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ABSTRACT

Machine learning has emerged as a powerful tool for solving complex problems
in various fields, including optics. The scalability of compute resources and en-
ergy consumption for larger Al models is, however, a major concern. Optics can be
used to implement matrix-vector-multiplications, essential for neural networks, in
an energy-efficient manner. However, optical non-linearities are difficult to imple-
ment with traditional optical methods. This work demonstrates an optoelectronic
device that implements an optical MVM and an electronic non-linearity without
the need for high intensities. The device operation is experimentally demonstrated
and a scaled-up version is proposed that demonstrates an order of magnitude
higher energy efficiency when compared to conventional hardware. In addition to
improving ML implementations with optics, ML can be used to solve problems
in optics, including in holography. Conventional holography uses a phase holo-
gram to generate a target intensity pattern upon diffraction. A novel alternative
is introduced: holography using only polarization. Conventional phase retrieval
algorithms are insufficient to optimize such a hologram. This work demonstrates
the use of gradient based optimization of neural networks incorporating a differ-
entiable numerical model of polarized light propagation to optimize for a target
intensity distribution as well as the joint optimization for a target intensity and
polarization distribution post diffraction.






ZUSAMMENFASSUNG

Maschinelles Lernen (ML) hat sich als leistungsstarkes Werkzeug zur Losung kom-
plexer Probleme in verschiedenen Bereichen, u.a. in der Optik, etabliert. Die Ska-
lierbarkeit von Rechenressourcen und der Energieverbrauch grofierer KI-Modelle
stellen allerdings ein erhebliches Problem dar. Optische Systeme konnen zur ener-
gieeffizienten Implementierung von Matrix-Vektor-Multiplikationen, die fiir neuro-
nale Netze essenziell sind, eingesetzt werden. Allerdings ist es schwierig optische
Nichtlinearititen zu implementieren. Diese Arbeit beschreibt ein optoelektroni-
sches Bauelement das eine optische Matrix-Vektor-Multiplikation und eine elektro-
nische Nichtlinearitdt bei niedrigen Lichtintensitdten implementiert. Die Funktion
des Bauelements wird experimentell gezeigt, und es wird eine mogliche Hochska-
lierung vorgestellt, die die Energieeffizienz im Vergleich zu konventioneller Hard-
ware um eine Groflenordnung verbessert. Optik kann ML-Implementierungen ver-
bessern und Maschinelles Lernen kann wiederum zur Losung von Problemen
in der Optik, beispielsweise in der Holographie, eingesetzt werden. Typischer-
weise verwendet die Holographie ein Phasenhologramm, um nach der Beugung
das gewdiinschte Intensitdtsmuster zu erzeugen. Als neuartige Alternative wird
die Holographie mittels reiner Polarisationshologramme vorgestellt. Konventionel-
le Phasenrekonstruktionsalgorithmen sind jedoch unzureichend fiir die Optimie-
rung solcher Hologramme. Diese Arbeit demonstriert die Anwendung Gradienten-
basierter Optimierung neuronaler Netze. Diese Netze beinhalten ein differenzier-
bares numerisches Modell der Ausbreitung polarisierten Lichts und dienen der
Optimierung einer Intensititsverteilung sowie der gemeinsamen Optimierung ei-
ner Zielintensitédts- und Polarisationsverteilung nach der Beugung.
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PREFACE

Machine learning (ML) has rapidly evolved from a niche research area into an
omnipresent tool and part of modern life. Fundamentally, ML can be understood
from a statistical perspective as the application of a numerical algorithm to learn a
function directly from data rather than relying on explicitly programmed instruc-
tions [1]. This capability allows computers to detect patterns and structures in
diverse data forms, such as spoken language [2], complex protein sequences [3], or
vast astronomical images [4], often revealing insights difficult to discern otherwise.
The modern success of ML can be explained by the availability of meticulously la-
beled large datasets (e.g., MNIST or CIFAR-10) that provide the empirical basis for
supervised learning approaches [5, 6], the availability of powerful computational
infrastructures capable of performing a large number of floating-point operations
per second [7], and continuous algorithmic advancements that make optimizing
highly complex, high-dimensional problems tractable [8].

Artificial neural networks (ANNs) are predominant in the field. These networks
consist of layers of relatively simple, differentiable mathematical operators, re-
ferred to as neurons, composed together to form highly flexible and universal func-
tion approximators [9]. Deriving inference in such a network typically involves a
feed-forward evaluation of layer-wise matrix-vector products interleaved with non-
linear transformations. Conversely, learning involves adjusting the weights within
these matrices. Broadly, learning in ANNSs falls into three generic paradigms [10,
Sec. 1.2]:

* Supervised learning minimizes a loss function between the model’s predic-
tions and the ground-truth values via gradient optimization techniques. This
thesis predominantly adopts this method in both parts because it provides
well-defined optimization objectives [1].

* Unsupervised learning discovers latent structure within data without labels
[11].

* Reinforcement learning aims to optimize a policy that dictates an agent’s
actions given a state, to maximize an expected long-term reward R within a
specific environment [12].

Although unsupervised and reinforcement methods are central to areas like re-
inforcement learning agents and generative modeling, supervised learning forms
the basis of many frequently used model types, including those for solving inverse
problems in scientific applications [13]. We therefore restrict the subsequent discus-
sion to this type, which is also the focus of this thesis. Classification remains the
benchmark task for comparing different ML architectures, as metrics such as ac-
curacy, precision, and recall on publicly available datasets can rigorously quantify
performance. MNIST, a dataset of handwritten digits, serves as a classic benchmark
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for evaluating various fully connected and convolutional neural network architec-
tures’ performance and is widely used, including in this work [5].

Training of a neural network is done through back-propagation, which uses the
chain rule to evaluate the gradient of the loss function with respect to the weights
[14, Sec. 4.3]. Stochastic Gradient Descent (SGD) then iteratively updates these
weights [14, Sec. 5.9]. The choice of loss function (e.g., mean-squared-error loss,
cross-entropy loss, or even custom-defined loss functions as discussed in Part II
of this thesis), the learning-rate schedule, and applied regularization techniques
shape the optimization landscape’s specific characteristics.

However, the scale of modern ML presents challenges. As models scale into the
multi-billion parameter regime, exemplified by systems like modern transformer-
based large language models such as GPT-4.1, even a single forward pass can
require an extraordinary number of multiply-accumulate (MAC) operations, on
the order of 9(10'7), which leads to large energy consumption on conventional
hardware [15]. The substantial carbon footprint from such energy demands has
become a significant public and scientific concern. Large-scale models already ac-
celerate scientific discovery in diverse areas, including protein-fold prediction [3],
exa-scale climate simulation [16], and high-energy-physics triggers. Nevertheless,
their ecological impact compels us to rethink fundamental aspects of architectures,
compilation efficiency, and hardware design. This thesis proposes optics, with its
inherent parallelism and potential for near-zero inference energy cost [17], as a
complementary computational substrate that can offer favorable throughput-per-
watt compared to conventional electronic accelerators.

Meanwhile optics serves as the foundation for a wide range of areas of science
and technology. A critical research area within optics is wavefront engineering:
manipulating amplitude, phase and polarization to shape radiation precisely with
components such as spatial light modulators (SLMs) or static diffractive optical
elements. These components typically impart a spatially varying modulation to
phase and/or amplitude across an incident wavefront. Upon diffraction, this mod-
ulated wavefront yields a desired target output. While traditional holography has
primarily concentrated on shaping only light intensity, the more advanced field of
vectorial holography seeks to control all three key properties—amplitude, phase,
and polarization—simultaneously.

The advanced control offered by vectorial holography forms the central focus
of Part I of this thesis. Machine learning (ML) techniques are frequently used to
tackle complex, often ill-posed, inverse problems in optics [18]. These problems
include recovering object properties from the scattered field [19], compensating for
aberrations when imaging through turbid media [20], or designing optical masks
that generate a specific target light field [21]. While traditional optimization meth-
ods like the Gerchberg-Saxton algorithm [22] or those based on direct search [23]
or on alternating projections [24], gradient based optimization is a newer alter-
native which involves embedding a differentiable Helmholtz solver within the
optimization framework [25]. Part I of this thesis adopts precisely this strategy,
utilizing back-propagation through an angular-spectrum propagator to learn spa-
tially varying polarization masks that can implement complex optical fields using
polarization holograms. The inverse optical design problems explored in Part I uti-
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lize physics-informed differentiable models and structural-similarity (SSIM) losses,
which often better align with perceptual quality [26].

As previously discussed, the substantial energy demands of large-scale ML mod-
els and their ecological impact compel the research community to develop new
approaches to Al hardware. Consequently, Part II of this thesis explores new hard-
ware approaches to reduce inference energy consumption. One of the approaches
that is particularly relevant in this context is that of Optical Neural Networks
(ONNSs) . ONNs can be broadly classified into two types, namely photonic and
free-space systems, depending on whether the light in the system is confined to a
photonic chip or whether light diffracts freely in 3D space. The overarching goal
of both of these implementations is to replace digital MACs with passive optical
MAC:s [27]. Examples of photonic implementations include Mach-Zehnder Interfer-
ometer (MZI) meshes [28], which can perform unitary transforms [29], and micro-
ring resonators, which can weight Wavelength Division Multiplexing (WDM) chan-
nels [30]. Free-space approaches, such as deep diffractive neural networks (DDNN)),
have proven effective on tasks like classification without intermediate electronic
calculation [31]. Such free-space methods are scalable and can implement large
matrix-vector-multiplications with dense matrices for comparatively low energy.
Nonetheless, challenges such as the implementation of low-energy non-linearities
and the scalability of free-space approaches persist [27].

This thesis consists of two parts with each part addressing an aspect of the two
approaches combining machine learning and optics as outlined above. The first
part focuses on using machine learning techniques to optimize polarization holo-
grams for achieving arbitrary intensity and polarization distributions on the target
plane. The second part demonstrates a scalable and energy-efficient opto-electronic
neural network (OENN) that implements a fully-connected neural network with a
non-linear activation function. Together, these parts aim to develop novel tools and
approaches that can be utilized in conjunction with or that aid machine learning.

X1
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MACHINE LEARNING FOR POLARIZATION
HOLOGRAM OPTIMIZATION
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INTRODUCTION

Wavefront engineering, the control of a light field’s spatial structure (amplitude,
phase, polarization) [33, 34], is fundamental to modern optics. While traditional
holography often relies on phase manipulation for intensity control [35], this work
focuses on using spatially structured polarization modulation for wavefront shap-
ing and generating desired amplitude patterns.

Engineered wavefronts enable diverse applications, including super-resolution
microscopy and imaging through scattering media [36], optical trapping of
micro/nano-objects [37], precision laser manufacturing [38], spatial multiplexing
in communications [39], quantum information encoding [40], and probing light-
matter interactions [41]. This control allows overcoming limitations of diffraction
by creating by creating non-diffracting Bessel beams or vector beams.

However, achieving versatile dynamic wavefront control solely via polarization
modulation faces challenges. Early methods offered limited control [42, 43], and
while specific structures like vortices [44] or focal patterns [45] were generated,
full dynamic reconfigurability lagged behind phase-based systems [46]. Static ele-
ments like metasurfaces provide sophisticated polarization dependent shaping [47-
49] but lack dynamic control and involve complex fabrication. Continued progress
requires advancing both static and dynamic modulation techniques [14, 50], lever-
aging recent improvements in dynamic modulators (SLMs, DMDs) and algorithms
[51, 52]. This thesis introduces an approach using dynamically addressable liquid
crystal devices to address this gap.

This chapter provides the necessary background, covering fundamental prop-
erties of wavefront engineering with polarized light, modulation hardware like
liquid crystal SLMs, and methods for generating structured light (e.g., Bessel, vec-
tor beams) via spatially varying polarization. Our methodology extends previous
work on polarization phenomena [44], offering a general framework to synthesize
arbitrary intensity patterns using polarization masks.

2.1 CONVENTIONAL WAVEFRONT MODULATION TECHNIQUES

Light can be shaped by modulating its amplitude, phase, or polarization. Tradi-
tional methods of wavefront shaping, which are well-established techniques in
optics, primarily involve amplitude and phase modulation. This section provides
a brief introduction to these traditional methods. Subsequently, it details the gen-
eration of Bessel beams as an example application. This will serve as a comparison
for the alternative polarization-based modulation technique introduced later.

The most direct approach, amplitude modulation, involves modifying the trans-
mittance or reflectance across the beam’s profile, thereby shaping its intensity dis-
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tribution. Mathematically, this operation multiplies the incident field Ei,(x,y) by a
transmission function T(x,y), where 0 < |T(x,y)| < 1:

Eout(X/U) = T(X/y)Ein(X/U) (1)

Amplitude modulation is commonly achieved using either static, prefabricated
binary amplitude masks or dynamic devices such as Digital Micromirror Devices
(DMDs) [53] or Spatial Light Modulators (SLMs). However, a key limitation of am-
plitude modulation is energy inefficiency: any region where [T(x,y)| < 1 results
in partial absorption or scattering of light, leading to loss in total optical power
[50]. Despite this drawback, amplitude masks remain useful, particularly in appli-
cations requiring high spatial resolution or binary contrast.

Phase modulation is a more common alternative where the phase profile ¢(x,y)
of the propagating wavefront is modulated while ideally preserving its amplitude.
A phase-only transmission function takes the form:

Eout(X/y) = exp [1Cb (X/U)] Ein(X/y) (2)

Phase modulation is physically implemented by inducing spatial variations in
the optical path length (OPL) when the wavefront passes through a medium.
Widely used optics such as lenses and gratings modulate the wavefront by in-
troducing a spatially varying phase shift. It is also possible to design a diffractive
optical element (DOE) to create more complex wavefronts [54]. However, these
elements are typically static and require complex fabrication processes. For dy-
namic applications such as computer-generated holography, electronically tunable
LC-SLMs are used, resulting in a tunable phase shift [55]. Wavefront shaping us-
ing phase modulation is more energy efficient than amplitude methods due to its
potential for high transmission efficiency [50]. Consequently, it plays a central role
in beam shaping, adaptive optics, holography, and generating structured beams.

2.2 BESSEL BEAMS

Among the structured beams enabled by wavefront modulation, Bessel beams are
an important class of non-diffracting optical wavefronts. They are distinguished by
their ability to maintain their transverse intensity profile over extended propaga-
tion distances, unlike conventional diffracting Gaussian beams [56]. Their unique
transverse intensity profile is mathematically described by a Bessel function of the
first kind, Jo(k_ p), where k is the transverse wavevector component and p is the
radial coordinate. A further key characteristic is their self-healing property: the
ability to reconstruct their profile when a small part of the propagating beam is
blocked. [57].

Ideal Bessel beams formed by the interference of waves composing a cone of
infinite extent, require infinite energy and are not physically realizable. Therefore,



2.2 BESSEL BEAMS

practical applications implement pseudo-Bessel beams, which are generated using
finite apertures [58]. These beams exhibit the characteristic Bessel-like properties
(non-diffraction, Jo profile) over a finite axial range, denoted z7,, ... Common gen-
eration methods include axicons [59], SLM-based phase masks [60], metasurfaces
[61], and amplitude masks like ring gratings [62]. The polarization modulation
method explored in this thesis, as will be detailed, is analogous in principle to
using amplitude or phase masks to create the necessary interference conditions.
The following subsections delve into the physical principles underlying their for-
mation.

2.2.1 Interference and Non-Diffracting Profiles

This section closely follows and reproduces parts of the discussion in Ref. [63,
Section 6.4.3.1]. To understand the origin of the non-diffracting nature of Bessel
beams, it is instructive to consider the role of interference. We can illustrate this
with a simplified one-dimensional (1D) case involving two coherent point sources
located at (£x9,0,0) emitting light with wavelength A and wavenumber k = 27t/A.
In the far-field (z > x,xo) and paraxial (x < z) regime, the superposition of the
spherical waves yields a complex amplitude E(x, z). The resulting intensity I = |E|2
exhibits a sinusoidal modulation (Similar to Ref. [63, Eq. 6.35]):

1 1 2
I(x,z) x cos? <kxxo> X — {1 + cos ( kxxoﬂ (3)
z z z z

Here, the term kxo/z represents the transverse wavevector component k, =
ksin(0) ~ k(xo/z), where 0 is the angle each wavevector makes with the prop-
agation axis [64]. The intensity profile I(x) oc T+ cos(2kxx) thus possesses a trans-
verse structure determined by k. Crucially, within the paraxial approximation,
this structure maintains its form along the propagation direction z (aside from the
overall 1/z? intensity scaling). This simple example illustrates how specific inter-
ference patterns generated by appropriately arranged sources can resist diffraction.
Bessel beams, in essence, arise from a continuous superposition of waves corre-
sponding to sources distributed on a ring, leading to a conical interference pattern
responsible for their non-diffracting and self-healing properties [56].

2.2.2  Bessel Beamn Formation via Diffraction from Circular Structures

This section closely follows the discussion in Ref. [56, 57].

Building on the interference principle, a Bessel beam can be formed by gener-
ating an optical field whose angular spectrum consists of plane waves with wave
vectors lying on the surface of a cone. This cone is characterized by a constant
transverse wavevector magnitude k; = ksin(0). Diffracting a plane wave from
structures possessing circular symmetry (such as ring gratings or axicons) is a
common method to produce such an angular spectrum.



INTRODUCTION

Specifically, using scalar diffraction theory in the Fraunhofer regime (consider-
ing propagation to a distance z, or equivalently, observation in the back focal plane
of a lens where z = f), the far-field complex amplitude E(p, ¢, z) is proportional to
the two-dimensional (2D) Fourier Transform (FT) of the field Eqp, (7', ¢’) immedi-
ately after the diffracting element [56][65, Sec. 10.5]:

ikz

e sk 42
E(p, ¢, 2P F R (v, ¢
(prb,2) o H et TEap (M, 07D (4)

where f, = |/ff +f] represents the radial spatial frequency. For instance, if
the element is a circular grating with period P, diffraction orders occur at specific
spatial frequencies. By selecting the m'"* diffraction order, we isolate components
with k| = [m|(2nt/P) = ksin(0). In the far-field, these components manifest as an
annular ring at a radius p ~ zsin(0) = z(k /k).

This ring of light then acts as the effective source for the subsequent propaga-
tion. The field Eg(p, ,z’) propagating downstream from this ring results from the
coherent superposition of these conical waves. Assuming a uniform amplitude Ao
around the ring, this superposition evaluates to the zeroth-order Bessel beam [37,
Eq. 2]:

Eg(p, ¢, 2") o< AoJolk 1 p) exp(ik.z') (5)

Here, k(¢') represents a wave vector on the cone with transverse component
k, and longitudinal component k, = /k? —kﬁ_, and t’ = (p,$,z’) is the posi-
tion vector in cylindrical coordinates. The term in the exponent is the dot product
k(¢')-r' = kypcos(¢d’ — ¢) + k.z'. The evaluation of the integral in Eq. (5), un-
der the assumption of uniform amplitude A(¢’) (absorbed into Ay), relies on the
integral representation of the zeroth-order Bessel function of the first kind:

1 27t © )
_ ixcos(0—a
Jolx) = 5= | e a0 ©

Identifying x = k, p, the integration variable 6 = ¢/, and « = ¢, the integral
over ¢’ in Eq. (5) yields 27tJo (k| p), resulting in the proportionality shown.

The resulting intensity profile is thus ([56]:

2
10) o Aol ol o)1 = Aol [Jo (™) | @)

It is worth reiterating that real beams generated with finite apertures (e.g., of
characteristic size w) are quasi-Bessel beams, exhibiting this characteristic profile

over a finite propagation distance z;, ., ~ w/ tan(0).
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2.2.3 Generation via Spatially Varying Polarization Rotation

Having established the principle that Bessel beams arise from a conical angular
spectrum, we now discuss how this spectrum can be generated using spatially
varying polarization modulation via an SLM, the primary technique investigated
in this thesis. The objective is to encode a specific radial structure into the polariza-
tion state of an incident beam, such that its subsequent diffraction pattern yields
the desired annular ring in the far-field.

To achieve this, we first calculate a target radial cosine pattern M(r) o
cos(kmaskT), Where the spatial frequency kp,sk is chosen to correspond to the de-
sired transverse wavevector k| of the Bessel beam. This pattern is then used to
drive the SLM to impart a spatially varying polarization rotation 6(r) to the inci-
dent light. Assuming a linear response of the SLM [66] within an aperture of radius
Rmax, We can approximate the imparted rotation by its fundamental component:

G(T) ~ er/nax Cos(kmaskr) : CirC(T/Rmax) (8)

Where, circ is a 2D circle function that can be expressed as [14, Page 4]:

1 <R
Circ(r/Roax) = T Bmax ©)
0 r = Rmax

Consider linearly polarized input light, represented by the Jones vector E;, =
Eo[1,0]T. The SLM acts as a spatially varying rotator, described by the Jones matrix

R(6(r)) [67, Page 343]:

Ein = Eo (‘) (10)
0

R(0(r)) = (cos o(r) —sin@(r)) (11)

sinB(r) cosO(r)

The output field immediately after the SLM (at z = 0) is consequently a vector
beam with a radially varying linear polarization state:

Eout(r) = R(O(r))Ein = Eo (C"S em) - cire(r/Rma) (12)
sin9(r)

The Cartesian components of this field within the aperture are Eguix(r) =
Eocos(0(r)) and Egyut,y (1) = Eo sin(0(r)).
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To determine the resulting far-field pattern, we apply the Fraunhofer diffraction
integral (Eq. (4)) to each Cartesian component. Owing to the radial symmetry of
the problem, this calculation transforms into the Hankel transform of order zero
(Ho) [14, Sec. 2.1.4 and Sec. 2.1.5] for more information). The far-field components
at a radial spatial frequency q = p/(Az) are thus given by:

Efarx (q) o Ho{Eo cos[B(r)] - circ(r/Rmax)} (13)
Efary (q) o< Ho{Eo sin[0(r)] - circ(r/Rmax)} (14)

While evaluating these transforms analytically can be complex, the crucial point
is that the underlying radial modulation frequency k,sx embedded in the polariza-
tion rotation 0(r) causes the energy of both far-field components, E¢,x and Egyyy,
to become concentrated around the spatial frequency q ~ Kpask/(271). This corre-
sponds precisely to the desired transverse wavevector k| =~ kpask. Consequently,
the total far-field intensity, given by the sum of the squared magnitudes of the
components:

Ifar(q) X |Efar,x(q)|2 + |Efar,y (q)|2 (15)

exhibits an annular ring at the target radial wavevector. This ring signifies the
presence of the conical angular spectrum necessary for forming the pseudo-Bessel
beam profile Jo(k p) upon further propagation. This specific approach to Bessel
beam generation is experimentally verified in Sec. 3.3.1.

2.3 LIQUID CRYSTAL BASED SPATIAL LIGHT MODULATORS

Liquid crystals (LCs) exhibit properties intermediate between conventional liquids
and solid crystals, characterized notably by the long-range orientational order of
their constituent molecules. This order is described by an average molecular ori-
entation, the director n, and leads to optical anisotropy, specifically birefringence.
Light polarized parallel and perpendicular to n experiences extraordinary (n.) and
ordinary (n,) refractive indices, respectively. The difference, dn = n. —n,, results
in a relative phase retardation for polarized light traversing the material [51].

For Spatial Light Modulator (SLM) applications, the LC director, and thus the
effective birefringence, is controlled by an external electric field. This control stems
from the dielectric anisotropy (5¢ = €| —ey) of LC molecules. SLMs typically
utilize LCs with positive dielectric anisotropy (e > 0), causing their long axes
to align parallel to an applied field [68, Page 11]. Applying a voltage across an
LC layer reorients the molecules; an electrostatic torque overcomes internal elastic
and surface anchoring forces, thereby changing the director orientation [68, Sec-
tion 5.1.3]. Pixelated electrodes allow for spatial variation of this voltage, leading
to spatially modulated birefringence and thus pixel-wise control over the phase
and/or polarization of an incident wavefront.
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The specific LC cell design, including electrode configuration and alignment
layers, dictates the SLM’s function. Alignment layers determine the initial LC con-
figuration (e.g., a nematic phase arrangement) in the absence of an electric field
[51]. This thesis primarily utilizes two types of LC-SLMs: Twisted Nematic LC-
SLMs (TNLC-SLMs) for polarization modulation and Liquid Crystal on Silicon
SLMs (LCoS-SLMs) for phase modulation. Their distinct operating principles and
applications are detailed in the following sections.

2.3.1  Twisted Nematic Liquid Crystal Spatial Light Modulators

Most of the discussion presented here has been adapted from Ref. [68, Section 5.1]
and reproduced here.

TNLC-SLMs, used in this work primarily for polarization rotation, feature a
nematic LC layer situated between two transparent, electrode-coated substrates.
Orthogonal alignment layers on these substrates create a helical twist of the LC
director, typically 90 degrees, through the cell’s thickness [69, 70]. In the absence
of an applied field (zero-voltage state), linearly polarized light with its polarization
axis aligned parallel to the input LC director undergoes polarization rotation. This
occurs due to adiabatic following, or waveguiding, of the light’s polarization vector
along the twisted LC structure, provided the Mauguin condition (dn -d > 0.5A,
where d is cell thickness and A is the light wavelength) is satisfied [68, Sec. 5.1.2].
For a standard 90° twisted cell, this results in a 0.57 rotation of the polarization
plane.

An applied voltage generates an electric field perpendicular to the substrates.
As detailed in Sec. 2.3 (for LCs with de > 0), this field tilts the molecules towards
the field direction, thereby disrupting the helical twist and reducing the effective
twist angle experienced by light [69, 70]. Consequently, the polarization rotation be-
comes voltage-dependent. At zero voltage, full rotation occurs. Increasing voltage
reduces the effective twist and thus the rotation, until at sufficiently high voltages,
the twist is nearly eliminated, and the light’s polarization state remains largely un-
changed. Importantly, this voltage-induced tilting also alters the effective refractive
index due to LC birefringence. This coupling inevitably leads to a phase modula-
tion effect occurring alongside the primary polarization rotation, which can be a
limiting factor for applications requiring pure polarization control.

The propagation of polarized light through a TNLC-SLM can be described by
Jones calculus. The Jones matrix for a TNLC cell relates the output electric field
Eout to the input field Ej,, encapsulating the combined effect of the effective twist
angle (¢) and phase retardation (I'), both of which are functions of the applied
voltage V [68, 71]:
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oy — (cos $ —sin d))

sind cosd
(16)

. [cos (%) —isin (%) cos(20) —isin (%) sin(20,) E
—isin (%) sin(20,) cos (%) +isin () cos(260) "

Here, 0y represents the angle of the director at the input face. The first matrix
represents rotation by ¢(V), while the second describes retardation effects due to
I'(V). (For unpolarized or partially polarized light, a Mueller matrix treatment is
necessary.) The TNLC-SLM used in this work was operated under conditions opti-
mized for polarization rotation, allowing retardation effects to be largely ignored
for the primary analysis.

2.3.2  Liquid Crystal on Silicon Spatial Light Modulators

LCoS-SLMs are reflective devices, predominantly employed for phase modulation,
and were used for such purposes in this research. An LCoS device consists of an LC
layer sandwiched between a transparent glass cover coated with a continuous elec-
trode, and a silicon backplane. This backplane, fabricated using CMOS processes,
contains a high-density array of individually addressable pixel electrodes that also
act as reflective mirrors [72]. Light enters through the cover glass, traverses the
LC layer, reflects off a pixel mirror, and passes through the LC layer again before
exiting. As described in Sec. 2.3, the voltage applied to each pixel controls the LC
orientation within that pixel.

For phase-only modulation, a parallel-aligned nematic (PAN) LC configuration
is typically used, where the LC director is initially aligned parallel to the electrode
planes. The incident wavefront’s polarization must be aligned with this director
axis. An applied voltage tilts the LC molecules (as per Sec. 2.3), directly altering
the effective refractive index n.¢(V) experienced by the light polarized along the
director. This tilt reduces neg(V) from its maximum (n.) towards its minimum
(no), inducing a controllable phase shift A¢ [73]:

2
Ap = 771 (ZdLCAneff(V)> = Angg(V) (17)

Here, dic is the LC layer thickness, Angg(V) = meg(V) —no is the voltage-
dependent change in the effective refractive index relative to the ordinary index,
and A is the light wavelength. The factor of 2 in 2d;c accounts for the double
pass due to reflection. Device parameters are chosen to achieve a phase modula-
tion range typically up to or exceeding 27t radians. The relationship between the
applied grayscale value (controlling pixel voltage) and the resultant phase shift is
generally non-linear and is typically addressed through calibration data or look-up
tables provided by the manufacturer or determined empirically [71]. The Holoeye
Pluto LCoS-SLM was utilized in this work for experiments requiring precise phase
modulation [74].
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Beyond intensity measurements, characterizing the phase profile of a propagat-
ing wavefront is crucial for comprehensive wavefront engineering. This is partic-
ularly important for evaluating the performance of optical elements like Spatial
Light Modulators (SLMs), where a coupled polarization and phase modulation
is obtained. The Shack-Hartmann Wavefront Sensor (SHWS) is a widely adopted
instrument for such phase measurements.

The SHWS, building upon earlier concepts such as Hartmann'’s screen [75] and
further developed for modern applications, employs a microlens array conjugate
to the target wavefront plane, positioned before a position-sensitive detector. All
lenslets in the array share an identical focal length. A planar wavefront incident
on this array produces a regular grid of focal spots on the detector, as each lenslet
focuses light onto its optical axis. Conversely, an aberrated wavefront presents
varying local slopes across the microlenses. These local tilts displace the focal spots
from their reference (planar wave) positions. This displacement vector is directly
proportional to the average local wavefront slope across the lenslet aperture and
the focal length f of the lenslet [76—78]:

Ai(Xj) =f- aiW(Xj) (18)

Here, Ai(x;) represents the i-th component (i = x or y) of the focal spot dis-
placement for the lenslet centered at position x;, f is the lenslet focal length, and
0;W(x;) denotes the local wavefront slope component 0W/0d1 averaged over the
j-th lenslet [78]. Measuring these displacements Ai(x;) for all lenslets yields a map
of local wavefront slopes, from which the complete wavefront phase profile W can
be reconstructed.

