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Abstract

This thesis investigates random tensor models and their applications across quantum field theory.
Originating in quantum gravity studies, tensor models provide a framework for generating discrete
random geometries and have connections to several other fields, including topology, conformal
field theory, and constructive field theory. Their extension to d-dimensional quantum field theories
constitutes tensor field theories. The most important feature of tensor models is their melonic large
N limit. The 1/N expansion allows for non-trivial and systematic resummations of correlation
functions, making them interesting quantum field theory models. Other methods that are used in
this thesis include combinatorics, asymptotic series analysis, and two-particle irreducible effective
action techniques.

Three main themes are developed throughout this work. First, the research on tensor models
with symplectic symmetry broadens our understanding of tensor models with various symmetry
groups. We establish a formal relation between orthogonal and symplectic random tensor models,
demonstrating that tensor models with O(N) symmetry are related to corresponding models with
Sp(N) symmetry through the replacementN → −N . This duality extends to tensors transforming
in arbitrary finite-dimensional representations of these groups and provides a framework for new
fermionic models. Second, we analyze the zero-dimensionalO(N) vector model using constructive
field theory techniques, particularly the Loop Vertex Expansion, establishing analyticity and Borel
summability properties of the free energy. We derive transseries expansions that incorporate both
perturbative and non-perturbative contributions. Third, we study a four-dimensionalO(N)3 tensor
field theory exhibiting asymptotic freedom in the ultraviolet while developing strong correlations
in the infrared. Through numerical solution of the Schwinger–Dyson equations, we demonstrate
how quantum fluctuations significantly modify the propagator and identify a threshold mass below
which the running coupling diverges at a finite infrared scale.





Zusammenfassung

Diese Dissertation untersucht Zufallstensoren und ihre Anwendungen in der Quantenfeldtheo-
rie. Die Ursprünge der Zufallstensoren liegen in der Erforschung der Quantengravitation und bie-
ten einen Ansatz zur Erzeugung diskreter Zufallsgeometrien mit Verknüpfungen zu verschiede-
nen anderen Fachrichtungen wie der Topologie, der konformen Feldtheorie und der konstrukti-
ven Feldtheorie. Ihre Erweiterung auf d-dimensionale Quantenfeldtheorien führt zu Tensorfeld-
theorien. Die wichtigste Eigenschaft von Tensormodellen ist ihr melonisches Large N -Limit. Die
1/N -Entwicklung ermöglicht eine nicht triviale und systematische Resummierung von Korrelati-
onsfunktionen, was diese Modelle zu interessanten Feldtheorien macht. Weitere in dieser Arbeit
verwendete Methoden umfassen Kombinatorik, die Analyse asymptotischer Reihen und die Metho-
de der Zwei-Teilchen-irreduziblen effektiven Wirkung.

Diese Arbeit verfolgt drei Hauptthemen. Erstens erweitert die Forschung über Tensormodelle
mit symplektischer Symmetrie unser Verständnis von Tensormodellen mit unterschiedlichen Sym-
metriegruppen. Wir stellen eine formale Beziehung zwischen orthogonalen und symplektischen
Zufallstensoren her und zeigen, dass Tensormodelle mitO(N)-Symmetrie mit entsprechenden Mo-
dellenmitSp(N)-Symmetrie durch die Substitution vonN → −N in Beziehung stehen. Diese Dua-
lität erstreckt sich auf Tensoren in beliebigen endlichdimensionalen Darstellungen dieser Gruppen
und bietet einen methodischen Rahmen für neue fermionische Modelle. Zweitens analysieren wir
das nulldimensionale O(N)-Vektormodell mit Techniken der konstruktiven Feldtheorie, insbeson-
dere der Loop Vertex Expansion, und zeigen Analytizitäts- und Borel-Summierbarkeitseigenschaften
der freien Energie. Wir leiten Transreihenentwicklungen her, die sowohl perturbative als auch
nicht perturbative Beiträge einbeziehen. Drittens untersuchen wir eine vierdimensionale O(N)3-
Tensorfeldtheorie, die asymptotisch frei im Ultravioletten ist und starke Korrelationen im Infra-
roten entwickelt. Durch numerisches Lösen der Schwinger–Dyson-Gleichungen zeigen wir, wie
Quantenfluktuationen den Propagator signifikant modifizieren und identifizieren eine Grenzmas-
se, unterhalb derer die laufende Kopplung bei einer endlichen Infrarotskala divergiert.
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Chapter 1

Introduction

Our current understanding of the fundamental workings of nature is based on quantum field theory
and the theory of relativity. As physical theories, their primary goal is to make quantitative predic-
tions and provide a framework in which we can explain physical phenomena based on underlying
principles. These principles are made manifest through mathematical structures and mathematics
is central to a deeper understanding of physical phenomena.

In an idealized situation, one might hope that all predictions of a theory could be derived through
pure mathematical machinery. In practice, however, the relationship between mathematics and
physics is muchmore intricate. Different mathematical structures often emphasize different aspects
or principles of a physical theory. Indeed, reconstructing physical theory based on new mathemat-
ical structures and concepts frequently leads to scientific progress. Even when the mathematical
starting point seems clear, real physical systems generally lead to calculations of overwhelming
complexity that resist exact solutions. For this reason, it is usually instructive to develop simplified
models that capture essential aspects of actual systems while allowing for some degree of calcu-
lational control. These models serve as testbeds for new ideas and techniques that might later be
applied to more complex systems. Furthermore, some supposedly mathematical structures used
in physics still lack rigorous mathematical definitions and full understanding. In practice, one of-
ten implicitly introduces additional assumptions and employs approximations that may fail at the
boundaries of their domains of applicability. It is at this interface where the field of mathematical
physics flourishes. Mathematical rigor can provide new tools and a priori knowledge of their ap-
plicability, while physics provides inspiration, intuition, and creativity that can lead to unexpected
connections and new developments in mathematics. In this context, model systems can help to ad-
vance our understanding by providing examples in which certain concepts can be made rigorous,
eventually providing intuition for more general cases.

On the one hand, tensor models, which are the focus of this thesis, have their origins in quan-
tum gravity research, which aims to resolve the discordance between quantum field theory and the
theory of relativity, and would eventually provide a more fundamental understanding of nature.
On the other hand, tensor models represent exactly such a class of model systems as discussed
above. Crucially, they are equipped with a natural small expansion parameter—the reciprocal size
of the tensors 1/N—and in the large N limit, non-trivial simplifications make them amenable to
more rigorous analysis. In particular, their field-theoretic versions (tensor field theories) can al-
low for a systematic investigation of phenomena that would be inaccessible in more complicated
systems. Moreover, some aspects of tensor models are different from other model systems, thus
complementing and challenging our established customs.
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1 Introduction

1.1 General background on tensor models

The roots of random tensor models lie in quantum gravity and random geometry, and it is hoped
that they can at some point parallel the success of randommatrix models in two-dimensional quan-
tum gravity. From these roots, tensor models grew and branched into a variety of topics, connecting
combinatorics, discrete random geometry, statistical physics and quantum field theory (QFT). Al-
though this thesis will not be directly about quantum gravity, we start with a survey of the historic
developments which go deep into this area of research. Concrete details and definitions follow in
the preceding sections.

Random tensor models arose in the 1990s [6–8] as a discrete/lattice approach to define a theory of
quantum gravity that emphasizes the geometric nature inherent to the classical theory of general
relativity. Random tensors¹ are probability measures for ND random variables T a1...aD , which
are invariant under the conjugation of T by the unitary (orthogonal or symplectic) group. The
probability measures one studies are inspired by statistical physics and QFT, and thus mainly fall
into the class of perturbed Gaußian measures. By means of a graphical expansion à la Feynman,
random tensor models can be used to generate an ensemble of discrete spaces (gluings of simplices)
endowed with a probability measure. Equipping these spaces with additional geometric data, e.g.,
fixed side lengths for the simplices (similar to a lattice spacing), one obtains a theory of discrete
random geometries. Finally, one would like to find a continuum limit of these discrete spaces that
is of relevance to quantum gravity.

The main motivation for this research program was the success of a similar effort for random
matrices (see the extensive review [9] and references therein). Randommatrices were introduced by
Wishart [10] in the context of statistics and first used in physics byWigner [11] to model the spectra
of heavy nuclei. The moments and partition function of random matrix models can be expressed
in a perturbative expansion as formal series indexed by ribbon graphs. These graphs are dual to
two-dimensional surfaces, and starting with ’t Hooft’s seminal work [12], it became clear that the
perturbative expansion of randommatrix models can be reorganized as an expansion in the natural
small parameter 1/N . This series is a topological expansion and indexed by the genus of the ribbon
graphs (or equivalently their dual surfaces). In the large N limit, planar graphs dominate. This
family of graphs is summable and can be explicitly enumerated [13–16]. In turn, the 1/N expansion
of matrix models sparked many applications in enumerative combinatorics [17, 18]. Tuning the
coupling constants of the matrix model to some critical values, large planar graphs dominate and
one obtains a theory of infinitely refined random surfaces [19–22], known in the mathematical
literature as Brownian map² and shown to be equivalent to two-dimensional Liouville quantum
gravity [23–27] (see also [28] for a pedagogical introduction, and Fig. 1.1). Moreover, matrix models
also describe two-dimensional quantum gravity coupled to matter [29–36] and the critical behavior
of matter on random surfaces is related to the one on a fixed geometry by the Knizhnik–Polyakov–
Zamolodchikov (KPZ) correspondence [37]. The double scaling limit [38–40] enhances subleading
terms in the 1/N expansion, thus allowing topology change, and corresponds to two-dimensional
quantum gravity with fixed Newton’s constant. In total, two-dimensional quantum gravity is the
by now probably most rigorously understood quantum theory of gravity.

¹ We reserve the name tensor for D > 2 to distinguish it from the case of matrices (D = 2) and vectors (D = 1).
² A random metric space of Hausdorff dimension 4 and spectral dimension 2.
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1.1 General background on tensor models

Figure 1.1. Illustration of a typical discrete spherical random geometry that can be obtained from
matrix models. These geometries would converge to the Brownian map in a continuum limit. Cour-
tesy of Timothy Budd, released under CC BY license.

The development of tensor models was hindered by the lack of a 1/N expansion until 2009 when
Gurău introduced the so-called colored tensor models [41–47]. These models are fundamental to
the modern theory of random tensors (see the book [48] and references therein). They possess
a 1/N expansion organized by the Gurau degree ω that replaces the genus. The leading order
graphs are so-called melonic graphs (see Fig. 1.2). The Feynman graphs of the colored tensor models
have a dual description in terms of gluings of simplices and generate discrete manifolds as well as
pseudomanifolds [49].³ The leading order melonic graphs are dual to certain triangulations of the
D-dimensional sphere. Other triangulations of spheres appear at subleading orders. On the one
hand, this shows that the 1/N expansion of random tensor models is not purely topological. On
the other hand, there is no single and simple number that distinguishes different topologies in
D > 2 dimensions. Based on the family of melonic graphs a continuum limit can be taken that
is governed by the continuum random tree [50] and known as branched polymer⁴ phase in the
physics literature [44, 51]. Tensor models also exhibit a double scaling limit [52–57]. In fact, the
1/N expansion of random tensor models has strong universality properties [58–69] and mostly
leads to tree-like structures (transitions between a branched polymer phase and two-dimensional
quantum gravity phase are also possible [70]). Up until now, finding a non-trivial random metric
space with integer spectral dimension ≥ 3 remains an open problem (see also the literature on
causal dynamical triangulations, e.g., the recent review [71] or [72, 73] for specific proposals to
overcome this issue).

A further generalization of tensor models are group field theories, that aim to define a field the-
ory of spacetime (see the reviews [74–76]). Prototypical examples are the Boulatov [77] and Ooguri
[78] models. Their fields can be understood as elements ϕ ∈ L2(GD) where G is a Lie group. The

³ A pseudomanifold can have certain topological singularities such that the boundary of the neighborhood of a point is
not homeomorphic to a sphere.

⁴ A random metric space of Hausdorff dimension 2 and spectral dimension 4/3.
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1 Introduction

Figure 1.2. Graphical representation of leading oder Feynman graphs in the large N limits of
vector, matrix and tensor models (from left to right).

Feynman graphs of group field theories are like the ones of tensor models, but decorated with group
elements. The amplitudes of these Feynman graphs include an integral over the group G. For ex-
ample, in the case D = 3 and G = SU(2) these models can be interpreted as three-dimensional
Euclidean quantum gravity path integrals, whereby the metric is encoded by its holonomies. The
discovery of the melonic large N limit of tensor models had significant impact on group field the-
ories (see, e.g., [79]); yet, until now, the metric properties of their continuum limit are not well
understood. In a different approach, a theory of renormalization was developed for group field
theories [80, 81]. This is a quite non-trivial generalization of the renormalization of local QFTs, as
these theories are non-local and do not have an a priori notion of scale.⁵

In 2015, it was recognized that the Sachdev–Ye–Kitaev (SYK)model [82, 83] provides a nearly con-
formal dual to two-dimensional Jackiw–Teitelboim gravity [84, 85] in nearly Anti-de-Sitter space,
that describes the near horizon dynamics of near-extremal black holes and exhibits chaotic quantum
behavior [86–89]. The fact, that both sides of this holographic duality can be studied analytically
to a large extent led to several advancements in the field of holography/gauge-gravity duality and
the black hole information paradox (see, e.g., the review [90]). Shortly after, Witten [91] noted
that the melonic large N limit—resulting from a disorder average in the SYK model—occurs natu-
rally in quantummechanical tensor models without requiring disorder. In subsequent work, tensor
models have been used to construct a new family of large N field theories [92–95] that—because
of the melonic large N limit—are amenable to analytic studies. Thus, while the melonic large N
limit seems to be a hurdle in the random geometry context, it is very fortunate in the field theory
context, because it is at the same time richer than the large N limit of vector-like theories, but
simpler than the one of matrices (Fig. 1.2). In particular, these models have been used to construct
many new (melonic) conformal field theories (CFTs) through renormalization group (RG) analysis.
Among the most studied models is the O(N)3 tensor field theory [92, 96].⁶ In d = 4 − ϵ dimen-
sions, it was shown to exhibit a fixed point with (complex) couplings of order

√
ϵ [97], but the

resulting CFT is unstable [98]. In contrast, a version of the model with a long-range propagator⁷
exhibits an infrared RG fixed point that corresponds to a unitary and stable large N CFT [99–102].

⁵ The terms tensor(-ial) field theories and tensorial group field theories appear in this context. The former shall not be
confused with the local QFTs with tensorial degrees of freedom that will be introduced below and an example of which
is studied in Chapter 7. Both are characterized by a kinetic term that includes the Laplace–Beltrami operator on the
group manifold.

⁶ Sometimes called Carrozza–Tanasa–Klebanov–Tarnopolsky (CTKT) model.
⁷ This means that the kinetic term is defined by a fractional Laplacian (−∆)ζ , with ζ < 1. The choice ζ = d/4 makes
the quartic interaction marginal. Because of the long-range propagator, there is no wave function renormalization.
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1.1 General background on tensor models

In [103] it was noted that theO(N)3 tensor model with purely imaginary tetrahedral coupling can
be asymptotically free in the ultraviolet, and this result laid the ground for the research presented
in Chapter 7 of this thesis. Other work on tensor field theories and quantum mechanical tensor
models includes [104–122]. For other recent reviews and theses on tensor models see [74, 95, 102,
123].
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1 Introduction

1.2 Random tensor models

After surveying the history of random tensor models, in this section we give a slightly more de-
tailed introduction to this topic. For concreteness, we consider a real tensor model with O(N)D

symmetry. In the context of random geometry, complex tensor models, invariant under conjuga-
tion with the unitary group, are more common, and it was for these models that the existence of
the 1/N expansion was first shown. However, the real tensor model with orthogonal symmetry is
much more relevant for tensor models as QFTs, and for the work presented in this thesis.

Tensors. We take as tensors the D-linear forms on
⊗D

c=1R
N , choosing a tensor product basis

{ea1 ⊗ ea2 ⊗ · · · ⊗ eaD | (a1, a2, . . . , aD) ∈ ND}, a tensor T writes

T =
∑

a1,a2,...,aD

T a1a2...aD ea1 ⊗ ea2 ⊗ · · · ⊗ eaD . (1.2.1)

In the following, we always denote a tensor by its componentsT a1a2...aD . EachRN is equippedwith
a real symmetric scalar product and we take all basis vectors to be orthonormal: (eac , ebc) = δacbc ,
with the Kronecker symbol δ. The induced scalar product between two tensors T̃ , T is

(T̃ , T ) =
∑

a1,a2,...,aD

T̃ a1a2...aDT a1a2...aD . (1.2.2)

Now, consider tensors transforming in the tensor product of D fundamental representations of
O(N)

T a1a2...aD 7→
∑

b1,b2,...,bD

Ma1
(1) b1

Ma2
(2) b2

. . .MaD
(D) bD

T b1b2...bD , (1.2.3)

withM(c) an orthogonal transformation. Note that each index transforms independently. Because
of this, the position c = 1, 2, . . . , D of an index is fixed and in view of the graphical representation
introduced below (Fig. 1.3) c is called the color of the index. In particular, the tensors have no
symmetry properties under permutation of indices.

Invariants and colored graphs. By averaging over the orthogonal group, it can be shown that
the invariants that are polynomial in the tensor components are linear combinations of trace invari-
ants [48].⁸ These are built by contracting, in all possible ways, the indices in products of T a1a2...aD .
Trace invariants have a graphical representation in terms of edge D-colored regular graphs, or
colored graphs for short.

Definition 1 (colored graph). A edge D-colored regular graph is a graph B = (V(B), E(B)) with
finite vertex set V(B) and edge set E(B) ⊂ V(B)× V(B) such that:

• (edgeD-colored): The edge set is partitioned intoD disjoint subsets E(B) =
⋃D
c=1 Ec(B), where

Ec(B) is the set of edges of color c.

• (regular): All vertices are D-valent with exactly one edge of each color incident to every vertex.

⁸ Trace invariants are a complete set for all O(N)D invariants, but they only form a basis as long as their order as a
polynomial in the tensors does not exceed N .
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1.2 Random tensor models
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Figure 1.3. Graphical representation of tensor model invariants and Feynman graphs as colored
graphs for D = 3.

Notice that a colored graph needs to have an even number of vertices. A very important notion
is the one of colored faces. We call a face of colors (i, j) a cycle of alternating colors i 6= j in the
graph. We denote their number by Fi,j(B) and the total number of colored faces by F (B).

The trace invariant associated to a colored graph B is defined as

IB(T ) =
∑

all indices

∏
v∈V(B)

T a
v
1a

v
2 ...a

v
D

D∏
c=1

 ∏
(v,w)∈Ec(B)

δavcawc

 . (1.2.4)

The graphical representation of trace invariants and tensor model Feynman graphs is shown in
Fig. 1.3. Tensors are represented as vertices and a contraction between two vertices of color c by an
edge of that color. In complex tensor models, contraction only happens between tensors and their
complex conjugates. As a result, the associated colored graphs are bipartite, i.e., they have black
and white vertices and edges only connect vertices of different types.

Probability measures and Feynman graphs. A random tensor model is a probability measure
of the form

dµ(T ) = dT e−
1
2
(T,T )−V (T ) , dT =

∏
a1,a2,...,aD

dT a1a2...aD√
2π

, (1.2.5)

where V (T ) is a perturbation of the Gaußian measure by trace invariants

V (T ) =
∑
B

gB
NαB

IB(T ) , (1.2.6)

and the sum runs over some (finite) set of colored graphs. In analogy to QFT the terms in V (T ) are
called interactions and S(T ) = 1

2(T, T ) + V (T ) the action. We explicitly included a scaling of the
coupling constants gB with N . The powers αB influence the large N limit. If the interactions are
too strongly suppressed in 1/N , the limit will be Gaußian, and if the suppression is too weak, there
will be no well-defined large N limit. This generalizes the ’t Hooft scaling in matrix models. The
minimal values αB, such that a large N limit exists are called optimal scaling [66]. In the models
at hand, taking

αB =
D(D − 1)

4
+
F (B)− D(D−1)

2

D − 1
, (1.2.7)
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Figure 1.4. Pillow (three color permutations), double-trace, tetrahedron and their optimal scaling.

leads to a non-trivial largeN limit. In general, it is difficult to find the optimal scaling for a particular
interaction—if it exists at all.⁹ For D = 3, Fig. 1.4 shows the trace invariants at quartic order,
together with their optimal scaling (which is given by Eq. (1.2.7) in these cases). They are called
tetrahedron, pillow and double-trace, respectively.

The partition function, free energy and expectation value of an invariant of a random tensor
model are defined as

Z({gB}, N) =

∫
dµ(T ) , F ({gB}, N) = lnZ({gB}, N) , 〈IB〉 =

1

Z

∫
dµ(T ) IB(T ) .

(1.2.8)
These quantities can be evaluated in a formal perturbative expansion in terms of Feynman graphs.
This expansion is derived by expanding e−V (T ) in a Taylor series and exchanging the order of inte-
gration and summation. For this reason, the expansion is in most cases only asymptotic. Section 1.4
discusses this issue in more detail. For example, for the free energy

F ({gB}, N) = ln


∞∑
n=0

1

n!

∫
dT e−

1
2
(T,T )

[
V (T )

]n . (1.2.9)

Gaußian expectation values can be expressed by a sum over (Wick) pairings and for this reason,
the Gaußian integral can be written as the action of a second order derivative operator (∂T , ∂T ) =∑
a1,...,aD

∂
∂Ta1a2...aD

∂
∂Ta1a2...aD as follows (see also Section 1.5)

F ({gB}, N) = ln


∞∑
n=0

1

n!

[
e

1
2
(∂T ,∂T )

[
V (T )

]n]
T=0

 . (1.2.10)

This reformulation makes the graphical representation of Feynman graphs most transparent. The
interactions in V (T ) are represented by colored graphs with colors c = 1, 2, . . . , D, such that
each monomial in the product

[
V (T )

]n corresponds to a disjoined union ofD-colored graphs. The
derivative operator (∂T , ∂T ) acts by contracting two tensors in such a monomial and the result is
a product of Kronecker deltas

(∂T , ∂T )T
a1a2...aDT b1b2...bD =

D∏
c=1

δacbc . (1.2.11)

Graphically this is represented by a new edge of color 0 joining the vertices that correspond to
T a1a2...aD and T b1b2...bD . These edges are exactly the propagator lines in normal QFT Feynman

⁹ If an interaction vertex can appear an arbitrary number of times in Feynman graphs at fixed order in the 1/N expansion,
the scaling for that vertex is necessarily optimal.
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1.2 Random tensor models

graphs. In this language the QFT interaction vertices correspond to the D-colored graphs with
colors c = 1, 2, . . . , D. The condition T = 0 makes sure that only those terms contribute where
all tensors have been contracted. As the disconnected contributions factorize, taking the logarithm
restricts to connected diagrams. In total, the free energy can be represented as a formal sum over
(D+1)-colored graphs G that are build by joining theD-colored graphs B in V (T )with new edges
of color 0, such that the resulting graph is connected. In the tensor model literature, theD-colored
subgraphs with colors 1, 2, . . . , D are called bubbles. We obtain

F ({gB}, N) =
∑
G

∏
B⊂G

(−gB)n(B)A(G) , (1.2.12)

where the product runs over the bubbles in G, n(B) denotes the number of bubbles B in G, and
A(G) contains numerical factors and, crucially, the dependence on N . The whole term labeled by
G in the expansion above is often called the amplitude of the graph. Analogous expansions hold
for the expectation values of invariants 〈IB′〉, where the sum is over graphs G that contain B′ as a
marked subgraph.

Now let us count the powers of N in A(G) using the graphical representation in Fig. 1.3. Every
vertex includes a sum over the attached tensor indices, an edge of color c 6= 0 is a Kronecker
delta of two indices with the same color, and each edge of color 0 contracts all indices it is joining,
respecting their color. In total, each cycle of edges of alternating colors 0 and c 6= 0 will lead to a
cyclic contraction of Kronecker deltas and thus a free sum, that gives one power of N . These are
exactly the faces of colors (0, c). Including the explicit scaling factor N−αB we have

A(G) ∝ N
∑D

c=1 F0,c−
∑

B⊂G αB = N
D(D−1)

2
−ω(G) , (1.2.13)

where on the right, we introduced the (Gurau) degree ω(G). For the model at hand, with the scaling
in Eq. (1.2.7), the degree is a non-negative half-integer [96, 102]. Showing the non-negativity of
the degree is the most important step in order to establish a large N limit and is usually done by
expressing ω in terms of other, manifestly non-negative, combinatorial quantities.¹⁰ As a result, the
powers of N are bounded from above and the model has a well-defined large N expansion of the
form

N−D(D−1)
2 F ({gB}, N) =

∑
ω≥0

∑
G of degree ω

N−ω
∏
B⊂G

(−gB)n(B)a(G) , (1.2.14)

where a(G) includes the remaining numerical factors.
There exist a refined graphical representation where the color 0 edges are replaced byD parallel

edges (strands) of colors 1, 2, . . . D. The resulting graphs are called stranded graphs and in this
representation each strand corresponds directly to a chain of Kronecker deltas with a fixed color,
such that (up to the explicit scaling) the power of N is equal to the number of closed strands.
This representation is needed if the tensors have symmetry properties under permutation of their
indices, because in this case different colors can mix (see [61, 68, 124] and Chapter 5).

¹⁰ In most proofs (e.g., [42, 96]) certain embedded ribbon graphs with only two colors are used, because their genus is
manifestly non-negative.
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0

2

31

2

3

1

0

Figure 1.5. Melonic graphs. From left to right: elementary melon with four edges; melonic graph
build from five iterative insertions; bipartite four-colored melonic graph of the type that dominate
the complex colored tensor models.

Melonic graphs. Melonic graphs dominate (with varying combinatorial details) most of the large
N limits of tensor models.

Definition 2 (Melonic graphs). For fixed k ∈ N, k ≥ 3, the elementary melon is the unique graph
with two vertices connected by k edges. Every other melonic graph is a regular graph that can be built
by recursively inserting pairs of vertices connected by (k − 1) edges on any of the available edges. If
the graph is in addition an edge k-colored regular graph (Def. 1), we call it k-colored melonic graph.

Illustrations can be found in Fig. 1.5. Because of their recursive nature, melonic graphs are in
bijection with combinatorial k-ary trees and can be explicitly enumerated [44].

Melonic graphs constitute the large N limit of random tensor models in different ways: In the
complex colored tensor models of [41, 44] and the ones with U(N)D symmetry [45] the leading
order graphs are exactly the (bipartite) colored melonic graphs with (D+1) edges. ForD = 3 the
leading order graphs of the O(N)3 symmetric tensor field theory with only quartic interactions
(tetrahedron, pillow and double-trace; Fig. 1.4) are melonic after:

1. replacing each pillow and double-trace bubble with their minimal resolution in terms of tetra-
hedral bubbles.

2. contracting all tetrahedral bubbles to four-valent vertices.

See Fig. 1.6 for illustration. Thus, in this sense, the graphs are melonic with respect to the color
0 propagator edges. Keeping the pillow and double-trace bubbles unresolved, the leading order
graphs are so-called melontadpole graphs, that are built from iterative melon (having tetrahedral
bubbles as their vertices) and tadpole insertions (having pillow or double-trace bubbles) on the color
0 edges. Such a graph is shown in Fig. 2.4 in Section 2.3, where the paper of Chapter 7, that deals
in depth with the O(N)3 symmetric tensor field theory, is summarized.

Dual triangulation. Edge (D + 1)-colored regular graphs are Poincaré dual to vertex colored
D-dimensional triangulations [48]. Although we do not deal with the geometric interpretation
of random tensor models in this thesis, we briefly mention this aspect as it is fundamental to the
original motivation for these models in quantum gravity.
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Figure 1.6. Minimal resolution of a pillow (left) and the double-trace (middle) in terms of tetrahedra.
Melonic graph with tetrahedral interaction vertices (right).

Definition 3 (colored D-dimensional triangulation). A vertex colored D-dimensional triangu-
lation is a gluing of D-simplices, such that

• only pairs of D-simplices are glued along (D − 1)-simplices.

• all the vertices (0-simplices) have a label (color) 0, 1, . . . D, such that all the D + 1 vertices
belonging to the same D-simplex have distinct labels.

A vertex coloredD-dimensional triangulation is called bipartite if it has positive and negative oriented
D-simplices and only pairs of those are glued together according to the first item.

The condition of bipartiteness ensures that the resulting triangulations are orientable. This is
the case for complex tensor models. In turn, the Feynman graphs of real tensor models, like the
O(N)D symmetric ones, allow for non-orientable gluings of simplices. Starting from a (bipartite)
edge (D + 1)-colored regular graph G, the (bipartite) vertex colored D-dimensional triangulation
is obtained as follows [48, 123]:

• for each (black/white) vertex of G one draws a (positive/negative oriented) D-simplex and
labels its triangulation vertices with 1, 2, . . . D.

• for each edge of color c connecting two vertices in G, glue the two corresponding simplices
along the (D−1)-simplex not containing the triangulation vertex with label c by identifying
the vertices with the same label.

Starting from the triangulation:

• draw the connectivity graph of the D-simplices, i.e., draw a vertex for each D-simplex, and
connect two vertices by an edge if the corresponding simplices share a (D − 1)-simplex.

• color each edge of this graph by the label of the triangulation vertex that is not contained in
the (D − 1)-simplex it represents.

11
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Figure 1.7. D-dimensional triangulation dual to a (D+1)-colored graph. Left: gluing of triangles
in D = 2. Right: gluing of tetrahedra in D = 3.

This duality is illustrated in Fig. 1.7
The D-dimensional triangulations one obtains from the (D + 1)-colored graphs are not only

simplicial manifolds, but also simplicial pseudomanifolds are generated. For a mainfold, the neigh-
borhood of a triangulation vertex (the star) has to be aD-ball, and thus its boundary (the link) has
to be a (D − 1)-dimensional sphere. But for a pseudomanifold this does not have to be true and
the link is allowed to have a different topology (see [49] for more details).
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1.3 Quantum field theory context

1.3 Quantum field theory context

Quantum field theory is the foundation of modern fundamental physics. It is the framework in
which the StandardModel of particle physics—probedwith high precision, e.g., at particle colliders—
is formulated, and at the same time it can describe critical phenomena in statistical physics. Even
if a different, more fundamental theory is eventually discovered, QFT will almost surely remain an
effective and efficient description of nature on a vast range of energy scales.

We assume that the reader is familiar with the subject and focus on aspects that may be less
standard and are relevant for the rest of the thesis. Moreover, we focus on QFTs in d-dimensional
Euclidean spacetime and study partition functions and correlation functions defined by path inte-
grals. On the one hand, they are used to describe thermal properties and are sometimes rather
called statistical field theories. On the other hand, if the correlation functions of a QFT obey the
Osterwalder–Schrader axioms [125, 126], these functions can be analytically continued to the cor-
relation functions of a Lorentzian QFT obeying the Wightman axioms [127, 128], and in this way
a Hilbert space of quantum states can be reconstructed. From this perspective, a Euclidean QFT
model is a probability measure for random functions (distributions) and as such is used to compute
expectation values (moments, cumulants, correlation/n-point functions, …)

〈ϕ(x1) . . . ϕ(xn)〉 =
∫

Dϕϕ(x1) . . . ϕ(xn)e−S(ϕ) . (1.3.1)

The quantum fields¹¹ are an assignment of a random variable to every point of spacetime x 7→ ϕ(x),
and the action S(ϕ) is usually split into a quadratic (Gaußian) part and an interacting part

S(ϕ) =
1

2
(ϕ,C−1ϕ) + V (ϕ) , (1.3.2)

where ( · , · ) is an appropriate inner product on the vector space of fields, C is the covariance (free/
classical propagator). Usually for a bosonic scalar field theory C−1ϕ(x) = −∆ϕ(x) + m2ϕ(x).
Because the set of spacetime points is uncountable, generic probability measures for these random
variables are ill-defined.¹² This problem manifests itself in the ultraviolet (high energy) divergences
encountered in QFT. The mathematical construction of such probability measures is the aim of
the constructive field theory program [129–135]. One way to overcome these issues is to regu-
larize the theory by placing it on a spacetime lattice, or regulating the covariance by a cutoff Λ

in Fourier (momentum) space. One can then make the parameters (coupling constants) of the ac-
tion cutoff-dependent and search for a limit Λ → ∞ (or vanishing lattice spacing). The theory of
renormalization, as developed by Wilson [136–139], following work by Kadanoff [140], treats the
problem by using effective actions¹³WΛ′,Λ(ϕ) at scale Λ′ that are obtained by integrating the field
modes with momenta higher than Λ′

eW
Λ′,Λ(ϕ) =

∫
ϕ(p), Λ′<|p|<Λ

Dϕ e−SΛ(ϕ) , (1.3.3)

¹¹ In this introduction, we write equations for the case of real bosonic scalar fields and use a quite condensed notation
that omits several details, which, in the end, depend on the precise model under consideration.

¹² Gaußian measures do make sense in infinite-dimensional Banach spaces.
¹³These effective actions should not be confused with the (1PI) effective action Γ(ϕ) that is discussed in Section 1.3.2.
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β(g)

g0

Figure 1.8. Schematic representation of possible kinds of behavior of the beta function for a single
coupling. By convention arrows point towards lower energy scales. As µ → ∞ the coupling
g(µ) would (from top to bottom): diverge at a finite value of µ; continue growing towards infinity;
approach a finite value (fixed point); approach zero (asymptotic freedom).

and thus WΛ′,Λ(ϕ) describes the effective distribution of fields with momenta |p| < Λ′. In this
way one can study the dependence on both scales, integrate over momentum shells iteratively, and
potentially remove the cutoffs. The RG flow is the map Λ′ 7→WΛ′,Λ and describes the change of
physics with scale.¹⁴ Conventionally the flow goes from high to low energies, i.e., short to long
distances. In fact, the scale dependence of effective correlation functions is closely related to their
actual physical momentum dependence.¹⁵ Projecting the scale dependent functional WΛ′,Λ down
to its local parts, one can define scale dependent/renormalized coupling constants g(Λ′,Λ). The
differential equations that describe the change of these coupling constants with respect to Λ′ are
called beta functions and play an important role in describing the asymptotic behavior of a field
theory.

1.3.1 Asymptotic freedom

As just mentioned, the behavior of a QFT across different energy scales is described by the RG
flow and encapsulated in the beta functions, which govern the scale dependence of the coupling
constants.¹⁶ For a theory with a single coupling constant g, the beta function is defined as

β(g) = µ
dg

dµ
, (1.3.4)

where we denote by µ some energy/renormalization scale. Depending on the renormalization
scheme this scale can, e.g., be a regulator scale like the momentum cutoff Λ′, or the energy scale
that is introduced in dimensional regularization. Generally, one rescales the couplings by an ap-
propriate power of µ to define the dimensionless renormalized couplings. In perturbation theory,
the beta function can typically be expanded as

β(g) = β1g + β2g
2 + β3g

3 +O(g4) , (1.3.5)

¹⁴ As the RG is defined by integrating out modes, it is a semi-group rather than a group.
¹⁵ In general, the momentum dependence is of course more complicated than the dependence on a single scale parameter.
¹⁶ A detailed discussion of the different kinds of asymptotic behavior can be found in the classical book [141].
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Figure 1.9. Measurements of the QCD running coupling (left) and QED running coupling (right) as
a function of the energy scale. Left figure adapted from [144] licensed under CC BY-NC 4.0. Right
figure adapted from [145] licensed under CC BY 3.0.

where the coefficients βn depend on the specific theory under consideration and β1 is minus the
mass dimension of the coupling. Assuming g ≥ 0, asymptotic freedom occurs in the ultraviolet
when β(g) < 0 for small enough g, causing the coupling to decrease as the energy scale µ increases.
This behavior can be seen by integrating the beta function for a marginal (β1 = 0) coupling at
leading (quadratic) order, which yields

g(µ) =
g(µ0)

1− β2g(µ0) ln(µ/µ0)
, (1.3.6)

where µ0 is a reference energy scale. As µ → ∞, the coupling g(µ) → 0, justifying the term
asymptotic freedom—at asymptotically high energies, the interaction strength effectively vanishes.
See also Fig. 1.8 for a schematic representation.

The discovery of asymptotic freedom in non-Abelian gauge theories by Gross, Wilczek, and
Politzer [142, 143] was crucial for the development of QFT in general, and earned them the 2004 No-
bel Prize in Physics. This discovery was also very important to establish quantum chromodynamics
(QCD) as the theory of the strong interaction, explainingwhy quarks appear to behave as nearly free
particles in high-energy scattering experiments despite being strongly bound in hadrons at lower
energies. This has to be contrasted with theories like quantum electrodynamics (QED), where the
coupling strength increases with energy (see Fig. 1.9). For QCD with Nc colors and Nf flavors of
quarks, the leading coefficient of the beta function is given by

β2 = −
11Nc − 2Nf

3(4π)2
, (1.3.7)

which is negative for the physical case ofNc = 3, as long as there are fewer than 17 quark flavors—a
condition safely satisfied in nature with six known quark flavors.

From a theoretical perspective, asymptotic freedom has important consequences for the consis-
tency of QFTs. In the context of the RG, asymptotic freedom represents a special case where the
RG flow drives the theory towards the free (Gaußian) fixed point. RG fixed points are points where
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the beta functions vanish, and they can provide initial conditions for the RG method described in
the previous section. At these points the theory becomes scale independent and one has the chance
to remove the ultraviolet regulator/cutoff. In principle, theories can also flow towards interacting
(non-Gaußian) fixed points, which often describe critical phenomena in statistical physics; but if
the interacting fixed point is far from the Gaußian one, it is hard to study it rigorously, because
methods that rely on expanding in a small coupling parameter are usually not applicable. This is
a general problem, since theories that are asymptotically free in the ultraviolet typically become
strongly interacting in the infrared. At this point, largeN field theories, having a well-defined 1/N
expansion, offer the chance to obtain results that do not rely on small couplings, as 1/N can play
the role of an alternative small expansion parameter.

The rigorous mathematical understanding of asymptotic freedom beyond perturbation theory
remains an active area of research. Simpler models that exhibit asymptotically free behavior, such
as the two-dimensional Gross–Neveu model [146–151], have been successfully constructed and
provide valuable testing grounds for rigorous renormalization. Different methods, such as random
walk representations have been the basis of proving that ϕ4 theory is trivial, i.e., asymptotically
free in the infrared in≥ 4 dimensions [133, 152–154]. Extending such results to non-Abelian gauge
theories represents a significant challenge and is part of one of the Millenium Prize Problems by the
Clay Mathematics Institute [155–157]. This area bridges theoretical physics and geometry, and is
also particularly relevant for pure mathematics since Witten related Donaldson invariants of four
manifolds to functional integrals of supersymmetric Yang–Mills theory [158].

In Chapter 7 of this thesis, we propose the O(N)3 tensor field theory as another model for an
asymptotically free QFT in four dimensions. The RG flow of this model has been studied using
perturbative and large N techniques, and in [103] it was noted that the large N theory is asymp-
totically free. In the work reproduced in Chapter 7, we used numerical techniques to investigate
the physical behavior of the theory in the strongly correlated infrared regime. We refer the reader
to that chapter and Sections 2.3 and 8.3 for more details.

1.3.2 Generating functions and effective action

We introduce the shorthand notation a = (A, x) and ϕA(x) = ϕa, where A are internal indices.
The partition function in the presence of sources J is the generating function of moments/n-point
functions

Z(J) =

∫
Dϕ e−S(ϕ)+

∑
a Jaϕa , 〈ϕa1 . . . ϕan〉 =

1

Z(0)

[
δnZ(J)

δJa1 . . . δJan

]
J=0

, (1.3.8)

and has an interpretation as a sum over possibly disconnected (Feynman) graphs. It is a combina-
torial fact, thatW (J) = lnZ(J) is the same sum restricted to connected graphs, and therefore the
Schwinger functionalW (J) is the generating function of cumulants/connected n-point functions

〈ϕa1 . . . ϕan〉conn. =
[

δnW (J)

δJa1 . . . δJan

]
J=0

. (1.3.9)

For vanishing sources, W (0) is the free energy and the connected two-point function 〈ϕaϕb〉conn.
is also called the (full) propagator. If the source J is not set to zero we sometimes indicate that with
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a J superscript 〈. . . 〉J . Moments and cumulants are related by

〈ϕa1 . . . ϕan〉 =
∑
π∈Πn

∏
B∈π

〈 ∏
ai∈B

ϕa1 . . . ϕan

〉
conn.

, (1.3.10)

where the sum is over partitions π ∈ Πn of {a1, . . . , an} andB ∈ π denotes the blocks in π. In the
fermionic case one has to include a sign coming from reordering the fields.

Denote the connected one-point function in presence of the source by W (1)
a (J) = δW (J)

δJa
=

〈ϕa〉Jconn.. Assuming that its inverse functional Ja(Φ) exists, the (1PI) effective action Γ(Φ) is de-
fined as the Legendre transform

Γ(Φ) =

[∑
a

ΦaJa −W (J)

]
Ja=Ja(Φ)

. (1.3.11)

Going on shell means setting Φa = Φ⋆a, the solution of δΓ/δΦa = 0. In particular, the on shell
effective action equals minus the free energy Γ(Φ⋆) = −W (0).

The effective action can be written as a functional integral over fluctuations ψ around the back-
ground Φ

e−Γ(Φ) =

∫
Dϕ e−S(ϕ)+

∑
a(Ja(Φ)ϕa−ΦaJa(Φ)) =

∫
Dψ e−S(Φ+ψ)+

∑
a Ja(Φ)ψa , (1.3.12)

and since Ja is the inverse of W (1)
a , i.e., W (1)

a (J (Φ)) = Φa, it is exactly the source that ensures
that the (connected) one-point function is Φ and thus it ensures that the expectation value of the
fluctuation in presence of the source is zero 〈ψ〉J = 0. Thus, the effective action can also be defined
as a conditioned functional integral

e−Γ(Φ) =

∫
⟨ψ⟩J=0

Dψ e−S(Φ+ψ)+
∑

a Ja(Φ)ψa . (1.3.13)

Note that this formula for the effective action might be well-defined even when the action is not
convex.¹⁷ In fact, the condition 〈ψ〉J (Φ) = 0 ensures that only one-particle irreducible (1PI) graphs
(those that stay connected after cutting one edge) contribute to the Feynman graph expansion of
Γ(Φ), and

∑
a Ja(Φ)ψa acts as a counterterm. Thus, the effective action takes the form Γ(Φ) =

S(Φ) + Γ1PI(Φ), where Γ1PI is the sum over non-trivial 1PI graphs (that is graphs with at least one
edge). The 1PI correlation functions (also called vertex functions) Γ(n)

a1,...,an are defined by

Γ(n)
a1,...,an =

δnΓ(Φ)

δΦa1 . . . δΦan
, (1.3.14)

and in particular the inverse 1PI two-point function equals the connected two-point function[
Γ(2)

]−1

ab
(Φ) =

[
δ2W (J)

δJaδJb

]
J=J (Φ)

= 〈ϕaϕb〉
J=J (Φ)
conn. . (1.3.15)

¹⁷ A subtlety arises when there are several on shell solutions, i.e., the action has a complex landscape of minima. In this
case, the effective action should be thought of as a patchwork of cells in configuration/field space, such that each cell
is centered around a distinct minimum. This typically occurs in spin glass models where the effect is quantified by the
Thouless–Anderson–Palmer complexity.
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− + + +

Figure 1.10. Graphical representation of Eq. (1.3.18) for the connected four-point function. The
filled vertices represent 1PI correlation functions and the edges connected two-point functions.

Noting that the covariance of the fluctuation field is
(

δ2S
δΦaδΦb

)−1, the 1PI two-point function can be
written as

Γ
(2)
ab (Φ) =

δ2S

δΦaδΦb
− Σ(Φ) , Σ(Φ) = − δ2Γ1PI

δΦaδΦb
, (1.3.16)

where Σab(Φ) is called the self-energy and it is equal to the sum over all 1PI graphs contributing
to the two-point function. This equation is called the Schwinger–Dyson equation. The higher
n > 2 1PI correlation functions are also related to the connected correlation functions: every
〈ϕa1 . . . ϕan〉conn. can be written as a sum over trees with n leaves, propagators 〈ϕaϕb〉conn. at their
edges and non-leaf vertices of degree v > 2 that representminusΓ(v)

b1...bv
. For example the connected

three and four-point functions write

〈ϕa1ϕa2ϕa3〉conn. = −

 3∏
i=1

〈ϕaiϕbi〉conn.

Γ
(3)
b1b2b3

, (1.3.17)

and

〈ϕa1ϕa2ϕa3ϕa4〉conn. = −

 4∏
i=1

〈ϕaiϕbi〉conn.

Γ
(4)
b1b2b3b4

+

 4∏
i=1

〈ϕaiϕbi〉conn.

Γ
(3)
b1b2c

〈ϕcϕc′〉conn.Γ
(3)
c′b3b4

+

 4∏
i=1

〈ϕaiϕbi〉conn.

Γ
(3)
b1b4c

〈ϕcϕc′〉conn.Γ
(3)
c′b2b3

+

 4∏
i=1

〈ϕaiϕbi〉conn.

Γ
(3)
b1b3c

〈ϕcϕc′〉conn.Γ
(3)
c′b2b4

,

(1.3.18)

which is represented graphically in Fig. 1.10.
The next section takes the construction of effective actions and generating functions one step

further by introducing the two-particle irreducible (2PI) effective action, that is of great use for the
large N expansion of tensor models.

1.3.3 2PI formalism

The 2PI formalism [159–161] implements a selective resummation of infinitely many Feynman
graphs. The resulting 2PI graphs stay connected after cutting two edges. This formalism is of
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great use as a nonperturbative expansion scheme,¹⁸ plays a crucial role in understanding the out-
of-equilibrium dynamics of quantum fields [160, 164–166]—as it provides approximation schemes
which are uniform in time—and is well suited for 1/N expansions in the O(N) vector model [167,
168], SYK-model, and tensor models [119]. The usefulness of resumming 2PI graphs in the con-
text of tensor models becomes immediately clear, since melonic graphs are generated by insertions
which are themselves two-particle reducible (can be removed by cutting two edges). In other words,
the only melonic 2PI graph is the elementary melon itself. Thus, 2PI methods resum the class of
graphs that is most relevant for large N tensor models.

In the following we derive the 2PI effective action for a bosonic field ϕa, partially following [119].
As before, the index a is understood as a mutiindex, including reference to a spacetime point, and
repeated indices are summed/integrated over spacetime. Further below we will describe the 2PI
effective action for the O(N)3 model as a concrete example, which is particularly relevant for this
work. To start the derivation, we add a bilocal sourceKab(x, y) to the action, such that

W (J,K) = ln
∫

Dφe−S(φ)+
∫
ddx Ja(x)φa(x)+

∫
ddxddy 1

2
φaKabφb (1.3.19)

depends on two sources J and K . W (J,K) depends only on the symmetric part of K , which is
therefore assumed to be symmetric in its indices. Thus

δKab

δKcd
=

1

2
(δacδbd + δadδbc) ≡ Sab;cd , (1.3.20)

where we defined the projector on symmetric matrices S .¹⁹ We denoteW (1)
a (J,K) andW (2)

ab (J,K)

the connected one and two-point functions in presence of the sources

W (1)
a (J,K) = 〈φa〉J,Kconn. =

δW (J,K)

δJa
, (1.3.21)

W
(2)
ab (J,K) = 〈φaφb〉J,Kconn. =

δ2W (J,K)

δJaδJb
= 2

δW (J,K)

δKab
−W (1)

a (J,K)W
(1)
b (J,K) ,

and we denote by
(
Ja(Φ, G),Kab(Φ, G)

)
the inverse functionals of

(
W

(1)
a (J,K),W

(2)
ab (J,K)

)
,

assuming they exist. The 2PI effective action Γ(Φ, G) is the double Legendre transform

Γ(Φ, G) =

[
ΦaJa +

1

2
Kab (Gab +ΦaΦb)−W (J,K)

]
Ja=Ja(Φ,G)
Kab=Kab(Φ,G)

. (1.3.22)

In general, it has the following compelling features:

1. The connected one and two-point functions for vanishing sources are the solutions Φ⋆a, G⋆ab
to the equations of motion

0 =
δΓ(Φ, G)

δΦa
= Ja(Φ, G) +Kab(Φ, G)Φb , 0 =

δΓ(Φ, G)

δGab
=

1

2
Kab(Φ, G) . (1.3.23)

¹⁸ Loop expansions of the 2PI effective action are sometimes called “Φ-derivable” approximations [162, 163].
¹⁹ For anticommuting fermionic/Graßmann fields one would obtain the projector on antisymmetric matrices.
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2. The on shell 2PI effective action equals minus the free energy Γ(Φ⋆, G⋆) = −W (0, 0). Going
partially on shell Γ(Φ, G⋆(Φ)) is the (1PI) effective action from Eq. (1.3.11). Going partially
on shell in Φ yields the 2PI effective action for an even theory in a symmetric phase²⁰

Γ(G) =

[
1

2
KabGab −W (0,K)

]
Kab=Kab(G)

. (1.3.24)

3. The 2PI effective action can be expressed as a conditioned functional integral over a fluctua-
tion field ψa (analogous to Eq. (1.3.13))

e−Γ(Φ,G) = e−
1
2
Tr[KG]

∫
⟨ψa⟩J ,K=0

⟨ψaψb⟩J ,K=Gab

Dψ e−S(Φ+ψ)+ 1
2
ψaKabψb+ψa(Ja+KabΦb) . (1.3.25)

As for the 1PI effective action, the condition 〈ψa〉J ,K = 0 ensures that only 1PI graphs
contribute to the Feynman graph expansion—the term ψa(Ja+KabΦb) acts as a counterterm.
The second condition 〈ψaψb〉J ,K = Gab ensures that the sources are tuned such that Gab
equals the full two-point function of the fluctuation field.

4. The self-energy Σ(Φ, G) is a sum over non-trivial 2PI graphs with Gab associated to their
edges. In this case, non-trivial refers to graphs having at least one vertex, and at least two
loops. Noting that the covariance of the fluctuation field is

(
δ2S

δΦaδΦb
−Kab

)−1, the Schwinger–
Dyson equation writes

G−1
ab =

δ2S(Φ)

δΦaδΦb
−Kab(Φ, G)− Σab(Φ, G) , (1.3.26)

where the self-energy Σ(Φ, G) is a priori the sum over 1PI graphs contributing to the two-
point function, but the constraint that the full two-point function is Gab leads to a resum-
mation of two-point insertions, such that Σ(Φ, G) is a sum over graphs with the full Gab
associated to their edges and no more two-point insertions, i.e., they can not be disconnected
by cutting two edges (that is the 2PI property). Denoting Γ2PI(Φ, G) the generating function
of non-trivial 2PI graphs with Gab associated to the edges and vertices δnS

δΦn , n ≥ 2, we have

Σab(Φ, G) = −2
δΓ2PI(Φ, G)

δGab
. (1.3.27)

5. The 2PI effective action can be written as

Γ(Φ, G) = S(Φ) +
1

2

δ2S(Φ)

δΦaδΦb
Gab −

1

2
Tr ln(G) + Γ2PI(Φ, G) . (1.3.28)

Together, the last two terms are the generating function of all 2PI graphs. 1
2 Tr ln(G−1) is

represented by the ring graph with one edge and no vertex. The above formula can be shown
by formally integrating the last equation in Eq. (1.3.23), using Eqs. (1.3.26), (1.3.27), and fixing
the integration constant by adopting the functional integral representation.

²⁰ For an even theory S(φ) = S(−φ), and in a symmetric phase, the vacuum φ = 0 is stable. As a consequence all odd
correlations functions are zero and stay so in presence of the bilocal source K .
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1.3 Quantum field theory context

Schwinger–Dyson equation. What one gains from the 2PI effective action is an expression of
the Schwinger–Dyson equation as a self-consistent (fixed point) equation for the connected two-
point function Gab in the absence of sources. Deriving Eq. (1.3.28) with respect to Gab leads to

G−1
ab =

δ2S(Φ)

δΦaδΦb
+ 2

δΓ2PI(Φ, G)

δGab
. (1.3.29)

Bethe–Salpeter kernel. We define the Bethe–Salpeter kernel by²¹

κab;cd = −2
δΣab(Φ, G)

δGcd
= 4

δ2Γ2PI(Φ, G)

δGabδGcd
. (1.3.30)

This kernel is of great interest because it allows one to compute four point correlations in terms
of a ladder expansion where the rungs consist of kernels that are connected by propagators. The
Bethe–Salpeter kernel is important to obtain resummed four-point functions in the 2PI formalism,
it is used to study two particle bound states [169, 170], and it is a useful tool in CFT (see, e.g., the
review [171]), since conformal three-point functions are eigenfunctions of the kernel.

Introducing the four-point function that is 2PI in the channel (ab)–(cd), i.e. that is 2PI after
connecting a with b and c with d,

V
(4)
(ab)−(cd) = Γ

(4)
abcd − Γ(3)

aceGefΓ
(3)
fbd − Γ

(3)
adeGefΓ

(3)
fbc , (1.3.31)

this function is determined by the Bethe–Salpeter kernel through the following self-consistency
equation

V
(4)
(ab)−(cd) = κab;cd −

1

2
κab;a′b′Ga′c′Gb′d′V(c′d′)−(cd) , (1.3.32)

called the (inhomogeneous) Bethe-Salpeter equation (see, e.g., [161, 162, 172]). It has the graphical
representation

κ κV V= − 1
2 , (1.3.33)

where the edges represent full propagators Gab. Note that for a theory in the symmetric phase
V

(4)
(ab)−(cd) = Γ

(4)
abcd.

In the following we briefly explain how this equation can be derived. One starts by taking two
derivatives of Γ(Φ, G)

δ2Γ(Φ, G)

δGabδGcd
=

1

2
G−1
aa′G

−1
bb′Sa′b′;cd +

1

4
κa′b′;cd , (1.3.34)

and the aim will be to express the left hand side in terms of four point correlation functions. Since(
W

(1)
a (J (Φ, G),K(Φ, G)),W

(2)
ab (J (Φ, G),K(Φ, G))

)
= (Φa, Gab) the Jacobian matrices fulfill

1 =

 δW (1)

δJ
δW (1)

δK

δW (2)

δJ
δW (2)

δK


J=J (Φ,G)
K=K(Φ,G)

 δJ
δΦ

δJ
δG

δK
δΦ

δK
δG

 , (1.3.35)

²¹The sign and factors of 2 in the definition of κab;cd are conventional. Our definition agrees with [162].
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focusing on the lower right element in the second Jacobian δKab(Φ,G)
δGcd

= 2 δ
2Γ(Φ,G)
δGabδGcd

, inverting the
first Jacobian, and evaluating the derivatives ofW (J,K) one can deduce(

δ2Γ(Φ, G)

δGδG

)−1

ab,cd

= 2
δW

(2)
ab

δKcd
− 2

δW
(2)
ab

δJe
G−1
ef

δW
(1)
f

δKcd

= F
(4)
(ab)−(cd) − F

(3)
(ab)−(e)G

−1
ef F

(3)
(f)−(cd) ,

(1.3.36)

where we abbreviated

F
(4)
(ab)−(cd) = 4

δ2W (J,K)

δKabδKcd
= 〈ϕaϕbϕcϕd〉J,K − 〈ϕaϕb〉J,K〈ϕcϕd〉J,K , (1.3.37)

that is the four-point function that is connected in the channel (a, b)–(c, d), i.e., it is connected after
joining a with b and c with d, and

F
(3)
(ab)−(c) = F

(3)
(c)−(ab) = 2

δ2W (J,K)

δKabδJc
= 〈ϕaϕbϕc〉J,K − 〈ϕaϕb〉J,K〈ϕc〉J,K , (1.3.38)

the three-point function that is connected in the channel (a, b)–(c), i.e., it is connected after joining
a with b. Thus the right hand side of Eq. (1.3.36) can be recognized as the four-point function that
is 1PI in the channel (ab)–(cd). Next, we rewrite Eq. (1.3.36) in terms of 1PI correlation functions
(as in Eqs. (1.3.17) and (1.3.18)) and obtain(

δ2Γ(Φ, G)

δGδG

)−1

ab,cd

= Gaa′Gbb′Gcc′Gdd′
(
−Γ

(4)
a′b′c′d′ + Γ

(3)
a′c′eGefΓ

(3)
fb′d′ + Γ

(3)
a′d′eGefΓ

(3)
fb′c′

)
+GacGbd +GadGbc

= −Gaa′Gbb′V
(4)
(a′b′)−(c′d′)Gc′cGd′d +GacGbd +GadGbc .

(1.3.39)
Finally, Eq. (1.3.32) is obtained from multiplying Eq. (1.3.34) with Eq. (1.3.39) from the right and
amputating the external propagators.

2PI effective action of theO(N)3 tensor model. As an example, we now derive the 2PI effec-
tive action of theO(N)3 tensor model at largeN and in the symmetric phase. We use a multi-index
notation for the tensor indices a = (a1, a2, a3) ∈ {1, . . . , N}3 and repeated indices are summed
respecting their color. The model’s fundamental fields φa, transform as real 3-index tensors in the
trifundamental representation of O(N)3. The model is defined by the action

S(φ) =

∫
ddx

[
1

2
φa(x)(−∆+m2)φa(x)

+
1

4

(
g1P̂

(1)
ab;cd + g2P̂

(2)
ab;cd + igδ̂tabcd

)
φa(x)φb(x)φc(x)φd(x)

]
,

(1.3.40)

which is invariant under the globalO(N)3 symmetry. The three interaction terms in the action cor-
respond to the three O(N)3-invariant contraction patterns: pillow, double-trace and tetrahedron
(Fig. 1.4). Note that we have chosen to write the coupling of the tetrahedral interaction as ig, such
that it is purely imaginary for real g. This will be important for the research presented in Chapter 7,
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1.3 Quantum field theory context

but can be ignored for the purpose of this section. Instead of using directly the pillow and double-
trace interactions, it is useful to introduce the new couplings g1 and g2, and their associated index
contraction operators P̂ (1) and P̂ (2), that are linear combinations of the pillow δ̂p and double-trace
δ̂d contraction operators

δ̂pab;cd =
1

3N2

3∑
i=1

δaiciδbidi
∏
j ̸=i

δajbjδcjdj ,

δ̂dab;cd = N−3
3∏
i=1

δaibi

3∏
j=1

δcjdj ,

δ̂tabcd = N−3/2δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3 ,

P̂ (1) = 3(δ̂p − δ̂d) ,

P̂ (2) = δ̂d ,

g1 =
gp
3
,

g2 = gp + gd .

(1.3.41)

This rewriting is useful, because the new contraction operators are orthogonal P̂ (1)
ab;cdP̂

(2)
cd;ef = 0.

As we consider a symmetric phase all odd correlation functions vanish, the 2PI effective action
Γ(G) only depends on the propagator Gab(x, y), and can be defined by the Legendre transform in
Eq. (1.3.24). The non-trivial part of the 2PI effective action is the generating function of non-trivial
2PI graphs Γ2PI(G). In general it contains an infinite number of graphs, but exploiting the large
N limit (discussed on p. 10 in Section 1.2), only a finite number of diagrams contribute to Γ2PI(G)

at leading order in 1/N . These are:

1. a double-tadpole with the g1 interaction and one with the g2 interaction

g1
4

∫
ddxGab(x, x)P̂

(1)
ab;cdGcd(x, x) +

g2
4

∫
ddxGab(x, x)P̂

(2)
ab;cdGcd(x, x) . (1.3.42)

g1
4 + g2

4

(As before, the edges represent full propagatorsGab(x, y), but we omit the detailed structure
of the tensor interactions.)

2. a melonic graph with two tetrahedral interactions

g2

8

∫
ddxddy δ̂tabcdGaa′(x, y)Gbb′(x, y)Gcc′(x, y)Gdd′(x, y)δ̂

t
a′b′c′d′ . (1.3.43)

g2

8
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Γ2PI(G) is the sum of these contributions. Taking derivatives, the self-energy is

Σab(x, y) = −g1δ(x− y)P̂
(1)
ab;cdGcd(x, x)− g2δ(x− y)P̂

(2)
ab;cdGcd(x, x)

− g2δ̂ta c1c2c3Gc1d1(x, y)Gc2d2(x, y)Gc3d3(x, y)δ̂
t
d1d2d3b

(1.3.44)

= − g1 − g2 − g2 ,

and the Bethe–Salpeter kernel writes

κab;cd(x, y;w, z) =
[
2g1P̂

(1)
ab;cd + 2g2P̂

(2)
ab;cd

]
δ(x− y)δ(x− w)δ(x− z)

+ 2g2δ̂ta c e1e2Ge1f1(x, y)Ge2f2(x, y)(x, y)δ̂
t
f1f2b d

· 1
2

[
δ(x− w)δ(y − z) + δ(x− z)δ(y − w)

] (1.3.45)

= 2g1 +2g2 +2g2 · 1
2

[
+

]
.

