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Dynamical observables from spectral quantum field theory

We present a framework for the direct, non-perturbative computation of real-time observ-
ables in quantum field theories using spectral functional methods. Building on spectral
representations of correlators, particularly the Kéallén-Lehmann representation of the prop-
agator, this approach enables the evaluation of functional diagrammatic relations, such
as the Dyson-Schwinger equations and the functional renormalisation group, across the
entire complex frequency domain. The primary focus of this work is on quantum chro-
modynamics (QCD), where we develop efficient methods for computing the propagator
spectral functions of various elementary fields. These include the spectral function of a
scalar field in three dimensions, the graviton in asymptotically safe quantum gravity, and,
in particular, the light quark in QCD. To study the real-time properties of dynamical chi-
ral symmetry breaking, we construct a causal quark-gluon interaction model. Building on
the non-perturbative spectral functions of the propagators, we investigate the properties
of bound states and show how the spectral approach can be applied to compute bound-
state masses directly on the real frequency axis. Finally, we use spectral reconstruction
techniques to compute the pion distribution amplitude directly on the light front.

Dynamische Observablen mit spektraler Quantenfeldtheorie

Wir présentieren einen Zugang fiir die direkte und nicht-perturbative Berechnung dynami-
scher Observablen in Quantenfeldtheorien mithilfe spektraler funktionaler Methoden. Auf-
bauend auf spektralen Darstellungen von Korrelatoren, insbesondere der Kéllén-Lehmann-
Darstellung des Propagators, ermoglicht dieser Ansatz die Auswertung funktionaler dia-
grammatischer Relationen, wie den Dyson-Schwinger-Gleichungen und der funktionalen
Renormierungsgruppe, iiber den gesamten komplexen Frequenzbereich. Der Schwerpunkt
dieser Arbeit liegt auf der Quantenchromodynamik (QCD), wobei wir Methoden zur ef-
fizienten Berechnung der Spektralfunktionen fiir Propagatoren verschiedener elementarer
Felder entwickeln. Dazu zéhlen die Spektralfunktion eines skalaren Feldes in drei Dimen-
sionen, die des Gravitons in asymptotisch sicherer Quantengravitation sowie insbesondere
die Spektralfunktion des leichten Quarks in der QCD. Zur Untersuchung der Realzeit-
Eigenschaften der spontanen chiralen Symmetriebrechung konstruieren wir ein kausales
Quark-Gluon-Wechselwirkungsmodell. Aufbauend auf den nicht-perturbativen Spektral-
funktionen der Propagatoren analysieren wir die Eigenschaften gebundener Zustdnde und
zeigen, wie der spektrale Ansatz zur direkten Berechnung der Massen gebundener Zusténde
auf der reellen Frequenzachse angewendet werden kann. Abschlielend prisentieren wir ei-
ne Berechnung der Pion Distribution Amplitude direkt auf der Light Front, ermoglicht
durch spektrale Rekonstruktionsmethoden.
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1. Introduction

Our current understanding of nuclear matter, which makes up the largest part of the
visible mass in the universe, is based on quantum chromodynamics (QCD). Although it
is one of the most successful theories we have, there is a plethora of phenomenons that
are not yet understood, ranging from the many phases of QCD at non-vanishing chemical
potentials to the structure of hadrons and nuclei, for a recent review see [9]. Progress,
both on the theoretical and experimental side, is thereby hampered by the phenomenon of
confinement, which makes it impossible to measure direct properties of the fundamental
degrees of freedom, namely the quarks and gluons. Instead, direct measurements are
only possible for the physical degrees of freedom, which are hadrons and other bound
states. This mismatch between the fundamental and physical degrees of freedom turns
the connection of experimental observations to the fundamental features of the underlying
theory into a difficult inverse problem.

The role of dynamic observables

A prominent example of this can be found in heavy ion collisions (HIC) at the LHC, RHIC,
FAIR and others, where the collision of ultra-relativistic nuclei creates a hot and dense
medium, usually referred to as quark gluon plasma (QGP) [10-14]. Albeit the violent and
non-equilibrium nature of the collision, the QGP was found to thermalise quickly and to
exhibit properties of a nearly perfect fluid, [15, 16]. At these high temperatures, quarks
and gluons do not form bound states, but are said to be deconfined. Although many
questions remain unanswered, the evolution of the QGP is remarkably well described by
viscous hydrodynamics. As the system cools down, the quarks and gluons recombine into
hadrons, which are then observed in the detector. Hence, the information we can extract
about the QGP is convoluted through the hydrodynamic evolution. The large amount
of uncertainties in the initial conditions, the details of the hadronisation process and the
transport properties of the medium leaves the interpretation of the final state observables
ambiguous.

Another important example is the structure of hadrons and nuclei, which where first
probed in deep inelastic scattering (DIS) experiments [17-19] and will be studied in
the upcoming Electron Ion Collider (EIC) experiments [20-23]. While the interaction
of the constituents with incoming scattering partners at high energies is well described
by perturbation theory, the actual structure of hadrons as bound states is dominated by
non-perturbative effects. Most prominently, the dynamical breaking of chiral symmetry
(DxSB) leads to the largest contribution to the mass of visible matter. To probe the
hadron structure, one therefore relies on the separation of scales between the scattering at
high energies and the non-perturbative IR-dominated processes in the hadron [24]. This
results in the parton picture, where a scattering off the hadron is described by the sum of
scattering amplitudes of the individual constituents, weighted by non-perturbative distri-
bution functions which encode the momentum distribution of the contituents relative to
the total momentum of the hadron [25].

In both cases, a large amount of measurable observables are inherently time- or lightlike,



like cross-sections in scattering experiments. Not only the scattering amplitudes of the
constituents are real-time observables, also the distribution functions that describe the
hadron structure fall in this class. They are defined on the light-front i.e., from matrix
elements containing two partons at light-like separation. For a review, see [26]. Even
to obtain information on static observables often requires knowledge on time-like observ-
ables. An example for the latter are the shear and bulk viscosities of the quark gluon
plasma, or the diffusion coefficients of the quarks, which are directly related to the electric
conductivity of the medium. To obtain information on the phase structure of QCD from
HIC experiments, these observables are necessary input for the hydrodynamic models that
describe the evolution of the QGP. We will refer to this class of observables as dynamic,
in contrast to static observables, which are fully determined by space-like correlations.

How can we compute them?

On the theoretical side, the emergence of hadrons and confinement are non-perturbative
phenomena, which govern the infrared dynamics of QCD. Traditionally, these strongly
coupled systems are studied for space-like momenta using lattice QCD [27-32] or func-
tional continuum methods like the Functional Renormalisation group (fRG) [33-36] or
Dyson-Schwinger equations (DSE) and Bethe-Salpether equations (BSE) [37-40]. On the
Fuclidean frequency axis, both the lattice and functional methods have been very suc-
cessful to compute static observables at finite temperature and in the vacuum. In the
past decades, the progress of computational resources and systematic improvements of
approximation schemes have led to a convergence of results from different methods. Un-
fortunately, the situation is very different for real-time correlation functions and dynamic
observables.

While the lattice has the advantage of being in principle only limited by the computa-
tional resources and the numerical/statistical error, it requires a probability measure in
the path-integral. This prohibits the direct computation of observables at finite baryon
density, or of observables that rely on correlations at time-like or light-like momenta. In
both cases, the path-integral measure is not positive-definite, leading to the infamous
sign problem. Functional methods, on the other hand, are not limited to the Euclidean
domain. If we accept that a Wick-rotation is always possible, the functional equations
are indifferent whether we evaluate them at real (Minkowskian) or imaginary (Euclidean)
frequencies. However, due to the singular structure of correlation functions on the real
frequency axis, a straightforward numerical solution of the loop integrals at real external
frequencies is often impossible.

There are several approaches to overcome this issue, which can be roughly divided
into two classes. The first one is the reconstruction of correlation function from the
Euclidean data, where the (inverse) Wick rotation is performed numerically, see [41—
47]. Tt has the obvious advantage that it utilises data on the Euclidean axis, where
the systematic errors are largely under control. However, due to the finite number of
data points with finite precision, the reconstruction is an ill-conditioned problem and the
choice of a method easily introduces biases and systematic errors, adding to the often large
numerical uncertainties. Nevertheless, such reconstruction techniques have been employed
very successfully in various situations. They are particularly useful for extrapolations of
Fuclidean data up to the first singularity in the complex plane, which makes them an
invaluable tool for the extraction of bound-state masses from functional methods.

The second class is concerned with the direct computation of correlation functions in
the complex plane. The singular structure of correlation functions can be avoided by de-



forming the integration contour of loop diagrams [48-50], or going to the Keldysh contour
formulation of quantum field theory [51]. Alternatively, we can exploit the singularities
by means of integral representations [52-54], which is the main approach we will follow
throughout this thesis.

Spectral functional methods

The most prominent example of such an integral representation and the key tool of our
work is the Kéllén-Lehmann (KL) representation [55, 56| of the propagator. In com-
bination with functional, diagrammatic equations for the one particle irreducible (1PI)
correlation functions, the use of integral representations allows for the direct and semi-
analytic evaluation of loop integrals everywhere in the complex plane. In particular, for
lower order correlation functions, this enables the development of efficient numerical so-
lution strategies for direct real-time computations. Moreover, the direct relation of the
KL-representation to the singularity structure of the theory offers insight into fundamental
properties of the latter, such as causality and unitarity.

With this thesis, we aim to contribute to the understanding of non-perturbative and real-
time quantum field theory and to work towards reliable approximations for phenomeno-
logical applications. To this end, we show how to compute spectral densities of elementary
correlation functions self-consistently from non-perturbative diagrammatic equations like
the DSE and the fRG. This allows us to discuss the causal structure of correlation func-
tions, and to use them as input for the computation of observables like bound-state masses
and properties. We will contextualise each of our projects at the beginning of the corre-
sponding chapters and sections.

This thesis is structured as follows: in Chapter 2, we give a brief overview of QCD and
discuss the basics of functional quantum field theory. Chapter 3 is dedicated to spectral
functional methods. We discuss the KL-representation and real-time correlation functions,
and introduce the Dyson-Schwinger equations and the Functional Renormalisation group.
To make the latter compatible with the KL-representation, we introduce the renormalised
Callan-Symanzik equation as the limit over finite Wetterich flows. In Chapter 4, we set up
the computational framework and show how to compute spectral functions of elementary
correlation functions. We start in Section 4.1 with the spectral flows in a scalar theory
on both sides of a phase-transition. In Section 4.2, we use the spectral framework to
solve the Bethe-Salpeter equation of a scalar bound state in the scaling limit for the first
time directly on the real frequency axis. We also discuss the application to asymptotically
safe quantum gravity, and show the first fully self-consistent graviton spectral function in
Section 4.3. In Chapter 5, we turn to QCD and discuss the causal structure of the quark
propagator in Section 5.1. We put special emphasize on the construction of a causal model
for the quark gluon vertex, which is ready to use for phenomenological applications. The
quark propagator is the key ingredient for the computation of bound-state properties, and
we show in Section 5.2 how to utilize the quark spectral functions to compute hadron
properties directly on the light-front, at the example of the pion distribution amplitude.
We close the thesis in Chapter 6 with a summary and conclusion, where we discuss our
results, the limitations, and prospects of our approach as well as future directions of
research.






2. Quantum Chromodynamics



2.1. Quarks and gluons

2.1. Quarks and gluons

This section is dedicated to a short theoretical overview on Quantum Chromodynamics
(QCD), with a special emphasise on its key features. Our aim is to introduce the basic
concepts, conventions and notation we will use and refer to troughout this thesis. The
theory of strong interactions based on quarks as fundamental matter constituents was
first proposed independently by Gellmann and Zweig in 1964 [57, 58]. They proposed
fundamental SU(3)-triplets as fundamental particles, to explain the observed spectrum
of mesons and baryons consisting of “up”, “down” and “strange” quarks. The “charm”
quark, to complete the second family of quarks, was suggested by Glashow and Bjorken
in the same year [59] but its theoretical necessity was shown in 1970 with the discovery
of the GIM mechanism [60]. The last two quarks, “bottom” and “top”, were added by
Kobayashi and Maskawa in 1973, [61].

To explain the existence of the AT or A~ baryon, a new quantum number, later called
”color”, was introduced independently by Greenberg [62] and Han and Nambu [63]. These
baryons consist in the quark model of three up or down quarks respectively, with all spins
aligned. The overall anti-symmetry of the baryon wave function requires an additional
quantum number. In 1973, the modern form of QCD as a local gauge theory for quark
interactions was proposed and argued for by Fritzsch, Gell-Mann and Leutwyler [64], who
used the framework of local gauge theories, developed by Yang and Mills in 1954 [65]. One
of its striking features is asymptotic freedom, which was discovered by Gross, Wilczek and
Politzer in the same year [66, 67]. This property implies that the strong coupling constant
decreases if the theory is probed at higher energies, which allows not only for perturbative
calculations at high energies but also renders QCD a valid theory for all energy scales.
For a recent review on the theoretical and experimental aspects of QCD, see [9].

The classical QCD action is the sum of a gauged elementary matter part, and a Yang-
Mills action that captures the dynamics of the gluon fields,

SQCD [Qa q, A] = SMatter[(ja q, A] + Sym [A] . (2-13)

For the matter action, we collect the different quark flavors in ¢ = (u, d, s, ¢, b, t) and denote
the corresponding Dirac-conjugates by ¢q. The individual flavors are Dirac spinors in the
fundamental representation of the gauge group SU(3). Suppressing all indices (color,
flavor, spinor) and implicitly summing over all flavors, the matter action in Euclidean
space-time reads

SMatter [q’ Q’ A] = /

q(mqg+1D)q, /:/d%, (2.1b)
x x
with the quark mass matrix my = diag(my, .., m;). The renormalised values of the masses
are summarised in Table 2.1. The interactions between the quarks are mediated by a
gluon field A, which lives in the adjoint representation of SU(3). It couples to the quark
through the covariant derivative D, = 0,, — igsA,, where the strong coupling constant g

controls the interaction. The Yang-Mills action, on the other hand, reads
1 .
SY]\/[[A] — / ZFEVFEV’ Wlth FMV — I:D,L” Dl/] 5 (2.1C)
xT

Throughout this work, we will use the slash notation for the contraction of a four-vector
with the gamma matrices, I = YuDy, where summation over repeated indices is tacitly



2.1. Quarks and gluons

Flavor | Current quark mass | Electric charge
up 2.16 = 0.07 MeV 2/3
down 4.70 £ 0.07 MeV -1/3
strang 93.5+ 0.8 MeV -1/3
charm | 1.2730 £ 0.0046 GeV 2/3
bottom | 4.183 +0.007 GeV -1/3
top 172.57 £ 0.29 GeV 2/3

Table 2.1.: Current quark masses from the Particle Data Group [68]. All but the top
masses are obtained in the MS-renormalisation scheme. The renormalisation
point of the u-, d- and s-quark masses is 4 = 2 GeV, while the masses of the
c-, and b-quarks are renormalised at their MS-values, i.e. m = m(u = m). For
the top-quark, we cite the so called Monte Carlo mass. It is extracted from
event-generator based reconstructions of measurements.

assumed. The Euclidean conventions are also used for the gamma matrices, {v,,7} =
20,0

The QCD action is locally invariant under the following (infinitesimal) gauge transfor-
mations,

4@) = (1 +ia)g(z), qx) = a(x)(1 —ia), (2.2)
A(2) = Au() — glsauam) —i[Au(2), a(@)] (2.3)

where a(x) = a®(z)t* is an element of the algebra, which parametrises the gauge trans-
formation U(x) = exp(icr). The generators t* are the Gell-Mann matrices. Above and in
the following we suppress color indices {a, b, ¢}, and only indicate them if necessary.

In the following paragraph, we give a short overview of the features of QCD and discuss
their role in our work, before we delve into the theoretical groundwork in Section 2.3.

Asymptotic freedom. For short distances and accordingly large momentum transfer,
the interaction between quarks (and gluons) becomes weak and approaches zero at the
Gaussian fixed point in the UV-limit. This is a consequence of renormalisation, and is
manifest in the negative beta function of QCD. While we will not directly compute the
scale-dependent strong coupling in our work, its asymptotic decrease justifies perturbative
calculations of correlation functions at high energies and momenta, and allows for reliable
extrapolations in the UV, see e.g. Sections 3.1.2 and 5.1.7. Furthermore, asymptotic
freedom explains the phenomenon of Bjorken scaling in deep inelastic scattering cross-
sections, first predicted by Bjorken in [25] on the basis of the parton model and verified up
to approximately 10% by the SLAC-MIT experiment [19]. It implies that the interactions
between the constituents of the probed hadron can be ignored at high energies. We will
give some more details on the running coupling in the following Section 2.3.



2.1. Quarks and gluons

Confinement. The negative beta function also implies that the interaction strength
increases at low energies and large distances, which gives rise to the phenomenon of confine-
ment. This means that colored states are absent from the physical, measurable spectrum
of the theory. Instead, quarks and gluons are confined to form color-neutral bound-states
like hadrons or glue balls. The absence of asymptotic quarks or gluons manifests itself
in the properties of their respective propagator spectral densities, see again Sections 3.1.2
and 5.1. The associated spectral functions are not positive semi-definite, and in general
not normalisable. A proper resolution of confinement is still an open problem in Yang-
Mills theory and QCD, and we do not attempt to solve it in this thesis. The phenomenon
of confinement, however, is closely related to the dynamic generation of a mass gap for the
gluons. The questions of the responsible mechanism and the associated complex structure
of the gluon propagator are far from being settled, but at least for the former, suitable
candidates such as the Schwinger mechanism, see e.g. [69-72], or the quartet mechanism,
see e.g. [73] have been proposed. So far, no satisfying direct real-time computation of the
gluon propagator has been achieved in QCD, and we will employ reconstructed spectral
densities as input for our computations, see Section 5.1.2.

Dynamical chiral symmetry breaking. The second important infrared feature of
QCD concerns the masses of quarks and hadrons. The current quark masses of the light
flavors (up and down) are small compared to the masses of the lightest Baryons, which are
of the order of oc 1 GeV, see Table 2.1. This discrepancy is explained by the dynamical
generation of quark masses through the spontaneous breaking of chiral symmetry (DySB),
which makes up for the largest amount of Baryon masses. Chiral symmetry is an axial
U(Ny), symmetry of the matter sector of the action in (2.1b), where Ny marks the number
of quarks. The symmetry is explicitely explicitly broken by the quark masses. However,
even in the limit of vanishing quark masses, chiral symmetry is broken spontaneously by
the formation of a chiral condensate (Gg) # 0 through the strong infrared dynamics. The
associated formation of bound states, first and foremost the pions as massless Goldstone
bosons of the broken symmetry, gives rise to the hadron structure of QCD. The non-
vanishing expectation value then gives rise to quark masses through 4-quark interactions.
For physical QCD, chiral symmetry is only an approximate symmetry, but the mechanism
that drives the dynamics of DxSB is still present and dominates the low-energy properties
of the theory and the structure of (light) hadrons. This identifies the pions as pseudo-
Goldstone bosons with a non-vanishing mass m, = 135 MeV for the neutral pions. In this
thesis, we employ Iso-spin symmetric approximations and in general neglect QED effects,
so that the three pions are degenerate. DxSB will be discussed in Section 5.1 in terms
of the quark mass function. In Section 5.2, we will further discuss its implication for the
hadron structure at the example of the pion distribution amplitude.
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2.2. Correlation functions and observables

In this short interlude, we introduce the basic concepts and definitions of the functional
approach to quantum field theory. We will mainly use the example of a scalar field the-
ory, but the generalisation to arbitrary superfields is straight-forward. In quantum field
theoretical descriptions of physical systems, the central objects that can be computed
are correlation functions of the fields. They encode the quantum fluctuations of the field
by means of a weighted average over all possible field configurations, described by the
path integral. The expectation value of an operator O|p], which is usually taken to be a
polynomial in the quantum field ¢, is given by

Ol = 5 [ DoOlel 5. (24

The weight of the path integral is given by the phase factor e?*[l, where S [¢] is the
action of the theory in Minkowski spacetime. The normalisation factor N is chosen such
that the expectation value of the identity operator is unity. Before we proceed, we need
to address the question of the analytic continuation of the path integral to Euclidean
spacetime. Although we are interested in real-time observables and correlation functions,
we will formulate all functional relations of this work in the setting of Euclidean quantum
field theory. Hence, we assume that it is always possible to perform the (inverse) Wick
rotation from the Euclidean path integral to its real-time counterpart. The (inverse) Wick
rotation interpolates between imaginary and real-time coordinates, 7 <> it, or equivalently
po <> —iw in the frequency domain. In the path integral, this amounts to —Sg|[p] <> 1S[d],
where the subscript g denotes the Euclidean action.
We start from the Euclidean path integral by introducing the partition function

Z[J] = /DgpesE[@HJ""’ with J-¢ = /ddm J(x)p(x), (2.5)

which acts as a generating functional for the correlation functions of the fields ¢. The ex-
pectation values of the field and higher moments can be obtained by functional derivatives
with respect to the source J,

1 6" Z[J
(p(x1) .- p(zn)) = Z[J]6J(x1)...00(xp)

(2.6)

J=0

In practice, we will never compute the partition function or the respective moments di-
rectly, as they carry redundant information. Instead, we will compute connected correla-
tion functions, indicated by the subscript ., and in particular their 1-particle irreducible
(1PI) parts. The connected correlation functions are the cumulants of the theory, and are
generated by the Schwinger functional:

"W J]
x1)...0J(zp)

WU =log 2], with (p(en)- plralle = 577 (2.7)

J=0
The first two cumulants, i.e., the mean field and the connected two-point function or

propagator, are particularly important for functional computations and deserve their own
notation. They read

¢(x) = (p(x)) and G(z,y) = (p(z)e(y))c- (2.8)



2.2. Correlation functions and observables

Both depend implicitly on the source J, if it is not taken to zero. We will make the J
dependence explicit with a subscript ;.

So far, we have not specified the fields ¢ or the action S[p]. It is convenient to adopt
a super-field notation, which collects all fields that could be present in a superfield ¢,.
Then, the mean field carries a field index , and the propagator carries two field indices
and ;. All following derivations can be carried out within the super-field formalism, but
we will stick to a scalar field theory for simplicity and merely quote the respective results
for the general case if necessary.

All computations in this work are carried out in translationally invariant settings. This
implies that the mean field is constant at vanishing source, and the two-point function
depends only on the difference of the coordinates, G(x,y) = G(x — y). The propagator
then reads in momentum space

ddp
(2m)d

The propagators of the QFT at hand and its analytic properties will play the central role
of this thesis, and we will discuss them in detail in the next section Section 3.1.

The importance of propagators for functional approaches shows in the functional identity
for the expectation value of a local operator O[g] in the presence of a source. To derive
it, we start with the expectation value of a monomial in the field,

G(p.q) = C)S(p+ )2m)®, with Glz—y) = / cPEDGp) . (29)

1 " Z[J) _ ) 1 7]
Z[J)6J(x1) ... 00 (xn) <¢<1’1) + 5J(x1)> Z[J] 6J(x2) ... 60 (xn)’

(2.10)

where we have used the product rule to pull out the derivative with respect to J(x1). By
iteration, all derivatives can be pulled in front of the normalisation factor, which eventually
cancels out to arrive at

(1) ... o(xn))g = (gb(:vl) + &]?xl)) . (qs(xn) + 5,](5%)) . (2.11)

For the last step, we use that local operators can be expanded in monomials in the fields
and its derivatives, and that we can use the chain rule to convert the derivatives with
respect to the source to derivatives with respect to the mean field. This leads to

©Olhs=0s+6- 3|, (212
where both the mean field and the propagator depend on J implicitly. As a consequence
of (2.12), we can express expectation values of operators, which contain only finite powers
of the field, in terms of a finite amount of diagrams over full propagators and vertices. We
will use (2.12) in Sections 3.2.1 and 3.2.2, to derive the functional equations we will use
throughout this work.

To close this section, we introduce the 1PI effective action, which allows us to compute
the successive field derivatives of the propagator that appear in (2.12). It is defined as the
Legendre transform of the Schwinger functional with respect to the source,

Tlg] = sup J- 6 = WIJ] = Jous - & = W Jsus] - (2.13)

10
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Figure 2.1.: Diagrammatic notation for the relevant fields in this thesis. Full propagators
for scalars are denoted by solid lines, solid lines with arrows represent fermions
and gluon propagators are represented by curled lines. 1PI n-point vertices
are denoted by a vertex with n legs. Full vertices are big blue dots while
classical vertices are small, black dots.

The 1PI effective action now depends only on the mean field ¢, and, by construction, acts
as an action for the quantum theory,

T'[¢]
6¢(z)

The source on the right-hand-side depends on the mean field implicitly. At vanishing
source, we recover the full quantum equation of motion for the expectation value of the
field.

We will refer to the successive functional derivatives of I'[¢],

= J(z). (2.14)

§"I'[¢]
0p(x1)...00(xy)

as full n-point vertices. For the diagrammatic notation see Figure 2.1. To finally work out
general diagrammatic relations, we use that I'® is nothing but the inverse propagator,

orlg W] / 5.J(x) d9(ws)
50(21) 66(x) 6J(x) 0 (x2) _ J, 36(a1) 8 ()

=T (2., 2), (2.15)

= (5(331 — 332) .

0@ G)(ar, ) = |
: (2.16)

This allows us to compute the field derivatives of the propagator, which appear in (2.12):

(5G(l‘1 562)
ootz re : 2.1
dp(x3) s G2, y)I™ (y1, w3, y2) G (y2, w2) (2.17)

With this, we have established the connection between the 1PI n-point vertices and con-
nected correlators of the fields.

11
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2.3. Gauge fixing, Renormalisation and Scattering

We will now return to (functional) QCD, and discuss its theoretical foundations. We will
start with the gauge fixing procedure in Section 2.3.1. This allows us to introduce and
discuss the covariant Landau gauge, which is typically employed in functional computa-
tions. In Section 2.3.2, we will give an overview on the renormalisation of QCD and in
particular discuss the anomalous UV-running of the correlation functions we are interested
in, namely quark, gluon, and ghost propagators and respective vertices.

To quantise the theory, we consider the Euclidean path integral of QCD,

ZQCD = /DquDA e_SQCD[q_vtLA} . (218)

Correlation functions are then defined by the insertion of the respective operator in the
path integral, and the division by Zgcp, for more details, see Section 2.2. There are dif-
ferent approaches to compute these correlation functions, but they can be roughly divided
into two classes: continuum methods, like perturbation theory or functional methods, and
the lattice approach. In the latter, spacetime is discretised on a lattice, and the path
integral reduces to a finite- but high-dimensional integral that can be solved numerically.
One of the main advantages of lattice QCD, or rather lattice gauge theories, is that it
can be formulated in gauge-invariant link variables, where the integration over the group
elements can be carried out without gauge fixing. Continuum methods, on the other hand,
operate in the group algebra, and the corresponding path integral contains the integration
over an infinite number of physically equivalent configurations. This prohibits a naive
definition of the gluon propagator. To overcome this, one has to fix the gauge by choosing
one representative per gauge orbit.

2.3.1. Gauge fixed QCD

The gauge fixing is solely concerned with the Yang-Mills part of the action, and we will
follow the standard Fadeev-Popov procedure, which eventually leads to an additional gauge
fixing term in the action, and the introduction of the Faddeev-Popov ghosts. The basic
idea of this procedure is the introduction of a gauge-fixing constraint by inserting a 1 into
the path integral, which allows to factor out and hence cancel the additional gauge-orbit
integration when computing correlation functions via (2.6). As a last disclaimer: we will
not discuss the intricacies and conceptual difficulties of non-perturbative gauge fixing,
such as the problem of Gribov copies [74], as the associated question on the IR~closure of
YM-theories is not relevant for most of our computations.

To fix the gauge, one can introduce the following representation of unity in the path

integral,
1= /Da&(}'(A))det (5];(‘4)> ,

(0}

where F'(A) = 0 realises the gauge fixing condition, and a parametrises a finite gauge
transformation. For gauge fixing conditions linear in the gauge field, the Faddeev-Popov
determinant does not depend on «. This, together with the gauge invariance of the measure
and the action, entails that the integration over the group, fD « can be factored out of
the functional integral as a global normalisation. For observables, which are represented
by gauge invariant, local operators, their insertion into the path integral does not change

12
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this property. Hence, the global normalisation drops out and the expectation value of an
observable reads

J/DgDgDAQOq, g, A] § (F(A)) det (‘”;(A)) e—Sacpla.q.4]

«

J DaDgDAS (F(A))det (*52) ¢-SacliaA

For generalised ¢-gauges, we choose F(A) = F(A) — C with a Gaussian average over C,

5 (F(A) = / DC exp (—22 /I caca) 5 (F(A) = C) = exp (—21€ /x ]—“(A)“]—“(A)“) .

For £ = 0, the Gaussian weight collapses to the original gauge fixing. To bring the Fadeev-
Popov determinant into a form that is more amenable to computations, one introduces
auxiliary Grassman fields in the adjoint representation of the group, the Faddeev-Popov
ghosts ¢ and ¢. This allows to represent the determinant as a functional integral,

i (TO) - [ty ([ 270,

For the linear covariant gauge, F(A) = 0,A,, which is usually employed in functional

computations, the Fadeev-Popov operator is ———~ = — , up to global factors
QCD tations, the Fadeev-P tor is WA — _9,D,, up to global fact

which are absorbed in the normalisation. The gauge fixed QCD action now reads

SQCD[qa q, ¢, ¢, A] = Sl\latter[(77 q, A] + Sym [A] + SGF[A] + Skp [Av ¢, 5} > (2~19)

with

SerlA] = / 215(6“’4“)2 and  See[A,c.d] = — / ¢(0uD,) c.

The generating functional of gauged fixed QCD takes the form

Zaeo Mgy Ngs Mg g, Ja] = /DQDQCDCDA e~ Saen[@.4,6¢,Al+ [ (G119 g ¢+Ene—ie-c+Ta-A)
(2.20)

This allows to read off the classical inverse propagators from the quadratic parts of the
action. Their inversion leads to the classical propagators,

1
p?’

LoV
Cta(p.) = (2m) 00+ )lg(p)— . with IE¥(p) =8 — (1 - 20
1 4

2 CGoalp )= (2r)70(p+q)

Gea(p,a) = (21)'8(p + q) (2.21)

ip+mg

The form of the gluon propagator entails that the specific choice of £ = 0, the Landau
gauge, leads to a fully transverse gluon propagator, Ilc—y = II. Crucially, this property
persists in the full quantum theory. It is ensured by the non-perturbative Slavnov-Taylor
identity for the gluon propagator, viz.

D (Au(p) AL (q)) = €6 %@m@ +q). (2.22)

13
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In Landau gauge, the transversality of the gluon propagator leads to a decoupling of the
transverse and longitudinal parts of the system, which makes it a convenient choice for
systematic truncations and numerical computations. Indeed, most of the non-perturbative,
functional computations are performed in the Landau gauge, and we will adopt this choice
in our work as well. For a more detailed discussion of the propagators beyond the classical
level, we refer to Section 5.1.2.

2.3.2. The running coupling

(Gauge-fixed) QCD contains a number of UV-relevant parameters, which are subject to
renormalisation. These include wave-function renormalisations of all fields Zy, associated
with the respective kinetic operators, the strong coupling constant g5 and the quark masses
mgq. Gauge invariance, or rather the invariance of the gauge-fixed action under BRST
transformations, dictates that the renormalisation of the vertices is fully determined by
the wave-function renormalisations of the fields and the renormalisation constant of the
strong coupling. Schematically, this is expressed by

Z¢i < Dip
Zg=—TF"7" (2.23)
2 2
2} .73,

where the Z¢i1”¢in are the renormalisation constants of the vertices in the classial action,
ie.. Zgqa, Zeca, Z a3, Z g+ and the wave function renormalisations of fields relate the bare
and renormalised fields by ¢;¢ = \/ZTﬁiqbi,ren. For the parameter we have analogously
(90, &0, mq0) = (Z49, Z¢&, Zm,myq). For a more detailed discussion, see also [75, 76].

The renormalisation constants are eventually fixed at a certain renormalisation point
. The independence of the theory on the latter is encoded in the Callan-Symanzik
(CS) equation, which simply states that the dependence of correlation functions on the
renormalisation scale vanishes, in the case of an observable O, this leads to

d
u@O = (u@mu + 840, + quamq) 0=0. (2.24a)
Here, we have defined the beta function, and anomalous mass dimension
dg dz, dmyg
— Y d v, = ) 2.24b
By Hap = P 2 me = ( )

In (2.24a), we already used that observables, as for example cross-sections or scattering
amplitudes, do not depend on global rescaling of the fields. General correlation functions
also carry the dependence on the wave function renormalisations of the fields, and the
associated CS-equation contains the respective anomalous dimensions 74,. See also Sec-
tion 3.3.2 for a thorough discussion. If we consider asymptotically large energy scales that
exceed the highest mass scale of the theory - in full QCD this is the top-quark mass - we
can even neglect the quark masses and simply set v, = 0 in (2.24a). Then, the CS equa-
tion states that a shift in the renormalisation scale can be compensated by an appropriate
change in the coupling constant. With (2.23), there are several ways to compute the beta
function from the p dependence of one of the vertices in combination with the respective
wave function renormalisations of the attached legs. We simply quote the one-loop result
here for arbitrary number of colors and flavors,

3

one-loo g 3 11 2
5g loop. — _71677250’ with By = <3Nc_ 3Nf> . (2.25)

14
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We can integrate the beta function to obtain the running coupling. In terms of the strong
coupling constant a; = g2 /47, the solution reads

s (o)

L+ g2 (po) log(43)

avs(p) : (2.26)

It is important to note that experiments cannot measure a dependence on some arbitrary
renormalisation scale. What is measurable, is the momentum dependence of couplings
which are associated with certain processes, e.g. gg — gq scattering, mediated by a gluon.
Its Matrix element can be used to define a momentum dependent running coupling,

s (p2)2

Oés(pQ) = An ~ pQMtquq’q(pQ) ) (2'27)

where p? is the momentum transfer carried by the gluon. At large energies, the right-hand
side of (2.27) satisfies the CS equation (2.24a) and can only depend on dimensionless
parameters o (p?) = as(p?/p?, s ren(p)). This also entails

os(p?) = as(L, aspen (i = %)),

if we choose to match the renormalisation scale and the momentum transfer. Hence,
the momentum dependence of the physical running coupling (2.27) is nothing but the
p~dependence of the running coupling (2.26),

Oés(pQ) _ CYS(,LLZ) 4m 1

- 2. a2 ., 2
L+ fras(p?)log(Z)  Polog(52-)

(2.28)

The second equation in (2.28) makes the independence on p manifest. The necessary scale
is provided by the physical and RG-invariant Aqcp. In perturbation theory, this scale sets
the location of the IR Landau pole. In general, it is the scale where the running coupling
becomes non-perturbative and triggers DySB and the dynamical generation of a gluon
mass gap.

We close this section with a brief discussion on the anomalous running of the quark,
ghost, and gluon propagators in the Landau gauge at one loop. A convenient parametri-
sation of the inverse propagators reads

19 (p) = Z,(p%) (ip + My(p?)) . T (p) = p*Z.(p%), TN (p) = W (p)p*Za(p?) -
(2.29)

The momentum dependence of the dressings in the UV is determined by the respective
anomalous dimensions,

TYm.
R . log (f1? !
Za(p?) = ZV log(p*) 4, Ze(p®) — Z7V1og(p*) e, My(p*) — my (1%((]52)) :

(2.30)

where the p and [ are measured in units of Aqcp. Note that in Landau gauge, the wave
function renormalisation of the quark field vanishes at one loop, see also Appendix A.4.2,

15
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and the ghost-gluon vertex stays unrenormalised, even beyond one loop, Zz.4 = 1. The
anomalous dimensions are given by

1 (13Nc_4Nf) _1—%4 _3CF

_ L . = 2.31
=55 G 5 0 Tm= g (2.31)

where Cp = (N2 —1)/(2N,) is the Casimir operator of the fundamental representation of
SU(N,.). Together with (2.23), the non-renormalisation of the ghost-gluon vertex and the
quark wave function also entails that the large momentum behaviour of the quark-gluon
vertex is proportional to the ghost dressing function. This is as well a consequence of the
Slavnov-Taylor identity for the quark-gluon vertex, see Appendix A.4.1, and we will use
it to construct a causal vertex model for the quark-gluon vertex in Section 5.1.

16
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In this chapter, we explain the spectral functional framework that we use to compute
real-time correlation functions and dynamic observables. The central ingredient for our
discussion are spectral representations for elementary correlation functions and compos-
ites. We will introduce them in Section 3.1, where we review the connection of Euclidean
correlators with their real-time counterparts. We proceed in Section 3.2 by deriving the
functional relations that we use throughout this work to compute expectation values of op-
erators. This includes the Dyson-Schwinger equations (DSE) and the standard Wetterich
type functional Renormalisation Group (fRG). For the latter, the presence of the regula-
tor function alters the propagator of the theory and can invalidate the Kéllén-Lehmann
representation. The only known regulator that ensures both, causality and Lorentz in-
variance is the Callan-Symanzik (CS) regulator, given by a momentum independent mass
term. While the ad-hoc implementation of the CS-regulator preserves the causal structure
of the propagator and Lorentz invariance, it would sacrifice a priori UV-finiteness of the
flow equation. In Section 3.3, we show how to consistently derive the manifestly finite,
renormalised Callan-Symanzik equation (3.48) as the limit over UV-finite flow equations.
The remainder of this limit is the counter term action. It can be exploited to fix flowing
renormalisation conditions, what facilitates computations. Finally, we discuss the spectral
form and renormalisation of functional diagrammatic relations in Section 3.4.

17
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3.1. Spectral representations and analytic continuations

This section is in parts based on [1].

In this section, we review the relevant aspects of spectral representations of correlation
functions, with a special focus on the spectral representation of propagators. We discuss
the necessary conditions for the existence of a Kéllén-Lehmann representation [55, 56]
and its form both in vacuum and at finite temperature and density. In Section 3.1.2, we
proceed with the relation to the canonical commutation relations, which impose sum-rules
on the spectral functions.

3.1.1. Propagator spectral functions

As we have seen in the previous section, the propagator plays the central role for the
computation of expectation values. It encodes the quantum fluctuations of the field,
and often carries the most relevant information about the physical states of the theory.
In this section, we will not restrict ourselves to the propagator of a fundamental scalar
field theory, but consider the general case of a two-point function, often referred to as
Green’s function, of a composite (bosonic) operator ®[¢]. There are various ways to
choose a Green’s function, which are all equivalent in equilibrium and only depend on the
integration contour of the time variable in the complex plane. For a thorough discussion,
see e.g., [77].

In our case, it suffices to discuss the relation between the Euclidean propagator, as
defined in (2.9), and the advanced and retarded propagators. We define the latter with
respect to real-time coordinates, and denote the respective space-time or momentum vari-
able with capital letters. With X? = ¢ and Py = w, the advanced and retarded Green’s
functions read

GE(P) =i /X SPX([D(X), &1(0)] (1) e, (3.1)

GA(P) =i /X SPX([B(X), 21(0)] 0(1) ).

The step function 6(+t) leads to exponential suppression of the integrals for Imw = 0,
which allows to close the contour in the upper or lower half-plane, and leads to analyticity
of the Green’s functions in the respective frequency domains. Both correlators are related
by a mirror symmetry along the real frequency axis, G (w*,p) = Ga(w,p’). A propagator
is causal, if all discontinuities, as for example poles and cuts, are located on the at Imw = 0.
These discontinuities turn out to be the spectral function pg. It is defined as

pa(P) = /X SPX([B(X), 87(0)] ). (3.2)

We proceed by discussing the relations between the different propagators and the spectral
function. By inserting the Fourier decomposition of the step function,

o(t) = /Oo _ A0 it (3.3)

T o) w0t
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where f(01) = lime o f(i€). Assuming that the spectral function decays sufficiently fast
for large frequencies, we immediately find a spectral representation for the advanced and
retarded propagators,

* dA ApD . " -
G/"(P >:/ %M with  pe(w,7) = 2ImGg(w, 7).  (3.4)

If the decay behaviour is not sufficiently fast, one can either assume a UV cutoff or consider
a subtraction scheme to make the spectral integral finite. For similar representations, see
the (subtracted) Kramers-Kronig relations (A.138) and (A.140).

The non-trivial Kéallén-Lehmann spectral representation further relates the Euclidean
propagator to the spectral function, and hence to the retarded and advanced Green’s
functions. For it to exist, the propagator must satisfy the causality condition, which
restricts all non-analyticities of the function to lie on the real frequency axis. Then, one
can perform the (inverse) wick rotation to connect the Euclidean propagator to its real-
time pendant. The Kéallén-Lehmann representation then reads

» * dA po(A,p
G(po,p)z/ %f(_ipo). (3.5)

In the finite temperature case, the Euclidean propagator is only defined on the discrete
Matsubara frequencies.This amounts to the replacement py — p, = 2aT'n for bosonic op-
erators. For fermionic operators, the spectral function is defined via the anti-commutator
of the operators instead of the commutator, courtesy to the anti-commuting nature of the
fields. Then, all relations carry over with the appropriate sign changes under commutation.
The fermionic Matsubara frequencies are p, = 71'(2n + 1).

The Kéllén-Lehmann representation also makes the relation between the Euclidean and
the real-time propagators explicit:

Gy (w, ) = Galpo —~ —iw™, 7). (3.6)

where wF = w Fi0" denotes the advanced and retarded limit respectively.

To close this subsection, we discuss the situation in Lorentz invariant settings, where
the spectral representations simplify significantly and focus on the different fundamen-
tal fields. By definition, the spectral function carries the same index structure as the
propagator of the associated operator. Hence, one can associate one spectral function
to each linearly independent tensor structure that has a non-vanishing overlap with the
respective propagator. For a single scalar field, the manifestly Lorentz invariant spectral
representation (of the Euclidean propagator) reads

X dAA A
6= [ AR (37)

To arrive at this form, we went to the rest frame p'= 0 and dropped the explicit depen-
dence on the spatial momentum p(\) = p(A\,p = 0). After multiplying and dividing by
the complex conjugate of the denominator, we can use the anti-symmetry of the spectral
function, p(—X) = —p(A) to see that only the term proportional to A survives under the
symmetric integration. The symmetry relations between positive and negative frequencies
are violated at finite densities. The location of the fermi surface at non-vanishing frequen-
cies leads to an asymetry of positive and negative frequencies in loop diagrams, which
directly translates to the corresponding spectral functions.
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Under the assumptions of locality and causality, spectral representations also exist for
higher n-point functions, see e.g., [77, 78]. The spectral functions of the propagators
takes a special role, as they encode the spectrum of the theory. If the fundamental field is
associated with an asymptotic state that can be attributed to states in the physical Hilbert
space, the spectral representation can be derived by inserting a complete set of energy
eigenstates between the field operators. The resulting spectral function is then nothing
but the (squared) projection onto the respective energy eigenstate. It is then normalised
to one and positive definite. In gauge theories, the situation is more complicated, as
the fundamental fields and the respective propagators are not gauge-invariant. For more
details on the weight of the spectral function see Section 3.1.2.

