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Abstract

Non-rigid point cloud registration is a crucial task for aligning 3D data when objects
undergo deformation due to motion, pressure, or biological processes. This is especially
important in high-stakes domains such as surgical navigation, where anatomical structures
often bend, compress, or stretch in unpredictable ways. Despite recent progress, current
methods continue to struggle with large deformations, noisy or partial observations, and
generalization to real-world scenarios. Moreover, many approaches fail to integrate both
local and global spatial learning or to account for uncertainty in ambiguous regions.

This thesis introduces a multi-stage framework for non-rigid point cloud registration,
comprising three progressively refined learning models. First, Robust-DefReg encodes lo-
cal geometric structures using graph convolutions to build deformation-aware descriptors.
Next, DefTransNet incorporates global learning through a hybrid Transformer–Graph archi-
tecture that explicitly resolves feature ambiguity via cross-attention between source and tar-
get point clouds. Finally, Learning-to-Refine introduces a probabilistic iterative refinement
strategy that regularizes deformation prediction using KL divergence over learned feature
distributions, addressing uncertainty in ambiguous and partially observed regions. Together,
these models directly respond to the core research questions on local representation, global
context, and uncertainty modeling posed in this dissertation.

To enable reproducible benchmarking across diverse deformation levels, two datasets
were developed: SynBench, a synthetic dataset with controlled and progressively increasing
deformation levels; and DeformedTissue, a real-world dataset based on simulated anatomi-
cal tissue deformation. Additionally, all methods were evaluated on two widely used public
benchmarks, ModelNet40 and 4DMatch, to validate generalization across domains. Ex-
perimental results reveal a clear progression in performance across the proposed meth-
ods. DefTransNet outperforms state-of-the-art baselines by achieving high accuracy and
stability under severe deformations, while Learning-to-Refine introduces probabilistic re-
finement that further improves convergence and consistency. Evaluation across synthetic,
real-world, and public datasets confirms the generalizability of the framework. Notably,
the deformation–robustness plots indicate that the performance of our proposed methods
remains stable even under extreme deformation levels, suggesting that, within the scope of
this study, the core challenge of deformation in non-rigid point cloud registration has been
effectively addressed.
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Zusammenfassung

Die nicht-starre Punktwolkenregistrierung ist eine entscheidende Aufgabe für die Aus-
richtung von 3D-Daten, wenn Objekte aufgrund von Bewegung, Druck oder biologis-
chen Prozessen Verformungen erfahren. Dies ist besonders wichtig in Bereichen mit ho-
hem Risiko, wie beispielsweise der chirurgischen Navigation, wo anatomische Strukturen
oft auf unvorhersehbare Weise gebogen, komprimiert oder gedehnt werden. Trotz jüng-
ster Fortschritte haben aktuelle Methoden weiterhin Schwierigkeiten mit großen Verfor-
mungen, verrauschten oder unvollständigen Beobachtungen und der Generalisierung auf
reale Szenarien. Darüber hinaus versäumen es viele Ansätze, sowohl lokales als auch glob-
ales räumliches Lernen zu integrieren oder Unsicherheiten in mehrdeutigen Bereichen zu
berücksichtigen.

Diese Arbeit stellt ein mehrstufiges Framework für die nicht-starre Punktwolkenreg-
istrierung vor, das drei zunehmend verfeinerte Lernmodelle umfasst. Zunächst codiert
Robust-DefReg lokale geometrische Strukturen mithilfe von Graph-Faltungen, um verfor-
mungsbewusste Deskriptoren zu erstellen. Als Nächstes integriert DefTransNet globales
Lernen durch eine hybride Transformer-Graph-Architektur, die Mehrdeutigkeiten durch
Cross-Attention zwischen Quell- und Zielpunktwolken explizit auflöst. Schließlich führt
Learning-to-Refine eine probabilistische iterative Verfeinerungsstrategie ein, die die Verfor-
mungsvorhersage mithilfe der KL-Divergenz über gelernte Merkmalsverteilungen reguliert
und so Unsicherheiten in mehrdeutigen und nur teilweise beobachteten Bereichen berück-
sichtigt. Zusammen beantworten diese Modelle direkt die zentralen Forschungsfragen zu
lokaler Repräsentation, globalemKontext und Unsicherheitsmodellierung, die in dieser Dis-
sertation gestellt werden.

Um ein reproduzierbares Benchmarking über verschiedene Verformungsgrade hin-
weg zu ermöglichen, wurden zwei Datensätze entwickelt: SynBench, ein synthetischer
Datensatz mit kontrollierten und progressiv ansteigenden Verformungsgraden, und De-
formedTissue, ein realer Datensatz, der auf simulierten anatomischenGewebeverformungen
basiert. Zusätzlich wurden alle Methoden anhand von zwei weit verbreiteten öffentlichen
Benchmarks, ModelNet40 und 4DMatch, evaluate, um die Generalisierbarkeit über ver-
schiedene Domänen hinweg zu validieren. Die experimentellen Ergebnisse zeigen eine
deutliche Leistungssteigerung. DefTransNet übertrifft den aktuellen Stand der Technik
durch hohe Genauigkeit und Stabilität unter starken Verformungen, während Learning-
to-Refine eine probabilistische Verfeinerung einführt, die die Konvergenz und Konsistenz
weiter verbessert. Die Bewertung anhand synthetischer, realer und öffentlicher Datensätze
bestätigt die Verallgemeinerbarkeit des Frameworks. Insbesondere zeigen die Verformungs-
Robustheits-Diagramme, dass die Leistung unserer vorgeschlagenen Methoden auch unter
extremen Verformungsgraden stabil bleibt, was darauf hindeutet, dass im Rahmen dieser
Studie die zentrale Herausforderung effektiv gelöst wurde.
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„Die Entdeckung der Wahrheit wird
wirksamer verhindert, nicht durch die
falsche Erscheinung der Dinge, die zur
Irrung verleitet, nicht direkt durch die
Schwäche des Verstandes, sondern
durch vorgefaßte Meinung, durch
Vorurteil.“

Attributed to Arthur Schopenhauer, Über die vierfache Wurzel des Satzes vom
zureichenden Grunde, Dissertation, 1813
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Chapter 1

Introduction

Understanding and modeling the physical world is a cornerstone of progress across science,
engineering, and medicine. From designing intelligent robots that navigate dynamic en-
vironments to guiding surgeons through constantly changing anatomy during operations,
the ability to accurately interpret and align 3D information is central to reliable decision-
making [2]. Yet, many real-world scenarios involve objects that are not static but deform;
they bend, stretch, compress, or shift over time. Capturing and learning about these defor-
mations is essential for making technologies safer, more adaptive, and more context-aware
in high-stakes applications [3].

In many real-world applications, scenarios are encountered in which objects undergo
complex deformations. For example, during surgery, soft tissues are deformed due to ma-
nipulation or the insertion of instruments [4]. Similarly, in industrial settings, flexible mate-
rials or manufactured parts may be bent or warped under pressure. In such cases, it becomes
essential that 3D data representing these deformable objects be tracked and aligned across
time or under varying acquisition conditions, a task referred to as non-rigid point cloud
registration (PCR) [5, 6].

PCR is a fundamental task in computer vision, aimed at estimating spatial transforma-
tions that align corresponding points across two or more point clouds [7]. Accurate registra-
tion underpins a wide range of applications, including 3D reconstruction [8], autonomous
driving [9], augmented and virtual reality [10], LiDAR-based mapping [11], robotic per-
ception, and quality control in manufacturing [12]. In medical imaging and surgical inter-
ventions, PCR is particularly critical for aligning anatomical structures captured at different
time points or under different conditions (e.g., before and after tissue deformation) [13].

The goal of registration is to minimize geometric differences between the source and tar-
get point clouds, thereby estimating the underlying transformation that aligns them. While
rigid registration assumes that the structure of objects remains constant (translation and ro-
tation only), non-rigid registration is significantly more complex as it must account for de-
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4 Motivation

formable objects whose shape changes due to motion, pressure, or biological processes [14].
This is especially important in soft tissue applications, where anatomical variations and in-
traoperative deformations are inevitable [15].

1.1 Motivation

To effectively model and register deformations occurring in the physical world, such as
those seen in surgical procedures or flexible manufacturing, accurate 3D surface capture is
essential. Among the available representations, point clouds offer a particularly compelling
choice. Unlike volumetric grids or surface meshes, which require uniform resolution or
pre-defined connectivity, point clouds provide a direct and flexible means of representing
real-world surfaces as collections of discrete 3D samples. Their ability to natively handle
sparse, incomplete, and irregular data makes them well-suited for capturing deformable ob-
jects in real-time, sensor-driven settings. This suitability is especially critical in high-stakes
environments like the operating room, where surfaces deform unpredictably and data acqui-
sition may be constrained by time, occlusions, or motion.

Given these advantages, point cloud-based methods have become increasingly promi-
nent for capturing and aligning deformable surfaces across time or varying acquisition con-
ditions. In particular, non-rigid PCR has emerged as a central task in this context, aiming
to estimate spatially varying transformations that align a source point cloud to a target one.
Unlike rigid registration, which assumes a single global transformation, non-rigid registra-
tion must account for localized, nonlinear displacements arising from bending, stretching, or
compression. These challenges become especially severe under large deformations, where
significant geometric and topological discrepancies exist between the point clouds.