In the following we are interested in on-shell quantities. As a consequence of the unbroken
O(N)3 symmetry, the index structure of the propagator is fixed on-shell and it can be decomposed
as

Gab(x, y) = δabG(x, y) = δab

∫
ddp

(2π)d
eip·(x−y)G(p) , (1.3.46)

where G(x, y) and G(p) are just functions that transform as a scalar under O(N)3. By abuse of
notation, we use the same symbol for these objects and distinguish them by their arguments as
functions on position or momentum space, and by the presence of indices. Performing the sums
over indices, the on-shell 2PI effective action, i.e., minus the free energy, writes

Γ(G)

N3
=

1

2

∫
ddxddy (−∆+m2)G(x, y)δ(x− y)− 1

2

Tr ln(G)
N3

+
g2
4

∫
ddx

[
G(x, x)

]2
+
g2

8

∫
ddxddy

[
G(x, y)

]4
.

(1.3.47)

Notice that the g1 term vanishes because
∑

c, P̂
(1)
ab;cc = 0. The Schwinger–Dyson equation can be

reduced to an equation for G(p), and writes

G−1(p) = p2 +m2 + g2

∫
ddq

(2π)d
G(q) + g2

∫
ddq

(2π)d
ddk

(2π)d
G(q)G(k)G(p+ q + k) . (1.3.48)

This is a closed equation for the function G(p) and the basis for the results presented in Chapter 7.
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1.4 Perturbative expansions and Borel summability

In practice, perturbation theory methods allow for extremely precise calculations of physical ob-
servables that can be accessed by experiments. Two examples are the anomalous magnetic dipole
moment of the electron (calculated up to tenth order in the coupling [173–175]) and critical expo-
nents of the O(N)-symmetric ϕ4 vector model (calculated up to sixth order [176]).²² However, in
most cases the perturbative series is only an asymptotic series with zero radius of convergence,
and non-analytic terms are absent in perturbation theory—for example, the Taylor series of e−1/g

at g = 0 is identically zero. Such contributions typically arise from instantons, i.e., critical points
of the action at which the latter is finite. In a semiclassical approximation, the path integral is dom-
inated by its critical points and evaluated by a saddle point (Laplace) approximation. Schematically∫

Dϕ e−S(ϕ) '
∑
c

e−ScAc , (1.4.1)

where the sum is over the different critical points, Sc is the action at the critical points, and Ac cap-
tures the contribution from fluctuations around them. The action at the critical points Sc depends
on the coupling constants and typically leads to the mentioned non-analytic terms.

An example for an instanton effect in QFT is the Schwinger effect [178, 179], i.e., the creation of
positron-electron pairs in a strong electric field E. At leading one-loop order, the production rate
in a constant field is

Γ =
(eE)2

(2π)3

∞∑
n=1

1

n2
e−

πm2

eE
n , (1.4.2)

and is clearly non-analytic in e. This formula can be obtained from a saddle point approximation
around an instanton configuration that can be interpreted as charged particles traveling in circles
[180].

In QFT, so-called renormalons are another typical source of non-analytic contributions. Here,
the focus is on instanton-like effects. The renormalon singularities are different and stem from the
factorial growth of the renormalized amplitude of a family of Feynman diagrams.

In the following, we will discuss some techniques that can be used to resum the perturbative se-
ries (which is necessary to obtain accurate predictions for physical observables) and to shed light on
the effect of instantons in the perturbative series. In doing so, we will work with zero-dimensional
toy model field theories, which can be thought of as a field theory living at a single spacetime point,
and thus the path integral is just an ordinary integral. In this setting, renormalization is absent, and
the calculation of the amplitudes of Feynman graphs is a pure combinatorics problem (see also the
book [181]). Still, the perturbative series is divergent because of the factorial growth of the number
of Feynman graphs. For concreteness, consider a function Z(g) of the variable g ∈ C, defined by
the integral

Z(g) =

+∞∫
−∞

dx√
2π

e−S(g,x) , S(g, x) =
1

2
x2 +

g

4!
x4 . (1.4.3)

²² To study critical phenomena, a widely used method is the ϵ-expansion, which also relies on RG and perturbative
methods, but works in d = 4− ϵ dimensions. Similar to the coupling expansion, the ϵ-expansion is divergent, but very
precise critical exponents can be calculated with resummation methods [177].
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In this example, it is easy to see that the perturbative series of Z(g) (its Taylor expansion around
g = 0) will be problematic because the integral is convergent for <(g) > 0 but divergent for
<(g) < 0. Since the integral is convergent in the right half of the complex plane, Z(g) can be
analytically continued to a larger domain, but g = 0 is a branch point and will stay on the boundary
of the domain of analyticity. In Chapter 6, a generalization of this model to anN component vector
is discussed.

The perturbative series of Z(g) around the critical point x = 0 is

A0(g) =

∞∑
n=0

1

n!

(−g)n

(4!)n

+∞∫
−∞

dx√
2π

e−
1
2
x2x4n =

∞∑
n=0

a0,n g
n ,

a0,n =
(−1)n(4n)!

n!(2n)!26n

(
2

3

)n
,

(1.4.4)

and one can see²³ that the coefficients |a0,n| grow factorially as n→ ∞. The instantons are the two
non-trivial solutions to the equation dS/dx = 0. Writing g = |g|eiφ they are

x± = ±ie−i
φ
2

√
6

|g|
, S(x±) = − 3

2g
, (1.4.5)

and for real g the instantons are purely imaginary. We analytically continue the function Z(g),
g = |g|eiφ to |φ| > π/2 by tilting the integration contour. We distinguish the counterclockwise
continuation Z+(g) for φ > π/2 and the clockwise continuation Z−(g) for φ < −π/2. To keep
the integral convergent, the integration contour is rotated in the opposite direction by an angle θ

Z±(g) =

∫
e∓iθR

dx√
2π

e−
1
2
x2− 1

4!
|g|eiφx4 = e∓iθ

∫
R

dx√
2π

e−e
∓2iθ 1

2
x2− 1

4!
|g|ei(φ∓4θ)x4 . (1.4.6)

Fixing the tilting angle θ by φ∓ 4θ = π/2, the quartic term in the action is purely imaginary and
the integral is convergent as long as−π/4 < θ < π/4. Thus, we obtained an analytic continuation
of Z(g) up to |φ| < 3π/2. The clockwise and counterclockwise continuations do not agree for
|φ| > π, and one should think of Z(g) as a function on a Riemann surface where the regions
|φ| > π belong to the adjacent Riemann sheets. In the right half of the complex plane the different
continuations agree. Moreover, the perturbative expansion of Z±(g) at g = 0 is given by A0(g)

(Eq. (1.4.4)), the same formula as for Z(g).

Borel summation. Let us now return to the problem of resumming the perturbative series in
Eq. (1.4.4). More generally, inside its domain of analyticity, an analytic function is the sum of its
Taylor series. Ordinary summation provides a one-to-one correspondence (inside the radius of
convergence) between convergent power series and analytic functions. Borel summation [182] is
a method to extend this correspondence (under certain conditions) to analytic functions that have
been Taylor expanded on the boundary of their domain of analyticity, which causes the Taylor
series to not be summable in the ordinary sense. See [130] and the appendix of [48] for Borel
summability in the context of constructive QFT.

One has to distinguish two notions that will be defined in a moment: Borel summable function
and Borel summable series. They have the following properties and relations:

²³ Using Stirling’s formula n! ∼
√
2πnn+1/2e−n for n → ∞.
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1.4 Perturbative expansions and Borel summability

1. the Borel sum of a Borel summable series is unique.

2. if a series is the (possibly divergent) Taylor expansion of a Borel summable function at a point
z ∈ C, then that function is the unique Borel summable function with the given Taylor series.

3. the (possibly divergent) Taylor expansion of a Borel summable function is a Borel summable
series and that function is the Borel sum of its Taylor series.

So in principle, the strategy to handle the perturbative series is to prove a priori that the function
of interest (e.g., the partition function or free energy) is Borel summable, and then try to Borel sum
the perturbative series. The last step is generically very hard, because it involves constructing an
analytic continuation. However, proving the Borel summability of the original function guarantees
that the resummation must in principle work. In numerical applications where one does not have
access to the full perturbative series, there exist the Páde–Borel method (see, e.g., the review [183])
to construct an approximation of the Borel sum.

Now we turn to the definitions and details.

Definition 4 (Borel summable series). A power series A(z) =
∑∞

n=0 anz
n is called Borel sum-

mable if: (1.) the series

B(t) =
∞∑
n=0

an
n!
tn , (1.4.7)

called its Borel transform, has a non-zero radius of convergence rB , (2.) ∃σ with 0 < 1/σ < rB , such
thatB(t) can be analytically continued inside the strip-like region Sσ ≡ {t | dist(t,R+) < 1/σ}, and
(3.) B(t) ≤ Ke|t|/R, ∀t ∈ Sσ and real positive constantsK and R.

The crucial point is, that the radius of convergence of B(t) can be non-zero even if the radius of
convergence of A(z) is zero. The complex t-plane is often called the Borel plane. The Borel sum of
the series A(z) is defined by the integral

f(z) =
1

z

∞∫
0

dtB(t)e−t/z . (1.4.8)

Constructing the necessary analytic continuation of the Borel transform B(t) is usually very diffi-
cult.

Definition 5 (Borel summable function). A function f(z) is Borel summable in z at the origin if:
(1.) it is analytic in a disk DR ≡ {z ∈ C | <(1/z) > 1/R} of some fixed radius R > 0 and tangent
in z = 0 to the imaginary axis, (2.) it admits a Taylor expansion at z = 0 with factorial bound on the
Taylor remainder

f(z) =
r−1∑
n=0

anz
n +Rr(z) , |Rr(z)| ≤ Kσrr!|z|r ∀z ∈ DR , (1.4.9)

for positive real constantsK and σ.
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=(z)

<(z)R
2

DR

=(t)

<(t)
1
σ

Sσ

Figure 1.11. The disk DR in the complex z plane (left) and the strip Sσ in the Borel plane (right).

The Borel sum of a Borel summable series is a Borel summable function with the same constants
R,K , and σ in both definitions. The sets Sσ and DR are illustrated in Fig. 1.11.

The Borel sum of the series A(z) is not the unique function analytic in DR whose asymptotic
expansion is the original series. For example the unique Borel sum of the series that is identically
zero is the function that is identically zero, but the function e−1/z is analytic in DR (which does
not include the origin) and its Taylor series at z = 0 is also identically zero. In fact, e−1/z is not
Borel summable at the origin and thus the uniqueness breaks down.

The following theorem states the relation between a Borel summable function and the Borel sum
of its Taylor series. It is due to A. Sokal [184] and was, in fact, a rediscovery of a theorem by
F. Nevanlinna [185].

Theorem (Nevanlinna–Sokal). Let f(z) =
∑r−1

n=0 anz
n + Rr(z) be a Borel summable function,

then the following holds true:

1. the Taylor series of f(z) at the origin is a Borel summable series, i.e., the Borel transform of the
Taylor series B(t) =

∑∞
n=0

an
n! t

n is an analytic function for |t| < 1/σ and admits an analytic
continuation in the strip Sσ , such that |B(t)| ≤ Ke|t|/R, ∀t ∈ Sσ .

2. for z ∈ DR, f(z) is given by the Borel sum of its Taylor series f(z) = 1
z

∫∞
0 dtB(t)e−t/z , and

the integral converges absolutely in that disk.

This theorem is not optimal, in the sense that it does not reconstruct the maximal domain of
analyticity of the Borel sum, and there are modifications that allow the summation of series that
diverge even faster. For example, for the problem in Chapter 6 one already needs a generalization
where the bound on |Rr(z)| can grow proportional to r!rβ , β > 0. More generally, there exist
extensions of Borel summation to series whose coefficients an diverge as fast as Γ(kn + 1), for
rational k ≥ 1, and even as fast as Γ(kn + 1)eαn

2/4, for suitable positive constants k and α [183,
186, 187].

As can be seen from the formula of the Borel sum, Borel summation is directional (as stated,
along the positive real axis). Tilting z and t in the complex plane leads to Borel summation along
different directions.

Now, let us continue with the example given in Eq. (1.4.3) and apply the method of Borel sum-
mation and in particular the Nevanlinna–Sokal theorem. In order to not confuse the reader with
the small technical calculations we summarize the results first:
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1.4 Perturbative expansions and Borel summability

1. Z±(g) is a Borel summable function in g for all directions in the upper (respectively lower)
half of the complex plane.

2. The Borel transform B(t) of the perturbative series A0(g) of Z(g) and Z±(g) has a leading
singularity at t = −3/2 on the negative real axis.

We focus on Z+(g), as the calculation for Z−(g) is completely analogous, and first check the Borel
summability of Z+(g) in g. As Z+(g) is analytic in a plane with a cut on the negative imaginary
axis it is in particular analytic inside tilted disksDR, R > 0, that are tangent to the imaginary axis
tilted counterclockwise by π/2 +φ for φ < π. Therefore Z+(g) can at most be Borel summable in
the upper half of the complex plane (0 ≤ φ < π). It remains to calculate the Taylor remainder

Rr(g) =
1

(r − 1)!

1∫
0

du (1− u)r−1d
rZ+(ug)

dur

=
gr

(r − 1)!(4!)r

1∫
0

du (1− u)r−1

∫
e−iθR

dx√
2π

e−
1
2
x2− 1

4!
gx4x4r .

(1.4.10)

Taking the absolute value, remembering that we fixed θ = φ/4− π/8 such that the quartic term is
purely imaginary and thus uniformly bounded by 1, and integrating over u, we obtain a bound on
the Taylor remainder

Rr(g)| ≤
|g|r

r!(4!)r

∫
R

dx√
2π

e−
1
2
cos(ϕ/2−π/4)x2x4r

=
|g|r

r!(4!)r
(4r)!

22r(2r)!

1[
cos(ϕ/2− π/4)

]4r+1/2
,

(1.4.11)

which is a factorial bound for the range −π/2 < φ < 3π/2. Thus, as stated above, Z+(g) is Borel
summable along all the directions in the upper half of the complex plane. For the second claim we
look at the asymptotic behavior of the Borel transform of the perturbative series

B(t) =

∞∑
n=0

bnt
n =

∞∑
n=0

a0,nt
n

n!
,

bn =
(−1)n(4n)!

(n!)2(2n)!26n

(
2

3

)n
n→∞∼ 1√

2π

1

n

(
−2

3

)n
.

(1.4.12)

Summing the asymptotic behavior of the coefficients, one can recover the position of the leading
singularity (the one closest to the origin)

∞∑
n=0

1

n

(
−2t

3

)n
= − ln

(
1 +

2t

3

)
, (1.4.13)

which is at t = −3/2 on the negative real axis. Because of this singularity, Z±(g) ceases to be Borel
summable past |φ| = π, and this explains why the Borel sums coming from above and below, i.e.,
Z+(g) and Z−(g), will not agree past the negative real axis.
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=(g)

<(g)

gC

Z(g) =
1

2πi

∫
C

dw
Z(g)

w − g

1

2πi

∞∫
0

dw

w + g

[
Z−(−w)− Z+(−w)

]

Figure 1.12. Contours in the complex g plane. Using Cauchy’s integral formula, the value of Z(g)
can be expressed as a contour integral along the small circle C . The contour C can be deformed to
a contour around the cut along the negative real axis and this integral can be expressed using the
difference between Z+ and Z−.

The singularities in the Borel plane capture a lot of information about the original function. For
example, it is no accident that the exponential in the integrand of the Borel sum formula in Eq. (1.4.8)
recovers the instanton contribution e3/(2g). On the contrary, the instanton can be seen as the reason
for this singularity in the Borel plane, since for φ → ±π the instantons x±(−|g|) = ±

√
6/|g|

approach the real axis and thus cross the original integration contour. This behavior can also be
understood by using complex Morse theory and the method of Lefshetz thimbles (see, e.g., [188,
189]). In this framework, each integration contour in the complex x plane is decomposed into a
sum of more convenient contours, called thimbles. The point is that the number of contributing
thimbles can change when some parameter, like g, is changed. In our example, this happens when
the instantons cross the real axis. More details on this point of view can be found in Appendix A
of Chapter 6.

Much more information about the instantons is encoded in the perturbative series. In fact, as
explained pictorially in Fig. 1.12,Z(g) can be related, using the Cauchy formula, to the discontinuity
of the counterclockwise and clockwise analytic continuations for negative g = −|g|, Z+(−|g|) −
Z−(−|g|). Denote the perturbative expansion of Z±(−g) around the instanton as

±ie−
3
2gAI(−g) , AI(−g) =

∞∑
n=0

aI,n(−g)n , (1.4.14)

where the coefficients aI,n are real. Expanding Z(g) and the discontinuity in Fig. 1.12 in their
perturbative series and comparing coefficients of g, one can deduce a formal relation between the
series coefficients

a0,n =

(
−2

3

)n ∞∑
k=0

(
−3

2

)
Γ(n− k)

π
aI,k . (1.4.15)

This shows that the expansion around the instanton configuration is captured by the large n behav-
ior of the coefficients of the perturbative expansion around the x = 0 configuration.

In general, the study of the relations between perturbative and nonperturbative (like the instan-
tons) sectors goes under the name of resurgence. This entails the general study of singularities

30



1.4 Perturbative expansions and Borel summability

in the Borel plane, as these singularities govern the discontinuities of the analytical continuations.
More on this topic and similar calculations in a more complicated but still zero-dimensional model
can be found in the paper reproduced in Chapter 6.
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1.5 The BKAR forest formula

This section is devoted to introducing the Brydges–Kennedy–Abdesselam–Rivasseau (BKAR) forest
formula [190, 191]. It is a combinatorial formula that can be used for cluster expansions, that are
common in statistical physics. Due to its symmetry and positivity properties, this formula is well
suited for rigorous nonperturbative methods and applied in constructive QFT, e.g., to prove Borel
summability in ϕ4 theory and vector models [192–195], and also in random matrix and tensor
models [47, 196–201].

In Chapter 6, we use it to write down a convergent series expansion for the free energy, therefore
enabling the proofs of analyticity and Borel summability that would not have been possible with a
formal expansion in Feynman graphs.

Despite being used predominantly in constructive QFT, the formula itself is very general and in
essence a Taylor expansion formula for functions of several variables. Therefore, it can be under-
stood without knowing about these subjects. In the second half of this section, we will outline how
the forest formula is useful in the QFT context. We closely follow Appendix D in Chapter 6 and the
review [202] but add some details and illustrations.

Let us consider a set of n points labeled i = 1 . . . n, which we identify with the set of vertices of
the complete graphKn. The set of unordered pairs of such points has n(n−1)/2 elements e = (i, j)

for 1 ≤ i, j ≤ n, i 6= j and can be identified with the set of edges of Kn. Let us consider a smooth
function f : [0, 1]n(n−1)/2 → R depending on the edge variables xe ≡ xij .

We define a forest F as an edge-subgraph of the complete graph Kn having no cycles (loops).
Every forest is a disjoint union of trees. We denote by |F| the number of edges of F . See Fig. 1.13
for illustration.

Theorem (BKAR forest formula). We have (with the convention that empty products are 1):

f(1, . . . 1) =
∑
F

1∫
0

· · ·
1∫

0︸ ︷︷ ︸
|F| times

∏
e∈F

due



∏
e∈F

∂

∂xe

 f

(wF
kl(uF )

)
, (1.5.1)

where:

• the sum runs over the forests F drawn over the labeled vertices i = 1, . . . , n, including the
empty forest (having no edge). To each edge e ∈ F we attribute a variable ue that is integrated
from 0 to 1 and we denote uF = {ue | e ∈ F}.

• the derivative
(∏

e∈F
∂
∂xe

)
f is evaluated at the point:

wF
kl(uF ) = inf

e′∈PF
k−l

{ue′} , (1.5.2)

where PF
k−l denotes the unique path in the forestF joining the vertices k and l, and the infimum

is set to zero if such a path does not exist.

Setting by convention wF
kk(uF ) ≡ 1, for any assignment of tree edge variables 0 ≤ uF ≤ 1 the

symmetric n× n matrixWF (uF ) =
(
wF
kl(uF )

)
1≤k,l≤n is positive.
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Figure 1.13. Three forests on the set of vertices labeled 1, 2, . . . 9. The unique path in the forest
between the vertices 2 and 7 is drawn in green if it exists.

Proof idea. A full proof can be found in [202]. Here we briefly describe the idea of the proof and
explain the positivity ofWF (uF ). Let F be a forest, ue ∈ [0, 1] a variable for each edge e ∈ F and
define the symmetric n× n matrix

WF
kl (uF ; t) =


infe∈PF

k−l
{ue} , k 6= l and PF

k−l exists

t , k 6= l and k and l are not connected in F
1 , k = l

. (1.5.3)

Note thatWF (uF ; 0) = WF (uF ) and for the empty forestW ∅(u∅; t) is the matrix with 1 on the
diagonal and t everywhere else. Let now f : [0, 1]n(n−1)/2 → R be a function of the edge variable
xe ≡ xij , e = (i, j), that we encode as the off-diagonal elements of a symmetric matrix. The crucial
point is that

d

dt

[
f
(
WF (uF ; t)

)]
=

∑
edges e s.t.

e∪F is a forest

(
∂

∂xe
f

)(
WF (uF ; t)

)
, (1.5.4)

because the variable t is associated to edges e that do not connect vertices that are already connected
in F and thus e∪F is still a forest. The forest formula is then proven by iterated Taylor expansion.
At first order

f(1, . . . , 1) = f
(
W ∅(u∅; 0)

)
+

1∫
0

dt
d

dt

[
f
(
W ∅(u∅; t)

)]

= f
(
W ∅(u∅)

)
+
∑
e

1∫
0

dt

(
∂

∂xe
f

)(
W ∅(u∅; t)

)

= f
(
W ∅(u∅)

)
+
∑
e

1∫
0

due

(
∂

∂xe
f

)(
W ∅(u∅; t = ue)

)
,

(1.5.5)

where in the last step we relabeled the integration variable. The sum over e is equivalent to a sum
over forests with one edge. In order to iterate, for each forest F = {e} we set W ∅(u∅; t = ue) =

W {e}(u{e}; t = ue), i.e., we keep the variable ue at the edge e fixed and let all the others be inter-
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Figure 1.14. Illustration of how a forest (in this example a maximal forest on four vertices) is
generated, as described in the proof of the BKAR forest formula. The forest grows by successively
selecting edges e with interpolation parameter t and fixing this parameter to ue. Note that in the
third step the edge (2, 4) is missing, since it cannot be added without forming a cycle.

polated by a second Taylor expansion in t. Iterating this process a second time gives

f
(
W ∅(u∅)

)
+
∑

F={e}

1∫
0

due

(
∂

∂xe
f

)(
W {e}(u{e})

)

+
∑

F={e1,e2}

1∫
0

due1

ue1∫
0

due2

( ∂2

∂xe2∂xe1
f

)(W {e1,e2}(u{e1,e2}; t = ue2)
)
.

(1.5.6)

In this way, one builds up all possible forests on the set of n labeled vertices, edge by edge. Fig. 1.14
should help to visualize this process. The same forest appears |F|! times, corresponding to different
orderings of its edges. The process stops at a maximal forest with |F| = n − 1 edges, where all
vertices are connected.

The most subtle point in the forest formula is that WF (uF ) is a positive matrix. To see this,
we proceed as follows. A forest F divides the set of vertices {1, . . . , n} into several connected
components (blocks) corresponding to the trees in the forest. If F is the empty forest, the blocks
are all singletons consisting in a unique vertex per block. For any forest F , the matrix:

BF
kl =

1 , if k, l belong to the same block of F
0 , otherwise

, (1.5.7)

is positive. Indeed, denoting b ⊂ F the blocks of F and k ∈ b the vertices in the block b:

∑
k,l

BF
klakal =

∑
b⊂F

(∑
k∈b

ak

)2

. (1.5.8)

Let us denote the number of edges in F by q ≡ |F|. We order the edges of F in decreasing order
of their parameters u:

1 ≥ ue1 ≥ ue2 ≥ . . . ueq ≥ 0 . (1.5.9)

Adding edges one by one, starting from the highest edge, we obtain a family of subforests of F (see
also Fig. 1.15):

F0 = ∅ , F1 = {e1} , F2 = {e1, e2} , . . . , Fq = {e1, . . . eq} = F , (1.5.10)
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Figure 1.15. The subforests F0,F1, . . . ,F5 of the first forest in Fig. 1.13 for the ordering
1 ≥ u12 ≥ u24 ≥ u68 ≥ u36 ≥ 0 of edge parameters. The non-singleton blocks of the forests are
highlighted.

and the matrixWF (uF ) writes as:

WF (uF ) = (1− ue1)B
F0

+ (ue1 − ue2)B
F1

+ · · ·+ ueqB
Fq

. (1.5.11)

Indeed, if i and j do not belong to the same block of Fq = F , then they do not belong to the same
block in any of the Fs, s ≤ q and none of the terms above contribute, hence wF

ij (uF ) = 0. If, on
the other hand, i and j belong to the same block of F , then:[

(1− ue1)B
F0

+ (ue1 − ue2)B
F1

+ · · ·+ ueqB
Fq
]
ij
= ues , (1.5.12)

where s is such that i and j belong to the same block of Fs, but belong to two different blocks of
Fs−1. As ues ≤ ues−1 ≤ ues−2 ≤ . . . it follows that ues is the infimum of the ue in the unique path
in Fs joining i and j, hence it is also the infimum of the us in the unique path in F joining i and j.
The matrixWF (uF ) is a convex combination of positive matrices, hence it is itself positive.

Computing cumulants. The BKAR forest formula is used in the constructive QFT context to
compute the generating functionW (J) of cumulants of a perturbed Gaußian measure with action
S(ϕ) = 1

2(ϕ,C
−1ϕ) + V (ϕ). The source term Jϕ plays no special role and we absorb it in the in-

teraction. We reuse the notation in Section 1.3. Moreover, we will use the derivative representation
of the Gaußian integral (see [203] for a detailed discussion), which essentially follows from the fact
that moments of a normalized Gaußian measure can be computed by (Wick) contractions and these
contractions can be implemented by a derivative operator. Thus, for every polynomial∫

dϕ

N
e−

1
2
(ϕ,C−1ϕ)f(ϕ) =

[
e

1
2
(δϕ,Cδϕ)f(ϕ)

]
ϕ=0

, (1.5.13)

where we denote (δϕ, Cδϕ) ≡ δ
δϕa

Cab
δ
δϕb

and N is the constant that normalizes the Gaußian inte-
gral.
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In order to apply the forest formula, one starts as in naive perturbation theory by expanding the
interaction

Z(J) = eW (J) =
[
e

1
2
(δϕ,Cδϕ)e−V (ϕ)

]
ϕ=0

=
∞∑
n=0

(−1)n

n!

[
e

1
2
(δϕ,Cδϕ)[V (ϕ)]n

]
ϕ=0

(1.5.14)

The difference is that instead of computing the Gaußian integral directly, we now use a replica trick,
i.e., we substitute [V (ϕ)]n =

∏n
i=1 V (ϕ(i))

∣∣∣
ϕ(i)=ϕ

and use a covariance that is degenerate between

all copies ϕ(i). With this trick one can now introduce fictitious link parameters xij = xji = 1, and
obtain

∞∑
n=0

(−1)n

n!

e 1
2

∑n
i,j=1

(
δ
ϕ(i)

,Cδ
ϕ(j)

) n∏
i=1

V (ϕ(i))


ϕ(i)=0

=
∞∑
n=0

(−1)n

n!

e 1
2

∑n
i,j=1 xij

(
δ
ϕ(i)

,Cδ
ϕ(j)

) n∏
i=1

V (ϕ(i))


ϕ(i)=0,xij=1

.

(1.5.15)

We keep xii = 1 ∀i and want to apply the forest formula to the n(n− 1)/2 link variables xij = xji,
i 6= j. Without loss of generality, take k < l and consider

∂

∂xkl

[
e

1
2

∑n
i,j=1 xij

(
δ
ϕ(i)

,Cδ
ϕ(j)

)]
=

∂

∂xkl

[
e

1
2

∑n
i=1 xii

(
δ
ϕ(i)

,Cδ
ϕ(i)

)
+
∑

i<j xij

(
δ
ϕ(i)

,Cδ
ϕ(j)

)]
= e

1
2

∑n
i,j=1 xij

(
δ
ϕ(i)

,Cδ
ϕ(j)

) (
δϕ(k) , Cδϕ(l)

)
. (1.5.16)

Applying now the forest formula, we obtain

Z(J) =
∞∑
n=0

(−1)n

n!

∑
Fn

1∫
0

· · ·
1∫

0

 ∏
(i,j)∈Fn

duij

 (1.5.17)

·

e 1
2

∑n
i,j=1 w

Fn
ij (uFn )

(
δ
ϕ(i)

,Cδ
ϕ(j)

)  ∏
(i,j)∈Fn

(
δϕ(i) , Cδϕ(j)

) n∏
i=1

V (ϕ(i))


ϕ(i)=0

,

where the sum runs over forests Fn over n labeled vertices. The contribution of each forest factors
over its blocks, thus taking the logarithm amounts to summing over connected forests, i.e., trees.
Reinstating the source term, we obtain

W (J) =

∞∑
n=0

(−1)n

n!

∑
Tn

1∫
0

· · ·
1∫

0

 ∏
(i,j)∈Tn

duij

 (1.5.18)

·

e 1
2

∑n
i,j=1 w

Tn
ij (uTn )

(
δ
ϕ(i)

,Cδ
ϕ(j)

)  ∏
(i,j)∈Tn

(
δϕ(i) , Cδϕ(j)

) n∏
i=1

[
V (ϕ(i)) + Jϕ(i)

]
ϕ(i)=0

,

where the sum runs over trees Tn over n labeled vertices. Several remarks are in order:

• crucially, C ⊗ wFn(uFn) is a positive matrix, hence the integral is a normalized Gaußian
integral with positive covariance.
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1.5 The BKAR forest formula

Figure 1.16. The first topologically distinct trees for a small number n ≤ 5 of vertices. They
correspond (from left to right) to 1, 1, 3, 12, 4, 60, 60, 5 distinct labeled trees.

• there are nn−2 trees with n labeled vertices (see also Fig. 1.16), thus, asymptotically, their
number grows like n!. This is slower than the typical number of Feynman graphs, whose
number grows like (2n)! in the usual ϕ4 model. Combined with the 1/n! prefactor this series
has a better chance of being summable.

• one can give a graphical interpretation to this formula. For each tree Tn, we interpret the
n interaction terms as vertices. The derivatives

[∏
(i,j)∈Tn

(
δϕ(i) , Cδϕ(j)

)]
act on them and

generate the tree edges with covariance C . Afterwards, the Gaußian integral creates more
pairings between the vertices and thus produces loop edges. In this sense, the sum over
Feynman graphs is reorganized as an expansion in spanning trees²⁴

W (J) =
∞∑
n=0

(−1)n

n!

∑
Tn

∑
G⊃Tn

w(G, Tn)A(G) , (1.5.19)

where for each tree the second sum is over Feynman graphs (built according to the procedure
above) that have this tree as a spanning tree, w(G, T ) is a combinatorial weight²⁵ and we
collect the rest, e.g., the dependence on coupling constants, inside the amplitudeA(G) of the
graph G.

Unfortunately, for a O(N) vector model with quartic interaction g(ϕ2)2 the procedure described
above is not sufficient to obtain a convergent expression, because for each tree the contribution of
the Gaußian integral is of order n!. For the vector model, one can overcome this issue by using
the intermediate field/Hubbard–Stratonovich representation. This effectively repackages the de-
grees of freedom and keeps some of the coupling constants g unexpanded. Analyzing the resulting
convergent expression for the free energyW (0) is the content of Chapter 6.

²⁴ A tree inside a connected graph G is said to be spanning if it has the same number of vertices, i.e., it connects all
vertices in G.

²⁵The weights w(G, T ) are defined from the forest formula and have a combinatorial interpretation as the percentage
of so-called Hepp sectors of G in which the tree T is leading. See Appendix D of Chapter 6 for more details.
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1.6 Overview of the remaining thesis content

The main part of this thesis revolves around five research papers by the author, which are repro-
duced here in Chapters 3–7. These papers are concerned with three different topics: orthogonal
and symplectic random tensor models; constructive field theory methods and so-called transseries
expansions in a zero-dimensional O(N) model; and a four-dimensional tensor field theory that is
asymptotically free in the ultraviolet but strongly correlated in the infrared. We start with sum-
maries of these papers in Chapter 2, providing accessible overviews with fewer technical details
and focusing on key results. For full details and proofs, we refer to the reproductions of the papers
themselves. We conclude with a detailed discussion of the five papers in Chapter 8, expanding on
their motivation, reviewing their implications, relating them to the existing literature, and high-
lighting how the work presented in these papers contributes to the field. This final chapter also
addresses open questions and outlines potential extensions.

We will now briefly describe how the different topics of the introduction relate to the research
work reproduced in the following chapters:

• Sections 1.1 and 1.2 on tensor models provide the necessary background for the papers on or-
thogonal and symplectic random tensor models in Chapters 3–5, as well as for understanding
the O(N)3 tensor field theory in Chapter 7. These sections introduce the concept of tensor
models, their graphical representation, and the combinatorial structures that appear in their
perturbative expansions.

• The 2PI formalism in Section 1.3.3 is foundational to the work on the large N O(N)3 tensor
field theory in Chapter 7. The discussion of asymptotic freedom in Section 1.3.1 provides
extended context for the same paper, which studies a four-dimensional model that is asymp-
totically free in the ultraviolet but strongly correlated in the infrared.

• The O(N)3 tensor field theory is a tensor model with orthogonal symmetry and thus falls
into the class of models that are considered in Chapters 3–5, but otherwise the specific model
is not of special importance to the content of these chapters.

• Section 1.4 on perturbative expansions and Borel summability is directly relevant to the work
in Chapter 6, which investigates questions of analyticity, Borel summability, and transseries
expansions in a zero-dimensional O(N) model.

• The BKAR forest formula, introduced in Section 1.5, is a central mathematical tool from con-
structive field theory and crucial in Chapter 6 to obtain a convergent expansion for the free
energy.
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Chapter 2

Summary

In the following, we summarize the respective publications that are reproduced in the subsequent
chapters. The series of papers of Chapters 3–5 is presented in a single section.

2.1 Orthogonal and symplectic random tensor models

The first part of this thesis deals with a generalization of random tensor models to tensors that
transform in representations of the real symplectic group Sp(N) (in all that follows, N is an even
integer). In certain cases, this generalization inevitably leads to tensors whose components are
anticommuting Graßmann numbers and, in this sense, some of these models are fermionic. The
need for anticommuting Graßmann numbers can already be seen by considering a real vector va,
a = 1, . . . , N , transforming in the fundamental representation of the symplectic group, va 7→
Ma

bv
b, withM ∈ Sp(N). Invariants under this group action are built by contracting vectors with

the symplectic form ωab. The unique quadratic invariant is

vaωabv
b 7→ vc(MT ) ac ωabM

b
dv
d = vcωcdv

d ∀M ∈ Sp(N) , (2.1.1)

and the invariance follows directly from the defining property of Sp(N) as the group of realN×N
matrices preserving the symplectic form. Note that, because of the antisymmetry of ωab we have

vaωabv
b = −vaωbavb =

−vbωbava = 0 if va and vb commute
vbωbav

a if they anticommute
. (2.1.2)

Thus, only if va and vb anticommute, the quadratic invariant is nonvanishing. The vector model
mentioned here is known in the field theory context as symplectic fermions.

The connections between the representations ofO(N) and Sp(N) have been extensively studied
in the literature. King [204] demonstrated that the dimensions of irreducible representations of
these two groups coincide when symmetrization and antisymmetrization are interchanged, and
N is replaced by −N . The so-called negative dimension theorems, or N to −N dualities, which
establish a formal relationship between the orthogonal and symplectic groups via SO(−N) '
Sp(N), are well known in the context of matrix and vector models [205–210].

Variousmanifestations of this relationship appear in the literature: SO(N) andSp(N) gauge the-
ories are related by substituting N with −N [211]; a vector model involving symplectic fermions
in three space-time dimensions has been explored in [212, 213]; and an instance of SO(N) and
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2 Summary

Figure 2.1. Directed edge colored graphs representing a sextic (left) and quartic (right) invariant
in the tensor models with symplectic symmetry. Note that in the left graph the tensors are order
three and in the right they are order four. This is a colored version of Fig. 1 in [2].

Sp(N) gauge theories featuring matter fields and Yukawa interactions is discussed in [214]. Ad-
ditionally, a duality between orthogonal and symplectic matrix ensembles (the so-called β = 1, 4

ensembles) has been established in [215]. From a supergeometric or supersymmetric perspective,
such relations emerge naturally [216].

In a series of papers [1–3] (reproduced in Chapters 3–5), we constructed tensor models that
showcase such an N to −N duality. The first two papers consider tensors with no permutation
symmetry among their indices. In other words, the tensors transform in representations which are
products of distinct copies of the fundamental representation of O(N) and Sp(N). We denote by
T a1...aD the components of a tensor of order D that transform according to

T a1...aD 7→Ma1
(1) b1

. . .MaD
(D) bD

T b1...bD , (2.1.3)

where each M(c) is either an element of O(Nc) or Sp(Nc) for c ∈ {1, . . . , D}. The number c, in-
dicating the position of the tensor indices, is called color. For bookkeeping, a parity is assigned to
each color: |c| = 0 iff the corresponding index transforms under O(Nc) and |c| = 1 iff it trans-
forms under Sp(Nc). The tensor components are fermionic (anticommuting Graßmann numbers)
iff
∑D

c=1 |c| is odd. This means that an odd number of symplectic matrices appear in the transfor-
mation rule Eq. (2.1.3).

Invariants are built by contracting several tensors with the bilinear form gcacbc that is equal to the
symmetric δacbc , iff |c| = 0, or the antisymmetric symplectic formωacbc , iff |c| = 1. These invariants
can be represented as edgeD-colored and directed graphs (Fig. 2.1). The vertices represent tensors
and an edge of color c indicates the contraction of two indices having that color. Because of the
antisymmetry of ωab, it is necessary to indicate the order of indices. This is done by directing the
graph edges from the second to the first index and adding a small arrow in the graphical notation.
Reversing the direction of an edge of color c gives a factor of −1 iff |c| = 1.

Now, consider a random tensor model defined as a probability measure

dµ[T ] = e−S[T ] N
∏

a1...aD

dT a1...aD , (2.1.4)

S[T ] =
1

2

(
T a1...aDT b1...bD

D∏
c=1

gcacbc

)
+

∑
B connected,
|V(B)|>2

λB
|V(B)|

IB(T ) , (2.1.5)

where N is some normalization constant and the sum runs over connected edge colored graphs B
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2.1 Orthogonal and symplectic random tensor models

with |V(B)| > 2 vertices.²⁶ These graphs encode all the possible different invariants IB and the pref-
actors λB are called coupling constants. Themodel is invariant under the symmetry transformation
Eq. (2.1.3) and for this reason, we have called these models real graded tensor models.

The partition function Z and the expectation value of an invariant
〈
IB(T )

〉
are defined by

Z =

∫
dµ[T ] , and

〈
IB(T )

〉
=

1

Z

∫
dµ[T ] IB(T ) , (2.1.6)

and can be evaluated in a perturbative expansion in the couplings. In other words, these objects
are treated as formal power series in the couplings.

The main result of Chapter 3 and 4 can be summarized in the following theorem:

Theorem (N to−N in tensor models withO(N) and Sp(N) symmetry). The perturbative
series of the partition function Z and expectation values of invariants

〈
IB(T )

〉
can be expressed as a

formal sum over edge (D+1)-colored undirected graphs G. Each summand, corresponding to a specific
graph G, writes as a product:

K({λB},G) ·
D∏
c=1

(
(−1)|c|Nc

)Fc/0(G)
(2.1.7)

of a termK , encoding the dependence on the coupling constants λB and some combinatorial numbers
associated to G, and a term depending onN1, N2 . . . , ND (see Chapter 4 for the precise definitions and
exact form of the series).

Whereas the work in Chapter 3 proves this theorem for tensor models having only quartic inter-
actions, Chapter 4 extends the proof, using different methods, to interactions of arbitrary order.

The essential remark is that all factors of Nc come in the form (−1)|c|Nc; hence, each term
is mapped into itself by exchanging O(Nc) ↔ Sp(Nc) and Nc ↔ −Nc. Because graphically
the factors of Nc are associated to certain loops of alternating colors c and 0, the result can be
interpreted as a generalization of the usual minus sign for fermionic loops in a QFT. But one should
keep in mind that the full tensor does not necessarily need to be fermionic.

The idea of the proof is to first define some canonical ordering of the invariants. This is nec-
essary in order to compare models with different symmetry groups. For example, an invariant
of a O(N1) ⊗ O(N2) ⊗ O(N3) invariant tensor model is invariant under commuting the tensor
components and redirecting edges in the graphical representation, but the overall sign of the same
invariant in a (fermionic) Sp(N1) ⊗ O(N2) ⊗ O(N3) model changes under these manipulations.
In order to compare both models, the invariants are treated as class functions that only depend on
undirected graphs, but a certain canonical representative of each class is chosen to define the corre-
sponding interaction term in the action S[T ] with an unambiguous sign. Note that an overall sign
can be absorbed in a change of sign of the coupling constant λB. After fixing the representation of
the interaction terms and invariants, the remaining part of the proof consists in carefully keeping
track of all the different signs coming from: redirecting arrows in the graphical representation; and
the fermionic or bosonic variant of Wick’s theorem used to evaluate Gaußian expectation values
of monomials in the T a1...aD .
²⁶ In the papers reproduced in Chapters 4 and 5, the set of vertices of a graph B is denoted by V (B). In this summary,
we stay consistent with the notation in the introduction and in the paper of Chapter 3.
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2 Summary

In Chapter 3, which contains the chronologically first paper and deals with quartic interactions
only, a Hubbard–Stratonovic transformation is used to obtain a model with purely bosonic, but
symmetric, respectively, antisymmetric tensors. In the case D = 2 (matrices) the Feynman dia-
grams of the model are so-called ribbon graphs. Classifying these ribbon graphs according to their
topology allows us to calculate the sign accompanyingNc in each case. For tensors of orderD > 2,
the calculation of the sign could be reduced to the matrix case.

In the third paper (reproduced in Chapter 5), we extended the relation between tensor models
with orthogonal and symplectic symmetry to tensors that transform in arbitrary finite-dimensional
representations ofO(N) orSp(N). LetV = RN . O(N) andSp(N) act on the tensor product space
V ⊗D . A representation R ⊂ V ⊗D can be obtained from a suitable projector. For a tensor model
with tensors in R the covariance is then proportional to this projector.

As a simple example, consider D = 2 (a matrix). It can be decomposed according to the irre-
ducible representations of O(N) into: an antisymmetric matrix, a symmetric traceless matrix and
a matrix that is proportional to the identity (the trace part). The covariance of the matrix model
would then be, e.g., proportional to the projector on antisymmetric matrices. The last case (the
trace representation) would merely be a scalar theory in disguise, as all matrices are proportional
to the identity.

It should be stressed that, in this context traces mean the contraction of indices of the same tensor
by either the symmetric form δab or the symplectic form ωab. Thus, traces are an inherent feature of
representations of O(N) and Sp(N), as these groups are by definition the isometry groups of the
standard symmetric or symplectic form, respectively. The projectors on representations of O(N)

or Sp(N) can be constructed as an elements of the Brauer algebra [217], an algebra generated by
diagrams that act on tensors by permuting and contracting their indices. In particular, permutation
diagrams form a subset of all Brauer diagrams. To give an example, the diagram

1

1

2

2

3

3

4

4

(2.1.8)

permutes the third and fourth indices and contracts the first and second indices of a fourth order
tensor. As in the matrix example, in order to obtain irreducible representations ofO(N) and Sp(N)

it is important to remove the traces. For this purpose the authors of [218] built a universal trace-
less projector that can then be combined with suitable (anti-)symmetrizers to obtain the desired
projector on the representation R.

In the end we have proven an analogous statement to the theorem around Eq. (2.1.7). Tensor
models with symmetry given by the O(N) tensor representation R are dual to corresponding ten-
sor models with Sp(N) symmetry, given by the dual representation R′ (obtained by exchanging
symmetrization and antisymmetrization), in the sense that the amplitudes of graphs in their per-
turbative expansions are mapped into each other after a change of N to −N . The Sp(N) tensor
models are fermionic if D is odd. After understanding the representation theoretic aspects, and
refining the graphical representation, the proof proceeds similarly to the case with no permutation
symmetry of the tensor indices.

For illustration purposes, consider the representation ofO(N) on totally symmetric and traceless
tensors of orderD. The tensor model with this symmetry group is, upon replacement ofN by−N ,
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2.2 Zero-dimensional O(N) model: constructive expansions and transseries

dual to the model with Sp(N) symmetry and totally antisymmetric and traceless tensors, which
are fermionic if D is odd.

2.2 Zero-dimensionalO(N) model: constructive expansions and transseries

The topic of Chapter 6 is the summation of the perturbative series. Perturbation theory can allow
for very precise calculations of physical observables and has been central to the development of
QFT in general. But the perturbative series poses a great challenge: in most cases it is only an
asymptotic series with zero radius of convergence; and non-analytic terms, e.g. e−1/g , which typ-
ically arise as instanton effects, are absent because their Taylor expansion at g = 0 is identically
zero. To incorporate such contributions while retaining, for practical reasons, perturbative meth-
ods one employs a more general form of asymptotic expansions known as transseries, which can
be understood as a sum of perturbative and nonperturbative sectors—schematically

F (g) =
∑
n≥0

ang
n +

∑
j

e
cj
g gγj

∑
n≥0

bj,ng
n . (2.2.1)

The theory of Borel summation (see Section 1.4) is the standard method to deal with asymptotic
series, and in many cases of interest it can be used to reconstruct some information about the non-
perturbative sector based on the perturbative one. For example, nonperturbative effects manifest
themselves as singularities of the Borel sums. In general, such relations between the perturbative
and nonperturbative sectors are known as resurgence. This topic was first explored in the context
of ordinary differential equations by Écalle in [219], and later applied to quantum mechanics (see,
e.g., [220]), matrix models, large N gauge theories and topological strings (see the reviews [189,
221–223] and references therein).

Zero-dimensional QFT models are useful toy models to study transseries expansions. The com-
plications arising from the computation and renormalization of Feynman diagrams are absent, yet
the perturbative series is divergent because of the factorial growth of the number of Feynman
graphs. These models are hence purely combinatorial in nature. Concretely, we consider a zero-
dimensionalO(N)model with quartic interaction. Denoting ϕ = (ϕa)a=1,...,N a vector inRN , and
ϕ2 =

∑N
a=1 ϕaϕa, the partition function of the model is

Z(g,N) =

+∞∫
−∞

 N∏
a=1

dϕa√
2π

 e−S[ϕ] , S[ϕ] =
1

2
ϕ2 +

g

4!
(ϕ2)2 . (2.2.2)

The logarithm of the partition function, W (g,N) = lnZ(g,N), is the free energy. The action in
Eq. (2.2.2) has critical points, for ϕ2 ∈ {0,−6/g}. The nonzero critical points are the instantons of
this model. The action at the instantons is −3/(2g).

The aim of this researchwork is to analyzeZ(g,N) andW (g,N) using techniques from construc-
tive field theory, and not only to compute the respective transseries expansions of these quantities.
We focus on techniques that, in principle, can be generalized to higher-dimensional field theory.
The main results include employing the Hubbard–Stratonovich intermediate field representation
to develop a smallN expansion, applying the Loop Vertex Expansion (LVE) to establish analyticity
and Borel summability results for the free energy in N and g, and investigating the resurgence
properties based on the LVE.
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2 Summary

TheLVE is a tool developed in the context of constructive field theory (see [196] and [202, 224] for
more details). It combines the BKAR forest formula—discussed in Section 1.5 in the introduction—
with a Hubbard-Stratonovich intermediate field representation and a replica trick.

Before summarizing the main results, let us introduce some notation. The (convergent) small N
expansions of Z(g,N) andW (g,N) write:

Z(g,N) =
∑
n≥0

1

n!

(
−N

2

)n
Zn(g) , and W (g,N) =

∑
n≥1

1

n!

(
−N

2

)n
Wn(g) . (2.2.3)

We write g = |g|eiφ and note that φ will often be continued past ±π, which corresponds to
the next sheets of the Riemann surface of the coupling. Moreover, we define the following sets:
Cπ ≡ C \R−, the complex plane without the negative real axis, and the extended Riemann sheet
C3π/2 ≡ {g = |g|eiφ |φ ∈ (−3π/2, 3π/2)}.

In Chapter 6, the most important results are listed in the form of several propositions. Here, we
summarize their main points:

• Proposition 1 establishes analyticity and Borel summability of Z(g,N) in Cπ and analyti-
cally continues Z(g,N) on a Riemann surface. The transseries expansion of Z(g,N) is cal-
culated. Interestingly, the asymptotic series of the perturbative and nonperturbative sectors
are related by substitutingN ↔ (2−N) and g ↔ −g. The prefactor of the nonperturbative
sector is related to the action at instantons.

• Proposition 2 demonstrates the convergence of the small N series of Z(g,N). The coeffi-
cients Zn(g) are analytic and Borel summable in Cπ and can be analytically continued to the
extended Riemann sheet C3π/2. The transseries expansion of Zn(g) is calculated.

• Propositions 3 and 4 use the LVE to prove analyticity and Borel summability of the free
energyW (g,N) and its small N series coefficientsWn(g) in a subset of Cπ . Both functions
are analytically continued to a subdomain of the extended Riemann sheet C3π/2.

• Proposition 5 calculates the transseries expansion ofW (g,N) andWn(g).

• Proposition 6 derives a nonlinear differential equation for W (g,N) and a recursive tower
of differential equations forWn(g). Similar differential equations for Z(g,N) and Zn(g) are
part of Propositions 1 and 2.

For more details and proofs, we refer to the respective chapter. Fig. 2.2 illustrates the fact that
Z(g,N), as a function of g, lives on a nontrivial Riemann surface.

The remainder of this section contains additional remarks that will add some technical details
and give an impression of the strategies used in the proofs. An important technical tool that is
used throughout Chapter 6 is the intermediate field representation. By introducing in Eq. (2.2.2) for
Z(g,N) an intermediate field σ ∈ R via a Hubbard–Stratonovich transformation, the ϕ dependent
part becomes Gaußian and can be integrated for g > 0. Afterwards, the partition function takes
the form

Z(g,N) =

+∞∫
−∞

dσ√
2π

e−
1
2
σ2 1(

1− i
√

g
3σ

)N/2
, (2.2.4)

44



2.2 Zero-dimensional O(N) model: constructive expansions and transseries

Figure 2.2. Rendering of Z(g,N = 1) that illustrates well the multivaluedness of that function
with four Riemann sheets. The vertical direction shows the imaginary part. The principal sheet is
displayed in red.

φ = 0 φ > π

R

C

Re−iθ

Figure 2.3. Asφ increases, the branch cutmoves clockwise in the complexσ-plane. When g crosses
the negative real axis the tilted contour is equivalent to aHankel contourC plus the original contour
along the real line. Based on Fig. 1 of [4].

which shows that Z(g,N) can be analytically continued in both N and g. It is one of the great
strengths of the intermediate field representation of the O(N) vector model that N is an explicit
parameter in the integral. On a technical level, there is one observation that underlies most of the
stated results: as φ increases, the branch cut in the integral representation of Eq. (2.2.4) moves past
the integration contour and the integral picks up an additional contribution—a Hankel contour
around the branch cut. This is illustrated in Fig. 2.3. Notably, the contribution from the Hankel
contour is proportional to the exponential of minus the instanton action.

The intermediate field representation of Eq. (2.2.4) allows us to write the coefficient functions
Zn(g) of the small N series of Z(g,N) in Eq. (2.2.3) as

Zn(g) =

+∞∫
−∞

dσ√
2π

e−
1
2
σ2

(
ln(1− i

√
g

3
σ)

)n
. (2.2.5)

The functions Zn(g) can be treated as moments (n-point correlation functions) of the random vari-
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able ln(1 − i
√
g/3σ). The coefficient functions Wn(g) of the small N series of W (g,N) are the

respective cumulants (connected correlations) of this random variable. Both sets of functions are
thus related by the Möbius inversion formula, which in this case becomes the moments–cumulants
formula. Although the functions Zn(g) andWn(g) are related as analytic functions in g, this only
translates into a formal relation between Z(g,N) and W (g,N) because the convergence of the
series defining Z(g,N) does not imply the convergence of the series definingW (g,N). However,
the Möbius inversion turned out to be the most direct way to obtain the transseries expansion of
W (g,N). To study the analytic properties of the free energy, the LVE gives an integral equation
for theWn(g) as sums over trees with n vertices. This enables the proof of Propositions 3 and 4 of
Chapter 6. We refer the reader to that chapter for the explicit formulas.

The transseries ofW (g,N) has the schematic form

W (g,N) =
∑
p≥0

e
3
2g
p
ηp
(
g

3

) 1−N
2
p∑
l≥0

(
−2g

3

)l
ap,l , (2.2.6)

with ap,l some explicit and g-independent coefficients. The term p = 0 corresponds to the pertur-
bative sector, while terms with p ≥ 1 represent contributions from p instantons. The transseries
parameter η acts as a switch: it equals zero on the principal sheet of the Riemann surface (trun-
cating the sum to just the perturbative sector), and equals one when |φ| > π.²⁷ The transseries of
Wn(g) is similar, but the sum over p truncates at p = n, such that only up to n instantons con-
tribute. Moreover, this transseries also includes powers of ln(g). The transseries ofW (g,N) agrees
with the series obtained by formally taking the logarithm of the transseries expansion of Z(g,N).
The added value of our discussion is that we have replaced a formal manipulation on series with a
rigorous manipulation on analytic functions.

2.3 Four-dimensional asymptotically free tensor field theory

The last research article of this thesis, reproduced in Chapter 7, studies the O(N)3 tensor field
theory in four Euclidean dimensions, in the large N limit, and numerically solves the Schwinger–
Dyson equation for the full propagator. The solution of this equation also determines the renormal-
ization flow of the tetrahedral coupling, which is crucial for the model to be asymptotically free (as
first observed in [103]). The main results can be summarized as follows:

• Quantum fluctuations generate strong correlations in the infrared and significantly modify
the propagator. This effect can be captured by a running coupling (defined below) that grows
strong in the infrared and whose flow is driven solely by the wave function renormalization.

• The running coupling remains finite for a wide range of parameters, provided the renormal-
ized mass is above a thresholdm∗.

• Approaching the threshold mass m∗ from above, the running coupling grows nonlinearly
and diverges at a finite infrared energy scale µ∗ .

We compare our results with a perturbative RG study carried out in [5].

²⁷This behavior is related to the so-called Stokes phenomenon.
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2.3 Four-dimensional asymptotically free tensor field theory

Figure 2.4. A vacuum graph of the type that dominate in the large N limit. The leading order
graphs are built from iterative melon and tadpole insertions.

The model has already been defined in Eq. (1.3.40) and discussed in the context of the 2PI effec-
tive action in Section 1.3.3, which is the methodological foundation of this work. For convenience,
we review the definition of the model again and highlight some important properties. The fun-
damental fields φa, with a = (a1, a2, a3) ∈ {1, . . . , N}3, are scalars under spacetime rotations
and translations, and transform as real three-index tensors in the trifundamental representation of
O(N)3. The model is defined by the action

S[φ] =

∫
d4x

[
1

2
φa(x)(−∆+m2)φa(x)

+
1

4

(
g1P̂

(1)
ab;cd + g2P̂

(2)
ab;cd + igδ̂tabcd

)
φa(x)φb(x)φc(x)φd(x)

]
,

(2.3.1)

which is invariant under the globalO(N)3 symmetry. The three interaction terms in the action cor-
respond to the three O(N)3-invariant contraction patterns: pillow, double-trace and tetrahedron
(see Fig. 1.4 in the introduction). The couplings g1 and g2 and their associated index contraction
operators P̂ (1) and P̂ (2) are linear combinations of the pillow and double-trace couplings and con-
traction operators

δ̂pab;cd =
1

3N2

3∑
i=1

δaiciδbidi
∏
j ̸=i

δajbjδcjdj ,

δ̂dab;cd = N−3
3∏
i=1

δaibi

3∏
j=1

δcjdj ,

δ̂tabcd = N−3/2δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3 ,

P̂ (1) = 3(δ̂p − δ̂d) ,

P̂ (2) = δ̂d ,

g1 =
gp
3
,

g2 = gp + gd .

(2.3.2)

They fulfill P̂ (1)
ab;cdP̂

(2)
cd;ef = 0. Crucially, the tetrahedral coupling ig is purely imaginary, which not

only makes the Euclidean path integral bounded (provided g1, g2 > 0), but also leads to asymptotic
freedom in the ultraviolet regime [103]. This will be discussed further in Section 8.3.

In the large N limit, the dominant diagrams are built by iteratively inserting melon diagrams
containing the tetrahedral coupling and tadpoles with the g1 or g2 coupling (see Fig. 2.4 and [96]).
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Figure 2.5. Flow of the squared running tetrahedral coupling g2(p) with momentum p for various
renormalized massesm2 (color scale), with g(µ) = 20 at the renormalization scale µ. The two-loop
perturbative running is mass independent and represented as dashed. By means of Eq. (2.3.6) the
diagram equally shows Z−2(p). This is Fig. 1 in [5].

Both types of insertions are two-point insertions, and can be resummed using the 2PI formalism, as
first applied to tensor models in [99, 119]. In particular only the square of the tetrahedral coupling
appears in the large N limit and leads to several sign changes. This yields a self-consistent and
closed equation—the Schwinger–Dyson equation—such that the full (resummed) propagatorGab =

Gδab is determined in momentum space by

G−1(p) = p2 +m2 + g2

∫
d4q

(2π)4
G(q) + g2

∫
d4q

(2π)4
d4k

(2π)4
G(q)G(k)G(p+ q + k) , (2.3.3)

which has the diagrammatic representation

−1
=

−1
+ g2 + g2 , (2.3.4)

where edges with a filled bivalent vertex representG, to distinguish them from the (inverse) classi-
cal propagator in the first term on the right hand side.

Note that this equation is formally obeyed by the non-renormalized (bare) propagator and still
requires regularization and renormalization, as the integrals are ultraviolet divergent. In this sum-
mary, for the sake of simplicity, the bare equations are used to display the structure of the model;
the renormalization procedure and renormalized equations are detailed in Chapter 7. Effectively,
the renormalized equations include subtractions at a momentum scale µ (the renormalization scale).
See also [161, 162] for a general discussion of renormalizability in the 2PI formalism.

A second consequence of the tensor large N limit is that no Feynman diagram can give a direct
correction to the tetrahedral coupling; it only receives quantum corrections via rescaling through
the wave function renormalization.
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Figure 2.6. Limiting value of the squared running tetrahedral coupling in the infrared for varying
renormalized mass. This is Fig. 3 in [5].

We extract the wave function renormalization²⁸ from the nontrivial momentum dependence of
the full (renormalized) propagator by

Z(p) =
G−1(p)−G−1(0)

p2
, (2.3.5)

and define the running tetrahedral coupling as

g(p) =
g(µ)

Z2(p)
. (2.3.6)

The renormalization conditions fix Z(µ) = 1 and the coupling to a given value g(µ) at the renor-
malization scale. We solve the renormalized Schwinger–Dyson equation for the renormalized prop-
agator numerically by iteration (details are provided at the end of Chapter 7).

Fig. 2.5 shows the numerical results for the (nonperturbative) running coupling and compares
them with the two-loop perturbative prediction. At large momenta, the curves align, which is
consistent with asymptotic freedom. At intermediate scales, the nonperturbative running coupling
grows faster than the perturbative one. Depending on the renormalized mass, the flow eventually
stops deep in the infrared and the coupling reaches a maximum value in the limit p→ 0. However,
as shown in Fig. 2.6, this infrared limit of the coupling depends nonlinearly on the renormalized
mass. Remarkably, there seems to exist a threshold mass m∗, such that for m ↘ m∗ the running
coupling diverges in the infrared at a finite scale µ∗.

