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ABSTRACT

Motivated by the recent first detection of a gravitational wave signal, this disser-
tation reviews and develops analytical, numerical, and data analysis techniques to
address the remaining blind spots in the current understanding of gravity.

Beginning with the definition of asymptotically flat spacetimes and the mathemati-
cal framework of null geodesic congruences, the derivation of the shear tensor—as
the carrier of the radiative content of the gravitational field—is revisited. This is
followed by an application of the covariant phase space formulation of General Rel-
ativity to derive a non-conservation law associated with the symmetry group at null
infinity in asymptotically flat spacetimes. This approach is shown to generalize pre-
vious formulations of the radiative phase space in General Relativity, recovering
consistent results. The physical interpretation of these flux laws is then employed
to derive constraint equations, which serve as the foundation for evaluating and
comparing state-of-the-art numerical waveform models. This analysis yields novel
insights into commonly used models and establishes a robust algorithm for assess-

ing future improvements in waveform modeling.

The flux laws are subsequently applied to compute quantum corrections to the
gravitational waveform strain, arising from the gravitational wave echo effect. A
detailed discussion of the echo effect is presented, with focus on two leading phe-
nomenological scenarios involving echoes from binary black hole merger events.
Both the original echo signal in the strain and quantum corrections to its nonlinear
structure are analyzed for their potential observability by the future space-based
LISA detector. The results indicate that the echo effect lies within LISA’s sensitiv-
ity range, and that the mission could potentially probe black hole area quantization

through these measurements.

Finally, in light of recent evidence towards a detection of a stochastic gravitational
wave background from Pulsar Timing Array data, the theoretical motivation for
such a background is reviewed. Several scenarios contributing significant astro-
physical and cosmological components of this background are examined. This com-
prehensive study culminates in a forecast for the detection prospects of the gravi-
tational wave background with the LISA instrument, using a modern, ready-to-use
data analysis pipeline. The findings suggest that LISA will be capable of constrain-
ing the extra-galactic stochastic gravitational wave background to levels below a
dimensionless spectral energy density of at least Qgw < 1078.



ZUSAMMENFASSUNG

Motiviert durch die erste Messung eines Gravitationswellensignals, untersucht und
entwickelt diese Dissertation analytische, numerische sowie datenanalytische Meth-
oden mit dem Ziel, bestehende Mysterien im derzeitigen Verstdndnis der Gravita-

tion zu adressieren.

Ausgehend von der Definition asymptotisch flacher Raumzeiten und dem math-
ematischen Rahmenwerk gegeben durch nullartiger Geodédtenkongruenzen wird
die Herleitung des Shear-Tensors — als Trager der strahlenden Freiheitsgrade des
Gravitationsfeldes — aufgefrischt. Darauf folgt die Anwendung der kovarianten
Phasenraum-Methode auf die Allgemeinen Relativitdtstheorie, die zur Herleitung
eines Fluss-Erhaltungsgesetzes eingesetzt wird, das mit der Symmetriegruppe in
nullartiger Unendlichkeit in asymptotisch flachen Raumzeiten verkniipft ist. Dieser
Methode generalisiert frithere Formulierungen des Phasenraums der strahlenden
Freiheitsgerade in der Allgemeinen Relativitdtstheorie und liefert konsistente Resul-
tate. Die physikalische Interpretation der erhaltenen Flussgesetze wird anschliefSend
genutzt, um einschrankende Bedingungen herzuleiten, die als Grundlage der Evalu-
ierung und des Vergleiches modernster numerischer Wellenformmodelle dienen.
Diese Analyse liefert neue Einsichten in verbreitet verwendete Modelle und etabliert
einen robusten Algorithmus zur Bewertung zukiinftiger Verbesserungen in der Wellen-
modellierung.

Die besagten Flussgesetze werden in der Folge angewendet, um Quantenkorrek-
turen der Gravitationswelle zu berechnen, die aus dem sogenannten Echoeffekt re-
sultieren. Eine detaillierte Diskussion dieses Effekts wird prédsentiert, mit Fokus
auf zwei phdanomenologische Szenarien, in denen Echosignale aus Verschmelzun-
gen bindrer Schwarzer Locher entstehen. Sowohl das urspriingliche Echosignal als
auch Quantenkorrekturen des nichtlinearen Anteils der Gravitationalwelle werden
im Hinblick auf ihre potenzielle Messbarkeit mit dem zukiinftigen LISA-Detektor
analysiert. Die Ergebnisse zeigen, dass der Echoeffekt innerhalb der Sensitivitat des
Instrumentes liegt und die Mission moglicherweise die Quantisierung der Ober-

flache Schwarzer Locher durch diese Messungen untersuchen konnte.

Abschliefiend wird im Licht jiingster Hinweise auf eine Detektion eines stochastis-
chen Gravitationswellenhintergrunds in Daten des Pulsar-Timing-Arrays die the-
oretische Motivation fiir ein solches Hintergrundsignal beleuchtet. Verschiedene

Szenarien, die signifikante astrophysikalische und kosmologische Beitridge zu diesem
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Hintergrund leisten konnten, werden untersucht. Diese umfassende Studie miin-
det in einer Prognose der Messbarkeit des Gravitationswellenhintergrunds mit dem
LISA-Instrument unter Verwendung einer modernen Datenanalyse-Pipeline. Die
Ergebnisse deuten darauf hin, dass LISA in der Lage sein wird, den extragalaktis-
chen stochastischen Gravitationswellenhintergrund auf ein Niveau unterhalb einer
dimensionslosen spektralen Energiedichte von mindestens Qgw < 10~8 zu be-

[

schranken.
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4.20 Analysis of the evolution of 0g, as the signal amplitude Qgw varies.
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3.1 Model parameters for the reflectivity functions of ECOs and QBHs,
i.e., RECO and ROPBH respectively [5]. The corresponding transfer
functions C(w) are displayed in Fig 3.3. As the ECO’s transfer func-
tion does not obtain roots, a correspondence of «, § for ECOs is absent.
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Notation

Spacetime manifold: The spacetime manifold (M, g) is 4-dimensional, oriented
and differentiable. It is a topological manifold with a tangent and cotangent space

on which vectors and forms are defined, respectively.

Metric signature: For the Minkowski background, the metric signature 77, = diag(—1,+1,
+1,+1) is adopted.

Spacetime vectors: Spacetime vectors are denoted by Greek indices «, ,... = 0,1,2,3,
while spatial indices are denoted by Latin letters i,7,.. = 1,2,3. A vector v = v?‘ay
is denoted by its components v/ and the base vectors 9, of the tangent space on M,
TxM, where x € M. A differential form on M is denoted by w = w;,dx" where w,,
are the components and dx* denote the basis of the cotangent space 7.* M. Spatial
vectors x' are denoted by x. At future null infinity, that is a 3-dimensional surface,
one maintains the notation of intrinsic quantities with Greek indices (in contrast to

other literature).
Units: Unless stated otherwise, wesetc = G =h = 1.

Definition of Gravitational Waves: Unless stated otherwise, this work defines Grav-
itational Waves in the sense of linearized gravity. That is, in the absence of matter,
the spacetime metric g, can be decomposed into small perturbations over a fixed

Minkowski background,
g;m/(xy) =N + h;u/(xy) ’ |hyv| < 1. (0.1)

Restricting the coordinate choice to instances where the latter is true, a general dif-
feomorphism on x* transforms the metric perturbation hyy as hy, (x'*) = hyy (x*) —
d,¢y — dy&y, where ), is an arbitrary infinitesimal vector field on the spacetime man-
ifold M. The validity of equation (0.1) requires [9,5y| S |hy|. In particular, it fol-
lows that for Lorentz transformations A, it must hold that |A},“Avﬁh“ﬁ(x”)| <1,
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restricting the selection of boosts to such compliant with the setup (0.1). In the lin-

earized regime, the affine connection is defined as

T = = (3% + 3™y — hyy) 0.2)

N~

while the Riemann tensor, Ricci tensor, and Ricci scalar in this definition read

1
R*p = 0yT" g — 0gT" = 5 (ayavhaﬁ + 90" hyy — 9y0"hyg — aﬁayh"‘v) (0.3)
1
R]/H/ = _Ra]/ll/ﬂi — E (avaahay + aﬁaahyy - avaahy‘g - algayhmy) (0.4:)
R = RM, = (3"0Phyg — Oh). (0.5)

Here, h = h*,, h*, = n¥*hy,, 0* = n*#9, and [J = 9,,0". The latter linearized tensors
and scalars enable the computation of the linearized Einstein equation in vacuum,

1 1
Guw = Ryw = 51R = 5 (900" + 39" e = 33 = Dy — 103 3gha + 10 )

=0. (0.6)

To remove the gauge freedom in the definition of %, a suitable gauge condition can
be chosen. Adapting the most frequently used gauge choice in literature, i.e., the
Lorentz gauge af‘fzw = 0, with fzw = hyy — %nwh being the trace-reversed metric

perturbation, the linearized Einstein equation simplifies to
Gy = Ohyy = 0. 0.7)

Equation (0.7) establishes a wave equation for metric perturbations. Exhausting the
residual gauge freedom to describe only real physical degrees of freedom in terms
the wave equation (0.7), the Lorentz gauge is further refined into the transverse-

traceless gauge
hyo =0 h=Hh;=0, dihij =0, (0.8)

which is inherently trace-reversed and allows only two propagating degrees of free-
dom while completely saturating the gauge freedom. Throughout this work, the
term “gravitational waves” refers to the two propagating polarizations obtained

from the solution of equation (0.7) in convolution with the gauge (0.8).

Pullback: The pullback is defined through a differentiable map ¢ from manifold
N to M. It maps between co-tangent spaces, ¢* : T(’;(p)./\/l — Ty N, where for any
point p € N it acts on objects in the co-tangent space of M at ¢(p) and returning
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an object in the co-tangent space of N at p. Thereby, N can be a submanifold of
M. The pullback is denoted by -. The pullback of a covector w;, on M, w; defines
a covector on N with all free indices restricted to A/. That is, the index of wy has
to be contracted with an index of a tangent vector intrinsic to A. Fully contracted
quantities are not subject to the pullback.

Pushforward: The pushforward is, analogously to the pullback, defined via the
differentiable map ¢ between two manifolds manifold N to M. It maps between

tangent spaces, ¢ : TpM — T,y N. The pushforward is denoted by - .

Equality at .# 7: An equality at .# " is indicated by both parts of the equation being
evaluated at .# T, denoted as -| ,+. Unless a tensor or operator is explicitly defined

on ., equality at .# " requires its evaluation at this boundary.

Limit to .#1: The limit at .# " is defined as the limit from the bulk in null-like
direction towards future null infinity. In coordinates (u, 7,6, ¢) the limit is denoted

as lim, oo -.

Differential forms: An arbitrary k-form on an n-dimensional Manifold is denoted
by a bold letter, e.g., L, and defined as L = } 1<y, ., <n Lpy..py dXt Ao A dxte. For
the Lagrangian density L for instance, the corresponding n-form Lagrangian density
is given by L = €L, where € is the Levi-Civita symbol. A k-form w is closed if dw = 0
where d is the exterior derivative. A k-form is exact if there exists a (k — 1)-form v
such that w = dv.






Chapter I

Introduction

1.1 A brief History of Gravitational Waves

Without a doubt, the recent detection of the first Gravitational Wave (GW) by the
LIGO collaboration [1, 25] (see Fig. 1.1) marks one of the most profound break-
throughs in modern physics, and the beginning of a new era for astronomy. Shortly
before 10 am UTC, on September 14th, 2015, mankind’s first observation of ripples
in spacetime traversing the known Universe at the speed of light took place. The re-
ceived signal, so evidence hints, originated from a Binary Black Hole (BBH) system
that merged roughly 1.4 billion years ago with the heavier of the two orbiting black
holes (BHs) weighing in at 62 M !. The initial measurement was followed by an
manifold of detections by the LIGO and VIRGO [27] collaboration, such that, until
today, a total of 90 merging events have been recorded and analyzed over multiple
observing runs [28, 29, 30]. Astonishingly, the latter events include not only BBH
systems but also binaries consisting of one Neutron Star (NS) and one BH [31] as
well as NS-NS combinations [32] orbiting each other until their gravitational attrac-
tion causes a collision, forming a remnant BH in the process. It goes without saying
that the knowledge extracted from these detections has been invaluable to BH as
well as NS physics. For BHs, insights gained from GW data concern their mass dis-
tribution (e.g., [33, 34, 35, 36]), formation channels (e.g., [37, 38]), as well as other
properties of inspiraling BHs (e.g., [39, 40, 41]). Observing merging NS binaries as
well as BH-NS pairs, on the other hand, has led to a vast improvement in under-
standing the nature of these objects, in particular, regarding their general composi-
tion, tidal deformability, and all-determining equation of state (e.g., [42, 43, 44, 45]).
At the current stage, GW observations mainly benefit astrophysical models as well

IThe estimated weight itself was another sensation as, up to this point, the stellar-mass BH
known to researchers reached only around 30 M, [26].
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as gravity theories. However, as the collected data and its precision constantly in-
creases, GWs have the potential to uncover further mysteries of extremely compact
objects in the Universe, reaching as far as the BH horizon’s quantum properties or
the particle physics theory behind the hot and dense cores of NSs. Thus, GWs can
have a far wider-reaching impact in physics, beyond the astronomy and cosmol-
ogy community, potentially providing new attack angles on complex problems of

quantum gravity, solid state theory, or particle physics.

Yet, there is even more information extractable from gravitational radiation
besides the individual, resolved GW resulting from the merger of compact objects.
Just as LIGO found the first evidence of a GW in their data in 2015, 8 years later the
Nanograv collaboration [46] as part of the Pulsar Timing Array (PTA) consortium
[47, 48, 49, 50, 51, 46], after 15 years of data collection and analysis, reported first
evidence for a Stochastic Gravitational Waves Background (SGWB) [52, 53] based
on the observed correlation of pulsars across the sky [54]. Opposed to the clearly
resolved mergers measured by LIGO, the SGWB contains all unresolved sources of
gravitational radiation, including both astrophysical and cosmological origins, that
are either too faint or simply do not match inspiral waveforms in shape. Collectively,
they create a stochastic signal [10, 55] rich in phenomenology. Therefore, the SGWB
can serve as compelling evidence for new physics on cosmological scales, offering
a distinct avenue of exploration beyond high-energy physics at the TeV scale and

probing the early Universe prior to the Cosmic Microwave Background (CMB).

Given the, by now, overwhelming amount of data serving as evidence for the
existence of GWs, it is hard to believe that they remained a wildly debated theoret-
ical concept for decades, eluding direct observation due to their incredibly subtle
effects on the fabric of spacetime. Even before Einstein published his theory of Gen-
eral Relativity (GR) [56] in 1915, the phrase gravitational wave was first mentioned
in Henri Poincaré’s attempt to formulate a theory of gravity transmitted through
waves (onde gravifique) [57] in 1905. Ten years after Poincaré’s work, Einstein es-
tablished a completely new viewpoint of how gravity might be connected to the
construct of spacetime itself. His equations match the curvature of local space-
time on the one side, with the local energy and momentum within spacetime on
the other side. Only one year after publishing his theory, Einstein conjectured, just
as Poincaré, the existence of GWs similar to electromagnetic waves. Despite his
own works on linearizing the equations of GR in the presence of an external, time-
dependent source [58] pointing in the right direction, the conceptual differences be-
tween electromagnetism and his theory of gravity made him uncertain about his

view. To Karl Schwarzschild, he wrote in 1916:
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FIGURE 1.1: Illustration of the first GW detection, denoted by event
number GW150914, [1]. The upper sketch shows the three phases of the
BBH merger. The middle plot illustrates the gravitational waveform.
The lower panel highlights the high speeds and small distances of the
depicted process.

“Since then [November 14] I have handled Newton’s case differently, of course, accord-
ing to the final theory [the theory of General Relativity]. Thus, there are no gravitational
waves analogous to light waves. This probably is also related to the one-sidedness of the sign
of the scalar T, incidentally [this implies the nonexistence of a “gravitational dipole”].”[59]

Einstein intensified his efforts to manipulate his equations such that their form
resembles those of Maxwell’s equations for electromagnetic waves in the months
after publishing his field equations. Despite his efforts, he had to make several
approximations to move forward in his efforts that were open to criticism from
other researchers as well as Einstein himself. With a particular choice of coordi-
nate system, Einstein was able to find three types of GWs, later named longitudinal-
longitudinal, transverse-longitudinal, and transverse-transverse waves by Hermann
Weyl. Despite these preliminary results, the puzzle around the existence of GWs
was often avoided by Einstein and other scientists in the field due to the widespread
skepticism regarding the choice of coordinates. In 1922, Arthur Eddington brought
the topic back to the table by demonstrating that two out of three types of waves
Einstein found were in fact coordinate artifacts. According to Eddington’s calcula-

tions, these artificial waves could travel at speeds which are coordinate-dependent
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and arise solely due to the choice of particular “wavy” coordinates. His findings
spread distrust regarding the authenticity of the remaining transverse-transverse
waves, whose speed is constant at the speed of light for all coordinate choices. The
skepticism Eddingtons paper triggered led Einstein to investigate the issue of coor-
dinate choice together with his student Nathan Rosen in 1933. Their collaboration
culminated in a paper titled “Are there any gravitational waves?” for which no orig-
inal version exists today. Based on a letter Einstein wrote to Max Born, however, it is
very likely that Einstein and Rosen argued against their existence. To Born, Einstein
wrote in 1936:

“Together with a young collaborator [Rosen], I arrive at the interesting result that
gravitational waves do not exist, though they have been assumed a certainty to the first
approximation. This shows that the non-linear general relativistic field equations can tell us
more or, rather, limit us more than we have believed up to now.” [60]

As it is well established by now, fortunately, Einstein and Rosen had made
a mistake in their calculation, which was first pointed out by the reviewer of the
manuscript Einstein and Rosen drafted, Howard Robertson. Due to Robertson’s re-
view, the Editor of the Journal Physical Review, John T. Tate, requested Einstein to
respond to the comments. This infuriated Einstein, who sent a letter to Tate criticiz-
ing him for showing the unpublished manuscript to another expert in the field. As
Rosen departed for the Soviet Union in 1936, Einstein hired a new assistant named
Leopold Infeld, who befriended Robertson at Princeton, where Einstein had worked
since 1933. Robertson and Infeld discussed Robertson’s criticism of the Einstein-
Rosen paper. Infeld subsequently informed Einstein about the discussion shortly
before Einstein’s scheduled talk at Princeton titled “Nonexistence of gravitational
waves”. The discussion with Infeld led Einstein to conclude his presentation with,
“If you ask me whether there are gravitational waves or not, I must answer that I don’t
know. But it is a highly interesting problem” [61]. The Einstein’s paper with Rosen
was submitted to another journal, which accepted the version including the mis-
takes pointed out by Robertson. Einstein later corrected the paper, including fun-
damental changes to their proofs and renaming it “On gravitational waves”. While
Einstein’s initial skepticism regarding the existence of GWs was cured by discus-
sions with Robertson and his collaboration with Infeld, Rosen continued to believe
that they resulted from mathematical artifacts without a physical foundation. The
subject was heavily debated within the community for decades, and the confusion
about the physicality of gravitational radiation remained until the 1960s. A consen-
sus was reached when Hermann Bondi, Rainer Sachs, and others published a series
of paper [62, 63, 64, 65, 66], in which they demonstrated that GWs are in fact physical
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and a direct consequence of Einstein’s theory of GR. Their main advantage was the
usage of frame fields and expansions in the null direction. Thereby, they rigorously
showed that GWs radiate energy in null direction, towards future null infinity, %,
which implies that they are indeed physical. Although from a theoretical point of
view, Bondi and Sachs applied flawless mathematics, hesitation in the community
partially remained. Simultaneously with the analytical efforts, physicists tried to de-
velop experiments that could, once and for all, settle the discussion. It took another
20 years until the instruments were advanced enough such that Joseph Taylor and
his collaborators were able to provide the first indirect confirmation of the existence
of GWs. Together with Russell Hulse, Taylor detected the pulsar PSR J1915+1606
forming a binary system with another NS. They measured the orbital decay rate
of the period of the binary system and found it matched precisely the prediction
derived from GR when emission of gravitational radiation is assumed to be one of
the major carriers of energy away from the pulsar [67]. The ultimate confirmation of
the previous analytical and experimental results was, naturally, provided by LIGO’s

direct detection in 2015, settling the 100 year-long discussion once and for all.

Although the dispute around GWs predicted by Einstein’s theory of GR is re-
solved by the abundance of analytical and experimental evidence, GR is still some-
what peculiar compared to other established theories in physics, such as Maxwell’s
theory of electrodynamics, for instance. To blame for this outsider role is the non-
linear nature of Einstein’s field equation, which makes them incredibly hard to
solve while, at the same time, gives rise to most interesting phenomena, such as
the gravitational wave memory effect. For the few exact solutions that do exist, most
prominently the Schwarzschild and Kerr solutions [68, 69]2, spacetime contains sin-
gularities inside the BHs. For these singular points, energy density and pressure
become infinite, indicating a failure of Einstein’s theory. In principle, such singular-
ities should be addressed and resolved by quantum physics. Yet, every attempt to
incorporate the relevant “quantumness” into GR leads to deviations from Einstein’s
theory. This motivated investigations of other (modified) theories of gravity. In
fact, shortly after Einstein’s initial paper [56], Eddington tried to modify his theory,
searching for alternative theories already in 1923. Additional incentives to consider
Einstein’s GR to be somewhat incomplete come from the cosmological observation
that spacetime is expanding in an accelerated manner. The latter was first estab-
lished through the observation of accelerated expansion-caused dimming of Type Ia

supernovae luminosities [70] in 1998. The driver of this expansion was named Dark

ZNote that almost 50 year passed between the two exact solutions presented by Schwarzschild
and Kerr, demonstrating the immense complexity of finding analytical solutions to Einstein’s equa-
tion.
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Energy, indicating that its nature is completely unknown. Dark Energy is commonly
incorporated into Einstein’s equations as a cosmological constant. This particular
way of fitting cosmological observations into GR came with multiple conceptual
problems and tension [71], seeking resolution through building new models and
questioning fundamental assumptions such as the underlying theory of gravity. For
instance, while so far there have been no definite proofs, it is possible that the cos-
mological constant is in fact the wrong approach to marry the observed acceleration
with GR and, instead, the accelerated expansion constitutes an observable deviation
of gravity from Einstein’s theory of GR. The resolution of this and many more mys-
teries of gravity and its prediction is the prime objective of ongoing and future GW

and multi-messenger research initiatives.

The effort of decoding GR's intricacies and solving its equations for more and
more complex scenarios over the past 70 years has fostered the development of re-
markable mathematical tools enabling the computability of complex spacetime con-
figurations. Instances of such include the Bondi-Metzner-Sachs (BMS) framework
developed around asymptotically Minkowskian space times [63, 65], the Newman
Penrose formalism [72], Weinberg’s Soft Theorems [73], and Twistor theory [74].
With the steadily increasing availability of reliable GW measurement data, these
tools enable stringent tests of the underlying theory whilst facilitating the precision
of GW models relevant for the data analysis. Demonstrating the utility of selected
analytical tools in the context of future GW precision measurements, primarily fo-
cused on the asymptotically flat BMS formalism valid in full, non-linear GR, is one
of the major focal points of this dissertation. Thereby, an emphasis is put on the
so-called balance flux laws derived in the BMS framework acting as constraint equa-
tions for gravitational waveforms of simulated BBH mergers (applied in Chapter II
and III). An in-depth exploration of the BMS formalism and the flux laws, includ-
ing a derivation, working assumptions, and key properties, is subject of chapter
II. To fully understand the motivation leading to the set of analytical tools used in
this thesis, as well as the domain of applicability, a closer look at GRs fundamen-
tal properties, first and foremost, its nonlinearity, is crucial. The latter, as it will be
demonstrated below, gives rise to the GW memory effect, which is tightly related to

the energy flux of gravitational radiation.

1.2 Why Gravity is resentful

Einstein’s theory of gravity relies on promoting the metric tensor g, describing

the geometry of spacetime, to a dynamical variable characterizing the gravitational
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tield. It is governed by the field equations, which are the equations of motion de-
rived from the action principle and the Einstein-Hilbert action

5= [d'ry/~g(Rlg -20), (1)

where the determinant of the spacetime metric tensor g, is denoted as ¢ and the
Ricci scalar R is computed w.r.t. this spacetime metric. Throughout this thesis, the
convention i = ¢ = G = 1 is applied and one sets A = 0 3, unless otherwise stated.
With the spacetime metric g, acting as the dynamical filed, the variational principle
yields

1
G’/”/ — Ryy - ERg}u/ — 87TT’/”/ . (1.2)

The left-hand side of this equation contains at highest second derivatives of the met-
ric, i.e., terms such as gddg and dgdg. There also exist higher derivative theories
including terms with more than two derivatives and leading to similar field equa-
tions. These theories are tightly constrained by physical viability and often subject
to instabilities in the form of negative energy states. Most prominently, they can be
plagued by the Ostrogradsky instability [75, 76]. More importantly, unlike many
other theories, all terms on the left-hand side of Eq. (1.2) are at least second order in
guv- Therefore, working with Einstein’s equations, one is facing a non-linear system
of differential equations that is incredibly hard to solve unless further symmetry
assumptions are to enter the arena. In fact, due to their complexity, a new branch
of physics, called Numerical Relativity (NR), aiming for numerical solutions of this
non-linear equation, emerged.

Another way to untie the complex mesh of equations is through a perturbative ex-
pansion. Motivated by the fact that earth is solely subject to the weak field regime
of gravity due to the large separation with respect to sources of strong gravitational
fields, the spacetime metric can be expanded around the flat Minkowski metric 77,
that is ¢,y ~ 7,y + hyy. Here, the metric perturbations h,, are of small amplitude,
ie, |huw| = O(x) and @ < 1. Einstein’s field equation can be expanded correspond-

ingly, such that the left-hand side of the linearized field equations reads

N —

3Interestingly, the presence of A leads to enormous complications regarding the methodology of
the BMS framework and A = 0 embodies a necessary assumption. Where it is relevant, issues are
highlighted and appropriate literature is referenced.
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The (flat space) d’ Alembert operator is denoted as [1 = ##"d,,d, and the diffeomor-
phism invariance of GR is translated to a gauge transformation that leaves Eq. (1.3)
invariant, namely h,, — hyy + 9,8y + dv¢y. The gauge can be used to eliminate
unphysical degrees of freedom from the metric perturbations %y, leaving only 6
physical ones. One can easily show that 2 are scalar modes, 2 are incorporated in
a transverse vector, and the final two are encoded as a transverse-traceless tensor
modes. Of particular interest here is the transverse-traceless (TT) part of the field

equation, which determines the time evolution of the tensor modes,
TT TT
th = —167'(Tw/ . (1.4)

It is the only part of the Einstein equations involving tensor modes and, coinciden-
tally, also the only part involving time derivatives. Thus, the transverse-traceless
part of the metric perturbation h,, includes the only truly dynamical and gauge-
invariant degrees of freedom. The latter corresponds to the two polarizations of the
GW. The notion of “wave” already implies that Eq. (1.4) resembles the wave equa-
tion in vacuum. The same equation can be derived straightforwardly for the trace-
reversed part hyy = hyy — 377,01 in combination with the Lorentz gauge 0%h,,, = 0.
Interestingly, while the tensor modes satisfy the wave equation in the absence of any
matter or stress, i.e., T,y = 0, the other components of the metric perturbations can

be set to zero in vacuum by an appropriate gauge choice.

The linearized theory was long believed to be satisfactory for observers far
away from the source. Indeed, the linearized Einstein equations well describe GWs
in vacuum and the presence of matter. It took until 1990 to change this perception*:
It was shown that there is a non-negligible contribution at second order in /1, which
leads to a permanent displacement of test masses in a laser interferometer after it has
been traversed by gravitational radiation [78, 79]. The latter overruled the assump-
tion that a strictly linearized treatment of GR suffices for gravitational radiation at
a detectable level. This displacement becoming apparent at second order in the
metric perturbation is, thus, a direct manifestation of the nonlinearity of Einstein’s
equations and now known as the non-linear gravitational wave memory effect, or null
memory. There exists also another type of memory effect which is generally subdom-
inant compared to the non-linear memory [78, 80]. It is called the linear or ordinary
memory and associated with unbound compact objects of a system and the merger’s
remnant kick velocity, for instance a binary on a hyperbolic orbit [81]. In its linear
form, the memory was already discovered 20 years prior, in the 1970s [77, 82, 83].

It is a product of the linearized theory and appears as a result of a changing second

4A first indication of relevant contribution at second order was made in [77].
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(time) derivative of the source’s quadrupole moment. Perhaps more intuitively, this
overall change in the second time derivative is equivalent to an overall change in the
linear momenta of the compact objects involved in the merger. Until the discovery
of the non-linear memory, it was commonly believed that due to the negligible lin-
ear momentum radiated away by typical GW sources, the (linear) memory would
not be observable. This point of view, however, changed with the introduction of its
non-linear counterpart, proven to be largely dominant throughout merging events
[78]. Both types of memory have been subject to broad investigations approaching
the subject from various angles, among others [79, 84, 85, 86, 87, 88, 89]. One of the
most frequently used approaches to a concrete computation of the memory based on
a GW strain relies on the BMS framework. It associates the memory with symmetry
transformations, resulting in flux conservation laws that relate non-linear memory
to energy flux sent away from the spacetime bulk to null infinity [63, 65, 90, 91]. The
approach has been used in the context of modified gravity theories as well, where
BMS (flux) laws have been derived for Brans-Dicke [92, 93, 94] and Chern-Simions
theory [95, 96].

Generally, each source of GWs will carry some form of GW memory, which is
easiest expressed as at least one of the polarizations remaining permanently altered
due to the passage of gravitational radiation, or

AR = tEI—Pw hax () — tgr—noo By (t) . (1.5)
The two polarizations +, x thereby account for the two dynamical degrees of free-
dom of the transverse-traceless metric perturbation hPTWT . For the h, the memory is
sketched in Figure 1.2: When a GW hits the detector consisting of freely falling test
masses, it induces oscillatory deformations from which a GW signal can be recon-
structed. After the wave has passed through, the test masses settle into the initial
state. This process can be readily computed in a fully linearized theory as it was
outlined above, finding only a negligible permanent displacement due to the linear
memory. Adding the second order in /1, one finds that after the oscillations decay
off, a significant permanent deformation remains. The GW that has passed through
the idealized detector has left a (permanent) “memory” of the gravitational radia-
tion. Therefore, it is fair to say that gravity is indeed resentful.

So far, this phenomena has not been confirmed experimentally as the current ground-
based detectors respond to GWs with timescales much shorter than that of typical
memory signals. They also lack the capability of accumulating or storing memory

as their test masses are not truly free. Instead, their internal hardware is designed
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FIGURE 1.2: Simulated gravitational waveform with (right) and with-
out (left) memory. The top plot depicts the strain time series. The bot-
tom plot sketches the deformation of test masses before and after the
GW has passed an ideal detector.

to force the test masses back into their equilibrium shape. Due to its truly freely-
floating test masses, the Laser Interferometer Space Antenna (LISA) space-based
instrument [17] could maintain a permanent displacement, resulting in promising

prospects of detecting the memory of supermassive binaries [8].

For the exact analytical expressions of the memory contributions, there exist
many versions. In Sections 2.1 to 2.4 of this thesis, the memory and its derivation
in the BMS framework are presented in more detail. In this paragraph, to illustrate
the quadratic strain dependence of the non-linear memory, the memory definitions
from [87] are adapted featuring direct solutions of wave Eq. (1.4) in terms of the
trace-reversed strain /i, in Lorentz gauge as well as the TT part.

Before starting with the non-linear memory, consider first the asymptotic nature of
the memory: It was mentioned before that this contribution is sourced by the energy
flux of the GWs passing a GW detector. Naturally, the detector is located far away
from the original source, so the energy flux and thus the memory will decay to
some degree on their way to the detector. To account for this decay, the following
notation is adapted (throughout the rest of this work): At .# 7, the asymptotic strain
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polarizations will be defined as

hS = lim rhy, hS, = lim rhy . (1.6)

r—00 r—0o0

The proportionality in r thereby follows form the asymptotic properties of GR and
is rigrously derived in Chapter II. The rule (1.6) can be applied when asymptotic
strains need to be converted to finite distances. In fact, many derivations of the
memory and, in particular, the mentioned balance flux laws in the BMS framework
heavily rely on asymptotic quantities (as will be thoroughly explained in Section
2.1). However, the actual detectors are not infinitely far away from the source but
only a large finite distance. Hence, the rescaling is predominantly applied when
dealing with actual detection data. For instance, the GW energy per unit time and
angle is given by

o~ o U+ 20 = 8 T lhb) Vom0
dtdQ 167 ‘T <)) = 167 & &, emPerm) —2Yom -2, .

where the right-hand side is scaled to a finite distance r, which, for a real measure-
ment, would be replaced with the estimated luminosity distance Dy . The average (.)
can be understood as being computed over a spacetime region much larger than the
wavelength of the GWs involved. The harmonic strain modes in the latter were ex-
panded in terms of spin-weighted spherical harmonics. The strain is of spin weight
—2, which uniquely fixes its behavior under U(1) gauge transformations. For de-
tails on this categorization, see [2] or Section 2.2.3.

With definitions (1.6) and (1.7) at hand, the non-linear memory can be directly ob-
tained from the Einstein equation with some slight modifications. In contrast to
Eq. (1.3), the Einstein tenor G, is now expanded to second order in ;. The non-
linear terms are subsequently shifted to the energy stress tensor. Then, applying the

Lorentz gauge for the trace-reversed part of hﬂV' one obtains
DE#V — _167-(1—’/“/ 2 (1.8)

where 7, depends on the stress-energy tensor T, and other terms quadratic in
hyy, including a term proportional to the energy of GWs. In the next Section, it
is demonstrated that in spacetimes with a dynamical gravitational field, i.e., some
form of gravitational radiation present, the inclusion of the GW energy term causes
conventional energy conservation approaches to fail for Einstein’s gravity. At this
point, however, the latter can be ignored and the Green’s function [J~! can be ap-
plied to all terms in 7, on the right-hand side of Eq. (1.8). For each term in 7, this
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yields a correction to the GW strain and, in particular, for the term proportional to
the GW energy, one finds [87]

IT 4 [u dEGW ”j”k TT
A @) ) .
5h]k r /—oo dt /d dtdO 1 — TZ]N] (1 9)

The contribution was reduced to its transverse-traceless part again. In Eq. (1.9), the
vector Nj; points from the source to the observer, and #; is a unit radial vector. The
factor involving these quantities accounts for the radial dependence of radiation
emitted by a binary. The time component u = t — r is simply the retarded time.
Eq. (1.9) represents the non-linear memory contribution as derived directly from
Einstein’s equations by including non-linear terms. In a similar fashion, the term
proportional to the stress-energy tensor Ty, in 7, can be solved. For that particular
calculation, all non-linear terms can be neglected, reducing the field equation to the

known
Ohyy = —167Tyy . (1.10)

This equation can be meaningfully solved by choosing a particular instance for Tj,,.
For illustrative purposes, consider the stress-energy tensor to describe N gravita-
tionally unbound particles with masses M; and constant velocities v;. Solving the

tield equation and projecting out the transverse-traceless part, as above, the linear

memory for this particular system is described by the solution of Eq. (1.10) given by
N . ok
ARST = ( lim — lim ) p— [ i
1

[83]
TT
] . (1.11)
t—4o00 t——o0 g /1_012

Here, again, N; points in the direction of the source. The equation for the linear
memory demonstrates the correlation to velocities and masses involved in the stud-
ied system. Generally, however, there are many interpretations of the latter [87].
To prevent spoiling the reader’s impartiality, a more concrete interpretation is not
given at this stage. Other formulations of Eq. (1.11) in the context of BBH mergers
are presented to Sections 2.4.

In conclusion, both linear and non-linear memory can be directly extracted from
solutions of Einstein’s field equations. By now, it is established that for the most
relevant cases, i.e., binary NS and BH mergers, the non-linear contribution far ex-
ceeds the linear memory. Coincidentally, as aforementioned, it is also exactly this
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component that plays a significant role in the conservation laws that can be formu-
lated in GR. In the subsequent Subsection, a different perspective on the non-linear
terms encapsulating the GW energy is taken, demonstrating the fundamental issue
faced when trying to formulate conservation laws for dynamical spacetimes and

answering the question of why conventional approaches cannot resolve it.

Before continuing on that line, it is instructive to highlight another formula-
tion of gravitational memory that is often overlooked in the community but finds
its basic motivation in the definition of energy and has been invaluable to prop-
erly distinguish between oscillatory and non-oscillatory features of the memory.
This so-called Isaacson approach [97, 98] relies on the separation of scales in metric
perturbation and is thoroughly addressed in multiple standard textbooks on GWs
and gravity [99, 100, 101]. In principle, Isaacson’s approach is simple, yet power-
ful: One requires the separation between slowly varying background perturbations
with frequency f; and high-frequency perturbations at frequency fr (GWs), where
fr < fu. For GR on a four-dimensional manifold M with a Lorentzian metric g,

one thus writes
Qv = gfw + h{jv, (1.12)

where §5V corresponds to the slowly varying background and h%/ encodes the high
frequency GW content. This decomposition manifests the separation of physical
scales and does not depend on a specific coordinate choice. Together with the as-
sumption that metric perturbations are of small amplitude \h%/ = O(a), where
a < 1, one finds two perturbation parameters in which the equations of motion
can be expanded in, namely « and f1 / fy. Thereby, gﬁv =0(1), 8§]§V < O(fr) and
ohil, = O(afy). Without providing any details (see [99, 100, 101] if interested), one
can jump right ahead and write down the leading order set of equations (assuming

the absence of matter, i.e., the full equation of motion reads Ry, = 0), arriving at

oRwg"] == (o Rwlg" 1)), (1.13)
@Rw[g" ] =0, (1.14)

where the notation (5)O[A, B] is read as the expanded operator O at Nth order in
perturbation field B and computed for background A. With this notation, it is clear
that Eq. (1.14) simply denotes the leading-order GW propagation equation. Eq.
(1.13), on the other hand, establishes a leading-order, low-frequency equation re-

lating the background curvature to the backreaction of the coarse-grained operator
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(2)Ruv). In fact, the right-hand side of Eq. (1.13) is proportional to the energy-
momentum tensor of GWs, while the left-hand side is determined by the leading-
order GW operator that contributes to the low-frequency equations. As it is shown,
for instance, in [102], Eq. (1.13) directly relates to the memory definition given in Eq.
(1.9). This result is somehow remarkable as it is obtained purely from the separation
argument in conjunction with an expansion of the equations of motion in terms of
the relevant small scales. Yet, a plentiful of information is encoded in the governing
equations. For this dissertation, Isaacson’s approach is outlined for completeness
and does not find any application here. It should be mentioned, however, that a
comparison of its results with the other approaches to the memory (e.g., outlined in

Section 2.4) is subject to ongoing projects involving the author of this thesis.

Finally, teasing what will be more closely derived in Section 2.3, it is worth
pointing out that the memory obtains a clear interpretation within the BMS frame-
work. The latter is built based on the BMS metric, parametrizing the group of
asymptotically flat metrics and giving rise to the BMS symmetry group at null in-
finity .#*. Applying a version of Noether’s theorem, non-conservation laws can be
derived stating how much the passing gravitational radiation changes each charge
corresponding to a symmetry generator in the BMS group, respectively. Of partic-
ular interest is thereby the supertranslation subgroup of the BMS group associated
with angle-dependent spacetime translations. In words, these flux laws may be ex-

pressed as
GW strain = change in angle-dependent mass + flux of anlge-dependent energy .

While the change in the angle-dependent mass is nothing else but a change in the
mass multipole moment (i.e., the very definition of gravitational radiation, see Chap-
ter 36 and 37 in [103]), this equation indicates that the GW strain is also sourced by
an angle-dependent energy flux. Therefore, the memory, defined as the net change
in GW strain (as in Eq. (1.5)), is sourced by two contributions resulting from the
angle-dependent mass and energy, respectively. These contributions are directly re-
lated to the linear and non-linear memory as shown by [88]. The former is sourced
by systems with unbound masses (massive bodies approaching timelike infinity),
such as supernovae events or hyperbolic BHs, while the latter is produced when
null radiation escapes towards .#* °.

The interpretation of the memory in terms of non-conservation laws, i.e., flux laws

SFor a more detailed elaboration including a brief mathematical fundament, the reader is referred
to [104].
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for the change of charges corresponding to the symmetries present at .# ", also al-
lows for the definition of BMS vacuum transitions [105]. Each vacuum state thereby
describes the instance before or after the passage of a GW has sourced a non-trivial
flux, e.g., an asymptotically flat Schwarzschild solution defined solely by its total
mass. Passing gravitational radiation now changes this vacuum state by altering
total mass and sourcing an energy flux across .# . The transformation character-
izing the change of vacuum states is related to the supertranslation subgroup and
thus acquires an angular dependence. The difference in the charge quantifying the
corresponding initial and final vacuum state is proportional to the GW memory and

can be explicitly related to gravitational strain, see Section 2.3 and [105].

1.3 To be conserved or not conserved

Unlike with Maxwell’s theory of electromagnetism, one typically does not encounter
full GR in a perceivable way on a daily basis. Even for astrophysical and cosmologi-
cal purposes, it is mostly satisfactory to consider static spacetimes such as that of an
isolated BH or other compact objects. In those cases, energy (mass and angular mo-
mentum) conservation is well-defined and conserved quantities for GR are straight-
forwardly derived. However, mixing some gravitational radiation into the relevant
spacetime, this picture changes drastically. The reason for that resides, again, in
GR'’s self-interactions as well as its fundamental relation to the (background) ge-
ometry of spacetime, making it resistant against the well-established techniques of
(Quantum) Field Theory (QFT).

For a given Lagrangian field theory in an arbitrary background, the first quantity to
compute when searching for energy conservation is the stress-energy tensor. In the
context of the action principle, the latter is computed via

T — 2 65 2 (v/—8%) (1.15)
V=8 5g]/ll/ vV —8 58;41/ ’

and it follows that
vyTﬂéﬁ =0. (1.16)

The latter indicates a conservation of momentum and energy, and, indeed, the stress-
energy tensor corresponds to the conserved Noether current associated with space-
time translations. What has purposely not been indicated in Eq. (1.15) is that the
Lagrangian .Z describes the field theory only on top of the background and not the
background itself. GR, however, describes exactly that background, and thus, Eq.
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(1.15) cannot include gravitational energy. This raises the question whether a “full”
stress-energy tensor for GR, including gravitational energy, can generally be defined
in the first place.

Eq. (1.2) might mislead to the conclusion that this particular stress-energy tensor on
the right-hand side includes gravitational energy. This is not the case and one rather
interprets Einstein’s equations in the context of “extra” matter fields being present,
i.e., as all energy having mass, and all mass acting gravitationally. However, a closer
look at the left-hand side of (1.2) reveals that, gravitational energy is included in Ein-
stein’s field equation; however, as written down in (1.2), it is not yet apparent. The
secret lies, as above, in the nonlinearity of the field equation, which translates to
the fact that GWs interact with each other. In other words, the gravitational field
self-interacts. It is the total stress-energy that sources spacetime curvature, so if the
gravitational field carries stress-energy, it will source itself. This is in stark contrast
to many other well-known field theories, such as, for instance, Maxwell’s (linear)
theory of electrodynamics.

The nonlinearity of full GR is hidden in G,,. For the full theory, it is generally
impossible to dismantle the Einstein tensor to extract a gravitational energy ten-
sor TP%,W. However, sufficiently far from the source, i.e., when the metric is nearly
Minkowskian, perturbation theory can be applied. In this region, let the metric
again be approximated by g, = #,v + hyy and |hyy| < 1. In this approximation,
the full Einstein tensor is non-linear in f,, and, by virtue of Eq. (1.2), proportional
to the matter stress-energy tensor T;ﬁ/atter. To obtain Einstein’s equation for the back-
ground, i.e., an equation relating the change of the background due to the presence
of gravitational energy and matter, G, is separated into linearized and non-linear
(in hy,y) parts. The difference between the latter two,

bkg)

1
tyy — __g;E(C;VU __(;ﬂV (1.17)

is symmetric, but not generally covariant. This is due to the linearized Einstein ten-
sofr, Gg}jg, being a coordinate-dependent quantity. As a result, ¢, defines a pseudo-
tensor that is non-linear in h;, but contains, as G, at most two derivatives. Given

this definition, the background equation reads

G;ljg _ SH(Tl/rlr:/atter + tVV) — SﬂT;E?/t ) (1.18)

As aimed, the total stress-energy tensor, T;,?,t, now contains two contributions, mat-
ter and gravitational energy.
In this particular case of an observer being located far away from the observer, the

gravitational energy is essentially given by the GW energy, i.e., t,, — TEVW. The
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latter is obtained when all terms higher than second order in h,, are neglected.
By selecting out the (gauge invariant) transverse-traceless part of 1, the effective

stress-energy tensor of GW can be computed as [103]

T = ﬁ (hagh™ TP y) (1.19)
where (. ) indicate an average over a region of space much larger than a wavelength
of the GW. In the vacuum, TP,GVW is divergence-free and so is Ty;'. By explicitly writ-
ing out Tﬁ,w in Eq. (1.18) for the effective GW stress-energy tensor t,;,, one obtains a
definition of a total stress-energy tensor in the (almost) linearized theory, which re-
ceives a partial contribution from the energy of gravitational radiation. Naively, one
could use Eq. (1.18) in combination with (1.19) to argue that a valid stress-energy
tensor can be computed for GR, which implies the definition of a conserved quan-
tity, in particular since V,T% = 0. In fact, for any theory with a locally conserved
stress-energy tensor Tj,, in a background spacetime with at least one Killing field
k¥, a locally conserved current can be defined as J# = T# k". Integrating the latter
over an admissible Cauchy surface X then yields the conserved quantity associated
to kH©.

One of the main problems in GR, however, as it was emphasized above by the aver-
aging in Eq. (1.19), is that the stress-energy tensor of GWs cannot be localized and is
only meaningful after averaging over several wavelengths and periods. More gen-
erally, all diffeomorphism covariant theories, including GR, fail to define a notion of
local stress-energy. Thus, even when Killing fields are present, conserved quantities
and fluxes cannot be defined in the “traditional” sense. A well-known exception
to this is the ADM mass, momentum, and angular momentum [106, 107], which
are, however, derived at spatial infinity where gravitational radiation is never to be
seen. A version of these can be obtained for any diffeomorphism covariant theory
that admits a spacelike slice X that can be extended to spatial infinity in a suitable
manner with a vector field ¢# acting as the time evolution and representing a suit-
able infinitesimal asymptotic symmetry [108].

The latter suggests that when restricting to a particular domain or limit, the issue
following the notion of a local stress-energy tensor may be somehow circumvented.
Indeed, there is another, perhaps more practical, limit for which a conservation law
can be formulated in GR: For a lot of observationally interesting applications, espe-

cially in an astrophysical context, gravitational radiation is received long after the

®Depending on the orientation of the Cauchy surface, one can interpret the integral [; J*d%, as
a flux through X. This interpretation holds true in particular for timelike or null Cauchy surfaces.
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triggering event. This means not only that the detectors picking up the signal are lo-
cated very far away from the bulk spacetime at whose origin the triggering event is
placed, but also that the receiver of the signal stays mostly ignorant of what has hap-
pened in the bulk. An exception is constituted by the information that is extractable
purely from the received signal. Wrapping these assumptions into a mathemati-
cal language, it is reasonable to assume that space- and ground-based gravitational
wave interferometers act as observers located at future null infinity . in asymptot-
ically flat spacetimes’. Restricting to these types of space times is already enough to
advance in the question of conserved quantities. In fact, in the 1960s, a definition of
mass-energy and radiated energy at .# " was first derived by Trautman and Bondi
[63, 109]. Both arrived at their respective definitions by studying the behavior of the
metric in the asymptotic limit. Over the following years, multiple attempts to re-
produce or re-derive similar conserved quantities based on asymptotic symmetries
at .#* lead to inequivalent results®, leaving an unsatisfactory gap in literature. In
the 1980s, the pioneering work by Abhay Ashtekar and others [111, 112, 113] filled
this gap by obtaining a general, fully satisfactory definition of conserved quantities
derived from the proper derivation of radiative modes in combination with relevant
symmetry transformations at future null infinity. While Ashtekar and collaborators
made heavy use of the notion of radiative phase space, the same result was obtained
almost 20 years later, relying fully on a Hamiltonian perspective generally applica-
ble to arbitrary diffeomorphism covariant theories by Robert Wald and collaborators
[108]. Regarding conservation laws in spacetimes including gravitational radiation,

the latter two approaches, to date, form the literature benchmark.

Evidently, gravitational radiation plays a significant role in the dilemma pre-
sented by the formulation of conserved quantities in GR. In particular, in [111] an
emphasis is put on the connection between the asymptotic symmetries of physical
spacetimes (and their corresponding conserved quantities) and the radiative phase
space at .#*. This radiation dependence arises rather intuitively as GWs are the
only form in which gravitational energy can be transported across spacetime with-
out moving the sourcing matter itself. Analogously, Maxwell’s theory profits from
electromagnetic waves in this regard. Thus, to define conserved quantities in GR in
the presence of gravitational radiation, it is pivotal to discern the dynamical compo-
nents of the gravitational field that are due to moving celestial bodies or due to the

“actual” radiation. As it turned out, the latter posed a non-trivial task and required

7 A formal definition of these type of spacetimes and the delimitation of those from asymptotically
Minkowskian spacetimes is discussed in Section 2.1.
8Most prominently the so-called linkage flux [110].
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a large body of the prerequisite methodology crucial to the success of Ashtekar and
collaborators” work of the 1980s.

1.4 Radiation being problematic

To briefly illustrate the issue of properly defining gravitational radiation and to set
the mood for chapter II, the less complex but structurally similar problem can be
considered for Maxwell’s theory (see also [2]). To start, once consider the follow-
ing, simple exercise: Given an confined electromagnetic source J* := (p, )T which
generates a vector potential A¥, an observer is tasked to locally determine whether
this source generates a radiation field, or whether they are simply located within the
reach of a time-dependent electromagnetic source as sketched in Figure 1.3. Thanks
to Maxwell’s well-understood theory of electromagnetism, for an observer located
at 7, one can immediately write down the vector potential A* as a function of time

and space as

! 3
AF(F) = %T/Qd?’x’/mdt’%é (f +]|Z—%| 1) . (1.20)
Despite exaggerating with the temporal integration domain, based on equation 1.20
alone, one cannot determine whether or not the vector potential has radiative con-
tributions . The latter is fundamentally encapsulated in J¥(t,X), which may de-
scribe electromagnetic currents as well as radiating contributions. Even if the ra-
diative contribution to J#(t,X) is monochromatic, i.e., the simplest form of radia-
tive contribution, the entanglement between the static and radiative part remains
intact. To solve this issue, one needs to develop an approach that suppresses one
of the parts in J¥(t,X) = J& (t ¥) + Jii, () such that the respective other can be
faithfully measured. An immediate idea that has been successful in many related
problems is to consider the system at different distances from the source. After all,
many problems in electromagnetism can only be analytically solved within a cer-
tain domain of validity that is determined by a scale appearing in the problem. In
this case, the scale corresponds to the wavelength of the monochromatic radiation,
]fad(t, X) ~ jg(f)ei‘”t, ie, A = 27 /w. Assuming a small spatial extent, d < r, of the
source and d < A at all points in space and time, one can differentiate between two
domains: i) very close to the source, r < A, and ii) far away from it, A < r. For
both limits, Eq. (1.20) can be expanded to obtain different contributions attached to
powers of 1/7.

For Maxwell’s theory, it is well-established that radiative contributions decay as

1/r; therefore, searching for radiation in A¥, one simply isolates the relevant terms



20 Chapter I. Introduction

FIGURE 1.3: An electromagnetic source [/ with finite, characteristic
spatial extent d producing a field A¥ [2]. The vector 7 indicates the
position of the observer.

in the expansion. As it turns out, this is only possible far away from the source,
as otherwise, one ends up expanding a quasi-static (~ e~*“!) harmonic series in
1/7'*1 where ¢ denotes the spherical harmonic expansion coefficient. Even with
the knowledge of the correct power in 1/7 supposedly associated with radiation,
the expansion of Eq. (1.20) far away from the source (neglecting contributions of
order O(1/r?) and higher),

1 eiw(r=1)

lim A*(¥t) = —
r—r’>>A ( ) 47 r

/Q &3’ () e 4 Al (7), (1.21)

still contains a static contribution, which cannot be disentangled by a local measure-
ment. The efforts of expanding, however, are not in vain as Eq. (1.21) now clearly
exhibits a crucial difference between the contributions: the radiative part decays
as 1/r while the coulombic part (i.e., Ji,,) decays faster (namely as 1/7?). Given
this distinction, there are multiple approaches to suppressing the coulombic part far
away from the source. It is clear, however, that this limit has to be taken inevitably,
otherwise a separation of contributions cannot be enforced. It remains to clarify
how, in the large-r limit, one can avoid erasing the radiative information. Here,

integration seems to be a straightforward solution.

With this mindset, one is reminded of another key feature of radiation in elec-
tromagnetism, that is, in contrast to coulombic sources, it carries a flux of energy
(and momentum). As delineated above, this flux has far-reaching implications, in-
cluding, among others, memory effects, and it provides valuable information about
the dynamics of the source of radiation. The flux marks a fundamental property
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of the electromagnetic field and is commonly described by the Poynting vector
S=Ex E, the cross product of electric and magnetic field, and its associated sur-
face integral. It is crucial, however, to remember that the Poynting vector is not a
Lorentz invariant and highly depends on the choice of reference frame. For instance,
from the point of view of a boosted observer in the vicinity of a static point charge,
a current is present. The latter, in turn, produces both an electric and magnetic field,
yet the only source present is a static charge. Even when computing the actual flux
by integrating S over a given surface, the issue of Lorentz invariance remains, and
while a static observer will measure zero flux, a boosted one finds a non-vanishing
integral despite being close to a point charge. Thus, for a local measurement alone,
it is not suitable to determine the presence of radiation via the Poynting vector and
its associated flux.

Although the Poynting flux is Lorentz dependent, one can demonstrate that, in the
right limit r — oo, it is only the true radiative contribution that survives and con-
tributes meaningfully to its flux. Leaving the conceptual issues of how to define the
right limit and how Lorentz transformations or area elements behave in this limit
aside for now, one can argue as follows: For a static source the multipole expansion’s
lowest contributions are the monopole for the electric field, and the dipole for the
magnetic field (as, on physical grounds, magnetic monopoles cannot exist). Their
corresponding scaling is 1/7 and 1/72, respectively. The lowest expansion order is
independent of any frame-related transformation. That is, one cannot create mag-
netic monopoles by transforming our coordinate system. Thus, when combining the
electric and magnetic static field in the pointing vector, the resulting expression falls
off at least with 1/r" with n > 2. In the Poynting flux integral (over a 2-sphere), the
static source therefore yields an expression scaling at least as 7 with € < 0, resulting
in a vanishing integral when r — oco. For the radiative part of the source, it was al-
ready established that electromagnetic radiation decays as 1/r. Combining electric
and magnetic radiaton fields therefore yields a scaling of 1/r? such that the flux in-
tegral is constant in r and non-vanishing in the infinite-distance limit. In conclusion,

the Poynting flux in the limit r — oo reads

r—00 r—00

lim (Erad + Estat) x (B}ad 4 B’stat) 20 = lim ¢ Eog x Bgd?Q,  (1.22)
G2 G2

and, thus, is able to isolate radiative contributions to the vector potential A¥. There-
fore, the initial question can now be answered affirmatively. Located infinitely far
away from the source, an observer can, in fact, single out the radiative field for a

given source.

As aforementioned, in this conceptual illustration, many technical details are
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neglected. For instance, it is not per se clear why the limit of » — oo is a good choice
for isolating radiation or whether it is unique in this sense. Depending on the model
of spacetime under consideration, there is a manifold of “infinities” one could arrive
at by taking the large-r limit. Moreover, this limit usually involves the appearance of
divergences that have to be cautiously handled. For an in-depth treatment of these
subtleties, the reader is referred to [2] and the soon-to-be-finished updated version
thereof that goes even further into detail. The main takeaway message of this il-
lustration is that, conceptually, it is not trivial to differentiate between what part
of a measured field value of a given theory carrying radiative degrees of freedom
can be associated with physical radiation, even for the well-understood Maxwell’s
theory. Naturally, the issues with GR, being arguably the more complex theory, are
even more severe. To be overcome, Penrose, Newman, and others had to develop
a completely new framework (e.g., [72]) to study the independent components of
the Weyl-tensor in GR. Newman and Penrose cast these components into complex
scalars and, with the interpretation of Szekeres [114], linked them to different types
of gravitational radiation. Just as for the example above, one key ingredient of their
identification was the scaling of the different scalars in terms of powers of 1/r. This
resulted in the so-called Peeling Theorem [2, 115] describing the asymptotic behavior
of the Weyl tensor as one approaches null infinity, see Section 2.1.4. In the illustration
above, a similar moral has been applied, and, in fact, a Peeling Theorem for electro-
magnetism can be derived analogously. In the Chapter II, the necessary technical
tools will be introduced to rigorously derive the radiative degrees of freedom in GR
far away from the source and connect them to components of the (asymptotic) Weyl
tensor. In this context, peeling in GR and Maxwell’s theory of electromagnetismis

discussed in more detail.

1.5 Drowning in Gravitational Waves

In the historical discussion above, one important aspect of GWs has been neglected
so far: Just as earth’s ocean does not only host single waves propagating from
coast to coast but instead accommodates a variety of individual waves of differ-
ent sizes interfering which each other to form a chaotic conglomerate, spacetime is
not traversed by sporadic GW events either. Instead, there are, in fact, many sources
causing the emission of GWs throughout cosmic history and reaching humanity’s
detectors just now. However, in contrast to the well-known “loud” waves from
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BBH mergers, these signals cannot be resolved by current instruments, thus estab-
lishing an unresolved background of gravitational radiation, the so-called Stochas-
tic Gravitational Wave Background mentioned at the very beginning of this intro-
duction. More technically, the SGWB refers to a random, persistent GW signal
generated by the superposition of a large number of independent and unresolved
sources—cosmological or astrophysical in origin—analogous in spirit to the cosmic
microwave background, but probing the spacetime metric itself rather than the pho-
ton field. The concept of a GW background was first introduced in the context of
cosmological models. The earliest discussions can be traced back to Starobinsky
in 1979, who demonstrated that quantum fluctuations of the metric during an in-
flationary epoch could give rise to a relic gravitational radiation spectrum [116].
These primordial tensor perturbations, stretched to cosmological scales by inflation,
form a stochastic background whose statistical properties reflect the dynamics of
the early Universe. Shortly thereafter, Rubakov and collaborators [117] (see also
[118]) offered complementary derivations, confirming that the amplification of vac-
uum fluctuations during inflation generically produces GWs with an approximately
scale-invariant power spectrum. In addition to its primordial origin, the SGWB may
also arise from a variety of astrophysical mechanisms, such as the cumulative signal
from binary black hole mergers throughout cosmic history or core-collapse super-

novae for instance. More details are provided in Section 4.2.

The SGWB is typically characterized by its dimensionless spectral energy den-
sity

Qaw(f) = {}jﬁﬁv} , (1.29)
where p, is the critical energy density and f denotes the observed frequency. The
spectral density is determined by the sourcing process of the SGWB and can, thus,
become arbitrarily complex. Some instances of (Qgw most relevant to this thesis
are outlined in Sections 4.2 and 4.3. Qgw further constitutes the quantity that one
wishes to constrain or even measure, ideally over a range of frequencies.

So far, however, this endeavor has been without result for the ground-based inter-
ferometers. PTAs recently published data indicating the first sign of a gravitational
background. Yet, their data is neither conclusive nor predicts Qgw frequency de-
pendence [52] due to their particular analysis technique, see Section 4.4.1. Nonethe-
less, it marks the onset of a new era in GW astronomy: A detection of the SGWB
would constitute a profound probe of high-energy astrophysics and early Universe
cosmology, given its accumulation of early- and late-time signatures. In particu-

lar, it offers insights inaccessible through electromagnetic observations limited by
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the time of recombination in the early Universe. In this dissertation, Chapter IV
extensively reviews the SGWB as well as selected astrophysical and cosmological
contributions. For readers predominantly interested in this field of GW research, it

is recommended to directly skip to this part of the thesis.

1.6 Outline

The introductory discussion above highlights the complications associated with the
identification, definition and characterizations of radiation in GR. Fortunately, by
the time the first GW was detected in 2015, the majority of conceptual issues were
overcome, ultimately resulting in this measurement. Yet, there is an ensemble of
residual challenges subject to cutting-edge research in gravitational physics. Most
prominently, this includes efforts of extending the balance flux laws and peeling
theorems to more general setups that either include another version of gravity, e.g.,
[92, 93, 94, 95, 96, 119], or modify the constraints on spacetime, e.g., [120, 121, 122,
123,124]. In fact, only very recently were the flux laws generalized for binary events
in an asymptotically de Sitter-like spacetime [121].

On the other hand, the recent discovery that the gravitational memory is related to
the Weinberg’s Soft Theorems and the BMS symmetries [125, 126, 105, 127] started a
completely new research initiative focusing on flat space holography [128, 129, 130,
131, 132] (see, among others, [133, 134, 135, 136, 137] for major preceding works).
Another large class of publications deals with measurement-related questions, such
as, for instance, the testing and constraining of theories based on present-day and
future GW detector data. In particular memory detection prospects are considered
in, e.g., [8, 138, 139, 140, 141, 142], while predictions and implications regarding a
GWs Quasinormal Mode (QNM) content are analyzed in, e.g., [143, 144, 145, 146,
147,148, 149, 150, 151, 152]. With prospect of continuously increasing data quality
from existing and futures space- and ground-based instruments, effects like higher
harmonics [153] and other high-precision-effect-related features, e.g., [7, 154, 155,
156, 157, 158, 159, 160], gain great attention in recent literature. Furthermore, many
resources are invested in improving the quality (and quantity) of simulated wave-
forms suitable for matched-filtering real detector data, e.g., [4, 161, 162, 163, 164]
among many other works (see also [165, 166, 167, 168, 169, 170, 171]).

Beyond the resolved waveform detection efforts, a large group of researchers is cur-
rently involved in the analysis of (future) data from the unresolved GW sources,
i.e., the SGWB. Instances include [22, 172, 173, 174, 175, 176, 177], and in particular
the most recent results of the PTA consortium [52, 53]. Combining both resolved
and unresolved GW sources, researchers involved in the LISA-Global-Fit initiative
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currently work on a versatile data processing pipeline to correctly distinguish and
detect different sources of GW that are mixed together into final instrument’s data
output, see for instance [178, 179, 180, 181].

The goal of this thesis is to provide an comprehensive study of tools and tech-
niques applied to present-day and future interferometer data extracting valuable in-
sights across the full spectrum of GW signals, i.e., resolved (Chapter II and III) and
unresolved (Chapter IV) GW measurements. This includes in particular a revision
and unification of the diffuse literature on balance flux laws and the whole asymp-
totic spacetime formalism® (including the above-mentioned BMS framework) in Sec-
tion 2.1 to 2.4. To present an inclusive discussion, the main approaches towards the
balance laws based on radiative degrees of freedom at future null infinity .#* [111]
and the covariant phase space of the underlying theory [108] are united in Section
2.4. With the theory laid out, Sections 2.5 as well as Sections 3.2.1 to 3.2.3 demon-
strate two pathways of utilizing the balance laws: In the first, strategies for the eval-
uation of NR waveforms are constructed. In Chapter III, high-precision (quantum)
corrections to the gravitational wave memory are derived and their measurement
prospects analyzed. In Chapter IV, the focus is switched to unresolved GW sources,
providing a broad survey of potential sources, their derivation and characteristics.
Section 4.4 outlines some challenges and opportunities for future space-based GW
interferometers regarding a potential detection of the SGWB, culminating in an in-
depth investigation of LISA’s capabilities to observe cosmological GW backround
contributions in Section 4.4.2. In the final chapter VIII, the dissertation is concluded
with a brief summary and outlook on future research on the experimental and the-

oretical side of GW physics.

9Throughout this thesis, “asymptotic spacetime formalism” identifies all theoretical develop-
ments derived based o the notion of an asymptotically flat spacetime. This includes in particular
(but not exclusively) the notion of the BMS group, Peeling theorem, radiative modes at .# *, the flux
balance laws.
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Chapter 11

Asymptotics of Gravitational

Radiation

The Chapter introduces large parts of what is denoted as “asymptotic spacetime formalism”
in the introduction. It thereby makes heavy use of the author’s publications [G] and [D]
listed under “Publications” below. In particular, Sections 2.1, 2.2, and 2.3 draw a lot of
content from the joint work [G] and its (yet) unpublished extension. Section 2.5 presents the
results of [D]. More precise references are given in the main text. The joint work [D] will be
referenced as [4] in the following, [G] as [2].

As teased in the introduction, defining gravitational radiation, let alone defining
flux equations for such, is a non-trivial task. Luckily, the analysis of gravitational
radiation in the asymptotic regime—far from isolated sources—offers a unique geo-
metric perspective on the radiative content of spacetime. In the context of GR, out-
going radiation is most naturally captured by considering the asymptotic structure
of the metric near null infinity, .# *, where radiative information can be unambigu-
ously defined in terms of frame fields or, equally, specific metric components. As
mentioned in the introduction, the latter has been intensively studied already in the
1960s, resulting in valuable insights that are applied to gravitational measurement
data up until today. Yet, despite being well-aged, the results by Ashtekar, Bondi,
Sachs, Metzner, Wald, Geroch, Winicour, and others have never been comprehen-
sively united, with one exception given by [2]. This Chapter aims to complement
the latter by providing an alternative, more mathematical viewpoint starting from
the bulk of spacetime, ultimately leading to the same outcomes. This alternative
framework is developed in Section 2.1. Subsequently, the definition of radiative
modes at null infinity is discussed in analogy to [2] in Section 2.2. Complementing
this result, the construction of the Bondi-Metzner-Sachs metric is outlined in Section
2.3 before connecting the overall results to literature on flux equations in asymptot-
ically flat spacetimes in Section 2.4. An application of the collective knowledge of
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this Chapter is found in Section 2.5.

2.1 Gravitational Radiation in Asymptotically Flat Space-
time

In this Section, all tools and notations relevant to the identification of radiative de-
grees of freedom at .#* and the derivation of the balance flux laws are introduced.
Most of the content has been studied within the scope of [2] and other works in liter-
ature. Generally, there are many distinct pathways to introduce asymptotic metrics
and associated symmetries. Most works start either with the introduction of a spe-
cific structure at null infinity imposed by (predominantly) Penrose’s definition of
asymptotic flatness or directly present a class of metrics satisfying relevant condi-
tions (e.g., the BMS metric) [65, 66]. In the following, a derivation from scratch is
presented, guided by the principle of null geodesic congruence, which is of significant
importance for various notions of (non-expanding) horizons and trapped surfaces.
This approach naturally selects a set of frame fields throughout all of physical space-
time and null infinity. The presented contents are largely inspired by [182, 183] as
well as [184, 185] and [186]. For more details on specific individual steps and related
exercises, see also [2] and the follow-up work.

2.1.1 Null Geodesic Congruence

Before starting with the formal definition of null geodesic congruence (NGC), it
is instructive to motivate the approach in the first place. As aforementioned, the
experienced reader might note that some works on asymptotically flat spacetime
construct the physical manifold off .#*. The NGC paves the way to obtain the
same structure by starting within the bulk. It thereby relies on a specific foliation
of spacetime that naturally leads to null infinity and, at .# ¥, can be adapted to yield
the universal background structure. In a sense, one can think of this congruence to
follow light rays towards .# © where it generates a desirable foliation. This picture
helps in particular w.r.t. the understanding of the tetrad adapted to the NGC. This
is demonstrated explicitly in the following.

One starts with some general definitions: Let (M, g,y,) be a 4-dimensional
Lorentzian with the signature (—,+,+,+). On this manifold M, let there be a
nowhere vanishing vector field ¢#.
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Definition. The set of integral curves of £ is called the congruence of £*. The vector field

is said to generate a null congruence if
Wﬁvgyv =0, (2.1)
and a geodesic congruence, if

OV, 00 = 0. (2.2)

As integral curves of a vector field are the family of non-intersecting parametrized
curves filling up spacetime, one might think that the congruence is, to some ex-
tent, parametrized as well. However, the congruence exists between the curves
themselves without any particular parametrization. Therefore, the same congru-
ence arises from ¢/ and any f(x*)¢¥, given that the scalar function f is nowhere
vanishing. Assume, from now on, that ¢/ generates a NGC. Physically, these can be
interpreted as freely propagating light rays and thus are of particular relevance for
this work, aiming at an improved understanding of gravitational radiation. In fact,
historically, the first ideas to characterize the presence of gravitational radiation by
Sachs and others were based on observing the behavior of the gravitational field as
one moves along the NGC to infinity. Even without this connection, NGCs are use-
ful to define null surfaces and related structure for certain (asymptotic) spacetimes,

as is demonstrated now.

To pursue this, it is instructive to introduce a coordinate system, at least locally,
to visualize the congruence. With the NGC generated by ¢# at hand, a preferred

choice emerges.

Proposition. Given an NGC generated (¥, one can locally always find a coordinate system
(u,r, yA), with A = 1,2, such that

043, = 9y, (2.3)
and
ds? = Vdu? + 2dudr + Hap(dy? — Udu)(dy® — UBdu) + Ddydr,  (2.4)

where V, Hap, U are functions of (u,r, yA) and Dy = Dy (u, yA).

Proof. Let * be a vector field and r define the affine time along the congruence gen-
erated by ¢V, i.e.,, ¢/ = 9,. Then, at each point, one can locally find a hypersurface

X transverse to ¢#. On this hypersurface, one can always choose a local coordinate
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frame (u,y*) € R3. Provided this slicing, a metric can be constructed in full gener-

ality as

ds? = Vdu? 4 2Bdudr 4+ Adr? 4+ Hup(dy? — U?du)(dy® — UBdu) + Ddy?dr
=: gl}ffcdx”dxv, (2.5)

where A, B, Dy, U4,V are functions of (u,r, yA). Using the Levi-Civita connec-
tion for this metric, computed in Appendix 1.1, one finds that ¢ being null, i.e.,
EVEVgI;]VGC = 0, implies that A = 0. Further, £ being geodesic, (*V " = 0 implies
that 9,D4 = 0 as well as 9,B = 0. Finally, one can reabsorb B via a suitable coordi-

nate choice 9,/ /9, = B(u, y*%).

A couple of remarks on the line element and the choice of coordinates: First, note
that the angular coordinates, y*, are often expressed in terms of angles 6, ¢ or com-
plex conjugates z,z. The functions V, Hsp, U capture the essence of the relevant
spacetime configuration but will not be specified in the following. From the fact
that ¢ is geodesic, it directly follows that 0,D4 = 0. Generally, in this coordinate
system, r was chosen as an affine parameter along the geodesic congruence, and it
holds that ¢#g,,dx* = du + D4dy”. Therefore, a fixed r establishes a (space-like)
hypersurface, &, transverse to ¢# with local coordinates (u,y?) on Z. It is to be
emphasized that with this coordinate choice, the vector d, does not have the same
meaning as in the (t,7,y?) coordinates anymore. To obtain some intuition about its
meaning in (1,7, y”) coordinates and to convince oneself that it indeed follows light
rays to future null infinity .# as claimed at the beginning of this Subsection, see
Fig. 2.1.

If one would choose another parametrization along the geodesics, i.e., not the
affine parametrization, then /¥ = ¢~P9, and the term proportional to dudr gains a
factor ef. Upon restricting the choice of £# to make its congruence hypersurface or-
thogonal, the line element (2.4) simplifies further by dropping the term proportional
to D 4. To that end, it is instructive to refine the construct of NGCs.

Definition. A NGC is hypersurface orthorgonal if there exists a function u : M — R, such
that

gy = du & = gMoyu. (2.6)

!Note that the connection displayed in Appendix 1.1 holds for the whole class of metrics that
are explored in this Section. In particular, it can be used to compute the connection associated to the
BMS metric defined below.



2.1. Gravitational Radiation in Asymptotically Flat Spacetime 31

FIGURE 2.1: Sketch demonstrating the direction of ¢* in (u,r, yA) co-
ordinates. In the “classic” (t,r) grid, o, points in the radial direction
when t and angular coordinates are fixed. In the (u, r) chart, however,
when u and angular coordinates are fixed, d, points along u = const.
hypersurfaces. Since ¢/ ~ 9,, £* is null in this chart and generates an
NGC tracing the path of light rays. Concretely, in (u,7,y?), one has
" =(0,1,0,0).

Let ¢# be a hypersurface orthogonal NGC, then one finds that, in the chosen coor-
dinate system, /¥ is orthogonal to surfaces of constant u as for any vector field X*
along the u = const. hypersurface, X*¢"g,, = 0. However, given u corresponds to
the retarded time u = t — r, the hypersurface u = const. are null hypersurfaces. As
¢F is null, it is both tangential and orthogonal to these hypersurfaces. A depiction of
the hypersurface orthogonal NGC is provided in Fig. 2.2. It should be clear at this
point that not every NGC is hypersurface orthogonal. The restriction requires that
the generating field’s contraction with the metric yields a total derivative of some
function. This can be converted into a rigorous condition for /# using Frobenius’
theorem.

Proposition. A NGC is hypersurface orthogonal if and only if

0, Vily =0. 2.7)

Proof. Define a one-form 0 = £, dx". According to Frobenius theorem, for integrable
one-forms, 0 is a total derivative, i.e., Ju such that 6 = du, if 6 A df = 0. Inserting

its definition in the latter equation, one obtains the above expression (2.7).
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2 r=0 r>0 r— 00

FIGURE 2.2: Sketch of the NGC generated by ¢# and its foliation of
spacetime in hypersurfaces X.