Traditional optimization-based methods such as Coherent Point Drift (CPD) [16] and
Thin Plate Splines (TPS) [17] have long been used for non-rigid PCR. However, they typ-
ically rely on smoothness assumptions and good initial alignment, limiting their perfor-
mance under noise, occlusions, or large displacements [18]. In response, learning-based
approaches have gained traction, using data-driven models to estimate correspondences or
deformation fields. Convolutional Neural Networks (CNN) models [19] operate on vox-
elized or projected views but suffer from discretization artifacts. Graph CNN (GCNNs) [20]
preserve local geometric relations but struggle with long-range interactions. Transformer-
based architectures [21,22] leverage attention mechanisms to model global context but can
be computationally expensive and less robust to incomplete data. Despite these advances,
several critical challenges remain unresolved in the field of non-rigid PCR:

• Uncertainty modeling is often neglected. Most learning-based methods generate de-
terministic displacement fields without explicitly modeling uncertainty arising from
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ambiguous input data or regions with missing correspondences. This lack of uncer-
tainty awareness can lead to overconfident predictions and inaccurate estimates, par-
ticularly in ill-posed areas of the point cloud.

• Robustness to real-world conditions is limited. Many approaches perform well on
clean synthetic benchmarks but degrade significantly in the presence of noise, out-
liers, partial observations, or low-resolution scans, conditions that are common in
real-world medical and robotics applications.

• Feature ambiguity remains unresolved. In deformable objects, different regions may
exhibit locally similar geometry (e.g., symmetric or flat regions), leading to incorrect
matches. Without a strong global context or cross-cloud learning, networks often fail
to distinguish between these similar structures.

• Lack of generalization and data dependency. Many deep learning models require
large, labeled datasets for training, which are difficult to obtain in domains such as
surgical navigation or biomedical imaging. In addition, models trained on one dataset
often fail to generalize to different anatomical structures or deformation types.

• Insufficient evaluation protocols. A number of methods are not evaluated under
comprehensive or standardized benchmarks. This limits fair comparison and makes
it difficult to assess robustness across diverse deformation scales, noise levels, or
sensor artifacts.

• Single-pass pipelines dominate. Many models rely on one-shot inference and do not
incorporate feedback mechanisms or iterative refinement to correct residual errors.
As a result, small misalignments accumulate and reduce the final registration quality.

Together, these limitations highlight the need for non-rigid PCR frameworks that not
only extract meaningful geometric features but also reason across scales, handle noisy and
partial data, and explicitly model prediction uncertainty. Addressing these challenges is
essential for reliable deployment in high-stakes domains such as surgical assistance, soft
tissue analysis, and autonomous robotics.

1.2 Research Questions and Hypotheses

To address the gaps outlined in the previous section, particularly the lack of realistic datasets,
limited model generalizability, and the absence of robust refinement strategies, this disser-
tation introduces a comprehensive framework for non-rigid PCR under large and complex
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deformations. The research is structured around four key questions that span data genera-
tion, model architecture, and optimization strategies:

• RQ1: Dataset design and benchmarking. How can synthetic datasets be designed
to realistically simulate soft-body deformation, noise, and partiality to reduce the
simulation-to-reality gap in evaluating non-rigid PCR methods?

• RQ2: Local geometric representation. How can local relationships between points
in a point cloud be efficiently leveraged for PCR to achieve improved accuracy and
robustness?

• RQ3: Resolving feature ambiguity. How can the feature ambiguity problem arising
from long-range dependencies in geometrically complex point clouds be efficiently
addressed?

• RQ4: Uncertainty modeling and probabilistic refinement. How can the deformation
vector field be effectively represented and utilized during the PCR process to enhance
convergence and robustness under uncertainty?

In response to these research questions, the following hypotheses are formulated:

• H1: Designing synthetic datasets using physics-based simulation with controlled de-
formation parameters and ground-truth correspondences enables realistic modeling of
soft-body behavior and reduces the simulation-to-reality gap.

• H2: Encoding local geometric structures via graph-based models improves robust-
ness to deformation and noise compared to pointwise or voxel-based approaches.

• H3: Modeling global interactions with transformer-based attention reduces feature
ambiguity and improves registration accuracy in complex geometries.

• H4: A probabilistic prior over deformation fields, integrated into an iterative refine-
ment process, enhances convergence stability and robustness under uncertainty.

To address the formulated research questions and validate the corresponding hypotheses,
this dissertation introduces contributions along three core dimensions: Simulation-based
data generation, deep learning model development, and systematic performance evaluation.
The main contributions are summarized as follows:

• A simulation toolkit for realistic deformation synthesis. A simulation framework,
SimTool [23], is developed to generate synthetic point clouds of soft-body objects
undergoing controlled and reproducible deformations. This tool enables fine-grained
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manipulation of deformation type and magnitude, while preserving ground truth cor-
respondences, facilitating the creation of synthetic data that closely mirrors real-world
conditions and supporting rigorous benchmarking of non-rigid PCR algorithms.

• Two benchmark datasets bridging simulation and reality. To comprehensively eval-
uate non-rigid PCR under diverse and realistic conditions, two benchmark datasets are
introduced: The synthetic dataset SynBench [24], generated using SimTool, and the
real-world dataset DeformedTissue [25,26], derived from actual soft tissue deforma-
tions. Both datasets provide the ground truth correspondences and span a wide range
of deformation levels, noise and outlier levels, and partial data, enabling robust and
generalizable evaluation protocols.

• Three deep learning architectures for non-rigid PCR. Three progressively refined
deep learning models are proposed to tackle the key challenges identified in this dis-
sertation:

– Robust-DefReg [27], a graph-based model that captures local geometric con-
text via graph convolutions, providing resilience to moderate deformations and
spatial noise.

– DefTransNet [22], a transformer-based model that leverages global cross-
attention to resolve feature ambiguity in repetitive or geometrically similar re-
gions, especially under severe non-local deformations.

– Learning-to-Refine, an iterative refinement model that incorporates uncertainty
modeling through a KL divergence-based probabilistic loss, enabling progres-
sive correction of ambiguous correspondences and improved convergence sta-
bility.

The papers resulting from the aforementioned contributions have been published in peer-
reviewed journals, and the corresponding code is publicly available. A list of the published
papers based on this dissertation is provided in Appendix A.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 presents the theoretical
foundations and related work in the field of non-rigid PCR. It introduces essential con-
cepts such as rigid versus non-rigid alignment, feature-based versus robustness-oriented
methods, and commonly used loss functions and optimization strategies. Furthermore, it
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provides a comprehensive review of recent learning-based approaches, categorized by ar-
chitectural paradigms, like CNNs, GCNNs, and Transformers. Chapter 3 details the pro-
posed methodology, including the simulation framework, the SynBench and DeformedTis-
sue datasets, and the three non-rigid PCR models: Robust-DefReg, DefTransNet, and the
iterative Learning-to-Refine strategy. Chapter 4 presents quantitative and qualitative evalu-
ations of the proposed methods under varying conditions such as deformation scale, noise,
and partial data, using standard metrics and comparing performance against baseline and
state-of-the-art methods. Chapter 5 discusses the findings in light of the research questions
and hypotheses, analyzes architectural contributions, and reflects on limitations and fail-
ure modes. Finally, Chapter 6 concludes the thesis by summarizing key contributions and
outlining future research directions.



Chapter 2

Theoretical Foundations and Related
Work

Point cloud registration (PCR) involves estimating a spatial transformation that aligns two
or more 3D point sets into a common coordinate frame. While the core goal is geometric
alignment, the problem is inherently complex due to challenges such as noise, outliers, oc-
clusions, varying point densities, and, in the non-rigid case, spatially varying deformations.
Over the years, a wide range of methodologies have been proposed to tackle different as-
pects of this task, evolving from traditional geometric techniques to modern learning-based
solutions.

This chapter provides a comprehensive overview of the theoretical foundations and
existing approaches to PCR. Section 2.1 formally defines the PCR problem. Section 2.2
introduces the main methodological dimensions, including rigid and non-rigid paradigms,
coarse-to-fine pipelines, feature engineering, robustness mechanisms, search space formu-
lations, loss functions, and optimization strategies. Section 2.3 summarizes standard evalua-
tion metrics for assessing registration accuracy and robustness. Finally, Section 2.4 reviews
representative learning-based approaches for non-rigid PCR, categorized by architectural
families such as CNNs, GCNNs, and Transformers.

2.1 Problem Definition of Point Cloud Registration

Let X = {xi ∈ Rn | i = 1, . . . , N} and Y = {yj ∈ Rn | j = 1, . . . ,M} be two finite
point sets, referred to as the source and target point clouds, respectively. These point sets
are defined in a metric space (Rn, d), where d : Rn × Rn → R≥0 is a distance function
satisfying the properties of a metric (non-negativity, identity of indiscernibles, symmetry,
and triangle inequality). A common choice for d is the Euclidean distance.

We define a point-set discrepancy as a function D : P(Rn) × P(Rn) → R≥0, where

9
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P(Rn) denotes the set of finite point clouds in Rn. The discrepancy D(X,Y) quantifies
the dissimilarity between X and Y based on the pointwise metric d. For instance, Chamfer
distance is computed as a sum or average of nearest-neighbor distances using d, while Earth
Mover’s Distance (EMD or Wasserstein-1) and Sinkhorn distance define optimal transport
costs between point sets or distributions.

The task of PCR is to find a transformation Tθ : Rn → Rn, parameterized by θ ∈ Θ, that
aligns the source point cloud X with the target point cloud Y by minimizing a discrepancy
measure between them. The transformed source point cloud is denoted Tθ(X) = {Tθ(xi) |
i = 1, . . . , N}. The registration problem is formulated as

min
θ∈Θ

D (Tθ(X),Y) , (2.1)

where

• Tθ is a transformation function chosen from a parameterized family {Tθ | θ ∈ Θ},

• D(·, ·) is a discrepancy measure or distance function between two finite point sets,
such as Chamfer Distance, EMD, or a learned alignment loss,

• θ denotes the parameters of the transformation (e.g., neural network weights or rigid-
body parameters).

