Replacement, Reduction, and Refinement), solidifying their status as a leading 

model organism in biomedical research (Rácz et al., 2021; Russell, 1995). The 

developments in molecular biology have helped to sequence and annotate the 

zebrafish genome (Silva Brito et al., 2022), enabling the analysis of the biochemical, 

genetic, and cellular levels to establish the observations made at the structural, 

functional, and behavioural levels (Garcia et al., 2016). The development of gene-

editing techniques, such as transcription activator-like effector nucleases (TALENs), 

zinc-finger nucleases (ZFNs), and CRISPR-Cas9, has further revolutionized zebrafish 

research by enabling the creation of targeted genetic modifications. These 

advancements have produced numerous transgenic lines, mutants, and enabled 

researchers to study a wide range of biological processes and disease models. The first 

stable transgenic zebrafish line was successfully developed in 1988 (Stuart et al., 

1988). Since then, a comprehensive and curated list of maintained mutant lines has 

been readily accessible from the Zebrafish International Resource Center.  

 

1.4.1.  Rise of zebrafish in biomedical research 

Experimental innovations in whole organism screen, such as dedicated mounting 

systems for ideal positioning and orientation or sophisticated microfluidics, have 

significantly advanced the zebrafish screening research (Mohd Fuad et al., 2018; 

Pardo-Martin et al., 2010). The extensive availability of transgenic lines and disease 

models positions zebrafish embryos as an excellent model for investigating various 

organs, tissues, and associated pathologies. They have been extensively used to 

investigate cardiovascular development and disease mechanisms and their role in 

congenital heart defects and vascular disorders (Bakkers, 2011; Gierten et al., 2020; 

Nguyen et al., 2008; Pylatiuk et al., 2014). In oncology research, zebrafish models 

contribute to understanding tumorigenesis, metastasis, and drug screening for cancer 

therapeutics (Langenau et al., 2003; White, 2015). Zebrafish are also widely utilized 

in eye research, offering a powerful model for studying retinal development, 

degeneration, and vision-related disorders (Avanesov & Malicki, 2010; Bibliowicz et 

al., 2011; Fadool & Dowling, 2008). Furthermore, they contribute to intestine and 

digestive system research, providing insights into gut development, microbiota 

interactions, and digestive diseases (Flores et al., 2020; Kanther et al., 2011). 

Additionally, they provide insights into kidney development and renal disorders, 

aiding in the study of renal function and disease (Gehrig et al., 2018; Hostetter et 
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al., 2003; Pandey et al., 2019). Beyond organ-specific research, the remarkable 

regenerative capacity of zebrafish makes them an ideal system for regenerative 

medicine, particularly in exploring tissue regeneration and wound healing (Marques 

et al., 2019; Zhou et al., 2010). Possessing a complete immune system like humans 

makes the zebrafish ideal for investigating host-pathogen interactions (Li & Hu, 

2012). In zebrafish, the innate immune system (macrophages and neutrophils) 

develops early in embryogenesis, followed by adaptive immunity (Bernut et al., 2015). 

This provides a unique opportunity to analyze specific immune responses without the 

added complexity of adaptive immune mechanisms. The flexibility to introduce 

various pathogens, including bacteria, viruses, and fungi, through multiple injection 

sites—such as the caudal vein, heart ventricle, or hindbrain—facilitates 

comprehensive investigations into both systemic and localized infections (Masud et 

al., 2017).  

The zebrafish embryo demonstrates optical transparency during its early 

developmental stages, and its external development characteristics make it an ideal 

model organism for research in developmental biology (Kimmel et al., 1995; Nüsslein-

Volhard, 2012). The close genetic relationship between zebrafish embryos and 

humans has enabled genetic screenings that have successfully identified genes 

involved in embryogenesis (Driever et al., 1996). The zebrafish embryo's resilience 

and ability to develop generally in agarose embedment aid in imaging dynamic 

cellular processes in early embryonic stages, which is virtually impossible in mammals 

(See overview Figure 3). These advantages, coupled with the accessibility of a diverse 

array of mutants and a continuously advancing molecular toolkit, render zebrafish 

embryos a powerful setting to study dynamic developmental events by time-lapse 

(Rieger et al., 2011).  
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1.4.2. Zebrafish as a model system to study kidney regeneration 

Over the past decades, zebrafish embryos have become a premier genetically tractable 

model organism for various human disease studies. Within the realm of renal biology, 

zebrafish is a well-established model for studying the development and physiology of 

nephrons, examining the pathophysiological aspects associated with renal diseases, 

and enhancing our understanding of nephron function and dysfunction (Ebarasi et 

al., 2011; Poureetezadi & Wingert, 2016). A series of forward genetic screens have 

pioneered kidney research in zebrafish, yielding a collection of mutations that 

influence nephron morphology and functionality. Which eventually aided in detailing 

the molecular characterization and revealed the overall conservation of the renal 

anatomy with human kidneys (Diep et al., 2011). 

The renal system development in vertebrates has three stages: pronephric, 

mesonephric, and metanephric. The pronephric kidney represents the most basic 

form, which develops into the more mesonephric kidney, which functions as the 

primary excretory organ in aquatic vertebrates. In higher vertebrates, the 

Figure 3: Zebrafish as a model organism for vertebrate biology. The figure outlines the wide use of the zebrafish model 

system encompassing development, immunity, oncology, cardiology, and other organs, tissues, and associated pathologies. 

Reproduced from (Koster and Sassen 2015) under Non Commercial (unported, v3.0) License, Wesselman & Wingert, 

2023 under Non Commercial (unported, v4.0) License. Created with BioRender.com and biocoins.com 

https://www.biorender.com/
https://bioicons.com/
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mesonephric kidneys are temporary and later develop into the more complex 

metanephric kidneys, which serve as the main excretory organs in reptiles, birds, and 

humans (P. Sharma et al., 2014). 

The pronephric kidney is the excretory system in zebrafish for the first 30 days of 

larval development, consisting of two nephrons with fused glomeruli and pronephric 

tubules. Despite their anatomical simplicity, the tubular epithelium in the pronephric 

kidney of zebrafish imitates the mammalian kidney consisting of two proximal and 

distal tubular structures (see Figure 4). The genetic similarity discussed in (Section 

1.4.) extends to kidney-related genes, making zebrafish a relevant model for studying 

human kidney diseases and potential treatments. The nephron repair mechanism is 

conserved across species, making larval zebrafish an excellent model for renal 

research. In adult zebrafish, the pronephros transitions into the mesonephros, which 

exhibits a unique process known as neo-nephrogenesis—the ability to generate new 

nephrons. This regenerative capability, which is absent in humans, is currently being 

investigated to understand its underlying mechanisms better and explore potential 

therapeutic applications for kidney repair and regeneration (Cirio et al., 2015; 

Poureetezadi & Wingert, 2016; P. Sharma et al., 2014).  

 

1.4.3. Current approaches and techniques to study kidney 

regeneration in zebrafish 

The conserved and distinctive renal features found in zebrafish and higher vertebrates 

present researchers with an excellent opportunity to explore fundamental disease 

pathologies and further discover ways to elicit regenerative responses. The extensive 

collection of zebrafish transgenic lines also encompasses well-established lines 

dedicated to the renal system that highlight distinct cell types and nephron regions. 

Among these, the most frequently utilized transgenic lines are wt1b, cdh17, and 

lhx1a. Although these lines are primarily employed to study the pronephric kidney, 

they can also be adapted for research on mesonephric kidneys (See Figure 4). Renal 

disease models have contributed majorly to the knowledge of cystic kidney diseases, 

glomerular disease, and acute kidney injury (AKI) (McCampbell & Wingert, 2014). 

Zebrafish benefit glomerular disease studies primarily because of their anatomical 

and functional similarity to mammalian podocytes. Zebrafish and humans preserve 

the expression of slit diaphragm-associated genes, which are necessary for filtration 

(McCampbell & Wingert, 2014). The development of podocyte-specific transgenic 
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lines, including  Tg(podocin:GFP), enabled real-time visualization of podocyte shape 

and function and helped to propel more developments in this field (He et al., 2011).   

Besides glomerular illnesses, zebrafish have also given important new perspectives on 

cystic kidney disease pathophysiology. Zebrafish have several orthologous genes linked 

to human cystic kidney disease, and their renal system faithfully copies important 

disease features like cyst development and ciliary abnormalities. Moreover, the 

zebrafish model-based high-throughput screens help to enable large-scale research 

aiming at deciphering the genetic causes of cystic illness and assessing possible 

treatment approaches (Pandey et al., 2019; Poureetezadi & Wingert, 2016; Swanhart 

et al., 2011).  

In zebrafish models, AKI is typically characterized by partial or complete loss of renal 

function, often resulting from ischemic injury due to sepsis or exposure to nephrotoxic 

agents that mimic human AKI. The morphological manifestations of AKI in zebrafish 

unfold in multiple overlapping phases. It starts with dedifferentiation of the 

neighboring cells surrounding the injury, followed by their detachment from the 

basement membrane and apoptosis in some instances (Cirio et al., 2015). The 

detached cells then often flow into the lumen of the tubule, causing tubular 

obstruction. The subsequent major phase involves tubular regeneration, wherein new 

epithelial cells are generated from the remaining cells within the nephron. Ongoing 

researches aim to unravel the true origin of new tubular epithelium (Bonventre, 2003; 

Verghese et al., 2008). Due to its simple two-nephron structure, the zebrafish 

pronephros is a well-established model for investigating AKI. Primarily, there are two 

approaches to induce AKI in zebrafish models, chemical induction and targeted cell 

ablation. Within chemical induction, gentamicin-induced injury is the most prevalent 

model, involving the injection of gentamicin into the circulation of zebrafish larvae 

at 48–72 hours post-fertilization (hpf), resulting in proximal tubular cell damage. 

The tubular injury results in tubular restriction, reduction of the pronephros ability 

to filter and eliminate fluid, and subsequent development of edema (Cirio et al., 2015; 

Lopez-Novoa et al., 2011). Aristolochic acid (AA) also constitutes a nephrotoxic 

agent that induces tubular and glomerular damage when embryos are exposed at 24 

hpf (Arlt et al., 2002).  

Nephrotoxic agents also often introduce limitations, particularly the occurrence of 

bilateral (complete) injury at undefined timepoints post-exposure, sometimes proving 

lethal. These limitations led to developing a laser-induced injury model for AKI, 

characterized by laser-induced cellular death within a localized region of the renal 
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field, exhibiting a low degree of larval lethality. Controlled laser ablation targeted to 

the distal tubule in larval zebrafish expressing green fluorescent protein (GFP) in the 

kidney tubule demonstrated that the repair process is driven by cell migration and 

is independent of cell proliferation. Although the physiological relevance of laser-

induced damage to mammalian AKI is uncertain, the model remains valuable for 

addressing research questions requiring a highly controlled degree of injury (Cirio et 

al., 2015; C. S. Johnson et al., 2011a; Palmyre et al., 2014).  

Given the relevance of larval zebrafish in high-throughput screening and the current 

absence of innovative methods for studying regeneration following controlled injury 

in these setups. I addressed this critical gap in my thesis by developing a high-

throughput screening workflow for studying kidney regeneration post-controlled 

laser-induced injury, eventually aiding in discovering drugs that promote regeneration 

and offering more profound insights into the regeneration process to explore 

therapeutic strategies further.  
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Figure 4: Structural and developmental comparison of zebrafish's larval and adult renal system. This figure depicts the anatomical 

and functional organization of the zebrafish kidney across two developmental stages, highlighting its utility as a model for renal 

research. Pronephric kidney (larval stage, ~3 days post-fertilization): The kidney comprises two nephrons with distinct functional 

segments, including the glomerulus, proximal tubule, and distal tubule. Fluorescent reporter lines illustrate specific features of the 

pronephros: Tg(wt1b) marks glomerular podocytes, visualizing the filtration structure. Tg(cdh17) labels epithelial cells of the 

pronephric tubule, highlighting the tubular architecture. Mesonephric kidney (adult stage): The adult zebrafish mesonephros 

comprises multiple nephrons organized longitudinally along the body axis, including regions corresponding to the head, trunk, 

and tail. Collecting ducts connect the nephrons for waste excretion. Tg(ren) fluorescently labels actin filaments within kidney 

structures, emphasizing the cytoskeletal framework of renal tissues. Reproduced from Ding et al., 2015 under Non Commercial 

(unported, v3.0) License, Hoffmann et al., 2018 under Non Commercial (unported, v4.0) License and Poureetezadi & Wingert, 

2016 under Non Commercial (unported, v4.0). Created with BioRender.com 

https://www.biorender.com/
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2 
Aims and Approaches 

The aim of my thesis was to develop solutions for multiplexed time-lapse imaging 

experiments in zebrafish screening. As a benchmark to address this aim, I established 

a high-throughput imaging platform to quantify kidney regeneration in zebrafish 

embryos post-laser-induced injury. To establish the platform, I pursued the following 

objectives: 

1. Establishing a high throughput lasering and imaging workflow for injuring and 

imaging distal renal tubules in zebrafish embryos. 

• Designing and optimizing mounting strategies. 

• Developing a high throughput laser injury workflow. 

• Establishing an imaging workflow to image regenerating tubules. 

• Developing smart imaging approaches to integrate laser and imaging 

aspects. 

 

2. Developing computational tools and workflows for image processing and 

regeneration analysis. 

• Establishing image processing strategies for standardizing, stabilizing, 

and segmenting the regenerating tubule time-lapses. 

• Developing a computational workflow to detect and track regenerating 

tubules in an automated manner. 

• Validating the established workflow with manual annotations to verify 

its robustness. 

 

3. Validating the platform's ability to quantify kidney regeneration dynamics. 

• Investigating kidney regeneration dynamics at different temperatures. 

• Investigating kidney regeneration dynamics with varying DMSO levels. 
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3 
Results 

 

Studies utilizing laser-induced injury to explore kidney regeneration in zebrafish 

embryos were established recently (C. S. Johnson et al., 2011a). However, it lacked 

the efficiency and precision required for large-scale quantitative analyses, limiting 

their applicability in large-scale screens. I developed a novel high-throughput imaging 

platform to quantify kidney regeneration in zebrafish embryos post-laser-induced 

injury. While the platform was specific to regeneration studies, in a broader context, 

I aimed the platform to be a benchmark for multiplexed time-lapse screening 

solutions in zebrafish embryos. This platform employed laser-induced injury to the 

distal renal tubules of 3 dpf (days post fertilization) embryos of the Tg(cdh17:eGFP) 

zebrafish line, followed by tracking the regenerating tubule tip over time and 

determining the closure of the injury gap.  While developing the platform, I used a 

benchmark dataset from an earlier proof-of-concept screening study by J. Heigwer at 

the University Children's Hospital, University of Heidelberg, Germany, to assess 

potential caveats and issues. The insights gained from this analysis were considered 

during the development of the current platform. 

The development of the platform primarily centered on fulfilling two principal 

objectives, which were interdependent and informed by ongoing feedback throughout 

the process (See the overview Figure 5): 

• Establishing a high-throughput workflow for time-lapse imaging of 

regenerating distal renal tubules post-laser-induced injury.  

• Developing an analysis workflow to track and quantify tubule regeneration, 

offering a reliable approach to evaluate kidney regeneration. 

Following the development of the platform, it was validated to evaluate its capacity 

to identify significant biological changes. 
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Figure 5: Overview of a high-throughput screening platform for studying kidney regeneration in zebrafish post-

laser-induced injury. The schematic represents the key steps in creating the screening platform, from establishing 

sample orientation and mounting, targeted laser-induced injury to the distal renal tubules, timelapse imaging of 

regenerating tubules, and finally, tracking and quantifying the regenerating tubule. Each step is connected with 

a double-headed arrow representing the mutual feedback needed to develop the protocol. Created with 

BioRender.com  

https://www.biorender.com/
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3.1. Developing a high throughput time-lapse imaging 

workflow to study regenerating distal renal tubules post-

laser-induced injury 

3.1.1. Evaluating optimal embryo orientation and sample 

mounting approach 

Laser-induced injury to the distal renal tubule, followed by capturing the injured 

tubule’s regeneration dynamics, depends on effective visualization of both distal renal 

tubules. The efficacy of the induced injury and the resulting acquired images can be 

severely compromised with suboptimal orientation or instability in sample 

positioning during imaging. Thus, establishing an optimal orientation and sample 

mounting approach for the embryos was critical before pursuing more complex 

experimental developments. I evaluated the ideal orientation of the embryo and 

sample mounting approach for visualizing GFP-expressing distal renal tubules in 

zebrafish embryos over long imaging periods. 

3.1.1.1. Exploring optimal embryo orientation for visualization of 

distal renal tubules  

Determining the optimal orientation of embryos to achieve clear visualization of the 

two distal renal tubules for effective laser targeting, followed by subsequent time-

lapse imaging, constituted the initial and fundamental step in this investigation. 

Ensuring reliable and uniform imaging for subsequent steps (laser-induced injury and 

regeneration time-lapse) is unattainable without optimal orientation. I conducted 

experiments to assess the most effective and optimal orientation. I prepared imaging 

plates, as detailed in Section 6.5.1.1., using orientation tools (Wittbrodt et al., 2014) 

with lateral and dorsal mounts to position the embryos in lateral, dorsal, and tilted 

dorsal orientations. After that, I captured low-magnification (2x) and high-

magnification (20x) images (see Figure 6A). 

Upon reviewing the orientations, I determined the lateral orientation (see Figure 6A) 

was not ideal, as it provided visibility for only one of the two tubules. This limitation 

compromised the embryo’s survival, as it increased the possibility of inadvertently 

damaging both tubules during the lasering procedure. On the other hand, whilst the 

dorsal orientation (see Figure 6A) allowed for clear visibility of both tubules, the 

autofluorescence from the yolk sac extension lowered the contrast and resolution of 
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the tubules. However, a tilted dorsal orientation (see Figure 6A) resulted in 

significantly sharper and clearer images of the tubules. Based on these results, I 

adopted a tilted dorsal orientation of the embryos as the optimal orientation for 

further workflow development.  

3.1.1.2. Examining ideal sample mounting strategy for desired 

embryo orientation  

Maintaining the tilted dorsal orientation was essential for extended imaging periods 

as it was determined as the ideal orientation for embryo imaging. It was essential to 

design a mounting strategy to prevent orientation shifts and imaging artifacts caused 

by poor sample mounting. To identify the ideal sample mounting approach for the 

long-term acquisition of the tilted dorsal orientation of embryos, I explored three 

different sample mounting approaches: ZF plate (Hashimoto - HDK-ZFA101-02a), 

cycloolefin film (Greiner - 655891), and plastic (Greiner - 655101) bottom well plates. 

In each approach, I oriented the embryos with the tilted dorsal orientation and 

captured high-magnification images (20x objective) hourly over 12 hours to observe 

the overall stability of the orientation and output image quality in different setups. 

In the case of ZF plates, embryos were directly pipetted into the wells and oriented 

for imaging (see Figure 6B), unlike in cycloolefin film and plastic bottom well plates 

where the embryos were loaded into wells containing low-melting agarose molds (see 

Materials and Method Section 6.5.1.2), before the orientation and imaging of the 

embryos (see Figure 6C). 

After reviewing the time-lapses across each specific setup, in the ZF plate mounting 

approach, I observed that nearly 60% of the sample population deviated from the 

tilted dorsal orientation, transitioning to a lateral orientation during the time-lapse. 

While the absence of an agarose mold enabled acquiring sharper images of the 

tubules, this limitation became substantial, as the consistent, intact orientation of 

the tubules was not attainable over extended durations with this setup. Moreover, 

while orienting, I faced challenges due to the limited space within the slits of each 

well, resulting in damaging the embryos in several instances. 

With just 10–15% of embryos experiencing lateral movements, I found that the 

embryo orientations were constant during the time-lapse in plastic and cycloolefin 

film bottom well plates. The acquired images on the plastic bottom well plates 

demonstrated reduced contrast and brightness compared to cycloolefin film bottom 
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well plates. These results led to choose the cycloolefin film bottom well plate with 

low-melting agarose molds as the optimum screening setup. 

  

 

Figure 6: Exploring optimal embryo orientations and screening setups for visualizing distal renal tubules. 

A) Representative images of zebrafish embryos oriented in lateral, dorsal, and tilted dorsal orientation, 

captured at both low (2x, Brightfield) and high (20x, Green) magnifications. B) Schematic and imaging 

outputs of embryos mounted in a ZF plate. C) Schematic and imaging outputs of embryos mounted in 

plastic and cycloolefin film bottom well plates with low-melting agarose molds 
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3.1.2. Establishing pre-screen pre-laser workflow for laser-induced 

injury 

After determining and establishing the optimal orientation and screening approach, 

developing a robust workflow for performing precise laser-induced injury was essential 

for studying the regeneration of distal renal tubules in zebrafish embryos. This 

required acquiring high-magnification images of the distal renal tubules to annotate 

the injury site precisely. I established a pre-screen pre-laser workflow, ensuring a 

systematic and reproducible approach for obtaining the high-magnification images 

marking the distal renal tubules. 

The workflow began with pre-screen imaging, where embryos oriented on the imaging 

plate (see Materials and Method Section 6.5.1) were imaged at low magnification 

using a 2x objective. These prescreen images provided an overview of the embryos 

within their respective wells, allowing the distal renal tubules to be roughly located 

and annotated in the region of interest for high-magnification imaging (see Figure 12 

A). Using these annotations, high-magnification images of the annotated regions 

marking the distal renal tubules were acquired using a 20x objective in the subsequent 

pre-laser step, providing detailed visualization of the tubules (see Figure 12 B). These 

high-magnification images were critical for precisely annotating the laser injury site 

and guiding the laser-induced injury process (see Materials and Method Section 

6.5.2).  

 

3.1.3. Developing strategies to enhance and optimize laser-

induced injury 

Precise laser-induced injuries to distal renal tubules are critical for studying 

regeneration dynamics, as inconsistent or inaccurate injury can compromise 

experimental reliability. After establishing the pre-screen pre-laser workflow and 

obtaining high-magnification images marking the distal renal tubules (see Results 

Section 3.1.2 ), I established a robust protocol for inducing precise injuries to distal 

renal tubules using the ACQUIFER IM microscope’s photomanipulation module (see 

Materials and Method Section 6.5.3). The injury site was consistently positioned on 

the upper tubule at four somites to the left of the urogenital opening as shown in 

Figure 7A. The experiments involved varied laser power (ranging from 80–100%) with 

a single iteration (repeats for the laser), to determine the optimal parameters for 
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inducing injury. Following lasering, embryos were imaged at high magnification to 

evaluate the extent and accuracy of the induced injury. 

Successful laser-induced injury of the tubules was achieved at 80% power, and 

increasing the power did not significantly improve the results. Additionally, a subset 

of samples exposed to various laser power settings were collected for histological 

analysis to verify the injury occurrence (in collaboration with Prof. Jens Westhoff's 

laboratory, Department of Pediatrics I, University Children's Hospital, Heidelberg, 

Germany). Histological examination corroborated that the tubules were indeed 

injured at the 80% power setting, prompting the selection of this parameter for 

subsequent experiments (see Figure 7B). Nonetheless, a comprehensive qualitative 

analysis of the post-laser images revealed a 40-45% failure rate in achieving the 

desired injury, primarily included injury to both tubules, incomplete injury to the 

targeted tubule, or entirely missing the targeted tubule (See Figure 8). After carefully 

examining the failed laser attempts, I found that the major cause of failed lasering 

attempts was due to the embryo movement during the laser process (about 1–2 tubule 

diameters). These results compelled me to explore techniques to reduce sample 

mobility and raise the success rate of laser-induced injuries.  

 

Figure 7: Anatomical landmarks, region of interest, and histological validation for laser-induced injury. A) 

The figure illustrates the region of interest for laser-induced injury and anatomical landmarks marking it. The 

ROI is annotated with a red box and is located four somites to the left of the urogenital opening, targeting 

the upper distal renal tubule. The schematic simplifies the visual depiction of the area of laser-induced injury. 

B) The left panel features fluorescence microscopy image showing the targeted laser-induced injury at the 

annotated region and a schematic highlighting the region of injury and transverse section for histological 

validation. The right panel shows the renal tissue's histological transverse section, confirming the laser injury. 

Stained sections distinctly show the structural disruption in the injured tubule, while the adjacent tubule 

remains intact, corroborating the laser-induced injury. The histological validation was done in collaboration 

with Westhoff Lab. Created with BioRender.com 

https://www.biorender.com/
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3.1.3.1. Fine-tuning mounting media: Exploring anesthetic conditions 

and methylcellulose for improved sample stability 

Accurate laser-induced injury requires precise sample stability during the lasering 

process. Observations from earlier experiments suggested that embryo movement 

during lasering (approximately 1–2 tubule diameters) contributed significantly to 

high failure rates. Within the established orientation and mounting setup, I began to 

consider how to enhance the stability of the sample. I hypothesized that the sample 

might be shifting due to inadequate anesthetic (tricaine) conditions—specifically, the 

sample could move while inflicting damage with the laser. To verify the effect of 

tricaine on embryo movement, I conducted an experiment using varying 

concentrations of tricaine, starting with the current concentration of 1.6X and 

exploring concentrations of 2X, 2.4X, and 3.2X while being careful not to increase 

them to levels that could harm the embryos. 