Given a NGC, one can construct frame fields {¢#, m!, m*,n"}, also called tetrad,
adapted to this particular congruence such that

gy = =1, mhit g =1, P=n*=m>=m?=0. (2.8)

Both /¥, n* are real vector fields, m" is complex. At every point x# of M the tetrad
{e#, m*,m*, n*} forms a basis of the tangent space 7, M.

Proposition. Given a NGC generated by (¥, a null tetrad {¢*, m*,m*, n#} is adapted to
the NGC if it contains the generating vector field. Then, any other adapted null tetrad
{e¥, mt, m#, it} must be of the form

i = e ) (mt 4 F(x)eF), At = nt 4 f(x)mt + F(xtym! + %\f(x”)\zﬂ‘, (2.9)

where the functions ¢(x*), f(x*) € C.

Proof. Given that it forms a basis of the tangent space 7,M, in any new tetrad m#"
must be of the form ## = ') (mt 4 a(x#)1m 4 b(x*) 0¥ + c(x*)n*) with a, b, c, ¢ €
C. Constraint by the (cross-)normalizations of the null tetrad, n#,m drop out of the
latter since otherwise ¢#11, # 0 and 1> # 0. The normalization mi*7, = 1 prevents
a rescaling of rii#. For n" being real nullifies the complex phase. The remaining
cross-normalization equations result in a system of coupled equations that is solved
by (2.9).

In other words, the vector field m* is defined up to an addition of ¢# while n/ is
uniquely fixed by m#, m". Generally, a tetrad can be characterized through invari-
ants of the NGC. To obtain a simplified version of these invariants, it is intrinsic to
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separate the complex frame fields m*, m" as

1 , 1
mt = —(ml +imb), mt = — (ml

V2 V2

For the vector fields mi, it holds from the cross-normalizations that mimg Sy =

—imh). (2.10)

é op. Then, the so-called deviation tensor Bp can be defined, A,B € 1,2, as
Bap := mhm§V 0, (2.11)
and can be separated into expansion, shear, and twist
0= 5ABmﬁmgVﬂ€V, OAB = m?Am’g)V}l&,, WAR = mf’Am‘é]Vﬂfv. (2.12)

The deviation tensor is an invariant of the NGC, i.e., it does mot depend on the
choice of m#. Its components can be used to characterize the function in the line
element (2.4) with the right choice of tetrad.

Proposition. For a hypersurface orthogonal NGC and a coordinate system (u,r,y?), one
can write

ds? = Vdu? + 2dudr + Hzp(dy? — UAdu) (dy® — UBdu), (2.13)

with /* = 9, and m’é = (Eéa/ayA)V, where EéE%HAB = dcp.

Proof. One mildly modifies the proof of the metric (2.4) by choosing a new coor-
dinate i such that ¢#g,, = du. Effectively, this yields an additional constraint on
the metric obtained by computing Eq. (2.7) using the Levi-Civita connection in Ap-
pendix 1.1. The exact form of m* is chosen for convenience and satisfies all (cross-
)normalization conditions. Note that E 45 is used translate between the distinct sets
of base vectors of the 2-sphere displayed in Eq. (2.10).

In this case, one finds that wsg = 0,0 = %HABOrHAB and ocp = %EéEg(arHAB)z.
This parametrization is known as Newman-Unti coordinates. Residual gauge free-
doms in this parametrization are fixed via particular fall-off conditions [187, 188]. In
literature, these conditions are known as the Newman-Unti gauge.

For some computations, it is instructive to relate the metric with the tetrad as they
encapsulate metric-related information. In fact, as it is demonstrated in Section 2.2,

a part of the tetrad is fundamentally involved in the definition of radiation at .# .

2In fact, one can show that the condition for hypersurface orthogonality (2.7) is equivalent to a
vanishing twist.
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Proposition. For any spacetime manifold M equipped with a metric g,y and a tetrad com-
posed out of frame fields satisfying Eq. (2.8), the metric can be written as

Suv = —26(7/[1’11/) + 2771(#1’711/) . (2.14)

Proof. Start by writing the metric in terms of the most general combination of tetrad

components, i.e.,

Suv = 2Aq E(VKV) + 27, E(yi’lv) + 273 Z(ﬂmv) + 2A4 f(yﬁlv) + 2A5 n(uMy)
+ 2A¢ n(,My) + 2Ay Tl(yﬂ_iv) + 2Ag m,,My) + 2A9 n’Z(VﬁiV) + 299 ﬁ”l(yﬁlv) .
(2.15)

The symmetrization in each term ensures that the metric is symmetric. One can

immediately exclude the terms £(,£,, n(,n,, m(,m,, and 1, since these terms

K
all need to have a zero coefficient in order to satisfy (2.8). Hence, one has A} = A5 =
Ag = A9 = 0. Moreover, one can exclude the terms £, m,), £.,m,), n,m,), and
n,m,y based on the same argument. This reduces the previous expression to just
two terms:

Sy = 2Ao E(ynv) +2A9 m(yﬂ_flv). (2.16)

The coefficients A, and Ag are determined from the only two contractions which are

not zero:

G’ = Ao = 1. (2.17)

It follows that the metric can indeed be written as

Sy = —ZE(ynv) + 2m(yn‘11,). (2.18)

The above proof only used the abstract properties of the tetrad and, thus, the re-
sult is generally valid for an arbitrary realization given a particular choice of co-
ordinates, provided the (cross-)normalization properties remain intact. It is noted
without proof that the second term in (2.14) corresponds to a conformal rescaling of
the unit S? metric and fundamentally determines the metric at .#*. An elaboration
of the latter is found in the following Section. Similar but less relevant descriptions
of, for instance, the Levi-Civita symbol and the volume 2-form can be derived as

well. For details, see Chapters 1 and 2 in [2]. Finally, a note to avoid confusion here:
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There is another null vector n*, by definition of the tetrad, which is actually point-
ing in null direction, i.e., along the light cone. On . T itself, this null normal spans
a NGC as well and therefore provides a well-posed foliation of future null infinity
into u = const. hypersurfaces. Note, however, that in the bulk spacetime, not only
do the integral curves of n* not lead to future null infinity, but they also generally
fail to be geodesic except on .# T where the affine parameter is given by u>.

In practice, one can think about the relation between ¢# and n" in the following way.
Let the asymptotic region of spacetime M be foliated by outgoing null hypersurfaces
of constant u. The geodesic null normal ¢# of this foliation has an affine parameter r
such that each of these null surfaces u = const. is foliated by a (space-like) 2-sphere
of constant r. These 2-spheres possess another null normal n# that on .# ™ coincides
with the null normal 0,,.

2.1.2 Conformal Compactification

From this Section on, the notation of the metric and its associated covariant derivative
changes w.r.t. previous Sections. The change in notation is motivated by the introduction of
an unphysical spacetime by compactification.

With the tetrad adapted to the NGC, one can span out spacetime in a very partic-
ular way that is well-suited to describe radiation that travels along the null direc-
tion. What has been left untouched so far are the functions in the line-element (2.4).
To determine those, one has to specify the content of spacetime locally. As men-
tioned before, for GW physics, there is no particular interest in describing the bulk
of spacetime. It is of much higher importance to describe the asymptotic behavior
as, morally, the GW detectors of mankind are infinitely far away from the source of
radiation, e.g., a BBH or NS binary. Before the chosen spacetime tetrad is extended
far away from a potential source of gravitational radiation, one has to define the
structure of the asymptotic region. To that end, one starts with plain Minkowski

space,
ds” = —d +dr? + dx2, (2.19)

where d¥2 is the metric on the sphere S2.

3 An intuition for integral lines generating the NGC associated with n# is provided by the green
lines in Fig. 2.3
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Proposition. Upon redefinition of coordinates, explicitlyu =t —r,v =t +r, u = tan U,

v = tan V, the Minkowski metric can be rewritten as

1
4cos? Ucos? V.

=:1/07?

ds’ = gdatdat = (—4duC1v +sin®(V — u>d22) . (2.20)

where U,V € (—m/2,7t/2)and V — U > 0.

Proof. Eq. (2.20) follows by direct replacement of dt = 1/2(du +dv), dr = 1/2(dv —
du and du = 1/ cos? UdU, dv = 1/ cos? VdV.

In Eq. (2.20), the prefactor constitutes a conformal factor and the expression in
brackets can be seen as an unphysical metric that extends to the boundary of a newly
defined spacetime manifold M such that ds?> = g dx#dx’ = (Q%g,dxFdx").
In this picture, the physical metric g, (and its corresponding covariant deriva-
tive ﬁy) is only defined in the interior of M, which is equivalent to Minkowski
space, M. The unphysical metric g, is defined on full M =M #*J.#~, where
# 7T is future and .#~ past null infinity. It constitutes a conformal compactification
of Minkowski space. Note here that the added boundary does not correspond
to the full boundary of IM. The latter is not a manifold but rather made up of
tive different pieces each of which individually is a manifold. The first two pieces
are future and past timelike infinity, ™ and /=, defined by U = /2 = V and
U = —m/2 = V respectively. Together with spacelike infinity, ., these boundaries
are actually points, i.e., ds?| 5+ = 0. The remaining null infinities .# *, . ~, defined
by V= n/2,U € (-n/2,t/2) and U = —7/2,V € (—m/2,7/2) respectively,
are 3-dimensional manifolds of topology S? x R. A comment on the role of the
topology is postponed to later stages. A depiction of the coordinate choice U, V is
provided in Fig. 2.3.

The above procedure can be summarized into the following remarks: Starting
from Minkowski space M, one can construct a manifold M =M .# " J.#~ with
boundary oM = 7 (J.# . On M, there exists a scalar field, also called conformal
scale, and a metric, (), guv) such that g, = Q72g,, is the metric on the interior
manifold M. On the boundary, 2 = 0 and V,Q) # 0. The latter naturally defines
a normal to the hypersurface that is the boundary, n, ~ V(). Other normals are
defined by n'* = f(x")n* where f is a smooth, nowhere vanishing function. Note
that the choice of (€, gyv) is not unique. In fact, the same physical metric can be
recovered for any pair (f(x*)Q, f(x*)?gu) with f € C*°(M). Therefore, on this
constructed manifold M, one can only define a conformal class of metrics [g;,,] and
a conformal density [Q)].
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FIGURE 2.3: Sketch of conformal Minkowki space in coordinates U, V
defined in the main text.

The ambiguity in the conformal factor plays a central role when defining asymptot-
ically flat/Minkowskian spacetimes, as it is demonstrated in detail in the following
Sections. On the boundary itself, the ambiguity in the conformal metric transfers
over to the induced metric on .# T, ;.. The latter can be defined as the pullback? of
guv to I + Suv, and is degenerate with signature (0,4, +). In particular, it can only
be defined in equivalence classes as well. One particular favorable choice thereby is
quvdxtdx’ := gdxtdx’| s+ = 0 du? + d¥? such that the metric describes the unit
two-sphere. Similarly, the normal to .# 7, n#, given by

nta, = ¢"a,(Q)ad, = cos U% (2.21)
is defined only up to a coordinate dependent factor, i.e., (n*,q,v) ~ (f(u,z, z)"nt,
f(u,z,2)%q,v)°. The latter is referred to as universal (carrollian) structure of null in-
finity, as it is common to all spacetimes that are asymptotically flat, independent of
the bulk’s inner complexity, as it will be demonstrated below. Note that the angular
coordinates y* were swapped for a complex combination z, Z encoding the same co-
ordinate information. The 3-manifold described by (1", g,,,) can be further sliced of
cross sections C determined by constant u that have topology S2. Each cross section

can be equipped with a metric s;,, which is obtained by pulling back g,,, to the cross

“For the definition of the pullback, see the “Notations” at the beginning of this dissertation.

5The choice of naming the normal to .#* as one of the previously discussed tetrad is no coinci-
dence. A detailed explanation follows below. Note further that the rescaling function f at .# " does
not depend on the radial coordinate.



38 Chapter II. Asymptotics of Gravitational Radiation

section C on .# . For a depiction, see Fig. 2.4.

To connect the constructed unphysical metric with the previous discussion of
NGCs, one simply chooses Q) = 1/r in the coordinate system (u, 7, y") for compact-

ified Minkowski space. Comparing the resulting line element,

ds’ = Q2 (—Pdi? — 2dudQ +d¥2), u,r,QeR, Q>0, r>0, (2.22)

N J/

N
=ds2

with the previous results, one finds that the line element (2.22) defines a hyper-
surface orthogonal NGC spanned by ¢# with ¢#9,, = 9, °. Note that here again, dx?
denotes the metric on S2. The line element ds? describes the unphysical conformally
rescaled metric. The congruence has vanishing shear and twist, and for the expan-
sion, one finds 6 = r. Note that the restriction of r > 0 excludes .# ~ from the coor-
dinate system. Fig. 2.4 depicts the physical manifold and the boundary, which is cut
into u = const. cross sections of .# *. With this coordinate choice, the so-called BMS
coordinates, the normal to .# " belongs in fact to the tetrad adapted to the NGC and
is defined by n"9, = g"'(V,Q)d,|,+ = 9, with g, dxFdx” := gdxtdx’| ., =
0-du? +dx2 on .#T. The vector fields ¢#,n" can be associated with the tetrad
adapted to the hypersurface orthonormal NGC of the physical metric. This is a par-
ticular desirable results as the choice of tetrad is generally not unique, and any set
of vector fields satisfying the above (cross)-normalization conditions is technically a
valid tetrad. However, given the connection to NGCs, a particular choice has been
favored regarding ¢#, n*. For this choice the normal n* to .# T, which is also null by
definition (as .#* is null), is both tangential and normal to .# ", as n#V, Q) = 0.

At this point, it is crucial to highlight that there is a clear distinction between
the tetrad spanning physical spacetime and the one that is well-defined also at the
boundary. For clarification, for the remainder of this work, the (tetrad) vector fields
associated with the physical metric will be denoted as ZV, at, mt, m", where, accord-
ing to the definitions above, n* = g"'V,() and 27?‘8?, = 9d,. For the vector fields of
the tetrad extending over the full conformally rescaled metric, one drops the tilde in
their notation.

The tetrad associated with the unphysical spacetime metric can then be systemati-
cally constructed from the bulk tetrad: Starting with the null normal, by definition,
7" has a smooth limit to .#" and is finite. Thus, without restriction of general-

ity, n* = n*. Being a null normal and tangential qualifies n* to be geodesic. As

bStrictly speaking, as £ is both tangential and orthogonal to the hypersurface, one has found a
hypersurface orthonormal NGC.
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FIGURE 2.4: Sketch of the slicing of the asymptotic region of spacetime
into u = const. slices. The geometry of .# " defined by Q) = 0 is given
by §? x R as illustrated. .# ~ is not covered by this coordinate system.

the chosen coordinate u affinely parametrizes the integral curves of n* on .# ", be-
ing geodesic manifests as n*V,n"| ;+ = 0. Regarding the remaining tetrad vector
fields, it is found that since g,, = ngNyV and Z”n"gw — —1, there exists an ¢ such
that ¢#| ,+ is finite and = Q2m, Similarly, since ﬁi?‘%y = 1, there exists an m#
such that m"| ,+ is finite and m* = Qm*. For the induced metric at .# ™ one finds
ntqu = 0and Lyqu = agu 7. Note that the metric at .# 7 is degenerate, i.e., has
signature (0,+,+), and describes a 3-dimensional manifold. Thus, some works in
literature denote quantities defined at .#* by Roman letters, while Greek letters in-
dicate a definition on the 4-dimensional physical or unphysical spacetime. Here,
the Greek letter indexing remains standard while working at .# ", and it is always
clearly indicated if an index is defined on or off .# T the following. The reader is,
however, reminded that at .# ", one deals with a lower-dimensional manifold. Fig.
2.5 illustrates the definition of the tetrad at two different instances of time, 1, 1. For
the definition on and off .#t, consider Fig. 1 in [162]. Note the different notations.

2.1.3 Asymptotical Flatness and its Consequences

The previous definition of BMS coordinates generally allows for the derivation of
BMS-related quantities, including the desired BMS symmetry group on which large

7By choosing a divergence-free coordinate frame, one can show that V1, = 0 at .# " such that
the intrinsic metric is Lie dragged by the null normal, £,,4,,| s+ = 0. Note that the latter implies that
on each cross section C, the induced metrics s, look the same and all metric information is stored in
this unique s;;.
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(0, 0)

FIGURE 2.5: Sketch illustrating the definition of the frame fields as de-
fined by the null tetrad adapted to the NGC as chosen in the main text
[2]. The tetrad is displayed on .# * for two instances of time.

parts of the BMS framework rely. However, so far, the discussions were restricted to
(completely) flat spacetimes without any interesting physics in the bulk. Now, the
aim is to generalize the previous considerations to arbitrary spacetimes that, at the
boundary, match the descriptions above. In this sense, in the above a very particular
case has been treated considering an everywhere-flat spacetime, which, naturally, is
also asymptotically flat. In the following, the notation of the previous paragraphs is
adapted.

Generally, the notion of asymptotical flatness is characterized by the following
definition pioneered in [189]8:

Definition. A spacetime (M, g) is asymptotically flat if
i) there exists a manifold M = MU .% with boundary oM = .9 == I+t .9,

ii) there exists metric on M, (Q), §uv), with a scalar field Q) such that gy = Qg
on the interior of M,

iii) on the boundary %, Q)| y = 0and V, Q| s # 0,
iv) guv satisfies the Einstein’s equations ﬁw/ — %ﬁgw = Tw with TN“W = 0(0?).

As before, this definition comes with the caveat that the unphysical metric and the
scalar () are defined only up to a Weyl rescaling (Q, gw) ~ (f(x*)Q, f(x*)2guv).

8Note that, in literature, the expression “asymptotically flat” and “asymptotically Minkowskian”
may seem to be used interchangeably. Indeed, they are equivalent in large part. The subtle but
important difference is that for asymptotically Minkowskian spacetimes, it is assumed that the vector
n* (as defined above) is complete when choosing a divergence-free frame, i.e., V,n#| s+ = 0.
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Observe that it also covers a large class of metrics and includes an (almost com-
pletely) unspecified matter content. The only constraint on the energy-stress tensor
in the bulk results from its asymptotic behavior given by iv). Based on i) - iv) alone,
a structure equal to the one above can be derived. As it encompasses a large class
of metrics, it deserves the attribute “universal”. To prove this claim, one starts by
defining the normal to .# via n* = ¢"V,Q)| s+ and the (4-dimensional) Schouten

tensor as’

1
S]/“/ - Rﬂy - gRgVV ’ (2.23)

which, upon extension of physical to unphysical spacetime, transforms as
~ 1
S =S +Q7'V,V,Q - ia-z(vgn)(vm)gw (2.24)

Given condition iv), Einstein’s equations now imply that the physical Schouten ten-
sor vanishes at the boundary, S| s+ = 0 which implies that (V,Q)(VQ)| s+ =
ntn'guy| s+ = 0and Vuny| s+ = 1(Von?)gu| »+. Thelatter is equivalent to V() o+
= Lu8u| s+ where L8| y+= Lnquy. Thus, Lyquy ~ quy- In turn, n#n'g,, = 0 im-
plies that n"V, Q)| ,+ = 0,1i.e., the normal n" is also tangential to .# *. The remaining
relations i) - iii) then indicate that the induced metric g,,dx"dx" = g,,dx"dx¥| ;+ is
degenerate and satisfies n"q,, = 0. As before, the Wely rescaling changes the nor-
mal and metric on .#*. The rescaled tuple then becomes the center of the universal
structure definition according to [186] based solely on the above assumptions:

Definition. For spacetimes following the definition of asymptotic flatness above, the uni-
versal structure of null infinity is given by

(n”,qw) ~ (f(u, z,Z)*an,f(u,z,Z)zqw) with n”qw =0 and Luqu ~ quv,
(2.25)

where n*, q,,,, are defined above.

It is worth pointing out that in a large part of literature, this rescaling is defined
with an additional condition that £, f = 0. This choice is generally relevant when it
comes to computing the vector fields preserving this structure. For now, however,
one does not necessarily require this constraint.

The structure (2.25) describes the null normal and the metric at .# * universally, i.e.,
it holds for all metrics matching the definition of asymptotic flatness. As such, it is

9The definition can vary up to a factor of 1/2 w.r.t. other notations in literature.
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denoted as the universal structure. Recently, the structure was also linked to confor-
mal Carrollian geometries [190] which plays a central role in the context of flat space
holography. For another way of thinking about (1", ;) as a universal structure of
7+, consider the following proposition, for which the S? metric is defined in terms
of complex parameters, i.e., d¥? = 4(1 + |z|?) ~2dzdz:

Proposition. On ¥, there always exists a unique choice of coordinate system (u,z,2)
and Weyl rescaling (n#, quy) ~ (f(u,z,2) " n¥, f(u,z,2)*qu), such that

4dzdz

O (2.26)

ntd, = dy and Judxtdx’ =0 - du® +

Proof. One starts out with an arbitrary metric g, and tangent #n* on .#*. Then, one
can always choose a coordinate system, (1, )% such that n ~ 9;;. From n" quv = 01t
then follows that g,y = 0 - dit? + hap(u, y*)d9dy®. Then, £,qa ~ q,v implies that
one can rewrite hap (1, 92) = f(4,94)q4p(9?). By applying a suitable Wey] rescal-
ing, one eliminates the prefactor f that is a function of the coordinates (1, 7%). As
any 2-dimensional metric is conformal to the S 2 metric, one finds that fi4p (4,2,2) =
k(i,f)%. A suitable coordinate transformation (i1, §4) — (u,y*) finally elimi-
nates k(Z,Z) and yields n, = 9.

The universality of this coordinate frame allows for the deduction of universal

11 As outlined in the introduction, this

features of asymptotically flat spacetimes
is of particular interest for GW research as, in first approximation, the observing in-
struments can be considered as being asymptotically far away from a source of grav-
itational radiation, in a region of spacetime that can be considered (roughly) flat.
This statement holds independently of the source’s structure, mass, and dynamics.
Thus, the universality of the asymptotic spacetime structure holds significant power
in the context of the analysis of real experimental data. To be more concrete, it is the
symmetry group preserving the universal structure that yields the most significant
advantage, i.e., (non)-conservation laws. Before the symmetries preserving the uni-
versal structure are discussed in more detail, it is important to highlight the utility
of the asymptotic structure, or, more concretely, asymptotic flatness with a concrete

example.

19The angular coordinates y* and z, Z are used interchangeably.

HFor an illustration of the universal structure and its corresponding space of generators G, the
reader is referred to Fig. 9 in [2]. Each integral line of n* corresponds to a point in G, and one can
define a non-degenerate metric q,, on G.
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2.1.4 Newman-Penrose Scalars and the Peeling Theorem

The example refers to the definition of the so-called Newman-Penrose Scalars (NPS).
These scalars not only formulate invariants of the NGC but also encode the indepen-
dent components of the Weyl tensor and can therefore be linked (asymptotically)
to different parts of radiative information of the underlying gravity theory. Their
asymptotic behavior is formulated through the Peeling theorem, which can be ap-
proached via two distinct pathways: The first one (also historically) was developed
by Sachs [64, 65]. Relaying upon earlier definitions of Newman and Penrose, Sachs
utilized the description of the 10 independent components of the Riemann tensor
(in the vacuum case Ry, = 0) in terms of 5 complex scalars ¥, ...¥4. Using the def-
inition of the (physical) tetrad above, these scalars can be realized as invariants of
the NGC generated by Fina spacetime without cosmological constant. Here, being
an invariant to the congruence generated by /¥ translates to an independence of the

choice of 7it#, 7. In the original notation, the scalars read

1’?4 = ﬁl/“/pg' ﬁy;ﬁvﬁpﬁ/la,

(2.27)
Y3 := Ryppo O 717, (2.28)
¥y := Ryypo MMt i it (2.29)
¥1 := Ryuypo O 0°T17 (2.30)
(

where the Riemann tensor has to be replaced with the Weyl tensor Cy,p0 if one con-
siders off-shell solutions and deviations from vacuum, i.e., EVV = 0. Note that the
tilde here as well denotes the definition of the corresponding quantity on physical
spacetime. ¥ is an invariant of the congruence except if ¥y = 0, then ¥ is one. If
now ¥, ¥ are both vanishing, the invariant is given by ¥, and so on. If all scalars
vanish, one can immediately conclude that the metric is flat. It is, however, not the
scalars themselves but rather their asymptotic information that counts. It is found
that, for large radii, these scalars “peel” as

Yy~ r W+ 0> ?), (2.32)
Y3~ r Y54+ O(r ), (2.33)
Yo~ 295+ 0(r Y, (2.34)
Y ~r O3, (2.35)
Yo ~r 25+ O(r 0. (2.36)

(2.37)
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The latter can be easily derived from the explicit insertion of an asymptotically flat
metric and corresponding tetrads. A possible parametrization encompassing a large
class of such metrics is described in detail in Section 2.3. While this approach is com-
monly noted as Sachs Peeling, for an easy derivation without the explicit use of any
metric or tetrad component, one can resort to the so-called Penrose Peeling [189].
Ultimately leading to the same result, Penrose Peeling relies on the observation that
the Weyl tensor, in contrast to the Riemann tensor, is conformally invariant and van-
ishes at # %, i.e., Cuypo| s+ = 0, for asymptotically flat spacetimes. For a derivation
of this statement, the reader is referred to [2]. Generally, one can show that

0 for A#0,
Cl,ﬂ/pg’(jJr — (2.38)
0 for A = 0if the topology of .# 1 is S? x R,

where A denotes the cosmological constant. Penrose then proves the for an un-
physical metric that is at least C* on the unphysical manifold M, it follows that
@‘Vpg| g+ = Clypo| g+ = 0. This statement can be straightforwardly converted to
the explicit Sachs Peeling by constructing NPS directly out of the Weyl tensor. As-
suming that the Weyl tensor is a smooth function within the full manifold, including

a neighborhood of .# T, one can apply the following Lemma.

Lemma. Let f be a function which is smooth in a neighborhood of % and which satisfies
fl.#+ = 0. Its Taylor expansion looks like

f

2
=5 Q+0(). (2.39)

0O=0

This implies that Q' f is also smooth and its limit is given by

lim O 1f = of

Q-0 Q) (2.40)

0=0

Given the observation (2.38) and using the above Lemma, one can define the asymp-
totic Weyl tensor
K]/“/po' = Qilcl,“/pg ’ (2.4].)
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which is has a smooth non-trivial limit at .#*. Analogously to Sachs, one then con-
structs (unphysical) NPS using the asymptotic Weyl tensor as

Yy := Kyypo ntm’nfim”, (2.42)
Y3 := Koo H'nmfn”, (2.43)
Yy := Koo Hm"mfn, (2.44)
Y1 = Kuypo #n"0Pm”, (2.45)
Yo := Kyypo Hm"Pm” . (2.46)

The latter complex scalars are defined on the conformally completed spacetime and
w.r.t. the asymptotic Weyl tensor. It is crucial to note that these are generally not
equivalent to the NPS defined w.r.t. the “normal” Weyl tensor. One can, however,
extract the physical scalars defined on physical spacetime by converting back the
asymptotic Weyl tensor and all vectors of the tetrad. Thereby, it is important to
acknowledge that for the Weyl tensor to be conformally invariant, the first or last

index has to be raised!?, i.e., Cup” = @,VP‘T. For ¥4, for instance, one writes
¥y = Q' Cp'ntm'niig (2.47)
which is equivalent to
¥y = Q7' Cpntm nf g . (2.48)
Given the relation between physical and unphysical tetrad above, i.e.,
nt = at, =020 mt = Qi (2.49)
one finds that the scalar ¥4 can be written in terms of the physical fields as
¥y = Q7 G i (O i (Qng)
= Q' Cpp it 1 1itg, (2.50)

wher 1, = m'gu = (Q_lﬁiv) g, = Qi is used. One therefore obtains a
relation between the physical scalar ¥4 and the Weyl scalar w.r.t. the asymptotic
Weyl tensor, ¥y,

Yy =rYy, (2.51)

12For a demonstration of the latter, the reader is again referred to [2].
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where r := % This implies that the physical scalar ¥4 decays like

Y9 (u,z2)

; +0(r2), (2.52)

‘?4(1’, u,z,z) =
where the coordinate dependence in the chart (7,1, z,Z) is made explicit. The lat-
ter equation recovers the Sachs Peeling for ¥4, and an analog computation can be
conducted for all other scalars, resulting in (2.32)-(2.36). The scalar Y7 always de-
notes the value of ¥; at .# 7, i.e., it always stands for the zeroth order of the Taylor
expansion of ¥; (the scalar w.r.t. the asymptotic Weyl tensor) around () = 0. Gener-
ally, Penrose Peeling implies Sachs peeling along any hypersurface orthogonal NGC
reaching .# . Here, Yy = rCuypontm?nf m?| s+ is the component invariant under
mkt.

As for the Weyl tensor, measuring the curvature of spacetime, the complex
scalars (2.32)-(2.36) can be assigned to a unique physical interpretation [114]. While
Y, encompasses mass multipole moments, ¥y, ¥4 correspond to in- and outgoing
traverse radiation. Y1, ¥3 can be interpreted as in- and outgoing longitudinal radia-
tion terms. For asymptotically flat spacetimes containing radiation, however, these
two scalars can be trivialized by an appropriate choice of null tetrads. Hence, in
this case, ¥, ¥3 can be viewed as gauge quantities. It is instructive to highlight that
the NPS generally depend on the definition of the tetrads, and whether they can be
trivialized or not is fundamentally determined by the underlying spacetime. In the
above context, the spacetime is chosen to be asymptotically flat, and the tetrad is
partially fixed by adapting it to the NGC. More generally, however, the NPS can be
used to rigorously classify spacetimes according to Petrov [191]. While the transfor-
mation freedom in the null tetrad boils down to the Lorentz transformation for all
spacetimes, the set of Newman-Penrose scalars that can be trivialized through these
transformations may vary. The classification into Petrov types requires the definition
principal null directions: For a general spacetime admitting the notion of a Weyl ten-
sor and a null tetrad {/, 71, 771, i1}, its Petrov type is determined by the distinct roots

B determined by
¥ + 4BY¥; + 6B>¥, + 4B>¥; + B*¥, = 0, (2.53)

which is computed in a Lorentz frame with ¥, # 0. In general, the latter equa-
tion allows for four complex roots, which might not be distinct and hence can have

higher multiplicities. For each root, one can define a principal null direction using
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the null tetrad as
k# = 0" + Bm* + Bm" + BB, (2.54)
and which satisfies
KKk, Copuviaks) = 0. (2.55)

There are six different Petrov types uniquely characterizing a spacetime by the num-
ber and multiplicity of distinct principal null directions [191]. The number of prin-
cipal null directions determines which Newman-Penrose scalars can be trivialized

via an adequate choice of frame.

Type I: four simple principal null directions < ¥y = 0

Type II: one double and two simple principal null directions < ¥o = ¥; = 0
Type D: two double principal null directions < Yo=¥%=93=9,=0

Type III: one triple and one simple principal null direction < q’o = ‘T’l = ‘T’y_ =0
Type N: one quadruple principal null direction < ¥y = ¥; = ¥, = ¥3 =0
Type O: the Weyl tensor vanishes completely < Yo=Y =9, =%3=%,=0

For BH in GR (for instance, the Kerr vacuum), for instance, one usually deals with
scenarios in which two distinct principal null vectors can be constructed with mul-
tiplicity 2. These geometries fall into the Petrov type D. The Friedmann-Lemaitre-
Robertson-Walker (FLRW) models are type O.

Generally, there exists another approach to determining the Petrov type of a given
spacetime, which yields an equivalent description as above. It amounts to finding
the frame for which ¥ vanishes. This frame can be found by an adequate rotation of
% to a vector of the form (2.54) satisfying (2.55). Thus, by definition of the principal
null directions, given a tetrad such that ¥y = 0, one can immediately identify ¢* as
a principal null direction. Petrov types and principal null directions are not frame
dependent and thus provide an invariant way to classify spacetimes. The Petrov
type indicates the maximal set of Newman-Penrose scalars that can be trivialized.
However, for a certain spacetime geometry together with an arbitrary null tetrad
satisfying specific normalization and orthogonality criteria, the Petrov type is not
automatically exposed. Only once the tetrad is transformed into a suitable frame
does the Petrov type become apparent through the vanishing of the maximal set of
Newman-Penrose scalars. The simplest instances of asymptotically flat spacetimes

containing gravitational radiation fall into Petrov type N. However, more complex
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solutions including non-trivial dynamics may fall into type IL

In the context of NPS, it is to be emphasized that in general, the definition
of the NPS is not unique in the sense that distinct contractions of the Weyl tensor
with vectors of the tetrad can result in the same information encapsulated in a given
scalar. In Appendix 2.1, it is demonstrated that

1{;1 = prgﬁlmvﬁipma = CyvpagynV@OmU’ (257)
1 1
¥y = ECngﬂ‘nV (Pn” —mPm?) = Ecﬂvpamymv (mPm” — {Pn”)
= Cyypem" t'nfm?, (2.58)
III3 = C‘ul/pg'nymvnpga = C‘u]/po'nymvmpmal (2'59)
‘Y4 = Cﬂvpgn#mvnpmo- . (2.60)

The NPS, in particular ¥4, hold a key role in GW physics as they can be related
to direct observational quantities in GW interferometer. In Section 2.2, the interplay
between Y4 and the GW shear is elaborated. The scalar ¥, encompasses information
relevant for the computation of the GW memory, as shown in Section 2.4.

Before continuing with the analysis of the universal structure, it is worth men-
tioning that Peeling Theorem as a concept does not exclusively pertain to GR. To
stay within the realm of massless gauge theories, another instance of peeling is pro-
vided in Maxwell’s theory of electromagnetism. There, the Peeling Theorem is a di-
rect consequence of the smoothness of the Maxwell 2-form F;,, regarding asymptotic
limits. The latter is a result of the conformal invariance fundamental to Maxwell’s
theory'®. Given this simplified setup, one can define the NPS of Maxwell’s theory

as

1

®g = Fmh(". (2.61)

13Note that in GR, as demonstrated above, smoothness of the Weyl tensor does not immediately
follow based on its fundamental properties but instead can only be derived using additional assump-
tions.
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These three complex scalars represent the information contained in the six compo-
nents of Fy,. Defining the functions at .# ", one simply finds

D7 (u,z,z) = Pi(u,Q,2,2)| 4+ , fori e {0,1,2}. (2.62)

The latter functions capture the leading order behavior of ®; at .#* which can be
seen by performing a Taylor expansion of ®; around (2 = 0, which, by the Lemma

above, gives us
d;
dQ |

O; = P + QO+ 0(0?). (2.63)

Relating the Newman-Penrose scalars ®; of the conformally completed spacetime
(M, 17v) to the analogously defined physical scalars ®; of the physical spacetime
(M, 7,y) is straightforward due to Maxwell’s conformal invariance. One solely
needs to rescale the null tetrad appearing in the definition of the scalars. It is imme-
diately found that

- o 1 ) D(u,z,z _

By = Byt = Lpnm = 22 - BWED (o))

~ ®Y(u,z,z _

cI)l — 1(r2 )+(7’ 3)’

~ ®R(u,z,z _

By — %-ﬁ—(r 4, (2.64)

The functions ®; are the physical Newman-Penrose scalars which carry the same in-
formation as the physical Maxwell 2-form fMV and fall-off in a characteristic manner.
One could say that as one approaches .#*, the components of Em are “peeled oft”
at different rates. This is the Peeling Theorem for electromagnetism. The unique
scaling in 1/7 for each scalar offers a first clue that ®,(u,r,z,2) encodes the radia-
tive modes while ®1(u, r,z,z) carries information about Coulombic modes. This is
because the radiation field decays like ! in the radiation zone while the Coulomb
tield behaves like rlz, as discussed already in Chapter I. Further, evidence for this
claim results from rewriting Maxwell’s equations at .# T in terms of these scalars,

ie.,

0, D7 (u,z,z) = 0P;(u,z,z2)
0,9;(u,z,z) = 097 (u,z,2), (2.65)
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where 0 is the spin-weighted angular derivative operator defined by [72],

0sYim = /(1= 8) (1 +5+1) 1Yo, (2.66)

8:Yim = /(1 +9)(I = 5 +1) 1Yo, 2.67)

with Yy, being the spin-weighted spherical harmonics. In this form, Egs. (2.65) are
first-order equations for ®j and ®7 which, in order to be solved, require initial data.
Further, ®; is not determined by the Maxwell equation and needs to be specified
by hand everywhere on .# " for a valid solution. Given ®j is undetermined by
the equations, it has to represent the radiative mode content of the theory. A more
elaborate analysis of Eqs. (2.65) and its meaning in the context of electromagnetic

radiation is found in [2].

2.1.5 Symmetries at Null Infinity

Continuing with the discussion around the universal structure after this interlude,
a natural next step is the identification of the transformation under which it is in-
variant. To find the symmetries of the universal structure one, thus, has to simply
identify the class of vector fields that, upon Lie dragging, preserve the metric and
null vector on .# " up to a rescaling as defined in Eq. (2.25). Concretely, first postu-
lated by Geroch [186], these vector fields X* have to satisfy

for some function k(x#) on .#* 4. Upon restricting to the case where L,f = 0
(were f appears in the definition of the universal structure (2.25)), one finds that
k| s+ = k(z,2) [2]. With the above choice of coordinates, the vector fields satisfying
Egs. (2.68) can be elegantly rewritten [186]:

Proposition. The Lie algebra of infinitesimal symmetries of the universal structure satisfy-
ing Eq. (2.68) is generated by

u

X = <uc(z,2) +3

(01 +3:70) ) du + x(2)2: + 7(2)9z, (269)

where a(z,Z) is a function on S? and x(z)9d, = (a + bz + cz?)d, is a generator of a Mobius

14 A motivation for the form of Eq. (2.68) is provided in [2] via introducing a one-parameter family
of diffeomorphisms generated by the vector field X in question. This way of rewriting the vector field
X will become important at a later stage again, see Section 2.4.2.
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transformation PSL(2,C) ~ SO(3,1). The Lie algebra generated by Eq. (2.69) is isomor-
phic to

Lie (s0(3,1)) x C®(S?). (2.70)

Proof. The functional expression for the generator X is obtained by direct compu-
tation in said coordinate system. Setting k = 0 in Eq. (2.68), an ansatz for X is
Xt = ant. While Lxgq,, = 0 is automatically satisfied for this ansatz, Lxn" = 0
yield n*Dya = 0 which results in @ = a(z,Z). For the remaining contributions, one
considers « = a(z,Z). As z € C, a can be expanded as a polynomial up to second or-
der. A similar argument holds for x(z), x(z), which are general complex functions
of z,Z respectively. One can expand the remaining part of X#(k # 0) in terms of
nt, m#, mt with corresponding prefactors a1, ay, a3 being functions of (1, z,z). Com-
puting first the prefactors of m* and 1" one finds ay = x(z) and a3 respectively. For
the part proportional to n¥, Lxq,, then yields a1 ~ [9;x(z) + 9zx(Z)] and Lxn! re-
sults in the linear dependence on u. Given (2.69), one separates into X, = «(z,2)dy
and Xy = 5(9:x +0:X)0u + x(2)0z + X(2)9z. Then, one finds that [Xz,, X¢,] = 0and,
thus, the generators Xz for an infinite dimensional abelian Lie algebra isomorphic to
C*®(8?). Further, [Xy,, Xy,] = X(3,0.10—x20011)
so(3,1) Lie algebra. Finally, [X,, X,]| = ((Xaz + x0:)¢ — %(azx + azX)a)> 0., which
implies that the algebra generated by X, forms an ideal of the full algebra. Thus,

. Therefore, the generators X, form an

one finds the semidirect product above.

In Section 2.4, the vector field X* generating the symmetries of the universal struc-
ture at . is denoted as &¥. The algebra (2.70) is commonly referred to as the BMS
(Lie) algebra, which acts as the generator for the BMS group. As a consequence,
the BMS group can be written as a semidirect product of the Lorentz group and
the group of supertranslations, generated by X,. Note at this point that on ., one
has X}, = an* where n* is part of the chosen tetrad. The name “supertranslations”
thereby is no coincidence as this subgroup is directly related to the symmetry group
of flat spacetime, i.e., the Poincaré group. Analogous to the BMS group, the latter
represents the semidirect product of the Lorentz group with the group of transla-
tions. For the Poincaré case, the algebra associated with translations, in fact, is also
abelian and ideal, just as the supertranslation subgroup of the BMS group. The
Lorentz transformations in both cases can then be obtained by taking the quotient
group of the full symmetry group, removing the associated (super-)translation ideal.
Curiously, when the BMS group was first obtained by Bondi, Metzner, and Sachs,

it was quite a surprise to find an infinite-dimensional enlargement of the Poincaré
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group. Naively, it was expected that the bulk symmetry group of flat spacetime, i.e.,
the Poincaré group, would simply be recovered at the boundary of asymptotically
flat spacetimes. Evidently, this is not the case, but instead an infinite tower of new
symmetries presents itself at .# T when the metric is asymptotically flat. This fact
intuitively presents itself when decomposing X, into spherical harmonics. Since «

is a function on 82, one can simply write

X =Y amYomou (2.71)

{m

Evidently, the first for components in the above sum are given by {—Yp,0, Y11, Y11,
Y1 o} which, in real angular coordinates correspond to { —1, sin 6 cos ¢, sin 6 sin ¢, cos 6 }
where {—1,sin 0 cos ¢, sin 6 sin ¢, cos 6 }9,, are the translation Killing vector fields of
Minkowski space in the coordinate system (u, 0, ¢). Therefore, the algebra of trans-
lations known from the Poincaré algebra is a subalgebra of the newly discovered

supertranslation algebra.

At this point, it is worth pointing out that in literature one can find multiple
attempts of extending the symmetry algebra of the BMS group to obtain more gen-
eralized and even richer symmetry structures. One of the most prominent gener-
alizations is the extension of the Lorentz subgroup to the superrotations subgroup
[192]. Analogously to the promotion of the translations to supertranslations, one
finds an infinite extension of the rotation subgroup to the superrotations. This ex-
tension is a direct consequence of loosening the restriction to globally well-defined
generators, as it was intrinsically done above!®. If one drops this assumption, the
symmetry algebra of the BMS group becomes a semi-direct sum of the infinitesi-
mal local conformal transformations of the unit 2-sphere with the abelian ideal of
supertranslations, both being infinite-dimensional. In their original works, Bondi,
Metzner and Sachse evaded the consideration of local conformal transformations
by requiring a gauge [63, 65] in which the determinant of dx? corresponds to the
determinant of the unit S? sphere. However, one could keep the non-radial part of
the determinant arbitrary as it was justified geometrically by Penrose [189]. Then
one finds similar Killing vector fields as above, but distinguished into two cases:

i) Restricted to globally well-defined transformations on the unit sphere, one

15The choice of Killing vector fields is closely related to the “choice” of topology. In the above, it
was assumed that .# T takes the topology S? x R, which is a direct result of Minkowski spacetime.
However, for asymptotically flat spacetimes, this can in fact be generalized (consider, for instance, a
flat manifold M = R x IR? x S!). Note however that this particular choice transforms the confine-
ment of the Killing vector fields from arbitrary holomorphic function (which would lead to Virasoro
algebra) to local conformal transformations on the sphere (leading to SL(2,C)/Z,, which is isomor-
phic to the desired Lorentz group) [193].
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singles out the group of global conformal transformations isomorphic to SL(2,C) /Z,,
which in turn is isomporphic to the proper, ortochronous Lorentz transformation
SO(3,1). In this case, the generators of the BMS group contain the Lorentz and

supertranslation generators.

ii) One can also allow for not necessarily invertible holomorphic mappings.
Focusing on the local properties, it is found that an infinite-dimensional extension
of the Lorentz subgroup, the superrotations, enters the BMS group. In fact, with this
choice, the BMS algebra modulo the abelian ideal of supertranslations is not the

Lorentz algebra, as in i), but the infinite-dimensional Virasoro algebra.

In Section 2.4, the connection between the symmetries i) and their physical
manifestation as the GW memory is discussed. The derivation there analogously
applies to ii), resulting in a new type of (spin) memory. In this context, recent works
[142] proposed an experimental investigations with future GW instruments to dis-
tinguish between i) and ii), i.e., to determine which symmetry group best describes
the real astrophysical scenarios probed by state-of-the-art detectors based on obser-

vation or non-observation of different types of memory.

2.2 Radiative Modes at Null Infinity

The above treatment concludes the discussion of the universal structure obtained
by conformally compactifying the physical spacetime to include a horizon .#. The
tetrad is constructed for both the physical and unphysical metric. The group of
killing vector fields for the unphysical metric at .# * is determined, and physical in-
formation of the corresponding spacetime is retrieved by the analysis of the peeling
properties of the independent components of the Weyl tensor. Yet, the challenge
regarding the identification of the radiative degrees of freedom that is thoroughly
described in Section 1.4 is not addressed in a satisfactory manner. One could, in
principle, argue that, as for the NPS in Maxwell’s theory, the fall-off condition of
the physical scalars and the structure of the equations of motion expressed in terms
of NPS suggest that ¥, captures gravitational radiation. However, deriving a for-
mal mathematical argument requires further elaboration. In this Section, the issue
regarding a formal definition of gravitational radiation is thoroughly addressed.

Intuitively, it is clear that radiative information cannot be encapsulated in any
way in the universal structure outlined in previous Sections, as this structure also
admits spacetimes which are devoid of gravitational radiation. What is left then?
Given a standard GR spacetime, the main geometric structure is indeed given by

(M, Sy ), which includes information about the universal structure under the premise



54 Chapter II. Asymptotics of Gravitational Radiation

that g, satisfies the conditions outlined in Section 2.1.3. There is, however, another
piece of information crucial to deriving any dynamics on the said spacetime man-
ifold: the derivative operator V. Mathematically, the choice of derivative operator
includes a lot of freedom, which has immediate physical consequences. See [194] for
a thorough review. In GR, this freedom is partially eliminated by choosing V to be
the covariant derivative associated with the Levi-Civita connection. In fact, in GR
a given metric completely determines the Levi-Civita connection and thus also V
and the Riemann curvature tensor. Hence, one might argue that the choice of g, at
least in GR, completely erases the freedom in the choice of the covariant derivative
operator. This is true for physical spacetime (M, g ). For the conformally compact-
ified one, however, there exists a regime where this is not the case. The boundary
4 is endowed with a universal structure (n”, qw), which, as before, would fully
determine also the covariant derivative operator at .# . However, unlike Suvs Guv 18
degenerate. How this degeneracy impacts the definition of a derivative operator at
Zt, denoted as D, is the subjective of the following Subsection.

Before diving into this matter, it is instructive to realize how the information is split
between g,, and D as one moves towards .# *: In the bulk spacetime, all informa-
tion about spacetime geometry is encoded in g;,. Pulling g,, back to .# ¥, results in
a degenerate metric, and, thus, information is lost. This loss of information is, how-
ever, essential for formulating the universal structure, as it allows for classifying
spacetimes in a broader sense. Given that the universal structure does not contain
information about the presence of radiation, it seems that this information is ex-
tracted from the metric when pulling back to .# . Another pathway to transport
metric information to .# " is via the pullback of the covariant derivative V =: D.
Below, it is demonstrated that this particular information being “transferred” to .# *
via the derivative operator complements g,, by the information about the radia-
tive degrees of freedom and thus, the covariant derivative operator at .#  is able to

distinguish between spacetimes with and without gravitational radiation present.

2.2.1 Covariant Derivative at .# "

Starting from conformally compactified spacetime (M, g,,v) endowed with deriva-
tive operator V, the metric intrinsic to .# is computed via the pullback Suv = quv-
Due to its degeneracy, it is immediately clear that the g, cannot define a covariant
derivative based on its corresponding Levi-Civita connection as g, does not pos-
sess a unique inverse. Instead, one starts the construction by V =: D and checks for
well-posedness: From V, the derivative D inherits its action as a directional deriva-

tive, i.e., acting on a scalar f it holds that v*D, f = L,f = d,,f (Where 0" is a vector
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intrinsic to .# 1), its linearity and the Leibniz property. It can be further shown that
D has a well-defined action on 1-forms at .# T, i.e., D, wy is a tensor field intrinsically
defined at .# [2]. For D to be a valid candidate for the covariant derivative oper-
ator at £, it must further be generalized to map (p,q) to (p + 1,4) tensor fields
on .#*. The latter is a non-trivial generalization in the presence of a degenerated
metric.

Proposition. The covariant derivative operator at %+ defined by V,, =: D, defines a map
from (p,q) to (p +1,q) tensor fields on .7+ that is solely determined by the operator’s
action on a 1-from on S .

Proof. As an arbitrary tensor on .# © contains components from tangent and cotan-
gent space, it is left to show that the action of D on tangent vectors is fully deter-
mined by its action on elements of the cotangent space. To that end, consider a
1-form w, and assume its derivative on .# T, D, wy, is well-defined and known. By
definition, wy, belongs to the cotangent space and hence is always tangent to .# * in
the sense that n?‘wy = 0. Then, one finds that

qupn’Dyv" =0, (2.72)

which immediately follows from nf being the null direction of g, i.e. n*g,, = 0.

However, this also implies
n'Dyv, = 0, (2.73)

since D#qvp = 0. Thus, the derivative of a vector tangent to .# T is itself intrinsic
to . This dramatically simplifies the proof as now one only has to show that the
derivative of v" contracted with a member of the cotangent space of . is fully
determined by the derivative of such a 1-form. That is,

wy D, 0" (2.74)
is fully determined by the derivative D, acting on a 1-form. One can rewrite
wyDyv" = w, Dy (4"Fvp) = wyq"*Dyv, = WDy, (2.75)

where v, is a well defined 1-form as v,nf = ovtg,en® = 0 from gq,,n° = 0 and
similarly w is a tangent vector to .# . Thus, the derivative of a tangent vector can

be traced back to the derivative of an 1-form. The latter equation holds for every
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pseudo-inverse g*” as
Dy = Dy (9 + ') = Dy + Dytn?) = n® DY) =0, 276)
Here, t# is again a vector tangent to .# *. The last step follows from the action of the

derivative D on a tangent vector trivializing, which was shown above.

Therefore D defines a well-defined derivative operator at .# *. Note, however, that
it is not the covariant derivative w.r.t. the Levi-Civita connection. Despite being

metric-compatible

0= V.8 =Duqup, (2.77)
and torsion-freeness,
0= V[VVU]f = D[VDU]f, (2.78)

there is still no non-degenerate inverse of ;. In fact, any tensor 7" which satisfies

9" quoqve = qoo (2.79)

is a pseudo-inverse of q,,. Suppose one finds one tensor g*” which satisfies condi-
tion (2.79). Then it follows immediately that g/" = g¥ 4 t#n") is also a solution
to (2.79), where t# is an arbitrary vector tangential to .#*, i.e., t#n, = 0. The reason
for this ambiguity is, of course, the degeneracy of g, and the fact that n" is the null
direction of g, in the sense that g,,,n" = 0.

So far, the uniqueness of the operator D has yet to be established. Summa-
rizing the progress so far, one finds that any covariant derivative operator on .% "

necessarily satisfies
D,D,f =0, Dyuqvp =0, Dyn" =0. (2.80)

The latter restricts the form of D, but does not fix it completely. To determine the
ambiguity left in the definition of D, one first considers its action on 1-forms w),

which are transverse to .Z 1, i.e., wynV | 7+ = 0.

Proposition. For any two derivative operators D, D’ defined at 9+ via V,, =: Dy, and
satisfying (2.80), any 1-form w, transverse to &, i.e., satisfying w,n" =0, yields

(Dy - D;> wy =0, (2.81)
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Proof. Consider an arbitrary 1-form w, living on the co-tangent space of % satis-
fying only n*w, = 0. Since {¢,, m,, 1, } span a basis on this space, it follows from
the cross normalization properties of the tetrad that w;, = fm,, + fii1, where f is an

arbitrary complex functions. As before, one can write
Dywv = D(ywv) + D[va] = ﬁw/qw + D[ywv], (282)
where w'* = g* w,. First, notice that with g’ = g’ + t(*n¥) one finds that

't =g"w, ="+ tpV)w, = W™ + tw, nt, (2.83)
=h

where /1 is some arbitrary function. Since £,q,y = 0, so is

Hence, there is no ambiguity in wj,. Having a closer look at £,q;v one finds

Ly quy = W' Doy +Dyw), + Dywy
hd
= duwy, + dyw), — 2Ty, w,
= 0w} + 0uw)y — 47 (Quue + e — Doy ) )
= 9wy, + Ay, + WPdpguy — W (9ufup + vqup)
= 9, + a,,w; + w'P,guy — 0 (W qup) — 0y (WP Gup) + Gupdvw’” + Gupduw

Here, the connection drops out completely, and one essentially obtains the Lie deriva-
tive written with partial instead of covariant derivatives. This can generally be done
for any Lie derivative, but here it nicely demonstrates the connection dropping out.
Thus, the first part of (2.82) is indeed connection independent.
The same holds trivially for the second part as

Dipew) = o) = Ty wp = 9

w,), (2.86)

I I

since the connection is metric-compatible and torsion-free.
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Thus, the tensor D,wy is independent of the choice of the covariant derivative op-
erator at T, i.e.,

(Du=D}) w. =0. (2.87)

Therefore, D’s action on vectors transverse to .# + does not fix the remaining ambi-
guity in the definition of D as any of such derivative operators applied on w gives
a trivial result. Thus, there must be another condition complementing (2.80). Given
the basis {Ey, My, My, my}, it is clear that discarding the transversality condition of
wy, inevitably results in the computation of D,{,, for which there is no immediate
solution as above. Note, however, that in principle the choice of the metric fixes
¢, and the pullback of the covariant derivative operator V, gives the operator D.
In this sense, D/, is fully determined. At this point, the reader is reminded that
since /;, is not part of the universal structure, one can intuitively think of D,/, as
breaking D’s universality with regard to its action on 1-forms (which is determined
by q,v). Therefore, the suspicion that £, carries the desired (radiative) information
to S arises. If true, D, ¢, would fix the derivative operator D at .# " completely
(in combination with (2.80)) and allows for the distinction of different asymptot-
ically flat spacetimes. The ambiguity in (2.87) can be seen as a result of select-
ing different conformal compactifications for a given spacetime. The latter leaves
the universal structure invariant as it admits the fundamental rescaling freedom
(quv,n#) = (", 0'") = (f(u,z,2)*q", f(u,z,Z) "' n*), but changes the derivative
operator’s action. By nature of the conformal compactification, this change of the
derivative operator does not affect transverse vectors.

2.2.2 Identifying Radiative Modes at .7+

Recapitulating the results so far, evidence hints that the derivative operator on null
infinity incorporates information about the radiative modes of the gravitational field
in the bulk. Finding a well-defined derivative operator on .#  leads to the identi-
fication of many such operators. In fact, any torsion-free and metric-compatible
operator that satisfies Dyn" = 0 is admissible. In an attempt to quantify the ambi-
guity, the operator’s action on 1-forms wy, on .# * transverse to n*, i.e., which satisfy
wynt = 0, is analyzed. In doing so, it is found that all derivative operators on
Z 7 have the same action on such 1-forms. However, the actions of D and D’ on
¢, (pointing off .7, see Fig. 2.5), which is a 1-form which is not transverse to n*,
are generally different. Thus, D, ¢, being “non-universal” allows for the distinction
between spacetimes with and without radiation. It is where radiative modes are

revealed.
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Proving the latter statement, one proceeds as follows: Let D and D’ be two
distinct, torsion-free, and metric-compatible covariant derivative operators on .# "
which satisfy D;n" = 0 = D;ln”. Furthermore, let ), be any 1-form on the cotangent
space of .# . As the difference between any two covariant derivative operators is a
tensor, one can write

(Dglz - DV)“U = Cyvp‘xp , (2.88)

where Cy,,f = C(;,,) is a tensor and symmetric because the connections used to
construct D and D’ are torsion-free. The action of D and D’ on 1-forms w,, which
are transverse to .# T is universal in the sense that (D; — Dy> wy = 0 can further be
used to conclude

———
=0

i.e., the tensor C,,f is the product of a symmetric tensor X, and the null normal 7°.
By its very construction, this ensures that C,,fw, = 0 for all transversal 1-forms. In

addition, using Dyn" = 0 = D, n" one further finds

——— ———
=0

hence, ¥, itself is also transverse to n*. Ignoring for this moment the existence
of Dy,t,, the previous relations indicate that the freedom in choosing a derivative
operator on .# " is reduced to choosing a symmetric tensor which is transverse to
# . Thus, there are as many distinct covariant derivative operators on .# * as there
are tensors of this type. Given that ¥, is a rank-2 tensor which is defined on a three-
dimensional manifold, i.e., #, it has 3 x 3 components. Its symmetry reduces
the number of independent components to 3(32—+1) = 6. Taking into account the
transversality, which imposes the three constraint equations X,,n” = 0 (remember
that .# is a 3-dimensional manifold), finally leaves three independent components
which completely specify ¥;,,. In a lengthy but straightforward computation, it can
be shown that one of the degrees of freedom associated with ¥, is actually a gauge
artifact associated with the rescaling freedom of the universal structure (q;,,, n#) —
(", n'™) = (f(u,z,2)%q", f(u,z,2) "' n*) [2]. Thereby, one finds that the operators
D admit equivalence classes whose equivalence relation is the conformal rescaling.

Concretely, for a conformal rescaling selected within the universal structure with
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fls+ =1and f # 1 off #7, one finds that for an arbitrary vector field on M

(V= Vi)ay = (D), — Dy)ay
= —w ! <2[(5P Vo wlap = (VPw)a, g,w> ,

which on .# " gives

—w ! (2[(5P Voywlae — (VPw)ap gﬂ> P —1(0— (VPw)ap quv)

= (Vcw) KeJuv = )\nplqu;uv ’ (2.91)

where V#f| ,+ = AnF. The latter result is obtained by considering the rescaling
behavior of C,,," which follows rescaling the derivative operators on the right hand
sight of (2.91) using the rules outlined in Appendix 1.2 as well as 6¢(,,V yw| s+ = 0
[2]. Given Eq. (2.91), a comparison with previous results yields

Zyv =A Quv - (2.92)

This result indicates that the change in the derivative operator is proportional to the
scalar A, which results from the rescaling. Thus, A can be seen as a gauge artifact
associated with the rescaling freedom and is completely independent of «,,. The dif-
ference of covariant derivative operators at .# T, therefore, is rather unphysical and
merely indicates an ambiguity in the choice of the conformal frame. This observa-
tion leads to the introduction of equivalence classes of covariant derivatives. One

denotes these equivalence classes by [D] and defines the equivalence relation as
DD — (D)= D) &y = Aty (299)

Ultimately, when computing physical quantities using D, they have to be gauge-
independent, meaning that they cannot depend on A. Generally speaking, physical
quantities do not depend on the arbitrary choice of a conformal frame. Thus, %,
cannot be (completely) physical. The unphysical degree of freedom associated with
A can, however, be extracted by computing the trace of X,,. This implies that the
trace-free part of X, indeed carries only two degrees of freedom, which are fully
independent of the choice of conformal completion. It is, therefore, instructive to
define a new tensor

Oy 2= 2y — %‘htvqpazpa (2.94)
which is subsequently called the shear tensor. Note here that the trace-free part (2.94)

is in fact not dependent on the pseudo-inverse g"" as ¥, is transverse to n”.
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The shear tensor enables the distinction between equivalence classes. Namely, if
two derivative operators belong to the same one, 0, = 0. On the other hand, if D
and D’ do not “differ” by A q,,, they belong to two different equivalence classes and
their distinction is quantified by o,,. Thus, it follows that two equivalence classes
are disjoint if and only if Ty # 0,

D]N[D) =@ — O # 0. (2.95)

The tensor 0y, can thereby be computed with any representative of [D] and [D]'.
Further, it is gauge-invariant by construction and inherits the following properties
from X, and q;,:

0; uv - U(

VV)’ Uyynv - 0, quo—]/“/ - 0 (2-96)

It properties imply that 0y, carries two independent degrees of freedom. Given that
it is gauge-independent suggests these two degrees of freedom correspond to the
ones of the physical metric g,

After this somewhat lengthy derivation, it is left to show that the degrees of
freedom carried by 0y, indeed capture the radiative modes and are thus oy,, able to
distinguish between radiative and non-radiative configurations. To do so, consider
(finally) D, ¢,: Given a universal structure, one can define derivative operators D, D’
within the equivalence class [D] pertaining to this class of spacetimes. Itis, however,
also possible to define a fiducial derivative operator P which has trivial curvature
and for which

P,y = 0. (2.97)

This operator does not necessarily belong to the same equivalence class [D]. In fact,
by determining whether or not D, induced by the physical spacetime via V =: D,
resides in the same equivalence class as P, one obtains information about whether
said spacetime encompasses radiation or not. To do so, one computes

(P —Dy)ly = ZyynPly = =Xy = Dyly . (2.98)

Inserting (2.98) into (2.94), one finds
=Dl ! P (Dl 2.99
Opv = Pplv = 5w (Dols) - (2.99)

The latter equation suggests that, in fact, the gauge-invariant degrees of freedom are
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captured in D,{,, which agrees with the intuitive picture from above. The tensor
D,y isolates the information in D which is not part of the universal structure but
describes physical information of the underlying spacetime that can be associated
with this structure. At this point, it is also worth highlighting that the shear tensor is
intrinsically defined at .# " and has no correspondent off .# *. This is an important
factor when trying to generalize the frameworks built around GR in asymptotically
flat spacetime to other spacetime geometries. Evidently, the asymptotic structure
plays a crucial role, being home to the radiative degrees of freedom of the underly-
ing theory of gravity. Note further that the name “shear” results from the fact that
0,y computes the shear of £# as defined earlier in this Chapter.

The final connection between the shear tensor and radiation can be constructed
by considering the relation between the Riemann tensor and derivative operators.
Namely, for a torsion-free and metric-compatible derivative operator V acting on

the conformally compactified spacetime M, it holds that
2V, Vo = Ryp“% = Cpup”tg + (Zo(uSu” + Spiud)” ) e (2.100)

In the second equation, the Riemann tensor is replaced with the Weyl and Schouten
tensors. The latter is defined as S, = Ry — % guvR. Pulling the expression (2.100)
back to .# T where the unphysical Weyl tensor vanishes, see Section 2.1.4, one finds
that, at .7 %,

Ruvp” = (qp[ysv]” + Sp[yév") , (2.101)

where Ry1p7 := Ry, 8,V := 54, and Sy := Sypqpvlf’. Note that, using R, =
g" Royov  and TR = q’”RWE 7T it holds that Suwq"’ = R. In this context,
it is important to highlight that the pullback, as defined in “Notations”, results in
the Riemann tensor R, and the Schouten tensor S, on .% * being transverse to
this very hypersurface. Consequently, they are not affected by the ambiguity in-
troduced by operating with a pseudo-inverse to contract indices. Moreover, the
tensors can be understood as being defined on the 2-dimensional cross sections
orthogonal to n*. In this case, the Bianchi identities indicated that the Riemann
tensor contains only one independent degree of freedom and can be rewritten as
Ryuvor = R qu[pqo]y- This perhaps surprising result illustrates a very fundamen-
tal issue that occurs when working at .# ™: Extracting physical information from
conformally completed spacetimes requires careful considerations of the residual

16Note that because g, is degenerate Sy, = S,y looses some information in comparison to
SuP.
K
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rescaling freedom. Physical quantities should generally be invariant w.r.t. this
rescaling, (qu, n*) — (", n'") = (f(u,z,2)*q", f(u,z,2)" n*), which the Rie-
mann tensor does not. Thus, it comes as no surprise that the Riemann tensor on the
boundary .# " does not encode the physical modes that are gravitational radiation.
In fact, neither is the Schouten tensor, as it fails to be conformally invariant as well.
For a review of relevant conformal transformation properties, the reader is referred
to Appendix 1.2.

To define a conformally invariant quantity, one can exploit the topology of the in-
tegral curves of n#. The latter enters the definition of asymptotic flatness explicitly
and guarantees the existence of a symmetric tensor p,, on .# * such that [186]

p],“/nv - O, pl’“/ql/“/ - R, D[ypv]p - O . (2.].02)

With the transformation rules outlined in Appendix 1.2, one can show (see Ap-
pendix 2.2) that p;,, transforms as

2 4
Oy = O — o PuDvw + E(Dyw)(mw) — %qP”(Dpw)(Dgw), (2.103)

which, coincidentally, in large parts, corresponds to the conformal transformation
behavior of the Schouten tensor. It thus motivates the definition of the Bondi news
tensor,
N’,{y — SHV - p]/“/ ’ (2.].04:)
N——
conformally invariant

which captures the conformally invariant bits of information within the Riemann
tensor at .# . Therefore, this tensor, in literature often denoted as Bondi tensor or
news tensor, indicates the presence of radiation “passing” through an observer lo-
cated at .#*. Correspondingly, it vanishes in the absence of radiation. It inherits its
symmetry and other properties from S, and p,y, i.e.,

Nuw = Ngy, Nwn’ =0, Nug" =0. (2.105)
In summary, the Bondi news tensor is a symmetric, trace-free tensor living on the
two dimensions of .# " orthogonal to n*. It thus encompasses 2 physical degrees
of freedom. The situation now is therefore similar to the previous discussion about
the shear tensor. However, for the Bondi news tensor, it is explicitly demonstrated
that its degrees of freedom are of radiative origin. As anticipated above, one can
show explicitly that Bondi news and shear tensor are related and thus their degrees
of freedom agree in their physical interpretation. To do so, it is convenient to work
in the Bondi frame, that is, the frame on .# ™ in which guv is the metric of the unit
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2-sphere, since then R is constant such that

1
Puv = quVR~ (2.106)
and thus
1 o0
N]/“/ = S]/“/ - Eq Spg'q]/“/. (2.107)
Proposition. In a Bondi frame with Dyn" = 0, tFn, = —1, L, 0" = 0 and using the

decomposition of the asymptotic Riemann tensor R .,” = (qp[ySV]‘T + Sp[yé,,]‘7> and the
shear oy = Dyly — %qﬂquU(DP&,), it holds that

Ny]/ — Z»Cno-y]/ V2

where N,y is the Bondi news tensor as defined in (2.107).

Proof. First, note that the shear tensor relates to the covariant derivative of £, at & *.
The Lie derivative of such a tensor w.r.t. an arbitrary vector field ¢# can be computed

as
(LeDy — DyLe)ly =Dy Dyly + Dply Dy + DylyDyll — Dyl Dyl — Dy Dyl
— Dyl,Dy i — (,Dy Dy
=2 (qupSy” + S8 7) Lo = DD, (2.108)

where in the last step the definition of the Riemann tensor on .# T is used, i.e.,
2D Dyjly = (‘714[98140 T SV[P‘SV}U> le = Rovp Lo - (2.109)

Now on replaces ¢# = n* and consider .# in a divergence-free conformal frame
such that D,n” = 0. Lie dragging /" along n' yields L,{;| »+ = 0. Further recalling
that the Schouten tensor on .# T is transverse Swn’/ = 0, one computes

1
LyDyly = n (5 [GupSv” — quvSp” + Sppdu” — Suvdp”] gv)

1 1 1 1
= —EQVv”pSpU«% - E(nPEP)SW = 55141/ - E%V”F)SPWU- (2.110)
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Thus, £,0,, can be computed using (2.99) obtaining

1 1/1
Ly (Dyﬁv - Eqqu‘T(DPEUO =5 (Suv = g’ Sp"ls) — 5 (E%vqwspv - qVV”TSTWw)

1
(Syv — Eqwqpaspa) , (2.111)

N~ N =

which is exactly 3N, as defined in the Bondi frame.

The fact that Bondi news and shear tensor are related is rather intuitive if one ac-
knowledges their interpretation in the sense the information content they are rep-
resenting. While the Bondi news tensor captures the gauge invariant information
content of the Riemann tensor at .# T, the shear tensor encompasses the gauge in-
variant information contained in the equivalence class [D] of covariant derivative
operators at . .

Based on the tensors’ intrinsic properties (2.96) and (2.105), they can be written in a

convenient form on . T.

Proposition. Let 1 parametrize a cross section of ¥ in the coordinate chart (u,z,2).
Then, in the basis {Ey, My, My, ﬁiy}, the shear tensor oy satisfying (2.96) can be written as

0-]/“/ — —(5’07’7’1”71’[1/ —‘I_ O—Omﬂmv) . (2.112)

Proof. Expanding an arbitrary rank-2 tensor T, satisfying (2.96) into the tetrad basis,

it is straightforward to check that the expansion must read
Tuv = MLuly + Agm iy + Az, + Azify i, + 7\4€(ymy) + Al iy, (2.113)

where the symmetry of Ty, is incorporated. The expansion coefficients A1, € R and
Az4 € C correspond exactly to the 6 degrees of freedom that one expects to find for
a real symmetric tensor in 3-d space prior to applying any further constraints. Now
requiring that T}, is transverse to n" imposes that A1 and A4 have to be set to zero,
which follows by simply multiplying T,, with n* while knowing that n*/{, = —1
whereas n#m; = 0. Furthermore, the tracelessness condition of T), immediately

implies that that A, = 0 as well. Hence, one is left with
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which, after relabeling A3 = T, corresponds to the desired result. The complex
coefficient ¢ is called asymptotic shear, defined by

0°(u,0,¢) = — lim (m'm"V,0,) . (2.115)

r—00
and carrying spin-weight —2.

Naturally, given their intimate relation, a similar expansion can be found for the

Boni news tensor, i.e.,
N]/“/ — 2 (Nomymv + Nomﬂmy) ’ (2.116)

where the factor of two is pure convention and where N° is a complex function
of spin-weight —2 which is simply called the Bondi news. Recalling that, in a Bondi
frame, n* is the generator of pure time translations with u being the affine parameter

such that n#Dyu| ,+ = 1, one can rewrite the Bondi news tensor as
Ny = 2Ly0yy = 20,04y (2.117)
such that, in conjunction, the relation between shear and news yields
N°® = —0,0° =: —7°. (2.118)

Eq. (2.118) establishes one of the most profound results of the early works on asymp-
totically flat spacetimes. It connects gauge invariant geometric information of the
Bondi news tensor with the shear of the vector field ¢/# on .# 7, i.e., the derivative
of the generating vector field of the NGC. As such, a relation between information
pulled back from the bulk and information intrinsically defined at .# * is manifested.
Therefore, one can finally conclude that the two propagating degrees of freedom en-
capsulated in the shear tensor indeed describe GWs, i.e., gravitational radiation, in
GR. It is thereby important to highlight that throughout this Section, no lineariza-
tion or perturbation theory is applied. Therefore, the treatment above, including all
interim results, is valid for the full theory of GR.

To conclude the discussion about the identification of radiative degrees of freedom,
the shear tensor is connected to the previously outlined NPS and the linearized ver-
sion of the GW strain. In this way, the next Section will connect the previous theo-

retical discussions with the investigations of the subsequent Chapters.
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2.2.3 The Shear Tensor and Linearized Gravity

In the context of GWs, the classical approach to describe radiation is a perturbative
one. That is, for a physical spacetime (M, g,v), one expands the metric linearly in
the perturbative parameter

Suv = v + My . (2.119)

This turns Einstein’s field equations into a 1-parameter family of equations

d 1_ - - 1 -

CdA A=
where the trace-free metric perturbation is described as

- 1 -
h]/“/ = hl’“/ - E(Upahpg)nyv ’ (2.121)

and the derivative operators are defined w.r.t. the Minkowski metric 77, (to restore
linear order). Note that the Einstein tensor on the left-hand side of Eq. (2.120) does
as well only depend on quantities defined in the bulk spacetime. The linear (physi-
cal metric) perturbation EW/ inherits a linearized version of the gauge freedom of the
physical metric,

where {, is an arbitrary but infinitesimal vector. This freedom can be used to fix the
transverse-traceless gauge (TT gauge) to reduce the freely propagating degrees of
freedom in EW to two, by choosing 7, such that

hou=0,  §"hy =0,  V'h, =0. (2.123)

It follows immediately that l_zw, = Ew and the metric can be expanded into the +, x
orthogonal polarization basis

Wit =hves, +hiey,. (2.124)

To connect this well-known description of GWs, i.e., E;VT , with the definition of the

shear, it is instructive to exploit the fact that the latter can be constructed out of
quantities living on the (physical) bulk spacetime. The shear, as defined above, can
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be recovered by pulling back the tensor field
~ =~ 1. _, =~
Oy = vyfv - ng/gp (fog) (2.125)

to . where V is the covariant derivative w.r.t. §,. Pulling back to ., one
finds that the shear (as defined by the shear corresponding to the frame field ¢V)
is not defined on a 2-sphere of constant # and r. However, as the shear of ¢/ on a
Minkowski background vanishes, one can define the linearized version similar to

the expansion above, as demonstrated for instance in [195], as

d

lin . 1

, (2.126)
A=0

B (Vy0))

where s, denotes the metric of said 2-sphere of constant u, 7. Note that %VZV as well
as s,y depend on the A parametrizing a 1-parameter family of metrics g, in the bulk
spacetime where EW = S Zuw|r—0. Using the identity 2(6@%) J(A) = Lyguv(A) as
well as s,,m'm" = 0 and 6%{57” = \/2/r one finds

1o~ 1 o~
Oiin = oMY Lol — —= (i iy ) - (2.127)

V2r

Expanding the metric perturbation in powers of 1/7,

”ﬁo TT E(l) TT

Wi = ’*: + “:2 + ..., (2.128)

and inserting the result into Eq. (2.127), one finds that

hoTT

N ST -3 so _ lapusy o TT
Olin = S —a + <r ) , so that Olin, = i h . (2.129)
Thus, using i, 1, = (e} el, —iey,) it follows
h° =207, = bl Ta i = nS — ik, (2.130)
where, again,
hS (u,0,¢) = li_>m rhy(u,1,0,¢),
r—00
hS (u,0,¢) := li_>m rhy (u,1,0,¢). (2.131)
r—00

In practice, for GW measurements, the weakness of the perturbations allows to

morally equate linearized with full shear. In this sense, the above relation between
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physical shear ¢° and strain /° can be understood as being absolute, i.e.,

(e} = . ~1 ~Uv— 1 o 1.0 1 7o
c°(u,z,z) = —}1_}1[1([}o rz(m”m"vyév) = E(hJr +ih$) = Eh , (2.132)
where, within the bulk, o = —m# m'v yz, (see [162] for further details and practical

applications). The above sketch of a derivation results in a fundamental relation be-
tween shear and gravitational strain. In the subsequent Sections and Chapters, this
relation is heavily used to describe GWs measured by instruments morally placed at
null infinity. In this sense, in the derivations of constraint equations and other use-
tul applications involving the shear, one can replace the latter by the gravitational
strain without further explanation. This replacement becomes particularly handy

when deriving constrain equations at null infinity, see Section 2.4.