The wavefront phase profile W is reconstructed from these measured slopes,
typically by decomposing it into a sum of orthogonal basis functions. Zernike
polynomials (Z,) are most commonly used for this purpose as they effectively
represent various optical aberration modes [78]:

N1
0iW(x;) =~ Z an 0iZn(%;) (19)
n=0

Fitting the measured slope data (derived from Ai(x;)) using the known deriva-
tives of these Zernike polynomials (as shown conceptually in Eq. (19)) allows de-
termination of the modal coefficients a,. This process leads to a complete recon-
struction of the incident wavefront phase profile W.

While the SHWS technique is broadly applied in optical system design, charac-
terization, and adaptive optics [79, 80], in the context of this work, it is primarily
employed to measure the phase of the wavefront after modulation by an SLM. The
specific SHWS used is a commercial device, the Thorlabs WFS20-K1/M. This sen-
sor system is factory-calibrated and includes software to reconstruct the complete
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wavefront using a Zernike polynomial expansion based on the measured slopes,
consistent with the approach described.

2.5 COMPUTATIONAL METHODS FOR WAVEFRONT SHAPING

Beyond hardware, effective wavefront shaping relies heavily on computational
methods. Precisely modeling, predicting, and controlling wavefront propagation is
crucial in modern optics and photonics research, enabling significant advances in
diverse areas such as high-resolution imaging, optical manipulation, and quantum
technologies. In the context of this work, the ability to simulate the propagation of
polarized light is essential for further optimization of the generated wavefront.

Light propagation modeling can be broadly categorized into scalar and vector
theories. Scalar diffraction theories offer a simplification by treating the light wave
as a single scalar field, neglecting its vector polarization state. These theories are
computationally efficient and often provide sufficient accuracy when the diffract-
ing structures are large compared to the wavelength and when polarization effects
are minor [81]. However, when light interacts with structures comparable in size
to the wavelength (subwavelength structures), propagates through high numerical
aperture (NA) systems, or in situations where the polarization state itself is critical,
vector diffraction theories that adhere more closely to Maxwell’s equations become
indispensable [65, 82].

2.5.1 Diffraction Theory

The discussion of diffraction theory presented in this section is reproduced in part
from Ref. [65, Chapter 10].

While Maxwell’s equations provide the complete and fundamental description
of the wave nature of light, obtaining solutions from the full set of coupled vector
equations for complex propagation scenarios is often computationally prohibitive.
As a consequence, scalar diffraction theories are widely employed. These theories
simplify the problem by treating light as a scalar quantity, thereby focusing on the
spatial distribution of the wave’s amplitude and phase while neglecting its vector
polarization state. This simplification is a practical compromise for many optical
analyses. A foundational concept within scalar diffraction is the Huygens-Fresnel
principle. This principle states that every point on a given wavefront can be re-
garded as a source of secondary spherical wavelets. The subsequent superposition
of these wavelets then determines the form of the wavefront at a later time. This
principle is mathematically formulated as the Huygens-Fresnel diffraction integral
[65, Eq. 10.1]:

i eikR
E(x,y,z) =—= JJ E(x’,y’,0) R dx’'dy’ (20)
aperture
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In this expression, R denotes the distance from a point (x’,y’) on the aperture
to the observation point (x,y,z), and is given by [65, Eq. 10.2]:

R=/(x—x)2+(y—y")2+22 (1)

The term E(x’,y’,0) within the integral represents the initial field distribution
at the aperture plane (taken as z = 0), and k = 27t/A is the wave number cor-
responding to a wavelength A. Gustav Kirchhoff subsequently provided a more
rigorous derivation of a similar diffraction formula, which originates from the
scalar Helmholtz equation (VZE + k*E = 0). Kirchhoff’s formulation, known as
the Fresnel-Kirchhoff diffraction formula, introduces an obliquity factor that ac-
counts for the directionality of the emitted wavelets. Despite this increased rigor,
the resulting integral often remains challenging to evaluate analytically for arbi-
trary aperture shapes, and it also depends on certain approximations at the bound-
ary[65, Page 266]. Nevertheless, for many common forward propagation scenar-
ios, the obliquity factor is approximately unity. In these situations, the Huygens-
Fresnel formula (Eq. (20)) serves as a widely accepted and practical starting point
for diffraction analysis.

To further simplify the diffraction integral, particularly under specific geometri-
cal conditions, additional approximations are introduced. These lead to the Fresnel
and Fraunhofer diffraction regimes.

The Fresnel approximation is applicable to near-field diffraction scenarios. These
are typically characterized by an observation distance z in the same range as the
dimensions of the aperture and the wavelength. This approximation simplifies
Eq. (20) by taking R =~ z in the denominator term, and by utilizing a quadratic
expansion for R in the exponent of the phase term e'*® [65, Eq. 10.12]:

(x—x")2+(y—vy")?
272

R~z |1+ ] (for the exponent) (22)

Substituting these approximations into the Huygens-Fresnel formula (Eq. (20))
results in the Fresnel diffraction integral [65, Eq. 10.13]:

ietkzeizs (x24+y?)
Az

k

JJ E(X/,y /’ O)eiz—kz(x’znty ’Z)efiz (xx'+yy’) dX/dy/
aperture

E(x,y,z) = —
(23)

Although this integral form remains complex, it can be identified as a convo-
lution. This mathematical structure is advantageous as it allows for efficient nu-
merical computation, often performed using algorithms based on the Fast Fourier
Transform (FFT).

In contrast, the Fraunhofer approximation is employed under far-field condi-
tions. This regime applies when the observation distance z is significantly larger
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than the characteristic dimensions of the aperture relative to the wavelength (specif-
ically, when z > ¥ (aperture radius)?). Under these conditions, a further simplifica-
tion is made to the phase term involving the source coordinates within the Fresnel
integral (Eq. (23)), as given by [65, Eq. 10.17]:

eiTkz(X/ery/Z) ~ ] (24)
Applying this simplification yields the Fraunhofer diffraction integral [65,
Eq. 10.19]:

. i ; Kk 2 2
E(x,,2) ~ _1elkzelzz(x +y°) JJ E(X//y/’O)efif(xx’+yy/)dxldy/ (25)
Az aperture

The Fraunhofer integral shows that the far-field complex amplitude distribution
is proportional to the two-dimensional Fourier transform of the aperture function
E(x’,y’,0). This transform is evaluated at spatial frequencies fy = x/(Az) and fy =
y/(Az). This direct relationship with the Fourier transform also facilitates efficient
computation using FFT-based numerical methods.

More general propagation methods are often necessary for more complex sce-
narios or when higher accuracy is required across different diffraction regimes.
For situations requiring broader applicability and computational efficiency, partic-
ularly in iterative optimization contexts, the Angular Spectrum Method (ASM) has
become an important technique [83]. This work primarily employs the ASM for
simulating wavefront propagation, as detailed in the following section.

2.5.2  Angular Spectrum Method

The discussion in this section is reproduced in part from Ref. [63, Chapter 6].

The Angular Spectrum Method (ASM) offers an accurate and computationally
efficient approach for simulating wave propagation, well-suited for numerical im-
plementation. This method is based on the principle of decomposing a complex
scalar field, U(x,y,0), at an initial plane (conventionally z = 0) into an infinite sum
of plane waves. Each constituent plane wave has unique spatial frequency compo-
nents (ky,ky) and a corresponding longitudinal component k.. This decomposi-
tion is mathematically realized by applying a two-dimensional Fourier transform
to the initial field U(x,y,0), yielding its angular spectrum, denoted as A (ky, ky;0)
[63, Eq. 6.2]:

o
Alky, ky;0) = ” U(x,y,0)e tIxxFkyu) gy dy (26)

—00

This operation can also be concisely expressed as A(ky,ky;0) = F{U(x,y,0)},
where F denotes the Fourier transform operator. Here, k. and k, represent
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the transverse angular spatial frequencies. The longitudinal component of the
wavevector, k, is constrained by the Helmholtz equation, which in a homogeneous
medium with wavenumber k = 27t/A (where A is the wavelength in the medium)
dictates the dispersion relation kZ = ki + kﬁ + k%. Thus, k, is determined as [63,
Eq. 6.8]:

ky =4 /k* —k& — K} (27)

If k2 + klzJ > k2, k, becomes imaginary. Such components correspond to evanes-
cent waves, which experience rapid attenuation along the z-axis and do not prop-
agate into the far-field.

The propagation of the angular spectrum over a distance z into the medium
is described by multiplying each plane wave component A(ky, ky;0) by a phase
factor, which constitutes the ASM transfer function for free-space propagation,
H(kx, ky, z):

H(ky, ky, z) = etke? = etk ki z (28)

The complex scalar field U(x,y,z) at the new plane z is then reconstructed by
performing an inverse Fourier transform on the propagated angular spectrum
Alkx, ky;z) = Ak, ky; 0) - H(ky, ky, z) (Adapted from [65, Eq. 6.11]):

=J [A(km ky;o) : H(kx: ky; Z)] (29)

The factor of 1/(2m)? is the standard normalization constant for the inverse
Fourier transform when using angular frequencies.

For numerical implementation, the Angular Spectrum Method (ASM) uses the
computationally efficient Fast Fourier Transform (FFT) algorithm. The process com-
prises of: (1) a forward FFT of the initial field U(x,y,0) to acquire its discrete
angular spectrum A(ky,ky;0); (2) pointwise multiplication of this spectrum by
the discrete transfer function H(ky,ky,z); and (3) an inverse FFT to reconstruct
the propagated field U(x,y,z). This approach achieves a favorable O(N?21logN)
computational scaling for an N x N grid, significantly outperforming the O(N%)
complexity of direct diffraction integral evaluations, thereby benefiting computa-
tionally intensive tasks like iterative optimization [84, 85]. However, it is important
to be careful with sampling to avoid aliasing errors, which can come from rapid
phase oscillations in H(ky, ky, z), particularly for large propagation distances z or
high spatial frequencies [86]. Zero-padding U(x,y,0) pre-FFT is a common mitiga-
tion strategy, enhancing frequency domain sampling of A(ky, ky;0) and H, though
it increases array sizes and computational load, necessitating a balance between
accuracy and resources.
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The ASM is derived directly from the Rayleigh-Sommerfeld diffraction formula,
an exact solution to the scalar Helmholtz equation under appropriate boundary
conditions [87]. With adequate sampling, ASM generally offers superior accuracy
and a broader range of validity than the more restrictive Fresnel and Fraunhofer ap-
proximations [88]. Consequently, its combination of computational efficiency and
accuracy establishes ASM as a preferred method for simulating scalar wave prop-
agation [63, 86].

2.5.3 Extension to Polarized Light

While scalar ASM effectively models propagation of a scalar wavefront, we would
like to simulate the propagation of vector light beams for this work. This requires
explicitly accounting for the polarization state across the wavefront. Although rig-
orous vector diffraction theories (e.g., Stratton-Chu theory [89], Richards-Wolf the-
ory for high-NA focusing [90]) and direct numerical solutions of Maxwell’s equa-
tions (e.g., FDTD, RCWA) offer high accuracy, their computational cost is typically
prohibitive for iterative optimization routines [91]

Consequently, this work adopts a practical approach by extending the scalar
ASM framework to simulate vectorial wavefronts. This is suitable as we primarily
deal with linearly polarized light propagating through free space or isotropic op-
tical elements. Under these conditions, orthogonal linear polarization components
(e.g., Ex and Ey) propagate independently without coupling. The source electric
field Esource(X,y) is represented as a Jones vector:

Ex X,
Esource (X/U) = ( ,source( y)> (30)

Ey ,source (xy)

Each scalar component is then propagated independently using the scalar ASM
operator, denoted AS:

AS{Ex,source (X/ Yy )}> _ (Ex,propagated (X/ Y, Z) ) (3 1)

E d (X Z) = (
propagate 'Y,
-AS{ Ey,source (X/ y )}

F—y,propaga’ted (x,y,2)

Subsequent interactions of these propagated components with optical elements
like polarizers are modeled using standard Jones matrix multiplication, incur-
ring minimal additional computational overhead. Finally, the resultant intensity
I(x,y,z) for intensity-sensitive detectors is obtained by coherently summing the
squared magnitudes of the independently propagated vector components:

I(x,y,z) = |Ex,propagated (x,y,2) |2 + |Ey,propagated (x,y,2) |2 (32)

This component-wise scalar propagation approach provides a computationally
tractable means to simulate the essential aspects of vector beam propagation, main-
taining sufficient accuracy for the iterative optimization tasks involving polarized
light undertaken in this research.
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The ability to computationally model wavefront propagation, as discussed in the
previous section, leads naturally to the inverse problem of optimization for wave-
front shaping. The inverse problem consists of calculating a diffracting element
which on illumination from a known light source leads to desired light field distri-
bution at the target plane. While this inverse problem is challenging even for scalar
fields (where the goal might be to control only intensity or phase), it becomes sub-
stantially more complex when dealing with vectorial beams, where the goal is to
control the full polarization state across the field profile.

The problem for this specific instance can be formalized as follows: For a given
target vector field, E¢(x’,y’), specified by its complex amplitude distribution for
each orthogonal polarization component (e.g., E¢x and E¢ ) on a designated tar-
get plane, we need to calculate the required modulation properties of a hologram
mask located at the hologram plane. This task differs significantly from the con-
ventional scalar holography problem, which typically targets only an intensity dis-
tribution |E¢|%. As a result, the hologram mask must be designed to impart highly
specific, spatially varying modulation to both the amplitude and phase of the inci-
dent light’s two orthogonal polarization components.

Iterative algorithms are commonly used to solve such inverse problems in the
context of wavefront shaping. In a traditional phase hologram, a randomly initi-
ated phase modulation mask is iteratively improved until a criteria for the target
intensity distribution is met [92]. In general, the process involves numerically prop-
agating a wavefront between two or more related domains that are linked by a
known linear transform, such as the Fourier transform [93, 94]. There are various
phase retrieval algorithms such as the Gerchberg-Saxton (GS) algorithm [22] and
the Fienup algorithm [95]. The following section introduces the GS algorithm as
a slightly modified version which is used in this thesis to optimize a polarization
hologram.

2.6.1  Gerchberg—Saxton Algorithm

The Gerchberg-Saxton (GS) algorithm solves the classic phase-retrieval problem
in optics, where one knows only the intensity (or amplitude) of a wavefield in
two planes linked by a propagation operator P—for example, between a hologram
plane and its far-field diffraction pattern [22]. Because intensity measurements dis-
card the phase, GS iteratively reconstructs a phase distribution in the hologram
plane, Ey, = Anet®n, so that after propagation the resulting field in the target
plane, Ex = Ay el®t matches a desired amplitude A.

Starting from an initial guess cbﬁo) (often random), each iteration alternates be-
tween the two planes. First, one applies the forward transform P to the current

hologram estimate Ahei‘ﬂ\k), then replaces its amplitude by A while keeping the
computed phase. In the reverse step, this modified field is propagated back with
P~ and its amplitude is reset to A}, retaining the updated phase. Symbolically,
one full update reads:
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ot = arg(f]’*] [Aq et B(PlAn eton

”})- (33)

By enforcing the known amplitudes in each domain and shuttling the phase back
and forth, GS steadily reduces the mismatch between the generated and desired
target intensities. In practice, one implements P and P~ via FFTs for speed.

Despite its simplicity and efficiency, the GS algorithm can stall in local minima,
especially for intricate target patterns [96]. More critically for polarization hologra-
phy, its scalar formulation handles only single component amplitudes and cannot
manage coupled vectorial constraints between orthogonal polarization channels
[97]. However, we try to modify the traditional GS algorithm to optimize a po-
larization hologram, as discussed in Sec. 3.4. These limitations motivate more ad-
vanced, often machine-learning-based, strategies for designing true polarization
holograms.

2.7 MACHINE LEARNING FOR WAVEFRONT SHAPING

Limitations of conventional phase retrieval methods, such as the Gerchberg-Saxton
algorithm, have led to the adoption of machine learning (ML) techniques for solv-
ing the holographic inverse problems described earlier. Some of the earliest ap-
plications of ML in this context used Convolutional Neural Networks (CNNs) for
tasks such as generating phase holograms and denoising holographic outputs [98,
99]. More recently, the use of differentiable physical propagation models, espe-
cially the angular spectrum algorithm, combined with neural network pipelines
has enabled significant progress in complex wavefront shaping tasks where tradi-
tional methods fail [100, 101]. These advances have led to non-iterative solutions
that match or even exceed the performance of classical algorithms.

ML-based optimization techniques have opened up new possibilities for phase
retrieval problems that are difficult or impossible to solve with traditional methods.
These include simultaneous optimization for multiple target patterns [21, 102-104]
and solving for multiple conflicting objectives within a single process [105], signifi-
cantly expanding the range of achievable applications [83]. These approaches have
also proven effective in designing metasurfaces for generating vectorial holograms
[106-108]. In the context of this work, ML has also been shown to support true vec-
torial wavefront shaping by jointly optimizing both phase and polarization masks
[109].

In this work, we use ML techniques to optimize polarization modulation masks
for wavefront engineering. The physics-informed optimization framework devel-
oped for this purpose explicitly models diffraction using the ASM (Sec. 2.5.2) and
uses the standard backpropagation algorithm to learn the optimal mask parame-
ters. The effectiveness of this optimization depends strongly on the choice of loss
function. Standard metrics like Mean Squared Error (MSE) or cross-entropy often
fall short for complex optical tasks. Custom loss functions, tailored to the specific
application, are frequently necessary. In particular, image quality metrics such as
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the Structural Similarity Index Measure (SSIM) [26], which captures structural in-
formation, luminance, and contrast, often provide better results than generic losses.
These perceptually aligned metrics help ensure that the optimized output better
matches human visual expectations or structural targets. Further details on the
differentiable model and the specific loss function used are provided in Sec. 3.5.

Having established the theoretical basis for wavefront modulation, measure-
ment, propagation modeling, and optimization in this chapter, we now turn to
the next chapter, which presents the experimental setup used for this work and
discusses the corresponding results.






MACHINE LEARNING OPTIMIZED POLARIZATION
MODULATION FOR BEAM MANIPULATION

This chapter details how modulating the polarization across a propagating wave-
front can be utilized to optimize that wavefront upon reaching a target plane.
While traditional holographic methods often rely on amplitude or phase modu-
lation, this work explores the potential of polarization. It is well-established that
modulating the phase across a propagating wavefront allows the resulting diffrac-
tion pattern to be controlled for obtaining desired target intensity patterns. Indeed,
numerous algorithms exist to optimize the required phase distribution for a given
target amplitude distribution. It is also fundamental that any aperture in a beam
path induces diffraction, an effect famously used to demonstrate the wave nature
of light in experiments such as Young’s double-slit experiment. This same effect
occurs when placing an aperture in the path of a coherent light beam, where such
an aperture essentially acts as a binary amplitude mask.

Building upon this principle, the concept can be extended to exploit diffraction
resulting from an inhomogeneous polarization distribution across the wavefront.
Since a polarized light beam can be decomposed into two orthogonal polariza-
tion states, spatially modulating the polarization state acts analogously to apply-
ing two distinct amplitude masks, one corresponding to each orthogonal compo-
nent. Consequently, the resulting pattern observed after propagation is a superpo-
sition of the patterns generated by each component propagating independently. To
demonstrate this, this chapter first presents an initial experimental test exploring
the diffractive nature of spatially inhomogeneous polarization distributions. Sub-
sequently, methods that can optimize such polarization modulation for specific
applications. Furthermore, it demonstrates the effectiveness of this technique in
achieving a desired joint distribution of both amplitude and polarization on the
target plane, using only polarization as the control parameter. Although various
techniques exist for modulating polarization, this work specifically employs a spa-
tial light modulator (SLM) for this purpose. The specific experimental setup used
is described in detail in the following section.

3.1 EXPERIMENTAL AND NUMERICAL TECHNIQUES

This section introduces the experimental setup and the numerical simulation tech-
niques employed to obtain the results presented in this chapter.
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3.1.1 Experimental Techniques

Fig. 1 provides a schematic illustration of this experimental setup. The wavefront
originating from a 532 nm Gaussian laser source is modulated as follows. The ini-
tial laser beam width is 2.5 mm and then expanded by a telescopic beam expander
to approximately 15 mm. The expanded beam is then directed onto a spatial light
modulator (SLM) (Holoeye LC2012) [66], which serves as the polarization modula-
tion element.

As detailed in Sec. 2.3.1, the specific SLM used (Holoeye LC2012) is of the
twisted nematic liquid crystal (TNLC) type. In this device, liquid crystal molecules
inherently form a helical twist when no voltage is applied. When a uniform linearly
polarized wavefront, with its polarization parallel to the input substrate’s director,
passes through the SLM at zero voltage, the polarization state adiabatically fol-
lows the molecular twist, resulting in a rotation of 20°. This leads to a uniformly
90° rotated polarization across the entire beam. However, applying a voltage pat-
tern across the device’s pixelated electrodes disrupts this twist non-uniformly. This
disruption, further detailed in Sec. 2.3.1, leads to a spatially varying polarization
distribution across the wavefront. The resulting wavefront, now possesses a spa-
tially inhomogeneous polarization distribution as it propagates over a predefined
distance towards the detector. Finally, a scientific CMOS (sCMOS) camera (FLIR
ORX-10G-7157M-C) with 3208 x 2200 pixel resolution captures the resulting out-
put intensity distribution.

The camera records the total intensity distribution Iy at the output plane. To de-
termine the polarization state at this plane, an analyzer (which is a linear polarizer)
is oriented and placed immediately before the camera. Measuring the intensity dis-
tribution I transmitted through this analyzer allows for the determination of the
local polarization state. For improved statistical robustness, measurements were
repeated for several distinct analyzer orientations. Specifically, using Malus’s law,
we can calculate the local polarization angle 0 relative to the known analyzer axis
from the intensities measured with the analyzer (I) and without it (Iy):

I=1Iycos’ 0 (34)

Rearranging this equation gives 0 = arccos(+/1/Ip). By performing this calcu-
lation pixel-wise for multiple analyzer angles, the spatially varying polarization
state across the entire wavefront can be accurately determined. A key advantage
of employing polarization modulation is its compatibility with traditional wave-
front shaping methods like phase or amplitude modulation.

Indeed, Section 3.6 demonstrates an application that benefits significantly from
combining both phase and polarization modulation. In that setup, a liquid crys-
tal on silicon (LCoS) SLM (Holoeye PLUTO) is utilized to implement the required
phase modulation. As described in Sec. 2.3.2, applying a voltage pattern to the
LCoS SLM modulates its birefringence, thereby enabling precise control over the
phase profile of the propagating wavefront [74]. The relative positioning of the
phase (LCoS) and polarization (TNLC) SLMs can be flexible, provided that any
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diffraction effects occurring over the propagation distances between them are prop-
erly accounted for in the design or analysis. In the specific setup used for the com-
bined modulation experiments, the phase SLM first modulates the wavefront’s
phase profile, and the polarization SLM subsequently modulates the polarization
distribution of this phase-shaped wavefront. Care is taken during alignment to en-
sure that the beam incident on the phase SLM is polarized along its intended oper-
ational axis (typically the slow axis for achieving phase-only modulation). Finally,
the fully modulated wavefront propagates to the sSCMOS camera for measurement,
similarly to the polarization-only configuration.

3.2 DIFFRACTION OF POLARIZATION MODULATED WAVEFRONT

The diffractive effects of light have been recognized for centuries [110]. Thomas
Young’s seminal double-slit experiment in 1801 provided compelling early experi-
mental evidence for the wave nature of light, demonstrating observed interference
patterns which are a direct manifestation of diffraction. In general, diffraction oc-
curs whenever a coherent light beam encounters an obstruction or aperture, which
can be implemented, for instance, as an amplitude mask or a phase mask [111].
The study of diffraction resulting specifically from polarization masks, however,
remains less explored compared to amplitude or phase effects. Conceptually, a
polarization mask can be understood as creating two complementary grayscale
amplitude masks, with one acting on each of the two orthogonal polarization com-
ponents of the incident light. These orthogonal wavefront components then propa-
gate independently and interact separately with any subsequent optical elements.
To illustrate this principle and highlight potential advantages of utilizing polariza-
tion masks, this section employs an analog of Young’s double-slit experiment.

--------------------------------------

H-AAN I | | =

<

Laser Beam Expander Intensity Control Half-wave Polarization Modulation SLM Analyzer Detector
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Figure 1: Schematic of the experimental setup for the Young’s double-slit analog exper-
iment. A Gaussian laser beam is expanded using a lens pair. A TNLC-SLM im-
parts a polarization pattern analogous to double slits. An analyzer can be placed
either near the SLM (dashed representation) or near the camera (solid represen-
tation) before the diffracted wavefront is detected. The diagram illustrates the
independent propagation of orthogonal polarization components and their inter-
action with the analyzer.

In our Young’s double-slit analog, the TNLC-SLM is used to project a polar-
ization mask corresponding pattern featuring two slit-like regions. This mask im-
parts a 0.57 (90°) polarization rotation specifically in the areas equivalent to the
slits (illustrated in Fig. 2a). The light passing through these spatially separated re-
gions, now possessing orthogonal polarization states relative to the background,
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propagates until reaching an analyzer, which collapses both states onto a single
polarization axis for interference. Subsequently, the sCMOS camera captures the
resulting intensity distribution (Fig. 2b). This observed pattern strongly resembles
the characteristic interference pattern obtained from a traditional Young’s double-
slit experiment using an amplitude mask.

To experimentally verify the equivalence between the polarization mask ap-
proach and a conventional amplitude mask, we conducted a control experiment
by placing the analyzer immediately after the SLM (position 1 in Fig. 1). In this
particular configuration, the SLM and the analyzer together function directly as an
amplitude mask, effectively allowing only light passing through the "slit" regions
with polarization aligned to the analyzer’s axis to propagate further and diffract.
The resulting intensity pattern measured by the camera is shown in Fig. 2d. A
direct comparison between Fig. 2b (analyzer placed near the camera) and Fig. 2d
(analyzer placed near the SLM) confirms that both scenarios produce nearly identi-
cal diffraction patterns. This result clearly demonstrates the principle that spatially
varying polarization, followed by interaction with a polarizer, can effectively repli-
cate the diffractive effects of amplitude modulation, even when the amplitude is
homogeneous across the entire wavefront.

This experiment also served as an opportunity to validate our numerical simu-
lation method, which was introduced conceptually in Sec. 2.5.3 (and is based on
the Angular Spectrum Method detailed in Sec. 2.5.2), specifically designed for sim-
ulating vectorial light propagation. The corresponding simulation results for the
two analyzer positions (near camera and near SLM) are presented in Fig. 2c and
2e, respectively. As can be seen, the simulation results show good agreement with
the experimental measurements for both configurations.

While the final intensity pattern observed after using a polarization mask and
an analyzer mirrors the result from a traditional amplitude mask, the intermediate
independent propagation of the orthogonal polarization components offers unique
flexibility. Fig. 3 explicitly illustrates this independence. The simulated (Fig. 3b, c)
and experimentally measured (Fig. 3d, e) intensity patterns corresponding to each
orthogonal component (which are selected by placing the analyzer appropriately
relative to the background polarization) confirm their independent propagation
characteristics.

An advantage offered by polarization modulation is the ability to use intermedi-
ate polarization rotation angles, not restricted to 0 or 0.57t. This capability allows
for the creation of grayscale-like amplitude masks upon analysis, contrasting with
the inherently binary nature of traditional physical slits or simple amplitude masks.
Fig. 4 demonstrates this concept by employing a polarization mask with two slit-
equivalents that impart different rotation angles: 0.257t (45°) and 0.57 (90°), respec-
tively (Fig. 4a). The resulting diffraction pattern captured experimentally (Fig. 4b)
clearly shows an interference pattern featuring an asymmetric intensity envelope:
specifically, the side corresponding to the 0.57t rotation slit appears brighter than
the side corresponding to the 0.257 rotation. The corresponding simulation result
(Fig. 4c) accurately matches this experimental measurement.
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Figure 2: Young’s double-slit experiment with 0.57t polarization rotation at slit-
equivalent positions. (a) The polarization mask applied to the SLM, showing
0.57 rotation in the two slit regions. (b) Experimental intensity distribution with
the analyzer near the camera. (d) Experimental intensity distribution with the
analyzer near the SLM. (c) and (e) Corresponding simulation results for analyzer
near camera and near SLM, respectively. The similarity between experimental
results (b, d) and their agreement with simulations (c, €) demonstrate the equiv-
alence principle and validate the numerical method.

Collectively, these results clearly demonstrate the potential to exploit diffrac-
tion effects arising from polarization modulation as a means for creating desired
target wavefronts. However, it is important to acknowledge that the TNLC-SLM
used can potentially introduce coupled phase modulation alongside the intended
polarization rotation (as described by Eq. 16). Although we operate the SLM in a
manufacturer-specified regime designed to minimize such phase effects and utilize
a simplified rotation matrix model in our simulations, it remains crucial to confirm
that polarization modulation, rather than unintended phase effects (which could
include geometric phase contributions), is the dominant mechanism responsible
for the observed diffraction patterns. It is known that polarization rotation during
propagation can inherently introduce a geometric phase, often referred to as the
Berry phase. Therefore, to verify that the observed diffraction patterns were not pri-
marily caused by such phase effects, we conducted a control experiment where the
sCMOS camera was replaced with a Shack-Hartmann wavefront sensor (SHWS),
described in Sec. 2.4. This allowed us to directly measure the phase profile of the
wavefront at the detection plane.

