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Abstract

This thesis investigates unitarizable supermodules over special linear Lie superalgebras
sl(m|n) and their basic classical counterparts A(m|n), denoted g, with a focus on their
structure, classification, and applications in both mathematics and theoretical physics. It
is structured in four main parts, each exploring a distinct but interrelated aspect of the
theory.

The first part develops a general framework for understanding unitarity and provides a con-
cise classification of unitarizable simple g-supermodules, derived using the Dirac inequality
and decomposition under the even Lie subalgebra. The Dirac operator and its associ-
ated Dirac cohomology serve as central tools in this study, capturing essential aspects of
unitarity. We demonstrate that Dirac cohomology can uniquely determine unitarizable
supermodules, and compute it explicitly for of unitarizable simple supermodules. This
leads to a refined characterization of unitarity, forming the basis for our novel classifica-
tion of unitarizable simple supermodules. Furthermore, we establish a connection between
Dirac cohomology and Kostant’s cohomology of Lie superalgebras, derive a decomposition
of formal characters, and introduce a Dirac index.

In the second part, we construct a formal superdimension for infinite-dimensional unita-
rizable supermodules, inspired by the theory of relative discrete series representations. We
show that this superdimension vanishes for most simple supermodules but is non-trivial
precisely when the infinitesimal character has maximal degree of atypicality. In particular,
our result aligns with the Kac–Wakimoto conjecture for finite-dimensional supermodules.

The third part investigates applications to theoretical physics, focusing in particular on
the so-called “superconformal index” – a character-valued invariant assigned by physicists
to unitarizable supermodules of Lie superalgebras, such as su(2, 2|n), which appear in the
context of certain quantum field theories. The index is computed as a supertrace over
a Hilbert space and remains constant across families of representations that arise from
varying physical parameters. This invariance is due to the fact that only “short” simple
supermodules contribute to the index, making it stable under recombination phenomena
occurring at the boundary of the unitarity region. We develop these notions for unitarizable
supermodules over g. Along the way, we provide a precise dictionary between various
notions from theoretical physics and mathematical terminology. Our final result is a kind of
“index theorem” that relates the counting of atypical constituents in a general unitarizable
g-supermodule to the character-valued Q-Witten index, expressed as a supertrace over the
full supermodule. The formal superdimension of part 2 can also be formulated in this
framework.

The final part is an addendum that extends the Dirac operator and cohomology to their
cubic counterparts. We develop a theory of cubic Dirac operators associated to parabolic
subalgebras and prove a super-analog of the Casselman–Osborne theorem. We show that
Dirac cohomology is trivial unless for highest weight supermodules, and demonstrate, under
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suitable conditions, an embedding of Dirac cohomology into Kostant’s (co)homology. This
embedding becomes an isomorphism in the unitarizable case. We also provide complete
computations of Dirac cohomology for finite-dimensional simple supermodules with typical
highest weight and for supermodules in the parabolic BGG category.
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Zusammenfassung
Diese Dissertation untersucht unitarisierbare Supermoduln spezieller linearer Lie-Super-
algebren sl(m|n) und ihrer einfachen klassischen Gegenstücken A(m|n), bezeichnet mit
g, mit einem Schwerpunkt auf deren Struktur, Klassifikation und Anwendungen in der
Mathematik und theoretischen Physik. Sie ist in vier Hauptteile gegliedert, von denen
jeder einen eigenen, aber miteinander verknüpften Aspekt der Theorie beleuchtet.
Der erste Teil entwickelt einen allgemeinen Rahmen zum Verständnis der Unitarität und
liefert eine einfache Klassifikation unitarisierbarer einfacher g-Supermoduln, abgeleitet
mithilfe der Dirac-Ungleichung und der Zerlegung bezüglich der geraden Lie-Unteralgebra.
Der Dirac-Operator und die zugehörige Dirac-Kohomologie dienen in dieser Arbeit als zen-
trale Werkzeuge und erfassen wesentliche Aspekte der Unitarität. Wir zeigen, dass die
Dirac-Kohomologie unitarisierbare Supermoduln eindeutig bestimmen kann, und berech-
nen sie explizit für unitarisierbare einfache Supermoduln. Dies führt zu einer verfeinerten
Charakterisierung der Unitarität, die die Grundlage für unsere neuartige Klassifikation uni-
tarisierbarer einfacher Supermoduln bildet. Darüber hinaus stellen wir eine Verbindung
zwischen der Dirac-Kohomologie und der Kostant-Kohomologie von Lie-Superalgebren her,
leiten eine Zerlegung formaler Charaktere ab und führen einen Dirac-Index ein.
Im zweiten Teil konstruieren wir eine formale Superdimension für unendlich-dimensionale
unitarisierbare Supermoduln, inspiriert von der Theorie der relativen diskreten Serien-
Darstellungen. Wir zeigen, dass diese Superdimension für die meisten einfachen Super-
moduln verschwindet, aber genau dann nicht trivial ist, wenn der infinitesimale Charakter
den maximalen Atypi-kalitätsgrad besitzt. Insbesondere steht unser Ergebnis im Einklang
mit der Kac–Wakimoto-Vermutung für endlich-dimensionale Supermoduln.
Der dritte Teil untersucht Anwendungen in der theoretischen Physik, mit besonderem
Fokus auf den sogenannten „superkonformen Index“ – eine charakterwertige Invariante,
welche in der Physik unitarisierbaren Supermoduln von Lie-Superalgebren wie su(2, 2|n)
zugeordnet wird, die im Kontext bestimmter Quantenfeldtheorien auftreten. Der Index
wird als Superspur über einem Hilbertraum berechnet und bleibt konstant innerhalb von
Darstellungsfamilien, die durch Variation physikalischer Parameter entstehen. Diese Invar-
ianz beruht darauf, dass nur „kurze“ einfache Supermoduln zum Index beitragen, wodurch
er gegenüber Rekombinationsphänomenen stabil bleibt, die am Rand der Unitaritätsregion
auftreten. Wir entwickeln diese Konzepte für unitarisierbare Supermoduln über g. Dabei
geben wir ein präzises Wörterbuch zwischen verschiedenen Begriffen der theoretischen
Physik und mathematischer Terminologie an. Unser Hauptergebnis ist eine Art „Index-
theorem“, das die Zählung atypischer Bestandteile in einem allgemeinen unitarisierbaren
g-Supermodul mit dem charakterwerigen Q-Witten-Index in Beziehung setzt, welcher als
Superspur über den gesamten Supermodul ausgedrückt ist. Die formale Superdimension
aus Teil 2 lässt sich ebenfalls in diesem Rahmen formulieren.
Der abschließende Teil ist ein Zusatz, der den Dirac-Operator und die Dirac-Kohomologie
auf ihre kubischen Gegenstücke erweitert. Wir entwickeln eine Theorie kubischer Dirac-
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Operatoren, die mit parabolischen Unteralgebren assoziiert sind, und beweisen ein Super-
Analogon des Satzes von Casselman–Osborne. Wir zeigen, dass die Dirac-Kohomologie nur
für höchstgewichtige Supermoduln nicht trivial ist, und demonstrieren unter geeigneten Vo-
raussetzungen eine Einbettung der Dirac-Kohomologie in die (Ko-)Homologie von Kostant.
Diese Einbettung wird im unitarisierbaren Fall zu einem Isomorphismus. Darüber hin-
aus liefern wir vollständige Berechnungen der Dirac-Kohomologie für endlich-dimensionale
einfache Supermoduln mit typischem höchsten Gewicht sowie für Supermoduln in der
parabolischen BGG-Kategorie.
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1. Introduction

1.1. Vue d’ensemble
Representation theory is the study of actions of algebraic structures — such as groups,
rings, or algebras — on vector spaces through linear transformations. In its most clas-
sical form, the aim is to study a group G by analyzing the structure and properties of
homomorphisms from G into the general linear group GL(V ) of a vector space V . These
homomorphisms are known as representations of G.

In the setting of Lie groups, representation theory becomes intimately connected with
geometry and analysis. A particularly important class of representations in this context
are unitary representations – homomorphisms from a Lie group G to the group of uni-
tary operators on a Hilbert space H. These representations preserve inner products and
thus provide a natural framework for harmonic analysis, probability theory, and quantum
physics. The motivation to study unitary representations of Lie groups originates from
two seminal developments in the twentieth century: Wigner’s classification of elementary
particles and Gelfand’s program of abstract harmonic analysis.

The Wigner program arises from the foundational principles of quantum mechanics. In
quantum theory, the states of a physical system are modeled by unit vectors in a Hilbert
space, and symmetries of the system correspond to unitary (or anti-unitary) transforma-
tions that preserve transition probabilities. In a relativistic setting, the symmetry group of
spacetime is the Poincaré group, and Wigner’s groundbreaking result in 1939 demonstrated
that elementary particles correspond to irreducible unitary representations of this group.
More generally, physical systems are governed by symmetry groups, and their possible
quantum states and physical observables are encoded in the unitary representation the-
ory of these groups. This insight laid the foundation for the application of representation
theory in high-energy physics and quantum field theory.

The Gelfand program seeks to generalize classical Fourier analysis from the abelian case
(e.g., the circle group or the real line) to the non-abelian case, such as compact Lie groups
or semisimple Lie groups. Classical Fourier analysis can be interpreted as decomposing
functions into irreducible representations of the additive group R or the circle group T.
In the non-abelian setting, one instead decomposes L2(G), the space of square-integrable
functions on a group G, into irreducible unitary representations of G. This leads to deep
questions in harmonic analysis, differential geometry, and number theory. The celebrated
Peter–Weyl theorem, the Plancherel formula, and the theory of characters all emerge as
extensions of Fourier analysis within this broader framework.

One of the central goals in representation theory is to classify and analyze all possible
unitary representations of a given Lie group G, particularly those which are irreducible.
An irreducible representation is one that admits no proper invariant closed subspaces under
the action of G. These irreducible representations serve as the basic building blocks for
all representations, much like prime numbers for the integers. The theory revolves around
several interrelated problems, each of which remains at the core of current research:
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1. Classify all unitary irreducible representations of a given Lie group G. This is known
as the unitary dual problem, and its complete solution is known only for specific
classes of Lie groups, such as compact Lie groups, nilpotent groups (via the Kirillov
orbit method), and some real reductive groups.

2. Explain how a given unitary representation can be decomposed into irreducible com-
ponents. This includes understanding the direct integral decomposition of unitary
representations and the Plancherel theorem for non-compact groups.

3. Given a subgroup H ⊂ G, determine the branching laws for restricting representa-
tions of G to H. These describe how an irreducible representation of G decomposes
when restricted to H, a problem that lies at the heart of reciprocity phenomena in
mathematics and physics.

4. Describe the structure of the category of unitary representations. This involves tensor
product decompositions, dualities, and character theory.

While the classification for compact and abelian groups is relatively well understood,
the situation becomes substantially more complex for non-compact and non-abelian Lie
groups. In particular, for real reductive Lie groups the unitary dual is intricate, and only
partial results are known despite the deep work of Harish-Chandra, Langlands, Knapp–
Zuckerman, and others. Current research is primarily focused on benchmark problems,
specific examples, and extending the scope of representation theory to include supergroups,
which plays a significant role in the field’s advancement.

The notion of symmetry has evolved significantly with the advent of supersymmetry,
a theoretical framework in quantum field theory developed in the 1960s and 1970s. Su-
persymmetry posits a duality between two fundamental types of particles: bosons, which
mediate forces, and fermions, which constitute matter. Mathematically, this duality is
captured by enriching the classical notion of a symmetry group to a Z/2Z-graded struc-
ture. In this setting, the Hilbert space H of a supersymmetric quantum system naturally
decomposes into bosonic and fermionic subspaces:

H = H0̄ ⊕H1̄,

where H0̄ corresponds to bosonic states and H1̄ to fermionic states. Supersymmetry allows
for transformations that exchange these two types of states, and such transformations
are governed by Lie superalgebras and their global counterparts, Lie supergroups. The
symmetry transformations of a supersymmetric theory are thus encoded in the unitary
representation theory of Lie supergroups.

Lie supergroups are generalizations of Lie groups that arise naturally when attempting to
incorporate supersymmetry into geometric and algebraic frameworks. They are formalized
most effectively using the language of super Harish-Chandra pairs, which consist of a pair
(G, g), where G is a Lie group and g is a Lie superalgebra such that the two structures are
compatible. This viewpoint reduces the study of representations of Lie supergroups to the
combined representation theory of Lie groups and Lie superalgebras.

A remarkable feature of unitary representation theory for Lie supergroups is that, for
a large class of such supergroups, the unitary representations are fully determined (up to
equivalence) by the unitarizable representations of the underlying Lie superalgebra, referred
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to as unitarizable supermodules. This shifts the focus of the unitary representation theory
of Lie supergroups to unitarizable supermodules over Lie superalgebras.

A central family of examples in this context — and the principal Lie superalgebras
studied in this thesis — are the special linear Lie superalgebras sl(m|n) and their simple
counterparts, the Lie superalgebras of type A(m|n), defined as follows:

A(m|n) :=
{
sl(m+ 1|n+ 1), if m 6= n, m, n ≥ 0,
sl(n+ 1|n+ 1)/CEn+1,n+1, if m = n, n > 0.

The representation theory of sl(m|n) and A(m − 1|n − 1) can be developed in a unified
framework, using the notation g to refer to either Lie superalgebra. Furthermore, these
supetalgebras play a foundational role in the representation theory of Lie superalgebras due
to their structural properties and their appearance in physical applications. In particular,
real forms of these algebras include the superconformal algebras in d = 1, 4 spacetime
dimensions, which appear prominently in superconformal quantum field theories, where
superconformal Lie algebras serve as symmetry algebras and their representation theory
enables exact analysis of these theories, often revealing hidden dualities, non-perturbative
structures, and deep connections to enumerative geometry and category theory.

The notion of unitarizable g-supermodules depends on the choice of a conjugate-linear
anti-involution ω, which corresponds bijectively to a real form of g. In [104], Neeb and
Salmasian demonstrated that non-trivial unitarizable g-supermodules exist only when ω
is associated with a real form of the type su(p, q|n, 0) or su(p, q|0, n), where p + q =
m. Furthermore, in [48], Furutsu and Nishiyama proved that any unitarizable sl(m|n)-
supermodule with respect to such a real form must be either a highest weight or a lowest
weight supermodule. If p = 0 or q = 0, then the unitarizable g-supermodules are finite-
dimensional, whereas for p, q 6= 0, they are infinite-dimensional. In this work, we focus
on unitarizable highest weight g-supermodules associated with the real form su(p, q|0, n).
These were classified in [73], and more recently revisited in [53]. The classification of
unitarizable lowest weight supermodules proceeds analogously.

For this thesis, the ideas of representation theory serve as a guiding philosophy: sym-
metries govern structure. Understanding how symmetries act linearly provides insight into
both qualitative and quantitative features of physical systems.

This thesis is divided into five parts, each addressing interconnected aspects of the theory
of unitarizable supermodules over sl(m|n) and basic classical Lie superalgebras of type
A(m|n). The central aim is to explore the structure, classification, and applications of
these representations, bringing together algebraic, and physical perspectives. Topics range
from foundational theory and classification via Dirac cohomology to the introduction of
a new invariant — the formal superdimension — and applications in physics through
the superconformal index. An addendum extends the theory to cubic Dirac operators,
deepening the structural framework developed throughout.

1.2. Dirac operators and Dirac cohomology
Dirac operators are first-order differential operators whose square equals the Laplacian [46].
Their origin lies at the heart of quantum theory: in 1928, P. A. M. Dirac introduced the
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eponymous operator in a groundbreaking attempt to formulate a quantum theory of the
electron that is compatible with the principles of special relativity [8]. The resulting Dirac
equation not only successfully predicted the existence of antiparticles but also inaugurated
the mathematical structure underlying spin-1

2 fermions in quantum field theory.
Since their inception, Dirac operators have evolved from physical constructs into central

objects of study in mathematics. Their significance spans multiple domains, including
differential geometry, global analysis, topology, and — most pertinently for this thesis
— representation theory. In particular, the role of Dirac operators in the context of the
Atiyah–Singer index theorem marks one of the most profound developments in 20th-century
mathematics, offering a deep connection between analysis, topology, and geometry [92].

Within representation theory, Dirac operators provide deep and elegant tools to address
some of its most fundamental questions:

a) Construct explicit representations of a Lie group or Lie algebra.

b) Determine criteria for the unitarizability of such representations.

c) Classify irreducible (and in particular, unitary) representations.

Dirac operators and their associated cohomology were first brought into the represen-
tation-theoretic spotlight by Parthasarathy and Vogan. Parthasarathy used Dirac opera-
tors to construct discrete series representations of semisimple Lie groups [3, 113]. Vogan
later introduced Dirac cohomology, which provides a robust invariant of (g,K)-modules,
revealing significant information about their infinitesimal characters. This led to Vogan’s
celebrated conjecture: the Dirac cohomology of a (g,K)-module determines its infinitesimal
character. This conjecture was established by Huang and Pandžić in [65].

Dirac cohomology has since emerged as a powerful invariant with deep connections to
other cohomological theories. It relates closely to n-cohomology for highest weight modules
and to (g,K)-cohomology for Vogan–Zuckerman modules Aq(λ) [62, 63, 109]. From a
computational perspective, Dirac cohomology often yields a more tractable approach than
(g,K)-cohomology, while still capturing rich structural information about a representation.
Furthermore, it has proved instrumental in the classification of unitarizable highest weight
modules [110].

A good overview of the history and significance of the Dirac operator in representation
theory can be found in Figure 1.1

In [67], Huang and Pandžić extended the theory of Dirac operators and Dirac coho-
mology to Lie superalgebras of Riemannian type. A key assumption is the existence of a
non-degenerate invariant supersymmetric bilinear form B on g, which allows for the decom-
position g1̄ = l− ⊕ l+ into complementary Lagrangian subspaces. This structure gives rise
to a natural definition of a Dirac operator D acting on tensor products of g-supermodules
with the oscillator module. The square of D again encodes key representation-theoretic
information, much as in the classical setting. Dirac cohomology in this setting is defined
as

HD(M) := ker D /(ker D∩ Im D),

where M is a g-supermodule. A major result of Huang and Pandžić is a superalgebraic
analog of Vogan’s conjecture: if the Dirac cohomology of a g-supermodule is nonzero,
then it determines the infinitesimal character of the module [67, Theorem 10.4.7]. This
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Figure 1.1.: Dirac operators and representation theory. Source: [94].
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theorem suggests that Dirac cohomology could play an equally central role in the unitary
representation theory of Lie superalgebras.

This thesis investigates the role of Dirac operators and Dirac cohomology in the represen-
tation theory of Lie superalgebras g, where g denotes either sl(m|n) or a Lie superalgebra
of type A(m|n). The focus lies on the classification and analysis of infinite-dimensional
unitarizable modules. We aim to bridge the gap between the algebraic techniques used in
the classification of ordinary Lie group representations and the more intricate structures
encountered in the super setting. The results obtained provide new perspectives on the
representation theory of basic classical Lie superalgebras and contribute to the ongoing
development of geometric and cohomological methods in supersymmetric representation
theory.

Our results are divided into two parts: the first explores the structural relationship
between Dirac operators, Dirac cohomology and unitarity, while the second presents explicit
extensions and perspectives, including a novel characterization of unitarity, connections to
Kostant’s cohomology, the formulation of infinitesimal characters, and a Dirac index.

We begin with the first part. A key observation is that, although the Dirac operator is
defined independently of a basis, the choice of a positive system determines whether it is
self-adjoint or anti-self-adjoint. We establish the existence of a basis that is compatible with
the Riemannian structure of the Lie algebra and a fixed conjugate-linear anti-involution,
ensuring compatibility with the real form. However, this basis does not induce a Z2-
compatible Z-grading but instead aligns with a maximal compact subalgebra k. Within
this setup, we show that contravariance of a Hermitian form on a general supermodule
and self-adjointness of the Dirac operator are equivalent (Proposition 7.2.4 and Theorem
7.2.5). This particularly implies a Dirac inequality, which is central to the further study
of unitarizable supermodules.

Theorem 1.2.1. Let 〈·, ·〉M be a positive definite Hermitian form on a g-supermodule M
with 〈M0̄,M1̄〉M = 0. Then the following statements are equivalent

a) (M, 〈·, ·〉M ) is a unitarizable g-supermodule.

b) The Dirac operator D is self-adjoint with respect to 〈·, ·〉M⊗M(g1̄).

In particular, on unitarizable g-supermodules M a Dirac inequality holds:

〈D2 v, v〉M⊗M(g1̄) ≥ 0

for all v ∈M ⊗M(g1̄).

Turning to Dirac cohomology, we show that, for general supermodules, it lacks an adjoint
functor but satisfies a six-term exact sequence. To remedy this, we construct an alternative
Dirac cohomology that admits a right adjoint functor while coinciding with the standard
Dirac cohomology on unitarizable supermodules.

The Dirac cohomology on unitarizable supermodules coincides with the kernel of the
Dirac operator, i.e., HD(M) = ker D, and the Dirac cohomology of simple unitarizable g-
supermodules decomposes under g0̄ into a direct sum of unitarizable simple g0̄-supermodules.
Applying the analog of Vogan’s conjecture, we explicitly compute the Dirac cohomology
of all unitarizable highest weight g-supermodules (Theorem 7.2.20 and Theorem 7.2.24):
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Theorem 1.2.2. The Dirac cohomology of a non-trivial unitarizable highest weight g-
supermodule L(Λ) with highest weight Λ is

HD(L(Λ)) = L0(Λ− ρ1̄).

In particular, two unitarizable g-supermodules H1 and H2 are equivalent if and only if
HD(H1) ∼= HD(H2) as g0̄-supermodules.

We extend this result to the Dirac cohomology of Kac supermodules, which possess
Jordan–-Hölder filtrations with unitarizable quotients.

The second part of Chapter 7 explores various perspectives on Dirac cohomology. Our
first application provides a new description of unitarity for supermodules. This particu-
larly addresses the following issue: a g-supermodule that is g0̄-semisimple such that every
g0̄-constituent is unitarizable, need not itself be unitarizable. Conversely, the induction of
a unitarizable g0̄-supermodule to g does not have to be unitarizable. The Dirac inequality
offers a necessary and sufficient condition for unitarity (Theorem 7.3.2).

Theorem 1.2.3. Let M be a simple highest weight g-supermodule with highest weight Λ that
is g0̄-semisimple. Then M is unitarizable if and only if the highest weight g0̄-supermodule
L0(Λ) is unitarizable and the Dirac inequality holds strictly for each simple highest weight
g0̄-constituent L0(µ) ⊂M with highest weight µ 6= Λ, embedded in M ⊗M(g1̄), i.e.,

(µ+ 2ρ, µ) > (Λ + 2ρ,Λ).

This leads to an explicit decomposition of unitarizable simple g-supermodules under g0̄
in Theorem 7.3.4.

Next, we analyze the relationship between Dirac cohomology and Kostant’s cohomology.
The requirement that the Dirac operator be self-adjoint uniquely determines the choice of a
positive system on g1̄. However, this choice introduces a challenge: Kostant’s cohomology
is naturally a module only over a maximal compact subalgebra k of the even part of a real
form of g (Theorem 7.3.11).

Theorem 1.2.4. For any unitarizable simple g-supermodule H, there exists a kC-module
isomorphism

HD(H) ∼= H∗(g+1,H)⊗ C−ρ1̄ .

A natural question concerns the Euler characteristic of Dirac cohomology. To address
this, we introduce the Dirac index for a general g-supermodule M , defined as the virtual
g0̄-supermodule:

I(M) := M ⊗M(g1̄)0̄ −M ⊗M(g1̄)1̄.

The Dirac index coincides with the Euler characteristic of Dirac cohomology, meaning that
I(M) = H+

D(M) − H−
D(M) (Proposition 7.3.12). Furthermore, I(·) has nice categorical

properties as it commutes with the functor associated with tensor multiplication by a
finite-dimensional g-supermodule. The methods employed are analogous to those used in
the case of reductive Lie algebras.

Furthermore, we derive two formulas for the formal kC-character of unitarizable simple
supermodules using Kostant’s cohomology and the Dirac index. Our main result can be
summarized as follows (Theorem 7.3.15 and Theorem 7.3.18):
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Theorem 1.2.5. Let H be a unitarizable g-supermodules that admits an infinitesimal
character, and let F ν denote a simple kC-module of highest weight ν ∈ h∗. Define N(µ) :=∧
n−

1̄ ⊗ F
µ.

a) chkC(H) =
∑
µ

∑∞
k=0(−1)k[Hk(g+1,M) : Fµ] chkC

(
N(µ)

)
.

b) Assume H+
D(H) =

∑
µ F

µ and H−
D(H) =

∑
ν F

ν . Then

chkC(H) =
∑
µ

chkC(N(µ+ ρ1̄))−
∑
ν

chkC(N(ν + ρ1̄)).

The classification of unitarizable supermodules over Lie superalgebras remains poorly
understood. Existing classifications for basic classical Lie superalgebras, such as those in
[22, 48, 53, 73], rely on case-by-case analyses and intricate combinatorics, offering little in
the way of a unifying theory or a geometric interpretation. Unlike the ordinary setting,
where Enright–Howe–Wallach-type classifications of the unitary dual offer deep geometric
insight [38], the unitary dual of basic classical Lie superalgebras exhibits a more elusive and
irregular structure. Notably, Jakobsen’s work [73] highlights a “zigzagging” phenomenon in
the classification of unitarizable supermodules — an alternating pattern that lacks any clear
analog in the representation theory of semisimple Lie groups. This suggests that new tools,
such as Dirac cohomology, may be essential for uncovering the deeper structure of unitary
supermodules. Chapter 8 presents our final result: a complete and novel classification
of unitarizable simple supermodules that are finite-dimensional or have integral highest
weight.

1.3. Cubic Dirac operators and Dirac cohomology
While classical Dirac operators have proven to be powerful tools in representation theory
— particularly in the realization of discrete series and the study of Dirac cohomology —
their original formulation is closely tied to the setting of symmetric spaces. To generalize
these constructions beyond symmetric pairs, a fundamental modification is required.

In his influential work [89], Kostant introduced a new class of operators known as cubic
Dirac operators, defined in the context of quadratic Lie algebras. These are Lie algebras
equipped with a non-degenerate invariant bilinear form, allowing for a broader and more
flexible framework. The defining feature of Kostant’s construction is the inclusion of a cubic
term, which plays a crucial role in preserving essential algebraic properties — most notably,
the ability to encode representation-theoretic invariants such as infinitesimal characters.

The classical Dirac operator arises naturally when a Lie algebra g admits a symmetric
decomposition g = k ⊕ p. In such cases, the Clifford algebra associated with p serves as
the domain for the spinor module on which the operator acts. However, when such a
decomposition is not available, as in general quadratic Lie algebras, Kostant’s construc-
tion circumvents this limitation by embedding the necessary structure algebraically into
the operator itself via a cubic Clifford term. The resulting cubic Dirac operator retains
compatibility with the adjoint action and exhibits a rich algebraic structure, enabling the
analysis of representations in a more general setting.

More recently, analogs of Kostant’s cubic Dirac operators have been developed for
quadratic Lie superalgebras — superalgebras admitting an even, invariant, non-degenerate
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supersymmetric bilinear form. In this setting, Kang and Chen [79], as well as Meyer [95],
constructed superalgebraic versions of cubic Dirac operators and extended many of the core
algebraic properties known from the classical case. These developments open promising
new avenues in the representation theory of Lie superalgebras, especially with respect to
their unitarizable supermodules and geometric interpretation.

The aim of this part of the thesis is to study the Dirac cohomology associated with cubic
Dirac operators, focusing on its applications to the representation theory of supermodules,
where the formalism proves to be particularly powerful. Concretely, we investigate the
structure and computation of Dirac cohomology in the setting of basic classical Lie super-
algebras. Given a basic classical Lie superalgebra g and a parabolic subalgebra p ⊂ g, we
consider the induced decomposition

g = l⊕ s,

where l is the Levi subalgebra of p and s its orthogonal complement with respect to a non-
degenerate invariant supersymmetric bilinear form on g. This setup provides a natural
framework for defining a Dirac operator associated with the pair (g, l) and studying its
cohomology.

The Dirac cohomology HD(M) of a g-supermodule M demonstrates its full strength
when M admits an infinitesimal character χλ : Z(g) → C. That is, each central element
z ∈ Z(g) acts on M as scalar multiplication by χλ(z). In this setting, we establish a
super-analog of the Casselman–Osborne lemma (Theorem 13.2.27), which describes how
the center of g acts on the Dirac cohomology:
Theorem 1.3.1. Let M be a g-supermodule with infinitesimal character χλ. Then the
action of z ∈ Z(g) on HD(M) is given by

z · v = η l(z) · v

for a uniquely defined algebra homomorphism η l : Z(g) → Z(l). In particular, if HD(M)
contains an l-submodule with infinitesimal character χl

µ, then

χλ = χl
µ ◦ η l.

This result has powerful implications for the structure of highest weight supermodules.
Indeed, we show that the Dirac cohomology of any highest weight g-supermodule is always
non-trivial (Proposition 13.3.7):
Theorem 1.3.2. Let M be a highest weight g-supermodule. Then its Dirac cohomology
satisfies HD(M) 6= 0.

A further focus is placed on the explicit computation of Dirac cohomology for finite-
dimensional supermodules. For Lie superalgebras of type I — namely, g = gl(m|n), A(m|n),
or C(n) — we obtain a concrete formula for the Dirac cohomology of finite-dimensional
simple (g, l)-supermodules with typical highest weights:
Theorem 1.3.3. Let M be a finite-dimensional admissible simple (g, l)-supermodule with
typical highest weight Λ. Then

HD(M) =
⊕

w∈W l,1
Λ+ρu

Ll(w(Λ + ρ)− ρl),

where ρ and ρl are the Weyl vectors associated to g and l, respectively.
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In the context of the parabolic BGG category Op, we compute the Dirac cohomology for
finite-dimensional simple objects (Theorem 13.3.11):

Theorem 1.3.4. Let M be a finite-dimensional simple object in the parabolic category Op

with highest weight Λ. Then

HD(M) =
⊕

w∈W l0,1
Λ+ρu

Ll0(w(Λ + ρu + ρl0)− ρl0),

where l0 is the even part of the Levi subalgebra and ρu, ρl0 denote the corresponding Weyl
vectors.

Beyond structural results and computations, we also investigate the relationship between
Dirac cohomology and Lie algebra cohomology. Specifically, we prove that Dirac cohomol-
ogy embeds into both Lie algebra and Lie algebra homology of the nilpotent radical u,
and that this embedding becomes an isomorphism under unitarity assumptions (Theorem
13.4.10):

Theorem 1.3.5. Let M be an admissible simple (g, l)-supermodule. Then there are injec-
tive morphisms of l-supermodules

HD(M) ↪→ H∗(u,M), HD(M) ↪→ H∗(u,M).

If M is unitarizable, then these maps are isomorphisms.

Furthermore, we prove that highest weight g-supermodules are precisely those super-
modules with non-trivial Dirac cohomology (Theorem 13.4.20).

Theorem 1.3.6. Let M be a simple weight g-supermodule. Then HD(g,l)(M) = {0} unless
M is a highest weight g-supermodule.

These results suggest that, under suitable assumptions, the Dirac cohomology may fully
determine the structure of a supermodule. This perspective offers a new lens through which
to understand representation theory in the super context and motivates further investiga-
tion. Preliminary evidence indicates that similar phenomena extend to Lie superalgebras
of type II, suggesting that Dirac cohomology has the potential to unify and clarify much
of the representation theory of all basic classical Lie superalgebras.

1.4. Formal superdimension
A central goal in representation theory is the classification and understanding of represen-
tations through suitable invariants. For finite-dimensional supermodules of basic classical
Lie superalgebras, one such fundamental invariant is the superdimension. Given a finite-
dimensional g-supermodule V = V0̄ ⊕ V1̄, the superdimension is defined as

sdim(V ) = dim(V0̄)− dim(V1̄),

a natural extension of the usual notion of dimension that reflects the parity grading of V .
If V is a simple g-supermodule, it is determined uniquely (up to isomorphism) by a highest
weight λ. In 1994, Kac and Wakimoto conjectured that such a module has non-trivial
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superdimension if and only if λ has maximal atypicality, meaning its degree of atypicality
equals the defect of g [78]. This conjecture was later proven by Serganova in [128].

Nevertheless, no general formula for the superdimension in terms of the highest weight
was given. In 2015, Heidersdorf and Weissauer derived such a formula for gl(m|n) using
the cup diagram language developed by Brundan and Stroppel [58]. Their derivation used
the Duflo–Serganova functor (DS functor), a symmetric monoidal functor that preserves
superdimension and plays a pivotal role in the structural analysis of g-supermodules.

While superdimension is well-defined for finite-dimensional supermodules, no such invari-
ant exists for general infinite-dimensional supermodules, particularly for unitarizable ones.
However, for a large class of infinite-dimensional unitarizable g0̄-modules, one can define
an analog of a dimension, known as the formal dimension, originally studied in the context
of Harish-Chandra modules and holomorphic discrete series. This suggests the possibil-
ity of extending the superdimension program to unitarizable highest weight supermodules
over certain Lie superalgebras. The second part of this thesis introduces and develops a
natural generalization of the superdimension theory to infinite-dimensional, unitarizable
simple g-supermodules.

The proposal for the formal superdimension arises from a natural synthesis of several core
ideas: the Harish-Chandra degree for g0̄-modules (see Section 5.4.2), the structure theory
developed in the Dirac operator framework (see Section 7), and the parametrization of
g0̄-constituents via highest weights (see Section 6.1.4).

To fix notation, let H be a non-trivial unitarizable simple highest weight g-supermodule
with highest weight Λ ∈ h∗. Then:

a) H is simple and g0̄-semisimple. Each g0̄-constituent L0(Λj) is a unitarizable highest
weight supermodule over g0̄, and appears in H with finite multiplicity and fixed
Z2-parity

p(Λj) =
n∑
k=1

(Λj − Λ, δk) mod 2,

computed relative to the highest weight vector of H.

b) Each constituent L0(Λj) decomposes as a tensor product of the form

L0(Λj) ∼= L0(ΛL
j ) ⊠ L0(ΛR

j ) ⊠ Cµj ,

where L0(ΛL
j ) is a unitarizable L := su(p, q)-module, L0(ΛR

j ) a finite-dimensional
R := su(n)-module, and Cµj a one-dimensional module of the u(1) factor. When
p = 0 or q = 0, the su(p, q)-module is finite-dimensional.

c) When p, q 6= 0, a constituent L0(Λj) belongs to the relative holomorphic discrete
series if it satisfies the Harish-Chandra condition (see Theorem 5.4.3),

(Λj + ρ0̄, β) < 0 for all β ∈ ∆+
n .

In this case, L0(Λj) admits a formal dimension d(Λj) ∈ R+ given by (Theorem 5.4.5)

d(Λj) =
∏

α∈∆+
c

(Λj + ρc, α)
(ρc, α)

∏
β∈∆+

n

|(Λj + ρ0̄, β)|
(ρ0̄, β)

.
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This formal dimension serves as a substitute for the ordinary dimension in the infinite-
dimensional case, and coincides with the dimension for finite-dimensional unitarizable
modules.

When a constituent L0(Λj) fails to satisfy the Harish-Chandra condition, no meaningful
notion of formal dimension exists. This motivates the following terminology: A unita-
rizable highest weight g-supermodule H is called a (relative) holomorphic discrete series
supermodule if each of its g0̄-constituents are Harish-Chandra modules associated to a (rel-
ative) holomorphic discrete series representation of the universal cover of the underlying
real Lie group.

With this terminology in place, we define the central invariant of this part of the thesis:

Definition 1.4.1. LetH be a unitarizable highest weight g-supermodule whose g0̄-constituents
all belong to the relative holomorphic discrete series. Then the formal superdimension of
H is defined as

sdim(H) :=
∑
j

sdim(L0(Λj)), sdim(L0(Λj)) := (−1)p(H)+p(Λj) · d(Λj),

where the sum runs over all g0̄-constituents L0(Λj) of H.

This construction preserves several desirable properties: the formal superdimension is
additive across short exact sequences and it behaves compatibly under tensoring with
finite-dimensional modules.

We further prove a generalized Kac–Wakimoto conjecture for the formal superdimension
(Theorem 10.2.4). The proof is in the special case m = n, though our method applies to
all m,n.

Theorem 1.4.2. Let H be a relative holomorphic discrete series g-supermodule. Then
sdim(H) = 0 unless the highest weight of H is maximally atypical.

Conversely any unitarizable maximally atypical supermodule consists only of g0̄-modules
in the (limit of) relative holomorphic discrete series. This removes the limitations of the
formal superdimension to some degree.

A part of this proof is based on the Duflo–Serganova functor (or DS functor), introduced
in [34]. This functor plays a pivotal role in the study of the category of finite-dimensional
g-supermodules, where it provides a powerful means of probing structure and invariants.
The DS functor is symmetric monoidal and, crucially, it preserves the superdimension in
the finite-dimensional setting. There exists no analog of this construction in the classical
theory of Harish-Chandra modules, which makes it particularly well-suited for applications
in the super setting.

The DS functor is defined with respect to an element x in the self-commuting variety

Y := {x ∈ g1̄ : [x, x] = 0}.

Given a g-supermodule M , such an x induces a nilpotent endomorphism xM ∈ EndC(M)
satisfying x2

M = 0. This allows one to define a cohomological reduction of M by

DSx(M) := Mx := ker(xM )/ im(xM ),
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which is naturally a gx-supermodule, where gx := ker(adx)/im(adx) inherits the structure
of a Lie superalgebra. The assignment M 7→ DSx(M) defines a functor from the category
of g-supermodules to that of gx-supermodules. In the present work, we extend the use
of the DS functor to the setting of infinite-dimensional highest weight g-supermodules.
However, the DS functor fails to preserve unitarity, necessitating a generalization of the
construction outlined above. This issue will be addressed in the following section.
The superdimension developed here not only generalizes the known results for finite-
dimensional supermodules but also has potential applications to mathematical physics.
In particular, it appears closely related to the superconformal index in 4d N = 4 super-
conformal field theory, which captures contributions only from certain unitarizable simple
modules over psu(2, 2|4) with atypical highest weight. This suggests a deep mathematical
structure behind such indices, traceable back to representation-theoretic invariants like the
superdimension.

1.5. Indices
Indices play a central role in both mathematics and physics, capturing subtle topological
information through analytic means. A prominent example is the Fredholm index, asso-
ciated with bounded linear operators between infinite-dimensional Hilbert spaces. Given
such an operator D with finite-dimensional kernel and cokernel, its index is defined by

ind(D) = dim kerD − dim cokerD.

This integer-valued invariant remains stable under compact perturbations and plays a cen-
tral role in the study of elliptic differential operators, where it connects analytic properties
of operators to topological invariants of the underlying space.

In mathematical physics, this notion finds a natural counterpart in supersymmetric
theories through the Witten index, an analytic expression originally introduced in the
context of Morse theory [139]. Let

(
H, 〈·, ·〉

)
be a separable Hilbert space carrying a

unitary Z2-graded representation of a Lie superalgebra. Let (−1)F ∈ L(H) be a self-
adjoint involution endowing H with a parity grading, and let Q ∈ L(H) be a closed,
densely defined odd operator satisfying

(−1)FQ = −Q(−1)F , Q2 = 0.

Denote by Q† the Hilbert space adjoint of Q, and define the self-adjoint operator

Ξ := Q†Q+QQ†.

By von Neumann’s theorem, Ξ is self-adjoint, non-negative, and commutes with Q. The
Witten index of Q is defined by the supertrace

IWH (Q;β) := trH
(
(−1)F e−βΞ),

for β > 0 such that e−βΞ is trace-class. When Q satisfies the Fredholm property — that is,
its image is closed and the kernels kerQ+ and kerQ− are finite-dimensional — the Witten
index becomes independent of β and is given by

IWH (Q) = dim kerQ+ − dim kerQ− = trkerQ∩kerQ†(−1)F ,
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where Q± = 1
2(Q+Q†)(1± (−1)F ) denote the chiral components of Q acting between the

graded subspaces H± = 1
2(1 ± (−1)F )H. An important feature of the Witten index is its

topological invariance:
IWH (Q+ δQ) = IWH (Q),

for any relatively Q-compact perturbation δQ (i.e., such that δQ(Q − i)−1 is compact).
Thus, the Witten index is preserved under a large class of continuous deformations of the
pair (Q,Ξ), making it stable under many quantum corrections.

In physical contexts, (−1)F corresponds to the fermion number operator, Q to a nilpotent
complex supercharge, and Ξ to an energy operator (which may differ from the Hamilto-
nian by R-symmetry terms). In superconformal field theories (SCFTs), the Witten index
specializes to the superconformal index, which counts protected BPS states in the Hilbert
space of radial quantization. These states are annihilated by both Q and Q†, and their
contributions are refined by their transformation properties under the centralizer of Q. In
particular, only “short” representations contribute to the superconformal index, as long
representations cancel due to a balance between bosonic and fermionic content.

One objective of this thesis is to develop a mathematical framework that captures the
essence of physical indices (e.g. the Witten index) for unitarizable supermodules over the
special linear Lie superalgebras sl(m|n) with m ≥ 2, n ≥ 1, considered with respect to
their real forms su(p, q|n). While this does not encompass all superconformal algebras, it
captures the key structural features, including the role of “atypical highest weight super-
modules” as mathematical analogs of “short supermodules,” and the nuanced criteria for
unitarizability.

To formalize the notion of a physical index, several ingredients are required. We provide
a detailed dictionary translating physical concepts — such as BPS states, short super-
modules, and related phenomena — into their rigorous mathematical counterparts. In
particular, we address the phenomenon of recombination and fragmentation, that is, the
continuity of the fragmentation/recombination process of supermodules at the boundary
of the unitarity region. This continuity is one of the most intriguing insights from physics
that has, until now, lacked a clear mathematical analog. Physically, it refers to the smooth
transition by which long supermodules decompose into short ones as unitarity bounds are
saturated. Our approach remains somewhat ad hoc and provisional, but we believe it
identifies core features relevant to the broader task of defining indices in the context of Lie
superalgebras.

Having established a dictionary between the mathematical and physical settings, we
give a precise definition of a general class of physical indices — the Kinney–Maldacena–
Minwalla–Raju (KMMR) indices — which formalize and generalize the notion of the su-
perconformal index introduced in [81] as an invariant count of short supermodules. These
indices are defined so that they receive nontrivial contributions only from so-called short
supermodules, which fail to recombine into long supermodules at the boundary of the
unitarity region and thus encode BPS (Bogomol’nyi–Prasad–Sommerfield) states. These
indices form a Z-module, and a central problem is to understand its structure.

A principal example of a KMMR index is the Q-Witten index. In its original formula-
tion, it was assumed for simplicity that e−βΞ is of trace class. However, this assumption
is generally too naive in infinite-dimensional settings. To address this issue, we introduce
a refined version of the Witten index, which is character-valued and based on a general-
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ized Duflo–Serganova (DS) cohomology theory. This approach clarifies the cohomological
language commonly employed in physics when describing the Witten index.

The representation-theoretic framework we develop is based on a generalization of the
classical DS functor, suitably modified to preserve unitarity, an essential feature not ad-
equately captured by the traditional construction. Specifically, given an element x ∈ g1
such that c := [x, x] ∈ g0 is semisimple, we define the rank variety

Yhom := {x ∈ g1 : [x, x] is semisimple},

which is stable under the action of G0 but not closed in g1.
For a g-supermodule M , assuming that c acts semisimply, we define the generalized DS

functor via the cohomology

DSx(M) := (ker(x|Mc))/(im(x|Mc)),

whereM c denotes the space of c-invariants inM . The functorDSx maps g-supermodules to
gx-supermodules, where gx := DSx(g) forms a Lie superalgebra. Importantly, this functor
preserves unitarity under the condition ω(x) = −x with respect to the anti-involution ω
defining the real form gω.

In physical models, we fix an element Q of the self-commuting variety Y, acting on a
non-trivial unitarizable g-supermoduleH. The adjoint Q† of Q satisfies Q† = ω(Q), leading
to the definition of an element x := i(Q+Q†) with ω(x) = −x and c := 1

2 [x, x] semisimple.
Setting Ξ := −c, a positive-definite operator on H, we interpret the positivity of Ξ as the
BPS bound associated with Q. Physically, one aims to study the corresponding BPS states
— elements of H(0) — by considering the supertrace of e−βΞ for real β > 0.

Due to the infinite degeneracy of H(0), we refine the notion of the Witten index by
introducing the character-valued Witten index. Viewing gx as a subalgebra of g, we consider
the Cartan subalgebra tx ⊂ gx induced from t ⊂ g, and denote by Tx the corresponding
analytic subgroup. For any unitarizable highest weight gx-supermodule V , we define its
supercharacter as a function

χxV (eX) := strV (eX), eX ∈ T reg,+x ,

where T reg,+x is the set of regular elements satisfying certain positivity conditions.
Using the decomposition DSx(M) =

⊕
i Vi into finitely many gx-supermodules, we de-

fine:

Definition 1.5.1. Let M be a unitarizable highest weight g-supermodule, and let Q be an
element of the self-commuting variety. The Q-Witten index of M is the gx-supercharacter

IWM (Q, ·) :=
∑
i

χxVi
(·) = strDSx(M)(·) ∈ X∗(T reg,+x ).

We show that this construction coincides with the physical description of the Witten
index and that for fixed X ∈ treg,+x , the Q-Witten index defines a KMMR index. We
further study the general algebraic properties of the Q-Witten index and establish that
any KMMR index can be expressed as a linear combination of Witten indices.

Next, we motivate the search for a relation between the Q-Witten index and the formal
superdimension — which itself defines a KMMR index for m,n ≥ 3 — by considering the
formula established in Proposition 12.2.5

IWH (Q,X) = strH
(
e−βΞ+X

)
, (where Q ∈ Y, Ξ = [Q,Q†], and X ∈ treg,+

x ),

15



which closely resembles the Weyl character formula for finite-dimensional representations
of Lie groups, where the limit X → 0 recovers the dimension of the representation. In the
setting of infinite-dimensional representations, this analogy is best understood within the
framework of Harish-Chandra characters and L-packets. Concretely, recalling

IWM (Q,X) =
∑
i,j

(−1)Λ−Λi;j trL0,x(Λi;j)
(
eX
)
,

we may interpret each term trL0,x(Λi;j)
(
eX
)

(in a distributional sense) as the Harish-
Chandra character of the representation πΛi;j .

To take the limit X → 0, we associate to each gx,0̄-constituent its corresponding L-packet
by summing over the Weyl group orbit. Specifically, we define

Θ̃DSx(M) :=
∑
i,j

(−1)Λ−Λi;j
∑

w∈Wx/Wx,c

ΘπwΛi;j
,

and set
ĨWM (Q,X) := Θ̃DSx(M)

(
eX
)
.

Our final result relates the superdimension and the Q-Witten index.

Theorem 1.5.2. Let M be a holomorphic discrete series g-supermodule, and let Q, x be
as above. Then

sdim(DSx(M)) = lim
X→0

ĨWM (Q,X).

1.6. Conventions

Throughout this thesis, we work exclusively with vector spaces and algebras over the
complex numbers C. Any additional assumptions will be stated explicitly.

Definitions in this thesis generally follow the sign rule, i.e., swapping two odd elements
introduces a sign factor. This foundational principle, combined with the functorial nature
of the constructions, ensures the consistency of all definitions.

Let Z2 := Z/2Z denote the ring of integers modulo 2. We write 0̄ and 1̄ for the residue
classes of even and odd integers, respectively. For all n ∈ Z, the expression (−1)n depends
only on the residue class of n modulo 2. Hence, (−1)n̄ is well-defined for all n̄ ∈ Z2.

The Z2-grading (or “parity”) of many constructions in supermathematics is often left
implicit. When necessary, the induced sign (via the sign rule) is encoded as the “exponen-
tiated Fermion number.” On any super vector space V = V0̄ ⊕ V1̄, we define

(−1)F := idV0̄ ⊕(− idV1̄).

We denote the parity of a homogeneous element v ∈ V by p(v). Expressions involving terms
like (−1)p(v)p(w) for general v, w ∈ V are interpreted by first restricting to homogeneous
elements, substituting their parities into the exponent, and then extending linearly.
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1.7. Leitfaden
This thesis comprises five parts, with the last four exploring interconnected facets of the
theory of unitarizable supermodules over Lie superalgebras. Its core objective is to investi-
gate their structure, classification, and applications by integrating algebraic, and physical
approaches.

Part I begins with a concise overview of the foundational concepts in the theory of Lie
superalgebras and Lie supergroups, establishing the language and tools necessary for the
developments in later chapters. Concretely, Chapter 2 presents the essential background on
the theory of complex Lie superalgebras and their real forms. Furthermore, Lie supergroups
and their formulation as super Harish-Chandra pairs are introduced.

Subsequently, in Chapter 3, we explore the representation theory of Z2-graded modules,
referred to as supermodules, over Lie superalgebras and Lie supergroups. In particular,
the notion of highest weight supermodules and their categorical treatment are discussed in
detail.

Finally, in Chapter 4, we introduce superconformal Lie algebras, which serve as a moti-
vating example for the remainder of the thesis. More precisely, when considering physical
applications, the aim of this work is to derive statements about superconformal Lie al-
gebras and their representation theory. Nonetheless, we primarily focus on general basic
classical Lie superalgebras, which include the superconformal ones as special cases and
share important properties with them. This approach enables us to discuss topics beyond
superconformal theories.

In Part II, we turn to the structural theory and classification of unitarizable (highest
weight) supermodules for sl(m|n) and the special linear Lie superalgebras of type A(m|n).
Using Dirac operators and Dirac cohomology as guiding tools, we reveal the rich internal
structure of these modules and the conditions under which unitarity can be achieved. This
part is structured into three chapters, each building upon foundational and technical tools
to arrive at a new classification result.

Chapter 5 begins with a review of unitary representation theory for real reductive Lie
groups. We place particular emphasis on discrete series representations of semisimple Lie
groups and their generalizations, the relative discrete series representations. This classical
framework sets the stage for the subsequent extension to the superalgebraic context.

In Chapter 6, we introduce the concept of unitarity for Lie superalgebras and Lie super-
groups, focusing on the case of sl(m|n). We analyze the implications of unitarity in this
setting and establish key structural properties of unitarizable supermodules.

A central tool throughout this part is the Dirac operator, introduced and studied in
Chapter 7, where we present an overview of Dirac cohomology and construct a Dirac in-
duction functor, left-adjoint to Dirac cohomology, tailored to unitarizable supermodules.
Furthermore, in Section 7.2, we investigate the deep relationship between Dirac opera-
tors, Dirac cohomology, and unitarity. We demonstrate that the Dirac operator captures
unitarity in a precise sense and compute the Dirac cohomology of unitarizable simple
sl(m|n)-supermodules. These computations lay the groundwork for the classification re-
sult presented in the following chapter. The section concludes with a new formulation of
the Dirac index and its connection to Kostant’s cohomology and character theory. Sec-
tion 7.3 extends the analysis by exploring additional consequences and applications of Dirac
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cohomology in the unitarizable setting. In particular, we derive a new characterization of
unitarity, provide a decomposition of formal characters via nilpotent Lie superalgebra coho-
mology, and outline how these tools yield insight into the structure of the abelian category
of representations.

Chapter 7 addresses two fundamental representation-theoretic problems: the classifica-
tion and explicit decomposition of unitarizable sl(m|n)-supermodules. Existing classifica-
tions [22, 48, 53, 73] are computationally intensive and lack conceptual transparency. In
Chapter 8, motivated by the approach of Enright–Howe–Wallach [38] for real Lie algebras,
we develop a new classification scheme based on the theory of algebraic Dirac operators.

Part III introduces a new invariant — the formal superdimension — which extends the
classical notion of dimension to a broader setting. Concretely, we associate a formal su-
perdimension to a class of unitarizable supermodules over sl(m|n) and basic classical Lie
superalgebras of type A(m|n) in Chapter 10. The construction is based on the formal
dimension of relative discrete series representations of the underlying reductive Lie group,
leading to relative holomorphic discrete g-supermodules. In this context, we introduce
the Duflo–Serganova functor and translation functors in Chapter 9 to show that a rel-
ative holomorphic discrete series g-supermodule H has trivial superdimension unless the
highest weight is maximally atypical. In the maximal atypical case, we classify the unitariz-
able supermodules belonging to holomorphic discrete series g-supermodules using Dirac’s
inequality and show that each is already a holomorphic discrete series, meaning the g0̄-
constituents belong to the holomorphic discrete series of the underlying Lie group rather
than the relative holomorphic discrete series of its universal cover. Moreover, we generalize
the Kac–Wakimoto Theorem to holomorphic discrete series supermodules.

Part IV is devoted to developing a rigorous mathematical framework for understanding
the superconformal index from a representation-theoretic perspective. Our aim is twofold:
to promote a precise exchange of ideas between mathematics and physics, and to establish
foundational tools that extend beyond physical applications.

Chapter 11 provides a detailed dictionary translating central physical notions — such
as BPS states, short multiplets, and related phenomena — into their rigorous mathe-
matical counterparts. In Section 11.1, we begin by outlining the technical assumptions
underpinning our treatment of indices for unitarizable supermodules. While our approach
is somewhat ad hoc and not fully comprehensive, we believe it captures essential features
that illuminate the broader challenge of defining indices in the context of Lie superalgebras.

In Section 11.2, we develop a correspondence between physical terminology and key
mathematical concepts, particularly atypicality and the Duflo–Serganova (DS) functor (see
Section 9.1). This correspondence is motivated by a physical insight that, until now, lacked
a precise mathematical formulation: the continuity of the fragmentation and recombina-
tion process at the boundary of the unitarity region. To address this, we provide a geo-
metric description of the unitarity region in terms of slices of weight space, parametrized
by dimension and R-charge. We give a detailed and rigorous account of the fragmenta-
tion/recombination phenomenon, phrased in terms of the decomposition behavior of Kac
modules with atypical highest weights. This leads to a precise understanding of protected
or short representations in physics, culminating in the central result that maximally atyp-
ical supermodules are absolutely protected.

Chapter 12 contains the core results of this part. We begin by formalizing the concept
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of a counting index for unitarizable g-supermodules, following the approach initiated by
Kinney, Maldacena, Minwalla, and Raju [81]. We define the counting index as an additive
and continuous function on the space of such supermodules.

Next, we introduce the Q-Witten index, defined as a supertrace valued in the super-
characters of the Duflo–Serganova twist of g, with respect to the operator Q + Q†. We
then establish a real-linear equivalence between the KKMR index and the Q-Witten index,
providing a bridge between algebraic and analytic viewpoints.

Finally, we interpret the formal superdimension of holomorphic discrete series g-super-
modules as a real-valued instance of the KKMR index. We demonstrate how this quantity
can be computed using Harish-Chandra character theory and relate it directly to the Q-
Witten index. This yields a unified picture connecting geometric, cohomological, and
analytic perspectives in the study of supersymmetric representation theory.

Part V, serving as an addendum, is devoted to the study of cubic Dirac operators and
Dirac cohomology in the context of classical Lie superalgebras and is structured into four
sections. In this part, we extend key ideas to the setting of cubic Dirac operators —
generalizations inspired by Kostant’s work and its superalgebraic analogues.

In Section 13.1, we begin with a concise overview of the foundational concepts relevant
to the subsequent discussion. After introducing basic definitions and notations concerning
classical Lie superalgebras g, we focus on their parabolic subalgebras p ⊂ g and the asso-
ciated decomposition g = l ⊕ s, where l denotes the Levi subalgebra and s its orthogonal
complement. We discuss the significance of this decomposition in the representation the-
ory of Lie superalgebras, especially in the context of highest-weight modules. The section
concludes with an introduction to Clifford and exterior superalgebras, culminating in the
construction of an explicit embedding of l into the Clifford superalgebra C(s). This con-
struction forms a key ingredient in the development of the theory presented in the following
sections.

Section 13.2 is devoted to the introduction and foundational analysis of the cubic Dirac
operator D, the central object of study in this work. We explore its key properties and
derive a decomposition into l-invariant summands, as formulated in Theorem 13.2.10. Sub-
sequently, we define the Dirac cohomology HD(M) of a g-supermodule M , wherein the
oscillator supermodule M(s) plays a central role. We then turn our attention to super-
modules admitting an infinitesimal character, a setting particularly well-suited for the ap-
plication of Dirac cohomology. Within this framework, we establish a super-analog of the
Casselman–Osborne lemma (Section 13.2.2). The section concludes with a brief discussion
of homological properties associated with Dirac cohomology.

In Section 13.3, we specialize to highest-weight g-supermodules and examine their Dirac
cohomology. We begin by proving that such supermodules always possess non-trivial Dirac
cohomology (Proposition 13.3.7). We then refine our analysis to several key subclasses,
including finite-dimensional supermodules for Lie superalgebras of type I with typical high-
est weight (Theorem 13.3.10), and simple objects in the category Op (Theorem 13.3.11),
for which we provide explicit computations.

Finally, Section 13.4 investigates the relationship between Dirac cohomology and Kostant’s
(co)homological functors. After reviewing the relevant notions of u-cohomology and ū-
homology, we establish that Dirac cohomology naturally embeds into both (co)homologies,
revealing a deep structural connection. In the second part of the section, we turn to uni-
tarizable g-supermodules. For this class of representations, we demonstrate a Hodge-type
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decomposition of the cubic Dirac operator and prove that their Dirac cohomology is iso-
morphic, up to a twist, to their ū-cohomology as l-supermodules. We conclude by showing
that simple weight g-supermodules have trivial Dirac cohomology unless they are of highest
weight type—thus extending a classical result from the setting of reductive Lie algebras
over C to the supergeometric context.
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Part I.

Preliminaries: Mathematics and
Physics





2. On Lie superalgebras and Lie supergroups

This section provides a brief introduction to the theory of Lie superalgebras and Lie su-
pergroups, establishing the conventions and notation used throughout the thesis. All the
definitions and statements are standard and can be found in the literature, for instance
[12, 27, 129, 136].

2.1. Lie superalgebras
2.1.1. Super vector spaces
A super vector space is a Z2-graded vector space V = V0̄ ⊕ V1̄. Homogeneous elements of
V0̄ are called even, while those in V1̄ are called odd. The parity or degree of any non-zero
homogeneous element v ∈ V is given by

p(v) :=
{

1 if v ∈ V1̄,

0 if v ∈ V0̄.

The superdimension of a super vector space V = V0̄⊕V1̄ is sdimV = m−n. To remember
the even and odd dimension of V , we also set sdimV = (dimV0̄|dimV1̄) = (m|n) which
is the element m + nε in the ring Z[ε]/(ε2 − 1), where m := dim(V0̄) and n := dim(V1̄).
For any super vector space V = V0̄ ⊕ V1̄ of superdimension (m|n), there exists a basis
{e1, . . . , em} of V0̄, and a basis {e′

1, . . . , e
′
n} of V1̄, such that V is canonically isomorphic

to the free K-module Km|n generated by {e1, . . . , em, e
′
1, . . . , e

′
n}. This basis is called the

canonical basis of V . In particular, Km|n is the super vector space over K, with:

Km ∼= Km|n
0̄ , Kn ∼= Km|n

1̄ .

A K-linear map f : V →W between super vector spaces V = V0̄⊕V1̄ and W = W0̄⊕W1̄
is called a morphism of super vector spaces if it preserves the Z2-grading, i.e.,

f(Vī) ⊂Wī, ī ∈ Z2.

A vector space isomorphism that preserves the Z2-grading is called an isomorphism of
super vector spaces. The vector space of morphisms of super vector spaces V and W over
K is denoted by Hom(V,W ), and the category of super vector spaces is denoted by sVect.
The category sVect is a tensor supercategory with inner Hom and dual.

The inner Hom Hom(V,W ) consists of all linear maps between the super vector spaces
V and W . It is itself a super vector space with:

Hom0̄(V,W ) := {T : V →W : T preserves parity} = Hom(V,W ),
Hom1̄(V,W ) := {T : V →W : T reverses parity} .



If V = Km|n and W = Kp|q, then in the canonical basis we have:

Hom0̄(V,W ) =
{(

A 0
0 D

)}
, Hom1̄(V,W ) =

{(
0 B
C 0

)}
,

where A,B,C,D correspond to (p×m), (p×n), (q×m), and (q×n) matrices with entries
in K.

The dual V ∗ of a super vector space V is defined as V ∗ := Hom(V,K), and the parity-
reversing functor Π : sVect→ sVect is defined by:

(ΠV )0̄
∼= V1̄, (ΠV )1̄

∼= V0̄.

This makes sVect a supercategory. The supercategory sVect is a tensor category. For any
two super vector spaces V and W , we define a Z2-graded tensor product V ⊗̂W as follows:

(V ⊗̂W )0̄ := (V0̄ ⊗W0̄)⊕ (V1̄ ⊗W1̄),

(V ⊗̂W )1̄ := (V0̄ ⊗W1̄)⊕ (V1̄ ⊗W0̄).

The assignment (V,W ) 7→ V ⊗̂W is additive and exact in each variable. Additionally, the
tensor product ⊗̂ is associative:

U⊗̂(V ⊗̂W ) ∼= (U⊗̂V )⊗̂W,

and the map
CV,W : V ⊗̂W →W ⊗̂V, v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v,

is a natural isomorphism.
Next, we consider bilinear forms B : V × V → K on a super vector space V = V0̄ ⊕ V1̄.

A bilinear form B on V is called even or consistent if: B(Vī, Vj̄) = 0 unless ī+ j̄ = 0̄, and
odd if B(Vī, Vj̄) = 0 unless ī+ j̄ = 1̄, for ī, j̄ ∈ Z2. The form B is called supersymmetric if

B(v, w) = (−1)p(v)p(w)B(w, v)

for all v, w ∈ V . We end this section with a particular important example of supersym-
metric consistent bilinear form, the supertrace.

Example 2.1.1. Let V be a finite-dimensional super vector space. We identify Hom(V, V ) ∼=
V ⊗ V ∗ by the canonical pairing

v ⊗ f(w) := 〈f, w〉v, v, w ∈ V, f ∈ V ∗.

We define the supertrace str : Hom(V, V ) → K as the composition str := 〈·, ·〉 ◦ CV,V ∗ . In

particular, if V ∼= Km|n and we express X in the canonical basis such that X =
(
A B
C D

)
,

the supertrace is
str(X) = tr(A)− tr(D),

where tr(·) is the usual trace of a matrix. The supertrace induces a consistent supersym-
metric bilinear form on Hom(V, V ) by defining

(X,Y ) := str(X ◦ Y ), X, Y ∈ Hom(V, V ).
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2.1.2. Superalgebras and Lie superalgebras
A superalgebra is a super vector space A = A0̄⊕A1̄ equipped with a bilinear multiplication
τ : A ⊗ A → A satisfying τ(Aī,Aj̄) ⊂ Ai+j for all ī, j̄ ∈ Z2. The superalgebra A is
called supercommutative if τ ◦ CA,A = τ and associative if τ ◦ (τ ⊗ id) = τ ◦ (id⊗τ) on
A ⊗ A ⊗ A. Furthermore, A is said to have a unit if there exists an even element 1 such
that τ(1⊗a) = τ(a⊗1) = a for all a ∈ A. A supersubalgebra of A is a superalgebra B such
that B ⊂ A as super vector spaces. An ideal of A is a supersubalgebra I such that, for
any i ∈ I, we have τ(i⊗ a) ∈ I for all a ∈ A. A superalgebra with no nontrivial ideals is
called simple. In what follows, if the multiplication is clear, we simply write ab for τ(a⊗ b)
for any a, b ∈ A.

The superalgebras over K form a category, denoted by sAlgK. Here, a morphism of
superalgebras φ : A → B is a morphism of the underlying super vector spaces such that
φ(aa′) = φ(a)φ(a′) for all homogeneous a, a′ ∈ A. Moreover, the category of superalgebras
has a tensor product A⊗̂B with multiplication defined by

(a⊗̂b) · (c⊗̂d) = (−1)p(b)p(c)(ac⊗̂bd)

for all homogeneous a⊗̂b and c⊗̂d in A⊗̂B, and then extended linearly.

Example 2.1.2.

a) For any V = Km|n and W = Kp|q, the super vector spaces Hom(V,W ) form a
superalgebra with product given by usual matrix multiplication.

b) Tensor superalgebra: Let V = V0̄ ⊕ V1̄ be a super vector space. We define the tensor
superalgebra to be the super vector space

T (V ) :=
⊕
n≥0

V ⊗n, T (V )0̄ =
⊕
n even

V ⊗n, T (V )1̄ =
⊕
n odd

V ⊗n.

The product on the space T (V ) is given by the ordinary bilinear map Φr,s : V ⊗r ×
V ⊗s → V ⊗(r+s), defined by

(v1 ⊗ . . .⊗ vr, w1 ⊗ . . .⊗ ws) 7→ v1 ⊗ . . .⊗ vr ⊗ w1 ⊗ . . .⊗ ws,

and then extended by linearity. The tensor superalgebra T (V ) is an associative
superalgebra with unit, which is non-commutative except when V is even and one-
dimensional.

c) Symmetric superalgebra and exterior superalgebra: Let V = V0̄⊕V1̄ be a super vector
space. We equip T (V ) with the natural Z2-grading coming from V . The symmetric
superalgebra S(V ) is the quotient superalgebra S(V ) := T (V )/I, where I is the
homogeneous ideal generated by all elements of the form

v ⊗ w − (−1)p(v)p(w)w ⊗ v, v, w ∈ V.

The exterior superalgebra ∧(V ) on V is the quotient ∧(V ) := T (V )/J , where J is
the homogeneous ideal in T (V ) generated by all elements of the form

v ⊗ w + (−1)p(v)p(w)w ⊗ v, v, w ∈ V.
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Here, both S(V ) and ∧
(V ) inherit the natural Z2-grading coming from V , as the

ideals I, J are generated by homogeneous elements Moreover, we have as super vector
spaces:

S(V ) ∼= S(V0̄)⊗
∧
V1̄,

∧
V ∼=

∧
V0̄ ⊗ S(V1̄),

where S(V0̄,1̄) and ∧V0̄,1̄ denote the usual symmetric and exterior algebra over the
vector space V0̄,1̄. If V is an ordinary (even) vector space, then the symmetric and
exterior superalgebras reduce to the symmetric and exterior algebra, respectively.
Throughout this thesis, we use the same symbol to denote both the symmetric algebra
and the symmetric superalgebra. The intended meaning will always be clear from
the context.
Furthermore, the symmetric superalgebra S(V ) is also known Grassmann superalge-
bra: Let V := Km|n, and let x1, . . . , xm be a basis of Km|0, and θ1, . . . , θn be a basis
of K0|n. Then

S(V ) = K[x1, . . . , xm, θ1, . . . , θn] := S(Km|0)⊗K
∧

K0|n.

From now on, we will assume that all superalgebras are associative and with unit, unless
otherwise specified.

Two other important examples of superalgebras are Lie superalgebras and their universal
enveloping superalgebras.

Definition 2.1.3. A Lie superalgebra g over K is an object in the category of super vector
spaces together with a morphism [·, ·] : g ⊗K g → g, called the super Lie bracket, which
satisfies the following two conditions for all homogeneous elements x, y, z ∈ g:

a) Skew-symmetry:
[x, y] = −(−1)p(x)p(y)[y, x].

b) Super Jacobi identity:

(−1)p(x)p(z)[x, [y, z]] + (−1)p(y)p(x)[y, [z, x]] + (−1)p(z)p(y)[z, [x, y]] = 0.

A morphism of Lie superalgebras is a K-linear map between Lie superalgebras that pre-
serves the superbrackets and grading. A Lie superalgebra isomorphism is a bijective
Lie superalgebra morphism. The associated category of Lie superalgebras is denoted by
sLieAlgK.

A Z2-graded subspace h = h0̄⊕h1̄ of a Lie superalgebra (g, [·, ·]) is called a Lie supersub-
algebra if [x, y] ∈ h holds for all x, y ∈ h. An ideal is a Lie supersubalgebra I of g such that
[x, y] ∈ I for all x ∈ g and y ∈ I. A Lie superalgebra g is called simple if the only ideals
are {0} and g, and g is not abelian, that is, there exists some x, y ∈ g with [x, y] 6= 0.

Example 2.1.4. Let V = V0̄ ⊕ V1̄ be a super vector space of superdimension (m|n). The
associative algebra EndK(V ) := HomK(V, V ) of all K-linear transformations of V has a
natural structure of a Lie superalgebra with Z2-grading given by

EndK(V )0̄ = Hom(V, V )0̄, EndK(V )1̄ = Hom(V, V )1̄.
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It becomes a Lie superalgebra if we define the superbracket as

[X,Y ] = X ◦ Y − (−1)p(X)p(Y )Y ◦X,

where X,Y ∈ EndK(V ) are homogeneous elements.
If we choose a basis, we may identify EndK(V ) with block matrices such that

EndK(V )0̄
∼=
{(

A 0
0 D

) ∣∣∣∣∣ A ∈ Km×m, D ∈ Kn×n
}
,

EndK(V )1̄
∼=
{(

0 B
C 0

) ∣∣∣∣∣ B ∈ Km×n, C ∈ Kn×m
}
.

In the rest of the thesis, we will use the notation

gl(m|n;K) := EndK(V ), gl(m|n;K)̄i := EndK(V )̄i

for ī ∈ Z2. We call gl(m|n;K) the general linear Lie superalgebra over K, and we simply
write gl(m|n) if we work over C. Note that gl(m|n) has a natural Z-grading gl(m|n) =
gl(m|n)−1 ⊕ gl(m|n)0 ⊕ gl(m|n)+1 with gl(m|n)0 = gl(m|n)0̄ and gl(m|n)1̄ = gl(m|n)−1 ⊕
gl(m|n)+1, where

gl(m|n)+1 :=
{(

0 B
0 0

)
: B ∈ Km×n

}
, gl(m|n)−1 :=

{(
0 0
C 0

)
: C ∈ Kn×m

}
.

In particular, gl(m|n)±1 are g0̄-submodules which are abelian considered as Lie superalge-
bras, i.e., [gl(m|n)±1, gl(m|n)±1] = 0.

Let g be a Lie superalgebra, and let T (g) be the tensor superalgebra over the underlying
super vector space g with the natural inclusion ι : g→ T (g). Let I ⊂ T (g) be the two-sided
homogeneous ideal in T (g) generated by

ι(X)⊗ ι(Y )− (−1)p(X)p(Y )ι(Y )⊗ ι(X)− ι([X,Y ]) ∈ T (g)

for all homogeneous X,Y ∈ g. The universal enveloping superalgebra U(g) of g is the
quotient

U(g) := T (g)/I.

Note that U(g) inherits a Z2-grading from the Z2-grading of T (g), which extends the
Z2-grading of g, as I is generated by homogeneous elements. Let  : g → U(g) be the
composition of the injective map ι : g → T (g) and the natural surjective superalgebra
morphism π : T (g)→ U(g). Then (g) is injective, and it generates U(g) as an associative
superalgebra, and in what follows, we denote the product of two elements x, y ∈ U(g) simply
by xy. In particular, the universal enveloping superalgebra has a natural Lie superalgebra
structure given by

[X,Y ] := XY − (−1)p(X)p(Y )Y X

for all X,Y ∈ U(g). We collect important properties of U(g).
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Proposition 2.1.5 ([12, Proposition 1.6.2]). If A is an associative superalgebra and φ : g→
A is a morphism of Lie superalgebras, then there exists a unique morphism ψ : U(g)→ A
of associative superalgebras such that the following diagram commutes:

U(g)

g A.

ψ

φ

Analogously to the Lie algebra case, a Poincaré–Birkhoff–Witt Theorem holds.

Theorem 2.1.6 ([12, Theorem 1.6.5]). Let {X1, . . . , Xp} be a basis for g0̄ and {Y1, . . . , Yq}
a basis for g1̄. Then the set{

Xr1
1 X

r2
2 · · ·X

rp
p Y

s1
1 Y s2

2 · · ·Y
sq
q

∣∣ r1, r2, . . . , rp ∈ Z+, s1, s2, . . . , sq ∈ {0, 1}
}

is a basis for U(g). In particular, we have a linear isomorphism of super vector spaces

U(g) ∼= U(g0̄)⊗
∧

g1̄,

where U(g0̄) is the universal enveloping algebra of the Lie algebra g0̄ and ∧ g1̄ is the exterior
algebra over the ordinary vector space g1̄.

2.1.3. Structure theory of Lie superalgebras
Basic classical Lie superalgebras

In the following, we consider (finite-dimensional) simple Lie superalgebras g with g0̄ 6= {0}
and g1̄ 6= {0}, classified by Kac in [76]. A preliminary characterization of simple Lie
superalgebras is provided by the following useful lemma.

Lemma 2.1.7 ([99, Lemma 1.2.1]). Let g be a Lie superalgebra with g0̄ 6= {0} and g1̄ 6= {0}.
Then g is simple if and only if the following conditions hold:

a) If a is a non-zero g0̄-submodule of g1̄ such that [g1̄, [g1̄, a]] ⊂ a, then [g1̄, a] = g0̄.

b) g1̄ is a faithful g0̄-module under the adjoint action.

c) [g0̄, g1̄] = g1̄.

Simple Lie superalgebras can be classified. Invariant bilinear forms B : g×g→ K play a
significant role in this classification. A bilinear form B(·, ·) is called invariant if it satisfies

B([x, y], z) = B(x, [y, z])

for all x, y, z ∈ g.

Proposition 2.1.8 ([99, Proposition 1.2.4]). Let g be a simple Lie superalgebra. Then the
following assertions hold:

a) Any invariant bilinear form on g is either non-degenerate or identically zero.

b) Any invariant bilinear form on g is supersymmetric.
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c) Any two nonzero invariant bilinear forms on g are proportional.

d) The invariant bilinear forms on g are either all odd or all even.

In what follows, we assume that bilinear forms are even/consistent. In [76], Kac classified
simple Lie superalgebras, which can be broadly split into the following types:

In this thesis, we are mainly interested in basic classical Lie superalgebras.

Definition 2.1.9. A simple Lie superalgebra g is called classical if g1̄ is a completely
reducible g0̄-module, where the action is given by the super Lie bracket. A Lie superalgebra
is called basic classical if it is classical and admits a consistent, non-degenerate, invariant
(even) bilinear form.

Remark 2.1.10. A simple Lie superalgebra g is classical if and only if g0̄ is reductive.
Basic classical Lie superalgebras split into two types.

Lemma 2.1.11 ([129, Lemma 2]). Let g be a basic classical Lie superalgebra. Then one
of the following two assertions holds:

a) There is a Z-grading g = g−1 ⊕ g0 ⊕ g1, such that g0 = g0̄ and g±1 are simple
g0̄-modules.

b) The even part g0̄ is semisimple, and g1̄ is a simple g0̄-module.

The lemma leads to the following definition.

Definition 2.1.12. Let g be a basic Lie superalgebra. We say that g is of type I (respec-
tively type II) if it satisfies a) (respectively b)) in Lemma 2.1.11.

For the basic classical Lie superalgebras A(m|n) with m 6= n, B(m|n), C(n+1), D(m|n)
with m 6= n+ 1, F (4), and G(3), we use the Killing form as the non-degenerate, invariant,
consistent bilinear form (·, ·) given by

(x, y) := str(adx ◦ ady), x, y ∈ g,

where adz(·) := [z, ·] is the adjoint representation of g, and str(·) is the supertrace. For
the remaining basic classical Lie superalgebras, the Killing form vanishes identically, and
an alternative form can be constructed in an ad hoc manner [76].

This thesis primarily focuses on two specific examples: the special linear Lie superalge-
bras and the orthosymplectic Lie superalgebras.
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Example 2.1.13 (Basic classical Lie superalgebras A(m|n)). The special linear Lie super-
algebra sl(m|n) is the sub Lie superalgebra given by all matrices in gl(m|n) with vanishing
supertrace, that is,

sl(m|n) = {X ∈ gl(m|n) : str(X) = 0}.

This is a codimension-1 ideal in gl(m|n) with [gl(m|n), gl(m|n)] = sl(m|n). Its even part g0̄
is naturally isomorphic to a direct sum of complex special linear Lie algebras and an abelian
factor, g0̄

∼= sl(m) ⊕ sl(n) ⊕ CEm|n where Em|n denotes the even matrix with A = nEm
and D = mEn in the representation above, and where Em, En are unit matrices of the size
indicated. When m 6= n and m + n ≥ 2, sl(m|n) is simple, and the extension to gl(m|n)
splits (naturally, but non-canonically) via C 3 1 7→ Em+n ∈ gl(m|n). When m = n,
we have E2n = 1

nEn|n ∈ sl(n|n). As a consequence, gl(n|n) does not split, and sl(n|n)
becomes reducible, although it also does not split. The codimension-1 simple quotient is
the projective special linear Lie superalgebra psl(n|n) = sl(n|n)/CE2n.

To address both cases, m = n and m 6= n simultaneously, we define the Lie superalgebras
of type A(m|n) as follows:

A(m|n) :=
{
sl(m+ 1|n+ 1), for m 6= n, and m,n ≥ 0,
sl(n+ 1|n+ 1)/CEn+1,n+1, for m = n, and n > 0,

The Lie superalgebras of type A(m|n) are examples of Lie superalgebras of type 1, with
the Z-grading coming from that of gl(m|n) in Example 2.1.4. It remains to construct the
form (·, ·).

The general linear Lie superalgebra carries a natural even supersymmetric and invariant
bilinear form (·, ·) : gl(m|n)× gl(m|n) −→ C defined by

(X,Y ) := str(XY )

for all X,Y ∈ gl(m|n). Here, even supersymmetric means that (·, ·) is symmetric on
gl(m|n)0, skew-symmetric on gl(m|n)1, and gl(m|n)0 and gl(m|n)1 are orthogonal to each
other. Invariant means that ([X,Y ], Z) = (X, [Y, Z]) for all X,Y, Z ∈ gl(m|n). The
form (·, ·) is always non-degenerate on gl(m|n). However, its restriction to sl(m|n) is non-
degenerate only as long as m 6= n. When m = n, the one-dimensional center of sl(n|n)
becomes the non-trivial radical of (·, ·).

Example 2.1.14 (Orthosymplectic Lie superalgebras). Let V be a super vector space
with superdimension sdimV = (m|n), and let B be a non-degenerate, consistent, super-
symmetric bilinear form on V . In particular, n must be even. The orthosymplectic Lie
superalgebra is defined as osp(V ) := osp(V )0̄ ⊕ osp(V )1̄, where

osp(V )s̄ :=
{
T ∈ gl(V )s̄ : B(Tv,w) = −(−1)p(T )p(v)B(v, Tw), v, w ∈ V homogeneous

}
.

If we identify V ∼= Km|n, we also write osp(m|n;K) for osp(V ). Under this identification,
we consider on V the canonical even, non-degenerate, supersymmetric bilinear form B :
V × V → K given by

B(v, w) := vTJ(m|2k)w, J(m|2k) :=

Em 0

0
(

0 Ek
−Ek 0

) ,
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where n = 2k is even. A general element of osp(m|n;K) has the form D P Q
−QT A B
P T C −AT

 ,
where D ∈ so(m,K), B,C are symmetric k× k matrices, A ∈ gl(k,K), and P,Q are k×m
matrices. The even subalgebra osp(m|n;K) is isomorphic to so(m,K)⊕ sp(n,K).

We adopt Kac’s notation and use the following conventions:

B(m|n) := osp(2m+ 1|2n), m ≥ 0, n ≥ 1,
D(m|n) := osp(2m|2n), m ≥ 2, n ≥ 1,
C(n) := osp(2|2n− 2), n ≥ 2.

The Lie superalgebras B(m|n) and D(m|n) are of type 2, while C(n) is of type 1.
Similarly, let C be a non-degenerate, odd, supersymmetric bilinear form on V . For

s̄ ∈ Z2, we define spo(V ) := spo(V )0̄ ⊕ spo(V )1̄, where

spo(V )s̄ :=
{
T ∈ gl(V )s̄ : C(Tv,w) + (−1)s̄p(T )C(v, Tw) = 0, v, w ∈ V homogeneous

}
.

The superalgebra spo(V ) is a Lie superalgebra over K, called the orthosymplectic Lie
superalgebra with respect to C. To describe the relation to osp(V ), let Π denote the
parity-reversing functor. On any super vector space V , a supersymmetric bilinear form B
induces a skew-supersymmetric bilinear form C on Π(V ) defined by

C(Π(v),Π(w)) := B(v, w), v, w ∈ V.

The Lie superalgebras End(V ) and End(Π(V )) are isomorphic via the map

Φ : End(V )→ End(Π(V )), T 7→ Π ◦ T ◦Π−1,

and its restriction Φ
∣∣
osp(V ) maps osp(V ) to spo(Π(V )).

Structure Theory

Let g be a basic classical Lie superalgebra. As g0̄ is reductive, it has a Cartan subalgebra
h, which acts semisimply on g0̄. Recall that g1̄ is completely reducible as an g0̄-module
under the adjoint action induced by the matrix supercommutator [·, ·]. Thus, we obtain a
root space decomposition of g:

g = h⊕
⊕
α∈h∗

gα, gα := {X ∈ g : [H,X] = α(H)X for all H ∈ h}.

We call α ∈ h∗ a root if α 6= 0 and gα 6= {0}. Elements of gα are called root vectors, and
gα is called the root space corresponding to the root α. Let ∆ denote the set of all roots.
Each root space gα has either superdimension (1|0) or (0|1). A root α ∈ ∆ is called even
if gα ∩ g0̄ 6= {0} and odd if gα ∩ g1̄ 6= {0}. The associated sets of roots are denoted by ∆0̄
and ∆1̄, respectively. The following lemma is well-known.

