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Abstract

White matter hyperintensities (WMH) are radiological
markers of small vessel disease and neurodegeneration,
whose accurate segmentation and spatial localization are
crucial for diagnosis and monitoring. While multimodal
MRI offers complementary contrasts for detecting and con-
textualizing WM lesions, existing approaches often lack
flexibility in handling missing modalities and fail to in-
tegrate anatomical localization efficiently. We propose a
deep learning framework for WM lesion segmentation and
localization that operates directly in native space using
single- and multi-modal MRI inputs. Our study evalu-
ates four input configurations: FLAIR-only, T1-only, con-
catenated FLAIR and T1, and a modality-interchangeable
setup. It further introduces a multi-task model for jointly
predicting lesion and anatomical region masks to estimate
region-wise lesion burden. Experiments conducted on the
MICCAI WMH Segmentation Challenge dataset demon-
strate that multimodal input significantly improves the seg-
mentation performance, outperforming unimodal models.
While the modality-interchangeable setting trades accuracy
for robustness, it enables inference in cases with missing
modalities. Joint lesion-region segmentation using multi-
task learning was less effective than separate models, sug-
gesting representational conflict between tasks. Our find-
ings highlight the utility of multimodal fusion for accurate
and robust WMH analysis, and the potential of joint model-
ing for integrated predictions.

Keywords: Multimodal deep learning, segmentation, lo-
calization, white matter hyperintensity, magnetic resonance
imaging

1. Introduction

White matter hyperintensities (WMH) are pathological ab-
normalities of the brain’s white matter that commonly
present as hyperintense areas on FLAIR images and hy-
pointensities on T1-weighted MRIs [26]. The total WMH
burden, typically measured as lesion volume, increases with
age and is recognized as a marker of early neurodegenera-
tion. It is associated with elevated risk of Alzheimer’s dis-
ease [3], dementia [6], and ischemic stroke [2], among other
conditions. An accurate diagnosis requires not only the de-
tection of the lesion, but also a detailed assessment of its
volume and spatial characteristics, considered alongside the
clinical context [7, 10, 21, 25]. Manual annotation remains
the clinical gold standard; however, it is labor-intensive and
not easily scalable, underscoring the need for automated
tools for WMH segmentation and localization.

Multimodal MRI has become an essential tool in clin-
ical neuroimaging by leveraging complementary informa-
tion from multiple sequences, such as T1-weighted and
FLAIR scans [15]. FLAIR images enhance lesion visibil-
ity due to cerebrospinal fluid suppression [23], while T1-
weighted scans provide superior anatomical contrast and
more precise delineation of brain structures [11]. Although
numerous studies have utilized multimodal inputs to en-
hance segmentation accuracy [14, 24], their potential for
improving lesion localization or handling missing modal-
ities remains relatively underexplored.

Recent findings have highlighted that the spatial distri-
bution of lesions carries significant diagnostic and prognos-
tic value [1]. However, deriving such insights often relies
on resource-intensive pipelines. For instance, Coenen et al.
[4, 5] manually harmonized MRI data across cohorts to per-
form voxel-wise and region-of-interest analyses. While in-
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formative, these workflows are limited by their constrained
scalability and reproducibility. This points to a need for au-
tomated, registration-free methods that enable accurate le-
sion localization directly in subject space.

Deep learning methods have demonstrated strong per-
formance in automating WMH segmentation [12, 14, 24].
Some approaches incorporate anatomical priors, such as
distances to known brain landmarks [8, 9], or rely on reg-
istering lesions in a common template space [12]. In our
previous work [18], we developed a deep learning method
for segmenting anatomical regions in native space, remov-
ing the need for spatial alignment. However, that approach
did not fully address multimodal integration or the trade-
offs in joint lesion-region prediction for WMH localization.

In this study, we present a deep learning framework for
WM lesion segmentation and localization that supports both
single- and multi-modal MRI inputs. Our method performs
voxel-wise segmentation of WMH and anatomical regions
directly in native space. We examine four input config-
urations: (1) FLAIR-only, (2) T1-only, (3) concatenated
FLAIR and T1, and (4) interchangeable modality training
using either FLAIR or T1. Furthermore, we train unified
models that jointly predict regional lesion labels, enabling
direct estimation of region-wise lesion burden.

Our experiments show that while multimodal inputs
improve segmentation accuracy, multi-task learning intro-
duces a trade-off, with reduced multimodal performance
compared to task-specific models. Nevertheless, multi-task
models offer practical benefits, such as reduced inference
time and integrated anatomical insights. Overall, our find-
ings suggest that carefully optimized multimodal and multi-
task models can provide a scalable, robust, and anatomi-
cally informed solution for WM lesion analysis in both clin-
ical and research settings.

2. Methods

2.1. Multimodal Configurations
We present a deep learning approach for WM lesion seg-
mentation and localization, utilizing both single- and multi-
modal MRI inputs. As illustrated in Figure 1, we examine
four input configurations: (A) FLAIR only, (B) T1 only,
(C) FLAIR and T1 concatenated as separate input channels,
and (D) FLAIR and T1 treated as interchangeable modali-
ties during training. Configurations (A) and (B) represent
unimodal input settings, while (C) and (D) implement alter-
native strategies for multimodal integration. In configura-
tion (D), the two modalities are considered interchangeable
variants, effectively augmenting the training set and encour-
aging robustness to missing modality scenarios.

The same modeling strategy is applied for both WM le-
sion and anatomical region segmentation. Specifically, WM
region labels are used in place of lesion masks in the ar-

chitecture shown in Figure 1. Beyond multimodal input
strategies, we also investigate joint WM localization, as il-
lustrated in Figure 2, where WM lesions and anatomical re-
gions are segmented simultaneously by a shared network.
These models are trained with multimodal inputs to pre-
dict lesion masks restricted to white matter regions, using
masked regional labels (element-wise multiplication of the
binary lesion masks with the corresponding WM region la-
bels) as supervision. This design enables the simultaneous
estimation of lesion burden and anatomical localization in a
single forward pass.

2.2. White Matter Labels
Ground truth labels for training the WM region segmenta-
tion models were derived from the refined reference labels
provided by the JHU MNI White Matter Atlas Type II [20].
The refined version of the atlas delineates 34 white matter
subregions, selected based on ontological hierarchies and
clinical relevance. To generate subject-specific label maps,
the atlas T1 image was affinely registered to each subject’s
T1 scan using the extracted WM region [19]. The resulting
transformation was then applied to the atlas region labels,
yielding anatomically aligned WM labels in the subject’s
native space. The complete preprocessing pipeline is de-
scribed in detail in [18].

2.3. Training and Inference
All models are based on the 3D U-Net architecture de-
scribed in [22]. To improve robustness, we apply exten-
sive MRI-specific data augmentation during training [16].
These augmentations include additive and multiplicative
noise, bias field distortion, elastic deformations, random ro-
tations, and simulated motion artifacts. Model optimiza-
tion is performed using a composite loss function that com-
bines cross-entropy (CE) loss with the Dice-Sørensen (DS)
loss. During inference, configuration (C) produces a single
prediction directly from the concatenated multimodal input.
For input configurations (A), (B), and (D), predictions from
T1 and FLAIR scans are fused by averaging their softmax
outputs, followed by voxel-wise ArgMax.

3. Experiments and Results
3.1. Data
We conducted all experiments using the MICCAI 2017
White Matter Hyperintensity (WMH) Segmentation Chal-
lenge dataset [13], which contains co-registered 3D FLAIR
and T1 MRI scans from 170 subjects across three clinical
sites: Utrecht, Amsterdam, and Singapore. The dataset pro-
vides expert-annotated lesion masks that differentiate WM
lesions from healthy tissue and other pathologies.

To increase the number of samples for training lesion
localization models, we inverted the original challenge-
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Figure 1. Overview of the proposed method for WM lesion segmentation. The pipeline illustrates four input configurations used during
training: (A) FLAIR only, (B) T1 only, (C) FLAIR and T1 concatenated as separate input channels, and (D) sequential training where
FLAIR and T1 are treated as interchangeable modalities and passed independently through the model. For configurations (A), (B), and
(D), the final prediction is obtained by voxel-wise ArgMax fusion across the individual softmax outputs. The same pipeline is also used
for WM region segmentation.

Figure 2. Overview of the proposed multi-task framework for multimodal regional WMH segmentation. The pipeline adopts the same
input configurations as in Figure 1 (C–D). In this setting, WM lesions and anatomical regions are jointly segmented using a unified model.
Region-specific lesion labels are generated by intersecting lesion masks with WM region annotations.
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Table 1. Overview of the WMH data used in this study. The vendor
abbreviations refer to GE (G), Philips (P), and Siemens (S).

Dataset Split #Subjects Dimensions Resolution Strength Vendor
Train 110 181×251×81 1.1×1×3mm3 1.5T,3T G, P, S
Test 60 202×250×60 1.1×0.98×3mm3 3T G, P, S

defined splits, repurposing the original test set for train-
ing. The resulting dataset was then used for 5-fold cross-
validation. Summary statistics are provided in Table 1.

3.2. Settings
For all models, the composite loss function was computed
as an equal-weighted sum of CE and DS losses. The 3D U-
Net models were implemented in PyTorch [17] and trained
on NVIDIA A100 GPUs with 80 GB of VRAM. Optimiza-
tion was performed using stochastic gradient descent (SGD)
with Nesterov momentum set to 0.9 and an initial learning
rate of 0.001. Each model was trained for 1,000 iterations,
with up to 250 mini-batches per epoch. In the multi-task
setup, we used a batch size of 12 and 3D input patches of
size 32× 128× 128 voxels.

3.3. Results
WM Lesion Segmentation We first evaluated the per-
formance of the WM lesion segmentation models on the
test set. Table 2 presents the results across different train-
ing and inference configurations. The model trained with
concatenated T1 and FLAIR inputs achieved the highest
Dice score of 0.74, highlighting the advantage of leverag-
ing complementary multimodal information where T1 pro-
vides anatomical detail, while FLAIR emphasizes contrast
between healthy and pathological tissue.

Models trained on a single modality showed slightly re-
duced performance: the FLAIR-only model reached a DSC
of 0.72, while the T1-only model scored 0.59. The model
trained with T1 and FLAIR as interchangeable modalities
yielded a lower overall accuracy of 0.67, but it offers unique
robustness. This configuration supports inference with just
one modality available, making it particularly valuable in
clinical contexts where one sequence may be missing or de-
graded. While slightly less accurate, it provides increased
flexibility for real-world deployment.

WM Region Segmentation We next evaluated the perfor-
mance of anatomical WM region segmentation. As shown
in Table 3, all input configurations achieved similarly high
Dice scores, averaging around 0.75, indicating that regional
white matter structures can be reliably segmented regardless
of modality. Models evaluated using only FLAIR showed a
slight reduction in accuracy compared to those using T1 or
both modalities, reflecting the lower anatomical contrast in-
herent in FLAIR images. The multimodal ensemble model
produced consistent results across all evaluation settings.

Table 2. Test DSC (mean±SD) for WM lesion segmentation using
3D U-Net models with different training inputs (rows) and infer-
ence strategies (columns). The “T1 & FLAIR” column reports
voxel-wise predictions obtained by using softmax outputs from
processed T1 and FLAIR inputs.

Training / Inference T1 FLAIR T1 & FLAIR

FLAIR - 0.72± 0.12
0.68± 0.14T1 0.59± 0.16 -

T1 and FLAIR - - 0.74± 0.11
T1 or FLAIR 0.58± 0.17 0.73± 0.11 0.67± 0.15

Table 3. Test DSC (mean±SD) for WM region segmentation using
3D U-Net models with different training inputs (rows) and infer-
ence strategies (columns). The “T1 & FLAIR” column reports
voxel-wise predictions obtained by using softmax outputs from
processed T1 and FLAIR inputs.

Training / Inference T1 FLAIR T1 & FLAIR

FLAIR - 0.75± 0.05
0.75± 0.05T1 0.75± 0.05 -

T1 and FLAIR - - 0.75± 0.05
T1 or FLAIR 0.75± 0.05 0.70± 0.06 0.74± 0.06

Table 4. Test DSC (mean±SD) for WM lesion segmentation using
3D U-Nets trained for regional WMH label segmentation with dif-
ferent training inputs (rows) and inference strategies (columns).
The “T1 & FLAIR” column reports voxel-wise predictions ob-
tained by using softmax outputs from T1 and FLAIR inputs.

Training / Inference T1 FLAIR T1 & FLAIR

T1 and FLAIR - - 0.43± 0.20
T1 or FLAIR 0.27± 0.18 0.36± 0.19 0.26± 0.19

Table 5. Test DSC (mean±SD) for WM region segmentation us-
ing 3D U-Nets trained for regional WMH label segmentation with
different training inputs (rows) and inference strategies (columns).
The “T1 & FLAIR” column reports voxel-wise predictions ob-
tained by using softmax outputs from T1 and FLAIR inputs.

Training / Inference T1 FLAIR T1 & FLAIR

T1 and FLAIR - - 0.29± 0.12
T1 or FLAIR 0.17± 0.11 0.25± 0.11 0.17± 0.11

WM Lesion Localization Finally, we trained unified
models to jointly segment regional WM lesions within a sin-
gle network. Tables 4 and 5 summarize the corresponding
lesion and region segmentation results. Although this ap-
proach offers a compact framework for simultaneously pre-
dicting regional lesion labels, it exhibited notably reduced
performance compared to separate single-task models. In
the multimodal configuration, the lesion segmentation Dice
score declined from 0.74 to 0.43, while region segmentation
dropped from 0.75 to 0.29.
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3.4. Discussion

Our results demonstrate the advantage of multimodal in-
put for WM lesion segmentation, with the highest perfor-
mance achieved when T1 and FLAIR images were concate-
nated and jointly processed. This finding reinforces prior
work showing that multimodal MRI leverages complemen-
tary contrasts: FLAIR enhances lesion visibility due to CSF
suppression, while T1 provides clearer anatomical context.
Although FLAIR-only models outperformed T1-only mod-
els, consistent with FLAIR’s superior lesion contrast, the
combined input configuration offered improved spatial pre-
cision and generalization.

The modality-interchangeable configuration, in which
T1 and FLAIR were treated as alternative inputs, yielded
lower segmentation performance. Nevertheless, this ap-
proach offers a practical advantage: the ability to operate
when only one modality is available. This robustness is par-
ticularly valuable in real-world clinical scenarios, where in-
complete or corrupted data are common. In such settings,
the flexibility of this configuration may outweigh the mod-
est reduction in accuracy, especially for large-scale studies
or multi-site applications with variable imaging protocols.

For WM region segmentation, performance was more
consistent across input types. Most configurations achieved
comparable accuracy, with FLAIR-only predictions show-
ing slightly lower performance, likely due to the reduced
anatomical contrast in FLAIR images. These results indi-
cate that while FLAIR is well-suited for lesion detection,
T1-weighted images remain more informative for anatomi-
cal delineation of WM subregions.

In our final set of experiments, we explored a multi-task
learning setup where the model jointly segmented lesions
and anatomical regions. This configuration resulted in a
marked performance drop relative to the single-task mod-
els. The reduced accuracy may reflect optimization con-
flicts or representational interference between the two tasks.
To fairly compare the multi-task models with the single-task
baselines, we evaluated lesion and region segmentation sep-
arately. For lesion assessment, we combined all predicted
lesion subregion labels into a single binary mask. For re-
gion segmentation, we evaluated predictions only for WM
subregions present in each scan. This ensured consistent
and representative comparison across all settings.

4. Conclusion

We presented a systematic study of deep learning strate-
gies for WM lesion segmentation and localization using
single- and multimodal MRI inputs. Our framework eval-
uated multiple input configurations, including unimodal
(FLAIR or T1), concatenated multimodal, and modality-
interchangeable training. We further extended this setup to
jointly segment WM lesions and anatomical subregions via

multi-task learning. Experiments on the WMH segmenta-
tion dataset demonstrated that combining T1 and FLAIR
inputs in a shared model yields the highest segmentation
performance, outperforming unimodal baselines. While the
modality-interchangeable setup underperformed slightly, it
offers robustness in scenarios with missing or incomplete
modalities, which is critical for clinical deployment.

Compared to state-of-the-art WMH segmentation ap-
proaches, our results reaffirm the importance of multimodal
fusion for accurate lesion delineation, and highlight the lim-
itations of single-task models in capturing spatial lesion dis-
tribution across anatomical regions. Our multi-task model,
designed to jointly segment lesions and WM regions, led to
performance degradation, indicating possible interference
between task objectives. These findings suggest that while
joint learning is promising for efficient inference and spa-
tial lesion quantification, careful architectural and training
considerations are necessary. Further investigation is war-
ranted before drawing definitive conclusions. For instance,
future work could explore alternative training strategies in
which lesion and region labels are treated as separate binary
outputs, reducing task entanglement during optimization.
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Abstract  

The rapid development of large language models (LLMs) such as ChatGPT-4o has opened up new 
opportuniƟes for the integraƟon of arƟficial intelligence (AI) into pediatric surgical and urological 
care. As a mulƟmodal, conversaƟonal AI tool, ChatGPT-4o can generate human-like text, interpret 
images, and communicate in real Ɵme. This review arƟcle discusses the potenƟal clinical, educaƟonal, 
and administraƟve applicaƟons of ChatGPT-4o in pediatric surgery and pediatric urology, while 
addressing its limitaƟons, ethical concerns, and future possibiliƟes for responsible implementaƟon. 

In a clinical seƫng, ChatGPT-4o is able to help pediatric surgeons and pediatric urologists in triaging 
paƟents at the recepƟon of the Accident and Emergency Department and serve as a tool for 
brainstorming of preliminary diagnosƟc opƟons and treatment planning. It can provide structured 
summaries of differenƟal diagnoses based on described symptoms in combinaƟon with laboratory 
results and descripƟons of imaging performed in out-paƟent clinics. Although ChatGPT-4o does not 
have formal regulatory approval for clinical decision making, its use as a decision support tool may be 
valuable in everyday pracƟce and parƟcularly in resource-limited seƫngs or during consultaƟons 
outside of regular working hours. 

In addiƟon to assisƟng in clinical diagnosƟcs, ChatGPT-4o can be very useful in automaƟng Ɵme-
consuming documentaƟon tasks. It could generate draŌ pre-operaƟve instrucƟons, admission and 
discharge reports based on brief input from the physician or edit and clean up the text of dictated 
operaƟve protocols. IntegraƟon into the electronic health record (EHR) could reduce administraƟve 
burden, improve workflow efficiency, and increase the consistency of the clinical record. However, all 
AI-generated documentaƟon must be reviewed and verified by licensed professionals to ensure 
accuracy and compliance. 

Another promising area is communicaƟon with paƟents and families. Pediatric paƟents and their 
parents oŌen need simplified explanaƟons of their condiƟons and planned diagnosƟc and treatment 
procedures that are age-appropriate and lay-understanding, which ChatGPT-4o can provide upon 
request. This is parƟcularly useful in pre-operaƟve counseling or in detailed explaining of an informed 
consent. ChatGPT-4o can also serve as a support tool in chatbot-based plaƞorms, answering 
frequently asked quesƟons and helping to reduce anxiety for caregivers navigaƟng complex diagnosƟc 
and treatment plans. 

In the field of educaƟon, ChatGPT-4o can serve as an interacƟve learning program for medical 
students, residents and interns in pediatric surgery and urology. It can create customized quizzes, 
explain surgical procedures at different levels of complexity, simulate paƟent interviews, and help 
trainees pracƟce clinical reasoning. The model's adaptability and ability for instant feedback offer a 
new way of personalized learning and skill reinforcement.  

Despite its broad potenƟal, ChatGPT-4o has several limitaƟons and risks. These include factual 
inaccuracies ("hallucinaƟons") or unreliability in reading imaging as X ray or CT scans (and so far, must 
therefore be replaced by other AI soŌware integrated into radiology viewers.) A major obstacle to 
pracƟcal implementaƟon is non-compliance with GDPR data protecƟon laws. There are also 
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unresolved ethical issues regarding potenƟal biases arising from ChatGPT training, its transparency, 
accountability or authorship when used as support in research papers and presentaƟons. Therefore, 
cauƟon should be exercised in its clinical deployment, supported by insƟtuƟonal guidelines, user 
educaƟon, and strict oversight. 

In conclusion, ChatGPT-4o holds significant promise for improving the efficiency, accessibility, and 
clarity of pediatric surgical and urologic care. When used responsibly and ethically, it can sƟmulate or 
supplement - but not replace - human experƟse. Further research, policy development, and model 
refinement are necessary for its safe and meaningful incorporaƟon into pediatric pracƟce. 

Disclaimer  

The ChatGPT language model (paid version GPT-4o Plus, OpenAI, 2025) was used as an auxiliary tool 
in the preparaƟon of this manuscript. The model was used for linguisƟc ediƟng and the creaƟon of 
draŌs of some paragraphs. All content was subsequently reviewed, edited, and supplemented by the 
authors.  

IntroducƟon 

The rapid development of large language models (LLMs) such as ChatGPT and similar chatbots is very 
likely to represent a breakthrough moment in the applicaƟon of arƟficial intelligence (AI) in many 
fields of modern medicine, including pediatric surgery and urology. ChatGPT-4o is a mulƟmodal 
model capable of generaƟng coherent text based on context and previous prompts, processing 
simple visual data, and conducƟng near-human-perfect conversaƟons in real Ɵme.(1–3) This makes it 
a versaƟle support tool for clinical pracƟce, especially when we consider the enormous theoreƟcal 
background and amount of data that a chatbot is capable of processing compared to the human 
brain.(4)  

In pediatric surgery, where communicaƟon, decision-making, and accuracy are criƟcally important, 
LLMs have the potenƟal to support physicians in triage or in generaƟng differenƟal diagnoses through 
interacƟve brainstorming and proposing invesƟgaƟve and therapeuƟc algorithms.(5–7) They can 
significantly reduce the administraƟve burden on doctors in hospitals by generaƟng admission and 
discharge reports based on electronic and conƟnuously updated outpaƟent records, available online 
to both general pracƟƟoners and all specialists who encounter the paƟent.(8–11) Chatbots can also 
be used to write and edit surgical protocols, as well as to analyze them in predicƟng possible 
postoperaƟve complicaƟons or correlaƟons in groups of paƟents operated on for the same 
diagnosis.(11–13) ChatGPT-4o can facilitate communicaƟon between parents and doctors in 
emoƟonally charged situaƟons.(14,15) ChatGPT-4o can improve medical educaƟon by acƟng as an 
interacƟve tutor for interns or simulaƟng clinical scenarios.(10,16–19)  

However, there are sƟll unresolved challenges in its real-world applicaƟon, such as the security of the 
data entered, chatbot hallucinaƟons, and the need for constant human supervision to ensure paƟent 
safety.(11,20–23) This arƟcle explores the scope and limitaƟons of ChatGPT-4o's use in pediatric 
surgery and urology. For a more effecƟve, safer, and ethically acceptable use of GPT-4o or similar 
chatbots soon, mulƟdisciplinary collaboraƟon between IT specialists, doctors, nurses, hospital 
managers, and even poliƟcians at the European and naƟonal levels will be necessary in hospitals and 
outpaƟent pracƟces. 

