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Abstract

Systems driven far from equilibrium can show radically different properties from
the same system at equilibrium. In some cases, new steady-states can emerge, enabling
the application of theoretical frameworks typically developed in equilibrium. In this
thesis, we discuss the emergence of self-stabilized, square lattice patterns in a Bose-
Einstein condensate (BEC) with periodically modulated interactions. We show that
despite the dynamical nature of the system, the patterned state displays Goldstone
modes that are identical to those of supersolids, which are equilibrium superfluids
with spontaneously arising periodic ordering.

We first provide a brief overview of the theoretical concepts underpinning the
spontaneous emergence of the pattern, as well as its stabilization. We then present
the experimental techniques used to observe the pattern, focusing mainly on tunable
interactions and local control over the cloud using a digital micromirror device. Ex-
perimental results on the emergence of the structure are discussed, demonstrating that
the pattern is truly a result of nonlinear phenomena far from equilibrium. We then turn
towards explicit imprinting of lattices, which enables us to probe the phonon-phonon
interactions that explain pattern stabilization. Beyond imprinting ideal lattices, we
also explicitly instigate lattice and superfluid defects, observing their propagation.
We identify two distinct speeds of sound for longitudinal excitations and a diffusive
mode for transverse lattice deformations. We compare the extracted mode structure to
a generic framework of superfluid smectics, extracting relevant hydrodynamic param-
eters of the system. Finally, we compare the dynamics of wavepackets to collective
modes, finding good agreement.






Zusammenfassung

Systeme, die weit vom Gleichgewicht entfernt sind, konnen drastisch andere Ei-
genschaften aufweisen, als das gleiche System im Gleichgewicht. In einigen Fillen
konnen neue stationdre Zustinde entstehen, welche die Anwendung von theoreti-
schen Modellen ermoglichen, die fiir Gleichgewichtssituationen entwickelt wurden.
In dieser Arbeit beschreiben wir die Entstehung von selbststabilisierten, quadratischen
Gittermustern in einem Bose-Einstein-Kondensat (BEC) mit periodisch modulierter
Wechselwirkung. Wir zeigen, dass trotz der dynamischen Natur des Systems der
gemusterte Zustand Goldstone-Moden aufweist, die mit denen von Supersoliden,
d.h. Superfluiden mit spontan auftretender periodischer Ordnung im Gleichgewicht,
identisch sind.

Wir geben zuniichst einen kurzen Uberblick iiber die theoretischen Konzepte,
die der spontanen Entstehung des Musters und seiner Stabilisierung zugrunde lie-
gen. Anschliefend stellen wir die experimentellen Techniken vor, die zur Beobach-
tung des Musters verwendet werden, wobei wir uns hauptsichlich auf einstellbare
Wechselwirkungen und die lokale Kontrolle {iber die Wolke mithilfe eines Mikro-
spiegelarray konzentrieren. Es werden experimentelle Ergebnisse iiber die Entste-
hung der Struktur diskutiert, die zeigen, dass das Muster tatsidchlich das Ergebnis
nichtlinearer Phanomene ist, die weit vom Gleichgewicht einsetzen. AnschlieBend
wenden wir uns der expliziten Aufpragung von Gittern zu, die es uns ermoglicht, die
Phonon-Phonon-Wechselwirkungen zu untersuchen, welche die Stabilisierung des
Musters erkldren. Wir pragen nicht nur ideale Gitter auf, sondern regen auch explizit
Gitter- und Superfluiddefekte an und beobachten deren Ausbreitung. Wir identifi-
zieren zwei unterschiedliche Schallgeschwindigkeiten fiir longitudinale Anregungen
und eine diffusive Mode fiir transversale Gitterdeformationen. Wir vergleichen die
extrahierte Modenstruktur mit einem generischen Modell von superfluiden smekti-
schen Fliissigkristallen und extrahieren die relevanten hydrodynamischen Parameter
des Systems. SchlieBlich vergleichen wir die Dynamik von Wellenpaketen mit kol-
lektiven Moden und finden eine gute Ubereinstimmung.
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CHAPTER 1

Introduction

One of the most striking phenomena in science is the emergence of highly structured
systems from simple natural laws. Rather than existing in a homogeneous, isotropic,
and thermalized cloud of matter, we live in a universe filled with highly complex,
patterned systems, ranging from the spiral shapes of galaxies to the stripes on a zebra
to macroscopic, tessellated rock formations. Counter-intuitively, these structures
exist because the universe is an out-of-equilibrium system, where dynamic physical
systems can result in the emergence order rather than chaos.

The arrangement of nature into neat patterns is not only fascinating, it is also
useful: complex, nonlinear dynamics can be described through remarkably simplified
models that summarize the dynamics of many constituent particles into macroscopic
structures. One of the first scientists to mathematically describe pattern formation was
Alan Turing, who considered competing rates of reaction and diffusion between two
substances, showing that domains of the two substances with specific length scales
could emerge [1]. Since then, mathematical techniques for describing patterns have
become increasingly sophisticated [2, 3] and have been discussed in a wide variety
of disciplines, including nonlinear optics [4], biology [5], and chemistry [6].

In ultracold gases, the emergence of patterns has been a topic of interest ever since
Bose-Einstein condensates (BECs) were realized in the lab. The first observation of
structure formation in a BEC was a hexagonal vortex lattice, which emerged after
rotating the system with external optical traps [7, 8]. Parallel experiments showed
that one-dimensional condensates with attractive interactions result in periodically
spaced bright solitons [9].

Several years later, it was demonstrated that periodically modulating the trapping
potential of an effectively one-dimensional BEC results in the growth of density pat-
terns known as Faraday waves [10], analogous to the formation of surface waves in
shaken classical fluids [11-14]. Later experiments demonstrated the growth of Fara-
day patterns when modulating the interatomic interaction strength with a Feshbach
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Chapter 1. Introduction

resonance [15]. The stability of these Faraday patterns as well as their sub-harmonic
response was also demonstrated in one-dimensional systems [16, 17]. In two di-
mensions, driving the interaction strength with multiple frequencies was shown to
selectively enhance scattering processes of specific geometries, resulting in patterns
with square and hexagonal symmetry [18]. Further works have demonstrated struc-
ture formation due to modulational instability [9, 19, 20], Faraday patterns in strongly
interacting superfluids [21], and the growth of incommensurate density patterns in a
driven lattice [22].

In recent years, condensates made of dipolar atoms have become a dominant
platform for studying the formation of patterned superfluids. These dipolar atoms,
typically erbium and dysprosium, have large magnetic dipole moments, which leads
to dipole-dipole interactions on the order of contact interactions [23]. In contrast
to isotropic contact interactions, dipole interactions are anisotropic, and this addi-
tional structure (together with external traps and quantum fluctuations) can lead to
spontaneously arising stationary states with periodically modulated densities.

A key feature of these patterned states is that they fulfill the definition of a super-
solid, which is a quantum state of matter in which crystalline order and superfluidity
exist simultaneously. Formally, such states are classified by the presence of two
spontaneously broken symmetries—U(1) symmetry (corresponding to superfluidity),
as well as translational symmetry (corresponding to crystalline ordering). The coex-
istence of solidity and superfluidity was first considered theoretically more than half
a century ago [24], typically in the context of superfluid defects propagating through
solid helium [25-27]. Definitive experimental observation of supersolids was only
achieved recently [28-32], in systems that are superfluid but show the emergence
of periodic patterns. Since then, a wealth of experimental and theoretical work has
surrounded the characteristic features of supersolid systems, including [33—46].

In this thesis, we seek to unite the study of pattern formation in driven superfluids
with that of supersolids. We first show the emergence of self-stabilized Faraday pat-
terns in a two-dimensional superfluid with driven interactions. This state is stabilized
through non-linear processes that had previously neither been discussed theoretically,
nor observed experimentally. Secondly, while it has long been known that driven
superfluids can show spontaneously arising density structures, neither the presence
of Goldstone modes in the lattice nor the modification of the superfluid behavior has
been studied. Using precise local control of the superfluid, we demonstrate that the
patterned steady states indeed support novel sound modes not present in equilibrium
by identifying distinct longitudinal sound excitations in the lattice and superfluid,
as well as a diffusive transverse lattice mode. These modes are probed with both
long wavelength collective excitations and localized wavepackets. Finally, we apply a
hydrodynamic theory of superfluid smectics to extract compressibilities of the lattice
and superfluid.
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This thesis is organized as follows. The second chapter provides a brief overview
of spontaneous symmetry breaking, while the third chapter discusses Bogoliubov
quasiparticles, detailing not only the form of the dispersion relation but also some
key properties of coherent states of Bogoliubov phonons.

The fourth chapter focuses on theoretical models describing driven superfluids,
discussing both Floquet analyses that describe instabilities due to driving, as well as
non-linear methods that capture pattern stabilization. A key result is the derivation of
the amplitude equation, which describes angle-dependent processes that lead to the
stabilization of square lattice patterns, observed experimentally in the course of this
thesis [47].

The fifth chapter provides an overview of the experimental system, with an em-
phasis on the techniques relevant for this work, in particular the measurement of
momentum distributions and the development of a novel trapping geometry, the slox
potential.

The sixth chapter presents experimental results on the spontaneous emergence
of square lattice patterns in the experiment. We quantify the emergence of square
lattices, which arise in a large range of experimental parameters. We also compare the
stability of patterns in different trapping geometries, finding that boundary conditions
play a critical role in the observed dynamics.

The seventh chapter details our efforts to “synthetically” produce patterns, with
the use of spatially modulated light fields. We explicitly demonstrate the role of angle-
dependent effects between individual density waves, and also provide an overview of
how pattern stability can be optimized.

Chapter eight provides experimental results on the supersolid sound modes, show-
ing the dynamics of long-wavelength perturbations to the lattice and superfluid phases.
We first investigate stripe patterns, finding that the presence of the stripe reduces the
longitudinal superfluid response while leaving the transverse superfluid mode unaf-
fected. We use a hydrodynamic model of superfluid smectics [48, 49] to extract rele-
vant parameters of the system. We then probe transverse lattice excitations, showing
that they are critically damped. The extracted dispersion relations are then compared
to the dynamics of localized wavepackets, showing good agreement between two
independent perturbing schemes.
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CHAPTER 2

Spontaneous Symmetry Breaking

Spontaneous symmetry breaking (SSB) is a fundamental concept in physics, playing
a defining role in physical phenomena such as superconductivity, the electroweak
interaction, phase transitions, and pattern formation. In this section, we will briefly
provide a formal definition of SSB and discuss a few of its physical consequences. We
then point out the formal similarities between Ginzburg-Landau theory for describing
phase transitions and pattern formation. This section largely follows the logic and
structure of [52], as well as [53].

2.1 Broken Symmetries

The notion of SSB is based on a simple yet somewhat surprising fact: the symmetries
of a Hamiltionian are not necessarily the same as those of its eigenstates. In order to
piece apart the implications of this statement, we will first define what a symmetry
is, and then explore some of the consequences of symmetry breaking.

2.1.1 Definition

States are defined to be symmetric under a unitary transformation U if they are
unaltered by the transformation up to a phase factor,

Uly) =e?|y). 2.1

For example, such a transformation can represent the rotation of a sphere, a translation
in space, or a shift in the phase of a wavefunction. Symmetries of a Hamiltonian, on
the other hand, are defined in terms of invariance under a unitary operator, such that
[U, H] = 0, or equivalently UTHU = H.

17



Chapter 2. Spontaneous Symmetry Breaking

If a Hamiltonian H is invariant under such a symmetry transformation U but
an eigenstate |¢) is not, the state has spontaneously broken the symmetry of the
Hamiltonian. This essentially means that the natural laws describing the dynamics of
a system do not depend on the phase ¢, and that therefore there are many degenerate
eigenstates each with a different phase. The degeneracy is clearly shown in that while
|y and U |¢) are different states, U commutes with the underlying Hamiltonian and
these states must therefore have the same energy.

The transformation U is a global transformation, meaning that it is applied uni-
formly over the whole system, and thus the symmetries described by the transforma-
tion are also called global symmetries. This is in contrast to local transformations,
such as a gauge transformation, which depend on space. Local symmetries cannot
be spontaneously broken in the same way as global symmetries, in that the emerging
Goldstone modes are not gauge invariant [54]. This is a crucial point in distinguishing
U(1) symmetry from gauge symmetry, and the often repeated phrase “U(1) gauge
symmetry breaking” is therefore misleading.

While these definitions are somewhat abstract, it turns out that considering the
consequences of SSB results in remarkable predictive power in determining char-
acteristics of a given physical system. In the following, we will focus on two such
consequences, namely the Noether and Goldstone theorems.

2.1.2 Noether Theorem

As was defined earlier, a transformation U defines a symmetry of the Hamiltonian if it
commutes with H. If U is a unitary transformation, it can be written as the exponential
of an operator Q, i.e. U = 2. Additionally, we know that for time-independent
Hamiltonians, the time evolution of a state can be described through exponentiation
of the Hamiltonian, where

(1)) = e |yy . (2.2)

Because U is a symmetry of H, it commutes with the time evolution operator, which
further implies that [Q, /'] = 0, and that therefore the expectation value of Q is
conserved in time:

W Q@) = (Wl emQe ™ M yy = (y| Q ly). (2.3)

This leads to the general statement that any unitary, continuous symmetry corresponds
to an observable Q, where U = ¢’ and Q is a conserved quantity.

Noether’s theorem is based on the notion that globally conserved quantities can
be expressed as integrals over a local density of the conserved quantity Q,

Q:/dxp(x,t). 2.4
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2.1. Broken Symmetries

If the crystal can be
shifted freely in space....

I T \3@@@@/“@

...the positions of constituent ...long-wavelength
particles can fluctuate! behavior is modified.

7> =\

Figure 2.1: Visualization of Goldstone Theorem. Left, a toy model for
spontaneous translational symmetry breaking into crystalline ordering, using
balls on a spring. The spontaneous emergence of the crystal means that the
global position of the lattice can be shifted freely, which in turn means that
constituent atoms can fluctuate freely. Right, the contrasting case of explicit
symmetry breaking. The periodic potential fixes the position of the crystal.
Small perturbations come at an energy cost, as seen by the incommensurate
spacing of balls and potential minima.

If the crystal is fixed in space...

Because Q is stationary in time, a locally elevated density in one position x means that
at some other point x’, the density must be diminished. This leads to the continuity
equation

0
5P D+ V- j(x1) =0, (2.5)

where j(x, t) is the current associated with the density. The correspondence between
a symmetry and a continuity equation constitutes Noether’s theorem. For this work,
three relevant examples are

* U(1) symmetry — conservation of particle number in a condensate
* Space translational symmetry — conservation of total momentum
* Time translational symmetry — conservation of total energy.
While U(1) and space translation symmetry are spontaneously broken in the driven

superfluid, time translation symmetry is explicitly broken by the drive, leading to a
lack of energy conservation.
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Chapter 2. Spontaneous Symmetry Breaking

Tm(v)) Im(¥)

Figure 2.2: Champagne Bottle Potential. Left, an effective potential for
a < 0 (blue) and its groundstate (red). The expectation value of the order
parameter in this case is 0. Center, the effective potential after the control
parameter has been quenched a > 0, where single realizations now have
finite |(y)| and a random phase. Right, the average distribution with a > 0,
showing that each phase is equally possible.

2.1.3 Goldstone Theorem

The most famous consequence of SSB is the emergence of Goldstone modes. The
general idea is relatively straightforward; because a symmetry is broken sponta-
neously, nothing sets a given phase, and global changes to a phase should come at no
energy cost. A concrete example is the spontaneous formation of crystalline order,
where the phase of the order parameter is simply the spatial phase of the lattice. If
the underlying Hamiltonian is still translationally invariant, then it should come at no
energy cost to simply shift the crystal in space.

These global transformations can alternatively be viewed as a deformation of the
phase with infinite wavelength, i.e. kK — 0. Deformations at a length scale that is very
large but finite, however, begin to cost energy. In a crystal, this is like a slow variation
of the position of constituent particles, which will compress and stretch the lattice. In
the limit where this wavenumber of the variation is infinitesimally small, this should
come at a vanishing energy cost. This indicates the presence of a “gapless” mode in
the dispersion relation, where the word gapless simply implies that the energy cost
goes to zero when the wavenumber goes to zero, i.e. w(k — 0) = 0. Therefore, SSB
indicates the emergence of a new effective (quasi-)particle with zero mass.

Though this generic case is often stated simply, the specifics of a given physical
system can add complexity. For example, spontaneous breaking of translational sym-
metry can also simultaneously break rotational symmetry, and therefore no additional
particle emerges despite two symmetries being broken [55, 56]. Another case of
particular relevance for this work is the emergence of vortex lattices in rotating su-
perfluids [7]. Though the vortex lattice spontaneously breaks translational symmetry,

20



2.2. Ginzburg-Landau Equation

the dynamics of the vortices are rigidly coupled to the superfluid phase (linked to the
spontaneously breaking of the U(1) symmetry), and therefore no additional Goldstone
modes emerge [49]. The counting of Goldstone modes and broken symmetries is an
ongoing field of theoretical study, and it was only recently described why crystals
have a reduced number of Goldstone bosons compared to the number of broken sym-
metries [56]. Finally, while one can assume that the dispersion relation will be linear
for low momenta (w ~ |c|k) in relativistic theories, in non-relativistic theories this is
not generically the case, and the dispersion can also be quadratic.

2.2 Ginzburg-Landau Equation

So far, we have discussed the consequences of symmetries and states that break
them, but we have not discussed how such states can arise. A generic mechanism
for describing SSB is known as Landau theory, which has relevance for describing
both phase transitions and pattern formation. This section roughly follows the logic
presented in [53].

2.2.1 Phase Transitions

We will first consider the case of phase transitions. To write a minimal description of
phase transitions, one assumes that a spatially uniform, complex-valued order param-
eter ¢ is analytic, and that at the critical point of the phase transition the expectation
value () is small. Examples of such an order parameter are the magnetization m
of a ferromagnet, or the order parameter of a superfluid. Under the assumption that
the Hamiltonian describing the dynamics is symmetric under a phase rotation of the
order parameter,  — ¢y, the free energy density can be written as

f=aly|*+bly|* +ho.t. (2.6)

where a and b are temperature-dependent quantities. In equilibrium, the free energy
density is minimized with respect to the order parameter, resulting in

0 = ay +2b|y|y. (2.7)

If the temperature dependence of a has the form a = ao(T — T,) /T, where T, is the
critical temperature of a phase transition and ag > 0, it becomes apparent that the
magnitude of the order parameter || can have the solutions:

o T>T.
| = {\/% T <T. (2.8)
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Chapter 2. Spontaneous Symmetry Breaking

Therefore, when crossing the critical temperature, the order parameter ¢ suddenly has
a non-zero expectation value. Because the underlying Hamiltonian is independent of
the phase or the order parameter, this is chosen spontaneously, indicating spontaneous
symmetry breaking.

This process can be visualized graphically by the heuristic champagne-bottle
bottom potential. Sketched in Fig. 2.2, it shows the effective energy landscape that
describes the expectation value of the order parameter . For high temperatures,
the potential has a trivial shape, resulting in an expectation value of zero. Below
the critical temperature, however, there are an infinite number of minima, each
corresponding to a certain phase of the order parameter. As the phase transition
occurs, the state “runs” down the hill at the center, spontaneously selecting a specific
phase in each realization.

2.2.2 Pattern Formation

A different setting in which Ginzburg-Landau theory is applied is the field of pattern
formation. Here, generic mathematical models are constructed to describe the forma-
tion of structure, without making specific assumptions of the microscopic processes.
These generic frameworks are typically constructed by considering a system with an
instability at a critical wavenumber k., and deriving the dynamics of the amplitudes
of modulations of these waves.

A minimal model to describe pattern formation is a one-dimensional system
defined by a differential equation

owu(x,t) = f(r,u,Vu,...) 2.9

where r = (rg —r.)/r. is a control parameter that leads to an instability at a non-zero
wavenumber (k. # 0) if a critical value r. is reached. We assume that the function
u(x,t) has a uniform solution i, and that near the threshold (»r < 1) a perturbation
ou(x,t) = u(x,t) — it has a growing solution of the form

Su(x,t) = A(x, 1)e™** + A*(x, 1)e e, (2.10)

We now make a number of further assumptions: (i) the system is translationally
invariant, i.e. A — Ae'® is simply a translation in space, which does not change the
dynamics. (ii) The system obeys parity symmetry, i.e. A — A*, x — —x, which
corresponds to an inversion of the coordinates of the model Eq. (2.9).

We can now construct an amplitude equation that describes the dynamics of only
the slowly-varying amplitude A, using the above assumptions to limit the number of
terms that can appear in such a description. This is known as the real Ginzburg-
Landau equation, as it bears a resemblance to Eq. (2.7):

0A  ,0%A

—— =22 4+ rA - 2APA. 2.11
T()at ()axz r | | ( )
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2.2. Ginzburg-Landau Equation

Here, 179 and [y are length and time scales that originate from the nature of the
instability, and A is a non-linear prefactor that depends on system characteristics. In
analogy to the description of phase transitions, we now look for stationary solutions
(i.e. 0;A = 0), and assume that the amplitude of the pattern is uniform and infinitely
extended (GfA = 0). For the case r, 4 > 0, there are an infinite number of steady state
solutions, because only the magnitude of the wave is determined

.
A = \/; 2.12)

The real Ginzburg-Landau equation only describes stationary states, and does
not describe oscillatory solutions. If we use an ansatz that oscillates in time, i.e.
ou(x,1) = A(x, 1)etke**i@l 4 ¢ ¢ we break time translation symmetry, and the de-
scription is slightly more involved. While the intuition gained from the stationary
situation is still useful, the comparison between pattern formation and dynamics in
an effective potential is not direct.

2.2.3 Interpretation

It should be noted that at first glance, the similarities between phase transitions
and pattern formation are mostly formal ones: phase transitions consider states
that minimize an energy functional, while pattern formation formalism is used to
describe out-of-equilibrium, highly non-linear steady states, often in cases with an
external drive (i.e. no energy conservation is guaranteed). Because both models are
constructed based on fundamental assumptions about symmetries without considering
details of a specific system, it is also not so surprising that the dramatically simplified
form of the equations describing these two situations have certain similarities.

However, a key feature of pattern formation is the spontaneous breaking of trans-
lational symmetry, as evidenced by Eq. (2.11), which does not depend on the spatial
phase of the emergent standing wave. Thus, one can expect that patterns host Gold-
stone modes, and indeed these fluctuations are often discussed in terms of pattern
disintegration [53, 57]. While one cannot necessarily make generic statements about
excitations as one can in equilibrium, it is possible that certain out-of-equilibrium
states demonstrate sufficient conserved quantities to apply hydrodynamic models that
describe the linear response of such a system.
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CHAPTER

Bogoliubov Theory

In this thesis, we will study the dynamics of patterns in an interacting superfluid. To
do so, it is useful to consider the fundamental excitations of such a superfluid, which
are described by Bogoliubov theory. Here, we give a brief overview of the derivation
of the dispersion relation, and then investigate the characteristics of Bogoliubov
quasiparticles in thermal and coherent states. This section is based on [58—60].