For Dirac fermions in Lorentz invariant settings, the propagator has two linearly inde-
pendent tensor structures, p and 1. The associated spectral representation reads

Grlp) = —ipGi) + Gy = [ B LI (3.8)

oo 27Tip—|—/\’

where the spectral functions of the scalar and Dirac part of the quark propagator pgf/ 9
are given by the antisymmetric and symmetric parts of the quark spectral function py,
respectively. They are defined via the imaginary part of the retarded propagator on the
real frequency axis as

P (w) = 2wIm G4 (po — —iwy),

pgf) (w) =2Im G%(po — —iwy) . (3.9)

At finite temperature or density, such a compact form is no longer possible, as both break
Lorentz symmetry. Instead, as for the propagator, the dirac spectral function is split into
a spatial a temporal part

> dxv0p0 PT(NB) + 7 - Bt (A B) + Ap (A, P)
Gf<p07ﬁ): - % X — ipo

: (3.10)

where chose a form such, that all spectral functions have mass dimension —2. The spectral
representations can also be generalised to propagators of higher spin fields, where one
simply has to consider an independent spectral function for each tensor structure of the
chosen decomposition. We defer further discussions on this to Section 4.3 for the graviton,
and to Section 5.1 for the gluon spectral function.

3.1.2. Spectral sum rules and asymptotic behaviour

For the two-point function of asymptotic states, the spectral function is positive semidefi-
nite and normalised to unity, if the states are normalised. In general, this is not the case,
since (3.4) and (3.5) are mere statements about the causal propagation of the associated
operator.

The KL spectral representation (3.7) links the infrared asymptote for A — 0 and its
ultraviolet asymptote for A — oo to the IR and UV behaviour of the Euclidean propagator.
This also fixes its normalisation. These properties are discussed and verified in detail in
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[43,79-81]. The UV or IR asymptotic behaviour of the dimensionless Euclidean propagator
can be parametrised as

Gy(p* = UV/IR) =

Zy
L 3.11
p? (logp?)” (3.11)

. . . ~D _ 2 2
with the dimensionless momentum squared p= = p*/ Mg,y and some reference scale mgap.

In the UV limit one has the parameters Zy vv, Nuv, Yuv, and in the IR Zy 1x, Mir, Yir-

This general asymptotic form of the propagator includes a power behaviour arising
from the anomalous dimension 7 besides the canonical power —2, as well as a logarithmic
dependence, see e.g., [43, 79, 80] for details. For some non-local theories, the propagator
shows an exponential decay behaviour [79], which is not taken into account here. With
(3.11) and the definition of the spectral function (3.4), the UV asymptote of the spectral
function for nonvanishing 7yy or yyy reads

. /A Zd),UV 20"V A m TYuv
Jim p@) = ZE5 oo (i[5 —eos[ G| (055 ) @)

For ngy = 0, yuv = 0 we have limg_, p? log(p?)p(@) — 0, what entails a normalisable
spectral function with

/ AA A py(N) = Zg vy - (3.13a)
0

This is usually refered to as spectral sum rule and is in one-to-one correspondence with the
commutation relations [¢(t, ), 0;¢(t, V)] = Zpuv(Z — 7). The standard normalisation is
obtained for Zy ;v = 1, which entails canonical commutation relations.

In turn, for nyy < 0 or yyy > 0 the UV-tail of the spectral function is negative, and the
respective field does not describe an asymptotic state. Moreover, the spectral function is
normalised to zero,

/Oo dA X py(X) = 0. (3.13b)
0

In QCD this is the well-known Oehme-Zimmermann super convergence property [82, 83]
for the gluon in the covariant Landau gauge, see also [43]. In asymptotically safe gravity
it holds true as well for the background graviton, for a reconstruction see [84].

For nyy > 0 or yyyv < 0 the UV tail of the spectral function is positive, but the spectral
function is not normalisable,

A
lim dA X pg(X) = o0, (3.13c¢)

A—o0 0

in the absence of IR singularities. Equation (3.13¢) holds true for the spectral function of
the fluctuation graviton in covariant gauges, see [84] for a reconstruction, and [81] for a
direct computation. Note that also in this case, the field does not generate an asymptotic
state by applying it to the vacuum, ¢|0). However, this is not to be expected in a non-
Abelian gauge theory or quantum gravity. However, the anomalous dimension can possibly
be removed by an on-shell renormalisation. In Section 4.3, we will show results for the
fluctuating Graviton spectral function in an on-shell renormalisation scheme, which has a
normalisable spectral function.
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3.2. Functional equations

Figure 3.1.: Master DSE for a scalar ¢* theory. Each diagram contains exactly one classical
vertex, the rest is fully dressed. For the general notation, see Figure 2.1.

3.2. Functional equations

In this section, we derive the functional equations used throughout this work, namely
the Dyson-Schwinger equations (DSE) and the functional Renormalisation Group (fRG).
Both equations are in principle exact functional identities, which relate full correlation
functions of the theory. In practice and with only very few exceptions they cannot be
solved without approximations, as the derived functional equation for a given n-point
function depend on higher order correlation functions. To close the system of equations,
one needs to truncate the tower of equations. Both the DSE and the fRG, if treated as non-
perturbative systems of equations, resummate quantum corrections diagrammatically. As
the respective resummation schemes differ in presence of approximations, the comparison
of results from both equations provide a non-trivial cross-check and possibilities for a
systematic error estimate. In this thesis, we employ the DSE of a scalar field in three
dimensions to compute scalar bound state masses in Section 4.2, and we solve the quark
propagator DSE in Section 5.1. In particular for the latter, the DSE has the advantage
of a very simple, one-loop exact form, and only depends on the gluon propagator and the
quark gluon vertex. We use the fRG as well for the computation of scalar spectral functions
on both sides of the phase transition in Section 4.1 and for the graviton propagator in
Section 4.3.

3.2.1. Dyson-Schwinger equations

The Dyson-Schwinger equations are a set of exact functional equations, which relate full
vertices and propagators of a quantum field theory. To derive them, one assumes a well-
defined measure of the path integral, which is symmetric under arbitrary shifts of the
fields. Then, the total derivative with respect to a given field vanishes,

0= /Dgo 590(z$) e Selel+J¢ _ <_65iE([$] + J(x)>

With the quantum equation of motion (2.14), the source is nothing but the functional
derivative of I'[¢] with respect to the mean field, and we arrive at the DSE for the 1PI
effective action,

J

ol [¢] <5SE[‘P]> ~ 0SEly]
5¢(93) J

1)
So(x) |, = Sela) {“’ =é+G: ] | (3.14)

oo

By successive functional derivatives of (3.14), one generates an infinite tower of equa-
tions for full n-point vertices. For the example of a scalar ¢* theory, the diagrammatic
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representation of (3.14) is shown in Figure 3.1. It is a two-loop exact equation, and con-
tains a full 3-point function as its highest non-trivial ingredient. Hence, the DSEs for
higher n-point functions will always depend on the full (n + 2)-point function and for
most practical applications, one has to employ a truncation to close the system of integral
equations. For a detailed discussion on DSEs in QCD and QED see, e.g., [85], and [54]
for a spectral DSE framework in a scalar theory.

While the DSE has been employed successfully in various research areas, notably in
Hadron physics, it has practical difficulties. In many cases, it is only two-loop exact and
accordingly involves a larger number of diagrams with different topologies. Furthermore,
it is non-trivial to derive a manifestly finite formulation of a DSE, and the classical vertex
that is present in each diagram necessitates a non-trivial cancellation in the system of
equation to ensure invariance under general field redefinitions. In particular for the latter
reason, the DSE is often used in a skeleton expansion, where all vertices are fully dressed.
We will come back to this in Section 4.2.

3.2.2. The functional Renormalisation Group

A functional relation which is not only 1-loop exact, but also manifestly finite and RG-
invariant is the functional renormalisation group (fRG). The derivation follows the concept
of the Wilsonian RG [86, 87], where quantum fluctuations are integrated out momentum
shell by momentum shell. On the level of the 1PI effective action, this idea is implemented
by a masslike regulator function, that cuts off momentum modes above a certain cutoff
scale k. The change of correlation functions with respect to the variation of the cutoff
scale is then governed by the Wetterich equation [88].

To derive the Wetterich equation, we introduce the regulator as an infrared modification
of the classical dispersion.

eWilJ] — /D¢ e—SM—ASk[WHJ*P’ (3.15)
with the regulator term
a8 = 5 [ 8 o) me) (3.16)

The regulator serves thereby as an infrared cutoff and can be parametrised with

P P’
R}f(p) = Z¢) k2 r¢(x), xr = o) or T = Tz (3'17)

where Z, is the (cutoff dependent) wave function renormalisation of the field at hand.
The optimal choice of the shape function r4 depends on the problem at hand, but it is
usually taken to be greater than zero for p?/k?* — 0 and vanishes for p?/k? — oco. For
more details on the choice of the shape function see the discussion in Section 3.3.1.

To derive the flow of the effective action with respect to the cutoff scale k, we simply
take a (logarithmic) k-derivative of the scale dependent Schwinger functional Wy[.J],

1
oWy [J] = 707 / Dy ,ASy[p] e SI=ASlel+ e — _19,AS,[0]) s, (3.18)
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3.2. Functional equations

with the (negative) RG-time ¢ = log(k/k;.r). Hence, the flow of the effective action (2.13)
evaluated at a fixed mean field ¢ reads

OTlo] = @)Ul = 5 [ Guldlp)aFulp) + ASif9), (3.19)

1
2 Jp
where the t-derivative of the first term in (2.13) cancels the term arrising from the chain
rule, and we have used the operator identity (2.12) in the second step.

It is often useful to define the average effective action, denoted by I'y via a modified

Legendre transform,
Twld] = Jp - & — WilJg] — ASylg] (3.20)

The subtraction of the counter term removes the trivial running of the regulator term in the
flow. The derivation for multiple fields is straightforward within the superfield formalism,
which introduces the superfield as a vector of fields ® = (¢,1,, 4, ...). The regulator
term is then a bilinear form in the superfield, and the regulator function is represented
by a matrix which is diagonal for bosonic fields and symplectic for fermionic fields. The
Wetterich equation then takes the compact form

O T, [®] = %STY G[®)ap O RE (3.21)

where the supertrace is the trace over all internal and space-time/momentum indices of
the superfield.
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3.3. From the Wetterich RG to the renormalised Callan-Symanzik equation

3.3. From the Wetterich RG to the renormalised
Callan-Symanzik equation

This section is based on [1].

In this section, we focus on one of the conceptual developments that are crucial for the
real-time formulation of the fRG in this work. The main idea is to derive a renormalised
flow equation for the effective action with a Callan-Symanzik cutoff, i.e., a simple mass
without a momentum dependence via a limit of finite Wetterich-type flow equations. We
start by discussing the causal structure of the propagator in presence of the regulator
in Section 3.3.1. In Sections 3.3.2 and 3.3.3, we derive the renormalised CS equation
from the generalised flow equation. We close the section with the discussion of flowing
renormalisation conditions at the example of a scalar theory in Section 3.3.4 and the
special case of gauge theories in Section 3.3.5.

3.3.1. Infrared regularisation and symmetries

In the following we discuss some properties of the functional flow equation (3.21) with
respect to the choice of regulator. The discussion holds for a generic quantum field theory.
We concentrate on the simple example of a real scalar field ® = ¢ with the classical action

A
Syl¢] = /ddx ng (=®+m3) o+ 4—¢I’¢4 . (3.22)

The addition of the regulator term (3.16) alters the dispersion relation,
P>+ mé —p?+ mi + Rf(p) i (3.23)

The regulator is parametrised as Rf (p) = Zgk*r(z), where the shape function r(x) depends
on either full or spatial momenta squared, = = p? or = p'2, measured in the cutoff scale
k%, see also (3.17). It implements both, the vanishing momentum limit associated with an
infrared (IR) mass as well as the ultraviolet (UV) decay,

limr(z) =1, lim 2%%r(z) — 0, (3.24)

z—0 T—00
see e.g. [89] for a respective discussion. The first property implements IR regularisa-
tion through an, in general momentum-dependent, mass term that effectively suppresses
quantum fluctuations of field modes with momenta p? < k?. The second property leads
to a suppression of modes with p? > k? in the momentum-loop integrals, rendering the
flow (3.21) and all its field derivatives, which yield the flow of (1PI) correlation functions,
UV finite. A specific example for a smooth shape function is

rfmp(x) =e ", (3.25)

In addition to the conditions in (3.24), which guarantee the finiteness of fRG flows, we
might want to impose additional, physically motivated conditions onto the regulators. For
relativistic theories it is desirable that the regulators do not spoil Lorentz/Poincaré invari-
ance. Furthermore, for studies of real-time properties, i.e. in Minkowski space, causality
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3.3. From the Wetterich RG to the renormalised Callan-Symanzik equation

should also not be violated. The latter is directly related to the existence of a spectral
representation for the propagator of ¢.

To maintain Lorentz invariance, the regulator must be a function of the four-momentum
squared, Ri (p?). However, as discussed, e.g., in [90], such regulators might spoil causality
through unphysical poles in the complex frequency plane. Typically, such regulators either
do not admit a spectral representation or generate fictitious mass poles that only disappear
in the vanishing cutoff limit, for a discussion of the latter see [90-92]. As an example,
consider a classical Euclidean propagator

Gyr(p) = ! (3.26)

p?+ mé + Rf(p) ’

with a regulator shape function, c.f. (3.17),

Mmax k? n
¢ _ _
Trat = Z Cn <k}2 T p2> . (3.27)

N=Nmin

Already for such a simple propagator, the existence of a spectral representations of the
regularised propagator is highly dependent on the coefficients ¢, and in general not the
case, see [43, 90] for more details. For general propagators, regulators of the type (3.27)
typically generate at least npyax poles in the propagator, whose positions in the complex
plane usually spoil the spectral representation. Another choice would be a variation of the
exponential regulator (3.25), see [91, 92] for more details. Regulators of this type lead to
series of poles in the propagator as well as an essential singularity at infinity.

A further common choice are regulators that only depend on the spatial momenta,
Rf(ﬁ 2). Clearly, these regulators do not lead to additional poles in the complex frequency
plane, but merely modify the dispersion of the fields. Thus, they admit a spectral repre-
sentations at the cost of violating Lorentz invariance. If the system is in a medium, explicit
Lorentz symmetry breaking might seem innocuous, as it is broken anyway. While this has
been confirmed in specific examples [92, 93], it is a priori unclear in general. Especially
when considering limiting cases of a phase diagram such as T' — 0, the question becomes
much more intricate than the comparisons in the aforementioned works. Hence, effectively
we either violate (or at least complicate) causality, or we violate Lorentz invariance. All
known examples of regulators rely on the regularisation conditions in (3.24). However, by
relaxing at least one of these conditions, there is a natural choice for a regulator which
preserves both causality and Lorentz invariance,

Rfos=Zok*,  ros(z) =1, (3.28)

which we refer to as the CS regulator. It implements IR regularisation through an explicit
mass Amé = Z,k®. In this case the flow equation (3.21) has been derived in [94]. To our
knowledge, it is indeed the first occurrence of such a closed (and one loop) exact functional
equation for the effective action. The functional CS flow has been picked up and discussed
later in [95-100] as a special choice of the general flow equation (3.21) .

The insertion of the CS regulator in (3.21) leads us to the (inhomogeneous) functional
CS equation. However, it violates the second condition (3.24). The CS regulator only
lowers the UV degree of divergence by two, for example, quadratically divergent diagrams
such as the tadpole diagram in the two point function of the ¢* theory in d = 4 leads
to logarithmically divergent tadpole diagrams in the CS equation. In short, at each k
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Lorentz
invariance
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Figure 3.2.: Sketch of the competing requirements for regulators: finiteness of the flow,
Lorentz invariance and causality of regulators. Examples for regulators with
two of the properties are given. A fully systematic construction of regulators
with all three properties in the flow is lacking to date.

in the flow, all loop momenta contribute. To render the flow finite, an additional UV
regularisation is required in general.

The different properties of the regularisation are summarised in Figure 3.2. Restricting
the discussion to vacuum for simplicity, the three different property of interest are

1. Lorentz invariance: The regulator is a function of p? and respects Lorentz sym-
metry.

2. Causality: The regularised propagator admits a spectral representation, c.f. (3.5).
Expressed in Euclidean momenta, the right half-plane for analytically continued
momenta is holomorphic.

3. Finiteness: All diagrams arising from (3.21) and its functional derivatives are finite.

In the overlap regions of Figure 3.2 we provide examples for regulators with the respective
two properties.

No example is given in the overlap regime in the middle with all three properties: at
present, no regulator keeping all three properties in Figure 3.2 simultaneously is known:
indeed, the structure of the full propagator,

Gulp) = ! , (3.29)

I (p) + Ri(p)

which is the inverse of the sum of the regulator and the (yet to be determined) two point
function I‘,(f), entails that a systematic construction of such a regulator for all cutoff scales

k necessarily requires the use of the complex structure of Pl(f) in the regulator. This leaves
us with a combination of requirements: the existence of the spectral representation of the
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propagator (3.29) with the regulator limits (3.24) for an unknown two-point function I’,(f).

This combination is rather obstructive, and if a systematic construction is possible at all,
it evidently requires using constraints on the complex structure of the two point function
at hand.

As an illustration, let us assume we have a Lorentz invariant regulator with the prop-
erties (3.24). We observe that the regulator needs to be a decaying function as p — oo,
by assumption, while I'®) (p) needs to be a growing function for p — oo, being the inverse
of the propagator. This implies finite Lorentz invariant flow equations (properties 1 & 3).
Now we show that then causality (property 2) is at stake:

A simple consideration of the Cauchy—Riemann equations suggest different signs of their
imaginary parts in the top-right quadrant of p € C. However, the regulator needs to have
a positive real part, at least for small Euclidean momenta, to provide the IR regularisation.
In a partially simplified picture, this leads to lines in the complex plane where the real
part of the regulator is zero. Similarly, the real part of the two-point function has lines
with vanishing real part, related to the dispersion relation. The different limiting cases
detailed above make it almost impossible to avoid zeros in the top right quadrant of
the complex momentum plane, and consequently lead to a violation of causality in the
regularised propagator. Partly, this reasoning can also be found in [101]. The argument
presented here is a very pictorial, simplified version. While it is easy to construct explicit
counterexamples, so far even in tailor made applications, such as spectral functions of a
simple scalar theory, no regulator has been provided that escapes this problem, leave aside
a generic systematic construction scheme. A full discussion of this issues is postponed to
future work.

This leaves us with the situation that we may consider regulators in the three overlap
regions, put differently, regulators, that lack one of the properties 1-3. In this context we
emphasise a peculiarity of the overlap regime without finiteness including the CS regu-
lator: the structural similarity of the Wetterich equation (3.21) with regulators obeying
(3.24) and the flow with the CS regulator (3.28) is misleading. While the former equa-
tion implements a Wilson-type momentum-shell integration in a fixed underlying quantum
field theory, the CS flow constitutes a flow in the space of theories. To be specific, the
need for additional UV regularisation at different cutoff scales k implies that we have
different theories which necessarily require a different renormalisation. Hence, the flow
must be re-renormalised; only specifying the initial effective action I'y, ,, does not lead to
a finite renormalised solution of the flow equation. As we will show in the next section,
this can be achieved instead by the introduction of explicit counter terms to the flow, sup-
plemented with renormalisation conditions which are fixed at a, in general k-dependent,
renormalisation scale p.

3.3.2. RG-consistency and UV scaling

For standard infrared regulators with shape functions r(x) that obey (3.24), the flow
equation is manifestly finite as loop momenta are effectively restricted to p? < k2. Then,
choosing a specific r(x) amounts to specifying a UV regularisation scheme for fRG flows.
The effective action I'y of a general theory is then obtained by integrating (3.21) from some
initial cutoff scale kin;: to k < kini, The renormalisation conditions are implicitly fixed
through the initial effective action I'y, ,. The theory at a given cutoff scale k£ should not
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depend on the initial cutoff scale kip;¢, which is called RG-consistency, see [89, 102, 103],

dl'y

Kinit———
" it

=0. (3.30)
The initial effective action implicitly fixes the renormalisation conditions. RG-consistency
entails renormalisation group invariance, and specifically the independence of the theory
on these conditions.

As a first step towards the desired finite flow equations, also for regulators such as the
CS one, we discuss how the UV scaling can be absorbed within a general RG rescaling.
Then, the UV limit of the effective action is the finite renormalised UV action and not the
diverging bare action. For more details we refer the reader to [89] and in particular [104].

It has been shown in Chapter VIII B of [89], that the RG invariance of the theory
is maintained in the scale-dependent theory in the presence of the regulator term for
regulators of the form of (3.17). Such regulators are called RG-adapted as they satisfy the
RG equation

(,uﬁu + 27((1,“)>le =0, (3.31)

where we denote the S-functions S*) and anomalous dimensions ’y((gj, ) of the theory at
hand as

[ P—L (W _  dA
Wwe=pGr B =l (3.32)

The coupling vector A = (A1,..., \p,) contains all relevant parameters of the theory, in-
cluding the mass parameters. The full RG invariance of the theory in the presence of the
cutoff is then given by

5
<uaﬂ + B0y, + /yfb’j)qyw) T4 [@] =0, (3.33)
J

and has the same form as the RG equation at k¥ = 0. From this, we obtain the general flow
equation that comprises the change of a cutoff scale, here k, as well as an accompanying
general RG transformation. Using (3.21), an additional total k-derivative of (3.33) yields
the flow equation with reparametrisation at each flow step, see (4.25) in Chapter IV of
[89]7

. 9. 0 1 .
(sas + 80y, + / fyé,j@j(m) rule] = STrGul@] (9, +275)) RE, (3.34)

where we consider k(s) and p(s) with
505 = 0y + Oy . (3.35)

The fB-functions 8(*) and anomalous dimensions v(*) then encode the full s-scaling of a
combined cutoff (k-) and RG (p-) flow, including a reparametrisation of the theory,

dd (s) _ dA

% y 6)\ = 8% . (336)

fyc(;)@ =5
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For RG-adapted regulators with (3.31) the renormalisation group scaling with p drops
out of the right hand side of (3.34).

The central result of [1] shows, that the additional p-flow can be absorbed into a well-
defined flow of a non-perturbative counter term action for the k-flow in a manifestly
finite way. The flow of the counter term action serves a two-fold purpose: Firstly, it
allows to change consistently the renormalisation conditions with the k-flow for general
IR flows. We call this flowing renormalisation. Secondly, it also leads to manifestly finite
flows for the CS regulator with a flowing counter term action for general non-perturbative
truncation schemes. The number of parameters in these counter term matches that of
relevant parameters in the theory.

3.3.3. Functional RG with flowing renormalisation

We now use the general flow equation with an infrared regulator and an ultraviolet one
for deriving a flow equations which also incorporates an explicit UV renormalisation in a
manifestly finite approach in terms of a generalised BPHZ scheme with the subtraction of
a flowing counter term action. In contradistinction to multiplicative schemes this leads to
finite loop diagrams by subtraction. Such a construction has the benefit of a simple and
robust numerical implementation.

This general setup also allows us to monitor and change the renormalisation conditions
within the infrared flow. This generalises the standard fRG setup, in which the (UV)
renormalisation and the respective renormalisation conditions are implicit in the choice of
the finite initial action, see the discussion around (3.30).

The access to the UV behaviour of the theory is obtained by introducing a regulator
Ry A(p), where an UV cutoff A = A(k) enters as a free parameter/function. The regulator
R,‘f A is chosen such that it effectively restricts loop momenta to p? < A(k)? in the loops
of the flow equation, see the examples (3.39¢) below. We may also use the regulator for a
full UV regularisation of the theory and not only the flow equation, see e.g. (3.39d) below.

Changing the UV scale A = A(k) alongside with the infrared flow allows us to introduce
a flowing (UV) renormalisation in the latter. For these regulators the flow (3.21) can be
written as

1
(O] + Dk 01s) Tien = 5Tr Gy (O] Rion + Di O Bi ) (3.37)

where tp = log(A/kyet), with a reference scale ky.¢. The factor Dy, is a relative measure of
RG steps in the k— and the A-direction,

Dy, = O log A(k) . (3.38)

The flow (3.37) is a finite functional flow which allows us to successively integrate out
momentum shells. For 0 AR? A = 0 we arrive at the standard (infrared) flow in (3.21).
This naive limit can only be taken for infrared momentum cutoffs that decay sufficiently
fast in the ultraviolet. Most importantly, we can identify the terms o< Dy in (3.37) as
UV-cutoff flows that can be used for a flowing renormalisation scheme.

This derivation holds true for general infrared regulators. In the following we use as
an important example regulators R? A» that converge towards the CS regulator with the
shape function (3.28) for A — oo. In this case the flowing renormalisation can now be
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used to derive the finite fRG flow (3.37) for the CS regulator. For this derivation it is
convenient to consider regulators Ri A With
-2

Ry A(p) = Zsk?r(zn),  aa= % : (3.39a)

where we have considered a spatial momentum regulator in order to retain causality in a
simple manner, as discussed in the previous section. Again, we emphasise that this choice
is only taken for the sake of the spectral flows discussed later, it is not a necessary one.
For A — oo we require

lim R?, = Z4 k> 3.39b
Am B n = 2o k7 (3.39b)

which leaves us with the CS flow as limit of well-defined UV-finite flows. Explicit examples
for shape functions that satisfy the CS-limit (3.39b) are given by

Texp(Za) =€ "M and 7res(xp) =60(1 —xp). (3.39¢)

Both damp or cut off the UV-modes in the loop of the flow equation via the regulator
derivative in the numerator of the flow. We may augment the IR regulator with a UV
regulator, leading to UV and IR finite loops with

1

e (3.39d)

Tsharp (wA) -

This regulator leads to momentum loops, e.g. in perturbation theory or a system of Dyson-

Schwinger equations, that do not receive any contribution from spatial loop momenta
72> A2 Naturally, this property also holds true for the respective flow equations.

To understand the CS limit, we have to explicitly determine the part of the flow that

comes from changing the UV cutoff A. For A — oo the second part of the flow,
1
ST Gy ADeORY (3.40)

takes a simple form: First of all, up to sharply peaked contributions for large momenta, see
the examples in (3.39), the tp-derivative of the regulator vanishes in the CS limit (3.39b)
with

: ¢ _
Algréo Oy Ry =0. (3.41)

Note that (3.41) simply entails removing the A-part of the flow in the limit A — oo, so
it holds true beyond the CS example. Thus, in this limit the contribution of the A-flow,
(3.40), to the full flow, (3.37), vanishes unless this zero is compensated by a divergence in
the A-flow.

On the more technical level we define diagrams with UV iérrelevant power counting in
(n)

the flow equation: these are the diagrams Diag; (8t A Ri A) in the flow of n-point functions

F,(:”) which remains finite if the substitution J;, R? — 1 is done. Here, the superscript ()

indicates a diagram of the flow of F,(Cn), while the subscript ; labels the different diagrams

in this flow. We write

i [Diag{"/(0, By, — A?)| < oc. (3.42)
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Diagrams with (3.42) either contain a sufficiently large number of propagators or suffi-
ciently rapidly decaying vertices to render the integration over loop momenta finite. In
the CS limit, the contribution of UV-irrelevant diagrams to the flow vanishes like A™"
with some n > 0.

In turn, the power counting marginal and relevant parts of the A-flow (3.40) will survive
in this limit and indeed diverge with powers and logarithms of A. Importantly, these terms
are also local if the vertices are: they only depend on powers of momenta. Note also that
the A-flow has the same UV power counting as standard diagrams, as the regulator behaves
like an inverse propagator for A — oo. This can be seen from the example regulators (3.39),
whose tp-derivative yields

Oy Texp(TA) = 2zp6 "N
(3.43)
diyras(za) = 2270(1 — xp) .

Hence, the A-flows for n-point functions diverge with the same power of A as standard
loop diagrams, e.g., in perturbation theory. The above analysis reveals an intricacy of the
UV power counting that is elucidated [1], Appendix A, at the example of the ¢*-theory
in d = 4. In short, the standard UV power counting only holds true if the truncation
at hand respects the UV power counting of the theory. A prominent important counter
example is the derivative expansion in a ¢*-theory. Already its lowest order (Oth or-
der derivative expansion or local potential approximation (LPA)) includes a full effective
potential Vog(¢?), and hence all order (point-like) interactions \,/(n!)¢*® with n € N.
Due to its momentum-independence these couplings persist unchanged at arbitrarily large
momentum p — co. Accordingly, they seemingly introduce infinitely many fundamental
couplings \,, which would render the theory UV-sick. Note that this intricacy also is
present for other functional approaches, the Dyson-Schwinger equation for the effective
potential in LPA has been discussed in [105], Appendix F.

Finally, the prefactors of the UV-relevant terms in the ¢ flow may be different from
that in the t5 flow, as the respective scale derivatives of the regulator have a different
momentum-dependence if taken for a fixed shape function. This is remedied by using
shape functions with

ra =r(xp) + Arp(za), (3.44)

and the correction Arp(xy) is taken such that the relative prefactors of all UV relevant
terms of the tj-flow equals the relative prefactors of the relevant terms in the t-flow.
In summary, this leads us to the definition of the counter term action,

1
OS] = 5 Tr Gy A DO RY (3.45)

which removes all terms with positive powers A" as well as logarithms log A/kper from
(3.37) and renders the infinite UV cutoff limit finite,

Jim |OTy @] < 0o (3.46)

The counter term action (3.45) depends on a finite set of renormalisation parameters
required for the finite limit (3.46). The size of this set is equivalent to the number of UV
relevant and marginal directions. Moreover, in the limit A — oo the counter term action
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takes a local form for approximations with local vertices that reduce to the classical ones
for large momenta.
Finally, we arrive at the novel flow equation with flowing renormalisation

OTL[0] = 3T Gol) R — DSl (3.47)

with the flow of the counter term action (3.45) accounting for the flow of the renormalisa-
tion conditions as well as the finiteness for infrared cutoffs such as the CS regulator. This
general equation constitutes a main result of our work. It can be augmented with general
reparametrisations of the theory, leading to a generalisation of (3.34): we simply have to
subtract 0;Sct[¢] defined in (3.45) on the right hand side of (3.34). Note, that heuristically
such a procedure is suggestive but in general a naive removal of divergent terms does not
provide a consistent renormalisation. The results of [1] show, that (3.47) is correct. The
derivation also offers a systematic practical way to compute the counter term and it was
shown that within commonly used truncation schemes this goes beyond using standard
counter terms.

3.3.4. Flowing renormalisation conditions

Enacting the CS-limit (3.39b) for a suitable regulator and denoting the anomalous dimen-
sion as n = —0;Zy/Z4, the general equation (3.47) reduces to

OTHI0] = (2= 1) T Gold] Zgh® — 0Seald] (3.45)

As for the general equation (3.47) the novelty of (3.48) is not its finiteness per se. In-
deed, already the original functional CS equation as derived in [94] can be shown to be
finite order by order in perturbation theory. However, (3.48) is manifestly finite in general
perturbative and non-perturbative truncation schemes with a manifestly finite effective
action. Moreover, the present setup allows for a direct computation of the flow of the
counter term action, only dependent on a set of renormalisation parameters which are
in one-to-one correspondence to the coefficients of the UV marginal and relevant opera-
tors. Finally, the finite CS flow can be applied to perturbatively and non-perturbatively
renormalisable theories, and for a first application in quantum gravity we refer to [81].
The general flow (3.47) and its finite CS limit (3.48) seemingly imply that we are left
with the task of computing the non-trivial scaling factor Dy as well as the A-trajectory
(3.44) at each RG-step. This would exact a heavy price for the finiteness (3.46). It is
therefore noteworthy that we do not have to compute 9;Sc[¢] from the flow, as it can
completely fixed by the choice of renormalisation conditions. The subtraction 0;Sc4[¢] has
to be simply chosen such that the flow of these conditions vanish. This choice is practically
implemented by subtracting the t-flow of the correlation functions I‘/,(cn)(p2 = u?), that is
the renormalisation condition from the full t-flow. This renders the functional ¢-flow finite
(if one also subtracts the zero point function) and guarantees the RG conditions to hold.
We illustrate this within a simple example for the finite CS flow. Again we use a real
scalar field theory with the renormalised effective action I'y o with a given UV cutoff A.
The renormalisation entails that the effective action I'; o stays finite in the limit A — oo.
Moreover, it may satisfy the following on-shell renormalisation conditions at the flowing
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scale p = p(k),

: ) rz _
Jim TeAl )], = =R
. 2) rr
lim 9,77 [6] (p) e =L
lim T 6] (p) TS (3.49)

where p? is evaluated at a timelike Minkowski momentum. Here, ¢ is a background
field, which is typically given by the solution of its (quantum) equation of motion (EoM),
¢ = PBEoM-

The first condition is an on-shell mass renormalisation: the effective action in the pres-
ence of an IR regulator is defined as a modified Legendre transform excluding the regulator
term. Hence, for the physical CS regulator we have to consider the full Euclidean two-
point function with the CS mass term Z,k?, that is Fl(f) (p?) + Zyk?. Thus, (3.49) simply
implies F,(f)(—,uQ) +k? =0, so the renormalisation scale determines the k-dependent pole
mass, i = my. By setting u = k, we can enforce this pole mass to be given by the mass
introduced by the CS regulator. Thus, for a given physical mass the RG flow from the
initial UV scale kip;; is terminated at kg, = mppys = my,,, . Put differently, with this RG
condition we flow through the space of scalar theories with the physical pole mass k2.

The second condition in (3.49) fixes the wave function renormalisation at p, Zg(—p?) = 1
on-shell. We remark, that this leads to a spectral function pg j that is not normalised to
unity if ¢ is a physical field (defining an asymptotic state), see Section 3.1.2.

The last condition in (3.49) fixes the quartic interaction vertex. We have not specified
the momentum configuration here, but natural choices are the symmetric point and specific
momentum channels such as the s-channel.

Below, we shall consider more general on-shell as well as off-shell renormalisation con-
ditions adapted to specific theories or classes of theories. We emphasise that every RG-
condition serves our purpose, but on-shell RG conditions are in most cases a specifically
convenient physical choice, only accessible for real-time formulations. Moreover, they fa-
cilitate the numerical implementation of spectral CS-flows, as we shall see in Sections 4.1
and 4.3.

We also remark that adjusting specific renormalisation conditions in the standard fRG
setting is a fine-tuning problem: One has to adjust the initial effective action at the initial
cutoff scale kin;z such, that the effective action at kg, satisfies the renormalisation condi-
tions. However, adjusting specific renormalisation conditions is not required in the fRG
approach but the same finite tuning task extends to adjusting the physics parameters at
the initial scale. Both tasks are solved or at least facilitated in the presence of flowing
renormalisation, and (3.49) exemplifies this general pattern. With (3.49) both the adjust-
ment of the renormalisation conditions and the adjustment of the physics parameters is
done directly.

We emphasise that the implementation of the above full flowing renormalisation is not
required within the formulation. Indeed, in the example of the ¢* theory in d = 4, the
only divergence in the flow equation is related to the mass renormalisation: The CS flow
lowers the standard UV degree of divergence by two and the field-dependent part of the
flow is logarithmically divergent. Thus, the flow of the counter term action 9,5 only
needs to include one term to ensure finiteness. Note, that using a “minimal” counter term
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with k-independent parameters, i.e. one that only regularisers the divergent contributions,
the present approach reduces to the standard infrared flow: the renormalisation group
conditions at k = 0 are implicitly set at k = kijnx and the physics parameters and RG
conditions flow into their final values, which have to be fine-tuned for given physics and
RG conditions.

3.3.5. Spectral renormalisation in gauge theories

The scope of the spectral Callan-Symanzik flow equations also extends to the particularly
interesting case of gauge theories. Especially the non-perturbative infrared regime of QCD
has been been studied intensively within the fRG approach [33, 106-114]. In this section
we discuss the application of the spectral renormalisation group to gauge theories at the
example of Yang-Mills theory, for respective works with the spectral DSE see [80, 115].
The classical gauge-fixed Yang-Mills action including the ghost term reads

Sym = / [iFﬁngy — 9, D" + 22((‘)#%1;“'1)2 : (3.50)

x
Generally, setting up spectral flow equations for gauge theories works analogously as
for scalar theories, discussed in Section 3.3.4. The flow equations are derived in the usual
manner, and spectral representations are used for the propagators of all fields, i.e. ghost

and gluon propagator.

3.3.5.1. Ghost propagator

Formally, the ghost propagator is expected to obey the KL-representation [116, 117], if the
corresponding propagator is causal. A recent direct calculation of the ghost spectral func-
tion with the spectral Dyson-Schwinger equation in [80] has confirmed this expectation.
This computation has utilised a spectral representation for the gluon, which is discussed in
Section 3.3.5.2. Moreover, recent reconstructions [44, 118] show no signs of a violation of
this property. It is found that the ghost spectral function exhibits a single particle peak at
vanishing frequency with residue 1/Z., whose value may depend on the non-perturbative
infrared closure of the Landau gauge. Specifically, the scaling solution is obtained for the
limit Z. — 0, see [43, 80]. In this case, the particle pole in the origin is no longer present.
Instead, in the origin there is the branch point of the non-integer power scaling law branch
cut of the scaling solution. Note that in this case, the ordinary KL representation can no
longer be applied, since the corresponding spectral function would show an IR divergence.
For the current discussion, we will stick to the case of a massless particle pole in the IR.

Independent of the IR behaviour addition, a continuous scattering tail shows up in the
spectral function via the logarithmic branch cut. This leads us to the general form of the
ghost spectral function,

pele) = 72 4 e, (3.51)
where p. denotes the continuous tail of the spectral function. It has been shown in [80]
that the ghost spectral function obeys an analogue of the Oehme-Zimmermann supercon-
vergence property of the gluon [82, 83]. Expressed in terms of the spectral representation
of the dressing, it reads

/Ci:\/\ﬁc()\) = —Zi. (3.52)

C
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Equation (3.52) entails that the total spectral weight of the ghost vanishes. A generic
discussion can be found in [79, 80].

Since the ghost spectral function (3.51) shows a (massless) particle pole, as for scalar
theories, on-shell renormalisation conditions like (3.49) can be applied. This fixes the pole
position of the scale-dependent ghost spectral function to p?> = —k2. In analogy to (3.51),
the flowing ghost spectral function reads

T O0(w—k)+d(w+k)
Zc,k w

pc,k(w) - + ﬁc,k(w) ; (353)
where p. 1 (w) has support for |w| > 2k. In the limit of vanishing cutoff, pole position and
scattering onset move into the origin, and (3.51) is recovered.

3.3.5.2. Gluon propagator

The above discussion of the ghost spectral function and its existence was done under the
assumption of a spectral representation of the gluon. In contrast to the ghost spectral
function, there is an ongoing debate in the community whether or not this assumption
is justified. In local QFTs only the existence of a spectral representation for asymp-
totic states is guaranteed. It has been argued that in Landau gauge this also applies to
the gluon propagator [119-121]. While high precision spectral reconstructions are not in
contradiction to this assumption and do work for the gluon propagator [43, 45, 122, 123],
extensions with complex conjugate poles are also commonly entertained in reconstructions,
see e.g. [44, 124-132]. A recent computation has shown, that the situation is indeed ex-
ceedingly intricate: its resolution may only be possible by also resolving the problem of
a consistent non-perturbative gauge fixing [115]. The self-consistent implementation of
the latter for propagators and vertices is subject to a non-perturbative infrared realisa-
tion of the respective Slavnov-Taylor identities. For a detailed discussion of the complex
structure of Yang-Mills theory see [43, 115]. Specifically in [115] is has been shown that
a solution of the Yang-Mills system with a spectral ghost and a non-spectral gluon would
require non-trivial relations between the complex structures of vertices and propagators.
In turn, while less conclusive, in [115] we have also found numerical indications, that
a self-consistent solution system with spectral representations for both ghost and gluon
propagators, if existent, may also require self-consistent or rather STI-consistent solutions
for non-trivial vertices.

In the present work we add nothing new to the resolution of this intricate problem,
but simply consider the flow of the gluon spectral function under the assumption of its
existence. Likewise, we assume a spectral representation for the ghost, with a pole at w? =
k2, c.f. (3.53). The branch point of the ghost loop contribution to the gluon propagator’s
branch cut lies at w? = (2k)2. Due to the massless nature of the ghost, the position of the
branch point in the gluon propagator thus necessarily is in the origin for vanishing cutoff
scale, k = 0. However, due to the lack of a gluon particle peak, a direct identification of a
flowing mass scale k as in the scalar theory, see Section 4.1, is not possible for the gluon.
Consequently, there is no unique way to stop the flow at some kg = mypnys, where the
physical limit of the theory is recovered. Furthermore, the lack of unique gluon mass scale
entails that we cannot use on-shell renormalisation here. Eventually, we wish to recover
the IR behaviour of the gluon propagator known from other non-perturbative studies, e.g.
via functional approaches [111, 133, 134]. In consequence, we can define the IR scale only
implicitly, and kg depends directly on the initial conditions employed. This poses the
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question of how to consistently couple the gluonic flow to that of the ghost. A consistent,
coupled flow is required to simultaneously reach the explicitly resp. implicitly defined IR
scales kzl(ﬁhOSt) =0 and kl(f{luon). This can be implemented by flowing both equations with a
common scale k down to 0, where the IR limit of the ghost propagator is reached. We then
proceed to further lower k solely in the gluon propagator flow equation down to the point
where we reach kl(lg)iluon) defined by, e.g. scaling as IR behaviour, c.f. [111, 134]. Note that
this procedure needs to be supplemented with an appropriate choice of initial conditions
guaranteeing kl(}g{luon) < 0. This clarifies that the described procedure of flowing with
two seemingly different scales simply amounts to an implicit choice of initial conditions
and does not lead to an inconsistency between the different flow equations. In such a
procedure, adjusting the initial conditions is similar to common fRG calculations. We
therefore expect a similar fine-tuning problem for the Yang-Mills system as for example
encountered in [111].

The proper choice of initial conditions comes in case of the gluon propagator with
another technical complication. It is well-known that in massive Yang-Mills theory, the
gluon propagator exhibits complex-conjugate poles. It has been demonstrated in [115]
that these can also violate the spectral representation of the ghost propagator, in turn
inducing a cascade of non-analyticities in both propagators. Since the Callan-Symanzik
cutoff effectively constitutes a mass term, the construction of an initial condition respecting
the spectral representation poses a crucial challenge. On the other hand, using modified
spectral representations that explicitly take into account complex singularities [115], one
is able to track the evolution of the complex poles through the flow. This allows to make
a statement about their existence in the full correlation function at kg. It has been
studied e.g. in [101] how regulator-induced poles vanish in the £ — 0 limit in a quantum
mechanical system.
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3.4. Spectral functional equations

This section is in parts based on [1, 3.

