
Precision Machine Learning for
the LHC Simulation Chain

Dissertation
Sofia Palacios Schweitzer

Dissertation
submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences
of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Sofia Palacios Schweitzer
born in Berlin, Germany

Oral examination: 02.07.2025

Precision Machine Learning for
the LHC Simulation Chain

Referees: Dr. Anja Butter
Prof. Dr. Björn Malte Schäfer

Abstract

The simulation chain of LHC physics is a well-established and indispensable toolkit for
conducting precision measurements at general-purpose detectors at the LHC. While not
all components are derived from first-principle physics, the simulation chain as a whole
has demonstrated remarkable accuracy and reliability over the past decade. To keep pace
with increasing experimental demands and growing data statistics, the simulation chain
undergoes continuous refinement. In recent years, the rise of machine learning has opened
new avenues for further advancing the simulation and analysis pipeline of high energy
physics. In this work, we explore the integration of state-of-the-art generative machine
learning algorithms into different stages of the LHC simulation chain. First, we test their
ability to enhance forward simulations by improving the generation speed, particularly in
computationally intensive steps. Second, we apply generative machine learning models
to the inverse problem of unfolding detector effects, offering an alternative to traditional
techniques. We show that both tasks can be solved using machine learning with high
precision and accuracy, demonstrating the potential of these approaches to significantly
improve the scalability and robustness of future LHC analyses.

Zusammenfassung

Die LHC-Simulationskette ist ein etabliertes und unverzichtbares Werkzeug für präzise
Messungen an den Allzweckdetektoren des LHCs. Obwohl nicht alle Bestandteile auf fun-
damentaler Physik basieren, hat sich die Kette als Ganzes in den letzten zehn Jahren als
äußerst genau und zuverlässig erwiesen. Um den steigenden experimentellen Anforderun-
gen und der wachsenden Datenmenge gerecht zu werden, wird die Simulationskette
kontinuierlich weiterentwickelt. In den letzten Jahren haben Fortschritte im Bereich des
maschinellen Lernens neue Möglichkeiten eröffnet, um die Simulations- und Analysein-
frastruktur der Hochenergiephysik weiter zu verbessern. In dieser Arbeit untersuchen
wir den Einsatz moderner Algorithmen des generativen, maschinellen Lernens in ver-
schiedenen Phasen der LHC-Simulationskette. Zunächst analysieren wir deren Potenzial
zur Verbesserung der Vorwärtssimulation, insbesondere in rechenintensiven Schritten.
Anschließend wenden wir generative Modelle des maschinellen Lernens auf das inverse
Problem der Korrektur von Detektoreffekten an, als Alternative zu klassischen Verfahren.
Wir zeigen, dass beide Aufgaben durch maschinelles Lernen mit hoher Präzision und
Genauigkeit gelöst werden können und diese Ansätze damit ein grosses Potenzial zur
Verbesserung zukünftiger LHC-Analysen versprechen.

Contents

Preface iii

1 Introduction 1

2 High energy physics 3
2.1 Standard Model . 3
2.2 Collider Physics . 6

2.2.1 Parametrization . 6
2.2.2 Hard Scattering . 7
2.2.3 Parton Shower . 8
2.2.4 Hadronization . 9
2.2.5 Detector . 10
2.2.6 Reconstruction . 11
2.2.7 Statistical testing . 12

2.3 Measuring the top-quark mass . 12

3 Machine Learning 15
3.1 The basics . 15

3.1.1 Special Network Architectures . 17
3.2 Classification . 18
3.3 Bayesian Neural Networks . 19
3.4 Generative Diffusion Models . 20

3.4.1 Denoising Diffusion Probabilistic Model 21
3.4.2 Conditional Flow Matching . 26

3.5 Distribution Mapping . 30
3.5.1 Distribution to noise . 30
3.5.2 Distribution to distribution . 33
3.5.3 Conditional distribution mapping 37

i

4 Fast Event Generation 41
4.1 End-to-End event generation . 41

4.1.1 Toy models and Bayesian networks 42
4.1.2 LHC events . 44

4.2 Generating off-shell effects in leptonic tt̄-decays 48
4.2.1 Off-shell vs. on-shell events . 49
4.2.2 Direct Diffusion . 51
4.2.3 Classifier control and reweighting 54

4.3 Fast Calorimeter Simulations . 57
4.3.1 CaloDREAM . 59
4.3.2 Results . 63

5 Generative Unfolding 69
5.1 How to Unfold Top Decays . 70

5.1.1 Goal and method . 70
5.1.2 Generative unfolding . 74
5.1.3 Lower-dimensional unfolding . 76
5.1.4 Taming the training bias . 79
5.1.5 Mock top-quark mass measurement 82
5.1.6 Full phase space unfolding . 85

5.2 Generative Unfolding with distribution mapping 88
5.2.1 Methodology . 88
5.2.2 Unfolding Jet Substructure Observables 89
5.2.3 Unfolding Substructure and Kinematic Properties 95

6 Conclusion and Outlook 99

A Hyperparameters 101

Bibliography 111

ii

Preface

The research presented in this thesis was conducted at the Institute for Theoretical
Physics at Heidelberg University from November 2022 to January 2025. The contents
of Chapters 3 to 5 are based on work done in collaboration with other researchers and
have been previously published as

[1] Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Jonas
Spinner and Peter Sorrenson,
Jet diffusion versus JetGPT – Modern networks for the LHC,
SciPost Phys. Core 8, 026 (2025), arXiv:2305.10475 [hep-ph];

[2] Anja Butter, Tomáš Ježo, Michael Klasen, Mathias Kuschick, Sofia Palacios
Schweitzer and Tilman Plehn,
Kicking it off(-shell) with direct diffusion,
SciPost Phys. Core 7, 064 (2024), arXiv:2311.17175 [hep-ph];

[3] Luigi Favaro, Ayodele Ore, Sofia Palacios Schweitzer, Tilman Plehn,
CaloDREAM – Detector Response Emulation via Attentive flow Matching,
Scipost Phys. 18, 088 (2025), arXiv:2405.09629 [hep-ph];

[4] Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin
Nachman, Sofia Palacios Schweitzer and Tilman Plehn,
Generative Unfolding with Distribution Mapping,
Submitted to Scipost Phys., arXiv:2411.02495 [hep-ph];

[5] Luigi Favaro, Roman Kogler, Alexander Paasch, Sofia Palacios Schweitzer, Tilman
Plehn and Dennis Schwarz,
How to Unfold Top Decays,
Submitted to Scipost Phys., arXiv:2501.12363 [hep-ph].

Additionally, the author was involved in the following publication during this period,

[6] Claudius Krause (ed.), Michele Faucci Giannelli (ed.), Gregor Kasieczka (ed.), Ben-
jamin Nachman (ed.), Dalila Salamani (ed.), David Shih (ed.) and Anna Zaborowska (ed.),
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation,
Submitted to Rep. Prog. Phys., arXiv:2410.21611 [physics.ins-det].

The author is also involved in ongoing projects that have not been ready for publication
at the time of writing this thesis.

iii

http://arxiv.org/abs/2305.10475
http://arxiv.org/abs/2311.17175
http://arxiv.org/abs/2405.09629
http://arxiv.org/abs/2411.02495
http://arxiv.org/abs/2501.12363
http://arxiv.org/abs/2410.21611

CHAPTER 1

Introduction

The Standard Model of particle physics is one of the most rigorously tested theories,
describing the fundamental interactions of nature. Initially formulated in the 1960s and
70s [7–13], the theory has undergone extensive experimental validation, culminating in
the discovery of the Higgs boson in 2012 [14,15]. Despite its success in explaining a vast
range of physical phenomena, the Standard Model leaves many fundamental questions
unanswered, including the nature of dark matter [16,17], the dominance of matter over
antimatter in the universe [18, 19], the origins of CP-violation [20], and the existence
of neutrino masses [21,22]. These phenomena indicate the necessity of theories beyond
the Standard Model that can provide a more complete picture of fundamental physics.
Numerous extensions to the Standard Model have been proposed, but their validity must
be tested against experimental data with extreme precision, at the five-sigma significance
level.
Collider experiments provide an essential tool for testing these theories by acting as
high-resolution microscopes that probe the smallest length scales of nature. The Large
Hadron Collider (LHC) at CERN currently provides the highest-energy proton-proton
collisions, reaching center-of-mass energies up to 13.6 TeV. However, comparing theoreti-
cal predictions to experimental measurements presents significant challenges, as the two
are not directly connected through first principles and do not reside in the same phase
space.
To bridge this gap, non-deterministic Monte Carlo (MC) simulations play a crucial role in
propagating theoretical calculations through the full simulation chain. This chain consists
of multiple steps, the hard scattering process [23,24], parton showering [25], hadroniza-
tion [25,26], and detector effects [27,28]. In most cases, we expect new physics signatures
to show up at the hard scattering level. Each stage in the simulation chain works at a
different energy scale and introduces additional degrees of freedom. Once theoretical
predictions are propagated through the simulation chain, reconstruction algorithms help
to map simulated and experimental data back to the hard scattering process, enabling
statistical hypothesis testing to extract new or refined Standard Model parameters. At
the LHC, new physics has yet to be observed.
Reliable and precise simulators are essential for precision measurements, yet they come

1

1 Introduction

with a high computational cost. To minimize the impact of statistical uncertainty in
MC simulations on final measurements, large-scale simulations are required. Theoretical
calculations of the hard scattering process and showering are grounded in perturbative
Quantum Field Theory, but these calculations are only feasible to a finite order. At some
point, statistical regimes are reached where the inclusion of higher-order corrections or
additional physics effects becomes relevant, further increasing computational demands.
Parallel to these challenges, robust data analysis techniques are required to efficiently
process and extract insights from large datasets. Machine learning has emerged as a
powerful tool in particle physics, offering both faster and more precise simulations as well
as innovative analysis techniques capable of extracting the maximal amount of information
from high-dimensional measurements. The use of machine learning in particle physics is
not new, applications such as regressing the parton density function (NNPDF) [29] and
classifier-based background suppression have been employed for years. However, recent
advancements in machine learning techniques, including generative machine learning,
have opened up exciting new avenues for research.
In recent years, many concepts have been introduced to utilize generative machine
learning for LHC tasks, such as neural importance sampling for the hard scattering
process [30–32], anomaly detection in LHC searches [33, 34] and neural simulation-based
inference techniques [35–37]. We are currently transitioning from proof-of-concept to
practical application, with LHC experiments beginning to incorporate generative machine
learning into their analyses [38].
In addition, the interplay between physics and generative machine learning is particu-
larly promising. Many modern machine learning architectures are inspired by physical
principles, with diffusion models [39,40] serving as a prime example. The motivation for
diffusion models lies deep within the realm of non-equilibrium thermodynamics. Whereas
previous precision networks like Normalizing Flows [41] rely on bijective mappings be-
tween a Gaussian distribution and a physical phase space, diffusion networks can encode
such a mapping in a stochastic differential equation (SDE). This SDE can be evaluated
discretely or continuously, leading to the description of Denoising Diffusion Probabilistic
Models (DDPMs) [39] or Conditional Flow Matching (CFM) [40]. In this thesis, both
are employed for LHC applications.
As generative machine learning continues to evolve, it is poised to revolutionize both the
simulation of particle interactions and the analysis of collider data, offering new oppor-
tunities to test the Standard Model and explore physics beyond its established framework.

This thesis introduces theoretical aspects of the Standard Model, standard event gener-
ators for LHC physics and some concepts of top-quark physics in Chapter 2. A small
overview of the basic definition and concepts of machine learning is reviewed in Chapter 3
with a focus on generative diffusion networks, in particular DDPMs and CFMs. Utilizing
machine learning to enhance the forward simulation, i.e. augmenting simulated data, is
one promising aspect of machine learning. In this thesis, machine-learning-driven fast
event generation based on DDPMs and CFMs has been explored rigorously for multiple
datasets, each encoding different physical phenomena. A complete presentation of the
results can be found in Chapter 4. Besides data augmentation, we also studied the use
of generative machine learning to enhance precision measurements. In particular, we
studied the use of generative unfolding using a CFM-like setup to correct for detector
effects in data in Chapter 5. Lastly, the implications of all the presented results are
contextualized in a conclusion in Chapter 6 together with an outlook for future research
directions.

2

CHAPTER 2

High energy physics

The following chapter provides a brief overview of the physics concepts relevant to this
thesis. It begins with a description of the fundamental theory of particle physics, the
Standard Model, in Section 2.1, following Refs. [42,43]. This is followed by an introduction
to essential concepts in collider physics, with a particular focus on a step-by-step overview
of the LHC simulation chain in Section 2.2. Finally, Section 2.3 briefly reviews selected
approaches to measure the top-quark mass at LHC experiments.

2.1 Standard Model

The Standard Model (SM) of particle physics provides a description of all (known)
fundamental particles and their interactions in the language of a Quantum Field Theory
(QFT). Any such description must respect the underlying symmetry of the Minkowski
spacetime R3+1, namely the Poincare symmetry. Within the description of the SM,
matter consists of spin-1/2 leptons and quarks. Interactions are mediated by gauge
bosons and the full gauge group of the SM is given by

G = SU(3)C × SU(2)L × U(1)Y . (2.1)

SU(3)C is the gauge group of the non-abelian gauge theory of Quantum Chromodynamics
(QCD), the color group responsible for the strong interaction. It binds quarks into hadrons
and protons and neutrons into nuclei. The Lie algebra of SU(3)C has eight generators,
which define the color symmetry and satisfy specific commutation relations. The associ-
ated gauge bosons are the eight gluons, which transform in the adjoint representation of
SU(3)C . These gluons are massless, carry color charge, mediate the strong interaction
and can couple to particles that also carry color charge, either quarks or other gluons.
Leptons are colorless particles, meaning that they are SU(3)C-singlets.
For a given QFT, renormalization leads to energy-dependent coupling constants. In the
case of QCD the strong coupling constant αs decreases with energy. Consequently, at high
energies QCD becomes a weakly interacting theory, which we can perturbatively evaluate

3

2 High energy physics

in orders of αs. At low energies however, the description of QCD is non-perturbative
resulting in the necessity of finding numerical models to approximate strong interactions.
In the context of collider physics the hard scattering process and parton showers are de-
scribed by perturbative QCD whereas hadronization requires non-perturbative modeling.

The electroweak interaction is described by the gauge group SU(2)L × U(1)Y . There are
3 + 1 generators involved associated with 4 massless gauge bosons Wµ,1/2/3 and Bµ. The
Wµ bosons couple to left-handed fermions and right-handed anti-fermions, making the
electroweak theory chiral. The coupling of the remaining Bµ boson is proportional to
the particle’s hypercharge. Electroweak symmetry is spontaneously broken by the Higgs
mechanism

SU(2)L × U(1)Y → U(1)EM (2.2)

when the Higgs field acquires a non-zero vacuum expectation value. Three of the four
gauge bosons of the broken symmetry group acquire a mass giving rise to the massive

W±µ = 1√
2

(Wµ,1 ∓ iWµ,2) and Zµ = cos (θW)Wµ,3 − sin (θW)Bµ (2.3)

-bosons. The angle θW , known as the Weinberg angle, parametrizes the mixing between
the gauge bosons Wµ,3 and Bµ. It determines the relation between the weak and
electromagnetic couplings. The bosons of Eq. (2.3) are the mediators of the weak
interaction, which due to their masses is short ranged. The unbroken U(1)EM group is
the gauge group of Quantum Electrodynamics (QED) whose massless mediator

Aµ = sin (θW)Wµ,3 + cos (θW)Bµ (2.4)

is the photon. Photons do not carry electric charge themselves, but they can couple to
particles which do. Among the three forces described in this thesis, electromagnetism is
the force with the longest range. In contrast to QCD, the QED coupling increases with
energy, but it remains perturbative at all experimentally accessible energy scales.

The particle content of the SM, along with their transformation properties under the
gauge group G, is summarized in Tab. 2.1. The SM contains six types of quarks (up,
down, charm, strange, top, and bottom) and six types of leptons (electron, electron-
neutrino, muon, muon-neutrino, tau, and tau-neutrino), organized into three generations.
Each quark generation contains an up-quark type and a down-quark type quark, which
differ in transformation properties. Similarly, each lepton generation contains a charged
lepton and a neutral neutrino. Under the electroweak gauge group SU(2)L × U(1)Y , the
left-handed components of quarks and leptons form doublets of SU(2)L, whereas their
right-handed counterparts transform as singlets.

Finally, we need to construct the Lagrangian of our theory. Each gauge boson con-
tributes both a kinetic term and, in the non-abelian cases, a self-interaction term to the
Lagrangian summarized in Lgauge. The analytical description of matter fields involve
a kinetic term Lkinetic, F including the coupling of fermions to gauge bosons as well as
a Yukawa term LYukawa describing the coupling of the Higgs bosons with right- and
left-handed fermions. This coupling results in a finite fermonic mass once the gauge
symmetry is spontaneously broken.
For quarks, the Yukawa couplings to the Higgs lead to a mass matrix that is not diagonal in
the flavor basis. Diagonalizing the mass matrix requires independent unitary transforma-

4

2 High energy physics

Particle Representation SU(3)C SU(2)L U(1)Y

Lepton
i ∈ {e, µ, τ}

(νL,i, eL,i) 1 2 -1
νR,i 1 1 0
eR,i 1 1 -2

Quark
i ∈
{u, d, c, s, t, b}

(uL,i, dL,i) 3 2 1/3
uR,i 3 1 4/3
dR,i 3 1 -2/3

Gluons gα 8 1 0
W’s Wµ,1/2/3 1 3 0
B Bµ 1 1 0
Higgs (H+, H0) 1 2 1

Table 2.1: Particle content of the SM and their transformation properties under
G adapted from Ref. [43]. The table lists the representation each particle
field belongs to under each component of the gauge group before symmetry
breaking. Note that U(1)Y has only one-dimensional representations. Therefore,
representations under U(1)Y are labeled by their hypercharge Y . The Higgs
field is a complex scalar transforming as an SU(2)L doublet with hypercharge
Y = 1/2 consisting of an electrically charged component H+ and a neutral
component H0. In some SM descriptions the right-handed neutrino νR,i is not
included.

tions for the up-type and down-type quarks. Their mismatch leads to a non-trivial mixing
in the charged-current weak interactions, described by the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. The CKM matrix is a unitary 3×3 matrix containing three mixing angles
and one complex CP-violating phase. It governs flavor-changing transitions between quark
generations and explains phenomena such as CP-violation in the weak sector. Similarly,
experimental evidence from neutrino oscillations shows that neutrinos have mass and
undergo flavor mixing, although this is typically not included in the SM. In analogy to the
CKM matrix, neutrino mixing is described by the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix, which appears in the leptonic charged-current interactions. The PMNS
matrix also contains three mixing angles and up to three CP-violating phases depending
on the nature of neutrinos.
Moving on to the Higgs sector, there is a contribution of the kinematics and the potential
of the Higgs including self-interaction LHiggs.
Combining all the mentioned aspects leads to the SM Lagrangian

LSM = Lgauge + Lkinetic,F + LYukawa + LHiggs . (2.5)

From the Lagrangian in Eq. (2.5), we can count the free parameters needed to have a
complete description of the SM. In the gauge sector, we need to consider all coupling
constants. There are in total four physical couplings, the strong coupling gs, the
electromagnetic coupling e, the weak coupling gW and a coupling related to strong
CP-violation θ.
In the fermion sector there are fermionic masses of the nine charged fermions me,i, mu,i

and md,i of three different generations i. Furthermore, there are four physical parameters
of the CKM matrix. If neutrinos are included, we must also consider three neutrino

5

2 High energy physics

masses mν,i and up to six physical parameters of the PMNS matrix.
Finally, the Higgs sector contributes the Higgs mass mH and the Higgs self-coupling λ.
In total, this gives rise to 19 (+9) parameters that must be determined experimentally.

2.2 Collider Physics

There are many experiments aimed to precisely measure free parameters of the SM, probe
SM predictions and search for potential Beyond Standard Model (BSM) signatures. In
the context of this thesis, we focus on collider experiments with a high center of mass
energy. In those high energy regimes we need to find a smart parametrization of the
relativistic particles that interact in the collision.

2.2.1 Parametrization

Relativistic particles are naturally described by their four momenta in Minkowski space

pµ = (E, px, py, pz) with gµν = diag(1,−1,−1,−1) . (2.6)

When described in the context of LHC physics, it can be convenient to choose a particle
basis that incorporates experimental properties. Defining the beam direction as z, physics
should be completely symmetric around the z-axis. Therefore, it is useful to describe px
and py in terms of polar coordinates

pT :=
√
p2
x + p2

y and ϕ := arctan py
px

, (2.7)

with pT the transverse momentum perpendicular to the z-axis and ϕ the azimuthal angle
around the z-axis. Both quantities are invariant under a Lorentz boost in z-direction. As
the energy E of a massive particle is not, it is often replaced by the invariant mass

m :=
√
pµpµ =

√
E2 − |p|2 (2.8)

which is Lorentz invariant. Lastly, pz is often replaced by the rapidity

y := 1
2 log

(
E + pz
E − pz

)
(2.9)

as its transformation properties under a Lorentz boost are additive and linear. However,
the energy of a particle and the momentum in the beam direction are hard to measure
at general-purpose colliders such as ATLAS [44] and CMS [45], whose detectors are
primarily perpendicular to the beam pipe. Therefore, the pseudorapidity

η := arctanh pz
|p| (2.10)

is sometimes preferred over the rapidity. Although the boost-behavior of the pseudora-
pidity is non-linear, in the limit of massless particles

lim
m→0

η = y (2.11)

6

2 High energy physics

holds. Therefore, the Lorentz transformation of the pseudorapidity is considered approxi-
mately linear. This leaves us with a complete description of a particles as

pµ =


E

px

py

pz

 =


√
m2 + |p|2

pT cos(ϕ)
pT sin(ϕ)
pT sinh(η)

 . (2.12)

Most results shown in this thesis make use of this parametrization and describe particles
by (pT , ϕ, η,m). As we will see later, the performance of a given machine learning task
can be heavily reliant on the chosen parametrization. Sometimes we can facilitate a task
by reparametrizing the given degrees of freedom.

2.2.2 Hard Scattering

At most collider experiments particle beams are accelerated to relativistic energies in a
circular beam pipe until two opposite beams of potentially different particles are collided
with each other. As quantum effects govern the scattering process, we can only assign a
probability for two particles to interact, given that they are both within a certain area.
This probability is referred to as the cross-section of a scattering process σ and has units
of an area. It is connected to the event rate by

dN

dt
= Lσ (2.13)

with L the luminosity, a measure of the density of the particle flow per unit area and
time. Whereas the total cross-section is process dependent, the luminosity depends on
detector geometry and experimental setup. Instead of a total event count, most analyses
at collider experiments use the differential cross-section dσ/dX in a given observable X.
For example, when classically comparing the measured differential cross-section dσ/dX
to simulations, the statistical comparison can be done by a template histogram fit in bins
of X.
The experiments at the LHC mostly record proton-proton collisions. Two protons are
accelerated to center-of-mass energies of up to

√
s = 13.6 TeV. We are thus interested in

2→ n scattering processes, with two initial protons with momentum pA, pB and n final
state particles with momenta {pj} . The differential cross-section can be calculated in
QFT via

dσ = 1
4EAEB|vA − vB|

|M(pA, pB → {pj})|2

× (2π)4δ

pA + pB +
∑
j

pj

∏
j

d3pj
(2π)3(2Ej)

, (2.14)

where EA and EB are the initial energies of the two protons given by EA = EB =
√
s/2

in the center-of-mass frame, vA and vB the respective velocities and M the probability
amplitude or the matrix element of the process pA, pB → {pj}. The matrix element is
averaged over all possible spin and color states of the initial state particles and summed
over all possible spin and color states of the final state particles. The phase space
integration runs over all final state particles. Momentum conservation is enforced by
the δ-distribution. Complications arise from the fact that protons are not fundamental

7

2 High energy physics

themselves but compositions of quarks and gluons. When colliding protons at high
energies, the deep inelastic scattering happens between constituents of the proton of
unknown momentum. A relative factor xi relates the total available energy of one proton
to the energy of the scattered parton, such that we can relate

Ea/b = xa/bEA/B =
xa/b
√
s

2 . (2.15)

Moreover, there are many possible partons a and b that could interact with each other.
Therefore, the cross-section needs to be multiplied by the parton density functions (PDF)
fi(xi), the probability of finding parton i with momentum fraction xi for i ∈ {a, b}. This
would then correspond to the cross-section of parton a and b to interact. In practice
however we need to sum over all possible partons a and b and their corresponding partonic
cross-sections. We end up with

σ =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxbfa(xa)fb(xb)σ(pa, pb → {pj}) . (2.16)

The PDFs cannot be determined from first principles. However, their scale dependence is
governed by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations, which
describe that PDFs evolve with the transferred momentum Q2 as

dfa(x,Q2)
d logQ2 =

∑
b

∫ 1

x

dz

z

αs(Q2)
2π fb(

x

z
,Q2)Pa←b(z) . (2.17)

Here, z is the momentum fraction retained by the daughter parton a after the splitting of
parton b, and Pa←b(z) are the universal splitting kernels. They describe the probability
that a parton of type b splits into a parton of type a, such that a carries a fraction z of
the momentum of the original parton b. In leading-order approximation, the splitting
kernels depend only on the momentum fraction z and the parton types a and b. A more
detailed description of parton evolution can be found in e.g Ref. [46].
In practice, PDFs are extracted from experimental data as functions of the parton’s
momentum fraction x and the hard scale Q2 and in a second step fitted to the DGLAP
equations [29].
Finally, to simulate hard scattering processes, events must be sampled from Eq. (2.16).
Among popular event generators for that task are MadGraph [23], Sherpa [24] and
Pythia8 [25].

2.2.3 Parton Shower

While the hard scattering defines the primary interaction, it does not account for additional
QCD radiation that occurs as partons evolve. Both the incoming and outgoing partons
can radiate gluons or, in some cases, quark-antiquark pairs, leading to a cascade known
as a parton shower. Soft emissions occur when the radiated gluon carries very little
energy, while collinear emissions happen when the emitted parton is nearly parallel to the
parent parton. The probability of such emissions is enhanced due to divergences in QCD.
Since the angular and energy resolution for hadronic final states at LHC experiments are
typically of orderO(0.1) in both angle and energy energy [44,45], we cannot experimentally
distinguish between an event where a parton radiates a soft or collinear gluon and one
where it does not. Moreover, from a theoretical perspective, infrared-safe observables
are explicitly constructed to be insensitive to such emissions [46]. Therefore, we must

8

2 High energy physics

include these effects in our event generation to obtain realistic predictions.
In the soft and collinear limits, the squared QCD matrix element for an (n+ 1)-parton
final state factorizes into the matrix element for a n-parton configuration, convoluted
with the appropriate splitting kernel [46] introduced in Eq. (2.17). In particular, the
cross-sections are related by

σn+1 ≈ σn
∫
dz
dQ2

Q2
αs(Q2)

2π Pa←b(z) . (2.18)

This universal behavior allows the radiation pattern to be described probabilistically in
terms of successive splittings, each governed by the splitting kernel and the running of
the strong coupling αs. The expression on the right-hand side can be interpreted as a
differential probability for a parton of type b to split into a parton a

dPb→a = dQ2

Q2
αs(Q2)

2π Pa←b(z)dz . (2.19)

We distinguish between four different splitting kernels. A quark radiating a gluon q → qg
is described by Pq←q and Pg←q, a gluon splitting into an quark-antiquark pair g → qq
is described by Pq←g and a gluon radiating a gluon g → gg is described by Pg←g. The
concrete calculation of the splitting kernels is described in great detail in e.g. Ref. [46].
Parton showers are not limited to the outgoing partons. In hadronic collisions, the
incoming partons can also radiate before the hard scattering takes place, namely initial-
state radiation (ISR). Shower algorithms handle this by interpreting the splitting as
evolving backwards in time. This backward evolution makes use of the same splitting
probabilities of Eq. (2.19), but applied in reverse. To reconstruct a parton b that entered
the hard process, we consider the possibility that it originated from a splitting a→ b+X
at a higher scale. This backward evolution is constrained by the parton distribution
functions, which encode the probability of finding a parton a inside the proton with a
given momentum fraction such that the overall probability becomes

dPa→b = dQ2

Q2
αs(Q2)

2π Pa←b(z)
fa(x/z,Q2)
fb(x,Q2) dz . (2.20)

Modern event generators, such as Pythia8, implement parton showers using this proba-
bilistic picture. Starting from the hard scattering process, a parton b is allowed to split
according to the so called Sudakov factor

∆b(Q,Q0) = exp
(
−
∫ Q0

Q

dQ̃2

Q̃2

∑
a

∫
dz
αs(Q̃2)

2π Pa←b(z)
)
, (2.21)

which encodes the probability that a parton evolves from a high scale Q0 down to a lower
scale Q without radiating a parton. In Pythia8, Sudakov factors are sampled uniformly
between 0 and 1 and Eq. (2.21) is numerically inverted to solve for the energy scale Q
at which the next emission occurs. Each parton in the event undergoes this procedure
iteratively, splitting or not based on the Sudakov factor, until the evolution reaches a
cutoff scale below which non-perturbative physics takes over.

2.2.4 Hadronization

Once the momentum transfer of the parton splitting is of order O(1 GeV2), non-
perturbative QCD regimes are reached and partons start to hadronize. Whereas the

9

2 High energy physics

hard scattering process and the parton shower can be described from first principles,
hadronization cannot. Instead, phenomenological models are defined to numerically
provide a description of the hadronization process. There are two models typically used
for LHC tasks.
The Lund String Model [47] describes hadronization as a process where color-connected
quarks and gluons form a string-like structure due to the strong force. As the string
stretches or as the distance r between the string ends increases, it stores potential energy

V (r) = κr , (2.22)

where κ ≈ 1 GeV/fm is the string tension, a phenomenological constant. Eventually,
the potential causes the string to break into smaller pieces, as it becomes energetically
favorable to form a new quark-antiquark pair. Thus, hadronization is modeled as repeated
string breaking, where each break creates a new quark–antiquark pair that forms a hadron
with a neighboring parton. The model specifies how the energy and momentum are
assigned to these hadrons. This process is governed by a fragmentation function, the
probability for a hadron to take a fraction z of the remaining string momentum given the
hadron’s flavor and its transverse momentum pT sampled from a Gaussian distribution
with tunable width. The Lund fragmentation function is given by

f(z) ∝ (1− z)A
z

exp
(
−Bm

2
T

z

)
, (2.23)

with mT the transverse mass of the hadron and A and B tuneable model parameters.
Once the remaining energy in the string is too small to produce additional hadrons, the
string forms the final hadrons if momentum and quantum numbers can be conserved.
If not, the chain of string breaks is rejected and the procedure is repeated. The Lund
string model is widely used in event generators like Pythia8 [25].

Cluster Fragmentation is an alternative hadronization model where color-neutral clusters
are formed from the products of parton showers. These clusters, typically low-mass
gluon-gluon or quark-antiquark pairs, decay into hadrons based on phase space and
mass thresholds. It is commonly used in event generators like Herwig [26]. Both models
rely heavily on fine-tuning, meaning numerous model dependent parameters that can be
adapted or tuned to match measured data best.
Some hadrons have a very short lifetime and decay before reaching the detector. These
decays must be modeled in simulations to determine the final set of stable particles that
can interact with the detector material. Final-state hadrons are considered stable within
the detector because they typically decay inside its volume or live long enough to be
detected.

2.2.5 Detector

Simulating the detector response of a given process comes with the highest computational
cost [48], making it a severe bottleneck for the number of simulations available in high
energy physics (HEP) experiments. General-purpose detectors like ATLAS and CMS
are composed of multiple layers, each designed for specific particle detection. Closest to
the interaction point is the tracker, which detects charged particles by measuring their
trajectories. Surrounding it is the electromagnetic calorimeter (ECAL), which primarily
measures energy from photons and electrons, followed by the hadronic calorimeter

10

2 High energy physics

(HCAL), which captures energy from hadrons. The outermost layer consists of muon
chambers that detect muons, which can penetrate the inner detector layers. A widely
used toolkit for simulating detector responses is Geant4 [27]. It takes the output from
event generators like Pythia8 and propagates them through the detector, modeling
their interactions with the detector material at every stage of their passage. Geant4
provides detailed tracking through complex detector geometries, accounting for effects
such as energy loss, multiple scattering, and secondary particle production. It accurately
simulates electromagnetic and hadronic interactions, including ionization, bremsstrahlung,
hadron showers, and decays. Finally, Geant4 converts simulated energy deposits into
signals, mimicking real detector readouts, such as hits in calorimeters or ionization in
tracking detectors.
For many analyses detailed detector simulations are not crucial such that fast detector
simulators can be a cheap alternative. One of which is Delphes [28]. Instead of
detailed Geant4-style tracking, it simply applies parametrized resolutions, efficiencies,
and smearing functions to the outputs from event generators like Pythia8.

2.2.6 Reconstruction

After propagating a given theory through the entire simulation chain, we are finally at
a point where simulations live in the same physical phase space as data. To translate
detector readouts back to physical particles, reconstruction algorithms are used. These
algorithms vary between experiments, but all of them reconstruct particle-level objects
by combining information from different detector components. They identify charged
particles using the tracker, neutral hadrons from the hadronic calorimeter, and photons
from the electromagnetic calorimeter. Delphes [28] for example comes with its own
reconstruction algorithm.
Most physics analyses at collider experiments are studying the hard scattering process.
Thus, once all final state particles are reconstructed, we further try to reconstruct the
entire decay chain by enforcing signal-dependent selection criteria. A complication arises
from the fact that partons produced at the hard scattering process likely shower and
hadronize into O(10 − 100) final-state particles depending on its initial energy. To
overcome this complication, there exists various algorithms that cluster detected particles
into so-called jets. Usually, they cluster two objects (particles or subjets) i and j according
to a distance measure in momentum space defined as

dij =
∆R2

ij

R2 min(pT,i2n, pT,j2n) with ∆Rij =
√

(ηi − ηj)2 + (ϕi − ϕj)2 , (2.24)

where the jet radius R is a fixed parameter inputted to the jet algorithm. If dij is smaller
than the distance of object i to the beam pipe diB = pT,i

2n, both objects are clustered to
form a subjet. This process is repeated until all particles are clustered or a fixed number
of jets are formed. There are three commonly used clustering algorithms kt (n=1) [49],
anti-kt (n=-1) [50] and the Cambridge Aachen algorithm (n=0) [51]. Depending on the
algorithm, jets have slightly different properties.
An alternative description of jets is offered by Xcone [52]. Unlike traditional jet algorithms,
which use a fixed cone or distance measure, the Xcone algorithm adapts the size of the
jet cone based on the local energy flow in the event. In the Xcone approach, the cone size
around each particle can dynamically change to ensure that the jet is energy-conserving
and robust against multiple jets overlapping. The algorithm starts by defining an initial
cone around each particle and then iteratively adjusts the cone size to group energy

11

2 High energy physics

deposits into a well-defined jet.
A toolkit that offers all standard jet algorithms is fastjet [53], which is also interfaced
with Delphes [28].

2.2.7 Statistical testing

Finally, we would like to connect a experimental measurement with an analytical de-
scription of the underlying theory. However, direct analytical expressions for these
predictions become intractable due to the probabilistic nature of the MC and numerical
assumptions. Therefore, we test whether the simulated theory predictions accurately
describe the observed data by e.g. comparing binned, one-dimensional distributions using
statistical fits. These fits incorporate both statistical and systematic uncertainties, which
are combined as

σ =
√
σ2

stat + σ2
sys . (2.25)

If the MC simulation deviates from the observed data by more than 5σ and the accuracy
of the theoretical prescription is verified, a discovery is claimed, namely that the SM alone
cannot describe the observation. To test new physics models, simulations incorporating
BSM parameters must be generated and passed through the full simulation chain. A
new hypothesis test is then conducted to determine whether the BSM model provides a
better fit to the data.