Lemma 2.1.15 ([75, Proposition 1.3], [76, Proposition 2.5.5]). The following assertions
hold:
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a) If α ∈ ∆, then −α ∈ ∆. Moreover, ∆ = −∆, ∆0̄ = −∆0̄, and ∆1̄ = −∆1̄.

b) sdim(gα) = (1|0) for all α ∈ ∆0̄, and sdim(gα) = (0|1) for all α ∈ ∆1̄.

c) [gα, gβ] = 0 if and only if α, β ∈ ∆ and α + β /∈ ∆, while [gα, gβ] ⊂ gα+β for all
α, β ∈ ∆ if α + β ∈ ∆. In particular, [gα, g−α] is a one-dimensional subspace in h
for all α ∈ ∆.

d) The restriction of the invariant form (·, ·) on h×h is non-degenerate, and (gα, gβ) = 0
unless α = −β ∈ ∆.

e) Fix some nonzero eα ∈ gα. Then [eα, e−α] = (eα, e−α)hα, where hα is the coroot
determined by

(hα, h) = α(h) for all h ∈ h.

f) The bilinear form on h∗ defined by (λ, µ) := (hλ, hµ) is non-degenerate and invariant
under the Weyl group of g0̄.

g) Let λ ∈ ∆. Then kλ ∈ ∆ for some integer k 6= ±1 if and only if λ is an odd root
such that (λ, λ) 6= 0; in this case, we must have k = ±2.

The root system is an example of a generalized root system (cf. [129]), that is:

a) If α ∈ ∆, then −α ∈ ∆.

b) If α, β ∈ ∆ and (α, α) 6= 0, then kα,β := 2 (α,β)
(α,α) ∈ Z and rα(β) := β − kα,βα ∈ ∆.

c) If α ∈ ∆ and (α, α) = 0, then there exists an invertible map rα : ∆→ ∆ such that

rα(β) =
{
β if (α, β) = 0,
β ± α if (α, β) 6= 0.

If α ∈ ∆0̄, then rα(·) is called an even reflection, whereas rα(·) is called an odd reflection
if (α, α) = 0. Roots α ∈ ∆ satisfying (α, α) = 0 are referred to as isotropic. Note that
isotropic roots are necessarily odd. If g is of type 1, then all odd roots are isotropic.
Further, note that 2α is not a root if α is an isotropic root.

The even reflections preserve ∆0̄ and ∆1̄, respectively. Indeed, they generate a group
W , referred to as the Weyl group of g. Note that the Weyl group of g coincides with that
of the reductive Lie subalgebra g0̄. It acts on ∆ by permutations.

Lemma 2.1.16 ([129]). a) If g is of type 1, the Weyl group has two orbits in ∆1̄, namely
the roots of g±1.

b) If g is of type 2, the Weyl group acts transitively on the set of isotropic roots and the
set of non-isotropic roots.

We define the dot action of W on h∗ by

w · λ := w(λ+ ρ)− ρ

for any λ ∈ h∗ and w ∈ W . We say that λ, µ ∈ h∗ are W -linked if there exists some
w ∈ W such that µ = w · λ. This gives an equivalence relation on h∗, and the Weyl orbit
{w · λ : w ∈W} of λ under the dot action is called the W -linkage class of λ.
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Let E denote the real vector space spanned by ∆, such that E ⊗R C = h∗. A positive
system ∆+ is a subset of ∆ consisting of all roots α ∈ ∆ satisfying α > 0 for some total
ordering ≥ of E that is compatible with the real structure, i.e., v ≥ w and v′ ≥ w′ imply
v + v′ ≥ w + w′,−w ≥ −v, and cv ≥ cw for c ∈ R>0. Roots in ∆+ are referred to as
positive. By defining ∆+

ī
:= ∆+ ∩∆ī for ī ∈ Z2, we have

∆+ = ∆+
0̄ t∆+

1̄ .

To any choice ∆+ of a positive system, we define the Weyl vector to be ρ := ρ0̄ − ρ1̄ with

ρ0̄ := 1
2
∑
α∈∆+

0̄

α, ρ1̄ := 1
2
∑
β∈∆+

1̄

β.

Furthermore, we have a triangular decomposition

g = n− ⊕ h⊕ n+,

where n± are the ad(h)-stable supersubalgebras

n+ :=
⊕
α∈∆+

gα, n− :=
⊕
α∈∆+

g−α.

The Lie supersubalgebra b = h⊕ n+ is called a Borel subalgebra. For later applications, it
is useful to decompose U(g) with respect to n± and b. The subsequent super vector space
isomorphisms are straightforward:

U(g) ∼= U(n−)⊗ U(b) ∼= U(h)⊗ U(n−U(g) + U(g)n+).

For a fixed positive system ∆+, we define the fundamental system π ⊂ ∆+ to be the set
of all α ∈ ∆+ which cannot be written as the sum of two roots in ∆+. Elements of π are
called simple. For π = {α1, . . . , αr}, any α ∈ ∆ can be uniquely represented as a linear
combination

α =
r∑
i=1

kiαi,

where either all ki ∈ Z≥0 or all ki ∈ Z≤0.
To construct appropriate generators for n±, the following lemma is central.

Lemma 2.1.17 ([75, Proposition 1.5]). Let b = h⊕ n+ be a Borel subalgebra of g, and let
Π := {α1, . . . , αr} be a fundamental system.

a) There exists elements ei ∈ gαi , fi ∈ g−αi and hi ∈ h such that {ei, fi, hi}i=1,...,r is the
system of generators of g satisfying the relations:

[ei, fj ] = δijhi, [hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj

for a non-singular matrix A = (aij)1≤i,j≤r.

b) n± are generated by the elements ei and fi, respectively
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The Weyl group W acts by permuting the elements of ∆, but not all fundamental
systems can be transformed into one another through the action of W . For this, we need
a sequence of odd reflections. Given an odd, isotropic simple root θ ∈ π, we recall that an
odd reflection satisfies:

rθ(α) =


α+ θ if (α, θ) 6= 0,
α if (α, θ) = 0,
−θ if α = θ

(2.1.1)

for any α ∈ π. Then, ∆+
θ = −θ∪(∆+\θ) forms a new positive system with the fundamental

system πθ := rθ(π). The following lemma is immediate.

Lemma 2.1.18. The following two assertions hold:

a) If π and π′ are two fundamental systems, then π′ can be obtained form π by applying
odd and even reflections.

b) If π and π′ are two fundamental systems such that ∆+
0̄ = (∆′)+

0̄ , then π′ can be
obtained from π by application of odd reflections.

The following lemma is straightforward but useful for computations.

Lemma 2.1.19. Let ∆+ be a positive system with fundamental system π. Let ρ denote
the associated Weyl vector. Then

(ρ, β) =
{1

2(β, β) if β ∈ π ∩∆0̄,

(β, β) if β ∈ π ∩∆1̄.

For the rest of this subsection, we briefly summarize the structure theory of special linear
Lie superalgebras.

Structure theory of sl(m|n)

The structure theory of sl(m|n) is the same as the structure theory of gl(m|n), where
we realize sl(m|n) as a Lie supersubalgebra, as in Example 2.1.13. We denote by d :=
{H = diag(h1, . . . , hm+n)} the abelian Lie subalgebra of diagonal matrices in gl(m|n).
We choose the subspace of diagonal matrices with vanishing supertrace, denoted by h,
as Cartan subalgebra of g = sl(m|n). The standard basis of the dual space d∗ of d is
(ε1, . . . , εm, δ1, . . . , δn) where εi(H) = hi, δk(H) = hk+m for i = 1, . . . ,m and k = 1, . . . , n,
for any H ∈ d. We (ab)use this basis also for the dual space h∗ of h. Namely, we identify
weights λ ∈ h∗ for g with tuples (λ1, . . . , λm|µ1, . . . , µn) via the expansion λ = λ1ε1 +
. . . + λmεm + µ1δ1 + . . . + µnδn, keeping in mind that shifts by (1, . . . , 1|−1, . . . ,−1) do
not change the weight. The space of weights for psl(n|n) is the subquotient of tuples with∑n
i=1(λi + µi) = 0.
The set of roots is ∆ = ∆0̄ t∆1̄, where

∆0̄ = {±(εi − εj),±(δk − δl) : 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n},
∆1̄ = {±(εi − δk) : 1 ≤ i ≤ m, 1 ≤ k ≤ n},
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are the even and odd roots, respectively. Note that each root space has superdimension
(1|0) or (0|1), and ∆0̄ is the disjoint union of root systems for sl(m) and sl(n). For the
rest of the thesis, we fix the standard positive system on ∆0̄:

∆+
0̄ := {εi − εj , δk − δl : 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n}

such that the root vectors for εi− εj , i < j, are strictly upper triangular matrices of sl(m),
and the root vectors for δk − δl, k < l, are strictly upper triangular matrices of sl(n), both
diagonally embedded in g0̄. When extending this to the odd part, we usually make the
standard choice:

∆+
1̄ := {εi − δk : 1 ≤ i ≤ m, 1 ≤ k ≤ n}

such that the associated root vectors are the off-diagonal upper block matrices in g1̄. For
the standard choice, n+ is the space of strictly upper triangular matrices and n− the space
of strictly lower triangular matrices. In particular, the simple roots are

π := (ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn).

The space of real weights, defined as the R-span of ∆ inside of h∗, and denoted ∆R or
h∗
R, is a real vector space of dimension n + m − 1. Its dual inside of h, denoted hR, is the

space of supertrace-less real diagonal matrices.
Moreover, the Weyl vector ρ = ρ0̄ − ρ1̄ is

ρ = 1
2

( m∑
i=1

(m− n+ 1− 2i)εi +
n∑
k=1

(m+ n− 2k + 1)δk
)
.

In calculations, however, it is simpler to use a shifted representative of the Weyl vector,

ρ = 1
2

(m−n−1, . . . ,−m−n−1|m+n−1, . . . ,m−n−1)+m+ n+ 1
2

(1, . . . , 1|−1, . . . ,−1)

= (m, . . . , 2, 1|−1,−2, . . . ,−n).

We will also use a different positive system for ∆1̄, which we refer to as the non-standard
system. This system will be introduced in Section 6.1.2.

The dot action on weight vectors, defined for w ∈W and λ ∈ h∗ by w · λ = w(λ+ ρ)− ρ
as well as constructs such as (λ+ ρ, εi − δk), which will be important below, are of course
independent of the representative by construction.

The restriction of (·, ·) to d is still non-degenerate, and identifies the subspace dR of real
diagonal matrices with the pseudo-orthogonal space Rm,n. The bilinear form induced on
the dual space is denoted by the same symbol. On the standard basis, we have for all
1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n

(εi, εj) = δij , (δk, δl) = −δkl, (εi, δk) = 0. (2.1.2)

When n 6= m, the restriction of (·, ·) to hR is non-degenerate of signature (m − 1, n) or
(m,n−1), depending on whether m > n orm < n. We can then associate to any root α ∈ ∆
a unique element hα ∈ hR through the condition α(H) = (H,hα) for all H ∈ h. The element
hα is called the dual root associated to α. When n = m, we have hR/RE2n ∼= Rm−1,n−1.
We can fix the dual roots as elements of hR by requiring α(H) = (H,hα) for all H ∈ d.
However, the bilinear form on h∗

R, which is equal to the linear extension of (α, β) := (hα, hβ)
for α, β ∈ ∆, remains non-degenerate only when n 6= m. It follows from the above that
the odd roots are all isotropic, i.e., (α, α) = 0 for all α ∈ ∆1̄.
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2.1.4. Real forms
We briefly summarize real forms of the basic classical Lie superalgebras g, which are central
in the study of unitarizable supermodules. This subsection is mainly based on [21, 112, 131].

The classification of real forms of g is governed by the classification of real forms of its
underlying Lie algebra g0̄, which we briefly outline. For generality, let l be a complex Lie
algebra, and let lR be a real Lie algebra. The complex Lie algebra lR ⊗R C is called the
complexification of lR, and lR is called a real form of l if there is an isomorphism of complex
Lie algebras lR ⊗R C ∼= l. Classifying real forms of l is equivalent to classifying conjugate-
linear involutions on l, or equivalently, conjugate-linear anti-involutions. Here, a conjugate-
linear involution is a real Lie algebra automorphism σ : l → l satisfying σ(iX) = −iσ(X)
for all X ∈ l and σ2 = idl. These maps are referred to as conjugations. Given a conjugation
σ, the fixed-point set associated to σ, that is,

lσ := {X ∈ l : σ(X) = X},

is a real form such that l decomposes as a real Lie algebra as l = lσ ⊕ ilσ. Conversely,
every real form arises as the fixed-point set of a conjugation σ. Two real forms lσ, lσ

′ are
isomorphic if and only if the associated conjugations σ, σ′ are equivalent, that is, there
exists an automorphism ϕ : l→ l such that σ′ϕ = ϕσ.

Let g be a (complex) basic classical Lie superalgebra. Analogously to the complex case,
we define real basic classical Lie superalgebras. The relationship between real and complex
basic classical Lie superalgebras is governed by their complexifications and conjugate-linear
(anti-)involutions.

The complexification of a real (basic classical) Lie superalgebra gR is gR⊗R C, and gR is
called a real form of a complex (basic classical) Lie superalgebra g if g ∼= gR ⊗R C. Real
forms naturally arise as fixed point sets of conjugate-linear involutions.

Definition 2.1.20. Let g be a complex basic classical Lie superalgebra. An automorphism
σ : g→ g of g, considered as a real Lie superalgebra, is called a conjugate-linear involution
if the following two conditions hold:

a) σ(λx) = λσ(x) for all x ∈ g λ ∈ C.

b) σ2 = idg

Conversely, we can work with conjugate-linear anti-involutions instead of conjugate-
linear involutions. Indeed, to any conjugate-linear involution σ, we can assign a conjugate-
linear anti-involution defined by ω(·) := −ip(·)σ(·). In this work, we use conjugate-linear
involutions and conjugate-linear anti-involutions interchangeably, as both provide equiva-
lent classifications of real forms.

Fix a basic classical Lie superalgebra g. Let σ be a conjugate-linear involution, and set

gσ := {x+ σ(x) : x ∈ g}.

Then gσ is a real basic classical Lie superalgebra [112, Proposition 1.4], i.e., a real form
of g. Two real forms gσ and gσ

′ with respect to two conjugate-linear involutions σ, σ′ are
isomorphic if and only if there exists an automorphism ϕ : g → g such that σ′ϕ = ϕσ
[112, Proposition 1.6]. In this case, we say that σ and σ′ are equivalent. Conversely,
the complexification gR ⊗R C of a real basic classical Lie superalgebra gR is a complex
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basic classical Lie superalgebra, or the direct sum of two ideals which are basic classical
[112, Proposition 1.5]. This leads to the following description of real basic classical Lie
superalgebras.

Proposition 2.1.21 ([112]). Let gR be a real basic classical Lie superalgebra.

a) If the complexification is simple, gR is the subalgebra of fixed points of a conjugate-
linear involution of the complexification.

b) If the complexification is not simple, g is a complex basic classical Lie superalgebra
considered as a real Lie superalgebra.

We conclude that the classification of real forms of a basic classical Lie superalgebra
is equivalent to the classification of conjugate-linear involutions. It turns out that the
classification of conjugate-linear involutions is already captured by the classification of
conjugate-linear involutions for g0̄. To see this, given a conjugate-linear involution σ, we
consider σ0̄ := σ

∣∣
g0̄

and σ1̄ := σ
∣∣
g1̄

. Then σ0̄ is a conjugate-linear involution for g0̄, which
determines a real form g

σ0̄
0̄ , up to isomorphism. Two conjugate-linear involutions σ and

σ′ are equivalent if and only if σ0̄ and σ′
0̄ are equivalent [112, Theorem 2.5]. The proof of

this result originates from the observation that any inner automorphism of g0̄ extends to
an automorphism of g. Moreover, since g is basic classical, there are only two possibilities,
both resulting in isomorphic real forms. This leads to a complete classification of real forms
of basic classical Lie superalgebras given in the table below:

g g0̄ gσ gσ0̄
A(m− 1|n− 1) sl(m)⊕ sl(n)⊕ U(1) sl(m|n;R) sl(m,R)⊕ sl(n,R)⊕ R
m > n > 1 su∗(2p|2q), m = 2p, n = 2q su∗(2p)⊕ su∗(2q)⊕ R

su(p,m− p|q, n− q) su(p,m− p)⊕ su(q, n− q)⊕ iR
A(n− 1|n− 1) sl(n)⊕ sl(n) psl(n|n;R) sl(n,R)⊕ sl(n,R)

n > 1 psu∗(2p|2q), m = 2p, q = 2n su∗(2p)⊕ su∗(2q)
psu(p, n− p|q, n− q) su(p, n− p)⊕ su(q, n− q)

B(m|n) so(2m+ 1)⊕ sp(2n) osp(p, 2m+ 1− p|2n;R) so(p, 2m+ 1− p)⊕ sp(2n,R)
B(0|n) sp(2n) osp(1|2n;R) sp(2n,R)
C(n+ 1) so(2)⊕ sp(2n) osp(2|2n;R) so(2)⊕ sp(2n,R)

osp∗(2|2q, 2n− 2q) so∗(2)⊕ sp(2q, 2n− 2q)
D(m|n) so(2m)⊕ sp(2n) osp(p, 2m− p|2n;R) so(p, 2m− p)⊕ sp(2n,R)

osp∗(2m|2q, 2n− 2q) so∗(2m)⊕ sp(2q, 2n− 2q)
F (4) sl(2)⊕ so(7) F (4; 0) sl(2,R)⊕ so(7)

F (4; 3) sl(2,R)⊕ so(1, 6)
F (4; 2) sl(2,R)⊕ so(2, 5)
F (4; 1) sl(2,R)⊕ so(3, 4)

G(3) sl(2)⊕G2 G(3; 0) sl(2,R)⊕G2,0
G(3; 1) sl(2,R)⊕G2,2

D(2, 1;α) sl(2)⊕ sl(2)⊕ sl(2) D(2, 1;α; 0) sl(2,R)⊕ sl(2,R)⊕ sl(2,R)
D(2, 1;α; 1) su(2)⊕ su(2)⊕ sl(2,R)
D(2, 1;α; 2) sl(2,C)⊕ sl(2,C)

Table 2.1.: Real forms of basic classical Lie superalgebras

As an example, we consider the real forms su(p, q|r, s) of sl(m|n) with a special focus on
su(p, q|n).
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Special unitary Lie superalgebras su(p, q|r, s)

The special unitary (indefinite) Lie superalgebras su(p, q|r, s) are real forms of the special
linear Lie superalgebras sl(m|n), where p+q = m and r+s = n. These superalgebras play
a central role in the theory of unitarizable supermodules over sl(m|n).

We consider V = Cm|n, i.e., the complex super vector space of superdimension (m|n).
For any fixed p, q, r, s ∈ Z+ with p + q = m and r + s = n, we equip V with the positive
definite Hermitian form 〈·, ·〉 : V × V → C given by

〈v, w〉 := vTJ(p,q|r,s)w, J(p,q|r,s) :=
(
Ip,q 0
0 Ir,s

)
.

Here, · means complex conjugation and we consider any element of Cm|n as a column
vector. The matrix Ik,l is the diagonal matrix having the first k entries equal to 1 followed
by the last l entries equal to −1. This Hermitian form is moreover consistent, that is,
〈V0̄, V1̄〉 = 0.

We define the (indefinite) unitary Lie superalgebra u(p, q|r, s) = u(p, q|r, s)0̄⊕u(p, q|r, s)1̄
as the Lie superalgebra which leaves the Hermitian form 〈·, ·〉 invariant:

u(p, q|r, s)k̄ := {X ∈ gl(m|n)k̄ : 〈Xv,w〉+ 〈v,Xw〉 = 0, for v, w ∈ V }.

The (indefinite) special unitary Lie superalgebra is defined as su(p, q|r, s) := u(p, q|r, s) ∩
g. In cases where m = n, we simplify the notation by writing su(p, q|r, s) instead of
psu(p, q|r, s) as it is common in literature. In our standard realization of g, su(p, q|r, s) can
be described explicitly as

su(p, q|r, s) =
{
X ∈ g : J−1

(p,q|r,s)X
†J(p,q|r,s) = −X

}
.

The associated anti-linear anti-involutions on g, which are by definition anti-linear maps
ω : g→ g satisfying ω2 = idg and ω([X,Y ]) = [ω(Y ), ω(X)] for all X,Y ∈ g which leads to
the real forms su(p, q|r, s) can be therefore written as

ω(X) = J−1
(p,q|r,s)X

†J(p,q|r,s), X ∈ g.

Of special interest are the real forms su(p, q|n, 0) and su(p, q|0, n), which are particu-
larly isomorphic, as they are the only real forms of g that admit non-trivial unitarizable
supermodules.

Lie superalgebras su(p, q|n, 0)and su(p, q|0, n)

We fix either su(p, q|n, 0) or su(p, q|0, n) as a real form. In both cases, the even Lie subalge-
bra is su(p, q)⊕ su(n)⊕ u(1) if m 6= n, and otherwise, su(p, q)⊕ su(n), which is isomorphic
to s(su(p, q) ⊕ su(n)). Note that we can write g0̄

∼= s(su(p, q)⊕ su(n))C to highlight the
real form.

In su(p, q|n, 0), we fix the maximal compact subalgebra

k :=
{
su(p)⊕ su(q)⊕ u(1)⊕ su(n)⊕ u(1), if m 6= n;
su(p)⊕ su(q)⊕ u(1)⊕ su(n), if m = n,
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diagonally embedded in g. Then h is a Cartan subalgebra for kC and g0̄, as kC satisfies the
equal rank condition:

h ⊂ kC ⊂ g0̄ ⊂ g.

The root system ∆c associated with (h, kC) is

∆c := {±(εi − εj) : 1 ≤ i < j ≤ p, p+ 1 ≤ i < j ≤ m} ∪ {±(δi − δj) : 1 ≤ i < j ≤ n},

which forms a subset of ∆0̄. “Thus, a root α ∈ ∆0̄ is termed compact if α ∈ ∆c, or
equivalently, if the corresponding root vector belongs to kC; otherwise, it is called non-
compact. The Weyl group associated to ∆c will be denoted by Wc, which is indeed a
subgroup of W . The set ∆n := ∆0̄ \∆c will be called the set of non-compact roots, so that
we have the decomposition:

∆0̄ = ∆c t∆n.

Moreover, we define the set of positive compact and non-compact roots by ∆+
c,n := ∆+ ∩

∆c,n. The associated Weyl elements are given by ρc,n := 1
2
∑
α∈∆+

c,n
α, and with respect to

∆+
c , an element λ ∈ h∗ is called ∆+

c -dominant if it satisfies the following conditions:{
(λ+ ρc, α) ≥ 0 for all α ∈ {εi − εj : 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ m},
(λ+ ρc, α) ≤ 0 for all α ∈ {δi − δj : 1 ≤ i < j ≤ n}.

Finally, for the sake of completeness, we give the explicit anti-linear anti-involutions
leading to su(p, q|n, 0) and su(p, q|0, n). In general, we distinguish between two cases.

First, assume that p = 0 and q 6= 0 or p 6= 0 and q = 0, in which kC ∼= g0̄, and g±1 are
simple kC-modules. In this case, the anti-linear anti-involutions leading to the real form
are given in the following.

Lemma 2.1.22. The real Lie superalgebra su(m, 0|n, 0) = su(0,m|0, n) belongs to the anti-
linear anti-involution ω+, while the real Lie algebra su(m, 0|0, n) = su(0,m|n, 0) belongs to
the anti-linear anti-involution ω−, where

ω±

(
A B

C D

)
=
(
A† ±C†

±B† D†

)
.

In the following, we will focus solely on the case ω+ and denote the associated real form
as su(m|n). The case for ω− is completely analogous. In particular, there is essentially one
odd positive system, known as the standard choice:

∆+
1̄ := {εi − δk : 1 ≤ i ≤ m, 1 ≤ k ≤ n},

such that the associated root vectors are the off-diagonal upper block matrices in g1̄, i.e.,
they belong to g+1. We fix this positive system in the following when considering either
p = 0 or q = 0.

Second, if p, q 6= 0, we decompose g1̄ as a direct sum of simple kC-modules, where the
action is induced by the super commutator:

g1̄ = q1 ⊕ q2 ⊕ p1 ⊕ p2.
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Explicitly, we these are given by:

p1 =


0 0 P1

0 0 0
0 0 0

 : P1 ∈ Mat(p, n;C)

 , p2 =


0 0 0

0 0 P2
0 0 0

 : P2 ∈ Mat(q, n;C)

 ,
q1 =


 0 0 0

0 0 0
Q1 0 0

 : Q1 ∈ Mat(n, p;C)

 , q2 =


0 0 0

0 0 0
0 Q2 0

 : Q2 ∈ Mat(n, q;C)

 ,
with Mat(k, l;C) denoting the space of complex k×l-matrices. Based on the decomposition
of g1̄, we can express a general element X ∈ g as

X =

 a b
c d

P1
P2

Q1 Q2 E

 ,

where Pi ∈ pi, Qj ∈ qj for 1 ≤ i, j ≤ 2, and diag(
(
a b
c d

)
, E) ∈ s(su(p, q)⊕ su(n))C.

Lemma 2.1.23 ([73, Lemma 5.1]). There are exactly two anti-linear anti-involutions of g
compatible with the standard ordering, which produce the real form su(p, q)⊕ su(n) on g0̄,
namely

ω(+,−)(X) =

 a† −c†

−b† d†
Q†

1
−Q†

2
P †

1 −P †
2 E†

 , ω(−,+)(X) =

 a† −c†

−b† d†
−Q†

1
Q†

2
−P †

1 P †
2 E†

 .
The real form belonging to ω(+,−) is su(p, q|n, 0), while the real form belonging to ω(−,+) is
su(p, q|0, n).

As a result, three odd positive systems are essentially relevant for the odd part, each
compatible with the real forms su(p, q|n, 0) ∼= su(p, q|0, n):

n+
1̄,st := p1 ⊕ p2, n+

1̄,-st := q1 ⊕ q2, n+
1̄,nst := p1 ⊕ q2,

referred to as standard, minus standard, and non-standard, respectively. For the sake of
completeness, the Dynkin diagram for the standard choice is

. . . . . .
ε1 − ε2 εm−1 − εm εm − δ1 δ1 − δ2 δn−1 − δn

whereas the Dynkin diagram for the non-standard choice is
. . . . . . . . .

ε1 − ε2 εp−1 − εp εp − δ1 δ1 − δ2 δn−1 − δn δn − εp+1 εp+1 − εp+2 εm−1 − εm

As is customary, © represents an even simple root, while ⊗ signifies a simple (isotropic)
odd root.

The standard choice is distinguished by the fact that n+
1̄,st = g+1, which means it is

compatible with the Z2-compatible Z-grading. On the other hand, the non-standard system
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is preferred in physics, as it coincides, after a natural embedding in the orthosymplectic Lie
superalgebra (cf. [48]), with the standard positive root system of the orthosymplectic Lie
superalgebra. For later calculations, the Weyl vectors for both systems are ρst = ρ0̄− ρ1̄,st
and ρnst = ρ0̄ − ρ1̄,nst, where

ρ0̄ = 1
2

 m∑
i=1

(m− 2i+ 1)εi +
n∑
j=1

(n− 2j + 1)δj

 ,
ρ1̄,st = 1

2

n m∑
i=1

εi −m
n∑
j=1

δj

 ,
ρ1̄,nst = 1

2

n p∑
i=1

εi − n
m∑

j=p+1
εj + (q − p)

n∑
k=1

δk

 .
If the positive system is fixed, we simply write ρ, ρ0̄ and ρ1̄.

All results for the finite-dimensional case can then be derived by setting p = 0 or q = 0
and utilizing kC = g0̄.

2.2. Lie supergroups
2.2.1. Supermanifolds
In general, there are three main approaches to supermanifolds: the Rogers–DeWitt ap-
proach [28, 117], the Berezin–Kostant–Leites approach [6, 87], and the functor of points
approach [120]. In this thesis, we focus on the algebro-geometric Berezin–Kostant–Leites
approach, formulated in terms of super ringed spaces. This section is based on [12, Chapter
3].

Supermanifolds

A super ringed space S = (S,OS) is a topological space S endowed with a sheaf of super-
commutative superrings1 OS , called the structure sheaf of S.

A superspace is a super ringed space S = (S,OS) with the property that the stalk OS,x
is a local ring for all x ∈ S. Note that for any super ringed space S = (S,OS), the space
S0̄ := (S,OS,0̄) is an ordinary ringed space, where OS,0̄ is a sheaf of ordinary rings on S.

A morphism of superspaces Φ : S → T consists of a continuous map of the underlying
topological spaces φ : S → T together with a morphism of sheaves Φ∗ : OT → Φ∗(OS)
such that

Φ∗
x

(
mT ,φ(x)

)
⊂ mS,x.

Here, mS,x is the maximal ideal in OS,x, mT ,φ(x) is the maximal ideal in OT ,φ(x), Φ∗(OS)
is the sheaf on T defined by (Φ∗OS)(U) := OS(φ−1(U)) for all open subsets U ⊂ T , and
Φ∗
x is the induced map on stalks for x ∈ S.
Examples of superspaces include smooth superdomains. A smooth superdomain over

K ∈ {R,C} of superdimension (m|n), denoted by Um|n, is a super ringed space (U,OUm|n),
1A superring A is a Z2-graded ring A = A0̄∪A1̄, where the product map A×A → A satisfies AīAj̄ ⊂ Ai+j .

A superring A is called supercommutative if ab − (−1)p(a)p(b)ba = 0 for all homogeneous a, b ∈ A.
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where U is an open subset of Km and

OUm|n(V ) = C∞(V )⊗
∧

(θ1, . . . , θn)

for every open subset V ⊂ U , with θ1, . . . , θn being odd, linearly independent algebraic
generators of the exterior algebra. We denote by O(Um|n) the global sections of the sheaf
OUm|n .

A morphism between two superdomains is a morphism of the underlying super ringed
spaces. If {t1, . . . , tm} are coordinate functions in C∞(U) and {θ1, . . . , θn} is a system of
linearly independent algebraic generators of ∧(θ1, . . . , θn), the set

{ti, θj | i = 1, . . . ,m, j = 1, . . . , n}

is called a system of supercoordinates on Um|n, and we write

OUm|n(U) = C∞(t1, . . . , tm)[θ1, . . . , θn].

The smooth superdomain Um|n, together with a system of supercoordinates, is called a
superchart.

Definition 2.2.1. A superspaceM = (M,OM ) over K ∈ {R,C} is called a supermanifold
if

a) M is a (locally compact) second countable Hausdorff topological space, and

b) for each x ∈M , there exists an open neighborhood U of x admitting an isomorphism
of superspaces

ϕU : (U,OM|U ) −→ Um|n,

for fixed (m|n), where Um|n is a superdomain in Km|n.

A morphism between supermanifolds is a morphism between the corresponding super-
spaces. The pair (m|n) is called the superdimension ofM, and (U,ϕU ) is called a superchart
around x ∈ U .

Let M = (M,OM) be a supermanifold. If U is an open subset of M , the superspace
(U,OM|U ) is again a supermanifold, called the subsupermanifold determined by U . Su-
permanifolds and morphisms of supermanifolds form a category, the category of smooth
supermanifolds sManK.
Remark 2.2.2. Let M be a supermanifold, U ⊂M open, and fix a system of supercoordi-
nates such that OM (U) = C∞(t1, . . . , tm)[θ1, . . . , θn]. Then, for any section f on U , there
exist even functions fI ∈ C∞(t1, . . . , tm) such that

f(t, θ) = f0(t) +
n∑

|I|=1
fI(t)θI ,

where t = (t1, . . . , tm), θ = (θ1, . . . , θn), and I = {i1 < i2 < . . . < ir}r=1,...,n. In particular,
the notion of evaluating a function at a point is more subtle in the super context. However,
any section f has a value at x ∈ U , namely the unique real/complex number c such that
f − c is not invertible in any neighborhood of x.
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Associated to any supermanifoldM is an ordinary (smooth) manifold. For each x ∈M ,
we define the evaluation map

evx : O(M) −→ K, s 7→ s̃(x),

where s̃(x) is defined as the unique real/complex number such that s− s̃(x) is not invertible
in any neighborhood of x. The evaluation map evx is a graded algebra morphism, and it
descends to a morphism

evx : O(M)x −→ K.

In particular, Jx := Ker(evx) is a graded ideal of O(M). We define, for each open set
U ⊂M ,

OM(U) −→ C∞(U), s 7→ (x 7→ s̃(x)).

The kernel JM(U) of this map is given by the nilpotent elements in OM(U). Since the
ideal JM(U) is locally generated by the odd elements OM(U)1̄, it follows that

C∞(U) ∼= OM(U)/JM(U).

Proposition 2.2.3 ([12, Proposition 4.2.13]). Let M = (M,OM) be a supermanifold of
superdimension (m|n), and let U ⊂M be an open subset. The assignment

U 7→ OM(U)/JM(U)

is a sheaf on M locally isomorphic to C∞(Km). We call the manifold (M,OM/JM) the
reduced manifold of M.

Let Φ = (φ,Φ∗) be a morphism of smooth supermanifolds. Then Φ∗(JN ) ⊂ JM. We
define a corresponding morphism of the associated reduced manifolds by

C∞(N) ∼= O(N)/JN (N) −→ O(M)/Φ∗(JN (N)) −→ O(M)/JM(M) ∼= C∞(M).

This construction defines a functor from the category of smooth supermanifolds to the
category of smooth manifolds:

sManK −→ManK.

Super tangent space

We fix a supermanifoldM = (M,OM) over K ∈ {R,C}. A super tangent vector at x ∈M
is a super derivation of the stalk OM,x, i.e., a linear map v : OM,x → K such that

v(f · g) = v(f)g(x) + (−1)p(f)p(v)f(x)v(g),

for all f, g ∈ OM,x. The super tangent space at a point x ∈M is the super vector space of
all super tangent vectors at x. We denote the super tangent space at x by TxM.

Proposition 2.2.4 ([12, Proposition 4.3.9]). Let M = (M,OM) be a supermanifold,
x ∈M , and let ti, θj be a supercoordinate system around x.

a) Each v ∈ TxM is completely determined by v([ti]) and v([θj ]), where [ti] and [θj ]
denote the equivalence classes in OM,x.
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b) The superderivations ∂

∂t1

∣∣∣∣∣
x

, . . . ,
∂

∂tm

∣∣∣∣∣
x

 and

 ∂

∂θ1

∣∣∣∣∣
x

, . . . ,
∂

∂θn

∣∣∣∣∣
x

 ,
defined by

∂

∂ti

∣∣∣∣∣
x

([tk]) = δik,
∂

∂ti

∣∣∣∣∣
x

([θj ]) = 0, ∂

∂θj

∣∣∣∣∣
x

([tk]) = 0, ∂

∂θj

∣∣∣∣∣
x

([θl]) = δjl,

form a basis of TxM.

Associated to a super tangent space, we have a notion of a differential. Let Φ :M→N
be a morphism of supermanifolds. Then the even linear map

(dΦ)x : TxM−→ Tφ(x)N , v 7→ v ◦ Φ∗
x,

is called the differential of Φ at x. Here, recall that any supermanifold morphism Φ :M→
N induces a stalk morphism

Φ∗
x : ON ,φ(x) −→ OM,x.

2.2.2. Lie supergroups and super Harish-Chandra pairs
We introduce Lie supergroups and super Harish-Chandra pairs, which provide an equivalent
characterization of Lie supergroups. This section follows closely [12, Chapter 7] and [27, 91].

Lie supergroups

First, we define Lie supergroups and describe their relation to Lie superalgebras. Through-
out this section, we work over the field K of complex or real numbers.

A Lie supergroup G is a group object in the category of smooth supermanifolds sManK;
i.e., G is a smooth supermanifold equipped with three morphisms m : G×G → G, i : G → G,
and e : R0|0 → G, called multiplication, inverse, and identity, respectively, such that the
following diagrams commute:

a) Associativity of the multiplication m:

G × G × G G × G

G × G G.

id×m

m×id

m

m

b) Multiplication with the identity e:

G × G

G G,

G × G

m

idG

〈idG ,ê〉

〈ê,idG〉 m
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where ê denotes the composition of the identity e : R0|0 → G with the unique map
G → R0|0, and 〈φ, ψ〉 denotes the map (ψ × φ) ◦ diag, with diag : G → G × G being
the canonical diagonal map.

c) Inverse property of the inverse i:

G × G

G G.

G × G

m

idG

〈idG ,i〉

〈i,idG〉 m

A morphism Φ : G → H of Lie supergroups is a morphism in sManK such that the
following diagram commutes:

G × G G

H ×H H

Φ×Φ

mG

Φ

mH

where mH and mG denote the multiplication morphisms of H and G, respectively. We
denote the associated category of Lie supergroups by SLGK.

Any Lie supergroup G has an underlying Lie group G. To define it, let G denote the
reduced real smooth manifold of G, and let mred, ired, and ered denote the reduced maps
of m, i, and e, respectively. Then, (G,mred, ired, ered) is a group object in the category of
smooth manifolds ManK, since reduction is functorial. Consequently, G is the underlying
Lie group of G, and the supermanifold associated with G is the pair (G,OG).

Example 2.2.5. Let Mat(m|n) := Km2+n2|2mn be the superspace corresponding to the
super vector space of (m|n)× (m|n)-matrices with the direct product of m×m and n×n-
matrices, that is Mat(m,K)×Mat(n,K), as the underlying topological space. As a super
vector space, we have

Mat(m|n) :=
{(

A B
C D

)}
, Mat(m|n)0̄ =

{(
A 0
0 D

)}
, Mat(m|n)1̄ :=

{(
0 B
C 0

)}
,

where A,B,C,D are respectively m×m, m×n, n×m, and n×n matrices with entries in K.
Hence, as a superspace, Mat(m|n) has m2 +n2 even global coordinates tij for 1 ≤ i, j ≤ m
or m + 1 ≤ i, j ≤ m + n and 2mn odd global coordinates θkl where 1 ≤ k ≤ m and
m+ 1 ≤ l ≤ m+n, or m+ 1 ≤ k ≤ m+n, 1 ≤ l ≤ m. Additionally, Mat(m|n) is a smooth
supermanifold with structural sheaf

Mat(m,K)×Mat(n,K) ⊃
open

V −→ OMat(m|n)(V ) := C∞
Mat(m,K)×Mat(n,K)(V )⊗

∧(
θkl
)
.

The supermanifold Mat(m|n) is, with standard multiplication, a Lie supergroup.
Let U be the subspace of Mat(m,K) × Mat(n,K) consisting of the points for which

det(tij)1≤i,j≤m 6= 0 and det(tij)m+1≤i,j≤m+n 6= 0. We define the superspace

GL(m|n) :=
(
U,OMat(m|n)

∣∣∣∣
U

)
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to be the open subsuperspace of Mat(m|n) associated to the open set U . With matrix
multiplication, GL(m|n) is a Lie supergroup, called the general linear supergroup. In U ,
we can consider the subspace U ′ of matrices X with

Ber(X) = det(A−BD−1C)det(D)−1 = 1, X =
(
A B
C D

)

in standard block form. Here, Ber(X) is called the Berezinian of X. We define the
supermanifold

SL(m|n) :=
(
U ′,OMat(m|n)

∣∣∣∣
U ′

)
to be the open supersubspace of Mat(m|n) associated to the open set U ′, which is with
matrix multiplication a Lie supergroup. The Lie supergroup SL(m|n) is called the special
linear Lie supergroup.

Finally, if n = 2k is even, we can consider in U the open subspace U ′′ of matrices X
such that (

AT −CT
BT DT

)(
Im 0
0 Jn

)(
A B
C D

)
=
(
Im 0
0 Jn

)
, Jn :=

(
0 Ik
−Ik 0

)
.

We define the supermanifold OSp(m|2k) as the open superspace of Mat(m|2k) associated
with the open subspace U ′′, which, with matrix multiplication, forms a Lie supergroup.

Associated to any Lie supergroup G = (G,OG) is a Lie superalgebra g. To construct it,
we introduce the notion of super vector field. A super vector field V on a Lie supergroup
G = (G,OG) is a K-linear superderivation of OG , i.e., a family of superderivations VU :
OG(U)→ OG(U), U ⊂ G open, which is compatible with restrictions. A super vector field
V is called left-invariant if

(1⊗ V ) ◦m∗ = m∗ ◦ V,

where 1 is the identity on the level of sheaf morphisms, and m∗ is the sheaf morphism
induced by the multiplication morphism. The super vector space g of left-invariant super
vector fields forms, together with the supercommutator

[V,W ] := V ◦W − (−1)p(V )p(W )W ◦ V, V,W ∈ g,

a Lie superalgebra, called the Lie superalgebra of the Lie supergroup G.

Example 2.2.6. The Lie superalgebras gl(m|n), sl(m|n), and osp(m|2k) introduced in Ex-
amples 2.1.4, 2.1.13, and 2.1.14 are the Lie superalgebras of the Lie supergroups GL(m|n),
SL(m|n), and OSp(m|2k), respectively.

On the other hand, there is an isomorphism of super vector spaces [12, Proposition
7.2.3.]:

TeGG −→ g, XeG 7→ X := (1⊗XeG)m∗,

where eG ∈ G denotes the identity element. Thus, any morphism Φ : G → H of Lie
supergroups induces a morphism of Lie superalgebras (dφ)eG : g → h and, in particular,
the canonical inclusion ι : G ↪→ G gives us a canonical identification of the even part g0̄
of the Lie superalgebra g and the Lie algebra Lie(G) of the Lie group G [12, Proposition
7.2.5.].
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Super Harish-Chandra pairs

In this thesis, we prefer another approach to Lie supergroups, namely super Harish-Chandra
pairs. In this language, we can study representations without any reference to the structural
sheaf.

Definition 2.2.7. A super Harish-Chandra pair is a triple (G, g, π) consisting of a Lie
group G, a Lie superalgebra g = g0̄⊕g1̄, and a morphism of Lie supergroups π : G→ GL(g)
which satisfies the following:

a) g0̄ is the Lie algebra of G.
b) π(G)

∣∣
g0̄

= Ad is the adjoint representation, and (dπ)e : g0̄ → gl(g) is

dπ(X)(Y ) = [X,Y ], X ∈ g0̄, Y ∈ g.

A morphism between super Harish-Chandra pairs (G, g, π) and (H, h, σ) is a pair (ψ, ρψ)
such that the following holds:

a) ψ : G→ H is a homomorphism of Lie groups.
b) ρψ : g→ h is a homomorphism of Lie superalgebras.
c) ψ and ρψ are compatible in the sense that

ρψ
∣∣
g0̄

= (dψ)e,

σ(ψ(g)) ◦ ρψ = ρψ ◦ π(g)

for all g ∈ G.

We can assign to any Lie supergroup G a super Harish-Chandra pair (G, g, ad), where
G is the reduced Lie group, g the Lie superalgebra associated to G, and ad is the adjoint
representation

ad : G→ GL(g),

induced from
ad(g)(X) := (evg ⊗X ⊗ evg−1)(1⊗m∗)m∗,

with g ∈ G, X ∈ g, and evg being the evaluation map at g. Conversely, we can assign to
any super Harish-Chandra pair (G, g, σ) a Lie supergroup G. The following result is due
to Kostant for real Lie supergroups and due to Vishnyakova for complex Lie supergroups.

Theorem 2.2.8 ([88, 137]). For each super Harish-Chandra pair (G, g) there exists (up to
isomorphy) a unique Lie supergroup G with underlying Lie group G and Lie superalgebra
g. Furthermore, each morphism of super Harish-Chandra pairs induces up to isomorphism
a unique morphism of the corresponding Lie supergroups. Abstractly, the category of Lie
supergroups is equivalent to the category of super Harish-Chandra pairs.
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3. Supermodules over Lie superalgebras and
Lie supergroups

We introduce supermodules over Lie superalgebras and Lie supergroups. For Lie super-
modules, we study restriction to the even Lie subalgebra and induction from it, leading to
the notion of Kac supermodules. Additionally, we introduce highest weight supermodules,
and the infinitesimal character.

3.1. Supermodules over Lie superalgebras
In this section, let g be a basic classical Lie superalgebra, and let U(g) denote its universal
enveloping superalgebra. All definitions are standard, and our main references are [9, 12,
75, 76, 129].

3.1.1. Basic definitions
For any (complex) superalgebra A, we define the notion of an A-supermodule. A left A-
supermodule is a super vector space M together with a morphism of super vector spaces
A⊗M →M, a⊗m 7→ am, such that for all a, b ∈ A and x, y ∈M , the following holds:

a) a(x+ y) = ax+ ay,

b) (a+ b)x = ax+ bx,

c) (ab)x = a(bx),

d) 1Ax = x.

A right A-supermodule is defined analogously. If A is supercommutative, the definitions of
left and right A-supermodules coincide when we set

ma := (−1)p(m)p(a)am

for all m ∈M and a ∈ A.
In the following, we always consider left A-supermodules unless stated otherwise, and we

simply write A-supermodule instead of left A-supermodule. A morphism φ : M1 →M2 of
A-supermodules is a super vector space morphism satisfying φ(am) = aφ(m) for all a ∈ A
and m ∈M . In conclusion, we have a category of A-supermodules, denoted by A-smod.

We focus on g-supermodules, equivalently, Z2-graded representations of g, where g is a
basic classical Lie superalgebra. A Z2-graded representation (ρ,M) of g consists of a super
vector space M = M0̄ ⊕M1̄ and a Lie superalgebra homomorphism ρ : g → End(M). If
M is finite-dimensional, the dimension (respectively, superdimension) of ρ is the dimen-
sion (respectively, superdimension) of the underlying vector space. Since ρ preserves the



superbracket, it follows that it also preserves the Lie bracket on g0̄. Consequently, the
restriction

ρ|g0̄ : g0̄ → End(M)

defines a Lie algebra representation of g0̄ with representation space M .
Let (ρ,M) be a Z2-graded representation of g. Then the super vector space M inherits

the structure of a g-supermodule via the action

Xv = X · v := ρ(X)v, X ∈ g, v ∈M.

In other words, the super vector space M = M0̄⊕M1̄ is equipped with a graded linear left
action of g such that

[X,Y ]v = X(Y v)− (−1)p(X)p(Y )Y (Xv),

for all homogeneous elements X,Y ∈ g and v ∈ M . Conversely, any g-supermodule M
defines a Z2-graded representation of g via ρ(X)v := Xv. Equivalently, one can define
Z2-graded representations of U(g) or, equivalently, U(g)-supermodules.

Throughout this thesis, we adopt the convention of working with left g-supermodules
and left U(g)-supermodules without further explicit mention.

Let (ρ,M) be a Z2-graded representation of g. Then the super vector space M inherits
the structure of a g-supermodule via the action

Xv = X · v := ρ(X)v, X ∈ g, v ∈M.

In other words, the super vector space M = M0̄⊕M1̄ is equipped with a graded linear left
action of g such that

[X,Y ]v = X(Y v)− (−1)p(X)p(Y )Y (Xv),

for all homogeneous X,Y ∈ g and v ∈ M . Conversely, any g-supermodule M defines
a Z2-graded representation of g via ρ(X)v := Xv. Equivalently, we define Z2-graded
representations of U(g) or U(g)-supermodules.

Throughout this thesis, we work with the notion of left g-supermodules and left U(g)-
supermodules without further explicit mention.

By the universal property of the universal enveloping superalgebra U(g), we can work
interchangeably with g-supermodules and U(g)-supermodules.

Example 3.1.1. Let (g, [·, ·]) be a Lie superalgebra. Then the map

ad : g −→ gl(g), ad(X)(Y ) := [X,Y ], for all X,Y ∈ g,

defines a g-supermodule, called the adjoint representation of g.

Definition 3.1.2. Let M be a g-supermodule.

a) A g-subsupermodule is a super vector subspace N ⊂ M that is preserved under the
action of g, i.e., XN ⊂ N for all X ∈ g.

b) M is called simple if it has no g-subsupermodules other than {0} and M .

50



c) M is called completely reducible if it decomposes as a direct sum of simple g-super -
modules.

d) M is called indecomposable if it is nontrivial and cannot be written as the direct sum
of two nonzero g-subsupermodules.

The category of g-supermodules forms a C-linear abelian category, denoted by g-smod.
The morphisms in this category are called intertwining operators.

Definition 3.1.3. Let (ρ,M) and (ρ′,M ′) be two g-supermodules. A super vector space
homomorphism ϕ : M →M ′ is called an intertwining operator if

ρ′(X) ◦ ϕ = ϕ ◦ ρ(X)

for all X ∈ g. The supermodules M and M ′ are called equivalent if there exists an
intertwining operator ϕ : M →M ′ that is an isomorphism of super vector spaces.

We denote by g0̄-mod the category of (left) g0̄-modules. When g0̄ is considered as
a purely even Lie superalgebra, the category g-smod is simply the direct sum of two
copies of g0̄-mod. We view any g0̄-module as a g0̄-supermodule concentrated in a single
parity. Additionally, if we disregard the parity, any g-supermodule M can be viewed as a
g0̄-module, denoted by Mev.

The abelian category g-smod is equipped with an endofunctor Π, the parity-reversing
functor. The parity-reversing functor is defined by Π(M)0̄ = M1̄ and Π(M)1̄ = M0̄ for any
g-supermodule M . Moreover, Π(M) is viewed as a g-supermodule with the new action

X · v := (−1)p(X)Xv

for any X ∈ g and v ∈M . In particular, a g-supermodule M is not necessarily isomorphic
to Π(M).

For any two g-supermodules M and M ′, we can construct new g-supermodules. The
direct sum of g-supermodules M ⊕M ′ is defined by

X(v ⊕ v′) := Xv ⊕Xv′,

for X ∈ g and v ∈M , v′ ∈M ′.
The tensor product of g-supermodules M ⊗ M ′ with representation space M⊗̂M ′ is

defined by
X(v ⊗ v′) := Xv ⊗ v′ + (−1)p(X)p(v)v ⊗Xv′,

where X ∈ g and v ∈M , v′ ∈M ′.

3.1.2. Induction, coinduction and Kac supermodules
We describe the relationship between the category g-smod of g-supermodules and the cat-
egory g0̄-smod of g0̄-supermodules. This naturally leads to the induction and coinduction
functors. Furthermore, if g is a Lie superalgebra of type 1, we introduce the Kac induction
functor, which can be viewed as a generalized Verma supermodule (cf. Section 3.1.3). This
section is based on [16, 50].
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Induction and coinduction

We consider g0̄ as a purely even Lie superalgebra. Then, the category g0̄-smod of g0̄-
supermodules is naturally equivalent to the direct sum of the even and odd copies of the
category g0̄-mod of g0̄-modules, that is,

g0̄-smod ∼= (g0̄-mod)0̄ ⊕ (g0̄-mod)1̄.

We denote the associated restriction functor by

Resgg0̄
: g-smod→ g0̄-smod.

The restriction functor Resgg0̄
is exact and has both a left adjoint and a right adjoint functor.

The left adjoint functor is the induction functor:

Indg
g0̄

:= U(g)⊗U(g0̄) − : g0̄-smod→ g-smod,

while the right adjoint is the coinduction functor:

Coindg
g0̄

:= HomU(g0̄)(U(g),−) : g0̄-smod→ g-smod.

Here, U(g) is considered as a left U(g0̄)-module, and the U(g)-supermodule structure on
Coindg

g0̄
(V ) is

(Xf)(Y ) := f(Y X), f ∈ HomU(g0̄)(U(g), V ), X, Y ∈ U(g).

In particular, both Indg
g0̄

and Coindg
g0̄

are exact functors. The following proposition collects
important properties of the induction and coinduction functors.
Proposition 3.1.4 ([50]). a) Indg

g0̄
∼= Πdim g1̄ ◦ Coindg

g0̄
.

b) Indg
g0̄
U(g0̄) ∼= U(g).

Kac supermodules

We introduce Kac supermodules for basic classical Lie superalgebras of type 1 (or gl(m|n)),
describe their basic properties, and provide an elegant classification of simple supermodules
following [16]. Recall that a basic classical Lie superalgebra of type 1 has the distinguishing
property of admitting a Z-grading g = g−1 ⊕ g0 ⊕ g1, where g0 = g0̄ and g±1 are simple
g0̄-modules.

Kac supermodules can be described as generalized Verma supermodules with respect to
g0̄ as a Levi subalgebra. Concretely, one starts by extending any V ∈ g0̄-mod, which is
placed in either even or odd degree, trivially to a g0̄⊕g+1-supermodule. Then, the induced
g-supermodule

K(V ) := U(g)⊗U(g0̄⊕g+1) V,

is called a Kac supermodule. The associated map K(·) : g0̄-smod → g-smod defines an
exact functor, the Kac induction functor. Note that, as super vector spaces, we have the
following isomorphisms:

K(V ) ∼=
∧•

(g1̄)⊗ V ∼=

dim(g+1)⊕
i=0

∧i
(g+1)

⊗ V,
according to the PBW Theorem. The following adjunction property of the Kac induction
functor is straightforward.
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Lemma 3.1.5. For a g0̄-module V , placed in either even or odd degree, the Kac supermodule
K(V ) satisfies the following adjunction:

HomU(g)(K(V ),M) = HomU(g0̄)(V,Mg+1),

where Mg+1 := {m ∈M : g+1m = 0}.

In the following, we show that the Kac induction functor induces a bijection between the
isomorphism classes of simple objects in g0̄-mod and the isomorphism classes of simple
objects in g-smod [16]. To achieve this, we realize simple g-supermodules as the socle of
suitable Kac supermodules, where the socle of a Kac supermodule K(V ) is the sum of all
its simple subsupermodules, denoted by soc(K(V )).

We fix a non-trivial g0̄-module V which is placed in either even or odd degree. Any
non-zero g−1-submodule of K(V ) has a non-trivial intersection with ∧dim(g+1)(g−1) ⊗ V ,
and K(V )g−1 =

∧dim(g+1)(g−1)⊗ V [16, Lemma 3.1]. If V is simple, it is well-known that
any g-subsupermodule of K(V ) contains ∧dim(g+1)(g−1) ⊗ V . These observations lead to
the following lemma.

Lemma 3.1.6 ([16]). a) The socle of the Kac supermodule K(V ) is given by

soc(K(V )) = U(g)
(∧dim(g+1)

(g−1)⊗ V
)
.

In particular, soc(K(V )) is a simple g-supermodule.

b) For any two simple g0̄-modules V and W , we have

soc(K(V )) ∼= soc(K(W )) ⇐⇒ V ∼= W.

This leads to a realization of each simple g-supermodule as the socle of a Kac supermod-
ule.

Lemma 3.1.7. For any simple g-supermodule M , there exists a simple g0̄-module V such
that

M ∼= soc(K(V )).

Proof. We prove the lemma for simple g-supermodules M that are g0̄-semisimple. The
general proof appears in [16].

We decompose M under g0̄ and select a simple g0̄-module V from this decomposition.
Since M is a simple g-supermodule, we have the isomorphisms:

M ∼= U(g)V

∼= U(g)
(∧dim(g+1)

(g−1)⊗
∧dim(g+1)

(g∗
−1)⊗ V

)
∼= soc

(
K

(∧dim(g+1)
(g∗

−1)⊗ V
))

,

where we use the fact that ∧dim(g+1)(g∗
−1)⊗

∧dim(g+1)(g−1) ∼= C is trivial and apply Lemma
3.1.6 to deduce the second and third isomorphism, respectively. Here, g∗

−1 denotes the dual
super vector space of g−1.

Since V is simple, ∧dim(g+1)(g∗
−1)⊗V is a simple g0̄-module. This completes the proof.
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The radical of K(V ) is defined as the intersection of all maximal subsupermodules of
K(V ), denoted by Rad(K(V )). The radical is the smallest subsupermodule of K(V ) such
that the quotient K(V )/Rad(K(V )) is semisimple. This quotient is called the head or top
of K(V ), denoted by Hd(K(V )). The head Hd(K(V )) of K(V ) is simple. To see this,
let L be a simple quotient of K(V ). Then there exists a simple g0̄-module W such that
soc(K(W )) ∼= L, and W is (up to isomorphism) uniquely determined by V . This leads to
the following result:

Lemma 3.1.8 ([16], Lemma 4.4). For any simple g0̄-module V , the Kac supermodule K(V )
has a unique maximal subsupermodule. The unique simple top of K(V ) is denoted by L(V ).

We show that any simple top L(V ) of a Kac supermodule K(V ) is Z-gradable. To this
end, we introduce appropriate grading operators. For g := gl(m|n), we define the grading
operator

d :=
(

0 0
0 En

)
∈ z(g0̄),

while for g = osp(2|2n), we define the grading operator

d :=

1 0
0 −1 0

0 0

 ∈ z(g0̄).

In both cases, the grading operator d acts on any simple g0̄-module V as a scalar dV ∈ C
[32, Proposition 2.6.8]. By construction, K(V ) is completely reducible as an g0̄-module,
which yields a decomposition of K(V ) into d-eigenspaces:

K(V ) =
dim(g+1)⊕
i=0

K(V )dV −i ∼=
dim(g+1)⊕
i=0

∧i
(g−1)⊗ V,

where K(V )dV −i denotes the eigenspace corresponding to the eigenvalue dV − i. Thus,
we can define a Z-grading on K(V )where the homogeneous components correspond to the
eigenspaces of d with distinct eigenvalues.

If N is any subsupermodule of K(V ), then

N =
⊕
k≥0

(
N ∩

(∧k
(g−1)⊗ V

))

is the eigenspace decomposition with respect to the action of d. In particular, if we consider
the standard Z-grading on K(V ), all subsupermodules are Z-graded.

Corollary 3.1.9. Any simple g-supermodule is Z-gradable.

Proof. For any simple g-supermodule L, there exists a simple g0̄-module V such that
L ∼= soc(K(V )) by Lemma 3.1.7. The Kac supermodule K(V ) has a Z-grading induced
by the grading operator d. In particular, any subsupermodule of K(V ) is Z-gradable, and
hence soc(K(V )) is also Z-gradable. This completes the proof.

Theorem 3.1.10. [16, Theorem 4.1] The map V 7→ L(V ) gives rise to a bijection between
the set of isomorphism classes of simple g0̄-modules and the set of isomorphism classes of
simple g-supermodules.
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Proof. This proof is from [16]. We repeat it to accentuate the simplicity and beauty of
the arguments. Let V be a simple g0̄-module. As above, fix a Z-grading of L(V ) such
that the top non-zero graded component is of degree 0. Note that the top non-zero graded
component is isomorphic to V . If W denotes another simple g0̄-module, then any morphism
f : L(V )→ L(W ) must preserve the gradings. In particular, this implies that the non-zero
graded top components must be isomorphic, hence V ∼= W .

Let L be a non-zero simple g-supermodule. By Corollary 3.1.9, L admits a Z-grading
such that all non-zero components have non-positive degree and the degree zero component
V is non-trivial. In particular, g+1V = 0, so V is a g0̄-module. Since L is simple and Kac
induction is exact, V is also simple. Finally, using the adjunction between induction and
restriction, we obtain:

0 6= Homg0̄⊕g+1(V, Lg+1) = Homg(L, Indg
g0̄

(V )),

i.e., there exists a non-zero homomorphism from K(V ) to L.

3.1.3. Highest weight supermodules
In this subsection, we introduce an important class of supermodules over g: the highest
weight supermodules, which include all finite-dimensional g-supermodules. After discussing
their fundamental properties, we explicitly realize simple highest weight supermodules as
unique simple quotients of Verma supermodules. Our main references are [99, 129].

Recall that for a fixed positive system ∆+ of the root system ∆, the basic classical Lie
superalgebra g admits a triangular decomposition g = n−⊕h⊕n+, where n± are the spans
of the root vectors associated to the positive and negative roots, respectively. In particular,
the Borel subalgebra is given by b := h⊕n+. We begin by summarizing the key definitions.

Definition 3.1.11. Let M be a g-supermodule. A nonzero vector vΛ ∈ M is called
primitive of weight Λ ∈ h∗ if it satisfies the following conditions:

a) HvΛ = Λ(H)vΛ for all H ∈ h.

b) XvΛ = 0 for all X ∈ n+.

Definition 3.1.12. A g-supermodule M is called highest weight g-supermodule of highest
weight Λ ∈ h∗ if there exists a primitive vector vΛ ∈M of weight Λ such that U(g)vΛ = M .
We call vΛ highest weight vector of M , and Λ its highest weight.

We record some elementary algebraic properties that follow directly from the definition,
or more concretely, from the universal property of Verma supermodules stated below.

Proposition 3.1.13. Let M be a highest weight g-supermodule with highest weight Λ.
Then the following assertions hold:

a) M is a weight supermodule, meaning that

M =
⊕
λ∈h∗

Mλ, Mλ := {m ∈M : Hm = λ(H)m for all H ∈ h}.

The space Mλ is called the weight space of weight λ, and dim(Mλ) is referred to as
its multiplicity.
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b) Let α1, . . . , αk and β1, . . . , βl be an enumeration of the even and odd positive roots,
respectively. Choose root vectors Xi ∈ g−αi and Yj ∈ g−βj . Then M is spanned by
the vectors

Xr1
1 · · ·X

rk
k Y

s1
1 · · ·Y

sl
l vΛ,

where r1, . . . , rk ∈ Z+ and s1, . . . , sl ∈ {0, 1}, with weight

Λ−
k∑
i=1

riαi −
l∑

j=1
sjβj .

c) For all weights λ of M , we have dim(Mλ) <∞. In particular, dim(MΛ) = 1.

d) Each nonzero quotient of M is a highest weight supermodule of weight Λ.

e) M has a unique maximal subsupermodule and a unique simple quotient. In particular,
M is indecomposable.

f) All simple highest weight supermodules with highest weight Λ are isomorphic.

Example 3.1.14. Let M be a finite-dimensional simple g-supermodule. Then M is also a
finite-dimensional g0̄-module, and since h ⊂ g0̄, it follows that M is a weight supermodule.
In particular, because n+ raises weights and M is finite-dimensional, there exists a weight
vector vΛ of weight Λ ∈ h∗ such that n+vΛ = 0. Consequently, vΛ is a primitive vector.
Furthermore, since M is simple, we have M = U(n−)vΛ, which shows that M is a highest
weight g-supermodule.

We realize any simple highest weight g-supermodule as the unique simple quotient of
certain universal highest weight supermodules, called Verma supermodules. First, note
that U(g) is a right U(b)-supermodule with respect to right multiplication. For each one-
dimensional U(b)-supermodule CΛ defined by Λ : b→ C, i.e., Λ ∈ h∗, we define the Verma
supermodule

Mb(Λ) := U(g)⊗U(b) CΛ.

We regard Mb(Λ) as a U(g)-supermodule that is the quotient of the tensor product U(g)⊗
CΛ, where CΛ is treated as a trivial g-supermodule. This quotient is taken modulo the
subspace generated by elements of the form XH ⊗ z−X ⊗Λ(H)z, with X ∈ U(g), H ∈ b,
and z ∈ C. The superscript b will be omitted when the Borel subalgebra is fixed. Then the
supermodule M(Λ) is a generalized highest weight g-supermodule with highest weight Λ,
and highest weight vector [1⊗ 1]. In particular, U(n−)vΛ = M(Λ). Consequently, for each
primitive vector vΛ of weight Λ in a g-supermodule M , there exists a uniquely determined
g-supermodule morphism M(Λ)→M sending [1⊗ 1] to vΛ.

The well-known properties of Verma supermodules are summarized in the following
proposition.

Proposition 3.1.15 ([99, Chapter 8]). a) The supermodule M(Λ) is a generalized high-
est weight g-supermodule with highest weight Λ, and highest weight vector [1⊗ 1]. In
particular, U(n−)vΛ = M(Λ).

b) For each b-eigenvector vΛ of weight Λ in a g-supermodule M , there exists a uniquely
determined surjective g-supermodule morphism M(Λ)→M sending [1⊗ 1] to vΛ.
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c) Endg(M(Λ)) ∼= C.

d) M(Λ) has a unique maximal subsupermodule and unique simple quotient, denoted by
L(Λ). In particular, M(Λ) is indecomposable.

e) M(Λ) has a finite Jordan–Hölder series.

Finally, we state the relation of Mb(Λ) to the classical Verma module Mb0̄(Λ) in the
case of type 1 basic classical Lie superalgebras g. We follow closely [99, Chapter 8]. Set
p = g0̄ ⊕ g+1, and define the nilpotent ideal I := g1U(p) = U(p)g1 in U(p). Then U(g0̄) ∼=
U(p)/I, and there is a surjective map of U(g)-modules [99, Lemma 8.2.3]

U(g)⊗U(g0̄) M
b0̄(Λ) −→Mb(Λ).

However, if we regard Mb0̄(Λ) as a U(p)-module with I acting trivially, then [99, Lemma
8.2.4]

Mb(Λ) ∼= U(g)⊗U(p) Mb0̄(Λ).

Consequently, as a U(g)-module, U(g) ⊗U(p) L
b0̄(Λ) has a unique simple factor module,

which is isomorphic to Lb(Λ). Conversely, as a U(p)-module, Lb(Λ) has a unique simple
submodule, which is isomorphic to Lb0̄(Λ).

Kac supermodules

If g is a basic classical Lie superalgebra of type 1, we prefer to work with Kac supermodules
instead of Verma supermodules. However, as mentioned in Section 3.1.2, Kac supermodules
can be understood as generalized Verma supermodules.

Let M be a simple highest weight g-supermodule over a basic classical Lie superalgebra
of type 1 with highest weight Λ ∈ h∗. We denote the Z-grading of g by g = g−1⊕ g0⊕ g+1.
By Theorem 3.1.10, there exists a simple g0̄-module V such that M ∼= L(V ). We endow
L(V ) with a Z-grading where all nonzero components have non-positive degree and the
degree zero component is V . Consequently, L(V )g+1 = V , so in particular, the highest
weight vector vΛ belongs to V . Since V is a simple g0̄-module, we have U(g0̄)vΛ = V , i.e.,
V is a highest weight g0̄-module. This yields the following theorem.

Theorem 3.1.16. If V is a highest weight g0̄-module, then K(V ) and L(V ) are highest
weight g-supermodules. Conversely, any simple highest weight g-supermodule is the unique
simple quotient of the Kac induction from a simple highest weight g0̄-module of the same
highest weight.

Remark 3.1.17. If V is a simple highest weight g0̄-module with highest weight Λ, then
L(V ) coincides with the simple quotient L(Λ) of the Verma supermodule M(Λ).

We denote by L0(Λ) the (up to isomorphism) unique simple highest weight g0̄-supermodule
of highest weight Λ ∈ h∗. The Kac supermodule K(Λ) is defined as K(L0(Λ)), and L(Λ) de-
notes its simple quotient L(L0(Λ)). The parity of L(Λ) will normally be clear from context,
and otherwise is assumed to be even. In general, K(Λ) is not equal to the Verma super-
module of highest weight Λ, except when L0(Λ) is isomorphic to the Verma supermodule
over g0̄.

The following proposition is immediate but important.
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Proposition 3.1.18. Let Λ ∈ h∗. The following assertions are equivalent:

a) L(Λ) is finite-dimensional.

b) L0(Λ) is finite-dimensional.

c) K(Λ) is finite-dimensional.

Proof. Regard L(Λ) as a g0̄-module. Then L0(Λ) is a direct summand, so a) implies b). As
a super vector space, the Kac supermodule K(Λ) is isomorphic to ∧ g−1 ⊗ L0(Λ), which
shows that c) follows from b). Finally, since L(Λ) is the unique (up to isomorphism) simple
quotient of K(Λ), we have a surjective map K(Λ) ↠ L(Λ), such a) follows from c).

Casimir element

We introduce the (quadratic) Casimir element, which is a specific element Ω in the center
Z(g) of the universal enveloping superalgebra U(g), acting in a simple manner on highest
weight g-supermodules. For details, we refer to [99, Section 8.5].

For the basic classical Lie superalgebra g, we fix two bases x1, . . . , xn and y1, . . . , yn
such that (xi, yj) = δij , where xi and yi are homogeneous of the same degree. Then, the
(quadratic) Casimir element is defined as

Ω :=
n∑
i=1

(−1)p(xi)xiyi ∈ U(g),

where the definition of Ω does not depend on the choice of basis. Furthermore, Ω is central
in U(g), i.e., it belongs to Z(g).

To describe Ω explicitly, fix a basis h1, . . . , hm of h, with dual basis k1, . . . , km. For each
α ∈ ∆+, choose elements eα ∈ gα and e−α ∈ g−α such that [eα, e−α] = hα. Then, we take
the elements {xi, yi} defined by

{hi, ki}, {eα, e−α}α∈∆0̄
, {eα, e−α}α∈∆1̄

, {e−α,−eα}α∈∆1̄
.

In this basis, the Casimir element becomes

Ω =
m∑
i=1

hiki +
∑
α∈∆+

0̄

(eαe−α + e−αeα) +
∑
α∈∆+

1̄

(e−αeα − eαe−α).

A direct calculation leads to the following lemma.

Lemma 3.1.19 ([99, Lemma 8.5.3]). Let M be a highest weight g-supermodule with highest
weight Λ. Then the Casimir operator acts on M as a scalar multiple of the identity, given
by

(Λ + 2ρ,Λ).

3.1.4. Infinitesimal characters and (a)typicality
In this subsection, we introduce infinitesimal characters, which are algebra homomorphisms
from the center Z(g) of the universal enveloping superalgebra U(g) to the complex num-
bers. An explicit description of infinitesimal characters will be provided using the Harish-
Chandra homomorphism. This construction naturally leads to the concepts of typicality
and atypicality, which play a central role in the representation theory of Lie superalgebras.
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Infinitesimal characters

Infinitesimal characters are specific algebra homomorphisms χ : Z(g) → C. Using the
Harish-Chandra homomorphism for Lie superalgebras, which concerns Z(g), we can formu-
late these characters explicitly. To construct the Harish-Chandra homomorphism, recall
the following decomposition of super vector spaces:

U(g) ∼= U(h)⊕ (n−U(g) + U(g)n+),

which is an immediate consequence of the PBW Theorem. The associated projection
p : U(g)→ U(h) is called the Harish-Chandra projection, and its restriction to Z(g) defines
an algebra homomorphism:

p
∣∣
Z(g) : Z(g)→ U(h) ∼= S(h),

where S(h) denotes the symmetric algebra over h. More explicitly, since adh(z) = 0 for all
z ∈ Z(g) and h preserves n±, it follows from PBW that any element z ∈ Z(g) has a unique
decomposition of the form:

z = hz +
∑
i

n−
i hin

+
i , hz, hi ∈ U(h), n±

i ∈ n±U(n±).

As a result, elements of Z(g) are necessarily of even parity, and p
∣∣
Z(g)(z) = hz. The Harish-

Chandra homomorphism is then defined as

HC := ζ ◦ p
∣∣
Z(g) : Z(g)→ S(h),

where ζ : S(h)→ S(h) is a twist defined by

λ(ζ(f)) := (λ− ρ)(f) for all f ∈ S(h), λ ∈ h∗.

Theorem 3.1.20 ([77, 132, 133]). a) The Harish-Chandra homomorphism is an injec-
tive ring homomorphism.

b) An element φ ∈ Sym(h) belongs to the image of HC if and only if:
(i) φ(w(λ+ ρ)− ρ) = φ(λ) for any λ ∈ h∗ and w ∈W , i.e., φ ∈ S(h)W .

(ii) Let S(h)W := {f ∈ S(h) : w(λ)(f) = λ(f) for all w ∈ W, λ ∈ h∗} and, for any
λ ∈ h∗, define

Aλ := {α ∈ ∆+
1 : (λ+ ρ, α) = 0}.

Then, the image of HC is given by:

im(HC) =
{
f ∈ S(h)W : (λ+ tα)(f) = λ(f) for all t ∈ C, λ ∈ h∗, α ∈ Aλ−ρ

}
.

Let λ ∈ h∗ be a linear functional on the Cartan subalgebra h. Then, the map

χλ : Z(g)→ C, χλ(z) := (λ+ ρ)(HC(z)),

defines an algebra homomorphism, i.e., a one-dimensional representation of Z(g). This
gives rise to the definition of an infinitesimal character for g-supermodules.
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Definition 3.1.21. Let M be a g-supermodule. We say M has an infinitesimal character
if there exists λ ∈ h∗ such that Z(g) acts on M via χλ. In this case, we call χλ the
infinitesimal character of M .

Example 3.1.22. Let M be a highest weight supermodule with highest weight Λ ∈ h∗.
Then M has infinitesimal character χΛ. Indeed, let vΛ be the highest weight vector of M ,
and let z ∈ Z(g). Then, by Equation (3.1.4), we have

zvΛ = Λ(hz)vΛ = (Λ + ρ)(HC(z))vΛ = χΛ(z)vΛ.

If v ∈ M is a general element, there exists some x ∈ U(n− ⊕ h) such that v = xvΛ. Since
z ∈ Z(g) commutes with x, we have zv = zxvΛ = xzvΛ = χΛ(z)v, which proves the claim.

Another approach is to observe that Endg(M) ∼= C. Indeed, any endomorphism maps
vΛ to a scalar multiple of vΛ as dim(MΛ) = 1. Since vΛ generates M , we conclude
Endg(M) = C. In particular, any z ∈ Z(g) acts as a scalar multiple of the identity, i.e., M
admits a central character.

As a direct consequence of Theorem 3.1.20, we obtain the following corollary.

Corollary 3.1.23. Let λ, λ′ ∈ h∗. Then χλ = χλ′ if and only if

λ′ = w

(
λ+ ρ+

k∑
i=1

tiαi

)
− ρ,

where w ∈ W , ti ∈ C, and α1, . . . , αk ∈ Aλ = {α ∈ ∆+
1 : (λ + ρ, α) = 0} are linearly

independent odd isotropic roots.

This leads to the definition of typicality and atypicality.

Definition 3.1.24. A weight Λ ∈ h∗ is called typical if AΛ = ∅, i.e., (Λ + ρ, α) 6= 0 for
all α ∈ ∆+

1̄ . Otherwise, Λ is called atypical. The degree of atypicality of Λ, denoted by
at(Λ), is the maximal number of linearly independent mutually orthogonal positive odd
(in particular, isotropic) roots α ∈ ∆+

1̄ such that (Λ + ρ, α) = 0. In brief, at(Λ) is the
dimension of a maximal isotropic subspace of SpanC(AΛ) ⊂ h∗. We call a highest weight
g-supermodule M with highest weight Λ typical if at(Λ) = 0, and otherwise atypical.

Remark 3.1.25. The degree of atypicality of a weight λ ∈ h∗ is invariant under both even
and odd reflections (cf. Lemma 2.1.15), even though the set Aλ itself is not. Consequently,
the degree of atypicality is independent of the choice of positive root system.

The defect of g, denoted by def(g), is the dimension of a maximal isotropic subspace in
the R-span of ∆. For g of type A(m − 1|n − 1), B(m|n), or D(m|n), with ∆R ∼= Rm,n,
we have def(g) = min(m,n). For g of type C(n), the defect is 1. Moreover, a simple Lie
algebra or osp(1|2n) has defect 0. In all cases, the degree of atypicality satisfies

0 ≤ at(λ) ≤ def(g)

for any weight λ ∈ h∗.
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3.2. Supermodules over Lie supergroups
We briefly summarize the definition of Z2-graded representations of Lie supergroups, called
supermodules, following [2, 10]. In the subsequent, let G be a real or complex Lie super-
group.

First, we recall the classical definition. For a Lie group G and a topological vector space
V , equipped with a continuous linear left action G×V → V of G, we say that the induced
map π : G → GL(V ) is a continuous representation of G on V . Here, GL(V ) denotes
the group of invertible continuous transformations on V with continuous inverse. If the
topology on V is locally convex, we say a vector v ∈ V is smooth if the orbit map g 7→ π(g)v
is a smooth map. The space of all smooth vector will be denoted by V ∞. We set

dπ(X)v := d
dt

∣∣∣∣∣
t=0

π(exp(tX))v, X ∈ Lie(G), v ∈ V ∞.

which defines an action of the Lie algebra Lie(G) ofG on the space V ∞ of all smooth vectors.
We endow V ∞ with the coarsest locally convex topology such that for all u ∈ U(Lie(G))
the linear map dπ(u) : V ∞ → V is continuous.

Definition 3.2.1. Let V be a topological super vector space and G = (G, g) a Lie super-
group. Assume given a continuous representation π of G on V0̄ and a Lie superalgebra
representation dπ of g on V ∞ such that the map g ⊗ V ∞ → V ∞, (X, v) 7→ dπ(X)v is
continuous. We say (π, dπ) is a continuous G-supermodule if dπ is G-equivariant, i.e.,

dπ(Ad(g)(X)) = π(g)dπ(X)π(g−1)

for all X ∈ g, g ∈ G. Here, Ad denotes the adjoint representation of G on g defined in
Section 2.2.2.

All concepts, such as subsupermodules, simplicity, or equivalence of supermodules over
G, are defined similarly to the corresponding notions for representations of Lie groups. For
the sake of completeness, we provide an explicit formulation.

Definition 3.2.2. Let Π = (π, ρ, V ) and Π′ = (π′, ρ′, V ′) be two continuous G = (G, g)-
supermodules. An intertwining operator A : Π→ Π′ is an even continuous operator from V
to V ′ such that A intertwines π, ρ and π′, ρ′, respectively. If A is a topological isomorphism,
we call A an equivalence. When such an A exists, we say that Π and Π′ are equivalent.

Definition 3.2.3. Let Π = (π, ρ, V ) be a continuous G-supermodule. A supermodule
Π′ = (π′, ρ′, V ′) is called an G-subsupermodule of Π if V ′ is a closed Z2-graded subspace of
V that is invariant under π and ρ, and π′ (respectively ρ′) is the restriction of π (respectively
ρ) to V ′ (respectively V ∞(π) ∩ V ′).

In particular, having introduced the concept of G-subsupermodules, we can define simple
G-supermodules. The subsupermodules given by the supermodule itself or {0} are called
trivial.

Definition 3.2.4. A continuous G-supermodule Π = (π, ρ, V ) is called simple if the only
G-subsupermodules are the trivial ones.
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4. Superconformal algebras

4.1. A word on the conformal group
In physics, fundamental principles are often expressed through the symmetries of physical
models, which determine conservation laws and constraints. In conformal field theory, the
relevant symmetries are conformal transformations. Geometrically, these transformations
preserve angles and the local shape of infinitesimal structures while allowing changes in
size or curvature. The set of all conformal transformations forms a group, referred to as
the conformal group. This subsection serves as a brief introduction to the conformal group.
We follow closely [127].

Let (M = R1,d, g1,d) be the Minkowski space for d ≥ 2. For any two open subsets U, V ⊂
M, a conformal transformation is a smooth map φ : U → V such that φ∗g1,d = Ω2g1,d for
some smooth map Ω : U → R≥0. Here,

φ∗g1,d(X,Y ) := g1,d(Tφ(X), Tφ(Y )), X, Y ∈ TU

and Tφ : TU → TV denotes the differential (tangent map) of φ. The map Ω is called the
conformal factor.

Conformal transformations are classified using conformal Killing fields, that is, smooth
vector fields X on an open subset U ⊂ M such that the associated local one-parameter
group (φXt )t∈R is a conformal transformation for all t in a neighborhood of 0. These satisfy
the Killing equation [127, Theorem 1.4, Theorem 1.6], and solving the Killing equation
leads to a classification of conformal transformations of M.

Theorem 4.1.1 ([127, Theorem 1.9]). Every conformal transformation φ : U → M on a
connected open subset U of M is a composition of

a) a translation q 7→ q + c, c ∈M,

b) an orthogonal transformation q 7→ Oq, O ∈ O(1, d),

c) a dilatation q 7→ eλq, λ ∈ R and

d) a special conformal transformation

q 7→ q − g1,d(q, q)b
1− 2g1,d(q, b) + g1,d(q, q)g1,d(b, b)

, b ∈M.

Furthermore, the conformal transformations form a group with respect to the composition,
which is isomorphic to O(2, d)/{±I}.

For special conformal transformations, it becomes immediately clear that the action of
the conformal group on Minkowski space is singular. This naturally leads to the conformal



compactification of M, achieved through a conformal rescaling of the metric via an isometric
embedding into a compact domain of another pseudo-Riemannian manifold.

A conformal compactification of the connected semi-Riemannian manifold M is a compact
semi-Riemannian manifold N together with a conformal embedding ι : M→ N, i.e.,

a) ι(M) is dense in N.

b) Every conformal transformation ϕ : U →M on an open and connected subset U ⊂M,
U 6= ∅, has a conformal continuation ϕ̂ : N→ N.

Such a conformal compactification is unique (up to a conformal diffeomorphism). We now
describe a short and elegant conformal compactification N of M. For that, let Pd+1 =
Rd+2/ ∼ denote the smooth projective space. Then, it is well-known that the map

ι : R1,d → Pd+1(R), x := (x1, . . . , xd+1) 7→
(1− g1,d(x, x)

2
: x1 : · · · : xd+1 : 1 + g1,d(x, x)

2

)
defines a smooth embedding of M into Pd+1(R). Moreover, the closure of the image ι(M)
is equal to the compact d+ 1-dimensional submanifold

N1,d := {(x0 : · · · : xd+2) ∈ Pd+1(R) | g2,d(x, x) = 0} ⊂ Pd+1(R),

where g2,d = diag(−1,−1, 1, . . . , 1). The quotient map p : R2,d → N1,d, restricted to the
product of the spheres S1 × Sd, defines a 2-to-1 covering. The metric on S1 × Sd, induced
from R2,d, descends to N1,d such that the covering becomes a (local) isometry.

Proposition 4.1.2 ([127, Proposition 2.5, Theorem 2.9]). The compact pseudo-Riemannian
manifold N1,d is a conformal compactification of the Minkowski space M.

The conformal group Conf(M) is the connected component containing the identity in the
group of conformal diffeomorphism of the conformal compactification of M. The group of
conformal diffeomorphism is considered as a topological group with the topology of compact
convergence, that is, the topology of uniform convergence on the compact subsets.

Theorem 4.1.3 ([127, Theorem 2.9]). The conformal group of the Minkowski space is
either SO0(2, d) or SO0(2, d)/{±I} of −I is in the connected component of O(2, d) con-
taining the identity I. Here, SO0(2, d) denotes the connected component of the identity in
O(2, d).

Example: M = R1,3

As an example, we consider the four-dimensional Minkowski space M = R1,3. We write
x = (t, x1, x2, x3) ∈M and identify M with the space H(2) of Hermitian 2× 2-matrices

H(2) :=
{
x =

(
t+ x1 x2 + ix3
x2 − ix3 t− x1

)
: x ∈M

}
.