In this section, we want to briefly recapitulate the important properties of spectral
renormalisation. It has been set up in [54] for general functional approaches, and has
been exemplified within the Dyson-Schwinger equation (DSE) for the scalar theory. The
respective loop equations contain up to two-loop diagrams with non-perturbative propa-
gators and vertex functions. In the case of the spectral fRG we only have to consider the
renormalisation of one-loop diagrams, which facilitates the task. One of the lines carries
the cutoff insertion, and the momentum routing is typically chosen such, that it only de-
pends on the loop momentum ¢. In terms of the frequency dependence, the line with the
cutoff insertion simply leads to two classical propagators with the spectral masses )\% and
A3, both carrying the loop frequency qo. The CS or spatial regulator does not depend
on the loop frequency, but only on x = ¢ 2 /k%. To facilitate numerical computations in
d > 1, it is advantageous to use a spectral representation of the full regulator line or more
precisely the propagator squared,

Ao\ G
Gol R @)Golg) = uRe(e) [~ ATIE T (3.54)

L0 2T (A2 4 g2

where n = 1 coincides with the usual spectral representation. It can be advantageous to
use n = 2, to account for the correct canonical momentum scaling, see e.g., Section 4.3.2
and in particular (4.98) for a implementation with n = 2.

We may either use (3.54) or the product of the two spectral functions for the propagators
on the right hand side of (3.54). In both cases, general flow or DSE diagrams Diag(p) of
vertex functions and inverse propagators with the external momenta p = (p1, ..., p,) have
the representation

Nmax

Diag(p) :/ (d Vert(1, p) H/ CZ\T M, (3.55)

0

where 1 = (¢,q¢ + p1,....,) is the vector of all momenta entering the propagators and
vertices of the loop diagram at hand, and Ny« is the number of spectral functions. The
factor Vert(l, p) stands for the momentum dependences of vertex and regulator factors
and possible projections and is a rational function in the momenta 1 and p. Note, that it
is also possible to include spectral representations of vertices, and in particular of products
of vertices and propagators. In particular the latter facilitates the computation of the loop
integrals which include non-trivial vertices significantly.

For example, for constant vertex functions Nyax is simply the number of internal lines,
including that of the regulator line (3.54) for the spectral fRG.

In Lorentz invariant situations, all spectral functions p;(A, ¢) can be reduced to p;(\) =
pi(A, 0) within spectral representations such as (3.5) and (3.54),

/ DMiND) [ dAAp(A,0) 5.56)
21 )\2+q0 o 2m N2+ g2 '
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Then, the momentum integral in (3.55) has the standard form of a one loop perturbative
integral, and can be computed with dimensional regularisation with d — d —2¢ and € — 0.
We are led to

N,
T X
Diag(p H / Aipi(Ai) Faiag(A, Pi€) (3.57)
with
ddq Nmax 1
Faiag(A, ps€) = Vert(1, —_—, 3.58
diag (A, P; €) /(%)d ert(l, p) 21;[1 N1 (1) (3.58)

where the bold symbols denote the collection of all spectral masses A; and momenta p;.
Equation (3.58) has the form of a perturbative momentum integral, with different masses
on each line. For power-counting divergent momentum integrals, Fyiae contains 1/e-terms
in even dimensions d = 2n with n € IN. It is tempting to apply the minimal subtraction
idea of only subtracting these divergent pieces. This would amount to simply dropping
the 1/e-terms in Fgiae. However, as thoroughly discussed in [54], the remaining spectral
integrations have the same ultraviolet degree of divergence and may not be finite. Note
that these divergences are sub-divergences and are absent at one loop perturbation theory
where the spectral functions are Dirac d-functions. This leaves us with two choices:

(i) Spectral dimensional renormalisation: if we want to maintain all symmetry-features
of dimensional regularisation, we also have to perform the UV part of the spectral
integrations analytically. This can be done using splits

PN, @) = pir(N\, @) + puv,an(A, 7). (3.59)

where the "IR’ part decays sufficiently fast for large spectral values, and puy an carries
the UV-tail of the spectral function and its form is chosen such that it facilitates the
analytic computation of the UV-part of the spectral integrations. Finally, we are
left with 1/e terms from both the momentum and spectral integrals, which can be
subtracted by an appropriate counter term.

(ii) Spectral BPHZ-renormalisation: We implement the RG-conditions at an RG-scale
w1 in terms of subtractions at the level of the integrand in (3.58). This amounts to
subtracting a Taylor expansion in p of Fgjas. For the sake of simplicity we restrict
ourselves to a case with one external momentum and a quadratic divergence, e.g.
the flow of the two-point function I'®)(p) in a scalar theory in d = 4 dimensions.
Then, p = p and the BPHZ-subtraction reads schematically,

Nmax

Diag,.,(p H / Aipi(Ai, 0)

Faiag(A, p;€) — Faiag(X, ps €)

aF’diag()ﬁ b3 6)

_ 2 2
(p™ — p*) 2

] . (3.60)

In (3.60) we can take the limit ¢ — 0 before performing the spectral integrations
which are manifestly finite. The showcase (3.60) straightforwardly extends to the
flow of general correlation functions with the standard BPHZ-procedure. Evidently,
the subtraction terms constitute a specific choice of 9,5 in (3.48).
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The spectral dimensional or BPHZ-renormalisation is implemented by a respective choice
of a counter term. In DSEs, this counter term is part of the classical action, which carries
the difference of bare and renormalised quantities. In the spectral CS equation, the counter
term is implemented by the counter term action on the level of the flow, see (3.48).

Evidently, the spectral BPHZ-renormalisation is technically less challenging, and is the
renormalisation method of choice in most cases. However, we emphasise that the limit
€ — 0 and the integration do not commute, and hence the spectral BPHZ-renormalisation
and the spectral dimensional renormalisation may not agree in terms of symmetries. This
may be specifically important for gauge theories.

The spectral structure of the diagrams allows for a simple discussion of the emergent
scattering thresholds that can be easily tracked within spectral functional approaches. An
illustrative example is given by the contribution of the vacuum polarisation diagram to
the spectral function of a single scalar field: It features a branch cut that opens at the sum
of the spectral masses of the two propagators. The spectral function entering the diagram
consists of a mass pole at m,., and a sum of scattering continua py starting at Nm,..
with N > 2. It follows straightforwardly from the analytic structure of that diagram that
substituting scattering contributions py and pps for the two internal lines directly yields
a contribution to pyyps. This demonstrates how any scattering structure, once seeded,
gives rise to higher scattering contributions.
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4. Applications in scalar theories
and gravity

To illustrate the power of the spectral framework, we will use the following sections to
present a series of applications to different theories in non-perturbative settings. We begin
with the scalar theory in three dimensions and present results from three publications
[2, 3, 5]. The focus of the first part, Section 4.1, lies on the spectral flow equations
in both the broken and symmetric phases, where we highlight both the strengths and
challenges of the flowing renormalisation approach. In Section 4.2, we shift gears and
introduce a spectral DSE-BSE setup to compute bound-state masses in the scalar theory
near the phase transition. We conclude this Chapter in Section 4.3 with a discussion of the
graviton spectral function, where flowing renormalisation is employed to achieve a fully
self-consistent computation.
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4.1. Scalar spectral flows in three dimensions

This Section is based on [3, 5].

In this Section, we accompany the conceptual progress made in [1], see Section 3.3, with a
non-perturbative application to spectral functions in the three dimensional ¢*-theory. This
allows to directly compare our results with those obtained in [54] within the spectral DSE
approach. Both functional approaches implement different resummation schemes for the
correlators of the given theory through infinite towers of one-loop (fRG) or two-loop (DSE)
exact diagrammatic relations. Within an fRG implementation, the successive momentum-
shell integration of loop momenta p? ~ k? with the infrared cutoff scale k, already provides
an average momentum dependence within simple approximations. Due to their intricate
spectral representation, this is particularly beneficial for including non-trivial vertices into
the flow, e.g., via momentum-independent but cutoff-dependent approximations.

This work is organised as follows: In Section 4.1.1 we set up the spectral functional
renormalisation group for a scalar theory. After discussing the different phases of the
theory in Section 4.1.5, we present our results in Section 4.1.6. This includes a detailed
comparison to those obtained with the spectral DSE in [54]. We discuss the scaling
limit of the theory in Section 4.1.7, where we approach the phase transition of the scalar
¢*-theory from the symmetric side, and extract the anomalous dimension 7 from the power
law behaviour of the spectral function. We summarise our findings in Section 4.1.8.

4.1.1. Spectral properties of the scalar theory

In the spectral fRG approach put-forward in [1, 81], the quantum effective action of the
theory at hand is obtained by starting with a theory with an asymptotically large classical
pole mass mg — oo, and then lowering the mass successively until the physical point is
reached. The respective classical action is given by

st = [ d%{;qb(—azww)wj&}, (4.1)

with positive or negative p. The wave function Zy has been introduced for convenience,
anticipating the emergence of a wave function. For asymptotically large pole masses we
have Z4 — 1, see Figure 4.3b. Then, (4.1) reduces to (3.22) (with p = :I:mi), and the
pole mass is given by

mg = p—3u6(—p), (4.2)

capturing both the symmetric and broken phase. This setup captures both, theories
deep in the symmetric phase with ¢ — +o00 and theories deep in the broken phase with
= —o0.

The central idea of spectral functional approaches is to use the spectral representation for
all propagators and vertices in the non-perturbative loop diagrams. Then, the momentum
integrals can be performed analytically, and the remaining numerical task boils down to
the solution of real spectral integrals. In this Section, we revise the important relations for
this application of the spectral fRG to a scalar field. For the general discussions of spectral
functions and spectral functional equations see Section 3.1 and Section 3.4 respectively.
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Figure 4.1.: Schematic phase diagram with respect to the mass-parameter y. The phase
boundary is located at 4 = 0. The flow is initiated in the deep UV, i.e.
|| = k? — oo with the respective (classical) initial effective potential.

4.1.1.1. Spectral properties of the two-point and four-point function

The spectral representation of the propagator of a given field ¢ is at the core of the spectral
functional approach.

* dA Ap (A, ) ) |
Glp)= | —52 =2Im G (p* = — 0%)? 4.3
W= [ THETE. ) 2GR~ i0) . (@)
where 0_ ensures that massless poles are taken into account properly. In the absence of
higher order resonances, the spectral function of the ¢*-theory is given by

27 9 9
pole

)+ 0(w? —m2,)(w) (4.4)
The mass m,,. in (4.4) is the pole mass of the full quantum theory. The scattering
continuum p(w) sets in at A> = m?2_,. In the case of a non-vanishing background field,
the theory admits 1 — 2 scattering (broken phase), and we have M., = 2m,,.. Higher
thresholds of 1 — N scattering processes lead to further discontinuities in the scattering
tail and are typically strongly suppressed. In the absence of 1 — 2 scatterings (symmetric
phase), the first allowed scattering is 1 — 3 and the scattering threshold is m.... = 3m,
the respective spectral function is depicted in Figure 4.7b and discussed there.

If the spectral representation (4.3) holds, all non-analyticities of the propagator lie on
the real frequency axis. These non-analyticities are given by either poles or cuts. Poles
originate from asymptotic states that overlap with the propagator of the field ¢, while
cuts represent scattering states. For the propagator of a physical field that describes an
asymptotic state, the spectral function is positive. Furthermore, the canonical commuta-
tion relations imply a normalisation via the sum rule (3.13a) with Zyy = 1.

Vertices also admit spectral representations, which get increasingly complicated for
higher order correlation functions due to their increase in arguments. In the present case,
we restrict ourselves to an s-channel approximation of the full one-particle irreducible
(1PI) four-point function or vertex. This leaves us with a single momentum argument
and an accordingly simple spectral representation. The four-point function is given by the
fourth field derivative of the effective action I'[¢], whose n't' field derivatives T'"™)[¢] are
the 1PI n-point functions. We use a spectral representation for this s-channel vertex [54],

— )\7 72 — . —
'@ (pg,p) = A¢+/p42(p2), pa(w,p) = 2ImTW(pg = —(w +1i07),p),  (4.5)
A A +p0
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where A4 is the classical vertex in (4.1) and [, = [;° 92\,

Analogue to the spectral function of the propagator, py is defined by the discontinuities
of the four-point function, see (4.5). Also for the four-point function, the spatial momen-
tum dependence of spectral function py(w,p’) follows from the one at vanishing spatial
momentum, p4(w) = ps(w,0) via a Lorentz boost.

4.1.1.2. Structural properties of diagrams

In the spectral functional approach, spectral representations are utilised to rewrite dia-
grams in terms of momentum loop integrals over classical propagators with spectral masses
and residual spectral integrals; for a general discussion see Section 3.4. Here, we apply this
approach in the context of the functional renormalisation group. The spectral fRG leads to
perturbative one-loop momentum integrals in diagrams, which can be solved analytically.
The non-perturbative information of the diagrams such as pole masses and thresholds is
stored in the remaining spectral integrals. For purpose of this application, it is sufficient
to consider a single external momentum argument, which is either that of the propagator
or the s-channel momentum of the four-point function. In the present case, we only have
to consider diagrams with one in-flowing or out-flowing external momentum +p, and we
encounter diagrams of the general form

:g/qﬂlc;(zj), /q:/(;ijr(id‘ (4.6)

The I; = q,q £ p are the momenta of the N internal propagators or vertex representations
and we collected all constant prefactors in g. By inserting the spectral representation (4.3)
for each propagator, the momentum integrals acquire a standard perturbative form, where
the masses are the respective spectral parameters squared, )\?. Finally, the spectral pa-
rameters are integrated over, weighted by the respective spectral function,

N
1
_gH/ )‘17"7>\Nap)) I(AlvuANap):/HM (47)
dj=1"J " 7J

The momentum integral in (4.7) is readily solved and the resulting analytic expres-
sion holds true for p € C. This gives us access to the spectral function (4.3) via the
limit p — —i(w + i0"). We remark that in the present spectral fRG approach to the
(142)-dimensional scalar theory, all integrals are finite, and we can safely change the or-
der of integration even prior to renormalisation. For more detalis and the general case,
see Section 3.4.

4.1.2. Functional Callan-Symanzik equation

The infinitesimal change of the full quantum effective action I'[¢] under a change of
the mass p is governed by the manifestly finite, non-perturbative renormalised Callan-
Symanzik equation, see [1, 81] and Section 3.3. It reads

pa, 6] = 5 (1 "2) ZunTe [ G0 + 6] — § pdy5ale), (4.82)
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4.1. Scalar spectral flows in three dimensions

with the anomalous dimension
o HOuZy

7, (4.8b)

Ny =
The first term on the right-hand side of (4.8a) is the standard one-loop exact contribu-
tion to the flow of the effective action that arises from the variation of the mass in the
classical action. It was first derived by Symanzik in [94] in the framework of renormalised
perturbation theory, where the UV-divergences cancel order by order in the perturba-
tive parameter. In non-perturbative flow equations this is not sufficient. Let us briefly
recapitulate the findings of Section 3.3. Starting from non-perturbative finite flow equa-
tions with a UV-regulating cut-off, one can analyse a combined RG-step of the IR- and
UV-regularisation scale, where the change of the latter evidently induces a second term
in the flow equation that governs the flow of correlation functions with the UV-cutoff.
This term can be used to impose explicit renormalisation conditions, which are usually set
implicitly by the initial condition of the IR flow. Most importantly, as demonstrated in
[1], it removes the UV-divergent terms of the diagrams associated to the flow of the mass
parameter and renders the CS-limit finite, where the UV-regularisation scale is taken to
infinity. In the process, it leads to the term ;0,Sct[¢] in the second line of (4.8a). It is
constituted by the finite parts of the UV-cutoff flow that do not vanish. Such a finite term
arises for each UV-relevant direction and implements the corresponding renormalisation
condition. We will refer to them as counter-term flows. The derivation of (4.8a) entails it’s
finiteness. Importantly, the counter term flow contains no tree-level contributions to the
respective correlation functions. This entails that classical values of the correlation func-
tions are solely given by the respective choice of tree-level values specified in the classical
action (4.1), and in particular cannot be further changed by specification of renormali-
sation conditions. In consequence, the latter can only be used to renormalise the flow
contributions, but not the initial conditions of the flow. This excludes, for example that
the counter term flow rearranges the theory from the symmetric into the broken phase
or vice versa by ud,Set o £const. pu [ ¢?. However, the counter term can contain similar
terms proportional to Ay /Mpole = Aeff-

In the momentum basis, the trace in (4.8a) corresponds to a momentum integral. Note
that the effective action I'[¢] in (4.8) includes the full mass term 1/2 [y ¢? in contradis-
tinction to the effective action used in standard fRG momentum-shell flows. There, the
momentum dependent regulator part of the mass term is subtracted, and the physical
theory is reached when it vanishes. In the present setup, the p-dependent effective action
is that of a physical theory with mass parameter p, and the flow is one in (physical) theory
space. In contrast to usual momentum shell flows, this physical flow is both manifestly
Lorentz invariant and sustains causality of physical correlation functions throughout the
flow, allowing for the use of the Kéllén-Lehmann spectral representation (3.7).

In particular, the counter term flow allows for flowing renormalisation conditions, and
we shall use it to adjust a flowing on-shell renormalisation, based on the spectral on-shell
renormalisation put forward in [54]. Then, the pole mass m,,. is identified with my in (4.2)
in both phases, mf)ole =y — 3puf(—p). In this physical RG scheme, the phase transition
between the symmetric and broken phase happens for mi = 0. Hence, we approach the
phase transition both from the broken and the symmetric phase in the limit 4 — 0, and
the flows are taking place in the one or the other phase, see Figure 4.1. Thereby, our setup
avoids flows through the strongly interacting phase transition regime, which are usually
present in momentum cutoff flows. This minimises the systematic error stemming from the
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4.1. Scalar spectral flows in three dimensions

U g ST N

Figure 4.2.: Renormalised CS equation for the inverse propagator. The notation
is given in Figure 2.1. The crossed circle is the regulator insertion,

pu R = (1 =1ny/2)Zyp

strong dynamics in the vicinity of a phase transition, where the flows are highly sensitive
to truncation artefacts. However, it is in principle possible to flow through the phase
transition, what can be advantageous if it is difficult to identify a proper starting point in
one phase, at which the theory is particularly simple. An example for this situation can
be found in quantum mechanics, where the theory for © — —oo does not approach the
classical limit but the instanton dominated regime. We consider the flow of the inverse

propagator within the spectral representation. The flow is given by

n 1 n 1
pd, I (p*) = (1 - f) Zppt [Dpol(pz) - 2Dtad(p2)] + ( - i’) Zoht — 5 1S,
(4.9)

where Dy,q and Dy, refer to the tadpole and polarisation diagram, see Figure 4.2. Their
general form, in terms of the spectral representation for the propagator and four-point
function, is discussed in Appendix A.1.1. Moreover, all quantities in (4.9) depend on the
chosen background ¢. For general spacetime dependent backgrounds ¢(x) this would lead
to (@ [¢](p, q). In the explicit computations we consider the background ¢g, which is the
constant solution of the equation of motion

L[¢]
0¢ $=do

In the symmetric phase, we have ¢g = 0, while ¢ # 0 signals the broken phase. The two
phases are separated by a second order phase transition in the Ising universality class in
three dimensions. From now on we drop the field argument ¢q. It is implicitly understood
that all correlation functions are evaluated at ¢ = ¢y.

In a final step, we substitute p with k2, to keep the relations to standard fRG flows
with momentum cutoffs simple, where k is commonly used. This facilitates the comparison
and benchmarking of the real-time results obtained with the spectral fRG. For example,
the three dimensional ¢*-theory has been studied abundantly within the Euclidean fRG,
including systematic studies of the convergence of approximation schemes, for a recent
review see [114]. These results carry over straightforwardly to the present approach, and
the Euclidean correlation functions obtained from the spectral functions can be directly
compared. This substitution leads us to

=0. (4.10)

k? =|ul, O =kOx=2ud, , (4.11)

where the (negative) RG-time t = log(k/kyef) is measured relatively to a suitable reference
scale or mass.
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Trajectory of the residue in the broken phase

0.0 0.5 1.0 1.5 2.0
mpole [A¢]

(a) Scattering tail gy for vanishing spatial mo-  (b) Amplitude 1/Z of the pole contribution of

mentum p = 0 as a function of the spec- the spectral function (4.14) as a function of

tral value w and the pole mass mpq. for the pole mass mpele for 1/20 < mpee/Ap <

1/20 < mpote /Ay < 1/10. 1/2. The classical value for Z; is indicated
in grey.

Figure 4.3.: Spectral function p, (4.14), for different pole masses m;.. /A4, measured in
the fixed coupling Ag.

4.1.3. Spectral on-shell renormalisation

We proceed with discussing the on-shell spectral renormalisation, using the direct access
to Minkowskian momenta. In (1+2)-dimensions, both diagrams in the CS flow of the
inverse propagator (4.9) are manifestly finite and do not need regularisation. The flow of
the counter term action ud,S¢; only guarantees the implementation of the chosen renor-
malisation conditions. The (14-2)-dimensional ¢*-theory is super-renormalisable, and has
only one UV-relevant direction. This leaves us with one renormalisation condition for the
mass. Now we use on-shell renormalisation to keep the full pole mass on the classical input
mass (4.2) with mgole = k? in the symmetric phase, and mgole = 2k? in the broken phase.
This leads us to

(i) symmetric phase:

T3 [g]

e =0 (4.12)

(ii) broken phase:

T ¢y =0. (4.13)

p2=—2k2

In the symmetric phase, the first allowed scattering process is the 1 — 3 scattering, and
the onset of the scattering continuum is located at three times the pole mass. In turn,
in the broken phase with 1 — 2 scattering, the onset of the scattering continuum of the
spectral function is located at twice the pole mass. Thus, the spectral function reads

p(\) = =-6(\2 —m?

Zs 2oe) OO —mZ (N (4.14)

scat
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4.1. Scalar spectral flows in three dimensions

A A A

Figure 4.4.: Truncated DSE for the three-point function in the skeleton expansion.

N | —

with Mg = 3Myee (Symmetric phase) and mg.., = 2m,.. (broken phase). In Figure 4.3,
we show the scale evolution of the spectral function p in the broken phase: in Figure 4.3a
we depict the scattering tail p, and in Figure 4.3b we depict the amplitude of the pole
contribution. All quantities are measured relative to the coupling .

The spectral tail is rising towards smaller pole masses for a fixed classical coupling, and
in turn the amplitude 1/Z,4 of the pole contribution is decreasing. In combination, the

sum rule
1 0 d\?
=L +/ D50 (4.15)

i.e., (3.13a), with Zyy = 1, holds during the evolution. The growing importance of the
scattering processes can be understood from the fact that the dynamics of the theory only
depend on the dimensionless ratio A\g/my with mg o< k. Hence, the effective coupling
grows strong for smaller pole masses and on the other hand the dynamics of the theory
are vanishing for asymptotically large pole masses.

In contrast to the Callan-Symanzik or mass regulator used in the present work, com-
monly used regulators in Euclidean flows decay for momenta larger than the IR cutoff &.
This provides manifestly finite flows without the need of further renormalisation. More-
over, for Euclidean momenta, the respective flows of lower order correlation functions
decay faster than for a CS regulator. In Minkowski space, however, the CS or mass reg-
ulator has the welcoming property that the one-loop flow of p(w) contains only classical
correlation functions and is maximally local. While this is trivial in the symmetric phase
where the one-loop flow only shifts the pole mass and does not generate a scattering con-
tinuum, it is non-trivial in the broken phase. There, the flow of the scattering continuum
is given by a single delta function at the onset of the scattering spectrum, which originates
from 9 ImT'?) o §(w? — 4m?,.). Since the mass pole constitutes the dominant part of
the propagator, the flow of the spectral function at spectral values larger than the flowing
onset 2m,,,.., which is solely induced by the scattering tail, is sub-leading.

4.1.4. Flowing with the minimum

In general, the flow equation (4.8a) can be evaluated for arbitrary values of the external
field ¢, which requires the inclusion of the full effective potential. However, this goes
beyond the scope of this work, and we simply evaluate the flow on the solution ¢¢ of the
equation of motion (4.10). This is a commonly used truncation as it gives access to the
physical correlation functions.

In the present fRG approach with the spectral CS regulator, the flow takes place in
theory space and the effective action is physical for all values of k. In the broken phase,
the minimum of the full effective potential depends on k, and the total mass flow of
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Figure 4.5.: Diagrammatic representation of the flow of the two-point function on the
flowing minimum in the broken phase. The red crossed circle comprises the
scale derivative of the mass parameter and the three-point function, where
the additional factor of 2 comes from the change from u to k. The dashed
lines indicate the contraction with d;¢y.

the two-point function is given by the flow diagrams originating from the CS equation,
9T @ [po](p) and a term proportional to the mass flow of ¢y,

d

ST [60](p) = 0T [60] (p) + (D160 T[] ) (p) (4.16)

The novel ingredient in the present setup originates in the tree-level k-dependence of
$o ~ \/6k?/\s+O(N\yk), where the second term comprises the loop corrections. This tree-
level dependence is usually absent in the flow of the minimum in standard momentum-shell
flows. There, J;¢¢ only comprises the effects of the momentum shell integration and hence
is inherently one-loop and beyond. The tree-level k-dependence of ¢ in the present case
triggers a tree-level k-dependence of 8,¢oI'®) (p) and the tree-level flow of the physical
two-point function considered here reads

4 pe = —2k% 4 0100S®) o] = 4K, (4.17)
dt tree-level

where the classical three-point function is given by S®) [¢] = Ag¢. Note that only the

combination of both terms leads to the expected positive flow of the physical mass, while

the flow of the mass parameter —k? has a negative sign.

To obtain the full momentum structure of the second term in of (4.16), we first note
that the additional leg of the three-point function is always augmented with an incoming
momentum of zero, as it is contracted with the scale derivative of a constant field. The full
momentum dependence can then be incorporated via the DSE of the three-point function,
see Figure 4.4, which allows for an exact diagrammatic flow of the two-point function on the
physical minimum. In the presence of approximations, a fully self-consistent treatment
would require us to use the integrated flow of I'®) [#0](p,0). However, also the flow of
I'®)[¢g] includes a similar additional term as in (4.17), which is proportional to the four-
point function. To avoid solving the flow of the three- and four-point function, we resort
to the DSE to include the leading momentum dependence of the (contracted) three-point
function. To ensure the correct RG-scaling of the flow equation, we further employ the
skeleton expansion in the DSE, where every vertex is dressed. Approximating I'>%) ~ 0
and dropping the remaining two-loop diagrams, we arrive at the simple diagrammatic
structure of the three-point function depicted in Figure 4.4.
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4.1. Scalar spectral flows in three dimensions

Additionally, using the DSE for I'® in (4.16) demonstrates the structure of the flow
as a total derivative. To make this explicit, we choose the vertical leg in Figure 4.4 to
be contracted with 0;¢g. Then, the three-point functions connected to this leg carry only
internal momenta, and we approximate them as constant. With that, the first fish- and the
triangle diagram in Figure 4.4 are proportional to the tadpole and polarisation diagram
respectively, and the second term on the RHS of the flow (4.16) reads

(9100 T 60] ) (p) = D10 <S<3> 60] ~ 5T100] Desa(p) — Do (p) + T [60] Dy (p)) :
(4.18)

Note that the explicit three-point functions on the right-hand side are now momentum
independent. For the full expressions of the spectral diagrams we refer to Appendix A.1.1.
We discuss our approximations for the remaining vertices in Section 4.1.5.

Substituting (4.9) and (4.18) into (4.16), we eventually arrive at the full flow equation
of the two-point function. Its diagrammatic representation is depicted in Figure 4.5. It is
illuminating to consider the one-loop structure of the flow, where the nature of the flow
being a total derivative can be read off Figure 4.5. Then, the red crossed circle comprises
the total derivative of the internal propagators in the (one-loop) polarisation and tadpole
diagram, while the fish-diagram accounts for the running of the three-point vertices. The
full equation reads

90O 0)(p) = (Duo) SV lgu] — (2~ 1) Zoh?
LR HDM + D} — 0160 Drs — DiS. 0] (4.19a)
where
R = (21607 [g0] — (2 = mg) Zok?) . (4.19b)

is represented as red crossed circle in Figure 4.5. Note the appearance of a relative minus
sign in front of the mass derivative contribution (second term) to (4.19b) due to u = —k?
in the broken phase. The first line in (4.19a) carries the trivial, tree-level running of inverse
propagator. It consists of the running of the mass parameter and the classical part of the
three-point function, connected to the flow of the minimum. Its mean-field value cannot
be altered by the renormalisation condition and is, analogue to the respective term in R,
crucial to recover the correct sign of the flow, see (4.17). A detailed evaluation of (4.19a)
can be found in Appendix A.1.2.

4.1.5. Approximations and real-time flows
In the following Section, we discuss the approximations used for the higher correlation
functions, which lead to non-trivial spectral flow-equations in both phases. This enables

us to write down the renormalised flow equations for the two-point function and evaluate
them on the real frequency axes.
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(a) Bubble resummed four-point function. (b) Spectrum of the resummed four-vertex.

Figure 4.6.: Diagrammatic representation and spectral function of the four-vertex in a
bubble resummed, s-channel approximation. It features Lorentz invariance
and the spectral function exhibits a sharp onset at the two-particle threshold.
and has a visible three-particle onset at 3m,.. in the broken phase

In the ¢*-theory, correlation functions of an odd number of fields, F(2”+1)[¢], are pro-
portional to the mean field ¢. In the present approximation we only consider three- and
four-point functions, setting all the higher correlation functions to zero:

>4 ~ 0. (4.20)

Then, the three-point function is proportional to a product of the four-point function and
¢g. This closes our approximation.

For constant vertices, the tadpole diagram only provides a constant contribution to
the flow of the two-point function. This contribution is absorbed completely in the on-
shell renormalisation condition (4.13) and (4.12), for the broken and symmetric phase
respectively. In the symmetric phase of the theory with ¢g = 0, the tadpole is the only
contribution to the flow of the two-point function. Hence, the scattering tail originates
only from the non-trivial momentum dependence of the four-point function. In a first
but important step towards the full momentum dependence of r® (p1,...,pa) Wwe use an
s-channel resummation of the full four-point function, see Figure 4.6a,

r@p?) = — As . (4.21)
1+ % [.Gp+a)G(9)
In (4.21), p? = s = (p1 +p2)? is the s-channel momentum, and we choose vanishing t and

u channels to perform the resummation: (p3 — p1)? = (p1 — p4)? = 0. This approximation

admits the simple spectral representation of the four-point function (4.5), see also [54].
Figure 4.6b shows the spectrum of the four-point function in the s-channel approxima-

tion discussed above. It shows the 2 — 2 scattering onset at twice the pole mass m,. of

the field ¢. The next threshold from the 2 — 3 scattering is also visible, but the result

also contains the strongly suppressed threshold of higher order scattering processes. A

more detailed discussion of our results is given in Section 4.1.6.

We emphasise that (4.21) only holds true in the symmetric phase. In contrast, in the
broken phase the flow or BSE for the four-point function contains additional diagrams
with two or four three-point vertices. Their combined contributions are readily estimated

51



4.1. Scalar spectral flows in three dimensions

and are suppressed by a factor 1/8. Hence, they are dropped in the following computation.
Accordingly, we use (4.21) in both phases.

Note also that the four-point function exhibits a bound state pole below 2m,,,. close to
the phase transition. This is discussed for example in [2, 135] in terms of a Bethe-Salpeter
equation, see also Section 4.2, and indeed seen in lattice and fRG calculations, see [136—
138]. The present s-channel resummation for the four-vertex does not include the resonant
channel. A full bound state analysis and the systematic inclusion of other channels will
be considered elsewhere.

It is left to specify the three-point function I'®) (p1,p2,p3) in (4.19a). In contrast to the
pivotal importance of the momentum dependence of the four-point function that of the
three-point function is averaged out in the vacuum polarisation and the fish diagram. For
the sake of simplicity, we therefore approximate the full vertex by its value at vanishing
momenta, p; = 0 for ¢ = 1,2,3. There, the three-point function is given by the third
derivative of the effective potential on the equations of motion, Ve(;?)(gbo). The effective
potential Vog(¢) is the quantum analogue of the classical potential, and is nothing but the
effective action I'[¢], evaluated for constant fields ¢,

V(6o = 5Tl V= / iz, (4.22)

Due to the Zy-symmetry of the ¢*-theory under ¢ — —¢, the effective potential is sym-
metric, Veg(—¢@) = Vesr(¢). Moreover, it admits an expansion about the solution to the
equation of motion, ¢? = qbg, which is valid for ¢ > gb(z). The latter constraint on the
modulus of (¢? — ¢2) originates from the fact that the classical effective potential is the
double Legendre transform of the classical potential. In the case of a non-convex potential
it is simply the convex hull. Schematically, this is depicted in Figure 4.1.

The effective potential satisfies its own flow equation, and for the sake of completeness
we briefly discuss its derivation and explicit form in Appendix A.1.6, more details can be
found in [1]. The present computation can be augmented by the full flow of the effective
potential, effectively leading to a cutoff dependence of the coupling Ay in (4.21) and similar
changes. While this provides further quantitative precision to the computation, it goes
beyond the scope of the present work and will be presented elsewhere. Here we shall
consider the expansion up to (¢? — ¢3)2, dropping higher order terms in accordance with
(4.20), and discuss the symmetric and broken phase separately in Section 4.1.5.2 and
Section 4.1.5.1 below.

4.1.5.1. Symmetric phase

In the symmetric phase with ¢g = 0 in (4.10), we use a Taylor expansion about ¢ = 0
for the effective potential,

0 A,
Ver(d) = 3 5 6™ (4.23)

n=1

The first two couplings, A1 and A9 are related to the correlation functions '@ and I'®
considered here. Hence, the coupling A\; agrees with the curvature mass squared in the
symmetric phase, where the curvature mass is defined as

m2,.. = V2 (go) = T@[g](p = 0) (4.24)
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in both phases. Moreover, the coupling A9 is nothing but the full four-point function,
evaluated at vanishing momentum. In summary we have

A = m? Ao =TW(p=0). (4.25)

curv )

For the initial UV pole mass m,,. = A, the curvature mass and the pole mass agree,
A1 = A2, and the initial coupling is the classical one, Ay = Ag. Hence, the initial effective
potential Vi;y(¢) at k = A reads

Viuld) = 5A%67 + 106" (4.26)

With the above approximations, all higher correlation functions are fixed and the flow
equation of the two-point function on the real frequency axes reads

Zy (2 —=18) K _qon .
T (wy) = —¢’(27"¢’)D§gd (wy) + 2Z4k2 — 9,82, (4.27)
where the retarded limit is given by wy = —i(w + i07) and is explicitly carried out

in Appendix A.1.5. S (3 ) is given schematically by

S*gf) = diagramms (p* = —k?) . (4.28)

We denoted the counter term action with a tilde since we already dropped constant terms
in the flow of order Ayk. Hence, only the dynamic part of the tadpole D& contributes.
It arises from the scattering tail of T'4) (p) and carries the spectral structure of the polar-
isation diagram, see (A.4). In particular, the deviation of the constant term in Figure 4.2
from its classical value, 2k, is of order (A\sk) and is therefore absorbed in the renormali-
sation constant. With that, (4.27) is consistent with the flowing on-shell renormalisation

condition (4.12).

4.1.5.2. Broken phase

In the broken phase with ¢y # 0 we use a Taylor expansion about ¢? = (;5(2) for the effective
potential,

Verr(d) =) An (g2 gy (4.29)

|
= 2n!

At vanishing momentum and constant fields, the correlation functions derived from the
effective action I'[¢g] coincide with the moments of the effective potential. We consider
n-point functions for n < 4 with

Tgo] (p = 0) = 33063
TOl60] (0 = 0) = b+ 22 68,

2 1
PWlgo] (p = 0) = Ao + 2Xa 6 + 15z M 60 (4.30)

In contrast to the symmetric phase discussed in Section 4.1.5.1, also higher order terms
with couplings A, contribute due to ¢g # 0. For this reason we have indicated the
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po-dependence of I'™ in (4.30). As discussed below (4.10), we generically drop the ¢o-
dependence for the sake of readability, it is implicitly assumed that all expressions are
evaluated at ¢yg.

As a consequence of (4.20), all expansion coefficients \,, with n > 3 vanish. The three
and four-point couplings are then given by

r®0) =)y, Ay =ID(0). (4.31)

With (4.24) we can express the minimum of the effective potential in terms of the curvature
mass and Ag, yielding

3m?
2 . curv

Using (4.32), the three-point function is expressed in terms of the full two- and four-point
functions at vanishing momentum,

r®)(0) =+1/30®(0) Mo, - (4.33)

Evidently, in the classical limit with Z4; = 1 and p;, = 0, the curvature mass agrees with
the pole mass. This limit is approached for asymptotically large pole masses, where the
effective coupling A\y/m,.. tends towards zero. Hence, the ultraviolet effective potential
Viv(¢) with k = A — oo is augmented with a classical dispersion with u = —A? and the
initial (classical) coupling A = g,

1 2 6A2
VUV(<Z5) = @)‘45 (¢2 - ¢(2)) ’ ¢% = T¢ ) (4-34)
for ¢? > ¢3. The initial curvature and pole mass are given by
m1201e = mzurv = 2A2 ° (435)

With these approximations, the real-time flow of the two-point function in the broken
phase, derived in Appendix A.1.2, reads

) 1 A
TP (W) =R (Dpol(wi) - 2D3g;(wi)) + A Do (W}) + 4Z4k* — aSP . (4.36)

(2)

The prefactors are given in (A.10) and Scf is given by

S’éf) = diagramms (p* = —2k?) . (4.37)

Additionally to the polarisation topology, we note that flow equation in the broken phase
differs from that in the symmetric phase. The constant part of (4.36) carries an additional
factor of 2. This resembles the additional factor 2 of the squared pole-mass in the broken
phase compared to its symmetric phase counterpart. Also the prefactor of the tadpole
diagram deviates from the symmetric case, since it includes the implicit k-dependence of
the internal lines via the flowing physical minimum.
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4.1.5.3. Resumé

In both phases, we have a positive curvature mass m.,., > 0 on the equation of motion
¢o. Its value is related to the pole mass m,,. = k in the symmetric, and m,,. = 2k in the
broken phase. The difference between the flows is the existence of vertices I'?"*+1 in the
broken phase. They are proportional to sums of powers of ¢g, see (4.30), and hence vanish
in the symmetric phase. Specifically, the flow of the two-point function in the broken
phase contains the diagrammatic topology of a vacuum polarisation, see Figure 4.5.

This leads us to the following structure: the CS flows are initiated deep in the symmetric
and deep in the broken phase for large pole masses and a given classical coupling Ay,
see (4.26) and (4.34) respectively. For the broken phase this entails that also the field
expectation value at the initial scale is large as it scales with A, see (4.32) and (4.34).
Then, the pole mass is successively lowered and for k& = 0 one reaches the phase transition
point from both sides. In particular, the flows do not leave the broken or symmetric
phase. This is in seeming contradiction to the standard fRG picture in a scalar theory,
where flows in the broken phase may end up in the symmetric phase, and those in the
symmetric phase end up deeper in the symmetric phase. This apparent contradiction is
resolved by the fact that ¢g in the standard fRG is defined from the subtracted EoM.
There, the trivial cutoff flow, which is o k%¢?, is subtracted from the effective potential,
and one recovers physics only in the limit £ — 0.

4.1.6. Results

In this Section, we present results for the non-perturbative spectral functions of the scalar
propagator in the symmetric and broken phase. The discussion of the numerical imple-
mentation is deferred to Appendix A.6.1. The results allow for an investigation of the
scattering processes in both phases. The present results are in remarkable quantitative
agreement with that obtained with the spectral DSE in [54]. This agreement of the spec-
tral functions from these two different functional approaches hold true for a large range
of effective couplings A\gy/mg, see Figure 4.7a, see also Table 4.1. In this coupling regime
this agreement provides a non-trivial reliability check for both functional approaches, thus
decreasing the respective systematic error.

Ap/Mpoe | 1/Zy (IRG) | 1/Z4 (DSE) | 1/Z4 (¢ = 0)
5 0.971 0.969 0.9998
10 0.950 0.945 0.9995
20 0.921 0.907 0.9986

Table 4.1.: Amplitudes 1/Z4 of the pole contribution for given effective couplings, corre-
sponding to the scattering tails displayed in Figure 4.7a and Figure 4.7h.
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(a) Spectral function of the propagator. The (b) Spectral functions in the symmetric phase.
1 — 2 and 1 — 3 particle scattering onsets 1 — 3 and 1 — 5 onsets are indicated in
are indicated in grey. grey.

Figure 4.7.: Spectral functions in the symmetric phase (left) and in the broken phase. The
allowed 1 — n onsets are indicated by vertical gray lines.

4.1.6.1. Symmetric phase

In the symmetric phase with ¢y = 0 we are left with the tadpole diagram in the flow of
the two-point function (4.9). The resummation (4.21) introduces a non-trivial momentum
dependence to the four-point function and, in consequence, also to the tadpole diagram.
This allows to calculate the propagator spectral function in the symmetric phase, i.e., at
vanishing field value, where the polarisation diagram is absent. For the respective flow
equation on the real frequency axes see (4.27). The resulting spectral function is shown
in Figure 4.7b. In the symmetric phase, the scattering continuum starts at 3m,,.. As
mentioned above, the dynamic tadpole contribution (A.4) carries the momentum structure
of the polarisation diagram, resembling the s-channel structure of the four-vertex. Still,
the onset of its imaginary part is at thrice the pole mass, since the bubble resummed
vertex represents a series of 2 — 2 scatterings which leads to a generic two-particle onset
of ps. The quantum corrections to the symmetric phase propagator are small compared
to the broken phase. The amplitude on the mass pole is close to one compared to the
respective values in the broken phase, see Table 4.1. This is expected, since the first
dynamic contribution is of two-loop order and corresponds to the sunset topology.

4.1.6.2. Broken phase

In the broken phase the condensate is non-vanishing, ¢g # 0. To compute the spectral
function, the flow equation is evaluated on the real frequency axes see (4.36).

The N-particle onset positions of the spectral scattering tail are governed by the imagi-
nary part of (4.36). For the polarisation diagrams, where only propagators come into play,
the flow exhibits an onset at the sum of the two mass-poles. In contrast, the contribution
of the tadpole leads to an onset at thrice the pole-mass, as the four-point spectral function
only consists of a scattering continuum starting at 2m,,,., cf. Figure 4.8. A more detailed
discussion of the scattering onsets in general is found in Appendix A.1.5 and specifically
for the tadpole in Section 4.1.6.1.
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Figure 4.8.: Spectral function of the four- Figure 4.9.: Fuclidean propagator in the
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and 2 — 3 particle scattering rect computations and spec-
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In Figure 4.7a the spectral function from the current fRG approach is compared to
spectral DSE results from [54]. Every quantity is measured relative to the respective
pole mass to facilitate comparison with the DSE results. This allows to compare the
relative magnitude of the scattering continua for different coupling strengths. For effective
couplings Ag/mq. S 20, the spectral weight of the scattering continuum is sub-leading,
as can be inferred from the combination of Figure 4.3b and the sum rule (4.15). The
amplitudes of the pole contributions are listed in Table 4.1.