Despite these modifications, the results showed no appreciable difference, and the 

incidence of laser injuries stayed high (See Figure 9A). Given these findings, I decided 

to use a new strategy to improve control over embryo mobility by raising the viscosity 

of the mounting media. To achieve this, I utilized methylcellulose, a chemically 

modified cellulose used for mounting (Weber et al., 2014). While standard protocols 

usually recommend a 3% concentration of methylcellulose for mounting, this level 

Figure 8: Inconsistencies in laser-induced injury. This figure presents examples of failed laser-induced 

injuries, characterized by three distinct outcomes: A) absence of ablation, B) injury affecting both tubules, 

and C) partial ablation of the targeted tubule. Each panel comprises merged images that depict the 

conditions of the sample before (green) and after (red) the laser application, alongside an inset that 

illustrates the morphology of the sample post-laser treatment. 
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was excessively viscous for the confined space within each well, which complicated 

the orientation process. I experimented with concentrations of 0.5%, 1%, and 1.5% 

methylcellulose per well. However, any concentration above 0.5% proved too viscous 

to handle and impacted the orientation process. Thus, I proceeded with a 0.5% 

methylcellulose concentration and experimented to determine if this adjustment 

would reduce the laser failure rate. The incorporation of methylcellulose reduced the 

number of samples with failed laser injury, but the overall yield of the assay was still 

not satisfactory (See Figure 9C). 

 

3.1.3.2. Enhancing laser-induced injury outcomes through 

temperature modulation and a two-group approach 

Embryo movement during laser-induced injury remained a persistent challenge, even 

after optimizing mounting media and anesthetic conditions. I hypothesized that the 

movement I observed might result from the embryo's development process and 

general metabolic activity, which could be beyond the control of anesthesia. I 

proposed to modify the incubation temperature to 20°C during the lasering process 

(previously 28°C, typical temperature for zebrafish development) from the moment 

the plate was positioned in the microscope. The lower temperature results in reduced 

metabolic activity, which in turn would reduce the movement. The plan involved 

maintaining the temperature at 20°C during the lasering procedure and restoring it 

to 28°C after the injury, ensuring that regeneration occurred at the normal 

temperature (typical temperature for zebrafish development). To assess the impact 

of this temperature modulation on the success rate of laser injury, I conducted an 

experiment in which I mounted and oriented the embryos within 0.5% methylcellulose 

while maintaining the incubation temperature at 20°C. After executing the lasering, 

I acquired post-laser images to evaluate the effectiveness of this approach. Looking 

at the post-laser images, I saw notable enhancements and, the failure rate of laser 

injury decreased from 33% to 13% (See Figure 9C). This demonstrated that 

temperature modulation effectively enhanced sample stability during lasering and 

substantially improved the accuracy of laser-induced injuries. 

While temperature modulation reduced failure rates, the timespan between acquiring 

images for lasering, annotating the region for lasering, and performing the laser injury 

was an hour. This extended timeframe posed a risk of sample movement, as the 

lasering was based on images already an hour old. To refine the laser injury workflow 

and enhance the success rate of the laser injury treatment, I proposed a two-group 
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approach. This approach involved dividing the plate into two groups (as illustrated 

in Figure 9B), group A (first four rows) and group B (last four rows), and performing 

the laser treatment on one group at a time. This approach significantly reduced the 

time required for the entire process (20-25 min per group, from obtaining images for 

laser annotation to laser treatment) and minimized the chance of sample movement 

over a short time. By integrating this optimization into the laser injury workflow, I 

conducted an experiment and observed a notable reduction in laser injury failure 

rates, which decreased from 13% to 4% (See Figure 9C). 
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Figure 9: Optimizing laser-induced injury of distal renal tubules in zebrafish embryos. A) Effects of 

different tricaine concentrations on laser injury failure rates. A bar graph illustrates the failure rates of 

laser-induced injury at varying concentrations of tricaine from 1.6X- 3.2X; each condition had n=24 

N=1. The failure rates for laser injuries in each tricaine concentration were assessed by counting the 

samples with inconsistencies in the laser-induced injuries and dividing this number by the total samples 

for each tricaine concentration.  Adjustments to anesthetic concentrations showed no significant 

improvement in reducing laser injury failure rates. B) The schematic diagram visualizes the division of 

embryos in the screening plate into two groups (Group A: rows A–D; Group B: rows E–H) for sequential 

lasering (Schematic drawn using https://plateeditor.sourceforge.io/). This approach minimized the time 

between image acquisition, annotation, and laser treatment, reducing the risk of embryo movement. C) 

Effects of different strategies on laser injury failure rates. Under different conditions, a bar graph 

comparing the failure rates of laser-induced injuries; each condition had n=96 N=1. Counting the 

samples with inconsistent laser-induced injuries and dividing this number by the total samples for every 

experimental condition determined the failure rates for laser injuries in each of them. Before 

optimization: The initial protocol shows the highest failure rate (~40%). Methylcellulose: Adding 0.5% 

methylcellulose reduced failure rates by increasing sample stability. Methylcellulose + Temperature 

Control: Combining methylcellulose with temperature modulation (20°C during lasering) further 

reduced failure rates. Methylcellulose + Temperature Control + Two-group approach: The integration 

of all optimization strategies (methylcellulose, temperature control, and the two-group approach) 

resulted in the lowest failure rate (~4%), demonstrating the synergistic effect of these improvements on 

laser-induced injury workflow. 
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3.1.4.Optimizing long-term imaging of regenerating distal renal 

tubules  

Developing a protocol that ensured reliable, high-quality time-lapse imaging over an 

extended period was essential to study the regeneration dynamics of distal renal 

tubules post-laser injury. Long-term imaging is crucial for capturing the progressive 

changes occurring during regeneration. I established a robust protocol for time-lapse 

imaging using the ACQUIFER IM microscope (see Materials and Method Section 

6.5.2) following the successful induction of laser injury. Time-lapse imaging was 

initiated one-hour post-laser-induced injury, and for both groups, the entire laser 

injury process took approximately one hour to complete. The imaging began by 

setting the microscope temperature to 28°C to ensure regeneration occurred at the 

normal developmental temperature for zebrafish. Imaging of the regenerating distal 

renal tubules continued for 12 hours, with images captured every hour. To 

synchronize the start points of imaging between Group A and Group B, a 30-minute 

delay was introduced between the two groups. This accounted for the time required 

to complete the laser injury in Group A before starting with Group B, ensuring that 

both groups had a simultaneous imaging start while capturing regenerating tubule 

images.  

Imaging a live sample for such an extended period using a single static focal plane 

was impractical, and adjusting the focal plane before each hourly capture was also 

not feasible. Thus, I employed a two-step autofocus approach to find the optimal 

focal plane at each timepoint. The distal renal tubules in the green channel were used 

as the target for the autofocus due to their well-defined structure and distinct texture. 

The procedure involved configuring two search ranges: a coarse search range and a 

fine search range (see Figure 10A). The coarse search range was set according to the 

sample thickness, while the fine focus range was tailored to the diameter of the tubule 

(as detailed in Table 8 of the Materials and Methods).  

I observed that over 25% of the acquired time-lapses were losing focus (failing to 

focus on regenerating tubule) intermittently or throughout the time-lapse (see Figure 

10D). Careful evaluation of the samples, which lost focus during time-lapse, revealed 

two primary issues. The autofocus occasionally locked onto agarose particles or dirt 

introduced during sample preparation, resulting in a loss of sample focus. Secondly, 

the autofocus failed to correctly identify the fluorescent tubules, focusing instead on 

non-fluorescent artifacts or other structures. These results prompted me to explore 

and develop strategies to optimize the autofocus further and mitigate focus loss. 
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3.1.4.1. Optimizing sample focus using a region of interest-based two-

step autofocus approach 

I could not maintain precise sample focus during the extended imaging periods using 

the two-step auto-focus approach. To improve the effectiveness of the current two-

step, autofocus approach, I developed an area of interest-based two-step autofocus to 

enhance the efficacy of the established two-step autofocus approach. It involved 

defining a subregion of the camera's field of view, enclosing the distal renal tubules, 

and utilizing it for autofocus (see Figure 10B). The motivation behind this approach 

was to avoid detecting any other structures (dust, agarose) within the camera's field 

of view, which typically show a high contrast with the background and would bias 

the autofocus. Qualitative analysis of the acquired time-lapse data indicated that this 

refined approach effectively reduced the incidence of focus loss to 10% (see Figure 

10D). Still, some samples lost focus across the time-lapse. 

3.1.4.2. Enhancing autofocus efficiency by correcting back 

illumination issues 

Despite the significant improvement in focus stability achieved by introducing the 

region of interest (ROI) for autofocus, a detailed analysis of failure cases revealed a 

recurring issue. I observed that instead of accurately targeting the renal tubules, the 

autofocus consistently selected non-fluorescent structures, particularly segments of 

the notochord, as demonstrated in the Figure 10C. This misidentification happened 

due to the back illumination from the autofluorescent yolk sac extension, which 

inadvertently highlighted non-fluorescent structures and led the autofocus to target 

these nonfluorescent structures. 

To counter the back illumination of non-fluorescent structures, I aimed to reduce the 

overall light exposure on the sample during the autofocus process. This included 

reducing the exposure time and illumination power during the autofocus process from 

20 ms and 20% to 5 ms and 5%, respectively (see Table 7). These adjustments 

successfully addressed the misidentification issue caused by back illumination. They 

effectively corrected the back illumination-induced misidentification problem, such 

that the autofocus always aimed at the fluorescent renal tubules instead of non-

fluorescent objects. This optimization reduced the incidence of focus loss during time-

lapse imaging from 10% to just 3% (see Figure 10D), hence improving the autofocus 

robustness. 
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Figure 10:  Strategies to optimize long-term imaging of regenerating distal renal tubules. A) Schematic of the two-step 

autofocus approach. The method involved optimizing two focus ranges a coarse focus range (blue), scanning the entire 

sample width to identify a broad focal plane, followed by a fine focus range (orange) tailored to the diameter of the distal 

renal tubule to identify the plane of focus (green). B) The figure illustrates Region of interest (ROI)-based two-step autofocus 

approach. To enhance autofocus precision, the ROI-based strategy restricted autofocus calculations to a subregion of the 

field of view (within the red box) containing the distal renal tubule, thereby reducing interference from other structures 

such as agarose debris or non-relevant areas in the imaging field. C) This figure presents an example of misidentification of 

the focal plane due to the back illumination of a non-fluorescent structure. The schematic consists of a blue box showing 

the structure misidentified by the autofocus due to back illumination. D) Effects of different strategies on minimizing focus 

loss during time-lapse imaging. A bar graph compares the sample focus issue rates under different conditions; each condition 

had n=96 N=1. The initial setup (“Before optimization”) exhibited a high focus issue rate (~25%). Implementing the ROI-

based autofocus approach reduced the rate to 10%, and further optimization of illumination settings, including image 

binning and reduced exposure, lowered the rate to just 3%.  
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3.1.5. Establishing a computer-guided imaging workflow  

Temperature modulation, applying a two-group strategy, laser damage, and 

subsequent time-lapse imaging of regenerated distal renal tubules, the workflow for 

laser-induced injury, and subsequent time-lapse imaging of regenerating distal renal 

tubules comprised multiple complex steps. Although each step was critical for 

maintaining the quality and accuracy of the workflow, I realized that the overall 

process was labor-intensive and prone to human error due to its complexity. Given 

the high degree of intricacy and the repetitive nature of several tasks (especially 

between the groups), I identified a pressing need to streamline and automate the 

workflow. I utilized the scripting capabilities of the ACQUIFER IM microscope, 

which supports customizable smart imaging workflows, enabling the microscope to 

script each task. As shown in the workflow diagram (see Figure 11), I developed a 

template script for each task and an overarching Python script that integrated all 

these respective task scripts and guided users through manual interventions with 

clear, user-friendly instructions.  

The developed script proceeded as follows: 

• Initialization and setup: The script began by prompting the user to customize 

the project folder name for data organization. 

• Lower temperature incubation and pre-screen imaging: The microscope 

temperature was set to 20°C (see Results Section 3.1.3.2), and the system 

waited until the target temperature was reached before acquiring pre-screen 

(2x) images for group A (see Figure 12A). 

• Annotation for  high-magnification (20x) acquisition: After prescreen imaging 

of group A, the script launched ACQUIFER’s plate viewer software for the 

user to annotate regions of interest for high-magnification imaging in Group 

A. Based on the annotations, high-magnification images of the distal renal 

tubules were acquired (see Figure 12B). 

• Annotation for lasering and laser injury execution: Following the high-

magnification imaging of group A, the script launched the plate viewer 

software to annotate the region for lasering. After annotation, the script 

executed laser injury for group A (see Figure 12B). 

• Repeating the same steps for Group B. 

• Normal temperature incubation and time-lapse imaging: After completing 

laser injury for both groups, the script restored the microscope temperature 

to 28°C (normal zebrafish development temperature) for time-lapse imaging. 
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To synchronize the timeline of capturing the tubule regeneration events across 

both groups (see Results Section 3.1.3.2), the script also introduced a delay 

for the time-lapse imaging of the two groups (see Figure 12C). 

• Post-screen acquisition and max projection (across Z axis) of the time-lapses: 

Upon completion of the time-lapse imaging, the script acquired post-screen 

images using 2x objective to validate the health of the embryos. After the 

acquisition processes, the script generated for each timepoint a maximum 

intensity projection (MIP) of the Z-stack . This allowed capturing tubules that 

spanned across z-planes due to their thickness and curvature, thereby 

enhancing the signal clarity of the tubules while reducing background noise. 

After max projecting the script efficiently transferred all the acquired data 

and MIP time-lapses from the imaging PC to the external hard drives. 
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Figure 11: Computer-guided imaging workflow for laser-induced injury and time-lapse imaging of distal renal tubules. 

This schematic illustrates the step-by-step smart microscopy workflow developed to streamline the complex protocol 

of laser-induced injury and subsequent time-lapse imaging of regenerating distal renal tubules in zebrafish embryos. 
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Figure 12: High-throughput workflow for laser-induced injury and time-lapse imaging of distal renal tubules. A) 

This panel shows the low-magnification pre-screening images (merged groups A and B) from a 96-well plate, 

with images acquired at 2x magnification and annotated region of interest for subsequent high- magnification 

imaging steps. The left image highlights a representative embryo in its well, with the blue box denoting the 

annotated region of interest for higher- magnification imaging. B) This panel depicts a montage of pre-laser 

images (merged groups A and B) across the plate, demonstrating consistent high- magnification (20x objective) 

imaging of the renal tubules with annotated regions of injury for lasering. The left image shows a close-up of a 

selected distal renal tubule with a red box denoting the annotated region of injury for lasering. C) This panel 

presents a montage of time-lapse images first-time point (merged groups A and B) acquired hourly for a specific 

embryo, illustrating the regeneration progression over 12 hours at 20x magnification. The left image highlights 

a representative regenerating tubule 
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3.2. Virtual Orientation Tools (VOTj): Fiji plugins for 

object centering and alignment 

Tilted dorsal orientation of zebrafish embryos was crucial for laser-induced injury and 

subsequent time-lapse imaging of regenerating distal renal tubules. This orientation 

ensured the visibility of both tubules within the kidney (see Results Section 3.1.1). 

The tubules have a longitudinal structure and having them aligned with the 

horizontal axis of the image would facilitate the subsequent quantification of 

regenerating tubules. However, the tilted positioning of the embryos led to a 

corresponding rotational deviation in the distal renal tubules observed in the acquired 

images (Figure 12B and C). The tilt caused an important constraint in measuring 

the regeneration of the distal renal tubules, as the extent of tilt differed among 

samples due to variations in embryo shape, resulting in a lack of uniformity among 

samples. Correcting this tilt during mounting was impractical, as the assay required 

a tilted orientation for proper imaging; images would thus need to be virtual/digitally 

realigned after the acquisition. Manually rotating the images for each sample would 

be labor-intensive and susceptible to inconsistency. Realizing the lack of solutions to 

resolve these challenges and to build automated solutions to streamline and 

standardize the post-acquisition alignment of distal renal tubules across datasets I 

developed the “Virtual Orientation Tools (VOTj)”, a suite of plugins for the 

Fiji/ImageJ platform. VOTj facilitated the automated alignment and centering of an 

elongated object of interest in images along a vertical or horizontal orientation. I have 

detailed the development and application of VOTj in a peer-reviewed publication 

(Satheesan et al., 2024). I also established a dedicated GitHub repository that offers 

detailed instructions for obtaining and using the tool 

(https://github.com/sankeert1999/Virtual-Orientation-Tools-VOTj). 

3.2.1.Virtual Orientation Tools (VOTj): Features, applications 

and workflow integration  

The plugin employed Principal Component Analysis (PCA) to compute the necessary 

translation and rotation for aligning the object along a vertical or horizontal axis, 

utilizing the annotation/mask. The images were aligned based on the computed 

translation and rotation factors, leading to a uniform and standardized orientation 

across the dataset.  To provide a user-friendly interface, I developed a VOTj GUI 

(see Figure 14D) to guide users through multiple configuration steps, including 

selecting the input image, providing the mask/annotation, and configuring the 

https://github.com/sankeert1999/Virtual-Orientation-Tools-VOTj
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alignment setting (see Figure 14A-D). As mentioned above, the tool accepted either 

mask or annotation. Accordingly, I included two different methods for the alignment:    

• Mask-assisted alignment: prompted users to select the input image and its 

associated binary mask outlining the object (see Figure 14C). 

• Annotation-assisted alignment: prompted the users to annotate the object of 

interest directly on the input image using the Fiji brush tool (see Figure 14B). 

I integrated three operating modes in the plugins to ensure flexibility and adaptation 

for different alignments: 

• Centering: Calculate the object's center of interest and translate it to the 

image center. 

• Alignment (Horizontal/Vertical): Determining the center and base orientation 

of the object of interest and calculating the necessary rotation angle to align 

the object of interest. 

• Centering and Alignment: Determining the center and base orientation of the 

object of interest and calculating the necessary translation and rotation angle 

to center and align the object of interest. 

Naturally, the elongated objects mostly exhibit directionality (head/tail, 

top/bottom); this motivated me to include an additional option for specifying the 

intended alignment direction apart from the axis of alignment (horizontal/vertical). 

The plugin automatically orients the object in the closest direction if the alignment 

direction is not specified.  To handle possible problems of losing the original image 

region departing the original image canvas during translation and rotation, I included 

a function to enlarge the output image canvas (see Figure 14F). 

I implemented two operational modes for the VOTj plugins, single and batch, 

allowing users to align individual images or entire image folders. Figure 13A 

illustrates the application of VOTj’s batch mode for the alignment of zebrafish 

embryos in a 96-well plate (subset), which resulted in uniform position and alignment 

of the embryos. Due to the inherent asymmetry of the zebrafish, which contributes 

to their natural directionality (head-tail), VOTj's directional alignment feature was 

employed to ensure that the heads of the embryos consistently faced left, as illustrated 

in Figure 13A. Although the plugin is primarily designed to align a single object 

within each image, the alignment also extends across multiple dimensions. For 

instance, in time-lapse imaging, each timepoint is aligned independently, whereas 
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channels and Z slices are typically aligned using the same transformation, as depicted 

in Figure 13B and C. 

Figure 13: Virtual Orientation Tools (VOTj): Application overview. A) Illustrative subset of zebrafish embryos imaged in 

a 96-well plate. These embryos were oriented randomly without using any dedicated mounting methods. Images of the 

embryos were aligned using VOTj. (B-C) The tool can be used to align various samples and is compatible with multi-

dimensional images such as Z-stacks and time-lapse images, as shown in (B, C) for the alignment of fluorescently labeled 

zebrafish embryos along their site of injury and otic vesicle, respectively.  

Figure 14: Virtual Orientation Tool (VOTj) workflow overview. A) Input image of distal renal tubule post-laser-induced 

injury. B) User annotation applied to highlight the object of interest (distal renal tubules) using the Fiji brush tool for 

annotation-assisted alignment. C) Binary mask outlining the object (distal renal tubules) for mask-assisted alignment. D) 

VOTj graphical user interface with configurable settings, users can choose the axis of alignment (horizontal or vertical), 

alignment method—centering, alignment, or both—operational mode, and enlarging the image canvas. E) Resulting image 

after applying alignment transformations to align the object along the desired axis. F) Resulting image post-alignment 

with an enlarged canvas to retain the original image regions, avoiding cropping during translation or rotation. 
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3.3. Establishing an image processing workflow for 

stabilizing and segmenting regenerating tubules  

Quantifying dynamic biological processes like the regeneration of distal renal tubules 

involves detecting and tracking the tubule growth over time (See Figure 5). This 

demands that the regenerating tubules within the acquired images are stable and 

aligned throughout the time-lapse across the sample space. However, imaging live 

specimens often introduces several challenges post-acquisition, including variability 

in embryo orientation, misalignment across frames in time-lapse sequences, and 

difficulties in localizing regions of interest for analysis. I also noted similar issues 

within the acquired regenerating tubule time-lapse. I established an integrated 

automated image processing workflow within FIJI to address these issues, which 

consisted of two individual pipelines (see materials and methods Section 6.5.4.1.) 

designed to stabilize and standardize time-lapses followed by segmenting the 

regenerating tubules from the stabilized time-lapses. 

The pipelines prompted a GUI guiding users through multiple configuration steps, 

starting with selecting the max projected time-lapse folder as input and then 

processing each time-lapse. The pipeline dedicated to stabilizing and standardizing 

the time-lapse integrated three core image processing steps: 

• Template matching-based stack alignment.  

• Stack registration-based refinement of the alignment. 

• VOTj-based injury centring and orientation of the injury along a uniform axis 

(Horizontal axis). 

After stabilizing and standardizing the time-lapse, the pipeline dedicated to 

segmenting the tubules detected and segmented the tubules. 

In the following subsections, I describe each pipeline component in detail, along with 

its implementation and impact on the quality of the imaging workflow. 
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3.3.1.Stack registration-based stack alignment 

Initially, I aimed to stabilize the regenerating tubule time-lapse by resolving the 

movement artifacts and misalignment across the time-lapse. I used a stack 

registration-based approach using the Stackreg plugin created by (Thevenaz et al., 

1998). The alignment process involved a pixel-by-pixel recursive registration of each 

frame to the upcoming frame. The accuracy of the alignment depended upon the 

optimal reference frame (the first frame being used for registration).  I evaluated 

multiple choices using the time-lapse's mid-point, end, and beginning frame as the 

reference. Since the initial frame gave a constant basis for stabilizing the sequence 

from the beginning of the regeneration process, I chose it as the reference frame for 

alignment.  

After stack alignment, I compared the standard deviation projections of the time-

lapses before and after applying stack alignment (See Figure 15A-B). I observed that 

the approach reduced the movement and alignment artifacts, but misalignments 

persisted within the tubule regions. Additionally, as I applied stack registration 

(pixel-by-pixel alignment) on the raw image (2048x2048 pixels), the computation 

time for aligning each stack was significantly high. I explored other alternatives to 

enhance the stabilization and reduce the processing time.  

3.3.2.Template matching based stack alignment and stack 

registration-based refinement 

I observed that stack registration could not mitigate the issues completely, so I 

employed a template matching-based approach, utilizing a previously developed Fiji 

plugin (Thomas & Gehrig, 2020a). Template matching correlates an input template 

image with image regions to detect the desired region across the target images/stack. 

The critical aspect of the template matching-based approach was selecting the 

optimal template image for searching across the time-lapse. I initially attempted to 

create a generic set of template images derived from multiple time-lapses, to be used 

universally across experiments. However, the heterogeneity of the samples led to 

frequent misdetections. Thereby, I adopted a time-lapse-specific template selection 

approach, where a template was extracted individually for each time-lapse rather 

than applying a generalized template across datasets. I tested different template 

dimensions (to accommodate large drifts) and the optimum timeframe. Despite being 

relatively large, I determined that the first timeframe with a dimension of 1748x1748 

pixels gave me the best results. After template matching-based stack alignment, I 
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compared the before and after standard deviation projections post-template 

matching and found that template matching also provided results similar to the stack 

registration-based approach (See Figure 15A-C). As an alternative approach, I 

considered combining these approaches: template matching-based stack alignment 

followed by stack registration-based refinement. This dual-step approach produced 

the most optimal results, where motion artifacts were limited only to the injury 

region, which was expected due to tubule regeneration dynamics (See Figure 15D). 

Additionally, I observed that stack registration’s processing time for each time-lapse 

was lower as it was performed on smaller, localized images, further enhancing 

processing efficiency. 

After establishing these methods, I developed a macro representing the stabilizing 

and standardization pipeline to implement these approaches. The macro started with 

a GUI prompt to upload the acquired max projected time-lapse data. To streamline 

the template generation process, I automated it by cropping a 1748 × 1748 pixel 

region centered on the field of view of the first timepoint of the acquired max 

projected time-lapse (See Figure 16A). The subsequent processing steps included 

template matching-based alignment followed by stack registration-based refinement, 

generating a 1748x1748 pixels sized stabilized time-lapse (See Figure 16B). 

 

  

Figure 15: Representative standard deviation projection maps across the time-lapses after different stabilization 

approaches. A) Max projected timelapse, showing inherent alignment issues. B) The stack registration resolved it, but 

alignment issues were still near the tubule regions. C) Template matching also showed similar alignment results to 

stack registration. D) Combining both approaches gave optimum alignment.   
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3.3.3.Virtual Orientation Tool (VOTj)-based object alignment 

The tilted dorsal orientation of the embryos, as discussed in the results of Section 

3.1.1.1, led to a corresponding tilt in the acquired images of the regenerating tubules. 

Orienting the regenerating tubules to a uniform axis was necessary to ensure that 

regeneration of the injury was visualized along a consistent axis across the time-lapse 

and samples. The downstream quantifications, such as edge tracking and regeneration 

measurements, would be prone to errors caused by variability in the orientations. 

After successfully stabilizing the time-lapses, I aimed to center and orient the injury 

to a uniform axis as the next step within the stabilizing and standardizing pipeline.   

I identified that orienting the tubules along a horizontal axis was a straightforward 

approach, as it allowed for analyzing the regeneration process as an injury gap being 

filled horizontally. To achieve this, I employed the Virtual Orientation Tool (See 

Results Section 3.2.) to center and orient the injury within the regenerating tubule. 