Results 
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If we delve into the details of the potenƟal use of ChatGPT-4o or its future versions when a paƟent is 
admiƩed to a hospital, its use in paƟent triage comes to mind. Real-world use is limited by the lack of 
personal data protecƟon and the provision of data on the health of child paƟents to a chatbot, where 
we cannot be sure that companies such as Open AI will not use this data for their own benefit and 
whether they can protect it from misuse. For research purposes, the input data can, of course, be 
anonymized. If data protecƟon could be set up in the hospital version of ChatGPT-4o, for example 
through automaƟc paƟent anonymizaƟon, the chatbot could help frontline staff evaluate reported 
symptoms and prioriƟze paƟents using structured input data classified according to evidence-based 
medicine and guidelines.(5–7) For example, in the case of a child with acute abdominal pain, the 
chatbot could suggest probable diagnoses such as consƟpaƟon, acute enteriƟs, lymphadeniƟs, 
appendiciƟs, intussuscepƟon, or even tesƟcular torsion with pain radiaƟng to the groin. Several such 
pilot studies have already been conducted in adult paƟents, and some of them have shown beƩer 
triage results than doctors specializing in emergency medicine, while others have not.(24–26) Even 
aŌer the chatbot is integrated into triage, however, the paƟent will sƟll ulƟmately have to be 
examined by a doctor, who will conƟnue to bear all law liability for the examinaƟon and treatment of 
the child paƟent. On top of that the current prevailing belief that no machine with superhuman 
intelligence can fully replace an empatheƟc flesh-and-blood professional in normal interpersonal 
contact will not change for a long Ɵme, if ever.(23)  

In addiƟon to triaging paƟents, ChatGPT-4o can significantly contribute to diagnosƟc brainstorming by 
generaƟng structured lists of differenƟal diagnoses. It can synthesize loosely formulated clinical 
notes, laboratory findings, and outpaƟent ultrasound, X-ray or CT reports into coherent summaries 
that support surgical decision-making.(10,11) This ability can help young doctors in outpaƟent clinics 
or during night shiŌs, or in resource-limited seƫngs where older and more experienced specialists 
may not be available, such as in many regional hospitals in sub-Saharan Africa and other low- and 
middle-income countries.(27) Of course, despite its potenƟal, ChatGPT-4o remains only a supporƟve 
tool in decision-making, complemenƟng rather than replacing the physician's judgment.  

In addiƟon to its role in diagnosƟc support, ChatGPT-4o offers considerable potenƟal in addressing 
one of the most persistent inefficiencies in modern healthcare: the administraƟve burden associated 
with clinical documentaƟon. Pediatric surgery departments, like most modern hospital departments, 
are burdened with the need to produce a large volume of medical reports, including preoperaƟve 
examinaƟons, informed consent forms, admission and discharge reports, and surgical protocols. 
ChatGPT-4o can help clinicians by generaƟng structured draŌs of these documents out of short inputs 
from the physician, such as voice dictaƟons, bullet points, or electronic health record (EHR) 
entries.(8) The challenge remains not only GDPR and data protecƟon, but also the incorporaƟon of 
the chatbot into complex hospital soŌware, which is different for each hospital and on which the 
enƟre administraƟon relies. However, the chatbot can already be used for individual sub-steps and 
the result can be copied into hospital soŌware. For example, a pediatric urologist can dictate only the 
key intraoperaƟve steps during hypospadias surgery and ask ChatGPT-4 to transcribe them into a 
standardized surgical protocol suitable for medical documentaƟon.(9) 

IntegraƟng the chatbot into the hospital's electronic health records (EHR) could streamline workflows 
by automaƟcally filling in paƟent demographic data upon admission or entering laboratory values, 
other specialists’ examinaƟons, and descripƟons of imaging methods performed into template 
documents upon admission and discharge.(9) PreoperaƟve instrucƟons for parents or discharge 
reports with further follow-up and care plans could ulƟmately be automaƟcally summarized in plain 
language that is understandable to the family without the need to google what each abbreviaƟon and 
term in the discharge report means. In addiƟon, such an understandable summary can be generated 
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in a report in any naƟve language of the paƟent and their parents if the family does not have a good 
command of the language of the country in which they receive healthcare. Such use of a chatbot 
could not only save Ɵme but also reduce variability among care providers, ensuring greater clarity 
and completeness of documentaƟon.(10,11) 

However, the use of LLM in clinical documentaƟon raises ethical and legal issues. Errors in summaries 
or inappropriate wording—such as omiƫng certain diagnosƟc and treatment steps or important 
laboratory values—pose a potenƟal risk to paƟent safety and regulatory compliance.(21) Therefore, 
every document generated by arƟficial intelligence must undergo review, verificaƟon, and final 
approval by an authorized healthcare provider. In a pediatric seƫng, where documentaƟon accuracy 
is criƟcal for medical-legal clarity and communicaƟon with families, the stakes are parƟcularly high.  

A parƟcularly promising use of ChatGPT-4o in pediatric surgical and urological pracƟce is to improve 
communicaƟon with paƟents and families. EffecƟve communicaƟon is criƟcally important in 
pediatrics, where emoƟonal vulnerability is high and caregivers are oŌen overwhelmed by complex 
medical terminology and treatment decisions. ChatGPT-4o can support physicians by generaƟng age-
appropriate, layman-friendly explanaƟons of diseases, diagnosƟc procedures, and surgical 
intervenƟons.(11) For example, during an outpaƟent consultaƟon with a family about vesicoureteral 
reflux or bladder augmentaƟon surgery, the model can translate technical informaƟon into simplified 
language tailored to the developmental level of the child and their caregivers. 

In a preoperaƟve seƫng, ChatGPT-4o can help reduce parental anxiety by providing consistent and 
accessible answers to frequently asked quesƟons (e.g., "Will my child feel pain aŌer surgery?" or 
"What are the risks of anesthesia?").(14,28) When integrated into chatbot-based interfaces, it can 
funcƟon as a 24/7 digital assistant that reinforces key messages provided during clinical encounters. 
This can be parƟcularly valuable for families undergoing mulƟ-phase treatment, such as sequenƟal 
surgeries or long-term follow-up. In a study by Ayers et al., it was even found that a chatbot in online 
forums dedicated to paƟent queries was more empatheƟc and understandable than real doctors.(29)  

In addiƟon, ChatGPT-4o can assist in the preparaƟon of informed consent documents and offer 
standardized proposals that explain risks, benefits, and alternaƟves in a format that is understandable 
to paƟents. Such a feature supports both legal compliance and ethical standards of informed 
decision-making, especially in sensiƟve or risky procedures. Although AI cannot replace human 
empathy or nuanced interpretaƟons of emoƟonal cues, it can serve as a complement that expands 
the availability of medical informaƟon and reinforces understanding through repeƟƟon in 
understandable language. Quality control, culturally sensiƟve wording, and real-Ɵme clinical oversight 
remain essenƟal for safe implementaƟon. 

In the field of medical educaƟon, ChatGPT-4o represents a significant advance in providing 
personalized interacƟve training for medical students, residents, and young physicians in the fields of 
pediatric surgery and urology. TradiƟonal educaƟonal methods oŌen fail to meet the diverse 
educaƟonal needs and schedules of surgical trainees. ChatGPT-4o, on the other hand, offers an 
adapƟve, on-demand learning environment that can tailor content to the individual knowledge level 
and goals of each student.(11,16,17) It can converse on a technical topic or generate customized 
quizzes, from the basics of anatomy and embryology to advanced quesƟons based on cases of 
congenital anomalies such as posterior urethral valves or bladder exstrophy, helping students 
consolidate factual knowledge and idenƟfy gaps in their knowledge. 

In addiƟon to teaching, the model can simulate virtual encounters with paƟents, guide interns 
through structured interviews, and encourage them to ask appropriate diagnosƟc quesƟons based on 
the symptoms presented. For example, it can simulate a consultaƟon with the parent of a child with 
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undescended tesƟcles and encourage the student to gather relevant medical history, propose a 
differenƟal diagnosis, and formulate an iniƟal treatment plan. It can also describe surgical procedures 
step by step, such as laparoscopic pyeloplasty, at varying levels of complexity depending on the user's 
background—whether they are a medical student looking for basic guidance or a resident who needs 
detailed informaƟon about the operaƟon and what to look out for during surgery. 

The plaƞorm's ability to provide immediate feedback and explanaƟons supports a formaƟve 
approach to learning and enables conƟnuous reflecƟon and correcƟon of misconcepƟons. It can also 
be used to prepare for exams or to independently review procedures prior to live operaƟons. This 
flexibility is a powerful complement to tradiƟonal bedside teaching and operaƟng room pracƟce, 
especially in programs where the number of surgical cases may be limited. When the content is 
verified and used under expert supervision, ChatGPT-4o can help standardize teaching and accelerate 
skill acquisiƟon in pediatric surgical educaƟon.(17) 

Despite its remarkable versaƟlity and growing role in healthcare, the deployment of ChatGPT-4o in 
pediatric surgery and urology should be approached with cauƟon given its current technical, ethical, 
and regulatory limitaƟons. One significant concern is the phenomenon of AI hallucinaƟons, in which 
the model generates incorrect or fabricated informaƟon while maintaining a confident tone. This can 
be parƟcularly dangerous in a clinical seƫng, where factual accuracy is criƟcal for diagnosis and 
treatment planning.(11) 

Furthermore, while ChatGPT-4o can interpret some text-based radiology reports, it is not yet capable 
of reliably analyzing medical images such as X-rays, ultrasounds, or CT scans. Specialized AI models 
trained on large, annotated image datasets and integrated directly into radiology viewers (e.g., Aidoc, 
Arterys) and approved for clinical use by the FDA (Food and Drug AdministraƟon) or CE (Conformité 
Européenne). In pracƟce, ChatGPT-4o should only be used in conjuncƟon with expert radiological 
input, not in place of it. 

A significant barrier to real-world deployment is insufficient compliance with the GDPR. Current data 
processing protocols for many LLMs, especially cloud-based ones, may not meet European privacy 
and consent requirements, posing legal and ethical barriers in clinical seƫngs. In addiƟon, concerns 
remain unresolved regarding algorithmic bias arising from the model's training data. These biases can 
lead to persistent inequaliƟes in care if leŌ unchecked, parƟcularly in pediatric populaƟons with 
diverse ethnic, linguisƟc, or socioeconomic backgrounds.(21) 

Other ethical issues relate to transparency, accountability, and authorship, parƟcularly in academic 
seƫngs where AI-assisted wriƟng is becoming increasingly common.(17,21,23,30) InsƟtuƟons must 
define clear policies on how content generated by ChatGPT should be published and acknowledged. 
To ensure the safe and ethical use of ChatGPT in academic work, leading publishing houses and 
journals already have a clearly defined and permiƩed role for ChatGPT. Where ChatGPT fails almost 
completely, when used as an aid in formulaƟng certain ideas or sentences, is in finding relevant and 
current sources and ciƟng them. ChatGPT almost always invents references for scienƟfic work, and 
they cannot be used at all. We therefore believe that the role of ChatGPT in wriƟng professional 
arƟcles and books is again only as a support tool in brainstorming ideas and providing inspiraƟon as 
to which part of the studied topic can sƟll be explored aŌer finding relevant and current sources.  

Conclusion 

It can be said that ChatGPT-4o represents a significant advance in the integraƟon of arƟficial 
intelligence into pediatric surgical and urological care, but most doctors do not yet use it due to 
mistrust and unfamiliarity, a certain unpredictability, the possibility of hallucinaƟons, and a lack of 
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personal data protecƟon. However, its potenƟal to increase the efficiency of workflows, improve 
access to informaƟon, and facilitate communicaƟon between paƟents and doctors is becoming 
increasingly apparent. From clinical documentaƟon and diagnosƟc reasoning to paƟent educaƟon 
and surgical training, ChatGPT-4o offers a wide range of applicaƟons that can address logisƟcal and 
cogniƟve challenges in pediatric healthcare. 

However, its usefulness must be contextualized within the framework of ethical responsibility and 
clinical judgment. As a tool without percepƟon, ChatGPT-4o cannot replace the nuanced, empatheƟc, 
and morally grounded decision-making of pediatric surgeons and urologists. Rather, it should be 
considered a complementary support system—a cogniƟve and administraƟve amplifier that can 
sƟmulate human thinking, reduce administraƟve burden, and promote standardizaƟon, especially in 
resource-constrained seƫngs. 

Interdisciplinary collaboraƟon between clinicians, IT specialists, ethicists, and hospital and 
government policymakers is essenƟal for meaningful and safe adopƟon. Current key prioriƟes include 
improving model performance, ensuring transparency and interpretability, and developing 
insƟtuƟonal policies regarding authorship, consent, and privacy. In addiƟon, robust validaƟon studies 
are needed to quanƟfy the clinical impact of ChatGPT-4o in pediatric contexts, including long-term 
outcomes and user saƟsfacƟon. 

The integraƟon of ChatGPT-4o into pediatric surgical pracƟce ulƟmately reflects a broader paradigm 
shiŌ toward AI-assisted medicine. With careful deployment, transparency, and regulatory oversight, 
this technology has the potenƟal to improve the quality of care, reduce dispariƟes, and enhance the 
human dimension of clinical work by freeing up Ɵme for what maƩers most: the child and their 
family. 
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2Efrei Research Lab. Panthéon Assas University, 30-32 avenue de la République,
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Abstract

Effective pain detection is crucial
in clinical settings, especially for pa-
tients who cannot reliably self-report
their pain. However, although auto-
mated pain-detection systems already
exist, they typically rely on a sin-
gle behavioural or physiological chan-
nel, even though pain can manifest
through multiple modalities. We in-
troduce a multimodal artificial in-
telligence (AI) framework that uni-
fies facial-expression analysis, vocal-
cue extraction, and head-pose dynam-
ics. Each modality is trained on a
specific benchmark dataset using ded-
icated deep-learning architectures: a
Convolutional Neural Network (CNN)
based on InceptionV3 combined with a
Bidirectional Long Short-TermMemory
(BiLSTM) network with an attention
mechanism for facial-expression anal-
ysis, a seven-layer Multilayer Percep-
tron (MLP) driven by Mel-Frequency
Cepstral Coefficient (MFCC) features
for vocal-cue extraction, and a two-
layer BiLSTM network for head-pose
dynamics. Final pain-detection deci-
sions are obtained via majority voting
across modalities. The facial, audio,
and head-pose models achieved accura-
cies of 85.5%, 90.5%, and 66.7% with
corresponding F1 scores of 0.90, 0.906,
and 0.775, respectively. When fused,
the overall system reached an accuracy
of 96.7% and an F1 score of 0.929.
Our findings suggest that integrating
facial expressions, speech characteris-
tics, and head movements can signifi-
cantly improve the detection of pain,
particularly in situations where patients
are unable to communicate clearly.

Keywords: Pain detection; multi-
modal fusion; facial-expression analysis;
vocal cues; head-pose analysis; artificial
intelligence; healthcare.

I INTRODUCTION

The world’s population is rapidly aging, creat-
ing new challenges in healthcare for older adults.
In 2019, about 1 billion people were aged 60
or above, a figure projected to reach 2.1 billion
by 2050 [1]. A strong majority of seniors wish
to “age in place” (remain in their own homes)
rather than move to institutions [2], which in-
creases the need for home-based health moni-
toring. Chronic pain is highly prevalent in this
demographic, with over half of adults 65+ re-
porting ongoing pain and around one-third suf-
fering chronic pain [3]. Managing pain in elders
is difficult since many have cognitive impair-
ments or communication barriers – for example,
older adults with dementia often cannot reliably
self-report pain, leading to under-diagnosis [4].
When pain goes unnoticed or untreated, it can
seriously impact a person’s well-being and may
accelerate both physical and cognitive decline.
This underscores the need for non-intrusive, au-
tomated, real-time pain monitoring systems to
support aging in place.

Recent advances in artificial intelligence (AI)
enable the development of such automated pain
assessment tools. Unlike traditional nurse ob-
servations or self-reports, an AI-driven system
can continuously and objectively detect pain be-
haviors without burdening the individual. Vi-
sion and audio modalities are especially promis-
ing for unobtrusive monitoring: cameras and
microphones are passive, widely available sen-
sors that can capture pain-related facial expres-
sions, vocalizations, and body movements in real
time [5]. Prior studies have shown that ana-
lyzing facial cues with AI can successfully indi-
cate pain – for instance, a smartphone app has
been used to detect pain from facial expressions
in non-communicative patients [4]. Facial ex-
pressions are a well-established pain indicator:
pain-related facial movements (e.g. brow low-
ering, eye tightening) carry specific information
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distinct from general expressions [6]. Similarly,
vocal pain indicators such as moaning, crying,
or changes in speech have been linked to painful
episodes, and AI algorithms can mine vocal fea-
tures for pain “biomarkers.” Head pose and ges-
ture changes (like guarding or restlessness) may
further signal discomfort. A multimodal AI ap-
proach that fuses these cues is therefore a logical
focus, as it can leverage complementary chan-
nels – e.g. detecting pain even when a patient
is silent or has a stoic facial expression. In sum-
mary, there is a critical need for an automated
pain monitoring system for older adults that in-
tegrates facial, vocal, and head movement cues
to achieve non-invasive, real-time pain detection.
This work aims to fulfill that need. Notably,
most existing automated pain detection research
has not been validated on older adult popula-
tions or those with dementia [7], highlighting the
importance of our focus on an elderly monitoring
context.

II RELATED WORK

A study by Lucey et al. introduced the UNBC-
McMaster Shoulder Pain Expression Archive,
establishing a benchmark for facial expression-
based pain detection and enabling the develop-
ment of numerous algorithms using the Facial
Action Coding System (FACS) [8]. Werner et
al. developed the BioVid Heat Pain database,
which extended analysis beyond facial cues to in-
clude head pose and physiological signals [9, 10].
More recent works such as that by Fang et
al. have documented the evolution from hand-
crafted features to deep learning methods like
CNNs and spatio-temporal models, significantly
boosting recognition performance [6]. However,
facial-only systems face key limitations: pain ex-
pressions are highly individual, can be absent in
stoic or cognitively impaired patients, and most
datasets were collected from younger adults, lim-
iting generalizability to elderly or dementia pop-
ulations [7].

Vocal cues offer another perspective. Borna
et al. reviewed AI-based voice analysis, showing
that vocal features such as pitch and loudness
can reliably indicate pain when analyzed with
modern deep learning techniques [11]. Icht et al.
and Lautenbacher et al. further demonstrated
that pain is associated with characteristic vocal-
izations, such as moaning and changes in speech
quality, which can be detected with signal pro-
cessing methods [12, 13]. Yet, unimodal au-
dio approaches struggle with background noise,
speaker variability, and the lack of large, stan-
dardized datasets [11]. Most importantly, pain
may not always be vocalized—especially in cer-
tain medical or cultural contexts—leaving these
systems blind in such situations.

Head pose and body movement have recently
been leveraged for pain detection. Werner et
al. analyzed head orientation and observed sys-
tematic downward or averted movements during
pain [14], while Walsh et al. found that “head
averted” and “gaze downward” are prototypi-
cal pain postures [15]. Egede et al., through
the EmoPain Challenge, showed that integrat-
ing body movement features with facial cues
improves recognition of pain-related behaviors,
particularly in chronic pain patients [16]. Nev-
ertheless, relying solely on posture or movement
can overlook cases where pain does not signifi-
cantly alter body language.

These limitations have driven a shift toward
multimodal fusion approaches. Thiam et al.
demonstrated that combining facial, vocal, and
physiological data using late fusion strategies
produces more robust and reliable pain detection
than any single modality alone [5]. Gutierrez et
al. highlighted the benefits of integrating facial
gesture and paralanguage analysis for real-world
scenarios [17]. Borna et al. also found that mul-
timodal systems can compensate for missing or
ambiguous signals in one channel by leveraging
complementary cues from others [11]. However,
as Rezaei et al. pointed out, most automated
pain detection models are still rarely validated
on older adults or dementia patients, emphasiz-
ing the need for research focused on these vul-
nerable populations [7].

III Methods

In this work, we developed a multimodal pain
detection framework that integrates three com-
plementary approaches—facial expression anal-
ysis, vocal cue analysis, and head pose dynam-
ics—to improve the accuracy and robustness
of automated pain recognition in videos. For
each video sample, all three individual mod-
els were independently applied: (1) a facial
expression-based system leveraging deep spa-
tiotemporal features, (2) an audio-based system
analyzing speech characteristics, and (3) a head
pose-based system modeling dynamic postural
changes. Each model outputs a binary predic-
tion (”Pain” or ”No Pain”).

The final pain assessment for each video was
determined through a simple majority voting
scheme: the decision with at least two out of
three models in agreement was taken as the over-
all system prediction. This late fusion strategy
helps compensate for potential errors or ambigu-
ities in any single modality, leading to improved
reliability in challenging real-world conditions.

The following subsections provide detailed
descriptions of the three core components of our
multimodal framework.
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A Facial Expression-Based Pain
Detection

For facial expression-based pain detection, we
utilized the Pain E-motion Faces Database
(PEMF) [18], consisting of 272 high-resolution
micro-video clips from 68 participants. This
dataset includes spontaneous (algometer-
induced, laser-induced) and posed pain expres-
sions, alongside neutral expressions. Each clip
was meticulously annotated by trained raters
using the Facial Action Coding System (FACS),
providing detailed annotations for pain inten-
sity (0–8 scale), facial Action Units (e.g., AU4:
brow lowering, AU6: cheek raiser), emotional
valence, arousal ratings, and discrete emotion
labels (e.g., happiness, sadness, anger). The
overall pipeline for facial expression analysis
comprises three main stages: preprocessing, fea-
ture extraction, and temporal modeling, as de-
picted in Figure 1.