In our control experiment, we applied a sawtooth polarization rotation pattern
(varying linearly from zero to the maximum achievable rotation and then reset-
ting periodically) to the SLM (shown in Fig. 5a) and measured the resulting phase
distribution using the SHWS (Fig. 5b). The measurement results indicate a total
added phase variation (likely a combination of device-specific phase coupling and
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Figure 3: Complementarity of the two orthogonal polarization states. (a) Young’s double-
slit analog polarization pattern. (b) Simulated intensity distribution for the com-
ponent polarized parallel to the analyzer axis after propagation. (c) Simulated
intensity for the orthogonal component. (d) Experimental result corresponding
to (b). (e) Experimental result corresponding to (c). The good match between
simulations and experiments confirms the independent propagation and com-
plementarity of the orthogonal states.
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Figure 4: Young's double-slit experiment with unequal polarization rotation at slit-
equivalent positions. (a) Polarization mask with 0.57 rotation in one slit region
and 0.257 in the other. (b) Experimentally measured intensity distribution, show-
ing an asymmetric diffraction pattern envelope. (c) Corresponding simulation
result, matching the experiment.

any induced geometric phase) of approximately 0.257t radians across the full range
of the applied polarization pattern. To assess whether a phase variation of this
magnitude could solely explain the observed diffraction patterns in the YDSE ana-
log experiments, we simulated the diffraction pattern that would result from the
YDSE mask structure if it were treated purely as a phase mask, scaled to this lim-
ited 0.257 phase modulation range (Fig. 5¢). The resulting simulated diffraction
pattern (Fig. 5d) exhibits only minimal diffraction features compared to the pat-
tern obtained when simulating the full polarization modulation effect (which, if
interpreted purely as phase modulation, would correspond to a much larger ef-
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fective phase shift, as shown for comparison in Fig. 5e). This comparison strongly
demonstrates that the measured parasitic phase variation is insufficient on its own
to produce the strong diffraction effects observed experimentally, thus confirming
that polarization modulation is indeed the dominant underlying mechanism.
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Figure 5: Control experiment for the geometric/coupled phase contribution. (a) Input
sawtooth polarization rotation pattern applied to the TNLC-SLM. (b) Phase distri-
bution measured by SHWS at the detection plane, showing a maximum variation
of approx. 0.257 radians. (c) Scaled phase mask representing this measured phase
variation applied to the YDSE structure. (d) Simulated diffraction pattern using
only the scaled phase mask (c), showing weak diffraction. (e) Simulated diffrac-
tion pattern considering the full polarization modulation effect (from Fig. 2c,
shown for comparison), exhibiting strong diffraction. This confirms that the ob-
served diffraction is primarily due to polarization modulation, not unintended
phase effects.

The Young’s double-slit analog described here serves as a proof-of-concept ex-
periment, demonstrating the possibilities offered by using pixel-wise polarization
rotation (effectively acting like a spatially variable half-wave plate array via the
SLM) to modulate propagating wavefronts. Having established this principle, we
now extend its application to more complex beam shaping tasks. Specifically, the
next section describes the generation of Bessel beams using a carefully designed
polarization mask.

3.3 POLARIZATION HOLOGRAPHY ENABLED BY DIFFRACTION OF POLARIZA-
TION MODULATED WAVEFRONTS

As detailed in previous background sections (e.g., Sec. 2.6), holography has
emerged as a powerful numerical and experimental technique for realizing com-
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plex optical wavefronts. Traditionally, these methods rely predominantly on mod-
ulating either the phase or the amplitude of the light field. Polarization hologra-
phy, which utilizes the polarization state as the modulated parameter, however,
remains a relatively less explored domain. This section investigates the use of
polarization holography, driven by the diffraction from polarization-modulated
wavefronts, to generate specific complex wavefronts. The experimental setup em-
ployed for these demonstrations, shown schematically in Fig. 6, primarily consists
of the expanded laser source, the TNLC-SLM configured for polarization modula-
tion, and the sCMOS camera detector. The individual components were described
earlier in Section 3.1.1. A key challenge in polarization holography is devising
a suitable numerical framework capable of optimizing the required polarization
modulation pattern to achieve a desired target wavefront [112]. As an initial test of
the technique’s capabilities, we first aim to generate a well-known and practically
useful wavefront—a non-diffracting Bessel beam—without resorting to complex
optimization algorithms initially.

Polarization (radians)

Figure 6: Experimental setup for polarization modulation in wavefront engineering. (I)
Gaussian laser source, expanded. (II) TNLC-SLM configured for polarization
modulation, imparting a spatially varying polarization distribution. (III) Mod-
ulated wavefront propagates to the target plane for intensity capture by the sC-
MOS camera. Figure adapted from [32]

3.3.1 Generating Pseudo-Bessel Beams using Polarization Modulation

As described in the background (Sec. 2.2), Bessel beams represent a class of non-
diffracting beams [113]. While approaches exist for generating approximations
known as pseudo-Bessel beams (detailed in Sec. 2.2), the use of phase masks is
a common method. Here, however, we explore the alternative approach of using
polarization modulation for this purpose.
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We experimentally demonstrate the creation of pseudo-Bessel beams using polar-
ization modulation with the setup illustrated previously in Fig. 6. In this configu-
ration, the SLM modulates the incident beam’s polarization distribution according
to a specific pattern, and the sCMOS camera captures the resulting intensity distri-
bution after propagation. The polarization mask applied to the SLM consists of a
radially symmetric pattern featuring sinusoidal modulation, specifically designed
according to the principles outlined in Sec. 2.2.3 to generate a zeroth-order Bessel
beam at the output (the mask pattern is shown in Fig. 7a). As shown in Eq. 12, the
resultant field after the SLM can be expressed as

Eout(r) = R(8(r))Ein = Eo (C"S em) - cire(r/Rma) (35)

To verify the beam’s characteristics, we captured the resulting intensity distribu-
tion at various propagation distances downstream from the SLM. Since true Bessel
beams are non-diffracting, their intensity profile should ideally remain relatively
constant during propagation. Figures 7b, ¢, e, and f present the experimental mea-
surements recorded at different distances, confirming the strong visual similarity
of the intensity distributions over the tested range.

To quantify this observation more rigorously, the captured images were pro-
cessed computationally using Python along with standard image processing and
numerical libraries (e.g., OpenCV, NumPy, Matplotlib). For each grayscale image
captured at a different distance, the center of the primary bright spot was identi-
tied using thresholding followed by contour analysis (specifically, calculating the
centroid of the main contour). Subsequently, the vertical intensity profile passing
directly through this identified center was extracted for each image. These individ-
ual intensity profiles were then aligned relative to their respective centroids and
plotted together for direct comparison (Fig. 7d). As expected for a Bessel beam, the
profiles clearly exhibit the characteristic pattern: a central bright spot surrounded
by concentric rings of diminishing intensity. Crucially, the similarity of these pro-
tiles across the different propagation distances confirms the beam’s non-diffracting
characteristic within the tested range, thereby validating the successful generation
of a pseudo-Bessel beam via polarization modulation.

While this experiment successfully demonstrates the generation of a known,
structured beam by extending principles analogous to amplitude mask diffraction,
the broader goal is to create arbitrary wavefronts using polarization modulation
alone. Achieving this requires more sophisticated methods for determining the
necessary polarization mask. Therefore, the next section describes the optimiza-
tion techniques developed and employed for this purpose.

3.4 MODIFIED GERCHBERG-SAXTON ALGORITHM FOR OPTIMIZING POLAR-
IZATION DISTRIBUTION

The Gerchberg-Saxton (GS) algorithm, detailed in Sec. 2.6.1, is a well-established
iterative phase retrieval algorithm based on the principle of alternating projections
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Figure 7: Generation of pseudo-Bessel beams using polarization modulation. (a) Radi-
ally symmetric polarization mask applied to the SLM. (b, ¢, e, f) Experimental
intensity distributions at propagation distances 214 mm, 300 mm, 400 mm, and
500 mm, respectively. (d) Comparison of vertical intensity profiles through the
beam center at the different distances. The consistent ringed structure and pro-
files confirm the generation of a non-diffracting pseudo-Bessel beam.

between spatial and Fourier domains. It is typically employed for optimizing phase
masks designed to produce specific target amplitude distributions. To apply this
algorithm to our context, we need to modify its standard implementation so that it
yields a polarization distribution that, when imparted to an input Gaussian beam
via the SLM, produces the desired target amplitude distribution after free-space
propagation. The resulting modified algorithm, shown schematically in Fig. 8a,
closely follows the logic of the original GS algorithm but incorporates a crucial
final transformation step. The specific steps involved are as follows:

1. Source Field Initialization: First, initialize a complex field representing the
input Gaussian beam at the plane of the SLM, ensuring it matches the ex-
perimental characteristics (such as beam waist and wavelength). Assume a
uniform phase front and a defined input polarization state.

2. Random Phase Initialization: Create an initial random phase mask
d)(o)(x,y) with the same spatial dimensions as the SLM display area. This
serves as the starting point for the iterative optimization.

3. Hologram Field Construction (Iteration k): Combine the known source
amplitude Ag(x,y) with the current phase estimate ¢ (x,y) to construct
the complex field at the SLM plane for the current iteration k: Eﬁk) =
Asexp(ip ).

4. Forward Propagation: Numerically propagate the field E%Lk) from the SLM
plane to the target plane using the Angular Spectrum Method (detailed in
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Sec. 2.5.2). This yields the propagated field Eé(k) = ’P{E;k)}, where P denotes
the propagation operator.

5. Target Amplitude Constraint: At the target plane, replace the amplitude

of the propagated field IEi(k)I with the desired target amplitude A¢(x’,y’),
while importantly retaining the calculated phase of the propagated field:
(k) (k))).

B/ = Aexp(iarg(E;

6. Inverse Propagation: Propagate the constrained field E{/(k) back from the

target plane to the SLM plane using the inverse propagator P~ Egk) =

p-1{E) M

7. Phase Update: Extract the phase of this back-propagated field to obtain the
updated phase estimate for the next iteration: ¢p**1) = arg(E}'l(k) ). Note that
the amplitude constraint at the hologram plane (i.e., using the known source
amplitude A;) is implicitly reapplied in step 3 of the subsequent iteration. Re-
peat steps 3 through 7 for a preset number of iterations or until convergence
criteria are met.

8. Phase-to-Polarization Transformation: Finally, transform the optimized
phase mask obtained after the iterations, ¢opt, into a corresponding polariza-
tion rotation mask 06(x,y). This represents the most significant modification
to the standard GS algorithm. A simple linear mapping 0(x,y) = ¢ dopt(x,y)
is used heuristically, where the constant ¢ scales the phase range (typically
0 to 2m) to the desired polarization rotation range achievable by the SLM
(e.g., 0 to 7t/2 for emulating a half-wave plate array). While phase directly
affects the imaginary part of the field’s exponent and polarization rotation
affects the vector components, their influence on the resulting diffracted inten-
sity pattern exhibits qualitative similarities. This similarity allows the heuristic
transformation to yield useful, albeit not rigorously optimal, results.

We applied this modified GS process to optimize a polarization modulation
mask intended to generate a target amplitude distribution resembling the Min-
erva logo of the Max Planck Society (Fig. 8b), assuming a propagation distance of
500 mm. The resulting optimized polarization mask calculated by the algorithm
is shown in Fig. 8c. Subsequently, we projected this mask using the TNLC-SLM
within the experimental setup (Fig. 6) and captured the resulting intensity dis-
tribution after propagation using the sCMOS camera (Fig. 8d). As observed, the
experimental result matches the overall shape of the target amplitude distribution
reasonably well.

However, upon closer inspection, it is evident that finer details within the logo
are poorly represented, and a significant amount of background speckle noise is
present in the experimental result. This outcome is likely attributable to the fact
that the standard GS algorithm, even with our heuristic phase-to-polarization trans-
formation, is not inherently designed for the direct optimization of polarization
holograms. Its core mechanism revolves around phase retrieval, making the final
transformation step somewhat indirect and potentially suboptimal for minimiz-
ing errors in the polarization-driven diffraction process. Motivated by these limita-
tions, we now explore the application of machine learning techniques to directly
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Figure 8: Optimization of a polarization modulation mask using the Gerchberg-Saxton
algorithm. (a) Flowchart of the modified GS algorithm. (b) Target amplitude dis-
tribution (Minerva logo). (c) Optimized polarization modulation mask obtained
via modified GS. (d) Experimental intensity result using the mask (c), showing
resemblance to the target but with noticeable background noise/speckle image.
Figure adapted from [32].

optimize the polarization distribution, aiming to achieve improved performance
and fidelity without relying on intermediate heuristic transformations.

3.5 MACHINE LEARNING OPTIMIZATION FOR POLARIZATION MODULATION

Machine learning methodologies, particularly deep learning approaches that uti-
lize differentiable models, have recently demonstrated significant success when
applied to challenging optimization problems within physics and optics (as dis-
cussed in Sec. 2.7). Building on this trend, this section explores the application of
ML techniques specifically for optimizing polarization modulation masks.

The first critical step in developing an ML-based optimization framework is
defining a differentiable forward model that accurately reflects the physical ex-
periment. This model must encompass the entire process: an initial Gaussian laser
source beam is expanded, its polarization is modulated by an SLM imparting a
spatially varying rotation, the modulated beam propagates through free space to
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a target plane, and its intensity is finally detected by an sCMOS camera. We repre-
sent each component of this process in a computationally differentiable manner:

¢ Input Beam: Modeled as a complex field possessing a Gaussian amplitude
profile that matches the experimentally measured expanded beam incident
on the SLM. The input polarization state is assumed to be uniform and linear.

* Propagation: Free-space propagation is simulated using the Angular Spec-
trum Method (ASM), described in detail in Sec. 2.5.2. The core ASM propa-
gation formula (repeated here for clarity) is given by:

U(x,y,z) = F {F{U(x,y,0)H(ky, ky; 2)} (36)

This involves Fourier transforms (,5 ') and element-wise multiplication
(by the transfer function H). Crucially, all of these operations are inherently
differentiable. The extension of ASM to handle polarized light (Sec. 2.5.3)
simply involves applying this propagation operator independently to each
orthogonal polarization component of the Jones vector, thereby preserving
the overall differentiability of the propagation step.

¢ SLM (Polarization Modulation): The TNLC-SLM is operated in a regime in-
tended to primarily induce polarization rotation (as detailed in Sec. 3.1.1). An
ideal polarization rotation by a spatially varying angle 6(x,y) is modeled by
multiplying the input Jones vector E;i, by the corresponding rotation matrix
R(6(x,y)) (Eq. 11). The elements of the rotation matrix R, namely cos 6 and
sin 0, are differentiable functions with respect to the rotation angle 6. The po-
larization mask 0(x,y) itself constitutes the set of trainable parameters that
the ML algorithm will optimize.

¢ Camera Detection: The sCMOS camera measures the optical intensity. This
detection process is modeled computationally as the squared absolute value
of the complex electric field amplitude incident on the detector plane,
summed over both polarization components:

I(x,y) = [Ex(x,y,2)]* + [Ey(x,y,2)|? (37)

This operation, involving the sum of squares of the real and imaginary parts
of the field components, is also fully differentiable with respect to those field
components.

Given that all individual components are modeled using differentiable opera-
tions, the entire physics-based forward model, tracing the path from the input
SLM mask parameters 0(x,y) to the final predicted intensity I(x,y) on the cam-
era plane, is end-to-end differentiable. A schematic representation of this forward
model network is conceptually similar to the one shown in Fig. 9a. This end-to-end
differentiability is the key property that allows the use of gradient-based optimiza-
tion methods, specifically backpropagation, to iteratively adjust the polarization
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mask parameters 0(x,y) by minimizing a suitably defined loss function that com-
pares the predicted intensity Pint (the output of the forward model) to the desired
target intensity Tint.

Choosing an appropriate loss function is critical for the success of the optimiza-
tion process. While standard loss functions like Mean Squared Error (MSE) are
available, custom-designed loss functions often yield significantly better perfor-
mance for specific physics-based tasks like holographic optimization [114]. As in-
troduced in the background (Sec. 2.7), incorporating metrics that reflect human
perceptual quality or specific physical constraints can be highly beneficial. The
loss function employed in this work is a composite function that combines several
terms to address different aspects of image fidelity and quality:

1. Intensity Fidelity Loss (Lint): This primary component aims to ensure that
the predicted intensity pattern Pin; closely matches the target pattern Tiy. It
combines the Mean Absolute Error (£1,), which focuses on pixel-wise accu-
racy, with the Structural Similarity Index Measure (SSIM) loss (Lssmv), which
prioritizes the preservation of structural information and is known to corre-
late well with perceived image quality [26, 115, 116]:

Lint = & L1 (Pint, Tint) + (1 — &) - Lssiv(Pint, Tint) (38)

Here, « is a hyperparameter (typically set around 0.8) that balances the con-
tribution of the L1 and SSIM terms.

2. Dark Region Contrast Loss (L4ark): This term specifically penalizes any non-
zero predicted intensity values occurring in regions where the target intensity
is effectively zero (i.e., below a small threshold Ty,.k). Its purpose is to actively
reduce the background noise and speckle artifacts that are often prevalent in
results obtained using purely iterative methods like GS. It is calculated as the
mean squared intensity within these target-dark regions, denoted by D:

1 .

Ldark = D Z (Pinti,)° where D ={({,j) | Tintij < Tdark} (39)
(ij)eD

The threshold Ty, is typically chosen to be a small value (e.g., 0.1 on a

normalized scale).

These two components are then combined into the final contrast-aware loss func-
tion Leontrast:

Lcontrast = Lint + WdarkL dark (40)

The hyperparameter wgy,i controls the relative weight assigned to the contrast
enhancement term (e.g., a value of Wy, = 2.0 was found effective for the Minerva
logo target).

Employing this tailored loss function Lcontrast in conjunction with the differen-
tiable forward model, we trained the polarization mask parameters 0(x,y) using
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Figure 9: Optimization of a polarization modulation mask using machine learning. (a)
Schematic of the differentiable physics-based model used in the optimization
framework. (b) Flowchart of the training loop: Initialize random polarization
mask 6(x,y), compute predicted intensity Pint using the forward model (in-
put beam -> SLM modulation -> propagation -> camera detection), calculate
loss Lcontrast between Piy ¢ and target Tint, compute gradients via backprop-
agation, update 6(x,y) using an optimizer (e.g., Adam), repeat. Figure adapted
from [32].

backpropagation and an Adam optimizer (as depicted schematically in Fig. gb)
[117]. This process directly optimized the mask to produce the target amplitude
distribution (the Minerva logo, Fig. 10a), thereby bypassing the indirect, heuristic
approach required by the modified GS algorithm. The final optimized polarization
mask obtained through this ML process is shown in Fig. 10b. This optimized mask
was then uploaded to the SLM in the experimental setup, and the resulting output
intensity distribution was measured (Fig. 10c). Comparing this experimental result
to the one obtained using the modified GS method (Fig. 8d), the ML-optimized
result clearly exhibits a closer match to the target intensity distribution and pos-
sesses significantly improved background contrast with much less speckle noise.
This successful outcome demonstrates the distinct superiority of the direct ML op-
timization method for this specific task, offering not only better fidelity but also
greater flexibility in tailoring the optimization process through the design of the
loss function.
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Figure 10: Experimental results for machine-learned polarization modulation mask. (a)
Target intensity distribution (Minerva logo). (b) Optimized polarization mod-
ulation mask obtained using the ML framework. (c) Experimentally recorded
intensity distribution using mask (b), showing high fidelity and contrast com-
pared to the GS method (Fig. 8d). Adapted from [32].

3.5.1 Joint Optimization for Target Amplitude and Polarization

The previous section successfully demonstrated that employing an ML optimiza-
tion framework yields results superior to traditional methods when optimizing a
polarization mask for a specific target amplitude. This ML approach not only en-
hances accuracy and contrast but also inherently offers greater flexibility, making
it suitable for tackling scenarios that are challenging for conventional algorithms.
One such challenging scenario involves the joint optimization of multiple output
parameters using only a single control mechanism. Specifically, the ML framework
developed here allows for the simultaneous optimization of both the amplitude
and the polarization state at the output plane, utilizing only the input polarization
mask applied by the SLM as the trainable parameter set.

To achieve this joint optimization, the framework is extended by defining a more
sophisticated compound loss function. This loss function is designed to penalize
deviations in both the predicted intensity (or amplitude) P.mp and the predicted
polarization state P, relative to their respective desired targets, Tamp and T,o1. The
total loss, Liotal, is constructed by combining distinct loss components calculated
independently for each output channel (amplitude and polarization):

1. Intensity Loss Component (Lamp): For matching the intensity, the previ-
ously defined contrast-aware loss Lcontrast (Eq. 40) is used directly. This com-
ponent effectively handles the intensity matching requirement, with its in-
herent capability to improve results in low-signal or dark regions: Lamp =

Lcontrast ( Pampz Tamp ) .

2. Polarization Loss Component (Lpo): Matching the polarization state re-
quires high fidelity. Therefore, this component combines two terms. The first
term is the Mean Absolute Error (L1 loss) calculated between the predicted
(Ppor) and target (T,o1) polarization values (which could represent, for exam-
ple, the polarization angle) across all N pixels in the output plane:
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(41)

1
LpOI—LI = N Z ‘Ppol,i - Tpol,i
i

The second term introduces an exact match penalty (£polexact) designed to
punish deviations di = [Pp1,1 — Tpol il that exceed a predefined small tolerance
threshold Texact- This penalty applies a weighted quadratic cost only when the
deviation d; surpasses this tolerance:

1 Z (di : Wexact)zr if di > Texact,

Lpol—exact = N (42)
i 0, if di < Texact-

Here, Wexact serves as a weighting factor for this penalty term. The total po-

larization loss is then the sum of these two parts:

Lpol = LpOl-Ll + Lpol-exact (43)

These individual loss components for amplitude and polarization are combined
into the final total loss function using a hyperparameter o € [0, 1]. This hyperpa-
rameter acts as a weighting factor to balance the relative importance assigned to
achieving the target intensity versus achieving the target polarization state:

Liotal = ¢+ Lamp + (1—a) 'Lpol (44)

By adjusting the value of «, one can effectively tune the optimization process to
prioritize matching one channel more closely than the other if needed.

To experimentally test this joint optimization capability, we first chose a rela-
tively simple target configuration: a rounded square shape for the intensity dis-
tribution (Fig. 11b) combined with an azimuthally varying polarization pattern
(similar to the pattern generated by an axicon, exhibiting uniform rotation around
the center) spanning the entire frame (Fig. 11c). Running the ML optimization
framework with the joint loss function yielded the optimized polarization mask
shown in Fig. 11a. Experimentally implementing this mask produced the inten-
sity distribution captured in Fig. 11d, which closely matches the target rounded
square shape. The corresponding output polarization state was measured using
the analyzer-based method described in Sec. 3.1.1, yielding the distribution shown
in Fig. 11e. This measured polarization pattern also matches the target azimuthal
variation reasonably well, although some degree of non-uniformity is visually ap-
parent. This non-uniformity likely arises from the inherent coupling between am-
plitude and polarization control when attempting to optimize both simultaneously
using only a single modulation mask.

To further demonstrate the flexibility of the joint optimization framework, we
then aimed for a more complex polarization target while maintaining the same
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intensity target. The target intensity remained a rounded square (Fig. 12b), but the
target polarization pattern was modified to exhibit rotation confined primarily to
the perimeter of the square, completing two full sweeps (e.g., from 0 to 7/2 radi-
ans, repeated twice) around the loop (Fig. 12c). The ML optimization produced
the mask shown in Fig. 12a. The corresponding experimental results for inten-
sity (Fig. 12d) and polarization (Fig. 12e) again show good agreement with their
respective complex targets. This result confirms that a single polarization modula-
tion mask, when optimized using the ML framework and an appropriate joint loss
function, can indeed simultaneously control both the amplitude and the polariza-
tion state at the output plane, even for non-trivial target patterns.
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Figure 11: Results of joint optimization for simple amplitude and polarization targets.
(a) Optimized polarization modulation mask. (b) Target intensity (rounded
square). (c) Target polarization (azimuthal variation). (d) Measured intensity re-
sult. (e) Measured polarization result. Both results show good agreement with
the targets. Adapted from [32].

It is important to note, however, that this joint control method using only a sin-
gle polarization mask does face limitations, particularly when targeting complex
wavefronts with high spatial frequency content. This is because the output am-
plitude and polarization patterns are inherently coupled through the diffraction
process originating from that single mask. This coupling can manifest itself as de-
viations from the intended targets, such as the faint imprint of the intensity shape
(the rounded square) that is visible on the measured polarization distribution in
Fig. 11e. Despite these inherent constraints, the technique clearly demonstrates sig-
nificant potential. Combining this approach with independent phase modulation,
for instance, could potentially decouple these effects to some extent and unlock
even further capabilities in wavefront engineering.
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Figure 12: Results of joint optimization for complex polarization targets. (a) Optimized
polarization modulation mask. (b) Target intensity (rounded square). (c) Tar-
get polarization (two full sweeps around the perimeter). (d) Measured intensity
result. (e) Measured polarization result. Good agreement achieved even for com-
plex targets. Adapted from [32].

36 COMBINING POLARIZATION MODULATION WITH PHASE

While polarization modulation alone, as demonstrated in the preceding sections,
offers a novel and viable framework for wavefront shaping, combining it strate-
gically with conventional phase modulation can greatly enhance the overall ca-
pabilities, potentially enabling more complex and versatile control over the final
output optical field. One promising potential application area where such com-
bined modulation could be advantageous is in the development of high-speed,
non-mechanical optical point scanning systems. Such systems are crucial for appli-
cations like confocal microscopy and laser materials processing, offering a poten-
tially faster alternative to established methods based on slower mechanical compo-
nents (like galvanometer mirrors) or other complex electro-optical systems (such
as MEMS mirrors or acousto-optic deflectors).

To explore this possibility, this section demonstrates a proof-of-concept experi-
mental setup that utilizes static phase and polarization masks to achieve rapid se-
lection or modulation of predefined points in space. The setup, illustrated schemat-
ically in Fig. 13, incorporates the essential components: the laser source, the TNLC-
SLM (primarily acting as a spatially variable polarization rotator), and an addi-
tional LCoS SLM dedicated to phase modulation. In this configuration, the phase
mask displayed on the LCoS SLM defines the spatial locations of the target points
in the output plane, while the polarization mask displayed on the TNLC SLM ap-
plies a distinct, spatially varying polarization rotation to the portion of the light
beam directed towards each specific point. An analyzer placed before the camera
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then serves to select a specific polarization state for detection. Consequently, by dy-
namically rotating this analyzer (or, equivalently, by electronically controlling the
global input polarization state before the masks), different points defined by the
phase mask can be selectively illuminated or extinguished on the detector plane
based on the polarization state imparted to them by the TNLC mask.

In this specific demonstration, we employed two different static phase masks
programmed onto the LCoS SLM: one designed to generate five collinear points,
and another generating five arbitrarily positioned points in the output plane (the
resulting combined intensity patterns are shown in Fig. 14a and d, respectively).
Concurrently, a relatively simple sinusoidal polarization pattern was applied using
the TNLC-SLM (Fig. 13b). The "scanning" or selection process was achieved in this
proof-of-concept by manually rotating the analyzer through a full 0 to 27t range. As
expected, the intensity of each individual point varied sinusoidally as the analyzer
rotated (as shown by the traces in Fig. 14b and e). However, crucially, due to the
spatially varying polarization imparted by the TNLC-SLM pattern, the phase of
this sinusoidal intensity modulation differed for each of the five points. As a direct
consequence, each point reached its maximum intensity at a distinct analyzer an-
gle (these angles of maximum intensity are summarized in Fig. 14¢ and f for the
collinear and arbitrary cases, respectively). It is important to note that in a practi-
cal high-speed implementation, the manual analyzer rotation would be replaced
by a fast electro-optic modulator (such as a Pockels cell) capable of electronically
controlling the global polarization state without requiring any moving parts.

Experimental measurements, obtained by recording the average intensity within
small regions of interest centered around each target point while systematically
changing the analyzer angle, confirmed this predicted differential intensity mod-
ulation behavior. While a simple sinusoidal polarization mask was sufficient for
this demonstration, utilizing more complex polarization patterns could potentially
achieve more intricate intensity variations across the points, adding further flexi-
bility to the system.

This observed differential modulation effectively enables the sequential address-
ing or intensity modulation of a set of predefined points simply by controlling
the projected polarization state. Therefore, this demonstration highlights the fea-
sibility of realizing non-mechanical scanning systems by combining static phase
modulation (which defines the geometric pattern of points) with dynamic polar-
ization modulation (which provides intensity control or selection). Furthermore,
the ability to completely redesign the scan pattern simply by loading a different
phase mask onto the LCoS SLM adds significant versatility. This proof-of-concept
system could potentially be extended through the use of more complex phase and
polarization masks, coupled with dynamic electronic control, to enable advanced
applications in imaging and beam delivery.