Rigid point cloud registration. In the special case of rigid registration, the transforma-
tion T is constrained to consist of a rotation and translation:

T (xi) = Rxi + t, (2.2)

where

• R ∈ SO(n) is a rotation matrix such that R⊤R = I and det(R) = 1,

• t ∈ Rn is a translation vector,

• T ∈ SE(n) is a rigid-body transformation.

Rigid registration is then formulated as the following constrained optimization problem:

min
R∈SO(n), t∈Rn

N∑
i=1

d(Rxi + t, yj(i)), (2.3)

where yj(i) ∈ Y denotes the corresponding point to xi, either known a priori or estimated
via correspondence algorithms (e.g., nearest neighbors or soft matching). Note that while
the squared distance is often used in practice under the Euclidean metric for optimization
convenience, it is not required in the general formulation, where d is any valid metric.
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Non-rigid point cloud registration. In the more general case of non-rigid registration,
the transformation Tθ is allowed to deform the geometry in a spatially varying, potentially
nonlinear manner. To motivate the formulation of the objective function, we adopt a prob-
abilistic view of registration.

Assume we model the deformation process using a posterior distribution over the trans-
formation given the observed target point cloud Y, denoted as p(Tθ(x) | Y). The goal is to
estimate the most probable transformation under this posterior, which can be expressed as
a maximum a posteriori (MAP) problem:

θ∗ = argmax
θ

p(Tθ(x) | Y). (2.4)

To make this tractable, we take the negative logarithm and convert the maximization
into a minimization:

θ∗ = argmin
θ
− log p(Tθ(x) | Y). (2.5)

Using Bayes’ theorem, the log-posterior can be decomposed into a log-likelihood and a
log-prior:

log p(Tθ(x) | Y) = log p(Y | Tθ(x)) + log p(Tθ(x)). (2.6)

Substituting Equation 2.6 into Equation 2.5, the optimization objective becomes:

min
θ∈Θ
− log p(Y | Tθ(x))− log p(Tθ(x)). (2.7)

We now identify the components of Equation 2.7 with the terms in our non-rigid regis-
tration formulation:

• The negative log-likelihood term, − log p(Y | Tθ(x)), corresponds to a discrepancy
measure D(Tθ(X),Y), which quantifies alignment quality.

• The negative log-prior term,− log p(Tθ(x)), is modeled as a regularization functional
R(θ), penalizing implausible or overly complex deformations.

Thus, the resulting optimization objective can be expressed as:

min
θ∈Θ

D (Tθ(X),Y) + λR(θ), (2.8)

where

• R(θ) encodes prior assumptions over the deformation field (e.g., smoothness or sta-
tistical regularity),
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• λ ∈ R≥0 controls the trade-off between alignment quality and regularization strength.

This probabilistic formulation makes it explicit that the discrepancy term models data
likelihood, accounting for deformation, noise, and artifacts, while the regularization term
reflects prior knowledge about the deformation space.

In this thesis, we focus on the case n = 3, where point clouds are embedded in 3D
Euclidean space R3. However, the formulation is general and can be extended to other
metric spaces and higher-dimensional embeddings as required. Similarly, the underlying
pointwise metric d can be adapted from the Euclidean norm to alternatives such as Wasser-
stein or Sinkhorn distances. In learning-based settings, the transformation Tθ is typically
implemented as a neural network that predicts a deformation field to align X with Y.

2.2 Overview of Various Methodologies for Point Cloud
Registration

Existing registration approaches can be broadly classified into distinct yet interconnected
categories, such as rigid vs. non-rigid registration, coarse vs. fine registration, feature-based
methods, robustness-oriented techniques, search-space strategies, loss-function-driven ap-
proaches, and various optimization techniques [6]. This section provides an overview of the
fundamental concepts and definitions underlying these categories. The subsequent sections
examine each classification in detail, highlighting how modern registration methods often
integrate multiple strategies, thereby bridging these distinctions.

2.2.1 Rigid and Non-Rigid Registration Approaches

PCR methods can be broadly categorized into rigid and non-rigid techniques, depending
on whether the underlying transformation involves local deformation. Let us denote by
X = {x1, . . . , xN} the source point cloud and by Y = {y1, . . . , yM} the target point cloud.
The goal is to find a suitable transformation that maps points in X to corresponding points
in Y .

Rigid registration assumes only a global transformation (rotation and translation) with-
out changing the relative distances within each point cloud. Under this assumption, each
point cloud is treated as a rigid body with no internal distortion. One of the most commonly
used rigid registration algorithms is the Iterative Closest Point (ICP) method [28,29]. ICP it-
eratively finds correspondences between points inX and Y , and updates the transformation
parameters to minimize alignment error. A typical ICP objective can be expressed as
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min
R,t

N∑
i=1

∥∥yi − (Rxi + t
)∥∥2 , (2.9)

whereR is a rotation matrix, t is a translation vector, xi ∈ X , and yi ∈ Y are correspond-
ing points. Several variants of ICP exist, such as point-to-point and point-to-plane ICP [30],
which improve accuracy by incorporating geometric constraints (e.g., surface normals).

Rigid registration is particularly effective for scenarios in which objects maintain a fixed
shape, including robot navigation and autonomous driving (e.g., LiDAR-based SLAM), 3D
object recognition, and industrial quality inspection. However, if there are significant shape
changes, rigid alignment alone is insufficient.

Non-rigid registration accommodates local deformations such as bending, stretching,
and scaling, making it suitable for cases where the shape of the source cloud X differs from
that of the target cloud Y. Applications include human body scans, soft tissue deformation
in medical imaging, and character animation.

A common approach to non-rigid registration involves using deformation models like
Thin Plate Splines (TPS) [31]. TPS seeks a smooth transformation f(·) that maps xi ∈ X to
yi ∈ Y. A TPS deformation can be written as

f(x) = α0 +α1x+α2y +
K∑
j=1

wj ϕ
(
∥x− cj∥

)
, (2.10)

where ϕ(r) = r2 log(r2), {cj}Kj=1 are control points, and wj are corresponding weights.
Other approaches leverage machine learning, including deep neural networks, to capture
complex deformations more efficiently [32]. One major challenge is avoiding overfitting
or physically unrealistic deformations. Consequently, regularization terms that enforce
smoothness and plausible transformations are frequently introduced.

Hybrid methods combine both techniques by first applying a rigid alignment to match
the global structure of X and Y, followed by a non-rigid refinement to capture local de-
formations. This strategy is common in medical imaging, where scans of the human body
are first coarsely aligned via rigid transformations and then refined to model soft tissue or
anatomical variations accurately.

2.2.2 Feature-Based Registration Methods

In the context of machine learning and PCR, a feature refers to a representation or descriptor
that captures relevant information about a point, its local neighborhood, or the global shape
of a 3D object. Features can be handcrafted, such as curvature, surface normals, or spatial
coordinates, or learned automatically using neural networks, particularly in deep learning-
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based approaches [33].

Features play a central role in point cloud processing tasks, including correspondence
estimation, transformation prediction, and classification. Local features describe geomet-
ric or contextual properties of a point relative to its immediate surroundings, while global
features encode holistic structural information about the entire object or scene. In learning-
based frameworks, particularly those using graph-based or transformer-based architectures,
features are typically represented as high-dimensional vectors produced through successive
layers of convolution, attention, or aggregation mechanisms [33].

In the context of PCR, the term feature correspondence denotes the association between
two points (or regions) from different point clouds that are assumed to represent the same
physical location or structure in 3D space. Such correspondences are established by com-
paring their feature descriptors, which may encode geometric shape, spatial location, or
contextual cues. Accurate feature correspondence is especially critical in non-rigid registra-
tion, where deformation between point clouds can be spatially varying and non-uniform. In
these cases, relying solely on raw spatial proximity is insufficient; robust and informative
features are essential to guide the alignment process effectively [34].

Feature-based registration is a commonly used approach for aligning point clouds
[35, 36], particularly beneficial when significant initial misalignment makes direct point-
to-point techniques prone to failure [37]. By focusing on distinctive geometric structures,
these methods maintain robustness in challenging conditions involving noise, occlusion, or
partial overlap [38, 39]. They are often employed in a coarse alignment phase [40], which
can then be refined by algorithms such as the ICP method [28].

Figure 2.1 illustrates a typical pipeline for feature-based registration. First, keypoints
are detected in each point set [36, 39], followed by the computation of local descriptors to
capture geometric properties [38, 41]. The next step involves comparing these descriptors
to establish correspondences between the two clouds [42]. Finally, solving a system of
equations yields the rigid transformation parameters [43]. Depending on the application,
optional stages, such as noise filtering or outlier rejection, may be introduced. RANSAC
and its adaptations [44–48] are frequently used to discard erroneous matches and ensure
reliable correspondences.