Preprocessing In this initial stage, video
frames underwent face detection and landmark-
based alignment using Dlib’s frontal face detec-
tor coupled with a 68-point landmark predictor.
Faces were strictly cropped, aligned, resized to
224×224 pixels, and normalized to reduce vari-
ability due to lighting conditions. This step en-
sured consistency and stability of input images
for subsequent feature extraction.

Feature Extraction Spatial features were ex-
tracted using the pretrained Inception-V3 con-
volutional neural network (CNN) [19], with
all network weights frozen to leverage repre-
sentations learned from the ImageNet dataset.
Each aligned frame was processed through the
Inception-V3 backbone, and the resulting fea-
ture maps were condensed by global average
pooling and global max pooling, yielding robust
4096-dimensional vectors per frame.

Temporal Modeling The sequence of frame-
level features was modeled to capture tempo-
ral dynamics crucial for detecting subtle pain-
related behaviors. Temporal modeling involved
applying one-dimensional convolution (Conv1D)
layers to encode short-term dependencies, fol-
lowed by stacked bidirectional Long Short-Term
Memory (BiLSTM) layers [20] to capture longer
temporal dependencies in both directions. A
soft attention mechanism [21] was implemented
to identify and emphasize the most informative
frames indicative of pain, resulting in a context-
aware feature representation suitable for both
regression and classification tasks.

Training and Optimization For regression
tasks (pain intensity estimation), the model was

trained using mean squared error (MSE) loss,
while for classification tasks (binary pain detec-
tion), binary cross-entropy loss was employed.
Stratified data splits preserved intensity distri-
bution, and data augmentation (e.g., random
flips, rotations, zoom, and brightness adjust-
ments) was applied during training to enhance
robustness. Frame-level features were standard-
ized using a StandardScaler, and sequences were
padded to match the longest sequence. The
model was optimized using the Adam opti-
mizer, with early stopping, learning rate reduc-
tion upon plateau, and checkpointing based on
validation metrics.

Figure 1: Flowchart illustrating the pipeline
for facial expression-based pain detection

B Vocal Cues-Based Pain Detec-
tion

Dataset Overview The method employs the
TAME-Pain dataset [22], which contains 7,039
speech utterances (311 minutes of audio) from
51 healthy adult participants. Each utterance is
annotated with a self-reported pain score (1–10)
and a binary pain label (Pain vs. No Pain), and
is accompanied by an audio-quality rating on a
0–4 scale (0 = highest quality). Only recordings
marked as valid and with the highest quality la-
bel (action label 0) were retained for analysis.
All audio was captured at 16 kHz, 16-bit mono.
An overview of this audio-based pain detection
pipeline is shown in Figure 2.

Preprocessing and Feature Extraction
Each retained audio recording was prepro-
cessed to remove silence and extract spec-
tral features. First, leading and trailing si-
lences were trimmed using a voice-activity de-
tector (VAD)[22]. Then, 20-dimensional Mel-
frequency cepstral coefficients (MFCCs) were
computed over short time frames of the trimmed
speech. MFCCs are widely used acoustic fea-
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tures in speech analysis[23]. For each utter-
ance, the frame-level MFCCs were summarized
by computing the mean and standard deviation
of each coefficient across time, yielding a 40-
dimensional feature vector (20 means + 20 stan-
dard deviations).

Classification Model Prior to classifica-
tion, feature vectors were z-score standardized
across the dataset. To mitigate the imbal-
ance between pain and no-pain classes, syn-
thetic minority oversampling (SMOTE) was
applied [24]. A deep feedforward neu-
ral network (multilayer perceptron) was then
trained on the resulting features. The net-
work architecture comprised seven hidden lay-
ers with 1,024→512→256→256→128→128→64
units, respectively. Each hidden layer used a
ReLU activation, followed by batch normaliza-
tion and dropout (dropout rates of 0.3–0.4) to
promote generalization. The final layer was a
single sigmoid unit for binary pain-vs-no-pain
prediction. Binary cross-entropy loss was min-
imized using the Adam optimizer. Early stop-
ping and a learning-rate scheduling scheme were
employed as additional regularization during
training.

Training Setup The dataset was split into
training and test sets using an 80:20 strati-
fied partition, preserving the pain/no-pain ra-
tio. The model was trained on the 80% training
subset (with hyperparameters tuned via cross-
validation on training data), and evaluated on
the held-out 20% test set.

C Head Pose-Based Pain Detec-
tion

The system is evaluated on the BioVid Heat
Pain Database Part A[25], which contains
recordings of 90 subjects under four levels of ex-
perimentally induced heat pain. For each video
frame, head orientation angles (yaw, pitch, and
roll) are estimated using Google’s MediaPipe
FaceMesh model[26]. From these angle trajec-
tories, the angular velocity and acceleration are
computed. These feature sequences (angles, ve-
locities, accelerations) are normalized separately
for each subject to reduce inter-subject variabil-
ity.

The temporal features are fed into a bidi-
rectional LSTM (BiLSTM) network for pain
classification[20]. The BiLSTM processes the se-
quence in both forward and backward time di-
rections, thereby capturing contextual dynam-
ics of head motion. To address class imbalance,
training uses the focal loss function[27], which
down-weights easy (well-classified) examples in
the loss, and the training set is balanced with

Figure 2: Flowchart illustrating the pipeline
for audio-based pain detection

SMOTE over-sampling. Model performance
is assessed in a leave-one-subject-out cross-
validation (LOSO-CV) scheme, i.e., each subject
serves once as the held-out test set. Finally, the
head-pose-based predictions are fused with those
from other modalities (facial expression and au-
dio) via majority voting. This late fusion lever-
ages complementary signals to improve overall
pain detection robustness. Figure 3 illustrates
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the processing pipeline for this method.

Figure 3: Flowchart illustrating the pipeline
for head pose-based pain detection

IV Results and discussion

In this section, we first present the performance
of the three individual unimodal systems—facial
expression-based, audio-based, and head pose-

based pain detection—followed by the re-
sults of our primary contribution: the mul-
timodal pain detection system that integrates
these modalities. Pain expression is inherently
diverse, varying significantly across individuals
due to differences in personality, culture, gender,
and age. As such, relying on a single modality
often proves insufficient for consistent and ro-
bust pain recognition. To address this, our mul-
timodal framework combines complementary in-
formation from facial expressions, vocal charac-
teristics, and head pose dynamics, leveraging a
late-fusion majority voting scheme.

A Facial-Based Pain Detection

We evaluated the performance of various facial
expression-based models for both pain intensity
regression and binary pain classification, using
the PEMF database. Models were compared
based on predictive accuracy, architectural de-
sign, and feature representations.

1) Regression Performance Our best-
performing regression model combined Incep-
tionV3 (with frozen weights) as a frame-
level feature extractor with a temporal model-
ing stack comprising Conv1D, Bidirectional
LSTMs, and a soft attention mechanism.
This network predicted pain intensity (on a 0–8
scale) with:

• MSE: 0.502

• MAE: 0.587

• RMSE: 0.708

• R2: 0.780

These results indicate a strong fit between pre-
dicted and ground-truth pain levels. Train-
ing was performed using the Adam optimizer
(learning rate: 1e-4), batch size of 8, and early
stopping based on validation loss. Dropout
(0.3) and learning-rate scheduling were used to
improve generalization.

2) Comparative Architectures and Fu-
sion Variants We evaluated several alterna-
tive models to benchmark performance (see Ta-
ble 1). Notably:

• InceptionResNetV2 (IRNV2) back-
bones, whether frozen or partially fine-
tuned (30–90 final layers), underperformed
InceptionV3. The best IRNV2 configura-
tion (30 unfrozen layers) yielded an MSE
of 0.76.

• AU-only models used facial Action Unit
features extracted via OpenFace or py-feat.
These shallow regressors performed poorly
(best MSE = 1.00), likely due to loss of
spatiotemporal resolution.

• PSPI-only models used the Prkachin and
Solomon Pain Intensity (PSPI) score—
computed from selected AUs—as a scalar
input. Despite its clinical relevance, this
hand-crafted feature set yielded subpar re-
sults (MSE = 1.01).

• Fusion models that combined CNN fea-
tures with AU or PSPI inputs provided
moderate improvements. For example, a
late-fusion model combining InceptionV3
with PSPI achieved an MSE of 0.60. How-
ever, none surpassed the InceptionV3-only
model.

These findings reaffirm that deep CNN-based
spatiotemporal modeling is more effective
than handcrafted facial feature regressors in
capturing subtle pain-related cues in video se-
quences.

3) Binary Classification Results The
same feature extraction and sequence model-
ing pipeline was adapted for binary classifica-
tion (pain vs. no pain). The final architecture
included:

• Two Bidirectional LSTM layers

• A soft attention layer

• Fully connected layers with ReLU acti-
vation and L2 regularization

Training was class-balanced using inverse fre-
quency weights, and monitored using validation
accuracy. On the test set, this model achieved:

• Accuracy: 0.855
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• Precision: 0.923

• Recall: 0.878

• F1 Score: 0.900

The strong F1 score and balanced preci-
sion/recall demonstrate the model’s robustness
across both spontaneous and posed pain expres-
sions.

Table 1: Summary of Facial Expression-Based
Pain Detection Models

Model Variant MSE
InceptionV3 (frozen) 0.50
InceptionV3 + PSPI (late fusion) 0.60
InceptionResNetV2 (30 layers
unfrozen)

0.76

IRNV2 + PSPI (late fusion) 0.70
AU-only (py-feat max) 1.00
PSPI-only 1.01

These results, summarized in Table 1 , show
that a frozen InceptionV3 backbone paired
with temporal sequence modeling and at-
tention mechanisms yields the best perfor-
mance for both pain intensity regression and bi-
nary pain detection. While hybrid models in-
corporating AU or PSPI features offer marginal
improvements in some configurations, they are
consistently outperformed by deep CNN-based
models. These findings highlight the effective-
ness of deep spatiotemporal representa-
tions in capturing facial expressions of pain, es-
pecially in elderly populations.

B Audio-Based Pain Detection

We evaluated multiple neural architectures for
binary pain detection using vocal cues from
the TAME-Pain dataset. The best-performing
system was a deep feedforward neural network
trained on MFCC-based features. Specifically,
for each utterance, 20 Mel-frequency cepstral co-
efficients (MFCCs) were extracted and summa-
rized via their mean and standard deviation, re-
sulting in a 40-dimensional input vector. These
were z-score normalized, and class imbalance
was addressed using SMOTE.

The final architecture consisted of seven hid-
den layers (sizes: 1024→ 512→ 256→ 256→ 128
→ 128 → 64), each followed by ReLU activa-
tion, batch normalization, and dropout (0.3–
0.4). The model was trained using the Adam
optimizer (initial learning rate = 0.001), with
early stopping (patience = 10) and learning
rate scheduling (ReduceLROnPlateau, patience
= 5). A batch size of 16 and 200 maximum
epochs were used. Cross-validation (5-fold)
yielded strong and consistent results: Accu-
racy = 0.905, Precision = 0.896, Recall =

0.916, and F1 = 0.906, confirming excellent
generalization.

Several alternative models were also tested:

• Simpler MLPs with 2–4 hidden lay-
ers (e.g., 128–64 or 256–128–64) achieved
decent performance (Accuracy ≈ 0.849–
0.860), but lacked the capacity of deeper
models.

• A sequence-aware LSTM classifier us-
ing reshaped MFCC sequences captured
temporal patterns, with moderate gains in
Recall (0.847), but at a cost to Precision.

• A pure Conv1D network applied to
MFCC sequences showed competitive re-
sults but fell short of the deep MLP in
overall metrics.

• Additional experiments included augment-
ing features with pitch or applying de-
noising filters, though these showed min-
imal or negative impact on performance.

• Lastly, pre-trained Wav2Vec2 embed-
dings (1536-dimensional, summarized via
mean and std) were tested with an MLP,
but yielded subpar results, likely due to
domain mismatch and lack of fine-tuning.

The final comparative metrics are summa-
rized in Table 2.

Table 2: Summary of Audio-Based Pain
Detection Models

Model Variant Accuracy / F1
Deep MLP (7-layer,
cross-validated)

0.905 / 0.906

Deep MLP (no CV) 0.877 / 0.847
Medium MLP (4-layer) 0.860 / 0.824
MFCC + LSTM Layer 0.832 / 0.803
MFCC + CNN-BiLSTM 0.835 / 0.793
Mel-Spectrogram +
CNN

0.598 / 0.004

Wav2Vec2 + MLP 0.594 / 0.557

These results clearly demonstrate the effec-
tiveness of deep MLP architectures for pain de-
tection from speech, particularly when combined
with robust preprocessing, class balancing, and
hyperparameter tuning.

C Head Pose-Based Pain Detec-
tion

We evaluated multiple automated pain detec-
tion methods leveraging head pose dynamics,
using the BioVid Heat Pain dataset and a rig-
orous Leave-One-Subject-Out cross-validation
(LOSO-CV) protocol to ensure robust and gen-
eralized performance.
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Optimal Model (BiLSTM) As shown in
Table 3, our most effective model utilized nor-
malized head orientation features—specifically
yaw, pitch, and roll angles—along with their cor-
responding velocities and accelerations. These
temporal sequences were modeled using a two-
layer Bidirectional Long Short-Term Memory
(BiLSTM) network with 64 hidden units per
layer, dropout of 0.25, and layer normaliza-
tion. To address dataset imbalance, SMOTE
oversampling and focal loss were applied. The
model was trained using the Adam optimizer,
and learning-rate scheduling (step decay every 6
epochs). This model achieved a mean macro-F1
score of 0.775 and an accuracy of 0.667.

Comparative Evaluations To benchmark
the BiLSTM model, we assessed several alter-
native temporal architectures:

• BiGRU-based models: Slightly lower
performance (F1 = 0.74).

• Transformer encoders (2 layers, 4
heads): Significantly lower performance
(F1 = 0.61, Accuracy = 0.57).

• Ensemble methods (LSTM + GRU
+ Transformer): Minor improvement
over BiLSTM (F1 = 0.75, Accuracy =
0.65).

Traditional and Shallow Learning Base-
lines To assess the standalone discriminative
power of head pose features, we also evaluated
several traditional methods:

• 1D CNN/TCN: Limited performance
(Accuracy = 0.51, F1 = 0.52).

• Statistical summaries (mean/std) +
Random Forest: Modest improvement
(Accuracy = 0.58, F1 = 0.59).

• Optical Flow / Motion History Im-
age + RF: Performance near chance level
(Accuracy = 0.51, F1 = 0.50).

• Facial landmark-based statistics +
RF: Limited predictive power (Accuracy
= 0.53, F1 = 0.51).

The results in Table 3 show that deep recurrent
architectures—particularly BiLSTM—are well-
suited for leveraging the temporal structure of
head pose sequences. These models substan-
tially outperform transformer-based alternatives
and traditional learning baselines. However, the
relatively modest performance of simpler models
underscores the subtle and individualized nature
of head movement as a pain indicator. While
head pose provides valuable insights, its predic-
tive power alone remains limited.

Table 3: Summary of Head Pose-Based Pain
Detection Models

Model Variant Accuracy / F1
BiLSTM (Optimal, pose
sequences)

0.667 / 0.775

Ensemble (LSTM +
GRU + Transformer)

0.650 / 0.750

BiGRU (pose sequences) 0.625 / 0.740
Transformer Encoder
(pose sequences)

0.570 / 0.610

Statistical Features +
Random Forest

0.580 / 0.590

1D CNN / TCN (pose
sequences)

0.510 / 0.519

Facial Landmarks +
Random Forest

0.532 / 0.510

Optical Flow + MHI +
Random Forest

0.509 / 0.497

Therefore, integrating it into a multimodal
framework alongside facial expressions and vo-
cal cues is essential for reliably capturing diverse
and nuanced pain expressions.

D Multimodal Pain Detection
System Performance

The multimodal system processes each input
video independently through three dedicated
pipelines:

• Facial expression analysis using a
CNN-BiLSTM attention-based model.

• Vocal cue analysis leveraging MFCC-
driven deep neural networks.

• Head pose analysis modeled through a
BiLSTM trained on temporal sequences of
head orientation.

Each modality outputs a binary prediction
(Pain or No Pain), and a final decision is made
through a majority voting scheme, enhancing ro-
bustness to noise or uncertainty in individual
modalities.

We evaluated the multimodal system using
a custom dataset we created, consisting of 30
multicultural video samples with synchronized
facial, audio, and head-pose data recorded from
the same individuals. This dataset was con-
structed specifically for this study, as no publicly
available resource currently provides all three
modalities annotated for pain in a unified set-
ting. The included subjects vary in age, gen-
der, and ethnicity, reflecting real-world variabil-
ity. Each input was independently processed
through the three pipelines, and the final predic-
tion was determined via majority voting across
modalities. The multimodal approach achieved
the following performance:
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• Accuracy: 0.967 (96.7%)

• Precision: 1.000 (100%)

• Recall: 0.929 (92.9%)

Out of 30 samples, 29 were correctly classi-
fied, with only one false negative. These results
surpass the performance of the individual uni-
modal systems on the same dataset. Notably,
inspection of the prediction results showed that
the multimodal model tended to output the cor-
rect label when at least two modalities predicted
pain—even in cases where the third modality
disagreed. For instance, some false positives
from the facial stream were correctly counter-
acted by the head pose or audio predictions.

The strength of the multimodal system lies
in its ability to capture complementary signals:
while some individuals express pain more vo-
cally, others may show it through facial ten-
sion or subtle head movements. By integrat-
ing multiple sources of evidence, the system in-
creases both reliability and generalizability of
pain recognition across diverse populations and
contexts.

V Conclusion and Future
Work

This research developed and validated a com-
prehensive multimodal AI system for automated
pain detection, effectively leveraging facial ex-
pressions, vocal characteristics, and head move-
ment dynamics. Through rigorous experimen-
tation, the multimodal fusion approach demon-
strated superior performance compared to uni-
modal models, adeptly handling variability and
ambiguity inherent in pain expression.

Future research could explore more inte-
grated fusion techniques that better capture
how different pain signals—like facial cues and
vocal patterns—interact in real time, such as
early fusion techniques, attention mechanisms,
or transformer-based cross-modal learning. To
facilitate these efforts, utilization of synchro-
nized, multimodal datasets such as SenseEmo-
tion [28] and I-XTE Pain Dataset [29], once
they become publicly available, is recommended.
These datasets will provide richer contextual in-
formation, enabling more nuanced pain assess-
ments. Furthermore, targeted validation stud-
ies with elderly and cognitively impaired pop-
ulations should be conducted to better align
the system’s capabilities with real-world clini-
cal needs, ultimately enhancing patient care and
pain management strategies.
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Introduction 
 
Systematic reviews (SRs) and meta-analyses (MAs) aim to synthesize existing evidence in 
response to well-defined research questions. When conducted rigorously, they represent the 
highest level of scientific evidence and are widely used to support clinical guidelines and 
health policies. Standardized frameworks such as Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) (1) and Population, Intervention/Exposure, 
Comparison, Outcome ± Timing/Setting (PICO/PECO) (2) provide structured methodologies 
to ensure transparency and reproducibility. Still, the validity and generalizability strongly 
depend on the consistency and quality of the included studies. 
 
In practice, the variability across studies – particularly in study design, experimental 
protocols, data collection procedures, and statistical methods – can compromise the 
comparability of results. This heterogeneity limits most MAs to an aggregation of reported 
effect sizes. Yet, a deeper level of integration – including the reanalysis of underlying data 
through harmonized statistical or bioinformatic pipelines – would enable more robust 
cross-study comparisons and help mitigate the risk of compounded bias. 
 
The initial steps of SRs, including study selection and data extraction, are particularly critical 
for MAs. Recently, artificial intelligence (AI) has emerged as a powerful tool offering 
promising opportunities to streamline these tasks (3). Machine learning approaches such as 
natural language processing (NLP) and supervised classification models have been 
proposed to automate study screening, keyword extraction, and relevance assessment. 
Large language models (LLMs) further extend these possibilities, although their integration 
into SR and MA workflows remains an ongoing challenge (4). 
 
Here, we present our approach to streamlining study selection, which is particularly critical in 
fields such as microbiota research, due to the heterogeneity in experimental and statistical 
analysis. We developed a structured, top-down pipeline to identify relevant studies and 
optimize article screening for MA in the context of early-life gut microbiota and allergy. Our 
aim is to overcome the high technical variability (e.g., sample processing, sequencing 
protocols, bioinformatic pipeline) by relying on robust and standardized procedures for 
literature selection and metadata extraction, in line with existing reporting frameworks such 
as STandardized Operation Procedures for Reproducible Microbiome Science (STORMS) 
(5). 
 
Methods 
 
Literature Retrieval and Preprocessing 
To identify relevant literature on the gut microbiota and allergy in early life, we first explored 
18 PubMed queries of varying stringency (returned between 39 and 2863 articles). We 
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retained a mid-to-low stringency query as the most suitable compromise: ((allergy) AND 
(infant* OR newborn* OR neonate* OR child*)) AND ((microbio* OR *flora) AND (human) 
AND (gut OR *intestin* OR digestive OR enteric OR colic OR gastric)) NOT (Review[pt]). 
This query returned 933 articles after duplicate removal. 
 
For each article, the title and abstract were concatenated and processed through a text 
preprocessing pipeline including tokenization, lowercasing, stop-word removal, and 
punctuation stripping. Word frequency tables were then computed across the corpus. 
 
To filter out generic or context-irrelevant terms, the same pipeline was applied to a set of 
1494 out-of-scope articles retrieved from JAMA (published in 2024), using a query that 
excluded articles with any reference to allergy or microbiota: ("2024/01/01"[Date - 
Publication] : "2024/12/31"[Date - Publication]) AND (english[Language]) AND 
("JAMA"[Journal]) NOT (allergy) NOT (microbiota) NOT (allergy[MeSH Terms]) NOT 
(microbiota[MeSH Terms]). After testing several threshold combinations, we excluded words 
that appeared in fewer than 5% of relevant articles or in more than 0.5% of out-of-scope 
articles. This filtering strategy helped isolate discriminative and domain-specific keywords 
while minimizing the noise and computational resource usage. 
 
Dataset Sampling and Annotation 
All 933 articles were manually annotated for inclusion in the MA based on predefined 
relevance criteria. From this labeled corpus, we generated 4 random subsamples of 
increasing sizes (60, 100, 200, and 300 articles) to serve as training sets. For each, the 
remaining articles were used as test sets. This design allowed us to evaluate model 
performance across varying amounts of annotated data. 
 