3.7 CONCLUSION
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Figure 13: Experimental setup for combining phase and polarization modulation. (a)
Schematic: Laser, Polarizer (P1), Beam Expander, Half-Wave Plates (HWP1,
HWP2 for alignment), Phase SLM (R-SLM, LCoS), Polarization SLM (T-SLM,
TNLC), Analyzer (P2), Camera. (b) Sinusoidal polarization mask on T-SLM. (c)
Phase mask for collinear points on R-SLM. (d) Phase mask for arbitrary points
on R-SLM.
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Figure 14: Results of combining polarization and phase modulation for point scanning.
(a) Measured intensity of all five collinear points combined. (d) Measured inten-
sity of all five arbitrary points combined. (b, e) Evolution of mean intensity for
each of the five points (different colors) as analyzer angle rotates for collinear
and arbitrary cases, respectively. (c, f) Analyzer angle at which each point
reaches maximum intensity, demonstrating sequential addressing for collinear
and arbitrary cases.
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INTRODUCTION

Artificial intelligence (AI) models have become integral to modern society, pow-
ering a wide range of applications, from image recognition to natural language
processing. The rapid proliferation of these technologies has been driven by de-
veloping increasingly large and sophisticated deep learning models. However, this
advance has incurred a significant cost: a sharp increase in demand for computa-
tional resources and, consequently, the energy required for their development and
deployment.

The energy demands of Al can be broadly grouped into two categories: those
due to training and those involving inference. Training requires optimizing a
model’s parameters using very large datasets, which requires substantial computa-
tional resources. For instance, training a state-of-the-art model such as GPT-4 con-
sumes considerable amounts of energy over extended periods, typically running
on large clusters of Graphics Processing Units (GPUs), estimated to have cost about
10 million USD in training energy costs [120]. Although energy-intensive, this is
generally a one-time cost. In contrast, inference—the process of using a trained
model to generate predictions—is performed continuously during model deploy-
ment. Every use of the model requires inference, leading to ongoing significant en-
ergy consumption. This challenge is especially pronounced in energy-constrained
edge-computing scenarios, such as autonomous vehicles, where real-time inference
is essential, but power availability is inherently limited.

A fundamental contributor to the energy inefficiency of conventional comput-
ing hardware is its architectural design. Traditional computers are based on the
von Neumann architecture, where memory and processing units are physically
separate and connected by a data bus. This separation necessitates constant data
movement between memory and the processor, creating a "memory bottleneck”
that limits computational speed and incurs significant energy costs from frequent
read and write operations. Neural networks, inspired by the parallel processing ca-
pabilities of biological nervous systems—where interconnected neurons store and
process information—are inherently ill-suited to the sequential nature of von Neu-
mann machines. In particular, the core operations of neural networks, primarily
matrix-vector multiplications (MVM), are severely impacted by this data transfer
bottleneck. The need to read parameters and write computation results to memory
further compounds the problem, leading to a significant energy inefficiency.

In-memory computing, or Compute-in-Memory (CIM), has emerged as a
promising paradigm to address this architectural limitation. CIM aims to perform
computations directly within the memory array, thereby minimizing data move-
ment and reducing the associated energy overhead. This approach is particularly
advantageous for Al applications, where processing vast datasets is common. By
reducing data transfer, CIM can achieve significant energy savings. Developing
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Figure 15: Comparison between von Neumann architecture and in-memory computing.
(a) illustrates the conventional von Neumann architecture, where memory and
processing units are physically separate. In this design, neural networks are
implemented using matrix-vector multiplication (MVM), with individual ele-
ments stored at different memory locations while computations occur in the
Arithmetic and Logic Unit (ALU). A controller manages data movement and
issues instructions. However, the data transfer between the ALU and memory
via the bus creates a bottleneck, leading to significant energy consumption due
to frequent read-write operations. In contrast, (b) shows in-memory computing,
where computations are performed directly within the memory array. The con-
troller only needs to issue instructions, significantly reducing data transfer and
lowering overall energy consumption. Figure reproduced in its entirety from
[121].

hardware solutions that embody CIM principles, even if initially optimized for
inference tasks, is therefore critical for improving the energy efficiency of AI com-
puting.

To tackle Al's energy efficiency challenges, new classes of hardware are be-
ing developed. Custom Application-Specific Integrated Circuits (ASICs), such as
Google’s Tensor Processing Unit (TPU) [122] and Microsoft’s Maia 100 [123],
are designed specifically for Al workloads, offering optimized performance and
efficiency. Specialized accelerators, including purpose-built ASICs and Field-
Programmable Gate Arrays (FPGAs), provide further improvements. For instance,
custom ASICs and FPGA implementations have been tailored for specific applica-
tions, such as sensor processing, using hardware-software co-design to bypass the
inefficiencies of general-purpose hardware [124].

Hybrid architectures are also being explored. Some ASICs integrate digital
multiply-accumulate (MAC) arrays with analog AiMC (Analog-in-Memory Com-
puting) units, allowing for dynamic selection of the most efficient processing cores
depending on the neural network layer [125]. Alternative designs, such as NeuR-
RAM, employ Resistive Random-Access Memory (RRAM)-based architectures that
implement CIM principles, significantly reducing data movement within the chip.
This approach has demonstrated 5-8x better energy efficiency for edge Al applica-
tions [126]. For large-scale networks like transformers, heterogeneous CIM designs
use dense 2D mesh architectures that combine analog CIM tiles with digital cores,
offering scalability without sacrificing efficiency [127].
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Progress in semiconductor technology is also critical for improving energy effi-
ciency in conventional electronic systems. For example, 3nm process nodes using
FInFET multiport SRAM have demonstrated a scaleup in throughput for lower
energy consumption [128]. In parallel, researchers are exploring ferroelectric ma-
terials to enhance memristor stability, providing reliable analog-Al systems [127,
129].

Memristor-based systems represent an alternative to traditional digital process-
ing. Analog-Al crossbars using memristors can perform low-power matrix oper-
ations and, when combined with hybrid digital/analog systems-on-chip (SoC),
achieve enhanced precision and efficiency [125]. Neuromorphic hardware further
advances this concept by mimicking the brain architecture, enabling efficient par-
allel computation. For example, chips that emulate synaptic plasticity can signif-
icantly reduce energy consumption for parallel computations [130-132]. A more
abstract implementation of brain function is represented by Spiking Neural Net-
works (SNNs), such as Intel’s Loihi, which use event-driven processing for energy-
efficient temporal tasks [127, 133].

In contrast to these electronics-based approaches, optical computing provides
an alternative pathway. Optical systems can perform neural network operations,
including MVM, using the inherent parallelism of light. This approach bypasses
the data movement bottleneck of traditional architectures, offering a fundamen-
tally different means of achieving efficient computation. In this work, we explore
using optics for performing neural network operations, aiming to leverage the ad-
vantages of optical parallelism and energy efficiency.

4.1 OPTICAL NEURAL NETWORKS

Researchers have explored optical approaches for implementing Al, and especially
neural networks, also referred to as optical neural networks (ONN), since the early
days of Al [27]. The earliest work in the 1980s demonstrated implementations
of optical fan-in and fan-out, showing the feasibility of optical interconnects [134].
Subsequently, researchers demonstrated an optical implementation of the Hopfield
model used for a pattern recognition task [135]. This work showed the feasibility of
using optics to implement content-addressable associative memory through optical
processing while leveraging the inherent parallelism and massive interconnection
capabilities of optical systems. Holographic techniques were also explored to assist
in implementing ONNSs [136, 137]. Scientists investigated photorefractive crystals,
as well as various spatial light modulation techniques, to physically realize the
parameters in the models [138-141]. Optoelectronic methods were also explored
to leverage the best features of both optics and electronics [142]. Training larger
neural networks remained a limitation; therefore, optical training schemes were
also proposed for implementations with photorefractive crystals [143, 144]. More
details about the early work in ONNs can be found in [145].

However, progress in the field had stalled because of a general lack of interest
in Al study during those periods, also referred to as "Al winter" [147]. The falling
cost of traditional computing and the emergence of general-purpose graphics pro-
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Figure 16: Compute cost trends for Al models. The figure illustrates the exponential
growth in compute requirements for training state-of-the-art Al models over
the years while hardware performance has not been able to keep up. This trend
highlights the increasing energy demands and the need for alternative hardware
solutions to address the associated challenges. Figure reproduced in its entirety
from [146].

cessing unit (GP-GPU) computing, particularly NVIDIA CUDA, made it practical
to implement larger models on traditional von Neumann computers, leading to a
resurgence in the field. However, conventional computer hardware has been un-
able to keep up with the increasing size of Al models over the past few years,
notwithstanding the resultant sharp increase in energy consumption and costs
[146]. Fig. 16 shows the relative increase in compute requirements for training
state-of-the-art Al models over the years as opposed to the available compute from
conventional hardware. Consequently, there has been a renewed interest in ONNs
as a potential solution to build scalable, energy-efficient AI co-processors [148, 149].
The entire field of ONNs can be divided into two broad categories: photonic and
free-space approaches [150].

Integrated photonic approaches represent a significant step towards realizing
compact, stable, and potentially mass-manufacturable ONN co-processors [27].
These approaches leverage established semiconductor fabrication techniques to cre-
ate complex optical circuits on small chips. Several key methods have emerged in
this domain: One prominent method involves using on-chip Mach-Zehnder Inter-
ferometer (MZI) meshes [151-153]. MZIs, composed of interconnected waveguides,
phase shifters, and couplers, can be configured to perform arbitrary unitary trans-
formations, which are fundamental to linear operations in neural networks [154,
155]. By cascading these MZIs in programmable arrays, complex matrix multipli-
cations can be realized directly on the photonic chip [151].

Another significant approach utilizes on-chip Micro-Ring Resonator (MRR)
weight banks [30, 156]. MRRs are wavelength-selective components whose trans-
mission characteristics can be finely tuned (e.g., thermally or electro-optically) to
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represent synaptic weights [30]. Arrays of MRRs, often coupled with wavelength-
division multiplexing (WDM), can perform vector-matrix multiplications by mod-
ulating the power of different wavelength channels [157, 158]. Phase Change Ma-
terials (PCMs) have also been integrated with MRRs to create non-volatile weights
and introduce nonlinear activation functions [158, 159].

On-chip diffractive metasurfaces extend the concept of diffractive deep neural
networks (D?2NNs) to the integrated platform [160, 161]. These metasurfaces con-
sist of precisely engineered subwavelength nanostructures fabricated on a chip
(often a Complementary Metal-Oxide-Semiconductor (CMOS) substrate or within
slab waveguides) that sculpt the light propagating through them to perform neural
computations [162-164]. This approach offers the potential for very high neuron
density and parallel processing [162]. Beyond these, various other on-chip opti-
cal components and architectures are being explored. These include using optical
scattering units optimized via inverse design techniques [165], three-dimensional
(3D) integrated waveguides for dense interconnectivity [166], and specialized pho-
tonic tensor cores designed for efficient processing of multidimensional data by
exploiting spatial, wavelength, and even radio-frequency modulation of photonic
signals. These integrated photonic platforms often aim to reduce energy consump-
tion by performing computations in the optical domain, minimizing costly opto-
electronic conversions, and leveraging the inherent parallelism of light [27, 151,
167, 168]. However, despite these advances, integrated photonic approaches face
challenges, including the difficulty in simultaneously achieving efficient nonlin-
earity and reconfigurability on a single platform, managing issues like thermal
crosstalk in densely packed active components, overcoming limitations in parallel
input dimensions for many waveguide-based designs, and enabling robust scal-
ability when cascading multiple on-chip ONNSs. This fundamental aim of lever-
aging optical computation underscores the drive to overcome such challenges for
enhanced energy efficiency [27].

Beyond integrated photonics, free-space optical neural networks (FSONNSs) of-
fer an alternative framework for optical computing implementations [27, 169-171].
Instead of confining light within waveguides, FSONNSs perform computations by
manipulating light as it propagates through free space, interacting with a sequence
of engineered optical elements that spatially structure one of the fundamental
properties of light. A key advantage of this approach is the ability to directly
process incoming optical wavefronts carrying rich information about a scene or
object—including spatial amplitude and phase, polarization state, spectral content,
and orbital angular momentum (OAM)—often without needing complex prepro-
cessing or optoelectronic conversions [31]. This characteristic makes FSONNSs par-
ticularly appealing for applications involving visual information processing, com-
putational imaging, and sensing.

The core components of FSONNSs are typically engineered diffractive surfaces
[31], although other approaches exist. One major category uses elements struc-
tured at the wavelength scale (> A/2) to modulate the light. These systems, often
referred to as D?NNs, usually consist of multiple passive layers placed one after
another [31]. Light diffracts from one layer to the next, and the "learning" is en-
coded in the physical structure of these layers, typically by varying the thickness
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or refractive index of the material across the surface to impart specific phase shifts
onto the wavefront [31]. Because of the larger feature sizes involved, D2NNs op-
erating at lower frequencies (like THz) can often be rapidly prototyped using 3D
printing techniques [31]. Fabricating D?NNss for visible wavelengths requires more
advanced nanofabrication, such as lithography [172]. These networks have suc-
cessfully demonstrated tasks ranging from object classification and computational
imaging to implementing fundamental logic operations [31, 173-175].

Pushing the feature size down to the subwavelength scale (< A/2) is possi-
ble with metasurfaces within FSONNs [176-178]. Metasurfaces are composed of
densely packed arrays of ‘'meta-atoms’ (e.g., plasmonic nanoparticles or dielectric
nanopillars) whose individual geometry and arrangement allow for control over
the properties of light. Unlike simpler diffractive layers that might primarily mod-
ulate phase, metasurfaces can be designed to independently control amplitude,
phase, polarization state, spectral response, and even OAM [179-181]. While plas-
monic metasurfaces offer design flexibility, they often suffer from higher optical
losses; dielectric metasurfaces (using materials like TiO,, Si, or GaN) generally
provide higher efficiency but present greater fabrication challenges [176, 182, 183].
The sophisticated light manipulation offered by metasurfaces opens possibilities
for highly parallel processing, potentially encoding multiple computational tasks
within a single device based on the input light’s properties (e.g., wavelength or
polarization multiplexing) [184-186].

For applications requiring adaptability, Spatial Light Modulators (SLMs) serve as
reconfigurable diffractive elements in FSONNs. Phase-only SLMs (often using lig-
uid crystals) and amplitude-only SLMs, like Digital Micromirror Devices (DMDs),
can be programmed electronically to shape the wavefront, allowing for dynamic
modification of the network’s function without physical fabrication [69, 187, 188].
This versatility makes SLM-based systems ideal experimental platforms, facilitat-
ing research into more complex architectures, including integrating active compo-
nents to introduce optical nonlinearity — a key challenge in passive optical systems
[189]. However, one drawback of SLMs is their relative slow speeds. Demonstra-
tions have included incorporating elements like magneto-optical traps or image
intensifiers between SLM layers to act as nonlinear activation functions [189, 190].
A specific free-space architecture worth noting is the 4f optical system. This setup
uses a pair of lenses to create a Fourier plane where spatial filtering or modulation
can be easily performed, often used for implementing optical convolutions [191].

However, FSONN systems also carry certain disadvantages, such as sensitivity to
alignment, fabrication complexity for diffractive layers (for visible wavelengths as
well), lack of reconfigurability with static diffractive layers, lower energy efficiency
because of optical effects, and the difficulty of implementing optical nonlinearity
in low-power implementations [189, 192]. Although using spatial light modulators
can address some of these challenges, more progress is needed to address the inef-
ficiency problem and to enable flexible nonlinearity implementation within these
systems. One way of addressing these challenges is by combining the strengths
and weaknesses of both optical and electronic computing systems. In this context,
researchers have explored hybrid optoelectronic systems that combine free-space
optical processors for handling computationally intensive linear operations (like
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large-scale matrix multiplications or convolutions) at high speed and low power,
with conventional electronic hardware performing tasks such as control and pro-
cessing [191, 193-195]. In this work, we aim to implement an energy-efficient opto-
electronic processor that also incorporates operational nonlinearity. This synergis-
tic approach aims to leverage the best of both worlds for optimal performance.

4.2 PRINCIPLE OF OPERATION

The fundamental operational schematic of the multilayer optoelectronic neural net-
work involves a sequence of alternating optical and electronic layers, responsible
for executing MVM and implementing nonlinear activation functions, respectively.
The system’s light source comprises a two-dimensional (2D) array of incoherent
light-emitting diodes (LEDs), where each LED’s intensity represents an individual
neuron’s activation state. As this incoherent light propagates, it passes through
a spatially encoded amplitude mask. This mask modulates the light, effectively
encoding the neural network layer’s synaptic weights. A 2D array of photodi-
odes (PDs) subsequently detects the modulated optical signals. These photode-
tectors integrate with analog electronic circuitry that performs functions such as
converting optical signals to electrical signals and implementing nonlinear opera-
tions through differential signal processing. This architecture synergistically com-
bines optics” inherent advantages, particularly its capability for highly parallel and
energy-efficient MVM, with electronics” strengths in performing low-energy ana-
log signal processing necessary for realizing nonlinear activation functions, such
as the rectified linear unit (ReLU).

previous-layer activations

Light from i LED-based

32 .

Optical matrix-vector next layer Parallel analog
multiplication electronics

Figure 17: Conceptual illustration of the multilayer optoelectronic neural network. (a)
The system architecture features interleaved optical layers for matrix-vector mul-
tiplication (MVM) and electronic layers for nonlinear processing. (b) Optical
MVM is achieved using an array of incoherent light-emitting diodes (LEDs)
whose outputs are modulated by an amplitude mask encoding weights, and
then projected onto a photodiode (PD) array. (c) The electronic layer consists of
neuron units with paired photodiodes for differential input, enabling the imple-
mentation of nonlinear activation functions. Figure reproduced from [118]
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The following sections briefly introduce the numerical techniques essential for
simulating the optical and electronic response of the components used in the mul-
tilayer optoelectronic neural network.

4.3 NUMERICAL MODELLING

The system’s operation involves two main components; consequently, simulating
the multilayer network is also divided into two parts: electronic and optical sim-
ulation. We use the numerical framework, "Simulation Program with Integrated
Circuit Emphasis" (SPICE), to simulate how electronic circuits function before test-
ing on a matrix-board and subsequently fabricating printed circuit boards (PCBs).
Optical simulation techniques simulate the spread of incoherent light through the
system and model its interaction with the mask.

4.3.0.1  Electronic Simulation

The discussion in this section is based on [196]. Designing and verifying modern
electronic circuits heavily rely on simulation tools to predict electrical behavior
prior to fabrication. Simulation Program with Integrated Circuit Emphasis (SPICE)
is a foundational software standard for such analog circuit simulation. SPICE en-
ables us to model circuits using representations of electronic components and their
interconnections, then analyze performance through various simulated tests. Dur-
ing this project, we designed the source, difference ReLU, and detector PCBs to
build the system. Each PCB consisted of multiple, independently operating, par-
allelly connected circuits that needed to meet specific requirements. We designed
and then tested these circuits in LTspice, a SPICE simulator developed by Analog
Devices.

At its core, SPICE operates on two main principles: detailed device modeling
and robust numerical solution techniques.

DEVICE MODELING SPICE utilizes mathematical models to accurately describe
the current-voltage (I-V) characteristics of electronic components. These models
range in complexity, from basic Level 1 models to more sophisticated, semi-
empirical Level 3 models, with advanced models also available for specialized
scenarios. The purpose of these models is to translate the physical properties of
electronic components into mathematical equations that capture their electrical be-
havior.

In this section, while our circuit designs incorporate a variety of components in-
cluding operational amplifiers and Metal-Oxide-Semiconductor Field-Effect Tran-
sistors (MOSFETs), we focus on the MOSFET as an illustrative example. Specifically,
the MOSFET drain current (Ips) is a function of its terminal voltages and intrin-
sic device parameters. For a MOSFET operating in the saturation region (when
Vigs > Vin), a Level 2 model provides a more accurate representation of the drain
current, expressed as:
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Here, p,, is the carrier mobility, Co is the oxide capacitance per unit area, W
and L are the channel width and length, Vs is the gate-source voltage, Vi, is
the threshold voltage, Vps is the drain-source voltage, A is the channel-length
modulation factor and V4. = min(Vgs, Vasat). This model effectively captures
the non-linear characteristics of the MOSFET, providing a robust basis for circuit
analysis and simulation.

NUMERICAL SIMULATION ENGINE To analyze a complete circuit, SPICE solves
a system of non-linear differential equations derived from Kirchhoff’s laws and
the device model equations. The Newton-Raphson (N-R) iterative method is com-
monly employed to solve these non-linear equations, particularly for determining
DC operating points or for each time-step in a transient analysis. SPICE simulators
facilitate several analysis types, including DC operating point, AC small-signal fre-
quency response, and time-domain transient analysis, allowing for comprehensive
circuit characterization.

For this project, we optimized the circuit design, component selection, and com-
pensation techniques using the simulator. Subsequently, these optimized designs
were first tested on an electronic matrix board before fabricating PCBs. While
SPICE provides a robust framework for simulating the electronic response, differ-
ent modelling approaches are needed to simulate incoherent light. The next section
details the optical simulation techniques employed, such as ray tracing and mod-
ified angular spectrum method, to accurately model incoherent light propagation
and its interaction with the amplitude mask.

4.3.1  Optical Simulation

Simulating light propagation through the system employs two main strategies,
selected based on the scale of optical features relative to the wavelength of light.

4.3.2  Ray Tracing for Geometrically Large Features

When characteristic dimensions of optical elements (like mask patterns) are sig-
nificantly larger than the light’s wavelength (M), raytracing based on geometrical
optics provides an accurate model of light spread and is useful for modelling ef-
fects of LED geometry, lenses and reflections in the light path. The light source is
an array of N gp LEDs. Each LED, say the j-th LED at position rigp, is treated as
a point source. It emits Nyays individual light rays, each carrying an initial power,
Pray,init- The probability of a ray being emitted at an angle 0 relative to the LED’s
surface normal is often described by its angular emission profile, Iemission (). We
model the LED’s emission properties based on the datasheet description provided
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by the manufacturer. The Monte Carlo method is employed to sample ray direc-
tions based on this probability distribution.

The interaction with the semi-transparent mask is a key step. A rigorous treat-
ment of a ray’s interaction with each interface of the mask involves the Fresnel
equations. When a ray is incident from a medium of refractive index n; onto the
mask material of refractive index n, at an angle of incidence 6; (measured from
the normal to the interface), the angle of refraction 0; (also measured from the
normal) into the mask is determined by Snell’s Law:

Ny sin(0;) = ny sin(0¢) (46)

The Fresnel equations define the reflectances for s-polarized (Rs) and p-polarized
(Rp) light components, which depend onny,n;, 0;, and 0. From these, the average
transmittance Tgresnel for unpolarized light across a single interface is given by:

Rs +R
TFresnel =1- % (47)

This Tgresnel Tepresents the fraction of incident unpolarized light transmitted into
the mask material at the first interface, thus relating the external incident intensity
to Linc int- A similar calculation applies for transmission out of the mask at its
second interface. Internal absorption within the mask material of thickness dask
is described by the Beer-Lambert law:

—ued
Itransmitted = Iincfin’ce Ht Cmask (48)

where Iinc int is the intensity just inside the mask, and p. is the attenuation
coefficient combining absorption and scattering effects. However, we consider a
simplified model of transmittance for this work. We use the transmittance as a re-
sult of the angle of incidence, derived from (47), T¢(Tmask) and a local transmittance
probability, Thask (fmask). If @ ray with power Pray strikes the mask at position rmyask,
its power after passing through is:

r,ay = Pray : Tmask(rmask) : Tf (Tmask) (49)

This approach primarily accounts for the amplitude modulation by the mask,
neglecting refraction’s effect.

After potentially passing through the mask, the power from all transmitted rays
reaching a specific pixel p on the detector plane is summed. This process is re-
peated for each of the Ny gp light sources. The total power Py, at pixel p is the
incoherent sum of contributions from all LEDs:
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where Pr’ay,jk is the power of the k-th ray from the j-th LED after passing through
the mask and reaching pixel p. This sum represents the final simulated intensity
distribution on the detector plane.

4.3.3 Modified Angular Spectrum Method for Diffraction-Limited Features

When feature sizes on the mask are comparable to or smaller than the wavelength
A, diffraction becomes significant. We adapt the angular spectrum method (ASM)
to model this. The ASM describes the propagation of a scalar, monochromatic
optical field, U(x,y,0), from an initial plane (z = 0) to a subsequent plane (z > 0).
A detailed introduction to the angular spectrum method is provided in 2.5.2.

To simulate spatially incoherent light using ASM, we modify this procedure. A
set of N,¢ (e.g., 100) distinct initial wavefronts, U, (x,y,0), are generated. These
wavefronts share a common amplitude profile, |Usource (X, Y, 0)|, derived from the
light source characteristics, but each is endowed with a statistically independent,
random phase distribution, ¢m (X, y):

Um (%,Y,0) = [Usource (x, Yy, 0) e ¥m V) (51)

Each of these N,,+ wavefronts is propagated independently using the ASM as

described above, resulting in a set of propagated complex fields {U (x,y, z) T]if] .

The final intensity distribution, Iout(x,y,z), at the output plane is obtained by
averaging the individual intensities of these propagated wavefronts:

N
:
loutlx,y,2) = g ) Unm(xy,2)I? (52)
WHm=1

This summation of intensities, rather than complex amplitudes, effectively mod-
els spatially incoherent light’s behavior by averaging out interference patterns that
would arise from fixed phase relationships. This approach accounts for spatial in-
coherence. While temporal incoherence is not explicitly modeled, this simulation
is considered sufficient for this work’s applications.

In the following chapter, we describe the experimental implementation and the
results built up using the principles described in this chapter.
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LAB SCALE IMPLEMENTATION OF THE OPTOELECTRONIC
NEURAL NETWORK

The objective is to physically implement deep neural network computations in
an energy-efficient manner, aiming for lower power consumption compared to
conventional computing hardware. Data read-in and read-out operations create a
bottleneck that significantly contributes to high energy usage in traditional deep
neural network computations. This work demonstrates a multilayer optoelectronic
architecture designed to address this issue. The core concept, illustrated schemati-
cally in Fig. 18a, involves alternating electronic and optical processing layers. Opti-
cal layers perform matrix-vector multiplication (MVM) operations, which are com-
putationally and energetically intensive on conventional hardware.

An LED array generates incoherent light for the MVM. A National Instruments
(NI) digital-to-analog converter (DAC) PXIe-6739 reads data from a computer. The
system amplifies the analog signal, and an array of 64 LEDs, arranged in an 8 x 8
grid, emits light with intensity proportional to the analog input. The propagated
light passes through an amplitude mask, as Fig. 18b shows, modulating the in-
tensity at the mask plane. Trained neural network weights determine the features
on the mask, and principles from ray optics guide their positioning. The resulting
incoherent light distribution is incident on a 10 x 10 photodiode (PD) array in the
tirst hidden layer. The system applies a Rectified Linear Unit (ReLU) nonlinearity
by subtracting signals from pairs of photodiodes, amplifying the result, and re-
emitting it from a 5 x 10 LED array on the same layer, as shown in Fig. 18c and
Fig. 18d. Because light intensity can only be positive, subtracting the signal from a
pair of photodiodes implements negative weights and ReLU nonlinearity. This pro-
cess repeats through another hidden layer before an 8 x 8 photodiode array detects
the signal at the output layer. An NI analog-to-digital converter (ADC) PXIe-6355
amplifies and reads the output signals into the computer. Custom Python code,
utilizing NIDAQmx libraries for NI hardware communication and the Holoeye
Python library to drive the spatial light modulator (SLM), controls the entire sys-
tem.

This chapter provides an overview of a lab-scale prototype of the optoelectronic
neural network (OENN) system. First, we discuss the optical principle for imple-
menting MVMs optically, followed by the electronic implementation of amplifica-
tion and nonlinearity. Next, we discuss the system’s calibration and the experimen-
tal setup. Finally, the chapter discusses the system’s performance on classification
tasks.

57



58 LAB SCALE IMPLEMENTATION OF THE OPTOELECTRONIC NEURAL NETWORK

Input layer Hidden layer 1 Hidden layer 2 Output layer
64 units (8x8) 50 units (5x10) 50 units (5x10) 64 units (8x8)
(10x10)~(5x10)  (10x10)-(5x10)

0 L L

L
/

~N T TTT——

===l

Data Data
Read-in Read-out

|

L — 4= EE———
P= P=

Optical MVM Optical MVM Optical MVM
(8x8)x(10x10)  (5x10)x(10x10)  (5x10)x(10x10)

C
P01
P02 08
[|ro1 -t
P02 o o
; 0.2 4
d2 0

Detector 1 __AAM——

>
Kw 7
% _I>| O 05
o)
w
LED -0 - - .
Detector 2 -1 -0.5 0 0.5 1

Figure 18:

Detector 1 - Detector 2

Components of the Optoelectronic Neural Network (OENN). (a) Schematic
representation of the system architecture. The input board receives data from
a computer via a digital-to-analog converter (DAC) and drives an 8 x 8 grid
of 64 input LEDs. The emitted light from these LEDs is optically mapped to a
10 x 10 photodiode array in the subsequent hidden layer, performing an MVM
operation. Signals from pairs of photodiodes are combined, amplified, and drive
a5 x 10 LED array, which is then optically mapped to the next hidden layer. This
process continues through the network until the output layer, where a 10 x 10
photodiode array detects the final signals. The output photodiodes connect to
a readout board that digitizes the signals for further processing. (b) Ray-traced
illustration of the MVM implemented in the system. (c) Circuit representation
for implementing negative weights, enabling the Rectified Linear Unit (ReLU)
nonlinearity shown in (d). Figure adapted from [118].
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5.1 OPTICAL IMPLEMENTATION

The optical subsystem of the OENN performs MVM operations. As discussed in
Chap. 4, MVM is one of the most energy-intensive operations in traditional elec-
tronic computers. In contrast, we implement MVM optically by using either pas-
sive optical components or active elements with negligible electrical power con-
sumption. We use the inherent spreading behavior of incoherent light and its in-
teraction with an amplitude modulation mask to perform computational tasks.
Specifically, a grayscale mask modulates the intensity-encoded information from a
light-emitting diode (LED) array based on local transmission values. This mask is
designed from trained neural network weights, adhering to ray optics principles.
Figure 19 schematically illustrates the key factors influencing this optical mapping,
which the following section further details.