Then
det(x) = t2 − x2

1 − x2
2 − x2

3 = g1,3(x, x).
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A natural basis of H(2) is given by the Pauli matrices

σ0 = I2, σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)

such that any x ∈M can be written as x = tσ0 + x1σ1 + x2σ2 + x3σ3.
The connected component of SO(2, 4) = {X ∈ O(2, 4) : det(X) = 1} is

SO0(2, 4) =
{(

A B
C D

)
∈ SO(2, 4) : det(A) > 0

}
.

In particular, it contains ±I and the conformal group is SO0(2, 4)/{±I}.
In quantum theories, it is more convenient to work with the spin cover of SO0(2, 4), that

is, SU(2, 2). Under the identification above, SU(2, 2) acts on H(2) via

g · x = (ax+ b)(cx+ d)−1, x ∈ H(2), g :=
(
a b
c d

)
∈ SU(2, 2),

which is well-defined except on a set of measure 0. This induces a continuous map into the
identity component of the conformal group SO0(2, 4). Indeed, it defines a twofold cover,
realizing SU(2, 2) as the spin cover of the conformal group SO0(2, 4).

In the following, we are interested in conformal quantum field theories and call, by abuse
of notation, G := SU(2, 2) the conformal group. However, we emphasize that SU(2, 2) is a
fourfold cover of the original conformal group

Conf(M) ∼= SO0(2, 4)/Z2 ∼= SU(2, 2)/Z4.

Note that π1(SU(2, 2)) = Z, i.e., Spin(2, 4) ∼= SU(2, 2) is not the universal cover of
SO0(2, 4). To realize the universal cover G̃, we consider the action of G on H(2) as above.
For fixed g ∈ G, we define δg : H(2)→ R via

det(cx+ d) = |det(cx+ d)|eiδg(x).

δg is unique up addition of 2πn, and we can define δng by imposing

2πn ≤ δng < 2π(n+ 1), n ∈ Z.

Then the universal cover G̃ of G = SU(2, 2) is

G̃ = {(g, δng ) : g ∈ G,n ∈ Z}

with group multiplication

(g, δng ) · (h, δmh ) = (gh, δngh + δmh ).

Indeed, the unit element is of the form (I4, 0) and its n-fold cover is (I4, 2πn) such that G̃
fits in the short exact sequence

0→ Z = π1(G)→ G̃→ G→ 0.
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The center of G is {±I4,±iI4}. The center Γ of G̃ is isomorphic to Z2 × Z and has two
generating elements γ1 = (−I4, 0) and γ2 = (iI4, 0) such that

Γ = {γn1
1 γn2

2 : n1 ∈ {0, 1}, n2 ∈ {0,±1,±2, . . . }}.

Finally, we realize the conformal compactification of M as a homogeneous space and
identify physically relevant subgroups. First, we note that the conformal group SU(2, 2)/Z4
acts by definition transitively on M. As a marked point, we consider the zero matrix
0 ∈ M. The isotropy group of 0 ∈ M is the 11-dimensional parabolic subgroup (in non-
Segal realization)

P :=
{(

A 0
C (A†)−1

)
∈ G

}
modulo Z4. P is the opposite of the scale-extended Poincaré group and isomorphic to
GL(2,C) ⋉H(2). Hence, we can realize M as the homogeneous space

M ∼= G/P.

Indeed, M is a dense open subset of M. Therefore, we define for any A ∈ GL(2,C), and
x, y ∈ H(2)

g(A) =
(
A 0
0 (A†)−1

)
, u(x) =

(
I2 x
0 I2

)
, v(y) :=

(
I2 0
y I2

)
.

Then every element of P can be written uniquely as v(y)g(A) and every element of G,
except for a set of Haar measure 0, can be written as g = v(y)g(A)u(x) for suitable
x, y ∈ H(2) and A ∈ GL(2,C). This decomposition gives an isomorphism between an open
dense subset of M with M.

Equivalently, M is a homogeneous space for G̃/Γ, where Γ denotes the center of the
universal covering group G̃ above. Let P̃ denote the universal cover of P . Then P̃ /({±I}×
Z) is the stabilizer subgroup of 0 ∈M in G̃/Γ and

M ∼= G̃/P̃ .

Here, note that the scale-extended Poincaré group is the ’opposite’ of the Siegel parabolic
subgroup, that is,

Iso(1, 3) :=
{(

A B
0 (A†)−1

)
: A ∈ GL(2,C), C ∈ Mat(2,C), B ∈ H(2)

}
.

Both P and Iso(1, 3) have Levi decompositions P = L⋉N and Iso(1, 3) = L⋉N ′, where

L =
{(

A 0
0 (A†)−1

)
: g ∈ GL(2,C), det(g) ∈ R

}
,

N =
{(

E2 0
C E2

)
: C ∈ H(2)

}
,

N ′ =
{(

E2 B
0 E2

)
: B ∈ H(2)

}
.

In addition, we have diffeomorphisms P = MAN and Iso(1, 3) = MAT where M is the
group of Lorentz transformations, A the group of dilatations, N the group of special
conformal transformations and T the group of translations.
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a) Lorentz transformations M

m =
(
a 0
0 a−1

)
, a ∈ SL(2,C).

The infinitesimal generators are

Mµν :=
(
σµσν 0

0 σνσµ

)
for 0 ≤ µ, ν ≤ 4. The matrices σµ are the Pauli matrices.

b) Dilatations A

a =
(
|a|

1
2E2 0
0 |a|−

1
2E2

)
, |a| > 0.

The infinitesimal generator is

D :=
(
E2 0
0 −E2

)
.

c) Special conformal transformations N(
E2 0

iN(x) E2

)
, N(x) := x0E2 −

3∑
k=1

xkσk, x ∈ R4.

The infinitesimal generators are

K0 =
(

0 0
iE2 0

)
, Kk =

(
0 0
−iσk 0

)
.

d) Translations T (
E2 iT (x)
0 E2

)
, T (x) := x0E2 +

3∑
k=1

xkσk, x ∈ R4.

The infinitesimal generators are

P 0 =
(

0 iE2
0 0

)
, P k =

(
0 iσk
0 0

)
, k = 1, 2, 3.

4.2. Superconformal algebra
Superconformal algebras can be understood as supersymmetric extensions of conformal
algebras. They contain the Poincaré superalgebra as a subsuperalgebra and include the
conformal algebra within their even (bosonic) part. These algebras are expected to satisfy
the following two conditions:

• They act as infinitesimal automorphisms on Minkowski superspace, extending the
natural action of the Poincaré superalgebra.

• When restricted to ordinary Minkowski space, the action of the even part extends
the natural action of the conformal algebra.

Before providing a precise definition of superconformal algebras, we briefly introduce the
necessary concepts.
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Minkowski superspace / Superspacetime

Minkowski superspace, or superspacetime, is a supersymmetric extension of Minkowski
space, which is modeled as an affine space underlying (R1,d−1, g1,d−1). The construction
presented here is based on [45, Lecture 3] and [136, Chapter 7].

We begin by fixing some data. Let M denote the real vector space (R1,d−1, g1,d−1), and
let M be the affine Minkowski space modeled on M . A vector v ∈ M is called timelike if
g(v, v) < 0. The set of all future-directed timelike vectors forms a cone, denoted by C.

The isometry group of M is the Poincaré group ISO(1, d − 1) = R1,d−1 ⋊ O(1, d − 1),
with Lie algebra iso(1, d − 1) = R1,d−1 ⊕ so(1, d − 1). The Lie group O(1, d − 1) is called
the Lorentz group, and its Lie algebra so(1, d− 1) is called the Lorentz algebra.

Let (κ, S) be a real spin representation of so(1, d − 1), not necessarily minimal. On S,
we consider a symmetric bilinear form Γ : S⊗S −→M, as discussed in [15, 19, 136], which
satisfies

Γ(κ(A)u, v) + Γ(u, κ(A)v) = AΓ(u, v)

for all u, v ∈ S and A ∈ so(1, d− 1). We also require Γ(·, ·) to satisfy a positivity condition:

Γ(s, s) ∈ C, Γ(s, s) = 0 ⇐⇒ s = 0,

where C denotes the closure of C.
Superspacetime reflects the symmetry between vectors and spinors, viewed respectively

as representations of bosons and fermions. This symmetry leads to the definition of a
translation superalgebra l := M ⊕S∗, equipped with a Lie superalgebra structure. The Lie
bracket [·, ·] is trivial on M and defined on S as follows:

[s1, s2] = −2Γ(s1, s2) ∈M, s1, s2 ∈ S.

The Minkowski superspace, or superspacetime, is the supermanifold underlying the real
Lie supergroup exp(l); explicitly,

M∼= M×Π(S).

The supersymmetry algebra of M is the Poincaré superalgebra. It contains both the
translation superalgebra l and the Poincaré algebra iso(1, d− 1). For the remainder of this
section, we focus primarily on the associated complexifications.

Poincaré superalgebra

We construct the complex Poincaré superalgebras as described in [135]. Real Poincaré
superalgebras then arise as specific real forms of their complex counterparts.

Let S be the complex spin representation of so(d,C), the complex special orthogonal
algebra in dimension d. A real form is the Lorentz algebra so(1, d− 1). If d is even, there
are two inequivalent complex linear irreducible representations, S1 and S2, called Weyl
spinor representations, such that S = S1⊕S2. If d is odd, the complex spin representation
is irreducible.
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The complex Poincaré superalgebra siso(d,C) is defined by

siso(d,C)0̄ := so(d,C)⊕ Cd,

siso(d,C)1̄ :=



S1 ⊕ S2, d ≡ 0, 4 mod 8,
S1, d ≡ 2 mod 8,
S1 ⊕ S1, d ≡ 6 mod 8,
S, d ≡ 1, 3 mod 8,
S ⊕ S, d ≡ 5, 7 mod 8.

The bracket between two elements of siso(d,C)0̄ is the usual Lie bracket. The bracket
between an element (A, x) ∈ siso(d,C)0̄ and s ∈ siso(d,C)1̄ is defined by

[(A, x), s] := κ(A)s,

where κ denotes the spin representation.
The bracket on siso(d,C)1̄ is defined via the non-zero symmetric bilinear form Γ : S ⊗

S −→ Cd, which is the complex version of Γ above. The bracket on the odd part, siso(d,C)1̄,
is then defined as follows:

[u, v] := Γ(u, v),


u ∈ S1, v ∈ S2, d ≡ 0, 4 mod 8,
u, v ∈ S1, d ≡ 2 mod 8,
u, v ∈ S, d ≡ 1, 3 mod 8,

[(u1, u2), (v1, v2)] := Γ(u1, v2)− Γ(u2, v1),
{
ui, vi ∈ S1, d ≡ 6 mod 8,
ui, vi ∈ S, d ≡ 5, 7 mod 8.

Superconformal algebras

We now provide a motivated definition of superconformal algebras. Let M = (M,OM ) be
the complex Minkowski superspace. A complex Lie superalgebra L = L0̄ ⊕ L1̄ satisfying
the following three conditions is referred to as a complex superconformal Lie algebra (see
[135]):

a) L acts as infinitesimal automorphisms of M; that is, there exists a Lie superalgebra
homomorphism from L into the Lie superalgebra of graded derivations of the ring of
superfunctions on M:

L −→ Der(OM ).

b) L contains the Poincaré superalgebra as a Lie subsuperalgebra, and the action de-
scribed in (a), when restricted to this subsuperalgebra, is compatible with the natural
action of the Poincaré superalgebra.

c) The even part L0̄ contains the conformal algebra so(2, d) as a subalgebra. When its
action is restricted to ordinary Minkowski space, it is compatible with the natural
action of the conformal algebra.

The classification of complex superconformal Lie algebras is due to Nahm [100] and
Shnider [135]. Shnider’s classification relies on the observation that any superconformal
algebra is simple, and it builds upon Kac’s classification of simple Lie superalgebras in [76].
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More precisely, the classification proceeds in three steps. First, it is shown that L is
simple. Second, L0̄ is identified as the direct sum of so(d + 2,C) and a complementary
ideal. Finally, Kac’s classification theorem is applied to determine all such simple Lie
superalgebras.

This analysis shows that for d ≥ 7, any Lie superalgebra containing so(d + 2,C) in
its even part fails to admit the spinor representation of so(d,C) in the odd component.
Therefore, no superconformal Lie algebra exists in dimension d > 6.

Furthermore, Kac’s classification provides a complete description of the structure of
superconformal Lie algebras.

Theorem 4.2.1 ([135]). For a complex Minkowski superspaceM of dimension d ≥ 7, it is
not possible to define a superconformal Lie algebra. In particular, complex superconformal
extensions of the complex Poincaré superalgebra exist (apart from dimensions ≤ 2) in
dimensions 3, 4, 5, and 6, as follows:

d N complex superconformal algebra
3 2k + 1 osp(2k + 1|4)
3 2k osp(2k|4)
4 k + 1 sl(4|k + 1)
5 1 F (4)
6 k osp(8|2k)

Here, d denotes the spacetime dimension, N the number of supersymmetries, and k is a
positive integer.

Remark 4.2.2. Superconformal algebras also exist for d = 1, 2. In two dimensions, they
arise as subsuperalgebras of the Virasoro superalgebras.

70



Part II.

On Unitarizable Supermodules





5. The unitary dual and discrete series
representations

In this chapter, unless otherwise stated, we consider a (linear) connected reductive Lie group
G, that is, G is a closed connected group of real or complex matrices that is stable under
conjugate transpose. If G has finite center, it is called semisimple. We are particularly
interested in the semisimple Lie group SU(p, q), for which G is often used as a placeholder.

5.1. SU(p, q) and su(p, q)

We provide a brief introduction to SU(p, q), the indefinite special unitary group of signature
(p,−q), along with its Lie algebra su(p, q) and associated structure theory.

A general element g ∈ SU(p, q) is of the form

g =
(
A B
C D

)
, A†Ip,qA = Ip,q, det(A) = 1,

where A is a p × p matrix, B a p × q matrix, C a q × p matrix, and D a q × q matrix.
Moreover, Ip,q is the diagonal matrix with 1 in the first p entries and −1 in the last q entries,
and (·)† denotes the complex conjugate transpose. The group SU(p, q) is connected and
non-compact.

The associated real semisimple Lie algebra of SU(p, q) is

su(p, q) =
{
A ∈ Mat(p+ q,C) : A†Ip,q + Ip,qA = 0, tr(A) = 0

}
,

equipped with the canonical matrix commutator. The (global) Cartan involution

Θ : SU(p, q) −→ SU(p, q)

on SU(p, q), mapping A to
(
A†
)−1

, induces an infinitesimal Cartan involution θ on su(p, q),
given by mapping an element X ∈ su(p, q) to −X†. Then su(p, q) has the Cartan decom-
position

su(p, q) = k⊕ p

with k = {X ∈ su(p, q) : θ(X) = X} and p = {Y ∈ su(p, q) : θ(Y ) = −Y }. The Lie
algebra k is the compact part of su(p, q), and p is the non-compact part. The global
Cartan decomposition is [83, Proposition 1.2]:

SU(p, q) = K · exp(p).

Here, K ∼= S (U(p)×U(q)) is a maximal compact subgroup of SU(p, q) with Lie algebra k.



The complexification of su(p, q) is the complex special linear Lie algebra sl(n,C) with
p + q = n. Let kC and pC denote the complexifications of k and p, respectively. Then the
Cartan decomposition transfers to the complexifications

sl(n,C) = kC ⊕ pC.

In su(p, q), we fix the (maximal compact) Cartan subalgebra t of diagonal matrices, and
we denote by tC its dual space. The analytic subgroup of SU(p, q) corresponding to t will be
denoted by T ; it is a maximal compact torus in K. The complexification tC of t gives us a
Cartan subalgebra of kC and sl(n,C), respectively. Thus, we can construct the root systems
∆ := ∆(sl(n,C); tC) and ∆c := ∆(kC; tC). We equip tC with the canonical basis given by
the elementary matrices {Eij}. The canonical dual basis takes the form {ε1, . . . , εn} with
εi(H) = hi for i = 1, . . . , n and any H = diag(h1, . . . , hn) ∈ t. In particular, any λ ∈ (tC)∗

can be written as
λ =

n∑
i=1

λiεi = (λ1, . . . , λn), λi ∈ C.

The root system is ∆ = {εi − εj : i 6= j} with root spaces gεi−εj = CEij , satisfying the
relation ∑n

i=1 εi = 0. On the other hand, the compact root system is given by

∆c = {±(εi − εj),±(εk − εl) : 1 ≤ i < j ≤ p, p+ 1 ≤ k < l ≤ n},

which we identify naturally with a subset of ∆. Consequently, the root system ∆ can be
decomposed into a set of compact roots ∆c and a set of non-compact roots ∆n := ∆ \∆c.

We identify the Weyl group W of ∆ with the symmetric group Sn of degree n acting on
tC by permutation of diagonal matrix elements. The compact Weyl group Wc ⊂W can be
identified with the subgroup Sp × Sq in the canonical way.

On the set of compact roots, we fix for this thesis the positive system

∆+
c = {εi − εj , εk − εl : 1 ≤ i < j ≤ p, p+ 1 ≤ k < l ≤ n}.

Any set of positive roots ∆+ ⊂ ∆ must contain ∆+
c . With respect to a fixed positive

system ∆+, we then define the associated Weyl elements

ρ = 1
2
∑
α∈∆+

α, ρc = 1
2
∑
α∈∆+

c

α, ρn = 1
2
∑
α∈∆+

n

α,

where ∆+
n := ∆+ ∩∆n. Moreover, we define the standard Borel subalgebra of sl(n,C) to

be
b := tC ⊕ n+, with n+ :=

⊕
α∈∆+

gα.

The Killing form on sl(n,C), given by (·, ·) : sl(n,C) × sl(n,C) → C with (X,Y ) :=
tr(XY ) for any X,Y ∈ sl(n,C), induces through restriction on tC× tC a W -invariant non-
degenerate symmetric bilinear form (·, ·). Moreover, we obtain naturally a W -invariant
non-degenerate symmetric bilinear form (·, ·) on the dual (tC)∗.

A linear functional on tC is called analytically integral if for any H ∈ t with exp(H) = 1,
we have λ(H) ∈ 2πiZ. Any analytically integral linear functional on tC satisfies

2 (λ, α)
(α, α)

∈ Z

for all α ∈ ∆. A linear functional satisfying the latter condition is called algebraically
integral, or simply integral.
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5.2. The unitary dual
This section discusses the definition of the unitary dual of a real reductive Lie group
G, which consists of all equivalence classes of irreducible unitary representations of G.
We begin by recalling key definitions in Section 5.2.1 and the decomposition of general
unitary representations in Section 5.2.2. While Section 5.2.3 focuses on the decomposition
of unitary representations under a maximal compact subgroup, an algebraic approach to
unitary irreducible representations is presented in Section 5.2.4. Our exposition follows
[44, Chapter 3], [83, Chapters III and IX], and [103].

5.2.1. Basic definitions

Let (H, 〈·, ·〉) be a (complex) Hilbert space. A unitary operator U is an invertible continuous
transformation with a continuous inverse such that U † = U−1, where U † denotes the Hilbert
space adjoint of U . The set of all unitary operators on H forms a group, called the unitary
group U(H). Throughout this thesis, we consider U(H) as a topological group equipped
with the weak operator topology, which is the coarsest topology for which all functions

fv,w : U(H)→ C, U 7→ 〈Uv,w〉, v, w ∈ H

are continuous. This topology coincides with the strong operator topology, which is the
coarsest topology for which all maps

U(H)→ H, U 7→ Uv, v ∈ H

are continuous.

Definition 5.2.1. A unitary representation of G is a pair (π,H), where H is a complex
Hilbert space and π : G→ U(H) is a continuous group homomorphism.

Note that the continuity of a unitary representation (π,H) is equivalent to the continuity
of all matrix coefficients

πv,w : G→ C, πv,w(g) := 〈π(g)v, w〉.

Here, it is enough to check continuity for a dense subspace of H.

Example 5.2.2. Fix a Haar measure dg on G, and consider the Hilbert space L2(G) :=
L2(G,dg) of square-integrable functions, equipped with the inner product

〈f1, f2〉L2(G) :=
∫
G
f1(g)f2(g) dg, f1, f2 ∈ L2(G).

The left translation action of G on itself induces the left regular representation of G on
L2(G), given by

[πL(x)f ](y) = f(x−1y), f ∈ L2(G), x, y ∈ G.

This defines a unitary representation.
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Let (π1,H1) and (π2,H2) be two unitary representations of G. A continuous linear map
T : H1 → H2 is called an intertwining operator from H1 to H2 if T satisfies

T ◦ ρ1(g) = ρ2(g) ◦ T, ∀g ∈ G.

If T is an isomorphism, we say that H1 and H2 equivalent. The set of all intertwining
operators is denoted by C(π1, π2). In addition, if T is unitary, we call H1 and H2 unitar-
ily equivalent. However, as H1,H2 are unitary representations, equivalence and unitary
equivalence coincide.

A closed subspace V ⊂ H of a unitary representation (π,H) is called G-invariant if
π(g)V ⊂ V for all g ∈ G. If V is G-invariant, then (π|V , V ) is a unitary representation of
G, called a subrepresentation of (π,H). A unitary representation (π,H) is called irreducible
if there are no non-trivial closed G-invariant subspaces, i.e., {0} and H are the only G-
invariant subspaces.

Definition 5.2.3. If (π,H) is an irreducible unitary representation of G, we write [π]
for its unitary equivalence class. The set of all equivalence classes of irreducible unitary
representations is denoted by Ĝ and is called the unitary dual of G.

A central problem of representation theory is to describe the unitary dual Ĝ of a given
Lie group G, which provides building blocks for unitary representations as we shall now
see.

5.2.2. Decomposing unitary representations

We decompose unitary representations (π,H) into simpler pieces, known as cyclic sub-
spaces. Furthermore, we decompose H into discrete and continuous parts, where the
discrete part is identified as the closed subspace generated by all irreducible subrepre-
sentations.

The first basic observation is that for any closed invariant subspace, its orthogonal
complement is also invariant. This establishes subrepresentations as summands in direct
sums.

Proposition 5.2.4. Let (π,H) be a unitary representation of G. If V is a G-invariant
closed subspace, then V ⊥ := {v ∈ H : 〈v, w〉 = 0, for all w ∈ V } is a closed G-invariant
subspace. In particular, if π has a non-trivial closed G-invariant subspace V , then H =
V ⊕ V ⊥.

The proof of this proposition is straightforward and will be omitted. Iterating this
process leads to a decomposition of H into smaller pieces called cyclic subrepresentations.
For any v ∈ H, the closed linear span Hv of {π(g)v : g ∈ G} in H is called the cyclic
subspace generated by v. If H = Hv, the vector v is called a cyclic vector for π, and
π is called a cyclic representation. Combining Proposition 5.2.4 and Zorn’s lemma, the
following theorem follows immediately.

Theorem 5.2.5 ([44, Proposition 3.3]). Any unitary representation of G is a direct sum
of cyclic representations.
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The direct sum is possibly infinite, and we have to clarify what we mean by a Hilbert
space direct sum. For a countable family (Hi)i∈I of Hilbert spaces, we define the Hilbert
space direct sum by ⊕

i∈I
Hi := {(vi)i∈I ∈

∏
i∈I
Hi :

∑
i∈I
〈vi, vi〉 <∞},

which is a Hilbert space with inner product

〈(vi)i∈I , (wi)i∈I〉 :=
∑
i∈I
〈vi, wi〉Hi .

The Hilbert space Hi can be identified with the subspace {(vi)i∈I : vj = 0 for all j 6= i}.
If K is a compact group, every unitary representation is indeed a direct sum of irreducible

subrepresentations. This is the famous Peter–Weyl theorem.

Theorem 5.2.6 ([44, Theorem 5.12]). Let (π,H) be a continuous representation of a
compact Lie group K. Then (π,H) is a direct sum of irreducible representations. Moreover,
any irreducible representation of K is finite-dimensional.

The irreducibility of a given unitary representation (π,H) can be investigated with
C(π) := C(π, π), i.e., the space of bounded operators on H that commute with π(g) for any
g ∈ G. We call C(π) the commutant of π. The central result is Schur’s lemma.

Lemma 5.2.7 ([44, Lemma 3.5]). a) A unitary representation (π,H) of G is irreducible
if and only if C(π) consists solely of scalar multiples of the identity.

b) Let (π1,H1) and (π2,H2) be two irreducible unitary representations of G. If π1 and
π2 are equivalent, then C(π1, π2) is one-dimensional; otherwise, C(π1, π2) = {0}.

Corollary 5.2.8. Let (π,H) be a unitary representation of G, and let (π1,H1), (π2,H2)
be two non-equivalent irreducible subrepresentations. Then H1 ⊥ H2.

We close this subsection by observing that any unitary representation (π,H) of G can
naturally be decomposed into a discrete part (πd,Hd) and a continuous part (πc,Hc). The
discrete part consists of a direct sum of irreducible representations, while the continuous
part contains no irreducible subrepresentations.

Proposition 5.2.9 ([103, Proposition 2.2.5]). Let (π,H) be a unitary representation of G.
Let Hd ⊂ H be the closed subspace generated by all irreducible subrepresentations. Then
the following assertions hold:

a) Hd is G-invariant, and the representation (πd,Hd) is a direct sum of irreducible
representations.

b) The orthogonal complement Hc := H⊥
d carries a representation (πc,Hc) of G that

does not contain any irreducible subrepresentations.

This leads to the notion of isotypic components of H. For an equivalence class [π] ∈ Ĝ,
we write H[π] ⊂ H for the closed subspace generated by all irreducible subrepresentations
of type [π]. The discrete part of (π,H) is the orthogonal direct sum

Hd =
⊕

[π]∈Ĝ

H[π],

and the subspaces H[π] are known as isotypic components of H.
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5.2.3. Unitary representations are admissible
The following subsection examines a given (unitary) representation (π,H) of G as a (uni-
tary) representation of an underlying maximal compact subgroup K. We follow [83, Chap-
ter VIII].

Let (π,H) be a unitary representation of G. Then (π|K ,H) is a unitary representation
of K, and by the Peter–Weyl Theorem, (π|K ,H) decomposes into an orthogonal sum of
spaces on which π|K is irreducible. Specifically, we have

π|K ∼=
∑

[ρ]∈K̂

mρρ,

where K̂ denotes the set of equivalence classes of irreducible representations of K and mρ ∈
N ∪ {∞} denotes the multiplicity. The equivalence classes [ρ] occurring π|K with positive
multiplicity are called the K-types of π. A unitary representation is called admissible if
every K-type occurs with finite multiplicity.

Theorem 5.2.10 ([83, Theorem 8.1]). Let (π,H) be an irreducible unitary representation
of G. Then the multiplicities of the K-types in π|K satisfy

mρ ≤ dim ρ, [ρ] ∈ K̂.

In particular, irreducible unitary representations of G are admissible.

The theorem introduces the notion of K-finite vectors. A vector v ∈ H, in a unitary
representation (π,H), is called K-finite if π(K)v spans a finite-dimensional space. We
denote the space of all K-finite vectors by HK . If (π,H) is irreducible, the space HK is
dense in H by the Peter–Weyl Theorem.

5.2.4. Harish-Chandra modules and infinitesimal unitary equivalence
We fix an admissible unitary representation (π,H) of G. Let g denote the Lie algebra of
G. Associated to (π,H) is a (unitarizable) representation of g, referred to as the derived
representation. We follow [83, Chapter III, Chapter VIII] and [4].

To define this representation, we consider the subspace H∞ ⊂ H of smooth vectors. A
vector v ∈ H is called smooth if the map

G→ H, g 7→ π(g)v

is infinitely differentiable. The space H∞ consists of all such smooth vectors, and is known
to be dense in H with respect to the Hilbert space topology [83, Theorem 3.15].

The Lie algebra g acts naturally on the space of smooth vectors, yielding the derived
representation

dπ : g→ End(H∞), dπ(X)v := d
dt

∣∣∣∣∣
t=0

π(exp(tX))v.

A direct calculation confirms that for all X ∈ g, the operator dπ(X) stabilizes H∞, and
furthermore, the assignment X 7→ dπ(X) respects the Lie bracket. This implies that H∞

naturally carries the structure of a module over the universal enveloping algebra U(g) [83,
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Proposition 3.9]. Moreover, the conjugation action of G on End(H) induces an automor-
phism of U(g), which is preserved under π:

π(g)dπ(X)π(g)−1 = dπ(Ad(g)(X)), ∀g ∈ G, X ∈ g.

Despite the natural analytical structure of H∞, it is often too large to be effectively used
in algebraic considerations. Therefore, a smaller, more manageable subspace is considered.
Specifically, we focus on the subspace of K-finite vectors, denoted by HK , where K is a
maximal compact subgroup of G.

Every K-finite vector is smooth, and it follows from [83, Proposition 8.5] that the sub-
space HK is stable under the action of dπ(g). Consequently, any admissible unitary rep-
resentation (π,H) of G defines a well-behaved representation of g on HK , allowing us to
compare admissible unitary representations at the level of Lie algebra representations.

A key observation is that the pair (dπ,HK) is itself unitarizable, meaning that the space
HK of K-finite vectors admits an inner product with respect to which dπ(g) acts by skew-
Hermitian operators. If (π,H) is irreducible, this inner product is unique up to a constant.

The space HK serves simultaneously as a U(g)-module and as a representation of K,
where the action of K preserves the U(g)-module structure. In other words, HK forms
a (g,K)-module. If π is irreducible, then each K-isotypic component Hσ, corresponding
to an irreducible representation σ of K, is finite-dimensional. In this case, HK is called
the Harish-Chandra module associated with (π,H). Two representations are called in-
finitesimally equivalent if their Harish-Chandra modules are algebraic equivalent. Notably,
Harish-Chandra modules completely classify unitary irreducible representations, meaning
that the unitary representation (π,H) is uniquely determined by its associated Harish-
Chandra module.

Proposition 5.2.11 ([4, Theorem 5]). Let (π,H) be a unitary representation, and let
(dπ,HK) be the corresponding (g,K)-module. Then there is a one-to-one correspondence

{closed G-invariant subspaces of H} ←→ {(g,K)-invariant subspaces of HK}

given by
U 7→ U ∩HK , W 7→W,

where W denotes the Hilbert space closure of W in H. In particular, two unitary irre-
ducible representations (π1,H1) and (π2,H2) are unitarily equivalent if and only if their
corresponding Harish-Chandra modules (dπ1,HK1 ) and (dπ2,HK2 ) are isomorphic.

We record that the Harish-Chandra module of an irreducible unitary representation
(π,H) consists entirely of analytic vectors. Here, a smooth vector v ∈ H∞ is called analytic
if there exists an r > 0 such that the power series

fv : Br → H, fv(X) =
∞∑
k=0

1
k!
ρ(X)kv (5.2.1)

defines a holomorphic function on Br := {X ∈ g : ‖X‖ < r}, where ‖·‖ denotes an Ad(T )-
invariant norm on g, T being the Cartan subgroup associated to the Cartan subalgebra t,
and we have extended the derived representation to a representation of the complexification
g on the complex vector space HK , denoted by the same symbol. For every r > 0, let Ha,r
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denote the set of all analytic vectors for which (5.2.1) converges on Br. These spaces
are dense in H. An important class of unitary G-representations consists of the highest
weight representations, which are characterized by the property thatHK is a highest weight
module for the universal enveloping algebra U(g). In this setting, the derived representation
dπ extends naturally to a representation of the complexified Lie algebra gC on the complex
vector space H∞, which we continue to denote by the same symbol.

Definition 5.2.12. A unitarizable highest weight g-module L(Λ) is called a highest weight
representation for G if there exists a unitary representation (π,H) of G such that L(Λ) is
isomorphic to the Harish-Chandra module of (π,H).

Proposition 5.2.13 ([4, Theorem 7], [102, Theorem X.2.8]). A simple highest weight g-
module L(Λ) is unitarizable if and only if it is a highest weight representation for the
universal cover G̃ of G.

In the case of highest weight representations, unitarizability imposes additional con-
straints on the possible highest weights Λ, typically requiring them to be in a certain real
form and satisfying positivity conditions. The classification of unitarizable highest weight
modules is a central problem in representation theory and has been extensively studied in
various contexts.

5.3. Discrete series representations
The motivation for discrete series representations of semisimple Lie groups naturally arises
from Plancherel’s theorem, which describes the decomposition of the regular representa-
tion of a unimodular locally compact group G on L2(G) in terms of its unitary dual. The
Plancherel Theorem is a generalization of the Peter–Weyl Theorem for compact groups.
The Peter–Weyl Theorem asserts that the regular representation L2(K) of a compact group
K decomposes in a countable direct sum of irreducibles and each irreducible appears with
finite multiplicity (see Theorem 5.2.6. For a semisimple Lie group G, Harish-Chandra’s
work in [55] and [56] reveal the discrete part of L2(G). The irreducible unitary represen-
tations which enter here are the discrete series representations of G.

This section provides a brief introduction to discrete series representations of a general
semisimple Lie group G with Lie algebra g. First, we define the discrete series ofG and state
general properties. Next, we give an equivalent characterization using Harish-Chandra
characters, and consider the holomorphic discrete series more in detail. Subsequently, we
introduce the limits of discrete series via Zuckerman functors. For both discrete series and
their limits, we describe the K-types and relate the associated Harish-Chandra modules.
The last part is devoted to the Blattner formula, which describes the decomposition of
unitary irreducible representations under a maximal compact subgroup.

5.3.1. Discrete series
The left regular representation L2(G) (see Example 5.2.2) admits a direct integral decom-
position known as the Plancherel decomposition (cf. [59]). Harish-Chandra’s foundational
work in [55, 56] identifies the discrete component of L2(G). The irreducible unitary repre-
sentations contributing to this discrete part are precisely the discrete series representations
of G.
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Definition 5.3.1. A unitary irreducible representation (π,H) of G is called a discrete
series representation ofG if π appears as a direct summand of the left regular representation
(πL, L2(G)). The set of isomorphism classes of discrete series representations is referred to
as the discrete series of G.

More precisely, the Plancherel decomposition of the left regular representation of G takes
the form [31, 59]:

L2(G) ∼=
∫ ⊕

Ĝ
Hj⊗̂H∗

j dµ(j),

where dµ is a positive Plancherel measure on the unitary dual Ĝ, Hj denotes an irreducible
unitary representation indexed by j ∈ Ĝ, and Hj⊗̂H∗

j is the Hilbert space tensor product
of Hj and its dual. The symbol

∫⊕ denotes the direct integral decomposition, for which
we refer to [44] for details. The discrete series representations of G correspond precisely to
those representations for which dµ(j0) > 0 [31, Chapter 18.8].

Equivalently, discrete series representations are exactly those unitary irreducible repre-
sentations (π,H) whose K-finite matrix coefficients [84, Proposition 9.6]

φv,w : G −→ C, g 7→ φv,w(g) := 〈v, π(g)w〉, v, w ∈ HK ,

belong to L2(G).
Now that we have established the notion of discrete series representations, natural ques-

tions arise regarding their existence and classification, both of which Harish-Chandra ad-
dressed in [55, 56]. We begin with the existence criterion.

Theorem 5.3.2 ([84, Theorem 12.20]). A semisimple Lie group G admits nontrivial dis-
crete series representations if and only if its rank coincides with that of a maximal compact
subgroup K, i.e., rk(G) = rk(K).

A real Lie group G obtained from a complex semisimple Lie group by forgetting the
complex structure never has discrete series representations, as rk(G) = 2rk(K) for any
maximal compact K. As an illustration, we summarize the existence of discrete series
representations for certain non-exceptional Lie groups in Table 5.1.

G K rk(G) rk(K) Discrete series?
SL(n,C) SU(n) 2n− 2 n− 1 No
SL(n,R) SO(n) n− 1

⌊
n
2
⌋

If n = 2
SU(p, q) S(U(p)× U(q)) p+ q − 1 p+ q − 1 Yes
SO(n,C) SO(n) 2

⌊
n
2
⌋ ⌊

n
2
⌋

No
SO(p, q) S(O(p)×O(q))

⌊
p+q

2

⌋ ⌊p
2
⌋

+
⌊ q

2
⌋

If p, q even
Sp(n,R) U(n) n n Yes

Table 5.1.: Existence of discrete series representations for some non-exceptional Lie groups.

The classification of discrete series representations was established by Harish-Chandra
in [56]. We state the main result following the notation in [84] and of Section 5.1.

Theorem 5.3.3 ([84, Theorem 9.20 and Theorem 12.21]). Let λ ∈ it∗ be non-singular
relative to the root system ∆, and define the set of positive roots as

∆+ := {α ∈ ∆ | (λ, α) > 0}.
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If λ + ρ is analytically integral, then there exists a discrete series representation πλ of G
with the following properties:

a) πλ has infinitesimal character χλ.

b) The restriction πλ
∣∣
K

contains, with multiplicity one, the K-type with highest weight

Λ = λ+ ρ− 2ρc,

where ρ and ρc are defined relative to ∆+.

c) If Λ′ is the highest weight of a K-type occurring in πλ
∣∣
K

, then it is of the form

Λ′ = Λ +
∑
α∈∆+

nαα, nα ∈ Z+.

Moreover, two such representations πλ are equivalent if and only if their parameters λ
are conjugate under Wc, the Weyl group associated with ∆c. The parameter λ is called
the Harish-Chandra parameter of the discrete series πλ, while the K-type parameter Λ is
known as the Blattner parameter. Furthermore, the discrete series representations of G
are precisely the representations πλ, up to equivalence.

Remark 5.3.4. a) The number of mutually inequivalent discrete series representations
of G is given by |W |/|Wc|.

b) Let ω denote the conjugate-linear anti-involution associated to the real form g of
gC. Then the parameters λ ∈ it∗ are precisely those satisfying λ(·) = λ(ω(·)). In
particular, we may talk about Harish-Chandra parameters Λ ∈ (tC)∗.

c) Discrete series representations are uniquely determined by their minimal K-type
[115]. The minimal K-type of an admissible representation of G on a Hilbert space
H is the K-type τΛ′ , among all K-types τΛ occurring in π, for which

|Λ + 2ρc|2

is minimized by Λ′ = Λ. Clearly, for discrete series representations, the minimal
K-type coincides with the Blattner parameter.

Example 5.3.5. We consider the conformal group SU(2, 2) as an example (see Section
4.1). Its structure theory is discussed in 5.1. As a t-basis, we use the elements

H1 :=


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , H2 :=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 , H3 :=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,
such that we can rewrite the set of roots as

∆ = {(±2, 0, 0), (0,±2, 0), (±1,±1,±2)},

where α = (m,n, l), given by m = α(H1), n = α(H2), and l = α(H3). The compact system
is

∆c = {±(e1 − e2),±(e3 − e4)} = {(±2, 0, 0), (0,±2, 0)},
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and as a positive system, we choose

∆+ = {ei − ej | i < j} = {(2, 0, 0), (0, 2, 0), (1, 1, 2), (1,−1, 2), (−1,−1, 2), (−1, 1, 2)},
∆+
c = {e1 − e2, e3 − e4} = {(2, 0, 0), (0, 2, 0)}.

Hence, the associated Weyl elements are

ρn = e1 + e2 − e3 − e4 = (1, 0, 4),

ρc = 1
2

(e1 − e2 + e3 − e4) = (1, 1, 0).

Obviously, ker(exp(tC)) = {2πinI | n ∈ Z} and ρSU(2,2)(2πinI) = 0 for all n ∈ Z, i.e., the
Weyl element is analytically integral, and λ + ρSU(2,2) is analytically integral if and only
if the Harish-Chandra parameter is analytically integral. The Harish-Chandra parameters
are the non-singular integral linear functionals on itC, i.e., if we write a linear functional
on itC as

4∑
i=1

ciei mod C(e1 + e2 + e3 + e4), ci ∈ C,

they satisfy ci − cj ∈ Z (integral condition) and ci 6= cj for i 6= j (non-singular condition).
The interchange of indices 1 and 2, or indices 3 and 4, or both, results in distinct equivalence
classes of the corresponding representations.

There are exactly six positive systems of the absolute roots containing compact positive
roots ∆+

c :

∆+
I = {(2, 0, 0), (1,−1, 2), (1, 1, 2), (−1,−1, 2), (−1, 1, 2), (0, 2, 0)},

∆+
II = {(1,−1, 2), (2, 0, 0), (1, 1, 2), (1, 1,−2), (0, 2, 0), (−1, 1, 2)},

∆+
III = {(1,−1, 2), (1, 1, 2), (2, 0, 0), (0, 2, 0), (1, 1,−2), (−1,−1,−2)},

∆+
IV = {(−1, 1,−2), (1, 1,−2), (0, 2, 0), (2, 0, 0), (1, 1, 2), (−1, 1, 2)},

∆+
V = {(−1, 1,−2), (0, 2, 0), (1, 1,−2), (1, 1, 2), (2, 0, 0), (1,−1,−2)},

∆+
V I = {(0, 2, 0), (−1, 1, 2), (1, 1,−2), (−1,−1,−2), (1,−1,−2), (2, 0, 0)}.

For each J ∈ {I, II, III, IV, V, V I}, we write ∆+
J,n := ∆+

J \∆+
c for the set of non-compact

positive roots. Further, we define the subset of dominant weights by

ΞJ := {Λ = [Λ1,Λ2,Λ3] | Λ is ∆+
J,n − dominant},

the space gives the Harish-Chandra parametrization of the discrete series representations
of SU(2, 2). Let πλ be a discrete series representation of SU(2, 2) with Harish-Chandra
parameter λ ∈ ΞJ . Then the Blattner parameter of πλ is given by Λ = λ−ρc+ρJ,n, where
ρJ,n is the half-sum of non-compact positive roots in ∆+

J,n. Note that πλ has minimal
K-type whose highest weight is Λ. For each J , Λ is given as

Λ =



λ+ (−1,−1, 4) λ ∈ ΞI ,
λ+ (0, 0, 2) λ ∈ ΞII ,
λ+ (1,−1, 0) λ ∈ ΞIII ,
λ+ (−1, 1, 0) λ ∈ ΞIV ,
λ+ (0, 0,−2) λ ∈ ΞV ,
λ+ (−1,−1,−4) λ ∈ ΞV I .
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The representations with the Harish-Chandra parameter λ ∈ ΞII ∪ ΞV are called large
discrete series. Those with Harish-Chandra parameter λ ∈ ΞI (resp. ΞV I) are called holo-
morphic (resp. anti-holomorphic) discrete series. The discrete series representations with
Harish-Chandra parameter λ ∈ ΞIII∪ΞIV are called middle discrete series representations.

5.3.2. Harish-Chandra characters
Discrete series representations of G are uniquely determined by their Harish-Chandra char-
acters, which we now introduce following [83, Chapter X] and [85].

To that end, fix a discrete series representation (πΛ,HΛ) of G, and recall the definition
of a trace class operator:

Definition 5.3.6. A trace class operator L on (HΛ, 〈·, ·〉HΛ) is a bounded linear operator
for which ∑

i

∣∣∣〈B−1LBei, ei〉HΛ

∣∣∣ <∞
holds for every orthonormal basis {ei} of HΛ and every bounded operator B : HΛ → HΛ
with bounded inverse. In this case, the sum ∑

i

∣∣〈B−1LBei, ei〉HΛ

∣∣ is independent of B and
is called the trace of L.

The Harish-Chandra character is a natural analog of the character of a finite-dimensional
representation, which is defined as the trace of its matrix coefficients. However, in general,
πΛ(x) is not trace class for all x ∈ G, so the trace of matrix coefficients is not well-defined.
To address this, Harish-Chandra introduced in [55] the notion of characters as distributions
on G.

Let C∞
c (G) denote the space of smooth functions with compact support on G. For

f ∈ C∞
c (G) and v ∈ HΛ, define

πΛ(f)v :=
∫
G
f(x)πΛ(x)v dx.

Using Theorem 5.2.10, one can show that πΛ(f) is trace-class for any f ∈ C∞
c (G). We

set Θ(f) := trπ(f), which is invariant under conjugation. This leads to the following
definition:

Definition 5.3.7. The distribution Θ on G is called the Harish-Chandra character of
(πΛ,HΛ).

We next show that the Harish-Chandra character uniquely determines discrete series
representations. We begin with the following proposition.

Proposition 5.3.8. Let (π,H) and (π′,H′) be two infinitesimally equivalent discrete series
representations of G, with Harish-Chandra characters Θ and Θ′, respectively. Then Θ = Θ′.

Proof. By Theorem 5.2.10, we can decompose H and H′ into their K-types. Fix an or-
thonormal basis of H compatible with this decomposition. For each K-type ρ, let Hρ ⊂ H
denote the subspace transforming according to ρ, and let Pρ denote the corresponding
orthogonal projection. Then, for any f ∈ C∞

c (G), we have

tr(π(f)) =
∑
ρ∈K̂

∫
G
f(x) tr(Pρπ(x)Pρ) dx.
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The integrands tr(Pρπ(x)Pρ) are built from K-finite matrix coefficients and are invariant
under infinitesimal equivalence. This proves the claim.

Furthermore, inequivalent discrete series representations of G have linearly independent
Harish-Chandra characters [83, Theorem 10.6]. Consequently, if the global characters of
two discrete series representations of G are equal, then the representations are infinitesi-
mally equivalent. Altogether, we obtain the following theorem.

Theorem 5.3.9. Discrete series representations are (up to unitary equivalence) uniquely
determined by their Harish-Chandra characters.

In [55, 56, 57], Harish-Chandra derived an explicit formula for the Harish-Chandra char-
acter. His proof is based on the observation that Θ is an eigendistribution of the center Z(g)
of the universal enveloping algebra, with eigenvalue equal to the infinitesimal character of
the representation. That is,

z ·Θ = χ(z)Θ,

where z ∈ Z(g) is considered as a left-invariant differential operator.
To state his result, fix a compact Cartan subalgebra t ⊂ g, with associated compact torus

T , and let K be a maximal compact subgroup of G. An element g ∈ G is called regular if
the dimension of its centralizer in G equals the dimension of t. Let Greg ⊂ G denote the
set of regular elements. We can now summarize Harish-Chandra’s result as follows:

Theorem 5.3.10 ([55, 56, 57]). a) There exists a locally integrable function ΘΛ : G→
C such that

Θ(f) =
∫
G

ΘΛ(g)f(g) dg, ∀f ∈ C∞
c (G).

b) For all regular elements g ∈ T , the Harish-Chandra character is given by

ΘΛ(g) = (−1)
dim(G/K)

2

( ∑
w∈Wc

sign(w)ewΛ

eρ0̄
∏
α∈∆+(1− e−α)

)
(g),

where sign(w) denotes the signature of w ∈Wc.

When referring to the calculation of a representation’s character, we typically mean the
evaluation of ΘΛ on Greg.

5.3.3. Holomorphic discrete series representations
We are interested in a special type of discrete series representations: the holomorphic
discrete series. These unitary irreducible representations of G are distinguished as the
associated Harish-Chandra modules are of highest weight type. We give a brief introduc-
tion to holomorphic discrete series, explain their name, and provide a classification. The
standard literature is [83, Chapter VI] and [55].

We start with a standard construction that explains the name. Let µ ∈ it∗ be a dominant
integral weight with respect to ∆+

c , and let (σ, Vσ) denote the associated finite-dimensional
irreducible representation of K. Then K acts freely and properly on the product G × Vσ
by

p · (g, v) := (gp−1, σ(p)v)
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for all (g, v) ∈ G × Vσ and p ∈ K. We denote the associated quotient space by G ×K Vσ.
It has a unique structure of a smooth manifold, making the map G× Vσ → G×K Vσ into
a principal fiber bundle with structure group K. Let

pr1 : G×K Vσ → G/K, (g, v) 7→ gK

be the projection on the first coordinate. Then pr1 is a fiber bundle. We require that for
any g ∈ G the bijection

ϕg : Vσ → (pr1)−1(gK), v 7→ (g, v)

is linear, so that pr1 indeed defines a vector bundle over G/K. We call this vector bundle
associated to (σ, Vσ), and denote it by Vσ := (G×K Vσ,pr1). The group G acts smoothly by
left multiplication on the first coordinate on Vσ. Thus, Vσ can be viewed as a homogeneous
vector bundle over G/K, i.e., the following diagram commutes

Vσ Vσ

G/K G/K.

pr1

g·

pr1

s

In particular, g· maps each fiber (pr1)−1(xK) = (Vσ)x onto the fiber (Vσ)gx and for each
x ∈ G/K, the map g· : (Vσ)x → (Vσ)gx is linear. Indeed, the category of continuous finite-
dimensional representations of K is equivalent to the category of G-homogeneous vector
bundles on G/K.

Both G/K and Vσ have a G-invariant holomorphic structure. For this purpose, we
assume the complexification GC of G is simply connected. We denote the associated Lie
algebra by gC, the complexification of g. We consider the Cartan decomposition g = k⊕ p
from Section 5.1, and define p± :=

∑
α∈∆+

n
g±α. Then [k, p±] ⊂ p±, and a direct calculation

shows that p± are abelian Lie algebras. We denote by K, KC, P+, and P− the analytic
subgroups corresponding to k, kC, p+, and p−.

By the Harish-Chandra decomposition [83, Theorem 6.3], the space P+KCP− is open
in GC. Moreover, the product map from P+ × KC × P− to GC is a holomorphic diffeo-
morphism. In the complex analytic manifold GC/KCP+, we consider the orbit of the base
point under G. This yields an embedding of G/K into GC/KCP+ as a complex open
submanifold, using the fact that K = KCP+ ∩G. This is known as the Borel embedding.

To obtain a holomorphic structure on Vσ, we lift the representation σ uniquely to a
holomorphic representation of KCP+ so that σ(P+) = 1. Let Vσ → GC/KCP+ be the
associated holomorphic bundle arising from the holomorphic fibration KCP+ → GC →
GC/KCP+. Then, the pullback of the bundle Vσ → GC/KCP+ under the Borel embedding
restricts to exactly Vσ over G/K. Thus, Vσ has a holomorphic structure.

Let dk be the unique (up to a constant multiple) G-invariant Haar measure on G/K.
We define

Hµ :=
{
s : G/K → Vµ : s is a holomorphic section,

∫
G/K
||s(gK)||2 dk <∞

}
,

where the norm is defined with respect to the unique (up to a constant) Hermitian form
〈·, ·〉Vσ on Vσ. In particular, Hµ has a definite inner product

〈s, s′〉 :=
∫
G/K
〈s(gK), s′(gK)〉Vσ dk,
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and G acts unitarily on Hµ via

(gs)(x) = g · s(g−1 · x)

for g ∈ G, s ∈ Hµ and x ∈ G/K.

Theorem 5.3.11 ([55, Theorem 4]). Hµ is a Hilbert space and Hµ 6= {0} if and only if
(µ+ ρ, α) < 0 for any α ∈ ∆+

n . Moreover, if Hµ 6= {0}, then Hµ is an irreducible unitary
representation of G and has square-integrable matrix coefficients.

We say that the discrete series representations πλ are holomorphic if λ is ∆+
c -dominant

integral and satisfies the Harish-Chandra condition (λ+ ρ, α) < 0 for all α ∈ ∆+
n . This is

with respect to the choice of positive root system ∆+ and the corresponding G-invariant
complex structure on G/K.

Theorem 5.3.11 allows us to parametrize the holomorphic discrete series in terms of the
character group X∗(TC) of the complexification TC of T and Weyl chambers. The coset
X∗(TC) + ρ in X∗(TC) ⊗ R is independent of the choice of positive roots. We call an
element λ in X∗(TC)⊗ R regular if no dual root is orthogonal to λ; otherwise, λ is called
singular. Let (X∗(TC)⊗ R)reg denote the set of regular elements in X∗(TC)⊗ R, and set
(X∗(TC) + ρ)reg := (X∗(TC) + ρ)∩ (X∗(TC)⊗R)reg. A Weyl chamber of G is a connected
component of (X∗(TC)⊗R)reg. The Weyl chambers are in one-to-one correspondence with
the systems of positive roots for (g, t). We define a Weyl chamber C to be holomorphic
if for any λ in the interior of C we have (λ, α) < 0 for all α ∈ ∆+

n . Then there are
exactly |Wc| holomorphic Weyl chambers, forming a single orbit for the action of Wc. A
holomorphic Harish-Chandra parameter is then a pair (λ−ρ,C), where C is a holomorphic
Weyl chamber and λ ∈ (X∗(TC)+ρ)reg ∩C, i.e., there exists a bijection between the set of
isomorphism classes of holomorphic discrete series representations and (X∗(TC)+ρ)reg/Wc,
where the Weyl group Wc acts naturally.

Corollary 5.3.12. With respect to the standard positive system ∆+, the holomorphic
discrete series πλ of SU(p, q) are exactly those (up to action of Wc) with Harish-Chandra
parameter Λ = (λ1, . . . , λp, λp+1, . . . , λp+q) =

∑p+q
i=1 λiεi such that

λp ≤ λp−1 ≤ · · · ≤ λ1 ≤ λp+q ≤ · · · ≤ λp+1.

The holomorphic discrete series representations are examples of highest weight represen-
tations for G [4, Theorem 7], [102, Theorem X.2.8], that is, the Harish-Chandra modules
HK of holomorphic discrete series representations are highest weight g-modules. Note that
a unitarizable highest weight module can be integrated to a unitary irreducible representa-
tion of G only if the highest weight is integral, as all weights are obtained by differentiation
of a representation of a maximal torus in G.

5.3.4. Limits of discrete series representations
A unitary highest weight representation (πΛ,HΛ) belongs to the holomorphic discrete series
if (Λ + ρ, β) < 0 for any β ∈ ∆+

n , according to Harish-Chandra’s condition. Broadly
speaking, (πΛ,HΛ) belongs to the limit of the holomorphic discrete series if (Λ + ρ, β) = 0
for some β ∈ ∆+

n . Unfortunately, there is no intrinsic definition of limits of holomorphic
discrete series. Explicit constructions are provided through Harish-Chandra’s character
formula and Zuckerman–Jantzen tensoring.
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An irregular holomorphic Harish-Chandra parameter is a pair (λ,C), where C is a holo-
morphic Weyl chamber and λ ∈ (X∗(TC) + ρ0̄) ∩ C, such that λ is not orthogonal to any
simple compact dual root. A unitary highest weight representation (πΛ,HΛ), Λ = λ − ρ,
of G belongs to the limit of the holomorphic discrete series if there exists a holomorphic
Weyl chamber C such that (Λ, C) is an irregular holomorphic Harish-Chandra parame-
ter. Consequently, there is a bijection between the set of isomorphism classes of limits of
holomorphic discrete series representations and the Wc-orbits of irregular Harish-Chandra
parameters.

For completeness, we briefly outline the construction of limits of discrete series represen-
tations of G following [84], since the idea parallels that of translation functors in Section
9.2. We work in the category of (g,K)-modules, denoted by Mod(g,K) (see Section 5.2.4).

Fix a (g,K)-module (π, V ). Let Z(gC) be the center of the universal enveloping algebra of
the complexification gC. Then (π, V ) decomposes into generalized eigenspaces under Z(gC)
[84, Proposition 10.41]; that is, there exist linear functionals λ1, . . . , λn on tC, g-invariant
subspaces V1, . . . , Vn of V , and some positive integer d ∈ Z+ such that:

a) λ1, . . . , λn are mutually inequivalent under W .

b) V = V1 ⊕ · · · ⊕ Vn.

c) (z − χλj
(z))d acts as the zero operator on Vj for all z ∈ Z(gC).

d) For all 1 ≤ j ≤ n, there exists a zj ∈ Z(gC) such that Vj is the image of the action
on V by ∏

i 6=j
(zj − χλi

(zj))d.

These properties uniquely determine V1, . . . , Vn and determine λ1, . . . , λn up to the action
of W . Moreover, the closures V j of Vj are invariant under G. We say the representations
V j have infinitesimal character λj . The generalized eigenspaces under Z(gC) do not depend
on t.

For any object V in Mod(g,K), let p′
λ denote the projection onto the generalized eigenspace

associated with the infinitesimal character λ. This induces an exact functor (see [84, Propo-
sition 10.43]):

pλ : Mod(g,K) →Mod(g,K), V 7→ pλ(V ) := p′
λ(V ).

With respect to a fixed Cartan subalgebra t, we say λ ∈ tC is real if λ|t∩p is real, and
λ|t∩k is imaginary. We then decompose λ as λ = Re(λ) + iIm(λ). Now, choose a positive
system ∆+ such that Re(λ) is dominant. Let F ν and F−ν denote the finite-dimensional
irreducible representations of G with highest weight ν and lowest weight −ν. Assume that
both Re(λ) and ν are dominant with respect to ∆+. Note that Mod(g,K) is closed under
tensoring with finite-dimensional g-modules. Then the Zuckerman tensoring functors ϕ
and ψ are defined by

ϕλλ+ν := pλ+ν [(·)⊗ F ν ] pλ,
ψλ+ν
λ := pλ [(·)⊗ F−ν ] pλ+ν

for suitable domains. Both functors carry short exact sequences in short exact sequences
and are independent of the choice of t and of ∆+.
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Proposition 5.3.13. [84, Section 10] For a given positive system ∆+, let λ and ν be
linear functionals on tC such that Re(λ) and ν are dominant and ν is integral. Let Wλ and
Wλ+ν be the subgroups of the Weyl group leaving λ, respectively λ+ ν, fixed.

a) ϕλλ+ν carries any irreducible admissible representation of infinitesimal character λ to
an irreducible representation of infinitesimal character λ+ ν.

b) ψλ+ν
λ carries any irreducible admissible representation with infinitesimal character
λ+ ν to an irreducible admissible representation of infinitesimal character λ.

c) If V is an irreducible admissible representation with infinitesimal character λ, then
ψλ+ν
λ ϕλλ+νV is infinitesimally equivalent to V .

d) If V is an irreducible admissible representation with infinitesimal character λ + ν,
then ϕλλ+νψ

λ+ν
λ V is infinitesimally equivalent to V .

Assume λ is a singular integral form on tC, i.e., (λ + ρ, α) = 0 for some root α. Fix
a positive system ∆+ for ∆ that makes λ dominant. Now, fix a dominant integral form
µ such that λ + µ is non-singular. Using Zuckerman tensoring, we obtain an admissible
representation

π(λ,∆+) = ψλ+µ
λ (πλ+µ),

called the limit of discrete series.

Proposition 5.3.14 ([84, Corollary 12.27]). Let λ be dominant with respect to the choice
of a positive system ∆+. If λ + ρ is analytically integral and (λ, α) 6= 0 for all compact
positive roots α ∈ ∆+

c , then π(λ,∆+) is an irreducible unitary representation of G. Here,
distinct choices of µ lead to infinitesimally equivalent versions of π(λ,∆+).

Analogously to discrete series representations, we can decompose any limit of discrete
series representations in K-types and all K-types are of the form [86, Proposition 11.29]

λ− ρc + ρn +
∑
α∈∆+

nαα, nα ∈ Z+.

In particular, the K-type Λ := λ− ρc + ρn has multiplicity one and is called the Blattner
parameter of π(λ,∆+).

5.3.5. Blattner’s formula

For a general connected semisimple Lie group G and a maximal compact subgroup K ⊂ G,
Blattner’s formula addresses the classical branching problem of determining the restriction
of a discrete series representation of G to K. Specifically, it provides a closed formula for the
multiplicities of each possible K-type. The foundational result is presented in [122], with
further generalizations found in [3] and Theorem 8.29 together with Proposition 11.129
in [86]. In the following, we briefly state Blattner’s formula for the holomorphic discrete
series of G and their limits. We follow [122].

Without loss of generality, we consider G := SU(p, q) and adopt the notations of Section
5.1. Moreover, let Ξ denote the lattice in it∗ generated by the root system ∆.
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Theorem 5.3.15 ([122]). Let πλ be a discrete series representation with Harish-Chandra
parameter λ. If µ ∈ Ξ is dominant with respect to ∆+

c , the irreducible K-module of highest
weight µ occurs in the discrete series representation πλ with multiplicity∑

w∈W
ε(w)Q(w(µ+ ρc)− λ− ρn),

where ε(w) is the sign of the Weyl group element w ∈W , and Q(α) denotes the number of
distinct ways in which α ∈ Ξ can be written as a sum of positive, non-compact roots.

In [122], this result is established only for discrete series representations. However, the
same formula holds for limits of discrete series, as shown in [86]. Indeed, for a singular
λ choose the dominant integral element µ := ρ such that λ + µ is non-singular, and such
that the limit of discrete series is πλ = Ψλ+µ

λ (πλ+µ) where Ψ denotes the usual Jantzen–
Zuckerman translation functor. Let F−µ be an irreducible finite-dimensional representation
ofG with lowest weight−µ. Decompose πλ−µ and F−µ underK and take the tensor product
πλ+µ ⊗ F−µ. The K-types of the tensor product are λ′ + ν where λ′ is a K-type of πλ+µ
and ν is a weight of F−µ, or more precisely

λ′ = λ+ µ+
∑
α∈∆+

mαα, ν = −µ+
∑
α∈∆+

nαα.

The Blattner parameter associated to the Harish-Chandra parameter λ is

Λ = λ− ρc + ρn = λ+ ρ∆(su(p,q)C,t) − 2ρc.

In particular, we have the following corollary.

Corollary 5.3.16. Let L(Λ) be a unitarizable highest weight g-module. Then the irreducible
K-module of τµ of highest weight µ occurs in L(Λ) with multiplicity∑

w∈W
ε(w)Q(w(µ+ ρc)− Λ− ρc).

5.4. Relative holomorphic discrete series representations
Relative holomorphic discrete series representations are generalizations of holomorphic dis-
crete series representations of a semisimple Lie groups G to their simply connected covering
group G̃, which has infinite center. That is, they are unitary highest weight representa-
tions whose matrix coefficients are square-integrable modulo the infinite center, satisfying
Harish-Chandra’s condition on the highest weight. The Harish-Chandra condition, in par-
ticular, distinguishes them from other unitary irreducible highest weight representations.
In this section, we define and characterize relative holomorphic discrete series representa-
tions following [101]. In particular, we assign any relative discrete series representation a
formal dimension, which will play a central role in our construction of a formal superdi-
mension in Chapter 10.

In this section, G denotes either a semisimple Lie group G or its universal cover G̃. Let dg
denote the Haar measure on G and note that G is unimodular. We denote the associated
Lie algebra by g. Within g, we fix a maximal compact subalgebra k, as introduced in Section
2.1.4. The center in g of the center of k coincides with k, meaning that g is quasihermitian.
Moreover, we write T, T̃ ,T and K, K̃,K for the analytic subgroups corresponding to t and
k in G, G̃ and G, respectively.

90



5.4.1. Definition and classification
Let L(Λ) be a unitarizable highest weight g-module, such that L(Λ) is a highest weight
representation for G. Let (πΛ,HΛ) denote the unique unitary irreducible representation
of G such that its Harish-Chandra module HK is isomorphic to L(Λ). The representation
(πΛ,HΛ) can be realized geometrically. Since the center Z ⊂ G is a normal abelian
subgroup, Schur’s Lemma implies that each z ∈ Z acts on HΛ as a scalar multiple of the
identity. This induces a group homomorphism χπΛ : Z → C, called the central character
of (πΛ,HΛ), such that πΛ(z)v = χπΛ(z)v for any z ∈ Z and v ∈ HΛ. Let M := Z\G be
the right G-space of right cosets Zg for g ∈ G. Note that Z\G = G/Z, since Z is central.

We define EπΛ := G ×Z C to be the set of Z-orbits, where z.(g, z′) = (zg, χπΛ(z)z′),
and the orbit of (g, z) by [g, z] := Z.(g, z). On EπΛ , the group G acts from the right by
[g′, z].g := [g′g, z] for g, g′ ∈ G and z ∈ C. The projection map p : EπΛ → M given
by [g, z] 7→ Zg defines a complex line bundle over M . The vector space of continuous
sections of EπΛ , denoted by Γ(M,EπΛ), is a representation of G with action given by
(g.s)(Zx) := s(Zxg).g−1. This representation is equivalent to the representation

ΓG(EπΛ) := {f ∈ C(G,C) : f(zg) = χπΛ(z)f(g) for all z ∈ Z},

with action (g · f)(x) = f(xg). Indeed, if f ∈ ΓG(EπΛ), then σf (Zg) := [g, f(g)] defines a
continuous section. Conversely, if s ∈ Γ(M,EπΛ) is a section, there must be a continuous
function f : G→ C such that s(Zg) = [g, f(g)] = [zg, χπΛ(z)f(g)], i.e., f ∈ ΓG(EπΛ). The
compatibility of the G-actions follows from a straightforward calculation.

To construct a unitary representation, we consider the square-integrable sections. Since
the group G is unimodular, we can fix a G-invariant Haar measure dg on G. This induces
a G-invariant measure dµM on the quotient space M := Z\G [101, Proof of Proposition
2.2]. The space Γ2

G(EπΛ) of square-integrable elements,

Γ2
G(EπΛ) := {f ∈ ΓG(EπΛ) :

∫
M
|f(g)|2 dµM (Zg) <∞},

carries a natural Hermitian form,

〈f, h〉 :=
∫
M
f(g)h(g) dµM (Zg).

We continue to denote its Hilbert space completion by the same symbol. The action of G
on Γ2

G(EπΛ) then defines a unitary representation of G.
To compare (πΛ,HΛ) with Γ2

G(EπΛ), we examine the matrix coefficients of πΛ, which
define G-equivariant maps:

Ψ : HΛ → ΓG(EπΛ), Ψ(w)(g) := 〈w, πΛ(g−1)v〉

for some fixed v ∈ HΛ. Then, (πΛ,HΛ) and Γ2
G(EπΛ) can be compared if and only if the

matrix coefficients are square-integrable, in which case (πΛ,HΛ) can be considered a direct
summand in Γ2

G(EπΛ). The representations that belong to the relative holomorphic discrete
series are precisely those unitary representations that can be embedded in Γ2

G(EπΛ).

Definition 5.4.1 ([101, Definition 2.1]). A unitary irreducible highest weight represen-
tation (πΛ,HΛ) of G is said to belong to the relative holomorphic discrete series if there
exist v, w ∈ HΛ \ {0} such that the function defined by

Z\G→ C, Zg 7→ |〈πΛ(g)v, w〉|
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is square-integrable. In this case, we also say (πΛ,HΛ) is a relative holomorphic discrete
series representation of G.

Theorem 5.4.2 ([101, Theorem 2.1, Proposition 2.2]). Let (πΛ,HΛ) be a relative holo-
morphic discrete series representation of G, and let Ψ(u)(g) := 〈u, π(g−1)v〉 for a fixed
element 0 6= v ∈ HΛ. Then there exists a constant d(πΛ) > 0 such that

√
d(πΛ)Ψ is an

isometric G-equivariant embedding HΛ ↪→ Γ2
G(EπΛ).

Harish-Chandra classified in [54] all unitary highest weight representations of G that
belong to the relative holomorphic discrete series via explicit evaluation of the integral∫

M
|〈πΛ(g)vΛ, vΛ〉|2 dµM (Zg),

where vΛ denotes the highest weight vector of the underlying Harish-Chandra module HKΛ .

Theorem 5.4.3 ([54, Lemma 27, Lemma 29]). A unitary highest weight representation of
G with highest weight Λ belongs to the relative holomorphic discrete series if and only if,
for all β ∈ ∆+

n , we have
(Λ + ρ, β) < 0.

5.4.2. Formal dimension
The positive constant d(πΛ) in the isometric G-equivariant embedding of a relative holo-
morphic discrete series (πΛ,HΛ) in Γ2

G(EπΛ) (see Theorem 5.4.2) is called the formal di-
mension or formal degree of (πΛ,HΛ). By Schur’s Lemma, this constant appears in the
orthogonality relations, which justifies its name.

Proposition 5.4.4 ([101, Proposition 2.3]). Let (π1,H1) and (π2,H2) be two relative
holomorphic discrete series representations with the same central character χ. Then the
Godement–Harish-Chandra orthogonality relations hold:

∫
M
〈π1(g)v, w〉〈π2(g)v′, w′〉 dµM (Zg) =


1

d(π1)〈w
′, w〉〈v, v′〉 if π1 ∼= π2,

0 if π1 ≇ π2.

The formal dimension depends on the normalization of the Haar measure on M . How-
ever, once a normalization is fixed, it can be regarded as a function of πΛ. Evaluating the
integral above allows one to determine a natural normalization of the measure.

Theorem 5.4.5 ([101, Theorem 3.17]). With respect to a suitable normalization of the
measure dµM on M , the formal dimension d(πΛ) of a relative holomorphic discrete series
representation (πΛ,HΛ) is

d(πΛ) =
∏

α∈∆+
c

(Λ + ρc, α)
(ρc, α)

∏
β∈∆+

n

|(Λ + ρ, β)|
(ρ, β)

.

Remark 5.4.6. The positive integer ∏α∈∆+
c

(Λ+ρc,α)
(ρc,α) is precisely the dimension of the irre-

ducible K-representation with highest weight Λ.
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5.4.3. Harish-Chandra parameterization
Let T be the analytic subgroup of G corresponding to the Cartan subalgebra t, which is
compact if we consider G. However, we have Z ⊂ T, and T/Z is compact since Ad(G) of a
reductive Lie group is closed. This establishes a relationship between relative holomorphic
discrete series representations and square-integrable representations [101, Definition 3.4] of
G.

Lemma 5.4.7 ([101, Remark 3.5]). The following assertions are equivalent:

a) (πΛ,HΛ) is a relative holomorphic discrete series representation.

b) (πΛ,HΛ) is a square-integrable representation, i.e., there exists a non-trivial vec-
tor vΛ ∈ HK

Λ such that dπΛ(X)vΛ = 0 for any X ∈ n+, and the function gT 7→
|〈π(g)vΛ, vΛ〉| belongs to L2(G/T).

Remark 5.4.8. If we focus explicitly on G and its universal cover p : G̃→ G, the following
equivalence holds:

a) (πΛ,HΛ) is a square-integrable representation of G.

b) (πΛ ◦ p,HΛ) is a square-integrable representation of G̃.

The lemma allows us to parametrize the relative holomorphic discrete series in terms of
the character group X∗(TC) of the complexification TC of T and Weyl chambers. The
coset X∗(TC) + ρ of X∗(TC)⊗R is independent of the choice of positive roots. We call an
element λ in X∗(TC)⊗ R regular if no dual root is orthogonal to λ; otherwise, λ is called
singular. Let (X∗(TC)⊗ R)reg denote the set of regular elements in X∗(TC)⊗ R, and set
(X∗(TC) +ρ)reg := (X∗(TC) +ρ)∩ (X∗(TC)⊗R)reg. A Weyl chamber of G is a connected
component of (X∗(TC)⊗R)reg. The Weyl chambers are in one-to-one correspondence with
the systems of positive roots for (g, t). We define a Weyl chamber C to be holomorphic if
for any λ in the interior of C we have (λ, α) < 0 for all α ∈ ∆+

n . There are exactly |Wc|
holomorphic Weyl chambers, forming a single orbit for the action of Wc. A holomorphic
Harish-Chandra parameter is then a pair (λ−ρ,C), where C is a holomorphic Weyl chamber
and λ ∈ (X∗(TC) + ρ)reg ∩C, i.e., there exists a bijection between the set of isomorphism
classes of relative holomorphic discrete series representations and (X∗(TC) + ρ)reg/Wc,
where the Weyl group Wc acts naturally.

If we fix the standard positive system for SU(p, q), and consequently the standard Weyl
chamber Cst, any holomorphic Harish-Chandra parameter Λ satisfies

λp ≤ λp−1 ≤ · · · ≤ λ1 ≤ λp+q ≤ · · · ≤ λp+1.

Limit of relative holomorphic discrete series

A unitary highest weight representation (πΛ,HΛ) belongs to the relative holomorphic dis-
crete series if (Λ + ρ, β) < 0 for any β ∈ ∆+

n , according to Harish-Chandra’s condition.
Broadly speaking, (πΛ,HΛ) belongs to the limit of the relative holomorphic discrete series
if (Λ + ρ, β) = 0 for some β ∈ ∆+

n . Unfortunately, unlike the case of the relative holomor-
phic discrete series, there is no simple intrinsic definition for limits of relative holomorphic
discrete series. Explicit constructions are provided by Harish-Chandra’s character formula
and via Zuckerman–Jantzen tensoring as above.
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An irregular holomorphic Harish-Chandra parameter is a pair (λ − ρ,C), where C is a
holomorphic Weyl chamber and λ ∈ (X∗(TC) + ρ) ∩ C, such that λ is not regular and
not orthogonal to any simple compact dual root. A unitary highest weight representation
(πΛ,HΛ) of G belongs to the limit of the relative holomorphic discrete series if there exists
a holomorphic Weyl chamber C such that (λ − ρ,C) is an irregular holomorphic Harish-
Chandra parameter. Consequently, there is a bijection between the set of isomorphism
classes of limits of relative holomorphic discrete series representations and the Wc-orbits
of irregular Harish-Chandra parameters.

5.4.4. L-packets and formal dimension
Up to this point, we have discussed the relative holomorphic discrete series of G, which
denotes either G or its simply connected cover G̃. If we consider solely G, then the relative
holomorphic discrete series are exactly the holomorphic discrete series representations of G
(see Section 5.3.1). In the following, we are solely interested in holomorphic discrete series
representations of G, or rather their formal dimension. Concretely, we give a character
interpretation of the formal dimension.

As in the case of finite-dimensional representations of G, where the Harish-Chandra
character reduces to the Weyl character, it is natural to expect that taking the limit
g → eG of the Harish-Chandra character recovers the formal dimension. However, if one
attempts to take the limit g → eG in Harish-Chandra’s character formula for πΛ, the
formal degree is not obtained, as the Harish-Chandra character is not continuous at eG.
This issue is resolved by considering the L-packet associated with πΛ. The L-packet of
πΛ is the collection of (isomorphism classes of) all discrete series representations with the
same infinitesimal character. By Section 5.4.3, the L-packet associated with πΛ is

Θ̃ =
∑

w∈W/Wc

ΘwΛ.

Proposition 5.4.9 ([60]). The following assertion holds:

d(πΛ) = lim
g→eG, g∈T∩Greg

Θ̃(g).

Moreover, d(πΛ) = d(πwλ) for all w ∈W/Wc.
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6. Unitarity for Lie superalgebras and Lie
supergroups

This chapter introduces unitarizable supermodules over Lie superalgebras in Section 6.1
and unitary representations of Lie supergroups in Section 6.2. Specifically, we focus on
unitarizable supermodules over sl(m|n) and Lie superalgebras of type A(m|n). We ex-
plore the implications of unitarity, provide a parameterization of the simple unitarizable
supermodules, and establish that they are Harish-Chandra supermodules. Furthermore,
we construct a contravariant, non-degenerate form on simple highest weight supermodules,
known as the Shapovalov form. A central question is whether this form is positive definite,
which is necessary to establish unitarity.

Our main result concerning unitary representations of Lie supergroups G = (G, g) is that,
when g is of type A(m|n) or sl(m|n), these representations are completely determined by
the unitarizable highest weight supermodules over g.

6.1. Unitarizable supermodules over Lie superalgebras
6.1.1. Basic definitions

To formalize the notion of unitarizable supermodules, we first introduce the concept of a
pre-super Hilbert space which provides the foundational structure on which unitarizable
supermodules are built. We follow the conventions outlined in [27, Part 1]. Our exposition
is based on [73, 123, 126].

Let V = V0̄ ⊕ V1̄ be a complex super vector space. A super Hermitian form ψ on V is a
complex-valued sesquilinear form ψ : V × V → C, which is linear in the first variable and
conjugate-linear in the second, such that for all v, w ∈ V , the following holds:

ψ(v, w) =
{

(−1)p(v)p(w)ψ(w, v) if p(v) = p(w),
0 if p(v) 6= p(w).

Here, · denotes complex conjugation in C. The pair (V, ψ) is referred to as a Hermitian
superspace. A super Hermitian form ψ naturally decomposes as ψ = ψ0̄ + iψ1̄, where

ψz̄ := (−1)p(z)ψ
∣∣
Vz̄×Vz̄

, z̄ ∈ Z2,

such that ψ0̄ and ψ1̄ are Hermitian forms on the complex vector spaces V0̄ and V1̄, re-
spectively. The super Hermitian form ψ is called non-degenerate if ψ0̄ and ψ1̄ are non-
degenerate. Furthermore, ψ is called super positive definite if ψ0̄ is positive definite and ψ1̄
is negative definite, i.e., ψ is positive definite on V0̄, and −i-times positive definite on V1̄.
A super positive definite Hermitian form ψ on a complex super vector space V is called a
Hermitian product.



For a Hermitian superspace (V, ψ) the amendment

〈·, ·〉 : V × V → C, 〈v, w〉 :=


−iψ(v, w) if v, w ∈ V1̄,

ψ(v, w) if v, w ∈ V0̄,

0 else

defines a Hermitian form on V , which is positive definite if ψ is super positive definite.
Conversely, if 〈·, ·〉 is a (positive definite) Hermitian form on V such that 〈V0̄, V1̄〉 = 0, the
amendment above associates a (super positive definite) super Hermitian form ψ to 〈·, ·〉.
We conclude with the following lemma.

Lemma 6.1.1. For a complex super vector space V , the following two assertions are
equivalent:

a) V carries a super positive definite super Hermitian form ψ.

b) V is a Z2-graded complex pre-Hilbert space with a positive definite Hermitian form
〈·, ·〉 such that V0̄ and V1̄ are mutually orthogonal subspaces of V .

This leads to the definition of a super pre-Hilbert space.

Definition 6.1.2. A complex super vector space H is called a super pre-Hilbert space if
H satisfies either of the two equivalent properties of Lemma 6.1.1. In this case, write
H = (H, ψ, 〈·, ·〉).

Fix a super pre-Hilbert space H = (H, ψ, 〈·, ·〉). On H, any endomorphism T has two
adjoints: one relative to ψ and one relative to 〈·, ·〉. We define the adjoint T ∗ of T with
respect to ψ by

ψ(Tv,w) = (−1)p(T )p(v)ψ(v, T ∗w)

for all v, w ∈ H, and the adjoint T † with respect to 〈·, ·〉 by

〈Tv,w〉 = 〈v, T †w〉.

These are related by T ∗ = T † when T is even and T ∗ = iT † when T is odd. We call T ∗

the super-adjoint of T and T † the adjoint of T . The adjoint (·)† satisfies (ST )† = T †S†,
independent of the parity of S, T ∈ End(H). The superadjoint (·)∗ satisfies (ST )∗ =
(−1)p(S)p(T )T ∗S∗. Namely, (·)† defines a conjugate-linear anti-involution on End(H) while
(·)∗ defines a conjugate-linear graded anti-involution. In what follows, we denote the
conjugate-linear graded anti-involution (·)∗ on End(H) also by σ.

The concept of unitarity for supermodules over g is defined relative to real forms gR of
g, i.e., fixed point sets of conjugate-linear involutions, as established in Section 2.1.4.

Definition 6.1.3. Let ω ∈ aut2,2(g) be a conjugate-linear involution of g, and let (M,ρ)
be a g-supermodule. Then M is called ω-unitarizable if M is a super pre-Hilbert space
(M,ψ, 〈·, ·〉) such that one of the following two equivalent conditions hold:

a) ρ◦ω = σ◦ρ, that is, ψ(ρ(X)v, w) = −(−1)p(X)p(v)ψ(v, ρ(ω(X))w) for all homogeneous
v, w ∈M and X ∈ g.

b) 〈ρ(X)v, w〉 = 〈v,−ip(X)ρ(ω(X))w〉 for all homogeneous v, w ∈M and X ∈ g.
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If a) or b) is satisfied, we say that ψ or 〈·, ·〉 is contravariant.

Remark 6.1.4. For a ω-unitarizable g-supermodule (M,ρ), the following holds:

ρ(X)∗ =
{
−ρ(ω(X)) p(X) = 0,
+ρ(ω(X)) p(X) = 1,

, ρ(X)† =
{
−ρ(ω(X)) p(X) = 0,
−iρ(ω(X)) p(X) = 1.

Consequently, (M,ρ) is unitarizable if and only if M is a super pre-Hilbert space and the
following two conditions are satisfied:

a) For all X ∈ g0̄, the operator iρ(ω(X)) is symmetric on M .

b) For all X ∈ g1̄, the operator e−iπ
4 ρ(ω(X)) is symmetric on M .

Remark 6.1.5. We can use conjugate-linear anti-involutions instead of conjugate-linear
involutions. Indeed, to any ω ∈ aut2,2(g), we can assign a conjugate-linear anti-involution
defined by ω′(·) := −ip(·)ω(·). The following two assertions are then equivalent:

a) (M,ρ, ψ, 〈·, ·〉) is ω-unitarizable.

b) (M,ρ, 〈·, ·〉) is a super pre-Hilbert space such that

〈ρ(X)v, w〉 = 〈v, ρ(ω′(X))w〉.

In this thesis, we use the definition with respect to conjugate-linear involutions or conjugate-
linear anti-involutions interchangeably.

For clarity, the definition is formulated in terms of the Z2-graded representation ρ :
g → End(M). In what follows, however, we will continue to work with g-supermodules
suppressing the explicit Lie superalgebra homomorphism ρ. We will also think of the data
as defining a “unitary representation” of the real Lie superalgebra gω → gl(H)σ, although
we will not be concerned with integrability to Lie supergroups.

In the context of U(g)-supermodules, we extend ω to U(g) in the obvious way. In this
context, a g-supermodule H is unitarizable if and only if it is a Hermitian representation
of the supermodule H over (U(g), ω), meaning that 〈Xv,w〉 = 〈v, ω(X)w〉 holds for all
v, w ∈ H and X ∈ U(g). When ω is understood from context, we just say “unitarizable”.

Definition 6.1.6. Two unitarizable g-supermodules H1 and H2 are called equivalent if
there exists an isomorphism f : H1 → H2 in g-smod that is compatible with the (super)
Hermitian forms.

Note that in the definition of equivalence of unitarizable g-supermodules, intertwin-
ing operators are assumed to preserve the grading. This means that a unitarizable g-
supermodule is not equivalent to its parity-changed counterpart.