Feature Selection 
To reduce dimensionality and retain only informative features, 2 complementary feature 
selection strategies were applied independently to each training set: Random Forest (RF) 
based importance ranking, and sparse Partial Least Squares Discriminant Analysis 
(sPLS-DA) using stability selection. Only features with a stability score ≥ 0.75 across 
bootstrapped samples were retained for modeling. 
 
Model Fitting and Evaluation 
Each resulting feature set was then used to train both a Generalized Linear Model (GLM) 
and a Partial Least Squares Discriminant Analysis (PLS-DA) classifier, resulting in 16 model 
configurations in total (4 sample sizes x 2 feature selection methods x 2 classifiers). Models 
were trained with default hyperparameters and without internal cross-validation, in order to 
evaluate their performance directly on the corresponding held-out test set. The outcome was 
a binary classification indicating article relevance for inclusion in the MA. 
 
Model performance was assessed using multiple metrics: Area Under the Receiver 
Operating Characteristic Curve (ROC AUC), Recall, Precision, F1-score, and balanced 
Accuracy (i.e., the average of Sensitivity and Specificity), to account for the inherent class 
imbalance in the dataset. Classification thresholds were selected to maximize the F1-score 
on the training set, aiming to balance Sensitivity and Precision. Results were compared 
across modeling strategies and training sizes to evaluate the relative contribution of each 
component in the pipeline. 
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Results 
 
Feature Selection Outcomes 
The vocabulary filtering and feature selection steps yielded increasingly rich and specific 
sets of discriminative words as the trainset size increased. Random Forest (RF) and sparse 
PLS-DA (sPLS-DA) identified both overlapping and method-specific features. Commonly 
selected features across models included gut, microbiota, allergy, infancy and intestinal, 
reflecting the core topics of the research question. With larger training sets, more granular or 
technical terms emerged – such as 16S, rRNA, microbial, and stool – particularly in 
sPLS-DA-based models (Figure 1). 
 
Classification Performance 
Classification performance improved consistently with increasing training set size, although 
gains were not strictly linear. Models trained on small samples (e.g., n ≤ 100) showed limited 
generalization, with Recall values and F1-scores below 0.30 for testset. These 
configurations also tended to overfit, as indicated by substantially higher performance on 
trainsets compared to testsets. In contrast, models trained on ≥ 200 articles showed marked 
improvements, with ROC-AUC values up to 0.80 and balanced accuracy up to 0.72 (Figure 
2). Among these, the PLS-DA model trained on the sample of 300 articles using RF-selected 
features achieved the highest global performance, with the most balanced trade-off between 
Precision and Recall, the best test F1-score, and the smallest gap between train and test 
performance. The ROC curve for this model is shown in Figure 3. 
 
Across all configurations, PLS-DA models seemed to outperform GLMs in terms of 
ROC-AUC and Recall, especially when combined with sPLS-DA feature selection. In 
contrast, GLM models, especially those trained on small samples with RF-selected features, 
exhibited signs of overfitting, with larger discrepancies between training and test 
performance (Figure 2). Nevertheless, RF-based feature models retained a degree of 
interpretability, relying on compact and biologically intuitive feature sets centered around a 
few high-signal terms (Figure 1). 
 
Figure 2 displays the full set of performance metrics (Recall, Precision, F1-score, Balanced 
Accuracy, and ROC-AUC) for each model coupled with each feature selection approach. Our 
results support the feasibility of building more effective supervised classifiers to support 
article triage in SRs, starting from a broad query. Moreover, moderate-sized train sets (n ≥ 
200) seem to yield informative generalizable models when coupled with thoughtful feature 
selection. 
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Figure 1. Word features retained across models after feature selection 
Heatmap showing the presence of selected keywords (rows) across the 4 sample sizes used 
as trainset (columns). Models are grouped by feature selection method (RF or sPLS-DA), 
and training set size (n = 60, 100, 200, or 300). Relevant keywords number tends to grow 
with sample size, with a higher number of features retained by sPLS-DA than RF. 
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Figure 2. Performance metrics for all models on training and test sets 
Bar plots showing Recall, Precision, F1-score, Balanced Accuracy, and ROC-AUC for each 
of the 16 models, evaluated separately on the train and test sets. The figure highlights the 
impact of training set size and feature selection strategy on generalization performance. 
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Figure 3. ROC curve for the 
best-performing model 
ROC curve for the PLS-DA 
classifier (selected model 
threshold = 0.1789) trained on 
a sample of 300 articles after 
feature selection using 
Random Forest (retained 
words in the final model: gut, 
allergy, intestinal, atopic, 
allergies, fecal, stool). This 
model achieved the best 
overall performance across all 
metrics (F1-score = 0.4226, 
Recall = 0.6897, Precision = 
0.3046, Balanced Accuracy = 
0.7192, ROC AUC = 0.7885), 
with the smallest train-test 
performance gap. 

 
 
Discussion 
 
This study supports the potential of structured, feature-based machine learning approaches 
to support the automation of study selection in SRs and MAs. By applying a top-down 
pipeline combining lexical filtering and supervised classification, we were able to build 
predictive models that reached decent performance using moderate training sets. Our 
results suggest that article triage is achievable even without deep linguistic modeling, 
provided that relevant features are selected. In particular, combining PLS-DA with RF-based 
feature selection appears to offer an acceptable trade-off between interpretability and 
generalization. 
 
Compared to recent advances using LLMs, our approach offers a lightweight, transparent, 
and reproducible alternative. While LLMs have shown impressive zero-shot performance in 
SR screening tasks (4,6), these methods still face challenges in particular interpretability and 
computational cost. In contrast, our method allows explicit control over vocabulary, model 
structure and performance thresholds, which may facilitate its integration into validated, 
auditable pipelines in biomedical research. 
 
Nevertheless, our current approach presents several limitations. First, it relies on simple 
lexical representations based on word frequency, which ignore word order, grammatical 
structure, and semantic relationships. This limits model capacity, especially when abstracts 
include negations, ambiguous terms, or complex syntax. Second, performance was 
evaluated using a single random train/test split. Without cross-validation or stratified 
sampling, we cannot fully assess the stability of model performance across different subsets. 
Third, each model was trained independently, and no combination of classifiers (e.g., 
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through ensembling) was explored. Using ensemble strategies could help mitigate overfitting 
and improve robustness, particularly when training data are limited. 
 
To address these issues, future developments will integrate more sophisticated natural 
language processing (NLP) techniques, including lemmatization, pattern detection via 
regular expressions (regex) or stemming, and vector-based text representations such as 
static (e.g., Word2Vec, GloVe, FastText) and contextualized embeddings (e.g., BERT, GPT). 
These transformer-based approaches offer the potential to capture richer syntactic and 
semantic information beyond token frequency. Beyond article selection, the next stages of 
our pipeline will focus on automated metadata extraction from full-text articles. Named Entity 
Recognition (NER) techniques will be used to extract structured information on populations, 
sequencing methods, other confounders and outcomes. 
 
We plan to evaluate both generic and domain-specific models – pre-trained on large 
biomedical corpora – such as BioBERT (7), SciBERT (8), and PubMedBERT (9), as well as 
general-purpose LLMs (e.g., GPT, LLaMA-4) fine-tuned for biomedical information extraction 
(4). These models will be evaluated in both zero-shot and fine-tuned settings for tasks such 
as study classification and metadata extraction. However, a fine-tuning step on annotated 
corpora from microbiota and allergy research is essential to enhance recognition accuracy, 
given the domain-specific terminology and the need for high-precision extraction of often 
underrepresented entities.  
We also aim to complement our top-down selection strategy with a bottom-up approach 
based on citation network analysis, starting from manually validated seed articles. This dual 
strategy is expected to increase performance while maintaining relevance, and may help 
identify studies not well indexed by keyword searches alone. 
 
In perspective, these efforts aim to support the construction of a fully automated 
meta-analysis pipeline. This pipeline will integrate sequential modules for article screening, 
structured data and metadata extraction, and harmonized downstream bioinformatic and 
statistical analysis. By automating each step while maintaining interpretability and 
methodological transparency, we aim to reduce human workload and subjectivity, enhance 
the reproducibility and scalability of SRs and MAs, and ultimately enable deeper, cross-study 
integration of datasets – particularly in complex domains such as microbiota research. 
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Abstract

Lyme disease is a chronic infectious condition that presents with heterogeneous symptom profiles,
complicating both diagnosis and treatment monitoring. To address the challenge of evaluating therapeutic
response in the absence of standardized clinical endpoints, we developed a machine learning pipeline to
classify responders and non-responders using patient-reported symptom survey data.

The study analyzed data from adult patients diagnosed with Lyme disease and treated at Mater Mis-
ericordiae University Hospital in Dublin. Symptom severity was assessed at baseline and post-treatment,
and changes across multiple domains (fatigue, pain, mood, and overall symptom burden) were used to
stratify patients into high responders, non-responders, and intermediate groups using a quantile-based
approach.

To predict response class from baseline clinical features, we applied a filter-based feature selection
method using ANOVA F-score (f classif) to identify the top 20 predictive variables. These were used
to train and evaluate four supervised classifiers (Random Forest, Support Vector Machine, Logistic Re-
gression, and K-Nearest Neighbors). We compared SMOTE oversampling and class weighting strategies
for class imbalance, and assessed performance using stratified 5-fold cross-validation and multiple metrics
(Accuracy, F1-score, ROC AUC, and MCC).

Our results show that baseline symptom profiles are predictive of treatment response, with Random
Forest combined with SMOTE achieving the best overall performance. This study proposes a repro-
ducible, interpretable ML framework for response classification in Lyme disease and lays the groundwork
for future integrative analyses involving biomarkers and longitudinal modeling.

1 Introduction

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi, with symptoms ranging from mild
flu-like illness to severe neurological or musculoskeletal complications [1]. While antibiotic treatment is
generally effective, a substantial subset of patients continues to experience long-term symptoms, a condition
often referred to as post-treatment Lyme disease syndrome (PTLDS) [2].

One of the key challenges in clinical practice is predicting which patients will experience meaningful
symptom improvement following treatment. Recent machine learning studies have attempted to address
this, most notably the work of Vendrow et al. [3], who used symptom survey data to identify predictors of
therapeutic response through a combination of feature selection techniques and deep learning classifiers.

Inspired by their approach, this study implements a simplified and interpretable machine learning pipeline
tailored to a smaller clinical dataset. Unlike Vendrow et al., we do not employ neural networks due to data size

Authors are listed in the order of their contributions.
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constraints, but focus on traditional supervised classifiers such as Random Forest, Support Vector Machine,
Logistic Regression, and K-Nearest Neighbors.

Our primary objective is to explore whether baseline symptom profiles can be used to classify patients
into high responders and non-responders, based on post-treatment symptom change. To this end, we adopt
a global feature selection strategy, performed prior to model training, to identify the most informative
clinical features. This design choice, aligned with the exploratory and feature-focused nature of Vendrow et
al.’s methodology, prioritizes interpretability and the identification of stable clinical markers over predictive
generalization.

2 Methods

Before diving into the specific steps, our methodological pipeline can be broadly divided into three com-
ponents: (1) data preprocessing and symptom-based classification, (2) feature selection, and (3) machine
learning modeling and evaluation. Each step was designed to ensure robustness, interpretability, and clinical
relevance of the results.

2.1 Preprocessing Strategy for Clinical Survey Data

2.1.1 Dataset Description

The dataset used in this study consists of anonymized clinical survey responses collected from patients diag-
nosed with Lyme disease at Mater Misericordiae University Hospital in Dublin. Surveys were administered
at two timepoints: baseline (T0, pre-treatment) and follow-up (T2, post-treatment), enabling longitudinal
symptom tracking. The dataset includes 176 clinical features covering physical, cognitive, and emotional
symptoms, treatment details, and comorbidities.

2.1.2 Categorical Variable Encoding

Clinical survey data often contain categorical variables, such as symptom presence or gender. We applied
binary encoding for dichotomous features (e.g., gender, prior diagnosis) and one-hot encoding for nominal
variables with more than two categories (e.g., antibiotic tolerance). This approach preserves the categorical
information without introducing artificial ordinal relationships [4]. Proper encoding is essential for model
interpretability in medical machine learning contexts.

2.1.3 Handling Missing Data

To address missing values, we excluded features with more than 70% missingness, a commonly used threshold
that balances model robustness and data retention [5]. Median imputation was used for continuous variables
due to its robustness to outliers [6]. For binary features, missing entries were imputed with a constant value
of −1, allowing models to potentially capture the informativeness of missingness itself. This strategy aligns
with previous studies such as MyLymeData [3], where non-responses were explicitly retained for modeling.

2.1.4 Feature Scaling and Standardization

All continuous variables were standardized to zero mean and unit variance, a key step for optimizing perfor-
mance in distance-based or regularized models [7, 4]. Such normalization practices are widely used in clinical
machine learning pipelines and are known to enhance subgroup separability [7].

2.1.5 Leakage Prevention

To avoid data leakage and simulate realistic clinical deployment, we excluded from the feature set the
four variables directly used to define the response classification: severe fatigue rate, muscle pain rate,
symp today rate, and mood rate. All other clinical survey features, including those from both T0 and T2,
were retained for modeling.
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2.1.6 Application to Lyme Disease Data

Prior work has emphasized the importance of robust preprocessing for Lyme-related survey data. Vendrow
et al. [3] demonstrated the value of constant-value imputation, categorical encoding, and dimensionality
reduction, while Kehoe et al. [7] highlighted the impact of normalization in biomarker classification. Building
on these findings, our pipeline integrates best practices for reproducible and clinically interpretable machine
learning.

2.2 Pain Response Classification

2.2.1 Calculation of Symptom Change (T2 – T0)

Treatment response was assessed by measuring self-reported changes in four key symptom domains: severe
fatigue, muscle pain, symptom severity today, and mood. These symptoms were selected for their consistent
clinical relevance in Lyme disease and other post-infectious syndromes [? 8, 9].

Each variable was measured on a 1–10 Likert scale at both baseline (T0) and follow-up (T2) [10]. The
direction of improvement depended on the question: lower scores indicated improvement for fatigue and
pain, while higher scores indicated improvement for mood and overall symptoms.

Table 1: Symptom variables used for response classification

Symptom Scale (1–10) Survey Item(s)

Severe fatigue 1 = no fatigue
10 = severe fatigue

“In the last six months, are you experiencing un-
explained severe fatigue not relieved by rest?”
If yes: “How would you rate the level of severe
fatigue that you have experienced?”

Muscle pain 1 = no pain
10 = severe pain

“Have you experienced muscle pain in the last six
months?”
If yes: “How would you rate the pain in your
joints or muscles?”

Symptoms today 1 = very poor
10 = very well

“How would you rate how you are feeling today
regarding your symptoms?”

Mood 1 = very low mood
10 = very good
mood

“Do you feel ‘down’ or in low mood because of
your symptoms?”
If yes: “How would you rate your overall mood?”

We computed the difference between T2 and T0 for each symptom. These difference scores were then
used to derive symptom-specific improvement distributions.

2.2.2 Quantile-Based Classification of Responders

To account for variation in baseline severity and subjective bias, we employed a quantile-based strategy for
stratification. For each symptom, patients were grouped into tertiles based on their change scores. The top
third (Q1) represented the greatest improvement, and the bottom third (Q3) the least.

We then defined multi-dimensional responder categories:

• High responders: Q1 in at least 3 out of 4 symptoms

• Non-responders: Q3 in at least 3 out of 4 symptoms

• Others: All remaining patients (excluded from modeling)
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2.2.3 Subsampling Strategy

To ensure balanced class representation, only high and non-responders were retained for modeling. All other
patients were excluded to reduce class ambiguity [3]. When class imbalance was present, we applied stratified
sampling to preserve equal proportions of high and non-responders in the training data. This helped reduce
variability due to random sampling and ensured better model differentiation between the two groups.

2.3 Feature Selection and Machine Learning Pipeline

2.3.1 Feature Selection

To reduce dimensionality and improve model interpretability, we applied a filter-based feature selection using
the SelectKBestmethod with ANOVA F-score (f classif) scoring. This technique assesses the dependency
between each feature and the target variable by comparing between-class and within-class variance, making
it particularly effective for identifying features that contribute significantly to class separation in high-
dimensional survey data.

To avoid data leakage, all features directly used to define treatment response were excluded. From
the remaining pool, the top 20 features were selected. This threshold was chosen based on previous work
suggesting it provides a balance between model expressiveness and overfitting risk in high-dimensional clinical
datasets [3, 11]. Feature selection was performed prior to any class balancing to prevent synthetic samples
from influencing the selection process.

Importantly, this selection step was conducted once on the full dataset prior to model evaluation. While
this approach may introduce a potential risk of information leakage in strictly predictive settings, it was
intentionally adopted to align with the methodology described in Vendrow et al. [3], where feature selection
was performed globally to identify a subset of relevant survey items before classification. Our primary
goal was to explore stable clinical predictors of treatment response, consistent with the exploratory and
feature-focused nature of the original study, rather than to optimize predictive generalization.

2.3.2 Class Balancing

Given the class imbalance between high responders and non-responders, we tested two balancing strategies:

1. SMOTE (Synthetic Minority Oversampling Technique): Generates synthetic samples of the
minority class to improve generalization and sensitivity in clinical prediction [12].

2. Cost-sensitive learning: Uses the class weight=’balanced’ parameter to adjust the penalty for
misclassifications based on class frequency, preserving data integrity without oversampling [13].

K-Nearest Neighbors was tested only with SMOTE, as class-weighting is not natively supported for this
algorithm.

2.3.3 Model Training and Evaluation

We trained and evaluated four supervised learning models [3] commonly used in clinical tabular data:

• Random Forest (RF): An ensemble method based on decision trees that reduces overfitting and
captures non-linear relationships. It is robust to noise and performs implicit feature selection.

• Support Vector Machine (SVM): A linear kernel SVM was used to construct a hyperplane sepa-
rating the classes with maximum margin, particularly effective in high-dimensional spaces.

• Logistic Regression (LR): A probabilistic linear model suitable for binary classification, offering
interpretable coefficients.

• K-Nearest Neighbors (KNN): A distance-based non-parametric method that classifies a sample
by majority vote of its k nearest neighbors in feature space.

All models were validated using stratified 5-fold cross-validation to preserve class proportions in each
fold. We evaluated model performance using four metrics:
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• Accuracy: The proportion of correctly classified instances over the total number of samples.

• F1-score: The harmonic mean of precision and recall, which balances false positives and false nega-
tives.

• ROC AUC: The Area Under the Receiver Operating Characteristic Curve, indicating the model’s
ability to distinguish between classes across thresholds.

• Matthews Correlation Coefficient (MCC): A robust measure for imbalanced datasets, taking
into account true and false positives and negatives. It returns a value between –1 (total disagreement)
and +1 (perfect prediction), and is considered more informative than accuracy in skewed settings [13].

No hyperparameter tuning was performed in this preliminary analysis; all models were used with scikit-
learn’s default or commonly recommended parameters. To ensure reproducibility, all random seeds were
fixed across libraries and processes.

2.3.4 Feature Importance

To interpret model decisions, we computed and compared two feature importance measures on the trained
Random Forest model: (1) impurity-based importance, which reflects the average decrease in Gini impurity,
a measure of node impurity used to split decision trees, where lower values indicate purer class distributions;
and (2) permutation importance, which evaluates the drop in model performance when the values of a feature
are randomly shuffled [14]. This comparison enables the identification of stable predictors that consistently
contribute to model discrimination.

3 Results

3.1 Patient Classification

Patients were stratified using a quantile-based classification, as described in Section 2.2.2. This approach
allowed the selection of individuals at the extremes of symptom variation, thereby enabling clearer differen-
tiation between responder categories.

Table 2 summarizes the distribution of patients across quantiles (Q1, Q2, Q3) for each symptom variable,
along with the corresponding response class assignments derived from the multi-dimensional rule.

Table 2: Patient classification summary based on quantile thresholds

Parameter Q1 Q2 Class Count

severe fatigue rate -4.00 -2.00

unknown 96
high-responder 77
non-responder 65
low-responder 63

muscle pain rate -3.00 -1.00

high-responder 96
unknown 87

low-responder 78
non-responder 40

symp today rate 0.00 3.00

unknown 90
low-responder 89
high-responder 81
non-responder 41

mood rate 1.00 3.00

unknown 95
high-responder 82
low-responder 63
non-responder 61
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3.2 Model Performance

Model performance was evaluated using four metrics: Accuracy, F1-score, ROC AUC, and Matthews Correla-
tion Coefficient (MCC). Two balancing strategies were compared: SMOTE and class weight=’balanced’.
The results of 5-fold stratified cross-validation are reported in Table 3 and illustrated in Figure 1.

The Random Forest model combined with SMOTE yielded the highest performance across all evaluation
metrics (Accuracy = 0.84, F1 = 0.84, ROC AUC = 0.84, MCC = 0.69). This indicates that synthetic
oversampling contributed to improved class separation and model generalization. In contrast, models trained
using class weighting performed consistently lower, particularly in terms of MCC, suggesting that cost-
sensitive learning alone was insufficient to address the class imbalance.

Table 3: Model performance comparison across balancing strategies

Model Strategy Accuracy F1-score ROC AUC MCC

RF + SMOTE SMOTE 0.84 0.84 0.84 0.69
LogReg + SMOTE SMOTE 0.79 0.78 0.79 0.59
SVM + SMOTE SMOTE 0.78 0.77 0.78 0.58
KNN + SMOTE SMOTE 0.76 0.71 0.76 0.56
SVM + weights class weight 0.74 0.81 0.72 0.42
LogReg + weights class weight 0.72 0.79 0.69 0.37
RF + weights class weight 0.75 0.83 0.67 0.38

As shown in Figure 1, SMOTE outperformed the class-weighted strategy across all models.

Figure 1: Comparison of class balancing strategies across performance metrics.

3.3 Feature Importance

To evaluate the contribution of individual features to model predictions, we applied both internal Random
Forest importance ranking and permutation-based importance. Figure 2 shows the features most consistently
ranked at the top by both methods.

The following variables were among the most frequently selected:
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• T2 care crc rate – How would you rate the treatment and care that you have received for the past
six months at the tickborne infections consultation service?

• T2 antib dur – Were you prescribed antibiotic therapy at your first visit here? If yes, for how long
did you take antibiotic therapy in total (in weeks)?

• T0 swglands – Have you experienced swollen glands in the last six months?

• T2 prior – In the months prior to your diagnosis, how would you rate how you were feeling about
your health?

These features were identified purely based on their statistical relevance to classification, without clinical
interpretation in this analysis.

Figure 2: Feature importance comparison using Random Forest and permutation-based methods. Features
are ranked by their impact on classification performance.