3.1 Static Hamiltonian in Second Quantization

The Hamiltonian of a non-relativistic gas of Bosons in position space is given by:

2
He- [ @' 0vum + & [ @i mumem. G

where m is the particle mass, 7 is the reduced Planck’s constant, g is the two-particle
contact interaction, and (") is the bosonic field annihilation (creation) operator for
atoms, which annihilates (creates) a particle at a point in space. Here we assume a
uniform Bose gas in a box with side length L. A transformation to momentum space
results in the form

1 K.
l//(X) = \/?deelkx. (32)
k
Inserting this into Eq. (3.1), one finds
WK 8 Pt
H = ﬁakak + 303 Z Ay Ap+qipak- 3.3)
kp.q

In a superfluid, the temperature is low enough that the k = 0 state contains a macro-
scopically large number of particles, Ny, and we therefore approximate that operators

25



Chapter 3. Bogoliubov Theory

can be replaced with their expectation values,
ax=0 = VNo, aj_, — No. (3.4)

Using this approximation, the interaction term in Eq. (3.3) can be simplified by
replacing all a(T) operators with Ny and truncating the sum above terms of order a2
leaving us with

k’

k=0,p=0  — Noa'qa;

k=0,p+q=0 —>Noczp p

k=0,k-q=0 — Noapap (3.5)
p=0,p+q=0 —>N0altak
p=0,k-q=0 —>N0ajlaq

p+q207k_q:0 —>N()Cl_qaq

With the additional term in which all momenta are 0, the Hamiltonian can be written
as

Nonog nog +
H =~ > [€ + 2npg] Z aag + —— [a;((a T axa ] 3.6)
k0 k+0
where ng is the density and € = hzk is the kinetic energy.! As condensate atoms can

typically not be distinguished from excited state atoms, it is useful to define the total
atom number as

N =No+ ) afax. 3.7)
k+0

Writing this in terms of Ny and inserting it into Eq. (3.6), one can then neglect
higher-order terms as well as remaining constant terms to find:

~ [e + u] Z Tak + = Z alT(aTk + aka_x|, (3.8)
k+0 k;ﬁO

where u = ng is the chemical potential.

'Interestingly, the approximation of converting the operators for condensate momentum modes to
real numbers has explicitly set the phase of the condensate, and the approximate Hamiltonian is no
longer U(1) invariant. As is evident in the last two terms of Eq. (3.6), one can no longer transform
creation operators with a free phase ax — e‘%ay). This corresponds to a lack of atom number
conservation [60].
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3.2. Bogoliubov Transformation

3.2 Bogoliubov Transformation

The Hamiltonian Eq. (3.8) is not diagonal, meaning that real particles are no longer
a convenient basis for describing excitations of the superfluid. With a Bogoliubov
transformation, we can define new operators that correspond to the eigenstates of the
approximate Hamiltonian. These operators are defined as

ak\ _[ux v\ bx
(aik) - (V—k ”k) (bik)’ G2

2

with the normalization condition u; — v%k = 1. To demonstrate that these new creation

and annihilation operators bl(j) are a good choice, we can write the Hamiltonian
Eq. (3.8) in matrix form

+ u g ak
H=Y (af a (6,,, 2)( ; ) (3.10)
kZiO( k ) 35 0 Cl_k

and insert the transformation Eq. (3.9). The factors ux and v_x are determined by
setting the off-diagonal terms bltbik and bxb_k to zero, resulting in the condition

(€ + W)y + %(ui +12,) = 0. (.11

Solving for these coefficients, and one finds that the Hamiltonian is indeed diagonal-
ized by this transformation,

H = E(k) b} bx, (3.12)
where E is the Bogoliubov dispersion relation given by

E(k) = +e(e +2u), (3.13)

and the transformation coeflicients are given by

e+pu 1
. 14
2E(K) T2 (-14)

Ug,v-g = £

Here, a notable consequence of the Bogoliubov transformation becomes apparent:
we have transformed from the frame of a gas of interacting particles to a gas of non-
interacting quasiparticles. These quasiparticles are comprised of many individual
free particles in positive and negative momentum modes, as well as positive and
negative frequency branches:

b} = uxal —v_xa_x. (3.15)
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Figure 3.1: Characteristics of the Bogoliubov Dispersion Relation. Left,
the prefactors ugk and v_g. Center, the dispersion relation, normalized to the
chemical potential. Right, the group and phase velocities from the dispersion
relation.

Considering the limiting cases of the prefactors uy and v_g (shown in the left panel of
Fig. 3.1), one can see that in the low momentum limit p — 0, the coefficients diverge
and become roughly equal, indicating divergingly large occupations of constituent
atoms. In the high momentum limit, ux — 1 and v_g — 0, indicating a more direct
mapping between Bogoliubov quasiparticles and free particles.

3.3 Characteristics of the Dispersion Relation

The dispersion relation, given by Eq. (3.13), is roughly linear in the low momentum
limit, indicating phononic behavior. The speed of sound of the gas is given by

u

m

(3.16)

Cy =

As discussed in the previous section, the dispersion relation therefore results in gap-
less, phononic behavior in the limit of K — 0, as predicted by the Goldstone theorem.
The Bogoliubov phonons are therefore akin to the Goldstone bosons corresponding
to the spontaneously broken U(1) symmetry.

In the high-momentum limit, the dispersion relation is quadratic, with an energy
offset given by the chemical potential. A convenient length scale that describes the
transition between these regimes is the healing length &, where the kinetic energy of
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3.4. Bogoliubov Quasiparticles

the quasiparticles is equal to the chemical potential, i.e.

n (1)

This length scale corresponds to the size of topological defects, as well as how the
gas responds to external perturbations such as potentials or phase kinks.

Though it is often said that the Bogoliubov dispersion relation is linear for low
momenta, this is only true as a limit. For realistic experimental parameters, it is
therefore prudent to consider the group and phase velocity of the dispersion relation,
as these are the rates with which the system will respond to dynamics. Performing a
simple derivative, the group velocity is given by

hk € + u
Vg:; E .

(3.18)

These speeds are plotted relative to the speed of sound, cg, in the right panel of
Fig. 3.1. Even at the length scales well below the healing length, there are significant
differences between the speed of sound and the group velocity, which must be consid-
ered in comparisons to theoretical models as well as in the extraction of experimental
parameters.

3.4 Bogoliubov Quasiparticles

The Bogoliubov transformation is somewhat unintuitive at first glance, and it is
therefore instructive to consider typical scenarios encountered in the experiment. In
this section, we will show how occupations of Bogoliubov quasiparticles in thermal
and coherent states manifest in experimentally observable quantities.

3.4.1 Thermal States

In the experiment, we measure real particles, making the accessible quantity the ex-
pectation value of a'a rather than 57b. This can be calculated with the transformation
as defined previously:

Ny = (alay) = uk(biby) + v (b bl ) + v (<b£bjk> + (b_kbk>)

= w2 (bib,) + V2, (1 + <bikb_k>) . ((blﬁbik> + (b_kbk)) ,
(3.19)

where the second line shows the commutation of bik and b _x in the second term.
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Chapter 3. Bogoliubov Theory

In a thermal state, the effective description of the system as a gas of non-interacting
quasiparticles indicates that the average occupation number of quasiparticles Ny must
obey a Bose-Einstein distribution:

1

— (T —
Ni = (b, by) = BEO _ 1’

(3.20)

where 8 = 1/kpgT, with kg the Boltzmann constant and 7 the temperature. Because

we have assumed a thermal state, the coherences are zero, (blb'_k) = (b_xbx) = 0,
and we find that the occupation number of real particles is

2 U + V2
Nk,T =V

e (321)

A key feature of the thermal state is that even at vanishingly low temperatures, there
are still occupations of free particles, known as quantum depletion.

3.4.2 Coherent States

To gain some intuition about the dynamics of Bogoliubov phonons, we will consider
coherent states, which can be defined as

) = eZx#bi [BEC) (3.22)

where ¢k is a complex valued amplitude, the sum runs over all single particle mo-
mentum states, and |BEC) is defined as the quasi-particle vacuum state, such that

bk |BEC) =0, VK #0, ao|BEC) = /N, |BEC). (3.23)

Now, we consider standing waves, in which modes with momenta k and -k are
coherently occupied. The coherent state can be written as

lag (1)) = e OO0 | BEC) (3.24)

where the time-dependent amplitudes are described in the Schrodinger picture as
rotating with their eigenfrequency wg given by the dispersion relation, ¢x(z) =
#x(t = 0)e™™K' Again considering that the experimentally accessible quantity is
the momentum distribution of single particles, we calculate the expectation value for
such a standing wave

(Ni) = {ax(n)] ajay o (1)) . (3.25)
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3.4. Bogoliubov Quasiparticles

If we consider only cases where occupations in the +k modes are symmetric and the
system is at rest, i.e. ¢x(f) = ¢_k(t), the average density of atoms is given by

(Ni) = v + [uf + v2, + 2ukv_k cos (2wt + 2¢) ]| |¢]%, (3.26)

where ¢ = |¢(t = 0)|e’¥. The procedure is identical to Eq. (3.19), but here (b]tbk> =
|¢|> and the coherent terms result in oscillatory behavior, and are calculated using
the identity

(@| b\ |y = ¢ (3.27)

up to a normalization factor. The form of Eq. (3.26) can be dramatically simplified,
using the identity cos @ = 1 — 2 sin’ g, to find

Ay
“kV-k sin(wit + @) | |62, (3.28)

<Nk> = v%k+(ui+v%k+2ukv_k) 1- ) )
Uy + Vo, + 2ugv_k

which can be shown to be equivalent to

. (3.29)

2
(Ni) = v%k + % 1- ?,u sin? (wi! + @)

This equation displays a remarkable feature of Bogoliubov quasi-particles. In the
low momentum-limit, the occupations of real particles with momentum k oscillate in
time, even if the occupations of the quasiparticles are static. This is due to the mixing
of both positive and negative momentum as well as positive and negative frequency
modes in the Bogoliubov transformation.

In the current ansatz, the phase factor ¢ is irrelevant and can be set to zero.
However, if time-translation symmetry is explicitly broken (as is the case in the
driven system), this phase not only provides insights, it plays a crucial role in the
description of dynamics in systems far from equilibrium.
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CHAPTER 4

Driven Systems

In this chapter, we will discuss theoretical dynamics described by the driven Gross-
Pitaevskii equation (GPE). We will first discuss how instabilities at certain length
scales emerge, showing that driving the interaction strength leads to certain bands
of momenta that grow exponentially. This establishes the mechanism through which
the translational symmetry of the driven superfluid is spontaneously broken. We
will then discuss the nonlinear effects that limit the growth of unstable modes and
lead to the stabilization of patterns, using a framework that was developed by our
collaborators [47].

4.1 Floquet Instability

In this section, we will give a brief derivation of why periodically modulating the
scattering length results in the exponential growth of momentum modes at certain
wavelengths. The derivation of the instability is based largely on the calculations in
[61, 62].

The equation describing the mean-field dynamics of a Bose gas is given by the
GPE,

L dy(r,1) n*v?
ih = (-

2
dr 5 V) + gy (r. 0 |y (r.0), 4.1

where V (r) is an external potential and g(¢) is the time-dependent interaction. While
the potential plays a crucial role in the experiment, here we will assume V(r) = 0 to
simplify the theoretical description. The driven interaction is of the form

g(t) = go(1 — rsinwgyt) 4.2)

where g is the mean interaction, and wy is the drive frequency.
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Chapter 4. Driven Systems

In order to gain insight into the nature of the instability at a finite wavelength, we
first consider a single spatial dimension and insert the following ansatz of a standing
wave with a time-dependent amplitude into Eq. (4.1),

U(x,t) =yo(t)[1 +w(t)cos kx], 4.3)

where w(?) is a complex amplitude. The prefactor ¥ captures the time dependence
of the homogeneous “background” field. For the case without driving, this is trivially
given by yo(t) = Yoe ™, where u = |yo|>go is the chemical potential. If » > 0, it
takes the form

lﬂo(t) = woe—f(#/h)l—i(/.t/wd/h)rcosa)dt 44)

as this is a spatially homogeneous solution to Eq. (4.1).
Now turning to the amplitude w(¢), we insert the ansatz Eq. (4.3) into the time-
dependent GPE, finding that

ow(t)
ot
RHS = eyo(t)w(t) cos kx 4.5)

cos kx

LHS = you(l — rsinwgt) + iy (1)

+ uo(1 — rsinwgr) |1+ 2Re[w(t)] cos kx + |w(1)|? cos? kx|,

with € = % Dropping higher order terms in w, one finds
0
ihaw(t) = ew(t) + 2u(1 — rsinwgt) Re[w(1)]. (4.6)

Gathering real and imaginary parts yields

—h% Im[w(?)] = [€ + 2u(1 — rsinwyt)] Re[w(1)]

63 4.7
hE Re[w(?)] = eIm[w(?)],
which, after a further derivative of the lower equation, results in the closed form
02
hzﬁ Re[w(1)] + [E(k)* - 2uer sinwgt] Re[w(t)] =0, (4.8)

where E (k) is the Bogoliubov dispersion relation. This is the Mathieu equation,
which is a standard differential equation that has applications in a huge variety of
fields, ranging from engineering to biology [63, 64]. The solutions to this equation
are well known, and, according to Floquet’s theorem, can be written as

Re[w(1)] = Re[f(1)]e”, (4.9)
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Figure 4.1: Floquet Instabilities. Plots of unstable momentum bands for
three different damping coeflicients. The horizontal axis is the wavenumber,
and the vertical axis is the drive strength. In the left plot, the color map
indicates the analytically determined growth rate of the mode, while the right
two plots simply show regions where numerical solutions of the Mathieu
equation demonstrate growth. In each case, the band gets wider with larger
drive amplitude r and bands are localized around specific momenta that
correspond to energy and momentum conservation. The plots are produced
for u = 2nh x 300 Hz and w,; = 27 X 400 Hz.

where f(t) is a periodic function that is periodic in 27/w,; and v is the Floquet
exponent (alternatively, v/i is known as the Mathieu characteristic exponent). The
homogeneous groundstate of the BEC will be unstable to perturbations at a wavenum-
ber k. if Re(v) > 0; a typical feature of these equations is that such instabilities occur
in a series of resonance “tongues” for specific frequencies and wavenumbers [2]. Cal-
culating such instabilities is a standard problem in the study of differential equations
[63], and a variety of techniques exist to derive them [2, 61, 62]. In this work, a
Mathematica package that takes unitless prefactors of Eq. (4.8) as inputs and returns
growth rates is used [65].

The left panel of Fig. 4.1 shows the characteristic exponent for chemical potential
u = 2nh x 300Hz and drive frequency wg = 21 X 400Hz, without damping. The
horizontal axis shows the wavenumber of the perturbation, whereas the vertical
axis is the drive amplitude r. The color map shows the magnitude of Re(v) > 0,
meaning darker blue indicates a faster growth rate of the instability. Multiple bands
of unstable momenta are visible, one where E(k.) ~ wgy/2, and the next where
E(k;) ~ wy. For the lowest-energy mode, this equivalence indicates pair creation of
Bogoliubov modes—the driving injects energy into the system, and due to conservation
of momentum, pairs of quasiparticles in +k. are created, each with half a quantum of
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drive energy. Higher wavelengths are also excited, but here two (or more) quanta of
drive energy are absorbed, leading to the growth of higher harmonics.

In the experiment, these dynamics will be modified by damping, due to finite
temperature, boundary conditions, redistribution effects, and more (see Chapter 6 for
experimental results). In order to heuristically capture these effects, one can introduce
a damping term y:

292
D =) [T+ ol 0P = rgosinaarty (r 0 [ w0,
t 2m
(4.10)

This phenomenological damping factor modifies the stability criterion slightly, and
broadens the resonance peaks. The full derivation of the instability with damping is
similar to the conservative case shown above, but results in a first-order derivative in
the Mathieu equation [62].

The left two panels of Fig. 4.1 show the same parameters as the left panel, but now
with finite damping. The areas marked in blue are the regions where perturbations
grow exponentially, determined by numerically solving the damped Mathieu equation.
With increased damping, the instability band broadens and does not reach r = 0, as
one needs a growth rate large enough to overcome the damping y. The effect on
the second-harmonic band is more significant, such that with experimentally realistic
parameters one would not expect the higher order to be unstable.

Thus, we have shown that driving the interaction strength of the superfluid leads
to an instability at a given wavelength, which results in the spontaneous breaking of
translational symmetry. The instability leads to the exponential growth of occupations
at certain length scales. However, this treatment is only valid in the regime of
low occupations. In the following, we will discuss how nonlinear effects that have
previously been neglected play a role in limiting growth and selecting specific pattern
geometries.

4.2 Multiple Scale Analysis

In the 19th century, astronomers such as Anders Lindstedt and Henri Poincaré worked
to describe the effect of weak, nonlinear perturbations to periodic orbits [66, 67].
Mathematical descriptions relying on standard perturbation theory lead to unphysical
results for long time scales, and problematic terms were deemed “secular” from the
Latin saeculum, meaning century. Their efforts to remove secular terms formed the
basis for what is now known as multiple scale analysis (MSA), which accounts for
nonlinear effects that perturb a fast oscillatory solution over a period much longer than
one oscillation. As we will see, this method is particularly useful for describing pat-
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terns in the driven superfluid, and is widely used in the pattern formation community
[2, 53].

This section provides a brief overview of the limits of standard perturbation theory
and introduces the technique of MSA using a standard example. The derivation given
here is based on [53, 67, 68].

4.2.1 Limitations of Standard Perturbation Theory

In order to move beyond simple linear treatments of differential equations, one often
uses perturbation theory, where the nonlinearity of a given differential equation is
assumed to be proportional to a small parameter, €. A toy model is the Duffing
equation, which is formally very similar to the Ginzburg-Landau equations described
above in the context of pattern formation and phase transitions:

Y +y+ey’=0. (4.11)

Typically, one takes a perturbative ansatz, assuming that to first order, & — 0 and
& > 0 will modity a solution to the linear problem in the expansion parameter:

y(t, &) = yo(t) + ey1 (1) + O(7). (4.12)

One then inserts this ansatz into the original equation, and solves for the powers of
g separately. This approach, however, can lead to unphysical results to first order, as
can directly be seen in this example. Solving for the orders of &, we find

% yo(1)” + yo(t) =0
(4.13)
e 1 y1() +y1(t) + yo(t)’ =0,

where, without loss of generality, we can assume that yo(0) = 1,and y;(0) = y1(0) =
¥1(0) = 0. The solutions to this problem are well known:

vo(t) = cost
(4.14)
(1) 3ts'nz‘+ ! (cost — cos 3r)
= —fS1 J— — .
=3 32

The first term of the solution for y; is clearly unphysical, as it grows linearly in time
and will result in unbounded solutions.

The unphysical term hints at the presence of a second time scale, that is much
slower than the frequency of the oscillation itself. This is made more apparent by
Taylor expanding a cosine with a modulated frequency,

y(1) = cos[(1 + &)t] = cost — et sint + O(&?), (4.15)
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indicating that the truncation we performed earlier has failed to capture a slowly
varying frequency of the oscillation, which is a common feature of solutions to
nonlinear differential equations.

An alternative way to describe the problem with the ansatz is that it fails when
t ~ 1/&. Inthe dynamics we wish to study, however, we want to explore dynamics over
a large range of timescales, and therefore simple perturbation theory is insufficient.

4.2.2 Strained Coordinates

A key insight from Lindstedt that led to the removal of secular terms was that a
primary effect of nonlinearities is the modification of oscillation frequencies [67].
He therefore introduced a new variable, T = w(&)t, such that now not only the solution
y(t, €) is expanded in the small parameter, but also the frequency of the oscillation

y(t,€) = yo(7) + &y1(7) + O(&?)

(4.16)
w(g) = wy + sw; + 0(?).
This modifies the time derivative
d d
Z-w=, 4.17
ar~ “dr @17
such that we can write the Duffing equation in the coordinate 7,
w(e)®y +y+ey’ =0, (4.18)
where the prime now denotes a derivative in 7. One arrives at the conditions
80:w(2)y6+y0:0
(4.19)

1., 2 3

g twyy] +y1 + 2wowryy + ¥y =0,
Setting wp = 1 and using the same boundary conditions as above, we straightforwardly
find yo = cos 7. The first order equation is therefore reduced to

3 1
yi+y1 = (2w1 - 4_1) COST = 7 CoS 37. (4.20)

The term in brackets is still “secular” and must be zero, because it can be shown that
the solution for y; can only be periodic if there is a single frequency on the RHS [68].
This results in both a condition for w; and a solution to y;:

3

1
w| = 3 yi(r) = 5[00537 —cosT] (4.21)
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The solution
1
y = coswt + ﬁs[cos 3wt — coswt] + O(&?) (4.22)

withw =1+ %e + O(&?) is now valid for all times, in contrast to the solution found
using standard perturbation theory, which broke down after short times.

This example demonstrates a key feature of MSA: by making some physically-
based assumption about the dynamics of the system (in this case that the solution
must be periodic), the conditions that remove secular terms result in new insights,
like determining the correction to the oscillation frequency w. The conditions that
remove secular terms are known as the solvability criteria, and are how amplitude
equations describing pattern formation will be derived.

4.3 The Amplitude Equation

The dynamics of a pattern in the driven superfluid are precisely the regime in which
MSA is useful: we are investigating the dynamics of patterns at a given length scale,
where the amplitudes of individual stripes (i.e. standing waves) serve as a proxy for
describing structure formation. These stripes have two frequency scales, a fast scale
(set by their energy and therefore the drive frequency, according to the resonance
condition described in Section 4.1), and a slow scale, set by system parameters such
as drive strength and the chemical potential. The fundamental assumption is that
these two length scales can be treated separately, as this assumption is what results in
the solvability criterion that yields the amplitude equation (AE).

4.3.1 Derivation

The full derivation of the AE is very involved, and will not be discussed in detail here.
Instead, the main assumptions and results are presented, and a full derivation can be
found in the work of our collaborators, [47], which is based on the one-dimensional
calculation presented in [62].