Before presenting a parametrization of the metric in which the shear appears as
an explicit metric component in the next Section, it is instructive to relate the shear
tensor, and therefore the strain, to the NPS of Section 2.1.4. In fact, when studying
literature on GWs, one often finds the gravitational data, exemplarily displayed in
Fig. 1.1, as labeled by “¥4”. To understand why, the relation between shear and NPS
is now analyzed: The expansion in power of 1/r of the shear tensor (and therefore
the strain) should remind the reader of the discussion regarding the peeling proper-
ties of NPS in Section 2.1.4. Indeed, for ¥4, ¥3, Y2, an explicit relation can be derived
based on the contraction of the Weyl tensor (2.58)-(2.60) for each of the scalars. To
that end, the reader is reminded of the fact that the physical NPS can be written as

Yi = Ko mtn¥'mPn?,
Y3 = Koo ' mfn? = Kyype m'm"mPn?,
1
TS = K]u/p(f Pm¥mPn’ = EKVVPU mtm” (mpﬁi(f — ang) ’
Y] = Koo ' 0Pm? = Kyypo 4" mPm”
Yo = Koo OHm" 0Pm? . (2.133)
where K}y, is the asymptotic Weyl tensor and {¢¥, n#, m*,m! } the unphysical tetrad.

Given that the shear is related to the Schouten tensor, and so is the Weyl tensor, a
connection between these two operators seems only natural.

Proposition. Let (M, g,) be the 4-dimensional conformally completed spacetime. In a
divergence-free conformal frame at %, it holds that

Kyypgng|j+ = V[vSmp|y+ ’ (2.134)
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where Kyyypo is asymptotic Weyl tensor and Sy, the Schouten tensor corresponding to gyy.
Proof. Recall that the Weyl tensor can be written as
Cuvpe = Ruvoor — 8o[uSvje — Sp[u8vlo - (2.135)
Thus, taking a covariant derivative of this expression and using the Bianchi identity
VU—R‘uvpo’ - VVR‘MP - v‘uRyp V2 (2.136)
one finds

vaclu/po’ - V[VS (2.137)

Ml
Using the definition of the asymptotic Weyl tensor Kyypr = Q™ !Cyyp0, One writes
VUK]JVPU - Q_lvac‘uvpa - Q_ZK‘uvpaan (2138)

where V#() = n¥. Moreover, from the second Bianchi identity of the Riemann
tensor it follows that V7 Cpypr o (d —3)V,,S,), (Where d is the dimensionality of the
manifold) such that, on .# T, it follows that

VUK]JUPU’ﬂ+ - O, (2.139)

Hence, on .# 1, the left-hand side of Eq. (2.138) vanishes such that from the right-
hand side one recovers
K]/“/pg' no-’ﬂ+ — V[VSy}pL]‘F . (2.140)

Based on the definition of the Schouten tensor at .# 1, i.e., SP,V =S5 VV, one finds that

K;wpa n0'|]+ = 'D[VSF]pLer . (2.141)

Using the definition of the Bondi news tensor N, = Syy — pyv and that
Nup = PSuo = Pplulo = PvSpo (2.142)

the useful relation
KP‘VPU ng’/* = D[bNa]c |f+ . (2.143)

follows.

Given this result and the Eq. (2.133), for each NPS the individual relation to the shear
follows by contacting (2.134) with the correct mix of tetrad fields. One might notice
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at this point that Eq. (2.134) contracts the last index of the asymptotic Weyl tensor
with n* already when related to the shear tensor. This suggests that NPS, which
cannot be written in a form in which n* appears contracted with at least one index,
may not be related to the shear after all. Indeed, in Section 2.1.4 it is mentioned that
outgoing radiative modes are only enclosed in selected NPS. In Appendix 2.3, it is
demonstrated how to derive Y3, Y5, and Im [¥5] in terms of shear!”. The remaining
NPS are determined by the former ones via the Bianchi identities expressed in terms
of NPS!8. In total, one finds [196]

Y§ = 0Y5 +30°¥3, (2.144)

Y9 = 0Y5 +20°%%, (2.145)

Y5 = 0Y3 + 0°Yy, (2.146)

—2iIm [¥5] = 0°6° — 5°0° + 0%5° — §0° (2.147)

YS = —06° ~ I, (2.148)

Yy = —6°~h. (2.149)

The Bianchi identities also result in ‘I’g = —0Y, which is consistent with the explicit

computations. The equation for Im [¥5] can be rewritten as
2iTm [¥3] = 2iIm [—5’00'0 + 80 . (2.150)

For Y}, Y3, the previously derived relation to the GW strain is applied to build an
intuition about the relation of the scalars to actual measurement data. Note thereby
that the operator 0 has been previously defined only in the context of spin-weighted
spherical harmonics. In the context of shear and Bondi news tensor, it makes sense
to generalize its actions to arbitrary functions of spin-weight s: Without loss of gen-
erality, a function f; with spin-weight s can be written as

fs — T‘ullup‘l/lvqmyl ctt mﬂpn—’lvl cte qu With p - q =S. (2.151)
Introducing the abbreviation

Pal...apbl..-bq — ™. mapmbl L Tl_’lbq , (2152)

7Note that there is a hidden subtlety in the derivation regarding the definition of the pullback of
the asymptotic Weyl tensor and the vectors of the tetrad. In particular, contractions of pulled back
indices with ¢ are ill-defined as it is not tangential to .# *. For the definition of the pullback, see the
“Notations” of this thesis.

18For a detailed derivation of (2.144)-(2.149) in terms of tetrad vectors and spin-coefficients, the
reader is referred to [187].
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one can define the angular derivative of a spin-weight s function as'”

Ofs = \%mﬂpﬂl"'ﬂvvww R — (2.153)
as well as

Ofs := \%mﬂpﬂl"'ﬂpw“'w R m— (2.154)

To conclude this Section, the most important results are summarized: Given
an conformally completed spacetime (M, g,,v) with a causal structure and future
boundary .#* on which GR acts as the fundamental theory of gravity, it is demon-
strated that the structure of the derivative operator D at this boundary .# encodes
gravitational radiation. It is explicitly demonstrated that there exists a relation be-
tween the information contained in the derivative operator, conveniently wrapped
into the shear tensor, and physical measures of curvature, represented as the Bondi
news tensor. Further, in the linearized regime, e.g., in the context of real-world GW
interferometry, the shear tensor can be related to the gravitational strain, which is
particularly crucial for Subsection 2.4.3. It should be noted that despite outlining the
symmetries of the universal structure of .# " in detail, conserved quantities associ-
ated with these symmetries have not been addressed yet. For their derivation and
practical application, a relation between shear and strain is indispensable. Finally,
the above discussion links between NPS and the shear tensor, underlining not only
the NPS’ interpretation but also highlighting the relation between peeling proper-
ties of such and the asymptotic treatment above. Note that during the constructions
and proofs of this Section (and more lengthy proofs in Appendix B belonging to this
Section), it was always assumed that one acts within the Bondi frame to simplify
calculations. This corresponds to choosing a specific background structure, without
affecting the physics or the symmetries. For a more general presentation of some
key identities analyzed above, the reader is referred to [197].

In the following Subsection, it will be demonstrated that there exists a metric de-
composition such that the asymptotic shear tensor directly appears as a metric com-
ponent. The latter predates the above treatment of identifying radiative degrees
of freedom with derivative operators at .#* and is slightly advantageous when it
comes to computing and interpreting Einstein’s equations. Nonetheless, the result
is completely consistent with the treatment above, including the symmetries (i.e.,
Killing vector field of the metric) and properties of the (physical as well as unphys-

ical) metric.

“Note that in literature one might encounter deviations regarding the prefactor.
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2.3 Bondi-Metzner-Sachs Metric and its Symmetries

In a previous Section, it was demonstrated that by a specific choice of coordinates,
i.e., the BMS coordinates on an asymptotically flat spacetime, at .#* one obtains the
structure

4dzdz

nto, = oy and quvdxtdx? = m ,

(2.155)
where ¢, corresponds to the metric on the S? sphere. It can be shown that in a
neighborhood of .#* and with the above choice of coordinates, the line element can
be cast into a form very similar to Eq. (2.13). The resulting metric morally extends

the universal structure off .# 7, describing particularly the asymptotic behavior close
to 7.

Proposition. Given the above structure on .9+ in BMS coordinates of an asymptotically

flat spacetime, there exists a unique coordinate extension (u, Q) = r—1,z,z) in the neighbor-
hood of .t such that

ds? = gdx’dx’

= eﬁTvduz —2e*Pdudr + r*Hap(dy? — U?du)(dy®? — uBdu) (2.156)
with
V(u, r,yA) = O(r3), B(u, r,yA) = O(ro), UA(u, r,yA) = O(ro), (2.157)
as well as
Hap(u, t,y?) = gap(z,z) + O(), drdet(H) =0. (2.158)

Thereby, qap represents the metric of S? with radius 1. The last equation is a particular
gauge choice.

Proof. One starts at .# " where the coordinate choice implies a tetrad (n|,+ =
du,m| s+ = (1+ \z\z)\/iflaz,m|f+ =(1+ \z\z)\/iflaz) which can be uniquely ex-
tended by /| s+ = 9, to become a null tetrad at .# . As ¢# is, by construction, a null
transverse to .# T, it generates a NGC. The integral curves belonging to this NGC all
solve the geodesic equation for g, at .#* and, since null geodesics are conformal in-
variants, they also solve the geodesic equations for g, = () 72g;,. Being transverse
to ., (F allows for an extension of the NGC into the bulk spacetime and off .# .

This is done by requiring that (#, ) remains constant along null geodesics. Further,
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g0 = 0 because ¢ ~ dn generates the congruence, d,g4 = 0 since / is geodesic,
ie, Vil ~ 0¥, and g.q| s+ = §(92,90)| s+ = m*"€"guy| s+ = 0 by the definition of
(. Tt also follows from the latter that g, = 0. Since g,y ++ is finite, it must further
hold that V (u,r,y?) = O(r?), B(u,r,y) = OF), U (u,r,y?) = O(), as well as
Hap(u,t,y?) = gap(z,2) + O(r°) . Finally, the rescaling freedom in Q) — f(x*)Q is
used to fix d,det(H) = 0.

The above line element is defined on the physical spacetime and, thus, describes
a physical metric. It is constructed in such a way that in the limit of () — 0, the
adapted coordinate system at .#* outlined above is recovered. More importantly,
comparing Eq. (2.156) with the metric defined in Subsection 2.1.1, one finds that Eq.
(2.156) defines a NGC “starting” at .# *. The latter relation becomes evident in the
above proof. It has been a key insight for the derivation of a related definition of
asymptotically flat spacetimes by Newman and Unti [187]. Their definition and the
metric (2.156) share the same geometric foundations. One crucial difference is the
gauge?’. While above the condition 9,det(H,p) = 0, known as BMS gauge, is im-
posed, in the context of NGC the Newman-Unti gauge (Newman-Unti coordinates)
was applied, i.e., B = 0. The latter follows automatically by choosing () to be the
affine parameter of /.

The BMS metric (2.156) contains multiple functions that have yet to be interpreted
physically. In a straightforward but tedious manner, they could be computed by
solving Einstein’s equations for a given spacetime. This computation can be signif-
icantly simplified by applying the asymptotic expansion of the metric coefficients
postulated by Bondi, Metzner and Sachs [63, 66]: Assuming that the metric coeffi-

cients in (2.156) can be written as decaying power series in 7, i.e.,

(0] o0

r3V(u,r,y?) = Y. V(i)(u,yA)r_i, u(u,r,yt) = ) U(})(u,yA)r_i,
i=0 i=0
Blu,r,y™) =Y By (wy)yr™, Hap(ur,yt) =Y Hip(wyt)yr, (2159
i=0 i=0

20The gauge condition is not the only difference between the definitions in [187] and [63, 66].
The symmetry algebra of these works is fundamentally different. Thus, despite sharing the same
geometric foundation, i.e., the NGC, the [187] obtains a slightly larger symmetry algebra consisting of
a semidirect product of the BMS algebra with an abelian algebra of infinitesimal conformal rescaling
[188].
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one finds that the solution to Einstein’s equation order by order in  imply

1 1
Hap = qap + _Cap(u,z,2) + 5Dap(u,2,2) + r3Ea g+ O(r ), (2.160)
1 1 B -3
p=0+ ) (—ac CAB) ++0((r ), (2.161)
r_3V:O—ll+12M(u z,2) + O(r %) (2.162)
2r2 3 T ’ '
1 /1 1
A CA A _ 4
=U=—=5 15 3 . 2.1
u*=0 , <2VCC ) + TBN (u,z,2) + O(r %) (2.163)

The resulting new functions, except for one, are either fixed by Einstein’s equations
or constrained by evolution equations. Starting with Eq. (2.160), one finds that
C4p is symmetric and trace-free but otherwise unconstrained while D 4p and E4p
are constrained by evolution equations, for instance 0,D 4 = 0. The metric of the
S? sphere is again denoted by g45. Regarding Eq. (2.161), all terms at all orders
are fixed by Einstein’s equations. The same holds true for all subleading terms in
(2.162) and (2.163). The functions M, N4, known as mass aspect and angular momen-
tum aspect, are again constrained by evolution equations. In a static, spherically
symmetric case, the mass aspect reduces to the mass of the compact object, for in-
stance, a Schwarzschild BH2!. The angular momentum aspect N A earns is name by
being derived via solving the , A component of Einstein’s equation which relates, in
the non-vacuum case, to the angular momentum flux of the matter fields (i.e., 72T 4
where T is the stress-energy tensor). A detailed derivation of the above functions is
provided in [184].

From a GW physics point of view, perhaps the most important metric com-
ponents are the mass aspect and the tensor C4p. The latter is often referred to as
asymptotic shear. This results from its relation to the shear of the NGC (as defined
above, right after (2.13)). In fact, using this prescription, one finds

OAB = arHAB = T’CAB + O(I”) . (2.164)

The asymptotic shear, in turn, defines the Bondi news tensor Nap := 0,Cap. The
Bondi news tensor captures the conformally invariant part of the Riemann tensor

at .#* and is often described to encapsulate radiative information. Indeed, one can

2lIn this case, B, U/ become zero and the metric reduces to the Eddington-Finkelstein metric.
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compute that in the absence of gravitational radiation, Ngp = 0. Up to a conven-
tional factor of 2, the Bondi news tensor determines the NPS, as shown above, via

Y, = %ausz +0(r2). (2.165)

The Bondi news tensor also determines the evolution equation of the mass aspect.
Note, however, that, to find a reasonable expression in terms of the Bondi news
tensor, Einstein’s equations are supplemented by the contracted Bianchi identities.
Only then, it holds that

1 1
o.M :ZVAVBNAB — gz\rABNAB, (2.166)

from which the Bondi mass loss formula

ddMuB — 2, /82 4 M(u,z,2) = _411 /82 45 N gNAB (2.167)
follows by integration over S2. Eq. (2.167) can be loosely interpreted as a flux-
energy condition. Thereby, the left-hand side acts as the variation of energy in time
while the right-hand side embodies the flux flowing out of the system (thus the
minus sign). This equation can be seen as a predecessor to the balance flux laws
derived in Section 2.4. Note, however, that the interpretation of (2.167) is very sen-
sitive to the chosen fall-off conditions for the metric components and the definition
of asymptotic flatness. While in the above, the asymptotic behavior of the metric
components has been rigorously defined, some works tend to loosen the restric-
tions (see, for instance, [121] and [198]), resulting in an extended BMS algebra as
well as slightly different constraint equations for the individual components. More-
over, in realistic scenarios such as GW measurements, the only accessible quantity
is the gravitational strain. Although it is computed based on the Bondi news tensor,
the mass aspect remains unknown. Therefore, when deriving the balance flux laws
below in Section 2.4, one makes use of a more robust way of analyzing the theory’s
fundamental conserved quantities in a more practical form at null infinity.

It should be highlighted at this point that, as opposed to the initial value problem
on space-like hypersurfaces, solving Einstein’s and the evolution equations corre-
sponds to solving partial differential equation with data from a null surface. Inter-
estingly, the free data of the expansion above is given by the Bondi news tensor at
#~ as well as an infinite tower of zero modes at v = —c0,. i.e., timelike past infinity,
e.8., Caplo=—co, M|v=—co, DaB|v=—co. The constraints of the free data result from the
evolution equations of the metric components that are derived based on Einstein’s

equations, as well as the Bianchi identities. The News tensor thereby remains a free
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function. In fact, it comprises two free functions at .# * corresponding to the two he-
licities of the massless graviton. The latter becomes fundamentally important when
discussing the scattering problem in GR in the context of asymptotically flat space-

time, see [199] for an exhaustive review.

Given the metric (2.156), it is natural to ask whether the asymptotic symme-
tries preserving the expansion above are the same that one finds by preserving the
universal structure at .# ", i.e., definition (2.69). Therefore, one is now interested in
the infinitesimal symmetry generators X that, given the BMS gauge (sometimes also
only called Bondi gauge), yield a metric obeying the same constraints when varied,

i.e.
89w =0, 384 =0, §*%6ga =0, (2.168)

where the latter prevents g 4p from undergoing a conformal rescaling under a coor-

dinate transformation. Further,
03w =00 Y, 65a=0Q1), 63, =002, 3sap=0(r). (2.169)

Replacing 6 with the Lie derivative along a generator of a diffeomorphism, or more
precisely, along a Killing vector field X, the Killing equations that determine the
corresponding components of X, are obtained. For instance, the first equation in
(2.168) yields

V., X, = 0, X, — T4, & —T" X, — T4, X4 = 0. (2.170)
This results in
9,X, = 20,8, (2.171)
which is solved by

X, = f(u,x1)e?, (2.172)
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where f is a differentiable function. For the other components the procedure is less
trivial but follows a similar logic. All in all, it follows that

X" = a(x?) + %VAYA(xB), (2.173)
A A A C(~B
x4 =yt Y “r(x ) Y v‘;: S (2.174)
C A C A(,B
X' = =2 VY (x) + chz“(x ) YV VfY 0D L ou ), @ars)

where V 4 is the covariant derivative on the unit S 2 sphere. In the limit to .# T these

equations boil down to

X = X9, +X%9 4

= |a(x?) + %uVAYA(xB) 9y + YA (xB)oy, (2.176)

while X, is not well-defined at null infinity and drops out. Comparing the latter to
what is obtained in (2.69), the replacement Y494 = xd, + X0z leads to the conclu-
sion that the generator X is identical to the one preserving the universal structure.
Note that a is an arbitrary function and Y# are the conformal Killing vectors of the
metric of the unit 2-sphere. The function « effectively describes the generator of the
supertranslations as defined previously in Eq. (2.69). Again, as it is a function of
the angular coordinates only, one can decompose it into spherical harmonics where
| = 0,1 represent time and spatial translations while / > 1 are the “proper” super-
translations. The vector Y encompasses six Lorentz transformations that preserve
the unit-sphere metric at the boundary .#*. The generators Y4 form a so(1,3) sub-
algebra of diff(S%) and obey, by definition, the conformal killing equation on S?, i.e.,

VaYs+VpYs =hagVeY© (2.177)

The latter equation provides (globally) three rotations uniquely defined by V 4 Y4 =
0 and three boosts given by ¢489,Yp = 0, where ¢4 is the totally antisymmetric
tensor on the unit sphere. Hence, for a = 0, the Killing fields of the BMS group
are isomorphic to the orthochronous Lorentz transformations [65]. Therefore, the

generator X again exactly results in the BMS group.
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2.3.1 Asymptotic Shear and its Interpretation

With the metric laid out in the above format, it is instructive to elaborate on the con-
nection between memory and asymptotic data, i.e., the asymptotic shear. As men-
tioned briefly in the introduction, the GW memory can be fundamentally related to
a change in vacua at .#* which are related via supertranslations [105]. The logic
behind this statement rather intuitively follows when one relates the Bondi news
tensor d,C4p to gravitational radiation, e.g., via Eq. (2.165), and accepts the claim
that two spacetimes related by supertranslations are inequivalent [63]. Starting with
the latter, one can compute the action of a supertranslation on free data on .# " by
taking the Lie derivative w.r.t. the corresponding generator. Explicitly writing out

the components of the involved tensors in (u, z, Z) coordinates, one finds that

Lx,Nzz = adyN;;, (2.178)
1

Lx M = ad,M + 1 <NZZV§oc + 2V, N¥*V,a + c.c.> , (2.179)

EX(XCZZ - lxauCZZ - nglx . (2.180)

Here, X, refers to the supertranslation generator, see Eq. (2.176). Eq. (2.178)-(2.180)
imply that, for Minkowski space, M = C4p = Nyp = 0 supertranslations do not
change mass aspect or Bondi news. The latter is consistent with the expectation that
diffeomorphism generally cannot change physical quantities like mass, or create
GWs (Nap # 0). Supertranslations, however, do change the asymptotic shear C4p.
In fact, one can show that vanishing curvature (which is necessarily assumed when

talking about vacuum) for the expansion above implies

V2C,, — V2Cs: = 0. (2.181)
The latter is solved by

C.. = —2V2C(z,2), (2.182)

which, under supertranslations, transforms as Lx,C(z.Z) = a, according to (2.180)
and (2.182)%2. In turn, given two vacua C,;(us), C;z(u1) where uy < uy, the super-
translation relating these states can be computed by integrating (2.166)

V2 [Coa(tty) — Coz(u)] = 2 [M(12) — M(u1)] - (2.183)

22Given this particular Lie derivative, one could view C(z,Z) as a Goldstone boson resulting from
a spontaneously broken supertranslation symmetry [105].
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This equation can be solved for AC(z, z) producing AC,,; = Cz(u3) — Czz(u1) which
effectively computes the corresponding supertranslation generator X,. Note that in
case of a non-trivial energy-stress tensor, the right-hand side of (2.183) obtains an-
other contribution.

The above sketch demonstrates that BMS vacua are related by supertranslations.
What is left to show is how a change of the vacuum state enforces the GW mem-
ory, i.e., the permanent displacement of two freely floating test masses. First, note
that necessarily, to translate between distinct vacuaa Cz; (1) # Czz(u2), there needs
to be a time domain for which N;; = 9,C;; # 0. Thus, the vacua can only be
changed as gravitational radiation passes “through” .# . As presented in the intro-
duction, this gravitational radiation necessarily entails a memory. For the perspec-
tive of the asymptotic shear changed by passing gravitational radiation, one finds
that, since the shear fundamentally affects the metric, the proper distance between
two points changes. Therefore, to obtain an estimate of the memory induced by
AC,; one simply computes the change in proper distance AL of two fixed points
(u1,21,21) and (u2,z2,Z2) given the changed metric component C;,. One finds that
AL is proportional to the previously defined AC,; (for the explicit computation, see
[105, 199]). This result is of fundamental importance as it implies a direct relation
between the symmetry structure of spacetime and a direct physical observable, i.e.,
the GW memory. Yet to be detected, its observation would act as a smoking gun for

much of the theory presented in this work.

Combining the approaches of Section 2.2 with the original works of Bondi and
Sachs, one can show that the asymptotic shear C4p contains the radiative degrees
of freedom at .# . Proving the latter corresponds to deriving a connection between
the traceless part of ¥, (i.e.,, Dy¢y) and Cap. To obtain the desired relation, one
necessarily needs to extend g, to the unphysical metric g,, as the relation to be
proven is inherent to .# . The reader is reminded that the NGC is conformally
invariant so that the properties derived above are still valid for g,,. In particular,
this implies that ﬁyév = Vuty, = Dy, where %H is the covariant derivative of

the physical metric and V, the one for the unphysical metric, and D a derivative
operator on . . As outlined in Section 2.2, one can introduce a trivial derivative
operator P, such that %, = (D,— B,) ¢, = Dyly. Now with %, = D, one can
build a relation to the quantities in the conformally completed bulk. In the above
metric (2.156), one natural choice for the generator of the NGC is £, ~ dq. In other
words £, = —V,u which implies that

Vuly =T, Veu =T",, . (2.184)
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Thus, one finds that

Ca
Spv = Vuly =T | 5o = TB L (2.185)

where the asymptotic shear is, by definition, symmetric and trace-free and, thus,
the expression (2.185) equals the definition of the shear above, see Section 2.2.2.
Eq. (2.185) demonstrates that the radiative degrees of freedom are inherently linked
to one metric component, i.e., the shear, in the definition of Bondi and others. This
insight is rather powerful as, together with the definition of the NPS, it links together

large parts of the literature on GWs, symmetries, and conserved quantities.

2.4 Towards Conserved Quantities at Null Infinity .

So far in this Chapter, the asymptotic spacetime structure is presented as a power-
ful tool for determining the presence of gravitational radiation far from the source.
Two perspectives, the BMS metric and the radiative modes hidden in the derivative
operator, are presented, yielding the exact same result, including the symmetries
present at the boundary .# *. Relations to physically observable quantities like the
GW strain and the memory are hinted at. However, so far, a discussion about the
implications of the symmetries, i.e., their associated conserved quantities, is not to
be found. In fact, the latter turns out to be less trivial compared to common theories,
such as Maxwell’s theory. A somewhat intuitive but mathematically not very sound
explanation is given in the introduction 1.3.

In this Section, this shortcoming is rectified by introducing a mathematical frame-
work developed by Wald and Zoupas [108] with which conserved quantities can be
obtained for GR in asymptotically flat spacetimes. This formalism employs a differ-
ent language compared to what has been presented so far. The translational steps
necessary to bring the results of the latter into congruence with previous Sections,
however, constitute much less effort than continuing in the language of radiative
modes encoded in derivative operators [111]. To highlight this tradeoff, the work
of Ashtekar and Streubel [195] is briefly presented and connected to the formalism
by Wald and Zoupas in Section 2.4.2. In total, based on the previous endeavor, this
Section is aimed at formulating the necessary tools, i.e., the balance flux laws for
gravitational radiation, for practical applications of the mathematical framework
discussed so far. Concretely, in this thesis, it is demonstrated how the results of this
Section can be used to improve and test gravitational waveforms (see Section 2.5) as
well as to add novel signatures (see Section 3.2.3). Note that this treatment applies
exclusively to diffeomorphism-invariant theories.
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24.1 The Covariant Phase Space Approach

When discussing conserved quantities, it is often beneficial to switch from a La-
grangian to a Hamiltonian picture. Being fundamentally connected to the phase
space of a system, the latter uses the language of symplectic geometry to define
crucial quantities such as the Hamiltonian conjugate. If a Hamiltonian conjugate to
some (Killing) vector on a given Manifold exists, it provides a somewhat natural def-
inition of a conserved quantity w.r.t. this vector. However, generally the existence
of a Hamiltonian is not to be taken for granted and, in fact, at .¥ T no Hamiltonian
exists in GR. In their work [108], Wald and Zoupas argued that the reason for the
absence of a Hamiltonian at .# is the presence of a flux (of gravitational radiation).
Mathematically, this flux arises in their definition of a modified Hamiltonian for
diffeomorphism covariant theories by virtue of Poincaré’s Lemma, which roughly
states that a closed differential form is only determined up to its exact part. As it is
elaborated in more detail below, the remaining ambiguity of a closed form relevant
to the definition of the Hamiltonian a la Wald & Zoupas in combination with some
physical intuition yield an expression for the flux across the boundary of the bulk
manifold. For a precise analysis of various mathematical subtleties encountered
during the construction presented here, the reader is referred to the original work
[108] (see also [200, 201] for generalizations of the geometric setup). Throughout the
demonstration, it is helpful to keep in mind that one aims at conserved quantities
w.r.t. a Killing vector field ¥ of spacetime at .# T, i.e., a generator of an asymptotic
(BMS) symmetry (defined by X* in Eq. (2.68), Section 2.1.5).

The Setup:

One starts by outlining the general setup. Consider an n-dimensional manifold M %3
with a set of dynamical fields ¢ = {guv, ¢} including the metric g,, and additional
tensor fields ¢ 4. The fields admit values only within a space F which is dubbed
the space of “kinematically allowed” field configurations. A precise definition of
this term is very sensitive to the concrete system under consideration. In the context
of asymptotically flat spacetimes, it particularly encompasses the asymptotic condi-
tions on ¢ as well as global hyperbolicity of the metric. Given that the dynamics of
the theory are encoded in the n-form Lagrangian density

L — L(g}u/, RHV‘DU'I V}IRV‘DO")/I"'I 1.P, v;l) Y (2.186)

2In this work, one exclusively deals with 4-dimensional spacetime. Nonetheless, the prescription
outlined in the following holds in all generality.

24 Although the physical manifold is considered, until considering GR explicitly, the tilde ontop of
quantities defined on this physical manifold is dropped
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where the derivative operators V, are the torsion and non-metricity free covariant

derivatives associated to Suvs the equations of motions follow upon variation, i.e.,
0L =E(¢)d¢p + dO(¢,0¢) . (2.187)

The Euler-Lagrange equations result from E(¢) = 0 and 6 corresponds to the bound-
ary term resulting from partial integration of terms of the form Vé¢. Since the
boundary term 0 appears with the exterior derivative in the variation of L, its in-
fluence on the equations of motion is determined up to the addition of an exact
n-form W

0—0+W. (2.188)

This freedom directly transfers to the presymplextic current w defined as

w (¢, 014, 629) = 610(9, 02) — 520(, 61¢p) - (2.189)

Thereby, d1¢, 62¢ are linearized perturbations off ¢ in field configuration space (sat-
isfying the linearized field equations). The ambiguity in 0 results in w — w +
I W(¢p,d2¢) — 52W(¢,61¢). Note that technically, 6 obtains another contribution
upon adding another exact n-form K to the Lagrangian form. While the equations
of motion remain unaffected, 8 — 0 + JK. Note, however, that this does not change
the presymplectic current due to the commutation of variations. One can now define
a presymplectic form )y mapping field configurations and linearized perturbations

into real numbers. This form is associated with a slice ¥ %, such that

0x(9,61,00) = [ w. (2.190)

Note here that the ambiguity in the definition of w also results in an ambiguity
of the presymplectic form Q)y. The presymplectic form is generally degenerate and
allows for the subtraction of orbits of the degeneracy subspace from F [108] (see also
references therein). Through this projection, Iln, : F — T, one obtains the phase
space I' as well as a nondegenerate symplectic form (). The factoring out of orbits
also yields a projection from F to I' which allows the definition of a Hamiltonian
in the following sense: Given a vector field {# on M its Lie derivative generates
a field variation Lz¢ on F which may be identified with éz¢ = Lz¢ if, like the

variation, L¢¢ is tangent to 7, i.e., the corresponding diffeomorphism does not map

ZFor intuition, in the relevant setting of conformally compactified spacetime, a choice of ¥ would
be a null slice such that the intersection of the slice with the total manifolds boundary in the future
results in a cross section of .# .
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FIGURE 2.6: Relation between field configuration space F and phase
space I' by the map Iln; described in [3]. In the presence of constraints
such as equations of motions and else collectively denoted by C, the
system is restricted to the subspaces F and I’ respectively.

out of F. The vector field can then be seen as generating an evolution of ¢ within
F. Restricting F to the covariant phase space, or, solution submanifold F, if ¢*
consistently projects to phase space, an image I of F is generated. In other words,
let 7 denote the subset of F consisting of solutions to the equations of motion. If
one interprets I' as the space of kinematically allowed states of the system, then T
consists of those states that are dynamically possible. If T is a proper subset of T,
then not all kinematically possible states are dynamically possible, i.e., constraints
are present (see Fig. 2.6). If the pullback of Q) to I' is preserved by the evolution
vector field ¢# on T, i.e., ﬁg(qo* Q) = 0, then it is generated by an Hamiltonian Hg
conjugated to ¢ [3, 108]. This rather technical construction establishes the foundation
for a valid definition of the Hamiltonian: Given a particular choice for Qy (i.e.,
assuming the ambiguity has been removed) and the finiteness of [ w(¢,d¢, Lz¢)
forall ¢ € F and é¢ tangent to F, the function Hg : F — R defines the Hamiltonian

conjugate to ¢ on X if

OH; = 09,00, £e¢) = [ (9,69, Le9). @191)

The value given by H; provides a definition of a conserved quantity associated with
¢onZX.

Criteria for Hg:

The above definition of the Hamiltonian is valid only for a restricted set of cases.
Most importantly, for GR in asymptotically flat spacetimes it does not apply — there
exists no Hamiltonian in this case. The necessary criteria for the existence of Hg
can be derived by rewriting the definition (2.191) using the (n — 1)-form Noether
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current associated with ¢,

j=0(¢ Lep)—C-L, (2.192)

where ¢ - L denotes the contraction of L’s first index with ¢¥. It is easy to check that
variation then yields

8j = w(¢,0¢, Lep) +d(C-0). (2.193)
Given that for diffeomorphism covariant theories one can rewrite [202]
j=dQ+¢"Cy, (2.194)

where C, corresponds to the constraints of the theory, and trivializes if one restricts

to on-shell solutions, one finds that

w(¢p,0¢, Lep) =5V6C, +d(6Q —¢-0). (2.195)

Thus,

SH; = /E FoC, + /a lsQ—c-al, (2.196)

where the first term on the left-hand side drops out if one restricts ¢ to on-shell solu-
tions, i.e., when confined to F C F. A straightforward criterion for the existence of
Hg is then derived based on the commutation of mixed partial derivatives 61¢, 62¢
such that

0= (4162 = 8201 He = — [ 2-w(gve19,020). (2.197)

Thus, for the Hamiltonian to be well defined for some field configuration ¢ satisfy-
ing the equations of motions, ¢ € F, and 619, 6,¢ solving the linearized solutions

and being tangent to F, it must hold that

| & w(@019,629) 0. (2.198)

The integral is thereby evaluated as a limit towards 0%, i.e., one chooses a compact
region K of X with boundary 0K, integrates over dK, and then computes the limit
of K approaching X.. Naturally, this involves calculating the pullback of ¢ - 8 to JK.
The criterion (2.198) is trivially satisfied if, based on the asymptotic behavior of ¢,

w is such that it approaches zero sufficiently fast asymptotically, such that in the
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limit of K to X the integral vanishes. Equally, if ¥ is always tangent to 0K, the
criterion (2.198) is satisfied as the pullback of ¢ - 8 to dK vanishes (as the pullback
intrinsically is defined w.r.t. a normal vector). If neither of those two criteria holds,

the Hamiltonian is generally not well defined.

For the purpose of this Section, the above formal definition is put into the
framework of GR acting on asymptotically flat spacetimes. In this case, ¢ is consid-
ered to generate an infinitesimal asymptotic symmetry and a complete vector field
on M with (n — 1)-dimensional boundary .# (for physically relevant scenarios, the
consideration of .# " is sufficient). It is associated with a diffeomorphism mapping
F into itself. The manifold M is equipped with a universal structure as described in
detail in previous Sections, which enters the specification of the fall of conditions of
the fields encoded in F. Thus, for ¢ to be associated with an asymptotic symmetry,
it must preserve the asymptotic conditions specified in F, or, in other words, Lz¢
is tangent to F. It is further assumed that w(¢, d1¢, 5>¢) extends continuously to
# T and the slice ¥ extends smoothly to .# * such that the extended hypersurface
intersects null infinity in an (n — 2)-dimensional submanifold 0., i.e., a u = const.
cross section of .# . Given this setup, it does in general not hold that the extension
of w has a vanishing pullback to .# 7, i.e., Eq. (2.198) is not satisfied. Note that it
might be the case that  is everywhere tangent to d.# *, which enables the definition
of a Hamiltonian (2.191). This, however, does not mean that it embodies a conserved

quantity as

OHgls.py — OHels g = — /A L @(@,010,00) (2.199)

does not in general vanish. Here, the Section A.# " denotes the portion of .# " en-
closed by the cross sections 9.#;" and 9.%," (corresponding to slices of constant u, i.e.,
u1 and up with up > uy, at null infinity). Thus, even if all asymptotic symmetries are
found to be generated by vectors everywhere tangent to 0.# * and a Hamiltonian

exists, one remains empty-handed regarding a definition of a conserved quantity?®.

Interestingly, for GR on spacetimes being asymptotically flat at spatial infinity,
one finds that w indeed has a vanishing pullback to the boundary of the manifold
M which, in this case, would be spatial infinity. Thus, Hz does exist in this case and
can be shown to be independent of the cross section d%; such that H¢ is indeed a
conserved quantity. The definition above, in fact, gives rise to the ADM mass given
¢ corresponds to asymptotic time translations [108].

26Note at this point that the failure regarding the definition of conserved quantities does not mean
all hope is lost. The contrary is the case. If symmetries are present, missing conservation hints the
existence of non-conservation-, or flux-laws.
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A Hamiltonian a 1a Wald and Zoupas:

In [108], the authors circumvent the apparent issue by constructing their own ver-
sion of conserved quantity (or Hamiltonian), which is conserved independent of
the orientation of ¢ at .# . To distinguish the new Hamiltonian from the definition
(2.191), it is denoted by H. The logic behind the definition of H; is quite simple.
Given the criteria (2.198), one can trivially satisfy the condition by adding a term
to the Hamiltonian which exactly cancels the left-hand side (2.198) after the double
variation. The job is done by

-0, (2.200)
9.9+

where O is the symplectic potential corresponding to the pullback w of the extension
of wto 7T, 1ie,

w(P, 619, 02¢) = 610(¢, 629) — 5,0(¢, 619) - (2.201)

Here, O is conformally invariant, i.e., it depends only on the universal structure
of #* and therefore admits similar rescaling freedom. Note also that the integral
(2.200) is intrinsically defined on .#* and not, as before, computed in a limiting
procedure involving the pullback. For more insights on potential dependencies in
the construction of O, see [108]. With this term at hand, the new Hamiltonian is

defined as

oM = /a _lo-c-o-[ c¢o (2.202)

which trivially satisfies Eq. (2.198). Therefore, H establishes a conserved quantity
up to an arbitrary constant which is fixed upon a suitable choice of reference solu-
tion ¢ € F. So far, so good. The involved reader, however, might notice that the
modification that is adapted for the new definition of the Hamiltonian, H¢, could be
considered cheating as the quantities 8 and ® may seem to be one and the same at
tirst glance. This, however, is not the case as it will be demonstrated in the follow-
ing, largely due to an ambiguity in the symplectic potential. Indeed, except for the

additional constant, definition (2.202) fails to be unique due to the freedom
O(¢,69) — O(¢,6¢) + W (), (2.203)

where W is an (n — 1)-form on .# . Note that in contrast to (2.188), the freedom
(2.203) does not result from the invariance of the equation of motion but from an
ambiguity in the pullback w in (2.201). Assuming that W inherits the independence
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regarding the choice of the exact background structure, meaning the conformal fac-
tor, from O, it seems to be a priori completely arbitrary. Thus, further conditions
have to be enforced to give physical meaning to this piece in the new Hamiltonian.
Wald and Zoupas argue that additional requirements for ® can be motivated by ac-
counting for the presence of fluxes Fz on .#* in cases where the conserved quantity
associated with ¢ is in fact not conserved. In a physical picture, this flux is linked to
the presence of radiation escaping to .# * and, hence, must vanish if ¢ encompasses
a stationary solution. That is, for all stationary solutions, Fz must vanish on .# T for
all ¢.

The flux across some region on .# " is generally defined by the change in the con-

served quantity along cross sections of .# T,

Melypy — Helg e = — /A . OFe. (2.204)

Inserting the definition (2.202) on the left-hand side and applying Stokes’ theorem,
one finds that

0Fz = w(¢,0¢, Lz¢) +d[G - O(¢,6¢)], (2.205)
where
d[¢-©(¢,0¢)] = L:O(p,09) = —w(P, 6, Lep) +6O(p, Lz¢) - (2.206)
This leads
6Fz = 60(¢p, L) (2.207)

Given that the (stationary) reference solution ¢y, fixing the undetermined constant
in the definition (2.202), is chosen such that Hz vanishes everywhere on .#*, and so
does F¢27. As now both @ and F¢ vanish on ¢y, it follows that

F: = ©(p, L) - (2.208)

Eq. (2.208) provides a valid definition of the flux that nicely follows the phenomeno-
logical intuition. It also admits the desirable property that if { embodies an exact
symmetry such that Lz¢ = 0, the flux vanishes independent of the presence of ra-

diation. It further establishes clarity regarding the distinction between 6 and ©O:

27A straightforward example for the choice of ¢ in the context of this Chapter would be
Minkowski space. For additional discussions regarding ¢, see [108].
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Namely, one finds that the difference is given by a total variation
0—0=0W,. (2.209)

Here, 6W is fixed by conditions on the flux F; that were built based on physical
intuition. It follows that

He=[ Q=C Wy, (2.210)
where W lacks a direct physical interpretation except that it is part of the flux defi-
nition. Eq. (2.210), however, has a clear physical purpose depending on the choice
of ¢. If, for instance, ¢ is chosen to be the asymptotic time translation vector t# at a
cross section 9. " of .4, then (2.210) computes the Bondi mass Mp (compare Eq.
(2.167) and see below for the computation of the latter in the framework of Wald
and Zoupas). Finally, note that a similar argument regarding the presence of a total
derivative in the integral computing a physical quantity also enables the definition
of the entropy of dynamical BHs [203].

In conclusion, the treatment of Wald and collaborators successfully establishes
the notion of a conserved quantity and flux at null infinity for Einstein’s theory of
GR. It therefore resolves one of the most pressing issues in the asymptotic space-
time formalism. The results [108] thereby agree with earlier works from Ashtekar,
Streubel, and Dray [111, 112] as it will be briefly discussed in Section 2.4.2. Before
doing so, the Wald-Zoupas formula in combination with the insights from previous
Sections are utilized to defined a flux formula for GR in asymptotically flat space-
time at null infinity: Starting with the Einstein-Hilbert Lagrangian form in physical
spacetime (with the physical metric g,,)

1

L=—RW 2211
6 ¢ (2211)
one straightforwardly obtains the presymplectic potential 6 as
1 = ~ — ~ — ~
vap - EGvapglmgﬁ’Y(vlgégay — voc(sgﬁy) . (2.212)
The variation of Eq. (2.212) yields the current 3-form w, i.e.,
1 ORI JURNPSE
Wvp = ——CouvpP P (6288 V 10185r — 018apV 102857) (2.213)

167
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where
By ~o¢y§|/ﬁ§y5 _ %gaégﬁygmy _ %gtxﬁgﬁégyv _ %gﬁ?g«ﬂgﬂ/é + %gﬁ?gtxégyv‘
(2.214)

Adapting to the discussions of previous Sections, the spacetime is now conformally
compactified, introducing the unphysical metric g,,. Further, one makes use of the
tetrad adapted to the NGC that spans the spacetime within the universal structure of
asymptotically flat spacetimes. In particular, one resorts to n, as defined above via
n, = V,Q where () is the conformal factor. The Bondi gauge is adapted throughout
the remainder of this Section for which n¥n, = O(O?). If F is such that it consists
of metrics gy, such that QO?g,,, extends smoothly to .# and becomes the 2-sphere
metric at .# T, then 8¢, = 0?68,y also extends smoothly but vanishes at .# T such
that one can define

Yuv = 0w = QTyy (2.215)

where T, is generally not vanishing at .# * by the virtue of the Lemma presented in
Section 2.1.4. Further, as én,, | 7+ = 0, one obtains Twn' = Q1. Again, T, is smooth
and in general not vanishing at .#*. The trace of 7, is denoted by 7, without in-
dices®®. Adjusting all quantities in Eq. (2.213) by their conformal transformation as
well as replacing 6g;,, with 7,, and 7, the presymplectic current can be computed
for conformally compactified, unphysical spacetime (see [108] for details). To ex-
plicitly calculate ©, one needs to define the pullback w. Doing so, first note that in
conformally completed spacetime,

€pvpr = 4€[pNo) (2.216)

which results in a positively orientated pullback (%) € at .# " such that

1
w = —mﬂf‘lnyw”(g’)g. (2.217)

A rather tedious calculation and evaluation at .# T further leads to
_ 1
Q 4nywy|y+ =5 ([T;Pnﬂvmﬁp + on'V,m + ot +[12]) . (2218)

Similar to Section 2.2.2, the latter expression can be related to the Bondi new ten-
sor capturing the radiative information by considering the Riemann and Schouten

Z8Note that in subsequent computations 7,7, and T receive an numerical index to indicate the
variations J1, d, of the symplectic current
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tensors. Concretely, one computes variations of those in the vacuum. The Schouten
tensor is then defined by

S = =207V (1) + Q7 2k n g (2.219)
which leads to

Note that the difference in the prefactor of the first term w.r.t. [108]. This, however,
does not affect the end result since the first term vanishes when multiplied with
Ty as Tuh'| s+ = 0. Further note that on # %, one has n*V, 1 + 2nt1| ,+ = 0
which can be obtained by the direct computation of S, via S;,, = Ry — %ng
with Eq. (2.220). It follows that Q~*n,w"| ,+ can be compactly written in terms of
the Schouten tensor, i.e.,

(% 615 — T 62Su) - (2.221)

N —

Q*4nyw”u+ =

With the definition of the Bondi news tensor as in Eq. (2.104) (which is intrinsically
defined at .# ™), one then obtains

1
Note that the replacement of Schouten and Bondi news tensor was enabled by 60, =
0 in the Bondi frame. That is due to the fixed choice of g,y = g and the constant
Ricci curvature associated with g,,,, see Eq. (2.106). In conclusion, the latter result
suggests that

1

0=——
32

™ N, Pe. (2.223)
Given the definition of the flux in Eq. (2.208) and the fact that the goal is to define
the flux conservation law w.r.t. a vector field generating symmetries at .# T, the final
step towards the flux formula consists of replacing 6g,y <> Lzguv in Eq. (2.223)%.
This step requires some additional caution in regards of how to replace 7, ~ dguv
in Eq. (2.223). In previous Sections, the BMS symmetries are introduced either by
considering the infinitesimal generators preserving the universal structure, see Sec-
tion 2.1.5, or by taking the limit of the BMS metric’s Killing fields to .# T see Section

2Here, a couple of steps in the discussion about the well-posedness and uniqueness of @ as well
as a suitable reference solution ¢ are skipped. The interested reader is referred to [108] for a rigorous
discussion.
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2.3. Both strategies are correct and, as demonstrated, yield to the same result. To
prevent confusion about what metric, physical or unphysical, the generators of the
BMS group, ¢#, have to be Killing vectors for, the following definition of [110], com-
monly cited in literature, can be consolidated:

Definition. The generators of the Bondi-Metzner-Sachs asymptotic symmetry group are
given by vectors G on conformally compactified spacetime (M, g,v) such that

QO Legu| s+ =0, (2.224)

ie., the QZngVW is smooth and vanishes on 9.

The latter expression can be computed to yield Q?Lsgw = Legu — 2Q 1 8%n4g00
and one immediately finds that, by definition of the BMS symmetry generators (e.g.,
Section 2.1.5) and the fact that n* ~ 9, on .#*, n,, vanishes on .# . Itis convenient
to express this contraction in terms of some smooth function K such that {¥n;, =
O~ K. Eq. (2.224) can then be rewritten as

1 ~

where X, is a smooth tensor field on M3, Given Xuv vanishes if ¢, is Killing,
one can view the latter tensor as a measure for the extent to which ¢ fails to be
Killing. Going back to Eq. (2.223) and remembering that 7,, = QJg,, the above
mentioned final replacement actually consists of switching §g,, <+ Lzg,, and thus
Ty — QL& = 2Xuv- Thus, the flux through ¥ T in GR and associated to the
Killing field ¢, is given by

Fr=——x"N,e. (2.226)

Itis immediately clear that the flux vanishes in the absence of gravitational radiation
since this implies a vanishing Bondi news tensor. If no other fields are included, Eq.
(2.226) therefore yields the final flux formula for the gravitational flux through .7,
as desired.

For illustration, the above treatment of pure GR in asymptotically flat space-
times is generalized by including additional fields. A straightforward instance of
such extension is given by Einstein-Maxwell theory [204]: Consider Lagrangian

30Note that w.r.t. [108] the definition of Xuv differs by a factor of 2.
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(2.211) extended by

_ 1 54
Lew = — 7= F* e. (2.227)

The symplectic potential, then again, results from the boundary term upon varia-
tion. The tilde on the electromagnetic field strength tensor and the vector potential
denote their definition of physical spacetime, i.e., indices are raised and lowered
with g;,y. In addition to Eq. (2.212), for Einstein-Maxwell, one does not find mixing
terms for the boundary term Ogjnstein-Maxwell and simply complements the electro-

magnetic sector

9Einstein—Maxwe11 _ QGR 1

”{UP ]/“/p - EfaaéA[XeU’/”/p (2.228)

So far the theory can effectively be split into GR and Maxwell, and each sector con-
sidered individually. This holds true as well for the symplectic current in the limit
of asymptotically flat perturbations [204], resulting in

w}]ii/r;)stein-Maxwell — e(va (wg R + ng + wc)r( ) (2_229)

where w(, is extracted from (2.213), the pure Maxwell part is given by

1 o
Whv = —Eé’”" Pgt <51pr(52Av -1 2]) , (2.230)

and the cross term reads

wd, = —ﬁ <2§P[‘va}ﬂ + %fmfgpﬂ) 2 Ay010p - (2.231)
Although cross terms appear in w, they vanish in the limit to .# *, or, more precisely,
when pulling back Eq. (2.229) to .# *. For the pure Maxwell sector, using Eq. (2.216),

this pullback results in

1
WEM = — (51Y' 02 A, — 8Y151A,) Ple (2.232)
where one defines Y, := F,,n" = —L£,A, and F,, denotes the Maxwell tensor in

unphysical conformally completed spacetime. Note again that fw = Fuy due to
the conformal invariance of the theory. A brief inspection of Eq. (2.232) yields the
following symplectic potential:

Oy = —ﬁw(my Gle. (2.233)
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Similar to the case of GR, one finds for Maxwell that the symplectic current, and
correspondingly the flux, are solely determined by radiative degrees of freedom en-
coded in A, and Y, = F,yn" (compare to the NPS for Maxwell’s theory, Eq. (2.61)).
As the cross terms Vani?}l, the total flux across a section of £+, A.# T, enclosed by

two 11, up = const. cross sections 0.7;",9.%," is given by [204]
E[Ast] = / Ock + Ony. (2.234)
Ag+

The result is simple and yet powerful. It demonstrates that in the case of vanishing
cross terms, the total flux of the theory results from the sum of fluxes of individual
massless fields. A similar result is obtained in the context of more general applica-
tions in [102], specifically regarding the gravitational memory, which is shown to
be related to the flux as defined above in Section 2.4.3. There, Eq. (2.234) is further
expressed in terms of the shear tensor and NPS, and a physical interpretation of
Eq. (2.234) is provided. Note further that for the electromagnetic sector, the flux is
computed and discussed for two physically relevant examples in [2].

The covariant phase space approach by Wald and Zoupas is evidently very
successful in computing well-defined “conserved” quantities for GR and more gen-
eral diffeomorphism invariant theories. Historically, as mentioned before, it was,
however, not the first attempt to derive such formulas. Ashtekar and Streubel [111]
as well as Dray and Streubel [112] both provided equivalent expressions to Eq.
(2.226). Despite their derivation being more closely related to the content of Section
2.2, it involves non-trivial mathematical tools and a lengthy derivation. Nonethe-
less, in the following Section, the approach of [111] is briefly outlined and similari-
ties and differences w.r.t. the covariant phase space approach by Wald and Zoupas
are highlighted.

2.4.2 The Symplectic Geometry of Radiative Modes

Instead of treating the phase space of the full theory, i.e., including the gravita-
tional background and additional matter fields, it is feasible to directly focus (at
least morally) on the radiative modes of a theory such as GR [111]. This does, in
fact, avoid the challenges of Section 2.4.1 but is conceptually more demanding and
requires extensive knowledge about the radiative mode in the first place. The con-
struction goes, in a very simplified manner, as follows: Constructing a phase space
of radiative modes for any theory requires a kinematical background on which
these modes can propagate. For most theories admitting radiative solutions, e.g.,
Maxwell’s theory, this “arena” is provided by spacetime itself. For GR, naturally,
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this poses a particular problem as there is no background spacetime to radiate on,
but instead it is the background itself admitting propagation of radiative modes.
While the radiative solution of other theories propagates on a fixed background,
for GR, there exists a collection of backgrounds admitting radiative solutions of the
gravitational field. Luckily, as it is demonstrated in Section 2.1, these background
spacetimes share a universal structure characterized by their properties at future
null infinity. Therefore, a potential arena for formulating the radiative phase space
for GR is provided by .# . In fact, Section 2.2 clearly demonstrates the identifica-
tion of radiative modes on .#* for the theory of gravity via the derivative operator
D and associated equivalence classes [D]. Based on these results, Ashtekar and
Streubel [111] proposed adapting the space of equivalence [D] as a suitable phase
space T for radiative modes in GR3!. In this construction, a point in T is given by a
particular choice [D] and the information needed to absolve a given trajectory start-
ing at [D] and reaching [D'] is encapsulated solely in the shear tensor ¢}, which has,
coincidentally, two degrees of freedom. The latter follows by the virtue of Eq. (2.90)
which states that two derivative operators at .# " differ by a symmetric tensor X,
with X,,,n" = 0. If the two operators lie within a single equivalence class, one finds
2w = Aquy for some function A. It follows that the difference between any two
equivalence classes must lay in 0, which is defined as the trace-free part of X, see
Eq. (2.94). Thus, from the construction in Section 2.2 it naturally follows to define
the phase space of gravitational radiation as the space of all equivalence classes [D]
“coorditanized” by the shear tensor 0,,, i.e., the shear in acting morally as a tangent

vector on the space of equivalence classes.

The next natural step is to provide a symplectic structure for the phase space
at hand via the symplectic potential ()([D], ¢, ¢’) which is a tensor field on I at any
point [D] and for any tangent vectors oy, 0y, at [D]3? (compare with the definition
Eq. (2.190)). One can argue that [111]

Q([D),o,0') = /J+ <(rw,£nc7‘(’,a — U;’lvﬁncrpg> g'0qv’ Cle, (2.235)

where 7, as usual, is the null normal to .# ", provides a well defined symplectic po-
tential. It is worth noting at this point that the integral on the right-hand side of
(2.235) is independent of the point [D] and that 0}, defines constant vector fields on
I'. Moreover, the symplectic structure is conformally invariant, i.e., invariant under
the rescaling (quw, n") = (f2qu, f~n#) [111].

3INote that mathematically speaking, one has to assure that the equivalence classes of which the
phase space is build of are suitably regular. The regularity check is provided in [111].

32Note that every vector field on T is an assignment of tensor field T}, on .# ™ for each point [D]
[111]. Thus, the shear tensor 0, corresponds morally to a vector field on T
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Similar to the approach by Wald and collaborators [108], i.e., Eq. (2.191), a Hamilto-
nian conjugated to some vector field can naturally be defined using the symplectic
potential (2.235). As in the previous considerations, the relevant vector field, here
denoted by ¢, is such that it preserves the universal structure, i.e., it is a generator
of an asymptotic symmetry or, in other words, a BMS vector field. By (2.68), this
implies that £zq,,, = 2kq,y and Lsn# = —kn*. The transformation generated by ¢
corresponds to a one-parameter family of diffeomorphisms, denoted as (A). This
diffeomorphisms induces an isomorphism mapping I' into itself while preserving
the affine structure [111], i.e., if D ~ D’, the images under (A) are again equiva-
lent, ({(A) o D) ~ (P(A) o D). The latter straightforwardly follows from the def-
inition of the image acting on an 1-form «, intrinsic to # %, i.e., ((A) 0o Dy)ay =
P(A) o (Dup(—A) o ay), as well as the preservation of the universal structure by the
diffeomorphism ¢(A) by definition, ¢(A) o g, = quv and P(A) o ny = ny. This
characteristic is of fundamental importance as one can demontrate that, in convo-
lution with Q([D], o, 0’) being a constant tensor field on I (as it does not depend
on [D]), ¥(A) establishes an symplectomorphism on I’ [111]. In its infinitesimal ver-
sion, a symplectomorphism gives rise to a symplectic vector field iz on I (not to be
confused with the BMS vector field ¢ on .# ) characterized by

Ly, ([D],0,0") =0. (2.236)
The Hamiltonian Hg in this approach arises as the generator of this vector field. In
particular, one expects that, for all vector fields X on T,

LxH; = O([D), ¢z, X) . (2.237)

To compute Hg, it is imperative to determine the vector field iz on I' first, or rather
its assigned tensor field on .# . An ansatz can be deduced by combining Eq. (2.98)
and (2.99) under the assumption that two derivative operators are related by the
diffeomorphism ¢(A). One finds a shear tensor ¢y, (A) defined via 0y, (1) = (P (A) o
D, — Dy)l,, where “=" denotes equivalence of the trace free part. By varying this

ansatz w.r.t. A, one finds the ansatz [111]
() = (LeDy — DuLe)ly . (2.238)

To ensure that (¢¢),, belongs to the same class of vector fields on I as ¢}, one ad-
ditionally has to check that (y¢),y is symmetric and (¢),vn" = 0. In case ¢ corre-
sponds to a BMS vector field (2.68) with k = 0, i.e., supertranslations, Eq. (2.238) is
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the final result. Otherwise, it is straightforward to check that the latter two condi-
tions for (¢¢) v yield

(IPE)]W = (ECDZJ - Dyﬁg)év + ZE(P,DV)I(, (2.239)

where k refers to the function in the definition (2.68). Given this tensor field on .# "
assigned to ¢z on I', Ashtekar and collaborators showed that a Hamiltonian Hg on
I that satisfies the condition (2.237) at any point [D] is

1 vo
He=—3 /ﬁ Nuv [(£¢Dp = DpLe)lo +2£(,Dy)k| 9" Ple, (2:240)

where N, ~ Enaw is the Bondi news tensor. Note that the second term in brack-
ets vanishes for ¢ being associated with supertranslations as, in this case, k = 0.
This Hamiltonian establishes the flux of a conserved quantity associated with the
asymptotic symmetry ¢ through null infinity .# . It therefore holds the same in-
terpretation as the previously defined quantity (2.208)%*. As pointed out earlier, the
main difference between this and the previous result pioneered by [108] resides in
the type of phase space under consideration, i.e., if one considers all allowed field
configurations [108] or if one explicitly focuses on radiative modes [111].

Since it is not immediately clear that the definitions provided in Egs. (2.208)

and (2.240) are equivalent, a comparison is indispensable. As Eq. (2.240) exclusively
applies to GR, in the following the discussion is restricted to Einstein’s theory. In
this case, the first step is to compute the quantity x,, in Eq. (2.226) explicitly. To do
so, it is helpful to consider an additional work on the symplectic structure of GR by
Ashtekar and collaborators [205].
For simplicity, one first restricts to the case of the BMS subgroup, ie., ¢¥ = an.
Similar to the considerations of [111], starting by considering a 1-parameter family
of physical spacetime metrics gy, (A) (compare to the discussion below Eq. (2.125)),
one defines

d
S (Ma=a, = cpv- (2.241)

Thus, the tensor ¢, denotes the change of the metric along the path parametrized
by A in field space. The change in the metric induces a variation in the connec-
tion induced by this metric as well as the conformally completed, unphysical metric
guw = O?gu. Using Eq. (A.72) of Appendix 1.2 as well as Eq. (2.241), one can

3There is no analogy for the full Hamiltonian (2.202); Eq. (2.240) solely recovers the flux. This is
a direct consequence of focusing on the radiative phase space instead of the full phase space of the
theory.



98 Chapter II. Asymptotics of Gravitational Radiation

straightforwardly compute the change in the connection V corresponding to the
unphysical metric induced by the change ¢,,,. Defining ﬁyVy —= VWV + (6V)V,

where V), is any covector on conformally compactified spacetime M, it follows that
1_ -
(6V)uVy = =50 1P (VuQguw + ViQguw — VoQgu) - (2.242)
Note that the latter is directly related to the change in the Levi-Civita connection
1
0T gy = 58" (V pdgau + Vydgpr — Vadgpy) , (2.243)

when 6g,, = QZ5§W and 08,y ~ Guy. Pulling Eq. (2.242) back to IT, e, VuVy =
D,V,, one further finds3*

where ¢,y = limg_,0 Qgyy and n# is the null normal to .¥ * and part of the tetrad
chosen in this Chapter. Eq. (2.242) and (2.244) hold for an arbitrary change of the
metric along its trajectory parametrized by A. Generally, and in particular in Section
2.4.1, one is interested in the transformation of the metric as it is Lie-dragged along
a Killing vector field ¢, that asymptotically generates symmetries of the universal
structure. As such, following definition (2.224), one sets ¢ = Ee’,‘gﬂv' Now, the key
insight connecting Wald’s work [108] to its predecessors [111, 112, 206] is composed
in the following Lemma (in a slightly modified manner found in [205]):

Lemma. Let gy = L&y and &y be an generator of an asymptotic supertranslation sym-
metry at & . In particular, let the extension of &, to . be tangential to it. Then, it holds
that

(57))#& = —¢unV, = (LeDy — Dyﬁg)&, (2.245)

for any covector on I+,

Proof. One starts by acknowledging that for the Levi-civita connection (w.r.t. the

conformally compactified spacetime),

1
M = EgAp (98vp + 9vgup — 0p8puv) (2.246)

the variation due to a change in the metric 6g;,, = Lxguv is equal to the lie derivative
along the generator X" of the change in the metric, i.e., (SF)‘W = EXF)‘W (one can

34Note that the following equation differs by a factor of 2 to the result in [205].
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easily convince oneself upon explicit computation). For this transformation, writing

the derivative operator explicitly for the affine connection a la GR yields

ViVy = 0,V = TH Vi =T V), (2.247)

:vva

where V' is the new derivative operator after the metric is changed according to
Suv — §uv + 0guy. Further note that

LX(VMVV) = Vﬂ(EXVV) - (’CXF/\;W)V/\/ (2-248)

and thus —,CXI“}‘WV)L = (LxVy — V,Lx)V,. Comparing with Eq. (2.242) and re-
placing X with ¢ one finds that

(OV)uVu = (LeVy— VuLe) V. (2.249)

Using that &, is by definition tangential to .# *, one finds that the pullback of Eq.
(2.249) is well-defined and yields

(6D)uVy = (LeDy — Dule) Vo, (2.250)

which holds for all covectors on .# . By virtue of Eq. (2.244), this is equal to
—GunPVj.

Inspecting the term —g,,nfV, further, one immediately finds that it can be simpli-
fied by choosing V), = £, where £, is the generator of the NGC. Since the cross-
normalization yields n*f, = —1, writing out ¢,y = Qg with ¢,y = Lzguy, it
immediately follows from Eq. (2.225) that ¢,y| s+ = 2)xuv| s+ and, thus,

1
Xpv = E(ﬁgDy —DuLe)ly, (2.251)

which is equivalent to Eq. (2.238). Eq. (2.251) holds only for generators of the super-
translation subgroup as for simplicity, the above consideration was restricted to such
vector fields. The result can be generalized by means of a conformal transformation
(of the left-hand side of Eq. (2.251)) of the form q;w = wzqw and k = —¢*D, In(w)®,
or, equally, deriving the same equation for a general BMS transformation with k # 0
in the definition (2.68). This yields an additional term in Eq. (2.251) [205, 207], such

%Given a BMS Killing vector field ¢# with Lzq,, = 2kq,, and Len# = —kn¥, one can choose a
Bondi frame (q;ﬂ,, n't") such that L¢g,, = 0and Lgn# = 0[207]. Then, transforming back to (g, n*)
corresponds to a conformal transformation.
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that one recovers Eq. (2.239), i.e., x;» = %(ﬁépﬂ —DyuLe)ly + K(yDv)k. In the com-
putation above, when allowing for all types of symmetry generators on .#* (i.e.,
k # 0), the extra term missing in Eq. (2.251) arises from the pullback of Eq. (2.249)
to /.

Inserting this result into (2.226) one finds an expression equivalent to Eq. (2.240).
Therefore, it is concluded that the approaches [108] and [111] are indeed identi-
cal. This equivalence reassures the correctness of the more universally applicable
approach by Wald and collaborators. As it holds generally for diffeomorphism-
invariant theories, one could, in principle, derive the flux for arbitrary theories.
Note, however, that the discussion leading up to Eq. (2.251) depends on specific
assumptions about the connection, the metric, and the well-posedness of the tetrad
choice and may be more intricate for modifications far beyond GR. Nonetheless, an
application of Wald’s formalism to selected beyond GR theories is currently under
construction by the author of this dissertation.

In the subsequent Section, it is explicitly demonstrated that Eq. (2.251) leads to an
expression of the flux formulas (2.226) and (2.240) in terms of the shear, combining
all the interim results of this Chapter. Based on this expression, applications of the
flux equation are presented in Section 2.5.

2.4.3 Balance Flux Laws and Gravitational Strain

Thus far, the flux formulas do not have a particularly useful form. In order for them
to be used in the context of measurement data, it is crucial to express them in terms
of the linearized gravitational strain picked up by GW interferometers. In Section
2.2.3, it was briefly sketched that this connection naturally appears in the linearized
asymptotic shear, which allows (at least morally) to set 1° = 20°. Thus, a desired
form of the flux formulas would solely involve quantities related to the shear tensor
or the Bondi news, as N° = —¢°.

To derive the latter, one starts by recycling Eq. (2.108) stating that (LD, — Dy L)l =
P (qy[pSV]” + Supdu)” ) by — £,DyDyCP . A propri, this equation cannot be simpli-
tied for general BMS vectors fields ¢. One can, however, consider only generators
of a subgroup of the BMS group, such as supertranslations. This is a particularly
interesting example as it not only includes time translations, i.e., an energy flux, but
also the extensions of the translation subgroup of the Poincaré group for which only
limited physical intuition is provided thus far in this work. Focusing on generators
of supertranslations derived in Section 2.1.5, it is demonstrated that {* = a(z, Z)n".
Given the transversality of the Schouten tensor and the metric at .#*, one finds that,
in this case, L¢q,y = 0 and (LanDy — Dy Lan)ly = %ocSW + Dy Dy Therefore, the
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flux (through .# or a section of it A.# 1) simply reads

1 1
F,, = /A . NH (E“S”” + DVD,M) Gle. (2.252)

- 32m
Given Eq. (2.107) and the fact that the Bondi news tensor is trace-free, one can
replace the Schouten tensor in the result (2.252) with N,,,. For translations that are
shared between BMS and Poincaré group, see discussion below Eq. (2.71), further
note that the second term in Eq. (2.252) trivializes. This is a direct consequence of
the fact that (¥ = ¢#"D,« is a conformal Killing vector field for all modes in a with

¢ < 2. Hence, it satisfies the conformal Killing equation
Dulv +Dyly = qu,ngpz (2.253)

and it follows that D, Dya « gq,,. Integrating the second term in Eq. (2.252) twice
and using that N, is trace-free, it follows that the term in the flux vanishes for these
particular translations.

In literature, e.g., [162], the supertranslation flux (2.252) is commonly written
as

1 1
- —NH p ) (3)
e /M+ " <2N Ny + DyDuN ) , (2.254)
where the second term is rewritten using integration by parts. Observe that Eq.
(2.254) only contains the Bondi news tensor and the arbitrary but smooth function
a(z,z). Therefore, a version of (2.252) expressed solely in terms of the GW strain is

imminent. As a final step, the Bondi tensor is related to the shear tensor by virtue of
NW =2L,0". Starting with the second term in Eq. (2.254), one finds

Dy(DyN"') = = 2D, (D, (¢°m!'m” 4 o°mt'm"))
= — 2D, [m"m"Dyo° + °m"Dym" + 7°m'Dym” + mtim¥ D, 6°
+ °m"Dymt + o mt Dym” |

: 1.
=—-2D, {m”m”DV(TO + mt'm"D,6° + —=7° cot & m”

V2

+%(7° cotd m”}
= —2 [m'm"D,Dy¢° + mtin" D, Dyo°|
— 2 [82&0 n 62(70} — _4Re [6260} ) (2.255)

where it was used that m*D,m" = % cotdm” and Dym" = 0 (see Section 1.D in
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[2]). Then, by simply inserting the definition of the Bondi news tensor (2.117), the
first term in Eq. (2.254) is given by

NuwN¥ = 4(5°mtm” 4 c°mtm" ) (5 mymy, + ¢°1myimy)

= 4[5°¢° 4 6°¢°] = 8|0°|?, (2.256)
and for the total flux one finds

Fun a(6,¢) (|(’7°|2 ~Re [82&0]> Gle. (2.257)

= 87G /-
Note that the integral taken over .#* can be separated into a “time” and 2-sphere
integral, i.e., e — dudX. Using Eq. (2.132) to replace the shear tensor in the latter,
one obtains a well-defined flux formula that can be readily computed with measure-
ment data from a GW experiment. Thereby, the value of the radius in Eq. (2.131) is
replaced with the luminosity distance D, for numerical computations. This aspect
of real data applications of the flux law (2.257) is elaborated in more detail in Section
2.5.

In its current form, Eq. (2.257) computes the flux associated with the conserved
quantity of the generator ¢# = an”. However, the value alone does not yield any
helpful insights towards a better understanding of gravitational radiation or grav-
ity itself. One can, however, use previous insights of the relation between NPS and
shear tensor to transform the flux (2.257) into a constraint equation, gaining the
name “balance flux” law. To that end, one considers Eq. (2.144) - (2.149), in particu-

lar

Y5 —¥5 = °0° — 06° + 8%0° — 0°5°, (2.258)
0, ¥5 = —0°6° — 0°6°, (2.259)

from which follows that

Im[¥3] = Im |3%0° + 0°N°| = Im | ~5%0° + 0°N°| (2.260)

— Im [3%’ - (TONO} — Im [—6200 - O'ONO} . (2.261)

First, note that Eq. (2.257) can be partially integrated along the time direction. While
« remains unaffected, the remaining terms can be rewritten as total time derivatives,

such that, for a time domain (u, —o0), Eq. (2.257) reads

——1 o —0 .01l
Fun = 871G %82 dQa(8,p)Re [¥Y; +7°0°]" , , (2.262)
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where one makes direct use Eq. (2.261). The lower integration bound —co of u
indicates that the integral is performed over the 2-sphere at i°, i.e., spatial infinity.
The shear tensor vanishes®® and the NPS ¥3 has a clear interpretation in this limit
(see Section 2.1.4). In particular, it holds that [162]

lim Re[¥5] = —GMapm, (2.263)

U——00

where Mapy is the ADM mass. Thus, considering a section of ., A.# ™, limited
by i° and some finite u, it holds that

1
MTT8G Iast

_ 1 2012 1 2-0
= /Aj+dud2w(9,<p)|0' - %gdea(B,cp)Re %] |

_1 o —0-:0
~ 871G %gz dxa(0,¢) (Re[¥; +7°0°], + GMapm) - (2.264)

dud= (6, §) (|z7°|2 ~Re [6250})

In the latter, -|, marks the evaluation at some time u on .# *. Given that a(z,Zz) is a
smooth function of the coordinates spanning S?, one can equate Eq. (2.264) and Eq.
(2.257) such that

Re [52('70]

_ /A , dulo°P — (Re [¥5 +5°0°], + GMaw) , (2.265)
u

which can be seen as “time-series constraint” for the strain / once the shear tensor is
converted using Eq. (2.132). It is important to stress at this point that the constraint
Eq. (2.265) results from the supermomentum flux only. This implies that the terms
involved have a specific physical interpretation. For instance, as it is further elabo-
rated below, they include the displacement memory of the gravitational waveform
as it is demonstrated in the following Subsection. Before, note that other memory
effects have been computed as well, such as the spin memory [208, 198, 209], which
are not derived from the supertranslation flux conservation law but can be linked to

other symmetries such as the superrotations mentioned in Section 2.1.5.

To put Eq. (2.265) to use in the context of GW data, one replaces 26 — h°® =
hS — ik, to find

Re [52}_10}

:/ du |i°|* — 4 ( Re ‘P§+1E°h° +4GMapym | - (2:266)
AT+ 4 "

u

36Note that 1 — 0 for 1 — —oo in the post-Newtonian Bondi frame [161].
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For practical applications, the waveform and Y3 are computed by complex numer-
ical simulations (e.g., [210, 211, 212, 213, 214]). The ADM mass is estimated from
the simulation templates used to extract the GW from measurement data. For most
applications, in particular the computation of the displacement memory as a time
series, Eq. (2.266) constitutes a benchmark.

In some works in literature, Eq. (2.266) is slightly modified by integrating the flux
(2.262) over the entire future horizon .# *. The latter is sensible as it includes the full
evolution of a given GW event, and allows for the replacement [162]

lim Re [¥5] = CMi+ (2.267)

1—00 3 (1_ﬂ)3'

[

where the limit # — oo corresponds to approaching i*. In this work, the limit
(2.267) assumes that gravitational radiation is produced by massive bodies far away
from the observer that form a remnant object after collision, propagating with speed
|v|. Thus, in the latter equation, v stands for the kick velocity of a remnant ob-
ject after merger, v = y(v) is the usual Lorentz factor from Special Relativity, and
X = (sin6cos¢,sinfsin¢,cosh) is the unit radial vector in spherical coordinates
representing the line of sight of the GW source for an observer close to earth. With
relation (2.267), Eq. (2.265) turns into

fdQ a(6,p) (GM,-O — %) = dQduw(6,$) (— Re [52?70] + |(7|2)

QA= 7
(2.268)
or similarly, if a(6, ¢) is an arbitrary smooth function,
GMe — — Mt / du |- Re [0%8°] + (o], (2.269)

3
7 A-F)

with the ADM mass rewritten as M;-. Eq. (2.269) can be further decomposed into
spherical harmonics. As each individual term is by itself a function of the angular

coordinates in the sky, one can rewrite the latter equation in terms of modes as

(GMI-O—%> / du (~Re [0%°]) + / du(|62) . @270)
73 (1 - ) Im

c

In Section 2.5, the decomposition into spherical harmonics is utilized to test the bal-
ance between left- and right-hand side in Eq. (2.270) mode by mode.
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This decomposition concludes the derivation of the flux balance laws. The en-
tirety of Chapter II so far is aimed at the derivation of a constraint equation that can
be applied to actual measurement data. In Eq. (2.270) this goal has been achieved.
A crucial part in the derivation process is understanding the gravitational radiation
from an observer’s perspective, i.e., an instrument far away from the source of ra-
diation, and its interconnection with symmetry properties of relevant spacetimes as
well as GR’s nonlinearity. Given the specification made in the previous discussions,
it is emphasized that the derived constraint equations and the treatment leading up
to such exclusively hold for cases where the outlined assumptions hold true and are
not to be taken as a general statement for all theories of gravity of all spacetimes.
Assuming that the assumptions above are correct, the balance flux laws such as Eq.
(2.270) are put to use in the following Section.