4 Discussion and Conclusion

The choice to perform feature selection globally, on the full dataset prior to model evaluation, represents an
important methodological consideration. While this approach may inflate performance estimates in strictly
predictive settings, it was intentionally adopted to remain consistent with the methodology of the original
study by Vendrow et al. [3]. In their work, feature selection was conducted globally to identify a subset of
clinically meaningful variables before classification. Our primary objective, similarly, was to explore stable
clinical predictors of treatment response, not to optimize generalization performance. Nevertheless, in future
work we plan to implement feature selection within cross-validation folds to obtain more robust performance
estimates and to support the development of clinically deployable predictive models.

Several additional enhancements are planned for future iterations of the pipeline. We will implement
more sophisticated imputation techniques such as random forest-based methods (e.g., MissForest), which
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have shown improved performance compared to traditional approaches in clinical datasets [15]. We also
aim to explore advanced classification strategies, including ensemble and boosting-based models, to improve
predictive robustness.

Another important development will be the integration of biomarker and blood test data into the model.
Recent studies have demonstrated that serologic biomarkers and multiplex peptide profiling can enhance
classification accuracy in Lyme disease [16]. By incorporating multi-modal data, we expect to create more
biologically grounded and generalizable predictive models.

Lastly, we plan to compare our results with those of Vendrow et al. [3] and carry out proper clinical
interpretation of the most informative features. This will provide valuable insight without drawing premature
conclusions.

In summary, this work lays the groundwork for an interpretable ML framework for Lyme disease symptom
data and sets the stage for future pipeline refinements and integrative, clinically informed modeling.
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ABSTRACT:  The  growing  spread  of  medical  misinformation,  particularly  content  generated  by  Large  Language 
Models (LLMs), presents serious public health risks. In this contribution, we present an interpretable AI framework for 
classifying human- and LLM-generated medical misinformation using the Med-MMHL dataset , which provides multi-
modal features including text, metadata, and source labels. Our approach combines comprehensive Exploratory Data  
Analysis  (EDA),  advanced resampling strategies,  and interpretability techniques to develop robust  and explainable  
classifiers. We benchmark a range of machine learning and deep learning models, including Multinomial Naïve Bayes, 
Logistic  Regression,  Decision  Tree,  Random  Forest,  Support  Vector  Machine,  Feedforward  Neural  Networks,  
Bidirectional Encoder Representations from Transformers (BERT), and BioBERT . To mitigate class imbalance, we  
applied  Synthetic   Minority  Oversampling  Technique,  undersampling,  and  a  hybrid  approach,  which  significantly 
improved  model  performance.  BioBERT,  fine-tuned  with  hybrid  sampling,  achieved  the  highest  performance.  We 
further  employ  Local  Interpretable  Model-agnostic  Explanations  and  Shapley  Additive  Explanations  (SHAP)  to  
enhance model interpretability, identifying lexical complexity, sentiment, and source metadata as key predictors. SHAP-
based meta-analysis reveals distinctive syntactic patterns in LLM-generated misinformation , enabling a preliminary 
taxonomy  of  misinformation  types  and  exposing  weaknesses  in  short-text  classification  by  traditional  models.  
Transformer models like BioBERT shows superior contextual understanding of medically nuanced statements, while 
simpler models struggled with ambiguous or densely packed information. Our contributions are threefold:  a rigorous  
benchmark of classical and neural models on a publicly available multi- modal dataset, establishing strong performance 
baselines for future research; an interpretable pipeline that integrates EDA, imbalance mitigation, and explainable tools 
for medical misinformation detection; and novel insights into the linguistic and contextual patterns of LLM-generated  
misinformation, informing downstream tasks. Future work will explore improved multi-modal fusion and adversarial  
robustness to advance the detection and understanding of medical misinformation. 

Keywords: LLM, Machine Learning, Deep Learning, Explainable AI, Multi Modal Features 

1. INTRODUCTION 
The spread of false medical information has become a serious problem in today’s world. With the rise of the internet  
and social media, people can easily share information—both true and false—very quickly. In recent years, powerful 
language models like ChatGPT and GPT-4 have made this issue even more complex. These models can produce text 
that looks correct and trustworthy, even if the information is actually wrong. This makes it harder to detemine what’s 
true and what’s not, especially because the language used by these models is often smooth, clear, and free of obvious  
mistakes. In contrast, human-written misinformation sometimes includes emotional or unusual writing patterns that can 
help with detection. However, AI-generated text often sounds more neutral and professional which can make people  
more likely to trust it- even when they should not.

This kind of misinformation can be especially harmful in the medical field.  When people read false advice about  
diseases,  vaccines,  or  treatments,  they may make poor health decisions.  This can cause confusion,  reduce trust  in  
doctors and health organizations,  and even lead to dangerous actions.  Because of the size and seriousness of  this  
problem, we need AI tools that can detect misinformation clearly, correctly, and in a way that is easy to understand.

In this study, we build a system that can detect both human-written and AI-generated medical misinformation. We use a 
dataset called  Med-MMHL, which includes medical texts along with extra information like their sources and truth  
labels.  First,  we  observed  a  class  imbalance  in  a  data  set-  certain  types  of  misinformation  were  significantly  
underperformed compared to other. These methods help the models learn better by giving more attention to the rare  
types of misinformation. Next, we tested several machine learning models. These included simple models like Logistic 
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Regression and Support  Vector Machines,  as well  as more advanced models like BERT and BioBERT, which are  
specially trained to understand language. We found that while the simple models did a decent job—especially when the  
data was balanced—BioBERT gave the best overall performance because it understands complex language patterns 
better. To make sure our system is not just accurate but also understandable, we used two tools: SHAP and LIME. These 
tools help explain why the model made a certain decision by showing which words or patterns were most important. For 
example, the model often focused on word choices, tone, and how confident the statements were. One category of  
misinformation (referred to as category 1) remained difficult to classify accurately, as it continued numerous ambiguous 
or  context-dependent  phrases.  This  shows  that  further  improvements—like  better  data  cleaning  or  adjusting  how 
features are used—could help in the future.

Overall, our findings highlight the importance of developing systems that not only achieve high accuracy in detecting  
misinformation but also provide transparent and interpretable outputs to support user trust. 

2. Related Work

The detection of  medical  misinformation has  become a  crucial  challenge at  the  intersection of  Natural  Language 
Processing (NLP), biomedical informatics, and trustworthy AI. Prior work in this domain can be broadly categorized  
into three areas: datasets and benchmarks, modeling strategies, and approaches for explainability and robustness in 
medical AI systems.

Datasets  and  Benchmarks  for  Medical  Misinformation  Detection:  In  recent  years,  several  domain-specific 
benchmarks have been introduced to better capture the complexities and subtleties of medical misinformation. Sun et al. 
[1] introduced the Med-MMHL dataset, a multimodal resource that incorporates text, metadata, and source credibility to 
support misinformation detection across both human- and LLM-generated content. The dataset spans formats such as  
tweets and fake news, enabling fine-grained multimodal analysis. Building on this, Sun et al. [6] investigated LLM 
vulnerabilities,  finding  that  despite  strong  performance,  LLMs  are  prone  to  subtle  hallucinations.  Pal  et  al.  [2] 
contributed Med-HALT, a benchmark designed to evaluate hallucinated biomedical claims in LLM outputs. Similarly, 
MedHal by Mehenni and Zouaq [3] focused on hallucination detection within clinical contexts, emphasizing frequency 
and severity of false content. Chen et al. [4] extended this work to vision-language models, arguing that standard factual  
consistency metrics are inadequate for the medical domain and advocating for domain-sensitive alternatives. Tian et al.  
[5]  underscored  the  significance  of  contextual  and  source  metadata  in  shaping  user  interpretation  of  medical 
information.  To enhance global  applicability,  the ICHI 2024 Doctoral  Consortium [7]  introduced multilingual  and  
multimodal benchmarks to address cross-cultural misinformation dynamics.

Modeling Approaches for Misinformation Detection: Medical misinformation detection strategies span classical and 
deep learning methods. Transformer-based models such as BioBERT and ClinicalBERT have shown high efficacy in 
capturing  domain-specific  semantics  due  to  their  pretraining  on  biomedical  corpora  [6,11].  Nevertheless,  classical 
models like Logistic Regression and Support Vector Machines (SVMs) remain relevant, especially when paired with  
domain-aware  features  [8,9].  These  approaches  offer  interpretability  and  efficiency,  particularly  in  low-resource 
settings. Class imbalance is a persistent issue, as factual content far outweighs misinformation. Techniques like SMOTE 
and random undersampling have been used effectively by Lei [10] and Gupta et al. [13] to improve recall and macro-
F1. Zhou and Liu [14] further identified linguistic cues—such as semantic drift and hedging—characteristic of LLM-
generated misinformation, providing useful features for both classical and neural models.

Explainability and Robustness  in Medical  AI:  Trustworthy AI in  healthcare demands interpretable  and resilient 
systems.  Model-agnostic  methods  like  SHAP  and  LIME  offer  local  interpretability  by  highlighting  feature 
contributions. Kim and Nguyen [12] applied SHAP to misinformation classification, uncovering clinically meaningful 
attribution patterns. Robustness under perturbation is equally critical: Chen and Wang [16] showed that LLM-based  
detectors  are  vulnerable  to  minimal  input  changes,  and  Hassan  and  Ali  [17]  demonstrated  deep  learning  models’ 
fragility under noisy COVID-19 scenarios. Multimodal architectures have been proposed to improve generalization. 
Patel and Sharma [15] integrated metadata and text through transformer encoders, while Torres and Gomez [18] used  
attention mechanisms to extract salient features. Singh and Jain [19] advocated for scalable models tailored for the 
dynamic and high-volume nature of social media misinformation.

3. Materials 

3.1. Data Description
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This  study  employs  the  Med-MMHL dataset,  a  large-scale,  domain-specific  benchmark  designed  to  support  the 
detection of medical misinformation on social media, particularly Twitter. The dataset contains over 60,000 health-
related tweets collected using Twitter’s API,  filtered for content relevant to medicine,  public health,  and scientific  
communication. In addition to textual data, the dataset includes metadata such as source labels and links to associated 
images to support multimodal analysis.  However, this work focuses solely on the textual component, allowing the 
model to concentrate on linguistic patterns without introducing visual complexity. The dataset is split  into training 
(44,799 samples), validation (6,405 samples), and test (12,800 samples) subsets, following a 70%-10%-20% ratio. To 
support  sentiment-aware  analysis,  each tweet  was  also  processed using the  VADER sentiment  analyzer,  assigning 
polarity labels (positive or negative) and enabling an overview of sentiment distribution.

Label  reliability  was  ensured  through a  two-phase  annotation  process.  First,  tweets  were  matched  against  trusted  
sources like the WHO and CDC. Then, public health experts validated each label. Tweets are labeled as real (1) or fake  
(0). These labeled subsets are now fully prepared for further preparation and preprocessing and model development. 

3.2. Data Preparation

The Med-MMHL dataset was created by integrating two independent sources: one targeting COVID-19 misinformation 
and another covering general medical content. To ensure structural consistency, column names across both datasets 
were  standardized  to  id,  message,  and  label.  The  merged  dataset  was  then  shuffled  using  a  fixed  random  seed 
(random_state  =  42)  to  ensure  reproducibility  across  experimental  runs.  Entries  with  missing or  null  values  were 
systematically removed, resulting in a clean, harmonized dataset ready for preprocessing and model development.

To examine the dataset’s linguistic characteristics, we conducted Exploratory Data Analysis (EDA). A word frequency  
analysis revealed key terms such as “study,” “health,” and “research” as the most common, reflecting the dataset’s  
medical and scientific orientation. For further analysis, we compared the terms used in real and fake tweets across the  
training, validation, and test sets using various visualizations, including frequency charts and word clouds. Fake tweets 
often  referenced  institutions  such  as  “Mayo  Clinic”  or  “National  Institutes,”  likely  to  enhance  their  perceived 
credibility. In contrast, real tweets displayed a broader range of discourse, including critical expressions like “opposite  
opinion.”

A custom preprocessing function was applied to normalize the message text. The function converted text to lowercase,  
removed URLs, mentions, hashtags, punctuation, and stopwords—including custom social media tokens such as “u,” 
“dont,” and “ure”—and applied lemmatization. This yielded a new clean_message column with significantly reduced 
noise. This cleaning step led to a 39.6% reduction in average token count across all splits, decreasing the training set 
average from 66 to 40 tokens. Additionally, frequent token distribution has been shifted in before and after cleaning:  
high-frequency stopwords like “the” and “to” were replaced by semantically meaningful terms such as “study” and 
“health.” These improvements enhanced the dataset’s quality and interpretability for downstream modeling tasks.   

3.3. Pre_processing

To prepare the cleaned Med-MMHL dataset  for modeling, a comprehensive preprocessing pipeline was applied to  
address distributional irregularities, class imbalance, and feature representation. The initial analysis of message lengths  
revealed several extreme outliers, with a small number of messages exceeding 20,000 characters. These unusually long 
messages  posed  challenges  for  tokenization  and  model  convergence.  Therefore,  outliers  were  removed  prior  to  
vectorization. This step yielded a more stable distribution of message lengths and improved computational efficiency  
without substantial data loss. 

Subsequent exploratory analysis employed Kernel Density Estimation (KDE) and box plots to examine message length  
distribution. The analysis revealed a pronounced right-skew, with the majority of messages falling under 500 characters.  
To further support model interpretability, we stratified the dataset based on text length into short (≤1,000 characters) and 
long  (1,000–10,000  characters)  categories.  This  categorization  improved  downstream  evaluation  by  allowing 
performance metrics to be assessed across different text length groups. The class distribution within the dataset was  
highly imbalanced, with fake messages constituting approximately 72% of the data, compared to 28% real. To address 
this, we applied a combination of undersampling, oversampling, and the Synthetic Minority Over-sampling Technique 
(SMOTE). These balancing techniques mitigated bias and enhanced model generalization, particularly for the minority  
class. For feature extraction, we employed CountVectorizer and TF-IDF to transform the cleaned textual content into  
structured  numerical  vectors.  These  methods  were  applied  to  the  clean_message column,  ensuring  that  only 
semantically meaningful  tokens contributed to model  input.  This preprocessing strategy significantly improved the 
signal-to-noise ratio and supported robust training of both traditional classifiers and deep learning architectures.
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4. Methodology
The methodology employed in this study as shown in the Fig.1 encompasses several critical phases to ensure effective  
data handling and analysis.  The process initiates with Data Mining,  where over 60,000 tweets and sentiments are  
collected, annotated for misinformation using official and verified sources, and validated by medical experts. This is  
followed by Data Preparation, which includes utilizing two separate datasets, removing null/missing entries, shuffling 
with a random state of 42, and merging the datasets for consistency. The subsequent Data Cleaning phase involves  
lowercasing  text,  removing  URLs,  mentions,  hashtags,  numbers,  stop  words,  and  non-alphanumeric  characters, 
followed by tokenization, lemmatization, and joining clean words into a string. Next, Data Pre-processing comprises 
outlier filtering, noise/extreme value removal, vectorization using CountVectorizer or TF-IDF, categorization of short 
and long messages, and class balancing through undersampling, oversampling with SMOTE, or a hybrid approach. The  
final Data Training phase entails splitting the dataset into training, validation, and test sets, performing hyper-parameter  
tuning using Grid Search or Random Search with cross-validation, and evaluating the models on validation/test sets to 
assess performance metrics.

    

                                         

                                   

                                                                                                                                                                                                 

                                                                                                               

 Data Mining: 

Data Preparation

Data Cleaning:

Collect more than 60000 
tweets and sentiments 

Annotate Misinformation
 using official and verified sources 

Validate data annotation with 
Medical Experts 

Removing extra columnsUsing Two separate datasets Renamed columns for consistency

Merging two different Data set Shuffle with Random_State= 42 Removing null/missing entries 

Data pre-proccessing:

Lowercasing Text Remove URLs, Mentions, Hashtags   Remove Numbers 

Remove Non-Alphanumeric CharactersTokenization (Split Words)Remove Stop words

Join Clean Words into String Clean words Out putLemmatization

Outlier Filtering Remove 
noisy/extreme values 

Class Balancing: Under sampling/
Oversampling/SMOTE  

Categorization- Split messages 
Short Messages/Long Messages 

Vectorization: CountVectorizer/TF-IDF 

Split dataset into Training, Validation, Test Set 
Perform hyper-parameter tuning using:

 Grid Search / Random Search- Cross-validation  

NLP Models:
- Multinomial Naive Bayes

   - Logistic Regression
- Decision Tree 
- Random Forest

- SVM 

  Deep Learning Models:
- FNN 
- BERT 

- BioBERT

 Evaluate on validation/test sets:
- Precision
- Accuracy
- F1 Score

- Confusion Matrix 

Model Explainability
- LIME
- SHAP

Model Explainability
- LIME
- SHAP

 Evaluate on validation/test sets:
- Precision
- Accuracy
- F1 Score

- Confusion Matrix 

Data Training:

Figure1. Methodology Workflow Diagram
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4.1 Experimental Results

We extended our analysis by evaluating five ML classifiers across both the test and validation sets. Performance was 
assessed using standard evaluation metrics, including accuracy, precision, recall, F1-score, and confusion matrix. Given 
its balanced consideration of both precision and recall, the F1-score was selected as the primary metric for subsequent  
comparisons and discussion.

To address the dataset’s class imbalance, we applied three commonly used balancing techniques. The results indicated 
that SMOTE consistently yielded the most stable and improved F1-scores across all classifiers. As other balancing 
methods  did  not  demonstrate  significant  improvements,  only  SMOTE-based  results  are  presented  for  clarity  and 
relevance.  Furthermore,  the  models  were  evaluated  under  three  experimental  settings  based  on  message-length 
categories. However, due to a limited number of samples in the long-message category, the third setting was excluded  
from further  analysis.  All  reported  results,  therefore,  correspond  to  the  short  and  long  message  categories  under  
SMOTE-balanced training. 

A. Classical Natural Language Processing using Machine Learning  Models 

Multinomial Naive Bayes: Model performance varied across categories. In Category 1, MNB achieved moderate F1-
scores between 0.69 and 0.70 under SMOTE variants, while the hybrid method slightly underperformed.  Category 2 
yielded the strongest results, with all resampling methods producing high F1-scores. Notably, SMOTE led to the highest  
performance, reaching an F1-score of 0.96, supported by excellent precision and recall, highlighting the model’s strong  
capability in distinguishing misinformation in this class. 

Logistic Regression: As the result illustrated, in  Category 1, the model produced satisfactory results, with F1-scores 
ranging from 0.82 to 0.79 under SMOTE-based strategies. The hybrid method underperformed slightly. In Category 2, 
model delivered its  most consistent and accurate predictions.  All  balancing techniques led to high F1-scores,  with 
SMOTE achieving a peak score of 0.98. This was reinforced by high precision and recall, indicating reliable detection 
of relevant patterns in this class. 

Decision Tree:  As outlined ,  Category 1 yielded moderate classification outcomes, with F1-scores between 0.67 and 
0.70 across all  resampling techniques.  While these scores indicate some discriminatory power,  they reflect  limited  
generalization across the dataset. In Category 2, the model demonstrated significantly better performance, achieving F1-
scores between 0.92 and 0.95 regardless of the resampling strategy. In summary, the Decision Tree model showed 
reliable performance in well-separated classes but struggled to maintain stability in less clearly defined or imbalanced 
scenarios.

Random Forest: According to result, Category 1 showed strong performance under SMOTE and under-sampling, with 
F1-scores ranging from 0.67 to 0.70. These results reflect the model's robustness in capturing subtle distinctions in 
class-specific word usage.  In  Category 2, RF excelled across all sampling methods, consistently achieving high F1-
scores  between  0.92  and  0.95.  This  stability  demonstrates  its  capacity  to  detect  nuanced  misinformation  cues  in  
structured categories. 

Support Vector Machine: Table 1 illustrates that Category 1 produced moderate classification performance, with F1-
scores ranging from 0.71 to 0.78 under SMOTE and under-sampling. In Category 2, SVM exhibited its highest scores. 
All  balancing  techniques  led  to  strong outcomes,  with  F1-scores  ranging  between  0.97.  This  indicates  excellent  
alignment between the model's decision boundaries and the underlying class separability in this category.

                MNB        LR         DT           RF          SVM

                                         F1- Score

Balanced Dataset
(SMOTE)

SHORT  0.69 – 0.70 0.82 – 0.79 0.67 – 0.70 0.81 – 0.85 0.78 – 0.71

LONG 0.95 – 0.96 0.79 – 0.98 0.95 – 0.92 0.96 – 0.96 0.97 - 0.97

                                                                                      

   
B. Deep Learning Models     
                                                                                   
Feedforward  Neural  Networks:  In  this  section,  we  systematically  optimize  performance  by  fine-tuning  various 
parameters  and  hyperparameters,  including  units,  layers,  learning  rate,  batch  size,  dropout,  and  optimizers,  while  
initially setting epochs at 30 before repeating the process with 50 epochs to identify the optimal configuration.  Table 2  
presents the observed performance for the Long Category. It can be seen that F1-Scores reaches a maximum of 0.98 
with losses as low as 0.89, significantly outperforming other methods on complex real-world text. The Short Category 
lags behind (F1 0.57–0.75) due to constrained contextual depth, though it shows improvement over baseline models.  
Refinements such as reduced batch sizes and lower dropout rates enhance outcomes, yet the identical Test/Validation  
F1-Scores indicate a need for rigorous validation split analysis to confirm reliability.