2.3 Measuring the top-quark mass

The LHC is a top-quark factory as it is expected to produce billions of top-quarks in
its runtime of several decades [54]. The top-quark is the heaviest known fundamental
particle, with a mass of approximately 172.5 GeV [55]. Due to its large mass, it has the
strongest coupling to the Higgs boson, making it an ideal candidate to test electroweak
symmetry breaking. In many LHC analyses, the top-quark serves either as a leading
background that needs to be accounted for or as the primary object of study. Unlike
lighter quarks, which undergo parton showering and hadronization, the top-quark decays
almost instantly. A concrete understanding of top-quark physics is crucial for testing
the Standard Model. Several key parameters of the top-quark need to be determined
precisely, one of the most important being its mass. At the LHC, various experimental
methods exist to measure the top-quark mass. A common approach involves studying
top-antitop (tt̄) decays. At the LHC, the leading production channel of tt̄-pairs is gluon
fusion, gg → tt̄, due to high gluon density in high energetic protons. The subleading
production mechanism is quark-antiquark annihilation, qq̄ → tt̄.
Regarding the decay, one side of the decay is typically assumed to be leptonic (t→ bℓνℓ),
where the emitted lepton acts as a tag for one top-quark decay, indicating the presence
of the other top-quark. Once the tt̄-decay is identified, the second top-quark can decay
leptonically (t→ bℓνℓ) or hadronically (t→ bqq̄′). All hadronic decay products shower
and hadronize, so that the associated final state objects are jets. Each decay channel
of the second top-quarks comes with its own challenges. Whereas in fully leptonic
tt̄-decays kinematic information is lost due to at least two neutrinos, which cannot be
measured, semileptonic tt̄-decays come with 4 jets whose kinematic properties are harder
to reconstruct precisely. Starting with fully leptonic tt̄-decays, a common experimental

12

2 High energy physics

approach [56] for a top-quark measurement is to reconstruct the invariant mass of the
b-quark-lepton system

m2
ℓb = (pℓ + pb)2 = (Eℓ + Eb)2 − (p⃗ℓ + p⃗b)2 , (2.26)

originating from the same mother top-quark. Note that the full top-quark cannot be
reconstructed in this channel as the accompanying neutrino is undetected.
The b-quark energy in the top-quark rest frame is given by

Eb = m2
t +m2

b −m2
W

2mt
≈ m2

t −m2
W

2mt
(2.27)

due to four-momentum conversation. Often, the b-quark mass is neglected. Similarly, we
can calculate the lepton energy in the W -boson rest frame as

E∗l = m2
W +m2

ℓ

2mW
≈ mW

2 . (2.28)

The invariant mass mℓb is maximal when the lepton and the b-quark are emitted back-
to-back in the top-quark rest frame, which gives the precise endpoint of the kinematic
distribution

mℓb,max =
√

(m2
t −m2

W)m2
W

2mt
. (2.29)

Whereas in reality detector resolution, background contamination and finite particle decay
widths cause migration over the kinematic edge, in leading-order this is a theoretical
upper bound. Higher-order terms as well as off-shell effects can smear out the kinematic
edge and, hence, need to be included in the MC simulation of the hard scattering for a
valid comparison to data. Those aspects are discussed in more detail in Section 4.2.

However, beyond inaccuracies in simulation, there is also a conceptual issue when
measuring the top-quark mass. In a QFT such as the SM, parameters like mass are
not physical observables by themselves. Due to ultraviolet (UV) divergences in loop
diagrams, the mass must be renormalized, meaning it is defined within a particular
scheme that consistently absorbs these divergences [57]. As a result, there exist multiple
valid definitions of the top-quark mass, depending on how the renormalization is carried
out.
Thus, we need to understand how to interpret a measurement as described above, in
which a template fit is performed between data and MC simulations to extract the MC
top-quark mass mt,MC that best describes the observed mℓb. In MC simulations, the
top-quark mass parameter determines the value of the mass that enters the top-quark
propagator in the hard scattering process, before the top-quark decays. Since observ-
ables such as mℓb are sensitive to effects from parton showers and hadronization, the
extracted MC mass is implicitly influenced by these components and therefore does
not correspond to a renormalized field-theoretic mass [57]. To highlight the difference
from well-defined renormalized masses, it is important to note that parton showers, as
implemented in Monte Carlo generators, simulate real emissions of soft and collinear
radiation but do not include virtual corrections such as self-energy loops. As a result, the
top-quark propagator used in the simulation is not corrected by field-theoretic self-energy
contributions, and the mass parameter remains unchanged throughout the showering
process. Thus, the MC mass does not intrinsically incorporate radiative corrections.

13

2 High energy physics

Only after tuning parton shower and hadronization parameters of the MC simulation to
reference processes in experimental data, are the effects of radiative and non-perturbative
corrections effectively absorbed into the definition of mt,MC [57]. Therefore, the MC mass
should be interpreted as an effective parameter that encodes both the leading-order hard
process and model-dependent QCD effects. Any translation of mt,MC into a theoretically
well-defined mass scheme, have shown to introduce an irreducible uncertainty of approxi-
mately (0.5− 1.0) GeV [58].

There are alternative ways to measure a more meaningful top mass in semileptonic
tt̄-decays as presented in Ref. [59]. In the boosted regime, top-quark decay products are
highly collimated and can be reconstructed as a single fat jet. It has been shown, that
the peak position of the invariant mass of this jet can be related to a field-theoretically
well-defined mass parameter. Despite the advantages of boosted topologies, both ex-
perimental and theoretical challenges remain in performing such a measurement. In
particular, theoretical predictions are made at the particle level and assume idealized
conditions. To enable a meaningful comparison, detector effects must be corrected for by
unfolding the measured jet mass distribution. An issue we tackle in Section 5.1.

14

CHAPTER 3

Machine Learning

This chapter provides a description of the machine learning (ML) concepts and tools
employed in this thesis. Starting with basics definitions in Section 3.1, we briefly explore
classification as a common ML task in Section 3.2 followed by a short introduction
into uncertainty-aware Bayesian neural networks in Section 3.3. We proceed with an
in-depth discussion of generative diffusion models in Section 3.4 and more general diffusive
distribution mapping techniques in Section 3.5.

3.1 The basics

Machine learning can be described as the process of fitting mathematical models to
high-dimensional data. At the core of these models are often deep neural networks,
structured as a sequence of linear transformations (matrix multiplications) combined
with nonlinearities (activation functions).

Neural Networks

Given an m-dimensional point sampled from a physical phase space x ∼ p(x) as input to
a deep neural network, we define a hidden layer as

y1(x) = activation(W1x+ b1) , (3.1)

with a hidden dimension of n, where the weight matrix W1 is an m × n matrix of
learnable parameters, and b1 is an n-dimensional learnable bias vector. Furthermore, we
define the number of hidden layers N as the number of affine transformations applied
to x. Nonlinearities are introduced after each linear mapping, except for the last layer,
which may or may not include one depending on the application. Typical activation
functions include the sigmoid function and variations of the ReLU function, among others.
Activation functions are crucial in deep learning, as without them, the network could
only model linear relationships. However, a complete overview of activation functions lies

15

3 Machine Learning

outside the scope of this thesis. Applying the full stack of N layers and N − 1 activation
functions to x results in the network output:

z = WNyN−1(x) + bN , (3.2)

where yN−1 is the output of the previous transformations. Input and output dimensions
of the neural network are given by dim(x) and dim(z) respectively.

Training

Usually, the entries of W and b are initialized with random noise. In order for them
to capture patterns from the data, we need to train the neural network. The training
objective, or loss, is a scalar function of z. Its concrete form is problem-dependent and is
denoted by L. We optimize the loss L with respect to the learnable parameters in W and
b using gradient descent. Gradient descent is an iterative optimization algorithm used
to minimize a loss function by updating the model parameters in the direction of the
steepest descent. For each parameter θ, the update rule for gradient descent is given by

θi+1 = θi − λ∇θL(θ) , (3.3)

where λ > 0 is the learning rate, which controls the step size of the update, and ∇θL(θ) is
the gradient of the loss function with respect to the trainable parameters θ. The gradient
is computed via backpropagation. In standard gradient descent, the gradient ∇θL(θ) is
computed over the entire dataset, which can be computationally expensive. Stochastic
Gradient Descent (SGD) approximates this by computing the gradient using only a small,
randomly selected subset (batch) of the data. The update rule for SGD is given by

θi+1 = θi − λ∇θLbatch(θ) , (3.4)

where Lbatch is the loss computed on a single data sample or batch. While SGD introduces
statistical noise into the optimization process, it often leads to faster convergence and
better generalization by enabling the model to escape sharp local minima. An extension
of vanilla SGD is Adam [60], an adaptive optimization algorithm that improves stability
and efficiency.
The training procedure is repeated for a fixed number of iterations or until the validation
loss, computed on a statistically independent subset of the training data not used for
updating the model weights, converges. Finally, the performance of the neural network is
evaluated on an independent test dataset.
Typical training hyperparameters that are tuned include the number of iterations (epochs),
batch size, and learning rate. Additionally, a learning rate scheduler is often employed to
dynamically adjust the learning rate during training based on the current iteration number
or validation loss. To mitigate overfitting, i.e. preventing the neural network from merely
memorizing the training data, we can introduce dropout [61], a regularization technique
where random entries in the network are set to zero during training with a predefined
Bernoulli probability pdrop. In addition, there are also regularization techniques that
discourage large weights in a neural network by adding a penalty term, proportional to
either the squared magnitude or the absolute value of the weights, to the loss function.
This approach is known as weight decay and is governed by a hyperparameter α, which
controls the relative contribution of the penalty term to the overall loss.

16

3 Machine Learning

3.1.1 Special Network Architectures

So far, we have considered the simple case where the neural network architecture is
fully connected or dense. This means that every component of an input or hidden
vector in a given layer is connected to every component of the subsequent layer through
weight matrices. However, adaptations of this basic architecture are often introduced to
improve performance in specific tasks or to intrinsically biasing the network to incorporate
known physical symmetries. For example, in some architectures, certain connections
are explicitly set to zero, ensuring that components of hidden vectors only influence
their neighboring components in the subsequent layer. In addition, the definition of the
network output can vary. For instance, we can interpret the network output z(x) as a
correction to the input x, provided they share the same dimensionality. In this case, we
define our output as

x̃ = x+ z(x) . (3.5)

This is known as a residual connection or skip connection, as the input x not only
serves as an input to the network but also bypasses intermediate transformations and
directly influences the output. While such connections can theoretically be applied at
various points in a network architecture, in the context of this work, we only consider
the specific form given in Eq. (3.5). Beyond architectural modifications, specialized
layers are often introduced to enhance performance. One such technique is normalization,
which stabilizes training and improves generalization. One commonly used normalization
methods is batch normalization (BatchNorm) [62], which normalizes each feature across
a batch, ensuring that activations remain within a stable range. Another method is layer
normalization (LayerNorm) [63], which normalizes each individual sample across its input
features.

Transformers

The introduction of transformer layers [64] has revolutionized the field of natural language
processing and they also have been shown to enhance the performance in various HEP
applications [1, 3, 65]. They operate on sequences and rely on attention mechanisms
to assign importance to relationships between pairs of elements within a sequence. In
the context of HEP, we may consider a batch containing samples of Nparticles particles,
each represented by their four-momentum components. This results in an input shape
of (Nbatch, Nparticles, 4). Usually, we would start by mapping the input to a higher
dimensional embedding with dimensionality l. To compute what we call self-attention,
we first define three matrices, queries Q, keys K, and values V . Given an input vector x,
they are defined as

Q(x) = WQx K(x) = WKx V (x) = WV x, (3.6)

where WQ,WK ,WV are weight matrices with learnable parameters. If each input vector
has a dimensionality of l, these matrices typically have dimensions k × l, where k is a
hyperparameter. The self-attention matrix is then computed by

A(x) = softmax
(
Q(x)K(x)T√

k

)
, (3.7)

17

3 Machine Learning

which results in a matrix of shape (Nparticles, Nparticles). The softmax is applied along
the rows of the matrix product. Each row in A(x) represents the attention weights for a
given particle relative to all other particles. These weights are then applied to the values

S(x) = A(x)V (x), (3.8)

resulting in an output tensor of shape (Nparticles, k). This output is then projected back
to the output space of desired dimensionality using a learnable linear transformation.
In practice, multiple attention heads can be used, each computing separate attention
scores and outputs. These are concatenated and transformed using another linear layer,
allowing the network to learn different aspects of the correlations among particles. In
scenarios where additional information c is available, cross-attention is employed. Instead
of computing self-attention within a single set of inputs, attention is computed between
two different inputs

A(x, c) = softmax
(
Q(x)K(c)T√

k

)
, (3.9)

namely between the condition c and the input x. The cross-attended output is then given
by

S(x, c) = A(x, c)V (c), (3.10)

where the values now come from the condition c, allowing the network to integrate
additional information into the particle representation. Since transformers are intrinsically
permutation invariant and a particular physics problem might not, it can be useful to
add positional information into the embedding, s.t. this symmetry is explicitly broken.

3.2 Classification

A popular machine learning task is classification, in particular binary classification. In
the case of binary classification there are two distinct classes labeled by y = 0 or y = 1.
In all applications considered in this thesis, we set the priors p(y = 0) = p(y = 1) = 0.5.
The goal of a classifier is to assign a probability that a high-dimensional input vector x
belongs to class 1. This means we would like the classifier output to approximate

Cθ(x) ≈ p(y = 1|x) and consequently 1− Cθ(x) ≈ p(y = 0|x) (3.11)

with learnable parameters θ. To ensure that the classifier output behaves as a probability,
a sigmoid function can be applied to the output of the last layer. The sigmoid function
forces the classifier output to lay between 0 < Cθ(x) < 1. The probability for a given x
to be of class y is hence given by

p(y|x, θ) = Cθ(x)y(1− Cθ(x))1−y , (3.12)

which we refer to as the likelihood. We would like to learn θ, s.t. the likelihood
for all (x, y) ∼ ptrain(x, y) is maximal. This is equivalent to minimizing the negative
log-likelihood

Lclass = −
〈
log p(y|x, θ)

〉
(x,y)∼ptrain(x,y)

18

3 Machine Learning

= −
〈
y log(Cθ(x)) + (1− y) log(1− Cθ(x))

〉
(x,y)∼ptrain(x,y)

. (3.13)

which is the typical loss function used to train a binary classifier. It is also called the
binary cross entropy loss. The classifer is converged when

δL
δCθ

= −p(x|y = 1)
Cθ(x) − p(x|y = 0)

1− Cθ(x)
!= 0

→ Cθ(x) = p(x|y = 1)
p(x|y = 0) + p(x|y = 1) (3.14)

This implies that we can relate the output of a converged classifier to the likelihood ratio

w(x) := p(x|y = 1)
p(x|y = 0) = Cθ(x)

1− Cθ(x) . (3.15)

In the context of this work we exploit this property to reweight samples of a distribution
x ∼ p0(x), s.t. they follow a different distribution p1(x). This can be achieved by training
a classifier between samples of the p0(x) and p1(x) and weighting x ∼ p0(x) by Eq. (3.15).
It is important to note that the analytical form of p0(x) and p1(x) does not have to be
known as long as we have samples of both distributions. Furthermore, Eq. (3.15) implies
that the weights diverge for p(x|y = 0) → 0. Logically, this makes sense as we cannot
reweight empty phase space regions. Therefore, we need to ensure that the support of
p(x|y = 1) is a subset of the support of p(x|y = 0).

3.3 Bayesian Neural Networks

The content of this section was finalized in collaboration with Anja Butter, Nathan Huetsch,
Tilman Plehn, Jonas Spinner and Peter Sorrenson. It is adapted from Ref. [1].

Any neural network task comes with associated uncertainties, for instance from a limited
amount of training data, a lack of model flexibility, or even training data which we know
cannot be trusted. This means, that there should be an associated uncertainty to the
extracted output, ideally in form of a second map over the target phase space. This
problem has been tackled for the task of density estimation with bijective normalizing
flows through a Bayesian network extension [66], which can be combined with other
measures, like conditional training on augmented data [41].

The idea behind Bayesian neural networks (BNNs) is to train network weights as
distributions and evaluate the network by sampling over these distributions. This will
provide a central value and an uncertainty for the numerically defined network output [67–
69]. Because general Markov-Chain-Monte-Carlo(MCMC)-methods are expensive for
large networks, we use variational inference [70] to learn Gaussian approximations for
each weight distribution. Because of the non-linear nature of the network this does not
mean that the network output has to come with a Gaussian uncertainty [71].

We repeat the main steps in deriving the Bayesian loss for any neural network
approximating, for instance, a density map ρ(x) ≈ ρθ(x) following Ref. [72]. The
expectation value is defined as

⟨ ρ ⟩(x) ≡ ⟨ ρ ⟩ =
∫
dρ ρ p(ρ) with p(ρ) =

∫
dθ p(ρ|θ) p(θ|xtrain) , (3.16)

19

3 Machine Learning

where we omit the x-dependence. We use the variational approximation to approximate

p(ρ) =
∫
dθ p(ρ|θ) p(θ|xtrain) ≈

∫
dθ p(ρ|θ) q(θ) , (3.17)

where q(θ) is also a function of x. The variational approximation step requires us to
minimize

LBNN = KL[q(θ), p(θ|xtrain)] =
〈

log q(θ)
p(θ|xtrain)

〉
q

=
∫
dθ q(θ) log q(θ)

p(θ|xtrain)

= −
∫
dθ q(θ) log p(xtrain|θ) + KL[q(θ), p(θ)] + const ,

(3.18)

where we use Bayes’ theorem to transform the intractable p(θ|xtrain), introducing the
prior p(θ) for the network weights. This so-called Evidence-Lower-Bound (ELBO) loss
combines a likelihood loss with a regularization term, their relative size fixed by Bayes’
theorem.

It turns out that for sufficiently deep networks we can choose q(θ) as uncorrelated
Gaussians per network weight [69], such that the training parameters are a set of means
and standard deviations for each network weight. Compared to the deterministic network,
its Bayesian version is twice the size, but automatically regularized, keeping the additional
numerical effort minimal. While p(θ), also chosen as a Gaussian, is formally defined as a
prior, we emphasize that in our case the step from the prior to the posterior has nothing
to do with Bayesian inference. The Gaussian width of p(θ) can be treated as a network
hyperparameter and varied to improve the numerical performance. We typically find
that the result is stable under varying the width by several orders of magnitude, and a
width of one works well.

Switching a deterministic network into its Bayesian version includes two steps, (i) swap
the deterministic layers to the corresponding Bayesian layers, and (ii) add the regulariza-
tion term to the loss. For the latter, one complication arises. We estimate the complete
loss from a dataset including N events in M batches, which means the likelihood term is
summed and then normalized over M batches, while the regularization term comes with
the complete prefactor 1/N .

To evaluate the Bayesian network we need to again sample over the network weight
distribution. This way we guarantee that the uncertainty of the network output can
have any functional form. The number of samplings for the network evaluations can be
chosen according to the problem. Unless stated otherwise, we choose 30 for all problems
discussed in this work. To compare the Bayesian network output with a deterministic
network output we can either go into the limit q(θ) → δ(θ − θ0) or only evaluate the
means of the network weight distributions.

3.4 Generative Diffusion Models

The content of this section was finalized in collaboration with Anja Butter, Nathan Huetsch,
Tilman Plehn, Jonas Spinner and Peter Sorrenson. It is adapted from Ref. [1].

20

3 Machine Learning

Typical generative models map simple latent distributions to a phase space distribution
encoded in the training data,

r ∼ platent(r) ←−−−−−→ x ∼ pθ(x|θ) ≈ pdata(x) . (3.19)

The last step represents the network training, for instance in terms of a variational ap-
proximation of pdata(x). The latent distribution is typically a standard multi-dimensional
Gaussian,

platent(r) = N (r; 0, 1) . (3.20)

We focus on the case where the dimensionalities of the latent space r and the phase space
x are identical, and there is no lower-dimensional latent representation. For these kinds
of dimensionalities, bijective network architectures are promising candidates to encode
precision correlations. For strictly symmetric bijective networks like Invertible Neural
Networks (INNs) the forward and backward directions are inverse to each other, and
the network training and evaluation is symmetric. In the context of this thesis INNs are
frequently used as benchmarks, but they are not studied in greater detail. Instead, we
introduce two diffusion models in Section 3.4.1 and Section 3.4.2 which follow the basic
structure of Eq. (3.19) by casting the mapping as a time-dependent transformation, one
with a discrete and one with a continuous time evolution. Because many applications
require full control and a conservative and reliable uncertainty estimation of neural
networks, we develop Bayesian versions of the two generative models.

3.4.1 Denoising Diffusion Probabilistic Model

Architecture

Denoising Diffusion Probabilistic Models (DDPM) [39] transform a model density by
gradually adding Gaussian noise. This setup guarantees that the network links a non-
trivial physics distribution to a Gaussian noise distribution, as illustrated in Eq. (3.19).
The task of the reverse, generative process is to denoise this diffused data. The structure
of diffusion models considers the transformation in Eq. (3.21) a time-dependent process
with t = 0 ... T ,

pθ(x0|θ)
forward→
←−−−−−→
←backward

platent(xT) . (3.21)

The DDPM discretizes the time series in Eq. (3.21) in the forward direction and encodes
it into a neural network for the backward direction. We start with the forward process,
which turns the physical distribution into noise. The corresponding joint distribution is
factorized into discrete steps,

p(x1, ..., xT |x0) =
T∏
t=1

p(xt|xt−1)

with p(xt|xt−1) = N (xt;
√

1− βtxt−1, βt) . (3.22)

Each conditional step p(xt|xt−1) adds noise with variance βt around the mean
√

1− βtxt−1.
The combination of xt as a variable and the mean proportional to xt−1 implies that the

21

3 Machine Learning

successive steps can be combined as Gaussian convolutions and give the closed form

p(xt|x0) =
∫ t−1∏

i=1
dxi p(xt|xt−1)p(xi|xi−1)

= N (xt;
√

1− β̄tx0, β̄t) with 1− β̄t =
t∏
i=1

(1− βi) . (3.23)

The scaling of the mean with
√

1− βt prevents the usual addition of the variances and
instead stabilizes the evolution of the Gaussian over the time series. The variance can be
adapted through a schedule, where β̄t → 1 for t→ T should be guaranteed. As suggested
in Ref. [39] we choose a linear increase with β1 = 10−7T and βT = 2 · 10−5T .

As a first step towards reversing the forward diffusion, we apply Bayes’ theorem on
each slice defined in Eq. (3.22),

p(xt−1|xt) = p(xt|xt−1)p(xt−1)
p(xt)

. (3.24)

However, a closed-form expression for p(xt) only exists if conditioned on x0, as given in
Eq. (3.23). Using p(xt|xt−1, x0) = p(xt|xt−1) we can instead compute the conditioned
forward posterior as a Gaussian

p(xt−1|xt, x0) = p(xt|xt−1)p(xt−1|x0)
p(xt|x0) = N (xt−1; µ̂t(xt, x0), β̂t)

with µ̂(xt, x0) =

√
1− β̄t−1βt

β̄t
x0 +

√
1− βtβ̄t−1

β̄t
xt and β̂t = β̄t−1

β̄t
βt . (3.25)

The actual reverse process starts with Gaussian noise and gradually transforms it
into the phase-space distribution through the same discrete steps as Eq. (3.22), without
knowing x0 a priori. The corresponding generative network needs to approximate
Eq. (3.24) for each step. We start by defining our modeled phase-space distribution

pθ(x0|θ) =
∫
dx1...dxT p(x0, ..., xT |θ) , (3.26)

and assume that the joint probability is again given by a chain of independent Gaussians,

p(x0, ..., xT |θ) = platent(xT)
T∏
t=1

pθ(xt−1|xt)

with pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ2
θ(xt, t)) . (3.27)

Here, µθ and σθ are learnable parameters describing the individual conditional probability
slices xt → xt−1. It turns out that in practice we can fix σ2

θ(xt, t)→ σ2
t [39]. We will see

that the advantage of the discrete diffusion model is that we can compare a Gaussian
posterior, Eq. (3.25), with a reverse, learned Gaussian in Eq. (3.27) for each step.

Loss function

Ideally, we want to train our model by maximizing the posterior pθ(θ|x0), however, this is
not tractable. Using Bayes’ theorem and dropping regularization and normalization terms

22

3 Machine Learning

this is equivalent to minimizing the corresponding negative log likelihood in Eqs.(3.26)
and (3.27),〈

− log pθ(x0|θ)
〉
pdata

= −
∫
dx0 pdata(x0) log

(∫
dx1...dxT platent(xT)

T∏
t=1

pθ(xt−1|xt)
)

= −
∫
dx0 pdata(x0) log

(∫
dx1...dxT platent(xT)p(x1, ..., xT |x0)

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)

= −
∫
dx0 pdata(x0) log

〈
platent(xT)

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

〉
p(x1,...,xT |x0)

(3.28)

In the first step, we insert a one into our loss function by dividing Eq. (3.22) with itself.
Using Jensen’s inequality f(⟨x⟩) ≤ ⟨f(x)⟩ for convex functions we find

〈
− log pθ(x0|θ)

〉
pdata

≤ −
∫
dx0 pdata(x0)

〈
log

(
platent(xT)

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)〉
p(x1,...,xT |x0)

= −
〈

log
(
platent(xT)

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)〉
p(x0,...,xT)

=
〈
− log platent(xT)−

T∑
t=2

log pθ(xt−1|xt)
p(xt|xt−1) − log pθ(x0|x1)

p(x1|x0)

〉
p(x0,...,xT)

≡ LDDPM . (3.29)

As suggested above, we would like to compare each intermediate learned latent distribution
pθ(xt−1|xt) to the real posterior distribution p(xt−1|xt, x0) of the forward process. To
reverse the ordering of the forward slice we use Bayes’ theorem,

LDDPM =
〈
− log platent(xT)−

T∑
t=2

log pθ(xt−1|xt)p(xt−1|x0)
p(xt−1|xt, x0)p(xt|x0) − log pθ(x0|x1)

p(x1|x0)

〉
p(x0,...,xT)

=
〈
− log platent(xT)−

T∑
t=2

log pθ(xt−1|xt)
p(xt−1|xt, x0) − log p(x1|x0)

p(xT |x0) − log pθ(x0|x1)
p(x1|x0)

〉
p(x0,...,xT)

=
〈
− log platent(xT)

p(xT |x0) −
T∑
t=2

log pθ(xt−1|xt)
p(xt−1|xt, x0) − log pθ(x0|x1)

〉
p(x0,...,xT)

=
T∑
t=2

〈
KL[p(xt−1|xt, x0), pθ(xt−1|xt)]

〉
p(x0,xt)

+
〈
− log pθ(x0|x1)

〉
p(x0,...,xT)

+ const

≈
T∑
t=2

〈
KL[p(xt−1|xt, x0), pθ(xt−1|xt)]

〉
p(x0,xt)

(3.30)

Now, the KL-divergence compares the forward Gaussian step of Eq. (3.25) with the
reverse, learned Gaussian in Eq. (3.27). The second sampled term will always be negligible
compared to the first T −1 terms. The KL-divergence between two Gaussian, with means
µθ(xt, t) and µ̂(xt, x0) and standard deviations σ2

t and β̂t, has the compact form

LDDPM =
T∑
t=2

〈 1
2σ2

t

|µ̂− µθ|2
〉
p(x0,xt)

+ const. (3.31)

23

3 Machine Learning

ϵ ∼ N (0, 1)

x0 ∼ pdata(x0)

t ∼ U(1, T)

xt =
√

1− β̄tx0 +
√

β̄tϵ

ϵθ

DDPM

L = 1
2σ2
t

β2
t

(1−βt)β̄t
|ϵ− ϵθ|2

Figure 3.1: DDPM training algorithm, following Ref. [39], with the loss derived
in Eq. (3.35).

This implies that µθ approximates µ̂. The sampling follows p(x0, xt) = p(xt|x0) pdata(x0).
We numerically evaluate this loss using the reparametrization trick on Eq. (3.23)

xt(x0, ϵ) =
√

1− β̄tx0 +
√
β̄tϵ with ϵ ∼ N (0, 1)

⇔ x0(xt, ϵ) = 1√
1− β̄t

(
xt −

√
β̄tϵ

)
. (3.32)

These expressions provide a closed form for µ̂(xt, x0), but in terms of xt and ϵ,

µ̂(xt, ϵ) = 1√
1− βt

xt(x0, ϵ)−
βt√
β̄t

ϵ

 . (3.33)

For the reverse process we choose the same parametrization, but with a learned ϵθ(xt, t),

µθ(xt, t) ≡ µ̂(xt, ϵθ) = 1√
1− βt

xt − βt√
β̄t

ϵθ(xt, t)

 . (3.34)

Inserting both expressions into Eq. (3.31) gives us

LDDPM =
T∑
t=2

〈 1
2σ2

t

β2
t

(1− βt)β̄t

∣∣∣∣ϵ− ϵθ (√1− β̄tx0 +
√
β̄tϵ, t

)∣∣∣∣2〉
x0∼pdata,ϵ∼N (0,1)

. (3.35)

The sum over t can be evaluated numerically as a sampling. We chose our model variance
σ2
t ≡ β̂t to follow our true variance. Often, the prefactor in this form for the loss is

neglected in the training, but as we need a likelihood loss for the Bayesian setup and no
drop in performance was observed, we keep it.

The DDPM model belongs to the broad class of score-based models, and Eq. (3.31)
can also be reformulated for the model to predict the score s(xt, t) = ∇xt log p(xt) of our
latent space at time t. It can be shown that sθ(xt, t) = −ϵθ(xt, t)/σt [73].

24

3 Machine Learning

Training and sampling

The training algorithm for the DDPM is illustrated in Fig. 3.1. For a given phase-space
point x0 ∼ pdata(x0) drawn from our true phase space distribution we draw a time step
t ∼ U(1, T) from a uniform distribution as well as Gaussian noise ϵ ∼ N (0, 1) at each
iteration. Given Eq. (3.33) we can then calculate our diffused data after t time steps xt,
which is fed to the DDPM network together with our condition t. The network encodes
ϵθ and we compare this network prediction with the true Gaussian noise ϵ multiplied
by a t-dependent constant as given in the likelihood loss of Eq. (3.35). Note that we
want to ensure that our network sees as many different time steps t for many different
phase-space points x0 as necessary to learn the step-wise reversed diffusion process.

The sampling algorithm for the DDPM is shown in Fig. 3.2. We start by feeding our
network our final timestep T and xT ∼ platent(xT) drawn from our Gaussian latent space
distribution. With the predicted ϵθ and drawn Gaussian noise zT−1 ∼ N (0, 1) we can
then calculate xT−1, which is a slightly less diffused version of xT . This procedure is
repeated until reaching our phase-space and computing x0, where no additional Gaussian
noise is added. Note that during sampling the model needs to predict ϵθ T times, making
the sampling process slower than for other generative networks.

Likelihood extraction

To calculate the model likelihood we can use Eq. (3.26) or its sampled estimate,

pθ(x0|θ) =
〈
pθ(x0|x1)

〉
p(x1,...,xT |θ)

, (3.36)

but this is very inefficient. The problem is that pθ(x0|x1) is a narrow distribution,
essentially zero for almost all sampled x1. We can improve the efficiency by importance
sampling and use instead

pθ(x0|θ) =
〈
p(x1, . . . , xT |θ)
p(x1, . . . , xT |x0)pθ(x0|x1)

〉
p(x1,...,xT |x0)

=
〈
p(x0, . . . , xT |θ)
p(x1, . . . , xT |x0)

〉
p(x1,...,xT |x0)

. (3.37)

xT ∼ N (0, 1)

DDPMt = T ϵθ xT−1 = 1√
1−βT

(
xT − βT√

β̄T

ϵθ

)
+ σTz

z ∼ N (0, 1)

DDPMt = T − 1 ϵθ ... x1 = 1√
1−β2

(
x2 − β2√

β̄2
ϵθ

)
+ σ2z

z ∼ N (0, 1)

DDPMt = 1 ϵθ

x0 = 1√
1−β1

(
x1 − β1√

β̄1
ϵθ

)

Figure 3.2: DDPM sampling algorithm, following Ref. [39].

25

3 Machine Learning

This samples a diffusion process starting from x0 and into the latent space, meaning that
it represents a likely forward and backward path. This means the integrand should not
just be zero most of the time.

Bayesian DDPM

The derivation of Eq. (3.18) can be easily extended to the density estimation step of a
generative networks, in the same way as for the Bayesian Invertible Neural Networks
(INNs) [66]. The Bayesian DDPM loss follows from the deterministic likelihood loss in
Eqs.(3.29) and (3.35) by adding a sampling over θ ∼ q(θ) and the regularization term,

LB-DDPM =
〈
LDDPM

〉
θ∼q

+ KL[q(θ), p(θ)] . (3.38)

3.4.2 Conditional Flow Matching

Architecture

Next, we study Conditional Flow Matching (CFM) [40,74,75]. Like the DDPM, it uses
a time evolution to transform phase space samples into noise, so the reverse direction
can generate samples as outlined in Eq. (3.21). Instead of a discrete chain of conditional
probabilities, the time evolution of samples in the CFM framework follows a continuous
ordinary differential equation (ODE)

dx(t)
dt

= v(x(t), t) with x(t = 0) = x0 , (3.39)

where v(x(t), t) is called the velocity field of the process. This velocity field can be linked
to a probability density p(x, t) normalized over x with the continuity equation

∂p(x, t)
∂t

+∇x [p(x, t)v(x, t)] = 0 . (3.40)

These two equations are equivalent in the sense that for a given probability density path
p(x, t) any velocity field v(x, t) describing the sample-wise evolution Eq. (3.39) will be a
solution of Eq. (3.40), and vice versa. Our generative model employs p(x, t) to transforms
a phase space distribution into a Gaussian latent distribution

p(x, t)→
{
pdata(x) t→ 0
platent(x) = N (x; 0, 1) t→ 1 .

(3.41)

The associated velocity field will allow us to generate samples by integrating the ODE of
Eq. (3.39) from t = 1 to t = 0.

As for the DDPM, we start with a diffusion direction. We define the time evolution
from a phase space point x0 to the standard Gaussian as

x(t|x0) = (1− t)x0 + tϵ→
{
x0 t→ 0
ϵ ∼ N (0, 1) t→ 1 ,

(3.42)

26

3 Machine Learning

following a simple linear trajectory [74]. For given x0 we can generate x(t|x0) by sampling

p(x, t|x0) = N (x; (1− t)x0, t) . (3.43)

This conditional time evolution is similar to the DDPM case in Eq. (3.23), and it gives
us the complete probability path

p(x, t) =
∫
dx0 p(x, t|x0) pdata(x0) . (3.44)

It fulfills the boundary conditions in Eq. (3.41),

p(x, 0) =
∫
dx0 p(x, 0|x0) pdata(x0) =

∫
dx0 δ(x− x0) pdata(x0) = pdata(x)

p(x, 1) =
∫
dx0 p(x, 1|x0) pdata(x0) = N (x; 0, 1)

∫
dx0 pdata(x0) = N (x; 0, 1) . (3.45)

From this probability density path we need to extract the velocity field. We start with
the conditional velocity, associated with p(x, t|x0), and combine Eq. (3.39) and (3.42) to

v(x(t|x0), t|x0) = d

dt
[(1− t)x0 + tϵ] = −x0 + ϵ . (3.46)

The linear trajectory leads to a time-constant velocity, which solves the continuity
equation for p(x, t|x0) by construction. We exploit this fact to find the unconditional
v(x, t)

∂p(x, t)
∂t

=
∫
dx0

∂p(x, t|x0)
∂t

pdata(x0)

= −
∫
dx0 ∇x [v(x, t|x0)p(x, t|x0)] pdata(x0)

= −∇x
[
p(x, t)

∫
dx0

v(x, t|x0)p(x, t|x0)pdata(x0)
p(x, t)

]
= −∇x [p(x, t)v(x, t)] , (3.47)

by defining

v(x, t) =
∫
dx0

v(x, t|x0)p(x, t|x0)pdata(x0)
p(x, t) . (3.48)

Whereas the conditional velocity in Eq. (3.46) describes a trajectory between a normal
distributed and a phase space sample x0 that is specified in advance, the aggregated
velocity in Eq. (3.48) can evolve samples from pdata to platent and vice versa.
Like the DDPM model, the CFM model can be linked to score-based diffusion models, [75]
derive a general relation between the velocity field and the score of a diffusion process
that for our linear trajectory reduces to s(x, t) = −1

t (x+ (1− t)v(x, t)).