We find a remarkable agreement of both methods in the tested coupling range. For effec-
tive couplings Ag/mye. = 20, the deviations start growing, specifically at the thresholds.
Deviations between both methods arise due to differences in the resummation structure
of the two functional equations in the current truncation. The convergence of functional
techniques for a large range of couplings is non-trivial and strengthens our confidence in
spectral functional approaches.

In general, the tail of the propagator spectral function is enhanced for stronger couplings,
while the residue of the mass pole decreases as the scattering states become more accessible
due to the rising dimensionless interaction strength. The three- and higher N-particle
onsets are graphically not visible in the full spectral functions of Figure 4.7a, but present
in the data. In the limit of large couplings we expect the three-particle onset to become
more pronounced as the tadpole contribution becomes large.

The four-point spectral function shown in Figure 4.8 consists of only a negative scat-
tering tail corresponding to a 2 — 2 scattering process. For higher couplings, the three-
particle onset becomes visible. The different suppression of higher N-particle thresholds in
the propagator- and four-point spectrum are explained by dimensional analysis. While for
the propagator spectral function, higher N-particle onsets are suppressed by their squared
energy threshold, the four-point spectral function decays only with A~!, leading to a sup-
pression linear in their respective energy thresholds. In both cases, four-particle or higher
onsets are strongly suppressed, since they come with at least one additional loop each.

Figure 4.9 shows the Euclidean propagators corresponding to the spectral functions
of Figure 4.7a. As a cross-check, we compare the Euclidean propagator calculated from the
spectral representation to the propagator directly obtained from the integrated Euclidean
flow. We find the spectral representation to hold.
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4.1.7. Spectral flows close to the phase transition

This subsection is based on [5]. All practical calculations have been carried out by Konrad
Kockler in the context of his Bachelor thesis, which I co-supervised. This includes the
additional material for this Section in Appendices A.1.7 to A.1.10 and A.6.2.

As discussed below (4.10), this theory exhibits a second order phase transition of the
Ising-universality class, given by the Wilson-Fisher fixed point of the renormalisation
group. It has two independent critical scaling exponent, that are carried by the prop-
agator G(p) of the theory.

1

G(pQ) X W )

(4.38)

characterised by a single critical exponent n =~ 0.036. To probe this scaling region for
real frequencies, we approach it from the symmetric side, see also the discussions in Sec-
tions 4.1.5.1 and 4.1.6.1. In the following, we present results for the spectral functions
near the phase transition and extract the scaling exponent 7 from our computations in
three different ways: utilizing the spectral tail of the propagator, the wave function renor-
malisation on the pole, and the scaling behaviour of the four-point spectrum. We compare
our results for the critical exponent to that obtained via a fixed point analysis in LPA’
and discuss the necessary improvements to obtain a quantitative description of the scaling
regime in the future. In the scaling limit, the scaling form of the propagator (4.38) carries
over to the single particle spectral function,

p(\) oc X2 (4.39a)

In the absence of approximations, the exponent in (4.39a) is the critical exponent 7 ~ 0.036
of the three-dimensional Ising model. The s-channel spectral function p4 in (4.5) of the
four-point scattering vertex shows the scaling

pa(\) oc X127 (4.39Db)

The scaling (4.39b) follows readily from (4.5) and (4.21), and specifically from the scaling
behaviour of the fish diagram, for more details see Appendix A.1.8.

We remark that (4.39) cannot hold true for n > 0 in the UV: the renormalised CS
flows with on-shell renormalisation exhibits a sub-leading momentum scaling of the flow
re (p) for large momenta and hence for large spectral values. Accordingly, the momentum
dependence of the classical input prevails at large momenta. Note also that (4.39a) for all
spectral values violates the sum rule (3.52). Indeed, it can be shown, see e.g. [43, 79], that
this sum rule is violated for n > 0 if (4.39a) holds true for A — co. A trivial momentum
dependence in the UV with 1/p?, which is encoded in the spectral sum rule, is in one-to-
one correspondence with canonical commutation relations and hence with unitarity and
probability conservation. For > 0 we find [, p(A) = oo.
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the bare coupling \y.

Figure 4.10.: Propagator and vertex spectral function in the scaling regime: The different
curves correspond to spectral functions at different pole masses m,,. = k,
varied over two and seven orders of magnitude respectively. We measure
the spectral parameter in units of the classical coupling Ag.

4.1.7.1. Spectral scaling

We proceed by a discussion of the spectral functions p(A) and p4(X) as well as the respective
critical exponents defined by the methods (1,2). Our numerical results for the spectral
functions are shown in the doubly logarithmic plots in Figure 4.10. The emergence
of an increasing scaling window in the spectral regime A/Agy < 1072 with power law
decays (4.39) for successively smaller pole masses is clearly visible. The respective critical
exponents can be extracted from Figure 4.11a and Figure 4.11b, where we show the sliding
scaling exponents 7;(\) with ¢ = p, ps. These sliding scaling exponents are defined by
logarithmic spectral derivatives of the logarithms log p,log(—p4). We also subtract the
canonical scalings, to wit,
A Op

Np(A) =2+ SN (4.40a)

and

A O

Nps(A) =1 — POES (4.40b)

For the scaling spectral functions (4.39), the sliding scaling exponents 7;(A) reduces to
the critical exponent 1 and 27 respectively. We define the critical exponent 7; by the
plateau value of 7;(\) in Figure 4.11. Both plateaus extend successively into the infrared
in the scaling limit with \y/mg — oo.

The upper boundary of the plateaus stays constant: as already discussed below (4.39),
the s-channel resummation for the four-point function in the current approximation leads
to decaying momentum dependence of the flow of the two-point function. This is related
to the UV-behaviour of the four-point function, that approaches the classical coupling Ay
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Figure 4.11.: Sliding scaling exponents 7, () with i = p, ps as functions of A/Ag. The
scaling regime emerges for A/Ag < 10~2. We also depict the quantitative ref-
erence results by the thick black line: conformal bootstrap, n = 0.03631(3),
[139], and fRG, 1 = 0.0361(3) from [140].

at high momenta due to the decay of the loop term in (4.21). This behaviour ensures
the sum rule. Note also, that the intrinsic scale, at which the four-point function looses
scaling, depends on the initial condition, i.e., the initial classical coupling As;. For a
detailed discussion, see Appendix A.1.8. This freezing of the flow explains the position of
the upper boundary. The elimination of the intrinsic scale requires the feedback of non-
trivial momentum dependencies of the four-point function as well as a more sophisticated
initial condition, for a discussion see Appendix A.1.10.

In conclusion, we extract the critical exponents from the frequency regime, in which the
single particle and s-channel vertex spectral functions approach a scaling form. The critical
exponents 7; are readily extracted from the plateau values of 7;(p), (4.40) for A\/Ay < 1072,
depicted in Figure 4.11. These plateaus extend towards A — 0 for mg/Ay — 0. This leads
us to

1, = 0.111(1), (4.41a)
and
Zﬂ = 0.093(5) . (4.41D)

The disagreement of the respective values for 7 point at the fact, that our computation has
not reached the full scaling limit yet. The loop contributions to the flow equation of the
inverse propagator (4.27) and the loop diagram in the denominator of (4.21) still receive
considerably large contributions from the non-scaling part of the propagator. See also the
wave function renormalisation on the pole in Figure 4.12, which still carries approximately
half of the spectral weight at &k = 1075, We can see in 4.11b, that 7, is lowered towards
smaller pole masses, while 77,, grows in the scaling limit. This entails, that the results in
(4.41a) and (4.41b) constitute upper and lower limits for the true n of our computation
respectively:

0.093(5) < n < 0.111(1). (4.42)
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Figure 4.12.: Flow of the spectral weight 1/Z4 of the pole contribution as a function of the
pole mass m,,,. = k. For large pole masses with k/\g — 00, Z4 approaches
unity, which reflects its UV-irrelevance. For k/Ag — 0, the tail successively
carries more of the spectral weight, and the pole contribution vanishes with
a power law. The inset shows the anomalous dimension 74, (4.43), as a
function of the pole mass. For £ — 0 it approaches the critical exponent 7.

We close this Section with a discussion of the results (4.41) in view of the critical expo-
nent n = 0.036 in the three-dimensional Ising model with the reference results: conformal
bootstrap, n = 0.03631(3), [139], and fRG, n = 0.0361(3) from [140]. A large part of the
deviation can be traced back to the ¢* approximation of the effective potential. This will
be illustrated in a comparison of the critical exponents in LPA’ in Section 4.1.7.3. This
deficiency is readily resolved by implementing a full effective potential along the lines of
[141]. For a discussion, see Appendix A.1.10. The current results are compatible with
spectral DSE results in a comparable truncation in the broken phase, see [2], and fRG
results on the Keldysh contour, see [142].

4.1.7.2. Cutoff scaling

With (4.41a) and (4.41b) we have obtained n from the spectral scaling discussed in
Section 4.1.7.1. The third method consists of using the k-scaling of the wave func-
tion on the pole as a proxy for the momentum and spectral scaling. The result for
Lok = Z¢,k(p2 = —kz) as a function of the pole mass m,,. = k is depicted in Fig-
ure 4.12. For large pole masses, k — oo, the wave function Z, approaches unity: it is a
UV-irrelevant coupling, and accordingly its flow dies out. Moreover, the theory approaches
the classical one, and the full spectral weight is carried by the pole, while the scattering
tail vanishes throughout.

The scaling regime is approached for k/Ay < 10~2, which is rather similar to the scaling
regime in the spectral functions p, ps with A/As < 1072, see Figure 4.10. For k/A\, — 0,
the theory is increasingly dominated by scattering processes, and the spectral weight 1/Z,
of the pole contribution is successively suppressed and vanishes for kK = 0. As the spectral
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weight of the scattering tale s increasingly dominated by the scaling part, the wave function
Zg4 on the pole has to scale with £7". Similar to (4.40a) and (4.40b) we define

8tZ¢7k

- _ 4.43
N6,k o (4.43)

We remark that 7y ;. differs from the standard anomalous dimension used in fRG studies:
the latter are typically defined as total t-derivatives at a fixed momentum,

0 Zoi(p)
Zs 1(p)

often evaluated at p = 0. In turn, (4.43) is given by 1. = 1.k (D) — POpZs 1(p), evaluated
at p? = —k2.

The anomalous dimension 7 is depicted in the inlay Figure 4.12 as a function of the
pole mass m,,. = k. Figure 4.12 also shows Z, , and the scaling limit is visible in both
quantities. We read off the critical exponent 1 as the limit limy_,o 14 1 with

1N = Ng,k—0 = 0.095(9) . (4.45)

Ng.k(p) = (4.44)

Equation (4.45) agrees well with the critical exponent obtained from the spectral functions,
(4.41a) and (4.41b), all of which provide a value n ~ 0.1. In order to appreciate its
accuracy, it should be contrasted with similar approximations in the derivative expansions,
which is done in the next Section.

4.1.7.3. Benchmarks and extensions

We close Section 4.1.7 with a discussion of the systematics of the present approximation,
its embedding in existing results, and of systematic improvements. In the present work we
aimed at the computation of fully momentum-dependent real-time correlation functions
with an emphasis on the approach to and the scaling in the scaling regime around a second
order phase transition. The respective critical exponent 7 is one of the outcomes of this
analysis, but it was not the primary target. Still, we will embed the present results and
the underlying approximation in the landscape of dedicated fRG computations of critical
exponents. Typically, these computations are done within a fixed point analysis of the fRG
which allows for the most direct access to critical physics but does not cover the interface
to the non-universal regime. These results have mostly been achieved within the derivative
expansion, for an overview see the review [114]. In terms of comparability of fixed point
the current approximation with momentum- but field-independent dressings fits to the
LPA’ (effective potential and cutoff dependent wave function) that lies in between the Oth
and first order of the derivative expansion.

In contradistinction to LPA’ we have considered full momentum-dependent propagators
and vertices but only considered the effective potential up to the order ¢*. Moreover, we
approached the scaling regime from the symmetric regime while the fixed point analy-
sis reveals a finite dimensionless expectation value of the field with the fixed point value
p* # 0 and p = Zy¢*/(2k), see (A.55) in Appendix A.1.9. This entails that scaling
properties converge faster in the broken regime. Furthermore, we have already mentioned
before that a comparison between LPA’ and the present approximation scheme, or rather
the specific order of this scheme used here, has been done for a Yukawa model in [141],
concentrating on non-universal physics. There it was found that pole masses and further
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Correlation function n
propagator 0.111(1)
Spectral flow | four-point function | 0.093(5)
flow of Z 0.095(9)
Fixed point LPA', n=2 0.1600
analysis LPA’ 0.0802

Table 4.2.: Critical exponent 7 from different correlation functions in the present work.
The results define upper and lower boundaries on the true scaling n in our
computation. We also list benchmarks from LPA’ with the CS-regulator. Here,

V(f?) = agveﬁc, see (4.53) and below. The last entry sets a point of reference,

€

obtained with the standard fixed point analysis, see Appendix A.1.9.

observables agreed very well on the percent level, if fully momentum dependent computa-
tions and LPA’ computations with full effective potentials are compared. We expect that
this agreement worsens in the scaling regime with its algebraic (non-local) momentum
decays. In any case, LPA’ can be embedded in the present approximation as a lower order
approximation. Accordingly, its results should be seen as a lower bound for the quanti-
tative precision of the current scheme. Finally, the momentum dependent computation
of this work uses the on-shell renormalisation scheme instead of the standard one: With
on-shell renormalisation all quantities are measured directly in the physical correlation
length £ oc 1/k with the pole mass mpoe = k in contradistinction to £ oc 77 in the stan-
dard fRG renormalisation scheme. This scheme, the MOM?-scheme has similarities to
a MOM-scheme commonly used in perturbation theory and Dyson-Schwinger equations,
but also carries some differences, see [39]. In any case, we expect different convergence
pattern for both schemes.

Bearing these differences and similarities in mind, we compare the present results to
LPA’ results of a fixed point analysis within a Taylor expansion of the full effective poten-
tial. The respective computations in LPA’ within the standard RG scheme for different
regulators can be found in the literature, see the review [114]. We start the discussion
with the comparison of the present truncation with Ve(f?>2) = 0 to a standard Euclidean
fixed point analysis in LPA’ with standard and on-shell renormalisation in the same order
of the Taylor expansion. For the computation, see Appendix A.1.9. We are led to the
critical exponent 7),—9) = 0.1600. This has to be compared with 7 ~ 0.1 from (4.41a),
(4.41b) and (4.45), see Table 4.2. Evidently, the inclusion of full momentum or spectral
dependences yields significantly better results, even though the fixed point analysis is
bound to have the better convergence due to expanding about the fixed point value of the
field with p* > 0. A further difference to the standard fixed point analysis is the on-shell
renormalisation scheme (4.12). We close this comparison of the current results with the
standard fixed point analysis. Our result for the critical exponent of the fixed point anal-
ysis in LPA’ with the CS-regulator is: npary = 0.0802. The comparison with our entails
that higher orders scatterings in the fixed point potential are crucial for the extraction of
critical exponents. This large improvement upon including the momentum dependence is
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expected for the CS-regulator from functional optimisation theory, see [89, 102, 143-145]:
the CS-regulator is not optimised in terms of a convergence of an expansion in momentum
dependences as it collects contributions in the full (loop) momentum regime. Accordingly,
we expect better approximations of the full momentum dependence to lead to sizeable
improvements. In turn, regulators that are optimised for approximation schemes relying
on expansions in momentum dependences, such as the derivative expansion, lead to a more
raid convergence. This is evident within a comparison to LPA and LPA’ results with the
flat or Litim regulator, [143-145], that is the optimised one for LPA but not beyond [89].
With the same approximation to the effective potential as in the spectral flows, we obtain
n = 0.0546, and with a full effective potential, we obtain n = 0.0443.

4.1.8. Conclusion

In this section, we demonstrated how to compute single-particle spectral functions of
a scalar ¢*-theory within the spectral functional renormalisation group (fRG) approach
proposed in [1]. This method leads to renormalised spectral flows with flowing renor-
malisation conditions and enables fully self-consistent computations of non-perturbative
spectral functions. We derived full flow equations for the inverse propagator in both the
symmetric and broken regimes of the theory; for a detailed discussion, see Sections 4.1.4
and 4.1.5.

Our setup is manifestly Lorentz invariant and preserves the causal properties of the
theory throughout the flow. Every point on the Callan-Symanzik RG trajectory corre-
sponds to a physical theory with mass scale k. Trajectories in the symmetric and broken
regimes each originate from an infinitely heavy theory in their respective phases and meet
at the phase boundary in the strongly interacting, massless limit of the theory; see Sec-
tion 4.1.2 and Figure 4.1. Thus, our setup avoids flows through the strongly interacting
phase transition region, which are typically present in momentum cutoff flows. This min-
imises systematic errors arising from strong dynamics near the phase transition, where
flows are highly sensitive to truncation artefacts. Moreover, the implementation of a flow-
ing renormalisation condition removes the need for fine-tuned initial conditions and allows
for monotonous mass flows.

The explicit results in the broken phase show impressive agreement with those obtained
in [54] within the spectral DSE approach; see Section 4.1.6.2. This affirms the reliability
of the spectral functional approach for the non-perturbative computation of fundamental
Minkowski-space correlation functions.

In Section 4.1.7, we presented the results of [5], where we used the spectral CS-flows to
approach the phase transition from the symmetric side. The resulting spectral functions,
shown in Figure 4.10a, develop an infrared scaling form. The scaling behaviour in the
UV is limited by an intrinsic scale arising from the s-channel resummation of the four-
point function, reflecting the constant UV-limit due to the neglect of u- and t-channel
contributions. This limitation can be overcome by coupling the flow to the full effective
potential, which is also necessary for a quantitative analysis of critical exponents. While
the inclusion of a full potential is conceptually straightforward, it requires substantial
numerical effort and is thus left for future work.

We computed the critical exponent of the propagator in the scaling regime using different
methods. The results yield a band 0.093(5) < 7 < 0.111(1) due to non-critical remnants in
the propagator. We expect this band to narrow further for even smaller pole masses; see the
discussion below (4.41). Although the extracted anomalous dimensional still deviate from
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the true critical value, the inclusion of full momentum dependencies significantly improves
the result compared to the LPA’ approximation in a comparable truncation. We emphasise
that the present spectral fRG approach is not designed for precise computations of scaling
exponents. Rather, the main achievement of this work is to demonstrate the power and
numerical feasibility of the fully self-consistent spectral Callan-Symanzik approach for the
computation of real-time correlation functions near criticality.

In contrast to DSEs, the fRG approach captures average momentum dependencies of
vertices via their scale dependence. This allows the inclusion of non-trivial vertex dynamics
without requiring intricate spectral representations of higher-order correlation functions.
Furthermore, the current spectral fRG framework can be straightforwardly extended to
include the flow of the full effective potential, and we hope to report on respective results
in the near future.
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4.2. Boundstates from the spectral BSE

This subsection is based on [2]. All practical calculations have been carried out by Andrés
Gomez in the context of his Master thesis, which I co-supervised. This includes the addi-
tional material for this Section in Appendices A.2 and A.6.3.

The study of bound states with functional methods requires the resummation of a large
set of diagrams in a non-perturbative manner. The standard tool for computing such
properties in continuum formulations of quantum field theory (QFT) is the Bethe-Salpeter
equation (BSE) [146, 147]. Direct extraction of the physical spectrum in terms of the
corresponding poles and cuts requires to solve the BSE and, in consequence, knowing the
input correlation functions in the timelike domain. This entails additional computational
complexity in comparison to calculations in the spacelike domain.

This intricacy has been treated within different approaches. Important examples are
direct calculations in the complex momentum plane below the onset of singularities [40,
148-151], Cauchy integration [152-157] and contour deformation techniques [48-50, 91,
92, 158-168], or the Nakanishi method [52, 169-173]. Other works employ reconstructions
from Euclidean space data, for example with Padé approximants or the Schlessinger-
point method [44, 48, 138, 168, 174-181], or ML-inspired reconstructions [43, 45, 46, 182—
185, 185-189]. These methods have been successful in extracting physical spectra, but do
not fully recover the analytic structure of correlation functions.

In this work, we introduce the spectral BSE approach, allowing for an efficient solution
in the timelike domain by making use of spectral representations for the input correlation
functions. Their corresponding spectral functions are accessible via the recently developed
spectral functional approach [54], which has found application to QCD in the context of
DSEs [45, 80, 115, 190, 191], and was extended to the functional renormalisation group
in [1], with applications to scalar theories [3] and gravity [81]. This enables the direct
computation of physical masses of bound states and resonances from the corresponding
spectral BSE, while also opening the door to investigating the analytic structure of Bethe-
Salpether wave functions [40, 148, 149, 170, 172, 192-199].

The spectral BSE is set up at the example of a scalar ¢* theory in three spacetime
dimensions. The theory exhibits a second order phase transition and belongs to the Ising
model universality class. In the vicinity of the phase transition, the emergence of a two-
particle bound state with mass M ~ 1.8m, where m is the mass gap of the theory, has
been observed in several works [135, 138, 200-203]. The aim of the present study is to
approach this bound state from the symmetry-broken phase by considering the infinite
coupling limit A — oo.

Our work is outlined as follows. In Section 4.2.1 we set up the spectral BSE-DSE system
for the scalar ¢* theory and discuss the suitable truncations for the infinite coupling limit.
We present our numerical results for the correlation functions and the bound state position
in Section 4.2.2, and conclude in Section 4.2.3. Details on the spectral DSE, the BSE and
the numerical implementation can be found in the appendices.
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Figure 4.13.: Dyson-Schwinger equations for the two- and three-point functions; the latter
contains further two-loop terms which are not shown. The full propagator is
represented by a simple line, classical vertices are represented by small black
dots and full vertices by large blue dots, see also Figure 2.1.
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4.2.1. Spectral DSEs and BSEs

In this Section, we discuss the spectral BSE-DSE system used in this work. We briefly rec-
ollect the spectral DSE approach in Section 3.2.1, and discuss the employed expansion of
our effective potential in Section 4.2.1.2. Section 4.2.1.3 is dedicated to a detailed discus-
sion of our systematics relevant for the systematic error control. Finally, in Section 4.2.1.4
we discuss the BSE implementation in the present spectral approach.

4.2.1.1. Dyson-Schwinger equations

The classical action of the scalar ¢* theory in d = 3 dimensions reads
1 A
SW%=/d%{2¢Gﬁx+m@¢+yj¢}, (4.46)

where A4 is the bare four-point coupling, and mg is the bare mass of the scalar field.
Because the coupling constant A, carries a dimension of mass, all quantities can only
depend on the dimensionless ratio Ay/mg. In the following, we switch to dimensionless
parameters by considering all dimensionful parameters in units of the pole mass m.

The quantum analogue of the classical action (4.46) is the quantum effective action I'[¢],
see e.g. [204]. This is formalised through the master Dyson-Schwinger equation

L[] 6S[¢]

stating that the quantum equation of motion of the scalar field ¢ is obtained by varying
the quantum effective action w.r.t. the mean field ¢ = (p). Functional relations for all
one-particle irreducible (1PI) correlation functions,

™ [Dl(p1,. -, pn) = 5¢(p1(§nr[q?¢(pn) 7

(4.48)

are obtained from (4.47) by the respective ¢-derivatives. Generally, the DSE for )
depends on I'"*2) leading to an infinite tower of coupled equations. A closed system of
DSEs is achieved by truncating this tower, e.g., by approximating correlation functions by
their classical counterpart from some order n on, T'(">7) ~ §(m),
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4.2. Boundstates from the spectral BSE

The central object in any functional application is the full propagator G which can be ob-
tained from the DSE for its inverse I'®). The corresponding diagrammatic representation
of the latter is shown in the top panel of Figure 4.13, containing a tadpole, polarisation,
squint and sunset diagram. Apart from the classical vertices, these diagrams also involve
the full three- and four-point vertices (marked by blue blobs). The corresponding DSE for
the three-point function is depicted in the bottom panel of Figure 4.13.

We employ the spectral DSE framework developed in [54]. Accordingly, we make use of
the Kallén-Lehmann representation for the full propagator,

G(p):/ooo ?m, with  p(A) =2ImG(—i(A+i07)), (4.49)

in the diagrams of the gap equation. Within a suitable truncation, the DSE can then be
solved directly for timelike momenta due to the resulting perturbative form of the mo-
mentum loop integrals. This yields direct access to the spectral function and we dropped
the spatial momentum due to Lorentz covariance.

The spectral function p represents the distribution of the physical states in the full
quantum theory, and is parametrised as a sum of poles and a continuum tail, see also
(4.14).

In an s-channel approximation p?> = s and ¢t = v = 0, a similar spectral representation
can be devised for the four-point function, see also (4.50)

S dX X pg(N)
(4) — AA A P4
I (p) )\¢+/0 7Tp2—|—)\2.

(4.50)

The ¢* theory in three dimensions is super-renormalisable. The only two superficially
divergent diagrams in the propagator DSE are the tadpole and sunset diagrams in Fig-
ure 4.13, carrying a linear resp. logarithmic divergence. We employ the spectral renor-
malisation scheme devised in [54]. By choosing an on-shell renormalisation condition,
the physical scales of our theory are fixed by the pole position of the propagator; see
Appendix A.2.1 for details.

4.2.1.2. Effective potential

Instead of resolving the full field dependence of the correlation functions, it is convenient
to work on the physical solution to the quantum equation of motion (EoM)

6I'[¢]

5¢(x)
The symmetry-broken regime of the scalar theory is signalled by a non-vanishing and
constant vacuum expectation value ¢g = (), giving rise to a non-vanishing three-point
interaction already at the classical level. For this reason, we solve the Dyson-Schwinger
equations in the background of the non-vanishing condensate ¢g. The classical vertices
S(M[¢o] in the Dyson-Schwinger equations are given by

S®[go] = Ay 0, SW[go] = Ng - (4.52)

To determine ¢g in the broken phase dynamically, we expand the effective potential
around the solution of the equation of motion,

= 0. (4.51)

o0

Varld] = 3 (o (6% = 60" (4.53)
n=2 ’
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Figure 4.14.: The skeleton expansion for the propagator employed in this work. The full
propagator is represented by a simple line, classical vertices are represented
by small black dots and full vertices by large blue dots, see also Figure 2.1.
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The n-point vertices at vanishing momenta, which we abbreviate by I';,, are then obtained

13
P = T go)(pn = 0) = L vetlOl] (4.54)
(99)" =00
with p, = (p1, ..., pn). We assume that higher orders in the mean field ¢ are subleading
and truncate the series at second order, thus parametrising Veg[¢] by its second and
third moments vy and v3. Accordingly, the two-, three- and four-point vertices at zero
momentum are given by

from

1

[y = 32 b3,

1
F3202¢0+ﬁv3¢3,

2
Ty = vy + £ o2 . (4.55)
By inverting (4.55), one obtains ¢, v2 and v3 from the zero-momentum correlations func-
tions as
3l — /9I'5 — 15050
¢o = =3 3 21 (4.56)
Iy
and

_ 6’3 — T'ago vy = 3(T'4¢0 — I'3)
5¢0 ' foR

The minus sign in front of the square root in (4.56) is determined by the limit Ay/m — 0,

where the full vertices approach their classical values.

() . (457)

4.2.1.3. Systematics and truncations

Without approximations, the DSE of the inverse two point function carries the full non-
perturbative structure of the propagator. In practice, truncations are necessary to deal
with the higher correlation functions, which correspond to a certain resummation struc-
ture. We are particularly interested in the scaling limit A\y/m — oo, where the two-,
three- and four-point functions should follow the scaling relations

r® ~p2n 76 L p3a=n/2  p@ o pl=2n (4.58)
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Figure 4.15.: Inhomogeneous BSE for the four-point vertex. The BSE kernel is denoted
with a grey box, for the full propagators and vertices see Figure 2.1.

The anomalous dimension 7 is known to be 1 ~ 0.0360 for the Ising universality class in
three dimensions [205-207]. This imposes tight constraints on the approximation scheme.
To ensure the correct scaling behaviour of the diagrams, we employ a skeleton expansion
of the propagator DSE. To that end, we convert the classical three- and four-point vertices
into full ones. This procedure introduces additional diagrams which have to be subtracted
to remain consistent at a given loop-order. For simplicity, we truncate the expansion
of the DSE at two-loop order, leading to the DSE in the skeleton expansion depicted
in Figure 4.14. Note the changed prefactor of the sunset diagram, stemming from the
additional contributions to the tadpole diagram with a full four-point function. The
squint diagram is fully absorbed in the now fully dressed polarisation diagram. The latter
also produces the double polarisation and the kite, which have to be subtracted. Both of
them will be ignored in the present work since the kite corresponds to higher-order terms
in ¢¢ and the double polarisation does not add qualitatively to the analytic structure of
the propagator DSE.

To close our approximation, we need to specify the higher order correlation functions.
We generally perform a zero momentum vertex approximation for all dressed vertices.
Nevertheless, since we have argued that the tadpole produces also the sunset topology, we
have to include the relevant momentum structure of the four-point function in this dia-
gram. For simplicity, we start from an inhomogeneous BSE, which is shown in Figure 4.15
and reads

@ (g1, g2,p) = Mg + /k K(q1,k,p) G(ky) G(h_) TD (k, g2, p). (4.5)

Here, p is the total momentum, ¢; and ¢y are relative momenta, K is the two-particle
interaction kernel, G is the full propagator with k+ = k +p/2, and [, = [ d3k/(2m)3.
If we retain only the classical vertex in the kernel, K(qi,k,p) = —A/2, the equation
amounts to a bubble resummation in the s-channel approximation,

Ag

rdp) = —"2
(p) ]- + >\(j) ]-_-[ﬁsh (p)

(4.60)
Equation (4.60) is also readily derived from the DSE of the four-point function in the
s-channel approximation with ¢ = 0, also dropping the two-loop terms in the DSE.

The structure of the ‘fish diagram’ in (4.60) is the same as that of the polarisation
diagram and reads

oa(p) = 5 [ Glk) Gk, (4.61)
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4.2. Boundstates from the spectral BSE

it corresponds to the spectral integral (A.61) with gsy, = 1/2 in Appendix A.2.1. In the
limit Ay/m — 0, i.e., for a classical propagator G(k) = 1/(k* + m?), the integral reduces

to
arctan /x 1

_— 11
16mm /x ’ aun (0) =

Hgan(p) — (4.62)

16mm’

with 2 = p?/(4m?). The spectral function of the resummed s-channel four-point function
is extracted by inverting (4.50) in analogy to the propagator spectral function (A.60). In
this manner, the tadpole with a dressed four-point vertex can be computed in the form of
a polarisation diagram with the insertion of this spectral function.

For the three-point vertex we consider its DSE up to one-loop terms as shown in Fig-
ure 4.13. For simplicity we restrict ourselves to vertices at zero momentum, i.e., we assume

) (p1,pa,p3) =~ T3, IW(p) ~Ty. (4.63)

With the classical three-point function S®)[¢g] = Ap®0, the DSE reduces to the algebraic
equation
T3 = ¢ory — 22061305 (0) — Po AT alTser, (0)po A s T3 ITi (0) - (4.64)

Hereby, the triangle diagram
) = [ G Gk Gl (4.65)

corresponds to the spectral integral (A.61) in Appendix A.2.1 with a prefactor gy, = 1.
For a classical propagator it reduces to

1 1 23/2
alp) = gy g etan | gy | (4:66)

with 2 = p?/(4m?) and II(0) — 1/(327wm?). One can further eliminate ¢y by combining
(4.56) and (4.64), which results in a quartic equation for I's and yields

/ 12
2_51‘\46a+b< 02+€G—C)

(Ts) T 6hy I (0)(26—5a)

(4.67)

with the coeflicients
2
a= M2l (0), b=14+2XI10(0), c=1-— g)\d,Hﬁsh(O) . (4.68)

This closes our approximation for the DSE system. For the respective results, see Sec-
tion 4.2.2 and especially Figure 4.17.
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4.2. Boundstates from the spectral BSE

Figure 4.16.: Homogeneous Bethe-Salpeter equation, derived from the inhomogeneous one
in Figure 4.15. The BSE kernel is denoted with a grey box, the BSE wave
function with a orange circle and the lines are full propagators.

4.2.1.4. Bethe-Salpeter equation

For the calculation of scalar two-particle bound states, we consider the homogeneous BSE
shown in Figure 4.16,

U(q, P) = /kK(q, k, P)G(ky) G(k_) U (k, P). (4.69)

Its structure is analogous to that in Figure 4.15 except for the inhomogeneous term:
U(q, P) is the Bethe-Salpeter amplitude, K is the two-particle irreducible kernel, and
G(ky) with kyx = k £+ P/2 are the dressed propagators. The total momentum is on-shell,
i.e., P2 = —M?, where M is the mass of the bound state.

Even though the homogeneous and inhomogeneous equations share the same structure,
we note that in our setup they are not directly connected. We employed (4.59) as an
ingredient to generate a minimal four-point vertex that is consistent with scaling, whereas
the kernel of the homogeneous BSE is related to the self-energy through a functional
derivative with respect to the propagator. A possible alternative would be to consider a
4PT system [208-210], which automatically generates a consistent truncation for the two-,
three- and four-point vertices together with the BSE kernel, but this is beyond the scope
of the present work. Here we restrict ourselves to the contributions originating from the
one-loop terms in the self-energy, which are the tadpole and polarisation diagrams. The
former generates a scalar four-point vertex and the latter ¢- and u-channel exchanges in
the BSE kernel. Thus, up to two-loop terms the kernel takes the form
Glg—k)+G(qg+k) F%—g, (4.70)
2 2
where I's5 and I'4 are the three- and four-point vertices at zero momentum. Note also that
the inhomogeneous BSE (4.59) does not support bound states since its kernel —\4/2 carries
a negative sign, whereas the additional ¢- and u-channel exchanges in the homogeneous
BSE change the sign of the kernel to be positive.

Each dressed propagator can then be computed by means of its spectral representa-
tion (4.49) via the assignment of a unique spectral mass. Thus, aside from the spectral
integrals over A\; and Ao which are performed numerically, the two internal propagators in
the BSE take the form

K(q,k,P) =

1 1 1
= , (4.71)
B4+ E+) 0 Qf-Q)
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Figure 4.17.: Left: Real (blue) and imaginary (red) part of the two-point function obtained
in the skeleton expansion, plotted for real frequencies and different values of
Ag/m. Right: Spectral function p(w). All quantities given in mass units.

and the sum of the t- and u-channel contributions in the kernel is

1 2@%
(q—k‘)2+)\§+(q+k)2+)\§:Q§_4(q.k)2’ (4.72)
with
Q=K+ P24+ (N2 +)3)/2,
P=k-P+ (X -23)/2,
Q3= +K + 3. (473)

Apart from the spectral representation, we solve the BSE using standard methods, see
e.g. [40, 211]. By expressing the amplitude ¥(q, P) in terms of spherical coordinates and
discretising the momentum grid (see Appendices A.2.4 and A.6.3 for details), the BSE
turns into an eigenvalue equation for a kernel matrix M,

MU =n; ¥, (4.74)

whose eigenvalues 7; correspond to the ground and excited states and their eigenvectors
U, encode the respective Bethe-Salpeter amplitudes. Apart from the dependence on the
parameter Ay/m, the eigenvalues depend on the bound state mass ratio A//m through the
total momentum P. We then numerically find the value of A /m for which the relation

" (% ﬁ) _q, (4.75)

)
m m

holds. This is the on-shell solution for a given state. The largest eigenvalue corresponds
to the ground state, which is the focus of this work.
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Figure 4.18.: Zero momentum RG-invariant vertices T,/ m3 /2 with T,, in (4.76), and of
the vacuum expectation value ¢q/ m'/? as functions of the coupling Ag/m.
The dotted gray lines are the tree-level values from (4.77). All quantities

saturate for large couplings.

4.2.2. Results

Following the discussion of our setup in the previous Section, we now present our results.
The left panel of Figure 4.17 shows the fully dressed inverse propagator for real frequencies
w. It exhibits an imaginary part, starting at the threshold w = 2m, which marks the onset
of two-particle production.

The right panel of Figure 4.17 shows respective spectral function p(w) It is visible how
the peak of the spectral tail increases with the coupling, which implies an increasing
dominance of the scattering states. The peak saturates at around Ag/m ~ 100 in favor of
a broader UV tail.

The set of RG-independent zero-momentum vertices s, '3 and Ty are presented in
Figure 4.18 as functions of the coupling As/m. These are given by

f7L = F7L/Z;L/2 s (476)

where Zy = 1/7 is the wave function renormalisation given at the pole mass as the inverse
of the residue. This divides out the RG-running of the external legs, which otherwise leads
to a power-law divergence, for further discussions see Appendix A.2.2.

In the limit Ay/m — 0, quantum corrections become negligible and the vertices reduce
to their tree-level values

Ty Ty [3h, Tu& A

In turn, for asymptotically large couplings Ay/m — oo we expect a scaling behavior as
in this limit we approach the phase transition with m/As — 0. One can clearly see the
deviation from the tree-level behavior for increasing values of the coupling. With the
curvature mass m2,, = Ty, the ratio m2,,/m? deviates from unity, as is also visible in
Figure 4.17 at vanishing momentum. The RG-independent three- and four-point vertices
saturate in the large coupling limit. The right panel of Figure 4.18 shows the evolution
of the (dimensionless) vacuum condensate ¢g/m'/2, which starts from its classical result
V3m/Ay and eventually saturates as well at a non-trivial value.

74



4.2. Boundstates from the spectral BSE

A 1/n;

2nd eXC wm—m] ; ;
1St EXC ammn] : i
ground I
state :
I
= M2, M?
tachyonic 0O o 1 —

Figure 4.19.: Sketch of the eigenvalue spectrum for a Bethe-Salpeter equation of the
form (4.78). The masses of the ground and excited states are determined
from the condition 1/5; = c. If c saturates for Ay/m — oo, the bound state
mass has a lower bound Minin.

In summary we find that the dressed RG-invariant vertices calculated from their DSEs
eventually saturate, in contrast to their respective tree-level counterparts. This has im-
portant consequences for the properties of bound states obtained from the BSE, as it leads
to a physical bound-state mass in the scaling limit. To see this, suppose we drop the term
—I'4/2 from the BSE kernel (4.70) and solve the BSE with classical (free) propagators only.
This yields the massive Wick-Cutkosky model [52, 212, 213] which has been frequently
studied in the literature, see e.g. [48, 169-172, 214]. If we pull out the dimensionless factor
¢ =T%/m? from the kernel, the BSE (4.74) takes the form

MU =cenl ;. (4.78)

The dimensionless remainder M’ does not depend on A, /m and neither do its eigenvalues
7n;. Thus, if we plot the eigenvalue spectrum over the bound state mass, as sketched
in Figure 4.19, the on-shell solution can be read off from the intersection 1/7, = ¢. The
‘coupling’ ¢ in front of the BSE kernel is now a free parameter that can be tuned arbitrarily;
e.g., for the tree-level vertex in (4.77) it rises linearly with A\g4/m. In particular, if c is
large enough the intersection 1/7; = ¢ occurs at spacelike values P? = —M? > 0, so that
with increasing coupling one generates tachyonic solutions.

Such a behavior does not happen if the RG-invariant vertices saturate with \s/m, as
they do in our system: If the coupling does not exceed a certain maximum value, then the
mass of the bound state is bounded from below and the system cannot become tachyonic.
If in addition the propagators are dressed, as in our case, then the BSE eigenvalues 7,
themselves also depend on Ag/m. Finally, if we put the four-point vertex back into the
kernel there is no longer an overall coupling that can be pulled out since all propagators
and vertices appearing in the BSE kernel are determined from their DSEs.

The resulting evolution of the bound state mass ratio M/m with Ag/m is shown in
Figure 4.20. At A4/m = 5 the bound state mass is at the threshold M = 2m. For
smaller couplings one might expect either a virtual state like in the massive Wick-Cutkosky
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Figure 4.20.: Evolution of the bound state mass M/m as a function of A\,/m calculated
from the BSE, with propagators and vertices determined from their DSEs.

model [48] or a resonance on the second Riemann sheet. For larger values of A\y/m, the
bound state mass decreases and eventually saturates. Numerical instabilities prohibited
us to go beyond A\g/m 2 103. However, as the bound-state mass already starts to saturate
at this scale, an extrapolation allows us to estimate the mass ratio in the scaling limit:

M ~ 1.85 for 2 — 00. (4.79)
m m
This is close to the upper range of lattice values M /m = 1.82(2) [135, 138, 200-203]. The
deviation is of the order of our numerical error of about 1%, cf. Appendix A.6.3. We
note again that this result is only possible through a consistent solution for the n-point
functions, which underlines the need for systematic truncations with functional methods.

4.2.3. Conclusions

In this work we studied scalar ¢* theory in three spacetime dimensions. We determined
the mass of the lowest-lying scalar bound state from its Bethe-Salpeter equation, whose
value in the scaling limit Ay/m — oo is predicted to be M/m ~ 1.80...1.84 from lattice
studies [135, 138, 200—203]. We argued that such a saturation cannot even be achieved
qualitatively if the Bethe-Salpeter equation only features tree-level propagators and in-
teractions. Instead, it requires a consistent truncation of the Dyson-Schwinger equations
where not only the propagators but also the vertices acquire a non-perturbative dressing.

To this end, we constructed truncations for the two-, three- and four-point functions
where such an internal consistency is explicitly built in. To solve the system numerically,
we employed the spectral DSE approach which allows us to access the timelike behavior of
the correlation functions directly. Up to an anomalous dimension, we find that the three-
and four-point vertices saturate in the large coupling limit Ay/m — oo, and so does the
resulting mass of the bound state. Our result M/m ~ 1.85 in that limit lies within 1% of
the lattice prediction.

In conclusion, the combination of spectral Dyson-Schwinger and Bethe-Salpeter equa-
tions is a powerful tool that also allows one to access the resonance spectrum above physical
thresholds, or the evolution and melting of bound states with temperature. We hope to
report on respective results in the near future.
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4.3. The graviton spectral function

This Section is based on [1, 6].

In this Section, we discuss the spectral function of the fluctuating graviton of asymptot-
ically safe quantum gravity in an on-shell renormalisation scheme. We will not go into the
details of asymptotically safe quantum gravity, but merely discuss the necessary equations
and refer to the literature for further details. We will also use this example, to discuss some
technical developments compared to computations of the previous Sections. The present
approach including the use of the spectral BPHZ-renormalisation has already been ap-
plied in [81] to the graviton spectral function. We extend this work by feeding back the
non-trivial frequency dependence of the propagator and the use of on-shell renormalisation
conditions.

The search for a quantum theory of gravity that is compatible with the Standart-Model
of particle physics has inspired many generations of physicists to go beyond the frame-
work of quantum field theories to avoid the problem of perturbative non-renormalisability.
Beyond perturbation theory, this problem might not be there in the first place. The
asymptotic safety scenario [215, 216] utilises that the UV-theory can be defined at an
interacting, rather than a gaussian fixed point.