2.5 Applications of the Asymptotic Spacetime Formal-

ism: Testing Numerical Waveforms

The following analysis employs constraint equations derived in earlier discussions
to conduct a detailed evaluation of state-of-the-art waveform models, with particu-
lar emphasis on their predictions for kick velocities and inferred GW memory. Mo-
tivation for such investigations is drawn in light of recent advancements in GW in-
strumentation that have set new standards for the precision of future measurements,
and which have made it essential to advance both semi-analytical and numerical
waveform models used in interferometric data analysis. Progress toward this ob-
jective can be achieved through the development and implementation of a valida-
tion pipeline that quantifies waveform model accuracy based on energy-momentum
balance laws derived within the framework of full, non-linear GR. Such numerical
evaluation is carried out for both precessing and non-precessing binary simulations
across models from the EOB, Phenom, and Surrogate families in [4] and summarized
in the subsequent paragraphs. The analysis identifies statistically significant devi-
ations, attributable to inaccuracies in the modeling of subdominant modes and to
intrinsic systematic errors within the waveform families. These findings are further
supported by analytical investigations into harmonic mode mixing effects on the
predicted kick velocities and inferred memory signatures. The methodology, de-
veloped and validated in [4] offers a robust foundation for future waveform model

evaluations and serves as a practical guide for model selection in GW data analysis.
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2.5.1 Numerical Challenges in Gravitational Wave Detection

Waveforms matched against GW signals, such as those reported in [1], carry rich
information about the source systems, including the masses and spins of the merg-
ing binaries, their distances, and the geometry of their motion. Analyzing these
waveforms enables astrophysicists to probe the underlying physical mechanisms,
determine the properties of exotic compact objects, and test theoretical models of
gravity with remarkable precision. To date, accurate parameter estimation and rig-
orous tests of GR have relied heavily on numerical modeling of gravitational wave-
forms across a broad range of source parameters—most notably, mass, spin, and
other characteristics of the merging systems. These modeled waveforms serve as
templates that are fitted to observational data, and the effectiveness of this template
matching critically depends on the accuracy of the waveform predictions. Conse-
quently, the construction of comprehensive and precise waveform models that faith-
tully capture the dynamics dictated by general relativity is essential for extracting
reliable physical information from observed signals. This need is further under-
scored by the anticipated improvements in signal-to-noise ratio provided by next-
generation GW observatories such as LISA [215], the Einstein Telescope [216], and
the Cosmic Explorer [217]. Their enhanced sensitivity will allow for the detection of
subtle phenomena such as gravitational-wave memory [78, 8, 218, 219, 220, 221, 222],
and may even uncover signatures of physics beyond GR [194]. However, discrepan-
cies between the template waveforms and true signals in the data can lead to system-
atic biases, undermining the accuracy of parameter estimation and theory testing.
To mitigate such biases, data analysis relies on a diverse library of template wave-
forms. Among these, those generated through NR are considered the most accu-
rate. However, NR simulations are computationally intensive, with each waveform
requiring significant resources to compute. This challenge becomes increasingly
pressing as the volume of observational data grows with the deployment of multiple
ground- and space-based detectors, including LISA [17] and LIGO/Virgo [25, 27].
Moreover, as measurement precision continues to improve, the possibility of detect-
ing deviations from GR [194] becomes more tangible. Identifying such deviations
requires extending the parameter space to include alternative gravitational theories,
which in turn increases the number of waveform templates needed for comprehen-

sive data analysis.

The efficiency limitations of NR waveform generation drive the development
of alternative waveform models. They are however not the only motivation for
other numerical methods for waveform generation. For instance, semi-analytical

waveform models provide a more transparent framework for understanding the
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fundamental physics of GW sources. These models enable the explicit inclusion of
key physical effects and approximations across the inspiral, merger, and ringdown
phases of binary BH coalescences. Their architecture is designed to offer flexibility
and adaptability, making them applicable to a wide array of astrophysical scenar-
ios—including binary BHs, neutron star mergers, and mixed systems—through the
tuning of model parameters. In practical settings, GW observatories such as LIGO
and Virgo rely on data analysis pipelines that require rapid generation and compar-
ison of waveform templates. Semi-analytical models are particularly well-suited for
such applications, as they support real-time or near-real-time processing of obser-
vational data. Moreover, by leveraging the analytical Post-Newtonian (PN) frame-
work commonly used in modeling the inspiral phase, semi-analytical waveforms
can be extended to capture the early stages of binary evolution. These early phases
are characterized by nearly monochromatic oscillations long before the final merger.
Due to computational demands, this regime is often inaccessible to NR simulations,
underscoring the complementary advantages of semi-analytical modeling in GW

astronomy.

The most prominent classes of alternative waveform models include Surrogate
models (Surrogate) [223,224,225], phenomenological models (Phenom) [226, 227,228,
229], and effective-one-body models (EOB) [230, 231, 232, 233, 234, 235, 236, 237,
238], with the latter two classes relying on semi-analytical techniques. To produce
accurate gravitational waveforms within computationally feasible timescales, these
models employ distinct strategies for simulating the inspiral, merger, and ringdown
phases. Each model targets specific physical aspects of compact binary coalescence
and operates efficiently within particular regions of the source parameter space. In
view of the increasing precision and scope of future GW observations, the continued
validation and refinement of waveform models is essential. This includes adapting
templates to address emerging challenges in data analysis pipelines—such as incor-
porating gravitational memory where it is currently omitted—and establishing ro-
bust frameworks for performance evaluation. These efforts represent active areas of
research within the waveform modeling community and constitute key challenges
in the broader field of GW physics.

These challenges can be addressed by offering a comprehensive and quantita-
tive comparison of state-of-the-art waveform models, focusing on their predictions
of key physical observables such as the remnant’s kick velocity and the GW mem-
ory (i.e., [4]). These models are benchmarked against waveform templates gener-
ated from NR simulations, and, where NR data are unavailable—i.e., beyond the
current NR catalog—they are directly compared against one another. The analysis
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prioritizes non-precessing binary mergers for evaluating kick velocities, while the
assessment of GW memory encompasses both precessing and non-precessing sys-
tems. The primary analytical tool employed for this comparison is the set of balance
flux laws expressed in Eq. (2.270) through which both a simplified constraint equa-
tion and explicit expressions for the kick velocity and GW memory can be obtained
for any given waveform. The utility of these balance laws as diagnostic tools for
waveform validation was initially demonstrated in [239, 163]. In turn, [4] is aimed
at fully harnessing the potential of this framework for a rigorous cross-model com-
parison. The study extends earlier investigations that focused individually on ana-
lytical waveform models [163], remnant recoil velocities [240, 164], or GW memory
effects [239, 161]. By systematically exploring the waveform parameter space and
refining the analytical techniques involved, [4] reveals recurring trends and system-
atic biases present in current waveform models that are comprehensively outlined

in this Section.

2.5.2 Waveform Models Overview

Before generating waveforms using the diverse range of numerical and semi-analytical
models outlined above, it is instructive to introduce the alternative waveform mod-
els considered in this study—each of which has played a significant role in the de-
velopment of GW research. Key characteristics of these models are briefly summa-
rized, with attention given to relevant aspects of their numerical implementation.
For a detailed description of the internal structure and assumptions of each model,
the reader is referred to the references provided below. A comprehensive review
can be found in [241]. To align as closely as possible with the data analysis pipelines
commonly employed in GW science, the analysis focusses on a representative en-
semble of waveform families accessible through the LIGO-provided LALSuite soft-
ware suite [24]. Rather than implementing the models directly, LALSuite offers an
integrated framework developed by the LIGO Scientific Collaboration to stream-
line waveform-related computations within data analysis workflows. The selected
waveform families fall into four main categories, labeled NR, Surrogate, Phenom,
and EOB, based on their respective generation techniques. Additionally, a TEOB
model—closely related to the EOB approach—is included in the analysis. The ratio-
nale for this particular selection is discussed in detail below.

For each of these five waveform model families, particular attention is given to
specific representative. The models analyzed in detail include: NR/SXS, accessed
via its LALSuite interface [242], which is based on simulations from the SXS collab-
oration catalog [210] utilizing the Spectral Einstein Code (SpEC)[243]; the Surrogate
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model NRSur7dq4[225]; the EOB model SEOBNRv4PHM][234]; the phenomenologi-
cal Phenom model IMRPhenomTPHM][229]; and the TEOB model TEOBResumS [236].
For brevity, this work will frequently refer to individual models by their family
names (e.g., NRSur7dq4 as Surrogate). These models exemplify distinct strategies
in waveform generation. The NR family comprises full numerical relativity simula-
tions, offering the most complete and accurate waveforms available, and thus serv-
ing as the benchmark for other approaches. The remaining “approximant” models
adopt different methodologies: phenomenological modeling of binary mergers (Phe-
nom [226, 227,228,229, 244]), effective-one-body formalism (EOB [230, 231, 232, 233,
234,235, 236, 237, 238, 245, 246]) and its tuned version (TEOB [236, 237, 238]), and
surrogate modeling via interpolation of NR waveforms (Surrogate [223, 224, 225]).

Table 2.1 summarizes key characteristics of the selected models, including the
spin-weighted harmonic modes incorporated, their domains of validity in terms of
mass ratio g = M;/M; > 1, the maximal time span before merger, and the spin
magnitude |)x;|. Except for the mode content, these specifications refer to the mod-
els as implemented in the LALSuite framework. For the SXS family, the waveform
duration—and thus the maximum time before merger—varies substantially across
simulations. The median number of BBH cycles prior to merger in SXS waveforms is
approximately 39, with the shortest simulation consisting of 7 cycles and the longest
extending up to 351.3 cycles [210]%. The characteristics of the LALSuite implementa-
tion of Surrogate reflect those of its underlying model, NRSur7dq4, which is trained
on NR waveforms restricted to a mass-ratio range ¢ < 4 and dimensionless spin
magnitudes |x;| < 0.8 (where i = 1,2 for the two compact objects). The initial sim-
ulation time for the training NR data spans from 4693 to 5234 M, which bounds the
maximum time before merger in the LALSuite implementation of Surrogate to ap-
proximately 4500 M [225]. The EOB waveform model selected in this study, SEOB-
NRv4PHM, does not impose fixed limitations on waveform duration or the initial
reference frequency f.f, owing to its construction based on the PN ansatz for the
early inspiral phase. This flexibility permits waveform generation from arbitrarily
low frequencies. Nevertheless, while the model nominally supports a broad pa-
rameter space, it has been robustly validated only for g < 4 and |x;| < 0.8, with
typical simulations beginning at f.s ~ 20 Hz for a total mass of 50, M, corre-
sponding to approximately 15-30 cycles before merger [234]. Therefore, despite the
wide numerical parameter range allowed by the LALSuite interface, model accu-
racy should be considered reliable primarily within this validated region®®. The

37The number of cycles is measured relative to the dominant strain mode hy,,, with £ = m = 2.
3Higher spins and mass ratios significantly increase computational cost and reduce accuracy due
to the presence of disparate length scales in the binary system [234].
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same caveats regarding practical parameter limitations apply to the phenomenolog-
ical model Phenom. The representative model IMRPhenomTPHM is derived from its
non-precessing precursor, IMRPhenomTHM]|[247], using the so-called “twisting-up”
technique. For additional technical details, the reader is referred to [229]. The par-
ent model IMRPhenomTHM has been calibrated against NR simulations up to g = 18
and spin magnitudes |yx;| spanning the full physically allowed range [0,0.99]. Sim-
ilar to EOB, the reference frequency f,f can, in principle, be chosen arbitrarily low,
and the values listed in Table 2.1 reflect the maximum parameter range accessible via
the LALSuite interface for Phenom. The second representative from the EOB family,
TEOBResumsS, exhibits more stringent parameter constraints. These arise both from
numerical stability considerations and prior studies that reported physically incon-
sistent behavior beyond the recommended parameter bounds. The model has been
calibrated against NR simulations for mass ratios up to g = 20, but remains limited
to non-precessing systems and includes only the dominant / = m = 2 mode. For the
analysis outlined in this Section, TEOBResumS serves as a reference to evaluate the
impact of including additional harmonic modes, particularly as measured via the
balance flux laws. As with the other semi-analytical models, the LALSuite interface
for TEOB permits initial frequencies extending to arbitrarily low values. However,
LALSuite typically imposes a maximal allowed initial frequency dependent on sys-
tem parameters such as mass ratio, component masses, and spin magnitudes. This
restriction ensures the waveform captures a minimal portion of the inspiral phase,

thereby preserving physical fidelity in simulated gravitational waveforms.

At this point, it is important to highlight that, for the trained eye, discrep-
ancies may appear between the intrinsic properties of waveform models—such as
their mode content—and the corresponding features reported within the LALSuite
framework, as summarized in Table 2.1. For instance, while LALSuite allows users to
load the ¢ = 3, m = 2 mode for both Phenom and EOB waveform families, these spe-
cific harmonics may not carry any physically meaningful information and should be
treated as artifacts. Such artifacts arise because LALSuite does not necessarily estab-
lish a one-to-one mapping between the harmonic modes provided by the original
waveform models and those output within the framework. Instead, the waveform
data undergoes internal processing, including time interpolation and frame correc-
tions [24], which can subtly alter the strain components compared to their original
forms. Nonetheless, dedicated verification efforts have been performed for spe-
cific model versions, demonstrating that the differences introduced by the LALSuite
standardization procedures are negligible for practical purposes. For comprehen-
sive information regarding these validated model versions, the reader is referred to
the official LALSuite documentation [24]. Consequently, one can confidently regard
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the LALSuite environment—which enforces consistent coordinate and time refer-
ence frames across all waveform models—as providing a highly accurate and stan-
dardized representation of the original models listed in Table 2.1. Finally, it is im-
portant to emphasize that none of the waveform models evaluated in this study
incorporates the GW memory effect in any form. Nonetheless, methods for includ-
ing memory—either through manual addition or as built-in features of waveform
models—are already available. For SXS waveforms, memory can be extracted and
appended using Cauchy-Characteristic-Evolution (CCE) [248, 249], which, although
currently implemented in only a limited number of publicly available simulations, is
in principle applicable to any merger in the catalog using the Scri software package
[250]. For other waveform models, comparable approaches based on flux balance
laws can be employed [161]. Furthermore, recent developments in certain alter-
native waveform models have begun to incorporate memory effects directly into
the simulations (see references pertaining to the respective model families). In the
present analysis, memory-free waveforms are used, as the computation of memory
serves as a diagnostic tool to assess the fidelity of individual strain modes. This

methodology is explored in detail in Section 2.5.6.

2.5.3 Preparation of Numerical Waveforms

The analysis of this Section considers multiple different points in the parameter
space layed out by compact binary mergers. Each point in this parameter space
corresponds to a distinct numerical waveform which is loaded for each model via
LALSuite. Using this framework is beneficial as it avoids potential issues arising due
to waveform model-dependent choice of reference frames in each GW simulation.
Since different waveform models rely on distinct numerical methods to compute
the strain and its harmonic modes, their outputs may be expressed in varying refer-
ence frames. To mitigate discrepancies arising from such differences, the LALSuite
environment is employed, as it applies the necessary frame transformations to en-
sure that all output waveforms—and their harmonics—are consistently represented
within a common reference frame, up to a possible global phase shift. In the follow-
ing, the waveform preparation procedure used in this Section is outlined. This step
addresses residual frame alignment issues, among other considerations, and serves

as the foundation for the subsequent comparative analysis of the waveform models.
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Family Implementation Branch Mode Content g- Ixil- tinit
range | range
Numerical SXS (NRhdf5) precessing {(¢,m)|¢ <8} <10 < -
Relativity 0.998
Surrogate NRSur7dq4 precessing {(¢,m)|¢ <4} <4 <0.8 <
4500M

Effective SEOBNRv4PHM precessing {(2,£2),(2,£1) | <100 | <1 -
One Body ,(3,£3), (4, £4),

(5,4£5)}
Phenomeno- IMRPhenomTPHM | precessing {(2,£2),(2,+1) < 200 <1 -
logical ,(3,£3),(4,£4),

(5,45)}
“Tidal” Effective| TEOBResumS non-precessing | {(2,2)} <30 <099 | -
One Body

TABLE 2.1: Summary of the model families under investigation in this
section. Displayed are the specific implementations considered, the
accessible mode content and parameter space coverage (see also [4]).
Note that the maximal time before merger, t..f, is given in units of to-
tal mass M, where 0 marks the merger time. In practice, t.¢ implies
a parameter-dependent lower bound for the minimum GW (reference)
frequency fyof of the waveform. The blank spaces for t,¢ indicate that
the corresponding model does not admit a uniform boundary regard-
ing the minimal frequency valid for all simulations. All quantities, ex-
cept for the mode content are displayed as listed in the LALSuite docu-
mentation [24]. The mode content follows the models” intrinsic output
which may differ from the LALSuite one as elaborated below.

Alignment and residual ambiguities

As noted previously, waveforms generated via LALSuite are already aligned within
a common reference frame, up to a rotation in the orbital plane—equivalently rep-
resented by a phase factor, denoted hereafter as ¢,.s. When the waveforms from
different approximants are of equal duration—that is, they begin at a common ref-
erence frequency f,f>’—the orbital phase remains the sole degree of freedom to be
aligned for non-precessing systems. Challenges emerge when comparing waveform
models to NR data from the SXS catalog. For a BBH configuration with specific spin
and mass parameters, the domain of validity for each approximant may differ due
to model-dependent constraints on the reference frequency f.s. Notably, f.. varies
across SXS simulations. In such cases, the waveform for each approximant is re-
generated using a new, minimal common f..f, determined by the most restrictive

constraint among the models considered for the given compact binary setup. While

%Here, the reference frequency refers to the GW frequency at the initial non-trivial time step of
the waveform. This frequency can be translated into the number of orbits included prior to merger,
which typically varies across waveform models, see Table 2.1.



2.5. Applications of the Asymptotic Spacetime Formalism: Testing Numerical 113
Waveforms

LALSuite approximants support waveform generation from different initial or refer-
ence frequencies (subject to internal limits; see Table 2.1), SXS waveforms are pro-
vided at a fixed reference frequency that cannot be modified. Consequently, it may
be necessary to manually truncate the inspiral portion of an NR waveform to match
the common domain, which introduces an additional phase alignment requirement
w.r.t. ¢ref. Both the residual phase shift inherent to LALSuite and the phase correc-
tion necessitated by waveform truncation can be simultaneously addressed using a
single optimization procedure. For precessing mergers, similar alignment consider-
ations apply. In this case, however, the ambiguity extends beyond the orbital phase
and includes the initial orientations of the individual spin vectors of the coalescing
BHs. This introduces four additional degrees of freedom—specifically, the angular
components of the spin vectors—into the alignment procedure, alongside the phase
factor ¢r.¢. Potential complications arising from these additional parameters are dis-

cussed in more detail below.

The optimization procedure addresses both the adjustment of ¢s and the
alignment of the initial spin vectors by minimizing a mismatch function M (¢yef, ()1,
()y), where Q; = (¢,,,6,,) denotes the pair of angular parameters defining the ori-
entation of each spin vector x; involved in the binary constellation. Upon successful
minimization, any residual discrepancies observed in the comparison of physical
quantities derived from the aligned waveforms are attributed to intrinsic differences
in how each model evaluates the binary configuration’. Before addressing the re-
moval of phase ambiguities in more detail, it is essential to ensure that the time axes
of the strain and its harmonic modes are properly synchronized—i.e., all waveform
time series must be defined on a common time grid. This synchronization is largely
handled by the LALSuite environment, which supports waveform loading with con-
sistent time- or frequency-binning across different models*!. The origin of the time

grid is automatically set to the merger time, defined as the point at which

max /Y |hyu(t)]?. (2.271)
lm

Once uniform binning and a common time origin are established, the remaining task

in time synchronization involves trimming each waveform’s time series to share a

40This assumption is admittedly simplistic. A more rigorous treatment would require a com-
prehensive investigation of potential limitations in the alignment procedure, which lies beyond the
scope of this investigation.

41 Tests performed on a small set of BBH simulations with varying time (or frequency) sampling
reveal no significant effect on the results presented in Section 2.5.6, provided that all waveform fea-
tures and oscillations are sufficiently resolved within the sampling interval.
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common initial time #; and final time t;. This step is applied after waveform load-
ing but precedes any alignment procedures. Turning now to the residual phase
shift, which is determined through mismatch minimization, the numerically imple-
mented mismatch function M requires an input related to the gravitational strain
or its harmonic modes. The alignment is carried out w.r.t. the dominant /1 +» mode,

and the mismatch is computed as

~ ~ali
(155 T0")

M(‘Pref: Ql/ QZ) = ]— - ~ ~ali 7
Z5icysal

(2.272)

where /15 is the Fourier transform of the ({ = m = 2)-mode of the strain as ex-

pressed in the spin-weighted spherical harmonic decomposition
h = th,m(u)fZYE,m (9/ 47) ’ (2-273)
{,m

with _,Y,,, denoting the spin-weighted spherical harmonics of weight —2. The

inner product (-, -) is evaluated in the frequency domain as

(i, y) == 4Re / ! (A (), (2.274)
where /1* is the complex conjugate of /. This inner product naturally defines a norm,
denoted as ||-||. The integration domain is determined by the Fourier transform of
the time-aligned waveform, encompassing the full frequency range computed via
fast Fourier transformation of the h;, time series. The modes fzaeé and fz;}izgn corre-
spond to the reference and target waveform models, respectively. Throughout the
analysis, SXS waveforms serve as the default reference; in regions of the parameter
space lacking SXS data, Surrogate is used instead. It is worth noting that while mis-
match computations such as Eq. (2.272) can also be carried out in the time domain,
the use of Fourier space offers improved comparability with the mismatch metrics
employed in waveform model development (see, e.g., [225]) and in other waveform
comparison studies (e.g., [164, 240]). As such, the frequency-domain mismatch is
adopted throughout this work.

A fundamental limitation of the alignment strategy defined by Eq. (2.272) is
that the phase correction is restricted to the h;, mode—i.e., the alignment is per-
formed solely on the dominant harmonic. Consequently, subdominant modes with
odd values of m may still exhibit a residual 7r-phase shift, even after the h;» mode
has been successfully aligned. To account for this well-known issue, an additional
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step is introduced in the waveform preparation following the alignment of the dom-
inant /1, mode on a common time grid: for each subdominant mode with odd m,
the mismatch relative to its reference counterpart—calculated via Eq. (2.272)—is
evaluated twice: once using the original mode and once using the same mode mul-
tiplied by a phase factor exp(irr). If the rr-shifted version yields a lower mismatch,
it is adopted for that mode in the subsequent analysis. This procedure ensures con-
sistent phase alignment across all relevant harmonic modes between the alternative
waveform models and the reference waveforms provided by NR or Surrogate.

Domain of alignment and precessing mergers

Given its dominant contribution to the decomposition in Eq. (2.273), it is standard
practice to align waveforms w.r.t. the /i , harmonic mode in the frequency domain.
This approach ensures adequate alignment of the full gravitational-wave strain,
which can subsequently be reconstructed for a chosen orientation or line-of-sight of
the binary system. A potential limitation of this method emerges when considering
the integration limits in Eq.(2.274). Specifically, minimizing the mismatch M using
the hp, mode over the full frequency interval f € [fmin, fmax]—encompassing in-
spiral, merger, and ringdown—can mask systematic differences between waveform
models. While the inspiral phase is generally described using PN techniques across
models, the merger and ringdown phases are treated with varying methodologies,
leading to increasingly pronounced discrepancies in these later stages. These dif-
ferences are inherently included in the mismatch computed from Eq.(2.274). As
such, aligning over the entire frequency domain may inadvertently smooth out
or conceal meaningful model-specific features. To preserve these differences, an
alternative strategy would be to restrict the mismatch integral to frequencies be-
low fond of PN-phase, thereby enforcing phase alignment only during the PN regime.
This ensures that any deviations in the merger and ringdown remain visible in the
aligned waveforms and are not artificially minimized through overextended align-
ment. Here, the only alignment-sensitive quantity examined for non-precessing
BBH mergers is the remnant recoil (kick) direction. As this represents just one of
several diagnostic measures, the potential alignment limitations discussed here are
of secondary concern. Accordingly, the analysis adopts the standard integration lim-
its defined in Eq. (2.272), while a more detailed evaluation of alternative alignment
strategies is deferred to future investigations.

A few concluding remarks on precessing systems are warranted. Aligning
waveforms for precessing binary BH mergers remains a significant challenge, with



116 Chapter II. Asymptotics of Gravitational Radiation

no universally optimal alignment procedure currently established. In fact, improv-
ing alignment strategies for such systems continues to be an active area of research.
The primary difficulty arises from the time-dependent orientation of the spin vec-
tors x1 and )7 of the individual BHs. An ideal alignment would require identify-
ing a specific time at which these spins are consistently oriented across waveform
models. However, this is computationally demanding and, in some cases, infeasi-
ble—particularly when the required synchronization point lies outside the minimal
time domain provided by a given waveform model. Even if the models offered full
spin evolution data, discrepancies in the internal treatment of spin dynamics can
make direct comparison unreliable. Consequently, the standard approach in the lit-
erature is to minimize the mismatch—defined as in Eq. (2.272)—w.r.t. both ¢.f and
the four spin orientation angles of the binary prior to merger. The alignment is im-
plemented as follows: For a given BBH merger, waveforms from different models
are generated using consistent physical parameters, including spin magnitudes and
directions, reference frequency, and component masses. Once projected onto a com-
mon time grid, the spin magnitudes from the target simulation are held fixed, while
the orientation angles serve as input parameters for the mismatch optimization. The
alignment proceeds through an iterative optimization scheme, in which the wave-
form models are regenerated at each step with updated spin angles, producing a
reduced mismatch at each iteration. The procedure continues until the mismatch
is sufficiently small—typically comparable to that achieved for non-precessing sys-
tems. This results in a set of aligned waveforms on a shared time grid, all featuring
identical spin magnitudes but potentially differing spin orientations. These differ-
ences reflect the varying treatments of spin precession across waveform models.
Because the direction and magnitude of the remnant recoil (kick) are highly sen-
sitive to the spin orientations, computing kicks for aligned precessing waveforms
becomes unreliable. Therefore, in the analysis presented in Section 2.5.6, attention is
restricted to the (nonlinear) memory contribution from precessing mergers. In con-
trast to the kick, the memory effect is invariant under global phase shifts and is only
mildly sensitive to changes in the spin configuration. For the precessing mergers
considered in the analysis (detailed list of relevant events is found in Section 2.5.4),
the alignment procedure described here significantly improves the accuracy of the
computed memory signal. Both the kick and the memory are influenced by the
asymmetry between the ¢, m and ¢, —m harmonic strain modes, which is especially
pronounced in precessing systems. While both quantities depend on this asymme-
try, their sensitivities differ—a fact that can be explained analytically. It should be
noted that this asymmetry is explicitly incorporated only in the Surrogate and SXS
models. The versions of EOB and Phenom used in this analysis do not include this
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FIGURE 2.7: Aligned (top) and non-aligned (bottom) hy, waveform
mode for a precessing binary merger (SXS:BBH:1011) [4].
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FIGURE 2.8: Aligned (top) and non-aligned (bottom) h;, waveform
mode for a non-precessing binary merger (SXS:BBH:0191) [4].

feature. For recent developments in phenomenological models that do, see, for ex-
ample, [251, 252].

The effectiveness of the adapted alignment strategy is illustrated in Figures
2.7-2.10. For clarity, only results from Surrogate and NR are shown, with NR serv-
ing as the reference. Figures 2.7 and 2.8 display the alignment of the dominant h; >
harmonic for precessing and non-precessing mergers, respectively, with precessing
systems typically exhibiting slightly larger mismatches. Figures 2.9 and 2.10 high-
light the need for applying residual 7-shifts to subdominant modes with odd m
values. These modes are not subject to the optimization process but are corrected
post-alignment via a 7r-shift, if doing so reduces the mismatch. The examples shown

are chosen to emphasize this effect in select subdominant harmonics.
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mode for a non-precessing binary merger (SXS:BBH:0191) [4].

2.5.4 Numerical Simulations under Consideration

A meaningful comparison of numerical waveform models requires a sufficient cov-
erage of the waveform parameter space to prevent undesirable biases of the results.
Thus, for the analysis of this Section, it is instructive to outline a strategy to prevent
such biases, in particular given the substantial number of BBH merger simulations
analyzed. Doing so enables one to draw meaningful connections between the re-
sults and underlying phenomenological trends—particularly in instances where one
or more waveform models exhibit significant deviations from the reference model.
Furthermore, by carefully distributing the simulated mergers across a broad param-
eter space, one minimizes the risk of introducing selection biases that could skew
the conclusions. In Section 2.5.6, discrepancies in physical quantities are explicitly
related to the mergers’ positions within parameter space. To ensure robust coverage,



2.5. Applications of the Asymptotic Spacetime Formalism: Testing Numerical 119
Waveforms

both precessing and non-precessing BBH systems are considered. For each category,
one includes waveforms with existing NR counterparts and supplement the dataset
with additional simulations, thereby enhancing the diversity and representativeness

of the parameter space under investigation.

Non-precessing binary mergers

The primary focus of this analysis is on non-precessing BBH simulations drawn
from the SXS catalog. Figure 2.11 illustrates the distribution of these simulations
across the parameter space, distinguishing between aligned and anti-aligned spin
configurations. Color coding is used to represent the symmetric mass ratio # :=
ﬁ, where g := M;/M; > 1 denotes the ratio of component masses. A total of
175 mergers with non-negligible recoil velocities (v > 20, km/s) are selected for the
non-precessing case. Despite this number, Figure 2.11 appears to show sparse cov-
erage of the parameter space. This apparent sparsity arises from overlaps among
simulations that differ only by mass ratio or spin alignment. As seen in Figure 2.11,
regions corresponding to low spin magnitudes x; and x> are underrepresented in
the current selection from the catalog. To address these gaps, additional BBH merg-
ers without corresponding SXS counterparts are generated. These supplemental
simulations include both aligned and anti-aligned spin configurations and span a
wide range of symmetric mass ratios 7, as shown in Figure 2.12. This extended
dataset contributes an additional 220 non-precessing waveform instances to the
overall analysis. Combined, the cataloged and supplementary non-precessing sim-
ulations constitute a well-distributed dataset, well-suited for an unbiased and sys-

tematic investigation.

Despite considerable efforts to accurately model GW waveforms, certain non-
precessing mergers reveal substantial deviations between specific approximants and
both the reference model and other waveform models—particularly w.r.t. the rem-
nant velocity or gravitational memory (anticipating results discussed in Section 2.5.6).
A closer inspection of these cases shows that such discrepancies typically origi-
nate from a single mode—such as the h; ; mode—of the deviating model differing
markedly from the corresponding mode in the other approximants and the refer-
ence. This behavior is most frequently observed when one of the normalized spin
components, x1 or x», approaches extremal values, i.e., close to 0 or 1. Representa-
tive examples include SXS:BBH:0222, SXS:BBH:0223, and SXS:BBH:0251, for which
EOB predicts kick velocities that are significantly over- or underestimated relative
to the other models. To avoid biasing the statistical analysis, such simulations are
excluded from the final dataset.
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FIGURE 2.11: Parameter space for the non-precessing SXS data [4].

Precessing binary mergers

The analysis of precessing BBH mergers is based on 130 simulations with SXS coun-
terparts, illustrated in Figure 2.13. w.r.t. the two spin vectors, the selected mergers
provide a fairly uniform coverage of the accessible parameter space. However, the
catalog lacks coverage at low mass ratios, with the sole exception of SXS:BBH:0165,
involving component masses of 51.4, M and 8.6, M. This underrepresentation
of systems with # < 0.2 introduces a potential bias, which is addressed by incor-
porating an additional 75 simulated precessing BBH mergers. These supplemental
cases are shown in Figure 2.14. The difference in both the number and distribution
of added simulations between the precessing and non-precessing datasets stems
from the significantly higher computational cost of aligning precessing waveforms.
Alignment in these cases involves optimizing over five parameters rather than just
¢ref, leading to considerably longer generation times. As a result, the added precess-
ing simulations are fewer in number and more regularly spaced across parameter
space.

2.5.5 Waveform Model Assessment: Prelude

To assess a waveform model’s performance against a chosen reference model, an
adequate measure of comparison has to be selected. The remnant’s kick velocity
and the GW memory are chosed as such, which are both physical observables that
can be calculated solely from the strain of a GW. To that end, Eq. (2.269) is utilized.
For the purpose of this Section, one thereby chooses to integrate over all of .# T, i.e.,
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FIGURE 2.12: Parameter space for the non-precessing merger simula-
tions without NR counterpart [4].

from u — —oco to u — co. Physically, this integration of a given strain over the full
range of u can be interpreted as a single event in an empty spacetime starting and
some far past, merging at some finite 1y and ringing down towards u — co. In other
words, the strain contains the maximal amount of information of the merger. Then,
by adding suitable dimensionful parameter and replacing 1< , with Dy h% , where
Dy is the luminosity distance (see the discussion below Eq. (2.257) for details), one

obtains
2 M+ 1Djc [ 2 2
C ﬁ — Mio = — Z G du (h+ + I’lx> (2275)
(-7 o
1 DL C4 ) . t=-+o0
+-——Re |0° (hy —ihy) ,
2 G [ } A

where v stands for the kick velocity, v = (v) is the usual Lorentz factor from
Special Relativity for v := |v|, and X = (sin 6 cos ¢, sin 6 sin ¢, cos @) is the unit radial
vector in spherical coordinates. As a matter of fact, Eq. (2.275) does not only provide
one constraint equation but infinitely many. Namely, one per point on the 2-sphere,

i.e., one so-called energy-momentum balance law per choice of (6, ¢).

A more intuitive understanding of Eq. (2.275) can be obtained through a tenta-
tive interpretation of the balance laws. The left-hand side of (2.275) may be viewed
as the difference between two energies measured at distinct moments in time, specif-
ically at it and i°: the energy of the remnant, corresponding to the system’s energy

after the merger, minus the energy of the binary system, measured well before the
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FIGURE 2.13: Parameter space for the precessing SXS data [4].

merger. The denominator, containing the Lorentz factor and the kick velocity, serves
as a correction accounting for the fact that the binary’s energy is evaluated in its
instantaneous rest frame, whereas the remnant generally moves with a velocity ¢
relative to that frame. When decomposing (2.275) into spherical harmonics, this
correction factor for the / = 0 mode reduces precisely to the familiar special rel-
ativistic expression for the kinetic energy of a moving body, E = ~(v)Mc? [162].
Given that the binary system loses energy through the emission of GWs, it is natu-
ral to expect the energy difference to be negative. Consistently, the right-hand side
0f(2.275) features an integral over a manifestly positive quantity, (i3 + h% ), with an
overall negative sign. This integral represents the energy radiated by GWs, a well-
established result in linearized GR. However, it is important to note that the balance
laws apply well beyond the linear regime, and no linearization is invoked in their
derivation. The second term on the right-hand side captures the contribution from
GW memory. Because the left-hand side of (2.275) depends on X, which itself varies
with the angular coordinates (6, ¢), and since the strains /11 and h are functions of
both time and angle, it follows that there exists one balance law for each choice of

(0, ¢) [4].

In what follows, the notation is streamlined by introducing the asymptotic
shear:

h(t,0,) = %(m +ihy) (46,¢), (2.276)

where i denotes the imaginary unit. This definition, in particular, enables a compact
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rewriting of the memory term as 9?Ah, with i denoting the complex conjugate of 1,
and

— +-00 =
= / dul. (2.277)

This compact form is made possible because Im(d%/) vanishes at = Foo (see,
e.g.[162]). Using these definitions and expanding both sides of Eq. (2.275) in spher-
ical harmonics yields a tower of constraints—one for each pair (¢, m) with |m| < £.

Specifically, this decomposition results in

M;+ _ Dic [tee - Dic? . -
(Mlo - W) = T e du <‘h‘ >€’m - G CfAhf,m 7 (2.278)
7 c lm

where the coefficients C¢ are defined by

Co=/(E— DL+ 1) (0 +2). (2.279)

Deriving this expression involves standard properties of spherical harmonics and
the explicit form of 02h, as discussed in [2]. Notably, Cy vanishes for / = 0and ¢ = 1,
implying that the memory term (~ Aﬁg,m) contributes only for ¢ > 2. Separately
treating the ¢/ < 2 and ¢ > 2 modes of the balance laws enables determination of the

remnant mass—if not supplied by the waveform model—as well as the kick velocity
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and gravitational-wave memory, using solely the GW strain. This is achieved by
decomposing the left-hand side of Eq. (2.278) into modes. For this purpose, it is
convenient to align the z-axis of the rest frame (in which M;. is measured) with the
kick velocity v via a rotation in the plane spanned by v and 2. The first few (¢, m)
coefficients then take the form:

({=0,m=0): 2V (yMiy — M),
(l=1,m=0): 2V 3myM;+ v,

V5TyM;+ (503 + 3% tanh_l(v) - 30)
(é =2,m= O) . 3 :

The first term corresponds, up to a factor of 2, to the difference between the rest en-
ergy M;. of the binary and the kinetic energy yM;+ of the remnant, while the second
term describes the z-component of the remnant’s momentum. Although the third
term does not admit a simple physical interpretation, it is important to highlight
that the inverse hyperbolic tangent function tanh™!(v) caused numerical instabil-
ities in the analysis code; hence, it is Taylor-expanded to sixth order in v/c. To
recover the corresponding modes in the original frame, the modes are transformed
using Wigner D-matrices Dﬁz,m’ corresponding to the inverse of the rotation used
to align v with z. The decomposition of the GW energy integral in Eq. (2.278) is

straightforward, as the integrand can be expressed as
12 =Y aom Yo (6, ). (2.280)
{,m

where the coefficients ay,, are given by (see also [239])

0 © . . 2014+ 1)(20, +1)(20 4+ 1
Kom = Z Z Z Z (_1)m2+mh€1m1h€2m2\/( : )( A )( )Dﬁfflﬂlffzm2

512252=2|m1\§£1 |m2\§€2 47-[
(2.281)

with

Dby, = (él ot ) (fl ~ €>. (2.282)

m —mp —m 2 -2 0

The < b b > denotes the Wigner-3j symbol, which dictates how the strain modes

my my m

Rg, my ey m, couple to each other in Eq. (A.90).
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For astrophysically realistic kick velocities, it is a good approximation to as-
sume y ~ 1. Under this assumption, the £ = 0 mode of the balance laws reduces to

an energy conservation equation:

2.3
DLC

(Mie = M) = 17

du 7{ dQ |, (2.283)

where ¢ dQ) denotes integration over the unit two-sphere. As expected, the mass
loss of the system is accounted for by the energy radiated away via GWs. For wave-
form models that provide the remnant mass, this relation offers a consistency check;
for models that do not, it provides a way to infer M;+ from the initial total mass,
luminosity distance, and GW strain.*> Using the expansion coefficients (A.90) for

¢ = m = 0, the energy conservation equation can also be expressed as

A(Myo — M+ ) = / dut . (2.284)

8\/_G

The ¢ = 1 mode of the balance laws encapsulates linear momentum conservation,

allowing extraction of the kick velocity components:

D%c2 oo .
=L [Ty j{dQ“hz, 2.285
Viick = 167 GM.+ /_oo " i A (2.289)

in the original reference frame, where £; are the Cartesian components of the radial
unit vector X = (sin 6 cos ¢, sin 0 sin ¢, cos 0). The kick velocity components can also
be expressed in terms of the a, coefficients for £ =1 as

27T
1 — 2.2
v = 167TGM,+\/ / du (a1,1 —a11), (2.286)
27
d _ 2.287
Uy = 16nGMl+V / u(ag,—1+wa11), ( )

Dic? \/E
S Y KL R 2288
%= 8nGM,; 3/0o L0 (2.288)

Thus, equations (2.286)—(2.288) determine the kick velocity from the luminosity dis-
tance, remnant mass, and strain, with M;+ obtainable from the energy conservation

relation (2.283) if not already available.

The harmonic modes corresponding to / > 2 encompass contributions from

421t should be noted that the precision of analytical predictions is inherently limited by the accu-
racy of the strain, particularly the number of inspiral cycles captured before merger. In numerical
simulations, waveforms are generally truncated, introducing a systematic uncertainty that, however,
affects all waveforms equally and thus does not impact comparative studies.
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the GW memory. In the limit of integrating u from —oo to oo it is instructive to
rewrite the memory as
Ahyyy = NS, + ARSI (2.289)

Following conventions in the literature (including in particular [4], i.e., [4]), the first
contribution is defined as

iy G M;+
AR = ) ( s —Ml-o> , (2.290)
’ 3(1 - 7.4)3
CgDLC 0% (1 Zc) x) o

’

and denoted as the linear memory [83, 218] in what follows. The second term, com-
puted as

pfponin . DL o / dtay,, (2.291)

in turn describes the non-linear memory [78, 219]. It is stressed at this point that
other names for these two terms are commonly used, e.g., ordinary memory for the
former and null memory for the latter [161]. Most importantly, the ¢ > 2 modes of
the balance laws (2.278) are constraints on the (displacement) memory terms of a
gravitational waveform®®. In previous studies the same constraints are utilized to
either add memory to numerical waveform models or correct numerical waveforms
which do not accurately incorporate the memory effect [239, 161]. Instead, here the
linear and non-linear memory inferred from (2.290) and (2.291), respectively, are

used as a means of comparison between different waveform models.

Before continuing with the actual waveform assessment, it is instructive to
briefly comment on the connection between the previously outlined equations and
the kinematics involved in a BBH merger, the event of interest throughout this work:
The utility of the balance flux laws extends beyond their mathematical elegance to
their ability to accurately predict the kinematic properties of the remnant compact
object formed in a BBH merger. As shown in this Section, both the final mass and
recoil velocity of the remnant can be determined using only the GW strain. More-
over, for systems exhibiting precession, the decomposition of physical quantities
into spherical harmonic components, as defined in Eq. (A.90), reveals additional
structure and subtleties in the merger dynamics that might otherwise remain ob-
scured. To offer a brief insight, consider the selection rules—specifically, the Wigner-
3j symbols—that govern which harmonic strain components contribute to the rel-

evant ay,, coefficients. In general, the a, terms are dominated by contributions

43 As mentioned before, other memory contributions such as the spin memory do exist and can be
computed based on the strain as well. The latter is more thoroughly discussed in Section 3.2.3



2.5. Applications of the Asymptotic Spacetime Formalism: Testing Numerical 197
Waveforms

involving at least one instance of the leading strain modes h; 1,. For example, ex-
amine &1, which determines the out-of-plane component of the remnant’s recoil
velocity, v3. A detailed evaluation of the sums in Eq. (A.90) for a; reveals two
leading contributions proportional to hy ohy 5 and haohp2**. In non-precessing
BBH systems, these terms cancel exactly, resulting in a negligible out-of-plane kick.
However, in precessing binaries, where an asymmetry between h; > and hy,_ arises,
this cancellation is no longer exact. As a result, a1 9 acquires a non-vanishing con-
tribution, yielding a non-trivial v3 component. While this asymmetry is typically
small—and thus the difference between the two terms is also small—the resulting
out-of-plane kick can nonetheless be comparable in magnitude to the in-plane re-
coil. The small asymmetry between the ¢,m and ¢, —m modes plays a critical role
in shaping various physical observables, particularly the non-linear memory effect.
This memory effect is especially sensitive to the a ¢ component, which is domi-
nant due to its allowance for coupling between two leading strain modes, such as
hzl_zflz,_z and h2/2ﬁ2,2. In contrast to aq, these contributions enter with the same
sign, resulting in constructive interference. As a consequence, even in the absence
of precession, the terms proportional to i, _»hs 5 and hy ok, 5 reinforce each other,
and any asymmetry between hy, and hy,_, leaves only a minor imprint on their
sum. This constructive behavior is a key driver of the buildup of the non-linear
memory signal. While the asymmetry is responsible for the entire out-of-plane kick,
its influence on the memory is confined to a fraction of its magnitude relative to the
dominant integrals involving hz,i2lj12’:|:2. Therefore, unlike the recoil velocity, the
non-linear memory is only mildly sensitive to asymmetries between the ¢,m and
¢, —m modes. This reduced sensitivity allows the memory effect to be meaningfully
estimated even in waveform models that do not explicitly incorporate these asym-
metries, including the EOB and Phenom models considered in this Section. Although
other mode combinations within the &, coefficients are also influenced by potential
asymmetries between ¢, m and ¢, —m, such contributions are typically subdominant

and thus of lesser practical significance.

The kinematic mode analysis of the « components involves a range of com-
plex features that extend well beyond the brief illustration provided above. While
a more detailed exploration of these aspects is certainly valuable, presenting an ex-
haustive discussion without the support of empirical data would be premature at
this stage. Therefore, this analysis will be revisited and expanded below, where
the capabilities of state-of-the-art waveform models to fully leverage the analytical

structure imposed by the balance flux laws is demonstrated. The numerical results

#Time derivatives are omitted here for clarity.
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presented, provide concrete evidence to substantiate the theoretical considerations
introduced here.

2.5.6 Waveform Model Assessment: Analysis

The remnant velocity is computed using equations (2.286)—(2.288), while the grav-
itational memory is evaluated based on equations (2.290) and (2.291), to assess the
performance of the selected waveform approximants across the parameter space de-
fined in Section 2.5.4. The influence of subdominant strain modes on both the kick
and the inferred GW memory is also investigated. Analysis of alignment-sensitive
quantities is limited to non-precessing simulations. Prior to examining extensive
datasets, the numerical pipeline is calibrated by comparing key physical quantities
against metadata from the SXS database. In particular, deviations in the magnitude
of the kick computed via Eq. (2.285) are measured relative to the values reported in
SXS. The strong agreement observed in these comparisons supports the reliability

of the balance laws as numerically implemented for the purposes of this Section.

Mode Mismatch

The analysis begins with the non-precessing mergers described in Section 2.5.4, for
which NR waveforms are available. A standard metric for assessing the similar-
ity between waveforms (or individual modes) is the mismatch function defined in
Eq. (2.272). During the alignment procedure, the mismatch M is minimized for
the dominant /; , mode, while no direct mismatch minimization is applied to the
remaining modes. Consequently, insights into the limitations of waveform models
can be obtained by examining the residual mismatch in the subdominant modes and
comparing it to the mismatch of the dominant #;, mode. Figure 2.15 displays the
mismatch, computed via Eq. (2.272), for the set of modes common to all waveform
models®, averaged across all simulations considered. As anticipated, the lowest
mismatch consistently occurs for the dominant /; , mode across all approximants,
with Surrogate achieving the best performance by this metric. In contrast, the mis-
match increases for subdominant ¢ modes. This increase is especially pronounced
for the ¢ = 4 modes, as well as for hyg, h3p, h31, h39, and their complex conju-
gates, where mismatches are several orders of magnitude higher than for #,. The
relatively poor agreement between Surrogate and NR for subdominant modes is at-
tributed to the model’s focus on optimizing the accuracy of the dominant s, com-
ponent within its interpolation scheme [224, 223, 253, 254]. As summarized in Ta-
ble 2.1, several subdominant modes are not modeled by EOB and Phenom, despite

#Modes are shown only up to £ = 4 due to the limited mode content in Surrogate.
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FIGURE 2.15: Mode mismatch w.rt. NR, averaged over all non-
precessing BBH simulations [4]. The mismatch axis is capped at
the maximum value attained by Surrogate among the selected modes.
Modes exceeding the threshold are not produced by the algorithms of
EOB and Phenom, despite being accessible via their LALSuite implemen-
tations. As such, their exact mismatch values are not meaningful.

being available through LALSuite. As a result, their mismatch values are close to
unity. For clarity in visualization, the y-axis in Figure 2.15 is limited to the high-
est mismatch observed for Surrogate. The absence of non-trivial contributions from
these omitted modes carries over approximately to precessing simulations, even
though internal modeling mechanisms—such as the twisting-up procedure imple-
mented in Phenom models [229]—can redistribute some mode power across sub-
dominant components. Consequently, a similar trend in mode-by-mode mismatch,
as depicted in Figure 2.15, is observed for precessing systems. It is important to
note, however, that for precessing simulations, the mismatch calculated for a given
(¢,m) mode may differ from that of its (¢, —m) counterpart, due to the inherent
asymmetries present in both the NR and Surrogate waveforms. Note that the TEOB
model is excluded from Figure 2.15 since it provides only the h; > mode. On aver-
age, the mismatch for this mode is only slightly higher for TEOB compared to EOB,
confirming that TEOB also serves as a highly accurate approximant for the dom-
inant GW strain mode. The agreement between TEOB and NR improves further
when the analysis is restricted to the inspiral phase. This enhancement reflects the
model’s construction, which prioritizes high precision during the inspiral—based
on NR calibration—while allowing for small deviations near the merger [236, 255].
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A similar analysis was performed for non-cataloged merger simulations, i.e.,
waveforms lacking corresponding NR data. In this case, Surrogate was selected as
the reference model. The results reveal a comparable trend in the mismatch be-
havior of EOB and Phenom relative to Surrogate. For the ¢/ = 2 modes, both EOB
and Phenom show low mismatch values w.r.t. Surrogate. However, for higher-order
modes such as h33 and hy 4, EOB waveforms display noticeably larger discrepan-
cies from Surrogate than those produced by Phenom. Beyond intrinsic differences in
waveform modes, the mismatch may also be affected by a broad class of nonphysi-
cal features referred to here as “numerical artifacts.” An example of such an artifact
is illustrated in Appendix A of [4] (i.e., [4]). These artifacts, which are particularly
pronounced in higher-order modes, warrant separate consideration. In prior stud-
ies, some of these effects have been identified and partially mitigated—for example,
through the alignment of BMS charges [256, 104]. Although the present analysis
does not explore the origin or detailed consequences of these artifacts, it is impor-
tant to emphasize that, even with a well-defined alignment procedure, numerical
factors inherent in waveform generation can influence mismatch outcomes. Despite
the elevated mismatch observed in certain modes, the complete waveforms remain
sufficiently accurate approximations to NR, primarily due to the dominance of the
well-modeled /; » mode across most BBH simulations. At the current level of obser-
vational precision, discrepancies in individual subdominant modes are therefore of
secondary concern. Nonetheless, with the advent of future GW observatories, the
required precision is expected to increase substantially, potentially elevating the im-
portance of higher-order modes [257]. Accordingly, it is essential for next-generation
GW waveform models to address the challenges highlighted in Figure 2.15, includ-
ing incomplete mode coverage and reduced accuracy in subdominant modes. The
following Section lays the foundation for tackling these limitations by analyzing
alignment-independent physical observables of BBH systems, derived exclusively

from the asymptotic strain and its harmonic decomposition.

Computing Physical Quantities

To assess the influence of an approximant’s mode content on overall waveform fi-
delity, relevant physical quantities—derived from the strain—are computed for BBH
mergers using two distinct sets of strain modes. The first set comprises all modes
available for each individual model. The second set includes only those subdomi-

nant modes associated with low mismatch, specifically excluding modes from the
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FIGURE 2.16: Relative error of the kick magnitude (top) and abso-
lute deviation angle (bottom) of the approximants w.r.t. NR for non-
precessing merger simulations [4]. The top stack plot shows the relative
errors for each individual waveform labeled by its resulting kick mag-
nitude. The bottom plot illustrates the deviation in kick direction w.r.t.
the orientation predicted by NR, averaged over all simulated wave-
forms. The shaded regions mark a lo-interval above and below the
mean. Despite displaying the mean absolute deviation, for better read-
ability, the presented value for Phenom is equipped with an artificial
negative sign.

sett

Hgup = {h20, 1342, 13 11,30, ha 13,14 12,4 11, hap} .

By excluding Hg,, all waveform approximants are placed on approximately equal
footing, enabling a more consistent and quantitative comparison based solely on the

46Modes with ¢ > 4, which are beyond the mode content of the Surrogate model, are not excluded
for the remaining models (including NR).
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modes that are robustly simulated across all models.

Remnant Velocity

For the selected set of modes, the analysis begins with the recoil velocity of the
remnant BH from non-precessing simulations. The focus is restricted to mergers
yielding kick velocities in the range of 20-400 km/s; simulations with negligible
recoil (v < 20 km/s) are excluded. The magnitude and direction of the remnant
velocity vectors, computed via Eq. (2.285), are compared by evaluating the relative
error of each model w.r.t. NR. Using the full mode content, the relative error in kick
magnitude and the directional deviation are presented in Figure 2.16. The upper
panel stacks the relative errors against the corresponding kick magnitudes across
all simulations. The lower panel displays the average absolute deviation in kick di-
rection compared to NR, with negative values assigned to Phenom for visual clarity.
The shaded regions denote the 1¢ interval around the mean, where ¢ is the stan-
dard deviation of the directional deviations. Quantitatively, Figure 2.16 confirms
the strong agreement between Surrogate and NR. In particular, for higher kick ve-
locities, the relative errors are minimal and the directional deviation remains below
5° on average. In contrast, EOB and Phenom exhibit significantly larger errors and
cannot reproduce the NR reference velocity vectors with comparable precision. Both
models show increased relative errors at lower recoil velocities, along with strong
fluctuations indicative of sensitivity to the simulation’s intrinsic parameters. Across
the parameter space, EOB yields the largest average errors in both kick magnitude
and direction. These results are consistent with prior studies of remnant recoil (see
Figures 4 and 5 in [164]), though differences in waveform model versions and pa-
rameter coverage should be noted. For TEOB, the computed kick velocities are triv-
ial throughout the examined space, a direct consequence of its exclusive modeling

of the dominant h; » strain mode, as will be further elaborated below.

When computing the same statistics while excluding the high-mismatch sub-
dominant modes Hg,},, neither the magnitude nor the direction of the remnant kick
shows any substantial deviation from the values obtained using the full mode con-
tent. For both NR and Surrogate, the average change in directional deviation and
relative error in kick magnitude amounts to only a few percent of the correspond-
ing values based on the complete set of modes. Similarly, for EOB and Phenom, no
statistically significant differences are observed between the two mode selections.
This conclusion also holds for non-cataloged, non-precessing merger simulations.
These findings indicate that key recoil-related quantities, such as the remnant BH’s

velocity, are largely insensitive to the specific subdominant strain modes included
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FIGURE 2.17: Time-integrated, relative error for ay, (A.90) [4]. The
error compares the & computed including all strain vs excluding Hgyp,
for NR and Surrogate. The modes (¢, m) relevant for energy, kick, and
non-linear memory are indicated correspondingly.

in a given GW waveform model. The same conclusion applies to the computation of
the remnant BH’s final mass (see Eq. (2.283)). This insensitivity to the Hg, mode set
is consistent with the analytical structure of the «,, coefficients given in Eq. (A.90),
and their role in determining the recoil components via equations (2.286)—(2.288):
The Wigner-3j symbols in Eq. (A.90) selectively isolate specific mode pairs of the
form hgl,mlfzéz, m>* that contribute to each a¢m coefficient. These ay,, coefficients,
in turn, govern the computation of physical observables such as the recoil (kick) ve-
locity. As given in equations (2.286)—(2.288), the relevant coefficients for the kick are
a1 +1 and &g o: the in-plane components of the recoil are determined by «; 11, while
1,0 controls the out-of-plane contribution. As previously noted, the latter becomes
significant only in the presence of precession.

Among all strain mode pairs contributing to the kick coefficients, the most sig-
nificant terms involve at least one dominant strain mode, h; 1. Notably, terms pro-
portional to hph; 5 appear only in a7 o, where they cancel against the correspond-
ing terms involving hy _ohy 5. As a result, the dominant contributions to the in-
plane kick arise from interference between h; 1, and subdominant modes, such as
hz,:tzljlzlil in a1 +1. In contrast, a;( receives no non-vanishing contributions from
any combination of two ¢ = 2 modes, providing an analytic explanation for the

typically negligible out-of-plane kick component in non-precessing BBH mergers.

#/Time derivatives are omitted here for brevity.
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Naturally, this conclusion does not extend to precessing systems. Within «1 41, the
dominant /1; , mode also appears in products like hy toh3 11 and hy 12h3 +3, but these
terms cancel out in the summation (A.90). Furthermore, when forming the v, and v,
components of the kick via a7 1 &= &1, 1 in Eq. (2.285), the resulting directional con-
tributions are primarily governed by terms proportional to /i 17k +1. Due to the
symmetry of these combinations, any phase offset applied to h; 1, enters both a1 14
equally and cancels out in the magnitude of the in-plane recoil. Therefore, the in-
plane kick magnitude remains invariant under phase shifts in /1 +>. Taken together,
these arguments show that, across the BBH simulations considered, the dominant
contributions to the a coefficients governing the in-plane kick are proportional to
hy +1—modes not included in Hgy,. Consequently, omitting the Hgy, modes has
only a minimal effect on the kick’s magnitude and direction. An analogous conclu-

sion holds for the final mass of the remnant, which depends on «( .

The qualitative assessment of mode contributions to the recoil is quantitatively
supported by Figure 2.17, which shows the relative error in the a-coefficients for
NR and Surrogate waveforms, comparing results with and without the inclusion

of modes in Hg,*.

The figure clearly demonstrates that the variation in the a-
coefficients relevant to the kick velocity is minimal. The relatively higher error ob-
served for NR is attributable to its extended mode content (¢ < 8) compared to
Surrogate (¢ < 4), resulting in a substantially larger number of contributing mode-
mixing terms in the summation for a1 1. As a result, omitting Hg,, affects aNRym
more significantly than a3"". In summary, the limited influence of subdominant
modes on the kick velocity arises from the constrained set of allowed mode cou-
plings in the ay,, coefficients. These restrictions are imposed by the Wigner-3; selec-
tion rules in Eq. (A.90), which permit mode mixing only when |¢; — {3| < ¢. Con-
sequently, the dominant /;> mode cannot couple to higher-order modes beyond
a certain threshold, thereby limiting its contribution to the recoil. However, this
restriction is no longer applicable in the context of computing gravitational-wave

memory effects, where different couplings become relevant.

Memory Components

The linear and non-linear GW memory contributions are computed and decom-
posed according to Eq. (2.289). Figure 2.18 presents the relative errors for both
memory components in non-precessing BBH mergers, using the full mode content

of each waveform model. In the upper panel, the total linear memory is shown,

“EOB and Phenom are omitted from this comparison, as they do not include the modes in Hyy, to
begin with.
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normalized to the NR result for each model. The shaded regions denote the 1c in-
terval around the mean memory error across the ensemble of simulations, resulting
in a total width of 2¢. Solid lines indicate the average memory ratio Ahyoder/ AINR.
The lower panel displays the corresponding quantities for the non-linear memory,
plotted as a time series to illustrate error accumulation during the gradual mem-
ory build-up. The merger occurs at t = 0, and normalization is performed relative
to the time-integrated non-linear NR memory for each simulation. In both the lin-
ear and non-linear cases, the EOB and Phenom approximants perform significantly
worse than the Surrogate model. These two models consistently underestimate the
memory contributions, with NR values lying outside their 1c intervals, particularly
in the non-linear regime. By contrast, Surrogate yields accurate predictions, espe-
cially for the dominant non-linear memory component. In the lower panel, Phenom
is replaced with TEOB to highlight its ability to model non-linear memory despite
containing only the dominant strain mode. However, similar to its kick velocity pre-
diction, TEOB produces negligible linear memory, owing to the absence of modes
such as hy 11 that are essential for this contribution. Modeling the linear memory is
particularly challenging, as it requires access to additional Newman-Penrose scalars
not typically provided by most waveform approximants*. This difficulty can be
partially circumvented by extending the time integrals from past to future null in-
finity, as in Eq. (2.275). While this method introduces a small systematic bias due to
the finite duration of simulated waveforms, the error affects all models equally and
is irrelevant in the relative error analysis. A more rigorous treatment of the linear
memory can be found in [161]. Additionally, the linear memory is several orders of
magnitude smaller than its non-linear counterpart, making it inherently more sen-
sitive to numerical noise. As a result, large fluctuations are observed in the linear

memory estimates.

As with the kick velocity, the GW memory can also be evaluated while ex-
cluding the set of subdominant harmonic strain modes, Hg,. For the linear mem-
ory component, this exclusion leads to only a minor change in the contributions
predicted by each waveform model. This result is expected, given that the linear
memory—per Eq. (2.290)—is entirely determined by the remnant velocity. This de-
pendency originates from the specific approximation employed in the derivation of
the balance laws used here, particularly in Eq. (2.275), where the original formula-

tion based on Newman-Penrose scalars is, under certain conditions, replaced with

4 An exception is the SXS Collaboration’s Cauchy-Characteristic Extraction (CCE) catalog [211].
Similar methods have been adopted in other modeling approaches, e.g.,[258].
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FIGURE 2.18: Deviation of waveform models’ linear (top) and non-
linear (middle) memory w.rt. NR [4]. Corresponding lc-intervals
above and below the mean are shaded with the corresponding color-
ing. For the non-linear memory the plot displays a time series. Both
memory contributions are normalized to the NR value and averaged
over all simulated mergers. The bottom plot shows again the non-linear
memory when replacing Phenom with TEOB. For better readability, two
plots for the non-linear memory are provided.
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FIGURE 2.19: Non-linear memory as depicted in Figure 2.18, here com-
puted excluding Hg,p [4].

expressions involving the remnant velocity™. As a consequence, because the lin-
ear memory is dictated by the kick, the discussion surrounding the relevant strain
modes closely mirrors that of the kick velocity presented in the previous Subsec-
tion. Notably, both the kick and the linear memory are alignment-dependent quan-
tities. This alignment sensitivity suggests that some of the discrepancies observed
across waveform models in Figure 2.18 may be partially attributed to suboptimal
alignment choices rather than fundamental modeling errors. In contrast, the non-
linear memory responds quite differently when the subdominant mode set Hgyyy, is
excluded. As illustrated in Figure 2.19, the relative errors across all waveform ap-
proximants tend to converge toward the NR baseline once the mode content is lim-
ited to a common subset. While the absolute non-linear memory values for NR and
Surrogate decrease by roughly O(10) percent, the values for EOB, TEOB, and Phenom
remain unchanged, as these models do not include the excluded modes in the first
place. Consequently, upon exclusion of Hg},, the non-linear memory estimates of all
models become approximately consistent. By the formulation of the balance laws,
this also implies comparable energy flux predictions. Unlike the linear component,
the non-linear memory is not sensitive to the choice of reference phase and is thus
independent of the alignment procedure. Furthermore, a noticeable reduction in
the variance of relative errors is observed for EOB and Phenom, stemming from the
reduced number of NR modes contributing to the memory computation, which in
turn limits fluctuations in comparisons with these models. This trend, however, is

0For a detailed discussion of the relevant transformations and physical assumptions, see [162].
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not evident for TEOB, where notable discrepancies persist due to residual subdom-
inant strain modes that are present in the NR data but absent from both TEOB and
the reduced mode set Hg,.

As anticipated by prior studies (e.g., [164]; see also [239]), both the EOB and
Phenom waveform models do not capture the full information content present in NR
simulations, primarily due to their limited set of harmonic modes. Nonetheless,
when the analysis is restricted to the strain modes these models actually generate,
their non-linear memory estimates closely match the reference data. This indicates
that, within the shared harmonic content, these models reliably reproduce the non-
linear memory. A direct comparison between Figures 2.18 and 2.19 reveals that
the discrepancy in memory-related information between EOB and Phenom on one
side, and NR or Surrogate on the other, is largely attributable to the exclusion of
subdominant modes, Hy,,. To make this connection explicit, the analysis revisits
the mixing of strain modes in the ay,, coefficients defined in Eq. (A.90). Accord-
ing to Eq. (2.291), the total non-linear memory consists of all a-coefficients with
¢ > 1, among which ay g is the dominant contributor. This prominence stems from
the allowed mode mixing in the &/, terms. As previously discussed, the dominant
strain modes hy5 and hy _, can contribute meaningfully only to coefficients with
m = 0, such as a9 and a4, owing to the selection rules imposed by the Wigner-3;j
symbols in Eq. (A.90). Importantly, the self-coupling terms hy2h;, and hy _2hy >
cancel for all values of ¢ except / = 2 and ¢ = 4 in the non-precessing case. Even
then, the contribution of ay g is heavily suppressed—by about O(10~2)—making it
effectively negligible. Consequently, a; ¢ alone accounts for roughly 96% of the to-
tal non-linear memory on average.” While the largest contribution to a;o indeed
originates from the interaction of the dominant /1, and hy —» modes, a substantial
portion also arises from couplings between subdominant modes and h; +». Further-
more, all other a/,, terms—with ¢ > 1—likewise include contributions from such
mixed-mode interactions. In contrast to the case of the kick velocity, where sub-
dominant modes play only a marginal role, the non-linear memory incorporates
a wider range of a-coefficients that permit more extensive mode mixing. This is
due to the less stringent selection rules of the Wigner-3j symbols, which allow for
broader coupling possibilities as the number of strain modes increases. As a result,
the non-linear memory becomes a highly sensitive and robust metric for evaluat-
ing the completeness and fidelity of waveform models across all available harmonic
content. This sensitivity is clearly reflected in the disparity between Figures 2.18

51This dominance reflects the fact that the majority of gravitational-wave energy is radiated az-
imuthally symmetrically, primarily via the h; +» modes. The resulting memory signal manifests in
the h1p o harmonic.
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FIGURE 2.20: Relative error for kick direction, magnitude, and non-
linear memory compared to NR waveforms and averaged over all sim-
ulations selected by the displayed constraint (x-axis) [4]. For each value
and model, two error bars corresponding to the categorizations below
the x-axis are displayed. Smaller errors are moved to the front. To con-
vert to the mass parameter 17 used in 2.5.4, one uses 1 = q/(1+ q)?,
where g = M;/M; and M; being the heavier of the BBH system.

and 2.19, where the non-linear memory differences can largely be traced back to
couplings between h; » and subdominant modes within the higher-order «,, terms.
Removing these subdominant modes—absent in EOB and Phenom—from the NR
and Surrogate data effectively reduces the memory to the hy 10hy 1o contributions.
Given that the dominant modes are accurately captured by all approximants, the re-
sulting memory estimates become consistent, with only minor mismatches—clearly
illustrated in Figure 2.19. The dominant role of h 1+7h> +> interactions in the non-
linear memory computation is further underscored by the performance of the TEOB
model. As shown in Figures 2.19 and 2.18, TEOB, which includes only the h; 12
modes, produces non-linear memory estimates comparable to those of other models
with more extensive harmonic content. This outcome reinforces the critical influence

of these dominant-mode couplings under mode-restricted conditions.

Prior to analyzing precessing systems, the dependence of relative errors in key
physical properties of BBH mergers on intrinsic parameters of non-precessing bi-
naries—namely, the symmetric mass ratio 7, spin magnitudes |x/|, and spin align-
ments—is examined. The results are summarized in Figure 2.20, which displays
relative error bars for each quantity of interest, grouped according to the relevant

parameter. For each parameter, the data are divided into two subsets, separated at
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thresholds chosen to approximately split the simulation ensemble evenly. In the case
of mass ratio, the threshold is set at g = M;/Mj = 2.6 (corresponding to 7 ~ 0.2),
allowing a clear comparison between low- and high-mass-ratio regimes. Among
all waveform models, the Surrogate approximant exhibits the strongest parametric
dependence, with significantly larger relative errors at higher mass ratios (g > 2.6),
as elaborated in Section 2.5.4. Weaker, though still discernible, trends are also ob-
served for spin alignment and spin magnitude: Surrogate generally performs better
for anti-aligned configurations with lower spin magnitudes (|x| < 0.4), particu-
larly in relation to the kick velocity and non-linear memory.>? By contrast, the EOB
model shows a consistent trend only with mass ratio, achieving better accuracy in
the high-g regime. No statistically significant dependence is found w.r.t. spin align-
ment or magnitude. The Phenom model likewise displays no clear trends with any
of the examined parameters, suggesting a more uniform error distribution across

the parameter space, albeit not necessarily indicative of greater accuracy.

Precessing merger simulations

In the context of precessing binary BH mergers, comparable results are obtained
for the non-linear memory, as illustrated in Figure 2.21. The top panel presents the
time series of average relative errors for the full harmonic mode content, with nor-
malization and standard deviation shading computed analogously to Figure 2.18.
Both EOB and Phenom show deviations from NR consistent with those observed in
the non-precessing case. In contrast, Surrogate exhibits substantially greater fluctua-
tions, resulting in a noticeably larger standard deviation relative to its performance
in non-precessing simulations. These elevated fluctuations persist even when the
subdominant modes Hg, are excluded, as seen in the bottom panel of Figure 2.21.
Despite this, Surrogate continues to outperform both EOB and Phenom in terms of
overall accuracy in non-linear memory predictions. When Hg,, is disabled, the
non-linear memory contributions from Surrogate, EOB, and Phenom become nearly
identical. Notably, Surrogate exhibits the widest standard deviation interval in this
configuration. Although the non-linear memory estimates from all approximants
become comparable, no convergence to the NR baseline is observed, in contrast
to the non-precessing scenario depicted in Figure 2.19. Instead, all models settle
around 90% of the total NR non-linear memory on average. This suggests that, in
the precessing case, differences between Surrogate, EOB, and Phenom are primarily
driven by the presence or absence of modes in Hg,,. Nevertheless, even though
Surrogate uniquely captures the asymmetry between (¢, m) and (¢, —m) modes, all

»Linear memory is not included in this analysis, as it is directly determined by the remnant
velocity; see Section 2.5.5.
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FIGURE 2.21: Non-linear memory visualized as in Figure 2.18, here
computed excluding Hg,p,, for precessing mergers [4].

models appear to lack information beyond the content of Hg,, as implied by the
residual gap with NR in the lower plot of Figure 2.21. Consistent with prior discus-
sions on waveform alignment for precessing systems, it is important to note that the
contribution of alignment choices to the observed deviations in Figure 2.21 remains
unquantified. However, the roughly uniform offset exhibited by all models argues
against alignment procedures as the primary source of the discrepancy. Since each
waveform model is aligned independently, alignment-related inaccuracies would be
expected to manifest unevenly. An alternative explanation for the collective devia-

tion from SXS’s non-linear memory is its significantly richer harmonic mode content
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(see Table 2.1). Nevertheless, truncating the SXS strain data at ¢ < 4 in the statisti-
cal analysis underlying Figure 2.21 does not significantly narrow the gap between it

and the other waveform models.

The results presented in Figure 2.20 are further evaluated in the context of
precessing binary BH mergers. As in the non-precessing case, this analysis focuses
exclusively on the non-linear memory component. The spin alignment marker is
omitted, as it lacks physical meaning for precessing systems. To maintain a balanced
division of the simulation dataset, the parameter thresholds are slightly adjusted:
the mass ratio boundary is set at g = 1.8 (corresponding to 7 = 0.23), and the spin
magnitude threshold is set at | x| = 0.45. Under these conditions, a consistent trend
emerges for all approximants except Surrogate: lower mass ratios (i.e., larger ) are
associated with increased relative errors in the non-linear memory when compared
to NR. In contrast, Surrogate exhibits the inverse behavior, with higher relative er-
rors occurring at higher mass ratios (smaller 77). For spin magnitude, no statistically
significant trend is observed across any of the models. When compared to the non-
precessing results in Figure 2.20, the performance of the waveform models shows a
qualitatively similar dependence on system parameters, indicating that these trends
are robust across spin configurations. Moreover, these parameter-dependent error
distributions remain largely unaffected by the inclusion or exclusion of the subdom-
inant mode set Hqyp: while removing Hgyyp, reduces the overall amplitude of the rel-

ative errors, it does not alter the underlying trends.

Utilizing the full available parameter space, the analysis assesses whether con-
clusions regarding the non-linear memory are sensitive to the specific selection of
NR binary mergers. By incorporating additional simulations beyond the SXS cata-
log, the consistency of previously reported trends is confirmed for both precessing
and non-precessing waveforms. The comparative behavior of Surrogate, EOB, and
Phenom in reproducing the memory signal remains unchanged, supporting the ro-
bustness of the findings and indicating that they are not driven by selection biases

in the underlying source parameters.

2.5.7 Conclusion

An extensive comparison of gravitational waveform models was carried out, focus-
ing on the remnant kick velocity and gravitational memory associated with BBH
mergers. The study evaluated four state-of-the-art waveform models (see Table 2.1),
reviewing their numerical implementations and addressing limitations inherent to

standard waveform alignment procedures. In particular, attention was drawn to



2.5. Applications of the Asymptotic Spacetime Formalism: Testing Numerical 143
Waveforms

the challenge of disentangling alignment residuals from intrinsic model discrepan-
cies. Following the application of a robust alighnment method, the balance laws were
employed to compute both the kick velocity and the memory contributions. To mit-
igate potential selection bias, the analysis extended beyond the cataloged SXS sim-
ulations to include randomly sampled binary mergers from the broader parameter
space. Kick and memory estimates were compared to reference models: NR wave-
forms served as the baseline for cataloged simulations, while Surrogate was used as
a reference for cases outside the SXS dataset.

The results offer a fresh perspective on longstanding discrepancies between
the selected waveform approximants and the reference model in the context of both
kick velocity and gravitational memory, in agreement with previous studies [164].
By tracing the origin of these inconsistencies, it becomes evident that physical ob-
servables derived from the balance flux laws serve as effective diagnostics for two
key waveform features: the accuracy of the dominant /, +» mode and the distribu-
tion of information across the full harmonic mode content of the approximants. The
former can be reliably assessed through the remnant velocity (or the linear memory,
as evaluated here), while the non-linear memory proves particularly sensitive to
the latter, offering insight into the models” ability to reproduce subdominant mode

contributions.