While some registration methods bypass explicit feature extraction entirely [49], identi-
fying salient points often proves advantageous in complex or cluttered environments. Popu-
lar descriptors include Fast Point FeatureHistograms (FPFH), which encodes local curvature
and normal information [38], and 3D-SIFT, which detects distinctive keypoints that remain
stable across varying scales [41, 50]. Alternatives like Harris 3D [39] or Intrinsic Shape
Signatures (ISS) [51] emphasize corner-like or highly repeatable regions that persist under
different viewpoints and transformations [49].
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Figure 2.1. Overview of feature-based approaches for point cloud registration [35]

Once features are computed, descriptor matching typically employs a nearest-neighbor
search or hashing to pair similar feature vectors [42, 52]. Randomized strategies such as
RANSAC [44] then filter spurious correspondences by iteratively estimating transforma-
tions from randomly sampled subsets. After robust matches have been confirmed, transfor-
mation parameters can be found using methods like Singular Value Decomposition (SVD)
[43] or least-squares optimization, aligning the two point clouds [53]. A subsequent fine
registration stage, for instance, through ICP [28], may further refine this alignment and re-
duce the remaining errors.

Although feature-based registration tends to be more computationally intensive than di-
rect point-to-point alignment, it significantly improves resilience to large pose differences
and accommodates various real-world constraints [35, 37]. Consequently, it sees broad use
in fields such as autonomous driving (e.g., Lidar-based SLAM) [54], 3D object recogni-
tion [55], medical imaging fusion [56], and augmented reality [57]. Continuous advances in
parallel computing and machine learning have further enhanced the efficiency and accuracy
of feature-based pipelines [58], reinforcing their centrality in modern 3D vision tasks.

2.2.3 Coarse-to-Fine Registration Approaches

PCR is often carried out through a coarse-to-fine approach, which applies two successive
stages to maximize both efficiency and accuracy. First, a coarse alignment step estimates
an initial transformation for two point clouds that may be significantly misaligned. Second,
a fine alignment step refines this transformation to achieve high-precision registration.

When point clouds exhibit large offsets in position or orientation, attempting fine-
grained alignment directly can be computationally expensive and prone to local minima.
As a solution, coarse alignment relies on robust feature extraction and matching to compute
an approximate transformation [38, 39, 59]. Feature descriptors such as Fast Point Feature
Histograms (FPFH) [38] and keypoint detectors like SIFT-3D [59] or Harris 3D [39] help
identify reliable correspondences.

Random Sample Consensus (RANSAC) [44] is frequently employed at this stage to
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refine candidate transformations while discarding outliers. Advanced global methods, such
as Go-ICP [60] and Super4PCS [61], further improve efficiency by searching for similar
geometric structures in both point sets.

Once a coarse estimate is obtained, fine alignment techniques minimize local discrepan-
cies between the two point clouds. As discussed before, the ICP algorithm iteratively finds
correspondences and updates the transformation to reduce error. For scenarios involving
non-rigid deformations, methods like Coherent Point Drift (CPD) [16] treat the data proba-
bilistically. CPD aligns two point sets X and Y by modeling X as centroids of a Gaussian
Mixture Model (GMM) and maximizing the data likelihood

p(Y | X, θ) =
N∏

n=1

M∑
m=1

1

M
N
(
yn | xm + vm, σ2I

)
, (2.11)

where vm is a displacement vector for xm, σ2 is the variance of the isotropic covariance,
and θ = {v1, . . . , vM , σ2}. This approach iteratively updates the displacement vectors vm
and handles smooth, non-rigid transformations.

Combining these two stages, the coarse-to-fine registration pipeline efficiently tackles
large misalignments first and then refines for precision.

2.2.4 Robustness-Oriented Methods

Robustness-oriented approaches in PCR aim to improve alignment reliability when con-
fronted with real-world challenges such as noise, outliers, limited overlap, and uneven point
density [7, 62]. Real-world data often contains sensor-related inaccuracies, environmental
artifacts, and occlusions [63], making these approaches vital for achieving consistent and
accurate registration in adverse conditions. In contrast to methods that assume ideal in-
put data, robustness-oriented techniques incorporate specialized strategies (e.g., statistical
filtering, adaptive weighting, and robust estimation) to mitigate errors and maintain stable
alignment [64].

A primary obstacle in PCR is noise, which introduces small but disruptive deviations in
point positions [6]. To mitigate this, robust preprocessing pipelines frequently incorporate
smoothing or denoising techniques, such as Gaussian filtering or Moving Least Squares
(MLS) [65].

In the context of point clouds, Gaussian filtering operates by re-estimating each point’s
position as a weighted average of its neighbors, where weights decrease with spatial dis-
tance, analogous to convolution in image domains. This reduces local fluctuations while
preserving the overall structure. MLS, on the other hand, fits a smooth surface to a local
neighborhood around each point and projects the point onto this surface, providing better
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preservation of underlying geometry.

In addition to denoising, feature-based strategies enhance robustness to noise by focus-
ing on local geometric descriptors (e.g., FPFH or Wavelet-based features) rather than raw
coordinates [38, 51]. These features encode more stable characteristics such as curvature
and neighborhood structure, enabling more reliable matching under noisy conditions.

Outliers constitute another significant issue, often caused by sensor errors or moving
objects in the scene [44, 66]. RANSAC is widely used for dealing with outliers, iteratively
sampling candidate correspondences, estimating a transformation, and evaluating its validity
across the remaining data before discarding mismatches [44, 46]. More advanced variants,
including M-estimators [67] and Expectation-Maximization (EM) approaches [68], adjust
correspondence weights according to their inlier probability, thereby reducing the impact of
spurious measurements on the final alignment.

Partial overlap poses further difficulties, particularly when only a subset of each point
cloud represents the same region [69]. Standard algorithms like ICP often struggle in
these scenarios [28]. Robust methods counter this by employing global feature matching
techniques that do not require extensive one-to-one correspondences. Probability-based
frameworks such as CPD and Gaussian Mixture Models (GMM) [16, 70] allow for soft
correspondences and accommodate partial overlaps, while graph-based algorithms like Su-
per4PCS [61] exploit shared geometric structures to identify matching segments even when
overlap is minimal.

Point density variations can also compromise registration quality, especially in large-
scale scans where certain areas appear dense and others appear sparse [71]. Multi-scale
feature matching or adaptive weighting functions help normalize the influence of corre-
spondences in high- and low-density regions [72]. Furthermore, machine learning and deep
neural networks have become instrumental in learning robust representations that are invari-
ant to noise levels, density shifts, or overlap fractions [35].

By integrating these robustness-focused techniques, PCR becomes more dependable
in applications such as autonomous navigation (noisy, incomplete LiDAR data), medical
imaging (partially overlapping scans), and robotics (dynamic, cluttered environments). Ad-
vanced filtering, statistical models, and adaptive algorithms collectively ensure that even
under challenging conditions, registration retains both stability and accuracy, an essential
requirement for modern 3D perception systems [35].

2.2.5 Local and Global Registration

In PCR, search space approaches refer to how algorithms navigate the space of possible
transformations, such as rotation, translation, or deformation, to align two point sets. These
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strategies are commonly categorized into global and local registration methods [62,73,74],
based on their initialization requirements and search behaviors. Global methods operate
without prior knowledge of the correct alignment and are therefore suited for cases with large
initial misalignments. In contrast, local methods assume that a coarse initial transformation
is available and aim to refine this estimate efficiently [37].

Global registration techniques search the entire parameter space without assuming a
priori alignment. They are valuable when point clouds have substantial misalignment or
unknown initial positions [60, 61]. Feature-based matching is a frequent strategy, using
descriptors like FPFH or SIFT to establish correspondences [38, 41]. Algorithms such as
4-Point Congruent Sets (4PCS) and their extension Super4PCS [61] detect rigid transforma-
tions by identifying congruent point sets, handling significant noise and partial overlap [75].
Another prominent global method, Go-ICP, integrates a branch-and-bound search into the
ICP framework [60], ensuring global optimality without needing an initial guess. Although
robust, global strategies tend to be computationally demanding due to their exhaustive search
process [35].

Local registration methods refine an existing coarse alignment by iteratively minimiz-
ing alignment errors [28]. They excel when an approximate transformation is already at
hand, often converging quickly and accurately [37]. A well-known local algorithm is ICP,
which repeatedly pairs the nearest points and updates the transformation to minimize their
distances [28]. Variants such as point-to-plane ICP exploit surface normals for faster, more
accurate convergence in structured environments [76]. However, local methods are ill-
suited for large initial misalignments or limited overlap; in these cases, a poor initial guess
risks convergence to an incorrect solution or local minimum [77].

Hybrid registrationmethods combine both approaches to balance global robustness with
local efficiency [78]. Typically, a global algorithm provides a coarse alignment, which
is then refined by a local technique for higher accuracy [37, 62]. This two-stage pipeline
is common in many applications, such as Lidar-based SLAM, multi-modal medical im-
age fusion, and 3D object reconstruction, where reliability, speed, and precision are all
paramount [7, 79, 80].

Overall, the choice between global and local registration (or a hybrid of the two) sig-
nificantly impacts accuracy, runtime, and tolerance to noise or overlap constraints [35, 73].
Global methods provide a more reliable solution from scratch but can be slow, whereas local
methods converge quickly when a decent initial guess is known [37]. By tailoring these ap-
proaches to the application’s data characteristics and computational requirements, optimal
performance can be achieved across diverse real-world scenarios [7].
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2.2.6 Loss Function-Oriented Approaches

Loss function-oriented approaches in PCR emphasize optimizing specific objective func-
tions to evaluate and minimize alignment errors between two point clouds. Selecting a
suitable loss function critically affects registration accuracy, robustness, and convergence.
These methods include geometric distance-based metrics, probabilistic models, and robust
statistical measures.