The work reproduced in Chapter 7 briefly explores the case of a purely real tetrahedral coupling.
In this case, the running coupling decreases toward the infrared, and even solutions with zero
renormalized mass can be obtained. However, the theory with real tetrahedral coupling is not
asymptotically free, so a finite ultraviolet cutoff must be maintained.
²⁸This momentum dependent function is called a dressing function in the literature on functional methods for renor-
malization. It is an analog of the wave function renormalization constant known, e.g., in renormalized perturbation
theory. The latter is renormalization scale dependent and in the perturbative regime this scale dependence and the
momentum dependence of the former function determine each other.
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Duality of orthogonal and symplectic random tensor models

Razvan Gurau and Hannes Keppler

Abstract. The groups O.N / and Sp.N / are related by an analytic continuation to negative
values of N , O.�N/ ' Sp.N /. This duality has been studied for vector models, SO.N / and
Sp.N / gauge theories, as well as some random matrix ensembles. We extend this duality to
real random tensor models of arbitrary order D with no symmetry under permutation of the
indices and with quartic interactions. The N to �N duality is shown to hold graph by graph
to all orders in perturbation theory for the partition function, the free energy and the connected
two-point function.

1. Introduction and conclusion

Dualities are non-trivial relations between seemingly different models and therefore
of great use in physics and mathematics. It has been known for some time [41] that,
for even N , SO.N / and Sp.N / gauge theories are related by changing N to �N and
that one can make sense of the relation SO.�N/ ' Sp.N / for the representations of
the respective groups [14]. This duality has furthermore been shown to hold between
orthogonal and symplectic matrix ensembles [43]. (These correspond to the O.N /˝
O.N / and Sp.N /˝ Sp.N / matrix models of Section 3.)

TheN to�N duality inspired in part the conjectured holographic duality between
Vasiliev’s higher spin gravity [50] in four-dimensional de Sitter space and the three-
dimensional Euclidean Sp.N / vector model with anticommuting scalars [2]. This
dS/CFT correspondence is in turn based on the conjectured Giombi–Klebanov–Polya-
kov–Yin duality [22, 35] relating the three-dimensional O.N / vector model in the
large N limit to Vasiliev gravity in four-dimensional anti-de Sitter space. In this
context,N � .ƒGN /�1 so that the sign change of the cosmological constantƒ (hold-
ing GN fixed) is accompanied by a change N ! �N .

The perturbative expansion of random matrix models is a sum over ribbon graphs
representing topological surfaces. The weight of each graph is fixed by the Feyn-
man rules and the perturbative series can be organized [48] as a topological expan-

2020 Mathematics Subject Classification. Primary 81T32; Secondary 57M15.
Keywords. Tensor models, random tensors, symplectic group, matrix models, ribbon graphs.
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sion in 1=N . Random matrices yield a theory of random two-dimensional topolog-
ical surfaces relevant for the study of conformal field theories (CFTs) coupled to
two-dimensional Liouville gravity [6, 16, 17, 34, 37] and two-dimensional Jackiw–
Teitelboim gravity [33, 45, 47]. They have applications as combinatorial generating
functions to several counting problems [4,49,53] and to the intersection theory on the
moduli space of Riemann surfaces [38, 44, 51].

Random matrices generalize to random tensor models [1, 27, 28, 30] of higher
order1 D which are probability measures of the type

d�ŒT � D e�SŒT �
Y

.a1;:::;aD/

dT a1:::aD
p
2�

;

where the action SŒT � is build out of invariants under some symmetry transforma-
tion. These models can also be viewed as 0-dimensional quantum field theories. The
Feynman graphs of such models can be interpreted as higher-dimensional cellular
complexes and the perturbative series can be reorganized as a series in 1=N [3, 5,
9, 10, 12, 25] which is not topological for D � 3. Zero-dimensional random tensors
yield a framework for the study random topological spaces; in one-dimension ten-
sor models provide an alternative to the Sachdev–Ye–Kitaev model without quenched
disorder [52]; in higher dimensions, they lead to tensor field theories and a new class
of large N melonic conformal field theories [8, 20, 21, 31, 36].

Main result. In this paper, we deal with tensors withD indices (i.e., of orderD) with
no symmetry under their permutations. The position of an index is called its color c,
with c D 1; 2; : : : ; D. The tensors transform in the tensor product of D fundamen-
tal representations of O.N / and/or Sp.N /, i.e., each tensor index is transformed by
a different O.N / or Sp.N / matrix. The tensor components are real Grassmann val-
ued (anticommuting, odd) if the number of Sp.N / factors is odd and real bosonic
(commuting, even) if this number is even.2 We assign a parity to the tensor indices:
jcj D 0 or jcj D 1 if the index transforms under O.Nc/ or Sp.Nc/, respectively. We
consider actions consisting in invariants up to quartic order (see Section 2 for more
details).

1In the physics literature, one often uses “rank” instead of order, but this may lead to con-
fusion with the many notions of tensor rank in abstract algebra.

2The tensors are even multilinear maps on Rmjn, the real graded supervector space with m
even and n odd directions. This is natural because the orthosymplectic super Lie group
OSp.m; n/ contains both O.m/ and Sp.n/ and acts on Rmjn. This will be our guideline in
constructing the models of interest.
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Definition 1.1. The real quartic graded tensor model, where “graded” refers to sym-
metry under

OOO1.N1/˝OOO2.N2/˝ � � � ˝OOOD.ND/; OOOc.Nc/ D

´
O.Nc/; jcj D 0;

Sp.Nc/; jcj D 1

is defined by the measure

d�ŒT � ' e�SŒT �
Y

a1;:::;aD

dT a1:::aD ;

SŒT � D
1

2

�
T a1:::aDT b1:::bD

DY
cD1

gcacbc

�
C

X
q2Q

�q

4
I q.T /;

where gc
acbc

is the Kronecker delta ıacbc for jcj D 0 or the canonical symplectic form
!acbc for jcj D 1 and the sum over Q runs over all the independent quartic trace
invariants I q.T /.

The partition function Z and the connected two-point function G2 of the model
are defined by

Z.�/ D

Z
d�ŒT � and G2.�/ D

1

Z

Z
d�ŒT � T a1:::aDT b1:::bD

DY
cD1

gcacbc

and can be evaluated in a perturbative expansion. Our main theorem is the following.

Theorem 1.2. The perturbative series of the free energy lnZ and of the connected
two-point functionG2 can be expressed as formal sums over connected, colored multi-
ribbon graphs

lnZ.�/ D
X

ŒG� connected, rooted,
at least oneEq>0

1

2C.G�E%/C1
P
q2QEq

A.G/;

G2.�/ D
X

ŒG� connected, rooted

1

2C.G�E%/�1
A.G/

with amplitude

A.G/ D 2E
%.G/

Y
q2Q

.��q/
Eq.G/

DY
cD1

..�1/jcjNc/
Fc.G/; (1.1)

where Eq , E%, Fc , C.G � E%/ are some combinatorial numbers associated to the
multi-ribbon graph G (see Section 4.2 for the relevant definitions).

Proof. The theorem follows from equations (4.3), (4.5) and (4.6).
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The crucial remark is that all the factors Nc come in the form .�1/jcjNc , hence
each term is mapped into itself by exchanging O.Nc/$ Sp.Nc/ and Nc $ �Nc .

Conclusion and outlook. We list some comments on, and possible generalizations
of, our result:

• In order to prove our main theorem, we will use in this paper an intermediate field
representation adapted to quartic interactions. It should however be possible to
extend this result to more general interactions [40].

• While more general models with OSp.m; n/ symmetry could be considered, the
construction of super tensor actions is complicated because of the abundance of
sign factors [46].

• For D D 2 (matrices), the contributions of ribbon graphs and their duals cancel
exactly in the fermionic case (see Remark 3.1). It would be interesting to under-
stand similar cancellations in the graded tensor models. This should be related to
Poincaré duality between lower-dimensional colored subgraphs.

• One should explore the implications of theN !�N duality for tensor field theo-
ries. The sign changes may generate new renormalization group fixed points, and
the duality may not hold for all the physical properties [39]. Quantum mechanical
models of order three tensors with Sp.N / symmetry have been studied in [11,24].

Outline of the paper. This paper is organized as follows. In Section 2, the quartic
graded tensor model is defined, the relation between directed edge colored graphs and
quartic trace invariants is explained, and we collect some definitions and notations
on ribbon graphs. Section 3 deals in detail with the order 2 (matrix) case. Section 4
continues with the general case of arbitrary orderD tensors. Appendix A contains the
calculation of the sign of each ribbon graph amplitude and Appendix B gives details
on the calculation of the symmetry factors of the Feynman graphs.

2. Definitions

In this section, we define the models we will be studying. We also give some standard
definitions about ribbon graphs and combinatorial maps.

2.1. The real quartic graded tensor models

The orthosymplectic super Lie group OSp.m; n/ is the isometry group of the canoni-
cal graded-symmetric bilinear form on the supervector space Rmjn,

�W Rmjn �Rmjn ! ƒ1; .�ij / D

 
ı 0

0 !

!
;
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where ƒ1 is the Grassmann algebra generated by an infinite number of anticommut-
ing generators. The space Rmjn is a free module over ƒ1 with m even (commuting)
and n odd (anticommuting) basis vectors. Note that non-singularity of � demands
that n is an even integer. For later comparison, m is also taken to be even.

Since we are only interested in O.N / and Sp.N /, and not the whole OSp.m; n/,
we restrict to supervector spaces that are either purely odd or purely even, and thus
have either O.N / or Sp.N / as their isometry group. This information can be encoded
as a parity of the index color jcj 2 ¹0; 1º, with jcj D 0 corresponding to orthogonal,
and jcj D 1 to symplectic symmetry. The tensor components are commuting bosonic
or anticommuting Grassmannian, depending on whether the number of indices with
jcj D 1 is even or odd. Suitable invariants are defined to construct the actions of the
models.

Vector spaces. Let Hc D RNc j0 for jcj D 0, Hc D R0jNc for jcj D 1, respectively,
be a real supervector space of dimension Nc , that is, either purely even or purely
odd and is endowed with a non-degenerate graded symmetric inner product gc WHc �

Hc ! ƒ1,

gc.u; v/ D .�1/jcjgc.v; u/ 8u; v 2 Hc ; gc. � ; v/ D 0, v D 0:

In the standard basis gc agrees with the standard symmetric or symplectic form,
that is, gc

acbc
D ıacbc for jcj D 0, gc

acbc
D !acbc for jcj D 1, respectively. We denote

by .gc/acbc the matrix element of the inverse .gc/�1. The isometry group preserv-
ing gc is either O.Nc/ in the jcj D 0 case or Sp.Nc/ in the jcj D 1 case, denoted
collectively byOOOc.Nc/ WD ¹Oc j gcacbc D O

a0c
ac O

b0c
bc
gc
a0cb
0
c
D .OgcOT/acbc º.

Tensors. Tensors are even elements of the tensor product space T 2
ND
cD1Hc . Choos-

ing a basis ¹Œ c�ac ºacD1;:::;Nc in each Hc and denoting by ¹Œ _c �
ac ºacD1;:::;Nc the

dual basis, the components of a tensor are

T a1:::aD � T .Œ _1 �
a1 ; : : : ; Œ _D�

aD /;

T D
X

acD1;:::;Nc 8c

T a1:::aD Œ 1�a1 ˝ � � � ˝ Œ 
D�aD :

A generic tensor has no symmetry properties under permutation of its indices
a1; : : : ; aD , hence the indices have a well-defined position c called their color. The
set of colors is denoted by D D ¹1; : : : ;Dº. We sometimes call the colors with jcj D 0
even and the ones with jcj D 1 odd. As the tensors are taken to be even elements of
the tensor product space, the tensor components are bosonic (even) if the number
of colors with jcj D 1 (i.e., odd colors) is even and fermionic (odd) otherwise: the
Grassmann number T a1:::aD has the same parity as

P
c2D jcj.
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The tensors transform in the tensor product representation of several orthogonal
and symplectic groups according to the type of the individual Hc’s:

T a1:::aD ! .O1/
a1
b1
� � � .OD/

aD
bD
T b1:::bD ; O1 ˝ � � � ˝OD 2

O
c2D

OOOc.Nc/:

A tensor can be viewed as a multilinear map T W
N
c2C H_c !

N
c2DnC Hc for any

subset of colors C �D . As the inner product, gc induces an isomorphism between Hc

and its dual, denoting by aC D .ac ; c 2 C/, the matrix elements of this linear map in
the tensor product basis are T aDnCaC � T a1:::aD .

Edge colored graphs. Invariant polynomials in the tensor components can be con-
structed by contracting the indices of color c with the inner product gc . The unique
quadratic invariant is

g˝D.T; T / WD T aDT bD

Y
c2D

gcacbc :

General trace invariants are polynomials in the T aD ’s build by contracting pairs of
indices of the same color. These invariants form an algebraic complete set for all
invariant polynomials and admit a straightforward graphical representation as edge
colored graphs.

Definition 2.1 (Edge colored graphs [28]). A closed edgeD-colored graph is a graph
B D .V.B/;E.B// with vertex set V.B/ and edge set E.B/ such that

• The edge set is partitioned into D disjoint subsets E.B/ D
FD
cD1 Ec.B/, where

Ec.B/ 3 ec D .v; w/, v;w 2 V.B/, is the subset of edges of color c.

• All vertices are D-valent with all the edges incident to a vertex having distinct
colors.

In order to incorporate the odd colors appropriately, one needs to consider directed
graphs, that is, graphs with an additional arrow for every edge (see Figure 1 for an
example). Two graphs which are identical up to reorienting one edge of an odd color
represent the same invariant up to a global “�” sign. We will fix the global sign in the
case of quartic invariants below.

Quartic invariants. Quartic invariants are represented by D-colored graphs with
four vertices (see Figure 1) and directed edges. Due to the sign ambiguity induced
by reversing the edges corresponding to the odd colors, we need to give a prescription
to fix the global sign of an invariant. Every directed quartic D-colored graph can be
canonically oriented as follows (see again Figure 1):

• The color 1 edges give a pairing of the vertices. We denote by a1 and b1 the source
vertices of the oriented edges 1 and a2 and b2 their targets.
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151 5 22

3

3

4

4

DnCCDnC

Figure 1. Left: Quartic 5-colored graph. Right: Schematic representation of a general quartic
invariant.

• We orient all the edges that connect .a1;a2/ (resp. .b1; b2/) parallel to the edges 1.
We denote their colors by c 2 D n C .

• All the edges of colors c 2 C connect the a pair with the b pair. We orient all of
them from the a pair to the b pair. These edges fall into two classes:

– either they connect a1 with b1 and a2 with b2 in which case we say they run
in the parallel channel,

– or they connect a1 with b2 and a2 with b1 in which case we say they run in
the cross channel.

A canonically oriented graph is indexed by a subset of colors C � D , 1 … C and
permutations of two elements �c 2S2D ¹id; .12/º; c 2C . The associated invariant is

I.T / D
X

a1
D
;a2

D
;b1

D
;b2

D

�
T a

1
DT a

2
D

Y
c2DnC

gc
a1ca

2
c

��
T b

1
DT b

2
D

Y
c2DnC

gc
b1cb

2
c

�
�

�Y
c2C

.� sgn.�c//jcjgc
a1cb

�c.1/
c

gc
a2cb

�c.2/
c

�
D

X
a1

C
;a2

C
;b1

C
;b2

C

.g˝DnC .T; T //a
1
C
a2

CKa1
C
a2

C
;b1

C
b2

C
.g˝DnC .T; T //b

1
C
b2

C ; (2.1)

where we introduced the shorthand notation K for the contractions of the indices
transmitted between the pairs. Note that this is invariant by exchanging the b ver-
tices and that .� sgn.�c//jcj is the signature of the permutation .a1a2/.b1b2/ to
.a1b�.1//.a2b�.2// for the odd colors.

Lemma 2.2. There are 1C3D�1

2
different quartic trace invariants (see Figure 2 for

the D D 3 case).

Proof. There is only one invariant corresponding to C D ;. If C has q elements, there
are 2q choices for the channels and an overall 1

2
for the relabeling of the b vertices.

Thus the total number of invariants is

1C
1

2

D�1X
qD1

�
D

q

�
2q D

3D�1 C 1

2
:
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1 2 3 1 2 3 1 2

3

12

3

C2 color permutations 1 1
22

3

3

Figure 2. The 5 quartic invariants at order 3 known as double trace, pillow and tetrahedron.

Denote the set of distinct quartic D-colored graphs and the associate trace invari-
ants by Q 3 q and I q.T /, respectively.

Definition 2.3 (Real quartic graded tensor model). The real quartic “graded” tensor
model is the measure

d�ŒT � D e�SŒT � ŒdT �;

ŒdT � D
Y
aD

dT a1:::aD �

8<: 1

.2�/
Q
c Nc=2

;
PD
cD1 jcj D 0 mod 2;

1;
PD
cD1 jcj D 1 mod 2

with

SŒT � D
1

2
g˝D.T; T /C

X
q2Q

�q

4
I q.T /;

where the normalization is such thatZ
d�ŒT � D 1 for �q D 0 8q 2 Q:

Convergence issues. Throughout this paper, we treat the measures d�ŒT � as per-
turbed Gaussian measures. As such we do not concern ourselves with the convergence
of the various tensor and matrix integrals. The integrals are always convergent if T is
fermionic. If T is bosonic, the integrals converge if jcj D 0 for all c, but not neces-
sarily in the other cases. As we treat the Gaussian integrals as generating functions of
graphs, we will not worry about such issues.

2.2. Ribbon graphs and combinatorial maps

As ribbon graphs [19,23] and combinatorial maps play a significant role in the deriva-
tion of our results, we review here some of their properties.

Ribbon graphs, see Figure 3 for some examples, are cellularly embedded graphs
on topological surfaces, and thus can be viewed as 2-cell-complexes. Due to the
embedding, each vertex carries an orientation and the order of edges around a ver-
tex is fixed. A vertex can be re-embedded with the opposite orientation: this amounts
to reversing the order of the incident edges and giving them a twist, see Figure 4.
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Figure 3. Ribbon graphs, which we denote by GT 2 and GRP2 , and their cellular embeddings.
The rightmost surface is the hemisphere representation of the real projective plane where oppo-
site points along the equator are identified.

1

3

2

1

3

2

�

Figure 4. Re-embedding a vertex: the order of halfedges is reversed and they gain additional
twists. This is an equivalence relation of ribbon graphs.

Definition 2.4 (Ribbon graph [19]). A ribbon graph G D .V.G /; E.G // is a (pos-
sibly non-orientable) surface with boundary, represented as the union of two sets of
topological discs, a set of vertices V.G /, and a set of edges E.G / such that

(1) The vertices and edges intersect in disjoint line segments.

(2) Each such line segment lies on the boundary of precisely one vertex and pre-
cisely one edge.

(3) Every edge contains exactly two such line segments.

The boundary components of G are called faces. The two disjoint boundary segments
of an edge that are not connected to a vertex (i.e., the two sides of the edge) are called
strands. We denote the set of faces of G by F .G /. A ribbon graph becomes a two-di-
mensional CW complex by sewing two-dimensional patches along its faces.

The numbers of vertices, edges and faces of G are denoted by V.G /, E.G / and
F.G /, respectively.

Several remarks are in order:

• The strands of an edge can run parallel, in which case the edge is called untwisted,
or cross, in which case the edge is called twisted.

• If V.G / D 1, the graph is called a rosette graph. A rosette graph with only one
face is called a superrosette graph.

• A self-loop in G is an edge e D ¹hv; h0vº 2 E.G / connected to just one vertex
v 2 V.G /. A simple self-loop is a self-loop such that its halfedges are direct neigh-
bors in the cyclic ordering around v, thus v has a corner of the form .hv; h

0
v/. If e

is (un-)twisted, the simple self-loop is called likewise.
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• We denote the ribbon graph consisting in only one vertex with no edge by Gı. By
definition, this graph has one face. We denote the ribbon graph with one vertex
and one twisted self-loop edge by GRP2 and the ribbon graph with one vertex, two
untwisted self-loop edges but no simple self-loop by GT 2 .3 The last two graphs are
depicted in Figure 3. As a topological surface with boundary GRP2 is homeomor-
phic to a Möbius strip.

Every ribbon graph has a dual ribbon graph with the same number of edges, but
with the roles of the vertices and the faces interchanged.

Definition 2.5 (Dual ribbon graph [19]). Let G be a ribbon graph. The dual ribbon
graph G � is obtained by sewing discs along the faces of G and deleting the original
vertex discs of G . The new discs make up the dual vertex set V.G �/, and the new
boundary components created by the deletion are the faces of G �. See Figure 5 for an
illustration.

Figure 5. The dual graphs.

Besides ribbon graphs, we will encounter combinatorial maps below.

Definition 2.6 (Combinatorial map). A combinatorial map M D .� ; �; ˛/ is a finite
set � of halfedges (or darts) of even cardinality, together with a couple of permutations
.�; ˛/ on � , where ˛ is an involution with no fixed points (a “pairing” of halfedges).

The map M is called connected if the group freely generated by � and ˛ acts
transitively on � . The dual of M is the combinatorial map M� D .� ; ˛ ı �; ˛/.

Combinatorial maps can be represented as graphs embedded in orientable sur-
faces. The cycles of � represent vertices with a cyclic order of their halfedges (chosen
to be counter-clockwise), and ˛ encodes pairings of halfedges into edges. The faces of
a combinatorial map are the cycles of the permutation ˛ ı� . In the dual combinatorial
map, the role of vertices and faces is reversed.

The definition of combinatorial maps and ribbon graphs can be extended to in-
clude a second kind of edges.

3As their names suggest, these graphs can be cellularly embedded into RP2 or T 2, respec-
tively.
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Definition 2.7 (Combinatorial map with %-edges). A combinatorial map with %-edges

M%
D .� t �%; �; ˛; ˛%/

is a finite set x� D � t �% that is the disjoint union of two sets of halfedges, both of
even cardinality, together with a triple of permutations .�; ˛; ˛%/ on x� . Here ˛ and ˛%

are fixed-point free involutions on � and �%, respectively, and extended to the whole
of x� by setting ˛.h/ D h 8h 2 �% and analogous for ˛%.

The cycles of ˛% are pairs of halfedges in �% which we will call %-edges. The com-
binatorial map M% is connected if the group freely generated by � , ˛ and ˛% acts
transitively on x� . The cycles of � are the vertices and the cycles of � ı ˛ are the faces
of M%. The dual map is defined by changing the role of vertices and faces but not
touching the %-edges M%� D .� t �%; ˛ ı �; ˛; ˛%/.

Deleting all the %-edges, one obtains an ordinary combinatorial map.

Ribbon graphs can be obtained from combinatorial maps by replacing their edges
by twisted or untwisted ribbon edges. The same holds true for combinatorial maps
with %-edges and ribbon graphs with %-edges.

Definition 2.8 (Ribbon graph with %-edges). A ribbon graph with %-edges

G % D .V ;E;E%/

is a ribbon graph G D .V ;E/, together with a set of line segments E%, called %-edges,
such that their endpoints are connected to the corners of the ribbon graph. The ribbon
graph G % is called connected if it is connected as a topological space. The notions of
faces, corners and edges of G % refer to the ones of the ribbon graph G D G % � E%,
which is obtained by deleting the %-edges.4

This dual of a ribbon graph with %-edges is obtained by performing the partial
dual [13, 18, 19] with respect to the ribbon edges. This is the dual of the underlying
ribbon graph obtained by ignoring the %-edges, where we keep track of the corners to
which the %-edges are hooked.

3. Matrix models

We first deal with the case of matrices (order D D 2 tensors) in Definition 2.3. In
particular,

M a1a2M b1b2 D .�1/j1jCj2jM b1b2M a1a2 ;

4Ribbon graphs with %-edges are embedded in nodal surfaces, that is, Riemann surfaces
glued at marked points. The ribbon graphs encode closed topological surfaces and by identifying
points that are connected by a %-edge, a gluing prescription is given.
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Figure 6. Graphical representation of the matrix model invariants up to quartic order.

i.e., the models with mixed symmetry are fermionic. We show that, for each ribbon
graph in the perturbative expansion of the free energy and the two-point function of
the model, changing one (or both) of the symmetry group factors in the O.N1/ ˝
O.N2/-model from O.N / to Sp.N / amounts to changing the sign accompanying the
corresponding N factor.

Complex random matrix models in the intermediate field representation have been
studied in [32]. The sign changes between the O.N1/˝ O.N2/- and the Sp.N1/˝
Sp.N2/-models have also been studied in [43] by different methods.

Denoting by the superscript T the transpose, the action of the real quartic graded
matrix model is written as5

SŒM� D
1

2
M a1a2g1a1b1g

2
a2b2

M b1b2 C
�

4
.M a1a2g1a1b1g

2
a2b2

M b1b2/2

C
�

4
.�1/j2j.M a1

1
a1
2g1
a1
1
a2
1

M a2
1
a2
2/g2

a1
2
b1
2

g2
a2
2
b2
2

.M b1
1
b1
2g1
b1
1
b2
1

M b2
1
b2
2 /

D
1

2
TrŒMg2M T.g1/T�C

�

4
.TrŒMg2M T.g1/T�/2

C
�

4
.�1/j1j TrŒ.Mg2M Tg1/2�; (3.1)

where we note that the trace is TrŒA� D Aaa D A
abgba. This action is invariant under

the transformationM !O1XO
T
2 withO1 2OOO1.N1/,O2 2OOO2.N2/. The three terms

in (3.1) can be represented by 2-colored graphs or alternatively ribbon graphs, as
depicted in Figure 6.

Whereas all terms in the action of the O.N1/ ˝ O.N2/-model are positive for
�; � 2 RC, in the Sp.N1/ ˝ Sp.N2/-model, this is only true for the � term: the
quadratic and the � terms are in general indefinite.

5In the pure Sp.N / case with g1 D g2 D !, the convergence of (3.1) is not clear, since the
quadratic part has negative modes.
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3.1. Intermediate field representation

The intermediate field (Hubbard–Stratonovich) representation is obtained by intro-
ducing an auxiliary field per quartic interaction and integrating out the original field.
To be precise, we use that

exp
°
�
�

4
.TrŒMg2M T.g1/T�/2 �

�

4
.�1/j1j TrŒMg2M Tg1Mg2M Tg1�

±
D

h
e
1
2 .

@
@�
P @
@�
/e
1
2
@
@%

@
@% exp

°
�{

r
�

2
TrŒMg2M T.g1/T�%

� {

r
�

2
TrŒMg2M T.g1�g1/T�

±i
%;�D0

; (3.2)

where % is a real commuting (bosonic) scalar field and � D .�1/j1j�T is a (bosonic)
real graded-symmetric matrix, and we introduce the shorthand notation:� @

@�
P
@

@�

�
WD

@

@�ab
P ab;dc

@

@�cd
; P ab;dc D

1

2
.gad1 gbc1 C .�1/

j1j gac1 g
bd
1 /

with P the (anti-)symmetric projector, taking into account the symmetry of the �
field. Note that g1Mg2M Tg1 has the same graded symmetry as � .

Equation (3.2) is just a Gaussian integral over the intermediate fields % and � .
We favor here the notation of the Gaussian integral as a differential operator (see, for
instance, [7]) for two reasons. First, the Gaussian integral is formal in some cases
(that is, the covariance is not necessarily positively defined). Second, in this form
the perturbative expansion of the Gaussian integral is straightforward. In order to
prove (3.2), we expand the exponentials and commute the sum and the derivatives:�

e
1
2 .

@
@�
P @
@�
/e
1
2
@
@%

@
@%

1X
n;pD0

.��
2
/n.��

2
/p

.2n/Š.2p/Š

� .TrŒMg2M T.g1/T�%/2n.TrŒMg2M T.g1�g1/T�/2p
�
%;�D0

D

� 1X
n;pD0

.��
2
/n.��

2
/p

2nnŠ2ppŠ.2n/Š.2p/Š

� @
@%

@

@%

�n
.TrŒMg2M T.g1/T�%/2n

�

� @
@�
P
@

@�

�p
.TrŒMg2M T.g1�g1/T�/2p

�
%;�D0

D

� 1X
n;pD0

.��
4
/n.��

4
/p

nŠpŠ
.TrŒMg2M T.g1/T�/2n

� ..�1/j1j TrŒMg2M Tg1Mg2M Tg1�/p
�
%;�D0

;
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where we used

Œg1Mg2M Tg1�abg
adgbcŒg1Mg2M Tg1�cd

D .�1/j1j TrŒg1Mg2M Tg1Mg2M Tg1�:

The partition function now reads

Z.�; �/ D

Z
ŒdM� e�

1
2 TrŒMg2M T.g1/T�

�
e
1
2 .

@
@�
P @
@�
/e
1
2
@
@%

@
@%

� e
�{
p
�
2 TrŒMg2M T.g1/T�%�{

q
�
2 TrŒMg2M T.g1�g1/T��

%;�D0
;

and all the terms containing M can be collected in a quadratic form using

Tr.MAM TBT/ DM.B ˝ A/M:

The exponent can be written as �1
2
M.R�1 ˝ g2/M with the resolvent operator R:

ŒR�1.�; �/�ab D .1C {
p
2�%/ıab C {

p
2�.�g1/ab:

As the resolvent and its inverse are operators, we write them with a covariant and
a contravariant index. These indices are lowered with g1 and raised with .g1/�1.

Commuting the integral and derivative operators, the integral M is Gaussian and
can be performed leading to the intermediate field representation:

Z.�; �/ D
�
e
1
2 .

@
@�
P @
@�
/e
1
2
@
@%

@
@% e.�1/

j1jCj2jN2
2 Tr lnR.�;�/�

%;�D0
: (3.3)

Now N2 is an explicit parameter in the integral, while N1 is hidden in the remain-
ing traces. The sign .�1/j1jCj2j tracks the bosonic/fermionic character of the original
matrix. The sign .�1/j1j tracks the symmetry of the intermediate matrix field � (which
agrees with that of g1). Both indices of � have color 1 which reflects the fact that �
transforms in the (anti-)symmetric tensor representation of OOO1.N1/, that is, � !
O1�O

T
1 forO1 2OOO1.N1/. This is to be contrasted with the fieldM which transforms

in the tensor product of the fundamental representations ofOOO1.N1/ andOOO2.N2/.

3.2. Perturbative expansion

The perturbative expansion of Z is obtained by Taylor expanding the interaction:

Z.�; �/ D

�
e
1
2 .

@
@�
P @
@�
/e
1
2
@
@%

@
@%

1X
VD0

1

V Š

� .�1/j1jCj2jN2
2

Tr lnR.�; �I %; �/
�V �

%;�D0

;
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and commuting the Gaussian integration with the sum. Note that R denotes the resol-
vent operator, hence it naturally has a covariant and a contravariant index. Taking into
account that

lnR D �
X
p�1

.�1/pC1

p
.{
p
2�%C {

p
2��g1/p;

R D
X
p�0

.�1/p.{
p
2�%C {

p
2��g1/p;

the derivatives of the resolvent and its logarithm are

@

@�ab
Tr lnR D �{

p
2�Pab;cdR

dc ;

@

@�ab
Rcd D �{

p
2�Pab;efR

ceRfd ;

@

@%
Tr lnR D �{

p
2� TrŒR�;

@

@%
Rab D �{

p
2�Racg1cdR

db
D �{

p
2�.R2/ab;

where R2 denotes the square of the operator R.
Each term in the perturbative series can be represented as a ribbon graph with

%-edges (see Section 2.2) as depicted in Figure 7:

• We represent each Tr lnR as a disc with boundary oriented counter-clockwise.

• The derivatives with respect to � create ribbon halfedges representing the free
indices of R. The first derivative acting on a vertex creates a halfedge and an R
associated to the corner (region between two consecutive halfedges) of the vertex.
Subsequent derivatives split the existing corners creating new R’s.
The indices ab of the resolvent Rab are associated to the ends of the corner: a for
the source and b for the target in the sense of the arrow.

• The ribbon halfedges are connected into ribbon edges corresponding to the pro-
jectors P inside the @

@�ab
P ab;dc @

@�cd
operators. The edges have an orientation

represented by arrows on the strands bounding an edge: corresponding to P ab;dc ,
we orient the strands from .ab/ to .dc/. Note that

.@�abR
pq/P ab;dc.@�cdR

ef /

D .�2�/.Rpa
0

Rb
0q/Pab;a0b0P

ab;dcPcd;c0d 0.R
ec0Rd

0f /

D .��/.Rpa
0

Rb
0q/2P dc

a0b0 Pcd;c0d 0.R
ec0Rd

0f /

D .��/.Rpa
0

Rb
0q/2Pa0b0;d 0c0.R

ec0Rd
0f /:
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D ..�1/j1j/5

Figure 7. Left: A ribbon graph with %-edges in the priori orientation: corners counter-clockwise
and strands parallel. Right: Coherent orientation of arrows along every face. Five arrows had to
be reoriented.

The projector generates two terms. The first one g1
a0d 0

g1
b0c0

corresponds to an edge
with parallel strands. The second one .�1/j1jg1a0c0g

1
b0d 0

corresponds to a twisted
edge.

• A derivative with respect to % splits corner of a vertex also, but connects these two
halves by g1. We represent this by a new type of halfedge, called %-halfedge. The
%-halfedges are connected into %-edges corresponding to the @

@%
@
@%

operators. We
represent these edges as dashed lines.
In the end, all intermediate fields are set to zero thus the resolvents are set to the
identity R D 1. A corner that has been split by %-halfedges behaves like a single
ordinary corner of a ribbon graph: for this reason corner will always refer to the
region between two ribbon halfedges only.

Ignoring the twisting of the edges, a ribbon graph is a combinatorial map with %-
edges M%. We denote by hv the ribbon-halfedges of the vertex v, each of which comes
equipped with a pair of indices .bhv ; ahv /: b is the target of an arrow and a the source
of another one. If hv and h0v are two neighboring ribbon-halfedges with hv < h0v in
the cyclic order around v, the corner between them is denoted by .hv; h0v/. A ribbon-
edge connecting two vertices v; w 2 M% is denoted by its halfedges e D ¹hv; hwº.
Furthermore, we denote by V.M%/, E.M%/ and E%.M%/ the numbers of vertices,
ribbon-edges and %-edges of M% and by deg v and deg% v the number of ribbon-
and %-halfedges at v. The perturbative series can be written as a sum over labeled
combinatorial maps with %-edges:

Z.�/ D
X
M%

1

V.M%/Š 2V.M
%/

� Y
v2M%

1

deg vŠ deg% vŠ

�
� ..�1/j1jCj2jN2/

V.M%/.��/E.M
%/.�2�/E

%.M%/

�

� Y
v2M%

Y
.hv ;h

0
v/

corner of v

g1ahvbh0v

�� Y
eD¹hv ;hwº

ribbon-edge

2P bhvahv ;ahwbhw
�
:
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We expand the two terms in each edge projector to sum over ribbon graphs with
(twisted) edges and %-edge. This is because the amplitude depends on the twisting:
every face (closed strand) of the ribbon graph contributes a factor ofN1 because along
a face an even number of g1’s concatenate into a trace. However, it might be necessary
to transpose several g1’s in order to get this trace: we represent these transpositions
by reversing the corresponding arrows along the edge strands and the corners of the
ribbon graph, see Figure 7. Overall we get (we explain the notation below)

Z.�/ D
X
M%

1

V.M%/Š 2V.M
%/

� Y
v2M%

1

deg vŠ deg% vŠ

�
� ..�1/j1jCj2jN2/

V.M%/.��/E.M
%/.�2�/E

%.M%/

�

X
ŒG%�2OrbT.M

%/

jStabT .G
%/j.N1/

F.G%/..�1/j1j/#transpositionsC#twists

D

X
M%

jStabT .M
%/j

V.M%/Š 2V.M
%/

� Y
v2M%

1

deg vŠ deg% vŠ

� X
ŒG%�2OrbT.M

%/

A.G %/ (3.4)

with the amplitude A.G %/ of the ribbon graph. Some notation has been introduced in
this equation. Because every ribbon-edge can be twisted or not, there are naively 2E

ribbon graphs, associated to M%. But ribbon graphs are in fact equivalence classes,
emphasized by ŒG %�. Two graphs are equivalent if one can be obtained from the other
by successively reversing the order of halfedges of a subset of its vertices and—for
each vertex separately—twisting all ribbon-edges connected to these vertices (edges
with two twists are again untwisted). As proven in Appendix B, this degeneracy is
counted by the cardinal of the stabilizer jStabT .G

%/j of the action of a finite group6 T

whose elements twist a subset of the ribbon-edges of G % (T acts trivially on the %-
edges). In the last step leading to (3.4), we used the fact that, as T is abelian,

StabT .G / D StabT .M/

for any G 2 OrbT .M/, where OrbT .M/ is the orbit of the combinatorial map M

under the action of T .
For example, the amplitude of the ribbon graph in Figure 7 is

..�1/j1jCj2jN2/
3„ ƒ‚ …

vertices

.��/4„ƒ‚…
edges

.�2�/2„ ƒ‚ …
%-edges

..�1/j1j/„ ƒ‚ …
twists

.N1/„ƒ‚…
faces

..�1/j1j/5„ ƒ‚ …
arrow

reorientations

D .��/4.�2�/2..�1/j1jN1/..�1/
j2jN2/

3:

6The group T is a subgroup of the so called ribbon group, introduced in [18], which also
includes the operation of taking the partial dual of a ribbon graph with respect to a subset of its
edges.
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Amplitudes. The amplitude A.G %/ can be further computed.
In Proposition A.1, we prove that any ribbon graph can be deformed into a con-

nected sum of

• a graph without twisted edges embeddable into a closed orientable surface †g of
genus g;

• either no, one or two graphs with a single twisted edge, embeddable into the pro-
jective plane RP2.

This is the ribbon graph equivalent of the classification theorem of closed two-
dimensional surfaces. The crucial observation is that one can track the power of �1 in
the amplitude under these deformations. In Theorem A.11, we show that for a ribbon
graph with twists and which requires transpositions in order to coherently orient the
faces:

.�1/V.G /
� Y
e2E.G /

.�1/�.e/
�� Y

f 2F .G /

.�1/t.f /
�
D .�1/F.G /;

where �.e/ D 0 if the edge e is untwisted (straight) and �.e/ D 1 if the edge is
twisted; t .f / is the number of reorientations of arrows required to coherently ori-
ent the face f .

The graph G % can be seen as the union of two ribbon graphs:

• One ribbon graph has color 2 and is trivial. It consisting in all the vertices of G %,
each bounded by one face and has no edges. The graph has no twists (as it has no
edges) and all its faces are coherently oriented.

• The second one is the graph of color 1. It has twisted edges, and some transposi-
tions are needed in order to coherently orient its faces.

Then the amplitude of a graph in (3.4) can be written as

A.G %/ D .�2�/E
%.G%/.��/E.G

%/..�1/j1jN1/
F.G%/..�1/j2jN2/

V.G%/;

proving equation (1.1) in Theorem 1.2 for D D 2.

Combinatorial weights. The combinatorial weights in equation (3.4) simplify by
gathering the labeled graphs corresponding to the same unlabeled ribbon graph with
%-edges:

Z.�; �/ D
X
ŒG%�

W.G %/ A.G %/;

where the (positive) weights W.G %/ include all the combinatorial factors coming from
partially resuming (3.4) to a sum over equivalence classes.
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Remark 3.1 (Dual graphs). The amplitudes of a ribbon graph and its dual are relat-
ed by

A.G �/ D .��/E.G
�/..�1/j1jN1/

F.G�/..�1/j2jN2/
V.G�/

D .��/E.G /..�1/j2jN2/
F.G /..�1/j1jN1/

V.G /:

We will see below that W.G %/ D W.G %�/. In particular, for the mixed O.N / ˝
Sp.N /-models, we get A.G %�/ D .�1/V.G

%/CF.G%/A.G %/, hence the contributions
of a graph and its dual cancel if V.G %/C F.G %/ is odd.

A heuristic argument why W.G %/DW.G %�/ goes as follows. We split the quartic
interactions using an intermediate field �1 with indices of color 1 coupling to M via
/ M..g1�1g

1/˝ g2/M . But one can choose the intermediate field to have indices
of color 2 and coupling /M.g1 ˝ .g2�2g2//M . The vertices now contribute factors
of N1 and the faces N2. For any graph, contracting the intermediate field �1 and
introducing �2 in the orthogonal channel passes to the dual graph.

As the combinatorics is insensitive to the symmetry, we focus on the O.N1/ ˝
O.N2/-model. The connected two-point function of this model

G2.�; �/ D Z
�1.�; �/

Z
d�ŒM�TrŒMıM Tı�;

obeys a Dyson–Schwinger equation (DSE). Using

0 D Z�1.�; �/

Z
ŒdM�

�
@

@M a1a2

�
M a1a2e�

1
2 Tr
�
MıM Tı

�
� �4 .TrŒMıM Tı�/2��4 TrŒ.MıM Tı/2�

�
;

we conclude that

G2.�; �/ D N1N2 C .4�@� C 4�@�/ lnZ.�; �/: (3.5)

The free energy lnZ expands in connected graphs. The derivative operator 2�@� C
2�@� generates a rooting of the graph, that we get a sum over graphs with a marked %-
or ribbon-halfedge. Rooted graphs are simpler to count. In Proposition B.1, we show
that the perturbative series of G2 can be written as

G2.�; �/ D
X

ŒG%� connected, rooted

1

2C.G
%�E%/�1

A.G %/; (3.6)

where G % � E% is the graph obtained from G % by deleting all the %-edges and
C.G % � E%/ denotes the number of its connected components. Note that even if G % is
connected as a ribbon graph with %-edges, the graph G % � E% may be disconnected.
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It is well known that rooting trivializes the symmetry factors in ordinary combi-
natorial maps. What is non-trivial is that it also simplifies the factor 2�V jStabT .M

%/j

in (3.4) to 2�.C.G
%�E%/�1/. The combinatorial weight in (3.6) is manifestly invariant

under duality. Rooted ribbon graphs can be embedded into two-dimensional surfaces
with one boundary component corresponding to the rooted face.

The Dyson–Schwinger equation for the connected two-point function can be in-
tegrated in the sense of formal power series to yield the perturbative expansion of the
free energy:

lnZ.�; �/ D
X

ŒG%� connected, rooted,
E orE%>0

1

2C.G
%�E%/C1.E CE%/

A.G %/;

where E and E% denote the number of ribbon edges and %-edges in G %, respectively.
The integration does not spoil the symmetry under duality because the powers of the
coupling constants in the amplitude only depend on the number of edges. Finally, the
partition function Z can then be obtained by exponentiating lnZ.

4. Tensor models

The case D � 3 is treated similarly to the case D D 2. However, as the number of
available quartic invariants grows exponentially withD (recall Lemma 2.2), the num-
ber of intermediate fields grows also. Moreover, the intermediate fields are matrices
with different dimensions. At most one of the Nc factors can be rendered explicit
as a parameter in the integral, and one must rely on graphical methods to track the
other Nc’s.

In D � 3 the perturbative expansion is an expansion in colored multi-ribbon
graphs which can be understood intuitively as stacked ribbon graphs. The Nc to �Nc
duality holds graph by graph because only the combination .�1/jcjNc appears in the
amplitude of a graph.

If one aims to study tensor (or matrix) models with a sensible large N limit, one
needs to rescale the coupling constants with powers of N . Care has to be taken if one
wants to preserve the manifest N to �N duality: this can sometimes require a flip of
the sign of some of the coupling constants.

4.1. Intermediate field representation

Complex random tensor models in the intermediate field representation were, for
example, studied in [15, 26]. We introduce an intermediate field per quartic inter-
action. For a subset of the colors C , we denote by†C the set ofN jC j �N jC j matrices
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(where jC j denotes the cardinality of C ) taken to be symmetric if the sum of the
parities of the indices in C is even and anti-symmetric if it is odd:

†C
D

´
Sym2.

N
c2C Hc/;

P
c2C jcj D 0 mod 2;

ƒ2.
N
c2C Hc/;

P
c2C jcj D 1 mod 2;

�a
1
C
a2

C D .�1/
P
c2C jcj�a

2
C
a1

C 8� 2 †C ;

where we recall that aC denotes a multi-index .ac j c 2 C/. Note that � is always
commuting (bosonic) because

N
c2C Hc is either purely odd or even. For C D ;, set

� 2ƒ01 the commuting scalars. Since � are (anti-)symmetric under exchange of their
two multi-indices, it is useful to introduce the (anti-)symmetric projector

PC W †
C
!†C ;

.PC /
a1

C
a2

C

;b1
C
b2

C

WD
1

2

�Y
c2C

ı
a1c

b1c
ı
a2c

b2c
C .�1/

P
c2C jcj

Y
c2C

ı
a1c

b2c
ı
a2c

b1c

�
;

and PC is the identity for C D ;. The projector is such that

.PC /
a1

C
a2

C

;b1
C
b2

C

D .�1/
P
c2C jcj.PC /

a2
C
a1

C

;b1
C
b2

C

D .�1/
P
c2C jcj.PC /

a1
C
a2

C

;b2
C
b1

C

;

@�a
1
C
a2

C

@�b
1
C
b2

C

D .PC /
a1

C
a2

C

;b1
C
b2

C

:

Lemma 4.1 (Hubbard–Stratonovich transformation). Every quartic tensor invariant
I.T / in equation (2.1)

I.T / D
X

a1
D
;a2

D
;b1

D
;b2

D

�
T a

1
DT a

2
D

Y
c2DnC

gc
a1ca

2
c

��
T b

1
DT b

2
D

Y
c2DnC

gc
b1cb

2
c

�
�

�Y
c2C

.� sgn.�c//jcjgc
a1cb

�c.1/
c

gc
a2cb

�c.2/
c

�
D

X
a1

C
;a2

C
;b1

C
;b2

C

.g˝DnC .T; T //a
1
C
a2

CKa1
C
a2

C
;b1

C
b2

C
.g˝DnC .T; T //b

1
C
b2

C ;

with �c fixed permutations of two elements, can (formally) be expressed as a Gaussian
integral

e�
�
4 I.T / D

�
e
1
2 .

@
@�
;PCK

@
@�
/ e
�{

q
�
2 .�;g

˝DnC .T;T //�
�D0

with
.PCK/

a1
C
a2

C
;b1

C
b2

C D .PC /
a1

C
a2

C

;c1
C
c2

C

Kc
1
C
c2

C
;b1

C
b2

C

and
.A;B/ D ga1a2gb1b2Aa1b1Ba2b2 ;

the standard pairing between a vector space and its dual.
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Proof. The indices of color c of the kernel K are connected as

Ka1
C
a2

C
;b1

C
b2

C
�

8<: .�1/jcjgca1cb1cgca2cb2c ; �c D .1/.2/;

gc
a1cb

2
c

gc
a2cb

1
c

; �c D .12/;

hence, as an operator, K2 D 1 and PCK D KPC . Taking into account that

gc
b1cb

2
c
D .�1/jcjgc

b2cb
1
c
; K

a1
C
a2

C

;b1
C
b2

C

D K
a2

C
a1

C

;b2
C
b1

C

;

T b
1
DT b

2
D D .�1/

P
c2D jcjT b

2
DT b

1
D ;

we have

K
a1

C
a2

C

;b1
C
b2

C

�
T b

1
DT b

2
D

Y
c2DnC

gc
b1cb

2
c

�
D .�1/

P
c2C jcjK

a2
C
a1

C

;b2
C
b1

C

�
T b

2
DT b

1
D

Y
c2DnC

gc
b2cb

1
c

�
;

that is, PCKg
˝DnC .T;T /DKg˝DnC .T;T /, henceKg˝DnC .T;T / is a matrix with

the same symmetry type as � . It follows that

.g˝DnC .T; T /; .PCKPC /g
˝DnC .T; T // D .g˝DnC .T; T /;Kg˝DnC .T; T //;

hence expanding the exponentials and commuting the sum and the derivative operator
we get� 1X

nD0

.��
4
/n

nŠ.2n/Š

� @
@�
; PCK

@

@�

�n
.�; g˝DnC .T; T //2n

�
�D0

D

� 1X
nD0

.��
4
/n

nŠ

�
�
.g˝DnC .T; T /PC /a1

C
a2

C
.PCK/

a1
C
a2

C
;b1

C
b2

C .PCg
˝DnC .T; T //b1

C
b2

C

�n�
�D0

D

1X
nD0

1

nŠ

�
�
�

4
I.T /

�n
:

When dealing with several quartic invariants, we will label them q and the cor-
responding subset of colors Cq . In order to simplify the notation, we sometimes
drop this subscript. Using the intermediate fields, the partition function of the graded
quadratic tensor model of Definition 2.3 becomes

Z.�/ D

Z
�ŒT � D

Z
ŒdT �e�

1
2g
˝D .T;T /

�
�
e
P
q2Q

1
2 .

@
@�q

;PCqKq
@
@�q

/
� e�

P
q {

q
�q
2 .�q ;g

˝DnCq .T;T //
�
�qD0

;
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where we denoted the coupling constants generically by �. We denote by 1˝C the
identity operator acting on

N
c2C Hc . We define the operator acting on

ND
cD1Hc

A.�/ D
X
q2Q

{

q
2�q1

˝DnCq ˝ �q;

A
a1

D

a2
D

D

X
q2Q

{

q
2�q

� Y
c2DnCq

ı
a1c

a2c

�
.�q/

a2
Cq

a1
Cq

;

and perform the Gaussian integral over T to obtain the partition function in the inter-
mediate field representation:

Z.�/ D
�
e
P
q2Q

1
2 .

@
@�q

;PCqKq
@
@�q

/
e�

.�1/

P
c2D jcj

2 Tr ln.1˝DCA.�//
�
�qD0

: (4.1)

This is the generalization of equation (3.3) to D > 3. The resolvent operator for
tensors is R D .1˝D C A.�//�1. The field % we encountered in D D 2 corresponds
to the unique disconnected quartic invariant Cq D ;. For now, we keep all factors Nc
in the trace: the trace over the color 1 space can be performed explicitly because
1 … Cq for all q 2 Q. In strict generalization of the matrix cases, the sign .�1/

P
c2D jcj

accounts for fermionic/bosonic nature of the tensor field T . Each intermediate field �q
has its own symmetry captured by the sign .�1/

P
c2Cq jcj. The effect of the Hubbard–

Stratonovich transformation on the Feynman diagrams is depicted schematically in
Figure 8.

! !

�q1

�q2

�q3

Figure 8. The Hubbard–Stratonovich transformation.

4.2. Perturbative expansion

Because of the tensor products, the Feynman graphs of the perturbative expansion
of (4.1) are D-colored multi-ribbon graphs. Intuitively, they can be understood as
D stacked ribbon graphs. Ribbon graphs are obtained from combinatorial maps by
replacing their edges by ribbon edges which can then be twisted or not. Similarly, D-
colored multi-ribbon graphs are obtained from edge multicolored combinatorial maps.
These, in turn, are combinatorial maps with edges labeled by subsets of colors C �D .
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¹2º

¹2; 3º

¹1; 2; 3º

¹1º

Figure 9. Left: Edge multicolored combinatorial map withD D 3. Each edge carries a subset of
colors. Center: A multi-ribbon graph obtained from this multicolored combinatorial map. Right:
Multi-ribbon edge corresponding to the quartic invariant of Figure 1 in its untwisted (top) and
twisted (down) state.

Definition 4.2 (Edge multicolored combinatorial map [28]). An edge multicolored
combinatorial map M, depicted in Figure 9 on the left, is composed of

• a finite set � that is the disjoint union of sets �C of halfedges of the colors C 2D ,
all of even cardinality � D

F
C�D �C ;

• a permutation � on � ;

• for every C 2 D an involution ˛C on �C with no fixed points. The involution ˛C

can be extended to the whole of � by setting ˛C .h/ D h 8h 2 �n�C .

The set of cycles of � is the set of vertices of the map V.M/. The set of cycles
of ˛C is the set of edges of colors C , EC .M/, and E.M/ D

S
C�D EC .M/ is the

set of all the edges of the map. The cardinalities of these sets are denoted by V.M/,
EC .M/, E.M/, respectively.

An edge multicolored combinatorial map is connected if and only if the group
freely generated by � and the ˛C acts transitively on � .

The following definition of multi-ribbon graphs is a generalization of signed rota-
tion systems [19] which are equivalent to ribbon graphs.

Definition 4.3 (D-colored multi-ribbon graph). A D-colored multi-ribbon graph G,
depicted in Figure 9 in the center, is an edge multicolored combinatorial map M

equipped with binary variables jC j taking values 0 or 1 on each edge with colors C

(for each edge, we have either a 0 or a 1 for each of its colors):

for e 2 EC .M/; e 7! �.e/ D ¹�c.e/ 2 ¹0; 1º j c 2 Cº:

These edges are called (twisted) multi-ribbon edges. Twisting a multi-ribbon edge e
amounts to flipping all the variables �.e/, that is, �c.e/! �c.e/C 1 mod 2.
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Two D-colored multi-ribbon graphs are equivalent if they differ by reversing the
order of halfedges around a vertex and simultaneously twisting every incident multi-
ribbon edge (self-loops are twisted twice) at a finite number of vertices.

The following graphical representation is depicted in Figure 9. The vertices of
a multi-ribbon graph are represented by D concentric discs with colors ordered from
the innermost to the outermost circle. A multi-ribbon edge e 2 EC .M/ connects the
discs with colors in C of its end vertices by ribbon edges. Only discs of the same
color can be connected and the ribbons carry the color of the discs they are connect-
ing. A 0/1 value of �c.e/ indicates that the ribbon with the color c of the edge e is
un-/twisted. The whole multi-ribbon edge is called untwisted if the ribbon of biggest
color in C is untwisted. The %-edges encountered in Section 3 are the edges with
colors C D ;. They can be represented as dashed.

The faces of color c of G are the closed circuits obtained by going along the sides
of the ribbon edges and along the discs of the vertices of color c. The set of faces of
color c of G is denoted Fc.G/ and its cardinality is denoted Fc.G/. The restriction
of G to a single color Gc is obtained by deleting all the discs and ribbon with other
colors. The graph Gc is an ordinary ribbon graph, possibly disconnected. Observe that
Fc.G/ is also the number of faces of the ribbon graph Gc .

The perturbative expansion of (4.1) is obtained by Taylor expanding and commut-
ing the sum and the Gaussian integral:

Z.�/ D

1X
VD1

.�1/V
PD
cD1 jcj

V Š2V

�
e
P
q2Q

1
2 .

@
@�q

;PCqKq
@
@�q

/
.�Tr ln.1˝D

C A//V
�
�qD0

;

where we suppressed the argument of A. Each Tr ln.1˝D C A/�1 represents a multi-
ribbon vertex. The derivatives

@

@�q
.1˝D

C A/�1 D .1˝D
C A/�1

�
�
@A

@�q

�
.1˝D

C A/�1;

@

@�q
Tr ln.1˝D

C A/�1 D Tr
h
.1˝D

C A/�1
�
�
@A

@�q

�i
;

@A

@�q
D {

q
2�q1

˝DnCq ˝ PCq

create multi-ribbon halfedges which, because of the projector, are joined in a twisted
or untwisted way. The possible types of multi-ribbon edges depend on the quartic
invariants q 2 Q: for brevity the multi-ribbon edges associated to the quartic invari-
ant q are called q-edges. The trace induces a cyclic ordering around the vertex which
by convention we take to be counter-clockwise. Following an index of color c, it goes
around the vertex until it encounters a multi-ribbon halfedge with c 2 Cq . As in the
matrix case, the order of indices is important if jcj D 1. This is accounted for by
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!

Figure 10. Left: A 3-colored multi-ribbon graph. The arrows indicate the order of indices of
the gc

acbc
. In the a priori orientation, arrows point counter-clockwise around vertices and paral-

lel along edges. Right: Ribbon graphs obtained by restricting to a single color. The black arrows
had to be flipped to arrive at a coherent orientation along each face. Compare to Figure 7.

orienting the strands of a vertex in a counter-clockwise manner (Figure 10). Denoting
R D .1˝D C A/�1, the contribution of an edge can be written as

.�{

q
2�q/R�b1Ra1�.PCqKq/

b1a1;b2a2R�b2Ra2�;

and upon setting �q D 0 all the resolvents reduce to the identity operator.
We denote by M the edge multicolored maps and by degq v the number of edges

of type q incident to the vertex v. As in the matrix case, the edges with C D ; are spe-
cial. We call them %-edges and denote sometimes the number of such edges E%.M/.
However, note that the %-edges are also counted as a particular case q-edges for q 2Q.

The halfedges incident at a vertex have colors Cq , and we denote them h
Cq
v , f

Cq0
v

and so on. Each halfedge is composed of jCqj ribbon halfedges, one for each color
in Cq . The corners7 of the map M are the pieces of vertices comprised between two
consecutive halfedges, and we denote them by .hCq

v ; f
Cq0
v /, with the successorf

Cq0
v

of hCq
v when turning around v. The partition function becomes

Z.�/ D
X
M

1

V.M/Š2V.M/

� Y
v2M

1Q
q degq vŠ

�
..�1/

P
c2D jcj/V.M/2E

%.M/

�

Y
q2Q

.��q/
Eq.M/

Y
v2V.M/

� Y
.h

Cq
v ;f

Cq0

v / corner of v

Y
c2D

gc.ac/
h

Cq
v

.bc/
f

Cq0
v

�
�

Y
eD¹h

Cq
v ;h

Cq
w º2E.M/

�
.2PCqKq/

.bCq /
h

Cq
v

.aCq /
h

Cq
v

;.bCq /
h

Cq
w

.aCq /
h

Cq
w

�

Y
c…Cq

.gc/
.bc/

h
Cq
v

.ac/
h

Cq
v .gc/

.bc/
h

Cq
w

.ac/
h

Cq
w

�

7We exclude the % halfedges when identifying the corners.
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with the convention such that if CqD;, then there is no corner and the edge .2PCqKq/

equals 1.
An index of color c is insensitive to the halfedges with colors different from c: an

index follows a face and closes in a trace when the face closes. As in the matrix case,
we obtain either straight edges or twisted ones coming from the two terms in PCq .
In turn, the edges contract on Kp kernels that send the color c either in a parallel
channel or in a cross one. Overall, the ribbon of color c of the edge .2PCqKq/ can
either be straight, which we denote �c.e/D 0, or twisted, which we denote �c.e/D 1.
Let us track the indices of color c coming from a term in PCq and one possible Kq ,
for instance,

.2PCqKq/ � ı
b1c
i ı
a1c
j .�1/

jcjgi b
2
cgj a

2
c D .�1/jcjgb

1
cb
2
cga

1
ca
2
c :

As this term contracts the indices b together and the indices a together, it corresponds
to a ribbon of color c which is twisted. Proceeding similarly for all the edges and
recalling that some g’s need to be transposed in order to orient coherently the faces,
we conclude that

Z.�/ D
X
M

jStabT .M/j

V.M/Š 2V.M/

� Y
v2M

1Q
q degq vŠ

� X
ŒG�2OrbT.M/

A.G/;

A.G/ D ..�1/
P
c2D jcj/V.G/2E

%.G/
Y
q2Q

.��q/
Eq.G/

�

� Y
Cq¤;

Y
e2ECq .G/

.�1/
P
c2Cq �

c.e/jcj
�Y

c

Y
f 2Fc.G/

.�1/t.f /jcjNc ;

(4.2)

where t .f / denotes the number of transpositions needed to orient the face f coher-
ently.

Amplitudes. Up to the overall coupling constants, the amplitude of a graph factors
over the ribbon graphs Gc

A.G/ D 2E
%.G/

Y
q2Q

.��q/
Eq.G/

Y
c2D

h
.�1/V.Gc/jcj

� Y
e2E.Gc/

.�1/�
c.e/jcj

�
�

� Y
f 2Fc.G/

.�1/t.f /jcjNc

�i
;

and using Theorem A.11, this is

A.G/ D 2E
%.G/

Y
q2Q

.��q/
Eq.G/

DY
cD1

..�1/jcjNc/
Fc.G/; (4.3)
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and thus obeys the Nc ! �Nc duality. The %-edges associated to the unique discon-
nected invariant Cq D ; do not have a twisted or untwisted state and bring a relative
factor of two compared to the other multi-ribbon edges.

The two-point function. The connected two-point function of the tensor model

G2.�/ WD Z
�1.�/

Z
d�ŒT � T aDT bDg1a1b1 � � �g

D
aDbD

can be expressed as a perturbative series over rooted multi-ribbon graphs. As in the
matrix case, rooting drastically simplifies the combinatorial factors. The DSE for G2
follows from

0 D

Z
dT

@

@T aD
.T aD e�SŒT �/ ) G2.�/ D

Y
c2D

Nc C
X
q2Q

4�q@�q lnZ: (4.4)

Graphically, the derivatives select an edge of a multi-ribbon graph and because every
edge has two halfedges,

P
q2Q 2�q@�q generates a sum over all possible rootings.