Using the remnant kick velocity as a diagnostic, substantial agreement was
found across all waveform approximants when compared to the reference model,
with Surrogate exhibiting the highest accuracy, followed by Phenom, and then EOB.
This agreement holds for both the magnitude and direction of the kick. The ranking
of approximants mirrors the post-alignment mismatch values of the dominant strain
modes, underscoring the central role of /15 » in determining the kick. While analytical
arguments identify /i 11 and hy +; as the primary contributors to the kick, the major-
ity of observed discrepancies are attributable to subdominant modes—particularly
hy +1—as indicated by the remnant velocity errors exceeding the hy, mismatches
by roughly an order of magnitude across all models. The kick velocity is shown to
be highly sensitive to the waveform alignment procedure and, for non-precessing
systems, to subtle characteristics of the harmonic mode structure. Accurate compu-
tation of the out-of-plane kick in precessing binaries, in particular, requires the faith-
ful modeling of asymmetries between the ¢, m and ¢, —m modes—features that are
intrinsic to precessing waveforms. Relaxing the assumption of perfect alignment, a
portion of the approximants’ relative errors in remnant velocity may be attributed to
residual misalignment. While such artifacts are expected to be subdominant, further

refinement of waveform alignment—especially for precessing mergers—remains an
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essential direction for future research, particularly in the pursuit of high-precision

GW measurements.

The known limitations in the harmonic mode content of Phenom and EOB
were clearly exposed through the calculation of the non-linear GW memory. Since
the non-linear memory accumulates contributions from numerous combinations of
strain modes—as expressed in the summation over ay ,, coefficients in Eq. (A.90)—it
is highly sensitive to any reduction in mode content. This sensitivity is evident in
the convergence of NR and Surrogate estimates toward those of Phenom and EOB
once the subdominant mode set Hg, is excluded. Interestingly, EOB generally pro-
duces smaller non-linear memory errors than Phenom, although both are, on aver-
age, surpassed in accuracy by TEOB. This observation underscores that for practical
purposes, reliable non-linear memory predictions can be achieved through accurate
modeling of only the dominant harmonic mode. Furthermore, it is demonstrated
that asymmetries in the harmonic structure of precessing systems have only a lim-
ited impact on the memory calculation, as shown by evaluating the non-linear mem-

ory of precessing waveforms with Hg,, removed.

Overall, the combined analysis of kick velocity and gravitational memory of-
fers a robust and complementary diagnostic for evaluating waveform models, and
can be readily applied to any waveform model with numerical access. For the mod-
els examined here, this dual approach reveals that Phenom waveforms tend to pro-
vide more accurate estimates of the dominant /, ; mode, whereas the subdominant
mode content in EOB yields comparatively better non-linear memory predictions.
Despite this, both are outperformed by the Surrogate model, which benefits from a
richer set of harmonic modes, including non-negligible contributions up to ¢ < 5.
Interestingly, only Surrogate shows statistically meaningful performance variations
across different regions of parameter space. In particular, systems with mass ratios
g < 2.6 (or equivalently, # > 0.2) exhibit markedly improved agreement with NR
data, potentially indicating a parameter-space bias introduced by the interpolation
techniques employed in the Surrogate construction. These findings are further sub-
stantiated by analytical insights derived from mode mixing in the spin-weighted
spherical harmonic decomposition of both the kick and the non-linear memory. The
role of the a-coefficients in Eq. (A.90), which encode allowed combinations of strain
modes based on spin-weight —2 selection rules, is central to this interpretation. The
associated Wigner-3j symbols govern the mode coupling structure, and their ap-
pearance in the a terms reflects the underlying symmetry constraints. This formal-
ism, via Eq. (2.278), connects the harmonic content of the waveform directly to
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observable physical quantities such as radiated energy, recoil velocity, and gravi-
tational memory, explaining, for instance, why the dominant memory contribution
arises from the azimuthally symmetric h; ) mode due to the primarily symmetric

nature of the energy flux.

By subtracting the dominant memory contribution (proportional to a3 (), the
analytical framework reveals a pronounced dependence of the residual non-linear
memory on subdominant harmonic modes. This sensitivity offers a promising av-
enue for evaluating the fidelity of subdominant modes in future gravitational wave-
form models. Section 2.5.6 demonstrated a practical application of this approach
by comparing non-linear memory contributions from various harmonic mode sets.
From a physical perspective, probing individual a-coefficients with ¢ > 2 and m #
0 amounts to investigating anisotropic components of the non-linear memory —
equivalently, the anisotropic energy flux emitted by the binary to null infinity. While
this flux is inherently configuration-dependent and typically subdominant, it could
serve as a valuable diagnostic in precision studies of waveform features, especially
for precessing BBH systems. A comprehensive exploration of this potential is re-
served for future work. More broadly, assessing waveform quality through the lens
of physically derived observables—rather than relying solely on mode-by-mode
mismatch comparisons such as those shown in Figure 2.15—presents several ad-
vantages. This physically motivated strategy circumvents many of the ambigui-
ties inherent in mismatch analyses, particularly those stemming from waveform
alignment uncertainties. In contrast, observables like kick velocity and gravitational
memory are invariantly defined and derived directly from general relativity, mak-
ing them robust indicators of waveform fidelity. This is especially beneficial for pre-
cessing binaries, where precise alighment remains a challenge, and reinforces the
value of physical diagnostics as phenomenologically grounded tools for evaluating

waveform models.

In conclusion, the study presented in this Section 2.5 establishes a robust frame-
work for evaluating gravitational waveform models, offering clear guidance for im-
proving waveform precision in anticipation of data from next-generation detectors.
By leveraging the balance flux laws, the analysis reveals model-specific strengths
and limitations in capturing key physical observables and highlights how these vary
across different regions of parameter space. These insights not only inform targeted
model selection for applications such as gravitational-wave memory extraction and
metadata inference but also lay the groundwork for systematic benchmarking of
future waveform model iterations. Extending this methodology to updated or next-
generation models presents a natural direction for subsequent investigations.
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Chapter II1

Quantum Signatures in Gravitational

Waves

Based on the findings of Chapter II, in this Chapter, the balance flux laws are explored as a
tool for propagating quantum corrections throughout all portions of the gravitational wave-
form. The Chapter thereby presents the findings of the joint works [B, C] listed under “Pub-
lications” below and referenced as [5] and [7], respectively, in the following. More precise

references are given in the main text where fitting.

The previous Chapter provides an exhaustive derivation of the asymptotic space-
time formalism in which the flux equations at future null infinity .#* can be de-
fined. As it is demonstrated in Section 2.5, a natural application of such laws is
found in the context of numerical waveforms. It is, however, crucial to highlight
that the power of these exact (in the sense of validity for full, non-linear GR) con-
straint equations reaches way beyond the pure test of waveforms. Instead, they
allow for the computation of higher-order (quantum) effects that manifest in the
GW strain. One such instance is provided by the addition of the GW (displacement
[198] and spin [209]) memory to numerical waveforms [161, 239, 249, 259]. The (dis-
placement) memory being a fundamental contribution to the flux equation (2.278)
is equipped with an elegant interpretation closely tied to the energy flux across .# .
It is, however, regarded as an intrinsic feature of the waveform and a prediction of
plain GR. Modification of the underlying theory (or others) naturally requires a cor-
responding adaptation of the procedure outlined in Chapter II, potentially yielding
new terms in Eq. (2.278), see for instance [102, 209, 121]. However, if the waveform
is intrinsically altered within the regime of validity of GR, i.e., by quantum correc-
tions or other novel effects, Eq. (2.278) still holds and allows for propagating the
corrections through all (linear and non-linear) regimes of the gravitational strain.
This key feature of the balance flux laws is only poorly reflected by literature so far.
In this chapter, the shortcoming is rectified by setting an example in the context of
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the GW echo effect by which the gravitational strain resulting from a BBH merger
obtains additional features caused by the reflective properties of the BHs” horizons.
A detailed overview of crucial notations, production mechanisms, and numerical
computations of the GW echo is provided in Section 3.1. Detectability prospects
with the LISA instrument, as well as corrections to the non-linear sector of the GW
strain picked up by an interferometer far away from the merging BBH are discussed

in Section 3.2.

3.1 Echo Effect, Quantumness and Gravitational Radi-

ation

Classically, BHs represent a well-established solution to Einstein’s equations and
serve as a theoretical framework for exploring the coexistence of strong gravita-
tional fields and macroscopic quantum phenomena. Their three classical parame-
ters—mass, charge, and angular momentum—offer a relatively simple (particularly
compared to NSs) means of computing the gravitational strain emitted during the
merger of two such objects. In most astrophysical scenarios, charge is negligible,
allowing standard predictions for classical BHs to depend primarily on two param-
eters: mass and spin. As a result, for instance, the QNMs of a spinning BH are
determined solely by these two properties of the Kerr BH (see, e.g., [260]).

Potential deviations from the no-hair theorem—whether due to classical extensions
or quantum modifications of GR—are therefore expected to manifest in the QNM
content of the ringdown phase of gravitational waveforms [150]. The predictive na-
ture of BH QNMs makes them, along with signatures that inherently rely on them,
a widely utilized tool for probing physics beyond GR. One particularly intriguing
signature examined in this section is the GW echo [261, 262, 263] (see also earlier
works [264, 265, 266, 267, 268]), which is considered a potential smoking gun for
modifications to the near-horizon structure predicted by GR. Such modifications
often stem from proposed resolutions to the BH information paradox. Notable ex-
amples include wormholes [261], firewalls [269], gravastars [157], and other exotic
compact objects (ECOs) [270], such as fuzzballs [271], among others [272]. Despite
their theoretical diversity, these scenarios share a common feature: a deviation from
the classically all-absorbing event horizon, localized near the BH surface. In the
absence of detailed knowledge about the precise nature of this modification, the
echo phenomenon—characterized by a repeated ringing in the GW signal during
the ringdown phase—is typically modeled by assuming partial reflectivity at the

surface of the merging compact object.
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The echo effect was proposed as a potentially detectable phenomenon shortly
after the first observation of a GW signal. Despite extensive investigations con-
ducted by LIGO and other collaborations [273, 274, 275, 276, 277, 278, 279], the sta-
tistical significance of reported echo signals remains actively debated [277, 279, 280,
281, 282], and a definitive confirmation of the existence of GW echoes is still out-
standing. Note that there exists also some research questioning the echo’s concep-
tional foundataions, e.g., [283, 284, 285, 286, 287, 288, 289]. Due to their ambiguous
theoretical support and inconclusive observational evidence, GW echoes have be-
come a focal point of interest within the quantum gravity community, especially in
light of the enhanced precision expected from upcoming GW detectors.
Accordingly, the subsequent (sub)sections concentrate on the connection between
GW echoes and quantum gravitational phenomenology, as well as their detectabil-
ity with future instruments. For a more comprehensive review covering the theo-
retical background, current status, and future prospects of GW echoes beyond the
scope of this chapter, the reader is referred to [272].

3.1.1 Gravitational Wave Echo Effect

Arguably, the most significant feature of a BH is its horizon, which delineates the
surface beyond which all light cones tilt toward the singularity. In this framework,
any matter or radiation crossing the horizon becomes causally disconnected from
the exterior universe, unless it exceeds the speed of light, thereby rendering the
classical BH effectively “all-absorbing.” As the causal boundary of a BH in GR, the
event horizon is determined solely by the BH's classical hair. Its structure, particu-
larly in the near-horizon regime, is central to discussions involving the GW echo.

When evaluating the prospects of detecting echoes in observational data, it is im-
portant to recognize that the concept of an (event) horizon is inherently idealized.
By definition, the event horizon demarcates the boundary from which no signal can
reach future null infinity. However, determining its precise location requires com-
plete knowledge of the entire future evolution of spacetime, which is impractical in
dynamical scenarios. As a result, the literature often substitutes the event horizon
with the apparent horizon in such contexts. Apparent horizons can be identified at
any given time without information about the future and are defined as the outer-
most surfaces for which both null expansions are non-positive (see Section 2.1 for
the formal definition of null expansions). An intuitive distinction between event and
apparent horizons can be illustrated by considering a spherical null shell collapsing
into a BH [272]. The apparent horizon expands precisely when the shell crosses it,
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whereas the event horizon begins to grow even before the shell arrives. This an-
ticipatory behavior arises from the increasing gravitational field that influences the
global causal structure prior to the shell’s arrival, causing the event horizon to ex-
tend further outward.

In the following discussion, references to the BH horizon during dynamical phases
—such as the ringdown—implicitly pertain to the apparent horizon. As the sys-
tem evolves toward future timelike infinity (i), the apparent and event horizons
asymptotically approach each other. Additional explanatory footnotes are included
for clarity where needed.

With a well-defined notion of the BH horizon in place, a consistent frame-

work for constructing GW echoes can be established. It is worth noting that several
methodologies for echo construction exist in the literature, many of which delib-
erately avoid explicit modeling of the merger dynamics. Alternative approaches
incorporate frameworks such as the EOB formalism [290, 291] or the Close-Limit
Approximation (CLA) [292, 293, 294, 295] (for a comprehensive overview, see [6]).
Among the most prominent echo models are those that eschew merger dynamics
entirely. They can generally be classified as either inside (e.g., [296, 297]) or outside
(e.g., [298]) formulations!. In the outside approach, the primary GW emitted from
a BBH merger is conceptualized as originating from a pulse reflected at the light-
ring potential after having been sent in from past null infinity. This pulse undergoes
multiple reflections between the peak of the BH potential and a near-horizon struc-
ture—whose nature remains unspecified—producing a sequence of echoes that trail
the main signal in detectors effectively located at future null infinity.
Conversely, the inside approach models the primary GW as the transmitted portion
of a wave that emerges from the past (BH) horizon. Due to the partial transmissivity
of the BH potential, this results in an echo pattern identical to that produced by the
outside formulation. Both methods enable a direct connection between the principal
BBH GW and the subsequent echoes, thereby circumventing the need for detailed
modeling of the merger process. A unifying aspect across most of the echo models
lies in the phenomenological mechanism responsible for the echo generation: grav-
itational radiation is repeatedly reflected between the BH potential barrier and
a semi-reflective structure near the BH horizon, emitting a fraction of its energy
toward .# " during each cycle (illustrations can be found in Fig. 1 of [296] and
[298]).

In this Chapter, the modeling of echoes adopts a novel methodology [6] based

!Note that in both approaches, the main GW signal is computed within the framework of un-
modified GR, without invoking quantum gravitational corrections.
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BH Barrier

FIGURE 3.1: Spacetime diagram of the BBH merger [5]. The ampli-
tudes received or emitted by each individual horizon are denoted by
three arrows. Here, Zj; = describes the principal waveform including
the ringdown while Z7*'° denotes all subsequent echoes. The diagram
holds analogously also for all Yy,,. The construction outlined in [6]
considers the blue-shaded regions only. The time at which X4}, inter-
sects the future horizon marks the onset of the ringdown phase of the
main GW.

on the so-called hybrid approach [299, 300], which integrates Post-Newtonian (PN)
theory with Black Hole Perturbation (BHP) theory to model GWs from comparable-
mass BBH mergers. Within this framework, the construction of the relevant space-
time geometry is partitioned into two distinct regions, as illustrated in Fig. 3.1: a
blue-shaded region where BHP theory is applicable, and a purple-shaded region
governed by the PN regime, separated by a three-dimensional timelike hypersur-
face denoted as Xgpey. This hybrid method enables the modeling of GW signals,
including the determination of the recoil velocity.

The echo construction employed here (see [6] for further details) builds upon this
framework by similarly dividing spacetime into corresponding regions. Rather than
solving for the complete spacetime geometry, the method reconstructs the geometry
in the BHP regime using the NR waveform at future null infinity .# T with partic-
ular attention to GWs propagating toward the future BH horizon #". These NR
waveforms are extracted in the form of ¥§ and ¥§ at #* via the CCE (Cauchy Char-
acteristic Extraction) simulation pipeline [211, 212], which is implemented in the NR
code SpECTRE [213, 214]2.

2Note that the same numerical framework is utilized in Section 2.5.
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Given the separation of the spacetime geometries and the availability of nu-
merical data at .# ", the echo construction in [6] centers on the region governed by
BHP theory. By enforcing a no-incoming radiation condition at .# ~ alongside out-
going waveforms at .# "—obtained via the CCE NR pipeline—the spacetime cor-
responding to the blue-shaded region in Fig. 3.1 can be reconstructed through a
superposition of solutions to the homogeneous Teukolsky equation [301] that sat-
isfy the specified boundary conditions®. Rewriting the homogeneous solutions for
Yy, ¥; as

alt,r,0,9) = Z/dw 2R —2Yom (6, @)e (3.1a)

Yo(t,r,0,¢) = / dw 12 R +2Yom (6, @)e~ ", (3.1b)

the radial functions sRy,,, () (with spin-weight s) satisfy the radial Teukolsky equa-

tions

. d d
A 55 (AS“ 5 SRM) +V sRymew = 0, (3.2)

with A = 2 — 2r and

rtw? — 2is(r — M)r?w
A

V =diswr—L(L+1)+ (3.3)

for a BH with mass M. The solution of the Teukolsky equation is known to, asymp-

totically, converge to the form

r3eiwr*’ P +o0,
_ZREmw ~ . (34a)
D%L:th zwr + AZDme —iwr , rf — o0,
r—5€1wr , o +o00,
Cg:l’idezwr + A~ ZC?;;m; —iwr , r* —o00,

where r* = r 4+ 2In (5 — 1) is the tortoise coordinate and numerical values of the co-

efficients DI' Do CIh  COu are computed using the Black-Hole Perturbation

Toolkit [302]. They encapsulate the physics of the BH potential barrier: the transi-

tivity for radiation traveling from 2~ to .# " is given by 1/D%% (1/CS%ut ), the re-

Imw Imw
/Dout (Cm /C%Z} .

Imw Imw \lmw
The key insight of the construction presented in [6] now resides in fact that for a

flectivity of the potential barrier displayed in Fig. 3.1 by DI

3In the literature, this class of solutions to the Teukolsky equation is commonly referred to as the
up-solution.
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BBH merger, in the regime where BHP theory is valid, the asymptotic solutions for
Y;, ¥ can be rewritten in similar form to Eq. (3.4) as

3700 iwr* *
RBBH r°Zy e, r* — 400, a5
—2%mw ™ out zwr 2 fza)r* * ( ’ a)
Zémw + A Zémw ;1 00,
BBH S rt — too,
+2Rn ~ out ,iwr* —2yin  ,—iwr* * (3.5b)
Yﬁmw + A~ Yémw , 1" — —oo,

where, again, r* = r +2In (5 — 1) and the waves escaping to infinity, Zz; o and

Yir.or are determined by the numerical values for Y3, ¥ via

IMp¥sl e =Y Ym0, ) Z5, (3.6)
lm

PMPYE| e = ) 2 Yo (0,0) Vi (3.7)
{m

where My is the final mass of the remnant object. Note that because of the direct

relation between Y and the shear/strain (see Section 2.2), one has

(e0] 1 o0
hﬂm(w) = Ezﬁmw/ (3.8)

with

rMEH® s = ) 20 (0, 9)HE, - (3.9)

{,m

L : : in out
The remaining amplitudes, i.e., Z} , Z7" (Vi o

traveling towards and away from the horizon %", see Fig. 3.1.

Yout ), denote the amplitudes

For both Eq. (3.4) and (3.5), the solution corresponding to r* — —oo describes
the limit towards the future BH horizon, s#", and r* — oo towards null infinity
# . Given the structure of the solutions, a relation connecting the waves escaping
to infinity, Z{? ~and Y§° , with the ingoing waves at the future horizon, J#*, ZII
and ygm . 18 can be derived. One finds that [6]

Zimeo = DimeoZimeo « (3.10a)
Zémw Dfmw Zﬁmw ’ (3-10b)
yzz:u ?;Euyémw ’ (3-10C)

yfmw Emwyémw ’ (3-10d)
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FIGURE 3.2: Illustrative sketch of the cavity formed by the BH poten-
tial barrier and the near-horizon structure separated by dgpey from the
future BH horizon J#* [5]. The (radial) amplitudes of gravitational ra-
diation sourced by the ringdown of the perturbed BH are denoted by
Vimw: Zimw- A observer (GW detector) is located at future null infinity
It

such that the knowledge of Zan w,yg;’n ., from numerical simulations in combina-
: : : in in
allows for the reconstruction of the ingoing waves I Yl

in in

tion with D}} , Cj»

at . Assuming the presence of a semi-reflective structure surrounding the BH
(event) horizon, ingoing GWs are partially reflected near # T—at least conceptually,
as the waves never strictly reach the horizon—resulting in outgoing wave compo-
nents that generate a sequence of echoes following the primary GW signal from the
merger. Crucially, this process produces not just a single echo but a series of them
over time. This behavior arises from the semi-reflective nature of the BH potential
barrier, which, together with the near-horizon structure, forms an effective cavity.
This cavity traps a fraction of the gravitational radiation, subsequently releasing an
echo during each oscillation of the trapped radiation between its boundaries. An
illustration of this mechanism is presented in Fig. 3.2.

The resulting strain measured by a GW detector, morally situated at .# , can
be decomposed into two distinct components: the principal waveform originating
from the BBH merger, with amplitude denoted by Zj7 ', and the subsequent echo
contributions, labeled as Z;;ha? . The transformation from the radial amplitude so-
lution of the Teukolsky equation to the GW strain at .# " is straightforwardly ex-
pressed in Fourier space, as given by Eq. (3.8). For the transformation from ingoing

to outgoing solution, one relies on the Teukolsky-Starobinsky (TS) relations

4wt o
Fyémw - Zﬂmw' (3.11a)
yin _ Zzin (3.11b)

Imw C Imw’
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where

C=({—-1)(L+1)({+2) + 12iw, (3.12a)
D = 64iw(128w? + 8)(1 — 2iw). (3.12b)

An overview of the relationships between the asymptotic information at .#* and
at the horizon " for both ingoing and outgoing radiation is provided in Fig. 3
of [6]. To illustrate the physical interpretation of the asymptotic components of the
radial functions ¥y and Y4, consider Fig. 3.1. Beginning with ZOut (and equiva-
lently Y9u! ), which appear to be emitted from the past horizon, these waves can be
thought of as corresponding to linear extrapolations of the asymptotic information
at .#*. In this sense, the GWs at future null infinity can be understood as being
generated by “image waves” Z" ' (V9U! ) emitted from the past horizon 5~ [6].
Upon encountering the BH potential barrier, part of the wave is reflected towards
2, while the other part is transmitted towards .# *. These correspond to ZI!
and mew’ Zﬂe;iha())’

(1/C9% ) and the reflectivity given by DIt

respectively*. Then, with the tran51t1v1ty proportional to 1/Dg4t

{mw

/Doyt (Cin /Cout ) it follows that

Emw Imew Emw me

1
Zimew = ot Zime (3.13a)

Tout “mw ’
Dfma;

Z D??;ﬂu Zout (3 13b)
mw — D?Ut Imw 7 .
mw

____yout (3.13¢c)

Imw ’

o _
yfmw - Cout

Imw
Cln
y@mw - Cg’ﬁf] yz);zfu . (3.13d)
{mw

At this point, it is important to acknowledge that, based on the arguments presented
above, the outlined reconstruction using the hybrid method corresponds to the same
reconstruction as the inside prescription within the regime of validity of BHP the-
ory. For a detailed comparison between the two methods, the reader is referred to
[6]. However, it is essential to highlight that the two methods generally apply lin-
ear BHP theory in different regimes. In this context, the region of spacetime is con-
strained by Egp,ep1. The intersection of Egpey with 52 marks the time vy, (see Fig. 3.1),
which corresponds to the onset of the ringdown phase of the main GW. It is only at
this point that the Teukolsky equation accurately describes the gravitational infor-

mation propagating through spacetime. Therefore, the validity of Eq. (3.4) and (3.5)

*Note that the information transmitted towards .# T is referred to as Z%°, = only for the first im-
print of the image waves. For each subsequent cycle within the cavity, the transmitted information
is captured by Z¢cho

Imw*
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is ensured as the merger exits the strong-field regime. Thus, when converting the
information at null infinity .# T into in- and outgoing radiation, one imperatively

converts the relevant information into time-domain waveforms, e.g.,

/ dewyin oo (3.14)

and truncates the waveform at vy, such that it only contains QNM information. Nu-
merically, the waveform section corresponding to the QNMs is computed via the
fitting procedure outlined in [6], where a minimal mismatch between the NR wave-
form for Y and an analytical expression for the ringdown modes (here exemplar-
ily for the / = 2 = m mode),

Mmax . o
V(v >o0s) =) (Ane_“"”v + Bne""””> , (3.15)
n=0

is computed with the time marking the onset of the ringdown, vy, as a free parame-

ter. The extracted time parameter then determines the Planck Filter F(v),

0, v < vy —Av
F(v,Av,vz) =  (expx + 1)_1 vy —Av < v <vs , (3.16)
1, 0 > Uy,

such that the ringdown information in I is contained in

ym QNM( ) = Vi (v)F(v) 4+ Const. - (1 — F(v)). (3.17)

The function x is defined as x(v, Av,vs) = (vAZZ + =2 Av). The Planck-taper
window function (3.16) is applied to mitigate spectral leakage associated with the
abrupt onset of the ringdown phase of the binary merger. The precise choice for v
is provided below. The mismatch function used to compare the numerical data with
the overtone decomposition (3.15) is identical to Eq. (2.272). It is important to note,
however, that the norm in this chapter is computed in the time domain, as opposed
to the frequency domain integral in Eq. (2.274). Additionally, the mismatch function
depends solely on the starting time vy, and is evaluated for varying numbers of

overtones included in the series (3.15).

For the computation of the echo, the relevant information is encapsulated in
the ingoing radiation at the future horizon J#*, represented here by Y} ~ (see Fig.
3.1). As discussed in Section 2.1, the ingoing gravitational radiation is associated

with ¥y, which, in principle, constitutes the sole numerical information required
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for the echo computation. This justifies the choice of Y™ for illustrating the QNM
isolation procedure. Physically, the ingoing radiation travels toward the (partially)
reflective surface, where part of it becomes trapped in the cavity. To determine how
each frequency mode interacts with the BH’s near-horizon structure, both a reflec-
tivity parameter and an appropriate boundary condition are necessary. For the cav-
ity wall corresponding to the light-ring potential, as depicted in Fig. 3.2, these are
given by numerical functions dependent on the mass and spin of the perturbed BH.
However, for the boundary replacing the would-be horizon, the computation of a
meaningful reflectivity requires further specifications of the boundary’s properties.
The cases considered in this chapter, based on [5, 7], are outlined in Section 3.1. A
specific interpretation of the echo as originating from the quantum phenomenology
of the BH horizon is adopted. Before elaborating further on this perspective, it is
useful to formalize the reflectivity of the BH potential barrier. Specifically, as one
links between Z9" and VI within the cavity, the relevant computations can be
simplified by absorbing the corresponding conversion factors into the reflectivity
function. For instance, as previously mentioned, the reflectivity of the BH poten-
tial barrier is given by DIt /D% = However, the outgoing radiation after reflec-
tion is typically expressed in terms of Z{" ' (further details are provided in the next
section). Thus, to obtain a “new” Vit ' after the first reflection off the light-ring

potential, one applies the identities above to find that

in,n+1 __ Dié%qw Dzout,n _ RBHzout,n 318
me - Dgut E m m 7 ( 18)
mw

where the index 7 indicates the cycle in the cavity as depicted in Fig. 3.2.

3.1.2 Black Hole Reflectivity

With the discussion above, the final piece required to complete the evaluation of the
GW echo lies in the contribution from the near-horizon structure of the BH. As high-
lighted in the introduction of this Section, there exists a wealth of phenomenology
that could, in principle, lead to echo production. However, the subsequent focus
will be on the aspects of quantumness and the membrane paradigm. Echo produc-
tion in this context has been examined in prior studies [261, 262, 263, 303, 304], with
additional insights provided in [273, 298, 305, 306, 307], and a more generalized
treatment of quantum modifications such as echoes can be found in [308]. In the
following Sections 3.2.1 and 3.2.3, a novel perspective on the subject is presented,
with a focus on the detectability prospects through the advanced space-based LISA

instrument.
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Quantum Black Holes

While a limited body of works has attempted to treat gravitational radiation from a
quantum mechanical perspective, such as [309, 310], quantum effects in GW physics
are predominantly explored in the context of the GW echo phenomenon. Notably,
the GW echo does not require a complete quantum gravity theory but can be de-
rived from first principles within the framework of a semi-classical BH treatment.
In classical GR, the BH horizon is typically viewed as an unremarkable region of
spacetime, with no extraordinary effects expected locally. However, in the quan-
tum regime, this picture can change dramatically, as demonstrated by Hawking’s
seminal discovery of thermal radiation [311]. According to this theory, BHs emit
thermal radiation at the Hawking temperature, Ty = x /27, where « is the surface
gravity, and this, combined with earlier work linking the BH entropy to its horizon
area, leads to the famous entropy-area relation Sy = A/4 [312, 313], where A rep-
resents the area of the event horizon. While this formula has been derived within
quantum gravity frameworks, it has only been achieved under specific assumptions
and idealizations. A significant challenge lies in understanding the nature of the
BH’s microstates, which are responsible for enumerating this entropy, but which re-
main unknown. In String Theory, these microstates are linked to higher-dimensional
fuzzball solutions [272], while Loop Quantum Gravity associates quantum geome-
tries of the horizon with the microstates [314]. Notably, it is possible to not only
derive an entropy formula for a BH but also a complete set of thermodynamic rela-
tions [315]. In a broader sense, they can be formulated as follows:

1. Zeroth law: A stationary BH has constant surface gravity, i.e., constant

Hawking temperature in thermal equilibrium;

2. First law: A chande of mass is related to changes in horizon area, angu-
lar momentum and electric charge via dM = g-dA + Qd] + ®dQ where () is the
angular velocity and & the electrostatic potential;

3. Second law: The entropy and thus the area of the BH never decreases;

4. Third law: A BH with zero surface gravity x cannot exist as no matter can

reach zero temperature.

When attempting to integrate the above reasoning with the principles of quan-
tum gravity, one is immediately confronted with the challenge of ensuring compat-
ibility with the quantization framework. While not all quantum gravity approaches
utilize area quantization, the majority of contemporary theories incorporate such
principles, albeit in various forms. The combination of quantization with the BH
area and entropy laws was first explored by Mukhanov and Bekenstein [316, 317]
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(see also [318, 319]), leading to the area quantization formula Ay = afp N, where
¢p is the Planck length and N is a positive integer. The constant « is a phenomeno-
logical parameter determined by the underlying quantum gravity theory (« € R)°.
This framework results in a discrete mass spectrum for a given BH, which in turn
quantizes its emission and absorption processes [304]. In the subsequent analysis,
this argument forms the cornerstone of the reflective properties associated with a

semi-classical BH. Concretely, only frequencies matching the mass gaps

|AM|  aAN
w = =

no 32aM’ (3.19)

can be absorbed or emitted. M thereby refers to the mass of the BH and AN to
the number of microstates. As these frequencies scale in 1/ M, Planck-scale effects
are magnified, pushing them into the realm of detectability for GW interferometers
(e.g., [7]). For spinning macroscopic BHs, i.e., N > 1, one can compute the charac-
teristic frequencies of the BH as a function of the phenomenological constant, «, and
dimensionless spin, 4, as [304]

wn(a,a) = % 420+ O(N Y, (3.20)
where x = v/1—a2/2M(1+ /1 —a2)] and Oy = a/[2M(1 + /1 — a?)]. Here, «
and Qg denote the surface gravity and the angular momentum, respectively. With
the frequency wy scaling as 1/ M, Planck-scale effects are magnified and elevated

into the frequency regime relevant for present-day GW interferometers.

In principle, the characteristic frequencies serve as the only narrow pathway
for GWs to enter a BH by crossing its horizon. However, if the BH is spinning
sufficiently fast, the width of the quantized energy levels, denoted as I', becomes
significant. Treating the QBH as an atom-like macroscopic object, this width is in-
versely proportional to the decay rate associated with the spontaneous emission of
Hawking radiation, which leads to the de-excitation of the BH [304]. If the energy
states were to overlap, BHs would behave as true absorbers, allowing any frequency
w to cross the horizon. However, this scenario does not hold, even for highly spin-
ning remnant BHs, as long as the phenomenological constant « exceeds a critical
value & > ait. Notably, this critical value a; is much smaller than the lowest phe-
nomenological constant typically considered in the literature [304], i.e., « = 4log 2.
Consequently, the overlap of energy levels is generally not anticipated, and even for
a = 4log 2, they remain quite narrow. This implies that a considerable portion of the

°In Bekenstein’s original works, the value « = 871 was chosen. Interestingly, this same value is
recovered in various unrelated derivations (see, for example, [320]).
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GW ringdown’s mode content cannot be absorbed by a QBH. As argued in [303], the
remaining modes could be reflected, leading to a late-time echo in the gravitational
waveform. Modeling the reflectivity of a QBH is highly non-trivial and requires
careful consideration of various (quantum) effects. In this chapter, the simplified,
phenomenologically motivated toy model described in [7] is employed. In outlin-
ing its construction, it is crucial to highlight the underlying assumptions: i) GR is the
effective theory describing the propagation of GWs throughout spacetime, ii) in the
transition from classical to QBH, the “quantumness” manifests by discretizing the
mass spectrum of BHs, iii) the radiation directed towards the BH is sourced during
the ringdown phase of a BBH merger, iv) of such radiation, the unabsorbed portion
is reflected off the BH.

A BH reflectivity function derived from area and, by extension, frequency
quantization (cf. Eq. (3.19)) can be constructed by adhering to guiding principles
i)-iv) [7]. The model assumes that the characteristic frequencies wy (&, 2) manifest
as sharp absorption lines in the QBH reflectivity spectrum, resembling an atom-like
structure—a direct consequence of the Bekenstein-Mukhanov proposal [321] (see
also [303, 322] for further motivation). In this framework, the BH is treated as an ex-
cited multilevel quantum system. However, spectral line broadening can arise from
various physical mechanisms. As demonstrated in [304], for instance, the linewidth
of these absorption features increases with the spin of the QBH. Additionally, quan-
tum fluctuations and uncertainty near the horizon may smear the otherwise sharp
roots of the reflectivity coefficient into broader cusps centered at the discrete fre-
quencies wy. Such quantum-induced modifications are also explored in the context
of altered QNM spectra [323, 324] and Hawking radiation corrections [325, 326, 327].
Based on these assumptions, a first ansatz for the reflectivity reads

1/ w S w1,
RPH~ &7 N,
‘sm (—wN(a)ﬂ , w>w,

(3.21)

where § parameterizes the “sharpness” of the spectral lines associated to wy. As-
suming an equal spacing between the characteristic frequencies allows for the use of
a periodic function. As the analysis below focuses primarily on the identification of
tirst characteristic frequency wj, the exact spacing does not affect the considerations
besides the concrete functional description of R2BH.

On a quantum level, the reflection of ingoing GWs at the horizon is not the only
emission channel available to a black hole. Even at the semi-classical level, Hawk-

ing radiation contributes an additional channel, which is similarly influenced by the
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arguments for frequency quantization [318, 328]. In this context, the characteris-
tic frequency associated with the Hawking temperature Ty often serves as a cutoff,
beyond which the reflectivity is exponentially suppressed [329, 330, 331, 332, 307].
This assumption is widely adopted in studies of ECOs and aligns with the concept
of BH microstates [333, 334]. Further support for a suppression mechanism arises
from astrophysical observations [335, 336] and theoretical investigations addressing
the black hole information paradox [337, 338]. Accordingly, a conservative exponen-
tial suppression factor exp [—|w|/(2Top)] is introduced into the reflectivity ansatz.
To remain agnostic regarding possible modifications to the cutoff temperature, the
Hawking temperature Ty is replaced by Toy = €Ty, where Ty = 1/(87). In the
limit Toy — 0, the reflectivity vanishes, and classical GR is recovered.

The phase information encoded in the reflectivity function Ropr(w) governs the
time separation between successive echoes. This relationship can be understood by
analyzing the echo production mechanism illustrated in Fig. 3.2: Consider gravita-
tional radiation emitted during the ringdown phase of a post-merger BH entering
a cavity formed between the black hole potential barrier and a reflective shell at
radius rgpey. This shell represents the near-horizon structure, assumed to be con-
fined to a narrow region near the would-be horizon. During each cycle of reflection
within this cavity, a fraction of the radiation escapes, producing a distinct echo de-
tectable at future null infinity, .# . While the precise physical nature of the shell
remains unspecified, it is modeled here as a fiducial surface (see also the discussion
in [327]). A simple time-delay argument implies rgpep > 7, with rg = 2M denoting
the Schwarzschild radius, to ensure that reflected radiation can reach an asymptotic
observer within finite time. Slightly generalizing the notion of the BH radius to ac-
count for spinning BHs, 1y := r1 = M(1+ M), where a is the dimensionless
spin parameter, the time a GW takes to complete a single cycle within the cavity is
given by [329, 339]

7"* 'Barrier , (322)

Shell

Atecho =2

where r* is the tortoise coordinate and 7parier marks the location of the BH potential
barrier. The latter implies [339]

r3 +a?M?

At ~ 2
echo ro—r_

M

In ( ) + Mf(a), (3.23)
TShell — 7'+

where repen — 14 =: dp V1 —a2/4M(1 + V1 —a?) and f(a) ~ 0.335/(a> — 1) +

4.77 +7.42(a* — 1) + 4.69(a> — 1)2. The free parameter in this context is denoted

by dspenn and represents the proper distance between the fiducial shell at rgpe; and
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the BH horizon at rg. In the limit dgpep — 0, the resulting time separation betw-
een successive echoes diverges. Importantly, the temporal offset between an echo
and the associated classical waveform is not subject to any fundamental physical
constraint. As a result, echoes may emerge in interferometer data without a clear
temporal correlation to a preceding classical merger signal [284].

Including exponential suppression and phase information, one obtains, using
the convention M = 1 and settinga = 0°,

RQBH — e—iWSIn [:3(”)]3_% L

sin (Gfre=oy)
where constant phase contributions have been absorbed by a new model parameter
B ~ dgpep- In the limit § — 0 and with a suitable choice for B, Eq. (3.24) recovers the
ECO reflectivity outlined in [296, 331] and subject of the next subsection. Through-

out Sections 3.2.1 and 3.2.3, the parameter space for the QBH reflectivity R@EH is
spanned by the reflectivity parameter «, 8, € and J.

IN

N|§ N|§

w
p (3.24)
, W >

7

The reflectivity function (3.24) encapsulates the quantum-induced semi-reflective
properties of a QBH. It can be applied in similar fashion as Eq. (3.18) when choos-
ing a suitable boundary condition. From a phenomenological standpoint, there is
no compelling reason to assume significant alterations to the ingoing wave beyond
the possibility of a phase shift. All other effects are encapsulated in the model-
dependent reflectivity coefficient RBH. Therefore, inspired by the arguments that
lead to Eq. (24) in [6], the boundary condition for the QBH is assumed to be 7

Zout QBH,1 _ (_1) RQBHyin QBH,1 (325)

Imw C Imw 4

where ( is an additional model parameter. In the latter equation, yinQBH1

in ONM Imw
in
yﬂmw

corre-
sponds to the relevant part GW (i.e., ) hitting the potential barrier during
the initial cavity cycle of the gravitational radiation originating from the merger.

While a part of the reflected information escapes to .#  establishing the first echo’s

®For simplicity, the subsequent analysis is restricted to non-rotating remnant objects. A comment
on the generalization is found below.

7Tt must be acknowledged that the boundary condition presented in (24) [6] is intrinsically linked
to the tidal deformability of ECOs. Since classical BHs do not possess tidal deformability, this analogy
does not strictly apply. As a result, it remains plausible that BHs could exhibit entirely different re-
sponse characteristics. Nevertheless, for the purposes of this Chapter, a mildly generalized ECO-like
boundary condition is employed, while the compelling question of the appropriate QBH boundary
condition is deferred to future studies.
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imprint in the detector data, i.e.,

1
ho,1 _ tQBH,1
ZZ%S - Dgut Z?}ia}Q ’ (3'26)
mw

the remaining radiation repeats the cycle within the cavity. Using Eq. (3.18), it
follows that

. -1 l+m+1 .
yzl;gBH,Z _ ( )g RQBHRBHyZLSBH,l ) (327)
Note at this point that in literature, the prefactor (_)[%H is commonly absorbed

into RPH. Here, for clarity, the notation is kept as in the above definition for RBH,
Eq. (3.18). To provide more compact equations below, it is, however, helpful to
rewrite RBH = MRBH. Combining Eq. (3.25)-(3.27) the total echo can be
described as a series of the form

C —1)tHm+l ! in QBH
Z%ihcg _ DDéu;nw ngl (( )g RECORBH> émg
(_1)€+m+1RECO 1 ylﬂ OBH
1 — RECORBH gDout = fmw
=Yz (3.28)
n

In the latter equation, the total echo is expressed as a sum of individual contribu-
tions, each corresponding to n cycles within the cavity bounded by the potential
barrier and the reflective surface. In a final step, the amplitude of the outgoing
echo can be translated into the gravitational strain via Eq. (3.8). To prevent in-
stabilities in the model, it is essential to ensure that |[RPHRBH| < 1 holds at all
times. An exception to this condition arises at the QNMs, w;, of the QBH, where
RBH(w, )RBH(w,,) = 1. The QNMs therefore appear as poles of the corresponding

transfer function

_1\{+m n
K(w) = DDC 21<( 1); HRQBHRBH> : (3.29)
Imw n=

Note at this point that |R2BH|? represents the corresponding energy reflectivity of
the ECO and QBH, respectively. Similarly, | R®H|? represents the energy reflectivity
of the potential barrier [340]. Based on this interpretation, one can equally define a

coefficient of transmission for the GW amplitude of ingoing radiation at .#’*. One
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writes
[ TPH2 =1 — |[RPHP2, (3.30)

such that, for the initial amplitude penetrating the QBH’s reflective shell and prop-
agating towards the horizon 7 T it holds
horizon,1 _ ~-QBH~,in QBH
Yporizon 1 — T QBH I QBH (3.31)
As for the reflected radiation sourcing the echo in Eq. (3.28), the transmitted por-

tion receives a contribution for every cycle. Adding all subsequently transmitted

radiation, one finds obtain

yhorizon — 7~QBH + TQBHRQBHﬁBH yin QBH
Imw 1— RQBH@BH Imw

] g {mw
n=

=Y yhorizonn (3.32)
n

n—1
— TQBH Y ((_1)£+m+1RQBHRBH) yin QBH

Egs. (3.28) and (3.32) are employed in the following sections to evaluate the energy
and angular momentum fluxes across both .#* and " [7]. It should be empha-
sized that Eq. (3.30) does not completely specify 75“© due to an undetermined
complex phase. Resolving this ambiguity requires the introduction of additional
model-specific assumptions. Nonetheless, the current section focuses solely on the
energy and angular momentum fluxes. Since Eq. (3.30) accurately characterizes the

energy transmittivity, its definition suffices for the forthcoming analysis.

Membrane Paradigm and Exotic Compact Objects

In classical GR, freely falling observers encounter no extraordinary phenomena upon
crossing the BH event horizon. However, from the perspective of a distant, static
observer, any infalling object appears to asymptotically freeze at the horizon due to
the extreme gravitational blue-shift. Consequently, the BH interior becomes physi-
cally irrelevant to such outside observers. This complementary viewpoint near the
horizon forms the foundation of the Membrane Paradigm [341], in which the BH
horizon is effectively modeled as a classically radiating membrane. The paradigm
has proven to be a powerful tool for analyzing exterior physics while sidestepping
the ambiguities associated with the BH interior. For a concise overview of mem-
brane modeling in GR, the reader is referred to [272]. Replacing the classical BH



3.1. Echo Effect, Quantumness and Gravitational Radiation 165

horizon with a (quantum) membrane fundamentally modifies the behavior of lin-
ear perturbations in the BH spacetime. It was proposed in [331] that quantum ef-
fects near the horizon—responsible for thermal emission at the Hawking temper-
ature Tiy—Ilead to corrections in the governing equations of these linear perturba-
tions. Concretely, the Membrane Paradigm and other effects in convolution with

the fluctuation-dissipation theorem lead to

, d? d?

as the evolution equation for QNM functions, ¢, of GWs under a stochastic fluc-
tuation field {.. In the above expression, Q(x) := w/,/goo denotes the blueshifted
frequency, Ep is the Planck energy, y represents a dimensionless dissipation param-
eter, and V(x) is the BH potential. The dissipation term mimics the viscous dissi-
pation observed in sound wave propagation but is suppressed by the gravitational
coupling factor (/ Ep;. This suppression aligns well with phenomenological expec-
tations from quantum gravity theories, where constraints on spacetime viscosity can

be incorporated through effective viscous terms [342].

According to Eq. (3.33), the fluctuation-dissipation theorem implies a thermal
spectrum for the mode functions . In the near-horizon region, the analytical so-
lution for the QNM functions can thus be obtained by assuming a constant surface
gravity k = 271Ty. From a physical perspective, this corresponds to the scenario in
which the energy flux of ingoing GWs is unable to penetrate the BH horizon and is
either absorbed or reflected. This interpretation aligns with models in which the BH
interior is effectively inaccessible, such as the Membrane Paradigm and the String
Theory—-motivated fuzzball complementarity conjecture [333, 334].

In the near horizon limit, log(Ep;/y|w|) < xx < —1, one thus finds the Boltzmann
(flux) reflectivity [331]

e Tlwl/ (2x)y 2

S T = e lwl/(2Th)
e RICTIEY e , (3.34)

RI =

It is important to note that this equation is independent of the dissipation parameter
7 that appears in the dissipation term of Eq. (3.33). This independence arises from
taking the absolute value. The parameter 7y determines the time separation between
the reflected echoes [331], entering as a complex phase. Specifically, when dissipa-

tion effects are included, the reflection point is defined by the distance xy, where
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¥ (x) ~ Ep. Thus, in this model,

o (rlw]). 3.35)

Atecho = 2’x0| = - T

For a more exhaustive derivation of the latter, the reader is refer to [296]. The time
delay can be rewritten as a complex phase and incorporated into the reflectivity
function R such that

R =exp <—in) exp (—%) . (3.36)
H

s TH

It should be noted that, while the derivation of the Boltzmann reflectivity is rela-
tively model-independent, the phase of the reflectivity arises solely from Eq. (3.33),
particularly from the structure of the dissipation term. As a result, the time delay
between echoes exhibits a strong sensitivity to the specifics of the underlying (quan-
tum) theorys. Comparable results to those in [331, 296, 307] have also emerged from
frameworks with distinct physical motivations, such as [343].

In this work, the reflectivity defined in Eq. (3.36) is adopted as a toy model to
describe the reflective characteristics of ECOs. For clarity, Eq. (3.36) is henceforth
denoted as REO. A slight generalization is introduced by replacing the standard
Hawking temperature Ty = 1/87 with an effective horizon temperature Tgp, en-
abling an investigation into how variations in horizon temperature affect the fea-
tures of GW echoes. This provides a means to probe the influence of quantum hori-
zon effects on the observable signals.

Physically, the first exponential factor in Eq. (3.36) corresponds to the location of the

membrane near the horizon from which the GW is reflected. In radial coordinates,

Iny
27‘[TQH

nential factor in Eq. (3.36) dictates the frequency range over which the reflectivity

this reflective surface is approximately situated at recpo ~ . The second expo-
remains appreciable. Accordingly, while the dissipation parameter -y determines the
temporal separation between successive echoes, the effective horizon temperature
Ton predominantly controls the bandwidth of the reflected signal.

From a quantum mechanical standpoint, the exponential suppression at high fre-
quencies is supported by modeling an isolated BH as a multilevel quantum system

[331]. In this so-called “giant atom” framework, Hawking radiation facilitates the

8For example, [307] presents a more rigorous treatment within the Membrane Paradigm, replac-
ing the BH horizon with a hypothetical quantum membrane. This membrane represents an ensemble
of microscopic degrees of freedom in the ground state, governed by a Gaussian wave function. Con-
sequently, a frequency-dependent reflectivity can be defined (see Fig. 1 in [307]), along with a corre-
sponding echo time separation given by At = 2M([(1 — o /+/t — 2log (¢/+/7)]. Both the reflectivity
and At depend significantly on the variance o of the quantum state describing these microscopic
degrees of freedom.
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spontaneous de-excitation of the BH, whereas reflectivity can be interpreted as a
form of stimulated emission. As a result, the frequency range w < Ty naturally
emerges as the domain in which stimulated emission occurs, while for w > Ty, the

BH effectively behaves as a fully absorbing object.

The considerations following Eq. (3.24) apply analogously to the reflectivity of
ECOs. An important exception lies in the boundary condition, which can be rigor-
ously derived within the framework of the Membrane Paradigm [344]. Specifically,
by analyzing the tidal tensor field &;; as experienced by fiducial observers with zero
angular momentum in their own rest frame, one can compute the transverse com-
ponents that characterize the tidal deformation induced by GWs. Following the
tidal response of a neutron star, the ECO is proposed to react linearly to tidal stress

resulting in

1,2 _ RECO

9,

X gtrans , (337)

= RECO -1

at the surface of the ECO, i.e., at the location of the membrane. Given for the trans-
verse part of the tidal tensor it holds that £ ~ — Ay, — %‘H, for an ECO, one

1442
obtains
Zout ECO,1 _ (‘U”mﬂREco in ECO,1 338
Imw — 4 yﬁmw : (3.38)

As previously noted, the boundary condition is recovered from Eq. (3.25) by setting
{ = 4. The subsequent discussion following the definition of RPH applies in a
similar manner. This includes, in particular, the aspects concerning the stability and
the QNMs of the transfer function.

The transfer functions corresponding to REC© and R9PH are illustrated in Fig. 3.3.
A distinct difference in the QNMs of ECOs and QBHs is clearly visible. It is impor-
tant to highlight that the poles shown do not precisely correspond to the QNMs,
but are located very close to them. Instead, these poles indicate the positions of the
resonances in frequency space associated with the cavity depicted in Fig. 3.2.

The global maxima of both transfer functions coincide, as they correspond to the
fundamental QNM frequency of a Schwarzschild BH. The roots of the QBH reflec-
tivity are marked by dashed green lines. At high frequencies, both transfer functions
are exponentially suppressed. At low frequencies, the 1/D9" factor in Eq. (3.28)
dominates the behavior of the transfer function. For ECOs, both Toy and «y influ-
ence the location of the QNMs, while Top additionally sets the exponential suppres-
sion scale. For QBHs, the parameters f and J determine the position of the QNMs,

chgIEIE\I/I' whereas a controls the root structure and € regulates the exponential decay.
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FIGURE 3.3: Transfer functions for RECC and RQBH [5]. The pa-
rameters (see Table 3.1) are chosen as Toy = 1/87,7 = 10~1% and
x = 8m,0 =05¢€e =18 = 1071, 7 = 4. The green dashed lines
mark the characteristic absorption frequencies for the QBH. The dotted
orange lines mark the QNM of the ECO. Similarly, the peaks of Kqpx
mark the QNMs of the QBH. For better readability, the transfer func-
tion of the QBH, Kqgpn, is multiplied with an overall factor of 5.

The overall amplitude is modulated by (.

With the reflectivity function and boundary conditions established, the GW
echo can be directly computed for an arbitrary NR strain time series. For both mod-
els examined in this chapter, the primary GW signal can be modified by superim-
posing additional 7 echoes onto the time series, where n is an arbitrary integer. It is
important to note, however, that by construction |RPH| < 1 (|RFC| < 1), leading
to a progressive attenuation of the echo amplitudes. Consequently, only the first few
echoes are expected to be significant in realistic detection scenarios.

An illustrative example of a computed echo is shown in Fig. 3.4, based on the NR
event SXS:BBH:1936 [210] and a randomly selected set of reflectivity parameters.
Additional visualizations are provided in Fig. C.2 of Appendix 3.1. The dependence
of QBH echoes on model parameters is presented in Fig. C.3 of Appendix 3.1 (see
also Table 2.1). A comparable plot for ECOs can be found in [6]. As anticipated, the
morphological differences between the two types of echoes are minor.

To offer a comprehensive overview of the relevant model parameters—especially
w.r.t. Sections 3.2.1 and 3.2.3—they are summarized in Table 3.1. To reconstruct
the complete strain shown in Fig. 3.4, one can leverage the separability between the
main GW signal and the subsequent echoes. Thus, one can simply compute the
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complete waveform as
heff heCho + >, (3.39)

where h® results from Z° , the raw asymptotic waveform at .# *. A depiction of h°ff
is provided in Fig. 3.4. Thereby, h*®"® can be explicitly computed as a convolution
of all aforementioned sub-steps, using equations (3.10), (3.8), (3.28), (3.17), and (3.7)
as

He(w) = Y3 oY (6, 9)Hae (w), (3.40)

n ¢m

where (for the QBH)

echo 1 C —1 e ’ in
hﬂn?n( ) wz DDm <( )C RQBHRBH> : S {CZmIFO,ﬂm (U)f(v)} ’

Imw

and ¥ s, is defined as in Eq. (3.7), i.e.,
PPMPYG =) 2 Yim(8,9) Yo, - (3.41)
{m

In the latter equation, one uses (Yo /) =: V5, and §(-) denotes the Fourier trans-

form. Note also that CI' represents the Fourier transform of CI' . The statement

tmw*
in Eq. (3.39) is independent of the time separation that is determined by the cor-
responding parameters of a given reflectivity model, i.e., independent of the com-
plex phase factors in (3.36) and (3.24). Therefore, the echo can easily be added to
(numerical) waveforms by adding it on top of the main GW strain time series in a
post-processing step similar to [161]. Crucially, the echo, as well as its memory, can

be treated as individual “events”?.

Before proceeding with explicit computations involving the GW echo, it is im-
portant to recognize that the phenomenological models of both QBHs and ECOs
give rise to more than just echo signals. In particular, semi-reflective properties of
BHs or other coalescing compact objects also induce a secondary effect on the GW
strain. For completeness, this additional contribution is briefly discussed in the fol-

lowing paragraph.

9This approach aligns with recent proposals suggesting that echoes should be treated as indepen-
dent signals rather than as extensions of the BBH merger waveform due to the potentially substantial
time delays involved [284].
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| K(w) attribute | Parameter ECO | Parameter QBH |
Time separation echo v, Tou B
Exponential supp. for large w Ton €
Location QNMs v, Ton B, e
Separation of roots - o
“Sharpness” of roots - 0
Boundary suppression 1/4 1/C

TABLE 3.1: Model parameters for the reflectivity functions of ECOs
and QBHs, i.e.,, RFC© and RBH respectively [5]. The corresponding
transfer functions /C(w) are displayed in Fig 3.3. As the ECO’s transfer
function does not obtain roots, a correspondence of &, for ECOs is
absent.

Tidal Heating

During the ringdown phase, echoes are generated by gravitational radiation that
propagates toward the BH horizon and is subsequently reflected by a near-horizon
structure. However, a similar mechanism can be identified during the earlier inspi-
ral phase of a BBH merger. In the classical framework, each BH absorbs a portion
of the incoming GWs during the inspiral, although this absorbed fraction is small
relative to the radiation escaping to .#* [345]. Nonetheless, the incident waves in-
duce deformations in the (event) horizons of the BHs [346]. As the BHs emit GWs
and lose rotational energy, these horizon distortions in turn influence the orbital dy-
namics of the binary [347]. For NSs [348, 349], or BHs modeled via the Membrane
Paradigm [350, 351], such tidal deformations provide an additional channel for dis-
sipating orbital energy, which ultimately results in a characteristic phase evolution
in the GW signal.

Introducing an absorption energy gap, as predicted by the Bekenstein-Mukhanov
spectrum in Eq. (3.19), significantly suppresses the absorption of GWs by the com-
pact objects. This leads to a distinct inspiral evolution compared to the fully classical
GR predictions [352, 353]. Specifically, the GW phase deviates from the classical ex-
pectation, where tidal heating introduces a correction at 2.5 PN order, scaling with
the logarithm of the orbital velocity. A detailed parametrization of the impact of a
discretized energy spectrum on tidal heating can be found in [353].

In the context of BH area quantization, the influence of tidal heating has been ana-
lyzed in [354]. Additional studies focusing on the associated phase shifts for ECOs
[353, 355, 356, 357] highlight the strong potential of advanced interferometers such
as LISA and ET in probing these effects. Despite the promising outlook regarding
detectable imprints of modified tidal heating in future GW observations (see also
[353]), this topic is not pursued further in the current Chapter. Nevertheless, it is
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FIGURE 3.4: Exemplary waveform with echo computed for
SXS:BBH:1936 with the baseline reflectivity parameter « = 87, =
10715, 4 = 4,6 = 0.2 (see Table 3.1) [5]. The exponential suppression
parameter € indicated in the plot.

noted that the sensitivity of LISA to potential tidal heating signatures—using a fully
operational and state-of-the-art analysis pipeline—is currently under active investi-

gation.

3.2 Detectability and Waveform Corrections

With the preceding section having established the fundamental characteristics of the
GW echo, introduced two representative phenomenological origins, and demon-
strated the inclusion of echoes in NR waveforms, the subsequent analysis—based
on [7] and [5]—makes use of these tools to achieve two main objectives: First, it is
shown that LISA possesses the sensitivity required to detect GW echoes and to dis-
tinguish between the different phenomenological models discussed above by identi-
tying the characteristic frequency predicted by the Bekenstein-Mukhanov spectrum
(3.19), as detailed in Section 3.2.1; Second, it is demonstrated that the quantum ef-
fects responsible for generating the GW echo also induce memory corrections in the
waveform, which can become significant within certain regions of the reflectivity
models’ parameter space, as discussed in Section 3.2.3.
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3.2.1 Gravitational Wave Echoes in LISA Data

The detectability of GW echoes in data from the future space-based LISA obser-
vatory is evaluated using the simulation and data analysis pipeline developed in
[8]. The analysis is conducted on signals recorded in the Time Delay Interferome-
try (TDI) X channel of the LISA instrument!’. It should be emphasized that the X
channel is not inherently preferred; other TDI channels with adequate signal Signal-
to-Noise Ratio (SNR), as well as the full strain data, may equally be used depending
on the orientation of the GW source relative to the detector. Concerning sky location
and other orientation-sensitive parameters affecting the SNR, the conservative base-
line listed in Table I of [8] is adopted. For reference, Fig. 3.5 presents the SNR of the
full waveform corresponding to event SXS:BBH:1936, as measured by LISA, plotted
against redshift and redshifted mass. These results may be qualitatively compared
with Fig. 6 of [8], noting that slight discrepancies arise due to differing simulation
parameters such as binary spins and mass ratio in the merger events under consid-
eration. In Sections 3.2.1 and 3.2.2, the echo analysis is confined to the QBH scenario,
since its reflectivity model encompasses that of the ECO and can be interpreted as
a generalization thereof. As such, ECO-based estimates may be straightforwardly
derived by restricting to parameter values { = 4 and 6 = 0 in the QBH framework.

The SNR of the echo is numerically determined for a set of 11 NR simulations
of massive binary BH mergers (with total mass Mot > 10° M) extracted from [210].
These include SXS:BBH:1936, 0207, 0334, 1155, 1424, 1448, 1449, 1455, 1936, and
2108. The events are selected primarily based on their vanishing remnant spin. Ex-
ceptions are SXS:BBH:0334, 1155, and 2108, which exhibit remnant spin amplitudes
|X| between 0.28 and 0.68. These simulations are included to investigate potential
systematic differences in echo-related features when a # 0. While the reflectivity
function holds in general, the echo reconstruction method used in [6], and applied
in [5, 7], is specifically adapted for non-spinning remnants due to computational
challenges in the presence of spin. Thus, extending the analysis to Kerr remnants
introduces a small systematic error. However, with the acceptance of these minor
corrections, the analysis is not restricted to a specific region of parameter space and
can be applied to any arbitrary waveform, provided the knowledge of ¥ and ¥;.
Extracting the Newmann-Penrose scalars beyond ¥} typically requires additional

simulation efforts. For SXS events, the CCE scheme offers the necessary tools.

Computing the SNR of the waveform echo requires fixing the reflectivity func-
tion RBH. The choice of the parameters involved can significantly alter the shape

10Readers unfamiliar with the LISA instrument and the concept of TDI channels may consult
Section 4.4.2 and references therein for a brief overview.
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FIGURE 3.5: LISA-SNR of the SXS:BBH:1936 waveform for different
redshifts and total (redshifted) masses [7]. The SNR is computed fol-
lowing [8].

of the echo in interferometer data. The phenomenological constant « and the cusp-
parameter J influence the location and depth of the features corresponding to the
characteristic frequencies (see Fig. 3.8). The temperature coefficient Ty (or rather
€) and boundary suppressor -y directly impact the amplitude of the echo. The time
dilation parameter f is irrelevant for the SNR as it only shifts the echo along the
time axis, i.e., it regulates the time separation between the echo and waveform time
series as well as among echoes. Generally, one assumes that the time separation is
large enough (B is small enough) such that the echo does not interfere with the ring-
down.

The first estimate of echo SNR applies the baseline parameter set &« = 871, = 1071,
v =4,0 =02, and € = 1. The echo SNR is computed as a function of mass and
redshift. The result for SXS:BBH:1936 is displayed in Fig. 3.6. If the mass and red-
shift (Mt = 10°M and z = 1) are fixed, but v and € are varied, the echo SNR
can deviate significantly from its baseline profile. It can be observed that lower 7y
and larger € yield a larger SNR. This is to be expected as these parameters drive the
overall amplitude of the echo. A visualization of the functional dependence of the
SNR on 7, € is given by Fig. 3.7. The latter exemplarily displays the echo SNR for the
NR simulation SXS:BBH:1936 for fixed mass and redshift. Thereby, the SNR is nor-
malized w.r.t. the baseline reflectivity parameters (y = 4,€ = 1). For a given merger
determined by redshift and mass, the parameter-dependent echo SNR is given by
the product of the SNR value in Fig. 3.6 and the corresponding factor in Fig. 3.7,
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FIGURE 3.6: LISA-SNR of the echo produced by the SXS:BBH:1936
waveform over redshift and total (red-shifted) mass [7]. One fixes
log Mot/ Mo =6,z=1,0 =8m,0 =02,e =1, =4.

depending on the choice of reflectivity. For instance, for a merger at redshifted mass
log M/Ms = 6 and redshift z = 1, the SNR for ¢ = 1 and v = 6 is given by
SNR ~ 86 - 0.6 ~ 52.

The results indicate that, generally, there is a vast regime in the reflectivity
parameter space that suggests a potential echo detection with LISA. Given the ex-
pected extremely “loud” signals from very massive events, even very weak echoes
that are strongly damped either by the boundary condition or the exponential de-
cay of the reflectivity exhibit high SNR 2 10 in the conservative baseline of [8] for
LISA. As demonstrated in [8], depending on the population, the number of such
ultra-loud events in the regime Mt = 10°M and z = 1 can reach up to O(100)
over an observation period of 4 years with LISA.

For favorable reflectivity parameters, the echo SNR can be boosted considerably.
Note, however, that the absence of any echo detection by the LIGO collaboration so
far (e.g., [277, 160]) imposes constraints on the choice of the reflectivity parameters
7,€. Due to data analysis-related challenges, however, such constraints are rather
vague, such that for the simulated regime v € [1,14] and € € [0.2,2.7], the echo am-
plitude remains within an unconstrained regime (¢ = 2,y = 4 roughly corresponds
to a damping factor y = 0.4 in [277]).

Finally, note that the above results are obtained independently of the time separation
between the initial waveform and gravitational echo. Moreover, the cusp parameter
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FIGURE 3.7: Normalized SNR for the echo of SXS:BBH:1936 [7]. Rele-
vant parameters are fixed as logM/Mq = 6,z = 1,a = 8m,6 = 0.2.
Further, €,y are varied. The resulting SNR is normalized to the SNR
resulting from the choice € = 1,y = 4, which is ~ 86.

0 and the location of the characteristic frequencies a play only marginal roles in the

SNR computation.

3.2.2 Measuring Characteristic Frequencies - a Smoking Gun for
Black Hole Physics.

Assuming the detection of an echo with LISA, valuable information can be extracted
from its distinct features in the interferometer data. For example, by searching for
the characteristic frequencies of the Bekenstein-Mukhanov spectrum, Eq. (3.19), the
origin of echo production can be narrowed down among the various potential phe-
nomenologies. Consequently, this analysis focuses on features within the data col-
lected in the TDI channels associated with the characteristic frequency wy. Detect-
ing these characteristic frequencies serves as a definitive signature for BH physics,
as their measurement would directly probe the area quantization of the BH event
horizon. These frequencies correspond to the roots of the echo’s strain in frequency
space, which manifest as cusps (due to 6 > 0) in the TDI data, as shown in Fig. 3.8.

To obtain a preliminary estimate for the detectability of the characteristic frequency,
determined by the fundamental constant a (and spin a), with LISA, the uncertainty
of the corresponding feature within the TDI X signal is computed. Specifically, the
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echo’s transfer function, Eq. (3.29), is fitted to the simulated TDI X data in fre-
quency space using a non-linear weighted least-squares method and a Markov-
Chain-Monte-Carlo (MCMC) scheme. The MCMC fitting approach matches the
Fourier transform of the echo strain time series with the noise-contaminated data
simulated for a realistic LISA measurement. The shape of the echo strain in fre-
quency space is accurately captured through the transfer function (??). Due to the
numerical simplicity of calculating the transfer function, a rescaled version is se-
lected as the fitting function in this procedure, with the rescaling parameter serving
as an additional fit parameter.

The TDI data used for fitting includes simulated LISA noise based on a conservative
noise model, the same model employed in [8]. The fit function is informed by the
noise’s statistics via its Power Spectral Density (PSD). Fig. 3.8 displays an instance
of noisy data (including the TDI X features of an echo) alongside the pure echo sig-
nal, absent of the corresponding merger waveform. The uncertainty associated with
the fitting scheme is denoted by oy, representing the standard deviation error of the

fit parameter ws.

To emphasize the robustness of the analysis, it is performed over 20 distinct
noise realizations. Empirically, it is found that the scatter of the 20 recovered fre-
quencies wj is statistically consistent with the theoretical errors ;. Furthermore,
to obtain reliable estimates for detectability, the uncertainty oy; is calculated using a
weighted least squares method, complemented by a more comprehensive Bayesian
MCMC analysis. Both the MCMC and fitting procedures are carried out without
prior knowledge of the location of the characteristic frequencies. The MCMC anal-
ysis is initiated based on a no-cusp scenario, i.e., x = 0 = . The parameter ranges
for « and ¢ in both methods are set to span « € [4log?2,87| and 6 € (0.05,0.6]. The
chosen range for a includes all phenomenological constants found in the literature,
while the range for J is sufficiently large to cover a wide variety of phenomenologies.
The uncertainties derived from the MCMC analysis are consistent with an expected
likelihood approach, where the likelihood function is weighted by the noise PSD,
and the noise realization in the data converges to zero.

Additionally, the analysis considers an event with log M/ M = 6 and z = 1 to en-
sure a sufficient echo SNR. This selection sets the peak of the echo’s frequency signal
within the frequency domain (as shown in Fig. 3.8). In general, the remnant mass
can significantly impact the uncertainty. Increasing (or decreasing) the mass shifts
the characteristic frequency to lower (or higher) values, as wy ~ 1/M. For approx-
imately log M/ Mg, 2 7.5 (log M/ Mg < 5.5), the frequency moves outside the LISA

sensitivity band. Therefore, the mass range where echoes are strong and where the
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FIGURE 3.8: LISA TDI X channel data for the echo of SXS:BBH:1936
(including noise) with the baseline parameters for the reflectivity and
0 = 0.5 at redshift z = 1 and log Mot/ M = 6, including noise. The
orange graph represents the signal without noise. The dashed line indi-
cates the location of the first characteristic frequency of the QBH for the
given mass and a. The gray-shaded frequency domains are excluded
from the fitting procedure.

characteristic frequency can potentially be identified aligns well with LISA’s sensi-
tivity.

The characteristic frequency fit is performed w.r.t. w; and §, where the former
can be converted to « using Eq. (3.20). Apart from € and 7, the other reflectiv-
ity parameters do not affect the amplitude of the signal and are thus irrelevant to
the fitting procedure. For the analysis, € = 1 is selected as it corresponds to the
phenomenologically preferred value (wWhere Top = T), as explained earlier. To re-
cover a boundary condition similar to those of ECOs, v = 4 is chosen. Since € and
7 directly influence the echo’s amplitude, larger values of € and smaller values of
v generally result in smaller uncertainties for the identification of w;, as long as the
fitting precision is limited by noise, i.e., for e < 1.5and v 2 5. For e > 1.5 and
v < 5, the echo’s signal dominates the conservative noise model, and the estimate
of wy is constrained only by the frequency resolution of the TDI channel.

The uncertainties are computed for « € [4log2,87] and 6 € [0.05,0.6]. The re-
sults show that, for most of the parameter space considered, the amplitude of the
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echo’s signal in the TDI X channel is sufficiently large to resolve the characteristic
frequency within 50 of the true value. In the tested regime, where M/ Mg, = 10°
and z = 1, the characteristic frequencies lie between 1 and 4 mHz. Given a fre-
quency resolution Awrpy of approximately 2.5 yHz, the uncertainties range from 5
to 100 Awrpy. It is specifically found that for large values of « (around 87), or equiv-
alently w; ~ 4 mHz, the uncertainties remain small across the tested values of J.
In the parameter regime where the frequency resolution becomes the limiting fac-
tor, uncertainties (i.e., 0g) could theoretically be reduced by further improving the
frequency resolution of the corresponding TDI channel, Awrp;. However, the TDI
frequency resolution is limited by the duration of the signal, i.e., the duration of the
echo.

Additionally, a trade-off w.r.t. the reflectivity parameters is observed when com-
puting the uncertainty: smaller values of « shift the characteristic frequencies in the
TDI data toward the low-frequency noise-dominated regime, resulting in larger un-
certainties unless the features are more pronounced (i.e., ¢ is larger). The presence
of higher-order wy can only marginally offset the noise domination of the feature
associated with wq, as it becomes impossible to distinguish w, from w; when the
latter is hidden behind the noise. Therefore, it is expected that the small-a sector
of the quantum gravity theory space will generally be less tightly constrained by
echo searches. Finally, it is worth noting that these results hold for all the tested
waveforms listed above. For SXS:BBH:1936, they are shown in Fig. 3.9.

Summarizing the results from the preceding two Subsections 3.2.1 and 3.2.2,
it is shown that, even with a conservative baseline and moderate echo amplitude,
LISA will be capable of detecting GW echoes originating from non-trivial QBH re-
flectivity. Importantly, the chosen range of reflectivity parameters also includes val-
ues typically used to describe ECOs, thereby extending the results to both scenarios.
Consequently, the absence of echo detection would impose significant constraints
on both BH and ECO phenomenology. The forecast for echo detectability is inde-
pendent of the specific QNM content and has been evaluated across 11 NR sim-
ulations. For the mergers tested, which involve non-negligible remnant spin, no
significant modifications to the echo are observed when compared to spin-less rem-
nants. Based on this detection potential, it is demonstrated that, across a broad
spectrum of masses, redshifts, and binary BH mergers, the features in the LISA TDI
data corresponding to characteristic frequencies are likely to be detectable with high
precision. This outcome suggests that future GW instruments such as LISA will pro-
vide unprecedented probes of spacetime’s quantum structure, magnified by BHs.
A direct measurement of the characteristic absorption frequency of BHs would of-

fer a unique test of the BH mass-area relation and provide stringent constraints on
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FIGURE 3.9: Uncertainty of the characteristic frequency normalized by
the TDI frequency resolution (=~ 2.5 yHz) and extracted from a fit to the
TDI data of echo of the simulated waveform SXS:BBH:1936 [7]. One
fixes M/ M = 10%,z = 1,€ = 1, = 4 and varies &, .

QG theories. The non-detection of absorption frequencies in echo data would im-
ply a more membrane-dominant QBH phenomenology. In general, the detection of
echo signals is essential for gaining crucial insights into BH physics and may pro-
vide direct evidence for QG effects, highlighting the necessity of including GW echo
searches in the scientific agenda of future GW experiments.

At this stage, it is essential to recognize that several critical assumptions in this
work (specifically, the validity of the chosen boundary condition and the reflectiv-
ity function RBH) necessitate further refinement, supported by both experimen-
tal and theoretical considerations. Nevertheless, for the purposes of this investiga-
tion, these assumptions are deemed adequate, and a more rigorous derivation of the
mechanisms underlying RPH, which may include quantum information theoreti-
cal aspects, is deferred to future studies. Finally, although the analysis presented
has demonstrated robustness against significant variations in certain model param-
eters, the issue of model dependence in echo searches is discussed in the following

section.

3.2.3 Quantum Corrections to the Gravitational Wave Memory

Following the introduction to this Chapter, this section aims to demonstrate how the

balance flux laws can be utilized to correct the gravitational waveform derived from
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NR simulations by incorporating quantum features. Specifically, the feature of inter-
est in this section is the GW echo. In Section 3.1, a procedure for adding the echo to
the GR waveform is outlined. This procedure addresses the linear order of the grav-
itational strain, while neglecting corrections arising in the non-linear regime. The
latter is further complicated by the fact that most numerical waveforms do not fully
include non-linear information, even in the classical regime; for instance, the dis-
placement memory is typically added post-waveform generation [161]. The goal of
the ensuing discussion is to incorporate echo corrections into the non-linear regime
of the numerical waveform, or, more precisely, to add quantum corrections to the

GW memory.