5.1.1 Optical Matrix-Vector Multiplication

The amplitude modulation mask implementing the MVM operation consists of an
array of smaller transparent blocks. As the neural network we implement is fully-
connected, each output from the preceding LED layer maps to every photodiode
(PD) in the subsequent layer. If the LED array is arranged in an (m x n) grid and
the photodiode array in a (p x q) configuration, the mask comprises an (m x n)
array of subarrays, where each subarray contains (p x q) modulation blocks. Light
emitted from an LED at position (1,1) spreads spatially and is modulated by an
individual (p x q) section of the mask corresponding to the subsequent PDs. This
process repeats for each LED source, resulting in an intensity sum on each PD from
multiple contributing LEDs. Therefore, precisely calculating the spread from each
mask element is important. Figure 19 schematically represents the main param-
eters that require careful design consideration. Given the scale of system compo-
nents relative to the optical wavelength, ray optics can accurately model the spread
of light from incoherent LED sources, with diffraction effects being negligible. Sim-
ulations using a modified angular spectrum method, detailed in Sec. 2.5.2, support
this conclusion. Because the angular spectrum method assumes coherent fields, we
adapted it for incoherent light by initializing the field with a random phase dis-
tribution. We repeated this random initialization over one hundred iterations to
compute a statistical average of the light intensity at the output plane, effectively
simulating a quasi-incoherent field. The results, shown in Fig. 21, demonstrate a
smooth and continuous light intensity distribution at the output plane, validating
the use of geometric optics for modeling the system.

We approximate each LED as a point source and trace its rays from the emission
plane to the mask and subsequently onto the photodiode plane, following simple
geometrical principles. Realizing MVM within this optoelectronic system’s opti-
cal layers depends on accurately calculating the spread of incoherent LED light
through an amplitude mask and onto a detector array. This approach deliberately
avoids using traditional refractive or diffractive elements. Within the operational
regime defined by the experimental parameters, where component dimensions
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and separations are substantially larger than the optical wavelength (A), geometric
optics can effectively describe light’s behavior, allowing us to ignore diffraction
phenomena. Figure 19 provides a visual guide to these foundational geometric
principles.

Light emission originates from a planar array of LEDs. Each LED acts as an
independent source, and its emitted light travels a distance d; to intersect an in-
termediate plane containing the amplitude mask. This mask imposes a spatially
varying transmission function, effectively multiplying the incident light intensity
by the desired matrix weight values WY. The modulated light then propagates
an additional distance d, before impinging upon the PD array at the detection
plane. The ratio of the total propagation distance (d; + d.) to the initial LED-mask
distance (d;) defines the geometric magnification factor, M = (dy + d;)/d;. This
factor dictates the transverse scaling of any light pattern as it projects from the
mask plane to the detector plane. Consequently, a feature located at a transverse
position (x’,y’) on the mask will appear at position (Mx’, My’) on the detector
plane relative to the projection axis, consistent with the relationship d,> = M - dy
shown in Fig. 19(a).

Crucially, light arriving at the detector corresponding to a single weight element
is not a point but forms a spot of finite extent. This spatial spread arises physi-
cally from the non-zero dimensions of the originating LED emitter, W gp, and the
finite size of the specific aperture on the amplitude mask, wqmyp, through which
light passes, both geometrically projected and scaled onto the detector plane. The
LED source’s contribution effectively creates a convolution of the LED die with
the mask with a characteristic size proportional to (M —1)W| gp, while the mask
aperture projects to a size proportional to Mwgmp, (related to components “a” and
'b” in Fig. 19(b)). In the geometric limit, the combination of these two effects deter-
mines the total spot extent. This finite spot size is fundamentally linked to crosstalk
between adjacent photodiodes, making it a critical parameter influencing system
performance. Therefore, maintaining a spot extent comfortably less than the pho-
todiode pitch Spp is essential to clearly reflect the expected results from in-silico
inference.

These geometric projection rules tightly couple the physical layout of compo-
nents across the different planes, as Fig. 19 schematically suggests. The spacing
between individual weight elements on the mask, sqmp, must be precisely 1/M
times the photodiode spacing Spp (i.e., Spp = M - sqmyp, Fig. 19(c)) to ensure cor-
rect mapping. Furthermore, the mask itself is structured into distinct zones, each
corresponding to an input LED. The spatial separation Syim required between the
centers of these zones on the mask relates to the LED pitch S;gp via the relation-
ship Smm = Step - (M —1)/M (Fig. 19(e)). Adhering to these geometric scaling
laws ensures that the intensity contribution from each LED;, modulated by the
appropriate weight transmittance WY on the mask, arrives predominantly at the
intended PDj. The total intensity measured at PD; then approximates the desired
MVM result, O{DD ~ Y I'ep - WY, where 1! . is the intensity of the i-th LED.
The design process thus involves selecting d;, d2, and component dimensions to
optimize this process, minimizing crosstalk by managing the spot spread relative
to Spp, while simultaneously maximizing collected optical power for system effi-
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Figure 19: Ray-tracing representation of the optical operation in the OENN. This figure
demonstrates implementing a fully-connected optical MVM operation in the
system. The principles of ray tracing design the amplitude mask. Each LED in
(a) is multiplied by a sub-array on the mask whose feature size magnification, M,
determines. The spot size made by a feature in (b) depends on the LED emitter
size, shape of the mask feature, and magnification factor. The photodiode spac-
ing in (c) depends on the magnification and the spacing between mask features.
(d) The magnification factor M scales the total output region. (e) Each LED is
associated with a submask that encodes the weights for the MVM operation.
Magnification and LED spacing can evaluate the spacing between neighboring
masks. Figure reproduced from [118].
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ciency. The following section describes two different techniques to physically im-
plement the MVM mask detailed here.

5.1.2  Physical Realization of the MVM Amplitude Mask

The critical step of encoding matrix weights, denoted by W, requires precise
positioning of the transparency blocks that constitute the amplitude mask. This
mask defines the transmission function T(x,y) at each point (x,y) along a plane
intersecting the propagating light. Two principal strategies exist for realizing such
masks: static masks and dynamic masks.

Static Amplitude Masks

Static amplitude masks involve creating a fixed physical structure whose local
transmission T(x,y) encodes the desired matrix weights. Various fabrication tech-
niques can fabricate such a mask, with inkjet printing on transparent sheets being
the simplest method. Although this method suits rapid prototyping, it typically
suffers from limitations in achievable spatial resolution Ax, optical contrast ratio
(Tmax/Tmin), and mechanical stability [197]. Imperfections in the transparent film
substrate or insufficient rigidity may also induce phase aberrations ¢(x,y) in the
transmitted wavefront, degrading system accuracy.

For applications demanding high precision, standard microfabrication tech-
niques, such as photolithographic patterning of optically dense materials (e.g.,
chromium) onto high-quality substrates (e.g., quartz or fused silica), are preferable.
Such methods provide excellent spatial resolution, high contrast, superior surface
flatness, and long-term mechanical durability, making them suitable for this ap-
plication. However, conventional lithographic processes are often optimized for
binary patterning, where transmission is either 0 or 1, in contrast to the continuous-
valued weights WY neural networks typically require.

We use spatial dithering techniques to solve this challenge, effectively creating
an analog transmission response using only binary (0 or 1) substructures. The
principle relies on modulating the local density of transparent features across a
subregion Q so that the spatial average approximates the desired transmission

Trarget [198]:

1

<Tbinary(xry)>ﬂ = @

JJ'Q Tbinary (X/ y) dx dy ~ Ttarget' (53)

In our implementation, we subdivide the area corresponding to a single WY
into an 5 x 5 array of sub-pixels, each of which a dithering algorithm indi-
vidually assigns as transparent or opaque. Techniques such as error diffusion
sequentially quantize each sub-pixel, calculate the resulting quantization error
€ = Trarget — Tpinary, and redistribute this error to neighboring pixels, thereby ensur-
ing the local spatial average converges toward Tiarget. This strategy allows encoding
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a Desired weight matrix b  Image of photomask

Image at photodiode plane

Figure 20: Implementation of amplitude masks. For a given desired amplitude mask (a),
two methods can implement the mask. The first method uses a dithered binary
mask, shown in (b). The resultant intensity distribution after propagation shows
a smooth intensity profile (c). Image adapted from [118].

approximately O(n?) effective transmission levels. The lithographic toolchain then
receives the precise geometric coordinates of transparent sub-pixels for mask fab-
rication.

Experimental validation appears in Fig. 20: Panel (a) depicts the intended
continuous-valued weight matrix WY; Panel (b) shows a micrograph of the fab-
ricated high-resolution binary mask; Panel (c) presents the measured optical inten-
sity distribution I(x,y) after incoherent illumination and free-space propagation
through the mask. The inherent optical low-pass filtering smooths high spatial fre-
quencies, recovering a continuous-tone intensity profile that faithfully represents
the original weight values. These results confirm that spatial dithering can achieve
continuous amplitude encoding.

Dynamic Amplitude Masks

Alternatively, twisted nematic liquid crystal spatial light modulators (TNLC-SLMs)
can realize dynamically reconfigurable amplitude masks [70]. In this configura-
tion, a voltage-controlled liquid crystal panel is sandwiched between two polariz-

63



64

LAB SCALE IMPLEMENTATION OF THE OPTOELECTRONIC NEURAL NETWORK

ers. The applied voltage Vi to each pixel modulates the twisted nematic LC cell’s
twist angle, altering the transmitted light’s polarization state. An analyzer con-
verts this polarization modulation into amplitude modulation, resulting in a pixel
transmission function Ty = T(Vy), typically controlled with 8-bit digital precision
(k=0,...,255).

The primary advantage of dynamic masks is their reconfigurability. The encoded
weight matrix WY, represented by pixel transmissions Ty, can be electronically up-
dated without physically replacing the mask, allowing for a more flexible align-
ment procedure and rapid iteration over different weight masks. This flexibility
speeds up the testing process. However, this reconfigurability has certain limita-
tions. The SLM’s pixel pitch p constrains the achievable spatial resolution, impos-
ing a Nyquist limit ~ 1/(2p) on the highest spatial frequencies that can be faithfully
represented. Consequently, dynamic masks may not achieve the same spatial den-
sity or optical fidelity as static masks. Moreover, SLMs are active devices requiring
continuous electrical power Pgry, including contributions from driving electron-
ics and potential backlighting. Although the liquid crystal layer itself may draw
low power for static patterns due to its capacitive nature, the total consumption
is non-negligible and must be considered when evaluating overall system energy
efficiency.

Thus, choosing between static and dynamic amplitude masks involves balancing
trade-offs among adaptability, resolution, and energy consumption. Static, litho-
graphically patterned masks offer superior optical performance and passive op-
eration but lack flexibility. Dynamic SLM-based masks provide valuable repro-
grammability at the cost of reduced resolution and active power demands. In the
present experiments, we use dynamic masks to rapidly prototype and test differ-
ent trained networks. However, static masks could replace them in the future for a
more energy-efficient and integrated implementation.

In addition to the choice of masking technology, the free-space propagation ge-
ometry connecting the source, mask, and detection planes equally governs the
overall effectiveness of the optical MVM layer. Carefully optimizing these geomet-
ric parameters is essential to minimize optical crosstalk and maximize signal fi-
delity, especially when scaling to larger network sizes.

5.2 ELECTRONIC IMPLEMENTATION

The electronic circuits form the OENN’s active core, allowing us to generate in-
put signals, detect and amplify signals from the previous layer, implement ana-
log signal subtraction (see Fig. 18), and enable interfacing with external control
and measurement hardware. We had three objectives when designing the circuits:
achieve an operational bandwidth capable of supporting signal modulation fre-
quencies approaching 1 MHz (with 800 kHz demonstrated experimentally); mini-
mize electrical power consumption per computational channel, making the system
energy-efficient; and maintain low noise levels throughout the signal path, thereby
ensuring accurate analog computation and maximizing each channel’s effective
signal-to-noise ratio (SNR).
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Figure 21: Impact of Diffraction on Optical Propagation. Simulated results using a mod-
ified angular spectrum propagation method for LED light passing through am-
plitude masks. The setup assumes a photodiode spacing of 2.5 mm and an LED
die size of 200 um. (a) Target amplitude mask weights. (b) Resulting intensity
distribution at the output plane. (c) Histogram of output values from the central
region of (b), grouped into bins for analysis. Figure reproduced from [118].
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Figure 22: Operational amplifier circuits used in the OENN electronic modules. (a) Cir-
cuit diagram for driving input LEDs based on digital signals. (b) Readout cir-
cuit employed to capture and digitize signals from the final photodiode array.
(c) Intermediate circuit responsible for detecting photodiode signals, computing
differences between pairs, amplifying the result, and driving subsequent LEDs.
Figure reproduced from [118].

The computational system consists of three distinct types of circuit boards, cor-
responding to the different functional layers within the OENN architecture: an In-
put board for driving the initial LED array, Intermediate boards for implementing
hidden layer functionality (detection, differencing, amplification, and re-emission),
and an Output board for final signal detection and readout.

¢ Input Board: Converts digital control signals into modulated light intensities
at the first LED array (circuit details in Fig. 22a).

¢ Intermediate Board: Implements core hidden neuron functionality, includ-
ing photodetection, differential amplification (realizing ReLU activation), and
driving the subsequent LED array (Figure 22b).

¢ Output Board: Performs final optical signal detection and amplification to
produce analog voltages for external digitization (Fig. 22¢).

The circuit development followed a standard electronic design flow: initial con-
cepts were modeled and simulated in LTSPICE (see Sec. 4.3.0.1) to evaluate band-
width, gain, noise, and stability; prototypes were constructed and tested exper-
imentally (using matrix boards) to validate functionality before final implemen-
tation on custom-designed printed circuit boards (PCBs). Figure 22 shows the
schematics for each of the three circuit boards.
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5.2.1  Circuit Operation

5.2.1.1 Input Board LED Driver (Fig. 22a):

The Input board interfaces the controlling computer with the OENN’s optical in-
put. Parallel analog voltage signals Vpac, generated by a DAC (National Instru-

ments PXIe-6739), provide input activations VD Ac for each i-th neuron. Each input
channel circuit converts its corresponding VD Ac into a proportional LED drive cur-

rent ILED, suitable for each individual LED (Wiirth 150040GS73220) within the 8 x 8
array. The driver circuit employs an operational amplifier (AD8648) in a voltage-
to-current converter topology. The emitted optical power, Pép)t, is proportional to

the forward current:

i hv (
P((Dp)t ~ Mext ™~ q ILED (54)

where nex is the external quantum efficiency, hv is the energy of each emitted
photon, q is the elementary charge and I, ;) is the injected electrical current
through the i-th LED. Design challenges included achieving the target modula-
tion bandwidth (up to 1 MHz) while accounting for the LED’s nonlinear current-
voltage (I-V) and light-current (L-I) characteristics. The LED forward current fol-
lows the ideal diode equation:

V,
Iigp ~ I (exp <nVDT> — 1) (55)

where I; is the reverse saturation current, Vp is the diode voltage, n is the ide-
ality factor, and V7 is the thermal voltage. This behavior requires either circuit
linearization strategies or calibration. As we discuss in Sec. 5.3, we experimen-
tally characterize our circuit boards’ responses, fit the measured data, and use this
model for driving the LEDs.

5.2.1.2 Intermediate Board Neuron Circuit (Fig. 22b):

The Intermediate board implements a hidden layer in the OENN, with each board
comprising 5 x 10 = 50 replicated neuron circuits. Each neuron receives differen-
tial optical inputs and realizes an effective ReLU activation before driving a subse-
quent LED. A pair of photodiodes (SFH2704) are arranged in a balanced configu-
ration to detect optical inputs. This arrangement generates photocurrents flowing
in opposite directions at the operational amplifier’s inverting input, creating an
algebraic difference (Ipp4 — Ipp—) at the virtual ground node.

The initial transimpedance amplification (TIA) stage, built around the first op-
amp (MCP6V66T), converts this differential photocurrent into a voltage, with a
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gain set by the feedback resistor Ry (in Q) [199]. The photodiodes are reverse-
biased to minimize junction capacitance, significantly enhancing the circuit’s re-
sponse speed and linearity. The second amplifier stage, utilizing another op-amp
(LM358), operates as a voltage-controlled constant current sink [200] that modu-
lates an output transistor’s (BSS138PW MOSFET) gate voltage. The op-amp con-
tinuously adjusts the gate drive to maintain input voltage equality, causing the
voltage across Rs to track the non-inverting input voltage. This mechanism con-
trols the output current I;gp through the subsequent LED (Wurth 150040GS73220)
[201].

The ReLU nonlinearity, f(x) = max(0,x), is intrinsically approximated by the
combined behavior of the current sink and the LED’s forward voltage threshold.
Light emission occurs only when the differential input photocurrent produces a
positive output from the first amplification stage sufficient to forward-bias the
LED, resulting in:

Pout o< max(0, Vgiss — Vin) = max(0, Aq(Ipps+ — Ipp—) — Vin), (56)

where Vip is the input-referred threshold voltage, and A4 denotes the tran-
simpedance gain (in V/A).

Although not a perfect realization, the circuit achieves a good approximation
of the ReLU function, exhibiting some nonlinearity in the transition region. Care-
ful component selection and adding explicit compensation capacitors in feedback
paths maintain circuit stability, which can introduce stability challenges at higher
frequencies [199]. The overall speed of the neuron circuit is influenced by multi-
ple factors, including photodiode junction capacitance, op-amp input capacitance,
op-amp slew rate limitations, and MOSFET gate capacitance.

5.2.1.3 Output Board Readout Circuit (Figure 22c):

The Output board captures the final optical outputs via an 8 x 8 photodiode array
and converts them into analog voltages V. suitable for external digitization (ADC:
National Instruments PXle-6355). Each channel uses a dedicated TIA based on an
op-amp (MCP6V66T), converting photocurrent Ipp into an output voltage:

Vout = —Ipp - R¢, (57)

where Ry is the feedback resistor. Critical performance metrics include gain, band-
width, and noise. The -3 dB bandwidth can be approximated as [202]:

1

, 8
27'[Rf Ctot (5 )

f_3q8 =
where Cy includes the photodiode, op-amp input, and parasitic capacitances.
Adding a feedback capacitance stabilized the circuit [199]. Key noise sources in-
clude the thermal noise of R¢, and the op-amp’s voltage and current noise (en, in).
The output must remain within the linear dynamic range of both the op-amp and
the ADC.
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Spatial Light
Modulator

Figure 23: Overview of the experimental hardware setup for the OENN. Photograph
showing the full optoelectronic network layout. Signal processing starts at the
input board (base), proceeds through two successive intermediate layers, and
concludes at the output layer (top). A spatial light modulator and polarizer pair
are used in combination to dynamically encode optical weights.

The electronic system was intentionally modular, employing distinct PCB types
for input, intermediate, and output functionalities. This modular approach fa-
cilitated independent layer testing, simplified system assembly, and allowed for
straightforward upgrades or modifications, offering considerable practical advan-
tages during research and development.

Figure 23 shows a photograph of the assembled OENN, with the input board
at the base, two intermediate layers in the middle, and the output layer at the
top. SLMs are positioned between each LED and photodiode layer, with a pair of
orthogonally placed sheet polarizers used to control light intensity. A computer
drives the SLM via a USB interface, while the input and output boards connect to
a PXI chassis for data acquisition and control. We developed a mechanical mount-
ing system using custom 3D-printed parts and 3omm cage rods from Thorlabs.
The entire system is housed inside a light-blocking frame to prevent noise from
ambient light. A custom Python script, interfacing with the PXI chassis and SLM,
controls the entire system. The script allows real-time control of input signals,
SLM patterns, and data acquisition from the output board. This modular design
enables easy reconfiguration and testing of different neural network architectures
and weight configurations. We then calibrate the system under the same conditions
as the final experiments to ensure proper alignment and expected functioning of
optical and electronic components.
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5.3 CHARACTERIZATION AND CALIBRATION

As described in Sec. 5.2, the OENN consists of multiple electronic circuits on PCBs
with components such as op-amps, photodiodes, and LEDs. While component
datasheets summarize individual performance, real-world behavior often deviates
due to manufacturing variability. Additionally, the system exhibits inherent nonlin-
ear responses that must be characterized to transfer trained neural networks onto
the hardware effectively.

First, we characterize the LEDs” nonlinear response, focusing on the observed
nonlinear relationship between applied input voltage and emitted light intensity.
This behavior is intrinsic to semiconductor LEDs and arises from manufacturing
variability. If uncorrected, it can introduce systemic errors in neuronal activations
that propagate through the network.

To address this, we measure the output intensity as a function of input volt-
age for each LED. Figure 24 shows the responses for a selected subset. The data
clearly show the nonlinear relationship. Notably, one malfunctioning LED exhibits
atypical behavior, likely due to a defect in its electronic circuit. However, because
each circuit operates independently, such malfunctions do not significantly affect
the board’s overall functionality if the specific circuit is unused. We fit the mea-
sured responses using a model, and the resulting fit parameters calibrate the input
voltages, effectively linearizing the LED response during operation.

We also characterize the response of the electronic circuit implementing the
difference-ReLU operation, which ideally computes LEDoutput = ReLU(I; — I3),
where 17 and I, are photocurrents from a pair of photodiodes. In practice, de-
viations from this ideal behavior arise from mismatched photodiode sensitivities
and offset terms introduced by operational amplifiers, leading to a more accurate
empirical model: LEDoutput = ReLU(c11y —c2lz +c3).

These non-idealities arise from several sources: the previously characterized
nonlinear LED emission response (Fig. 24); residual nonlinearity in photodiodes,
which are operated in photoconductive mode but remain subject to nonlinear re-
sponsivity and junction capacitance at low or high light levels; and op-amp limita-
tions. The first op-amp (MCP6V66T), configured as a TIA, and the second (LM358),
acting as a current sink, are both optimized for small-signal linearity but are sus-
ceptible to input offset voltages and bias currents. These offsets become significant
due to the circuit’s high overall gain (= 30000), potentially shifting the LED out-
put. Combined, these effects introduce neuron-specific deviations: unequal input
weighting (c1 # c2) and an offset shift (c3), both degrading activation accuracy.

To quantify these deviations, we systematically vary Iy and I, record the corre-
sponding LED output (Fig. 25a), and fit measurements to the model above. The fit
captures the circuit response well (Fig. 25b). Figure 25c shows the distribution of
offset terms c3, and Fig. 25d summarizes aggregated neuron responses. This pro-
cedure repeats for all neurons, and the resulting fit parameters (c1, c2, c3) calibrate
the amplitude mask weights, compensating for circuit-specific nonlinearities.

Another important aspect of device calibration involves characterizing the sys-
tem’s temporal response, specifically signal propagation delay through each op-
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Figure 24: Characterization of individual LED performance on the input board. Mea-
sured output intensity versus applied input voltage for selected LEDs. One mal-
functioning LED (row 1, column 3) exhibits atypical behavior. However, because
each LED operates independently, the malfunction does not propagate to neigh-
boring units. Figure reproduced from [118].
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Figure 25: Fitting of experimental neuron responses to difference-ReLU behavior. (a)
Measured output current from difference circuits as a function of photodiode
inputs. (b) Fitted model matching experimental data to the function LEDoytput =
ReLU(c1Iy —czI + ¢3). (c) Offset added to light emission resulting from off-
sets throughout the electronic circuit. (d) Aggregated measured response curves
from all 50 neurons implemented on a representative intermediate board. Fig-
ure adapted from [118].
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Figure 26: Temporal response of optoelectronic neural network operation. (a) Temporal
signal traces as an 800 kHz square wave sequentially propagates through two
intermediate optoelectronic layers and the output photodiode, highlighting cu-
mulative delay at each stage. Figure adapted from [118].

toelectronic layer. While individual components like photodiodes and LEDs can
operate at much higher frequencies—as Fig. 27a demonstrates, where an LED is
driven at 10 MHz—the gain-bandwidth product and slew rate limitations of dis-
crete operational amplifiers used in hidden layer circuitry constrain overall system
speed. This delay imposes a ceiling on the maximum operational frequency and, by
extension, OENN throughput. Moreover, cumulative delays across multiple layers
can impact synchronization, particularly in recurrent architectures.

To quantify this, we apply an 8oo kHz square wave to the input board’s LED
array and measure the signal as it propagates through the first and second hidden
layers before reaching the output board, as shown in Fig. 26a. The recorded signals,
with blue arrows highlighting the tracked wavefront, reveal that each hidden layer
introduces an approximate 2 ps delay, while the output detector responds almost
instantaneously. Recognizing this bottleneck is integral to system-level calibration;
although it currently limits operating speed, future designs can mitigate this con-
straint by employing faster, potentially integrated, electronic circuits, as discussed
in Chap. 7.

In addition to electronics, spatial components such as the SLM also require cal-
ibration. The SLM operates by modulating light polarization through spatial vari-
ations in liquid crystal molecule orientation, with a pair of polarizers converting
this modulation into amplitude control. While ideally the SLM would offer uni-
form and precise transmission control from 0% to 100%, the physical device ex-
hibits non-ideal behavior. These include spatially varying maximum transmission
across the display area and a finite extinction ratio, both degrading encoded weight
fidelity.
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Figure 277: Characterization of high-speed operation and spatial components. (a) Mea-
sured frequency response of a representative LED, driven by a 10 MHz square
wave (blue), with a photodiode recording the output (black). (b) Spatial distri-
bution of maximum achievable transmission (related to extinction ratio) across
the SLM area used for encoding weights, highlighting non-uniformity. (c) Mea-
sured average optical crosstalk distribution, showing light intensity spread from
intended weight locations onto neighboring areas on the detector plane. Figure
adapted from [118].

Variations in the liquid crystal layer, non-uniformities in driving electronics, and
imperfections in polarizer alignment are the underlying causes. Consequently, a
given grayscale value can produce different transmission levels depending on its
spatial location, introducing errors in the realized weight matrix WY. These inac-
curacies accumulate across layers, reducing optical MVM precision and degrading
system performance. Moreover, the finite extinction ratio prevents implementing
true zero weights, further limiting accuracy. To account for these effects, we experi-
mentally characterize the SLM’s transmission response, measuring both the spatial
variation in achievable transmission and the extinction ratio (defined as the ratio
of maximum to minimum transmission), as shown in Fig. 27b. This spatial calibra-
tion is incorporated during the mapping of trained weights to physical amplitude
masks, as described in Sec. 5.4, to compensate for device-specific imperfections.

Finally, we also calibrate the system for optical crosstalk within the free-space
MVM. This error arises from unintended illumination of a photodiode by light
originating from an optical channel other than its designated one. Improperly se-
lected length scales, including weight size and spacing, and separation between
multiple layers, are primary causes of crosstalk. Diffraction due to the finite size
of weights encoded on the SLM is an additional contributing factor, an effect that
becomes more significant in scaled-up designs with smaller feature sizes.

Crosstalk’s effect is a corrupted signal at each photodiode, which receives a sum
of its intended signal and unwanted contributions from neighboring channels. This
reduces computed matrix-vector product accuracy and degrades overall network
performance, especially as errors accumulate across layers. We characterize this
effect by measuring the average spatial distribution of light intensity that spills
over from designated weight locations onto adjacent detector areas, as shown in
Fig. 27¢c. Optimization strategies to minimize crosstalk include careful selection of
geometric parameters, such as LED and PD spacing, component sizes, and propa-
gation distances (dj, d2), guided by ray-tracing simulations. This characterization
allows incorporating residual crosstalk into the system model, improving inference
accuracy.
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The detailed characterization and calibration procedures described in this
section—addressing nonlinearities, timing constraints, spatial variations, and
crosstalk—enable constructing a comprehensive model that accurately describes
the OENN'’s physical behavior. This hardware-informed model is essential for
transferring trained weights or for training them directly using a more accurate
computational model of the system. The following section describes the methods
used for this.

5.4 WEIGHT IMPLEMENTATION STRATEGIES INCORPORATING HARDWARE
CALIBRATION

We comprehensively characterized the physical system in Sec. 5.3 to model devia-
tions from ideal behavior observed in the hardware. The hardware model accounts
for LED nonlinearities (Fig. 24), electronic circuit behavior including offsets and
gain mismatches (Fig. 25), SLM spatial variations and finite extinction (Fig. 27b),
and optical crosstalk (Fig. 27c¢).

Neural networks can be implemented on the OENN hardware using two strate-
gies: (1) transferring weights from a pre-trained network and applying calibration-
based corrections, or (2) training the network directly using a hardware-aware
model. The following sections describe both approaches.

5.4.1 Calibrated Direct Weight Transfer

First, a fully connected neural network is trained digitally with input, hidden layer,
and output sizes matching the experimental setup. The optimized digital weights,
denoted W4, are then mapped onto the SLM-based amplitude mask by compen-
sating for measured hardware non-idealities after training. This approach enables
efficient inference by deploying pre-trained networks onto the physical hardware.
The implementation consists of two main steps:

1. Hardware-Constrained Digital Training: Initial training occurs within a
standard PyTorch training environment on a computer but includes con-
straints derived from hardware characterization. Specifically, weights W(iiji g

are clamped during optimization to match the SLM’s operational range, de-

fined by the measured minimum transmission Wy, i, and average maximum

transmission (Winax) (Fig. 27b):

W(iijig < Clamp (Wéjig ’ Wmin/ <Wmax> ) (59)

In addition, hidden layer simulation incorporates the average electronic off-
set (c3), as characterized in Fig. 25. This offset is added before the ReLU
activation in the digital model:
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yj = (Z W g%+ <C3>> (60)

where y; represents the j-th hidden neuron’s activation. Gaussian noise is in-
troduced for every forward pass in the training to make the network robust to
experimental inaccuracies. While trained weights reflect these baseline hard-
ware constraints, additional corrections are still needed to compensate for
effects not explicitly included in training.