Table 1. Observed metrics from ML Models
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 Test Validation          Test  Validation

Short Category Long Category

Baseline 0.71 0.57  0.63 0.70 0.70 0.70 0.90  0.85 0.88 0.91 0.89 0.90 0.001 64 [64, 64] 0.10

E
po

ch
=

30Higher LR 0.68 0.69 0.68 0.71 0.68 0.69 0.89 0.90 0.89 0.92 0.91 0.91 0.010 64 [64, 64] 0.10

Smaller Batch 0.75 0.79 0.76 0.70 0.71 0.70 0.92 0.91 0.91 0.94 0.95 0.94 0.001 32 [64, 64] 0.10

Deeper Model 0.79 0.79 0.79 0.77 0.70 0.73 0.93 0.94 0.94 0.96 0.95 0.95 0.001 64 [128, 64, 32] 0.10

Lower Dropout 0.49 0.63 0.55 0.76 0.59 0.66 0.88 0.82 0.86 0.90 0.90 0.90 0.001 64 [64, 64] 0.05

Baseline 0.79  0.69  0.73  0.61 0.78  0.69 0.89 0.90 0.89 0.88 0.92 0.90  0.001 64 [64, 64]  0.10

E
po

ch
=

50

Higher LR 0.71 0.70 0.70 0.79 0.60 0.78 0.90 0.89 0.89 0.91 0.89 0.90 0.010 64 [64, 64] 0.10

Smaller Batch 0.78 0.75 0.76 0.70 0.71 0.70 0.94 0.91 0.93 0.91 0.85 0.88 0.001 32 [64, 64] 0.10

Deeper Model 0.75 0.70 0.72 0.70 0.75 0.72 0.96 0.90 0.93 0.95 0.90 0.92 0.001 64 [128, 64, 32] 0.10

Lower Dropout 0.72 0.75 0.73 0.65  0.70 0.68 0.91 0.89 0.90 0.88 0.90 0.89 0.001 64 [64, 64] 0.05

Bidirectional Encoder Representations from Transformers : In this analysis, we explore performance optimization 
by experimenting with key hyperparameters—such as learning rate, dropout, and batch size—starting with a 5-epoch  
training cycle, then scaling to 10 epochs to pinpoint the ideal configuration. As shown in Table 3, our BERT outcomes  
reveal impressive accuracy in identifying medical misinformation. The Long Category achieves peak F1-Scores of 0.94  
alongside losses dropping to 0.89, outperforming competitors on intricate real-world texts. The Short Category trails  
with  F1-Scores  ranging  from  0.79  to  0.85  due  to  contextual  limitations,  though  it  surpasses  baseline  results. 
Adjustments like elevated learning rates and fine-tuning enhance performance, yet identical Test/Validation F1-Scores  
call for a thorough review of validation splits to validate consistency. 
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 Test Validation          Test  Validation

Short Category Long Category
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0.70 0.75 0.72 0.68 0.63 0.65 0.93 0.90 0.92 0.91 0.89 0.90 0.1 2e-5 8

   
   

   
   

 E
po

ch
 =

 3
   0.76 0.79 0.75 0.78 0.73 0.74 0.93 0.90 0.91 0.95 0.95 0.95 0.1 2e-5 16

   0.69 0.65 0.68 0.70 0.65  0.68 0.91 0.89 0.89 0.88 0.92 0.91 0.1 3e-5 8

0.56 0.49    0.52 0.57 0.60 0.58 0.83 0.84 0.83 0.81 0.85 0.83 0.2 2e-5 8

0.81 0.74 0.77 0.83 0.79 0.80 0.93 0.88 0.90 0.95 0.90 0.92  0.1 2e-5  8

   
   

   
  E

po
ch

 =
 5

0.79  0.71 0.75  0.75 0.68 0.71 0.98 0.97 0.97 0.95 0.94 0.94 0.1 2e-5 16

0.61 0.60 0.60 0.61 0.57 0.59 0.90 0.89 0.89 0.91 0.89 0.90 0.1 3e-5 8

0.65 0.68   0.66 0.68 0.70 0.69 0.88 0.81  0.85 0.86 0.85 0.85 0.2 2e-5 8

Bidirectional  Encoder Representations  from Transformers  for Biomedical  Text: In  order  to  refine  the  results 
further we employed hyperparameter tuning such as learning rate, dropout, and batch size. The model was initially  
trained with a 5-epochs, followed by an extension to 10 epochs to identify the most effective setup. As illustrated in  
Table 4, BioBERT highlights  its potential in detecting medical misinformation. The Long Category achieves top F1-
Scores of 0.97 with losses as low as 0.95, outperformed remaining classifiers on complex real-world biomedical texts.  
The Short Category results with F1-Scores from 0.68 to 0.75 due to limited contextual depth, though it edges past  
baseline performance. Optimizations like adjusted learning rates and sequence lengths enhance results, but identical  
Test/Validation F1-Scores necessitate a deeper validation split review to ensure robustness. 

Table 3.  The Performance of BERT 

Table 2. The Performance of  FNN
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 Test Validation          Test  Validation

Short Category Long Category
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0.67 0.69 0.68 0.65 0.63 0.64 0.96 0.97 0.96 0.95 0.96 0.95 0.1 2e-5 512 8

E
po

ch
=

5

0.74 0.76 0.75 0.71 0.69 0.70 0.96 0.97 0.96 0.95 0.96 0.95 0.1 2e-5 128 16

 0.68  0.70 0.69 0.66 0.64 0.65 0.97 0.98 0.97 0.96 0.97 0.96 0.1  3e-5  512   16

0.70 0.75 0.73 0.70 0.68 0.69 0.95 0.96 0.95 0.94 0.95 0.94  0.1 2e-5 128  8

   
   

E
po

ch
 =

 3

 0.69  0.71 0.70 0.67 0.65 0.66    0.95 0.96 0.95 0.94 0.95 0.94 0.2 3e-5 128 16

0.70 0.72 0.71 0.68 0.66 0.67 0.94 0.95 0.94 0.93 0.94 0.93 0.1 3e-5 128 8

  0.65 0.67 0.66 0.63 0.61 0.62 0.98 0.98 0.98 0.97  0.98 0.97 0.2 2e-5 128 8

4.2. Explainable AI Methods
  
SHapley Additive exPlanations : SHAP is a ML framework that interprets complex model predictions by quantifying 
each feature's contribution to the output. It is particularly valuable for black-box models like neural networks, which are 
difficult to interpret. SHAP assigns importance scores to features, making it easier to debug models, choose relevant  
features, and build trust in their predictions. In text classification tasks like detecting medical misinformation, SHAP 
helps reveal how specific words impact the model's decisions -- an important step for validating how the model works  
and  spotting  potential  biases.  This  is  especially  useful  in  datasets  with  varied  message  lengths,  where  context 
significantly impacts interpretation.
The SHAP summary plots provide insight into the decision-making process, used for distinguishing between real and 
fake tweets in our dataset. The first plot (Fig 2 )corresponds to Category 1, which represents fake tweets. Here, words 
such  as  "opinion,"  "also,"  "opposite,"  and  "said"  are  associated  with  higher  SHAP values,  indicating  a  stronger  
influence in  pushing the  model's  prediction toward the  fake  class.  These  words  tend to  be  subjective  or  general,  
commonly found in opinion-based content rather than in scientifically grounded statements. Additionally, clinical and 
scientific  terms like  "disease,"  "health,"  "clinical,"  and "researcher"  either  have minimal  impact  or  are  negatively 
associated with fake tweets, meaning their presence in a tweet reduces the likelihood of it being labeled as fake. This  
suggests that fake tweets often lack the domain-specific language typically found in credible medical sources.
In contrast, the SHAP plot for Category 2, assumed to represent real tweets, highlights the significance of scientific and 
medical terminology in supporting the model’s predictions. Words such as "vaccine," "cancer," "covid19," "clinic,"  
"researcher," and "therapy" have high positive SHAP values, meaning they contribute strongly toward classifying a  
tweet as real. These terms are more frequently used in medically accurate and evidence-based tweets, which aligns with  
the expectation that  real  tweets are grounded in professional  or  clinical  discourse.  The presence of these domain-
specific terms enhances the classifier's confidence in labeling content as real, indicating that the model has successfully  
learned meaningful patterns that distinguish credible medical information from misinformation.

Local Interpretable Model-agnostic Explanations:  LIME is  a  technique used to explain the predictions of  ML 
models by approximating their behavior locally with simpler, interpretable models. It works by perturbing the input data 
around a specific instance and observing how these changes affect the model's predictions, thereby identifying which 
features—such as words in text data—most influence the outcome for that  instance.  The LIME analysis for Test  
Example 1, Fig. 3, shows a strong prediction probability of 0.91 for Category 1 and 0.09 for Category 2. Key terms like 
"fdric  brocard,"  "institut  de  neuroscience,"  "discovered,"  "hyperexcitability,"  "deregulation,"  and  "sodium channel 
neuron" heavily influence the classification toward Category 1, indicating a strong association with credible, research-
based content. For Test Example 2, the model assigns a 0.79 probability to Category 1 and 0.21 to Category 2, with  
"vitamin," "greater," "low blood vitamin level," and "reduced kidney function" driving the prediction, reinforcing the  
link to evidence-based health information.
Overall, the LIME analysis highlights that Models depend on domain-specific terminology to differentiate between 
categories. For Category 1, likely representing real tweets, the presence of scientific and medical terms boosts the 

Table 4.  The Performance of BioBert
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model's confidence in labeling content as credible. In contrast, Category 2, likely associated with fake tweets, shows  
minimal  influence from these terms,  suggesting that  the absence or  reduced use of  specialized language is  a  key 
indicator  of  misinformation.  This  pattern  underscores  the  model's  effectiveness  in  identifying  authentic  medical  
discourse based on linguistic cues.

  

                                                       

5. Conclusion

Our results showed that combining data balancing, message-length categorization, and advanced models like FNN, 
BERT, and BioBERT led to strong improvements in detecting medical misinformation. BioBERT outperformed all 
other models, especially on long texts (F1 up to 0.98), while short texts remained challenging with lower F1-scores 
(0.68–0.75), mainly due to limited context. Classical models like Logistic Regression and SVM performed well in  
certain  cases,  especially  with  SMOTE,  but  struggled  in  more  ambiguous  categories.  SHAP and  LIME helped  us 
interpret predictions, revealing that general or emotional words in short tweets often misled the models. Scientific and 
domain-specific terms, on the other hand, were strong indicators of credibility.

To improve short-text performance, we suggest targeted preprocessing to filter misleading terms and a refined sampling 
strategy, followed by re-training.

Future work

Research could focus on enhancing short-text  classification by incorporating context-aware preprocessing,  such as 
phrase disambiguation or semantic filtering. Leveraging multi-modal inputs -- including metadata and image features -- 
may also enrich the signal for better performance. Additionally, techniques like domain-adaptive pretraining, contrastive  
learning, and curriculum learning can help models distinguish subtle misinformation patterns. Evaluating models under 
adversarial and real-world noisy conditions would further ensure reliability in practical deployment. 

Figure 2. SHAP Plot Example

Figure 3. LIME Plot Example
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Abstract

In this study we introduce a deep Autoregressive (AR) framework for predicting the next
temporal representation of resting-state brain function in Alzheimer’s Disease (AD) pa-
tients, capturing evolving spatial-temporal patterns from functional magnetic resonance
imaging (fMRI) sequences in AD patients. Addressing the limitations of traditional lin-
ear AR models and standard Recurrent Neural Networks (RNNs) based architectures, we
implement a spatio-temporal deep learning model designed to preserve spatial coherence
and temporal dynamics throughout the predictive pipeline. Our proposed architecture
utilizes time-distributed convolutional blocks followed by temporal sequence modeling
and progressive spatial reconstruction, enabling high-fidelity prediction of the next step
sequences in fMRI. In contrast to Convolutional Neural Network + Long Short-Term
Memory (CNN+LSTM) setups, which vectorize spatial features before temporal model-
ing – leading to increased parameter complexity and loss of 2D spatial coherence – our
proposed ConvLSTM2D approach embeds convolutional operations directly within LSTM
units. This integration preserves 2D spatial structure, reduces computational cost, and
enhances prediction performance. A custom loss function combining Mean Squared Er-
ror (MSE) and Structural Similarity (SSIM) further reinforces structural accuracy. Grid
search optimization reveals that deeper convolutional filters and dual sequence layers
yield superior performance. Cross-validation confirms robustness across subjects, fol-
lowing best practices for model validation in neuroimaging, and interpretability analysis
shows alignment with brain regions affected in early AD. This AR learning framework
not only advances predictive modeling in neuroimaging but also holds promise for early
biomarker identification and progression monitoring in clinical AD research.

Keywords: , LSTM, fMRI, Alzheimer Disease, CNN, Deep Learning

1. Introduction

Alzheimer’s Disease (AD), a leading cause of dementia, is a progressive brain disorder
marked by memory loss, cognitive decline, and neural damage. Key biological features,
such as amyloid-beta plaques and tau tangles, disrupt brain networks like the hippocam-
pus and default mode network (DMN) [1, 2]. Early detection of these changes is essential
for timely intervention and slowing disease progression [3].

fMRI offers a non-invasive way to study brain activity through blood-oxygen-level-
dependent (BOLD) signals [4]. Static functional connectivity methods reveal network
disruptions in AD but assume steady activity, missing dynamic changes over time [5].
Dynamic Functional Connectivity (dFC) methods improve temporal analysis but are
limited by fixed window sizes and noise sensitivity [6].
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Deep learning has advanced functional Magnetic Resonance Imaging (fMRI) analysis
by capturing complex patterns. Convolutional Neural Network (CNNs) extract spatial
features, while Long Short-Term Memory (LSTM) networks model temporal changes
[7, 8, 9, 10]. However, these models, when used separately, struggle to capture the
combined spatial and temporal dynamics critical for understanding AD progression [11].

To address this, we propose a ConvLSTM2D-based Autoregressive (AR) framework
[12], which integrates convolutional and LSTM operations to model spatial and tem-
poral patterns in fMRI sequences simultaneously. We compare this model against a
CNN+LSTM hybrid [13, 14], optimizing performance with a custom loss function com-
bining Mean Squared Error (MSE), Structural Similarity (SSIM), Mean Absolute Error
(MAE), and Peak Signal-to-Noise Ratio (PSNR). Grid search and cross-validation ensure
robust performance.

This framework enhances fMRI-based analysis of AD, facilitating both early diagnosis
and long-term monitoring. Section 2 provides a review of prior research on fMRI and
deep learning methods; Section 3 outlines the datasets and methodological approaches;
Section 4 reports the experimental results and analysis; and Section 5 concludes with a
summary of key findings and directions for future research.

2. Related Work

Early fMRI Analysis of AD: Early fMRI studies on AD employed static functional
connectivity methods, such as seed-based correlations and independent component anal-
ysis (ICA), to identify disruptions in networks like the DMN [2]. These methods revealed
reduced connectivity in AD patients but failed to capture dynamic neural activity. For
instance, [15] observed inconsistent connectivity patterns across subjects. Dynamic func-
tional connectivity (dFC) methods, such as sliding window correlations, addressed some
temporal variability but were limited by parameter selection and noise sensitivity [6].

Deep Learning in AD fMRI: Deep learning has significantly advanced fMRI analy-
sis for AD. CNNs have been effective in extracting spatial features from 3D fMRI volumes.
For example, [16] applied a CNN to resting-state fMRI data, achieving 96.86% accuracy
in classifying AD patients versus controls. Additionally, [17] proposed a deep learning
framework combining resting-state fMRI and structural MRI, achieving an AUC of 85.12
for AD classification. These approaches demonstrate robust performance in distinguish-
ing AD stages but are primarily designed for classification, not sequence prediction, which
is critical for modeling AD progression.

Hybrid CNN-LSTM Models in AD fMRI: Hybrid CNN-LSTM architectures
integrate spatial and temporal features for AD analysis. For instance, [18] proposed a
multi-modal CNN-LSTM for AD classification with ≈ 86% accuracy, but its static setup
– vectorizing fMRI features before LSTM – limits future fMRI sequence prediction by
losing spatial-temporal coherence. Similarly, [19] employed a 3D-CNN-LSTM model to
classify AD progression across cognitively normal, mild cognitive impairment, and AD
stages, reporting high classification accuracy. Furthermore, [20] proposed a 3D-CNN
and bidirectional LSTM framework for 4D fMRI data, achieving 94.82% accuracy in AD
classification. However, these methods focus on classification tasks, limiting their ability
to perform integrated spatial-temporal forecasting needed for understanding long-term
AD dynamics, which our study addresses.

ConvLSTM2D for AD fMRI Sequence Prediction: ConvLSTM2D, which em-
beds convolutional operations within LSTM units, has shown promise in video prediction

2

2n
d
S
or
b
on

n
e-
H
ei
d
el
b
er
g
W
or
k
sh
op

on
A
I
in

M
ed

ic
in
e

,

57



[12] and in limited fMRI classification [21]. However, its application to AR fMRI sequence
prediction in AD remains underexplored. Our study leverages ConvLSTM2D to enable
integrated spatial-temporal modeling for predicting AD fMRI images, overcoming the
limitations of prior classification-focused approaches. Optimized for AD-specific brain
dynamics, our framework offers a novel tool for neurodegenerative research, as detailed
in Section 1.

3. Methodology

This section outlines the methodology employed in this study, as depicted in the flow
diagram in Figure 1. The methodology encompasses four key stages: data collection,
preprocessing, model architectures, and performance evaluation. Detailed results and
further analyses are illustrated in Section 4.

Figure 1: The Flow Diagram of the proposed methodology.

3
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3.1. Data Description

This study uses resting-state fMRI data (eyes open) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu, accessed 31 Oc-
tober 2024). The dataset consists of 2026 3D fMRI volumes from five AD patients, labeled
P1 through P5, capturing brain activity over time with varying numbers of time points
per patient. Specifically, P1, P2, and P3 each have 482 volumes; P4 has 369; and P5
has 211. Each 3D volume is reformatted into a 2D (704×704-pixel) image by arranging
axial slices in a grid, as shown in Fig. 2, and represented as X ∈ RT×704×704, where T is
the number of time points. These images form the foundation of this study. The dataset
includes participants of varying sexes and ages, providing a sample to investigate AD
progression.

Figure 2: 2D fMRI image formed from axial slices in a grid.

3.2. Preprocessing

The preprocessing pipeline was designed to prepare the data for AR models by nor-
malizing voxel intensities, structuring sequences to capture temporal dependencies, and
splitting the data.

3.2.1. Image Normalization

To address variability in intensity scales across scans, each fMRI image was normalized
by dividing its pixel intensities by the maximum intensity value within the image, scaling
all values to the range [0, 1], using the formula Inorm = I / max(I), where I represents
the original pixel intensity. This normalization ensures consistent intensity ranges across
participants, improving the model’s ability to learn and compare brain activity patterns
effectively.

3.2.2. Sequence Generation for Temporal Modeling

We used a sliding-window approach to generate sequences for temporal modeling
using normalized images. Each sequence consists of 10 consecutive images as input,
denoted as Xj = [Inormj , . . . , Inormj+9 ] ∈ R10×704×704, with the 11th image as the target label

4
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Yj = Inormj+10 ∈ R704×704. Here, Inormj represents the normalized fMRI image at time step j.
The index j ranged from 1 to M , where M = N − 10, and N = 2026 is the total number
of time steps that result in sequences M = 2016. Preserving the temporal order of these
sequences is critical for prediction, and the chosen sequence length balances temporal
context with computational efficiency.

3.2.3. Dataset Splitting

Before data splitting, a single sequence of 10 images was set aside as a held-out pre-
diction set for final evaluation, as illustrated in Figure 1. This approach ensured that
model generalization could be assessed on truly unseen data. The remaining sequences
were divided into 80% for training and 20% for validation, with balanced representation
maintained across both subsets. To preserve the temporal dependencies critical for se-
quential modeling, shuffling was disabled during the split. Model training was performed
using a batch size of 1 (i.e., one sequence per batch), due to GPU memory constraints as-
sociated with processing high-dimensional fMRI data. Training proceeded for 100 epochs
to encourage convergence and stability. The training set was used to fit the model and
optimize its parameters, while the validation set supported performance monitoring and
helped prevent overfitting.

3.3. Model Architectures

This study employs two deep learning models to predict the fMRI image: ConvL-
STM2D and CNN+LSTM. ConvLSTM2D integrates convolutional operations within the
LSTM framework, effectively preserving both spatial and temporal features. In contrast,
CNN+LSTM processes spatial features through convolutional layers followed by temporal
feature extraction with LSTM layers, which limits integrated spatio-temporal modeling.
The ConvLSTM2D architecture outperformed other models in our experiments, as de-
tailed in Section 4, making it the focus of this study.

3.3.1. ConvLSTM2D Architecture

The ConvLSTM2D model employs an encoder-decoder framework. The encoder ap-
plies TimeDistributed Conv2D layers to extract spatial features from each input sequence
frame, followed by MaxPooling2D layers to downsample and reduce computational com-
plexity. The core includes one or more ConvLSTM2D layers, extending traditional
LSTMs with convolutional operations, as defined by:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo)

Ht = ot ⊙ tanh(ct)

where ∗ denotes convolution, Xt is the input at time t, Ht is the hidden state, and ct
is the cell state. The decoder uses UpSampling2D layers to restore spatial dimensions
and a Conv2D layer to predict frames with the same dimension as the input. The model
iteratively predicts frames by feeding outputs as inputs.

Training uses a custom loss function combining MSE and SSIM, defined as L =
α ·MSE+(1−α) · (1−SSIM). Here, α ∈ [0, 1] balances the contributions of MSE (pixel-
wise accuracy) and SSIM (structural fidelity), tuned empirically to optimize performance
for AD fMRI sequences, as detailed in Section 4.1.

5
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3.4. Performance Metrics

Model performance is evaluated using four established metrics: MSE, MAE [22], SSIM
[23], and PSNR [24].

The MSE measures pixel-level accuracy by computing the average squared difference
between predicted (ŷi) and actual (yi) values:

MSE =
1

N

N∑

i=1

(yi − ŷi)
2

The MAE quantifies the average absolute error, providing a robust measure of prediction
error magnitude:

MAE =
1

N

N∑

i=1

|yi − ŷi|

The SSIM assesses perceptual similarity between images, with values ranging from -1
(dissimilar) to 1 (identical):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

The PSNR evaluates image quality in decibels, where higher values indicate superior
fidelity:

PSNR = 10 · log10
(
MAX2

MSE

)

4. Results and Discussion

4.1. Hyperparameter Optimization via Grid Search

Hyperparameter tuning was performed to optimize the ConvLSTM2D model using
a grid search over parameters including convolutional depth, number of filters, ConvL-
STM2D units, and number of layers. These parameters significantly influence the model’s
ability to capture spatio-temporal patterns in fMRI data.

To ensure consistent spatial feature extraction, all convolutional layers used a fixed
filter size of (3, 3), and max-pooling layers adopted a pool size of (2, 2). Intermediate
layers utilized ReLU activation functions, while the final output layer employed a sigmoid
activation to constrain predictions within the normalized range of [0, 1].

The grid search examined convolutional depths of 1 to 4, convolutional filter counts
of {16, 32, 64}, ConvLSTM2D units of {64, 128, 256, 512}, and ConvLSTM2D layers of
{1, 2}. Each configuration was assessed using a custom loss function for ConvLSTM2D,
with the optimal setup determined by the lowest validation set loss. For comparison,
a baseline CNN+LSTM model was optimized using MSE loss under similar grid search
conditions.