Example 6.1.7. We consider the symmetry algebra of superconformal quantum mechanics
[47, 36], that is su(1, 1|1). A fundamental example of such a unitarizable supermodule over
su(1, 1|1) is the oscillator supermodule, (O, 〈·, ·〉), also known as “singleton supermodule”.
Its construction depends on the isomorphism spo(2|2) ∼= sl(2|1). Algebraically, O is the
natural simple supermodule over the Weyl-Clifford algebra WCl(W ) attached to a (2|2)-
dimensional supersymplectic vector space W . Specifically, let V = C1|1, and W = V ⊕V ∗.
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The formula Ω(a, b) := f(w)− (−1)abg(v) for all homogeneous a = (v, f) and b = (w, g) in
W defines an even supersymplectic form Ω : W ×W → C. This is anti-symmetric on the
even, and symmetric on the odd part of W . The natural action of W on the supersymmetric
algebra S(V ), defined via a = (v, f) 7→ v · +ιf ∈ End(S(V )), satisfies [a, b] = Ω(a, b)
with respect to the canonical superbracket on End(S(V )). The image of W in End(S(V ))
generates the Weyl-Clifford algebra WCl(W ), and it is immediate to see that S(V ) is a
simple module over it. The oscillator supermodule O is S(V ) equipped with the restriction
of WCl(W ) to the orthosymplectic Lie superalgebra spo(2|2) ∼= S2(W ) ⊂ End(S(V )).
With respect to a homogeneous basis (x, η) of V = C1|1, we can think of sl(2|1) as the Lie
superalgebra spanned by the following set of super-differential operators acting on C[x, η]

E = −1
2∂

2
x, H = −x∂x − 1

2 , F = 1
2x

2, J = η∂η − 1
2

Q = ηx, Q̄ = ∂ηx, S = −η∂x, S̄ = ∂η∂x

which one easily verifies satisfy the above superbrackets.
As an sl(2|1) supermodule, O decomposes into two simple supermodules O = O+⊕O−,

according to the total polynomial degree,

O+ = C[x2, xη], O− = ηC[x2] + xC[x2]

Both are unitarizable highest weight modules. The Hermitian form on the supermodule
O ∼= C[x, η] is the sesquilinear extension of the formulas

〈xn, xm〉 =
{
n! if n = m

0 otherwise
〈η, η〉 = 1 , 〈xn, η〉 = 0.

6.1.2. Implications of unitarity
We record some basic properties of ω-unitarizable g-supermodules, especially if g is sl(m|n)
or of type A(m|n). For the real forms of sl(m|n) and A(m|n), we refer to Section 2.1.4.
The first result holds for any Lie superalgebra and follows by a standard argument.
Proposition 6.1.8. Let H be an ω-unitarizable g-supermodule. Then

a) H is completely reducible; that is, for any invariant subspace, its orthogonal comple-
ment is also an invariant subspace.

b) H is completely reducible as a g0̄-supermodule.

c) Hev (which we recall is the g0̄-module obtained by restriction and forgetting the Z2
grading) is a unitarizable g0̄-module with respect to the real form gω. In particular,
Hev is completely reducible as a unitarizable g0̄-module.

Remark 6.1.9. Complete reducibility of unitarizable supermodules is an important property
that even finite-dimensional supermodules over g do not necessarily share. Indeed, by the
classical Weyl Theorem, all finite-dimensional representations of a complex semisimple
Lie algebra are completely reducible; however, this is no longer true for basic classical
Lie superalgebras by the Djoković–Hochschild Theorem (see [61, 107] and [121, Page 239]),
which states that the only Lie superalgebras for which all finite-dimensional representations
are completely reducible are the direct products of osp(1|2n) superalgebras and semisimple
Lie algebras. Hence, unitarity is a natural criterion for complete reducibility and for
studying the category g-smod.
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Moreover, unitarizable supermodules over basic classical Lie superalgebras are rare. For
Lie superalgebras of type A,B,C, and D, we have the following result, combining [104,
Theorem 6.2.1] with the classification of real forms in Table 2.1. The result for orthosym-
plectic Lie superalgebras is also due to Nishiyama in [49].

Theorem 6.1.10. a) The special linear Lie algebra sl(m|n) for m 6= n and psl(n|n)
for m = n has no non-trivial unitarizable supermodules unless the real form is either
su(p, q|n) or su(m|r, s) and psu(p, q|n) or psu(m|r, s) for p + q = m and r + s = n,
respectively.

b) The orthosymplectic Lie superalgebra osp(m|2n;C) has no non-trivial unitarizable
supermodules unless the real form is precisely osp(m|2n,R).

In the remainder of this section, we discuss unitarizable supermodules over g, where g
denotes either sl(m|n) or a basic classical Lie superalgebra of type A(m|n). From this
point forward, unless otherwise stated, we assume m ≤ n and p, q 6= 0. All results for the
finite-dimensional case can then be derived by setting p = 0 or q = 0.

The unitarity condition imposes a specific relation on the weights of a unitarizable su-
permodule (as discussed below), implying that all unitarizable supermodules over g are
either of highest or lowest weight type.

Theorem 6.1.11 ([48, 104]). The special linear Lie superalgebra g = sl(m|n) admits
non-trivial ω-unitarizable supermodules if and only if the anti-linear anti-involution ω
corresponds to the real forms su(p, q|n, 0) or su(p, q|0, n), where p+ q = m. In particular,
any ω-unitarizable simple g-supermodule must be either a highest or lowest weight module.

Without loss of generality, we focus exclusively on ω-unitarizable highest weight g-
supermodules, setting ω := ω(−,+). The study of unitarizable lowest weight g-supermodules
is analogous, though it may require swapping ω(−,+) with ω(+,−) when p, q 6= 0.

Lemma 6.1.12. If p, q 6= 0 the following assertions hold:

a) There are no non-trivial ω(+,−)-unitarizable highest weight g-supermodules with re-
spect to either n+

1̄,st or n+
1̄,nst.

b) There are no non-trivial ω(−,+)-unitarizable lowest weight g-supermodules with respect
to either n−

1̄,st or n−
1̄,nst.

Proof. We provide a brief proof of assertion a); the remaining cases follow analogously.
Assume H is a unitarizable simple highest weight g-supermodule with highest weight Λ =
(λ1, . . . , λm|λ′

1, . . . , λ
′
n) ∈ h∗. By Proposition 6.1.8, H decomposes into a finite direct sum

of unitarizable simple highest weight g0̄-modules. Moreover, the highest weight vector of
H generates a unitarizable simple highest weight g0̄-module L0(Λ) with highest weight Λ.
Since L0(Λ) is unitarizable, the highest weight must satisfy the conditions from [38, 72]:

λp ≤ . . . ≤ λ1 ≤ λm ≤ . . . ≤ λp+1, λ′
1 ≥ . . . ≥ λ′

n.

For the standard positive system, fix two odd positive roots α, β ∈ ∆+
1̄ , say α = εi − δj

and β = εk − δl for 1 ≤ i ≤ p < k ≤ m and 1 ≤ j, l ≤ n. The root spaces are gα = CEij
and gβ = CEkl; we denote the associated basis by Xα := Eij ∈ gα and Xβ := Ekl ∈ gβ,
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respectively, with dual basis X−α = Eji ∈ g−α = CEji and X−β = Elk ∈ g−β = CElk. Let
vΛ be the highest weight vector of H (or L0(Λ)), and let 〈·, ·〉 denote the Hermitian form.
The relations

〈X−αvΛ, X−αvΛ〉 = 〈ω(+,−)(X−α)X−αvΛ〉 = Λ([Xα, X−α])〈vΛ, vΛ〉,
〈X−βvΛ, X−βvΛ〉 = 〈ω(+,−)(X−β)X−βvΛ〉 = −Λ([Xβ, X−β])〈vΛ, vΛ〉,

imply that

0 ≤ Λ([Xα, X−α]) = λi + λ′
j , 0 ≤ −Λ([Xβ, X−β]) = −λk − λ′

l.

We conclude λk ≤ λi for i ≤ p < k, which leads to a contradiction.
For the non-standard positive system, we consider α = εi − δj and β = −εk + δl with

1 ≤ i ≤ p < k ≤ m and 1 ≤ j, l ≤ n. Using the relation [Xβ, X−β] = [X−β, Xβ], the
statement follows by the same reasoning as in the standard system.

The proof of lemma 6.1.12 yields the subsequent lemma.
Lemma 6.1.13. The highest weight Λ of a unitarizable simple highest weight g-supermodule
satisfies the following unitarity relations with respect to n+

1̄,st and n+
1̄,nst:

λp+1 ≥ . . . ≥ λm ≥ −λ′
n ≥ . . . ≥ −λ′

1 ≥ λ1 ≥ . . . ≥ λp.

Proof. It is sufficient to focus on n+
1̄,nst. The root space for α = −εi+δj , where p+1 ≤ i ≤ m

and 1 ≤ j ≤ n, is given by gα = CEji. Therefore, if we set X = Eji ∈ g−α, its dual root
vector is Y = Eji ∈ g−α. We then conclude as in the proof of Lemma 6.1.12, by observing
that [X,Y ] = [Y,X] = Eii + Ejj .

Thus, we restrict our analysis to su(p, q|0, n), which is associated with ω(−,+) and the non-
standard positive system (by Lemma 6.1.14), and we write su(p, q|n) in place of su(p, q|0, n).
We implicitly regard g as the complexification of su(p, q|n) and denote the system of odd
positive roots by ∆+

1̄ and the associated Weyl element by ρ.
Odd reflections naturally relate both systems under consideration, i.e., ∆+

st and ∆+
nst,

as described in Section 2.1.3. Importantly, the effect of changing the positive system on
highest weight supermodules is captured by the following lemma.
Lemma 6.1.14 ([17, Lemma 1.40]). Let L(Λ; ∆+) be a simple highest weight g-supermodule
with highest weight Λ and highest weight vector vΛ with respect to a positive system ∆+.
Let θ be an odd simple root.

a) If (Λ, θ) = 0, then L(Λ; ∆+) = L(Λ; ∆+
θ ).

b) If (Λ, θ) 6= 0, then L(Λ,∆+) = ΠL(Λ− θ; ∆+
θ ).

6.1.3. Shapovalov form
The basic point, which is familiar in physics since the early days of quantum mechanics
[43], is that the Verma supermodule M(Λ) (or Kac supermodule K(Λ)) has a unique (up
to a real scalar) contravariant Hermitian form, the Shapovalov form (or Kac–Shapovalov
form). This form induces a non-degenerate form on L(Λ). The form on L(Λ) is generally
not positive definite, but if it is, then L(Λ) is unitarizable. Namely, the classification
of simple unitarizable highest weight g-supermodules reduces to the determination of all
Λ ∈ h∗ with the property that the Shapovalov form on L(Λ) is positive definite.
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Verma supermodules

We begin by considering Verma supermodules. All constructions and results below remain
valid for Kac supermodules K(λ). Since our focus is on unitarizable supermodules, we fix
some ω ∈ aut2,2(g). A Verma supermodule carries a natural contravariant Hermitian form
with respect to ω, if the highest weight Λ ∈ h∗ satisfies Λ(ω(·)) = Λ(·). An element Λ ∈ h∗

that meets this condition is called symmetric. Notably, all highest weights of unitarizable
highest weight g-supermodules are symmetric.

Let χΛ : Z(g) → C be the central character of M(Λ). We define, with respect to χΛ, a
map:

χ̃Λ : U(g)→ C, X 7→ χΛ(pr(X)),

where pr : U(g) → U(h) is the Harish-Chandra projection on the first summand of the
direct decomposition

U(g) = U(h)⊕ (n−U(g)⊕ U(g)n+).

This decomposition is stable under ω, naturally extended to U(g). Moreover, as Λ(H) =
Λ(ω(H)) for any H ∈ U(h), we obtain a Hermitian symmetric form

(X,Y )Λ := χ̃Λ(Xω(Y ))

for all X,Y ∈ U(g), which is, in particular, contravariant, i.e., (ZX, Y )Λ = (X,ω(Z)Y )Λ
for any X,Y, Z ∈ U(g). As M(Λ) = U(g)[1⊗ 1], the form (·, ·)Λ induces a well-defined con-
travariant Hermitian form on M(Λ), known as the Shapovalov form, denoted by 〈·, ·〉M(Λ).

Proposition 6.1.15. If Λ ∈ h∗ is symmetric, then there exists a unique contravariant
Hermitian form on M(Λ) satisfying 〈[1 ⊗ 1], [1 ⊗ 1]〉M(Λ) = 1 and 〈M(Λ)µ,M(Λ)ν〉 = 0
whenever µ 6= ν. All other contravariant Hermitian forms are real multiples of this form.

Proof. It remains to prove uniqueness. Thus, it suffices to show that any contravariant
Hermitian form 〈·, ·〉 on M(Λ), for which 〈[1 ⊗ 1], [1 ⊗ 1]〉 = 0, must vanish. To see this,
consider the following calculation:

〈M(Λ),M(Λ)〉 = 〈U(g)[1⊗ 1],U(g)[1⊗ 1]〉 = 〈[1⊗ 1],U(g)[1⊗ 1]〉
= 〈[1⊗ 1],U(bω)[1⊗ 1]〉 = 〈U(b)[1⊗ 1], [1⊗ 1]〉
⊂ C〈[1⊗ 1], [1⊗ 1]〉 = 0.

By the construction of the Shapovalov form, weight spaces of different weights with
respect to h are orthogonal. Therefore, we can conclude the following corollary.

Corollary 6.1.16. If Λ is symmetric, the maximal proper subsupermodule of M(Λ) coin-
cides with the radical R of the Shapovalov form 〈·, ·〉M(Λ).

Thus, a Verma (Kac) supermodule is simple if and only if the radical of 〈·, ·〉 is trivial. The
size of the radical is related to the degree of atypicality of M(Λ) (K(Λ)) by construction of
the Shapovalov form. This is essentially a version of Kac’s criterion (cf. [16, Theorem 4.12]),
according to which a highest weight Verma (Kac) supermodule M(Λ) (K(Λ)) is simple if
and only if Λ is typical. Concerning Kac supermodules, the essence of Kac induction is that
it elucidates the structure of the radical in terms of the constituents in the decomposition
of K(Λ) as a g0̄-module. This decomposition will be achieved in subsection 7.3.1.
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Unitarizable highest weight g-supermodules

Let H be a unitarizable highest weight g-supermodule with highest weight Λ and highest
weight vector vΛ. By Proposition 3.1.15, there is a g-supermodule homomorphism q :
M(Λ)→ H that maps [1⊗ 1] to vΛ. Since the highest weight Λ is symmetric, the maximal
super submodule of M(Λ) is the same as the radical R of the Shapovalov form. As a result,
the kernel of q must lie within R. This leads us to the following proposition.

Proposition 6.1.17. H carries a non-zero unique contravariant consistent Hermitian
form 〈·, ·〉 such that 〈vΛ, vΛ〉 = 1. The form is non-degenerate if and only if H is simple,
in which case H ∼= L(Λ) := M(Λ)/R, and the space of b-eigenvectors of weight Λ in L(Λ)
is one-dimensional.

Proof. It remains to show that the form is non-degenerate if and only if H is simple. It is
clear that the Shapovalov form induces a non-degenerate form on L(Λ) = M(Λ)/R.

If, conversely, H carries a non-degenerate Hermitian form, then ker(q) cannot be properly
contained in R. Consequently, R = ker(q) and H = L(Λ).

By abuse of notation, we call the unique form on H also the Shapovalov form. Moreover,
we identify H ∼= L(Λ) whenever H is simple. We also consider L(Λ) as a g0̄-module by
restriction, and we denote the associated g0̄-module by L(Λ)ev, where parity is neglected.
The restriction L(Λ)ev decomposes into a finite direct sum of unitarizable g0̄-supermodules
by Proposition 6.1.8. However, since L(Λ) is a highest weight g-supermodule, any g0̄-
constituent of L(Λ)ev must be a unitarizable highest weight g0̄-module of the form L0(µ)
for some µ ∈ h∗. The question then arises as to which g0̄-constituents appear in L(Λ)ev.
For this purpose, let Γ be the sum of distinct odd positive roots, and for each γ ∈ Γ, let
p(γ) denote the number of distinct partitions of γ into odd positive roots. Additionally,
let S be a subset of ∆+

1̄ , and define ΓS =
∑
γ∈S γ. Set X−S :=

∏
α∈S X−α, where X−α is

the root vector corresponding to the root −α ∈ ∆−
1̄ , with ∆−

1̄ := −∆+
1̄ . Fix an ordering

S1, . . . , SN on subsets of ∆+
1̄ such that if ΓSi < ΓSj , then i < j, and define

Mk :=
⊕

1≤j≤k
U(n−

0̄ )X−Sj [1⊗ 1].

Proposition 6.1.18 ([99, Theorem 10.4.5]). The Verma supermodule M(Λ) has a filtration
as a g0̄-supermodule:

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mr = M(Λ),

such that each factor Mi+1/Mi is isomorphic to a Verma module M0(Λ− γ), where γ ∈ Γ.
This module appears with multiplicity p(γ) in the filtration.

If H is a unitarizable simple highest weight g-supermodule with highest weight Λ, then
by Proposition 6.1.17 and the universal property of the Verma supermodule (Proposition
3.1.15), H satisfies H ∼= L(Λ) ∼= M(Λ)/R, where R is the radical of the Shapovalov form.
Modding suitably out by R provides a composition series for H which gives us a direct sum
decomposition as H is unitarizable.

Corollary 6.1.19. Let H be a unitarizable simple g-supermodule with highest weight Λ.
Then, as a g0̄-supermodule, H decomposes as

H = H1 ⊕ . . .⊕Hr
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such that each g0̄-constituentHi is isomorphic to a unitarizable highest weight g0̄-supermodule
L0(Λ− ΓS) for some subset S ⊂ ∆+

1̄ .

The question which g0̄-constituents appear exactly, will be addressed in Section 7.3.1.

6.1.4. Parameterization of unitarizable g0̄-supermodules
We describe the subset of the space h∗ of weights that correspond to unitarizable highest
weight g0̄-modules. It follows from the definition of (Kac) induction and Proposition 6.1.8
that a necessary condition for L(Λ) to be unitarizable as a g-supermodule is that L0(Λ)
be unitarizable as a g0̄-module, where we write

g0̄ =
{
su(p, q)C ⊕ su(n)C ⊕ u(1)C if m 6= n,

su(p, q)C ⊕ su(n)C if m = n.

to emphasize the real form. This imposes a classical sequence of standard conditions on
the highest weight, which we recall is parameterized in terms of the standard coordinates
on h∗ as

Λ = (λ1, . . . , λm|λ′
1, . . . , λ

′
n),

modulo shifts by (1, . . . , 1|−1, . . . ,−1).
First, we consider the restriction to the maximal compact subalgebra k. If L0(Λ) is

unitarizable as a g0̄-module, then as a kC-module it is semisimple with finite multiplicities.
In particular, Λ is the highest weight of a unitarizable simple (hence finite-dimensional)
kC-module, which appears with multiplicity one. Namely, Λ must be integral and dominant
with respect to the positive system induced from g. On the simple kC-roots this means

(Λ, εi − εi+1) = λi − λi+1 ∈ Z≥0 for i = 1, 2, . . . , p− 1
(Λ, εj − εj+1) = λj − λj+1 ∈ Z≥0 for j = p+ 1, . . . ,m− 1

−(Λ, δk − δk+1) = λ′
k − λ′

k+1 ∈ Z≥0 for k = 1, . . . , n− 1

To deduce further conditions, we decompose appropriately L0(Λ) as a g0̄-module.

Lemma 6.1.20. Let L0(λ) and L0(µ) be two unitarizable simple highest weight g0̄-modules
with highest weight vectors vλ and vµ, respectively. Define V := L0(λ)⊗ L0(µ). Then the
following assertions hold:

a) The tensor product of the Shapovalov forms on both factors defines a non-degenerate
contravariant Hermitian form on V .

b) vλ ⊗ vµ is a primitive element in V , that is, a non-zero b0̄-eigenvector.

c) V ∼= L0(λ+ µ) if and only if vλ ⊗ vµ is cyclic in V .

Proof. We denote the Shapovalov forms on L0(λ) and L0(µ) by 〈·, ·〉λ and 〈·, ·〉µ, respec-
tively. Then V has a contravariant Hermitian form

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉λ〈w1, w2〉µ.

To see that 〈·, ·〉 is non-degenerate, consider x :=
∑k
j=1 vj⊗wj with 〈x, y〉 = 0 for all y ∈ V .

Without loss of generality, assume that v1, . . . , vk are linearly independent. Since L0(λ)
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is simple, 〈·, ·〉λ is non-degenerate, and we find for each 1 ≤ j ≤ k an element yj ∈ L0(λ)
such that 〈vi, yj〉λ = δij . Consequently, 〈x, yj ⊗ w〉 = 〈wj , w〉µ = 0, so wj = 0 as 〈·, ·〉µ is
non-degenerate. This concludes the proof for assertion a).

For assertions b) and c), note that the set of weights of V , denoted by PV , equals the sum
of the sets of weights for L0(λ) and L0(µ), i.e., PV ⊂ λ+ µ−Z+[∆+

0̄ ] with dimV λ+µ = 1.
Assertion b) is now clear, while assertion c) follows directly from a).

Proposition 6.1.21. Let g0̄ := g1 ⊕ g2 be the direct sum of Lie algebras with root space
decompositions. Let h := h1 ⊕ h2, where h1 and h2 denote the Cartan subalgebras of g1
and g2, respectively. Identify the root systems ∆1 and ∆2 with subsets of ∆0̄, and let
λ = (λ1, λ2) ∈ h∗ ∼= h∗

1 × h∗
2. Then

L0(λ) ∼= L0(λ1; g1) ⊠ L0(λ2; g2).

Proof. The positive systems for g1 and g2 are ∆+
1 := ∆1 ∩∆+

0̄ and ∆+
2 := ∆2 ∩∆+

0̄ . The
projections pj : g0̄ → gj are Lie algebra morphisms, allowing us to identify L0(λj ; gj) with
L0(λj). Define vλ := vλ1 ⊗ vλ2 , where vλj

are the highest weight vectors for L0(λj). We
compute

U(g)vλ = (U(g1)vλ1)⊗ (U(g2)vλ2) = L(λ1; g1) ⊠ L(λ2; g2),

i.e., vλ is cyclic, and the statement follows with Lemma 6.1.20.

In our situation, we have the direct sum of Lie algebras g0̄ := L ⊕ R ⊕ u(1)C, where
L := su(p, q)C, R := su(n)C, and the u(1)C-part is only present if m 6= n. We denote the
associated root systems of (L, h|L) and (R, h|R) by ∆L and ∆R, respectively. In particular,
∆0̄ = ∆L t ∆R. The positive systems are ∆+

L := ∆+
0̄ ∩ ∆L and ∆+

R := ∆+
0̄ ∩ ∆R. The

highest weight of a unitarizable simple g-supermodule is then of the form µ = (µL|µR)
with µL = (µ1, . . . , µm) and µR = (µ′

1, . . . , µ
′
n), such that µL is the highest weight of a

Harish-Chandra module of L, while µR is the highest weight of a finite-dimensional simple
R-module.

Corollary 6.1.22. Any unitarizable simple highest weight g0̄-module L0(µ) is given by the
outer tensor product of a unitarizable simple highest weight su(p, q)C, su(n)C and u(1)C-
module, respectively, i.e.,

L0(µ) ∼= L0(µL;L) ⊠ L0(µR;R) ⊠ Cµ.

We list all these modules, yielding a parameterization of the highest weights of unitariz-
able highest weight g0̄-modules. First, u(1) is an abelian Lie algebra, so by Schur’s Lemma,
any simple module is one-dimensional. Unitarity requires that any such simple module is
uniquely determined by a positive real number α. The list of all simple u(1)C-modules is
parameterized by

α

2
(1, . . . , 1|1, . . . , 1) ∈ h∗, α ∈ R.

Second, su(n) is a compact Lie algebra, meaning all simple modules are finite-dimensional
and unitarizable. By the highest weight theorem, every simple module is uniquely charac-
terized by a dominant integral highest weight. Therefore, the list of all unitarizable simple
su(n)C-modules is parameterized by

(0, . . . , 0|b1, . . . , bn) ∈ h∗,
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where b1, . . . , bn are positive integers satisfying b1 ≥ b2 ≥ . . . ≥ bn−1 ≥ bn = 0.
Third, su(p, q) is a non-compact semisimple Lie algebra if and only if p, q 6= 0. If p = 0

or q = 0, the list of all simple su(m)C-modules is parameterized as above, i.e.,

(a1, . . . , am|0, . . . , 0)

with a1, . . . , am positive integers satisfying a1 ≥ . . . ≥ am = 0. These modules are finite-
dimensional. However, if p, q 6= 0, the non-trivial unitarizable simple highest weight mod-
ules are infinite-dimensional, and a complete classification is given in [38, 72]. We briefly
state the result. The complete list with highest weights of unitarizable simple highest
weight su(p, q)-modules is given by(

λ

2
− a1,

λ

2
− a2, . . . ,

λ

2
− ap,−

λ

2
+ ap+1, . . . ,−

λ

2
+ ap+q|0, . . . , 0

)
,

where a1, . . . , ap and ap+1, . . . , ap+q are positive integers such that 0 ≤ a2 ≤ . . . ≤ ap and
ap+1 ≥ ap+2 ≥ . . . ≥ ap+q−1 ≥ ap+q = 0, and λ belongs to the set

(−∞,−m+ x− (r − 1)) ∪ {−m+ x− (r − 1),−m+ x− (r − 1) + 1, . . . ,−m+ x}.

Here, m := p+ q, r := min(i0, j0) and x = i0 + j0, where i0 is the biggest index for which
ai = 0, and j0 is the smallest index for which ap+q−j0 6= 0 (if ap+1 = 0 then j0 = q). The
values i0 and j0 are part of the ∆+

c -dominance of Λ, and can be deduced from the length
of the following two Young diagrams:

Y1(λ) := (λ1 − λp, . . . , λ1 − λ2, 0),
Y2(λ) := (λp+1 − λm, . . . , λm−1 − λm, 0).

Indeed, if leni(λ) := length(Y1(λ)), we have i0 = len1(λ) and j0 = m− len2(λ).
Altogether, we parameterize the solution to these constraints by writing

Λ = (0, a2, . . . , am−1, 0|b1, . . . , bn−1, 0) + λ

2
(1, . . . , 1,−1, . . . ,−1|0, . . . , 0)

+ α

2
(1, . . . , 1|1, . . . , 1),

with integers ai, aj satisfying ap+1 ≥ · · · am−1 ≥ 0 ≥ a2 ≥ · · · ≥ ap, integers bk satisfying
b1 ≥ · · · ≥ bn−1 and real numbers α and λ, the second of which is non-positive.

6.1.5. Harish-Chandra supermodules
We consider g, where g denotes either sl(m|n) or a basic classical Lie superalgebra of
type A(m|n). Unitarizable simple highest weight g-supermodules are examples of Harish-
Chandra supermodules, allowing us to view them as modules over the complexification of the
fixed maximal compact subalgebra kC. Recall that kC satisfies the equal rank condition kC ⊂
g0̄ ⊂ g. This implies that any g-supermodule M can be viewed as a g0̄-supermodule, and
conversely, any g0̄-supermodule can be regarded as a kC-supermodule. If H is unitarizable,
the action of kC is contravariant, leading to a decomposition of H and any of its g0̄-
constituents into kC-types. Explicitly, H decomposes as

H =
∑

[µ]∈̂kC

F [µ],
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where the sum is both algebraic and direct. Here, k̂C denotes the set of equivalence classes of
finite-dimensional simple kC-supermodules, and F [ν] represents the sum of all supermodules
occurring in H that belong to the class [ν] ∈ k̂C. We say that H is a (g, kC)-supermodule,
and each g0̄-constituent is a (g0̄, k

C)-supermodule, meaning they are kC-semisimple.
An important class of (g0̄, k

C)-supermodules is formed by those that originate from uni-
tary irreducible representations of the simply connected Lie group associated with the Lie
algebra su(p, q|n)0̄. These modules possess an additional property, leading to the definition
of Harish-Chandra (super)modules.

Definition 6.1.23. A complex (g, kC)-supermodule ((g0̄, k
C)-module) is called Harish-

Chandra supermodule (Harish-Chandra module) if it is finitely generated and locally finite
as a kC-module.

The Harish-Chandra supermodules naturally form a category, denoted by M(g, k). We
show that unitarizable simple supermodules belong toM(g, k). Firstly, unitarizable simple
g-supermodules are highest weight supermodules, where the conditions of local finiteness
as kC-modules and finite generation are redundant in the definition above.

Proposition 6.1.24 ([13, Proposition 2.8]). Let M be a highest weight g-supermodule with
highest weight Λ and highest weight vector vΛ. The following assertions are equivalent:

a) dim(U(kC)vΛ) <∞.

b) M is a (g, kC)-supermodule.

c) M is a Harish-Chandra supermodule.

If these assertions hold, then U(kC)vΛ is a simple kC-supermodule.

Any unitarizable highest weight g-supermodule is g0̄-semisimple, and each g0̄-constituent
is a unitarizable highest weight g0̄-supermodule, for which we have the following well-known
lemma.

Lemma 6.1.25 ([102, Lemma IX.3.10]). Any unitarizable highest weight g0̄-supermodule
is a Harish-Chandra module.

Conversely, the following lemma holds.

Lemma 6.1.26. LetH be a finitely generated g-supermodule. IfH is a (g0̄, k
C)-supermodule,

then H is a (g, kC)-supermodule. In particular,M(g, k) is closed under tensoring with finite-
dimensional g-supermodules.

Proof. The statement is immediate, as U(g) is a finitely generated U(g0̄)-module.

Thus, we establish the following assertion.

Proposition 6.1.27. Let H be a unitarizable highest weight g-supermodule. Then H is a
Harish-Chandra supermodule.

For completeness, we note that the Kac induction of a (g0̄, k
C)-module yields a (g, kC)-

supermodule, as shown in [14, Proposition 2.8]. By Theorem 3.1.16, this leads to another
proof of the proposition.
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6.2. Unitary supermodules over Lie supergroups
We briefly summarize the classification of unitary representations of Lie supergroups G that
are associated with basic classical Lie superalgebras, following [11, 104]. The main result
states that unitary representations of G = (G, g) are classified by unitarizable supermodules
over g. Thus, we focus on studying unitarizable supermodules over basic classical Lie
superalgebras.

We identify a Lie supergroup G with its super Harish-Chandra pair (G, g) (see Section
2.2.2), following standard conventions. Recall that a representation of G is given by a triple
(π, ρπ,H), where π is an even representation of the Lie group G in a Z2-graded Banach
space (or Z2-graded Fréchet space) H, and ρπ is a Z2-graded representation of the Lie
superalgebra g in H, compatible with π (see Section 3.2).

In the unitary setting, we consider a super Hilbert spaceH, a unitary even representation
π, and require ρπ to satisfy unitarity at the infinitesimal level. Moreover, since elements
in g0̄ are typically unbounded, appropriate domain conditions must be imposed.

We start with the definition of a super Hilbert space.

Definition 6.2.1. A super Hilbert space H is a Z2-graded complex Hilbert space, H =
H0̄ ⊕ H1̄, equipped with a positive definite Hermitian form 〈·, ·〉, where H0̄ and H1̄ are
mutually orthogonal closed subspaces.

Before discussing general infinite-dimensional unitary representations, we first consider
the finite-dimensional ones. Recall that a finite-dimensional representation of a Lie super-
group G = (G, g) consist a triple (π, ρπ, V ), where π is an even representation of G on
a super vector space V of finite dimension over C, and ρπ is a representation of the Lie
superalgebra g on V , such that

a) π
∣∣
g0̄

= dπ and

b) dπ(ad(g)(X)) = π(g)dπ(X)π(g−1) for all g ∈ G and X ∈ g.

The representation (π, V ) of G is called unitary if there exists a positive definite Hermitian
form 〈·, ·〉 on V such that

〈π(g)v, π(g)w〉 = 〈v, w〉, for all v, w ∈ V and g ∈ G.

The derived representation dπ then satisfies

〈dπ(X)v, w〉+ 〈v, dπ(X)w〉 = 0,

for all X ∈ Lie(G), which implies that ρ(X)† = −ρ(X). Generalizing this to the super
setting, we define:

Definition 6.2.2. A finite-dimensional representation (π, ρπ,H) of a Lie supergroup (G, g)
is called unitary if H is a super Hilbert space and ρπ(X)† = −ρπ(X) for all X ∈ g.

The condition for unitarity is equivalent to stating that π is a unitary representation of
G, and that ρπ(X)† = −iρπ(X) for all X ∈ g1̄. Consequently, a finite-dimensional unitary
representation of a Lie supergroup (G, g) consists of a triple (π, ρπ,H), where

a) π is a unitary representation of G on a finite-dimensional super Hilbert space H,
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b) ρπ is a linear map of g1̄ into the space gl(H)1̄ of odd endomorphisms of H such that
ρπ(X)† = −iρπ(X) for all X ∈ g1̄,

c) dπ([X,Y ]) = ρπ(X)ρπ(Y ) + ρπ(Y )ρπ(X) for X,Y ∈ g1̄,
d) ρπ(gX) = π(g)ρπ(X)π(g)−1 for X ∈ g1̄ and g ∈ G.

If we replace ρπ(X) by ρ(X) := e−iπ
4 ρπ(X) for X ∈ g1̄, then condition b) implies that

ρ(X) is self-adjoint for all X ∈ g1̄, while condition c) transforms into

−idπ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X), X, Y ∈ g1̄.

We now extend this definition to the infinite-dimensional theory. First, condition c)
implies

dπ([X,X]) = 2ρπ(X)2, X ∈ g1̄.

Moreover, since dπ maps elements of g0̄ to unbounded operators, ρπ(X) is generally un-
bounded. Furthermore, in the infinite-dimensional setting, the differential of a representa-
tion of a Lie group is typically not defined on the entire representation space. Thus, as in
the classical setting, we consider a certain invariant dense subspace: the space of smooth
vectors (cf. Section 5.2).

We will denote the space of smooth vectors of a unitary representation (π,H) by H∞.
Focusing solely on irreducible unitary representations of Lie supergroups allows us to as-
sume, without loss of generality, that H is separable.

Definition 6.2.3. A unitary representation of a Lie supergroup G = (G, g) is a triple
Π := (π, ρπ,H) satisfying the following conditions:

a) H = H0̄ ⊕H1̄ is a super Hilbert space.

b) (π,H) is a unitary representation of G, where π(g) ∈ EndC(H)0̄ for all g ∈ G.

c) ρπ : g → EndC(H∞) is a R-linear Z2-graded map. Furthermore, for all X,Y ∈ g1̄,
we have:

ρπ(X)ρπ(Y )− ρπ(Y )ρπ(X) = −iρπ([X,Y ]).

d) ρπ(X) = dπ(X)
∣∣
H∞ for all X ∈ g0̄.

e) The operator ρπ(X) with domain H∞ is symmetric for all X ∈ g1̄.

f) For all g ∈ G and X ∈ g, the following compatibility relation holds:

ρπ(ad(g)(X)) = π(g)ρπ(X)π(g)−1.

The following lemma summarizes some immediate consequences of the definition.

Lemma 6.2.4 ([10, Chapter 7.2.3], [104]). Let (π, ρπ,H) be a unitary representation of
the Lie supergroup G.

a) The operator ρπ : H∞ → H∞ is continuous with respect to the Fréchet topology on
H∞. In addition, the bilinear map

g×H∞ → H∞, (X, v) 7→ ρπ(X)v

is continuous.
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b) For any X ∈ g0̄, the operator idπ(X) is essentially self-adjoint on H∞, and

dπ : g = g0̄ ⊕ g1̄ → End(H∞), X0 +X1 7→ dπ(X0) + ei
π
4 ρπ(X1)

is a representation of g in H∞.

c) For all X ∈ g1̄, the operator ρπ(X) is essentially self-adjoint on the H∞.

All concepts from the ordinary setting, such as subrepresentations, irreducibility, or
unitary equivalence of unitary representations of Lie supergroups, are defined similarly to
those for representations of Lie groups.

Moreover, the following proposition follows from standard arguments.

Proposition 6.2.5. Let Π be a unitary representation of a Lie supergroup G = (G, g).

a) Π is completely reducible; that is, for any closed invariant subspace, its orthogonal
complement is also a closed invariant subspace.

b) Π is irreducible if and only if HomG(Π,Π) = C.

For a proof of b), known as Schur’s lemma for Lie supergroups, see [10, Lemma 15].
The complete classification of irreducible unitary representations of Lie supergroups

G = (G, g) where g is basic classical is due to Neeb and Salmasian in [104]. They study
more generally ?-reduced Lie supergroups, that is, a Lie supergroup G = (G, g) such that for
every non-zero X ∈ g there exists a unitary representation (π, ρπ,H) of G with ρπ(X) 6= 0.
If g is simple, then a Lie supergroup G = (G, g) is ?-reduced if and only if it has a non-trivial
unitary representation.

We fix some notation that will appear in the classification theorem. An element X0 ∈ g
is called regular if the space

Ng(X0) =
⋃
n

ker
(
adnX0

)
has minimal dimension. For any regular element X0, the space h := Ng(X0) is a Cartan
subalgebra of g such that h0̄ is compactly embedded [104, Lemma 5.2.1]. A Lie subalgebra
h0̄ of g0̄ is called compactly embedded in g if the closure of the subgroup generated by ead(h0̄)

in the automorphism group of g is compact. Moreover, for a Lie supergroup G, the cone
Cone(G, g) is defined as the space generated by elements of the form [X,X] for X ∈ g1̄.
The interior of the cone is denoted by Int(Cone(G)).

Theorem 6.2.6 ([104, Theorem 7.3.2]). Let G = (G, g) be a ?-reduced Lie supergroup
satisfying g0̄ = [g1̄, g1̄]. Let (π, ρπ,H) be a unitary irreducible representation of G. Choose
a regular element X0 ∈ Int(Cone(G)), and let h = h0̄ ⊕ h1̄ be the corresponding Cartan
subalgebra of g. Suppose that no roots vanish on X0. Then the following assertions hold:

a) h0̄ is compactly embedded. Moreover, if we set ∆+ := {α ∈ ∆ | α(X0) > 0}, then
∆ \ {0} = ∆+ t −∆+.

b) The space Hh of h-finite elements in H∞ is an irreducible g-module, which is a
h0̄-weight module and dense in H.
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c) The maximal eigenspace V of iρπ(X0) is an irreducible finite-dimensional h-module
on which h0̄ acts by some weight λ ∈ h∗

0̄. It generates the g-supermodule Hh and all
other h0̄-weights in this space take the form

λ−m1α1 − · · · −mkαk, αj ∈ ∆+, k ∈ Z≥1, m1, . . . ,mk ∈ Z+.

d) Two unitary representations (π, ρπ,H) and (π′, ρπ
′
,H′) of (G, g) are isomorphic if

and only if the corresponding h-representations, V and V ′, are isomorphic.

As a consequence, unitarity of Lie supergroups is entirely determined by unitarizable
(highest weight supermodules) of the associated Lie superalgebras. For the remainder of
this thesis, we focus exclusively on unitarizable supermodules.
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7. Dirac operator, Dirac cohomology and
unitarizable supermodules

Two fundamental questions in representation theory involve classifying and explicitly de-
composing unitarizable supermodules over g (sl(m|n) or A(m|n)), noting that all such mod-
ules are either of highest or lowest weight type. The existing classification [22, 48, 53, 73]
relies on complex combinatorial methods and extensive calculations, lacking structural clar-
ity and geometric intuition. A classification akin to the Enright–Howe–Wallach approach
[38] for real simple Lie algebras remains undeveloped.

We resolve this problem by studying an analogue of algebraic Dirac operators and Dirac
cohomology, introduced by Parthasarathy and Vogan [26, 114] for discrete series represen-
tations, in the context of Lie superalgebras of Riemannian type, as developed by Huang and
Pandžić in [66]. For these Lie superalgebras, including g, there exists a non-degenerate su-
persymmetric invariant bilinear form B that restricts to a symplectic form on the odd part
g1̄. The Dirac operator D is associated with the symplectic and the corresponding Weyl al-
gebra over g1̄. The Dirac cohomology of a supermoduleM is HD(M) := kerD/ kerD∩imD.

The first part of the work concerns the relationship among the Dirac operator, Dirac
cohomology, and unitarity for supermodules. As a result, we prove that the Dirac oper-
ator uniquely captures unitarity, and unitarizable supermodules are determined by their
Dirac cohomology. Explicitly, We compute the Dirac cohomology of unitarizable simple
supermodules.

Furthermore, the algebraic Dirac operator can be used to give a novel classification
of unitarity, which leads to a simple classification of unitarizable supermodules. This
particularly addresses the following issue: a g0̄-semisimple module, for which every g0̄-
constituent is unitarizable, need not itself be unitarizable. Conversely, the induction of a
unitarizable g0̄-module to g does not have to be unitarizable. The Dirac inequality offers a
necessary and sufficient condition for unitarity. We obtain an explicit g0̄-decomposition for
any unitarizable g-supermodule H. Additionally, we relate Dirac cohomology to nilpotent
Lie superalgebra cohomology. This results in a decomposition of formal characters, and it
provides new methods for studying unitarizable supermodules and reveals initial insights
into the structure of the abelian representation category.

In this chapter, we fix the non-standard positive system ∆+ := ∆+
nst for g, as introduced

in Section 2.1.4. For convenience, we set

n+
1̄ :=

⊕
α∈∆+

1̄

gα, n−
1̄ :=

⊕
α∈∆+

1̄

g−α,

which induces the decomposition of super vector spaces

g1̄ = n−
1̄ ⊕ n+

1̄ , g = n−
1̄ ⊕ g0̄ ⊕ n+

1̄ .

However, [n±
1̄ , n

±
1̄ ] 6= {0}, indicating that this Z-grading is not compatible with the Z2-

grading, as n±
1̄ are invariant under kC, but not under g0̄.



The following lemma summarizes the relevant commutation relations.

Lemma 7.0.1. The following commutation relations hold in g, for all 1 ≤ k, l ≤ 2:

[k, pk] ⊂ pk, [k, ql] ⊂ ql, [n+
1̄ , n

+
1̄ ] ⊂ n+

0̄,n.

For the remainder of this chapter, unless otherwise stated, we assume m ≤ n and p, q 6= 0.
All results for the finite-dimensional case can then be derived by setting p = 0 or q = 0
and utilizing kC = g0̄.

This chapter is based on the author’s work in [123].

7.1. Dirac operator and Dirac cohomology
We introduce the Dirac operator and Dirac cohomology for g, based on the approach out-
lined in [67, Chapter 10]. Additionally, we generalize these results by examining functorial
properties of Dirac cohomology.

7.1.1. Dirac operator
A Dirac operator is generally defined on a Lie superalgebra of Riemannian type, meaning
there exists a non-degenerate supersymmetric invariant bilinear form B. The Lie superal-
gebra g is of Riemannian type with respect to the supertrace form (·, ·), which we modify
for convenience as B(·, ·) := 1

2(·, ·). The restriction B|g1̄(·, ·) to g1̄ defines a symplectic form
on g1̄, which naturally leads to the construction of the Weyl algebra.

Weyl algebra

We define the Weyl algebra over g1̄ and describe an embedding of g0̄ into the Weyl al-
gebra. To achieve this, we fix two special Lagrangian subspaces of (g1̄, B(·, ·)), spanned
by {x1, . . . , xmn} and {∂1, . . . , ∂mn}, which are compatible with the conjugate-linear anti-
involution ω. Specifically, ω(xk) = −∂k and B(∂k, xl) = 1

2δkl for 1 ≤ k, l ≤ mn. In
accordance with the chosen positive system, we fix:

∂(l−1)n+(k−m) =
{
Elk for 1 ≤ l ≤ p, m+ 1 ≤ k ≤ m+ n,

Ekl for p+ 1 ≤ l ≤ m, m+ 1 ≤ k ≤ m+ n,

x(l−1)n+(k−m) =
{
Ekl for 1 ≤ l ≤ p, m+ 1 ≤ k ≤ m+ n,

−Elk for p+ 1 ≤ l ≤ m, m+ 1 ≤ k ≤ m+ n.

Here, the xk’s span n−
1̄ = p2 ⊕ q1 and the ∂k’s span n+

1̄ = p1 ⊕ q2.
Remark 7.1.1. For the Lagrangian subspaces l+ := p1 ⊕ p2 and l− := q1 ⊕ q2, there
does not exist a basis x1, . . . , xmn of l− and ∂1, . . . , ∂mn of l+ that simultaneously satisfies
B(∂k, xl) = 1

2δkl and ω(xk) = −∂k.
Let T (g1̄) denote the tensor algebra over the vector space g1̄, considered with natural Z-

grading T (g1̄) = ⊕n≥0T
n(g1̄). The Weyl algebra W (g1̄) is defined as the quotient T (g1̄)/I,
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where I is the two-sided ideal generated by all elements of the form v⊗w−w⊗v−2B(v, w)
for v, w ∈ g1̄.

The notation is such that the Weyl algebra W (g1̄) over g1̄ is generated by ∂k and xl, i.e.,
it can be identified with the algebra of differential operators with polynomial coefficients
in the variables x1, . . . , xmn, by identifying ∂k with the partial derivative ∂/∂xk for all
k = 1, . . . ,mn. In particular, W (g1̄) is a Lie algebra with the following commutator
relations:

[xk, xl]W = 0, [∂k, ∂l]W = 0, [∂k, xl]W = δkl,

for all 1 ≤ k, l ≤ mn.
The Lie algebra g0̄ can be embedded as a Lie subalgebra in the Weyl algebra W (g1̄). To

this end, we fix some notation and state some well-known properties. Let sp(g1̄) denote
the complex symplectic algebra over the vector space g1̄. The adjoint action of g0̄ on g1̄
defines a Lie algebra homomorphism:

ν : g0̄ −→ sp(g1̄),

where the symplectic form is given by the restriction of B(·, ·) to g1̄. Next, sp(g1̄) can
be embedded in the Weyl algebra W (g1̄). Let S(g1̄) denote the symmetric algebra over
g1̄, which we define as the quotient S(g1̄) := T (g1̄)/J , where J is the two-sided ideal
generated by all elements of the form u ⊗ v − v ⊗ u for u, v ∈ g1̄ (see Example 2.1.2).
The symmetric algebra has a natural Z-grading: S(g1̄) =

⊕∞
n=0 S

n(g1̄), where the vector
subspaces Sn(g1̄) = Tn(g1̄)/(J ∩ Tn(g1̄)) are called the n-th symmetric power of g1̄. Let
Sym(g1̄) denote the space of symmetric tensors in T (g1̄) with natural Z-grading. Then the
symmetrization map

S(g1̄) −→ Sym(g1̄), x1 . . . xk 7→
1
k!
∑
σ∈Sk

xσ(1) ⊗ . . .⊗ xσ(k)

is an isomorphism of graded vector spaces, and the composition with the natural projection
π : Sym(g1̄)→ W (g1̄) defines an isomorphism

σ : S(g1̄)→ W (g1̄).

The symmetric square is the Lie algebra S2(g1̄) spanned by {xixj , ∂i∂j : i ≤ j} ∪ {∂ixj}.
Under the isomorphism above, the image of S2(g1̄) is the Lie algebra σ(S2(g1̄)) that is
spanned by

σ(xixj) = xixj , σ(∂i∂j) = ∂i∂j , σ(∂ixj) = ∂ixj −
1
2
δij

in the basis {xi, ∂j}. A direct calculation yields an isomorphism of Lie algebras

(σ(S2(g1̄)), [·, ·]W ) ∼= (sp(g1̄), [·, ·]).

Altogether, combining the adjoint action of g0̄ on g1̄, together with the isomorphism of Lie
algebras, we obtain the Lie algebra homomorphism

α : g0̄ −→ W (g1̄).
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For later calculations, the Lie algebra morphism is explicitly given by [67, Equation 10]:

α(X) =
mn∑
k,j=1

(B(X, [∂k, ∂j ])xkxj +B(X, [xk, xj ])∂k∂j)

−
mn∑
k,j=1

2B(X, [xk, ∂j ])xj∂k −
mn∑
l=1

B(X, [∂l, xl])

for any X ∈ g0̄.
The Lie algebra morphism α : g0̄ → W (g1̄) allows us to define a diagonal embedding:

g0̄ → U(g)⊗W (g1̄), X 7→ X ⊗ 1 + 1⊗ α(X).

We denote the image of g0̄,U(g0̄), and Z(g0̄) by g0̄,∆,U(g0̄,∆), and Z(g0̄,∆), respectively.
Furthermore, the image of the quadratic Casimir Ωg0̄ of g0̄ is denoted by Ωg0̄,∆

. The
quadratic Casimir of g is denoted by Ωg. Then the following lemma follows from a direct
calculation.

Lemma 7.1.2 ([65, 90]). Let {Wk} be an orthonormal basis for g0̄ with respect to B(·, ·).
Then the following assertion holds:

a) Ωg0̄ =
∑
kW

2
k .

b) Ωg = Ωg0̄ + 2
∑
i(xi∂i − ∂ixi).

c) Ωg0̄,∆ =
∑
k

(
W 2
k ⊗ 1 + 2Wk ⊗ α(Wk) + 1⊗ α(Wk)2).

d) C :=
∑
k α(Wk)2 is a constant.

The Dirac operator

Having fixed the basic notion of the Weyl algebra, we can now introduce the Dirac operator.

Definition 7.1.3 ([66]). The (algebraic) Dirac operator D is the element in U(g)⊗W (g1̄)
given by:

D = 2
mn∑
k=1

(∂k ⊗ xk − xk ⊗ ∂k) ∈ U(g)⊗W (g1̄).

The operator D is independent of the chosen basis for g1̄, and it is g0̄-invariant under
the g0̄-action on U(g)⊗W (g1̄), induced by the adjoint action on both factors [67, Lemma
10.2.1], i.e., [g0̄,D] = 0. Additionally, similar to the (algebraic) Dirac operator for reductive
Lie algebras, D has a nice square.

Proposition 7.1.4 ([66, Proposition 2]). The Dirac operator D ∈ U(g)⊗W (g1̄) has square

D2 = −Ωg ⊗ 1 + Ωg0̄,∆ − C,

where C is the constant of Lemma 7.1.2.

Remark 7.1.5. For explicit calculations, it is particularly useful to express the square of
the Dirac operator in the following alternative form:

D2 = 2
mn∑
k,l=1

([∂k, ∂l]⊗ xkxl + [xk, xl]⊗ ∂k∂l − 2[∂k, xl]⊗ xk∂l)− 4
mn∑
k=1

xk∂k ⊗ 1.

114



For the remainder of this article, we will interpret the Dirac operator as a refined version
with respect to the fixed positive system n+

1̄ = p1 ⊕ q2 introduced in Section 2.1.4. In this
regard, we decompose the Dirac operator as D = Dp1 + Dq2 , where

Dp1 = 2(dp1 − δp1), dp1 =
pn∑
k=1

∂k ⊗ xk, δp1 =
pn∑
k=1

xk ⊗ ∂k,

Dq2 = 2(dq2 − δq2), dq2 =
mn∑

k=pn+1
∂k ⊗ xk, δq2 =

mn∑
k=pn+1

xk ⊗ ∂k.

Lemma 7.1.6. The operators dp1 , dq2 and δp1 , δq2 are kC-invariant, meaning [dp1,q2 , kC] = 0
and [δp1,q2 , kC] = 0.

Proof. We prove the statement only for dp1 =
∑pn
k=1 ∂k ⊗ xk; the rest follows analogously.

Let X ∈ kC. Since kC leaves p1 invariant by Lemma 7.0.1, the commutators in the
standard basis are given by

[X,xi] = −2
pn∑
k=1

B(X, [xi, ∂k])xk, [X, ∂i] = 2
pn∑
k=1

B(X, [∂i, xk])∂k

for all 1 ≤ i ≤ pn. This leads to the following computation:

[X, dp1 ] =
pn∑
i=1

([X, ∂i]⊗ xi + ∂i ⊗ [X,xi])

=
pn∑
i=1

( pn∑
k=1

(−2B(X, [xi, ∂k]) + 2B(X, [∂i, xk]))
)
∂i ⊗ xi

= 0,

where we used in the last equality B(X, [∂i, xk]) = B(X, [xk, ∂i]) for all 1 ≤ i, k ≤ pn.

7.1.2. Dirac cohomology
The Dirac cohomology assigns to any g-supermodule M an g0̄-supermodule HD(M), uti-
lizing the g0̄-invariance of the Dirac operator D. To define it, we consider the natural
componentwise action of D ∈ U(g) ⊗ W (g1̄) on M ⊗ M(g1̄), where M(g1̄) denotes the
oscillator module over W (g1̄), which we briefly introduce.

Oscillator module

The Weyl algebra W (g1̄), identified with the algebra of differential operators with polyno-
mial coefficients in the variables xi, where ∂i corresponds to the partial derivative ∂

∂xi
, has

a natural simple module, the oscillator module M(g1̄) := C[x1, . . . , xmn]. The following
proposition is standard.

Proposition 7.1.7. The oscillator module M(g1̄) is a simple W (g1̄)-module.

We equip M(g1̄) with a Z2-grading by declaring M(g1̄)0̄ to be the subspace generated
by homogeneous polynomials of even degree, and M(g1̄)1̄ to be the subspace generated by
homogeneous polynomials of odd degree.
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Additionally, M(g1̄) carries a unique Hermitian form 〈·, ·〉M(g1̄), known as the Bargmann–
Fock Hermitian form or Fischer–Fock Hermitian form [5, 41, 42], such that ∂k and xk are
adjoint to each other and the following orthogonality relations hold:

〈
mn∏
k=1

xpk
k ,

mn∏
k=1

xqk
k 〉M(g1̄) =

{∏mn
k=1 pk! if pk = qk for all k,

0 otherwise.

For the remainder of this article, we regard the oscillator module as a tuple (M(g1̄), 〈·, ·〉M(g1̄)).
We also record the adjointness of ∂k and xk with respect to 〈·, ·〉M(g1̄) in the following
lemma, for future reference.

Lemma 7.1.8. For any v, w ∈ M(g1̄), the generators of W (g1̄) satisfy the following
relations for all 1 ≤ k ≤ mn:

〈∂kv, w〉M(g1̄) = 〈v, xkw〉M(g1̄), 〈xkv, w〉M(g1̄) = 〈v, ∂kw〉M(g1̄).

Moreover, under the embedding α : g0̄ → W (g1̄), we may view M(g1̄) as a g0̄-module.

Lemma 7.1.9. The oscillator module M(g1̄) is a unitarizable g0̄-module under the action
induced by α : g0̄ → W (g1̄). In particular, M(g1̄) is g0̄-semisimple.

The proof of this lemma follows directly from the explicit form of the embedding α :
g0̄ → W (g1̄) and Lemma 7.1.8. In particular, M(g1̄) has a natural interpretation as the
oscillator module for g0̄ [80], and its g0̄-constituents are often referred to as ladder modules.

Furthermore, we can view M(g1̄) as a (g0̄, k
C)-module, which allows us to compare the

action of kC on M(g1̄) induced by α with the natural action of kC on C[x1, . . . , xmn] arising
from the adjoint action. This is the best comparison available, since n−

1̄ is only kC-invariant.
These two g0̄-modules are related by the following proposition.

Proposition 7.1.10. The action of α(kC) on M(g1̄) and the adjoint action of kC on
the polynomial ring C[x1, . . . , xmn] differ by a twist of C−ρ1̄. In particular, we have an
isomorphism of kC-modules:

M(g1̄) ∼= C[x1, . . . , xmn]⊗ C−ρ1̄ .

Proof. First, we recall the commutation relations from Lemma 7.0.1:

[∂k, ∂l] ∈ n+
0̄,n, [xk, xl] ∈ n−

0̄,n, [xk, ∂l] ∈ h, [kC, n±
0̄,n] ⊂ n±

0̄,n

for all 1 ≤ k, l ≤ mn. These relations imply that B(X, [∂k, ∂l]) = 0 and B(X, [xk, xl]) = 0
for any X ∈ kC. Consequently, α : g

∣∣
kC
→ W (g1̄) is given by

α(X) = −
mn∑
k,j=1

2B(X, [xk, ∂j ])xj∂k −
mn∑
l=1

B(X, [∂l, xl]).

We claim that α(X)P = [X,P ] for any X ∈ kC and any polynomial P ∈ C[x1, . . . , xmn]⊗
C−ρ1̄ , where C−ρ1̄ is identified with the one-dimensional kC-module generated by the
constant polynomial 1. By linearity, it is sufficient to consider monomials of the form
P =

∏mn
k=1 x

rk
k ⊗ 1, where rk ∈ Z+.
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Since n−
1̄ is kC-invariant, we have the following expression in the standard basis:

[X,xi] = −2
mn∑
k=1

B([X,xi], ∂k)xk = −2
mn∑
k=1

B(X, [xi, ∂k])xk.

This implies

α(X) =
mn∑
k=1

[X,xk]∂k −
mn∑
l=1

B(X, [∂l, xl]).

The first term acts non-trivially only on ∏mn
l=1 x

rl
l , while the second term acts as a scalar

multiple of the identity. Hence, it suffices to consider the action on 1.
To compute this, we evaluate the action of the two terms separately. First, we have

mn∑
k=1

[X,xk]∂kP =
mn∑
k=1

[X,xk]
rk
xk

mn∏
l=1

xrl
l =

mn∑
k=1

xr1
1 · · · [X,x

rk
k ] · · ·xrmn

mn = [X,
mn∏
l=1

xrl
l ] = [X,P ].

Next, we compute the action of −∑mn
l=1B(X, [xl, ∂l]) on 1. Since [xl, ∂l] ∈ h, the action

is trivial unless X = H ∈ h:

−
mn∑
l=1

B(H, [∂l, xl]) · 1 = −
mn∑
l=1

B(H,Ell + En+l,n+l) · 1 = −1
2
∑
α∈∆+

1

α(H) · 1 = −ρ1̄(H) · 1.

This concludes the proof.

Dirac cohomology

We defined the Dirac operator D as an element of U(g)⊗W (g1̄). As such, it acts naturally
on M ⊗M(g1̄), where M is a U(g)-supermodule and M(g1̄) is the oscillator module. The
action is defined componentwise as follows:

(X ⊗X ′)(v ⊗ P ) := Xv ⊗X ′P

for all X ∈ U(g), X ′ ∈ W (g1̄), and v ⊗ P ∈ M ⊗M(g1̄). It has been shown that D is
g0̄-invariant under the g0̄-action on U(g) ⊗W (g1̄), which is induced by the adjoint action
on both factors. This motivates the following definition.

Definition 7.1.11 ([66]). Let M be a g-supermodule. Consider the action of the Dirac
operator D ∈ U(g) ⊗ W (g1̄) on M ⊗ M(g1̄). The Dirac cohomology of M is the g0̄-
supermodule

HD(M) := ker D / (ker D∩ im D) .

Example 7.1.12. Let H be the trivial g-supermodule. Then we have the following iso-
morphism of g0̄-supermodules

HD(H) ∼= M(g1̄),

i.e., HD(H) decomposes in a direct sum of unitarizable simple g0̄-supermodules that occur
with multiplicity one, the ladder modules.
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In general, Dirac cohomology defines a functor

HD(·) : g-smod −→ g0̄-smod, M 7→ HD(M),

which admits a natural decomposition, HD(M) = H+
D(M) ⊕ H−

D(M), induced by the Z2-
grading of M(g1̄). We decompose the Dirac operator as D = D+ + D−, where

D+ := D
∣∣∣
M⊗M(g1̄)0̄

: M ⊗M(g1̄)0̄ →M ⊗M(g1̄)1̄,

D− := D
∣∣∣
M⊗M(g1̄)1̄

: M ⊗M(g1̄)1̄ →M ⊗M(g1̄)0̄,

and define H+
D(M) := HD+(M) and H−

D(M) := HD−(M). In what follows, we study
different aspects of the Dirac cohomology.

Dirac cohomology and infinitesimal characters

Dirac cohomology demonstrates its full strength when we restrict to g-supermodules with
infinitesimal character, introduced in Section 3.1.4. Here, we say that M , viewed as an
g0̄-module, has an even infinitesimal character χ0̄ : Z(g0̄) → C if every z ∈ Z(g0̄) acts on
M as the scalar χ0̄(z) times the identity. Recall that an even infinitesimal character χ0̄ is
determined, up to the dot action of the Weyl group, by some λ ∈ h∗ [70, Chapter 1.7]. We
will denote such a character by χ0̄

λ from here on.
The following theorem is central.

Theorem 7.1.13 ([66, Theorem 6]). For any z ∈ Z(g), there exists an algebra homomor-
phism ζ : Z(g)→ Z(g0̄) ∼= Z(g0̄,∆) and a g0̄-invariant element a ∈ U(g)⊗W (g1̄) such that
in U(g)⊗W (g1̄) the following holds:

z ⊗ 1 = ζ(z) +Da+ aD.

Moreover, ζ fits into the following commutative diagram:

Z(g) Z(g0̄)

S(h)W S(h)W ,

ζ

HCg HCg0̄

res

where HCg and HCg0̄ denote the Harish-Chandra monomorphism for g and the Harish-
Chandra isomorphism for g0̄, respectively.

As a direct consequence of Theorem 7.1.13, we obtain the following statement for in-
finitesimal characters.

Theorem 7.1.14. Let M be a g-supermodule with infinitesimal character χΛ. If the Dirac
cohomology HD(M) contains a non-zero g0̄-supermodule with even infinitesimal character
χ0̄
λ for some λ ∈ h∗, then χΛ(z) = χ0̄

λ(ζ(z)) for all z ∈ Z(g).

If M is a unitarizable highest weight g-supermodule, we obtain the following immediate
corollary using Proposition 7.2.14.
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Corollary 7.1.15. Let M be a unitarizable highest weight g-supermodule with highest
weight Λ. If the Dirac cohomology HD(M) contains a non-zero g0̄-supermodule with even
infinitesimal character χ0̄

λ for some λ ∈ h∗, then

Λ− ρ1̄ = w(λ+ ρ0̄)− ρ0̄

for some w ∈W .

Both the square of the Dirac operator (Proposition 7.1.4) and Dirac cohomology (Theo-
rem 7.1.14) are most useful when M decomposes completely under g0̄. This is the case for
unitarizable g-supermodules.

In the subsequent, we are interested in categorical properties of the Dirac cohomology.

7.1.3. Dirac induction
For general g-supermodules, Dirac cohomology does not exhibit good functorial behavior.
Specifically, as a functor, Dirac cohomology generally lacks an adjoint, and HD(·) satisfies
a six-term exact sequence only when the supermodules involved admit an infinitesimal
character

Lemma 7.1.16. Let 0→M ′ a−→M
b−→M ′′ → 0 be a short exact sequence of g-supermodules

that admit an infinitesimal character. Then there exists a six-term exact sequence:

H+
D(M ′) H+

D(M) H+
D(M ′′)

H−
D(M ′′) H−

D(M) H−
D(M ′)

Proof. The proof is similar to the proof of [62, Theorem 8.1]. We tensor the short exact
sequence with M(g1̄) and denote the arrows again by a and b, which get tensored with the
identity on M(g1̄). As a result, we obtain a right exact sequence

M ′ ⊗M(g1̄)→M ⊗M(g1̄)→M ′′ ⊗M(g1̄)→ 0.

The horizontal arrows in the diagram are then induced by a and b. We define the vertical
arrows. Let m′′ ∈ M ′′ ⊗M(g1̄) represent a non-trivial Dirac-cohomology class, so that
Dm′′ = 0. Choose m ∈ M ⊗M(g1̄) such that b(m) = m′′. We can assume D2m = 0
(Proposition 7.1.4), as M admits an infinitesimal character. Indeed, assume D2m = cm
for some c ∈ C. Then, by Proposition 7.1.4, we have

0 = D2m′′ = D2b(m) = b(D2m) = cb(m) = cm′′.

However, m′′ 6= 0, yielding c = 0. In addition, we have b(Dm) = Db(m) = Dm′′ = 0, i.e.,
Dm lies in ker(b) = im(a), and we find some m′ ∈ M with Dm = a(m′). The element m′

defines a cohomology class, as a(Dm′) = Da(m′) = D2m = 0, and a is injective. This class
is by definition the image of the class of m′′ under the connecting homomorphism. This
defines both vertical arrows. The exactness of the sequence is a direct calculation and is
being omitted.
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This issue motivates an alternative formulation of Dirac cohomology, which coincides
with the classical definition when restricted to unitarizable supermodules. The underlying
concept and construction trace back to [111]. Following the approach of [111], we construct
a functor—also referred to as Dirac cohomology—which admits a right adjoint and agrees
with HD(·) on the subcategory of unitarizable g-supermodules. This right adjoint is called
Dirac induction.

Any g-supermoduleM can be extended to a (U(g)⊗W (g1̄))-supermodule via the mapping
M 7→ M ⊗M(g1̄). Conversely, any (U(g) ⊗ W (g1̄))-supermodule X can be restricted to
a U(g)-supermodule via the assignment X 7→ HomW (g1̄)(M(g1̄), X), endowed with the
induced U(g)-action.

Proposition 7.1.17. There is an equivalence of categories

g-smod ∼= (U(g)⊗W (g1̄)) -smod, M 7→M ⊗M(g1̄)

with inverse X 7→ HomW (g1̄)(M(g1̄), X).

Proof. It is well known that U(g)-smod is equivalent to g-smod. For any U(g)-supermodule
M , we have the following isomorphisms:

HomW (g1̄)(M(g1̄),M ⊗M(g1̄)) ∼= M ⊗HomW (g1̄)(M(g1̄),M(g1̄)) ∼= M,

where the second isomorphism uses the fact that M(g1̄) is a simple W (g1̄)-supermodule
(see Proposition 7.1.7). Conversely, for any (U(g)⊗W (g1̄))-supermodule X, we have:

HomW (g1̄)(M(g1̄), X)⊗M(g1̄) ∼= X,

where the isomorphism is given by the evaluation map, utilizing the simplicity of M(g1̄).
It is straightforward to see that this map respects the U(g) ⊗ W (g1̄)-action. Altogether,
we have shown that g-smod ∼= U(g)-smod ∼= U(g)⊗W (g1̄)-smod.

We consider U(g)⊗W (g1̄) as a U(g0̄)-module under the diagonal embedding, and denote
the subspace of U(g0̄)-invariants in U(g) ⊗ W (g1̄) by (U(g) ⊗ W (g1̄))U(g0̄). Let I be the
two-sided ideal in (U(g)⊗W (g1̄))U(g0̄) generated by the Dirac operator D. Since the Dirac
operator D commutes with g0̄, the ideal I is g0̄-invariant by construction. We define
H′

D(M) as the subspace of I -invariants in M ⊗M(g1̄) for a given g-supermodule M , that
is,

H′
D(M) := {v ∈M ⊗M(g1̄) : xv = 0 for all x ∈ I }.

In particular, H′
D(M) is an g0̄-supermodule for any g-supermodule M . For unitarizable

g-supermodules M , we will show that HD(M) ∼= H′
D(M) in Corollary 7.2.13. For this

reason, we also refer to H′
D(·) as Dirac cohomology.

Proposition 7.1.18. The Dirac cohomology H′
D(·) admits a left-adjoint functor IndD :

g0̄,∆-smod→ (U(g)⊗W (g1̄))-smod, called Dirac induction, given by

IndD(V ) := (U(g)⊗W (g1̄))⊗U(g0̄,∆)(C1⊕I ) V

for any g0̄-supermodule V with trivial I -action. In particular, H′
D(·) is left-exact.
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Proof. We can understand H′
D(·) through the forgetful functor from U(g) ⊗ W (g1̄) to

U(g0̄,∆)(C1 ⊕ I ) and then considering I -invariants. Indeed, U(g0̄,∆)(C1 ⊕ I ) is the
g0̄-invariant subalgebra of U(g) ⊗ W (g1̄) generated by g0̄,∆ and I . This has exactly as
left-adjoint (U(g)⊗W (g1̄))⊗U(g0̄,∆)(C1⊕I ) V .

Corollary 7.1.19. Let M be a g-supermodule. Then a submodule V ⊂ HD(M) appears as
a g0̄,∆-constituent if and only if M is a quotient of IndD(V ).

7.2. Dirac operators, Dirac cohomology and unitarizable
supermodules

7.2.1. Dirac operators and unitarity
Let M be a g-supermodule that is g0̄-semisimple, and let D denote the Dirac operator
acting on M ⊗M(g1̄). If M is unitarizable, we will show that D is self-adjoint, leading
to a Parthasarathy–Dirac inequality (see Proposition 7.2.4). Moreover, we demonstrate
how the Dirac operator reflects the unitarity of M : specifically, the self-adjointness of D
is equivalent to the contravariance of a positive definite Hermitian form. In particular,
for any fixed unitarizable supermodule H, we derive a decomposition of H ⊗M(g1̄) with
respect to D2.

We fix a unitarizable g-supermodule H, equipped with a positive definite Hermitian
form 〈·, ·〉H. For M(g1̄), we use the Bargmann–Fock Hermitian form 〈·, ·〉M(g1̄), as defined
in Section 7.1.2. We then endow the U(g) ⊗ W (g1̄)-supermodule H ⊗ M(g1̄) with the
Hermitian form defined by

〈v ⊗ P,w ⊗Q〉H⊗M(g1̄) := 〈v, w〉H · 〈P,Q〉M(g1̄),

for all v ⊗ P,w ⊗ Q ∈ H ⊗M(g1̄). The Hermitian form 〈·, ·〉H⊗M(g1̄) is positive definite
and unique up to a real scalar, since both H and M(g1̄) are highest weight modules with
respect to U(g) and W (g1̄), respectively.

We extend the conjugate-linear anti-involution ω naturally to U(g). Moreover, ω defines
a conjugate-linear anti-involution on the Weyl algebra W (g1̄), and we extend it in the
obvious way to a conjugate-linear anti-involution on the tensor product U(g) ⊗ W (g1̄),
denoted by the same symbol.

The following lemma is a direct consequence of Lemma 7.1.8.

Lemma 7.2.1. For all X ∈ g and for all generators ∂k, xk of W (g1̄), the following identities
hold:

〈(X ⊗ xk)v, w〉H⊗M(g1̄) = 〈v, (ω(X)⊗ ∂k)w〉H⊗M(g1̄),

〈(X ⊗ ∂k)v, w〉H⊗M(g1̄) = 〈v, (ω(X)⊗ xk)w〉H⊗M(g1̄),

for all v, w ∈ H ⊗M(g1̄).

We decompose the Dirac operator D as D = Dp1 + Dq2 , where Dp1 ,Dq2 ∈ U(g)⊗W (g1̄)
are kC-invariant elements. Recall that

Dp1 = 2(dp1 − δp1), Dq2 = 2(dq2 − δq2).
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By Lemma 7.2.1 and the identity ω(xk) = −∂k in g for all k = 1, . . . ,mn, the operators
dp1 and δp1 , as well as dq2 and δq2 , are adjoint to each other up to sign with respect to the
Hermitian form 〈·, ·〉H⊗M(g1̄).

Lemma 7.2.2. The operators dp1 and δp1, and similarly dq2 and δq2, are adjoint to each
other with respect to the Hermitian form 〈·, ·〉H⊗M(g1̄), i.e.,

〈δp1v, w〉H⊗M(g1̄) = −〈v, dp1w〉H⊗M(g1̄), 〈δq2v, w〉H⊗M(g1̄) = −〈v, dq2w〉H⊗M(g1̄).

In particular, the operators Dp1, Dq2, and D are self-adjoint on H⊗M(g1̄).

Corollary 7.2.3. For all k ∈ Z+, the operators D, Dp1, and Dq2 satisfy:

ker D = ker Dk, ker Dp1 = ker
(

Dp1
)k
, ker Dq2 = ker

(
Dq2

)k
.

Another direct consequence of Lemma 7.2.2 is an inequality for D, known as Parthasarathy’s
Dirac inequality, or simply the Dirac inequality.

Proposition 7.2.4 (Parthasarathy’s Dirac inequality). The square of the Dirac operator
satisfies D2 ≥ 0 on H⊗M(g1̄); that is,

〈D2 v, v〉H⊗M(g1̄) ≥ 0 for all v ∈ H ⊗M(g1̄).

Proof. Let v ∈ H ⊗M(g1̄) be arbitrary. By Lemma 7.2.2, the Dirac operator D is self-
adjoint with respect to the Hermitian form 〈·, ·〉H⊗M(g1̄). Moreover, this form is positive
definite by construction. Consequently,

〈Dv,Dv〉H⊗M(g1̄) = 〈D2 v, v〉H⊗M(g1̄) ≥ 0,

which proves the claim.

Let M be a simple g-supermodule equipped with a positive definite Hermitian form, and
assume that M is g0̄-semisimple. A natural question is: when does the Dirac operator D
act as a self-adjoint operator on M ⊗M(g1̄)?

Theorem 7.2.5. Let M be a simple g-supermodule equipped with a positive definite Her-
mitian form 〈·, ·〉M , such that M0̄ and M1̄ are mutually orthogonal. Assume that M is
g0̄-semisimple. Then the following are equivalent:

a) (M, 〈·, ·〉M ) is a unitarizable g-supermodule.

b) The Dirac operator D is self-adjoint with respect to 〈·, ·〉M⊗M(g1̄).

Proof. If M is unitarizable with respect to 〈·, ·〉M , then D is self-adjoint on M ⊗M(g1̄) by
Lemma 7.2.2.

Conversely, assume D is self-adjoint with respect to 〈·, ·〉M⊗M(g1̄). It suffices to show
that the operators ∂k ⊗ 1 and xk ⊗ 1 act supersymmetrically, since they generate g1̄ and
[g1̄, g1̄] = g0̄. A direct calculation shows:

D(1⊗ ∂k)− (1⊗ ∂k) D = −2(∂k ⊗ 1), (1⊗ xk) D−D(1⊗ xk) = 2(xk ⊗ 1).
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Taking adjoints yields:

(D(1⊗ ∂k)− (1⊗ ∂k) D)† = (1⊗ xk) D−D(1⊗ xk),

using Lemmas 7.1.8 and 7.2.2.
Consequently, for all v, w ∈M , we compute:

〈∂kv, w〉M = 〈(∂k ⊗ 1)(v ⊗ 1), w ⊗ 1〉M⊗M(g1̄)

= −1
2〈(D(1⊗ ∂k)− (1⊗ ∂k) D)(v ⊗ 1), w ⊗ 1〉M⊗M(g1̄)

= −1
2〈v ⊗ 1, ((1⊗ xk) D−D(1⊗ xk))(w ⊗ 1)〉M⊗M(g1̄)

= −〈v ⊗ 1, (xk ⊗ 1)(w ⊗ 1)〉M⊗M(g1̄)

= −〈v, xkw〉M .

This completes the proof.

In general, the Kac induction of a unitarizable g0̄-supermodule is not itself unitariz-
able. Moreover, it may happen that a simple g-supermodule M restricts to a unitarizable
g0̄-module, even though M is not unitarizable as a g-supermodule. The Dirac operator
provides a criterion that helps clarify this situation.

Corollary 7.2.6. Let M be a simple g-supermodule equipped with a positive definite Her-
mitian form 〈·, ·〉M , such that M0̄ and M1̄ are mutually orthogonal. Assume that M admits
an infinitesimal character and is g0̄-semisimple. Then M is unitarizable as a g-supermodule
if and only if the following conditions hold:

a) All eigenvalues of D2 on M ⊗M(g1̄) are positive.

b) For all v, w ∈M ⊗M(g1̄), and for each eigenvalue λ2 of D2, we have

〈Dv,Dw〉M⊗M(g1̄) = λ2〈v, w〉M⊗M(g1̄).

Proof. We adapt the argument from [108, Corollary 2]. By assumption and Lemma 7.1.9,
the g0̄-module M ⊗M(g1̄) decomposes completely into irreducibles.

Moreover, by Propositions 7.1.4 and 7.2.4, the operator D2 acts on each g0̄-isotypic
component as a scalar λ2 ∈ R. If this is not the case, then M cannot be unitarizable.

On each such component, D has eigenvalues ±λ, and these components are mutually or-
thogonal with respect to the Hermitian form. The operator D is self-adjoint on ker(D2−λ2)
if and only if the +λ and −λ eigenspaces are orthogonal.

Indeed, for any v ∈ ker(D2−λ2), the span of v and Dv is D-invariant and contains the
eigenvectors λv±Dv with eigenvalues ±λ. These eigenspaces are orthogonal if and only if

〈λv + Dv, λw −Dw〉M⊗M(g1̄) = 0

for all v, w ∈ ker(D2−λ2). A direct computation shows that this is equivalent to

〈Dv,Dw〉M⊗M(g1̄) = λ2〈v, w〉M⊗M(g1̄).
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We now decompose the U(g) ⊗ W (g1̄)-supermodule H ⊗ M(g1̄), where H is a fixed
unitarizable g-supermodule, with respect to the Dirac operator D.

Since H is unitarizable and simple, it is completely reducible as both a g- and an g0̄-
supermodule (see Proposition 6.1.8). Assume H decomposes as a direct sum of unitarizable
simple g-supermodules. The oscillator module M(g1̄) is also unitarizable and completely
reducible as an g0̄-module, decomposing into unitarizable highest weight constituents. Con-
sequently, H⊗M(g1̄) is a completely reducible unitarizable g0̄-supermodule. This decom-
position is known to be a direct sum.

On any simple g-constituent of H, the quadratic Casimir acts as a scalar multiple of the
identity. Similarly, on any simple g0̄-constituent of H⊗M(g1̄), the even quadratic Casimir
acts as a scalar by Dixmier’s Theorem [32, Proposition 2.6.8]. By Theorem 7.1.4, it follows
that D2 is a semisimple operator on H⊗M(g1̄), and we may decompose H⊗M(g1̄) into
eigenspaces (H⊗M(g1̄))(c) corresponding to eigenvalue c, that is,

H⊗M(g1̄) =
⊕
c

(H⊗M(g1̄))(c),

where the direct sum is orthogonal with respect to the Hermitian form 〈·, ·〉H⊗M(g1̄).
Each eigenspace is a g0̄-supermodule, since [D, g0̄] = 0. In particular, the eigenspace

with eigenvalue c = 0 is precisely the kernel of D, as ker D = ker Dk for all k ∈ Z+.
More generally, such a decomposition with respect to D2 exists for any g-supermodule
H of finite length that is g0̄-semisimple.
Lemma 7.2.7. Let M be a g-supermodule that admits an infinitesimal character and is
g0̄-semisimple. Then, as an g0̄-supermodule, it decomposes into a direct sum of generalized
D2-eigenspaces:

M ⊗M(g1̄) =
⊕
c∈C

(M ⊗M(g1̄))(c),

where

(M ⊗M(g1̄))(c) :=
{
v ∈M ⊗M(g1̄) | ∃n ∈ Z+ such that (c · id−D2)nv = 0

}
.

The proof proceeds mutatis mutandis as in [1, Corollary 3.3].
Lemma 7.2.8. Let H be a unitarizable g-supermodule. Then there is an orthogonal
decomposition:

H⊗M(g1̄) = ker D2⊕ im D2,

where the direct sum is orthogonal with respect to the Hermitian form 〈·, ·〉H⊗M(g1̄).

Proof. First, we recall the eigenspace decomposition with respect to D2:

H⊗M(g1̄) = (H⊗M(g1̄))(0)⊕
⊕
c 6=0

(H⊗M(g1̄))(c),

where the zero eigenspace satisfies (H⊗M(g1̄))(0) = ker D.
Since D is self-adjoint with respect to 〈·, ·〉H⊗M(g1̄), it follows that im D = (ker D)⊥, i.e..,

the image and kernel are orthogonal complements. Hence,

im D = ker D⊥ = (H⊗M(g1̄))(0)⊥ =
⊕
c 6=0

(H⊗M(g1̄))(c).

Since ker D2 = ker D, and im D2 = im D, this yields the desired orthogonal decomposition:

H⊗M(g1̄) = ker D2⊕ im D2 .
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7.2.2. Dirac cohomology and unitarity
The Dirac cohomology functor

HD(·) : g-smod→ g0̄,∆-smod ∼= g0̄-smod

assigns to a g-supermodule M its Dirac cohomology,

HD(M) := ker D
/

(ker D∩ im D) .

In this section, we investigate the Dirac cohomology of unitarizable g-supermodules and
show that, in this setting, Dirac cohomology provides a complete characterization.

Basic properties

For unitarizable supermodules, Dirac cohomology admits a particularly simple description:
it coincides with the kernel of the Dirac operator.

Proposition 7.2.9. Let H be a unitarizable g-supermodule. Then

HD(H) = ker D .

Proof. We prove that ker D∩ im D = {0}. Let v ∈ ker D∩ im D, so that D v = 0 and there
exists w ∈ H⊗M(g1̄) with v = Dw. Since H⊗M(g1̄) is equipped with a positive definite
Hermitian form, we compute:

〈v, v〉 = 〈Dw, v〉 = 〈w,D v〉 = 0.

Thus v = 0, and the claim follows.

As an immediate consequence, Dirac cohomology is additive on direct sums of unitariz-
able supermodules.

Lemma 7.2.10. Let H1,H2 be unitarizable g-supermodules. Then

HD(H1 ⊕H2) = HD(H1)⊕HD(H2).

We now express the Dirac operator as D = Dp1 + Dq2 , where Dp1 = 2(dp1 − δp1), Dq2 =
2(dq2−δq2), and dp1 ,dq2 , δp1 , δq2 are kC-invariant operators. As shown in Lemma 7.2.2, these
operators are anti-adjoint to one another with respect to the Hermitian form 〈·, ·〉H⊗M(g1̄).
This decomposition provides a more explicit understanding of the kernel of D. We now
record some structural relations among the constituent operators.