Rooted unlabeled multi-ribbon graphs are equivalence classes of labeled multi-ribbon
graphs that differ only by relabeling of their halfedges, but keeping the root halfedge
fixed. The calculation of jStabT .G/j is a straightforward generalization of the ordi-
nary ribbon graph case, and in Proposition B.1 we show that

G2.�/ D
X

ŒG� connected, rooted

1

2C.G�E%/�1
A.G/; (4.5)

where C.G � E%/ counts the number of connected components of the multi-ribbon
graph obtained after deletion of the %-edges. The free energy lnZ.�/ can be obtained
by integrating the DSE,

lnZ.�/ D
X

ŒG� connected, rooted,
at least oneEq>0

1

2C.G�E%/C1
P
q2QEq.G/

A.G/: (4.6)

Rescaled theories. Models which admit a good 1=N expansion involve couplings
rescaled by various powers of N . In order to maintain the N to �N duality of the
amplitudes, one needs sometimes to flip the sign of the couplings. For instance, for
D D 2, in order to get a sensible large N limit, one needs to rescale the coupling by
a factorN . If one rescales �! �=N in the O.N /˝O.N /-model and �! ��=N in
the Sp.N /˝ Sp.N /-model, the amplitudes graphs differ by .�1/�.G /.8 The equality
is reestablished if one sends at the same time �! ��.

8This was also found in [43].
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A. Classification of ribbon graphs

A.1. Canonical form

We prove in this subsection that a ribbon graph can be brought into a canonical form
obtained by first separating the oriented and unoriented parts of the graph (Proposi-
tion A.1) and then simplifying the oriented part (Proposition A.3).

Proposition A.1. Every connected ribbon graph G is homeomorphic as a topological
surface (two-dimensional CW complex) to a ribbon graph G 0 such that

• G 0 has only one vertex;

• G 0 has either none, or one or two twisted simple self-loops;

• all the remaining edges of G 0 are untwisted.

Equivalently,

G Š G 0 Š

8̂̂<̂
:̂

G†g ; orientable with k D 2g;

G†g _ GRP2 ; unorientable with k D 2g C 1;

G†g _ GRP2 _ GRP2 ; unorientable with k D 2g C 2;

where G†g a ribbon subgraph of G 0 containing only untwisted edges and is cellularly
embedded into a closed orientable surface †g with orientable genus g (we reserve
the notation g for the orientable genus) and k is the non-orientable genus of G 0.

Proposition A.1 is illustrated in Figure 11.
In order to state our second proposition, we need the notion of clean nice crossing.

Definition A.2 (Nice crossing and clean nice crossing). Let e D ¹e1; e2º and f D
¹f1; f2º be two untwisted self-loop edges connected to the same vertex v of a ribbon
graph. Assume f1 < f2 and e1 < e2 in the cyclic order around v.

• The pair .e; f / is a nice crossing [29] if and only if e2 is the successor of f1.

• A nice crossing .e; f / is called clean nice crossing if there is no other halfedge h
of v distinct from e2, f1 satisfying e1 < h < f2, i.e., along v the halfedges are
encountered in the order : : : e1f1e2f2 : : :

Proposition A.3. Every ribbon graph G composed of only untwisted edges is homeo-
morphic as a topological surface (two-dimensional CW complex) to a ribbon graph G 0

with one vertex, one face and 2g edges forming g clean nice crossings, where g is the
orientable genus of G . Equivalently,

G ' G 0 Š Gı
_
g

GT 2 with � D 2 � 2g:
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'

'

'

Š GT 2

Š GT 2 _ GRP2

Š GRP2 _ GRP2

Figure 11. Illustration of Proposition A.1. In the first line the orientable part was further sim-
plified using Proposition A.3. We call the right-hand side the canonical form.

Note that Proposition A.3 can be applied to G†g in Proposition A.1, yielding

G ' Gı
_
g

GT 2
_

0; 1 or 2

GRP2 :

We call the right-hand side of this equation the canonical form of G , see Figure 11.
This is the ribbon graph version of classification theorem of closed surfaces, stating
that every such surface is homeomorphic to the connected sum of a sphere, some
number of tori, and either no, one or two real projective planes.

Contraction and sliding of edges. We introduce two homeomorphisms of ribbon
graphs, viewed as a topological surface with boundary. Similar moves are known in
the literature [23, 42].

Definition A.4 (Contraction of an edge, see Figure 12). Let G be a ribbon graph and
e 2 E.G / an edge connecting two distinct vertices v; w 2 V.G / of coordination p
and q. Remember that v, w and e are all topological discs.

If e is untwisted, we define G=e to be the ribbon graph obtained from G by replac-
ing v, w and e by the single vertex u D v [ e [w (which is again a topological disc)
of coordination p C q � 2 such that in the cyclic ordering around this vertex the
halfedges of v proceed the halfedges of w. The ribbon graph G=e has one vertex and
one edge fewer than G , but the same number of faces.

If e is twisted, we first push the twist along the graph by reembedding the vertexw
such that e is untwisted and proceed as before.
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!

! ! !

Figure 12. Contraction of an untwisted (first line) and twisted (second line) edge in a ribbon
graph.

... ...

... ...

Ia

e1e2 hn : : : h1 e1e2 h1 : : : hn

Ib

e1e2 hn : : : h1 e1e2hn : : : h1

Figure 13. Sliding of edges Ia and Ib. The horizontal line is the vertex with ordering from right
to left.

The contraction preserves the Euler characteristic and the orientability, and is thus
a homeomorphism of surfaces.

A spanning tree of G , that is, a connected acyclic subgraph T � G , has E.T / D
V.G / � 1 edges. One can contract all the edges in a spanning tree and decrease the
numbers of vertices and edges of G to

V.G /! V.G / � .V .G / � 1/ D 1 and E.G /! E.G / � .V .G / � 1/:

The resulting graph is a rosette graph homeomorphic to G .

Definition A.5 (Sliding of edges Ia, see Figure 13). Let e D ¹e1; e2º be a twisted
self-loop edge on the vertex v of a ribbon graph. In the cyclic ordering of halfedges
around v, let e1 < e2 and denote by e1 < h1 < h2 < � � � < hn < e2 all the halfedges
of v that are between e1 and e2.

Sliding of the halfedges h1; : : : ; hn out of the twisted edge e is defined as

(1) Reordering the halfedges to hn < � � � < h2 < h1 < e1 < e2.

(2) Adding a twist (recall that two twists on the same edge cancel) to all the edges
to which h1; : : : ; hn belong.
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... ...

...

......

...

IIa

e1e2 f1f2 hn : : : h1km : : : k1 e1e2 f1f2 hn : : : h1 km : : : k1

IIb

e1e2 f1f2hn : : : h1e1e2 f1f2 hn : : : h1

Figure 14. Sliding of edges IIa and IIb.

Note that the order of the hi ’s has been reversed. Also, note that and after the
sliding, e is a simple twisted self-loop.

Definition A.6 (Sliding of edges Ib, see Figure 13). Let e D ¹e1; e2º be a simple
twisted self-loop on the vertex v of a ribbon graph. In the cyclic ordering of halfedges
around v, let e < 1 < e2 < h1 < h2 < � � � < hn a with hi a collection of consec-
utive halfedges preceding e1 on v. As e is a simple self-loop, there is no halfedge
between e1 and e2.

Sliding of the halfedges h1; : : : ; hn past the twisted edge e is defined as

(1) Reordering the halfedges to e1 < e2 < h1 < h2 < � � � < hn.

Note that the relative order of the hi ’s has not changed, no additional twists were
introduced and e remains a simple twisted self-loop.

Both sliding operation (Ia) and (Ib) preserve the number of faces, do not change
the numbers of vertices and edges and do not alter the orientability. Thus these oper-
ations are homeomorphisms of two-dimensional surfaces.

Definition A.7 (Sliding of edges IIa, see Figure 14). Let .e D ¹e1; e2º; f D ¹f1; f2º/
be a nice crossing at the vertex v of a ribbon graph. In the cyclic ordering of halfedges
around v, let us denote by

e1 < h1 < � � � < hn < f1 < e2 < k1 < � � � < km < f2

the halfedges located between e1 and f2.
Sliding of the halfedges h1; : : : ; hn; k1; : : : ; km out of the nice crossing .e; f / is

defined as

(1) Reordering the halfedges to k1 < � � � < km < h1 < � � � < hn < e1 < f1 <

e2 < f2.

Note that the order of the set of hi ’s and kj ’s was interchanged, but the relative order
in each set remained unchanged. After sliding, .e; f / is a clean nice crossing.
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Definition A.8 (Sliding of edges IIb, see Figure 14). Let .e D ¹e1; e2º; f D ¹f1; f2º/
be a clean nice crossing at the vertex v of a ribbon graph. In the cyclic ordering of
halfedges around v, let us denote by

h1 < � � � < hn < e1 < f1 < e2 < f2

a collection of consecutive halfedges preceding e1 on v.
Sliding of the halfedges h1; : : : ; hn past the clean nice crossing .e;f / is defined as

(1) Reordering the halfedges to e1 < f1 < e2 < f2 < h1 < � � � < hn.

Note that the relative order of the hi ’s is unchanged; .e; f / remains a clean nice
crossing.

Like the sliding along twisted edges, the sliding along a nice crossing (IIa, IIb) is
a homeomorphism of two-dimensional surfaces.

Proof of Proposition A.1. Let G be a connected ribbon graph.

First. Contract a spanning tree T � G . This decreases the number of edges and ver-
tices by V.G / � 1 and the resulting ribbon graph G=T is a rosette graph, that is,
a graph with only one vertex.

Second. If G=T does not contain any twisted edges, then it can be embedded into an
orientable surface †g of genus g.

Otherwise, use sliding out of twisted self-loop edges (Ia) to create simple twisted
self-loops. This operation may create new twists in the halfedges. Once a twisted
self-loop is created, use the slide (Ib) to move it “to the right” on the vertex.

Proceed until all the twisted edges of the rosette graph belong to simple twisted
self-loops. The resulting graph is a connected sum of an orientable graph O containing
only untwisted edges and p copies of GRP2 , i.e., ribbon graphs with only one simple
twisted loop:

O _ GRP2 _ � � � _ GRP2„ ƒ‚ …
p-times

:

Third. By sliding as depicted in Figure 15, three neighboring simple twisted self-
loops can be reduced to one simple twisted self-loop and a clean nice crossing:

GRP2 _ GRP2 _ GRP2 Š GRP2 _ GT 2 ;

hence it is possible to reduce the number of simple twisted self-loops (and twisted
edges in total) to zero, one or two. Slide (Ib) the clean nice crossings to the left of the
twisted self-loops.
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(a) (b)

(c) (d)

Figure 15. Deforming three neighboring simple twisted self-loops into a graph with only one
twisted edge. (a) and (b): By inverting (Ia), slide a halfedge of the left and right twisted simple
loop into the central one. This creates a nice crossing. (c): Use (IIa) to slide the central twisted
loop out of the nice crossing. (d): The result has only a single simple twisted loop.

Finally. One arrives at a graph G 0 of the form

G 0 Š

8̂̂<̂
:̂

G†g ; orientable with k D 2g;

G†g _ GRP2 ; unorientable with k D 2g C 1;

G†g _ GRP2 _ GRP2 ; unorientable with k D 2g C 2

with �.G / D �.G 0/ D 2 � k.

Proof of Proposition A.3. Let G be a connected ribbon graph with only untwisted
edges. Such a graph can be embedded into an orientable surface.

First. Contract a spanning tree T1 � G to arrive at a rosette graph G=T1.

Second. Contract a spanning tree in the dual graph T2 � .G=T1/
�. This corresponds

to deleting edges in G in a way that preserves the Euler characteristic, the orientability
and the connectivity.

This reduces the number of faces and edges by F.G /� 1 and gives a superrosette
graph R, that is, a graph with one vertex, one face and only untwisted edges. A super-
rosette always contains at least one nice crossing.

Third. Choose a nice crossing .e; f / in R and slide (IIa) all the halfedges encom-
passed by the nice crossing out of .e; f /. The result has the structure

R Š R=.e; f / _ GT 2 ;

where R=.e; f / is again a superrosette graph with genus decreased by one. Iterating
one arrives at

R Š Gı _ GT 2 _ � � � _ GT 2„ ƒ‚ …
g-times

:
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A.2. Sign of a ribbon graph

Let G be a connected ribbon graph. An a priori arrow orientation9 of a G (which
has nothing to do with the orientability of the embedding surface) is defined by the
following:

(1) counter-clockwise pointing arrows at the corners of each vertex;

(2) parallel pointing arrows on the strands of each edge.

We denote �.e/D 0 if the edge e is untwisted (straight) and �.e/D 1 if the edge e
is twisted. Furthermore, we denote by t .f / the number of reorientations of arrows
required to coherently orient the face f with all the arrows pointing in the same
direction along its boundary. The sign of G is defined as

sgn.G / D .�1/V.G /
� Y
e2E.G /

.�1/�.e/
�� Y

f 2F .G /

.�1/t.f /
�
:

This is well defined. In order to determine the sign of G , one needs to determine
the number of arrow flips that are necessary to go from an a priori orientation of G

to an orientation where all arrows point coherently along the faces of G (such an
orientation will be called coherent). Since every face consists of as many corners as
edge strands, the total number of arrows along a face is even and switching between
two coherent orientations requires an even number of arrow flips. Also, as any two
a priori orientations differ by an even number of arrow flips (pairs of arrows along the
edge strands), switching between a priori orientations at fixed coherent orientation
does not change the sign of the graph.

Lemma A.9. The sign of a graph is

• invariant under reembedding of the vertices;

• invariant under contraction of a tree edge.

Proof. Consider an a priori arrow orientation of G . Re-embedding a vertex of de-
gree d brings d new twists, but one needs to reverse d vertex corners in order to
orient the re-embedded vertex counter-clockwise.

Consider now a tree edge e connecting two vertices v and w in a graph with
a priori orientation (which by the first item we can assume to be untwisted). A flip of
an arrow coherently orients the disc u D v [ e [ w, but this is canceled by the fact
that under contraction the number of vertices of the graph goes down by 1.

Lemma A.10. The sign of a graph is invariant under the sliding moves.

Proof. We consider a graph G having a twisted self-loop as in Figure 16 (a).

9This is the arrow orientation encountered in Section 4.
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... ...

(a)
hn:::h1

(b)
h1:::hn

(c)
h

(d)
h

Figure 16. Sliding I at a twisted self-loop in a coherently oriented graph. The red and blue
corners and strands belong to the red and blue face, respectively. The number of reversed arrows
and additional twists is always even.

... ... ... ...

... ...

(a)
km:::k1 hn:::h1

(b)
km:::k1hn:::h1

(c)
km:::k1hn:::h1

(d)
h

(e)
h

Figure 17. Sliding II at a nice crossing in a coherently oriented graph. No arrows are reversed,
nor are halfedges twisted.

We denote by G 0 the graph obtained from G by the sliding Ia. All else being equal,
in order to pass from an a priori orientation of G to the coherent orientation depicted in
Figure 16 (a) two corner arrows had to be reversed, while for G 0 only one. However,
G 0 has one twist more than G . As the graphs are otherwise identical, they have the
same sign. For Ib sliding, there is no extra twist, but both graphs need only one local
arrow reorientation.

We now consider a graph G having a nice crossing as in Figure 17 (a) and denote
by G 0 the graph obtained from G after sliding. In all the cases, the same number of
arrow flips is needed in order to pass locally from an a priori to the coherent orienta-
tions depicted. As G and G 0 are identical elsewhere, they have the same sign.

Theorem A.11 (Sign of a ribbon graph). For any connected ribbon graph G , we have

sgn.G / D .�1/V.G /
� Y
e2E.G /

.�1/�.e/
�� Y

f 2F .G /

.�1/t.f /
�
D .�1/F.G /;

where F.G / is the number of faces of G .
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Proof. From Lemmas A.9 and A.10, the sign of a graph is invariant under the reduc-
tion moves used in Proposition A.1. It follows that, not only

G Š G 0 Š

8̂̂<̂
:̂

G†g ; orientable with k D 2g;

G†g _ GRP2 ; unorientable with k D 2g C 1;

G†g _ GRP2 _ GRP2 ; unorientable with k D 2g C 2;

but also sgn.G / D sgn.G 0/. The sign of G 0 is easy to compute using the following:

• G 0 has one vertex;

• each simple twisted self-loop brings a .�1/ for the twist and another .�1/ in order
to change from an a priori arrow orientation to a coherent one;

• the number of untwisted edges of G 0 is the number of edges of G†g , that is,
E.G†g /. Exactly one arrow for each such edge needs to be flipped in order to
pass from an a priori to a coherent arrow orientation of G 0.

Therefore, sgn.G 0/D .�1/1CE.G†g /. The theorem follows by observing that the Euler
relation for G†g reads 1�E.G†g /C F.G†g /D 2� 2g.G†g /, hence F.G†g /D 1C
E.G†g / mod 2, and the number of faces is invariant under contraction and sliding
F.G†g / D F.G

0/ D F.G /.

B. Symmetry factors

The aim of this section is to prove the following proposition.

Proposition B.1. The perturbative series of the two-point function

G2.�/ WD Z
�1.�/

Z
d�ŒT � T aDT bDg1a1b1 � � �g

D
aDbD

can be written as the sum

G2.�; �/ D
X

ŒG%� connected, rooted

1

2C.G
%�E%/�1

A.G %/:

Before proving this proposition, we discuss some useful facts. The symmetry fac-
tor of a ribbon graph in the perturbative series (3.4) of Z.�/ is obtained as

• a factor 1
2V nIVP

, where nIVP is the number of permutations of vertex labels, that
give the same labeled map;

• a factor 1
degvŠ deg% vŠ for every vertex;

• a factor counting the number of ways to connect labeled halfedges to form the
same combinatorial map M% underlying G %, taking into account the different
ways to label the halfedges;
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• a factor jStabT j and the number of combinatorial maps such that G % is contained
in their orbits under T .

For example, the weight of the ribbon graph in Figure 7 is

1

23 � 1„ƒ‚…
2V nIVP

jStabTj‚…„ƒ
22

5Š � 1Š � 2Š � 0Š � 1Š � 3„ ƒ‚ …Q
v degvŠ deg% vŠ

�

labeling and
connecting halfedges‚ …„ ƒ
2 � 5Š � 3Š D

1

2
:

Stabilizer of rooted ribbon graphs with respect to T . Rooting simplifies the cal-
culation of jStabT .M/j. The finite group T that twists the ribbon edges is defined
on graphs with a fixed but arbitrary labeling of their edges. The rooting can be used
to induce such a labeling: Fix a spanning tree and enumerate all edges as they are
encountered on a counter-clockwise walk following the unique face of the tree, start-
ing at the root.

We first focus on ordinary combinatorial maps and ribbon graphs. The results can
be generalized to graphs with %-edges, by considering the ordinary ribbon graph that
is obtained by deleting the %-edges.

Lemma B.2. Let G be a rooted, connected ribbon graph. We denote by V1 and V2 the
numbers of non-root vertices of degree one and two, respectively. Then

jStabT .G /j D 2
V1CV2 :

Proof. The orientation of the root vertex is held fixed. If a non-root vertex has degree
one, twisting the edge incident to it does not change the ribbon graph—the twist is
“reducible”. If a non-root vertex has degree two, twisting both incident edges again
does not change the ribbon graph. If both halfedges of a degree two vertex belong to
the same edge, it is necessarily the root vertex, since G is assumed to be connected.
This is depicted in Figure 18.

It follows thatX
M

connected;
rooted

jStabT .M/j

2V

X
ŒG �2OrbT.M/

A.G / D
X
M

connected;
rooted

1

2V�3

X
ŒG �2OrbT.M/

A.G /; (B.1)

where V�3 denotes the number of non-root vertices of degree� 3. In order to reshuffle
this expression into a sum over rooted ribbon graphs, we recall that two ribbon graphs
are equivalent if one can be obtained from the other by vertex re-embeddings. This
implies that if two combinatorial maps M1 and M2 differ only by reversing the order
of halfedges around some of their vertices, then OrbT .M1/D OrbT .M2/. Reversing
the order of halfedges at a vertex of degree lower than three is trivial, hence for rooted
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� �

Figure 18. Reducible twists at vertices of degree one and two.

ribbon graphs the multiplicity is 2V�3 . As a result, the perturbative series of the two-
point function G2 (3.5) for � D 0 is

G2.0; �/ D
X

ŒG � connected, rooted

A.G /:

When taking the %-edges into account, we recall that T acts trivially on them.
Thus, it is sufficient to consider the ribbon graph G D G % � E% obtained by deleting
all the %-edges of G %. However, when calculating jStabT .G

%/j a subtlety arises: G D

G % � E% is not necessarily connected. The %-edges can be used to induce a rooting at
every connected component Gc � G : Consider the connected components as effective
vertices in a graph with only %-edges; pick a spanning tree in that graph; from every Gc

there is a unique path in the tree to the original root; let the halfedge of Gc , belonging
to that path, be another root. The stabilizer StabT .G / factors over the Gc and using
Lemma B.2 for each rooted connected component, one obtains

jStabT .G /j D
Y

Gc�G

2V1.Gc/CV2.Gc/:

One has to partially resume the double sum over combinatorial maps and ribbon
graphs with %-edges analogous to (B.1) into a sum over rooted ribbon graphs with %-
edges. The multiplicity of a ribbon graph with multiple rooted connected components
is
Q

Gc�G 2
V�3.Gc/ and one arrives atY

Gc�G

2V.Gc/�1 D 2V.G /�C.G /;

where C denotes the number of connected components: the �1 in the exponent ap-
pears because V1, V2 and V�3 count only non-root vertices, hence sum up to V.Gc/� 1
in each connected component.

Proof of Proposition B.1. The discussion above goes through mutatis mutandis for
multi-ribbon graphs. Combining (4.2) with (4.4), the perturbative series of the two-
point function can be written as

G2.�/ D
X
M

connected, rooted

jStabT .M/j

V.M/Š 2V.M/�1

� Y
v2M

1Q
q degq vŠ

� X
ŒG�2OrbT.M/

A.G/
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with M and edge multicolored combinatorial map. All objects in the above expression
are fully labeled. Rooting prevents non-trivial symmetry factors, thus it is sufficient
to count the ways to assign labels to a multi-ribbon graph:

(1) Pick a spanning tree.

(2) There are V Š ways to label the vertices.

(3) At the root vertex v0, the root breaks the cyclicity of halfedges, thus there areQ
q degq v0Š ways to label the different types of multi-ribbon halfedges.

(4) At each non-root vertex one halfedge is part of the unique path in the tree
towards the root.

This again breaks cyclicity and there are
Q
q degq vŠ ways to label the halfedges.

The amplitudes do not depend on the labeling, thus, in terms of unlabeled but rooted
objects,

G2.�/ D
X

M connected,
rooted;

unlabeled

jStabT .M/j

2V.M/�1

X
ŒG�2OrbT.M/

A.G/ D
X
ŒG�

connected;
rooted

1

2C.G�E%/�1
A.G/;

where C.G � E%/ counts the number of connected components of the multi-ribbon
graph after deletion of the %-edges.

For example, G2 up to quadratic order in the coupling constants for D D 2 is

G2.�; �/ D N1N2 � �.N1N2 CN
2
1N2 CN1N

2
2 /

C �2
�
.2C 2C 1/N1N2 C .4C 1/N

2
1N2 C .4C 1/N1N

2
2

C .4C 1/N 2
1N

2
2 C 2N1N

3
2 C 2N

3
1N2

�
� 2�

�
N1N2 C

1

2
N 2
1N

2
2

�

C 4�2
�
.1C 2/N1N2 C

1

2
.4C 1/N 2

1N
2
2 C

2

4
N 3
1N

3
2

�

C 2��
�
.4C 2/N1N2 C .4C 2/N

2
1N2 C .4C 2/N1N

2
2

C
4

2
N 2
1N

2
2 C

4

2
N 3
1N

2
2 C

4

2
N 2
1N

3
2

�
C � � � :
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Take, for example, the last three graphs. After deleting the %-edges, each graph
splits into two connected components, this gives a factor 1

2
and in addition there are

4 distinct ways of rooting these graphs.
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1 Introduction

Random tensormodels [1–6], introduced as a generalization of randommatrixmodels,
are probability measures of the type:

dμ[T ] = e−S[T ] ∏

(a1,...,aD)

dT a1...aD
√
2π

, (1.1)

where the action S[T ] is build out of invariants under some symmetry transformation.
These models are analog to zero-dimensional quantum field theory and their perturba-
tive expansion can be reorganized as a series in 1/N [7–14]. As their Feynman graphs
are dual to higher-dimensional triangulations, random tensors provide a framework
for the study of random topological spaces; in one dimension tensor models provide
an alternative to the Sachdev–Ye–Kitaev model without quenched disorder [15, 16];
in higher dimensions they lead to tensor field theories and a new class of large N
melonic conformal field theories [17–21].

In this paper, we study tensor models with symplectic and/or orthogonal symmetry.
Several incarnations of the relation between the orthogonal and symplectic group for
negative dimensions have been studied in the literature: On the one hand, in the context
of representation theory, one can make sense of the relation SO(−N ) � Sp(N ) [22–
25]. On the other hand, for even N , SO(N ) and Sp(N ) gauge theories are known to
be related by changing N to −N [26]. A vector model with symplectic fermions in
three space-time dimensions has been studied in [27] and an example of SO(N ) and
Sp(N ) gauge theories with matter fields and Yukawa interactions can be found in [28].
This duality has furthermore been shown to hold between orthogonal and symplectic
matrix ensembles (the β = 1, 4 ensembles) [29].

The orthogonal/symplectic duality has already been studied for tensor models by
one of the authors in [30]. There, a graded colored tensor model (reviewed in Def. 1)
was introduced. It was then shown that the partition function and connected two point
correlation function of this model was invariant when replacing Nc ↔ −Nc and at
the same time changing the symmetry O(Nc) ↔ Sp(Nc). However, the analysis in
[30] made use of an intermediate field/Hubbard–Stratonovich transformation. This
method allows to work with bosonic fields only, but is only applicable to the case
of quartic interactions. Working directly in the usual colored graph representation
of tensor models, we generalize results of [30] to interactions of arbitrary order and
proceed in a more direct way.

Main result. We consider tensors of order D with no symmetry under permutation
of their indices and call the position of an index its color c, with c = 1, 2, . . . D. The
tensors transform in the tensor product of D fundamental representations of O(N )

and/or Sp(N ), i.e., each tensor index is transformed by a different O(N ) or Sp(N )

matrix. The tensor components are real fermionic (anticommuting, odd) if the number
of Sp(N ) factors is odd and real bosonic (commuting, even) if this number is even.
It is convenient to assign a parity to the tensor indices: |c| = 0 or |c| = 1 if the
index transforms under O(Nc) or Sp(Nc), respectively. In this paper, we generalize
the results of [30] by allowing arbitrary polynomial interactions.
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Definition 1 The real graded tensor model obeys the symmetry:

OOO1(N1) ⊗ OOO2(N2) ⊗ · · · ⊗ OOOD(ND), OOOc(Nc) =
{
O(Nc), |c| = 0

Sp(Nc), |c| = 1
, (1.2)

(therefore the name “graded”) is defined by the measure:

dμ[T ] � e−S[T ] ∏

a1,...,aD

dT a1...aD ,

S[T ] = 1

2

(
T a1...aD T b1...bD

D∏

c=1

gcacbc

)
+

∑

B connected,
|V (B)|>2

λB
|V (B)| IB(T ) ,

(1.3)

where gcacbc is the Kronecker δacbc for |c| = 0 or the canonical symplectic form ωacbc
for |c| = 1 and the sum runs over independent connected trace invariants IB(T ) of
order higher than two, indexed by undirected colored graphs B (see Sect. 2 for more
details).

The partition function Z and the expectation value of an invariant 〈IB(T )〉 are
defined by:

Z({λ}) =
∫

dμ[T ], and 〈IB(T )〉({λ}) = 1

Z

∫
dμ[T ] IB(T ) , (1.4)

and can be evaluated in a perturbative expansion. Our main theorem is the following:

Theorem 2 The perturbative series of the partition function Z and expectation val-
ues of invariants 〈IB(T )〉 can be expressed as a formal sum over (D + 1)-colored
undirected graphs G. Each summand, corresponding to a specific graph G, writes as
a product:

K ({λ},G) ·
∏

c∈D

(
(−1)|c|Nc

)Fc/0(G)
, (1.5)

of a term K , encoding the dependence on the coupling constants λB and some com-
binatorial numbers associated to G, and a term depending on N1, N2 . . . , ND (see
Sect. 2 for the relevant definitions and Sect. 3 for the precise form of the series).

Proof The theorem follows from Proposition 8 and Cor. 9. 	

The essential remark is that all the factors Nc come in the form (−1)|c|Nc; hence,

each term is mapped into itself by exchanging O(Nc) ↔ Sp(Nc) and Nc ↔ −Nc.
Because graphically each Nc is associated to a face of colors c/0 (cycle of edges of
alternating colors c and 0), this result can be seen as a generalization of the usual
minus sign in quantum field theory for each fermionic loop. But one should keep in
mind, that the full tensor is not necessary fermionic (its components are not necessarily
anticommuting Graßmann numbers).

123



83 Page 4 of 15 H. Keppler, T. Muller

2 Setup of themodels

In this section, we define the model. First, we specify the space of tensors we are
interested in. Second, we give a description of the possible tensor invariants in terms
of directed edge colored graphs, and third, we specify the model and its invariance
properties.

The tensors A generic tensor T a1...aD has no symmetry properties under permutation
of its indices; hence, the indices have a well-defined position c, called their color.
The set of colors is denoted D = {1, . . . , D}. We assign a parity to each color and
sometimes call the colors with |c| = 0 even and the ones with |c| = 1 odd. The tensor
components shall be bosonic (even) if the number of colors with |c| = 1 (i. e. odd
colors) is even and fermionic (odd) otherwise: the Graßmann number T a1...aD has the
same parity as

∑
c∈D |c|.

Let Hc = RNc|0 for |c| = 0, respectively Hc = R0|Nc for |c| = 1 be a real
supervector space of dimension Nc that is either purely even or purely odd. Each Hc

is endowed with a non-degenerate graded symmetric inner product gc:

gc(u, v) = (−1)|c|gc(v, u), ∀u, v ∈ Hc . (2.1)

In a standard basis, gc agrees with the standard symmetric or symplectic form, that is
gcacbc = δacbc for |c| = 0, respectively gcacbc = ωacbc for |c| = 1. As usual, we write

gc, acbc for the components of (gc)−1. The isometry group preserving gc is either
O(Nc) in the |c| = 0 case or Sp(Nc) in the |c| = 1 case, denoted collectively by

OOOc(Nc) := {Oc | gcacbc = O
a′
c

ac O
b′
c

bc
gca′

cb
′
c
= (OgcOT )acbc }.

The tensors are elements of

H1 ⊗ H2 ⊗ · · · ⊗ HD , (2.2)

and transform in the tensor product representation of several orthogonal and symplectic
groups according to the type of the individual Hc’s:

T a1...aD → (O1)
a1
b1

. . . (OD)
aD

bD
T b1...bD , O1 ⊗ · · · ⊗ OD ∈

⊗

c∈D
OOOc(Nc) .

(2.3)

Directed edge colored graphs and invariants Invariant polynomials in the tensor
components are constructed by contracting the indices of color cwith the inner product
gc. The unique quadratic invariant is:

g⊗D(T , T ) = T aDT bD
∏

c∈D
gcacbc . (2.4)

General trace invariants are polynomials in the T aD ’s build by contracting pairs of
indices of the same color. These invariants admit a graphical representation as directed
edge colored graphs. The graphical representatives of tensor invariants are often called
bubbles [2, 5].
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Fig. 1 Examples of colored directed graphs: a 3-colored sextic graph on the left (the wheel) and a 4-colored
quartic one on the right. The different colors are represented by different line styles

Definition 3 (Directed edge colored graphs) A closed directed edge D-colored graph
(directed colored graph for short) is a directed graph �B = (V ( �B), �E( �B)) with vertex
set V ( �B) and edge set �E( �B) such that:

• The edge set is partitioned into D disjoint subsets �E( �B) = ⊔D
c=1

�Ec( �B), where we
denote the subset of edges of color c by �Ec( �B) � ec = (v,w), with v,w ∈ V ( �B).

• Each set �Ec( �B) is a directed pairing of the vertices.

As a consequence all vertices are D-valent with all the edges incident to a vertex
having distinct colors, and V ( �B) is of even cardinality. We denote by Fc/c′( �B) the
number of faces of colors c �= c′, that is cycles made of alternating edges of these two
distinct colors. Per default, we will consider directed graphs �B and view undirected
graphs as equivalence classes B = [ �B] of their directed versions. All graphs have
labeled vertices. Some examples are depicted in Figs. 1, 2.

Due to the signs introduced by the reversing the edges of odd colors (remember that
this corresponds to transposing the antisymmetric matrix ω), several invariants differ
only by a minus sign. This ambiguity can be fixed by using a sign fixing prescription
generalizing the one given in [30].

The invariant of order 2k defined by the directed colored graph �B with vertices
V ( �B) = {1, 2, . . . , 2k}, will be denoted by I �B(T ), and is given by the following
expression:

I �B(T ) =
∑

a1D ,a2D ,...,a2kD

⎛

⎜⎝
∏

(i, j)∈ �Pre f ,2k
T aiDT a j

D

⎞

⎟⎠
∏

c∈D

⎛

⎝ε( �Pref ,2k , �Ec( �B))|c|
∏

(i, j)∈ �Ec( �B)

gc
aica

j
c

⎞

⎠

=
∑

a1D ,a2D ,...,a2kD

⎛

⎜⎝
∏

(i, j)∈ �Pre f ,2k
T aiDT a j

D

⎞

⎟⎠

(
∏

c∈D
ε( �Pref ,2k , �Ec( �B))|c| Kc

�B,a1c ,...,a
2k
c

)
,

(2.5)
here �Pre f ,2k is an arbitrary but fixed reference pairing on the set of vertices, chosen to be
�Pref ,2k = {(1, 2), . . . , (2k−1, 2k)}, and the sign of the pairings ε( �Pre f ,2kp , �Ec( �B))|c|
was introduced to fix the sign ambiguity.As an example, consider the pillow interaction
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Fig. 2 A colored directed graph (the pillow �P) defined by three pairings. The edges of colors one, two and
three are represented by dashed, dotted and solid lines, respectively. The associated invariant is given in
(2.6)

(Fig. 2) defined by the graph �P . The corresponding tensor invariant is:

I �P = (−1)|1|+|2| ∑

a,b,c,d

(
T a1a2a3T b1b2b3

) (
T c1c2c3T d1d2d3

)

g1c1a1 g
1
d1b1 g

2
c2a2 g2d2b2 g3a3b3 g

2
c3d3 . (2.6)

Before reviewing the definition and properties of ε, which will play a central role, let
us comment about how the sign ambiguity shall be understood:

• Because the tensors may anticommute, for writing down the expression for the
invariant, it is necessary to fix an order. This is done by the reference pairing
�Pre f ,2k .

• If two directed colored graphs �A and �B differ only by redirecting some of their
edges, the corresponding trace invariants are the same, up to transposing some
(gc)T = (−1)|c|gc which could lead to a sign difference between I �A(T ) and
I �B(T ). In order to restrict to independent invariants, we consider such directed

graphs to be in the same equivalence class [ �A] = [ �B], i.e., they describe the same
undirected colored graph.

• The sign prescription ensures that I �B(T ) is a class function:

I �A(T ) = I �B(T ) if A = B , (2.7)

and thus any representative of [ �B] can be used to write down the invariant.

Because of the last point, from now on, we will label the invariants by undirected
graphs B, and it is understood that for (2.5) an arbitrary directed representative �B ∈
[ �B] ≡ B has been chosen.

A trace invariant is called connected, if the corresponding colored graph is so. Note
that any product of two invariants can be written as a single disconnected invariant
such that:

IA(T )IB(T ) = IA
B(T ) , (2.8)

and a new reference pairing is given by the disjoint union of the original reference
pairings (2.12).
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Sign of oriented pairings
Consider two oriented pairings �P1 and �P2 on the same set of 2k elements:

�P1 = {(i1, i2), . . . , (i2k−1, i2k)} ,

�P2 = {( j1, j2), . . . , ( j2k−1, j2k)} .
(2.9)

The sign ε( �P1, �P2) of the two pairings with respect to each another is defined as the
sign of the permutation that takes i1 . . . i2k into j1 . . . j2k . The properties of this sign
are:

1. The sign is symmetric under permutation of its arguments:

ε( �P1, �P2) = ε( �P2, �P1) . (2.10)

2. For three pairings �P1, �P2, �P3 on the same set, one has:

ε( �P1, �P2) = ε( �P1, �P3)ε( �P2, �P3) . (2.11)

3. For two pairings �P1, �P2 on a first set S1 of 2k elements and two pairings �P3, �P4 on
a second set S2 of 2p elements, the product ε( �P1, �P2)ε( �P3, �P4) can be written as
the sign of the disjoint union of pairings �P1 
 �P3 and �P2 
 �P4 (on the set S1 
S2):

ε( �P1, �P2)ε( �P3, �P4) = ε( �P1 
 �P3, �P2 
 �P4) . (2.12)

The sign of two pairings has a nice graphical interpretation that will be of great use.

Lemma 4 Depicting the 2k elements of a set S as vertices, the two pairings �Pc and�Pc′ on this set can be represented by colored (one color—c or c′ —for each pairing),
oriented edges connecting the vertices. Define a face of colors c/c′ as an alternating
cycle of edges of color c and c′. A face is called even (resp. odd), if an even (odd)
number of its edges point in the same directions around its cycles.1 Denoting Fc/c′,even
resp. Fc/c′,odd the number of even and odd faces of colors c/c′, the sign ε( �Pc, �Pc′)
can be expressed as:

ε( �Pc, �Pc′) = (−1)Fc/c′,even . (2.13)

See Fig. 3 for an illustration.

Proof Denoting �Pc = {(i1, i2), . . . , (i2k−1, i2k)} and �Pc′ = {( j1, j2), . . . , ( j2k−1, j2k)},
by definition, ε( �Pc, �Pc′) is the sign of the permutation σ = ( i1 i2 ... i2k−1 i2k

j1 j2 ... j2k−1 j2k

)
. One

can define a second permutation ρ, whose cycles coincide with the faces of �Pc 
 �Pc′
(neglecting for a moment the orientation of the edges). The permutation ρ is defined
by:

• ρ(i) is the successor of the vertex i that is reached by going clockwise around the
face of colors c/c′ to which i belongs.

1 Note that a face of colors c/c′ always has an even number of edges, and hence this notion is well defined.
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Fig. 3 Illustration of Lemma 4. �P1 is represented with solid and �P2 with dashed edges. The face on the left
is odd and the face on the right is even

Fig. 4 Illustration of the Proof of Lemma 4. The faces of colors r/r ′ coincide with the cycles of ρ, and
with the faces of colors c/c′, up to the orientation of their edges. �Pc solid line, �Pc′ dashed, �Pr dash-dotted,
�Pr ′ dotted

• Writing ρ = ( l1 l2 ... l2k−1 l2k
m1 m2 ... m2k−1 m2k

)
, one can think of ρ as consisting of two directed

pairings �Pr = {(l1, l2), . . . , (l2k−1, l2k)} and �Pr ′ = {(m1,m2), . . . , (m2k−1,m2k)}
that differ from �Pc and �Pc′ only by the direction of their edges.

Since all the faces are of even length, the sign of the permutation ρ is given by
sgn(ρ) = (−1)Fc/c′ . The crucial point is thatρ is chosen such that it differs fromσ by an
odd number of transpositions for each odd face, i.e., sgn(σ ) = (−1)Fc/c′,odd sgn(ρ) =
(−1)Fc/c′,even . See Fig. 4 for an illustration. 	


For a review on the connection of directed pairings and their sign with pfaffians and
fermionic Gaußian integrals, we refer the interested reader to the Appendix of [31].

Graded colored tensormodelAs discussed above, the set of independent trace invari-
ants is indexed by equivalence classes of directed colored graphsB = [ �B]. Being class
functions, any representative �B ∈ B can be used to define I �B(T ).

Definition 5 (Real Graded Tensor Model) The real graded tensor model is the mea-
sure2:

dμ[T ] = e−S[T ] [dT ], [dT ] =
∏

aD
dT a1...aD ·

{
1

(2π)
∏
c Nc/2 ,

∑D
c=1|c| = 0 mod 2

1 ,
∑D

c=1|c| = 1 mod 2
,

with S[T ] = 1

2
g⊗D(T , T ) +

∑

B connected,
|V (B)|>2

λB
|V (B)| I �B(T ) ,

(2.14)

where the normalization is such that
∫
dμ[T ] = 1 for λB = 0 ∀B.

2 We treat the measures dμ[T ] as a perturbed Gaußian measures. As such we do not concern ourselves with
the convergence of the various tensor and matrix integrals. As we treat the Gaußian integrals as generating
functions of graphs, we will not adress such issues.
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3 Perturbative expansions in terms of colored graphs

In this section,we compute the expectation value of invariants and show that these obey
the N → −N duality graph by graph in the perturbative expansion. On a technical
level, most statements are generalizations of the known results for colored random
tensor models, as summarized, e.g., in [2, 5]. Let us recall the commutation relation
of the tensor component:

TaDTbD = (−1)
∑

c∈D |c|TaDTbD , (3.1)

and introduce the following short hand notations:

δ
aD
bD =

D∏

i=1

δ
ai
bi

, gaDbD =
∏

c∈D
gcacbc , gaDbD =

∏

c∈D
gc, acbc ,

and (∂T , ∂T ) =
∑

aD,bD

∂

∂T aD
gaDbD ∂

∂T bD
.

(3.2)

We first compute the expectation values with respect to the Gaußian measure that is
obtained by setting all coupling constants λB to zero. This is Wick’s theorem for the
Gaußian expectation value 〈 . . . 〉0 of 2k anticommuting variables.

Lemma 6 The Gaußian expectation value of an even number of tensors:

〈T a1D . . . T a2kD 〉0 =
∫

[dT ]e− 1
2 g

⊗D(T ,T ) T a1D . . . T a2kD , (3.3)

can be computed as a sum over the set P2k of (undirected) pairings of 2k elements:

〈T a1D . . . T a2kD 〉0 =
∑

P∈P2k

ε( �Pref ,2k, �P)
∑

c∈D |c|
⎛

⎝
∏

(i, j)∈ �P
ga

i
Da j

D

⎞

⎠ , (3.4)

where �P is an (arbitrarily chosen) directed version of P. Each summand is independent
of that choice, because the sign ε( �Pref ,2k, �P) is odd under reordering of pairs, while

ga
i
Da j

D is antisymmetric in the relevant cases. The odd moments vanish and the sign
is trivial for commuting (bosonic) tensor components.
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Proof This classical statement is proved using the derivative representation of nor-
malized Gaußian measures:

〈T a1D . . . T a2kD 〉0 =
[
e
1
2 (∂T ,∂T ) T a1D . . . T a2kD

]

T aiD=0, ∀i

=
[ ∑

n≥0

1

n!2n
(
(∂T , ∂T )

)n
T a1D . . . T a2kD

]

T=0

=
[ ∑

n≥0

1

n!2n
(
(∂T , ∂T )

)n−1 ∑

bD,cD

∂

∂T bD
gbDcD

×
2k∑

r=1

(−1)r
∑

c∈D |c| δ
arD
cD T a1D . . .

̂T arD . . . T a2kD
]

T=0
.

(3.5)

Iterating this procedure, the derivatives will create (directed) pairings �P of the 2k
tensors, and pick up minus signs if they have to anticommute with an odd number
of tensors. The total sign, generated in this way, is just the sign of �P relative to the
reference pairing �Pre f ,2k = {(1, 2), (2, 3), . . . , (2k − 1, 2k)}.

∑

�P∈ �P2k

1

2k
ε( �Pref ,2k, �P)

∑
c∈D |c|

⎛

⎝
∏

(i, j)∈ �P
ga

i
Da j

D

⎞

⎠ , (3.6)

where �P2k is the set of directed pairings of 2k elements. Because the sign ε( �Pref ,2k, �P)

is odd under reordering of pairs, while ga
i
Da j

D = (−1)
∑

c∈D |c|ga
j
DaiD , each summand

does not depend on the order of the pairs in �P . If P is an (undirected) pairing of 2k
elements, there are 2k directed pairings �P associated to it. Taking this multiplicity into
account, the statement follows. 	

Proposition 7 The Gaußian expectation of an invariant of order 2k, specified by a
D-colored directed graph �B:

〈I �B(T )〉0 =
∫

[dT ]e− 1
2 g

⊗D(T ,T ) I �B(T ) , (3.7)

can be computed as a sum over (D+1)-colored undirected graphs G = [ �G] (Feynman
graphs) having edges of an additional color 0, such that B ⊂ G is the maximal D-
colored subgraph of colors c ∈ D:

〈I �B(T )〉0 =
∑

G, B⊂G
|V (G)|=2k

∏

c∈D

(
(−1)|c|Nc

)Fc/0(G)
. (3.8)

The power of Nc is given by the number of faces of G, of alternating colors c and 0.
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Since the invariants are class functions, the result does only depend on undirected
graphs.

Proof Using Lemma 6, one has:

〈I �B(T )〉0 =
∑

{aD}

〈
∏

(i, j)∈ �Pref ,2k
T aiD T a j

D

〉

0

∏

c∈D

⎛

⎝ε( �Pre f ,2k , �Ec( �B))|c|
∏

(i, j)∈ �Ec( �B)

gcai a j

⎞

⎠

=
∑

{aD}

∑

P∈P2k

ε( �Pre f ,2k , �P)
∑

c∈D |c|
⎛

⎝
∏

(i, j)∈ �P
ga

i
Da j

D

⎞

⎠
∏

c∈D

×
⎛

⎝ε( �Pre f ,2k , �Ec( �B))|c|
∏

(i, j)∈ �Ec( �B)

gc
aica

j
c

⎞

⎠ .

(3.9)

Now, using Property (2.11) of the sign of two pairings to eliminate the dependence on
reference �Pre f ,2k and reorganizing the products according to color leads to:

∑

{aD}

∑

P∈P2k

∏

c∈D

⎛

⎝ε( �P, �Ec( �B))|c|
⎛

⎝
∏

(i, j)∈ �P
gc, a

i
ca

j
c

⎞

⎠

⎛

⎝
∏

(i, j)∈ �Ec( �B)

gc
aica

j
c

⎞

⎠

⎞

⎠ . (3.10)

By adding edges of a new color 0 to �B, according to the pairing �P , a (D + 1) directed
colored graph �G is obtained. Along the faces of colors c/0, gc and (gc)−1 alternate and
since all indices are summed, each such face contributes a factor Nc. Note, however,
that since gcacbc g

c, dcbc = (−1)|c|δdcac , a face picks up an additional sign if an odd
number of edges are pointing in the same direction around the face (such a face was
called odd). With this and the expression of ε( �P, �Ec( �B)) in terms of the number of
even faces of colors c/0 (Lemma 4) we obtain:

∑

{aD}

∑

G, B⊂G
|V (G)|=2k

∏

c∈D

((
(−1)Fc/0,even(

�G)
)|c|(

(−1)Fc/0,odd ( �G)
)|c|(

Nc
)Fc/0( �G)

)
, (3.11)

and since the sum of the number of even and odd face of colors c/0 is equal to the total
number of such faces in �G (equivalent to the ones in G), this concludes the proof. Note,
however, that the result does not depend on the particular choices of directed graph.
This is true at each intermediate step because the symmetry properties of ε(·, ·)|c|
always agree with the graded symmetry of gc. 	


At this point, we have all the ingredients for the perturbative evaluation of the
partition function.

Proposition 8 The partition function Z({λ} of the graded colored tensormodel (Def. 5)
can be evaluated by a formal power series in the coupling constants that is indexed
by (D + 1)-colored undirected graphs G. Let us denote the D-colored maximally
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connected subgraphs of colors c ∈ D, called bubbles, by B ⊂ G. The sum runs only
over graphs G without bubbles having exactly two vertices:

Z({λB}) =
∑

G
|V (B)|�=2 ∀B⊂G

1

nb(G)!

⎛

⎝
∏

B⊂G

λB
|V (B)|

⎞

⎠
(

∏

c∈D

(
(−1)|c|Nc

)Fc/0(G)

)
,

(3.12)
and nb(G) denotes the total number of bubbles in G.
Proof We expand the interaction part to find:

Z =
∫

[dT ]e− 1
2 g

⊗(T ,T )
∑

{pB≥0}

∏

B

1

pB!
(

λB
|V (B)| IB(T )

)pB
, (3.13)

where we associate to each undirected D-colored graph B a multiplicity pB ≥ 0,
and sum over these. Commuting the sum and the Gaußian integral, we obtain the
perturbative series:

∑

{pB≥0}

(
∏

B

1

pB!
(

λB
|V (B)|

)pB
)

〈∏

B

(
IB(T )

)pB 〉
0 . (3.14)

As any product of invariants can be seen as a single disconnected invariant (2.8),
Proposition 7 can be directly applied, and one obtains a sum over (D + 1)-colored
undirected graphs G with the only condition, that they do not have bubbles B ⊂ G
with exactly two vertices. Whenever the graph G contains a bubble B this contributes
a factor λB:

∑

G
|V (B)|�=2 ∀B⊂G

1

nb(G)!

⎛

⎝
∏

B⊂G

λB
|V (B)|

⎞

⎠
(

∏

c∈D

(
(−1)|c|Nc

)Fc/0(G)

)
, (3.15)

here nb(G) is the total number of bubbles in G. 	

Corollary 9 The expectation value of trace invariants is computed as derivatives of
the logarithm of the partition function:

for |V (B)| = 2 : 〈g⊗D(T , T )〉 =
(

∏

c∈D
(−1)|c|Nc

)

+

⎛

⎜⎜⎝
∑

B connected,
|V (B)|>2

λB|V (B)| ∂

∂λB

⎞

⎟⎟⎠ ln Z({λ}) ,

for |V (B)| > 2 : 〈
I �B(T )

〉 = −|V (B)| ∂

∂λB
ln Z({λ}) .

(3.16)
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The expectation value can be computed explicitly as a formal sum, analogous to
Z({λ}). The derivative acts on one λB in the product and marks the corresponding
bubble [B] ⊂ [G]:

for |V (B)| > 2 : 〈I �B(T )〉

=
∑

G connected,
B⊂G marked,

|V (B′)|�=2 ∀B′⊂G

1

nb(G)!

⎛

⎜⎜⎝
∏

B′⊂G
B′ �=B

λB′

|V (B′)|

⎞

⎟⎟⎠

(
∏

c∈D

(
(−1)|c|Nc

)Fc/0(G)

)
. (3.17)

Proof The statements for |V (B)| > 2 follow from Definition 5, (1.4), Proposition 8
and the usual fact, that the logarithm restricts to a sum over connected graphs. For
|V (B)| = 2 consider the following Schwinger–Dyson equation:

0 = (−1)
∑

c |c|

Z

∫
[dT ]

∑

aD

∂

∂T aD

(
T aDe−S[T ])

=
(

∏

c∈D
(−1)|c|Nc

)
− 〈g⊗D(T , T )〉 −

∑

B conn.|V (B)|>2

λB〈I �B(T )〉 ,

(3.18)

and use the result for 〈I �B(T )〉. The first term in the second line can be interpreted as
a ring-graph without any vertex but D colored edges. 	


4 Conclusion and outlook

In this paper, we showed the N to −N duality between colored tensor models with
orthogonal and symplectic symmetry. We showed that the amplitude of any graph

G comes with a factor
∏

c∈C
(
(−1)|c|Nc

)Fc/0(G)
, where |c| is a grading assigned to

the color c controlling its symmetry properties (|c| = 0 for O(Nc) and |c| = 1 for
Sp(Nc)), and Fc/0(G) is the number of faces of color c in G. As a consequence, the
amplitude of any graph is invariant under simultaneously changing O(Nc) ↔ Sp(Nc)

and Nc ↔ −Nc for any color c. Our analysis relies heavily on the properties of the sign
of oriented pairings. This sign ensures that the invariants are specified by undirected
graphs and do not depend on the arbitrarily chosen orientation of edges. Then, by
carefully keeping track of the signs coming from the bosonic or fermionic nature, as
well as reorientations of edges in directed graphs, we obtain the desired expressions
for the graph amplitudes.

A natural follow-up of this project is to consider tensors with symmetry properties
under permutation of their indices. The work of [22–25] suggests that similar models
could be constructed for arbitrary (alsomixed) tensor representations of the orthogonal
and symmetric group. For example, we suspect a relation between a tensor model
with tensors of order D transforming in the totally symmetric representation of O(N )
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(similar to [11, 12, 32]) and a model build on the totally antisymmetric representation
of Sp(N ). For odd D, the symplectic model should again be fermionic. Moreover, one
should also explore the implications of the N → −N duality for tensor field theories.
The sign change may generate new renormalization group fixed points. Finally, more
general models with OSp(m, n) symmetry could be considered. In this case, one
would interchange n and m.
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Abstract
In a recent series of papers, a duality between orthogonal and symplectic random tensor models

has been proven, first for quartic models and then for models with interactions of arbitrary order.
However, the tensor models considered so far in the literature had no symmetry under permutation
of the indices. In this paper, we generalize these results for tensors models with interactions of
arbitrary order which further have non-trivial symmetry under the permutation of the indices.
Totally symmetric and anti-symmetric tensors are thus treated as a particular case of our result.
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1. Introduction

Random tensor models (see the recent books [1, 2] or the reviews [3–7]) are 0−dimensional quantum
field theoretical generalisations of the celebrated matrix models [8]. Within this framework, they can
be seen as probability measures on tensor spaces; this is the point of view we take in this paper.

Tensor models have thus been used as tools to generate discrete random geometries in more than
two dimensions. Moreover, they have been further used to construct models similar to the holographic
Sachdev-Ye-Kitaev model but without quenched disorder [9, 10], and new (melonic) Conformal Field
Theories [11–16].

Many of the original rigorous results on tensor models relied on the presence of a very large
symmetry group (usual several distinct copies of U(N) or O(N)) that forbids the tensor to have any
symmetry under permutation of their indices [17–25]. Later on, tensor models with tensors living on
some non-trivial (mostly O(N)) representation were studied systematically [21–23,26–28]).

In [29,30] the authors studied tensor models with symplectic symmetry Sp(N) in which case the
tensor components sometimes are anticommuting (fermionic/odd graßmann) variables.

Relations between the representations of O(N) and Sp(N) have a long history. King [31] showed that
the dimensions of irreducible representations of both groups agree, when exchanging symmetrization
and antisymmetrization (transposed Young tableau) and replacing N by −N . So called negative
dimension theorems, or N to −N dualities, relating the orthogonal and symplectic group vial the
formal relation SO(−N) ≃ Sp(N) are well known [32–37] for matrix and vector models. Several
incarnations of this relation can be found in the literature: for even N , SO(N) and Sp(N) gauge
theories are known to be related by changing N to −N [38]; a vector model with symplectic fermions
in three space-time dimensions has been studied in [39] and an example of SO(N) and Sp(N)
gauge theories with matter fields and Yukawa interactions can be found in [40]; a duality between
orthogonal and symplectic matrix ensembles (the β = 1, 4 ensembles) has been shown in [41]. From a
supergeometric or supersymmetric point of view such relations can be seen to arise naturally [42]. Let
us also mention A. Abdesselam’s result of section 4 of [43], where he linked Penrose-like spin network
calculations with antisymmetrisers to Clebsch-Gordan-like calculations with symetrisers.

As a natural followup of these matrix model results, we show in this paper how the N to −N
symmetry arises in the tensor model case for tensors with interactions of arbitrary order, which further
have non-trivial symmetry under the permutation of their indices. This result is a generalization of
similar results obtained in simpler settings: for quartic interactions this was proven in [29] and for
tensor models with interactions of arbitrary order this was done in [30]. However, let us emphasize
that, unlike the results of this paper, both the results of [29] and [30] were obtained for tensor models
that had no symmetry under the permutation of indices.

More precisely, the main result of this paper is the following. We consider tensors of order D that
transform in some tensor representation R of O(N) or Sp(N). This implies that the tensors may
obey some non-trivial symmetry under permutation of their indices. In order to treat models with
orthogonal and symplectic symmetry simultaneously, we introduce a grading parameter b ∈ {0, 1},
such that b = 0 corresponds to the O(N) symmetric model and b = 1 to the Sp(N) symmetric one.
The tensor components are real fermionic (anticommuting, odd) if b = 1 and D is odd, and real
bosonic (commuting, even) otherwise.

Definition 1. The real graded tensor model with symmetry R is defined by the measure

dµ[T ] ≃ e−S[T ] ∏
a1,...,aD

dT a1...aD ,

S[T ] = T aD C−1
aDbD

T bD +
∑

S connected,
|V (S)|>2

λS
|V (S)|/D

IS(T ) ,
(1.1)
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where gbacbc
is the Kronecker δacbc for b = 0 or the canonical symplectic form ωacbc for b = 1 and the

sum runs over independent connected invariants IS(T ) of order higher than two, indexed by undirected
standed graphs S (see section 3 for more details).

The partition function Z and the expectation value of an invariant ⟨IS(T )⟩ are defined by:

Z({λ}) =
∫

dµ[T ], and ⟨IS(T )⟩({λ}) = 1
Z

∫
dµ[T ] IS(T ) , (1.2)

and can be evaluated in perturbation theory. The main theorem of this paper is:

Theorem 2. The perturbative series of the partition function Z and expectation values of invari-
ants ⟨IB(T )⟩ can be expressed as a formal sum over 2-colored stranded graphs G. Each summand,
corresponding to a specific graph G (called the amplitude of that graph), writes as a product:

K({λ}, G) ·
(
(−1)bN

)F (G)
, (1.3)

of a term depending on N and a term K, encoding both the dependence on the coupling constants λS
and some combinatorial factors associated to G (see section 3 for the relevant definitions).

The main result of this paper follows as a direct consequence of the theorem above:

Corollary 3. Tensor models of the form in definition 1 with symmetry given by the O(N) tensor
representation R are dual to corresponding tensor models with Sp(N) symmetry given by the repre-
sentation with transposed Young diagrams R′ (exchanging symmetrization and antisymmetrization) in
the sense that the amplitudes of graphs in their perturbative expansions are mapped into each other
after a change of N to −N .

Proof. This follows from Theorem 2. The replacement b → b + 1 mod 2 and N → −N leaves
the amplitude (1.3) unchanged, and, as will be noted in section 2.1, the shift b → b + 1 mod 2
exchanges symmetrization and antisymmetrization in the tensor representation R. This has the effect
of transposing all Young diagrams λ → λ′, and leads to the tensor representation R′.

The paper is organized as follows. In section 2 we recall several results on representation theory of
the orthogonal and symplectic group. Focusing on the Brauer algebra, that plays a similar role as the
algebra of the symmetric group for representations of GL(N). At the end of this section we give a
dictionary between notions used in the physics/tensor model and representation theory literature.
In section 3 we define the tensor models of interest for this paper and give their diagrammatic
representation in terms of stranded graphs. In section 4 we give the proof of our main result,
and in section 5 we use, as an explicit example, the totally symmetric and antisymmetric tensor
representations to illustrate the duality between O(N) and Sp(N) tensor models proved in the
previous section.

2. Prerequisite

2.1. Irreducible representations of the orthogonal and symplectic group

In this section we review some definitions and results of the theory of irreducible representations of
the general linear group GL(N) and its connection to representations of the symmetric group SD

and Young diagrams. We further review irreducible representations of the groups O(N) and Sp(N),
preserving some non-degenerate bilinear form and their connections to the Brauer algebra.

Let V = RN . Both GL(N) and SD act on the tensor product space V ⊗F . Irreducible representations
of GL(N) can be obtained as the image of certain elements of the group algebra CSD (Young
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symmetrizers). Analogously, irreducible representations of O(N) or Sp(N) can be obtained using
projectors, defined by elements of the Brauer algebra BD.

Our exposition is based on [44] and, when concerning the Brauer algebra, on [45]. We further refer
the interested reader to [46,47] or to the books [48] or [36].

Young tableaux. For general combinatorial references on Young tableaux, we refer to chapter XIV
of the handbook [49]. To a partition λ = (λ1, λ2, . . . , λk) of D ∈ N, denoted as λ ⊢ D, i.e. a sequence
of non increasing integers with |λ| = ∑k

i=1 λi = D, we associate a Young diagram

λ =

λ1

λ2

λ3

λ4

λ5

(2.1)

with λi boxes in the ith row. Note that we are using here the English notation for Young diagrams and
tableaux. The dual diagram λ′ is obtained by interchanging rows and columns in the Young diagram.
Let us recall that Young diagrams can be used to define projectors onto irreducible representations of
the symmetric group SD.