3. Calibration-Based Normalization and Loading: After training, calibration
data refines weights before hardware deployment. This step corrects for resid-
ual non-idealities not accounted for during training. Once the calibration is
complete, the response of the system to an input matches the ideal case.

¢ Positioning of weights: Position of the weights is then calibrated using
an iterative process where the weights are shifted from the idealized
position one pixel at a time to maximize the response of the neuron on
the subsequent layer.

¢ LED Input Linearization: Each LED’s nonlinear voltage-to-intensity re-
sponse (Fig. 24) is inverted to determine the required input voltage Vin i
for a desired intensity xi, ensuring linear optical output during opera-
tion.

¢ Circuit Response Compensation: Fitted parameters (cij,c2j,c35) for
each neuron’s difference-ReLU circuit (Fig. 25) adjust incoming weights
WY, This compensates for gain imbalance between positive (P;") and
negative (P;") inputs and corrects for local offsets.

¢ SLM Weight Normalization: Each digital weight W(?.l g is adjusted ac-
cording to the measured maximum achievable transmission MY =
Wgax and minimum Wy, i, at that location (Fig. 27b). These corrections
compute the control signal V;jLM, ensuring the realized optical weight
w,)

opt lies within the device’s physical limits [Wiin, MY].

This post-training correction ensures that the physical system closely repro-
duces the optimized digital model’s behavior.

5.4.2 Hardware-Aware Digital Training

An alternative approach incorporates physical hardware characteristics directly
into the training process. Instead of applying corrections post-training, this method
builds a model of hardware non-idealities into the simulation environment and
trains the network accordingly. The resulting weights are inherently robust to hard-
ware imperfections.

This is achieved by modifying the forward pass during training to reflect
hardware-calibrated behavior:
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¢ Simulated Circuit Behavior: The empirically fitted difference-ReLU model
(Fig. 25) replaces the ideal hidden layer function. This can include
neuron-specific parameters (c1j,c2j,c3j) if available, applied as y;im =
ReLU(CHP;—Csz;—Q—ng).

¢ Simulated SLM Normalization: Digital weights W44 are quantized to
the SLM’s native bit depth and clamped based on the measured range
[Wmin/ W‘}I]lClX] (Flg 27b)-

¢ Simulated Optical Crosstalk: Crosstalk between channels (Fig. 27c) is simu-
lated using a calibrated crosstalk matrix C. The optical MVM is modified as
P = C(Wgigx) before further processing.

e Other Simulated Effects: Additional effects, such as the LED nonlinear re-
sponse (Fig. 24) and system noise, were also integrated into the simulation.

The total response of the circuit and optical weights are collectively combined in
the calibration curves for the individual weights for the final experiments. in the
intermediate exp. this model was used. optical crosstalk was difficult to fit and the
system performed well with only adding crosstalk noise in the forward mode

The circuit response as well as the response from the optical implementation of
the weights are collectively combined in the calibration curves. By training under
these realistic conditions, the network learns weights that perform reliably when
deployed on actual hardware.

Both approaches aim to mitigate the impact of hardware non-idealities on sys-
tem performance. Calibrated transfer enables high-performance inference using
pre-trained networks by applying post-hoc corrections based on detailed hardware
characterization. Hardware-aware training, on the other hand, produces more ro-
bust weights by integrating hardware models directly into the training loop. These
weights can generalize better across similar systems but typically underperform
compared to the calibrated transfer approach. In our experiments, the effect of
optical crosstalk was difficult to fit in this case, so an additional noise source repre-
senting optical cross-talk was introduced. An alternative method—using real hard-
ware outputs instead of simulated forward passes during training—offers greater
accuracy but at the cost of experimental complexity. Although we do not explore
this method in this work, it represents a promising direction for future research.

Given its performance and flexibility, we adopt the calibrated transfer method
for the remainder of this work. To evaluate it, we apply the method to a bench-
mark classification task using the MNIST dataset. Figure 28 shows an example of
a trained and hardware-adapted amplitude mask.

5.5 RESULTS

To evaluate OENN hardware performance and the effectiveness of previously dis-
cussed weight implementation strategies, we tested the system on standard ma-
chine learning classification tasks. We begin with the widely recognized MNIST
dataset of handwritten digits, followed by a more challenging nonlinear spiral
dataset to specifically test the contribution of nonlinearity introduced in this work.
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Figure 28: Example amplitude mask encoding weights for a network trained on the MNIST
digit classification dataset. Individual weights have been shifted to account for
exact LED and PD positions. Figure reproduced from [118].
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Figure 29: MNIST digit classification with the three-layer OENN. (a) Example propaga-
tion trace showing experimental (bottom row) versus simulated (top row) neu-
ron activations for an input digit 4" through the input layer, first optical MVM,
first hidden layer (ReLU output), second optical MVM, second hidden layer
(ReLU output), and final optical MVM (output layer). (b, c) Correlation plots
comparing experimental and simulated neuron activations in Hidden Layer
1 and Hidden Layer 2, respectively, across multiple MNIST test digits. (d, e)
Confusion matrices showing classification performance for digital simulation
and experimental hardware, respectively. Experimental accuracy reaches 92.3%,
closely matching the simulated 95.4%. Figure reproduced from [118].

5.5.1 MNIST Handwritten Digit Classification

The MNIST dataset provides a standard benchmark for image classification and
consists of 60000 examples of handwritten digits between o and 9 [5]. For compat-
ibility with our OENN prototype dimensions (8 x 8 input layer), original 28 x 28
pixel images were downscaled and padded to an 8 x 8 shape, forming a 64-element
input vector for each digit image. The network, configured with two hidden layers
(50 neurons each) and a 10-neuron output layer corresponding to digit classes (0—-9),
was trained on a computer as a standard fully connected network. Trained weights
were then implemented on the OENN hardware using the calibrated direct weight
transfer approach.

Figure 29 shows results obtained on this classification task using the OENN
system. Panel (a) displays an example of a downscaled MNIST digit ("4) propa-
gating through successive OENN layers. Experimentally measured activations at
each stage are compared to corresponding values from a digital simulation of the
trained network using the same input. This close match is not limited to the digit 4’
but holds for a wide range of input images. Figure 30 shows additional examples.

A high degree of correlation is observed between experimental neuron activa-
tions and simulated values in hidden layers, as shown in Fig. 29b and Fig. 29c
for Hidden Layer 1 and Hidden Layer 2, respectively. This strong correlation indi-
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Figure 30: Additional MNIST digit propagation examples. Visual comparison between
digital simulation (top rows within pairs) and experimental measurements (bot-
tom rows within pairs) for different input digits propagating through network
layers, complementing Fig. 29a. Figure reproduced from [118].

cates that signal transformations—optical MVM and electronic nonlinearity—are
performed as intended and that the calibration procedure described in Sec. 5.3 is
effective. This enables the OENN hardware to reliably implement deeper networks
with multiple cascaded layers.

As operations performed in the OENN are analog, deviations from the ideal
digital model invariably arise. Figure 31 quantifies this deviation by comparing
normalized experimental activations with activations in the digital network across
all network stages. The analysis reveals relative standard deviations ranging from
approximately 0.05 to 0.19 across layers. While these errors reflect inherent noise
and imperfections in the analog system, their bounded nature shows that error
accumulation does not significantly degrade performance at this network depth.
The system maintains sufficient computational fidelity despite these analog effects.

This operational fidelity directly translates into strong classification perfor-
mance, as shown by the confusion matrices in Fig. 29d and e. The OENN hardware
achieves a 92.3% test accuracy, closely matching the 95.4% obtained from the dig-
ital simulation of the same network. This result validates the OENN architecture
and shows that, when combined with calibration and weight transfer procedures,
it effectively implements pre-trained digital models. Moreover, both experimental
and simulated accuracies significantly exceed the 82.4% achieved by an optimized
linear classifier. This clearly demonstrates the contribution of ReLU nonlinearities:
the OENN is not a linear system reducible to a single layer (See. Chap. 1) but a gen-
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Figure 31: Layer-wise comparison of experimental and simulated neuron activations

for MNIST task. Scatterplots show normalized experimental activation versus
corresponding digital simulation values after the (a) first optical MVM (posi-
tive/negative components shown separately), (b) first differential ReLU, (c) sec-
ond optical MVM, (d) second differential ReLU, and (e) third optical MVM (out-
put layer). The relative standard deviation (o;¢1) of the difference between ex-
perimental and simulated values, normalized by the standard deviation of sim-
ulated activations, is reported for each stage: (a) oye1 = 0.048, (b) o1 = 0.152,
(c) orer =0.145, (d) 0yer = 0.191, and (e) ore1 = 0.154. Figure reproduced from

[118].
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Figure 32: MNIST classification with simultaneous multilayer operation. Performance
evaluation when all OENN layers operate continuously without intermediate
digitization. (a) Comparison between simulated and experimental output layer
activations for multiple test digits. (b) Confusion matrix for the digital simu-
lation under these conditions (Test Accuracy: 91.2%). (c) Confusion matrix for
the experimental hardware with all three OENN layers implemented simultane-
ously (Test Accuracy: 91.1%). Figure reproduced from [118].

uinely nonlinear multilayer network capable of solving complex tasks like MNIST
classification.

While we have theoretically shown that deeper multilayer networks can be im-
plemented on the OENN, results so far were obtained using a test-bench setup
with a source layer, a single OENN layer, and a detection layer. Sequential readout
and emission emulated multilayer behavior. We then extended the experiment to
construct a three-layer MOENN device, enabling signals to propagate continuously
through all optical and electronic stages without intermediate computer readout.
This mode reflects the intended use as a true hardware accelerator designed to min-
imize data movement. Results under these conditions (Fig. 32) remain consistent,
with experimental accuracy at 91.1%, closely matching the simulated 91.2%. This
successful demonstration of continuous, fully analog multilayer computation is a
key outcome, reinforcing the architecture’s potential to reduce read-in/read-out
overhead compared to single-layer optical accelerators.

5.5.2  Nonlinear Spiral Classification

While MNIST demonstrates accuracy on a standard task, the four-class spiral
dataset provides a more stringent test of the OENN’s nonlinear processing ca-
pabilities. This dataset (Fig. 33a) consists of intertwined classes that linear decision
boundaries cannot separate, making it inherently difficult for simpler models.

The results in Fig. 33 highlight the OENN'’s capability in this nonlinear regime.
A linear classifier fails on this task, achieving only 30.1% accuracy (Fig. 33¢). In con-
trast, the OENN, using the same multilayer architecture with ReLU nonlinearities,
achieves an 86.0% experimental accuracy (Fig. 33e). This large improvement shows
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Figure 33: Classification of the nonlinear four-class spiral dataset. (a) Visualization of the
dataset with four intertwined classes in a 2D input space. (b) Decision bound-
aries learned by a digitally trained network with ideal parameters (Accuracy:
96.1%). (c) Decision boundary of the best linear classifier (Accuracy: 30.1%). (d)
Classification performance of a digital simulation using weights constrained by
hardware limits (Accuracy: 87.8%). (e) Experimentally measured classification
performance of the OENN hardware (Accuracy: 86.0%). (f) Direct comparison
of simulated versus experimental output values for the four classes across mul-
tiple input samples. Figure reproduced from [118].

833



84

LAB SCALE IMPLEMENTATION OF THE OPTOELECTRONIC NEURAL NETWORK

that the hardware successfully implements nonlinear functions required to learn
complex decision boundaries. The experimental accuracy also aligns closely with
simulations incorporating hardware constraints, which reach 87.8% (Fig. 33d). The
close match between experimental and simulated outputs across the four classes
(Fig. 33f) further supports this result. Successfully classifying the spiral dataset
demonstrates that the multilayer OENN, with integrated optical MVMs and elec-
tronic ReLU nonlinearities, is a viable hardware platform for solving nonlinear
problems typical in real-world machine learning applications.

56 POWER CONSUMPTION IN THE PROTOTYPE CIRCUIT

A critical aspect of evaluating any electronic implementation is understanding
its power consumption characteristics. In the OENN system, intermediate lay-
ers—responsible for performing the core difference-ReLU operation—are primary
contributors to electrical power draw. For this analysis, we exclude contributions
from the SLM and detection circuit, as their power consumption is negligible com-
pared to that of the intermediate circuit. Moreover, SLM power draw is largely
independent of the input signal and can be eliminated entirely by replacing it with
passive dithered masks as described earlier.

Each intermediate board consists of an array of independent neuron circuits,
each implementing photodetection, differencing, amplification, and light emission.

Table 1: Component list for implementing one intermediate neuron circuit in the experi-
mental prototype.

Component Type Part Number / Value Quantity

Operational Amplifier MCP6V66T-E/OT 1
LM358 1

MOSFET BSS138PW 1

Photodiode SFH2704 2

Light Emitting Diode  150040GS73220 1

Resistors 1250 1
10kQ 3
330kQ

Table 1 lists the specific components used in the prototype’s intermediate neu-
ron circuit. Key active components include SFH2704 photodiodes for detection,
MCP6V66T and LM358 operational amplifiers for transimpedance and differenc-
ing stages, a BSS138PW MOSFET, and a Wurth 150040GS73220 green LED for light
emission. These parts were selected for availability and functional compatibility,
though not optimized for performance or efficiency.

Power consumption was experimentally measured on a representative neuron
circuit built on a matrix breadboard. The total power draw (Pr,) was broken
down into contributions from photodiode biasing (Ppp), the first op-amp stage
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Figure 34: Power draw components in the prototype intermediate circuit. Schematic of
the intermediate neuron circuit used in the experimental prototype, illustrating
the conceptual breakdown for power consumption analysis. Considered con-
tributions include: Ppp (photodiode biasing/dark current), Poa; (first op-amp
stage), Poa. (second op-amp stage), and Poyt (output stage driving the LED).
Figure reproduced from [118].

(Poa1), the second op-amp stage (Poa.), and the output stage (Pour) that drives
the LED, as shown in Fig. 34. Power consumed by photodiode dark current (Ppp)
is negligible (in the nanowatt range).

A two-step measurement method, depicted in Fig. 35, estimated power for
the two op-amp stages. In each step, one stage was selectively powered, and
microammeters measured current at supply terminals (Iopas+, loa»+), assuming
negligible current into op-amp inputs. Output stage power (Pour) was calcu-
lated based on current through load resistor Rs. Table 2 shows a representative
power breakdown under a high illumination condition (200 mW/cm?). Consider-
ing the 32 active neuron circuits in the prototype’s intermediate layer (excluding
input drivers and output detectors), the total power consumption is estimated
as Protal, expt = 32 X 4.6 mW = 147 mW. Importantly, this excludes power con-
sumption of non-fundamental peripheral components used for experimental con-
venience, such as the SLM ( 4W) and DAC/ADC modules, which more efficient
alternatives could replace in a dedicated system.

Table 2: Compilation of power drawn by different stages in the prototype intermediate
neuron circuit for an illumination intensity of 200 mW /cm?.

Stage Power Draw (mW)
Ppp (Photodiode Bias/Dark Current) 400 x 10~7
Poa: (First Op-Amp Stage) 0.2653

Poa. (Second Op-Amp Stage) 7.0853

Pour (Output Stage) 1.6
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Stages of measurement of prototype circuit power draw. Schematic illustrat-
ing the two-step experimental method used to estimate power drawn by each
operational amplifier stage (MCP6V66T/LM358 based) in the prototype’s in-
termediate neuron circuit. Current measurements at supply terminals in each
step allow calculating power consumed by individual stages. Figure reproduced
from [118].
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To estimate total electrical power consumed by the full intermediate layer, per-
neuron values in Tab. 2 are scaled by the number of neurons on the prototype
board. With 50 neuron circuits, total power consumption at an illumination inten-
sity of 200 mW /cm? is approximately:

poard — 50 x (0.2653 +7.0853 + 1.6) mW ~ 495 mW (61)

Note that Ppp is negligible and omitted from this estimate.

Circuit power consumption also varies with incident optical power, as this affects
photocurrents and signal levels handled by amplifiers and the output stage. To cap-
ture this dependency, we characterized a single neuron circuit’s power draw across
a range of illumination levels using a calibrated light source. Table 3 summarizes
these results, providing a baseline reference for evaluating the energy efficiency of
a scaled design discussed in Sec. 6.5.2.

Table 3: Compilation of measured power drawn by a prototype intermediate neuron circuit
at typical experimental illumination levels.

Net Optical Input (mW) Input Intensity (mW/ cm?)  Circuit Power (mW)

0.59 39 53
0.26 17 4.9
0.14 9 4.6
0.03 2 4.4
0.00 0 4.1

Successful demonstration of classification tasks on both MNIST and spiral
datasets validates the multilayer OENN prototype’s functionality, demonstrating
integrated optical MVM and electronic nonlinear operations within a single de-
vice. With this proof-of-concept in place, the next key question is whether this
architecture can scale effectively to support larger, more complex neural networks.
Additionally, the prototype circuit was not optimized for power consumption and
therefore cannot yet compete with conventional or emerging hardware platforms
in energy efficiency. The following chapter explores OENN approach scalability,
evaluating projected performance improvements and addressing physical and ar-
chitectural challenges of increasing network size and operational speed.
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6.1 INTRODUCTION

The successful demonstration of the multilayer Optoelectronic Neural Network
(OENN) prototype confirmed the core principle that incoherent light can perform
optical matrix-vector multiplication for implementing neural networks. We addi-
tionally demonstrate the novel implementation of electronic non-linear activation.
Chapter 5 details the experimental setup, design challenges, and results. How-
ever, translating this proof-of-concept into a practical and potentially competitive
computing platform requires a more rigorous study of its scalability, in terms of
increasing the number of neurons per layer, enhancing spatial operation density,
achieving higher operational speed, and improving energy efficiency. Simply repli-
cating the prototype design at larger physical scales or higher frequencies is insuffi-
cient. This limitation arises because of the increased physical footprint and higher
implementation cost. Conversely, scaling down the device introduces significant
diffraction effects that impact performance.

In this chapter, we analyze the scaling potential of our optoelectronic approach
for building a cost-competitive, energy-efficient, and scalable hardware platform.
Our analysis relies on simulations, validated with experiments where necessary.
We begin by examining the primary optical challenges, focusing particularly on
the unavoidable role of diffraction and its impact on interconnect fidelity as com-
ponent sizes decrease. We then address electronic speed considerations and con-
clude with projected estimates of computational throughput and energy efficiency
for a high-performance scaled design.

6.2 OPTICAL SCALING: CHALLENGES AND DESIGN CONSIDERATIONS

The prototype experiment described in the previous chapter consisted of an 8 x 8
Light Emitting Diode (LED) array on the source board and 10 x 10 on the interme-
diate board implementing the difference Rectified Linear Unit (ReLU) operation.
We aim to scale the Printed Circuit Boards (PCBs) to implement more operations
simultaneously. This involves scaling the PCBs to contain larger emitter arrays (e.g.,
32 x 32), which necessitates a significant increase in the density of optical intercon-
nections within a comparable physical volume. We can use raytracing simulations
to study the complexity of the required interconnects for the prototype versus a
scaled system. Figure 36 shows this comparison and illustrates the dense pattern of
optical interconnects required at scale. We can accomplish this scale-up using the
same emitters and similar electronic components with the same separation. How-
ever, this would mean that the resulting device would have a very large physical
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footprint and higher manufacturing costs for the board. Hence, the most practical
way to accommodate this increase in density requires reducing the physical size of
emitters (LEDs) and the features representing weights on the amplitude mask.
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Figure 36: Raytracing simulation comparison for prototype and scaled systems. (a) and
(b) show the target weights and ray-tracing output for the scaled-up system.
In comparison, (c) and (d) display the expected and propagated weights for
the smaller experimental setup. The results illustrate the increased density of
optical interconnects achieved through scaling. Figure reproduced from [118].

As these feature sizes shrink, the physical phenomenon of diffraction becomes
critically important, deviating strongly from the geometric optics approximations
valid for the prototype (see Fig. 21). Figure 37 illustrates this fundamental effect
using a Rayleigh-Sommerfeld simulation, showing how light from a point source
diffracts and spreads when passing through small Gaussian apertures (10 pm
spots separated by 25 um) onto the photodiode (PD) plane over experimental
propagation distances. We choose these Gaussian apertures to avoid edge diffrac-
tion effects in simulations and they are representative of a denser amplitude mask.
This phenomenon becomes especially significant when multiple such apertures are
close together. This diffraction poses a primary challenge to optical scaling, as it
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leads to increased optical crosstalk—light intended for one detector spilling onto
others—which can distort the intended intensity distribution at the PD plane.
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Figure 37: Simulated diffraction through Gaussian apertures. Visualization of light inten-
sity patterns resulting from diffraction when a point source illuminates a single
(a) and multiple closely spaced (c) Gaussian apertures, representing weight ele-
ments in the scaled system. The corresponding phase distributions for the single
(b) and multiple aperture cases (d, e) are also shown. Figure reproduced from
[118].

Because the scaled-down system is sensitive to diffraction, mitigating these ef-
fects requires carefully optimizing the optical system’s geometry. Key parameters
influencing these trade-offs include the propagation distances, notably the distance
d; between the mask and the detector, and the lateral displacement (weight offset)
of mask elements relative to the direct optical axis. We now introduce an analytical
model to estimate the relationship between these parameters, signal strength, and
spread.

6.2.1 Analytical Modeling of Spread

This analytical model describes the propagation of light from an idealized point
source (representing an LED) located at z = 0, through a single Gaussian aperture
of characteristic width o7 (representing a weight) positioned at (xj,yj) on the
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mask plane at z = d;. Light then propagates to the PD plane located at z = d; + d>.
To account for off-axis apertures (xj,y; # 0), we rotate the coordinate system so
that the effective propagation axis aligns with the source-to-aperture vector. This
transformation introduces a geometric scaling factor n, defined as:

12 /2
X1t Y3

6
d% ( 2)

n=1+

In the rotated frame, the effective propagation distances become Az; = d;\/m
and Az, = d,/M. The Gaussian aperture function T(x',y’) is anisotropically scaled,
appearing narrower along the offset direction (assumed to be x’ here):

T(x',y") = expl—((x’ —x})* + (y' —y})?)/07] (63)

Using the Fresnel diffraction approximation, the complex amplitude field from
the point source just before the aperture is Ui, (x',y’) o exp[%(x’2 +y'?)]. We
compute the field at the PD plane, U(x,y), by propagating the field after the aper-
ture, Uaperture = Uin X T, over the distance Az; using a diffraction integral:

U(x,y) ” Uaperture(x',y") x Propagator(x, y;x’,y’) dx’ dy’ (64)

The propagator accounts for the propagation distance Az,, and the integral sep-
arates into x” and y’ components, each forming a complex Gaussian integral.

Solving these integrals reveals that the complex amplitude U(x,y) at the PD
plane retains a Gaussian profile. The resulting intensity distribution is character-
ized by 1/e* widths (spreads) that differ along the directions parallel (sampx) and
orthogonal (sampy) to the lateral offset vector. These are given by:

4(c? +c3) 4cq +c3y)
Sampx = A/ —— 3 3 and Sampy =\ ——3 3 (65)
c%c% C% C%

where ¢1 = k/(2Az1), c2 = k/Azy, k = 21/, ¢3¢ = T]/O'%, and c3y = 1/0%.

These analytical results, applied to the scaled-up system using parameters listed
in Tab. 4, are visualized in Fig. 38. The figure illustrates key trade-offs between
minimizing optical spot size (to reduce crosstalk) and maximizing collected signal
strength (for high signal-to-noise ratio and efficiency), as a function of propagation
geometry and lateral aperture offsets.

A central design consideration is the spatial extent—or spot spread—of light
at each photodiode. Panels (a) and (b) of Fig. 38 show how this spread varies
with propagation distance and lateral offset, based on Eq. (65). Spot size increases
with distance, but more critically, increases sharply for larger lateral offsets. The n
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scaling factor (Eq. (62)) and the elongated effective path length drive this, making
crosstalk increasingly problematic at larger array sizes.

In addition to spread, maximizing the collected optical signal is vital. The ana-
lytical model provides the intensity distribution I(x,y) = [U(x, y)|? at the PD plane.
Panels (c) and (d) of Fig. 38 display derived signal metrics. Panel (d) shows the use-
ful signal strength as the integrated intensity over the finite PD area, while panel
(c) shows the optical power transmitted through the Gaussian aperture. Both met-
rics decrease with increased propagation distance (due to divergence) and fall off
sharply with greater lateral offsets, as diffraction and angular effects cause light to
miss the PD area.

Thus, Fig. 38 highlights the core trade-off: while larger propagation distances
and lateral offsets may ease layout constraints or enhance mapping flexibility, they
reduce both signal fidelity and intensity. This analysis informs the selection of
optimal geometry, such as d; = 2.5mm and d, = 84.2mm, used in the scaled
design (Tab. 4). Additional refinements can incorporate finite LED source size and
spectral bandwidth for more precise modeling.

Table 4: Optical parameters used for analytical modeling and simulation of the scaled-up

system.

Parameter Symbol Value
LED die width Wo 10 um
Width (1/e amplitude) of optical weight 01 25 um
Weight separation (center-to-center) o1 75 um
Photodiode separation (center-to-center) o2 2.5mm
Distance from LED plane to weight plane dy 2.5mm
Distance between weight plane and PD plane d, 84.2 mm
Photodiode width (square side assumed) 02 1.2mm
Wavelength range A 500 — 540 nm

63 ELECTRONIC SCALING: DESIGN FOR HIGH-SPEED OPERATION

A substantial increase in circuit operation speed is needed to complement the op-
tical scaling strategies discussed previously and achieve a computational through-
put competitive with existing technologies. The prototype system, while demon-
strating the core principles, was inherently limited by the response times and slew
rates of the discrete operational amplifiers chosen in the intermediate layers (as
characterized in Fig. 26). Overcoming this bottleneck is crucial for realizing a high-
performance OENN accelerator.

To establish the feasibility of operating the core electronic functions at signifi-
cantly higher frequencies, we designed and simulated a circuit for 10 MHz oper-
ation using LTSPICE. The circuit diagram, presented in Fig. 39, retains the funda-
mental topology of the difference-ReLU function implemented in the prototype
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Figure 38: Analysis of optical trade-offs with propagation distance and lateral offset.
Performance metrics as a function of the mask-to-photodiode distance d,; and
lateral weight aperture offset from the LED-photodiode axis: (a) Spot spread
parallel to the offset. (b) Spot spread orthogonal to the offset. (c) Solid angle of
light transmitted per unit area. (d) Solid angle collected by the target photodiode
per unit area. Figure reproduced from [118].
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(compare with Fig. 22c). However, it incorporates faster components, specifically
using OPA818 op-amps known for higher bandwidth and slew rates compared to
the MCP6V66T and LM358 used previously. The design includes appropriate resis-
tor and capacitor values carefully selected to ensure stable and accurate operation
at the target 10 MHz frequency, compensating for potential high-frequency insta-
bilities inherent in faster amplifier designs. The output stage also uses a high-speed
switching transistor (2N2369) to drive the LED (150040GS73220).

R=22K R=125
+V
v 150040GS73220
C=50p
SFH — &
2704 B +
. R=500 2N2369
+
Y
R=22
SFH 22
2704 2 OPAB18

+V

Figure 39: Electronic circuit for high-speed operation. Circuit diagram for a design en-
abling 10 MHz operation. It retains the same topology as the circuit used in
the experimental setup (see Fig. 22c), with carefully selected components and
compensation for potential instabilities. Figure reproduced from [118].

Designing the detector layout to use PCB space optimally is a key aspect of
implementing the difference operation electronically in the scaled-up architecture.
Since the optical layer performs a non-negative matrix multiplication, pairs of pho-
todiodes are needed to represent the positive and negative components required
for a signed neuron activation before the ReLU non-linearity. Figure 40 illustrates
this concept for a representative 4-neuron subunit within the larger 32 x 32 neu-
ron output layer, receiving input from a subsection of the 48 x 48 PD array. As
shown in Fig. 40a, light corresponding to different weights illuminates an array of
eight PDs arranged in a 3 x 3 grid with the central position left empty. The signals
from these eight PDs are electronically routed to form the inputs for four distinct
output neurons (Fig. 4ob). Each neuron receives a designated positive (+) input
signal (summed current from its assigned positive PDs) and a negative (-) input
signal (summed current from its assigned negative PDs). The simulated signals de-
tected by the individual PDs (Fig. goc, left) closely correspond to the target design
weights encoded in the optical mask (Figure 4oc, right), demonstrating the optical
fidelity. The electronic circuit then performs the subtraction, yielding the final ef-
fective signed weights for each neuron (Fig. 40d) before the inherent rectification
by the LED driver.

While the SPICE simulation using discrete components validates the circuit’s
functionality and potential for high-speed operation, realizing a practical, large-
scale OENN with optimal performance, particularly in terms of power effi-
ciency and physical footprint, requires moving towards custom integrated circuits.
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Figure g40: Photodiode grouping for difference operation in the scaled model. (a) Sim-
ulated intensity pattern on a 3 x 3 photodiode (PD) array subsection. (b) Con-
ceptual mapping of these 8 PDs to provide positive (+) and negative (-) inputs
for 4 distinct differential neuron pairs. (c) Comparison of simulated PD signals
(left) derived from the intensity pattern in (a) versus the target design weights
(right) for this subsection. (d) Table showing the final effective signed weights
computed as the difference between the corresponding positive and negative
PD signals from (c) for each of the 4 neurons.