Lemma 7.2.11. Let H be a unitarizable g-supermodule. Then the following assertions
hold:

a) The operators dp1 , δp1 , dq2 , δq2 square to zero.

b) The operators dp1 and δq2, and the operators dq2 and δp1 commute, i.e., [dp1 , δq2 ] = 0
and [dq2 , δp1 ] = 0.

c) With respect to the form 〈·, ·〉M⊗M(g1̄), the following holds:
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(i) im dp1 is orthogonal to ker δp1 and im δp1; im δp1 is orthogonal to ker dp1.
(ii) im dq2 is orthogonal to ker δq2 and im δq2; im δq2 is orthogonal to ker dq2.

d) ker(Dp1)2 = ker Dp1 = ker dq2 ∩ ker δp1, and ker(Dq2)2 = ker Dq2 = ker dq2 ∩ ker δq2.

Proof. a) This is a direct consequence of the fact that p1,2 and q1,2 are abelian Lie super-
subalgebras of g.

b) This is a direct consequence of [∂k, xl] = 0 unless k = l.
c) We only prove that im dp1 and ker δp1 are orthogonal; the rest can be proven similarly

using a) and b). First, let v ∈ im dp1 and w ∈ ker δp1 . Then there exists a non-trivial
v′ ∈ H ⊗M(g1̄) such that dp1v′ = v, and consequently by Lemma 7.2.2

〈v, w〉H⊗M(g1̄) = 〈dp1v′, w〉H⊗M(g1̄) = −〈v′, δp1w〉H⊗M(g1̄) = 0,

i.e., 〈ker dq2 , ker δp1〉H⊗M(g1̄) = 0.
d) The operators Dp1 and Dq2 are self-adjoint by Lemma 7.2.2, and therefore ker Dp1 =

ker(Dp1)2 and ker Dq2 = ker(Dq2)2. We prove that ker Dp1 = ker dp1 ∩ ker δp1 . Let v ∈
ker Dp1 , then Dp1v = 2(dp1 − δp1)v = 0, i.e., dp1v = δp1v. By b), im dp1 and im δp1

are orthogonal to each other, hence v ∈ ker δp1 ∩ ker dq2 . The other inclusion is trivial.
Analogously, the equality ker Dq2 = ker dq2 ∩ ker δq2 follows.

In summary, we can describe the Dirac cohomology of unitarizable supermodules in
terms of ker Dp1 and ker Dq2 .

Lemma 7.2.12. The Dirac cohomology of a unitarizable g-supermodule H is

HD(H) = ker Dp1 ∩ ker Dq2 .

Proof. We decompose the Dirac operator as D = Dp1 + Dq2 , such that

ker D = (ker Dp1 ∩ ker Dq2) ∪ {v ∈ H ⊗M(g1̄) : Dp1v = −Dq2v}.

Assume v := m⊗ P ∈ H ⊗M(g1̄) satisfies w := Dp1v = −Dq2v. Then

0 ≤ 〈w,w〉H⊗M(g1̄)

= −〈Dp1v,Dq2v〉H⊗M(g1̄)

= −
pn∑
k=1

mn∑
l=pn+1

〈(∂k − xk)m, (∂l − xl)m〉H〈(xk − ∂k)P, (xl − ∂l)P 〉M(g1̄).

However, for all 1 ≤ k ≤ pn and p+ 1 ≤ l ≤ mn, we have

〈(xk − ∂k)P 〉H, (xl − ∂l)P 〉M(g1̄) = 0

by the construction of the Bargmann–Fock form and k 6= l. We conclude w = 0, as the
Hermitian form is positive definite, i.e., Dp1v = 0 and Dq2v = 0 or v ∈ (ker Dp1 ∩ ker Dq2).
The assertion now follows from Proposition 7.2.9.

In Section 7.1.3, we introduced a left exact functor H′
D(·), which we also referred to

as Dirac cohomology. It coincides with the Dirac cohomology HD(·) on unitarizable g-
supermodules.
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Corollary 7.2.13. Let H be a unitarizable g-supermodule. Then the Dirac cohomologies
HD(H) and H′

D(H) coincide. In particular, HD(·) is left exact in the category of unitarizable
g-supermodules.

Proof. The Dirac cohomology of a unitarizable g-supermodule H is HD(H) = ker D =
ker D2 by Corollary 7.2.3 and Proposition 7.2.9. Moreover, D2 commutes with any element
of (U(g) ⊗ W (g1̄))U(g0̄) by Proposition 7.1.4, and it is an element of I , where I is the
two-sided ideal in (U(g) ⊗ W (g1̄))U(g0̄) generated by the Dirac operator D. The Dirac
cohomology H′

D(H) is defined as the I -invariants in H ⊗M(g1̄). The relation H′
D(H) ⊂

ker D2 is immediate. Conversely, for any v ∈ HD(H), we have DXv = 0 for any X ∈
(U(g) ⊗ W (g1̄))U(g0̄), as D2Xv = XD2v = 0. This shows HD(H) = H′

D(H). The second
assertion follows by Proposition 7.1.18.

The Dirac cohomology HD(H) inherits the structure of a unitarizable g0̄-supermodule.
Since the oscillator module M(g1̄) is itself a unitarizable g0̄-supermodule (see Section 7.1.2),
it follows that H ⊗ M(g1̄) – under the diagonal embedding – is also a unitarizable g0̄-
supermodule. Given that the Dirac operator D is invariant, it follows that ker D likewise
carries the structure of a unitarizable g0̄-supermodule.

Proposition 7.2.14. The Dirac cohomology HD(H) of a unitarizable g-supermodule H is
a unitarizable g0̄-supermodule. In particular, if H is simple, it decomposes completely in
unitarizable simple g0̄-supermodules.

Computation of Dirac cohomology

Having established the basic properties of the Dirac cohomology for unitarizable super-
modules, we now proceed to compute it explicitly. We begin by noting that unitarizable
g-supermodules possess non-trivial Dirac cohomology.

Proposition 7.2.15. Let H be a unitarizable highest weight g-supermodule with highest
weight Λ. Then HD(H) contains a highest weight g0̄-supermodule with highest weight Λ−ρ1̄
that occurs with multiplicity one. In particular, HD(H) 6= {0}.

Proof. Let vΛ be the highest weight vector of H, meaning that n+vΛ = 0, and specifically
n+

1̄ vΛ = 0. Since 1 is constant and annihilated by ∂k, the vector vΛ⊗ 1 lies in the kernel of
D = 2

∑mn
k=1(∂k ⊗ xk − xk ⊗ ∂k). Further, we assert that vΛ ⊗ 1 generates a highest weight

U(g0̄)-supermodule.
Any element X ∈ g0̄ acts on vΛ ⊗ 1 via the diagonal embedding:

XvΛ ⊗ 1 + vΛ ⊗ α(X)1,

and we recall:

α(X) =
mn∑
k,j=1

(B(X, [∂k, ∂j ])xkxj +B(X, [xk, xj ])∂k∂j)

−
mn∑
k,j=1

2B(X, [xk, ∂j ])xj∂k −
mn∑
l=1

B(X, [∂l, xl]).
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By Lemma 7.0.1, we have the commutation relations [∂k, ∂j ] ∈ n+
0̄ , [xk, xj ] ∈ n−

0̄ and
[xk, ∂j ] ∈ h. Let X ∈ n+

0̄ . Then the definition of B(·, ·) forces

XvΛ ⊗ 1 + vΛ ⊗ α(X)1 = vΛ ⊗
mn∑
k,j=1

B(X, [xk, xj ])∂k∂j1 = 0,

where we use that n+
0̄ vΛ = 0.

Any H ∈ h acts on vΛ ⊗ 1 by

HvΛ ⊗ 1 + vΛ ⊗ α(H)vΛ = Λ(H)vΛ ⊗ 1− vΛ ⊗
mn∑
l=1

B(H, [∂l, xl])1

= Λ(H)vΛ ⊗ 1− vΛ ⊗
∑
α∈∆+

1̄

1
2
α(H)1

= (Λ− ρ1̄)(H)(vΛ ⊗ 1).

Hence, vΛ ⊗ 1 ∈ HD(H) generates a (simple) highest weight g0̄-supermodule, that is in
particular unitarizable by Proposition 7.2.14. The module appears with multiplicity one,
as the weight spaces of vΛ and 1 are one-dimensional.

The following corollary is an immediate consequence of Proposition 13.2.19.

Corollary 7.2.16. Let H be a unitarizable g-supermodule. Then HD(H) is non-trivial.

To compute HD(H) explicitly, we use Proposition 7.1.4. For that, we relate the constant
C with the Weyl vector ρ = ρ0̄ − ρ1̄.

Lemma 7.2.17. The constant is C = −(ρ1̄ − 2ρ0̄, ρ1̄).

Proof. Let H be a unitary simple highest weight g-supermodule with highest weight Λ. By
Proposition 7.2.15, there exists a g0̄-supermodule in HD(H) with highest weight Λ − ρ1̄.
As HD(H) = ker D = ker D2, we have by Theorem 7.1.14:

0 = −(Λ + 2ρ,Λ) + (Λ− ρ1̄ + 2ρ0̄,Λ− ρ1̄) + C,

and a direct calculation yields

(Λ− ρ1̄ + 2ρ0̄,Λ− ρ1̄) = (Λ + 2ρ,Λ) + (ρ1̄ − 2ρ0̄, ρ1̄).

This finishes the proof.

Using the identity HD(H) = ker D = ker D2 together with the expression D2 = D2 =
−Ωg ⊗ 1 + Ωg0̄,∆ − C, and Lemma 7.2.17, we obtain the following proposition.

Proposition 7.2.18. Let H be a unitarizable highest weight g-supermodule with highest
weight Λ. Then a g0̄-constituent L0(µ) in H⊗M(g1̄) belongs to HD(M) if and only if

(Λ + 2ρ,Λ) = (µ+ 2ρ, µ).

Proof. The square D2 = −Ωg ⊗ 1 + Ωg0̄,∆ + C acts on L0(µ) by the scalar

−(Λ + ρ,Λ) + (µ− ρ1̄ + 2ρ0̄, µ− ρ1̄)− (ρ1̄ − 2ρ0̄, ρ1̄) = −(Λ + 2ρ,Λ) + (µ+ 2ρ, µ),

which concludes the proof by HD(H) = ker D = ker D2.
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The following corollary is straightforward.

Corollary 7.2.19. Let H be a unitarizable highest weight g-supermodule, and let L0(µ)
be a g0̄-constituent with highest weight µ = Λ− α for some odd root α, and highest weight
vector vµ. Then the following assertions are equivalent:

a) vµ ⊗ 1 belongs to HD(H).

b) (Λ + ρ, α) = 0.

We now compute the Dirac cohomology of unitarizable simple g-supermodules, using
Vogan’s Theorem for Lie superalgebras (see Theorem 7.1.14). Since any unitarizable g-
supermodule is completely reducible and HD(·) is additive, it suffices to consider unitariz-
able simple g-supermodules.

Theorem 7.2.20. The Dirac cohomology of a non-trivial unitarizable simple g-supermodule
L(Λ) with highest weight Λ is

HD(L(Λ)) = L0(Λ− ρ1̄).

Proof. We decompose HD(L(Λ)) in its g0̄-constituents by Proposition 7.2.14. Then the
module L0(Λ− ρ1̄) is a simple constituent by Proposition 7.2.15, and unitarizable. More-
over, it is a relative holomorphic g0̄-supermodule by Harish-Chandra’s condition:

(Λ− ρ1̄ + ρ0̄, ε1 − εm) = λ1 − λm +m− 1− n < 0

as n ≥ m and λ1−λm ≤ 0, i.e., Λ−ρ1̄ ∈ D, where D denotes the set of all Harish-Chandra
parameters of relative holomorphic discrete series g0̄-modules. In particular, as ∆+

0̄ is fixed,
Λ − ρ1̄ is unique in its W -linkage class being the highest weight of a unitarizable highest
weight g0̄-supermodule.

Any simple g0̄-constituent L0(µ) is a highest weight g0̄-supermodule by Proposition
7.2.14, and the highest weight µ is of the form

w · (Λ− ρ1̄) = w · Λ− ρ1̄ = µ,

by Theorem 7.1.14, where w ∈W and ” · ” is the even dot action of the Weyl group given
by w · λ = w(λ+ ρ0̄)− ρ0̄ for any w ∈W and λ ∈ h∗. Thus, by uniqueness, w must be the
identity and Λ − ρ1̄ = µ. In addition, the multiplicity is one by Proposition 7.2.15. This
concludes the proof.

Interestingly, as observed in the proof of Theorem 7.2.20, any g0̄-constituent ofH⊗M(g1̄)
lies in the relative holomorphic discrete series. We record this observation in the following
corollary.

Corollary 7.2.21. Let H be a unitarizable g-supermodule. Then any g0̄-constituent in
H⊗M(g1̄) belongs to the relative holomorphic discrete series.

The g0̄-supermodule generated by 1 ∈M(g1̄) is entirely concentrated in even parity due
to the Z2-grading of M(g1̄). This leads to the following corollary.

Corollary 7.2.22. Let H be a non-trivial unitarizable simple g-supermodule. Then

HD(H) ∼= H+
D(H).
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Combining Proposition 7.2.18, Corollary 7.2.19, and Theorem 7.2.20, we obtain the
following corollary.

Corollary 7.2.23. LetH be a unitarizable simple highest weight g-supermodule with highest
weight Λ. If (Λ + ρ, α) = 0 for some odd positive root α, then L0(Λ− α) does not appear
as a g0̄-constituent in H.

Furthermore, unitarizable g-supermodules are uniquely determined by their Dirac coho-
mology.

Theorem 7.2.24. Let H1 and H2 be two unitarizable g-supermodules. Then H1 ∼= H2 as
g-supermodules if and only if HD(H1) ∼= HD(H2) as g0̄-supermodules.

Proof. Unitarizable g-supermodules are completely reducible (Proposition 13.2.19), and
the Dirac cohomology is additive. It is therefore enough to consider unitarizable highest
weight g-supermodules, say H1 = L(Λ1) and H2 = L(Λ2) for some Λ1,Λ2 ∈ h∗.

Then, by Theorem 7.2.20, the associated Dirac cohomology is HD(H1) = L0(Λ1 − ρ1̄)
and HD(H2) = L0(Λ2 − ρ1̄). The statement follows now with Proposition 3.1.13, as two
highest weight modules with respect to ∆+

0̄ are isomorphic if and only if they have the
same highest weight.

Finally, as a direct application, we calculate the Dirac cohomology of a class of Verma
supermodules, for which each simple constituent in its composition series is a unitarizable
g-supermodule. Specifically, any M(Λ) has a composition series (Proposition 3.1.15):

{0} = M0 ⊂M1 ⊂ . . . ⊂Mn = M(Λ)

such that Mi+1/Mi
∼= L(Λi) for some simple g-supermodules L(Λi), each Λi being a simple

highest weight g0̄-supermodule. We assume that each quotient supermodule L(Λi) is a
unitarizable highest weight g-supermodule with highest weight Λi. Furthermore, by [73,
Theorem 2.5, Corollary 2.7], we can assume Λi+1 − Λi is a non-trivial sum of pairwise
different odd roots. We fix such a Verma supermodule M(Λ).

Proposition 7.2.25. The Dirac cohomology of M(Λ) is given by

HD(M(Λ)) =
⊕
i

HD(L(Λi)) ∼=
⊕
i

L0(Λi − ρ1̄).

Proof. The short exact sequence

0→ L(Λ0)→M2 → L(Λ1) ∼= M2/M1 → 0

induces the following short exact sequence of g0̄-supermodules (Lemma 7.1.16, Corol-
lary 7.2.22, and Theorem 7.2.20), where parity is left implicit:

0→ L0(Λ0 − ρ1̄)→ H+
D(M2)→ L0(Λ1 − ρ1̄)→ 0.

The difference Λ1−Λ0 is a non-trivial sum of odd roots, and Λ0,1− ρ1̄ ∈ D with respect to
the fixed Borel b. In particular, the Weyl orbit does not contain any other highest weight
of a unitarizable g0̄-supermodules with respect to b. We conclude that L0(Λ0 − ρ1̄) and
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L0(Λ1 − ρ1̄) have different infinitesimal characters for g0̄. By Wigner’s Lemma (cf. [96,
Theorem 1.1]) the exact sequence splits, and

H+
D(M2) = HD(L(Λ0))⊕HD(L(Λ1)).

On the other hand, we can read off from the six-term exact sequence in Lemma 7.1.16 that
H−

D(M2) = 0 holds as H−
D(L(Λ0,1)) = 0, and therefore

HD(M2) = HD(L(Λ0))⊕HD(L(Λ1)).

Using the fact that Ext and direct sums commute, along with the ordering of the weights,
and the observation that direct sums and Dirac cohomology commute for unitarizable
g-supermodules, the proposition follows.

7.3. Complementary perspectives

In this section, we study complementary perspectives on Dirac cohomology. In Section
7.3.1, we present a novel characterization of unitarity via the Dirac inequality (Theorem
7.3.2). This leads to an g0̄-decomposition of unitarizable simple g-supermodules with re-
spect to the Lie subalgebra g0̄ (Theorem 7.3.4). In Section 7.3.2, we introduce an analog
of Kostant’s cohomology and show that, as kC-modules, it is isomorphic to Dirac coho-
mology (Theorem 7.3.11). We then define the Dirac index in Section 7.3.3 and prove that
it coincides with the Euler characteristic of Dirac cohomology. Finally, in Section 7.3.4,
we derive kC-character formulas for unitarizable supermodules using Kostant’s cohomology
(Theorem 7.3.15) and the Dirac index (Theorem 7.3.18).

7.3.1. g0̄-Decomposition and unitarity

For a given g-supermodule M , a key task is to decompose M under g0̄, as this allows for the
reduction of certain problems to the well-studied case of complex reductive Lie algebras.
By Proposition 6.1.8, if M is unitarizable, it is completely reducible under g0̄, and the
Dirac inequality holds strictly. This leads to the natural question: given an g0̄-semisimple
g-supermodule, under what conditions on its g0̄-constituents is it unitarizable?

In Section 6.1.3, we established that every simple highest weight g-supermodule M pos-
sesses a unique non-degenerate contravariant Hermitian form, derived from the Shapovalov
form of the Verma supermodule. Consequently, M is unitarizable if and only if the Her-
mitian form is positive definite, which occurs precisely when the Dirac inequality holds
strictly for each g0̄-constituent. To establish this result, we require the following lemma.

Lemma 7.3.1. Let M be a simple highest weight g-supermodule with highest weight Λ.
Assume M is g0̄-semisimple. Let L0(µ) be a simple g0̄-constituent with highest weight µ
and v ∈ L0(µ) \ {0} some vector. Then the following assertion holds:

((µ+ 2ρ, µ)− (Λ + 2ρ,Λ))〈v, v〉M = 4
mn∑
k=1
〈∂kv, ∂kv〉M .
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Proof. The statement follows directly from the following calculation:

((µ+ 2ρ, µ)− (Λ + 2ρ,Λ))〈v, v〉M = ((µ+ 2ρ, µ)− (Λ + 2ρ,Λ))〈v ⊗ 1, v ⊗ 1〉M⊗M(g1̄)

= 〈D2(v ⊗ 1), v ⊗ 1〉M⊗M(g1̄)

= −4
mn∑
k=1
〈xk∂kv ⊗ 1, v ⊗ 1〉M⊗M(g1̄)

= 4
mn∑
k=1
〈∂kv ⊗ 1, ∂kv ⊗ 1〉M⊗M(g1̄)

= 4
mn∑
k=1
〈∂kv, ∂kv〉M .

The first equation follows from definition of the super Hermitian form on M⊗M(g1̄), while
the second equation follows from Theorem 7.1.4 and the observation that v ⊗ 1 lies in a
g0̄-submodule of M ⊗M(g1̄) with highest weight µ−ρ1̄. The second uses the explicit form
of D2 given in Remark 7.1.5, i.e.,

D2(v ⊗ 1) =
(

2
mn∑
k,l=1

(
[∂k, ∂l]⊗ xkxl + [xk, xl]⊗ ∂k∂l − 2[∂k, xl]⊗ xk∂l

)

− 4
mn∑
k=1

xk∂k ⊗ 1
)
v ⊗ 1 = 2

mn∑
k,l=1

[∂k, ∂l]v ⊗ xkxl − 4
mn∑
k=1

xk∂kv ⊗ 1,

and

〈2
∑
k,l

[∂k, ∂l]v ⊗ xkxl, v ⊗ 1〉M⊗M(g1̄) = 2
mn∑
k,l=1
〈[∂k, ∂l]v, v〉M 〈xkxl, 1〉M(g1̄) = 0,

since 〈xkxl, 1〉M(g1̄) = 〈xl, ∂k1〉M(g1̄) = 0 for all 1 ≤ k, l ≤ mn. The third equality uses the
contravariance of 〈·, ·〉M⊗M(g1̄) and the fact that ω(xk) = −∂k for all 1 ≤ k ≤ mn.

Theorem 7.3.2. Let M be a simple highest weight g-supermodule with highest weight Λ that
is g0̄-semisimple. Then M is unitarizable if and only if the highest weight g0̄-supermodule
L0(Λ) is unitarizable and the Dirac inequality holds strictly on each simple highest weight
g0̄-constituent L0(µ) with highest weight µ 6= Λ of M embedded in M ⊗M(g1̄), i.e.,

(µ+ 2ρ, µ) > (Λ + 2ρ,Λ).

Proof. Assume first that M is unitarizable, meaning that the Hermitian form 〈·, ·〉M is
positive definite; in particular, L0(Λ) is a unitarizable g0̄-supermodule. Let v ∈ M with
v /∈ L0(Λ). Then, n+

1̄ v 6= 0 since [n+
1̄ , n

+
1̄ ] = n+

0̄,n, meaning v cannot lie in a kC-module that
generates a proper submodule, as L(Λ) is simple. By Lemma 7.3.1, we have

((µ+ 2ρ, µ)− (Λ + 2ρ,Λ))〈v, v〉M = 4
mn∑
k=1
〈∂kv, ∂kv〉M ,

which leads – by the strict positivity of the Hermitian form – to (µ+2ρ, µ)−(Λ+2ρ,Λ) > 0,
thus establishing one direction of the result.
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Assume now that L0(Λ) is unitarizable and that the Dirac inequality holds strictly for
each simple highest weight g0̄-constituent L0(µ) with highest weight µ 6= Λ. We decompose
M under g0̄ as in Corollary 6.1.19 and note in general (Proposition 3.1.13):

M = U(n−)vΛ =
∧•

(n−
1̄ )U(n−

0̄ )vΛ,

where vΛ denotes the highest weight vector of L(Λ) and L0(Λ). Moreover, we note that
U(n−

0 )vΛ belongs to L0(Λ), hence we have there a positive definite Hermitian form by
assumption.

First, consider ∧1(n−
1̄ )U(n−

0̄ )vΛ. Any element v ∈ ∧1(n−
1̄ )U(n−

0̄ )vΛ belongs to an g0̄-
constituent, say L0(Λ−α) for some α ∈ ∆+, ensuring that ∂kv ∈ U(n−

0̄ )vΛ for 1 ≤ k ≤ mn
(cf. [73, Corollary 2.7]). Moreover, there exists at least one 1 ≤ k ≤ mn such that ∂kv 6= 0.
Otherwise, we have n+

1̄ v = 0, and therefore n+
0̄,nv = 0 as [n+

1̄ , n
+
1̄ ] ⊂ n+

0̄,n. In addition,
in U(kC)v, the application of U(n+

0̄,c) leads to some vector w ∈ ∧1(n−
1̄ )U(n−

0̄ )vΛ such that
n+

0̄ w = 0 and n+
1̄ w = 0, as [n+

0̄,c, n
+
0̄,n] = 0 and [n+

0̄,c, n
+
1̄ ] ⊂ n+

1̄ . This forces w to vanish
under the action of U(n+), i.e., it generates a proper super submodule of M . This is
a contradiction, as M is simple. Now, by the unitarity of L0(Λ) and Lemma 7.3.1, we
conclude that

〈v, v〉M > 0,

as the Dirac inequality holds strictly.
Next, consider ∧2(n−

1̄ )U(n−
0̄ )vΛ such that any ∂kv belongs to ∧1(n−

1̄ )U(n−
0̄ )vΛ for v ∈∧2(n−

1̄ )U(n−
0̄ )vΛ. Since any non-trivial element w in ∧1(n−

1̄ )U(n−
0̄ )vΛ satisfies 〈w,w〉M > 0,

we conclude by Lemma 7.3.1, our assumption and a similar argument as above, that
〈v, v〉M > 0.

By induction, the non-degenerate contravariant Hermitian form 〈·, ·〉M is positive defi-
nite, implying that M is unitarizable.

As a direct implication, we present the g0̄-decomposition of a general unitarizable simple
highest weight g-supermodule H with highest weight Λ. Recall that H has a h-weight
decomposition with PH ⊂ Λ−Z+[∆+] by Proposition 3.1.13, where PH := {β ∈ h∗ : Hβ 6=
{0}} is the set of h-weights of H and

∆+
1̄ = {εi − δj ,−εk + δl : 1 ≤ i ≤ p, p+ 1 ≤ l ≤ m, 1 ≤ j, l ≤ n}.

Following the formulation of the filtration of Verma supermodules as g0̄-supermodules in
Proposition 6.1.18, let S be the set of subsets of ∆+

1̄ , and fix a naturally ordered sequence
of subsets such that ΣSi < ΣSj implies i < j, where ΣSk

=
∑
γ∈Sk

γ.
First, we combine Corollary 6.1.19 and Corollary 7.2.23 to deduce the following lemma.

Lemma 7.3.3. Let H be a unitarizable simple g-supermodule with highest weight Λ. Then
any g0̄-constituent of H takes the form L0(Λ −

∑
γ∈Sj

γ) for some j, and Sj contains no
odd root α ∈ ∆+

1̄ such that (Λ + ρ, α) = 0.

Now, by combining Theorem 7.3.2 and Lemma 7.3.3, we have established the following
theorem.
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Theorem 7.3.4. Let H be a unitarizable highest-weight g-supermodule with highest weight
Λ ∈ h∗. As a g0̄-module, L(Λ) decomposes as

L(Λ)ev ∼= L0(Λ)⊕
⊕
j

L0(Λ−
∑
γ∈Sj

γ),

where we sum over all j such that Sj contains no odd root α with (Λ + ρ, α) = 0, and the
Dirac inequality holds strictly on each g0̄-constituent:

(Λ−
∑
γ∈Sj

γ + 2ρ,Λ−
∑
γ∈Sj

γ) > (Λ + 2ρ,Λ)

with ∑γ∈Sj
γ 6= 0.

Corollary 7.3.5. Let H be a unitarizable simple g-supermodule. Then H decomposes
in a finite sum of simple highest weight g0̄-supermodules. The maximal number of g0̄-
constituents is 2dim(n−

1̄ ).

Combining Theorem 7.3.4 with Blattner’s formula in Section 5.3.5, we obtain an explicit
formula for the kC-types appearing in holomorphic discrete series g-supermodules.

Corollary 7.3.6. Let H be a discrete series g-supermodule with highest weight Λ ∈ h∗.
Then the irreducible kC-module Fµ of highest weight µ appears in H with multiplicity∑

w∈W
ε(w)Q(w(µ+ ρc)− Λ− ρc) +

∑
j

∑
w∈W

ε(w)Q(w(µ+ ρc)− Λ−
∑
γ∈Sj

γ − ρc),

where we sum over all j such that Sj contains no odd root α with (Λ + ρ, α) = 0 and the
Dirac inequality holds strictly on each proper g0̄-constituent.

7.3.2. Relation to Kostant’s cohomology
We define an analog of Kostant’s cohomology similarly to [18], which captures the kC-
module structure of the Dirac cohomology rather than its g0̄-supermodule structure. When
we consider a unitarizable g-supermodule as a kC-module, we neglect parity. We adapt the
notation of Section 7.1.1.

Construction of H∗(g+1,M)

The Lie superalgebra g admits a Z2-compatible Z-grading. We consider g1̄ as a g0̄-module
under the supercommutator. Then g1̄ decomposes into a direct sum of two simple g0̄-
modules, namely g1̄ = g−1 ⊕ g+1, where

g+1 := p1 ⊕ p2, g−1 := q1 ⊕ q2.

Both are, in particular, abelian Lie subsuperalgebras of g, i.e., [g±1, g±1] = 0, and the
associated Z-grading of g, given by

g = g−1 ⊕ g0̄ ⊕ g+1,

is then compatible with the Z2-grading on g.
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Let T (g±1) be the tensor algebra over the complex vector space g±1, and let S(g±1) =
T (g±1)/I be the symmetric algebra with grading S(g±1) =

⊕∞
n=0 S

n(g±1) introduced in
Section 7.1. We note that I ∩ T 1(g±1) = {0}, and g±1 can be identified with S1(g±1).
Further, let I ′ denote the two-sided ideal in T (g±1) generated by v ⊗ v for all v ∈ g±1.
We define the exterior algebra by ∧(g±1) := T (g±1)/I ′. The ideal I ′ is homogeneous, i.e.,
I ′ =

⊕∞
n=0(I ′ ∩ Tn(g±1)), and a Z-grading of ∧(g±1) is given by

∧
(g±1) =

∞⊕
n=0

∧n
(g±1),

∧n
(g±1) := Tn(g±1)/(I ′ ∩ Tn(g±1)).

We note that I ′ ∩ T 1(g±1) = {0}, and we can identify g±1 with ∧1(g±1).
We identify the dual space g∗

+1 with g−1 using the bilinear form 2B(·, ·). This identifica-
tion is g0̄-invariant, given that B(·, ·) is g0̄-invariant. Additionally, we equate S(g∗

+1) with
S(g−1), the polynomial algebra in the variables x1, . . . , xpn, ∂pn+1, . . . , ∂mn. The universal
enveloping algebra U(g+1) can be identified with ∧(g+1).

To construct the cohomology, we consider the free resolution of ∧(g+1)-modules

. . .
δ−→ Si(g+1)⊗

∧
(g+1) δ−→ Si−1(g+1)⊗

∧
(g+1) δ−→ . . .

δ−→ C⊗
∧

(g+1) δ−→ 0

with boundary map δ := −dq2 + δp1 . Here, recall that

dp1 =
pn∑
k=1

∂k ⊗ xk, δp1 =
pn∑
k=1

xk ⊗ ∂k,

dq2 =
mn∑

k=pn+1
∂k ⊗ xk, δq2 =

mn∑
k=pn+1

xk ⊗ ∂k.

In particular, δ2 = 0 by Lemma 7.2.11. Fix a (g, kC)-supermodule M , and apply the
contravariant functor Hom∧(g+1)(−,M) to the above resolution. Then we arrive at the
following complex of ∧(g+1)-modules

. . .
d←− HomC(Si+1(g+1),M) d←− HomC(Si(g+1),M) . . . d←− HomC(S1(g+1),M)← 0,

where d is the pullback operator of δ, explicitly given by d := dp1 − δq2 if we identify
HomC(Si(g+1),M) with M ⊗ Si(g−1) for any i. However, the operators d and δ are only
kC-equivariant by Lemma 7.1.6.

Lemma 7.3.7. The operators d and δ are kC-invariant, i.e., [kC,d] = 0 and [kC, δ] = 0.

Both supermodules, M and Si(g+1), are kC-modules, where the action on Si(g+1) is
induced by the adjoint action of kC on g1̄. This identifies the spaces

Ci(M) := HomC(Si(g+1),M) ∼= M ⊗ Si(g−1)

as kC-modules.
The kC-invariance of d makes the complex C := (Ci(M), d) into a kC-module complex

with a kC-equivariant boundary operator d. The cohomology groups of the complex C will
be denoted by Hi(g+1,M). These are naturally kC-modules.
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Relation to Dirac cohomology

For a given unitarizable g-supermodule H, we identify d and δ as operators on H⊗M(g1̄),
noting that D = 2(d − δ). The Dirac cohomology of H is HD(H) = ker D, while the
analog of Kostant’s cohomology is ker d/ im d. Therefore, we aim to compare ker D with
ker d/ im d. We begin by gathering the properties of d and δ.

Lemma 7.3.8. Let H be a unitarizable simple g-supermodule. Then the following asser-
tions hold with respect to 〈·, ·〉H⊗M(g1̄):

a) d and δ are anti-adjoint to each other.

b) im d is orthogonal to ker δ and im δ, while im δ is orthogonal to ker d.

Proof. a) The operators are defined as d = dp1−δq2 and δ = −dq2 +δp1 . By Lemma 7.2.11,
dp1 is anti-adjoint to δp1 and dq2 is anti-adjoint to δq2 . This proves a).

b) This proof is analogous to the proofs of parts c) and d) in Lemma 7.2.11 and will be
omitted.

Lemma 7.3.9. Let H be a unitarizable simple g-supermodule. Then the following asser-
tions hold with respect to 〈·, ·〉H⊗M(g1̄):

a) H⊗M(g1̄) = ker D⊕ im d⊕ im δ.

b) ker d = ker D⊕ im d.

Proof. a) By Lemma 7.2.8 and Corollary 7.2.3, we have H ⊗M(g1̄) = ker D2⊕ im D2 =
ker D⊕ im D2. Moreover, im d and im δ are orthogonal to each other by Lemma 7.3.8, and
d2 = 0 or δ2 = 0. We conclude:

H⊗M(g1̄) = ker D⊕ im D2 ⊂ ker D⊕ im D ⊂ ker D⊕ im d⊕ im δ,

and consequently H⊗M(g1̄) = ker D⊕ im d⊕ im δ.
b) The assertion follows from a) and Lemma 7.3.8 if we show ker D = ker d ∩ ker δ.

However, this assertion is clear since D = 2(δ − d) and im d and im δ are orthogonal.

Now, Lemma 7.3.9 together with Proposition 7.1.10 allows us to compare the kC-module
structure of HD(H) and H∗(g+1,H). We first need the following lemma that is a straight-
forward calculation.

Lemma 7.3.10. The following assertions hold:

a) C[x1, . . . , xmn] ∼= C[x1, . . . , xpn] ⊗ C[xpn+1, . . . , xmn] as kC-modules with action in-
duced by the commutator of kC on g1̄.

b) The kC-modules C[x1, . . . , xpn], C[xpn+1, . . . , xmn] and C[∂1, . . . , ∂pn], C[∂pn+1, . . . , ∂mn]
are dual to each other, respectively. In particular, they are isomorphic.

Combining these results, we conclude that Dirac cohomology HD(H) and Kostant’s co-
homology H∗(g+1,H) are isomorphic as kC-modules, up to a twist, for unitarizable simple
g-supermodules.
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Theorem 7.3.11. For any unitarizable simple g-supermodule H there exists a kC-module
isomorphism

HD(H) ∼= H∗(g+1,H)⊗ C−ρ1̄ .

Proof. First, by Lemma 7.2.9 and Lemma 7.3.9, we have HD(H) = ker D ∼= ker d/ im d.
Second, by Proposition 7.1.10 and Lemma 7.3.10, have the following isomorphisms of

kC-modules

M(g1̄) ∼= C[x1, . . . , xmn]⊗ C−ρ1̄
∼= (C[x1, . . . , xpn]⊗ C[xpn+1, . . . , xmn])⊗ C−ρ1̄
∼= (C[x1, . . . , xpn]⊗ C[∂pn+1, . . . , ∂mn])⊗ C−ρ1̄
∼= C[x1, . . . , xpn, ∂pn+1, . . . , ∂mn]⊗ C−ρ1̄ .

By construction of H∗(g+1,H), the statement follows.

7.3.3. Dirac index
In this section, we associate to any D2-semisimple g-supermodule M (e.g., M simple or
unitarizable) a virtual character, which we refer to as the Dirac index. This index coincides
with the Euler characteristic of Dirac cohomology and satisfies several desirable properties.
Moreover, for unitarizable simple g-supermodules, the Dirac index agrees with the Dirac
cohomology.

For any g-supermodule M , the Dirac operator D acts on M⊗M(g1̄)0̄ and M⊗M(g1̄)1̄, in-
terchanging these subspaces. The Dirac index ofM is defined as the virtual g0̄-supermodule

I(M) := M ⊗M(g1̄)0̄ −M ⊗M(g1̄)1̄.

This is an element of the Grothendieck group of g0̄-supermodules. In contrast, the operator
D : M ⊗M(g1̄)0̄,1̄ →M ⊗M(g1̄)1̄,0̄ gives rise to a decomposition of the Dirac cohomology
HD(M) into even and odd parts:

HD(M) = H+
D(M)⊕H−

D(M),

whose Euler characteristic is given by the virtual g0̄-supermodule

H+
D(M)−H−

D(M).

These two virtual g0̄-supermodules — I(M) and the Euler characteristic — coincide when-
ever M is D2-semisimple.

Proposition 7.3.12. Let M be a D2-semisimple g-supermodule. Then the Dirac index
I(M) is equal to the Euler characteristic of the Dirac cohomology HD(M), i.e.,

I(M) = H+
D(M)−H−

D(M).

Proof. We decompose M ⊗M(g1̄) into a direct sum of eigenspaces of D2:

M ⊗M(g1̄) =
(
M ⊗M(g1̄)

)
(0)⊕

⊕
c6=0

(
M ⊗M(g1̄)

)
(c).
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Since D2 is even, this decomposition is compatible with the Z2-grading:(
M ⊗M(g1̄)

)
(c) =

(
M ⊗M(g1̄)0̄

)
(c)⊕

(
M ⊗M(g1̄)1̄

)
(c).

Moreover, D commutes with D2, so it preserves each eigenspace
(
M⊗M(g1̄)

)
(c). However,

D switches parity, inducing isomorphisms

D(c) :
(
M ⊗M(g1̄)0̄,1̄

)
(c)→

(
M ⊗M(g1̄)1̄,0̄

)
(c),

with inverses given by 1
c D(c) for c 6= 0. Consequently, the contributions from nonzero

eigenspaces cancel in the index, and we have

M ⊗M(g1̄)0̄ −M ⊗M(g1̄)1̄ =
(
M ⊗M(g1̄)0̄

)
(0)−

(
M ⊗M(g1̄)1̄

)
(0).

The Dirac operator D restricts to a differential on ker(D2), and its cohomology is precisely
the Dirac cohomology. The result then follows from the Euler–Poincaré principle.

As a direct consequence, for a unitarizable simple g-supermodule, the Dirac index coin-
cides with its Dirac cohomology (see Corollary 7.2.22).

Corollary 7.3.13. Let M be a unitarizable simple g-supermodule. Then

I(M) ∼= HD(M)

as g0̄-supermodules.

Furthermore, the Dirac index commutes with tensoring by finite-dimensional g-super-
modules. This compatibility can be used to study the Dirac cohomology of unitarizable
supermodules via translation functors.

Lemma 7.3.14. Let M be a g-supermodule, and let F be a finite-dimensional g-supermodule.
Then there is a canonical isomorphism of g0̄-supermodules

I(M ⊗ F ) ∼= I(M)⊗ F.

Proof. We compute:

I(M ⊗ F ) = M ⊗ F ⊗M(g1̄)0̄ −M ⊗ F ⊗M(g1̄)1̄,

while
I(M)⊗ F =

(
M ⊗M(g1̄)0̄ −M ⊗M(g1̄)1̄

)
⊗ F.

Since F is finite-dimensional, the tensor product distributes over the direct sum and dif-
ference, yielding a canonical isomorphism between both expressions.

7.3.4. Formal characters
We present two formulas for the formal kC-character of unitarizable (simple) g-supermodules
using Kostant’s cohomology and the Dirac index, respectively.

Fix a unitarizable simple g-supermodule H with highest weight Λ. Then each weight
spaceHµ of weight µ ∈ h∗ is finite-dimensional, and we can assign toH its formal character

ch(H) :=
∑
µ

dim(Hµ)eµ,
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where we sum over the h-weight space of H, and eµ is a function on h∗ that takes value 1 at
µ and value 0 at λ 6= µ. Equivalently, recall that H is a Harish-Chandra supermodule (see
Section 6.1.5) with kC-type decompositionH = ⊕λmλF

λ and multiplicities mλ <∞, where
we neglect parity. Here, F λ is a simple kC-module of highest weight λ. In addition, recall
that kC satisfies the equal rank condition, that is, h ⊂ kC ⊂ g0̄. The formal kC-character of
H is the formal series

chkC(H) :=
∑
λ

mλ chkC(F λ),

with chkC(F λ) being the formal character of the finite-dimensional simple kC-module F λ.
In particular, both characters (formally) coincide.

Formal characters and Kostant’s cohomology

We study the relation of chkC(H) and H∗(g+1,H) using partially ideas and constructions
presented in [18]. In Section 7.3.2, we introduced the cohomology groups Hk(g+1,H) as the
cohomology groups of the complex C := (Ck(H), d) with Ck(H) := HomC(Sk(g+1),H) ∼=
H⊗ Sk(g∗

+1). These are kC-modules.
Let Hk(g+1,H)λ be the weight λ-subspace of Hk(g+1,H) for some weight λ ∈ h∗. As H

is a Harish-Chandra supermodule, we have for fixed weight λ that dim(Hk(g+1,H)λ) 6= 0
only for finitely many k. The Euler-Poincaré principle then implies that

∞∑
k=0

(−1)k dim(Hk(g+1,H)λ) =
∞∑
k=0

(−1)k dim(Ck(H)λ),

and considering their formal characters gives
∞∑
k=0

(−1)k ch
(
Hk(g+1,H)

)
=

∞∑
k=0

(−1)k ch(Ck(H)) = ch(H)
∞∑
k=0

(−1)k ch(Sk(g∗
+1)).

Now, we have as kC-modules Sk(g∗
+1) ∼= Sk(g−1) ∼= Sk(q1 ⊕ p2) = Sk(n−

1̄ ) for any k (cf.
Lemma 7.3.10), and it is well-known that ∑∞

k=0(−1)k ch(Sk(n−
1̄ )) = 1∏

γ∈∆+
1̄

(1+e−γ)) , We

conclude
∞∑
k=0

(−1)k ch(Ck(H)) = ch(H)∏
γ∈∆+

1̄
(1 + e−γ)

,

and the formal character of H is given by

ch(H) =
∏
γ∈∆+

1̄

(1 + e−γ)
∞∑
k=0

(−1)k ch(Hk(g+1,H)).

Next, we move, without loss of generality, to formal kC-characters. Let [Hk(g+1,H) : Fµ]
denote the multiplicity of the simple (unitarizable highest weight) kC-module Fµ with
highest weight µ in Hk(g+1,H). As k is compact, Hk(g+1,H) is completely reducible as a
kC-module, and we can express chkC(Hk(g+1,H)) in terms of the multiplicities:

chkC(Hk(g+1,H)) =
∑
µ

[Hk(g+1,H) : Fµ] chkC(Fµ).

Altogether, we have proven the following theorem.
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Theorem 7.3.15. Let H be a unitarizable simple g-supermodule with finite multiplicities.
The formal character of H is

chkC(H) =
∑
µ

∞∑
k=0

(−1)k[Hk(g+1,M) : Fµ] chkC
(∧

n−
1̄ ⊗ F

µ).
Formal characters and Dirac index

We give a formula for chkC(H) using I(H) for a fixed unitarizable supermodule H admitting
a formal kC-character. Recall from Section 7.3.3 the definition:

I(H) = H⊗M(g1̄)0̄ −H⊗M(g1̄)1̄ = H+
D(H)−H−

D(H),

which is the Euler characteristic of HD(H) by Proposition 7.3.12. In terms of characters,
this reads

chkC(H)
(
chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)

)
= chkC(H+

D(H))− chkC(H−
D(H)).

The methods and ideas used below are similar to those in [64], but have been adapted to
our context.

We consider the finite-dimensional vector space n−
1̄ , with basis {x1, . . . , xmn}. We are

interested in the free resolution of free ∧ n−
1̄ -modules:

. . .
δ−→ Si(n−

1̄ )⊗
∧

n−
1̄

δ−→ Si−1(n−
1̄ )⊗

∧
n−

1̄
δ−→ . . .

δ−→ C⊗
∧

n−
1̄

δ−→ 0,

where the boundary operator is

δ := dp1 + dq2 =
mn∑
i=1

∂

∂xi
⊗ xi : S(n−

1̄ )⊗C
∧

n−
1̄ −→ S(n−

1̄ )⊗C
∧

n−
1̄ .

The boundary operator δ is invariant under the action of kC, i.e., [kC, δ] = 0, as shown in
Lemma 7.1.6. Additionally, the proof of the following lemma is mutatis mutandis to [67,
Proposition 3.3.5].
Lemma 7.3.16. The following assertion holds:

ker δ = im δ ⊕ C(1⊗ 1).

In particular, the cohomology is generated by C(1⊗ 1).
Lemma 7.3.17. Let C−ρ1̄ be the one-dimensional kC-module with weight −ρ1̄. Then

chkC(
∧

n−
1̄ )
(
chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)

)
= chkC(C−ρ1̄).

Proof. By Proposition 7.1.10, we have the following isomorphism of kC-modules:∧
n−

1̄ ⊗M(g1̄) ∼=
∧

n−
1̄ ⊗ S(n−

1̄ )⊗ C−ρ1̄ .

In particular, ∧ n−
1̄ ⊗ S(n−

1̄ ) is the complex introduced above with kC-invariant boundary
operator δ. By the Euler–Poincaré principle,

chkC(
∧

n−
1̄ )
(
chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)

)
is the Euler characteristic of this complex. However, the cohomology is generated by the
vector 1 ⊗ 1 by Lemma 7.3.16, and the statement follows with Proposition 7.1.10 with
trivial kC-action.
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Theorem 7.3.18. Let F ν denote a simple kC-module of highest weight ν ∈ h∗. Define
N(µ) :=

∧
n−

1̄ ⊗ F
µ, and assume H+

D(H) =
∑
µ F

µ and H−
D(H) =

∑
ν F

ν . Then

chkC(H) =
∑
µ

chkC(N(µ+ ρ1̄))−
∑
ν

chkC(N(ν + ρ1̄)).

Proof. By the definition of N(µ) and the Dirac index, we have

chkC(H)
(
chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)

)
= chkC(H+

D(H))− chkC(H−
D(H))

=
∑
µ

chkC(Fµ)−
∑
ν

chkC(F ν)

=
(∑
µ

chkC(N(µ+ ρ1̄))−
∑
ν

chkC(N(ν + ρ1̄))
)(

chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)
)
,

which can be rewritten as(
chkC(H)−

∑
µ

chkC(N(µ+ ρ1̄)) +
∑
ν

chkC(N(ν + ρ1̄))
)(

chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)
)

= 0.

We claim that the first factor must be trivial. Assume that it is non-trivial, i.e.,

chkC(V ) =
∞∑
i=1

ni chkC(Fµi) 6= 0, V := H−
∑
µ

N(µ+ ρ1̄) +
∑
ν

N(ν + ρ1̄).

Assume we have a kC-type F ξ in V . Then, ξ = Λ−
∑
j βj−

∑
i αi for positive non-compact

roots βj and positive odd roots αi. The βj are not present in N(Λ) by construction.
We consider the Weyl vector ρn associated to the set of non-compact positive roots (cf.

Section 2.1.4). Recall that the non-compact positive roots are εk − εl for 1 ≤ k ≤ p and
p + 1 ≤ l ≤ m, while the odd positive roots are {εk − δr,−εl + δs : 1 ≤ r, s ≤ n, 1 ≤ k ≤
p, p+ 1 ≤ l ≤ m}. Then, a direct calculation yields

(βj , ρn) > 0, (αi, ρn) > 0, ∀i, j.

We conclude (ξ, ρn) ≤ (Λ, ρn).
Without loss of generality, we can assume that n1 6= 0 and (µ1, ρn) ≥ (µi, ρn) for all

i. Since Fµ1 ⊗M(g1̄) contains Fµ1 ⊗ 1 ∼= Fµ1−ρ1̄ with multiplicity one, the character of
Fµ1−ρ1̄ appears in chkC(Fµ1)(chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)) with coefficient one.

By assumption, the contribution of chkC(Fµ1)(chkC(M(g1̄)0̄) − chkC(M(g1̄)1̄)) must be
canceled in chkC(n−

1̄ )(chkC(M(g1̄)0̄) − chkC(M(g1̄)1̄)), i.e., Fµ1+ρ1̄ must appear in some
chkC(Fµi)(chkC(M(g1̄)0̄)− chkC(M(g1̄)1̄)), that is, in some Fµi ⊗M(g1̄) for some i > 1.

The weights of M(g1̄) are of the form −ρ1̄ −
∑
j βj −

∑
k αk, where βj are distinct non-

compact positive roots and αk are distinct positive odd roots. We conclude that

µ1 = µi −
∑
j

βj −
∑
k

αk.

This leads to a contradiction, as it would imply (µ1, ρn) < (µi, ρn). This finishes the
proof.
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8. Classification of unitarizable supermodules

The study of unitarizable g-supermodules naturally leads to two fundamental questions:
how to classify them and how to describe their structure explicitly. While several classifi-
cations have been achieved through detailed combinatorial and computational techniques
[22, 48, 53, 73], these approaches often obscure the underlying geometry and lack concep-
tual clarity. A unifying, geometrically motivated framework, similar to the Enright–Howe–
Wallach classification for real simple Lie algebras [38], is still missing. In this chapter, we
introduce a novel method based on Dirac operators and the Dirac inequality, yielding a
simple classification.

In this chapter, let g be a basic classical Lie superalgebra of type A(m|n) or sl(m|n).
Consider a non-trivial unitarizable simple g-supermodule H, which we regard as the unique
simple quotient L(Λ) of a Kac supermodule K(Λ). Since H is non-trivial, its unitarity is
defined with respect to a complex-conjugate anti-involution associated with a real form
su(p, q|n), as described in Section 2.1.4.

Depending on whether both p, q 6= 0 or not, we distinguish between two cases. A
unitarizable simple g-supermodule is finite-dimensional if and only if p = 0 or q = 0;
otherwise, it is infinite-dimensional (Proposition 3.1.18). We treat these cases separately,
as the corresponding conjugate-linear anti-involutions differ fundamentally in nature. We
begin with the finite-dimensional case.

8.1. Classification of unitarizable finite-dimensional supermodules

8.1.1. Paramterization

The simple finite-dimensional supermodules are parameterized by dominant integral weights
λ ∈ h∗, defined with respect to a Borel subalgebra b = b0̄ ⊕ b1̄, that is, weights for which
there exists a finite-dimensional simple g0̄-module of highest weight λ with respect to b0̄.
More precisely, λ is dominant integral if and only if

(λ+ ρ0, α) ∈ Z>0 for all α ∈ ∆+
0̄ ,

where ∆+ = ∆+
0̄ t∆+

1̄ denotes the positive system determined by b. We denote the set of
b-dominant integral weights by P++

b , and refer to these as ∆+-dominant integral weights.
Moreover, when b is clear from context, we omit the subscript and simply write P++.

For any λ ∈ P++
b , we define Lb(λ) (or simply L(λ) when no confusion arises) to be the

simple supermodule with highest weight λ with respect to b such that the highest weight
vector is even. The fixed notation allows us to parameterize the simple finite-dimensional
g-supermodules as follows:

{L(λ),ΠL(λ) : λ ∈ P++}.



Finite-dimensional unitarizable g-supermodules are precisely those defined with respect
to one of the conjugate-linear anti-involutions (cf. Section 2.1.4)

ω±

(
A B

C D

)
=
(
A† ±C†

±B† D†

)
,

(
A B

C D

)
∈ g.

These conjugate-linear anti-involutions correspond to the compact real form of g0̄; that is,
we may represent the Lie algebra as

g0̄ =
{
su(m)C ⊕ su(n)C ⊕ u(1)C if m 6= n,

su(m)C ⊕ su(m)C if m = n,

to emphasize the real form. In what follows, we consider only the conjugate-linear anti-
involution ω+; the case of ω− can be treated in a completely analogous manner.

We now provide an explicit parameterization of the finite-dimensional g-supermodules
corresponding to the chosen real form.

Suppose the simple g-supermodule H = L(Λ) is unitarizable with respect to ω+. Then
H decomposes under g0̄ into a direct sum of simple unitarizable g0̄-modules, which, in the
case m 6= n, are outer tensor products of simple su(m)C-, su(n)C-, and u(1)C-modules (see
Section 6.1.4). Otherwise, they are outer tensor products of simple su(m)C- and su(n)C-
modules.

By the highest weight theorem, the simple su(m)C-modules are parameterized by domi-
nant integral weights of the form

(−a1,−a2, . . . ,−am|0, . . . , 0),

where a1, . . . , am are positive integers satisfying 0 = −a1 ≥ −a2 ≥ · · · ≥ −am. This choice
will mirror the unitarity relation appropriately. Analogously, the simple su(n)C-modules
are parameterized by dominant integral weights of the form

(0, . . . , 0|b1, . . . , bn),

where b1, . . . , bn are positive integers satisfying b1 ≥ · · · ≥ bn = 0.
The Lie algebra u(1) is abelian, so by Schur’s lemma, each simple u(1)-module is one-

dimensional and, by unitarity, uniquely determined by a positive real number.
Moreover, unitarity imposes a relation between the ai and bj values, determined by ω+.

We summarize these observations in the following lemma.

Lemma 8.1.1. Let L0(µ) be an g0̄-constituent of a simple ω+-unitarizable g-supermodule.
Then µ is of the form

µ = (0,−a2, . . . ,−am|b1, . . . , bn−1, 0) + x

2
(1, . . . , 1|1, . . . , 1), x ∈ R,

where 0 ≥ −a2 ≥ · · · ≥ −am and b1 ≥ · · · ≥ bn−1 ≥ 0 are integers. Moreover, the
components of µ satisfy the following unitarity inequalities:

µm ≤ · · · ≤ µ1 ≤ µ′
n ≤ · · · ≤ µ′

1.
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However, in general, a highest weight g-supermodule H whose g0̄-constituents have high-
est weights of the form described in Lemma 8.1.1 need not be ω+-unitarizable. To classify
all ω+-unitarizable simple g-supermodules, it is necessary to study lines in h∗ of the form

Λ(x) = Λ0 + x

2
(1, . . . , 1|1, . . . , 1), x ∈ R,

where Λ0 := (0,−a2, . . . ,−am|b1, . . . , bn−1, 0) for integers satisfying 0 ≥ −a2 ≥ · · · ≥ −am
and b1 ≥ · · · ≥ bn−1 ≥ 0. Note that (α, (1, . . . , 1|1, . . . , 1)) = 0 for all even roots α ∈ ∆0̄.

Moreover, to track the nontrivial components among the ai and bj , we define i0 as the
largest integer such that ai0 = 0, and k0 as the smallest integer such that bk0 = 0. This
can be interpreted in terms of Young diagrams. A Young diagram Y = (x1, x2, . . . , xk) is
a weakly decreasing sequence of non-negative integers. Its length is defined as

length(Y ) := max{i : xi 6= 0}.

To each Λ0, we associate two Young diagrams:

Y1(Λ0) := (λ1 − λ2, λ1 − λ3, . . . , λ1 − λm),
Y2(Λ0) := (λ′

1 − λ′
2, λ

′
2 − λ′

3, . . . , λ
′
n−1 − λ′

n),

and define leni(Λ0) := length(Yi(Λ0)) for i = 1, 2. Then

i0 = m− len1(Λ0), k0 = len2(Λ0).

Moreover, we define the gap function

g1(Λ) := λm + λ′
n.

8.1.2. Classification
We fix the standard positive system ∆+ as described in Section 2.1.4. Our approach is
based on the Dirac inequality (see Proposition 7.2.4) and Theorem 7.3.4 adapted to our
situation, that is, we fix

∂(l−1)n+(k−m) =
{
Elk for 1 ≤ l ≤ p, m+ 1 ≤ k ≤ m+ n,

Ekl for p+ 1 ≤ l ≤ m, m+ 1 ≤ k ≤ m+ n,

x(l−1)n+(k−m) =
{
Ekl for 1 ≤ l ≤ p, m+ 1 ≤ k ≤ m+ n,

Elk for p+ 1 ≤ l ≤ m, m+ 1 ≤ k ≤ m+ n.

such that ω+(xk) = ∂k and B(∂k, xl) = 1
2δkl for 1 ≤ k, l ≤ mn. In particular, the ∂i’s span

g+1 and the xj ’s span g−1 and D is anti-self-adjoint rather than self-adjoint (cf. Chapter
7). The Dirac inequality now reads

(µ+ 2ρ, µ) < (Λ + 2ρ,Λ)

for any g0̄-constituent L0(µ) of a unitarizable highest weight g-supermodule with highest
weight Λ. Moreover, analogously to Theorem 7.3.2, a simple highest weight g-supermodule
M with highest weight Λ is unitarizable if and only if the highest weight g0̄-module L0(Λ)
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is unitarizable, and the Dirac inequality holds strictly for each simple highest weight g0̄-
constituent L0(µ) with µ 6= Λ occurring in M ⊗M(g1̄):

(µ+ 2ρ, µ) < (Λ + 2ρ,Λ).

In what follows, we fix a simple highest weight g-supermodule L(Λ) that is g0̄-semisimple.
Since L0(Λ) must be g0̄-unitarizable, we consider the family of highest weight g-supermodules
L(Λ(x)), where the highest weights are given by

Λ(x) = Λ0 + x

2
(1, . . . , 1|1, . . . , 1),

and Λ0 is fixed as above (see Lemma 8.1.1). We analyze the Dirac inequality on the g0̄-
constituents of L(Λ(x)). To that end, we note that the condition on the g0̄-modules can
be further relaxed.

Proposition 8.1.2. Let M be a simple highest weight g-supermodule with integral highest
weight Λ that is g0̄-semisimple. Then M is unitarizable if and only if the highest weight
g0̄-module L0(Λ) is unitarizable, and for any g0̄-constituent L0(Λ − α) with α ∈ ∆+

1̄ , we
have

(Λ + ρ, α) > 0.

Proof. Assume L0(Λ − α) is a non-trivial g0̄-constituent of L(Λ) for some α ∈ ∆+
1̄ . Then

the Dirac inequality reads

−(Λ + 2ρ,Λ) + (Λ− α+ 2ρ,Λ− α) = −2(α,Λ + ρ) ≤ 0.

If M is unitarizable, this proves one direction.
Now, assume L0(Λ) is unitarizable, and for any g0̄-constituent L0(Λ− α) with α ∈ ∆+

1̄ ,
we have (Λ + ρ, α) > 0. Recall that any highest weight µ of a non-trivial g0̄-constituent
L0(µ) of L(Λ) is of the form µ = Λ −

∑
γ∈S γ for some subset S ⊂ ∆+

1̄ . We show that
(µ + 2ρ, µ) < (Λ + 2ρ,Λ) holds for any g0̄-constituent L0(µ). Then the statement follows
by Theorem 7.3.4.

We consider two cases, namely |S| = 2 and |S| > 2. Enumerate the elements of S by
γ1, . . . , γk. By assumption and integrality of Λ, we know

(Λ + ρ, γi) ∈ Z≥1, 1 ≤ i ≤ k.

In particular, if k ≥ 3, there must be at least one i such that (Λ + ρ, γi) ≥ 2.
First, assume k = 2, that is, |S| = 2, and µ = Λ− α − β for some α, β ∈ ∆+

1̄ . Then we
have

−(Λ + 2ρ,Λ) + (µ+ 2ρ, µ) = 2(α, β)− 2(α,Λ + ρ)− 2(β,Λ + ρ).
By assumption and integrality of Λ, we have (α,Λ + ρ), (β,Λ + ρ) ∈ Z≥1, while a direct
calculation yields (α, β) ∈ {−1, 0, 1}. We conclude

−(Λ + 2ρ,Λ) + (µ+ 2ρ, µ) < 0.

Next, assume k ≥ 3, and note (
∑k
i=1 γi,

∑k
j=1 γj) ≤ 2k as a direct calculation shows.

Then we have

−(Λ + 2ρ,Λ) + (Λ− γ + 2ρ,Λ− γ) = (γ, γ)− 2(γ,Λ + ρ) ≤ 2k − 2
k∑
i=1

(γi,Λ + ρ) < 0,

as (γk,Λ + ρ) ∈ Z≥1, and there exists at least one 1 ≤ i ≤ k with (γi,Λ + ρ) ≥ 2.
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This leads to a simple and explicit classification of ω+-unitarizable simple highest weight
g-supermodules with integral dominant highest weights. Recall that the standard odd
positive system is given by

∆+
1̄ = {εi − δj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

By Proposition 8.1.2, it suffices to study the Dirac inequality for highest weights of the
form Λ− α, that is,

(Λ + ρ, εi − δj) > 0 ⇔ x ≥ −m+ i+ j + ai − bj , (8.1.1)

where we set a1 = 0 and bn = 0. By the unitarity relations in Lemma 8.1.1, the highest
weight must also satisfy

λm(x) ≤ · · · ≤ λ1(x) ≤ λ′
n(x) ≤ · · · ≤ λ′

1(x),

where we write Λ(x) = (λ1(x), . . . , λm(x)|λ′
1(x), . . . , λ′

n(x)) for convenience.
For reference, we recall the following lemma.

Lemma 8.1.3. A finite-dimensional g-supermodule L(Λ(x)) decomposes under g0̄ into a
direct sum of simple finite-dimensional g0̄-modules. Moreover, if (Λ + ρ, α) = 0 for some
odd positive root α, then L0(Λ− α) does not appear as an g0̄-constituent of L(Λ(x)).

We divide the classification into two steps. In the first step, we identify the connected
regions of values for x where L(Λ(x)) is unitarizable or non-unitarizable. To this end, we
consider Equation (8.1.1). It is immediate that the strongest restriction on x arises from
the g0̄-constituent L(Λ(x) − εm + δn). However, if k0 < n, then we may have λ′

n(x) =
· · · = λ′

k0
(x), leading to additional possibilities. By the unitarity conditions, no further

restrictions on Λ(x) arise. This leads to the following lemma.

Lemma 8.1.4. The following assertions hold:

a) If x < am + k0, then L(Λ(x)) is not unitary.

b) If x > am + n, then L(Λ(x)) is unitary.

Proof. a) We consider the basic g0̄-constituents of L(Λ(x)). By assumption, (Λ(x)+ρ, εm−
δk0) 6= 0, which implies that the basic g0̄-constituent L0(Λ(x) − εm + δk0) appears and is
nontrivial. The Dirac inequality for this constituent reads

x− am − k0 ≥ 0,

which proves the claim by Proposition 8.1.2.
b) The Dirac inequalities for the possible g0̄-constituents L0(Λ− εi + δj) are given by

x ≥ −m+ i+ ai + j − bj .

The maximal lower bound occurs for i = m and j = n, yielding

x ≥ am + n,

which corresponds to the basic g0̄-constituent L0(Λ(x) − εm + δn). Thus, if x > am + n,
then (Λ(x) + ρ, εi − δj) 6= 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, meaning that Λ(x) is typical
and all basic g0̄-constituents appear. Since the Dirac inequality holds strictly for all such
constituents, the result follows from Proposition 8.1.2.
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It remains to examine the case where am + n ≥ x ≥ am + k0. To address this, we use
Lemma 8.1.3.

Lemma 8.1.5. Let 1 ≤ k ≤ n− k0 + 1. Then:

a) If x = am + n− k + 1, then L(Λ(x)) is unitary.

b) If am + n − k < x < am + n − k + 1 (with 1 ≤ k ≤ n − k0), then L(Λ(x)) is not
unitary.

Proof. a) Assume x = am + n − k + 1 for some 1 ≤ k ≤ n − k0 + 1. Then the Dirac
inequality holds strictly for all appearing g0̄-constituents, except potentially for those of
the form L(Λ(x)− εm + δn−l+1) with k ≤ l ≤ n− k0 + 1.

However, by Lemma 8.1.3, the g0̄-constituents L(Λ(x) − εm + δn−l+1) with k < l ≤
n−k0 +1 do not appear, since the corresponding weights are not ∆+

c -dominant. It remains
to consider L0(Λ(x)− εm + δn−k+1), for which

(Λ(x) + ρ, εm − δn−k+1) = 0.

Thus, this constituent also does not appear, by Lemma 8.1.3. Therefore, L(Λ(x)) is unitary
by Lemma 7.3.2.

b) Now assume am + n − k < x < am + n − k + 1 for some 1 ≤ k ≤ n − k0. The Dirac
inequality fails to hold strictly for the basic g0̄-constituents

L0(Λ(x)− εm + δn−k+1), . . . , L0(Λ(x)− εm + δn),

even though it may hold for others such as L0(Λ(x) − εm + δn−k). Therefore, the in-
equality does not hold strictly for all relevant constituents, and by Proposition 8.1.2, the
supermodule L(Λ(x)) is not unitary.

Combining the previous lemmas, we obtain a complete classification of the finite-dimen-
sional unitary g-supermodules.

Theorem 8.1.6. Let L(Λ(x)) be a finite-dimensional simple g-supermodule. Let k0 be
the smallest index such that bk0 = 0. If all bi are zero, set k0 = n. Then L(Λ(x)) is
ω+-unitarizable if and only if

x ∈ {am + k0, am + k0 + 1, . . . , am + n} ∪ (am + n,∞).

We may reformulate Theorem 8.1.6 using Young diagrams.

Theorem 8.1.7. Let L(Λ(x)) be a finite-dimensional simple g-supermodule. Then L(Λ(x))
is ω+-unitarizable if and only if

g1(Λ) ≥ len2(Λ).

8.2. Classification of infinite-dimensional unitarizable
supermodules with integral highest weight

We adopt the notation from Sections 2.1.4 and 6.1, and fix the conjugate-linear anti-
involution ω(−,+) corresponding to the real form su(p, q|0, n). We also fix the non-standard
positive system ∆+ := ∆+

nst so that the results of Chapter 7 apply.
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In this context, the Dirac operator is self-adjoint, and the Dirac inequality takes the
form

(µ+ 2ρ, µ) > (Λ + 2ρ,Λ)

for any g0̄-constituent L0(µ) of a unitarizable highest weight g-supermodule L(Λ).
In Section 6.1.4, we parameterized the highest weights of unitarizable simple g0-modules

as

Λ = (0, a2, . . . , am−1, 0|b1, . . . , bn−1, 0) + λ

2
(1, . . . , 1,−1, . . . ,−1|0, . . . , 0)

+ α

2
(1, . . . , 1|1, . . . , 1),

where the integers ai satisfy ap+1 ≥ · · · ≥ am−1 ≥ 0 ≥ a2 ≥ · · · ≥ ap, the integers bk satisfy
b1 ≥ · · · ≥ bn−1, and α, λ ∈ R, with λ ≤ 0.

Any highest weight

Λ = (λ1, . . . , λp, λp+1, . . . , λm|λ′
1, . . . , λ

′
n) ∈ h∗

of a unitarizable simple g-supermodule is of this form, satisfies the unitarity conditions in
Lemma 6.1.11,

λp ≤ · · · ≤ λ1 ≤ −λ′
1 ≤ · · · ≤ −λ′

n ≤ λm ≤ · · · ≤ λp+1,

and is ∆+
c -dominant. To each such weight, we associate three Young diagrams, following

the notation of [48]:

Y1(Λ) := (λ1 − λp, . . . , λ1 − λ2, 0),
Y2(Λ) := (λp+1 − λm, . . . , λm−1 − λm, 0),
Y3(Λ) := (λ′

1 − λ′
n, . . . , λ

′
n−1 − λ′

n, 0).

Let leni(Λ) := length(Yi(Λ)) for i = 1, 2, 3.
According to the unitarity conditions, there are three key quantities of interest:

g1(Λ) := λm + λ′
n, g2(Λ) := λ1 + λ′

1, g3(Λ) := λ1 − λm,

with the constraint that g3(Λ) ≤ −len1(Λ)− len2(Λ), as described in Section 6.1.4.
As shown in Theorem 7.3.2, a simple highest weight g-supermodule M with highest

weight Λ is unitarizable if and only if the highest weight g0̄-module L0(Λ) is unitarizable,
and the Dirac inequality holds strictly for each simple highest weight g0̄-constituent L0(µ)
with µ 6= Λ occurring in M ⊗M(g1̄):

(µ+ 2ρ, µ) < (Λ + 2ρ,Λ).

Analogously to Proposition 8.1.2, these conditions can be relaxed.

Proposition 8.2.1. Let M be a simple highest weight g-supermodule with integral highest
weight Λ, and assume that M is g0̄-semisimple. Then M is ω(−,+)-unitarizable if and only
if the highest weight g0̄-module L0(Λ) is unitarizable, and for every α ∈ ∆+

1̄ such that
L0(Λ− α) appears as an g0̄-constituent of M ⊗M(g1̄), we have

(Λ + ρ, α) < 0.

149



The proof is analogous to that of Proposition 8.1.2 and is therefore omitted. As a direct
consequence, we obtain a complete classification.

Theorem 8.2.2. Let M be a simple highest weight g-supermodule with integral highest
weight Λ, and assume that M is g0̄-semisimple. Then M is ω(−,+)-unitarizable if and only
if the following two conditions hold:

a) Λ satisfies the unitarity inequalities:

λp ≤ · · · ≤ λ1 ≤ −λ′
1 ≤ · · · ≤ −λ′

n ≤ λm ≤ · · · ≤ λp+1.

b) Λ satisfies one of the following two sets of inequalities:
a) g2(Λ) ≤ −len1(Λ)− q and len3(Λ) ≤ g1(Λ),
b) g2(Λ) ≤ −len1(Λ)− len2(Λ) and g1(Λ) = len3(Λ) = 0.

Proof. By Proposition 8.1.2, it suffices to examine the Dirac inequality

(Λ + ρ, α) < 0

for any g0̄-constituent L0(Λ − α) with α ∈ ∆+
1̄ . Here, recall that the odd positive system

is

∆+
1̄ = {εi − δj : 1 ≤ i ≤ p, 1 ≤ k ≤ n} t {−εk + δl : p+ 1 ≤ k ≤ m, 1 ≤ l ≤ n},

The highest weight µ of any g0̄-constituent L0(µ) is ∆+
c -dominant, which, by the unitarity

relations, implies that we only need to consider

(Λ + ρ, εp−len1(Λ) − δ1) = λ1 + λ′
1 + len1(Λ) + q,

(Λ + ρ,−εm + δlen3(Λ)) = −λm − λ′
n + len3(Λ).

If (Λ + ρ, εp−len1(Λ) − δ1) ≤ 0 and (Λ + ρ,−εm + δlen3(Λ)) ≤ 0, then the Dirac inequality
holds for all other g0̄-constituents by the unitarity relations. The g0̄-constituents L0(Λ −
εp−len1(Λ) + δ1) and L0(Λ + εm − δlen3(Λ)) are present if and only if Λ is neither atypical
with respect to εp−len1(Λ) − δ1 nor εm − δlen3(Λ).

We distinguish between two cases: len3(Λ) 6= 0 and len3(Λ) = 0. First, consider
len3(Λ) 6= 0. From Proposition 8.1.2 and the equations above, we obtain that M is unita-
rizable if and only if

λ1 + λ′
1 + len1(Λ) + q ≤ 0, −λm − λ′

n + len3(Λ) ≤ 0.

Now, consider len3(Λ) = 0. The argument is similar to the above, except when len3(Λ) =
g1(Λ) = 0, as in this case there is an interference with the condition on g2(Λ), where
λm +λ′

n = 0 and λ′
1 = . . . = λ′

n, i.e., λm = −λ′
1, and g2(Λ) = λ1 +λ′

1 = λ1−λm. However,
the unitarity condition (6.1.4) in Section 6.1.4 states that

g2(Λ) = λ1 + λ′
1 = λ1 − λm ≤ −len1(Λ)− len2(Λ),

and M is unitarizable if and only if g2(Λ) ≤ −len1(Λ)− len2(Λ) by Proposition 8.1.2.
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Remark 8.2.3. In [80], Kashiwara and Vergne studied the restriction of the oscillator repre-
sentation (also known as the Segal–Shale–Weil representation) of the metaplectic group —
that is, the universal double cover of the symplectic group — to the Lie groups SU(p, q).
They conjectured that any unitary irreducible highest weight representation of SU(p, q)
appears in a k-fold tensor product of oscillator representations for some k. This conjecture
was later proven in [71].

In [105], Nishiyama constructed an analogue of the oscillator representation for the
symplectic Lie algebra in the setting of orthosymplectic Lie superalgebras spo(2m|2n;R),
termed the oscillator supermodule, which carries a natural unitary structure. Subsequently,
in [48], Furutsu and Nishiyama investigated the restriction of the oscillator supermodule to
the Lie subsuperalgebras su(p, q|n), and proved that any unitarizable simple g-supermodule
that integrates to SU(p, q)× SU(n) appears in a k-fold tensor product of oscillator super-
modules for some k. This result generalizes the conjecture of Kashiwara and Vergne to the
superalgebra setting.

Using our classification theorem, we confirm the main result of [48] through a different
method.
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Part III.

Superdimension





9. Methods in representation theory

In this chapter, we introduce the Duflo–Serganova functor and the translation functors,
which serve as powerful tools for studying the formal superdimension in the following
chapter.

9.1. Duflo–Serganova functor
The Duflo–Serganova functor, or simply the DS functor, is a symmetric monoidal tensor
functor introduced by Michel Duflo and Vera Serganova in [34]. It has emerged as a pow-
erful tool in the study of the representation theory of Lie superalgebras, with applications
extending into mathematical physics. Associated to any odd square-zero element, the DS
functor relates the Z2-graded representation categories of Lie superalgebras of different
dimensions in a cohomological fashion, while preserving superdimension.

In mathematical physics, the DS functor appears under the pseudonym of twisting and
plays a central role in reducing (Lagrangian) supersymmetric field theories to simpler
topological or holomorphic models. This correspondence goes beyond analogy; the super-
conformal index offers a concrete bridge between the representation-theoretic and physical
interpretations [139, 140, 23, 119].

In what follows, we give a brief introduction to the DS functor and outline its extension
to the unitarizable subcategory. The first part of our exposition is based largely on [34, 51].

9.1.1. Self-commuting variety and associated varieties

The DS functor is defined relative to a chosen element in the self-commuting variety Y,
with this choice being unique up to the adjoint G0̄-action on Y. Following [34, 51], we
introduce the self-commuting variety of g, while for explicit geometric considerations, we
refer to [52].

Definition 9.1.1. The self-commuting variety of g is the algebraic variety

Y := {x ∈ g1̄ : [x, x] = 0}.1

On Y, the (complex) Lie group G0̄ associated with g0̄ acts via the adjoint action, making
Y a G0̄-invariant Zariski-closed cone in g1̄. We are interested in the G0̄-orbits on Y, which
can be equivalently described as the action of the Weyl group W by permutations on
the set S of subsets of mutually orthogonal linearly independent roots in ∆1̄. For any

1Within Lagrangian field theories exhibiting super Poincaré symmetry, the self-commuting variety—also
known as the nilpotence variety [35, 37]—was initially introduced to classify the possible (topological and
holomorphic) twists of such theories. These twists are closely related to, and in many ways mirror, the
role of the DS functor. However, it has since become clear that the nilpotence variety has significantly
broader relevance, extending beyond its original scope.



A = {α1, . . . , αk} ∈ S, choose a non-zero xi ∈ gαi and set x = x1 + · · · + xk ∈ Y. This
defines a map

Φ′ : S → Y/G0̄, Φ′(A) := G0̄x.

If B = w(A) for some w ∈W and A,B ∈ S, then Φ′(A) = Φ′(B). Thus, Φ′ induces a map

Φ : S/W −→ Y/G0̄,

which is indeed a bijection [34, Section 4], i.e., the G0̄-orbits on Y are in one-to-one
correspondence with W -orbits in S. We conclude that the self-commuting variety Y has
finitely many G0̄-orbits. Moreover, we can assign to any G0̄-orbit a number, referred to
as its rank. Fix x ∈ Y. Then there exists a g ∈ G0̄ and isotropic, mutually orthogonal,
linearly independent roots α1, . . . , αk such that

Adg(x) = x1 + · · ·+ xk,

where xi ∈ gαi (as described above). The number rk(x) := k is independent of the choice
of g and is called the rank of x. Equivalently, rk(x) is given by the rank of x as a linear
operator acting in the standard representation.

Given a highest weight g-supermodule M , we construct a G0̄-invariant subvariety of Y,
called the associated variety YM , which provides useful information about atypicality. To
this end, we note that any element x ∈ Y defines an endomorphism xM ∈ EndC(M) such
that x2

M = xM ◦ xM = 0. We then set

Mx := ker(xM )/ im(xM ),

and define the associated variety of a g-supermodule M is defined to be the G0̄-invariant
subvariety

YM := {x ∈ Y : Mx 6= {0}} ⊂ Y.

The following proposition is a straightforward generalization of Lemma 5.12 and Propo-
sition 5.14 in [24].

Proposition 9.1.2. Let M be a highest weight g-supermodule with highest weight Λ.

a) The associated variety of M is trivial if and only if the highest weight Λ is typical.

b) If α is an odd positive root satisfying (Λ + ρ, α) = 0, any associated root vector Qα
lies in YM . In particular, YM 6= {0}.

Notably, the unitarity of a supermodule M and the distinction between typicality and
atypicality are entirely independent, preventing us from deducing additional properties of
YM from the unitary structure.

Finally, we state an important property of translation functors.

Lemma 9.1.3. Let M be a unitarizable highest weight g-supermodule with highest weight
Λ, F a finite-dimensional g-supermodule and µ ∈ h∗. Then

YFTµ
Λ (M) ⊂ YM .

Proof. Let x ∈ Y \ YM . Then M is free over C[x], and M ⊗ F is also free over C[x].
Since FTµΛ(M) is a direct summand of M ⊗ F , it follows that FTµΛ(M) is free over C[x].
Consequently, we conclude that x /∈ YFTµ

Λ (M).
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9.1.2. DS functor
In this subsection, we briefly summarize the notion of the DS functor following [34,
128]. In the next subsection, we extend these concepts to unitarizable highest weight
g-supermodules.

First, we assign to any element x ∈ Y of the self-commuting variety a Lie superalgebra
gx. For that, fix x ∈ Y, and let k := rk(x). Then

gx := ker(adx)/ im(adx),

is a Lie superalgebra, since [x, g] := im(adx) is an ideal in ker(adx). Naturally, the defect
of g and gx are related via the rank of x [51, Section 4]:

rk(x) = def(g)− def(gx).

For example, we have gl(m|n)x ∼= gl(m − k|n − k) and sl(m|n)x = sl(m − k|n − k) for
m 6= n. The Lie superalgebra gx has a Cartan subalgebra

hx := (ker(α1) ∩ · · · ∩ ker(αk))/(hα1 ⊕ · · · ⊕ hαk),

where hα = [gα, g−α], with set of roots for (gx, hx) given by

∆x = {α ∈ ∆ : (α, αi) = 0, α 6= αi, i = 1, . . . , k}.

Second, we define the DS functor. For that, fix a g-supermodule M , and define

Mx := ker(xM )/ im(xM ).

By definition, Mx is a gx-supermodule, since ker(xM ) is ker(adx)-invariant and [x, g] ker(xM ) ⊂
im(xM ). This assignment defines a functor M 7→Mx from the category of g-supermodules
to the category of gx-supermodules, also denoted by

DSx(M) := Mx.

This functor is known as the Duflo–Serganova functor, or simply the DS functor. As for
finite-dimensional g-supermodules, one can prove the following lemma which encapsulates
several important properties.

Lemma 9.1.4 ([51, Section 2]).

a) For any x ∈ Y is the Duflo–Serganova functor DSx : g-smod → gx-smod a sym-
metric monoidal tensor functor, and additive.

b) The Duflo–Serganova functor commutes with translation functors.

c) Let x ∈ Y and let 0→M ′ ψ−→M
φ−→M ′′ → 0 be an exact sequence of g-supermodules.

Then there exists an exact sequence of gx-supermodules

0→ E → DSx(M ′)→ DSx(M)→ DSx(M ′′)→ Π(E)→ 0

for some gx-supermodule E. In particular, the DS functor is middle exact and satisfies
DSx(Π(M)) = Π(DSx(M)) for any g-supermodule M .
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Third, we restrict our considerations to highest weight g-supermodules M . We provide
a sufficient condition for DSx(M) = {0} in terms of the rank of x and the degree of
atypicality of the infinitesimal character/highest weight of M . The simplest case occurs
when M has typical infinitesimal character/highest weight.

Proposition 9.1.5. Let M be a highest weight g-supermodule with typical highest weight.
Then

DSx(M) = {0}

for all x ∈ Y \ {0}.

Proof. As the highest weight is typical, the associated variety is trivial by Proposition
9.1.2, i.e., YM = {0}. By definition, DSx(M) = Mx, and YM = {x ∈ Y : Mx 6= {0}}. The
statement is now evident.

Next, we consider the case where the rank of x ∈ Y is greater than the atypicality of the
highest weight of M . We thus examine a construction first introduced in [34, Section 6].
We also follow the approach outlined in [128].

Let U(g)adx be the subsuperalgebra of adx-invariants in U(g), and consider the left ideal
Ix := [x,U(g)] in U(g). We define a map φ = π ◦ ι via the sequence

U(gx) ι−→ U(g)adx π−→ U(g)adx/(Ix ∩ U(g)adx),

where the inclusion ι and the projection π are homomorphisms of gx-supermodules with
respect to the adjoint action. This induces an isomorphism of super vector spaces [34,
Lemma 6.6]. We consider the natural surjective projection

η := φ−1 ◦ π : U(g)adx → U(gx),

such that for any u ∈ U(g)adx and m ∈Mx the following holds:

um = η(u)m.

Here, note that ker(xM ) is invariant under U(g)adx and Ix ker(xM ) ⊂ im(xM ). We use this
map to investigate infinitesimal characters. Let Z(gx) be the center of U(gx), and note that
Z(g) is a subsuperalgebra of U(g)adx . Since η is a homomorphism of gx-supermodules, we
have η(Z(g)) ⊂ Z(gx). Moreover, the associated dual map

η∗ : Hom(Z(gx),C) −→ Hom(Z(g),C),

is injective [34, Theorem 6.11].
Fix a highest weight g-supermodule M , and let χ be its infinitesimal character. For any

z ∈ Z(g) and m ∈ ker(xM ), we have

χ(z)m = zm = η(z)m mod xM,

and hence, if Mx contains a submodule with infinitesimal character ξ, we must have η∗(ξ) =
χ. Moreover, by the definitions of atypicality and hx, the degree of atypicality satisfies
at(η∗(ξ)) = at(ξ) + rk(x). This establishes the following theorem.