Given a Young diagram, a Young tableau is a numbering of the boxes by the integers 1, 2, . . . , D.
The canonical Young tableau is obtained by numbering the boxes consecutively:

1 2 3
4 5 6
7 8
9
10

. (2.2)

Define the sets of row and column permutations:

Pλ = {g ∈ SD | g preserves each row} ,

Qλ = {g ∈ SD | g preserves each column} .
(2.3)

Next, one introduces two elements of the group algebra CSD:

aλ =
∑

g∈Pλ

g , bλ =
∑

g∈Qλ

sgn(g)g . (2.4)

Noting that CSD acts on V ⊗D by permuting factors, aλ acts as a symmetrizer and bλ as an
antisymmetrizer on the tensors. Finally, the Young symmetrizer is defined as:

cλ = aλ · bλ . (2.5)

Consider as an example λ = or . The image of the action of cλ on V ⊗3 is Sym3V or ∧3 V , the
spaces of totally symmetric or antisymmetric tensors, respectively.

The permutation group SD acts on tensors in V ⊗D by permutation of the indices, with V a vector
space of dimension N . Then all the previous projectors give rise to representations, which are in
general reducible. The dimension of a representation indexed by the Young diagram λ reads:

dim(πλ,N ) =
∏

(i,j)∈λ

N − i + j

hij
, (2.6)
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with i (resp. j) the row (resp. column) label of the box and hij the hook length of the box (i, j), i.e.

hi,j = #
{

(k, l) ∈ λ with k = i, l ≥ j or l = j, k ≥ i
}

. (2.7)

Then, it is worthwhile to notice that this is a polynomial in N obeying the relation:

dim(πλ,−N ) = (−1)|λ|dim(πλ′,N ) , (2.8)

with |λ| the number of boxes in λ and λ′ the dual diagram. Therefore, trading N for −N involves
exchanging rows and columns, or equivalently, symmetrization and antisymmetrization. For example:

dim
(

, N

)
= N(N − 1)(N − 2)(N + 1)

4 · 2 · 1 · 1 ↔
dual

dim
(

, −N

)
= N(N − 1)(N + 1)(N + 2)

4 · 2 · 1 · 1 . (2.9)

These encode representations of the symmetric group. For our purposes it turns out to be helpful to
identify irreducible representations of the groups O(N) and Sp(N) inside the previous ones, as we
shall do in the following.

Representations. Let us recall that a representation of the group GL(N) on V ⊗D is semisimple
and decomposes into a direct sum of irreducible representations that are determined by irreducible
representations of SD, and thus indexed by Young diagrams. For simplicity, we focus on N much larger
than D (N ≥ 2D). Note that for small N not all Young diagrams give irreducible representations.

An analogous construction holds for the groups O(N) and Sp(N) that preserve a non-degenerate
(skew-)symmetric bilinear form. The main difference lies in the ability to form traces by contacting
two factors of V ⊗D with the bilinear form. To allow for these contractions, the group algebra
CSD is replaced by the Brauer algebra BD [46]. As subgroups O(N), Sp(N) ⊂ GL(N), irreducible
representations of GL(N) are still representations of O(N) and Sp(N), but not necessarily irreducible.
However, irreducible O(N) or Sp(N) representations can be obtained by traceless projections of
irreducible representations of GL(N). In [45], a universal traceless projector PD ∈ BD was constructed,
such that irreducible O(N) or Sp(N) representations can be obtained by first subtracting traces by
applying PD, and second applying a projector (e.g. Young symmetrizer) to an irreducible GL(N)
representation. Note that, in particular, both operations commute.

Brauer algebra. Let us now exhibit the Brauer algebra BD(z), for D ∈ N, z ∈ C.
For D ∈ N, draw two horizontal rows of vertices labelled 1, 2, . . . , D. Brauer diagrams are represented

by pairings of these 2D vertices. If every vertex in the top row is connected to a vertex in the bottom
row, these elements represent permutation diagrams. Thus, SD is a subset of the diagrams and CSD

a subset of the algebra. For example:

σ =

1

1

2

2

3

3

4

4

, τ =

1

1

2

2

3

3

4

4

. (2.10)

For simplicity, from now on we omit the labels on our diagrams. Since Brauer diagrams are more
general than permutation diagrams, the set of Brauer diagrams includes elements such as

β = , υ = , (2.11)
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having arcs connecting vertices of the same row. The product of two Brauer diagrams στ is defined
by placing σ below τ and “straightening” the lines:

στ = = . (2.12)

For permutation diagrams, this is equivalent to the product of the permutations. Whenever loops
appear, they get deleted to obtain again a Brauer diagram.

The Brauer algebra BD(z) is the free C-algebra on the set of Brauer diagrams together with the
above product and the additional rule stating that when l ≥ 0 loops appear in the product of two
Brauer diagrams, the resulting diagram gets multiplied by a factor zl.

βυ = = z . (2.13)

Note that one has: CSD ⊂ BD(z) (diagrams with zero arcs).
A set of generators of BD(z) is given by σi and βi (i = 1, 2, . . . , D − 1):

σi =
. . .

. . .

. . .

. . .

i i + 11 D

, βi =
. . .

. . .

. . .

. . .

i i + 11 D

. (2.14)

Furthermore, we introduce the following elements for i < j:

σij =
. . .

. . .

. . .

. . .

. . .

. . .

i j1 D

, βij =
. . .

. . .

. . .

. . .

. . .

. . .

i j1 D

.

(2.15)

Action on V ⊗D. If V is a real N -dimensional vector space with non-degenerate bilinear form g,
that can be the standard symmetric or symplectic form, one considers integer values of z = (−1)bN ,
N ∈ N (b = 0 in the symmetric, and b = 1 in the symplectic case). The Brauer algebra BD((−1)bN)
acts naturally on tensors of order D that we represent by their components

T = T a1a2...aD ea1 ⊗ ea2 ⊗ · · · ⊗ eaD , (2.16)

where {ea}a=1,2,...N is a standard basis with respect to the bilinear form g on V . An element
β ∈ BD((−1)bN), corresponding to a single Brauer diagram, acts as follows on T b1b2...bD :

1. Place the indices b1b2 . . . bD in the top row of the Brauer diagram.

2. Permute them according to the lines that connect the bottom to the top row.

3. Contract them with g if they are connected by an arc in the top row.

4. Add a factor gaiaj for each arc in the bottom row.

5. Multiply the result by (η(β))b, where η(β) = (−1)m where m is the minimal number of crossings
in β.1
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Crucially, because of the last point, in applications to Sp(N), BD(−N) acts in a signed representation.
More explicit, we can associate to β a linear map in End(V ⊗D), whose components write

(β)a1a2...aD
b1b2...bD

= η(β)b
∏
(i,j)

i in the bottom row
connected to j in the top row

δai
bj

∏
(k,l)

k connected to l
by an arc in the bottom row

gakal
∏

(m,p)
m connected to p

by an arc in the top row

gbmbp ,

(2.17)
and it acts on the tensor components as:

β · T a1a2...aD =
∑

b1,b2,...,bD

(β)a1a2...aD
b1b2...bD

T b1b2...bD . (2.18)

For example, one has:

σij · T a1...ai...aj ...aD = T a1...aj ...ai...aD , (2.19)
βij · T a1...ai...aj ...aD = gaiaj gbibj

T a1...bi...bj ...aD , (2.20)
υ · T a1a2a3a4 = ga1a3 gb1b2 T b1b2a4a2 . (2.21)

The action is extended to arbitrary elements of the Brauer algebra by linearity. One can also raise
the indices of the linear map using the bilinear form such that:

(β)a1a2...aD,b1...bD = (β)a1a2...aD
c1c2...cD

gc1b1 . . . gcDbD

= η(β)b
∏
(i,j)

i in the bottom row
connected to

j in the top row

gaibj
∏
(k,l)

k connected to l
by an arc in the bottom row

gakal
∏

(m,p)
m connected to p

by an arc in the top row

gbmbp .

(2.22)

Note that because of the sign η(β) in the definition of the action on V ⊗D, the interchange of sym-
metrization and antisymmetrization when going from O(N) representations to Sp(N) representations
is already built in. This can be seen by the fact that in the case where σ is a permutation, the sign
η(σ) corresponds to sgn(σ). The components of the linear map associated to aλ and bλ (see (2.4)) are:

(aλ)a1...aD
b1...bD

=
∑

σ∈Pλ

sgn(σ)b
∏
(i,j)

j=σ(i)

δai
bj

,

(bλ)a1...aD
b1...bD

=
∑

τ∈Qλ

sgn(τ)b+1 ∏
(i,j)

j=τ(i)

δai
bj

.
(2.23)

In conclusion, in the O(N) case (b = 0), aλ acts as a symmetrizer and bλ as an antisymmetrizer
whereas the roles are reversed in the Sp(N) case (b = 1). The product cλ = aλ · bλ thus corresponds
to the Young symmetrizer associated to a tableau λ when b = 0 and to the symmetrizer associated to
the dual tableau λ′, obtained by permuting the rows and columns of λ, when b = 1.

Traceless projector. In order to implement the projection onto irreducible representations of O(N)
or Sp(N), the authors of [45] build a universal traceless projector, which we introduce here, for the
sake of completeness. The main building block of this projector is:

AD =
∑

1≤i<j≤D

βij ∈ BD((−1)bN) . (2.24)

Let us now list some important properties of AD:
1This sign can be expressed as the sign of oriented pairings in subsection 2.3.
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• It commutes with all elements of CSD ⊂ BD(N). Thus, in particular, it commutes with Young
symmetrizers.

• The action of AD on V ⊗D is diagonalizable.

• The kernel ker AD ⊂ V ⊗D is exactly the space of traceless tensors.

• Its non-zero eigenvalues are in (−1)bN.
The proof of these statements can be found in [45], and the universal traceless projector is given by:

PD =
∑

α non-zero eigenvalue of AD

(
1 − 1

α
AD

)
. (2.25)

Explicit formulas for the non-zero eigenvalues α are also given in [45].

2.2. Sign of directed pairings

In this subsection, we define the sign given by two oriented pairings and give some of its properties.
Consider two oriented pairings M⃗1 and M⃗2 on a set of 2D elements, suppose these two pairings are

given by:

M⃗1 = {(i1, i2), . . . , (i2D−1, i2D)} ,

M⃗2 = {(j1, j2), . . . , (j2D−1, j2D)} .
(2.26)

The sign ϵ(M⃗1, M⃗2) of the two pairings is defined as the sign of the permutation σ =
(

i1 i2 ... i2D−1 i2D

j1 j2 ... j2D−1 j2D

)
:

ϵ(M⃗1, M⃗2) = sgn
((

i1 i2 ... i2D−1 i2D

j1 j2 ... j2D−1 j2D

))
(2.27)

We give here a list of some of the properties of the sign ϵ(M⃗1, M⃗2):
1. It is symmetric under permutation of its arguments:

ϵ(M⃗1, M⃗2) = ϵ(M⃗2, M⃗1) . (2.28)

2. For three pairings M⃗1, M⃗2, M⃗3 on the same set, one has:

ϵ(M⃗1, M⃗2) = ϵ(M⃗1, M⃗3)ϵ(M⃗2, M⃗3). (2.29)

3. For two pairings M⃗1, M⃗2 on a first set S1 of 2D elements and two pairings M⃗3, M⃗4 on a second
set S2 of 2p elements, one has:

ϵ(M⃗1, M⃗2)ϵ(M⃗3, M⃗4) = ϵ(M⃗1 ⊔ M⃗3, M⃗2 ⊔ M⃗4) . (2.30)

4. Consider a set of elements Sv and two pairings M⃗1 and M⃗2 on this set. Depict each elements of
Sv as a node and each pair in M⃗1 and M⃗2 as an oriented edge pointing from the first element to
the second, of color 1 for the pairs in M⃗1 and color 2 for the ones in M⃗2. The sign ϵ(M⃗1, M⃗2)
can be written as:

ϵ(M⃗1, M⃗2) = (−1)F1/2,even . (2.31)
In the equation above, F1/2,even is the number of even faces of color 1 and 2 of the graphical
representation described above. An even, resp. odd, face of color 1 and 2 is defined as a closed
cycle of alternating colors 1 and 2 where an even, resp. odd, number of edges point in one
direction around the cycle. Because each face consists of an even number of edges, this notion
is well defined.

In the sequel, the sign ϵ plays a crucial role in the proof of our main theorem. Let us first link this
quantity to the Brauer algebra and connect them to tensor models.
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2.3. Pairings, the Brauer algebra, propagators and projectors

In this subsection we exhibit the connection between the notions of subsections 2.1 and 2.2, and
propagators in the random tensor models we study in this paper.

The relation between Brauer diagrams and pairings is straightforward, as each Brauer diagram
is a pairing of 2D vertices. Moreover, the sign η(β) that appears in the description of the action
of BD((−1)bN) on V ⊗D, can be expressed as the sign of two directed pairings by the following
construction:

1. Label the vertices in the Brauer diagram 1, 2, . . . , D in the top row and D + 1, D + 2, . . . , 2D in
the bottom row.

2. Let β⃗ be the directed pairing induced by β, where edges are oriented from top to bottom, left
to right in the top row and right to left in the bottom row.

3. Let M⃗ref = {(1, D + 1), (2, D + 2), . . . (D, 2D)} be the reference pairing, that pair top to bottom
vertices.

4. One then has: η(β) = ϵ(β⃗, M⃗ref ) .

This follows from the use of (2.31). Moreover, βa1...aD,aD+1...a2D admits a compact form in term of
the oriented pairing β⃗:

(β)a1a2...aD,aD+1...a2D = ϵ(β⃗, M⃗ref )b
∏

(i,j)∈β⃗

gaiaj . (2.32)

In a random tensor model, with tensors of order D, living in a representation R ⊂ V ⊗D of the group
O(N) or Sp(N), a propagator is a O(N)- or Sp(N)-linear map C ∈ End(R). As the Brauer algebra
is isomorphic (for N large enough) to this space of O(N)- or Sp(N)-linear maps, each propagator is
also an element of BD((−1)bN).

As a consequence of Schur’s lemma, if the representation R is irreducible, C is proportional to
the identity on R, and if R is reducible and decomposes into a direct sum of distinct irreducible
representations Ri (R = ⊕k

i=1 Ri), then C decomposes as well into a direct sum of maps Pi, each
proportional to the identity on Ri.

Denoting by PR ∈ End(V ⊗D) the orthogonal projector on R, i.e. im(PR) = R. The propagator can
be trivially extended to the whole space V ⊗D by C ◦ PR. Thus, reformulating the implications of
Schur’s Lemma: If R is irreducible the propagator is proportional to the projector on R, and if R
decomposes into distinct irreducible representations as above, the propagator is a linear combination
of the projectors on the Ri.

When studying tensor models from a quantum field theoretical perspective, one is interested in the
calculation of expectation values of the form:

⟨f(T )⟩ =

[
e∂T C∂T e−V (T )f(T )

]
T =0[

e∂T C∂T e−V (T )
]

T =0

, (2.33)

where V (T ) and f(T ) are invariant under the group action, and ∂T C∂T is a short hand notation for
the Laplacian-like second order differential operator:

∂T C∂T :=
N∑

a1
1,...,a1

D,a2
1,...,a2

D=1

∂

∂T a1
1...a1

D

Ca1
1...a1

D, a2
1...a2

D
∂

∂T a2
1...a2

D

. (2.34)
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Note that indices are raised and lowered by the non-degenerate bilinear form, as usual. In the above
formulation, the tensors are elements of R, i.e. have some non-trivial symmetry. But one can as well
consider every tensor T ∈ R to arise from the projection of a tensor T̃ ∈ V ⊗D without symmetry
under permutation of its indices. Thus, if we supplement the derivative operator with the appropriate
projector, only modes obeying the symmetry (tensors in R) propagate and T can be replaced by T̃ :

⟨f(T )⟩ =

[
e∂T̃ (CPR)∂T̃ e−V (T̃ )f(T̃ )

]
T̃ =0[

e∂T̃ (CPR)∂T̃ e−V (T̃ )
]

T̃ =0

, (2.35)

with the convention ∂T̃ T̃ = idV ⊗D .

3. The graded tensor model

Let T a1...aD be the components of a generic random tensor with D indices (an order D tensor). Each
index of the tensor ranges from 1 to N , the tensor has thus ND independent components. As already
mentioned above, we introduce a parameter b, equal to 0 or 1, that defines the symmetry properties
of the tensor. If b = 0, resp. b = 1, the tensor transforms in some representation R of order D of the
orthogonal group O(N), resp. symplectic group Sp(N). Using Einstein summation convention the
group action writes:

T a1...aD → T ′a1...aD = (Ob)a1
b1

(Ob)a2
b2

. . . (Ob)aD
bD

T b1...bD , Ob ∈

O(N) , b = 0
Sp(N) , b = 1

. (3.1)

Moreover, the indices of the tensor are contracted using a graded symmetric form gb such that
gbab = (−1)bgbba. One has:

gbab =

δab , b = 0
ωab , b = 1

, with δ =
(
1N/2 0

0 1N/2

)
and ω =

(
0 1N/2

−1N/2 0

)
. (3.2)

Thus, the tensor components are fermionic (odd graßmannian) if b = 1 and D odd, and bosonic
otherwise (the parity of the tensor components is bD mod 2).

Invariants and directed stranded graphs. By contracting indices with gb one can build invariant
polynomials in the tensor components. Unlike the graded colored tensor models studied previously in
[29, 30], two indices at different positions can now be contracted. Therefore, the invariants do not
admit a graphical representation in term of directed edge colored graphs but they do admit one in
terms of directed stranded graphs such that:

• each tensor is represented by a set of D nodes labeled by its indices.

• each contraction of indices is represented by a strand connecting the corresponding nodes.

Definition 4 (Stranded Graph). We encode a directed stranded graph S⃗ with D strands by a set of
nodes V (S⃗) with |V (S⃗)| elements, that comes in groups of D, and a set of edges, called strands, E⃗(S⃗),
such that E⃗(S⃗) is a directed pairing of V (S⃗). One often refers to the D nodes as vertices. If two such
vertices are directly connected by D strands one often refers to this collection of D strands as edge.

We also denote the undirected version of a directed stranded graph by S. Two examples are drawn
in figure 1.
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Figure 1. Two stranded graphs for D = 3.

As a shorthand notation we write aD = (a1, a2, . . . , aD) for the sequence of D indices. To each directed
stranded graph S⃗ is then associated an invariant whose expression reads:

IS⃗(T ) =
( ∏

(i,j)∈M⃗ref

T ai
D T aj

D

)
ϵ(M⃗D

ref , E⃗(S⃗))b
∏

(k,l)∈E⃗(S⃗)

gbkl . (3.3)

In the equation above, M⃗ref is an arbitrary reference pairing of 2p = |V (S⃗)|/D tensors. The pairing
M⃗D

ref is a directed pairing of the indices of the tensors given by the disjoint union of D copies of M⃗ref .
An illustration is given in figure 4. The term ϵ(M⃗D

ref , E⃗(S⃗))b is the sign of the pairing M⃗D
ref with

respect to E⃗(S⃗); this sign is defined in (2.27).
Introducing the sign of the pairings in the expression of an invariant fixes the ambiguity induced by

the graded symmetry of gb. Two invariants associated to two directed versions of the same stranded
graph S are in fact equal. This means that IS⃗(T ) is a class function and we can choose a single
representative of S in the action of our model. More comments on this can be found in [30]. As a
consequence, we drop the arrow in the notation if we refer to the undirected version of the graph and
if the quantity does not depend on the chosen orientation of the graph.

As one may contract indices of different positions together, there are several possible quadratic
invariants. We group them into a quadratic term of the form T aD C−1

aDbD
T bD . The propagator of the

model is given by

CaDbD =
∑

M∈M{aDbD}
γM ϵ(M⃗, M⃗ref,C)b

∏
(i,j)∈M⃗

g ij
b , γM ∈ R , (3.4)

where g a1b1
b denotes the components of the inverse of gb such that gbacg

cd
b = δ d

a . Moreover, M{aDbD}
is the set of non oriented pairing on the set of 2D indices aD ∪ bD and M⃗ is a chosen oriented version
of M . The pairing M⃗ref,C is a reference pairing of the indices given by:

M⃗ref,C = {(a1, b1), . . . , (aD, bD)} . (3.5)

This corresponds to the case where each index of the first tensor propagates to the index at the same
position in the second tensor (see figure 2).

Let us emphasize that the product CPR in (2.35) is a particular case of the general propagator
(3.4), when C = 1 and PR is the projector on the irreducible representation R of O(N) or Sp(N).
This is explained in detail in Appendix A.

As noted in subsection 2.3, CaDbD is an element of the Brauer algebra BD((−1)bN). Each pairing
M in the sum represents a Brauer diagram and the factors γM are the coefficients in the linear
combination. The reference pairing M⃗ref,C coincides with M⃗ref from subsection 2.2. Note that Brauer
diagrams are conventionally read from top to bottom, whereas propagators are usually drawn from
left to right.
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a1

a2

aD

b1

b2

bD

Figure 2. Graphical representation of M⃗ref,C

Definition 5 (Graded Tensor Model with Symmetry). We define the graded tensor model with
symmetry R by the measure:

dµ[T ] = e−S[T ] [dT ], [dT ] = ζ
∏
aD

dT a1...aD ,

with S[T ] = T aD C−1
aDbD

T bD +
∑

S connected,
|V (S)|/D>2

λS
|V (S)|/D

IS(T ) ,
(3.6)

and normalization ζ such that
∫

dµ[T ] = 1 for λS = 0 ∀λS . All tensors are elements of the O(N) (for
b = 0), resp. Sp(N) (for b = 1), representation R.

In the definition above, the constant λS is the coupling constant of the invariant associated to S.
The partition function of this models writes:

Z =
∫

dµ[T ] =
[
e∂T C∂T e

∑ λS
|V (S)|/D

IS(T )
]

T =0
, (3.7)

where the derivative representation [1, 50, 51] of the Gaussian integral is used and ∂T C∂T is a
short-hand notation for:

∂T C∂T := ∂

∂T a1
D

Ca1
Da2

D
∂

∂T a2
D

. (3.8)

When making use of the derivative representation, as discussed in section 2.3, we can take the tensors
to have no symmetries under permutations of their indices, but instead incorporate an appropriate
projector on the space R in the definition of the propagator.

4. Proof of the main result

In this section, we prove the main theorem of our paper. We show that the partition function of the
graded tensor model is invariant under the change of parameters b → b+ 1 mod 2 and N → −N . By
choosing the propagator according to a given symmetry specified by the O(N) or Sp(N) representation
R this implies the stated duality. The appropriate choice of the propagator as an element of the
respective Brauer algebra was discussed in section 2.2. From a mathematical point of view, the choice
is implemented by fixing the pairings M⃗ and constants γM in (3.4) accordingly.

Let us first recall the commutation relation of the tensor components: T aD T bD = (−1)bD T bD T aD .
The Gaußian (free) expectation value ⟨T a1

D . . . T a2p
D ⟩0 of 2p tensors whose order is encoded by M⃗ref is

defined as:
⟨T a1

D . . . T a2p
D ⟩0 =

[
e∂T C∂T T a1

D . . . T a2p
D

]
T =0

. (4.1)

For our model, Wick’s theorem expresses this expectation as a sum over pairings of 2p elements:

⟨T a1
D . . . T a2p

D ⟩0 =
∑

M0∈M2p

ϵ(M⃗ref , M⃗0)bD
( ∏

(i,j)∈M⃗0

Cai
Daj

D

)
. (4.2)
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Figure 3. A 2-colored stranded graph for D = 3, obtained by connecting the two stranded graphs in
figure 1 by propagator edges (elongated Brauer diagrams). The color 0 is represented by orange and
color 1 by black lines.

The sign ϵ(M⃗ref,2p, M⃗0)bD in (4.2) takes into account the type (bosonic/fermionic) of the tensor
components. The directed pairing M⃗0 is an arbitrary oriented version of M0, but notice that the term
ϵ(M⃗ref,2p, M⃗0)bD

(∏
(i,j)∈M⃗0

Cai
Daj

D

)
is invariant under reorientation of pairs in M⃗0.

The Gaußian (free) expectation of an invariant IS(T ) of order 2p specified by a stranded graph S
is defined as:

⟨IS(T )⟩0 =
[
e∂T C∂T IS(T )

]
T =0

. (4.3)

This expectation value can be computed by pairing the 2p groups of D vertices in S by propagators
(3.4). We represent this pairing by edges of a new color 0, each consists again of D strands.

The result is a sum over 2-colored stranded graphs G, such that S ⊂ G is the maximal subgraph of
color 1 (see Fig. 3 for an example of such a graph).

Lemma 6. The Gaussian expectation (4.3) writes:〈
IS(T )

〉
0

=
∑

G, S⊂G
|V (G)|=2pD

γG
(
(−1)bN

)F (G)
, (4.4)

where the power of N is given by the number of faces of G. Moreover, the factor γG is a product of
weights associated to the edges of color 0, given by the expression of the propagator in (3.4). It writes:

γG =
∏

e∈E0(G)
γMe , (4.5)

with E0(G) the set of edges of color 0 and M e the pairing (Brauer diagram) defining the path of the
D strands of the color 0 edge e.

Proof. Applying Wick’s theorem (4.2) to the formula of an invariant of order 2p specified by a directed

13
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Figure 4. The pairing M⃗0 of tensors is promoted to the pairing M⃗D
0 of their indices.

stranded graph S⃗ (3.3), leads to the following form of the Gaußian expectation:

⟨IS⟩0 =
〈 ∏

(i,j)∈M⃗ref

T ai
D T aj

D
〉

0
ϵ(M⃗D

ref , E⃗(S⃗))b
 ∏

(k,l)∈E⃗(S⃗)

gbkl


=

∑
M0∈M2p

ϵ(M⃗D
ref , E⃗(S⃗))bϵ(M⃗ref , M⃗0)bD

( ∏
(i,j)∈M⃗0

Cai
Daj

D

) ∏
(k,l)∈E⃗(S⃗)

gbkl

 .

(4.6)

First, the dependence on the reference pairing can be eliminated using the properties (2.30) and (2.29)
of the sign ϵ such that:

ϵ(M⃗D
ref , E⃗(S⃗))bϵ(M⃗ref , M⃗0)bD = ϵ(M⃗D

0 , E⃗(S⃗))b , (4.7)

where M⃗D
0 is the oriented pairing given by the disjoint union of D copies of M⃗0. This pairing can be

seen as taking each pairs of tensors in M⃗0 and pairing their indices, respecting their position. An
illustration can be found in figure 4.

Second, we rewrite the term
(∏

(i,j)∈M⃗0
Cai

Daj
D

)
using (3.4) as:

∏
(i,j)∈M⃗0

Cai
Daj

D =
∏

(i,j)∈M⃗0

 ∑
Mij∈M{ai

Daj
D}

γM ϵ(M⃗ij , M⃗ref,ij,C)b
∏

(m,n)∈M⃗ij

g mn
b


=

∑
Mtot∈Mtot

γMtotϵ(M⃗tot, M⃗D
0 )b

 ∏
(m,n)∈M⃗tot

g mn
b

 ,

(4.8)

where M{ai
Daj

D} is the set of pairings of elements ai
D ∪ aj

D, and Mtot is the set of pairings given by
the disjoint union of all M{ai

Daj
D} with (i, j) ∈ M⃗0. A pairing Mtot ∈ Mtot is therefore the disjoint

union of p pairings belonging to the sets M{ai
Daj

D}. An example is shown in figure 5. Denoting these
p pairings as M1 . . . Mp, the factor γMtot is equal to:

γMtot =
p∏

x=1
γMx . (4.9)
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Figure 5. The construction of a pairing M⃗tot, from a pairing M⃗0 of four tensors of rank 3, as well as
two pairings of indices M⃗13 and M⃗24. In spirit, these describe propagators connecting the different
tensors.

We used here the fact that, by construction, the disjoint union of the Mref,ij,C is equal to M⃗D
0 . This

comes from the fact that both contract the indices of a pair of tensors present in M⃗0, respecting the
position of indices (see figure 6).

Inserting (4.7) and (4.8) in (4.6), we obtain:

⟨IS⃗⟩0 =
∑

M0∈M2p

Mtot∈Mtot

γMtotϵ(M⃗D
0 , E⃗(S⃗))bϵ(M⃗tot, M⃗D

0 )b
 ∏

(m,n)∈M⃗tot

g mn
b


 ∏

(k,l)∈E⃗(S⃗)

gbkl

 , (4.10)
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Figure 6. Illustration of the correspondence between M⃗D
0 and M⃗ref,ij,C .
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and using property (2.29) this leads to:

⟨IS⟩0 =
∑

M0∈M2p

Mtot∈Mtot

γMtotϵ(M⃗tot, E⃗(S⃗))b
 ∏

(m,n)∈M⃗tot

g mn
b


 ∏

(k,l)∈E⃗(S⃗)

gbkl

 . (4.11)

Adding oriented edges of a new color 0 to S, according to M⃗tot, yields a 2-color directed stranded
graph G⃗. We define a face in G as a cycle with strands of alternating colors. Along a face, gb and its
inverse alternate and all indices are summed. Therefore, each face contributes a factor N . However,
because of the graded symmetry gbac = (−1)bgb

ca a face also picks up a factor (−1)b if an odd number
of strands point in one of the two directions around the face, we characterize such a face to be odd,
otherwise a face is called even. The term

(∏
(m,n)∈M⃗tot

g mn
b

) (∏
(k,l)∈E⃗(S⃗) gbkl

)
thus contributes: ∏

(m,n)∈M⃗tot

g mn
b


 ∏

(k,l)∈E⃗(S⃗)

gbkl

 = (−1)bFodd(G⃗)NF (G) (4.12)

Using property (2.31) we also rewrite the term ϵ(M⃗tot, E⃗(S⃗))b as:

ϵ(M⃗tot, E⃗(S⃗))b = (−1)Feven(G⃗)b , (4.13)

where Feven(G⃗), resp. Fodd(G⃗), denotes the number of even, resp. odd, faces of G⃗ and F (G) =
Fodd(G⃗) + Feven(G⃗) is the total number of faces of G, which does not depend on any chosen orientation.

The expectation value ⟨IS⟩0 can thus be evaluated as a sum over 2-colored stranded graphs G:

⟨IS⟩0 =
∑

G, S⊂G
|V (G)|=2pD

γMtot

(
(−1)bN

)F (G)
. (4.14)

This concludes the proof.

Each term in (4.4) is invariant under the transformation:

b → b + 1 and N → −N . (4.15)

Thus, this transformation does not affect the Gaußian expectation value of any invariant nor the
amplitude of its graphs and is hence a duality of our model.

The invariance of the partition function under the duality follows directly from the above statement,
using a perturbative expansion of the interaction part of the action:

Z =

e∂T C∂T
∑

{pS≥0}

∏
S

1
pS !

(
λS

|V (S)|/D
IS(T )

)pS


T =0

=
∑

{pS≥0}

∏
S

1
pS !

(
λS

|V (S)|/D

)pS〈∏
S

IS(T )pS
〉

0
.

(4.16)

Since any product of invariants is a single disconnected invariant, the factor
〈∏

S IS(T )pS
〉

0
is invariant

under the duality (4.15). Hence the partition function of the model is invariant under (4.15).
As usually, expectation values of invariants are calculated by taking derivatives of ln Z with respect

to the couplings λS (see, for example, [1, 30]). Diagrammatically, the derivative marks a 1-colored
stranded subgraph of type S and this leads to the conclusion stating that the expectation value of an
invariant can be experesssed a s a formal sum over 2−colored stranded graphs (see again [30]).
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5. Illustration: totally symmetric and antisymmetric tensor models

In this section, we exhibit the general duality result proved in the previous section for the particular
case of totally symmetric and antisymmetric tensor models.

5.1. O(N) tensor models

The vector space V is, in this case, an ordinary even (bosonic) N -dimensional real vector space and
the tensor product space V ⊗D is an even vector space ∀D ∈ N. As already explained above, the
grading parameter now takes the value b = 0.

To the GL(N) representation of totally symmetric tensors SymD(V ) of order D is associated the
following Young diagram:

λS = · · ·︸ ︷︷ ︸
length D

. (5.1)

The corresponding Young symmetrizer is: cS = ∑
σ∈SD

σ. The projector on the O(N) representation
of traceless symmetric tensors is (see equation (4.21) and proposition 4.2 in [45]):

P
(λS)
D,N =

⌊ D
2 ⌋∏

f=1

(
1 − AD

(N + 2(D − f − 1))f

)
. (5.2)

This is a restricted version of the universal traceless projector (2.25) and it removes the trace modes
after restriction to symmetrized tensors. As an element of the Brauer algebra BD(N), a propagator
(C in definition 5) of a symmetric O(N) tensor model is proportional to the projector:

P
(λS)
D,N

cS

D! . (5.3)

The Brauer algebra acts on tensors by permuting and contracting their indices (see again subsec-
tion 2.1).

To the GL(N) representation of totally antisymmetric tensors ∧D(V ) of order D is associated the
Young diagram:

λ∧ = ...

 length D . (5.4)

The corresponding Young symmetrizer is: c∧ = ∑
σ∈SD

sgn(σ)σ. A totally antisymmetric O(N)
tensor is automatically traceless, i.e. ∧D(V ) is already an irreducible O(N) representation. Thus a
propagator of an antisymmetric O(N) tensor model, as an element of BD(N), is proportional to the
projector:

c∧
D! , (5.5)

that acts by antisymmetrizing all indices.

5.2. Sp(N) tensor models

In this case, the N -dimensional vector space V is an odd (fermionic) real super-vector space and
order D tensors are bosonic if D is an even integer and fermionic if D is odd. Therefore the grading
parameter now takes the value b = 1.

The representation of the dual tensor model with Sp(N) symmetry is obtained by transposing the
Young diagram: λ′

S = λ∧. Therefore, the dual model to the symmetric traceless O(N) tensor model is
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the antisymmetric traceless Sp(N) tensor model. The projector onto this representation is given by:

P
(λ∧)
D,−N =

⌊ D
2 ⌋∏

f=1

(
1 − AD

(−N + 2(D − f − 1))f

)
, (5.6)

seen as an element of BD(−N) that differs from (5.3) by the sign of N . Recall the difference in the
action of β when b = 1 instead of b = 0: the action of β on tensors differs by a factor η(β) = (−1)m,
where m = minimal number of crossings in β. If β is a permutation, we have η(β) = sgn(β) and
thus, the Young symmetrizer cS ∈ BD(−N) acts by antisymmetrizing the indices of a tensor, whereas
cS ∈ BD(N) acts by symmetrization.

The dual model to the antisymmetric O(N) tensor model contains tensors transforming in the
symmetric representation of Sp(N). Note that these tensors are also automatically traceless:

ωaiaj T a1...ai...aj ...aD = 0 , (5.7)

because of the antisymmetry of the symplectic form. Thus, the projector is equal to 5.5, but regarded
as an element of BD(−N), and acts by symmetrizing the tensors. The diagrammatic (Feynman type)
expansions of a model and its dual contain exactly the same stranded graphs, but while the amplitude
of a stranded graph picks up a factor N for each face in the O(N) models, in the Sp(N) models, each
face contributes a factor −N . For example, the graph in figure 3 has three faces and thus contributes
as N3 in an O(N) model, but −N3 in an Sp(N) model.

Concluding remarks. In this paper, we proved a duality between tensor models built with
irreducible representations of the groups O(N) and Sp(N).

As a natural follow-up of this work, one could consider more general tensor models with OSp(m, n)
symmetries where OSp(m, n) is the orthosymplectic super Lie group. The groups O(N) and Sp(N)
studied in this paper are subgroups of OSp(m, n) and are obtained when the supervector spaces are
restricted to the purely even (OSp(N, 0)) or purely odd (OSp(0, N)) cases.

Moreover, another potential extensions of our present work is given by the investigation of the
implications of the duality studied here for the case of the so-called tensor field theories [52]. This
comes from the fact that the change N → −N could lead to new renormalization group fixed points.

Integrals over the the unitary group U(N), (Haar averages) are ubiquitous in random matrix theory
and have e.g. applications to random circuits in quantum computing (see for examples [53]). On the
mathematical side, the issue of computing analogous averages over O(N) and Sp(N) was studied
in [54]. Thus, an interesting perspective for future work is given by the investigation of potential
physical applications (such as potential applications to tensor networks) of O(N) and Sp(N) averages,
keeping in mind the duality studied in this paper.

A. Projector of tensors with irreducible symmetry

Let us now consider an irreducible representation of O(N) or Sp(N) given by the Young tableau λ.
The projector on this space of tensors is given by the product of the Young symmetrizer cλ with the
traceless projector PD:

P
a1...aDaD+1...a2D

R = (cλ · PD)a1...aDaD+1...a2D

=
∑

α non-zero
eigenvalue of AD

σ∈Pλ,τ∈Qλ

(
sgn(τ)σ · τ + − sgn(τ)

α
σ · τ · AD

)a1...aDaD+1...a2D

(A.1)
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The products of the elements σ, τ and AD of the Brauer algebra lead to ϕ and χ, which are elements
of BD((−1)bN). We thus rewrite the terms present in PR as:∑

α non-zero
eigenvalue of AD

σ∈Pλ ,τ∈Qλ

sgn(τ)σ · τ =
∑

ϕ∈Pλ·Qλ

γϕϕ ,

∑
α non-zero

eigenvalue of AD
σ∈Pλ ,τ∈Qλ

− sgn(τ)
α

σ · τ · AD =
∑

χ∈Pλ·Qλ·B
γχχ ,

(A.2)

where B is the set of elements βij of the Brauer algebra (see (2.15)), and γϕ and resp. γχ are factors
taking into account the fact that different products of σ and τ may lead to the same ϕ. We use then
expression (2.32) to write:

P
a1...aDaD+1...a2D

R =
∑

ϕ⃗∈Mϕ

γϕϵ(ϕ⃗, M⃗ref )b
∏

(i,j)∈ϕ⃗

gaiaj +
∑

χ⃗∈Mχ

γχϵ(χ⃗, M⃗ref )b
∏

(i,j)∈χ⃗

gaiaj , (A.3)

where the sum over the elements ϕ and χ of BD((−1)bN) is replaced by a sum over their associated
oriented pairings ϕ⃗ and χ⃗.

Thus, the projector PR is shown to be a particular case of the general projector (3.4).
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The Small-N Series in the
Zero-Dimensional O(N) Model:
Constructive Expansions and Transseries

Dario Benedetti, Razvan Gurau, Hannes Keppler and
Davide Lettera

Abstract. We consider the zero-dimensional quartic O(N) vector model
and present a complete study of the partition function Z(g, N) and its
logarithm, the free energy W (g, N), seen as functions of the coupling
g on a Riemann surface. We are, in particular, interested in the study
of the transseries expansions of these quantities. The point of this pa-
per is to recover such results using constructive field theory techniques
with the aim to use them in the future for a rigorous analysis of resur-
gence in genuine quantum field theoretical models in higher dimensions.
Using constructive field theory techniques, we prove that both Z(g, N)
and W (g, N) are Borel summable functions along all the rays in the
cut complex plane Cπ = C\R−. We recover the transseries expansion
of Z(g, N) using the intermediate field representation. We furthermore
study the small-N expansions of Z(g, N) and W (g, N). For any g = |g|eıϕ

on the sector of the Riemann surface with |ϕ| < 3π/2, the small-N ex-
pansion of Z(g, N) has infinite radius of convergence in N , while the
expansion of W (g, N) has a finite radius of convergence in N for g in
a subdomain of the same sector. The Taylor coefficients of these expan-
sions, Zn(g) and Wn(g), exhibit analytic properties similar to Z(g, N)
and W (g, N) and have transseries expansions. The transseries expansion
of Zn(g) is readily accessible: much like Z(g, N), for any n, Zn(g) has a
zero- and a one-instanton contribution. The transseries of Wn(g) is ob-
tained using Möbius inversion, and summing these transseries yields the
transseries expansion of W (g, N). The transseries of Wn(g) and W (g, N)
are markedly different: while W (g, N) displays contributions from arbi-
trarily many multi-instantons, Wn(g) exhibits contributions of only up to
n-instanton sectors.
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1. Introduction

The most famous problem of the perturbative expansion in quantum field the-
ory is the existence of ultraviolet divergences in the amplitudes of Feynman
diagrams. This is successfully dealt with using the theory of perturbative renor-
malization. However, even in one and zero dimensions (quantum mechanics
and combinatorial models, respectively), where renormalization is not needed,
perturbation theory poses another notorious challenge: in most cases the per-
turbative series is only an asymptotic series, with zero radius of convergence.
Borel resummation is the standard strategy to address this problem, but this
comes with its own subtleties. From a practical standpoint, we are often only
able to compute just the first few terms in the perturbative expansion. At a
more fundamental level, singularities are present in the Borel plane, associated
to instantons (and renormalons in higher dimensions). The instanton singu-
larities are not accidental: they stem from the factorial growth of the number
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of Feynamn diagrams with the perturbation order, which is also the origin of
the divergence of the perturbation series.1

From the resummation point of view, the most inconvenient feature of
perturbation theory is that it does not naively capture contributions from non-
analytical terms. For example, it is well known that instanton contributions
of the type e−1/g (g > 0 being the coupling constant) can be present in the
evaluation of some quantity of interest, but they are missed in the perturbative
series as their Taylor expansion at g = 0 vanishes identically.

Such exponentially suppressed terms are the archetypal example of non-
perturbative effects, and their evaluation poses an interesting challenge. Aim-
ing to include them, but still relying for practical reasons on perturbative
methods, one ends up with a more general form of asymptotic expansion,
known as transseries, which is roughly speaking a sum of perturbative and
nonperturbative sectors, for example:

F (g) �
∑

n≥0

an gn +
∑

i

e
ci
g gγi

∑

n≥0

bi,n gn . (1.1)

Over time it became increasingly clear that, in many examples of interest,
using the theory of Borel summation for the perturbative sector it is possible
to reconstruct some information about the nonperturbative ones. This relation
between the perturbative and nonperturbative sectors is known as resurgence,
and it was originally developed by Écalle in the context of ordinary differential
equations [1] (see [2] for a modern review). Ideas coming from resurgence
theory were extensively used in quantum field theory: for recent reviews with
a quantum field theory scope, see [3–5], and in particular [6], which contains
also a comprehensive list of references to applications and other reviews.

Zero-dimensional quantum field theoretical models, which are purely com-
binatorial models,2 are useful toy models for the study of transseries expan-
sions. Most conveniently, they allow one to set aside all the complications aris-
ing from the evaluation and renormalization of Feynman diagrams. Moreover,
their partition functions and correlations typically satisfy ordinary differential
equations, thus fitting naturally in the framework of Écalle’s theory of resur-
gence. The zero-dimensional φ4, or more generally φ2k with k ≥ 2, models in
zero dimensions have been exhaustively studied [6,10]. From a physics per-
spective, the current mathematical literature on resurgence deals mainly with
such zero-dimensional models.

At the opposite end, the rigorous study of the Borel summability in fully
fledged quantum field theory is the object of constructive field theory [11–13].
It should come as no surprise that the generalization of results on resurgence in
zero dimensions to the higher-dimensional setting is very much an open topic:
while Écalle’s theory can serve as good inspiration, as in [3–6], the rigorous
study of resurgence in higher-dimensional quantum field theory is much more

1The renormalon singularities specific to higher dimensions are different. They are located
on the positive real axis and stem from the factorial growth of the renormalized amplitude
of a family of diagrams consisting in essentially one diagram per perturbation order.
2These are for example of interest in the context of random geometry, see for example [7–9].
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involved. First of all, in higher dimensions the partition function (and correla-
tors) does not obey an ordinary differential equation, and one cannot simply
invoke Écalle’s theory. Moreover, the coefficients of the perturbative series are
given by divergent Feynman amplitudes, which need to be renormalized, lead-
ing to a running coupling. Incorporating the effects of renormalization in the
resurgence analysis is an open question (see, for instance, [14] for an investiga-
tion of resurgence in the Callan–Symanzik renormalization group equation).
One thing is clear: in order to answer such questions, it is insufficient to sim-
ply invoke the current theory of resurgence, and one needs to develop new
techniques adapted to the more general context of quantum field theory.

From this perspective, revisiting the resurgence in zero-dimensional mod-
els using techniques inspired by constructive field theory can be of great use.
Following such route, we consider the zero-dimensional O(N) model with
quartic potential.3 Denoting φ = (φa)a=1,...N ∈ R

N a vector in R
N and

φ2 =
∑N

a=1 φaφa the O(N) invariant, the partition function of the model
is4:

Z(g,N) =
∫ +∞

−∞

(
N∏

a=1

dφa√
2π

)
e−S[φ] , S[φ] =

1
2
φ2 +

g

4!
(φ2)2 . (1.2)

The N = 1 case has been extensively studied in [6]. One can analytically
continue Z(g, 1), regarded as a function of the coupling constant g, to a max-
imal domain in the complex plane. Subsequently, one discovers that Z(g, 1)
displays a branch cut at the real negative axis and that the nonperturbative
contributions to Z(g, 1) are captured by its discontinuity at the branch cut.
A resurgent transseries is obtained when one considers g as a point on a Rie-
mann surface with a branch point at g = 0. From now on we parameterize this
Riemann surface as g = |g|eıϕ and we choose as principal sheet ϕ ∈ (−π, π).

An approach to the study of the partition function in Eq. (1.2) in the case
N = 1 is to use the steepest-descent method [16,17]. We concisely review this in
Appendix A. One notes that on the principal sheet only one Lefschetz thimble
contributes. As g sweeps through the principal sheet the thimble is smoothly
deformed, but not in the neighborhood of the saddle point: the asymptotic
evaluation of the integral is unchanged. When g reaches the negative real axis,
there is a discontinuous jump in the relevant thimbles and a pair of thimbles
(passing through a pair of conjugated non-trivial saddle points of the action)
starts contributing, giving rise to a one-instanton sector in the transseries of
Z(g, 1).

3The same model has been considered in a similar context in [15], where the problem of

constructing Lefschetz thimbles in the N -dimensional space have been studied. By using the
intermediate field formalism, we will bypass such problem here.
4 Note that we do not use the usual normalization g/4 of the interaction in the O(N) model,

but stick to g/4! in order to facilitate the comparison with the literature on transseries which
deals mostly with the N = 1 case for which the normalization g/4! is standard. Also, we do
not use the ’t Hooft coupling λ = gN , which is needed for a well defined 1/N expansion: in
this paper we keep N small.
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Another approach to the transseries expansion of Z(g, 1) is to use the
theory of ordinary differential equations [6,10]. It turns out that Z(g, 1) obeys
a second-order homogeneous linear ordinary differential equation for which
g = 0 is an irregular singular point (e.g., [16]), giving another perspective on
why the expansion one obtains is only asymptotic.

More interestingly, one can wonder what can be said about the non-
perturbative contributions to the free energy, that is, the logarithm of the
partition function W (g, 1) = lnZ(g, 1), or to the connected correlation func-
tions. If we aim to study the free energy, the steepest-descent method does
not generalize straightforwardly as we lack a simple integral representation for
W (g, 1). One can formally write Z(g, 1) as a transseries and then expand
the logarithm in powers of the transseries monomial e

c
g , thus obtaining a

multi-instanton transseries. However, this is very formal, as the transseries
is only an asymptotic expansion, and we would like to have a direct way to
obtain the asymptotic expansion of W (g, 1). The closest one can get to an in-
tegral formula for the free energy is to use the Loop Vertex Expansion (LVE)
[18]. This constructive field theory expansion is a combination of the interme-
diate field representation with the Brydges–Kennedy–Abdesselam–Rivasseau
(BKAR) formula and has successfully been used in higher-dimensional quan-
tum field theory [19] to prove Borel summability results and even study the
decay of the correlations. (Note, however, that the results of [19] concern a the-
ory with fixed UV and IR cutoffs, bypassing the issue of the renormalization
group flow.) However, deriving directly the transseries expansion of W (g, 1)
using the steepest-descent method on the LVE proved so far impractical. One
can study the transseries expansion of W (g, 1) using again the theory of ordi-
nary differential equations as W (g, 1) obeys a nonlinear ordinary differential
equation [6], but this cannot be directly generalized to higher dimensions.

In this paper, we consider a general N and we revisit both the parti-
tion function Z(g,N) and the free energy W (g,N) from a different angle. We
focus, in particular, on the small-N expansion, which provides a natural inter-
pretation for the LVE. Such expansion could be physically interesting in higher
dimensions, where the N → 0 limit of the model is related to self-avoiding ran-
dom walks [20], an active area of investigation in modern statistical physics
[21]. However, it should be noticed that our results will not be confined to infin-
itesimal N , as such expansion has a finite radius of convergence (Proposition 2
below).

The aim of our paper is not to “solve the problem” of computing the
transseries expansion of Z(g,N) or W (g,N): this can be done almost im-
mediately using known results about special functions and classical results in
resurgence theory. Our aim is to analyze these objects using techniques one can
then employ in the interesting case of quantum field theory in higher dimen-
sions. The main results of this paper are the use of the Hubbard–Stratonovich
intermediate field formulation to introduce a small-N expansion (Sect. 3.2),
the application of the LVE to prove analyticity and Borel summability results
for the free energy (Sect. 4.1), in N and g, and the study of the resurgence
properties of the LVE. The results of the present paper provide a proof of
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concept for a set of techniques which can be employed in higher dimensions,
starting in the quantum mechanical case and then moving on to quantum field
theory.

The paper is organized as follows. In Sect. 2, we review the Borel summa-
bility of asymptotic series as well as the notion of Borel summable functions,
deriving in the process a slight extension of the Nevanlinna–Sokal theorem.

In Sect. 3, we study Z(g,N) in the intermediate field representation. This
allows us to quickly prove its Borel summability along all the rays in the cut
complex plane Cπ = C\R−. More importantly, the intermediate field represen-
tation provides a new perspective on the origin of the instanton contributions:
in this representation, the steepest-descent contour never changes, but when g
reaches the negative real axis a singularity traverses it and detaches a Hankel
contour around a cut. We insist that this Hankel contour is not a steepest-
descent contour, but it does contribute to the asymptotic evaluation of the
integral, because the cut is an obstruction when deforming the contour of in-
tegration toward the steepest-descent path. It is precisely the Hankel contour
that yields the one-instanton contribution. We then build the analytic contin-
uation of Z(g,N) to the whole Riemann surface, identify a second Stokes line,
compute the Stokes data encoding the jumps in the analytic continuation at
the Stokes lines and discuss the monodromy of Z(g,N). Next we observe that,
because in the intermediate field representation N appears only as a parameter
in the action, we can perform a small-N expansion:

Z(g,N) =
∑

n≥0

1
n!

(
−N

2

)n

Zn(g) . (1.3)

We thus study Zn(g) for all integer n, proving its Borel summability in Cπ

and computing its transseries expansion in an extended sector of the Riemann
surface, with arg(g) ∈ (−3π/2, 3π/2), which we denote C3π/2.

In Sect. 4, we proceed to study W (g,N) = ln(Z(g,N)). We first establish
its Borel summability along all the rays in Cπ using constructive field theory
techniques. We then proceed to the small-N expansion of this object:

W (g,N) =
∑

n≥1

1
n!

(
−N

2

)n

Wn(g) , (1.4)

and prove that this is an absolutely convergent series in a subdomain of C3π/2

and that both W (g,N) and Wn(g) are Borel summable along all the rays in Cπ.
Finally, in order to obtain the transseries expansion of Wn(g) and W (g,N) we
note that Wn(g) can be written in terms of Zn(g) using the Möbius inversion
formula relating moments and cumulants. Because of the absolute convergence
of the small-N series, it makes sense to perform the asymptotic expansion
term by term, and thus, we rigorously obtain the transseries for W (g,N) in a
subdomain of C3π/2. In the Appendices we gather some technical results, and
the proofs of our propositions.

Ultimately, we obtain less information on the Stokes data for W (g,N)
than for Z(g,N). While for Z(g,N) we are able to maintain analytic control
in the whole Riemann surface of g, the constructive field theory techniques we
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employ here allow us to keep control over W (g,N) as an analytic function on
the Riemann surface only up to ϕ = ±3π/2, that is past the first Stokes line,
but not up to the second one. The reason for this is that close to ϕ = ±3π/2
there is an accumulation of Lee–Yang zeros, that is zeros of Z(g,N), which
make the explicit analytic continuation of W (g,N) past this sector highly non-
trivial. New techniques are needed if one aims to recover the Stokes data for
W (g,N) farther on the Riemann surface: an analysis of the differential equa-
tion obeyed by W (g,N) similar to the one of [22] could provide an alternative
way to access it directly.

One can naturally ask what is the interplay between our results at small N
and the large-N nonperturbative effects, first studied for the zero-dimensional
O(N) model in [23] (see also [3] for a general review, and [24] for a more
recent point view). This is a very interesting question: indeed, the relation
between the two expansions is a bit more subtle than the relation between the
small coupling and the large coupling expansions for instance. The reason is
that, when building the large N series, one needs to use the ’t Hooft coupling,
which is a rescaling of the coupling constant by a factor of N . This changes the
N -dependence of the partition function and free energy, making the relation
between small-N and large-N expansions nontrivial. A good news on this front
is that the analyticity domains in g becomes uniform in N when recast in terms
of the ’t Hooft coupling [25]. But there is still quite some work to do in order to
connect the transseries analysis at small N with that at large N . However, we
stress once more that, while the large-N expansion is asymptotic, the small-N
expansion is convergent.

Main results. Our main results are the following:

• In Proposition 1, we study Z(g,N). While most of the results in this
proposition are known for N = 1, we recover them using the intermediate
field representation (which provides a new point of view) and generalize
them to arbitrary N ∈ R. In particular, we uncover an interplay between
Z(g,N) and Z(−g, 2 − N) in the transseries expansion of the partition
function for general N .

• Proposition 2 deals with the function Zn(g), notably its Borel summabil-
ity, transseries, and associated differential equation. To our knowledge,
Zn(g) has not been studied before and all of the results presented here
are new.

• Proposition 3 and 4 generalize previous results in the literature [26] on the
analyticity and Borel summability of W (g, 1) to W (g,N) and furthermore
derive parallel results for Wn(g).

• Proposition 5 contains the transseries expansion of Wn(g), which has not
been previously considered in the literature. We also give a closed formula
for the transseries expansion of W (g,N).

• Lastly, in Proposition 6, we derive the tower of recursive differential equa-
tions obeyed by Wn(g). This serves as an invitation for future studies of
the transseries of Wn(g) from an ordinary differential equations perspec-
tive.
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The natural next step is to explore how this picture is altered in higher
dimensions. While this is a wide open question, several lessons can be learned
from our present work. First, the small N series for the free energy W ob-
tained via the LVE will very likely be convergent; hence, one should be able to
study the resurgence properties of W by first studying such properties for the
“cumulants” Wn, which can be done by studying the “moments Zn” and using
Möbius inversion. Second, for the moments Zn, the steepest-descent contour
in the intermediate σ field representation will be insensitive to the coupling
constant; hence, in this representation the Stokes phenomenon will correspond
to singularities crossing this fixed contour.

2. Borel Summable Series and Borel Summable Functions

When dealing with asymptotic series, a crucial notion is that of Borel summa-
bility. Less known, there exists a notion of Borel summability of functions, in-
timately related to the Borel summability of series. In this section we present
a brief review of these notions, which will play a central role in the rest of
the paper, as well as a slight generalization of the (optimal) Nevanlinna–Sokal
theorem on Borel summability [27]. We will repeatedly use this theorem in
this paper.

Notation. We use K as a dustbin notation for irrelevant (real positive) multi-
plicative constants, and R and ρ for the important (real positive) constants.

Borel summable series. A formal power series A(z) =
∑∞

k=0 akzk is called a
Borel summable series along the positive real axis if the series

B(t) =
∞∑

k=0

ak

k!
tk , (2.1)

is absolutely convergent in some disk |t| < ρ and B(t) admits an analytic
continuation in a strip of width ρ along the positive real axis such that for t
in this strip |B(t)| < Ke|t|/R for some real positive R. The function B(t) is
called the Borel transform of A(z), and the Borel sum of A(z) is the Laplace
transform of its Borel transform:

f(z) =
1
z

∫ ∞

0

dt e−t/z B(t) . (2.2)

It is easy to check that the function f is analytic in a disk of diameter R tangent
to the imaginary axis at the origin, DiskR = {z ∈ C | Re(1/z) > 1/R}.

Clearly, if it exists, the Borel sum of a series is unique. This raises the
following question: given a function h(z) whose asymptotic series at zero is the
Borel summable series A(z), does the Borel resummation of A(z) reconstruct
h(z)? That is, is f(z) = h(z)? The answer to this question is no in general:
for instance the function e−1/z is asymptotic (along the positive real axis) at
0 to the Borel summable series ak = 0. It turns out that one can formulate
necessary and sufficient conditions for h(z) which ensure that it is indeed the
Borel sum of its asymptotic series, as we now recall.
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Borel summable functions. A function f : C → C is called a Borel summable
function along the positive real axis if it is analytic in a disk DiskR and has an
asymptotic series at 0 (which can have zero radius of convergence),

f(z) =
q−1∑

k=0

ak zk + Rq(z) , (2.3)

such that the rest term of order q obeys the bound:

|Rq(z)| ≤ K q! qβ ρ−q |z|q , z ∈ DiskR , (2.4)

for some fixed β ∈ R+. Note that the bound in Eq. (2.4) is slightly weaker
that the one in [27]. The positive real axis is selected by the position of the
center of DiskR. We call DiskR = {z ∈ C | Re(1/z) > 1/R} a Sokal disk.

These two notions are intimately related: the Borel sums of Borel sum-
mable series are Borel summable functions (this is straightforward to prove).
Moreover, the asymptotic series of Borel summable functions are Borel sum-
mable series.

Theorem 1 (Nevanlinna–Sokal [27], extended). Let f : C → C be a Borel
summable function, hence analytic and obeying the bound (2.4) with some
fixed β. Then:

• the Borel transform of the asymptotic series of f ,

B(t) =
∞∑

k=0

1
k!

ak tk , (2.5)

is convergent in a disk of radius ρ in t, and it defines an analytic function
in this domain.

• B(t) can be analytically continued to the strip {t ∈ C | dist(t,R+) < ρ}
and in this strip it obeys an exponential bound |B(t)| < Ke|t|/R.

• for all z ∈ DiskR we can reconstruct the function f(z) by the absolutely
convergent Laplace transform:

f(z) =
1
z

∫ ∞

0

dt e−t/z B(t) . (2.6)

Proof. See Appendix B. �

We emphasize that both for series and for functions, Borel summability
is directional:

• for series, Borel summability along a direction requires the unimpeded
analytic continuation of B(t) in a thin strip centered on that direction.

• for functions, Borel summability along a direction requires analyticity and
bound on the Taylor rest terms in a Sokal disk (with 0 on its boundary)
centered on that direction.

Clearly, the singularities of the Borel transform B(t) are associated to
directions along which the function f(z) ceases to be Borel summable.
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3. The Partition Function Z(g, N)

In this section, we collect some facts about the asymptotic expansion of the
partition function (1.2). Most of them are known, or derivable from the expres-
sion of the Z(g,N) in terms of special functions, whose asymptotic expansions
are to a large degree known [28]. Nonetheless, we present a “path integral–
like” derivation and rather explicit formulae for the coefficients that should be
useful, as they are more directly generalizable, in applications to proper field
theories.

We study Z(g,N) by means of the Hubbard–Stratonovich intermediate
field formulation [29,30], which is crucial to the Loop Vertex Expansion [18] of
the free energy W (g,N) that we will study below. This is based on rewriting
the quartic term of the action as a Gaussian integral over an auxiliary variable
σ (or field, in higher dimensions):

e− g
4! (φ

2)2 =
∫ +∞

−∞
[dσ] e− 1

2 σ2+ı
√

g
12 σφ2

, (3.1)

where the Gaussian measure over σ is normalized, i.e., [dσ] = dσ/
√

2π and
ı = eı π

2 . Note that σ is a real number, not a vector. With this trick, the
integral over φ becomes Gaussian and can be performed for g > 0, leading to
a rewriting of the partition function (1.2) as:

Z(g,N) =
∫ +∞

−∞
[dσ] e− 1

2 σ2 1
(
1 − ı

√
g
3σ

)N/2
. (3.2)

Although the original partition function is defined only for integer N
and we have assumed that g > 0, in the σ representation (3.2) it becomes
transparent that Z(g,N) can be analytically continued both in N and in g.

3.1. Analytic Continuation and Transseries

As a matter of notation, we denote ϕ ≡ arg(g), and, in order to label some
sets that will appear repeatedly in the rest of the paper, we define:

Cψ ≡ {g ∈ C, g = |g|eıϕ : ϕ ∈ (−ψ,ψ)} . (3.3)

In particular, Cπ = C \ R− is the cut complex plane. For ψ > π, the set Cψ

should be interpreted as a sector of a Riemann sheet, extending the principal
sheet Cπ into the next sheets.