We consider the GPE as written in Eq. (4.1), and now use a typical MSA ansatz,

W (1,r) = o)1 + ew (2, 1) + E2wa(t, 1) + w3 (2, 1) + O(eY)] (4.23)
with
wi(t,1) = wh(s,r) cosk - r + wh(z,r)cosp -, (4.24)

and yo(t) = woe '(WMi=ilp/wall)rcoswat *jdentical to the form when deriving the
instability. Because we will later only be interested in solvability criteria rather
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than full solutions to w»(z,r) and w3(z, ), these functions are assumed to be some
general superposition of plane waves. Terms up to the third order in & are necessary
to capture the behavior of w;(z,r). The momentum modes k and p are in general
entirely independent in both magnitude and direction.

To deal with small amplitudes of stripe patterns (on the order of &), we assume
the driving amplitude is small, » = O(&?), and want to be near the regime of the
Floquet instability derived above, wy — E (k) /h = O(g?). The drive amplitude as well
as the detuning between the eigenfrequency of the stripe and the drive frequency are
therefore scaled with the expansion parameter, and a slow timescale is introduced

T =&t (4.25)

After a lengthy calculation, one finds the following results. The original ansatz
can be written as

w(t,r) =yo(t)[1+ ¢r(t) cosk-r+¢,(t)cosp - r] (4.26)
with
€+ 2/,[ i 9d €+ 2# ® —i%dy
br/p(t) = (1 =% )Rk/p(t)e 2ty (1+—)Rk/p(t)e 2t (4.27)

The amplitudes Ry and R, are complex and vary slowly in time. The magnitude of
Ry is proportional to the contrast of the stripe, while the phase arg Ry, describes
the phase of its oscillation relative to the phase of the drive. The exponential indicates
that the contrast of the stripes oscillates with half the drive frequency, which is the
fast scale.

The slow variation of the amplitudes on long timescales is given by the solvability
criterion for the third order in &, and is called the amplitude equation:

ih%Rk(t) = —iaR} (1) — iTRy (1) + ARy (7)
+ ARk (1)* Ri(2) (4.28)

+ /1[61(9) IR, (O Ri(1) + c2(0) R, (1)2R.(1) ]

Here, o = r% is the exponential growth rate from the instability, and A = wy/2 —
E(k)/h is a detuning term, which is assumed to be zero, unless stated otherwise.
The parameter I' is a phenomenological damping term that does not come from
the amplitude equation, but is instead put into the AE by hand, in order to capture
experimental reality. This damping can capture effects like decay and redistribution

to other modes. The nonlinearity of the underlying GPE is captured by the prefactor

_5e+3u
A= ,LlT
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Figure 4.2: Angle-Dependence of Amplitude Equation. Angle-
dependence of various factors of the AE. The left shows c¢; the right c;.
The divergence in c¢; is a mathematical artifact and is discussed in detail
below. Here, fiw,/u = %.

Notably, angle-dependent terms couple the dynamics in Ry and R,, where the
angle 6/ (k, p) is the angle between the wavevectors. The prefactors ¢ (6) and ¢, (6)
are given by

c1(6) = u 62—/12+2€+/J 26 + u
Se +3u Ue € ZECOSZg+/J
~ (2€ — p) (€ +2p) +2 (2€ + p?) cos? §

(4.29)
E2—E2%/4

+ cosg—>sin9
2 2

e +3ue+ > 2e+pu 2e + ( 0 , 0)
-2 + + |cos — — sin — ,
e € 26c032§+,u 2 2

(4.30)

and

u
c2(6) = S5€ +3u

where E, = \/ekip(ekip +2u) with €yp = 4e cos? g and ei_p = 4e sin’ %. Looking

at these prefactors, plotted in Fig. 4.2, it becomes clear that ¢ (1) contains a divergence
at a specific energy, namely E, = 2E. These divergences are a result of scattering
between the k and p mode into the higher harmonic of the drive, and will be discussed
in greater detail below.

Finally, we note that the angle between the stripes 8 does not change in time in
this treatment, and the selection of different pattern geometries is instead captured by
the growth and depletion of single amplitudes.
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4.3.2 Physical Interpretation

Before discussing the characteristics of the AE in greater detail, we first provide a
physical interpretation of the processes being described.

The complex amplitudes R, = |Ry|e'? describe the contrast of the standing wave,
as well as the phase of its oscillation relative to the drive. This phase is a useful
quantity in the driven system, because the drive explicitly breaks time-translation
invariance, meaning that the drive serves as a clock relative to which we can track the
phonon oscillations. This is seen more clearly when expressing the ansatz Eq. (4.27)
in the density distribution (in one dimension):

n(x,t)=n =
€

1+4|R| cos [%t + go] cos kx+4|R|? (1 4+ 28 gin? [%t + cp]) cos® kx],
(4.31)

where 71 is the mean density. Alternatively, the occupations in momentum space for
one stripe can be found performing a simple Fourier transform of the ansatz, leading
to
. w
n(k, 1) = NolR(t)|2[1 +2H sin? (7% + ¢)]
€
u

(4.32)
= NolR(WP[1+£ [1 = cos (war + 201,

where Ny is the number of atoms in the condensate. In both cases, densities are
dynamic: the contrast of the lattice oscillates with w,/2, while occupations in mo-
mentum space oscillate with w,, each with a phase lag ¢. The contrast and occupa-
tions in momentum space oscillate out of phase, meaning that maximal contrast in
real space occurs at the point of minimal occupations in momentum space. We note
that Eq. (4.32) has the same form as the mapping of a coherent state of Bogoliubov
quasiparticles onto free particles, given by Eq. (3.29), up to prefactors.

It is interesting to consider the amplitude equation in polar representation, where
the interplay between the phase and magnitude of the amplitudes becomes apparent:

% IR (7)] :[ —acos (2¢r(t)) -T
+ Ae2(0) [Ry (O] sim (26, (1) = 240) | IR (1)
d
S pu(t) =arsin (1) = | [Re(0)

+ (01(9) + ¢2(8) cos (2p, (1) - 2g0k(t))) IR, ()| ]

Notably, this respresentation shows that the stripe contrast does not simply grow
exponentially, but rather depends on the phase ¢. Additionally, the dominant coupling

(4.33)
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Figure 4.3: Visualization of Processes in Amplitude Equation. Three

processes captured by the amplitude equation. Incoming modes (from the

left) are annihilated, outgoing modes are created. The dashed circle indicates

a condensate-mediated interaction between phonons. The left panel shows

the pair-production process, leading to exponential growth of occupations.

The central process describes the “contact” interaction between Ry and R),.

The right panel shows the term proportional to c;. The equations shown

beneath each scattering process indicate the change in Ry from the interaction,

assuming no change in R,,.

factor between Ry and R, c1(6), appears only in the lower equation, indicating the
importance of the phase in selecting pattern geometries. Finally, not only the global
phase but also the relative phase between the stripes influences dynamics, as is seen
in terms proportional to ¢, (6).

The individual terms of the AE can also be pieced apart, to investigate the
processes that they describe. Though the AE was derived classically, we will now use
the conceptual framework of phonon-phonon scattering processes to gain an intuition
for the mechanism. Fig.4.3 shows a schematic interpretation of three terms of the
AE. To construct these diagrams, we treat R (*) as an annihilation (creation) operator.
Using Euler-Lagrange formalism, the time derivative %R(t) is equal to a variation of
some effective energy density with respect to R*. We then use annihilation operators
for incoming processes, and creation operators for outgoing processes. The dashed
circles at the vertices represent interactions mediated by the condensate. These terms
describe changes in Ry depending on the amplitudes Ry/,.

The left diagram shows the pair creation that originates from the drive. This term
effectively costs no energy, as the amplitude equation is in the rotating frame of the
drive. The central panel represents the contact interaction between Ry and R),. Its
effect is merely an induced phase of Ry, depending on the occupation in R, (this is
identical to the self-interaction of Rj but without the prefactor c).

The term on the right is proportional to ¢, and represents a process in which a
pair in R, is annihilated and scatters into R;. This process depends on the phase
between the phonons, showing that not only the global phase but also the relative
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Figure 4.4: Instability Factor. The functional form of the instability factor
D(0), where regions below zero (shaded) indicate stable lattice solutions.
The divergences are an artifact of scattering processes resonant to the shaking
frequency and are discussed in detail in Section 4.3.5.

phase between the phonons will play a role in the stabilization process.

4.3.3 Stable Solutions

We will now consider steady-state solutions to these equations, what we will call fixed
point solutions. These are straightforwardly found by setting %Rk = 0, resulting in
three unique points:

Ry =R, =0, (Uniform solution)

Rijp = |Rele', R,y = 0, (Stripe solution) (4.34)

Ri/p = Rpji = |Re|/V/1 + c1(0) + c2(0)e,  (Lattice solution)

where |R¢|*> = Sl - g—z, and cos ¢f = ,1\;;/04. The first case is a trivial uniform
solution, where no pattern emerges. Because this is a mean-field calculation, it does
not consider fluctuations, and a small seed is necessary to instigate growth. The
second class of solutions is a stripe pattern, where, for the same reason as in the
uniform case, the amplitude of the second stripe is exactly zero, and therefore cannot
show dynamics. The third and most interesting point is a lattice solution, indicating
that for all angles, there should be one solution with non-zero occupation in two
momentum modes that is stationary, despite the continued drive.

The presence of a fixed point solution, however, says nothing of its stability. In
order to investigate the stability of these solutions, one can perform a linear analysis
around the fixed points. By analyzing the behavior of perturbations around the fixed
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4.3. The Amplitude Equation

point solutions, one can determine growth rates of these perturbations, to define a
stability condition [47]. The stability condition for the case where I' = 0 is given by

D =—1+¢1(0)% +2¢2(0) — c2(0)?, (4.35)

where if D < 0 the lattice fixed point solution is stable, and D > 0 indicates it is
unstable.

The stability criterion is plotted in Fig. 4.4 for a variety of drive frequencies.
It shows that fixed points for angles that are ~ 90° are all stable, whereas small
angles between stripes are unstable. Divergences occur at the angle where the energy
of outgoing quasi-particles after a collision are resonant to the drive energy, i.e.
E(k + p) = wy, and are a mathematical artifact that will be discussed in more detail
below. We will now turn to the mechanism behind the stability of certain fixed points,
by looking at the dynamics of amplitudes.

4.3.4 Phase Space

The AE describes a four-dimensional phase space, as each amplitude has a magnitude
and phase that each play an important role in the dynamics. This makes it difficult
to visualize the evolution of amplitudes, but a number of reduced “cuts” give insight
into the mechanism behind pattern formation.

In Fig. 4.5, two sets of three-dimensional cuts are shown, one for & = 90° and one
for 30°. In each case, the magnitude of the two stripes | Ry, | is varied independently,
while the phases are coupled: once by simply setting them equal ¢, = ¢,, and once
by varying their difference, Ap = ¢ — ¢, such that their average value is set to that
of the fixed point, (¢x + ¢p)/2 = @gp.

The plots show flow lines from the projection of the first derivative %Rk /p onto
this cut, while the colors show the flow speed of trajectories in this space. These lines
therefore do not show “real” trajectories, as the full four-dimensional flows can exit
and enter the shown spaces.

In the case where the phases are equal, one sees in-spirals towards two points,
marked in blue and green. These points are the fixed point solutions, with the green
marking the lattice point, and the blue marking the stripe solution. The in-spirals
reveal a key mechanism of the AE: when the magnitude of the stripes becomes large,
it induces a phase shift in the amplitudes. Through the linear term (proportional
to ), this phase shift leads to a reduction in the magnitude of the stripe, which
eventually leads to more phase dynamics, and the cycle continues. Indeed, without
damping, the underlying GPE is conservative, and therefore these trajectories would
be periodic without ever reaching the fixed point. Thus, damping plays a crucial role
in the emergence of patterns in the experiment.

In the space where the phases are equal, one cannot see why one fixed point is
stable while the other is unstable. Moving instead to the space where the difference
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Figure 4.5: Flow of the Amplitude Equation. Flow diagrams in a three-
dimensional cut of the full four dimensional space. The lines show trajectories
along projections of the first derivative into this cut, with colors showing flow
speed. The top row shows the cut where the phases of the two stripes are set
to be equal, but magnitudes of stripes are varied independently. The bottom
row shows cuts of the space where the phases are varied such that the mean
value is always that of the fixed point solution. The left column shows flows

for 6 = 90°, the right for 6 = 30°.
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Figure 4.6: Scattering in Higher-Energy Mode. A diagram sketched in
momentum space, showing an allowed scattering process into a higher-energy
shell. Standing waves Ry and R, at an angle 6 can resonantly scatter into
the higher shell in the case where E (k) = wgy. The magnitude of k. and &
is therefore determined by the dispersion relation. The ratio k. /k. ranges
from 2 for low momenta to V2 for large momenta.

in phases is varied, the angle dependence becomes pronounced. Here, one sees that a
difference in contrast of the stripes can induce a phase difference between the stripes.
Looking at the flow patterns, one can again see in-spirals for 90°, but that for 30° the
trajectories simply pass by the fixed point, flowing instead towards the stripe solution.
Therefore, while for 90° these dynamics stabilize a phase difference of zero and equal
contrasts, for 30° a slight phase difference induces a reduction in the contrast of one
stripe.

4.3.5 Including Higher Order Modes

So far, we have only discussed the dynamics of stripes at the critical wavenumber k.,
which have energy E(k.) = wy/2. However, modes in this energy shell can scatter
into the first harmonic of the drive, where E (k) = 2E(k.) = wy. This process
occurs at a specific angle, which is determined by the dispersion relation and the
geometry of the scattering process (see Fig. 4.6), such that

Ocrit = 2c0os™ —. (4.36)

For low momenta, the dispersion relation is linear, meaning that k, = 2k, and for high
momenta it is quadratic, resulting in k, = V2k,. Scattering between resonant energy
shells is often discussed in pattern formation and can in general lead to selection of
pattern geometries [ 13, 18]. Indeed, a numerical study of driven superfluids postulates
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Figure 4.7: Angle Dependence of Amplitude Equation. The top left
shows both ¢; and ¢, the rop right ¢,. The bottom row shows factors in
the extended AE, namely S (left), which describes the coupling between the
first and second harmonic modes, as well as the detuning of R, to the drive
frequency (right). Here, iw,/u = %.

that coupling to higher harmonics of the drive is the dominant, geometry selecting
process, even with weak driving at a single frequency [61] . We will therefore now
explicitly include the higher-energy mode R, in the amplitude equation, to investigate
if such processes indeed play a role in pattern selection.

In order to extend the AE, a second time scale is introduced, 71 = &f, together

with the original 7, = £2¢. With this second time scale, we can incorporate dynamics
at yet another energy scale, namely at E(k + p), extending the ansatz to

w(t,r) =o(t)[1+¢r(t) cosk-r+¢,(t) cosp-r+¢.(t)cos((k+p) -1)]. (4.37)
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Figure 4.8: Modified Processes in Extended Amplitude Equation. The
inclusion of the higher-energy mode R, means a new scattering process is
included, shown on the left. It shows the process that couples modes at the
resonant momentum with those at the first harmonic of the drive. The right
process is the modified “contact” interaction between Ry and R,.

As is shown fully in [47], this results in the coupled equations

ih%Rk(t) = —iaR} (1) — TR (1) + AR, (1) = B(O) R4 (1) R (1)
+ AR (1)* Ry (1) (4.38)
+ /1[61(6) IR, (0" Ri(1) + c2(0) R, (1)2R (1)

and

B R(1) = TR (1) + ARy (1) - B ()R (DR, (1)

(4.39)
+ A4 R+ (D) R4 (2).
2 2
Here, the subscript “+” indicates that the momentum is now k + p, i.e. €, = %,
Ei=E(k+p),and A4 = p%. The detuning term A, is now relative to the full

driving frequency, A, = wy — E4 (rather than wy/2, as is the case for A). There are
now factors that account for scattering between the energy shells, defined as

(4.40)

€ — € +2 €. €— €+?2
,B:,u( K& 'u), ﬁ+:,u(+ K, ’u).

E E, € E, E

Finally, the prefactor ¢ (8) is now modified and no longer diverges for 6 € [0, 7/2]:

Z1(0) u € — u? _ (26 — ) (e +2u) + (2€2 + p?) e~/ (2¢)
: 5€ +3u HE E2 - E2/4
(4.41)
2e+u | 2e+pu
+ - (6+/2+Iu+(6+—>6_))].
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The magnitude of some these coefficients is plotted in Fig. 4.7. The factor ¢
is dramatically reduced in magnitude compared to ¢, because processes that were
previously implicitly included in ¢ are now explicitly included via mediated processes
through R,. These mediated terms are captured by g, which is of order u. For this
reason, c| and ¢; cannot be directly compared. Scattering diagrams for the new and
modified processes are shown in Fig. 4.8.

The prefactor ¢ still diverges for the angles 6 € (7/2, ], due to neglecting the
R_ mode. However, the extension to include R, has already made the new phase
space six-dimensional, and its theoretical description is significantly more involved.
Even a stability analysis like in Section 4.3.3 is not straightforward. The extension
of the AE should therefore not be viewed as a “more complete” model, but rather is
used to address the stability of patterns at the critical angle. To do so, we will now
consider numerical solutions of the extended AE.

4.3.6 Numerical Solutions of the Amplitude Equation

Having removed the divergences for the angles 6 € [0, 7/2], we will now use numer-
ical simulations to show that indeed only square lattices are expected to be stable,
even in the extended amplitude equation.

In the experiment, it is rarely the case that only two stripes are present in the
condensate at once. Indeed, considering the dynamics of only two stripes could be
misleading, as in certain parameter regimes it is possible that the interactions of three
stripes add new dynamics that are not captured by the simplest ansatz. In order
to account for many interacting modes, we can construct an amplitude equation of
arbitrarily many stripes, all with a certain wavenumber but with varying angles [47]:

d .
i—R(t,0,,) = —i'R(¢,0,,) —iaR" (1,0,,)

dt
= > BI0m = 0al) Ry (1,0, 0,) R (1,6,)
n(#m)
+ A IR (0P R (1,0,) + Y €1 (10 = 6,1) IR (1,6,) R (1,6,)
n(#m)
+ 3 e (16m = 0 R (1,007 R (1,6) |.
n(#m)

. d :
lERJr (t,0m,6,) = —iT4yRy (2,6,,0,) + A(|60, — 60,]) Ry (2,60, 6,)

— B (10 = 0a)) R (£,6,) R (,6,) + s (1810 = 0n]) [Rs (£, 01, ) |* R (2,0, 6,) -
(4.42)
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Figure 4.9: Numerical Solution of Many-Mode Model. The top row
shows individual modes, with colorful lines showing |R(6,,)|, and gray lines
in the rightmost panel |R;(6,,,0,)|. Simulations are run with r = 0.4,
hwg/p = 4/3, T =Ty = 0.5a, 4 = 94p, where A is the theory value.
Initial states have a random phase but equal magnitude, |R(6,,)| = 0.02 and
R+ (0, 0,)| = 0.005. The bottom left shows the same information as the top
row, but plotted as traces for all times. The bottom right shows the average
distribution after 50 runs, with the mode of maximum occupation defining
06 = 0.

While the angle between two stripes can range from 66,,,, € [0, 7], the standing-wave
nature of the modes makes the coefficients for the R, mode symmetric around 7 /2.
All coeflicients for angles 6 € (7/2, ] are therefore defined to be c(66,,, > 7/2) —
c(m—066, ) to avoid divergences, but are otherwise identical to those used previously.

This set of coupled equations can be solved numerically, with results summarized
in Fig. 4.9. Using experimentally realistic parameters, we initially seed many modes
from 6,, = 0 to 180° with magnitudes |R(6,,)| = 0.02, |R+ (0, 6,)| = 0.005, and
random phases. The top row shows the distributions at four different times, with the
|R(6,,)| plotted as solid lines and |R, (6,,, 6,,)| plotted as gray lines in the rightmost
panel. Some modes grow larger than others due to the randomly chosen initial
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phase, and at roughly /2 separation, another set of modes grows, while others
are suppressed. At the latest time, it is apparent that only the |R.(6,,,6,)| modes
corresponding to the dominant |R(6,,)| modes remain. The same information is
plotted as traces in the lower left panel. Here, it is apparent that as the two sets of
modes at roughly 7/2 grow, all other modes are diminished.

The lower right panel shows the average phonon occupations after 50 runs as a
function of relative angle, where the mode with maximum magnitude is shifted to
00 = 0. Here, one sees that the region of stable patterns is not significantly modified
to the instability criterion plotted earlier, and no patterns are stable at the critical
angle where ¢ diverges (for these parameters, 6.; = 50°).

Having addressed the divergence at the critical angle and showing that the region
of stable square lattices is relatively unchanged to the two-mode model, further
analyses of the AE and comparisons with experimental results will only consider the
two-mode model, unless stated otherwise.

4.4 Application to Experiment

The AE represents a highly involved calculation that incorporates nonlinear dynamics
and coupling between density waves. It describes processes that have not previously
been described theoretically, in particular the angle-dependent interactions between
phonon modes of the same energy. Its form motivates that square lattice patterns
can be expected to emerge in the driven superfluid over a broad parameter range.
However, a number of features limit a quantitative comparison between the AE and
experimental results.

For one, the AE includes only a linear, phenomenological damping term, I'.
As will become apparent in later chapters, there are certainly higher-order damping
effects that play a role in the experiment. This will modify not only the maximal
contrast of the lattice, but also its stabilization.

Additionally, while the incorporation of the R mode in the extended AE removed
the divergence at the critical angle, it also shows the importance of higher-order modes
in mediating interactions between R; and R,. Because essentially every mode has
finite occupations in the experiment due to effects like finite temperature, it is unlikely
that the AE will deterministically predict dynamics of the experiment.

Furthermore, we have neglected to include the R_ mode, i.e. the mode atk—p. The
inclusion of these processes will likely modify the theoretical description for various
reasons. For small angles, the R_ mode will be close to the condensate mode, where
occupations are large because of experimental factors like finite temperature and finite
size effects, and this could also modify couplings for small angles. Additionally, at
6 = 90°, the modes R_ and R, are identical, and this symmetry could result in
additional processes that are neglected here.
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CHAPTER

Experimental Techniques

In this chapter, we review the general features of the experimental system used in this
work. We will first give a brief overview of the properties of postassium-39, including
its optical transitions and tunable interactions. We then discuss dipole traps, and how
a digital micromirror device can be used to tailor lightfields in the atomic plane.
The readout of the momentum space distributions using a harmonic trap is described
theoretically, and its implementation in the experiment is presented. The cooling
stages of the experiment are described, as well as the novel trapping potential used to
implement effectively open boundary conditions.

We will focus on the technologies that are either highly relevant for the driven
system, or those that have not been described in detail in previous work, such as the
momentum space measurement. Further details on the experimental system can be
found in Refs. [69, 70]. For details on the digital micromirror device, see Refs. [69,
71]. For systematic measurements on the trapping geometry, see Ref. [72].