Geometric distance-based loss functions are popular due to computational efficiency
and effectiveness in structured scenarios. For instance, the classical ICP algorithm min-
imizes the sum of squared Euclidean distances between corresponding points in the two
point clouds, as shown in 2.9. A more refined approach, point-to-plane ICP, minimizes
the perpendicular distance from a source point to the tangent plane at the target surface,
improving convergence for structured surfaces [76]

Lptp(R, t) =
N∑
i=1

(
(Rxi + t− yi)⊤ni

)2
, (2.12)

where ni denotes the surface normal at point yi. Such geometric methods are widely
adopted in robotic mapping, LiDAR-based SLAM, and 3D reconstruction tasks [6].

Probabilistic frameworks provide alternative loss definitions, particularly useful when
correspondences are uncertain or data are noisy or incomplete. EM is a prominent prob-
abilistic method, modeling registration as a likelihood maximization problem [16]. CPD
utilizes EM to represent the source point cloud as a GMM and iteratively maximizes the
likelihood for alignment

LEM(θ) =
∑

i = 1N log

(
M∑
j=1

p(xi|yj, θ)

)
, (2.13)

where θ represents model parameters. EM-based probabilistic methods excel in non-
rigid registration scenarios, particularly in medical imaging and dynamic tracking applica-
tions [16, 81].

Robust statistical loss functions address the sensitivity of conventional squared-error
metrics to outliers and noisy data. Examples include the Huber loss, Tukey’s biweight func-
tion, and Cauchy loss, which diminish the influence of large residual errors while main-
taining sensitivity to accurate alignments. The Huber loss function, for example, is defined
as

LHuber(r) =


1
2
r2 if |r| ≤ δ,

δ
(
|r| − 1

2
δ
)

otherwise,
(2.14)
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where r is the residual alignment error, and δ is a predefined threshold parameter [82].
Recent developments in deep learning have significantly influenced loss function de-

sign by employing neural network-based alignment prediction. Learning-based methods
integrate geometric consistency, feature similarity, and regularization terms into neural-
network-driven loss functions. These approaches have demonstrated superior performance
in complex and large-scale environments, including autonomous driving and real-time scene
understanding [83, 84].

2.2.7 Optimization Strategies

Optimization strategies in PCR are employed to refine a transformation by minimizing an
objective function that quantifies the misalignment between two point sets. These strategies
play a critical role in ensuring convergence to an accurate solution, particularly after a suit-
able initialization has been provided. Although optimization typically begins from an initial
guess, this initialization, often referred to as pre-alignment, is conceptually distinct from the
optimization process itself. Pre-alignment methods aim to estimate a rough transformation
to help avoid poor local minima, while optimization methods operate on a well-defined cost
function to achieve precise alignment.

Once an initial estimate is available, various iterative optimization algorithms can be ap-
plied to minimize the registration error. A widely used method is the Levenberg-Marquardt
(LM) algorithm [85], which combines aspects of gradient descent and Gauss-Newton meth-
ods [86]. LM iteratively refines the transformation parameters by minimizing the following
non-linear least squares objective

θ∗ = argmin
θ

N∑
i=1

∥R(θ)xi + t(θ)− yi∥2 , (2.15)

where θ represents the transformation parameters, xi and yi are corresponding points,
and R, t denote rotation and translation components, respectively.

Other deterministic optimizers, such as Gauss-Newton [87], Limited-memory BFGS
(LBFGS) [88], and gradient descent, are also employed in PCR tasks, particularly in formu-
lations where the registration problem is cast as continuous optimization over transformation
parameters. These solvers are chosen based on the characteristics of the objective function
and the desired balance between convergence speed, memory efficiency, and robustness.
While their performance may vary in terms of runtime and sensitivity to local minima, they
generally produce comparable alignment results when the objective is well-formulated and
the initialization is sufficiently accurate.

In addition to deterministic solvers, probabilistic optimization strategies such as the EM
algorithm are also used. Methods like CPD [16] frame registration as a probabilistic match-
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ing problem, where correspondences are modeled as probability distributions. The EM al-
gorithm iteratively updates both the correspondence probabilities and the transformation to
maximize the alignment likelihood.

In fact, the choice of optimization strategy can influence convergence speed and robust-
ness, but it is often the problem formulation and quality of the initial estimate that determine
the success of the registration process. Optimization algorithms refine this estimate by min-
imizing a well-defined objective, completing the alignment in a precise and reliable manner.

2.3 Evaluation Metrics for Point Cloud Registration

Assessing PCR involves examining both quantitative metrics and robustness criteria. Quan-
titative metrics measure how accurately the source point cloud aligns to the target, while
robustness criteria evaluate an algorithm’s performance under challenging conditions like
noise or partial overlap. Generally, these evaluation metrics are categorized into three main
groups: Distance-based metrics, transformation-based metrics, and matching accuracy met-
rics. Each of these categories provides different insights into the overall effectiveness of a
registration method.

2.3.1 Quantitative Metrics

Quantitative metrics measure alignment accuracy between two point clouds. They can be
further divided into distance-based and transformation-based metrics, with an additional
focus on matching accuracy before the transformation is applied.

I) Distance-Based Metrics

Distance-based metrics capture how closely the transformed source point cloud aligns with
the target point cloud, revealing whether correspondences are near-perfect or significantly
deviating.

a) Chamfer Distance (CD) computes the mean of the shortest distances between points
in one cloud and points in the other, penalizing misalignment.

CD(X,Y ) =
∑
x∈X

min
y∈Y
∥x− y∥2 +

∑
y∈Y

min
x∈X
∥y − x∥2, (2.16)

where X is the set of points in the source cloud, and Y is the set of points in the target
cloud. The symbols x and y represent individual points in their respective sets.

b) Hausdorff Distance (HD) focuses on the greatest point-to-point deviation between
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two clouds, enforcing strict alignment requirements.

HD(X,Y ) = max
{
sup
x∈X

inf
y∈Y
∥x− y∥, sup

y∈Y
inf
x∈X
∥y − x∥

}
, (2.17)

c) Mean Squared Error (MSE) averages the squared distance between corresponding
points, revealing overall registration error.

MSE =
1

N

N∑
i=1

∥xi − yi∥2, (2.18)

where xi is the i-th point in the transformed source cloud, and yi is the corresponding
i-th point in the target cloud. N denotes the total number of corresponding points. The
notation ∥ · ∥ represents the Euclidean norm.

d) Root Mean Squared Error (RMSE), the square root of MSE, reduces the influence
of large individual errors and provides a more intuitive measure of overall deviation.

RMSE =

√√√√ 1

N

N∑
i=1

∥xi − yi∥2, (2.19)

e) EarthMover’s Distance (EMD) interprets the registration task as a transport problem,
calculating the minimal cost required to move points in one distribution to match the other.

EMD(X,Y ) = min
ϕ:X→Y

∑
x∈X

∥x− ϕ(x)∥, (2.20)

The notation ϕ represents a bijection (one-to-one mapping) between points inX and Y .

f) Geodesic Distance (GD) measures the distance along a curved surface rather than a
direct Euclidean line, crucial for shapes where surface geometry is significant.

GD(x, y) = min
γ∈Γ

∫ 1

0

∥γ′(t)∥ dt, (2.21)

where x and y are points on the surface, and Γ is the set of all possible paths connecting
x and y. The notation γ′(t) denotes the derivative (tangent vector) of the path γ at parameter
t.

II) Transformation-Based Metrics

Transformation-based metrics compare the estimated transformation to the ground truth
transformation, highlighting how precisely the rotation and translation parameters are re-
covered.
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a) Relative Rotation Error (RRE) calculates the discrepancy between the estimated ro-
tation matrix and the true one, indicating the accuracy of rotational alignment.

RRE = ∥Rest − Rgt∥, (2.22)

where Rest is the estimated rotation matrix, and Rgt is the ground truth rotation matrix.

b) Relative Translation Error (RTE) measures how closely the estimated translation
vector matches the actual translation, revealing translational accuracy.

RTE = ∥test − tgt∥, (2.23)

where test is the estimated translation vector, and tgt is the ground truth translation vector.

c) End-Point Error (EPE) averages the Euclidean distance between each transformed
source point and its corresponding target point, providing a direct measure of registration
quality.

EPE =
1

N

N∑
i=1

∥T(xi)− yi∥, (2.24)

where T is the estimated transformation (encompassing both rotation and translation),
xi is the i-th point in the source cloud, and yi is the corresponding i-th point in the target
cloud. N represents the total number of corresponding points.

III) Matching Accuracy Metrics

These metrics focus on how accurately the algorithm identifies correct correspondences
before a transformation is computed.

a) Inlier Ratio (IR) indicates the proportion of correctly matched point pairs relative to
the total matches, spotlighting the quality of initial feature or keypoint correspondence.

IR =
Number of Correct Matches
Total Number of Matches

, (2.25)

where Number of Correct Matches is the count of correspondences that are truly correct,
and Total Number of Matches is the total set of correspondences proposed by the algorithm.

b) Feature Matching Recall (FMR) shows what fraction of true correspondences is
detected correctly among all possible features, gauging how reliably features overlap.

FMR =
Number of Correct Feature Matches

Total Number of Features
, (2.26)

where Number of Correct Feature Matches is the count of correctly identified matches,
and Total Number of Features represents the total features detected in the point clouds.
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c) Precision and Recall widely used in classification and detection tasks. These metrics
measure correspondence quality from different angles, precision reflects howmany selected
matches are correct, while recall shows how many of the true matches have been found.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (2.27)

where TP denotes true positives (correctly identified matches), FP denotes false posi-
tives (incorrectly identified matches), and FN denotes false negatives (missed matches).