Our first aim is to understand the analytic continuation of the partition
function in the maximal possible domain of the Riemann surface. For later
convenience, we introduce the following function, not to be confused with the
partition function Z(g,N):

ZR(g,N) =
∫ +∞

−∞
[dσ] e− 1

2 σ2 1
(

1 − ı eı ϕ
2

√
|g|
3 σ

)N/2
, ∀ϕ 
=(2k + 1)π , k∈Z ,

(3.4)
which is an absolutely convergent integral for any |g| and any ϕ 
= (2k + 1)π.
We have used a superscript R to distinguish it from Z(g,N) and to emphasize
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that the integral is performed on the real line, irrespective of the value of
ϕ 
= (2k + 1)π. Moreover, for N/2 /∈ Z, the integrand is computed using the
principal branch of the logarithm:

ln
(

1 − eı π+ϕ
2

√
|g|
3 σ

)
=

1
2

ln

[
(
cos ϕ

2

)2 +
(

sin ϕ
2 +

√
|g|
3 σ

)2
]

+ı Arg
(

1 − eı π+ϕ
2

√
|g|
3 σ

)
, (3.5)

where the Arg function is the principal branch of the argument, valued in
(−π, π). In particular, a change of variables σ → −σ shows that ZR(g,N) =
ZR(e2πıg,N), which is thus a single-valued function on Cπ, with a jump at R−.
The analytic continuation of the partition function Z(g,N) will instead be a
multi-valued function on C, and thus require the introduction of a Riemann
surface. We can view ZR(g,N) as a periodic function on the same Riemann sur-
face, with of course Z(g,N) = ZR(g,N) for g ∈ Cπ, and Z(g,N) 
= ZR(g,N)
once one steps out of the principal Riemann sheet.

We collect all the relevant result concerning the partition function in
Proposition 1. For now we restrict to N real, but the proposition can be ex-
tended to complex N with little effort.5 We will drop this assumption later.

Proposition 1 (Properties of Z(g,N)). Let N ∈ R be a fixed parameter. The
partition function Z(g,N) satisfies the following properties:

1. for every g ∈ Cπ, the integral in Eq. (3.2) is absolutely convergent and
bounded from above by

|Z(g,N)| ≤

⎧
⎨

⎩

(
cos ϕ

2

)−N/2
, N ≥ 0

2|N |/2 + 23|N|/4
√

π
|g|N/4

3|N|/4 Γ
(

|N |+2
4

)
, N < 0

; (3.6)

hence, Z(g,N) is analytic in Cπ.
2. For g ∈ Cπ, the partition function is Z(g,N) = ZR(g,N) and has the

perturbative expansion:

Z(g,N) �
∞∑

n=0

Γ(2n + N/2)
22nn! Γ(N/2)

(
−2g

3

)n

, (3.7)

where � means that the equation has to be interpreted in the sense of
asymptotic series, i.e.,

lim
g→0
g∈Cπ

g−nmax

∣∣∣∣∣Z(g,N) −
nmax∑

n=0

Γ(2n + N/2)
22nn! Γ(N/2)

(
−2g

3

)n
∣∣∣∣∣ = 0 , ∀nmax ≥ 0 .

(3.8)
3. The function Z(g,N) is Borel summable along all the directions in Cπ.

5For N complex with positive real part, for instance, one uses the inequality |z−N/2| ≤
|Re(z)|−Re(N)/2eπ|Im(N)|/2.
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4. Z(g,N) can be continued past the cut, on the entire Riemann surface.
However, R− is a Stokes line, that is, the anticlockwise and clockwise
analytic continuations Z+(g,N) and Z−(g,N) are not equal and cease
to be Borel summable at R−. A second Stokes line is found at R+ on
the second sheet. For ϕ /∈ πZ, the analytic continuation of the partition
function to the whole Riemann surface writes:

2kπ < |ϕ| < (2k + 1)π :

Z(g, N) = ω2k Z(eı(2k)τπg, N)

+ η2k

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

Z(eı(2k+1)τπg, 2 − N)

= ω2k ZR(g, N)

+ η2k

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

ZR(−g, 2 − N) ,

(2k + 1)π < |ϕ| < (2k + 2)π :

Z(g, N) = ω2k+1 Z(eı(2k+2)τπg, N)

+ η2k+1

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

Z(eı(2k+1)τπg, 2 − N)

= ω2k+1 ZR(g, N)

+ η2k+1

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

ZR(−g, 2 − N) , (3.9)

where τ = −sgn(ϕ) and the Stokes parameters (ω, η) are defined recur-
sively as:

(ω0, η0) = (1, 0) ,

{
ω2k+1 = ω2k

η2k+1 = η2k + ω2k
,

{
ω2(k+1) = ω2k+1 + τ̃ η2k+1

η2(k+1) = eıτπ(N−1)η2k+1
, (3.10)

with τ̃ = eıτπ N+1
2 2 sin Nπ

2 . The recursion gives:

(ω2k, η2k) =

{
eıτπN k

2 (1, 0) , k even
eıτπN k+1

2 (1,−1) , k odd
. (3.11)

The monodromy group of Z(g,N) is of order 4 if N is odd, and of order 2
if N is even. More generally, we have a monodromy group of finite order
if N is a rational number, and an infinite monodromy otherwise.

5. From Properties 2 and 4, we obtain that for g in the sector kπ < |ϕ| <
(k + 1)π of the Riemann surface the partition function has the following
transseries expansion:

Z(g, N) � ωk

∞∑

n=0

Γ(2n + N/2)

22nn! Γ(N/2)

(
−2g

3

)n

+ ηk eıτπ(1− N

2
) √

2π

×
(

g

3

) 1−N

2
e

3
2g

∑

q≥0

1

22qq! Γ(N
2 − 2q)

(
2g

3

)q

, (3.12)
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where we used:

Γ(2q + 1 − N/2)Γ(N/2 − 2q)

=
π

sin(π N
2 − 2πq)

= Γ(1 − N/2)Γ(N/2) . (3.13)

The transseries displays an additional property: the instanton series is
obtained from the perturbative one by substituting N → 2−N and g → −g
and vice versa.

6. From Property 5, the discontinuity of the partition function at the nega-
tive real axis:

discπ

(
Z(g,N)

)
≡ lim

g→R−

(
Z−(g,N) − Z+(g,N)

)
, (3.14)

has the following asymptotic expansion:

discπ

(
Zn(g)

)
� e− 3

2|g|
√

2π

√
|g|
3

∞∑

q=0

n∑

p=0

1
q!

(
−|g|

6

)q (
n
p

)
dpΓ(z)
dzp

∣∣∣
z=2q+1

×
[(

ln |g
3
| − ıπ

)n−p

−
(
ln |g

3
| + ıπ

)n−p
]

. (3.15)

where for N even integer the sum truncates at q = N/4 − 1, if N is a
multiple of 4, and at q = �N/4� otherwise.

7. The partition function obeys an homogenous linear ordinary differential
equation:

16g2Z ′′(g,N) + ((8N + 24)g + 24) Z ′(g,N)
+N(N + 2)Z(g,N) = 0 , (3.16)

which can be used to reconstruct the resurgent transseries expansion of
Z(g,N).

Proof. See Appendix C.1. �

The proof of this proposition is quite technical. The most interesting
points come at Property 4. While the full details can be found in Appendix C.1,
we discuss here how the Stokes phenomenon arises in the intermediate field
representation.

In order to obtain the asymptotic approximation of an integral, we need
to deform the integration contour to steepest-descent contours (or Lefschetz
thimbles) where the Laplace method can be applied. An integration contour
will in principle intersect several steepest-ascent (upwards) paths of several
saddle points and it must then be deformed (i.e., relaxed under the gradient
flow) to run along the thimbles of these saddle points [6,17]. When varying
some parameter continuously, the relevant thimbles can collide and change
discontinuously leading to discontinuous changes of the asymptotic regimes at
Stokes lines. This is exactly the picture in the φ representation of the partition
function, which we recall in Appendix A.

In the σ representation the picture is different. Let us go back to Eq. (3.2)
expressing Z(g,N) as an integral over the real line. The partition function
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Figure 1. As arg(g) increases, the branch cut moves clock-
wise in the complex σ-plane. When g crosses the negative real
axis, the tilted contour is equivalent to a Hankel contour C
plus the original contour along the real line (3.17)

Z(g,N) is analytically continued to the extended Riemann sheet C3π/2 by
tilting the integration contour to e−ıθσ, respectively eıθσ, with θ > 0 for
its anticlockwise, respectively clockwise, analytic continuations Z+(g,N) and
Z−(g,N).

In this representation, the Lefshetz thimble is always the real axis, ir-
respective of g. In fact, as g goes to zero, the Laplace method instructs us
to look for the saddle point of the exponent in the integrand (the function
f(x) in Eq. (A.1)), which in this case is a simple quadratic function,6 while
the subexponential function (the function a(x) in Eq. (A.1)) is irrelevant for
the determination of the saddle points. However, what happens is that the
integrand has a branch point (or pole for N a positive even integer) and this
point crosses the thimble at the Stokes line. This is depicted in Fig. 1.

In detail, as long as g = |g|eıϕ ∈ Cπ, the integral converges because the
branch point σ� = −ı

√
3/g with branch cut σ� × (1,+∞) lies outside the

integration contour. As g approaches R−, the branch point hits the contour
of integration: for ϕ ↗ π the branch point hits the real axis at −

√
3/|g|. The

analytic continuation Z+(g,N) consists in tilting the contour of integration in
σ to avoid the collision with the branch point. However, in order to derive the
asymptotic behavior of Z+(g,N), we need to deform the integration contour
back to the thimble, which is always the real axis. Once g passes on the second
Riemann sheet (ϕ > π), when deforming the tilted contour to the real axis we

6This is perhaps more clear after rescaling σ by 1/
√

g to cast our integral in the same form

as Eq. (A.1).
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generate an additional Hankel contour (see Fig. 1):

Z±(g,N)
∣∣
ϕ >π

<−π

=
∫

e∓ıθR

[dσ]
e− 1

2 σ2

(
1 − ı

√
g
3σ

)N/2
= ZR(g,N) + ZC

± (g,N)

ZR(g,N) =
∫

R

[dσ] e− 1
2 σ2 1

(
1 − ı

√
g
3σ

)N/2
,

ZC
± (g,N) =

∫

C

[dσ] e− 1
2 σ2 1

(
1 − ı

√
g
3σ

)N/2
, (3.17)

where the Hankel contour C turns clockwise around the cut σ� × (1,+∞),
i.e., starting at infinity with argument 3π

2 − ϕ
2 and going back with argument

−π
2 − ϕ

2 after having encircled the branch point σ�. We kept a subscript ± for
the contribution of the Hankel contour, because, even though the definition of
ZC

± (g,N) and C might suggest that it is one single function of g, in fact the
integral around the cut is divergent for |ϕ| < π/2, and therefore, the integrals
at π < ϕ < 3π/2 and at −π > ϕ > −3π/2 are not the analytic continuation
of each other. This fact is reflected in the τ -dependence of the asymptotic
expansion in Eq. (3.12).

The appearance of the Hankel contour marks a discontinuity of the con-
tour of integration in σ as a function of the argument of g, which translates
into a discontinuity of the asymptotic expansion of Z(g,N), that is, a Stokes
phenomenon. We insist that the Hankel contour is not a thimble for the inte-
gral in Eq. (3.2), but it contributes to the asymptotic evaluation of the integral,
providing the one-instanton contribution in the transseries of Z(g,N).

In order to go beyond |ϕ| = 3π/2, one notices that we can analytically
continue separately ZR(g,N) and ZC

± (g,N). The first is analytic in the range
|ϕ| ∈ (π, 3π), where its asymptotic expansion is just the standard perturbative
series. The analytic continuation of ZC

± (g,N) is not immediate in the Hankel
contour representation, which is only convergent for π/2 < |ϕ| < 3π/2, but
after resolving the discontinuity at the cut and using again the Hubbard–
Stratonovich trick (as detailed in Appendix C.1), it turns out that it can be
rewritten as:

ZC
± (g,N) = eıτπ(1− N

2 )
(g

3

) 1−N
2

e
3
2g

√
2π

Γ(N/2)
Z(eıτπg, 2 − N) . (3.18)

with τ = −sgn(ϕ). In this form it is manifest that ZC
± (g,N) is analytic in g

as long as eıτπg belongs to the principal sheet of the Riemann surface, that
is for π < |ϕ| < 2π. We have thus shown that, when going from |ϕ| < π to
π < |ϕ| < 2π, our analytic continuation of Z(g,N) switches:

Z(g,N)
|ϕ|↗π+−−−−−→ ZR(g,N) +

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N
2

ZR(−g, 2 − N)

= Z(eı(2τπ)g,N) +
√

2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N
2

Z(eıτπg, 2 − N) ,

(3.19)
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where we explicitly exhibited the argument at which the switching takes place.
In the second line above, for π < |ϕ| < 2π, both arguments eı(2τπ)g and
eıτπg belong to the principal sheet of the Riemann surface, where Z(g,N)
has already been constructed and proven to be analytic. The first term in
Eq. (3.19) is regular up to |ϕ| = 3π, but the second one has a problem when
eıτπg reaches the negative real axis and retracing our steps we conclude that
the analytic continuation switches again:

Z(eıτπg, 2 − N)
|ϕ|↗2π+−−−−−−→ Z(eı(3τπ)g, 2 − N)

+
√

2π

Γ(1 − N/2)
eıτ π

2 e
3

2geıτπ

(
eı(2τπ) g

3

)N−1
2

Z(eı(2τπ)g,N) ,
(3.20)

where this time the arguments at which Z is evaluated on the right hand
side stay in the principal sheet for 2π < |ϕ| < 3π. Iterating, one obtains the
analytic continuation to the whole Riemann surface.

Remark 1. The differential equation (3.16) can be solved in terms of special
functions. For N = 1, setting Z(g, 1) =

√
3

2πg e
3
4g f( 3

4g ), we find that the
equation reduces to a modified Bessel’s equation for f(z):

z2f ′′(z) + zf ′(z) −
(

z2 +
1
16

)
f(z) = 0 . (3.21)

Its two linearly independent solutions are the modified Bessel functions of the
first and second kind of order 1/4. However, only the second, K1/4(z), decays
for z → ∞; hence, the initial condition Z(0, 1) = 1 fixes f(z) = K1/4(z).

Similarly, for general N , we find that setting Z(g,N) = ( 3
2 g )N/4f( 3

2 g )
the differential equation reduces to Kummer’s equation for f(z):

zf ′′(z) +
(

1
2

− z

)
f ′(z) − N

4
f(z) = 0 . (3.22)

With the addition of the initial condition Z(0, N) = 1, we find that the
solution is given by the Tricomi confluent hypergeometric function f(z) =
U(N/4, 1/2, z), whose transseries expansion can easily be obtained order by
order. However, such expressions of the partition function in terms of spe-
cial functions do not generalize to quantum field theory. Similarly, even the
more general resurgence theory for formal solutions of ordinary differential
equations will be of limited use in that context, as the partition function of a
quantum field theory model does not satisfy an ordinary differential equation.
For this reason, while displaying for completeness the relevant ordinary differ-
ential equations, in this work we do not make use of them and rather refer to
the literature (see references in [6]).

Our result (3.12) provides a useful repackaging of the transseries expan-
sion of the partition function and an alternative derivation that should be more
easily generalizable to quantum field theory.
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3.2. Convergent Small-N Series of Z(g, N) and Transseries of Its Coefficients
Zn(g)

We will now study the discontinuity of Z(g,N) from a different perspective.
We expand the integrand of Eq. (3.2) in powers of N and exchange the order
of summation and integration:

Z(g, N) =
∑

n≥0

1

n!

(
−N

2

)n

Zn(g) , Zn(g) =

∫ +∞

−∞
[dσ]e− 1

2 σ2
(

ln

(
1 − ı

√
g

3
σ

))n

.

(3.23)
Unlike the usual perturbative expansions in g, this is a convergent expansion:
from the bound in Property 1 of Proposition 2 below, the Gaussian integral
and the sum can be commuted due to Fubini’s Theorem. As a function of N ,
we can regard Z(g,N) as a generating function of “moments”: unlike the usual
moments, we are dealing with expectations of powers of the logarithm.

Proposition 2 (Properties of Zn(g)). The Zn(g), n ∈ N≥0 satisfy the following
properties:

1. Zn(g) is analytic in the cut plane Cπ. Indeed, for every g ∈ Cπ, the
integral (3.23) is absolutely convergent and bounded from above by:

|Zn(g)| ≤ Kn

(
| ln(cos ϕ

2 )| + 1
)n

εn

(
1 + |g|nε

2 Γ
(

nε+1
2

))
, (3.24)

for any ε > 0 and with K some g-independent constant. Using this bound
with some fixed ε < 2 shows that, ∀g ∈ Cπ the series in Eq. (3.23) has
infinite radius of convergence in N .

2. For g ∈ Cπ, Zn(g) has the perturbative expansion:

Zn(g) �
∑

m≥n/2

(
−2g

3

)m (2m)!

22mm!

∑

m1,...,m2m−n+1≥0∑
kmk=2m,

∑
mk=n

(−1)nn!∏
k kmk mk!

≡ Zpert.
n (g) . (3.25)

3. The functions Zn(g) are Borel summable along all the directions in Cπ.
4. Zn(g) can be continued past the cut on the extended Riemann sheet C3π/2,

and the small-N series has infinite radius of convergence in N in this
domain. However, R− is a Stokes line and the anticlockwise and clockwise
analytic continuations Zn+(g) and Zn−(g) are not equal and cease to be
Borel summable at R−.

5. For g ∈ C3π/2, Zn(g) has the following transseries expansion:

Zn(g) � Zpert.
n (g) + η e

3
2g Z(η)

n (g) , (3.26)

with Zpert.
n (g) as in Eq. (3.25), and:

Z(η)
n (g) =

ı√
2π

√
g

3

∞∑

q=0

n∑

p=0

1
q!

(g

6

)q
(

n

p

)
dpΓ(z)

dzp

∣∣∣
z=2q+1

×
[(

ln
(
eıτπ g

3

)
− ıπ

)n−p

−
(
ln
(
eıτπ g

3

)
+ ıπ

)n−p
]

, (3.27)
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with τ = −sgn(ϕ) and η a transseries parameter which is zero on the
principal Riemann sheet and one if |ϕ| > π. Proceeding in parallel to
Proposition 1, one can study the full monodromy of Zn(g).

6. The discontinuity on the negative axis has the following asymptotic ex-
pansion:

discπ

(
Zn(g)

)
� e− 3

2|g|
√

2π

√
|g|
3

∞∑

q=0

n∑

p=0

1
q!

(
−|g|

6

)q (
n

p

)
dpΓ(z)

dzp

∣∣∣
z=2q+1

×
[(

ln |g
3
| − ıπ

)n−p

−
(
ln |g

3
| + ıπ

)n−p
]

. (3.28)

Summing over n, the discontinuity of the partition function (3.15) is
recovered.

7. The functions Zn(g) obey a tower of linear, inhomogeneous ordinary dif-
ferential equations:

Z0(g) = 1 ,

4g2Z ′′
1 (g) + 6 (g + 1) Z ′

1(g) = 1 ,

4g2Z ′′
n(g) + 6 (g + 1) Z ′

n(g) = n
(
4gZ ′

n−1(g) + Zn−1(g)
)

− n(n − 1)Zn−2(g) . (3.29)

which can be used to reconstruct the resurgent transseries expansion of
Zn(g).

Proof. See Appendix C.2 �

As with Proposition 1, the most interesting points are Properties 4 and
5. Again the analytic continuations Zn±(g) of Zn(g) to the extended Riemann
sheet C3π/2 are obtained by tilting the integration contour to e∓ıθσ with θ > 0.
The branch point σ� of the integrand in Eq. (3.23) crosses the real axis when
g reaches R−, and deforming the tilted contours back to the real axis detaches
Hankel contours around the cut σ� × (1,+∞):

Zn±(g)
∣∣
ϕ >π

<−π

=
∫

e∓ıθR

[dσ] e− 1
2 σ2

(
ln
(

1 − ı

√
g

3
σ

))n

= ZR

n (g) + ZC
n±(g)

ZR

n (g) =
∫

R

[dσ] e− 1
2 σ2

(
ln
(

1 − ı

√
g

3
σ

))n

,

ZC
n±(g) =

∫

C

[dσ] e− 1
2 σ2

(
ln
(

1 − ı

√
g

3
σ

))n

. (3.30)

The transseries of Zn(g) is obtained by summing the asymptotic expansions
of the two pieces:

ZR

n (g) � Zpert.
n (g), ZC

n±(g) � e
3
2g Z(η)

n (g)
∣∣
τ=∓1

.

Notice that the homogeneous equation in Property 7 in Proposition 2
is the same for all n ≥ 1, and it admits an exact solution in the form of a
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constant plus an imaginary error function:

4g2Z ′′
1 (g) + 6(g + 1)Z ′

1(g) = 0 ⇒ Z1(g) = c1 + c2

∫ ı
√

3
2g

0

e−t2dt .

(3.31)
The asymptotic expansion of the error function reproduces the one-instanton
contribution of Eq. (3.26) for n = 1. For n > 1, instead, this is only part of
the instanton contribution, the rest being generated by the recursive structure
of the inhomogeneous equations. Similarly, the perturbative expansion comes
from the special solution to the inhomogeneous equation, even at n = 1, as
for those we cannot match exponential terms with the right-hand side. For
n > 1 the homogeneous equation remains the same, but the inhomogeneous
part depends on the solutions to previous equations, and thus, it can also
contain exponential terms.

4. The Free Energy W (g, N)

We now turn to the free energy W (g,N) = lnZ(g,N). Our aim is find the
equivalent of the results listed in Proposition 1, in the case of W (g,N). Taking
the logarithm has drastic effects: the nonperturbative effects encountered in
W (g,N) are significantly more complicated than the ones encountered for
Z(g,N). One can understand this from the fact that the linear differential
equation satisfied by Z(g,N) translates into a nonlinear one for W (g,N),
leading to an infinite tower of multi-instanton sectors in the transseries [6].
Here we will follow a different route, based on the small-N expansion.

Much like the partition function Z(g,N), its logarithm W (g,N) can also
be expanded in N :

W (g,N) = ln(Z(g,N)) ≡
∑

n≥1

1
n!

(
−N

2

)n

Wn(g) . (4.1)

The coefficients Wn(g) can be computed in terms of Zn(g). As already
mentioned, Zn(g) are the moments of the random variable ln(1 − ı

√
g/3 σ);

hence, Wn are the cumulants of the same variable and can be computed in
terms of Zn(g) by using the Möbius inversion formula (which in this case
becomes the moments-cumulants formula). Let us denote π a partition of the
set {1, . . . n}, b ∈ π the parts in the partition, |π| the number of parts of π and
|b| the cardinal of b. Then:

Zn(g) =
∑

π

∏

b∈π

W|b|(g) , Wn(g) =
∑

π

λπ

∏

b∈π

Z|b|(g) , (4.2)

where λπ = (−1)|π|−1(|π| − 1)! is the Möbius function on the lattice of parti-
tions. Grouping together the partitions having the same number ni of parts of
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size i, this becomes7

Zn(g) =
∑

n1,...,nn≥0∑
ini=n

n!∏
i ni!(i!)ni

n∏

i=1

Wi(g)ni ,

Wn(g) =
n∑

k=1

(−1)k−1(k − 1)!
∑

n1,...,nn−k+1≥0∑
ini=n,

∑
ni=k

n!∏
i ni!(i!)ni

n−k+1∏

i=1

Zi(g)ni .

(4.3)

Equation (4.3) relates Wn(g) and Zn(g) as analytic functions of g. How-
ever, this translates into a relation between W (g,N) and Z(g,N) which holds
only in the sense of formal power series in N . Even though Z(g,N) is analytic
in some domain, one cannot conclude that W (g,N) is also analytic in the same
domain: convergence of the series defining Z(g,N) does not imply convergence
of the series defining W (g,N) in Eq. (4.1). This can most readily be seen at
the zeros of the partition function, the so-called Lee–Yang zeros, which are
singular points for the free energy. In order to study the analyticity properties
of W (g,N) one needs to use a completely different set of tools. However, as
we will see below, the Möbius inversion has its own uses: it is the most direct
way to access the transseries expansion of W (g,N).

4.1. Constructive Expansion

The following Proposition 3 is a slight variation on the Loop Vertex Expansion
(LVE) introduced in [18] (see also [26] for more details). It gives an integral
representation for Wn(g) in Eq. (4.1) which allows us to prove that W (g,N)
is convergent (hence analytic) in a bounded domain on the extended Riemann
sheet C3π/2, wrapping around the branch point at the origin.

In Proposition 1 we fixed N to be a real parameter. However, Eq. (3.23)
writes Z(g,N) as an expansion in N with a nonzero (infinite!) radius of con-
vergence in N , as long as |ϕ| < 3π/2 (note that the bound in Property 1 of
Proposition 2 suffices only for |ϕ| < π; in order to reach |ϕ| < 3π/2, one needs
to use the improved bound in Eq. (C.42)). We can therefore extend N to a
larger domain in the complex plane. As the following proposition shows, some-
thing similar applies also to W (g,N), but with a finite radius of convergence.

Notation. Let us denote Tn the set of combinatorial trees with n vertices
labeled 1, . . . n. There are (n−2)!∏n

i=1(di−1)! trees over n labeled vertices with coordi-
nation di at the vertex i and

∑
i di = 2(n−1). The total number of trees in Tn

is nn−2. Let T ∈ Tn be such a tree. We denote P T
k−l the (unique) path in the

7This can also be obtained directly from Faà: di Bruno’s formula:

dn

dun
ln Z|u=0 =

∑

n1,...nn≥0∑
ini=n

n!
∏

i ni!(i!)ni
(n1 + · · · + nn − 1)!

(−1)n1+···+nn−1

Znn+···+nn

∏

i≥1

[Z
(i)

]
ni |u=0 ,

noticing that for u = −N/2, we have Z(i) = Zi.
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tree T connecting the vertices k and l. If we associate to each edge (k, l) ∈ T
a variable ukl between 0 and 1, we can define the n × n matrix wT :

wT
kl ≡

{
1 , if k = l

inf(i,j)∈P T
k−l

{uij} , else
. (4.4)

The matrix wT is a positive matrix for any choice of u parameters and is
strictly positive outside a set of measure 0 (see Appendix D for more details).
Of course the matrix w depends on u, but we suppress this in order to simplify
the notation.

Proposition 3 (The LVE, analyticity). Let N be a fixed complex parameter
and let us denote g = |g|eıϕ. The cumulants Wn(g) can be written as:

W1(g) = Z1(g) =
∫ +∞

−∞
[dσ] e− 1

2 σ2
ln
[
1 − ı

√
g
3σ

]
,

Wn(g) = −
(g

3

)n−1 ∑

T ∈Tn

∫ 1

0

∏

(i,j)∈T
duij

∫ +∞

−∞

∏
i[dσi]√

det wT
e− 1

2

∑
i,j σi(w

T )−1
ij σj

×
∏

i

(di − 1)!
(
1 − ı

√
g
3σi

)di
, (4.5)

where we note that the Gaussian integral over σ is well defined, as wT is
positive, and normalized. Furthermore:

1. The functions Wn(g), n ≥ 2 are bounded by:

|Wn(g)| ≤ (2n − 3)!
(n − 1)!

∣∣∣∣∣
g

3
(
cos ϕ

2

)2

∣∣∣∣∣

n−1

. (4.6)

Therefore, they are analytic in the cut plane Cπ.
2. The series

W (g,N) =
∑

n≥1

1
n!

(
−N

2

)n

Wn(g) (4.7)

is absolutely convergent in the following cardioid domain:

D0 =
{

g ∈ C, g = |g|eıϕ : |g| <
1

|N |
3
2
(cos

ϕ

2
)2
}

. (4.8)

3. Wn(g) can be analytically continued to a subdomain of the extended Rie-
mann sheet C3π/2 by tilting the integration contours to σ ∈ e−ıθ

R:

W1θ(g) = e−ıθ

∫ +∞

−∞
[dσ] e− 1

2 e−2ıθσ2
ln
(
1 − ı

√
g
3e−ıθσ

)
,

Wnθ(g) = −
(g

3

)n−1 ∑

T ∈Tn

∫ 1

0

∏

(i,j)∈T
duij

×
∫

R

∏
i e−ıθ[dσi]√
det wT

e− 1
2 e−2ıθ ∑

i,j σi(w
T )−1

ij σj
∏

i

(di − 1)!
(
1 − ı

√
g
3e−ıθσi

)di
.

(4.9)
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4. For n ≥ 2 we have the following bound:

|Wnθ(g)| ≤ (2n − 3)!
(n − 1)!

1√
cos(2θ)

∣∣∣∣∣∣∣

g

3
√

cos(2θ)
(
cos ϕ−2θ

2

)2

∣∣∣∣∣∣∣

n−1

. (4.10)

5. The series

Wθ(g,N) =
∑

n≥1

1
n!

(
−N

2

)n

Wnθ(g) , (4.11)

is absolutely convergent in the following domain:

Dθ =

{
g ∈ C, g = |g|eıϕ : |g| <

1

|N |
3

2

(
cos

ϕ − 2θ

2

)2 √
cos(2θ)

}
. (4.12)

Consequently, Wn(g) and W (g,N) can be analytically extended to the
following respective domains:

Wn(g) : |2θ| <
π

2
, |ϕ − 2θ| < π ,

W (g, N) : |2θ| <
π

2
, |ϕ − 2θ| < π , |g| <

1

|N |
3

2

(
cos

ϕ − 2θ

2

)2 √
cos(2θ).

(4.13)

Pushing θ → ±π/4 allows us to write a convergent expansion for all
|ϕ| < 3π

2 .

Proof See Appendix C.3 �

The main point of the proposition is that by constructive methods we can
prove analyticity of W (g,N) in a nontrivial domain. In a first step, without
touching the integration contours, we prove that such domain is the cardioid
of Eq.(4.8). However, the cardioid does not allow us to reach (and cross) the
branch cut. Tilting the integration contours by θ, we are able to extend the
original cardioid domain to the larger domain of Eq. (4.12) (see Fig. 2), go-
ing beyond the cut on a subdomain of the extended Riemann sheet C3π/2.
The optimal domain Dopt can be found by maximizing the right-hand side of
Eq. (4.12) with respect to θ, at fixed ϕ, but a simpler and qualitatively similar
choice is to take θ = ϕ/6.

Note that the domain of analyticity of W (g,N), Eq. (4.12), depends on N
and shrinks to zero for N → ∞. Results uniform in N can only be established
if one keeps the ’t Hooft coupling gt = gN fixed [26]. On the other hand, for
any g on the extended Riemann sheet C3π/2, the radius of convergence of the
LVE in N is nonzero.

Remark 2. It is also worth noticing that the explicit expressions for the parti-
tion function in terms of special functions, discussed around Eq. (3.21), pro-
vide us with some useful information about the zeros of Z(g,N) (Lee–Yang
zeros), and hence about the singularities of W (g,N). For example, in the
case N = 1, the partition function is expressed in terms of a modified Bessel
function of the second kind, whose zeros have been studied in some depth.
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Figure 2. The cardioid domain D0 of Eq. (4.8) (dotted blue
line) and the extended cardioid Dθ of Eq. (4.12) (red line), for
θ = ϕ/6, which is similar to the optimal domain Dopt, in the
complex g-plane. The branch cut is on the negative real axis;
thus, the portions of Dθ going beyond it are to be understood
as being on different Riemann sheets

In particular, from what is known about Kν(z) (e.g., [31]) we deduce that
Z(g, 1) =

√
3

2πg e
3

4 g K1/4( 3
4 g ) has no zeros in the principal sheet Cπ, while on

each of the two following sheets it has an infinite sequence of zeros approach-
ing the semiaxis at |ϕ| = 3π/2 from the left, and accumulating toward g = 0
(see Fig. 3). Therefore, it should come as no surprise that W (g,N) cannot be
analytically continued around the origin beyond |ϕ| = 3π/2.

Remark 3. Integrating out the u parameters and performing the sum over
trees, one should be able to prove that integral expressions (4.9) reproduce
the moment-cumulant relation in Eq. (4.3). In particular this would provide
an alternative proof that the moment cumulant relation holds in the sense of
analytic functions on the Riemann surface. The proof that this indeed hap-
pens is involved as the summation over trees requires the use of combinatoiral
techniques similar to the ones discussed in Appendix D. We postpone this for
future work.

In [18] the LVE is used to prove the Borel summability of W (g, 1) along
the positive real axis. Building on the techniques introduced in [18], we now
generalize this result.

Proposition 4 (Borel summability of Wn(g) and W (g,N) in Cπ). The cumu-
lants Wn(g) and the free energy W (g,N) at any fixed complex N are Borel
summable along all the directions in the cut complex plane Cπ.

Proof. See Appendix C.4. �
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Figure 3. Approximate location (see [31]) of the Lee–Yang
zeros of Z(g, 1) (blue dots) in the quadrant π < ϕ < 3π/2 of
C3π/2, together with the boundary of the domain Dθ (in red)

4.2. Transseries Expansion

It is well known that the (perturbative) asymptotic series of W (g,N) at g = 0
is a sum over connected Feynman graphs. The connection between the LVE
of W (g,N) presented in Proposition 3 and the Feynman graphs is discussed
in Appendix D.1. On the other hand, the power series in each multi-instanton
sector of the transseries of W (g,N) has no simple diagrammatic interpreta-
tion; they can be constructed from the nonlinear differential equation obeyed
by W (g,N), or more formally by expanding the logarithm of the transseries
expansion of Z(g,N) in powers of the transseries monomial exp{3/(2g)} (e.g.,
[6]). The latter is, however, only a meaningful operation in the sense of formal
power series.

In this section we take a different route and derive rigorously the transseries
expansion of W (g,N) by exploiting the analytical control we have on the small-
N expansion. We first notice that, from Propositions 2 and 3, Wn(g) and Zn(g)
are analytic functions on the extended Riemann sheet C3π/2. Next, we use
Eq. (4.3) to construct Wn(g) as a finite linear combination of finite products
of Zi(g)’s. Each such product is in fact a (factored) multidimensional integral;
hence, we can apply to it the steepest descent method to obtain its asymp-
totic expansion. In Cπ, the asymptotic expansion of each factor Zi(g) is of the
perturbative type, Eq. (3.25), and Wn(g) is just a finite linear combination of
Cauchy products of such series.

When turning g past the negative real axis, each integration contour in
this multidimensional integral must be deformed past a cut and each Zi±(g) =
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ZR
i (g)+ZC

i±(g) (see the discussion below Proposition 2). It follows that Wi(g)
is a linear combination of products involving ZR

i (g)’s and ZC
i±(g), and this rep-

resentation holds in the sense of analytic functions on the Riemann surface.
In order to obtain the transseries of Wn(g), one needs to build the transseries
expansion of each of the terms in the linear combinations. As the multidimen-
sional integrals are factored, this is just the Cauchy product of the transseries
Zpert.

i (g) and e
3
2g Z

(η)
i (g) corresponding to ZR

i (g) and ZC
i±(g), respectively.

The summation over n is more delicate, as it is an infinite series. As
we have seen in Proposition 3, the small-N series of W (g,N) converges in
the domain D0 of Eq. (4.12), thus yielding W (g,N) in terms of Wn(g) as an
analytic function on such domain. Therefore, we can apply the steepest-descent
method term by term to the small-N series, and hence, the transseries of
W (g,N) is rigorously reconstructed by substituting the transseries for Wn(g)
in Eq. (4.1).

Unsurprisingly, at the end we recover the formal transseries of W (g,N)
which can be obtained by direct substitution of the transseries expansion of
Z(g,N), taking formally its logarithm, and then expanding in powers of Z

(η)
i (g)

and Zpert.
i (g) − 1. What we gained in the process is that we replaced a formal

manipulation on transseries with a rigorous manipulation on analytic func-
tions.

Proposition 5. The cumulant Wn(g) and the full free energy W (g,N) have
transseries expansions that can be organized into instanton sectors. The in-
stanton counting parameter is denoted by p.

1. For g ∈ C3π/2,, the cumulant Wn(g) has the transseries expansion:

Wn(g) =
n∑

p=0

e
3
2g p

(
η
√

2π

√
g

3

)p n−p∑

l′=0

(
ln
(

g
3

))l′ ∑

l≥0

gl W
(p)
n;l,l′ , (4.14)

where R− is a Stokes line, τ = −sgn(ϕ) and η is a transseries parameter
which is zero on the principal Riemann sheet and is one when |ϕ| > π.
The g-independent coefficient W

(p)
n;l,l′ is given by the following nested sum:

W
(p)
n;l,l′ =

n∑

k = p

k + p ≥ 1

(−1)
k−1

(k − 1)!
∑

n1, . . . , nn−k+1 ≥ 0∑
ini = n,

∑
ni = k

∑

{0 ≤ pi ≤ ni}
i=1,...,n−k+1∑

pi = p

n!
∏

i(ni − pi)!pi!(i!)ni

×
∑

{ai
j ≥ 0}i=1,...,n−k+1

j=1,...,ni∑
i

∑
j ai

j = l

∑

{0 ≤ ci
j ≤ i − 1}i=1,...,n−k+1

j=1,...,pi∑
i

∑
j ci

j = l′

(
1

6

)∑n−k+1
i=1

∑pi
j=1 ai

j
(

−2

3

)∑n−k+1
i=1

∑ni
j=pi+1 ai

j

n−k+1∏

i=1

(
pi∏

j=1

G(a
i
j , c

i
j ; i)

)(
ni∏

j=pi+1

G(a
i
j ; i)

)
, (4.15)

with

G(a; i) =
(2a)!

22aa!

∑

a1,...,a2a−i+1≥0∑
kak=2a,

∑
ak=i

(−1)ii!∏
k kak ak!

,



5392 D. Benedetti et al. Ann. Henri Poincaré

G(a, c; i) =

i−1∑

b=0

(ıτ2π)i−1−b−c i!

a! b! c! (i − b − c)!

dbΓ(z)

dzb

∣∣∣
z=2a+1

. (4.16)

2. For g ∈ Dθ, the full free energy W (g,N) has the transseries expansion:

W (g, N) =
∑

n≥1

1

n!

(
−N

2

)n

Wn(g)

=
∑

p≥0

e
3
2g

p

(
η
√

2πeıτ π

2

(
eıτπg

3

) 1−N

2

)p ∑

l≥0

(
−2g

3

)l

W
(p)
l (N) , (4.17)

where

W
(p)
l (N) =

∑

q ≥ 0
p + q ≥ 1

(−1)p+q−1 (p + q − 1)!

p!q!

×
∑

n1, . . . , nq ≥ 1
m1, . . . , mp ≥ 0∑

ni +
∑

mj = l

(
q∏

i=1

Γ(2ni + N/2)

22nini! Γ(N/2)

)(
p∏

j=1

(−1)mj

22mj mj ! Γ
(

N
2 − 2mj

)
)

.

(4.18)

Proof. See Appendix C.5 �

While the expressions in Proposition 5 are not the most amenable to
computations, one feature is striking. Expanding the cumulant Wn(g) into p
instanton sectors, we observe that only the first n instantons contribute to Wn,
that is the sum in Eq. (4.14) truncates to p = n. The n instanton contribution
to Wn comes from n = p = k in Eq. (4.15) which implies n1 = n and all the
others 0, hence8:

W (n)
n (g) � e

3
2g n

(
η
√

2π

√
g

3

)n

(−1)n−1(n − 1)!

( ∞∑

q=0

(2q)!
q!

(g

6

)q
)n

. (4.19)

This is genuinely new phenomenon. Usually, for quantities that are inter-
esting for physics, one either deals with functions having only one instanton,
like Z(g,N) (or Zn(g)) or with function receiving contributions from all the
instanton sectors, like W (g,N). This is, to our knowledge, the first instance
when some physically relevant quantity receiving contributions from a finite
number of instantons strictly larger than one is encountered. The n instanton
contribution comes from n1 = n and all the others 0, such that effectively:

W (n)
n (g) ≈ (Z1(g))n ,

and, for all n, Zn(g) has just a single instanton.

8This formula is most easily derived from Eq. (C.74).
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4.3. Differential Equations

The exotic behavior of Wn(g) can also be understood in terms of differential
equations. By rewriting the partition function as Z(g,N) = eW (g,N), it is
straightforward to turn (3.16) into a differential equation for W (g,N), which
in turn implies a tower of equations for Wn(g).

Proposition 6. The function W (g,N) obeys the nonlinear differential equation:

16g2W ′′(g,N)+16g2 (W ′(g,N))2+((8N + 24)g + 24) W ′(g,N)+N(N +2) = 0.
(4.20)

The functions Wn(g) obey the tower of differential equations:

4g2W ′′
1 (g) + 6(g + 1)W ′

1(g) − 1 = 0,

4g2W ′′
2 (g) + 6(g + 1)W ′

2(g) + 8g2 (W ′
1(g))2 − 8gW ′

1(g) + 2 = 0,

4g2W ′′
n (g) + 6(g + 1)W ′

n(g) + 4g2
n−1∑

k=1

(
n

k

)
W ′

n−kW ′
k − 4ngW ′

n−1(g) = 0 .

(4.21)

The differential equation for W1(g) is, unsurprisingly, identical to the one
for Z1(g) (the connected 1−point function equals to the full 1−point function).
Note that although the differential equation for W (g,N) is nonlinear, the one
for Wn(g) is linear. In fact, since W0(g) = 0, the nonlinear term (W ′(g,N))2

produces only source terms in (4.21). The linearity of the equations provides
another point of view on why only a finite number of instantons arise in each
Wn(g).
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A. Asymptotic Expansions

Analytic continuations of exponential integrals like Z(g,N) can be carried out
by deforming the original real integration cycles in the complex plane. Complex
Morse theory (Picard–Lefschetz Theory) provides a systematic framework for
decomposing the original integration cycle C into a sum of more convenient
cycles Ji called Lefschetz thimbles:

I(g) =
∫

C
dx e

1
g f(x)a(x) =

∑

i

∫

Ji

dx e
1
g f(x)a(x) . (A.1)

Generically, each thimble intersects one critical (or saddle) point x∗
i ∈ C

m and
consists of the union of downward flows with respect to the real part of f(x)
originating at x∗

i . From a topological point of view {Ji} generate the m’th
relative homology group of the underlying 2m-dimensional space. Crucially,
the imaginary part of f(x) is constant along each Ji and the integral along
a thimble is absolutely convergent. Since the individual integrals are non-
oscillating, it is possible to apply Laplace’s method to each term, expanding
the integrand around the critical points:

I(g) =
∑

i

e
1
g f(x∗

i )Φ(i)(g) ,

where Φ(i)(g) is an asymptotic series, possibly containing logarithms and non-
integer powers of g. As g is varied, the thimbles are deformed and the number
of thimbles appearing in the decomposition of the original contour C may vary
discontinuously. These discrete changes, happening at values of g for which
different thimbles intersect each other, are connected to the so-called Stokes
jumps.

Lefschetz thimble techniques are standard tool in resurgence analysis
[5,6,32] and have many other applications to path integrals [15,33–37]. More
details and a nice pedagogical introduction can be found in [17].

In the following we review the derivation of the asymptotic expansions
around the critical points of the zero-dimensional φ4 theory for N = 1.

A.1. The φ Representation of the Partition Function

The vacuum expansion. Our starting point is the partition function of the
model in the φ representation. We set N = 1 and consider:

Z(g) =
∫ +∞

−∞
[dφ] e−S[φ] , S[φ] =

1
2
φ2 +

g

4!
φ4 , (A.2)
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where again we set [dφ] = dφ/
√

2π. There are three solutions of the equations
of motions, i.e., critical points S′[φ�] = 0, namely φ0 = 0 and φ± = ±ı

√
6
g , and

each of them has an attached thimble, J0 and J± (see Fig. 4). For symmetry
reasons it is clear that ZJ+(g) = ZJ−(g); thus, there are only two asymptotic
expansions.

Equation (A.2) is absolutely convergent if g is in the right half complex
plane Re(g) > 0; hence, in this domain it defines an analytic function Z(g).
In order to analytically continue this function we turn in the complex plane
and parameterize g = |g|eıϕ but we tilt the contour of integration by e−ıθ to
compensate. In detail, we define:

Zθ(g) =
∫

Re−ıθ

[dφ] e− 1
2 φ2− |g|eıϕ

4! φ4
= e−ıθ

∫

R

[dφ] e− 1
2 φ2e−2ıθ− |g|eı(ϕ−4θ)

4! φ4
,

(A.3)

which is absolutely convergent if both ϕ − 4θ ∈ (−π/2, π/2) and −2θ ∈
(−π/2, π/2), and is independent of θ as long as it converges. As Z0(g) = Z(g),
it follows that Zθ(g) is the analytic continuation of Z(g) and it is easy to check
that the integral in Eq. (A.3) defines it for all −3π/2 ≤ ϕ < 3π/2. We denote:

Z+(g) = Zθ(g) for θ > 0 , Z−(g) = Zθ(g) for θ < 0 , (A.4)

the anticlockwise, respectively clockwise, analytic continuations. Both Z+(g)
and Z−(g) are defined for any g with Re(g) < 0, but they are not equal. That
is Zθ(g) is a multi-valued function in the complex g-plane, with a branch point
at the origin. We chose the range −π < ϕ < π for the principle Riemann sheet,
with a cut along the negative real axis.

For |ϕ| < π the integration contour in Eq. (A.3) is homotopic to just the
perturbative thimble J0, which at the origin is tangent to the real axis. In this
case, the Laplace method applied to ZJ0(g) amounts to Taylor expanding the
quartic interaction and computing the Gaussian integral9:

Z(g) = ZJ0(g) =
∫

J0

[dφ]e− 1
2 φ2− g

4! φ
4

=
∞∑

n=0

1
n!

(
− g

4!

)n
∫ ∞

−∞
[dφ]e− 1

2 φ2
φ4n

=
∞∑

n=0

(
−2

3

)n (4n)!
26n(2n)!n!

gn ≡
∞∑

n=0

Apert.
n gn . (A.5)

The instanton sector. At ϕ = ±π, i.e., at g < 0, the perturbative thimble
intersects the instanton thimbles. At |ϕ| > π they split again, but on the
opposite side, so that the perturbative thimble effectively has a jump at |ϕ| =
π, leading to a jump in the decomposition of the original contour C.

As the evaluation of the integrals along the instanton thimbles, ZJ± , is
well behaved and continuous across the Stokes line at ϕ = π, for the asymptotic

9As explained for example in [16], in the Laplace method we restrict the integration to a

small neighborhood of the saddle point, we expand the integrand, keeping only the first

nontrivial term in the exponent while expanding the rest, and lastly exchange sum and

integral, extending the integration domain to an infinite line along which the integrals are

convergent and computable.
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Figure 4. Critical points and thimbles (thick lines) in the
complex φ-plane. The crosses mark the positions of the in-
stantons, and the dashed lines are the tilted contours of
Eq. (A.10)

expansion around the instanton, we consider the case g < 0. In this case the
thimbles J± are described by Re(φ) = ±

√
(Im(φ))2 + 6

|g| . Since we know the
analytic expression of the thimbles, we take an explicit parametrization of the
curve and use it to compute the integral. For example we can chose:

γ± : t ∈ (−∞,∞) →
(

±
√

t2 +
6
|g|

)
+ ı t . (A.6)

and the integral reads:

ZJ+ =
∫

J+

[dφ]e−S(φ) =
∫ ∞

−∞
[dt] γ̇+(t)e−S(γ+(t))

=
∫ ∞

0

[dt] γ̇+(t)e−S(γ+(t)) +
∫ ∞

0

[dt] γ̇+(−t)e−S(γ+(−t)) . (A.7)

The imaginary part of the action is zero along the thimbles. Also we have that
γ̇±(−t) = ∓t√

t2+ 6
|g|

+ ı, and thus, the real parts of the two integrals cancel. In

the end we find:

ZJ+ = 2ı

∫ ∞

0

[dt] e− 3
2|g| −t2− |g|

6 t4 = ıe
3
2g

∫ +∞

−∞
[dt] e−t2+ g

6 t4 . (A.8)

Now we can rescale the t by 1√
2

and find the same integral as for J0 but with
the opposite sign for g. In the end we have:

ZJ± =
ı√
2
e

3
2g

∞∑

p=0

(−1)pApert.
p gp . (A.9)
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Figure 5. The thimble J0 for Z+(−|g|) (left) and Z−(−|g|)
(right) as |ϕ| ↗ π

Discontinuity. The discontinuity at the cut can be computed as:

Z−(−|g|)−Z+(−|g|) =
∫

Reıπ/8

dφ√
2π

e− 1
2 φ2+ |g|

4! φ4 −
∫

Re−ıπ/8

dφ√
2π

e− 1
2 φ2+ |g|

4! φ4
,

(A.10)
where we tilted the contours by the θ of minimal absolute value which ensures
convergence. Each of the two contours can be deformed to the perturbative
thimble alone for |ϕ| < π. However, in the limit of |ϕ| ↗ π the difference of the
two perturbative thimbles approaches the sum of the two instanton thimbles
(see Fig. 5), leading to the asymptotic expansion in Eq. (3.15), with N = 1.

B. A Simple Generalization of the Nevanlinna–Sokal Theorem

Proof of Theorem 1. The proof is an infinitesimal variation of the proof of [27]
which deals with the case β = 0. We parallel the notation of [27].

We first observe that:

|aq| = lim
z→0,z∈DiskR

∣∣∣∣
aqz

q + Rq+1(z)
zq

∣∣∣∣ = lim
z→0,z∈DiskR

|Rq(z)|
|z|q ≤ K q! qβ ρ−q ;

(B.1)
hence, B(t) is an integer power series which converges in the disk |t| < ρ and
defines an analytic function in this domain.

Let us recall Hankel’s contour integral representation of the inverse of the
Gamma function:

1
2πı

∮

Re(z−1)=r−1
dz ex/zzk−1 =

1
2πı

∫ r−1+ı∞

r−1−ı∞
dw exw w−k−1 =

xk

Γ(k + 1)
,

(B.2)
which holds for any r, x ∈ R+ and k ∈ C. We define for x ∈ R+ the function:

b0(x) =
1

2πı

∮

Re(z−1)=r−1
dz ex/z z−1 f(z) , (B.3)
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which is an r independent function for r < R as long as the integral converges
because the integration contour is fully contain in DiskR. Substituting the
asymptotic expansion of f(z) up to order q, we obtain:

b0(x) =
q−1∑

k=0

ak

k!
xk +

1
2πı

∮

Re(z−1)=r−1
dz ex/z z−1Rq(z) . (B.4)

Changing variables to w = 1/z and using the bound on Rq, the remainder
term above is bounded by:

K q! qβ ρ−q ex/r

∫ ∞

−∞
dv

1

|r−1 + ıv|q+1
≤ K q! qβ ρ−q ex/r rq

∫ ∞

−∞
dv

1

(1 + v2)
q+1
2

,

(B.5)

and the integral in the last line is always bounded by the case q = 1 in which
case it is π and can be absorbed in K. Choosing r = x/q (which is possible for
q large enough q > x/R) and using the Stirling upper bound on the Gamma
function, the reminder is finally bounded by K qβ+1/2(x/ρ)q hence goes to
zero in the q → ∞ limit as long as x < ρ. It follows that for 0 < x < ρ,
b0(x) = B(t)|t=x.

We now define bm(x) = dm

dxm b0(x), and using Eq. (B.4) with q = m + 1
we get:

bm(x) = am +
1

2πı

∮

Re(z−1)=r−1
dz ex/zz−m−1Rm+1(z) , (B.6)

and we have the bound |bm(x)| ≤ K (m + 1)! (m + 1)β ρ−m−1ex/r (note that
this bound covers also the term |am| < K m! mβ ρ−m).

The sum Bx(t) =
∑

m≥0
(t−x)m

m! bm(x) defines an analytic function in t as
long as it converges. As:

|Bx(t)| ≤ Kex/r
∑

m≥0

(m + 1)β+1(|t − x|/ρ)m , (B.7)

we conclude that Bx(t) is analytic in a disk or radius ρ centered at x. It is
immediate to check that Bx(t) = Bx′(t) as long as they both converge; hence,
Bx(t) is the analytic continuation of B(t) to the strip {t ∈ C | dist(t,R+) < ρ}
and it obeys the appropriate exponential bound. The last point follows by
noting that for z′ ∈ Diskr:

1
z′

∫ ∞

0

dx e−x/z′ 1
2πı

∮

Re(z−1)=r−1
dz ex/z z−1

f(z) =
1

2πı

∮

Re(z−1)=r−1
dz

1
z − z′ f(z) = f(z′), (B.8)

by Cauchy’s theorem. �

C. Proofs of Propositions

In this appendix we gather the proofs of various propositions in the main body
of the paper.
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C.1. Properties of Z(g, N)

Proof of Proposition 1. The proof of this proposition is linear.

Property 1. This follows by bounding the square root and taking into account
that the Gaussian integral is normalized to 1. For N ≥ 0 and g = |g|eıϕ with
−π < ϕ < π, we have the uniform bound:

|1 − ı
√

g
3σ| = |e−ı ϕ

2 − ı

√
|g|
3 σ| ≥ cos

ϕ

2
. (C.1)

For N < 0 we use |1 − ı
√

g
3σ| ≤ 1 +

√
|g|
3 |σ| and splitting the integration

interval in regions where
√

|g|
3 |σ| ≤ 1, respectively

√
|g|
3 |σ| ≥ 1, and then

re-extending the integration intervals to cover (−∞,∞) we get:

|Z(g,N)| ≤
∫ ∞

−∞
[dσ] e− 1

2 σ2
(

1 +
√

|g|
3 |σ|

)|N |/2

≤ 2|N |/2 +
23|N |/4

√
π

|g|N/4

3|N |/4
Γ
(

|N |+2
4

)
. (C.2)

Property 2. The perturbative expansion is obtained using (1 − x)−N/2 =∑
q≥0

(
q+N/2−1

q

)
xq and commuting (formally) the sum and integral:

Z(g,N) =
∞∑

n=0

(
2n + N

2 − 1
2n

)(
−g

3

)n
∫

R

[dσ] e− 1
2 σ2

σ2n

=
∞∑

n=0

Γ(2n + N/2)
22nn! Γ(N/2)

(
−2g

3

)n

. (C.3)

For the case N = 1 for instance we have Γ(2n+1/2)
Γ(1/2) = (4n)!

42n(2n)! (see also Eq. (A.5)
in Appendix A).

Property 3. Properties 3, 4, 5 and 6 are closely related and require that we
deal carefully with the integration contour. We define:

Zθ(g,N) =
∫

e−ıθR

[dσ] e− 1
2 σ2 1

(
1 − ı

√
g
3σ

)N/2

=
∫

R

e−ıθ[dσ] e− 1
2 e−2ıθσ2 1

(
1 − ı

√
|g|
3 eı ϕ−2θ

2 σ

)N/2
, (C.4)

which is absolutely convergent if both ϕ−2θ ∈ (−π, π) and −2θ ∈ (−π/2, π/2).
Moreover, as long as it converges, it is independent of θ, as can be verified by
noticing that the derivative with respect to θ can be rewritten as the integral of
a total derivative in σ. Thus, Zθ(g,N) is the analytic continuation of Z(g,N)
and optimizing on θ the partition function can be continued to the extended
Riemann sheet C3π/2 with a branch point at 0.
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Using a Taylor formula with integral rest, we have Zθ(g,N)−
∑q−1

k=0
1
k!Z

(k)
θ

(0, N)gk = Rq
θ(g,N) with:

R
q
θ(g, N) =

∫ 1

0
du

(1 − u)2q−1

(2q − 1)!

∫

R

e
−ıθ

[dσ] e
− 1

2
e−2ıθσ2

(
d

du

)2q

×

⎛

⎜⎜⎜⎝
1

(
1 − ı

√
|g|
3 eı ϕ−2θ

2 σu

)N/2

⎞

⎟⎟⎟⎠

=

∫ 1

0
du

(1 − u)2q−1

(2q − 1)!

∫

R

e
−ıθ

[dσ] e
− 1

2
e−2ıθσ2

(
−ı

√
|g|
3 eı ϕ−2θ

2 σ

)n

(−1)n Γ(n+N/2)
Γ(N/2)

×

⎛

⎝1 − ı

√
|g|
3

e
ı ϕ−2θ

2 σu

⎞

⎠

2n+N

2
∣∣∣∣∣
n=2q

, (C.5)

where for N < 0 we need to choose q > −N/4. Using |1 − ı
√

|g|
3 eı ϕ−2θ

2 σu| ≥
cos ϕ−2θ

2 the rest term is bounded as10:

|Rq
θ(g,N)| ≤ 1

(cos(2θ))
1
2+q

(
|g|
3

)q

(
cos ϕ−2θ

2

)2q+N/2

1
(2q)!

Γ(2q + N/2)
Γ(N/2)

(2q)!
2qq!

,

(C.6)
and using the Stirling formula as upper/lower bound for the Γ function11 we
have for q large enough (larger than max{1, N}):

Γ(2q + N
2 )

2qq!
≤ K

(
2q + N

2 − 1
) 1

2+2q+
N
2 −1

e
−
(
2q+

N
2 −1

)

2qq
1
2+qe−q

≤ K 2q qq+ N
2 −1e−q

(
1 +

N
2 − 1
2q

) 4q+N−1
2

≤ K q! q
N−3

2 2q ,

(C.8)

for K some q independent constant.12 Conveniently, choosing θ = ϕ/6, we get
the following bounds on Zϕ/6(g,N) and Rq

ϕ/6(g,N):

|Rq
ϕ/6(g,N)| ≤ K

(
cos ϕ

3

)N+1
2

q! q
N−3

2

(
1

3
2

(
cos ϕ

3

)3

)q

|g|q ,

10The factor 1/(cos(2θ))q can be improved to 1 by Taylor expanding in the Gaussian measure

along the lines of the proof of Proposition 4.
11In detail:

1 ≤ Γ(x + 1)√
2πx(x/e)x

≤ e
1

12x ≤ e1/12 , x ∈ [1, ∞) . (C.7)

12Note that

(
1 +

N
2 −1

2q

) 4q+N−1
2 ≤ exp{ 4q+N−1

2
ln(1 +

N
2 −1

2q
)} ≤ exp{ (4q+N−1)( N

2 −1)

4q
} ≤

K for q ≥ 1.
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|Zϕ/6(g,N)| ≤ 1
(
cos ϕ

3

)N+1
2

. (C.9)

Observe that Zθ(g,N) is independent on θ only as long as ϕ and θ are inde-
pendent, but the choice θ = ϕ/6 fixes θ in terms of the argument of g and
Zϕ/6(g,N) depends on ϕ.

We are now in the position to prove that Z(g,N) is Borel summable along
all the directions in the cut plane Cπ by verifying the conditions of Theorem 1,
Appendix B. This comes about as follows:

• let us fix some α ∈ (−π, π). As already noted in Properties 1 and 2,
Z(g,N) is analytic in Cπ; hence, in particular at |g|eıα and its asymptotic
expansion at 0 is known.

• Z(g,N) is analytically continued to any g in a Sokal disk (with 0 on
its boundary) tilted by α, that is g ∈ Diskα

R = {z | Re(eıα/z) > 1/R}
via Zϕ/6(g,N). Note that this Sokal disk extends up to g with argument
ϕ = α ± π/2. In the entire Sokal disk the rest term obeys the bound:

|Rq
ϕ/6(g, N)| ≤ K q! q

N−3
2 |g|q max

±

⎧
⎪⎨

⎪⎩
1

(
cos

α± π

2
3

)N+1
2

⎛

⎜⎝
1

3
2

(
cos

α± π

2
3

)3

⎞

⎟⎠

q⎫⎪⎬

⎪⎭
.

(C.10)

For any fixed α ∈ (−π, π), min±
{

3
2

(
cos α± π

2
3

)3 }
= ρ > 0 for some ρ;

hence, the Taylor rest obeys the bound in Eq. (2.4).
Property 4. Although this point is discussed in the main body of the paper,
we include it also here for completeness. We denote the analytic continuation
of Z(g,N) to the extended Riemann sheet C3π/2 by:

θ > 0 : Z+(g,N) = Zθ(g,N) , Z−(g,N) = Z−θ(g,N) . (C.11)

Observe that the factorial bound on the Taylor rest term cannot be satisfied
(for any choice of θ) when ϕ → ±3π/2. As Borel summability along a direction
α requires analytic continuation and bound on the rest term in a Sokal disk
centered on that direction, hence extending up to α±π/2, Z(g,N) loses Borel
summability at g ∈ R−.