5.1 Optical Transitions of Potassium-39

Our experiment utilizes potassium-39, a bosonic isotope that features a number of
experimentally useful characteristics. The electronic groundstate is the 25, /2 state,
and there are two excited states 2P, /2 and 2p, /2 that are addressable with near-infrared
light. The transition to the >P; /2 state is known as the D1 line, and has wavelength of
770.108 nm, while the transition to 2P5 /2 is called the D2 line, with a wavelength of
776.701 nm.

The 25, /2 state is further split into two hyperfine states, /' = 1 and 2, with a
splitting of ~ 450 MHz. The D1 excited manifold is similarly split into two states
(with a splitting of ~55 MHz), while the D2 excited state has four hyperfine substates
(F = 0to 3), which are so tightly spaced in energy relative to their natural linewidth
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Figure 5.1: Solutions for yko. The numerical solutions of Eq. (5.4) are
shown for two potentials, both of the form V(r) = V, [(g) 2_ (%)6] (solid

-
black line), with two different values of Vj. Far from the potential, one
recovers linear behavior, where the slope and intercept can be uniquely
determined using a delta peak potential. Figure inspired by [59].

that they are not individually addressable by laser light. As is typically the case
with alkali atoms, two laser frequencies are needed for laser cooling, a “cooler” for
addressing the F = 2 and a “repumper” addressing the F = 1 states in the S, /2
manifold. A consequence of this tight spacing of the D2 line is that equal amounts
of cooler and repumper are needed to cool potassium. While the D2 line is used for
magneto-optical traps (MOT), the D1 line is used for sub-doppler cooling in a gray
molasses.

5.2 Feshbach Resonances

Tunability of the interactions between atoms in the condensate is the key mechanism
of implementing the driven nonlinearity as discussed in the previous chapter. The
phenomenon behind this mechanism is known as a Feshbach resonance. We will
first briefly discuss the theoretical mechanism behind Feshbach resonances and then
present the specific case of K.

5.2.1 Description of Scattering Process

To give some intuition on how Feshbach resonances work, we will consider a sim-
plified model of a scattering process between two neutral atoms, with derivations
following the references [58, 59]. Scattering can be described using the relative
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wavefunction of two atoms in a scattering process, . For particles with isotropic
interactions, the wavefunction at large distances will have the form

ezkr

v ="+ £(0) (5.1

r
where spatial coordinates are the relative distance between the atoms, the plane wave
¢'** describes the two incoming particles, and f(6) is the scattering amplitude. At
low momenta, the scattering amplitude converges to a constant, —a, known as the
scattering length. For low momenta and large distances, the wavefunction therefore
reduces to an approximate form

w~1-2. (5.2)
r
The value of the scattering length a is a function of the atomic interaction potential,
which can be seen when considering a simplified model of a scattering process.
Scattering between two particles can be fully described by expanding the wave-
function in terms of radial functions and Legendre polynomials P,

Y= Pi(cosf)2H, (5.3)
kr
1=0
where the radial functions yy; satisfy the Schrodinger equation
d? I(1+1) 2m*
Xk T =Xkt — o [E - V(r)lxw = 0. (5.4)

Here, m* is the reduced mass of the two atoms, E is their effective kinetic energy, and
V(r) is the interparticle scattering potential. At low momenta, we can consider only
s-wave scattering, indicating that / = E = 0. In this regime, we can investigte the
dynamics of yio for a toy interaction potential by numerically integrating Eq. (5.4).
One such toy potential is the Lennard-Jones potential,

vor=w(2)"- (2]

r

where the parameter o sets the point where the potential crosses the zero and V)
is proportional to the potential depth. Numerical solutions of Eq. (5.4) are shown
in Fig. 5.1, for two different values of V. While the dynamics for small r are
complicated, at large separation the function becomes linear, and we recover the
expected form y = )@ oc 1 — 2. Here, one can see that complicated dynamics from
the interaction potential V() can be summarized by simple parameters in the far field
where V(r) 0.
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Relative Separation

Figure 5.2: Physical Interpretation of Feshbach Resonances. Red and
blue curves show yyo for two different molecular potentials. While at close
ranges they show highly oscillatory behavior, at larger distances the difference
can be summarized by a phase shift.

In a cloud of many interacting atoms, the specifics of the atomic interaction are
irrelevant, as the atomic spacing is typically orders of magnitude larger than the scale
of the interaction potential. Therefore, only the behavior at large separations (the
linear wavefunction) is needed to sufficiently describe the dynamics. It can be shown
that the delta peak pseudopotential

B drhla,

m

Vs o(r) (5.6)
imposes boundary conditions that result in the correct far-field behavior, namely a
discontinuity in the first derivative at r = 0, parameterized by the scattering length
as [59]. Using this pseudopotential instead of the full interaction potential results in
the GPE as discussed in Chapter 3.

5.2.2 Physical Interpretation

In the above framework, we have assumed E = 0, as well as a wavenumber that is ap-
proximately zero. In practice, this is obviously not the case, and a more detailed study
reveals that the dynamics described above are independent of the precise wavenumber
k, given that the energies are low enough [59]. At large separations and finite E, the
centrifugal term and V(r) of Eq. (5.4) are zero, and the solutions to o are simply
sine waves. Alternatively, the approximate linear form of yxo can be viewed as the
first terms of the Taylor expansion of a sine wave.

As is plotted in Fig. 5.2, the physical interpretation of the scattering length a,
becomes clearer: while the dynamics at small distances »r ~ 0 are complicated, in
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the far field, the effects can be summarized by a phase shift of the outgoing wave.
The complex details of the interaction potential can be summarized using the simple
pseudopotential, as the delta peak sets the boundary conditions for the sine wave at
r = 0, which fully determines the phase of the wave at large distances. The fact that
these phase shifts result in effective repulsion and attraction between atoms is less
straightforward, and is best understood by considering the effect of the delta-peak
pseudo potential in the GPE.

5.2.3 Interaction Potential and Magnetic Field

We will now discuss how molecular potentials (and with that the scattering length
ag) are tuned in practice. The interaction between neutral atoms consists of an
attractive van der Waals interaction and repulsion of the atomic nuclei. These two
competing effects give rise to a combined potential, schematically shown in Fig. 5.3.
This potential has a number of bound states, which are the ro-vibrational states of a
so called Feshbach molecule. The spontaneous formation of a molecule from two
incoming atoms is energetically not allowed due to energy conservation of the atoms’
initial kinetic energy, but, as was described before, the interaction results in a phase
shift of the de Broglie wave after the scattering process. These dynamics cannot
be tuned through external control knobs, as the interaction potential is set by the
physical characteristics of the interacting atoms, and the phase shift accrued due to
this interaction sets the background scattering length, ap,.

The interaction between atoms can be tuned due to a second molecular state, one
with a different hyperfine configuration of constituent atoms (e.g. a triplet vs. singlet
molecular state). If the second molecular configuration has a different magnetic mo-
ment compared to that of the incoming atoms, one can shift the interaction potentials
relative to one another using an external magnetic field, B. It is now possible to
tune the effective interaction potential, such that quasibound molecular states can be
shifted in and out of resonance with the scattering state of the colliding atoms, shown
in red and blue in the left panel of Fig. 5.3. Here, a “resonance” indicates that the
phase shift of the outgoing wave is 7.

Near such a resonance, the scattering length a is given by the equation

A
a(B) =abg(1— B_BO), (5.7)

where A is the width of the Feshbach resonance and By is the magnetic field where
the molecular state is resonant to the incoming particles. Though in theory these
parameters can be determined by solving the Schrodinger equation for the molecular
potentials (as done for the toy model above), in practice this is extremely challenging,
and precise values are determined experimentally.
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Figure 5.3: Feshbach Resonances in Potassium. The left plot shows
the shifting of a bound molecular potential (red) with a different magnetic
moment than the molecular potential for two free particles (blue) using
an external magnetic field. Shifting a bound state on resonance with the
incoming scattering state modifies the effective interaction potential. Right,
the scattering length of 3K in the state that corresponds to |F = 1,mp = —1)
at low fields [73].

5.2.4 Feshbach Resonances in Potassium

In the experiment, we work with atoms in the state |F = 1,mp = —1). This sub-
state has three Feshbach resonances at intermediate fields, shown in Fig. 5.3, which
are typically very broad, making the interaction highly tunable with experimentally
achievable magnetic field control. In particular, the Feshbach resonance at 561.1 G
has the key feature that interactions can be tuned from highly repulsive to moderately
attractive, with a zero-crossing. This allows for a huge range of dynamics, as well
as the sudden switching off of interactions, which is necessary for momentum space
imaging. We will therefore always work in the vicinity of this resonance.

5.3 External Potentials with Light Fields

While tuning the interactions is an extremely useful and versatile experimental tool,
these interactions are typically constant throughout the cloud, as magnetic fields vary
slowly in space. Local control over the cloud is more easily achieved with light field
potentials, and this section will discuss relevant concepts and experimental techniques
to do so.
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Figure 5.4: Dipole Potentials. Left and center, schematics showing an
intuitive picture for the mechanism of a dipole trap. Below (above) the
resonance frequency, the atom is polarized in (out) of phase with the light,
generating an attractive (repulsive) potential. Right, the maximal potential
generated by a dipole beam with 100 mW of power and a waist of 100 um. In
the experiment, red-detuned dipole beams are at 1064 nm, and blue-detuned
beams are at 532 nm, marked with red circles. The tune-out wavelength is
768.97 nm, marked in the inset.

5.3.1 Dipole Potentials

An important tool for manipulating ultracold gases of neutral atoms is light that is
far detuned from a natural transition of the atom. This detuning means that rather
than addressing the atoms through resonant scattering processes (like in a magneto-
optical trap), the interaction is better described in terms of the polarization of atoms
in an oscillating electric field. The trapping potential that results from the interaction
between the dipole of the polarized atom and the electric field is known as a dipole
potential.

The mechanism behind dipole potentials can be illustrated using a toy model of
an electron elastically bound to the atom core [74]. The light represents an oscillating
electric field £ with frequency w that drives the electron-atom system, which is treated
as a damped harmonic oscillator with a resonance frequency of wg and damping I',,.
The polarizability can then be found to be

2
1
a= (5.8)

A >
—w? —iwl,

where e is the elementary charge and m, is the mass of the electron. As with any
oscillator, the polarizability is therefore in phase with the drive if w < wq, and 7 out
of phase if w > wy.
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The polarized atom has a non-zero, oscillating dipole moment,
d=aE (5.9)

and the interaction potential of the induced dipole moment in the driving field is
1
Vdip = —§<d . E) % —Re(a)], (5.10)

where the factor of 1/2 results from the fact that the dipole is induced, and I is the
intensity of the light. Thus, by tuning the spatial shape of the intensity distribution,
we can create arbitrary potential landscapes for the atoms.

5.3.2 Digital Micromirror Device

Digital micromirror devices (DMD) have become a standard experimental tool in
the cold atom community [75-78]. DMDs are arrays of millions of micromirrors,
which can be individually switched between two positions, such that light can be
either dumped (the “off” configuration) or directed towards the experiment (“on”
configuration). Originally developed for standard projectors, they can be used to
tailor light fields to have arbitrary shapes, beyond purely gaussian beams. In cold
atom experiments, one typically shines a laser of a far-detuned wavelength onto the
mirror array, and uses high-resolution optics to re-image the chip in the atomic plane.
Though mirrors can only be switched on and off, grayscales can be produced by
re-imaging the mirror array with an optical resolution that cannot resolve individual
mirrors. The specifics of the implementation of the DMD in the experiment are given
in Refs. [69, 71], and only a summary is given here.

The DMD is implemented in the direct imaging configuration. The full chip has
2560 x 1600 individual mirrors that are each 7.6um wide, and typically a square
region of 1600 X 1600 mirrors is used. A laser field with wavelength of 523 nm is
used to illuminate the chip, making the potential blue-detuned and therefore repulsive
for the atoms. The chip is demagnified by a factor of 86.7, with a resolution in the
atom plane of < 1.0um, resulting in around 100 grayscales.

To use the DMD, we prepare grayscale images of intensities, that are then bi-
narized using a Floyd-Steinburg dithering algorithm. These binarized images are
then uploaded onto the DMD, which displays a new image from a sequence with an
external trigger. The fastest switching rate between images is 10kHz.

5.3.3 Thomas-Fermi Approximation

The DMD enables us to experimentally implement tunable external potentials in the
atom plane. In the presence of such an external potential, the ground state of the GPE
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is modulated, as is described by the Thomas-Fermi approximation. Specifically, in
the regime of high densities (or high interactions), the nonlinear term dominates over
the kinetic term, resulting in the form

(1)~ V() + gn(D)] v (r. 1), 5.11)

which has the solution

w(r.1) = yn(r)e ™, (5.12)
where u is the chemical potential and the density n(r) is given by
-V
n(r) = L= V@ (5.13)

Intuitively, the density is larger where the potential is lower, and the interaction energy
and potential always compensate each other such that the local energy density is given
by the chemical potential.

Experimentally, this means that we can shape the density by projecting arbitrary
light fields onto the condensate, using the DMD. Because the approximation fails
when the kinetic term is large (i.e. ¥ has high curvature), sharp jumps in the potential
are smoothed in the density on the scale of the healing length. Spatially tuned
potentials will be used to shape the boundary conditions as well as to seed phonons
of specific orientations.

5.4 Momentum Space Imaging

A key experimental technique for studying the emergence of momentum modes is the
extraction of the momentum distribution. Experiments use a variety of methods to
extract information about momentum distributions, ranging from Fourier transforms
of densities to measuring distributions after a long time of flight (i.e. free expansion).

A different method for measuring momenta is a so-called “focused time of flight”
scheme in a harmonic trap. Here, one takes advantage of the elliptical nature of
phase space trajectories in a harmonic trap to map information about the momentum
distribution onto a real space distribution that can be directly imaged. In order to
perform such a measurement, interactions and all external traps are rapidly switched
off, and the cloud evolves freely in a harmonic trap for a quarter trap period; then, the
cloud is imaged using standard imaging techniques.

This method offers a number of benefits: it provides an instantaneous measure of
the momenta, reveals information about back-to-back correlations (+k), and can be
used in the same imaging configuration as real-space imaging, making it convenient to
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Figure 5.5: Phase Space Rotation in a Harmonic Trap. The red lines
show closed trajectories in a phase space defined by a harmonic trap. The
blue distribution is initially elongated in p (left), and a quarter period later in
x. Because of the closed trajectories, the projection of the distribution onto
the x axis at ¢+ = T /4 is equivalent (up to scaling factors) to the projection
onto the p axis at ¢ = 0.

rapidly switch between real and momentum space. First experimentally demonstrated
in 2010 [79], it has since been adapted and expanded in a huge variety of settings
[80-82].

The theoretical description of the technique relies on the symmetry of space and
momentum in a harmonic trap. The phase space of a harmonic trap is characterized
by closed ellipses, as shown schematically in Fig. 5.5. This means that particles
with a given position and momentum will return to exactly the same position and
momentum one period later. Another consequence is that projections onto either the
momentum or position axis are interchangeable (up to a scaling factor) after a quarter
period. Indeed, it can be shown that [80]

n(x,t =T/4) = W' (x,T/4)y(x,T/4))
= W'(p,0)y(p,0)) (5.14)
=n(p,t=0),

where p = mwyx and T is the period, T = 2n/wy. In general, measuring the
distribution after a quarter period rotation reveals different information than the
Fourier transform of the density, because (F [/ (x)|F [y (x)]) # F[ W' (x)y(x))].

5.5 Preparation of the BEC

The main cooling and preparation stages are shown in Fig. 5.6. The experiment
starts with a 2D MOT, which is loaded from the background vapor of potassium in
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Figure 5.6: Preparation of the BEC. (1) An atom beam from a higher-
pressure chamber loads a 3D MOT, which is followed by a gray molasses.
The temperature after these stages is roughly 7uK. (2) Atoms are held in a
magnetic trap with an anti-Helmholtz configuration and compressed, leading
to a slightly higher temperature of 60uK. At this stage, only atoms in the
|F = 1,mp = —1) state are trapped. (3) Evaporative cooling in large dipole
traps, to just above the critical temperature. (4) More tightly-confined dipole
traps complete the evaporative cooling and lead to condensation. A magnetic
field gradient in the vertical direction is ramped up to levitate the atoms
against gravity. (5) The atoms are loaded into the minimum of a blue-
detuned standing wave in the vertical direction for compression into a 2D
geometry. Radially, atoms are confined using the DMD.

a higher-pressure chamber (< 1078 mbar). This 2D MOT generates a beam of cold
atoms that is transferred through a differential pumping stage to a 3D MOT in the
science chamber, a glass cell that is at a lower pressure (< 10~!! mbar). After loading
the MOT for ~ 3s, we use a gray molasses for sub-doppler cooling [83], achieving
temperatures of 6 uK. Atoms are optically pumped into the F' = 1 state by switching
off the repumping light at the end of the gray molasses.

After the gray molasses, the magnetic field is switched on in an anti-Helmholtz
configuration, resulting in a magnetic trap. A key feature of the magnetic substate
|F = 1,mp = —1) is that it is a low-field seeker at low fields, and a high-field seeker at
intermediate to high fields (transition around 100 G). Because the other two substates,
|F =1,mp = 0, 1), are high field seekers, the magnetic trap only confines the desired
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|F = 1,mp = —1) state. The trap also compresses the cloud, leading to an elevated
temperature of ~ 60uK.

While atoms are trapped in the magnetic trap, two high-power infrared beams
(1064 nm) with large beam waists are ramped up, optically trapping the atoms. These
beams cross at a small angle, creating a large trapping region. Once many atoms
are trapped and the beams are at their maximal power, the magnetic field is rapidly
switched to a Helmholtz configuration, and ramped up to the vicinity of Feshbach
resonance at 561 G. A scattering length of 160 a( is used for evaporation. The intensity
of the large dipole traps is then ramped down over around 2.5 s, evaporatively cooling
the atoms.

In order to further cool and vertically confine the atoms, two weaker, more tightly
focused infrared dipole traps are ramped up while the large beams are ramped down.
The atoms are cooled below the critical temperature in these weaker traps with a
cooling ramp over 1.7 s, forming a BEC with a high aspect-ratio geometry, like a
surfboard. Finally, we ramp up a vertical gradient in the magnetic field while keeping
the offset value at the atoms constant; this levitates the atoms against gravity [69, 70].

Having cooling the atoms to degeneracy, we begin the process of shaping the cloud
to the desired 2D geometry. The BEC is transferred from the surfboard infrared dipole
traps into a trapping potential generated by the DMD, using an initial shape that neatly
matches the elliptical geometry of the dipole traps.! A one-dimensional lattice in the
vertical direction is then ramped up. The lattice is generated by two 532 nm beams
that interfere at a shallow angle, generating a standing wave with a spacing of 5 um,
and a trap frequency of w, = 27 X 1.5kHz. Due to the high trap frequency, the BEC
has a Gaussian density distribution in the vertical axis with width o, ~ 0.5 pm. In
order to ensure that only one lattice minimum is loaded, we regularly tune the spatial
phase of the lattice using a piezoelectric element behind the last mirror of one of the
lattice beams. Finally, the potential generated by the DMD is slowly reshaped into
the desired form, and the scattering length is ramped to the value for experiments.

The cloud is imaged at high fields with absorption imaging, using a scheme
described in detail in Refs. [69, 84]. A 10 us pulse of collimated imaging light
hits the atoms from above, and a high-resolution objective with NA~ 0.5 collects
the photons not scattered by the atoms. After passing through a secondary lens,
the light is re-imaged onto a CCD camera. A short time after the first imaging
pulse, a second pulse of light is imaged without atoms, and the atomic density is
calculated using standard techniques for absorption imaging [85]. The imaging light
targets the D2 transition but contains two frequencies, as the state that corresponds

Tt was experimentally determined that loading the BEC from the infrared dipole traps into a
circularly symmetric potential results in the proliferation of vortices in the cloud. This is likely due to
the rapid expansion of the tightly-confined axis after ramping down the infrared dipole trap. Using a
DMD potential that matches the geometry of the infrared dipole potentials dramatically reduced the
number of vortices observed in the cloud.
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to |F = 1,mp = —1) at low fields has slight admixtures of a second |m, m;) state at
the magnetic fields used for experiments. Using two frequencies of light results in a
nearly closed four-level system.

The entire experimental cycle takes around 16 s, and the experiment is equipped
with a variety of safety features such that it can run continuously, including over night
and over weekends. Under good conditions, the final BEC contains approximately
40,000 atoms, with shot-to-shot fluctuations in atom number of oy = 2.5%.

5.6 Slox Potential

Finite size is an unfortunate experimental reality. While theoretical descriptions of
quantum systems are often calculated in infinitely extended, homogeneous settings
(see Chapters 1-3), experiments must always contend with additional affects from the
confinement of the finite system.

When DMDs first became widely integrated into cold atom experiments in the
late 2010s, they were billed as the solution to the problem of having to account for
harmonic traps in theoretical models [86]. Due to the ability to arbitrarily shape
light fields, experimentalists could now produce essentially infinitely steep walls,
leading to flat density distributions. However, steep walls come with their own set of
challenges: boundary effects of these systems can provide unwanted excitations, such
as collective box modes or reflections, limiting applications to studying long-time
dynamics or infinitely extended systems. In the course of this thesis, we therefore
developed a new trapping geometry that has the benefits of a flat bulk density, while
minimizing boundary effects.

5.6.1 Potential Shape

In order to mitigate the effects of boundary conditions in a finite size system, it is
beneficial to minimize reflections of excitations at the boundary of the condensate. In
principle, this can be done by smoothly decreasing the speed of sound at the system’s
edge, by decreasing the density with a precise functional form [78, 87]. In practice,
a combination of a decreasing density as well as finite roughness of the potential
scrambles the reflected wavefronts, leading to dramatically reduced reflections of
quasiparticles. Experimentally, it is sufficient to implement a potential of the form

0 R
V(r) = r< Ruap (5.15)
B(r— Rtrap) r = Riraps

where Ry is the radius of the central region where the potential is zero, and S is the
linear slope of the potential, which is typically on the order of 8 ~ 27 x 30 Hz/um.
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Figure 5.7: Wavepacket Propagation in the Slox Potential. The left

column shows density distributions of the atoms loaded into the slox potential
(top) and the box potential (bottom). The color bar shows atoms per pixel.
The tapered edges are visible as gradually decreasing density in the top case.
The red and blue plots show density differences of perturbed densities to the
unperturbed case. An initial density dip is prepared by locally switching on
a blue-detuned potential. While the wavepacket is slowed and absorbed in
the slox potential, the box potential shows clean reflections.

Because the potential is similar to that of a box trap but with slanted walls, we will
now call this trapping potential the “slox” trap.