To this end, it is instructive to present a new perspective on the memory.
A variety of approaches to the GW memory have been explored in the literature
[77,78,79, 88, 87, 84], with the equivalence of the resulting expressions for mem-
ory being well established. In the context of numerical waveforms, a particular
formulation of the gravitational memory based on energy-momentum or balance
laws [162] (see also [163, 2] for further technical details) has become widely adopted
[208,239,161]. A thorough derivation of this formulation can be found in Chapter II.
Notably, these formulations include expressions for both the linear and non-linear
GW memory, as shown in Eq. (2.289) and below. The flux balance laws have been
applied in previous studies for waveform analysis and NR applications, among oth-
ers [4, 164, 240].
For the numerical analysis in this section, the memory components are derived from
the BMS balance laws, as implemented in Eq. (2.266). This choice is motivated by the
applicability of these equations to NR waveforms and the convenient presentation
format, namely in terms of the strain time series. Specifically, the memory compo-
nents, first outlined in [161], allow for the direct computation of time-dependent
memory corrections for each individual harmonic strain mode. Given that the BMS
laws are derived from full, non-linear GR, it is expected that these equations will
be equally applicable to any strain (quantum) corrections that emerge within the
regime where GR serves as an effective theory.

The desired memory equation, given by (9) in [161], is directly derived from
the balance flux laws Eq. (2.266) by using

Im [82;10} = 4Tm {‘Yﬁ + %h"fzﬂ , (3.42)

which can be directly obtained from Eq. (2.260). The time series containing only

the memory-induced contributions to the strain, after a few simplifications, can be
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written as
mem — 23201 |1 udu|h°|2 — (% + Liewe (3.43)
mem — 2 4 u 2 4 ’ .
where D1 is defined via
D= %DZ(DZ +2), (3.44)

D? = 89, (3.45)

and 0 defines the spin-weighted derivative operator whose precise definition can be
found in [162, 161, 2]. The quantity h° appearing in Eq. (3.43) represents the full GW
strain. It is fundamentally dependent on the line-of-sight, which spans from the de-
tector to the binary frame. This frame can be described by two angles, 8 and ¢, that
specify a point on the celestial sphere. The initial time u; in Eq. (3.43) corresponds to
the beginning of the gravitational waveform. In this section, numerical waveforms
are considered; by construction, the precise definition of Eq. (3.43), which would
require taking the limit u; — —oo, is not used. Instead, u; is identified with the
starting time of the provided NR waveforms. This truncation is compensated by an
angular-dependent constant a [161]!1,

The full memory given by Eq. (3.43) can be separated into a dominating term asso-

ciated with the energy flux and an oscillatory term,

u .
he = Loep—1 F / du\hoyz] +a, (3.46a)
2 1/,
1 =2~—1 o 1, ofo

respectively. While the latter equations describe the displacement memory (e.g.,
[198]) one may also consider spin memory contributions [209] for completeness.
Rewriting both types of memories in similar form to Eq. (3.43) and rearranging

11 Additionally, frame-related issues might contribute to constant angular-dependent terms [161].
Here, both contributions are summarized into a single term.
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individual contributions, one can write them as [161]

hy = %8233—1;71, (3.47a)
[P b B Ly
he = %D -/ dulh®?| +a, (3.47b)
2 4 Ju
hy = %iézg—lD—ZImIm [8(0uN)] , (3.47¢)
Iy = L0 1D 2ImIm | S8(3h°Bi° — 3i°Bh° + °Sh° — h°8h°) | | (3.47d)
T2 8

Here, m and N correspond to the Bondi mass aspect and the angular momentum

aspect respectively, i.e., in terms of strain and Newman Penrose scalar they read
o 1, of,0
m = —Re {‘Yz + Zh h } (3.48a)
o 1 1,0 o 1 07,0
N =2Y¥7 — Zh 0h° — udm — gfi(h h°). (3.48b)

While, in principle, deviations induced by echoes in the strain time series can be
computed for all components appearing in Eq. (3.47), the primary focus in the fol-
lowing is on the components associated with the energy and angular momentum
flux across the horizon .# , namely k¢ and h ;7. Both components are related to the
null memory (also referred to as non-linear memory), but exhibit different parity: hg
corresponds to the electric part, while h 7 corresponds to the magnetic part. For
practical applications, it is generally sufficient to consider only k¢, as it constitutes
the dominant contribution to the non-linear memory. However, given the interest
in the kinematical properties of the binary under consideration, the memory com-

ponent associated with the angular momentum flux is also included in the analysis.

Applying the notation of Section 3.1, one can identify and separate contribu-
tions in hg and h 7. Start by considering he, where Eq. (3.39) leads to mixed terms
of the form

hefffleff _ |hoo‘2 + hoolflecho + ]floohecho + |hecho‘2' (349)

Given that both /#¢h° and h® are time series waveforms, it is reasonable to assume
that the echo—and consequently its time derivative—is temporally well separated
from the principal waveform h®, as illustrated, for example, in Fig. 3.4 and Fig. C.2
of Appendix 3.1. Under this assumption, the relations fiohecho — peofrecho — 0 hold,
and the memory hg naturally decomposes into a waveform and an echo contribu-
tion. The assumption of temporal separability requires a sufficiently large phase
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shift encoded in the reflectivities RFCO and RPH. The corresponding parameter
constraints can be estimated as ¢ < 107* (for Ton = Tu, and Tou S 5Ty for
v = 107" in the case of an echo from an ECO. For echoes generated by QBHs,
one finds B < 10~7. For the remainder of this section, the analysis is restricted to a
range in parameter space where this no-overlap assumption holds valid, such that

1. 1 s : 1 /v :
eff _ ~x524~-11-2 echo|2 | - |2
h5—25© L/Llidu]h |+4/uidu|h|}

=: h&h 4+ 1y, (3.50)

and where the constant « is omitted.

Next, consider h . Structurally, the main difference w.r.t. hg are the angular
derivative 0h. One can argue that the derivative operator only acts on the angular
dependent part of the strain, i.e., it can be decomposed

(1,6, 9) = thm —2Ym(0,9), (3.51)

with
0 Yim =1/ (£ —5) (¢ +5+1) 41 Ve (3.52)
8 Yim =~/ (L+8) (0 —5+1) e 1Yo, (3.53)

such that the strain modes, and thus Zi* U (yém ), as functions of retarded (ad-
vanced) time, are not affected. Consequently, even with the angular derivative op-
erator O applied on the strain, the separation argument still holds, and terms like
Oh®dheh® vanish due to the absence of non-trivial time series overlap. Thus, insert-
ing (3.39) in /1 7 it is found that h*"° does not mix with h* and thus

heff hecho + 12 , (3.54)
where h}ChO is given by
hf}cho _ 11_6i52©—1D—2Im {6(3heCh05E9Cho
_3hech05]jlecho + flechoéhecho - ]jlechoéhechO)} ) (3.55)

A comparison between hf’;h", thhO and h%, hg is presented in Fig. 3.10, where
the temporal separation of the effects is clearly visible. It is observed that, for hg,

the waveform and echo contributions share an identical shape up to a rescaling in
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FIGURE 3.10: Selected modes of the memory corrected waveform [5].
The dashed and dotted lines mark the memory contributions k¢ and h 7
for echoes from the ECO and QBH reflectivity models. The “no-echo”
counterpart is displayed in both the bottom and top plots as the solid
orange line. The parameter choice and the event are adopted from Fig.
C2.

amplitude. In contrast, the corresponding contributions to /s exhibit fundamen-
tally different structures. Furthermore, if the no-overlap assumption is violated, the
step-like behavior characteristic of the non-linear memory undergoes non-negligible
modifications due to the mixing terms h*heeho 4 ¢.c., which are generally oscillatory
in nature. This feature constitutes a fundamental manifestation of the memory’s
non-linear character. Consequently, an echo may substantially modify the conven-

tional memory contribution associated with BBH waveforms.

For the computation of the memory, Eq. (3.55) completes the derivation of all
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required expressions for the numerical evaluation of echo-induced memory correc-
tions. Before proceeding to the main analysis, it is worth emphasizing that the mem-
ory, as described above, possesses a clear physical interpretation that proves valu-
able when examining the energy balance within the cavity formed between the BH
potential barrier and the near-horizon structure. A particularly relevant question
in this context is the following: How much energy is reflected by the BH or ECO?
Naturally, the answer depends on the reflectivity function specific to the underly-
ing model. To establish a numerical reference, the energy and angular momentum
fluxes associated with the echo are also computed in this section. In this framework,
Eq. (3.47) enables the extraction of both energy and angular momentum fluxes car-
ried by the GWs. Since these equations decompose into components associated with
the initial strain and the echo contributions, the corresponding flux expressions fol-
low the same structure. Concretely, for a generic strain, the (dimensionless) energy

and momentum flux per unit time and angle read [208]

dE 1

T 12
dOdu 167'c|h| ! (3-562)
a1 . o .
o= T (3h6h _ 305 + hoh — hah) . (3.56b)

The flux formulas in Eq. (3.56) are defined in terms of asymptotic strains evalu-
ated at .# ", thereby justifying the use of the retarded time coordinate u. Strictly
speaking, in Eq. (3.56), the strain & should be interpreted as the asymptotic strain
h°, which is defined exclusively at .#* and extended into the physical spacetime
through Eq. (2.131). This distinction becomes particularly relevant when computing
the dimensionful versions of Eq. (3.56), in which case the asymptotic strain must
be replaced with its physical counterpart. For practical applications, such as obser-
vational measurements of BBH mergers, the radial coordinate is substituted with
the estimated luminosity distance Dy of the event, as previously discussed in Sec-
tion 2.5. Naturally, to ensure dimensional consistency, appropriate powers of ¢ and

G must be introduced alongside the distance rescaling.

When computing (3.56), it may be helpful to make use of strain’s decomposi-
tion into spherical harmonics outlined, for instance, in [4] (see also Appendix 1.3).
For instance, for the memory flux associated with the echo one computes

dEecho 1
dOdu ~ 167

|heCh0|2 , (357)
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which can be decomposed into spherical harmonics of spin-weight zero,

|hech0|2 Zaechngm 0, (P (3.58)

The resulting frequency-dependent expansion coefficients, up to a prefactor de-
pending on ¢ and m (see Appendix 1.3 for details), read

Déecho ZZL (E)Z ((_1)€+m+1 RQBHRBH)n+m . 1 .
Imw — wr \D 4 pin pin

lymyw ™~ bympw

008 |C, Fo () F (0)] 05 | O Yo (0) F ()] - (3.59)

A similar expression holds for the angular momentum flux | echo which is formu-
lated in terms of the coefficients [32;1}‘68 The coefficients a®" and geh° differ only by
a mode-dependent factor, the explicit form of which is provided in Appendix 1.3.
It is important to emphasize that this decomposition is equally applicable to the

memory expressions given in Egs. (3.50) and (3.55).

In the context of echo generation within the cavity formed by the BH potential
barrier and the surface of the ECO (or QBH), a natural question arises as to whether
the associated GWs adhere to a form of (energy) flux conservation for gravitational
radiation. This can be directly addressed by referring to Fig. 3.2. Consistent with
the notation used in the previous section, the perspective of the QBH is adopted,

with analogous considerations applying to the ECO case. The process begins with

in QBH 1

the ingoing gravitational radiation ), interacting with the reflective surface.

Zout QBH 1

This interaction results in partial reﬂect1on producing the outgoing wave Z, - ,

and partial transmission, which generates yé orizon/d that propagates towards the BH

out QBH 1
Imw

rier, where it may either be reflected or transmitted. If transmitted, the radiation

horizon .7 *. The outgoing wave Z then encounters the BH potential bar-
escapes to future null infinity, where it is detected as the first echo Z{> 1. The re-
flected portion, however, forms a new ingoing wave yngB 2, beginning the next
cycle within the cavity. This iterative process underlies the production of succes-
sive echoes, characterized by the continuous exchange of radiative energy between
the reflective surface and the BH potential barrier. Propagating this configuration
infinitely far into the future, one concludes that the energy flux carried by the ini-
tial strain directed toward the QBH’s surface must equal the sum of the energy flux
passing through both horizons, 7" and .# 7, i.e.,

d Eout QBH d Ehorizon d Ein QBH
& T ar T a

(3.60)
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Naturally, the energy flux conservation equation can be expressed in terms of the
amplitudes at each stage of the GW’s interaction with the barriers or horizons. For
instance, combining the configuration depicted in Fig. 3.2 with the radial solutions

close to the ECO, one could also write

dEin QBH d Eout QBH B dE®® in d Ee° out
dt dt dt dt '

(3.61)

which is similar to the formulations found in [301, 332]. Note that in Eq. (3.61), the
up solution was supplemented by a set of ingoing waves at infinity, V> ™. Thus,
E®" js proportional to the absolute value of (V7° ™)2, while E®°" o |Z 2.
It is important to highlight that the notation for radial solutions can vary across
the literature, particularly when the Sasaki-Nakamura (SN) formalism [358] is em-
ployed instead of the Teukolsky framework. For more detailed discussions on echo
computations using the SN formalism, the reader is directed to references such as

[301, 332, 340, 359].

For the fluxes reaching .# ", the definitions provided in Eq. (3.56), in con-
junction with the asymptotic strain, yield the correct result. In cases where the
asymptotic strain is not directly available, Eq. (3.8) can be used to extract it from
Y;. However, defining the flux that falls into the BH or ECO, or the initial flux
directed toward the surface, is more complex. Specifically, to compute the energy
yin QBH

Imw

carried by , one must convert ¥4 to ¥y (since it pertains to the perturba-
tions of the shear on the horizon) using the TS identities. Afterward, the energy flux
can be derived from the change in area according to Hartle’s formula for BH area
increase. After a lengthy computation, one finds [301, 332]

d Ein QBH w

- in QBH |2
dw o ZZm 647‘[k(k2 + 4€2)(2r+)3 |y€mw | , (362)

where k = w —mygp—, 11 = M+ V M2+ a2 and € = VA{\/IAZ;“Z. For the events rele-

vant to this article, the dimensionless spin a of the ECO/BH is (mostly) negligible,
thus k =~ w and r ~ 2M. A similar result can be obtained for the reflected quantity

ZZZLQBH (see Fig. 3.2), i.e.,
dEOUt QBH _ w |Zout QBH ‘2 (3 63)
dw Ak (k> + 4€2) (24 )3 tmew ' '
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With the defined reflectivities R2PH and RBH, the above energies can be related as

follows:

d Eout QBH d Ein QBH
— —|R@BHpPZI= 3.64
= [ROHREE 369
and thus
dEecho BH 2 d Eout QBH
= A= R ) =g
dEin QBH

= (1— |RBH\2)|RQBH\2—dw . (3.65)

Finally, the energy flux across 7 is expressed in terms of the same quantity at .# 7,
namely,

n QBH

dE!
_ BH |2
— |7QBH, — (3.66)

d Ehorizon
dw

where E"QBH can be replaced using equation (3.65). The energy loss per cycle in
the cavity, as a function of frequency, then corresponds to

d Ehorizon d Eecho
loss _
AE®®(w) = /da)—dw —i—/dw o

dEin QBH
dw 7

— /dw | 7QBH|2 || RQBH 2| BH|2 (3.67)
—_— N ~ v

=T =0

where |TBH|? := 1 — |RBH|2. The coefficients I' and ® denote the fraction of energy
loss due to gravitational radiation crossing the ECO/QBH horizon and the potential
barrier, respectively. Equation (3.67) allows for the explicit calculation (and com-
parison) of the energy crossing the horizon " for a given event. This becomes
particularly significant in the context of ECOs, as there may be instances where they
collapse to form a BH after the first echo (the first cycle) [283]. If the BH is consid-
ered within a classical framework, no echoes would be detected at .# *. However, if
the resulting BH is modeled as a QBH, the transfer function of subsequent echoes is

altered, leading to a distinct echo morphology.

Numerical Evaluation - Echo-induced Memory

With the analytical frameworks for the GW echo and its associated memory estab-
lished, the next step is to quantify their influence on the waveform detected by rele-
vant GW interferometers. In particular, attention is directed toward LISA, which is
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highly suited for detecting potential memory effects due to its exceptional sensitiv-
ity in the low-frequency range, where such effects are typically more pronounced.
To assess the SNR of the echoes and the corresponding memory effects, the pipeline
developed in [8] is employed once more. A realistic forecast for the detection of
echo memory requires taking into account various event-specific factors, such as
the orientation and sky position of the merger relative to the LISA frame. For the
sky position and all other orientation-dependent characteristics relevant to the SNR,
the conservative baseline parameters presented in Table I of [8] are adopted.

In this section, several SXS simulations with negligible or vanishing spin are
employed, including SXS:BBH:0205, 0206, 0207, 1424, 1448, 1449, 1455, and 1936.
Exceptions to the low-spin condition include SXS:BBH:0334, 1155, and 2108, which
exhibit remnant spin amplitudes | Y| ranging from 0.28 to 0.68. Although the algo-
rithm used for echo computation may introduce systematic errors for these events,
their impact on the analysis is expected to be minimal, as corrections for non-trivial
spin amplitudes are typically small. With regard to the reflectivity models, the pres-
ence of a non-negligible spin causes line broadening, as discussed in [304]. However,
for the events of interest, the effective broadening remains close to the frequency res-
olution imposed numerically by the pipeline, O(1) uHz. Consequently, these events
are included in the analysis to serve as consistency checks for any potential param-
eter biases associated with the remnant spin. For each event, the echo is computed
numerically for the harmonic strain modes /3 1, which dominate the overall signal.
It is important to note, however, that all modes are included in the flux computa-
tion. As a result, not all strain modes involved in the calculations below contribute
to the echo. The impact of restricting the echo to the h; +» mode will be discussed in
further detail below.

To gain insight into the significance of the echo-induced memory based on the
QBH model, different reflectivity functions are simulated, and the memory is com-
puted for each waveform listed. The results are exemplarily shown for SXS:BBH:1936
in Fig. 3.11. This event is selected to align with the results presented in the previous
section, which discusses the general prospects for echo detectability. The contour
plots in Fig. 3.11 display the fraction of memory attributed solely to the echo in
comparison to the classical waveform’s memory (top panel), and the correspond-
ing SNR associated with the additional memory contribution (bottom panel)!?. The
SNR shown pertains specifically to the detectability of the memory and is indepen-
dent of the waveform itself. To simplify the interpretation, the relative increase in
memory is presented, effectively factoring out the redshift and mass dependencies.

12Note the differing scales of the e-axis for better readability of the bottom panel.
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For a comprehensive exploration of the detectability of memory concerning these
remnant-specific parameters, the reader is referred to [8]. As expected, Fig. 3.11 re-
veals a clear trend indicating that lower suppression factors, ¢ and €, are associated
with higher echo memory contributions. Hence, the echo’s memory contribution is
proportional to its amplitude. Furthermore, the contour plot shows that over a wide
range of parameter space, the echo significantly contributes to the overall memory,
with SNR levels comparable to those of the initial waveform’s memory in extreme
cases.

While the SNR for the echo memory alone is unlikely to be sufficient for individ-
ual detection, it is plausible that the echo memory enhances the overall memory
SNR. This enhancement strongly depends on the specific event and the temporal
separation between the echo and the waveform’s ringdown. The sensitivity to time
separation arises primarily from LISA’s response to the step-like increase charac-
teristic of the memory. The closer the two memories (sourced from the waveform
and the echo) are in time, the more pronounced the low-frequency features appear
in LISA data (see [8] for more details). Moreover, as discussed earlier, terms like
h*hecho 4 ¢.c. now contribute to the non-linear memory, leading to a non-linear in-
crease. On the other hand, if the time separation becomes too large, the synergistic
effects between the waveform’s and echo’s memories diminish. This effect is par-
ticularly evident in the analysis of the ECO model, which will be addressed further
below.

It is important to emphasize that, in parameter regions where the echo memory
contributes more than O(10) percent of the total waveform memory, the oscillatory
component of the echo’s time series itself becomes sufficiently large to fall within
the detectable range of LISA. The detectability of this echo is strongly dependent
on factors such as redshift and mass, as discussed in the previous section (see also
[5] and [7]). For a reference on the pure echo SNR for a parameter region similar to
that displayed in Fig. 3.11, the reader is referred to Fig. 5 therein. In this context,
it is observed that for larger values of € and smaller values of ¢, the echo’s magni-
tude increases much faster than the memory contribution. Once the echo amplitude
surpasses approximately 2 5% of the waveform amplitude, LISA’s SNR becomes
sufficiently high to allow for individual echo detection, assuming the appropriate
redshift and mass range for the merger events. This makes the echo-induced mem-
ory a less critical tool for detecting the echo in such cases. Nonetheless, it remains
surprising that an event of such a short duration, compared to the original wave-

form, can contribute so significantly to the memory.
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FIGURE 3.11: Memory amplitude and SNR gain for event
SXS:BBH:1936 under the reflectivity model of a QBH with « = 87,
B =10""and § = 0.1 [9]. The top plot shows the memory amplitude
purely due to the echo as a fraction of the classical waveform memory
(without echo). The bottom plot shows the gain in overall memory SNR
relative to the SNR of the waveform memory without echo (at redshift
z = 1 and mass M = 10°M,, the total value for the SNR for the chosen
baseline is roughly 10). Note that for better readability, the x-axis of the
bottom plot is extended up to € = 4.

Transitioning to the ECO model, the parameter dependence of the echo mem-
ory contribution, its SNR, and the echo amplitude is presented in Fig. 3.12. The
maximum echo amplitude serves as a benchmark for comparing the echo mem-
ory and pure echo SNR. Due to the simplified parameter dependence, instead of
focusing on a single event, all the SXS simulations listed above are incorporated

into the plot. It is apparent that while all events follow a trend similar to that of
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SXS:BBH:1936 for the QBH, there are notable event-dependent variations in the ra-
tios of echo and echo memory amplitudes. These variations arise from differences
in simulation parameters, such as mass ratios and initial spins, which lead to a di-
verse range of QNM content and, as a result, different echo characteristics. Fig. 3.12
further highlights important differences between the reflectivity models and their
associated parametrizations. Specifically, while the response and transfer functions
for the ECO and QBH are relatively similar (as shown in Fig. 3.3), an increase in
Ton for the ECO not only impacts the exponential suppression but also compresses
the time interval between the waveform ringdown and the echo. This leads to a
non-linear response in LISA’s memory SNR, as opposed to the linear increase in the
amplitude of the echo memory contribution when Ty is varied. A similar effect is
observed for the QBH when f is adjusted accordingly.

Most importantly, when comparing the results for the QBH model and the
ECO, no significant differences are found in the memory contributions, provided
that the parameters are chosen to ensure comparable amplitudes of the transfer
functions. This suggests that, despite the distinct underlying physics of the two
models, their effect on GW memory is nearly identical. To further validate this hy-
pothesis, the remaining parameters, namely - in RE© and «, B, and 6 in RBH, are
examined. While 7 and B primarily influence the QNMs of the ECO and the QBH,
respectively (distinct from the QNMs of the ringdown that feed the echo), « and ¢ af-
fect the positioning of the characteristic frequencies and the sharpness of their cusps.
The results confirm that, as expected, none of these parameters has a significant im-
pact on the echo memory, except for 5. When ¢ is sufficiently large, it can reduce the
amplitude of the echo memory due to increased absorption by the BH horizon. Al-
though this feature could allow for a distinction between reflectivity models based
solely on the amplitude of the resulting echo memory, current detection estimates

suggest that this amplitude is unlikely to be determined with sufficient accuracy.

For the tests of different reflectivity model parameters, the following param-
eter ranges were considered: ¢ € [1071°,107%], « € [4log2,87], and 6 € [0,1].
The upper bound for 7 was selected to ensure that the separability condition re-
mains intact, while the lower bound is arbitrary, as it would only delay the arrival
of the echoes. For a, the chosen interval reflects relevant values from the literature
[304]. Lastly, for 6, the lower bound marks the point at which the ECO and QBH
transfer functions become indistinguishable at high frequencies. The upper bound
represents a critical value, beyond which the cusps of the characteristic frequencies
become sufficiently pronounced to influence the overall amplitude of the transfer

function.
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FIGURE 3.12: Comparison of the echoes maximal magnitude, mem-
ory, and memory SNR w.r.t. corresponding quantities for the classical
waveform (without memory) for the ECO model [5]. Each line corre-
sponds to a given event of the list above, where the color intensity is
arranged such that the lines fade according their value for the relevant
fraction. The graphs represent the ECO analog to Fig. 3.11.

Numerical Evaluation - Fluxes across 771 and .4

To gain an initial characterization of the echo in terms of fluxes, the time-integrated
energy and momentum fluxes of the echo for Exotic Compact Object (ECO) and
QBH are compared against the corresponding fluxes of the waveform at .#*. The
relevant parameters are varied in the same manner as in the previous subsection.
For the QBH, Fig. 3.13 shows the integrated energy and momentum fluxes mea-
sured morally at (u — +o00). Numerically, this boundary is approximated by the
maximum time extent of the simulated SXS waveform. The values displayed in Fig.
3.13 suggest that, within the parameter region where the memory contributions are
non-negligible, the fractional integrated energy flux behaves similarly to the frac-
tional memory. Specifically, the energy flux associated with the echo can constitute
a substantial fraction of the total energy carried by the full waveform. A similar pat-
tern is observed for the momentum flux; however, it is important to note that, for
the tested events, the echo carries less momentum than energy. A similar energy-
momentum flux relationship is also observed for events with higher remnant spins,
as shown in Fig. 3.14. In these cases, waveforms with larger energy fluxes also
exhibit larger angular momentum fluxes, although the latter is generally much sma-
ller in magnitude compared to the full waveform’s flux. This behavior is found to
be uncorrelated with the remnant’s spin. Physically, the observation that the echo

carries less angular momentum flux than the initial waveform is consistent with the
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FIGURE 3.13: Integrated energy (top) and momentum (bottom) flux
for SXS:BBH:1936 under the reflectivity model of a QBH [5]. For the
parameters not displayed in the plots, the same values as in Fig. 3.11
have been chosen.

process generating the respective strain signals. While a coalescing binary typically
radiates away large amounts of angular momentum, the perturbed Schwarzschild
BH does not.

In Fig. 3.14, the analysis of the ECO reflectivity model is extended to more
extreme ratios of Ton/Th, demonstrating that the energy flux due to the echo can
indeed surpass that of the waveform. It is important to note that, in this scenario, the
individual echoes computed for the ECO model transition into a continuous signal
due to the decreasing time separation between successive echoes as Top increases.
The strain associated with this situation is illustrated in Fig. 12 of [6]. Similar to the
results obtained for the memory, the findings show that the parameters -, a, and B
do not significantly affect the energy or angular momentum flux when varied within
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FIGURE 3.14: Integrated energy and momentum flux for the listed
events under the reflectivity model of an ECO [5]. Again, each line
corresponds to a given event of the list above, where the opacities are
arranged such that the lines fade according to the largest value of the
relevant fraction. The graphs represent the ECO analogue to Fig. 3.13.

the previously defined ranges. Instead, Fig. 3.14 demonstrates that the fluxes car-
ried by the echo exhibit substantial variation across the simulated waveforms. This
leads to the conclusion that the direct and indirect features of GW echoes are funda-
mentally determined by the classical QNM content of the remnant, as the reflectivity
models presented here sufficiently capture the physical characteristics of these sys-
tems. This conclusion is supported by the equations above, where ¥ ¢, (v) F ()
encapsulates the information contained in the ingoing QNMs. This observation im-
plies that, in general, the echo, its memory, and associated fluxes are primarily deter-
mined by the physical properties of the remnant compact object, with the reflectivity
primarily influencing the amplitude. Further support for this statement is provided
in the Appendix of [5]. Thus, the selected models can be regarded as robust with
respect to potential errors due to additional phenomenological effects. This result
holds true when the echo is computed for all numerically accessible strain modes,
rather than just for h +». Naturally, the fluxes increase slightly when the mode con-
tent of the echo is extended, which is to be expected given the sum over strain modes
in the flux-determining factors wecho (Beh) in equation (A.90) (equations (A.92) and
(A.94)).

Turning to the computation of an energy balance given by equation (3.67), the
focus is particularly on how the energy measured by the GW detector compares to
the energy absorbed by the compact object or the BH at /# . To establish a flux bal-
ance, equation (3.62) is computed, and in combination with equations (3.64)-(3.67),
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the energy consumed by the QBH/ECO is estimated in comparison to the energy
radiated to .#*. The findings indicate that, even when adjusting the reflectivity of
the remnant object to enhance the emission of large echoes, the overwhelming ma-
jority of energy—over 99% of the total energy loss per cycle—is absorbed by the
celestial body itself. In other words, for a stable cavity between the event horizon

Ein ECO

and the surrounding potential barrier, nearly all of the energy is returned to

the compact object, whether it is a QBH or an ECO.

To assess the impact of characteristic absorption frequencies as a primary dis-
tinguishing factor between the reflectivity models investigated in this study, the
reflectivity parameter ¢ is varied. The remaining parameters are held constant to
ensure that the ECO and QBH models produce identical transfer functions up to the
cusps associated with wy. It is observed that the flux exhibits a strong sensitivity
to §. For § = 0.01, the flux of the QBH decreases by O(1) percent relative to the
flux of the ECO. This trend continues approximately linearly, affecting both the en-
ergy and momentum flux in a similar manner. As J increases, the QBH reflectivity
diminishes significantly, and for § > 1, the remnant behaves like a classical BH, ab-
sorbing all energy via . The sensitivity of the flux to ¢ implies that, in principle,
the flux measurement, or alternatively, the amplitude of the echo-related memory
contribution, could serve to distinguish the origin of echo-like features in the gravi-
tational waveform, provided the strain time series of the echo achieves a sufficiently
high SNR. However, it is unlikely that the precision of the echo memory amplitude
will surpass the SNR of the characteristic frequency features in LISA’s TDI data, as
discussed in Section 3.2.2. An investigation into the synergy between echo strain
and memory in LISA data, along with the detection prospects for instruments more

focused on memory;, is left for future research.

Finally, the impact of the cavity’s “walls” on confining the energy traversing
them is tested. This confinement can be quantified by the factors I' and ® in equa-
tion (3.67), which represent the energy contributions to the BH horizon, 7', and to
future null infinity, .# T, respectively. The results show that the signal entering the

cavity as y}%f}co encounters both the horizon of the ECO and QBH as well as the po-

113. However,

tential barrier, with integrated transmissivities that are roughly equa
when integrated over the frequency band, the reflectivity is less than O(1) percent,
leaving the echo with only a minimal amount of energy after escaping the cavity to-
ward £, as depicted in Fig. 3.2. This significant energy absorption suggests that,

for a broad range of events, the ECO may transform into a QBH within the first cycle

13 As a reference, the ECO’s transitivity with y = 10~ and Tou = Tx was chosen.
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of radiation traversing the cavity, as noted in [283]. As a result, even if features cor-
responding to characteristic frequencies are detected, either as cusps in the TDI data
(see Section 3.2.2) or in diminished echo memories, it is not immediately apparent
whether the remnant object was originally a QBH or an ECO. Thus, the detection
of echoes with characteristic frequencies cannot definitively rule out the presence of
ECOs.

3.2.4 Discussion

The GW memory effect, along with other subtle features of the gravitational wave-
form, is expected to enter the detection range of future space-based detectors such
as LISA [17] and next-generation ground-based detectors like Cosmic Explorer [217]
and the Einstein Telescope [216, 360]. In addition to testing the fundamental non-
linearity of GR, this provides a clear signature for deviations beyond GR [194] and
other phenomena that could influence the permanent displacement of freely floating
test masses. The primary challenge in detecting these new and subtle features lies
in the need to develop highly accurate GW templates to extract signals from data
that are often contaminated with noise. Each additional feature incorporated into
a template significantly expands the parameter space of the simulated waveform,
leading to a substantial increase in computational costs.

In Section 3.2, a comprehensive test of the GW echo feature is conducted. This in-
cludes testing the detectability of echo-induced features with the LISA instrument,
incorporating a detailed Fourier space analysis of the TDI data to pinpoint the phe-
nomenology responsible for the echo. The investigation is extended by considering
ECOs, and the resulting signature for both phenomenologies can be added to the
waveform templates without substantial changes. The quantum approach is based
on fundamental area quantization arguments, which facilitated the development of
a reflectivity model for QBHs. This model is then compared to established mod-
els for ECOs. For both models, corresponding GW echoes are constructed follow-
ing the methodology described in [6]. Building on the investigation from Section
3.2.1, Section 3.2.2 computes the memory and flux contributions of these echoes.
Semi-analytical expressions for the gravitational memory effect induced by the echo,
along with the corresponding fluxes, are provided. Additionally, an energy balance
is formulated for the ingoing radiation towards .7 during and after the merger’s
ringdown phase. Numerical investigations of both the echo-induced memory, fo-
cusing on its amplitude and SNR, as well as the flux balance, are carried out. Var-
ious scenarios within a reasonable parameter space are considered, and their phe-

nomenological consequences are thoroughly explored.
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The results highlight that for a significant fraction of events, the GW echo effect
is expected to be detectable by the LISA instruments throughout the measurement
period. Additionally, there are promising prospects for accurately predicting sig-
natures uniquely associated with BH area quantization, specifically the Bekenstein-
Mukhanov spectrum, based on the collected measurement data. This leads to the
conclusion that LISA could, at the very least, rule out quantization models simi-
lar to Bekenstein’s by detecting an echo with sufficient SNR. Regarding the echo’s
impact on non-linearities, it is found that memory corrections can contribute sub-
stantially to the overall memory of the principal waveform. While in a large portion
of the parameter space the echo memory is too faint to be detected individually,
it has the potential to significantly enhance the total memory’s SNR. Furthermore,
when the time gap between the echo and the merger waveform is small, additional
synergies emerge. This is interpreted as the reflective shell being closer to the BH
potential barrier. Therefore, any deviation from the expected memory could point to
the presence of echoes, offering an indirect detection approach that does not neces-
sitate extensive adjustments to waveform models. Based on the findings in Section
3.2.1, a combined search incorporating both memory-related and strain-related time
series features of echoes is likely to yield the most robust detection prospects, given
that the time series SNR dominates over the induced memory SNR for a given echo.
In general, the time separation between echoes is highly dependent on the model,
and there is no consensus on its precise value. Some studies even suggest search-
ing for rogue echoes, which cannot be definitively linked to a particular merger
event [284]. Similar approaches, targeting primarily outlier events or instrumen-
tal glitches, have also been proposed in different contexts, such as in investigations
of topological Dark Matter (see for example [361] and references therein).

With respect to the flux analysis in Section 3.2.2, the investigation demonstrates
that the majority of the energy and angular momentum contained in the ingoing ¥
towards " will ultimately be absorbed by the BH or ECO. Therefore, no signifi-
cant phenomenological or astrophysical consequences are expected from the reflec-
tive shells considered in this study, aside from the subtle echoes observed in the
interferometer data'4. Despite transferring only a negligible fraction of the energy
and momentum flux of the ingoing ¥y to future null infinity .#, the echo’s con-
tribution to the total energy and angular momentum of the waveform can still be
considerable. Additionally, it is noted that the echo consistently carries less angular

momentum than energy in comparison to the classical waveform across all tested

14Naturally, slight modifications to the Tidal Heating effect are also expected, resulting in minor
phase discrepancies in the inspiral compared to GR waveforms, as discussed towards the end of
Section 3.1.
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events. This behavior is largely independent of the specific reflectivity parameters
of the system and aligns with expectations based on the dynamics that generate the
echo.

It is important to note that the manifestation of the echo memory within the
gravitational waveform is largely model-independent, with the primary variation
being in its amplitude, which depends on the choice of the reflectivity model. The
main distinction between models is captured by the reflectivity parameter J, mean-
ing that, in principle, echo-induced memory corrections provide a simple yet pow-
erful addition to waveform templates for future GW detections. In this context,
the findings suggest that the reflectivity models play a secondary role in determin-
ing the exact shape of the echo time series and the associated memory. Instead,
it is the dynamics of the binary configuration and the resulting QNM spectrum of
the remnant body that govern the fluxes and h*"°. Thus, measuring an echo, in
principle, offers an alternative avenue for studying QNMs in the context of quan-
tum BHs. The distinguishing feature of the echo, for the models considered here,
lies within the Fourier space data as detailed in Section 3.2.2. However, it is to be
emphasized that the model-independence of the memory comes with certain chal-
lenges. A key difficulty in identifying the echo-induced memory is differentiating
it from other memory corrections, such as those arising from deviations in GR [194]
or quantum effects unrelated to echoes [310, 309]. Further theoretical and analyti-
cal investigations of these effects will be necessary to pinpoint distinct signatures of
these features in both the memory and the oscillatory components of the strain time

series.

Another theoretical aspect, which has been only partially addressed in Section
3.1 and warrants further exploration, is the BH reflectivity model itself. While the
arguments presented in Section 3.1, primarily based on [7], align with phenomeno-
logical and observational constraints, the investigation of GW echoes necessitates
reflectivity models grounded in both quantum information theory and astrophysics.
Specifically, it is crucial to ensure that these models do not violate the core principles
of BH information theory. The boundary conditions for QBHs, in particular, require
further scrutiny. It is important to acknowledge that the prescription provided in
Section 3.1 is an oversimplification. The ingoing radiation toward the BH horizon
could, in fact, introduce a feedback term in the Teukolsky equation. Alternatively,
GW scattering, rather than reflection off the horizon, might be a more appropriate
consideration. These key aspects of QBH models must be thoroughly investigated in
future research to achieve a more precise understanding of their physical behavior

and the corresponding GW signatures.
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In conclusion, it is found that echoes and their associated signatures serve as a
smoking gun for quantum corrections to the BH’s horizon, as well as the existence of
ECOs, assuming sufficient measurement precision. Since these features manifest in
the non-linear GW memory, potentially alongside numerous other phenomenologi-
cal signatures, the detection of this memory holds the potential to become a pivotal
milestone in gravitational physics, fundamentally altering the current understand-

ing of BHs and other compact stellar objects.
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Chapter IV
Gravitational Wave Backgrounds

In the following Chapter, the discussion moves away from resolved GWs and towards un-
resolved sources of gravitational radiation. In particular, cosmological contributions to the
SGWB are in focus, culminating in an analysis for detection prospects in Section 4.4.2.
The latter reproduces the results of the joint work [E], which is subsequently cited as [22].
For more exhaustive reviews and cutting-edge literature on the topic, relevant references are
provided.

The continuous enhancement of GW measurements has ushered in a new era in
GW astronomy. While the initial detection efforts focused on resolved waveforms,
such as the first measurement by the LIGO/Virgo collaboration in 2015 [1], we are
now approaching the capability of detecting unresolved GW sources with upcoming
probes [10, 362, 363]. On astrophysical scales, sheer number of unresolved sources
is so vast that they collectively create a stochastic signal. Additionally, a wide ar-
ray of unresolved cosmological sources mixes with the astrophysical background.
Combined, the form what is known as the SGWB (see [10] and [10] for comprehen-
sive reviews on cosmological and astrophysical sources, respectively). Rich in its
phenomenology, the SGWB can serve as compelling evidence for new physics on
cosmological scales, offering a distinct avenue of exploration beyond high-energy
physics at the TeV scale and probing the early Universe prior to the CMB. Very
recently, PTAs [54] (see [50, 49, 47, 48, 51, 46] for relevant experiments) have man-
aged to collect initial evidence of a stochastic background [52, 53] flooding the Uni-
verse. Despite the origins of this background remaining uncertain to this day, the
results of PTA represent the initial step in identifying the astrophysical contribu-
tions to the SGWB. With forthcoming space-based instruments like the LISA [17] or
TianQin [364, 365], insights gained from PTA can be supported by additional data,
potentially enhancing the current upper limits on the SGWB from ground-based in-
struments [11, 366, 367]. In addition, future ground-based instruments, such as the
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Einstein Telescope [216, 360, 368] and Cosmic Explorer [217, 369], will play a piv-
otal role in extending the frequency range over which both resolved and unresolved
GW sources can be detected. Jointly, space- and ground-based instruments possess
the potential to guide prospective detection efforts regarding the SGWB, offering
exciting prospects for future GW research.

After the intensive investigations around resolved gravitational waveforms
and their subtle features, this Chapter aims to switch gears by studying the prospects
for the detection of unresolved sources of gravitational radiation. To this end, the
following Sections 4.1, 4.2, and 4.3 provide a thorough introduction to theoretical
and phenomenological aspects of the SGWB. Section 4.4 outlines recent results of
PTAs in more detail and provides an exhaustive insight into current efforts with the
LISA instrument [22].

4.1 From Gravitational Wave Sources to Backgrounds

Gravitational radiation reaches Earth from all over the Universe. Its sources are not
at all limited to mergers of binary compact objects but also result from cosmolog-
ical phenomena. Naturally, the larger the distance between the detector and the
source of gravitational radiation, the more likely it is that the GW is affected by
the expansion of the Universe. Moreover, for cosmological sources forming a GW
background, as introduced in Section 1.5, the radiation passes the late time struc-
ture in the course of its journey towards Earth. Naively, one would therefore expect
non-trivial interactions of GW with matter and themselves, by means of Einstein’s
equations. In practice, however, the weakness of the gravitational interaction de-
couples GW from other contributions to the stress-energy tensor already since the
Planck scale. As it will be demonstrated below, it is therefore sufficient to remain
at linear order in perturbation theory and neglect any interaction with matter or
self-interactions. Thus, GWs propagate freely (within the Hubble radius). To prop-
erly understand the latter statements, this Chapter is initiated by reviewing relevant
basic concepts of GW propagation in cosmologically relevant spacetimes before ex-
ploring potential contributions to the SGWB, of both astrophysical and cosmological
nature.

4.1.1 Gravitational Waves in realistic Spacetimes

In previous Chapters, it has mostly been assumed that GWs are encapsulated in
linearized perturbations h;, around a background metric g, that is asymptotically

flat, ie., gy = Suv + hyw with gy = 17, + O(1/7) for large r. Already at this stage,



4.1. From Gravitational Wave Sources to Backgrounds 203

technically, the assumptions for the extraction of TT gauge part of the metric per-
turbation break down as it can only be chosen in the true (non-asymptotic) vacuum.
Thus, the question arises whether the corresponding two polarization states of h};,/T
remain intact when deviating from the vacuum assumption. Naturally, this must be
true for all kinds of spacetimes as the presence of matter should not affect the prop-
agating degrees of freedom of the underlying theory of gravity. Showing the latter
explicitly, however, requires the use of the scalar-vector-tensor decomposition (SVT). To
that end, the following derivation is based on [370, 371, 372] as well as [10]: Adapt-
ing the previous notation, in the case of non-vanishing stress-energy tensor TW/ the
metric is written as gy = Zuv + 0guw with gy = 17,1 For cosmological spacetimes,
the latter equation technically fails to capture the expansion of the Universe?. How-
ever, for the purpose of this demonstration, the background is assumed to be flat.
Propagation of GWs in curved and expanding backgrounds is discussed below.

At the core of the SVT decomposition stands the splitting of metric perturbations
and energy-stress tensor into irreducible parts w.r.t. rotations. By standard textbook
treatments, this results in

dg00 = —2¢, 4.1)
dg0i = 0;B+S;, (4.2)
1.

as well as
Too =p, (4.4)
Toi = dju + u;, (4.5)

1

Tyj = pdij + (9id) — 30;V*) + 9j0; + 9 + v; + T1j;. (46)

Note that both ég,, and T), are symmetric. The above decomposition naturally
picks out four scalars, two vectors, and one tensor for each T, and 4 Jg;,, under
spatial (3-dimensional) rotations. Thereby, it holds that 9;,S; = 0,9;F; = 0,9;h;; =
0, hj; = 0. The latter constraints are inherent to the decomposition and reduce the
propagating degrees of freedom of the metric to 10 (as expected for a symmetric
4 x 4 tensor). Similar constraint equations analogously hold for the decomposition
of the stress-energy tensor. Assuming asymptotic flatness, the components of T},
have to vanish far away from a source. The unique decompositions (4.1)-(4.6) are
further constraint by the conservation equations d,,T;,, = 0, eliminating each 4 extra

!Note that it is implicitly assumed that T}, as well as 6g,, depend on x*.
2Note that the flat background assumption implies that T, vanishes at the background level.
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degrees of freedom. For the metric perturbation dg;, one can do a similar reduction
by choosing an adequate gauge, or equally, apply a suitable diffeomorphism 6g;,, —
0guv — 9,8y — ¢y The latter leaves the tensor part of the metric decomposition

invariant (for small metric perturbation), while one can define new scalars and a

vector as
®:¢+B—%E’ (4.7)
®=—2¢— %VZE (4.8)
¥ =S —F, (4.9)

where 0;%; = 0. The above definition reduces the degrees of freedom in the metric
perturbations down to 4 as well. Note that the newly defined scalars and the vector
%; are, in fact, diffeomorphism invariant. Therefore, no more degrees of freedom
can be removed by coordinate transformations®. Given the new components of the
metric perturbations dg;,, one can rewrite Einstein’s equations, fully expressed by
®,0,%; and h;j. Directly inserting the stress-energy tensor’s decomposition, Ein-
stein’s equations read

~V?0 = 8mp, (4.10)
—%szi — 81@ = 8m(dju +u;), (4.11)

1 1 1
=50 — %)) — 59,0;2® + ©) + Ev2(2c1> +0)-0
1

= 87‘[(}9(51']' + (aia]- — §5ijV2)a + ai’Uj + a]' + v; + Hi]') . (4.12)

Egs. (4.10)-(4.12) can be simplified into

V2@ — —87p, V2P — 87T(p +3p + 31,'{) , szi = —8mS;, Dhl] = —87TH1']'.
(4.13)

Evidently, solely the dynamics of the tensor part of the decomposition of the met-
ric perturbations is determined by a wave equation. The remaining components, in
contrast, obey variations of the Poisson equation. This key result indicates that only
the tensor component and its degrees of freedom can be assigned to represent radia-

tive degrees of freedom. In vacuum (I1;; = 0), these propagate freely. The remaining

3Note that the stress-energy tensor is automatically gauge invariant as it was chosen to vanish
at the background level, i.e., strictly speaking T,, = 6Tyy. For tensors with vanishing background
contribution, the Stewart-Walker Lemma predicts gauge invariance [373].
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components of the metric perturbation are equally physical, but non-radiative. De-
spite choosing a specific gauge for the above derivation, the statements hold without
restriction of the applied gauge as long as the perturbations are small. This is to be
expected, as physical degrees of freedom cannot be altered by gauge choices. In con-
clusion, the result of Eq. (4.13) demonstrates that one can describe the dynamics of
gravity’s radiative degrees of freedom in the presence of matter, alleviating any ini-
tial concerns. For gravitational radiation travelling on cosmological scales, however,

it is crucial to also include expanding spacetime into the above consideration.

For many reasons, including curvature into the picture is generally non-trivial.
Most importantly, it necessitates considerations beyond leading order in dg;, as
the presence of GWs themselves causes a non-trivial curvature, as explained in the
introduction 1.2. Further, in particular for gravitational radiation sourced during
the very early stages of the Universe, the background, previously assumed to be
Minkowski, is now given by the FLRW metric. This introduces a time-dependent
expansion coefficient in §,, with [6g,y| < || where, despite 0g;,, < 1 non-linear
terms in 6g,, now become relevant. Although the background is much larger in
amplitude than the fluctuations by definition, its time-dependence makes the dis-
tinction between fluctuations and background dynamics non-trivial. The solution
to the latter issue unfolds when considering the concrete scales on which the back-
ground fluctuations manifest, both in time and space. In the context of FLRW for
instance, the expected background fluctuations appear on much larger wavelengths
(A ~ 1/Hy where Hj is the Hubble factor) then GWs and at much smaller fre-
quencies (for earths gravitational field fluctuations are visible at roughly f < 0.1
Hz [10]). Thus, in cosmologically relevant cases, one can approach the problem of
defining gravitational radiation on a curved background via separation of scales,
similar to Isaacson’s definition of the GW memory introduced in 1.2. In practice,
the separation of scales becomes evident when averaging over length scales L with
Agw < L < A and frequencies f where f < f < fgw [374]. Note that averaging
necessarily requires the consideration of higher-order terms in ég,, as linear con-
tributions average to zero. As demonstrated in the introduction 1.2, perhaps the
most important result at second-order in the metric perturbation is the non-trivial
stress-energy tensor contribution associated with the presence of GWs. This can
be computed by expanding the G, to second-order in dg;,. Setting h,y = 6guv
morally, for the trace reversed metric 1, = Iy, — : 8" hyy in the Lorentz gauge
VVhW = 0, one finds a contribution

1 _ _
T = o (VyuhapgV i) . (4.14)
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Naturally, because now the background metric is considered in full generality, V
corresponds to the covariant derivative w.r.t. ¢,,. This means also that all spuri-
ous gauge modes have to be removed before recovering (4.14). The average over
L, f in the latter equation singles out the radiative contributions only. Remarkably,
this result is a direct generalization of Eq. (1.19) with 0, — V. The term (4.14)
contributes to the background spacetime curvature as it is of order O(h?/A%yy). It
becomes immediately evident that it carries the GW energy in the 00 components,

: GW
l.e, TOO ~ pGW.

For the propagation of GWs in a non-trivial background, going to first order
in g, suffices. Note however, that terms such as (4.14) enter via the background
equations determining &,,, which now also enters the first-order equation via the
Riemann and Ricci tensor. In the case of Minkowski backgrounds, these have been

trivialized. All in all, Einstein’s equations to first order give
1= A oT, o1, 1_ a7 BT,
1_ ~ 1- _
+ R*P S8uhap = Shuwdap + Zp(ulinya | = 876T (4.15)

Here, U, V, Ryyup, Ry are computed w.r.t. g,. The stress-energy tensor has been
split into background contributions Tj,, and first-order perturbations 6T),, that act as
GW sources. By scaling arguments it holds that T]%,W C T,w. Note that in Eq. (4.15),
no gauge choice was made. Applying the Lorentz gauge, for instance, simplifies
the equation further by dropping the third and fourth terms on the right-hand side.
Independent of the gauge, however, /1, manifestly couples to the background, even
when one assumes vacuum (R, = 0). This is due to the direct coupling to the back-
ground Riemann tensor as well as the implicit background coupling via Oy, . Prac-
tically, this coupling may lead to changes in the GW amplitude and polarization.
With Eq. (4.15) at hand, the propagation equation for GWs in FLRW spacetimes can
be derived. To simplify the calculation, it is instructive to be reminded of FLRW’s
symmetries. Namely, a constant time hypersurface is homogeneous and isotropic.
This implies that an identification of contributions pertaining to the background or
the metric perturbations, in particular h,, is possible even when Agw =~ A. Gen-
erally, on these hypersurfaces, because of the symmetries present, one can apply a
SVT decomposition of the metric perturbations g, as above. Similarly to the case
above, on FLRW, the tensor part of the metric perturbations carries the two radiative

degrees of freedom, while scalar and vector modes cannot propagate (in vacuum).
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The decomposed parts of §g;,y do not couple at linear order, such that one can write
ds® = —d# + a?(t) (6;; + hyj)dx'dx’ . (4.16)

By the Stewart-Walker Lemma, h;; is gauge invariant as it appears only at the first
order in perturbation theory. In Eq. (4.16), h;; is to satisty h; = 0 = d;h;;. Being
symmetric, this leaves only the two GW polarizations as independent components.
The background (4.16) can now be inserted into (4.15). By keeping only the TT com-
ponent of the tensor perturbations and computing the relevant curvature tensors for
the background (4.16), one finds

; 1
hij(X, t) + 3Hhi]-(x, i') — paiaihij(x, t) = 16ﬂH£T(X, t) . (417)

The Hubble rate is given by H = 4/a and H;T is the TT part of the anisotropic stress
tensor, defined as I1;; = a2(Tj; — pa®(d;j — h;j)). In principle, Eq. (4.17) describes
the relevant dynamics of the propagating degrees of freedom sourced by I1;;. In
practice, in particular in the context of early Universe physics, it is advantageous to
switch into the Fourier domain as one eventually separates between perturbations
smaller or larger than the Hubble radius. The latter distinction highly affects the dy-
namics of the corresponding modes. For most GW sources in the early Universe, it
further holds true that their propagation time (up to detection) is much larger than
the time in which they are sourced. Consequently, interested primarily in propa-
gation effects for now, one can simply put H%T = 0. Working in conformal time
dn = dt/a, Eq. (4.17) turns into

(ZH

HY (k1) + (k2 - ;) Hy . (k,7) =0. (4.18)

In the latter equation, the prime denotes the derivative w.r.t. conformal time. The
comoving wave vector is denoted by k with k = |k|. The components H; » result
from the Fourier transform of the TT metric perturbations hij, ie.,

d3k , .
hij(X, t) = 2 /Whp(k, t)eilkxe’lpj(k) , (419)

p:+/X

+/
5 ) ij
€7 (k) = € (—k). They are dependent only on the direction of k, transverse to

if ij
it and are traceless, €, = 0. For h;j, it holds that h:-‘].(k, 1) = hij(=k,1).

with hjj(k,7) = a~'H;j(k, 17). The polarization tensors €;"* are symmetric, real and

i’
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To describe a particular era of the early Universe, one simply inserts the corre-
sponding scale factor a(7). The general solution of Eq. (4.18) is given by

hix (k1) = AZ%W()k)ﬂjnl(kn) + B;’(Xﬂ()k) nyn—1(kn), (4.20)

where j,;, y, are the spherical Bessel functions. The functions A », B4 x are dimen-
sional constants. The solution (4.20) is more insightful when computed in the limits
of super- (k < H) or sub-Hubble scales (k > H), where H = a’/a *. Using that
the early Universe is described by a power law scale factor a ~ 7", the Bessel func-
tion in (4.20) simplifies as #j,_1 — €7 and 5y,,_; — e ¥ in the sub-Hubble limit
k > H. Then, one finds decaying plane wave solutions for the spacetime metric
perturbation given by

1 Pk, o0 e — ik
hij(x,17) = mpgx/wefj(k)(flp(k)ek” x4 cc), for k>H, (4.21)

In the latter, the amplitude decay is caused by the factor a~—!. Note that the solution
does not include B x as, by the reality contition for h;;(x, 77) it holds that A, (—k) =
B, (k) and A;(—k) = Bp(—k).

On super-Hubble scales, a similar strategy yields

3 !
hij(xn) =), /%(Ap(k)Jer(k)/azd(%), for k<H. 422

p=-+,x
Here, the solution is composed of a term constant in time and another contribution
decaying with the growth of the scale factor. Solution (4.22) plays a crucial role when
it comes to GW emission in the early Universe. During the inflationary period, all
types of perturbation evolve, and due to the exponential expansion, a considerable
amount will be on super-Hubble scales. There, the exponential scale factor effec-
tively renders the term proportional to B, in (4.22) irrelevant and the modes stay
constant for k < H. Eventually, they reenter the Hubble radius after inflation and

form the so-called irreducible GW background. A more detailed explanation is pro-
vided in Section 4.3.1.

4.1.2 Stochasticity

The example of tensor perturbations created during the inflationary period begs
the question of how the corresponding metric perturbations of early Universe GW

“Note that these horizon limits correspond to ki < 1 and k7 >> 1 respectively.
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sources obtain their stochastic properties. Before answering this question, one needs
to define what it means for tensor perturbations hij to be stochastic. Generally, when
speaking of the SGWB, one refers to unresolved tensor perturbations h;; acting as a
random variable that is characterized statistically via the ensemble average. Natu-
rally, taking the ensemble average becomes impossible in practice as one only has
one set of instances, i.e., the observable Universe, to probe this random variable. In-
stead, one adopts the ergodic hypothesis, which effectively equates the ensemble av-
erage with a spatial or temporal average. Adapting this hypothesis, observations of
large patches of the Universe for long times replace the ensemble, yielding many in-
stances of the same system. These instances are what is averaged over, for example,
in Eq. (4.14). For the ergodic hypothesis to be approximately true, two conditions
have to be met.

First, the Universe must be homogeneous and isotropic, guaranteeing the same ini-
tial conditions for all (even causally disconnected) GW sources. This is guaranteed
by the definition of the FRWL background, which, by definition, is isotropic and
homogeneous. Note that this property is passed on to the distribution of GWs, such
that one can write the 2-point function of the tensor perturbations defined above as

(hij(x1, 1), B (x2,m2)) = Gijim (X1 — X2, 171, 172) - (4.23)

Being homogeneous and isotropic ensures that temperature and particle density do
not vary significantly, even beyond the causal horizon. Therefore, processes like
Phase Transition (PT)s happen everywhere in the Universe at the same time and
with the same outcome. The same is true also during inflation as the (quantum)
fluctuations evolve on an FLRW background.

Second, the GW sources must not violate causality. The latter is of fundamental
importance to ensure statistical independence of the above-mentioned instances, or
ensemble, and to be able to do meaningful statistics with such. In physical terms,
the causality constraint implies that GW sources cannot produce a signal correlated
beyond the length/time of the cosmological horizon at this time. Marking the time
of GW production with an index p, this condition is given by £, < H,, 1. Here, one
takes the Hubble radius as the cosmological horizon, which holds for all cosmologi-
cal epochs except for inflation®. Today, our observable Universe is much larger than
the redshifted scale at production, Hy ' > (1 + zp)H, ! with z,, being the redshift at
production. Therefore, the GW signals in the sky is composed of many uncorrelated

(in space and time) signals.

To form a reasonable statistical ensemle, the number of uncorrelated instances

The production of GWs during inflation is commented on below.
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of GW signals must be large. Determining this number, one estimates the fraction
of redshifted correlation length 62 against the Hubble radius today,

0 -1
AL NS L) (429
Hy' ~ H, \/Qm(zp) + Q) (2) + Oa(zp)

Here, Hy = 100bkms~'Mpc ™!, H(z) = v/Qm(z) + Q4 (2) + Qa(z), and O, a(2) =
Oy, / Perit With perie = 3HZ / (87). For GW sources active during the early phases of
the Universe, the radiation density (), dominates the square root in the denomina-
tor of (4.24). Assuming an adiabatic expansion (conservation of entropy per comov-
ing volume) and some early Universe cosmology (see [10] and references therein for
details), one finds that

1/3
~ 1013 8s(Tp) Tp
(1+zp) ~125-10 ( 100 ) <GeV , (4.25)
where g;(T) defines the Standard Model degrees of freedom with 3 light neutrinos®.
Together with
_ (T)T* (4.26)
Py = 30 8+ ’ :

where g.(T) is the effective number of relativistic degrees of freedom at temperature
T, it then follows that

gO 1/6
H—f~1.3'10“( 100 ) (GQV). (4.27)

o &s(Tp) Ty

Therefore, the correlation scale of GW signals sourced in the early Universe is small
compared to the Hubble radius today’. Computing today’s angular scale in the
sky corresponding to £,, ® = {,/d(zp), one uses the angular diameter distance
defined as

_ 1 /ZP dz’
T Ho(1+2zp) Jo /(@) + Q7)) + Ona2)

da (4.28)

This results in @;2 uncorrelated regions forming the ensemble to average over.

®In this calculation, one must pretend that the neutrinos were still relativistic today, see [10].

"Note that the latter was obtained by equating the correlation length with the Hubble scale at
production, ¢ p = H; 1. For inflation, this no longer holds as the causal horizon grows exponentially.
The stochasticity of the tensor perturbations sourced during inflation, therefore does potentially vi-
olate the causality constraint in this sense. Instead, their stochasticity follows from the quantum
nature of the perturbations, rendering them intrinsically stochastic.
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As an example, consider GWs emitted during the electroweak PT. One finds that
Tewpr ~ O(10%) GeV and gs(Tewpr ~ 100). It therefore follows that @ ~ 2 -
10711 degrees which, in turn, implies a superposition of at least 10?* uncorrelated
patches®. For this particular example, the signal can only be described statistically.
For explorations beyond its stochastic nature, it would require an instrument of an-

gular resolution of approximately ©y.

The assumption that the Universe is isotropic and homogeneous guarantees
that the GWs of a certain production mechanism are sourced everywhere at roughly
the same time but without causal contact. This same physical origin justifies the
ergodic hypothesis above and indicates that the replacement of the ensemble av-
erage with the spatial average is well-motivated. Indeed, one finds that this state-
ment holds even for much smaller energies compared to the electroweak PT. For
instance, at photon decoupling, zgec ~ 1090, one finds Og4e. ~ 0.9 degrees. The
latter still remains unresolved and yields a large enough quantity of patches such
that the stochasticity of the GW signal remains valid. In fact, it does so well into
the matter-dominated era of the Universe. Note that so far, the consideration has
remained purely spatial, which raises the question of the time resolution. With sim-
ilar considerations, one can characterize the signal in terms of a characteristic time
scale which, for now, we assume to be Aty ~ Hp_ 1 Redshifting this time interval
to today’s value, one finds that the scale of time correlation for GWs sourced by the
electroweak PT At%WPT ~ 8 h, while for the QCD PT, it is around 9 months. On
first glance, the latter result sounds like a reasonable time span for an observation.
However, in order to promote this type of GWs from a stochastic ensemble to a re-
solved source, one would need to observe a patch ®, for the duration At), which
remains impossible for today’s and (near-)future instruments. Potentially spoiling
subsequent Sections, it needs to be emphasized that there exist sources which con-
tinuously produce GW signals not violating causality, i.e., signals which are causal
but not localized in time. It will be demonstrated below that, in contrast to time-
wise localized sources, they extend over many frequencies due to the source being
“active” during multiple Hubble times. An instance of such are topological defects,
in particular, Cosmic Strings (CS). For these types of sources, the stochastic nature
naturally results from the superposition of multiple horizons that, at each time ¢, fit
within the Hubble radius of today H, L

Besides homogeneity and isotropy, the above properties also render the SGWB
to be statistically Gaussian and unpolarized. The former is a direct consequence of

8Here, this establishes a lower bound because of equating the correlation lengths with the Hubble
ratius as troduction, when, generally, it holds £, < H’; 1
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the central limit theorem. The large ensemble of uncorrelated patches of GW signal
originating from the same production mechanism at time ¢, can be viewed as inde-
pendent samples. By the central limit theorem, their distribution converges towards
a Gaussian. The unpolarized nature of the SGWB follows from the absence of any
significant source of parity violation in the Universe. The majority of primordial
GWs is sourced by interactions that are symmetric under parity. Therefore, their

polarizations must be uncorrelated such that

(hy(k,17), hx (k7)) = 0. (4.29)

The criteria can equally be formulated in a helicity basis. Then, Eq. (4.29) can be
translated to the two helicity £2-modes having, on average, the same amplitude, or,

equally, the same expectation value.

The above features of the SGWB, i.e., being homogeneous, isotropic, unpolar-
ized, and Gaussian, are all rooted in solid motivation and approximately hold true
for the majority of cosmological sources. Yet, there can be exceptions to the norm.
Besides tensor perturbations from the inflationary period, these instances will not be

discussed in this work. We refer to [10] for an exhaustive treatment in this regard.

4.1.3 Background Characterization

As discussed above, for the majority of primordial GW sources, the random variable
hy x(k,n) follows a Gaussian distribution. This implies that all the information

about the random variable is encoded in the 2-point function

. 8°
(Ip (1), iy (q,1)) = =576 (K — Q)8 (K, 7). (4.30)

while all odd-point functions vanish. Non-vanishing higher-point functions can be
expressed in terms of h. The latter is dimensionless, real, and depends only on the
absolute of the wave vector k. The delta functions in wave vectors and polarization
are a direct consequence of homogeneity, isotropy, and uncorrelated polarizations.
Note that here a particular normalization was chosen, hence the factor of 87r°. This
factor can vary across literature and needs to be carefully considered in relevant
computations. Applying the Fourier transform to Eq. (4.30), i.e.,

© dk
(o), i) ~ [ S92 ) @31)
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one finds that /1 can be interpreted as the GW amplitude per logarithmic wave vec-
tor and polarization at time 7.

In literature, it has further established common practice to characterize a given con-
tribution to the SGWB by its energy density spectrum per logarithmic wave vector,
dpcw/dlogk. Applying similar logic as above, it holds that

(4.32)

- (i (x,77), 1] (x,17)) _/ dk docw

32ma®(n 'k dlogk”

Eq. (4.32) is obtained by direct computation of §Tpg as above, where the average is to
be understood as an ensemble average under the ergodic hypothesis. For practical
calculations based on observational data, the wave vector in Egs. (4.30) and (4.32)
has to be converted into the frequency measured by the observing instrument. One
finds f = k/(2ma(np)), where a(1y) denotes the scale factor of today. Given the
amplitude is converted into redshifted frequency, h(f) = h(k,7), one can further
define the spectral density as

2
Su(f) = %f) (4.33)

In particular, in instrumental considerations, the spectral density plays a significant
role and is often used to characterize the GW signal, see Section 4.4. It has unit Hz
and can be related to the GW energy density spectrum as

Qcw(f,10) = :;ﬁg\}(k 0) = f3 n(f). (4.34)

In literature, the frequency dependency of the tensor perturbation #;; is often intro-

duced already at the level of the Fourier transform. Then, Eq. (4.19) is replaced
by

hixt) ~ Y / df / Ky (k, £)e L (k). (4.35)
=T, x

Note that in (4.35) the integration over negative frequencies ensures that /;; is real
by virtue of h,(k, — f) = h;(f(, f). The notation (4.35) can be utilized to demonstrate
a crucial fact about GW energy density spectrum. Using the solution for tensor
perturbations on sub-Hubble scales, compare Eq. (4.21), one can demonstrate that
for this free wave solution, the energy density spectrum scales as pgw ~ a4, while
the shape of the spectrum remains unaffected by the propagation. The evolution of
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the wave number, k ~ a~!, yields a shift of the spectrum in frequency. It holds that

4
_ ap\" (1 dpgw \ _ —4 (1 dpcw
Qcw(k) = pp (ﬂo) <pcdlogk)p = pp (1+2p) (pcdlogk X (4.36)

where p, denotes the total energy density of the Universe at the production time ¢,

of the GW source of interest.

When describing a particular source of contribution to the SGWB, one usually
resorts to QQgw as a function of frequency. The resulting shape of Qgw is unique
among most of the sources. A common systematic of the spectrum is given by
the correlation length of the GW source at the time of production £, (given the
source is localized in time). For the majority of sources, £, can be associated with
a peak or another feature within Qgw. The location of such a feature in frequency
space is constrained from above by virtue of {, < H, 1. Thus, one expects that
freature > (1+ zp)_al /(2m). Similar logic applies to signals not localized in time,
such as GWs from CS. Here, the fact that the source radiates over an extended period
of H,/ (14 zp) leads to an almost plateau-like extent of the spectrum over frequency.
A detailed depiction of the energy density spectrum of CS follows in Section 4.3.2.
The relation between correlation length and spectral features of GWs enables an im-
portant prediction for GW experiments. Namely, one can relate a certain epoch of
the early Universe to a frequency range of GWs as it is recorded today. For a small
selection of experiments, the relation is displayed in Fig. 4.1. The plot highlights
two crucial insights. First, each GW experiment covers a specific epoch of the early
Universe in terms of sensitivity w.r.t. the GWs produced during this period. Second,
the detection of GWs allows for insights into the early Universe well before photons
decouple. As gravitational radiation is practically not affected by any form of mat-
ter, there is no opacity, in contrast to the photons case, which prevents looking into
the earliest stages of our Universe.

414 Example: A generic source

So far, most discussions have been focused on the propagation and characterization
of tensor perturbations identified with the radiative degrees of freedom of the grav-
ity sector. In this subsection, the sourcing of such GWs via the tensor anisotropic
stress I1;;, see Eq. (4.17), is outlined. To that end, one starts by decomposing I1;; as
before, similar to the metric perturbation hij, such that

%K e
M= Y [ ((;T)T)Hp(k,t)elkxefj(k). (437)

p=+.x
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FIGURE 4.1: Frequency-Epoch relation for LIGO, LISA, PTA and the
CMB [10]. The colorized regions mark the corresponding sensitivity
domains of the corresponding experiments, the black line denotes the
characteristic frequency f ~ (1 +z,) 'H, or, equally, as a function of
temperature f ~ T).

If one assumes that the stochastic properties of h;; are already inherent at the stage of
source generation, the L1;; as well is isotropic, homogeneous, Gaussian distributed,
and unpolarized. Therefore, it is equally well-described by the 2-point function

!/ 2 3 /
(100 ), 13 (@ 1)) = P60 (k- g, TPy, @38)

where a different normalization in this case was chosen for convenience. The prop-

agation Eq. (4.18) under the activation of a source I1;; becomes

a//

HY , (k,7)+ (k2 — 7) Hy «(k,7) = 16ma’TL, « (k,717) . (4.39)
Consider now a source during the radiation-dominated era, i.e., a() = a,#, and
introduce a dimensionless variable { = k#. Then, (4.39) reduces to

42 167ta3 (3

d_ng—T-,X (k/ C) + Hry,x (k/ g) = k—5,yn+,>< (k/ C) . (4-40)
Defining a start and endpoint of GW production (again, assuming the source acts
localized in time) as {; = k7j; and (¢ = kij¢, one finds two branches of the solutions,
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for { < éfand§> Cfr

1677‘17 C 171713 / /
I B R T

Al/x( )cosZ + B] , (k)sing >y

Matching these branches at (¢ one finds a solution for the amplitides AT 4% Bl,x
From the solution for Hl/x , one finds a solution for & « (k, ) which can be plugged
into the 2-point function (4.30) to obtain, in combination with (4.38)

h%(k,no>—642—k7 [ ace [T ageteos @ -, )

and thus

docw (k, 10) = —k3 " ana®(n) [ dya®(p') cos (k(n — )Mk, ') . (443)
dlogk ! 7'[(10 i i 7

The index <y indicates the source being active during the radiation-dominated phase.

The above procedure holds in all generality and can be repeated for any source
of stochastic GW given that the anisotropic stress tensor I1;; is known. Naturally,
depending on the era in which the source produces GWs, the scale factor has to be
adapted, which may change the solutions of (4.39). Note, however, that the change
in scale factor predominantly affects the scaling of the spectral density. In the follow-
ing two Sections, a series of sources are presented for which the derivation above is
applied. As the main interest in this Chapter is the resulting energy density spec-
trum, for any concrete derivations of Hij for such sources, the reader is referred to
[10] and references therein.

4.2 Astrophysical Sources

The cosmological contribution to the SGWB encompass a plentiful of unprecedented
information about the early Universe. However, it is to be expected that these con-
tributions are overshadowed by much “brighter” astrophysical background con-
tributions. These signals, at the same time, hold important insights into structure
formation and physics of compact objects, and act as noise, masking the primordial
stochastic background contributions. Because of the latter, astrophysical contribu-
tions are sometimes called foregrounds. Generally, they result from a superposition
of a large number of unresolved sources, which are either too faint or overlap in

time, preventing a resolution of individual contributions. As they are connected to
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astrophysical compact objects, their signal cannot be older than the dawn of stellar
activity. Therefore, the detection of the astrophysical background may be insightful,
for instance, regarding the star formation history.

As it was concluded before, the cosmological background is homogeneous,
isotropic, unpolarized, and Gaussian. The nature of the astrophysical contributions
may not necessarily include the same attributes. First and foremost, the signals re-
sult from large-scale structure in the relative vicinity to Earth (~ 100 Mpc). On such
scales, galaxies are not distributed isotropically. Further, for astrophysical sources,
it is not given that they form a continuous signal. As they are sourced by individual
mergers of compact objects which are too far to be detected but too “loud” to be
ignored, the time interval between events could be much larger than the duration of
a single GW event. Depending on this ratio, a given source may exhibit distinct sta-
tistical properties when forming a stochastic background. To characterize the radio
between a signal’s duration and the time passing between successive events, one

computes the so-called duty cycle [55]

dR°(2)

z
A(z) = /0 dz’r(l—kz’)T.

(4.44)
Here, T denotes the average time scale of an event actively producing GWs, and
dR°/dz is the number of sources per unit time and redshift interval’. Depending on
Eq. (4.44), which can also be understood as describing the average number of events
present at the detector at a given observation time, GW sources can be characterized
into continuous signals, shot noise, or “Popcorn”. The first describes frequently ap-
pearing signals with small time delays between events compared to the duration of
an individual one. As an ensemble, for such sources, because they are so numerous,
the central limit theorem can be applied and the resulting distribution is Gaussian.
The second category, shot noise, includes sources which are less numerous such that
the time interval between events is long compared to the production time of GWs
of a single event. The incoming signals are separated by extended periods of si-
lence. The popcorn-type sources describe an intermediate case between shot noise
and continuous signals. For those sources, the time duration of an individual event
is of similar magnitude to the interval between events. Even if some waveforms
overlap, the statistical distribution cannot be assumed to be Gaussian anymore. In
the following, it is assumed that the sources mentioned form a continuous signal.

Shot noise and popcorn-like sources are treated as confusion noise from now on.

9The function R° is naturally very much orientation dependent because of the anisotropy in
astrophysical sources. In the latter equation, this dependence was integrated out.
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Before diving into individual types of contributions to the astrophysical back-
ground, one should point out that there is a clear difference regarding the detection
of such sources w.r.t. electromagnetic signals. While radio telescopes have to scan
large regions of the sky to capture the full signal, GW interferometer receives the sig-
nals of events no matter their direction in the sky. Although by construction, they
have a favorable orientation, physically, sources from every direction can reach the
detector. The latter is particularly important when thinking in terms of a stochastic
background. As signals from all directions can penetrate the detector at any given
time, it is much harder to disentangle even very localized sources if they are numer-
ous enough, just as it is the case for the continuous-type signals mentioned above.
Instead of an individual resolution, therefore, treating such a conglomerate of sig-
nals as a background can be beneficial. Note, however, that in this case the best way
of detecting the signal is via cross-correlation of measurements of multiple detec-
tors. A prime example of this instance are PTAs. A more detailed description of the

recent findings is provided in Section 4.4.

In principle, there is an abundance of possible astrophysical backgrounds in
literature. For the purpose of this Chapter, the most significant contributions are
singled out. Note that, as for the cosmological contributions, different astrophysical
contributions occupy different regimes in frequency space. Therefore, not all sources
are equally relevant for all instruments, as the latter have comparably narrow sensi-
tivity curves. In the following, for each source, relevant instruments are indicated.
For detailed studies of astrophysical contributions to the SGWB, the reader is re-
ferred to [55, 375, 376, 377].