27

3 Machine Learning

Loss function

Encoding the velocity field in Eq. (3.48) is a simple regression task, v(x, t) ≈ vθ(x, t).
The straightforward choice for the loss is the mean squared error,〈

[vθ(x, t)− v(x, t)]2
〉
t,x∼p(x,t)

= =
〈
vθ(x, t)2

〉
t,x∼p(x,t)

−
〈
2vθ(x, t)v(x, t)

〉
t,x∼p(x,t)

+ const ,

(3.49)

where the time is sampled uniformly over t ∈ [0, 1]. While we would like to sample x from
the probability path given in Eq. (3.44) and learn the velocity field given in Eq. (3.48),
neither of these is tractable. However, it is easy to sample from the conditional path in
Eq. (3.43) and calculate the conditional velocity in Eq. (3.46). We rewrite the above loss
in terms of the conditional quantities, so the first term becomes

〈
vθ(x, t)2

〉
t,x∼p(x,t)

=
〈∫

dxvθ(x, t)2
∫
dx0 p(x, t|x0)pdata(x0)

〉
t

=
〈
vθ(x, t)2

〉
t,x0∼pdata,x∼p(x,t|x0)

=
〈
vθ(x(t|x0), t)2

〉
t,x0∼pdata,ϵ

(3.50)

Using Eq. (3.48) we can rewrite the second loss term as

−2
〈
vθ(x, t)v(x, t)

〉
t,x∼p(x,t)

= −2
〈∫

dx p(x, t)vθ(x, t)
∫
dx0v(x, t|x0)p(x, t|x0)pdata(x0)

p(x, t)

〉
t

= −2
〈∫

dxdx0 vθ(x, t) v(x, t|x0) p(x, t|x0) pdata(x0)
〉
t

= −2
〈
vθ(x, t) v(x, t|x0)

〉
t,x0∼pdata,x∼p(x,t|x0)

= −2
〈
vθ(x(t|x0), t) v(x(t|x0), t|x0)

〉
t,x0∼pdata,ϵ

. (3.51)

The (conditional) Flow Matching loss of Eq. (3.49) then becomes

LCFM =
〈
[vθ(x(t|x0), t)− v(x(t|x0), t|x0)]2

〉
t,x0∼pdata,ϵ

=
〈[
vθ(x(t|x0), t)− dx(t|x0))

dt

]2〉
t,x0∼pdata,ϵ

=
〈
[vθ((1− t)x0 + tϵ, t)− (ϵ− x0)]2

〉
t,x0∼pdata,ϵ

. (3.52)

Training and Sampling

The CFM training is illustrated in Fig. 3.3. At each iteration we sample a data point
x0 ∼ pdata(x0) and a normally-distributed ϵ ∼ N (0, 1) as starting and end points of a
trajectory, as well as a time t ∼ U([0, 1]). We then compute x(t|x0) following Eq. (3.42)
and the associated conditional velocity v(x(t|x0), t|x0) following Eq. (3.46). The point
x(t|x0) and the time t are passed to a neural network which encodes the conditional
velocity field vθ(x, t) ≈ v(x, t|x0). One property of the training algorithm is that the
same network input, a time t and a position x(t|x0), can be produced by many different
trajectories, each with a different conditional velocity. While the network training is

28

3 Machine Learning

t ∼ U([0, 1])

x0 ∼ pdata(x0), ϵ ∼ N (0, 1) x(t|x0) = (1− t)x0 + tϵ CFM

L =
(
vθ − (ϵ− x0)

)2 vθ

Figure 3.3: CFM training algorithm, with the loss derived in Eq. (3.52).

based on a wide range of possible trajectories, the CFM loss in Eq. (3.52) ensures that
sampling over many trajectories returns a well-defined velocity field.

Once the CFM model is trained, the generation of new samples is straightforward.
We start by drawing a sample from the latent distribution x1 ∼ platent = N (0, 1) and
calculate its time evolution by numerically solving the ODE backwards in time from t = 1
to t = 0

d

dt
x(t) = vθ(x(t), t) with x1 = x(t = 1)

⇒ x0 = x1 −
∫ 1

0
vθ(x, t)dt ≡ Gθ(x1) , (3.53)

Under mild regularity assumptions this solution defines a bijective transformation between
the latent space sample and the phase space sample Gθ(x1).

Likelihood extraction

The CFM model also allows to calculate phase space likelihoods. Making use of the
continuity equation we can write

dp(x, t)
dt

= ∂p(x, t)
∂t

+∇xp(x, t) v(x, t)

= ∂p(x, t)
∂t

+∇x [p(x, t)v(x, t)]− p(x, t)∇xv(x, t)

= −p(x, t)∇xv(x, t) . (3.54)

Its solution is

p(x1, 1)
p(x0, 0) ≡

platent(G−1
θ (x0))

pθ(x0|θ)
= exp

(
−
∫ 1

0
dt∇xvθ(x(t), t)

)
, (3.55)

and we can write in the usual notation [72]

pθ(x0|θ) = platent(G−1
θ (x0))

∣∣∣∣∣det∂G
−1
θ (x0)
∂x0

∣∣∣∣∣
⇒

∣∣∣∣∣det∂G
−1
θ (x0)
∂x0

∣∣∣∣∣ = exp
(∫ 1

0
dt∇xvθ(x(t), t)

)
. (3.56)

Calculating the Jacobian requires integrating over the divergence of the learned velocity
field. This divergence can be calculated using automatic differentiation approximately as

29

3 Machine Learning

fast as n network calls, where n is the data dimensionality.

Bayesian CFM

Finally, we also turn the CFM into a Bayesian generative model, to account for the
uncertainties in the underlying density estimation [66]. From the Bayesian DDPM we
know that this can be achieved by promoting the network weights from deterministic
values to, for instance, Gaussian distributions and using variational approximation for
the training [67–70]. For the Bayesian DDPM the loss is a sum of the likelihood loss and
a KL-divergence regularization, Eq. (3.38). Unfortunately, the CFM loss in Eq. (3.52) is
not a likelihood loss. To construct a Bayesian CFM loss we therefore combine it with
Bayesian network layers and a free KL-regularization,

LB-CFM =
〈
LCFM

〉
θ∼q(θ)

+ cKL[q(θ), p(θ)]. (3.57)

While for a likelihood loss the factor c is fixed by Bayes’ theorem, in the CFM case it
is a free hyperparameter. We find that the network predictions and their associated
uncertainties are very stable when varying it over several orders of magnitude.

3.5 Distribution Mapping

The content of this section was finalized in collaboration with Anja Butter, Sascha Diefen-
bacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman and Tilman Plehn. It is
adapted from Ref. [4].

So far we have only looked into the scenario of Eq. (3.20), however diffusion networks offer
the possibility of sampling a phase space distribution starting from any given distribution,
not just from Gaussians or other standard distributions [2,76–78]. To derive this property,
we review in some detail how this feature can be realized for stochastic conditional
sampling. We start by repeating some aspects from the previous discussion to introduce
the formalism.

3.5.1 Distribution to noise

We start by designing a process p(x, t) that transforms a general data distribution into a
Gaussian latent distribution,

p(x, t) =
{
pdata(x) t = 0
platent(x) = N (0, 1) t = 1 .

(3.58)

This can be done using the stochastic differential equation (SDE)

dx = f(x, t) dt+ g(t) dW . (3.59)

Here f(x, t) is the so-called drift coefficient, describing the deterministic part of the time
evolution. The diffusion coefficient g(t) describes the strength of the noising process,
and W is a standard Wiener process, dW a noise infinitesimal. The connection between

30

3 Machine Learning

the evolving density in Eq. (3.58) and the trajectories in Eq. (3.59) is given by the
Fokker-Planck equation (FPE)

∂p(x, t)
∂t

= −∇x[f(x, t)p(x, t)] + g(t)2

2 ∇2
xp(x, t) . (3.60)

For g(t) = 0 the SDE reduces to an ordinary differential equation (ODE), and the FPE
to the usual continuity equation. Unlike ODEs, SDEs are not time-symmetric. This is
because adding noise to a system is fundamentally different from removing noise. It can
be shown that the time-reversal of Eq. (3.59) is given by another diffusion SDE [79],

dx =
[
f(x, t)− g(t)2 ∇x log p(x, t)

]
dt+ g(t) dW̄ . (3.61)

where dW̄ is the noise infinitesimal corresponding to the reverse Wiener process. The
new and unknown element is the score function

s(x, t) = ∇x log p(x, t) , (3.62)

where p(x, t) is the solution to the forward and reverse SDEs. If we know the score
function, we can use numerical SDE solvers to propagate samples backward in time.

Forward process

Diffusion generative networks usually define the latent space to be a standard Gaussian
N (0, 1). We can construct the forward process Eq. (3.59) by simplifying the drift to be
linear in x, i.e. f(x, t) = xf(t). Now the SDE and the FPE read

dx = x f(t) dt+ g(t) dW .

∂p(x, t)
∂t

= −f(t)p(x, t)− xf(t)∇xp(x, t) + g(t)2

2 ∇2
xp(x, t) . (3.63)

In this case, we can analytically derive the solution of the FPE for given f(t) and g(t). We
make the ansatz that the time evolution starting from an event x0 ∼ pdata is a Gaussian

p(x, t|x0) = N (x|µ(t), σ(t)) = 1√
2πσ(t)

exp
(
−(x− µ(t))2

2σ(t)2

)
⇔ x(t|x0) = µ(t) + σ(t)ϵ with ϵ ∼ N (0, 1) , (3.64)

with time dependent mean µ(t) and standard deviation σ(t). Using this ansatz in the
FPE Eq. (3.63), we obtain

x− µ
σ2

∂µ

∂t
+ (x− µ)2

σ3
∂σ

∂t
− 1
σ

∂σ

∂t
= f(t)

(
x
x− µ
σ2 − 1

)
+ g(t)2

2

(
(x− µ)2

σ4 − 1
σ2

)

= f(t)(x− µ)2 + µ(x− µ)− σ2

σ2 + g(t)2 (x− µ)2 − σ2

2σ4 .

(3.65)

Sorting this equation by powers of (x− µ) and comparing coefficients we find relations
between µ(t), σ(t) and f(t), g(t),

∂µ(t)
∂t

= f(t)µ(t)

31

3 Machine Learning

∂σ(t)
∂t

= f(t)σ(t) + g(t)2

2σ(t) . (3.66)

The solutions of those two differential equations with initial conditions σ(0) = 0 and
µ(0) = x0 are

µ(t) = x0α(t)

σ(t) = α(t)
[∫ t

0
dt′

g(t′)2

α(t′)2

]1/2

with α(t) = exp
∫ t

0
dt′f(t′) . (3.67)

If these equations are fulfilled, the Gaussian ansatz is the solution to the FPE. This gives
us a solution for general f(t), g(t). However, only if the boundary conditions α(1) = 0
and σ(1) = 1 are fulfilled, the full unconditional density follows

p(x, 0) =
∫
dx0 p(x, 0|x0) pdata(x0) =

∫
dx0 δ(x− x0) pdata(x0) = pdata(x)

p(x, 1) =
∫
dx0 p(x, 1|x0) pdata(x0) = N (x; 0, 1)

∫
dx0 pdata(x0) = N (0, 1) , (3.68)

as specified in Eq. (3.58).

Relation to CFM

Equations (3.64) and (3.67) describe the mathematics behind all generative diffusion
networks. Conditional flow matching (CFM) [40], which we introduced in Section 3.4.2,
can be derived from this formalism. First, we use the fact that for any diffusion SDE
there exists an associated ODE that encodes the same time-dependent density p(x, t). It
can be derived by rewriting the FPE (3.60) as

∂p(x, t)
∂t

= −∇x
[(
f(x, t)− 1

2g(t)2∇x log p(x, t)
)
p(x, t)

]
= −∇x(v(x, t)p(x, t))

with v(x, t) = f(x, t)− 1
2g(t)2∇x log p(x, t) . (3.69)

This continuity equation corresponds to the ODE

dx = v(x, t) dt . (3.70)

The deterministic (ODE) and stochastic (SDE) processes are equivalent in the sense that
they have the same density solution p(x, t). The difference between the SDE drift f(x, t)
and the ODE velocity v(x, t) is that the former can be hand-crafted such that the forward
SDE transports from the data to the latent distribution. To generate samples the score
function s(x, t) is also required. The velocity field combines the forward drift and the
score function of the underlying process into one time-symmetric description. For known
f(x, t) and g(t) the velocity and the score functions can be converted into each other.

CFMs work directly with the velocity field v of the ODE, the underlying SDE is not
explicitly constructed. Instead, the trajectories Eq. (3.64) are used to define a forward
process from data to noise. We can set α(t) = (1 − t) and σ(t) = t, defining linear

32

3 Machine Learning

trajectories

x(t|x0) = (1− t)x0 + tϵ (3.71)

and recover the same formalism as in Eq. (3.42).

3.5.2 Distribution to distribution

We now extend the SDE formalism to two arbitrary distributions. The generative
direction starts from the initial p(x0) and samples the p(x1). The goal is to find a drift
function f(x, t) such that the SDE moves from x0 ∼ p(x0) at time t = 0 to x1 ∼ p(x1) at
time t = 1.

Doob’s h-transform

The key ingredient to this generalization is Doob’s h-transform [80]. It conditions a given
SDE, called the reference process, on a pre-defined final point. The reference process
follows an SDE like Eq. (3.59),

dxref = f(x, t) dt+ g(t) dW . (3.72)

From t = 0 to t = 1 it encodes a time-evolving density pref(x, t) for the entire stochastic
process, as well as the conditional pref(x, t|x0) describing the stochastic trajectories
starting from a specific x0.

We modify this SDE to guarantee that the endpoint is a pre-defined x1, by adding a
term to the drift function,

dx =
[
f(x, t) + g(t)2h(x, t, x1)

]
dt+ g(t)dW

with h(x, t, x1) = ∇x log pref(x1, t = 1|x) . (3.73)

The Doob’s h-transform function depends on the current state of the SDE x(t) at time
t and on the specified final point x1. The density pref(x1, t = 1|x) is the transition
probability that the reference process reaches x1 at t = 1 conditioned on the state x(t) at
time t. Including this term in the drift forces the trajectories to walk up the gradient of
this density and pushes them towards intermediate states that are more compatible with
the desired final state. This way, it corrects the initial SDE by forcing it towards the
specified x1.

We note that h depends on the reference process through pref(x1, t = 1|x). This
correction adapts to the chosen initial SDE. Different initial values f(x, t) and g(t) lead to
a different correction from the Doob’s h-transform, but eventually arrive in the specified
x1. This means we can simplify the reference process into a pure noising,

f(x, t) = 0 ⇒ dxref = g(t) dW . (3.74)

For this choice we can use Eqs.(3.67) and (3.73) to calculate the h-transform

αref(t) = 1

σref(t)2 =
∫ 1

t
dt′g(t′)2

33

3 Machine Learning

pref(x1, t = 1|x) = N
(
x1;x, σref(t)

)
∝ exp

[
−1

2
(x1 − x(t))2

σref(t)2

]

h(x, t, x1) = x1 − x(t)
σref(t)2 . (3.75)

We have explicitly constructed a forward SDE

dx = g(t)2

σref(t)2 (x(t)− x1) dt+ g(t) dW , (3.76)

for which the solution trajectories are guaranteed to end in x1 ∼ p1. According to
Eq. (3.60) the underlying probability distribution fulfills

∂p(x, t|x1)
∂t

= −∇x
g(t)2(x(t)− x1)p(x, t|x1)

σref(t)2 + g(t)2

2 ∇2
xp(x, t|x1) . (3.77)

Using the same method, we can also describe a reverse process, for which the solution
trajectories end in x0 ∼ p0. The reference process

dx̄ref = g(t) dW̄ , (3.78)

moves from t = 1 to t = 0. In complete analogy, it encodes the conditional probability
p̄ref(x̄(t)|x1) starting from a specific point x1. Applying the h-transform leads to the SDE

dx̄ =
[
−g(t)2h̄(x̄, t, x0)

]
dt+ g(t)dW̄

with h̄(x̄, t, x0) = ∇x̄ log p̄ref(x0, t = 0|x̄) , (3.79)

and modifies Eq. (3.75) to

σ̄ref(t)2 =
∫ t

0
dt′g(t′)2

h̄(x̄, t, x0) = x0 − x̄(t)
σ̄ref(t)2 . (3.80)

Again we constructed a generating SDE

dx̄ = g(t)2

σ̄ref(t)2 (x̄(t)− x0) dt+ g(t) dW̄ . (3.81)

whose solutions end in x0 and the underlying probability density follows

∂p̄(x, t|x0)
∂t

= −∇x̄
g(t)2(x̄(t)− x0)p̄(x̄, t|x0)

σ̄ref(t)2 − g(t)2

2 ∇2
x̄p̄(x̄, t|x0) . (3.82)

So far, we have constructed the forward and the reverse processes independently. We now
assume that they are the time-reversal of each other and that the forward and reverse
FPEs (3.77) and (3.82) have a common Gaussian solution

p(x, t|x0, x1) = p̄(x̄, t|x0, x1) = N (x|µ(t), σ(t)) . (3.83)

34

3 Machine Learning

Inserting this ansatz into the forward FPE (3.77), we obtain

x− µ
σ2

∂µ

∂t
+ (x− µ)2

σ3
∂σ

∂t
− 1
σ

∂σ

∂t
= g2

σ2
ref

((x1 − x)(x− µ)
σ2 + 1

)
+ g2

2

(
(x− µ)2

σ4 − 1
σ2

)
.

(3.84)

It is solved by

∂µ(t)
∂t

= g(t)2(x1 − µ(t))
σref(t)2

∂σ(t)
∂t

= −g(t)2σ(t)
σref(t)2 + g(t)2

2σ(t) . (3.85)

From the reverse FPE (3.82) we find the corresponding

∂µ(t)
∂t

= g(t)2(µ(t)− x0)
σ̄ref(t)2

∂σ(t)
∂t

= g(t)2σ(t)
σ̄ref(t)2 −

g(t)2

2σ(t) . (3.86)

Equating Eq. (3.85) and Eq. (3.86) yields

µ(t) = σ̄ref(t)2x1 + σref(t)2x0
σ̄ref(t)2 + σref(t)2

σ(t) =
√

σ̄ref(t)2σref(t)2

σ̄ref(t)2 + σref(t)2 . (3.87)

This solves Eq. (3.85) and Eq. (3.86) with the boundary conditions σ(0) = σ(1) = 0,
µ(0) = x0 and µ(1) = x1. Finally, the conditional probability of both processes is given
by

p(x(t), t|x0, x1) = N
(
x
∣∣∣ σ̄ref(t)2x1 + σref(t)2x0

σ̄ref(t)2 + σref(t)2 ,

√
σ̄ref(t)2σref(t)2

σ̄ref(t)2 + σref(t)2

)
∝ N (x|x0, σ̄ref) N (x|x1, σref) . (3.88)

Loss function

The full unconditional density encoded in the constructed stochastic process is obtained
by marginalizing over the conditions.

p(x, t) =
∫
dx0 dx1 p

train(x0, x1) p(x, t|x0, x1)

=
∫
dx0 dx1 p

train(x0, x1) N
(
x|µ(t), σ(t)

)
=
{
p0(x) t = 0
p1(x) t = 1 .

(3.89)

The joint distribution ptrain(x0, x1) is defined by the pairing in the training data, in
the case of unpaired data it factorizes to ptrain(x0, x1) = p0(x0)p1(x1). Both limits of
the stochastic process are fulfilled independent of the choice of joint distribution. For
instance, for unfolding, we can use the pairing between reco-level and gen-level events
from the forward simulation.

35

3 Machine Learning

To construct a generative network, we need to remove the conditions on the two end
points. This means we want to find an SDE that encodes the distribution p(x, t), but
with a drift function that only depends on the current state of the SDE. We can derive
this unconditional drift term similarly to the unconditional CFM-velocity [1, 40], starting
with the FPE (3.60),

∂p(x, t)
∂t

=
∫
dx0dx1p

train(x0, x1)∂p(x, t|x0, x1)
∂t

=
∫
dx0dx1p

train(x0, x1)
[
−∇x[f(x, t|x0, x1)p(x, t|x0, x1)] + g2

2 ∇
2
xp(x, t|x0, x1)

]

= −∇x
[
p(x, t)

∫
dx0dx1p

train(x0, x1)f(x, t|x0, x1)p(x, t|x0, x1)
p(x, t)

]
+ g2

2 ∇
2
x

∫
dx0dx1p

train(x0, x1)p(x, t|x0, x1)

= −∇x[p(x, t)f(x, t)] + g2

2 ∇
2
xp(x, t) , (3.90)

where we define

f(x, t) =
∫
dx0dx1p

train(x0, x1)f(x, t|x0, x1)p(x, t|x0, x1)
p(x, t) . (3.91)

With this drift function and a diffusion term g(t), the solution of the FPE is given by
Eq. (3.89). This gives us an SDE which propagates samples between x1 ∼ p1 and x0 ∼ p0,
only depending on the current state x(t). Starting from one of the distributions and
numerically solving the SDE generates samples from the other distribution.

The last problem with the drift in Eq. (3.91) is that we cannot evaluate it analytically,
so we encode it into a network fθ. For this regression problem the natural loss is the
mean squared error (MSE), but this requires training samples f(x, t). We re-write this
objective in terms of the conditional drift f(x, t|x0, x1) defined in the SDE Eq. (3.76) and
the conditional trajectories p(x, t|x0, x1) defined in Eq. (3.95), as these allow for efficient
generation of training samples. Following all steps from Section 3.4.2 the distribution
mapping loss becomes

LDM =
〈(
fθ(x, t)− f(x, t|x0, x1)

)2〉
t,(x0,x1)∼ptrain(x0,x1),x∼p(x,t|x0,x1)

=
〈(
fθ(x, t)−

g(t)2(x− x0)
σ̄(t)2

)2〉
t,(x0,x1)∼ptrain(x0,x1),x∼p(x,t|x0,x1)

. (3.92)

The learned drift function depends on the pairing information in the training data,
encoded via ptrain(x0, x1). Different pairings lead to different SDEs encoding different
trajectories, but they all result in a generative network with the correct boundary
distributions in Eq. (3.89).

36

3 Machine Learning

Noise schedules for Schrödinger Bridges and Direct Diffusion

Choosing g(t) =
√
β(t), with β(t) the triangular function

β(t) =


β0 + 2(β1 − β0)t 0 ≤ t < 1

2
β1 − 2(β1 − β0)

(
t− 1

2

) 1
2 ≤ t ≤ 1

(3.93)

and β0 = 10−5 and β1 = 10−4, we obtain the Schrödinger Bridge formulation [77,81].

For constant g(t) = g, Eq. (3.75) simplifies to σ̄ref(t) = g
√
t and σref(t) = g

√
1− t.

Consequently, Eq. (3.87) yields

µ(t) = (1− t)x0 + tx1 and σ(t) = g
√
t(1− t) . (3.94)

Our trajectory and probability distribution take the form

x(t) = (1− t)x0 + tx1 + g
√
t(1− t) ϵ with ϵ ∼ N (0, 1)

⇔ p(x(t), t|x0, x1) = N
(
x(t)|(1− t)x0 + tx1, g

√
t(1− t)

)
. (3.95)

The noise term vanishes at the endpoints t = 0, 1 and takes its maximum at t = 1/2. This
constructs an SDE that interpolates between two arbitrary distributions and reduces to
what we call Direct Diffusion (DiDi) [2] for g → 0. To see this we start from Eq. (3.76)
and insert the training trajectory from Eq. (3.95),

dx(t) = x(t)− x0
t

dt+ g dW

= (1− t)x0 + tx1 + g
√
t(1− t) ϵ− x0

t
dt+ g dW

= (x1 − x0) dt+ g

[√
t(1− t) ϵ

t
dt+ dW

]
. (3.96)

For g → 0 the training SDE reduces to the training ODE from DiDi, with the linear
velocity field x1 − x0 and the distribution mapping loss reduces to the flow matching loss.

3.5.3 Conditional distribution mapping

In the last section we have constructed an SDE-based mapping between two arbitrary
distributions. We now describe the new aspect of adapting this DM-formalism to repro-
duces the correct conditional distributions [82]. Specifically, we look at the trajectories
p(x, t|x1) obtained when solving the learned SDE repeatedly from the same starting point
x1 ∼ p1, and modify our formalism such that for t → 0 it reproduces the correct data
pairing ptrain(x0|x1).

First, we check how this density looks in our conditional training trajectories p(x(t), t|x0, x1)
by marginalizing over x0. Similar to Eq. (3.89) we can write

p(x, t|x1) =
∫
dx0 p

train(x0|x1) p(x(t), t|x0, x1)

37

3 Machine Learning

=
∫
dx0 p

train(x0|x1) N
(
x|µ(t), σ(t)

)
=
{
ptrain(x|x1) t = 0
δ(x1 − x) t = 1 .

(3.97)

This conditional density has the correct boundary behavior. When conditioned on a
latent-space event x1 ∼ platent, the density converges to a delta peak around this event
at time t = 1 and converges to the training pairing conditional distribution ptrain(x|x1)
at time t = 0.

However, there is no guarantee that the generative SDE defined via the drift from
Eq. (3.91) shares these conditional densities. We have derived this drift f by showing
that it solves the same unconditional FPE in Eq. (3.90) as our training process, so we
are only sure that they share the unconditional density p(x, t).

We need a drift function leading to an SDE that shares the conditional density
p(x, t|x1) of the training trajectories. This can be achieved by going through the same
derivation as we did for the drift initially, but this time with the FPE for the conditional
density

∂p(x, t|x1)
∂t

=
∫
dx0p

train(x0|x1)∂p(x, t|x0, x1)
∂t

=
∫
dx0p

train(x0|x1)
[
−∇x[f(x, t|x0, x1)p(x, t|x0, x1)] + g2

2 ∇
2
xp(x, t|x0, x1)

]

= −∇x
[
p(x, t|x1)

∫
dx0p

train(x0|x1)f(x, t|x0, x1)p(x, t|x0, x1)
p(x, t|x1)

]
+ g2

2 ∇
2
x

∫
dx0p

train(x0|x1)p(x, t|x0, x1)

= −∇x[p(x, t|x1)f(x, t|x1)] + g2

2 ∇
2
xp(x, t|x1) . (3.98)

Here, we identify the conditional drift term to be

f(x, t|x1) =
∫
dx0 p

train(x0|x1)f(x, t|x0, x1)p(x, t|x0, x1)
p(x, t|x1) . (3.99)

Sampling a latent x1 ∼ platent and solving the SDE with this drift function samples from
the conditional density ptrain(x|x1). This new conditional drift is not only a function of
the current state of the SDE, but also of the initial state x1. This additional input acts
as the condition under which we want to generate a sample from the data distribution,
similar to the way the CFM velocity is a function of the current state of the ODE and of
the condition.

Loss function

This conditional drift is once again encoded in a network. Repeating the derivation
of Section 3.4.2, we obtain the conditional distribution mapping (CDM) loss

LCDM =
〈(
fθ(x, t, x1)− f(x, t|x0, x1)

)2〉
t,(x0,x1)∼p(x0,x1),x∼p(x,t|x0,x1)

=
〈(
fθ(x, t, x1)− g(t)2(x− x0)

σ̄(t)
)2〉

t,(x0,x1)∼ptrain(x0,x1),x∼p(x,t|x0,x1)
. (3.100)

38

3 Machine Learning

It is identical to the standard DM-loss, except for the network also using the initial
condition x1 as a third input. This is the only change necessary to allow the network to
learn the proper conditional densities.

39

CHAPTER 4

Fast Event Generation

In high energy physics we are in the privileged position of having reliable numerical tools
to simulate physical events with great precision as described in Section 2.2. However,
as the data statistic is ever increasing, so is the need for precise simulations. Accurate
simulations come with a great computational cost, motivating the study of fast event
generators. In this chapter, we explore options to speed up LHC event generation with
ML tools, such as those presented in Chapter 3. In Section 4.1, we start by studying two
simple toy examples to investigate the fitting behavior of DDPMs, before moving on to
End-to-End generation of Z+jets events. Motivated by the need for accurate off-shell
simulations in tt̄-decays, we explore options for fast event generation with full off-shell
effects using DiDi in Section 4.2. Lastly, we investigate speeding up costly calorimeter
simulations using CFMs with a vision transformer architecture [83] in Section 4.3.

4.1 End-to-End event generation

The content of this section was finalized in collaboration with Anja Butter, Nathan Huetsch,
Tilman Plehn, Jonas Spinner and Peter Sorrenson. It is adapted from Ref. [1].

The goal of this study is to investigate DDPMs and evaluate whether their perfor-
mance makes them suitable for LHC applications. As presented in Section 3.4.1 we
develop uncertainty-aware B-DDPMs by bayesianizing the networks’ architecture and
loss function. We start with two simple toy models and then move on to the LHC phase
space of Z+jets events.
All the networks presented in this section are implemented in PyTorch [84] and use
Adam [60] as optimizer. All hyperparameters are given in Tab. A.1. We use a simple
residual network which consists of multiple fully connected dense layers with SiLU acti-
vation functions [85]. Within our setup a significant increase in performance is achieved
when initializing the weights of the last layer in each block to zero. In our setup dropout
layers lead to significantly worse results, while normalization layers have no visible impact
on the results. We find that the training of DDPM models can be very noisy, using a

41

4 Fast Event Generation

1

2
N

or
m

al
iz

ed

True
DDPM
Train

0.9
1.0
1.1

D
D

PM
Tr

ue

0.2 0.4 0.6 0.8
x2

0.1
1.0

10.0

δ
[%
]

0.0

0.1

0.2

σ

0.2 0.4 0.6 0.8
x2

0.0

0.1

σ
/

p

Figure 4.1: Ramp distribution from the DDPM. We show the learned density and
its B-DDPM uncertainty (left) as well as the absolute and relative uncertainties
with a range given by 10 independent trainings (right). We use δ = |Model−
Truth|/Truth.

large batch size can help to stabilize this. In general, training diffusion models requires a
relatively large number of epochs, as indicated in Tabs. A.1. A key result of our study
is to use a one-cycle scheduling for the DDPMs, as well as significantly downsizing the
models compared to INNs, to allow for more training epochs.

4.1.1 Toy models and Bayesian networks

Before we can turn to the LHC phase space as an application to our novel generative
model, we study its behavior for two simple toy models, directly comparable to Bayesian
INNs [66]. These toy models serve two purposes: first, we learn about the strengths and
the challenges of the network architecture, when the density estimation task is simple and
the focus lies on precision. Second, the interplay between the estimation of the density
and its uncertainty over phase space allows us to understand how the network encodes
the density. We remind ourselves that an INN just works like a high-dimensional fit to
the correlated 2-dimensional densities [66].

Our first toy example is a normalized ramp, linear in one direction and flat in the
second,

pramp(x1, x2) = 2x2 . (4.1)

The network input and output are unweighted events. A training dataset of 600k
events guarantees that for our setup and binning the statistical uncertainty on the phase
space density is around the per-cent level. To show one-dimensional Bayesian network
distributions we sample the xi-direction and the θ-space in parallel [41,66]. This way the
uncertainty in one dimension is independent of the existence and size of other dimensions.

We show the non-trivial one-dimensional distributions in Fig. 4.1. In the left panel
we see that the network learns the underlying phase space density well, but not quite at
the desired per-cent precision. The uncertainty from the B-DDPM captures remaining
deviations, if anything, conservatively. In the right panel we see that the absolute
uncertainty has a minimum around x1 = 0.7, similar to the behavior of the Bayesian

42

4 Fast Event Generation

INN and confirmed by independent trainings. We can understand this pattern by looking
at a constrained fit of the normalized density

p(x2) = ax2 + b = a

(
x2 −

1
2

)
+ 1 with x2 ∈ [0, 1] . (4.2)

A fit of a then leads to an uncertainty in the density of

σ ≡ ∆p ≈
∣∣∣∣x2 −

1
2

∣∣∣∣ ∆a , (4.3)

just using simple error propagation. The minimum in the center of the phase space plan
can be interpreted as the optimal use of correlations in all directions to determine the
local density.

For the DDPM the minimum is not quite at x2 = 0.5, and the uncertainty as a
function of x2 is relatively flat over the entire range. Because of the statistically limited
training sample, the network output comes with a relatively large uncertainty towards
x2 = 0. For larger x2-values, the gain in precision and uncertainty is moderate. For
x2 > 0.75 the absolute and relative uncertainties increase, reflecting the challenge to
learn the edge at x2 = 1. These results are qualitatively similar, but quantitatively
different from the INN case, which benefits more from the increase in training data and
correlations for x2 = 0.1 ... 0.5.

The second toy example is a Gaussian ring, or a Gaussian sphere in two dimensions,

pring(x1, x2) = N (
√
x2

1 + x2
2; 1, 0.1). (4.4)

The DDPM result are shown in Fig. 4.2. The precision on the density is significantly
worse than for the ramp, clearly missing the per-cent mark. The agreement between the
training data and the learned density is not quite symmetric, reflecting the fact that
we train and evaluate the network in Cartesian coordinates but show the result in R.
Especially for large radii, the network significantly overestimates the tail, a failure mode
which is covered by the predictive uncertainty only for R ≲ 1.3. In the right panels of
Fig. 4.2 the main feature is a distinct minimum in the uncertainty around the mean
of the Gaussian. As for the ramp, this can be understood from error propagation in a

0

2

4

N
or

m
al

iz
ed

True
DDPM
Train

0.9
1.0
1.1

D
D

PM
Tr

ue

0.8 1.0 1.2
R

0.1
1.0

10.0

δ
[%
]

0.00

0.05

0.10

0.15

0.20

σ

0.8 1.0 1.2
R

0.0

0.1

0.2

0.3

σ
/

p

Figure 4.2: Gaussian ring distribution from the DDPM. We show the learned
density and its B-DDPM uncertainty (left) as well as the absolute and relative
uncertainties with a range given by 10 independent trainings (right).

43

4 Fast Event Generation

constrained fit. If we assume that the network first determines a family of functions
describing the radial dependence, in terms of a mean and a width, the contribution from
the mean vanishes at R = 1 [66]. Alternatively, we can understand the high confidence
of the network through the availability of many radial and angular correlations in this
phase space region. Summarizing our findings, DDPMs behave similar but not identical
to the INN. The relation between the density and its uncertainty shows patterns of a
constrained fit, suggesting that during the the training the networks first determine a
class of suitable models and then adjust the main features of these models, like the slope
of a ramp or the position and width of a Gaussian ring.

4.1.2 LHC events

Most generative network tasks at the LHC are related to learning and sampling phase
space densities, for instance event generation at the parton or reconstruction level, the
description of detector effects at the reconstruction level, the computation of event-wise
likelihoods in the matrix element method, or the inversion and unfolding of reconstructed
events. This is why we benchmark our new networks on a sufficiently challenging set of
LHC events. Following Ref. [41] we choose the the production of leptonically decaying
Z-bosons, associated with a variable number of QCD jets,

pp→ Zµµ + {1, 2, 3} jets . (4.5)

The network has to learn the sharp Z-peak as well as correlated phase space boundaries
and features in the jet-jet correlations. We generate the training dataset of 5.4M events
(4.0M + 1.1M + 300k) using Sherpa2.2.10 [24] at 13 TeV, including ISR and parton
shower with CKKW merging [86], hadronization, but no pile-up. The jets are defined by
Fastjet3.3.4 [53] using the anti-kT algorithm [50] and applying the basic cuts

pT,j > 20 GeV and ∆Rjj > 0.4 . (4.6)

The jets and muons are each ordered in transverse momentum. Our phase space dimen-
sionality is three per muon and four per jet, i.e. 10, 14, and 18 dimensions. Momentum
conservation is not guaranteed, because some final-state particles might escape for in-
stance the jet algorithm. However, the physically relevant phase space dimensionality is
reduced to 9, 13, and 17 by removing the global azimuthal angle.

Our data representation includes a minimal preprocessing. Each particle is represented
by

{ pT , η, ϕ,m } . (4.7)

Given Eq.(4.6), we provide the form log(pT − pT,min), leading to an approximately
Gaussian shape. All azimuthal angles are given relative to the leading muon, and the
transformation into artanh(∆ϕ/π) again leads to an approximate Gaussian. The jet
mass is encoded as logm. Finally, we centralize and normalize each phase space variable
as (qi − q̄i)/σ(qi) and apply a whitening/PCA transformation separately for each jet
multiplicity for the two diffusion models.