The virtual orientation tool was utilized in a two-step manner as a first step, the 

regenerating tubules were centered based on user annotations of the injury site in the 

initial frame of each time-lapse (See Figure 16C). Centering on the injury ensured 

consistency across the time-lapse and all samples, which also aided the downstream 

analysis (see Results Section 3.4.2). As the next step to orient the regenerating 

tubules, I developed an automated segmentation routine to compute masks (See 

Figure 16C) representing the regenerating tubule. Using the generated masks, VOTj 

oriented the regenerating tubules horizontally within the centered time-lapse stack. I 

implemented each step of the virtual orientation tool in the pipeline seamlessly, with 

clear prompts and annotations guiding the user. (See Figure 16C). 

Following the centering and alignment of the regenerating tubule, the final step in 

the image-processing pipeline for stabilizing and standardizing the time-lapse 

involved cropping the time-lapse stacks to a fixed size (frames divided into three 

parts, with the middle section containing the regenerating tubules extracted). The 

Figure 17 illustrates the comparison of the time-lapse stacks before (See Figure 17A) 

and after (See Figure 17B) processing within a 96-well plate format, showcasing the 

pipeline's effectiveness in stabilizing and standardizing the datasets. 
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Figure 16: Overview of image processing pipeline for stabilizing and standardizing time-lapses. A) Template matching based 

stack alignment. This panel depicts the overview of the template matching-based stack alignment, where the yellow box 

represents the automatically generated template utilized for it. B)  Stack registration-based refinement. After stabilizing the 

timelpases using template matching, the alignment was further refined using stack registration. C) Virtual orientation tool 

(VOTj) based injury cantering and orientation. After aligning the timelpases, VOTj was utilized in a two-step manner to 

standardize it. The injury was centered using a user annotation-based centering where the injury region in the first time 

frame of the timelapse was marked across the dataset, followed by mask-assisted orientation of the injury to a uniform axis. 

Finally, the stabilized and standardized stack was cropped to ensure that only the regenerating tubule region was retained 

for further analysis. 
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Figure 17: Overview of the effects of the image processing pipeline dedicated to stabilizing and standardizing the time-

lapses. A) Raw Data of a 96-well Plate with Regenerating Tubule Time-lapses. This panel displays the initial raw data 

captured from a 96-well plate, each well containing time-lapse imaging of regenerating distal renal tubules. The images 

show the variability in positioning and alignment due to the inherent movements of the embryos during live imaging. B) 

After Image Processing Pipeline Stabilized and Standardized Regenerating Tubule Time-lapses. This panel showcases 

the same 96-well plate after applying the image processing pipeline. Including template matching for consistent region-

of-interest detection, stack registration to correct for frame-to-frame drift, and the application of the Virtual Orientation 

Tool for uniform orientation of the tubules. The resulting images are aligned, centered, and standardized across all wells. 
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3.3.4. Establishing a segmentation pipeline to identify 

regenerating tubules  

Following the stabilization and standardization of the regenerating tubule time-lapse, 

the critical next step was segmenting these structures. This step is crucial for 

delineating the injury and edges of the regenerating tubules across the time-lapse. 

Precise segmentation is essential for accurate quantification of tubule regeneration 

over time. To build a segmentation pipeline, I initially started with the dataset 

acquired previously by the collaborators. I employed a conventional intensity-based 

threshold segmentation method using FIJI. I developed a custom macro (see 

materials and methods Section 6.5.4.1.) that executed several preprocessing steps, 

including mean blurring and background subtraction, to enhance the visibility of the 

regenerating tubules, followed by applying a threshold to separate these tubules from 

the background.  Due to the poor signal-to-noise ratio inherent in the earlier datasets, 

I noted over-segmentation.  Accurate longitudinal analysis was challenging, as the 

segmentation errors led to disruptions in the continuity of the tubule structures across 

the time-lapse 

I explored a machine learning-based image segmentation technique to resolve these 

potential issues.  Utilizing Ilastik, an interactive machine-learning tool, I trained a 

pixel classifier (see materials and methods Section 6.5.4.2) on a set of manually 

annotated images (See Figure 18A). This method required creating user-defined 

classes for the foreground (regenerating tubules) and background regions and 

leveraged complex computed features from these annotations to achieve accurate 

segmentation. I found that the machine learning approach adapted more effectively 

to the variability and complexity of the image data and provided better segmentation 

results. 

The improvements in imaging techniques and data standardization provided an 

opportunity to reevaluate the initial threshold-based segmentation approach.  Given 

the enhanced image quality and consistency, I revisited the intensity-based threshold 

method and found that it was providing satisfactory results.  The refined imaging 

conditions reduced the previous over-segmentation complications (See Figure 18C-

D), which led me to favor this approach for segmenting regenerating tubules over the 

machine learning method, as it was simpler and less computationally intensive. 
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As detailed above, the segmentation of regenerating tubules resulted in the 

segmentation masks of the regenerating tubules. I identified that the next critical 

step for analyzing the regenerating tubules was to engineer an approach to detect the 

injury over time within the segmented mask images. Ideally, it would mean detecting 

the regenerating tubule edges, which is essential for measuring the dynamics of tubule 

regeneration, including changes in the length of the injury gap over time. 

To effectively identify the edges of the regenerating tubules, I designed a method 

using intensity profiles, also known as profile plots (See Figure 19C). These 2D graphs 

show pixel intensities along a designated line inside the image; the x-axis shows the 

position along the line, and the y-axis shows the intensity values. The profile plots 

can be vertical and horizontal, here I derived an average horizontal profile for the 

entire region of the segmented masks. Within these profiles, the injury site typically 

appears as a distinctive dip in intensity followed by a subsequent peak. This dip 

indicates the left edge, while the peak marks the right edge of the regenerating tubule 

(See Figure 19A, B, C). 

Figure 18: Establishing a segmentation pipeline for regenerating tubules. A) Machine Learning-based Segmentation using 

Ilastik. This panel shows applying a machine learning-based segmentation method using Ilastik, illustrating the interactive 

interface and segmentation preview. The method involves training a pixel classifier to distinguish between foreground 

(regenerating tubules) in blue and background in yellow based on manually annotated images. B) Intensity-Based Threshold 

Segmentation using FIJI. This panel depicts the Graphical User Interface for the intensity-based threshold segmentation method 

within the FIJI software interface, highlighting the settings used for thresholding. C) Standardized and Stabilized Time-lapses. 

This panel displays a subset of stabilized and standardized time-lapse images across the 96-well plate, ready for subsequent 

accurate segmentation. D) Segmented time-lapses. The final panel shows the outcome of the intensity-based threshold 

segmentation using FIJI of the stabilized and standardized images in panel C 
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After segmenting the stabilized and standardized time-lapse stacks, I obtained the 

horizontal profile plot for each frame within a stack and recorded it in a CSV file. 

Each column in the CSV file represented the profile data of each time point, which I 

exported for further processing, including the detection and tracking of the 

regenerating edges. I integrated the profile plot computation and exporting within 

the segmentation pipeline. 

   

Figure 19: Analyzing regeneration dynamics through horizontal profile plots. A) Stabilized and Standardized First 

Frame from Time-lapse Stack. This panel displays the first frame from a stabilized and standardized stack of 

regenerating tubules. B) Segmented First Frame. This panel shows the corresponding segmented mask, emphasizing 

the regenerating tubule. C) Horizontal Profile Plot. The bottom panel depicts a horizontal profile plot derived from 

the segmented mask. This plot illustrates the intensity values across the tubule, with the x-axis representing the 

position along the tubule and the y-axis indicating the intensity at each position. Notably, the plot identifies 

significant features such as dips (left edge) and peaks (right edge), which correspond to the edges of the regenerating 

tubule. 
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3.4. Developing a KNIME-based regeneration tracking 

workflow 

Accurate detection and tracking of regenerating tubule edges are critical for 

quantifying the dynamics of injury repair over time. Building on the horizontal profile 

plots approach discussed in the results Section 3.3.4, to streamline the process of 

detection and tracking of regenerating tubule edges, I developed a KNIME-based 

workflow that provides a semiautomated, reproducible, and efficient solution for 

analyzing tubule regeneration (See material and methods Section 6.5.4.3).  

The workflow takes two inputs: the exported CSV file containing horizontal profile 

plots derived from segmented masks (one CSV file per time-lapse) and a folder 

containing the same experiment's cropped, stabilized, and standardized time-lapses 

images. Based on the input CSV file, the workflow automatically identifies the 

corresponding time-lapse and processes the data accordingly. 

The developed KNIME workflow (See dashboard in Figure 20), followed a modular 

structure with four primary panels—three of which are user-configurable:  

1. Managing input – Selection and organization of input files. 

2. Parameter configuration – Configuring preprocessing and detection 

parameters. 

3. Visualizing tracking overlay and saving outputs – Reviewing tracking results, 

saving processed data, and exporting tracking overlays. 

Detection and tracking is the non-configurable fourth panel that holds the central 

nodes executing the edge detection and tracking computations. This section will 

discuss each panel, its application, and its usefulness.  
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3.4.1. Managing inputs 

The workflow's starting point was this panel (Figure 20, within the yellow box). I 

aimed to simplify the data input procedure using this panel and properly set the 

global settings. Within this panel, the user was prompted to: 

• Input a profile plot CSV file for each segmented time-lapse. 

• Specify the folder containing the cropped and stabilized time-lapses for an 

experiment. The panel then automatically identified the appropriate timelapse 

corresponding to the uploaded profile plot. This automation avoided manual 

file matching, which can sometimes result in mistakes, especially when 

handling huge datasets 

• Set global parameters, the time interval and total number of timepoints in 

time-lapse.  

. 

Figure 20: KNIME-based regeneration tracking workflow overview. This figure offers a complete picture of the KNIME-based 

approach created to monitor tubule regeneration throughout time-lapse images. Designed for simplicity of use and speed in 

processing complicated data, it shows the workflow's modular structure. It comprises modules for data input management, 

processing parameter setting, tracking and detection, displaying tracking overlays, and storing results. Powerful back-end 

processing features combine with an easy-to-use interface. 
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3.4.2. Parameter configuration 

This panel (Figure 21A) allowed the configuration of the parameters to detect and 

track the regenerating tubule edges. I designed it to ensure flexibility and adaptability 

in the workflow, allowing users to define key parameters for improved detection 

accuracy, particularly in cases where variability in datasets required fine-tuning. 

Specifically, this panel consists of two major components: 

• Defining the region of interest (ROI) within the horizontal profile plots: 

To allow precise detection of regenerating tubule edges, I developed a collated 

plot (See Figure 21B), which combined all horizontal profile plots across the 

entire time-lapse into a single graph. I also developed an interactive ROI 

marker to interactively select the region of interest within the collated plot 

(See Figure 21B). This step allowed further analysis to focus specifically on 

the injury site across timepoints. 

• Tracking the closure of the injury gap based on variance in the profile plots: 

In the second part of the panel, I implemented an approach to track the closure 

of the injury gap by analyzing the variance of the profile plot at each 

timepoint. Within the collated plots, I noticed that the profile variation was 

progressively approaching zero as the injury gap regenerated, lacking 

prominent dips in the later timepoints. Based on this observation, I designed 

an approach to estimate the closure timepoint. I computed the mean-variance 

of all timepoints and established it as the default threshold. Timepoints with 

variance above this threshold were selected for further detection analysis, while 

those below were filtered out. However, I observed that this approach was not 

robust. The threshold excluded the final timepoints where the tubule was still 

regenerating, the profile variance often fell below the threshold due to the low 

prominence of the dip in the injury gap. Consequently, these critical timepoints 

were ignored despite the ongoing regeneration process. Conversely, in other 

cases, regenerated timepoints with noisy profiles were wrongly included in the 

analysis because their high variance exceeded the threshold despite the injury 

having already closed. I implemented another option within the panel to allow 

users to set the threshold manually. This approach proved time-consuming and 

impractical. However, this approach proved time-consuming, as manually 

adjusting the threshold required multiple iterations. The manually set 

threshold was unique to one time-lapse, it was not transferable to others due 

to variability in noise levels and profile characteristics. To address these 
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challenges, I added an option (See Figure 21C) in the panel that allowed to 

manually include or exclude specific timepoints that the workflow might 

otherwise filter out. This feature provided more control over the filtering 

procedure in combination variance-based filtering, including or excluding 

timepoints missed or detected by variance-based filtering.  

3.4.3. Detection and tracking 

As shown in Figure 20, within the red box, serves as the central component of the 

workflow, responsible for detecting and tracking regenerating tubule edges. Using 

ruptures (Truong, 2018/2024), a Python library designed for change-point detection 

in time series data, I developed a Python script to track the edge of the regenerating 

tubules from the horizontal profile plots. Ruptures is appropriate for spotting sudden 

changes in signal behavior, something optimal to detect the prominent dips in the 

horizontal profiles. Handling the diversity and complexity of the regeneration data, 

its adaptability and processing efficiency made it the best fit. The detection and 

Figure 21: Overview of the KNIME-based regeneration tracking workflow-Parameter configuration. A) Parameter 

configuration GUI. Illustrates the graphical user interface of the parameter configuration panel, critical for the precise 

detection and analysis of regenerating tubule edges. B) Collated plot with interactive slider. Each horizontal profile plot 

from the time-lapse aggregated into a single graph shows a collected plot with timepoint colour-coded. This visualization 

helps users define the region of interest (ROI) for targeted study on the damage location, improving the edge detection 

over time. C) GUI for selective timepoint inclusion. It helps to either include or exclude particular time points selectively 

in the regeneration tracking study. 
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tracking panel ensured a streamlined and automated analysis pipeline, applying the 

defined parameters to detect and track the regenerating tubule edges precisely. 

 

3.4.4. Visualizing tracking overlay and saving outputs 

This panel (See Figure 22A) is responsible for visualizing the results of the tracking 

analysis and managing the export of all outputs. I specifically designed tools to review 

and validate the accuracy of the tracked regenerating tubule edges, ensuring the 

results meet the required level of precision before proceeding to save the outputs.  

• Visualizing the Tracking Overlay. I built this node within this panel to show 

the tracked results as an overlay on the original time-lapse (See Figure 22D). 

This visualization offered instantaneous feedback, verifying if the tracked edges 

match exactly the renewing tubules and helping to evaluate the detection 

quality. If the results are unsatisfactory, the tracking fails to capture the 

correct edges or includes irrelevant features, users can revisit earlier steps in 

the workflow, such as the Parameter configuration panel (See results Section 

3.4.2), to fine-tune parameters like the ROI or variance thresholds.  

• Saving the Tracking Outputs. I created an automatic node to save the outputs 

in the second half of the panel. This node arranges and outputs all tracking 

data, including: 

o The positional information of each detected edge over time (See Figure 

22C). 

o Velocity computations of the regenerating edges. 

o Logging the workflow parameters, inputs, and outputs. 

All the generated outputs were kept in a new directory called 

“Regeneration_Tracking”, with subfolders for each different outputs (See Figure 

22B). 
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Figure 22: Overview of the KNIME-based regeneration tracking workflow- Visualizing tracking overlay and saving outputs. 

A) This section of the workflow shows the interface wherein users may examine the regenerated tracking results overlay 

on the original time-lapse photographs, therefore offering instantaneous visual validation of the tracking accuracy. The 

panel also includes the section for saving tracking results. B) File structure for outputs of regeneration tracks. Shows the 

ordered directory structure for storing the tracking outputs, folders for analysis logs, regeneration tracks, and edge 

velocities. C) Edge position tracks. Shows graphical representations of the left and right edge locations throughout time 

obtained from the tracking data. D) Tracking overlay visualization GUI. Shows the graphical user interface that allows 

users to visualize tracking overlays directly on the time-lapse images. This tool is crucial for confirming the accuracy of 

the tracked edges and making any necessary adjustments to the detection parameters or ROI settings. 
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3.4.5. Validation of the developed analysis workflow using 

manual ground truth annotation 

An automated analysis workflow (See results Section 3.4) for detecting and tracking 

regenerating tubule edges was a major progress. However, to assess the robustness 

and accuracy of the workflow, it needed to be validated. To address this, I validated 

the outputs from the developed workflow against manual annotations. Using the 

developed analysis workflow, I analyzed one of the ninety-six well studies obtained 

using the established imaging assay. Out of the analyzed samples, I randomly selected 

15 samples for manual annotations to track regeneration for validation. To ensure an 

unbiased assessment, I anonymized the file names before extracting the cropped and 

aligned time-lapse stacks for manual annotation. The manual annotation was 

performed using FIJI, where I acted as an expert annotator, and my colleague acted 

as a non-expert annotator. This approach enabled me to compare the workflow’s 

outputs with expert annotations and those from a less experienced annotator. I then 

compared both the edge positions detected by the workflow to those annotated 

manually (See Figure 23A), calculating the positional differences for both the left 

and right edges (See Figure 23B-C). 

For each edge positions, I quantified three metrics across each time-lapse: the 

positional differences between my annotations and the workflow’s outputs, between 

the non-expert’s annotations and the workflow’s outputs, and between my 

annotations and those of the non-expert. For the right edge positions (See Figure 

23B), the mean positional difference across the time-lapses was 2.28 µm for my 

annotations vs. the workflow, 4.47 µm for the non-expert’s annotations vs. the 

workflow, and 2.87 µm for my annotations vs. the non-expert’s. The mean differences 

for the left edge positions (See Figure 23C) were 4.90 µm, 2.54 µm, and 4.66 µm, 

respectively.  
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Figure 23: Validation of automated analysis workflow for tubule regeneration tracking. A) Workflow regeneration 

tracks vs. Manually annotated regeneration tracks. This panel displays a subset of comparative plots of regeneration 

tracks from the automated workflow and manual annotations across three sample datasets. Each plot consists of the 

respective regenerating tubule edges position of tracks, comparing the automated detection (workflow regeneration 

tracks) against the manual ground truth (manually annotated regeneration tracks) to validate the accuracy and 

consistency of the automated workflow. B)-C) Differences in annotated positions for the right and left edges. This 

box plot depicts the positional differences between the automated workflow outputs and manual annotations across 

the timelapse for each edge position of the regenerating tubules. For each box plot, the annotations were done for 15 

samples (approx. 195 images), showing the mean and intervals across the sample space for each case: expert versus 

workflow, non-expert versus workflow, and expert versus non-expert, highlighting the variability and accuracy in edge 

detection. 
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3.5. Validating the high throughput screening workflow for 

quantifying kidney regeneration 

After developing the imaging and analysis workflow for high-throughput screening to 

quantify kidney regeneration following laser-induced injury (See Results Section 3.1-

3.4), I aimed to validate its applicability by evaluating its capacity to identify 

significant biological changes. A straightforward approach to evaluating biological 

activity is introducing controlled environmental perturbations, among which 

temperature is the most fundamental variable influencing metabolic processes. It is 

well established in zoology that changes in temperature directly affect metabolic 

activity; however, in the context of kidney regeneration in zebrafish embryos, this 

relationship has not been precisely quantified, particularly with the level of temporal 

resolution offered by this workflow. Therefore, initially, I explored the regeneration 

dynamics across different temperature conditions to investigate the influence of 

temperature on kidney regeneration. 

As a second validation study, I examined the effect of different DMSO levels on 

kidney regeneration. This study was vital, as knowledge of whether DMSO affects 

regeneration kinetics would help ensure that future drug studies using this workflow 

account for potential solvent effects. 

I applied the standardized experimental protocol developed during workflow 

construction to conduct these validations. Within the regeneration tracking workflow 

(See results Section 3.4), I further enhanced the process by creating an experiment 

overview panel (See Figure 24). I developed custom python scripts which I integrated 

into this panel which automated the organization and analysis of large experimental 

datasets. For every experiment, these scripts calculated important dynamic 

characteristics of regeneration and produced an comprehensive experiment overview 

consisting: 

• Regeneration Status: Categorizing whether regeneration was complete or 

partial. 

• Laser Injury Length: Measure the length of the drawn laser ROI. 

• Average Regeneration Speed: Quantifying the average regeneration speed. 

• Closure Timepoint: Recording the tubule closure timepoint. 
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In the corresponding upcoming subsections, I show how I validated the workflow’s 

ability to investigate the environmental and chemical perturbations and offer a 

thorough investigation of how these parameters affect regeneration kinetics. 

 

 

 

3.5.1. Investigating kidney regeneration at different temperatures 

Temperature is a fundamental physiological parameter that affects metabolic and 

cellular processes, including regeneration. Since zebrafish are ectothermic organisms, 

their developmental and regenerative processes are temperature-dependent (Scott & 

Johnston, 2012)Although temperature has a known influence on metabolism and 

development, a systematic and high-resolution dynamic study of its effect on kidney 

regeneration has not yet been carried out. This knowledge gap motivated me to 

explore the temperature-dependent effects on kidney regeneration following laser 

damage and thereby verify the created workflow.  

To examine how temperature influences kidney regeneration, I conducted 

experiments in which I observed the regeneration of the distal renal tubule in 3 days 

post-fertilization (dpf) zebrafish embryos following laser injury. Embryos were kept 

at four different temperatures during the regeneration phase: 20°C, 24°C, 28°C 

(control/standard developmental temperature)(Kimmel et al., 1995), and 33°C. 

These settings were chosen to span relative to the control condition (28°C, both lower 

Figure 24: Experiment overview maker panel and generated data table. A) This figure displays the experiment overview 

maker's graphical user interface (GUI), which is used to create an organized experimental data overview. It consists of 

only two user-configurable nodes to input the analysis files and to export the generated experiment overview Excel sheet. 

B) This figure shows a snippet of the generated experiment overview table sample. This table consists of columns depicting 

well IDs and measured and calculated attributes such as laser injury lengths, predicted regeneration status, and average 

regeneration speeds. 
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and upper extremes). The upper-temperature limit was set at 33°C, as previous 

studies reported that temperatures above 33°C had high embryonic lethality  

(Urushibata et al., 2021). For the lower extreme, while previous research has shown 

studies where 18°C was used to investigate temperature-dependent metabolism, I 

opted for 20°C. As the work was carried out in the summer, room temperature 

changes made reaching and maintaining 18°C in the microscope incubator difficult. 

For each temperature condition, I conducted a 96-well plate experiment, where each 

plate contained six rows of embryos that underwent laser injury, while the remaining 

two rows served as non-injured controls to account for any temperature-related 

developmental changes independent of injury(See Figure 25A). Each temperature 

condition was tested in two independent experimental repeats to ensure 

reproducibility. Following laser injury, the regeneration of the distal renal tubule was 

tracked and quantified using the developed image analysis pipeline.  

Figure 25: Investigating the impact of temperature on kidney regeneration: Plate architecture and sample viability. A) 

96-well-plate architecture for temperature experiments: This panel displays the layout of a 96-well plate used to study 

the effects of temperature on zebrafish kidney regeneration. Each plate has specific rows designated for laser-treated (in 

red) and control/non-lasered (in green) groups to facilitate a systematic analysis of temperature influences. B) Graphs 

illustrating the count of dead embryos at different temperatures for control groups (no laser injury). C) Separated by 

temperature, this graph shows the count of dead embryos within the laser-treated samples during regeneration. D) The 

final graph details the counts of dead embryos within the laser-treated samples after regeneration. 
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3.5.1.1. Impact of temperature on sample viability 

During long time-lapse experiments, temperature becomes a crucial factor influencing 

the survivability of zebrafish embryos. I evaluated the sample viability under different 

temperatures to filter out non-viable samples from further analysis and ensure the 

accuracy of my measurements. I examined post-screen imaging data for every sample 

to establish if it was dead, by confirming the absence of a heartbeat. This step ensured 

accurate classification of viable and non-viable samples. 

I classified sample viability into three distinct categories based on their condition and 

timing of death. First, I evaluated control samples (embryos that did not undergo 

laser injury) to determine the number of dead samples during the experiment (See 

Figure 25B). This served as a baseline to assess whether temperature had a general 

impact on survival without the additional stress of injury. Then, I classified laser-

treated samples into two categories: those that died during the regeneration phase 

(See Figure 25C) and those that died after regeneration had been completed (See 

Figure 25D).  

Identifying samples that died during regeneration was critical because these samples 

were excluded from further analysis, as death could confound the regeneration 

measurements. Conversely, samples that died after the regeneration process were 

retained for analysis, as their death did not affect the tracking and quantification of 

regeneration. 

The viability assessment revealed that at 33°C, the highest number of nonviable 

samples existed in both control and laser-treated groups. With minimum non-viable 

samples seen below 33°C they all showed better survival rates.  

3.5.1.2. Analysis of laser injury ROI lengths across different 

temperatures 

The length of the laser injury ROI is an important measure because it directly reflects 

the initial length of the injury. To ensure consistency in laser-induced injuries and to 

evaluate the accuracy of the manually drawn laser regions of interest (ROIs), I 

quantified the lengths of the laser ROIs across different temperature conditions. For 

each experiment, the coordinates of the laser-drawn ROI were automatically saved 

as part of the experiment logs through the imaging microscope’s software. To 

compute the ROI length from these coordinates, I developed a Python script that 

computes and records the injury lengths for each sample. I subsequently integrated 

this calculation step into the smart imaging workflow (See results Section 3.1.5), as 



Results 

65 

 

measuring injury size is a routine aspect of experimental validation. The computed 

laser injury lengths was later integrated to respective experiment overview table using 

the experiment overview maker panel in the regeneration tracking workflow (See 

results Section 3.5). 

Using the developed script, I evaluated the laser injury lengths across all temperature 

conditions and experimental repeats (See Figure 26A-B). While manually marking 

the laser ROI, I aimed for a target injury length of 105 µm during the experiments. 