4.2.1 Stellar Mass Binaries and Extreme Mass Ratio Inspirals

Stellar-mass binaries emit GWs primarily during their inspiral and merger phases.
While individual events from these binaries have been detected by ground-based
observatories like LIGO, the collective signal from numerous such binaries across
cosmic history contributes to the astrophysical background. In the higher frequency
bands, particularly above the mHz range, the GW background from stellar-mass bi-
naries becomes more significant. Generally, one differentiates between binary BHs
and binary NS (BNH)!?. The former are expected to form a popcorn-like noise, the

19Note that also BH-NS binaries are a valid option here. However, there is some uncertainty in
their identification of measurements so far. Further, the signal from stellar mass binaries is expected
to be dominated by BH and NS binaries (see, for instance, [377]). Thus, the BH-NS binaries are not
considered here.
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latter a continuous signal due to a large overlap in time. The energy density spec-
trum for these sources is described by [376]

~ f A ° dRO/dV(Z, Q) dEGW A
Qow(f) ~ /SZdQ/o ESNONCENOR (F(142),Q), (4.45)

where dR°/dV is the source formation rate per unit comoving volume as a func-
tion of redshift and dEgw /df is the energy emitted per frequency. Both quantities
are direction-dependent, hence the integral over the sky. The expected frequency
range of this background component peaks around 10 Hz to 1 kHz. Therefore, it lies
within the regime of sensitivity of ground-based detectors such as LIGO and the
third-generation Einstein Telescope (ET) [216, 360]'!. Leading up to the peak, the
spectral energy density roughly follows a power law Qcw (f) = Qyer(f/ fref)®. The
corresponding components (¢, &, frof are determined by simulations. So far, the
LIGO collaboration has only been able to establish upper limits on the astrophysi-
cal background from BNSs and BBHs, i.e., Qgw < 10~8. The latter are expected to
strongly improve within the upcoming years [11]. The current status is depicted in
Fig. 4.2. For the ET, all types of binaries, NS, BH, and NS-BH, are expected to lie
within the sensitivity of the instrument [377].

Despite the background from stellar-mass binaries peaking around slightly be-
low the kHz regime, this contribution propagates all the way into LISA’s sensitivity
band of around O(107%) to O(1072) Hz. In there, it appears as a constant exponent
power law [376]. The background is expected to constitute a very loud contribu-
tion w.r.t. astrophysical sources [378]. Note, however, that with the upcoming local
measurements of LIGO and other detectors, it is expected that precise modeling of
this background will allow for an efficient handling in LISA. The latter explicitly
refers to the treatment of astrophysical contributions as confusion foregrounds in
the context of searches for cosmological contributions to the SGWB. In addition to
stellar-mass binaries, the intermediate frequency regime (O(10~%) — O(10~!) Hz)
covered by LISA’s sensitivity band is victim to various other compact binary GW
sources. The signal expected to be largely dominant amongst such contributions re-
sults from white dwarf-white dwarf binaries within the galactic vicinity to LISA.
It is expected that up to O(10%) white dwarfs in the Milky Way contribute to a
monochromatic background in the LISA band, dominating even the instrumental

noise of the apparatus [379]. The density spectrum thereby has negative power over

1The sensitivity in frequency range is roughly inversely proportional to the arm length of GW
interferometers. Thus, ground-based instruments having the shortest arm lengths are sensitive to
the largest frequencies. On the other end of the spectrum are PTAs, where the effective arm length
is given by the distance between involved pulsars, making them sensitive to the nHz regime. LISA,
with arm length of O(10°) km is sensitive to O(10~2 — 10~!) Hz.



220 Chapter 1V. Gravitational Wave Backgrounds

1077 5 ;
=== NSBH Upper Limit
1078 5
=
= |
SHRIUNE
10710 :
=== Upper Limit with NSBH ==+ Design A+
- ;
10! 102 10% 10! 102 103
f (Hz) f (Hz)

FIGURE 4.2: Model predictions for the astrophysical background from
BBHs, BNS, and NS-BH binaries along with sensitivity curves of LIGO
detectors [11]. The left panel shows the 90 % confidence interval for
backgrounds sourced by BBH and BNS mergers. Uncertainties are due
to the merger rates and mass distributions. The right panel compares
background energy densities with LIGO sensitivities of observation
runs O2 and O3. In addition, predictions for new designs of the LIGO
instruments are shown in grey dashed lines. Again, the blue shaded re-
gion marks the 90% confidence interval for the joint contributions from
BHNSs and BBHs.

the relevant frequency regime. For optimistic rates of white dwarf-white dwarf GW
sources, the background is found to increase LISA’s overall noise level by a factor of
~ 2 in the domain of 1-10 mHz [55].

Another highly relevant contribution in a similar bandwidth as white dwarf
binaries are extreme mass ratio inspirals (EMRIs). EMRIs usually form when a
massive BH of M ~ 10° — 10’ M, captures a less massive stellar-mass BH m ~
10 — 50M. Such events are generally expected to arise in dense galactic centers.
However, the precise astrophysical processes leading to the formation of such sys-
tems still remain poorly understood, resulting in large uncertainties in the predic-
tion of the cosmic rate of these sources, spanning at least three orders of magnitude
[380, 381]. It is estimated that between 1 and 10* events will contribute to the back-
ground per year. Thereby, one has to clearly differentiate between resolved and
unresolved events. For redshift z < 1, EMRIs can be individually resolved. Due
to their extreme mass ratio, these systems inspiral incredibly slowly. Completing
up to 10° cycles in LISA’s sensitivity band, EMRIs source the ideal background to
construct maps for massive BHs, perform tests of GR, and perform tests of matter
present around the central massive BH. For z > 1, the signals of EMRIs fall below
the detection threshold, adding up to an unresolved confusion noise contributing
to the astrophysical SGWB. In [381] it has been shown that for most astrophysical
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models, this background is easily detectable with LISA with an SNR of O(100). In
fiducial EMRI models, the background reaches magnitudes comparable to the LISA
noise around 3 mHz. Throughout literature, the spectral density power law fol-
lowed by EMRIs varies between « = 0 and « = 2/3 with Qgw ~ f* in the LISA
band due to the uncertainty in the models.

4.2.2 Collapsing and Rotating Stars

After a star has burnt all its combustible material, it may explode via a type Il super-
nova, shedding large amounts of mass and leaving behind a massive core that can
collapse to form either a NS or BH, depending on the initial mass. In this process,
large amounts of GWs are emitted. The estimation of these types of backgrounds is
rather difficult due to the large uncertainty in the waveforms and usually relies on
compley numerical simulations. The GW content thereby strongly depends on the
initial properties of the progenitor, such as mass and spin. While for core-collapse
into Neutron Stars (NS), the GWs are emitted due to the rapid compactification of
large amounts of stellar material, for the core of the star collapsing into a BH, the
GWs result from the ringdown of the newly formed perturbed BH. Depending on
the exact shape of the waveform, conservative estimates predict a spectral energy
density peak of Qgw ~ O(10712) for the collapse into NS and Qgw ~ O(10~?) for
collapse into black holes [55] (and references therein). The spectra peak between 100
Hz and 1 kHz, which again falls into the sensitivity of ground-based instruments.
For a recent study on potential detection prospects with (advanced) LIGO and ET,
the reader is referred to [382]. To obtain these results, one usually relies on nu-
merical simulations and the input of the most relevant properties of the progenitor.
In literature, simulations commonly use masses between 1M, and O(100) My, for
simulating both collapse to NSs and collapse to BHs.

Besides GW emission from collapse, the rapid rotation of massive NS with tri-
axial shape induces a quadrupole moment, leading to the GW emission at two times
the rotational frequency v. While radio pulsars are less prone to contribute signif-
icantly to a GW background, magnetars can form strong contributions within the
sensitivity band of Earth-based detectors, enhanced by their magnetic torque [55].
Such a magnetar-background can be shown to peak at roughly 760 Hz and with a
spectral energy density of Qgw ~ 2 -1078, strongly depending on the star’s ellip-
ticity and magnetic field [383]. Reaching a maximum in this frequency regime, the
magnetar-induced background contributions are likely to be observable with the
ET. Besides the emission of GWSs purely due to rotational motion, in some instances

of core collapse supernovae, an enhanced gravitational radiation can be caused by
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FIGURE 4.3: Spectral energy density of the SGWB from single star col-
lapse (dashed) and from merger events (solid) [12]. The signals from
collapse primarily result from the ringdown of the newly formed BH.
The colors of the respective category describe a specific model for star
collapse and merger. For details, see [12].

post-collapse processes involving (dynamic) instabilities such as bar modes, r modes,
or collapse to quark matter. As these phenomena reach beyond the scope of this Chap-
ter, the interested reader is referred to [55].

4.2.3 (Super)-massive Black Hole Binaries

Just as EMRIs, super massive BBHs (SMBBH) can be both resolved individually and
contribute to backgrounds in a given frequency regime. While resolved events lay
within the LISA sensitivity band for BH masses in the range of 10° — 10’ M, leading
to very loud signals, SMBBH with masses above this range (107 — 10’ M) typically
lead to an unresolved background in the nHz regime, i.e., within the sensitivity band
of PTA. While the key processes behind the formation of SMBBHs are still unknown,
it is most likely that they form during the merger of galaxies, with the massive BHs
at the core of each galaxy being the protagonists. As for EMRIs, the still somehow
mysterious conditions under which SMBBHs form lead to large uncertainties in the
expected rates for resolved events ranging from 0.5 to 100 events per year (e.g.,
[384]). Yet, if detected, the signal duration can reach up to months, establishing
excellent tests of GR as well as galaxy evolution and high redshift cosmology, z >
6. The background contributions form SMBBHs, on the other hand, are generally
less sensitive to the differences between their formation models and fall within the



4.3. Cosmological Sources 223

1076 L
1077

108 ¢

Qgw

109 .

10—10;
e

10-11E

0t 00l 1
f/Hz

10-8 1076

FIGURE 4.4: Mean spectral energy density from massive and super-
massive BH binaries in comparison to different experiment sensitivities
[13]. The dashed line demonstrates the accumulation of all GW signals
of galactic mergers with BHs heavier than 10°M,. The shaded regions
mark the sensitivities of the respective experiments. For individual ref-
erences on such, see [13].

detection threshold of PTAs (see Section 4.4 for more details on recent PTA results)
[384, 385, 386]. The spectral energy density of the SMBBH background is expected
to follow Qgw ~ f2/3 between 10~ — 107 Hz.

4.3 Cosmological Sources

Hidden behind the dominant astrophysical background lies the cosmological SGWB.
Encompassing unprecedented information about the very early stages of the Uni-
verse, in particular pre-CMB signals, a detection of the cosmological background
has the potential to shed light on the remaining dark spots of modern-day cos-
mology. The ensemble forming the cosmological background consists of various
distinct sources producing gravitational radiation since the inflationary period up
until today. Thereby, one differentiates between the irreducible GW background and
reducible background components. As suggested by the name, while the former es-
tablishes a fundamental (almost featureless) background radiation, in other words,
a noise floor, reducible components can, in principle, be subtracted from the total
measurement data due to particular delineating features such as highly localized
peaks in the spectral energy density. In the following, the irreducible as well as
multiple contributions of the reducible primordial GW background are explored.
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Thereby, the discussion predominantly relies on [10]. Where fitting, additional ref-
erences are provided. In principle, there is a large number of potential sources of
gravitational radiation in the early Universe in the common literature. However,
for the purpose of this work and being mainly focused on a potential detection of
GW backgrounds with LISA, in particular in Section 4.4, the discussion is narrowed

down to what is considered most helpful in understanding the remaining Sections.

4.3.1 The irreducible Gravitational Wave Background

It is common ground in cosmology that the Big Bang was followed by a prolonged
phase of rapid expansion, called Inflation, resolving many shortcomings of the Big
Bang framework [387, 388, 389]. Its major success can be attributed to explaining
the origin of primordial density fluctuations by stretching out quantum fluctuations
into the classical regime. These primordial perturbations act as seeds for the forma-
tion of structures in the Universe, leaving imprints, among other probes, in CMB
data. The very same (quantum) perturbations that stretched out during the infla-
tionary period, however, not only imprint electromagnetic backgrounds, but also
produce an abundance of unresolved gravitational radiation. Generally speaking,
for any field with mass smaller than the Hubble rate during inflation m?> < H?,
quantum fluctuations are expected to occur on sub-Hubble scales, k > aH. Indepen-
dent of their nature, these fluctuations are stretched to super-Hubble scales k < aH
during inflation and eventually reenter the Hubble radius at a later time, during ra-
diation domination. This in particular also holds for massless tensor perturbations
of the metric, which, post-reentry, turn into the classical irreducible GW background
with a quasi scale-invariant spectrum (thus dubbed “irreducible”).

To characterize the irreducible background, it is instructive to review some
trademarks of the inflationary period: In the simplest models, inflation is triggered
by a single inflaton scalar field ¢ slowly rolling down a potential V(¢) and mini-

mally coupling to gravity. The action describing such slow-roll inflation model reads

5= / dir\/—g (16%12 - %aP‘(pay(p - V(cp)) . (4.46)

To yield an inflating Universe, the kinematic energy of the scalar field needs to be
dominated by the potential energy, ¢* < V(¢). For this period to last sufficiently
long!?, the acceleration must be suppressed w.r.t. the fields velocity per Hubble

12Here, the criteria for sufficiency are mostly derived from the challenges inflation is constructed
to solve. In literature, its duration is often quoted to lay between 50-60 e-folds corresponding to an
expansion by a factor of ¢ ~ 10%2.
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time, |¢| < |¢|H. Together, the latter conditions define the slow-roll parameters

3 2 .
€¢ = E(Pv, 7]4; = —hi;.b. (447)

For inflation to be present, both ¢y < 1 and 7y < 1. If one were to solve the
Friedman equations, including the inflaton field and its potential, a similar slow-
roll parameter can also be defined in terms of only the potential and its derivative.
Either way, the € can be understood as controlling the deviation from the pure de
Sitter Universe (wWhere H is constant), i.e.

H

X

(4.48)
which is very small. This implies that instead of entering a regime of perfect expo-
nential growth a(t) ~ ef!, the Universe during inflation grows quasi-exponentially,
i.e., the Hubble rate decreases very slowly with time AH/H ~ eAN where N is the
number of e-folds. To deduce the behavior of metric perturbations within the in-
flationary regime, one can expand the pure gravitational part of the action (4.46) to
second-order in /;; and on an expanding background. With a few standard textbook
quantization procedures [10], one finds that while tensor fluctuations oscillate on
sub-Hubble scales, they freeze out and are constant in time for k < aH. For the GW

field h;;, written as
Wi _ dSk h ikx Wt —ikx 4t p k/|k 4.49
soom = L 7 (e gy + (e ™, ) e/ IK), - @449

where Ay, p. fzf(/ , are creation and annihilation operators, the distinction between sub-
and super-Hubble propagation is mostly captures by the amplitudes hy. For in-
stance, for modes leaving the horizon during inflation, the amplitude remains, to
good approximation, constant in time, i.e.,

H

which is in agreement with the findings at the end of Section 4.1.1. As the modes re-
enter the Hubble radius at a later time, k = a;Hy, the latter evaluated at the instant
of Hubble radius crossing will provide the initial condition for the evolution of the
modes post-re-entry.

For the computation of the spectral energy density for the re-entered GW modes,

it is convenient to define the tensor power spectrum first. Similar to the first Sections
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(in particular 4.1.2) of this Chapter, one defines

2772

(Ol (e, 1)y (K, 7)[0) = =3Py (k)8 (k — K), (4.51)
such that
. . dk
(Ol (x, )i, 1)10) = [ TPulb), 45

and P, denotes the tensor power spectrum. At horizon crossing, k = aiHj, the
power spectrum is proportional to the Hubble scale at that time, i.e., Py (k) ~ HZ.
As it has been demonstrated in previous Sections, the super-Hubble modes behave
like a classical random field. Therefore, the average in (4.51), again, can be under-
stood as an ensemble average over a stochastic field. Thus, the power spectrum P,
relates to h? in Eq. (4.30). At this point, it is worth mentioning that similar pro-
cedures can equally be applied to scalar perturbations of the metric generated from
inflation. These play a fundamental role in structure formation in the early Universe
as well as the generation of primordial black holes (PBHs). Equally to the GWs, these
curvature perturbations R are conserved on super-Hubble scales [390] and their
power spectrum, following a similar definition as (4.51) and (4.52), is proportional
to the Hubble radius at crossing, i.e., Pr (k) ~ H? at k = a;Hy. The ratio between
powers in scalar and tensor perturbations from the inflationary period is commonly
expressed as

_ Pu(k)
Pr(k)’

r

(4.53)

and assumed to be small in slow-roll inflation models, i.e., 7, ~ € at k = a;H;. In
single-field slow-roll inflation models, the ratio 4 can be related to the scaling in k
of the GW power spectrum (see [10] for details). In fact, one finds that, depending
on the mode, Py, (k) ~ k") with ny(k) = —r;/8. This prediction is remarkably
resistant to micro-physical changes in the potential that drives the inflaton field. Itis,
however, rather sensitive w.r.t. the scalar fields involved or the vacua prescriptions
deep within the inflationary period (i.e., deviations from the standard Bunch-Davies
vacuum). Therefore, the relation between the #;(k) and the ratio (4.53) establishes a
unique verification of a simple inflationary model and a definite proof of the concept
of inflation itself.

The ratio r in (4.53) is very tightly constrained by CMB data, in particular for
modes crossing during radiation domination. These constraints allow for transla-

tion into bounds on the spectral energy density of primordial GWs, making use
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FIGURE 4.5: Left panel: scale factor for radiation and mapper dom-
inated Universe (blue and red curves respectively). The dashed line
represents the scale factor at equality, the black line depicts the scale
factor of a Universe transitioning between radiation and matter dom-
ination. Right panel: spectral energy density of tenor perturbations
resulting in GWs, normalized by P (k). The orange curve represents
a numerical solution, the blue curve an analytical approximation. The
black curve is an approximation, averaging out the oscillations, while
the dashed curve depicts a result from [14]. Note in particular the os-
cillatory nature of this background contribution. The graphic is found
in [10].

of some additional assumptions about regarding, for instance, relativistic particle

species [10]. It is found that an upper bound is given by

H 2
Ocw ~5-10716 (—") ) (4.54)

where Hj is the Hubble rate dt the time when CMB scales leave the horizon and
Hyar &~ 9 - 1013 GeV, the maximum Hubble rate validating the CMB constraints, i.e.,
converting the maximum tensor-to-scalar ratio (4.53) into a Hubble radius via the
Friedman equations. Being the upper bound, (4.54) demonstrates that even in the
most favorable case, there is no instrument near the required sensitivity to pick up
the scale invariant tensor spectrum today. In reality, this spectral energy density may
even fall way below the bound (4.54), being further reduced by the sub-inflationary

evolution of the Universe.

As it was demonstrated in Section 4.1.1, upon re-entry inside the Hubble ra-
dius post-inflation, the amplitudes of the modes start oscillating and decay as 1/a(#),
starting from the initial value at k = a;Hj given by (4.50). The exact nature if this
oscillation is thereby influenced by the period in which the modes re-enter the hori-
zon, i.e., during radiation or matter domination. To accommodate for both cases, the
full solutions incorporates a transfer function T (k, 7o) differentiates between scales
k > k. and k < k. where k. approximates the scales entering the horizon at which
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am(7) and a,,(17) cross [10]. In the spectral energy density, the transfer function then
appears quadratically as it multiplies the amplitude of the tensor perturbations #;;.
One finds

1

= —— T (k,1ny)*P; (k). 4.
12H(2)11(2) ( /770) ph( ) ( 55)

Qcw (k)

Note here that one usually approximates T’(k,19)> =~ k*T(k, 1) due to the os-
cillatory behavior of the tensor modes on sub-Hubble scales. By performing an
oscillation-averaging procedure, on sub-horizon scales kijg > 1 (where 79 corre-
sponds to today), one finds [391, 14]

n2/(2m), k> ki

T,(k, 170)2 — ,
9/(2n3k?), k< k.

(4.56)

where 77, = 1/k,. Computing the energy density (4.55) using the latter transfer func-
tion in the sub-horizon limit (4.56), one finds that the energy density spectrum today
scales as k=2 for modes that entered the horizon during matter domination, while
for modes entering earlier, during radiation domination, the spectrum appears to be
almost perfectly flat. Fig. 4.5 illustrates this transition and the associated features.
It should be emphasized that these results have neglected multiple effects that may
or may not yield substantial corrections to this behavior. In particular, it is derived
without going beyond the Standard Model of particle physics and cosmology. A
more thorough treatment would discard, for instance, the assumption that the tran-
sition between radiation and matter domination happens instantaneously; late-time
expansion would need to be addressed, and free-streaming neutrino species have to
be acknowledged. Perhaps most importantly, the period of reheating immediately
following inflation in the cosmic history needs to be modeled in detail to obtain a
precise spectrum for the irreducible background. All of the mentioned issues have
been adressed in literature and can be found summarized in [10]. In particular, the
period of reheating is well-known to also leave other potentially more feature-full
contributions to the cosmological GW background. In this context, various types
of corrections to the results presented above have been presented to literature, e.g.,
[14, 392, 393, 394, 395].

4.3.2 Beyond the irreducible Background

In Section 4.3.1, it was demonstrated that according to the simplest cosmological
models for inflation, a “fundamental” background of GWs is established early on in

the cosmic history. Naturally, over the subsequent evolution of the Universe, many
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more layers will be added to the cosmological GW background. In this Section, the
contributions of particular interest arise due to PBHs, topological defects, and first-
order PTs. The treatment will remain superficial, and more thorough calculations
can be found in [10]. However, before shifting the focus away from the inflationary
period, it is instructive to mention that significant deviations from the above demon-
strated scale invariance of the irreducible background from inflation can arise if new
particle species or symmetries are present during this period of rapid expansion.
In contrast to the irreducible part, these contributions strongly depend on the un-
derlying modifications to the standard scenario of Section 4.3.1. The main drivers
of modifications to inflation’s background contributions are the presence of addi-
tional fields leading to particle production, new symmetry patterns allowing, for
instance, for short-term graviton mass, or generally alternative theories of gravity.
While some modify the tensor perturbation described above (for instance, through
the presence of spectator fields), other sources add gravitational radiation on top
via separate production schemes. For the latter to emit GWs during inflation, ten-
sor anisotropic stress must be present. As GWs are diluted on sub-Hubble scales,
contributions of such kind are only meaningful if generated sufficiently close to the
Hubble scale. A candidate checking all boxes in this regard is, for instance, the par-

ticle production during inflation.

Particle Production During Inflation

The emission of GWs by particle production during inflation is made possible by
the time-dependent background established as the inflaton rolls down its potential.
This background carries sufficient energy to produce light species of particles. In-
dependent of the particle species, i.e., scalar, vector, or fermionic, the relevant field
necessarily couples to the inflaton with its mass vanishing at some time t;, mark-
ing the time of particle production. The latter is achieved by selecting mass terms
of the form g¢(¢ — ¢o) Py where ¢(ty) = ¢ and ¢ can but not necessarily has to be
the inflaton. The GW features corresponding to particle production added on top
of the irreducible background spectral energy density are expected to arise around
the frequency today corresponding to time ty. For such mass term couplings, par-
ticle production usually happens quite rapidly around the time ¢;. A continuous
or sustained particle production can be obtained by coupling the inflaton to the
derivative of, for instance, a gauge field. An exemplary interaction term would be
Lint ~ ¢F, F*'. The factor of proportionality is a dimension-full constant A, subse-
quently denoted as the inflaton-gauge field coupling. These types of models have
gained significant attention in literature, see [10] and references therein. In these

models, the standard GWs from vacuum fluctuations and the additional sourced
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GWs created by the excited gauge fields are statistically uncorrelated. For illustra-
tion, an instance of a GW background caused by such an interaction is displayed in
Fig. 4.6. Instead of contributing a localized feature, as for the explosive particle pro-
duction, sustained particle production results in a continuous increase of Qgw over
frequency. The onset of particle production thereby marks the deviation from the
roughly scale-invariant irreducible background into a continuous ascent. For both
types of particle production, the resulting GWs are statistically independent from
the background sourced by vacuum fluctuations. Therefore, their power spectra
simply add together. The latter causes the characteristic shape of the total spectrum
displayed in Fig. 4.6 which can be separated into three distinct regimes: First, a
regime where vacuum fluctuations contribution at large scales dominate (f < 107>
Hz); second, dominance of the sourced GW contributions at intermediate scales
with negligible back reaction of the coupled gauge field"® (107> Hz < f < 1 Hz);
third, the complete dominance of sourced GW contributions including strong back
reactions (f 2 1 Hz). Interestingly, depending on the exact model specifications
and coupling strength, the resulting GW background exhibits an almost constant
slope over the sensitivity band of the LISA instrument, making it a promising can-
didate for further analysis. The shape of the spectrum from particle production is
in stark contrast to what one expects to see for enhanced scalar perturbations. It
is postulated that the latter results in sharper features within the frequency regime
probed by the LISA mission [16, 20]. The enhanced perturbation thereby leads to
predictions rich in phenomenologically interesting features such as PBHs.

Primordial Black Holes

It is commonly assumed that the amplitude of primordial density perturbations
—measured with high precision by the Planck satellite at cosmological scales—remains
approximately constant across all scales. This expectation is supported by the stan-
dard class of single-field slow-roll inflationary models, which predict near scale in-
variance of the scalar perturbation spectrum, provided the spectral index exhibits
negligible running. However, such an extrapolation to smaller scales is substantial,
given the lack of a definitive underlying model for inflation. Consequently, it re-
mains entirely plausible that the scalar perturbation spectrum departs significantly
from scale invariance at small scales. In the following, a deviation from quasi-scale
invariance at small scales is assumed. Several inflationary scenarios readily permit

the generation of large-amplitude scalar fluctuations at small scales while remaining

13Note that in this regime, the evolution of the inflaton ¢ and the Hubble radius H are still deter-
mined by slow-roll equations.
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FIGURE 4.6: Sustained particle production [15]: numerical spectrum
of GWs today h*Qgcw for a model of quadratic inflaton potential
V(¢) = 3m*¢?, with inflaton-gauge field coupling A = Mp;/35 (con-
tinuous line) where Mp) is the Planck mass. For comparison, a local
parametrization h?Qgw « (f/f.)"T, evaluated at various pivot fre-
quencies f, and with spectral tilt obtained from successive approxima-
tions to nr, is displayed. Further displayed are Power Law-Integrated
Curves of six LISA configurations [15].

consistent with CMB observations on cosmological scales (see, e.g., [396, 397]). No-
tably, substantial density perturbations on small scales may lead to the formation of
primordial black holes, which have been proposed as potential contributors to the
dark matter content of the Universe (e.g., [398, 399, 400, 401]). Instead of choosing
a specific model, it is to be emphasized that it is a generic and model-independent
consequence that first-order scalar perturbations—regardless of their amplitude or
statistical distribution—inevitably induce GWs at second and higher orders, see,
e.g., [402, 403, 404, 405]. In particular, second-order contributions to the perturbed
Einstein equations, constructed from products of first-order scalar modes, act as ef-
fective sources for tensor perturbations. The resulting stochastic GW background
thus encodes valuable information about the amplitude and statistical properties of

scalar perturbations at small scales.

The effect can easily be quantified by considering the solution to the perturbed
Einstein equations using the perturbed FRW metric

ds® = a®(n7)[— (14 2®)d*y + [(1 — 2¥)&;; + hij]], (4.57)

where ¥, @ are scalar metric perturbations and hij the TT tensor perturbations. To
second order in perturbations, the resulting field equations can be brought to the
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form

h:; + Z'H}l;]- + kzhi]‘ = Si]]jT , (4.58)

where SgT acts as a source term for tensor perturbations but consists of scalar per-
turbations, i.e., [403]

Si]' = 2(1381'8]'(13 — ZTaiach + 4‘Yala]l/1 + alcpa]q) — al‘Ya]CD + 381'81"{’8]"1’

4 L o 2

BH(HD —¥') + V*¥]9,0;(P —¥).
(4.59)

Observationally, in particular second-order induced GWs are interesting, which are
produced during the radiation era, as only modes entering the horizon during that
early stage of the universe are probed by the frequency range of GW detectors. For
second-order induced GWs during the radiation-dominated era, i.e.,, w = 1/3, it
can be shown [403] that the GW background (corresponding to f > 10717 Hz) is
characterized by

QGW(k) - raeradP%zU() ’ (4-60)

where Pg (k) is the mostly Gaussian and smooth power-spectrum of scalar pertur-
bations o (k/k.)" ! and

8 /2162
3

Frag = = ?) 8.3-1073f(ns), (4.61)

and f(ns) is a weekly-dependent function on the spectral tilt ns [10]. For bounds
on the primordial scalar perturbation by means of the constraints on a stochastic
background of GWs, the reader is referred to [406]. For a discussion regarding the
working assumptions of Eq. (4.60), see [10].

Large enhancements in the curvature power spectrum at specific scales can
lead to the formation of PBHs when those scales re-enter the horizon during the
post-inflationary evolution of the Universe. This production mechanism generally
results in a population of isolated PBHs that may serve as cold dark matter can-
didates [407]. For PBHs with masses in the range Mppy ~ 102 — 10*M,,, the cor-
responding peak frequency of the associated gravitational-wave background could
fall within the sensitivity band of LISA. Given their potential role as dark matter
and their influence on early galaxy formation, GWs emitted by merging PBHs rep-

resent a compelling observational window into the early structure formation of the
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FIGURE 4.7: Energy density fraction OQcgw of GWs produced in the
radiation- dominated era for monochromatic sources according to [16].
The factor A; is a normalization constant.

Universe. Indeed, it has been suggested that such PBHs may already have been ob-
served by aLIGO (e.g., [399]). Looking ahead, future observations with both ground-
and space-based interferometers are expected to enable precise measurements of the
broad PBH mass spectrum [408, 409]. The computation of the spectrum induced by
PBHs, being part of the reducible contribution, is sensitive to the chosen model of
inflation. While [10] provides a more general discussion, in this work, in particular
Section 4.4.2, inspiration is drawn from [16]. The latter computes a semi-analytical
spectrum during the radiation-dominant era. assuming monochromatic curvature
perturbations, P ~ 6(logk/k.), the spectrum obtains distinctive features as dis-
played in Fig. 4.7. Note that this depiction provides merely an instant of the PBH
spectrum for which there is generally no consent in literature. What is, however,
widely accepted is the exhibition of sharp features within or close to the frequency
regime to which LISA is sensitive. This establishes large benefits for its detection,

see Section 4.4.2.

4.3.3 Phase Transitions

During its adiabatic expansion, the Universe may have undergone several PTs as a
consequence of the decreasing temperature. A wide range of phenomena associated
with primordial PTs can result in the generation of a SGWB. In many cases, such a
relic SGWB is the only observable remnant of the transition, offering valuable in-
sight into its underlying nature. First-order PTs are distinguished by the emergence
of a potential barrier separating a metastable, symmetric (false) vacuum from a more

energetically favorable, symmetry-breaking (true) vacuum. As the Universe cools,
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this barrier prevents the field from transitioning smoothly to the true vacuum; in-
stead, the transition proceeds via quantum tunneling or thermal fluctuations. In
physical space, this process manifests as the nucleation of bubbles of the true vac-
uum within the surrounding false vacuum. These bubbles expand due to the pres-
sure differential between the two vacua, releasing the latent energy stored in the
false vacuum. In the idealized scenario of a PT occurring in empty space, this energy
would be entirely converted into gradient energy, causing the bubble walls to accel-
erate relativistically. In the early Universe, however, the presence of a hot, dense
plasma changes the dynamics. The majority of the released energy is transferred
into thermal energy, heating the plasma, while the remainder is split between the
gradient energy of the bubble walls and the kinetic energy imparted to the plasma
through bulk fluid motion. Both the gradient energy of the scalar field and the ki-
netic energy of the plasma correspond to energy-momentum tensors with non-zero
anisotropic stress—one of the key conditions for sourcing a GW background. If a
tensor component is present in these stress distributions, it can act as a GW source
(see Eq. (4.17)). GW production becomes especially efficient towards the end of a
first-order PT, when bubbles of true vacuum collide and the entire Universe transi-
tions to the symmetry-broken phase. These collisions inherently break the spherical
symmetry of both the bubble walls and the surrounding plasma flows, generating
a non-zero tensor anisotropic stress that actively sources GWs (see [410] for early

indications and [10] for a comprehensive review).

The GW signal produced by first-order PTs depends on a limited set of param-
eters that characterize the dynamics of the broken-phase bubble evolution—such
as the typical bubble size at the time of collision and the velocity of the bubble
walls—as well as the energy available to source the GWs, which is governed by
the tensor anisotropic stresses. These stresses are themselves determined by the
strength of the PT and the interaction between the transitioning field and the sur-
rounding plasma constituents. Although the specific values of these parameters are
model-dependent and rooted in the particle physics details of the PT, the resulting
GW signal can be expressed in a phenomenological and largely model-independent
framework. One particularly critical parameter is T, the temperature of the thermal
bath at the time ¢, when the GWs are generated—typically coinciding with the final
stages of the transition when bubble collisions occur. For transitions without sub-
stantial supercooling or reheating, T, approximately corresponds to the nucleation
temperature, which is set by the nucleation rate of the true vacuum bubbles. The
strength of the PT is often quantified by the dimensionless parameter & = pvac/ 07,4
representing the ratio of vacuum energy density released during the transition to the
radiation energy density of the Universe at the time of the transition. This parameter
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plays a key role in determining the amplitude of the resulting GW background.

A rough estimate of the GW amplitude reveals its scaling behavior with the
duration of the source and the magnitude of the tensor anisotropic stress(e.g. [411]).
Assuming the process responsible for generating the tensor anisotropic stress has
a characteristic timescale equal to the PT duration, 1/, and that this timescale is
shorter than the Hubble time at the corresponding epoch, H,, the relation g2h ~
167tGII can be applied, where h denotes the tensor perturbation amplitude and I1
the tensor part of the energy momentum source tensor. This leads to an expression
for the present-day SGWB as [10]

100 \Y3 /HN\? [/ xa \?
2 10-5 Hs
" Oew ~16-10 (g*(Tp)) (5) <1+0¢) ’ (4.62)

where k¥ ~ I1/pyac and T, is the temperature of production. The characteristic fre-

quency today accordingly follows as [10]

100 \“V% T
~16-107°H B (100 . 4.
f 6-10 ZH* <g*(Tp)) 100 GeV (4.63)

Since at the end of the PT one expects the entire Universe to be converted to the
broken phase, in general, the PT must complete faster than a Hubble time, so that
B/H, > 1. Then Eq. (4.63) suggests that the characteristic frequency of GW emitted
around the EW symmetry breaking at 100 GeV falls in the frequency range of LISA
for 1 < B/H, < 10, for instance. The slope of the GW spectrum at wave-numbers
smaller than the Hubble radius at the time of production can be determined on gen-
eral grounds, valid for any transient stochastic source after inflation. It is a conse-
quence of the fact that the causal process (the PT) generating the GW signal cannot
operate on time/length-scales larger than H;!. From this it follows [10] that the
infrared tail of the present-day GW spectrum behaves as h2Qgw « f2 for k < k.
and some k,, and decays with a slope sensitive to the details of the sourcing PT for
k > k.. Examples of GW backgrounds from PTs are sketched in Fig. 4.8. The details
regarding their computations can be found in [10]. Note that from an observational
perspective, one is particularly interested in models that peak in the LISA band,
as the peak establishes a distinguishing feature (see also the discussion of Section
4.4.2).
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FIGURE 4.8: SGWB spectra in two examples of first order PT, com-
pared with the estimated sensitivity curve of the interferometer LISA
calculated from [17] (red curve). This depiction is extracted from [10].
The black solid lines in the left and right plot provide instances of PT-
sourced GW backgrounds.

4.3.4 Cosmic Defects

A PT in the early Universe corresponds to a process of spontaneous symmetry
breaking, transitioning from a symmetric phase (false vacuum) to a broken phase
(true vacuum). This process is typically driven by one or more scalar fields acquiring
a non-zero vacuum expectation value within a vacuum manifold Mvac. If Mvac
satisfies certain topological conditions, cosmic defects may form as a consequence
of the phase transition [412, 413]. Specifically, when the vacuum manifold is topo-
logically non-trivial—i.e., it possesses a non-trivial homotopy group, 7, (Myac) #
I—topological field configurations emerge, giving rise to defects such as strings
(n = 1), monopoles (n = 2), or textures (n = 3). For higher values of #, there is no
topological obstruction to the symmetry-breaking field reaching the vacuum mani-
fold across space-time, resulting instead in non-topological field configurations. De-
pending on whether the broken symmetry is global or gauged, the resulting defects
are classified as global or local, respectively. In all such cases—topological or not,
local or global—the resulting objects are generically referred to as cosmic defects.
Cosmic strings (CSs), regardless of whether they are global or local, as well as all
types of global defects, display a scaling behavior once a sufficient amount of time
has elapsed since their formation [413]. This scaling regime is characterized by a
self-similar evolution of the defect number density within a causal volume through-
out cosmic history. As the cosmic defect network evolves, its energy-momentum
tensor adjusts to maintain the scaling behavior. Consequently, the time evolution
of the transverse-traceless component of the energy-momentum tensor associated
with the defect network inevitably generates GWs [414]. Among scaling defects,

cosmic strings arguably represent the best-motivated example from the perspective
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of particle physics. Their tendency to form loops during evolution results in the
emission of a particularly large amount of GWs, making them a highly promising
target for detection.

Cosmic strings are one-dimensional topological defects that emerge during a phase
transition in the early Universe, provided the fundamental homotopy group of the
corresponding vacuum manifold Mpvac is non-trivial, i.e., 711 (Mvac) # Z. These
objects arise naturally in well-motivated inflationary frameworks. For example,
local strings are generically produced at the end of inflation in supersymmetric
GUT models of Hybrid inflation, assuming certain reasonable conditions are sat-
isfied [415]. Additionally, cosmic strings can also correspond to fundamental su-
perstrings, rather than field-theoretic configurations, as encountered in scenarios
such as brane inflation [416]. Both field-theoretic strings and fundamental super-
strings are characterized by a linear energy density u, which, in the Nambu-Goto
approximation (describing infinitely thin strings), is identified with the string ten-
sion. A typical network of cosmic (super-)strings at any epoch consists of a mixture
of “large” loops and “small” loops. Small loops have diameters smaller than the
causal horizon, while large loops extend beyond the horizon scale, with only a por-
tion residing within the observable volume. A key aspect governing the evolution of
such networks is the process of intercommutation, wherein strings intersect (or self-
intersect), exchange segments, and generate new loops. A primary distinction betw-
een field-theoretic strings and superstrings lies in the intercommutation probability:
while field strings intercommute with probability p = 1, superstrings may have
significantly lower values of p, which impacts the network’s evolution and, conse-
quently, the resulting GW signal. Once formed, loops—owing to their substantial
tension—undergo relativistic oscillations and lose energy predominantly through
the emission of GWs.

The details of GW emission from cosmic string loops are highly sensitive to
several intrinsic properties of the string network. The resulting spectrum is influ-
enced in particular by: (i) the string tension Gy, (ii) the initial loop size relative to the
horizon «, (iii) the spectral index g of the emission spectrum, (iv) the high-frequency
cut-off n, (modeling radiation backreaction), and (v) the intercommutation proba-
bility p. Given the number density of loops per unit volume and loop length, n(l, f)
(as given in Eq. (361) of [10]), the spectral power emitted by a loop of length [ is
given by

dPew(f) = TGp*IP(f)df, (4.64)

where P(f) = 27g,(f -1)~'79, and « characterizes the loop size at formation. The
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FIGURE 4.9: Amplitude of the energy density spectrum today of the
GW background emitted by the decay of loops chopped off from a
string network all through cosmic history [18]. The set of fiducial pa-
rameter is chosen as Gy = 1077 [c=1],a =1077, gq=4/3,n,=1,and
p = 1. In each panel, one parameter is varied.

present-day energy density of GWs produced by the cosmic string network, emitted
at time ¢, and observed at ¢, is then expressed as [10]

[ ao

do/df =1Gi2 [ dt (@) /O YO L, 0P <%f,l> . (4.65)

Representative spectra, illustrating the dependence on the aforementioned model
parameters, are shown in Fig. 4.9. Observational constraints on such spectra have
been derived, for example, in [18], which reports a 95% confidence upper limit on
the string tension of Gu < 5.3-1077 for a« ~ 107 and n, = 1. For larger initial
loop sizes, i.e., higher values of &, bounds from the EPTA [49], as analyzed in [18],
constrain Gy < 10710, These limits are comparable to the tighter constraint Gu <
1.5 - 10~ obtained in [417], among others. It is worth noting that looser constraints
have been derived from 21cm observations of cosmic strings, such as in [9]. Despite
being less stringent, such searches involve fewer model parameters, making them

an attractive avenue for cosmic string detection from a data analysis standpoint.
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4.4 Detecting the Stochastic Gravitational Wave Back-

ground

In previous Sections, a detailed overview of the theoretical and phenomenological
origins of the SGWB is provided. Arguably, this background is rich in information
about both astrophysics and cosmology. Its detection may thus be regarded as the
next milestone for GW physics or even cosmology in its entirety. So far, constraints
on the SGWB have been established through various approaches [418] (see also
[419, 420] for more a more recent analysis of similar data) for the reducible as well as
the irreducible background of GW [421, 422, 15, 423, 424]' (see also [11, 366, 367]).
The latter is constrained much better in comparison to the reducible part. In fact,
their constraints differ by many orders of magnitude. In the following two Sections,
two instruments actively participating in the search for a GW background are high-
lighted. In Section 4.4.1, given recent results, PTAs’ efforts towards the detection
of an astrophysical background are discussed. Section 4.4.2 on the other hand, fo-
cuses on the potential detection of cosmological SGWB with the LISA instrument,

outlining (in much more detail) a promising measurement strategy studied in [22].

4.4.1 Astrophysical Background Detection Efforts

The pursuit of detecting the astrophysical GW background has been a central ob-
jective in GW astronomy. Among many predictions and upper detection bound-
aries (e.g., [11, 366, 367]), PTAs have emerged as a pivotal methodology in this
endeavor, leveraging the exceptional rotational stability of millisecond pulsars to
detect perturbations in spacetime induced by passing GWs. Thus, in this Section,
emphasis lies on the latest results of the North American Nanograv collaboration,
which has made significant strides, particularly with its 15-year data set [52, 53, 426].
Nanograv’s approach involves meticulous monitoring of the pulse arrival times
from an array of millisecond pulsars distributed across the sky [427]. GWs travers-
ing the space between these pulsars and Earth induce minute variations in the pulse
arrival times by perturbing the spacetime metric along the path from a pulsar to
Earth. This causes a slight variation in the proper time of arrival of the pulsar’s
signals as measured by Earth-based observers. In the case of a SGWB—arising, for
instance, from a cosmological population of SMBBHs—these variations manifest as
a spatially correlated signal across a pulsar array, superimposed upon intrinsic pul-

sar noise and other uncorrelated sources.

14The major constraint on the irreducible GW background is formally known as “COBE-bound”
due to being derived using CMB quadrupole measurements by the COBE satelite [425].
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To isolate the GW signal, PTAs analyze the cross-correlations of timing residuals
between pulsar pairs. The key theoretical prediction used to identify the stochastic
GWB signal is the Hellings-Downs curve [428]—a quadrupolar angular correlation
pattern predicted by GR for an isotropic background of GWs. The Hellings-Downs
curve provides the expected angular correlation between the timing residuals of two
pulsars as a function of their angular separation on the sky 6, assuming the back-
ground of GWs is isotropic, unpolarized, and Gaussian. The correlation function is
given by [428]

3 1 1 1
= — 1 _— _—— = .
2(0) SxInx— x+7 25(x), (4.66)
where x = % and 6(x) encapsulates the autocorrelation term. This correla-

tion is quadrupolar in nature, peaking for co-aligned pulsars # = 0 and becoming
anti-correlated for pulsars separated by approximately 90 degrees. The presence of
this angular signature in the data is regarded as a “smoking gun” for the stochastic
GW background, as no other known source of correlated noise exhibits this precise
spatial dependence. Therefore, detecting this pattern is crucial for confirming the
presence of a GW background.

Recently, Nanograv released its 15-year data set, encompassing observations from
67 pulsars [52, 53] and revealing multiple lines of first evidence for a stochastic signal
consistent with the Hellings-Downs correlation. This result can be seen as providing
compelling hints towards the existence of a nanohertz-frequency GW background
[53]. The suspected GW background is characterized by a power-law spectrum,
indicative of a population of inspiraling SMBBHs distributed throughout Earth’s
cosmological vicinity. The cumulative effect of numerous such systems contributes
to the stochastic background observed, as outlined in Section 4.2.3. A confirmation
of this GWB would have profound implications for our understanding of galaxy
evolution and the population statistics of SMBBHs. Moreover, it would open new
avenues for probing fundamental physics, including potential contributions from
early Universe phenomena such as cosmic strings or PTs.

While the current data align well with the SMBBH interpretation, ongoing and fu-
ture observations aim to refine the spectral characterization of the GW background,
potentially disentangling contributions from various sources. Nanograv’s achieve-
ment thereby marks a significant milestone in GW astronomy, demonstrating the
efficacy of PTAs in exploring the low-frequency GW spectrum and enriching our
comprehension of the dynamic Universe. For details regarding Nanograv’s detec-
tion strategy, data analysis pipeline and (cosmological) working assumptions, the
interested reader is referred to [52, 53].
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4.4.2 Cosmological Background Detection Efforts

Due to its rich phenomenology, the cosmological component of the SGWB repre-
sents a smocking gun for new physics. However, directly detecting this compo-
nent poses a significant challenge for data analysts. The SGWB is predominantly
shaped by astrophysical sources—such as white dwarf binaries, stellar-mass black
hole inspirals, and extra-galactic mergers—which obscure and complicate the iden-
tification of primordial features in the spectrum. One of the primary challenges
and priorities in SGWB measurements is the disentanglement of instrumental noise,
galactic foregrounds, and extra-galactic (including cosmological) components of the
stochastic signal, without compromising the integrity of any individual contribution
[429, 430, 431, 173, 432, 172, 433] (see also [434, 435, 436, 437, 438, 439, 440] for anal-
ogous analyses in the electromagnetic spectrum).

A promising strategy to address this issue involves the exploitation of observer-
dependent features that enhance the detectability of cosmological signals over fore-
ground and instrumental noise. One such feature is the kinematic signature in-
troduced by the motion of the local group of galaxies [436, 437, 432, 433]. While
galactic sources remain unaffected, the motion of (both ground- and space-based)
detectors relative to the rest frame of primordial stochastic GW sources induces
Doppler anisotropies, affecting only the cosmological contributions to the SGWB.
This motion is expected to enhance power in the lower-order multipoles of the
cosmological component, mirroring effects observed in the CMB several decades
ago. As a result, the study of kinematic anisotropies in the SGWB holds significant
promise and has already sparked considerable interest in the scientific community
[429, 362, 432,172, 430, 441].

In this section, the goal is to extend previous investigations by developing a
diagnostic map-making framework aimed primarily—though not exclusively—at
identifying extra-galactic sources in SGWB data observed by LISA. A full four-year
time-domain simulation of the anisotropic gravitational-wave sky is carried out us-
ing the LISA Simulation Suite (LISAGWResponse [442, 443], LISAInstrument [23, 444])
along with the post-processing package PyTDI [445], which performs the TDI combi-
nation of optical measurements and constructs the final interferometric observables
[446].

Instead of relying on the commonly used Fisher matrix approach, the analysis em-
ploys a map-making strategy based on a Markov Chain Monte Carlo (MCMC) frame-
work, similar to the methodology outlined in Section 3.2.2, to assess the detectabil-
ity of kinematic anisotropies in simulated SGWB data. For related investigations

focused on the galactic background, see [447].
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Doppler-boosted anisotropies as smoking-gun for extra-galactic origin

This investigation begins with a concise review of the fundamental principles un-
derlying stochastic kinematic anisotropies, following the discussion in [172,432]. As
outlined in the introduction, the SGWB comprises contributions from both galactic
and extra-galactic sources. The extra-galactic component is subject to Doppler shifts
relative to the source frame, owing to the motion of our galaxy with respect to the
SGWRB rest frame.

In particular, extra-galactic contributions to the SGWB exhibit a directional modula-
tion of their apparent, frequency-dependent energy density, expressed as Qgw (f, k),
where both frequency and angular dependencies are made explicit. To formalize
this effect, consider two inertial frames: the source frame §’, co-moving with the
SGWB source, and the observer frame &, moving with constant velocity v relative
to S’. The fractional energy density of the SGWB in the source frame, O (f), is
assumed to be perfectly isotropic and solely frequency-dependent. This assumption
holds under the condition that intrinsic anisotropies from the source are subdomi-
nant®.

Under these assumptions, a Lorentz boost is applied to transform the isotropic den-
sity spectrum Q¢ (f) from the rest frame S’ into the observer frame S, resulting
in a modulated spectrum Qg (f, k). Here, the boost velocity is defined as v = B9,
with the convention ¢ = 1, so that 8 = |v| =: v!®. For the energy density spectrum,

the boost mapping S’ to S yields

4
ok = (£) o) 4.67)
The latter equation is generally defined for any Lorentz-boost where 0 < B < 1.
Following the assumption of an isotropic spectrum in the source frame, this result
can be expanded up to second-order in , using the relations between f, f' outlined
in [172]. One finds

f! 1-Bk-k

f_p- V1-p (4.68)

such that

Qcw(f, k) = D* Oy (D7'f), (4.69)

15Guch anisotropies may arise from the production mechanism of the SGWBs, Sachs-Wolfe (SW)
and integrated SW effects, and from propagation through a perturbed Universe. A comprehensive
review of anisotropy sources is provided in [172].

16Throughout this work, natural units are adopted with ¢ = 1.
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which expands to

O () = Q1) (14 MU + k9001 + | (R-0* = ) ()| ). @70

Here, the functions M(f), D(f), Q(f) correspond to the monopole, dipole, and quadrupole
contributions respectively. They are given by

M(P) = B (8 + na(n— 6) + a0), @)
D(f) = B(4 —naq), (4.72)
2 Ing | Ny | an
QUf) =p" | 10— —=+3+5 ], (4.73)
and
() = TGl o) = 20

It is important to emphasize that the functions M(f), D(f), and Q(f) introduced
herein are inherently model-dependent and encode specific characteristics associ-
ated with the nature of the sources contributing to the extra-galactic component
of the SGWB. Their dependence on k - ¥ arises naturally from an expansion in the
boost parameter B. It must be noted, however, that M(f), D(f), and Q(f) can re-
ceive additional contributions beyond those defined in Egs. (4.71)—(4.73) in the pres-
ence of intrinsic anisotropies in the source-frame spectrum. Consequently, the use
of Eq. (4.70) in combination with the specified forms of M(f), D(f), and Q(f) is
strictly valid only under the assumption of an isotropic source-frame background.
As can be verified computationally, the functions discussed above directly deter-
mine the harmonic expansion coefficients a;,,,, up to constant prefactors. These coef-
ficients are instrumental in defining the angular power spectrum CIGW: By rewriting
Eq. (4.70) as

Qcw(f, k) = Qe (f) (1+ & (f,0,9)), (4.75)

where 68 now describes the anisotropic part of the measured spectral energy den-

sity Qgw in the observer frame S, one can exploit that 65 has a smooth angular
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dependence, and expand
ol (f 225&% om () Yo (K). (4.76)
The angular power of the anisotropies is then given as an ensemble average

<51((3111/1V,€m' 5183\/,6’111’) = C?W(f)(séé’fsmm’- (4-77)

The coefficient C?W

can be derived straightforwardly by inserting the anisotropies
s (f, k) in Eq. (4.77). Then, by orthogonality of the spherical harmonics one

finds!”
kin
i o 8]

and therefore,

1 . 2
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Combining this result with Eq. (4.70), one can assign each mode for (518;‘\/ 1 to the

corresponding kinematic mode, that is18

in in T in
Ehlf) =2/, a0l) =2/ 3D, () = 5/ 30 (480)
It follows trivially that

W~ IM(HP, i ~ ID(f)I%, s ~ 1012 (4.81)

It is important to emphasize that the proposed decomposition provides several no-
table advantages. For example, Eqs. (4.71)—(4.73) are governed by the gradient and
higher-order derivatives of the spectrum. It can be readily demonstrated that, in
scenarios involving rapid spectral variations—such as sharp peaks or discontinu-
ities—the individual components M(f), D(f), and Q(f) are significantly amplified
due to the influence of nq and aq. In certain regimes, this amplification can result in

the kinematic quadrupole exceeding the kinematic dipole in magnitude. The direct

7Note that here the convention foﬂ dé f "o Yom Y,y dQ = CTER)) +1) 8¢ Sy 1s used.

18Here, the frame is chosen in which k-v =~ cosf. In subsequent Sections, this is transitioned
to the International Celestial Reference System (ICRS) frame and the attention lays mostely (4.69),
albeit it is expressed in terms of monopole, dipole, and quadrupole language utilizing the expansion

coefficients M(f), D(f), and Q(f).
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implications of such effects are further discussed in Section 2.5.7.

To investigate the implications of kinematic anisotropies, we consider specific
instances of the spectrum Qgy, focusing on three prominent early-Universe cosmo-
logical sources contributing to the SGWB. These sources are of particular interest
due to their expected amplitudes and frequency ranges, which fall within the sen-
sitivity band of LISA [19], as illustrated in Fig. 4.10. The primary spectrum under
examination exhibits an approximately scale-free form and is modeled after the en-
ergy density spectrum associated with Cosmic Strings (CS), which is predicted to
appear nearly flat within the frequency range relevant to LISA [448, 449, 450]1.
Despite its conceptual simplicity, the study of CS-induced features in the SGWB re-
mains compelling, as cosmic strings are regarded as promising probes of physics
beyond the Standard Model and are of significant relevance in string-theoretic con-
texts [451, 413]%.

The second spectrum considered originates from a first-order PT in the early Uni-
verse, typically characterized by a broken power-law behavior [21] (see also Sec-
tion 4.3.3) and illustrated in Fig. 4.10%!. Phase transitions provide valuable phe-
nomenological insights, particularly in identifying scales associated with symmetry
breaking in the early Universe.

Finally, we consider the contribution to the SGWB from primordial black holes
(PBHs), as discussed in [16, 20] (see also Section 4.3.2). It is important to acknowl-
edge that there is currently no consensus in the literature regarding the exact fre-
quency profile of PBH-induced SGWB spectra, although the infrared behavior is
relatively well understood [452] and references therein. Independent of their exact
spectral shape, PBHs remain phenomenologically rich, particularly in models where
PBHs constitute a partial or complete component of Dark Matter—a hypothesis that
has attracted considerable recent interest [453, 454].

In the main part of this Section, the focus is placed on the simplest featureless
model—the CS-like signal—to study kinematic anisotropies via a realistic full time-
domain simulation. The impact of more complex, feature-rich spectra such as those
from PTs and PBHs on the presented analysis pipeline is addressed toward the end

of this Section.

YFor a given model i, the relevant frequency regime is defined as the region where the energy
density QL exceeds the LISA sensitivity threshold, as shown in Fig. 4.10. See also Section 4.3.4.

20t is worth noting that scale-free spectra are not exclusive to CS. See [10] for alternative scale-free
sources.

21The precise details of the spectral shape—such as the peak frequency fpeak or the slope—are not
essential for the present analysis. What matters is the emergence of nontrivial values for nq and aq.
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FIGURE 4.10: LISA sensitivity curve [19] compared to the expected
stochastic GW spectrum for cosmic strings (blue) modeled as a scale-
free contribution at a reference power of Qgw = 1071, primordial
black holes (orange) modeled according to [16, 20], and first order PTs
(green) as implemented in the PTP1ot package [21]. For the LISA sen-
sitivity curve (red) we use the implementation within the PTPlot pack-
age [22].

Anisotropic GW stochastic sky simulation and instrument response

Section 4.4.2 aims to introduce a comprehensive, time-domain simulation frame-
work designed to produce realistic LISA data, integrated with a dedicated analysis
pipeline optimized for detecting [ = 0, 1,2 (kinematic) anisotropies in a SGWB sig-
nal. To provide context, the following outlines the interaction between the detector
response and the SGWB signal.

The SGWB can be represented as a random, direction-dependent strain time se-
ries hp(t,k) for polarization state P. Consistent with the methodology presented
in [430], the simulation assumes Gaussian statistical properties for the signal®?. This
time series is fully characterized by the second-order moments of its Fourier compo-
nents, denoted as (p(f, k) o (f, k)), which define the cross-power spectra Sppr( f, k)
corresponding to the stochastic process /p(t, k). Under the assumption of statistical

22 A wide range of anticipated signals are known to deviate from Gaussianity [455]. Nonetheless,
the detection strategies proposed here remain applicable with only minor modifications in such cases
(see, for example, [456, 457], and the discussion in [430]).
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homogeneity, (hp(f, k)% (f,k)) corresponds to

Sppr(f, ) = [<h+(fr1})hi(f,1:<)> (e (£, 00 <f,1}>>]
T (LRI R) (R (. K)

1

2552(12—12/)5(][,][/) I+Q u+iv

Uu-iv.1-0Q

4

where one can introduce the Stokes parameters I, Q, U and V, well-known in CMB
physics and encoding intensity, linear polarization and circular polarization respec-

tively. As in [430], this analysis is restricted to the intensity I( f, k) with

A A A

1(£, k) = (e (£, 115 (F, 1K) + (ha (F,R)B (£, K)) (4.82)

which can be related to the normalized logarithmic energy density Qgw/(f, k) as
[458]
< 3273

Qow(f k) = = 1(f. k), (4.83)
0

where Hj is the Hubble constant. Note here that the direction dependence of the
latter two equations is commonly dropped by the assumption that

Qaw(f, k) = Qaw(f)E (k). (4.84)

The first factor on the right-hand side of Eq. (4.84) remains applicable, while the
second factor encapsulates the angular distribution of the background. It requires

the choice of a normalization, here selected to be

d’k £(k) = 1. (4.85)

S2
With the stochastic strain hp and the associated intensity I(f,k) at hand, one can
now characterize the incoming signal as a time-frequency series. Following Eq. (12)
in [430], the signal component of the time stream s} measured by a single TDI chan-

nel C is defined as a Fourier expansion between t and ¢ 4 At, such that it reads

s =Y . dk RY(f,k)hp(f, k). (4.86)

P
The superscript T indicates that s5(f) denotes a potentially time-dependent fre-
quency series. In this context, RZ refers to the LISA response function, which varies
based on the chosen channel C € [X, Y, Z] and the polarization state P € [+, x| of
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the strain. The components RZ and the underlying concept of channels will be elab-
orated upon in the following Subsection. Based on the definitions above, it holds
that

ey 11 .o .
(he(f, ), B (1K) = 507,00 (&, K) 3, prSpr (£, K)- (4.87)

Under the Gaussian assumption, the power spectrum Sp(f,k) becomes the pri-
mary measurable quantity. The factor of 477 in the denominator arises from an
integral over the unit sphere. While intensity is a quantity defined per pixel, the
power spectrum density is an integral over the entire sky; hence, they differ by
a factor of 47t. One can further assume that the SGWB is not polarized, so that
S.(f, k) = Sx(f,k) = 1Saw(f, k) where the latter can be conveniently character-
ized by Qgw(f, k) via [10]

. 3H? .
SGW(f/k) = ﬁQGW(]{/k) (4-88)

Note at this point the similarities between Egs. (4.83) and (4.88).

With the spectrum Qgw specified, the proposed analysis requires the defini-
tion of the response function associated with the chosen instrument. In the case of
LISA, deriving this response function demands careful consideration of the instru-
ment’s links and the resulting Time Delay Interferometry (TDI) channels. The LISA
constellation consists of three spacecraft connected by six distinct optical links, as
depicted in Fig. 4.11, each of which is perturbed in a time-dependent fashion by
incident gravitational radiation. Due to the linearity of the response function, the
overall response of link ij € {12,21,13,31,23,32} is given by the sum of individual

responses to a source allocated in pixel p,
() =v(f Zyz, . (4.89)

As before, time dependence is indicated by the superscript 7. Expressing the total
link response in terms of the response per pixel is essential for numerical modeling
and is further justified by the finite resolution of the instrument. At each time step
At, the quantity y;; , represents the frequency shift imparted to the laser beam along
the link ij by the gravitational strain originating from pixel p. To obtain an explicit
expression for y;; ,, it is thus imperative to project the strain from point source p onto
the unit vector pointing along the link ij. Under the approximation of immobile
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FIGURE 4.11: Illustration of three LISA spacecrafts in triangular forma-
tion, connected via six links (gray). Displayed in red is the 1.5 TDI X
channel as a linear combination of links [22].

spacecrafts during the light propagation along a single link, one finds [362]

NOES 1 o, L) k() kyemi(t)
S e )

(4.90)

In this context, L;;(t) denotes the time-dependent distance between the two space-
craft, defined by their positions x; = x; + L;jfi;;, where f;; is the unit vector along
the link. Assuming ¢ = 1, the quantity L;;(t) corresponds to the signal delay time
along the link ij measured at the reception time t. The vector k, denotes the wave
vector of the gravitational waves originating from pixel p, and can equivalently be
interpreted as the sky direction associated with pixel p under the plane wave ap-

proximation. The projection function H;; , is given by

Hijp(t) = ha(t,kp) &1 (p, 9, B57) + I (8, Kp) & (B, 9p, A7), (4.91)

where the functions ¢+ and ¢ are the antenna pattern functions and 1y, ¥, the polar-
ization vectors associated to the propagation vector Rp. For details, see appendix A

in [362] and references therein.

To compute TDI observables, LISA combines the six link-signals resulting in
three correlated channels commonly referred to as X, Y, Z, illustrated in Fig. 4.11.
The explicit linear combination of links leading to the designated channels can be
encapsulated in one matrix, Mrp; [362]. For instance, the second generation TDI X,



250 Chapter 1V. Gravitational Wave Backgrounds

channel as it is sketched in Fig. 4.11 can be constructed using links y12, y21, ¥13, Y31,

Xy = X1 + Di321y12 + D131212y21 + D1312121¥13 + D13121213Y31
— (D12131v13 + D121313Y31 + D1213131Y12 + D12131312Y/21), (4.92)

with

X1 = y13 + D13yz1 + Diziyvi2 + Dis12y21 — (12 + D1ayo1 + D121y + Di21syan).

(4.93)
The delay operator for a single link is defined as
Djjx(t) = x(t — Ly(t)), (4.94)
and can be accumulated forming the chained delay operator, D;, ;, ., which, applied
on a function f(t), induces a chained delay in the reception, i.e.
n—1
I=1

Analogous construction can be done for the Y, Z channels by permuting ij in Eq.
(4.93) and (4.92) correspondingly.

In the frequency domain, the delay operators appearing in Eq. (4.95) reduce to
simple phase operators. Utilizing the analytical formulation provided in Eq. (B.5)
of [362], the single-link frequency-domain signal arising from a given unit sky-
direction k is expressed in Eq. (4.96) as the projection of the two polarization modes

onto the 2 x 6 (two polarizations, six links) frequency-domain response kernel GZT] »(f, k).

y,() = Y Ghp(f kp) Hp(f k) (4.96)
P=(+,x)

The analysis adopts the approximation that the transfer functions Gi"]-,P (f, Rp) re-
main stationary over each time segment labeled by 7, which requires selecting time
windows significantly shorter than the LISA orbital timescale (< 1year). Under
this assumption, the delay operators introduced in Eq. (4.95) are simplified in the

frequency domain as complex phasing operators, as in [362]:

Dyyi(f) ~ 5y(f) exp (—2mifLy) (4.97)

These are then combined according to Eq. (4.92) and assembled to build a (3 x 6)
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single-link to TDI channel operator matrix MY, (f) [362]. The time dependence (T
upper script) accounts for the the annual orbital breathing of LISA constellation. The
measured data within a discrete time and frequency interval, d'( f) = (XY, 2)T,

can be expressed as a vector of TDI channels:

d"(f, k) = MEp,(f) 7 (f. %), (4.98)

Here, § = (12, V23, 731, V13, J32, y~z1)T. Note also that the time dependence was made
explicit for each tensor.
Using definition (4.86) and the explicit formula for the individual link response, one

can construct a three-vector (see appendix B in [362])

RE(f, k) = M7p,(f) Gjj p(f, k) Mip, ()", (4.99)

that contains the individual response components for each 1.5 TDI channel X, Y, Z.
The subscript indicates the polarization dependence induced by the strain appear-
ing in (4.86)%. The linear response TDI vectors R” = (Rx, Ry, Rz)? can be in turn
merged into the quadratic response A" (Ny X Nr X 3 X 3 X Npix):

AY(f,k) =RT @ R™ + R* @ R**, (4.100)
Thus, the covariance matrix for a measured intensity I and noise matrix N reads

(ST(f)) =CF~ ) ApI" +N, (4.101)
p

defined based on the quadratic strain tensor

7)) = [ dksT ()@ (7(F)" = [, dkA™(f R, K). (4.102)

S2

In this context, a vector with components defined in Eq. (4.86) is used to construct
a matrix in channel space. Specifically, Eq. (4.102), and consequently the covariance
matrix in Eq. (4.101), represent frequency- and direction-dependent time series of
3 x 3 matrices, with each entry corresponding to a specific channel. Analogously,
the TDI data vector measured by LISA comprises three components, each associated
with one of the three channels discussed above. Eq. (4.98) can be decomposed into

response, signal and noise via

d = Rh +n, (4.103)

23Compare also [430].
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where the TDI noise n is assumed to be Gaussian with zero mean and a covariance
N; = n ® n.The data components are modeled as Gaussian-distributed, with their
covariance specified by Eq. (4.101). It is important to note that the data vector d
remains dependent on both time and frequency. The individual link response de-
scribed in Eq. (4.89) exhibits directional sensitivity through its dependence on sky
pixels, and as a result, the response matrix R” inherits this directional dependence.
Although analytic formulations for R” exist in the low-frequency regime of LISA’s
sensitivity band—see, for example, [430]—the present analysis favors the use of nu-
merical tools to more accurately capture the complexities of a realistic detection sce-
nario. Further implementation details are provided in the following subsection.

In Eq. (4.102), the product AT involves an integration over the entire sky. How-
ever, under realistic conditions with finite angular resolution, this integral is dis-
cretized into a sum over sky pixels, i.e.,, ), Ap IP. This pixelization converts angular
dependence into pixel-based dependence, rendering the response matrix a three-
dimensional object of shape 3 x 3 x Npix, which varies with both frequency and
time. Here, Npix denotes the total number of pixels used in the discretization. Im-
portantly, since the covariance matrix in Eq. (4.101) results from an integration over
all directions, it becomes independent of specific sky directions.

For the purposes of this Section, summation over sky pixels is adopted as the
preferred representation of full-sky integration, reflecting the inherently numerical
nature of the analyses conducted. However, from an analytical standpoint, it is ad-
vantageous to employ a continuous basis of spherical harmonics to decompose the
covariance matrix into its constituent angular modes. This yields an analogous de-
composition of the intensity field I and, consequently, the power spectrum Qgw, in
a form reminiscent of Eq. (4.70). It is important to emphasize, however, that unlike
Eq. (4.70), the mode decomposition introduced here does not rely on any assump-
tions regarding the (kinematic) origin of the signal. As such, this framework main-
tains a higher degree of model independence.

Although both A and I are functions of sky direction, Eq. (4.102) benefits from the
use of a Mollweide projection, which establishes a bijective mapping A(k) — A?
and vice versa. Since any continuous map on the sphere admits a decomposition
in spherical harmonics, the Mollweide projection allows for the translation between
pixel-space and mode-space representations. This flexibility ensures that the covari-
ance matrix can be expressed in terms of angular modes at any stage of the analysis.
In practice the mapping can be achieved as follows: Writing the sum over pixels



4.4. Detecting the Stochastic Gravitational Wave Background 253

explicitly, one can replace the latter by the approximation

~ 1 A AL

Y AP~ dk A(k)I(k). (4.104)
P Apixel s2

Here, Apixel corresponds to the area per pixel 24, Frequency and time dependence of

both response matrix and intensity are omitted in Eq. 4.104. Naturally, the approx-

imation improves with the number of pixels. One can further simplified the latter

equation by rewriting A and I as

A(k) =Y ag Yy (k) and 1K) = ¥ i Yo (K) (4.105)
{m {m
where
<i£m, iZ/m/> = Cgcwélllémm/, <ﬂ£m, az/m/> = Agéﬁe/&mm/, (4.106)
with
1 ¢ dk 2
GW __ f r
S =5 ZE /52 1 Lm0 (4.107)
1 & dk 2
A=t L L g Yu(ROAG)| (4.108)
so that
Apl? — [ dk Y Y ammivm Yo (k) Yo (K). (4.109)
0 m' b,m

Note, however, that a pixel-area normalization factor is omitted in the above ex-
pression; mathematically, equality holds only in the limit of a large number of pix-
els, where the discrete sum approaches the continuous integral. Nevertheless, the
right-hand side can be simplified by utilizing the identities Y, ,, = (—1)"Y} (k)
and i, = (—1)"i}, %, together with the orthogonality relation of the spherical

24Note that for most commonly used mappings of the Riemann sphere S? this area per pixel
measure is not constant, however, for numerical applications there exist suitable python packages
taking care of this transformation.

This identity applies specifically to the mode components of I(fi), as the intensity is a real-
valued function, in contrast to the potentially complex-valued response.
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FIGURE 4.12: E2E simulation flow of LISA response to an anisotropic,
stochastic GW sky [22].

harmonics. Then one finds

/5 dk Y Y agmiom Yo (k) Yo (k) = / dk)" Zafmlf’ Y QY5 (K)

0m! b,m Lm b ,m
. Ak YY" apuify Yo (K)Y] Zagmzém, (4.110)
S Lm O'm’
and thus
AP~ Z Al (4.111)

pixel f<3m=—¢

The summation is performed only over £ = 0, 1,2, with higher modes being trun-
cated, under the assumption that the signal intensity I is only significant up to ¢ = 2,
i.e., up to the quadrupole contributions, as outlined in (4.70). It is important to note
that this is equivalent to setting i, = 0 for £ > 2.

Data Generation

The proposed approach entails simulating the LISA detector’s response to a Doppler-
boosted, anisotropic SGWB sky. A synthetic dataset spanning four years is gener-
ated as described by Eq. (4.103), with the covariance characterized by Eq. (4.101).
For the data generation, attention is restricted to a simplified scenario in which the
SGWB exhibits a flat energy density spectrum, representative of possible CS signals
within LISA’s sensitivity band [10]. For details, see Section 4.3.

Sky discretization is performed via angular pixelation using the healpy package,
which is employed extensively throughout the analysis for map generation and


https://healpy.readthedocs.io/en/latest/

4.4. Detecting the Stochastic Gravitational Wave Background 255

transformations between pixel and spherical harmonic domains. Each of the Ny =
12 x 2Nside sky pixels is modeled as an independent stochastic strain time series with
power spectral density Sy, as defined in Eq. (4.88). At this stage, instrumental noise
and astrophysical confusion foregrounds are omitted to isolate LISA’s sensitivity to
purely stochastic signals. The central computational challenge lies in the random-
ness of the strain time series assigned to each pixel direction (see Fig. 4.12).

The individual LISA single-link response to each pixel is computed using the cutting-
edge LISAGWResponse software [442], which is part of the LISA Consortium simu-
lation suite and implements a time-domain projection of the i, and hy polariza-
tions onto the detector response with minimal approximations?®. The simulation
adopts a simplified orbital model featuring an equilateral, equal-arm configuration
[443]%7. Due to the linear nature of the response, the net detector response to the full
anisotropic GW sky is obtained by summing over the Npx individual pixel contribu-
tions. This operation is parallelized across up to > 80 CPUs to optimize the balance
between computational speed and memory consumption. For an Ngjgqe = 32 resolu-
tion, generating a four-year dataset sampled at 0.2 Hz requires up to 128 CPUs and
approximately 3 TB of RAM, with a total runtime of about 15 hours on a dedicated
computing node.

The selected sampling frequency represents a trade-off between computational tract-
ability and optimal signal-to-noise ratio (SNR) retention. Higher sampling rates
rapidly increase memory demands, particularly when modeling hundreds of pix-
els?®. Various rates up to 0.4 Hz were evaluated, with f; = 0.2 Hz emerging as
the most practical compromise. At higher frequencies, instrumental noise becomes
dominant (see Fig. 4.10), leading to diminished SNR. Accordingly, increasing the
sampling frequency beyond 0.2 Hz yields only marginal improvements in the preci-
sion of dipole measurements. Although this limitation arises from simulation con-
straints, the analysis framework remains compatible with full-resolution f; = 4 Hz
LISA data, implying that the results presented herein may be conservative.

Special care is taken to ensure statistical independence across pixel-wise stochastic
sources during parallel computation. Each subprocess uses a distinct local seed to ini-
tialize its random number generator, while a shared global seed governs the overall

sky configuration to guarantee independence across repeated simulation runs.

26 Assumptions include static spacecraft over the photon travel time and a first-order expansion
in GW propagation time.

27For analyses involving non-equilateral, unequal-noise LISA configurations, see [174].

2BThese requirements are memory-bound; for example, the runs described here employed 80
CPUs and roughly 1.5 TB of memory per four-year simulation.
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The simulated single-link data are subsequently processed using the LISA Con-
sortium’s PyTDI software [445] to generate the second-generation Time-Delay In-
terferometry (TDI) time-domain Michelson-like interferometric data streams X;(t),
Y>(t), and Z;(t). Instrumental noise can optionally be added at the single-link level
using the LISAInstrument software from the LISA simulation suite. For simplic-
ity and computational efficiency, only secondary noise sources are enabled, as the
PyTDI pipeline is specifically designed to suppress primary noise contributions. The
complete simulation workflow is outlined in Fig. 4.12.

It is important to emphasize that the choice of clock frame with respect to
which phase measurements are recorded and time-stamped plays a critical role
when beat note data streams are combined to construct the Time-Delay Interferome-
try (TDI) time-series. Although forming the X, Y, and Z channels using local space-
craft reference times is physically consistent—since each can be interpreted as mea-
surements made from a single spacecraft situated at the vertex of a Michelson-like
interferometer [446]—inconsistencies arise when these time-series are mathemati-
cally compared without synchronization to a common time reference. A consistent
reference frame is required for coherent analysis. For the associated transformation,
see [459]. Failure to account for relativistic timing corrections introduces signifi-
cant biases in the resulting sky maps, particularly affecting the dipole component.
Aligning the X, Y, and Z data streams to a common time coordinate, specifically the
Barycentric Coordinate Time (TCB) referenced to the Barycentric Celestial Reference
System (BCRS), effectively mitigates this systematic bias and enables the accurate

recovery of the kinematic dipole, as discussed in the following Subsection.