The additional challenge for Z+jets event generation is the variable number of jets,
which we tackle with a conditional evaluation [41], illustrated in Fig. 4.3. The training is
independent for the three jet multiplicities. We start by giving the information for the
Z + 1-jet sub-process, 12 phase space dimensions, to a first network. It is supplemented

44

4 Fast Event Generation

z9 1.NN

njets

pµ1, pµ2, pj1

2.NNz4

njets

pj2

3.NNz4 pj3

Figure 4.3: Conditional Sampling Architecture.

with the one-hot encoded jet count. The second network then receives the 4-momentum
of the second jet as an input, and the Z + 1-jet information additionally to the jet count
as a condition. Analogously, the third network learns the third jet kinematics conditioned
on the Z + 2-jet information. For democratic jets this conditioning would be perfect,
but since we order the jets in pT it has to and does account for the fact that for higher
jet multiplicities the interplay between partonic energy and jet combinatorics leads to
differences in the spectra of the leading jets at a given multiplicity.

As discussed in Section 3.4.1 time is a crucial condition for the DDPM network, and
we embed it into the full conditioning of the LHC setup as a high-dimensional latent
vector linked by a linear layer. The amount of training data is different for the different
jet multiplicities and corresponding networks. As shown in Tab. A.1, the first network
uses the full 3.2M events, the second 850k events with at least two jets, and the third
network 190k events with three jets. This hierarchy is motivated by the way the chain
of conditional networks add information and also by the increasing cost of producing
the corresponding training samples. We could balance the data during training, but for
the B-DDPM model this leads to a slight performance drop. We compensate the lack of
training data by increasing the number of epochs successively from 1000 to 10000.

Going from toy models to LHC events, we increase the number of blocks to two, which
improves the performance. The reason is that we attach the condition to the input at the
beginning of each block, so the second block reinforces the condition. Going to even more
blocks will slightly improve the performance, but at the expense of the training time.

In Fig. 4.4 we show a set of kinematic distributions for different jet multiplicities,
including the jet-inclusive scalar sum of the up to three pT,j . These distributions can
be compared directly to the Bayesian INN results in Fig. 11 of Ref. [41], serving as a
precision baseline. Starting with the almost featureless pT -distributions in the left panels,
we see that for all three distributions the deviation from the truth, given by high-statistics
training data, is similar for the actual training data and for the DDPM-generated events.
The network really extracts all available information from the training data combined
with its fit-like implicit bias. For sufficient training statistics, the precision on the phase
space density as a function of pT is below the per-cent level, easily on par with the
INN baseline. For a given jet multiplicity this precision drops with increasing pT and
correspondingly decreasing training data, an effect that is correctly and conservatively
modeled by the uncertainty estimate of the B-DDPM. Combining all n-jet samples into
one observable is no problem for the network and does not lead to any artifacts.

45

4 Fast Event Generation

10�4

10�3

10�2

N
or

m
al

iz
ed

Z+1 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

25 50 75 100 125 150
pT, j1 [GeV]

0.1

1.0

10.0

�
[%
]

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

Z+1 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

80 85 90 95 100
Mµµ [GeV]

0.1

1.0

10.0

�
[%
]

10�3

10�2

10�1

N
or

m
al

iz
ed

Z+2 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

20 40 60 80
pT, j2 [GeV]

0.1

1.0

10.0

�
[%
]

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

Z+2 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

2 4 6
�Rj1 j2

0.1

1.0

10.0

�
[%
]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+jets inclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

50 100 150 200∑
i pT, ji [GeV]

0.1

1.0

10.0

δ
[%
]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

2 4 6
�Rj1 j3

0.1

1.0

10.0

�
[%
]

Figure 4.4: Bayesian DDPM densities and uncertainties for Z + 1 jet (upper),
Z + 2 jets (center), and Z + 3 jets (lower) from combined Z+ jets generation.
The uncertainty on the training data is given by bin-wise Poisson statistics. The
network architecture is given in Tab. A.1. For a comparison with the INN we
refer to Fig. 11 of Ref. [41].

46

4 Fast Event Generation

In the right panels of Fig. 4.4 we show the most challenging phase space correlations.
We start with the Z-peak, which governs most of the events, but requires the network to
learn a very specific phase space direction very precisely. Here, the agreement between
the true density and the DDPM result drops to around 10% without any additional phase
space mapping, similar to the best available INN. The deviation is not covered by the
Bayesian network uncertainty, because it arises from a systematic failure of the network
in the phase space resolution, induced by the network architecture. However, this effect
is less dramatic than it initially looks when we notice that the ratio of densities just
describes the width of the mass peak being broadened by around 10%. If needed, it can
be easily corrected by an event reweighting of the Z-kinematics. Alternatively, we can
change the phase space parametrization to include intermediate particles, but most likely
at the expense of other observables.

Next, we study the leading challenge of ML-event generators, the jet-jet correlations
and specifically the collinear enhancement right at the hard jet-separation cut of ∆Rjj >
0.4. Three aspects make this correlation hard to learn: (i) this phase space region is a
sub-leading feature next to the bulk of the distribution around ∆Rjj ∼ π; (ii) it includes
a sharp phase space boundary, which density estimators will naturally wash out; and
(iii), the collinear enhancement needs to be described correctly, even though it appears
right at the phase space boundary. Finally, for this correlation the conditional setup and
the Bayesian extension are definitely not helpful.

What helps for this correlation is the so-called magic transformation introduced in
Ref. [41]. It scales the ∆Rjj-direction in phase space such that the density in this phase
space direction becomes a monotonous function. While from a classic Monte Carlo
perspective the benefits of this transformation are counter-intuitive, from a a fit-like
perspective the magic transformation can simplify the class of function which the network
then adapts to the data, as shown for the toy models in the previous section. This
argument is confirmed by the fact that for our diffusion networks this transformation is
helpful, just like for the INN. Both, for the 2-jet and the 3-jet sample we see that with
the magic transformation the DDPM learns the ∆Rjj features, but at the same 10%
level as the INN and hence missing our 1% target. The Bayesian uncertainty estimate
increases in this phase space region as well, but it is not as conservative as for instance
in the pT -tails.

The challenge of current diffusion networks, also the DDPM, is the evaluation speed.
For each additional jet we need to call our network 1000 times, so sampling 3-jet events
takes three times as long as sampling 1-jet events. However, none of the networks
presented in this study are tuned for generation speed, the only requirement for a limited
hyperparameter scan is the precision baseline given by the INN.

Summarizing our findings, we have provided the first comprehensive study of strengths
and weaknesses of DDPMs for an established LHC task. We have first implemented a
Bayesian network version, which allows us to understand the different ways the B-DDPM
approaches the density estimation. We have applied B-DDPMs to the generation of Z+jets
events, with a focus on the conditional setup for variable jet multiplicities and the preci-
sion in the density estimation [41]. The most challenging phase space correlations are the
narrow Z-peak and the angular jet–jet separation combined with a collinear enhancement.

DDPMs are, conceptually, not very far from the INNs. We found that they face the
same difficulties, especially in describing the collinear jet–jet correlation. Just like for
the INN, the so-called magic transformation [41] solved this problem. DDPM provided

47

4 Fast Event Generation

an excellent balance between expressivity and precision, at least on part with advanced
INNs. This included the density estimation as well as the uncertainty map over phase
space. The DDPM model is based on a proper likelihood loss, with all its conceptual and
practical advantages for instance when bayesianizing it. It required long training, but
fewer network parameters than then INN. We emphasize that ML-research on diffusion
models is far from done, so all differences between the two models found in this study
should be considered with a grain of salt.

Altogether, we found that new generative network architectures have the potential to
outperform even advanced normalizing flows and INNs. However, diffusion models come
with their distinct set of advantages and challenges. Given the result of our study we
expect significant progress in generative network applications for the LHC, whenever the
LHC requirements in precision, expressivity, and speed can be matched by a DDPM.

4.2 Generating off-shell effects in leptonic tt̄-decays

The content of this section was finalized in collaboration with Anja Butter, Tomáš Ježo,
Michael Klasen, Mathias Kuschick and Tilman Plehn. It is adapted from Ref. [2].

Fast and precise theoretical predictions from first principles are required for essentially
every experimental LHC analysis. This is especially true for modern inference methods,
where the complete phase space coverage ensures an optimal measurement [35,87]. Based
on perturbative quantum field theory, precision simulations of the hard scattering process
face two challenges, the loop order and the multiplicity of the partonic final state [88].
The latter increases rapidly for example, when we describe the production of decaying
heavy particles. Naively, one could expect that describing the decay kinematics close
to the mass shell of the heavy particles, for example using a Breit-Wigner propagator,
is sufficient. However, given the precision targets of the upcoming LHC runs, on-shell
approximations are no longer justified [89,90]. In view of the HL-LHC, simulations need
to describe heavy particle production and decay including, both, quantum corrections
and off-shell kinematics.
The goal of this study is to develop a precise and fast generative network that maps two
LHC phase spaces onto each other [76,77,91]. If one phase space is a narrow sub-manifold
of the other one, like in the case of on-shell and off-shell phase spaces of production of
heavy unstable particles, one cannot use regression or classifier reweighting but must
resort to generative networks.

In this study we present such a mapping and use it to efficiently generate events over
an off-shell phase space from given on-shell events. The idea behind this sampling from
on-shell events is that the generative network does not have to reproduce the on-shell
features and can focus on the additional and relatively smooth off-shell extension. We
start by describing our training dataset and the problem of off-shell event generation
in Section 4.2.1. Our generative network setup, based on a Bayesian- Conditional Flow
Matching (CFM) architecture, is presented in Section 4.2.2. To control the generative
network performance [92] and to improve the precision of the kinematic distributions [41],
we apply a classifier reweighting in Section 4.2.3.

48

4 Fast Event Generation

4.2.1 Off-shell vs. on-shell events

Motivated in Section 2.3, our benchmark process is the complete off-shell top pair
production followed by leptonic decays,

pp→ be+νe b̄µ
−νµ . (4.8)

Top pair production with its rich resonance structure is known to challenge phase space
sampling, just as generative networks for transition amplitudes [93].

In the factorized approach, in which the production and decay processes decouple, this
process is known all the way up to NNLO-QCD [94–97], NLO-EW [98–102] and NNLO-
QCD combined with NLO-EW [103] in the production process; NNLO-QCD [104,105]
in the decay; and NNLO-QCD in both production and decay [106–108]. Full off-shell
calculations in the dilepton channel are so far only available at NLO-QCD [109–114], but
a calculation of full off-shell top pair production in association with an extra jet at NLO
is also available in Ref. [115]. In this pilot study we restrict ourselves to leading order in
QCD, O(α2

Sα
4), and reserve the application of our method to higher-order predictions to

a future publication.

We generate event samples for 13 TeV proton-proton collisions with
NNPDF31_nlo_as_0118 parton distributions [116]. The neutrinos, charged leptons
and quarks of the first two generations are treated as massless, and the CKM matrix is
assumed to be trivial. All input parameters are given in Tab. 4.1, and the electromagnetic
coupling α and the weak mixing angle are derived from the weak gauge-boson masses
and the Fermi constant.

Our study and our results can be extended to higher-order predictions or other
processes by combining different jet multiplicities in the final state [37]. Our two
benchmark datasets are generated with Hvq [117] and Bb4l [118,119], respectively. The
data generated with Hvq only includes approximate off-shell effects using a finite top width
and including spin correlations [120] and is referred to as on-shell data. The generator
is based on the Powheg method [121, 122] and is part of the Powheg Box V2 [123]
package.

The data generated with Bb4l takes into account full off-shell effects also including
singly-resonant and non-resonant contributions and the corresponding interferences. The
generator employs the PowhegRes method [124], tailored for simulations with unstable
particles. In this case, W bosons and b quarks do not always stem from a top decay.

mt 172.5 GeV Γt 1.453 GeV
mb 4.75 GeV
mZ 91.188 GeV ΓZ 2.441 GeV
mW 80.419 GeV ΓW 2.048 GeV
mH 125.0 GeV ΓH 0.0403 GeV

B(W → eν/µν) 1/9
GF 1.16585× 10−5GeV−2

Table 4.1: Parameters used for the generation of the training datasets.

49

4 Fast Event Generation

10−6

10−4

10−2
N

or
m

al
iz

ed

Off
On

0 200 400 600 800
ml b [GeV]

0.7
1.0
1.3

O
n

O
ff

10−6

10−4

10−2

N
or

m
al

iz
ed

Off
On

0 100 200
ml b [GeV]

0.7
1.0
1.3

O
n

O
ff

10−7

10−5

10−3

N
or

m
al

iz
ed

Off
On

0 250 500 750 1000
mblν [GeV]

0.7
1.0
1.3

O
n

O
ff

10−5

10−3

10−1

N
or

m
al

iz
ed

Off
On

100 150 200
mblν [GeV]

0.7
1.0
1.3

O
n

O
ff

Figure 4.5: Example distributions for on-shell and off-shell tt̄ event samples,
illustrating the different phase space coverage. The right panels show the same
distribution as the left panels, but zoomed into the respective bulk region.

In Fig. 4.5 we illustrate the size of the off-shell effects for a selection of kinematic
distributions of final-state leptons and b-quarks. These distributions are not meant to
compare realistic predictions with different treatment of off-shell effects, but rather our
two datasets, so no event selection criteria are applied. For the invariant mass of the
lepton-b system we ensure, through charge identification, that the two particles come from
the same (anti)top decay. Correspondingly, their invariant mass has an upper edge that
does not exist for off-shell events. For the reconstructed top mass, or the invariant mass
of the three decay products, we clearly see the Breit-Wigner propagator form, with an
explicit cutoff. Far below the actual top mass, the off-shell prediction develops a shoulder
at the W -mass. The secondary panels show the ratios of the integrated one-dimensional
phase space densities, illustrating that a reweighting strategy between the two samples is
unlikely to work.

The strategy behind our surrogate network is to generate an off-shell event dataset
and learn its structures relative to a corresponding on-shell event dataset. This strategy
can be applied to any process and at any order in perturbation theory. Our two datasets
consist of 5M unit-weight events each. The six particles in the final state of Eq.(4.8)
are represented by {pT , η, ϕ}, with fixed external particle masses. We remove three
degrees of freedom through a global azimuthal rotation and by enforcing two-dimensional
transverse momentum conservation, leaving us with a 15-dimensional phase space. Each
on-shell requirement replaces a full phase space dimension by a fixed range, given by
the Breit-Wigner shape with a hard-coded cutoff in the reconstructed invariant mass.
Moreover, we conceal information relevant for eventual parton showering like the colourflow
configuration or resonance history assignment. This is appropriate because the Bb4l
generator in its default setup does not distinguish between the tt̄ and single-top resonance

50

4 Fast Event Generation

t ∼ U([0, 1])

x0 ∼ poff(x0), x1 ∼ pon(x1) x(t|x0) = (1− t)x0 + tx1 CFM

L =
(
vθ − (x1 − x0)

)2 vθ

Figure 4.6: Training procedure for a CFM network mapping between on-shell
and off-shell phase space distributions. Diagram adapted from Ref [1].

histories and assigns colourflow correspondingly.

For the network input, the kinematic variables are preprocessed: we scale the transverse
momenta to p

1/3
T and express the azimuthal angles as arctanh(ϕ/π). As subsequent

classifier input, it turns out that p−1/3
T leads to the best results. Finally, all input

dimensions are standardized to zero mean and unit variance.

4.2.2 Direct Diffusion

For the network training, we start with the condition that we do not want to train on
paired on-shell and off-shell events, because such a pairing does not follow a well-defined
algorithm. This does not mean it is impossible to construct such a mapping, but we
expect it to lead to artifacts. Instead, we will train a generative Direct Diffusion (DiDi)
network on two phase space densities, one from on-shell and one from off-shell events.
Following the formalism described in Section 3.5, we train our DiDi network by the usual
CFM loss

LCFM =
〈
[vθ((1− t)x0 + tx1, t)− (x1 − x0)]2

〉
t∼U([0,1]),x0∼poff,x1∼pon

. (4.9)

Because the CFM setup does not include a likelihood, we can go directly from pon to poff,
without extra effort due to detours like in Flows4Flows [91], and without any pairing
between x0 ∼ poff and x1 ∼ pon.

As usual, we use a Bayesian version of the generative network [41,66] with the loss
of Eq. 3.57, to extract uncertainties on the learned phase space density. It includes a
hyperparameter c to balance the regular CFM loss with the Bayesian regularization
term. If the first loss term was a likelihood loss, this factor would be fixed by Bayes’
theorem. We have checked that the network performance is stable over many orders
of magnitudes for c = 10−10 ... 10−2. For larger values we observe that the training
becomes unstable, as expected, while for very small values the uncertainty can no longer
be captured. In addition, the prior weight distribution q(θ) is given by a unit Gaussian,
where the choice of width hardly affects the network performance. Compared to the
deterministic counterpart, this Bayesian network is equally precise. The network and
training setup is visualized in Fig. 4.6. We use a simple dense network with SiLU
activation [85], where the last layer is initialized at zero. This sets the initial velocity field
to zero and induces an identity mapping at the starting point of the training. We do not

51

4 Fast Event Generation

10�3

10�2

N
or

m
al

iz
ed

Off

DiDi

On

0.95
1.00
1.05

D
iD

i
Tr

ut
h

0 50 100 150 200
pT,b

0.1
1.0

10.0

�
[%
]

10�6

10�4

10�2

N
or

m
al

iz
ed

Off

DiDi

On

0.75
1.00
1.25

D
iD

i
Tr

ut
h

0 100 200
ml b [GeV]

0.1
1.0

10.0

�
[%
]

10�7

10�5

10�3

N
or

m
al

iz
ed

Off

DiDi

On

0.3
1.0

1.9

D
iD

i
Tr

ut
h

0 250 500 750 1000
mbl⌫ [GeV]

0.1
1.0

10.0

�
[%
]

10�5

10�4

10�3

10�2

10�1
N

or
m

al
iz

ed
Off

DiDi

On

0.75
1.00
1.25

D
iD

i
Tr

ut
h

100 150 200 250
mbl⌫ [GeV]

0.1
1.0

10.0

�
[%
]

Figure 4.7: Results from our Direct Diffusion off-shell generator, compared to
the on-shell starting point and the off-shell training distributions.

enforce a prescription for turning a given on-shell event into an off-shell event through
the training data or the training procedure. In fact, for each epoch different phase space
points will be connected via a linear trajectory. Instead, the network training constructs
its own mapping to populate the off-shell phase space. This happens as part of the loss
minimization, which means the transport map follows from an implicit measure encoded
in the network architecture and loss.

As the CFM training objective is a simple regression, we can train on 17 dimensions,
including two redundant degrees of freedom, as this happens to increase the precision. The
two additional observables, the transverse momentum and the polar angle of the neutrino,
are determined by transverse momentum conservation and are hence multidimensional
correlations. Empirically, we found that it is easier for the model to learn the behavior
of those observables when handed directly. Especially more complicated correlations
such as the invariant mass of the reconstructed top benefit greatly from this additional
information. While improving the efficiency of the training these dimensions will be
ignored for the actual event generation.

The network hyperparameters and the training parameters are given in Tab. A.2. We

52

4 Fast Event Generation

0 50 100 150 200
pT,b,on

0

25

50

75

100

125

150

175

200
p T,

b,
D

iD
i

100 150 200
mblν,on

50

100

150

200

250

300

m
bl
ν

,D
iD

i

Figure 4.8: Migration plot — correlation between generated (off-shell) and
starting (on-shell) distributions for two kinematic correlations. It illustrates the
mapping found by the network during training.

encode t in a higher embedding dimension and following [40] we add batch-wise random
noise of scale 10−4 to x0 and x1 during training. We use the standard Dopri5 ODE solver
to sample from our network. In the interest of precision we use a large batch size. This is
a problem for generic optimal-transport networks [125], but can be easily implemented in
our architecture. We tested the OT-CFM [125] and found that in our setup the required
small batch size indeed led to worse performance.

In Fig. 4.7 we show a set of one-dimensional kinematic distributions, for the on-
shell data we start from, the off-shell training data, and the generated off-shell data.
In the first panel we see how the network learns subtle differences almost perfectly
well. The typical precision is around the per-cent level. For complex and sensitive
correlations, like the lepton-b invariant mass and the reconstructed top mass we start
with a huge deviation between the on-shell distribution and the off-shell target. To
generate these distributions correctly, the generative network has to learn correlations in
the corresponding 9-dimensional sub phase space.

Our results confirm that in phase space regions covered well by both datasets, the
generative network reproduces the target distribution precisely, as one could expect.
However, we also see that even in phase space regions not populated by on-shell events
the target distribution is reproduced relatively precisely. The typical agreement between
the generated and target densities is around 10% in phase space regions with relatively
little training data. While this deviation is covered by the uncertainties of the Bayesian
network, we propose possible improvements in the next section.

Finally, we can ask how our generative network fills the off-shell phase space from
the on-shell events. In Fig. 5.6 we show the correlations between the generated off-shell
distribution and the on-shell starting distributions, i.e. the migration of paired latent
and target phase space events from the forward simulation, where we emphasize that the
pairing is only defined by the network evaluation, not by the training. In general, the
correlation between the kinematic observables should be close to the identity, as confirmed

53

4 Fast Event Generation

10−2 10−1 100 101 102

w(x i)

0.5

1.0

1.5
N

or
m

al
iz

ed

DiDi

Off

10−2 10−1 100 101 102

w(x i)

10−4

10−2

100

N
or

m
al

iz
ed

DiDi

Off

Figure 4.9: Histogram of the learned event weights, evaluated on the off-shell
training data and the DiDi-generated off-shell events. The two panels show the
same weights, on linear and logarithmic scales.

by the pT,b̄ distribution in the left panel. This means that the shift from on-shell to
off-shell phase space is relatively small and uncorrelated. However, for the reconstructed
top mass, some of the events have to be shifted by a larger value, as illustrated in the
right panel. While the width of the linear correlation becomes very small around the
top mass peak, it rapidly increases away from the peak, demonstrating the large shift
required to populate the off-shell phase space. Moreover, our network maps events from
each side of the Breit-Wigner peak to the same side of the off-shell distribution.

4.2.3 Classifier control and reweighting

Because the unsupervised density estimation underlying our generative network is more
challenging and less precise than a supervised classifier training, we can use a trained
classifier as a function of phase space to systematically check and improve the generative
network. As discussed in Section 3.2, a perfectly trained statistical classifier converges to
the ratio of likelihoods,

C(x) = pdata(x)
pdata(x) + pmodel(x) . (4.10)

As a function of phase space we can use this classifier to construct an event reweighting,
which improves the precision of the generative networks [41],

w(x) = pdata(x)
pmodel(x) = C(x)

1− C(x) . (4.11)

In addition, we can use the same learned event weights to determine the precision of the
generative network and systematically search for failure modes by searching for clusters
of very small or very large weights in phase space [92].

We train the classifier on 27 observables, our 15 physical dimensions, complemented
by the reconstructed top and anti-top masses, the reconstructed W+ and W− masses,
the reconstructed masses of the b̄l and bl̄ systems, and the six corresponding transverse
momenta. For the input of our classifier we sample events from our Bayesian generator
setting each network weight to its mean value. The setup is given in Tab. A.3.

We show histograms of learned phase space weights w(xi) on a linear and a logarithmic

54

4 Fast Event Generation

10�4

10�3

10�2

10�1

N
or

m
al

iz
ed

Off

DiDi

w< 0.6

w> 1.6

0.95
1.00
1.05

D
iD

i
Tr

ut
h

0 50 100 150 200
pT,b

0.1
1.0

10.0

�
[%
]

10�4

10�2

100

N
or

m
al

iz
ed

Off

DiDi

w< 0.6

w> 1.6

0.75
1.00
1.25

D
iD

i
Tr

ut
h

100 150 200 250 300
mbl⌫ [GeV]

0.1
1.0

10.0

�
[%
]

Figure 4.10: Clustering of the classifier trained to distinguish the off-shell training
data from DiDi-generated events, for two example distributions.

axis in Fig. 4.9. As expected, the distributions peak at unit weights, with a width around
0.3. Following Eq.(4.11), large weights correspond to phase space regions where the
generative network produces a too small density of off-shell points; small weights mark
phase space regions where the generative network produces too many off-shell events,
compared to the training data. To study both tails of the weight distribution, we evaluate
the weights over the combination of 2M training and 2M generated events and confirm
that both tails decrease rapidly. We eventually clip the event weights to w < 15 to
improve the numerical behavior of our generation and avoid sparks in regions of low
statistics.

In Fig. 4.10 we track phase space regions with very small and very large weights. We
compare all events of our test sample to the subsets with w(x) < 0.6, corresponding to
12.3% of the sample, and w(x) > 1.6, corresponding to 6.2% of the generated sample.
The two shown distributions illustrate the general feature that the kinematic distributions
for both tails are similar. In the pT,b̄-distribution we can identify two limitations of
the network training: for small transverse momenta a slight shift of the cliff will lead
to large relative weight corrections, while for large transverse momenta the decreasing
density of training events will increase the relative size of the noise. For the reconstructed
anti-top mass, one of the critical distributions for our generative task, the low-weight
and high-weight tails are also comparable with each other and also comparable on both
sides of the mass peak. The only distinct feature appears around the peak where events
with small weight dominate the slightly over populated sides of the peak. This indicates
that all weight tails are generated by noise, there are no missing localized features, and
the limiting factor is the statistics of the training data.

Even though the shortcomings of our generative networks, visible in Fig. 4.7, arise
from noisy network training and do not reflect systematic shortcomings, they affect the
trained generative network in a systematic, localized manner. As a function of phase
space, we can correct them using the event weights from Eq.(4.11), because the classifier
network is more sensitive and more precise than the generator network [92]. In Fig. 4.11
we show a set of kinematic distributions for reweighted events, where the uncertainty is
given by the Bayesian generator. Comparing the agreement between the reweighted and

55

4 Fast Event Generation

10�3

10�2

N
or

m
al

iz
ed

Off

DiDi rew.

On

0.95
1.00
1.05

D
iD

ir
ew

.
Tr

ut
h

0 50 100 150 200
pT,b

0.1
1.0

10.0

�
[%
]

10�6

10�4

10�2

N
or

m
al

iz
ed

Off

DiDi rew.

On

0.75
1.00
1.25

D
iD

ir
ew

.
Tr

ut
h

0 100 200
ml b [GeV]

0.1
1.0

10.0

�
[%
]

10�7

10�5

10�3

N
or

m
al

iz
ed

Off

DiDi rew.

On

0.75
1.00
1.25

D
iD

ir
ew

.
Tr

ut
h

0 200 400 600
pT,l⌫ [GeV]

0.1
1.0

10.0

�
[%
]

10�5

10�3

10�1
N

or
m

al
iz

ed
Off

DiDi rew.

On

0.75
1.00
1.25

D
iD

ir
ew

.
Tr

ut
h

50 100 150
ml⌫ [GeV]

0.1
1.0

10.0

�
[%
]

10�7

10�5

10�3

N
or

m
al

iz
ed

Off

DiDi rew.

On

0.3
1.0

1.9

D
iD

ir
ew

.
Tr

ut
h

0 250 500 750 1000
mbl⌫ [GeV]

0.1
1.0

10.0

�
[%
]

10�5

10�4

10�3

10�2

10�1

N
or

m
al

iz
ed

Off

DiDi rew.

On

0.75
1.00
1.25

D
iD

ir
ew

.
Tr

ut
h

100 150 200 250
mbl⌫ [GeV]

0.1
1.0

10.0

�
[%
]

Figure 4.11: Results from our re-weighted Direct Diffusion off-shell generator,
compared to the on-shell starting point and the off-shell target distributions.

the target distribution with the unweighted performance from Fig. 4.7 we see significant
improvements. In the secondary panels we show the reweighted predictions from the
Bayesian generator, allowing us to compare the statistical uncertainty from the training

56

4 Fast Event Generation

data with the predictive uncertainty from the generative network. For the entire range
of pT,b̄ the network agrees with the true distribution within its predictive uncertainties,
and almost within the uncertainties of the training data. For ml̄b, DiDi has to cover
phase space far beyond the on-shell structures, and, again it hardly exceeds the statistical
uncertainties of the training data and provides a conservative uncertainty estimate from
the Bayesian setup.

The momentum and the mass of the reconstructed W− match the truth perfectly in
the bulk, and roughly within the statistics of the training data in the tails. The former
is important, because it confirms the original motivation that the network reproduces
the on-shell features with extremely high precision. The same can be seen for the recon-
structed anti-top mass, where most of the phase space is filled by extrapolating from
the on-shell distribution and the network learns these new phase space regions without
degrading the precision in the bulk at all.

To conclude, we proposed a new method, namely to generate off-shell configurations
relative to given on-shell configurations. Its advantage is that the generative network
only learns a controlled deviation from a simple unit transformation. This simplified task
allows us to generate a rich resonance structure without the usual challenges in network
size and precision training. Our approach can be extended to higher-orders as long as the
corresponding event samples can be provided as training data. Such an extension is not
trivial because with each extra particle in the final state, e.g. due to an extra emission in
the NLO real correction, the dimension of the phase space increases. We do not foresee
any conceptual issues however, as increasing the dimension of the phase space in our
setup is straightforward and relatively small event samples were needed at LO, and both
diffusion networks as well as Classifiers have been shown to scale well with dimension.
The size of the off-shell effect, or more specifically the ratio of the full and approximate
off-shell prediction for a given observable, could in principle change dramatically when
changing orders. This is not a problem though, as DiDi is able to reproduce full off-shell
predictions also in regions where the approximate off-shell prediction is vanishing.

4.3 Fast Calorimeter Simulations

The content of this section was finalized in collaboration with Luigi Favaro, Ayodore Ore
and Tilman Plehn. It is adapted from Ref. [3].

In this study, we apply cutting-edge generative networks to calorimeter shower sim-
ulations. The high-dimensional phase spaces of calorimeter showers are a challenge to the
established normalizing flows or INNs [126], and different variants of diffusion networks
appear to be the better-suited architecture [127]. In addition to showing that these
networks are able to simulate sparse phase space signals like calorimeter showers, we
will explore which phase space dimensionalities we can describe with full-dimensional
latent spaces and how a dimension-reduced latent representation affects the network
performance.

Given the Geant4 benchmark presented in Section 4.3, we will see that a factorized
approach is most promising. In Section 4.3.1 we introduce a CFM network combined
with an autoregressive transformer to learn the layer energies. Next, we combine it with
a 3-dimensional vision transformer to learn the shower shapes. This combination can be
trained on datasets 2 and 3 of the CaloChallenge to generate high-fidelity calorimeter

57

4 Fast Event Generation

showers. In this application the step from dataset 2 to dataset 3 motivates a switch from
full-dimensional voxel representations to a dimension-reduced latent space [128]. In Sec-
tion 4.3.2 we study, in some detail, how the full-dimension generative network encodes
the calorimeter shower information for both datasets. To alleviate the computational
challenges, we also show how a lower-dimensional latent representation helps us describe
high-dimensional data like the Calo Challenge dataset 3. For quantitative benchmarking
of the learned phase space distribution we employ a learned classifier test, indicating that
the network precision for both datasets is at the per-cent level and the loss in precision
from a reduced latent space is controlled, including its only failure mode, which are the
sparsity distributions.

Data and preprocessing

To benchmark our new network architectures, we use dataset 2 (DS2) [129] and dataset 3
(DS3) [130] of the CaloChallenge 2022 [6]. Each set consists of 200k Geant4 [27] electron
showers: 100k for training/validation and 100k for testing. Showers are simulated over a
log-uniform incident energy range

Einc = 103 ... 106 MeV . (4.12)

The physical detector has a cylindrical geometry with alternating layers of absorber and
active material, altogether 90 layers. The voxelization following Ref. [131] combines an
active layer and an absorber layer resulting in 45 concentric cylindrical layers.

The particle originating the shower always enters at the (0,0,0) location and defines
the z-axis of the coordinate system. The number of readout cells per layer is defined
in a polar coordinate system and it is different for DS2 and DS3. DS2 has a total of
6480 voxels: 144 voxels per layer, each divided into 16 angular and 9 radial bins. DS3
has a much higher granularity with 40500 total voxels, where the number of layers is
unchanged but the angular and radial binning is 50×18. Both datasets have a threshold
of 15.15 keV. While this is an unrealistic cut for practical applications, it provides a
useful challenge to high-dimensional generative networks covering a wide energy range.

Preprocessing

We improve our training by including a series of preprocessing steps, similar to previous
studies [126, 127, 132–134]. We split information on the deposited energy from its
distribution over voxels by introducing energy ratios [135]

u0 =
∑
iEi

fEinc
and ui = Ei∑

j≥iEj
i = 1, . . . , 44 , (4.13)

where Ei refers to the total energy deposited in layer i, and f ∈ R is a scale factor. The
number of u-variables matches the number of layers. With these variables extracted from a
given shower, we are free to normalize the voxel values by the energy of their corresponding
layer without losing any information. This definition is analytically invertible, imposes
energy conservation, and ensures that the normalized voxels and each ui>0 are always
in the range [0, 1]. However, due to the calibration of the detector response caused by
the inactive material, u0 can have values larger than 1. We set f = 2.85 in Eq.(4.13), to

58

4 Fast Event Generation

rescale u0 ∈ [0, 1]. All networks are conditioned on Einc. This quantity is passed to the
network after a log transformation and a rescaling into the unit interval.

To train the autoencoders used for dimensionality reduction we do not use any
additional preprocessing steps. For the setup using the full input space, we apply a logit
transformation regularized by the parameter α which rescales each input voxel x,

xα = (1− 2α)x+ α ∈ [α, 1− α] with α = 10−6

x′ = log xα
1− xα

. (4.14)

Finally, we calculate the mean and the standard deviation of the training dataset and
standardize each feature. The postprocessing includes an additional step that rescales
the sum of the generated voxels to ensure the correct normalization in each layer.

4.3.1 CaloDREAM

In CaloDREAM1, we employ two generative networks, one energy network and one shape
network [135]. The energy network learns the energy-ratio features conditioned on the
incident energy, p(ui|Einc). The shape network learns the conditional distribution for
the voxels, p(x|Einc, u). The two networks are trained independently, but are linked in
the generative process. Specifically, to sample showers given an incident energy, we follow
the chain

ui ∼ pϕ(ui|Einc)
x ∼ pθ(x|Einc, u) . (4.15)

In this notation ϕ stands for the weights in the energy network and θ for the weights in
the shape network. Although the number of calorimeter layers is consistent across DS2
and DS3 and the underlying showers are the same, we train separate energy networks for
each dataset. The incident energy is always sampled from the known distribution in the
datasets, as in Eq.(4.12).

Energy network — Transfusion

Both of our generative networks use the Conditional Flow Matching architecture described
in Section 3.4.2.

For the energy network, we exploit the causal nature of the energy deposition in layers
using an autoregressive transfusion architecture [37], as visualized in Fig 4.12. We start
by embedding Einc as our one-dimensional condition and the u-vector. For the u, this
is done by concatenating a one-hot encoded position vector and zero-padding. These
embeddings are passed to the encoder and decoder of a transformer, respectively. For the
one-dimensional condition the encoder’s self-attention reduces to a trivial 1× 1 matrix.
For the decoder we mask our self-attention with an upper triangle matrix, to keep the
autoregressive conditioning. Afterward, we apply a cross-attention between the encoder

1The code used for this study is publicly available at https://github.com/heidelberg-hepml/calo_dreamer

59

https://github.com/heidelberg-hepml/calo_dreamer

4 Fast Event Generation

Einc

Em
b

Transformer-
Encoder

Self-Attention

0 u0 ... u43

Em
b

Em
b

...

Em
b

Transformer-Decoder

Masked Self-Attention

Cross-Attention

cI
N

N
C

FM

cI
N

N
C

FM ...

cI
N

N
C

FM

u0(t),t u1(t),t u44(t),t

(
vϕ(u0(t), c0, t), vϕ(u1(t), c1, t),... , vϕ(u44(t), c44, t)

)
vfull(u(t), t, Einc) =

c0 c1 c44

Figure 4.12: Schematic diagram of the autoregressive Transfusion network [37]
used in our energy network.

and decoder outputs. The transformer outputs the vectors c0, . . . , c44, encoding the
incident energy and previous energy ratios,

ci =
{
ci(u0, . . . , ui−1, Einc) i > 0
ci(Einc) i = 0 .