Table 1 presents the optimal hyperparameter configurations for both models. The
ConvLSTM2D model achieved a validation loss of 0.1316 using the MSE+SSIM loss func-
tion, while the CNN+LSTM model achieved an MSE of 3.9e-3, optimized for capturing
spatio-temporal dynamics in AD fMRI sequence prediction.

The grid search showed that convolutional depths beyond 2 gave diminishing returns
for ConvLSTM2D, while a depth of 4 performed better for the CNN+LSTMmodel. Using
two ConvLSTM2D layers effectively captured long-term patterns in fMRI data, making
the model suitable for AD image prediction. These optimized hyperparameters form the
basis for our models evaluations and comparisons.

6
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Table 1: Optimal Hyperparameter Configurations for ConvLSTM2D and CNN+LSTM Models

Parameter ConvLSTM2D CNN+LSTM

Convolutional Depth 2 4
Number of Filters 64 64
LSTM Units 512 256
Number of Layers 2 2
Learning Rate 1e-4 1e-3
Filter Size (3,3) (3,3)
Pool Size (2,2) (2,2)
Epochs 100 50
Batch Size (seq.) 1 1
Optimizer Adam Adam

4.2. Final Model Training and Performance Evaluation

This section evaluates the performance of the ConvLSTM2D model to predict next
step fMRI frames using the optimal hyperparameters identified through the grid search
(Section 4.1). The model was trained on the training data set as described in Section 3.2.3.

On the predict sequence reserved during dataset splitting (Section 3.2.3) and generated
using the sliding-window approach (Section 3.2.2), the ConvLSTM2D model achieved
high predictive accuracy and structural fidelity, with a MSE of 0.00028, MAE of 0.0082,
SSIM of 0.9621, and PSNR of 35.8921.

In comparison, the baseline CNN+LSTM model, trained with its optimal hyperpa-
rameters, yielded an MSE of 0.0032, MAE of 0.0286, SSIM of 0.7400, and PSNR of
24.9910. These results underscore the superior ability of the ConvLSTM2D model to
capture spatio-temporal patterns iteratively, critical for AR prediction in AD research.
Higher SSIM and PSNR values indicate better preservation of structural details and image
quality, as visually confirmed in Figure 3, which illustrates the close similarity between
predicted and ground truth fMRI frames.

(a) Actual fMRI Image (b) ConvLSTM Prediction (c) CNN+LSTM Prediction

Figure 3: Comparison of Actual and Predicted fMRI Images

4.3. Cross-Validation Results

To evaluate the robustness and generalizability of the proposed AR ConvLSTM2D
model for predicting the next step fMRI image, a 5-fold cross-validation approach was
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employed using the optimal hyperparameters identified through grid search (Section 4.1).
Performance was assessed using MSE, MAE, SSIM, and PSNR, with metrics averaged
across all folds. The results are summarized in Table 2.

The ConvLSTM2D model achieved low MSE and MAE, indicating high pixel-level
accuracy, and high SSIM, reflecting excellent structural fidelity critical for AD fMRI se-
quences. Its high PSNR confirms low-noise predictions. In contrast, the CNN+LSTM
model exhibited higher errors and lower structural similarity and image quality, un-
derscoring ConvLSTM2D’s superior spatiotemporal modeling due to its convolutional
LSTM layers. These findings, detailed in Table 2, highlight the model’s effectiveness for
Alzheimer’s research.

Table 2: Average Performance Metrics from 5-Fold Cross-Validation

Metric MSE MAE SSIM PSNR
ConvLSTM2D 0.0003 0.0086 0.9609 35.5123
CNN+LSTM 0.0179 0.0655 0.4210 17.9718

5. Conclusion

This contribution introduces a novel AR framework utilizing a ConvLSTM2D model
to predict next brain state in AD patients using resting-state fMRI data. By integrat-
ing convolutional operations for spatial patterns and recurrent operations for temporal
dependencies, the model effectively captures the spatio-temporal dynamics critical for
understanding AD progression.

The ConvLSTM2D model was optimized through grid search, identifying an optimal
configuration with 2 ConvLSTM2D layers, 64 filters, and 512 LSTM units. Evaluated
via 5-fold cross-validation and on a reserved predict subsequence from one patient, it
demonstrated outstanding predictive accuracy and anatomical fidelity, significantly out-
performing the baseline CNN+LSTM model, as detailed in Table 5.

These results underscore the ConvLSTM2D model’s superior ability to model long-
term spatiotemporal dependencies, significantly outperforming the baseline CNN+LSTM
model, which exhibited higher error rates and lower structural fidelity. This advancement
highlights the value of an integrated architecture for AR forecasting in neurodegenerative
research.

This work offers a substantive advancement toward early biomarker discovery and
the predictive modeling of Alzheimer’s progression via accurate forecasting of brain state
dynamics. This framework provides a robust tool for research and clinical applications,
offering deeper insights into AD’s neural dynamics. Future work could extend this ap-
proach to larger datasets or incorporate multimodal data to further improve predictive
accuracy and clinical utility.
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[14] S. Wein, A. Schüller, A. M. Tomé, W. M. Malloni, M. W. Greenlee, E. W. Lang,
Forecasting brain activity based on models of spatiotemporal brain dynamics: A
comparison of graph neural network architectures, Network Neuroscience 6 (2022)
665–701.

[15] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, V. D. Calhoun,
Tracking whole-brain connectivity dynamics in the resting state, Cerebral Cortex
24 (2014) 663–676.

[16] S. Sarraf, G. Tofighi, Deep learning-based pipeline to recognize alzheimer’s disease
using fmri data, in: 2016 future technologies conference (FTC), IEEE, 2016, pp.
816–820.

[17] S. Qiu, P. S. Joshi, M. I. Miller, C. Xue, X. Zhou, C. Karjadi, G. H. Chang, A. S.
Joshi, B. Dwyer, S. Zhu, et al., Development and validation of an interpretable deep
learning framework for alzheimer’s disease classification, Brain 143 (2020) 1920–
1933.

[18] S. Spasov, L. Passamonti, A. Duggento, P. Liò, N. Toschi, A parameter-efficient
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Abstract

We present FractalPINN-Flow, an unsupervised deep learning framework for dense optical
flow estimation that learns directly from consecutive grayscale frames without requiring ground
truth. The architecture centers on the Fractal Deformation Network (FDN)—a recursive encoder-
decoder inspired by fractal geometry and self-similarity. Unlike traditional CNNs with sequential
downsampling, FDN uses repeated encoder-decoder nesting with skip connections to capture both
fine-grained details and long-range motion patterns. The training objective is based on a classical
variational formulation using total variation (TV) regularization. Specifically, we minimize an
energy functional that combines L1 and L2 data fidelity terms to enforce brightness constancy,
along with a TV term that promotes spatial smoothness and coherent flow fields. Experiments on
synthetic and benchmark datasets show that FractalPINN-Flow produces accurate, smooth, and
edge-preserving optical flow fields. The model is especially effective for high-resolution data and
scenarios with limited annotations.

Keywords: Optical Flow, Unsupervised Learning, Neural Networks, Total Variation, Encoder-
Decoder, Motion Estimation

1 Introduction

Optical flow estimation seeks to recover the apparent motion field between two consecutive grayscale
images. Let I1, I2 : Ω → [0, 1] denote two discrete images defined on a spatial domain Ω ⊂ Z2, and let
w : Ω → R2, w(x) = (u(x), v(x)), be the displacement field to be estimated. The fundamental assump-
tion underlying most optical flow methods is brightness constancy, which posits that the intensity of
each point remains constant as it moves, i.e.,

I1(x) = I2(x+ w(x)) for all x ∈ Ω. (1)

This results in a nonlinear constraint on w. Since the problem is underdetermined (one equation, two
unknowns), additional regularization is required.

To simplify the nonlinear data term, many methods approximate the brightness constancy relation
(1) by a linear model:

I2(x+ w(x)) ≈ I2(x) +∇I2(x) · w(x),
where ∇I2 denotes the image gradient. This yields the approximate linear constraint

∇I2(x) · w(x) + I2(x)− I1(x) = 0,

as used in the classical Horn–Schunck formulation [7]. There the flow field is recovered by minimizing

∥∇I2 · w + I2 − I1∥22 + λ∥∇w∥22,
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where λ > 0 is a regularization parameter, ∥∇w∥22 = ∥∇u∥22 + ∥∇v∥22 encourages global smoothness of
the displacement field and ∥ · ∥2 denotes the standard Euclidean norm. This quadratic regularization
penalizes rapid variations in the flow but tends to oversmooth motion boundaries.

A more robust alternative replaces the L2-norm with the L1-norm in both the data fidelity and
smoothness terms, yielding a total variation (TV) regularization model, allowing the flow field to
exhibit discontinuities. This leads to the energy

∥∇I2 · w + I2 − I1∥1 + λ∥∇w∥1,

where the last term represents the total variation of the flow field w. In practice, this formulation
encourages piecewise-smooth flow fields while preserving motion discontinuities [22]. To efficiently
solve TV-regularized optical flow problems, in [5] a primal-dual finite element method was introduced
and combined with an iterative warping algorithm to handle large displacements. Building on this
in [1, 8] adaptive discretizations schemes were proposed, which can be interpreted as an adaptive
multigrid method, further accelerating convergence and sometimes even improving the quality of the
estimated flow field.

With the advent of deep learning, optical flow estimation has seen dramatic advances. FlowNet [4]
introduced a convolutional neural network (CNN) architecture capable of predicting flow directly from
image pairs, opening the door to data-driven solutions, see also [18]. However, supervised methods
require large-scale annotated datasets, which are difficult to obtain for many real-world domains. To
address this challenge, unsupervised approaches have gained momentum by optimizing photometric
consistency and smoothness priors without ground-truth supervision. These methods can be further
classified according to the number of input frames used during training, including multiframe mod-
els [19], which leverage temporal consistency across sequences, and two-frame models [9, 14], which
are based solely on image pairs. Although most of such models incorporate smoothness losses, they
typically do not employ TV regularization explicitly.

In this paper, we propose FractalPINN-Flow, a novel unsupervised framework that integrates an
encoding-decoding strategy with total variation regularization to estimate dense optical flow from
grayscale image sequences. Our use of TV minimization in a neural setting is motivated by recent
work such as DeepTV [12], which demonstrated how classical regularization techniques can be effec-
tively combined with deep architectures to produce sharp, structurally coherent outputs. At the core of
our model is a Fractal Deformation Network (FDN), a recursive encoder-decoder architecture inspired
by the self-similar principles of FractalNet [13]. Unlike conventional hierarchical CNNs, which apply
sequential downsampling, the FDN recursively nests encoder-decoder modules at multiple scales, each
equipped with skip connections. This design builds a deep multiscale representation that maintains
local texture while capturing long-range deformation structures, properties that are especially impor-
tant in scenes with fine motion patterns or limited training data. The FDN output is passed to a
lightweight CNN that predicts the optical flow field. Training is fully unsupervised, uses only two
frames and is guided by a composite loss function that consists of a combined L1/L2 data term and
TV regularization.

2 FractalPINN-Flow: Architecture and Implementation

We consider the problem of learning the optical flow from two input images I1, I2 by minimizing

ETV(w) := λ1∥∇I2 · w + I2 − I1∥1 + λ2∥∇I2 · w + I2 − I1∥22 + λTV∥∇w∥1, (2)

where λ1, λ2, λTV ≥ 0, w is represented by a neural network, see Section 2.1 for a detailed description
of the network structure, and

∥∇w∥1 := ∥∇xu∥1 + ∥∇yu∥1 + ∥∇xv∥1 + ∥∇yv∥1 (3)

is the anisotropic TV. Here, ∇x and ∇y denote the finite differences along the horizontal and vertical
axes, respectively. This regularization penalizes abrupt discontinuities while preserving meaningful
motion boundaries, thereby promoting spatially coherent and piecewise-smooth flow estimates. We
note that while the gradients in (3) could also be implemented in a pointwise manner, as is common
in physics-informed neural networks [16], we refrain from doing so following the rationale in [12].
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In particular, pointwise evaluation may completely miss jump discontinuities, especially in piecewise
constant outputs, by sampling points where the gradient happens to vanish. In contrast, a finite
difference discretization reliably captures such variations and provides a more accurate measure of
total variation.

We note that a combined L1/L2 data fidelity term together with total variation regularization,
as used in (2), was first introduced in [6] and analyzed in [11] in the context of variational image
restoration. We consider this formulation here for optical flow estimation.

2.1 Neural Network

We propose a deep learning architecture for dense optical flow estimation that integrates our novel
FDN with a CNN-based optical flow prediction head. The method estimates pixel-wise motion between
two consecutive frames by leveraging multi-scale fractal features.

2.1.1 Network Architecture

High-Level Structure. The architecture of the neural networks we use follows a sequential flow of
processing stages, outlined as follows:

Input: Two consecutive grayscale frames (I1, I2)
↓

FDN: Encoder-decoder network
↓

Projection Layer: 32 → 64 channels
↓

Optical Flow Network: CNN with 5 layers
↓

Output: Dense optical flow field (u, v)

The FDN encodes multi-scale motion features, which are then mapped to dense flow fields by a
convolutional regression head. This modular structure mirrors successful encoder-decoder designs
widely used in optical flow [20, 21] and image registration [3].

Fractal Deformation Network (FDN). The FDN is based on a symmetric U-Net-style en-
coder–decoder architecture with configurable depth d. In this work, we fix the depth to d = 4 without
hyperparameter tuning. Each downsampling (encoder) block consists of two 3×3 convolutional layers,
each followed by batch normalization and ReLU activation, and concludes with a 2 × 2 max pooling
operation. For d = 4, the channel configuration expands as

2 → 32 → 64 → 128 → 256

enabling progressive abstraction of features at increasingly coarser spatial resolutions.
The overall architecture is designed to promote multi-scale feature extraction through this hier-

archical structure. Although we refer to it as a Fractal Deformation Network for consistency with
the naming of our framework, the term ”fractal” here is used loosely to suggest repeated block-level
processing across scales, rather than strict self-similarity or recursion. This design allows the network
to capture both fine-scale deformations and large displacements efficiently.

The decoder mirrors the encoder and progressively increases spatial resolution using 2×2 transposed
convolutions. These operations serve as learned upsampling layers: they first insert zeros between
pixels (to increase spatial resolution) and then apply a learnable 2×2 kernel to interpolate meaningful
values, while also reducing the number of channels by half (e.g., 256 → 128). The overall flow of
channel dimensions of the decoder is given by:

256 → 128 → 64 → 32 → 32.

To preserve high-resolution details, skip connections are added from the encoder to decoder at each
intermediate resolution level (excluding the input and final output layers, as their channel dimensions
differ and cannot be connected directly). These connections use bilinear interpolation of the encoder
feature maps to match the size of the decoder features, followed by element-wise addition. After this
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fusion, each decoder block includes two 3× 3 convolutions, each followed by batch normalization and
ReLU activation, to refine the combined features. To ensure compatibility with the downsampling
operations, the input images are zero-padded, maintaining consistent spatial dimensions throughout
the network. Unlike classical U-Net models that concatenate features, our architecture uses element-
wise addition instead of concatenation, preserving multiscale information while reducing the number
of trainable parameters. The final output of the decoder and thus the FDN is a 32-channel feature
map matching the input spatial size, which is passed to the subsequent module. This higher dimension
(32-channel) representation allows the network to encode more complex information about the image
differences and potential motion cues than a lower-dimensional (e.g., 2-channel) feature representation
could encode.

Projection Layer To adapt the FDN output to the optical flow predictor, a 1×1 convolution projects
32 channels to 64. This shallow transformation learns to emphasize motion-relevant features while
maintaining full spatial resolution. It ensures architectural compatibility without adding significant
computational burden.

Optical Flow Prediction Network This subnetwork is a compact CNN that predicts dense flow
fields. It consists of five 3×3 convolutional layers with ReLU activations and no pooling. The channel
pattern follows:

64 → 128 → 256 → 128 → 64 → 2

No downsampling is performed, preserving exact spatial correspondence between features and motion
vectors. The final layer has two output channels without ReLU activations, representing horizontal
and vertical displacement per pixel. The use of a bottleneck architecture enables expressive mapping
while retaining efficiency.

End-to-End Information Flow The full architecture forms a feedforward pipeline:

Input Pair: I = [I1, I2] ∈ RB×2×H×W

FDN Output: F ∈ RB×32×H×W

Projected Features: P ∈ RB×64×H×W

Predicted Flow: w ∈ RB×2×H×W

where B denotes the batch size and H×W the number of pixels in the images I1 and I2. This separa-
tion of concerns ensures that multiscale feature learning and dense motion regression are individually
optimized yet trained jointly.

3 Numerical Evaluation

3.1 Evaluation Metrics

Average Endpoint Error (AEE) The AEE metric quantifies the Euclidean distance between the
predicted and ground truth flow vectors across all pixels:

AEE =
1

N

N∑

i=1

∥∥∥w(i)
pred − w

(i)
gt

∥∥∥
2
,

where w
(i)
pred and w

(i)
gt denote the i-th pixel of the predicted and ground truth flow vectors wpred and

wgt, respectively, and N is the number of pixels.

Average Angular Error (AAE) To assess directional consistency, the AAE metric measures an-
gular discrepancies between predicted and ground truth flow vectors:
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AAE =
1

N

N∑

i=1

arccos
(
cos(θ(i))

)
, cos(θ) =

upredugt + vpredvgt + 1√
(u2

pred + v2pred + 1)(u2
gt + v2gt + 1)

.

The additive constant term in both the numerator and denominator ensures numerical stability, par-
ticularly in zero-flow regions, and prevents division by zero.

3.2 Training Configuration

To evaluate the impact of regularization techniques on optical flow estimation, we optimize our func-
tional (2) with λ1 = 0.2, λ2 = 0.8, and varying TV weights λTV. All experiments are conducted on a
synthetic image and the Middlebury dataset using PyTorch [15], with deterministic settings to ensure
reproducibility. Logging and visualization are automated for all runs.

In all configurations, we use the Adam optimizer [10] with a learning rate of 10−4. Training is
conducted for a fixed number of epochs, which serves as the stopping criterion. Each input consists of
a pair of normalized grayscale frames, concatenated along the channel dimension. Since we use only
one image pair—two frames I1 and I2—for training, the batch size is set to 1.

We employ the FDN with a fixed depth of d = 4. Although the architecture supports configurable
depth, we do not perform hyperparameter tuning on this parameter; all models use the same setting
to ensure comparability. This depth balances model capacity and computational efficiency.

The neural network selection is based on the training loss, and the best model checkpoint (i.e., with
the lowest loss) is saved for each configuration. At each epoch, we compute the data and regulariza-
tion terms, along with endpoint and angular error metrics: average endpoint error (AEE), standard
deviation of endpoint error (SDEE), average angular error (AAE), and standard deviation of angular
error (SDAE). These metrics are used to evaluate convergence behavior and to guide the final result
visualization and comparison.

Infrastructure and Logging All experiments have been executed on NVIDIA GPUs using Py-
Torch with CUDA acceleration. The training framework supports comprehensive experiment tracking
through structured logging. For each configuration, the system creates a dedicated directory containing
JSON-formatted configuration files, full training logs, and performance summaries.

Loss curves and evaluation metrics (AEE, AAE, and their standard deviations) are recorded at
every epoch. To maintain memory stability during long training runs, the system applies aggressive
memory management strategies. After each epoch, the CUDA cache is explicitly cleared, and Python’s
garbage collector is invoked to prevent memory accumulation. This ensures robustness when running
multiple configurations sequentially on large datasets.

3.3 Shepp-Logan Phantom with Synthetic Motion

To validate our method under idealized and interpretable conditions, we construct a controlled syn-
thetic experiment based on the Shepp-Logan phantom [17]—a canonical analytic image commonly
used in medical imaging and tomographic reconstruction due to its smooth grayscale transitions and
well-defined elliptical structures. The phantom is set to 256 × 256 pixels and augmented with two
distinct circular regions to simulate localized anatomical structures. The first circle, with moderate in-
tensity (0.5), is positioned in the upper quadrant, while the second circle, with higher intensity (0.75),
is placed in the lower quadrant. These intensity values create sufficient contrast against the phantom
background while maintaining realistic tissue-like appearance.

Each circular region is assigned opposing vertical motion to simulate anatomical displacement
patterns: the upper circle is translated upward by 3 pixels while the lower circle is shifted downward
by the same amount. We warp the original image according to this synthetic flow field to generate
the target frame. The obtained image frames and the respective ground-truth optical flow fields are
depicted in Figure 1. All flow vectors are normalized by the maximum displacement magnitude to
ensure optimal color saturation, allowing regions with maximum motion to appear as fully saturated
colors. This synthetic setup provides an idealized benchmark for evaluating unsupervised optical flow
models, combining well-defined anatomical structure with ground-truth motion fields.
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We train the model for a fixed amount of 10,000 epochs, which allows the model to achieve highly
accurate reconstruction of the imposed deformation, using two separate runs with two different TV
weights, λTV = 0 and λTV = 10−5. Figure 1 illustrates the predicted flow for both choices of λTV and
demonstrates that the learned network captures the opposite vertical displacement of the two circles
and shows increased smoothness with regularization.

In Figure 2, the training dynamics for λTV = 10−5 are summarized. Specifically, we observe that
the loss curve (left) shows a rapid decrease within the first 1,000 epochs and continues to decline
more gradually thereafter, indicating successful reconstruction of the synthetic motion patterns. AEE
(middle) demonstrates an accurate magnitude estimation of flow vectors, while AAE (right) shows
precise directional learning with consistent improvement throughout training. These metrics confirm
that the network successfully learns both accurate magnitude and directional representations of the
opposing circular motions. Note that the final best loss is 1.23 × 10−7, indicating that the constant
brightness assumption (1) is closely satisfied by the estimated optical flow.

Figure 1: Synthetic Shepp-Logan phantom experiment. Top row (left to right): original phantom, synthetic
frame 1 with embedded circles, warped frame 2, and color wheel. Bottom row: ground truth flow, predicted
flows for λTV = 0 and 10−5, respectively, all trained for 10,000 epochs.

Figure 2: Training curves for the Shepp-Logan phantom experiment using total variation regularization with
λTV = 10−5. The model is trained for 10,000 epochs. Left: Loss history showing stable convergence with a final
best loss of 1.23× 10−7. Middle: AEE curve indicating accurate magnitude estimation of flow vectors, with a
best AEE of 2.30 × 10−2 and SDEE of 1.88 × 10−1. Right: AAE decreasing to a final value of 7.23 × 10−1,
with SDAE of 5.87.