Application-Specific Integrated Circuits (ASICs) offer the potential to co-integrate
photodiodes and highly optimized analog processing circuitry, significantly reduc-
ing parasitic capacitances, power consumption, and physical size compared to
PCB-based implementations. Figure 41 presents a conceptual schematic for such
an ASIC-based neuron. This design envisions integrated photodiodes directly feed-
ing into specialized transimpedance amplifiers (TIAs). TIAs are well-suited for con-
verting the small photocurrents into voltages with high gain and low noise. The
outputs of the TIAs corresponding to the positive and negative inputs would then
be processed by a differential amplifier stage, potentially an Operational Transcon-
ductance Amplifier (OTA), which performs the subtraction and converts the re-
sulting voltage into a current suitable for directly driving the output LED, thereby
completing the difference-ReLU operation within a compact, efficient integrated
unit. Such ASIC implementations are essential for leveraging the full potential of
the OENN architecture in terms of energy efficiency and computational density, as
projected in subsequent analyses.

64 SIMULATED PERFORMANCE OF A SCALED-UP OENN MODEL

Building upon the optical and electronic design considerations outlined above, we
constructed a detailed simulation model of one OENN layer, scaled to N = 1024
neurons (32 x 32 array size) and operating at f = 10 MHz, to provide concrete
performance projections. The model incorporates the optimized optical parameters
(Tab. 4) and the high-speed electronic circuit design (Sec. 6.3).
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Figure 41: Conceptual schematic for an ASIC implementation. Proposed integrated cir-
cuit design architecture for a single difference-ReLU neuron. It features inte-
grated photodiodes coupled to low-noise transimpedance amplifiers (TIAs) for
photocurrent-to-voltage conversion. A differential transconductance amplifier
(OTA) or similar stage takes the TIA outputs, performs subtraction, and pro-
vides the driving current for the output LED, inherently implementing the rec-
tification. Figure reproduced from [118].

6.4.1  Simulated Optical Performance

We evaluated the optical performance of the scaled-up OENN layer, designed for
N = 1024 neurons (32 x 32) operating at 10 MHz, through detailed simulations that
incorporate diffractive effects, which become significant at the smaller feature sizes
required for high-density operation. The simulation used optimized optical param-
eters derived from analytical modeling (summarized in Tab. 4) and employed a
modified angular spectrum propagation method, introduced in Sec. 4.3.1, to accu-
rately model incoherent light propagation.

Figure 42 shows the physical layout and simulated light propagation. A 32 x 32
LED array is positioned at di = 2.5 mm from the amplitude mask, which con-
tains individually addressable weights for each connection. Each LED illuminates
a 3.6 x 3.6 mm submask region that encodes 48 x 48 = 2304 weights connecting
it to the PD array. These weights are implemented as Gaussian amplitude profiles
with a width of 07 = 25 um and a center-to-center spacing of &7 = 75 pum. The
Gaussian profile helps minimize edge diffraction compared to sharp-edged aper-
tures. Light then propagates an additional d, = 84.2 mm to reach the 48 x 48 PD
array, resulting in an overall magnification of M ~ 34 (Fig. 42d). Figure 42b and
Fig. 42e provide side views of the simulations, illustrating the optical path from
the LED through the submask and onto the PD plane. Figure 42¢,f visualizes the
phase and intensity immediately after the mask.

The key output of the simulation is the intensity distribution across the 48 x 48
PD array at the detector plane, shown in Fig. 43a. This pattern represents the opti-
cal Matrix-Vector Multiplication (MVM) result, including the effects of diffraction
and crosstalk. To estimate the effectively implemented optical weights, we inte-
grate the intensity over each PD’s active area. Figure 43b zooms in on a 3 x 3
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Figure 42: Optical design and simulation for the scaled-up model. (a, d) Schematics de-
tailing the optical path geometry. Panel (a) shows the LED-to-mask segment
(d1 = 2.5 mm), indicating LED spacing (3.75 mm) and mask parameters (sub-
mask size 3.6 mm, weight size 0.074 mm spacing, 25 um Gaussian width). Panel
(d) shows the full geometry, including the mask-to-PD distance (d; = 84.2 mm),
PD spacing (2.5 mm), and total magnification (M ~ 34). (b, e) Side-view sim-
ulations of light propagation from a single LED to the mask (b) and from the
mask to the PD plane (e), calculated via modified angular spectrum method.
(c, f) Simulated complex optical field immediately after the amplitude mask
plane, showing the phase (c) and intensity (f) patterns representing the encoded
weight information. Figure adapted from [118].



64 SIMULATED PERFORMANCE OF A SCALED-UP OENN MODEL

PD region, comparing the intensity pattern (left), the estimated weights (middle),
and the ideal design weights (right). Despite visible blurring from diffraction, the
measured intensity distribution representing the weights remains largely intact.
The full spatial comparison of the estimated weights (Fig. 43d) and the original
design weights (Fig. 43e) further confirms this. A scatter plot of the difference be-
tween estimated and target weights across all connections (Fig. 43c) shows that

most deviations are small, indicating good overall fidelity, with minor errors due
to diffraction and crosstalk.

@ (b) Intensity ~ PD Signal  Design Weight
1 75
E
\E’ 0.193 0.490
>
15- 0.000 0.270 0.341
g -15 X (mm) -7-5
é (@} 01
z 05 g
S :
% E
o ©
=
()]
k%)
=
0
-60  -30 0 30 60

Position X (mm)

Estimated Weight

5 10 5 10
3 3
S 20 S 20
g g
2 30 2 30
e e
o o

IN
o

N

o

10 20 30 40 10 20 30 40
Photodiode X Photodiode X

Figure 43: Simulation of optical performance and weight accuracy for the scaled-up
model. (a) Simulated intensity distribution across the full 48 x 48 photodiode
array, calculated using modified angular spectrum propagation. (b) Zoomed-
in view of the 3 x 3 region highlighted in red in (a), comparing the intensity
pattern (left), the estimated weights derived from integrating intensity over PD
areas (middle), and the corresponding target design weights (right). (c) Scatter
plot illustrating the distribution of the difference (error) between estimated and
design weights for all connections in the 32 x 32 — 48 x 48 — 32 x 32 layer. (d,
e) Full spatial maps comparing the matrix of estimated optical weights (d) with
the target design weight matrix (e). Figure adapted from [118].

We further explore optical crosstalk, particularly for connections with large lat-
eral offsets between the LED and PD. The risk of crosstalk is higher in these cases

because of longer propagation paths and stronger diffraction, as the analytical
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model predicts (Fig. 42). Figure 44 shows results from using Rayleigh-Sommerfeld
diffraction from a point source through a 3 x 3 array of randomized Gaussian
weights. Figures 44a and 44b show the relation between weight error and design
weight, with data color-coded by the lateral offset of the photodiode. These plots
reveal that both the magnitude and spread of error grow with offset distance. Fig-
ure 44c focuses on corner photodiodes, which experience the highest offsets and
crosstalk, confirming this trend.
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Figure 44: Analysis of optical crosstalk dependency on position in scaled-up model sim-
ulations. (a, b) Scatter plots showing the difference between simulated and de-
sign weights versus the design weight value for two different sets of random
weights (A and B). Points are color-coded based on the lateral offset of the target
photodiode from the optical axis of the point source, indicating increased error
variance for larger offsets. (c) Simulated weight versus design weight specifically
for connections terminating at a corner photodiode, representing conditions of
maximum lateral offset and potential crosstalk. Simulations employed Rayleigh-
Sommerfeld diffraction from a point source illuminating a 3 x 3 grid of adjacent
randomized Gaussian weights. Figure adapted from [118].

Together, these simulations show that while diffraction plays a more significant
role in the scaled design compared to the larger-feature-size prototype, careful
co-design of the optical geometry guided by analytical and numerical modeling
enables realizing a fully connected 32 x 32 OENN layer with acceptable MVM
fidelity. The chosen design balances high interconnect density with control over
diffractive and crosstalk effects.



6.5 PROJECTED THROUGHPUT AND ENERGY EFFICIENCY
6.4.2 Simulated Electronic Performance

With the optical performance of the scaled-up OENN model successfully demon-
strated, we now analyze the electronic performance of the difference-ReLU circuit
designed for high-speed operation. The goal is to validate whether the circuit can
support the target operating frequency of 10 MHz while maintaining the required
functionality and signal fidelity. We implemented the circuit in LTSPICE and per-
formed both transient simulations and DC sweeps to assess its dynamic response
and steady-state input-output characteristics.

Figure 45a presents the transient simulation results over a 1 ps time window.
The top trace shows the optical input power densities (tW/mm?) incident on the
positive (Pos PD) and negative (Neg PD) photodiodes. The middle trace depicts the
intermediate voltage (VoA ) generated by the op-amp stages after differencing and
amplification. The bottom trace shows the resulting optical power (mW) emitted by
the output LED, driven by the circuit’s final stage. The simulation confirms that the
circuit responds as expected at 10 MHz input frequencies. The LED output power
tracks the rectified difference between the positive and negative inputs without
significant distortion, ringing, or delay.

To confirm the accurate implementation of the ReLU non-linearity, we also sim-
ulated the circuit’s steady-state behavior across a range of input intensities. Fig-
ure 45b shows this characteristic, mapping PD+ intensity (x-axis) and PD inten-
sity (y-axis) to the LED’s steady-state output power (color map). The circuit be-
haves as desired: the output is effectively zero when the negative input equals
or exceeds the positive input. As the positive input increases beyond the neg-
ative input, the LED output rises approximately linearly with the input differ-
ence (PD. Intensity — PD_ Intensity). This ReLU-like behavior is preserved across
the input range, confirming that the circuit accurately performs the required non-
linear activation.

With both the optical and electronic performance of the scaled-up system val-
idated through simulation, we now turn to the central question: how does this
approach compare to existing hardware in terms of efficiency and performance?
The following section addresses this.

65 PROJECTED THROUGHPUT AND ENERGY EFFICIENCY

Having validated the optical fidelity and electronic speed of the scaled-up OENN
model through simulations in Sec. 6.4, we now project its key performance metrics.
These projections, particularly in terms of computational throughput and energy
efficiency, are critical for benchmarking the OENN against both conventional and
emerging computing platforms.
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Figure 45: Simulated electronic performance of the scaled design. (a) SPICE simulation

showing the temporal response of the difference-ReLU circuit (Figure 39) to a
10 MHz differential optical input. Traces show input power density on posi-
tive (Pos PD) and negative (Neg PD) photodiodes, intermediate voltage (Voa),
and output LED power over 1 us. (b / e) Simulated steady-state input-output
characteristic, mapping PD+ Intensity and PD- Intensity to LED Output Power,
demonstrating the ReLU-like non-linear activation function. (c / f) Projected
single-layer computational throughput (Tera-Operations Per Second, TOPS) as
a function of operating frequency and neuron array edge size (n for an n x n
array). The red diamond marks the experimental prototype performance (8 x 8,
~ 0.8 MHz), while the red circle marks the target scaled design point (32 x 32,
10 MHz) validated by these simulations. (d) Minimum required optical power
per detector to overcome noise, shown as a function of the electronic circuit
bandwidth. Figure adapted from [118].



6.5 PROJECTED THROUGHPUT AND ENERGY EFFICIENCY
6.5.1  Throughput

Computational throughput quantifies the number of operations performed per
second and is typically measured in Tera-Operations Per Second (TOPS) for
high-performance systems. In the OENN architecture, each operation includes a
multiply-accumulate (MAC) step during MVM, followed by a non-linear activa-
tion implemented electronically. The overall throughput depends on the number
of parallel processing units and the operating frequency (f).

For the scaled model, which uses N = 1024 neurons arranged in a 32 x 32 grid
and operates at f = 10 MHz, the per-layer throughput is given by:

Throughput = f- (N +1)N (66)

Substituting the model parameters (N = 1024, f = 10 x 10° Hz), we compute:

Throughput = (10 x 10° Hz) - (1024 +1)- 1024 ~ 10.5 TOPS (67)

This value represents the projected computational throughput for a single layer
of the scaled OENN. Figure 45c illustrates this result, showing throughput as a
function of operating frequency and array edge size n. The red circle marks the
10.5 TOPS point corresponding to the 32 x 32 array at 10 MHz. The figure also
highlights the favorable scaling properties of the architecture: throughput increases
linearly with frequency (f) and quadratically with neuron count (N?), resulting in
an overall n* scaling for an n x n array.

While high throughput is important, energy efficiency—measured in operations
per unit power—is often a more critical metric for assessing the real-world viability
of a hardware platform. The following section discusses this further.

6.5.2  Energy Efficiency

Beyond computational speed, energy efficiency, quantified as throughput per unit
power (TOPS/W or Giga-Operations Per Second (GOPS)/W), is one of the most
critical metrics for assessing the practical viability of computing hardware. In this
section, we evaluate the energy efficiency of the OENN architecture. We first estab-
lish an experimental baseline based on the prototype system and then project the
performance of the scaled-up model using the optimized optical design (Sec. 6.4.1)
and electronic simulations (Sec. 6.4.2). The core methodology involves dividing the
calculated throughput (Sec. 6.5.1) by the measured or estimated power consump-
tion.
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6.5.2.1 Experimental Baseline Efficiency

As described in Sec. 5.6, we measured the total power drawn by the experimental
prototype system to be 147 mW. When combined with its computed throughput
of approximately 1.7 GOPS (from Sec. 6.5.1), the resulting energy efficiency is:

1.7 x 107 OPS

SITW ~ 11.5 GOPS/W (68)

Efficiency ., =

6.5.2.2  Projected Efficiency of Scaled Model

To estimate the potential energy efficiency of the scaled and optimized OENN ar-
chitecture, we perform a bottom-up power analysis for the N = 1024, 10 MHz
model. This estimate includes two primary contributors: the electrical power re-
quired to drive the LEDs (P ) and the power consumed by the analog processing
electronics (P ), assuming an ASIC implementation.

The minimum optical power needed at the PD plane to overcome dominant
noise sources (primarily shot noise, see Sec. 6.2.1) and achieve 8-bit signal precision
determines the LED driving power (Pr). Experimental noise characterization in
the prototype (Fig. 46) confirms that this level of precision is realistic, showing
low error accumulation across layers. At 10 MHz, we calculate the photocurrent
required for 8-bit resolution to be 84 nA, corresponding to an optical intensity of
166 nW/mm? on the detector. Accounting for collection efficiency, the number of
LEDs, average weight values, and estimated LED wall-plug efficiency, we estimate
the electrical power per LED as Py = 160 uW. For the full N = 1024 layer, the total
LED driving power is P; = 1024 x Py = 163 mW.

Table 5: Comparison of performance requirements for an idealized scaled-up model ASIC
implementation with available literature examples for Transimpedance (TIA) and
Transconductance (TCA) amplifiers.

Property Requirement TIA [203] TCA [204] Combined Est.
Operating Frequency 10 MHz 10MHz 10.88 MHz 10 MHz
Supply Voltage No limitation 1.8V +400mV -
Amplification 73dB 90dBQ 1Q77 90dB
Power Consumption - 36 uW 62 uW 134 uW

We estimated the analog electronics power (Pa) using published low-power
ASIC designs for TIAs [203] and TCAs [204], selected to meet the required band-
width (10 MHz), gain, and drive characteristics. Figure 41 shows the correspond-
ing ASIC schematic, with performance summarized in Tab. 5. Based on these de-
signs, the power consumption per neuron circuit—comprising two TIAs and one
TCA—is P, = 134 uW. For all 1024 neurons, the total analog electronics power is
Pa =1024 x Pq = 137 mW.



6.6 SCALABILITY PROSPECTS AND LIMITATIONS

Thus, the total projected power consumption for the scaled layer is:

Piot = PL +Pa =163 mW + 137 mW = 300 mW.

Using this and the projected throughput of 10.5 TOPS from Sec. 6.5.1, the energy
efficiency of the scaled model is:

10.5 x 10'2 OPS
0.300 W

Efficiency .4 = = 35 TOPS/W

These projected efficiency figures serve as a reference point for comparing the
OENN architecture to state-of-the-art digital processors and other optical comput-
ing platforms, which the next section discusses.

6.5.3 Performance Comparison

These projections are summarized in Tab. 6, which compares the projected through-
put and energy efficiency of the OENN architecture with a range of conventional
and emerging computing platforms. The results suggest that the scaled OENN
could offer class-leading energy efficiency—comparable to or surpassing modern
Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs)—while also
delivering high throughput suitable for demanding acceleration tasks.

6.6 SCALABILITY PROSPECTS AND LIMITATIONS

The analysis presented here supports the scalability of the proposed multilayer
OENN architecture. Simulations confirm that optical diffraction effects in down-
scaled systems can be managed through geometric co-design, maintaining accept-
able MVM fidelity up to the 32 x 32 scale investigated (Sec. 6.4.1). Additionally,
we have shown that electronic operation at 10 MHz is feasible using improved
circuit design (Sec. 6.4.2), with the potential for further gains through ASIC inte-
gration. The architecture exhibits favorable scaling characteristics, with throughput
increasing quadratically with neuron count (N?) (Sec. 6.5.1) and projected energy
efficiency levels that are competitive with current digital hardware (Sec. 6.5.2).

A major factor contributing to this efficiency is the multilayer architecture itself
(Fig. 47b,c). By retaining intermediate results within the analog domain, it reduces
the need for frequent data read-in and read-out operations, which are typically
energy-intensive in single-layer accelerators (Fig. 47a). This benefit, measured as
the number of operations performed per read-in event, increases significantly with
both the network depth and the array size (Fig. 47d).

However, there are fundamental limitations to further scaling. The current lens-
free optical design may face constraints because of diffraction and crosstalk at
higher densities or smaller footprints (Sec. 6.2). Overcoming these limitations will
likely require alternative optical approaches, such as lenslet arrays or diffractive
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Figure 46: Experimental characterization of noise and model fidelity across intermedi-

ate layers. (a, b) Relative deviation in measured LED brightness after the first
(a) and second (b) layers across repeated measurements or varying inputs. Red
line indicates the median deviation (= 0.1%). (c, d) Histograms showing nor-
malized differences between measured LED outputs and predictions from a
calibrated linear weighting + difference-ReLU model using randomized inputs
and weights. Gaussian fits (black lines) yield standard deviations of o = 0.0038
and o = 0.0063 for the first and second layers, respectively. This informs the
noise assumptions used in the power estimation for the scaled model. Figure
adapted from [118].
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Table 6: Performance comparison of our approach to conventional computing systems and
other optical/opto-electronic approaches. Note: The numbers for NVIDIA Bz2oo"
and RTX 4090 represent the performance for thousands of cores.

Technique Approach  Throughput Efficiency Efficiency Precision Reference
(TOPS) (Expt, TOPS/W)  (Proj, TOPS/W) (bit)

NVIDIA GPU 144 .103" 10.01 - 4 [205]
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Figure 47: Conceptual illustration of multilayer OENN advantages. (a) Data flow in a typ-
ical single-layer accelerator scenario, requiring external data read-in and read-
out for each layer processed. (b) Data flow in the multilayer OENN architecture,
where intermediate results pass directly between layers within the system, min-
imizing external memory access. (c) Diagram representing the implemented
three-layer MVM + ReLU architecture capable of utilizing transferred weights.
(d) Plot illustrating the scaling advantage: the number of compute operations
performed per external data read-in increases significantly as the number of
layers processed within the accelerator grows, or as the array size (N) increases.
Figure adapted from [118].

optics, which could also support convolutional architectures. Higher-density in-
coherent light sources, such as micro-LED displays, offer one potential solution.
Achieving the projected 35 TOPS/W efficiency also depends critically on develop-
ing low-power, high-speed analog ASICs (Fig. 41).

Despite these challenges, the demonstrated scalability and architectural
strengths position the OENN as a promising candidate for energy-efficient AI hard-
ware. Fully realizing this potential will require further research into alternative
optical designs and integrated electronics. The next chapter explores key develop-
ment directions—including custom ASIC strategies, the implementation of recur-
rence and convolution, and the use of advanced techniques like differentiable ray
tracing for incoherent diffractive networks. These advancements will be essential
for translating the OENN architecture to practical, real-world applications.



CONCLUSION AND FUTURE OUTLOOK

This doctoral thesis explores the potential of using machine learning (ML) tech-
niques to enable the use of a novel optical effect to shape the optical wavefront.
In addition, it demonstrates a new opto-electronic hardware implementation for
neural network inference with greater energy efficiency compared to conventional
hardware. The work presented herein is accordingly divided into two primary
parts: The first part introduces a novel optical effect that allows for shaping the
amplitude and polarization of a wavefront on diffraction, solely by spatially mod-
ulating the polarization across the wavefront. The limits of traditional phase re-
trieval algorithms for this optimization problem is discussed and a gradient-based
optimization technique to optimize these polarization holograms is introduced.
To the best of my knowledge, this is the first such demonstration of polarization
modulation-based shaping of a wavefront to form diffraction images purely be-
cause of polarization. The second part proposes and demonstrates a novel opto-
electronic neural network architecture that combines optical matrix-vector multi-
plication (MVM) with electronic non-linear activation functions to achieve scalable,
energy-efficient neural network computations. Using existing components and a
combination of LEDs and photodetectors an energy efficient multi-layer NN has
been realized. The following sections summarize the key findings and describe
future research directions in each of these two topics.

PART I: MACHINE LEARNING FOR POLARIZATION HOLOGRAM OPTIMIZATION

The manipulation of propagating optical wavefronts by specifically exploiting the
diffractive effects that arise from applying a spatially inhomogeneous polariza-
tion distribution is demonstrated. This approach offers an alternative to tradi-
tional holographic techniques based purely on phase or amplitude modulation.
We first demonstrated the underlying fundamental principle using an analog of
Young’s double-slit experiment, showing how polarization patterns can produce
effects traditionally achieved with amplitude masks. Subsequently, we generated a
non-diffracting pseudo-Bessel beam solely with a tailored radial polarization mask,
demonstrating the potential of this phenomenon for a classical beam shaping ap-
plication.

However, the true potential of this phenomenon lies in its application to generate
more general wavefronts. Traditional phase retrieval algorithms perform poorly on
this optimization problem. A key contribution of this thesis was the development
of a differentiable physics-based model that can be directly optimized for the reg-
uisite polarization modulation mask using gradient-based optimization. Achiev-
ing high-fidelity results necessitated the creation of custom compound loss func-
tions that incorporated relevant image quality metrics like SSIM alongside contrast-
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enhancing penalty terms. Using this ML framework, we successfully demonstrated
the optimization of polarization masks for complex amplitude targets.

Furthermore, we extended this technique to optimize a polarization modulation
mask to simultaneously obtain a target amplitude as well as a target polarization
distribution on the target plane on diffraction. This result is notable as it allows for
explicit control of two output parameters using a single input degree of freedom.
This required designing a more complex joint loss function capable of balancing
the fidelity requirements for both output channels. Successful experimental genera-
tion of such joint amplitude/polarization targets clearly demonstrate the potential
of this approach, while simultaneously highlighting the inherent coupling limita-
tions that arise when controlling multiple output parameters with a single input
modality.

The technique introduced here demonstrates beam shaping using only the po-
larization degree of freedom. However, we also demonstrate a proof-of-concept
experiment that combines polarization modulation with conventional phase mod-
ulation. This combined approach was applied to realize a non-mechanical point
scanning system, illustrating the potential extensibility of this technique to realize
more complex optical systems not directly achievable with either method alone.

Collectively, this work shows that spatially varying polarization is a viable and,
importantly, optimizable degree of freedom for wavefront shaping applications.
The application of machine learning optimization techniques, particularly when
coupled with differentiable physical models and carefully tailored loss functions
has been very successful. The core principles established here—namely, treating
polarization as a controllable parameter within a differentiable optical system
amenable to gradient-based optimization—suggest potential directions for future
research.

Outlook

Outlook: Beam manipulation and shaping form a core part of many other fields
of research, such as material processing [211], microscopy [109], and display tech-
nology [212]. Traditional vectorial holography methods typically combine phase
and polarization modulation to achieve full vectorial control of the wavefront on
the target plane. The technique developed in this work can simplify the genera-
tion of arbitrary vectorial wavefronts dynamically, as it relies solely on polariza-
tion. Although we have only demonstrated simultaneous control over amplitude
and polarization on the target plane, the optimization framework can be extended
for full vectorial control over the wavefront on the detection plane. However, this
extension is non-trivial as amplitude, phase, and polarization are all coupled in
diffraction theory, and only one degree of freedom, namely, polarization modula-
tion, is available for optimization.

The techniques presented in this part of the thesis are also relevant for design-
ing a polarization-based deep diffractive neural network (DDNN) implementation.
The advantage of this approach lies in its ability to implement non-linearities in
diffractive neural networks, which has been an Achilles” heel for the field, as de-
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scribed in Chap. 1. Fig. 48 demonstrates a single layer of the proposed polarization-
based DDNN using the principles developed in this thesis. The inputs and the
trained weights are implemented as a polarization mask, unlike in a traditional
diffractive neural network where the weights are implemented as a phase mask.
The polarization-encoded wavefront diffracts before passing through a polarizer,
which is mathematically equivalent to a sinusoidal projection of the spatial polar-
ization distribution onto the amplitude domain. The wavefront propagates further
before passing through an amplitude-to-polarization converter.
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Figure 48: Implementation of non-linearities in a polarization-based diffractive neu-
ral network. A schematic of the proposed polarization-based non-linearity
in a polarization-based diffractive neural network. The information from the
source/previous layer is encoded in the polarization state of the light. The
encoded weights are optimized using the differentiable model of the system.
Subsequently, after propagation, the light passes through a polarizer where a
sinusoidal projection is applied to the incident wavefront. The spatially varying
amplitude wavefront propagates further onto an intensity-to-polarization con-
verter, where a square detection non-linearity is applied, and the wavefront is
converted to a spatially polarization and amplitude varying wavefront. The ef-
fective result of this is a sinusoidal squared non-linearity that is applied to the
input wavefront. The output of this layer can be used as the input to the next
layer.
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This device is modeled based on a widely used liquid crystal device called the
liquid crystal light valve (LCLV) or optically addressable spatial light modulator
(OASLM) [213], which in the past has also been applied to the field of optical com-
puting [213—215]. The LCLV has a pixelated photosensitive square-law intensity
detection material, such as hydrogenated amorphous silicon [216], that converts
the light intensity into a field distribution. Depending on the type and geometry
of the liquid crystal cell, this spatially varying field can be used to modulate the
polarization of the light passing through it. This constitutes a single layer in the
proposed polarization-based optical neural network that effectively implements a
sinusoidal squared non-linearity.
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The proposed approach is a promising future research direction as it allows for
the implementation of low-energy non-linearities in a diffractive neural network
using existing technology. In addition, phase weights can also be implemented
in the network, providing greater flexibility for optimizing a specific problem at
hand.

PART II: SCALABLE LOW POWER OPTOELECTRONIC NEURAL NETWORKS

This thesis has shown that the proposed multilayer optoelectronic neural network
(MOENN) architecture presents a scalable and energy-efficient alternative to con-
ventional computers for neural network inference. The MOENN architecture takes
advantage of the parallelism offered by optical matrix-vector-multiplication (MVM)
and implements an energy-efficient difference-ReLU non-linear activation. A proof-
of-concept lab-scale system was developed and experimentally validated on the
classification task for the MNIST dataset. Subsequently, the system was bench-
marked on the classification of a custom-developed spiral dataset, demonstrating
its ability to generalize over non-linear decision boundaries.

Building on this experimental foundation, we investigated the scalability of the
architecture through analytical modeling and simulation. A faster circuit imple-
mentation was proposed and we verified the system operation at 10MHz using
electronic simulations. Optical simulations, such as ray tracing and a modified an-
gular spectrum method, were used to show that the system can be scaled up to
48 x 48 neurons in the same physical footprint as the proof-of-concept system be-
fore diffraction effects become significant. For a system of this size, we projected a
computational throughput of 10.5 TOPS and an energy efficiency of 35 TOPS/W,
the latter surpassing that of state-of-the-art electronic accelerators.

While these results are promising, transforming the MOENN concept into a
practical, high-performance computing platform requires addressing several fun-
damental challenges that arise with scaling. These challenges span both optical and
electronic domains. As the number of operations increases within a fixed physical
footprint, higher interconnect density leads to stronger diffraction effects and a
greater risk of optical crosstalk. Advancing the optical design is therefore criti-
cal—particularly in overcoming the physical limits that emerge when attempting
to increase interconnect density. As feature sizes shrink to accommodate larger net-
works within compact footprints, diffraction becomes a dominant concern, threat-
ening the fidelity of the optical MVM. The following sections will first focus on
these optical challenges and possible solutions, before addressing issues related to
electronic scaling.

Outlook: Advances in optics

The optical design of the MOENN architecture is a key factor in its performance
and scalability. With scaling, as the number of neurons and consequently intercon-
nects increases, the density of these interconnects also rises if the physical foot-
print is to remain constant. As a result, maintaining high fidelity in optical MVM
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becomes increasingly challenging because of diffraction effects for light sources
and Gaussian apertures at such a small scale. This increases crosstalk between the
optical interconnects, which can lead to significant degradation in the neural net-
work’s performance. Therefore, addressing this challenge is crucial to ensure the
successful scaling of the MOENN architecture.

One promising approach to mitigate diffraction-imposed limitations, particu-
larly the strict requirements of point-to-point mappings in fully connected op-
tical layers, involves implementing convolutional layers in optoelectronic neural
networks. Convolutional layers, which apply shared filters to extract local features
from input data, are inherently more robust to spatial distortions and require fewer
parameters for a given computation. This spatial invariance, coupled with the
kernel-sharing mechanism, makes them well-suited for optical hardware, where
diffraction and alignment tolerances are critical considerations [217].