(4.16)

For generation, we use a single dense CFM network vϕ, with the inputs time t, embedding
ci, and the point on the diffusion trajectory ui(t). This network is evaluated 45 times to
predict each component of the velocity field individually,

vfull(u(t), t, Einc) = (vϕ(u0(t), c0, t), . . . , vϕ(u44(t), c44, t)) (4.17)

During training, we can evaluate the contribution of each ui to the loss in parallel, whereas
sampling requires us to iteratively predict the ui layer by layer. The hyperparameters of
the transfusion network are given in Tab. A.4.

Shape network — Vision Transformer

For the shape network, we use a 3-dimensional vision transformer (ViT) to learn the
conditional velocity field vθ(x(t), t, Einc, u). The architecture is inspired by Ref [83]
and illustrated in Fig. 4.13. It divides the calorimeter into non-overlapping groups of
voxels, so-called patches, which are embedded using a shared linear layer and passed to a
sequence of transformer blocks. Each block consists of a multi-headed self-attention and
a dense network that transforms the patch features. To break the permutation symmetry

60

4 Fast Event Generation

ViT Block

Affine

Self-Attention

Embed Embed

Grouped in patches

x(t)

t, Einc, u

vθ(x(t), t, Einc, u)

Assembled from patches

Figure 4.13: Schematic diagram of the vision transformer (ViT) [83] used in our
shape network.

among patches, we add a learnable position encoding to the patch embeddings prior
to the first attention block. After the last block, a linear layer projects the processed
patch features into the original patch dimensions, where each entry represents a diffusion
velocity. Finally, the patches are reassembled into the calorimeter shape.

The network uses a joint embedding for the conditional inputs, t, Einc and u. The
time and energy coordinates are embedded with separate dense networks, then summed
into a single condition vector. The attention blocks incorporate this condition via affine
transformations with shift and scale a, b ∈ R and an additional rescaling factor γ ∈ R
learned by dense layers. These are applied within each block, and also to the final
projection layer. Concretely, the operation inside the ViT block is summarized by

xh = x+ γhgh(ahx+ bh),
xl = xh + γlgl(alxh + bl), (4.18)

where gh is the multi-head self-attention step and gl is the fully connected transformation.
The hyperparameters of our transformer are given in Tab. A.5.

The scalability of this architecture is closely tied to the choice of patching. On the
one hand, small patches result in high-dimensional attention matrices. While this gives
a more expressive network, the large number of operations can become a limitation for
highly-granular calorimeters. Conversely, a large patch size compresses many voxels into
one object, implying a faster forward pass but at the expense of sample quality. In this
case, an expanded embedding dimension is needed to keep the network flexibility fixed.
We decide on specific patch sizes for DS2 and DS3 through manual exploration.

Usually, we train Bayesian versions [66] of all our generative networks, including
calorimeter showers [126]. In this study, the networks learning DS2 and DS3 are so heavy

61

4 Fast Event Generation

in terms of operations, that an increase by a factor two, to learn an uncertainty map over
phase space, surpasses our typical training cost of 40 hours on a cutting-edge NVIDIA
H100 GPU. In principle, Bayesian versions of all networks used in this study can be built
and used to quantify limitations, for instance related to a lack of training data.

Latent diffusion

As the calorimeter granularity is increased from DS2 to DS3, the computational re-
quirements to train a network on the full voxel space also increase considerably due
to the larger number of patches. This motivates a study of how the naive scaling may
be avoided by a lower-dimensional latent representation. Starting from the detector
geometry, a voxel-based representation of a shower defines a grid with fixed size and
stores the deposited energy in each voxel. This means a highly granular voxelization will
produce a large fraction of zero voxels, but the showers should define a lower-dimensional
manifold of the original phase space. Such a manifold can then be learned by an
autoencoder [126,128,136].

We train a variational autoencoder with learnable parameters ψ. The encoder outputs
a latent parameter pair (µ, σ), which defines the latent variable r = µ + z · σ with
z ∼ N (0, 1). The encoder distribution represents the phase space distributions over x
through pψ(r|x, u). For simplicity, in the following we drop the energy dependence in the
encoder and decoder distributions. After sampling the latent variable, we minimize the
learned likelihood of a Bernoulli decoder pψ(x|r) represented by the reconstruction loss

LVAE =
〈
− log pψ(x|r)

〉
x∼pdata,r∼pψ(r|x) + β

〈
DKL[pψ(r|x),N (0, 1)]

〉
x∼pdata

. (4.19)

This choice of likelihood is possible since our preprocessing normalizes voxels into the
range [0, 1]. The reconstruction quality achieved in the autoencoder training places an

training

Einc, u

x

Encoder
µ

σ
rψ

z ∼ N (0, 1)

r(t) CFM

ϵ ∼ N (0, 1)
t ∼ U(0, 1)

vθ

sampling

Einc, uϕ

ϵ ∼ N (0, 1)

ϵ + ∫ 1
0 dt CFM rθ Decoder xψ

Figure 4.14: Training (upper) and sampling (lower) with the latent diffusion
network, using a variational autoencoder.

62

4 Fast Event Generation

upper bound on the quality of a generative model trained in the corresponding latent
space.

The KL-divergence term, with unit-Gaussian prior and a small weight β = 10−6, is
a regularization rather than a condition for a tractable latent space. It encourages a
smooth latent space, over which we train the generative network. Especially for DS3,
an autoencoder trained without KL-regularization produces a sparse latent space with
features mapped over several orders of magnitude.

The VAE consists of a series of convolutions, the last of which downsamples the data.
This structure is mirrored in the decoder using ConvTranspose operations. As always,
the energy conditions are encoded in a separate network and passed to the encoder and
decoder. For a compressed latent space the ratio between the dimensionality of x and r
defines the reduction factor F . Rather than estimating the dimensionality of the datasets,
we use a moderate, fixed reduction factor F ≃ 2.5 and a bottleneck with two channels.
We do not expect the same reduction factor F to be optimal for both datasets.

The trained autoencoder is used as a pre- and postprocessing step for the CFM as
illustrated in Fig. 4.14. Given the trained encoder distribution pψ(r|x) the velocity field
v(r(t), t) imposes the boundary conditions

p(r, t)→
{
N (r; 0, 1) t→ 0
pψ(r|x) t→ 1, x ∼ pdata .

(4.20)

The expensive sampling then uses the lower-dimensional latent space and yields samples
r from the learned manifold. Finally, the phase space configurations are provided by the
deterministic decoder Dψ(r). Here we summarize the sampling procedure, including the
energy dependence, as three sequential steps:

u ∼ pϕ(u|Einc)
r ∼ pθ(r, 1|u,Einc) (4.21)
x = Dψ(r, u,Einc)

All network hyperparameters and the main training parameters are given in App. A.

4.3.2 Results

Layer energies

In Fig. 4.15 we compare samples generated from the energy network with the truth for
a selection of normalized layer energies ui. The transfusion network indeed generates
high-quality distributions, with errors comparable to the statistical uncertainties in the
test data. The distributions for ui>40 are the most difficult to model, since the majority
of showers lie in the sharp peaks at zero or one. These are zero-width peaks corresponding
to showers that end at the given layer, leading to a one, or end before or skip the layer,
leading to a zero.

We find that our autoregressive setup is particularly effective in faithfully mapping
regions close to these peaks. As a quantitative performance measure, we train a classifier
to distinguish the u’s defined by our energy network from the Geant4 truth, obtaining
AUC scores around 0.51 on an independent test set. The comparison in terms of layer
energy is shown in Fig. 4.16. The factorization procedure allows us to use the same

63

4 Fast Event Generation

10−3

10−2

10−1

100

101

a.
u

.

Geant4

CaloDREAM

u1

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

u1

0.1
1.0

10.0

δ[
%

]

10−1

100

101

a.
u

.

Geant4

CaloDREAM

u30

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

u30

0.1
1.0

10.0

δ[
%

]

10−1

100

101

a.
u

.

Geant4

CaloDREAM

u44

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

u44

0.1
1.0

10.0

δ[
%

]

Figure 4.15: Distributions of selected u-features in DS2 from the CaloDREAM
energy network (blue) compared to truth (grey). The error bars in all feature
distributions in this section show the statistics of the respective datasets.

energy network for the ViT and the laViT, effectively generating statistically-identical
layer energy distributions.

DS2 showers

Given the learned layer energies, we use the shape networks described in Section 4.3.1 to
generate the actual calorimeter showers over the voxels. First, we evaluate the distribution
of energy depositions per layer by looking at shape observables, like the center of energy
of the shower and its width in the ϕ and η directions,

⟨ξ⟩ = ξ · x∑
i xi

σ⟨ξ⟩ =
√
ξ2 · x∑
i xi
− ⟨ξ⟩2 for ξ ∈ {η, ϕ} . (4.22)

Here xi is the energy deposition in a single voxel and the sum runs over the voxels in a
layer.

In the first row of Fig. 4.16 we compare a set of layer-wise distributions from the
networks trained in the full space and in the latent representation to the test data
truth. We start with the energy deposited in layer 20, where for E20 > 10 MeV the full-
dimensional vision transformer (ViT) as well as the latent-diffusion counterpart (laViT)
agree with the truth at the level of a few per-cent, as expected. Towards smaller energies
we see a missing feature in both networks. Also in the two other shown distributions
the ViT and laViT agree with each other and deviate from Geant4 only in regions with
statistically limited training data.

The second row of Fig. 4.16 shows example distributions probing the combination of
layers. In addition to the layer-wise shower shapes, we calculate the mean shower depth
weighted by the energy deposition in each of the N layers for slices in the radial direction,

drj =
∑N
i kiEi,rj
Etot,j

rj ∈ {0, . . . , |r|} . (4.23)

Here Ei,rj is the average energy deposition in slice rj , and Etot,j is the total energy
deposition in the selected slice. Slices in the angular direction are less interesting to
calculate due to the rotational invariance of the showers. This observable highlights a

64

4 Fast Event Generation

10−4

10−3

10−2

a.
u

. e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

100 102 104

E20 [MeV]

0.1
1.0

10.0

δ[
%

]

10−4

10−3

10−2

10−1

a.
u

. e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

−20 0 20
〈φ〉0 [mm]

0.1
1.0

10.0

δ[
%

]

10−4

10−2

a.
u

. e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0 10 20 30
σ〈φ〉10

[mm]

0.1
1.0

10.0

δ[
%

]

10−4

10−2

a.
u

.

e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0 10 20 30 40
dr1

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

a.
u

.

e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0.6 0.8 1.0 1.2 1.4
Etot/Einc

0.1
1.0

10.0

δ[
%

]
10−7

10−5

10−3

10−1

a.
u

. e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

10−1 100 101 102 103

Evoxel [MeV]

0.1
1.0

10.0

δ[
%

]

Figure 4.16: Selection of high-level features for DS2. The first row shows features
for individual layers, the second row the combination of layers.

small deviation for both networks from the reference for showers with maximum depth of
five layers not captured by the layer-wise high-level features.

Also combining layer-wise information, we show the total energy deposited in the
calorimeter Etot normalized by the incident energy and the full voxel distribution across
the entire calorimeter Evoxel. The total shower energy relative to the incident energy is
reproduced very well by both networks since this information is coming from the energy
network. However for the voxel energies only the full-dimensional network captures the
low-energy regime, whereas the latent model overestimates this regime and in turn shifts
down the prediction for larger energies because of the normalization of the curve. This is
the only noteworthy shortcoming of the laViT compared to the ViT that we find.

Following up on the problem raised by the last panel in Fig. 4.16, we focus on the
(latent) description with low-energy voxels. In Fig. 4.17 we again compare the two

10−7

10−5

10−3

10−1

a.
u

. e+ DS2

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

10−1 100 101 102 103

Evoxel [MeV]

0.1
1.0

10.0

δ[
%

]

0.025

0.050

0.075

0.100

0.125

a.
u

.

e+ DS2 w/o cut

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0.0 0.2 0.4 0.6 0.8 1.0
λ10

0.1
1.0

10.0

δ[
%

]

0.00

0.05

0.10

a.
u

.

e+ DS2 w/ cut

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0.0 0.2 0.4 0.6 0.8 1.0
λ10

0.1
1.0

10.0

δ[
%

]

Figure 4.17: Effect of an additional threshold E > 1 MeV on DS2; we show the
shower energy and the sparsities without and with threshold cut.

65

4 Fast Event Generation

10−4

10−3

10−2

a.
u

. e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

100 102 104

E20 [MeV]

0.1
1.0

10.0

δ[
%

]

10−4

10−3

10−2

10−1

a.
u

. e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

−20 0 20
〈φ〉0 [mm]

0.1
1.0

10.0

δ[
%

]

10−4

10−2

a.
u

. e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0 10 20 30
σ〈φ〉0 [mm]

0.1
1.0

10.0

δ[
%

]

10−4

10−2

a.
u

.

e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0 10 20 30 40
dr0

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

a.
u

.
e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0.6 0.8 1.0 1.2 1.4
Etot/Einc

0.1
1.0

10.0

δ[
%

]

10−7

10−5

10−3

10−1

a.
u

. e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

10−1 100 101 102 103

Evoxel [MeV]

0.1
1.0

10.0

δ[
%

]

Figure 4.18: Selection of high-level features for DS3. The first row shows features
for individual layers, the second row the combination of layers. All features
correspond to the DS2 results shown in Fig. 4.16.

network predictions with the truth, but applying an additional threshold cut of

Evoxel > 1 MeV . (4.24)

After this cut, the agreement of the laViT prediction with the full ViT and the truth
improves significantly. We checked that this cut has only a limited impact on the
total energy deposition Etot. Slight deviations are limited to the threshold region
Evoxel ≲ 5 GeV. The reason can be seen in the sparsity distributions for instance of
layer 10, λ10. The laViT network generates a sizable number of showers with energy
depositions everywhere, leading to a peak at zero sparsity. This failure mode is already
present in the autoencoder reconstruction. Because of their low energy, these contributions
do not affect the other high-level observables or the learned physics patterns of the showers.

DS3 showers

The same analysis done for DS2 in Section 4.3.2 we now repeat for DS3. This means we
study the same shower energies and shower shapes, but from 40500 instead of 6480 voxels.
A target phase space of such large dimension is atypical for most LHC applications,
and the key question is whether the precision-generative architectures that have been
successful on lower-dimensional phase spaces also give the necessary precision for high-
dimensional phase spaces. As a matter of fact, we know that this is not the case for
standard normalizing flows or INNs [126], where the architectures have to be modified
significantly to cope with higher resolution.

In Fig. 4.18 we again show a set of layer-wise features in the first row, observing
extremely mild differences to the DS2 results. Only the shower shapes from the laViT
suffer slightly in regions with too little training data. For the multi-layer features in the

66

4 Fast Event Generation

10−7

10−5

10−3

10−1

a.
u

. e+ DS3

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

10−1 100 101 102 103

Evoxel [MeV]

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

a.
u

.

e+ DS3 w/o cut

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0.0 0.2 0.4 0.6 0.8 1.0
λ10

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

a.
u

.

e+ DS3 w/ cut

Geant4

ViT

laViT

0.7
1.0
1.3

M
o
d

el
G

e
a
n
t
4

0.0 0.2 0.4 0.6 0.8 1.0
λ10

0.1
1.0

10.0

δ[
%

]

Figure 4.19: Effect of an additional threshold E > 1 MeV on DS3; we show the
shower energy and the sparsities without and with threshold cut. All features
correspond to the DS2 results shown in Fig. 4.17.

second row, we also find the same results as for DS2, including the challenge in describing
voxels with Evoxel ≲ 3 GeV.

Understanding and targeting this challenge, we again show the voxel energy distribution
and the sparsity after the threshold cut Evoxel > 1 MeV in Fig. 4.19. For DS3 it turns
out that after applying this cut the description of DS3 through the laViT network is
excellent. The reason for this is two-fold. Given the low energy bound we can reproduce
with the latent model, a cut larger than this threshold completely adjusts the sparsity
up to a specific value by removing the additional energy deposition of the latent model
and the noisy components of Geant4. For both DS2 and DS3 the cut fixes the sparsity
in λ10 down to λ10 ≳ 0.7. However, for DS3 this is done by moving the peak at zero,
while for DS2 the mass is moved from the intermediate sparsity. This second difference
comes from the dimensionalities of the two datasets, where the fixed reduction factor has
a stronger impact on DS2 due to the larger information loss in the bottleneck.

Performance

It is not trivial to test the overall performance of generative networks for calorimeter
showers. In the previous sections we evaluated the networks using simple one-dimensional
histograms, as in Figs. 4.16 and 4.18, or classifier AUC scores. A systematic approach
to assess the quality of our generative networks, and a way to identify failure modes,
is to examine the distribution of classifier predictions over the phase space or feature
space x [92]. A properly trained and calibrated classifier C(x) learns the likelihood-ratio
between the data and the generated distributions which, according to the Neyman-Pearson
lemma, is the most powerful test statistic to discriminate between the two samples. This
allows us to extract a correction weight over phase space

w(x) = C(x)
1− C(x) ≈

pdata
pmodel

(x) , (4.25)

and to use the corresponding weight distributions as an evaluation metric. The weights
have to be evaluated on the training data and on the generated data, because failure
modes appear as tails in one of the two distributions [92]. For example, if we only look at
the weights of generated samples, we may not identify cases where the generator suffers
from mode collapse. To further analyze failure cases, we can study showers with small or
large weights as a function of phase space, using the interpretable nature of phase spaces
in particle physics.

67

4 Fast Event Generation

10−1 100 101

w(x)

10−4

10−3

10−2

10−1

100
a.

u
.

e+ DS2 LL

ViT

laViT

Gen.

Geant4

10−1 100 101

w(x)

10−4

10−3

10−2

10−1

100

a.
u

.

e+ DS3 LL

ViT

laViT

Gen.

Geant4 AUC (LL/HL)

DS2

ViT 0.535(3)/0.517(3)
laViT 0.572(3)/0.536(2)

DS3

ViT 0.63(1)/0.525(3)
laViT 0.62(1)/0.596(4)

Figure 4.20: Learned low-level (LL) classifier weight distributions for DS2 (left)
and DS3 (right). We compare the full-dimensional ViT and the latent laViT
results and, for each of them, show weights for the generated sample and for a
Geant4 test sample. The table shows the AUC values for both high-level (HL)
and low-level classifiers in each case.

In Fig. 4.20 we show the classifier weights from the low-level classifier for DS2 and
for DS3. We explicitly distinguish the weights for generated samples (solid lines) and
Geant4 samples (dotted lines) obtained from the trained classifier. We also include
a table with the AUC scores of the high-level classifier trained on layer-wise features
and the low-level classifier, where the ViT shows state-of-the-art results on DS2 and the
high-level DS3. The peaks of the weight distributions are nicely centered around w = 1,
symmetric towards small and large (logarithmic) classifiers, and show no significant
difference between generated and training data. The weights for the networks encoding
the full phase space and the latent diffusion are different, with a typical broadening of the
distribution by a factor two around the peak and larger and less smooth tails. We still
observe that the classifier misses the low-energetic noise affecting the sparsity and the
voxel energy distributions. Despite the simple nature of the neural network, a sequence
of fully connected layers, the main result from this performance test is that the classifier
identifies additional failure modes related to the step from DS2 to DS3 and to the reduced
latent space. We expect these failure modes correspond to cross-layer features, since we
observe a correlation between the classifier weights and the shower depth introduced
in Section 4.3.2, and the high-level AUC is similar across the two datasets. Details of the
neural network classifier are listed in Tab. A.6.

To conclude, our study shows that modern generative networks can be used to describe
calorimeter showers in highly granular calorimeters. When the number of phase space
dimensions becomes very large and the data becomes sparse, a latent diffusion network
combined with an (autoregressive) transformer provides excellent benchmarks in speed
and in precision.

68

CHAPTER 5

Generative Unfolding

As described in detail in Section 2.2, once the hard scattering is simulated and we obtain
a so-called parton-level event, these events are propagated through each stage of the
simulation chain. At the end of this chain, namely after detector simulation, we are left
with detector-level events. In simulations, we have access to every intermediate step,
such as the particle-level event, which corresponds to the state after hadronization but
before detector effects. This means we have a deterministic pairing between, for example,
a given parton-level or particle-level event and its corresponding detector-level event.
Assuming that the detector simulation from a particle-level to a detector-level event is
the same in data and in MC, we can exploit this pairing to correct for detector effects.
While the output of the MC simulation chain defines a deterministic pairing, the physical
process it models including the detector response is inherently probabilistic. In principle,
corrections for hadronization and parton shower effects are also possible but are not
considered in the context of this thesis.
There are numerous reasons to unfold. For example, propagating observations backwards
through the simulation chain, enables testing different theories without rerunning costly
detector simulations. Further, comparing observations of different experiments could
enhance global fits but they are severely bottlenecked by differences in detectors, a
problem unfolding could easily solve. Classical unfolding methods exist and are frequently
applied in LHC analyses. However, they are typically limited to low-dimensional, binned
distributions. In this chapter, we aim to reverse the simulation chain, i.e. to unfold
observed detector-level events to particle-level events, using generative machine learning.
Motivated by the discussion in Section 2.3, we start by looking into boosted semilep-
tonic tt̄-decays in Section 5.1. In particular, we unfold the hadronic top-quark decay
with generative unfolding precisely and without bias. In Section 5.2, we present new
developments in generative unfolding with distribution mapping techniques that were
introduced in Section 3.5.

69

5 Generative Unfolding

5.1 How to Unfold Top Decays

The content of this section was finalized in collaboration with Luigi Favaro, Roman Kogler,
Alexander Paasch, Tilman Plehn and Dennis Schwarz. It is adapted from Ref. [5] but
utilizes different simulations.

In this study we target an especially challenging unfolding task, a mass measurement
and the unfolding of strongly peaked kinematic distributions, applied to hadronic decays
of boosted top-quarks.
In Section 5.1.1 we describe the goal of the analysis, show the results from the classic
CMS analysis [137], introduce the dataset, and sketch the basic features and the imple-
mentation of generative unfolding. We start by investigating low-dimensional unfolding
in Section 5.1.3. We find that a major problem is the bias induced by the training data.
It can be ameliorated as described in Section 5.1.4. Next, we show how the top mass
can be measured from the unfolded distributions in Section 5.1.5, and in Section 5.1.6
we proceed to then unfold the entire top decay phase space for re-analysis. This study
provides a blueprint for a CMS analysis using generative unfolding.

5.1.1 Goal and method

If we want to unfold top-decay events the main challenge is the model dependence and
resulting bias when the top masses assumed for the simulated training data and the actual
top mass differ. This could be taken care of iterative improvements of the unfolding
network, but it will turn out that this approach is extremely challenging numerically.
Instead, we follow a slightly different strategy:

1. we ensure that the bias from the top mass assumed in the simulated training data
is small;

2. we infer the correct top mass from the data, using a reduced unfolded phase space;

3. we produce training data with the inferred top mass and unfold the full phase
space.

Top mass measurement

The extraction of the top mass from the invariant jet mass of highly boosted hadronic top
decays can shed light on possible ambiguities in top mass measurements using simulated
parton showers. The ultimate goal is to compare the measured jet mass distribution
to predictions from analytic calculations. For that, it is convenient to unfold detector
effects.

Unfolding uses simulated data, biasing the unfolded data towards the model used in the
simulation. In particular, the choice of the top mass in the simulation leads to a significant
uncertainty. These modelling biases can be reduced by including more information and
granularity into the unfolding process, motivating the use of ML-unfolding methods.

In the existing CMS measurement this is done by unfolding differentially in the
top-jet transverse momentum and by including various sideband regions close to the
measurement phase space. Using ML-unfolding, the data can be unfolded in a larger
number of phase space dimensions, providing ways to reduce the model bias. In addition,

70

5 Generative Unfolding

mass

G
eV1

 je

t
md

σd
 σ1

Data

 = 169.5 GeVtm

 = 172.5 GeVtm

 = 175.5 GeVtm

CMS

 (13 TeV)-1138 fb

0

0.01

0.02

0.03

0.04

120 140 160 180 200 220

GeV jetm

0.5

1

1.5

D
at

a
T

he
or

y

Figure 5.1: CMS benchmark result from Ref. [137]. It shows the differential
top pair cross section as a function of the top-jet invariant mass, compared to
theory predictions for different top masses. The vertical bars represent the total
uncertainties, statistical uncertainties are shown as short horizontal bars, and
theoretical uncertainties as shaded bands.

externalized measurements of the N -subjettiness and the W -mass, which were used to
constrain uncertainties in the modelling of final state radiation and the jet mass scale
can be included through high-dimensional ML-unfolding.

The result from our traditional benchmark analysis [137] is shown in Fig. 5.1. This
analysis unfolds the reconstructed 3-subjet mass Mjjj and the corresponding reconstructed
transverse momentum, pT,jjj to measure the top mass. Before that, the jet energy is
calibrated by reconstructing the W -boson, which comes with non-negligible uncertainties.
First, reconstructing the W -boson requires b-tagging information, which is not available in
the XCone jet algorithm, so the jet clustering needs to be rerun after including b-tagging
information matched by angular closeness. Second, selecting the W -decay jets breaks the
permutation invariance among the jets. Third, mis-identification as part of the b-tagging
introduces a non-trivial uncertainty in the unfolded data. Ideally, unfolding enough phase
space dimensions to capture the W -decays should allow us to circumvent these issues.

Once we have measured the top mass in an event sample, we can further analyse the
unfolded dataset. For instance, we can look for effects from higher-dimensional SMEFT
operators on the decay of boosted tops, or we can search for anomalous kinematic
distributions from new particles, modified interactions, or enhanced QCD effects at
the subjet level. While the unfolding for the top mass measurement has to include a
sufficiently large number of dimensions, as discussed above, we now need to unfold the full,
12-dimensional phase space. Three of these dimensions are finite jet masses, generated
by QCD effects.

Dataset

We use simulated events for top pair production, similar to the one used for the CMS
jet mass measurement [137]. It is split into three parts, corresponding to data taking
in 2016, 2017, and 2018. All parts are generated at next-to-leading order QCD using

71

5 Generative Unfolding

POWHEG v2 [122,123]. The simulation for 2016 uses NNPDF3.0 [138], while the corre-
sponding parts for 2017 and 2018 use NNPDF3.1 [116]. Hadronization, parton showers,
and multiple parton interactions are simulated with Pythia8 [25]. The 2016 (2017 and
2018) sample uses the underlying event tune CUETP8M2T4 (CP5) as implemented in
Pythia 8.212 (Pythia 8.230). All samples include a full simulation of the CMS detector [45]
implemented in Geant4 [139].

In the simulated data, we have access to three different levels of particles. The parton
level includes the hard interactions of the top quarks, that decay into a b-quark and a
W -boson, that subsequently decays into two quarks or lepton and neutrino. The particle
level refers to all stable particles with lifetimes longer than 10−8 s after parton shower
and hadronization. Finally, the detector level describes particle candidates after the
detector simulation, as reconstructed from tracks and energy deposits in the calorimeters.

Event selections are applied at the particle and detector level. All events that do
not pass any of the selections are rejected from the further analysis. For the signal or
measurement region, we only consider lepton-hadron top pairs at the parton level,

pp→ tt̄→ (bqq̄′) (b̄ℓ−ν̄) + c.c. with ℓ = e, µ , (5.1)

and the lepton acceptance

pT,ℓ > 60 GeV and |ηℓ| < 2.4 . (5.2)

The top jet is constructed using XCone clustering and identified by the larger angular
distance to the lepton and must fulfill

pT,J > 400 GeV and pT,j1,2,3 > 30 GeV |ηj1,2,3 | < 2.5 , (5.3)

for the fat jet J and three subjets j. In the following, we will refer to these subjets as jets.
The second jet has to have pT > 10 GeV to reject poorly reconstructed events. Reducing
the contribution from events where not the full top-quark decay is reconstructed within
the fat jet, we require the invariant mass of the three jets, Mjjj , to exceed the invariant
mass of the second jet and the lepton.

At the detector level, events have to satisfy similar criteria, described in detail in
Ref. [137]. In addition, we require missing transverse momentum above 50 GeV, at
least one b-tagged jet, and a specialized lepton isolation criterion to reduce background
contributions. The measurement-region selection criteria leaves us with approximately
700.000 events, of which we use 75% for training. All events contain gen-level and reco-
level distributions and are weighted to correct for data-MC differences, jet calibration
etc. The XCone algorithm clusters the jets separately for reco-level jets and gen-level
jets. The clustered jets are sorted according to pT . Due to pile up, which is only added
at reco-level, the leading jet at reco-level might not correspond to the leading jet at
gen-level. Therefore, we evaluate the angular distances between reco-level and gen-level
jets and match them if

∆Rgen,reco < 0.2 . (5.4)

For around 15% of events, this matching does not respect the pT -ordering at the two
levels.

72

5 Generative Unfolding

Jet-mass features

For the generative unfolding algorithm a perfect matching between reco-level and gen-level
jets is not critical, as the reco-level is used only as a condition. We have checked that
when permuting the ordering of the reco-level jets randomly, we observe no difference in
performance. Once we switch to the 4-momentum representation (m, pT , ϕ, η), we see
clear differences between reco-level and gen-level, for instance in the jet masses shown in
Fig. 5.2.

Differences in the jet masses are mostly due to pile-up, which in our simulation is
added at reco-level. Events are to some degree corrected by removing tracks originating
from pile-up vertices. The remaining difference in the jet mass mostly comes from neutral
hadrons in the pile-up. This positive contribution to the jet masses is largest for the
leading jet because of its largest pT . Figure 5.2 implies that unfolding detector effects
includes unfolding these pile-up effects.

10�4

10�2

N
or

m
al

iz
ed

gen

rec

100 200 300
pT,2 [GeV]

0.9
1.0
1.1

re
c

ge
n

0.00

0.05

N
or

m
al

iz
ed

gen

rec

5 10 15 20 25
m2 [GeV]

0.9
1.0
1.1

re
c

ge
n

0

1

2

N
or

m
al

iz
ed

gen

rec

0.25 0.50 0.75 1.00 1.25
�R12

0.9
1.0
1.1

re
c

ge
n

0.00

0.01

0.02

0.03

N
or

m
al

iz
ed

gen

rec

50 100 150
M12 [GeV]

0.9
1.0
1.1

re
c

ge
n

0.000

0.002

0.004

0.006

N
or

m
al

iz
ed

gen

rec

400 600 800
PT, j j j [GeV]

0.9
1.0
1.1

re
c

ge
n

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

gen

rec

120 140 160 180 200 220
Mj j j [GeV]

0.9
1.0
1.1

re
c

ge
n

Figure 5.2: Kinematic distributions at reco-level and gen-level for the second jet
(top), combining two jets (center), and combining three jets (bottom).

73

5 Generative Unfolding

Going beyond single-jet observables, we need to understand and eventually unfold
detector effects on correlations. In Fig. 5.2 we show a few examples. For the angular
separation of the two leading jets the peak is generated by the boosted decay kinematics
combined with mass effects and the detector acceptance. The 2-jet masses have a peculiar
distribution, owed to the fact that out of the three jets two come from the W -decay.
Because of the pT -ordering, any of the three combinations

M2
ik = m2

i +m2
k + 2 (mT,imT,k cosh ∆ηik − pT,ipT,k cos ∆ϕik) (5.5)

can reconstruct mW . This is an exact equation for the three 2-jet masses, if ∆ηik is
calculated using the jet rapidities. Of the three 2-jet masses in a top decay, two tend to
be similarly close to Mik ∼ mW [140]. In Fig. 5.2 we also observe the upper endpoint in
the top decay kinematics at gen-level [141]

mmax
bj <

√
m2
t −m2

W ≈ 155 GeV . (5.6)

Following Eq.(5.5) we can improve the training of the unfolding network by including
the 2-jet masses as explicit features. Each of the 2-jet masses then substitutes an angular
variable. With this basis transformation we sacrifice access to the individual azimuthal
angles and are left with their absolute differences.

Next, we see in Fig. 5.2 that the transverse top momentum is not affected significantly
by the detector effects, and the 3-jet mass peaks at the top mass value. In our phase
space parametrization we can calculate the 3-jet mass as

M2
jjj = M2

12 +M2
23 +M2

13 −m2
1 −m2

2 −m2
3 (5.7)

By using all these jet masses as training features, we can greatly improve the learning and
unfolding of the 3-jet mass. The no-free-lunch theorem, however, tells us that this gain
will lead to a mis-modelling of other correlations. In particular, we will see that there is
no guarantee that cos ∆ϕ ∈ [0, 1] anymore, leading to unphysical event kinematics.

5.1.2 Generative unfolding

Traditional unfolding algorithms [142–144] have been used to unfold simple differential
cross section measurements. Widely used methods include Iterative Bayesian Unfold-
ing [145–148], Singular Value Decomposition [149], and TUnfold [150]. Their limitation
is the need for binned data over low-dimensional phases space. This also means that we
have to pre-select the observables we want to unfold and their binning.

To use ML-methods for high-dimensional and unbinned unfolding, we invert the
forward simulation using Bayes’ theorem

p(xgen|xreco) = p(xreco|xgen) w(xgen)p(xgen)
w(xreco)p(xreco) , (5.8)

where xgen is a point in gen-level phase space and xreco a point in reco-level phase space.
To unfold reco-level data, we need to learn

pθ(xgen|xreco) ≈ p(xgen|xreco) (5.9)

74

5 Generative Unfolding

r ∼ N (0, 1) x(t) = (1− t)x + tr

t ∼ U(0, 1)

x, y ∼ p(x, y)

CFM

L =
(

(w(x)(vθ − (r − x))
)2

vθ

Figure 5.3: Schematic representation of generative unfolding with a CFM net-
work.

as the statistical basis of an inverse simulation. Once a generative neural network encodes
pθ(xgen|xreco), we calculate

punfold(xgen) =
∫
dxreco pθ(xgen|xreco)w(xreco)p(xreco) . (5.10)

At the event level, this integral can easily be evaluated by marginalizing the corresponding
joint probability. Our method can be summarized as

psim(xgen) punfold(xgen)

paired data

xy
xpθ(xgen|xreco)

psim(xreco) correspondence←−−−−−−−−−→ pdata(xreco) (5.11)

The two distributions psim(xreco) and psim(xgen) are encoded in one set of simulated
events, before and after detector effects, or at the parton level and at reco-level.

The generative network we employ to learn pθ(xgen|xreco) is a CFM as dicussed
in Section 3.4. As we consider weighted events the corresponding MSE loss needs to be
updated to

LCFM = [w(x)(vθ − (r − x))]2 . (5.12)

The CFM setup is illustrated in Fig. 5.3. Its conditional extension is straightforward, in
complete analogy to the conditional GANs [151] and conditional INNs [152] developed for
unfolding. While the naive GAN setup does not learn the event-wise (inverse) migration
correctly and therefore does not encode physical, calibrated conditional probabilities,
the cINN with its likelihood loss does exactly that. The CFM succeeds because of its
mathematical foundation, Eq.(3.39) [78].

Training bias

In Eq.(5.11) we describe the structure of generative unfolding, but we are missing a
critical complication — the simulated reco-level data psim(xreco) might not agree with
the actual reco-level data pdata(xreco). Let us assume a simple case where the simulation

75

5 Generative Unfolding

depends on a simulation parameter ms which we can tune to describe the actual data.
This can be a physics parameter we eventually infer, or a nuisance parameter which we
profile over. The dependencies of the four datasets on ms and its ‘correct’ value in the
data, md, turn Eq.(5.11) into

psim(xgen|ms) punfold(xgen|ms,md)

p(xreco|xgen)

y
xpθ(xgen|xreco,ms)

psim(xreco|ms)
correspondence←−−−−−−−−−→ pdata(xreco|md) (5.13)

In the forward direction, p(xreco|xgen) does not have an explicit ms-dependence, but
both simulated datasets follow psim(xgen|m) and psim(xreco|m) induced by the generator
settings. By assumption, ms = md ensures that the simulated and actual data agree at
the reco-level,

psim(xreco|ms = md)
!= pdata(xreco|md) . (5.14)

We then use this relation to infer md at the reco-level.