2.3.2 Robustness Evaluation

Real-world PCR is frequently affected by imperfections and uncertainties, which challenge
the stability and accuracy of registration algorithms. To systematically evaluate robustness,
we consider five common sources of degradation: Noise, outliers, partial overlap, data den-
sity variation, and deformation level, and provide formal definitions for each.

Noise. Noise refers to random perturbations affecting the position of observed points due
to sensor inaccuracies or environmental effects. In PCR, noisy input causes the observed
point cloud to deviate from the ideal surface.

Let X = {xi ∈ Rn}Ni=1 be the clean source point cloud. Each point is corrupted by an
additive random vector εi, drawn from a probability distribution p(ε), leading to

x̃i = xi + εi, εi ∼ p(ε).

Common distributions include Gaussian noise N (0, σ2I), Poisson noise, or uniform noise
within bounded domains.

Outliers. Outliers are erroneous points in the point cloud that do not belong to the un-
derlying object or surface. They often arise from reflections, occlusions, or artifacts in the
sensor data.

Let the observed cloud be Xobs = Xin ∪ Xout, where Xin are inlier points and Xout are
outliers. A point xi is considered an outlier if

d(xi,M) > τ,

whereM is the true surface manifold and τ is a threshold distance.

Partial overlap. Partial overlap occurs when only a portion of the source point cloud
has a matching region in the target point cloud. This situation is common in multi-view
scanning or occluded scenes.
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Given source X and target Y, define the overlapping subset as

Xov = {xi ∈ X | ∃ yj ∈ Y such that ∥xi − yj∥ < δ} ,

and the overlap ratio as

ρ =
|Xov|
|X|

.

Lower ρ values correspond to more limited overlap.

Data density variation. Density variation refers to inconsistencies in the sampling res-
olution of different regions within a point cloud, caused by scanning angles, distance, or
sensor limitations.

For a point xi ∈ X, define local point density as

ρ(xi) = |{xj ∈ X | ∥xj − xi∥ < r}| ,

where r is the neighborhood radius. Significant variation in ρ(xi) across points indicates
non-uniform density, which can affect correspondence estimation.

Deformation level. Deformation level quantifies the extent of non-rigid transformation
between two point clouds. It measures how much individual points have been displaced due
to bending, stretching, or other deformations.

Let each xi ∈ X correspond to yj(i) ∈ Y. The displacement vector is

ui = yj(i) − xi.

The average deformation level is defined as

∆ =
1

N

N∑
i=1

∥ui∥2.

Larger ∆ values represent more significant shape changes between the source and target.

By introducing these mathematically grounded definitions, we establish clear criteria
for evaluating the robustness of registration methods under varying real-world conditions.
These formulations are used consistently throughout this work. Figure 2.2 provides a com-
parative summary of robustness performance in recent learning-based non-rigid registration
methods.



26 Overview of Learning-Based Non-Rigid Point Cloud Registration Methods

Figure 2.2. Quantitative evaluation metrics and robustness to common challenges for learning-based
and non-rigid 3D point cloud registrationmethods published between 2017 and 2021: (a) Assessment
metrics (b) Robustness analysis [35]

2.4 Overview of Learning-Based Non-Rigid Point Cloud
Registration Methods

Learning-based methods have become increasingly important for non-rigid PCR because
they can capture complex deformations and underlying data distributions more effectively
than traditional optimization-based approaches [5]. Traditional methods, while powerful for
small or structured deformations, can struggle with large or highly non-linear transforma-
tions. In contrast, deep learning models can be trained on diverse sets of shape variations
to automatically learn robust correspondences and handle significant geometric changes.
By leveraging large amounts of training data, these models adapt to real-world variations
such as missing data, noise, and partial overlaps, often resulting in improved registration
accuracy and generalization [89].

Another key advantage of learning-basedmethods lies in their inference speed and scala-
bility. Once a model is trained, registration of new point clouds can be executed in near-real-
time, as opposed to iterative optimization-based techniques, which can be time-consuming
for large-scale or high-resolution data [89]. Furthermore, many learning-based pipelines can
be designed to work end-to-end, integrating multiple tasks, such as segmentation, feature
extraction, and correspondence prediction, into a single unified framework. This holistic
approach often leads to more coherent and consistent transformations, reducing the need
for separate, potentially error-prone post-processing steps. Learning-based solutions offer
a compelling way to tackle the complexity of non-rigid PCR, enabling more robust, effi-
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cient, and versatile 3D shape analysis [35]. Learning-based registration approaches com-
monly employ various network architectures, including CNNs, Recurrent Neural Networks
(RNNs), GCNNs, and Multi-Layer Perceptron (MLP). This section surveys several notable
non-rigid registration techniques built on these architectures, emphasizing those that are
frequently cited and featured in reputable journals.

It is important to recognize that many of the methods discussed here can be categorized
intomultiple classes introduced earlier. Nevertheless, for clarity, we organize these learning-
based methods according to their respective network architectures. An overview of the
techniques examined is provided in Table 2.1.

2.4.1 Convolutional Neural Networks

CNNs have shown remarkable success in computer vision tasks and have been adapted for
PCR. The core objective is to learn robust and discriminative features directly from 3D data
so that correspondences between point clouds can be determined effectively. Nonetheless,
unlike 2D images, point clouds are inherently unstructured and irregular, making it non-
trivial to apply standard 2D convolutions. Below, we discuss three common strategies for
leveraging CNNs in PCR [90].

Volumetric representations. One common approach is to convert the point cloud into a
structured voxel grid, allowing standard 3D convolutions to be applied. By treating the 3D
space as a voxelized volume, CNNs can extract features that capture both local geometry
and global context [91,92]. Here, each voxel in the grid can hold information about whether
it is occupied by one or more points (e.g., binary occupancy) or store aggregated features
such as point densities or intensities. Convolution operations then proceed in 3D just as they
do in 2D CNNs, although with higher memory requirements. This allows powerful feature
extraction in a structured manner, but can suffer from quantization artifacts and a significant
computational burden when dealing with high-resolution grids.

Multi-view projections. Another method projects the 3D data onto multiple 2D views
(e.g., using spherical or cylindrical projections) so that 2D CNNs can be utilized. This
approach leverages the maturity of 2D CNN architectures but may lose some 3D details
during projection. Carefully designed view aggregation strategies can mitigate this issue
and improve overall registration accuracy [93, 94].

Point-based convolutions. Recent advancements in point-based methods enable the
definition of convolution-like operators directly on point sets. These networks (sometimes
referred to as “point CNNs”) learn local neighborhood features without relying on regular
grids, preserving the original geometric information. Techniques such as KPConv and other
variants introduce specialized layers and kernels that capture local context and aggregate
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features in a hierarchical manner [95].

In the following, we present several well-known approaches that use CNNs to address
registration problems.

ProRegNet [96] is a notable CNN-based method that incorporates biomechanical con-
straints to enhance registration accuracy. In a clinical setting, aligning Magnetic Resonance
(MR) and Transrectal Ultrasound (TRUS) images of the prostate can be challenging because
the prostate may deform differently in each modality. To tackle this issue, a non-rigid reg-
istration framework has been proposed that leverages CNNs for segmentation, as well as a
specialized point cloud matching network for the final alignment. First, two separate CNNs
segment the prostate in MR and TRUS images, respectively. Each segmentation yields a
volumetric mask that delineates the prostate boundary, effectively isolating the region of
interest in both modalities. Following segmentation, tetrahedron meshing is applied to the
prostate masks to create 3D point clouds representing the prostate geometry in each image.
Instead of relying on iterative optimization techniques for non-rigid registration, the authors
introduce a dedicated point-cloud-based network to directly match the 3D structures. This
network is trained using deformation fields derived from finite element analysis (FEA). Fi-
nite element models simulate realistic tissue deformations under various forces, embedding
biomechanical constraints into the network weights. Consequently, the network not only
finds correspondences in a data-driven manner but also encourages solutions that align with
plausible prostate deformations rather than arbitrary warpings.

In another approach, called the Volume-To-Surface Registration Network (V2S-Net)
[97], the CNN takes two 3D meshes as input: (1) a preoperative liver volume (from a CT
scan) and (2) a partial intraoperative surface (extracted from a laparoscopic stereo video).
The network then outputs a displacement field that warps the preoperative organ mesh to
align with the intraoperative surface. Unlike traditional registration pipelines that sepa-
rately handle correspondence estimation and deformation modeling, this CNN simultane-
ously learns to resolve surface correspondence and ensure biomechanically realistic trans-
formations. To achieve this, synthetic “organ-like” meshes are generated and deformed
using Finite Element Method (FEM) simulations, creating a wide range of realistic shape
variations for training. By exposing the network to diverse, physically plausible deforma-
tions and deliberately adding noise to mimic real surgical conditions, V2S-Net acquires the
capability to generalize to new patient data without retraining. Through this end-to-end
formulation, the CNN effectively manages the sparse, noisy partial point clouds obtained
intraoperatively, providing a robust and rapid solution for non-rigid liver registration.

Point Registration Neural Network (PR-Net) [98] tackles point set registration by learn-
ing a parametric mapping that directly predicts a spatial transformation, rather than relying
on iterative optimization. PR-Net’s pipeline is organized into three main components. In
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the first stage, learning shape descriptor tensor, a grid-reference structure is introduced to
handle arbitrarily structured data and extract robust feature representations from each point
set. Next, in the learning shape correlation tensor stage, an all-to-all point-wise computa-
tion is performed on these descriptor tensors to formulate a detailed correlation relationship
between the source and target point sets. Finally, the learning of transformation parameters
stage leverages a CNN as a functional regression model. By mapping the shape correlation
tensor to the transformation parameters, PR-Net pinpoints the best geometric alignment in
one forward pass, without iterative refinement.