158



Theorem 9.1.6 ([128, Theorem 2.1]). Let M be a simple highest weight g-supermodule
with infinitesimal character χ. Then Mx is a direct sum of gx-supermodules admitting
generalized infinitesimal characters from (η∗)−1(χ). The degree of atypicality of the in-
finitesimal characters in (η∗)−1(χ) is equal to the degree of atypicality of χ minus the rank
of x.

The following corollary is immediate.

Corollary 9.1.7. Let x ∈ Y \ {0} be an element of the self-commuting variety of rank l.
Let M be a highest weight g-supermodule with atypical highest weight of degree k. Assume
k < l. Then

DSx(M) = {0}.

9.1.3. DS functor and unitarity
For a unitarizable highest weight g-supermodule H and an element x ∈ Y of the self-
commuting variety, it remains to determine under which conditions DSx(H) is unitarizable.
In this context, however, the DS functor does not adequately address unitarity, as the real
forms of gx are not determined by the conjugate-linear anti-involution ω on g that defines
unitarity. Indeed, no x ∈ Y satisfies ω(x) = −x, as [x, ω(x)] 6= 0 for all x ∈ g1, that is, Y
has no real locus. More fundamentally, and without any assumptions on g, any x ∈ gω acts
on H as a (possibly (anti-)imaginary) self-adjoint operator. This implies that x2 = −xω(x)
is (up to a phase positive or negative semi-)definite, and vanishes (if and) only if x itself
acts by 0. As a consequence, Hx = H for any such x because the unitary representation
theory of g factors through Yω.

To extend the DS functor to incorporate elements that reflect the real form, we follow
[51].

Note that g0̄ has semisimple elements as being reductive. We then define the variety

Yhom := {x ∈ g1̄ : [x, x] is semisimple},

which is stable under G0̄, but not closed in g1̄. Elements in Yhom are called homological.
Fix some x ∈ Yhom, and set c := [x, x]. For a g-supermodule M , let M c denote the space

of c-invariants on M . Then x defines a square-zero endomorphism on M c, allowing us to
consider its cohomology:

Mx := (kerx|Mc)/(im x|Mc).

The subsequent lemma follows by the same arguments as those in [34].

Lemma 9.1.8. For x ∈ Yhom, the following assertions hold:

a) gx has the natural structure of a Lie superalgebra.

b) Mx is a gx-supermodule.

The Lie superalgebra gx for general x ∈ Yhom has an easy description given in [134]. To
this end, we note that c lies in some Cartan subalgebra t of g0̄, as g0̄ is semisimple. The
Cartan subalgebras h and t are in general different. In particular, gc0̄ is a reductive Lie
algebra, and we have a root space decomposition

gc = t⊕
⊕

α∈t∗, α(c)=0
gα.
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We denote the root system by ∆(gc; t). Furthermore, there exist mutually orthogonal,
linearly independent isotropic roots α1, . . . , αr such that [134, Lemma 3.9]:

x = uα1 + . . .+ uαr + z1vα1 + . . .+ zrvαr ,

where uαi ∈ gαi \ {0}, vαi ∈ g−αi \ {0}, and zi ∈ C. In this case, we say x has rank r. Set
tαi := [uαi , vαi ] ∈ t. Then any {tαi , uαi , vαi} generate a sl(1|1)-subalgebra and we conclude
that u ∈ sl(1|1)k. We can assume that u is generic, i.e.,

ker adc = ker adtα1
∩ · · · ∩ ker adtαk

.

Then,
tx := (kerα1 ∩ · · · ∩ kerαk)/(tα1 ⊕ · · · ⊕ tαk

)

is a Cartan subalgebra of gx, and

∆x = {α ∈ ∆(gc; t) : (α, αi) = 0, α 6= αi, i = 1, . . . , k}

is the set of roots. In particular, gx is a Lie subsuperalgebra of g, and the following result
holds [130, Section 5]:

gx = DSx(g) =
{
sl(m− k|n− k) for m 6= n,

psl(n− k|n− k) for m = n.

To describe the real forms of gx, we note that we may assume zi = ±1, meaning each x
has a signature. In the example of g, we have

gωx
x = su(p− r, q − s|n− k)

for some r ≤ p, s ≤ q with r + s = k.
As a result, for any x ∈ Yhom, we define a functor

DSx(M) := Mx := (kerx|Mc)/(im x|Mc)

from the category of g-supermodules to the category of gx-supermodules, which we also
call the DS functor with respect to x. This functor is again a tensor functor that allows
us to study unitarity.

Lemma 9.1.9. Let x ∈ Yhom, and assume ω(x) = −x. Then the conjugate-linear anti-
involution ω has a well-defined restriction to gx, denoted by ωx.

Proof. For A ∈ gx, it is enough to show that ω(A) ∈ gx. However, for any A ∈ ker adx, we
have ω(A) ∈ ker adx, as

[ω(A), x] = [ω(A),−ω(x)] = −ω([x,A]) = 0.

Note that ker adx = ker adx |gc . Moreover, if A ∈ im adx |gc , then ω(A) ∈ im adx |gc , since
there exists some B ∈ gc such that A = [x,B], which implies

ω(A) = ω([x,B]) = [ω(B), ω(x)] = [x,−(−1)p(B)ω(B)],

and ω(B) ∈ gc for any B ∈ gc as ω(x) = −x. This concludes the proof.
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Proposition 9.1.10. Let H be a unitarizable g-supermodule and let x ∈ Yhom such that
ω(x) = −x. Then DSx(H) = kerx|Hc is a ωx-unitarizable gx-supermodule. In particular,
DSx(H) is a semisimple gx-supermodule.

Proof. The kernel kerx|Hc and image im x|Hc are linear subspaces of the pre-super Hilbert
space H. In particular, Hx forms a pre-super Hilbert space with a positive-definite Hermi-
tian form 〈·, ·〉 given by the restriction of the Hermitian form on H. By construction and
Lemma 9.1.9, this form is also ωx-contravariant for gx.

Assume that v ∈M c lies in the image of x, i.e., there exists some w ∈ Hc with xw = v.
Then

〈v, v〉 = 〈xw, xw〉 = 〈ωx(x)xw,w〉 = 〈−x2w,w〉 = 0

as w ∈ Hc and c = [x, x] = 2x2. By the positive-definiteness of the Hermitian form, it
follows that v = 0, hence im x|Hc = 0, and thus Hx = kerx|Hc .

The semisimplicity of Hx as a gx-supermodule follows by Proposition 6.1.8.

Using Proposition 9.1.10 and Theorem 6.1.11, we conclude the following:

Corollary 9.1.11. Let H be a unitarizable g-supermodule. Then DSx(H) decomposes in
unitarizable highest weight gx-supermodules.

Lemma 9.1.12. Let (H, 〈·, ·〉) be a unitarizable g-supermodule and let x ∈ Yhom such that
ω(x) = −x. Then c := [x, x] is a negative operator, that is,

(cv, v) ≤ 0 ∀v ∈ H.

Proof. For any v ∈ H, we have

〈cv, v〉 = 2〈x2v, v〉 = 2〈xv, ω(x)v〉 = −2〈xv, xv〉 ≤ 0

by the positive definiteness of 〈·, ·〉.

For any x ∈ Yhom, the element c := [x, x] is semisimple in g0̄. Since g1̄ is a semisimple
g0̄-module, we conclude that adc is diagonalizable on g.

Corollary 9.1.13. Let x ∈ Yhom, and set c := [x, x]. Then the eigenvalues of adc on g
are negative. In particular, U(g)c = U(gc).

Proof. Fix a nontrivial unitarizable g-supermodule H such that DSx(H) 6= {0}. Let X ∈ g
be an eigenvector of adc, so that adc(X) = zX for some z ∈ C. Then, using Lemma 9.1.12,
we have for any v ∈ DSx(H):

0 ≥ 〈cXv,Xv〉 = 〈[c,X]v,Xv〉+ 〈Xcv,Xv〉 = 〈[c,X]v,Xv〉 = z〈Xv,Xv〉.

Since 〈Xv,Xv〉 ≥ 0, it follows that z ≤ 0. The second claim follows immediately.

Corollary 9.1.14. Let H be a unitarizable simple g-supermodule and let x ∈ Yhom such
that ω(x) = −x. Then

Hc = kerxH.
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Proof. The inclusion kerxH ⊂ Hc is immediate, since c = [x, x] = x2. Conversely, for any
v ∈ Hc, we have:

0 = 〈cv, v〉 = −〈xv, xv〉,

and thus xv = 0 by the positive definiteness of the Hermitian form. This completes the
proof.

Finally, we give a condition for simplicity of DSx(H) as a gx-supermodule. For this
purpose, we need the following lemma.

Lemma 9.1.15. Let x ∈ Yhom such that x = uα + zαvα has rank one and c = [x, x] ∈ h.
Let X ∈ gξ for some ξ ∈ ∆, and assume [c,X] = 0. Then X belongs to gc \ gx if and only
if ξ = ±α.

Proof. As [c,X] = 0, we have (α, ξ) = 0. Assume

[x,X] = [uα, X] + zα[vα, X] 6= 0.

Then, α + ξ ∈ ∆ or −α + ξ ∈ ∆. We distinguish two cases. First, assume ξ is even, such
that ±α+ ξ ∈ ∆1̄. However,

(±α+ ξ,±α+ ξ) = (ξ, ξ) 6= 0,

which is a contraction, as all odd roots are isotropic. Now, assume ξ is odd; hence isotropic.
Then ±α + ξ ∈ ∆0̄ is isotropic, and again, as the only isotropic roots are odd, implying
ξ = α or ξ = −α.

Theorem 9.1.16. Let H be a unitarizable simple g-supermodule and let x ∈ Yhom such
that ω(x) = −x. Assume the highest weight Λ of H satisfies (Λ + ρ, α) = 0 for some odd
root α, and x = uα + zαvα has rank one with c := [x, x] = hα ∈ h. Then the following two
assertions hold:

a) DSx(H) 6= 0 and decomposes in at most two unitarizable highest weight gx-supermodules.

b) If α is simple, DSx(H) is a simple gx-supermodule.

Proof. By Proposition 6.1.8 and Proposition 9.1.10, the gx-supermodule DSx(H) decom-
poses completely in unitarizable highest weight supermodules. Assume vµ and vλ are
highest weight vectors of unitarizable highest weight gx-supermodules in DSx(H). Then
there exists some X ∈ U(g) such that vλ = Xvµ, since H is a simple g-supermodules.

First, we show that X belongs to U(g)c. For that, we note that 0 = cvΛ = cXvµ. By the
PBW Theorem, the element X is a finite linear combination of elements of the form

Xr1
1 · · ·X

rdim(g0̄)

dim(g0̄) Y
s1

1 · · ·Y
sdim(g1̄)

dim(g1̄) , r1, . . . , rdim(g0̄) ∈ Z+, s1, . . . , sdim(g1̄) ∈ {0, 1},

where {X1, . . . , Xdim(g0̄)} is a basis for g0̄ and {Y1, . . . , Ydim(g1̄)} is a basis for g1̄. These
elements form a basis of U(g). Let X ′ be any basis element appearing in the decomposition
of X. We may assume, without loss of generality, that X ′vµ 6= 0. Then, by assumption,
there exist complex numbers zi and wj such that [c,Xi] = ziXi and [c, Yj ] = wjYj for all
i, j. A direct calculation yields

cX ′vµ = (
∑
i

zi +
∑
j

wj)X ′vµ = 0,
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which forces ∑i zi +
∑
j wj = 0, since X ′vµ 6= 0. By Corollary 9.1.13, we conclude zi = 0

and wj = 0 for all i, j, i.e., X ′ commutes with c. In particular, X ∈ U(g)c. Again, by
Corollary 9.1.13, we conclude X ∈ U(gc).

Next, without loss of generality, we assume that X ∈ U((n+)c), as H is a highest weight
g-supermodule. The vectors vµ and vλ are highest weight vectors for gx, and consequently,
are annihilated by the highest weight vectors in gx. Using Lemma 9.1.15 and the PBW
Theorem, we conclude that

X = z + z′Xα, Xα ∈ gα, z, z′ ∈ C.

In particular, as X2
α = 0, there are at most two highest weight vectors. This proves

statement a).
To prove b), we note that it is enough to show that DSx(H) is a highest weight gx-

supermodule, i.e., X ∈ C. As α is simple, vΛ ∈ DSx(H), and we have for any other
highest weight vector vµ ∈ DSx(H) with Xvµ = vΛ, X ∈ U((n+)c):

〈vΛ, vΛ〉 = 〈Xαvµ, Xαvµ〉 = 〈X−αXαvµ, vµ〉 = (µ+ ρ, α)〈vµ, vµ〉 = 0,

using Λ−α = µ, (ρ, α) = 0 and (Λ+ρ, α) = 0. This is a contradiction, forcing X = z′ ∈ C,
and vΛ = z′ · vµ. This completes the proof of b).

We use Theorem 9.1.16 to show thatDSx(H) decomposes into finitely many gx-supermodules
whenever H is simple. To this end, we first observe that DSx(H) = kerx = Hc, since c is
a negative operator.

Now, consider an element x = u1 + u2 + z1v1 + z2v2 ∈ Yhom of rank 2, such that
[x, x] ∈ h. Then we can write c = [x, x] = c1 + c2, where c1 = [x1, x1] and c2 = [x2, x2],
with xi = ui + zivi. In particular, c1 and c2 are negative operators, and we have

DSx(H) = Hc1 ∩Hc2 = DSx2(DSx1(H)).

Using this structure inductively, we obtain the following lemma from Theorem 9.1.16.

Lemma 9.1.17. Let H be a unitarizable simple g-supermodule, and let x ∈ Yhom satisfy
ω(x) = −x. Suppose that x is of rank k and decomposes as x = x1 + · · ·+ xk. Then

DSx(H) = DSxk
(DSxk−1(. . . DSx1(H))).

In particular, DSx(H) decomposes into finitely many gx-supermodules.

9.2. Translation functors
Unitarizable simple g-supermodules are of highest weight type and belong to the category
of Harish-Chandra supermodules,M(g, k) (cf. Section 6.1.5). We now consider translation
functors in M(g, k).

We begin with a suitable decomposition of any object M inM(g, k). To do so, we recall
that M is h-semisimple, as kC satisfies the equal rank condition h ⊂ kC ⊂ g0̄.

We decompose M under h into weight spaces, that is, M = ⊕λ∈h∗Mλ.
For any λ ∈ h∗, let χλ : Z(g) → C denote the associated infinitesimal character. We

define
Mλ :=

⊕
ν∈
∑

α∈∆ Zα

Mλ+ν
λ ,
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where Mλ+ν
λ := {m ∈Mλ+ν : for all z ∈ Z(g), ∃n ∈ Z+ such that (z − χλ(z))nm = 0}.

The space Mλ is a sub g-supermodule of M by construction, and we say that Mλ has
generalized infinitesimal character χλ. The following lemma is straightforward.

Lemma 9.2.1. Mλ = Mµ for any two λ, µ ∈ h∗ if and only if λ = w
(
µ+ρ+

∑k
i=1 tiαi

)
−ρ,

where w ∈ W , ti ∈ C, and α1, . . . , αk are linearly independent odd roots that satisfy
(µ+ ρ, αi) = 0, and λ− µ ∈ Ξ. 2

The lemma provides a canonically defined projection prλ from any Harish-Chandra su-
permodule M to the subspace Mλ with generalized infinitesimal character χλ.

Let λ, µ ∈ h∗, let M be an object in M(g, k), and let F be a finite-dimensional g-
supermodule. Recall that M(g, k) is closed under tensoring with finite-dimensional g-
supermodules. The translation functor is the exact functor

M 7→ FTµλ (M) := prµ(M ⊗ prλ(F ))

on the category of Harish-Chandra supermodules M(g, k).
To understand the projection functor, we investigate the Harish-Chandra supermod-

ule M ⊗ F for some highest weight Harish-Chandra supermodule M and some finite-
dimensional g-supermodule F . Fix a basis {e1, . . . , en} of F such that ei is a vector of
weight νi and i ≤ j if νi ≤ νj . Let PF denote the set of all weights of F , counted with
multiplicity.

Assume that M has a symmetric highest weight Λ, that is, Λ(ω(·)) = Λ(·), so that we
can endow M with the ω-contravariant Shapovalov form 〈·, ·〉M , as introduced in Section
6.1.3. With respect to this form, the generalized eigenspaces of M are orthogonal to each
other.

Lemma 9.2.2. The following assertions hold:

a) Mλ,Mµ are orthogonal for χλ 6= χµ with respect to 〈·, ·〉M .

b) M decomposes as a finite direct sum M =
⊕
λMλ.

Proof. a) Assume 〈Mλ,Mµ〉M 6= 0. Then there exists a weight ν ∈ h∗ such that

〈Mλ+ν
λ ,Mµ+ν

µ 〉M 6= 0.

By assumption, there exists an n ∈ N such that (z − χλ(z))nMλ+ν
λ = 0, and consequently,

by the contravariance of the Shapovalov form:

0 = 〈(z − χλ(z))nMλ+ν
λ ,Mµ+ν

µ 〉M = 〈Mλ+ν
λ , (ω(z)− χλ(ω(z)))nMµ+ν

µ 〉M .

Here, we used the symmetry condition on Λ to deduce that χλ(z) = χλ(ω(z)), and ω(z) ∈
Z(g) if and only if z ∈ Z(g). Moreover, if χλ(z) 6= χµ(z), then χλ(ω(z)) 6= χµ(ω(z)), and
ω(z)−χλ(ω(z)) must act bijectively onMµ+ν

µ . We conclude that (ω(z)−χλ(ω(z)))nMµ+ν
µ =

Mµ+ν
µ for all z ∈ Z(g), i.e., 〈Mλ+ν

λ ,Mµ+ν
µ 〉M = 0, which is a contradiction. This proves

the first statement.
b) The second statement is immediate, as M ∈ M(g, k) is generated by finitely many

weight vectors and has a finite Jordan–Hölder series.
2Recall that Ξ is the root lattice.
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Let Λ be the highest weight of M , and let vΛ be the highest weight vector. The U(g0̄)-
module V := U(g0̄)vΛ ⊂ M is a highest weight Harish-Chandra module for g0̄, and M
can be realized as a quotient of the Kac supermodule K(V ). Accordingly, any highest
weight Harish-Chandra supermodule is Kac-induced from a Harish-Chandra module of
g0̄. The following tensor identity describes the relationship between tensor products with
finite-dimensional Harish-Chandra supermodules and Kac induction.

Lemma 9.2.3. Let F be a finite-dimensional g-supermodule, and set F g+1 := {v ∈ F :
Xv = 0 for all X ∈ g+1}. Then there exists a natural equivalence of functors

K(−⊗ F g+1) ∼= K(−)⊗ F

such that for all homogeneous elements X ∈ g and v ∈ F ,

X ⊗ (−⊗ v) 7→ (X ⊗−)⊗ v + (−1)p(X)p(−)(1⊗−)⊗Xv.

Proof. The following are natural isomorphisms of functors:

HomU(g)(K(−)⊗ F,−) ∼= HomU(g)(K(−),HomC(F,−))
∼= HomU(g0̄)(−,HomC(F,−)g+1)
∼= HomU(g0̄)(−,HomC(F g+1 ,−))
∼= HomU(g0̄)(−⊗ F g+1 ,−)
∼= HomU(g)(K(−⊗ F g+1),−),

where we use that g0̄ ⊂ g is a subalgebra, F is finite-dimensional, and the functor F 7→
F g+1 is right adjoint to Kac induction. A direct calculation confirms that the induced
isomorphism is given by the stated formula.

It is well-known that every highest weight g0̄-module has a Jordan–Hölder filtration.
Consequently, if V is a highest weight Harish-Chandra module and F a finite-dimensional
g-supermodule, the lemma implies the existence of a Kac filtration for K(V )⊗ F .

Lemma 9.2.4. Let V be a highest weight Harish-Chandra module with highest weight Λ,
and let F be a finite-dimensional g-supermodule. Then K(V )⊗ F has a filtration, natural
in V ,

{0} = Nn ⊂ Nn−1 ⊂ . . . ⊂ N1 = K(V )⊗ F
with subquotients Ni/Ni+1, which are either trivial or isomorphic to Kac supermodules
induced from highest weight g0̄-modules with highest weight Λ + νi for some weight νi of F .

Proof. The tensor identity shows

K(V )⊗ F ∼= K(V ⊗C F
g+1).

Since V is an g0̄-module and a Harish-Chandra module, and F g+1 decomposes as a finite
direct sum of finite-dimensional Harish-Chandra modules, in particular, V ⊗C F

g+1 has a
filtration

{0} = Vn ⊂ Vn−1 ⊂ . . . ⊂ V1 = V ⊗C F
g+1 ,

with quotients Vi/Vi+1, which are either trivial or highest weight g0̄-modules with highest
weight Λ + νi [74, Chapter 1]. Set Ni := K(Vi). Then, combining the exactness of Kac
induction with the tensor identity, we conclude that the Ni yield the desired filtration. The
naturality follows from the explicit description of the Vi given in [74].
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Corollary 9.2.5. Let M be a highest weight g-supermodule with highest weight Λ, and let
F be a finite-dimensional g-supermodule. Then M ⊗ F has a filtration with subquotients
that are highest weight g-supermodules with highest weight Λ + ν for some ν ∈ PF .

We now present the main result of this subsection in the following proposition.

Proposition 9.2.6. Let M be a highest weight Harish-Chandra g-supermodule with highest
weight Λ, and let F be a finite-dimensional g-supermodule.

a) M ⊗ F is a direct sum of (M ⊗ F )µ with µ ∈ Λ + PF dominant with respect to the
set ∆+

c .

b) Each (M ⊗ F )µ is generated by U(n−) under the projections from the decomposition
in a) of MΛ ⊗ F ν , where χΛ+ν = χµ and Λ + ν − µ ∈ Ξ.

c) If M ⊗ F is equipped with the tensor product of the contravariant forms of M and
F , then the spaces (M ⊗ F )µ are orthogonal with respect to this form.

d) Each (M ⊗ F )µ has a finite Jordan–Hölder series with simple quotients isomorphic
to L(ν) such that χν = χµ and ν − µ ∈ Ξ.

e) If M = L(Λ) for some Λ ∈ h∗, then each (M ⊗ F )µ carries a non-degenerate
contravariant form.

Proof. First, observe that all weights of M ⊗ F lie in Λ + PF , and the tensor product of
contravariant forms is contravariant. Additionally, M ⊗ F is a member of M(g, k). This
proves the first and third statements by Lemma 9.2.2. Furthermore, for simple highest
weight g-supermodules, we obtain a non-degenerate contravariant form, and the tensor
product remains non-degenerate. This concludes the proof of the fifth statement. The
second and fourth statements follow from Lemma 9.2.4.

Proposition 9.2.7. Let L(Λ) be a simple highest weight Harish-Chandra supermodule with
highest weight Λ and let F be a finite-dimensional g-supermodule. Let ν be a weight of F
such that sdim(F ν) = (1|0) or (0|1). Assume also that χΛ+ν′ 6= χΛ+ν for all weights ν ′ 6= ν
of F . Then the highest weight g-supermodule (L(Λ)⊗F )Λ+ν is isomorphic to L(Λ + ν) or
trivial.

Proof. The space (L(Λ)⊗F )Λ+ν is generated by U(n−) from the projections of L(Λ)Λ⊗F ν ,
as given in Proposition 9.2.6. Furthermore, this space has dimension (1|0) or (0|1) by
Lemma 3.1.13, implying that (L(Λ) ⊗ F )Λ+ν is either a highest-weight g-supermodule
with weight Λ + ν or trivial. If (L(Λ) ⊗ F )Λ+ν is non-trivial, it has a non-degenerate
contravariant form, and since its radical is the maximal subsupermodule, the radical must
be trivial. Consequently, (L(Λ)⊗ F )Λ+ν must be simple.
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10. A formal superdimension for unitarizable
supermodules

In Section 10.1, we introduce a notion of formal superdimension for a specific class of
g-supermodules, referred to as relative holomorphic discrete series g-supermodules. Fur-
thermore, we establish key properties of this superdimension and, in Section 10.2, we
present a generalization of the Kac–Wakimoto conjecture in this context.

10.1. A formal superdimension
The superdimension of a finite-dimensional supermodule typically compares the sizes of its
even and odd components, providing an invariant. For infinite-dimensional g-supermodules,
however, such notions of size are ill-defined, and at first glance, the very idea of a superdi-
mension seems inapplicable. Nevertheless, if the supermodule is unitarizable, the formal
dimension associated with certain unitarizable g0̄-constituents can serve as a suitable sub-
stitute.

The goal of this section is to introduce the notion of the formal superdimension. This
invariant is designed to generalize two key concepts: on the one hand, the classical superdi-
mension of finite-dimensional g-supermodules; and on the other, the formal dimension (also
known as the formal degree or Harish-Chandra degree) of unitarizable modules over the
even subalgebra g0̄ (see Section 5.4.2). The formal superdimension of a g-supermodule is
defined as the alternating sum of the formal dimensions of its g0̄-constituents, where we
recall that the formal dimension is defined only for those unitarizable g0̄-modules which
integrate to relative discrete series representations of a real Lie group G with Lie algebra
gR0̄ . Here, gR0̄ denotes the reductive real form su(p, q)⊕su(n)⊕u(1) of g0̄ (see Section 2.1.4),
and G is either the matrix Lie group GR

0̄ , or its simply connected covering group G̃R
0̄ .

10.1.1. A superdimension formula
The proposal for the formal superdimension arises from the natural combination of the
Harish-Chandra degree for g0̄-modules from Section 5.4.2 with the insights from Sections
7 and 6.1.4. To fix notation, we recall that if H is a non-trivial unitarizable simple g-
supermodule, then

a) H is a simple highest weight supermodule with some highest weight Λ ∈ h∗;

b) H is g0̄-semisimple, with each g0̄-constituent L0(Λj) being a unitarizable highest
weight g0̄-supermodule concentrated in degree p(Λj) =

∑n
k=1(Λj −Λ, δk) mod 2 rel-

ative to the highest weight vector. Moreover, each g0̄-constituent is a tensor product
of a unitarizable simple su(p, q)-module (which is finite-dimensional if and only if
p = 0 or q = 0), a (finite-dimensional) simple su(n)-module and a (one-dimensional)
simple u(1)-module.



c) If p, q 6= 0, the g0̄-constituents L0(Λj) belong to the relative holomorphic discrete
series precisely is they satisfy the Harish-Chandra condition of Theorem 5.4.3,

(Λj + ρ0̄, β) < 0, for all β ∈ ∆+
n .

In this case they possess a formal dimension d(Λj) ∈ R+ given by Theorem 5.4.5,

d(Λj) =
∏

α∈∆+
c

(Λj + ρc, α)
(ρc, α)

∏
β∈∆+

n

|(Λj + ρ0̄, β)|
(ρ0̄, β)

.

Recall that this formal dimension serves as a substitute for the dimension of infinite-
dimensional unitarizable g0̄-modules and coincides with the dimension or degree of
the representation for finite-dimensional unitarizable g0̄-modules.

If a unitarizable simple highest weight g0̄-module does not belong to the relative holo-
morphic discrete series, there is no concept of a formal dimension. This naturally leads to
the definition of (relative) holomorphic discrete series supermodule.

Definition 10.1.1. Let H be a unitarizable highest weight g-supermodule. Then, H is
called:

a) a relative holomorphic discrete series supermodule if each g0̄-constituent is a Harish-
Chandra supermodule corresponding to a relative holomorphic discrete series repre-
sentation of G̃R

0̄ .

b) a holomorphic discrete series supermodule if each g0̄-constituent is a Harish-Chandra
supermodule corresponding to a holomorphic discrete series representation of GR

0̄ .

(Relative) holomorphic discrete series supermodules carry a natural formal superdimen-
sion. All we have to do is weight by the parity (−1)p(Λj).

Definition 10.1.2. Let H be a relative holomorphic g-supermodule. Then the real value

sdim(H) :=
∑
j

sdim(L0(Λj)), sdim(L0(Λj)) := (−1)p(H)+p(Λj)d(Λj),

where the sum runs over the highest weights of all g0̄-constituents L0(Λj) of H, is called
the formal superdimension of H.

For simplicity, we assume for the rest of this chapter that L0(Λ) has even parity, such
that

sdim(L0(Λj)) = (−1)p(Λj)d(Λj)

for any g0̄-constituent L0(Λj).
Furthermore, an explicit formula for the superdimension of relative holomorphic discrete

series g-supermodules is provided by Theorem 7.3.2 together with Theorem 5.4.5.
Remark 10.1.3. Any unitarizable simple highest weight g0̄-module is the outer tensor prod-
uct of simple unitary highest weight representations of su(p, q)C, su(n)C, and u(1)C (if
m 6= n; see Section 6.1.4). Since u(1) is abelian, any simple u(1)-module is one-dimensional
and does not contribute to the dimension.
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Let us denote L := su(p, q)C and R := su(n)C, and write the highest weight as µ = (µL |
µR), with µL = (µ1, . . . , µm) and µR = (µ′

1, . . . , µ
′
n), as in Section 6.1.4. Then µL is the

highest weight of a Harish-Chandra module over L, while µR is the highest weight of a
finite-dimensional simple R-module. With this notation, the simple g0̄-module decomposes
as

L0(µ) ∼= L0(µL;L) ⊠ L0(µR;R) ⊠ Cµ,

and the associated formal dimension factorizes as

d(πµ) = d(πµL) · d(πµR),

where d(πµR) is given by Weyl’s dimension formula, i.e.,

d(πµR) = dim(L0(µR)),

and d(πµL) is the formal dimension associated with the Harish-Chandra module L0(µL) in
Theorem 5.4.5.

In particular, to compute the formal superdimension sdim(M) of a unitarizable g-
supermodule M , it suffices to decompose M under L as

M
∣∣
L

=
⊕
µ

L0(µL;L) ⊠Xµ,

where the Xµ are finite-dimensional as super vector subspaces of the space⊕
ν

L0(νR;R) ⊠ Cν .

Each space Xµ carries a well-defined superdimension, and to each L0(µL;L) we assign its
formal dimension. The formal superdimension sdim(M) is then given by the alternating
sum over these components.

Next, we consider examples. The following example is immediate.

Example 10.1.4. We consider the case of compact real forms su(m|n), which occurs when
either p = 0 or q = 0. In this case, the formal superdimension of any unitarizable simple
supermodule coincides with its superdimension by construction.

Now, we consider the cases p, q 6= 0, i.e., infinite-dimensional supermodules. Section 6.1.4
allows for a straightforward computation of the superdimension of relative holomorphic
discrete g-supermodules with respect to the fixed positive system n+

1̄,nst.

Example 10.1.5. Consider su(1, 1|2), i.e., m = n = 2 and p = q = 1. The Weyl vectors
are given by

ρ0̄ = 1
2

(1,−1|1,−1), ρc = 1
2

(0, 0|1,−1), ρ = 1
2

(−1, 1|1,−1).

We are interested in cases where the highest weight is typical, 1-atypical, or maximally
atypical.
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a) For a typical highest weight Λ = (−4, 5|3, 2), the unitarizable simple g-supermodule
L(Λ) decomposes as

L(Λ)ev =L0(−4, 5|3, 2)⊕ L0(−4, 6|3, 1)⊕ L0(−5, 5|3, 3)
⊕ L0(−5, 5|4, 2)⊕ L0(−4, 6|2, 2)⊕ L0(−5, 6|3, 2)
⊕ L0(−5, 6|4, 1)⊕ L0(−6, 5|4, 3)⊕ L0(−4, 7|2, 1)
⊕ L0(−5, 6|3, 2)⊕ L0(−6, 6|4, 2)⊕ L0(−5, 7|2, 2)
⊕ L0(−5, 7|3, 1)⊕ L0(−6, 6|3, 3)⊕ L0(−6, 7|3, 2).

The superdimension is computed as

sdimL(Λ) = 16− 27− 9− 27− 9 + 20 + 40 + 20 + 20 + 20− 33− 11
− 33− 11 + 24

= 0,

where the formal dimensions of the g0̄-constituents are listed as above.

b) For a 1-atypical highest weight Λ = (−4, 5|4, 2), the unitarizable simple g-supermodule
L(Λ) decomposes as

L(Λ)ev =L0(−4, 5|4, 2)⊕ L0(−4, 6|4, 1)⊕ L0(−5, 5|4, 3)
⊕ L0(−4, 6|3, 2)⊕ L0(−5, 6|4, 2)⊕ L0(−4, 7|3, 1)
⊕ L0(−5, 6|3, 3)⊕ L0(−5, 7|3, 2).

The superdimension is

sdim(L(Λ)) = 24− 36− 18− 18 + 30 + 30 + 10− 22 = 0,

where the formal dimensions of the g0̄-constituents are listed as above.

c) For a maximally atypical highest weight Λ = (−4, 5|4,−5), the unitarizable simple
g-supermodule L(Λ) decomposes as

L(Λ)ev =L0(Λ)⊕ L0(−5, 5|4,−4)⊕ L0(−4, 6|3,−5)⊕ L0(−5, 6|3,−4).

The superdimension is

sdimL(Λ) = 80− 81− 81 + 80 = −2,

where the formal dimensions of the g0̄-constituents are listed as above.
Example 10.1.6. Now, consider su(1, 1|3) with complexification sl(2|3). The Weyl vectors
are given by

ρ0̄ = 1
2

(1,−1|1, 0,−1), ρc = (0, 0, |1, 0,−1), ρ = (−1, 1|1, 0,−1).

For the maximally atypical highest weight Λ = (−1, 1|1, 0,−1), the unitarizable highest
weight g-supermodule L(Λ) decomposes as

L(Λ)ev =L0(−1, 1|1, 0,−1)⊕ L0(−2, 1|1, 1,−1)⊕ L0(−2, 1|1, 0, 0)
⊕ L0(−1, 2|0, 0,−1)⊕ L0(−1, 2|1,−1,−1)⊕ L0(−3, 1|1, 1, 0)
⊕ L0(−2, 2|0, 0, 0)⊕ L0(−2, 2|1, 0,−1)⊕ L0(−1, 3|0,−1,−1)
⊕ L0(−3, 2|1, 0, 0)⊕ L0(−2, 3|0, 0,−1)⊕ L0(−3, 3|0, 0, 0).
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The superdimension is

sdimL(Λ) = 8− 12− 6− 6− 12 + 9 + 3 + 24 + 9− 12− 12 + 5 = −2,

where the formal dimensions of the g0̄-constituents are listed as above.

In the examples discussed above, we observed that the formal superdimension is trivial
unless the highest weight is maximally atypical. This naturally leads to the conjecture that
the superdimension of any (relative) holomorphic discrete series g-supermodule is trivial
unless the highest weight is maximally atypical.

We examine this phenomenon — an analog of the Kac–Wakimoto conjecture — in the
following sections.

Formal Q-superdimension

In Section 9.1, we introduced the Duflo–Serganova functor, which assigns to each g-
supermodule M a corresponding gx-supermodule DSx(M). If M is finite-dimensional,
the DS functor preserves the superdimension, i.e., sdimM = sdimDSx(M) for any x ∈ Y.
However, the DS functor preserves unitarity if and only if it is defined with respect to
Yhom.

Fix an element Q ∈ Y such that x := Q − ω(Q) ∈ Yhom and ω(x) = −x. Assume that
Q has rank k. Define

H := 1
2

[x, x] = [Q,ω(Q)],

which is a semisimple element in g0̄. The image of the DS functor on g is given by

gx := DSx(g) =
{
sl(m− k | n− k), if m 6= n,

psl(n− k | n− k), if m = n.

The corresponding real form is

gωx
x = su(p− r, q − s | n− k),

for some r ≤ p, s ≤ q such that r+ s = k. Using Lemma 9.1.17 and Proposition 9.1.10, we
may define a Q-superdimension by assigning to the gx-supermodule DSx(H) a well-defined
superdimension, as described earlier.

Definition 10.1.7. Let H be a simple unitarizable g-supermodule. The superdimension
of the gx-supermodule DSx(H) is called the formal Q-superdimension of H.

We will study the formal Q-superdimension and its close relationship with the Q-Witten
index in Part IV.

10.1.2. Characteristics of the superdimension

We collect here several important properties of the formal superdimension. First, since
unitarizable g-supermodules are completely reducible, the superdimension is additive.
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Lemma 10.1.8. Let M , M ′, and M ′′ be unitarizable g-supermodules fitting into a short
exact sequence

0 −→M ′ −→M −→M ′′ −→ 0.

Then
sdim(M) = sdim(M ′) + sdim(M ′′).

Next, the superdimension behaves well under tensoring with suitable finite-dimensional
supermodules. In particular, if H ⊗ F admits a filtration by holomorphic discrete series
supermodules, then sdim(H ⊗ F ) is well-defined, and we can compare it to the product
sdim(H) · sdim(F ).

Lemma 10.1.9. Let H be a holomorphic discrete series g-supermodule with highest weight
Λ, and let F be a finite-dimensional simple g-supermodule with weight set PF . Assume that
H⊗F admits a filtration whose subquotients are holomorphic discrete series supermodules
of the form L(Λ + ν) for ν ∈ PF . Then

sdim(H⊗ F ) = sdim(H) · sdim(F ).

Proof. First, since H is a unitarizable simple g-supermodule and F is simple and finite-
dimensional, both are g0̄-semisimple. Hence, we may write their g0̄-decompositions as:

H =
⊕
µ

(−1)p(µ)m(µ;H)L0(µ), F =
⊕
ν

(−1)p(ν)m(ν;F )F0(ν),

where m(µ;H) and m(ν;F ) denote multiplicities. Tensoring over g0̄, we obtain:

H⊗ F =
⊕
µ,ν

(−1)p(µ)+p(ν)m(µ;H)m(ν;F )L0(µ)⊗ F0(ν).

In particular, the superdimensions are given by:

sdim(H) =
∑
µ

m(µ;H) · sdim(L0(µ)), sdim(F ) =
∑
ν

m(ν;F ) · sdim(F0(ν)).

To proceed, we reformulate the problem in terms of characters. For this, we adopt the
notation of Section 5.4, and consider, without loss of generality, the group G′

0̄ = SU(p, q)×
SU(n) and its universal covering group G̃′

0̄. Let πµ denote the holomorphic discrete series
representation associated with L0(µ)—equivalently, a discrete series representation of G̃′

0̄
by Remark 5.4.8. Let ΘL0(µ) (or Θµ) denote the associated Harish-Chandra character, and
let Θ̃L0(µ) (or Θ̃µ) denote its associated L-packet. Then, by Proposition 5.4.9, the formal
dimension of πµ is given by

d(µ) = lim
g→eG′

0̄
, g∈T ′∩G′

0̄,reg

Θ̃µ(g).

Likewise, we view F0(ν) as a finite-dimensional irreducible representation of G̃′
0̄, with

character χF0(ν). Then,
dim(F0(ν)) = lim

g→eG′
0̄

χF0(ν)(g).

This allows us to recast the problem in terms of limits of character values near the identity.
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By assumption, together with the Jantzen–Zuckerman translation principle [141, Lemma
3.4], the additivity of characters, and the Weyl group invariance of the weight set PF0(ν),
we obtain the following:

sdimH · sdimF =
∑
µ,ν

m(µ;H)m(ν;F )(−1)p(µ)+p(ν)d(µ) · d(ν)

=
∑
µ,ν

m(µ;H)m(ν;F )(−1)p(µ)+p(ν) lim
g→eG̃′

0̄
, g∈T̃ ′∩G̃′

0̄,reg

Θ̃L0(µ)(g)d(ν)

= lim
g→eG̃′

0̄
, g∈T̃ ′∩G̃′

0̄,reg

∑
µ,ν

m(µ;H)m(ν;F )(−1)p(µ)+p(ν) ∑
w∈W/Wc

Θw.µ(g)χF0(ν)(g)

= lim
g→eG̃′

0̄
, g∈T̃ ′∩G̃′

0̄,reg

∑
µ,ν

m(µ;H)m(ν;F )(−1)p(µ)+p(ν) ∑
w∈W/Wc

ΘLw.µ⊗F0(ν)(g)

= lim
g→eG̃′

0̄
, g∈T̃ ′∩G̃′

0̄,reg

∑
µ,ν

m(µ;H)m(ν;F )(−1)p(µ)+p(ν) ∑
w∈W/Wc

∑
ξ(ν)∈PF0(ν)

ΘLw.µ+ξ(ν)(g)

= lim
g→eG̃′

0̄
, g∈T̃ ′∩G̃′

0̄,reg

∑
µ,ν

(−1)p(µ)+p(ν)m(µ;H)m(ν;F )
∑

ξ(ν)∈PF0(ν)

Θ̃µ+ξ(ν)

=
∑
µ,ν

(−1)p(µ)+p(ν)m(µ;H)m(ν;F )
∑

ξ(ν)∈PF0(ν)

d(µ+ ξ(ν))

=
∑
µ,ν

(−1)p(µ)+p(ν)m(µ;H)m(ν;F ) dim(L0(µ)⊗ F0(ν))

= sdimH⊗ F.

Next, we use the structure provided by the DS functor to investigate the formal su-
perdimension. While the DS functor does not preserve superdimension in general, it serves
as a valuable tool for reducing considerations to unitarizable simple supermodules with
maximally atypical highest weight.

As discussed in Section 5.4.3, any relative holomorphic discrete series g-supermodule H
decomposes under the action of R into finitely many finite-dimensional simple R-modules.
These modules carry a natural (ordinary) dimension, which makes it necessary to examine
the role of the semisimple Lie algebra L more closely.

Fix an element x ∈ Y such that x commutes with n+
L := n+

0̄ ∩L. Then x induces a short
exact sequence of g-supermodules:

0 −→ kerxH −→ H −→ Π im xH −→ 0,

which splits as a short exact sequence of super vector spaces:

H ∼= kerxH ⊕Π im xH.

Moreover, since x commutes with n+
L , we obtain a direct sum decomposition of the n+

L -
invariants:

Hn+
L = (kerxH)n

+
L ⊕Π (im xH)n

+
L .
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Lemma 10.1.10. Let H be a relative holomorphic discrete series g-supermodule. Then
there is an isomorphism of U(L)-modules

H ∼= 〈ker(xH)n
+
L 〉L ⊕ 〈Π im(xH)n

+
L 〉L,

where 〈V 〉L := U(L) ·V denotes the U(L)-submodule of H generated by the subspace V ⊂ H.

Proof. The n+
L -invariants of H are precisely the highest weight vectors of its L-constituents.

As explained in Section 6.1.4, there are only finitely many such highest weight vectors
(up to scalar), and each generates an irreducible L-constituent under the action of U(L).
Moreover, the L-constituents are pairwise orthogonal with respect to the Hermitian form
on H.

To prove the lemma, it suffices to show that the modules 〈ker(xH)n
+
L 〉L and 〈Π im(xH)n

+
L 〉L

have no L-constituents in common. Suppose, for contradiction, that there exists a con-
stituent L0(µ;L) appearing in both submodules. Then its highest weight vector vµ would
lie in both ker(xH)n

+
L and Π im(xH)n

+
L , and hence in their intersection. However,

vµ ∈ ker(xH)n
+
L ∩Π im(xH)n

+
L = {0},

which is a contradiction.

Each of the submodules 〈ker(xH)n
+
L 〉L and 〈im(xH)n

+
L 〉L carries a natural superdimension

(see Remark 10.1.3). Indeed, we have the decompositions:

〈ker(xH)n
+
L 〉L =

⊕
µ

L0(µL;L) ⊠Xµ, 〈im(xH)n
+
L 〉L =

⊕
ν

L0(νL;L) ⊠Xν ,

where each Xµ, Xν is a super vector subspace of ⊕ξ L0(ξR;R) ⊠ Cξ. In particular, they
are finite-dimensional. The associated superdimensions are given by:

sdim〈ker(xH)n
+
L 〉L =

∑
µ

(−1)p(µ) d(µL) · dim(Xµ),

sdim〈im(xH)n
+
L 〉L =

∑
ν

(−1)p(ν) d(νL) · dim(Xν).

Note that we do not need to explicitly consider the R-modules, since H decomposes
under R into finitely many finite-dimensional simple modules, each of which carries an
ordinary (well-defined) dimension. We conclude the following lemma.

Lemma 10.1.11. Let H be a relative holomorphic discrete series g-supermodule. Then

sdim(H) = sdim〈ker(xH)n
+
L 〉L − sdim〈im(xH)n

+
L 〉L.

We now obtain the following vanishing result for the superdimension.

Theorem 10.1.12. Let H be a relative holomorphic discrete series g-supermodule with
highest weight Λ. If Λ is not maximally atypical, then

sdim(H) = 0.
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Proof. Fix an element x ∈ Y of maximal rank such that x commutes with n+
L . A direct

calculation yields that such an element exists. By assumption and Corollary 9.1.7, we have
DSx(H) = {0}. It follows that kerxH = im xH, and therefore also

ker(xH)n
+
L = im(xH)n

+
L .

The claim then follows immediately from Lemma 10.1.11.

Corollary 10.1.13. Let H be a relative holomorphic discrete series g-supermodule with
typical highest weight Λ, and let F be a finite-dimensional g-supermodule. Then for all
µ ∈ h∗, we have

sdim
(
FTµΛ(H)

)
= 0.

As a consequence, we conclude that the formal superdimension of a relative holomorphic
discrete series g-supermodule with highest weight Λ is trivial whenever at(Λ) < def(g) =
min(m,n).

For the remainder of this article, and without loss of generality, we restrict our attention
to relative holomorphic discrete series g-supermodules with maximally atypical highest
weight. In the next subsection, we describe and classify these supermodules.

10.1.3. Intermezzo: Maximal atypical relative holomorphic discrete series
g-supermodules

The notions of unitarity and atypicality for a highest weight g-supermodule are entirely
independent of each other. However, atypicality imposes an integral structure on the
highest weight, meaning that (λ, α) ∈ Z for all α ∈ ∆0̄, for some highest weight λ ∈ h∗.

Lemma 10.1.14. Let H be a unitarizable simple g-supermodule with highest weight Λ.
Assume g 6= sl(m|1), sl(1|n). If Λ is maximally atypical, then Λ is integral.

Proof. Unitarity is defined with respect to a real form su(p, q|n) for p + q = m, with Lie
subalgebra su(p, q|n)0̄ = su(p, q)⊕ su(n)⊕u(1), where the u(1) is only present if p+ q 6= n.
By the parameterization of unitarizable simple g-supermodules in Section 6.1.4, the highest
weight is of the form

Λ =
(
λ

2
− a1,

λ

2
− a2, . . . ,

λ

2
− ap,−

λ

2
+ ap+1, . . . ,−

λ

2
+ ap+q|0, . . . , 0

)
,

where a1, . . . , ap and ap+1, . . . , ap+q are positive integers such that 0 ≤ a2 ≤ . . . ≤ ap and
ap+1 ≥ ap+2 ≥ . . . ≥ ap+q−1 ≥ ap+q = 0, and λ belongs to the set

(−∞,−m+ x− (r − 1)) ∪ {−m+ x− (r − 1),−m+ x− (r − 1) + 1, . . . ,−m+ x}.

Consequently, it suffices to show that λ is integral, i.e., λ = (Λ, ε1 − εm) ∈ Z. To simplify
the notation, we also write Λ = (λ1, . . . , λm|λ′

1, . . . , λ
′
n) such that (Λ+ρ, ε1−εm) = λ1−λm

(see Section 6.1.4).
If Λ is maximally atypical, there exist some 1 ≤ k, l ≤ n, such that (Λ + ρ, ε1 − δk) = 0

and (Λ + ρ, εm − δl) = 0, i.e.,

λ′
k = −λ1 − p+ k, λ′

l = −λm − p− n−m− l.

175



As (0, . . . , 0|λ′
1, . . . , λ

′
n) is the highest weight of a simple su(n)C-module, the weight is

integral. We conclude

λ′
l − λ′

k = −λm + λ1 − n−m− l + k ∈ Z,

and λ = (Λ, ε1 − εm) = λ1 − λm ∈ Z, as m,n, l, k ∈ Z+.

For integral weights Λ ∈ h∗, we obtain a further refinement. Define

1m|n :=
m∑
i=1

εi −
n∑
j=1

δj = (1, . . . , 1 | −1, . . . ,−1).

Then, there exists a scalar a(Λ) ∈ C such that

Λ = Λ̃ + a(Λ)1m|n,

where Λ̃ = (λ̃1, . . . , λ̃m | λ̃′
1, . . . , λ̃

′
n) ∈ h∗ satisfies λ̃i, λ̃′

j ∈ Z for all i, j. If Λ is the
highest weight of a unitarizable simple g-supermodule H, then up to tensoring with the
one-dimensional g-supermodule of weight a(Λ)1m|n, we may assume that H has highest
weight Λ̃ with integral entries.

In the following, we assume for convenience that the highest weight Λ of a unitarizable
g-supermodule satisfies λi, λ′

j ∈ Z. This assumption is not essential and may be omitted
without affecting the results; it is introduced purely to simplify notation.

With this setup, Theorem 8.2.2 provides a complete parameterization of all relative holo-
morphic discrete series g-supermodules, including those with maximally atypical highest
weight.

Finally, the unitarity relations in Lemma 6.1.13 impose a specific structure on any max-
imal atypical highest weight Λ.

Lemma 10.1.15. Let H be a unitarizable simple g-supermodule with highest weight Λ.
Then the following assertions hold:

a) If (Λ + ρ, εi − δj) = 0 for 1 ≤ i ≤ p, then 1 ≤ j ≤ p− i+ 1.

b) If (Λ + ρ, εi − δj) = 0 for p+ 1 ≤ i ≤ m, then n+ p− i+ 1 ≤ j ≤ n.

Proof. We consider the case (Λ + ρ, εi − δj) = 0 for 1 ≤ i ≤ p, that is,

0 = (Λ + ρ, εi − δj) = λi + λ′
j + p− j − i+ 1⇔ −λ′

j = λi + p− j − i+ 1.

The unitarity relations (see a) in Theorem 8.2.2) force p−j−i+1 ≥ 0, i.e., 1 ≤ j ≤ p−i+1.
If p+ 1 ≤ i ≤ m, we have

0 = (Λ + ρ, εi − δj) = λi + λ′
j + p+ n− i− j ⇔ −λ′

j = λi + p+ n− i− j.

Again, the unitarity relations require −λj ≤ λi, i.e., p + n − i − j + 1 ≤ 0. We conclude
p+ n− i+ 1 ≤ j ≤ n.

Now, the subsequent corollary is immediate using Lemma 10.1.15 and the unitarity
relations in Theorem 8.2.2.
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Corollary 10.1.16. Let H be a unitarizable simple g-supermodule with maximal atypical
highest weight Λ. Then Λ satisfies:

λ1 = . . . = λp = −λ′
1 = . . . = −λ′

p,

λp+1 = . . . = λm = −λ′
n = . . . = −λ′

n−q+1.

In particular, if m = n, the highest weight Λ is of the form

Λ = (λ1, . . . , λ1, λm, . . . , λm| − λ1, . . . ,−λ1,−λm, . . . ,−λm).

Furthermore, by definition of ∆+
nst, the following corollary is immediate.

Corollary 10.1.17. Let H be a unitarizable simple g-supermodule with maximal atypical
highest weight Λ. If L0(Λ) is a relative holomorphic discrete series g0̄-module, then H is a
relative holomorphic discrete series g-supermodule.

10.2. Kac–Wakimoto conjecture
In this section, we prove an analog of the Kac–Wakimoto conjecture for the formal su-
perdimension of relative holomorphic discrete series g-supermodules over g := sl(n|n).
That is, we show that the formal superdimension of a relative holomorphic discrete series
g-supermodule H = L(Λ) is trivial unless Λ is maximally atypical. Our method generalizes
directly to the general case sl(m|n), but for simplicity, we focus on m = n. Additionally,
we may assume p, q 6= 0, otherwise the statement follows directly from Example 10.1.4. In
particular, this excludes the case sl(1|1). We begin with an illustrative example.

10.2.1. An illustrative example
Let g = sl(2|2). Recall the standard and non-standard positive systems in Table 10.2.1,
where we also list the maximally atypical highest weights Λ.

Data Non-standard system Standard system

∆+
0̄ {ε1 − ε2, δ1 − δ2} {ε1 − ε2, δ1 − δ2}

∆+
1̄ {ε1−δ1, ε1−δ2, −ε2 +δ1, −ε2 +δ2} {ε1 − δ1, ε1 − δ2, ε2 − δ1, ε2 − δ2}

ρ0̄ (1
2 ,−

1
2 |

1
2 ,−

1
2) (1

2 ,−
1
2 |

1
2 ,−

1
2)

ρ1̄ (1,−1 | 0, 0) (1, 1 | −1,−1)

ρ = ρ0̄ − ρ1̄ (−1
2 ,

1
2 |

1
2 ,−

1
2) (−1

2 ,−
3
2 |

3
2 ,

1
2)

Maximally atypical Λ (λ1, λ2 | −λ1,−λ2), λi ∈ C (λ1, λ2 | −λ1 − 1,−λ2 + 1), λi ∈ C

Table 10.1.: Non-standard and standard positive systems in sl(2|2)

In Section 10.1, we worked with the non-standard positive system such that any maximal
atypical highest weight of some unitarizable simple g-supermodule is of the form

Λ = (λ1, λ2| − λ1,−λ2).
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We consider all such Λ such that L0(Λ) is isomorphic to the Harish-Chandra module of a
holomorphic discrete series representation of the underlying Lie group such that L(Λ) is a
relative holomorphic discrete series g-supermodule (see Corollary 10.1.17).

In this section, we find it helpful to translate L(Λ; ∆+
nst) to L(Λ′; ∆+

st) using odd reflec-
tion functors (see Lemma 6.1.14). The positive systems ∆+ and ∆+

st are related via the
composition rε2−δ2 ◦ rε2−δ1 of odd reflections, so that

∆+
nst = rε2−δ2 ◦ rε2−δ1(∆+

st).

In particular, if Λ is maximally atypical for ∆+
nst, we have

L(Λ; ∆+
nst) ∼= ΠL(Λ′; ∆+

st), Λ′ = Λ + ε2 − δ1 = (λ1, λ2 + 1| − λ1 − 1,−λ2).

Additionally, the g0̄-constituents (neglecting parity) of L(Λ; ∆+
nst) and ΠL(Λ′; ∆+

st) are iso-
morphic, and we conclude

sdimL(Λ; ∆+
nst) = − sdimL(Λ′; ∆+

st).

This can be seen concretely in Figure 10.2.1, where we write down the g0̄-constituents of
both supermodules.

Next, we assign to L(Λ′; ∆+
nst) a natural finite-dimensional supermodule. For this pur-

pose, we note that (λ1, λ2) is the highest weight of a discrete series su(1, 1)-module, and
there exists a unique element in the Weyl orbit that belongs to a finite-dimensional su(1, 1)-
module with respect to ∆+

0̄ :

w · Λ′|su(1,1) = w(Λ′|su(1,1) + ρ0̄|su(1,1))− ρ0̄|su(1,1) = (λ2, λ1 + 1)

with w ∈ W satisfying w∆+
n = ∆−

n and w∆+
c = ∆+

c . The Weyl element w is unique. In
particular,

L0(µ; ∆+
nst) ∼= ΠL0(w(µ); ∆+

st)

for all g0̄-constituents. We set

Λ′
fd := (λ2, λ1 + 1| − λ1 − 1,−λ2),

which is a maximally atypical dominant integral weight; in particular, L(Λ′
fd) is a simple

finite-dimensional g-supermodule. The decomposition under g0̄ is:

L(Λ′
fd)

(λ2, λ1 + 1 | −λ1 − 1,−λ2)

(λ2 − 1, λ1 + 1 | −λ1,−λ2) (λ2, λ1 | −λ1 − 1,−λ2 + 1)

(λ2 − 1, λ1 | −λ1,−λ2 + 1)
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L(Λ′; ∆+
st)

(λ1, λ2 + 1 | −λ1 − 1,−λ2)

(λ1 − 1, λ2 + 1 | −λ1 − 1,−λ2 + 1) (λ1, λ2 | −λ1,−λ2)

(λ1 − 1, λ2 | −λ1,−λ2 + 1)

L(Λ; ∆+
nst)

(λ1, λ2 | −λ1,−λ2)

(λ1 − 1, λ2 | −λ1,−λ2 + 1) (λ1, λ2 + 1 | −λ1 − 1,−λ2)

(λ1 − 1, λ2 + 1 | −λ1 − 1,−λ2 + 1)

Figure 10.1.: Comparison of g0̄-constituents for L(Λ; ∆+
nst) and L(Λ′; ∆+

st).
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We now compare both g-supermodules, i.e., L(Λ′) and L(Λ′
fd). For this purpose, recall

that k = su(2)⊗ u(1). Define
L(µ)k :=

∑
j

L0(µj ; kC),

which consists precisely of the K-types with highest weights Λj in L(Λ) — that is, the
K-types occurring as highest weights of the g0̄-constituents. Then, as kC-supermodules,
we have the isomorphism:

L(Λ′)k ∼= L(Λ′
fd)k,

based on the following identifications:
L0(Λ′; kC) ∼= L0(Λ′

fd; kC),
L0(Λ′ − γ1; kC) ∼= L0(Λ′

fd − w(γ1); kC),
L0(Λ′ − γ2; kC) ∼= L0(Λ′

fd − w(γ2); kC),
L0(Λ′ − γ1 − γ2); kC) ∼= L0(Λ′

fd − w(γ1)− w(γ2); kC),

(10.2.1)

where γ1 := ε1 − δ2 and γ2 := ε2 − δ1.
Concerning the formal superdimension, we conclude that L(Λ′) and L(Λ′

fd) only differ
in the “non-compact” part. However, we have by construction for any g0̄-constituent
L0(Λ′

fd − w(γ)):

∏
β∈∆+

n

(Λ′
fd − ω(γ) + ρ0̄, β)

(ρ0̄, β)
=

∏
β∈∆+

n

(w(Λ′ − γ + ρ0̄), β)
(ρ0̄, β)

=
∏

β∈∆+
n

(Λ′ − γ + ρ0̄,−β)
(ρ0̄, β)

=
∏

β∈∆+
n

|(Λ′ − γ + ρ0̄, β)|
(ρ0̄, β)

,

(10.2.2)

i.e., the “dimension” of the non-compact parts coincide. We conclude:

sdimL(Λ′) = (λ2 − λ1) · dimL0(Λ′; kC)
− (λ2 − λ1 + 1) · dimL0(Λ′ − γ1; kC)
− 2(λ2 − λ1 − 1) · dimL0(Λ′ − γ2; kC)
+ (λ2 − λ1) · dimL0(Λ′ − γ1 − γ2; kC),

sdimL(Λ′
fd) = (λ2 − λ1) · dimL0(Λ′

fd; kC)
− (λ2 − λ1 + 1) · dimL0(Λ′

fd − w(γ1); kC)
− (λ2 − λ1 − 1) · dimL0(Λ′

fd − w(γ2); kC)
+ (λ2 − λ1) · dimL0(Λ′

fd − w(γ1)− w(γ2); kC),

which yields with Equation 10.2.1:
sdimL(Λ′) = sdimL(Λ′

fd).

This proves the Kac–Wakimoto conjecture for sl(2|2) by [128]. We now generalize this idea
to arbitrary sl(n|n).

180



10.2.2. The case m = n

Let g := sl(n|n). Without loss of generality, we consider the standard positive system
∆+ := ∆′

st, as sdimL(Λ; ∆+
nst) = ± sdimL(Λ′; ∆+

st) for any relative holomorphic discrete
series g-supermodule L(Λ; ∆+

nst). In particular, any maximal atypical highest weight Λ of
a unitarizable simple g-supermodule (with respect to ∆+

st) is then of the form (analogously
to Corollary 10.1.16):

Λ = (λ1, . . . , λ1︸ ︷︷ ︸
p times

, λ2, . . . , λ2︸ ︷︷ ︸
q times

| −λ1 − q, . . . ,−λ1 − q︸ ︷︷ ︸
p times

,−λ2 + p, . . . ,−λ2 + p︸ ︷︷ ︸
q times

).

Recall that Λ is integral by Lemma 10.1.14. By Corollary 10.1.17, we may assume that Λ
is the Harish-Chandra parameter of a relative holomorphic discrete series representation
of the underlying Lie group. To any such Λ, we naturally assign a dominant integral and
maximal atypical weight Λfd. For this purpose, we consider the Harish-Chandra parameter

Λ|su(p,q) = (λ1, . . . , λ1︸ ︷︷ ︸
p times

, λ2, . . . , λ2︸ ︷︷ ︸
q times

)

of a holomorphic discrete series su(p, q)-module. There exists a unique finite-dimensional
highest weight representation for ∆+

0̄ in the Weyl orbit of Λ, that is, there exists a unique
w ∈W such that

w.Λ|su(p,q) = w(Λ + ρ0̄|su(p,q))− ρ0̄|su(p,q) = (λ2 − p, . . . , λ2 − p︸ ︷︷ ︸
q times

, λ1 + q, . . . , λ1 + q︸ ︷︷ ︸
p times

).

Precisely, w is the composition of permutations such that

w(λ1, . . . , λp, λp+1, . . . , λp+q) = (λp+1, . . . , λp+q, λ1, . . . , λp),

and it is immediate that w∆+
n = ∆−

n and w∆+
c = ∆+

c . We define

Λfd := (λ2 − p, . . . , λ2 − p︸ ︷︷ ︸
q times

, λ1 + q, . . . , λ1 + q︸ ︷︷ ︸
p times

| −λ1 − q, . . . ,−λ1 − q︸ ︷︷ ︸
p times

,−λ2 + p, . . . ,−λ2 + p︸ ︷︷ ︸
q times

),

which is ∆+-dominant integral; hence, it is the highest weight of a finite-dimensional g-
supermodule L(Λfd).

We now compare L(Λ) and L(Λfd).

Lemma 10.2.1. Let γ be the sum of pairwise distinct odd positive roots. Then L0(Λ− γ)
is a g0̄-constituent of L(Λ) if and only if L0(Λfd − w(γ)) is a g0̄-constituent of L(Λfd). In
particular,

L(Λ)k ∼= L(Λfd)k.

Proof. First, we show that Λ− γ is ∆+
c -dominant integral and ∆−

n -anti-dominant integral
if and only if Λfd − w(γ) is ∆+

0̄ -dominant integral. First, let α ∈ ∆+
c , and note w(α) = α

and (α, ρn) = 0. We have

(Λfd − ω(γ) + ρc, α) = (w(Λ− γ + ρ0̄)− ρn, α)
= (w(Λ− γ + ρ0̄), α)
= (Λ− γ + ρ0̄, α)
= (Λ− γ + ρc, α),
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i.e., Λ − γ and Λfd − w(γ) have the same integral kC-Dynkin labels and hence, they are
highest weights of isomorphic kC-modules.

Next, let β ∈ ∆+
n . Note w(β) = −β′ for some β′ ∈ ∆+

n , and w∆+
n = ∆−

n . Then, a
similar argumentation as above shows that Λ− γ is ∆+

n -anti-dominant integral if and only
if Λfd −w(γ) is ∆+

n -dominant integral. In particular, Λfd −w(γ) is ∆+
0̄ -dominant integral.

By Theorem 7.3.4, all g0̄-constituents of L(Λ) are of the form L0(Λ−γ), where γ is a sum
of pairwise distinct odd roots α such that (Λ + ρ, α) 6= 0. Moreover, Λ− γ is ∆+

c -dominant
integral and ∆+

n -anti-dominant integral.
On the other hand, by Theorem 2.5 and Corollary 2.7 in [73] together with Lemma 9.2.1

in [99], L(Λfd) decomposes under g0̄ in simple highest weight g0̄-modules L0(µ′) such that
µ′ = Λfd − γ′, γ′ being a sum of pairwise distinct odd roots α such that (Λfd + ρ, α) 6= 0
and µ′ is ∆+

0̄ -dominant integral.
It is now immediate that L0(Λ−γ) is a g0̄-constituent of L(Λ) if and only if L0(Λfd−w(γ))

is a g0̄-constituent of L(Λfd). This finishes the proof.

Furthermore, the following lemma is a direct consequence of Equation 10.2.2 and the
proof of Lemma 10.2.1.

Lemma 10.2.2. Let L0(Λ − γ) be a g0̄-constituent of L(Λ) for some sum of pairwise
distinct odd roots γ. Then

∏
β∈∆+

n

|(Λ− γ + ρ0̄, β)|
(ρ0̄, β)

=
∏

β∈∆+
n

(Λfd − ω(γ) + ρ0̄, β)
(ρ0̄, β)

,

Combining Lemma 10.2.1 and Lemma 10.2.2, we conclude the following theorem.

Theorem 10.2.3. Let L(Λ) be a holomorphic discrete series g-supermodule with maximally
atypical highest weight Λ. Let L(Λfd) be the associated finite-dimensional g-supermodule
with maximal atypical highest weight Λfd. Then

sdimL(Λ) = sdimL(Λfd).

Altogether, combining Lemma 10.1.14 with Theorem 10.2.3 and the Kac–Wakimoto
conjecture for finite-dimensional supermodules [128], we obtain the following theorem.

Theorem 10.2.4. Let H be a relative holomorphic discrete series g-supermodule with
highest weight Λ. Then sdimH = 0 unless Λ is maximally atypical.
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Part IV.

Physics and Indices





11. A math–physics dictionary
The main objective of this part of the thesis is to explain the representation-theoretic
foundations of the superconformal index in mathematically precise and intelligible terms.
This aims to facilitate the exchange of insights and to draw lessons for possible applications
in other areas.

This requires, above all, the translation of physical terminology into mathematical lan-
guage — the essential goal of this chapter.

In Section 11.1, we begin by outlining the technical assumptions that underpin our
treatment of indices for unitarizable supermodules. While our approach is admittedly ad
hoc and not entirely satisfactory, we aim to emphasize the broader relevance of defining
indices for Lie superalgebras more generally.

Section 11.2 introduces a dictionary that connects various physical concepts to the math-
ematical notions of atypicality and the DS functor (see Section 9.1). This framework is
motivated by a key physical insight that, until now, lacked a precise mathematical expres-
sion: the continuity of the fragmentation and recombination process at the boundary of
the unitarity region, as discussed in Section 11.3.

To clarify this, we offer a geometric description of the unitarity region in slices of weight
space, parametrized continuously by dimension and R-charge. We then provide a detailed
and rigorous account of the fragmentation/recombination phenomenon at the boundary of
this region, formulated through the decomposition of Kac modules with atypical highest
weights. Finally, we relate these ideas to the established physics concepts of protected or
short supermodules. Our central result is that maximally atypical supermodules are, in
fact, absolutely protected.

This chapter is an adaptation of an earlier version available on arXiv (see [126]), and
represents joint research with Johannes Walcher.

11.1. Working assumptions
While this paper is rooted in representation theory, our primary interest lies in analytic
aspects if we consider physical applications. We won’t cover every technical detail, but we
want to clarify the overall picture.

The physical states of a supersymmetric quantum field theory form a super Hilbert
space H, and the quantum fields are operator-valued distributions in End(H), defined
over the underlying superspacetime. The (super) Hilbert space

(
H, 〈·, ·〉

)
of a theory is

a (super)module over its (super)symmetry algebra g, and it’s typically unitarizable (i.e.,
compatible with a real structure). But it’s not irreducible — otherwise the dynamics
would be too simple. Instead, H is built from simple g-supermodules, subject to physical
constraints like locality, and changes continuously as external parameters vary.

To make this idea precise, we introduce a topological space H of “coupling constants”,
and think of a “family of physical theories” as providing (among other things) a continuous



map
T : H→ Hom(gR, u(H))

into the space of unitarizable g-supermodule structures on a fixed super Hilbert space H,
which is identified with the representations of the underlying real Lie algebra gR in the
space u(H) of skew-Hermitian operators on H. Equivalently, we can describe this situation
geometrically as a bundle of unitarizable g-supermodules over H, where the underlying
Hilbert space bundle is trivial.

As an example, take g = sl(4|4) and gR = su(2, 2|4). Then τ ∈ H (the complex upper
half-plane) can be interpreted as the complexified gauge coupling of N = 4 super Yang–
Mills theory with a fixed compact gauge group (e.g., SU(N) for N ∈ N). The map T (τ)
arises from the supersymmetric path integral over fields on a Lorentzian four-manifold with
appropriate boundary conditions. Unitarity and continuity are justified through standard,
though non-rigorous, physical arguments.

A key challenge is that the topology on Hom(gR, u(H)) depends on the choice of topology
for u(H), for which there is no canonical choice in physics. To avoid this ambiguity, we
assume that each T (τ) decomposes into a direct sum of simple g-supermodules (for a
definition of a Hilbert space direct sum, see Section 5.2) — an assumption supported, for
instance, by a discrete spectrum condition. This condition is expected to hold in radial
quantization or when spacetime has compact spatial slices, both of which are natural from
a physical perspective.

As described in Section 6.1, each simple unitarizable g-supermodule decomposes further
into weight spaces — eigenspaces of the Cartan subalgebra h ⊂ g. This gives rise to a map

Θ : Hom(gR, u(H))→ (h∗)Z+/S∞,

where (h∗)Z+ denotes sequences of weights, i.e., it consists of all sequences (λ1, λ2, . . . )
with λi ∈ h∗, and S∞ is the infinite symmetric group acting by permutation. We endow
the quotient with the natural topology and assume that Θ is continuous with respect to
the topology on Hom(gR, u(H)), that is, we assume that the topology on Hom(gR, u(H))
is fine enough to allow Θ to be continuous.

This continuity ensures that the indices constructed in Section 12 depend continuously
on the supermodule structure, and can thus serve as invariants — assuming the physical
theory makes T continuous. In effect, we use (h∗)Z+/S∞ as a (topological) replacement for
Hom(gR, u(H)).

11.2. A dictionary for supermodules
This section serves as a conceptual and notational bridge between the mathematics and
physics literature on supermodules.

Long and short supermodules. Our discussion begins with Corollary 7.3.5, that is,
any unitarizable highest weight g-supermodule L(Λ) decomposes in a finite sum of unita-
rizable simple highest weight g0̄-modules, and the number of g0̄-constituents lies between
2#∆+

1̄ −#AΛ and 2dim(g−1), with maximum attained precisely if Λ is typical. Following
physics, we call a unitarizable simple g-supermodule with the maximal number of g0̄-
constituents a long supermodule, all others short. If the number of g0̄-constituents is
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smaller than 2dim(g−1)−1, the supermodule might also be called ultra-short. A unitarizable
simple highest weight supermodule is long precisely if it is isomorphic to a Kac supermod-
ule with typical highest weight, and short precisely if it is isomorphic to the quotient of a
Kac supermodule with atypical highest weight by the radical of the Kac–Shapovalov form.
In this context, non-zero elements of the Kac supermodule belonging to the radical of the
Kac–Shapovalov form are also referred to as null vectors.

Region of unitarity. In Section 6.1.4, we parametrized the unitarizable g0̄-modules
by highest weights of the form(
λ

2
− a1,

λ

2
− a2, . . . ,

λ

2
− ap,−

λ

2
+ ap+1, . . . ,−

λ

2
+ ap+q|b1, . . . , bn

)
+ α(1, . . . , 1|1, . . . , 1),

where a1, . . . , ap and ap+1, . . . , ap+q are non-negative integers such that 0 ≤ a2 ≤ . . . ≤ ap
and ap+1 ≥ ap+2 ≥ . . . ≥ ap+q−1 ≥ ap+q = 0, b1, . . . , bn are non-negative integers such that
b1 ≥ · · · ≥ bn = 0, α ∈ R≥0, and λ belongs to the set

(−∞,−m+ x− (r − 1)) ∪ {−m+ x− (r − 1),−m+ x− (r − 1) + 1, . . . ,−m+ x}.

The numbers ai and bj are referred to as spin quantum numbers and R-symmetry quantum
numbers, respectively. The real numbers λ and α are referred to as scaling dimension and
R-charge, respectively.

We will refer to the set of all such Λ as the set of g0̄-unitarity for fixed spin and R-
symmetry quantum numbers and denote it as Γ(a,b)

0 . The full set of g0̄-unitarity Γ0 is then
defined as the union of all Γ(a,b)

0 , which is geometrically a collection of half-spaces for fixed
spin and R-symmetry quantum numbers, together with some lines.

The set of g-unitarity for fixed spin and R-symmetry quantum numbers, which we de-
note by Γ(a,b), consists of a congruent subcone of Γ(a,b)

0 (see Chapter 8), together with some
additional half lines and possibly isolated points. The set of g-unitarity Γ ⊂ h∗ is the union
of all Γ(a,b). Note that in general, there are two different isomorphism classes of unitariz-
able simple supermodules for each Λ ∈ Γ, related by parity reversal. Under appropriate
circumstances, physical considerations may fix a section of this Z/2 bundle over Γ. The
(relative, topological) interior of Γ(a,b), where λ and α can be varied independently, is a
(relatively) open cone. We will denote it by C(a,b) and, borrowing physics terminology,
call it the region of unitarity for fixed spin and R-symmetry quantum numbers. It consists
entirely of typical weights in the sense of, as can be shown with the help of the Dirac
inequality (see Proposition 7.2.4).

Lemma 11.2.1. Let H be a simple highest weight g-supermodule with highest weight Λ.
If (Λ + ρ, εp − δ1) < 0 and (Λ + ρ, εp+1 − δn) > 0, then H is unitarizable. Moreover, H
is unitarizable and has typical highest weight if and only if Λ satisfies both inequalities.
Namely,

C :=
⊔

(a,b)
C(a,b) = {Λ ∈ Γ : (Λ + ρ, εp − δ1) < 0, (Λ + ρ, εp+1 − δn) > 0}.

A weight at the (relative, topological) boundary of C, denoted by ∂C, is said to live at
the unitarity bound. This is a subset of

{Λ ∈ Γ : (Λ + ρ, εp − δ1) = 0 or (Λ + ρ, εp+1 − δn) = 0},
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but in general not identical to it (see [126]). Finally, we set C := C ∪ ∂C, which is a closed
subspace of Γ, and refer to Λ ∈ C as within the unitarity bound. This, together with Lemma
11.2.1, implies the following statements.

Lemma 11.2.2. Let Λ ∈ Γ be the highest weight of a unitarizable highest weight g-
supermodule.

a) Λ ∈ C if and only if Λ is typical. In particular, K(Λ) ∼= L(Λ).

b) If Λ ∈ ∂C, then Λ is either 1-atypical or 2-atypical. If n = 1, Λ is 1-atypical. In
particular, K(Λ) is not simple.

Bogomol’nyi–Prasad–Sommerfield or ‘BPS’. The interplay between self-commuta-
tivity and unitarity plays a central role in the physical constructions of invariants and
measures of atypicality. A widely encountered concept is that of a BPS state. The basic
intuition is that multiplet shortening (as discussed above) arises due to null vectors in the
Kac supermodule. This phenomenon is manifested in the unitarizable simple quotient,
which contains non-trivial subspaces that are annihilated by more supercharges than re-
quired. Here, a supercharge is just an element of g1̄. To make this more precise, let M be a
highest weight g-supermodule. Then, as a consequence of the weight space decomposition
M =

⊕
λ∈h∗ Mλ (see Lemma 3.1.13), for any vector vλ ∈ Mλ, and any odd root α, we

have that (at least) either Qαvλ = 0 or Q−αvλ = 0, where Qα denotes a generator of the
root space gα. If M is the standard Verma supermodule, exactly one of these is satisfied
for non-zero vλ, and any additional vanishing is a consequence of atypicality. This leads
to the following definition.

Definition 11.2.3. Let H be a unitarizable g-supermodule. For any v ∈ H, we denote by
ann(v) := {x ∈ g+1|xv = 0} the odd annihilator of v. Then a non-zero vector v ∈ H is
called a BPS state if dim(ann(v)) > dim g+1

2 = #∆+
1̄ .

Lemma 11.2.4 ([24]). Let H be a unitarizable simple g-supermodule.

a) v ∈ H is a BPS state if and only if there exists an odd positive root α ∈ ∆+
1̄ with

non-zero root vector Qα such that Qαv = 0, but v 6= 0 ∈ kerQα/ imQα.

b) If H has atypical highest weight Λ, and (Λ + ρ, α) = 0 for some odd root α, then
kerQα/ imQα 6= 0 is non-trivial.

c) H is a long supermodule if and only if kerQH = imQH for all square-zero Q ∈ g+1.

We conclude with the following comparison between various math and physics notions
that we have touched upon so far.

Proposition 11.2.5. Let M be a unitarizable simple g-supermodule. Then the following
assertions are equivalent:

a) H is a short supermodule.

b) The highest weight of H is atypical.

c) H contains a BPS state.
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d) H is protected as a direct summand in families of unitarizable g-supermodules.

In particular, long supermodules do not contain BPS states.

One might expect that if H contains BPS states, then in particular the highest weight
state should be one. In other words, that H is a short supermodule if and only if the
highest weight state is BPS. However, this is not necessarily true and in any case depends
on the choice of positive system [126].

In physics, BPS states are further classified by comparing the size of the annihilator with
the total number of supercharges. In other words, if v ∈ H is a BPS state one defines the
(degree of) BPS-ness by

degBPS(v) = dim(ann(v))− dim g+1
dim g+1

.

The intuition is that the more supercharges annihilate a state, the more it is protected
against deformations. Thus, if H is a unitarizable simple supermodule, one expects a
close relationship between the maximal BPS-ness of any state in H and the degree of
atypicality of the highest weight, i.e., the maximal number of mutually orthogonal roots
with (Λ + ρ, α) = 0. For finite-dimensional supermodules, it is indeed known that the
two notions are equivalent concepts. We conjecture that this also extends to the infinite-
dimensional case.

11.3. Fragmentation and recombination
If L(Λ) is unitarizable, but Λ is atypical (i.e., Λ ∈ Γ\C), the Kac supermodule K(Λ) is not
simple, but also does not split into a direct sum of simple supermodules. Instead, as K(Λ)
is of highest weight type, it has a Jordan–Hölder series K0 = K(Λ) ⊋ K1 ⊋ · · · ⊋ KM = 0
such that each Ki−1/Ki is isomorphic to a simple highest weight g-supermodule L(Λi), with
highest weight Λi of the form Λ − ΣS where ΣS :=

∑
α∈S α is a sum of mutually distinct

odd positive roots, for some S ⊆ ∆+
1 (cf. discussion around Theorem 7.3.2). The Λi will

all be atypical, but it is difficult to describe in general how many and which ones occur.
Also the composition factors L(Λi) = Ki−1/Ki for i = 2, . . . ,M need not be unitarizable.
It is an instructive exercise to show that this does not happen within the unitarity bound.

Lemma 11.3.1. For n > 1, the simple highest weight supermodules in the Jordan–Hölder
series of K(Λ) for Λ ∈ ∂C are

a) L(Λ) and L(Λ + εp − δ1) if Λ ∈ ∂C satisfies only (Λ + ρ, εp − δ1) = 0.

b) L(Λ) and L(Λ− εp+1 + δn) if Λ ∈ ∂C satisfies only (Λ + ρ, εp+1 − δn) = 0.

c) L(Λ), L(Λ + εp− δ1), L(Λ− εp+1 + δn), and L(Λ + (εp− δ1) + (−εp+1 + δn)) if Λ ∈ ∂C
satisfies both (Λ + ρ, εp − δ1) = 0 and (Λ + ρ, εp+1 − δn) = 0.

As a consequence, letting

grK(Λ) :=
M⊕
i=1

Ki−1/Ki
∼=

M⊕
i=1

L(Λi), (11.3.1)
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denote the graded g-supermodule associated to the Jordan–Hölder series, and note that
the parity of the L(Λi) is determined by the parity of K(Λ) and the number of odd roots in
ΣS = Λ−Λi. This is not necessarily equal to the grading induced from the Jordan–Hölder
series, which in general is neither Z/2-graded (nor unique for that matter). We obtain,
Lemma 11.3.2. Let Λ ∈ C. Then grK(Λ) is a unitarizable g-supermodule.

If L(Λ) = K0/K1 is unitarizable, then K1 is the radical of the Kac–Shapovalov form on
K(Λ) by Proposition 6.1.17. As a consequence, assuming the factors L(Λi) for i = 2, . . . ,M
remain unitarizable, their Hermitian form is not induced from the Kac–Shapovalov form
on K(Λ). Remarkably [81], this can be remedied in a natural way in the consideration of
continuous families of unitarizable supermodules in the sense of Section 11.1. Concretely,
let (Λ(k))k=1,2,... ⊂ C be a sequence of typical weights with unitarizable highest weight
modules L(Λ(k)), and limk→∞ Λ(k) = Λ0 ∈ ∂C at the unitarity bound, where the limit is
taken in the usual topology on h∗. Then, viewing the L(Λ(k)) = K(Λ(k)) as a sequence
of g-supermodule structures on a fixed underlying (pre-)Hilbert space H, it can be seen
that the associated weight space decomposition (see Proposition 3.1.13) agrees in the limit
k → ∞ with the weight space decomposition on the supermodule K(Λ0). In particular,
this induces a non-degenerate Hermitian form on K(Λ0) ∼= H, which by uniqueness must
agree with the Kac–Shapovalov form on the composition factors. In the sense of section
11.1, the assignment Λ 7→ grK(Λ) is continuous on C, and

lim
Λ→Λ0

grK(Λ) = grK(Λ0). (11.3.2)

Following physics terminology, we think of the “filling in” of grK(Λ0) in a continuous
family as the fragmentation of the long supermodule K(Λ) as Λ → Λ0 hits the unitarity
bound, or conversely as recombination of the short constituents when Λ moves away from
it. It is important to emphasize that this does not imply that the constituents of grK(Λ0)
can only appear together in a continuous family. Indeed, the “fragments” can move around
independently of each other, as long as their highest weight remains in Γ \ C. If n > 1 and
Λ0 ∈ C, Lemma 11.3.1, implies

lim
Λ→Λ0

grK(Λ) =


L(Λ0)⊕ L(Λ0 − γ1) if (Λ0 + ρ, γ1) = 0, (Λ0 + ρ, γ2) 6= 0,
L(Λ0)⊕ L(Λ0 − γ2) if (Λ0 + ρ, γ1) 6= 0, (Λ0 + ρ, γ2) = 0,
L(Λ0)⊕ L(Λ0 − γ1 − γ2)
⊕L(Λ0 − γ1)⊕ L(Λ0 − γ2)

if (Λ0 + ρ, γ1) = 0, (Λ0 + ρ, γ2) = 0,

where γ1 := −εp + δ1 and γ2 := εp+1 − δn, and the Z/2-grading is left implicit, as usual.
The statement that unitarizable simple g-supermodules with atypical highest weight

(that is, Λ ∈ Γ\C) cannot, on their own, “return” to C, and that their conformal dimension
is entirely fixed by their superconformal R-charge, is known in physics as the principle
that short supermodules are protected. Those supermodules that never participate in any
fragmentation or recombination process are referred to as absolutely protected. According
to the above, a unitarizable simple supermodule is absolutely protected if and only if it
does not appear as a composition factor in the Jordan–Hölder series of any K(Λ0) with
Λ0 ∈ ∂C. This condition can be made more explicit as follows.
Lemma 11.3.3. Let L(Λ) be a unitarizable simple highest weight g-supermodule. Then
L(Λ) is absolutely protected if and only if (Λ + ρ, εp − δ1) > 0 and (Λ + ρ, εp+1 − δn) < 0
holds.
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Corollary 11.3.4. If m,n ≥ 3, then maximally atypical unitarizable simple highest weight
g-supermodules L(Λ) are absolutely protected.