However, I observed variability in the measured lengths, often within a range of ±15 

µm. In 1st Repeat (See Figure 26A), I observed considerable differences in the mean 

laser ROI lengths across the temperature conditions, with some conditions deviating 

by more than 10 µm from the target length. However, in 2nd Repeat (See Figure 26B), 

the mean laser ROI lengths were more consistent, clustering closely around the target 

length of 105 µm across all temperature conditions. Despite these differences, the 

overall range of laser injury lengths across both repeats fell within the interval of 90 

µm to 120 µm, with most samples falling near the target range.  

Figure 26: Laser injury ROI lengths across different temperatures. A) Repeat-1 and B) Repeat-2 Laser Injury These 

panels display the lengths of laser-induced injuries in zebrafish embryos at different temperatures across two experimental 

repeats. Each plot represents a different temperature condition (20°C (blue), 24°C (orange), 28°C (green), and 33°C (red)) 

with corresponding laser injury lengths depicted as individual points. This provides insights into the precision of the laser 

injury process under varying temperature. 



 Results 

66 

 

3.5.1.3. Evaluating regeneration success across temperature variations 

The regeneration status of each sample is a critical factor in evaluating the impact 

of temperature on kidney regeneration following laser injury. By evaluating the 

regeneration status for each sample across temperatures, I aimed to quantify the 

capacity of zebrafish embryos to repair injuries under different temperature 

conditions and across experimental repeats. After analyzing the time-lapse images 

using the developed analysis workflow (See Results Sections 3.3-3.4), the experiment 

overview maker (See results Section 3.5) panel within the regeneration tracking 

workflow categorized each sample into one of two statuses: regenerated (R) or not 

regenerated (NR). Regenerated samples successfully repaired the injury within the 

experimental timeframe, while non-regenerated samples failed to do so within the 

same period. 

I quantified the regeneration statuses for each temperature and compared them across 

experimental repeats (See Figure 27A-B). At 20°C, I noted many non-regenerated 

samples, with 40 out of 54 samples in Repeat-1 and 51 out of 59 in Repeat-2. For 

24°C, regeneration outcomes improved, with fewer non-regenerated samples: 15 out 

of 59 samples in Repeat-1 and 11 out of 66 in Repeat-2 failing to regenerate. This 

indicates that temperatures closer to the developmental standard of 28°C begin to 

support more successful regeneration outcomes. Within the standard developmental 

temperature of 28°C, regeneration was highly efficient, with only 1 sample in Repeat-

1 and 2 samples in Repeat-2 failing to regenerate. Finally, at 33°C, I observed no 

non-regenerated samples in either repeat.  

Figure 27: Regeneration outcomes across temperature conditions. A) Repeat-1 and B) Repeat-2 Regeneration status 

visualization: These bar charts illustrate the count of regeneration status of zebrafish embryos across different temperature 

treatments in two experimental repeats. Each bar represents the number of embryos that either regenerated (R) or did not 

regenerate (NR) at 20°C, 24°C, 28°C, and 33°C. 
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3.5.1.4. Impact of temperature on closure timepoints during kidney 

regeneration 

I defined the closure timepoint as the time required for the injury gap to regenerate 

and close completely. To investigate how temperature affected the closure timepoints 

I computed the closure timepoints across temperature for each sample using the 

regeneration tracking workflow (See Results Section 3.5). For this analysis, only 

samples classified as regenerated (R) were included, as non-regenerated samples did 

not exhibit closure events and were therefore excluded from this measurement. 

I compared the distribution of closure timepoints across temperature conditions for 

both experimental repeats (See Figure 28A-B). The distribution shifted towards 

longer closure periods at 20°C; most closure events occurred between 8 and 12 hours. 

The distribution shifted toward shorter times for 24°C, with most samples completing 

regeneration within 6 to 10 hours, indicating better regenerative efficiency as the 

temperature approached optimal developmental conditions. At 28°C, most samples 

completed regeneration within 4 to 8 hours. Finally, at 33°C, the closure times were 

the shortest, with most samples completing regeneration within 2 to 6 hours. 

To further quantify these observations, I calculated the average closure timepoint for 

each temperature across both experimental repeats (See Figure 28C). The average 

closure time consistently decreased linearly as temperature increased, with 20°C 

exhibiting the longest average closure time and 33°C the shortest. 
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3.5.1.5. Impact of temperature on the regeneration dynamics  

The tubule gap size is a fundamental measure for tracking the progression of 

regeneration, as it reflects the physical distance between the regenerating left and 

right tubule edges. By monitoring how this gap size evolves, it is possible to capture 

the dynamic nature of regeneration. To analyze this temporal evolution in detail, I 

developed custom Python scripts, integrated into the visualization panel of the 

regeneration tracking workflow, to compute the tubule gap size at each timepoint 

and generate comprehensive profiles of gap size evolution and regeneration rate. 

The tubule gap size for each sample was computed by taking the difference between 

the positions of the left and right regenerating edges obtained through the 

regeneration tracking workflow. Since the initial gap sizes varied between samples, I 

normalized the data by setting the gap size at the first timepoint to 1 and dividing 

the subsequent gap sizes by this initial value. This normalization allowed for 

comparing regeneration dynamics across samples regardless of their initial injury size. 

Figure 28: Impact of temperature on closure timepoints during kidney regeneration. A) and B) display the distribution 

of closure times for regenerated samples in Repeat-1 and Repeat-2, respectively, across four temperatures (20°C (blue), 

24°C (orange), 28°C (green), and 33°C (red)). C) This graph shows the average closure timepoints calculated for each 

temperature, highlighting the shorter closure timepoints at higher temperatures. 
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The normalized gap size profiles for individual samples across different temperatures 

are shown in Figure 29A and Figure 29B . To provide a clearer overview of the 

average regeneration dynamics at each temperature, I plotted the aggregated 

normalized gap size evolution with the graphs displaying average and  95% confidence 

intervals for each temperature condition across both experimental repeats (See Figure 

29 Figure 30C and Figure 29D). These line plots summarize how the average tubule 

gap size decreased over time across different temperatures. The profiles highlighted 

that at 33°C, the gap size decreased rapidly, reaching zero by 6 hours. At 28°C, the 

gap size approached zero around 8 hours, while at 24°C, the gap size decreased more 

slowly, taking approximately 9 hours. In contrast, at 20°C, the gap size decreased 

slowly but did not reach zero within the 12-hour, reflecting slower regeneration in 

most samples. 

In addition to gap size evolution, I also generated the tubule regeneration rate, which 

is calculated as the rate of change in the gap size over time. I used the non-normalized 

gap size data for this calculation to capture the regeneration rate at each timepoint. 

The regeneration rate profiles were computed for individual samples and were 

aggregated, and the mean regeneration rate with 95% confidence intervals was plotted 

for each temperature (See Figure 30A and Figure 30B).The regeneration rate profiles 

revealed that at 20°C, the rate remained constant and low throughout the 12 hours. 

At 24°C, although the rate improved slightly, it remained relatively constant without 

significant fluctuations. In contrast, at 28°C and 33°C, I observed a sharp increase in 

regeneration rate within the first few hours. The peak regeneration rate was higher 

at 33°C compared to 28°C, but both temperatures showed a similar pattern of an 

early rate surge followed by a gradual decline as the injury gap approached closure.  

To have an overall trend of the regeneration rate, I also computed and compared the 

average speed across the temperatures for each samples (See Figure 31A-B). At 20°C, 

the regeneration speed was the slowest, the average regeneration speed clustered 

between 4 to 8 µm/hr. For 24°C, the regeneration speed improved, with most samples 

exhibiting average speeds between 8 to 12 µm/hr. At 28°C, most samples achieved 

speeds between 12 to 18 µm/hr, and finally, at 33°C, the regeneration speed was the 

highest, with many samples exhibiting speeds between 18 to 25 µm/hr.  
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Figure 29: Comprehensive analysis of regenerating tubule gap size evolution across different temperatures. Panels A) & 

B) Display individual sample trajectories for normalized tubule gap sizes over time during kidney regeneration, across 

two experimental repeats. Each trajectory represents the closure process of the tubular gap with colors indicative of 

different temperature conditions: blue for 20°C, orange for 24°C, green for 28°C, and red for 33°C. Panels C) & D): Show 

the average evolution of normalized gap sizes over time for each temperature, aggregated from individual sample data in 

Panels A) & B). These plots include 95% confidence intervals, illustrating the average pace at which the tubular gap 

closes at different temperatures: blue for 20°C, orange for 24°C, green for 28°C, and red for 33°C. 
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Figure 30: Comprehensive analysis of regeneration rate profiles across different temperatures. Panels A) & B) presents 

the regeneration rates calculated from the rate of change of the non-normalized tubule gap size, with mean values and 

95% confidence intervals for each temperature conditions: blue for 20°C, orange for 24°C, green for 28°C, and red for 

33°C 
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Figure 31: Average regeneration speed analysis across temperatures A) & B) Visualization of average regeneration 

speeds across experimental repeats for different temperatures. Each plot corresponds to temperatures of 20°C (blue), 

24°C (orange), 28°C (green), and 33°C (red). Each dot represents the average regeneration speed of a single sample 

with the spread indicating variability within each group. 
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3.5.2. Investigating kidney regeneration at varying DMSO 

concentrations 

Dimethyl sulfoxide (DMSO) employed as a solvent in biological experiments due to 

its ability to solubilize many hydrophobic compounds in aqueous solutions. 

Nevertheless, its concentration requires careful evaluation, particularly in 

developmental research utilizing sensitive models like zebrafish embryos as it may 

affect physiological systems and cause developmental toxicity at high doses

(Hoyberghs et al., 2021). The widespread use and probable effects of DMSO 

motivated me to do this second validation experiment to examine if varying levels of 

DMSO influence kidney regeneration dynamics. To examine how DMSO influences 

kidney regeneration, I conducted experiments in which I observed the regeneration 

of the distal renal tubule in 3 days post-fertilization (dpf) zebrafish embryos following 

laser injury at varying DMSO concentrations (0%-1.5%). Selected DMSO 

concentration ranges were commonly utilized in biological research, including levels 

approaching the top safety criteria (typically 0-1%) (Hoyberghs et al., 2021). All 

experiments were conducted at 28°C, the standard temperature for zebrafish 

development and regeneration in laboratories. 

For every DMSO concentration, I conducted a 96-well plate experiment ensuring 

uniform sample distribution. As seen in Figure 32, every well plate was arranged with 

rows indicating different DMSO concentrations. Specifically, each row contained 10 

laser-injured samples and 2 non-lasered control samples to account for potential 

effects unrelated to the laser-induced injury. Each row included two non-lasered 

control samples and ten laser-injured samples to consider any possible impacts 

unrelated to the laser-induced damage. Each row included two non-lasered control 

samples and ten laser-injured samples to account for any possible effects unrelated 

to the laser-induced damage. Each DMSO concentration was evaluated in two 

separate experimental replicates to ensure reproducibility. The laser-induced injury 

and regeneration tracking were performed using the same high-throughput screening 

workflow employed in the temperature experiments, thereby ensuring consistent and 

comparable measurement of regeneration outcomes across all DMSO concentrations 

tested. 
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3.5.2.1. Impact of DMSO on sample viability 

Unlike the temperature experiments where viability was a critical issue (See Results 

Section 3.5.1.1), no sample deaths were observed during the DMSO experiments 

across any concentration. This indicates that even the highest DMSO concentration 

tested (1.5%) was not acutely toxic to the samples under the experimental timeframe. 

Thus, all samples were kept for further analysis instead of requiring viability 

filtration.  

 

3.5.2.2. Analysis of laser injury ROI lengths across different DMSO 

concentrations 

The length of the laser injury ROI is an important measure because it directly reflects 

the initial length of the injury. To ensure consistency in the injury size across all 

DMSO concentrations, I compared the lengths of the laser-drawn regions of interest 

(ROIs) using the same approach as in the temperature experiments. While manually 

marking the laser ROI, I aimed for a target injury length of 105 µm during the 

experiments. Figure 33A-B show the distributions of laser injury lengths for each 

DMSO condition across the two experimental repeats. Across all concentrations, the 

average laser injury length remained close to the target of 105 µm, with minimal 

variation between conditions. After quantifying and understanding the variability in 

Figure 32: 96 Well-plate layout for evaluating the effects of DMSO on kidney regeneration dynamics in zebrafish embryos. The 

figure portrays the schematic layout of the 96-well plate used to test various concentrations of DMSO. Each plate has specific 

rows designated for each DMSO concentration, starting from no DMSO to 1.5% DMSO (rows A-D for Group A and rows E-H 

for Group B). Within each row, 10 samples (in red) were lasered and 2 samples (in green) were non-lasered and used as control 

groups to facilitate a systematic analysis of DMSO's influences 
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laser injury lengths, I established that the initial injury size was well controlled and 

did not introduce significant variability for subsequent downstream analysis.  

 

   

Figure 33: Laser injury ROI lengths across at different DMSO concentrations. A) Repeat-1 and B) Repeat-2 Laser 

Injury These panels display the lengths of laser-induced injuries in zebrafish embryos at different DMSO concentrations 

across two experimental repeats. Each plot represents a different DMSO concentrations (No DMSO (blue), 0.5% DMSO 

(orange), 1% DMSO (green), and 1.5% DMSO (red)) with corresponding laser injury lengths depicted as individual 

points. This provides insights into the precision of the laser injury process under varying DMSO concentrations. 
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3.5.2.3. Evaluating regeneration success across DMSO concentrations 

An important indicator of how DMSO concentrations affect the potential of zebrafish 

embryos to heal damage caused by laser-induced damage is the status of regeneration 

of every sample. By assessing whether samples successfully closed the injury gap 

within the experimental timeframe, I aimed to quantify the overall regeneration 

efficiency under different DMSO conditions. I used the experiment overview panel, 

as described in the temperature experiments (See Results Section 3.5), to classify 

samples as either regenerated (R) or not regenerated (NR) based on their closure 

status. 

Figure 34A-B illustrate the distribution of regenerated and non-regenerated samples 

across DMSO concentrations for both repeats. At 0% DMSO, 15 out of 18 samples 

regenerated successfully in Repeat-1, while 18 out of 20 samples regenerated in 

Repeat-2. Similarly, at 0.5%, 1%, and 1.5% DMSO, most samples demonstrated 

successful regeneration, with only a few classified as non-regenerated. The overall 

regeneration success across all concentrations was high, indicating that DMSO levels 

within the tested range do not drastically impair the ability of zebrafish embryos to 

repair injuries. 

 

  

Figure 34: Regeneration outcomes across different DMSO concentrations. A) Repeat-1 and B) Repeat-2 Regeneration 

status visualization: These bar charts illustrate the count of regeneration status of zebrafish embryos across different 

DMSO concentrations in two experimental repeats. Each bar represents the number of embryos that either regenerated 

(R) or did not regenerate (NR) at No DMSO, 0.5% DMSO, 1% DMSO, and 1.5% DMSO. 
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3.5.2.4. Impact of DMSO on closure timepoints during kidney 

regeneration 

The closure timepoint is a critical measure of regeneration efficiency, representing the 

time taken for the injury gap to close completely. To investigate how different DMSO 

concentrations influence the timing of this process, I analyzed the closure timepoints 

of the regenerating tubule edges across the various concentrations. The closure 

timepoints for each sample were computed using the regeneration tracking workflow. 

For this analysis, only samples classified as regenerated (R) were included, as non-

regenerated samples did not exhibit closure events and were therefore excluded. I 

compared the distribution of closure timepoints across DMSO concentrations for both 

experimental repeats (See Figure 35A-B). At 0% DMSO (no DMSO). As the DMSO 

concentration increased to 0.5%, 1%, and 1.5%, the distribution of closure timepoints 

remained relatively stable, with most samples completing regeneration within a 

similar timeframe. I computed the average closure times for every DMSO 

concentration across both experimental repeats (See Figure 35C). The average closing 

time was constant at the studied concentrations—between 7.5 and 8 hours. This 

stability implies that DMSO doses within the investigated range do not notably affect 

the usual closure routine or postpone regeneration. The closure times stayed like 

those recorded at lower concentrations (no DMSO), even at the maximum 

concentration of 1.5% DMSO, suggesting that the embryos maintained their 

regeneration efficiency despite the rising DMSO levels.  
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3.5.2.5. Impact of DMSO on the regeneration dynamics 

To understand the detailed temporal dynamics of regeneration beyond the average 

speed, I analyzed the evolution of the tubule gap size and regeneration rate over time 

for different DMSO concentrations. I followed the same methodology described in the 

temperature experiments (See Results Section 3.5.1.5). The tubule gap size for each 

sample was computed based on the positions of the regenerating left and right edges, 

and the data were normalized to enable comparisons across samples with different 

initial injury sizes. This analysis was performed using the custom Python scripts I 

developed and integrated into the visualization panel of the regeneration tracking 

workflow. These scripts generated comprehensive profiles of gap size evolution and 

regeneration rates over time. Figure 36A-B displays the normalized tubule gap size 

evolution for individual samples across the tested DMSO concentrations, while Figure 

36C-D presents the mean gap size profiles with 95% confidence intervals. Across all 

concentrations, I observed that the gap size evolution profiles were highly similar and 

superimposed on each other, indicating a consistent regeneration pattern.  

Figure 35: Impact of DMSO on closure timepoints during kidney regeneration. A) and B) display the distribution of 

closure times for regenerated samples in Repeat-1 and Repeat-2, respectively, across four DMSO concentrations (No 

DMSO (blue), 0.5% DMSO (orange), 1% DMSO (green), and 1.5% DMSO (red)). C) This graph shows the average 

closure timepoints calculated for each DMSO concentration, highlighting the uniform closure timepoints across the 

DMSO concentrations. 
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Similarly, the regeneration rate profiles for different DMSO concentrations were 

computed using the non-normalized gap size data, following the same procedure as 

in the temperature experiments (See Results Section 3.5.1.5). Figure 37A-B 

illustrates the mean regeneration rate profiles with 95% confidence intervals. I 

observed that all DMSO concentrations followed a similar trend and were almost 

superimposed on each other. To have an overall trend of the regeneration rate, I also 

computed and compared the average speed across the DMSO concentrations for each 

sample (See Figure 38A-B). Across both experimental repeats, the regeneration speed 

across DMSO concentrations varied from 6 - 12 µm/hr. While mean average 
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regeneration speeds had slight variations across DMSO concentrations, but the 

overall range was consistent throughout all investigated concentrations.  

 

Figure 36:Comprehensive analysis of regenerating tubule gap size evolution across different DMSO concentrations. Panels 

A) & B) Display individual sample trajectories for normalized tubule gap sizes over time during kidney regeneration 

across two experimental repeats. Each trajectory represents the closure process of the tubular gap with colors indicative 

of different DMSO concentrations: blue for No DMSO, orange for 0.5% DMSO, green for 1% DMSO, and red for 1.5% 

DMSO. Panels C) & D): Show the average evolution of normalized gap sizes over time for each DMSO concentration, 

aggregated from individual sample data in Panels A) & B). These plots include 95% confidence intervals, illustrating the 

average pace at which the tubular gap closes at different temperatures: blue for No DMSO, orange for 0.5% DMSO, green 

for 1% DMSO, and red for 1.5% DMSO. 

 

Figure 37:Comprehensive analysis of regeneration rate profiles across different DMSO concentrations. Panels A) & B) 

presents the regeneration rates calculated from the rate of change of the non-normalized tubule gap size, with mean 

values and 95% confidence intervals for each DMSO concentrations: blue for No DMSO, orange for 0.5% DMSO, green 

for 1% DMSO, and red for 1.5% DMSO 
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Figure 38:Average regeneration speed analysis across DMSO concentrations A) & B) Visualization of average 

regeneration speeds across experimental repeats for different DMSO concentrations. Each plot corresponds to 

temperatures of No DMSO (blue), 0.5% DMSO (orange), 1% DMSO (green), and 1.5% DMSO (red). Each dot 

represents the average regeneration speed of a single sample, with the spread indicating variability within each group. 
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4 
Discussion 

 

4.1. High throughput time-lapse imaging workflow to 

study regenerating distal renal tubules post-laser-induced 

injury  

4.1.1. Achieved reliable embryo orientation and mounting 

approach 

Given the zebrafish embryo's complex 3D shape and size, evaluating the ideal 

orientation and mounting approach becomes crucial for microscopy imaging. 

(Kleinhans & Lecaudey, 2019; Nagarajan et al., 2024). I established that the tilted 

dorsal orientation of embryos mounted in low melting agarose molds within 

cycloolefin film bottom well plates created an ideal scheme for visualizing GFP-

expressing distal renal tubules in zebrafish embryos (See Results Section 3.1.1). The 

titled dorsal orientation balanced tubule visibility and contrast, avoiding the 

autofluorescence artifacts seen with the fully dorsal orientation and the incomplete 

visualization observed with the lateral orientation (See Figure 6A). I tried a series of 

established approaches to orient the embryos in a tilted dorsal manner for long 

imaging periods (Gehrig et al., 2018; Lubin et al., 2021; Wittbrodt et al., 2014). The 

ZF plate (Lubin et al., 2021) looked optimal, imparting high signal-to-noise ratio 

images. However, I rejected that strategy due to the instability of the desired 

orientation and difficulty with embryo handling. Optimizing the embryo mounting 

using the orientation-tools (Wittbrodt et al., 2014) gave me greater control over the 

orientation and handling of the embryos. I further enhanced the orientation tools 

approach by replacing the agarose molds with low melting agarose molds, imparting 

their good optical properties and wide use in other microscopy techniques like light-

sheet and confocal microscopy (Hirsinger & Steventon, 2017). Tilted dorsal 

orientation offers an optimal visualization of the distal renal tubules, but it is a non-
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trivial orientation limited to specific problems. A key limitation of my approach is 

the time and skill required to orient the samples, especially as the desired orientation 

demands significant embryo manipulation. To improve my current approach, 

geometry-specific molds could be designed based on orientation tools (Wittbrodt et 

al., 2014) and accounting for tilt. Although it would still demand embryo 

manipulation, it would reduce the effort and time, as the orientation tools did for 

standard orientation, such as dorsal and lateral. Alternative automated systems with 

flexible orientation and mounting include microfluidics and VAST (Khalili & Rezai, 

2019; Pardo-Martin et al., 2010). However, their current designs often prioritize static 

or perfusion-based imaging over this study's long-term, high-throughput time-lapse 

needs. Future developments in these tools would also accommodate time-lapse 

imaging. 

 

4.1.2.  High throughput laser-induced injury workflow to study 

kidney regeneration 

A precise and reproducible injury model is essential to study kidney regeneration 

dynamics effectively. Previously established methods involving nephrotoxic agents 

(gentamicin, aristolochic acid (Ding & Chen, 2012; Hentschel et al., 2005)) and NTR-

mediated genetic ablation (B. E. Drummond & Wingert, 2016) resulted in very sparse 

and uncontrolled injury, leading to high lethality of the samples. Moreover, these 

studies concentrated on injury modeling rather than tracking regeneration dynamics. 

Laser-induced injury addressed and overcome these limitations by providing a precise 

and reproducible spatiotemporal controlled injury (Datta et al., 2017; C. S. Johnson 

et al., 2011a), but a high throughput approach was still lacking. Through my 

workflow, I addressed this gap by introducing a high-throughput laser-induced injury 

workflow to target and injure one of the distal renal tubules in a controlled and 

reproducible manner (See Sections 3.1.2-3.1.3).  

However, while scaling up the laser injury workflow, I noticed a major failure rate(See 

Figure 8). Analyzing the failed laser attempts revealed that the embryo movement of 

1–2 tubule diameters during the process of annotation and lasering was the major 

reason. Iterative refinements—incorporating methylcellulose to increase media 

viscosity, lowering incubation temperature to 20°C to reduce metabolic activity, and 

adopting a modular two-group approach—collectively reduced the failure rate of laser 

injuries (See Figure 9C). Methyl cellulose is a known mounting agent that enhances 
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media viscosity for better sample stability for extended time-lapse microscopy (Weber 

et al., 2014). Prior research indicated that development is slowed at lower 

temperatures, reducing the metabolism and resulting in minimal movement  

(Urushibata et al., 2021).  Combining these two strategies, I enhanced the high 

throughput laser injuries. Finally, the two-group approach streamlined the process, 

cutting the time between imaging and lasering. In conclusion, I introduced a novel 

high-throughput workflow for inducing laser injuries and how to optimize it for non-

standard orientations. 

While the two-group approach added efficiency to the workflow, it introduced a 

potential issue. Embryos in group A (lasered first) spend more time at 20°C after 

injury than group B before returning to 28°C for regeneration. I explored this issue 

by comparing the group-wise data from one of the repeats of temperature 

experiments, I specifically went for 28°C and 33°C exp (upper extreme from the 

temperature experiments) and found no detectable differences in the regeneration 

dynamics (See Figure 39). However, this temperature modulation could be a 

limitation for drug screening, if certain compounds exhibit temperature-dependent 

effects. Another potential optimization for the developed workflow would be the 

automated laser ROI annotation. Currently, the annotation is carried out manually, 

introducing a 10-20 μm difference in the laser injury lengths (See Figure 26 and 

Figure 33). An automated solution for annotation could address this inaccuracy while 

reducing the time spent annotating. Specifically, a machine learning-based model to 

annotate the laser ROI can enhance the precision and speed of the overall developed 

workflow. Beyond these technical constraints, laser-based studies present a broader 

challenge. Although the workflow provides a model for acute kidney injury (AKI), 

laser-induced injury does not fully replicate the complex pathophysiology of AKI in 

humans(I. A. Drummond & Davidson, 2010).  