5.6.2 Reflections of Wavepackets

One direct demonstration of the mechanism behind the slox potential is wavepacket
propagation. Using the DMD, we load atoms into a potential of a given shape, and
then slowly ramp up a peak in the potential in a central part of the condensate, creating
a local depletion of the density there. We then rapidly switch off this potential peak,
leading to the propagation of the underdensity, much like throwing a rock into a lake.
Taking images after successive hold times ¢, reveals the dynamics of the wavepackets
in average density distributions.

Figure 5.7 shows the propagation of such wavepackets in two trapping configura-
tions, a box trap (steep walls) and a slox trap (slanted walls). The density distributions
are shown in the left most column, while density difference plots between perturbed
and unperturbed clouds are shown in remaining columns. The circular propagation
of the wavepackets is identical for the first 7.5 ms, until the wavepacket reaches the
boundary. While the edges of the slox slow and absorb the wavefront, the box reflects
the wave, and its reflection is seen propagating over the density even at late times.
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Figure 5.8: Calibration of trap frequency. The left plot shows the width
of the cloud after a quench of the scattering length. The breathing mode has
double the frequency of the trap, and a value of w; = 27 X 4.92(4)Hz is
extracted. The three images to the right show the cloud immediately after
the quench, at its smallest size, and after a half trap period.

While the measurements shown here are suggestive of reduced reflections at the
boundaries, more systematic measurements are discussed in detail in the Master’s the-
sis of Jelte Duchéne [72]. There, it is shown that a combination of slowly decreasing
density and roughness of the potential minimizes coherent reflections of wavefronts.
Unless stated otherwise, all measurements shown in this thesis are performed in a
slox trap.

5.7 Implementation of Momentum Space
Measurements

The magnetic field that tunes the interactions using a Feshbach resonance is designed
to be homogeneous, but still has a slight curvature due to the Helmholtz coil con-
figuration, on the order of 30nG/um?. This slight curvature is enough to generate
a harmonic trap with a frequency of approximately 5 Hz. Because magnetic fields
have the benefit of being very smooth, momentum space measurements are conducted
using the finite curvature of the field.

Measurements are performed in the following manner. After a period of some
desired dynamics, the interaction strength is ramped down to 0ag within 0.5 ms,
which is the fastest ramp that the coils and control electronics can cleanly do without
an overshoot. Simultaneously, the intensity of the DMD is switched off, and the
power of the vertical lattice is decreased by a factor of ~7, leading to a reduction of
the trapping frequency w, by a factor 2.6. This trap is not switched off entirely in
order to confine the atoms in the focal plane of the imaging objective, and the field

67



Chapter 5. Experimental Techniques

10! 10°

n(k) x k

| 2

0
go . 10
4

107!

1 0 1
k (pm™)

Figure 5.9: Calibration of Momentum Space Ramp. Left, a momentum
space distribution after a square lattice density was prepared using the DMD,
imaged in momentum space. The colormap shows atoms per pixel on a log
scale. The red lines show the region of summation to extract the cuts shown
on the right. Right, cuts for different ramp durations of the scattering length
from 100ag to Oag at the beginning of the momentum space measurement.
Significant variations in the momentum distribution are apparent only for
very slow ramps.

gradient in the z axis is calibrated such that atoms are levitated against gravity; we
therefore expect that there are no significant dynamics in the vertical direction. After
waiting a quarter period of the harmonic trap, an absorption image of the cloud is
taken.

To calibrate the frequency of the magnetic trap, we prepare a condensate, and
quench the scattering length from 100 ag to 0 ag, and observe a breathing mode of
the cloud in the harmonic trap. We then fit the width of the cloud throughout the
breathing motion, which has the double periodicity of the trap. The results are shown
in Fig. 5.8, revealing a trap frequency of wy, = 2nx4.92(4)Hz,i.e. T/4 = 50.8(4)m:s.
This number is in good agreement with simulations of the residual curvature of the
field due to the coil geometry [88].

Another parameter of concern is the adiabaticity of the ramp of the scattering
length, as interactions during the evolution in the harmonic trap will lead to mixing of
momentum modes. In order to test the interaction quench, we use the DMD to write
a density modulation into the condensate, by projecting a periodic potential onto
the otherwise homogeneous condensate (for details, see Chapter 7). This density
modulation populates momentum modes at k # 0, which are then observed as peaks
in momentum space. We then perform momentum space measurements, but ramp the
scattering length from 100 aq to 0 ag over progressively longer periods. The results
are shown in Fig. 5.9. No significant effect is visible until a very slow ramp of 10 ms,
indicating that for our intents and purposes, the ramp of 0.5 ms is sufficiently fast.
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CHAPTER 6

Spontaneous Emergence of
Patterns

In this chapter, we describe how patterns emerge in the experiment. First, we discuss
the behavior in single shots. Then, the occupations in momentum space are analyzed,
showing how structures emerge and decay over time. We then investigate how square
lattice patterns form, using statistical observables to capture the geometry of patterns
in single realizations. In order to probe the robustness of the pattern formation process,
we investigate the effect of different drive frequencies and trapping geometries.

6.1 Single Realizations

To build an intuition about the dynamics of the driven superfluid, it is instructive to
first look at single realizations in real and momentum space. Fig 6.1 shows randomly
selected single realizations for parameters r = 0.4, wy = 2mr X 400Hz, and y =
2nh x 300 Hz. Real space images are shown in the pink color map, and momentum
space images are shown in the blue map on a log scale. Each row shows multiple
realizations for a given number of shake periods. !

For early times (first row, 7 periods), the real space density is mostly homogeneous
with slight ripples appearing, while the momentum space distribution is dominated by
the macroscopic occupations in the k = O mode. Later, density waves at a given length
scale become more pronounced, and in momentum space a ring of occupations at the

IDistributions in real and momentum space are measured at slightly different times within one
period, due to the oscillating contrast and momentum distribution (see Eq. (4.31) and Eq. (4.32)). Thus,
measurements in real space are always measured after n + 0.25 periods, and after n + 0.75 periods in
momentum space. The period numbers shown are rounded to the nearest integer for clarity. We note
that the pattern formation dynamics typically occur on timescales much longer than one period, and
therefore the different times of measurement between real and momentum space are negligible.
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Figure 6.1: Single realizations. Single realizations after various drive
periods. Driving with r = 0.4, wg = 2m X 400 Hz, at a chemical potential
of u = 2nh x 300 Hz, we take images in real and momentum space. Each
row shows three randomly selected realizations in real space (pink) and
momentum space (blue). After density waves have grown, one sees square
lattice patterns emerging often. These appear as square patterns in real space,
and two sets of back-to-back peaks at 90° separation in momentum space.
The central, dark peak in the momentum distribution indicates macroscopic
occupations of the kK = 0 mode. Color bars shown are in atoms per pixel, and
momentum distributions are shown on a log scale.
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6.2. Occupations Over Time

resonant momentum becomes clearly elevated. Crucially, each shot shows a different
orientation and spatial phase of the pattern, meaning that the structures spontaneously
break the translational symmetry of the system, as opposed to being pinned by the
boundaries. After roughly 20 periods, the contrast of the density waves no longer
grows, and many realizations show the emergence of square patterns, which appear
in real space as square lattice density modulations. In momentum space, one sees
four peaks along the resonant ring, each separated by roughly 90°. For later times,
the contrast in real space is slightly reduced, and structures become more erratic and
less ordered. In momentum space, it is apparent that many other modes have become
occupied.

These single realizations are indicative of two key features that emerged from
the amplitude equation discussed in Chapter 4: saturation of occupations, and the
selection of specific lattice geometries. To consider this behavior more quantitatively,
we will look at a series of statistical observables to piece apart the pattern formation
process.

6.2 Occupations Over Time

We first consider the occupations of momentum modes while driving the scattering
length. These dynamics yield insight into the Floquet instability due to the drive, the
stabilization in the regime of large occupations, and the eventual decay into disordered
structures.

6.2.1 Birth, Life, and Death of Density Waves

To investigate how structures emerge, we look at mean momentum distributions,
as shown in Fig. 6.2 for 5, 19, and 39 drive periods. In these plots, the behavior
expected from single shots is confirmed: after the drive is switched on, a ring of
isotropically occupied momentum modes grows and saturates, until eventually many
other modes become occupied. The isotropic nature of the ring indicates that the
structure formation process is spontaneous, in that each realization has a random
orientation.

Radial distributions of the occupations for many times are plotted in the lower
right panel of the figure, with the region around the resonant momentum marked by
the vertical gray lines. In the pattern formation framework discussed in Chapter 4,
we have assumed that there are occupations only at the critical wavenumber and
neglected redistribution effects. In the radial distributions, it becomes evident that
at late times, other momentum modes are occupied on the same scale as the critical
momentum. The increase in occupations of other momentum modes means that
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Figure 6.2: Birth, Life, and Death of Patterns. Momentum distributions
at three times, showing the emergence of a single, isotropic ring of atoms
at the resonant wavenumber k.. For later times, many other modes have
been occupied. The bottom right shows radial distributions for many times.
The vertical lines, centered around &k, = O.68,um_1 , show the region used to
extract mode occupations in later analyses.

at late times the theoretical description breaks down, as modes with |k| no longer
dominate the dynamics.

6.2.2 Growth Rates

We will now focus our attention on the region around k., performing quantitative
analyses on the occupations in the region shown in the bottom right panel of Fig. 6.2.
At early times, dynamics are well described by the linear instability analysis
performed in Section 4.1. In this analysis, we found that a finite drive amplitude
r > 0 leads to the exponential growth of occupations at a critical length scale. In the
presence of damping, the drive amplitude must be above some finite value for growth
to occur, and above the threshold, occupations in momentum space grow as [18, 47]

N(ke,t) = No(ke)e* @1, 6.1)
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Figure 6.3: Amplitude Dependence of Growth Rate. Left panel, occupa-
tions over time for various drive amplitudes, » = 0.2,0.3,0.4,0.5, and 0.6,
from blue to red. The initial growth rate is extracted before occupations sat-
urate using an exponential fit (solid line). Right panel, the extracted growth
rates with a linear fit.

where a = r%, and I' is a phenomenological damping term, which must be de-
termined experimentally. By measuring the growth of occupations at the critical
length scale for different drive amplitudes r, we can extract growth rates and therefore
determine I'.

Experimental results for various drive amplitudes but otherwise identical parame-
ters as in the previous section are shown in Fig. 6.3. We vary the drive amplitude from
r = 0.1 (blue points) to 0.6 (red points), and extract the occupations on the resonant
momentum ring, in a bin of width Ak = 0.27um™!. We then fit an exponential to the
times in which the occupations are rising, before showing signs of saturating. The
extracted growth rates are shown in the right panel of the figure. One neatly recovers
the linear behavior of the growth rate, and, using a linear fit, we extract the critical
driving amplitude r.. With this, we can extract the damping rate I" = 65 + 10s~!, and
can compare the growth rate a for a given r to the theory value. Atr = 0.4, we find
@exp = 130 + 15571, in good agreement with the theory value of 113s7".

6.2.3 Saturation of Occupations

As can be seen clearly in Fig. 6.3, occupations at the critical length scale saturate
after a number of drive periods, with the saturation occupation ng, dependent on
the drive amplitude. This behavior is nontrivial, as even for small drive amplitudes
nonlinearities must play a role in dynamics and lead to saturation. The saturation
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Figure 6.4: Saturation of Contrast. The top row shows the three steps
in the analysis used to extract the mean contrast. Single shots (left) are
Fourier transformed and filtered with a step function up to just above the
critical wavenumber (center). These images are then transformed back into
real space (right), and the RMS of a central region is analyzed. The bottom
left panel shows the change in the mean values (|R|) over time for five
drive amplitudes. The time axis is scaled with the drive amplitude to better
compare the five cases. The bottom right shows the extracted values for
|R|sat, compared to numerical solutions of the extended AE.

of occupations is given by the amplitude equation, which predicts that the square
contrast of the standing wave scales roughly linearly with the drive amplitude (see
Section 4.3.3),
2
) r

As the damping and growth rates have already been extracted, we can therefore use
the saturated contrast to extract the value for A.

To see how the saturated pattern contrast |Rgy| scales with the drive amplitude,
we will perform measurements in real space, because the value of |R| can be directly
extracted using the contrast of the standing wave,

n(x)=n (1 + 4|R| cos [%t + go] cos kx + h.o.t.) . (6.3)

While a similar measurement can also be performed in momentum space [50], for late
times coherent and incoherent occupations cannot be clearly separated in stroboscopic
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measurements. We therefore extract the evolution of the pattern contrast in real space
to determine A.

An overview of the experimental results is shown in Fig. 6.4. We measure density
distributions after various drive periods for five drive amplitudes, using longer times
for low r and shorter times for high r, to account for differing timescales. The contrast
is quantified in the following manner: first, the density distributions are filtered in
momentum space, by Fourier transforming them, and setting a cutoff wavenumber
above which every pixel of the Fourier transform is set to zero. As can be seen in
the central panel of the top row in Fig. 6.4, k. = O.8,um_1, and kcy = 0.94,um_1.
The image is then transformed back into real space (upper right panel), and a central
region is analyzed, shown as the black ring in the figure. In this region, the mean
magnitude of R is determined as

(Rl = 32

n

\ :

2
EE 6

where 7 is the mean density, and the subscript r indicates the average over all positions
in the cloud. This is the root mean square of the density, with the factor V2 to properly
calculate the amplitude of a sine wave, and the factor 4 to account for the definition
of |R| in Eq. (6.3).

The change in contrast over time is shown in the lower left panel of Fig. 6.4 for
different drive amplitudes, and the saturated value is extracted by taking the mean
of the five maximal points. In the lower right subplot, these extracted amplitudes
are compared to numerical solutions of the extended amplitude equation. For the
numerical solution, identical parameters to the experiment are used, with I" = 6557,
An effective value for A is fitted by eye, deg ~ 94, where A is the theory value.

The functional form of (| R|) over the drive amplitudes shows excellent agreement
to the numerical simulations, and the large value of A.¢ compared to the theory value
simply scales the function to lower contrasts. There are a variety of possible reasons
for the discrepancy between the effective and theoretical values. The theoretical
model contains only a phenomenological damping parameter, and does not account
for amplitude-dependent effects or heating. Additionally, the model assumes an
infinitely extended system, which is certainly not true for the standing waves observed
here. Finally, this analysis may underestimate the saturated amplitude, as it uses the
mean contrast over the whole cloud as opposed to the amplitude of single stripes. The
precise value of A does not affect the conclusions drawn in this work, and is merely
used to scale theoretical predictions to experimental observations.

75



Chapter 6. Spontaneous Emergence of Patterns

6.3 Emergence of Spatial Correlations

So far, we have discussed characteristics of the mean occupations but have neglected
the spatial structure or orientations of the density waves. As was already observed in
the single shots shown in Fig. 6.1, square lattices seem to emerge astonishingly often.
This is indicative of some coupling of density waves, as was theoretically motivated in
Chapter 4. Because the patterns emerge spontaneously and have random orientations
in each realization, we cannot perform analyses on mean densities. We will therefore
now use a series of statistical observables that quantify the geometry of patterns in
single shots, to gain information on the emergence of square lattices.

6.3.1 Quantification of Spatial Structure

In order to show that the square lattices emerge systematically, we define a g(®
correlation function in momentum space:

(n(ke, @) n(ke, 6 +060)), _
(n(ke,0))

Here, n(k., 6) is the momentum space density in the resonant ring as a function of
the azimuthal angle 6, and 66 is the difference in angle between two points along the
ring. The subscript 8 means that all values on the ring are averaged, and the brackets
of the whole equation indicates averaging over many single realizations.

By calculating the correlator for each realization and then averaging, we can
recover information about the structure of single shots that is otherwise lost in mean
densities. In other words, this function quantifies fluctuations on the resonant ring,
where positive values indicate a higher signal relative to the squared mean, and
negative values mean lower signal relative to the squared mean.

The procedure for calculating the correlation is as follows. Many measurements
of the momentum distribution are averaged, and the resonant wavenumber is deter-
mined. A region around this wavenumber with width Ak = 0.27um™"! is then binned
azimuthally, with bin widths of 7/16. The correlator is calculated for single shots
and then averaged over all realizations.

The resulting g@((se) at various drive periods is shown in Fig. 6.5. Though
initially the correlator is flat except for the auto-correlation at 660 = 0, after a few
periods apeak at 68 = m emerges, which is of similar magnitude to the auto-correlation
peak. This indicates that occupations in momentum space are back-to-back correlated,
aresult of the momentum-conserving pair-production process. At later times, positive
correlations at 60 = /2 and anti-correlations at /4 emerge, showing that the signal
is enhanced relative to the mean at /2 and suppressed at /4. The suppression of
correlations at 66 = m/4 and 37/4 is indicative that the presence of square lattices

g (60) = 1). (6.5)

76



6.3. Emergence of Spatial Correlations

1 Periods 11 Periods
0.4 0.4

0%

0 0.25 0.5 0.75 1 ) 0.25 0.5 0.75 1
50 () 50 ()
21 Periods 31 Periods
0.4 0.4

025 05 075 1
50 ()

Figure 6.5: Angle Correlations. Correlations of occupations at k. as a
function of the angle between them, 6. The blue lines are the correlations
for single shots, whereas the red line is the average. At 11 periods, enhanced
correlations at 60 = r indicate the emergence of stripes. At all other angles,
single shots fluctuate symmetrically around zero, showing no orientation
of the stripes. At later times, a cowboy-hat shape emerges, indicative of
square lattices. Even after many drive periods, the shape is still apparent,

but correlations at all angles are diminished due to a rising background of
incoherent occupations.
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Figure 6.6: Comparing Occupation and Correlation Growth. Top row,
the occupations in momentum space at k. (black), and in an adjacent region of
lower momentum (red). The inset shows an average momentum distribution,
with the regions used to extract occupations shown in red and gray. Below, the
normalized correlation values g,(j) (060) for the same data. Around the point
when occupations begin to saturate, the correlations at 660 = n/2 and 7 /4
split around zero, indicating the emergence of square lattices. For late times,
all correlation values decrease symmetrically. Correlations are calculated in
the gray region.

inhibits occupations at other momenta; if many square lattices at different orientations
were superimposed, it would result in elevated correlations at /2 without adjacent
minima. For late times, the cowboy-hat shape of the correlations remains but has a
decreased contrast at all angles.

6.3.2 Time Dependence of Correlations

In order to track the emergence of the patterns more quantitatively, we define a
normalized correlation value

g(50) = g7 (66)/2,>(0). (6.6)
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Although in principle the auto-correlation g~ )(69) should be independent of the
absolute occupations on the ring and such a normahzatlon is trivial, in the presence
of a finite noise background, the absolute value of 8. )(60) depends on both the
distribution of momentum modes, as well as their amphtude relative to this noise
background. In the experiment, the presence of incoherent thermal atoms makes
such a normalization useful for discerning trends of only structure formation. This
normalized correlation value is equal to 1 if the occupations are equal in all bins if
rotated by 6.

Figure 6.6 shows the time dependence of both occupations in momentum space
(top row) and normalized correlation values for 66 = 45°, 90°, and 180° (bottom
row). Occupations in momentum space are calculated by summing over a region
of width 6k = 0.27,um‘1 around k. (black, region as shown in Fig. 6.2), as well as
an adjacent region at lower momentum, centered around k = 0.44um~'. One again
sees the exponential growth at early times followed by the saturation of occupations,
as discussed previously. The red points show that redistribution to lower momenta
begins to increase significantly when occupations at the resonant momentum become
saturated.

The values of g( )(69) show that correlations at 66 = 180° (blue diamonds)
quickly rise at early ‘times, and then stay roughly constant at just under 1. This
increase is likely an artifact due to the emergence of the momentum peaks relative
to the noise, as we expect that quasiparticle pairs are back-to-back correlated as soon
as they are produced. The correlations corresponding to the emergence of square
lattices (00 = 90° and 45°) are initially 0, and split symmetrically around O at the
time where occupations become saturated. This supports that patterns are indeed
a nonlinear phenomenon; at early times random stripes are dominant, and only in
the regime of large occupations do the square lattices develop. At late times when
occupations in the off-resonant modes are comparable to those at k., the correlations
at all angles decrease symmetrically.

6.4 Scaling of Parameters

In order to get a sense for how the emergence of patterns scales with experimental
parameters, we perform a similar analysis on patterns for different drive amplitudes.
The results are summarized in Fig. 6.7. Values for g g (60) are plotted against drive
periods in the left column, where the top panel shows back-to-back correlations and
the bottom the square-lattice correlations. The back-to-back correlations grow almost
identically in each case, with a significant delay for the smallest driving amplitude
r = 0.3. Interestingly, the decay of back-to-back correlations scales with the drive
amplitude, indicating that there are amplitude-dependent effects that limit the lifetime
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Figure 6.7: Scaling of Parameters. The normalized correlation values are
plotted for 56 =  in the top row, and for 66 = /2 and /4 in the bottom row.
Each color indicates a different drive amplitude. The left column shows the
data with a true time axis, whereas the right column’s time axis is multiplied
by the drive amplitude. The collapse of the scaled curves onto one generic
shape indicates that the qualitative behavior is identical in each case.

of correlations. The square-lattice correlations emerge later and later in time, further
supporting a genuine dependence on the occupations on the occupations in the ring.

The dependence on the amplitude is elucidated by scaling the drive time with
the amplitude, r X ¢, shown in the right column. The direct correlation of the decay
of back-to-back correlations now becomes clear, as all curves in the top right plot
collapse onto one universal functional form. Similarly, the square lattice correlations
collapse onto one universal curve, showing an initial phase where stripes dominate,
followed by the splitting of correlations at 66 = /4 and /2. For the lowest drive
amplitude, it appears that time scales are so slow (i.e. the growth rate is so close
to the damping rate) that the values cannot be properly scaled. For the largest drive
amplitude, on the other hand, the square lattice correlations are not as pronounced
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as for lower drive strengths, and the back-to-back correlations are also systematically
reduced.

These results indicate that regardless of the drive amplitude, the phenomeno-
logical behavior of the patterns is the same. This means that working at lower
drive amplitudes extends the lifetime of patterns without affecting other qualitative
characteristics.

6.5 Frequency Dependence

As was discussed theoretically in Section 4.1, periodically modulating the scattering
length results in bands of unstable momentum modes. While the width of these bands
is given by the drive amplitude, the central wavenumber of the primary unstable mode
is determined by the chemical potential and the drive frequency. This relation is given
by

hwg/2 = \e(e +2u). (6.7)
Here, € = h;];g is the kinetic energy of the critical wavenumber, k.. The factor 1/2 on
the LHS results from the pairwise creation of quasiparticles, and the RHS is simply
the Bogoliubov dispersion relation.