In optical systems, Fourier optics can efficiently implement convolutions. Specif-
ically, a 4f configuration enables convolution operations by placing a filter in the
Fourier plane of a lens, offering a compact and efficient optical analog to electronic
convolution operations. To further advance this concept within the framework of a
multi-kernel optoelectronic neural network (MOENN) architecture, we propose an
optical convolutional scheme that utilizes microlens arrays (MLAs) in a spatially
structured manner [218].

In our approach, a microlens array is positioned between a structured light emit-
ter array and an amplitude mask containing convolution kernels, as shown in
Fig. 49. Each light emitter interacts with a local group of microlenses, creating fo-
cused light spots designed to illuminate the exact locations of the corresponding
kernel elements on the mask. Emitters in the same sub-array are spatially config-
ured so that their output light fields align onto the same kernel, ensuring coherent
sampling of identical feature regions. After passing through the mask, the light
travels through free space, spreading to form the distinct, shifted patterns of the
output channels on the sensor, which correspond to different convolutional chan-
nels. Independent emitter sub-arrays are assigned to distinct kernel regions on the
mask, enabling multiple convolutions to be implemented in parallel.

Validation simulations of this approach, modeling each emitter as a Light Emit-
ting Diode (LED) with a defined angular emission profile, have shown the poten-
tial. Photon propagation through the system, including the microlens array, ampli-
tude mask, and free-space region, was modeled using ray tracing; Fig. 49 illustrates
how the system was tested by convolving sparse input data, characterized by an
exponential distribution, with randomly generated kernels. The ray-tracing simula-
tion produced results that showed strong agreement with ideal digital convolution,
indicated by a high Pearson correlation (0.902). These findings validate the poten-
tial of using structured light emission and microlens-mediated multiplexing for
implementing convolutional operations in optical hardware. Key challenges for in-
corporating this method include achieving high-precision alignment of the MLA
and mask components at scale and further optimizing energy efficiency [119].

However, employing the computational technique of differentiable ray tracing
to design arbitrary diffractive layers for incoherent light can further mitigate these
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Figure 49: Multi-channel free-space optical convolution approach. (a) The schematic il-
lustrates the optical setup where light from emitters passes through a microlens
array (MLA) and an amplitude mask containing the convolutional kernels be-
fore reaching the sensor. (b) Simulated performance compares the optical ray-
tracing output against ideal digital convolution for multiple input channels and
kernels, demonstrating high fidelity with a Pearson correlation of 0.902. Figure
adapted from [119].

challenges. Differentiable ray tracing is well-established in computer graphics
[219], but in recent years, it has also become widely adopted in the optics and
optical design community [220-222]. The resulting optimized phase masks can be
physically implemented using transmissive phase spatial light modulators (SLMs)
[223] or custom-printed diffractive optical elements (DOEs), which can be fabri-
cated using lithography techniques [224].

Future work within the MOENN project will focus on integrating such opti-
cal convolutional layers, potentially replacing or complementing the dense MVM
layers, and experimentally characterizing their performance within the full system,
thereby supporting the development of scalable, low-power optical neural network
COPIoCessors.

Outlook: Advances in electronics

The MOENN prototype shown uses discrete electronic components on printed
circuit boards (PCBs) allowing for rapid iterative prototyping. However, this ap-
proach is neither scalable nor energy efficient as a practical implementation. This
restricts the throughput of the lab-scale implementation, diminishing its real-world
applicability. Application-specific integrated circuits (ASICs) solve this problem
through an optimized implementation of the required analog electronic functions
in a compact and energy-efficient manner. In addition, tight integration of elec-
tronic functions inside an ASIC unlocks the possibility of implementing additional
useful features. Fig. 50 shows a proposed block diagram of a custom ASIC, pro-
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posed by our collaborators at IMS Chips Stuttgart, that can be used to implement
the OENN described in this thesis.
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Figure 50: Proposed ASIC for optoelectronic neural networks. Block-diagram showing
the implementation of custom ASIC, featuring eight parallel analog channels for
photodiode current subtraction, ReLU activation, programmable amplification,
and LED driving with the ability to introduce a delay. Figure reproduced from
an internal communication with IMS Chips Stuttgart.

The proposed ASIC performs all of the same functions as the prototype system,
but it additionally implements variable amplification of LED output as well as elec-
tronic memory. These supplementary features allow for a more reliable operation
of the system and allow for the implementation of neural network architectures
that would benefit from memory, such as a recurrent neural network (RNN). In
addition to the analog electronics, CMOS processes used for fabricating the ASICs
also open up the possibility of implementing photodetectors on the same chip, as
is commonly done with CMOS image sensors (CIS) [225]. Traditionally, it has been
challenging to implement light emitters in the same CMOS process node [226];
however, recent progress in microLED technology has opened up a roadmap for
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implementing a small, fast, and energy-efficient light source that is compatible
with the same manufacturing process as the rest of the electronics [227, 228]. Com-
bining all the possible technological integrations mentioned here opens a path for
a fully integrated optoelectronic neural network on a single chip.

An energy-efficient and compact MOENN chip would be a significant help
in many practical applications that require a low-latency, compact, and energy-
efficient system while working natively with optical inputs. Two such applications
are autonomous vehicles [229] and untethered robotics [80]. In both of these ap-
plications, the vision input is natively optical, and both of these systems need to
make real-time inference on the scene around. The MOENN architecture is well-
suited for this as the input signal is directly processed without digitization and
digital processing. In addition, these applications have limited power budget to
spare for computing and would, thus, benefit from the energy-efficient nature of
the MOENN architecture. The proposed ASIC implementation would allow for a
more compact and energy-efficient system that can be integrated into these appli-
cations.
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Figure 1

Figure 2

Figure 3

Figure 4

Schematic of the experimental setup for the Young's
double-slit analog experiment. A Gaussian laser beam is
expanded using a lens pair. A TNLC-SLM imparts a polar-
ization pattern analogous to double slits. An analyzer can
be placed either near the SLM (dashed representation) or
near the camera (solid representation) before the diffracted
wavefront is detected. The diagram illustrates the indepen-
dent propagation of orthogonal polarization components
and their interaction with the analyzer. 23

Young’s double-slit experiment with 0.57t polarization ro-
tation at slit-equivalent positions. (a) The polarization
mask applied to the SLM, showing 0.57 rotation in the two
slit regions. (b) Experimental intensity distribution with the
analyzer near the camera. (d) Experimental intensity distri-
bution with the analyzer near the SLM. (c) and (e) Corre-
sponding simulation results for analyzer near camera and
near SLM, respectively. The similarity between experimen-
tal results (b, d) and their agreement with simulations (c,
e) demonstrate the equivalence principle and validate the
numerical method. 25

Complementarity of the two orthogonal polarization
states. (a) Young’s double-slit analog polarization pattern.
(b) Simulated intensity distribution for the component po-
larized parallel to the analyzer axis after propagation. (c)
Simulated intensity for the orthogonal component. (d) Ex-
perimental result corresponding to (b). (e) Experimental re-
sult corresponding to (c). The good match between simula-
tions and experiments confirms the independent propaga-
tion and complementarity of the orthogonal states. 26
Young’s double-slit experiment with unequal polariza-
tion rotation at slit-equivalent positions. (a) Polarization
mask with 0.57 rotation in one slit region and 0.257 in
the other. (b) Experimentally measured intensity distribu-
tion, showing an asymmetric diffraction pattern envelope.
(c) Corresponding simulation result, matching the experi-
ment. 26
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Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Control experiment for the geometric/coupled phase con-
tribution. (a) Input sawtooth polarization rotation pattern
applied to the TNLC-SLM. (b) Phase distribution measured
by SHWS at the detection plane, showing a maximum vari-
ation of approx. 0.257 radians. (c) Scaled phase mask repre-
senting this measured phase variation applied to the YDSE
structure. (d) Simulated diffraction pattern using only the
scaled phase mask (c), showing weak diffraction. (e) Sim-
ulated diffraction pattern considering the full polarization
modulation effect (from Fig. 2c, shown for comparison), ex-
hibiting strong diffraction. This confirms that the observed
diffraction is primarily due to polarization modulation, not
unintended phase effects. 27

Experimental setup for polarization modulation in wave-
front engineering. (I) Gaussian laser source, expanded.
(IT) TNLC-SLM configured for polarization modulation, im-
parting a spatially varying polarization distribution. (III)
Modulated wavefront propagates to the target plane for in-
tensity capture by the sCMOS camera. Figure adapted from
[32] 28

Generation of pseudo-Bessel beams using polarization
modulation. (a) Radially symmetric polarization mask ap-
plied to the SLM. (b, ¢, e, f) Experimental intensity distribu-
tions at propagation distances 214 mm, 300 mm, 400 mm,
and 500 mm, respectively. (d) Comparison of vertical in-
tensity profiles through the beam center at the different
distances. The consistent ringed structure and profiles
confirm the generation of a non-diffracting pseudo-Bessel
beam. 30

Optimization of a polarization modulation mask using
the Gerchberg-Saxton algorithm. (a) Flowchart of the mod-
ified GS algorithm. (b) Target amplitude distribution (Min-
erva logo). (c) Optimized polarization modulation mask ob-
tained via modified GS. (d) Experimental intensity result
using the mask (c), showing resemblance to the target but
with noticeable background noise/speckle image. Figure
adapted from [32]. 32

Optimization of a polarization modulation mask using
machine learning. (a) Schematic of the differentiable
physics-based model used in the optimization framework.
(b) Flowchart of the training loop: Initialize random po-
larization mask 6(x,y), compute predicted intensity Pint
using the forward model (input beam -> SLM modula-
tion -> propagation -> camera detection), calculate loss
Leontrast between Pin: and target Tin¢, compute gradi-
ents via backpropagation, update 6(x,y) using an optimizer
(e.g., Adam), repeat. Figure adapted from [32]. 35
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Experimental results for machine-learned polarization
modulation mask. (a) Target intensity distribution (Min-
erva logo). (b) Optimized polarization modulation mask
obtained using the ML framework. (c) Experimentally
recorded intensity distribution using mask (b), showing
high fidelity and contrast compared to the GS method
(Fig. 8d). Adapted from [32]. 36

Results of joint optimization for simple amplitude and
polarization targets. (a) Optimized polarization modula-
tion mask. (b) Target intensity (rounded square). (c) Target
polarization (azimuthal variation). (d) Measured intensity
result. (e) Measured polarization result. Both results show
good agreement with the targets. Adapted from [32]. 38
Results of joint optimization for complex polarization tar-
gets. (a) Optimized polarization modulation mask. (b) Tar-
get intensity (rounded square). (c) Target polarization (two
full sweeps around the perimeter). (d) Measured inten-
sity result. (e) Measured polarization result. Good agree-
ment achieved even for complex targets. Adapted from
[32]. 39

Experimental setup for combining phase and polariza-
tion modulation. (a) Schematic: Laser, Polarizer (P1),
Beam Expander, Half-Wave Plates (HWP1, HWP2 for align-
ment), Phase SLM (R-SLM, LCoS), Polarization SLM (T-
SLM, TNLC), Analyzer (P2), Camera. (b) Sinusoidal po-
larization mask on T-SLM. (c¢) Phase mask for collinear
points on R-SLM. (d) Phase mask for arbitrary points on
R-SLM. 41

Results of combining polarization and phase modula-
tion for point scanning. (a) Measured intensity of all five
collinear points combined. (d) Measured intensity of all five
arbitrary points combined. (b, €) Evolution of mean inten-
sity for each of the five points (different colors) as analyzer
angle rotates for collinear and arbitrary cases, respectively.
(c, ) Analyzer angle at which each point reaches maximum
intensity, demonstrating sequential addressing for collinear
and arbitrary cases. 42
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Figure 15

Figure 16

Figure 17

Comparison between von Neumann architecture and in-
memory computing. (a) illustrates the conventional von
Neumann architecture, where memory and processing units
are physically separate. In this design, neural networks are
implemented using matrix-vector multiplication (MVM),
with individual elements stored at different memory loca-
tions while computations occur in the Arithmetic and Logic
Unit (ALU). A controller manages data movement and is-
sues instructions. However, the data transfer between the
ALU and memory via the bus creates a bottleneck, lead-
ing to significant energy consumption due to frequent read-
write operations. In contrast, (b) shows in-memory com-
puting, where computations are performed directly within
the memory array. The controller only needs to issue in-
structions, significantly reducing data transfer and lower-
ing overall energy consumption. Figure reproduced in its
entirety from [121]. 46

Compute cost trends for AI models. The figure illustrates
the exponential growth in compute requirements for train-
ing state-of-the-art Al models over the years while hardware
performance has not been able to keep up. This trend high-
lights the increasing energy demands and the need for al-
ternative hardware solutions to address the associated chal-
lenges. Figure reproduced in its entirety from [146]. 48
Conceptual illustration of the multilayer optoelectronic
neural network. (a) The system architecture features
interleaved optical layers for matrix-vector multiplication
(MVM) and electronic layers for nonlinear processing. (b)
Optical MVM is achieved using an array of incoherent light-
emitting diodes (LEDs) whose outputs are modulated by an
amplitude mask encoding weights, and then projected onto
a photodiode (PD) array. (c) The electronic layer consists of
neuron units with paired photodiodes for differential input,
enabling the implementation of nonlinear activation func-
tions. Figure reproduced from [118] 51
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Components of the Optoelectronic Neural Network
(OENN). (a) Schematic representation of the system archi-
tecture. The input board receives data from a computer via
a digital-to-analog converter (DAC) and drives an 8 x 8 grid
of 64 input LEDs. The emitted light from these LEDs is op-
tically mapped to a 10 x 10 photodiode array in the subse-
quent hidden layer, performing an MVM operation. Signals
from pairs of photodiodes are combined, amplified, and
drive a 5 x 10 LED array, which is then optically mapped
to the next hidden layer. This process continues through
the network until the output layer, where a 10 x 10 pho-
todiode array detects the final signals. The output photodi-
odes connect to a readout board that digitizes the signals for
further processing. (b) Ray-traced illustration of the MVM
implemented in the system. (c) Circuit representation for
implementing negative weights, enabling the Rectified Lin-
ear Unit (ReLU) nonlinearity shown in (d). Figure adapted
from [118]. 58

Ray-tracing representation of the optical operation in the
OENN. This figure demonstrates implementing a fully-
connected optical MVM operation in the system. The prin-
ciples of ray tracing design the amplitude mask. Each LED
in (a) is multiplied by a sub-array on the mask whose fea-
ture size magnification, M, determines. The spot size made
by a feature in (b) depends on the LED emitter size, shape
of the mask feature, and magnification factor. The photo-
diode spacing in (c) depends on the magnification and the
spacing between mask features. (d) The magnification fac-
tor M scales the total output region. (e) Each LED is as-
sociated with a submask that encodes the weights for the
MVM operation. Magnification and LED spacing can eval-
uate the spacing between neighboring masks. Figure repro-
duced from [118]. 61

Implementation of amplitude masks. For a given desired
amplitude mask (a), two methods can implement the mask.
The first method uses a dithered binary mask, shown in
(b). The resultant intensity distribution after propagation
shows a smooth intensity profile (c). Image adapted from
[118]. 63
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Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Impact of Diffraction on Optical Propagation. Simulated
results using a modified angular spectrum propagation
method for LED light passing through amplitude masks.
The setup assumes a photodiode spacing of 2.5 mm and an
LED die size of 200 pm. (a) Target amplitude mask weights.
(b) Resulting intensity distribution at the output plane. (c)
Histogram of output values from the central region of (b),
grouped into bins for analysis. Figure reproduced from
[118]. 65

Operational amplifier circuits used in the OENN elec-
tronic modules. (a) Circuit diagram for driving input LEDs
based on digital signals. (b) Readout circuit employed to
capture and digitize signals from the final photodiode ar-
ray. (c) Intermediate circuit responsible for detecting pho-
todiode signals, computing differences between pairs, am-
plifying the result, and driving subsequent LEDs. Figure
reproduced from [118]. 66

Overview of the experimental hardware setup for the
OENN. Photograph showing the full optoelectronic net-
work layout. Signal processing starts at the input board
(base), proceeds through two successive intermediate lay-
ers, and concludes at the output layer (top). A spatial light
modulator and polarizer pair are used in combination to
dynamically encode optical weights. 69
Characterization of individual LED performance on the
input board. Measured output intensity versus applied in-
put voltage for selected LEDs. One malfunctioning LED
(row 1, column 3) exhibits atypical behavior. However, be-
cause each LED operates independently, the malfunction
does not propagate to neighboring units. Figure reproduced
from [118]. 71

Fitting of experimental neuron responses to difference-
ReLU behavior. (a) Measured output current from dif-
ference circuits as a function of photodiode inputs. (b)
Fitted model matching experimental data to the function
LEDoutput = ReLU(c1Iy —c2l2 +¢3). (c) Offset added to
light emission resulting from offsets throughout the elec-
tronic circuit. (d) Aggregated measured response curves
from all 50 neurons implemented on a representative inter-
mediate board. Figure adapted from [118]. 72
Temporal response of optoelectronic neural network op-
eration. (a) Temporal signal traces as an 800 kHz square
wave sequentially propagates through two intermediate op-
toelectronic layers and the output photodiode, highlight-
ing cumulative delay at each stage. Figure adapted from

[118]. 73
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Figure 28

Figure 29

Figure 30
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Characterization of high-speed operation and spatial com-
ponents. (a) Measured frequency response of a representa-
tive LED, driven by a 10 MHz square wave (blue), with a
photodiode recording the output (black). (b) Spatial dis-
tribution of maximum achievable transmission (related to
extinction ratio) across the SLM area used for encoding
weights, highlighting non-uniformity. (c) Measured average
optical crosstalk distribution, showing light intensity spread
from intended weight locations onto neighboring areas on
the detector plane. Figure adapted from [118]. 74
Example amplitude mask encoding weights for a network
trained on the MINIST digit classification dataset. Individual
weights have been shifted to account for exact LED and PD
positions. Figure reproduced from [118]. 78

MNIST digit classification with the three-layer OENN. (a)
Example propagation trace showing experimental (bottom
row) versus simulated (top row) neuron activations for an
input digit "4’ through the input layer, first optical MVM,
tirst hidden layer (ReLU output), second optical MVM, sec-
ond hidden layer (ReLU output), and final optical MVM
(output layer). (b, c) Correlation plots comparing experi-
mental and simulated neuron activations in Hidden Layer
1 and Hidden Layer 2, respectively, across multiple MNIST
test digits. (d, e) Confusion matrices showing classification
performance for digital simulation and experimental hard-
ware, respectively. Experimental accuracy reaches 92.3%,
closely matching the simulated 95.4%. Figure reproduced
from [118]. 79

Additional MNIST digit propagation examples. Visual
comparison between digital simulation (top rows within
pairs) and experimental measurements (bottom rows within
pairs) for different input digits propagating through net-
work layers, complementing Fig. 29a. Figure reproduced
from [118]. 8o

Layer-wise comparison of experimental and simulated
neuron activations for MNIST task. Scatterplots show nor-
malized experimental activation versus corresponding dig-
ital simulation values after the (a) first optical MVM (pos-
itive/negative components shown separately), (b) first dif-
ferential ReLU, (c) second optical MVM, (d) second differ-
ential ReLU, and (e) third optical MVM (output layer). The
relative standard deviation (o,¢1) of the difference between
experimental and simulated values, normalized by the stan-
dard deviation of simulated activations, is reported for each
stage: (a) orer = 0.048, (b) 0re1 = 0.152, (¢) Orer = 0.145, (d)
oret = 0.191, and (e) o1 = 0.154. Figure reproduced from
[118]. 81
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Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

MNIST classification with simultaneous multilayer oper-
ation. Performance evaluation when all OENN layers op-
erate continuously without intermediate digitization. (a)
Comparison between simulated and experimental output
layer activations for multiple test digits. (b) Confusion ma-
trix for the digital simulation under these conditions (Test
Accuracy: 91.2%). (c) Confusion matrix for the experimental
hardware with all three OENN layers implemented simul-
taneously (Test Accuracy: 91.1%). Figure reproduced from
[118]. 82

Classification of the nonlinear four-class spiral dataset. (a)
Visualization of the dataset with four intertwined classes
in a 2D input space. (b) Decision boundaries learned by a
digitally trained network with ideal parameters (Accuracy:
96.1%). (c) Decision boundary of the best linear classifier
(Accuracy: 30.1%). (d) Classification performance of a dig-
ital simulation using weights constrained by hardware lim-
its (Accuracy: 87.8%). (e) Experimentally measured clas-
sification performance of the OENN hardware (Accuracy:
86.0%). (f) Direct comparison of simulated versus exper-
imental output values for the four classes across multiple
input samples. Figure reproduced from [118]. 83

Power draw components in the prototype intermediate cir-
cuit. Schematic of the intermediate neuron circuit used
in the experimental prototype, illustrating the conceptual
breakdown for power consumption analysis. Considered
contributions include: Ppp (photodiode biasing/dark cur-
rent), Poa; (first op-amp stage), Poa. (second op-amp
stage), and Pour (output stage driving the LED). Figure re-
produced from [118]. 85

Stages of measurement of prototype circuit power draw.
Schematic illustrating the two-step experimental method
used to estimate power drawn by each operational ampli-
fier stage (MCP6V66T/LM358 based) in the prototype’s in-
termediate neuron circuit. Current measurements at supply
terminals in each step allow calculating power consumed by
individual stages. Figure reproduced from [118]. 86
Raytracing simulation comparison for prototype and
scaled systems. (a) and (b) show the target weights and
ray-tracing output for the scaled-up system. In comparison,
(c) and (d) display the expected and propagated weights for
the smaller experimental setup. The results illustrate the
increased density of optical interconnects achieved through
scaling. Figure reproduced from [118]. 90
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Simulated diffraction through Gaussian apertures. Visual-
ization of light intensity patterns resulting from diffraction
when a point source illuminates a single (a) and multiple
closely spaced (c) Gaussian apertures, representing weight
elements in the scaled system. The corresponding phase
distributions for the single (b) and multiple aperture cases
(d, e) are also shown. Figure reproduced from [118]. 91
Analysis of optical trade-offs with propagation distance
and lateral offset. Performance metrics as a function of the
mask-to-photodiode distance d, and lateral weight aperture
offset from the LED-photodiode axis: (a) Spot spread paral-
lel to the offset. (b) Spot spread orthogonal to the offset. (c)
Solid angle of light transmitted per unit area. (d) Solid an-
gle collected by the target photodiode per unit area. Figure
reproduced from [118]. 94

Electronic circuit for high-speed operation. Circuit dia-
gram for a design enabling 10 MHz operation. It retains
the same topology as the circuit used in the experimental
setup (see Fig. 22c), with carefully selected components and
compensation for potential instabilities. Figure reproduced
from [118]. 95

Photodiode grouping for difference operation in the
scaled model. (a) Simulated intensity pattern on a 3 x 3
photodiode (PD) array subsection. (b) Conceptual mapping
of these 8 PDs to provide positive (+) and negative (-) in-
puts for 4 distinct differential neuron pairs. (c) Compari-
son of simulated PD signals (left) derived from the inten-
sity pattern in (a) versus the target design weights (right)
for this subsection. (d) Table showing the final effective
signed weights computed as the difference between the cor-
responding positive and negative PD signals from (c) for
each of the 4 neurons. 96

Conceptual schematic for an ASIC implementation. Pro-
posed integrated circuit design architecture for a single
difference-ReLU neuron. It features integrated photodiodes
coupled to low-noise transimpedance amplifiers (TIAs) for
photocurrent-to-voltage conversion. A differential transcon-
ductance amplifier (OTA) or similar stage takes the TIA out-
puts, performs subtraction, and provides the driving cur-
rent for the output LED, inherently implementing the recti-
fication. Figure reproduced from [118]. 97
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Figure 42

Figure 43

Figure 44

Optical design and simulation for the scaled-up model. (a,
d) Schematics detailing the optical path geometry. Panel (a)
shows the LED-to-mask segment (d; = 2.5 mm), indicat-
ing LED spacing (3.75 mm) and mask parameters (submask
size 3.6 mm, weight size 0.074 mm spacing, 25 um Gaussian
width). Panel (d) shows the full geometry, including the
mask-to-PD distance (d; = 84.2 mm), PD spacing (2.5 mm),
and total magnification (M ~ 34). (b, e) Side-view simula-
tions of light propagation from a single LED to the mask (b)
and from the mask to the PD plane (e), calculated via mod-
ified angular spectrum method. (c, f) Simulated complex
optical field immediately after the amplitude mask plane,
showing the phase (c) and intensity (f) patterns represent-
ing the encoded weight information. Figure adapted from
[118]. 98

Simulation of optical performance and weight accuracy
for the scaled-up model. (a) Simulated intensity distribu-
tion across the full 48 x 48 photodiode array, calculated us-
ing modified angular spectrum propagation. (b) Zoomed-in
view of the 3 x 3 region highlighted in red in (a), compar-
ing the intensity pattern (left), the estimated weights de-
rived from integrating intensity over PD areas (middle), and
the corresponding target design weights (right). (c) Scatter
plot illustrating the distribution of the difference (error) be-
tween estimated and design weights for all connections in
the 32 x 32 — 48 x 48 — 32 x 32 layer. (d, e) Full spatial
maps comparing the matrix of estimated optical weights (d)
with the target design weight matrix (e). Figure adapted
from [118]. 99

Analysis of optical crosstalk dependency on position in
scaled-up model simulations. (a, b) Scatter plots show-
ing the difference between simulated and design weights
versus the design weight value for two different sets of ran-
dom weights (A and B). Points are color-coded based on the
lateral offset of the target photodiode from the optical axis
of the point source, indicating increased error variance for
larger offsets. (c) Simulated weight versus design weight
specifically for connections terminating at a corner photo-
diode, representing conditions of maximum lateral offset
and potential crosstalk. Simulations employed Rayleigh-
Sommerfeld diffraction from a point source illuminating a
3 x 3 grid of adjacent randomized Gaussian weights. Figure
adapted from [118]. 100



Figure 45

Figure 46

Figure 47

BIBLIOGRAPHY

Simulated electronic performance of the scaled design.
(a) SPICE simulation showing the temporal response of
the difference-ReLU circuit (Figure 39) to a 10 MHz dif-
ferential optical input. Traces show input power density
on positive (Pos PD) and negative (Neg PD) photodiodes,
intermediate voltage (Voa), and output LED power over
1 us. (b / e) Simulated steady-state input-output charac-
teristic, mapping PD+ Intensity and PD- Intensity to LED
Output Power, demonstrating the ReLU-like non-linear acti-
vation function. (c / f) Projected single-layer computational
throughput (Tera-Operations Per Second, TOPS) as a func-
tion of operating frequency and neuron array edge size (n
for an n x n array). The red diamond marks the experi-
mental prototype performance (8 x 8, ~ 0.8 MHz), while
the red circle marks the target scaled design point (32 x 32,
10 MHz) validated by these simulations. (d) Minimum re-
quired optical power per detector to overcome noise, shown
as a function of the electronic circuit bandwidth. Figure
adapted from [118]. 102

Experimental characterization of noise and model fidelity
across intermediate layers. (a, b) Relative deviation in mea-
sured LED brightness after the first (a) and second (b) layers
across repeated measurements or varying inputs. Red line
indicates the median deviation (=~ 0.1%). (c, d) Histograms
showing normalized differences between measured LED
outputs and predictions from a calibrated linear weight-
ing + difference-ReLU model using randomized inputs and
weights. Gaussian fits (black lines) yield standard devia-
tions of 0 = 0.0038 and o = 0.0063 for the first and sec-
ond layers, respectively. This informs the noise assumptions
used in the power estimation for the scaled model. Figure
adapted from [118]. 106

Conceptual illustration of multilayer OENN advantages.
(a) Data flow in a typical single-layer accelerator scenario,
requiring external data read-in and read-out for each layer
processed. (b) Data flow in the multilayer OENN archi-
tecture, where intermediate results pass directly between
layers within the system, minimizing external memory ac-
cess. (c) Diagram representing the implemented three-layer
MVM + ReLU architecture capable of utilizing transferred
weights. (d) Plot illustrating the scaling advantage: the
number of compute operations performed per external data
read-in increases significantly as the number of layers pro-
cessed within the accelerator grows, or as the array size (N)
increases. Figure adapted from [118]. 108
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Figure 49

Figure 50

Implementation of non-linearities in a polarization-based
diffractive neural network. A schematic of the pro-
posed polarization-based non-linearity in a polarization-
based diffractive neural network. The information from the
source/previous layer is encoded in the polarization state
of the light. The encoded weights are optimized using
the differentiable model of the system. Subsequently, af-
ter propagation, the light passes through a polarizer where
a sinusoidal projection is applied to the incident wavefront.
The spatially varying amplitude wavefront propagates fur-
ther onto an intensity-to-polarization converter, where a
square detection non-linearity is applied, and the wavefront
is converted to a spatially polarization and amplitude vary-
ing wavefront. The effective result of this is a sinusoidal
squared non-linearity that is applied to the input wavefront.
The output of this layer can be used as the input to the next
layer. 111

Multi-channel free-space optical convolution approach.
(a) The schematic illustrates the optical setup where light
from emitters passes through a microlens array (MLA) and
an amplitude mask containing the convolutional kernels
before reaching the sensor. (b) Simulated performance
compares the optical ray-tracing output against ideal dig-
ital convolution for multiple input channels and kernels,
demonstrating high fidelity with a Pearson correlation of
0.902. Figure adapted from [119]. 114

Proposed ASIC for optoelectronic neural networks. Block-
diagram showing the implementation of custom ASIC, fea-
turing eight parallel analog channels for photodiode current
subtraction, ReLU activation, programmable amplification,
and LED driving with the ability to introduce a delay. Fig-
ure reproduced from an internal communication with IMS
Chips Stuttgart. 115
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