In [99], the authors leverage a CNN to learn feature embeddings that reflect the geom-
etry and local context of points on 3D human shapes, both unclothed and clothed. Specifi-
cally, they modify a standard classification CNN (based on AlexNet [100]) to output feature
descriptors for sub-regions of the human body rather than simply class labels. By incorpo-
rating a multi-segmentation technique on the training shapes, the network is encouraged to
produce smooth embeddings, meaning that points on the surface of a human body that are
geodesically close will map to nearby positions in the learned feature space. This CNN-
based approach captures the variations in pose and clothing across the different training
sets, enabling dense correspondence matching between partial scans, depth maps, and full
3D models. Rather than relying on iterative or optimization-based registration methods,
the learned descriptors allow for a single-step matching of points to their counterparts, sub-
stantially reducing outliers and increasing efficiency. As a result, the method can handle
complex poses and various clothing styles, making it more versatile than traditional non-
rigid registration pipelines.

DispVoxNets [101] is a neural network–based approach that performs non-rigid point
set registration by converting point sets into regular 3D voxel grids and then regressing
displacement fields within this voxel space. Because point sets can vary in their number and
ordering of points, the authors circumvent the need for a fixed input size by turning each
input into a uniformly sampled voxel representation. The core engine is a 3D CNN that
processes these voxel grids to predict per-voxel displacement vectors, effectively warping
the “template” shape to the “reference” shape. By training on collections of deformable
objects (such as clothes, human bodies, and faces) with known intra-state correspondences,
DispVoxNets learn category-specific deformation priors as well as constraints like weak
topology preservation. The 3D CNN architecture also helps maintain robustness against
large deformations, noise, and clustered outliers, while offering fast inference compared to
traditional iterative methods.

In [102], Parallel Frames CNNs (PFCNNs), a method for applying CNNs directly on
surface meshes, is introduced, which typically poses difficulties for CNNs due to the non-
Euclidean nature of surface meshes. Rather than representing a shape as a point cloud or
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volumetric grid, the authors define a parallel frame field on the surface, consistently aligning
local tangent spaces. They then map each local patch onto a flat, Euclidean-like coordinate
system, thereby enabling standard convolution operations analogous to those in regular 2D
CNNs. A key component of PFCNNs is the use of locally flat connections, which is a
concept from discrete differential geometry to enforce parallel alignment across neighbor-
ing tangent planes. This alignment is encoded through a pointwise tangential N -direction
frame field, making it possible to systematically handle the absence of a canonical axis
on a curved surface. For each local patch, the network employs regular grids in the tan-
gent space and applies typical convolutional filters, thereby leveraging existing 2D CNN
designs. By effectively preserving local geometry and aligning features in tangent space,
PFCNNs can capture fine-grained details on meshes without resorting to specialized, hand-
crafted surface features. In experiments, PFCNNs exhibit robustness and high performance
across tasks such as classification, segmentation, and registration on both deformable and
rigid surfaces. Because this framework closely mirrors conventional CNNs, it can incor-
porate efficient architectures (e.g., residual blocks, dilated convolutions) used in 2D image
processing.

2.4.2 Graph Convolutional Neural Networks

GCNNs provide a powerful framework for learning features directly from the intrinsic ge-
ometric relationships in point clouds, making them highly effective for registration tasks
[103, 104]. Rather than using an unstructured set of points or regular voxel grids, a GCNN
constructs a graph whose vertices correspond to points (or patches) in the cloud, while edges
capture local neighborhood relationships (e.g., via k-nearest neighbors or a radius-based ap-
proach). This graph representation enables the network to propagate and aggregate infor-
mation among spatially connected points, yielding context-sensitive descriptors that can be
more robust than simpler point-wise features. In the context of PCR, GCNNs are typically
used in one of two ways:

Descriptor learning and correspondence estimation. A GCNN first learns a latent de-
scriptor for each node in the graph. Points with similar local neighborhoods in the source
and target clouds receive similar descriptors, facilitating correspondence matching. A trans-
formation (rigid or non-rigid) can then be estimated from these correspondences. Unlike
classical handcrafted descriptors, GCNN-derived embeddings can adapt to training data dis-
tributions and remain robust under noisy, partially overlapping conditions [105].

End-to-end registration. In a fully end-to-end pipeline, GCNNs can learn not only
pointwise features but also a direct alignment strategy. For instance, one might combine
a GCNN-based encoder with a learnable transformation regression module (e.g., predicting
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rotation, translation, or more complex deformations). The underlying graph structure en-
forces local geometric consistency, helping the network infer valid global transformations
even for large deformations or cluttered scenes.

By capturing local connectivity patterns and global context via repeated graph convo-
lutions, GCNNs naturally handle irregular sampling densities and preserve topology better
than purely pointwise networks. Consequently, GCNN-based approaches excel in com-
plex registration scenarios, including those with significant shape deformation, noise, and
incomplete data [106].

In [106], it is discussed how these networks process data structured as graphs, learning
geometric features based on the relationships between neighboring nodes. This approach is
particularly effective for point clouds, where the structure of the data is inherently graph-
like. In the medical domain, GCNNs have shown promise for tasks like 3D lung registra-
tion [107], where edge convolutions are used to extract geometric features, and Loopy Be-
lief Propagation (LBP) regularizes displacements on a k-nearest neighbor graph. Addition-
ally, [108] introduces a dynamic GCNN approach for PCR, which refines correspondences
probabilistically using the CPD algorithm. These approaches demonstrate the versatility
of GCNNs in handling various PCR challenges, particularly when dealing with complex
deformable structures.

Continuing this line of research, [109] introduces NrtNet, an unsupervised transformer-
based network designed for non-rigid PCR. This method leverages self-attention mecha-
nisms to extract feature correspondences between large deformations. NrtNet’s three main
components, a feature extraction module, a correspondence matrix generation module, and
a reconstruction module, work together to align point clouds by learning and normalizing
correspondence probabilities. This approach is designed to handle large-scale deformations,
a significant challenge in non-rigid PCR. Extending this work, [20] proposes GraphSCNet, a
network that tackles outlier correspondence pruning, particularly in non-rigid PCR. Graph-
SCNet addresses the challenge of local rigidity in non-rigid deformations by using a local
spatial consistency measure to evaluate correspondence compatibility, ensuring better out-
lier discrimination and improving the overall accuracy of registration.

Building on the concept of structural alignment, [110] presents NIE, amethod for embed-
ding the vertices of point clouds into a high-dimensional space to preserve intrinsic structural
properties. This technique is particularly useful for aligning point clouds sampled from de-
formable shapes, which often lack explicit structural information. NIE forms the foundation
for a weakly-supervised framework for non-rigid PCR, avoiding expensive preprocessing
steps and the reliance on ground-truth correspondence labels.

SyNoRiM [111] is a deep learning-based framework for multiway, non-rigid PCR that
employs a fully connected graph representation for each shape and learns functional bases
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directly from raw point cloud data. Rather than relying on predefined operators such as
the Laplace–Beltrami basis, SyNoRiM uses GCNN to extract smooth, band-limited repre-
sentations of local geometry and global context, encouraging nearby source points to stay
close under deformation. This learned basis allows SyNoRiM to establish coherent pairwise
correspondences between arbitrarily sampled, partial, or noisy scans and subsequently en-
forces cycle-consistency across all scans through a functional map synchronization step. By
integrating these ideas into a single pipeline, SyNoRiM discovers a latent canonical shape
and refines all pairwise deformations accordingly, achieving robust, end-to-end multiway
registration that can handle non-isometric deformations, occlusions, and other real-world
complexities.

The advantages of using graph structures for point cloud representation also justify a
closer look at the EdgeConv operator. EdgeConv, introduced by [104], is a neural network
module specifically designed for point cloud analysis. It effectively captures both local
neighborhood geometry and global context through edge-based feature aggregation.

EdgeConv operates on a set of points represented as a matrix X = {xi ∈ Rd : i =

1, 2, ..., n}, where n is the number of points and d is the dimensionality of each point. It also
takes as input a matrix of neighbor indices that defines the graph structure. For each pair of
neighboring points (xi, xj), the edge feature eij is computed using a nonlinear function hΘ,
parameterized by learnable weights Θ. This function combines the relative position xj − xi
and the central coordinate xi to capture both local and contextual information. The edge
feature computation is given by

e′ijl = ReLU (θl · (xj − xi) + ϕl · xi) , (2.28)

where θl and ϕl are learnable parameters. The aggregated feature for point xi is obtained
by applying max pooling over its neighborhood

x′
il = max

j:(i,j)∈ε
e′ijl. (2.29)

The output is an m-dimensional feature representation for each point, preserving the
original point count. Multiple EdgeConv layers can be stacked to iteratively enrich the rep-
resentation. EdgeConv has demonstrated strong performance in capturing local geometric
structures and improving accuracy in various 3D vision tasks [104].

2.4.3 Multilayer perceptrons and PointNet-Based Methods

MLPs and PointNet-inspired architectures have become pivotal in handling unordered point
cloud data for registration tasks. MLPs typically process each point or local neighborhood
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independently through fully connected layers, followed by a permutation-invariant pooling
operation. This design naturally accommodates irregular input sizes and directly outputs
either pointwise displacements or global transformation parameters. Meanwhile, Point-
Net [112] introduces an influential framework that encodes each point’s features via a shared
MLP, then aggregates them using a symmetric pooling function (e.g., max pooling). Point-
Net++ [113] enhances this approach with a hierarchical feature extraction scheme, captur-
ing local geometric structures at multiple scales. In registration pipelines, both MLPs and
PointNet-based encoders often pair with additional network components that either itera-
tively refine alignment or directly learn transformations in an end-to-end manner.