Alternatively, we can do the same inference at the gen-level, requiring

psim(xgen|ms = md)
!= punfold(xgen|ms = md,md) . (5.15)

The problem with this unfolded inference is the dual dependence of punfold(xgen|ms,md)
through the reco-level data and the learned conditional probability. This dual dependence
is automatically resolved if punfold(xgen) only depends on md through the reco-level
data, so the bias from pθ(xgen|xreco,ms) can be neglected. If not, we can use iterative
methods [153] to remove the bias. The iterative improvement relies on a learned classifier
over xgen which reweights psim to punfold including the ms-dependencies and serves as a
basis for re-training the unfolding network. It implicitly assumes that punfold(xgen|ms,md)
depends mostly on md and at a reduced level on ms. In that case the endpoint of the
Bayesian iteration is reached when the two dependencies coincide at the level of the
remaining statistical uncertainty.

5.1.3 Lower-dimensional unfolding

Unfolding top decays is technically challenging, because the top mass and the W -mass
are dominant features over an altogether 12-dimensional phase space. We start with
a naive unfolding in, using our appropriate phase space parametrization with reduced
dimensionality [154].

We know that the precision of learned phase space distribution using neural networks
scales unfavorably with the phase space dimension [155,156].2 The full 12-dimensional
phase space will not be the optimal representation to measure the top mass. Instead, we
only use a lower-dimensional phase space representation for the top mass measurement,
finding a balance between relevant kinematic information and dimensionality. We
postpone the full kinematic unfolding to the point where we need to access to the
full kinematics and benefit from the measured top mass

2For a possible improvement see Ref. [157].

76

5 Generative Unfolding

0.0000

0.0005

0.0010

0.0015

N
or

m
al

iz
ed

mt =172.5 GeV gen

unfolded

rec

0.75
1.00
1.25

ra
ti

o

−1000 0 1000 2000∑
m2

i

0.1
1.0

10.0

δ
[%
]

0.00

0.01

0.02

0.03

N
or

m
al

iz
ed

mt =172.5 GeV gen
unfolded

rec

0.75
1.00
1.25

ra
ti

o

40 60 80 100 120 140 160
M12 [GeV]

0.1
1.0

10.0

δ
[%
]

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

mt =172.5 GeV gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

gen mt:
171.5 GeV
172.5 GeV

unfolded
rec
unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

Figure 5.4: Kinematic distributions from 4-dimensional unfolding. We also
show the reco-level and the gen-level truth for mt = 172.5 GeV. In the bottom-
right panel we compare Mjjj for mt = 172.5 GeV to generated unfolding for
mt = 171.5 GeV, not seen during training.

For the traditional CMS analysis [137], two phase space dimensions were unfolded,
Mjjj and pT,jjj . An in-situ jet energy calibration relies on the reconstructed W -boson.
Identifying the W -decay jets in the top ideally requires b-tagging information, which is
not available in our case. Without b-tagging, our goal is to calibrate jet using as much
reliable jet information as possible. From Fig. 5.2 we know that all 2-jet masses include
a sharp W -mass peak, suggesting that we unfold those for the top mass measurement.

Our unfolding setup follows Section 5.1.1. From Eq.(5.7) we know that we can extract
the 3-jet mass as a proxy for the top mass from the set of single-jet and 2-jet masses.
Because the single-jet masses are largely universal and not a good handle on the jet
energy calibration, our first choice is to measure the top mass from a 4-dimensional
unfolding of {

Mj1j2,Mj2j3,Mj1j3,
∑
i

mi

}
. (5.16)

The results are shown in Fig. 5.4. First, we see that we can unfold the sum of the single
jet masses extremely well, with deviations of the unfolded data from the generator truth
at the per-cent level. This means that we expect to be able to extract the 3-jet mass
essentially from the sum of all 2-jet masses with a known and controlled offset.

Next, we show a 2-jet mass, with the characteristic W -peak and the shoulder at mmax
bj .

The W -peak is washed out at the reco-level, but the generative unfolding reproduces it
extremely well. The relative deviation of the unfolded to the truth 2-jet mass distributions
is at most a few per-cent, with no visible shift around the W -peak. The same quality of

77

5 Generative Unfolding

0.00

0.02

0.04

0.06
N

or
m

al
iz

ed
mt =172.5 GeV gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

gen mt:
171.5 GeV
172.5 GeV

unfolded
rec
unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

Figure 5.5: Kinematic distributions from 6-dimensional unfolding. In the right
panel we compare Mjjj for mt = 172.5 GeV to generated unfolding for mt =
171.5 GeV, not seen during training.

the unfolding can be observed in the Mjjj distribution, perfectly reproducing the top
mass at mt = 172.5 GeV, the correct value in the training data and in the data which
gets unfolded.

The problem with measuring the top mass from unfolded data appears when we unfold
data simulated with a different top mass. In the lower-right panel of Fig. 5.4 we show the
unfolded Mjjj distribution for reco-level data generated with mt = 171.5 GeV, unfolded
with generative networks trained on mt = 172.5 GeV. We see that the top peak in the
unfolded data is dominated by the training bias of the network, specifically a maximum
at Mjjj = (173± 1) GeV. This means the top peak is entirely determined by the training
bias and hardly impacted by the reco-level data which we unfold.

From the 4-dimensional unfolding we know that the network learns the W -peak in the
2-jet masses and the top peak in the 3-jet mass at a precision much below the physical
particle widths. The problem is that the bias from the network training completely
determines the position of these mass peaks in the unfolded data. To confirm that these
findings are not an artifact of our reduced phase space dimensionality, we repeat the
same analysis for the 6-dimensional phase space{

Mj1j2,Mj2j3,Mj1j3,mj1,mj2,mj3
}
. (5.17)

The unfolded 3-jet mass distributions are shown in Fig. 5.5, corresponding to the 4-
dimensional case in Fig. 5.4. While the unfolded peak in Mjjj is a slight bit worse than
for the easier 4-dimensional case, the bias from the training remains, in spite of the
fact that we are weakening the expressive power of the unfolding network by adding
distributions that are mildly affected by the peak position.

Finally, we can look at the truth and learned migration between the reco-level and
the gen-level 3-jet distribution in Fig. 5.6. In the left panel we see that the forward
simulation maps the sharp peak at gen-level to a broader peak at reco-level. The problem
with the central ellipse describing this physical migration by detector effects is that it
does not indicate any correlation between the Mjjj-values at reco-level and at gen-level.
The learned migration in the right panel reproduces the forward migration exactly.

For the generative unfolding this means that small differences at reco-level will al-
ways be unfolded to the same sharp region at gen-level, independent of the information
contained in the reco-level data. Following Section 5.1.2 and Eq.(5.13) the unfolded

78

5 Generative Unfolding

distribution punfold(xgen) is entirely determined by the training choice ms and shows prac-
tically no dependence on the value md encoded in the actual data. All hyperparameters
of the network training are listed in Tab. A.8.

5.1.4 Taming the training bias

The next question is how we can improve the situation where, ms being the top mass
value used for the simulation and md the actual top mass in the data, Eq.(5.13) turns
into

psim(xgen|ms) punfold(xgen|ms,��md)

p(xreco|xgen)

y
xpθ(xgen|xreco,ms)

psim(xreco|ms)
correspondence←−−−−−−−−−→ pdata(xreco|md) (5.18)

In the unfolded distribution the training information ms completely overwrites md.
Moreover, even if there was enough sensitivity, a classifier comparing two shifted mass
peaks learns weights far away from unity, leading to numerical challenges. This means
we cannot use the usual iterative methods to remove the bias from the training data.

Following the strategy from Section 5.1.1, we first increase the sensitivity on md. For
this, we pre-process the data such that md is directly accessible by adding an estimator of
md to the representation of xreco. Ideally, this estimator would be inspired by an optimal
observable. Such a 1-dimensional sufficient statistics should exist, and we know how to
construct it. For the top mass we just use the weighted median of the 3-jet masses at
reco-level, Mbatch

jjj . For a batch size around 104 events, this information will be strongly
correlated with the top mass,

Mbatch
jjj ≈ md ≡ mt

∣∣∣∣∣
data

. (5.19)

120 140 160 180 200 220
M j j j (rec)

120

140

160

180

200

220

M
jj

j
(g

en
)

mt =172.5 GeV

120 140 160 180 200 220
M j j j (rec)

120

140

160

180

200

220

M
jj

j
(u

nf
ol

de
d)

mt =172.5 GeV

Figure 5.6: Truth and learned migration in the Mjjj distribution between reco-
level and gen-level.

79

5 Generative Unfolding

xreco,1 ... xreco,n

Em
b ...

Em
b

Transformer-Encoder

Self-Attention
Reco-level correlations

xgen,1(t) ... xgen,N(t) t

Em
b ...

Em
b

Transformer-Decoder

Self-Attention
Gen-level correlations

Cross-Attention
Combinatorics

Li
ne

ar ...

Li
ne

ar

(
vθ(c1, t), ... , vθ(cN , t)

)
vθ(xgen(t), t, xreco) =

c1 cN

Figure 5.7: Schematic representation of a parallel transfusion network, adapted
from [78].

This batch-wise kinematic information can be extracted at the level of the loss evaluation,
and it goes beyond the usual single-event information, similar to established MMD loss
modifications of GAN training [93,151].

Second, we weaken the bias from the training data by combining training data with
different top masses, but without an additional label,

mt = {169.5, 172.5, 175.5} GeV (combined training). (5.20)

It turns out sufficient to cover a range of top masses with separate, unmixed training
batches. The range ensures that top masses in the actual data are within the range of
the training data. We ensure a balanced training by enlarging the event samples with
mt = 169.5 GeV and mt = 175.5 GeV to match the size of the largest sample. This is
done by repeating and shuffling the input data, which effectively uses these events several
times per epoch. With an appropriate regularization we avoid overfitting. The limited
number of events in the simulations makes this training strategy sub-optimal. We expect
larger and additional mt simulations, unavailable at this time, to improve the results.
We observed that both steps need to be included to ensure precise, unbiased results.

Obviously, this strategy of strengthening the dependence on md and reducing the
training bias is not applicable to all problems, and it does not lead to the endpoint of the
Bayesian iterative method, but for our combined inference-unfolding strategy it works,
and this is all we need.

Transfusion architecture

As the network task becomes significantly more difficult we replace the simple dense
architecture with a transfusion network, described in detail in Ref. [37,78] and visualized
in Fig. 5.7.

80

5 Generative Unfolding

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

mt =171.5 GeV gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

mt =173.5 GeV gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

Figure 5.8: Mjjj-distribution from 4-dimensional unfolding of data with mt =
171.5 GeV (left) and mt = 173.5 GeV (right). We train the network combining
samples with three top masses, Eq.(5.20).

Each component of the n-dimensional condition as well as of the time-dependent N -
dimensional input x(t) are individually embedded by concatenating positional information
and zero padding. The embedded conditions are passed through the encoder part of a
transformer, while the embedded input is passed through the decoder counterpart. In
both transformer parts, we apply self-attention to learn the correlations in the condition
and in the input. It is complemented by a cross-attention between encoder and decoder
outputs, to learn the correlations between conditions and input. They are crucial for
the unfolding task. The transformer output for every component of the input one high-
dimensional embedding vector ci, which is mapped back to a 1-dimensional component of
the velocity field by a shared linear layer. This way we express the learned N -dimensional
velocity field of Eq.(3.48) as

vθ(xgen(t), t, xreco) = (vθ(c1, t), . . . , vθ(cN , t)) . (5.21)

The hyperparameters of the network can be found in Tab. A.9.

Using the transfusion network we unfold the 4-dimensional phase space from Eq.(5.16).
The results are shown in Fig. 5.8. We unfold data generated with two different top
masses, mt = 171.5 GeV and mt = 173.5 GeV. Neither of these two values are present
in the training data. In both panels we see that the top mass as the main kinematic
feature is reproduced well, without a significant effect in the relative deviation. The fitted
peak values of the distribution are mpeak = (171 ± 1) GeV when unfolding data with
171.5 GeV, and mpeak = (173± 1) GeV when unfolding data 173.5 GeV. While the bias
might not have vanished entirely, it is well contained within the numerical uncertainties.
We will extract the unfolded top mass value properly in Section 5.1.5.

Dual network

Given the more complicated training task, we observe a drop in performance when we
increase the dimensionality to unfold the 6-dimensional phase space

x =
(
{mi}, {Mik}

)
, (5.22)

defined in Eq.(5.17) using the transfusion network. Inspired by Refs. [1, 41], we factorize
the phase space density into two parts, each encoded in a generative network: the first
network learns the individual jet mass directions in phase space, which are universal

81

5 Generative Unfolding

and do not depend on the value of mt; a second network generates the 2-jet masses
conditioned on the individual jet masses,

p(xgen|xreco) = p
(
{mi,gen}

∣∣ xreco,M
batch
jjj

)
︸ ︷︷ ︸

network 1

p
(
{Mik,gen}

∣∣ {mi,gen}, xreco,M
batch
jjj

)
.︸ ︷︷ ︸

network 2

(5.23)

Both CFM-transfusion networks also receive Mbatch
jjj calculated for a full batch using

Eq.(5.7). For the event generation we first generate the unfolded jet masses {mi}, pass
them as a condition to the second network, and then generate the unfolded 2-jet masses
{Mik}.

Looking at the 6-dimensional correlation giving Mjjj in Fig. 5.9, we observe a hardly
visible drop in performance, but still no bias from the training data. As before we observe
peak values at mpeak = (171 ± 1) GeV when unfolding data with 171.5 GeV and at
mpeak = (173± 1) GeV when unfolding data with 173.5 GeV.

5.1.5 Mock top-quark mass measurement

We estimate the benefit from generative unfolding by repeating the top mass measurement
from Ref. [137] on the same simulated data, but with a large number of bins in the
Mjjj histogram. The top mass is extracted from the binned unfolded distributions
using a fit based on χ2 = dTV −1d, where d is the vector of bin-wise differences between
the normalized unfolded distribution and the normalized prediction from the simulated
data. The covariance matrix V contains the uncertainties and corresponding bin-to-bin
correlations. A parabola fit provides the central value of mt and the standard deviation.

Statistical and model uncertainties

First, this fit requires the covariance matrix describing statistical uncertainties [158]. We
sample from the latent space, conditional on the reco-level events, N times, which means
we generate N unfolded distributions from the posterior pθ(xgen|xreco). We then use a
Poisson bootstrap, where we assign a weight from a Poisson distribution with unit mean.
The size of one replica is 41,000 events, corresponding to the smallest training sample

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

mt =171.5 GeV gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

mt =173.5 GeV gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

Figure 5.9: Unfolded Mjjj with two networks from 6-dimensional unfolding of
data with mt = 171.5 GeV (left) and mt = 175.5 GeV (right). We train the
network combining samples with three top masses, Eq.(5.20).

82

5 Generative Unfolding

112 132 152 172 192 232
Mjjj [GeV]

112

132

152

172

192

232

M
jj
j

[G
eV

]

mt = 172.5 GeV

−0.8

−0.6

−0.4

−0.2

0.0

0.2

112 132 152 172 192 212 232
Mjjj [GeV]

112

132

152

172

192

212

232

M
jj
j

[G
eV

]

mt = 172.5 GeV

−0.8

−0.4

0.0

0.4

0.8

Figure 5.10: Correlation matrices for mt = 172.5 GeV from Nrep = 1000 replicas
in 60 bins (right) and 5 bins (left) for the 4-dimension unfolding.

with mt = 169.5 GeV and the approximate number of real data events. The number of
events follows a Poisson distribution, with the mean given by the nominal sample size.

For the measurement, we create Nrep = 1000 replicas by selecting the nominal number
of reco-level events from the test dataset with mt = 172.5 GeV and the full datasets for
the simulations at different top masses. We unfold each replica, calculate Mjjj , and use
the histogram entries u(n)

i to compute the correlation matrix of statistical fluctuations as

covij = 1
Nrep

Nrep∑
n=1

(u(n)
i − ūi)(u

(n)
j − ūj) with ūi = 1

Nrep

Nrep∑
n=1

u
(n)
i

corrij = covij√covii
√covjj

. (5.24)

This procedure also takes into account the uncertainties due to the statistical fluctuations
of Mbatch

jjj . The training of the network itself introduces correlations which are at least
one order of magnitude smaller and therefore ignored in the measurement.

The 60×60 correlation matrix for the 4-dimensional unfolding using the largest sample
generated with mt = 172.5 GeV is shown in Fig. 5.10. We see two distinct source of
bin-to-bin correlations. In general, an event migrating from bin i to bin j gives rise
to negative correlations in the number of events between the two bins. Additionally,
unbiasing the unfolding ensures that a shift in the batch-wise condition also shifts the
unfolded peak. This effect, accounted for in the bootstrapping method, introduces an
additional contribution to the bin-to-bin correlations. It causes positive correlations
between bins on the same side of the peak and anti-correlations otherwise. In our case,
both effects are most apparent in the peak region and its neighbouring bins as shown in
Fig. 5.10. Second, we follow Ref. [137] to estimate the uncertainty from the choice of mt

in the simulation. We evaluate the difference between the unfolded distribution and the
corresponding simulated gen-level distribution for each bin and construct a covariance
matrix

covij = σiρijσj , (5.25)

where σi is the uncertainty in bin i, and ρij the correlation between bins i and j. These
bin-to-bin correlations are not known, but since we do not observe any systematic pattern,
we neglect the bin-to-bin correlations and use a diagonal covariance matrix. It was

83

5 Generative Unfolding

verified that other choices do not alter the results. To estimate the impact of this model
uncertainty, we perform the mt extraction twice. First, we only include the statistical
covariance matrix corresponding to 41,000 available events at the reco-level. Second, we
repeat the same measurement also including the model uncertainty.

Improvement

To compare our new unfolding technique to the existing TUnfold results [137], we repeat
the extraction using the simulated data sets with 172.5 GeV and using the statistical
covariance matrix from the measured data, published in HEPData [159]. We scale the
statistical uncertainty by a factor of

√
52/41 to account for the fact that the CMS

measurement uses about 52,000 events. The χ2-curves and the corresponding results are
displayed in Fig. 5.11, where we show the 4-dimensional and 6-dimensional unfoldings
with 5 bins and the TUnfold result. While the statistical uncertainties are slightly larger
for the unbinned unfolding, we see that the uncertainty in the choice of mt is reduced
from being a leading model uncertainty in the CMS measurement to a negligible level.

To confirm that the choice in mt does not leave a residual bias, we repeat the
top-quark mass extraction for different top masses in the reco-level data. The results
are shown in the left panel of Fig. 5.12. While the bin width in the unfolding with
TUnfold is limited by the jet mass resolution, we test various binning schemes for
the unbinned unfolding and observe closure for up to 20 bins. For finer binnings the
resolution is too fine for the comparably coarse grid of available gen-level distributions
with mt = {169.5, 171.5, 172.5, 173.5, 175.5} GeV, leading to an unstable closure test
altogether.

Circumventing this limitation, we interpolate the gen-level distributions for mt-values
close to 172.5 GeV, where three samples with a separation of 1 GeV are available and
a linear dependence of the bin content on mt is a valid approximation. Now, we can
compare the generative unfolding with 5 to 60 bins in terms of the statistical uncertainty.
The results are displayed in the right panel of Fig. 5.12, indicating an increase in the
precision of the top mass by up to 40% due to the improved resolution.

170 171 172 173 174 175

 [GeV]tm

0

50

100

150

200

250

300

350

400

m
in

2 χ-2 χ

 GeV0.26−
0.26+ = 172.53

t
CFM, 4d, 5 bins, m

 GeV0.25−
0.25+ = 172.58

t
CFM (stat. only), 4d, 5 bins, m

 GeV0.27−
0.27+ = 172.49

t
CFM, 6d, 5 bins, m

 GeV0.25−
0.25+ = 172.60

t
CFM (stat. only), 6d, 5 bins, m

 GeV0.32−
0.32+ = 172.50tmTUnfold,

 GeV0.21−
0.21+ = 172.51tmTUnfold (stat. only),

Figure 5.11: Extraction of mt with a χ2 test only accounting for statistical
uncertainties and with the additional model uncertainty from the choice of mt

in the simulation.

84

5 Generative Unfolding

 [GeV]tTrue m

0.5−

0

0.5

1

1.5

 [G
eV

]
t

 -
 tr

ue
 m

t
E

xt
ra

ct
ed

 m

CFM, 4d, 5 bins CFM, 6d, 5 bins

CFM, 4d, 10 bins CFM, 6d, 10 bins

CFM, 4d, 20 bins CFM, 6d, 20 bins

171.5 172.5 173.5 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 [G
eV

]
t

S
ta

t.
un

ce
rt

ai
nt

y
in

 m

CFM, 60 bins CFM, 30 bins

CFM, 20 bins CFM, 12 bins

CFM, 10 bins CFM, 6 bins

CFM, 5 bins

4d 6d

Figure 5.12: Left: deviation of the extracted top mass from the reco-level truth,
employing 4-dimensional and 6-dimensional unfolding for the assumed values of
171.5, 172.5, and 173.5 GeV. Right: statistical uncertainties of the extractions of
the top mass from the 4-dimensional and 6-dimensional unfolding with different
binnings, assuming mt = 172.5 GeV.

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

0

1

2

N
or

m
al

iz
ed

gen
unfolded
rec

0.75
1.00
1.25

ra
ti

o

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
|∆φ12|

0.1
1.0

10.0

δ
[%
]

Figure 5.13: Kinematic distributions from full, 12-dimensional unfolding. We
show the 3-jet mass as well as the azimuthal angle between the two leading jets.

5.1.6 Full phase space unfolding

As a last step of our unfolding program, we need to unfold the full 12-dimensional phase
space given the measured top mass. This has the advantage that the leading source of
training bias is removed. Following the same precision arguments as before, we keep the
mass basis of Eq.(5.17) for the first 6 of the 12 phase space dimensions. This ensures that
the 2-jet and 3-jet masses are reproduced well, albeit not at the level of the dedicated
first unfolding step.

The remaining phase space dimensions are

x =
(
{mi}, {Mik}, {pT,i}, {ηi}

)
i, k = 1, 2, 3 , (5.26)

all other kinematic observables can be computed from these basis directions. For the
12-dimensional unfolding we use a single transfusion network, after checking that the dual
network does not lead to an improvement. The hyperparameters are given in Tab. A.10.

85

5 Generative Unfolding

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

w/ cut gen
unfolded
rec

0.75
1.00
1.25

ra
ti

o

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
|∆φ12|

0.1
1.0

10.0

δ
[%
]

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

w/ cut gen

unfolded
rec

0.75
1.00
1.25

ra
ti

o

120 140 160 180 200 220
M j j j [GeV]

0.1
1.0

10.0

δ
[%
]

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

w/ cut gen

unfolded

rec

0.75
1.00
1.25

ra
ti

o

0 100 200 300 400
pT,2 [GeV]

0.1
1.0

10.0

δ
[%
]

0

1

2

N
or

m
al

iz
ed

w/ cut gen
unfolded
rec

0.75
1.00
1.25

ra
ti

o

0.0 0.5 1.0 1.5
∆R12

0.1
1.0

10.0

δ
[%
]

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

w/ cut gen
unfolded

rec

0.75
1.00
1.25

ra
ti

o

−0.25 0.00 0.25 0.50 0.75 1.00 1.25
|∆η12|

0.1
1.0

10.0

δ
[%
]

0.00

0.01

0.02

0.03

N
or

m
al

iz
ed

w/ cut gen
unfolded

rec

0.75
1.00
1.25

ra
ti

o

40 60 80 100 120 140 160
M12 [GeV]

0.1
1.0

10.0

δ
[%
]

0.000

0.002

0.004

0.006

N
or

m
al

iz
ed

w/ cut gen

unfolded

rec

0.75
1.00
1.25

ra
ti

o

−50 0 50 100
M12−M13 [GeV]

0.1
1.0

10.0

δ
[%
]

0.00000

0.00005

0.00010

0.00015

N
or

m
al

iz
ed

w/ cut gen

unfolded

rec

0.75
1.00
1.25

ra
ti

o

10000 20000 30000 40000 50000 60000∑
m2

i j [GeV 2]

0.1
1.0

10.0

δ
[%
]

Figure 5.14: Kinematic distributions from full, 12-dimensional unfolding. We
show the target 3-jet distribution, the azimuthal angle between the jets after
cut, and a set of single-jet observables, 2-jet correlations, and 3-jet correlations
(top to bottom).

Two kinematic distributions are shown in Fig 5.13. In the left panel we see that the
top mass peak is learned almost as well as for the 4-dimensional and 6-dimensional cases.
Indeed, this is the case for all jet masses and 2-jets masses, which are combined to the
3-jet mass with the top peak.

86

5 Generative Unfolding

50 100 150
M12 (gen)

20

40

60

80

100

120

140

160

M
23

(g
en

)

50 100 150
M12 (unfolded)

20

40

60

80

100

120

140

160

M
23

(u
nf

ol
de

d)

Figure 5.15: Correlation of two 2-jet masses at gen-level truth (left) and after
unfolding (right).

A serious issue arises from the azimuthal angle between the two leading jets, ∆ϕ.
According to Eq.(5.5) this angle is learned as a correlations of 7 phase space directions.
Moreover, we do not have access to the azimuthal angles, only to the cosine of differences
between angles. Here the problem arises that the network does not ensure that this
cosine comes out in the physical range −1 ... 1. We enforce the physical range by clipping
the cosine for small angles to one, which causes a mis-modelling of the small-∆ϕ regime,
shown in the right panel of Fig. 5.14.

A simple way to improve this mis-modelling is to require cos ∆ϕ12 < 1. However, from
Fig. 5.13 we know that this does not solve the problem. Instead, we accept the fact that
for unfolding the masses well we might have to pay a prize in the coverage of the angular
correlations, and we apply an additional acceptance cut

∆ϕij > 0.1 (5.27)

both, at the reco- and gen-levels of the unfolded events. This reduces the unfolded
dataset by 30%. An extended set of unfolded kinematic distribution after this cut are
shown in Fig 5.14. We know that our unfolding methods covers correlations between the
original phase space directions well, because many of the kinematic observables shown in
Fig 5.14 are, in reality, complex correlations of our phase space basis. However, to end
with a nice figure and to drive home the message that high-dimensional unfolding using
conditional generative networks does learn the corresponding correlations well, we show
one of our favorite correlations in Fig 5.15. Indeed, there is literally no difference in the
correlation between two of the three 2-jet masses. This correlation also confirms that
the condition Mik ≈ mW leads to three distinct lines in phase space, where close to the
crossing points it is impossible to reconstruct which of the two jets come from the W -decay.

For our study, we unfold detector effects from boosted top decay data using state-
of-the-art conditional generative networks. Unfolding decay kinematics is especially
challenging because we expect a large model dependence and even systematic bias from
the choice of the top mass in the simulated training data. Our study shows that gen-
erative unfolding can solve this problem and provides a significant milestone towards
incorporating generative unfolding in an existing LHC analysis. This study serve as a

87

5 Generative Unfolding

blueprint for an actual CMS analysis, both, for a top mass measurement and for a wider
use of the unfolded data.

5.2 Generative Unfolding with distribution mapping

The content of this section was finalized in collaboration with Anja Butter, Sascha Diefen-
bacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman and Tilman Plehn. It is
adapted from Ref. [4].

In this study, we focus on a class of generative model-based approaches that use distribu-
tion mapping, whereby the experimental events are morphed to match the corresponding
gen-level events. By starting from the experimental events directly, the generative model
only needs to move the events a little (assuming a precise detector), whereas other
generative approaches need to map generic Gaussian random variables into the data
distribution. Previously, two distribution mapping approaches were proposed, both based
on conditional diffusion models [160]: one using Schrödinger Bridges (SBUnfold [77])
and one using Direct Diffusion (DiDi [78]). Previous work showed that these techniques
showed excellent performance on the marginal distributions of the target cross sections,
but they were not able to preserve the conditional distributions of the detector response.
This could lead to a strong dependence on the gen-level simulation and is thus undesirable.
The goal of this study is to remedy this issue through conditioning [82] as described
in Section 3.5.3. Along the way, we introduce a new benchmark dataset, inspired by the
recent ATLAS measurement [161], that can be used for distribution mapping as well as
any unfolding method.

New methods following the discussing in Section 3.5 are presented in the context of
unfolding in Section 5.2.1 and tested on a dataset of single jet substructure in Section 5.2.2.
We then create a a new dataset describing a 22-dimensional phase space in Z + 2-jets at
the Large Hadron Collider in Section 5.2.3. This latter dataset combines jet substructure
and kinematic information. For all applications, we provide a detailed discussion of
the conditional Schrödinger Bridge and Direct Diffusion performance and a comparison
with the state of the art in generative unfolding, a diffusion model using transformer
layers [78,152].

5.2.1 Methodology

For unfolding, we want to transform a measured reco-level distribution preco to the
corresponding gen-level distribution pgen. Recent implementations [78], such as presented
in Section 5.1, of generative unfolding use a CFM network to generate samples from
the posterior distribution p(xgen|xreco). It learns the velocity v(x, t, xreco), linked to the
posterior distribution via Eq.(3.69) and flowing between a point of a Gaussian latent
space and a point in the gen-level phase space conditioned on a given rec-level event. A
schematic illustration of the training procedure is shown in the top part of Fig. 5.16.

Alternatively, we can also map reco-level events directly to their gen-level counterpart
either using the SB or DiDi. The key difference to standard generative unfolding is
that we use the reco-level information to define the trajectories instead of treating it as
an additional input to the network. This is visualized in the center of Fig. 5.16. We
learn the drift term of the probability p(x, t) as described in Eq.(3.92). Optionally, we

88

5 Generative Unfolding

t ∼ U(0, 1)

xgen ∼ pgen, ϵ ∼ N (0, 1)

xreco ∼ preco

x(t, xgen, ϵ) CFM vθ

t ∼ U(0, 1)

xgen ∼ pgen, (ϵ ∼ N (0, 1))

xreco ∼ preco

x(t, xgen, xreco, (ϵ)) DiDi/SB fθ

t ∼ U(0, 1)

xgen ∼ pgen, ϵ ∼ N (0, 1)

xreco ∼ preco

x(t, xgen, xreco, ϵ) C-DiDi/
C-SB

fθ

Figure 5.16: Schematic illustration of the training procedure of a CFM-based
(top), a distribution mapping-based (middle) and a conditional distribution
mapping-based (bottom) generative unfolding pipeline.

can add Gaussian noise to the trajectories to make the networks stochastic rather than
deterministic. The impact of the noise is governed by the choice of the diffusion term
g(t).

Finally, we can combine the conditional generative approach with the DM by giving
the reco-level information to the network directly. The training objective is to learn a
drift term linked to the conditional probability p(x(t), t|xreco) as in Eq.(3.100). In this
scenario adding noise is not optional. The exact training procedure is illustrated in the
lower part of Fig. 5.16.

5.2.2 Unfolding Jet Substructure Observables

As a first physics example, we consider the updated version [162] of the OmniFold
dataset [163] which has become a standard benchmark for unfolding methods [77,78,164].
It consists of events describing

pp→ Z + jets (5.28)

89

5 Generative Unfolding

0.00

0.02

0.04

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

10 20 30 40 50 60
Jet mass m

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.00

0.02

0.04

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

10 20 30 40 50 60
Jet multiplicity N

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0

1

2

3

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

0.2 0.4 0.6 0.8 1.0 1.2
N-subjettiness ratio τ21

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

10−1

100

101

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

0.0 0.1 0.2 0.3 0.4 0.5
Jet width w

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

−12 −10 −8 −6 −4
Groomed mass logρ

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

10−3

10−1

101

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

0.1 0.2 0.3 0.4 0.5
Groomed momentum fraction zg

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

Figure 5.17: Unfolded distributions of the 6d jet-substructure dataset using
CFM, DiDi, C-DiDi, SB and C-SB. All unfolded distributions reproduce the
truth at percent level. The remaining differences are well covered by the BNN
uncertainties.

production at
√
s = 14 TeV. The events are generated and decayed with Pythia 8.244 [25]

with Tune 26, the detector response is simulated with Delphes 3.5.0 [28] with the
CMS card, that uses particle flow reconstruction. At both pre-detector (gen level) and
post-detector (reco level) jets are clustered with the anti-kT algorithm [50] with R = 0.4,
as implemented in FastJet 3.3.2 [53].

We unfold six jet substructure observables of the leading jet: mass m, width τ
(β=1)
1 ,

multiplicity N , soft drop mass [165, 166] ρ = m2
SD/p

2
T , momentum fraction zg using

zcut = 0.1 and β = 0, and the N -subjettiness ratio τ21 = τ
(β=1)
2 /τ

(β=1)
1 [167]. The dataset

contains about 24M simulated events, 20M for training and 4M for testing.

Unfolded distributions

We unfold the 6-dimensional phase space using all five network implementations of the
three methods

• conditional generative (Conditional Flow Matching, CFM);

• unconditional distribution mapping DiDi and SB; and

• conditional distribution mapping C-DiDi and C-SB.

The respective velocity fields and drift terms are encoded in standard MLPs, the hyper-
parameters are given in Tab. A.11. All networks are implemented in PyTorch [84] and
trained with the Adam [60] optimizer. We follow the preprocessing from Ref. [78].

Due to the varying numerical requirements of different networks, we choose suitable
numerical solvers for their evaluation. For the CFM, an ODE-based network, we unfold
reco-level samples using a numerical ODE-solver [168]. The SDE-based networks C-DiDi
and C-SB use the DDPM SDE-solver [39]. For the unconditional DiDi and SB we have
the choice between an ODE-based formulation with noise scale g = 0 and an SDE-based

90

5 Generative Unfolding

formulation with g > 0. We observe no significant difference in performance between
them, the shown results use the SDE formulation.

In Fig. 5.17 we show all unfolded distribution together with the true gen-level and
reco-level distributions. For CFM, DiDi and SB, we reproduce the results shown in
Ref. [78]. Both methods can reliably solve this unfolding task to sub-percent precision.
The new C-DiDi and C-SB give a precision on par with the established CFM method.
For all networks, we only observe significant deviations from the truth far into the tails
or at hard edges, for instance, in the groomed momentum fraction zg.

The uncertainties reported in the figures are produced from posterior sampling. This
is possible by making all of the models Bayesian neural networks, approximated with
independent Gaussians for every network parameter, doubling the number of model
parameters [67–69,72,169]. Previous studies in the context of the LHC have shown that
the posterior is a reasonable estimate of the variation introduced by the limited size of
the training dataset [71, 156, 170]. Even though the weights are Gaussian distributed,
the final network output is generally not a Gaussian. The concept of BNNs can also be
applied to the density estimation in generative networks [1, 41, 66], including diffusion
generators [1, 2] as described in Section 3.4.2.

The uncertainties shown in Fig. 5.17 are obtained by evaluating the respective net-
works 20 times, each time with a new set of network weights sampled from the learned
distribution. The deviations from the true gen-level distribution as well as the differences
between the five networks are generally covered by these uncertainties. As expected, the
uncertainty increases in regions of low training statistics e.g. the tail of the jet mass
distribution m.

Learned Mapping

Next, we check if the learned mapping between the reco-level and gen-level distributions
agrees with the physical forward simulation. We show migration matrices for some of the
observables in Fig. 5.18: the first row shows the truth encoded in the training data; the
following columns show the learned event-wise mapping from the the CFM, unconditional
DiDi/SB and C-DiDi/C-SB. While the 6-dimensional unfolded distributions are nearly
identical for all methods, the migration plots show a significant difference between the
unconditional and conditional networks.

The conditional CFM generator is, by design, trained to reproduce the conditional
distribution p(xgen|xreco). In contrast, the unconditional DM learns to map p(xreco)→
p(xgen), but with an unphysically diagonal optimal transport prescription, as showcased
in the third row. Finally, we see that the conditional C-DiDi and C-SB encode the
conditional probabilities just like the CFM does.

Finally, we take a closer look at the learned posterior distributions p(xgen|xreco). While
single-event-unfolding is an ill-defined analysis task, we can use the per-event posterior to
illustrate the performance of the different unfolding generators [36, 37]. All our methods
are inherently non-deterministic when inputting the same reco-level event repeatedly,
which allows us to generate non-trivial learned posteriors. For the CFM, we sample the
latent Gaussian distribution, for any one given latent space point the ODE trajectory
is deterministic. In contrast, the DM-methods always start from the same latent space
point, the reco event, but evolve it using a non-deterministic SDE.