Despite these limitations, the established approach provides flexibility for 

investigating regeneration in other areas of the zebrafish kidney, including the 

proximal tubules. Although the mounting technique and orientation were optimized 

for imaging the distal tubules, changes would be needed to visualize proximal tubule 

regeneration. However, the analysis workflow could readily be applied to images of 

the proximal tubules. I also demonstrated the workflow’s adaptability beyond kidney 

regeneration studies. I utilized the established prescreen and prelaser imaging 

workflow to induce ventral fin injury to study neutrophil swarming in zebrafish 

embryos (See Appendix Section 7.1.2). This emphasizes the possibility for broader 
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applications, as the workflow could be extended to other injury models, such as spinal 

cord damage, with appropriate modifications to the laser settings. 

 

4.1.3. Computer-guided imaging workflow 

Automating various aspects of an imaging workflow becomes crucial, especially those 

involving complex steps, which are time-consuming and error-prone for the end user 

when performed manually. Smarter microscopes and imaging workflows through 

automation bring robustness and efficiency, ensuring consistency in the assay 

(Balasubramanian et al., 2023; Carpenter et al., 2023; Strack, 2020). Given the 

complexity of my workflow, including steps like the temperature modulation group 

approach and long-term imaging of regenerating tubules, I introduced a computer 

Figure 39:Comprehensive analysis of normalized regenerating tubule gap size evolution across two groups for different 

temperatures. Panels A) & B) Display individual sample trajectories for normalized tubule gap sizes over time during 

kidney regeneration mean values and 95% confidence intervals, across the groups for each temperature 28°C and 33°C 

respectively. The blue line indicates the trajectory for group A and the red line depicts for group B. Group A and B 

are just the top and bottom rows of a given plate 
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guided imaging workflow, automating almost every aspect and providing step-by-step 

instructions to guide users through the acquisition (See Section 3.1.4-3.1.5).  

Following the development of individual workflow steps, I integrated them into a 

unified computer-guided imaging workflow. I developed an overarching Python script 

centrally controlling all the individual subprocesses and subscripts for seamless 

workflow execution, as shown in Figure 11.  Python-based smart imaging-based 

workflow is currently a flourishing landscape (Pinkard et al., 2021). My workflow also 

adds to this landscape by providing open-source solutions focusing on the automation 

of complex high-throughput studies, time-lapse imaging, and workflow management. 

The scripting domain may vary across microscopy systems, but the overarching 

Python script’s framework could be adapted specifically for imaging studies involving 

temperature-dependent experiments and differential group imaging workflows. The 

automated post-acquisition processing using Fiji incorporated within my workflow is 

a generic feature that could be an adaptable model for various imaging workflows, 

like max projections, making consolidated hyperstacks, etc. The developed workflow 

also sets an example for smart microscopy (Scherf & Huisken, 2015) in general and 

could be used to make the imaging conditions more gentle for living samples.  

As discussed, the developed workflow could be further optimized by implementing an 

automated laser annotation. Implementing this feature would completely automate 

the current workflow. Another potential feature to add to the workflow was a sample 

viability report after each assay run. Currently, the workflow generates an analysis 

report of the laser annotations, time spent for performing each step, and temperature 

profiles throughout the assay, and reports any potential errors. This feature would 

be very relevant for screening assays, dealing with vast datasets, offering an overview 

of sample space, and rejecting the dead samples prior to analysis of the dataset 

(Kraus et al., 2017).  

4.2. Virtual Orientation Tools (VOTj) 

Standardizing the positioning (centering) and orientation of the object of interest is 

essential to ensure uniformity across the dataset. This enhances the results of object 

detection and classification outcomes and facilitates simple visual comparisons (Chen 

et al., 2022; Erickson et al., 2007). To address this, I developed a set of Fiji plugins 

(Schindelin et al., 2012) for centering and orienting an object of interest in an image, 

Virtual Orientation Tools (VOTj) (See Results Section 3.2). Compared to the 

traditional approaches, I aimed to provide a flexible, intuitive, and user-friendly 
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approach for alignment using VOTj (see Figure 13). The tool utilized Principal 

Component Analysis (PCA) to compute rotation and translation factors for object 

centering and orientation, eliminating the time-consuming pixel-by-pixel 

computations in conventional techniques (Satheesan et al., 2024). 

Particularly in studies where consistent embryo placement and orientation would 

support empirical observation, such as zebrafish embryo-based toxicity and 

pharmacology screens (Bauer et al., 2021; Teixidó et al., 2019), VOTj is a crucial 

tool for addressing inconsistencies in sample mounting. By allowing post-acquisition 

correction of misaligned samples, VOTj would also reduce the reliance on hardware-

based mounting solutions, which may be expensive, time-consuming, and stressful for 

embryos. The tool's capacity to identify an object’s polarity ensures continuous head-

tail (top-bottom/left-right) orientation for asymmetric objects like zebrafish embryos 

(See Figure 14A). For segmentation and object recognition, properly centered  and 

aligned images result in better prediction (Hesamian et al., 2019; Wang et al., 2022). 

VOTj generates more robust datasets by standardizing the image datasets by 

orienting and centering the object of interest. I developed VOTj to detect and adjust 

the orientation of an object of interest, but the tool can also be used to determine an 

object’s orientation. Moreover, VOTj built within the Fiji environment integrates 

seamlessly into various imaging workflows, aiding orientation and centering across 

dimensions (See Figure 14B-C). 

Currently, the plugin requires user input for object annotation or mask generation, 

which may introduce variability. However, within the tool, I also incorporated an 

option to integrate automated segmentation routines to generate object-specific 

masks, as discussed in the results Section 3.3.3. However, situations where automated 

segmentation is challenging may still require manual annotations, making the process 

more tedious and a potential limitation. Another key limitation of the tool is that it 

is optimized for centering and orienting single objects per image; the ability to center 

and orient multiple objects within the image would be a good upgrade. Being an 

open-source tool developed inside the Fiji ecosystem, VOTj is still flexible and 

extendable for incorporating future improvements that can be made to overcome 

these constraints and increase the usability of the tool. 
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4.3. Image processing workflow for stabilizing and 

segmenting regenerating tubules 

Accurate detection and tracking of tubule regeneration growth over time demands 

that the regenerating tubules within the acquired images be stable and aligned 

throughout the time-lapse . I developed an image processing workflow integrating 

standardization and segmentation pipelines for the regenerating tubules (See Results 

Section 3.3). Initially, I addressed the stabilization issues by employing a common 

and single approach, registration-based stack alignment (Thevenaz et al., 1998), and 

template matching methods (Thomas & Gehrig, 2020a). However, the misalignment 

was still considerably high, and the computation time for stabilization was high, 

particularly for the stack registration . Combining these two approaches enhanced 

the alignment, speeding processing by reducing the size of the input image (See 

Figure 15). The novelty of the proposed standardization pipeline (See Figure 16) lies 

in its three-step approach heading individual tasks, where the template matching and 

stack registration dealt with the stabilization of the time-lapse. Followed by VOTj 

centering and orienting the object of interest (regenerating tubules) within the time-

lapse (See Results Section 3.3.1-3.3.3).  I also noticed that the sequence of the 

execution of both steps impacted the final output. Initially, I applied standardization 

(centering and orientation) before stabilization. However, I observed that it affected 

the stabilization process, I speculated that the black pixel artifacts generated from 

transformations during standardization were skewing computations for stabilization. 

Through the developed standardization pipeline, I aimed to resolve the stabilization 

and standardization hurdles beyond regeneration, establishing a flexible framework 

for stabilizing and standardizing time-lapses within the Fiji environment. I 

successfully employed a similar framework for stabilizing time-lapse stacks to study 

neutrophil swarming post-injury (See Appendix Section 7.1.3.1-7.1.3.2) and 

neutrophil recruitment post-substrate injection (See Appendix Section 7.2.2). In 

these experiments, template matching was employed for initial localization and 

stabilization, followed by stack registration for additional refinement. In contrast to 

the tubule regeneration process, I integrated the HyperStackReg plugin to execute 

stack registration on a designated channel (See Figure 44 &Figure 50), which could 

then be applied to additional channels, portraying the framework's flexibility for 

broader applications.  
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After stabilization and standardization, the segmentation pipeline facilitated the 

automated segmentation of regenerating tubules. I developed a conventional 

intensity-based threshold segmentation method within Fiji (See Results Section 

3.3.4). Initially, I had also developed an Ilastik-based segmentation approach 

(integrated within Fiji), but I did not pursue it for the newer datasets as the intensity-

based threshold segmentation was faster and computationally less demanding.  

However, I observed that the current segmentation workflow required tuning the 

segmentation parameters a couple of times to achieve optimal results for 5–7% of 

samples per experiment. So, as a potential future optimization and to address the 

current limitations, the existing Ilastik model could be refined, or deep-learning-based 

segmentation approaches could be integrated. DeepImageJ (Gómez-de-Mariscal et 

al., 2021), a recent and now widely used Fiji plugin, offers access to pre-trained 

models from the BioImage Model Zoo (Ouyang et al., 2022). This could be utilized 

for more robust segmentation as it consists of models across biological imaging 

scenarios. Alternatively, a new model specifically for segmenting regenerating tubules 

could be trained and integrated within the plugin for segmentation. Generating such 

a model and making it public could extend its applicability beyond the renal tubules 

to other tubular structures, including spinal cord and vascular structures.  
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4.4. KNIME-based regeneration tracking workflow 

The crucial output from a regeneration assay is tracking injury repair over time. I 

developed a KNIME-based regeneration tracking workflow to detect and track the 

regenerating edges from the standardized and segmented time-lapses (See Results 

Section 3.4). Through the developed workflow, I introduced a novel, simple, and user-

friendly approach for detecting and tracking longitudinal regeneration/growth. The 

workflow was constituted by a modular structure consisting of four components: three 

user-configurable modules (Managing Inputs, Parameter configuration, visualizing 

tracking overlay, and saving outputs) and one non-configurable module (Detection 

and tracking). 

I devised a straightforward and novel profile-based detection and tracking approach, 

where the regenerating tubule edges were identified based on prominent dips in the 

horizontal profile plots derived from segmented time-lapses (See Figure 19). I selected 

KNIME (Berthold et al., 2009) to implement this idea and develop the workflow 

mostly because it could offer end users a no-code, click-and-proceed solution and 

flexibility in integrating other programming languages. The first component of the 

workflow (See Results Section 3.4.1) organized the inputs. It automated the file 

matching (Selecting profiles and corresponding time-lapse automatically), eliminating 

potential user errors associated with manual file selection for such large datasets. 

Within the second component (See Results Section 3.4.2), I introduced options to 

allow users to define the region of interest (ROI) within the generated collated profile 

plot and manually include or exclude specific timepoints for the tracking and 

detection. This level of control made the developed workflow handle variations within 

the datasets. Although the option to define the region of interest existed, I noted 

that this was not used often while analyzing, showing the stabilization and 

standardization workflow's effectiveness in centering and orienting the time-lapses 

(See Results Section 3.3 and Discussions Section 4.3) and allowing the analysis to be 

performed with minimal configuration. Finally, after detection and tracking (See 

Results Section 3.4.3), the component responsible for visualization and saving the 

outputs (See Results Section 3.4.4)  bridged the gap between analysis and validation 

by incorporating real-time visualization of tracking results. I ensured that the 

workflow provided an intuitive and interactive way to review the accuracy of the 

detection and tracking process. Additionally, automated and structured saving of 

results ensured that all relevant outputs were systematic, which is often a bottleneck 

for studies involving huge datasets. Validation against manual annotations showed 
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some differences in the workflow’s automated annotations (See Figure 23). However, 

a comparable level of variation was also observed between expert and non-expert 

manual annotations, demonstrating that such discrepancies are inherent to human 

annotation. By contrast, the workflow eliminates this subjectivity, providing a bias-

free and more consistent analysis. 

Pose estimation is an alternative approach (Cao et al., 2021; Mathis et al., 2018; 

Pereira et al., 2019) to address the detection and tracking of the regenerating tubule. 

It is a well-established approach within the biological context, involving detecting 

landmarks/key points (regenerating tubule edges) and tracking their movement 

across time. However, this approach requires a large training dataset with manually 

annotated key points, followed by extensive model training and optimization, 

demanding significant computational resources and expertise. Additionally, widely 

used pose estimation-based detection and tracking tools such as DeepLabCut (Mathis 

et al., 2018) support only a limited number of image formats (e.g., PNG), making 

their direct application to fluorescence microscopy datasets challenging due to 

potential information loss during format conversion. The KNIME workflow that I 

developed provides an easy-to-use, training-free alternative that automates edge 

detection and tracking with minimal computational requirements. Another potential 

alternative to detect and track the regenerating tubules is utilizing Fiji based scratch 

wound healing analysis plugins (Suarez-Arnedo et al., 2020). These tools primarily 

detect and quantify the wound gaps in confluent cell layers. A straightforward use of 

this tool to detect and track the regenerating tubule is impractical, however future 

advancements in this tool, generalizing edge tracking would serve as an alternative 

to my workflow. However, my approach of analyzing the regeneration dynamics by 

compartmentalizing the image processing (in Fiji) and tubule detection and tracking 

(in KNIME) has a distinct advantage. This separation offers clear checkpoints for 

error detection and allows troubleshooting of individual processing steps more 

effectively than workflows where all steps are carried out in a single platform. 

Observing hundreds of time-lapses of regenerating tubules, I noticed a consistent 

pattern in the tubule closure. After the tubules fused, it appeared dilated before the 

fluid flow was fully re-established, which subsided once the flow was restored (See 

Figure 40). This phenomenon has not been previously reported, likely due to the 

limited sample sizes in earlier studies. In the current workflow context, the completion 

of regeneration is marked by the closure of the injury gap. However, based on these 

observations, I speculate that regeneration is incomplete until fluid flow is re-

established. This distinct event offers a more precise marker for regeneration 
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completion. Incorporating the detection of the dilation event in the workflow could 

improve the reporting of regeneration events. Although not necessarily for the current 

dataset, as it would potentially require higher-resolution imaging for accurate 

detection. However, such an addition would further strengthen the workflow’s 

effectiveness and make its reporting more precise.   

Beyond kidney regeneration, the developed workflow can also be utilized for other 

tubular regeneration (longitudinal) studies, such as spinal cord repair or vascular 

regeneration (Ghosh & Hui, 2018). The workflow can also be extended to handle 

multiple injury sites, though modifications in the current workflow would be needed 

to handle more than two edges. Additionally, I think the workflow has potential 

applications in plant developmental biology, especially in tracking shoot and root 

development, where the workflow needs to be adapted to detect and track just one 

dominant edge (Efroni et al., 2016). 

 

 

 

 

 

 

 

 

Figure 40: Time-lapse montage of regenerating tubule. This figure consists of a series of regenerating tubule images 

showing the regeneration process. Timepoint 4 and 5 are highlighted with a yellow box to show the dilation event 

(see the red circle), in the later timepoints the dilation subsides. The white spokes marked in the initial timepoints 

depicts the regenerating tubule edges. 
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4.5. Investigation of kidney regeneration at different 

temperatures, DMSO concentrations, and beyond 

Using the developed high-throughput imaging and analysis platform, I explored the 

roles of temperature and DMSO levels on kidney regeneration dynamics (See results 

Section 3.5). Through this investigation, I also tested the developed platform's ability 

to validate the developed workflow's sensitivity in detecting biologically relevant 

changes.  

I explored regeneration at four different temperatures, 20°C, 24°C, 28°C and 33°C, 

using the established platform (See results Section 3.5.1). The analysis of the sample 

viability across the temperatures showed a similar trend as shown in previous studies 

(Pype et al., 2015; Scott & Johnston, 2012; Urushibata et al., 2021). Embryos at 

33°C showed the highest mortality during and after regeneration, whereas samples 

below 33°C showed no mortality during regeneration and post-regeneration (See 

Figure 25B). The regeneration efficiency across temperatures was established by 

analyzing the number of successful and unsuccessful regeneration samples. The lower 

temperature impaired the regeneration in samples, while as the temperature 

approached 28°C (the optimal developmental temperature), regeneration success 

improved, reaching its peak at 33°C. This trend was also reflected in the average 

speeds of regeneration and average closure times. The average speed of regeneration 

at 33°C was the fastest, followed by 28°C and 24°C, whereas 20°C had the slowest 

(See Figure 31). This trend was also evident for average closure time, it decreased 

from 20°C-33°C (See Figure 28). At 20°C, the regeneration rate remained low and 

constant throughout the time-lapse, reflecting a steady but slow regenerative process. 

24°C showed a similar trend but with a higher rate than 20°C, indicating an 

intermediate regenerative capacity. However, at 28°C and 33°C, a distinct profile 

emerged, the regeneration velocity peaked early, followed by a gradual decline as the 

injury gap approached closure (See Figure 30). This pattern suggests that 

regeneration initiates rapidly at optimal and elevated temperatures before slowing as 

tubule edges close, compared to lower temperatures, where it was stagnant and no 

distinct peak or rapidness was employed. The platform established and confirmed a 

clear temperature-dependent trend for kidney regeneration dynamics. 

Studies exploring the kidney regeneration dynamics across temperatures in zebrafish 

embryos using a laser injury are non-existent, making my investigation novel. 

However, studies in adult zebrafish using gentamicin-induced nephrotoxicity have 
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shown that higher temperatures (37°C) accelerate kidney regeneration, whereas lower 

temperatures (26°C) slow the process (Kamei et al., 2015). While my findings align 

with these observations, the injury models differ significantly. Studies report that 

gentamicin-induced nephrotoxicity results in diffuse kidney injury, engaging epithelial 

and immune-driven repair mechanisms. In the case of laser-induced injury, the injury 

is precise and localized but engages only the epithelial repair mechanism.  However, 

both models capture key processes such as rapid proliferation and migration of renal 

tubular epithelial cells (RTECs) during regeneration (Brilli Skvarca et al., 2019; 

Datta et al., 2017; C. S. Johnson et al., 2011b; McKee & Wingert, 2015). As the 

developed platform is also based on laser-induced injury, I speculate it may exhibit 

regenerative phenomena similar to those observed in previous laser ablation studies. 

Beyond kidney regeneration, temperature-dependent effects on regeneration have 

been observed in other zebrafish models. For example, in larval tail regeneration (S. 

L. Johnson & Weston, 1995; Sinclair et al., 2021) at 28°C, glycolysis-driven metabolic 

activity facilitates blastema formation, contributing to faster tissue regrowth (Sinclair 

et al., 2021). Similarly, reduced metabolic rates at lower temperatures slow 

dedifferentiation and blastema formation, delaying regeneration (D’Costa & 

Shepherd, 2009).  Since proliferation is a key event in kidney regeneration (Toback, 

1992; Witzgall et al., 1994), the observed temperature-dependent differences likely 

reflect cellular division and migration rate alterations. My findings suggest a similar 

mechanistic basis for kidney regeneration, where higher temperatures enhance 

cellular proliferation and tissue repair while lower temperatures suppress these 

processes. However, the higher temperatures enhanced regeneration at lower sample 

viability. 

While my study confirmed a clear temperature-dependent trend in kidney 

regeneration, it did not directly investigate how temperature affects the underlying 

biological processes, such as cell proliferation and migration. Previous studies have 

demonstrated that proliferation and collective epithelial migration contribute to 

kidney repair following acute injury (Palmyre et al., 2014). However, it remains 

unclear whether temperature predominantly influences early migration events, later 

proliferation dynamics, or both. A potential future study could incorporate live-cell 

imaging of cellular proliferation markers alongside real-time tracking of RTEC 

migration, to determine whether temperature primarily alters cell migration speed, 

cell division rate, or both processes in parallel. 
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As a second validation experiment, I investigated the kidney regeneration dynamics 

at different DMSO concentrations (See Results Section 3.5.2).  No sample deaths 

were observed across any of the DMSO concentrations tested, suggesting that DMSO 

within this range was not toxic to zebrafish embryos under these conditions. 

Regeneration success rates, average regeneration speeds, and closure timepoints 

remained highly consistent across all concentrations, with only minor fluctuations 

(See Figure 35 and Figure 38). The regeneration rate profiles were nearly 

superimposable across all DMSO concentrations, indicating that DMSO within the 

tested levels did not affect regeneration (See Figure 36 and Figure 37). While no 

direct studies on the effects of DMSO on kidney regeneration exist, previous studies 

using DMSO as a solvent for drug screening in zebrafish embryos have reported no 

significant effects on development at concentrations up to 0.5% (Brilli Skvarca et al., 

2019). Studies have shown 1% as a suitable range for DMSO, citing no adverse effects 

on cellular processes (e.g., proliferation), critical for regeneration (Hallare et al., 2006; 

Hoyberghs et al., 2021). My findings align with these reports, as DMSO up to 1% 

did not affect kidney regeneration dynamics. For 1.5% DMSO, studies have shown 

that development proceeded usually, but some embryos showed minor edema. 

However, higher concentrations (>2%) are lethal to the embryos (Xiong et al., 2017). 

For all the validation experiments, I conducted two independent repeats for each 

experimental condition (different temperatures and different DMSO concentrations). 

I observed considerable differences in nearly all quantitative attributes between the 

replicates across most conditions. For instance, the closure timepoints in repeat 1 for 

28°Cwas 4-8 hours, and in repeat 2 was 6-10 hrs (See the green bars in Figure 28A-

B), suggesting slower regeneration in the second replicate. This trend was also 

apparent in the average regeneration speed and profiles (Figure 29, Figure 30, and 

Figure 31). Due to this inherent difference among the replicates, I opted not to 

combine the data from the two replicates into a single dataset. Despite these 

differences, the overall trends remained consistent across repeats. The variability 

among replicates in such a large screen is expected to arise from biological and 

technical sources. Zebrafish embryos from the same tank show natural genetic, 

epigenetic, or developmental differences. With subtle variations in staging and health, 

the inherent dynamics can differ. Technically, factors like inconsistencies in laser 

injury length or measurement errors in the workflow also play a role. Incorporating 

experiment-specific controls (untreated but lasered samples) is essential to address 

this in future screening experiments. These controls would normalize each replicate’s 

data, providing a uniform baseline for comparison or combination across experiments. 
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Beyond validating the platform for environmental influence on regeneration, a key 

step in demonstrating its practical utility is its application in a real-world compound 

screening study. Currently, the platform is being utilized by Leon Rapp (Westhoff 

lab) as part of his MD thesis, where it is being employed to screen a small 43-

compound library (SCREEN-WELL® Epigenetics Library BML-2836) to identify 

potential drugs that influence kidney regeneration. The platform has been used to 

successfully screened up to 2000 embryos, with final screens underway. This study 

serves as a proof of concept for using the developed platform in pharmacological 

screening. Future works could utilize this platform for larger-scale drug screening, 

environmental toxins, or genetic perturbations, further establishing the platform as 

a valuable tool for high-throughput regeneration studies. 
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5 
Conclusion 

In this thesis, I established a novel high-throughput imaging platform for quantifying 

kidney regeneration in zebrafish embryos post-laser-induced injury as a benchmark 

for multiplexed time-lapse screening. As part of the platform's development, I have 

approached three major goals. 

First, I established a novel lasering and imaging workflow for injuring and imaging 

distal renal tubules in a high-throughput manner. Automated lasering, adaptive 

imaging strategies, and integrating smart imaging approaches ensured robust, 

reproducible, and high-content data acquisition, which is crucial for screening 

purposes. This makes my workflow a cutting-edge framework for large-scale 

regenerative studies.  

Second, to quantify the regeneration dynamics post-image acquisition, I established 

a Fiji-based image processing workflow and a KNIME-based workflow to detect and 

track the regenerating tubules. Virtual Orientation Tools (VOTj), a Fiji plugin I 

developed to standardize sample alignment across experiments as part of the image 

processing workflow, has broader applications and is already being adopted beyond 

my original assay.  

Finally, the developed platform was validated by investigating the kidney 

regeneration dynamics at different temperatures and DMSO levels. Temperature 

strongly influenced the regeneration, whereas DMSO within the tested ranges did 

not have any influence. As a next step to establishing the platform for clinical studies, 

it is currently being utilized for drug screening of a small compound library. 

In summary, I provide critical methodological advancements through this thesis by 

addressing previously unresolved technical challenges and developing a 

comprehensive, validated imaging and analysis platform. These contributions will 

facilitate new avenues for large-scale regenerative biology research and multiplexed 

time-lapse imaging, establishing a foundation for innovative future screening projects.  
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6 
Materials & Methods 

6.1. Ethics Statement 

Zebrafish husbandry and experimental procedures were conducted in compliance with 

German animal welfare standards (Tierschutzgesetz 11, Abs. 1, Nr. 1, husbandry 

permit number 35-9185.64/BHWittbrodt)(Suzuki et al., 2024) and European Union 

animal welfare guidelines. The local representative of the animal welfare agency 

supervised the fish facility. 

 

6.2. Materials 

 

6.2.1. Zebrafish Lines 

The wild-type strains AB and AB/Beck were used for outcross, and the following 

transgenic lines were used as part of the thesis. 

Table 1: Transgenic fish lines used in this thesis. 

 

 

 

Fish line name Source 

Tg(cdh17:GFP) (Sanker et al., 2013) 

Tg(mpx:GFP) (Renshaw et al., 2006) 

Tg(lysC:EGFP) (Hall et al., 2007) 
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6.2.2. Chemicals and Reagents  

Table 2: Chemicals and reagents used in this thesis. 

6.2.3. Buffers and Solutions 

Table 3: Buffers and solutions prepared for this thesis. 

Chemical/Reagents Abbreviation/Synonym Supplier 

Agarose  Roth 

Agarose Low Melting LMA Roth 

N-Phenylthiourea PTU Sigma 

Paraformaldehyde PFA Sigma 

Tricaine MS-222 Aldrich 

Tris-hydrochloride Tris-HCl Sigma 

Methyl Cellulose  Sigma 

Methylene blue trihydrate  Sigma 

Name Composition Concentration 

60x E3 

 

 

 

NaCl 

KCl 

CaCl2.2H2O 

MgSO4.7H2O 

17.2 g/l 

0.76 g/l 

2.9 g/l 

4.9 g/l 

Working E3 media (With 

Methylene blue) 

Diluting 60x E3  

Methylene blue 

 

1x 

2 mg/l 

Working E3 media Diluting 60x E3  

 

1x 

 

20x PTU PTU in E3 0.06% (w/v) 

Working PTU media Diluting 20x PTU 

With working E3 media 

0.003% (w/v) 

20x Tricane Tricane 

Tris-HCl 

1x E3 

400 mg 

2.1 ml 

97.9 ml 
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6.2.4. Consumables and Equipment 

Table 4: Consumables used in this thesis. 