Experimentally, we can tune the drive frequency to values on the order of around
1 kHz. The chemical potential is given by the product of the density and the interaction
strength, which can both be tuned over a large range. At low chemical potentials,
the density distribution is strongly affected by the residual curvature of the external
magnetic field and roughness of the dipole traps, while at large chemical potentials
the condensate is affected by strong three-body atom loss. We therefore typically use
values around u € 27h X [200,400] Hz.

A systematic measurement of the frequency dependence of patterns is performed
in real space, and we use the Fourier transform of the density contrast to quantify

structure emergence,

ong = (|F (on(r))|*)/MTF (k), (6.8)

where on(r) = n(r)/i(r) — 1, and MTF (k) is a modulation transfer function that
accounts for k-dependent imaging resolution [89, 90].

The top row of Fig. 6.8 shows on; for three drive frequencies, w; = 27 X
200, 600, 1000 Hz, after 12.75 drive periods. As previously, a ring of occupied
momenta is apparent, and the ring’s position moves to larger wavenumbers with
higher drive frequency. In the lower left panel, radial averages of the occupations
in momentum space are shown for frequencies between 200 (blue) and 1000 (red)
Hz, in 200 Hz steps. Extracting the peak positions of the excited band of momenta
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Figure 6.8: Frequency Dependence of Drive Frequency. Top row, mean
Fourier transforms of densities after 12 drive periods for three drive frequen-
cies, averaged over approximately 40 single realizations. The resonant ring
shifts outward for higher drive frequency, but remains radially symmetric.
Bottom row, left panel shows radial cuts of many frequencies, while the right
panel shows the extracted peak positions vs. frequency. The solid line is
a fit using wy = 2 X E(k.), with E(k) the Bogoliubov dispersion relation
parameterized by u.

and plotting this against drive frequency (lower right), we recover the functional
form wy = 2 X E(k.), using the chemical potential as a fitting parameter. In this
measurement y = 2% X 336(5) Hz. This value is consistent with measurements
using wavepacket propagation to determine the speed of sound, which is related to

the chemical potential through u = mc2.

Regarding the emergence of square lattices, we can define a similar g,(j) (60)
correlation function, now using ény instead of the momentum distribution. Because
the Fourier transform is symmetric in +k by definition, this correlation function only
yields unique information in the region 0 < 66 < nr/2. The bin width in 66 is adjusted
to the value of k..

Density distributions from four single shots at different frequencies are shown on
the left half of Fig. 6.9, with g,ﬁ?((se) plotted on the right. At wy = 27 X 200 Hz, the
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Figure 6.9: Patterns at Different Frequencies. Left, four single realizations

at different drive frequencies. Right, g,(j)(ée) correlation functions for the

four cases. Each curve shows enhanced correlations at /2, indicating the

robustness of the emergence of square lattices.

structures are of the same order as the system size, with roughly two wavelengths ap-
parent. The correlations (blue) still show the characteristic shape of anti-correlations
at 66 ~ m/4, with slightly elevated correlations at /2, indicating that square lattices
do tend to emerge.

At higher frequencies, the pattern wavelength is much smaller than the system
size, and patches of patterns with different orientations are apparent (see density for
800 Hz). The presence of many patches affects the the shape of g,(j_) (60), as a more
homogeneous distribution throughout the resonant momentum ring results in reduced
anti-correlations. Nevertheless, it is apparent that square lattices do emerge at large
frequencies, as evidenced by the positive correlations at 7 /2 for all length scales, with
a minimum that shifts to larger values of §6.

These results confirm the robustness of the pattern formation process to changes in
the drive frequency. In particular, none of the gl(i) (660) functions show enhanced cor-
relations at the critical angle 6., which for these parameters ranges from 66 = 0.15 n
to 0.4 n. Having investigated the role of drive duration, amplitude, and frequency
in the pattern formation process, we now turn to the final critical feature of the
experiment, namely the boundary conditions.
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Figure 6.10: Pattern Dependence on Trap Geometry. Left panel, a single
shot of a pattern in a harmonic trap. Center, a box trap, with seemingly
disordered density structures. Right, the slox trap, showing square lattices as
discussed until this point.

6.6 Effect of Boundary Conditions

As is generally the case in pattern formation, the spontaneous emergence of specific
structures is critically affected by the boundaries of experiments. For example, in
pattern formation experiments using classical fluids such as water, the meniscus at the
edge of the system can result in additional excitations emanating from the boundary
[2, 14].

In BECs, the geometry of the cloud is determined by the trapping potential in
the Thomas-Fermi limit. The most experimentally accessible trapping geometry is
a harmonic confinement, V(r) = %mwhorz, as this can be approximately realized
with a single, red-detuned laser beam with a Gaussian profile. Historically, this was
the trapping geometry originally implemented in the experiment. After performing
preliminary experiments periodically driving the scattering length, we observed that
in many single shots square lattices emerged, as can be seen in the left panel of
Fig. 6.10. Later, the DMD was implemented, and the experiments were repeated
using homogeneous clouds with a hard wall (box trap). Here, the patterns no longer
seemed structured, but rather displayed significant disorder, as can be seen in the
center panel. Adjusting the boundaries to be slightly slanted (the slox trap, right
panel), patterns emerged, showing stable occupations. In the following, we will
present a number of measurements highlighting the effects of boundary conditions
on pattern growth and stability.

6.6.1 Occupations

The boundary conditions strongly influence the dynamics of the mode occupations.
Figure 6.11 shows the growth of occupations at the resonant momentum (black points)
as well as an adjacent region at lower momentum (red points) for harmonic, box, and
slox traps. The experimental parameters for the measurements in the box and slox
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Figure 6.11: Effect Boundary Conditions on Occupations. Left panel,
occupations at k. in a harmonic trap (black) and an adjacent region at k < k..
The inset shows a mean density distribution in real space. The vertical lines
indicate half of the trap period, determined with an independent measure-
ment. Center, occupations in the box, where the vertical line indicates the
crossing time. Right, occupations in a slox trap. Occupations in the box and
slox can be quantitatively compared, but only qualitatively to the harmonic
trap due to significantly different experimental parameters.

traps shown here use r = 0.6, but are otherwise identical to those used in Section 6.2.2.
For the harmonic trap, r = 1.0, wg = 27 X 500 Hz, and k. = l.l,um_l.

In each case, the occupations at the resonant momentum mode grow exponentially
for early times. In the harmonic trap, after an initial period of growth, the occupations
begin to oscillate at twice the harmonic trap frequency (wp, = 27 X 20 Hz), which
was determined using an independent measurement. This is because the harmonic
trap constantly mixes space and momentum, meaning that quasiparticles that are
initially produced at k. begin to propagate in space, at the cost of their kinetic energy.
Because the momentum space measurement is an instantaneous measurement of the
kinetic energy, this is observed in the occupations at k.. Interestingly, out-of-phase
oscillations at lower momenta can be seen in the red dots. Therefore, though the
harmonic trap’s boundary conditions leads to clear patterns, its mixing of space and
momentum makes it a suboptimal tool for studying pattern stability.

The box trap, on the other hand, shows an initial increase in occupations, which
are then damped, reaching a steady state at a lower value. The time of the decrease in
occupations corresponds to the crossing time in the system (vertical line in the central
panel), defined as tcross = 2Ryap/ Vg, Where vy is the group velocity at k., which for
these parameters is 2.0 um/ms. This is indicative of the role of reflections at the
boundaries, as this is the timescale in which patterns will have spread throughout the
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Figure 6.12: Density-Density Correlations. Correlations for four different
periods, comparing box and slox traps. Each time is offset by a constant
value for clarity. Positive correlations for large separations in the box trap
indicate enhanced boundary effects.

system and been reflected. In the slox trap, occupations grow and then saturate at a
relatively constant level®. In both cases, the off-resonant occupations grow after the
occupations at the resonant momentum have either saturated or are damped, though
these occupations grow to much larger values in the slox case.

6.6.2 Density-Density Correlations

In order to investigate the differences in the growth of patterns in the box and slox,
we now consider the density-density correlation function, defined as

gnn(loT]) = ((5n(r)6n(r + 6r)>, (6.9)

where on(r) = n(r)/n(r) — 1 is the density contrast of a single shot relative to the
mean. The averaging brackets in the correlation indicate the averaging over many
shots. This correlator gives a measure of density fluctuations that is dependent
on radially-symmetric displacements, and is evaluated roughly in the region where
V(r) = 0 (i.e. where the density is constant).

The density-density correlators are shown in Fig. 6.12, compared for four drive
periods in the box and slox case, in red and blue, respectively. At short ranges,

This is the same data as that presented in Fig. 6.3 for r = 0.6.
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the emergence of one periodicity is clearly visible in the oscillatory behavior of the
correlation, with slightly different wavelengths in the two cases owing to the different
mean densities of the two trapping potentials. At roughly the time when occupations
in momentum space are maximal (as shown in Fig. 6.11), patterns are correlated
throughout the entire system. The contrast of the correlations is similar for the two
cases initially, but at later times the box trap shows significantly reduced contrast.

Perhaps the most significant difference between the two cases is the dynamics
at large displacements. While the slox correlations smoothly approach zero, the
box shows positive correlations at approximately the trap diameter, indicating that
collective modes of the trap are excited, or that the boundary condition has pinned
specific spatial phases of patterns. This feature is persistent over many periods,
and the continued influence of the boundaries will certainly have an effect on the
emergence of the square patterns.

6.6.3 Pattern Emergence

Finally, we can look at the pattern correlation functions, g,(j)(cie), to see if square
lattices do emerge in the box, despite the apparent randomness of patterns in real
space. The top row of Fig. 6.13 shows g,(j)(ée) for the box and slox trap, in red
and blue, respectively. While after 10 periods the two cases are roughly identical, a
short time later the correlations are damped in the box trap. Extracting the values of
g,(j) (66) for 66 = n/4 and /2 (bottom panel), it is apparent that while square lattices
are stable in the slox trap, they are damped in the box trap.

The lack of stable square lattices in traps with hard walls is remarkably repro-
ducible, and we have not observed any dependence on trap size or even geometry
including a square shape. Though naively one could expect that a square box is a
convenient trap shape to observe square lattices, the spontaneous nature of the pattern
formation makes this untrue. Other than in the special cases of 0° and 45° orientations
to the square trap, reflections of density waves will not be commensurate with the
original pattern, which is detrimental to the stability of single square lattices.

A number of further measurements not shown here were performed to investigate
the mechanism that leads to the differing behavior in the box and slox traps, detailed in
[72]. First, it was shown that the emergence of patterns can be smoothly suppressed by
increasing the steepness of the slox potential. Furthermore, smoothening the potential
with an iterative optimization algorithm to remove any imperfections [91] also leads
to the reduction of square-lattice correlations, indicating that the finite roughness of
the slox contributes to its effect. These measurements support the notion that the
suppression of reflections at the boundary of the trap play a significant role in pattern
stability.
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Figure 6.13: Square Lattice Correlations. The top row shows g,(j) (00)
for two drive periods, showing that while the box and slox initially show
the emergence of square lattices, the correlations are later damped in the
box trap. Bottom row, extracted values for g,(f)(ae). While square lattice

correlations grow and are constant for about 30ms in the slox case, they are
damped in the box.



CHAPTER

Probing the Amplitude Equation

Having investigated the spontaneous emergence of patterns, we will now turn towards
engineering specific lattice geometries, in order to investigate the nonlinear dynamics
explicitly. In contrast to the spontaneous case, this will allow us to investigate unstable
configurations, including phonons with phase lags relative to the drive and triangular
lattices as opposed to square lattices. Additionally, we will attempt to initialize
the system at the fixed-point solution, leading to square lattice patterns with long
lifetimes.

We will first discuss how modulated superfluid densities can be prepared using
periodically modulated potentials. We then use this technique to vary phonon occu-
pations, as well as their relative phase to the drive, and compare this to the theoretical
model. Finally, we discuss an alternative method to seed patterns using a phase
imprint and discuss the optimization of lattice lifetime.

7.1 Phonon Preparation and Readout

The preparation of modulated clouds is described in Fig. 7.1. In the top left, the
Thomas-Fermi approximation is schematically described [59]. We prepare a BEC,
and then slowly ramp up a periodic modulation of a given contrast, such that the
trapping potential is given by

(7.1)

V(r) = Volsin(kcx) + sin(k.y)] Ir| < Rirap
Volsin(kcx) + sin(kcy)] + B(|r| - Rtrap) r| > Rtrapa

The value of Vjy sets the magnitude of the phonon amplitude, |R|. Then, we abruptly
switch off the periodic modulation of the potential (Vy = 0), and the modulated
density immediately begins to show dynamics in the flat potential. Indeed in both
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Figure 7.1: Density Imprint of Lattice. An overview of the experimental
sequence for preparing lattices. Modulated potentials are loaded with atom:s,
leading to a modulated density (top left). The modulation of the potential
is abruptly switched off, and then the periodic modulation of the scattering
length is turned on after a certain hold time (right). In the bottom row, density
and momentum distributions are shown after a hold time of 0.5 periods,
showing an out-of-phase oscillation of the lattice contrast and diffraction
peaks.

real and momentum space, the density of the cloud is observed to show the oscillations
expected from Bogoliubov phonons, as described by Eq. (4.31) and Eq. (4.32).!

After the phonon has evolved for a certain hold time, the periodic modulation
of the interaction is switched on. The frequency of the drive is adjusted to match
the eigenfrequency of the imprinted phonon. The hold time between switching off
the modulated potential and switching on the drive sets the phase of the phonons,
¢ = arg R. With the full control over the parameters of the phonons, we can now
probe phonon dynamics experimentally.

'Writing in a periodic modulation of the order parameter is of course not equivalent to spon-
taneously generating pairs of quasiparticles by driving the scattering length. At the very least, the
two scenarios should be different in the correlations relating to the production of genuine quantum
mechanical particle pairs. However, for the experiments performed here, we almost always work with
large occupation numbers, and we have not observed any relevant differences in extracted observables
between spontaneous and instigated patterns.
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7.2. Variation of the Phonon Phase
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Figure 7.2: Varying Initial Phonon Phase. The top row (a-c¢) shows the
average atom number in a summation box, as shown in the inset of a. In
each case, a slightly longer hold time is implemented, as is evident by the
initial phase of the oscillation in N (k.). The black lines show piece-wise fits
to the oscillations. The fits are used to extract the time-dependent amplitude
(shown in d) and phase (e). The difference in initial and final amplitude as a
function of initial phase is plotted in f. The sinusoidal curve is a guide to the
eye.

7.2 Variation of the Phonon Phase

A vital parameter in the amplitude equation is the phase between the phonon’s oscil-
lation and the drive, ¢ = arg(R), as can be seen in the dynamics of the contrast for
one stripe,

IR0 = [-arcos (2(1) - TTIR()] (1.2

In order to experimentally probe the dependence of stripe dynamics on the phonon
phase, we prepare square lattices with roughly identical contrast in the horizontal and
vertical directions. Then, the modulation potential is switched off, and the drive is
switched on after progressively longer hold times. After fractions of a drive cycle,
we measure the momentum distribution, by abruptly performing a time-of-flight
measurement. The parameters in this experiment are r = 0.5, wg = 21 X 400 Hz,
i =2mh x 300 Hz, and k. = 0.72um™".
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In order to quantify the dynamics, we integrate the signal in a region around the
peaks in momentum space (shown in the inset of the upper left panel of Fig. 7.2). We
then perform fits over an interval of roughly % of a period, shown as the black lines
in the top row of Fig. 7.2. The fitting function is given by

F = A[l - cos(2nt + 2B)] + C, (7.3)

where ¢ is the time in periods, A is proportional to |R|?, B = ¢ and C is an offset that
Ae
Nu’
N =30 x 10 is the total atom number (see Eq. (4.32)). The factor two in front of the
phase is because oscillations in momentum space are symmetric to changes of x, as
this inverts the spatial phase of the phonon but otherwise has no effect. We therefore
use fits to track both changes in amplitude as well as the slowly varying phase of the
phonon oscillation.

The oscillations of occupations in momentum space are shown for three initial
phases in the top row of the figure. The phase of the phonon can be tuned to either
entirely damp the oscillation (a), remain at constant occupations (b), or increase
phonon occupations (¢). The lower row summarizes the results for all phases between
0 and 7: phases close to zero (or 7, due to the factor of two) result in the depletion of
occupations, phases of /2 lead to growth. Plotting the initial phase of the phonon
relative to the change in amplitude over the three drive periods (f), a roughly sinusoidal
behavior is apparent.

This confirms a fundamental feature of the amplitude equation, as the sinusoidal
dependence of contrast on the phase of the phonon is apparent in the data, up to
a phase shift. Indeed, this phase shift is crucial for understanding the stabilization
mechanism, as nonlinearities slowly vary the phase until a stable configuration is
reached. To investigate the interplay between the contrast and phase, we will now
probe the dynamics of patterns with various initial contrasts.

accounts for the finite background. The value of |R| is given by |R| = where

7.3 Flow Diagrams

We can further probe the relationship between the amplitude and phase of the phonons
by repeating the above experiment at a variety of initial contrasts. We always consider
square lattices, with identical contrasts and phases in Ry and R;,. This significantly
simplifies the theoretical prediction, which can now be completely captured by two
parameters, the contrast |R| and phase ¢. While the contrast is governed by Eq. (7.2),
the dynamics of the phase are

%go(l) = asin (2¢(1)) — A[1 +c1(8) + c2()] IR(D)]*. (7.4)
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Figure 7.3: Experimentally Extracted Flow. Experimentally extracted
amplitudes and phases (colorful markers) are compared to the first derivative
of the amplitude equation (black arrows), for Ry = R, and § = 90°. Each
subplot shows different initial lattice imprint depths. The square point marks
the first oscillation period, and the round circles the two following periods.
The black point is the lattice fixed-point solution. The top right plot corre-
sponds to the data shown in Fig. 7.2.
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The results are shown in Fig. 7.3. The arrows show the direction and magnitude of
the first derivative of the two-mode amplitude equation, using the effective A (extracted
in Section 6.2.3), damping I" = 0.4« (determined in 6.2.2), and the theoretical values
for @, c; and c;. The black dot represents the fixed-point solution for 8 = 90°. The
colored markers are the extracted values of |R|, where the colors are different initial
phases (as in Fig. 7.2). We experimentally observe a phase shift between the theory
and experiment of roughly 0.157, and flow diagrams are shifted by this value.

Each subsequent plot shows a different set of initial lattice contrasts. In each case,
there is remarkable agreement between the experiment and the structure of the flows
predicted by the amplitude equation. After a few periods, the stripes have mostly
converged in amplitude and phase, except for the most extreme initial conditions. The
phase to which stripes converge depends on the contrast, going from around 0.6 for
small occupations to 0.5 at large occupations. At initial contrasts and phases that
correspond to the fixed-point solution, the dynamics are significantly slowed. This
provides experimental evidence for the existence of such a steady-state solution of
the driven system, enabling the study of more exotic initial states.

7.4 Angle and Relative Phase

So far, the experiments have been effectively one-dimensional: we have imprinted
lattices with identical initial phases and contrasts, Ry = R,, at § = 90°. In order
to probe the angle-dependent interactions between the stripes, we will now prepare
lattices with unstable configurations, where 6 # 90° and the initial phases of the
stripes are different, ¢ # ¢,.

We are particularly interested in understanding how the contrast of stripes at
certain angles evolves, and will therefore focus on the dynamics of |R|. In this
section, we will consider the extended amplitude equation, where the magnitude
evolves as

d .
— |Re| =| = acos 2p0) =T+ B(O) |R,| IR: [ sin (0, + o1 = 1)

(7.5)
+ 2e2(0) |R, | sin (260, — 20%) ] IRy

Terms proportional to ¢, (6) are only nonzero if there is a phase difference between
the stripes, i.e. ¢r # ¢,. Additionally, we will see that the dynamics in R, play a
significant role in selecting the pattern geometry, and therefore the terms proportional
to 8(60) must also be considered.

To perform the experiments, we seed lattices of both square and triangular geome-
tries, i.e. once with 8 = 90° and once with 6 = 30°. Then, the potentials that initialize
the stripes are switched off separately at different times, such that their phases relative

94



7.4. Angle and Relative Phase

to the drive are different, ¢x # ¢,. In order to simplify the dynamics somewhat,
we will initialize the system such that ¢ (t = 0) = /2, and vary ¢, (¢ = 0), using
¢p(t =0) = /4 and 37 /4. These values are selected such that the term proportional
to ¢ (0) is maximized or minimized, using sin [2(<,op - gok)] = =1.

The results are summarized in Fig. 7.4 and Fig. 7.5, which show data for ¢, (t =
0) = 3n/4 and ¢, (t = 0) = n/4, respectively. In each figure, the top row shows the
initial momentum space density for the two angles, with the region used to extract
Ry, Ry, and R, shown in red, green, and yellow, respectively. The left column of the
lower plots shows the average atom number in one square box, with square markers
for the square lattice and triangle markers for the triangular lattice. The right column
shows the results of fits to the data, which are again used to extract |R| and ¢.

In each case, the initial magnitudes and phases of the phonons for § = 90° and
30° are identical within error bounds. Initial magnitudes for |Rk / p| are roughly equal,
while |R, | grows steadily.? The later dynamics however, differ remarkably depending
on the angle and initial phase. While the phases ¢y, stabilize very quickly to ~ %7‘(
for all cases, the phase ¢ for 8 = 30° does not stabilize to this value, drifting instead
to a value of roughly 7 (which is equivalent to 0). The dynamics of the amplitudes
Ry, are also very different: while in magnitudes for 6 = 90° grow regardless of
initial conditions, for 8 = 30° one stripe always remains dominant over the other.

To piece apart how these results fit to the amplitude equation, we will consider
two regimes: early times, where |R.| is very small, and later times, where R, has
reached a steady state.

At early times, the dynamics are dominated by the c;(6) term, which is positive
for 6 = 30° and negative for 90° (see Fig. 4.7). To extract angle-dependent effects,
we will consider the relative difference in stripe amplitude, A|R|1 = [Ri| — |R,|, as
plotted for the two pattern geometries in the top row of Fig. 7.6. In the case where
¢p — @k > 0, the 7 term in the equation for [Ry/| is positive for the triangular lattice
and negative for the square lattice. For the stripe |R),| this is inverted, due to the
inversion of ¢, and ¢;. This means that for the triangular lattice, the two stripes’
magnitudes should diverge, whereas they should converge for the square lattice. As is
shown in the upper left panel, this expected behavior is confirmed, showing a roughly
constant A|R| for & = 90°, but diverging contrasts for 30°.