We start from Eq. (3.2) which we quote here again:

Z(g,N) =
∫ +∞

−∞
[dσ] e− 1

2 σ2 1
(
1 − eı π

2
√

g
3σ

)N/2
, (C.12)

and the Lefschetz thimble of the integral is the real axis irrespective of g
(comparing to Eq. (A.1), we see that in the present case thimbles are defined
by the saddle points of σ2). As long as g = |g|eıϕ ∈ Cπ, the integral converges
as the singularity at

σ� = −ı

√
3
g

= e−ı π
2 −ı ϕ

2

√
3
|g| , (C.13)

lies outside the integration contour. Notice that the singularity is a pole for
N even, and otherwise it is a branch point with branch cut σ� × (1,+∞). We
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will discuss in detail the general case with a branch cut, as the case of even N
turns out to be readable as a special case of the results at general N .

As g approaches R− the branch point hits the contour of integration: for
ϕ ↗ π (that is we approach the cut in the g-plane counterclockwise) the branch
point hits the real axis at −

√
3/|g| while for ϕ ↘ −π (that is we approach the

cut in the g-plane clockwise) the branch point hits the real axis at
√

3/|g|. The
analytic continuation Z+(g,N) (resp. Z−(g,N)) consists in tilting the contour
of integration in σ by some clockwise rotation −θ < 0 (resp. counterclockwise,
θ > 0) to avoid the collision with the branch point. However, once g passes
on the second Riemann sheet ϕ > π (resp. ϕ < −π) the tilted contour is no
longer a thimble and in order to derive the asymptotic behavior of Z±(g,N)
we need to rotate it back to the real axis. This costs us a Hankel contour C
along the cut (see Fig. 1):

Z±(g,N)
∣∣
ϕ >π

<−π

=
∫

e∓ıθR

[dσ]
e− 1

2 σ2

(
1 − ı

√
g
3σ

)N/2
= ZR(g,N) + ZC

± (g,N)

ZC
± (g,N) =

∫

C

[dσ] e− 1
2 σ2 1

(
1 − ı

√
g
3σ

)N/2
. (C.14)

The integral ZR(g,N), defined in Eq. (3.4), is absolutely convergent, and
hence analytic, in the range |ϕ| ∈ (π, 3π), where it is bounded from above as
in Eq. (3.6).

The Hankel contour C turns clockwise around the cut σ� × (1,+∞),
i.e., starting at infinity with argument 3π

2 − ϕ
2 and going back with argument

−π
2 − ϕ

2 after having encircled the branch point σ�. We kept a subscript ± for
the contribution of the Hankel contour, because, even though the definition of
ZC

± (g,N) and C might suggest that it is one single function of g, in fact the
integral around the cut is divergent for |ϕ| < π/2, and therefore, the integrals
at π < ϕ < 3π/2 and at −π > ϕ > −3π/2 are not the analytic continuation
of each other.

We will now rewrite ZC
± (g,N) in a more useful form. With the change

of variables σ = e−ı π
2 −ı ϕ

2
√

3/|g| σ′ the contour C becomes a Hankel contour
C ′ turning clockwise around (1,+∞) and a shift to σ′ = 1 + t brings C ′ to
C ′′, a clockwise oriented Hankel contour around the positive real axis, starting
at infinity with argument 2π and going back with vanishing argument after
having encircled the origin:

ZC
±(g, N) =

∫

C

[dσ] e− 1
2

σ2 1
(
1 − e

ıπ

2

√
g
3 σ

)N/2 =

(
3

eıπg

)1/2 ∫

C′
[dσ′] e

3
2g

(σ′)2 1

(1 − σ′)N/2

=
1√
2π

(
3

eıπg

)1/2 ∫

C′′
dt (e−ıπt)− N

2 e
3
2g

(1+t)2

, (C.15)

where we have made explicit the choice of branch by expressing minus signs
as phases. Notice that the integral converges because for π < |ϕ| < 3π

2 the
exponent has a negative real part.
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Next, we make the change of variables t = eıτπ g
3u, with τ = −sgn(ϕ)

(i.e., τ = − for ϕ > π, that is for ZC
+ (g) and τ = + for ϕ < −π, i.e., for

ZC
− (g)), obtaining:

ZC
± (g,N) =

eıτπ(1− N
2 )

ı
√

2π

(g

3

) 1−N
2

e
3
2g

∫

e−ıτπ−ıϕC′′
du (e−ıπu)− N

2 e−u+ g
6 u2

.

(C.16)
The two choices of τ are dictated by the fact that for π < |ϕ| < 3π/2 the

contour of integration should stay in the domain of convergence continuously
connected to C ′′. The fact that this entails two different choices of τ reflects
what we anticipated about the need of keeping a ± subscript. Lastly, the
contour of integration can be deformed back to C ′′, where we easily evaluate
the discontinuity (for N < 2) as13:

ZC
±(g, N) =

eıτπ(1− N

2 )
√

2π

(g

3

) 1−N

2 e
3
2g 2 sin

(
π

N

2

)∫ +∞

0
du e−u+ g

6
u2

u− N

2

=
eıτπ(1− N

2 )
√

2π

(g

3

) 1−N

2 e
3
2g 21+N/2 sin

(
π

N

2

)∫ +∞

0
dρ e− 1

2
ρ2+ g

24
ρ4

ρ1−N .

(C.17)

In the last step, we performed the change of variables u = ρ2/2 in order to
make explicit that for N = 1 we reproduce Eq. (A.8) (times two, because the
Hankel contour is only one, while there are two instanton thimbles in the φ rep-
resentation). For general N , the integral resembles that of the O(N) model in
polar coordinates, except that in that case we would have the opposite sign for
the power of the insertion, i.e., ρN−1. This also explains the relation between
the coefficients of the perturbative and nonperturbative series in Eq. (3.12),
which are related by the transformation N → 2 − N (up to an area of SN−1

of the missing angular integration in Eq. (C.17)).
The integral over u (or ρ) in Eq. (C.17) is convergent as long as Re(g) < 0,

i.e., for π/2 < |ϕ| < 3π/2. One can use again the Hubbard–Stratonovich trick
to write (for N < 2):

∫ +∞

0

du e−u+ g
6 u2

u− N
2 =

∫ +∞

−∞
[dσ] e− σ2

2

∫ +∞

0

du e−u(1+
√

g
3 σ)u− N

2

= Γ(1 − N/2)
∫ +∞

−∞
[dσ] e− σ2

2

(
1 +

√
g

3
σ

)N
2 −1

,

(C.18)

where, in order to ensure uniform convergence of the u integral, we keep |ϕ| =
π. Note that the integral is independent of choice of branch of

√
g, as a sign

13This is obtained by writing, for Re(z) < 1,
∫

C′′
du e−S(u) (e−ıπu)−z =

∫ 0

+∞
du e−S(u) e−z(ln |u|+ıπ) +

∫ +∞

0
du e−S(u) e−z(ln |u|−ıπ)

= 2ı sin(πz)

∫ +∞

0
du e−S(u) u−z .
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can be absorbed in σ. The reader will note that this is proportional to our
integral in Eq. (3.4) with arguments ZR(−g, 2 − N), which is unambiguous
as ZR(g,N) is periodic with period 2π in the argument of g; hence, one can
chose any determination of −g. The advantage of the manipulation above is
that the integral over σ now converges for 0 < |ϕ| < 2π; hence, it allows us to
analytically continue ZC

± (g,N) beyond |ϕ| = 3π/2 up to |ϕ| ↗ 2π.
Using Euler’s reflection formula, Γ(1 − z) sin(πz) = π/Γ(z), we get14:

ZC
±(g, N) =

eıτπ(1− N

2 )
√

2π

(
g

3

) 1−N

2
e

3
2g

2π

Γ(N/2)

∫ +∞

−∞
[dσ] e− σ2

2

(
1 − ı

√−g

3
σ

)N

2
−1

= eıτπ(1− N

2 )
(

g

3

) 1−N

2
e

3
2g

√
2π

Γ(N/2)
ZR(−g, 2 − N)

= eıτπ(1− N

2 )
(

g

3

) 1−N

2
e

3
2g

√
2π

Γ(N/2)
Z(eıτπg, 2 − N) . (C.19)

In the last line above we have chosen a determination of −1 such that eıτπg
belongs to the principal sheet of the Riemann surface, where Z = ZR; hence,
Z(eıτπg, 2−N) = ZR(eıτπg, 2−N) = ZR(−g, 2−N), where in the last equality
we used the fact that ZR is single-valued. We have thus shown that, when going
from |ϕ| < π to π < |ϕ| < 2π our analytic continuation of Z(g,N) switches:

Z(g,N)
|ϕ|↗π+−−−−−→ ZR(g,N) +

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N
2

ZR(−g, 2 − N)

= Z(eı(2τπ)g,N) +
√

2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N
2

Z(eıτπg, 2 − N) ,

(C.20)
where |ϕ| ↗ π+ signifies that the switching takes place when |ϕ| crosses the
value π coming from below. In the second line above, for π < |ϕ| < 2π, both
arguments eı(2τπ)g and eıτπg belong to the principal sheet of the Riemann
surface, where Z(g,N) has already been constructed and proven to be analytic.

The first term in Eq. (C.20) is regular up to |ϕ| = 3π, but the second one
has a problem when eıτπg reaches the negative real axis (which is ϕ → −2τπ).
Note that Z(eıτπg, 2−N) approaches the cut singularity in the principal sheet
of the Riemann surface, as its argument is eıτπg. But we already know what
happens with Z(g′, N ′) when g′ traverses the cut singularity in the principal
Riemann sheet: a branch point crosses the integration contour, one detaches
a Hankel contour, and the analytic continuation switches again:

Z(eıτπg, 2 − N)
|ϕ|↗2π+−−−−−−→ Z(eı(3τπ)g, 2 − N)

+
√

2π

Γ(1 − N/2)
eıτ π

2 e
3

2geıτπ

(
eı(2τπ) g

3

)N−1
2

Z(eı(2τπ)g,N) ,
(C.21)

where this time the arguments at which Z is evaluated on the right hand side
stay in the principal sheet for 2π < |ϕ| < 3π.

14Notice that this allows us also to analytically continue the result to N ≥ 2.
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We iterate this and build the analytic continuation of Z(g,N) in terms
of ZR on the whole Riemann surface. The first few steps in this continuation
are:

|ϕ| < π : Z(g, N) = ZR(g, N) ,

π < |ϕ| < 2π : Z(g, N) = Z(eı(2τπ)g, N) +

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N

2
Z(eıτπg, 2 − N)

= ZR(g, N) +

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N

2
ZR(−g, 2 − N) ,

2π < |ϕ| < 3π : Z(g, N) = (1 + τ̃) Z(eı(2τπ)g, N)

+eıτπ(N−1)

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(3τπ) g

3

) 1−N

2
Z(eı(3τπ)g, 2 − N)

= (1 + τ̃) ZR(g, N)

+eıτπ(N−1)

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(3τπ) g

3

) 1−N

2
ZR(−g, 2 − N) , (C.22)

where we denoted:

τ̃ =
√

2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eıτπ g

3

) 1−N
2

√
2π

Γ(1 − N/2)
eıτ π

2 e
3

2geıτπ

(
eı(2τπ) g

3

)N−1
2

= 2 sin
(

Nπ
2

)
eıτπ N+1

2 . (C.23)

In order to iterate Eq. (C.20), we must make sure that at each step
the arguments of the functions Z involved in the analytic continuation are
brought back to the principal sheet. We denote the analytic continuation of
the partition function to the Riemann surface by:

2kπ < |ϕ| < (2k + 1)π :

Z(g, N) = ω2k Z(eı(2k)τπg, N)

+ η2k

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

Z(eı(2k+1)τπg, 2 − N) ,

(2k + 1)π < |ϕ| < (2k + 2)π :

Z(g, N) = ω2k+1 Z(eı(2k+2)τπg, N)

+ η2k+1

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

Z(eı(2k+1)τπg, 2 − N) ,

(C.24)
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a general recursion relation for the (ωq, ηq) is obtained from Eq. (C.20) and
Eq. (C.21) generalized to the Riemann surface15:

(ω0, η0) = (1, 0) ,

{
ω2k+1 = ω2k

η2k+1 = η2k + ω2k

,

{
ω2(k+1) = τ̃ η2k+1 + ω2k+1

η2(k+1) = eıτπ(N−1)η2k+1

.

(C.25)
The recursion can easily be solved by introducing a transfer matrix:

(
ω2k

η2k

)
= Ak

(
1
0

)
, A =

(
1 + τ̃ τ̃

eıτπ(N−1) eıτπ(N−1)

)
, (C.26)

which leads to Eq. (3.11). Since the eigenvalues of A are ±eıτπ N
2 , we have that

Ak equals the identity matrix for k = 4 if N is odd, and for k = 2 if N is even.
Therefore, in these two cases we have a monodromy group of order 4 and 2,
respectively. More generally, we have a monodromy group of finite order if N
is a rational number, and an infinite monodromy otherwise.

Property 5. This follows by combining Property 2, which gives the asymptotic
expansion of ZR(g,N), with Eq. (C.19) using (1+x)N/2−1 =

∑
q≥0

Γ(N/2)
q!Γ(N/2−q)x

q:

ZC
± (g,N) = eıτπ(1− N

2 )
√

2π
(g

3

) 1−N
2

e
3
2g

∑

q≥0

1
22qq! Γ(N

2 − 2q)

(
2g

3

)q

.

(C.27)

Property 6. In order to compute the discontinuity of the partition function,
let us consider g in the complex plane of the coupling constant slightly below
the negative real axis, Re(g), Im(g) < 0. This g can be reached either coun-
terclockwise with Z+ or clockwise with Z−. There is a subtlety here: if we
denote this point as g = |g|eıϕ with ϕ ∈ (π, 3π/2) in the clockwise direction,
it corresponds to g = |g|eı(ϕ−2π) in the counterclockwise direction. While only
the real axis contributes to Z−(g,N) (as turning clockwise we do not cross
the cut to reach it), Z+(g,N) has the additional contribution of the Hankel
contour (as turning counterclockwise we cross the cut):

Z+(g,N) = ZR(g,N) + ZC
+ (g,N), Z−(g,N) = ZR(e−2πıg,N) = ZR(g,N) ,

(C.28)

where we used the fact that ZR is single-valued. When taking the difference,

15In detail, we use:

Z(eı(2k)τπg, N)
|ϕ|↗(2k+1)π+−−−−−−−−−−→ Z(eı(2k+2)τπg, N)

+
√

2π
Γ(N/2)

eıτ π
2 e

3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

Z(eı(2k+1)τπg, 2 − N) ,

Z(eı(2k+1)τπg, 2 − N)
|ϕ|↗(2k+2)π+−−−−−−−−−−→ Z(eı(2k+3)τπg, 2 − N)

+
√

2π
Γ(1−N/2)

eıτ π
2 e

− 3
2g

(
eı(2k+2)τπ g

3

)N−1
2

Z(eı(2k+2)τπg, N) ,

√
2π

Γ(N/2)
eıτ π

2 e
3
2g

(
eı(2k+1)τπ g

3

) 1−N
2

[
√

2π
Γ(1−N/2)

eıτ π
2 e

− 3
2g

(
eı(2k+2)τπ g

3

)N−1
2

]
= τ̃ .
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the ZR pieces cancel and the discontinuity is given by the Hankel contour
contribution, Z−(g,N)−Z+(g,N) = −ZC

+ (g,N). In particular, at the negative
real axis we have:

discπ

(
Z(g,N)

)
= lim

ϕ↘π

(
Z−(e−2πıg,N) − Z+(g,N)

)
= −ZC

+ (eıπ|g|, N) .

(C.29)
Lastly, notice that the computation done on the other side of the cut, limϕ↗−π(
Z−(g,N) − Z+(e2πıg,N)

)
, gives the same result, because ZC

− (e−ıπ|g|, N) =
−ZC

+ (eıπ|g|, N).

Property 7. From the intermediate field expression Eq. (3.2) of the partition
function, we find straightforwardly that (N + 4 g∂g)Z(g,N) = NZ(g,N + 2).
Applying this twice, we have:

(N + 2 + 4g∂g)(N + 4g∂g)Z(g,N) = N(N + 2)Z(g,N + 4) . (C.30)

Integrating by parts in Eq. (3.2) with N → N + 4, we find N(N + 2)Z(g,N +
4) = −4!Z ′(g,N), and thus we arrive at the equation:

N(N + 2)Z(g,N) + ((8N + 24)g + 24) Z ′(g,N) + 16g2Z ′′(g,N) = 0 . (C.31)

This concludes the proof of Proposition 1. �

C.2. Properties of Zn(g)

Proof of Proposition 2. The proof is similar to the one of Proposition 1.
Property 1. We start from:

Zn(g) =
∫ +∞

−∞
[dσ]e− 1

2 σ2
(

ln
(

1 − ı

√
g

3
σ

))n

=
∫ +∞

−∞
[dσ]e− 1

2 σ2

(
ln

(
1 − ıeı ϕ

2

√
|g|
3

σ

))n

, (C.32)

where we parameterized g = |g|eıϕ with ϕ ∈ (−π, π). For any real x we have
1 + |x| ≥ |1 − ıeı ϕ

2 x| ≥ cos ϕ
2 ; hence, we can bound the logarithm as:

∣∣∣ln
(
1 − ıeı ϕ

2 x
)∣∣∣

2

≤ π2 + max
{[

ln
(
cos ϕ

2

)]2
,

[
ln(1 + |x|)

]2}

≤ 2
[ (∣∣ln

(
cos ϕ

2

)∣∣ + 1
)
ln(eπ + |x|)

]2

, (C.33)

which implies:

|Zn(g)| ≤
∣∣∣∣2

1/2
(∣∣ln

(
cos ϕ

2

)∣∣ + 1
) ∣∣∣∣

n ∫
[dσ]e− 1

2 σ2

[
ln

(
eπ +

√
|g|
3

|σ|
)]n

.

(C.34)

We have ln(eπ +
√

|g|
3 |σ|) ≤ 1

ε (eπ +
√

|g|
3 |σ|)ε for any ε > 0. Cutting the

integration interval into regions where eπ <
√

|g|
3 |σ| and regions where eπ >
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√
|g|
3 |σ| and extending each piece back to the entire real line, we get a bound:

|Zn(g)| ≤

∣∣∣∣2
1/2

(∣∣ln
(
cos ϕ

2

)∣∣+ 1
) ∣∣∣∣

n

εn

[
(2eπ)nε +

(
4|g|
3

)nε
2
∫

[dσ]e− 1
2 σ2 |σ|nε

]

≤ Kn

( ∣∣ln
(
cos ϕ

2

)∣∣ + 1
)n

εn

(
1 + |g|nε

2 Γ
(

nε+1
2

))
. (C.35)

Property 2. In order to derive the asymptotic expansion of Zn(g), we use Faà
di Bruno’s formula16: to expand:

(
ln(1 − ı

√
g

3
σ)
)n

=
∑

m≥n

(
ı

√
g

3

)m

σm
∑

m1,...,mm≥0∑
kmk=m,

∑
mk=n

(−1)nn!∏
k kmkmk!

,

(C.36)
and integrate the Gaussian term by term. As a cross check, we can (formally)
resum17

∑

n≥0

1
n!

(
−N

2

)n

Zn(g) �
∑

n≥0

1
n!

(
−N

2

)n ∑

m≥n/2

(
−2g

3

)m (2m)!
22mm!

×
∑

m1, . . . ,m2m ≥ 0∑
kmk = 2m,

∑
mk = n

(−1)nn!∏
k kmkmk!

=
∞∑

m=0

(
−2g

3

)m (2m)!
22mm!

∑

m1, . . . ,m2m ≥ 0∑
kmk = 2m

2m∏

k=1

(
N

2k

)mk 1
mk!

=
∞∑

m=0

Γ(2m + N/2)
22mm!Γ(N/2)

(
−2g

3

)m

, (C.37)

reproducing the asymptotic expansion of Z(g,N) in Eq. (3.7).

16Namely, we evaluate the q-th term of the Taylor expansion using the following formula

(at u = 0)

dq

duq
[ln(1 − ux)]n =

∑

m1,...mq∑
kmk=q,

∑
mk≤n

q!∏
k mk!(k!)mk

n!

(n − ∑
k mk)!

[ln(1 − ux)]n−∑
k mk

∏

k

(−(k − 1)!xk

(1 − ux)k

)mk

.

17 In the last step, we use:
∑

m1,m2,...≥0 :
∏

k≥1
1

mk!

(
Nxk

2k

)mk
= exp{∑k≥1

Nxk

2k
} =

(1 − x)−N/2 =
∑∞

m=0
Γ(m+N/2)
Γ(N/2)m!

xm.
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Property 3. We analytically continue Zn(g) to the extended Riemann sheet
C3π/2 as in Property 3, Proposition 2, by turning the integration contour by
e−ıθ:

Znθ(g) =
∫ +∞

−∞
e−ıθ[dσ]e− 1

2 e−2ıθσ2

(
ln(1 − ıeı ϕ−2θ

2

√
|g|
3

σ)

)n

. (C.38)

Using a Taylor formula with integral rest, the reminder Rq
nθ(g) writes:

R
q
nθ(g) =

∫ 1

0
du

(1 − u)2q−1

(2q − 1)!

∫

R

e
−ıθ

[dσ] e
− 1

2
e−2ıθσ2

(
d

du

)2q

⎛

⎝ln

⎛

⎝1 − ıe
ı ϕ−2θ

2

√
|g|
3

σu

⎞

⎠

⎞

⎠
n

=

∫ 1

0
du

(1 − u)2q−1

(2q − 1)!

∫

R

e
−ıθ

[dσ] e
− 1

2
e−2ıθσ2

(
ıeı ϕ−2θ

2

√
|g|
3 σ

)2q

(
1 − ıeı ϕ−2θ

2

√
|g|
3 σu

)2q

×
∑

m1, . . . mq∑
kmk = 2q,

∑
mk ≤ n

(2q)!
∏

k mk!kmk

(−1)
∑

mk n!

(n −
∑

k mk)!

×

⎛

⎝ln

⎛

⎝1 − ıe
ı ϕ−2θ

2

√
|g|
3

σu

⎞

⎠

⎞

⎠
n−

∑
k mk

. (C.39)

Now |1 − ı
√

|g|
3 eı ϕ−2θ

2 σu| ≥ cos ϕ−2θ
2 and:

(
ln
(

1 − ıeı ϕ−2θ
2

√
|g|
3 σu

))n−
∑

k mk

(
1 − ıeı ϕ−2θ

2

√
|g|
3 σu

)2q

≤

∣∣∣∣2
1/2

(
| ln

(
cos ϕ−2θ

2

)
| + 1

)
ln(eπ + |g||σ|)

∣∣∣∣
n−

∑
mk

(
cos ϕ−2θ

2

)2q , (C.40)

therefore:

|Rq
nθ(g)| ≤

n!2
n
2

( ∣∣∣ln
(
cos ϕ−2θ

2

)∣∣∣ + 1
)n

(
cos ϕ−2θ

2

)2q

(
|g|
3

)q Γ
(
2q + 1

2

)

(2q)!

×
∫

[dσ]e− 1
2 cos(2θ)σ2

σ2q[ln(eπ + |g||σ|)]n

≤ K

( ∣∣∣ln
(
cos ϕ−2θ

2

)∣∣∣ + 1
)n

(
cos ϕ−2θ

2

)2q

(
|g|
3

)q

×
(

(2q)!

2qq! (cos(2θ))q+1/2
+ 2q |g|nε

2 Γ(q + nε+1
2 )

(cos(2θ))q+(nε+1)/2

)
, (C.41)
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for any ε with (K depending on n and ε). Fixing for example ε = 1 and θ = ϕ
6

yields the desired result as in Property 3, Proposition 1.

Property 4. A slight variation on the bound in Property 1 yields:

|Znθ(g)| ≤ Kn

( ∣∣∣ln
(
cos ϕ−2θ

2

)∣∣∣ + 1
)n

εn

(
1 +

|g|nε
2 Γ

(
nε+1

2

)

(cos(2θ))(nε+1)/2

)
. (C.42)

Fixing for convenience θ = ϕ
6 , one observes that

∑
n≥0

1
n! (−N/2)nZnθ(g) has

infinite radius of convergence in N for any |ϕ| < 3π/2. Denoting, similarly to
the notation we used for Z(g,N), the analytic continuation of Zn(g) to the
extended Riemann sheet C3π/2 by:

θ > 0 , Zn+(g) = Znθ(g) , Zn−(g) = Zn−θ(g) , (C.43)

we note that the bound on the Taylor rest term in Eq. (C.41) is lost for
ϕ → ±3π/2; hence, Borel summability is lost for ϕ → ±π. As in the case of
Z(g,N), after g crosses the cut at R−, say counterclockwise, in deforming the
contour of integration e−ıθ

R back to the steepest-descent contour along the
real line, we generate a clockwise-oriented Hankel contour around σ�×(1,+∞):

Zn±(g)
∣∣
ϕ >π

<−π

=
∫

e∓ıθR

[dσ] e− 1
2 σ2

(
ln
(

1 − ı

√
g

3
σ

))n

= ZR

n (g) + ZC
n±(g)

ZR

n (g) =
∫

R

[dσ] e− 1
2 σ2

(
ln
(

1 − ı

√
g

3
σ

))n

,

ZC
n±(g) =

∫

C

[dσ] e− 1
2 σ2

(
ln
(

1 − ı

√
g

3
σ

))n

. (C.44)

Property 5. We now compute ZC
n±(g). As in Proposition 1 this is given by

integrating along the clockwise orientated Hankel contour C. First we change
variable to σ = e−ı π

2 −ı ϕ
2
√

3/|g|σ′ and the contour becomes C ′ clockwise ori-
ented around (1,∞) and a shift σ′ = 1 + t brings C ′ to a clockwise-oriented
contour around the positive real axis:

ZC
n±(g) =

(
3

eıπg

)1/2 ∫

C′
[dσ′] e

3
2g (σ′)2 [ln(1 − σ′)]n

=
1√
2π

(
3

eıπg

)1/2 ∫

C′′
dt e

3
2g (1+t)2 [ln(−t)]n . (C.45)

A further change of variables t = eıτπ g
3u with τ = −sgn(ϕ) yields18:

ZC
n±(g) =

eıτπ

ı

1√
2π

√
g

3
e

3
2g

∫ ∞

0
du e−u+ g

6 u2 [(
ln( eıτπg

3
u) − ıπ

)n −
(
ln
(

eıτπg
3

u
)

+ ıπ
)n]

=
eıτπ

ı

1√
2π

√
g

3
e

3
2g

∑

q≥0

1

q!

(g

6

)q
n∑

p=0

(
n
p

)

18See comments below Eq. (C.16) for an explanation of the τ -dependence.
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×
∫ ∞

0
du e−u u2q(ln u)p

[(
ln
(

eıτπg
3

)
− ıπ

)n−p −
(
ln
(

eıτπg
3

)
+ ıπ

)n−p
]

,

(C.46)

and integrating over u we get

ZC
n±(g) � eıτπ

ı

e
3
2g

√
2π

√
g

3

∞∑

q=0

1
q!

(g

6

)q n∑

p=0

(
n
p

)
dpΓ(z)

dzp

∣∣∣
z=2q+1

×
[(

ln
(

eıτπg
3

)
− ıπ

)n−p

−
(
ln
(

eıτπg
3

)
+ ıπ

)n−p
]

, (C.47)

which combined with Property 2 implies the full transseries expansion
Eq. (3.26).

A good cross check of the results consist in summing over n:
∑

n≥0

1

n!

(
−N

2

)n

ZC
n±(g)

=
eıτπ

ı

e
3
2g

√
2π

√
g

3

∞∑

q=0

1

q!

(g

6

)q
∞∑

p,k=0

1

p! k!

(
−N

2

)p+k dpΓ(z)

dzp

∣∣∣
z=2q+1

×
[(

ln
(

eıτπg
3

)
− ıπ

)k −
(
ln
(

eıτπg
3

)
+ ıπ

)k
]

=
eıτπ

ı

e
3
2g

√
2π

√
g

3

∞∑

q=0

1

q!

(g

6

)q
Γ

(
2q +

2 − N

2

)[
eı Nπ

2

(
eıτπg

3

)− N

2 − e−ı Nπ

2

(
eıτπg

3

)− N

2

]

=
eıτπ(1− N

2 )

ı

e
3
2g

√
2π

(g

3

) 1−N

2
∑

q≥0

Γ(2q + 2−N
2 )

sin Nπ

2
π

2πı

22qq!

(
2g

3

)q

, (C.48)

Which coincides with the instanton part in Eq. (3.12).

Property 6. This follows from discπ

(
Zn(g)

)
= −ZC

n+(eıπ|g|) combined with
Properties 4 and 5.

Property 7. The derivation of Eq. (3.29) is straightforward. We substitute
the small-N expansion (3.23), with the condition Z(g, 0) = 1, in the partial
differential equation for Z(g,N), Eq. (3.16), and collect the terms with the
same powers of N .

This concludes the proof of Proposition 2. �

C.3. The LVE, Analyticity

Proof of Proposition 3. We review here briefly the proof the LVE formula for
the free energy. For more details, see [18] and follow-up work. We use the no-
tation of the Gaussian integral as a differential operator (see [38] for a detailed
discussion of this notation), as a convenient bookkeeping device for the action
of derivatives with respect to matrix elements of the covariance of a Gaussian
measure and we denote V (σ) = ln(1−ı

√
g/3 σ). Equation (3.23) becomes with

this notation:

Z(g, N) =
∑

n≥0

1

n!

(
−N

2

)n

Zn, Zn(g) =

∫
[dσ] e− 1

2 σ2
[ln(1 − ı

√
g/3 σ)]n
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≡
[
e

1
2

δ
δσ

δ
δσ V (σ)n

]

σ=0
, (C.49)

where δ/δσ denotes the derivative with respect to σ.
Let us take aside a term Zn(g). We introduce copies with degenerate

covariance and we introduce fictitious interpolating link parameters xkl =
xlk = 1:

Zn(g)=

[
e

1
2
∑n

k,l=1
δ

δσk

δ
δσl

n∏

i=1

V (σi)

]

σi=0

=

[
e

1
2
∑n

k,l=1 xkl
δ

δσk

δ
δσl

n∏

i=1

V (σi)

]

σi=0,xij=1

.

(C.50)
We fix the diagonal elements xii = 1 and use symmetric interpolations xij =
xji where xij with i < j are independent parameters. For all i 
= j:

∂

∂xij

[
e

1
2

∑n
k,l=1 xkl

δ
δσk

δ
δσl

]
= e

1
2

∑n
k,l=1 xkl

δ
δσk

δ
δσl

(
δ

δσi

δ

δσj

)
, (C.51)

and using Appendix D, we get:

Z(g,N) =
∑

n≥0

(
−N

2

)n

n!

∑

F∈Fn

∫ 1

0

∏

(i,j)∈F
duij

×
[
e

1
2

∑
k,l wF

kl
δ

δσk

δ
δσl

⎛

⎝
∏

(i,j)∈F

δ

δσi

δ

δσj

⎞

⎠
n∏

i=1

V (σi)

]

σi=0

, (C.52)

where Fn is the set of all the forests over n labeled vertices.
Observing that the contribution of a forest factors over the trees (con-

nected components) in the forest, the logarithm is trivial: it comes to restricting
the sum above to trees over n vertices (hence with n − 1 edges):

W (g,N) =
∑

n≥1

(
−N

2

)n

n!

∑

T ∈Tn

∫ 1

0

∏

(i,j)∈T
duij

×
[
e

1
2

∑
k,l wT

kl
δ

δσk

δ
δσl

⎛

⎝
∏

(i,j)∈T

δ

δσi

δ

δσj

⎞

⎠
n∏

i=1

V (σi)

]

σi=0

. (C.53)

Taking into account that the action of the derivatives on the interaction is:

δd

δσd
ln
(
1 − ı

√
g
3σ

)
= (−1)

(d − 1)!
(
ı
√

g
3

)d

(
1 − ı

√
g
3σ

)d
, (C.54)

denoting di the degree of the vertex i in T , recalling that
∑

i di = 2(n − 1)
and observing that the terms n = 1 is special we get:

W (g,N) = −N

2

[
e

1
2

δ
δσ

δ
δσ ln

(
1 − ı

√
g
3σ

)]

σ=0

−
∑

n≥2

1
n!

(
−N

2

)n (g

3

)n−1 ∑

T ∈Tn

∫ 1

0

∏

(i,j)∈T
duij
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×
[
e

1
2

∑
i,j wT

ij
δ

δσi

δ
δσj

∏

i

(di − 1)!
(
1 − ı

√
g
3σi

)di

]

σi=0

. (C.55)

Reinstating the notation of the normalized Gaussian measure as a probability
density, we obtain the series in Eq. (4.7), with coefficients (4.5).

Property 1 and 2. In order to determine the domain of convergence of (4.7),
let us denote as usual g = |g|eıϕ, and take −π < ϕ < π. In this region, we can
use the uniform bound |1− ı

√
g
3σi| ≥ cos ϕ

2 , remaining with Gaussian integrals
over σi and integrals over uij , both bounded by 1. Therefore, for n ≥ 2, a crude
bound on Wn(g) is:

|Wn(g)| ≤
∣∣∣
g

3

∣∣∣
n−1 (n − 2)!

(
cos ϕ

2

)2(n−1)

∑n
i=1(di−1)=n−2∑

di≥1

1 =
(2n − 3)!

(n − 1)!

∣∣∣∣∣
g

3
(
cos ϕ

2

)2

∣∣∣∣∣

n−1

,

(C.56)
where we used the fact that there are (n − 2)!/

∏
i(di − 1)! trees over n la-

beled vertices with degree di at the vertex i, and that the sum over di is the
coefficient of xn−2 in the expansion of (1 − x)−n =

∑
q≥0

(
n−1+q

n−1

)
xq. Using

Stirling’s formula for the asymptotics of the factorials, it follows that W (g,N)
is convergent in a cardioid domain |gN | < 3

2 (cos ϕ
2 )2.

Property 3. The domain of convergence can be enlarged by turning σ → e−ıθσ,
which yields a convergent expansion in a subdomain of the extended Riemann
sheet C3π/2. In order to make this precise, let us define:

Wθ(g, N) = −N

2

∫
e−ıθ[dσ] e− 1

2
e−2ıθσ2

ln
(
1 − ı

√
g
3 e−ıθσ

)
−

∑

n≥2

1

n!

(
−N

2

)n (g

3

)n−1

×
∑

T ∈Tn

∫ 1

0

∏

(i,j)∈T
duij

∫

R

∏
i e−ıθ[dσi]√

det wT
e− 1

2
e−2ıθ ∑

i,j σi(wT )−1
ij

σj

∏

i

(di − 1)!
(
1 − ı

√
g
3 e−ıθσi

)di
, (C.57)

and implicitly Wnθ(g). It is easy to check that, for g in the cut plane Cπ both
Wθ(g,N) and Wnθ(g) are independent of θ as long as they converge. As θ can
be chosen such that the integrals converge for |ϕ| > π, Wθ(g,N) and Wnθ(g)
analytically extend W (g,N) and Wn(g) to some maximal domain.

Property 4 and 5. We now have the bound |1 − ı
√

g
3e−ıθσi| ≥ cos ϕ−2θ

2 and
the Gaussian integral is bounded by:

∣∣∣∣
∫ ∏

i e−ıθ[dσi]√
det wT

e− 1
2 e−2ıθ ∑

i,j σi(w
T )−1

ij σj

∣∣∣∣ ≤ 1
[cos(2θ)]

n
2

, (C.58)

and the combinatorics runs as before leading to:

|Wnθ(g)| ≤ (2n − 3)!
(n − 1)!

1√
cos(2θ)

∣∣∣∣∣∣∣

g

3
√

cos(2θ)
(
cos ϕ−2θ

2

)2

∣∣∣∣∣∣∣

n−1

. (C.59)
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Using again Stirling’s formula, we find that W (g,N) is convergent for |g| <

1
|N |

3
2

√
cos(2θ)

(
cos ϕ−2θ

2

)2

. This concludes the proof of Proposition 3. �

C.4. Borel Summability of Wn(g) and W (g, N) in Cπ

Proof of Proposition 4.. We focus on W (g,N): for Wn(g) one follows the same
steps without summing over n. Our starting point is the expression:

Wθ(g, N) = −
N

2

[
e

1
2

e2ıθ δ

δσ

δ

δσ ln
(
1 − ı

√
g
3 e

−ıθ
σ
)]

σ=0

−
∑

n≥2

1

n!

(
−

N

2

)n (
g

3

)n−1

×
∑

T ∈Tn

∫ 1

0

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠
[
e

1
2

e2ıθ ∑
i,j wT

ij
δ

δσi

δ

δσj

∏

i

(di − 1)!
(
1 − ı

√
g
3 e−ıθσi

)di

]

σi=0

.

(C.60)

for the analytical continuation Wθ(g,N) of the free energy.
We are interested in finding a good bound on the Taylor rest term of

order q of the expansion of W (g,N). This Taylor rest term consists in two
pieces. We denote Qq

θ(g) the sum over all the trees having at least q edges:

Q
q
θ(g, N) = −

∑

n≥q+1

1

n!

(
−

N

2

)n (
g

3

)n−1

×
∑

T ∈Tn

∫ 1

0

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠
[
e

1
2

e2ıθ ∑
i,j wT

ij
δ

δσi

δ

δσj

∏

i

(di − 1)!
(
1 − ı

√
g
3 e−ıθσi

)di

]

σi=0

.

(C.61)

Due to the overall gn−1 factor, such trees contribute only to orders higher
than q in the Taylor expansion of Wθ(g,N), hence are entirely contained in
the Taylor rest term. The trees with less than q edges contribute both to the
explicit terms of order lower than q in the Taylor expansion and to the rest
term. In order to isolate their contribution to the rest term we perform for
each of them a Taylor expansion with integral rest up to an appropriate order.
We do this by Taylor expanding the Gaussian measure, which generates loop
edges, each of which comes equipped with a g. For a tree with n − 1 edges,
n − q explicit loop edges need to be expanded. The Taylor rest term coming
from such trees writes then:

P q
θ (g, N) = −N

2

∫ 1

0

(1 − t)q−1

(q − 1)!

(
d

dt

)q
[
e

t

2
e2ıθ δ

δσ

δ

δσ ln
(
1 − ı

√
g
3 e−ıθσ

)]

σ=0

−
q∑

n=2

1

n!

(
−N

2

)n (g

3

)n−1 ∑

T ∈Tn

∫ 1

0

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠
∫ 1

0
dt

(1 − t)q−n

(q − n)!

×
(

d

dt

)q−n+1
[
e

t

2
e2ıθ ∑

i,j wT
ij

δ

δσi

δ

δσj

∏

i

(di − 1)!
(
1 − ı

√
g
3 e−ıθσi

)di

]

σi=0

.

(C.62)

The total rest term of the Taylor expansion of Wθ(g,N) is the sum Rq
θ(g,N) =

P q
θ (g,N) + Qq

θ(g,N).
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The contribution of large trees. Qq
θ(g,N). Using Eq. (4.10), the contribution

of large trees is immediately bounded by:

|Qq
θ(g,N)| ≤ 1√

cos(2θ)

∑

n≥q+1∣∣∣∣
N

2

∣∣∣∣
n ∣∣∣

g

3

∣∣∣
n−1 1

[√
cos(2θ)

(
cos ϕ−2θ

2

)2 ]n−1

1
n(n − 1)

(
2n − 3
n − 1

)
,

(C.63)

and using 1
n(n−1)

(
2n−3
n−1

)
≤ 22n−3 we get:

|Qq
θ(g,N)| ≤ |N |

4
√

cos(2θ)

∑

n≥q+1

⎛

⎜⎝
1

3
2

√
cos(2θ)

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

n−1

|Ng|n−1

≤
|N |

4
√

cos(2θ)

1 − |Ng|
3
2

√
cos(2θ)(cos ϕ−2θ

2 )2

⎛

⎜⎝
1

3
2

√
cos(2θ)

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

q

|Ng|q .

(C.64)

Observe that this bound does not have a q! growth. This seems much better
than expected. In fact this is not surprising: the factorial growth of the rest
term comes from the divergent number of graphs in perturbation theory. As
the large trees do not need to be further expanded in graphs, they do not
generate a factorial growth. In fact it is the small trees that pose a problem.

The contribution of small trees P q
θ (g, N). The contribution of small trees

requires more work. We have:

P q
θ (g, N) = −N

2

∫ 1

0

(1 − t)q−1

(q − 1)!

[
e

t

2
e2ıθ δ

δσ

δ

δσ

(
1

2
e2ıθ

)q ( δ

δσ

)2q
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(
1 − ı

√
g
3 e−ıθσ

)]

σ=0

−
q∑

n=2

1

n!

(
−N

2

)n (g

3

)n−1 ∑

T ∈Tn

∫ 1

0

( ∏

(i,j)∈T
duij

) ∫ 1

0
dt

(1 − t)q−n

(q − n)!

×
[
e

t

2
e2ıθ ∑

i,j wT
ij

δ

δσi

δ

δσj

⎛

⎝1

2
e2ıθ

∑

i,j

wT
ij

δ

δσi

δ

δσj

⎞

⎠
q−n+1

∏

i

(di − 1)!
(
1 − ı

√
g
3 e−ıθσi

)di

]

σi=0

. (C.65)

The first term is bounded by:

|N |
2q+1

∣∣∣∣∣

∫ 1

0

(1 − t)q−1

(q − 1)!

[
e

t
2 e2ıθ δ

δσ
δ

δσ
(2q − 1)!

(
ı
√

g
3

)2q

(
1 − ı

√
g
3e−ıθσ

)2q

]

σ=0

∣∣∣∣∣

≤ |N |
2
√

cos(2θ)

(
|g|
6

)q (2q − 1)!
q!

1
(
cos ϕ−2θ

2

)2q
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≤ |N |
4
√

cos(2θ)
(q − 1)!

⎛

⎜⎝
1

3
2

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

q

|g|q . (C.66)

Observe that, due to the expansion of the q loop edges, this first term dis-
plays a q! growth. Thus already the first term has a worse large-order behavior
than the sum over large trees.

We now analyze the contribution to the rest term of the trees with 2 ≤
n ≤ q vertices. Note that a term has initially

∑
di = 2(n − 1) corners (factors

1/(1 − ı
√

g
3e−ıθσi)) and 2(q − n + 1) derivatives will act on it. The additional

derivatives (corresponding to the loop edges) create each a new corner on which
subsequent derivatives can act. In total, for each tree, the loop edges generate
exactly:

[2(n − 1)][2(n − 1) + 1] . . . [2(n − 1) + 2(q − n + 1) − 1] =
(2q − 1)!
(2n − 3)!

,

(C.67)

possible terms, each with 2(n − 1) + 2(q − n + 1) corners (factors 1/(1 −
ı
√

g
3e−ıθσi)). The w’s are bounded by 1 and the sum over trees is done as in

Eq. (4.10) leading to the global bound:
q∑

n=2

|N |n|g|q
2q+13q

(2q − 1)!

(2n − 3)!

1

(q − n + 1)!

(n − 2)!

n!

(2n − 3

n − 1

)( 1

cos ϕ−2θ
2

)2q
1

[cos(2θ)]n/2

≤ (2q − 1)! |g|q

2q+13q
(
cos ϕ−2θ

2

)2q

q∑

n=2

1

(q − n + 1)!n!(n − 1)!

|N |n
[cos(2θ)]n/2

. (C.68)

Now, using (2q − 1)! ≤ 22q−1q!(q − 1)! we get and upper bound:

1
4
(q − 1)!

⎛

⎜⎝
1

3
2

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

q

|g|q
q∑

n=2

q!
(q − n + 1)!n!(n − 1)!

|N |n
[cos(2θ)]n/2

≤ 1
4
(q − 1)!

⎛

⎜⎝
1

3
2

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

q

|g|q 2qe
|N|√
cos(2θ) . (C.69)

Adding up Eq. (C.64), (C.66) and (C.69), we get:

|Rq
θ(g,N)| ≤

|N |
4
√

cos(2θ)

1 − |Ng|
3
2

√
cos(2θ)(cos ϕ−2θ

2 )2

⎛

⎜⎝
1

3
2

√
cos(2θ)

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

q

|Ng|q

+
1
4
(q − 1)!

⎛

⎜⎝
1

3
2

(
cos ϕ−2θ

2

)2

⎞

⎟⎠

q

|g|q
(

|N |√
cos(2θ)

+ 2qe
|N|√
cos(2θ)

)
.

(C.70)
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We opportunistically chose θ = ϕ
6 and using some trivial bounds we get

|Rq
θ(g,N)| ≤

|N |
4
√

cos ϕ
3

1 − |Ng|
3
2 (cos ϕ

3 )5/2

(
1

3
2

(
cos ϕ

3

)5/2

)q

|Ng|q + (q − 1)! |g|q

×
(

1
3
2

(
cos ϕ

3

)2

)q

2qe

|N|

cos(ϕ
3 )1/2

. (C.71)

We are now in the position to prove that W (g,N) is Borel summable
along all the directions in the cut plane Cπ by verifying the conditions of
Theorem 1, Appendix B. This comes about as follows:

• let us fix some α ∈ (−π, π). As we are interested in analyticity and
rest bound in some Sokal disk extending op to ϕ = α ± π/2, we denote
c = min{cos α+π/2

3 ); cos α−π/2
3 )} > 0 (because as |α| < π).

• W (g,N) can be analytically continued via Wϕ/6(g,N)19 to any g in a
Sokal disk (with 0 on its boundary) tilted by α, that is g ∈ Diskα

R =
{z | Re(eıα/z) > 1/R} provided that R = 3

2|N |c
5/2(1 − ν) for some fixed

ν > 0. In this disk the Taylor rest term obeys the uniform bound:

|Rq
θ(g)| ≤ |N |

4c1/2ν

(
1

3
2c5/2

)q

|g|q + (q − 1)!|g|q
(

2
3
2c2

)q

e|N |/c1/2
. (C.72)

Fixing K = max{|N |/(4c1/2ν), e|N |/c1/2} and ρ = min{3/2 c5/2; 3/4 c2)},
we finally obtain uniformly in the Sokal disk:

|Rq
θ(g,N)| ≤ K q! ρ−q |g|q ; (C.73)

hence, the rest obeys the bound in Eq. (2.4) and from Theorem 1 we
conclude that W (g,N) is Borel summable along α.
Note that Borel summability is lost in the N → ∞ limit.

This concludes the proof of Proposition 4. �

C.5. Transseries Expansion of Wn(g) and W (g, N)

Proof of Proposition 5. An explicit expression for Wn(g) is obtained by com-
bining the Möbis inversion formula in Eq.(4.3) with the transseries expansion
of Zn(g) in Eq. (3.26). In order to prove Proposition 5, we have to use standard
sum and product manipulation tricks and factor the powers of the transseries
monomial e

3
2g in front. Although the manipulations are not complicated, the

expressions are very lengthy and we will introduce some bookkeeping notation
to keep the formulas readable.

19Indeed, Wϕ/6(g, N) = Q0
ϕ/6(g, N) and the series defining it converges absolutely in such

a disk |Q0
ϕ/6(g, N)| ≤ 1/(4c1/2ν).
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Property 1. Combining the Möbis inversion formula (4.3) with the transseries
expansion of Zn(g) in Eq. (3.26) leads to:

Wn(g) 

n∑

k=1

(−1)
k−1

(k − 1)!
∑

n1,...,nn−k+1≥0∑
ini=n,

∑
ni=k

n!
∏

i ni!(i!)ni

n−k+1∏

i=1

(
Z

pert.
i (g) + η e

3
2g Z

(η)
i (g)

)ni

,

(C.74)
with:

Zpert.
i (g) =

∞∑

a=0

(
−2g

3

)a

G(a; i) , G(a; i) =
(2a)!

22aa!

∑

a1,...,a2a−i+1≥0∑
kak=2a,

∑
ak=i

(−1)ii!∏
k kak ak!

,

(C.75)
and:

Z
(η)
i (g) =

ı√
2π

√
g

3

∞∑

a=0

i∑

b=0

1
a!

(g

6

)a
(

i
b

)
dbΓ(z)

dzb

∣∣∣
z=2a+1

× τ
[(

ln
(

g
3

))i−b −
(
ln
(

g
3

)
+ τ2πı

)i−b
]

,

(C.76)

where we used
[(

ln(eıτπ g
3 ) − ıπ

)i−b −
(
ln(eıτπ g

3 ) + ıπ
)i−b

]
= τ

[(
ln
(

g
3

))i−b −
(
ln
(

g
3

)
+ τ2πı

)i−b
]

as τ = ±. Using now τ
[(

ln
(

g
3

))n −
(
ln
(

g
3

)
+ τ2πı

)n] = −τ
∑n−1

c=0

(
n
c

) (
ln
(

g
3

))c (τ2πı)n−c, commut-
ing the sums over b and c, and combining the binomials, this can further be
written as:

Z
(η)
i (g) =

ı√
2π

√
g

3

∞∑

a=0

i−1∑

b=0

1
a!

(g

6

)a
(

i
b

)
dbΓ(z)

dzb

∣∣∣
z=2a+1

(−τ)

×
i−1−b∑

c=0

(
i − b

c

)(
ln
(

g
3

))c (τ2πı)i−b−c

=
√

2π

√
g

3

∞∑

a=0

i−1∑

c=0

(g

6

)a (
ln
(

g
3

))c
G(a, c; i), (C.77)

with:

G(a, c; i) =

i−1∑

b=0

(ıτ2π)i−1−b−c i!

a! b! c! (i − b − c)!

dbΓ(z)

dzb

∣∣∣
z=2a+1

, and Z
(η)
0 = 0 .

(C.78)
First, we pull the transseries monomial to the front in Eq. (C.74):

Wn(g) �
n∑

k=1

(−1)k−1(k − 1)!
∑

n1, . . . , nn−k+1 ≥ 0∑
ini = n,

∑
ni = k

n!∏
i ni!(i!)ni

n−k+1∏

i=1

(
Zpert.

i (g) + ηe
3
2g Z

(η)
i (g)

)ni
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=
n∑

p=0

e
3
2g p

n∑

k = p
k + p ≥ 1

(−1)k−1(k − 1)!
∑

n1, . . . , nn−k+1 ≥ 0∑
ini = n,

∑
ni = k

×
∑

{0 ≤ pi ≤ ni}
i=1,...,n−k+1∑

pi = p

n!
∏n−k+1

i=1

(
Zpert.

i (g)
)ni−pi

(
ηZ

(η)
i (g)

)pi

∏
i(ni − pi)!pi!(i!)ni

. (C.79)

This is a transseries in g, with Z
(η)
i (g) carrying also powers of

√
g and ln(g). In

a second step, we want to make this statement manifest and use the expressions
for Zpert.

i and Z
(η)
i to calculate:

∏

i≥1

(
Z

pert.
i (g)

)ni−pi
(
ηZ

(η)
i (g)

)pi =
∏

i≥1

(
∑

ai
1,...ai

ni−pi
≥0

ni−pi∏

j=1

(
−

2g

3

)ai
j

G(a
i
j ; i)

)

·
((

η
√

2π

√
g

3

)pi ∑

ai
1,...ai

pi
≥0

i−1∑

ci
1,...ci

pi
=0

pi∏

j=1

(
g

6

)ai
j (

ln
(

g
3

))ci
j G(a

i
j , c

i
j ; i)

)
,

=

(
η
√

2π

√
g

3

)∑
i≥1 pi ∑

l≥0∑
i(i−1)pi≥l≥0

g
l (

ln
(

g
3

))l′ ∑

{ai
j
≥0}i=1,...,n−k+1

j=1,...,ni∑
i

∑
j ai

j
=l

∑

{i−1≥ci
j
≥0}i=1,...,n−k+1

j=1,...,pi∑
i

∑
j ci

j
=l′

·
(

1

6

)∑
i≥1

∑pi
j=1 ai

j
(

−
2

3

)∑
i≥1

∑ni
j=pi+1 ai

j ∏

i≥1

(
pi∏

j=1

G(a
i
j , c

i
j ; i)

)(
ni∏

j=pi+1

G(a
i
j ; i)

)
.

(C.80)

Finally, inserting this into Eq. (C.79) we obtain the transseries expansion of
Wn(g), organized into instanton sectors:

Wn(g) �
n∑

p=0

e
3
2g p

(
η
√

2π

√
g

3

)p ∑

l≥0, n−p≥l′≥0

gl
(
ln
(

g
3

))l′
W

(p)
n;l,l′ , (C.81)

with

W
(p)
n;l,l′ =

n∑

k=p
k+p≥1

(−1)k−1(k − 1)!
∑

n1,...,nn−k+1≥0
x
∑

ini=n,
∑

ni=k

∑

{0≤pi≤ni}
i=1,...,n−k+1∑

pi=p

n!∏
i(ni − pi)!pi!(i!)ni

×
∑

{ai
j≥0}i=1,...,n−k+1

j=1,...,ni∑
i

∑
j ai

j=l

∑

{i−1≥ci
j≥0}i=1,...,n−k+1

j=1,...,pi∑
i

∑
j ci

j=l′

(
1
6

)∑n−k+1
i=1

∑pi
j=1 ai

j

(
−2

3

)∑n−k+1
i=1

∑ni
j=pi+1 ai

j

n−k+1∏

i=1

(
pi∏

j=1

G(ai
j , c

i
j ; i)

)(
ni∏

j=pi+1

G(ai
j ; i)

)
, (C.82)
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as advertised.

Property 2. It remains to transseries expansion for the full free energy W (g,N).
In this case, the expressions are simpler because the Zi have been summed.
Starting from the relation between W (g,N) and the Wn(g):

W (g, N) =
∑

n≥1

1

n!

(
−

N

2

)n

Wn(g)



∑

n≥1

(
− N

2

)n

n!

n∑

k=1

(−1)
k−1

(k − 1)!
∑

n1,...,nn−k+1≥0∑
ini=n,

∑
ni=k

n!∏
i ni!(i!)ni

n−k+1∏

i=1

(
Z

pert.
i (g) + ηe

3
2g Z

(η)
i (g)

)ni

=
∑

k≥1

(−1)
k−1

(k − 1)!
∑

n1,n2...≥0∑
ni=k

∏

i≥1

1

ni!

(
1

i!

(
−

N

2

)i (
Z

pert.
i (g) + ηe

3
2g Z

(η)
i (g)

))ni

,

(C.83)

which becomes:

∑

k≥1

(−1)k−1(k − 1)!
1
k!

⎛

⎝
∑

i≥1

1
i!

(
−N

2

)i (
Zpert.

i (g) + ηe
3
2g Z

(η)
i (g)

)
⎞

⎠
k

=
∑

k≥1

(−1)k−1(k − 1)!
1
k!
(
(Zpert.(g,N) − 1 + ηe

3
2g Z(η)(g,N))

)k

=
∑

k≥1

(−1)k−1

k
(Zpert.(g,N) − 1 + ηe

3
2g Z(η)(g,N))k

= ln
(
Zpert.(g,N) + ηe

3
2g Z(η)(g,N)

)
, (C.84)

we unsurprisingly recover, that formally W (g,N) = ln(Z(g,N)). Here, we used
the notation (cf. Eq. (3.12)) Z(g,N) = Zpert.(g,N) + ηe

3
2 g Z(η)(g,N), with:

Zpert.(g,N) =
∞∑

n=0

Γ(2n + N/2)
22nn! Γ(N/2)

(
−2g

3

)n

,

Z(η)(g,N) = eıτπ(1− N
2 ) √

2π
(g

3

) 1−N
2

∞∑

q=0

1
22qq! Γ

(
N
2 − 2q

)
(

2g

3

)q

.

(C.85)

As before, the expansion into instanton sectors can be made manifest, by
pulling the transseries monomials to the front in W (g,N). We start from the
second to last line in Eq. (C.84)) that can also be written as:

W (g,N) �
∑

k≥1

(−1)k−1(k − 1)!
∑

p,q≥0
p+q=k

1
p!q!

(
Zpert.(g) − 1

)q
(
ηe

3
2g Z(η)(g)

)p
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=
∑

p≥0

e
3
2g p

∑

q≥0
p+q≥1

(−1)p+q−1 (p + q − 1)!
p!q!

(
Zpert.(g) − 1

)q(
ηZ(η)(g)

)p
.

(C.86)

Next, we use the expressions for Zpert. and Z(η) to calculate:
(
Zpert.(g) − 1

)q(
ηZ(η)(g)

)p

=

( ∞∑

n=1

Γ(2n+N/2)
22nn! Γ(N/2)

(
− 2g

3

)n

)q(
η
√

2πeıτ π
2

(
eıτπg

3

) 1−N
2

)p

(
∑

m≥0

1

22mm! Γ(N
2 −2m)

(
2g
3

)m

)p

=
(
η
√

2πeıτ π
2

(
eıτπg

3

) 1−N
2

)p ∑

n1,...,nq≥1
m1,...,mp≥0

(
q∏

i=1

Γ(2ni+
N
2 )

22nini! Γ(N
2 )

(
− 2g

3

)ni

)

×
(

p∏

j=1

1

22mj mj ! Γ(N
2 −2mj)

(
2g
3

)mj

)

=
(
η
√

2πeıτ π
2

(
eıτπg

3

) 1−N
2

)p ∑

l≥0

(
− 2g

3

)l ∑

n1,...,nq≥1
m1,...,mp≥0∑

ni+
∑

mj=l

(
q∏

i=1

Γ(2ni+
N
2 )

22nini! Γ(N
2 )

)

×
(

p∏

j=1

(−1)mj

22mj mj ! Γ( N
2 −2mj)

)
. (C.87)

Finally, inserting this into Eq. (C.86) we obtain the transseries expansion of
the free energy, organized into instanton sectors:

W (g,N) =
∑

p≥0

e
3
2g p

(
η
√

2πeıτ π
2

(
eıτπg

3

) 1−N
2

)p ∑

l≥0

(
− 2g

3

)l

× ·
(

∑

q≥0
p+q≥1

(−1)p+q−1 (p+q−1)!
p!q!

∑

n1,...,nq≥1
m1,...,mp≥0∑

ni+
∑

mj=l

(
q∏

i=1

Γ(2ni+N/2)
22nini! Γ(N/2)

)

×
(

p∏

j=1

(−1)mj

22mj mj ! Γ(N/2−2mj)

))
, (C.88)

which has the desired form

W (g) �
∑

p≥0

e
3
2g p

(
η
√

2πeıτ π
2

(
eıτπg

3

) 1−N
2 )p ∑

l≥0

(
−2g

3

)l

W
(p)
l (N) , (C.89)

and we can read up the coefficients W
(p)
l .

This concludes the proof of Proposition 5. �
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D. The BKAR Formula

The Brydges-Kennedy-Abdesselam-Rivasseau (BKAR) [39,40] forest formula
is a Taylor formula for functions of several variables. Due to its symmetry and
positivity properties it is very well adapted for nonperturbative quantum field
theory.

Let us consider a set of n points labeled i = 1 . . . n, which we identify
with the set of vertices of the complete graph Kn. The set of unordered pairs
of such points has n(n − 1)/2 elements e = (i, j) for 1 ≤ i, j ≤ n, i 
= j and
can be identified with the set of edges of Kn. Let us consider a smooth (and
arbitrarily derivable) function f : [0, 1]n(n−1)/2 → R depending on the edge
variables xe ≡ xij , e = (i, j).

Theorem 2. [The Forest Formula, [39,40]] We have (with the convention that
empty products are 1):

f(1, . . . 1) =
∑

F

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
|F| times

(
∏

e∈F
due

) [(
∏

e∈F

∂

∂xe

)
f

](
wF

kl(uF )
)

, (D.1)

where:

• the sum runs over the forests20 F drawn over the n labeled vertices i,
including the empty forest (having no edge). To each edge e ∈ F , we
attribute a variable ue that is integrated from 0 to 1 and we denote uF =
{ue | e ∈ F}.

• the derivative
(∏

e∈F
∂

∂xe

)
f is evaluated at the point:

wF
kl(uF ) = inf

e′∈P F
k−l

{ue′} , (D.2)

where PF
k−l denotes the unique path in the forest F joining the vertices k

and l, and the infimum is set to zero if such a path does not exist.

Setting by convention wF
kk(uF ) ≡ 1, for any assignment of tree edge vari-

ables 0 ≤ uF ≤ 1 the symmetric n × n matrix WF (uF ) =
(
wF

kl(uF )
)
1≤k,l≤n

is
positive.