 

 

 

 

 

 

 

 

 

                      

 

Table 5: Equipment used in this thesis. 

1% Agarose Agarose 

1x E3 

 

1 g 

100 ml 

1% Low Melting Agarose Low Melting Agarose 

1x E3 

1 g 

100 ml 

Consumables Supplier 

Filter Tips 20µl,200µl,1ml Starlab 

Nitrile Gloves Stralab 

Pasteur Pipettes Sarstedt 

Petri Dishes Greiner 

Tubes 15ml, 50ml Sarstedt 

Cycloolefin film bottom Well Plates (96 

wells) 

(655891) 

Greiner bio-one 

Plastic bottom Well Plates (96 wells) 

(655101) 

Greiner bio-one 

ZF Plates (96 wells) 

(HDK-ZFA101-02a) 

Hashimoto 

Equipment Supplier 

ACQUIFER IM   ACQUIFER 

Freezer -20 °C    Liebherr 

Freezer -80 °C   Thermo Fisher Scientific 

Fridge 4 °C   Liebherr 

Microwave R-939   Sharp 

Pipettes 2µl, 10µl, 20µl, 200µl, 1 ml   Eppendorf 

Parafilm   Pechiney Plastic Packaging 

Multipette plus Eppendorf 
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6.3. Hardware and Software 

6.3.1. Hardware configuration 

This thesis's workflow pipelines and software depend on freely available open-source 

projects that function uniformly across major operating systems (Windows, Mac, 

Linux). While no specific hardware requirements are needed to run the developed 

pipelines and software, a list of the hardware configurations used for this thesis is 

provided below.  

Table 6: List of the hardware configurations used for this thesis. 

Stereomicroscope SMZ18  Nikon 

Epi microscope  Nikon 

Fish Incubator VWR 

Forceps 5, 55 Inox stainless steel Dumont 

Microinjection needle puller  Sutter Instrument P-87 

Microinjector Eppendorf FemtoJet 

Component Laptop Workstation- I Workstation-II 

Main purpose General 

 

Workflow 

development, 

Processing 

Imaging, 

Visualization 

 

Processor 11th Gen 

Intel(R) 

Core(TM) i5-

1135G7 @ 

2.40GHz 

Intel(R) 

Xenon(R) CPU 

E5-1650 v3 @ 

3.50GHz 

Intel(R) Xenon(R) 

CPU E5-1650 v3 

@ 3.50GHz 

OS Windows 10 64-

bit 

Windows Server 

2012 R2 

Windows Server 

2012 R2 

RAM 16 GB 128 GB 128 GB 

GPU Intel(R) Iris(R) 

Xe Graphics 

NVIDIA Quadro 

P4000 

 

Storage capacity 500 GB 22 TB 13 TB 
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6.3.2. FIJI 

FIJI/ImageJ (Schindelin et al., 2012) is user-friendly cross-platform software for 

scientific image analysis. Fiji is built on top of ImageJ and has additional 

functionalities and libraries. Most plugins reported here require some of these libraries 

and are, thus, incompatible with ImageJ.     

 The archived version of FIJI used in the thesis can be downloaded from the 

provided link (https://doi.org/10.5281/zenodo.15046681). Below is a list of 

additional plugins installed as part of this thesis. To install them, activate the 

dedicated update sites through Menu Help > Update… then Manage update sites 

and select the corresponding sites. 

Table 7: List of Fiji plugins/libraries used for this thesis. 

 

6.3.3. Ilastik 

Ilastik (Berg et al., 2019) is a user-friendly tool for interactive image segmentation 

and classification. This software was used for the segmentation step in the image 

analysis pipelines in this thesis, and the results Section 3.3.4 describe the use case 

in detail. The archived version of the used Ilastik software and trained model can 

be found here 

Vendor HP ACQUIFER 

Imaging 

ACQUIFER 

Imaging 

Plugin/Library Reference 

ImageJ API (Rasband & and ImageJ contributors, n.d.) 

IJ-OpenCV-plugins (Domínguez et al., 2017) 

IJPB Plugins (MorphoLibJ: Integrated Library and 

Plugins for Mathematical Morphology with 

ImageJ | Bioinformatics | Oxford Academic, 

n.d.) 

StarDist (Schmidt et al., 2018) 

Virtual-Orientation-Tool-VOTj (Satheesan et al., 2024) 

StackReg (Thevenaz et al., 1998)  

Multi-Template-Matching (Thomas & Gehrig, 2020b) 

https://doi.org/10.5281/zenodo.15046681
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(https://github.com/sankeert1999/RenalRegenToolkit/tree/main/Fiji_Macros/Seg

mentation/Ilastik). 

 

6.3.4. Python 

The solutions developed in this thesis were built on Python 3.9.16. Python was 

installed with the free Anaconda individual Python distribution available at 

https://www.anaconda.com/products/individual. Either Pip or Anaconda was used 

to install packages. Below is a list of packages installed as part of this thesis 

Table 8: List of python libraries/packages used for this thesis. 

6.3.5. KNIME 

The Konstanz Information Miner (KNIME analytics platform)(Berthold et al., 2009) 

is a graphical data analysis environment written in Java and built on eclipse. It allows 

for building complex data processing workflows by linking single processing units 

called nodes. Also, it enables the bridging of definite programming languages in one 

place. KNIME was extensively used to build the analysis workflows as part of this 

thesis.  KNIME 4.7.8 version was used for the development of all the workflow 

described in this thesis. The analysis workflows developed are mentioned in the 

corresponding the results Sections 3.4,3.5. 

 

Package Reference 

NumPy (Harris et al., 2020) 

Pandas (McKinney, 2010) 

OpenCV (Bradski, G., n.d.) 

KNIPImage (KNIME Image Processing | KNIME, n.d.) 

Matplotlib (Hunter, 2007) 

Seaborn (Waskom, 2021) 

Ruptures (Truong, 2018/2024) 

  

https://github.com/sankeert1999/RenalRegenToolkit/tree/main/Fiji_Macros/Segmentation/Ilastik
https://github.com/sankeert1999/RenalRegenToolkit/tree/main/Fiji_Macros/Segmentation/Ilastik
https://www.anaconda.com/products/individual
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6.4. Fish Husbandry 

6.4.1. Maintaining adult zebrafish 

The adult zebrafish stocks were kept in a controlled day/night cycle of 14 hours 

light/10 hours dark phase. Each zebrafish rearing tank housed 5-8 pairs of fish. Water 

parameters were carefully monitored, with conductivity maintained at 400‐500 μS, 

hardness at 5° dH, pH levels between 7.0 and 7.5, and temperature within the range 

of 26°C to 28°C. The zebrafish were fed three times daily, and rigorous monthly 

assessments of water quality, including levels of ammonium and nitrate, were 

conducted. 

6.4.2. Embryo production and collection 

The adult zebrafish crosses were carried out for embryo production in Techniplast 

beach-style polycarbonate 1.7 l crossing cages. The crossing cages contained a sloped 

mesh as an inlay, which provided a shallow end in the tank as the laying activity of 

the fish tends to be higher in the shallow waters. This mesh also separated the eggs 

from the parent's post-egg laying, preventing parental egg cannibalism. Male-female 

zebrafish pairs were transferred in these tanks with the sloped mesh inlay in the 

evening before crossing. The following morning, the fish laid eggs after the lights were 

turned on. After egg laying, the water was drained from the tanks through a small 

net to collect the eggs, which were then transferred to a petri dish. 

 

6.4.3. Raising embryos and larvae 

Post-embryo production, the laid eggs were collected in a petri dish, removing dirt 

and debris. The embryos were then transferred to Petri dishes containing  E3 media 

(with Methylene blue), with 60-80 eggs in each dish, and placed in fish incubators. 

The media was regularly cleaned, and dead embryos were removed till the onset of 

the experiment. Optionally, the embryos were transferred to PTU media at 24 hpf to 

prevent pigment formation for specific experiments.  As the transgenic fish population 

was heterozygous, the embryos were sorted under a fluorescence microscope at 24 hpf 

before downstream steps.  
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6.5. High Throughput Imaging and Analysis Protocols 

Image acquisition for all the screening experiments was done using the ACQUIFER 

Imaging Machine (Luxendo GmbH, Heidelberg, Germany). The imaging machine was 

a wide-field (inverted) high-content screening microscope featuring a white LED 

array for bright-field imaging, a LED fluorescence excitation light source, a CMOS 

(2048 x 2048 pixel) camera, a stationary plate holder in combination with movable 

optics, and a temperature-controlled incubation lid. The imaging machine's general 

scheme involved initially acquiring low-magnification images during a prescreen (2X 

objective), which helped identify the sample within each well and annotate the region 

of interest for subsequent high-magnification acquisitions (4X,10X,20X objectives) 

using PlateViewer software provided by ACQUIFER. The imaging machine also 

offered a Smart Imaging (SI) platform known as feedback microscopy, allowing the 

ability to script each acquisition step and automate the acquisition.  

The acquired data was managed and processed using the ACQUIFER HIVE Core 

(Luxendo GmbH, Heidelberg, Germany). After microscopy obtained images were 

temporarily saved in Workstation-II (see Section 6.3.1) and later transferred to 

Workstation-I (see Section 6.3.1) for further downstream processing. A custom 

combination of Fiji, python scripts, and KNIME workflows was utilized to construct 

and refine the analysis pipelines. While the image processing aspect was exclusively 

developed in Fiji, the feature detection, tracking, and data analysis were executed 

through Python integrations within Knime. Please refer the following link  

https://www.youtube.com/watch?v=6XF1xtDSk4I&ab_channel=KNIMETV 

6.5.1. Sample preparation and mounting  

6.5.1.1. Preparation of 96-well plates for imaging  

96-well microplates with cycloolefin bottoms (Greiner bio-one SCREENSTAR Cat.‐

No. 655866) were used for imaging purposes. Using a multichannel pipette, 50 µl of 

hot 1% low melting agarose prepared in working E3 media was pipetted into all the 

rows of the 96-well microplates. The low-melting agarose was allowed to cool down 

for 1-3 minutes, and then a 3D printed tool for dorsal orientation (Wittbrodt et al., 

2014) was inserted in the low-melting agarose-filled plates for an hour. The 3D-

printed tool, comprising a base plate with 96 pins, each with a cylindrical structure 

and a narrow top, was used to create cavities inside the low-melting agarose molds 

where the embryos were placed for imaging. After solidification of the low melting 

https://www.youtube.com/watch?v=6XF1xtDSk4I&ab_channel=KNIMETV
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agarose, the tool was removed from the imaging plate. The imaging plates were 

always prepared prior to the experiment.  

6.5.1.2. Embryo mounting for imaging  

The Tg(cdh17:GFP) embryos were collected from the incubator for the experiment 

at 3 dpf, and the chlorinated embryos were dechorionated using forceps. The embryos 

were transferred to a new petri dish containing the imaging media, consisting of 

working PTU media, tricaine (200 µg/ml), and methylcellulose (3 mg/ml). Using a 

200 µl pipette tip with a small cut at the top to ensure the embryos' safety, 150 µl 

of imaging medium with the embryos were pipetted and transferred to the individual 

wells of the imaging plate. Using a bent subcutaneous injection needle, the embryos 

were carefully positioned in a tilted dorsal manner under a stereomicroscope. A 

consistent embryo orientation was maintained throughout the screening experiments 

and the preparation of a single imaging plate typically took 1.5-2 hours.  

 

6.5.2. Image acquisition workflow  

The imaging machine's temperature was set to 20⁰C, and the imaging plate was 

inserted for imaging. In the initial prescreening, a single z-slice per well was acquired 

using a 2x 0.06 objective in a bright-field and 470nm (GFP) channel (See Table 9). 

The acquired prescreen data was visualized using Plateviewer (provided by 

ACQUIFER), and the distal renal tubule region of the Tg(cdh17:GFP) embryos was 

marked using the click tool for higher magnification acquisition. The coordinates of 

the selected region were saved within the acquisition script, and 20x prelaser images 

were acquired. The 20x prelaser acquisition utilized a 20x 0.45 objective in bright-

field and 470nm (GFP) channel, acquiring 15 z-slices with a ΔZ of 3µm per well (See 

Table 10). A 2-step software autofocus was used to find the optimal focal plane in 

the Z-axis (See Table 11). Subsequently, the images were used for laser annotation 

to perform laser injury in the annotated region (section 6.5.3).  

The prescreen, prelaser acquisitions, laser injury were conducted in two groups. 

Group A (first four rows of the imaging plate) underwent the entire imaging and 

laser ablation process first, followed by Group B (remaining four rows of the imaging 

plate). 
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Table 9: Imaging parameters for 2x prescreen acquisition for kidney regeneration screens. 

 

 

 

 

 

Table 10: Imaging parameters for 20x prelaser and time-lapse acquisitions for kidney regeneration screens. 

 

Table 11: Optimized 2-step Autofocus parameters for kidney regeneration screens. 

 

Following laser injury of both groups, the imaging machine's temperature was set to 

28⁰C (corresponding temperatures were used for experiments investigating the effects 

of temperature on regeneration). After the temperature adjustment, the time-lapse 

acquisition was initiated, involving the acquisition of 15 z-slices with a ΔZ of 3µm 

per well. A 2-step software autofocus was used for each time point to find the optimal 

focal plane in the Z-axis (See Table 11), utilizing a 20x 0.45 objective in bright-field 

and 470nm channel. Images were acquired every hour for 12 hours (See Table 10).  

To synchronize the timeline between the two groups, a 30-minute delay was 

introduced between the acquisitions. Group A was imaged first, followed by Group 

B after the delay. After the time-lapse acquisition, a 2x post-screening of the whole 

plate was performed. This involved acquiring 15 z-slices with a ΔZ of 3µm per well 

using a 2x 0.06 objective in bright-field and 470nm channel (See Table 9) 

Channel Power Exposure 

Time 

Bright-Field 

(BF) 

30% 20 ms 

470nm (GFP) 50% 50 ms 

Channel Power Exposure 

Time 

Stack step 

Size ΔZ 

No. Z Slices 

Bright-Field 

(BF) 

30% 20 ms 3 µm 15 

470nm (GFP) 50% 100 ms 3 µm 15 

Attribute Coarse Auto Focus  Fine Auto Focus  

Channel 470nm (GFP) 470nm (GFP) 

Power 5% 20% 

Exposure Time 5 ms 20 ms 

ΔZ 50 µm 5 µm 

No. Z Slices 20 10 
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The smart imaging platform was extensively used to script each acquisition step 

mentioned above. These individual scripts were then integrated into a master script 

using Python, automating the entire workflow. The imaging machine scripts and the 

master Python script are available at this link 

(https://github.com/sankeert1999/RenalRegenToolkit/tree/main/Smart_Imaging_

Scripts). 

 

6.5.3. Laser-induced kidney tubule injury 

After successfully mounting and tilted dorsally orienting and acquiring higher 

magnified images marking the distal renal tubule region. (kidney tubule injury, see 

section 6.5.1 and section 6.5.2) the images were visualized using Plateviewer, provided 

by ACQUIFER. Utilizing the laser annotation tool within the Plateviewer software, 

the images in the green channel were annotated with a rectangular region of interest 

with length 100 µm and tubular width encompassing the targeted area for laser-

induced injury on one of the distal renal tubules (see the red box in Figure 7A). 

For assay optimization, experiments used varying laser power and repeat 

cycles, which were configured accordingly for each experiment. The annotated regions 

and laser settings were then transferred to ACQUIFER’s photomanipulation module 

(developed with Rapp Optoelectronic, Wedel, Germany), which performed 

automated laser injury on each embryo in the corresponding wells without further 

user interaction. 

6.5.4. Image analysis workflow pipelines and scripts 

The analysis pipeline primarily comprised an image processing segment and a 

segment dedicated to detecting and tracking regenerating tubules alongside data 

visualization and analysis. The analysis pipeline was designed to be user-friendly and 

tailored to users in an open-source environment. The entire pipeline is available on 

GitHub and can be accessed using this link 

(https://github.com/sankeert1999/RenalRegenToolkit). 

6.5.4.1. Image preprocessing 

The acquired time-lapse data was subjected to maximum intensity projection along 

the Z-axis for each timepoint in the green fluorescent channel. A custom Fiji macro, 

"Timelapse_preprocessor.ijm," was created to preprocess the maximum projected 

timelapse of the maximum projection. The process begins with template matching 

https://github.com/sankeert1999/RenalRegenToolkit/tree/main/Smart_Imaging_Scripts
https://github.com/sankeert1999/RenalRegenToolkit/tree/main/Smart_Imaging_Scripts
https://github.com/sankeert1999/RenalRegenToolkit
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(Thomas & Gehrig, 2020b), utilizing the first frame of the time-lapse that 

encompasses the tubules as the template. This template is then searched throughout 

the entire time-lapse. Following template matching stack registration is carried out 

using the StackReg plugin (Thevenaz et al., 1998). Due to the dorsal orientation, the 

tubules within the template-matched and registered stack displayed a tilt. To align 

the images along the horizontal axis and to further center them, the script used 

Virtual Orientation Tools (Section 6.6) (Satheesan et al., 2024) in a two-step process. 

First, the time-lapses were centered using user annotation (marking the injury site), 

and then the centered time-lapse was further aligned. The aligned and centered time-

lapse was further cropped using the crop function within Fiji, enclosing only the 

regenerating tubule region. The cropping dimensions are consistent and uniform 

across all samples. The script was designed to process images in batches and takes a 

folder of maximum projected images as input. The entire preprocessing process is 

automated, requiring user intervention only to mark the injury site to center the time 

lapses. 

6.5.4.2. Image segmentation 

Preprocessed time-lapses were subjected to segmentation to segment regenerating 

tubules. A custom Fiji macro, "Tubule_segmentation_profile_plot_batch.ijm, " 

processed the aligned, stabilized, and cropped time-lapse stack. The script begins 

with a pre-segmentation preprocessing involving a mean blur and background 

subtraction, with adjustable parameters that allow users to configure settings for 

different image sets. After pre-segmentation preprocessing, the stack was subjected 

to segmentation. 

For experiments utilizing Ilastik, a pre-trained Ilastik model generated segmentation 

masks. The Ilastik software was called directly from Fiji using the Ilastik Fiji plugin 

(“Ilastik_Tubule_segmentation_Profile_plot_batch.ijm”), and the segmentation 

masks were generated. Classical default threshold within FIJI was applied in most 

experiments, with tunable threshold parameters adjusted according to specific 

experimental needs. 

Once the segmentation masks were generated, they were refined using the Analyze 

Particles function in Fiji. The final masks were further smoothed with the 

MorphoLibJ plugin (MorphoLibJ: Integrated Library and Plugins for Mathematical 

Morphology with ImageJ | Bioinformatics | Oxford Academic, n.d.), and the 

smoothness parameters were made user-adjustable. 
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The final segmentation masks extracted horizontal intensity profiles from each time 

point and saved them as CSV files. The segmentation masks, overlays, and detected 

ROIs were also saved for future reference. 

The script was designed to process images in batches, taking a folder of cropped, 

aligned, and stabilized stacks as input. The entire preprocessing workflow was 

automated, requiring user input only to configure the segmentation parameters before 

processing. 

6.5.4.3. Regenerating tubule edge detection and tracking 

To detect the regenerating tubule edge from the horizontal intensity profiles 

generated for each timepoint after segmentation, a user-friendly KNIME workflow 

called "Injury_Detector_Tracker.knwf" was developed. 

The workflow is initiated by inputting the intensity profile and corresponding cropped 

and aligned time-lapse images. The loaded intensity profile is smoothed and filtered 

for noise reduction. With noise-reduced profiles, the workflow applies change-point 

detection (a Python-based "ruptures" package function) to identify the tubule edge. 

Once the edge is detected, the corresponding image stack with the detection overlay 

is displayed for user validation, the results are saved after validation. 

The saved output included the tracks of both tubule edges, plots, and calculated 

metrics such as velocity and other parameters. The workflow also provided an option 

to refine the detection by allowing the user to manually adjust the search region for 

the tubule edge and add missing timepoints. 

Additionally, the workflow featured a section dedicated to visualizing and further 

analyzing detection and tracking results, detailed in the Results Section 3.2 and 3.3.3. 

 

 

 

 

 

 

 

  



Materials & Methods 

111 

 

6.6. Virtual orientation tools -VOTj 

The VOTj plugins are included in a collection of Jython codes for Fiji. They are not 

compatible with the standalone ImageJ installation. The source code and 

documentation are on GitHub at the following link 

(https://github.com/sankeert1999/Virtual-Orientation-Tools-VOTj). 

 

6.6.1. Installation in Fiji 

The virtual orientation tools plugins can be installed in Fiji by activating the 

“Virtual-Orientation-Tools-VOTj” and “IJ-OpenCV” update sites. After installation, 

the plugins are listed in the entry Virtual Orientation Tools at the bottom of the 

Plugin menu list. A preconfigured Fiji bundle for Mac and Windows is also archived 

on Zenodo (https://zenodo.org/records/11093038). A video tutorial demonstrating 

the installation and usage is also available on YouTube 

(https://www.youtube.com/watch?v=WHeDhn1Mnpc&ab_channel=ImageJFiji) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/sankeert1999/Virtual-Orientation-Tools-VOTj
https://d.docs.live.net/244951c195daa4f3/PHD/Thesis/(https:/zenodo.org/records/11093038).
https://d.docs.live.net/244951c195daa4f3/PHD/Thesis/(https:/www.youtube.com/watch?v=WHeDhn1Mnpc&ab_channel=ImageJFiji)
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Appendix 
In this section, I present my collaborative works that were not directly related to 

the stated aims of the thesis. 

 

7.1. Developing a medium throughput time-lapse workflow 

for quantitatively analyzing the neutrophil swarming 

response in zebrafish embryos 

Neutrophil swarming is a critical component of the immune response characterized 

by the active recruitment and aggregation of neutrophils at sites of damage. This 

process plays a crucial role in containing infections and initiating inflammation. 

Although the molecular processes regulating neutrophil swarming have been 

examined, quantitative approaches for delineating its temporal and spatial dynamics 

are still constrained, especially in vivo. This was the primary motivation behind the 

PhD research of my collaborator, Nils Olijhoek, from the University of Sheffield, 

Department of Infection, Immunity & Cardiovascular Disease (United Kingdom). 

Nils and I were part of INFLANET network, which encouraged and provided 

opportunities for collaborative research and allowed us to support each other’s work. 

While neutrophil mono-culture assays have been developed for screening swarming 

responses, no large-scale in vivo screening workflows for neutrophil swarming have 

been established. Nils collaborated with me to design and develop a medium-

throughput imaging technique for capturing neutrophil swarming in zebrafish 

embryos following post-injury and an associated image analysis workflow for 

automated quantification. My role in this collaboration focused on developing robust 

and reproducible imaging workflows and quantitative analysis pipelines. Although 

this project complements the broader focus of my PhD, which centers on designing 

imaging and analysis workflows for zebrafish screening experiments, the biological 

interpretation of the swarming response falls beyond my core research and is 

described in detail in Nils Olijhoek’s thesis. 

The sections below detail the results of this collaboration, specifically highlighting 

my contributions to the development of the imaging and analysis workflows. 
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7.1.1. Designing optimal sample mounting approach for imaging 

neutrophil swarming 

Developing an optimum sample mounting technique was a crucial initial step in this 

project, since it directly influenced the quality and repeatability of time-lapse imaging 

necessary for examining neutrophil swarming following injury. In the absence of a 

robust and reproducible setup, reliable images for further analysis would be 

unachievable. 

The experiments were performed using 3 days post-fertilization (dpf) zebrafish 

embryos from the transgenic lines labelling neutrophils. My collaborator, Nils 

Olijhoek, had previously compared two different injury sites—tail fin and ventral 

fin—and found that ventral fin injuries allowed for capturing the entire inflammatory 

response within shorter timeframes. This result was crucial for creating a medium-

throughput imaging assay, as reduced time-lapses facilitate increased sample 

throughput and mitigate data management issues linked to prolonged imaging 

durations. Consequent to these findings, we selected ventral fin injury as the 

standardized method for visualizing neutrophil swarming in these experiments. 

To ensure effective imaging of neutrophil swarming, I needed to stabilize the embryos 

in a lateral orientation, which is ideal for visualizing the ventral fin. In contrast to 

the kidney regeneration studies, which required agarose molds to maintain the 

embryo’s position (See Results Section 3.1.1.2), lateral orientation for the current 

setup proved to be naturally stable. I developed a simple mounting approach where 

embryos were pipetted with imaging media (as detailed in Section 7.1.6.1) directly 

into standard 96-well microplates with cycloolefin bottoms (Greiner bio-one 

SCREENSTAR Cat.‐No. 655866) and gently nudged them into the correct lateral 

position when necessary (See Figure 41). 

This minimal-intervention strategy had benefits, including minimal preparation time, 

enabling me to mount 30-40 embryos in 10-15 minutes.  By avoiding agarose molds, 

I lowered background noise and optical interference related to the molds, therefore 

improving signal-to-noise ratio and image quality. This simple and reproducible 

nature of this mounting setup laid the foundation for reliable data acquisition in the 

subsequent imaging and analysis steps. 
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7.1.2. Laser-induced injury and time-lapse imaging setup for 

acquiring neutrophil swarming 

Neutrophil swarming is triggered by an injury, making it essential to produce precise 

and uniform injuries to the ventral fin for consistent imaging and analysis. Nils, 

initially performed mechanical injuries using a scalpel to induce ventral fin wounds. 