91

5 Generative Unfolding

0 10 20 30 40 50

N (Rec)

0

10

20

30

40

50

N
(G

en
)

Truth

0.2 0.4 0.6 0.8 1.0

τ21 (Rec)

0.2

0.4

0.6

0.8

1.0

τ
21

(G
en

)

Truth

−12 −10 −8 −6 −4 −2

logρ (Rec)

−12

−10

−8

−6

−4

−2

lo
g
ρ

(G
en

)

Truth

0 10 20 30 40 50

N (Rec)

0

10

20

30

40

50

N
(G

en
)

CFM

0.2 0.4 0.6 0.8 1.0

τ21 (Rec)

0.2

0.4

0.6

0.8

1.0

τ
21

(G
en

)

CFM

−12 −10 −8 −6 −4 −2

logρ (Rec)

−12

−10

−8

−6

−4

−2

lo
g
ρ

(G
en

)

CFM

0 10 20 30 40 50

N (Rec)

0

10

20

30

40

50

N
(G

en
)

DiDi / SB

0.2 0.4 0.6 0.8 1.0

τ21 (Rec)

0.2

0.4

0.6

0.8

1.0

τ
21

(G
en

)

DiDi / SB

−12 −10 −8 −6 −4 −2

logρ (Rec)

−12

−10

−8

−6

−4

−2

lo
g
ρ

(G
en

)

DiDi / SB

0 10 20 30 40 50

N (Rec)

0

10

20

30

40

50

N
(G

en
)

C-DiDi / C-SB

0.2 0.4 0.6 0.8 1.0

τ21 (Rec)

0.2

0.4

0.6

0.8

1.0

τ
21

(G
en

)

C-DiDi / C-SB

−12 −10 −8 −6 −4 −2

logρ (Rec)

−12

−10

−8

−6

−4

−2

lo
g
ρ

(G
en

)

C-DiDi / C-SB

Figure 5.18: Migration maps for the 6D OmniFold dataset, truth compared to
three different methods. We only show DiDi and C-DiDi, after verifying that
the results are indistinguishable from SB and C-SB.

In Fig. 5.19, we show some single-event posterior distributions from the three methods,

92

5 Generative Unfolding

0.2 0.4 0.6 0.8 1.0
N-subjettiness ratio τ21

0

2

4

6
N

or
m

al
iz

ed

Event 2

Event Rec

Event Gen

CFM

DiDi/SB

C-DiDi/C-SB

Full Gen

−12.5 −10.0 −7.5 −5.0 −2.5
Groomed mass logρ

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

Event 2

Event Rec
Event Gen
CFM
DiDi/SB
C-DiDi/C-SB
Full Gen

0.1 0.2 0.3 0.4 0.5
Groomed momentum fraction zg

0

2

4

6

8

10

12

N
or

m
al

iz
ed

Event 4

Event Rec

Event Gen

CFM

DiDi/SB

C-DiDi/C-SB

Full Gen

−12.5 −10.0 −7.5 −5.0 −2.5
Groomed mass logρ

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

Event 4

Event Rec

Event Gen

CFM

DiDi/SB

C-DiDi/C-SB

Full Gen

Figure 5.19: Posterior distributions obtained from unfolding single events with
CFM, DiDi and C-DiDi on the 6D OmniFold dataset. Each of the three events is
unfolded 10000 times. For reference, we also show the full gen-level distribution.

obtained by unfolding the same reco-event 10000 times. For reference, we include the
unfolded event at reco-level, the gen-level truth, and the full unconditional gen-level
distribution. Again, we observe a different behavior between the unconditional DM on
the one hand and the CFM and conditional DM on the other. As expected from the
derivation and from the migration plots, the unconditional DiDi network does not learn a
physics-defined posterior, and our sampled distribution shows simply Gaussian smearing.
The width of the Gaussian is related to the noise scale g of the SDE, which we verified by
varying the noise scale over four orders of magnitude. The two conditional methods learn
physically meaningful posteriors. Their shapes vary widely for the shown events and
observables, but they agree between the different methods. We checked that the C-DiDi
posteriors are invariant when varying the SDE noise scale g, so the learned single-event
unfoldings illustrate how the CFM and the conditional DM-methods learn the same
non-trivial conditional posteriors.

Classifier test

One approach to quantitatively test the performance of unfolding across the entire
measured phase space is to use a post-hoc classifier, assuming that supervised classifier

93

5 Generative Unfolding

10−2 10−1 100 101 102

Weights

10−7

10−5

10−3

10−1

101

N
or

m
al

iz
ed

Gen distribution weights

CFM
DiDi
C-DiDi
SB
C-SB

10−2 10−1 100 101 102

Weights

10−7

10−5

10−3

10−1

101

N
or

m
al

iz
ed

Joint distribution weights

CFM
DiDi
C-DiDi
SB
C-SB

Figure 5.20: Classifier weight distributions for each network applied to the 6D
OmniFold dataset. The left panel shows the gen-level weights according to
Eq.(5.29), the right panel the joint distribution weights defined in Eq.(5.30).

training is more effective than unsupervised density estimation3 as part of the generative
networks [78, 92]. A well-trained and calibrated classifier C comparing training and
generated events will approximate the likelihood ratio

w(xgen) = ptrue(xgen)
pθ(xgen) = C(xgen)

1− C(xgen) . (5.29)

With a slight modification, we can employ this technique to evaluate the quality of our
learned posterior distributions. Instead of training the classifier only on gen-level, we
train on the joint reco-level and gen-level data. This gives us access to the likelihood
ratio of the joint distributions. Making use of the fact that the reco-level distribution is
the same for generated and true, we can write

C(xgen, xrec)
1− C(xgen, xrec)

= ptrue(xgen, xrec)
pθ(xgen, xrec)

= ptrue(xrec)ptrue(xgen|xrec)
pθ(xrec)pθ(xgen|xrec)

= ptrue(xgen|xrec)
pθ(xgen|xrec)

≡ w(xgen|xrec) . (5.30)

Therefore, a classifier trained on the joint distributions gives us access to the likelihood
ratio between the true and learned posterior distributions.

For each of our five networks we train a classifier, using the hyperparameters listed in
Tab. A.11. First we only look at the gen-level unnfolded distributions and discriminate
them from the true gen-level distribution. We show the corresponding weight distributions,
evaluated on the generated events, in the left panel of Fig. 5.20. For all networks we
see a dominant peak in one, indicating that for the overwhelming majority of events,
the classifier cannot tell truth from generated. The tail towards lower weights indicates
events which should not be there and which the classifier weight tries to remove, i.e.
phase space regions that the network overpopulates. The right tail marks events and
phase space regions underpopulated by the generative unfolding network.

3In practice, if this is the case, the post-hoc classifier could be used to improve the quality of the
generative model [171].

94

5 Generative Unfolding

Comparing the five networks and the three underlying methods, the CFM shows the
smallest tails in both directions. The conditional DiDi network is almost on par with
the CFM, the difference is covered by the classifier training fluctuations. Unconditional
DiDi leads to a larger tail towards large weights, but hardly any events with small
weights, indicating a bias in learning features or their correlations. The SB networks
show a slightly larger spread in the weight distribution, and the conditional SB is again
significantly narrower than the unconditional version.

The right panel of Fig. 5.20 shows the weight distributions for the conditional phase
space distributions. While for the conditional CFM and the conditional DM-networks the
difference to the left panel is marginal, we now see that the unconditional DM-networks
show little structure and large overflow bins, indicating that the learned joint distributions
do not reproduce the training data.

5.2.3 Unfolding Substructure and Kinematic Properties

In order to stress-test the methods with a mixture of jet substructure and kinematic infor-
mation, we simulated a dataset similar to the one used by a recent ATLAS analysis [161].
The resulting dataset has 22 instead of 6 dimensions, as in the previous dataset4.

New Z + 2 jets dataset

We now consider the process

pp→ Zµµ + 2 jets . (5.31)

We generate the events with Madgraph 5 [23], showering and hadronization are simulated
with Pythia 8.311 [172], and detector effects are included via Delphes 3.5.0 [28] using
the default CMS card. Jets are clustered at gen-level and reco-level using an anti-kT
algorithm with R = 0.4 implemented in FastJet 3.3.4 [53].

We apply a set of selections resembling the ATLAS analysis: events are required to
have exactly two muons with opposite charge and

pT,µ > 25 GeV and mµµ ∈ [81, 101] GeV . (5.32)

Furthermore, we require at least two jets with

pT,j > 10 GeV and ∆Rµj > 0.4 . (5.33)

All events must pass all selections on gen and reco level (acceptance effects are small
and ignored). The training set consists of 1.5M events, and the test set consists of 400k
events.

Instead of restricting ourselves to jet substructure observables of the leading jet, we
now unfold both kinematic information of the muons and leading jets as well as the
substructure of the leading two jets. At the subjet level, we include the number of jet

4The OmniFold dataset does have the full set of jet constituents, but this is a high-dimensional
variable-length set, which is beyond the scope of this study.

95

5 Generative Unfolding

0.0

0.1

0.2

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

−2 −1 0 1 2
ηµ2

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

−3 −2 −1 0 1 2 3
φ j2

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.0

0.1

0.2

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

85 90 95 100
mµµ

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.00

0.01

0.02

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

40 60 80 100 120 140
pT,µ1

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

0 2 4 6 8
∆R j1, j2

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.000

0.025

0.050

0.075

0.100

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

5 10 15 20 25 30
m j1

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.000

0.025

0.050

0.075

0.100

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

10 20 30 40
N j2

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0

2

4

6

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
τ3, j2

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

0.000

0.005

0.010

N
or

m
al

iz
ed

Rec

Gen

CFM

DiDi

C-DiDi

SB

C-SB

0 50 100 150 200
pT,µµ

0.95
1.00
1.05

U
nf

ol
de

d
Tr

ut
h

Figure 5.21: Unfolded distributions of the 22-dimensional Z+2 jets dataset using
CFM, DiDi, C-DiDi, SB and C-SB.

constituents N and the subjettiness variables τ1, τ2 and τ3 [167] for each jets. In total
this defines a 22-dimensional phase space to unfold into:(

(pT , η, ϕ)µ1,µ2
, (pT , η, ϕ,m,N, τ1, τ2, τ3)j1,j2

)
. (5.34)

The challenge is to reproduce all correlations, most notably the di-muon kinematics and
the angular separation Rjj . In contrast to classifier-based unfolding, generative unfolding
does not easily allow to over-constrain the physical phase space with redundant degrees of
freedom. Instead, we choose a phase space parametrization that makes key correlations
directly accessible to the network [78,154]. To this end, we replace pT,µ1 → mµµ in the
event representation and extract it later via

pT,µ1 =
m2
µµ

2pT,µ2(cosh ∆ηµµ − cos ∆ϕµµ) . (5.35)

We standardize our training data in each dimension. For mµµ we apply a Breit-Wigner
mapping [78].

To accommodate the more challenging phase space, we replace the MLPs in all our
generators with transformers [37,78,157]. We follow the transformer architecture proposed
in Ref. [78], the network and training hyperparameters are listed in Tab. A.12 in the
Appendix.

Unfolded distributions

The unfolding results obtained with all five networks representing all three methods
are shown in Fig. 5.21. All of them unfold the bulk of the phase space distributions
with a precision that is at the per-cent level. Small deviations from the true gen-level
distributions as well as differences between different methods are only visible in the tails

96

5 Generative Unfolding

of the distributions or at hard edges. For ηµ2 and ϕj2, we expect the unfolding to be
close to an identity mapping, with hard boundaries. While the DM-networks should be
well-suited to those observables, we also find no performance loss for the classic CFM
unfolding. Instead, we observe minor deviations of the (C-)SB networks at the hard
edges, likely indicating a lack of expressivity in our specific implementation.

Since we turned it into a network input, the di-muon mass mµµ is learned well by
all networks. Moving on to complex correlations like the transverse momentum of the
first muon, computed from Eq.(5.35), we still observe excellent agreement. With the
exception of (C-)SB networks in the low-pT region, the precision is at the level of a few
per-cent except for fluctuating tails. A known challenge to all generative networks is
the ∆Rj1j2 distribution. This observable defines a non-trivial derived feature, combining
collinear enhancement with a hard phase cut. All five networks struggle with this feature,
and all conditional networks show superior performance.

At the subjet level, the number of jet constituents, Nj2, tends to be larger at gen-level
than at reco-level, since not all particle are eventually detected. This explains the strange
peak at zero for τ3,j2 at reco-level. Here, the jet algorithm clusters less than two particles
within one jet, indeed giving τ3,j2 = 0. At gen-level this effect is highly suppressed. The
CFM and C-DiDi manage to reliably unfold even this small excess of zeros, while the
other networks fit through it. DiDi and the SB deviate above 10% from the truth when
getting closer to the tails of the distributions. To compensate the SB is overpopulating
the peak region.

With the release of the updated methods, we have added a new ML-based unfold-
ing method to the collider physics toolkit. Just as with classical unfolding, it is critical to
have multiple, comparably accurate/precise techniques that have different methodological
assumptions. Distribution mapping is a third type of method that can now be used to
compare with standard conditional-generation and likelihood-ratio methods. Further
work is required to fully integrate all aspects of a cross section measurement into genera-
tive unfolding (e.g. acceptance effects), but the core component (inverting the forward
model) is now highly advanced. We look forward to the application of these methods to
experimental data in the near future.

97

CHAPTER 6

Conclusion and Outlook

Entering the High-Luminosity-LHC (HL-LHC) era will come with new and exciting
precision measurements. To get there we still need to solve many computational and
conceptional problems. LHC simulations are costly, and they are expected to exceed the
available computational budget needed to meet the statistical demands of the HL-LHC.
Additionally, a vast amount of data will be collected that must be thoroughly analyzed.
New and robust analysis techniques need to be developed to handle high-statistics, high-
dimensional data, enabling precise measurements of Standard Model parameters and
potentially even the observation of physics beyond the Standard Model.
In this thesis, numerous options to incorporate generative machine learning into the LHC
simulation chain, both in the forward and backward directions, were explored. We started
with an overview of the relevant physical and computational concepts, with a particular
focus on the LHC simulation chain on one hand and generative diffusion networks on the
other.
We then studied the use of generative models for fast and precise augmentation of existing
simulations. In particular, uncertainty-aware diffusion networks were developed, tested
and applied to augment Z+jets simulations and simulations of leptonic tt̄-decays including
full off-shell effects. Furthermore, by combining the flexibility of diffusion models with the
expressivity of the attention mechanism, we were able to generate precise and accurate
calorimeter showers in high-dimensional phase spaces.
We reached state-of-the-art precision for all of the applications presented. For further
improvements and a better understanding, some aspects still need to be considered before
ML-based fast event generators can be reliably used in downstream LHC tasks. Uncer-
tainties must be studied more rigorously and checked for proper coverage and calibration.
Additionally, the finite size of training dataset needs to be taken into account. Previous
studies [173,174] have shown that even though training statistics are a limiting factor
we can still reach a statistical amplification effect through ML-based data augmentation.
While these aspects were not addressed within the context of this thesis, they remain
active research questions, and we may hope to gain a deeper understanding of them in
the coming years.

99

6 Conclusion and Outlook

In the final part of this thesis, we explored generative unfolding techniques to cor-
rect observed data for detector effects. To this end, we made use of the pairing between
detector-level and particle-level events in simulation and trained a generative diffusion
model to generate samples from the posterior. In the first use case, the unfolding of
detector effects in hadronic top-quark decays to measure the top-quark mass, we observed
that, by construction, this posterior is dependent on a prior, i.e. on the particle-level dis-
tribution in MC. However, we were able to mitigate the prior dependence by broadening
the prior distribution during training and utilizing global information of detector-level
observables into our pipeline. This allowed us to drastically reduce the leading systemic
uncertainty [137] of such a measurement. There are still some open questions to be
considered. Background, efficiency and acceptance effects still need to be accounted for
and all systematic uncertainties need to be propagated through the unfolding. Going
beyond a purely phenomenological proof-of-concept for the first time, this study represents
a major step to incorporate generative unfolding into existing LHC analyses, with the
potential to greatly enhance precision measurements.
Finally, we also studied the development of new generative unfolding approaches based
on distribution mapping algorithms. Although these algorithms are conceptually sim-
ilar to the generative diffusion networks used earlier, they map directly between two
physical distributions rather than from a Gaussian to a target distribution. In the
context of unfolding, this allowed us to map detector-level events directly to particle-level
events. By construction, these distribution mapping techniques do not recover the correct
posterior distribution. However, we managed to augment the mapping such that they
encode the correct posterior. While conceptually promising, in the physical applications
we studied, the standard generative unfolding benchmarks reached a similar level of
performance. This was an interesting study that added another valuable ML-based
unfolding technique to the toolkit of unfolding algorithms. It could be that for a given,
unexplored dataset, generative unfolding with distribution mapping may outperform
existing unfolding pipelines.
In addition to the physical implications of our studies, we also continually updated the
generative models and their architectures to follow recent developments in the machine
learning literature. Like current state-of-the-art image generators, we primarily employed
generative diffusion networks with transformer backbones for all presented results. How-
ever, as machine learning continues to evolve rapidly, so do we. Most results in this thesis
do not rely on a specific generative architecture, which means future models can easily
replace the ones used here.

In conclusion, generative machine learning has matured to the point where it can
be used with high precision and reliability in collider physics. While further validation
and development are needed before full integration into experimental workflows, the pace
of innovation in both high-energy physics and machine learning suggests that ML-based
algorithms will soon become a standard part of the LHC simulation and analysis toolbox.

100

APPENDIX A

Hyperparameters

All hyperparameters used in the context of the thesis are listed in this section.

Fast Event Generation

hyperparameter toy models LHC events

Timesteps 1000 1000
Time Embedding Dimension - 64
Blocks 1 2
Layers per Block 8 5
Intermediate Dimensions 40 64
Model Parameters 20k 75k

LR Scheduling one-cycle one-cycle
Starter LR 10−4 10−4

Maximum LR 10−3 10−3

Epochs 1000 1000, 3000, 10000
Batch Size 8192 8192, 8192, 4096

Training Events 600k 3.2M, 850k, 190k
Generated Events 1M 1M, 1M, 1M

Table A.1: Training setup and hyperparameters for the Bayesian DDPM genera-
tor introduced in Section 4.1 and taken from Ref. [1].

101

A Hyperparameters

Hyperparameter

Embedding dimension 64
Layers 8
Intermediate dimensions 768

LR scheduling OneCycle
Starter LR 10−4

Max LR 10−3

Epochs 1000
Batch size 16384

c 10−3

Training events 3 M

Table A.2: Generative network setup (DiDi) and hyperparameters for all results
discussed in Section 4.2 and taken from Ref. [2].

Hyperparameter

Layers 5
Intermediate dimensions 512
Dropout 0.1
Normalization BatchNorm1d

LR scheduling ReduceOnPlateau
Starter LR 1−3

Patience 10
Epochs 100
Batch size 1024

Training events 2.5 M

Table A.3: Classifier network setup and hyperparameters for evaluating DiDi
in Section 4.2 and taken from Ref. [2].

102

A Hyperparameters

Parameter DS2 & DS3

Epochs 500
LR sched. cosine
Max LR 10−3

Batch size 4096
ODE solver Runge-Kutta 4 (50 steps)

Network transformer
Dim embedding 64
Intermediate dim 1024
Num heads 4
Num layers 4

Network dense feed-forward
Intermediate dim 256
Num layers 8
Activation SiLU

Table A.4: Parameters for the autoregressive energy network in Section 4.3.1,
taken from Ref. [3]

ViT laViT

Parameter DS2 DS3 DS2 DS3

Patch size (3, 16, 1) (3, 5, 2) (3, 1, 1) (3, 2, 2)
Embedding dimension 480 240 240 240
Attention heads 6 6 6 6
MLP hidden dimension 1920 720 960 960
Blocks 6 6 10 10

epochs 800 600 800 400
batch size 64 64 128 128
LR sched. cosine
Max LR 10−3

ODE solver Runge-Kutta 4 (20 steps)

Table A.5: Parameters for the shape networks in Section 4.3.1, for the full and
the latent space, taken from Ref. [3]

103

A Hyperparameters

Parameter Value

Optimizer Adam
Learning rate 2 · 10−4

Batch size 1000
Epochs 200
Number of layers 3
Hidden nodes 512
Dropout 20%
Activation function leaky ReLU
Training samples 70k
Validation samples 10k
Testing samples 20k

Table A.6: Parameters for HL and LL classifiers network used to calculate the
weights of Fig. 4.20 taken from Ref. [3]. The other classifiers use the same
hyperparameters but without any dropout.

Parameter Value

DS2 DS3

Loss BCE + βKL
β 10−6

Epochs 200
Out activation sigmoid
Lr sched. OneCycle
Max lr 10−3

of blocks 2 (+ bottleneck)
Channels (64, 64, 2)
Dim. bottleneck (2, 15, 9, 9) (2, 9, 26, 16)
Kernels [(3,2,1), (1,1,1)] [(5,2,3), (1,1,1)]
Strides [(3,2,1), (1,1,1)] [(2,2,1), (1,1,1)]
Paddings [(0,1,0), (0,0,0)] [(0,1,0), (0,0,0)]
Normalized cut 1 · 10−6

Table A.7: Parameters of the autoencoder for DS2 and DS3 used for the laViT
network in Section 4.3.1, taken from Ref. [3].

104

A Hyperparameters

Generative Unfolding

Parameter 4D 6D

Epochs 800 1500
LR sched. cosine cosine
Max LR 10−3 10−3

Optimizer Adam Adam
Batch size 16384 16384

Network Resnet Resnet
Dim embedding 64 64
Intermediate dim 512 256
Num layers 8 8

Table A.8: Parameters for the 4-dimensional and 6-dimensional networks in Sec-
tion 5.1.3.

Parameter 4D 6D

Epochs 800 500(+1000)
LR sched. cosine cosine
Max LR 10−3 10−3

Optimizer Adam Adam
Batch size 16384 16384
Dropout 0.1 0.1

Network Transfusion Transfusion
Dim embedding 64 64
Intermediate dim 512 512
Num layers 4 4
Num heads 4 4

Table A.9: Parameters for the 4-dimensional and 6-dimensional networks in Sec-
tion 5.1.4.

105

A Hyperparameters

Parameter 12D

Epochs 500
LR sched. cosine
Max LR 10−3

Optimizer Adam
Batch size 16384
Dropout 0.1

Network Transfusion
Dim embedding 128
Intermediate dim 512
Num layers 6
Num heads 4

Table A.10: Parameters for the 12-dimensional network in Section 5.1.6.

Parameter CFM DiDi C-DiDi SB C-SB Classifier

Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
LR schedule Cosine annealing Exponential decay Cosine annealing
Batch size 16384 128 128
Epochs 300 20 50
Network MLP MLP MLP
Number of layers 5 6 5
Hidden nodes 128 256 256
Dropout - - 0.1
Noise scale - 0.1 0.1 0.1 0.1 -
BNN regularization 1 - -

Table A.11: Network and training hyperparameters for all networks trained to
unfold the 6d jet substructure dataset in Section 5.2.2 taken from Ref. [4].

106

A Hyperparameters

Parameter CFM DiDi C-DiDi SB C-SB

Optimizer Adam Adam
Learning rate 0.001 0.001
LR schedule Cosine annealing Exponential decay
Batch size 16384 128
Epochs 500 500 2000 200 200
Network Transformer Transformer
Embedding dim 64 64
Transformer blocks 6 6
Attention heads 4 4
Feedforward dim 256 256
Noise scale - 0.001 0.1 0.1 0.1
BNN regularization 1 -

Table A.12: Network and training hyperparameters for all networks trained to
unfold the full-dimensional Z+2j dataset of Section 5.2.3 taken from Ref. [4].

107

Acknowledgments

I would like to thank Anja Butter for taking me on as a PhD student and for the
endless travel opportunities. I also thank Björn Malte Schäfer for co-referring this thesis.
Furthermore, I thank Stephanie Hansmann-Menzemer for being part of my committee
and Tilman Plehn for not only completing my committee, but also for always having my
back in the last two and a half years and for pretending that my talks are convincing.
The work presented in this thesis could not have been done without all my collaborators
Nathan Hütsch, Luigi Favaro, Jonas Spinner, Ayodore Ore, Dennis Schwarz, Roman
Kogler, Alexander Paasch, Peter Sorrenson, Vinicius Mikuni, Benjamin Nachman, Sascha
Diefenbacher, Mathias Kuschick, Tomáš Ježo, Michael Klasen, Anja Butter and of course
Tilman Plehn.
I also thank Henning Bahl, Theo Heimel, Ramon Winterhalder and Nikita Schmal for
their support with handling MadGraph. A very special thank you to Henning Bahl,
Ayodore Ore, Nikita Schmal and Nathan Hütsch for correcting this thesis.
Moving on to the Heidelberg Pheno and Cosmo group, I would like to thank: Nathan
Hütsch for absolutely everything, Luigi Favaro for his infinite calm and patience, Benedikt
Schosser and Lennart Röver for allowing me to snack and reset (and occasionally nap)
in their Cosmo office, Jonas Spinner for racing through the rain with me at TASI,
Giovanni De Crescenzo and Nikita Schmal for thinking that I am funny, Javier Mariño
for reminding me that I am usually not, Rebecca Kuntz for indulging in nostalgia with
me and Theo Heimel and Henning Bahl for their wisdom. In no particular order I would
also like to thank Ayodore Ore, Claudius Krause, Maeve Madigan, Michael Luchmann,
Paula Schuchard, Lorenz Vogel, Nina Elma, Victor Breso Pla and Emma Geoffray.
Lastly, I thank my friends, especially Malin and Vincent, and my family for their constant
support.

109

Bibliography

[1] A. Butter, N. Huetsch, S. Palacios Schweitzer, T. Plehn, P. Sorrenson and J. Spinner,
Jet diffusion versus JetGPT – Modern networks for the LHC, SciPost Phys. Core
8, 026 (2025), doi:10.21468/SciPostPhysCore.8.1.026, arXiv:2305.10475.

[2] A. Butter, T. Jezo, M. Klasen, M. Kuschick, S. Palacios Schweitzer and T. Plehn,
Kicking it off(-shell) with direct diffusion, SciPost Phys. Core 7, 064 (2024),
doi:10.21468/SciPostPhysCore.7.3.064, arXiv:2311.17175.

[3] L. Favaro, A. Ore, S. Palacios Schweitzer and T. Plehn, CaloDREAM – Detector
Response Emulation via Attentive flow Matching, SciPost Phys. 18, 088 (2025),
doi:10.21468/SciPostPhys.18.3.088, arXiv:2405.09629.

[4] A. Butter, S. Diefenbacher, N. Huetsch, V. Mikuni, B. Nachman, S. Pala-
cios Schweitzer and T. Plehn, Generative Unfolding with Distribution Mapping
(2024), arXiv:2411.02495.

[5] L. Favaro, R. Kogler, A. Paasch, S. Palacios Schweitzer, T. Plehn and D. Schwarz,
How to Unfold Top Decays (2025), arXiv:2501.12363.

[6] O. Amram et al., CaloChallenge 2022: A Community Challenge for Fast Calorime-
ter Simulation (2024), arXiv:2410.21611.

[7] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22, 579
(1961), doi:10.1016/0029-5582(61)90469-2.

[8] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19, 1264 (1967),
doi:10.1103/PhysRevLett.19.1264.

[9] A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519, 367
(1968), doi:10.1142/9789812795915_0034.

[10] G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge
Fields, Nucl. Phys. B 44, 189 (1972), doi:10.1016/0550-3213(72)90279-9.

[11] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the Color Octet Gluon
Picture, Phys. Lett. B 47, 365 (1973), doi:10.1016/0370-2693(73)90625-4.

[12] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Non-Abelian Gauge Theories,
Phys. Rev. Lett. 30, 1343 (1973), doi:10.1103/PhysRevLett.30.1343.

111

https://doi.org/10.21468/SciPostPhysCore.8.1.026
http://arxiv.org/abs/2305.10475
https://doi.org/10.21468/SciPostPhysCore.7.3.064
http://arxiv.org/abs/2311.17175
https://doi.org/10.21468/SciPostPhys.18.3.088
http://arxiv.org/abs/2405.09629
http://arxiv.org/abs/2411.02495
http://arxiv.org/abs/2501.12363
http://arxiv.org/abs/2410.21611
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1103/PhysRevLett.30.1343

Bibliography

[13] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev.
Lett. 30, 1346 (1973), doi:10.1103/PhysRevLett.30.1346.

[14] G. Aad et al., Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012),
doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[15] S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV
with the CMS Experiment at the LHC, Phys. Lett. B 716, 30 (2012),
doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[16] P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron.
Astrophys. 594, A13 (2016), doi:10.1051/0004-6361/201525830, arXiv:1502.01589.

[17] R. Adam et al., Planck 2015 results. I. Overview of products and scientific re-
sults, Astron. Astrophys. 594, A1 (2016), doi:10.1051/0004-6361/201527101,
arXiv:1502.01582.

[18] E. W. Kolb and M. S. Turner, The Early Universe, vol. 69, Taylor and Francis,
ISBN 978-0-429-49286-0, 978-0-201-62674-2, doi:10.1201/9780429492860 (2019).

[19] G. Steigman, Observational tests of antimatter cosmologies, Ann. Rev. Astron.
Astrophys. 14, 339 (1976), doi:10.1146/annurev.aa.14.090176.002011.

[20] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.
82, 557 (2010), doi:10.1103/RevModPhys.82.557, [Erratum: Rev.Mod.Phys. 91,
049902 (2019)], arXiv:0807.3125.

[21] Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev.
Lett. 81, 1562 (1998), doi:10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003.

[22] Q. R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral
current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89,
011301 (2002), doi:10.1103/PhysRevLett.89.011301, arXiv:nucl-ex/0204008.

[23] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S.
Shao, T. Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-
level and next-to-leading order differential cross sections, and their matching to
parton shower simulations, JHEP 07, 079 (2014), doi:10.1007/JHEP07(2014)079,
arXiv:1405.0301.

[24] E. Bothmann et al., Event Generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019),
doi:10.21468/SciPostPhys.7.3.034, arXiv:1905.09127.

[25] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen and P. Z. Skands, An introduction to PYTHIA
8.2, Comput. Phys. Commun. 191, 159 (2015), doi:10.1016/j.cpc.2015.01.024,
arXiv:1410.3012.

[26] M. Bahr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58, 639 (2008),
doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.

[27] S. Agostinelli et al., GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506,
250 (2003), doi:10.1016/S0168-9002(03)01368-8.

112

https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
https://doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
https://doi.org/10.1051/0004-6361/201527101
http://arxiv.org/abs/1502.01582
https://doi.org/10.1201/9780429492860
https://doi.org/10.1146/annurev.aa.14.090176.002011
https://doi.org/10.1103/RevModPhys.82.557
http://arxiv.org/abs/0807.3125
https://doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1103/PhysRevLett.89.011301
http://arxiv.org/abs/nucl-ex/0204008
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/1905.09127
https://doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
https://doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
https://doi.org/10.1016/S0168-9002(03)01368-8

Bibliography

[28] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens
and M. Selvaggi, DELPHES 3, A modular framework for fast simulation of a
generic collider experiment, JHEP 02, 057 (2014), doi:10.1007/JHEP02(2014)057,
arXiv:1307.6346.

[29] R. D. Ball et al., The path to proton structure at 1% accuracy, Eur. Phys. J. C 82,
428 (2022), doi:10.1140/epjc/s10052-022-10328-7, arXiv:2109.02653.

[30] T. Heimel, R. Winterhalder, A. Butter, J. Isaacson, C. Krause, F. Maltoni, O. Mat-
telaer and T. Plehn, MadNIS - Neural multi-channel importance sampling, SciPost
Phys. 15, 141 (2023), doi:10.21468/SciPostPhys.15.4.141, arXiv:2212.06172.

[31] T. Heimel, N. Huetsch, F. Maltoni, O. Mattelaer, T. Plehn and R. Winterhalder, The
MadNIS reloaded, SciPost Phys. 17, 023 (2024), doi:10.21468/SciPostPhys.17.1.023,
arXiv:2311.01548.

[32] T. Heimel, O. Mattelaer, T. Plehn and R. Winterhalder, Differentiable MadNIS-Lite,
SciPost Phys. 18, 017 (2025), doi:10.21468/SciPostPhys.18.1.017, arXiv:2408.01486.

[33] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quad-
fasel, M. Schlaffer, D. Shih and M. Sommerhalder, Classifying anoma-
lies through outer density estimation, Phys. Rev. D 106, 055006 (2022),
doi:10.1103/PhysRevD.106.055006, arXiv:2109.00546.

[34] B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev.
D 101, 075042 (2020), doi:10.1103/PhysRevD.101.075042, arXiv:2001.04990.

[35] K. Cranmer, J. Brehmer and G. Louppe, The frontier of simulation-based in-
ference, Proc. Nat. Acad. Sci. 117, 30055 (2020), doi:10.1073/pnas.1912789117,
arXiv:1911.01429.

[36] A. Butter, T. Heimel, T. Martini, S. Peitzsch and T. Plehn, Two invert-
ible networks for the matrix element method, SciPost Phys. 15, 094 (2023),
doi:10.21468/SciPostPhys.15.3.094, arXiv:2210.00019.

[37] T. Heimel, N. Huetsch, R. Winterhalder, T. Plehn and A. Butter, Precision-
machine learning for the matrix element method, SciPost Phys. 17, 129 (2024),
doi:10.21468/SciPostPhys.17.5.129, arXiv:2310.07752.

[38] V. Chekhovsky et al., Model-agnostic search for dijet resonances with anomalous jet
substructure in proton-proton collisions at

√
s = 13 TeV (2024), arXiv:2412.03747.

[39] J. Ho, A. Jain and P. Abbeel, Denoising Diffusion Probabilistic Models (2020),
arXiv:2006.11239.

[40] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel and M. Le, Flow matching for
generative modeling, arXiv preprint arXiv:2210.02747 (2022).

[41] A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot and
S. Vent, Generative networks for precision enthusiasts, SciPost Phys. 14, 078
(2023), doi:10.21468/SciPostPhys.14.4.078, arXiv:2110.13632.

[42] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge
University Press, ISBN 978-1-107-03473-0, 978-1-107-03473-0 (2014).

[43] F. Quevedo and A. Schachner, Cambridge Lectures on The Standard Model (2024),
arXiv:2409.09211.

113

https://doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
https://doi.org/10.1140/epjc/s10052-022-10328-7
http://arxiv.org/abs/2109.02653
https://doi.org/10.21468/SciPostPhys.15.4.141
http://arxiv.org/abs/2212.06172
https://doi.org/10.21468/SciPostPhys.17.1.023
http://arxiv.org/abs/2311.01548
https://doi.org/10.21468/SciPostPhys.18.1.017
http://arxiv.org/abs/2408.01486
https://doi.org/10.1103/PhysRevD.106.055006
http://arxiv.org/abs/2109.00546
https://doi.org/10.1103/PhysRevD.101.075042
http://arxiv.org/abs/2001.04990
https://doi.org/10.1073/pnas.1912789117
http://arxiv.org/abs/1911.01429
https://doi.org/10.21468/SciPostPhys.15.3.094
http://arxiv.org/abs/2210.00019
https://doi.org/10.21468/SciPostPhys.17.5.129
http://arxiv.org/abs/2310.07752
http://arxiv.org/abs/2412.03747
http://arxiv.org/abs/2006.11239
https://doi.org/10.21468/SciPostPhys.14.4.078
http://arxiv.org/abs/2110.13632
http://arxiv.org/abs/2409.09211

Bibliography

[44] G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST
3, S08003 (2008).

[45] S. Chatrchyan et al., The CMS experiment at the CERN LHC, JINST 3, S08004
(2008).

[46] T. Plehn, Lectures on LHC Physics, doi:10.1007/978-3-319-05942-6 (2015).

[47] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Parton Fragmentation
and String Dynamics, Phys. Rept. 97, 31 (1983), doi:10.1016/0370-1573(83)90080-7.

[48] J. Apostolakis et al., HEP Software Foundation Community White Paper Working
Group - Detector Simulation (2018), arXiv:1803.04165.

[49] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron
collisions, Phys. Rev. D 48, 3160 (1993), doi:10.1103/PhysRevD.48.3160, arXiv:hep-
ph/9305266.

[50] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP
04, 063 (2008), doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[51] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep
inelastic scattering, In Workshop on Monte Carlo Generators for HERA Physics
(Plenary Starting Meeting), pp. 270–279 (1998), arXiv:hep-ph/9907280.