The classical action of gravity is the Einstein Hilbert (EH) action,

1

with Newton’s coupling Gy, the curvature scalar R and the cosmological constant A. The
dynamical quantum field is the metric g,,. The EH action is then augmented with a
gauge-fixing term given by

_ 1 _

Seilg, h] = 5~ /d493\/§ g F.F, (4.81)

with the gauge-fixing condition F},
_ 1 _

Fulg.h] = Vhy — %ﬁvuh@ . (4.82)

The respective ghost action reads
Slg.é) = [ 4oy e Me’. (1.89)

with the Faddeev-Popov operator

=0 1+ 08 ;e

Throughout this work, we use the harmonic gauge a = § = 1, analog to what has been
done in [81]. The gauge-fixing sector enforces the introduction of a background metric
Juv as the full metric would introduce unwanted interaction terms to the gauge fixing.
For the discussion of spectral flows we use the flat Minkowski metric as a background,
G = NMuv- Amongst other reasons this choice is taken as spectral representations in the
presence of non-trivial backgrounds pose additional conceptual intricacies. Furthermore,
we use a linear split of the full metric,

g,ul/ = 77;1,1/ + \/mhuy 9 (485)
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where the fluctuation field h,, carries the full dynamics of quantum gravity. For more
details on this fluctuation approach to gravity see [217].

In [81], the spectral flow of the graviton propagator has been computed with the spec-
tral CS equation. First of all, this has provided a non-trivial proof for the existence of
the graviton spectral representation within the approximation discussed there. This is
specifically remarkable, given the ongoing discussion concerning the existence of a spec-
tral representation for the gluon, see Section 3.3.5. Furthermore, in [81] explicit numerical
results for the spectral function pp have been obtained: the spectral function is strictly
positive but not normalisable due to the large positive UV anomalous dimension 7, =~ 1,
see the discussion in Section 3.1.2.

4.3.1. CS-flow in asymptotically safe gravity

Here, we show that the momentum structure of asymptotically safe propagators and ver-
tices allows for a renormalised spectral CS flow with a finite number of counter terms: to
begin with, the loops in quantum gravity have the same spectral representation displayed
n (3.55). As in four-fermi models in four space-time dimensions, the theory is perturba-
tively non- renormalisable Moreover, already classical vertices involve general powers of
the graviton, S 7é 0 for all n € N, and further ones are generated by loop corrections.

Since the semlnal Euclidean fRG paper of Reuter [216] quite some further evidence has
been accumulated for quantum gravity being asymptotically safe [215, 218], for recent
fRG-reviews see e.g. [114, 217, 219]. This scenario is based on a non-trivial ultraviolet
fixed point, the Reuter fixed point. In the fRG setting it implies

%
lim Gak® = g%, Gpo(p = 00) = N (4.86)
k—o0 p

where g{; is the fixed point of the dimensionless Newton’s coupling, and Gn , = Gn k(p = 0).

Typically, for fixed point investigations, the (unphysical) limit k¥ — oo with p < k is used,

as this limit is technically less challenging and the k-scaling and fixed point ’couplings’

reflect the physical momentum scaling and fixed point coupling.

For our discussion of the spectral setting it is important to note that the asymptotically
safe Newton’s coupling necessarily decays with 1/p? for large momenta with the respective
FP equation,

02 GN g
lim 'p2 N,kfo(P)

p?—o0 p

=0, (4.87)

which is reflected in limy_,, Orgn = 0 with gy = kQGNJg. These considerations entail that
a convenient parametrisation of h,,-vertices is given by

EL") pl? . 7pn HZl/2 pl F(r:l)(plﬂ "'7pn)7 (488)

where the Zi/ % factors take care of the RG-running of the legs and 1—15;) shows the mo-

mentum running of a (vertex) coupling. Accordingly, these vertex dressings decays with
powers of p at a symmetric point with p% = p?: in terms of vertex avatars of Newton’s

coupling, G\ 5, the symmetric point dressing f‘(ﬁ)(_) is proportional to Gn/ 2= 1( p). In the
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asymptotically safe UV regime all these couplings have to decay with 1/p? and we are led
to

n_q
=), - . 9om/2—1, of 1?2
Jim Iy (p) o lim p° Gy~ (P) o <p2> : (4.89)
Inserting this scaling back in the loop equations shows the consistency of this scaling: the
UV momentum scaling of all diagrams is given by

lim 90" (5) o< 52 (= ) (4.90)
proo A" 2 ’ :

which is exactly that of T'(™) /p%. In standard perturbation theory, the running would be
O,T(™ o p2T'(™ related to the perturbative non-renormalisability of the theory. Here, one
additional 1/p? scaling stems from the second propagator in the cutoff line Gy, 9; Ry, G and
reflects the reduction of the UV degree of divergence by two in the CS flow in comparison
to standard loop diagrams. The other 1/p? scaling stems from the fixed-point scaling of
Newton’s coupling, which effectively shifts the theory to its critical dimension.

In summary we deduce that the only diagrams that require renormalisation via 0;Set
are that of @ In turn, the flows of T'(">2) are finite but the renormalisation conditions
in gravity for p — 0 should lead to the Einstein-Hilbert action, which uniquely fixes the
full 9;S¢t in the CS flow (3.48). In summary, a fully consistent spectral CS flow requires
also the inclusion of momentum-dependent vertex functions. However, the above analysis
also entails that constant vertex approximations can be entertained. In this case the
finite subtractions 8tSC(,:L ) are elevated to the standard subtraction of counter terms with
the constraint of leaving the IR limit of the Einstein-Hilbert action intact. In any case it
leaves us with a finite number of relevant couplings given by those obtained with a spectral
spatial momentum regulator.

4.3.2. Renormalised spectral flow for the graviton propagator

The computations of this work build on the spectral flows derived in [81] for the graviton
propagator, and we proceed by summarising the relevant equations. The computation
is focused on the transverse traceless mode of the fluctuating graviton, defined via the
traceless, transverse projector

p''p”
p?

Vpo o)V ]' v g : v v
427 (p) = TP ()T (p) — T (p)TIP? (p),  with  TI#(p) = ' —

. (4.91)

where the parenthesis in the superscript stand for symmetrisation with respect to the
indices. The respective transverse-traceless part of the graviton propagator is given by

vpo vVpo . 1
Gt () = G (p) I () with Grn(p) = o

_— (4.92)
FTT + th‘2

For the scalar propagator function Gpp,(p), we use the KL spectral representation to access
its complex structure. The latter is depicted in Figure 4.21, where we show the real and
imaginary parts of the propagator in the full complex plane. Note that we subtracted
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Re p[Mp] < ‘3/

Figure 4.21.: Subleading part of the graviton propagator in the complex plane. It fea-
tures a cut on the real axis, visible as a discontinuity in the imaginary part
(left). The cut approaches a constant at the origin, where it flips sign. The
resulting logarithmic divergence is shown in the real part (right).

the mass-pole at vanishing momentum which would otherwise dominate the non-trivial
analytic structure.

% dA A pa()
2
Ghrn(p®) /0 T R PP (4.93)

The spectral function is conveniently parametrised by

pr(Y) = 527802 = ) + 002 — ) ()] (4.94)

where the global rescaling by ZLh allows for a convenient implementation of the spectral

flow via RG-invariant correlation functions T'"), for their definition see (4.88). The flow
of the RG-inariant 2-point function is given by

_ ~ 0 F(hh)
oLy =m Ty + =2, with n = —0log Zy. (4.95)
h

With the RG-adapted CS-Regulator Rcs = Zpk?, the division by Zj removes it from
the flow. What remains, are only factors of 7. There are three diagrams contributing
to the flow of the graviton two-point function, Otf(lfa}f) — Otf(lfa@hadpole + Otf(lf?)b_pomt +
Otf(lf?”ghost. For their explicit expressions in terms of KL-representations, see Equa-
tion (A.83). As already pointed out in [81], the CS-flow of the two-point function carries a
quadratic divergence, which is only removed by the counter term flow. There, the authors
employed a renormalisation at vanishing momenta. To facilitate the numerical computa-
tion, we will use an on-shell renormalisation scheme, where the counter terms are fixed
at the pole mass of the graviton, similar to the computations in the scalar theories in

Sections 4.1 and 4.2. The renormalisation conditions read
2 2
IO @ =—k) =0, 8T =—k)=1, (4.96)

which allows extracting the (integrated) coefficients of the counter term action from the
diagrams evaluated on the pole. This fixes Z, = 1, what also implies 7, = 0, and
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myp = k in (4.94). For the ghost propagator we used the classical approximation with
Z. =1 and m, = k. For the common parametrisation of the inverse graviton propagator
T3 (p) = Z(p)(K2(1 + p) + p?) this translates to p = 0 and Z(p* = —k?) = 1.

To solve the flow, it turns out to be very convenient to convert it to an integral equa-
tion and focus on the imaginary part of the diagrams. This amounts to solve the CS-
Symanzik equation iteratively for the scale and frequency dependent spectral function
prn(A) = pn(k,A). The imaginary part of the RG-invariant graviton two-point function is
then simply given by

w/2 dk'
Im T (e, w) = / o / P (K A1) pi (K, Aa)Tm D(K, w, Ar, M), (4.97)
k A1,A2

where D(k,w, A1, A2) is the sum of ghost and graviton polarisation, see (A.84) and (A.85),
and we use a generalised spectral representation for the regulator line, which carries the
propagator squared:

)y
Gl = [ At mmGeo D). 0

While we could also use the usual representation, we use the squared kernel for convenience
as it does not change the superficial degree of divergence of the momentum integral, see
also A.6.4.1 for detail. Note that the k-integral in (4.97) for a given frequency w only goes
to w/2, as the imaginary part of the flow is proportional to 6(w — 2k).

To extract the spectral function from the left-hand side of (4.97), we use suitably sub-
tracted Kramers-Kronig relations, see (A.138) instead of calculating the real part from the
diagrams. This is not only substantially cheaper, as it is only a single (principal value)
integral instad of a potentially two-dimensional spectral one, it also allows for a covenient
implementation of the renormalisation conditions (4.96). The spectral tail is then simply
given by

—otm ") k,w
fr(k,w) = ) rr( (h)h) for w > 2k. (4.99)
ImT" (k,w)? + Relpp’ (k,w)?

We solve the system via fixed point iteration, for details on the numerics, see Section A.6.4.2.
Similar to [81], we use a constant vertex approximation, where the only momentum
structure of the vertices come from their classical tensor structures and a k-dependent
Newton coupling. Its beta function in the harmonic gauge reads
2499
g =29 — ——g? 4.100
kg =29 — 5009 (4.100)
where we identified the mass parameters and the anomalous dimensions of the scalar and
traceless transverse mode and used the on-shell condition. This integrates to a simple
trajectory for the newton coupling

g*k2

k)= 5"———= 4.101
90 = oty (.101)

with the fixed point coupling g* = 7607/2499 ~ 0.955 .
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Spectral tail Convergence of the spectral tail
' 2.0 IR-limit = 61/30 ]
150 Iteration 1
f'\,'_'; Iteration 2
E. 1.0+ Iteration 3
= - .
= — lteration 4
B
0.5} — Iteration 5
— Converged
L . L 0.0k . . . , :
1072 1 10?2 104 0.01 0.050.10 050 1 5 10
- -1
A[Mp}] A [Mpl

(a) Scattering continuum of the propagator  (b) Convergence of the iterative solution, the
spectral function. Its decay behaviour is universal IR-value is indicated in gray.
indicated in gray and can be calculated an-
alytically, see Appendix A.3.2

Figure 4.22.: Tail of the propagator spectral function for the fixed point coupling g* ~
0.955, its exact value is given in the main text below (4.101). Everything is
measured in units of the Planck mass M.

The solution of this trajectory at k = 0 is depicted in Figure 4.22. In the IR, where
the newton coupling becomes independent of UV fixed point and all propagators are
dominated by their classical values, the quantum corrections to the propagator take a
universal form, G}, = p~2 — Aj, log(p?) + subleading, with A;, = 61/(607) ~ 0.32. For the
spectral function, this entails a constant onset at vanishing frequencies, and the prefactor
translates to 61/30 ~ 2.033. We find that the spectral tail indeed approaches this value
without feedback of the spectral tails, if the spectral function is computed consistently
via (4.99). The non-trivial denominator, which was effectively missing in [81], turns out
to be crucial for a consistent treatment of the spectral low. The change induced by the
feedback of the scattering tail is rather small, as can be seen in Figure 4.22b. For the
intermediate scales that we show, the additional logarithmic corrections lead to a faster
decay of the spectral function. For asymptotic values, the decay of the tail follows a rather
simple behaviour

eV

fh()\ — OO) = W (4.102)

where the feedback only influences the proportionality constant ¢p. Ignoring the scattering
tail, this fall-off behaviour can be computed analytically, see Appendix A.3.2. If we are to
include the tail in this analysis, we have to notice that it decays around the Planck mass
and, importantly, is normalisable in this scheme. Hence, in the UV, the contributions
to the propagator from the scattering tail fall of as 1/p?, similar to that of the pole.
A substantial part of the spectral weight is therefor stored in the spectral values/mass-
scales around the Planck mass. For energies much larger than the latter, the associated
contribution to the loop does not probe the details of the spectral tail but is dominated
by the spectral weight accumulated at lower mass scales. This explains, why also the fully
converged spectral tail follows (4.102) in the UV.
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4.3.3. Beyond the on-shell flow

To go beyond the on-shell-scheme, we have to use a different renormalisation point. One
very convenient possibility would be vanishing momentum, to ensure the correct limit in
the IR. The difference to our approach reduces to a flowing Zj, i.e., a non-vanishing n, with
the boundary condition Zj,(k = 0) = 1, and a flowing mass parameter u;,. To deal with the
latter, it could be convenient to make the change of variables k? — m? = k?(1 + ). The
flowing wave function renormalisation drops out of the flow equation for the RG-invariant
inverse propagator (4.95). To deal with the first term in (4.95), we can turn it into an
integral equation for ImI' and use an iterative procedure, where we compute the second
term from the diagrams, and use ImI" = 0 as an initial guess. The full iterative structure
of the procedure is then given by an outer loop, in which the first step is to update the
flow that originates in the diagrams, i.e., 0;ImTI". It proceeds with an inner loop, where of
ImT is determined self-consistently, and ends with the extraction of the spectral function
as desribed below (4.97).

4.3.4. Conclusion

We want to discuss the results obtained in this Section from two perspectives. First of
all, we presented the first, fully self-consistent computation of the spectral function of
the traceless transverse mode of the graviton propagator. However, we have employed
a novel scheme, which differs qualitatively from the momentum dependent computations
with standard Euclidean Wetterich flows, see e.g., [217]. The latter fact demands a more
careful analysis, to elucidate the connection between these different schemes.

The on-shell renormalisation used in this work allowed for a very convenient numerical
implementation of the spectral flow, due to its simplifications to the beta function and the
easily tractable analytic structure. Note, however that the implementation of a different
renormalisation point does not pose conceptual issues, see the discussion of Section 4.3.3.
We showed how the consistent treatment of the real and imaginary part of the self energy
is required to obtain the correct universal infrared behaviour of the propagator spectral
function. The self-consistent feedback of the scattering tail lead only to small corrections,
see Figure 4.22b, which only take a non-trivial form around the plank scale. While the
IR-limit is not altered by the higher order contributions, they modify the UV-limit by a
multiplicative constant, see also the discussion below (4.102).

The on-shell renormalisation leads to a normalisable spectral function, what corresponds
to a vanishing anomalous dimension in the UV, i.e., a propagator that falls off as 1/p?,
signalling the existence of canonical comutation relations for the graviton field. This is
not supported by other momentum dependent computations in the fluctuation approach,
where the anomalous dimension around the UV-fixed point has been found to be rather
large, and the propagator to fall off as approximately 1/ \/ﬁ [217]. In the present approach,
this cannot be accommodated for, and we deem it unlikely that a different choice of
the renormalisation scale cures this mismatch easily. While the anomalous running of
Zy, shown in [81] is easily reproduced, the mapping of the present scheme requires the
inclusion of momentum dependent vertex function, which evidently play a mayor role in
the momentum scaling of the flow close to the fixed point. We hope to report on respective
results in the near future.
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5. Dynamical observables in
Quantum Chromodynamics

The study of dynamical processes in QCD — such as bound-state formation, transport
properties of the quark-gluon plasma, and the calculation of form factors and scattering
amplitudes — requires access to fully non-perturbative real-time correlation functions. A
direct computation of these quantities is only feasible within functional approaches, such
as Dyson-Schwinger equations (DSE) and the functional renormalisation group (FRG).
In these frameworks, the diagrammatic relations are governed by the propagators of the
elementary and emergent degrees of freedom. Moreover, in bound-state computations,
for instance using Bethe-Salpeter equations (BSE) or Faddeev equations, the propagators
— and specifically their causal structure — play a pivotal role and must be used self-
consistently. For a comprehensive review, see [40].

As already outlined in the introduction, Chapter 1, the non-perturbative determination
of dynamical observables is a formidable task and demands substantial numerical efforts.
In QCD, the complexity is further increased by the gauge degrees of freedom, which include
negative norm states. This is reflected in the spectral structure of gauge-variant correlation
functions, and it remains unclear whether the Kéllén-Lehmann (KL) representation exists
for elementary correlation functions or whether it is violated by the presence of additional
complex poles or cuts. While such acausal structures are forbidden in physical observables,
they may appear in the elementary correlation functions of a gauged theory and cancel
out in the final measurable quantities.

The spectral functional approaches described in the previous chapter, Chapter 3, pro-
vide a framework for the direct computation of real-time correlators and their associated
spectral functions. Their practical implementation relies on the existence of the KL rep-
resentation for momentum-dependent correlation functions. We will therefore assume its
validity and discuss potential consequences if this assumption were to be violated.

In this chapter, we begin by discussing the causal structure of the quark and determine
its propagator spectral function using a novel causal vertex construction, see Section 5.1.
Subsequently, in Section 5.2, we use the obtained spectral functions to compute the pion
distribution amplitude directly on the light front.
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5.1. The quark spectral function

This section is in parts based on [4].

This section focuses on the elementary spectral functions that are particularly relevant
for the determination of dynamical observables in QCD. Special emphasis is placed on
the quark propagator. In contrast, for the gluon propagator, we will only highlight the
key aspects, as we rely on numerical reconstructions of the gluon spectral functions rather
than direct computations.

In the first part, we discuss the causal structure of the quark propagator, with a focus on
its qualitative changes depending on the interaction strength of the classical tensor struc-
ture in the quark-gluon vertex. In particular, we show that beyond a critical interaction
strength, the quark propagator develops an additional pair of complex conjugate (cc) poles,
qualitatively altering its causal structure. The interaction strength of the full QCD vertex
remains safely below this critical threshold. Moreover, assuming a spectral representation
for the combination of the gluon propagator and the quark-gluon vertex, the quark prop-
agator does not develop any cc poles. In contrast, commonly used vertex models typically
exceed the critical interaction strength, leading to additional cc poles. These poles are
a robust feature in such models and can be traced directly to the over-enhancement and
shape of the Euclidean dressing of the classical tensor structure, which defines the quark-
gluon avatar of the strong coupling. In conclusion, the over-enhancement of the vertex,
often necessary in the absence of further tensor structures (see, e.g., [33, 39, 220-222]),
may trigger acausal structures in the system. Conversely, in computations with the full
quark-gluon vertex, the interaction strength of the classical tensor structure remains below
the critical value, and part of the total strength of spontaneous chiral symmetry break-
ing is carried by non-classical tensor structures. This combination suggests a mechanism
by which the appearance of additional cc poles and related causality violations may be
avoided.

Our analysis is based on the spectral Dyson-Schwinger equation (DSE) [54] for the
inverse quark propagator. We solve the gap equation using input from a spectral gluon
propagator [45, 185] and a quark-gluon vertex constructed from its Slavnov-Taylor identity
(STI). Notably, this vertex construction avoids introducing unphysical poles or cuts in the
complex plane. It is modeled to reproduce the peak position of a physical quark-gluon
coupling in the infrared, and we systematically track qualitative changes in the causal
structure of the quark propagator as a function of the vertex strength, i.e., the height of
the peak.

In Section 5.1.1, we introduce the spectral Dyson-Schwinger equation for the inverse
quark propagator and discuss the causal structure of the input correlation functions.
In Section 5.1.4, we then analyze the emerging complex structure of the solutions to
the gap equation. We evaluate under which conditions the quark propagator admits a
Kallén-Lehmann representation and how additional complex conjugate poles emerge as
the strength of the quark-gluon vertex is enhanced. Finally, in Section 5.1.8, we argue
that our results suggest the existence of a Kéllén-Lehmann representation for the quark
propagator in full QCD and discuss the implications for phenomenological applications.
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5.1.1. The spectral quark gap equation

The framework of spectral Dyson-Schwinger equations allows for a self-consistent numer-
ical computation of the quark self-energy in the full complex frequency plane. It has
been developed in [54] and put to use in [80, 115, 191] for Yang-Mills theories. For fur-
ther applications and extensions of the framework to the functional renormalisation group
(fRG) see [1-3, 81]. Complementary approaches and earlier real-time computations in
a variety of fields with the fRG can be found in [90-92, 101, 142, 223-236]. For further
real-time computations in QCD or QED utilising (generalised) spectral representations see
e.g. [53, 190, 237-239], for related work using contour deformations see e.g. [151, 240, 241].
The full inverse quark propagator is uniquely parametrised by

T (p) = Z4(p) [IZ/? + Mq(p)] ) (5.1)

with the quark wave function Z,(p) and the quark mass function M,(p). The subscript ,
of the dressing functions refers to the light and strange quark flavors ; and s respectively.
The (inverse) propagator is diagonal in flavor space, and we focus on the light quarks with
(2 + 1) flavor input in this work. We use Euclidean conventions for gamma matrices and
momenta, i.e. {7,,7} = 20, and p? = p? + p2. Real frequencies will be denoted by w
to distinguish them from their Euclidean counterparts. The inverse propagator satisfies a
one-loop exact Dyson-Schwinger equation

LD (p) = iZop + Zinmg + Sq(p). (5.2)

The self energy ¥,(p) in (5.2) comprises the quantum fluctuations of the quark propagator,
for a diagrammatic representation, see Figure 5.1. The renormalisation constants Zs
and Z,, are the wave function and mass renormalisation constants that appear in the
renormalised classical action. The self-energy has a diagrammatic representation in terms
of full correlation functions and the classical quark-gluon vertex igsy,1 with the gauge
coupling g, and 1 is the unity in flavor and color space. Then, the unrenormalised self
energy takes the rather simple form

54(p) = 9:C 21 (1) / G"(q) Gylp+ T (2,D) (5.3)

where we have omitted flavor and color indices as the gap equation is color and flavor
4

diagonal and the loop integral is abbreviated as fq =/ (3734. Equation (5.3) depends on

the full quark and gluon propagators G4(p+¢) and G%’(g), as well as the full quark-gluon

vertex I', (¢, p). The Casimir of the fundamental representation C[SU(3)] = 4/3 and the

vertex renormalisation constant Z; enters the gap equation as a prefactor.

5.1.2. Spectral structure of quark and gluon propagators

We solve the Dyson-Schwinger equation in the full complex frequency plane by utilising
spectral representations of the full correlation functions involved. This allows for an ana-
lytic computation of the momentum integrals of a given loop including the renormalisation,
and reduces the computation to a finite spectral one.
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Figure 5.1.: Dyson-Schwinger equation for the inverse quark propagator. Big blue blobs
denote full n-point functions, while classical n-point functions are represented
by small dots with n legs attached. Full propagators are denoted by straight
(quarks) and spiralling (gluons) lines.

The quark propagator G4(p) has a scalar and Dirac part with

_ip + Mq(P)
Zq(p)[p* + M2(p)]

Gq(p) = —ip Gy(p) + Gy (p) = (5.4)

Both parts have a generalised Kéllén-Lehmann representation that also accommodates
possible additional complex conjugate poles and cuts, induced by non-analyticities away

from the real frequency axis. In the absence of the latter, the spectral representation of
the quark propagator takes a very compact form [53]

Gylp) = / Z ;lii;ffl, (5.5)

where the spectral functions of the scalar and Dirac part of the quark propagator ,oc(ls/ 9

are given by the antisymmetric and symmetric parts of the quark spectral function p,
respectively. They are defined via the imaginary part of the retarded propagator on the
real frequency axis as

pgd) (w) =2wIm Gfll(po — —iwy),

p{)(w) = 2Tm G (po — —iwy), (5.6)

with real frequencies w, and wy = w + 10" denotes the retarded limit.

In general, the spectral functions feature delta functions or peaks with a given width and
a continuous part that decays for large spectral values. The latter part arises from branch
point singularities and continuous cuts and relates to a continuum of scattering states.
The former part originates from isolated poles, related to (quasi) particle excitations with
or without a decay width. In the following, we choose the Ansatz of a single pole and a
scattering continuum for the quark spectral functions,

PY () = T RAD§ (X = my pote) + AHYD(N) (5.7)

which anticipates the following analytic structure of the quark self energy: firstly, a zero
crossing of the real part of the inverse propagator at the pole mass mgy pole. Secondly a
branch cut starting at Ascat > Mg pole, With the additional constraint that the imaginary
part of the mass function approaches zero for w — mgpoe. Note, that although the
emergence of complex conjugate poles for certain parameter values violates the spectral
representation (5.5), the spectral functions as defined in (5.6) from the cuts on the real
axis, does not deviate from the pole-scattering split (5.7). The spectral representation
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(5.5) entails the sum rules

@(\) = lim
/)\pq ( ) p2—o0 Zq(p)

A:/Om‘?. (5.9)

The sum rules (5.8) can be deduced from the asymptotic behaviour of the propagator,
for details see [115]. Note, that the mass function My(p) decays logarithmically for large
momenta for finite current quark masses, while it decays polynomially with 1/p? in the
chiral limit. In both cases, the scalar sum rule in (5.8) holds true.

For the gluon propagator in (241)-flavor QCD, we use the spectral one obtained with a
spectral reconstruction in [45, 185]. In these works, a Kéllén-Lehmann representation for
the gluon propagator in the Landau gauge was assumed,

, /A@W»zo, (5.)
A

with

G (q) = T1™(q)Galg) T (q) = 6m — LL (5.10)
W (a 0)Galg q 2 .

with

Galq) =/A2§fj§, /}\)\PA()\) =0. (5.11)

The sum rule in (5.11) is the Oehme-Zimmermann super-convergence relation [82, 83, 242]
in the Landau gauge.

For the generality of the analysis of the causal structure of the quark propagator done
below, see Section 5.1.4 it is important to also discuss the impact of potential cc poles
in the gluon propagator, as they have been observed in multiple reconstructions, see eg.,
[44, 243, 244]. In the present truncation for the quark-gluon vertex, they lead to complex
conjugate cuts in the quark self energy. However, as the real part of potential complex
poles in the gluon propagator would take a value related to the gluon mass scale, their
inclusion would not alter the behaviour of the quark spectral function near the threshold.
In conclusion, the structural results of this work do not depend on the existence or absence
of cc poles in the spectral representation of the gluon.

5.1.3. A causal quark-gluon vertex

The quark-gluon vertex is the pivotal ingredient in the gap equation and hence for the
dynamics of chiral symmetry breaking. It has been thoroughly studied in the literature,
see e.g. [33, 39, 220222, 245]. It can be decomposed into twelve Dirac structures,

12
Tu(pq) =Y A0, 0) T (0, 9) (5.12)
=1

of which four can be chosen purely longitudinal and hence do not enter the gap equation
in the Landau gauge, for basis choices and more details we refer to [33, 35, 39, 220, 245].
While we only use the classical tensor structure in the explicit computation, our analysis
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(a) Spectral function of G(p) = Ga(p)/Z.(p)  (b) Euclidean ghost dressing. The correspond-
and G 4(p) respectively. The ghost dress- ing spectral tail is shown in the inset.
ing shifts the peaked structures of the gluon
spectral function to the infrared.

Figure 5.2.: Input for the spectral gap equation from the reconstructed glue sector.
uses the basis in [35]. We count all momenta as incoming, and p and ¢ are the incoming

gluon and antiquark momenta, respectively. The dominant transverse structures are given
by

771(1)(]9’ Q) = iryu ) 7:54)(}7, q) = iauupu >
(7) _1 e
7; (p7 Q) - § |:O—Oc,37,u + O0BuYa + Tuap ka kﬁ 5 (513)

where o = i/2[y*,4"] and kT = (p + q).

While the classical tensor structure is the dominant one, 7
on the size of chiral symmetry breaking. Specifically, the chiral symmetry breaking tensor
structure 7™ plays a sizeable role in the generation of the constituent quark mass in the
chirally broken regime. Its impact on the causal structure will be studied in a forthcoming
work, but here we focus on the analytic structure induced by the overall strength of the
classical Dirac structure. Apart from being the dominant effect and hence deserves to
be studied first, respective vertices have been and are used in manifold applications in
low energy QCD, and are common place in bound state studies: roughly speaking, in all
these applications one drops 7(*7) and emulates the missing fluctuations by increasing
the infrared strength of the dressing A(!) of the classical tensor structure.

Hence, we proceed likewise here by only using the first tensor structure, where we
identify the corresponding form factor with the ghost dressing to capture the UV running
and peak position of the quark-gluon vertex. This dressing can be inferred by the Slavnov-
Taylor identity and resembles a simplified variant of the Ball-Chiu vertex [246]. The STIs
can also be used to construct a fully gauge-consistent causal vertex, see Appendix A.4.1.
For a comparison of STI vertices with the full ones, see e.g. [39]. The vertex is then given
by

47) also have a major impact

Tu(p, ) = imuhi(p?) (5.14a)
with

(5.14b)
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5.1. The quark spectral function

The form factor A1 (p?) contains an additional factor Z, () with the renormalisation group
scale u, for RG-consistency and a global strength factor 7. Note, that the global strength
factor 1 accommodates two qualitatively different contributions: firstly, it compensates
for the additional terms in the STI that have been dropped for the sake of convenience
and numerical simplicity in the construction (5.14b). Second, it compensates for dropping
the fluctuation effects from the other vertex structures, and in particular 7(*7). For other
constructions of the quark-gluon vertex in the context of bound state studies and the
Dyson-Schwinger equation, see [152, 247-257].

In the present work, we use the spectral representation of the ghost dressing function
in (5.14b). It has been calculated directly in [80] and this computation reveals its spec-
tral structure. This facilitates and constrains its spectral reconstruction from Euclidean
precision data, as done in [45, 185]. Since the ghost propagator contains a massless pole,
the spectral function has to contain a delta function at zero. The spectral representation
of the ghost dressing function 1/Z.(p?) = p?G.(p) reads

1 1 CdA A pe(A
Jr2/ 70()
0) 0

Z(p®) ~ Zdl TP+

While the residue of the massless pole is determined by the value of the ghost dressing
function at zero, the spectral function p.(A) can be quantitatively described by a rather
simple functional form as discussed in [80]. The ghost dressing function and the corre-
sponding spectral function are shown in Figure 5.2b. It enters the gap equation only as
the product of the ghost dressing and the gluon propagator Ga(p) = Ga(p)/Z(p), with

(5.15)

. [dAXpaN)
GA(p) = ?qg + A2

(5.16)

The spectral function pa(p) is shown in Figure 5.2a in comparison to that of the gluon,

pA(p). In the present work, we use the spectral reconstruction of the lattice-type decou-
pling solution from [185].

We also note in passing, that due to its well-understood spectral form one may simply
use the fitting form of the ghost spectral function devised in [80]. This can be used to
model the form factor of the classical tensor structure, although a cautious monitoring of
the complex structure of the model is required for minimising the impact of unphysical
approximation artefacts.

In summary, the STI construction in (5.14) allows us to reproduce the form of the
quark-gluon coupling in the IR. This coupling is defined via the exchange process of a
gluon between two quarks projected on the classical tensor structure of the vertex on the
symmetric point,

M (p))” 5
O‘s(ﬁ) = 417725??)2%, pQ = zl))ng . (517)

We will use results for (5.17) from quantitative functional computations in [33, 35, 39]
as a point of reference, as they have been computed in the renormalisation scheme also
employed here: In our computation, both the gluon and ghost dressings are fixed by the
inputs; see Figure 5.2a and Figure 5.2b. Accordingly, (5.17) only depends on the global
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(a) Strong coupling a; as a function of momen-  (b) Dressing of the light quark propagator
tum and enhancement factor. The grey line 1/Z;(p) and its mass function M;(p) for dif-
indicates the peak value of the full quark- ferent enhancement factors. The mass func-
gluon coupling on the symmetric point for tion is renormalised to m; = 2.7 MeV at the
(2 + 1) flavors from [35]. renormalisation scale.

Figure 5.3.: Couplings oy, (p) and light quark dressings M;(p), 1/Z;(p) for different enhance-
ment factors.

strength factor n introduced in (5.14b) and the n-dependent quark dressings. To compare
against the physical coupling, we define the respective peak values as

aphys == m?‘X Oés(]a) 9 0677 = m‘@X ag(ﬁ) . (518)
p p

For the physical coupling, we use the result of the quantitative computation in [35]. The
superscript 7 indicates the dependence of the coupling used in the present work on the
global enhancement factor 7. This dependence comes explicitly from the vertex dressing
(5.14b) and implicitly from the quark dressing function, which we determine dynamically
from the gap equation for a given value of 7. We will use the ratio o,/ to quantify the
enhancement of the coupling due to the global strength factor 1. The couplings and the
Fuclidean quark dressing functions are given in Figure 5.3a and Figure 5.3b respectively.
In Figure 5.3a we show the exchange coupling for various global strength factors n €
{0.553,0.742,0.883} in comparison to the physical value. The corresponding rations of
the peak are o)/, € {0.601,1.038,1.369}. We note that the approximate vertex (5.14)
reproduces the qualitative features of the exchange couplings well, in particular the peak
position: it is located at about pgﬁi’;‘ ~ 0.6 GeV, close to that of the full solution in [33,
35, 39]. The physical amount of chiral symmetry breaking requires a strong enhancement
of the coupling with /o, ~ 1.4. However, part of this enhancement is also related to
the details of the coupling. For the total amount of chiral symmetry breaking, it is rather
the integrated coupling that is relevant. This includes in particular also the steepness of
the coupling on both sides of the peak, which is not captured by our vertex construction.
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{214,342} MeV.

Figure 5.4.: Spectral functions pl(d’s) of the quark propagator (left), and its mass function

M; for real frequencies (right).

5.1.4. The causal structure of the quark propagator

The spectral gap equation is solved numerically with the input discussed in the last section.
Inserting the quark-gluon vertex (5.14) in the gap equation (5.3) and using the spectral
representations of the quark propagator (5.5) and that of the scattering kernel G 4(p)/Z.(p)
in (5.16), we arrive at

4(p) = 92 Cs 20 / A a a(A) g0 I (Mgs At p) (5.19)
AgsAa

with

(5.20)

() (P )+ M)
I(Ag, Aa,p) = /q (2+223) (p+ )+ A2)

The loop integral eq. (5.20) is computed in dimensional regularisation, and the whole self
energy is renormalised within a BPHZ subtraction scheme,

37" (p) = Xq(p) — Xq(pr) , (5.21)

where the subtraction implicitly determines the renormalisation constants Zs and Z,, in
eq. (5.2). This procedure not only removes the explicitly divergent terms of the loop
integral eq. (5.20), but also the remaining divergences from the spectral integral. For
details on the spectral renormalisation, see [54] and for the explicit implementation in the
present work, see Appendix A.4.2.

The spectral function of the scattering kernel p4(A) is shown in Figure 5.2a. Since
the vertex dressing does not diverge in the infrared, the combined spectral function still
approaches zero at the onset of the scattering continuum fast enough and G4 remains
finite at the origin. Moreover, the imaginary part of both, the Dirac and scalar part of
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I(Ag, Aa,p) in (5.20), contains only terms proportional to either /w — Ay — Ag O(w— Ay —
Aa) or (w—Ag)?O(w — ),), see Appendix A.4.2 for details. Consequently, the imaginary
part of the self energy vanishes at its onset with a power law. Hence, the self-consistent
iteration converges towards a solution with a first zero crossing in w — Re M;(w) that
coincides with a vanishing imaginary part of the mass function. This leads to a real pole
as the first singularity of the quark propagator in the complex plane, which is discussed
in detail in the following Section 5.1.5. In Section 5.1.6 we complete the discussion of
the causal structure of the quark propagator with that on the emergence of cc poles, in
addition to the real one, for large coupling strength.

5.1.5. The real pole of the quark propagator

For the evaluation of the qualitative change of the causal structure, we scan the strength
parameter 7 in the vertex (5.14) in the interval [0.553,0.883]. This corresponds to a relative
coupling strength o,/ in the interval [0.601,1.36941]. Technically, it is convenient to
solve the spectral DSE first for the smallest value of n considered here and use the result
iteratively as the input for the first iteration of the gap equation for the next bigger n-value.

We exemplify our results for the spectral functions in Figure 5.4a, where pl(s’d) of the
light quarks are shown (left panel) for two different values of the vertex strength n =
0.829,0.872 with different causal structures. These n’s correspond to relative coupling
strengths o) /an,s = 1.245,1.344. The real pole at w = m,,. is indicated by a delta peak
in the spectral functions in Figure 5.4a. The cut, induced by the gluon exchange, starts at
the pole, but is vanishing there. The imaginary parts of mass function and wave function
both approach zero at the onset, see Figure 5.4b for the mass function. We would like
to emphasise that a real pole in the quark propagator does not correspond to a physical,
asymptotic particle state that could be observed in the experiment. For larger values of
the spectral parameter, the spectral functions are predominantly negative. This positivity
violation is necessary for satisfying the spectral sum rules in (5.8). In the right panel,
Figure 5.3b, we show the mass function M;(w) for the larger value o, /oy, = 1.344: the
real part of the mass function crosses the line f(w) = w, indicating the emergence of
additional pairs of cc poles, which will be discussed in Section 5.1.6.

The most prominent common feature of the spectral functions for all tested coupling
strengths is the emergence of a real pole as the first singularity in the complex plane
at the onset of the scattering continuum. Evidently, we cannot draw fully conclusive
statements about the nature of the first singularity in the complex plane, as the vertex is
not computed self-consistently. Instead, we use an STI-compatible vertex model. However,
the mechanism that underlies the occurrence of the real pole is rather generic. It is simply
based on two properties of the product of the gluon propagator and the vertex, which we
expect to hold in full QCD in the Landau gauge. We shall discuss these properties by
comparing our result with the results of direct real-time computations in the literature: in
most cases, including the present work, the effective quark-gluon interaction is modelled
by an effective gluon exchange that combines the gluon propagator and the vertex,

Gal@)Tu(p: q) o< a§2§Q) : (5.22)

The first property is the finiteness of (5.22) in the soft gluon limit. A singularity such as
a pole, a branch-cut singularity, or a logarithmic divergence, signalled by a finite value of
a cut at vanishing gluon momentum, possibly shifts the first singularity into the complex
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plane. Previous results that show a complex first singularity can be found in [240, 241, 258]
for QCD-like models in four dimensions and [158] in QED3. While the details of these
vertex models differ, the combination of the gluon propagator and vertex diverges in the
soft gluon limit. In [158, 240], the effective coupling oy stays finite in the soft gluon limit,
effectively leading to the implementation of a massless gluon (or photon) propagator. The
same holds true for [258], where the authors use a similar construction to that of the
present work, only that the dressing function \; is proportional to 1/Z.(p)?. This leads
to an o2 that is proportional to the Taylor coupling, which acquires a finite value on the
scaling solution. The confinement term in [241] even contains a delta function at the origin.
In full computations, the product of the gluon propagator and the vertex stays finite in the
soft gluon limit, see [33, 39, 220-222]. Note in this context, that this property is fulfilled in
full calculations even if considering explicitly the dynamical generation of confinement by
means of the Schwinger mechanism, see e.g. [69-72], or the quartet mechanism, see e.g. [73].
We discuss this at the example of the Schwinger mechanism. There, the confining mass
gap of the gluon in the Landau gauge is related to the occurrence of a massless bound state
in the longitudinal glue sector of the theory. While this massless bound state is mirrored
in the longitudinal part of the quark-gluon vertex, the transverse quark-gluon vertex does
not contain a pole at vanishing gluon momentum.

The second assumption that appears to be crucial for our analysis to hold, is the ex-
istence of a Kallén-Lehmann representation for the product of the gluon propagator and
the vertex. While the standard Rainbow-Ladder kernel [149] does not have a singular-
ity in the origin, it also does not admit a spectral representation due to the finite width
representation of 6(q). The latter implements the necessary infrared enhancement of the
vertex but also carries an essential singularity at complex infinity. The nature of the first
singularity in the complex plane for such models depends on the explicit parameters and
has been studied in, e.g., [151] and [159], where the dependence of hadron masses on the
position of the first pole is found to be mild in the latter.

Further studies that link the absence of a real pole to confinement, such as [259, 260],
only deduce the possibility of cc poles from the positivity violation of the Schwinger
function, which does not rule out a real pole, whereas the reconstructions in [261, 262]
indicate the existence of a dominant singularity on the real axis. The scenario of a real
pole was also found in [190] for a vertex model that resembles a massive gluon with the
Mass Mgy, 1.€., Where the cut of the quark self energy starts only at m,q1. + Mg, different
to our construction. Moreover, the authors also report the emergence of additional cc
poles for certain parameter choices, without giving a detailed analysis of the underlying
mechanism.

5.1.6. Additional cc poles for large vertex strength

Having a real pole established as the first singularity of the quark propagator in our
approximation, we proceed with the analysis of the remaining causal structure. The
current approximation reproduces DxSB quantitatively, subject to an appropriate choice
of the strength parameter 1. The physical constituent quark mass is obtained for

M;(0) ~ 350 MeV,  neone = 0.882 1 — ~1.39, (5.23)

aphys
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(a) Constituent quark mass over the enhance-  (b) The absolute value of the Re M (w) —w for
ment factor. We find the emergence of cc different values of the coupling. For the
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of DXSB with M (0) ~ 350 MeV

Figure 5.5.: Emergence of the complex conjugate poles for larger vertex strengths.

see Figure 5.5a. The ratio oy,/apuy. in (5.23) is the enhancement of the peak coupling for
a given 7)g.ne. This is a good measure for the overall enhancement of the vertex strength.
We shall see that in this case the quark propagator has no Kéllén-Lehmann representation
but contains at least two cc poles in addition to the real one.

In turn, using the vertex strength with the physical peak height of the coupling, the
respective constituent quark mass is given by

Gy

M;(0) = 60MeV,  np,, = 0.741 : ~ 1, (5.24)

Ophys

see Figure 5.3. This compares well with the solution of the gap equation by using the full
dressing (M) in [39] with M;(0) =~ 80 MeV, the difference can be attributed to the slightly
different shape of the vertex functions, as the width and ultraviolet decay of A() have a
sizeable impact on the strength of chiral symmetry breaking. In any case, this illustrates
impressively the importance of the other tensor structures, see e.g. [33, 39, 220-222], see
also the review [40]. The full constituent quark mass is obtained with the physical vertex
strength if also 7@ are taken into account, a rather comprehensive analysis is given in
[39].

In short, while the constituent quark mass is significantly smaller than the physical
one for the physical vertex strength with 7,,,., the corresponding quark propagator has a
Kéllén-Lehmann representation. This has to be contrasted with the results for 7., with
the physical constituent quark mass, where we end up with cc poles.