Mechanical injuries presented challenges, including variability in injury sizes, which 

might influence sample reproducibility. On the other hand, laser-induced injuries, as 

seen in my kidney regeneration (See Results Sections 3.1.2-3.1.3),  provide enhanced 

accuracy and reproducibility. To overcome the constraints of mechanical injury, I 

adapted and optimized a laser-induced injury protocol using the photomanipulation 

module of the ACQUIFER Imaging Machine (IM) for ventral fin injuries (See Section 

7.1.6.3). 

Prior to assessing the laser parameters, standardized the area of interest (ROI) inside 

the ventral fin to ensure a consistent and uniform damage site and size across all 

samples. The injury site was consistently positioned on the ventral fin area, four 

somites to the right of the urogenital opening, with a set laser ROI length of 150 µm 

and a width of 50 µm for each sample, as seen in Figure 42. After defining the size 

and region of interest for laser injury, I conducted a series of trials to identify the 

optimal laser power and exposure settings required to injure the ventral fin 

consistently. I tested laser power levels ranging from 80% to 100%, each using a single 

Figure 41: Sample mounting approach for imaging neutrophil swarming. A) Illustrates the schematic representation 

of laterally positioned zebrafish embryo within a single well, submerged in E3+Tricaine. B) This panel shows the low-

magnification pre-screening images from a 96-well plate, with images acquired at 2x magnification and annotated 

region of interest for subsequent high- magnification imaging steps. The enlarged image highlights a representative 

embryo in its well, with the blue box denoting the annotated region of interest for higher- magnification imaging. 

Created with BioRender.com 

https://www.biorender.com/
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iteration of the laser. Through these trials, I found that 100% laser power with a 

single iteration consistently produced precise and reproducible injuries with minimal 

variability between samples. In contrast, lower power settings required multiple 

iterations (2-3) to achieve sufficient injury. However, it significantly prolonged the 

process, and that would eventually compromise the throughput and temporal 

resolution, which are critical factors for this assay. Therefore, the 100% power, single 

iteration setting was selected to balance efficiency and reproducibility. 

Following establishing the laser-induced injury protocol, I optimized the time-lapse 

imaging setup to monitor neutrophil swarming events. Based on Nils’s earlier results, 

I adjusted the imaging duration to 6 hours, which is sufficient to capture the complete 

swarming process, including initiation, peak neutrophil recruitment, and resolution. 

I conducted stress tests to evaluate the performance of the Acquifer IM under several 

settings to find the ideal balance between sample throughput and temporal 

resolution. The tests revealed that acquiring images every 5 minutes for 30 samples 

was the best achievable temporal resolution and sample throughput. I decided to 

image 24 samples for each experiment to ensure reliability and consistency,  even 

though the system could theoretically image 30 samples per run with a 5-minute 

temporal resolution. This decision accounted for potential variability in acquisition 

time and ensured sufficient buffer to tackle it.  

In contrast to kidney regeneration experiments, where the target structure was 

fluorescent and readily detected by the autofocus system (See Results Section 3.1.4), 

imaging the ventral fin posed challenges. The goal was to set the injury site as the 

plane of focus for time-lapse imaging. However, the injury site was only visible in the 

brightfield channel, as the neutrophils were imaged in the fluorescent channel and 

could not be relied upon to set the target for autofocus. Although neutrophils 

eventually accumulate at the injury site during the swarming process, they are not 

present immediately after injury, which made it impossible to use the fluorescent 

signal for autofocus. Within the brightfield channel, I attempted to use the default 

autofocus system, but it consistently failed to detect the wound site reliably due to 

interference from other brightfield structures mistakenly prioritized by the autofocus. 

To address this, after inducing the injury, the z-plane for each sample was manually 

set, ensuring that the plane of focus was precisely aligned with the wound site. 

Additionally, to mitigate the effects of potential z-axis drift during the time-lapse 

imaging, I acquired a broader z-section of 100 µm, capturing 20 z-slices at 5 µm 

intervals. This setup ensured that the injury site remained within the imaging range 
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throughout the experiment, minimizing the risk of missing key events due to sample 

movement or variability in injury depth. 

  

Figure 42: Anatomical landmarks and region of interest for laser-induced injury. A) The figure illustrates the 

region of interest for laser-induced injury and anatomical landmarks marking it. The ROI is annotated with a 

red box and is located four somites to the right of the urogenital opening, targeting the ventral fin region. The 

schematic complements the microscopy image, providing a simplified visual representation of the region of laser-

induced injury. The depicted microscopic image is a composite of brightfield and green fluorescent channels, 

highlighting the ventral fin anatomy and neutrophils respectively.  B) This panel depicts a montage of subset of 

pre-laser images across the plate, demonstrating consistent high- magnification (20x objective) imaging of the 

ventral fin region  with annotated regions of injury for lasering. The images are a composite of brightfield and 

green fluorescent channels, highlighting the ventral fin anatomy and neutrophils respectively. Created with 

BioRender.com 

https://www.biorender.com/
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7.1.3. Establishing an image processing pipeline to study 

neutrophil swarming 

Following the acquisition of neutrophil swarming events, the generated time-lapses 

were processed using maximum intensity projection along the z-axis, producing a 

single plane for every timepoint. Maximum intensity projection guaranteed the 

preservation of essential spatial and temporal dynamics by combining data from 

multiple z-slices, despite some neutrophils occupying varying focal planes during the 

imaging. The maximum projected time-lapses were generated within Fiji and 

transferred to the respective experiment directories for further processing. Accurate 

quantification of dynamic biological processes, such as neutrophil swarming or renal 

tubule regeneration requires precise control over image uniformity and stabilization 

to minimize variability across samples and deal with motion artifacts and 

misalignment within time-lapse frames. Neglecting these problems may lead to errors 

and inconsistencies in downstream studies, especially in extensive datasets where 

manual adjustments are laborious and unfeasible. To ensure that the acquired time-

lapses were stabilized and uniform within time and across samples, I initially started 

by developing a macro-based image processing pipeline “cluster analyzer.ijm” within 

FIJI (See Section 7.1.3), building on concepts established in my kidney regeneration 

experiments (See Results Section 3.3). 

7.1.3.1. Template matching based region-of-injury detection 

The key emphasis for downstream analysis was the injury site, where neutrophil 

swarming activity was concentrated within the acquired time-lapses. The injury 

region accounted for a tiny fraction of the whole field of view within each time-lapse 

frame. would introduce variability Due to embryo movement and noise from irrelevant 

regions, analyzing the entire image frame without proper ROI localization would 

compromise the accuracy and reliability of quantitative measurements. To address 

this, I employed a template matching-based approach for detecting and localizing the 

injury region across the time-lapse, an approach adapted from my previous work in 

kidney regeneration (See Results Section 3.3.2) and based on the plugin developed 

by (Thomas & Gehrig, 2020a). 

The image processing pipeline started with a graphical user interface (GUI) 

prompting users to input folders containing the maximum projected time-lapse 

images for both the brightfield and fluorescent (green) channels. The brightfield 

channel, which captured the injury site and surrounding structures with high 
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contrast, was used for template matching-based ROI detection. Template matching 

requires selecting an optimal template to search for and track the injury region across 

timepoints. Through trial and optimization, I implemented a user-guided approach 

where the pipeline automatically displayed a rectangular box (950 x 400 pixels) 

centered around the injury region, and the user was prompted to confirm the box's 

placement at the middle timepoint of the time-lapse (See Figure 43B yellow box). 

Another crucial setup while designing the template involved selecting the middle 

timepoint of a time-lapse for template creation. We saw that using the early or late 

frames for template creation frequently led to mismatches and incorrect ROI 

detections, as frames at the beginning and end of the time-lapse often exhibited 

significant morphological changes in the fin injuries. Once the template was defined, 

it was used to search and detect the injury region throughout the time-lapse in the 

brightfield channel. The resulting output stacks contained cropped images with a 

resolution of 950 x 400 pixels (See Figure 43D), down from the original 2048 x 2048 

pixels lapse (See Figure 43A). The detected ROIs in the brightfield channel were then 

used to crop the corresponding fluorescent (green) channel images, ensuring 

consistent spatial alignment across both channels. Following template matching and 

ROI detection, the cropped brightfield and fluorescent images were merged into a 

hyperstack. 

Figure 43: Template matching based region of injury detection workflow. A) This panel displays the max projected 

hyperstack, capturing both brightfield and fluorescent channels. B) After separating the hyperstack into individual 

brightfield and fluorescent channels, template matching is applied to the brightfield channel. The yellow bounding 

box shows the chosen area of damage used as the template to localize the injury location. C) Transferring the 

detected ROI from the brightfield to the fluorescent channel. D) This figure presents the hyperstack where the 

region of injury has been isolated and highlighted across both channels using template matching, focusing 

subsequent analysis on the targeted injury area. 



Appendix 

153 

 

7.1.3.2. Addressing translational drift using HyperStackReg for stack 

alignment 

Following template matching to localize the injury region, I saw translational drift 

within the hypertstacks (See Results Section 3.3.1.). While template matching 

effectively identified and localized the region of interest (ROI) in every frame, embryo 

movement created misalignments between consecutive frames. Such drift artefacts 

presented a problem by potentially undermining the accuracy and reliability of 

dynamic downstream quantifications by introducing inconsistencies in tracking 

neutrophil movements. 

To address this issue and ensure consistent alignment throughout the time-lapse 

hyperstacks, I employed a stack registration-based approach to address these 

translational drifts as a next step within the image processing pipeline. Unlike the 

kidney regeneration studies, in which the fluorescent channel, including the 

regenerating tubule, provided a consistent reference for registration (See Results 

Section 3.3.1.), this scenario presented additional challenges. The fluorescent channel, 

which captured individual neutrophils, could not be used as a reference due to the 

sparse and dynamic nature of neutrophil positions. I chose to base registration on 

the brightfield channel as it included the injury site and surrounding structures 

For the registration process, I employed the HyperStackReg plugin (V. Sharma, 

2018), an extension of the StackReg plugin developed by (Thevenaz et al., 1998). In 

contrast to StackReg, which is tailored for single-channel stacks, HyperStackReg is 

specifically optimized for multi-channel time-lapse hyperstacks, enabling the 

alignment executed on the chosen reference channel to be effortlessly applied to the 

equivalent frames in additional channels. The choice of the reference frame was a 

major factor in the registration procedure as it affected the general alignment 

precision. My optimization attempts and the ideas developed during template 

matching guided me in selecting the middle timepoint of the time-lapse as the 

reference frame  (See Results Section 7.1.3.1), I selected the middle timepoint of the 

time-lapse as the reference frame. The registration process involved recursively 

aligning each frame to its subsequent frame, creating a continuous and stable 

sequence of images within the brightfield channel (See Figure 44A-B). The 

registration performed within the brightfield channel was seamlessly transferred to 

the green fluorescent channels (See Figure 44C-D).   
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Upon localizing the region of injury and successfully eliminating drift artifacts and I 

was able to produce consistently aligned time-lapse hyperstacks (See Figure 44B&D), 

which were crucial for accurate downstream analyses of neutrophil swarming.  

  

Figure 44: Hyperstackreg based stack registration workflow. After ROI localization, A) and C) show the misalignments 

noted in the fluorescent stacks and brightfield correspondingly. B) This figure shows the alignment of the brightfield 

stack using stack registration; the adjustments made here are subsequently applied to the fluorescent stack. D) Displays 

the aligned fluorescent stack, which has been modified depending on the changes done on the brightfield stack thereby 

guaranteeing constant alignment throughout both channels.   
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7.1.3.3. Segmentation and feature extraction 

Segmenting and quantifying individual neutrophils, clusters, and swarms came next 

in the image processing pipeline upon localizing and stabilizing the hyperstacks (See 

Results Section 7.1.3.1-7.1.3.2). To achieve this, I developed a segmentation pipeline 

followed by feature extraction from the segmented images and automated output 

generation, ensuring that results were saved in user-defined directories within the 

pipeline. 

Since segmentation was conducted on the fluorescent channel including neutrophil 

data, the segmentation procedure started by separating the hyperstack into its 

individual channels—brightfield and green fluorescent. To enable more precise and 

consistent segmentation, I pre-processed the fluorescence channel using a sequence of 

processes comprising background removal followed by a small Gaussian blur to lower 

noise and improve the contrast between the neutrophils and the background. 

Following pre-processing, I applied an intensity-based threshold segmentation 

method within FIJI to segment the time-lapses and create binary masks representing 

neutrophils, clusters, and swarms. The thresholding parameters were carefully 

optimized to exclude small background artifacts or noise while retaining meaningful 

neutrophil signals. After segmentation, an additional filtering step was applied using 

the Analyze Particles function in FIJI. Customized parameters, based on the 

measured size range of individual neutrophils, were used to discard irrelevant objects 

and spurious detections. 

In addition to filtering, the Analyze Particles function performed two critical tasks: 

• Outlines of detections: These were saved as regions of interest (ROIs) for 

visualization and verification purposes (See Figure 45B). 

• Quantitative measurements: For each detected neutrophil or cluster and 

swarms, key measurements—including area, centroid position, and intensity—

were extracted and saved in structured output files (See Figure 45C). 

To ensure traceability and reproducibility, I designed the pipeline to automatically 

save both the ROI outlines and the quantitative measurements in user-defined 

directories. During downstream analyses, I sought to let users quickly traverse the 

data, confirm found items, and track back the beginnings of any results. This 

structured output design ensured that the pipeline could be seamlessly integrated 

into further quantitative analyses of neutrophil swarming dynamics (See Figure 45A). 
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Figure 45:Overview of neutrophil segmentation and feature extraction workflow. A) This figure shows the ordered file 

structure of the output directory, including how methodically segmented data and analytical results are kept, therefore 

enabling simple access and reproducibility. Each folder is dedicated to specific outputs such as CSV files for 

quantitative measurements and ROI data for segmented neutrophils. B) This panel shows a detected particle overlay 

(in red) on an ROI-localized and aligned hyperstack. C) Illustrating the table of extracted features from the segmented 

neutrophils, such as area, centroid, and intensity, depicting the detailed quantitative analysis performed on each 

detected object. 
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7.1.4. Establishing a KNIME-based neutrophil swarm analysis 

workflow 

Following the segmentation of neutrophils and the systematic extraction of key 

features from the processed time-lapse images (See Results Section 7.1.3), the final 

step in the analysis pipeline was establishing a comprehensive summary readout. The 

summary readout aims to offer a wholistic overview of experimental outcomes in 

large-scale high-throughput studies, therefore enabling an easy identification of 

important trends and anomalies without manual interventions. To achieve these 

objectives, I developed a KNIME-based workflow that integrates the results post 

image processing to generate summary readouts (See Figure 46A). 

One of the primary objectives while designing the workflow was to facilitate data 

pruning, allowing efficient filtering of swarming and non-swarming samples. Instead 

of manually reviewing each time-lapse, a classification-based readout could guide 

researchers by pre-filtering swarming and non-swarming samples based on extracted 

image features. To classify swarming and non-swarming samples, I focused on the 

area of detected objects, hypothesizing that swarming samples would exhibit objects 

with larger areas persisting over time, whereas non-swarming samples would not show 

such sustained clustering.  

To explore this, I computed a set of statistical attributes from the detected object 

areas across the time-lapse for each sample. These included, mean object area (the 

average area of detected objects), skewness (measure of the asymmetry of the 

distribution of object areas), outlier count – area measures detected as outliers), 

range (difference between the maximum and minimum detected area) and, kurtosis 

(a measure of tailedness of the distribution, indicating the presence of extreme 

values).  

With these computed attributes, I aimed to automate sample classification using K-

means clustering to separate samples into swarming and non-swarming groups. To 

ensure unbiased validation of the classification, previously acquired time-lapses were 

blinded, shuffled, and manually assessed for swarming responses. The True Positive 

Rate (TPR) and True Negative Rate (TNR) were calculated to evaluate classification 

performance (See Table 12). The TPR ranged from 50% - 87.5% accuracy, while the 

TNR ranged from 78.57% - 92.86%. The TPR indicated accurate classification of a 

swarming response, and the TNR indicated accurate classification of a non-swarming 
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response. Although the TPR was variable and less accurate, the TNR, skewness alone 

provided the highest TNR (92.86%), making it the most reliable feature for 

automatically identifying non-responders. For swarming samples the prediction 

accuracy proved inadequate, hence the automatic classification approach was 

abandoned.  

Considering the limitations of automated classification, I explored other strategies 

for efficiently reviewing the data.  This led to the development of an overview 

sheet/readout, where instead of relying solely on automated classification, this 

approach provided a semi-automated way for researchers to quickly assess swarming 

responses by combining visual and quantitative information. Within the intensity 

projections, the swarming samples were characterized by distinct clusters of 

neutrophils accumulating at the injury site, visible as high-intensity regions in the 

projection. Non-swarming samples, where no persistent accumulation was observed, 

appeared as diffuse or absent neutrophil clustering in the projection. Finally, for 

ambiguous cases, samples where swarming could not be classified based on projection 

alone; were further assessed using the extracted statistical parameters and validated 

through manual time-lapse review (See Figure 46B). This extensive readout along 

with the intensity projections, allowed to sort and filter samples efficiently (See Figure 

46B). In conclusion, these data readouts fulfil different tasks, ranging from data 

pruning and accessibility, to aid in classifying inflammatory responses regarding 

neutrophil swarming, minimizing individual detection biases that can be present.  

Table 12: Statistical attributes extracted from the area of detected objects across samples used to classify swarming 

response employing k-means clustering 

 

 

 

 

 

 

 

Parameters TNR  TPR 

Skewness 92.86% 75% 

Outlier count 85.71% 75% 

Range 85.71% 50% 

Skewness + Outlier count 85.71% 87.5% 

Skewness + Range 78.57% 75% 

Kurtosis 85.71% 75% 
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Figure 46:KNIME-based workflow for neutrophil swarm analysis. A) This figure provides  a thorough overview 

of the KNIME based -neutrophil swarm study. Designed for user-friendliness and efficiency in managing complex 

datasets, it shows the modular architecture of the process. It provides a complete view of the process from initial 

data input to final output preparation and highlights the user-configurable nodes, marked in yellow, which need 

user inputs. B) This figure showcases a snippet from the produced overview readout with statistical 

characteristics collected from the region of identified objects combined with their matching maximum projections. 

This panel clearly shows the mix of quantitative and visual data, therefore enabling quick assessment of 

neutrophil swarming behavior across several samples and hence effective data analysis and decision-making based 

on swarming properties. 
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7.1.5. Validating the screening workflow for assessing neutrophil 

swarming across injury types 

Following the development and enhancement of the image processing (See Results 

Section 7.1.1 – 7.1.4), the next step was to confirm if the proposed medium-

throughput screening workflow appropriate for studying neutrophil swarming 

activity. Initially, the aim was to evaluate the impact of immunomodulating drugs on 

neutrophil swarm activity, hence validating the workflow validation. But 

unanticipated shipping reagent issues between the UK and Germany prevented us 

from obtaining the necessary chemicals within the experimental period. During initial 

experiments Nils had anecdotally observed that mechanical injuries elicited a 

seemingly stronger inflammatory response, with a greater number of neutrophils 

recruited to the injury site compared to laser injuries. This observation prompted us 

to evaluate whether the developed workflow could quantitatively detect these 

differences, thereby serving as a validation of the assay’s capability. 

To systematically assess differences in neutrophil swarming dynamics between injury 

types, we performed both mechanical and laser injuries on the ventral fin of 3 days 

post-fertilization (dpf) zebrafish larvae. To induce mechanical injuries, Nils used a 

scalpel to create a controlled wound in the ventral fin (See Figure 47B). Embryos 

were then mounted and oriented in 96-well plates, following the established sample 

mounting protocol (See Results Section 7.1.1). For laser injuries (See Figure 47A), 

embryos were first oriented in 96-well plates following the same mounting procedure, 

and injuries were performed using the optimized laser injury protocol via the 

photomanipulation module of the Acquifer Imaging Machine (IM04) (See Results 

Section 7.2.2). Due to the limited availability of transgenic zebrafish lines throughout 

the experimental phase, several tests were executed utilizing the Tg(lysC:GFP) 

transgenic neutrophil reporter line alongside the previously employed Tg(mpx:GFP) 

line. For both laser and mechanical injuries I conducted four independent 

experimental repeats, with 15–20 samples per repeat per injury type, ensuring a 

robust dataset for comparative analysis. Nils's thesis covers a comprehensive and 

detailed analysis of these results. Here, I provide a general overview of the obtained 
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results, focusing on how the developed workflow was used to assess neutrophil 

swarming across different injury modalities.  

  

Figure 47: Representative montages consisting of images acquired post injury for A) Laser induced 

injuries B) Mechanically induced injuries  
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7.1.5.1. Comparative analysis of neutrophil swarming activity under 

mechanical and laser injury 

The datasets were analysed using the developed image analysis workflow as detailed 

in results Section 7.1.3-7.1.4, following the acquisition of time-lapse images capturing 

neutrophil dynamics in both laser- and mechanically-induced injuries .A key 

challenge in ensuring a direct comparison between the two injury types was aligning 

the inflammatory response phases captured in each experiment. The acquired time-

lapses had an inherent mismatch in the recorded time windows, as the imaging start 

timings for mechanical and laser injury varied. 

Time-lapse imaging started one hour after the first sample was mechanically injured 

and captured swarming dynamics from 60 minutes post-injury (mpi) to 420 mpi 

during a six-hour period time-lapse. For laser injuries, imaging started 30 minutes 

post-injuring the first sample, covering the inflammatory response from 30 mpi to 

390 mpi, also over a six-hour period. Since these experimental timelines had an offset, 

a direct comparison required standardization of the time frames used for analysis 

(See  Figure 48). To address this, I adjusted the analysis window to encompass just 

the overlapping duration of both datasets, which was from 60 mpi to 390 mpi, (See 

Figure 48). This adjustment facilitated direct comparisons and guaranteed that the 

observed variations in neutrophil swarming dynamics were indicative of damage type 

rather than discrepancies in imaging procedure. 

 

Figure 48:Timeline adjustment for laser and mechanical injury time-lapses. This schematic illustrates the 

adjusted timelines for capturing the inflammatory response in zebrafish following mechanical and laser-induced 

injuries. The timelines show the different start times for imaging: 30 minutes post-injury for laser and 60 minutes 

for mechanical injuries. The red and yellow timelines show the particular times when imaging took place for 

each type of injury. The common overlapping period from 60 to 390 minutes post-injury is highlighted, showing 

the standardized window for direct comparison of neutrophil dynamics between the two methods.  
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Initially I assessed the viability of zebrafish larvae following both mechanical and 

laser injuries. As shown in Figure 49A, the proportion of viable larvae was lower in 

the mechanically injured group relative to the laser-injured group. This result was 

anticipated, as mechanical injuries, executed manually with a scalpel, are intrinsically 

more susceptible to variability and unintentional damage.  Where as in the case of  

laser injuries, they exhibited more control and precision, resulting in a comparatively 

elevated survival rate. Nevertheless, a uniform rate of sample death was noted in the 

laser-injured group, but to a smaller extent than in the mechanical injury group.  

After filtering viable samples, as the next step we compared the proportion of larvae 

exhibiting a neutrophil swarming response between the two injury types using the 

established image processing pipeline. As seen in (See Figure 49B), neutrophil 

swarming occurred substantially more often in mechanically wounded larvae than in 

laser-affected larvae. Moreover, the maximal size of neutrophil clusters was 

considerably greater in mechanically wounded larvae, indicating an intensified 

inflammatory response (See Figure 49C). The higher prevalence of swarming in the 

mechanical damage group most likely indicates the more tissue damage connected to 

this kind of injury, which would naturally cause a stronger immunological reaction. 

To further examine if variations in neutrophil swarming were affected by damage size, 

Nils quantified the injury size for each sample. After comparing the injury sizes across 

injury types, I observed that the mechanically induced injuries were larger. Moreover, 

the variation of wound sizes was more extensive in the mechanically damaged group, 

underscoring the heterogeneity linked to manual injury methods. Conversely, laser-

induced injuries resulted in more uniform wound dimensions, highlighting the 

reliability and accuracy of laser-based injury induction (See Figure 49D).  

In summary, these data demonstrated that the developed workflow could successfully 

detect biologically relevant differences in neutrophil swarming between injury types. 

The ability to quantitatively capture these differences based on prior observations 

highlights the feasibility of this workflow for future high throughput swarming assay 

studies. 
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Figure 49:Comparative study of neutrophil swarming activity under laser and mechanical Injury. A) This graph compares 

mechanical and post-laser survival rates for zebrafish larvae. Whereas the red bars show the proportion of dead samples, the 

green bars show the proportion of viable embryos. B) The fraction of larvae showing neutrophil swarming following damage 

is shown by the box plot. Particularly in mechanically damaged larvae, swarming is very common and probably results from 

the greater and more erratic damage caused by hand techniques. C) The box plot the shows maximum size of neutrophil 

clusters observed across samples. Larger clusters in mechanically damaged samples point to a stronger inflammatory response 

most likely brought on by the more tissue disturbance caused by these injuries. D) The box plot represents the wound sizes 

for each injury type. Mechanical injuries result in larger and more variable wound sizes, while laser injuries are more uniform 

and precise, reflecting the controlled nature of laser-mediated tissue damage  
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7.1.6. Methods for neutrophil swarming screen 

7.1.6.1. Sample preparation and mounting  

Imaging plate preparation and embryo mounting 

96-well microplates with cycloolefin bottoms (Greiner bio-one SCREENSTAR Cat.‐

No. 655866) were used for imaging purposes. The Tg(mpx:GFP) embryos were 

collected from the incubator for the experiment at 2 dpf, and the embryos were 

dechorionated. The embryos were transferred to a new petri dish containing the 

imaging media, consisting of working E3 media and tricaine (200 µg/ml). This assay 

didn’t utilize any agarose molds so using a 200 µl pipette tip with a small cut at the 

top to ensure the embryos' safety, 150 µl of imaging medium with the embryos were 

pipetted and transferred to the individual wells of the imaging plate. The embryos 

were carefully positioned laterally under a stereomicroscope using a bent 

subcutaneous injection needle. Throughout the screening experiments, a consistent 

embryo orientation was maintained, and preparing a single imaging plate typically 

took 20-30 minutes. 