[52] I. W. Stewart, F. J. Tackmann, J. Thaler, C. K. Vermilion and T. F. Wilkason,
XCone: N-jettiness as an Exclusive Cone Jet Algorithm, JHEP 11, 072 (2015),
doi:10.1007/JHEP11(2015)072, arXiv:1508.01516.

[53] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72,
1896 (2012), doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[54] M. Beneke et al., Top quark physics, hep-ph/0003033 (2000), arXiv:hep-ph/0003033.

[55] S. Navas et al., Review of particle physics, Phys. Rev. D 110, 030001 (2024),
doi:10.1103/PhysRevD.110.030001.

[56] A. M. Sirunyan et al., Measurement of the top quark mass in the dileptonic tt̄
decay channel using the mass observables Mbℓ, MT2, and Mbℓν in pp collisions at√
s = 8 TeV, Phys. Rev. D 96, 032002 (2017), doi:10.1103/PhysRevD.96.032002,

arXiv:1704.06142.

[57] A. H. Hoang, The Top Mass: Interpretation and Theoretical Uncertainties, In 7th
International Workshop on Top Quark Physics (2014), arXiv:1412.3649.

[58] A. H. Hoang, What is the Top Quark Mass?, Ann. Rev. Nucl. Part. Sci. 70, 225
(2020), doi:10.1146/annurev-nucl-101918-023530, arXiv:2004.12915.

[59] A. H. Hoang, S. Mantry, A. Pathak and I. W. Stewart, Extracting a Short
Distance Top Mass with Light Grooming, Phys. Rev. D 100, 074021 (2019),
doi:10.1103/PhysRevD.100.074021, arXiv:1708.02586.

[60] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017),
arXiv:1412.6980.

[61] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, Journal of
Machine Learning Research 15, 1929 (2014).

114

https://doi.org/10.1007/978-3-319-05942-6
https://doi.org/10.1016/0370-1573(83)90080-7
http://arxiv.org/abs/1803.04165
https://doi.org/10.1103/PhysRevD.48.3160
http://arxiv.org/abs/hep-ph/9305266
http://arxiv.org/abs/hep-ph/9305266
https://doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://arxiv.org/abs/hep-ph/9907280
https://doi.org/10.1007/JHEP11(2015)072
http://arxiv.org/abs/1508.01516
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://arxiv.org/abs/hep-ph/0003033
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevD.96.032002
http://arxiv.org/abs/1704.06142
http://arxiv.org/abs/1412.3649
https://doi.org/10.1146/annurev-nucl-101918-023530
http://arxiv.org/abs/2004.12915
https://doi.org/10.1103/PhysRevD.100.074021
http://arxiv.org/abs/1708.02586
http://arxiv.org/abs/1412.6980

Bibliography

[62] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, In International Conference on Machine Learning
(ICML), pp. 448–456 (2015).

[63] J. L. Ba, J. R. Kiros and G. E. Hinton, Layer normalization, arXiv preprint
arXiv:1607.06450 (2016).

[64] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser
and I. Polosukhin, Attention is all you need (2023), arXiv:1706.03762.

[65] A. Butter, F. Charton, J. M. n. Villadamigo, A. Ore, T. Plehn and J. Spin-
ner, Extrapolating Jet Radiation with Autoregressive Transformers (2024),
arXiv:2412.12074.

[66] M. Bellagente, M. Haussmann, M. Luchmann and T. Plehn, Understanding
Event-Generation Networks via Uncertainties, SciPost Phys. 13, 003 (2022),
doi:10.21468/SciPostPhys.13.1.003, arXiv:2104.04543.

[67] D. MacKay, Probable Networks and Plausible Predictions – A Review of Practical
Bayesian Methods for Supervised Neural Networks, Comp. in Neural Systems 6,
4679 (1995), doi:10.1088/0954-898X/6/3/011.

[68] R. M. Neal, Bayesian learning for neural networks, Ph.D. thesis, Toronto (1995).

[69] Y. Gal, Uncertainty in Deep Learning, Ph.D. thesis, Cambridge (2016).

[70] D. M. Blei, A. Kucukelbir and J. D. McAuliffe, Variational inference: A review
for statisticians, Journal of the American statistical Association 112, 859 (2017),
doi:doi:10.1080/01621459.2017.1285773.

[71] G. Kasieczka, M. Luchmann, F. Otterpohl and T. Plehn, Per-Object
Systematics using Deep-Learned Calibration, SciPost Phys. 9, 089 (2020),
doi:10.21468/SciPostPhys.9.6.089, arXiv:2003.11099.

[72] T. Plehn, A. Butter, B. Dillon, T. Heimel, C. Krause and R. Winterhalder, Modern
Machine Learning for LHC Physicists (2022), arXiv:2211.01421.

[73] D. P. Kingma, T. Salimans, B. Poole and J. Ho, Variational diffusion models,
doi:10.48550/ARXIV.2107.00630 (2021).

[74] X. Liu, C. Gong and Q. Liu, Flow straight and fast: Learning to generate and
transfer data with rectified flow (2022), arXiv:2209.03003.

[75] M. S. Albergo and E. Vanden-Eijnden, Building normalizing flows with stochastic
interpolants (2023), arXiv:2209.15571.

[76] S. Diefenbacher, V. Mikuni and B. Nachman, Refining Fast Calorimeter Simulations
with a Schrödinger Bridge (2023), arXiv:2308.12339.

[77] S. Diefenbacher, G.-H. Liu, V. Mikuni, B. Nachman and W. Nie, Improving
generative model-based unfolding with Schrödinger bridges, Phys. Rev. D 109,
076011 (2024), doi:10.1103/PhysRevD.109.076011, arXiv:2308.12351.

[78] N. Huetsch et al., The landscape of unfolding with machine learning, SciPost Phys.
18, 070 (2025), doi:10.21468/SciPostPhys.18.2.070, arXiv:2404.18807.

[79] B. D. Anderson, Reverse-time diffusion equation models, Stochastic Processes and
their Applications 12, 313 (1982).

115

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2412.12074
https://doi.org/10.21468/SciPostPhys.13.1.003
http://arxiv.org/abs/2104.04543
https://doi.org/10.1088/0954-898X/6/3/011.
https://doi.org/doi:10.1080/01621459.2017.1285773
https://doi.org/10.21468/SciPostPhys.9.6.089
http://arxiv.org/abs/2003.11099
http://arxiv.org/abs/2211.01421
https://doi.org/10.48550/ARXIV.2107.00630
http://arxiv.org/abs/2209.03003
http://arxiv.org/abs/2209.15571
http://arxiv.org/abs/2308.12339
https://doi.org/10.1103/PhysRevD.109.076011
http://arxiv.org/abs/2308.12351
https://doi.org/10.21468/SciPostPhys.18.2.070
http://arxiv.org/abs/2404.18807

Bibliography

[80] J. Doob, Conditional brownian motion and the boundary limits of harmonic
functions, Bulletin de la Société Mathématique de France 85, 431 (1957).

[81] G.-H. Liu, A. Vahdat, D.-A. Huang, E. A. Theodorou, W. Nie and A. Anandkumar,
I2sb: Image-to-image schrödinger bridge (2023), arXiv:2302.05872.

[82] V. D. Bortoli, G.-H. Liu, T. Chen, E. A. Theodorou and W. Nie, Augmented bridge
matching (2023), arXiv:2311.06978.

[83] W. S. Peebles and S. Xie, Scalable diffusion models with transformers, 2023
IEEE/CVF International Conference on Computer Vision (ICCV) pp. 4172–4182
(2022), https://api.semanticscholar.org/CorpusID:254854389.

[84] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning
Library, In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc. (2019), arXiv:1912.01703.

[85] P. Ramachandran, B. Zoph and Q. V. Le, Swish: a self-gated activation function,
arXiv preprint arXiv:1710.05941 (2017).

[86] S. Catani, F. Krauss, R. Kuhn and B. R. Webber, QCD matrix elements + parton
showers, JHEP 11, 063 (2001), doi:10.1088/1126-6708/2001/11/063, arXiv:hep-
ph/0109231.

[87] S. Badger et al., Machine learning and LHC event generation, SciPost Phys. 14,
079 (2023), doi:10.21468/SciPostPhys.14.4.079, arXiv:2203.07460.

[88] J. M. Campbell et al., Event generators for high-energy physics experiments, SciPost
Phys. 16, 130 (2024), doi:10.21468/SciPostPhys.16.5.130, arXiv:2203.11110.

[89] G. Heinrich, A. Maier, R. Nisius, J. Schlenk, M. Schulze, L. Scyboz and J. Winter,
NLO and off-shell effects in top quark mass determinations, JHEP 07, 129 (2018),
doi:10.1007/JHEP07(2018)129, arXiv:1709.08615.

[90] S. Ferrario Ravasio, T. Ježo, P. Nason and C. Oleari, A theoretical study of top-
mass measurements at the LHC using NLO+PS generators of increasing accuracy,
Eur. Phys. J. C 78, 458 (2018), doi:10.1140/epjc/s10052-019-7336-9, [Addendum:
Eur.Phys.J.C 79, 859 (2019)], arXiv:1906.09166.

[91] T. Golling, S. Klein, R. Mastandrea, B. Nachman and J. A. Raine, Morphing
one dataset into another with maximum likelihood estimation, Phys. Rev. D 108,
096018 (2023), doi:10.1103/PhysRevD.108.096018, arXiv:2309.06472.

[92] R. Das, L. Favaro, T. Heimel, C. Krause, T. Plehn and D. Shih, How to
understand limitations of generative networks, SciPost Phys. 16, 031 (2024),
doi:10.21468/SciPostPhys.16.1.031, arXiv:2305.16774.

[93] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys.
7, 075 (2019), doi:10.21468/SciPostPhys.7.6.075, arXiv:1907.03764.

[94] M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross
Section at Hadron Colliders Through O(α4

S), Phys. Rev. Lett. 110, 252004 (2013),
doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254.

[95] M. Czakon, D. Heymes and A. Mitov, High-precision differential predic-
tions for top-quark pairs at the LHC, Phys. Rev. Lett. 116, 082003 (2016),
doi:10.1103/PhysRevLett.116.082003, arXiv:1511.00549.

116

http://arxiv.org/abs/2302.05872
http://arxiv.org/abs/2311.06978
https://api.semanticscholar.org/CorpusID:254854389
http://arxiv.org/abs/1912.01703
https://doi.org/10.1088/1126-6708/2001/11/063
http://arxiv.org/abs/hep-ph/0109231
http://arxiv.org/abs/hep-ph/0109231
https://doi.org/10.21468/SciPostPhys.14.4.079
http://arxiv.org/abs/2203.07460
https://doi.org/10.21468/SciPostPhys.16.5.130
http://arxiv.org/abs/2203.11110
https://doi.org/10.1007/JHEP07(2018)129
http://arxiv.org/abs/1709.08615
https://doi.org/10.1140/epjc/s10052-019-7336-9
http://arxiv.org/abs/1906.09166
https://doi.org/10.1103/PhysRevD.108.096018
http://arxiv.org/abs/2309.06472
https://doi.org/10.21468/SciPostPhys.16.1.031
http://arxiv.org/abs/2305.16774
https://doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1907.03764
https://doi.org/10.1103/PhysRevLett.110.252004
http://arxiv.org/abs/1303.6254
https://doi.org/10.1103/PhysRevLett.116.082003
http://arxiv.org/abs/1511.00549

Bibliography

[96] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and H. Sargsyan,
Top-quark pair hadroproduction at next-to-next-to-leading order in QCD, Phys. Rev.
D 99, 051501 (2019), doi:10.1103/PhysRevD.99.051501, arXiv:1901.04005.

[97] S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair
production at the LHC: Fully differential QCD predictions at NNLO, JHEP 07,
100 (2019), doi:10.1007/JHEP07(2019)100, arXiv:1906.06535.

[98] W. Bernreuther, M. Fucker and Z.-G. Si, Weak interaction corrections to hadronic
top quark pair production: Contributions from quark-gluon and b anti-b induced
reactions, Phys. Rev. D 78, 017503 (2008), doi:10.1103/PhysRevD.78.017503,
arXiv:0804.1237.

[99] J. H. Kuhn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production
at hadron colliders, Eur. Phys. J. C 51, 37 (2007), doi:10.1140/epjc/s10052-007-
0275-x, arXiv:hep-ph/0610335.

[100] W. Hollik and D. Pagani, The electroweak contribution to the top quark
forward-backward asymmetry at the Tevatron, Phys. Rev. D 84, 093003 (2011),
doi:10.1103/PhysRevD.84.093003, arXiv:1107.2606.

[101] C. Gütschow, J. M. Lindert and M. Schönherr, Multi-jet merged top-pair pro-
duction including electroweak corrections, Eur. Phys. J. C 78, 317 (2018),
doi:10.1140/epjc/s10052-018-5804-2, arXiv:1803.00950.

[102] R. Frederix, I. Tsinikos and T. Vitos, Probing the spin correlations of tt̄ production
at NLO QCD+EW, Eur. Phys. J. C 81, 817 (2021), doi:10.1140/epjc/s10052-021-
09612-9, arXiv:2105.11478.

[103] M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair
production at the LHC through NNLO QCD and NLO EW, JHEP 10, 186 (2017),
doi:10.1007/JHEP10(2017)186, arXiv:1705.04105.

[104] J. Gao, C. S. Li and H. X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order
in QCD, Phys. Rev. Lett. 110, 042001 (2013), doi:10.1103/PhysRevLett.110.042001,
arXiv:1210.2808.

[105] M. Brucherseifer, F. Caola and K. Melnikov, O(α2
s) corrections to fully-

differential top quark decays, JHEP 04, 059 (2013), doi:10.1007/JHEP04(2013)059,
arXiv:1301.7133.

[106] J. Gao and A. S. Papanastasiou, Top-quark pair-production and decay at high
precision, Phys. Rev. D 96, 051501 (2017), doi:10.1103/PhysRevD.96.051501,
arXiv:1705.08903.

[107] A. Behring, M. Czakon, A. Mitov, A. S. Papanastasiou and R. Poncelet, Higher order
corrections to spin correlations in top quark pair production at the LHC, Phys. Rev.
Lett. 123, 082001 (2019), doi:10.1103/PhysRevLett.123.082001, arXiv:1901.05407.

[108] M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to leptonic
observables in top-quark pair production and decay, JHEP 05, 212 (2021),
doi:10.1007/JHEP05(2021)212, arXiv:2008.11133.

[109] G. Bevilacqua, M. Czakon, A. van Hameren, C. G. Papadopoulos and M. Worek,
Complete off-shell effects in top quark pair hadroproduction with leptonic decay
at next-to-leading order, JHEP 02, 083 (2011), doi:10.1007/JHEP02(2011)083,
arXiv:1012.4230.

117

https://doi.org/10.1103/PhysRevD.99.051501
http://arxiv.org/abs/1901.04005
https://doi.org/10.1007/JHEP07(2019)100
http://arxiv.org/abs/1906.06535
https://doi.org/10.1103/PhysRevD.78.017503
http://arxiv.org/abs/0804.1237
https://doi.org/10.1140/epjc/s10052-007-0275-x
https://doi.org/10.1140/epjc/s10052-007-0275-x
http://arxiv.org/abs/hep-ph/0610335
https://doi.org/10.1103/PhysRevD.84.093003
http://arxiv.org/abs/1107.2606
https://doi.org/10.1140/epjc/s10052-018-5804-2
http://arxiv.org/abs/1803.00950
https://doi.org/10.1140/epjc/s10052-021-09612-9
https://doi.org/10.1140/epjc/s10052-021-09612-9
http://arxiv.org/abs/2105.11478
https://doi.org/10.1007/JHEP10(2017)186
http://arxiv.org/abs/1705.04105
https://doi.org/10.1103/PhysRevLett.110.042001
http://arxiv.org/abs/1210.2808
https://doi.org/10.1007/JHEP04(2013)059
http://arxiv.org/abs/1301.7133
https://doi.org/10.1103/PhysRevD.96.051501
http://arxiv.org/abs/1705.08903
https://doi.org/10.1103/PhysRevLett.123.082001
http://arxiv.org/abs/1901.05407
https://doi.org/10.1007/JHEP05(2021)212
http://arxiv.org/abs/2008.11133
https://doi.org/10.1007/JHEP02(2011)083
http://arxiv.org/abs/1012.4230

Bibliography

[110] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections
to WWbb production at hadron colliders, Phys. Rev. Lett. 106, 052001 (2011),
doi:10.1103/PhysRevLett.106.052001, arXiv:1012.3975.

[111] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to
off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10,
110 (2012), doi:10.1007/JHEP10(2012)110, arXiv:1207.5018.

[112] G. Heinrich, A. Maier, R. Nisius, J. Schlenk and J. Winter, NLO QCD corrections
to W+W−bb̄ production with leptonic decays in the light of top quark mass and
asymmetry measurements, JHEP 06, 158 (2014), doi:10.1007/JHEP06(2014)158,
arXiv:1312.6659.

[113] R. Frederix, Top Quark Induced Backgrounds to Higgs Production in the WW (∗) →
llνν Decay Channel at Next-to-Leading-Order in QCD, Phys. Rev. Lett. 112,
082002 (2014), doi:10.1103/PhysRevLett.112.082002, arXiv:1311.4893.

[114] F. Cascioli, S. Kallweit, P. Maierhöfer and S. Pozzorini, A unified NLO descrip-
tion of top-pair and associated Wt production, Eur. Phys. J. C 74, 2783 (2014),
doi:10.1140/epjc/s10052-014-2783-9, arXiv:1312.0546.

[115] G. Bevilacqua, H. B. Hartanto, M. Kraus and M. Worek, Top Quark Pair Pro-
duction in Association with a Jet with Next-to-Leading-Order QCD Off-Shell
Effects at the Large Hadron Collider, Phys. Rev. Lett. 116, 052003 (2016),
doi:10.1103/PhysRevLett.116.052003, arXiv:1509.09242.

[116] R. D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys.
J. C 77, 663 (2017), doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.

[117] S. Frixione, P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte
Carlo for heavy flavour hadroproduction, JHEP 09, 126 (2007), doi:10.1088/1126-
6708/2007/09/126, arXiv:0707.3088.

[118] T. Ježo, J. M. Lindert, P. Nason, C. Oleari and S. Pozzorini, An NLO+PS
generator for tt̄ and Wt production and decay including non-resonant and interfer-
ence effects, Eur. Phys. J. C 76, 691 (2016), doi:10.1140/epjc/s10052-016-4538-2,
arXiv:1607.04538.

[119] T. Ježo, J. M. Lindert and S. Pozzorini, Resonance-aware NLOPS matching
for off-shell tt + tW production with semileptonic decays, JHEP 10, 008 (2023),
doi:10.1007/JHEP10(2023)008, arXiv:2307.15653.

[120] S. Frixione, E. Laenen, P. Motylinski and B. R. Webber, Angular correlations of
lepton pairs from vector boson and top quark decays in Monte Carlo simulations,
JHEP 04, 081 (2007), doi:10.1088/1126-6708/2007/04/081, arXiv:hep-ph/0702198.

[121] P. Nason, A New method for combining NLO QCD with shower Monte Carlo
algorithms, JHEP 11, 040 (2004), doi:10.1088/1126-6708/2004/11/040, arXiv:hep-
ph/0409146.

[122] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton
Shower simulations: the POWHEG method, JHEP 11, 070 (2007), doi:10.1088/1126-
6708/2007/11/070, arXiv:0709.2092.

[123] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing
NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP
06, 043 (2010), doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

118

https://doi.org/10.1103/PhysRevLett.106.052001
http://arxiv.org/abs/1012.3975
https://doi.org/10.1007/JHEP10(2012)110
http://arxiv.org/abs/1207.5018
https://doi.org/10.1007/JHEP06(2014)158
http://arxiv.org/abs/1312.6659
https://doi.org/10.1103/PhysRevLett.112.082002
http://arxiv.org/abs/1311.4893
https://doi.org/10.1140/epjc/s10052-014-2783-9
http://arxiv.org/abs/1312.0546
https://doi.org/10.1103/PhysRevLett.116.052003
http://arxiv.org/abs/1509.09242
https://doi.org/10.1140/epjc/s10052-017-5199-5
http://arxiv.org/abs/1706.00428
https://doi.org/10.1088/1126-6708/2007/09/126
https://doi.org/10.1088/1126-6708/2007/09/126
http://arxiv.org/abs/0707.3088
https://doi.org/10.1140/epjc/s10052-016-4538-2
http://arxiv.org/abs/1607.04538
https://doi.org/10.1007/JHEP10(2023)008
http://arxiv.org/abs/2307.15653
https://doi.org/10.1088/1126-6708/2007/04/081
http://arxiv.org/abs/hep-ph/0702198
https://doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/hep-ph/0409146
http://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1088/1126-6708/2007/11/070
http://arxiv.org/abs/0709.2092
https://doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/1002.2581

Bibliography

[124] T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading
Order Calculations Matched to a Parton Shower, JHEP 12, 065 (2015),
doi:10.1007/JHEP12(2015)065, arXiv:1509.09071.

[125] A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf and
Y. Bengio, Improving and generalizing flow-based generative models with minibatch
optimal transport (2023), arXiv:2302.00482.

[126] F. Ernst, L. Favaro, C. Krause, T. Plehn and D. Shih, Normalizing Flows
for High-Dimensional Detector Simulations, SciPost Phys. 18, 081 (2025),
doi:10.21468/SciPostPhys.18.3.081, arXiv:2312.09290.

[127] O. Amram and K. Pedro, Denoising diffusion models with geometry adapta-
tion for high fidelity calorimeter simulation, Phys. Rev. D 108, 072014 (2023),
doi:10.1103/PhysRevD.108.072014, arXiv:2308.03876.

[128] J. C. Cresswell, B. L. Ross, G. Loaiza-Ganem, H. Reyes-Gonzalez, M. Letizia and
A. L. Caterini, CaloMan: Fast generation of calorimeter showers with density
estimation on learned manifolds, In 36th Conference on Neural Information Pro-
cessing Systems: Workshop on Machine Learning and the Physical Sciences (2022),
arXiv:2211.15380.

[129] M. F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih
and A. Zaborowska, Fast calorimeter simulation challenge 2022 - dataset 2,
https://doi.org/10.5281/zenodo.6366271 (2022).

[130] M. F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih
and A. Zaborowska, Fast calorimeter simulation challenge 2022 - dataset 3,
https://doi.org/10.5281/zenodo.6366324 (2022).

[131] M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih
and A. Zaborowska, Fast calorimeter simulation challenge 2022 github page,
https://github.com/CaloChallenge/homepage (2022).

[132] C. Krause, I. Pang and D. Shih, CaloFlow for CaloChallenge dataset 1, SciPost
Phys. 16, 126 (2024), doi:10.21468/SciPostPhys.16.5.126, arXiv:2210.14245.

[133] S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, C. Krause, I. Shekhzadeh and
D. Shih, L2LFlows: generating high-fidelity 3D calorimeter images, JINST 18,
P10017 (2023), doi:10.1088/1748-0221/18/10/P10017, arXiv:2302.11594.

[134] V. Mikuni and B. Nachman, CaloScore v2: single-shot calorimeter shower sim-
ulation with diffusion models, JINST 19, P02001 (2024), doi:10.1088/1748-
0221/19/02/P02001, arXiv:2308.03847.

[135] C. Krause and D. Shih, Fast and accurate simulations of calorime-
ter showers with normalizing flows, Phys. Rev. D 107, 113003 (2023),
doi:10.1103/PhysRevD.107.113003, arXiv:2106.05285.

[136] Q. Liu, C. Shimmin, X. Liu, E. Shlizerman, S. Li and S.-C. Hsu, Calo-VQ:
Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation (2024),
arXiv:2405.06605.

[137] A. Tumasyan et al., Measurement of the differential tt production cross section as
a function of the jet mass and extraction of the top quark mass in hadronic decays
of boosted top quarks, Eur. Phys. J. C 83, 560 (2023), doi:10.1140/epjc/s10052-
023-11587-8, arXiv:2211.01456.

119

https://doi.org/10.1007/JHEP12(2015)065
http://arxiv.org/abs/1509.09071
http://arxiv.org/abs/2302.00482
https://doi.org/10.21468/SciPostPhys.18.3.081
http://arxiv.org/abs/2312.09290
https://doi.org/10.1103/PhysRevD.108.072014
http://arxiv.org/abs/2308.03876
http://arxiv.org/abs/2211.15380
https://doi.org/10.5281/zenodo.6366271
https://doi.org/10.5281/zenodo.6366324
https://github.com/CaloChallenge/homepage
https://doi.org/10.21468/SciPostPhys.16.5.126
http://arxiv.org/abs/2210.14245
https://doi.org/10.1088/1748-0221/18/10/P10017
http://arxiv.org/abs/2302.11594
https://doi.org/10.1088/1748-0221/19/02/P02001
https://doi.org/10.1088/1748-0221/19/02/P02001
http://arxiv.org/abs/2308.03847
https://doi.org/10.1103/PhysRevD.107.113003
http://arxiv.org/abs/2106.05285
http://arxiv.org/abs/2405.06605
https://doi.org/10.1140/epjc/s10052-023-11587-8
https://doi.org/10.1140/epjc/s10052-023-11587-8
http://arxiv.org/abs/2211.01456

Bibliography

[138] R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04, 040 (2015),
doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[139] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick
and L. Urban, GEANT Detector Description and Simulation Tool (1994),
doi:10.17181/CERN.MUHF.DMJ1.

[140] T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruc-
tion with Tagged Tops, JHEP 10, 078 (2010), doi:10.1007/JHEP10(2010)078,
arXiv:1006.2833.

[141] T. Plehn and M. Takeuchi, W+Jets at CDF: Evidence for Top Quarks, J. Phys. G
38, 095006 (2011), doi:10.1088/0954-3899/38/9/095006, arXiv:1104.4087.

[142] G. Cowan, A survey of unfolding methods for particle physics, Conf. Proc. C
0203181, 248 (2002).

[143] F. Spano, Unfolding in particle physics: a window on solving inverse problems,
EPJ Web Conf. 55, 03002 (2013), doi:10.1051/epjconf/20135503002.

[144] M. Arratia et al., Publishing unbinned differential cross section results, JINST 17,
P01024 (2022), doi:10.1088/1748-0221/17/01/P01024, arXiv:2109.13243.

[145] L. B. Lucy, An iterative technique for the rectification of observed distributions,
The Astronomical Journal 79, 745 (1974), doi:10.1086/111605.

[146] W. H. Richardson, Bayesian-based iterative method of image restoration, J. Opt.
Soc. Am. 62, 55 (1972), doi:10.1364/JOSA.62.000055.

[147] L. B. Lucy, An iterative technique for the rectification of observed distributions,
Astron. J. 79, 745 (1974), doi:10.1086/111605.

[148] G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem,
Nucl. Instrum. Meth. A 362, 487 (1995), doi:10.1016/0168-9002(95)00274-X.

[149] A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. In-
strum. Meth. A 372, 469 (1996), doi:10.1016/0168-9002(95)01478-0, arXiv:hep-
ph/9509307.

[150] S. Schmitt, TUnfold: an algorithm for correcting migration effects in high en-
ergy physics, JINST 7, T10003 (2012), doi:10.1088/1748-0221/7/10/T10003,
arXiv:1205.6201.

[151] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder,
How to GAN away Detector Effects, SciPost Phys. 8, 070 (2020),
doi:10.21468/SciPostPhys.8.4.070, arXiv:1912.00477.

[152] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder,
L. Ardizzone and U. Köthe, Invertible Networks or Partons to Detector and
Back Again, SciPost Phys. 9, 074 (2020), doi:10.21468/SciPostPhys.9.5.074,
arXiv:2006.06685.

[153] M. Backes, A. Butter, M. Dunford and B. Malaescu, An unfolding method based
on conditional invertible neural networks (cINN) using iterative training, SciPost
Phys. Core 7, 007 (2024), doi:10.21468/scipostphyscore.7.1.007, arXiv:2212.08674.

120

https://doi.org/10.1007/JHEP04(2015)040
http://arxiv.org/abs/1410.8849
https://doi.org/10.17181/CERN.MUHF.DMJ1
https://doi.org/10.1007/JHEP10(2010)078
http://arxiv.org/abs/1006.2833
https://doi.org/10.1088/0954-3899/38/9/095006
http://arxiv.org/abs/1104.4087
https://doi.org/10.1051/epjconf/20135503002
https://doi.org/10.1088/1748-0221/17/01/P01024
http://arxiv.org/abs/2109.13243
https://doi.org/10.1086/111605
https://doi.org/10.1364/JOSA.62.000055
https://doi.org/10.1086/111605
https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1016/0168-9002(95)01478-0
http://arxiv.org/abs/hep-ph/9509307
http://arxiv.org/abs/hep-ph/9509307
https://doi.org/10.1088/1748-0221/7/10/T10003
http://arxiv.org/abs/1205.6201
https://doi.org/10.21468/SciPostPhys.8.4.070
http://arxiv.org/abs/1912.00477
https://doi.org/10.21468/SciPostPhys.9.5.074
http://arxiv.org/abs/2006.06685
https://doi.org/10.21468/scipostphyscore.7.1.007
http://arxiv.org/abs/2212.08674

Bibliography

[154] J. Ackerschott, R. K. Barman, D. Gonçalves, T. Heimel and T. Plehn, Re-
turning CP-observables to the frames they belong, SciPost Phys. 17, 001 (2024),
doi:10.21468/SciPostPhys.17.1.001, arXiv:2308.00027.

[155] D. Maître and H. Truong, A factorisation-aware Matrix element emulator, JHEP
11, 066 (2021), doi:10.1007/JHEP11(2021)066, arXiv:2107.06625.

[156] S. Badger, A. Butter, M. Luchmann, S. Pitz and T. Plehn, Loop
amplitudes from precision networks, SciPost Phys. Core 6, 034 (2023),
doi:10.21468/SciPostPhysCore.6.2.034, arXiv:2206.14831.

[157] J. Spinner, V. Bresó, P. de Haan, T. Plehn, J. Thaler and J. Brehmer, Lorentz-
Equivariant Geometric Algebra Transformers for High-Energy Physics (2024),
arXiv:2405.14806.

[158] M. Backes, A. Butter, M. Dunford and B. Malaescu, Event-by-event comparison
between machine-learning- and transfer-matrix-based unfolding methods, Eur. Phys.
J. C 84, 770 (2024), doi:10.1140/epjc/s10052-024-13136-3, arXiv:2310.17037.

[159] CMS Collaboration, Measurement of the jet mass distribution and top quark mass
in hadronic decays of boosted top quarks in proton-proton collisions at

√
s = 13 TeV,

HEPData (collection), https://doi.org/10.17182/hepdata.130712 (2023).

[160] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan and S. Ganguli, Deep unsu-
pervised learning using nonequilibrium thermodynamics (2015), arXiv:1503.03585.

[161] G. Aad et al., Simultaneous Unbinned Differential Cross-Section Measurement of
Twenty-Four Z+jets Kinematic Observables with the ATLAS Detector, Phys. Rev.
Lett. 133, 261803 (2024), doi:10.1103/PhysRevLett.133.261803, arXiv:2405.20041.

[162] B. Nachman and V. Mikuni, Large version of the omnifold dataset, Zenodo,
doi:10.5281/zenodo.10668638 (2024).

[163] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman and J. Thaler,
OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev. Lett.
124, 182001 (2020), doi:10.1103/PhysRevLett.124.182001, arXiv:1911.09107.

[164] K. Desai, B. Nachman and J. Thaler, Moment Unfolding (2024), arXiv:2407.11284.

[165] A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05, 146
(2014), doi:10.1007/JHEP05(2014)146, arXiv:1402.2657.

[166] M. Dasgupta, A. Fregoso, S. Marzani and G. P. Salam, Towards an understand-
ing of jet substructure, JHEP 09, 029 (2013), doi:10.1007/JHEP09(2013)029,
arXiv:1307.0007.

[167] J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness,
JHEP 03, 015 (2011), doi:10.1007/JHEP03(2011)015, arXiv:1011.2268.

[168] R. T. Q. Chen, torchdiffeq (2018).

[169] A. Kendall and Y. Gal, What Uncertainties Do We Need in Bayesian Deep Learning
for Computer Vision? (2017), arXiv:1703.04977.

[170] S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn and J. Thompson,
Deep-Learning Jets with Uncertainties and More, SciPost Phys. 8, 006 (2020),
doi:10.21468/SciPostPhys.8.1.006, arXiv:1904.10004.

121

https://doi.org/10.21468/SciPostPhys.17.1.001
http://arxiv.org/abs/2308.00027
https://doi.org/10.1007/JHEP11(2021)066
http://arxiv.org/abs/2107.06625
https://doi.org/10.21468/SciPostPhysCore.6.2.034
http://arxiv.org/abs/2206.14831
http://arxiv.org/abs/2405.14806
https://doi.org/10.1140/epjc/s10052-024-13136-3
http://arxiv.org/abs/2310.17037
https://doi.org/10.17182/hepdata.130712
http://arxiv.org/abs/1503.03585
https://doi.org/10.1103/PhysRevLett.133.261803
http://arxiv.org/abs/2405.20041
https://doi.org/10.5281/zenodo.10668638
https://doi.org/10.1103/PhysRevLett.124.182001
http://arxiv.org/abs/1911.09107
http://arxiv.org/abs/2407.11284
https://doi.org/10.1007/JHEP05(2014)146
http://arxiv.org/abs/1402.2657
https://doi.org/10.1007/JHEP09(2013)029
http://arxiv.org/abs/1307.0007
https://doi.org/10.1007/JHEP03(2011)015
http://arxiv.org/abs/1011.2268
http://arxiv.org/abs/1703.04977
https://doi.org/10.21468/SciPostPhys.8.1.006
http://arxiv.org/abs/1904.10004

Bibliography

[171] S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B. Nachman and D. Shih,
DCTRGAN: Improving the Precision of Generative Models with Reweighting, JINST
15, P11004 (2020), doi:10.1088/1748-0221/15/11/P11004, arXiv:2009.03796.

[172] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA
8.3, SciPost Phys. Codeb. 2022, 8 (2022), doi:10.21468/SciPostPhysCodeb.8,
arXiv:2203.11601.

[173] S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen,
G. Kasieczka, B. Nachman, T. Plehn and M. Trabs, Calomplification — the power
of generative calorimeter models, JINST 17, P09028 (2022), doi:10.1088/1748-
0221/17/09/P09028, arXiv:2202.07352.

[174] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying
event samples, SciPost Phys. 10, 139 (2021), doi:10.21468/SciPostPhys.10.6.139,
arXiv:2008.06545.

122

https://doi.org/10.1088/1748-0221/15/11/P11004
http://arxiv.org/abs/2009.03796
https://doi.org/10.21468/SciPostPhysCodeb.8
http://arxiv.org/abs/2203.11601
https://doi.org/10.1088/1748-0221/17/09/P09028
https://doi.org/10.1088/1748-0221/17/09/P09028
http://arxiv.org/abs/2202.07352
https://doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2008.06545

	Preface
	Introduction
	High energy physics
	Standard Model
	Collider Physics
	Parametrization
	Hard Scattering
	Parton Shower
	Hadronization
	Detector
	Reconstruction
	Statistical testing

	Measuring the top-quark mass

	Machine Learning
	The basics
	Special Network Architectures

	Classification
	Bayesian Neural Networks
	Generative Diffusion Models
	Denoising Diffusion Probabilistic Model
	Conditional Flow Matching

	Distribution Mapping
	Distribution to noise
	Distribution to distribution
	Conditional distribution mapping

	Fast Event Generation
	End-to-End event generation
	Toy models and Bayesian networks
	LHC events

	Generating off-shell effects in leptonic tsiunitxunit-deprecatedࡡ爀戀愀爀戀愀爀琀ⴀ搀攀挀愀礀�
	Off-shell vs. on-shell events
	Direct Diffusion
	Classifier control and reweighting

	Fast Calorimeter Simulations
	CaloDREAM
	Results

	Generative Unfolding
	How to Unfold Top Decays
	Goal and method
	Generative unfolding
	Lower-dimensional unfolding
	Taming the training bias
	Mock top-quark mass measurement
	Full phase space unfolding

	Generative Unfolding with distribution mapping
	Methodology
	Unfolding Jet Substructure Observables
	Unfolding Substructure and Kinematic Properties

	Conclusion and Outlook
	Hyperparameters
	Bibliography