Proof. Since m,n ≥ 3, it follows from the assumption that at(Λ) > 2. Consider the roots
γ1 := −εp + δ1 and γ2 := εp+1 − δn. Then (γ1, γ2) = 0, showing that γ1 and γ2 are
orthogonal. This implies that the g-supermodules appearing in the Jordan–Hölder series
of K(Λ0), for Λ0 ∈ ∂C, all share the same degree of atypicality — specifically, either 1 or 2
(see Lemma 11.3.1). In particular, this shows that L(Λ) cannot occur as a simple quotient
in the Jordan–Hölder series of K(Λ0) for any Λ0 ∈ C.
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12. Indices

In earlier chapters, we have seen that the representation theory of g = sl(m|n) with real
form gω = su(p, q|n) exhibits key parallels to that of superconformal algebras such as
su(2, 2|N ) for 1 ≤ N ≤ 4, which are central to many developments in mathematical physics.
In this context, an index is a quantitative measure of those components of a unitarizable
g-supermodule that are invariant under continuous deformations. Following the physics
literature [98, 118], we refer to any invariant count of short supermodules as a KMMR index.
It has been shown that such indices can be extracted from the superconformal index, defined
as a regularized Witten index [138] associated to any choice of Q ∈ Y. In this chapter,
we formalize both notions and prove their equivalence for general unitarizable sl(m|n)-
supermodules. Additionally, we demonstrate that the formal superdimension, introduced
in Section 10.1, also qualifies as an index under this definition, and clarify its connection
to both the KMMR and Witten indices.

This chapter is an adaptation of an earlier version available on arXiv (see [126]), and
represents joint research with Johannes Walcher.

12.1. KMMR indices
For simplicity, we restrict our attention to unitarizable g-supermodules that decompose
entirely as a countable direct sum of simple g-supermodules; see Section 11.1. To define
a “counting index”, we additionally assume that only finitely many atypical simple g-
supermodules appear in the decomposition. We denote this category by (g, ω)-usmod′,
and, as before, omit the inner product 〈·, ·〉 and the structure map g → End(M) in the
notation for its objects M ∈ (g, ω)-usmod′.

We will also correspondingly restrict the notion of a “continuous family of unitarizable
g-supermodules” to mean a continuous map T : H → Hom′(gR, u(H)) into the space of
ω-unitarizable g-supermodule structures on a fixed Hilbert space, which decompose into a
direct sum of simple supermodules, with only finitely many atypical ones. The topology
should be sufficiently fine to ensure continuity of the fragmentation process described in
Section 11.3. It is worth noting that, in such a topology, Hom′(gR, u(H)) is not closed in
Hom(gR, u(H)). There is a natural tautological map Hom′(gR, u(H)) → (g, ω)-usmod′,
which we will denote, with a slight abuse of notation, by (ρ,H) 7→ H.

Definition 12.1.1. A Kinney–Maldacena–Minwalla–Raju index [81], or KMMR index for
short, is a map I : (g, ω)-usmod′ → Z, M 7→ I(M) that is

a) additive, i.e., I(M1 ⊕M2) = I(M1) + I(M2), and

b) such that the induced map Hom′(gR, u(H))→ Z, (ρ,H) 7→ I(H) is continuous.



Lemma 12.1.2. An additive map I : (g, ω)-usmod′ → Z is specified uniquely by its values
on simple unitarizable supermodules L(Λ) for all Λ ∈ Γ. It is a KMMR index if and only
if

a) I(K(Λ)) = 0 for all typical weights Λ ∈ C.

b) For all weights Λ0 ∈ ∂C at the unitarity bound, ∑M
i=1 I(L(Λi)) = 0, where grK(Λ0) =⊕M

i=1 L(Λi) is the fragmentation of the Kac supermodule.

Proof. Existence and uniqueness are obvious. For a), it suffices to notice that if Λ∗ ∈ C is
any typical weight, we have

I
( ∞⊕
i=1

K(Λ∗)
)

= I
( ∞⊕
i=2

K(Λ∗)
)

+ I(K(Λ∗)) = I
( ∞⊕
i=1

K(Λ∗)
)

+ I(K(Λ∗)).

Statement b) is equivalent to the continuity of the fragmentation process described in
Section 11.3, see Equations (11.3.1) and (11.3.2).

Lemma 12.1.3. The set of all KMMR indices forms naturally a finitely generated free
Z-module. We denote it by I, and allow extending scalars as

IQ := I ⊗Z Q, IR := I ⊗Z R.

Remark 12.1.4. In situations such as those considered in [81], only supermodules that
respect spin-statistics are physically relevant. This restriction can accordingly reduce the
set I.

This identification will be convenient for the comparison with supertraces and superdi-
mensions, to which we now turn.

12.2. The character-valued Witten index
For any element Q of the self-commuting variety Y acting on a fixed (non-trivial) unita-
rizable g-supermodule H ∈ (g, ω)-usmod′, its adjoint with respect to the Hermitian inner
product 〈·, ·〉 is related to its conjugate under the anti-involution ω defining the real form
su(p, q|n) of g via Q† = ω(Q) (see Section 6.1). As a consequence, x := i(Q+Q†) satisfies
ω(x) = −x and c := x2 := 1

2 [x, x] is semisimple on account of ω(c) = c† = −c. In the
notation of Section 9.1.3, x ∈

(
Yhom)ω, with rk(x) = rk(Q).

Lemma 12.2.1. Let H be a unitarizable g-supermodule, Q ∈ Y. Set Ξ = −c = [Q,Q†].

a) Ξ is a positive operator, i.e., 〈v,Ξv〉 ≥ 0 for all v ∈ H.

b) Ξ is self-adjoint. In particular, H decomposes completely in eigenspaces for Ξ,

H =
⊕
ξ

H(ξ), H(ξ) := {v ∈ H : Ξv = ξv},

and each eigenvalue ξ is a non-negative real number.

c) There exists a Cartan subalgebra t of g with Ξ ∈ t, and for any such Cartan subalgebra,
the t-weight spaces of H are eigenspaces of Ξ.
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Proof. The contravariance of the Hermitian form implies the following for all v ∈ H:

〈v,Ξv〉 = 〈v, [Q,Q†]v〉 = 〈v,QQ†v〉+ 〈v,Q†Qv〉 = 〈Qv,Qv〉+ 〈Q†v,Q†v〉 ≥ 0,

where we used (Q†)† = Q, and the last inequality follows from the positive definiteness
of the Hermitian form. This implies a). b) follows from ω(c) = −c, together with the
assumption that H decomposes discretely under g and the spectral theorem. c) is then
obvious.

In physics, the positivity of Ξ is referred to as a BPS bound associated to the supercharge
Q, and one expects to study the resulting BPS states (elements of H(0); see Section 11.2)
by considering the supertrace of the operator e−βΞ for real β > 0 [138]. The exponential
operator is formally defined by the power series

e−βΞv :=
∞∑
k=0

(−β)k

k!
Ξkv, v ∈ H.

This expression is well-defined by (5.2.1), since Ξ is an even operator and H decomposes
completely into unitarizable simple highest weight g0̄-supermodules.

The supertrace strH(e−βΞ), however, is not necessarily well-defined. A mathematically
clever — but physically naive — assumption would be that e−βΞ is of trace class (it
is clearly bounded), which would imply convergence of the supertrace. However, trace-
classness requires that the eigenspaces of Ξ be finite-dimensional, an assumption that is
generally too strong, although it may hold in special situations. Instead, to resolve the issue
of the infinite degeneracy of H(0), one introduces a refined invariant: the character-valued
Witten index. To clarify this notion, let t be a Cartan subalgebra of g such that Ξ ∈ t. From
the discussion of the ω-compatible Duflo–Serganova functor in Section 9.1.3, recall that if
rk(Q) = k, then gx := DSx(g) ∼= sl(m−k | n−k) with real form gωx

x
∼= su(p−r, q−s | n−k),

for some integers r ≤ p, s ≤ q with r + s = k.
Viewing gx as a Lie subsuperalgebra of g, the Cartan subalgebra t induces a Cartan

subalgebra tx ⊂ gx. Let Tx ⊂ G0̄ denote the analytic complex Lie subgroup corresponding
to tx. We denote by tregx the set of regular elements in tx, and by T regx the set of regular
elements in Tx. Note that T regx ⊂ Tx is open and dense. In the physics literature, linear
coordinates on tx are often referred to as fugacities. We also fix a positive root system ∆+

x

for gx.

Proposition 12.2.2. Let V be a unitarizable highest weight gx-supermodule. Assume
X ∈ tregx satisfies α(X) > 0 for all α ∈ ∆+

x . Then eX is trace class and

strV eX ∈ R.

Proof. Let Λ ∈ t∗x denote the highest weight of V . We consider the triangular decomposition
gx = n−

x ⊕ tx⊕ n+
x , where n±

x :=
∑
α∈∆±

x
gαx . Then, as a tx-module, the supermodule V is a

quotient of the tx-module

U(n−
x )⊗ CΛ ∼= ∧(n−

x,0̄)⊗ S(n−
x,1̄)⊗ CΛ ∼= S(n−

x )⊗ CΛ.

Here, note that S(n−
x ) is the symmetric superalgebra over the super vector space n−

x . Now,
it is enough to show that eX is trace class on U(n−

x ) ⊗ CΛ, as quotients have smaller

195



multiplicities. For that, we consider the following decomposition of the tx-module S(n−
x ):

S(n−
x ) ∼=

⊗
α∈∆+

x

S(g−α) ∼=
⊗
α∈∆+

x

S(C−α).

The trace of eX on any S(C−α) is

trS(C−α) e
X =

{∑∞
k=0 e

−kα(X) = 1
1−e−α(X) , α ∈ ∆x,0̄,

1 + e−α(X), α ∈ ∆x,1̄.

We conclude

trS(n−
x )⊗CΛ

eX = eΛ(X) ∏
α∈∆+

x,1̄

(1 + e−α(X))
∏

α∈∆x,0̄

1
1− e−α(X) <∞,

i.e., eX is trace class on V . With respect to the weight space decomposition V =
⊕

λ∈PV
V λ

for some countable set PV , the supertrace

strV eX = (−1)V eΛ(X) ∑
λ∈PV

(−1)λ−Λm(λ)e−Λ(X)+λ(X),

where m(λ) = dimV λ, is dominated by trV eX , and real.

Proposition 12.2.2 defines, for any unitarizable highest weight gx-supermodule V , a
conjugation-invariant continuous function on the subset

T reg,+x := {eX ∈ T regx | α(X) > 0 for all α ∈ ∆+
x },

given by
χxV : T reg,+x → R, χxV (eX) := strV (eX),

which we refer to as the supercharacter of V . The set of all such supercharacters forms
a ring, called the supercharacter ring and denoted by X∗(T reg,+x ). This motivates the
following definition.

Definition 12.2.3. Let M be a unitarizable highest weight g-supermodule, and let Q be
an element of the self-commuting variety. Using the decomposition DSx(M) =

⊕
i Vi into

finitely many gx-supermodules (see Lemma 9.1.17), we define the Q-Witten index of M as
the gx-supercharacter

IWM (Q, ·) :=
∑
i

χxVi
(·) = strDSx(M)(·) ∈ X∗(T reg,+x ).

The fact that the Witten index detects short (or protected) unitarizable supermodules
is reflected in the following statement.

Lemma 12.2.4. Let M be a unitarizable highest weight g-supermodule with highest weight
Λ, and Q ∈ Y. Assume at(Λ) < rk(Q). Then IWM (Q) = 0. In particular, if Λ ∈ C, then
IWM (Q) = 0 for any Q ∈ Y.

Proof. This follows at once from Corollary 9.1.7.
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Lemma 12.2.4 allows us to extend the Q-Witten index additively to any unitarizable
supermodule H ∈ (g, ω)-usmod′ with only finitely many atypical simple components, in a
well-defined manner. This extension permits a direct comparison with the formulation of
the index as a supertrace over the entire supermodule, a perspective commonly adopted
in the physics literature — for instance, in the case of psu(2, 2|4) as discussed in [81].

Proposition 12.2.5. Let H ∈ (g, ω)-usmod′, and Q ∈ Y. Then the Q-Witten index of
H satisfies

IWH (Q,X) = strH e−βΞ+X

for any X ∈ treg,+x = {X ∈ tregx : α(X) > 0 ∀α ∈ ∆+
x }, and any positive β.

Proof. With respect to the decomposition in Lemma 12.2.1 (b), the supertrace vanishes
outside of the zero eigenspace H(0) = kerQ ∩ kerQ† of Ξ, which is identified with the DS
cohomology DSx(H) according to Proposition 9.1.10. This follows from a standard argu-
ment that is akin to the Hodge decomposition, and mostly formal under our assumptions.
Note that [X,Ξ] = 0. On H(0), the supertrace is well-defined by Lemma 12.2.2, and equal
to the Witten index by definition. Note that in particular, the supertrace is independent
of β as advertised.

It is interesting to observe that the supertrace formula for the Witten index could be
extended to a larger class of unitarizable g-supermodules, provided the sum of superchar-
acters over atypical components converges in the appropriate topology. We finish with the
equivalence between the Q-Witten index and the KMMR index.

Proposition 12.2.6. For any Q ∈ Y, X ∈ treg,+x , the assignment (g, ω)-usmod′ → R,
M 7→ IWM (Q,X) is a real KMMR index.

Proof. The vanishing on typical components following from Lemma 12.2.4, we explain
“continuity in the g-supermodule structure on H”, i.e., of the Witten index evaluated at
X ∈ treg,+x , viewed as a function

IWH (Q,X) : Hom′(gR, u(H))→ R

Topologically, Hom′(gR, u(H)) is (h∗)Z+/S∞, while Hom′(gRx , u(DSx(H))) ∼= (t∗x)Z+/S∞ if
Ξ ∈ t (see Section 11.1). Focusing on a single fragmentation process starting from Λ ∈ C,
we have a convergent sum

strK(Λ) e
−βΞ+X =

∑
λ∈PK(Λ)⊂h∗

(−1)λ−Λm(λ)eλ(−βΞ+X).

This is clearly continuous on Hom′(gR, u(K(Λ)), where K(Λ) is viewed as a fixed Hilbert
space (cf. Section 11.3). This finishes the proof.

Theorem 12.2.7. Any KMMR index is a real linear combination of Witten indices.

Proof. Let I : (g, ω)-usmod′ → Z denote a KMMR index. By our standing assumptions
and the additivity of KMMR and Witten indices, it suffices to prove that for any unita-
rizable simple g-supermodule L(Λ) with I(L(Λ)) 6= 0, there exists a Q-Witten index such
that

I(L(Λ)) = cX,Λ · IWL(Λ)(Q,X).
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for some X ∈ treg,+x , cX,Λ ∈ R. By Lemma 12.1.2, we know that Λ is atypical; that is, there
exists an odd root α ∈ ∆+

1 such that (Λ + ρ, α) = 0. Define Q to be an associated root
vector, and set x := i(Q + Q†) so that Ξ = −1

2 [x, x] ∈ h. Then DSx(L(Λ)) decomposes
into either one or two unitarizable gx-supermodules (see Theorem 9.1.16).

The claim follows if we can show that IWL(Λ)(Q,X) 6= 0 for at least one X ∈ treg,+x .
However, IWL(Λ)(Q, ·) is either the supercharacter of a nontrivial unitarizable simple gx-
supermodule, or the sum of two nontrivial and non-equivalent unitarizable simple gx-
supermodules. In either case, the supercharacter is nonzero. This completes the proof.

12.3. Formal superdimension and Witten index
In this section, we establish the connection between the Witten index and the formal su-
perdimension for (relative) holomorphic discrete series g-supermodules in the case where
m,n ≥ 3 (see Lemma 11.3.4 and Chapter 10). To begin, we record that the formal superdi-
mension sdim(·) also serves as a KMMR index on the subspace of all relative holomorphic
discrete series g-supermodules. This gives rise to a new KMMR index that, to our knowl-
edge, has not previously appeared in the literature.

Proposition 12.3.1. If m,n ≥ 3, the formal superdimension is an element of IR on the
subspace of relative holomorphic discrete series g-supermodules.

Proof. By Section 10.2, the superdimension is trivial on all unitarizable simple g-super-
modules except the maximally atypical ones. These do not belong to C by Corollary
11.3.4 and are isolated. Consequently, sdim(·) is continuous on the subspace of relative
holomorphic discrete series g-supermodules.

Next, one may motivate the search for a relation between the Q-Witten index and the
formal superdimension from the formula (Proposition 12.2.5)

IWH (Q,X) = strH e−βΞ+X , (where Q ∈ Y, Ξ = [Q,Q†], X ∈ treg,+x ),

which bears a strong resemblance to the Weyl character formula for finite-dimensional
representations of Lie groups, where taking the limit X → 0 recovers the dimension of
the representation. For infinite-dimensional representations, this will work best in the
framework of Harish-Chandra characters and L-packets, as reviewed in Section 5.4.

If M is a relative holomorphic discrete series g-supermodule with highest weight Λ, and
Q, x as before, by Lemma 9.1.17, we can decompose its DS-twist

DSx(M) =
⊕
i

Lx(Λi) Λi ∈ t∗x

into finitely many relative holomorphic discrete series gx-supermodules (Lx(Λi) = Vi in the
notation of Section 12.2). It turn, we write

Lx(Λi)ev =
⊕
j

Lx,0̄(Λi;j)

for the decomposition of the Lx(Λi) under gx,0̄. If X ∈ treg,+x , by Proposition 12.2.2 the
operator eX is trace class on any Lx(Λi), and hence on any Lx,0̄(Λi;j), such that we can
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express the trace of eX on any Lx,0̄(Λi;j) by [101, Lemma 1.5]:

trLx,0̄(Λi;j) e
X = d(πΛi;j )

∫
Zx\G̃R

x,0̄

〈πΛi;j (g−1)v, eXπΛi;j (g−1)v〉 dµ(Zxg)

for some fixed element v ∈ Lx,0̄(Λi;j) with ‖v‖ = 1. Then, setting

c(X; Λi;j) :=
∫
Zx\G̃R

x,0̄

〈πΛi;j (g−1)v, eXπΛi;j (g−1)v〉 dµ(Zxg),

we conclude that the Witten index of M is the formal dimension of the gx,0̄-constituents
of DSx(M) with summands weighted by the c(X; Λi;j).

Lemma 12.3.2. The Q-Witten index of M = L(Λ) is

IWM (Q,X) =
∑
i,j

(−1)Λ−Λi;jd(πΛi;j )c(X; Λi;j).

This allows in principle an analytic study of the Q-Witten index in the limit X → 0 by
evaluating c(X; Λi;j). Alternatively, returning to

IWM (Q,X) =
∑
i,j

(−1)Λ−Λi;j trL0,x(Λi;j) e
X (12.3.1)

we may interpret trL0,x(Λi;j) e
X (in a distributional sense) as the Harish-Chandra character

of πΛi;j , based on the fact that eX ∈ T ′
x
reg. To take the limit X → 0, we construct for each

gx,0̄-constituent the associated L-packet by summing over the Weyl group orbit. Writing

Θ̃DSx(M) :=
∑
i,j

(−1)Λ−Λi;j
∑

w∈Wx/Wx,c

ΘπwΛi;j

and
ĨWM (Q,X) := Θ̃DSx(M)(eX)

in combination with Proposition 5.4.9, the definition of the superdimension and Equation
(12.3.1), we obtain our final result.

Theorem 12.3.3. Let M be a holomorphic discrete series g-supermodule, Q, x as above.
Then,

sdim(DSx(M)) = lim
X→0

ĨWM (Q,X).
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Part V.

Addendum





13. Cubic Dirac operators and Dirac
cohomology for basic classical Lie
superalgebras

This chapter is an adaptation of an earlier version available on arXiv (see [106]), and
represents joint research with Simone Noja and Raphael Senghaas, with equal contributions
from all three authors.

In this chapter, let (g := g0̄ ⊕ g1̄, [·, ·]) denote a basic classical Lie superalgebra with non-
degenerate, invariant, and consistent bilinear form (·, ·) (see Section 2.1.3). Kac established
that the complete list includes all simple Lie algebras along with the following types of Lie
superalgebras [76]:

A(m|n), B(m|n), C(n), D(m|n), F (4), G(3), D(2, 1;α).

The general linear Lie superalgebra gl(m|n) for m,n ≥ 1 is also considered basic classical.
Throughout, we assume g1̄ 6= 0 and α ∈ R for D(2, 1;α), ensuring that g is also a contra-
gredient Lie superalgebra. For the basic classical Lie superalgebras A(m|n) with m 6= n,
B(m|n), C(n + 1), D(m|n) with m 6= n + 1, F (4), and G(3), we use the Killing form as
the non-degenerate, invariant, and consistent bilinear form (·, ·), given by

(x, y) := str(adx ◦ ady), x, y ∈ g,

where adz(·) := [z, ·] denotes the adjoint representation, and str(·) denotes the supertrace.
For the remaining basic classical Lie superalgebras, the Killing form vanishes identically,
and an alternative form can be constructed in an ad hoc manner [76]. We choose the form
constructed in [99, Section 5.4], and for simplicity, we refer to this form as the Killing form.

Furthermore, let h ⊂ g be a Cartan subalgebra, and denote the set of roots by ∆ :=
∆(g, h), so that g has the root space decomposition

g = h⊕
⊕
α∈∆

gα

with corresponding root spaces gα := {X ∈ g : [H,X] = α(H)X for all H ∈ h}. Note that
h ⊂ g0̄, since g is basic classical. Moreover, we fix some positive system ∆+, and associated
Weyl vector ρ. Furthermore, g has a triangular decomposition

g = n− ⊕ h⊕ n+, n± :=
∑
α∈∆+

g±α

such that the associated Borel subalgebra is b := h⊕ n+.
Finally, recall that the Weyl group W g of g is defined to be the Weyl group of the

underlying Lie algebra g0̄.



13.1. Preliminiaries
13.1.1. Parabolic subalgebras and parabolic induction
There are essentially two ways to define parabolic subalgebras of g, which we refer to as
the classical approach via a parabolic set of roots [7, 39], and the hyperplane approach
[30]. However, the two approaches are not equivalent, and the latter appears more natural
[29]. We follow the approach in [30].

Let X be the finite-dimensional real vector space X := R⊗Z Q, where Q is the abelian
group generated by ∆.

Definition 13.1.1. A partition ∆ = ∆−
T t ∆0

T t ∆+
T of the set of roots ∆ is called a

triangular decomposition T if there exists a functional l : X → Z such that

∆0
T = ker l ∩∆, ∆±

T = {α ∈ ∆ : l(α) ≷ 0}.

For any triangular decomposition T of ∆, we obtain a triangular decomposition of g,
that is, a decomposition g = g+

T ⊕ g0
T ⊕ g−

T , where

g+
T :=

⊕
α∈∆+

T

gα, g0
T :=

⊕
α∈∆0

T

gα, g−
T :=

⊕
α∈∆−

T

gα.

The subset PT = ∆0
T t∆+

T is called a principal parabolic subset. The following lemma is
straightforward.

Lemma 13.1.2 ([29]). Every principal parabolic subset P ⊂ ∆ is a parabolic subset, i.e.,
the following conditions hold:

a) ∆ = P t −P , and

b) α, β ∈ P with α+ β ∈ ∆ implies α+ β ∈ P .

This leads us to the definition of a parabolic subalgebra.

Definition 13.1.3. Let T be a triangular decomposition of ∆. The Lie subsuperalgebra
pT := g0

T ⊕ g+
T is called a parabolic subalgebra of g.

Remark 13.1.4. For any triangular decomposition p, the space pT ∩ g0̄ is a parabolic sub-
algebra of g0̄ [30, Section 5].

A root subalgebra is a Lie subsuperalgebra q ⊂ g such that

q = (q ∩ h)⊕
(⊕
α∈Σ

gα
)

for some subset Σ ⊂ ∆. In particular, for a given triangular decomposition T with principal
parabolic subset PT , the parabolic subalgebra is

pT = h⊕
( ⊕
α∈PT

gα
)
.

Any parabolic subalgebra pT admits a Levi decomposition. For the parabolic set of roots
PT ⊂ ∆, we define LT := PT ∩ (−PT ) as the Levi component, UT := PT \ (−PT ) as the
nilradical, and PT = LT t UT as the Levi decomposition. The associated root subalgebras

lT := h⊕
( ⊕
α∈LT

gα
)
, uT :=

⊕
α∈UT

gα,

204



are called the Levi subalgebra and nilradical of pT . A direct calculation yields that uT is
an ideal in pT . The Levi decomposition of pT takes the form of the semidirect product
pT := lT ⋉ uT . If a parabolic subalgebra pT is fixed, we omit the subscript T and denote
it simply by p.

Any parabolic subalgebra pT has an opposite parabolic subalgebra pT , such that g =
pT +pT . The opposite parabolic subalgebra is pT = lT⋉uT , where uT is the root subalgebra
corresponding to U−

T := (−PT ) \ PT .
Furthermore, the Levi subalgebra has a proper root system ∆(lT ; h), since h ⊂ l, which

is a subset of ∆. We denote the associated Weyl group by W lT . The positive system
∆+
T induces a positive system for PT , LT and UT by P+

T := PT ∩ ∆+, L+
T := LT ∩ ∆+

and U+
T := UT ∩∆+. We set (U+

T )0̄,1̄ and (L+
T )0̄,1̄ for the associated even and odd parts.

Further, we define ρlT := ρlT0̄ − ρ
lT
1̄ and ρuT := ρuT

0̄ − ρ
uT

1̄ for

ρlT0̄,1̄ := 1
2

∑
α∈(L+

T )0̄,1̄

α, ρuT

0̄,1̄ := 1
2

∑
α∈(U+

T )0̄,1̄

α.

Finally, fix a parabolic subalgebra p := pT for some parabolic set P with Levi decompo-
sition p = l⋉u and opposite parabolic subalgebra p = l⋉u. Set s := u⊕u. By construction
of l and s, the space s is the orthogonal complement of l with respect to (·, ·), and we have
a direct sum decomposition

g = l⊕ s,

where we use (gα, gβ) = 0 unless α = −β ∈ ∆ (cf. Proposition 2.1.15). In particular, the
restriction of (·, ·) to l and s remains non-degenerate. In the next section, we will show
that g is an example of a quadratic Lie superalgebra and introduce a cubic Dirac operator
associated to this decomposition.

Parabolic induction

We fix a parabolic subalgebra p = l⋉ u. We are interested in weight supermodules, that is,
supermodules M where h acts semisimply:

M =
⊕
µ∈h∗

Mµ, Mµ = {m ∈M : hm = µ(h)m for every h ∈ h}.

The elements µ ∈ h∗ with Mµ 6= {0} are called weights of M , while Mµ is called weight
space associated to µ.

Let V be a weight l-supermodule. Via the projection p→ l, we naturally extend V to a
p-supermodule, where the nilradical u acts trivially on V . Conversely, given a non-trivial
p-supermodule M , the space of u-invariants is non-zero and carries the structure of both a
p- and l-supermodule.

Lemma 13.1.5. Any simple weight l-supermodule V is a simple p-supermodule with the
trivial action of u. Conversely, if V is a simple weight p-supermodule, then u acts trivially
on V, and V is a simple weight l-supermodule.

Proof. Given a simple weight l-supermodule V , we can extend V to a simple weight p-
supermodule by let u acting trivially, since u ⊂ p is an ideal.
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Let V be a simple weight p-supermodule, and denote by T the triangular decomposition
defining p with linear map l : X → Z. Fix a weight µ of V and define two subsupermodules

U :=
⊕

ν∈h∗, l(ν)≥l(µ)
V ν , W :=

⊕
ν∈h∗, l(ν)>l(µ)

V ν .

As µ is a weight of V , the subsupermodule U is non-trivial, while W g is proper. Since V
is simple, we must have U = V and W = {0}. Consequently, by induction, u acts trivially
on V , and V is a simple l-supermodule.

For a simple weight l-supermodule V , considered equivalently as a simple weight p-
supermodule, the parabolically induced supermodule (or generalized Verma supermodule) is
defined to be

Mp(V ) := U(g)⊗U(p) V.

The following proposition is standard.

Proposition 13.1.6. The g-supermodule Mp(V ) has a unique maximal proper subsuper-
module. In particular, Mp(V ) has a unique simple quotient Lp(V ).

The simple weight g-supermodules Lp(V ) exhaust all simple weight g-supermodules. To
establish this, we introduce the following notations. For a fixed triangular decomposition
T of ∆, we write ∆T = ∆T

0 t∆T
1 for the set of roots of g0

T . A triangular decomposition T
of ∆ is called good, if the following holds [30]:

a) The monoid generated by ∆T
0̄ is a group, denoted by QT0 .

b) For any β ∈ ∆T
1 , there exists some m > 0 such that mβ ∈ QT0 .

In this case, the Levi subalgebra lT = g0
T is called good. The good triangular decompositions

of g were classified in [30, Section 7].
Let lT be a good Levi subalgebra. A weight lT -supermodule V is called cuspidal if for

any α ∈ ∆T
0 the associated root vector eα acts injectively on V .

Theorem 13.1.7 ([30, Theorem 6.1]). Let M be a simple g-supermodule. Then there
exists a parabolic subalgebra p with good Levi subalgebra l, and a cuspidal l-supermodule V ,
such that

M ∼= Lp(V ).

Parabolic category Op

Categorically, the parabolic induction can be naturally studied in the parabolic BGG cate-
gory Op, which is a variant of the super BGG category O, determined by a (fixed) parabolic
subalgebra p = l ⋉ u. Following [93], the category Op is the full subcategory of g-smod
whose objects are the g-supermodules satisfying the following three properties:

1. M is a finitely generated U(g)-supermodule.

2. Viewed as a U(l0̄)-module, M decomposes in a direct sum of finite-dimensional simple
modules.

3. M is locally u-finite in the sense that dim(U(u)v) <∞ for all v ∈M .
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This is an abelian subcategory of g-smod closed under the parity switching functor Π.
For further categorical properties of Op, we refer to [93]. However, it is important for us
to note that the simple objects in Op are precisely given by Lp(V ), where V is a simple
l-supermodule.

13.1.2. A note on real forms and Cartan automorphisms
To investigate aspects of unitarity of supermodules over g, it is necessary to consider real
forms gR of g (see Section 2.1.4). For this purpose, we recall

aut2,4(g) := {θ ∈ autR2,4(g) : θ is C-linear},
aut2,s(g) := {θ ∈ autR2,s(g) : θ is conjugate-linear},

such that real structures φ on g are elements in aut2,2(g), and the spaces of fixed points
gφ are real forms. Consequently, up to equivalence, there is a bijective correspondence
[131, 116, 40, 20]

{real forms gR of g} ↔ {θ ∈ aut2,4(g)}.

In what follows, we do not distinguish between isomorphic real forms, or equivalently, we
do not distinguish between involutions on g that are conjugate by g-automorphisms.

Later, we will use the fact that the real forms aut2,2(g) of g and the set aut2,4(g) are
related.

Proposition 13.1.8 ([40]). There exists a unique ω ∈ aut2,4(g) (up to inner automor-
phisms of g), a positive system ∆+ and suitable root vectors e±α for α ∈ ∆+ such that

ω(e±α) = −e∓α ∀α even simple, ω(e±α) = ±e∓α ∀α odd simple.

Moreover, the following two assertions hold:

a) ω induces a bijection

aut2,2(g) \ {θ : θ|g0̄ = ω|g0̄} → aut2,4(g), θ 7→ ω−1 ◦ θ.

b) For the Killing form (·, ·) on g, we have (X,Y ) = (ω(X), ω(Y )) for all X,Y ∈ g, and
(·, ω(·)) is positive definite.

Remark 13.1.9. The positive system ∆+ is the distinguished positive system, meaning that
there is exactly one odd positive root that cannot be expressed as the sum of two other
positive roots.

We now fix a real form gR of a basic classical Lie superalgebras g, i.e., gR is the subspace
of fixed points of some θ ∈ aut2,4(g). We denote by σ := ω ◦ θ ∈ aut2,2(g) the associated
conjugate-linear involution on g (see Proposition 13.1.8 above). We say θ is a Cartan
automorphism on g or gR, if

Bθ(·, ·) := −(·, θ(·)) (13.1.1)

is an inner product on gR. Given θ ∈ aut2,4(g), there exists a unique real form gR such
that θ restricts to a Cartan automorphism on gR. Conversely, any real form g has a
unique Cartan automorphisms θ [20, Theorem 1.1]. In the following, we may assume that
θ associated to gR is a Cartan automorphism.

207



13.1.3. Clifford superalgebras
Clifford and exterior superalgebras.

Fix a parabolic subalgebra p = l ⋉ u, and let g := l ⊕ s be the induced decomposition of
g. Recall that s = u ⊕ u, where u is the nilradical of the opposite parabolic subalgebra
p = l ⋉ u. Let T (s) denote the tensor algebra over the super vector space s, and let I(s)
be the two-sided ideal generated by elements of the form

v ⊗ w + (−1)p(v)p(w)w ⊗ v − 2(v, w)1T (s)

for any v, w ∈ s and where (·, ·) denotes the Killing form of g restricted to s. The Clifford
superalgebra is defined as the quotient C(s) := T (s)/I(s). In other words, if we naturally
identify s as a subspace of C(s), the Clifford superalgebra is generated by s with the
relations

vw + (−1)p(v)p(w)wv = 2(v, w)1T (s),

where vw represents the Clifford multiplication. The Clifford superalgebra C(s) naturally
inherits a Z2-grading from the tensor superalgebra T (s). This arises from the natural
Z×Z2-grading on T (s), where the degree of v1⊗· · ·⊗vn is defined as (n, p(v1)+· · ·+p(vn)).

Additionally, the Clifford superalgebra is characterized by a universal property.

Lemma 13.1.10. Let A be an associative superalgebra with unit 1A. Assume there exists
a morphism of super vector spaces φ : s → A with φ(v)φ(w) + (−1)p(v)p(w)φ(w)φ(v) =
2(v, w)1A for any v, w ∈ s. Then φ extends uniquely to a superalgebra morphism φ :
C(s)→ A, denoted by the same symbol.

The proof of the lemma is straightforward and will be omitted. As super vector spaces,
the Clifford superalgebra and the exterior superalgebra are isomorphic under the Chevalley
identification. The exterior superalgebra is ∧ s := T (s)/J(s), where J(s) is the two-sided
ideal generated by

v ⊗ w + (−1)p(v)p(w)w ⊗ v

for any v, w ∈ s. In particular, under the natural embedding s ↪→
∧
s, the Clifford

superalgebra is generated by s with relations

v ∧ w + (−1)p(v)p(w)w ∧ v = 0,

with ∧ being the exterior multiplication.
On ∧ s, we have two natural operators. For any v ∈ s, let ε(v) denote the left exterior

multiplication on ∧ s. Moreover, the derivation

ι(v)(v1 ⊗ . . .⊗ vl) :=
l∑

k=1
(−1)k−1(−1)p(v)(p(v1)+...+p(vk−1))(v, vk)v1 ⊗ . . .⊗ v̂k ⊗ . . .⊗ vl

on T (s) leaves J(s) invariant and descends to a derivation on ∧
s. We define γ : s →

End(
∧
s) by γ(v) := ε(v) + ι(v), which satisfies γ(v)γ(w) + (−1)p(v)p(w)γ(w)γ(v) = 2(v, w)

for any v, w ∈ s. Thus, by the universal property of the Clifford superalgebra, this realizes∧
s as a C(s)-supermodule, i.e., γ : C(s)→ End(

∧
s).
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Theorem 13.1.11 ([79]). The map η : C(s) →
∧
s with η(v) := γ(v)1∧V is a super

vector space isomorphism. Moreover, the inverse map is given by the quantization map∑
nQn :

∧
s→ C(s) with

Qn(v1 ∧ . . . ∧ vn) := 1
n!

∑
σ∈Sn

p(σ; v1, . . . , vn)vσ(1) . . . vσ(n),

where
p(σ; v1, . . . , vn) = sgn(σ)

∏
1≤i<j≤n, σ−1(i)>σ−1(j)

(−1)p(vi)p(vj)

Remark 13.1.12. If v1, . . . , vn span an isotropic subspace of s, we have that vσ(1) . . . vσ(n) =
p(σ; v1, . . . , vn)v1 . . . vn and hence in this case

Qn(v1 ∧ · · · ∧ vn) = v1 . . . vn.

We will now provide an explicit realization of the Clifford algebra C(s) which will be
used in a later stage. To this end, we first fix a basis η1, . . . , ηm of u0̄ and a basis x1, . . . , xn
of u1̄. We shall denote by ∧ u the exterior superalgebra over u according to the previous
definition, where we recall that

ηi ∧ ηj = −ηj ∧ ηi, xi ∧ xj = xj ∧ xi, xi ∧ ηj = −ηj ∧ xi.

We now define the C-linear operators { ∂
∂xi
} and { ∂

∂ηj
} acting on u as

∂

∂xi
(xk) := −δik,

∂

∂xi
(ηl) := 0, ∂

∂ηj
(xk) := 0, ∂

∂ηj
(ηl) := δjl.

Note that the unexpected minus sign appearing in the above equation is justified by the
choice (ui, uj) = δij together with the identification made. Further, upon identifying the
above operators with the basis elements in u, i.e., ∂

∂ηj
↭ 1

2 η̄i and ∂
∂xi

↭ 1
2 x̄i, there is a

natural action of s = u⊕ ū on ∧ u, where u acts by multiplication operators ηj ∧ ·, xi ∧ ·,
and u acts by ∂

∂xi
, ∂
∂ηj

in the obvious manner.

Under the above identifications, using that (∂ηi , ηj) = (ηj , ∂ηi) = δij and (∂xi , xj) =
−(xj , ∂xi), a direct calculation yields the following lemma.

Lemma 13.1.13. The Clifford superalgebra C(s) is isomorphic to the superalgebra gener-
ated by {xi, ∂

∂xj
: 1 ≤ i, j ≤ m} and {ηi, ∂

∂ηj
: 1 ≤ i, j ≤ n} with quadratic relations

xixj − xjxi = 0, ηiηj + ηjηi = 0, ∂

∂xi
xj − xj

∂

∂xi
= −δij ,

∂

∂ηi
ηj + ηj

∂

∂ηi
= δij ,

xiηj + ηjxi = 0, xi
∂

∂ηj
+ ∂

∂ηj
xi = 0, ∂

∂xi
ηj + ηj

∂

∂xi
= 0, ∂

∂xi

∂

∂ηj
+ ∂

∂ηj

∂

∂xi
= 0.

Embedding of l into C(s).

Next, we aim at constructing an explicit embedding of l into the Clifford algebra C(s). To
this end, we recall that we fixed a parabolic subalgebra p = l⋉ u such that g decomposes
as g = l⊕ s with respect to (·, ·). The restriction of (·, ·) to l and s, denoted by (·, ·)l and
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(·, ·)s respectively, is still non-degenerate. Recall that the orthosymplectic superalgebra of
s is

osp(s) := {T ∈ End(s) : (T (v), w)s + (−1)p(T )p(v)(v, T (w))s = 0 for all v, w ∈ s},

equipped with the natural supercommutator.

Lemma 13.1.14. The adjoint action of l on s induces a morphism of superalgebras ν :
l→ osp(s).

Proof. The natural adjoint action of l on s defines a representation ν : l → osp(s), since
for any X ∈ l and any u, u′ ∈ s we have

(adX u, u′) = ([X,u], u′) = (X, [u, u′]) = −(−1)p(u)p(u′)(X, [u′, u])

= −(−1)p(u)p(u′)([X,u′], u) = −(−1)p(u)p(u′)+p(u)p([X,u′])(u, adX u′)
= −(−1)p(X)p(u)(u, adX u′),

which concludes the verification.

For the orthosymplectic Z2-graded representation ν : l→ osp(s), we define the moment
map µ : s× s→ l to be the bilinear map given by

(x, µ(v, w))l = (ν(x)v, w)s

for all v, w ∈ s and x ∈ l. The moment map is even and skew-supersymmetric, hence it
descends to a map defined on ∧2(s). Post-composing with ν : l → osp(s), yields a map
µ :
∧2(s)→ osp(s), which we call the moment map associated to l, and denote by the same

symbol as above with a mild notational abuse.

Proposition 13.1.15 ([95, Proposition 2.13]). The moment map µ :
∧2(s) → osp(s)

associated to l satisfies

µ(x, y)(z) = (y, z)sx− (−1)p(y)p(z)(x, z)sy

for all x, y, z ∈ s. Moreover, µ is an isomorphism of super vector spaces, and it satisfies
for any T ∈ osp(s) ⊂ s⊗ s∗

µ−1(T ) = 1
2

2s∑
i=1

T (e∗
i ) ∧ ei, Q2(µ−1(T )) = 1

4

2s∑
i=1

(T (e∗
i )ei − (−1)p(ei)p(T (e∗

i ))eiT (e∗
i )),

where {ei} is a basis of s with dual basis {e∗
i } and s = m+ n.

Note that in the previous proposition one looks at osp(s) as a certain subset of s ⊗ s∗,
and it makes sense to consider an action of T ∈ osp(s) on e∗

i , upon using (·, ·)s.
We now define ν∗ : l→

∧2(s) as the composition of ν and the inverse of the moment map
µ−1: in the remainder of this section we will provide an explicit characterization of this
map, that will be used later on in the paper.

Recall that s = s0̄ ⊕ s1̄ with s0̄ = u0̄ ⊕ u0̄ and s1̄ = u1̄ ⊕ u1̄. We let b1, . . . , bs0 be a
basis of u0̄, and ψ1, . . . , ψs1 be a basis of u1̄, and accordingly we denote by b1, . . . , bs0 and
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ψ1, . . . , ψs1 the bases of u0 and u1 respectively, so that one has (bi, bj) = δij , (ψi, ψj) = δij
and (s0̄, s1̄) = 0. In particular, note (bi, bj) = (bj , bi) and (ψi, ψj) = −(ψj , ψi).

We set s∗ = Hom(s,C), where Hom(·, ·) denotes the inner Hom, that is the set of all linear
maps from s to C. We equip s∗ with the natural Z2-grading, and we define x∗(y) := (x, y)s
for any x∗ ∈ s∗ and y ∈ s. We may identify s with s∗ under (·, ·)s. A direct calculation
yields the following relations:

b∗
i = bi, (bi)∗ = bi, ψ∗

j = ψj , (ψj)∗ = −ψj , 1 ≤ i ≤ s0, 1 ≤ j ≤ s1.

Upon decomposing s = u⊕ u, the relations above can be rewritten as

u∗ = u, (u)∗ = (−1)p(u)u = (−1)p(u)u

for all u ∈ u and u ∈ u.
We first identify a suitable basis of osp(s) ⊂ s ⊗ s∗ = End(s). For that, we define the

usual dual basis by y∨(x) := δxy for any basis elements x, y, and then extend by linearity.
Given such basis elements x, y ∈ s, elements of the form x⊗ y∨ provide a basis of End(s).

For any two basis elements z1, z2 ∈ s, a direct calculation yields

(x∗ ⊗ y∨(z1), z2) =
{

1 if x = z2 and y = z1,

0 otherwise,

(z1, y
∗ ⊗ x∨(z2)) =

{
(−1)p(y) if x = z2 and y = z1,

0 otherwise.

As a consequence, we find that x∗ ⊗ y∨ − (−1)p(x)p(y)y∗ ⊗ x∨ ∈ osp(s). By Proposition
13.1.15 we have an isomorphism of super vector spaces osp(s)→

∧2(s), that in turn induces
a Lie superalgebra morphism osp(s)→ C(s). Realizing C(s) as in Lemma 13.1.13 and using
Proposition 13.1.15, the basis vectors of osp(s) are mapped as follows (up to an overall 1

2
normalization):

bi ⊗ (bj)∨ − bj ⊗ (bi)∨ 7→ 1
2

(
∂

∂ηi
ηj − ηj

∂

∂ηi

)
, bi ⊗ (bj)∨ − bj ⊗ (bi)∨ 7→ 1

2

(
∂

∂ηi

∂

∂ηj
− ∂

∂ηj

∂

∂ηi

)
,

bi ⊗ (bj)∨ − bj ⊗ (bi)∨ 7→ 1
2

(ηiηj − ηjηi) , bi ⊗ (ψj)∨ − ψj ⊗ (bi)∨ 7→ 1
2

(
∂

∂ηi
xj − xj

∂

∂ηi

)
,

bi ⊗ (ψj)∨ − ψj ⊗ (bi)∨ 7→ 1
2

(ηixj − xjηi) , bi ⊗ (ψj)∨ + ψj ⊗ (bi)∨ 7→ −1
2

(
∂

∂ηi

∂

∂xj
− ∂

∂xj

∂

∂ηi

)
,

bi ⊗ (ψj)∨ + ψj ⊗ (bi)∨ 7→ −1
2

(
ηi

∂

∂xj
− ∂

∂xj
ηi

)
, ψi ⊗ (ψj)∨ − ψj ⊗ (ψi)∨ 7→ 1

2

(
∂

∂xi
xj + xj

∂

∂xi

)
,

ψi ⊗ (ψj)∨ + ψj ⊗ (ψi)∨ 7→ −1
2

(
∂

∂xi

∂

∂xj
+ ∂

∂xj

∂

∂xi

)
, ψi ⊗ (ψj)∨ + ψj ⊗ (ψi)∨ 7→ 1

2
(xixj + xjxi) ,

where the generators ηj and xi together with their derivations ∂
∂ηj

and ∂
∂xi

, are given as
in Lemma 13.1.13. As described in Lemma 13.1.14, we have a Lie superalgebra morphism
ν : l→ osp(s), which in turn defines an embedding l ↪→ C(s). Since u and u are preserved
by the action of l on s, the image of l is contained in the span
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〈
ηi

∂

∂ηj
− ∂

∂ηj
ηi, ηi

∂

∂xk
− ∂

∂xk
ηi,

xk
∂

∂ηi
− ∂

∂ηi
xk, xl

∂

∂xk
+ ∂

∂xk
xl : 1 ≤ k, l ≤ s1, 1 ≤ i, j ≤ s0

〉
.

Concretely, for any X ∈ l, we have [X, u] ⊂ u and [X, u] ⊂ u, such that

[X, bi] =
s0∑
k=1

αik(X)bk +
s1∑
l=1

βil(X)ψl,

[X,ψj ] =
s0∑
k=1

γjk(X)bk +
s1∑
l=1

δjl(X)ψl.

for some complex coefficients αik(X), βil(X), γjk(X) and δjl(X), that can be determined
by applying (·, bk) and (·, ψl) on both sides of the previous expressions as to get

αik(X) = (X, [bi, bk]), βil(X) = (X, [bi, ψl]),
γjk(X) = (X, [ψj , bk]), δjl(X) = (X, [ψj , ψl]).

(13.1.2)

Finally, letting Xi be a basis for l, we let the structure constant fkij and ckij be defined by

[Xi, bj ] =
∑
k

fkijbk +
∑
k′

ck
′
ijψk,

and similarly, we let gkij and dkij be defined by

[Xi, ψj ] =
∑
k

gkijbk +
∑
k′

dk
′
ijψk′ .

Upon using these, if follows that

adXi =
s0∑
k=1

 s0∑
j=1

fkij(bk ⊗ (bj)∨ − bj ⊗ (bk)∨) +
s1∑
j′=1

gkij′(bk ⊗ (ψj′)∨ + ψj′ ⊗ (bk)∨)


+

s1∑
k′=1

 s0∑
j=1

ck
′
ij (ψk′ ⊗ (bj)∨ − bj ⊗ (ψk′)∨) +

s1∑
j′=1

dk
′
ij′(ψk′ ⊗ (ψj′)∨ − ψj′ ⊗ (ψk)∨)


In turn, upon the identifications above, one has

ν∗(Xi) =1
2

s0∑
k=1

 s0∑
j=1

fkij(ηk
∂

∂ηj
− ∂

∂ηj
ηk)−

s1∑
j′=1

gkij′(ηk
∂

∂xj′
− ∂

∂xj′
ηk)


+ 1

2
∑
k′

 s0∑
j=1

ck
′
ij (xk′

∂

∂ηj
− ∂

∂ηj
xk′)−

s1∑
j′=1

dk
′
ij′(xk′

∂

∂xj′
+ ∂

∂xj′
xk′)

 .
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In turn, for general X ∈ l, upon using Equation (13.1.2) one gets the following expression:

ν∗(X) =
s0∑
k=1

(
s0∑
j=1

(X, [bj , bk])ηk
∂

∂ηj
−

s1∑
j′=1

(X, [ψj′ , bk])ηk
∂

∂xj′

)

+
s1∑
k′=1

(
s0∑
j=1

(X, [bj , ψk′ ])xk′
∂

∂ηj
−

s1∑
j′=1

(X, [ψj′ , ψk′ ])xk′
∂

∂xj′

)

+ 1
2

(
−

s0∑
k=1

(X, [bk, bk]) +
s1∑
k′=1

(X, [ψk′ , ψk′ ])
)
.

Denoting the bases of u and u by u1, . . . , us and u1, . . . , us respectively, we may rewrite
Equation (13.1.3) in the following compact fashion.

Lemma 13.1.16. The map ν∗ : l→
∧2(s) ⊂ C(s) is given by

ν∗(X) = 1
2

s∑
j,k=1

(X, [uj , uk])(−1)p(uj)ukuj +
{
ρu(X) if X ∈ h,

0 else.

= 1
2

s∑
j,k=1

(X, [uk, uj ])(−1)p(uj)ujuk −
{
ρu(X) if X ∈ h,

0 else.

Proof. We consider the first equality. For that, it is immediate that

1
2

(
−

s0∑
k=1

(X, [bk, bk]) +
s1∑
k′=1

(X, [ψk′ , ψk′ ])
)

= −1
2

s∑
k=1

(−1)p(uk)(X, [uk, uk]),

and it remains to prove the equality

−1
2

s∑
k=1

(−1)p(uk)(X, [uk, uk]) =
{
ρu(X) if X ∈ h,

0 else.

To this end, let α1, . . . , αs denote the set of positive roots such that u =
⊕s

k=1 g
αk . In

particular, we have u =
⊕s
k=1 g

−αk . By Proposition 2.1.15, the weight spaces of g are
one-dimensional.

We may assume, without loss of generality, that ui ∈ gαi and uj ∈ g−αj . Then, by Propo-
sition 2.1.15, we have [ui, ui] ∈ h, and (X, [ui, ui]) is trivial unless X ∈ h by consistency. If
X ∈ h, the invariance of (·, ·) and the root space decomposition yield:

(X, [ui, ui]) = ([X,ui], ui) = −(αi(X)ui, ui) = −αi(X)(ui, ui) = −αi(X),

such that

−1
2

s∑
k=1

(−1)p(ui)(X, [uk, uk]) = 1
2

s0∑
k=1

αk(X)− 1
2

s∑
l=s0+1

αl(X) = ρu0̄(X)− ρu1̄(X) = ρu.

Finally, the second equality is a straightforward computation using the definition of the
Clifford superalgebra C(s) and will be omitted.
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13.2. Cubic Dirac operators and Dirac cohomology
In this section, we briefly introduce cubic Dirac operators D(g, l) for Levi subalgebras l of
basic classical Lie superalgebras g and discuss their main properties. Later on, in Theorem
13.2.10 and Lemma 13.2.11, we prove that the cubic Dirac operator D(g, l) possesses a con-
venient decomposition into l-invariant summands, which will be investigated in a later sec-
tion. Next, in Subsection 13.2.2, we introduce the oscillator supermodules M(s),M(s) and
characterize it as an l-supermodule in view of Lemma 13.1.16. Given any g-supermodule
M , there is a natural action of the cubic Dirac operator D(g, l) on M ⊗M(s), which allows
us to introduce a cohomology theory M 7→ HD(g,l)(M), called the Dirac cohomology of the
supermodule M , see Definition 13.2.22. In the last part of the section, we focus on the
Dirac cohomology of supermodules admitting an infinitesimal character. In particular, we
prove a super-analog of the Casselmann–Osborne Lemma in Theorem 13.2.27. Finally, in
the last subsection, we briefly discuss some homological properties of Dirac cohomology.

13.2.1. Cubic Dirac operators
Definition and first properties.

Fix a parabolic subalgebra p = l ⋉ u, and let g := l ⊕ s be the induced decomposition of
g. Recall s = u ⊕ u is even dimensional. For convenience, let 2s = 2s0 + 2s1 := dim(s)
with 2s0 = dim(s0̄) and 2s1 = dim(s1̄) with s, s0, s1 ∈ Z+. Moreover, we recall that
the restriction of (·, ·) to s gives a non-degenerate supersymmetric invariant bilinear form,
denoted by (·, ·)s, that allows to identify s and its dual space s∗. In the following, we will
fix an orthogonal basis {X1, . . . , X2s} of s with dual basis {X∗

1 , . . . , X
∗
2s}.

Basic classical Lie superalgebras g are examples of quadratic Lie superalgebras [79], which
have the property that there exists a unique element φ ∈

(∧3 g
)

0̄, called fundamental 3-
form, such that the following holds for all X,Y, Z ∈ g:

a) (φ,X ∧ Y ∧ Z) = −1
2([X,Y ], Z).

b) [X,Y ] = 2ι(X)ι(Y )φ.

c) φ2 = 1
24 str ad(Ωg).

In a), we extended the supersymmetric non-degenerate invariant bilinear form (·, ·) for g
to ∧3 g. The fundamental 3-form φ is uniquely determined by its projection φs to s, along
the decomposition g = l ⊕ s [79, Remark 4.1]. With respect to the above fixed basis, φs
reads

φs = − 1
12

∑
1≤i,j,k≤2s

(−1)p(Xi)p(Xj)+p(Xk)p(Xk)([Xi, Xj ], Xk)X∗
i ∧X∗

j ∧X∗
k ,

and it lies in (
∧3 s)l0̄, meaning that φs is l-invariant under the natural action given by the

commutator [79, Section 4]. Since the Xi’s are orthogonal, we also have

φs = − 1
12

∑
1≤i,j,k≤2s

(−1)p(Xi)p(Xj)+p(Xk)p(Xk)([Xi, Xj ], Xk)X∗
iX

∗
jX

∗
k .

in C(s). In a fashion analogous to [89], we use φs to give the following definition, as suggest
in [79, Section 5].
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Definition 13.2.1. The cubic Dirac operator D(g, l) is the element in U(g) ⊗ C(s) given
by

D(g, l) :=
2s∑
i=1

Xi ⊗X∗
i + 1⊗ φs.

A direct calculation shows that D(g, l) is independent of the choice of basis, hence the
definition is well-posed. We now define a diagonal embedding α : l→ U(g)⊗ C(s) by

X 7→ X ⊗ 1 + 1⊗ ν∗(X), X ∈ l.

The explicit form of ν∗ is given in Lemma 13.1.16. We will denote the image of l, U(l) and
Z(l) under α by l∆,U(l∆) and Z(l∆), respectively. Furthermore, the image of the quadratic
Casimir Ωl of l will be denoted by Ωl,∆. Finally, the quadratic Casimir of g will be denoted
by Ωg.
The following results recollect some important properties of the cubic Dirac operator,
namely that D(g, l)2 is l-invariant and has a nice square.

Lemma 13.2.2 ([79, Lemma 6.1]). The cubic Dirac operator D(g, l) is l-invariant under
the l-action on U(g) ⊗ C(s), which is induced by the adjoint action on both factors, i.e.,
[X,D(g, l)] = X D(g, l) + (−1)p(X) D(g, l)X = 0 for all X ∈ l.

Theorem 13.2.3 ([79, Theorem 1.3]). The cubic Dirac operator D(g, l) has square

D(g, l)2 = Ωg ⊗ 1− Ωl,∆ + c(1⊗ 1),

where c is a constant given by c = 1
24(tr adg(Ωg)− tr adl(Ωl)).

For the remainder of this article, we refer to the square of the Dirac operator D(g, l)2 as
the Laplace operator, denoting it by

∆ := D(g, l)2.

In Theorem 13.2.3, the constant c has an explicit formulation in terms of the Weyl
vectors ρ and ρl by applying an argument similar to the one in [89, Proposition 1.84], and
a modified formula of Freudenthal and de Vries for Lie superalgebras [95, Theorem 1]. In
particular, the following holds.

Lemma 13.2.4. In terms of Weyl vectors, the constant c = 1
24(tr adg(Ωg)− tr adl(Ωl)) is

given by
c = (ρ, ρ)− (ρl, ρl).

Decomposition of D(g, l).

We now aim at decomposing the Dirac operator into smaller l-invariant pieces. To this
end, let us fix a basis u1, . . . , us of u, with dual basis u∗

1 = u1, . . . , u
∗
s = us of u∗ ∼= u. Then

s has basis and dual basis given by

X1 = u1, . . . , Xs = us, Xs+1 = u1, . . . , X2s = us,

X∗
1 = u1, . . . , X

∗
s = us, X∗

s+1 = (−1)p(u1)u1, . . . , X
∗
2s = (−1)p(us)us,
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where we use Equation (13.1.3). In particular,
2s∑
i=1

Xi ⊗X∗
i =

s∑
i=1

ui ⊗ ui +
s∑
i=1

(−1)p(ui)ui ⊗ ui =: A+ Ā,

where A and Ā denote the two above summands, respectively. The following Lemma shows
that also A and Ā are l-invariant.
Lemma 13.2.5. The elements A, Ā ∈ U(g)⊗ C(s) are l-invariant.
Proof. It is enough to prove the statement for A =

∑s
i=1 ui ⊗ ui, as the proof for Ā is

analogous. First, note that any X ∈ s can be written as

X =
2s∑
i=1

(X∗
i , X)Xi =

2s∑
i=1

(X,Xi)X∗
i ,

and [l, u] ⊆ u, [l, u] ⊆ u. Consequently, for any X ∈ l, we have

[X,ui] =
s∑
j=1

(uj , [X,ui])uj , [X,ui] =
s∑
j=1

([X,ui], uj)uj .

Fix some X ∈ l, and consider

[α(X), A] =
s∑
i=1

[X,ui]⊗ ui +
s∑
i=1

(−1)p(ν∗(X))p(ui)ui ⊗ [X,ui].

Using invariance of (·, ·) and supersymmetry, the first summand can be rewritten as
s∑
i=1

[X,ui]⊗ ui =
s∑

i,j=1
(uj , [X,ui])uj ⊗ ui =

s∑
i,j=1

uj ⊗ (uj , [X,ui])ui

= −
s∑

i,j=1
(−1)p(ν∗(X))p(uj)uj ⊗ ([X,uj ], ui)ui

= −
s∑
j=1

(−1)p(ν∗(X))p(uj)uj ⊗ [X,uj ],

which forces [α(X), A] = 0. We conclude that A is l-invariant.

Next, we decompose the fundamental 3-form φs. The spaces u, u are isotropic subspaces
with respect to (·, ·), i.e., we have for any i, j, k ([ui, uj ], uk) = 0 and ([ui, uj ], uk) = 0. As
a result, we may decompose φs as φs = a+ a, where

a = −1
4

s∑
i,j,k=1

(−1)p(ui)p(uj)+p(uk)+p(ui)+p(uj)([ui, uj ], uk)ui ∧ uj ∧ uk,

a = −1
4

s∑
i,j,k=1

(−1)p(ui)p(uj)([ui, uj ], uk)ui ∧ uj ∧ uk.

Here, the combinatorial factor 6 arises from summing over all permutations of Xi, Xj , Xk,
each contributing with the same sign, while the factor 1

2 accounts for summation over all
pairs i, j. Moreover, we used that (ui)∗ = (−1)p(ui)ui, as in Equation (13.1.3).

We now want to express a and a as elements in the Clifford superalgebra C(s). For that,
we first need the following technical lemma.
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Lemma 13.2.6. Let u1, . . . , us be a basis of u with dual basis u1, . . . , us. Then the element

Σ :=
s∑

i,j=1
(−1)p(ui)+p(uj)([ui, uj ], ui)uj

vanishes identically, i.e., Σ ≡ 0.

Proof. The vanishing of Σ will follow from l-invariance. Indeed, let h be the Cartan sub-
algebra of g and assume Σ is l-invariant. Since the h-invariant elements of g are precisely
h, and h ⊂ l, any l-invariant element must therefore be in h. Given that u ∩ h = 0, we
conclude that Σ = 0.

We are then left to prove that Σ is l-invariant. For this, first, we show that the map
ψ : s⊗4 → u, defined by x ⊗ y ⊗ z ⊗ w 7→ x(y, [z, w]), is l-equivariant. Here, ⊗ denotes
the Z2-graded tensor product, and s ⊗ s is the l-supermodule with l-action given by (see
Section 3.1.1)

X(v ⊗ w) := Xv ⊗ w + (−1)p(X)p(v)v ⊗Xw, X ∈ l, v, w ∈ s.

Let X ∈ l, then one computes

ψ(X(x⊗ y ⊗ z ⊗ w)) = [X,x]([z, w], y) + x(−1)p(X)p(x)(([X, y], [z, w])

+(−1)p(X)p(y)(y, [[X, z], w]) + (−1)p(X)(p(y)+p(z))(y, [z, [X,w]])
)
.

As a consequence, proving equivariance reduces to check that

([X, y], [z, w]) + (−1)p(X)p(y)(y, [[X, z], w]) + (−1)p(X)(p(y)+p(z))(y, [z, [X,w]])
=([X, y], [z, w]) + (−1)p(X)p(y)(y, [X, [z, w]]) = 0,

where we used
[X, [z, w]] = [[X, z], w] + (−1)p(X)p(z)[z, [X,w]]

by the super Jacobi identity, and

([X, y], [z, w]) + (−1)p(X)p(y)(y, [X, [z, w]]) = 0

by the l-invariance of (·, ·).
Next, we construct an l-invariant element in s⊗4, which is mapped under ψ to an l-

invariant element in u by l-equivariance.
We first claim that the map τ : u → u∗, defined by u 7→ (u, ·), is an l-equivariant

isomorphism. Whilst it is clear that the map is an isomorphism of super vector spaces, it
remains to show l-equivariance. For this, let f ∈ u∗, v ∈ u. Then we have:

τ([X, f ])(v) = ([X, f ], v) = −(−1)p(X)p(f)(f, [X, v]) = −(−1)p(X)p(f)τ(f)([X, v])
= (Xτ(f))(v).

Now, consider the invariant element id⊗ id ∈ End(u)⊗End(u). Under the identification
End(u) ∼= u ⊗ u∗ with a basis (ui)i=1,...,s and dual basis (u∗

i )i=1,...,s, this can be expressed
as: ∑

i,j=1,...,s
ui ⊗ u∗

i ⊗ uj ⊗ u∗
j .
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Applying the natural l-supermodule isomorphism of u⊗u∗⊗u⊗u∗, given by x⊗ν⊗y⊗µ 7→
(−1)p(ν)p(y)x⊗ y ⊗ µ⊗ ν, the above is mapped to∑

i,j=1,...,s
(−1)p(ui)p(uj)ui ⊗ uj ⊗ u∗

i ⊗ u∗
j .

In turn, under the map id⊗ id⊗τ−1 ⊗ τ−1 : u⊗ u⊗ u∗ ⊗ u∗ → u⊗ u⊗ u⊗ u, the previous
becomes

s∑
i,j=1

(−1)p(ui)p(uj)ui ⊗ uj ⊗ ui ⊗ uj ,

which gives the desired element in s⊗4 under inclusion. Applying now ψ to (13.2.1), we
obtain the l-invariant element:

s∑
i,j=1

(−1)p(ui)p(uj)ui(uj , [ui, uj ]) =
s∑

i,j=1
(−1)p(ui)p(uj)(−1)p(uj)(p(ui)+p(uj))([ui, uj ], uj)ui

=
s∑

i,j=1
(−1)p(ui)p(uj)+p(uj)([uj , ui], uj)ui.

Notably, ([uj , ui], uj) is non-zero only if p(uj) = p(uj) + p(ui), leading to p(ui) = 0. It
follows that

Σ =
s∑

i,j=1
(−1)p(uj)+p(ui)([uj , ui], uj)ui

is l-invariant. This finishes the proof.

Having this technical result available, we are ready to give the following characterization
of the elements a and a inside C(s).

Lemma 13.2.7. In the Clifford superalgebra C(s), the elements a and a are given by

a = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)+p(ui)+p(uj)[ui, uj ]uiuj ,

a = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)[ui, uj ]uiuj .

Proof. We only prove the expression for a, as the proof for a is analogous. First, we note
that under the quantization map of Theorem 13.1.11 the following holds:

ui ∧ uj ∧ uk 7→ uiujuk + (−1)p(uk)(δik(−1)p(ui)p(uj)uj − δjkui).

Thus, in the Clifford superalgebra C(s) we can write

a =− 1
4

s∑
i,jk=1

(−1)p(ui)p(uj)+p(ui)+p(uj)+p(uk)([ui, uj ], uk)uiujuk

+ 1
2

s∑
i,j=1

(−1)p(ui)+p(uj)([ui, uj ], ui)uj

=− 1
4

s∑
i,j=1

(−1)p(ui)p(uj)+p(ui)+p(uj)[ui, uj ]uiuj ,

where the second summand vanishes by Lemma 13.2.6.
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Remark 13.2.8. We can rewrite a and ā as

a = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)uiuj [ui, uj ],

ā = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)+p(ui)+p(uj)uiuj [ui, uj ].

This follows from a straightforward computation in C(s) using the properties of (·, ·) and
will be omitted.

Further, a direct but lengthy calculation yields the following lemma.

Lemma 13.2.9. The elements a, a ∈ C(s) are invariant under the adjoint action of l.

Altogether, relying on the above results, we can define the following l-invariant elements
C, C̄ ∈ U(g)⊗ C(s):

C := A+ 1⊗ a, C̄ := Ā+ 1⊗ a,

which can be used to decompose the cubic Dirac operator. We summarize this discussion
in the following theorem, whose proof is an immediate consequence of the above lemmas.

Theorem 13.2.10. The cubic Dirac operator has the following decomposition in l-invariant
elements

D(g, l) = C + C̄.

We conclude this subsection showing that each of the l-invariant summand of D(g, l) is
nilpotent.

Lemma 13.2.11. The square of C, C̄ is

C2 = 0, C̄2 = 0.

Proof. The idea of the proof is similar to the one of Proposition 2.6 in [62]. We define

E := 1
2

s∑
i=1

1⊗ uiui

and compute the commutator [E,C] = [E,A] + [E, 1⊗ a]:

[E,A] = EA−AE

= 1
2

s∑
i,j=1

ui ⊗ (ujujui − uiujuj)

= 1
2

s∑
i,j=1

ui ⊗ (ujujui + (−1)p(ui)p(uj)ujuiuj)

= 1
2

s∑
i,j=1

ui ⊗ (ujujui + (−1)p(ui)p(uj)uj(−(−1)p(ui)p(uj)ujui + 2δij))

=
s∑
j=1

uj ⊗ uj ,
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which equals A under the natural identification uj with uj = u∗
j . Analogously, [E, 1⊗ a] =

1 ⊗ a, i.e., [E,C] = C. Moreover, a direct calculation yields [E, C̄] = −C̄ and therefore
[E,C2] = 2C2, [E, C̄2] = −2C̄2.

However, set D := D(g, l) and D̄ := C − C̄ such that C = 1
2(D+ D̄) and C̄ = 1

2(D− D̄).
Then

4C2 = (D + D̄)2 = D2 + D̄2 = (D − D̄)2 = 4C̄2,

since DD̄ + D̄D = [E,D2] = 0 by Theorem 13.2.3. This forces C2 = C̄2 = 0.

13.2.2. Dirac cohomology
We define Dirac cohomology with respect to a cubic Dirac operator D(g, l) for some
parabolic subalgebra p = l ⋉ u and study its homological properties. Furthermore, we
state Vogan’s Theorem to examine the Dirac cohomology of supermodules with infinitesi-
mal character by formulating a Casselman–Osborne Lemma.

Oscillator supermodule

There exists a natural simple supermodule for the Clifford superalgebra C(s), the oscillator
supermodule, which we will construct.

The super vector space s decomposes in its even and odd parts as s = s0̄ ⊕ s1̄, where in
turn s0̄ = u0̄ ⊕ u0̄ and s1̄ = u1̄ ⊕ u1̄. Note that these decompositions are not direct sum
decompositions with respect to (·, ·).

We consider the Clifford superalgebra C(s) = C(s0̄) ⊗ C(s1̄), and treat the Clifford
algebra C(s0̄) and the Weyl algebra C(s1̄) separately.

First, we consider the Clifford algebra C(s0̄). The subspaces u0̄ and u0̄ of s0̄ de-
fine isotropic and complementary subspaces of s0̄ with respect to (·, ·)s. We fix a basis
u1, . . . , us0 of u0̄ and u1, . . . , us0 of u0̄ such that (uj , ui) = (ui, uj) = δij for all 1 ≤ i, j ≤ s0.
We may also identify u0̄ with the dual space u∗

0̄ under (·, ·)s, such that the dual basis u∗
i is

ui (cf. Equation (13.1.3)).
We are interested in

Sg,l :=
∧

u0̄, S
g,l :=

∧
u0̄.

Without loss of generality, we focus on S
g,l, which is relevant for later applications. How-

ever, the following discussion applies to both Sg,l and S
g,l.

On ∧ u0̄, we have a natural action of s0̄, where u ∈ u0̄ acts as the left exterior multipli-
cation ε(u), and u ∈ u0̄ acts as the contraction ι(u) defined in Equation (13.1.3). By the
universal property of the Clifford superalgebra C(s0̄), this extends to an action of C(s0̄)
on S

g,l, which realizes Sg,l as a C(s0̄)-module, called spin module. The following lemma is
standard.

Lemma 13.2.12. The spin module Sg,l is the unique simple C(s0̄)-module, up to isomor-
phism. Additionally, Sg,l contains a highest weight vector with respect to ∆(l; h)+, whose
weight is ρu0̄.

Remark 13.2.13. Equivalently, we may consider Sg,l as the left-ideal in C(s0̄) generated
by the element u := u1 . . . us0 such that Sg,l = (

∧
u0̄)u and the action is given by (left)

Clifford multiplication. Note that the Clifford product and the exterior product coincide
on u0̄ and u0̄, since they are isotropic.
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The spin module Sg,l is equipped with a non-degenerate Hermitian form 〈·, ·〉
S
g,l , such

that ui and ui are adjoint to each other. We fix a real form gR of g defined with respect
to a Cartan automorphism θ ∈ aut2,4(g), such that

Bθ(·, ·) := −(·, θ(·))

defines an inner product on gR (see Section 13.1.2). We uniquely extend the inner product
Bθ(·, ·) to a Hermitian form on g. Restricting this form to s, we denote it by the same
symbol, Bθ(·, ·), by abuse of notation. We may assume that u1, . . . , us0 , u1, . . . , us0 is an
orthonormal basis of (s0̄, Bθ(·, ·)). Then

1 = Bθ(ui, ui) = −(ui, θ(ui)) = (ui, u∗
i ), 1 = Bθ(ui, ui) = −(ui, θ(ui)) = (ui, u∗

i ),

and −θ(ui) = u∗
i = ui for all 1 ≤ i ≤ s0.

On Tn(u0̄), we consider the bilinear form

〈v1 ⊗ . . .⊗ vn, w1 ⊗ . . .⊗ wn〉∧ :=
∑
σ∈Sn

B̃(p(σ; v1, . . . , vn)vσ(1) ⊗ . . .⊗ vσ(n), w1 ⊗ . . .⊗ wn),

where

B̃(v1 ⊗ . . .⊗ vn, w1 ⊗ . . .⊗ wn) :=
n−1∏
i=0

Bθ(vn−i, w1+i).

A direct calculation shows that 〈·, ·〉∧ descends to a Hermitian form on S
g,l, denoted by

〈·, ·〉
S
g,l in what follows. By construction, the following holds true.

Lemma 13.2.14. a) If we consider Sg,l as a super vector space with obvious Z2-grading,
〈·, ·〉

S
g,l is a super positive definite super Hermitian form, that is,

〈v, w〉
S
g,l = (−1)p(v)p(w)〈w, v〉

S
g,l , v, w ∈ Sg,l

,

〈v, w〉
S
g,l = 0 whenever p(v) 6= p(w), and 〈·, ·〉

S
g,l is positive definite on S

g,l
0̄ and

−i-times positive definite on S
g,l
1̄ .

b) The adjoint of ui with respect to 〈·, ·〉
S
g,l is θ(ui) = −ui, and the adjoint of ui is

θ(ui) = −ui.

Second, we consider the Weyl algebra C(s1̄). To this end, we note that (·, ·)|s1̄ is a
symplectic form on s1̄, and s1̄ = u1̄ ⊕ u1̄ is a complete polarization—that is, u1̄ and u1̄ are
maximal isotropic subspaces. We refer to these spaces collectively as X and Y , assigning
one to each. Further, we fix a basis e1, . . . , es1 of X with dual basis f1, . . . , fs1 of Y , such
that the Weyl algebra W (g1̄) := C(s1̄) over s1̄ is generated by ek and fl.

The Weyl algebra acts naturally on C[X] ∼= Sym(X), where elements of X acts by
multiplication and the action of Y is given as follows:

fi · ej := (fi, ej)s, 1 ≤ i, j ≤ s1.

We call C[X] oscillator module. Any element in C[X] that is annihilated by all fi is
necessarily constant. We conclude that the maximal proper submodule of C[X] is zero,
and C[X] is a simple module over W (g1̄).
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Lemma 13.2.15. The oscillator module C[X] is a simple W (g1̄)-module.

To treat X = u1̄ and X = u1̄ separately, we introduce the following notation:

M(s1̄) := C[u1̄] = Sym(u1̄), M(s1̄) := C[u1̄] = Sym(u1̄).

For simplicity and clarity, we consider only M(s1̄) in the following. The oscillator module
M(s1̄) can be treated analogously, and in particular, all results hold for M(s1̄) as well.

We introduce an appropriate notation following Section 13.1.3. Fix a basis ∂1, . . . , ∂s1

of u1̄, and a basis x1, . . . , xs1 of u1̄ such that

(xk, ∂l) = 1
2
δkl.

Then the Weyl algebra W (g1̄) can be identified with the algebra of differential operators
with polynomial coefficients in the variables x1, . . . , xs1 , by identifying ∂k with the partial
derivative ∂/∂xk for all k = 1, . . . , s1. In particular, W (g1̄) forms a Lie algebra with the
following commutator relations:

[xk, xl]W = 0, [∂k, ∂l]W = 0, [xk, ∂l]W = δkl,

for all 1 ≤ k, l ≤ s1. As a Lie algebra of differential operators, the action of the Weyl
algebra on M(s1̄) := C[x1, . . . , xs1 ] is natural.

We give M(s1̄) a Z2-grading by declaring M(s1̄)0̄ to be the subspace generated by ho-
mogeneous polynomials of even degree, and M(s1̄)1̄ to be the subspace generated by ho-
mogeneous polynomials of odd degree.

Furthermore, M(s1̄) carries a Hermitian form 〈·, ·〉M(s1̄), namely the Bargmann–Fock
Hermitian form or Fischer–Fock Hermitian form, that is uniquely determined by

〈
s1∏
k=1

xpk
k ,

s1∏
k=1

xqk
k 〉M(s1̄) =

{∏s1
k=1 pk! if pk = qk for all k,

0 otherwise.

The form is positive definite and consistent, i.e., one has 〈M(s1̄)0̄,M(s1̄)1̄〉M(s1̄) = 0. In
particular, for any v, w ∈M(s1̄), the generators of W (g1̄) satisfy the following relations for
all 1 ≤ k ≤ s1:

〈∂kv, w〉M(s1̄) = 〈v, xkw〉M(s1̄), 〈xkv, w〉M(s1̄) = 〈v, ∂kw〉M(s1̄).

We deduce the following lemma.

Lemma 13.2.16. For 〈·, ·〉M(s1̄), the adjoint of xk is ∂k, and the adjoint of ∂k is xk for
all 1 ≤ k ≤ s1.

Finally, combining the previous constructions, we define the oscillator supermodules over
C(s) as

M(s) := Sg,l ⊗M(s1̄), M(s) := S
g,l ⊗M(s1̄).

Here, we equip Sg,l and Sg,l with the Z2-grading induced by the natural Z2-grading of T (u0̄)
and T (u0̄), such that Sg,l = Sg,l

0̄ ⊕ S
g,l
1̄ and S

g,l = S
g,l
0̄ ⊕ S

g,l
1 . This makes M(s) and M(s)

into C(s)-supermodules by posing M(s)0̄,1̄ := Sg,l
0̄,1̄ ⊗M(s1̄) and M(s)0̄,1̄ := S

g,l
0̄,1̄ ⊗M(s1̄).
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We conclude this section by describing the properties of M(s). The supermodule M(s)
can be treated analogously. First, we note M(s) is h-semisimple. We define the set of
h-weights of M(s) by PM(s) := {µ ∈ h∗ : M(s)µ 6= {0}}, where M(s)µ is the weight space
of weight µ. Then the sets of h-weights of M(s) is more precisely

PM(s) = {ρu − Z+[A] : A ⊂ ∆+ \∆(l; h)+},

where Z+[A] :=
∑
ξ∈A Z+ξ.

By Lemma 13.2.12 and Proposition 13.2.15, one immediately has the following.

Lemma 13.2.17. The C(s)-supermodule M(s) is simple.

Second, M(s) carries a natural non-degenerate Hermitian form

〈v ⊗ P,w ⊗Q〉M(s) := 〈v, w〉
S
g,l〈P,Q〉M(s1̄).

for v⊗P,w⊗Q ∈M(s). The properties of the form are given in the following straightfor-
ward lemma.

Lemma 13.2.18. The Hermitian form 〈·, ·〉M(s) on M(s) is non-degenerate, supersym-
metric and consistent. Moreover, the adjoint of any basis element u ∈ u is

u† = −(−1)p(u)u.

Finally, we consider M(s) and M(s) as l-supermodules under the Lie algebra morphism
ν∗ : l→ C(s) introduced in Section 13.1.3, and described explicitly in Lemma 13.1.16. As
a first result, we show that M(s) and M(s) are completely reducible as l-supermodules.
This follows directly from Proposition 6.1.8, provided we show that M(s) and M(s) are
unitarizable l-supermodules.

We consider unitarity with respect to a fixed Cartan automorphism θ ∈ aut2,4(g) defining
the real form gR, such that Bθ(·, ·) is an inner product on gR. In particular, gR = lR ⊕ sR.
Then, by Lemma 13.2.14 and the definition of 〈·, ·〉M(s), it is enough to show

〈ν∗(X)(v ⊗ P ), (w ⊗Q)〉M(s) = −(−1)p(X)p(v)〈v ⊗ P, ν∗(X)(w ⊗Q)〉M(s)

for any homogeneous X ∈ lR and v ⊗ P,w ⊗Q ∈M(s). Similarly, for M(s).
However, this is immediate by the explicit form of ν∗(X) given in Lemma 13.1.16 and the

application of Lemma 13.2.14 and Lemma 13.2.16. We conclude the following proposition.

Proposition 13.2.19. The supermodules M(s) and M(s) are unitarizable l-supermodules.
In particular, M(s) and M(s) are completely reducible as l-supermodules.

As an l-supermodule, M(s) and M(s) have another elegant description as the exterior
superalgebra over u and u, respectively.

Proposition 13.2.20. There are l-supermodule isomorphisms

M(s) ∼=
∧

u⊗ C−ρu ∼=
∧

u0̄ ⊗ Sym(u1̄)⊗ C−ρu ,

M(s) ∼=
∧

u⊗ Cρu ∼=
∧

u0̄ ⊗ Sym(u1̄)⊗ Cρu ,

where the action of l on M(s) and M(s) is induced by ν∗ as in Lemma 13.1.16, and the
action of l on ∧ u0̄ ⊗ Sym(u1̄)⊗ C−ρu and ∧ u0̄ ⊗ Sym(u1̄)⊗ Cρu is induced by the adjoint
action.
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Proof. We prove the statement for M(s). The proof for M(s) is analogous and will be
omitted.