We proceed by dissecting the emergence of these cc poles, including a preliminary assess-
ment of the situation and possible causal structure of the quark propagator in full QCD,
where we take into account the additional tensor structures of the quark-gluon vertex:

In Figure 5.5a, we show the constituent quark mass as a function of the strength factor 7,
or rather the respective ratio a,)/apnys. The respective (241)-flavor quark-gluon coupling
is taken from [35]. Our computation shows the existence of a critical value of the vertex
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strength,

0t 0.846, W ~1.283. (5.25)

Qphys

For n < n*, the quark propagator has a Kallén-Lehmann representation, and the physical
vertex strength is located in this regime. For n > n*, we keep the real pole as the first
singularity in the complex plane, but additional complex conjugated poles emerge. The
enhancement of the vertex strength required to obtain the physical constituent quark mass
M;(0) ~ 350 MeV in the current approximation is given by o, /a,, ~ 1.39 and is deep in
the regime with cc poles. It is indicated by the vertical straight grey line in Figure 5.5a.

It is left to assess the origin of the cc poles, which allows us to discuss its presence or
absence in full QCD. The occurrence of the cc poles originates in the analytic structure of
the mass function and is connected to the height and width of the effective coupling. The
peak structure imprints itself on the imaginary parts of the mass function, see Figure 5.4b,
and leads to a peaked structure with zero crossing in the real part. The cc poles emerge,
when the peak of the real part crosses the line f(w) = w, i.e., when Re M (w) —w = 0, see
Figure 5.5b. In comparison to the computation with a constant vertex dressing in [191],
this novel feature is connected to the non-trivial momentum dependence of the quark-
gluon vertex. This dynamical property shifts the peak of the effective coupling relevant
for the solution of the gap equation to a more realistic value. The peak position in the
full calculations are approximately 590 MeV for two flavors, see [33] and 670 MeV, [35] for
(2+1) flavors. The boundary of the regime with cc poles certainly depends on the details
of the vertex. However, it is dominantly sensitive to the position, width, and height of the
quark-gluon coupling, as these properties influence the height and position of the peaked
structure in the real part of the mass function significantly. Our results suggest, that for
physical peak position of the coupling in two- or (2 4 1)-flavor QCD, cc poles are easily
introduced by an enhancement of the vertex.

In summary, it is suggestive that the absence of cc poles seen for a physical vertex
strength in the present approximation persists in full QCD: the inclusion of the other tensor
structures may change the peak structure of the mass function, leading to the absence of
cc poles. Indications for this scenario are present in the full vertex solutions, e.g., [33, 39].
There, the different momentum running of the dominant couplings A and A7) lead to
different peak positions in the associated effective couplings. Hence, the inclusion of these
contributions might simply lead to a broadened structure of the imaginary part of the
mass function and allows for a larger constituent quark mass without the emergence of
cc poles. Note, that while we consider the above scenario as the likely one, we can not
make a definite statement about the causal structure with a full vertex prior to a direct
computation. This matter will be resolved in a forthcoming work, where a computation
with the physical quark-gluon vertex with the tensor structures 7(:%7) is performed.

We close this section with a discussion of the relevance of the findings above for existing
bound state studies. To that end, we remark, that the additional cc poles seem to only
have a mild influence on the Euclidean correlation functions. As can be seen in Figure 5.6,
the Kallén-Lehmann spectral representation holds true up to the permille level also for
coupling strengths where the cc poles are present in the system. The two pairs of complex
poles have residues of opposite signs, see Figure 5.5b, what leads to cancellations. This is
particularly interesting for the applications to hadron physics. There, most numerical and
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Figure 5.6.: Propagators in the Euclidean domain for different enhancement factors. The
spectral representation is fulfilled up to the permille level for all coupling
strengths, where the higher enhancement factor already has cc poles.

direct analytical continuation methods rely on simple causal structures, and the presence
of cc poles could have serious consequences for the validity of expansion schemes or spectral
representations. With such applications in mind, we would like to emphasise, that the cc
poles are, if present, rather far away from the real frequency axis. Their location is tied
to the peak-position of the imaginary part of the mass function. Moreover, the absolute
distance of the cc poles to the origin is between 0.6 —1 GeV or even larger. This originates
in the fact that their location in the quark mass function is approximately given by the
sum of the quark pole mass and the peak position of the gluon dressing, m,q. + pgfff.
For applications that do not probe this region in the complex frequency plane, as for
example the computation of light hadron properties, the effects of these cc poles may even
be negligible.

5.1.7. Phenomenological vertex fits

The results of the previous sections suggest, that we can use ghost-dressing inspired causal
vertex models to solve the quark gap equation (5.2) in the full complex frequency plane.
The reconstructed ghost dressing functions thereby lead to the couplings Figure 5.3a, and
resemble the physical coupling only qualitatively. On the other hand, as was argued in
[80], the ghost spectral function can be fitted rather well by a simple model. This opens
the possibility to reconstruct a spectral function for the physical vertex from quantitative,
state-of-the-art computations on the Euclidean axis, see e.g. [35, 36], and use it in the
spectral gap equation. For the reconstruction, we will focus mainly on the intermediate
momentum regime and the UV behaviour of the vertex-dressing, which is largely constraint
by the gluon dynamics and the asymptotic UV-running. The IR vertex strength can be
used to tune the correct amount of chiral symmetry breaking, as is often done in bound
state studies, see e.g. [40] and references therein.

The strategy we follow will be to use the spectral reconstruction of the gluon propagator
from [185] for all flavours, and only fit the flavour dependent dressing functions indepen-
dently. To ensure the correct UV-behaviour of our correlation functions, the asymptotic
running of the gluon dressing is pertinent. As the spectral reconstruction in [185] recon-
structs the gluon propagator and hence focuses on the IR and intermediate momentum
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Figure 5.7.: Euclidean (inverse) gluon dressing and light quark coupling. The green dots
indicate our reconstructed results. The Euclidean data from [35] is indicated
as solid line and was extrapolated above 20 GeV with the respective one-loop
form.

regime, the resulting dressing function does not have a satisfactory UV-behaviour. The
asymptotic form of the gluon propagator, and accordingly its spectral function read
uv
Za
p?log(1 4 p2)74

Ga(p — o0) —

—vaZ{V

; ; , 5.26
14+ A2log(1 + A2)HH7a (5.26)

pa(A = 00) = pR¥ (N Z5Y ,7a) =

with the anomalous dimension of the gluon propagator v4 = (13 —4/3 Ny)/(22—4/3 N¢),
and Ny = 2+1 for the data we use. The hats stand for dimensionless quantities, and ZXV
is a proportionality constant, which carries the dimension of the spectral function. See also
the discussion around (2.30) and (3.12) for further reference. For the gluon propagator,
or rather the associated (inverse) dressing 1/Z4(p) = p>Ga(p), it is possible to smoothly
connect it to its asymptotic form. In the previous sections, we have approached this issue
by forcing a continuous, piecewise extrapolation of the spectral function to the UV, where
we fixed the point of connection by enforcing the sum rule given in (5.11). The resulting
gluon dressing falls off too quickly in the UV, as can be seen in the associated quark gluon
coupling Figure 5.3. To remedy this problem, we choose a smooth extrapolation of the
gluon spectral function in the UV with the following ansatz:

Zoo (N Ao, v
pAN) = 5T Aves vov) 4+ 95 s Z8Y 1) (s Ay, i) (1 + M) |

)\2
(5.27)

The function o(A; A, v) is a smooth cutoff function that interpolates between the two terms
in (5.27). It is defined as

1
1+ exp ( )‘7A) '

14

oM A v) = (5.28)
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For Z5 = 0 and vyy — oo this ansatz simply leads to the continuous, piecewise extrap-
olation described above. In fact, the subheading correction term proportional to Zs is
necessary to reproduce the correct UV-running. It results in a small, positive bump in the
spectral density at large intermediate momenta that compensates for a slight mismatch of
the weight at lower scales. The bump is is most likely a reconstruction artefact which is
necessary to ensure the super convergence relation Equation (5.11). The resulting inverse
dressing is shown in Figure 5.7a. It compares well with the desired UV-behaviour for large
momenta. The discrepancies around the peak are remnants from the modifications of the
spectral tail. They are easily compensated by incorporating the deviation in the fit data
of the coupling, and we proceed with the spectral reconstruction of the latter.

For the dressing function of the quark-gluon vertex, A(}) (p), we use the fit function
devised in [80] for the ghost spectral function, see Equation (5.15). The spectral represen-
tation of the quark-gluon vertex dressing then reads

[e.e] FoA )\
AL (D) = A (0) + p? /0 d iqzq+(p§ . (5.29)
The residue of the massless pole is determined by the value of the dressing in the IR. While
the UV-behaviour is known from perturbation theory and the spectral function approaches
a constant in the IR, one can expand the spectral function in terms of products of sigmoid
and Breit-Wigner functions. Such an expansion captures the functional form of the ghost
spectral function quantitatively, as has been shown in [80]. Our vertex spectral function
is reconstructed with a slightly simplified Ansatz to facilitate the reconstruction:

N
Pgga(N) =k [(ﬁo + Upeak(A)fEe\glf((A)) oir(N) + > PV +ouvNpSY | (5.30)
=1

where the x carries the dimension of the spectral function and the jg is a dimensionless
parameter that determines IR asymptotic of the spectral function. The sigmoid function
and the Breit-Wigners are parametrised by

1

oi(y)

and
Cj

BW/ ~
i _ T A~ = - 531b

The UV asymptotic is determined by the UV-running of the coupling (5.17), which ap-
proaches its perturbative form in the UV, see (2.28). Hence, the anomalous running of
the coupling is fixed by 7534 = (1 —v4)/2. The UV behaviour of the spectral function is
then given by

. VAW
peY(A) = o (5.32)

1+ A2log(l+A\2) =2

The coupling data is taken from [35] and we extrapolate the data in the UV with the well
known one-loop forms Equation (2.28). To obtain the actual fit-data up to global rescal-
ing, we solve (5.17) for A1) (p), where we use the UV-extrapolated gluon dressing, which is
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5.1. The quark spectral function

associated with the reconstructed spectral function (5.27). We choose a logarithmic grid
between 0.3 GeV and 1000 GeV, to ensure the correct running of the vertex for interme-
diate and large momentum scales. The result is shown in Figure 5.7b. The features of
the quark gluon coupling are well reproduced. The UV-scaling and the peak of the quark
gluon coupling are captured within a conservative error estimate of 1%. In the IR, the
difference is explained by the IR closure of the respective data sets. While the Euclidean
data of [35] corresponds to a computation on the scaling solution, the gluon spectral func-
tion in [185] was reconstructed on lattice data, which resolve a decoupling type solution.
These couplings are the ideal starting point for phenomenological application with the
spectral quark gap equation. Moreover, one can implement the necessary enhancement
for the correct amount of DxSB in the IR and leave the UV tail of the coupling untouched,
in contrast with the global enhancement in Section 5.1.3. This can be done by a suitable
IR-enhancement of the Euclidean fit data. The respective necessary tuning and its im-
pact on the causal structure for the light, strange and charm quark spectral functions is
currently under investigation, and we will report on respective results in the near future.

5.1.8. Conclusion

In the present work, we have studied the causal structure of the quark propagator within
the spectral DSE. In contrast to the previous work [191], we made a significant step
towards its solution in full QCD: instead of a constant quark-gluon vertex we have used
an STI-construction for the vertex, that includes a fully momentum-dependent dressing
for the classical tensor structure, see Section 5.1.3. This allowed us to study the complex
structure of the quark propagator by solving the spectral gap equation.

Specifically, we have shown in Section 5.1.4 that the quark propagator has a Kallén-
Lehmann representation for the physical vertex strength of the classical tensor structure,
but fails to generate the correct strength of spontaneous chiral symmetry breaking. In turn,
enhancing the quark-gluon coupling above the physical value with a factor 1.39 leads to
the correct amount of chiral symmetry breaking. This procedure is the commonly used
one for DSE and bound state studies, but introduces cc poles to the quark propagator
in addition to the mass like poles that are associated with the first singularity in the
complex plane. The nature of the latter cannot be answered conclusively without a direct
computation with a fully frequency dependent vertex. However, we have discussed the
relevant properties of common vertex approximations that decide about a real or complex
pole scenario in Section 5.1.5. Independent of the nature of the first pole, our discussion in
Section 5.1.6 reveals that the use of vertex models with an over-enhancement of the vertex
generically lead to additional cc poles. Importantly, our results also entail that although
current vertex models used in DSE and bound state applications lead to cc poles in the
quark propagator, the contribution of the latter to the propagator is negligible. Hence,
the quark effectively still has a Kéllén-Lehmann representation, and we have reconstructed
the quark-gluon coupling in Section 5.1.7, which allows for phenomenological applications

A dissection of the mechanisms suggests that in full QCD, the additional relevant tensor
structures in the quark-gluon vertex may lead to the full strength of chiral symmetry
breaking without the additional cc poles. This assessment is based on the absence of
these cc poles for the physical vertex strength of the classical tensor structure and the
momentum dependence of these dressings, see e.g., [33]. The full computation including
the additional tensor structures is the subject of ongoing work, and we hope to report on
the respective results in the near future.
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5.2. Mesonic parton distributions

This section shows preliminary results of [7].

In this section, we will utilise the spectral framework to compute the pion’s distribution
amplitude directly on the light front. As discussed in Section 4.2, the computation of
bound state properties is itself inherently non-perturbative. We showed that the spectral
approach allows the computation of bound state masses and the corresponding Bethe-
Salpeter amplitude (BSA) directly on the real frequency axis. In QCD, additional non-
perturbative dynamics like DxSB and confinement complicate the picture and leave plenty
of questions about the structure of hadrons open. Euclidean, non-perturbative approaches
have been very successful to give a rather comprehensive picture of the hadron spectrum
in terms of masses, for a respective review see [40]. On the other hand, the computation of
cross-sections requires knowledge about the structure of the hadrons even at high energies.
The compositeness of the hadrons can be seen, for example, in deep inelastic scattering
processes. There, the amplitudes can be described by the sum of perturbative interactions
between the incoming particle and the constituents, weighted by their respective parton
distribution functions (PDFs). The latter carry the non-perturbative information of the
hadron structure and are dominated by low-energy physics. This structure of hadrons
will also be the subject of a number of ongoing and upcoming experiments at the LHC
and prominently the Electron-Ton Collider [20-23], which plan a three-dimensional spatial
imaging of hadrons by measuring structure observables like angular momentum distri-
butions and longitudinal or transverse momentum distributions. Adding to the PDFs,
these structures are encoded in the respective generalized parton distributions (GPDs)
and transverse momentum distributions (TMDs), see e.g., [263, 264].

The different distribution functions are commonly defined on the light front, meaning
that the partons, i.e., the quarks and gluons, are probed at lightlike separation. The
corresponding matrix elements in the momentum basis, require access to real frequencies,
which prohibits the direct, non-perturbative computation from lattice QCD or Euclidean
functional methods. Nonetheless, these approaches made huge progress in the past decade,
making use of effective theory descriptions like large momentum effective theory (LaMET).
The latter allows defining quasi-distribution functions which depend on a longitudinal
momentum and can be calculated, to some extent, with the input of Euclidean correlation
functions. In the infinite momentum limit, these quasi-distributions approach their light
front counterparts, see [265, 266] and [267] for a review. For recent applications on the
lattice see [268-270], for a discussion of the inverse problem connected to the LaMET
method on the lattice see [271] and for a recent application with the fRG see [272]. A
different approach relies on the computation of moments via non-perturbative, Euclidean
methods. In principle, the knowledge of all moments allow for the reconstruction of the
full PDAs or PDFs. Low order cumulants or moments have been calculated in lattice
QCD with high precision, see e.g., [273, 274]. However, for higher order moments, the
numerical error becomes large.

While these approaches have been shown to work reasonably well for intermediate
Bjorken-x, they necessarily fail in the interesting limits of x — 1 or £ — 0 due to their
extrapolation errors. These regions are at the moment only poorly constraint from an
experimental perspective, but upcoming experiments at the EIC promise to probe this
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region. This requires us to compute the hadron structure directly on the light front,
what in turn requires real-time correlation functions. One route that has been recently
proposed in [49] is based on contour-deformations. In contrast, although potentially com-
plementary, we utilise the spectral framework for the quark gap equation, developed in
[4], see also Section 5.1, to compute the quark propagator in the full complex frequency
plane. For the Bethe-Salpeter amplitude of the Pion based we utilise a Nakanishi type
integral representation, and reconstruct the associated weight function on state-of-the-art
data from functional QCD [36]. For earlier fully reconstruction based results for the Pion
distribution amplitude from Euclidean BSE-DSE data, see also [275].

This section is structured as follows. In Section 5.2.1, we discuss the definition of the
pion distribution amplitude, where we put special emphasis on the light-front projection
of the Bethe-Salpeter wave function (BSWF). In Section 5.2.2, we show how to include the
complex structure of the quark propagator and discuss the reconstructed weight function
of the Pion BSA and the corresponding PDA in Section 5.2.5. We find that the decay
behaviour of the latter in direction of the relative quark momenta cannot be described by
a factorised weight function with a single delta function, an ansatz that is often employed
for phenomenological applications. To describe the data at least qualitatively, we add a
second, similar term in the weight function. We then proceed to discuss the resulting
PDA, where we find a strong dependence on the non-trivial features of the quark spectral
function, which are connected to DySB. We discuss the large systematic errors that come
from the reconstruction ambiguities of the BSA and the corresponding weight function,
and lay out a strategy toward reliable computations of the small and large x limits of the
PDA. We conclude with a summary and outlook in Section 5.2.6.

5.2.1. The light-front wave function

In functional QCD, hadrons emerge as resonant multi-quark interactions. The lightest
hadron is the pseudo Goldstone boson of DxSB, the pion, which is the first pseudo scalar
resonance of a light quark-antiquark pair. The resonant momentum channel is the t-
channel, t = (p1 + p2)? = P2, where we count every momentum as incoming and p1,3 and
p2.4 are antiquark and quark momenta respectively. If we choose u = (p1 + p4)? = 0, the
four quark interaction is conveniently parametrised by the total t-channel momentum P
and the relative momentum p, which is distributed symmetrically between quark-antiquark
pair. Note that the definition of p4 is not unique. One could pick p+ =p+ (1 — )P and
accordingly p_ = p—nP for a parameter 7 € [0, 1]. This would amount to a different con-
figuration of the non-resonant momentum channels. Close to the resonance, the respective
four-quark interaction is dominated by the pion pole and we can write

P2—-—m2 I'z(p, P)F;rr(p, P)
P24m2

D (., —p_,py) (5:33)
where py = p+ P and I'z(p, P) is the Bethe-Salpeter amplitude of the pion and the
subscript ps refers to the pseudo-scalar interaction. Note that the BSA is nothing but the
Yukawa coupling between quarks and pions, a feature that is commonly exploited in fRG
computations via dynamical hadronisation, for a recent discussion, see [35]. It satisfies
a BSE, which can be used for its dynamical determination. A different approach was
implemented in [36], where the BSA was computed as the residue of the pion pole in the
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full 1PI four quark interaction projected onto the pion channel. Then, the BSA reads

Iz (p, P) = ivshx(p, P) .

Note that the full BSA also contains other tensor structures beyond the pure 75 structure,
but we neglect them in a first approximation. Their inclusion in the present framework
is however straight-forward, if suitable data becomes available. The respective scalar
dressing functions, here only hr(p, P), fulfil a Nakanishi integral representation

e 1
hx(p, P) :/0 dp? /_1 dzﬁ2 f?;ﬁ_;_zgp)z’ (5.34)

which is valid for —P? < (2my ,...)%, where (2my,.) is the threshold of the nonanalyticity
that is associated with the (offshell) decay to its two constituents, starting at twice the
constituents pole masses. For Kaons, being composed of a light and a strange quark, this
threshold would be my o1 + M poie, Se€ also [52, 276]. For a non-symmetric definition of
the relative momentum, one simply replaces z — z — 1 in (5.34).

The matrix element which defines the leading twist two Pion distribution amplitude
(PDA) is given by the light-front projection of the Bethe-Salpeter wave function (BSWF),
where the latter is the transition element between the vacuum and an on shell pion state.
It is connected to the BSA via the attachment of external quark legs,

Xr(p, P) = Gy(p+)T=(p, P)Gy(p-) - (5.35)

The projection of (5.35) leads to definition of the valence light front wave function (LFWF)
U(x,pr) and the PDA

d4
6(z) = N Trep / Gmid(pe =P 1) 35y - nxx(p, P)

1

= @ d2pr(x7pL)a (5~36)

where x is the longitudinal momentum fraction of the valence quark and Trop denotes
the color and Dirac trace. The total momentum is evaluated on-shell, i.e., P> = —m2 and
involves the light-like vector n with n- P = —m,. The subspace of transverse momenta
is then defined by n - p; = 0. A convenient choice which we employ in our calculation is
n = (4,0,0,1). The normalisation A/ ensures that the PDA is dimensionless and normalised
to 1. Note that (5.36) is independent of the definition of the relative momentum, i.e., 7,
what is easily seen by using the shift symmetry of the measure.

5.2.2. Spectral PDA

To compute (5.36) directly on the light front, we use the spectral representation of the
quark propagator (5.5) and the integral representation (5.34) with n = 1. Carrying out
the trace over the Dirac and color indices, we arrive at

[e’) 1
ola) =K [N a8 [ dzpy(00) pu00) (8. Toh N o) (5.370)
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where we absorbed global factors of the integral measure into the normalisation . After
integrating out the longitudinal momentum with the delta function, the spectral integrand
I, contains only the integration over the transverse momentum and (Euclidean) frequency,

. . 2 > i()q(l' — 1) — )\2(13)
Iy(A1, A2, B, z5) = /d L /_odopo ImZa(@ =127 — 1+ 2) (@0 — 79) (@ — 72) (@0 — 1)

1
= @ dgple()\l,)\Q,ﬁ,z;az,pL), (5-37b)

where the poles rq, 73, 77 are purely imaginary, hence located on the real frequency axis:

i M+ p? +mZa?

A2+ pt +mi(1 - 2?)
Tg = —

2m(1 — x) ’

Ty =
2MaT o

_ mi(42? — (2 - 1)) +4(at +57)
= dmy(z — 1+ 22) ’

(5.37¢)

Note that the integrand in (5.37b) enjoys a symmetry under the simultaneous replacements
A < X,z — (1 —2)and z — —z, which is simply a redefinition of the longitudinal
momentum fraction. Furthermore, the denominator of the integrand in (5.37b) is only
dependent on the )\%’2, while the terms in the numerator are either symmetric or anti-
symmetric in the respective spectral variables. Hence, the integration projects onto the
even and odd parts of the quark spectral function, which are the Dirac and scalar spectral
function pgd) and p((ls) respectively, see also the discussion below (5.5).

The integration over the Euclidean frequency pg is easily carried out with the residue
theorem. For 0 < x < 1, the poles ry and r; are located in the upper and lower half plane
respectively. The third pole r; switches sign if z = 1 — 2z, without crossing the imaginary
axis. Hence, the integration simply picks up the residues of either r, or r3, depending on
the location of r;. We note in passing that the deformation of the contour does not affect
the result in the region 0 < z < 1. For x > 1 or = < 0, all poles are located in the same
half plane and the usual ie prescription leads to a vanishing, hence non-analytic result. It
was pointed out in [49] that one can choose a different contour that agrees with the usual
ie prescription in the physical region 0 < x < 1, but always picks up one pole and defines
an analytic function everywhere, up to defining branch cuts. With this analysis, the PDA
simply reads

B () 1
br(z) = N7 /_ A dhe dB? /_ 2 () py(%2) e (6.2)

{9(2 —2x + 1)15)()\17)\27ﬁ72ax) - 9(2I‘ —-1- Z)Ig)(Aly)\Zaﬁvz;x)} ) (538)

where the superscripts ¢ and 7 refer to the respective poles r, and rz and the relative minus
sign comes from the winding number of the chosen contour. For further details on the fre-
quency integration and in particular the full expressions for I(Z/ ? see Appendix A.5. Note
that also the integration over the transverse momentum is easily carried out analytically,
and leaves us with the spectral integrals, which carry the non-perturbative information of
the quark propagator and the pion BSA.
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data is poorly described by a single term
for pr, the best form of the second term is
ambiguous.

is necessary to describe the decay at inter-
mediate to large relative momenta.

Figure 5.8.: Comparison of the Pion BSA to different reconstructions in a double loga-
rithmic plot over the relative momenta in GeV. The BSA was normalised to
one at vanishing relative momentum. The blue dots stem from [36] and were
extrapolated at different angular configurations xy = p- P/+/p? P2, leading to
different decays. The solid and dashed line of the same colours correspond to
two different sets of fit parameters, and the different fit-functions are given in
(5.40). The fit-parameters are displayed in Table 5.1.

5.2.3. Reconstructing the BSA

For the BSA, we use the data from [36], where the authors use the fRG in Landau gauge
QCD to compute fully momentum dependent propagators and four-quark interactions on
the Fuclidean axis. The (squared) BSA was extracted from the four quark interaction as
the Residue of the pion pole, at different angular configurations xy = p- P/y/p? P?, with p
being the relative momentum between the quarks and P the pions total momentum. The
resulting BSA for z9 = 0 and zg = 1 are shown in Figure 5.8 as blue dots. The data was
normalised to one at vanishing relative momentum. The different angular configuration
show a surprisingly different behaviour. In fact, they even show a decay with a different
power law for the upper end of our momentum data. The strong angular dependence
hints at artefacts of the analytic continuation, which might be related to the fact that
angles between four-momenta are not invariant under a Wick rotation. The resolution of
this problem, and whether it is to be attributed to a reconstruction artefact, is still under
investigation. However, we will proceed with the data as it is, and emphasize that the
extrapolation procedure in [36] is common in the field, see also [40, 174, 179] and references
therein. We will use separate reconstructions on two different angular configurations, as
the strong angular dependence cannot be accommodated for by our integral representa-
tion. While this strongly restrains the predictive power of our computation, it elucidates
the ambiguities of reconstructions for functions of multiple momenta. Furthermore, our
computation serves as a proof of principle, and we will discuss how to constrain the results
with additional data in Section 5.2.6.

For the reconstruction of the weight function, we choose a simple ansatz similar to
[275]. We consider a sum pr(z,6) = >_, pgf)(ﬁ,z), where the § and z dependence is
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Reconstruction A B Ba BB oA p
AB1 (zg =0) 0.120 1.99 0.615 | 1.829 | 1.782 1.907
AB2 (zg =0) 0.073 | 0.999 0.611 1.824 | 0.211 | —0.119
AB'1(zg=0) | 0.958 | -1.892 | 0.929 | 1.262 | —0.196 | —0.060
AB'2 (zg =0) | 1.352 | -2.608 | —2.608 | 1.261 | 0.414 0.611
AB1(zg=1) |-0.447 | 1.397 | 0.907 | 0.985 | 0.546 1.180
AB2(zg =1) 0.339 | 0.204 1.043 | 1.073 | -0.131 0.240
AB'1(xg=1) | 0.121 | 2.798 | 0.695 | 2.130 | 0.397 | -0.683
AB'2(zg=1) | 0.150 | 3.582 | 0.695 | 2.130 | 1.058 | -0.556

Table 5.1.: Fit parameters for the reconstructions of the weightfunctions (5.40a) (AB) and
(5.40b) (ABprime). We chose two different sets of locally optimal parameter
for each reconstruction ansatz and datasets (zp = 0 and zg = 1).

factorised in each term, what allows for a simple reconstruction of the data. Note that
a parameter free reconstruction of the weight function is in principle possible, e.g. with
Gaussian process regression, which has been used successfully for gluon and ghost spectral
functions in [45, 185]. However, due to the dependence of the weight function on two
different variables, this goes far beyond the scope of this work.

For large relative momenta, the BSA of the pion in QCD falls of as 1/p?. A convenient
ansatz is therefore to approximate the weight function in 3 direction by a delta-peak at
the average scale of decay,

P8, 2) = AS(B% — B (1 — 2™ (5.39)

where A is a global factor and «; is a parameter which determines the z-dependence of
the weight function. The resulting fit with a single term is shown in Figure 5.8a as gray
dashed line. We find that BSA is not captured by a single term of the form (5.39). To
model the data, we add a second term to the weight function. We devise two different fit
functions, which differ by the momentum scaling of the second term. The first model,
which we denote with AB is a simple sum of two delta functions, with different prefactors
and exponents

pal(B,2) = AS(B” — B%) (1 — 2°)™" + B&(8* — B) (1 — 2)°" . (5.40a)

The reconstructions of the BSA with (5.40a) are indicated in Figure 5.8 as solid and
dashed red lines. The ansatz AB describes the data for zy = 0 reasonably well, but fails to
describe the tail for xy = 1. The latter can be captured by a different momentum scaling,
which can be accounted for in the second model AB':

PP (8, 2) = AS(B2 — B3) (1— %)™ — BY(B* — B) (1—2%)"" , (5.40b)

where the prime denotes the weak derivative of the delta function. Green lines indicate
the respective reconstructions. Inserting the ¢’ term in (5.34) effectively squares the kernel
of the integral representation and leads to a decay of the form 1/p* for intermediate to
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Figure 5.9.: Light quark input for the PDA computation. For details see Section 5.1.3 and
Section 5.1.4.

large momenta. At very large momenta, the first term, which decays as 1/p?, dominates
as required.

Due to the one-dimensional fit data, both models for the reconstruction, (5.40a) and
(5.40b), contain ambiguities in the fit parameters. Specifically, a change in the prefactors
A and B can be compensated by the exponents ay and apg. The latter determine the
distribution of the weight function in z direction. Note that the different parameter
selection lead to practically indistinguishable results for the BSAs, as shown in Figure 5.8,
even though the respective exponents have in parts different signs, shifting the weight of
the distribution to the edges of the z—interval or the centre. This is partly explained
by the fact that the integration variable z in the kernel of (5.34) appears only as the
prefactor of the total momentum P. Hence, the ambiguity in the z-dependence is further
strengthened by the smallness of the pion mass. We emphasize that this reconstruction
problem does not only affect our work, but any attempt to reconstruct the BSA without
prior constraints on its analytic structure. While the resulting PDAs are not too sensitive
to the exponents in the mid x region, the details of the z-dependence matter for the small
and large x region, as we will see in the next section.

5.2.4. Light quark input

Having the weight functions p, determined, the last ingredient in (5.38) is the quark
spectral function computed in the previous Section 5.1. This is not a self-consistent choice,
as the quark propagator was computed in a far simpler approximation than the functional
set-up of [36], which is a state-of-the-art computation of full QCD on the Euclidean axis.
At the current stage, this level of truncation cannot be achieved with real-time methods.
Instead, we resort to the quark spectral function computed with the causal vertex model in
[4] as it contains a realistic model of the quark-gluon interaction. See also Section 5.1, and
in particular Section 5.1.3 and Section 5.1.4. The quark spectral function is parametrised
by a pole-cut split, i.e.,

o> 0) = BVIS = i) + 57V (), (5.41)
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with pl(s/d)()\) = :Fpl(s/d)(f)\). See also the discussion in Section 5.1.4. The first term is

associated with a real first singularity of the quark propagator, while the second term is
associated with the cut, which is induced by the quark-gluon scattering.

In the following paragraph, we will discuss the choice of the tuning parameter for the
quark-gluon vertex. Our vertex approximation is structurally comparable to common
models in the literature for hadron-spectroscopy, like the Marris-Tandy interaction, see
[148, 149], the review [40], and references therein. In truncations which only employ
the classical tensor structure in the quark gluon vertex, the quark pole mass is typically
larger than the constituent mass by a considerable amount of 50 MeV or more. On the
other hand, as discussed in [181], this hierarchy is inverted for quark propagators that
carry the dynamics of a full quark gluon vertex, as is the case in the computation of
[36]. We deal with this inconsistency by choosing an infrared enhancement of the vertex
i/ Qpnys & 1.37, which measures the magnitude of the peak of a; relative to the physical
coupling, see also the discussion below (5.18). This leads to a light quark pole-mass of
Mipoe = 0.381GeV, and a constituent mass of M;(0) = 0.325GeV. The full spectral
functions and the corresponding Euclidean dressing functions are shown in Figure 5.9a
and Figure 5.9b, respectively. Evidently, the constituent quark mass is slightly below the
error band of the constituent masses of the light quark in [36] (Fig. 7), but we consider this
a reasonable compromise, given that the position of the pole in the quark propagator has
a more direct impact on the BSA than the value of the constituent mass. The systematic
error of this choice is difficult to estimate due to the inverted hierarchy of the quark masses.
However, we expect it to be small compared to the reconstruction ambiguities.

There are two possibilities to reduce this systematic error in the future. The first
one is to perform an optimised reconstruction on the high-precision Euclidean data of
the quark dressing function. This includes utilizing the information on the form of the
quark spectral function gained by the real-time computation, to reduce reconstruction
ambiguities considerably. The second one is the systematic improvement of the real-time
computation, by adding further tensor structures of the quark gluon vertex and solve the
system of equations self-consistently. While we hope to report on respective results in
the near future, the full real-time computation requires a substantial amount of technical
development.

5.2.5. Pion distribution amplitudes

With the light quark spectral function Figure 5.9 we can compute the PDAs for the
different reconstructions and data sets, by numerically integrating (5.38) with the spectral
input. The results are shown in Figure 5.10. The upper two panels show the PDAs and
the corresponding small x behaviour for the data set, distinguished by zg = 0. The lower
two panels correspond to the dataset with zy = 1. For the latter, we only used the form
,0;?3/ for the reconstruction, as the 1/p* decay was found to be necessary to describe the
data. We also included the “asymptotic” form of the PDA ¢7(ro) (x) = 6z(1 — x) as a gray,
dashed line. This corresponds to the approximation, where the pion mass is neglected,
and the quark mass is treated as constant. Even though this form is often referred to
as “asymptotic” for large energies, it is never realised or approached in any sense, as the
PDA is dominated by the chiral IR-dynamics.

109



5.2. Mesonic parton distributions

i S e Lsp
_____ Bt tn,
1.0 1.0 A -
E Rec AB'1 E
3 'y \ K / /'
- Rec AB'2 © /S Rec AB'1
0.5p Rec AB1 : -;' 0.5f ----- Rec AB'2
----- Rec AB2 " ¥ [/ oo 6x(1-x)
----- 6x(1-x)
O'COi) O.I2 0:4 0:6 0:8 110 O'CO.l.O 0:2 O.I4 O.I6 0:8 1‘?0
X X
(a) PDAs for the dataset g9 = 0. The red and (b) PDAs for the dataset zp = 1. On this BSA
green curves corresponds to reconstructions data, only the reconstruction p,’fB/ fits the
with pAP and pﬁB/ respectivly. data, see Figure 5.8b.

Figure 5.10.: Pion Distribution amplitudes for zg = 0 in the left and zy = 1 in the right
panel. The fillings between the curves should only guide the eye. The fit-
parameter are collected in Table 5.1. The gray dashed line marks the asymp-
totic PDA.

We start our discussion with the general shape of the PDAs in Figure 5.10. While both,
p;‘B and pfr‘B/ describe the xzy = 0 data reasonably well, see Figure 5.8a, the resulting
PDAs are qualitatively different in the mid-x region, see Figure 5.10a. The red curves,
corresponding to pfr‘B have a concave shape, centred around x = 0.5, while the green curves
carry more weight towards the edges of the z-interval. The difference is explained by the
different decay scales of the reconstructions, i.e.. (84,8p) ~ (0.61,1.26)CeV for pAB in
contrast to (B4, 8p) ~ (0.929,1.82)GeV for pAB’. For the latter, the first decay scale is
substantially larger than twice the pole mass. This already leads to a non-concave shape
in the mid x region, which is further enhanced by the predominantly negative peaked
structure of the quark spectral function, see Figure 5.9. The peak is closely related to
DxSB and is located at the sum of the quark pole mass and the peak-position of the
quark gluon coupling. This is precisely the characteristic decay scale of the quark mass
function in Figure 5.9b. For a more detailed discussion, see also Section 5.1.4.

To strengthen this last point, we refer to Figure 5.11. There we show the different
contributions of the different parts of the quark spectral function (5.41) to the PDA at the
example of the data set zg = 0. For the integration over the two quark spectral function in
(5.38), we can distinguish three different contributions, namely the product of é-functions,
the product of one pole and one cut o< §(A1)p(A2) +3(A2)p(A1) and the product of the two
cuts o p(A1)p(A2). The first contribution is simply positive and the largest in magnitude.
The absolute value of the second contribution is only slightly smaller than the first one.
However, the “pole/cut”-part is negative and more centred around z = 0.5, what leads
to a further shift of the PDA-weight towards the edges. Such a flattening is much less
pronounced for the red-curves, i.e. the PDAs corresponding to pfr‘B.

For the data set with 9 = 1, we find a flat but concave PDA with (84, 8p) =~
(0.695,2.13)GeV for pfr‘B/. This is displayed in Figure 5.10b. Here, the variation of the
shape due to a reconstruction ambiguity is not as large compared to the dataset xgp = 0.
This can be explained by the clearly separated decay scales, which are visible by eye in
Figure 5.8b.
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Figure 5.11.: Different contributions from the discontinuities of the quark propagator to
the PDA for the data set gy = 0, see also (5.41) for the split in the spectral
function. The colour coding is the same as in Figure 5.10.

While the mid-x region is fairly well constrained by extrapolations from the Euclidean
axis, the small and large x region have large extrapolation errors. OQur approach on the
other hand allows for the direct computation of the PDA at arbitrary momentum fraction
x. The results for the present reconstructions are shown on a double logarithmic scale in
Figure 5.12. The left panel, Figure 5.12a, shows the small x behaviour of the PDA for the
dataset zg = 0. The right panel shows the same for the dataset xy = 1. For the data-set
xgp = 0, we find a small x power law that is rather close to that of the asymptotic form.
As we have seen in the previous paragraph, the shape of the PDA was dominated by the
decay scales of the respective reconstruction. These were stable under the variation of the
exponents a4 and ap, if the respective prefactors compensated the change. This changes
in particular for x < 1072, where the cones enclosed by the respective solid and dashed
lines open up. This region probes the z—dependence of the weight function, which is not
constrained by the data. The same is true for the dataset xgp = 1, visible in Figure 5.12b.
There, the PDA approaches zero with a much smaller power in x, starting effectively below
x < 1073, The change of slope is most likely related to the ¢’-term in the reconstruction,
which dominates the BSA for large relative momenta, see the discussion around (5.40b).

5.2.6. Conclusion

In this section, we have shown the first computation of the pion distribution amplitude
with a fully selfconsistent quark spectral function. The latter was computed with a causal
quark-gluon vertex, which resembles the physical dynamics of the quark-gluon interaction.
As a first step, we used the available data from [36] for the Pion BSA, computed with
a state of the art truncation of the functional renormalisation group, to reconstruct the
weight function of the corresponding Nakanishi integral representation (5.34). We have
seen that the naive reconstruction of the BSA contains large ambiguities, see Figure 4.16
which do not allow for reliable prediction of the PDA at the current stage. The general
shape is highly dependent on the ansatz for the reconstruction, see Figure 5.10. We expect
to overcome this problem by combining the spectral approach of this work with the quasi-
pda approach of [36], which does not rely on a reconstructed integral representation. This
approach has been proven to be reliable in the mid x region, and we plan to use it to
constrain the reconstruction of the BSA.
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Figure 5.12.: Small x behaviour of the PDAs in a double logarithmic plot for the datasets

xg = 0 (left) and zop = 1 (right). The relative numerical error is of order
1072,

Our findings suggest that the small and large x behaviour of the PDA is largely de-
termined by the z-dependence of the Nakanishi weight function, see Figure 5.12. In this
region, we cannot rely on extrapolations of the PDA from the quasi PDA approach or low
order cumulants. Hence, the improvement of the systematic error in the small and large
x region requires a direct computation of the Pion BSA on the real frequency axis. On
the one hand, this would eliminate the need for a reconstruction of the BSA in the first
place, with the sacrifice of having to rely on simple approximation. On the other hand,
the real-time computation will reveal the qualitative structure of the Nakanishi weight
function. This information can then be used to constrain the remaining ambiguities of the
reconstruction. The combination of these two approaches is subject of ongoin work and
we hope to report on respective results soon.
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6. Summary & Conclusion

In this work, we developed a framework for the computation of real-time correlation func-
tions and demonstrated its use for calculating dynamical observables such as bound state
masses (Section 4.2) and the Pion Distribution Amplitude at the light front (Section 5.2).
From a phenomenological perspective, this marks an important step towards direct and
quantitative predictions of non-perturbative real-time observables in QCD.

With the upcoming Electron-Ion Collider (EIC) experiments, we aim to gain new in-
sights into the fundamental structure of hadrons and the binding mechanisms of quarks
and gluons. While the statistical phenomenology of infrared QCD is already well con-
strained through Euclidean lattice and functional methods, experimental observables such
as cross sections are measured in the real-time domain. The same applies to the inter-
pretation of heavy-ion collisions: although the phase structure of QCD can be accessed
through static, Euclidean correlation functions, the actual dynamics—particle production,
the hydrodynamic evolution of the quark-gluon plasma (QGP), and freeze-out—are gov-
erned by non-equilibrium physics. Especially the latter stages require non-perturbative
information about the spectral properties of the underlying theory, crucial for describing
transport phenomena and bound-state formation. To interpret and understand the phe-
nomenology of these experiments, it is essential to develop theoretical tools for reliable
real-time computations.

We outlined the spectral functional framework in Chapter 3. It builds on the spectral
representations of correlation functions, such as the Kéllén-Lehmann and Nakanishi inte-
gral representations (Section 3.1), and exploits the analytic structure of full correlation
functions to compute non-perturbative correlators across the complex frequency plane. In
doing so, we employed functional identities of fundamental correlation functions, namely
Dyson-Schwinger equations (Section 3.2.1) and the functional renormalisation group (Sec-
tion 3.2.2). The spectral approach to functional diagrammatic relations allows the use of
dimensional regularisation and enables a renormalisation procedure that preserves both
symmetries and causality (Section 3.4). Specifically, for the functional renormalisation
group, we derived the renormalised flow equation with a Callan-Symanzik cutoff, i.e.,
a simple momentum-independent mass term, in Section 4.1.2. The CS-cutoff preserves
both causality and Lorentz invariance during the flow, at the expense of UV-finiteness.
We demonstrated that the finite, functional CS equation emerges as the limit of finite
Wetterich-type flows. The corresponding counterterm action can be fixed conveniently
through a flowing renormalisation condition, allowing for the elimination of fine-tuning.

In Chapter 4, we complemented the conceptual developments with several applications.
In Section 4.1, we set up the functional CS-flow for a three-dimensional scalar theory
and computed the corresponding propagator spectral function fully self-consistently. The
CS-flow, combined with a flowing (on-shell) renormalisation, constitutes a physical flow,
where each cutoff scale corresponds to a unique point in the space of physical theories.
This allowed us to connect the heavy mass limit deep in the broken phase to the non-
perturbative regime of small pole masses. In Section 4.1.7, we approached the critical
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point of the Ising universality class from the symmetric phase and showed how the scaling
form of the spectral function, with critical exponent 7, emerges dynamically.