Data Analysis

The analysis utilizes 4 years of TDI 2.0 data streams sampled at 0.2Hz. As a first
step, the data undergo a pre-processing procedure that includes both frequency and
time compression. The continuous 4-year TDI data stream is segmented into N; dis-
crete time intervals, which effectively sets the angular resolution for the subsequent
analysis. Additional data compression is performed by averaging the spectral con-
tent over frequency bins of width 7;. Based on the X, Y, Z TDI channel data vector

d, one can determine the averaged data matrix as in [362]

1

_ 1 I+ - .

D(z, fi) = - ). d(m fi) ®d(w fi)" (4112)
Jopei M

=]

N
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FIGURE 4.13: Averaged spectra of the 4-years-long data set compared
to the space interferometer response model to an anisotropic GW sky
[22]. There are N; = 384 spectra over plotted for each in the figure, in
shades of blue for the data, and in shades of red for the model.

Here, the N; x N X 3 data vectors d are the Fourier transforms of the time-split,
simulated X, Y and Z time series. The matrix D(T, f;) is the tensor product across
TDI channels of the data vectors d, before averaging over the spectral window of
width n; for data compression. It measures the cross-spectral density of the TDI
data streams. The statistical expectation of D is the theoretical covariance C; :=
C|x,y,z) of the TDI time series, which the Bayesian map-making method utilized in
the analysis is ultimately solving for. The theoretical covariance C; matrix can be

computed, for each time and frequency bin, as

Ca(, fj) = Aua(T, fi, p) I(f,p) +Na(T, i), (4.113)
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where A is the N; X Ny x 3 X 3 X Npix matrix encoding the quadratic response func-
tion of the instrument [430], I(f, p) is the GW intensity sky map Npx-vector, both
showing explicit frequency and angular (pixel) dependence. As in previous expres-
sions, the product A;I is understood as a summation over sky pixels. The quantity
N, denotes the N; x Ny x 3 x 3 covariance matrix of TDI noise, which may be op-
tionally included in the analysis. The pixelized intensity map I(p) contains the free

parameters that constitute the primary target of the inference procedure.

To obtain a best-fit estimate of the intensity map relative to the observed data, a
suitable probabilistic framework must be selected, guided by the structure and sta-
tistical properties of the data vector d. In this analysis, a likelihood-based approach
is adopted, utilizing the statistical behavior of the matrices D(t, f;). As introduced
in Eq. (4.112), for each time segment 7, the matrix D is a (3 x 3) random matrix
formed by averaging the outer products of n; Gaussian-distributed frequency series
within the frequency window [] - %, j+ %] . Provided that the frequencies f; used
to compute the average d(t;, fx) ® d(T;, fi)! are uncorrelated, the resulting matrix
D(T, fj) follows a multivariate Wishart distribution W;—3(n;, C) [460], where C de-
notes the covariance matrix of the underlying Gaussian process d. For n; > 3 the
probability density function? of D reads [460]

—_

f(D) = AT (T [Cl D=1V 2 exp (—%Tr(Cll_D)). (4.114)
Here, I'; () is the multivariate gamma function, and the dimension parameter g = 3
accounting for the three TDI channels. Based on the preceding equation, the like-
lihood function £ to be maximized can now be formulated. It is important to note
that any constant prefactors become irrelevant in the computation of the logarithmic
likelihood ratio used in the MCMC sampling. Consequently, only the terms depen-
dent on the fitting parameters contribute to the inference process. For the purposes
of this investigation, the log-likelihood function corresponding to a data sample D
is defined as in Eq. (4.112), i.e.

log £ = ZZ —tr(C;'D(7;, f)) — vlog [CalTi, i)l |, (4.115)

where the trace is taken over the TDI channels. The effective number of degrees of
freedom is introduced as v = ;Tj, where the reduction factor N,,—referred to as the

normalized equivalent noise bandwidth—accounts for the overlap of time segments

2The density function is valid w.r.t. Lebesque measure on the cone of symmetric positive definite
matrices.
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T and the specific window functions employed during the time segmentation of the
data [461]. For additional details, the reader is referred to the comprehensive review
in [461].

Evidently, the fitting parameters enter explicitly through the covariance matrix
C;, and specifically via the intensity map embedded within it. A Bayesian map-
making approach requires numerical evaluation of the covariance matrix C; at each
step of the MCMC sampling process, utilizing the expression on the left-hand side
of Eq. (4.104). Although the evaluation of the log £ function necessitates the full
intensity pixel map I, various strategies can be adopted to extract the relevant in-
formation from I, using a reduced set of fitting parameters. The present analysis
considers two such approaches.
The first method assumes that the anisotropies in the signal originate from a Doppler
boost. For a scale-invariant energy density spectrum as described in Eq. (4.70), a
suitable reference frame can be selected without loss of generality. This leaves four
parameters that define the pixel map I,: the monopole amplitude in the observer
frame, QO (f), and the three components of the velocity vector B = [Bx, By, B2], as
introduced in Eq. (4.70). These components represent the boost of the solar system
relative to the CMB frame, expressed in the BCRS. For a solar motion relative to
the CMB with a speed of approximately |B| ~ 369 km/s [435], or |B| ~ 1.23 - 1073
when normalized to the speed of light, the corresponding components in the BCRS
are B = 1073 [~1.23,0.25, —0.18]. These values are taken as the true boost param-
eters targeted for recovery through the MCMC inference procedure. By combin-
ing Eqgs. (4.69) and (4.83), the full intensity map I, is constructed, thereby defin-
ing C;. This approach offers the advantage of a minimal parameter space, which
significantly alleviates computational demands. However, it is inherently model-
dependent, applying exclusively to scenarios where Doppler-induced anisotropies
from a scale-invariant source dominate the cosmological SGWB.
Another method for extracting the intensity map from a given model involves its
decomposition into spherical harmonic modes. In this approach, the pixel map I,
is expressed as a sum of 6 independent modes, considering only up to quadrupo-
lar anisotropies (i.e., £ = 2). The £, =m modes are interrelated, as I, must remain
real for each pixel. These 6 modes correspond to 9 independent parameters, since
3 of the relevant modes are complex. This decomposition is model-independent
and, in principle, captures any anisotropy present in the data, including intrinsic
anisotropies within the source frame.
It is important to note that both parametrizations described above are valid only for
a scale-invariant spectrum. For more complex spectra, such as those with non-trivial
spectral dependencies, knowledge of the relevant fit parameters is required for each
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frequency bin individually.

In this study of the two parameter spaces, the optimal fit for the intensity map,
denoted as I, is sought using simulated LISA data through MCMC sampling of the
likelihood function outlined in Eq. (4.115). While exploring the parameter space via
MCMC sampling incurs significant computational costs, this method provides a key
advantage by avoiding the numerically challenging inversion of the Fisher matrix.
The latter can introduce systematic errors that undermine the overall robustness of
the analysis [430, 172]. Moreover, the Fisher matrix approach assumes that the likeli-
hood function can be well approximated by a Gaussian distribution around its peak
[462], a condition that does not necessarily hold in this analysis. If this assumption
is violated, the algorithm may converge to an undesirable local maximum of the
likelihood function. While this limitation may not be as critical in signal forecast-
ing, it becomes problematic when developing tools for real measurement data. For
these reasons, the Fisher matrix approach is less suited to our needs. In contrast, the
MCMC method does not rely on any analytical or numerical approximations of the
log-likelihood function, as defined in Eq. (4.115). Given that our focus is primar-
ily on low modes when studying kinematic anisotropies, an MCMC map-making
strategy, based on the methodology presented in [430], is especially relevant. Fur-
thermore, the inherently low angular resolution of LISA, which limits the resolution
of higher modes, makes the MCMC map-making approach a practical and effective

solution for many scenarios encountered in LISA analyses.

The mapping scheme is structured as follows: at each iteration of the algo-
rithm, the likelihood in Eq. (4.69) is evaluated based on the current location in the
parameter space. In principle, the covariance matrix can be computed by inserting
Eq. (4.70) into Eq. (4.115); however, numerically, there is no need to expand in small
velocities. Instead, the full expression in Eq. (4.69) is used to compute both the
covariance matrix C; and the corresponding likelihood. As discussed previously,
for a flat and isotropic energy density spectrum Qgw(f) in the CMB-frame, the
Doppler shift resulting from the observer’s velocity relative to the stochastic emis-
sion causes a sky modulation of the amplitude that is independent of the frequency,
ie, ang = ng = 0. This implies that changing the velocity vector E will have an
overall effect on the sky map at all frequencies, and the treatment of frequency and

angular dependence remains separate,

C(r,f) = Al f,p) I(f, p) = AT, £, p) % I(fo,p) @.116)

where the spectral dependency of the energy density in the CMB-frame is extracted
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via the function E(f) as in [430], and the (arbitrary) reference frequency of fy =
1 mHz is introduced to define the intensity map I(p) = I(fo, p) that is fitted for.
Thus, for each iteration i, the evaluation of Eq. (4.69) boils down to computing the
prefactor (4.68) for the new velocity vector A when applying the model-dependent
fit ansatz. Given the fit parameters {QLyy, B%, ﬁly, BL} of iteration i selected by an
arbitrary walker of the MCMC the algorithm proceeds by calculating

: 3H? :
o) = 5503 P (1) Ow () (4117)
with
1— |Bi|2
D(p) = — |F|A. : (4.118)
-1 kB

The angular or pixel dependence of I(fy, p) is introduced implicitly through the
Doppler boosting of ()L, from the source to the observer frame via D. It is impor-
tant to note that, for a slope-free spectrum such as for CS, Qgw(f) = Qgw remains
constant. The resulting discrete I'(fy, p) is then summed over pixels, as shown in
Eq. (4.116), yielding the covariance matrix C’ for the i-th iteration. With this newly
computed covariance matrix, the likelihood function (4.115) is evaluated, and the
results are compared to those of the other walkers within the same iteration. Ac-
cording to the scheme’s definition, the walkers tend to favor regions in parameter
space around high-likelihood points. Over time, they converge toward the maxi-
mum of (4.115) for the given data.

The MCMC can, in principle, be initialized in any arbitrary state. However, in-
corporating prior knowledge about the expected signal is likely to speed up the
convergence toward the correct maximum likelihood. In this analysis, an agnos-
tic approach is chosen, initializing the MCMC with an isotropic map configuration
I, = constant. For a detailed description of the specific MCMC scheme used in this
work, the reader is referred to [463, 464]. In Fig. 4.14, an exemplary histogram and
correlation diagram of the MCMC chains after convergence are presented, focusing
on a single realization of the SGWB sky. The MCMC chains show convergence to-
wards the true velocity ™. The statistical properties of the MCMC samples, which
represent the posterior distribution, provide a theoretical estimate of the measure-
ment precision. For this particular sky realization, Blrue js found to be more than
4-0 away from zero, indicating a clear detection of the observer’s motion relative to
the CMB rest frame. Fig. 4.15 displays the reconstructed skymap derived from the
B3 measurement shown in Fig. 4.14. A high degree of agreement between the
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FIGURE 4.14: Samples histogram of the (Qcw, B) space for a single 4-
years-long GW sky realization after convergence of the MCMC [22].
The true boost components in the BCRS frame targeted by the MCMC

inference are drawn in green plain lines and given by B =10"3-[-1.23,
0.25, —0.18].

input and output intensity maps is observed, especially considering that the initial

sky map, prior to measurement, was perfectly isotropic.

Numerical Results

Before presenting the results of the numerical investigation outlined above, it is im-
portant to highlight a statistically significant bias in the amplitude monopole (),
as shown in Fig. 4.14. The inferred value is ()9 = 1.0365 £ 0.0002 x 1071, reveal-
ing a systematic error that is two orders of magnitude larger than the statistical
error. This systematic bias has been traced to numerical inaccuracies in the fitting
quadratic frequency-domain response model given by Eq. (4.100), which becomes
pronounced near zero-response frequencies (see Fig. 4.13) and close to the Nyquist
frequency fs. At zero-response frequencies, LISA becomes insensitive to the GW
strain because the constellation arm lengths are integer multiples of the GW wave-

length, leading to no effective variation in optical path length. Numerical issues can
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FIGURE 4.15: Intensity GW sky maps (in percentage of the monopole
o) [22]. From left to right: the input intensity map injected, the a priori
map used to initialize the MCMC chains, and the map recovered by the
map-making algorithm. The monopole is removed from the intensity
maps, to ease the visualization the dipolar anisotropy. These projection
plots have been made from healpy python package.

arise near these response dips, and as observed in this case, relative errors between
the model and data can diverge as the signal approaches zero. The MCMC sampling
attempts to compensate for these inaccuracies when adapting the inferred value
of (). It has been verified that masking the data around these dips and near the
Nyquist frequency reduces the systematic error by an order of magnitude, without
affecting the precision of the § inference. This phenomenon is particularly signifi-
cant in signal-dominated regimes, where the analysis is most susceptible to model
inaccuracies.

A second potential source of systematic error arises from the assumption that the
statistics of the random matrices D(T;, fi) (Eq. (4.112)) follow multivariate Wishart
statistics (Eq. (4.114)), which is only exact when averaging over uncorrelated fre-
quency bins k to construct D(7;, f;). In this work, however, the application of the
Hanning apodization window function to compute the frequency series d(T;, f)
from the time-domain TDI data streams induces correlations between adjacent fre-
quency bins k. A more general statistical model, which accounts for these frequency
correlations, is required to replace Eq. (4.114) when deriving the log-likelihood func-
tion to be sampled. It is believed that this approximation contributes to the residual
bias, and ongoing investigations, including those by the authors of [362], are explor-
ing the derivation of the exact likelihood function. This topic merits further study,
beyond the scope of the present document.

Nonetheless, the results shown in Fig. 4.14 and 4.15 indicate that resolving
kinematic anisotropies using the MCMC map-making strategy is indeed feasible.
However, it is important to recognize that, at this stage, the analysis remains sensi-
tive to potential statistical fluctuations in the input sky map realization, which could
lead to a fortuitous amplification of the dipolar signal, deviating from its expected
value. This intrinsic statistical error in the ¢ = 1,2 kinematic modes is referred to as
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"sample variance." Such variance will limit the precision of anisotropy characteriza-
tion even in an idealized scenario with a signal-dominated instrument, due to the
finite duration of the observations (4 years), as thoroughly discussed in [441]. More-
over, as noted earlier, it is essential to confirm that the inferred anisotropy and the
measurement of the velocity B are robust with respect to any potential systematic
errors in the analysis, including those affecting the monopole amplitude () infer-
ence. Our approach will be empirical and agnostic, focusing on ensuring that the
successful inference of B is independent of any specific data realization or injec-

tion map, and is statistically consistent with the properties of the stochastic signal.

The potential artifacts discussed previously can be shown to be excluded as
plausible sources contributing to the observed signals in Fig. 4.14 and 4.15. To
demonstrate this, the statistical robustness of the signal shown in Fig. 4.14 and
4.15 is evaluated by comparing 30 randomly generated realizations of a stochas-
tic GW sky. Figure 4.16 illustrates the dispersion of the measured velocity f™¢ in
the SGWB rest frame relative to each distinct realization of the SGWB, where the
injected boost vectors remain fixed for each realization. The figure also presents a
comparison between the mean value and standard deviation across the 30 realiza-
tions, alongside the true velocity values, determined by the choice of frame (see the
discussion below Eq. (4.115)), as well as the theoretical uncertainty estimates from
the MCMC sampling. The analysis in Fig. 4.16 reveals that the statistics of the 30
measurements are consistent with the theoretical values. Specifically, the average
B converges towards e, and the measured standard deviation is in agree-
ment with the theoretical error bars. Notably, the average measured meeas is well
resolved and found to be more than 40 away from 0. Therefore, across all random
realizations, the algorithm consistently recovers the true dominant boost compo-
nent responsible for inducing the kinematic anisotropy of the SGWB, as determined
earlier. The result shown in Fig. 4.14 corresponds to one of the 30 realizations cho-
sen at random and is thus included in the histogram in Fig. 4.16. This numerical
demonstration confirms that, even in the challenging scenario of a boosted, scale-
free CS-like stochastic signal, the inherent sample variance is effectively mitigated.
Based on the 30 realizations, the corresponding intensity maps and their a;,, com-
ponents in the spherical harmonics decomposition are also computed. As shown in
Fig. 4.17, statistical analyses are conducted to assess the robustness of the resolu-
tion of kinematic spherical harmonics modes. A clear detection of the dipolar (1,1)
mode is observed, which represents the dominant component of the boosted SGWB
data with a flat energy density spectrum. As expected, the £ = 1 modes are signifi-
cantly brighter than the £ = 2 modes, since their intensity scales as ‘. Notably, the
MCMC method begins to exhibit sensitivity to quadrupolar components, such as
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FIGURE 4.16: Variance of the measured signal over the 30 realizations
of the GW sky (blue histograms), compared to the resulting averaged
values and standard deviations (in blue), and the theoretical values and
MCMC error bars (in green) [22]. Measured signals, their statistics and
the true values are plotted for By, B, and B, from left to right. The

dispersion of f™M realizations is statistically consistent with the true

values Etme and the theoretical error bars from the MCMC sampling.
Bx is resolved > 40 away from 0.0 value.

the (2,0) and (2,2) modes, which are detected with approximately 20 confidence.
This sensitivity stems from the fact that LISA is much more responsive to quadrupo-
lar signals than dipolar ones due to the pronounced parity of its response [172]. This
enhanced response compensates for the inherent weakness of the quadrupolar com-
ponent, making it observable by LISA. In some instances, cosmological signals with
more complex spectral signatures can further amplify the ¢ = 2 component, poten-
tially making the £ = 2 modes comparable to or even dominant over the kinematic
signatures in the observed signal. It is crucial to note that the specific distribution of
power across the (¢,m) modes, as depicted in Fig. 4.17, is influenced by the choice
of reference frame for the boost vector. In the BCRS frame, where the dominant
component of the boost vector is aligned with the x-axis, the primary contribution
to the dipole D(f), as described in Eq. (4.79) (and subsequent equations), is found
in the (1,1) mode. Likewise, in this reference frame, the quadrupole Q(f) is pre-
dominantly determined by the (2,2) and (2,0) modes. Furthermore, the variance of
the monopole arises from the variability in the measured f; and the dependence of
CSW ~ |M(f)|? on these components.

Having established the statistical significance of the result, the next step is to
assess whether the observed signal could be attributed to biases or systematic errors
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FIGURE 4.17: Variance of the measured signal against the theoretical
error bars for the mode components of the SGWB in the observer frame
up to ¢ = 2 based on the statistics for g;, Fig. 4.16 [22].

in the instrument response or the analysis. To investigate this possibility, a Doppler-
induced anisotropic sky map is introduced by injecting a rotated velocity vector BfOt.
The ability to recover this modified injection is then tested. The new velocity vector
to be recovered is given by B = Ryyx(¢,7,0) B¢, where the rotation matrix
Rx y,z incorporates the Euler rotation angles ¢ = 100°, # = 0°, and 6 = 60°. These
angles correspond to rotations around the Z, Y, and X axes of the Solar System
Barycentric (SSB) frame, respectively.

Fig. 4.18 presents the injected values £ and the recovered values for 10 realizations
of the sky. As observed in Fig. 4.16, the analysis effectively recovers this newly
injected signal. This result demonstrates that the analysis pipeline is capable of
accurately reconstructing the injected sky map, providing further evidence that the

measured intensity map in Fig. 4.15 is not due to a systematic error.

Thus far, the analysis has been centered on the model-dependent approach
for selecting the fit parameters, specifically fitting with respect to {Qgw, B}. Now,
the focus shifts to a fully agnostic approach, where the fit is performed using the
spherical modes of the signal, parameterizing the intensity map I, via its mode
decomposition iz, as given in (4.105), up to ¢ < 2. It is important to note that,
assuming the signal is purely kinematic, i.e., the result of the Doppler boost of an
isotropic background, the set {Qgw, B } represents the minimum set of parameters
needed to characterize the signal. However, in a more general context, a model-
independent approach increases the flexibility of the outlined pipeline. Unlike the

model-dependent approach, utilizing the modes iy, allows for the resolution of any
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FIGURE 4.18: Variance of the measured signal over the 10 realizations
of the rotated GW sky (blue histograms), compared to the resulting
averaged values and standard deviations (in blue), and the theoretical
values and MCMC error bars (in green) [22]. Are plotted the data for
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input velocity g™ is recovered with identical precision that in Fig 4.16

angular dependence in the signal I, capturing both intrinsic and Doppler-induced

sky anisotropies.

As in the previous analysis, one investigates the model-independent choice of
tit parameters for 10 random realizations of a CS-like SGWB signal. For each itera-
tion k, the intensity I]; is computed using the modes i§ , which are selected by the
MCMC based on the likelihood function (4.115). The results are presented in Figure
4.19. For ¢ = 0,1, the model-independent approach achieves accuracy comparable
to the parametrization {Qgw, }. The measured mean values i, are statistically
significant and exhibit variance in agreement with the theoretical error bars. When
¢ = 2 is included, the MCMC converges to an undesirable maximum, significantly
overestimating the monopolar and quadrupolar contributions. This issue arises
partly due to the correlation between the monopole and quadrupole, which man-
ifests in equal power being carried by both, as shown in Eq. (4.71) and (4.73), and
confirmed numerically. Therefore, it can be concluded that, due to the correlation
between M and Q, the model-independent approach allows for statistical uncer-
tainties of the monopole to leak into the quadrupole. This undesirable effect can be
mitigated by fine-tuning analysis parameters such as frequency and time binning, or
by disentangling the monopole and quadrupole through different parametrizations.
One possible approach is to use a recursive scheme, where ¢ = 0, 1 is first fixed via
the MCMC before fitting for £ = 2 exclusively. However, it should be noted that the
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FIGURE 4.19: Variance of the measured signal against the theoretical
error bars for the mode components of the SGWB in the observer frame
up to £ = 1 based on a MCMC-sampling using a,, [22].

correlations between the monopole and anisotropies are also influenced by LISA’s
complex and non-compact sky response functions [441] (see also [465, 466]). Ac-
counting for this factor introduces additional complexity to the analysis. At this
stage, a more detailed investigation of these issues is deferred to future work. It is
important to highlight that such complications do not arise in the model-dependent
tit, which, due to the minimal set of parameters, eliminates redundancies and poten-
tial correlations between parameters. Consequently, the model-dependent approach
results in a modified likelihood space that, in comparison to the model-independent
approach, mitigates the peaks of the likelihood function that would otherwise favor

the leakage between the monopole and quadrupole.

At this stage, instrumental noise has not been considered. The only sources of
randomness and uncertainty under consideration have been the inherent stochastic
characteristics of the signal, specifically the intrinsic variance of its spectral density,
which competes with its annual temporal fluctuations. As shown in Fig. 4.16, the
precision of the map-making process exceeds the anticipated sample variance for a
data span of 4 years. Importantly, this outcome remains unaffected by the signal
amplitude Qgw in the noise-free scenario, which has not been discussed until now.
To explore the detectability of Doppler boost-induced anisotropies in a scale-free
extra-galactic SGWB, including instrumental noise, one now incorporates the noise
model. Here, a zero-noise likelihood MCMC map-making approach is employed.
In this method, the covariance matrix (4.113) is computed, accounting for an ex-
pected value for the noise matrix N; derived from the noise model detailed in [362].
While the data matrix D in the log-likelihood definition (4.115) remains unchanged,
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QOcw varies. The blue color bar provides the estimated standard de-

. . oy . . . .
viation \ﬁ%\ in || unit [22]. Two instrumental noise models are
X

considered: SciRD specifications (left) and current best estimate (right),
differing essentially by the level of OMS noise (displacement noise floor
at1.5 x 10711 and 6.35 x 10~ 12 m/Hz!/? resp. [19, 23]). Both cases con-
firm that the kinematic dipole is reachable for Qgw values typically
above 10~7. We observe that for Qgw > 1077 we converge to the sam-
ple variance limit displayed in Fig. 4.16.

the modeled covariance matrix C; now includes instrumental noise, which affects
the uncertainties of Bmeas as assessed through the MCMC analysis. The results of
this analysis are presented in Fig. 4.20%". In contrast to the approach in [362], here,
one considers two noise performance scenarios: one that is conservatively aligned
with the LISA Science Requirement Document (SciRD) [19], and a second, more op-
timistic scenario based on the current best understanding of the instrument’s per-
formance (see Appendix B and Eq. (B5) in [23]). The figure illustrates the estimated
O.mcmc

g, asa function of Q)gw, with the color scale indicating, for each data point, the

distance to the target B¢ in units of U_Igicmc.

Fig. 4.20 confirms the results presented in [172]. In the top subplot, under a
conservative noise configuration, the detectability of the kinematic dipole becomes
significant only for relatively large values of Qgw > 1077. The more optimistic
scenario, based on the latest LISA performance model, suggests detectability at
Qgw = 5 x 1078, potentially reaching 10~8. This range aligns with expectations,

30Note that only the dominant velocity direction, By, given our choice of reference frame are dis-
played. This is sufficient to identify the kinematic anisotropy, as in the chosen frame B, accounts
for over 90% of the total boost’s magnitude. If another reference system is chosen, the magnitude is
distributed across all components depending on the transformation applied, as demonstrated in Fig.
4.18.
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given LISA’s suboptimal sensitivity to odd-¢/ modes [172]. In contrast to the ap-
proach outlined in [172], it is important to note that their analysis relies on the as-
sumption of a noise-dominated covariance matrix, leading to the simplified Fisher
matrix expression in Equation (6.5). This assumption treats the intrinsic variance of
the stochastic cosmological signal as negligible, thereby simplifying the analysis by
removing a layer of complexity. The limitations of SGWB detection due to its intrin-
sic variance, often referred to as sample variance, have been discussed in [441]. In
contrast, the results presented in Fig. 4.20 take into account both sample variance

and instrumental noise.

In summary, Section 4.4.2 presents a comprehensive time-domain map-making
approach based on a maximum-likelihood MCMC tailored for LISA, with the aim
of detecting kinematic anisotropies in the SGWB. Stochastic strain time series are
generated for each sky pixel and projected onto the simulated full instrument re-
sponse function. For the resulting data streams, which consist of random data ma-
trices convolved with the instrumental response kernel, a suitable model-based like-
lihood function is chosen to test the data against a physical model. A novel MCMC
mapping scheme is then developed based on this likelihood function. The effec-
tiveness of the proposed pipeline is demonstrated by successfully recovering the
injected map of Doppler-boosted primordial anisotropic data, thereby showcasing
the utility of the MCMC-based mapping scheme for LISA. The results show that
the pipeline outperforms sample variance limitations in LISA data and remains ro-
bust against both systematic and statistical errors. Recovery of the injected data
is achieved using both model-dependent and independent sets of fit parameters.
When instrumental noise is incorporated, the pipeline converges to a statistically
meaningful recovery of the kinematic dipole for Qgw = 1077 under conservative
noise scenarios, with slightly better performance under more favorable instrumental
noise conditions. These results are consistent with and complement those reported
in [172].

Despite the promising outcomes of the analysis, several areas for improvement are
acknowledged, which will be addressed in future work. First, the systematic bias
observed in the monopole amplitude measurements has highlighted inaccuracies
in the fitting response model at the zero-response frequencies, where the relative
inaccuracy is amplified due to the very low amplitude response. While this issue
does not affect the dipole measurements, it will require a dedicated treatment (such
as masking or model improvement), along with an enhancement of the statistical
model for the data matrix in Eq. (4.112) for Bayesian inference. These modifica-
tions will help mitigate the monopole bias and potentially make the overall analysis
more robust with respect to the time-frequency analysis settings (e.g., time window
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length and spectral averaging).

In relation to the above, several opportunities have been identified to optimize
the data sampling process by transitioning to a time-frequency domain analysis in-
stead of relying on a full time-domain approach. Replacing the short-Fourier trans-
form with a wavelet-based analysis during the preprocessing phase could improve
the likelihood of recovering kinematic anisotropy from the data. Additionally, it was
noted that orbital dynamics have a significant influence on the output of the map-
making scheme, suggesting that simulating more realistic orbital dynamics—rather
than the static equal-arm-length assumption used here—would enhance the kine-
matic signatures in the data. However, the use of more realistic Keplerian orbits has
introduced notable biases in the map-making analysis, which are currently under
investigation. These biases appear to be strongly linked to the initial preprocess-
ing step, where the 4-year TDI data streams are divided using 50% overlapping
Hanning windows. It is believed that moving to a time-frequency representation of
the TDI data will resolve this issue, allowing the complex temporal features arising
from the full orbital dynamics to be exploited. More broadly, the sensitivity of the
proposed map-making scheme to key analysis parameters, particularly the number
of time and frequency bins (Mgamples and navg), has been noted. These parameters
determine how the input data is divided 3!. It was found that the convergence of
the MCMC is sensitive to the choice of ngamples and navg. In particular, suboptimal
choices for bin size can significantly shift the monopole. For the results presented
in the previous section, the parameters nsamples and navg were optimized to achieve
convergence of the random walkers in parameter space. While the full implications
of a shifted time (or frequency) grid within the MCMC context are not yet com-
pletely understood, they are under investigation and will be addressed in future
work. Again, it is expected that wavelet transforms will help facilitate these investi-

gations.

4.4.3 Conclusion and Outlook

The detection of the SGWB could represent a major breakthrough for numerous
branches of physics. As a result, the scientific community is pushing the limits of
existing and upcoming datasets to extract as much information as possible. Sec-
tion 4.4 provides a brief overview of the current state of active research in this field.
While astrophysical contributions to the SGWB are on the verge of being detectable,
as discussed in Subsection 4.4.1, cosmological contributions are likely to be uncov-
ered only with future instruments, as demonstrated in detail in Section 4.4.2. In this

31See Eq. (4.112) and the subsequent discussions.
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section, considerable effort was made to use the LISA instrument as a detector for
the simplest possible signature of the SGWB, i.e., a scale-free spectrum. Future ef-
forts will, however, need to focus on more complex primordial contributions to the
SGWB, which exhibit non-trivial spectral dependencies, as illustrated in Fig. 4.10.
Extending the analysis presented here to encompass more intricate signatures could
significantly improve the lower bound on Qgw for which the MCMC method recov-
ers the desired contributions. This improvement is primarily due to the dependence
of the components D(f) and Q(f) on the spectral slope, as discussed in Eq. (4.72)
and (4.73). These components, which represent the dipole and quadrupole modes
of the signal, experience significant amplification when the slope of the spectrum
QOcw varies with frequency. This variation is quantified by the functions nq and
aq. In some cases, this can result in the quadrupolar power surpassing that of the
dipole. As a result, spectra arising from phenomena such as, for example, PTs or
PBHs strongly amplify the power of kinematic anisotropies for ¢ > 0, with a no-
table emphasis on enhancing the quadrupole. The amplification of signal power for
¢ = 2 is particularly significant for LISA, as the instrument is particularly sensitive

to the quadrupolar mode of sky anisotropies [172].

In addition to identifying cosmic origins of signatures in LISA data, the pipeline
developed in Section 4.4.2 can also be utilized to analyze galactic contributions to the
SGWB, aiming for results comparable to those in Section 4.4.1 using the LISA instru-
ment. In the previous section, a framework was established under the assumption
that an effective foreground removal scheme has been applied to the raw data. Al-
though this step is highly non-trivial and falls outside the scope of this article, our
map-making algorithm can be effectively employed to map the galactic confusion
noise. The potential of the MCMC mapping scheme to map the remaining Milky
Way GW sources in LISA Data Challenge data, following the extraction of resolved
binaries, will be explored in a follow-up project.

In conclusion, GW) astronomy has only begun to explore the vast wealth of
information provided by the SGWB. While collaborations related to PTAs are likely
to publish enhanced data in the coming years, potentially strengthening their evi-
dence for the astrophysical background, new instruments like LISA have the poten-
tial to complement this data by providing insights into the cosmological background
contributions. Investigations such as those presented in Section 4.4.2 are therefore
indispensable, as they establish ready-to-use toolkits for testing suitably processed
LISA data of SGWB nature for signatures of cosmic origin. Specifically, given that
the LISA sensitivity band is dominated by an SGWB signal, spectral-rich signatures
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may be recovered for Qgw 2 108 with a less conservative instrumental noise re-
alization. This capability becomes particularly important in the context of potential
PTA signals of a stochastic background [52] extending into the LISA band. If such a
signal is (partially) of cosmic origin, significant contributions from the same source
would be expected in the LISA data band. The cosmic nature of these hypothetical
signatures can be confirmed using the analysis pipeline outlined in Section 4.4.2, i.e.,
[22].
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Chapter VIII
Concluding Remarks

The detection of GWs represents one of the most significant achievements in 21st-
century physics. However, only a small fraction of the extensive cosmological, as-
trophysical, and gravitational information encoded in GW signals has yet been re-
vealed. It remains to be an exciting journey where, even for the most experienced
members of the research community, anticipating the discoveries enabled by future
observations remains challenging—particularly regarding the potential emergence
of new physics within the measurement data.

Yet, despite the remarkable advances in GW physics to date, numerous theoretical
and experimental challenges remain. On the theoretical front, the accurate modeling
of highly precessing, eccentric, and high mass-ratio systems continues to demand
more sophisticated analytical and numerical tools. The inclusion of matter effects in
NS mergers, especially in strong magnetic fields and finite temperature regimes, in-
troduces additional complexities requiring multi-physics simulations. From a foun-
dational perspective, quantum gravitational effects (including imprints of a theory
of quantum gravity) and potential GW imprints from early-Universe phase transi-
tions remain speculative but profoundly important areas of inquiry.
Experimentally, the next generation of detectors—such as LISA, the Einstein Tele-
scope, and Cosmic Explorer—will extend the GW observational band, enhancing
sensitivity to lower-frequency signals and enabling the detection of intermediate-
mass BHs, extreme mass-ratio inspirals, and primordial GW backgrounds. How-
ever, these instruments face formidable engineering and data analysis challenges,
including stringent requirements on noise suppression, calibration, and waveform
extraction in high-dimensional parameter spaces. Moreover, the development of
coherent multi-messenger frameworks, integrating GWs, electromagnetic, and neu-
trino data, will be crucial for maximizing the scientific return of future detections.
In sum, GW physics stands at the threshold of a new era in fundamental physics
and astrophysics. Continued progress will require a synergistic effort across theo-

retical modeling, computational techniques, and experimental innovation. The path
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forward is challenging but holds the promise of addressing some of the most pro-
found questions in modern science, from the nature of spacetime to the origin of the

Universe.

In this thesis, each Chapters II, IIT and IV can be associated with one of three

major research branches in GW physics, respectively: The development of analyti-
cal tools to improve numerical evaluation of GW data, the theoretical and numer-
ical derivation of high-precision features of gravitational waveforms, and, finally,
the instrument-specific development of data analysis pipelines ready to be applied
on measurement data. As such, this thesis establishes a comprehensive framework
that bridges foundational theoretical insights with practical methodologies appli-
cable to ongoing and future GW observations. By systematically addressing chal-
lenges across these three pillars of GW research, it contributes both to the refinement
of gravitational waveform modeling and the enhancement of data interpretation
strategies. The analytical tools assembled in Chapter II lay the groundwork for more
efficient numerical simulations by exploiting asymptotic structures and symmetries
of spacetime, thereby reducing computational complexity without sacrificing pre-
cision. In Chapter III, the investigation of quantum corrections and high-order rel-
ativistic effects informs the subtle features of gravitational waveforms, which may
become detectable as detector sensitivity improves. Finally, Chapter IV translates
various theoretical developments into actionable tools for data analysis, integrating
them into pipelines optimized for the future space-based LISA detector.
In unifying these directions, this dissertation not only advances each domain inde-
pendently but also elucidates the synergies between them—demonstrating, for in-
stance, how asymptotic analyses inform waveform reconstruction, or how quantum-
induced corrections may be encoded in detectable signatures. This integrated ap-
proach reflects the evolving nature of GW physics, where theory, computation, and
instrumentation converge to enable precision tests of GR and to explore physics be-
yond the Standard Model.
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Appendix A

Computational Tools and Techniques

1.1 Levi-Civita Connection for the Geodesic Null Con-

gruence Metric

The Levi-Civita connection for the metric

ds? = Vdu?® 4 2Bdudr + Adr? 4+ Hup(dy? — U?du)(dy® — UPdu) + D dy?dr
=: gI;GCdede , (A.1)

is computed. One finds
Lo,0,0 —% (aan Uy + 2 (UpdyHig + Hy19u Uy + Hi20,Up) Uy + Up?9y Hao
+ 2U, (H120, Uy + H2p0,Uy) + auV> , (A.2)
Lo —% (arHll Uy? + 2 (Uz0,Hyp + H110:Uy + HypdrUp) Uy + Up0,Hay
42Uy (Hipd, Uy + Hdy U) + arv), (A3)
Tp0. %% (ay1 it +2 (Usd,i Hio + Hindy Us + Hiod,aUs ) Us + U3, o
12U, (leay1 U + Hpd Uz) +3, v), (A4)
2

1
To0s —5 <ay2H11u12 +2 (Und,2Hiz + Hindyalh + Hiod,lly ) Uy + Un?d, oo

12U, (leayz Uy + Hadye Uz) +9, V), (A.5)
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1
To10 5 (5rH11 U2 + 2 (U9, Hyp + Hy10, Uy + Hp9,Uo) Uy + Up%0,Hop

+2U, (H120, Uy + Hpp0,Up) + arV> , (A.6)
1
1"0,1,1 —>arB — EauA, (A7)
To1s —0.5 (ale —1.U39,Hyy — 1.Uyd, Hyy — 1.Hy19,U; — 1.Hyp9, Uy — O.SBuD1> ,
(A.8)
To15 —0.5 <8yzB — 1.U39,Hyp — 1.Uyd, Hyy — 1.Hypd, Uy — 1.Hypd, Uy — O.58uD2> ,
(A.9)
1
Too0 —>§ <8y1 Hqq Ulz +2 <U28y1 Hq» + Hnayl U, + Huayl Uz) U, + Uzzayl H»>;
42U, (leayl Uy + Hydp uz) + 0, V), (A.10)
Toon —0.5 (9,18 = 1.Usd Hit — 1.Und, Hip — 1.Hi1d, Uy — 1.Hiod, Uy — 0.59,D1 ),
(A11)
1
To2p = — U101 Hiy — U29,1Hip — Hi19,1 Uy — Hipd,a s — §a”H11’ (A.12)
I 1 Hy10,,Uy — Hy70,.U, — Uy (9,2 H J.H U, (d,.H 0..1H
023 75| — Hudyptl = Hi20,2 Uz — 1( 21+ 0, 12)— 2( 21112 + 0 22)
— Hipd,1Uy — Hpdp Uy — auHu), (A.13)
1
Lo3,0 =5 (ayan U +2 <Uzay2H12 + H110,2 Uy + H129,2 Uz) U + Uzzayszz
12U, (Hu&yz U + Hpdp uz) +0, V), (A.14)
1"0,3,1 —0.5 <ay2B — 1.U18rH12 — 1.U287H22 — 1.H128ru1 — 1.H228rl12 — 0.58uD2) p
(A.15)
I 1 Hy10,,Uy — Hy70,2Uy, — Uy (9,2 H J.H U, (9,.H 0.H
032 =5 | — Hudypls — Hizdpll — 1( 2 Hin 49, 12)- 2( 2 Hiz + 0, 22)—
leay1 u; — szayl U, — aquz) , (A.16)
1
1"0,3,3 — — ulayzle — Uzayszz — leayzul — szayz UZ — Eaquz, (A.17)

1
I'100 5 ( — 9, Hy Uy? — 2 (U9, Hyp + Hy19,Uy + Hypd,Uo) Uy — U9, Hop

—2U (learul + szarUZ) —ad,V+ ZauB) , (A.18)
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1
r1,0,1 —>§auA, (A19)
1—‘1’0’2 —0.5 <8y1B + Ulaan + Uzarle + Hnarul + learuZ + 058uD1> , (AZO)

1"1,0,3 —0.5 <ayzB + U190,Hqp + U9, Hyy + Hyp9, U7 + Hypd, Uy + O.58uD2> , (A.Zl)

1

r1,1,0 —>§auA, (A22)
1

1"1,1,1 —>§arA, (A.23)
1

1“1,1,2 —>§8y1A, (A24:)
1

T1,1,3 —)an2A, (A25)

T150 —0.5 (ale 4 UydyHyp + UpdyHyy + Hyyo, Uy + Hypdy Uy + O.58uD1) . (A.26)
1

I'121 %anlA, (A.27)

1“1,2,2 —>0.58y1 D1 — 0.58;»H11, (A28)

[125 —0.259,2D; +0.259,1D; — 0.5, Hy, (A.29)

T30 —0.5 <8yzB + U39y Hy + Updy Hap + Hipdy Uy + Hapdy U + 0.58MD2) , (A.30)
1

I 31 —>§ay2A, (A.31)

[132 —0.259,2D; +0.259,1D; — 0.5, Hy, (A.32)

1“1,3,3 —>O.5ay2D2 —0.50,Hyy, (A33)

1
1“2,0,0 —>§ ( — ay1 Hyp u12 ] <u28y1 Hyp + H118y1 U, + leayl U, + auH11> U

— UZzayl Hy, — ay1 V —2U, <H128y1 U + szayl U, + auHu)

— 2Hpa, Uy — 2leauu2), (A.34)
rzm — — 0.5ale —0.5U70,Hy; — 0.5U50,Hy> — 0.5H 19, U; — 0.5H120,U> + 0.250,, D1,
(A.35)
1
I'202 _>§auH11/ (A.36)

1
T2,0,3 _>§ ( — H118y2 U, — H128y2 U, + U <ay1 Hyp — ayzHll) + Uy <ay1 Hy, — ayzHu)

+ H120,1 Uy + Hp0 1 Uz + auH12> , (A.37)

Tp1,0 — — 0.50,1B — 0.5U1 9, Hi1 — 0.5Ud, Hip — 0.5H119, Uy — 0.5H129, U + 0.250, Dy,
(A.38)
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Ty11 —0.59,D; — 050,14, (A.39)
I3 —%aan, (A.40)
T21s %% (0.59,2D1 — 0.59,1D; + 3, Hyz ), (A.41)
I'200 —>%8qu1, (A.42)
[0 —%arHll, (A.43)
[202 —>%8y1 Hy, (A.44)
T225 —>%8yzH11, (A.45)
1
I230 -5 < — H119,2Uy — Hip0,2Up + Uy (ayl Hyp — ayan) + U, <ay1 Hpp — 3y2H1z)
+ Hipd, U + Hypdy U + auHu), (A.46)
T2 %% (0.58y2D1 ~0.59,,D; + arle) , (A.47)
I232 %%ayan, (A.48)
Ty35 =3, Hiz — %ayl Hy, (A.49)

1
T300 =5 ( ~3,2H11Us? — 2 (UpdyaHi + Hindya Uy + Hid,2Us + 9, Hio ) Uy
— UQzayzng — asz —2U (leayz u; + szayz U, + aquz) — 2Hy0,U;
— 2H»0, Uz) , (A.50)

T301 — — 0.59,2B — 0.5U1d,Hiz — 0.5Uz3, Hy — 0.5H129, Uy — 0.5H220,U + 0.253, D2,
(A.51)

1
302 =5 (Hnayz Uy + Hi20,2 Uz + Uy <8yzH11 —dy H12> + U, (8yzH12 — 0,1 sz)

— Hip0,1 Uy — Hppo,i U + aquz) , (A.52)
1
[303 —>§3qu2, (A.53)
310 —— 0.5ayzB —0.5U10,H1» — 0.5U9,Hy; — 0.5H120,U; — 0.5H»,0, Uy + 0.259,,D»,
(A.54)
T30 —0.59,D; — 059,24, (A.55)
1
[312 =5 (~0.59,2D1 +0.50,:D; + 9, Hiz) (A.56)
1
I'31,3 —>53er2, (A.57)

(A.58)
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1
T320 =5 (Hnayz Un + Hipd,aUs + Uy (3,2Hin — 3,1 Hia ) + Un (3,2Hi — 3,1 Ha )

2

— Hipd Uy — Hpdly + aquz), (A.59)
T304 —>% (-o.sayle +0.59,1D2 + arH12> ) (A.60)
320 —=0,1Hip — %ayan, (A.61)
I'323 —>%8y1 Hp, (A.62)
I330 %%aquz, (A.63)
I'331 —%aerz, (A.64)
I35 —>%5y1 Hp, (A.65)
T35 %%ayszz. (A.66)

1.2 Conformal Transformations

The concept of conformal transformations is summarized and a collection of formu-
las for the transformation properties of the most important tensors of this work is
gathered. For more details the reader is referred to the appendices in [186] and [115].

Consider a d-dimensional manifold M with metric g,, with a Levi-Civita con-
nection and associated covariant derivative V. In a covariant theory, a Weyl or

conformal transformation is the introduction of a new metric

& (x) = W ()8 (%), (A.67)

or in other words a point-dependent rescaling of the metric, where w is a smooth,
strictly positive scalar field on M. Note that in this sense a conformal transfor-
mation is not a priori associated to a diffeomorphism, hence a coordinate change!.

Moreover, with two metrics at hand, there is an ambiguity to which metric is used

11t is important to stress that in field theory the term conformal transformation is used differ-
ently: In this context with a flat background metric, a conformal transformation denotes an actual
coordinate transformation which changes the metric up to a conformal factor, such that for instance
Poincaré transformations are a subset with trivial conformal factor (leaving the metric invariant).
Thus, in field theory conformal invariance is a statement about a combined conformal diffeomor-
phism and a Weyl rescaling where this last transformation is defined as in the main text. On the
other hand, in a covariant theory such as GR it does not make much sense to talk about conformal
diffeomorphisms, as the theory is already invariant under such transformations anyway and the
concept of conformal invariance is equivalent to what is called Weyl invariance from a field theory
perspective.
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to raise or lower indices, which is important to keep in mind. It is ensured, however,
that the manifold with the metric g, or g/, have the same causal structure, such that
for instance a vector retains its timelike, null or spacelike property with respect to

each metric. The determinant of the metric transforms as
detg’ = w? detg, (A.68)

while from the requirement ¢'*"¢;,, = ¢ gyp = 0%, one finds for the inverse metric

14 1 v
gM = ﬁg?‘ . (A.69)

Note that (A.68) implies that the Levi-Civita tensor transforms as

/ . ~ _d 5 4
Eppipnpiy = V—detg &y, = W'/ —det g &,y = W €y py - (A.70)

Furthermore, the two covariant derivatives V, and V; are related to each other for
« a vector field on the manifold via

V;Dév — v;l(xy + CHVUOCU' and VII/,OCV — vl,l“v —_ CVUVD(,U (A.7].)

where using the metric compatibility of the convariant derivatives it can be shown
that ,
C"I/ll/p —= —ag‘oo’ (gyg'v’,{w + gvaVw - g’,{yvO'(U) . (A.72)

It is important to emphasize, that this formula is independent of the dimension 4 of
the manifold. Moreover, it can be shown that while geodesics with respect V, are
in general not geodesics with respect to V;, anymore, except for null geodesics (see
[115]).

Next, consider the relations between the curvature tensors associated to the
two covariant derivatives. From (A.71) and (A.72) it follows that

1
TPy = TPy + = (2600, Vi) = g VPw) (A.73)

which can simply be plugged into the definition of the Riemann tensor

R{, poy = apl“'”m/ _ agl"’”pv + I‘/V‘DTI"/TJV _ F'yarT'pr. (A.74)
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to obtain
R,,.” =R ‘T—ié” VwVw—ki VwV"w-l—ié‘T BV oV gw
pp = Ruvp T 50 [u V@V e T 5 &l Vv 2" m8vjp8 T VaWVp
2 2
— avpv[yw 51/](7 + ag‘mvav[#w 8v)p - (A.75)

Notice again that the result is independend of the dimension 4. Contracting this

transformation rule by defining R;l 0= R,,,"and R' = ¢’ VVR;W and using ¢"'gy = d

Hop
we obtain
d—2 2(d -2
Ry = Ruy — (w—)vyvvw — %g‘”’vpvgw + ( 2 )Vywvvw
d—3

( wz)gm 7V Vot (A.76)
1 2(d -1 —1)(d—-4

R= ( R (dw ) ¢V, Vo — (d C)U (2d ) gWVwauw) A7)

This means that the Shouten tensor defined for d > 2 as

2 1
Sw =775 (RW T 20d 1)g“”R) ’ (A.78)

transforms as

2 4
S;w = Syv - avyvvw + Ev},wvvw — %gpavavgw, (A.79)
which is again independent of the dimension d. On the other hand, the Weyl tensor

is conformally invariant

C]//IVPU - CI,H/U'U, (A.SO)

which can be checked by plugging the above transformation rules into the definition

of the Weyl tensor. However, this invariance is of course dependent on the index
position, since it is easily seen for example that

C;tvpa = g:nc;wpr = wngTCprT = wzcyvpa . (A.81)

The conformal transformations outlined so far are limited to objects which are com-
pletely determined by the metric and hence their conformal transformation is en-
tirely fixed. In order to talk about conformal transformations of arbitrary fields ®,
the concept of conformal weight or dimension s € R of the field has to be intro-

duced, i.e., a field is said to possess conformal weight s if

P =D, (A.82)
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An equation for the field @ is then said to be conformally invariant if there exists a
number s such that ® is a solution with respect to metric g, if and only if ' is a
solution with metric g,,. Note, however, that for a general tensor field the overall

conformal weight depends on the index position, such that one defines

q)/ﬂ...bcmd — wS_Nu"‘Nl q)ambc...d , (A83)
where N, and N are the number of upper and lower indices of the tensor com-
ponent respectively. In this way, the conformal weight s is fixed and in general
corresponds to the physical dimension of the field. With these conventions, the met-
ric, as well as the Levi-Civita tensor have dimension zero, such that indeed raising

or lowering indices does not change the dimension of a field. For instance, in this

language, the Weyl tensor has conformal weight s = —2. Furthermore, Maxwell’s
equations
are conformally invariant in four dimensions (and only in d = 4) for a conformal
weight s = —2 of the field strength, while the conservation equation

VT, (A.85)
for a symmetric tensor T"" is conformally invariant if and only if s = —d and its

trace vanishes.

In the context of conformal compactifying the chosen spacetime, i.e., trans-
forming g, = ()?g,u, the inverse of the above transformations becomse relevant.
Given the conformal factor () which in this sense is the inverse of w used above, the
transformation laws read

~ — d—1

~ — dd—1

R :é ( R4 %guvvyvvn - %gﬂvvynvvﬂ) (A.87)
g 2 Swv oo

1.3 Decomposition of Strain Functions

Energy and angular momentum flux as stated in Eq. (3.56) are both angle-dependent
and thus possess a non-trivial decomposition in the bases of spin-weighted spheri-

cal harmonics. This choice of basis has been proven beneficial in many applications
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regarding gravitational waveforms, e.g., [4] and, in general, allows for a more com-
pact denotation. In this appendix, an explicit decomposition of the terms appearing
in the flux formulas (3.56) is provided. One starts by considering the energy flux,

which contains contributions such as
12 =Y 0 Yo (0, 9), (A.89)
{m

which has spin-weight zero. It follows that

- i i y ¥ (—1)m2+mhelmlfl@m2\/(2€1+1)(2€2+1)(2€+1)

61:2 62:2 |m1\§€1 \m2|§€2 47T
14 14 14 0y b ¢
. b , (A.90)
m —mp —m 2 =20
as previously also pointed out in Eq. (A.90) of Section 2.5.5. For the decomposition
of the angular momentum flux, two types of mixings have to be considered where

one neglects the time derivative for simplicity as it does affect the spin-weighted

basis. First, one has
oh =Y Bom1Yem (6, 9) (A91)
{,m

which is of spin-weight one and where we find

00 00 = 4 ¢ d
Bm=13. 3, Y X (—1>’”1+m‘1hflmlhfzm2\/(ii@li(;)zj(elz)(—z 1)+11 |

51:2 62:2 |m1 | Sél |71’Z2|§£2

'<zl I z)(el I z)/ (A92)
—mq mp —m -2 1 1

and similarly

Hoh =Y Bow1Yim(6, ) (A.93)
{m

with spin weight 1 as well. Further,

~ s ad 1 h /g /6
T e S

l1=2lr=2 |m1 | <t |m2|§€2

(B et [ b f) (A.94)
m —my; —m 2 =31
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The latter two coefficients cover all terms within the angular momentum flux (3.56),
as the four terms present in their differ only by a time derivative of hy, ,,, or hy,,,.
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Appendix B

Supplementary Proofs

2.1 Ambiguity in the Definition of Newman-Penrose

Scalars

In the following, it is demonstrated that distinct contractions of the Weyl tensor
with members of the tetrad lead to the same result, i.e., the same Newman-Penrose
scalar. The Weyl curvature tensor in 4 dimensions is a real traceless tensor with 10
independent components. The NPS in which the tensor is decomposed are complex
however. This implies that one needs to come up with an complexified version of
the Weyl curvature that we then decompose into scalar contributions. The complex-

ification can be easily achieved via

~ . . 1
nypg' = Cyvpo’ - ZC;V‘OU” Wlth C;VPU - Ecl’lv“ﬁspaaﬁ 7 (B.].)
where CJ, ., = %Cﬂv"‘ﬁepmﬁ. The latter two tensors are decomposed in terms of a

base of complex bivectors, Uy, V},y, Wy defined as
LIW = —21’1[#71_1]/}, VIW = ZE[VmV], W]/,V = 27’1[#&/} -+ Zm[ymv} . (B.2)

Naturally, the decomposition must preserve the tracelessness of the Weyl curvature
tensor which equally implies the tracelessness of the complex version. The only
admissible combinations of the base of complex bivectors must thus be traceless as

well.

One starts with the simplest double combination and immediately finds that
only Uy, Upr and V), Ve are trace free. On the other hand, WK, W,,, = £,n, + £yn,, —
myi, — mpm,. This, however, can be compensated by U®,V,c and V7, U, so that
U Voo + ViwUpe + Wiy Wye is trace free as well. Thus, one only needs two more
independent combinations which are given by U, W,y and V), Wy, Indeed, it is
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found that Uy Wy + Wy Upe and Vi, Wy + Wy Ve are both traceless as well. Thus,
the complex Weyl tensor in four dimensions can be decomposed using the following
basis: Uy U, Vi Voo , Uy Voo + VinUpe + Wiy Woe , UyyWoo + Wi Upe , Vi W +
Wi Voo . Then, as they are independent and trace-free, it can be immediately con-
clude that the complex Weyl tensor can be written as

1
5Cuvpr = Ao (UpwUps) + A1 (Vi Vor) + A2 (U Woo + WinUpe )

2
+ /\3 (V‘u]/ng' + WI’IVVPU) + )\4 (u;“/ Vpg’ + VP“/UPU _|— Wﬂprg’) . (B.3)

Here, the constants A; € C are a priori arbitrary and describe the 10 independent
components of the complex Weyl tensor. Following the convention chosen by New-
man and Penrose [72], i.e., parameterizing the 10 independent components using
5 complex scalars, these can be identified with the Newman-Penrose scalars intro-
duced in chapter II.

Based on equation (B.3), the individual scalars are projected out by contracting
%C\WW with a suitable combination of tetrad vectors. Starting with Ay, one finds that
U,V = 2,1i.e., A can be projected out using V#'V*?. Explicit calculations yield

1~
A«O — gC‘uypg‘VVVV‘DO— — nypg‘fgymvgpma . (B.4:)

To convert éw,pg to Cyype it is helpful to write &0 = 4!if (v MpTTg). Then it holds
that

14 1 i

|
= 2 Cuupe20m200m?) 1 2y Bty nomm g2t 200

== chul/pg’gymvgpmo— + %C‘uylxﬁzg[ymv} Zg[lxmlg] == 4C}u/pg‘£ymv€pma Y] (B.5)

where the usual (cross-) normalization prescription as defined in chapter II applies.
Using the decomposition in bivectors on the other side of (B.3) yields

1

5 Cupor VIV VP = AU Upg VI VT = 42, (B.6)

hence one finds (B.4). Comparin equation (B.4) with the results of [72] implies that
one can associate Ay = Y. Equally, one can project out A; by using Uy, Uy, such
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that

1~
Al - gnypg'u'uv U‘OU - Cyvpg'nymvnpmo', (B.7)
and by comparing again to the convention of Newmann-Penrose, one finds A; = ¥,.

The calculation is analogous in every step.

For A; the procedure is less trivil as the right combination of bivectors picking
out only terms proportional to A, has to be determined first. Using again U, V""" =
2 and W, WH = —4, it is found that

1~
EC‘,uvpa(VVUI/\]P(T 4+ WHVVPO‘) — AZ(uvapU_F ungyy)(V]pra + VpO‘W]w) — —16),

= Cupo VIV WF? (B.8)

*

Jwpo With the tetrad vectors, to

which can be use to show, by explicit contraction of C

result in

1~ 1 i
420 = =5 Curpa VI"WET = 5(Cpupo = 58prapCuu*F)200m™ (200 07) - 2P

|
= 2 Cuupe20Pm 20 () 2 ) 4 Xty momating Coa P20 20 7 4 2l
1

=5 (4Cuvpo (CFm" 000" + LFm P m?) + 4Cyypo (Fm" 00 + 0 m" P m?))

— 4CVVPU(€VWIVEP7’IU _|— Kymvmpmg). (B.9)
Hence,
1

In this form A; cannot be immediately be identified with a Newmann-Pensorse
scalar by simple comparison to [72]. According to [72], the first term resembles
Y. Rephrasing the tracelessness condition as

8" Cupe = (=200 4+ 2m P mP))Cpypr = 0, (B.11)
where

Sy = —2€(ynv) + 2m(y11‘1v) (B.12)
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is used, one further finds, exploiting the symmetries of the Weyl tensor,

2 gp)cwpa — 2m(”mp)Cng

= n"lP (Cupo + Covpuer) = M'mP (Cypr + Covpr) - (B.13)

The latter equation can be multiplied by ["m? and, in combination with n*¢"#°m?C p,q =
mtmP£'m? Cyype = 0 (which can be shown via explicit calculation) this yields

nygpgvmg(clu/po’ + valug') — m‘umvgpma(nypg‘ + pryg‘)

= nlPl'm’ Cpypor = mtmPL"m Cpyper - (B.14)
Finally, using again the symmetries of the Weyl curvature tensor,
HrmVPn Cpypo = H'm"mPm? Cyypo. (B.15)
This means that
Ay = Cuypottn"1Pm?, or Ay = Cyypol'm'mPm? . (B.16)

Based on the first equation in the latter, A, = ¥ [72].

For A3 the calculations can be repeated step by step as above for A,. By con-
tracting (B.3) with UFYWF? + WH'UFPY one finds that

1 ~

/\3 — _Ec‘uypg’uyywpa, (Bl7)

with U, V¥ = 0, W, W = —4. When calculating explicitly, A3 reads
1

Based on the result for A;, the first intuition now would be to test, again, whether
the two terms in (B.18) are equivalent. And indeed, returning to equation (B.13) and
multiplying by n"m’, one obtains

ntm" 00n? Cyype = n*mmPm’ Cpypp, (B.19)
such that
A«3 — Cyvpg‘n‘umvnpga, or A?) — nypg’n'umvmpma . (B.ZO)

The first equation identifies with Y3, thus A3 = ¥3.
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Lastly, to compute A4 one contracts (B.18) with UM VF7 + VFVLPT + WH NPT
and finds

1~
24A4 = 5 Cyupo (Ur' Ve + VIV IPT + WHYIWPT) | (B.21)
Based on the latter, an explicit calculation results in

1

(B.22)

With the help of (B.13), it can now be shown that
Cvpet? lPbm? + Copggnt 00" m” = —Cpypomt m"mfm?, (B.23)
nypgn‘ugpmbma + chad?lyﬂ_’lvfpma — _Cyvpgnﬂgvnpko- . (B.24)

The latter combine to Cyypon"€'nfl? = Cyppom*m'mPm?. Inserting these relations

into equation (B.22) yields

Ay = 5 (= Chypent? " 00m 4 Cpypon? €' mPin + Cpypent€'nfL7) (B.25)

Wl

or
1
)\4 = g (_C‘u]/po'nymvgpmo— + C]/ll/pﬂ'n‘ugvmpTﬁd + C}ll/po‘mymvmpma) N (B'26)

With the use of the Bianchi identity Cyypo + Cypov + Cuovp = 0 and the derived
equivalences between contractions of the Weyl curvature tensor one can rewrite (B.25)

as
1 1
A= =5 (Cupol'n"m 1R + Cupo 0" P €7) = = Crape'n* (0" — mPm’) . (B.27)

Given C,oont?lVnft’ = C,oemtmVmPm?, this is equivalent to
Hvp Hvp q

1
A4 = Ec‘uypo'm‘umv(mpma - E‘DVIU) . (B.28)
Finally, replacing Cy,ypon* €'mPm? = —2Cyypentm"Pm? — Cyypent€'nf L7, one finds
A4 — nypgmvgynpma-, (B.29)

which identifies Ay, = ¥, [72].
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In summary, writing the Weyl curvature tensor in terms of 5 independent com-

plex scalars, the ambiguity in the definition of the NPS boils down to

‘Ijl — C’uypg‘g'umvmpma — nypg’gynvgpmg, (B.31)

1 1
Ty = ECMPOW”V (tPn” —mPm?) = ECP"PUmymv (mPm? — °n?)

= Cyypem" t'nfm?, (B.32)
‘II3 — C‘ul/pg‘n'umvnpea — Cyvpo’nymvmpmo—, (B.33)
T4 — nypgi’lyﬁ_’lvnpﬂ_”lg Y (B.34)

which concludes this demonstration.

2.2 Transformation Behavior of the Symmetric Tensor

Puv

Consider a Bondi frame (g,,,n") with constant R as well as the solution p,, =
3qu,R. When applying a conformal transformation of p to a generic frame (q =
wqyy, 't =w Ik L= 0), one needs to ensure that p’ still satisfies the properties

oL =0, plug" =R', D, =0. (B.35)

From py,, 4" = R’ and the general transformation property of the Ricci-scalar R =
HPgV’ R 100 (see also Appendix 1.2), it follows that
779 pvp PP

1 1 1 2
p;wq/;w = P;M]WE =2 (R — Zqiwj);ﬂ),/w + Eqwl)yaﬂ)yw) , (B.36)

which restricts o), to be of the form

A B C D
p,}ll/ — p]u/ + ;q}wqpa’DP'Dgw + aplupvw + Eq}quU’DPw'Dga) + JD’”(J}DV&] ,
(B.37)
with
2A+B=-2 and 2C+D =2, (B.38)

where A, B, C and D are real coefficients. Note that at this stage, the first primed

equation q;,n" =

0 is already satisfied, because of g,,n" = 0 and the requirement
to remain in a divergence free conformal frame L,w = n*Dyw = 0 which also

implies that n"D, D,w = n"D,Dyw = 0. Hence, we have to use the last property
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D,py)c = 0 in order to determine the values of the coefficients. Writing out the

primed version of this equation ny p]’/ o < 0 while using (B.37) and (B.38) as well as

the general transformation property of covariant derivatives

D;locvp = Dyuavp + Cu oo + Cup”tvor, (B.39)
where 1
CP‘VP = —aqpa (qngHw + anpvw - q;w,Daw) ’ (B-40)
one finds
D”—D’+1’D+ ' DY B.41
[],uov]p - [;Mpv]p w (pp[y V]w qp[}l 101/}(7 w) ( . )
1 A
=D+ (pp[y Dyw + Goj Pr)er DU“’) = 07 4pu Py Do Patw
2(1+ A) 2(14+2A4+C)
T o DDy Dpw — 2 97 Gp[u Py DewDatw
2(1+2A+C) 3A
+ 2 ’D[yw DU] Dpcu + Eq”qPMDv]ngDaw
2(1-C 2(14+C
+ %D[VDV]wDPw + %q”“qP[HDU]wDUwDaw . (B42)
The last term results in the condition C = —1, while the term — éq""‘qp[yl)v] DyDyw

requires A = 0. As concerns the remaining terms, note that D[ = 0. Moreover,

uPvlp
the second to last term also vanishes

21,

2 Dv]prw = 0,

K

since D, D, jw = 0 as the covariant derivative D is torsion free. Moreover, using the
definition of the Riemann tensor D[V DV} Ky = %pr‘focg one can write

2 1
_E’D[H’DV]IDPCU = —zqunyvpalpaw-

Gathering everything, one is therefore left with

1 [ 1 o
DprL]P - 5 (pp[ﬂ DV}(’U + qp[y pl/]U’ D w) - 5‘7 Ryvpapzxw . (843)

At this stage, the reader is reminded that since the Riemann tensor Ry,r on ¥ +
lives in two dimensions orthogonal to n" it is completely determined by the scalar
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curvature and can be written as’

RVVPU =R Qulo 9ov -+ (B.44)
while using the solution in the Bondi frame Py = %qu gives
ror _
D(,p1p = Goin Pyw R — g Dyyw R = 0. (B.45)

Thus, pluggingin A =0, B = -2, C = —1, D = 4 into (B.37), required conformal

transformation property is retrieved, i.e.,
/ 2 1 cd 4
Pab = Pab — —DPaDpw — —54ap] " DewDyw + —5DawDyew, (B.46)

which is needed in order to satisfy (B.35).

2.3 Derivation of the Newman-Penrose Scalars in Terms

of the Shear Tensor

The relation between physical NPS and shear tensor (and derivatives thereof), i.e.,
equations (2.147)-(2.149), are derived. One start by acknowledging that, as derived
in Eq. (2.141)?,

K#UP(T ng"er - D[VSy]p|j+ ’ (B.47)

or, equivalently, written in terms of Bondi news tensor

K]lV‘DU' 7’10|j+ - D[VNﬂ]P |!ﬂ+ . (B.48)

If contracted with another n#, this yields

1 1
K‘u]/pg' nvi’l0|/+ e EEnNy‘D|]+ e EnV,DVNVP|/+ 7 (B.49)

within a divergence free conformal frame. Using the NPS as defined in (2.133)
as well as the definition of the Bondi news tensor, N, = 2 (N°m*m" + Nemtm”),

IThis follows from the Biancci identities which dictate, that the Riemann tensor in two dimen-
sions only has one independent component.

ZNote that here only two indices are pulled back to .#+.

3In the definition of the NPS, all indices are contracted and thus a pullback does not act here.
Note however that when defining the scalars at null infinity, the bulk Weyl tensor needs to be pulled
back as, at .# T, it is only contracted with quantities tangent to this boundary. At least in most cases,
as is elaborated below. In section 2.1.4, the NPS are defined in the bulk and their limit to .# % is
computed. Because of the peeling, the results at .#* agree and can be related to the shear.
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relating to the shear as (2.118)
N° = —9,0° := —0°, (B.50)
the derivation of the scalars is straightforward.

Y;: From the definition (2.133), ¥ is obtained by contracting the asymptotic Wely
tensor by transverse vectors to .# © only, such that in this case one can simply use
the pulled back equation (B.48) and contract it with m"n"mf in order to obtain Yj.
The desired result then follows upon expanding the right-hand side of (B.49) and
expressing it in terms of the asymptotic shear, i.e.,
¥q = mtn'mf D, N,y, = mtn"'m Dy (N°mymy + N, )

= mn"mf (mumyDyN° + N°m, Dym, + N°m,Dym,)
=n"DyN° 4 2N°mfn"D,m,, (B.51)

where the (cross-)normalization relations between the tetrad vectors are used. More-

over, note that in a divergence free conformal frame it holds that
L,mt =0=n"D,m'" —m'*D,n" =n"D,m". (B.52)
Hence, the last term in (B.51) vanishes and one is left with
mtn"mf Dy, N, , = n'DyN° = N° = —5°. (B.53)

Thus,
Y, =—-0°. (B.54)

Note that this relation holds in any divergence free conformal frame on .# " for a
tetrad basis constructed by Lie-dragging the vector m? along the null normal n*.
For the rest of this exercise, however, the treatment is restrict to a Bondi frame for
simplicity. For more general expressions of the NP scalars, the reader is referred to
[467].

Y3: In this case the first equation in (2.133), ¥5 involves the non-transverse tetrad
vector /* such that one can no longer simply use (B.48), as a contraction of ¢* with
a pulled back index is not well-defined. One should therefore either use (B.47)* or
alternatively use the second definition of ¥3 in (2.133) together with (B.48). The

“The pullback is defined as a map between co-tangent spaces, hence only well-defined for co-
variant indices. For mixed tensors, the upper indices are pushed forward.
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latter option is easier and immediately yields
Y3 = m'm"mP D, N, _ L YmfP Dy N L ' Dy N B.55
3 = mtm'mt Dy, V]p—immm Vyp—zmmm uNuyp - (B.55)

At this point it is instructive to remind oneself of the action of the angular derivative
in a Bondi frame, J, on a function of spin-weight s,

fs = Tyl_.ﬂpvl,qu”l...mP’Pn‘ivl...mV‘i , with p—g=s, (B.56)
,1e.,
afs = mt pH1--HpV1-Vq ('Dmi---Vle--Vq) . (B-57)
where
PHUHpVI Vg o — et . e (B.58)

This means in particular that for 2N° = N, m"m" one finds p = 0, while g = 2.
Thus N° is of spin-weight s = —2 and

1

which corresponds precisely to the first term in (B.55). The second term on the other

hand vanishes. To see this, expand the Bondi News tensor once more

1 _
— 5 Mt m Dy Nyy = — mtm"mf D, (N°mym, + Ny,
= —m" (N°m"Dym, + N°mfDyim,) . (B.60)
Now from equation (1.54) in [2] it follows that
m'Dym, «<m, and m'Dym, <, . (B.61)

Applying the standard (cross-)normalization relations of the tetrad vectors, it thus
follows that (B.60) vanishes and thus

¥ = ON° = —05°. (B.62)

Y7: Looking at the second equation for Y3 in (2.133), one finds that only the second
term contains a null tetrad vector n# and therefore one can only draw a connection
with the shear with respect to this term, as the fundamental connecting equation

(B.47) necessarily requires at least one contraction with n#. It turns out that this
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second term is the imaginary part of Y5 which is easily verified

- 1

Now, there is still a contraction of the asymptotic Weyl tensor with the null tetrad

vector /# such that K,,,,n7 cannot just be pulled back as before. Hence, one in-
wvp J p

evitably has to work with (B.47), i.e., starting with

1
S K mim*long| g = min" LoDy Sy o+ (B.64)

To relate the right-hand side of Eq. (B.64) to the shear tensor, one makes use of
Eq. (2.109). Taking the derivative and contracting both sides with m*,m" twice,
one finds an equation for m#m"{,D(,S,)f| 7+ in terms of 0}, and contractions with
m#,m". By means of tedious calculations that would surpass the intended scope of
even this thesis, in the end, one obtains

2iIm [¥35] = 6°6° — 0°6° + §%0° — d%5°, (B.65)

implying that the imaginary part of the second NPS can be expressed fully in terms
of the shear tensor. Note that this final expression is again only valid in a Bondi
frame. Moreover, it is no surprise that the real part Re [¥5] has no similar connection
to the shear as it contains the Coulombic information about the mass of the space-
time which is not radiative in nature. Finally, note that, as an exercise Y5 can be

computed computed using the ansatz (B.47) as well. Here, starting from

one applies a similar strategy, contracting the derivative of Eq. (2.109) with n#, m"
and twice with m#. After an equally tedious computation, one arrives at the result
(B.62).
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Appendix C

Additional Plots

3.1 Gravitational Wave Echo from Quantized Black Holes
and Exotic Compact Objects

An additional example of the transfer function for the QBH is depicted in Fig. C.1.
In the latter, the QBH’s QNMs as well as the characteristic BH frequencies wy are
marked. The latter are dictated by R@5H in the numerator of (3.28) (which is equal
to Eq. 3.29), appearing as zeros. Note that the poles in Fig. C.1 do not correspond
exactly to the QNMs but to the resonances of the system described by Fig. 3.2 of
Section 3.1. The QNMs reside very close to these resonances in frequency space.

The QBH echo is exemplarily shown for different parameter configurations in
Fig. C.3 below. The small noise-like oscillations are due to numerical issues with
handling the transfer functions poles, representing the resonances of the QBH. For
the results of Section 3.2.3, these oscillations are irrelevant. To compare the echo

against the full waveform consider Fig. C.2.
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FIGURE C.1: Transfer function for the baseline reflectivity parameter
a =8m,B =109 = 4,6 = 02,6 = 1[7]. Variations of the these
parameters are indicated.
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FIGURE C.2: Full waveform h*ff = heho + 1> (top) for ECO and QBH
simulated for event SXS:BBH:0207. For the ECO, we choose Tqon = 2T
and 7 = 10715, For the QBH, the parameter choice is displayed on top
of the bottom plot. The latter displays the isolated h*"° from the upper
plot.



342

Appendix C. Additional Plots

0.04
0.02

=

< o000

S

=

=)

& -0.02
~0.04
~0.06
0.04
0.02

< 000

K

S

Q

£ -0.02
~0.04
-0.06

a=3r, =10"",§=01,e=2

R

2,2
= R, qun (1)

.

0 100 200 300 4(I)0 500 600 700
’LL/Mf
a=8m, =101 5=0.1,e=2
2,2
= Riho, le(")
0 100 200 300 400 500 600 700

u/Mf

Re[hg,m(u)]

Re[hy,m(u)]

a=8m f=10"",§=0.7e=2

0.03

0.02

0.01

0.00 1

—-0.01

—0.02

—-0.03

—0.04

2,2
echo, QBH (u)

o

— h,

100 200 300 400 500 600 700
’LL/Mf

a=8m, f=10"",§=0.1,e=3

0.0751

0.050

0.025 4

0.000 -————M{WV

—0.025 4

—0.050 1

—0.075

—0.100

2,2
echo, QBH (u)

A

— b,

0 100 200 300 400 500 600 700

u/ My

FIGURE C.3: Pure echo strain hgczho for the QBH computed using differ-
ent model parameter and SXS:BBH:0207.
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