We consider u as an l-supermodule under the adjoint action, which naturally makes the
exterior superalgebra ∧ u =

∧
u0̄ ⊗ Sym(u1̄) into an l-supermodule. Let X ∈ l and let

ηi0 ∧ · · · ∧ ηin ⊗ xj0 . . . xjm ∈
∧
u0̄ ⊗ Sym(u1̄). Then X acts as

X(ηi0 ∧ · · · ∧ ηin ⊗ xj0 . . . xjm) =
n∑
t=0

(−1)t[X, ηik ]ηi0 ∧ . . . η̂it · · · ∧ ηin ⊗ xj0 . . . xjm

+ (−1)n+1
m∑
t′=0

[X,xjt′ ]ηi0 ∧ · · · ∧ ηin ⊗ xj0 . . . x̂jt′ . . . xjm ,

where x̂ and η̂ indicate that the corresponding term is omitted.
Now, consider the action of l on M(s) induced by ν∗, as given explicitly in Lemma

13.1.16. By Theorem 13.1.11, there exists an isomorphism Q :
∧
u→ C(s) of super vector

spaces, providing a basis of M(s) consisting of elements of the form

Q(ηi0 ∧ · · · ∧ ηin ⊗ xj0 . . . xjm) = ηi0 . . . ηinxj0 . . . xjm ,

using isotropy of u (cf. Remark 13.1.12). Here, M(s) is regarded as a natural quotient of
C(s). We have:

ν∗(X)Q(ηi0 ∧ · · · ∧ ηin ⊗ xj0 . . . xjm)

=
s0∑
k=1

(
n∑
t=0

(X, [bit , bk])ηk(−1)tηi0 . . . η̂it . . . xjm

+
m∑
t′=0

(X, [ψt′ , bk])ηk(−1)n+1ηi1 . . . x̂jt′ . . . xjm

)

+
s1∑
k′=1

(
n∑
t=0

(X, [bit , ψk′ ])xk′(−1)tηi1 . . . η̂it . . . xjm

+
m∑
t′=0

(X, [ψt′ , ψk′ ])xk′(−1)n+1ηi1 . . . x̂jt′ . . . xjm

)
+ ρu(X)ηi1 . . . xjn

= Q

(
n∑
t=0

(−1)t[X, ηit ]ηi1 ∧ . . . η̂it . . . xjm

+
m∑
t′=0

(−1)n+1[X,xit′ ]ηi1 ∧ . . . x̂jt′ . . . xjm + ρu(X)ηi0 ∧ . . . xjm

)
,

where ρu(X) is only present if X ∈ h. Concerning the signs, recall, that by (13.1.3) we
have the action ∂

∂xi
xk = −δik. Here, we use the notation of Section 13.1.3, and the proof

of Lemma 13.1.16 to obtain ρu together with (13.1.3) in the final step. We conclude that
both actions coincide up to a twist by Cρu . This finishes the proof.

The superspaces u and u are finite-dimensional l-supermodules, and the adjoint action
of l preserves the natural Z-grading of ∧ u and ∧ u. Combining Proposition 13.2.19 and
Proposition 13.2.20, we obtain the following corollary.
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Corollary 13.2.21. The l-supermodules M(s) and M(s) decompose completely into finite-
dimensional simple l-supermodules.

For the remainder of this article, we focus on M(s), as this supermodule is best suited
for studying highest weight g-supermodules.

Dirac cohomology: definition and first results

For any g-supermodule M , the cubic Dirac operator D(g, l) acts naturally on the U(g) ⊗
C(s)-supermodule M ⊗ M(s) by componentwise action. In particular, as D(g, l) and l
commute, the kernel ker D(g, l) naturally carries the structure of an l-supermodule. This
gives rise to a definition of Dirac cohomology analogous to [66], as suggested in [79].

Definition 13.2.22. The Dirac cohomology HD(g,l)(M) of a g-supermodule M is the l-
supermodule

HD(g,l)(M) := ker D(g, l)/ ker D(g, l) ∩ im D(g, l).

The Dirac cohomology HD(g,l)(M) has a natural decomposition induced by the Z2-
grading of M(s). Accordingly, we decompose the Dirac operator as D(g, l) = D(g, l)+ +
D(g, l)−, where

D(g, l)+ := D(g, l)
∣∣
M⊗M(s)0̄

: M ⊗M(s)0̄ →M ⊗M(s)1̄,

D(g, l)− := D(g, l)
∣∣
M⊗M(s)1̄

: M ⊗M(s)1̄ →M ⊗M(s)0̄,
(13.2.1)

and define H+
D(g,l)(M) := HD(g,l)+(M) and H−

D(g,l)(M) := HD(g,l)−(M), so that

HD(g,l)(M) := H+
D(g,l)(M) + H−

D(g,l)(M).

We are particularly interested in admissible (g, l)-supermodules, i.e., g-supermodules
that are l-semisimple. For these supermodules, the Dirac cohomology is l-semisimple by
Proposition 13.2.19, as D(g, l) commutes with the action of l.

Lemma 13.2.23. Let M be an admissible (g, l)-supermodule. Then HD(g,l)(M) is a
semisimple l-supermodule, that is, HD(g,l)(M) is completely reducible as an l-supermodule.

Given the nice square of the Dirac operator in Theorem 13.2.3, the Dirac cohomology
reveals its full potential when the supermodule under consideration possesses an infinites-
imal character. This will be explored in the subsequent section. Before addressing this
topic, we establish that D(g, l) naturally induces a cohomology on the space (U(g)⊗C(s))l
of l-invariants in U(g)⊗ C(s), as shown in [79].

We equip U(g)⊗C(s) with the Z2-grading induced by C(s), that is, (U(g)⊗C(s))0̄,1̄ :=
U(g)⊗C(s)0̄,1̄. The diagonal embedding α : l→ U(g)⊗C(s), as defined in equation (13.2.1),
endows U(g)⊗C(s) with the structure of an l-supermodule via the adjoint action. Hence,
it makes sense to consider the space of l-invariants in U(g)⊗ C(s):

(U(g)⊗ C(s))l := {A ∈ U(g)⊗ C(s) : [α(X), A] = 0 for all X ∈ l},

which is still endowed with the obvious Z2-grading. This enters the following construction,
due to [79]. Let d̂ be the operator acting on U(g)⊗ C(s) as

d̂(A) := [D(g, l), A] = D(g, l)A− (−1)p(A)AD(g, l)
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for any homogeneous A ∈ U(g) ⊗ C(s). Since D(g, l) is l-invariant, the operator d̂ can be
restricted to an operator

d : (U(g)⊗ C(s))l → (U(g)⊗ C(s))l,

which is proved to be nilpotent, i.e., d2 = 0, and hence it makes sense to define its
cohomology to be the quotient ker d/ im d, see [79]. Recalling that we denoted by Z(l∆)
the image under the diagonal embedding α of Z(l), the center of the universal enveloping
superalgebra U(l), one has the following characterization for the cohomology of d.

Theorem 13.2.24 ([79, Theorem 6.2]). The cohomology of d is isomorphic to Z(l∆), i.e.,

ker d = Z(l∆)⊕ im d.

Infinitesimal characters and Dirac cohomology

We now aim to extend the above discussion to supermodules admitting an infinitesimal
character, which we introduced in Section 3.1.4. We start with the following straightfor-
ward corollary of Theorem 13.2.24.

Corollary 13.2.25. Any element z ⊗ 1 ∈ U(g)⊗ C(s) with z ∈ Z(g) can be written as

z ⊗ 1 = ηl(z) + D(g, l)A+AD(g, l),

for some A ∈ (U(g)⊗ C(s))l, and some unique ηl(z) ∈ Z(l∆) ∼= Z(l).

The previous Corollary 13.2.25 introduces a map η l : Z(g)→ Z(l), which we now describe.
Letting g be decomposed as g = l ⊕ s, where we note that h ⊂ l by definition. Moreover,
let HCg,l denote the Harish-Chandra monomorphism and res : S(h)W g → S(h)W l be the
restriction map.

Proposition 13.2.26. The map η l : Z(g) → Z(l) is an algebra homomorphism. Further,
the following diagram is commutative.

Z(g) Z(l)

S(h)W g
S(h)W l

ηl

HCg HCl

res

Proof. For any z1, z2 ∈ Z(g), we find A1, A2 ∈ (U(g)⊗ C(s))l such that

z1 ⊗ 1 = ηl(z1) + d(A1), z2 ⊗ 1 = ηl(z2) + d(A2).

Multiplication yields

z1z2 ⊗ 1 = ηl(z1)ηl(z2) + ηl(z1)d(A2) + d(A1)ηl(z2) + d(A1)d(A2).

However, by Corollary 13.2.25, we have d(ηl(z1)) = d(ηl(z2)) = 0, and consequently

z1z2 ⊗ 1 = ηl(z1)ηl(z2) + d(ηl(z1)A2 +A1ηl(z2) +Ad(A′))
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with ηl(z1)A2 +A1ηl(z2) +Ad(A′) ∈ (U(g)⊗ C(s))l. Again, by Corollary 13.2.25, we have

z1z2 ⊗ 1 = ηl(z1z2) + d(A)

for some A ∈ (U(g)⊗ C(s))l, i.e., ηl(z1)ηl(z2) = ηl(z1z2).
For the second part of the proof, we note h ⊂ g0̄, and we identify S(h)W g and S(h)W l

with the algebraic varieties h∗/W g and h∗/W l. Let ζ : S(h)W g → S(h)W l denote the
homomorphism induced by ηl under the Harish-Chandra monomorphisms, and let ζ ′ :
h∗/W l → h∗/W g be the associated morphism of the algebraic varieties. To show that the
diagram commutes, it suffices to prove that ζ ′ is the inclusion map, i.e., ζ ′(λ) = λ for all
λ ∈ h∗/W l.

For any λ ∈ h∗, we define a highest weight g-supermodule M as in Equation (3.1.3). As
stated explicitly in Proposition 13.3.7, HD(g,l)(M) contains a non-trivial simple weight l-
supermodule generated by vλ⊗vM(s) of weight λ+ρu. However, on HD(g,l)(M), we conclude
from z = ηl(z) the following:

(λ+ ρ)(z) =
(
(λ+ ρu) + ρl

)
(ηl(z)) = (λ+ ρ)(ηl(z)),

i.e., ζ ′(µ) = µ for all µ = λ+ ρ. This completes the proof.

As a result, we obtain a super-analog of the Casselman–Osborne Lemma (cf. [82, 97]),
that will play a crucial role in what follows. More precisely, we have the following theorem,
which gives a Lie superalgebra version of [33, Theorem 4.3].

Theorem 13.2.27. Let M be a g-supermodule with infinitesimal character χλ. Then
z⊗ 1 ∈ Z(g)⊗ 1 acts as η l(z)⊗ 1 on HD(g,l)(M). In particular, if V is an l-subsupermodule
of HD(g,l)(M) with infinitesimal character χl

µ for µ ∈ h∗, then χλ = χl
µ ◦ ηl.

Proof. Let V be as above and fix some non-trivial v ∈ V . By Corollary 13.2.25, there
exists some A ∈ (U(g)⊗ C(s))l such that for any z ∈ Z(g):

z ⊗ 1− χλ(z) = (ηl(z)− χl
µ(ηl(z))) + d(A) + (χl

µ(ηl(z))− χλ(z)),

where we identify Z(l) ∼= Z(l∆). Applying both sides of this identity to v, we obtain

(χl
µ(ηl(z))− χλ(z))v mod ker D(g, l) ∩ im D(g, l) = 0.

This concludes the proof by Proposition 13.2.26.

The previous result, combined with Proposition 13.2.19, yields the following corollary.

Corollary 13.2.28. Let M be a g-supermodule in Op with infinitesimal character. Then
HD(g,l)(M) is a completely reducible l0̄-module.

Homological properties

We now briefly discuss the homological properties of the Dirac cohomology, seen as a
functor from the category of g-supermodules to the category of l-supermodules. In general,
it has neither a right nor a left adjoint, but it satisfies a six-term exact sequence.

227



Lemma 13.2.29. Let 0→ A→ B → C → 0 be a short exact sequence of g-supermodules
having an infinitesimal character. Then there exists a natural six-term exact sequence

H+
D(g,l)(A) // H+

D(g,l)(B)

$$I
II

II
II

II

H−
D(g,l)(C)

::uuuuuuuuu
H+

D(g,l)(C)

zzuuu
uu
uu
uu

H−
D(g,l)(B)

ddIIIIIIIII

H−
D(g,l)(A)o o

The proof of the above statement is similar to our proof of follows from a similar ar-
gument to the one used in the proof of Theorem 8.1 in [62]„ relying on the fact that the
supermodules involved have an infinitesimal character, together with Theorem 13.2.3, and
that supermodule morphisms are even.

Second, we consider the Euler characteristic of the Dirac cohomology when restricted to
admissible (g, l)-supermodules M . For any such supermodule, the Dirac operator D(g, l)
acts on M⊗M(s)0̄ and M⊗M(s)1̄, interchanging these two spaces. The Dirac index I(M)
of M is defined as the difference of l-supermodules

I(M) := M ⊗M(s)0̄ −M ⊗M(s)1̄.

This Dirac index I(M) is a virtual l-supermodule, meaning that it is an integer combination
of finitely many l-supermodules – notice that I(M) is an element in the Grothendieck
group of the Abelian category of admissible (g, l)-supermodules, in fact it is additive with
respect to short exact sequences. In contrast, as seen above, we can use D(g, l) : M ⊗
M(s)0̄,1̄ → M ⊗M(s)1̄,0̄ to decompose the Dirac cohomology HD(g,l)(M) into two parts,
H+

D(g,l)(M) and H−
D(g,l)(M). The Euler characteristic of HD(g,l)(M) is given by the virtual

l-supermodule H+
D(g,l)(M) − H−

D(g,l)(M). These two virtual l-supermodules, I(M) and the
Euler characteristic, are equal if M has an infinitesimal character.

Proposition 13.2.30. Let M be an admissible (g, l)-supermodule that admits an infinites-
imal character. Then the Dirac index I(M) is equal to the Euler characteristic of the Dirac
cohomology HD(g,l)(M) of M , i.e.,

I(M) = H+
D(g,l)(M)−H−

D(g,l)(M).

Proof. Since M admits an infinitesimal character, we can decompose M ⊗M(s) into a
direct sum of eigenspaces of D(g, l)2 by Theorem 13.2.3 (see below in Section 13.3.1 for a
proof), namely,

M ⊗M(s) = (M ⊗M(s))(0)⊕
∑
r 6=0

(M ⊗M(s))(r),

where (M⊗M(s))(r) denotes an eigenspace with eigenvalue r ∈ C. The operator D(g, l)2 is
even, so the decomposition is compatible with the decomposition into even and odd parts
of M(s):

(M ⊗M(s))(r) = (M ⊗M(s)0̄)(r)⊕ (M ⊗M(s)1̄)(r).
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On the other hand, the Dirac operator D(g, l) preserves each eigenspace because D(g, l)
and D(g, l)2 commute. However, D(g, l) switches parity, defining maps

D(g, l)(r) : (M ⊗M(s)0̄,1̄)(r)→ (M ⊗M(s)1̄,0̄)(r),

which are isomorphisms with inverses 1/rD(g, l)(r) for r 6= 0. Consequently, we have

M ⊗M(s)0̄ −M ⊗M(s)1̄ = (M ⊗M(s)0̄)(0)− (M ⊗M(s)1̄)(0).

The Dirac operator D(g, l) acts as a differential on ker(D(g, l)2), and the associated coho-
mology is the Dirac cohomology. The result follows from the Euler–Poincaré principle.

13.3. Dirac cohomology and highest weight supermodules
In this subsection, we build on the super-analog of the Casselman–Osborne Lemma (The-
orem 13.2.27) as a key tool for investigating the Dirac cohomology of highest-weight g-
supermodules, with a particular emphasis on finite-dimensional cases.

Specifically, in Section 13.3.2, we prove that the Dirac cohomology of highest-weight
g-supermodules is always non-trivial (Proposition 13.3.7). In Section 13.3.3, we refine this
analysis to the finite-dimensional setting, where we perform explicit computations of Dirac
cohomology.

More precisely, we determine the Dirac cohomology of finite-dimensional supermodules
over classical Lie superalgebras of type 1 (i.e., g = gl(m|n), g = A(m|n) or g = C(n)) with
a typical highest weight (Theorem 13.3.10), and of finite-dimensional simple objects in Op

(Theorem 13.3.11).

13.3.1. Decomposition of M ⊗M(s)

Let M be a (g, l)-supermodule that admits Jordan–Hölder series with simple quotients iso-
morphic to highest weight g-supermodules. Then any simple quotient admits an infinitesi-
mal character χΛ, and the quadratic Casimir Ωg acts as the scalar multiple of (Λ + 2ρ,Λ).
In addition, M(s) is a completely reducible l-supermodule by Proposition 13.2.19.

As a consequence, we will decompose M ⊗ M(s) into generalized eigenspaces of the
Laplace operator ∆ = D(g, l)2, given by

M ⊗M(s) =
⊕
r∈C

(M ⊗M(s))(r),

where the generalized eigenspaces are defined as

(M ⊗M(s))(r) := {v ∈M ⊗M(s) : ∃n := n(v) ∈ Z+ s.t. (r · idM⊗M(s)−∆)nv = 0}.

An element v ∈ (M ⊗M(s))(r) is called a generalized eigenvector with generalized eigen-
value r. To achieve this decomposition, we first decompose M ⊗ M(s) with respect to
infinitesimal characters.

Lemma 13.3.1. The l-supermodule M ⊗M(s) has a direct sum decomposition

M ⊗M(s) =
⊕
ν∈h∗

(M ⊗M(s))ηlν ,
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where (M ⊗M(s))ηlν is the generalized infinitesimal character subspace

(M⊗M(s))ηlν := {v ∈M⊗M(s) : for all z ∈ Z(l) exists n := n(z, v) s.t. (z−χl
ν(z))nv = 0}.

Proof. The l-supermodule M ⊗M(s) is h-semisimple, hence, we can consider its weight
space decomposition

M ⊗M(s) =
⊕
µ∈h∗

(M ⊗M(s))µ,

and any weight space (M ⊗M(s))µ is finite-dimensional. Consequently, each weight space
decomposes in generalized eigenspaces for some z ∈ Z(l), which concludes the proof.

By Theorem 13.2.3 and a direct calculation, on any (M ⊗ M(s))ηlν , the cubic Dirac
operator D(g, l) acts as a scalar multiple of

cν := χΛ(Ωg)− χl
ν(Ωl)− c,

where the value c is given explicitly in Lemma 13.2.4.

Proposition 13.3.2. The l-supermodule decomposes into a direct sum of generalized ∆-
eigenspaces

M ⊗M(s) =
⊕
r∈C

(M ⊗M(s))(r).

In particular, the following decomposition holds:

M ⊗M(s) = ker ∆⊕ im ∆.

Proof. The lemma is a direct consequence of Lemma 13.3.1 and Equation (13.3.1) with

(M ⊗M(s))(r) =
⊕

ν∈h∗ : cν=r
(M ⊗M(s))χl

ν .

This concludes the proof.

As a direct consequence, we provide an equivalent description of the Dirac cohomology.
Let D(g, l)′ denote the Dirac operator restricted to ker ∆. Since (D(g, l)′)2 = 0, we have
im D(g, l)′ ⊂ ker D(g, l)′, allowing us to define the cohomology

HD(g,l)′(M) := ker D(g, l)′/ im D(g, l)′.

This cohomology is isomorphic to the Dirac cohomology HD(g,l)(M) as ker D(g, l) ⊂ ker ∆.

Corollary 13.3.3. As l-supermodules, the following isomorphism holds:

HD(g,l)′(M) ∼= HD(g,l)(M).

Moreover, we obtain a relation between HD(g,l)(M) and the decomposition of M ⊗M(s).

Lemma 13.3.4. The following three assertions are equivalent:

a) HD(g,l)(M) = ker D(g, l).

b) ker D(g, l) ∩ im D(g, l) = {0}.
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c) M ⊗M(s) = ker D(g, l)⊕ im D(g, l).

Proof. The assertion b) follows from a) by definition of Dirac cohomology. To deduce c)
from b), we note that

M ⊗M(s) = ker ∆⊕ im ∆.

by Proposition 13.3.2, and ker D(g, l) ⊂ ker ∆, im ∆ ⊂ im D(g, l). We show ker D(g, l) =
ker ∆ and im D(g, l) = im ∆.

Assume v ∈ ker ∆\ker D(g, l). Then w := D(g, l)v 6= 0, by assumption, and D(g, l)w = 0.
However, w ∈ ker D(g, l) ∩ im D(g, l), which is trivial. We conclude ker D(g, l) = ker ∆.
Similarly, the equality im D(g, l) = im ∆ holds.

Finally, the assertion a) follows from c) by definition again.

13.3.2. Generalities on Dirac cohomology of highest weight supermodules
We now characterize the kernel of the Laplace operator for admissible highest weight (g, l)-
supermodules and establish that the Dirac cohomology of highest weight g-supermodules
is non-trivial.

Let M be an admissible highest weight (g, l)-supermodule with highest weight Λ ∈ h∗.
The explicit form of the Laplace operator ∆, as provided in Theorem 13.2.3, is given by

∆ = Ωg ⊗ 1− Ωl,∆ + c(1⊗ 1),

where c = (ρ, ρ) − (ρl, ρl). According to Lemma 3.1.19, the action of Ωg on M is the
scalar (Λ + 2ρ,Λ) times the identity. Furthermore, as a l-supermodule, M ⊗M(s) fully
decomposes into simple highest weight l-supermodules. By applying Lemma 3.1.19, we get
the following result.

Lemma 13.3.5. Let M be an admissible highest weight (g, l)-supermodule with highest
weight Λ ∈ h∗. Let N be a simple l-constituent of M ⊗M(s) with highest weight ν ∈ h∗.
Then ∆ acts on N as the scalar multiple

(Λ + 2ρ,Λ)− (ν + 2ρl, ν) + (ρ, ρ)− (ρl, ρl)

of the identity. In particular, a simple l-constituent N of highest weight ν belongs to ker ∆
if and only if

(Λ + 2ρ,Λ) + (ρ, ρ) = (ν + 2ρl, ν) + (ρl, ρl).

Corollary 13.3.6. Let M be an admissible highest weight (g, l)-supermodule with highest
weight Λ ∈ h∗, and let N be a simple l-supermodule constituent of M ⊗M(s) with highest
weight ν ∈ h∗. Assume there exist w ∈ W g, t1, . . . , tk ∈ C, and linearly independent odd
isotropic roots α1, . . . , αk ∈ ∆+ satisfying (Λ + ρ, αi) = 0 for all i, such that

ν = w

(
Λ + ρ+

k∑
i=1

tiαi

)
− ρl.

Then N belongs to ker ∆.

Finally, we show that the Dirac cohomology of generic highest weight supermodules is
non-trivial.
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Proposition 13.3.7. Let M be a highest weight g-supermodule with highest weight Λ.
Then HD(g,l)(M) is non-trivial.

Proof. Let vM be the highest weight vector of M , and let vM(s) = 1 ⊗ 1 ∈ M(s). In
particular, u annihilates vM and vM(s), respectively, where for the latter we may identify
elements of u with ∂

∂xi
and ∂

∂ηj
, as in Section 13.1.3.

First, we show that vM ⊗ vM(s) ∈M ⊗M(s) lies in ker D(g, l). As in Section 13.2.1, we
decompose D(g, l) = C + C̄, where C = A+ 1⊗ a and C̄ = Ā+ 1⊗ a, with

A =
s∑
i=1

ui ⊗ ui, Ā =
s∑
i=1

(−1)p(ui)ui ⊗ ui,

a = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)+p(ui)+p(uj)[ui, uj ]uiuj ,

a = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)[ui, uj ]uiuj .

Since uivM = 0 and uivM(s) = 0 for all i = 1, . . . , s, it is immediate that A, Ā, and a

annihilate vM ⊗ vM(s). To see that ā annihilates vM ⊗ vM(s), we note that [ui, uj ] ∈ u for
all 1 ≤ i, j ≤ s, and we can rewrite ā as (Remark 13.2.8)

ā = −1
4

∑
1≤i,j≤s

(−1)p(ui)p(uj)+p(ui)+p(uj)uiuj [ui, uj ].

We conclude that vM ⊗ vM(s) ∈ ker D(g, l).
Furthermore, under the identification of u with elements of the form ∂

∂xi
and ∂

∂ηj
acting

on ∧
u, the discussion in Section 13.1.3 makes it immediate that vM(s), and therefore

vM ⊗ vM(s), cannot lie in the image of D(g, l). This concludes the proof.

13.3.3. Dirac cohomology and finite-dimensional supermodules
In this subsection, we specify to the Dirac cohomology of finite-dimensional simple ad-
missible (g, l)-supermodules, where g is a basic classical Lie superalgebra of type 1. In
particular, we will compute the Dirac cohomology of those with typical highest weight and
finite-dimensional simple objects in Op.

In the following, throughout this subsection, we let g be a basic classical Lie superalgebra
of type 1, i.e., g is gl(m|n), A(m|n), or C(n). The simple finite-dimensional supermodules
are parameterized by dominant integral weights λ ∈ h∗ with respect to some Borel sub-
algebra b = b0̄ ⊕ b1̄, i.e., those weights for which there exists a finite-dimensional simple
g0̄-module with highest weight λ for b0̄. More precisely, λ is dominant integral if and only
if

(λ+ ρ0̄, α) > 0 for all α ∈ ∆+
0̄ ,

where ∆+ = ∆+
0̄ t ∆+

1̄ is the positive system with respect to b. We denote the set of
b-dominant integral weights by P++

b , and call them also ∆+-dominant integral. Moreover,
if b is clear from the context, we omit the subscript and simply write P++.
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For any λ ∈ P++
b , we define Lb(λ) (or simply L(λ) when no confusion arises) to be the

simple supermodule with highest weight λ with respect to b such that the highest weight
vector is even. The fixed notation allows us to parameterize the simple finite-dimensional
g-supermodules as follows:

{L(λ),ΠL(λ) : λ ∈ P++}.

In the following, we assume thatM := L(λ), λ ∈ P++
b , is an admissible finite-dimensional

simple (g, l)-supermodule, where b is the distinguished Borel subalgebra. The distinguished
Borel subalgebra is defined with respect to the distinguished positive system ∆+, that is,
the positive system with the smallest number of odd roots. For this system, as a direct
calculation shows, we have

(ρ1̄, α)
{

= 0 if α ∈ ∆0̄,

> 0 if α ∈ ∆+
1̄ .

The l-supermodule M ⊗ M(s) decomposes completely in finite-dimensional weight l-
supermodules by Proposition 13.2.19. Each finite-dimensional simple weight l-supermodule
is of highest weight type with respect to some positive system ∆(l; h)+. The associated
highest weight µ ∈ h∗ is called ∆(l; h)+-dominant integral. If ν is the ∆(l; h)+-dominant
integral, we denote the associated simple l-supermodule by Ll(ν).

For the remainder, we fix a positive system ∆(l; h)+, which is contained in the distin-
guished positive system ∆+. In particular, if M is a highest weight g-supermodule with
highest weight λ with respect to ∆+, then λ is the highest weight with respect to ∆(l; h)+

of an l-constituent of M . For any µ ∈ h∗, we define

W l,1
λ := {w ∈W l : w(λ+ ρl) is ∆(l; h)+-dominant integral}.

Note that w∆+ contains ∆(l; h)+ whenever w ∈W l,1
λ .

We are now ready to compute the Dirac cohomology. We use that HD(g,l)(M) decom-
poses completely in simple finite-dimensional highest weight l-supermodules, and, crucially,
Theorem 13.2.27. We start with two lemmas that will enter the proofs of our main result.

Lemma 13.3.8. Let M be an admissible finite-dimensional simple (g, l)-supermodule with
highest weight Λ. Then HD(g,l)(M) decomposes in a direct sum of simple finite-dimensional
highest weight l-supermodules each of with highest weight ν of the form

ν = w

(
Λ + ρ+

k∑
i=1

tiαi

)
− ρl,

for some w ∈W l, ti ∈ C and isotropic odd roots αi in ∆(l; h) satisfying (Λ + ρ, αi) = 0.

Proof. As M is a highest weight g-supermodule with highest weight Λ, the Dirac coho-
mology contains a simple highest weight l-supermodule with highest weight Λ + ρu by
Proposition 13.3.7. If V is another simple highest weight g-supermodule with highest
weight ν, Theorem 13.2.27 dictates for any z ∈ Z(l) on HD(g,l)(M) the equality,

χl
Λ+ρu(z) = χl

Λ+ρu(ηl(z)) = χl
ν(ηl(z)) = χl

ν(z),

which concludes the proof with Corollary 3.1.23 and ρ = ρl + ρu.
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Lemma 13.3.9. Let M be an admissible finite-dimensional simple g-supermodule with
highest weight Λ. Then any simple l-constituent in HD(g,l)(M) appears with multiplicity
one.

Proof. Let V be a (non-trivial) simple l-constituent of HD(g,l)(M) with highest weight ν.
By Lemma 13.3.8, the highest weight ν is of the form

ν = w

(
Λ + ρ+

k∑
i=1

tiαi

)
− ρl,

for some w ∈ W l, ti ∈ C and isotropic odd roots αi in ∆(l; h) satisfying (Λ + ρ, αi) = 0.
We may assume w ∈ W l,1

µ for µ = Λ + ρu +
∑k
i=1 tiαi. To prove the lemma, we have to

show that

w(λ+ ρ+
k∑
i=1

tiαi)− ρl = w(λ+
k∑
i=1

tiαi) + ρwu

appears with multiplicity one. Here, we denote by ρwu the Weyl element with respect to
w(∆+ \∆(l; h)+), and note that wρl = ρl.

Assume this is not the case. Then, as we are dealing with highest weight supermodules,
there exists A ⊂ w(∆+ \∆(l; h)+) and B ⊂ w∆+ with

w(Λ +
k∑
i=1

tiαi) + ρwu = (w(Λ +
k∑
i=1

tiαi)− Z+[B]) + (ρwu − Z+[A]),

where Z+[A] :=
∑
ξ∈A Z+ξ and Z+[B] :=

∑
ζ∈A Z+ζ. This forces Z+[A]+Z+[B] = 0. Now,

if we are taking the inner product with ρ0̄ and use the invariance of (·, ·) under the action
of the Weyl group together with Equation (13.3.3), we deduce that neither A nor B can
contain odd roots. On the other hand, taking then the inner product with w(λ + ρ0̄), we
obtain ∑

α∈A
(w(λ+ ρ0̄), α) +

∑
β∈B

(w(λ+ ρ0̄), β) = 0,

and each summand is strictly positive as no odd roots appear and w(Λ + ρ0) is dominant
integral. Consequently, A = ∅ and B = ∅. This concludes the proof.

The above lemmas enter the proof of the following Theorem, which is one of the main
result of this section.

Theorem 13.3.10. Let M be an admissible finite-dimensional simple (g, l)-supermodule
with typical highest weight Λ. Then

HD(g,l)(M) =
⊕

w∈W l,1
Λ+ρu

Ll(w(Λ + ρ)− ρl).

Proof. Let V be a non-trivial l-constituent in HD(g,l)(M) with highest weight ν. By atypi-
cality of Λ, Lemma 13.3.8 and Lemma 13.3.9, the simple finite-dimensional l-supermodule
V appears with multiplicity one and has highest weight

ν = w(Λ + ρ)− ρl

234



for some w ∈W l,1
Λ . Consequently, it is enough to show that each w(Λ + ρ)− ρl appears as

a weight in M ⊗M(s). However, this is immediate as

w(Λ + ρ)− ρl = w(Λ) + (w(ρ)− ρl) = w(Λ) + w(ρu)

is a sum of extreme weights in M and M(s), respectively, which are ∆(l; h)+-dominant
integral.

These results for general finite-dimensional admissible (g, l)-supermodules allow us to
compute the Dirac cohomology of finite-dimensional simple objects inOp for some parabolic
subalgebra p = l⋉ u with reductive l0̄.

Dirac cohomology and finite-dimensional simple objects in Op

Let p = l ⋉ u be a parabolic subalgebra with reductive l0̄. This is the case if the Levi
subalgebra is good [30, Section 7]. Recall that by Theorem 13.1.7, we may consider any
finite-dimensional simple M as the unique simple quotient of a parabolically induced su-
permodule, where p has good Levi subalgebra l.

By definition of Op in Section 13.1.1, any object decomposes completely in finite-dimen-
sional simple l0̄-modules. In particular, if M belongs to Op, the supermodules M ⊗M(s)
and HD(g,l)(M) decompose completely in finite-dimensional l0̄-modules by a similar argu-
mentation as above.

Let M := L(Λ) ∈ Op be a finite-dimensional simple object with highest weight Λ ∈ h∗

with respect to some positive system. Fix a positive system ∆(l; h)+. Then, noting h ⊂ l0̄,
we may identify ∆(l0̄; h) with ∆(l; h)0̄ and ∆(l0̄; h)+ with ∆(l; h)+

0̄ .
Adapting Theorem 13.2.27 and Lemma 13.3.8 to the new setting, we conclude that any

l0̄-constituent in HD(g,l)(M) has highest weight

ν = w(Λ + ρu + ρl0̄)− ρl0̄

for some w ∈ W l0̄,1
λ = {w ∈ W g : w(λ + ρl0̄) is ∆(l0̄; h)+-dominant integral}. No isotropic

roots appear as l0̄ is purely even. Now, a straightforward modification of the proofs of
Lemma 13.3.9 and Theorem 13.3.10 leads to the following theorem.

Theorem 13.3.11. Let M ∈ Op be simple and finite-dimensional with highest weight Λ.
Then

HD(g,l)(M) =
⊕

w∈W
l0̄,1
Λ+ρu

Ll0̄(w(Λ + ρu + ρl0̄)− ρl0̄).

13.4. Dirac cohomology and Kostant’s cohomology
In this section, we study the relation between Dirac cohomology and Kostant’s (co)homology.
For that, we briefly introduce Kostant’s (co)homology in Subsection 13.4.1. Then Proposi-
tion 13.2.20 allows us to decompose the cubic Dirac operator in terms of the boundary and
coboundary operators of Kostant’s (co)homology. This decomposition is used to deduce
an embedding of the Dirac cohomology into Kostant’s (co)homology in Theorem 13.4.10.

Afterward, we study Dirac cohomology for unitarizable supermodules with respect to
Hermitian real forms, introduced in Subsection 13.4.3. In this case, we show that Dirac
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cohomology and Kostant’s (co)homology are isomorphic as supermodules over the Levi
subalgebra.

Finally, as an application, we study the Dirac cohomology of simple weight supermod-
ules in Subsection 13.4.4. These supermodules are particularly interesting because they
are h-semisimple with finite-dimensional weight spaces. We establish in Theorem 13.4.20
that weight supermodules have trivial Dirac cohomology unless they are highest weight
supermodules.

13.4.1. Kostant’s u-cohomology and u-homology
We start fixing some notations. Let M be a g-supermodule that is (g, l)-admissible, i.e.,
M is a g-supermodule that is l-semisimple. Fix a parabolic subalgebra p := l ⋉ u with
opposite parabolic subalgebra p = l ⋉ u. Recall that l is the Levi subalgebra and u, u are
the nilradicals of p and p, respectively.

Recall that the exterior superalgebras ∧ u and ∧ u over the super vector spaces u and u
inherit a natural Z-grading induced by the Z-grading of the tensor superalgebras T (u) and
T (u), respectively. More precisely, let V be either u or u, then the exterior n-power is the
super vector space (see Example 2.1.2)∧n

V = V ⊗n/Jn,

where Jn is the subspace of V ⊗n generated by the elements of the form

v1 ⊗ · · · ⊗ vn − (−1)p(σ)σ · v1 ⊗ · · · ⊗ vn, σ ∈ Sn, vi ∈ V.

Here, p(σ) denotes the parity of the permutation σ.
After establishing the notation, we introduce Kostant’s (co)homology, see [17, Section

6.4], which is a natural generalization of the classical Lie algebra (co)homology theory, see
for example [82] or [25] for the super case. We define the space of p-chains, Cp(u,M), and
the space of p-cochains, Cp(u,M), as

Cp(u,M) :=
∧p

u⊗M, Cp(u,M) := HomC(
∧p

u,M)

for any p ∈ Z+. Note that Cp(u,M) and Cp(u,M) are naturally p-supermodules, and if
M is finite-dimensional, there is a natural identification Cp(u,M) ∼= Cp(u,M). Moreover,
we set C∗ :=

∑
p≥0Cp(u,M), and C∗ :=

∑
p≥0C

p(u,M), which are p-supermodules by
construction.

Define the boundary operator d :=
∑
p dp : C∗(u,M)→ C∗(u,M) by setting

dp(x1 . . . xp ⊗ v) :=
p∑
s=1

(−1)s+p(xs)
∑p

i=s+1 p(xi)x1 . . . x̂s . . . xp ⊗ xsv

+
∑

1≤s<t≤p
(−1)s+t+p(xs)

∑s−1
i=1 p(xi)+p(xt)

∑t−1
j=1 p(xj)+p(xs)p(xt)[xs, xt]x1 . . . x̂s . . . x̂t . . . xp ⊗ v

for xi ∈ u homogeneous and v ∈ M . Here, x̂ indicates that the corresponding term x is
omitted. A straightforward calculation yields dp−1 ◦ dp = 0 for any p ∈ Z+. The p-th
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u-homology group with coefficients in M , denoted by Hp(u,M), is defined to be the p-th
homology group of the following chain complex:

. . .→ Cp(u,M) dp−→ Cp−1(u,M) dp−1−−−→ . . .
d2−→ u⊗ V d1−→M

d0−→ 0,

that is, Hp(u,M) := ker dp/ im dp+1 for p ∈ Z+. We refer to Hp(u,M) as Kostant’s
homology for M .

Define the coboundary operator ∂ :=
∑
p ∂p : C∗(u,M)→ C∗(u,M) by

(∂pf)(x1, . . . , xp+1) :=
p+1∑
s=1

(−1)s+1+p(xs)(p(f)+
∑s−1

i=1 p(xi))xsf(x1, . . . , xs−1, x̂s, xs+1, . . . , xp+1)

+
∑
s<t

(−1)s+t+p(xs)
∑s−1

i=1 p(xi)+p(xt)
∑t

j=1 p(xj)+p(xs)p(xt)
f([xs, xt], x1, . . . , x̂s, . . . , x̂t, . . . , xp+1),

for homogeneous xi ∈ u. The coboundary operator ∂ satisfies ∂p ◦ ∂p−1 = 0 for all p ∈ Z+.
The p-th u-cohomology group with coefficients in M , denoted by Hp(u,M), is defined to
be the p-th cohomology group of the following chain complex:

0 ∂−1−−→M
∂0−→ C1(u,M) ∂1−→ . . .

∂p−1−−−→ Cp(u,M) ∂p−→ Cp+1(u,M) ∂p+1−−−→ . . . ,

i.e., Hp(u,M) := ker ∂p/ im ∂p−1.We refer to Hp(u,M) as Kostant’s cohomology for M .
As in [66], we will consider the operator δ = −2d. It is clear, that δ defines the same
cohomology as d.

A direct calculation yields the subsequent lemma.

Lemma 13.4.1. The boundary operator d : C∗(u,M) → C∗(u,M) and the coboundary
operator ∂ : C∗(u,M)→ C∗(u,M) are l-supermodule morphisms. In particular, Hp(u,M)
and Hp(u,M) are l-supermodules.

Remark 13.4.2. The boundary operators ∂ is even a p-supermodule morphism.
Having introduced Kostant’s homology and cohomology, we now describe their relation

in the case M is an admissible (g, l)-supermodule, following [17]. In this case, M is also an
admissible (g, h)-supermodule, that is M = ⊕µ∈h∗Mµ with dim(Mµ) < ∞. To any such
M , we can assign a dual supermodule. Let τ : g→ g be the Chevalley automorphism of g,
and for any µ ∈ h∗, let (Mµ)∗ denote the dual space of the finite-dimensional weight space
Mµ. The dual of M is the g-supermodule

M∨ :=
⊕
µ∈h∗

(Mµ)∗,

with g-action given by (X · f)(v) := (−1)p(X)p(f)−1f(τ(X) · v).

Lemma 13.4.3 ([17, Theorem 6.22]). Let M be an admissible (g, l)-supermodule and
p ∈ Z+. Then, as semisimple l-supermodules, we have the following isomorphisms:

Hp(u,M∨) ∼= Hp(u,M).

In particular, if M is a simple highest weight g-supermodule, we have

Hp(u,M) ∼= Hp(u,M).
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13.4.2. Relation to Dirac cohomology
We construct an explicit embedding of Dirac cohomology into Kostant’s cohomology for
admissible (g, l)-supermodules. This involves identifying M ⊗M(s) with M ⊗∧ u⊗Cρu as
l-supermodules (cf. Proposition 13.2.20) and interpreting the operators C and C̄ (cf. The-
orem 13.2.10) as the boundary and coboundary operators, respectively.

Proposition 13.4.4. Let M be an admissible (g, l)-supermodule. Then under the action
of U(g)⊗ C(s) on M ⊗M(s), and the identification in Proposition 13.2.20, the operators
C and C̄ act as δ = −2d and ∂, respectively. In particular, D(g, l) acts as ∂ − 2d = ∂ + δ.

Proof. Under the identification M(s)⊗M ∼=
∧
u⊗Cρu⊗M of l-supermodules, we compare

the actions of C, C̄, d, and ∂. We explicitly perform the calculation for C and the boundary
operator d, while the other cases follow by a similar line of argument.

By swapping the order of U(g) and C(s), we may rewrite C = A′ + a⊗ 1 with

A′ =
∑
i

(−1)p(ui)ui ⊗ ui =
∑
i

(ui)∗ ⊗ ui,

where we note that exchanging the factors of the tensor product introduces an extra factor
(−1)p(ui) in the sum, and (ui)∗ = (−1)p(ui)ui. To deduce the action of C, we recall the
action of u ∈ u and u ∈ u on Y = Y1 . . . Yn ∈M(s):

u · Y := u ∧ Y,

u · Y := 2
n∑
t=1

(−1)
t+1+p(u)

t−1∑
k=1

p(Yt)
(u, Yt)Y1 . . . Ŷt . . . Yn.

For general ξ = Y1 . . . YN ⊗ v ∈M(s)⊗M , we find

A′ξ =
s∑
i=1

2
n∑
t=1

(−1)
t+1+p(ui)

t−1∑
k=1

p(Yt)
((ui)∗, Yt)Y1 . . . Ŷt . . . Yn ⊗ uiv.

Here, we use that ((ui)∗, Yt) is only non-zero if p(ui) = p(Yt), and hence we can replace
p(ui) by p(Yt) in the exponent. Then, since ∑i((ui)∗, Yt)ui = (−1)p(Yt)p(Yt)Yt, we see that
this is equal to minus twice the first sum in the expression for d in Equation (13.4.1).

It remains to identify the action of the cubic term a. In order to compute a, we fix some
notation. For Y1 . . . Yn, let

Ŷt,r = γ(t, r)Y1 . . . Ŷt . . . Ŷr . . . Yn,

where

γ(t, r) =


1 if t < r,

−(−1)p(Yt)p(Yr) if t > r,
0 if t = r.

This allows us to write

uiujY1 . . . Yn = 4
∑
t,r

(−1)
t+r+p(uj)

t−1∑
k=1

p(Yt)+p(ui)
r−1∑
l=1

p(Yl)
((ui)∗, Yt)((uj)∗, Yr)Ŷt,r,
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and a⊗ 1 acts on Y1 . . . Yn ⊗ v as

−1
4

4
∑
i,j,t,r

(−1)
t+r+p(uj)

t−1∑
k=1

p(Yt)+p(ui)
r−1∑
l=1

p(Yl)
((ui)∗, Yt)((uj)∗, Yr)[uj , ui]Ŷt,r ⊗ v.

Again, we can replace p(ui) by p(Yt) and p(uj) by p(Yr). Upon summing ∑
i

((ui)∗, Yκ)ui =

(−1)p(Yκ)p(Yκ)Yκ for κ ∈ {r, t}, we obtain

−
∑
t,r

(−1)t+r+p(Yt)
∑t

k=1 p(Yt)+p(Yr)
∑r

l=1 p(Yl)+p(Yr)p(Yt)[Yt, Yr]Ŷt,r ⊗ v.

This expression remains invariant under exchanging the roles of k and l and vanishes for
k = l. We conclude that it equals twice the sum restricted to k < l, i.e., minus twice the
second sum in the expression for d. This finishes the proof.

The subsequent corollary is immediate.

Corollary 13.4.5. Let M be an admissible (g, l)-supermodule. Then, as l-supermodules,
we have the following isomorphisms

H(C,M ⊗M(s)) ∼= H∗(u,M)⊗ Cρu , H(C̄,M ⊗M(s)) ∼= H∗(u,M)⊗ Cρu

We now rely on Proposition 13.4.4 and Corollary 13.4.5 to construct an embedding of the
Dirac cohomology in Kostant’s cohomology. As a first step, we study the relation between
ker D(g, l), ker ∆, ker δ and ker ∂. More precisely, we establish that the map

ker D(g, l)→ ker ∆ ∩ ker ∂, x 7→ x

is a well-defined l-equivariant injective map. The proof is similar to the proof of Lemma
4.6 and Lemma 4.7 in [68].

To this end, we use the fact that, as l-supermodules (see Proposition 13.2.20),

M ⊗M(s) ∼= M ⊗
∧

u⊗ Cρu .

The exterior superalgebra ∧ u over the super vector space u inherits a natural Z-grading
induced by the Z-grading of the tensor superalgebra T (u), which induces an l-invariant
increasing filtration

{0} ⊂
∧0

u ⊂
1⊕
i=0

∧i
u ⊂ . . . ⊂

s⊕
i=0

∧i
u =

∧
u,

and an l-invariant decreasing filtration
∧

u =
s⊕
i=0

∧i
u ⊃

s⊕
i=1

∧i
u ⊃ . . . ⊃

∧s
u ⊃ {0}.

These l-invariant increasing/decreasing filtrations induce l-invariant increasing/decreasing
filtration of M ⊗∧ u⊗ Cρu :

{0} = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xs = M ⊗
∧

u⊗ Cρu ,

M ⊗
∧

u⊗ Cρu = X0 ⊃ X1 ⊃ . . . ⊃ Xs ⊃ Xs+1 = {0},

239



where Xk :=
⊕k
i=0M ⊗

∧i u and Xk :=
⊕s
i=kM ⊗

∧i u.
The following lemma is an immediate consequence of the fact that the Dirac operator

D(g, l) is l-invariant.

Lemma 13.4.6. Let M be an admissible (g, l)-supermodule. Then the following two as-
sertions hold:

a) ker D(g, l) has an increasing l-invariant filtration

{0} = (ker D(g, l))−1 ⊂ (ker D(g, l))0 ⊂ (ker D(g, l))1 ⊂ . . . ⊂ (ker D(g, l))s = ker D(g, l)

with (ker D(g, l))k := ker D(g, l) ∩Xk for 0 ≤ k ≤ s.

b) ker D(g, l) has a decreasing l-invariant filtration

ker D(g, l) = (ker D(g, l))0 ⊃ (ker D(g, l))1 ⊃ . . . ⊃ (ker D(g, l))s ⊃ {0}

with (ker D(g, l))k := ker D(g, l) ∩Xk for 0 ≤ k ≤ s.

The l-invariant increasing/decreasing filtrations of ker D(g, l) induce gradings of ker D(g, l),
namely

gr ker D(g, l) :=
s⊕

k=0
(ker D(g, l))k/(ker D(g, l))k+1,

Gr ker D(g, l) :=
s⊕

k=0
(ker D(g, l))k/(ker D(g, l))k−1.

By construction, l leaves (ker D(g, l))k/(ker D(g, l))k+1 and (ker D(g, l))k/(ker D(g, l))k−1
invariant, leading to the following lemma.

Lemma 13.4.7. The l-equivariant maps

gr : ker D(g, l)→ gr ker D(g, l), Gr : ker D(g, l)→ Gr ker D(g, l)

are isomorphisms.

In turns, the previous l-equivariant maps gr and Gr enter the proof of following lemma.

Lemma 13.4.8. Let M be an admissible (g, l)-supermodule. Then there are injective
l-supermodule homomorphisms

f : ker D(g, l) ↪→ ker ∆ ∩ ker δ, g : ker D(g, l) ↪→ ker ∆ ∩ ker ∂

given by

f ◦ gr =
s⊕

k=0
fk, fk(xk + xk+1 + . . .+ xs) := xk

with xk + . . .+ xs ∈ (ker D(g, l))k/(ker D(g, l))k+1 and

g ◦Gr =
s⊕

k=0
gk, gk(x1 + x2 + . . .+ xk) := xk

for x1 + . . .+ xk ∈ (ker D(g, l))k/(ker D(g, l))k−1.

240



Proof. We only prove that g =
⊕s
k=0 gk : ker D(g, l) ↪→ ker ∆ ∩ ker ∂ is an injective l-

supermodule homomorphism. The proof for f : ker D(g, l) ↪→ ker ∆ ∩ ker δ is analogously
and will be omitted.

First, f is well-defined as for any x := x1 + . . .+ xk ∈ (ker D(g, l))k with xi ∈M ⊗
∧i u

for 0 ≤ i ≤ k, we have by Proposition 13.4.4 D(g, l) = ∂ − 2d and thus

D(g, l)(x) = −2d1(x1) + . . .− 2dk(xk) + ∂1(x1) + . . .+ ∂k(xk) = 0.

By degree reasons, we conclude ∂k(xk) = 0, as it is of degree k + 1. This shows that
gk : (ker D(g, l))k/(ker D(g, l))k−1 → ker ∂k is well-defined, and hence, g =

⊕s
k=0 gk is

well-defined. Moreover, by Lemma 13.4.6 and Lemma 13.4.7, the map g is l-equivariant.
Second, the map g is injective as gk(x) = 0 implies xk = 0, that is, x ∈ (ker D(g, l))k−1.
Finally, the image of g is ker ∆ ∩ ker ∂, as for any x = x1 + . . .+ xk ∈ (ker D(g, l))k, we

have ∆(xi) = 0, 1 ≤ i ≤ k, since ∆ = −2(d∂ + ∂d) preserves the degree.

By combining Lemma 13.4.8 with D(g, l) = ∂ − 2d = ∂ + δ and D(g, l)2 = 2(∂δ + δ∂),
we conclude the following Lemma.

Lemma 13.4.9. Let M be an admissible (g, l)-supermodule. Then

ker D(g, l) = ker ∂ ∩ ker δ.

Theorem 13.4.10. Let p = l ⋉ u be a parabolic subalgebra, and let M be an admissible
simple (g, l)-supermodule. Then there exist injective l-supermodule morphisms

HD(g,l)(M) ↪→ H∗(u,M), HD(g,l)(M) ↪→ H∗(u,M).

Proof. We note that the Casimir operators Ωg and Ωl act semisimply on M by assumption.
Then, using Proposition 13.3.2, we have the decomposition

M ⊗M(s) ∼= ker ∆⊕ im ∆,

Furthermore, we may consider HD(g,l)′(M) instead of HD(g,l)(M) (cf. Corollary 13.3.3),
where HD(g,l)′(M) = ker D(g, l)′/ im D(g, l)′ and D(g, l)′ denotes the restriction of the Dirac
operator to ker ∆.

Since ∂ commutes with ∆, as a direct calculation shows, we can restrict ∂ to ker ∆,
denoted by ∂′, and define the associated cohomology ker ∂′/ im ∂′. This cohomology is
naturally an l-subsupermodule of H∗(u,M), and it is enough to show the existence of an
injective l-supermodule morphism

HD(g,l)(M) ∼= HD(g,l)′(M) ↪→ ker ∂′/ im ∂′.

For simplicity, we set V := ker ∆. The idea of the proof is to decompose ker D(g, l)′,
ker ∂′, im D(g, l)′, and im ∂′ into suitable l-supermodules, leveraging the l-semisimplicity of
M ⊗M(s) to compare the corresponding components.

We start by considering the following two short exact sequences of l-supermodules, re-
calling that D(g, l), ∂ and d commute with l and switch parity:

0→ ker D(g, l)′ → V → Π im D(g, l)′ → 0, 0→ ker ∂′ → V → Π im ∂′ → 0.
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Here, Π denotes as usual the parity switching functor. By semi-simplicity, the short exact
sequences split as l-supermodules:

V ∼= ker D(g, l)′ ⊕Π im D(g, l)′, V ∼= ker ∂′ ⊕Π im ∂′.

Next, we decompose ker ∂′. In the following, all isomorphisms are l-supermodule iso-
morphisms unless otherwise stated. For the decomposition, we use Lemma 13.4.9 to see
ker D(g, l)′ ⊂ ker ∂′. Then there exists an l-invariant subspace X such that

ker ∂′ ∼= ker D(g, l)′ ⊕X,

which forces in particular
Π im D(g, l)′ ∼= X ⊕Π im ∂′,

by the decomposition of V above. On the other hand, im D(g, l)′ ⊂ ker D(g, l)′ such that
we find an l-supermodule Y with

ker D(g, l)′ ∼= im D(g, l)′ ⊕ Y,

which yields HD(g,l)′(M) ∼= Y , and

ker ∂′ ∼= ΠX ⊕ Y ⊕ im ∂′.

This induces directly an embedding of l-supermodules

HD(g,l)′(M) ∼= ker D(g, l)′/ im D(g, l)′ ∼= Y ↪→ ΠX ⊕ Y ∼= ker ∂′/ im ∂′.

This concludes the proof.

13.4.3. Hermitian real forms and unitarizable supermodules
We now aim at comparing the Dirac cohomology and the Kostant’s u-cohomology for a
special kind of supermodules, namely unitarizable supermodules over basic classical Lie
superalgebras g. As shown [13], these supermodules are particularly relevant, as they
admit a geometric realization as superspaces of sections of certain holomorphic super vector
bundles on Hermitian superspaces. Furthermore, as an application, we will consider weight
supermodules, and show that their Dirac cohomology is trivial unless they are of highest
weight type. On our way to the above results, we start reviewing Hermitian real forms in
the next subsection, following in particular the results of Fioresi and collaborators, in [13]
and [21, 40].

Hermitian real forms

We fix a real form gR of a basic classical Lie superalgebra g, i.e., gR is the subspace of
fixed points of some θ ∈ aut2,4(g), and we denote by σ := ω ◦ θ ∈ aut2,2(g) the associated
conjugate-linear involution on g (see Proposition 13.1.8 above). In the following, we may
assume that θ associated to gR is a Cartan automorphism (cf. Section 13.1.2).

Following [13, 21], we now extend the concept of Hermitian semisimple Lie algebras over
C to basic classical Lie superalgebras.
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First, the Lie subalgebra gR0̄ ⊂ gR is either semisimple or reductive with one-dimensional
center, since g is basic classical. In general, we have the decomposition

gR0̄ = gR,ss0̄ ⊕ z(gR0̄ ),

where gR,ss0̄ := [gR0̄ , g
R
0̄ ] ⊂ gR0̄ is the commutator subalgebra, i.e., the semisimple part, and

z(gR0̄ ) the center. As we shall see, there exists a notion of Hermiticity for gR,ss0̄ .
On gR0 , the Cartan automorphism θ ∈ aut2,4(g) is an involution, such that we have the

following decomposition:

gR0̄ = kR ⊕ pR0̄ ,

where kR is the eigenspace of θ with eigenvalue +1, and pR0 is the eigenspace with eigenvalue
−1. Complexification yields

g0̄ = k⊕ p0̄, (13.4.1)

with k and p0̄ being the complexifications of kR and pR0̄ , respectively. This is a Cartan
decomposition for g0̄ and gR0̄ , respectively.

Definition 13.4.11 ([21]). A real form gR of g is called Hermitian if the following two
conditions hold:

a) gR,ss0̄ is a Hermitian Lie algebra, i.e., θ0̄ := θ
∣∣
gR0̄

induces a Cartan decomposition

gR,ss0̄ = k′ ⊕ p′, where k′, p′ are the θ0̄|gR,ss
0̄

-eigenspaces with eigenvalue 1 and −1, re-
spectively, such that the adjoint representation of k′ on p′ has two simple components.

b) rank g0̄ = rank k.

The Hermitian real forms gR of basic classical Lie superalgebras g are summarized in
the following table [13, 40], where we emphasize that gR is uniquely determined by the
indicated real Lie subalgebra gR0̄ .

Hermitian real forms gR have a Cartan decomposition

gR = kR ⊕ pR,

where pR := pR0̄ ⊕ gR1̄ , and such that gR0̄ = kR ⊕ pR0̄ is a Cartan decomposition for gR0̄ . We
denote the complexification of pR by p, and note that the Cartan decomposition extends
to g:

g = k⊕ p, p = p0̄ ⊕ g1̄.

Both decompositions are compatible with σ, as θ and ω commute, and Bσ(·, ·) = (·, σ(·))
is positive definite on k and negative definite on p, which justifies the name.

For convenience, we set p1̄ := g1̄. We may decompose p into two k-stable subspaces,
p = p+ ⊕ p−, which we now describe.

The even rank condition implies h ⊂ k ⊂ g0̄ ⊂ g. The root system ∆c for (h, k) is a subset
of ∆0̄. We call a root α ∈ ∆0̄ compact if α ∈ ∆c, or equivalently, if the associated root
vector lies in k; otherwise, the root is referred to as non-compact. The set of non-compact
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g gR0̄

sl(m|n)
su(p,m− p)⊕ su(n)⊕ iR

su(p,m− p)⊕ su(r, n− r)⊕ iR

B(n|m),

D(n|m)

sp(m,R)

so(p)⊕ sp(m,R)

so∗(2n)⊕ sp(m)

so(q, 2)⊕ sp(m,R)

C(m) sp(m,R)⊕ so(2)

D(2, 1;α)
sl(2,R)⊕ sl(2,R)⊕ sl(2,R)

su(2)⊕ su(2)⊕ sl(2,R)

F (4)
sl(2,R)⊕ so(7)

su(2)⊕ so(5, 2)

G(3) sl(2,R)⊕ gc

Table 13.1.: Hermitian real Lie superalgebras. For B(n|m), the values of p and q are
p = 2n + 1 and q = 2n − 1, while for D(n|m), p = 2n and q = 2n − 2.
Moreover, the Lie algebra gC denotes the compact real form of G2.

roots is ∆n := ∆\∆c, such that ∆ = ∆ct∆n. In particular, all odd roots are non-compact.
For a fixed positive system ∆+, we set

p+ :=
∑
α∈∆+

n

gα, p− :=
∑
α∈∆+

n

g−α, (13.4.2)

where ∆+
n := ∆n ∩∆+. Then p = p+ ⊕ p−.

Theorem 13.4.12 ([21, 13]). There exists a positive system ∆+ ⊂ ∆, called admissible,
such that the following two assertions hold:

a) p+ is k-stable, that is, [k, p+] ⊂ p+.

b) p+ is a Lie subsuperalgebra, that is, [p+, p+] ⊂ p+.

A complete list of admissible systems can be found in [13]. In the following, we fix
an admissible positive system for g, denoted by ∆+. Then, note that k ⋉ p+ is a Lie
subsuperalgebra, and [k, p−] ⊂ p−, [p−, p−] ⊂ p−.

p−-cohomology, Dirac cohomology and Hodge decomposition

Having prepared our setting in the previous subsection, we are now ready to study the coho-
mology of unitarizable supermodules. In particular, in the caseH is a simple unitarizable g-
supermodule, we will show thatH⊗M(s) decomposes asH⊗M(s) = ker D(g, l)⊕im D(g, l),
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and hence in this case one has that HD(g,l)(H) = ker D(g, l), see Proposition 13.4.15. Fur-
thermore, Theorem 13.4.17 can be seen as a Hodge decomposition-like result for the cubic
Dirac operator. In particular, it shows that the Dirac cohomology of simple unitariz-
able supermodules is isomorphic (as l-supermodules) to the Kostant u-cohomology (or
u-homology), up to a twist by Cρu .

We fix our notation as follows. Let gR be a Hermitian real form of g with associated
Cartan automorphism θ ∈ aut2,4(g). Let Bθ(·, ·) denote the inner product for gR defined
in Equation (13.1.1). The associated Cartan decomposition reads gR = kR ⊕ pR, and we
consider the complexification yielding a Cartan decomposition for g = k⊕ p (cf. Equation
(13.4.2)).

We fix the parabolic subalgebra q := k⋉ p+ with l = k and u = p+, which is well-defined
by Theorem 13.4.12. The choice of the parabolic subalgebra q = k⋉p+ leads to the Cartan
decomposition g = k⊕s with s := p = p+⊕p−. The parabolic subalgebra q is an example of
a θ-stable subsuperalgebra, that is, θ preserves k, p+ and p−, which is immediate as p is the
θ-eigenspace with eigenvalue −1 and k is the θ-eigenspace with eigenvalue +1. Moreover,
by the definition of σ and the action of ω on weight spaces given in Proposition 13.1.8, we
conclude σ(p±) = p∓.

We restrict Bθ to pR(= sR), and fix some orthonormal basis Z1, . . . , Z2s. Then p+ and
p− are spanned by

uj := Z2j−1 + iZ2j√
2

, uj := Z2j−1 − iZ2j√
2

(13.4.3)

respectively, for j = 1 . . . , s, as a direct calculation yields. In particular, σ(uj) = uj for all
j = 1, . . . , s.

We study the action of uj and uj on H ⊗M(s) for some unitarizable g-supermodule
(H, 〈·, ·〉H). For that, we associate toH⊗M(s) the non-degenerate super Hermitian product

〈v ⊗ P,w ⊗Q〉H⊗M(s) := 〈v, w〉H〈P,Q〉M(s)

for any v ⊗ P,w ⊗Q ∈ H ⊗M(s). We refer to Section 13.2.2 for an explicit realization of
〈·, ·〉M(s). By construction, we study the action componentwise.

Lemma 13.4.13. Let (H, 〈·, ·〉) be a unitarizable gR-supermodule. Then the following holds
for all j = 1, . . . , s:

u†
j = −uj

Proof. As H is a unitarizable gR-supermodule, the orthonormal basis Z1, . . . , Z2s of pR

satisfies
Z†
j = −Zj , j = 1, . . . , 2s.

The statement follows with Equation (13.4.3).

For (M(s), 〈·, ·〉M(s)), we described the adjoint of any uj already in Lemma 13.2.18,
namely, we have

u†
j = −(−1)p(uj)uj

for all j = 1, . . . , s. By combining Lemma 13.2.18 and Lemma 13.4.13, we have proven the
following lemma.
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Lemma 13.4.14. Let (H, 〈·, ·〉H) be a unitarizable g-supermodule. Then the cubic Dirac
operator D(g, l) is anti-selfadjoint with respect to 〈·, ·〉H⊗M(s). In particular,

ker D(g, l) = ker D(g, l)k

for any k ∈ Z+.

In turns, this leads to the following decomposition.

Proposition 13.4.15. Let H be a simple unitarizable g-supermodule. Then

H⊗M(s) = ker D(g, l)⊕ im D(g, l).

In particular, the Dirac cohomology of a simple unitarizable g-supermodule H is

HD(g,l)(H) = ker D(g, l).

Proof. First, the statement of Proposition 13.3.2 holds more generally for any admissible
(g, l)-supermodule which has infinitesimal character - the argument follows from similar
lines. Consequently, it is enough to prove im D(g, l) ∩ ker D(g, l) = {0}.

Let v ∈ im D(g, l)∩ker D(g, l). Then there exists some w ∈ H⊗M(s) such that D(g, l)w =
v, and by positive definiteness of (〈·, ·〉H⊗M(s))0,1 and Lemma 13.4.14, we have

0 ≤ (−i)p(v)〈v, v〉 = (−i)p(v)〈D(g, l)w, v〉 = −(−i)p(v)〈w,D(g, l)v〉 = 0.

This forces v = 0.

We now consider the decomposition D(g, l) = C + C̄ as in Equation (13.2.1). A direct
calculation yields that the adjoint of C is −C̄. More precisely, the following lemma holds.

Lemma 13.4.16. The following assertions hold:

a) ker D(g, l) = kerC ∩ ker C̄.

b) imC is orthogonal to ker C̄ and im C̄, while im C̄ is orthogonal to kerC.

Proof. a) As D(g, l) = C + C̄, the inclusion kerC ∩ ker C̄ ⊂ ker D(g, l) is clear. Assume
D(g, l)v = 0 for some v ∈ H ⊗M(s), i.e., Cv = −C̄v. Consequently,

(−i)p(Cv)〈Cv,Cv〉H⊗M(s) = (−i)p(Cv)〈Cv,−C̄v〉H⊗M(s) = (−i)p(Cv)〈C2v, v〉H⊗M(s) = 0,

where we use C2 = 0 by Lemma 13.2.11. In particular, v ∈ kerC by super positive
definiteness. Analogously, v ∈ ker C̄.

b) Let v ∈ imC and w ∈ ker C̄. We show 〈v, w〉H⊗M(s) = 0. As v ∈ imC, there exists
some v′ ∈ H ⊗M(s) such that Cv′ = v. We conclude

〈v, w〉H⊗M(s) = 〈Cv′, w〉H⊗M(s) = −〈v′, C̄w〉H⊗M(s) = 0,

since w ∈ ker C̄. Analogously, one can prove that im C̄ is orthogonal to kerC.
We show that imC and im C̄ are orthogonal. Let v ∈ imC ∩ im C̄, then there exists

vC , vC̄ ∈ H ⊗M(s) with CvC = v and C̄vC̄ = v. We conclude

(−i)p(v)〈v, v〉H⊗M(s) = (−i)p(v)〈CvC , C̄vC̄〉H⊗M(s) = −(−i)p(v)〈C2vC , vC̄〉H⊗M(s) = 0,

by Lemma 13.2.11. Hence, by super positive definiteness of 〈·, ·〉H⊗M(s), we have v = 0.
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By combining all the previous results, we are now in the position to prove the following
theorem, which is the main result of the present section.

Theorem 13.4.17. Let H be a simple unitarizable g-supermodule. Then the following
assertions hold:

a) H⊗M(s) = ker D(g, l)⊕ imC ⊕ im C̄.

b) kerC = kerD ⊕ imC.

c) ker C̄ = ker D(g, l)⊕ im C̄.

In particular, we have an isomorphism of l-supermodules

HD(g,l)(H) ∼= H∗(u,H)⊗ Cρu .

Proof. By Proposition 13.4.15, the decomposition D(g, l) = C + C̄ and Lemma 13.4.16, we
have

H⊗M(s) = ker D(g, l)⊕ im D(g, l) ⊂ ker D(g, l)⊕ imC ⊕ im C̄,

i.e., im D(g, l) = imC⊕ im C̄. This proves a). The assertions b) and c) follows with a) and
Lemma 13.4.16.

The isomorphisms are now a direct consequence of b), c) and Proposition 13.2.20.

13.4.4. Application: Dirac cohomology and weight supermodules
In this section, we prove that the Dirac cohomology of simple weight supermodules is
trivial unless they are of highest weight type. This generalizes the result for reductive Lie
algebras over C in [69] to basic classical Lie superalgebras.

First, any simple weight g-supermodule M admits an infinitesimal character such that
HD(g,l)(M) ⊂ H∗(u,M) by Theorem 13.4.10. By Proposition 13.3.7, we already know that
HD(g,l)(M) 6= {0} if M is of highest weight type. We show that HD(g,l)(M) = {0} unless
M is of highest weight type. To this end, we identify H i(u,M) with Extiu(C,M) for any
i > 0. To compute Extiu(C,M), we use the subsequent lemma.

Lemma 13.4.18. Let M be a weight g-supermodule. Assume that there exists a positive
root α such that e−α acts injectively on M . Then there exists an injective resolution of M

0→M → I0 → I1 → . . .

such that e−α acts injectively on every Ii for i ∈ Z+.

A proof of the above follows is given in [106]. Let M be a simple weight g-supermodule.
Assume M is not of highest weight type. By Theorem 13.1.7, M is (isomorphic to) the
unique simple quotient Lp(V ) of a parabolically induced g-supermodule Mp(V ), where
p = l ⋉ u is a parabolic subalgebra with a good Levi subalgebra, and V is a cuspidal
l-supermodule. Recall that an l-supermodule is called cuspidal if for any α ∈ ∆(l; h)0̄ the
associated root vector eα acts injectively on V .

As p is parabolic, it contains a Borel subalgebra b := h⊕ n+ (cf. Lemma 13.1.2), where
n+ is the maximal radical of b. Moreover, l 6= h by Section 3.1.3. We conclude l∩n+ 6= {0}.
In particular, we have proven the following lemma.
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Lemma 13.4.19. There exists a root α ∈ ∆+
0̄ (l, h) such that e−α acts injectively on M .

Combining Lemma 13.4.18 and Lemma 13.4.19, we conclude the subsequent theorem.

Theorem 13.4.20. Let M be a simple weight g-supermodule. Then HD(g,l)(M) = {0}
unless M is a highest weight g-supermodule.

Proof. If M is a highest weight module, we have HD(g,l)(M) 6= 0 by Proposition 13.3.7.
Assume M is not a highest weight supermodule. Then there exists some α ∈ ∆(l, h) such
that e−α acts injectively. On the other hand, by Lemma 13.4.18, there exists an injective
resolution of M

0→M → I0 → I1 → . . .

such that e−α acts injectively on any Ii. Hence, the space of g-invariants Igi is trivial for all
i = 0, 1, 2, . . .. In particular, {0} = Extiu(C,M) = H i(u,M). The statement follows from
Theorem 13.4.10.
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List of Symbols
The following list presents a selection of the most frequently used symbols and notations
that appear throughout this document.

0̄, 1̄ residue classes of even and odd integers in Z/2Z

[1⊗ 1] highest weight vector in Verma supermodule

| · | absolute value

(·)∗ super-adjoint

[·, ·] Lie superbracket or supercommutator

(·) complex conjugate

〈·〉g cyclic (super)module over g

(·)† adjoint with respect to an inner product or conjugate adjoint

(·, ·) non-degenerate supersymmetric invariant bilinear form on g

〈·, ·〉H positive definite Hermitian form over the super Hilbert space H∫⊕ direct integral

⋉ semi-direct product

|| · || norm

⊕ direct sum⊕
i∈I Hilbert space direct sum

⊗̂ Z2-graded tensor product

⊗ tensor product over the field K

a, a decomposition summands: 1⊗ φs = a+ a

A,A decomposition summands: C = A+ 1⊗ a, C = A+ 1⊗ a

Ad adjoint representation of a Lie (super)group

ad adjoint representation of a Lie (super)algebra

A(m|m) Lie superalgebra sl(m|m)/CEm|m

A(m|n) Lie superalgebras sl(m|n) for m 6= n



at(·) degree of atypicality

b Borel subalgebra

Ber Berezinian

B(·, ·) K-bilinear form

B(m|n) Lie superalgebras osp(2m+ 1|2n) for m ≥ 0, n ≥ 1

c semisimple element c = [x, x] for x ∈ Yhom

C region of unitarity

C(a,b) region of unitarity with fixed spin and R-symmetry quantum numbers

O BGG category

C,C decomposition summands D(g, l) = C + C

C complex numbers

Cλ one-dimensional supermodule of weight λ

chkC(·) formal character

C topological closure of C

C(n) Lie superalgebras osp(2|2n− 2) for n ≥ 2

Coindg
a(·) coinduction from a (super)module of a sub(super)algebra a to g

Cone(G) cone of a Lie supergroup

Cp(u,M) Kostant’s p-chains

C(π1, π2) space of intertwining operators between (π1,H1) and (π2,H2)

Cp(u,M) Kostant’s p-cochains

C(s) Clifford superalgebra

C Weyl chamber or Kostant’s constant

d Cartan subalgebra of diagonal elements in gl(m|n)

D set of relative holomorphic discrete series representations

d Kostant’s boundary operator

d grading operator or Kostant’s boundary operator

HD(·) Dirac cohomology

HD(g,l)(·) Dirac cohomology with respect to the cubic Dirac operator D(g, l)

def(g) defect of a Lie superalgebra g
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degBPS(·) degree of BPS-ness

δ Kostant’s coboundary operator

det determinant

dg Haar measure of the Lie group G

d(πΛ), d(Λ) formal dimension

dim(V ) dimension of a (super) vector space V

D Dirac operator

D(g, l) cubic Dirac operator

D± D± : (·)⊗M(g1̄)0̄,1̄ → (·)⊗M(g1̄)1̄,0̄

D(m|n) Lie superalgebras osp(2m|2n) for m ≥ 2, n ≥ 1

dπ derived representation of a group representation π

DSx(·) Duflo-Serganova functor with respect to x ∈ Y

eG identity element of a Lie group G

Ek,l matrix with 1 at row k and column l

EndK(·) endomorphisms of a super vector space

evg evaluation map at g ∈ G

exp, e(·) exponential map

F fermion number

G0̄ analytic Lie group associated with g0̄

g0̄ even part of the Lie superalgebra

G0 connected component of the identity of G

g0̄,∆ diagonal embedding of g0̄ in U(g)⊗W (g1̄)

g0̄-mod category of g0̄-modules

g0̄-smod category of g0̄-supermodules

g1̄ odd part of the Lie superalgebra

g Lie algebra or Lie superalgebra

G Lie group

GC complexification of a Lie group G

gC complexification of the real Lie (super)algebra g
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Ĝ unitary dual of G

g = g−1 ⊕ g0 ⊕ g+1 Z2-compatible Z-grading of a Lie superalgebra g

(g, ω)-usmod category of unitarizable (g, ω)-supermodules

(g, ω)-usmod′ (g, ω)-supermodules with only finitely many atypical constituents

GL(m|n) general linear Lie supergroup

gl(m|n) general linear Lie superalgebra

gp,q Riemannian metric with signature (p, q)

gr(·) associated graded (super)module

gR real form of the Lie superalgebra

Greg set of regular elements of a Lie group G

G Lie group or its universal cover

(G, g) super Harish-Chandra pair of a Lie supergroup G

g-smod category of g-supermodules

gss semisimple part of a reductive Lie algebra g

G Lie supergroup

G̃ universal cover of the Lie group G

gx Lie superalgebra DSx(g)

Gx analytic Lie group of gx

H(2) space of Hermitian 2× 2 matrices

HCg Harish-Chandra morphism for the Lie (super)algebra g

H∗(u, ·) Kostant’s u-homology

Hd discrete part of the unitary representation H

H±
D(g,l)(·) Dirac cohomologies of D(g, l)±

HD±(·) Dirac cohomology with respect to D±

H upper half-plane or space of coupling constants

h Cartan subalgebra

HK space of K-finite vectors in the unitary representation H

H super Hilbert space or unitarizable supermodule over g

H∗(g+1, ·) Kostant’s cohomology
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Hom(·, ·) vector space of homomorphisms

Hom(·, ·) inner Hom

H[π] isotypic component of the unitary representation H

H∗(u, ·) Kostant’s u-cohomology

I(·) Dirac index or KMMR index

id identity operator

I identity matrix

im image

IndD(·) Dirac induction

IWH (Q) Q-Witten index on H

Indg
a(·) induction functor from a to g

Ip,q diagonal matrix diag(1, . . . , 1,−1, . . . ,−1)

ISO(1, d− 1) Poincaré Lie group of d-dimensional spacetime

iso(1, d− 1) Poincaré Lie algebra of d-dimensional spacetime

K maximal compact subgroup

K(·) Kac supermodule

ker kernel

k (real) maximal compact subalgebra

K field of real or complex numbers

K(Λ) Kac supermodule of highest weight Λ ∈ h∗

K[x1, . . . , xn] polynomial ring in indeterminates x1, . . . , xn over the field K

Km|n super vector space over K of superdimension (m|n)

L0(Λ) simple g0̄-(super)module of highest weight Λ

L2(G) Hilbert space of square-integrable functions on G

L Lie algebra su(p, q)C

len(Λ) length of Y (Λ)

l Levi subalgebra or supertranslation algebra

L(Λ), Lb(Λ) unique simple quotient of M(Λ) or K(Λ)

Lp(V ) simple quotient of a parabolic Verma supermodule
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L superconformal algebra

M(Λ),Mb(Λ) Verma supermodule for Λ ∈ h∗ with respect to b

Ma fixed point set of a sub(super)algebra of a supermodule

Mat(m|n) Lie supergroup of supermatrices

Mat(m× n;K) space of m× n matrices over K

M c set of fixed points in M under the action of c

M(g,K) category of Harish-Chandra supermodules

Mev g-supermodule M considered under g0̄ after neglecting parity

M Minkowski space

Mλ weight space of weight λ of the supermodule M

Modg,K category of (g,K)-modules

M(g1̄) oscillator module over W (g1̄)

M, (ρ,M) supermodule

Mp(V ) parabolic Verma supermodule

M(s),M(s) oscillator modules

m(·) multiplicity function

n± subalgebra of positive and negative root spaces

Oχ block of the BGG category O with infinitesimal character χ

Op parabolic category O

O(p, q) indefinite orthogonal group

osp(V ), spo(V ) orthosymplectic Lie superalgebra over the super vector space V

Osp(m|2n) orthosymplectic Lie supergroup

O oscillator supermodule

OM structure sheaf of a supermanifold M

p(·) parity function

p opposite parabolic subalgebra

PM set of weights of a weight supermodule M

Pn smooth projective space of dimension n

p parabolic subalgebra
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p± sum of root spaces of positive/negative non-compact roots

pr projection operator

P++
b set of ∆+-dominant integral weights

psl(n|n) projective special linear Lie superalgebra

psu(p, q|r, s) projective unitary special linear Lie superalgebra of signature (p, q|r, s)

P, PT parabolic set

Q supercharge or element of Y

R Lie algebra su(n)C

rα even or odd reflection

rk(·) rank of a Lie algebra, Lie group, or matrix

Resga(·) restriction functor from g to a

R field of real numbers

R>0 positive real numbers

s sum u⊕ u

sAlgK category of superalgebras over K

sO super BGG category

sdim(V ) superdimension of a super vector space V

siso(V ) Poincaré Lie superalgebra

siso(d,C) complex super Poincaré Lie algebra

Sk symmetric group on {1, . . . , k}

sLieK category of Lie supergroups over K

SL(n,K) special linear Lie group of degree n over K

SL(m|n) special linear Lie supergroup

sl(n,K) special linear Lie algebra of degree n over K

sManK category of supermanifolds over K

soc(·) socle of a (super)module

so(n,K) special orthogonal Lie algebra over K

SO(n,K) special orthogonal group of degree n over K

SO(p, q) special orthogonal indefinite group

255



Spin(V ) spin group

Sg,l, S
g,l spin modules with respect to u and u

sp(V ) symplectic Lie algebra over the vector space V

S set of subsets of ∆+
1̄ or supercharge

str supertrace

SU(p, q) indefinite special unitary group

S(V ) (super)symmetric algebra over the (super) vector space V

su(p, q) special indefinite unitary Lie algebra of signature (p, q)

su(p, q|r, s) special unitary indefinite Lie superalgebras

sVectK category of super vector spaces over the field K

Sym(V ) space of symmetric tensors in T (V )

T triangular decomposition of a root system or Cartan subgroup

T (V ) tensor superalgebra
FTµλ translation functor w.r.t. a finite-dimensional supermodule F

tr trace

t Cartan subalgebra

treg,+
x regular and positive elements of the Cartan subalgebra tx of gx

TxM tangent space at x

U(g0̄,∆) diagonal embedding of U(g0̄) in U(g)⊗W (g1̄)

U(g) universal enveloping Lie superalgebra

U(H) space of unitary operators on the Hilbert space H

u(n) unitary Lie algebra of degree n

u(p, q|r, s) unitary indefinite Lie superalgebras

u(H) space of skew-Hermitian operators on H

u, u nilpotent radical of p and p

V0̄ even part of the super vector space V

V1̄ odd part of the super vector space V

V real or complex super vector space

V ∗ dual of the super vector space V
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V ∞ space of smooth vectors in a (super) vector space V

vΛ highest weight vector with highest weight Λ

Wc Weyl group of ∆c

w · λ dot action of the Weyl group

W (g1̄) Weyl algebra over the vector space g1̄

W,W g Weyl group of a Lie (super)algebra g

X∗(TC) character group

xM endomorphism on M associated with x ∈ g

Y self-commuting variety

Yhom rank variety

Y (Λ) Young diagram of a certain weight Λ

YM associated variety of a supermodule M

Z center of the Lie group G

z(g) center of U(g)

π(λ,∆+) limit of discrete series representations

Z2 ring of integers modulo 2

Z ring of integers

Z≤0 set of non-positive integers

Z+ set of non-negative integers

Z≥0 set of non-negative integers∧
V exterior superalgebra

ψ(·, ·) super Hermitian form

α root or diagonal embedding g0̄ → U(g)⊗W (g1̄)

α central u(1)-charge

χ0̄ even infinitesimal character

χΛ infinitesimal character with respect to Λ

χxV supercharacter of the supermodule V at x

∆ root system

∆ Laplace operator
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∆c set of compact roots

∆(g; h) root system for the Cartan subalgebra h

δj dual basis element of H = diag(0, . . . , 0|0, . . . , 0, 1, 0, . . . , 0)

∆n set of non-compact roots

∆+
nst non-standard positive system

∆+
0̄ even positive system

∆+
1̄ odd positive system

∆+ positive root system

∆+
st standard positive system

∆0,±
T root system with respect to a triangular decomposition T

∆x root system of DSx(g)

∆0̄ set of even roots

∆1̄ set of odd roots

εi dual basis element of H = diag(0, . . . , 0, 1, 0, . . . , 0|0, . . . , 0)

Γ set of g-unitarity or spin pairings

Γ0 set of g0̄-unitarity

Γ(a,b)
0 set of g0̄-unitarity with fixed spin and R-symmetry quantum numbers

Γ(a,b) set of g-unitarity with fixed spin and R-symmetry quantum numbers

gω real form associated with a conjugate-linear anti-involution ω

Λ highest weight

λ central charge in su(p, q)

Λj highest weight of a g0̄-constituent

ω conjugate-linear anti-involution

Ωg quadratic Casimir element of U(g)

ω(−,+) conjugate-linear anti-involution associated with su(p, q|0, n)

ω(+,−) conjugate-linear anti-involution associated with su(p, q|n, 0)

ω± conjugate-linear anti-involutions associated with su(m|n, 0) and su(m|0, n)

Φ morphism of supermanifolds
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φ fundamental 3-form in (
∧3 g)0̄

φs restriction of φ to s

Π parity reversal functor

Π = (π, ρπ) representation of a Lie supergroup

π simple system

(πΛ,HΛ) (rel.) holomorphic discrete series with HC parameter Λ

ρ = ρ0̄ − ρ1̄ Weyl vector

ρc Weyl vector with respect to ∆+
c

ρ0̄ even Weyl vector

ρl Weyl vector with respect to the Levi subalgebra

ρn Weyl vector with respect to ∆+
n

ρu Weyl vector with respect to the nilpotent radical

σ conjugate-linear involution

Θ,ΘΛ Harish-Chandra character

θ infinitesimal Cartan involution or Cartan automorphism

Θ̃ L-packet

Ξ root lattice or Hamiltonian
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