We then turned to the computation of bound-state masses in Section 4.2, combining
the spectral DSE with the homogeneous Bethe-Salpeter equation for a scalar two-body
bound state. The spectral framework allowed us to compute the bound-state mass directly
on the real frequency axis. We presented the first direct computation of a bound-state
mass in the scaling limit, providing a proof of principle for the capabilities of the spectral
functional framework in hadron physics.

We concluded Chapter 4 with the first fully self-consistent computation of the gravi-
ton spectral function using the renormalised CS-flow (Section 4.3). We focused on the
traceless-transverse mode of the graviton propagator. The flowing on-shell renormalisa-
tion not only facilitated the numerical implementation but also yielded a UV-normalised
spectral function. This corresponds to momentum- and scale-dependent field redefini-
tions that absorb the anomalous running of the propagator in the UV and, in principle,
allow for canonical commutation relations. The consequences of these redefinitions and
their physical implications remain to be fully understood and will be the subject of future
work.

In Chapter 5, we applied the spectral framework to QCD. We formulated the spectral
gap equation for the quark propagator (Section 5.1.1) and constructed a causal model
for the quark-gluon vertex based on its Slavnov-Taylor identities (Section 5.1.3). This
enabled us to compute the light quark spectral function and analyse the causal structure
of the quark propagator. Although the absence of a dynamically computed quark-gluon
vertex prohibits definitive conclusions, we found strong evidence that the quark propaga-
tor exhibits a real and isolated first singularity in the complex plane (Section 5.1.4). As is
common in approximations that retain only the classical Dirac structure, the quark-gluon
coupling must be enhanced to reproduce the physical amount of dynamical chiral sym-
metry breaking. We observed that for physical coupling strengths, the quark propagator
maintains an intact Kéallén-Lehmann representation, while an overenhanced coupling leads
to its violation through the emergence of complex conjugate poles. However, the spectral
functions remain effectively physical and suitable for phenomenological applications.

The quark spectral function forms a fundamental ingredient for functional hadron
physics and further phenomenological studies. Omne of the most prominent hadrons is
the pion—the lightest bound state in QCD. In Section 5.2, we employed the quark spec-
tral functions to compute the Pion Distribution Amplitude (PDA) directly at the light
front. The dominant systematic uncertainty stems from the reconstruction ambiguities of
the pion’s Bethe-Salpeter amplitude, particularly affecting the small-z region. Our results
suggest that a direct computation of the Bethe-Salpeter amplitude at real frequencies is
necessary to constrain the asymptotic behaviour of the PDA reliably. Nevertheless, we
demonstrated the potential of the spectral functional framework, particularly in regions
where lattice extrapolations become unreliable.

Finally, having outlined the progress achieved, we conclude this thesis with an outlook
on future challenges and prospects. A crucial next step is the incorporation of higher-order
scattering processes and vertex corrections to achieve apparent convergence of fundamental
correlators. This will require conceptual advancements in the direction of vertex spectral
functions and mixed expansion schemes including full effective potentials. Moreover, a
full application of the framework to QCD necessitates a deeper understanding of the
complex structure of the Yang-Mills sector. To date, a direct and self-consistent real-time
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computation of the gluon spectral function remains an open challenge.

While a complete real-time implementation of QCD remains a long-term objective,
every advance in this direction provides valuable insights into the analytic structure of
correlation functions. Beyond the conceptual understanding of real-time quantum field
theories, these developments also constrain the reconstruction of dynamical observables
from Euclidean or experimental data. Ultimately, they will contribute to physics-informed
solutions to the challenging inverse problems in QCD phenomenology and help to unravel
the real-time structure of strongly interacting matter from first principles.
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A.1. Additional material for the scalar spectral flows

A.1. Additional material for the scalar spectral flows

A.1.1. Spectral diagrams

The general spectral form of the diagrams in Figure 4.2 and Figure 4.4 is given by

Diaa <H/ ) Loa(X 17,

I1 A pw)) Loa(X.0%),

=17

Dpol(pQ) = <

Dﬁsh (H/ ) L Xap2)’ (A~1)

with X = (A1, .., Ap) denoting the ordered vector of spectral masses. The loop structure
reads

o rp, g, —p]
Loa(X,p?) = / - ,
a7 0 (@ + A2 (2+ 23)

S (T®p,q))”
Loa(X,p”) = /q @+ M) +23) (p—9)?+23)’

- ®3) (4)
Eﬁsh(A7p2) = / a [22?7 q] L [p’ g 0] 2N (AQ)
¢ (@+27) ((p—0)* + X3
where the vertex functions are not specified yet, and we have dropped the field argument
for readability. With the approximations discussed in Section 4.1.5, we have fixed all
correlation functions and we can compute the final expressions for the diagrams. For the
fish diagram, the four-point function is connected to the constant scale derivative of the
field. With (4.33) and (4.31), the polarisation- and fish diagram of the flow equation in
the broken phase read

Dals?] = (1) [ p)p(02)o(0%s) LK. 17),

oy
%o

Dyalp”) A p(A)pOA) Ln(X,p2) (A.3a)

where

) 1
La(A\ p?) =/q (@ + AP+ X3)((g—p)?+A3)’

0 ; A.3b
oo /q+A2 —p)?+A3) (A3b)
and X is the ordered vector of spectral parameters, one for each internal propagator in the
diagram. We denoted the loop structure of the fish diagram as Ipol, since it carries the mo-
mentum structure of a DSE polarisation diagram. The loop integrals I and I are evaluated
analytically and given in terms of real and imaginary frequencies in Appendix A.1.5.
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A.1. Additional material for the scalar spectral flows

Substituting the four-vertex in (4.9) with the respective spectral representation (4.5),
the constant classical part of the tadpole is absorbed by renormalisation. The remaining
dynamical part of the tadpole diagram reads

D) = [ pA)p(Ae)pi(00) (R r). (A4)
The four-point spectral function ps (A.4) is obtained from (4.21) in both phases. As
discussed below (4.21), there are further diagrams with two or four three-point functions
contributing to ps. These diagrams are suppressed by roughly an order of magnitude.

A.1.2. Renormalised flow of the two-point function on the physical minimum

In this appendix, we provide details on the derivation of the flow equation in the broken
phase (4.19a). In particular, we explain the crucial role of the three-point function in (4.16)
for obtaining one-loop perturbation theory as leading order behaviour. We show that the
flow of the two-point function has the expected sign, see (4.17), if we include the flow
of the minimum correctly and that the on-shell renormalisation condition (4.13) can be
imposed consistently.

The flow equation in the broken phase reads

STlnl(p) = (@un) SOl60] = (2 = no) Zoh®
LR [_;Dm i D} — 040 Do — 01Sualé] (A.5a)
where
R = (90T Dlg0] = (2 = m5) Zok?) | (A.5D)

as derived in Section 4.1.4.

To renormalise the flow of the two-point function and show how the correct sign of the
flow is recovered by the inclusion of 0;¢q, we first separate the tree-level and loop-induced
running of the prefactors of the diagrams in (A.5a). To that end, we start with the full
three-point function in (A.5b). The separation into trivial and loop-induced RG running
can be made apparent by introducing a corresponding split of the curvature mass (4.24)
via Am2 =m?2 — 2Z¢k‘2

curv curv

Aypol'®) = 1 (8,92) TW = 3(o,am2 427 (2 — ng)k? — m? oLy (A.6a)
2 0 2 t curv ¢ 77¢ curv 1—\(4) * *

In the first line, we related the three- and four-point function by (4.31), and we used (4.32)
in the second step.
For the classical three-vertex in (A.5a), we analogously obtain

. A
3) _ ¢ 3
duboS®) = <8tq§0F( >) : (A.6D)
With (A.3a), the fish diagram in (A.5a) carries a prefactor proportional to
8t¢0 — 8t,nllzurv _ atr(4) . (A7)
¢0 mgurv F(4)
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A.1. Additional material for the scalar spectral flows

Inserting (A.6) and (A.7) in (A.5a), we can write down the final flow equation for the
two-point function in the broken phase,

d . 1
@F(Q) [(Z)O] (p) = R <_2Dtad + Dp01> + ADﬁsh + B (2 - 77¢)Z¢k2 + C - 81550(52) 5 (A8a)
with

: 3 9y Am? EANSY
. _ 2 — 2 t curv. t
R - 2Z¢ (2 ’r](b) k + 2mcurv ( F(4) )

m2
A %0 (fm B atr<4>)

curv

2 mzurv F(4)
3\g
o (3 -1)
3 5 A [OAmZ,, 9TW
0:2mmr(4)< oM (A.8b)

dyn

The diagrams D,,,, Ds., and Dy} are given in (A.3) and (A.4), respectively.

The prefactor of the first term in (A.8b), R, carries the scale dependence of the internal
propagators on the physical minimum. It takes the role of the regulator derivative in
usual fRG applications. The first term of R and the third term of the flow (A.8a) are
explicitly proportional to k?, and have the same structure as the respective contributions
in (4.9), where the flow equation is evaluated at arbitrary values of the field. However, it
carries an additional relative factor —2, stemming from the three-point function, which is
proportional to 8;¢oI'®. In total, the tree-level term of R is positive and can be written
as the t-derivative of 22¢k2. This reflects the positivity of the physical pole mass. At
one-loop order, it reduces to 4k2, resembling the k-dependence of a classical propagator
with my = 2k?, see (4.17).

The same holds true for the constant part of the flow, given by the third and fourth
term of (A.8a). Complementary to R, these encode the explicit running of the mass.
At tree-level, this running reduces to 4k2, which is nothing but the flow of the classical
(squared) mass on the physical minimum. Hence, the deviation of the constant part of
the flow from the classical running is, as expected, of one-loop order and beyond and can
be absorbed in the renormalisation constant. With that, we can consistently impose our
renormalisation condition.

The second term of (A.8a) is proportional to the fish diagram. Note that Dg,, carries
a factor 1/¢o, which cancels the respective factor in A. At one-loop order, it carries the
running of the classical three-point function. Together, Dy, and D, can be written as
the total derivative of the (one-loop) vacuum polarisation.

We now apply our renormalisation condition (4.13) to the flow (A.8a), for which it
translates into the condition

oym?2 . = 4k*. (A.9)

pole
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A.1. Additional material for the scalar spectral flows

This specifies our counterterm flow and leads us to the final renormalised flow equation in
the broken phase:

d . 1 R
GO0 = R Daals) = 020+ ADwalo) + 48 -5, (A0

where we have split the tadpole in a constant and dynamical p-dependent part defined
by (A.4), via the spectral representation (4.5) of the four-vertex. Furthermore, we have
dropped all constants in p of order (Agk), including the constant part of the tadpole, as
they are subtracted by the renormalisation constant implicitly specified by (A.9). The

remaining atSC(? ) [¢o] now comprises only the counterterms of the diagrammatic contribu-
tions, where the renormalisation scale is the pole mass.

A.1.3. Flow of ¢g and critical exponents

In this appendix, we discuss the evolution of the solution of the EoM, ¢¢, in the broken
phase. It is given by (4.32). This exact relation depends on Ag, which we have identified
with T4, dropping higher order terms proportional to A3, A4 and ¢q itself. Implicitly,
these terms can be included by solving the flow of ¢g. It is derived from the EoM for
constant fields, which is solved for a k-dependent ¢g. Acting with a total t-derivative on
the EoM (4.10) leads us to

Vi (%) AV (%)

Orpo = =
V;:(f?) (¢0) mzurv

. (A.11)

The denominator is nothing but the curvature mass squared, while the numerator is given
by the first field derivative of the CS equation (4.8), evaluated at ¢g. At each flow step,
the latter generates higher order terms beyond the approximation (4.20). In summary, if
using the flow equation in (A.11), we implicitly take into account terms dropped in (4.32).
In the present approximation the numerator of (A.11) reads

8V W] = ¢o (2 — 1) Zsk? [;Dtad(o) — 1]
— ¢o (O AM?) . (A.12)
The last term stems from the flow of the counterterm action
01 S.[p] = Tr % (0,Am?) ¢ . (A.13)

Collecting the terms proportional to ¢g and 0:¢g, we arrive at

(2 —ng) Zohk?
2

curv

dilog(do) = 1+7T), (A.14)

where T comprises the corrections from the tadpole diagram and the counterterm

1 BtATTLQ

TR ZaRR A
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A.1. Additional material for the scalar spectral flows

Equation (A.14) is easily integrated, leading to

k B 2
b = do exp { / dk 2 = 1g) Zok™ T)} , (A.16)

k m2

curv

where ¢g  is the classical ultraviolet value of the condensate in the initial UV effective
potential, (4.34), at the initial large mass A. For smaller pole masses the condensate gets
progressively smaller and vanishes for K = 0. We can simplify (A.16) further by noting
that the squared curvature mass, see (4.32), is conveniently written in terms of the spectral
representation

2Z,k?
mgurv = oo(bd)\ — ) (A].?)
1+ fg TP()\)
where we defined the RG-invariant spectral function as
2Z,k?
PO == (sz@ A) . (A.18)

With (A.17), the exponent of (A.16) reads

2[5 (1 [ S aem)] o

For large k, i.e. Ay < k we can approximate mZ,., ~ 2k*, and Ay = () ~ Ag. The
flow of the renormalisation constants is dominated by the tadpole contribution for large

cutoff scales. It is of mass dimension 2 and at leading order in k it is proportional to

(Apk). Consequently, af%QmQ ~ 0 as well as the tadpole contribution,
d3q 1 )\¢
Digg = A = . A.20
o ¢/ (@m) (@ + 2622~ \2k8x (4.20)

The propagator is then well approximated by the free one, Z, =1 and p = 0 and (A.19)
reduces to 1 +7 =~ 1 + Agc, with the effective coupling Ay = A\g/k and a dimensionless
constant c. In the limit of large masses, (A.21) flows to the classical solution as expected:

kdk kdk - k
Pok = Po,A€XP —+ec / —Ap — don | =) - (A.21)
Ak k A

A

Similar equations could be formulated in terms of p = ¢?, reflecting the symmetry of
the theory. In O(N)-theories and in the real scalar case such a representation is typically
used, as derivatives in p project directly on A\, in both phases. While all different formu-
lations are equivalent if the full effective potential is used, they deal differently with the
approximation (4.20).

A.1.4. Phase transition and critical scaling

Here we provide a qualitative discussion on the scaling limit and use the integrated flow
of the physical minimum, ¢, and the (hyper-)scaling relation (A.22) to derive explicit
equations for the scaling exponent 74. The phase transition between the symmetric and
broken phase is reached with k& — 0 in both phases. In the limit of a vanishing pole
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mass, m2,, = 2k? = 2|u| — 0 we are interested in the running of the ‘magnetisation’

b0 = b0/ /Z4. The division by 1/,/Z4 eliminates the RG-scaling of the expectation value
and leads to the physical observable. In the scaling limit, the magnetisation acquires a
scaling form

- 1

poox T, B= v (1+15) ~ 03264, (A.22)
where v ~ 0.6300 and 7, ~ 0.03630 are the scaling exponents of the three dimensional
Ising universality class. The tuning parameter 7 is, in contrast to usual critical theory, not
directly proportional to the mass-parameter p or k? as consequence of the flowing on-shell
renormalisation. To see that, we consider the scaling form of the correlation length

Ex TV, (A.23)

with the mean-field scaling v = % In general, the correlation length is inverse proportional
to the lowest lying pole of the propagator. Beyond the mean field theory, the correlation
length acquires an anomalous scaling in dimensions below d = 4. With the on-shell
renormalisation procedure, this anomalous scaling is hidden and we have

okt (A.24)

for all cutoff scales. This entails that the tuning parameter 7 is related to the pole-mass
Mpore X K as

Toc kv (A.25)

In every flow step, the diagrams of the flow introduce an anomalous scaling to the pole
mass, which is subtracted by the counter-term and expresses the renormalisation of the
full scaling of the pole mass to the classical one. Hence, the scaling exponent v is encoded
in the flow of the counter-term in the scaling limit. With (A.25), the magnetisation (A.22)
can be rewritten as

- 8 8 1
o X kv, —=—(1+mny). (A.26)
v 2
The k-scaling of the magnetisation is encoded in the

k — 0 limit of (A.16). Resolving the brackets, we notice that the first two terms of
the exponent (A.19) can be integrated immediately, leading to

b0 = doA /2y (i) exp {/Ak CZ{,:/D(k’)} : (A.27a)

where we used the definition of 74. The residual integrand is abbreviated as

D) = (1- 1) {(1 ) /:O %p(x) T (1 + /:o dAAp(A)H , (A.27b)

with 7 given in (A.15). In the scaling regime we have k£ — 0 and

B k dk’
. bl /
¢o X Lg%kexp {/A o D(k )} . (A.28)
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In the limit & — 0 the integral in (A.28) diverges logarithmically with the prefactor
Dy = D(0). Then we can read of /v and solve (A.26) for 7y,

ns =1+ 2Dy. (A.29)

The prefactor Dy is either computed for £ — 0 or is extrapolated when the scaling regime
is reached. Alternatively, 1y can be computed directly from the flow in the scaling limit
via it’s definition, see (A.121c). The size of the scaling regime can be estimated from
the running of the four-point function: For large values of the dimensionless coupling
Ag/Mpoie >> 1, the loop correction in the denominator of (4.21) outgrows the constant
part,

I (p) = Ao - 2 A.30
®) 1+% [ Gp+a)Glg) J,GP+aG(a)’ (4.30)
and the flow becomes independent of the coupling. Our computational set-up did not
allow for a direct computation in this limit. Hence, we refrain from giving an estimate for
the scaling exponents and defer quantitative results to future publications.

Let us close this investigation with a discussion of the spectral function in the critical
regime. To begin with, for & — 0 the pole contribution of the propagator vanishes as
Zg x k™" — oo. In turn, for k = 0, the scattering tail carries all the weight, and the
solution for k = 0 is given by

PO x o Gk(p)o<(p)21_%. (A.31)

Note that the scaling (A.31) is naturally cut off in the infrared at A = 2m,,. according to
(4.14). In the ultraviolet, for A — oo, the spectral function also has to decay faster than
(A.31). As has been discussed in [79, 80], the propagators of physical states or fields have
to decay as 1/p? for large momenta. This is at odds with (A.31) and indeed the spectral
function p in (A.31) is not (UV) normalisable. For a finite k, p decays faster than 1/\?,
as is manifest in our explicit solutions in the broken and symmetric phase, Figures 4.7a
and 4.7b respectively.

A.1.5. Calculation of diagrams

In this section, all diagrammatic expressions appearing in the main text are given in
analytic form. The spectral approach we use, allows us to calculate diagrams with full
propagators in terms of integrals known from perturbation theory. The insertion of a mass-
derivative in Figure 4.2 leads to a squared propagator on one line in comparison with
the usual vacuum polarisation or tadpole diagram. Using the spectral representation,
the momentum structure of the regulator line can be rewritten via a partial fraction
decomposition

1 1 1 1
_ _ . A.32
M+ +¢?) (M=) (A?Jrq? A3 +q2> (4.32)

A given (spectral) flow-diagram can therefore be reduced to the computation of the mo-
mentum integral, where the regulator line is replaced by a single propagator, which we
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will denote with a tilde. Denoting the spectral parameter of the divided line as A1 and Ag,
we write schematically

-1 . .
D(A1, A2, ..., p?) = ———— | D(A1..., p?) — D(Xa..., p? A.33
(17 29 7p) (A%—)\%)[ (1 7p) (2 7p)]7 ( )
and accordingly
-1 -
D\ A, ..., p?) = ﬁaAD(A...,p%. (A.34)

This reduces the calculation of I, as defined in (A.3b) to the calculation of I, as given
below

-1

Ipol(>\17)\27)\37p2) = ()\2_)\2)|prol()\17)\3ap2) - ipol(A27)\37p2) ) (A35)
1 2
Denoting the Euclidean and Minkowskian frequencies by p and w respectively, the mo-

mentum structure of the spectral polarisation diagram reads

= 1
Lo (py A1, A2) =——Arctan [

p
47p M+ X

AL+ A2

= 1
Ipol(wa )\17 )\2) :m{Arctanh [

} +if(w— (A + )\2))} , (A.36)

see [b4, 277]. We find the integrand I, of the polarisation diagram to have a branch
cut with compact support, i.e., for w € [A; + A3, A2 + A3] for Ay < Ao, This peculiarity is
a dimension dependent property of the polarisation diagram which does not hold in four
dimensions. There, the imaginary part of I, has support for w € [A; + A3, 00) for Ay < Ao.

The onset position of these structures allow us to discuss the scattering continua. To
this end we note that the diagrams with a polarisation topology have two or three lines
that can carry either a mass-pole or a scattering contribution, see Figure 4.5. If all lines
carry a pole contribution, which is the leading order for all couplings in the considered
coupling range, we find the flow of a discontinuity seeded at 2m,,,., representing a 1 — 2
scattering.

A.1.6. Flow equation of the effective potential

In this section we briefly discuss the flow equation of the effective potential in the local

potential approximation for the sake of completeness and for the illustration of consistency

of the approach. Its derivation including the determination of the counter term has been

discussed in detail in Appendix A of [1]. The flow of the first field derivative of the effective

potential in three dimensions is given by

1 / &p Vi)
(

0D (g) = —L 5 +0— 05416 (A.37)

2

where we have dropped the multiplication with p present in (4.8). We have already
used that the momentum integral in (A.37) is finite, and hence we can remove additional
regularisations such as dimensional regularisation relevant in the d = 4 case, see again

127



A.1. Additional material for the scalar spectral flows

Appendix A of [1]. The momentum integral in (A.37) is readily performed and we arrive
at

1 VP9

0V (6) = gL E +6 - 9,54 10]. (A.38)
Ve (9)
and upon ¢-integration we are led to
1 /@ 1o
auveff(qs) - _@ Veﬂ (¢) + §¢ - 8MSC13 [¢] ) (A39)

where we have set the integration constant to zero. Note that (A.39) has a peculiar form:
the loop contribution is negative, while its diagrammatic form is seemingly positive but
not well-defined without regularisation. We emphasise that the the first field derivative of
the flow (A.39) is negative (times V;(f?)), see (A.38), as holds true for all momentum-cutoff
flows.

It is illustrative to consider the large field limit with ¢?/|u| — co. For these field values
the effective potential (or rather its interaction part) reduces to the classical one, and the
flow reduces to

1 /A 1
pVenr(®) = —g 5\ 5 82 + 50" — OuSald]. (A.40)

up to sub-leading terms. We note in passing that (A.40) shows the self-consistency of the
assumption that the interaction part reduces to the classical one. The right hand side is
proportional to |¢| = y/2p. This reflects the infrared cut in three dimensional momentum
cutoff flows for u — 0. For the CS flow it is present for all p in the large field limit in
contradistinction to momentum cutoff flows that decay with 1/ Ve(f?) (¢) for large fields.

A.1.7. Anomalous dimension 74

In this Appendix, we provide the relation used for the determination of the anomalous
dimension 7, defined in (4.8b). We start with the parametrisation of T(?)(p)

I (p) = Zs(p) (1° + mZ) (A.41)
where we use Euclidean momenta p?. Throughout the derivation we use the on-shell
renormalisation condition (4.12), leading to mgole = k2. The on-shell wave function is

given by Zy = Z¢>(p2 = —k?), which can be computed from the p>-derivative of r@ (p),

_or®(p)

Z ¢ 3p2

: (A.42)

p2=—k2

= k2. The t-derivative of (A.42), which hits both the explicit

k-dependence of I'® and the k-dependence of the momentum argument, leads us to an
explicit expression for 7y,

where we have used mgole

1

"= 7, | op? (0p%)?

21(2)
iatp@)(p) — 2k2M] _ (A.43)
2__ )2
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The second term in (A.43) can be expressed in terms of the spectral representation (4.3)
of the propagator. To that end we use that

05T(p) = (p° + k*)02 Zy(p) + 20,2 Z4(p) (A.44)
The first term vanishes on-shell with p? = —k?. For the second term we use that
9Z4(p) 2 9 1 2 9 2 2
_ - = _72(p)— G . A.45
o 805 | 2oy | = 2P g 07+ F) GW) (A.45)

Now we use the spectral representation (4.3) of the propagator and use (4.4) to split the
propagator in its pole and tail contributions,

e

A2+ p?

02r) iy 0 [ 1
Op? Op?

(A.46)

A

The on-shell residue 1/Z4 is momentum-independent. Hence, the one-particle pole of the
propagator does not contribute to d,2Z(p). Going also on-shell, we arrive at

0Z4(p)
Op?

500
- —22/ P A.AT7
P ¢ L A2 — k2 ( )

Note that the on-shell pole of the integrand lies outside of the support of p(\). Putting
these results together, we arrive at

+4k*Z, PN (A.48)

— =0 r®
Ne = 3 ( ) N A2 _ k2

Z¢ ap

p2=—k2

The first term in (A.48) is readily derived from the spectral form of 9;'®)(p) provided
n (4.27), as it admits analytic p?-derivatives. However, (4.27) also depends on 74, and a
respective resummation leads us to the final relation,

oDt yn(o.z)
k‘2 d + 4]6222 f)\

e = 2 0D (w)
T2 T 0wl
« ""2:7’”3019

)\2

(A.49)

Note, that the derivatives can be taken fully analytically due to the analytic momentum
dependence of the diagrams as discussed in Appendix A.1.5. This avoids any numerical
instabilities introduced by numerical derivatives.

A.1.8. Scaling of p4(A)

In this Appendix, we discuss the scaling limits of the s-channel spectral function of the four-
point scattering vertex. The respective numerical results are shown in Figure 4.10b and
Figure 4.11b. The lowest possible scattering is 2 — 2 scattering, the spectral function has
its onset at Moy = 2Mpq10, as can be seen in Figure 4.10b. For small momenta or spectral
values, both ¥ and p4 approach a power law, the latter one is given by (4.39b). Notably,
both the prefactor and the exponent of these power laws are independent of A\y4. For very
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Figure A.1.: Anomalous dimension 7),, (A, k), (4.40b), for different spectral parameters,
at different spectral parameters, A\/Ay = 1073210740, 107%?, as functions
of the cutoff scale k. The critical exponent n,, = 7,,(A — 0,0) can be
determined by an extrapolation: 7,, = 0.093(5), see (4.41b).

large momenta, the four point function goes into the classical limit I'*®)(w — o) = Ag-
In turn, the spectral function decays with w™!, see Figure 4.10b. This reflects the sub-
leading one-loop behaviour of '), and p4(A) approaches the respective one-loop spectral
function: this one-loop result is readily computed with classical spectral functions in Dy,
in (4.21) with a vanishing mass, p(\) — 276(\?). In this limit, I'*) reduces to

A
r'(w) = 7_‘15% (A.50)
1 + lm
and the s-channel spectral function function p4 reads
Ao
pa(w) = oo, Jo (A.51)
A 16w

In the scaling limit, the propagator has the form G(p) o< (p?)~(1=7/2) (4.39a). Inserting
(4.39a) into the denominator of (4.21), leads us to

I (w) o (w)' =27, (A.52)

and the scaling law (4.39b) for py with the exponent 1 — 2.

In Figure 4.11b we show 7, (\) for different pole masses mpoe = k together with the
one-loop result from (A.51). The convergence of the plateau towards the scaling exponent
1p, is shown in Figure A.1. There, the anomalous dimension 7,, (A, k) is shown for three
different spectral parameters in the plateau, A\/Ag = 10735,10749,10745, as functions of
the cutoff scale k. The 7, (A, k) converge towards a unique value 7 for k& — 0, but at
k/ g = 1077, this limit is not reached yet. We extract the limit 7 from an extrapolation
towards k = 0, as indicated by the dashed lines. The respective uncertainty informs our
error estimate.
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A.1.9. Computation of the LPA’ benchmark

In this Appendix we provide some details on the fixed point analysis in LPA’ used as
a benchmark in Section 4.1.7.3. This result links the CS-regulator results to other ones
obtained with different regulators and also higher orders of the derivative expansion. The
flow of the dimensionless effective potential in the three-dimensional scalar theory is given
as

00— (L 0)p 3] w(p) + 3u(p) = =N TH ) — e (ABD)

where the t-derivative in (A.53) is performed at fixed p. The field-dependent dimensionless
mass function u(p) in (A.53) reads,

1(p) = u'(p) +2pu" (p) . (A.54)

The dimensionless potential © and and field p are defined by rescaling the dimensionful
quantities by appropriate powers of the cutoff scale k,

. Ves(p) _ p
U(p)—gg)—p, P=2Zy1 (A.55)

and hence sy drops out of the square root in the flow equation (A.53), but stays as a
global prefactor in the second line. We have only introduced it as (A.55) incorporates the
standard fRG convention, in which the cutoff term is subtracted from the effective action.
Keeping this standard convention allows for a straightforward comparison.

The term —fict p is a part of the flow 0.5, of the counter term action in the renormalised
CS-equation (4.9). Note, that despite the fixed point potential being in the broken phase,
the standard fixed point analysis uses the CS-regulator Reg = +Z¢k2 and finiteness in the
three-dimensional theory is achieved by studying the flow of the p-derivative of w, that
is Oyu/. This translates into a flowing counter term action with g = 0 in (A.53). This
setup is used for the benchmark computation of the standard LPA’ fixed point analysis.
We note in passing, that fi; also accommodates flowing renormalisation conditions for
momentum-dependent regulators, see [1] which can be used for an optimisation of the
convergence properties of a given expansion. Equation (A.53) is complemented by the
algebraic relation for 7y,

B 2210
1= Notto + 87 (4+ 4T+ o + 10 (5 + 1o + 3T + ju0))

with po = w(k) in (A.54), evaluated on the solution s of the equation of motionThe
fixed point equation for the effective potential follows from (A.53) with d;u = 0. For its
iterative solution we use the Taylor series representation of w within an expansion about
the t-dependent minimum x,

(A.56)

u(p) = Y2 (o~ w)", (A57)

valid for k > 0 with

~0. (A.58)
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The ), are the dimensionless and RG-invariant scattering couplings of the ¢*-theory. The
critical scaling on the phase transition is obtained by evaluating (A.53) on the fixed point
u* with 0yu*(p) = 0. This leads us to the fixed point equation

30 () — (L n)pu(5) = 1 \/TF 1 . (A.59)
Equation (A.59) can be solved iteratively order by order in the Taylor expansion (A.55)
upon convergence.

We have computed the anomalous dimensions 7 on the fixed point for different trun-
cations of the effective potential. The truncation best suited for comparison with the
spectral flow is one where we only used the terms up to p? in the effective potential. To
analyse the improvement of the results with higher orders, we went up to p°. The results
are discussed in Section 4.1.7.3.

A.1.10. Possible improvements and further work

In Appendix A.1.8 we discussed the computation of the four-point function via s-channel
resummation. As described, this method does not allow for uniform scaling behaviour
because it has an intrinsic scale, set by the value of the classical vertex in the UV. In this
section, we discuss different options of addressing this issue.

To achieve quantitative precision for scaling exponents, the resolution of higher order
scatterings appears to be crucial. This can be achieved by coupling the flow of the prop-
agator to that of the effective potential. The latter can be treated either by a Taylor
expansion around the minimum or by solving the full partial differential equation for the
effective potential. In the symmetric phase, the full solution does not suffer from numeri-
cal difficulties due to symmetry restoration, and we hope to report on results in the near
future.

To solve the issue of the UV-scale in the four-point function, see Appendix A.1.8, one
option is the inclusion of different momentum channels. As the four-point function only
appears in the tadpole-diagram it is enough to consider r® (p,1, =1, —p) where p is the
external momentum and [ the loop momentum which is integrated over. This specific
momentum configuration means, that the s and w channel contribute equally. The ¢
channel however does not carry any momentum (¢ = 0) and can therefore only contribute
an additive constant in such a configuration. The inclusion of these channels does two
things. First, it includes more momentum dependency, what evidently leads to better
approximation. Second, the constant contribution of the channels shifts the intrinsic scale
of the four-point function to higher momenta. To illustrate this, we consider our s-channel
approximation. Its UV-limit is given by the classical coupling, as the loop integral decays.
To accommodate for the t-channel contribution in the resummation, we have to replace the
classical coupling in (4.21) by an effective coupling A .4 = Ay + f % flowgens. The second
term is comprised by the diagrams of the flow of the 4-point function, which do not
depend on the s-channel momentum. Note, that these terms in the flow are proportional
to )\z. The dimensionality of the four-point function hence requires that they are roughly
proportional to 1/k what is the only other scale around. This shifts the UV-boundary of
the scaling region to higher momenta, if the flow of the four-point function is taken into
account. We aim to implement this in future works.
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A.2. Additional material for the spectral DSE-BSE system

In this appendix, we provide additional information on the spectral DSE-BSE system we
use to compute the mass of the scalar bound-state in Section 4.2. We first discuss detail
on the spectral DSE in Appendix A.2.1 and then proceed to discuss the BSE system in
Appendix A.2.4.

A.2.1. Spectral DSE

In this appendix we provide details on the spectral DSE solution. Our starting point
is the spectral representation (4.49), which allows one to compute the full propagator
from the spectral function. This relation can be inverted by analytic continuation to real
frequencies,

p(w,[p]) = 2Im G(—i(w + 107, |p]) . (A.60)

The spectral representation allows one to determine the complete analytic structure of
Feynman diagrams containing full propagators G;(p), since one only needs to perform the
Euclidean loop integrals I;(p, A;) with classical propagators but different spectral masses
Ai. These integrals absorb the full momentum dependence so that one can perform an
analytic continuation into real time.

The self-energy integrals with full propagators are then given by

Nj 00 )
1) = TT( [ 20000 )60, (A.61)
=1

™

where fooo d\ N/ = | A 18 the spectral integral and g; the prefactor of the particular
diagram. In practice, these integrals are performed numerically since also the spectral
function is usually computed numerically. Because the complex structure of the integrand
is fully contained within the known functions I;(p, A;) and only enters in the complex
structure of the full diagram II;(p) via its spectral weight p();), these computations are
numerically stable.

The computation of real-time Feynman diagrams with full vertices also requires a spec-
tral representation of the latter and possesses is own technical limitations [77, 237, 278].
In this work we ignore the momentum structure of the vertices by approximating them at
zero momentum. The DSE can then be put in the general form

@ (p) =p* +m?* + > (p), (A.62)

where m is the bare mass in the classical action and IL;(p) are the spectral integrals (A.61)
corresponding to the diagrams I;(p, \;) with j = {tad, pol, squint, sun}, whose prefactors
g; come from the combinatorial prefactors in the DSE and the vertices in the diagrams.
We importantly remark that these constants are not trivial, as they include the action of
the full vertices in the diagrams and thus may also depend on the spectral function itself
by means of the corresponding DSE of each vertex.

As the full analytical structure of the diagrams I;(p, A;) can be computed, the equation
can also be represented in real time as

T (w) = —w? +m? + Y T;(w), (A.63)
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where II;(w) is computed over the analytically continued diagram I;(w, \;) according to
(A.60) and carries its own real and imaginary component.

The explicit form of the diagrams is known [277]. We collect them below alongside their
analytical continuation

p— —i(w+i07), (A.64)

where the generated branch cuts are in accordance with Mathematica conventions. We
abbreviate Aja = A1 + A2, A123 = A1 + A9 + A3, etc., and we also list the limits at zero
momentum, if they are used in the computations:

Polarisation:

The polarisation diagram I}, is given by

1 P 1
I - Lo - . A.
pol(pa )\la )\2) 47rp arctan )\12 ’ pol(ov Al? >\2) 47T)\12 ( 65)
With (A.64) we are led to
1 w ) w
Ipol(w, A1, A2) = o au‘ctauah)\—12 +iarg (1 — )l
Sunset:
The sunset diagram I, is given by
LIoun(p, A1, A2, Ag) = ! X 1ln ! —Al?garctani (A.66)
sun{P; A1, A2, A3) = (47_[_)2 2 )\%23 +p2 D )\123 ) .
With (A.64) we are led to
Tsun (w, A1, A )\)—L lln ! _ duzs arctanh—— +jarg (1 — ——
sun sy ALy A2, A3) — (47_[_)2 2 /\%23 o w2 w )\123 g )\123
(A.67)

Squint:

The squint diagram Isquing is given by

1 A234 p
Isquint(p7 )\1, AQ, )\37 )\4) = m X {21n <)\23_)\4> arctan )\714"‘

Ao (ip—A1a . —ip— A4 i —A+M C(ip—AM+ M\
! [L12 ()\23 - >\4> a le( A2z — \g > + L12< A234 ~ Liz 234

With (A.64) we are led to

Re F —if(w — [A14])Im F
(87r)2)\4w ’

Isquint(wa A1, A2, A3, )‘4) =
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with
A234 > w . (w—)\14> . (—w—)\14>
F — 2 ln —— arctanh— — Ll — + Ll —_—
()\23 - M\ A4 \ A2s — A \ Aas — A4

CLi, (M) +Lis (M) ' (A.70)
)\234 )\234

Finally, the triangle at zero momentum is given by

1 1
Ip(P=p1=p2=0,\, A0, A3) = ————. ATl
(. p1=Dp2 s AL, A2, A3) A7 Ao A3 Aal ( )
The tadpole and sunset diagram in the propagator DSE are divergent and need a subtrac-
tion. We choose an on-shell renormalisation condition I'(2) (w = Mmpele) = 0 such that the

renormalised mass is the pole mass mpole. The renormalised DSE thus acquires the form

PO W) = —w? +mle + 3 [T(w) — i (mpor)] - (A.72)
J

We note that no renormalisation of the coupling A4 is necessary due to the super-renormalisability
of ¢*-theory in three dimensions. Furthermore, the DSE can easily be made dimensionless

when dividing by mgole, thus explicitly recovering the fact that the theory is determined

by the dimensionless ratio Ag/mpole only. From now on we denote the pole mass by m for
simplicity, as also done in the main text.
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Figure A.2.: Left: Dimensionless zero momentum vertices T',,/ m3~"2 as a function of the

coupling Ay/m. The dotted gray lines are the tree-level values from (4.77),
whereas the dashed gray lines are the asymptotic curves which follow the
scaling limit (A.74). Right: Scaling exponent of each vertex, extrapolated
from (A.74) for each value of the coupling. All vertices approach the same
scaling exponent 7 &~ 0.11. The best theoretical prediction of the scaling
exponent 7 = 0.0360 is represented with the dashed line for comparison.

The spectral DSE (A.72) constitutes a non-linear coupled system of integral equations

for the spectral function p(\). The spectral integrals on the r.h.s. contain the full vertices,
which implicitly also depend on p(\) through their own DSEs. In practice we solve the
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spectral DSE by iteration: We first introduce a reasonable guess for p(A) and compute the
prefactors and diagrams according to our truncation scheme. We then compute the full
propagator via the DSE of the two point function and extract p(A) from the Lh.s. of (A.60),
which we introduce again in the spectral DSE. The three- and four-point vertices along
with the condensate ¢g are computed in parallel. We repeat the process until convergence
is achieved.

One obtains the mass m; of each stable one-particle state by computing the zeroes of
the two-point function and determine their residue as

Qmi

Zi=—— i
8,0 (w)

(A.73)

w=m;

In our case we only find one root coming from the original one-particle state. The cor-
responding residue is bounded by 1, being exactly 1 for the non-interacting theory and
expected to decrease as dispersive states become more relevant in the interacting theory.
The continuous tail from these dispersive states can be computed from (A.60). This tail
starts at the two-particle threshold 2m and goes to zero in the UV, although it also has
successive tails at every subsequent n-particle threshold which are suppressed by their
corresponding mass.

A.2.2. Scaling limit

For the (dimensionless) zero-momentum vertices, the scaling relations suggest

3n
B el BB e

m m3/2 m m m

where 7 is the anomalous dimension and A,/m takes the role of the momentum in (4.58)
in Section 4.2.1.3. With (A.74) we can infer a scaling exponent 7 from converging results
of the RG-variant correlation functions displayed in Figure A.2. The left panel shows
the set of zero-momentum vertices I'y, I's and I'y as functions of the coupling A,/m.
These approach their tree level values (dotted lines) for small couplings, whereas for larger
couplings they asymptotically approach a scaling behaviour which matches (A.74). By
applying a logarithmic derivative, we obtain the associated scaling exponent 7. This is
shown in the right panel of Figure A.2, where it is visible how all three vertices approach
a common scaling exponent n ~ 0.11, which is in agreement with fRG calculations on
the Keldysh contour in the broken phase [142]. The authors find a deviation between
the broken and symmetric phase which might point towards an interplay of  and v in
the broken phase. However, fRG results in the symmetric phase in a similar truncation
point towards a very small scaling region, where momentum scaling of the vertices and in
particular the two-point function emerge [5], which is by no means reached in the present
work. See also Section 4.1.7, for the respective results.

A.2.3. Modified skeleton expansion

To estimate the relevance of the resummed 4-point function, we devise another approxi-
mation scheme, where we drop the full vertex in the tadpole. The diagrammatic depiction
of the gap equation is provided in Figure A.3. The re-adjusted prefactor of the sunset
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Figure A.3.: The modified skeleton expansion.
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diagram guarantees two-loop consistency, and hence both approximations agree at two
loop, but not beyond.

The respective DSE results are presented in Figure A.4. In comparison to the full results,
the modified skeleton approximation does not exhibit scaling. All quantities approach a
finite large coupling value, including the residue of the mass pole of the spectral function.
The reason for this is that the zero momentum approximation of all of the vertices in
this expansion fails to correctly represent the approaching quadratic divergence which is
supposed to be present in the scaling limit. This nevertheless means that this DSE system
is numerically stable, allowing us to solve for arbitrary values of the coupling.

We see that the full momentum dependence of the tadpole in the skeleton expansion of
the main text is the reason for successfully achieving a scaling behaviour. Furthermore,
this scaling behaviour is also what produces the numerical instabilities that prohibit us
from obtaining solutions for Ay/m > 10°.