The most subtle point in this formula is that WF (uF ) is a positive matrix.
To see this we proceeded as follows. A forest F divides the complete graph Kn

into several connected components (or blocks) corresponding to the trees in
the forest. For instance, if F is the empty forest the blocks are all singletons
consisting in a unique vertex per block. For any forest F , the matrix:

BF
kl =

{
1 , if k, l belong to the same block of F
0 , otherwise

, (D.3)

20Acyclic edge subgraphs of the complete graph Kn.
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is positive. Indeed, denoting b ⊂ F the blocks of F and k ∈ b the vertices in
the block b:

∑

k,l

BF
klakal =

∑

b⊂F

(
∑

k∈b

ak

)2

. (D.4)

Let us denote the number of edges in F by q ≡ |F|. We order the edges
of F in decreasing order of their parameters u:

1 ≥ ue1 ≥ ue2 ≥ . . . ueq
≥ 0 . (D.5)

Adding edges one by one starting from the highest edge we obtain a family of
subforests of F :

F0 = ∅ , F1 = {e1} , F2 = {e1, e2} , . . . , Fq = {e1, . . . eq} = F , (D.6)

and the matrix WF (uF ) writes as:

WF (uF ) = (1 − ue1)B
F0

+ (ue1 − ue2)B
F1

+ · · · + ueq
BFq

. (D.7)

Indeed, if i and j do not belong to the same block of Fq = F , then they do
not belong to the same block in any of the Fs, s ≤ q and none of the terms
above contribute, hence wF

ij(uF ) = 0. If, on the other hand, i and j belong to
the same block of F , then:

[
(1 − ue1)B

F0
+ (ue1 − ue2)B

F1
+ · · · + ueq

BFq
]

ij
= ues

, (D.8)

where s is such that i and j belong to the same block of Fs, but belong to
two different blocks of Fs−1. As ues

≤ ues−1 ≤ ues−2 ≤ . . . it follows that ues

is the infimum of the us in the unique path in Fs joining i and j; hence, it
is also the infimum of the us in the unique path in F joining i and j. The
matrix WF (uF ) is a convex combination of positive matrices; hence, it is itself
positive.

D.1. Feynman Graphs and W (g, N)

Each term in the convergent series in Eq. (4.7) can be further expanded in
a formal Taylor series in the coupling constant. The series thus obtained is
asymptotic to W (g,N) as long as Eq. (4.7) converges hence in a cardioid
domain of the cut complex plane Cπ (see Proposition 3) which sweeps all the
directions in Cπ. In this range of g no singularity of the integrand crosses the
real axis, which is the steepest-descent contour of the exponentials in Eq. (4.5).

The asymptotic series of W (g,N) in the first Riemann sheet is well known
to be the formal sum over connected Feynman graphs of amplitudes. However,
due to the presence of the w parameters and the integrals over the us, it is not
exactly transparent how this comes about starting from Eq. (4.7). The fact
that Eq. (4.7) does indeed reproduce the Feynman graph expansion has been
proven in [41]. We sketch below how this comes about.
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Hepp sectors. To any graph G with vertices labeled i, i = 1, . . . n, one can asso-
ciate a characteristic function depending on edge variables f(xij) =

∏
(i,j)∈G xij

where the product runs over the edges of G. The forest formula applied to this
function yields:

1 =
∑

F⊂G

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
|F| times

⎛

⎝
∏

(i,j)∈F
duij

⎞

⎠

⎡

⎣
∏

(k,l)/∈F
wF

kl(uF )

⎤

⎦ . (D.9)

Remark that the derivative of the characteristic function is nonzero only if the
forest F is made of edges of G (which we signify by F ⊂ G). Furthermore, if
F has more than one block, then one of the ws in the product is set to zero.
It follows that only trees contribute:

1 =
∑

T ⊂G

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
|T | times

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠

⎡

⎣
∏

(k,l)/∈T
wT

kl(uT )

⎤

⎦ . (D.10)

This formula defines normalized weights associated with the graph G and the
spanning trees T ⊂ G:

w(G, T ) =
∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
|T | times

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠

⎡

⎣
∏

(k,l)/∈T
wT

kl(uT )

⎤

⎦ ,
∑

T ⊂G

w(G, T ) = 1 ,

(D.11)
which admit a striking combinatorial interpretation. We define a Hepp sec-
tor as a total ordering π of the edges of G, that is a bijection π : E(G) →
{1, . . . |E(G)|}, where E(G) is the set of edges of G. For any π the leading
spanning tree in π, denoted T (π), is the tree such that

∑
e∈T (π) π(e) is min-

imal. The tree T (π) is obtained by Kruskal’s greedy algorithm: at each step
one adds the edge e ∈ G with minimal π(e) that does not form a loop.

Lemma 1. We have:

w(G, T ) =
N(G, T )
|E(G)|! , (D.12)

where N(G, T ) is the number of sectors π such that T (π) = T , that is w(G, T )
is the percentage of Hepp sectors in which T is the leading spanning tree of G.

Proof. Let us define the function:

χ(uE(G)\T ≤ uT )

{
1 , if ∀(i, j) ∈ E(G) \ T , uij ≤ inf(k,l)∈P T

i→j
ukl

0 , otherwise
.

(D.13)
On the one hand we have:

w(G, T ) =
∫ 1

0

⎛

⎝
∏

e∈E(G)

due

⎞

⎠ χ(uG\T ≤ uT ) , (D.14)
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as, at any fixed {ue, e ∈ T } the integral over the loop edge variable ukl yields
wT

kl(uT ).
We now split the integration interval according to Hepp sectors. In the

sector π corresponding to uπ−1(1) > uπ−1(2) > . . . the characteristic function
χ tests whether every loop edge (i, j) has smaller uij than inf{ukl} in the
tree path P T

i→j connecting i and j. This is true if and only if T is the leading
spanning tree in π:
∫ 1

0

⎛

⎝
∏

e∈E(G)

due

⎞

⎠ χ(uG\T ≤ uT )

=
∑

π

∫ 1

0
duπ−1(1)

∫ uπ−1(1)

0
duπ−1(2) . . .

∫ uπ−1(|E(G)|−1)

0
duπ−1(|E(G)|) χ(uG\T ≤ uT )

=
∑

π,T (π)=T

∫ 1

0
duπ−1(1)

∫ uπ−1(1)

0
duπ−1(2) . . .

∫ uπ−1(|E(G)|−1)

0
duπ−1(|E(G)|)

=
1

|E(G)|!
∑

π,T (π)=T
1 . (D.15)

�

Lemma 2 (Asymptotic series [41].) The asymptotic expansion at zero of the
free energy W (g,N) in the cut plane g ∈ Cπ is the formal sum over connected
Feynman graphs of Feynman amplitudes.

Proof. Taylor expanding the Gaussian integrals in Eq. (4.7) to infinity yields:

W (g, N) 
 − N
2

[
∑

l≥0

1
l!

(
1
2

δ
δσ

δ
δσ

)l
ln

(
1 − ı

√
g
3 σ

) ]

σ=0

−
∑

n≥2

(
− N

2

)n

n!

(
g
3

)n−1
∑

T ∈Tn

∫ 1

0

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠

×
[

∑

{li≥0}

1
li!

(
1
2

δ
δσi

δ
δσi

)li
∑

{lij≥0}i≤j

1
lij !

(
w

T
ij

δ
δσi

δ
δσj

)lij
∏

i

(di−1)!(
1−ı

√
g
3 σi

)di

]

σi=0

=
∑

n≥1

1

n!

(
−

N

2

)n ∑

T ∈Tn

∑

{li≥0},{lij≥0}i<j

∏
i(di + li +

∑
j lij − 1)!

(∏
i 2li li!

) (∏
i<j lij !

)

⎡

⎣
∫ 1

0

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠

⎛

⎝
∏

(i<j)

w
T
ij

⎞

⎠
lij
⎤

⎦
(

−
g

3

)n−1+
∑

l li+
∑

i<j lij

. (D.16)

The additional derivatives with respect to σ generate loop edges decorating
the tree T : lij is the multiplicity of the loop edge between i and j and li the
number of tadpole edges (or self loops) at the vertex i. We denote the graph
consisting in T decorated by such extra loop edges by G. Of course, T is a
spanning tree of G which we denote G ⊃ T . From Lemma 1, the integral over
u in Eq. (D.16) is:

w(G, T ) =
∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
|T | times

⎛

⎝
∏

(i,j)∈T
duij

⎞

⎠

⎡

⎣
∏

(k,l)/∈T
wT

kl(uT )

⎤

⎦ =
N(G, T )
|E(G)|! ,
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(D.17)

yields the percentage of Hepp sectors in which T is the leading spanning tree of
G. Collecting the coupling constants and the symmetry factor in the amplitude
A(G) of the graph G, we write:

W (g) =
∑

n≥1

1
n!

∑

T ∈Tn

∑

G⊃T
w(G, T )A(G) , (D.18)

that is for each tree T we resum the amplitudes of the graphs in which T
is a spanning tree with a weight given by the percentage of Hepp sectors of
G in which T is the leading tree. Denoting Gn the set of connected graphs
over n vertices, we commute the sums over trees T and graphs G and using∑

T⊂G w(G, T ) = 1 we get:

W (g) =
∑

n≥1

1
n!

∑

G∈Gn

A(G) , (D.19)

which is the familiar perturbative expansion of the free energy in connected
graphs. �
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Coupling renormalization flow in the strongly interacting regime
of an asymptotically free quantum field theory in four dimensions

Jürgen Berges, Razvan Gurau , Hannes Keppler , and Thimo Preis *

Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
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We consider a scalar quantum field theory with global OðNÞ3 symmetry in four Euclidean dimensions
and solve it numerically in closed form in the large-N limit. For imaginary tetrahedral coupling the theory is
asymptotically free, with stable and real quantum effective action. We demonstrate the dynamical build-up
of a strong interaction as the correlation length increases in a regime where the coupling renormalization
flow remains well defined in the infrared. This is in contrast to perturbative results of asymptotically free
theories, which predict that the coupling becomes ill defined in the infrared, like in quantum
chromodynamics. These properties make the model an important laboratory for the study of strong-
coupling phenomena in quantum field theory from first principles.

DOI: 10.1103/PhysRevD.110.036007

I. INTRODUCTION AND OVERVIEW

Asymptotically free quantum field theories are a corner-
stone in the fundamental description of nature. A prominent
example is the theory of quantum chromodynamics (QCD)
in the Standard Model of particle physics [1,2]. While the
high-momentum (ultraviolet) behavior of the theory is
perturbatively accessible, the scale-dependent (“running”)
coupling increases toward low momenta and becomes ill
defined in the infrared. The divergence of the coupling at a
finite infrared momentum predicted by perturbation theory
illustrates the dynamical generation of a nonperturbative
scale by quantum fluctuations. Such behavior is character-
istic for the perturbative analysis of asymptotically free
theories, and it would be highly valuable to establish a
nonperturbative example where the coupling is well-
defined and can be followed all the way from the weakly
coupled high-momentum regime to the strongly interacting
infrared.
In this work we investigate the large-N limit of a four

dimensional scalar quantum field theory with globalOðNÞ3
symmetry introduced in Ref. [3]. The model has three
independent quartic couplings, whose perturbative renorm-
alization flow, which encodes how the physical couplings
change with the momentum scale due to quantum correc-
tions, has been analyzed in Refs. [3–5]. In four Euclidean
dimensions the couplings exhibit asymptotic freedom in a

regime governed by the flow of an imaginary tetrahedral
coupling igðpÞ [3]. In turn, the tetrahedral coupling
diverges in perturbation theory at a finite infrared momen-
tum scale μ�pert. A corresponding perturbative behavior is
found, in particular, also for the running coupling in
quantum chromodynamics [1,2]. The perturbative scale-
dependence of the squared coupling of our model is
represented by the dashed curve in Fig. 1.
This is to be contrasted with the nonperturbative large-N

renormalization flow of the coupling we obtain in this
work, which is displayed by the solid (colored) curves for
various values of the renormalized mass in Fig. 1. Contrary
to the perturbative prediction, the full coupling is found to

FIG. 1. Flow of the squared tetrahedral coupling g2 with
momentum p for various renormalized masses m2 (color scale),
with gðμÞ ¼ 20 at the renormalization scale μ. The two-loop
perturbative running is mass independent and represented as
dashed.
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depend on the renormalized mass or, equivalently, the
inverse correlation length. Our results show the generation
of a strong interaction by quantum fluctuations, which
builds up as the correlation length is increased. The running
coupling remains well-defined and finite in the infrared
for renormalized masses above a threshold value m�.
Approaching this threshold from above, the growth behav-
ior of the running coupling defines a strong-interaction
scale μ�, which plays the role of a nonperturbative
generalization of μ�pert. We find μ� to be larger than the
scale determined from two-loop perturbation theory. While
masses above m� allow us to investigate the running
coupling in a controlled way for momenta even below
μ�, we emphasize that the two scales should not be
identified, and we find m� to be significantly smaller than
μ�. Disentangling these scales allows one to follow the
coupling flow from an ultraviolet Gaussian fixed point to a
strongly interacting but well-defined infrared in quantum
field theory, opening up a new pathway for the inves-
tigation of strong-coupling phenomena in four dimensions
from first principles.

II. OðNÞ3 SYMMETRIC TENSOR FIELD THEORY

Following Ref. [3], we consider a scalar (under rotations)
field φ̄a¼ða1;a2;a3Þ with ai¼1;2;3 ¼ 1;…; N transforming as a
real 3-index tensor in the trifundamental representation of
OðNÞ3 [4,6,7]. The model is defined by the bare (classical)
action

S½φ̄� ¼
Z

d4x

�
1

2
φ̄aðxÞð−∂2 þ m̄2Þφ̄aðxÞ

þ 1

4

�
ḡ1P̂

ð1Þ
ab;cd þ ḡ2P̂

ð2Þ
ab;cd þ iḡδ̂tabcd

�

× φ̄aðxÞφ̄bðxÞφ̄cðxÞφ̄dðxÞ
�

ð1Þ

in four Euclidean dimensions. Here m̄ is the bare mass
parameter, and we take the bare quartic couplings ḡ1, ḡ2 and
ḡ to be real such that iḡ in Eq. (1) is purely imaginary. The
three interaction terms in the action stem from the three
OðNÞ3 invariant contraction patterns (“pillow,” “double-
trace” and “tetrahedral”)

δ̂pab;cd ¼ 1

3N2

X3
i¼1

δaiciδbidi
Y
j≠i

δajbjδcjdj ;

δ̂dab;cd ¼ N−3
Y3
i¼1

δaibi
Y3
j¼1

δcjdj ;

δ̂tabcd ¼ N−3=2δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3 ; ð2Þ

which relate to the orthonormal projectors P̂ð1Þ ¼3ðδ̂p− δ̂dÞ
and P̂ð2Þ ¼ δ̂d appearing in Eq. (1).

III. RENORMALIZED CORRELATION
FUNCTIONS

Physical observables can be obtained from the renor-
malized large-N quantum field theory [8–15]. We aim to
compute correlation functions representing expectation
values of products of quantum fields, specifically the
renormalized two-point correlation function or full propa-
gator Gabðx; yÞ. In the tensor field theory this computation
can be achieved in closed form in the large-N limit. By
contrast, in asymptotically free theories like quantum
chromodynamics a resummation of the large-N planar
Feynman diagrams [16,17] is out of reach. This gives us
unique access also to the nonperturbative infrared behavior
of our large-N theory.
The renormalized field correlation functions are obtained

after imposing renormalization conditions. Two of them
concern the full propagator and we write

G−1ð0Þ ¼ m2;
G−1ðμÞ −G−1ð0Þ

μ2
¼ 1: ð3Þ

The first condition fixes the renormalized mass m at zero
momentum. The second one specifies the wave function
renormalization

ZðpÞ ¼ G−1ðpÞ − G−1ð0Þ
p2

; ð4Þ

at some high momentum scale μ (the renormalization scale)
to ZðμÞ ¼ 1. Three additional renormalization conditions
fix the three couplings at the same renormalization scale μ;
in particular, the tetrahedral coupling is fixed to a given
gðμÞ, and the results for the running coupling are presented
as a ratio as in Fig. 1. In the large-N limit the running of the
renormalized tetrahedral coupling is entirely encoded in the
scale dependence of the wave function renormalization (4)
as (see also the Appendix) [5]

gðpÞ ¼ gðμÞ
Z2ðpÞ : ð5Þ

With these renormalization conditions the full large-N
propagator in the OðNÞ3-symmetric regime, where
Gab ¼ Gδab, is determined in momentum space by

G−1ðpÞ ¼ p2 þm2 þ g2ðμÞ
Z

d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞ

×

�
Gðpþ qþ kÞ −Gðqþ kÞ

−
p2

μ2

�
Gðμþ qþ kÞ − Gðqþ kÞ

��
: ð6Þ

The self-consistent solution of this equation may be viewed
as resumming infinitely many perturbative contributions in
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the quartic couplings. It is remarkable that Eq. (6) contains
in closed form all the relevant phenomena in the asymp-
totically free regime and in the strongly interacting infrared
we are addressing. The solution for the nonperturbative
propagator GðpÞ determines the wave function renormal-
ization ZðpÞ and the coupling gðpÞ according to Eqs. (4)
and (5). The behavior of the other couplings g1 and g2 does
not enter the solution of Eq. (6). Their running is in turn
dictated by the momentum dependence of gðpÞ and has
been shown to be perturbatively already well defined in the
infrared in Ref. [3]. Even at next-to-leading order in the
large-N expansion one only encounters further tadpole
corrections which are compensated by the mass renorm-
alization [3].
We iteratively solve Eq. (6) until convergence is

observed (see details in the Appendix). We verified that
the relevant physical results are insensitive to changes in the
momentum discretization for the numerical parameters
explored in this work.

IV. PERTURBATION THEORY

We first summarize the two-loop perturbative results as
detailed in the Appendix, which predict [see Eq. (A10)]

g2pertðpÞ ¼
g2ðμÞ

1þ 2g2ðμÞ
ð4πÞ4 log

�
p2

μ2

� : ð7Þ

This perturbative result exhibits a pole at the finite infrared
momentum scale

μ�pert ¼ μe−ð4πÞ4=ð4g2ðμÞÞ: ð8Þ
This behavior may be contrasted with the perturbative
coupling flow of a familiar scalar quantum field theory with
single-component field ϕ and quartic interaction term λϕ4

in four dimensions. In that case the renormalization flow is
described by the beta-function βλ ∼ λ2, leading to the scale-
dependent coupling λðpÞ ¼ λðμÞð1 − KλðμÞ logðp2=μ2ÞÞ−1
for some constant K > 0. Comparing to Eq. (7), one
observes that a sign flip in the denominator transforms
the UV Landau pole of the ϕ4 model into an IR pole of an
asymptotically free theory—a well known feature of the
ϕ4-model with negative coupling, λ < 0 [18,19]. However,
such a model with repulsive interaction has classically an
unbounded spectrum and is therefore considered unstable.
Recently this conclusion has been reinvestigated in the con-
text of PT -symmetry [20–22]. In contrast, our theory is
bounded from below due to the two additional (positive
semidefinite) quartic couplings and, importantly, the two-
loop beta-function βg;real ∼ g3real changes sign for an
imaginary coupling greal → ig, not a negative one. The
beta-function of our tensor field theory starts at cubic order
in the tetrahedral coupling because its flow is driven solely
by the wavefunction renormalization.

V. NONPERTURBATIVE FLOW OF THE
TETRAHEDRAL COUPLING

The running of the tetrahedral coupling is controlled by
the wave function renormalization and, gathering Eqs. (4)
and (5), we obtain

g2ðμÞ
g2ðpÞ ¼ ZðpÞ4 ¼

�
G−1ðpÞ −G−1ð0Þ

p2

�
4

: ð9Þ

The full large-N result for the scale-dependent coupling is
given for a wide range of renormalized masses (see color
code) in Figs. 1 and 2. In Fig. 2, we plot its inverse on a
logarithmic momentum scale for a broader range of masses
to illustrate the deviation from the perturbative result (7),
which is represented by a strictly straight dashed line. At
large momenta, the perturbative and nonperturbative sol-
utions agree increasingly well, consistent with the predic-
tion of asymptotic freedom. However, the slope of the
nonperturbative flow becomes steeper toward the IR such
that the coupling grows faster than the perturbative one at
intermediate scales.
While the perturbative result is insensitive to the renor-

malized mass, the full coupling is seen to depend on it. The
coupling reaches a mass-dependent finite value in the deep
infrared for masses above a threshold value. As we decrease
the renormalized mass, the limiting value of the tetrahedral
coupling grows, as depicted in Fig. 3 [23]. The observed
behavior suggests that, for any given gðμÞ, there exist a
finite mass m� for which the tetrahedral coupling diverges
at a finite IR momentum scale μ�. We stress that the mass
scale m� should not be identified with the dynamically
generated scale μ�. We can estimate m� from Fig. 3 and the
momentum scale μ� by extrapolating the envelope of the
curves in Fig. 2. We find that the dynamically generated
scale μ� is significantly larger than the mass scale m�,
which in turn is much larger than the perturbative scale μ�pert

FIG. 2. Inverse of the squared tetrahedral coupling for different
renormalized masses (color scale). The perturbative result is
displayed as a black dashed line.
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[24]. These values of m� and μ� are highlighted in Fig. 2.
For completeness, the corresponding results for the propa-
gator are discussed in the Appendix.

VI. RELATION TO OTHER TENSOR
FIELD THEORIES

In order to put our results into context, we compare to
similar tensor models in the literature. First, one can
consider the OðNÞ3 model in 4 − ϵ dimensions [4]. This
model has a nontrivial (so-called “melonic”) fixed point
with couplings of order

ffiffiffi
ϵ

p
. However, while the tetrahedral

coupling is real, the pillow and double trace couplings are
imaginary at the fixed point, and the resulting conformal
field theory is unstable as it has a primary operator in the
principal series [25,26]. Alternatively, one can consider a
long-range version of the OðNÞ3 model in d < 4 dimen-
sions [5,27]. Picking the marginal scaling for the propa-
gator and an imaginary tetrahedral coupling, one obtains a
line of infrared fixed points (indexed by the exactly
marginal tetrahedral coupling), which are stable and cor-
respond to well-defined (and presumably unitary [28])
large-N conformal field theories. More generally, the
renormalization group fixed points for tensor field theories
give rise to a new family of conformal “melonic” field
theories which can be studied analytically [29–36] (see also
[37–41] for reviews and references therein) [42].
We stress that the behavior we encounter here is of a

very different nature. The infrared regime we identify does
not correspond to a renormalization group fixed point:
although the (classically marginal) tetrahedral coupling
flows to a fixed value, the renormalized mass is nonzero
and larger than a threshold value.

VII. REAL TETRAHEDRAL COUPLING

If one considers the OðNÞ3 model with a real tetrahedral
coupling in exactly four dimensions, the melonic fixed

point of order
ffiffiffi
ϵ

p
coincides with the trivial Gaussian fixed

point. The perturbative computation, Eq. (7) with the sign
in the denominator flipped, shows that the tetrahedral
coupling vanishes in the IR like g2ðpÞ ∼ log ðμ2=p2Þ−1
and displays a UV Landau pole at a finite scale. It is not
known whether this flow is completed by some nontrivial
UV fixed point. In Fig. 4 we contrast the running in the real
and imaginary case obtained by solving Eq. (6) with
g2 → −g2real. The corresponding two-point functions are
discussed in the Appendix. For a real tetrahedral coupling
we are able to obtain a self-consistent solution for the
propagator with vanishing renormalized mass. This sol-
ution exhibits a vanishing coupling for p → 0 (red curve in
Fig. 4). The self-consistent running decreases faster toward
the IR than predicted by perturbation theory (dashed).
Similar to the imaginary tetrahedral coupling case, the self-
consistent solution with real tetrahedral coupling is sensi-
tive to the presence of a nonvanishing renormalized mass,
whereas the perturbative solution is not.

VIII. DISCUSSION AND OUTLOOK

Our results show that for an asymptotically free massive
scalar field theory in four dimensions quantum fluctuations
can generate a strong coupling that remains well defined in
the infrared. The phenomenon is captured in closed form by
the equation for the scalar field two-point correlator in the
large-N limit. The wave function renormalization deter-
mines the growth of the running coupling toward the
infrared. In contrast to the standard perturbative behavior,
as long as the mass is above a threshold value, the full
nonperturbative coupling remains finite in the infrared. By
varying the mass over several orders of magnitude, we find
that the infrared value of the coupling grows as the mass is
decreased, and exceeds the perturbative estimate.

FIG. 3. Limiting value of the squared tetrahedral coupling in
the infrared for varying mass.

FIG. 4. Comparison of real vs imaginary tetrahedral coupling
for different renormalized masses and jgðμÞj ¼ jgrealðμÞj. The
corresponding perturbative predictions are shown as dashed black
lines. For real tetrahedral coupling also the solution at vanishing
renormalized mass is shown (red curve).
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It is very interesting to consider these results in view of
other asymptotically free theories such as QCD, where
the nonperturbative generation of a strong-interaction
scale by quantum fluctuations is known to have striking
phenomenological consequences such as confinement
[43]. The gluons in QCD are massless, which is protected
by local gauge symmetry, and only gauge-invariant
quantities are observable. In particular, in QCD the
perturbative notion of a (gauge-variant) coupling ceases
to hold in the infrared, where it diverges at the confine-
ment scale ΛQCD. Comparing this to the asymptotically
free scalar field theory, the role of ΛQCD is played by the
scale μ�pert in the perturbative tensor model. However, the
scalar field theory allows one to vary the mass scale and
investigate the dynamical build-up of a strong-interaction
as the correlation length increases in a regime where
the nonperturbative coupling remains well defined and
its infrared value determines the physical interaction
strength.
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APPENDIX

1. Renormalization and two-loop perturbation theory

The renormalized action of the model writes in terms of
the renormalized field φa as:

S½φ� ¼
Z

d4x

�
Z̃
2
φaðxÞð−∂2ÞφaðxÞ þ

1

2
ðm2 þ δm2ÞφaðxÞφaðxÞ

þ 1

4

	
ðg1 þ δg1ÞP̂ð1Þ

ab;cd þ ðg2 þ δg2ÞP̂ð2Þ
ab;cd þ iðgþ δgÞδ̂tabcd



φaðxÞφbðxÞφcðxÞφdðxÞ

�
; ðA1Þ

where the wave function renormalization constant is Z̃ ¼ 1þ δZ̃. The bare and renormalized quantities are related by
φ̄a ¼ Z̃1=2φa, m̄2 ¼ Z̃−1ðm2 þ δm2Þ, ḡ ¼ Z̃−2ðgþ δgÞ, ḡ1;2 ¼ Z̃−2ðg1;2 þ δg1;2Þ and the counterterms δZ̃; δm2, δg and δg1;2
ensure that the renormalized correlations are free of divergences. The counterterms are fixed by the renormalization
conditions:

G−1ð0Þ ¼ m2; ZðμÞ ¼ G−1ðμÞ −G−1ð0Þ
μ2

¼ 1; Γð4;tÞðp1; p2; p3; p4Þjp2
i¼μ2 ¼ δ

	X4
i¼1

pi



gðμÞ; ðA2Þ

where Gabðx; yÞ ¼ hφaðxÞφbðyÞi ¼ Gðx; yÞδab is the re-
normalized two-point function and Γð4;tÞ is the tetrahedral
channel of the renormalized four-point function. The four-
point functions in the P̂ð1Þ and P̂ð2Þ channel are fixed
similarly.
The function ZðμÞ arising in the renormalization con-

dition above is related to Z̃ ¼ Z̃ðμÞ, the renormalization
constant in the renormalized action. The renormalized pro-
pagator is G−1ðpÞ ¼ Z̃ðμÞG−1

b ðpÞ with G−1
b the resummed

propagator computed in the bare theory, hence ZðpÞ ¼
Z̃ðμÞfbðpÞ for fb some function which depends parametri-
cally on the bare parameters. This function is of course
divergent, that is it exhibits 1=ϵ poles in d ¼ 4 − ϵ, or
logarithmic divergences with the ultraviolet momentum
cutoff Λ at d ¼ 4. Fixing ZðμÞ ¼ 1 yields Z̃ðμÞ ¼ 1=fbðμÞ
which in turn implies ZðpÞ ¼ Z̃ðμÞ=Z̃ðpÞ. The renormal-
ized two-point function at large-N respects the Schwinger-
Dyson equation:

G−1ðpÞ ¼ Z̃p2 þm2 þ δm2 þ ðg2 þ δg2Þ
Z

d4q
ð2πÞ4 GðqÞ þ ðgþ δgÞ2

Z
d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞGðpþ qþ kÞ: ðA3Þ
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Imposing the renormalization conditions and taking into
account that in the large N limit δg ¼ 0, see Ref. [5], we
obtain Eq. (6) of the main text.
Keeping the renormalization scale μ fixed, we are

interested in the momentum dependence of the physical
couplings of the theory, that is the local parts of the
effective action at a symmetric point

ΓðnÞðpiÞjp2
i¼p2 ¼ δ

	X
i

pi



ZðpÞn=2gðnÞðpÞ: ðA4Þ

As δg ¼ 0 at large-N, the momentum dependent tetra-
hedral coupling is entirely driven by the wave function,

Z2ðpÞgðpÞ ¼ gðμÞ. The renormalized propagator GðpÞ is
determined self-consistently by Eq. (6), which in turn fixes
the wave function renormalization ZðpÞ and the running
coupling gðpÞ. The running of g1 and g2 is dictated by the
running of g and can be extracted from their corresponding
Bethe-Salpeter equations, which we will address in
future work.
Two loops. The renormalization group flow at two-loops

is obtained using dimensional regularization and minimal
subtraction in d ¼ 4 − ϵ and setting ϵ ¼ 0. At two loops
and after mass renormalization, Eq. (A3) reads (where
we denote the renormalization scale with s here for
convenience)

G−1
pertðpÞ ¼ Z̃p2 þm2 þ g2s2ϵ

Z
ddq
ð2πÞd

ddk
ð2πÞd

1

ðq2 þm2Þðk2 þm2Þ
	

1

ðpþ qþ kÞ2 þm2
−

1

ðqþ kÞ2 þm2



; ðA5Þ

and the sunset (melon) diagram evaluates in a Laurent series in ϵ [44]

g2s2ϵ
Z

ddq
ð2πÞd

ddk
ð2πÞd

1

ðq2 þm2Þðk2 þm2Þððpþ qþ kÞ2 þm2Þ

¼ −
g2m2

ð4πÞ4
�
6

ϵ2
þ 6

ϵ

�
3

2
− γ þ log

	
4πs2

m2


�
þ p2

2m2ϵ
þOðϵ0Þ

�
: ðA6Þ

Up to order 1=ϵ the full propagator at two loops is G−1
pertðpÞ ¼ Z̃p2 þm2 − p2 g2

ð4πÞ42ϵ. In the minimal subtraction scheme,

renormalization is performed by requiring that at the renormalization scale s both the tetrahedral counterterm δg and the
wave function counterterm δZ̃ are pure divergences. As δg ¼ 0 we have

gðsÞ ¼ g; Z̃ðsÞ ¼ 1þ g2

ð4πÞ42ϵ ; ðA7Þ

where the first equation signifies that the coupling constant g in the renormalized action is exactly the physical four point
function (in the tetrahedral channel) at the renormalization scale s.
We note that the minimal subtraction prescription differs from imposing the renormalization conditions in Eq. (3) by

finite terms, but the beta functions up to two loops are prescription independent [45,46]. The bare tetrahedral coupling
writes ḡ ¼ sϵgðsÞZ̃−2ðsÞ. Taking the s derivative at fixed ḡ, at two loops we obtain

βðgÞ ¼ s∂sgðsÞ ¼ −ϵgðsÞ − 2g3ðsÞ
ð4πÞ4 ; η ¼ s∂s logðZ̃ðsÞÞ ¼

βðgÞ∂gZ̃ðsÞ
Z̃ðsÞ ¼ −

g2ðsÞ
ð4πÞ4 : ðA8Þ

We emphasize that we obtained a scale-dependent coupling despite δg ¼ 0, as the flow is driven by the wavefunction
renormalization Z̃ðsÞ, which is nontrivial already at leading order in the large-N expansion. This features sets melonic
tensor field theories, such as OðNÞ3 at large-N, apart from the more standard OðNÞ vector models at large-N. We set ϵ ¼ 0
and integrate the flow down from some reference scale μ in the UV to find

g2pertðsÞ ¼
g2ðμÞ

1þ 2g2ðμÞ
ð4πÞ4 log

�
s2

μ2

� ; Z̃pertðsÞ ¼ e
−
R

gðμÞ
gðsÞ

ηðg0Þdg0
βðg0Þ Z̃ðμÞ ¼

�
1þ 2g2ðμÞ

ð4πÞ4 log

	
s2

μ2


�−1
4

Z̃ðμÞ: ðA9Þ

Taking into account the relation between ZðpÞ and Z̃ðpÞ, we get

ZpertðpÞ ¼
�
1þ 2g2ðμÞ

ð4πÞ4 log

	
p2

μ2


�1
4

: ðA10Þ
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2. Full propagator

In Fig. 5 we display the renormalized self-consistent
propagator for different renormalized masses with the
trivial 1=p2 momentum dependence scaled out. The flow
of couplings discussed in Fig. 4 in the main text was
obtained from the propagators depicted here.
The case with imaginary tetrahedral coupling is

shown on the left. Due to the Gaussian UV fixed point,
all the solutions asymptote to 1 at high momenta. As we
decrease p toward the IR, p2GðpÞ increases until the
presence of a nonvanishing renormalized mass m2

eventually suppresses the momentum dependence and
p2GðpÞ ∼ p2=m2 drops to zero. If we decrease m2, we
extend the range of scales over which p2GðpÞ grows
and we observe an increasingly prominent bump at
intermediate momentum scales with associated increas-
ing deviations from the two-loop perturbation theory
result

p2GpertðpÞ ≃
p2

m2 þ p2
h
1þ 2g2ðμÞ

ð4πÞ4 log
�
p2

μ2

�i1
4

; ðA11Þ

which is displayed in dashed black. Observe that
Eq. (A11) is only valid for momenta p2 ≥ ðμ�pertÞ2 with
μ�pert ¼ μ exp½−ð4πÞ4=ð4g2ðμÞÞ� since the term in square
brackets becomes negative for p ≤ μ�pert.
The case with real tetrahedral coupling is shown on the

right in Fig. 5. In contrast to the imaginary case, the
propagator is more suppressed for low momenta and we
were able to obtain a solution for vanishing mass. In the
perturbative two-loop result for the propagator in Eq. (A11)
only the sign in front of g2ðμÞ changes. This makes the
perturbative result well defined for all momenta p ≤ μ�pert.
These differences are not surprising as for real tetrahedral
coupling the Gaussian fixed point is IR attractive. In contrast
to the imaginary tetrahedral case, for real coupling it is not
known whether there exists a nontrivial UV fixed point and
consequently the theory might not exist without a UV cutoff.

3. Numerical implementation

Implementing the renormalization conditions (3)
amounts to subtracting the sunset integral evaluated at
zero external momentum respectively at the renormaliza-
tion scale μ. The mass and wave function counterterms are

δm2 ¼ −ðg2 þ δg2Þ
Z

d4q
ð2πÞ4 GðqÞ − g2ðμÞ

Z
d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞGðqþ kÞ; ðA12Þ

δZ̃ ¼ −
g2ðμÞ
μ2

Z
d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞ½Gðμþ qþ kÞ −Gðqþ kÞ�; ðA13Þ

leading to the renormalized version of the Schwinger-Dyson equation in Eq. (6)

G−1ðpÞ ¼ p2ð1þ δZ̃Þ þm2 þ g2ðμÞIðG;pÞ; ðA14Þ
with

IðG;pÞ ¼
Z

d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞ½Gðpþ qþ kÞ −Gðqþ kÞ�; ðA15Þ

and δZ̃ ¼ −g2ðμÞ=μ2IðG; μÞ.

FIG. 5. Propagator with 1=p2 momentum dependence scaled out respectively for the case of imaginary tetrahedral coupling (left) and
real tetrahedral coupling (right) displayed for various renormalized masses (color scale). The two loop results correspond to the black
dashed lines.
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We discretize by using a logarithmic p2 grid with 7000
points and IR/UV cutoffs, respectively ΛIR=μ ¼ 1.25 ×
10−7 and Λ=μ ¼ 1.25, which regularize the integral.

a. Algorithm

We solve the renormalized Schwinger-Dyson equation
for the propagator via fixed-point iteration. The algorithm
proceeds as follows:
(1) We initiate the solver by providing the arbitrary

renormalization scale μ, chosen for convenience to
lie in the UV with μ=Λ ¼ 0.8, and the renormalized
parameters m2 and gðμÞ.

(2) Due to asymptotic freedom [3], we can and do
choose the initial ansatz for the propagator to coin-
cide with the classical one ½G−1ðpÞ�i¼0 ¼ p2 þm2.
Here the superscript i denotes the iteration step.

(3) We calculate the integral Ið½G�i;pÞ in Eq. (A15).
This requires some interpolation and extrapolation
for p2 values that are not elements of the grid (see
next paragraph).

(4) We determine δZ̃ from Ið½G�i; μÞ.
(5) We evaluate the right hand side of Eq. (A14)

as ½RHS�iþ1 ¼ p2ð1 − g2ðμÞ=μ2Ið½G�i; μÞÞ þm2 þ
g2ðμÞIð½G�i; pÞ and set ½G−1�iþ1 ¼ α½RHS�iþ1 þ

ð1 − αÞ½G−1�i with mixing parameter α ¼ 0.2 to
improve the convergence of the algorithm.

(6) We repeat steps 3–5 until apparent convergence is
achieved. This is quantified by confirming that the
grid-point-wise relative deviation of ½G−1�i and
½G−1�iþ1 averaged over all grid points is below a
predefined threshold, 10−7 in our case.

We tested the insensitivity of all displayed results by
varying the resolution of the grid and the cutoffs over four
orders of magnitude.

b. Integration

We use hyperspherical coordinates ðr;θ;ψ ;ϕÞ∈ ½0;∞Þ×
½0;π�× ½0;π�× ½0;2π� and denote z ¼ cosðθÞ, y ¼ cosðψÞ,
such that the integral measure on R4 can be written as
d4p ¼ 1

2
p2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
dðp2Þdzdydϕ. Due to spherical sym-

metry all functions only depend on the invariant p2. We
make use of the fact that the sunset integral:

MðpÞ ¼
Z

d4q
ð2πÞ4

d4k
ð2πÞ4 GðqÞGðkÞGðpþ qþ kÞ; ðA16Þ

can be written as two nested convolutions. First, we define:

FðpÞ ¼
Z

d4k
ð2πÞ4 Gðpþ kÞGðkÞ ¼ 1

ð2πÞ3
Z

Λ2

Λ2
IR

dk2
Z

1

−1
dz k2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Gðp2 þ k2 þ jpjjkjzÞGðk2Þ; ðA17Þ

and, second, we notice that IðpÞ ¼ MðpÞ −Mð0Þ can be computed as:

IðpÞ ¼
Z

d4q
ð2πÞ4 ðFðpþ qÞ − FðqÞÞGðqÞ ¼

Z
Λ2

Λ2
IR

dq2

ð2πÞ3
Z

1

−1
dz q2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Gðq2Þ½Fðp2 þ q2 þ jpjjqjzÞ − Fðq2Þ�: ðA18Þ

The angular z-integrals are performed via a Gauss-
Chebyshev quadrature with 64 points and for the
q2-integrals we use Gauss-Legendre quadrature [47] with
7000 points.

Momenta probed in the convolution range from 0 to 2Λ,
such that G−1ðpÞ and FðpÞ need to be extrapolated. For
jpj < ΛIR we set both functions to be equal to their values
at ΛIR. For Λ < jpj < 2Λ we make use of asymptotic

FIG. 6. Left: Numerical results for the convolution of two propagators FðpÞ ¼ R
d4k
ð2πÞ4 Gðpþ kÞGðkÞ together with the prescribed

extrapolation functions (A19). The extrapolation for Λ < p ≤ 2Λ is shown in dashed gray. Right: Numerical results for the melon
integral with subtracted local part (A15). The individual lines for different masses are not distinguishable in this plot.
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freedom and extrapolate with the momentum dependence
inferred from perturbation theory [48]:

G−1
pertðpÞ ¼ m2 þ p2

�
1þ 2g2ðμÞ

ð4πÞ4 log

	
p2

μ2


�1
4

;

FpertðpÞ ¼ FðΛÞ
�
1þ log

	
Λ2

p2


�
: ðA19Þ

The validity of these extrapolations is tested by varying the
cutoffs and comparing to the numerical result at high and
low momenta. The corresponding numerical result for the
convolution FðpÞ ¼ R

d4k
ð2πÞ4 Gðpþ kÞGðkÞ and the sunset

integral with subtracted local part (A15) are shown
in Fig. 6.
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Chapter 8

Discussion and Outlook

The purpose of this chapter is to place the research presented in this thesis in relation to the broader
research on tensor models and in other fields. At the end, some directions for future research are
mentioned.

8.1 Orthogonal and symplectic random tensor models

The motivation to study tensor models with symplectic symmetry stems from two main aspects.
First, the relevance of field theories with Sp(N) symmetry andN to−N relations; and second, the
aim to generalize known results on tensor models to different symmetry groups. In the following,
both motivations will be explained in more detail, and then the relevance of the work presented in
Chapters 3–5 will be described.

The initial motivation to study tensor models with Sp(N) symmetry came from theories of so-
called symplectic fermions. Their action is

S(χ) =

∫
ddx

[
1

2
∂µχ

aωab∂
µχb +

g

4!

(
χaωabχ

b
)2]

, (8.1.1)

where χ is an N (N even) component vector of anticommuting Graßmann variables and ω is the
antisymmetric symplectic form. The action is invariant under Sp(N) transformations of χ. The
field is fermionic because its components anticommute, but it is a scalar with respect to Lorentz
transformations, respectively SO(d) rotations in Euclidean signature. The case N = 2, d = 2 is a
two-dimensional CFT used to describe polymers [225]; in 2 < d < 4 dimensions, the model was
considered in the context of critical phenomena [212, 213]; and for d = 3, as a holographic dual
[226] to Vasiliev’s higher spin gravity [227] in four-dimensional de Sitter (dS) space.

The correlation functions of these models are related to the correlation functions of an analogous
bosonic O(N) vector model by the replacement N → −N . This relation plays an important role
in the mentioned works. The beta function [213] of the model reads

β(g) = (d− 4)g̃ +
8−N

6
g̃2 +

3N − 14

12
g̃3 +O(g̃4) , g̃ =

g

(4π)d/2Γ(d/2)
, (8.1.2)

which is exactly the beta function of the O(N) vector model after continuing N → −N (see, e.g.,
[228]). The beta function has a nontrivial infrared fixed point g̃⋆ = 6/(8−N)ϵ+O(ϵ2) in d = 4−ϵ
(with ϵ > 0) dimensions, which can be viewed as a fermionic version of the Wilson–Fisher fixed
point. For N < 8 the fixed point is at positive values of the coupling, while for N > 8 it is at
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8 Discussion and Outlook

negative coupling. Note that a negative coupling is not necessarily a problem, as the fields are
fermionic.²⁹

The relation with the O(N) vector model for negative N is also the primary reason why the
Sp(N) model is relevant in the context of dS/CFT holography [229]. The central proposal of this
conjectural kind of holographic duality is, that a quantum gravity theory in d-dimensional de Sitter
space has a dual description given by a CFT on a Euclidean (d−1)-dimensional sphere. This would
be a wide generalization of the better-known AdS/CFT correspondence between a quantum gravity
theory in d-dimensional anti-de Sitter (AdS) space and a CFT in Rd with Lorentzian signature.
In this context the three-dimensional critical O(N) vector model is proposed to be the dual of
Vasiliev’s higher spin gravity in four-dimensional AdS [230]. The first concrete model of a dS/CFT
correspondence, presented in [226], was the proposed duality between that higher spin gravity in
four-dimensional dS space and the fermionic Sp(N) vector model in Eq. (8.1.1). The main reason
to consider the Sp(N) vector model is that N ∼ 1/(ΛGN ), where Λ is the cosmological constant
andGN Newton’s gravitational constant in the higher spin gravity theory. Thus, changing the sign
of the cosmological constant³⁰ amounts to changing the sign of N on the CFT side.

Random tensor models generate, in a diagrammatic expansion à la Feynman, the necessary com-
binatorial data to describe gluings of simplices in any dimension. In this sense, and after assigning,
e.g., a side length to the simplices, they can be used to generate ensembles of discrete random ge-
ometric spaces. Among the most studied tensor models are those with an action that is invariant
under a U(N1) ⊗ · · · ⊗ U(ND) symmetry [45]. In these models the tensors are complex and the
only allowed contractions are between a tensor and its complex conjugate. The Feynman graphs of
these models are therefore bipartite, i.e., their vertices fall into two classes: black and white. Edges
connect only black to white vertices, and never vertices of the same class. This ensures that the dual
simplicial complexes are orientable. Inspired by the methodology in QFT, where one carefully stud-
ies all classes of graphs instead of restricting to just a subclass of diagrams, there arose a wish for
tensor models that generate a more general class of diagrams. As an intermediate step, the so-called
multi-orientable random tensor models [231] break theU(N)3 symmetry toU(N)⊗O(N)⊗U(N),
and enlarge the class of diagrams to include certain non-bipartite graphs.³¹ Some years later, ten-
sor models with O(N1)⊗ · · · ⊗O(ND) symmetry [96] were introduced, and these generate a very
large class of Feynman diagrams, which includes the graphs of the U(N1) ⊗ · · · ⊗ U(ND) and
multi-orientable models. In particular, the simplicial complexes dual to the Feynman graphs of
these models can be nonorientable. In contrast to the other models mentioned, the models with
orthogonal symmetry work with real tensors.

The research on Sp(N) random tensor models presented in this thesis continues the study of
tensor models with different symmetry groups. It establishes the intimate relation between these
models and those with orthogonal symmetry and can be viewed as an explicit example of the for-
mal relationship O(−N) ' Sp(N) in the tensor setting. This means that many results on O(N)

tensor models, e.g., the classification and combinatorics of their Feynman graphs, can be straight-

²⁹ For the reader interested in renormalization, we note that a version of the symplectic fermion model with a long-range
kinetic term was studied in [134] and serves to demonstrate a method for rigorous nonperturbative renormalization.
In this paper a non-Gaußian fixed point of order ϵ in d = 1, 2, 3 was constructed.

³⁰Λ > 0 corresponds to dS and Λ < 0 to AdS.
³¹With this symmetry it is possible to include the tetrahedral interaction which is crucial in many tensor models and
also in Chapter 7.
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forwardly generalized to Sp(N). In particular Chapter 5 allows to extend the results of [61, 68, 124]
on bosonic tensors of order three and five, transforming in irreducible representations of O(N) to
fermionic tensor models transforming in the dual (obtained by exchanging symmetrization and
antisymmetrization) representation of Sp(N). For example, as mentioned in the summary, the
symmetric traceless, respectively antisymmetric, O(N) tensor model is related to the fermionic
tensor model transforming in the antisymmetric traceless, respectively symmetric, representation
of Sp(N). However, one should be careful when applying theN to −N duality to the 1/N expan-
sion of tensor models. In order to obtain such an expansion, the coupling constants of the model
must have an explicit dependence onN . For example, the conventional scaling, suitable for a 1/N
expansion, of the invariant associated with the left graph in Fig. 2.1 in an O(N)3 tensor model
would be N−3. These additional factors of N are introduced by hand and do not change sign au-
tomatically when the symmetry group is changed. In actual calculations, it is probably advisable
to separate the factors of N arising from the tensor model Feynman graphs and are the ones that
show the N → −N relation, from the explicit scaling with N of the coupling constants, which is
needed for a well-defined large N limit.

In the field theory context, the research presented in this thesis lays the foundation for the con-
struction of new CFTs in d < 4 dimensions, which could arise at RG fixed points of these theories.
For example, considering a fermionic Sp(N1) ⊗ Sp(N2) ⊗ Sp(N3) theory, the authors of [112]
studied fixed points and critical exponents of the corresponding bosonicO(N1)⊗O(N2)⊗O(N3)

model. In particular, the critical exponents would be of great interest in order to determine whether
the CFTs with symplectic symmetry constitute new universality classes. Many very different phys-
ical systems often fall into the same universality class, and are thus described by the same CFT
when they are at criticality. This universality is probably the most promising way in which tensor
field theories could be used as models of certain physical systems.

A remarkable property of tensor models with symplectic or mixed symplectic-orthogonal sym-
metry is their ability to generate a plethora of fermionic theories. In connection to the SYK model,
fermionic tensor models have been considered in d = 1 in [91, 92, 104, 116] and in [232–234] even
with some symplectic symmetry. However, in more than one dimension, research on fermionic
tensor models is sparse, the exception being a tensorial generalization of the Gross–Neveu model
[118, 120] in two and three dimensions, and d-dimensional complex tensor models with U(N) ⊗
O(N)⊗ U(N) symmetry [117]. A more thorough and systematic understanding of fermionic ten-
sor models would be valuable, as they could unveil phases or critical phenomena that are absent in
purely bosonic systems. By mixing fermionic and bosonic degrees of freedom, these models could
provide simplified frameworks to study supersymmetry and its potential breaking, or they might
give rise to novel statistical physics models—similar to the way self-avoiding walks can be described
by a supersymmetric vector model [235, 236] (see also [203] and references therein).

In total, fermionic tensor models could serve as valuable tools in theoretical physics and may
offer new perspectives on the behavior of more complex field theories.

8.2 Zero-dimensionalO(N) model: constructive expansions and transseries

Thework presented in Chapter 6 has established rigorous results on Borel summability and transse-
ries expansions in the zero-dimensionalO(N) vector model, by using techniques from constructive
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field theory—most notably the LVE and the intermediate field representation.
This part is somewhat separate from the rest of the thesis, as it does not deal with tensors. Fur-

thermore, the model is zero-dimensional and no large N techniques are employed. However, the
techniques used in that chapter have been chosen to allow, in principle, a generalization to higher-
dimensional or lattice field theory. For example, we did not make use of special functions that
appear solely because of the particular model and the fact that the zero-dimensional path integral
is merely an ordinary integral.

On the one hand, the zero-dimensional ϕ4 model, and more generally ϕ2k models for k ≥ 2, have
been extensively studied (see the review [223] and [237]). From a physics perspective, much of the
current mathematical literature on resurgence focuses primarily on these zero-dimensional models.
On the other hand, the rigorous study of Borel summability in (higher-dimensional) QFT is the
object of constructive field theory. The generalization of resurgence results to higher-dimensional
field theory is mostly an open topic. In higher dimensions, the partition function does not obey
a simple ordinary differential equation, but much more involved integro-differential equations.
Moreover, the series coefficients arise from ultraviolet divergent Feynman amplitudes that must
be renormalized, which leads to running couplings.

With this background, Chapter 6 revisited the zero-dimensionalO(N)model and employed tech-
niques from constructive field theory, most importantly the LVE. These techniques helped gain an-
alytic control of, e.g., the free energy even in the zero-dimensional setting and can be generalized
more directly. A novel contribution of this work is the new perspective it provides on the origin
of instanton contributions in this model by using the intermediate field representation, where a
singularity crosses the integration path and detaches a Hankel contour.

At least two possible ways might be considered to extend the rigorous study of transseries ex-
pansions to the physically relevant case of QFT in higher dimensions: One way would be to place
the theory on a finite spacetime lattice. In this case, the methods used in Chapter 6 can in prin-
ciple be applied directly. The integrals become high (but finite) dimensional, which increases the
technical complexity of the problem. In the end one would be interested in the limit of large and
very fine lattices. Another possibility would be to work directly with renormalizable models in
higher dimensions. To treat such models a multiscale version of the LVE was developed in [238]
(see also the book [130]). Regarding Borel summability, some progress was made in [192], where
it was proven by means of the LVE that the connected correlation functions of a four-dimensional
ϕ4 theory are Borel summable in a RG slice (with fixed cutoffs). The authors of [239] considered a
two-dimensional vector model with quartic interaction and proved that the free energy is analytic
and Borel summable in a cardioid domain. A lesson to be learned from the work in this thesis is to
consider the convergent small N series and the respective moments Zn(g) and cumulants Wn(g)

as intermediate steps to access the free energyW (g,N) also in the higher-dimensional case.
It is not yet clear how the results obtained with the help of a small N expansion interplay with

nonperturbative effects that have been studied in the large N expansion of this model (see [240]
and [241] for a more recent point of view). An important remark is that the relation between the
small and large N expansions involves a rescaling of the coupling constant to g/N . This changes
theN dependence of the partition function and the free energy. In addition, the largeN expansion
is asymptotic and the small N series convergent.

In summary, the results presented in that chapter not only rigorously validate formal transseries
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manipulations but could also pave the way for extending these techniques to higher-dimensional
quantum field theories, where similar divergence and resurgence phenomena occur.

8.3 Four-dimensional asymptotically free tensor field theory

Asymptotically free QFTs play a fundamental role in our current understanding of nature. A well-
known example is QCD, where the coupling is small at high momenta but grows towards the in-
frared. The divergence of the coupling at a finite infrared scale, predicted by perturbation theory,
signals the dynamical generation of a strong interaction scale due to quantum fluctuations. Such
behavior is characteristic of asymptotically free theories, and gaining a deeper understanding of
this phenomenon—tracking the coupling from the ultraviolet to the strongly correlated infrared
regime—in four spacetime dimensions remains a central challenge in QFT. The aim of the work
reproduced in Chapter 7 was to establish an example of a theory that is solvable and can be un-
derstood all the way from the asymptotically free ultraviolet to the strongly correlated infrared
regime.

The model is a tensor field theory invariant under the trifundamental action of O(N)3. In [96]
it was established that the theory admits a nontrivial large N limit. This limit allows, in princi-
ple, to solve the model in terms of a few closed self-consistent equations for the full propagator
(Schwinger–Dyson equation) and the four-point functions (Bethe–Salpeter equation). These equa-
tions are most conveniently derived using the 2PI effective action, applied first to tensor models in
[99, 119]. TheO(N)3 tensor field theory has been studied in d = 4−ϵ dimensions in [97] and gives
rise to a nontrivial RG fixed point with couplings of order

√
ϵ. While the model with a short-range

propagator in d < 4 leads to an unstable CFT at the fixed point [98, 105] a long-range version of
the model generates a line of stable infrared fixed points [99, 100, 112]. The situation in exactly
four dimensions is different and the known nontrivial fixed points merge with the Gaußian fixed
point. Nevertheless it was noticed in [103] that a purely imaginary tetrahedral coupling causes
the Gaußian fixed point to be ultraviolet attractive and therefore defines an asymptotically free
theory. The analysis in that paper was purely perturbative and could not describe the strongly
correlated infrared behavior. The work in Chapter 7 takes a first step in this direction by solving
the Schwinger–Dyson equation for the full propagator for a wide range of momentum scales. We
emphasize that all solutions require a finite renormalized mass, which eventually stops the renor-
malization group flow, and thus do not correspond to a renormalization group fixed point in the
infrared.

At first sight, the most unconventional property of the model is the purely imaginary tetrahedral
coupling that renders the theory non-unitary. However, the tetrahedral interaction

N∑
a,b,c,d,e,f=1

ϕabcϕadeϕfbeϕfdc (8.3.1)

is unbounded below and above, whereas the other two O(N)3 invariant interactions (pillow and
double-trace) are positive definite. Thus, as a purely Euclidean QFT the imaginary coupling is re-
quired to ensure a bounded path integral. Moreover, because of the largeN limit only the square of
the tetrahedral coupling contributes and the effective action, as well as all correlation functions, are
real. At next-to-leading order in 1/N the tetrahedral coupling still receives no direct quantum cor-
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rections, but a tadpole with the imaginary tetrahedral interaction is added to the Schwinger–Dyson
equation. This tadpole only shifts the bare mass and does not affect the results on the renormalized
propagator. Nevertheless, the other two couplings of the model, which will be discussed below,
receive small imaginary corrections at next-to-leading order in 1/N . Thus, beyond leading order,
the complex nature of the field theory is no longer hidden by the large N limit. Nevertheless, it
appears that the pure large N theory may be a well-defined QFT in which the standard condition
of Hermiticity is relaxed. In this way the theory circumvents a no-go theorem by Coleman and
Gross for asymptotically free scalar field theories in four dimensions [242]. In general, complex
and non-unitary field theories are of their own interest [243, 244], e.g., in condensed matter and
statistical physics.

One of the most intriguing results is the observation of a threshold mass m∗, such that only
solutions with renormalized mass m > m∗ could be obtained. We think that this is not due to
a lack of computational capabilities, because we could clearly observe how the running coupling
grows larger and larger in the infrared and eventually diverges asm↘ m∗ (Fig. 2.6). One possible
interpretation of this result is that it signals an instability of the effective action that wants to
transition to a new stable vacuum. Investigating the possibilities of symmetry breaking and bound
state formation, which will be discussed below, may shed more light on this scenario and may
provide a physical interpretation.

Themainmotivation for this research is to study an example of an asymptotically free theory that
becomes strongly correlated in the infrared, and in this respect the model shares some similarities
with QCD. However, it is important to highlight several differences: First, the model does not have
a gauge symmetry and related gauge fields. Thus it does not feature effects like color confinement,
but avoids the problem to define gauge independent observables. Second, being a scalar under
spacetime rotations and translations, the tensor field can generically be massive, unlike a gauge
field. Varying the mass allows to investigate the dynamical build-up of strong correlations.

A newly emerging perspective, that was not taken in the paper reproduced in Chapter 7, is to
interpret the model’s behavior primarily in terms of the propagator. This is appropriate as the
momentum dependence of the running coupling in Eq. (2.3.6) is due solely to Z(p) and thus to a
propagator effect. In this view, asymptotic freedom is due to an additional logarithmic decrease
of the propagator for high momenta, which effectively suppresses loop (quantum) effects. In turn,
the strong correlations in the infrared are caused by stronger loop effects due to the enhanced
propagator.

The work in Chapter 7 focused on the propagator and the tetrahedral coupling. The main reason
for this is that they are decoupled from the rest of the theory, and the preceding perturbative study
in [103] showed that they also drive asymptotic freedom in the other two couplings: g1 and g2.
There it was also shown, that although the tetrahedral coupling diverges, g1 and g2 attained finite
and positive values in the infrared. Nevertheless, a full understanding of the infrared dynamics of
the model requires a nonperturbative study of these couplings. The large N limit allows to derive
a closed (Bethe–Salpeter) equation that determines the full four-point functions of the g1 and g2
interactions. Diagrammatically, it can be represented as a ladder expansion

= 2g2 +2g2 − g2 − g2 , (8.3.2)
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where the big four-valent vertex represents the (1PI) four-point function of either the g1 or g2 inter-
action, and edges with a filled bivalent vertex represent againG. For small masses, the renormalized
propagator is significantly modified compared to a classical propagator, and this should manifest
itself by enhancing loop effects in the above equation. The numerical solution of these equations
is being explored in ongoing research by the author and collaborators.

So far, we have only considered the case of unbroken O(N)3 symmetry, in which the vacuum
expectation value 〈ϕabc〉 and all odd correlation functions vanish. On physical grounds, strong
correlations could trigger symmetry breaking in the infrared and lead to a non-vanishing vacuum
expectation value. Also, as shown in the introduction, the 2PI method is applicable to theories in a
symmetry-broken phase. Unfortunately, the large N techniques used here are currently limited to
the symmetric regime, since one would need an ansatz for the largeN structure of 〈ϕabc〉. Without
a priori knowledge of the specific symmetry breaking pattern, the situation is rather challenging, as
the large symmetry group could allow for a plethora of symmetry breaking patterns, and because
the tensor valued equations of motion are notoriously hard to solve. See [109] for an example where
O(N)3 is broken to SO(3) (in the model with real tetrahedral coupling); [245] for a symmetry
breaking pattern of a complex tensor model designed to yield effective matrix theories; and [105]
for an SYK-like model.

Another direction for future research is the study of bound state formation due to the strong
infrared correlations. Such bound states could appear in the four-point functions of the g1 and g2
interactions. In Lorentzian signature, bound states would appear as poles in scattering amplitudes,
whereas in the Euclidean setting they would be characterized by factorization of the correlation
functions in certain momentum channels. They are of special interest because they could provide a
reformulation of the effective degrees of freedom in the deep infrared—analogous to how hadrons
emerge as effective degrees of freedom in QCD.

Finally, it would be interesting to study the theory at subleading orders in 1/N or at finite N
and compare it to the pure large N results. As discussed above, at next-to-leading order only
one new diagram contributes and the g1 and g2 couplings are expected to get small imaginary
parts. Including only the tetrahedral interaction, the next-to-next-to and next-to-next-to-next-to
leading order diagrams have been identified in [246]. These subleading orders exhibit an infinite
family of diagrams, such that in practice the 1/N expansion has to be amended with, e.g., a loop
expansion. Nevertheless, the 1/N expansion provides a systematic framework for further analysis.
The perturbative beta functions, up to next-to-next-to leading order in 1/N and three loops have
been obtained in [112]. At this order the beta function of the tetrahedral interaction acquires a
term quadratic in the couplings, but suppressed in 1/N . This additional term can lead to new RG
fixed points and may eventually spoil the ultraviolet attractiveness of the Gaußian fixed point at
relatively small N .
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