 

7.1.6.2. Image acquisition workflow  

After positioning the embryos in a 96 well plate, the imaging plate was sealed with 

a gas-permeable adhesive seal (4titude Cat: 4ti-0517/ST) to prevent media 

evaporation. The imaging machine's temperature was set to 28⁰C, and the imaging 

plate was inserted for imaging. In the initial prescreening, a single z-slice per well 

was acquired using a 2x 0.06 objective in a bright-field and 470nm (GFP) channel 

(See Table 13). The acquired prescreen data was visualized using Plateviewer 

(provided by ACQUIFER), and the ventral fin region of the Tg(mpx:GFP) embryos 

was marked using the click tool for higher magnification acquisition. The optimal 

focal plane in the Z-axis was set manually for each well. The coordinates of the 

selected region and the optimal focal plane were saved within the acquisition script, 

and sub sequent acquisition was performed. For embryos subjected to laser-induced 

injury, 20x prelaser images were acquired using a 20x 0.45 objective in bright-field 

and 470nm (GFP) channel, acquiring 20 z-slices with a ΔZ of 5µm per well (See 

Table 14). Subsequently, the images were used for laser annotation to perform laser 

injury in the annotated region (see Section 7.1.6.3). For embryos undergoing 

mechanical injury, the time-lapse acquisition was initiated immediately after the 

prescreen acquisition.  
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The time-lapse acquisition captured 20 z-slices with a ΔZ of 5µm per well. Images 

were acquired every 5 minutes for 6 hours (See Table 14). The optimal focal plane in 

the Z-axis was set manually for each well before the start of the time-lapse. Due to 

the high temporal sampling, the number of wells imaged per plate was 20-30. After 

the time-lapse acquisition, a 2x post-screening of the whole plate was performed. This 

involved acquiring 20 z-slices with a ΔZ of 5µm per well using a 2x 0.06 objective in 

bright-field and 470nm channel (See Table 13). The entire imaging process was 

controlled using imaging machine scripts to manage various aspects of the 

experiments. 

Table 13: Imaging parameters for 2x prescreen acquisition for neutrophil swarming screen. 

 

 

 

 

Table 14: Imaging parameters for 20x prelaser and time-lapse acquisitions for neutrophil swarming screen. 

 

7.1.6.3. Laser-induced ventral fin injury 

After successfully mounting orienting and acquiring higher magnified images marking 

the ventral fin region (ventral fin injury, see section 7.1.6.1 and section 7.1.6.2). The 

acquired images were visualized using Plateviewer (provided by ACQUIFER); using 

the laser annotation tool, the images in the brightfield channel were used to uniformly 

annotate the ventral fin region for laser-induced ventral fin injury.  

For assay optimization, experiments used varying laser power and repeat cycles, 

which were configured accordingly for each experiment. The annotated regions and 

laser settings were then transferred to ACQUIFER’s photomanipulation module 

(developed with Rapp Optoelectronic, Wedel, Germany), which performed 

automated laser injury on each embryo in the corresponding wells without further 

user interaction. 

Channel Power Exposure 

Time 

Bright-Field 

(BF) 

30% 20 ms 

470nm (GFP) 50% 50 ms 

Channel Power Exposure 

Time 

ΔZ No. Z Slices 

Bright-Field 

(BF) 

30% 20 ms 5 µm 20 

470nm (GFP) 50% 50 ms 5 µm 20 
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7.1.6.4. Image analysis workflow pipelines and scripts 

The analysis pipeline primarily comprised an image processing segment and a 

segment dedicated to data visualization and analysis, involving identifying samples 

showing swarming and tracking potential swarm clusters. The analysis pipeline was 

designed to be user-friendly and tailored to users in an open-source environment. The 

entire pipeline is available on GitHub and can be accessed using this link 

(https://github.com/sankeert1999/NeutrophilsSwarmAnalyserKit). 

Before image processing, the acquired time-lapse data (see Section 7.1.6.2) was split 

into brightfield and GFP channels. For the GFP channel, maximum intensity 

projections were generated along the Z-axis for each timepoint for each time-lapse. 

For the brightfield channel, the center slice from each timepoint was selected and 

stitched into a separate stack for each time-lapse.  

 

Image processing 

A custom Fiji macro, “cluster analyzer.ijm,” was developed to process the images, 

using the split brightfield stack and max-projected GFP channel stack as inputs. The 

brightfield stack was subjected to template matching via the Template Matching 

plugin (Thomas & Gehrig, 2020b), where the user selected a uniform template (across 

samples) to be searched across the time-lapse sequence. After template matching, the 

regions of interest (ROIs) were identified across the time-lapse, which were then used 

to crop both the brightfield and GFP stacks using Fiji's crop tool. The cropped stacks 

were merged to create a hyperstack. 

The obtained hyperstack was then subjected to registration using the HyperStackReg 

(V. Sharma, 2018) plugin in Fiji. The brightfield channel was utilized for stack 

registration, and the results of the registrations were transferred to the GFP channel. 

After registration, the hyperstack was split into individual channels, and neutrophils 

in the GFP channel were segmented using classical default threshold methods within 

FIJI, with threshold values adjusted as needed for each experiment. 

The segmented masks were further processed using the Analyze Particles function in 

Fiji, and the resulting data, including mask area, roundness, mean intensity, and 

other relevant parameters, were exported as a CSV file. The segmentation masks, 

overlays, and detected ROIs were also saved for future reference. 

Data analysis and visualization 

https://github.com/sankeert1999/NeutrophilsSwarmAnalyserKit
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A custom, user-friendly Knime workflow named “Swarm Classifier.knwf” was 

developed for further data processing. The workflow starts by importing the CSV 

files generated post-image processing and merging them into a single dataset. It then 

calculated the statistical parameters—mean, variance, and skewness—of the detected 

cluster areas over time for different samples. The samples were then ranked based on 

the likelihood of swarm occurrence, with those having the highest probability at the 

top. Additionally, maximum intensity projections of the time-lapse data (across time) 

were combined as a separate column in the final table, and the resulting table was 

exported as an Excel file. 

A second custom user-friendly Knime workflow, “Swarm Tracker,” was created to 

analyze swarm tracks from the selected samples identified by the Swarm Classifier. 

This workflow processed individual CSV files for each sample, exporting detailed 

swarm track data, including position, persistence, and other parameters, as described 

in the Results Section 7.1.4 . 
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7.2. Developing a high throughput workflow to assess otic 

vesicle neutrophil recruitment following substrate injection 

in zebrafish embryos 

Neutrophil recruitment is a fundamental part of the innate immune response which 

has been linked to several inflammatory disorders via dysregulation. Knowing the 

mechanisms behind immune responses and choosing a treatment depends on our 

ability to analyze different treatments objectively by means of in vivo neutrophil 

migration and accumulation.C5a-C5aR1 signaling axis significantly modulates 

inflammatory responses by regulating neutrophil recruitment to injury or infection 

sites (Sadik et al., 2018)While this pathway has been investigated in detail in 

mammalian models, its function in zebrafish is still mostly unknown. 

This knowledge gap was the central focus of my collaborator Liz Hernández from the 

University of Montpellier, Laboratory of Pathogen-Host Interactions (France). As 

part of her research, she aimed to investigate C5a-C5aR1 signaling in neutrophil 

recruitment and develop a zebrafish-based screening assay to evaluate the effects of 

C5aR inhibitors. She collaborated with me to build the imaging assay and image 

processing pipeline to measure neutrophil recruitment in the otic vesicle following 

substrate injections.  

Although this project fits the larger scale of my PhD—developing imaging and 

analysis methods for zebrafish-based screening assays—the biological interpretation 

of C5aR1 signaling and pharmacological validation of inhibitors falls outside my main 

research focus and is extensively covered in Liz Hernández's PhD thesis. My 

particular contributions to this project included, designing a high-throughput 

imaging workflow and developing an automated image analysis pipeline for reliable 

and efficient quantification of neutrophil recruitment. 

The following sections outline the development of the imaging and analysis workflows, 

highlighting my contributions to establishing a high-throughput screening assay for 

neutrophil recruitment in the zebrafish otic vesicle. 
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7.2.1. Developing the imaging assay to assess neutrophil 

recruitment following substrate injection in otic vesicles of 

zebrafish embryos 

Accurate detection of neutrophil recruitment and consistent, high-quality data 

acquisition depended on a standardised imaging assay. Considering that the otic 

vesicles of zebrafish embryos are positioned laterally, the most effective imaging 

orientation was lateral placement, similar to the orientation strategy I previously 

implemented for neutrophil swarming experiments (See Results Section 7.1.1).  

The imaging workflow began with substrate injections into the otic vesicles of 2 days 

post-fertilization (dpf) zebrafish embryos (See Section 7.2.5.3). Liz performed the 

substrate injection into the otic vesicles, after which the embryos were mounted 

laterally using the same minimal intervention approach as in my previous 

experiments (See Section 7.2.5.1).  

Getting exact focus on the otic vesicle was essential for this imaging configuration. 

Similar to the challenges encountered in neutrophil swarming experiments (See 

Section 7.1.1), the microscope’s autofocus (AF) function struggled to detect the otic 

vesicle, making automated focusing unreliable consistently. To address this, I applied 

a similar strategy that I had used previously for neutrophil swarming assay to 

guarantee the optimal focal plane acquisition, where I manually set the z-plane for 

each sample to ensure that the focal plane aligned with the otic vesicle. I also enlarged 

the z-section range, obtaining 44 slices at 3 µm intervals, to offset any z-axis drift 

during time-lapse photography. This method guaranteed that the whole otic vesicle 

stayed inside the imaging range across the experiment. 

Following successful sample orientation and focus adjustment, I initiated time-lapse 

imaging at 3 hours post-injection (hpi) (See Section 7.2.5.2), acquiring images every 

hour up to 6 or 8 hours, depending on the specific assay requirements. This flexibility 

in time-lapse settings allowed us to optimize data collection for different experimental 

conditions while maintaining high-throughput efficiency.  
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7.2.2. Establishing an image processing pipeline to investigate 

neutrophil recruitment 

After capturing the neutrophil recruitment events, standardizing image processing to 

guarantee consistent measurement of neutrophil accumulation in the otic vesicle came 

next. This project shared many parallels with the neutrophil swarming experiments, 

as both involved tracking neutrophils post-injury in a time-lapse imaging setup. 

Consequently, many preprocessing solutions were transferable between both 

workflows. I built upon the existing analysis pipeline developed for neutrophil 

swarming (See Section 7.1.3) , leading to a macro-based image processing pipeline   

“Neutrophil_Population_Estimator.ijm” (See Section 7.2.5.4). Which incorporated 

key preprocessing steps, including maximum intensity projection (MIP) to create a 

single plane per timepoint and localizing the otic vesicle as the region of interest 

(ROI) to extract only the relevant area for analysis followed by aligning the ROI-

localized stacks to correct translational drift across timepoints. 

Since the otic vesicle occupied only a small portion of the full imaging field, I 

employed a similar template matching-based approach as discussed in Section 7.1.3.1 

to localize the otic vesicle across all timepoints. Using the brightfield channel, which 

provided a stable structural reference, the pipeline cropped images to 650 x 650 pixels 

(See Figure 50B) from the original 2048 x 2048 pixels (See Figure 50A), ensuring 

consistent ROI selection. The corresponding fluorescent (green) channel, which 

included the neutrophil signal was cropped utilizing the localization results to, 

maintain the spatial alignment.  

As in past experiments, small misalignments were seen in the time-lapse stacks even 

with good localization. I corrected this using HyperStackReg, a multi-channel 

registration technique I had earlier tuned for neutrophil swarming studiescontaining 

the neutrophil signal, was cropped accordingly to maintain spatial alignment. 

Despite successful localization, minor misalignments were observed within the time-

lapse stacks, as seen in previous projects. To correct this, I applied HyperStackReg, 

a multi-channel registration tool that I had previously optimized for neutrophil 

swarming experiments (See Section 7.1.3.2). The brightfield channel served as the 

reference for alignment, which guaranteed the otic vesicle stayed constant across the 

time-lapse. The fluorescent channel was subsequently subjected to the resultant 
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registration change, which preserved alignment across channels and raised 

downstream quantification accuracy (See Figure 50B).  

 

After localizing and stabilizing the hyperstacks, the next step as part of the image 

processing pipeline was to segment and quantify individual neutrophils within the 

otic vesicle. As in the neutrophil swarming analysis, I followed a similar segmentation 

routine (See Results Section 7.1.3.3), applying intensity-based thresholding and the 

Analyze Particles function to detect and extract features from segmented neutrophils 

(See Figure 51A). Contrary to the swarming experiments, an additional step was 

necessary to ensure that neutrophil detection was restricted to the otic vesicle region, 

rather than the entire localized ROI. While the pipeline already restricted the 

analysis to a cropped region, further refinement was required to exclude detections 

outside the otic vesicle precisely.  

To achieve this, I incorporated a user-guided annotation step within the pipeline. 

After ROI localization, the user was prompted to manually mark the otic vesicle 

within the ROI-localized stack across the entire time-lapse. These manually defined 

otic vesicle ROIs were then automatically saved for subsequent steps (See the yellow 

outline in  Figure 51B). I limited particle detection to the user-defined area using the 

PTBIOP Fiji plugins once the otic vesicle was marked. This was accomplished by 

multiplying the detected particle stack with the user-annotated mask stack so that 

only neutrophils within the annotated otic vesicle were retained for further analysis 

Figure 50: Template matching based otic vesicle detection. A) This panel displays the max projected hyperstack, 

capturing brightfield and fluorescent channels. B) This figure presents the hyper stack where the otic vesicle has been 

isolated and highlighted across both channels using template matching, focusing subsequent analysis within the otic 

vesicle region 
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(See Figure 51B). Finally, the extracted particle area and otic vesicle area were 

measured across the time-lapse and stored in separate output tables for downstream 

quantification (See Figure 51C&D).  

Figure 51: Overview of neutrophil segmentation and feature extraction workflow. A) This panel shows a detected particle 

overlay (in red) on an ROI-localized and aligned hyperstack. B) This panel shows the detected particle overlay (in red) and 

the user annotated structure around the otic vesicle (in yellow) on an ROI-localized and aligned hyperstack and the blue 

shade represents that only the particles within this region would be included as valid detections. C) Illustrating the table 

consisting of the areas of detected objects within the otic vesicle regions across the timelapse. D) Illustrating the table 

consisting of the areas the user annotated structure (otic vesicle) across the timelapse.  
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7.2.3. Establishing a KNIME-based neutrophil recruitment 

analysis workflow 

Following the segmentation of neutrophils and the systematic extraction of the area 

of the detected neutrophils time-lapse images, the final step in the analysis pipeline 

was  to estimate neutrophil accumulation over time within the otic vesicle. The key 

objective was to provide a quantitative measure of neutrophil recruitment to the otic 

vesicle over time post substrate injections. To achieve this, I deduced an approach to 

estimate the relative accumulation of neutrophils within the otic vesicle over time. I 

computed the ratio of the total detected neutrophil’s area to the otic vesicle area, 

providing a normalized measurement of neutrophil accumulation (See Figure 52A). I 

aimed to represent this ratio as a proxy for neutrophil recruitment levels across the 

time-lapse, allowing for comparisons across different experimental conditions. 

To implement this deduced approach, I developed a KNIME-based analysis workflow 

(See Figure 52B),”Neutrophil_Recruitment_Analyzer.knwf” (See Section 7.2.5.4). It 

automated the calculation of this accumulation ratio provided with the input files 

deduced post image processing workflow, including: 

• The folder consisting of the list of files with the total detected neutrophil area 

for each timepoint across samples 

• The area of the user-annotated otic vesicle 

Using these inputs, the workflow systematically computed the accumulation ratio 

across time, producing structured output files that could be further analyzed and 

visualized.  
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Figure 52: KNIME based neutrophil recruitment analysis workflow overview. A) Schematic representation of the 

method used for estimating neutrophil counts within user-defined areas of the otic vesicle, emphasizing how the count 

estimate is calculated as a percentage of the total area covered by neutrophils relative to the entire region of interest. 

B) Illustrates the KNIME-based workflow overview, the workflow facilitates the computation of neutrophil 

accumulation ratios using inputs including the detected neutrophil areas and the areas of user-annotated otic vesicles. 

The panel shows both the schematic of the workflow and a snapshot of the generated output table . 
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7.2.4. Validating the neutrophil recruitment analysis workflow 

using manual counts  

Following the successful development of the high-throughput imaging assay and the 

associated analysis workflow for evaluating neutrophil recruitment, the subsequent 

step was to validate the analysis pipeline to confirm the precision of the calculated 

neutrophil count estimates. As part of the validation experiments, I designed a 

comparative study assessing neutrophil recruitment to the otic vesicle following zC5a 

and buffer injections. Liz had previously performed this experiment, in which buffer 

injection acted as a control, indicating baseline neutrophil recruitment, whereas zC5a 

injection was anticipated to elicit a robust neutrophil recruitment response.  

To validate the approach, I employed this experimental setting to ascertain whether 

the proposed workflow could quantitatively discern variations between the two 

conditions. For this validation, I conducted the imaging and analysis, while Liz 

performed the injections. The samples were imaged using the previously described 

high-throughput imaging assay (See Section 7.2.1), capturing neutrophil recruitment 

from 3 hours post-injection (hpi) to 6 hpi at hourly intervals.  

After imaging, the automated analysis pipeline computed the workflow-generated 

count estimates for every group. To assess the accuracy of the workflow generated 

count estimates, I compared them against manually counted neutrophils in the otic 

vesicle for each sample (See Figure 53A-B). Manual counting was performed by Liz, 

serving as the ground truth for validation. After obtaining the manual counts I 

computed the Pearson correlation coefficient between the manual counts and the 

workflow-generated estimates across the time-lapse, to quantitatively compare the 

results. The correlation association was stronger for the buffer(0.75) over the zC5a 

(0.65) (See Figure 53C-D). Comparing the counts I observed that the workflow 

tended to overestimate the neutrophil numbers relative to manual counts. 

Nevertheless, I found that the workflow effectively caught the general recruitment 

trends despite the small overestimation, capturing the relative changes in neutrophil 

accumulation over time is more crucial than reaching perfect agreement in cell counts. 
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Figure 53: Comparing manual counts with workflow evaluated count estimates. A) Manual counts of neutrophils for 

buffer and zC5a-treated samples over a timeline from 3 to 6 hours post-injection (hpi). B) Workflow derived count 

estimates of neutrophils under the same conditions, illustrating variation in count precision between methods. 

C)&D) Aggregated comparative plots to compare the trendline across buffer and zC5a groups respectively. The 

Pearson correlation coefficient computed for buffer group was 0.75 and for zC5a was 0.65. 
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7.2.5. Methods for otic vesicle immune response screen 

7.2.5.1. Sample preparation and mounting  

Imaging plate preparation and embryo mounting 

96-well microplates with plastic bottoms (Greiner bio-one Cat.‐No. 655101) were used 

for imaging purposes. The Tg(mpx:GFP) embryos were collected from the incubator 

for the experiment at 2 dpf, and the embryos were dechorionated. The embryos were 

transferred to a new petri dish containing the imaging media, consisting of working 

E3 media and tricaine (200 µg/ml). This assay didn’t utilize any agarose molds so 

using a 200 µl pipette tip with a small cut at the top to ensure the embryos' safety, 

150 µl of imaging medium with the embryos were pipetted and transferred to the 

individual wells of the imaging plate. The embryos were carefully positioned laterally 

under a stereomicroscope using a bent subcutaneous injection needle. While orienting 

the embryos, it was ensured that the injected otic vesicle was always at the bottom 

(as it was an inverted microscope). Throughout the screening experiments, a 

consistent embryo orientation was maintained, and preparing a single imaging plate 

typically took 20-30 minutes. 

7.2.5.2. Image acquisition workflow  

After positioning the embryos in a 96 well plate, the imaging plate was sealed with 

a gas-permeable adhesive seal (4titude Cat: 4ti-0517/ST) to prevent media 

evaporation. The imaging machine's temperature was set to 28⁰C, and the imaging 

plate was inserted for imaging. In the initial prescreening, a single z-slice per well 

was acquired using a 2x 0.06 objective in a bright-field and 470nm (GFP) channel 

(see Table 15). The acquired prescreen data was visualized using Plateviewer 

(provided by ACQUIFER), and the microinjected otic vesicle of Tg(mpx:GFP) was 

marked using the click tool for higher magnified time-lapse acquisition. The optimal 

focal plane in the Z-axis was set manually for each well.  The coordinates of the 

selected region and the optimal focal plane were saved within the acquisition script, 

and the time-lapse acquisition was initiated, involving the acquisition of 44 z-slices 

with a ΔZ of 3µm per well. Images were acquired every hour for 7 hours (See Table 

15) 

The plate was divided into Group A (first four rows) and Group B (remaining rows) 

to synchronize the timeline across all samples during the time-lapse acquisition. Since 

the embryos were manually microinjected (see Section 7.2.5.3), resulting in slight 

time differences between injections, a 30–40 minute delay was introduced between 

the acquisitions of the two groups. Group A was imaged first, followed by Group B 
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after the delay, ensuring synchronized data acquisition across the time-lapse. The 

entire imaging process was controlled using imaging machine scripts to manage 

various aspects of the experiments 

Table 15: Imaging parameters for 2x prescreen acquisition for otic vesicle immune response screen. 

 

 

 

 

 

Table 16: Imaging parameters for time-lapse acquisitions for otic vesicle immune response screen. 

 

7.2.5.3. Microinjecting substrate in zebrafish otic vesicle 

2 dpf Tg(mpx:GFP) embryos were dechorionated and positioned in a V-shaped  3% 

agarose-based injection mold filled with working E3 media and tricaine (80-100 

mg/ml). Glass microinjection needles were pulled using a puller instrument with the 

following parameters: heating = 600, voltage = 80, velocity = 80, time = 200, and 

pressure = 90-200. The pulled needles were loaded with a few µl of the substrate 

mixed with 10% red phenol to facilitate the visualization of the injected substrate. Each 

embryo was microinjected at the otic vesicle and then transferred to a 25 ml petri 

dish containing working E3 media. 

7.2.5.4. Image analysis workflow pipelines and scripts 

The analysis pipeline primarily comprised an image processing segment and a 

segment dedicated to data visualization and analysis. The analysis pipeline was 

designed to be user-friendly and tailored to users in an open-source environment. The 

entire pipeline is available on GitHub and can be accessed using this link 

(https://github.com/sankeert1999/NeutrophilsPopulationAnalyser). 

 

Channel Power Exposure 

Time 

Bright-Field 

(BF) 

30% 20 ms 

470nm (GFP) 50% 50 ms 

Channel Power Exposure 

Time 

ΔZ No. Z Slices 

Bright-Field 

(BF) 

30% 20 ms 3 µm 44 

470nm (GFP) 50% 50 ms 3 µm 44 

https://github.com/sankeert1999/NeutrophilsPopulationAnalyser
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Image processing 

After acquiring time-lapse data, the acquired data was converted to a hyperstack 

using the HyperStackMaker plugin in Fiji. The hyperstacks were then processed using 

a custom Fiji macro, “Neutrophil_Population_Estimator.ijm.” 

The script started by splitting the hyper stack into individual channels. A maximum 

intensity projection was created for the green (GFP) channel, while the central slice 

was extracted for the bright-field channel. These resulting images were merged across 

time to generate a new hyper stack. 

For further processing, the user was prompted to manually select the otic vesicle 

region from the newly generated hyperstack, which was cropped accordingly. A 

second prompt allowed the user to annotate the otic vesicle across time, and these 

annotations were recorded in Fiji’s ROI manager and subsequently saved. 

The cropped hyperstack was split into two channels; the GFP channel was segmented 

to identify neutrophils using the StarDist plugin, with parameters adjusted for 

different experiments. Segmentation masks were generated and further analyzed 

using Fiji's "Analyze Particles" function to extract neutrophil ROIs. The previously 

recorded user-annotated ROIs were applied using the PTBioP Fiji plugin to limit the 

analysis to the selected otic vesicle region. 

Finally, the neutrophil masks within the user-annotated region, including area and 

other attributes, were exported as CSV files. The area of the user-annotated region 

across different time points was also saved. The cropped hyperstack (with split 

channels), segmentation masks, and ROI data were saved for future reference. 

The script was designed to handle images in batches by taking a folder of hyperstacks 

as input. The entire image processing workflow was automated, requiring user input 

only for marking and annotating the otic vesicle region and otic vesicle across time. 

Data analysis and visualization 

The result exported after image processing was further analyzed to assess neutrophil 

recruitment over time using a custom KNIME workflow named 

"Neutrophil_Recruitment_Analyzer.knwf." This workflow took two input folders: 

one containing files with the detected neutrophil area and the other with the area of 

user-annotated regions of interest. For each timepoint across all samples, the total 

detected neutrophil area was calculated and divided by the corresponding user-

annotated region's area. This resulted in a table of each timepoint and the 
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corresponding ratio of detected neutrophil area to annotated region area. The 

resulting table was then exported as a CSV file and saved to the respective folder.The 

entire workflow was fully automated, requiring the user only to specify the input 

folders.  
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