We show the corresponding bound state mass in Figure A.5 for which we also made use
of the scaling Kernel (4.70). This was devised in order to compare the differences coming
solely from the changes in the self energy of each approximation. We see that, just as
with the RG invariant vertices, the bound state mass of both approximations is in very
good agreement even when close to the phase transition. This allows us to confidently

extrapolate the limiting bound state mass of the skeleton expansion at the given value
M/m =~ 1.85.

o
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g 1014
T
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- .
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o > 1004
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Figure A.4.: Evolution of the dimensionless zero momentum RG-independent vertices
(4.76) and of the vacuum expectation value ¢o/m'/? with the coupling \;/m
compared for the two DSE truncations: Solid curves come from the skeleton
expansion of the main text, and the dashed lines correspond to the modified
skeleton expansion of this appendix. The dotted gray lines are the tree-level
values from (4.77). All quantities saturate for large couplings.
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A.2.4. Bethe-Salpeter equation

Here we give details on the BSE solution discussed in Section 4.2.1.4. According to the
spectral decomposition (4.49), the BSE kernel reads

0 dA
K@k P)=T3 [ 2 p0) K -

ry
0 2

9

IC——[ 1 . 1
2 l(a—R)P N (RPN

(A.75)

where K comes from the t- and u-channel contributions in the kernel.
For the explicit coordinate representation we follow the conventions of [48] and express
the momenta in three-dimensional Euclidean spherical coordinates,

g 0 1 V1—22singp
E:\/)_( \/1—Z2 s E:\/E \/1—22 COSSD 9 (A76)
A z

with P = 2m+/t(0,0,1), where at the end of the calculations we take v/t = iM/(2m).
This implies

@ =m?X, q-P =2m*/XtZ,
k2 =m?z, E-P =2m2/xtz, (A.T7)
p? :4T)’L2t:—M2, q-k :m2\/ngQ’

with Q = 27 + V1 — 221 — Z? cos p. The integral measure then takes the form

3 00 1 27
/d3k: = m?/o dxﬁ/ldzm —z2/0 de. (A.78)

Equation (4.71) turns into

1 1 1 1
EIXE R mgl-0d (A.79)
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Figure A.5.: Evolution of the bound state mass M/m as a function of Ay/m calculated
from the BSE, with propagators and vertices determined from their DSEs.
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Sum rule check

1.0000 1

o 0.99981

rul

E 0.9996 1

Sul

0.9994 -

—=— Skeleton
—=-- Modified skeleton

0-2 10° 102 10*
Coupling Ay/m

0.9992
1

Figure A.6.: Results for the sum rule (the integral of the spectral function) from each
DSE truncation.The deviations from unity are well within our conservative
estimate 10~ 2 for the relative numerical error.

with
~ A+ A3 ~ M — )3
2 _ 1 2 2 _ 1 2
Q=att+— 55 &= 2Vxtz + pmea (A.80)
and the - and u-channel exchange kernel K reads
1 X A3 /m?
- +a+A3/m (A.81)

M2 (X + o+ A /m2)? — 4Xz Q2

The total bound state momentum P is evaluated in the timelike region, but this analytic
continuation is trivial within our spectral decomposition. Despite the imaginary term
~ /t in the denominator of (A.79), the product of the dressed propagators is real be-
cause its imaginary part is odd in (A1, A2) and integrates to zero in the spectral integrals.
Furthermore, hecause the spectral variables A\; and Ay only take values at m and above
2m, (A.79) is finite for all masses M < 2m below the two-particle threshold. Finally, the
integration over ¢ in (A.81) can also be done analytically using

/27r d(,D T
o 1—(a+bcosy)? = /(1+xa)? — b2

(A.82)
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A.3. Additional material for the graviton spectral function

In this appendix, we present the additional informations that is referred to in Section 4.3.
This concernes the expression of the diagrams and the analytic expressions of the spectral
integration kernels in Appendix A.3.1. We further provide the details for generalised
spectral kernels for the regulator line in Section A.6.4.1 and derive the UV behaviour of
the on-shell renormalised graviton spectral function analytically in Appendix A.3.2.

A.3.1. Analytic expressions of the diagrams

The diagrams read schematically

0 dN; dlq  Viadpole(p, q)
o l>\i \i adpole\P, ,
z'[[/ﬂ 7T on )/ (2m)4 (g2 + A1) (¢ + A\3)

3
© ddq V3 point (P; @)
) F(hh) _ / 7 \i A / point\ P, :
"I 3point };[1 7 o) 2m)" (2 + M)+ X3) ((p+ ) + A3)

3
ddq Vghost (p, Q)

dA;
o], = H/o Tt [ @0 (@ + )@+ ) (0 +0? + 23)

1

(A.83)

Where the vertex functions V; combine the contractions of the vertices with the regulator
derivative 0, Ry.(q) = (2—np) Znk?. Up to a factor of Zj, they can be found in the additional
material of [81].

While the full expressions of the diagrams are far too long to be displayed here, the
respective imaginary parts can be reduced to a few terms. For the ghost diagram, we use
the treelevel spectral function instead of the full spectral function, which leads to a simple
expression:

20k* — 8k2\2 + \4
M2 — 4k2

ImDgpost(k,w) = —2g O(N? — 4K?) . (A.84)

The imaginary part of the tadpole diagram vanishes and the imaginary part of the graviton
polarisation diagram can be reduced to

gN()\l, )\g,w)e(w — /\1 — )\2)

ImD*Oin)\7)\7w: )
3-point (A1, A2, w) (12058 cut (A1, Agy w) (—AE + 22202 — A2+ W)

(A.85a)

whith the numerator function
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N(A1, Ag,w) = { — A0 A0 A8w? 48wt + 8P 4 23X3w8 + AB(5M2 — 3w?)
+ 11w — 208 (503 — 4\3w? + 4w?) + 201 (5AS — 3A5w?)

+ 14230w* + 8wl — A2(5)A8 + 243w — 320200 + 15w®) } X

x {(_A% +22) <\/(>\f SN2 (N A w2)2>

+ w? <\/(/\% - M+ w?)?+ \/(—)\% + A2+ w2)2> } : (A.85b)

and the cut function

Eert A, Ao, w) = VA — Ao —w) A+ Ao —w) M — Ao+ w) (M + X +w).  (A.85c)

A.3.2. UV-limit of the spectral tail

The UV-limit of the spectral tail is fully determined by the UV-limit of the imaginary
part of the flow and in particular of the flow induced by the graviton mass-pole. While
the feedback of the spectral tail is strongly suppressed in the IR, the respective terms
in the flow have the same UV-scaling as the leading one, and are suppressed only by an
overall factor. Furthermore, the ghostloop has the same structure and differs only in the
prefactors and signs. Hence, we can extract the UV-scaling of the spectral tail from the
UV-dominant term of the flow arising from Graviton peak only. It reads

oW
w? — 4k

As already discussed in the main text, the flow is localised at the onset, ie. it diverges at the
onset as 1/v/w? — 4k, which is integrable and leads to a finite contribution when integrated
with respect to k. Evidently, this structure gives only a sizable contribution to the integral,
wenn k is close to w/2. For w > k the flow simply goes as w?, where the only k-dependence
is given by the prefactor g(k), which goes exactly as k2 in the IR and approaches a constant
beyond the Planckscale. Hence, the integral is strongly dominated by the scales between
M) and w/2. This allows to approximate the dimensionless newton coupling by its fixed
point value and we we can integrate the UV-limit of the flow analytically:

w/2 dk’ . w3 . 9 w + Vw2 — 4k2
—— g ——=— = g'w’log . (A.87)
k Vw? — 4k' 2k

For the real part, we can use the subtracted Kramers-Kronig relation eq. (A.138), where
we can set xg = 0, f(zg) = 0 and even (9,2f)(xg) = 0, as we are interested only in the
leading behaviour which we anticipate to be larger than w?. Furthermore, we assume
w < k and k to be arbitrarily small but larger than zero, such that we find for the leading

UV-behaviour of the real part:

Tm? (w — o0) o g(k) 0w — 2K). (A.86)

ImFl(f) (w— 00) o /
k

ReT,(f) (w — 00) ox w? PV/ dt_2log (¢) x w?log(w)? 4+ O(w? log(w)) . (A.88)

on T (2 — w?)
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This result allows us to determine the UV-scaling of the spectral tail, by noting that the
real part grows faster in the UV than the imaginary part and the classical w? behaviour.
Hence the UV scaling of the spectral tail is given by

Im T (A = o0) L Nlog) 1
ReI’,(f)()\ —oo)z  (Alog(A%)2)2 A2 log(A%)?

P\ = 0) x (A.89)

which falls off slightly faster than 1/(A\?log()\)) and hence leads to a normalisable spectral
function.
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A.4. Additional material for the quark gap equation

In this appendix, we present additional material for Section 5.1. We discuss a the spec-
tral STI-vertex and its renormalisation in Appendix A.4.1 and present the details of the
spectral self energy calculation in Appendix A.4.2.

A.4.1. The spectral STI-vertex

The Slavnov-Taylor identity (STT) of the Quark-Gluon vertex reads

KTl (,p) = 9=t Gy Mo + KYH(K. @) = G (DY H(—k,p+ )| (A.90)

1
Zc(k)
for a derivation, see, e.g., [33]. The inclusion of non-trivial scattering kernels goes beyond
the scope of the present work. We drop it in an Abelian approximation of the STI,
H(k,q) = 1, and only keep the prefactor gt* on the right-hand side together with the
overall ghost dressing function 1/Z.(k). The latter leads to an enhancement of the vertex
in the IR. For a non-abelian computation see [256]. The inverse quark propagators are
cancelled by multiplying (A.90) from both sides with the respective quark propagator, also
using their spectral representation,

kuGalp+ )Ty (k. p) Gy(p) = gSch(k)ta [Galo+ k)~ Col) (A.91)
. 1, 1 1
o e 0 GTpT e (9

Equation (A.92) admits the simple solution,

Golp+ K)T%  (k, p)Gy(p) ~ —ig, Zj( Btk ).
with
K40 = [ i Ty (4.9

Equation (A.93) is unique up to general transverse functions. For a QED version of this
vertex, see [53, 237].

In contrast to the usual Ball-Chiu construction for the quark gluon vertex, (A.93) allow
a consistent renormalisation of the gap equation, without the addition of further terms.
To see this, we start by multiplying the gap equation with the quark propagator from the
right hand side, what allows us to insert (A.93) into the loop integral:

1= (i Zop + Zgmy)G(p) + g5C; 71 / Aapgpali(Ag, Aa,p) (A.94)

AgAa ip+ Aq

The momentum integral is linearly divergent and requires renormalisation. This can be
implemented via a BPHZ scheme on the level of the DSE. To see this, we start by bringing
the renormalised DSE in a form, where we can apply the STI-vertex formulation. we note
that the divergent terms of both the scalar and dirac parts of Iy is constant in p and
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spectral parameter (up to the basiselement p), as can be seen in appendix A.4.2. This
allows us to write

(2(p) = 2())G(p) = 2(p)G(p) = ()G ()G~ (1) G (p)

& 1 c 1
(6> /Aq,AA AP, <6) /Aq,AA APaPATION, () G(p)

1
+ /Aq,/\A Aapgpaf (g, )\A,p)m — /)\q’/\A Aapgpaf(Ng, Aa, ) TSy G (WG(p)
:/ pA (E) {Gp) - G(w)G (WG(p)}
‘o \e
+ /)\q’ ) )\qupAf()\qu AAap) lp T )\q - /}\q’)\A )\qupAf()\(p AA; M) 1/// - )\qul(M)G(p) :
(A.95)

Where the finite part of the loop ingegral indicated by f(p, A\g, Aa) comprises all terms
that are not constant in p or the spectral parameter. Evidently, the divergent part of the
loop integral is eliminiated by the subtraction and we are left with a finite self energy.
Equation (A.94), with the STI-vertex has an appealing form as it is in principle equivalent
to a linear equation for the quark spectral functions. However, the distributional nature of
the spectral function complicates the implementation substantially. Ideally, a weak formu-
lation of the equation would be beneficial. Alternatively, we can insert a representation of
unity in the self-energy 1 = Gq(p)F@Q) (p). We can then cast the renormalised self energy
as

X (p) =1p (Zalp) — Xa(p)) + (Es(p) — s(p))

2 = Ten
9:Cs /)\qﬁi(Aq)PA()\A)Il (/\q’AA’p)i]/ﬁ—i— »
where I7°" consists of the finite and regularisation scale independent part of the momentum
integral. The dependence on the latter is absorbed in the renormalisation constants 672
and dm, which are determined by the renormalisation conditions.

In the following, we would like to lay out a possible solution strategy for (A.96). The
actual implementation with the reconstructedn ghost and gluon spectral functions turned
out to be numerically instable, due to oscillations which we deem most likely to be a con-
sequence of reconstruction artefacts. Nevertheless, we would like to discuss the resulting
equations for the imaginary part of the self energy and defer a numerical solution to a
future work.

With the STI vertex, we can use the decomposition (A.100a) to project onto the scalar
and dirac parts of the self energy and take the imaginary part. The dirac part is given by

I%(p) — (ipdZ +6m)  (A.96)

Im 2 (—iwt) = I Tr 2 57 (p)

1397 (i} ) C5 g, —iooy) + 15 (<o )OS g, i)
A2 — w? — sign(w)0 T

— Cpg? / dpfpa, {M:}]Im
(A.97a)
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and the scalar part reads

1
Im X7 (—iw™) = Im Tr 1 X (p)

_ ' (—iw ) C8 (Ngy —iwy ) + IF (—iw, ) C4( Ny, —iwy)
_ 2 d AT s +/¥s\ g d s \Aqg»
Crs / #lpa; {AiHIm )\3 — w? — sign(w)0t

(A.97b)
with the coefficients
Ci(A\,p) = Z()A\g — B(p),  C3(\gsp) = B(0)Ag + Z(p)p?,
Ci(Ag,p) = Ci(Agp),  Cl(Ag,p) = —p*Ci(A\g, 1), (A.97c)

and B(p) = M(p)Z(p). Note that these imaginary parts contain potential deltafunctions
also after integration if the quark spectral function contains a deltafunction at the quark
pole mass. This is indeed the case, but the deltafunction is then multiplied by the real part
of the coefficients or the imaginary part of the loop integrals, which both vanish on the
quark pole mass. The same holds true for the potential branch cut singularity arising from
the )\g — w? in the denominator for the pole contribution to the quark spectral function.
Here, the value of the cut goes to zero when approaching the pole as it is multiplied with
either the imaginary part of the loop function and the realpart of the coefficient or the
imaginary part of the latter. Hence the imaginary parts of the self energy consist only of
a cut, starting from a value of zero at the quark pole mass, what supports the scenario
of a real first singularity. Suppressing the arguments, we arrive at the final results for the
imaginary parts of the self energy:

Im (A JI5C5 + 17 CY)
A2 —w?

Im 2" (—iw't) = Cfgg/dﬂ[ﬁAv {Ai}]{

+ - m8(A2 — w?)Re (Igenc; + zge“cg) } (A.98)

|wl
and the scalar part reads

Im (A I1Cs + IF™CY)
AZ —w?

Im X7 (—iwt) = Cfgg/dﬂ[ﬁfh {Ai}]{

+ %ms(xg — w?)Re (I;encg n I;encg) } (A.99)
The integrands can be further reduced, and we first note, that the coefficient functions
C:://j contain different powers of \,, what mixes the scalar and dirac parts of the spectral
functions and hence the vertex construction (in presence of a non-vanishing mass func-
tion) has overlap with chiral symmetry breaking tensor structures. However, if one sets
B(p) = 0 (and accordingly the anti-symmetric/mass part of the quark spectral function),
this mixing is absent and we deduce that the vertex construction does not break chiral
symmetrie explicitly. The deltafunction is integrated out immidiately and we are left with
the products of the real parts of loopintegrals and coefficient functions and the spectral
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functions, evaluated at \; = w, as the imaginary parts of I;?g(w, Ag) vanish for w < A4,
The remaining spectral integral is carried out numerically. While it is in principle possible
to reduce first integral furter by using Kramers-Kronig relations, it is computationally
more efficient to refrain from doing so and solve the integral in two steps, where the nu-
merical integral over the gluon spectral parameter can be precomputed and reused as it
does not change in this truncation with the itteration.

A.4.2. Self-energy calculations

Here, we collect the results of the momentum integrals for the quark self energy contri-
butions. The momentum integral (5.20) has been computed in [191] within dimensional
regularisation, and we arrive at

(@) (i + ) + Ag)
LIi(p, Aa, Ag) = /q?” (q2u+ N)((p+ a2+ A2)

NI (p, Ay Ag) +ip T (0, Aas Ay)
(A.100a)

with the scalar and Dirac parts of the integrals

s 3\ 1
Il( )(p7)‘A7)\q) _(47_(_6)]2(6 +10gﬂg - fO) )

—1

d
I£ )(P, A, )\q) = W

(1 + log,u?) Z 70[2. ifl Z(aﬁfi + 5i9i)] .
i=0 =0

The functions f; and g; are given by the weighted Feynman integrals over the logarithms
of the cut function A(Aj, A2, x,p?) =z (1 —2) p® + 2 (A3 — A]) + A,

1
fi = / dz z' log <A(>‘Aa )\q,:c,p2)>7
0

1
gi = / dz ' log <A(O,)\q,:€,p2)> (A.101)
0

and the respective prefactors af and b% read in the Landau gauge

2 2 2
0 1 P+ 9 3p
a1:—2, 041:4— N o] =5,
Xy X
2 2 2
P+ A —3p
/8? =0, B% = 22 4 ) 5% = IV (A'102)
A A

The Dirac part of the momentum integral is finite, which reflects the fact that the one-loop
anomalous dimension vanishes in the Landau gauge,

3.1 1
3 a By (A.103)
= ¢ +1

Note that the loop integral is not finite beyond the one-loop approximation, and the
respective divergence is carried by the spectral integral. This divergence and the one
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of the scalar part are cancelled by the BPHZ-subtraction in eq. (5.21), using the spectral
BPHZ-scheme introduced in [54]. Within this scheme, the renormalised self energy follows
as

S(p) =92 CrZn /)\A pA(Aa)pqg(Ag)
AgsAa
X {lp([](_d) (pa >‘A7 >‘q) - Il(d)(:U’Tv AA; /\q)) + )‘q (I£S) (p7 >‘A7 )\q) - I£S) (,u’l‘a >‘A7 Aq)) } )
(A.104)

with

w

3
2f07 ( )(p7)\147 - a1f1+ﬁlgz . (A105)

(4m)? par

The inverse Wick rotation is done analytically and the imaginary parts of the self energy
read

II(S)(p7 A4, )‘Q) = -

gcut

2 )

sign(w)S)\qe(W -y
167

Im I\ (—iw™, Mg, Ag) =

gcutll

2)\?4w4 ’
(A.106)

@, . sign (w) (A2 —w?)’
ImIl (_lw ’)‘Ap)\q): 167 G(W—Aq)W‘f‘e(w—)\A—)\q)

with

e = /(2 = (g + A0))(2 = (g = Aa)?),

I = (Ag — 204 + Nw? +wt + A2\ — 2w2)> :
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A.5. Spectral integrands for the pions DA and LFWF

In this appendix, we give some more details on the analytic computation of the spectral
integrand in (5.38). As discussed in the main text, for 0 < x < 1 one can allways close
the contour either in the upper half plane around 7, or in the lower one around rz. Which
half-plane to choose is determined by the location of the third pole

_m2(de — (2 — 1)) +4(¢] +B7?)

T = s A.107
= dmg(z — 1+ 2x) ( )

where one simply chooses the half-plane that excludes it. For 5’ > m,, which is certainly
the case for the Pion BSA, the numerator is allways positive and Imr, 2 0if z—1+422 = 0.
With the residue theorem, the frequency integral evaluates to

L i(A(z— 1) — Agx)
6 = / o TnZa(e — 1)@z — 1+ (a0 — o) (a0 — 79)(d0 — 72)

= 0(1 =2z — 2) I} — 0(z — 1+ 22)0(1 — 22 — 2)I] , (A.108)
and the residues (including the winding number and a factor 27i) take the simple form

— a —
17— afa , (A.109)
v (@3 +bgsa) (a7 + cq/q)

with the coeflicients
(Adz(M (=14 z) — A22)) 41 —z)(AMi(—1+z) — \ax)

77 (—1+2) M= 1+2 ’

by=—N(—1+2)+ A +mi(—1+a)z,  b;=by,

203 (—1+ 22+ 2) — 2(48% —m2 (=1 + 2) (=1 + 2z + 2))
Cqg = , CGg=Cq-
2(-1+2)

The remaining p, -integral over (A.109) can be carried out analytically and yields

2 2
aq/q (log bq/q — log cq/q)

2 _ 2
bara ~ s
We close this Appendix by checking the asymptotic limit of the PDA. If we consider a
vanishing pion mass, classical quarks with mass M and the corresponding minimal weight
function to satisfy the axial-vector WTT p,(3,2) o< (8 — M)(1 — 22), see also the model
in [275], the integrand simplifies significantly, b,/; = cq/q = M 2 and the LFWF reads

g/ _ 1 2, 74/q _

(A.110)

AMN ! 0(1 — 2z — 2)z(1—2%)  0(z—1+2x)(1—x)(1 - 2?)
w(x)oc(p%M?)?/le( 12 i 1+ 2 )
_ SMNz(1 — z)

ERSTOE (A.111)

The integration over the transverse momentum factorises from the z-dependence and
normalisation to one leads to the asymptotic form of the PDA, ¢ (z) = 6x(1 — ).
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A.6. Technical details and numerics

In this appendix, we provide addtional information on the numerical implementation of
each project. This includes individually the numerical implementation of the spectral fRG
for the scalar field theory in Appendix A.1 and Appendix A.6.2, were we distinguish the
flows far away and close to the phase transition. The details on the implementation of
the spectral DSE-BSE system are discussed in Appendix A.6.3. We then proceed with
the spectral flows in asymptotic gravity Appendix A.6.4, and provide the details on the
solution of the quark gap equation in Appendix A.6.5.

A.6.1. Scalar spectral flows

This section is dedicated to the numerical solution of the flow equation. First, we rewrite
the leading contributions as scale derivatives and integrate by parts in k-direction. This al-
lows to flow the non-analyticities at the respective onset positions analytically, see (A.113).
We will make use of this relation to define consistent initial conditions in the UV. The
second part explains the numerical algorithm we used to obtain the results given in Sec-
tion 4.1.6.

A.6.1.1. Leading order and initial conditions

Inserting (4.14) in (A.1), we find all combinations of poles and tails we have to integrate
over. The leading order is given by the contribution of §-functions only and is already
present on the classical level. To study the structure of the flow and the dependency of
the result of the initial condition, we first note that certain contributions of the Callan-
Symanzik flow can be rewritten in terms of a scale derivative. This is possible for every
contribution to the Callan-Symanzik flow that carries only pole contributions on the two
lines surrounding the (modified) regulator insertion in Figure 4.5. This allows us to in-
tegrate the flow by parts, which reduces the degree of divergence of potential integrable
singularities and simplifies the numerical treatment. To this end, we rewrite the (modified)
fRG polarisation diagram at leading order as

1 ~
Ipol(mpole7 mpole7 mpole7 p2) = _87kak‘[pol(mpole7 mpole7p2) 9 (A112)

where the factor 1/4k follows from the k-derivative of the spectral kernel with Bkmgolc =4k
and another factor 1/2 accounts for the double counting from hitting both arguments in
k with the derivative. This connects both polarisation type momentum structures, I,
and fpol, given in (A.3b). Evaluating every spectral parameter on the mass pole we can

integrate the combined contribution of the polarisation and fish diagram to arrive at

k k kg (TW)2 R A\ -
(2) ()2 _ O Vg _ a 2
|:F (p )}A /A k Zq% 8Z¢kak (;50 Ip01(p )

= [—f(k) ~pol(pZ)KJr/ ~ LR) Lo (p?) (A.113)
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where we summarised the prefactors of the fRG polarisation diagram and the prefactors
from the t-integral as

RE2[2-n)  ST@TP)
F(k) = 8ng2= 1 +7¢ 2 (A.114)
with
3m2,, (0Am?, 9T
= = < o + T | (A.115)

The boundary term will be the leading contribution. At one-loop order, i.e. Zy = 1 and
= Mg, S vanishes identically and F reduces to %(S (3))2, which is the prefactor of the
one-loop polarisation diagram times the squared classical three-vertex. The factor in the
remaining integral reads

3)
L(k) = <8tf(k) + 25 )2>

2
¢O Z¢

2—ny) 0@ (2— ] )
_{( ng) T ( n¢)n+@ 1 Ome,,

4 TM 2 T4 Tam2
oym2 . 9TW (T¥)2
; 8t8+8<377¢+ 2t T 575; (A.116)

where the tree-level terms stemming from F(k) and A cancel exactly. With that, we
recover one-loop perturbation theory. Without the additional one-loop structure of the
three-point function in (4.19a), i.e. A = 0, the remaining tree-level term would spoil the
one-loop result.

To discuss the necessity of a consistent initial condition, it is instructive to work out
the one-loop result from a spectral fRG perspective. In the large k limit, we can neglect

the non-trivial flow of T (p = 0) and Z, leading to Z, = 1 and (T i )) = 3Am?,,, with
mpole = 2k%. Equation (A.113) is then readily integrated and reduces to
~ A
Eop ()] =D 0]+ 87 KL (V2E, V2R, p)] (A.117)
With a classical initial condition, (A.117) leads to
3 . A
E o ()] = P+ 52 2K L (V2R V2R )] (A.118)

Performing the Wick rotation of (A.118) and extracting the spectral function with (3.7), we
find that the one- loop scattering contribution to the spectral function is discontinuous at
w=2v2A2 = 2mpole and turns negative for larger spectral values. Clearly, leading order
information is lost above the initial onset scale and can not be recovered by the flow.
Even worse, for higher frequencies than 2mp01c7 the positivity of the spectral function is
violated. This is cured by using RG-consistent initial conditions, which appears to be
crucial to obtain a physical spectral function from the flow. To that end, we require the
solution to be independent of the initial scale A. This can be achieved, by sending the
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3
Ao | TO DY 2,

10 ‘ 17.3084 ‘1.0007

Table A.1.: Initial conditions obtained from (A.119). We measure the initial RG-scale A
in units of the coupling and every other quantity in units of the mass.

initial scale to infinity, corresponding to an initial condition that cancels the A dependence
trivially. This is done by choosing the initial condition to be an iterative solution of

1(r®))2

2)1,.2 3 2 9

F( )[p ’Z¢7F( )7mpole] :mpole +p o 5 Zg

X prl(mp(’le’ mp‘)]e’p2) - fpol(mpolev Mpoles _m§01e) ’ (A].]_g)

where the last term accounts for the on-shell renormalisation. As initial guess we use the
parameter of the classical effective potential (4.33) and (4.34) with Z, = 1 and m?,,, = 2A%.
In other words, we choose our initial condition to be compatible with (A.113). Note that
with this choice of initial conditions, the loss of leading order information is circumvented
at all momentum scales, as all contributions of order O(A\/k) are taken into account.
The flow is initialised at large cutoff scales, where higher terms in Aeg = Ay/k are strongly
suppressed. To determine the three-point function dynamically, (A.119) was coupled to the
resummed four-point function via (4.33). The initial values for Z,; and I'®) are presented

in Table A.1.

It is left to determine the flow of the vertices and 7. These have exact diagrammatic
expressions which are in parts necessary to consider. It is convenient to approximate 8tF(4)
by the t-derivative of (4.21), where we only consider the contributions of the mass-pole
for simplicity. It leads to

@ o (1= 215) (D)2

O

Z3  16mV2k’
2(0,T4)2 ne(1 — 2n4) — 1) (TW)2
(82T ~ (;(4) ) _ 9T 4 (s Z;) %) ém/%k‘ (A.120)

The explicit k-dependences of (A.120) can now be taken into account analytically in
(A.113). For ny we use the definition of Z, as the residue on the mass-pole

. (A.121a)

With the parametrisation of the real part of the inverse propagator as

I (w?) = Z(w) (M2, —w?) , (A.121b)

pole

the anomalous dimension 74 is computed conveniently from the momentum derivative of
the flow on the mass-pole,

Ny = Zl(bawzdr2(w2)‘ , - 1¢4k:28sz(W)| 5 . (A.121C)

dt mpole pole
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Only the diagrams of (A.10) contribute due to the momentum derivative. The second
term is given in terms of the spectral function:

_ L p(A)
?)ole Z¢ A /\2 — m2

pole

EA (A.122)

w?2=m

2

curv

The other parameters such as 74 and 0;AmZ,  where approximated by a numerical right-

derivative.

A.6.1.2. Numerical implementation

The numerical implementation uses Mathematica [279]. The leading order contribution to
the flow was integrated by means of (A.113), where we split the explicit k-dependencies of
each term from the sub-leading running of the respective parameter. This was facilitated
by the split of the tree-level curvature mass: m?,,, = Z¢(2k‘2) +Am?,, as it allowed us to
incorporate the tree-level running of the integrand in (A.113) analytically. The sub-leading
corrections to the flow-parameter were approximated as constants in each step, while the
combined k-dependence of jzpol and the tree-level k-dependence of m? _ and 9, T@ was

integrated analytically.

For the one-cut contributions, including the tadpole, we approximated the k-integral by
an explicit Euler scheme. For the sake of computation time, higher dimensional spectral
integrals where dropped as they were numerically negligible in the considered coupling
range in comparison to the leading order and next to leading order contributions. For an
investigation of the scaling limit, their incorporation is crucial. The numerical integrations
of spectral integrals were carried out using a global adaptive integration strategy. All
contributions to diagrams were calculated and interpolated separately, where we used
finer grids around sharp structures and more coarse grids where the functions are smooth.
We implemented a local feedback of the spectral function with a step size dk = 0.005,
using the spectral function p to calculate 8,I'®). The correct renormalisation was enforced
conveniently in every step by subtracting the value of the inverse propagator on the mass
pole. The residue on the pole was extracted from I'®)(p) in each step via (A.121a).
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A.6.2. Scaling-Limit of scalar spectral flows

This section is dedicated to the numerical solution of the flow equation toward the scaling
limit.

In this Appendix, we provide some technical details on the numerical solution of the
spectral flow equation.

A.6.2.1. Numerical implementation

The numerical implementation uses Julia [280]. The two-point function (and therefore the
spectral function) was calculated on a logarithmic momentum grid, which over the course
of the flow was expanded to include lower momenta. To interpolate the values, we used
a third order spline for the double-logarithmic values above the onset. The integrals over
these functions were solved using Gaussian quadrature with a logarithmic substitution,
because the prominent features of the spectral functions were several orders of magnitude
smaller than the integration region. Wherever possible, singularities were subtracted and
solved analytically.

We solved the flow equation (4.27) using a Runge-Kutta method of third order with a
step size Alogq(k/Ay) = 0.005. Flowing in log;(k) allowed us to keep a constant step
size over the whole flow.

A.6.2.2. Initial condition

To solve the flow of T'® | we need a starting condition. At a sufficiently high mass scale
A, we can approximate I'® using (RG-improved) perturbation theory, where we only
consider the leading order corrections. The first relevant diagram is the sunset diagram
with classical propagators and vertices at two-loop-level, since the constant tadpole is
absorbed in the renormalisation condition. Therefore, the initial value for the two-point

function Ff) is

F(A2’> (W) =m2, —w?— 1 [Dsun(w) — Dgun(mMpore)] (A.123)

pole 6

with the sunset diagram on two-loop level

11 |1 1 3o w
D _ b 71 _ pole t h
sun () Z3 \ (4m)? [2 o8 ((3mP010)2 - W2> w <3mpol°>

This formula is taken from [54]. The initial residue %A was computed iteratively from

(A.124)

the sumrule. This leads to an RG-improved two-loop form for the initial condition, which
fixes the initial values for the spectral tail and Z.

A.6.2.3. Sum rule

At each step of the flow we calculate the flow of the non-trivial part of the two-point
function 01 (w) as well as 0;Z4 to calculate the corresponding values at the next step.
The former is defined as

r®(w) = k? — w? + I (w) (A.125)
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In the deep IR, the finite numerical precision leads to small, numerical deviations from
the sum rule, which, if not corrected, can build up to destabilize the flow. To ensure that
the sum rule is always fulfilled, we rescale the spectral tail of the propagator by a factor

1
b7 (A.126)
f)\ /0()‘)
This leads to a change in II; by
Iy (w) — o 1) (k*—w”)+ ;Hk(w). (A.127)

A.6.3. Scalar bound state

In this appendix, we discuss the numerical implementation of the DSE-BSE system in
Section 4.2.

A.6.3.1. Spectral convolution

Here we describe a method used to effectively compute spectral integrals even in the large
coupling limit where one has an increased weight of the spectral tail.

Suppose one has a 2-dimensional spectral integral over two spectral functions which are
not necessarily the same,

s

[ dAdA
Hj(w)=/0 /0 S22 M Aapr (M) p2(A2) Ii(w, A1, Aa) (A.128)

but with a diagram (such as the polarisation diagram) which solely depends on the sum of
the spectral weights: I;(w, A1, XA2) = Ij(w, A1 +A2). Then, a change of variables n = A1 + A2
and a reparametrisation of the region of integration transforms this into a one-dimensional
spectral integral

1) = [ Taprat o). (A.129)

over a new spectral function, which is given by the convolution of the two initial spectral
functions,

m N d)\z
o) == [* 0= X1 = Na)pale) (A130)
This transforms a two-dimensional spectral integral into a one-dimensional integral over a
convolution of the spectral function constituents, which we call spectral convolution. The
convolution of spectral functions inherits all of the basic properties of the convolution. For
a basic decomposition of the form

pilN) = - Zib(\i —mi) + pilN), (A.131)

the spectral convolution results in

n—mq

v ~
p12(n) = 521225(77—"11 —ma) + Z1p2(n —my)

n—ma

+ Zapr(n —ma) + p12(n) , (A.132)
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where p12(n) is the convolution of the tails following from (A.130). Thus, the spectral
convolution has the same decomposition of the initial spectral functions in a way which
compactifies all of the information of contributing to the spectral integral of its con-
stituents.

The spectral convolution can be easily generalised for three-dimensional spectral inte-
grals of diagrams which depend on the sum of the three spectral weights (such as the
sunset) by the repeated convolution of spectral functions, or partially implemented in a
diagram which depends on the sum of only some of the spectral weights (such as the
squint).

The advantage of this method is that the convolution of the spectral functions does
not depend on the diagrams. Thus, it is an integral over smooth functions which can be
precomputed and reutilised for any diagram whose components also depend on the sum
of two spectral weights. But most importantly, it considerably optimises the numerical
implementation of the spectral integrals, because the resolution of the curve of poles in
two dimensions, usually given by the equation w = A1 + A9, simplifies to the resolution of
a pole at a point w = 7.

A.6.3.2. Numerical implementation

In every computation, the spectral integrals were performed with an adaptive quadrature
routine with error equal to 1 x10~8 via the spectral convolution method. The diagrams and
spectral functions were computed for a finite sampling of points on two intervals: One small
interval (0,b) for a medium sbehaviourd b which gave us the momentum features in detail,
and another bigger interval (b, ¢) which gave us the correct weight of the corresponding UV
tail. The sampling on the first interval was performed with an adaptive parallel function
evaluation algorithm, whereas the sampling of the UV tail was performed on a logarithmic
grid. We generally chose the values b = 20m and ¢ = 10\ +1000m, for which an accurate
interpolation of the momentum features and the UV tail was obtained. The only exception
was the spectral function of the 4-point function, for which b = max(20m, Ay/2) needed to
be taken while still leaving the same value for ¢. For the first interval we chose a sampling
of 200 points for both spectral functions, 120 for the polarization and 100 for the sunset
and tadpole diagrams. For the second interval we used 100 points for all of the objects.
With the aforementioned sampling, all of the objects were interpolated with a piecewise
cubic Hermite interpolating polynomial which both ensures smoothness and a monotonous
tail for monotonous data, which is important in the UV with a logarithmic spacing.

The process of iterating the spectral function and vertices back into the DSE was made
until all of the parameters Z, mcy,/m, I'y/m, Fg/m?’/2 and ¢g/+/m had a relative change
no greater than 0.2 x 102 between iterations. This leads to our conservative estimate for
the numerical error of the order of 10~2 for our results.

The computation of the BSE matrix was performed on a discretised momentum grid of
(Nx,Nz,N,;, N,) = (40,40, 40,40) points. The root finding algorithm for solving (4.75)
was implemented with an accuracy of 1 x 1073 for M/m. The use of finer grids for the
BSE matrix did not change the value of the resulting mass within this level of accuracy.
Nevertheless, coming from the estimated numerical error of our DSE computations, we
expect our final results to have an error of 1072,

As a consistency check we computed the sum rule (integral of the spectral function)
for each value of the coupling and each DSE truncation; this is shown in Figure A.6. We
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obtain deviations no bigger than 3 x 1073 from the theoretical result, which means that
the spectral sum rule is satisfied within the estimated numerical error of 1072.
A.6.4. Spectral Gravity

This section contains the technical details for the graviton spectral function in Section 4.3.

A.6.4.1. Higher order spectral kernels

Flow diagrams for correlation functions always contains a regulator line of the form
G(q)Ri(q)G(q) = 2K*G(q)”. (A.133)

where we already inserted the CS-regulator used throughout this work. While the usual
KL-representation of the propagator would lead to two spectral integrals, we can simplify
the flow equation and reduce the dimensionality of the spectral integration by expressing
the regulator line in terms of one spectral integral. One can show that if the propagator
fullfill a spectral representation, this holds for it’s square as well and we can write

G2(g) = /OOO difqrf(j)v . (A.134)

While this is in principal possible, it complicates the spectral renormalisation as it increases
the superficial degree of divergence of the momentum integrals after changing the order
of integration. Instead, we resort to a higher order kernel:

oo (2)
G%(q) = /0 dj\r)\(qg—i—(;))Q’ 8w2p(2) (w) = 2Im G? (—i(w + iO+)) ) (A.135)

Note that the Cauchy-Principal value of this integral for ¢ < —Apin does not exist if the
pole of the integrand is inside the integral domain, instead it is defined by the correspond-
ing Hadamart finite part, or equivalently via an integration by parts which transforms the
integral back to the usual spectral representation. By inserting the spectral representation
of the propagator of the form eq. (4.94), we can decompose the imaginary part of G? as
follows:

fr(w)O(w — 2my,)

Im G*(q) _ L <7T8w25(m% —w?) —

_Z,% w? —m3
2 2 > s fu(N) > dX? Tn(A) frn(w)
+6(ml —w )/thd)\ e —/ka%M> (A.136)

The first and the third term can be integrated analytically to obtain p(® (w), while the
second and the fourth are taken care of numerically. This leads to a delta peak at w = my,
and a constant but non-zero term for my < w, which carries the nonsingular real part of
the propagator on the pole as a prefactor. This constant contribution gets subtracted for
w > 2my, by the integrated second term. Both terms cancel exactly in the weight function
as w approaches infinity.
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A.6.4.2. Numerical implementation

To solve the flow-equation of the graviton spectral function, we employ a fix point itter-
ation. The flow-equation is hence, interpreted as a integral equation, where the spectral
function, ie the propagator on the right hand side is fully known as a function of w and
k. This allows to compute and integrate the diagrams with this input and readout the
new fully k-dependent spectral function. One then itterates this procedure untill conver-
gence. We start with an initial guess for the spectral function, which we chose to be the
tree-level one, p(© (w, k) = 276(w? — k). The chosen on-shell renormalisation condition
eq. (4.96) entails that the delta part of the graviton spectral function remains the same
uppon itteration. All numerical routines are implemented in Julia.

The flow of the spectral diagrams is then computed by evaluating the imaginary parts
of the diagrams only, which leads to significant simplification of the spectral integrals and
avoids precision bounds in the numerical integration. Schematically, we can write

k
max dk i
ImFl(sz(w) = /k - Im flow,, [p,(l)](w, k). (A.137)

The real-part of the integrated diagrams is then obtained by a subtracted Kramers-Kronig
relation,

(% — 28)* wlm f(w)
(w? —a2)? w?—a2

Re [f(z) — f(z0) — (2% — 2§) 0,2 f(z0)] = %PV /OOO dw (A.138)

where the subtracted taylor expansion serves two purposes: it renders the Kramers-Kronig
integral finite and it allows for an convenient implementation of the on-shell renormalisa-
tion condition. The numerical implementation of the Principal Value integral is based on
an h-adaptive gauss-kronrod quadrature rule implemented in the quadgk routine of the
Julia package QuadGK.jl. The tail of the spectral function is then obtained via

(2)
. ImI',™ . (w
p§:+1)( ,k’) — _2 k,Z+1( )

() + (Rer B 1)

(A.139)

where Rel“z(i)1 (w, k) also contains the term k? —w?, where —w? is the frequency dependence
of the (classical) initial condition and k? is the regulator. This procedure is then itterated
until we reach p§f+1) = pg) withhin the numerical precision. For the feedback of the
spectral tail, we use the same adaptive quadrature rule as for the Kramers-Kronig integral
for the one dimensional spectral integrals and the ”hcubature” routine of the Cubature.jl
package for the respective two dimensional spectral integrals, where a simple change of
variables is neccecary to avoid the evaluation of the integrands at the singular points given
by A1 + A2 = w. For the one dimensional integrals, we specify a relative tolerance of 10719
with a fixed integration order of 20, while the two dimensional integrals are computed with
a relative tolerance of 1074 as their contributions are typically subleading. The absolute
tolerance is set to 0 in all cases.
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A.6.5. Numerical implementation of the quark gap equation

In this Appendix, we discuss the numerical solution of the spectral gap equation. All nu-
merical calculations have been carried out in Julia 1.10.4 [281]. Numerical integrations are
based on g-adaptive quadrature (QuadGK.jl) and cubature rules (HCubature.jl) for one
and two-dimensional integrals, respectively. The computation of the self-energy simplifies
by using its analytic properties and causal structure. In particular, the Kramers-Kronig
relations entail that the real part of the self-energy is up to a constant given by a prin-
cipal value integral over its imaginary part and vice versa. Hence, we only compute the
finite imaginary parts of the self-energy, see (A.104) and (A.106), and use the subtracted
Kramers-Kronig relations,

91 (42 + w)n Sy(t)

Re Zd/s(w) — Re Ed/s(lur) = PV /0 dt? GRS

(A.140)

In (A.140) we imposed the Euclidean renormalisation condition at ix,. For the numerical
integration, we use a fixed but non-linear grid in the variable log;y[(w — mpole)/GeV] in
the range [—3,2]. It is constructed by choosing a grid-spacing of polynomial form with a
cubic and linear term to achieve a higher resolution around the peaked structure of the
self energies induced by the peak of the effective coupling. The non-linear transformation
of the grid is easily inverted for applying standard cubic interpolation methods on a
linearly spaced grid, and we use 400 points in frequency direction for the imaginary part
of the self energy. The numerical implementation of the Kramers-Kronig relations require
an extrapolation of the imaginary parts beyond the grid points. A discontinuity of the
integrand at the boundaries of the integration domain leads to a logarithmic divergence of
the Principal Value integral at the same scale. For the extrapolation, we use a power-law
form. To solve the gap equation, we have employed a fix-point iteration procedure. For
an initial enhancement factors g = 0.601 with a small size of chiral symmetry breaking
we initialise the iteration with a classical spectral function

pg(A>0) =7d(A—my), (A.141)

and iterate until convergence. For successively larger values of 7., we use the converged
solution obtained for the next smaller value of 7)., as the input. This leads to a rapid
convergence of the iteration scheme and starts the iteration in the basin of attraction of
the chirally broken solution. Using (A.141) in the presence of a large dynamical chiral
symmetry breaking may destabilise the iteration, and we may not start in the basin of
attraction of the chirally broken solution.

The onset of the scattering continuum starts exactly at the pole mass. Therefore, a
mismatch of pole mass and onset is always present for iteration steps which shift the
latter to higher values. This mismatch is regularised by introducing a small shift of the
imaginary parts of the self energies at spectral values above the new pole mass. This shift
is implemented by cutting off the remnants of the pole at mpole + 7, where the width « is
given by the absolute value of the imaginary part of the mass function on the pole. The
final spectral function is then approached in the limit v — 0.
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