In the case where ¢, — ¢ < 0, this behavior should invert. While the general
tendency is present in the data, the differences are not as large. This is possibly
because the initial value of ¢, = /4 results in diminished occupations in R, and
therefore lower coupling between stripes. These results confirm that the relative phase
between stripes can determine their dynamics depending on pattern geometry.

2The amplitude of the oscillation of occupations in momentum space is much larger the R, mode
with 8 = 90° due to the nature of Bogoliubov quasiparticles. Using the prefactor €, /u results in
comparable values for R, for both geometries.
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Figure 7.4: Different Initial Phases, ¢, — ¢k > 0. The top row shows initial
density distributions for the two lattice geometries, and the region used to
extract Ry (red), R, (green), and R, (yellow). The lower left column shows
average atom numbers in one square summation region, with square markers
showing data for 6 = 90° and triangles 30°. The lower right column shows
extracted amplitudes and phases. The phase for the first period of the R,
mode is not plotted, as amplitudes are very small and the phase cannot be
extracted reliably.
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Figure 7.5: Different Initial Phases, ¢, — ¢k < 0. The figure is identical
to the previous one, but the initial phase ¢, (¢t = 0) has now been varied to
be smaller than ¢ (¢ = 0). In this configuration, the green stripe does not
initially grow. However, at late times the 90° pattern shows growth in both
stripes, while the 30° pattern saturates in amplitude after a short time. For the
30° pattern, a large phase difference between the R, mode and Ry, modes
is apparent.
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Figure 7.6: Effect of Couplings. The top row shows the difference in stripe
contrast, whereas the bottom row shows the phase difference ¢, + ¢r — ¢4.
The left column shows these extracted values for ¢, — ¢ > 0 and the right
for ¢, — ¢ < 0. The change in relative contrast aligns to the expected angle
dependence of the amplitude equation, and the change in the phase difference
points to lower global occupations for 6 = 30°.

Atlate times, the emergence of R, indicates the relevance of the term proportional
to B(0). The magnitude of B(6) changes slightly between 30° and 90° but is always
positive, making the comparison between the geometries more straightforward. Here,
the most significant difference between the square and triangular lattices is the phase
of R, which affects the dynamics through the factor sin (¢, + ¢x — ¢+ ). The phase
difference ¢, + ¢ — ¢, is plotted for the two initial phases, and a clear angle
dependence is apparent. While the phase difference stays roughly constant at 0.6
for 6 = 90°, it approaches zero for 30°, indicating a significantly diminished growth
rate. This corresponds to the globally lower occupations in the triangular lattice.

These results qualitatively confirm the structure of the amplitude equation: angle-
dependent interactions between phonons indeed determine the dynamics of phonon
magnitudes, and stripes at 90° separation are able to grow to larger values than those
separated by 30°. Despite the agreement to the structure of the AE, a quantitative
comparison is outstanding. The experimental results do not match neatly with either
the two-mode or three-mode model, likely because assumptions made to construct
the theoretical model are invalid. Problematic assumptions could be the lack of
amplitude-dependent damping, not including the R_ mode, or the experimental reality
of occupations at many other higher order modes.
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Figure 7.7: Force Fields And Stability. The plots show experimental data
(pink markers) compared to the direction of the second derivative of the
amplitude equation (purple arrows), in the plane where ¢;;, = ¢g. The
gray, blue, and green points show the homogeneous, stripe, and lattice fixed-
points, respectively. The left plot shows such a force field for 6 = 30°, right
for 90°. The pink diamonds and circles show different initial phases of Ry,
corresponding to data from Fig. 7.4 and Fig. 7.5, respectively. The results
show that the experiment indeed has a high degree of angle-selectivity, as is
apparent in the dramatically different trajectories between the two angles.

7.5 Stability Diagram Representation

The dynamics discussed above attempt to capture the full information extracted from
the experiment, effectively describing dynamics in a four-dimensional space. A
somewhat simpler representation of the data is a projection onto a two-dimensional
space, where the phonon phases are at the fixed-point values, ¢; = ¢, = ¢fp. This
is motivated by the fast phase-locking of the phonons to the phase of the fixed-
point after only a few drive periods. In this plane, one can construct a “force field”
representation of the amplitude equation, plotting only the second derivative in this
now two-dimensional plane. The second derivative is given by

d? . .
AR =20 [R =~ cx@)IR,P] R~ (IRl + (c1(6) + ca()) IR, )| IRl
fp
(7.6)
where R = —“’Z_rz is the amplitude of the stripe fixed-point. The second derivative

can be thought of like a force to which the amplitudes respond in the plane where
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the phases have locked to the driving. We will now compare the dynamics to the
expected force fields, using the extracted deg and I' = 0.4«.

Figure 7.7 shows these force field diagrams for the two experimentally imple-
mented angles. The purple arrows show the direction of the force field, and the four
solid points show the fixed-point solutions for the homogeneous, stripe, and lattice
cases (gray, blue, and green, respectively). In pink, we show the extracted stripe
magnitudes from the measurements in Fig. 7.4 and Fig. 7.5, corresponding to the
diamonds and circles, respectively. The encircled 1 demarcates the initial conditions.

The differences between 6 = 30° and 90° are now obvious—while the trajectories
of the amplitudes at § = 30° tend towards stripes and are dramatically slowed at
low values of |R|, for 6 = 90° amplitudes grow significantly, and trajectories are
curved inwards towards the fixed-point. This further verifies that under experimental
conditions, the structure of the AE captures the dynamics.

7.6 Optimizing Pattern Stability

Having probed the fixed-point description of the amplitude equation, we now turn to
optimization of pattern lifetimes. We will effectively attempt to initialize patterns at
the fixed-point solution, such that it is as stationary in time as possible. This will be
useful for later experiments, where we will quantitatively describe the excitations of
the patterns.

So far, we have prepared patterned states by initializing modulated density dis-
tributions. A similar method of preparing phononic coherent states is by imprinting
a modulated phase on the condensate order parameter. This is also done using an
external potential, but the external potential is only flashed on very briefly. Experi-
mentally, this method was found to lead to longer lifetimes of the lattice, as well as
improved stability of lattice parameters.

7.6.1 Optimizing Drive Frequency

The first parameter to scan is the drive frequency. Because the imprinted lattice
now defines the length scale, the frequency of the drive must be tuned to match the
resonance condition, roughly set by the dispersion relation (and therefore the chemical
potential). To do so, we flash on a periodically modulated light field, with lattice
wavelength 8 um. First, the intensity is chosen such that the resulting lattice contrast
is roughly tuned to correspond to the fixed-point value for the given drive amplitude.
Then, after a fixed hold time (7, = 0.5 ms), we begin modulating the scattering length
with different drive frequencies, ranging from 400 to 450 Hz.

In Fig. 7.8, the contrast and wavenumber of the lattice in the horizontal direction
are plotted. These are extracted by integrating the density in the vertical direction, and
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Figure 7.8: Varying Drive Frequency. Left, the contrast of the lattice in
the x-direction throughout the drive, where each color represents one drive
frequency. The contrast is extracted using a sine fit. Changes in contrast are
minimal at around 420 Hz. Right, the wavenumber of the stripe, extracted
using a sine fit. The wavenumber drifts throughout the drive, and variations

are also minimized at around 420 Hz. Parameters for this measurement are
r =0.4, and t;, = 0.5ms.

performing a sinusoidal fit to the lattice in a central region of the cloud. Interestingly,
the frequency plays a role similar to the initial phase of the phonons—it can be tuned to
lead to decreasing, roughly constant, or increasing lattice contrasts. The wavenumber
typically decreases slightly initially, or begins to increase after a short period of time.
In this measurement, the drive amplitude does not match the seeded lattice contrast,
and therefore there is no situation where the contrast is clearly stabilized throughout
the dynamics.

7.6.2 Optimizing Drive Amplitude

The external imprint sets not only the length scale of the pattern, but also its contrast,
and the drive amplitude must be calibrated to ensure that this contrast is stable over
time. To do so, we fix the drive frequency to w; = 27 X 420 Hz and the initial hold
time to t;, = 0.23)—’; = 0.47ms. We then vary the drive amplitude, from r = 0.25 to
r = 0.35, as shown in Fig. 7.9. While an initial dip is present for all drive amplitudes,
r = 0.3 results in the most stable contrasts over time at roughly the value that was
initially imprinted. Lower amplitudes also lead to stable contrasts, but at a reduced
value. Regardless of drive amplitude, the initial decrease in contrast is remarkably
reproducible, and further experiments (not shown here) determined that changes in
the initial phase of the imprinted phonon also do not improve the stability. We
therefore turn to a further degree of freedom, namely the occupation of the R, mode.
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Figure 7.9: Varying Drive Amplitude. Left, contrast of lattice, extracted
identically to the previous figure. Variations in contrast are minimized at
drive amplitude r = 0.3. Left, changes in lattice wavenumber. Parameters
for this measurement are w; = 2w X 420Hz, and 1), = 0.23)—’; = 0.47 ms.
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Figure 7.10: Varying Initial Occupation in R, ,_. Left, contrast of lattice
in x-direction at k, for varying imprint intensities of the R, ,_ mode. Not only
can the initial dip in lattice contrast be minimized, at large imprint depths the
initial contrast increases. Right, the wavenumber of the lattice. The drift in
wavenumber is likely a result of imperfect frequency calibration. Here, the
parameters used are r = 0.3, wg = 27 X440Hz, and 1), = 0.1502)—’; = 0.34 ms.
The different frequency and hold time as compared to the previous figures

reflect a higher atom number and chemical potential.
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7.6.3 Optimizing Occupations in R,

Having exhausted parameters of Ry, that can explain the initial decrease in contrast,
we now separately imprint R, /_ modes.> This is motivated by the experimental
observation that at the time where the contrast of R decreases, occupations at R, /_
become large. In order to seed the higher momentum modes, we first imprint a normal
square lattice, and then after a quarter period hold time imprint two modes, with a
potential of the form

V(r) = Vo4/-[cos ([k+p] -r) +cos ([k—-p]-r)], (7.7

which is a square lattice with 45° orientation to the base lattice and has a wavelength
of V2k. As a basic first check, we scan Vo,+/-, varying it from O (which is therefore
identical to the imprints as shown in Fig. 7.8 and Fig. 7.9) to 140%.

The results, shown in Fig. 7.10, show that the initial decrease in lattice contrast
can indeed be minimized by the additional imprint. Not only can the initial dip in
lattice contrast be removed (as is the case for Vp ,,_/Vor = 0.4), if the secondary
lattice is too large in magnitude, the stripe contrast increases dramatically. It should
be noted that in these measurements, the frequency calibration was likely not optimal,
and therefore the lattice wavenumber is not as constant as in the other measurements,
likely leading to a more rapidly decreasing contrast at late times.

This method for eliminating the initial decrease in contrast was discovered after
the measurements on pattern excitations (detailed in the following chapter) were
performed. Therefore, the role of R,,_ in lattice rigidities and excitations is an
outstanding experimental question.

3At 90°, the modes R, and R_ are identical, because of the geometry of the square lattice.
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CHAPTER 8

Supersolid Sound Modes

In the previous chapters, we have established how square lattice patterns emerge
spontaneously in the driven superfluid. We have also probed the patterns’ stability,
demonstrating that we are able to imprint lattices of specific contrasts and wavelengths.
As a superfluid state with stable periodic density modulations, these patterns are
reminiscent of a seemingly different physical system, namely supersolids.

Supersolids are a state of matter defined by two spontaneously broken symmetries:
U(1) symmetry and translational symmetry. These systems show spontaneously
emerging periodic density modulations (related to translational symmetry breaking),
but are also phase coherent (connected to symmetry breaking), and thus demonstrate
an interesting interplay of delocalized particles in localized density structures. A key
feature of supersolids is the emergence of two Goldstone modes corresponding to the
two broken symmetries, which are each influenced by characteristics of the lattice
and superfluid. In this chapter, we will show that similar dynamics can be observed
in the driven superfluid.

The chapter is organized as follows. We first provide a brief overview of the
most important concepts for understanding supersolids. In particular, we discuss a
hydrodynamic description of superfluid smectics (i.e. a superfluid with a density
modulation in one direction), which is derived based only on spontaneously broken
symmetries and conserved quantities. We then motivate the application of such a
framework to the driven system, and experimentally demonstrate the propagation of
two distinct Goldstone modes in a stripe pattern. Moving to two dimensions, we
probe transverse sound excitations in the square lattice, showing that in the current
regime, the pattern can be described as two independent superfluid smectics. Finally,
we investigate localized phase defects, showing that the dynamics of wavepackets are
consistent with those of the collective modes.
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8.1 Supersolidity

The question of whether a solid can be superfluid goes back to the 1960s and early
1970s, when a number of works investigated the interplay of periodic density mod-
ulations and frictionless superfluid flow. As early as 1960, Gross noted that bosons
with attractive interactions can have groundstates that are periodically modulated in
space, while still showing occupations in the k = 0 mode [24]. Andreev and Liftshitz
considered defects flowing through a crystal lattice [25], finding that these could
have superfluid properties. In the context of discussions on whether BECs are super-
fluids, Chester postulated that while BECs could indeed show crystalline ordering,
this solid-like behavior would “presumably prevent the appearance of any normal
superfluid properties” [26]. The notion of superfluid solids was further investigated
by Leggett [27], who defined the concept of the superfluid fraction, which quantifies
the superfluid response of a spatially modulated superfluid order parameter.

In recent years, the study of supersolidity has flourished due to the definitive
observation of supersolids in three different platforms. In contrast to the historical
notion of solids with superfluid properties, these platforms instead showed how solid-
like properties can emerge in superfluid systems.

The first of the three platforms was a BEC in a set of two external cavities, which
is optically pumped with a standing wave from a third direction [28]. Randomly
scattered light has a chance of coupling into either one cavity or the other, which leads
to the growth of a standing wave along one cavity axis. While the random selection of
one cavity or the other motivated the spontaneous breaking of translational symmetry,
measurements in momentum space showing macroscopic occupations at k = 0 were
taken as a sign of superfluidity. A later work showed that transverse lattice sound
waves can propagate through such systems when using a multimode cavity [92].

Parallel experiments demonstrated signatures of spontaneously arising periodic
density modulations in a superfluid with spin-orbit coupling (SOC) [29]. SOC
emerges due to a coupling of internal (spin) and external (momentum) states through a
two-photon Raman process between two spin states. The emergent dispersion relation
has two minima at finite momenta and can result in stationary standing wave solutions
[93]. The periodic density modulation was measured using Bragg scattering, and
superfluidity was again determined by observing macroscopic occupations at k = 0.
Recently, Goldstone modes have been observed in SOC supersolids [44], which show
finite rigidity of the lattice and superfluid modes.

In the late 2010s, a series of publications showed the emergence of periodic density
modulations in ultracold gases with large dipolar moments [30-32]. Dipolar atoms
have a large magnetic moment, which leads to anisotropic dipole-dipole interactions
that can be of the same order as contact interactions. A combination of anisotropic
interactions and harmonic trapping leads to spatially modulated densities, with phase
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coherence between individual lattice sites. Tuning the trap geometry was also shown
to result in two-dimensional supersolids [94].

After these initial demonstrations, many experiments were conducted definitively
showing the superfluidity of dipolar supersolids [33, 36, 38, 39, 42, 43]. Further
experiments also demonstrated dual-frequency response, indicating that the two bro-
ken symmetries indeed lead to multiple branches of the dispersion [34, 35]. Finally,
dipolar gases have been shown to have a diminished superfluid fraction, by observing
Josephson oscillations between neighboring density peaks [42].!

8.2 Supersolid Hydrodynamics
A minimal ansatz to describe a supersolid order parameter in one dimension is

Y = woe' [1 + ¢ cos (kex +6p) |, (8.1)

where i is a real constant, 6; is the phase of the superfluid, ¢ is the contrast of a
periodic modulation, k. is a length scale set by the underlying Hamiltonian, and 6; is
the spatial phase of the periodic modulation. If symmetries are spontaneously broken,
the Hamiltonian determines finite values for || and |¢|, while phases are free to vary,
05,1 € (=m,m]. Although global variations to either phase come at no energy cost,
spatial variations of these phases 8 — 6(x) generically have an associated rigidity
(or compressibility).

A key feature of supersolids is the emergence of two sound modes, which are
determined by the compressiblities of the lattice and superfluid. Indeed, this is a
universal feature of systems that spontaneously break U(1) and translational symme-
tries, as long-wavelength (i.e. low-energy) excitations of thermodynamic phases can
be described entirely in terms of conserved variables and broken symmetries [48, 49,
96]. As discussed previously, supersolidity arises in a wealth of different systems,
and while the quantitative characteristics of excitations will depend on the micro-
scopic description in each case, the generic long-wavelength behavior is common to
all systems.

One case that is of interest is the description of excitations in a two-dimensional
superfluid that is modulated along only one direction. Such states have a number of
interesting properties, such as anisotropic superfluid fraction. Because the system is
purely fluid in one direction but has crystalline order in another, these configurations

"While vortex lattices and bright soliton trains were both shown to support collective lattice
oscillations [8, 95], these systems are not considered supersolids. In a vortex lattice, vortex positions
are rigidly coupled to the superfluid phase, and therefore no additional Goldstone mode for translational
symmetry breaking emerges. In soliton trains, the stability of the periodic density modulation is
supported by m phase jumps between solitons, likely precluding the presence of long-wavelength
phase modes.
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Pnematic Phase Smectic A Phase Smectic C Phase

Figure 8.1: Classical Smectics. Left, the pnematic phase, in which elon-
gated molecules are oriented to a common axis but show no other ordering.
Center, the smectic A phase, where molecules organize into two dimensional
layers, but can flow freely within the layers. Right, smectic C phase, where
molecules tilt relative to the ordered axis. Phase transitions between these
three orderings are controlled by temperature, from pnematic at high tem-
peratures to smectic C at low temperatures [97]. The system we consider is
most similar to the smectic A phase, where each layer consists of superfluid.

are similar to smectic liquid crystals (see Fig. 8.1), where long molecules are aligned
such that they have liquid properties as well as crystalline structure [97].

In order to determine the generic characteristics of sound in a superfluid smectic,
one considers the differential of the entropy, as well as a series of continuity equations
based on the conserved quantities of momentum, energy, and particle number [48,
49]. Then, one can derive the dynamics for deformation fields of the phase,

6’s/l(xa y) = és/l + 593/l(xa y), (8.2)

where 6, /1 1s the mean phase defined by the bulk and 66/, (x, y) are spatially dependent
perturbations. Specifically, one can calculate the slope of the dispersion relation where
the perturbation length scale g approaches zero. This characterizes the Goldstone
modes of the system.

Here, we will consider a density wave in the x direction, i.e. ¥ = ye?s*Y) [1 +
¢ cos (kex + 6;[x,y]) ], and thus excitations along the x axis are longitudinal, while
those along y are transverse.”

2Transverse modes can be generically defined as perturbations at all angles other than 0°, i.e. any
angle not parallel to the wavevector of the density modulation. However, such excitations have not
been studied in detail in this work, and therefore we define transverse excitations as perpendicular to
the standing wave.
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As is shown in Refs. [48, 49], superfluid smectics support two longitudinal prop-
agating sound modes:

K B 1
A= — v — - , (8.3)
= 20 20, 2

2
K B KB
P Pn

where K is the bulk compression modulus, B is the layer compression modulus, f; is
the superfluid fraction, and p is the mass density defined as p = p, + ps with p,, and
ps the normal and superfluid density tensors, respectively. In the transverse direction
(at T ~ 0), there is one propagating sound mode,

2 == (8.4)

Thus, sound in the perpendicular direction is unmodified by the presence of the
modulation in x, and the speed of sound is simply the root of the bulk compressibility.
The speeds in the longitudinal direction split around the superfluid speed of
sound of the unmodulated system and are parameterized by two characteristics of
the modulated state: the layer compression modulus, and the superfluid fraction.
While the superfluid fraction is indicative of a diminished superfluid response due
to a modulated density, the layer compression modulus determines how stiff the
lattice is to spatial deformations. It should be noted that the slow and fast branches
cannot be uniquely traced back to either superfluid or lattice modulations, and that the
underlying modes generically have contributions of density and lattice modulations.
This is also reflected in the speeds of sound, e.g. the slow mode is only uniquely
determined by superfluid parameters in the limit of an infinitely stiff lattice [98, 99]:

B — oo, c- — +\[fic. (8.5)

8.3 Application of Hydrodynamics to Driven System

The hydrodynamic model is derived for systems that show spontaneous U(1) and
translational symmetry breaking, and fulfill momentum, energy, and particle number
conservation. Its applicability to the driven system is not given, as steady states of
driven systems do not in general conserve energy. In this section, we will therefore go
through each relevant parameter and motivate the application of the hydrodynamic
model to the patterned state.

The pattern has already been shown to have self-stabilizing, spontaneously arising
periodic density modulations, indicating spontaneous translational symmetry break-
ing. As the emergence of the pattern relies on the superfluidity of the state, it is also
a good assumption that the state maintains some superfluid phase rigidity.
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Figure 8.2: Relevant Experimental Quantities Over Time. Top left, the
total atom number in the trap. Top right, the maximal kinetic energy for each
drive period, relative to the first time after the lattice is imprinted. The square
shows the kinetic energy without the imprint. Bottom left, the contrast of the
stripe. The initial decrease is discussed in Section 7.6.3. Bottom right, the
wavenumber of the stripe. Standard error of the mean is either shown or is
smaller than the markers.

Regarding conserved quantities, the lack of an external potential (other than at
the boundaries) means that momentum is conserved. Particle number and energy
conservation are determined by measuring the density distributions after np + 0.25
drive periods in real space and np + 0.75 in momentum space. We extract the atom
number, total kinetic energy, stripe contrast, and stripe wavenumber throughout the
dynamics. The results are summarized in Fig. 8.2. The atom number is given by the
integral over the whole cloud, while the contrast and wavenumber are extracted using
a sinusoidal fit to the average density n(x) in a central region with a width of ~ 40 yum.
The energy is given by integrating the kinetic energy distribution, N (k) x k%, up to a
cutoff slightly above 2k, (the specific value does not make a qualitative difference).

The particle number changes by less than 5%, and the energy changes by less than
10% in the first 15 ms of driving (corresponding to the first 8 drive periods). It is
therefore a reasonable assumption that the quantities relevant for the hydrodynamic
framework are sufficiently conserved.

Finally, the hydrodynamic model considers groundstates with lattices of a static
contrast. The pattern is not static, but is rather a stable, rotating state, where the
stripe amplitude ¢ rotates in the complex plane with half the drive frequency. As
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discussed in the previous section, this means that the contrast of the stripe varies
within a drive period. While a full description of the dynamics throughout a drive
period are certainly worthy of further study, in this work we will stroboscopically
measure the cloud, considering only the time when the density (phase) is maximally
(minimally) modulated, np + 0.25.