Although the stopping criterion is a fixed number of epochs, the downward trends in all error
curves of Figure 2 suggest that additional training could yield further improvements. The use of
total variation regularization contributes to the smoothness and sharpness of the estimated flow field,
particularly in preserving boundaries of the moving structures. Together, these results validate the
model’s ability to resolve localized motion in an interpretable, noise-free environment.
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3.4 Results on Middlebury Benchmark

We evaluate FractalPINN-Flow on the Middlebury optical flow benchmark [2] to assess both quan-
titative accuracy and visual quality across a range of TV weights λTV ∈ {0, 10−3, 10−2, 10−1}. All
models are trained for 20,000 epochs with fixed fractal depth d = 4. Table 1 reports the best training
loss, epoch of best performance, and evaluation metrics—AEE, SDEE, AAE, and SDAE—for each
benchmark scene. Across most benchmarks, intermediate regularization values (λTV = 10−2 or 10−3)
tend to yield the lowest AEE and AAE, striking a favorable balance between motion detail preser-
vation and flow smoothness. For instance, in the Dimetrodon and RubberWhale scenes, λTV = 10−2

achieves the lowest AEE (0.33 and 0.17, respectively). Similarly, Venus shows optimal performance
at λTV = 10−2 (AEE = 0.31, AAE = 0.08), while Hydrangea reaches its best results at the same
setting (AEE = 0.43, AAE = 0.12). However, exceptions are present: in the Grove3 scene, the best
AEE (1.16) and AAE (0.17) are obtained at λTV = 10−1, outperforming lower regularization levels. In
contrast, strongly regularized configurations degrade performance in noisy or high-disparity settings
such as Urban2, where λTV = 10−1 yields an AEE of 7.64 versus 2.61 at λTV = 10−2. These results
emphasize the critical role of appropriately tuned regularization in guiding unsupervised optical flow,
particularly in complex scenes with variable texture and motion.

Benchmark λTV Best Loss Best Epoch AEE SDEE AAE SDAE

Dimetrodon 0 0.000243 19867 0.77 0.63 0.31 0.31
10−1 0.001957 19625 0.42 0.46 0.16 0.23
10−2 0.001187 19928 0.33 0.47 0.13 0.23
10−3 0.000726 19794 0.41 0.47 0.17 0.24

Grove2 0 0.000822 19648 0.52 0.55 0.12 0.16
10−1 0.006699 19284 1.18 1.54 0.52 0.73
10−2 0.002833 19972 0.2 0.42 0.05 0.12
10−3 0.001276 19610 0.34 0.43 0.08 0.12

Grove3 0 0.001730 19779 1.94 2.31 0.45 0.58
10−1 0.011981 19866 1.16 1.67 0.17 0.31
10−2 0.004666 19292 1.18 1.87 0.2 0.33
10−3 0.002215 19914 1.34 1.97 0.26 0.39

Hydrangea 0 0.000414 19749 0.74 1.25 0.18 0.34
10−1 0.005052 19867 0.48 1.04 0.13 0.32
10−2 0.001893 19964 0.43 1.12 0.12 0.32
10−3 0.000810 19773 0.56 1.21 0.15 0.33

RubberWhale 0 0.000190 19822 0.43 0.53 0.22 0.27
10−1 0.002276 19969 0.34 0.6 0.19 0.35
10−2 0.001068 19914 0.17 0.38 0.1 0.24
10−3 0.000488 19722 0.25 0.42 0.13 0.24

Urban2 0 0.001047 19639 3.5 5.64 0.28 0.42
10−1 0.010732 19757 7.64 7.77 0.75 0.43
10−2 0.003046 19877 2.61 5.06 0.11 0.23
10−3 0.001351 19579 2.74 5.26 0.14 0.29

Urban3 0 0.000675 19779 3.4 4.47 0.38 0.7
10−1 0.007248 19541 4.68 4.28 0.47 0.72
10−2 0.003074 19637 3.26 3.95 0.33 0.63
10−3 0.001127 19331 2.6 4.17 0.3 0.7

Venus 0 0.000583 19828 0.73 0.89 0.17 0.33
10−1 0.009652 19799 1.7 1.96 0.62 0.7
10−2 0.001779 19646 0.31 0.66 0.08 0.29
10−3 0.000997 19828 0.46 0.92 0.11 0.32

Table 1: Benchmark results for various λTV configurations, based on training for 20,000 epochs.

Figure 3 visualizes the predicted flow fields for each configuration, revealing the qualitative effects
of λTV on spatial smoothness and edge preservation. High regularization improves visual coherence but
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risks oversmoothing fine structures, while low or zero regularization retains motion discontinuities but
introduces noise and instability. These findings demonstrate the capacity of our fractal-based model to
generalize across a wide spectrum of motion patterns and visual complexities, while also emphasizing
the practical importance of hyperparameter tuning in unsupervised flow models.

The results in Table 1 highlight the sensitivity of FractalPINN-Flow to the choice of total variation
regularization weight λTV. Across most benchmarks, introducing moderate regularization (λTV =
10−2) consistently yields the lowest AEE and AAE, suggesting that total variation plays a key role in
suppressing noise while preserving meaningful motion boundaries.

Figure 3: Middlebury Optical Flow Benchmark visualizations corresponding to the results in Table 1.
Columns from left to right: I1, I2, ground truth optical flow, and predicted flows for λTV = 0, 10−3, 10−2,
10−1. Predicted flow fields are taken from the best-loss epoch for each configuration. Benchmarks from top to
bottom: Dimetrodon, Grove2, Grove3, Hydrangea, RubberWhale, Urban2, Urban3, Venus.
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Transforming Normal ECG to Myocardial Infarction Ones
using Invertible Conditional GANs

Sara Battiston1, Roberto Sassi1 and Massimo W. Rivolta1

Abstract— Recent advances in deep learning have enabled
effective style transfer methods for biosignal synthesis, partic-
ularly for generating pathological variations of physiological
signals. This work investigates the application of Invertible
Conditional Generative Adversarial Networks (IcGANs) to
modify 12-lead ECG heartbeats from normal sinus rhythms into
patterns typical for myocardial infarction (inferior and antero-
septal). In contrast to CycleGAN, which requires multiple
models for each direction of transformation, IcGANs only
require the training of a single conditional GAN along with an
encoder, offering a more direct and lightweight framework. We
trained both IcGAN and CycleGAN models using heartbeats
from the PTB-XL dataset. The quality of the generated ECGs
was assessed using both qualitative and quantitative techniques,
including visual inspection, GAN-train and GAN-test scores,
and comparisons of ST-segment amplitudes. Our results indi-
cate that IcGAN can realistically and meaningfully alter ECG
signals to exhibit myocardial infarction traits while retaining
their core physiological structure. Comparisons showed IcGAN
to be more efficient and effective than CycleGAN under similar
architectural conditions. This approach shows promise for
generating rare pathological cases, adapting models across
domains, and supporting generalization in clinical applications
for more personalized diagnostics.

I. INTRODUCTION

Style transfer via a deep learning (DL) approach has
gained traction in biomedical signal processing, particularly
for synthesizing physiological signals when paired data
is unavailable. In fact, in typical supervised setups, DL-
based transformations need corresponding input-output pairs,
which is rarely obtainable in clinical contexts where record-
ing signals before and after acute conditions like myocardial
infarction (MI) is a rare occasion. A similar challenge
exists in computer vision, where unpaired image-to-image
translation has been addressed by CycleGANs [1], which
learn bidirectional mappings between domains through ad-
versarial training and without requiring paired samples. In
earlier work [2], we applied CycleGANs to convert nor-
mal ECGs into those exhibiting infarction-related features
with respectable success. However, CycleGANs demand the
training of four DL models per transformation, making them
resource-intensive. To address this, we exploit an alternative
adversarial framework called Invertible Conditional GANs
(IcGANs), proposed by Perarnau et al. [3], to tackle the
unpaired style transfer task. IcGAN combines a conditional
GAN (cGAN) [4] with an encoder that maps input data back
to the latent space. This pairing allows targeted alterations of
the input signals while maintaining their key characteristics,

1Authors are all affiliated with the Department of Computer Science,
Università degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy.
Corresponding author: sara.battiston@unimi.it

which is especially beneficial for generating synthetic clinical
data.

In this study, we evaluate the use of IcGANs for ECG
style transfer, specifically transforming heartbeats from nor-
mal sinus rhythm into rhythms associated with myocardial
infarction (inferior and antero-septal MI). We assess the
quality of the generated signals using visual and quantitative
measures. Lastly, we benchmark the performance of IcGAN
generation against CycleGANs, while keeping architectural
choices constant (same generator architecture), in order to
isolate the effect of the training strategy and address the
common practice of repurposing existing architectures.

II. METHODS

A. ECG Data

The dataset employed in this study is a subset of the PTB-
XL ECG dataset [5], [6], comprising standard 10 s 12-lead
ECGs from a cohort of 18,885 patients. For these data, we
select three ECG subpopulations according to their diagnosis:
healthy patients (NORM, 80%), antero-septal myocardial
infarction (ASMI, 12%), and inferior myocardial infarction
(IMI, 8%). Then, we apply to these ECGs classes a series
of preprocessing steps, including the filtering by means of a
zero-phase Butterworth pass-band filter (order 3, cutoff freq.
of 0.67 and 15 Hz) and the segmentation into windows of
0.40 s containing a single heartbeat, meaning a QRS complex
and T-wave (R- preaks identified through the WFDB library
[7], [6]). The final dataset consists of 35,353 12-lead 0.40
s ECG signals distributed as: 12,000 NORM (34%), 12,650
ASMI (36%), and 10,703 IMI (30%). Finally, this dataset
is split into 70% training and 30% test sets, ensuring that
no patient’s heartbeat appears in both sets. The models are
trained on the training set, and their performance is assessed
using the test set.

B. Style Transfer through IcGAN

To achieve ECG class transformation and thus perform
style transfer, we utilize IcGANs [3], which extend standard
conditional GANs (cGANs) [4] by adding an encoder that
approximates the inverse mapping from data to latent space.
While a typical cGAN learns to generate a sample x′ from
a noise vector z ∼ N (0, I) and a class label y, i.e., x′ =
G(z, y), IcGANs introduce an encoder E that estimates the
original latent input from a generated signal: E(x′) = (ẑ, ŷ).
This enables editing real signals by first encoding a given
ECG x to its latent form, x → E(x) = (z, y) and then
generating a new version x′ conditioned on a different label
y′: x′ = G(z, y′). An idea of the pipeline is reported in fig. 1
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Fig. 1: IcGAN scheme.

TABLE I: Architecture of the IcGAN generator. The first and
second Conv2dT layer has output padding set to 1, while for
the second Conv2dT the dilation is set to (1, 2).

Layer Filters Pad Stride Kernel IN Activ.
Fully connected: in shape 100, out shape 1728
Reshape in [64, 9, 3]
Conv2dT 32 1 2 5x3 Yes ReLU
Conv2dT 16 2 2 5x3 Yes ReLU
Conv2d 1 same 1 5x3 No No

The IcGAN training procedure is the same as specified in [3]:
first the cGAN is trained; then with the paired random values
and labels (z, y) and their respective cGAN generated signals
x′, we train the Encoder E. The goal for E is to minimize
the reconstruction loss:

LE = Ez∼pz,y∼py

[
∥(z, y)− E(G(z, y))∥22

]
(1)

C. Network Design, Training and Synthetic Data Creation

The IcGAN network is composed by a cGAN with gener-
ator G and Discriminator D, and an Encoder E. The networks
designed are summarized in tables I, II and III, respectively.

In particular, G receives a noise vector z ∈ R99 con-
catenated with an integer class label y, resulting in a 100-
dimensional input. This is passed through a fully connected
layer and reshaped to a tensor of shape [64, 9, 3]. It then
flows through 2 2D-convolutional blocks and then is passed
to a final 2D convolution. The output is a tensor of shape
[1, 40, 12], representing a single heartbeat segment with 40
time steps and 12 ECG leads. The architecture of D takes
as input an ECG segment of shape [1, 40, 12] and stacks it
with an embedded version of the class label (reshaped to the
same dimensions), producing a combined tensor of shape
[2, 40, 12]. This is processed through a series of Conv2d
layers, ReLU activations and instance normalization. The
output is flattened and passed to a fully connected layer with
a sigmoid function for binary classification. The encoder E,
is trained from synthetic samples sending ECGs back to the
latent space. It accepts inputs of shape [1, 40, 12] and outputs
a vector in R100, where the first 99 components estimate the
original noise z, and the last element predicts the label y.
The architecture includes three Conv2d blocks with instance
normalization and ReLU, followed by a fully connected
layer. All three networks (G,D and E) are optimized using
Adam with β1 = 0.5, β2 = 0.999, and ϵ = 10−8. The
learning rate is fixed at 10−3, and training is performed
using mini-batches of size 128 for 50 epochs. After training
the cGAN, we generate 1,000 synthetic ECGs for each of

TABLE II: Architecture of IcGAN Discriminator.

Layer Filters Pad Stride Kernel IN Activ.
Embedding Layer for labels: in shape 1, out shape 480
Reshape labels in [1, 40, 12]
Concatenate with signal, out shape [2, 40, 12]
Conv2d 16 1 2 3x3 No ReLU
Conv2d 32 1 2 3x3 Yes ReLU
Conv2d 64 1 1 3x3 Yes ReLU
Conv2d 1 same 1 3x3 No ReLU
Flatten
Fully connected: in shape 30, out shape 1
Sigmoid Activation

TABLE III: Architecture of IcGAN Encoder.

Layer Filters Pad Stride Kernel IN Activ.
Conv2d 16 same 1 5x3 Yes ReLU
Conv2d 32 1 2 5x3 Yes ReLU
Conv2d 64 1 2 5x3 Yes ReLU
Flatten
Fully connected: in shape 1728, out shape 100

the three classes (NORM, ASMI, IMI), resulting in 3,000
(z, y) and x′ = G(z, y) pairs for training the encoder. Once
trained, the encoder and generator are combined to build the
full IcGAN. To simulate class transitions, we feed real ECGs
from the test set through the encoder to obtain (z, y) and
used the generator to create modified signals with alternate
labels y′ ̸= y. For each test ECG, two synthetic versions
are generated corresponding to the other two classes. This
results in a new dataset of 21,212 generated ECGs: 7,700
ASMI, 6,384 IMI, and 7,128 NORM samples.

D. Synthetic Data Quality Evaluation

To assess the realism and clinical plausibility of the
generated ECGs, we employed three evaluation strategies:
visual analysis and classification-based scores.

a) Visual Comparison: We plot 90% confidence in-
tervals across all leads using 2,500 randomly chosen real
and synthetic ECGs. Additionally, we use the UMAP [8]
algorithm (with 15 neighbors and Euclidean distance) to
project high-dimensional ECGs into a 2D space. The real
signals from the test set are used to fit the UMAP model,
and the corresponding synthetic signals are overlaid on the
resulting density map for visual comparison.

b) GAN-related evaluation Scores: These metrics from
[9] evaluate how well the synthetic data align with real data
distributions. GAN-train is the accuracy of a supplementary
classifier trained on synthetic data and tested on real data,
while GAN-test is the reverse. We use a CNN adapted
from a prior work on myocardial infarction classification
[10], modified by adjusting the input layer and reducing
the ResNet blocks. The classifier is trained to distinguish
between the three classes (NORM, ASMI, IMI) using 85%
of each dataset and validated on the remaining 15%. Each
model is trained for 4 epochs.

E. Benchmarking against CycleGAN

To benchmark the performance of IcGAN, we implement
a CycleGAN using nearly identical architectural components.
The CycleGAN generator is constructed by linking the
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Fig. 2: Examples of original ECGs (green, dashed) and their IcGAN-generated counterparts (magenta): (a) Real NORM and
ASMI generated from NORM, (b) Real IMI and NORM generated from IMI.

IcGAN encoder and generator, with minor changes: a ReLU
activation is added after the encoder, and a dropout layer (p =
0.1) is inserted before the final activation in the generator. A
table summarizing the cycleGAN generator is shown in IV.
The discriminators are adapted from the IcGAN version by
removing the label embedding, since CycleGAN does not use
conditional inputs. Despite these changes, the total number
of parameters in the CycleGAN generator matches that of the
IcGAN (424,869), while the discriminator has slightly fewer
parameters (23,840 vs 25,488). We train the CycleGAN for
50 epochs using the Adam optimizer (β1 = 0.5, β2 = 0.999,
ϵ = 10−8), a learning rate of 10−3, and a batch size of 128,
identical to the IcGAN training setup.

TABLE IV: Architecture of cycleGAN generator. The first
and second Conv2dT layer have output padding set to 1,
while for the second Conv2dT the dilation is set to (1, 2).

Layer Filters Pad Stride Kernel IN Activ.
Conv2d 16 same 1 5x3 Yes ReLU
Conv2d 32 1 2 5x3 Yes ReLU
Conv2d 64 1 2 5x3 Yes ReLU
Flatten
Fully connected: in shape 1728, out shape 100 ReLU
Fully connected: in shape 100, out shape 1728
Dropout:p = 0.1 ReLU
Reshape in [64, 9, 3]
Conv2dT 32 1 2 5x3 Yes ReLU
Conv2dT 16 2 2 5x3 Yes ReLU
Conv2d 1 same 1 5x3 No No

III. RESULTS AND DISCUSSIONS

We evaluate the IcGAN-generated ECGs using both qual-
itative and quantitative methods, comparing them to real
signals and those synthesized by CycleGAN. Only two
sample comparison between cases are reported here, as the
others show similar results.

a) Visual Inspection: Figure 2 illustrates two transfor-
mation examples: a synthetic NORM ECG generated from
an ASMI sample (fig. 2a) and a NORM ECG synthesized
from an IMI sample, (fig. 2b). It can be seen that the IcGAN
successfully altered the leads most relevant to the target
condition. In fact, in the examples reported, the amplitude
of the ST-segment of both the original real ASMI and IMI
signals (green, dashed) is flattened in their NORM synthetic
counterparts (magenta), precisely in leads V1, V2, V3 for
the ASMI transformation and in II , III , aV F for the IMI
transformation, all while preserving the other unrelated leads.

b) Confidence Bands and UMAP Analyses: Figures 3
and 4 report the Confidence Bands (fig. 3a, 4a) and UMAP
plots (fig. 3b, 4b) relative to the comparison between syn-
thetic IMI ECG generated from a NORM signal and synthetic
NORM ECG generated from an ASMI signal respectively.
The 90% confidence intervals for IcGAN-generated signals
largely overlap with those of real ECGs, especially in the
NORM class, fig. 4a, while for the IMI case, fig. 3a,
the bands likely suggest that the IcGAN generated a sub-
distribution of the real IMI ECG cohort, being the magenta
bands fully contained into the green ones. UMAP projec-
tions confirm these findings by showing substantial overlap
between real data (heatmap) and synthetic data (scattered
green points) in the NORM case (fig. 4b), indicating that
the generated signals reside near the real data manifold. In
contrast, in the IMI case (fig. 3b), the overlap is only partial
and limited to the densest region of the real IMI distribution.

c) GAN-based Scores: The IcGAN achieves a GAN-
test accuracy of 84% (baseline: 90%) and a GAN-train score
of 73% (baseline: 100%). These results suggest high fidelity
of the generated data to the real distribution but slightly
reduced variability in the synthetic signals.
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Fig. 3: IcGAN vs. real ECG evaluation. (a) 90% confidence
bands: IMI from NORM (magenta) vs. real IMI (green). (b)
UMAP heatmap of real IMI ECG overlaid with synthetic
scatterplot of IMI generated from NORM.

d) CycleGAN Baseline: The CycleGAN model, trained
with a similar architecture and number of epochs, performs
worse across all metrics. Its GAN-test score drops to 74%,
and GAN-train drops to 60%, indicating poorer generaliza-
tion and less alignment with the real ECG distribution. The
sample visualizations in fig. 5 show very noisy confidence
bands (fig. 5a) for the synthetic ASMI signals generated from
IMI (magenta) compared to the real bounds for the ASMI
ECGs. The UMAP plot (fig. 5b) shows that the synthetic
ASMI data are mostly scattered outside the densest real
ASMI signal regions, thus indicating a poor distribution fit.

e) Overall Findings: The findings demonstrate that the
IcGAN model provides reliable and class-consistent ECG
transformations. It mainly modifies diagnostic features while
preserving overall ECG morphology. The synthetic data
closely resemble real samples, especially in the NORM
class. Although the generated IMI signals represent a sub-
distribution of the original population, their quality re-
mains acceptable. Visual and quantitative evaluations confirm
strong alignment between synthetic and real data. This is
reflected in the performance metrics: the IcGAN achieves
a GAN-test score of 84% and a GAN-train score of 73%,
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Fig. 4: IcGAN vs. real ECG evaluation. (a) 90% confi-
dence bands: NORM from ASMI (magenta) vs. real NORM
(green). (b) UMAP heatmap of real NORM ECG overlaid
with synthetic scatterplot of NORM generated from ASMI.

outperforming the CycleGAN baseline at 74% and 60%,
respectively. These results suggest that the IcGAN-generated
data form a faithful subspace of the real ECG distribution and
indicate that reusing architectures like CycleGANs without
adaptation may not yield optimal results. During training,
we notice that the IcGAN Encoder is acting like an effective
output regularizer, though the use of an excessive amount of
training data introduced noise. Limiting the encoder training
to 50 epochs proves beneficial. Future work could explore
early stopping or adaptive sample sizes to reduce overfitting.
A further advantage of IcGANs is efficiency: unlike Cycle-
GANs, which require separate models per direction, IcGANs
use a single encoder-generator pair, simplifying training and
deployment across multiple classes.

IV. CONCLUSION

In conclusion, we showed that IcGAN offers an efficient
solution for unpaired ECG translation without requiring a
separate model for each class shift. It reliably alters key ECG
features while preserving the input’s identity. The generated
signals reflect clinically relevant patterns across ASMI, IMI,
and NORM, as shown by confidence intervals, and UMAP
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Fig. 5: (a) 90% confidence intervals: real ASMI (green) vs.
CycleGAN-generated ASMI from IMI (magenta). (b) UMAP
visualization: real ASMI density (heatmap) and correspond-
ing synthetic ASMI points from IMI (scatter).

projections in our examples. Its use of label encoding enables
precise control over output features, making it a flexible tool
for synthesizing targeted abnormalities. This approach holds
promise for tasks like device or population adaptation, rare
data generation, and improving model robustness in clinical
settings.
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