8.4 Probing Lattice Phase Defects

In order to probe the hydrodynamic framework of superfluid smectics, we first perform
measurements on a stripe pattern, where the density is modulated in only one direction.
Though stripes are unstable towards becoming square lattices for late times, the growth
of modulations in the vertical direction is negligible in the times considered here (with
growth rates shown in Fig. 6.3, only a 10% increase in contrast in the vertical direction
is expected). We can prepare stripes that correspond to the commensurate contrast
and wavenumber for the drive, stabilized using the same mechanism demonstrated in
the previous chapter.

In order to probe lattice Goldstone modes, we can prepare stripes with slow lattice
phase deformations §;(x, y) = 0.27 cos(gx), where g < k./2. We then measure the
dynamics of the perturbation by extracting the positions of lattice maxima and minima
after subsequent drive periods. The deformation is simply given by the difference in
the fitted positions between a perturbed and unperturbed stripe.

The procedure for one perturbation wavelength is shown in Fig. 8.3. The top row
shows two density distributions of stripes, one perturbed (left) and one unperturbed
(right). Because the stripe phase shifts are small, it is difficult to see in the density
distribution, but the perturbations become clearer in the average density contrast,
plotted in the second row. The solid lines show the perturbed (red) and unperturbed
(black) density contrasts, while the dashed lines show the extracted maxima and min-
ima. Three periods later, the deformations have inverted (third row). The differences
in position relative to the wavelength of the lattice are plotted in gray and purple in
the fourth panel, and here the inversion of the initial modulation is clear. Error bars
are given by the 1o fit uncertainty when extracting lattice positions.

In order to quantify the time dynamics, we define a time-time correlator

ni(t) = ) 601(xi, 1)86) (xis o), (8.6)

where i is the lattice site, and f( is the deformation vector immediately after the
imprint. This correlator is plotted in the lowest panel of Fig. 8.3, and is fitted with
a damped sine. This process can be repeated for many perturbation wavelengths to
extract the dispersion relation.
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Figure 8.3: Extraction of Lattice Response. The top row shows the mean
density distribution of a perturbed (left) and unperturbed (right) stripe. The
perturbation is visible as a slight stretching and compression of the density
wave. Second and third row, the extracted 1D density contrast, with lattice
maxima and minima marked with dashed lines for perturbed (red) and unper-
turbed (black) lattices. Fourth row, the displacements between the perturbed
and unperturbed peak positions, plotted as a function of space. Bottom row,
the correlator 77;, showing the oscillatory response of the perturbation. In the
lower two plots, error bars are either shown or are smaller than the markers.
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Figure 8.4: Extraction of Superfluid Response. The top row shows density
distributions after a superfluid phase mode has been excited in the horizontal
and vertical directions. The second and third rows show integrated density
differences of the stripe for the horizontal phase mode. The over- and under-
densities can be seen in the perturbed case (blue) relative to the unperturbed
case (black). The fourth panel shows the binned difference between the per-
turbed and unperturbed cases at the reference time (gray) and inverted time
(purple). The bottom panel shows the oscillatory response of the correlator,
ns. Error bars on the bottom two plots are either shown or smaller than the
markers.
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Figure 8.5: Anisotropic Superfluid Response. The left and central panel
show maximally modulated density distributions after superfluid perturba-
tions oriented horizontally and perpendicularly to the stripe. The right shows
the correlator 7 over time for the two cases, showing a faster response in y
than in x.

8.5 Probing Superfluid Phase Defects

Alternatively, deformations can be written into the superfluid phase, 8;. Here, phase
gradients lead to currents [58],

. h
v=—V0(x,y), (8.7)
m

and thus slow phase gradients induce slow “sloshing” of the background density.

For superfluid phase modes, we do not immediately imprint the defects simulta-
neously with the lattice, but rather after half a period of driving using a second phase
imprint. This ensures that the lattice is established before the background density is
perturbed. These defects can be written in the longitudinal and transverse directions,
probing the superfluid response perpendicular and parallel to the lattice.

The extraction of the dynamics is detailed in Fig. 8.4. The top row shows the first
maximally modulated density distribution after a superfluid phase perturbation (left),
as well as the unperturbed stripe at the same time (right). The perturbation is visible
as slow variations of the density in the x direction (most noticeable around +10 ym).
The second and third rows show the perturbed (red) and unperturbed (black) density
contrasts at the first maximally modulated time (i.e. the reference time) and the
inversion time. The deformation vectors, shown in the fourth row in gray and purple,
are calculated by subtracting the perturbed and unperturbed densities and then binning
the difference in 5 um intervals. Error bars are generated using a jack-knife algorithm,
which takes shot-to-shot fluctuations of the density into account. We again calculate
the time-time correlator of these deformations,

ns(t) = ) omi(H)dni(1o), (8:8)
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Figure 8.6: Measured Dispersion for Propagating Modes. The extracted
wavenumbers and frequencies for collective modes instigated in the stripe.
The red dots show stripe phase perturbations, the blue dots the horizontal
superfluid phase, and teal dots the vertical superfluid response. The solid
lines are fits, with slopes c; = 1.96(4)um/ms, c- = 1.50(2)um/ms, and
c; = 1.65(2)um/ms.

where 1y is selected by finding the first time where the density is maximally modulated.
The correlator is shown in the lowest panel of Fig. 8.4.

This process is repeated for excitations in the vertical direction, to extract the
difference in superfluid response parallel and perpendicular to the lattice. As shown
in Fig. 8.5, we instigate identical excitations in x and y, and calculate the correlators
15 and 1, . For the mode shown in the plot (g = 0.26um™"), the oscillation in time
is notably faster in y than in x, indicating an anisotropic superfluid response.

8.6 Measuring Dispersion Relation

Repeating the procedure described above for superfluid and lattice deformations for a
number of wavelengths, we can experimentally determine the slopes of the dispersion
relation for the different modes. To extract the wavenumber g we fit a sine to the
reference deformation (either 6n(ty) or 66;(tp) to extract its wavelength. Using
the frequency extracted from the sine fits to the correlators 7(7), we can extract a
dispersion relation. The results are shown in Fig. 8.6. The red and blue points
show the extracted frequencies of the longitudinal modes, while the teal points show
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the transverse superfluid response. In order to extract the speeds of sound from the
data, we perform a simple linear fit of the form w = ¢;q. The extracted slopes are
cy = 1.96(4)um/ms, c_ = 1.50(2)um/ms, and ¢; = 1.65(2)um/ms. While the
lattice mode is faster (i.e. has a larger slope) than the transverse superfluid mode,
the longitudinal superfluid response is diminished. This is remarkable, as the probed
excitations and readout are identical, and the only difference is the orientation relative
to the stripe. The difference in speeds between the lattice and superfluid modes
indicates that these degrees of freedom are distinguishable, and that the presence of
the lattice gives rise to new excitation modes.

These speeds can be used to extract the hydrodynamic variables, which can be
found by rewriting Eq. (8.3) to find

B
— =2+ -
On
202 (8.9)
+ —
fs =

ci(ci+c2-cl)

In this experiment, the parameters are: p% = 3.4(2)um?/ms?, and £, = 0.94(1).
Errors are estimated using Monte Carlo error propagation. Here, the benefit of
the stripe pattern over the square lattice is apparent: only because we are able to
experimentally determine ¢, can we extract the hydrodynamic parameters.

8.7 Dependence on Stripe Contrast

We can repeat the experiment shown above for different stripe contrasts. By changing
the drive amplitude, we can stabilize stripes of different contrasts, slightly adjusting
the drive frequency in each case to ensure that drifts in wavenumber are minimized.
We use drive amplitudes r = 0.22,0.3,0.4, and the stripes have a resulting average
maximal contrast of % =0.23,0.25,0.31. Frequencies used are wy/2m =
425, 440, and 450 Hz.

The extracted hydrodynamic parameters for the three contrasts are shown in
Fig. 8.7. The extracted superfluid fraction is roughly constant over the three contrasts.
The data points are compared to the Legget superfluid fraction of a density modulated

with a sine wave (dashed line)? [27]

<
() ()

3If the density distribution is separable in spatial coordinates (i.e. ¥ (x,y) = W(x)®(y)), this
limit becomes an equality. In the trapping configuration we consider here, this is true to a good
approximation.

Sox (8.10)
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Figure 8.7: Dependence on Stripe Contrast. Extracted hydrodynamic
parameters using measured dispersions for three stripe contrasts. While the
extracted superfluid fraction remains constant within error bars (left), the
lattice compression modulus decreases (right). In the left plot, the dashed
line is the Leggett prediction for the superfluid fraction for a sine wave ansatz.
On the right, the dashed line shows the squared group velocity at k., which
is the natural response of a homogeneous superfluid perturbed at a given
wavelength.

The deviations between the value extracted using the hydrodynamic framework and
this prediction are remarkably small; indeed, one would not a priori expect the
prediction to be applicable in the time-dependent, far-from-equilibrium state.

The lattice rigidity, however, decreases significantly between the three cases. This
corresponds to both a slower lattice and longitudinal superfluid mode, as the larger
contrast results in a less rigid system. The horizontal dashed line on the right shows
the squared group velocity of the superfluid at k., using the speed of sound in the
transverse direction, ¢, to parameterize the dispersion relation. This is given as
a reference because it is the natural response of a superfluid perturbed at a given
wavelength for a vanishing lattice contrast.

8.8 Transverse Sound

The experiments described so far have looked at one-dimensional dynamics of a
stripe, using the transverse direction as a reference for extracting the bulk compress-
ibility. As was described in the previous sections, however, the natural steady state
of the experiment is characterized by square lattices, indicating the stabilization of
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Figure 8.8: Extraction of Transverse Lattice Response. Top left, the initial
density distribution of a lattice with a transverse phase perturbation. Top
right, the extracted lattice maxima and minima of the perturbed lattice (green)
and the unperturbed lattice (gray), with vectors indicating the displacement
between the two. Center, the extracted phase deformation at the first time
(gray) and 6 periods later (purple). Bottom, the correlator, fitted with an
exponential decay.

two-dimensional structures. Indeed, the presence of transverse sound is the defining
characteristic of a solid; deformations of the lattice perpendicular to the crystalline
axis should yield a different response than the compression mode. In liquids, trans-
verse excitations are defined via shear viscosity and are not propagating modes.
Therefore, the observation of transverse sound would distinguish whether the pattern
we observe is a solid, or rather two superimposed superfluid smectics.

In order to probe transverse sound, we prepare square lattices with the same
procedure described previously. However, we now write defects into the vertical axis,
i.e.

00y = 0.4 cos qy. (8.11)

An exemplary initial distribution is shown in the top left panel of Fig. 8.8, where
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Figure 8.9: Extracted Lattice Positions. The top row shows densities
at three times, with a transverse lattice deformation. The extracted lattice
positions (green and gray points) are plotted in the second row, showing the
decay of the initially structured mode into large-scale distortions. The third
row shows density distributions for a compression mode of the square lattice,
and the fourth row the extracted lattice positions. Here, displacements largely
stay in the horizontal axis.
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Figure 8.10: Collective Modes in Square Lattice. The three branches
of the dispersion relation in the square lattice system. The superfluid and
lattice modes (blue and red, respectively) are extracted as in the stripe pattern,
with speeds ¢, = 1.94(4)um/ms and c_ = 1.50(2)um/ms. The transverse
mode is fitted with a parabola, with coefficient wy = —i{k2, where ¢ =

800(130) 1 = 0.5(1) 2.

the horizontal shift in the lattice phase is visible as a zig-zag perturbing the square
lattice. The top right shows the extraction of individual lattice maxima and minima,
determined using a Gaussian fit to the individual sites. The green points show
the perturbed positions, and the gray points behind them are the reference lattice
positions, with the black arrows marking the difference in position between the two.
The central panel shows the extracted lattice deformation for the initial time in gray,
where each point is an average deformation in x along a row. The purple curve shows
these positions six periods later. Unlike in the previous cases, the initial deformation
does not invert, and indeed when plotting 7, it is apparent that the dynamics are
critically damped.

In order to visualize this damping, we plot the lattice positions after 0, 3, and 12
drive periods, shown in Fig. 8.9. We compare the differences between the transverse
(top two rows) and longitudinal deformations (bottom two rows). In the transverse
case, the highly structured initial state has almost entirely lost its ordering, and seems
to result instead in large-scale lattice deformations, as is evident at 12 periods. In
particular, deformations that were originally in the x direction have now coupled
to the y axis. The longitudinal deformations, on the other hand, show remarkable
stability throughout the cloud, not only in their sinusoidal mode structure but also in
that deformations stay largely horizontal. This points to some fundamental difference
between the transverse and longitudinal perturbations.
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Figure 8.11: Types of Local Phase Defects. A schematic representation of
the three wavepackets we will investigate. Left shows a superfluid phase kink,
where a central region has an elevated phase relative to the bulk. Center, a
lattice phase kink is shown, evident by the shifted column. Right, a transverse
wavepacket, where the central row is shifted to the right.

8.9 Two-Dimensional Collective Modes

Finally, we can probe the dispersion relations of the three types of modes, i.e. longi-
tudinal superfluid and lattice modes, as well as transverse lattice modes, by repeating
the above procedure for various wavenumbers. The results, shown in Fig. 8.10, show
that superfluid and longitudinal lattice modes are effectively identical to the stripe
case, showing that the dynamics are unchanged by the presence of a second stripe.
The extracted speeds of sound for the fast and slow modes are ¢, = 1.94(4)um/ms,
c- = 1.50(2)um/ms. The transverse mode shows critically damped behavior on all
length scales, but this damping is length-scale dependent. Its frequency is therefore
imaginary, and, due to the damped characteristic, is likely a diffusive mode, having
the form w;, = —iZk2, where { is a kinematic viscosity. The parabolic fit, shown as
the solid green line in the figure, results in £ = 0.80(13) um?/ms = 0.5(1) 7/m.

8.10 Localized Phase Defects

The identification of two linear branches of the dispersion relation indicates that
localized excitations in these modes should propagate through the system. Such
wavepackets are localized in real space and therefore populate many momentum
modes. Additionally, a wavepacket of the transverse sound mode can provide further
insight if the excitation is truly diffusive.

Figure 8.11 shows the three types of wavepackets that we will consider in this
work. The first is a superfluid phase kink, where a central region has an elevated
phase relative to the rest of the superfluid. The rapid phase evolution will instigate
two sets of over- and underdensities, which each propagate outwards. Alternatively,
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Figure 8.12: Propagating Wavepackets. The left half of the plot shows
average densities and density differences for a propagating lattice wavepacket.
The lattice is remarkably unperturbed after the wavepacket has passed through
the system. The right half shows the superfluid wavepacket, where two over-
and underdensities propagate outwards.

we can write in a lattice where either one column (or row) is shifted horizontally.
These correspond to longitudinal and transverse lattice wavepackets, respectively.

8.11 Propagating Wavepackets

The lattice phase kink is easily prepared, in that we seed a lattice with a localized
phase defect. This is done by locally shifting the lattice phase, with an approximate
form §6;(|x| <4 um) ~ 0.4n. The dynamics for three times are shown on the left
side of Fig. 8.12. In the density plots, lattice perturbations are slightly visible, which
propagate outwards. This becomes more clearly visible in the density difference
plots, which show a localized overdensity running to the right and an underdensity to
the left. Notably, when the wavepacket has passed through the system, the lattice is
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Figure 8.13: Extraction of Speed of Sound. Left, integrated density
differences for the lattice and superfluid phase defects. Each curve is offset for
clarity, with vertical lines plotted to show the extracted wavepacket positions.
Right, the separation of the wavepacket with a linear fit. The extracted speed
is half of the slope shown here.

restored to its bulk phase, visible through the homogeneity of the density difference
at late times.

The superfluid wavepacket is prepared similarly to the superfluid phase modes
discussed previously: First, the lattice is prepared using the calibrated phase imprint
and hold time. Then the driving starts, and half a period later a stripe of light is
flashed on for 100 us in the central region of the condensate. This induces local
density flow and therefore a localized wavepacket.

The right half of Fig. 8.12 shows the dynamics for the superfluid phase defect. The
two phase kinks create over- and underdensities that propagate outwards, as is clearly
visible in the density difference plots. In general, it seems that the imprints create
large perturbations of both the lattice phase and the density, and we will therefore use
the two underdensities to track the dynamics.

The two cases are considered at two different lab times, such that At = O corre-
sponds to 2.8 ms in lab time for the lattice defect and 7.4 ms for the superfluid mode.
The times are selected such that wavepackets are in the same physical position in the
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cloud, in order to minimize effects of varying background density. The lab times are
different due to the difference in preparation of the two wavepackets.

8.12 Extraction of Speeds

A careful, quantitative analysis of the perturbations shows that the two defects prop-
agate with different speeds. In Fig. 8.13, integrated density differences at various
times are plotted on the left. Each curve is shifted with a constant offset for clarity,
and horizontal gray lines mark the determined wavepacket center, extracted using a
parabolic fit. On the right, the wavepacket displacements are plotted together, with
the lattice positions in red and the superfluid positions in blue. A linear fit is used to
extract the speeds of sound of the two wavefronts, ¢y and c;, which are given by half
of the slope fitted here. We find that ¢; = 1.81(2) um/ms, and ¢; = 1.60(2) um/ms.
Comparing these values to the slopes of the dispersion relation, c; = 1.94(4) um/ms

and c_- = 1.50(2) um/ms, we see the same tendency of a slow and fast branch, but
no quantitative agreement. A priori, one does not typically expect that wavepackets
propagate with the slope of the dispersion relation, because they are delocalized in
momentum space. Furthermore, it is possible that the wavepackets seeded here are
hybridizations of the two branches, because of imperfect instigation of the defects.

8.13 Diffusive Wavepacket

To seed transverse wavepackets, we shift the horizontal lattice phase as a function
of the vertical coordinate, as shown in the left half of Fig. 8.14. The initially sharp
dislocation in the lattice phase is smeared out after a time, but dynamics are very
slow. Quantitatively, we extract the deformation by calculating the root-mean-squared
average of the density difference signal in a central region |x| < 8 um. These profiles
are plotted on the top right of Fig. 8.14 and show that the initially localized wavepacket
spreads immediately, increasing in width.

In order to compare these dynamics to those extracted from the dispersion relation,
we fit Gaussians to these profiles, and extract the width. A dispersion relation of the
form w = —iZk?* will result in an initially Gaussian wavepacket = eV 1T o
broaden, such that

o (1)? = 4 (ag + gr) : (8.12)
The extracted squared widths are plotted in the bottom right of Fig. 8.14. Af-
ter an initial sharp jump, the squared widths indeed increase linearly, with {g; =

0.71(4)um?/ms. The initial jump could be an artifact because the Gaussian fit does
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Figure 8.14: Transverse Wavepacket. Left, density and density difference
plots for the transverse wavepacket. The dynamics are significantly slower
than for the propagating modes, and the initially localized wavepacket spreads
slowly. Right, the RMS density difference (black), with Gaussian fits (gray),
which are used to extract the wavepacket width.

not accurately capture the width of the wavepacket, and the first point is therefore
not used for the fit. The extracted slope consistent with the decays of the transverse
collective modes, where { = 0.80(13)“m—msz. At later times, the RMS signal of the
transverse packet is on the same order as other fluctuations, and, as was shown in
Fig. 8.9, the transverse excitation couples to many other degrees of freedom. We
therefore confirm the behavior expected from the collective modes, showing that
transverse wavepackets do not propagate but rather show diffusive behavior.
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CHAPTER

Conclusion and Outlook

This thesis presents work on the emergence and excitations of two-dimensional pat-
terns in a driven superfluid. We investigate how density waves grow, saturate, and
arrange into square lattices. We then use tailored light fields to explicitly write
these patterns into the superfluid, testing the theoretical model that describes phonon-
phonon interactions. Finally, we probe the excitations of the driven steady-state, by
writing defects into the phases of the superfluid and lattice. These modes are identical
to those of a superfluid smectic (a supersolid in one dimension), and a hydrodynamic
model can be used to extract relevant compressibilities of the system.

The results presented in this thesis introduce a new framework for understanding
patterns in superfluids. By applying concepts of spontaneous symmetry breaking and
supersolidity, we have established a link between equilibrium descriptions of period-
ically modulated superfluids to those in driven systems. This framework enables a
multitude of further research avenues, as it reformulates standard pattern formation
dynamics in terms of quantum phase transitions.

One direction of further research is a deepened study of the spontaneous emer-
gence of patterns. So far, the description of the dynamics in this work has been
classical. However, the production of quasiparticles from driving is in general a
quantum process, and it will be interesting to investigate entanglement of particle
pairs [20, 90, 100]. Additionally, particle production in the driven system is analo-
gous to the production of particles in an oscillating spacetime, where the background
density of the superfluid defines an effective metric [78, 101]. When occupations
become large, however, perturbations cannot be separated from the background, and
excitations instead turn into an emergent metric with an altered excitation spectrum.
Finally, probing dynamics at the critical driving amplitude where the growth rate is
equivalent to the damping @ = I" could be interesting to study driven-damped phase
transitions [102].

The fixed-point description of the pattern also opens a number of avenues for
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future work. For example, periodically driving the interactions while evaporatively
cooling could show if it is possible to cool directly into the patterned state [103].
Additionally, multiple drive frequencies could be implemented to stabilize different
pattern geometries, which could have higher-order symmetries and show new dynam-
ics [18]. Finally, a detailed study of patch sizes, crystal boundaries, and the spread of
correlations could be an interesting tool for describing dynamical crystallization in
the driven superfluid.

In terms of supersolid sound modes, further investigation of the emergence of
multiple branches of the dispersion relation could be performed by using Bragg
scattering, to experimentally determine modes and their energies [104]. In far-from-
equilibrium settings, new quasiparticles can arise that do not exist in equilibrium
[105], and the connection of such excitations to the supersolid sound modes observed
here could provide new insights.

The diffusive nature of the transverse mode observed in this work is also worth
further investigation. For the square lattice, a first study will be into the influence of the
R, mode on longitudinal and transverse modes. So far, the occupations in R, have
been neglected when studying lattice excitations, but it is possible that transverse
lattice deformations are particularly sensitive to occupations in higher modes, as
evidenced by the data presented in Section 7.4. Additionally, it is possible that square
lattices cannot support transverse sound because of redundant symmetry breaking
[106]. If hexagonal structures can be stabilized with additional driving frequencies,
however, it is possible that these geometries can have different sound modes from
square lattices.

In the late-time dynamics of the pattern, heating and redistribution play a role not
only in the quantitative description of pattern emergence, but could also have inter-
esting parallels to cosmological phenomena like reheating [107]. The disintegration
of Faraday patterns is a long-standing topic of research, and amplitude-dependent
effects and phase defects could be studied to quantify pattern (in)stability [15, 57].
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