PointNetLK [114] merges PointNet’s global feature encoding with the classical Lucas-
Kanade (LK) algorithm to solve rigid registration. Here, the source and target point clouds
are passed through the PointNet encoder, producing two global feature vectors. These fea-
tures are compared iteratively using an LK-style gradient update to converge on the optimal
rotation and translation. A later refinement, detailed in [115], proposes a decomposition of
the Jacobian matrices involved in the LK step, improving convergence stability for larger
motions or noisier data.

In the domain of non-rigid registration, GP-Aligner [116] tackles groupwise alignment
by learning Group Latent Descriptors (GLD). The approach couples these latent descriptors
with MLP-based prediction modules to encode and transfer coherent deformations across
multiple shapes. By modeling a shared representation of shape variations within a dataset,
GP-Aligner excels at ensuring consistent alignment for collections of related objects, rather
than merely tackling pairwise registration.

Another notable framework, Neural Deformation Pyramid (NDP) [117], exploits hierar-
chical MLPs with sinusoidal encodings to approximate non-rigid deformations at multiple
scales. This pyramid-like decomposition lets the network capture both coarse global trans-
formations and fine local details. The multi-resolution design accelerates convergence and
improves robustness when dealing with large deformations or diverse shape variations.

CPD-Net [118] draws inspiration from the CPD algorithm (see Section 2.2.3), avoiding
iterative registration by training a network to predict point-level displacements in a single
forward pass. This network relies on PointNet-like feature extraction to generate pointwise
embeddings, which are then processed by MLP layers to produce coherent drifts. By en-
coding coherence constraints in the learned features, CPD-Net achieves accurate alignment
while maintaining topology and preserving local structure.

FlowNet3D [119] adapts the idea of optical flow estimation to 3D point sets. It uses a
PointNet++ encoder-decoder architecture to predict scene flow, which can be interpreted as
a dense motion field guiding registration. However, performance in dynamic or complex
scenarios led to the development of FlowNet3D++ [120], which integrates refined cost-
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volume computations and additional grouping strategies to better capture intricate motions.
Although these frameworks focus primarily on scene flow, they illustrate how point-level
MLPs and hierarchical pooling can address registration by directly estimating per-point 3D
motion vectors.

2.4.4 Transformer-Based Methods

Transformers are widely recognized in deep learning for their ability to model long-range
dependencies via attention mechanisms, initially gaining prominence in natural language
processing (NLP) tasks such as machine translation [121]. By discarding the need for re-
current or convolutional structures, transformers leverage parallelization and global context,
which has led to extensive success in NLP domains and subsequent adaptations in computer
vision. This adaptability naturally extends to 3D point cloud processing, where irregular,
unordered data often poses difficulties for traditional neural networks.

Early works on transformers for 3D data focused on tasks like classification and seg-
mentation. For instance, methods such as [122] and [123] present transformer-based archi-
tectures that capitalize on self-attention to capture local and global geometric relationships
in unordered point sets, demonstrating strong performance in shape classification, semantic
segmentation, and normal estimation. Although initially geared toward perception-related
tasks, the application of transformers in PCR has more recently gained attention. Trans-
formers can facilitate PCR by leveraging their robust attention mechanisms to learn corre-
spondences and transformations between sets of 3D points. Below are the primary ways in
which transformers are employed in this domain:

Global context and permutation invariance. Unlike convolutional or recurrent mod-
els that rely on fixed local receptive fields or sequential ordering, transformers compute
pairwise “attention” across all points [121]. This attention-based mechanism naturally ac-
commodates the unordered nature of point clouds, allowing the network to capture both
local and long-range relationships without imposing a rigid input structure.

Learned correspondences and feature matching. A core step in many registration
pipelines is to identify reliable correspondences between source and target clouds. Trans-
former layers, equipped with multi-head attention, can learn discriminative features that
align points of similar geometric context [122, 123]. By focusing attention on overlapping
regions, these methods can handle partial scans, occlusions, or noisy inputs, often circum-
venting the need for explicit keypoint detection.

End-to-end deformation estimation. Some transformer-based approaches regress mo-
tion parameters directly from attention-derived correspondences, obviating additional post-
processing or iterative methods [84]. By integrating a final layer or small module to es-
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timate the overall (rigid or non-rigid) transformation, the entire alignment process can be
made end-to-end, reducing complexity and inference time.

Coarse-to-fine hierarchies. Transformers can be utilized across multiple resolutions
to refine matches incrementally [124]. A coarse alignment stage may operate on down-
sampled “superpoints” or graph nodes, while subsequent fine-scale transformer layers refine
local correspondences. This hierarchical approach lowers computational overhead, focusing
attention on critical regions for improved alignment accuracy.

Position encoding and spatial cues. Originally developed for sequential data, trans-
formers rely on positional encodings to provide a notion of ordering [121]. In the 3D context,
adapted encodings embed coordinates or distance metrics that capture geometric relation-
ships among points [125]. More advanced schemes employ tailored encodings that handle
varying reference frames, occlusions, or partial overlaps, thereby improving the model’s
resilience to real-world sensor noise and viewpoint changes.

These features, attention-driven global context, flexible positional encodings, and direct
transformation predictions, permit transformers to manage complex registration scenarios.
Their strengths include accommodating partial data, substantial motion, and heterogeneous
point densities, making them potent alternatives or complements to traditional geometry-
based and earlier learning-based methods in 3D applications.

While transformers have found extensive application in point cloud classification and
segmentation, their use in registration tasks remains comparatively underexplored. One of
the earlier transformer-based methods for rigid PCR is Deep Closest Point [84], which relies
on a three-stage pipeline: (1) extracting features from the input point clouds using an embed-
ding network, (2) estimating combinatorial matches between points via an attention-based
pointer-generation layer, and (3) determining the rigid transformation with a differentiable
SVD layer. Building upon this direction, [21] introduces a Geometric Transformer that
sidesteps traditional keypoint extraction by matching so-called superpoints, downsampled
point clusters, using the overlap of their neighborhoods. This superpoint-based matching
not only enhances robustness under low-overlap conditions but also achieves invariance to
rigid transformations. In a similar vein, CoFiNet (Coarse-to-Fine Network) [124] omits
keypoint detection and instead adopts a hierarchical registration strategy. At a coarse level,
the method identifies downsampled nodes with higher overlap via a weighting scheme and
narrows down the areas of interest before refining the matches at a finer scale. Notably, a
density-adaptive matching module helps handle both differing point densities and overlap-
ping segments, thereby illustrating ongoing advancements in the efficiency and accuracy of
PCR under real-world constraints.

An additional notable approach, OIF-PCR [126], targets alignment challenges caused by
inconsistent reference frames. Its main innovation is to identify a single inlier correspon-
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dence using a differentiable optimal transport layer, then normalize each point’s position
based on that inlier for subsequent encoding. This design reduces ambiguity and bolsters
spatial consistency, and by incorporating an iterative optimization scheme, progressively re-
fines the registration outcome. In parallel, [127] proposes an end-to-end solution using trans-
former layers to directly estimate correspondences. The model’s self- and cross-attention
mechanisms obviate the need for classic steps like feature matching and RANSAC filtering,
allowing the network to learn correspondences in a unified pipeline and compute the rigid
transformation without additional post-processing.

Finally, the partial point cloud scenario is addressed by Lepard [125], which integrates
a KPFCN feature extractor, transformer modules, and differentiable matching algorithms.
Central to this method are three key innovations that reinforce the role of 3D positional
cues: disentangling the feature and position representations, introducing a specialized posi-
tional encoding for relative 3D distances, and employing a repositioning module that adjusts
inter-point distances across partial scans. These enhancements yield improved robustness
and precision in partial registration settings, underlining transformer-basedmodels’ growing
potential to tackle complex point cloud data across a wide range of 3D registration tasks.

2.4.5 Other network architectures (GAN, RNN, ResNet, T-Net)

While CNNs, GCNNs, and Transformer-based models remain dominant in PCR, there are
additional architectures that, though less common, have shown promise in specific scenar-
ios. These include Generative Adversarial Networks (GANs), RNNs, and Residual Net-
works (ResNet).

1) Generative Adversarial Networks

Generative Adversarial Networks (GANs) can be adapted to PCR by framing the alignment
task as one of learning a transformation that fools (fooling operator) a discriminator into
believing that a deformed source shape matches the target shape [128, 129]. Below is a
concise overview of this process:

Generator (transformation network). The generator is conditioned on the source point
cloud (and optionally additional context) and produces a transformation, often formulated
as a per-point displacement field or deformation parameters, and when applied to the source,
yields a shape resembling the target. Through adversarial training, the generator learns to
warp the source such that it becomes indistinguishable from the target.

Discriminator (real vs. generated alignment). Operating in parallel, the discriminator
receives either the real target point cloud or the generator’s transformed output, classifying
it as either real or fake. This adversarial loss [128] drives the generator to produce transfor-
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mations that deceive the discriminator, thereby promoting closer alignment of the source to
the target.

Loss functions and constraints. In addition to the adversarial objective, geometric or
smoothness constraints are frequently imposed [129]. Examples include penalties on ex-
treme stretching or compression and explicit alignment objectives (e.g., pointwise distances)
to preserve local fidelity. Such constraints steer the generator toward more realistic and spa-
tially consistent deformations.

Training and inference. Training proceeds by iteratively updating both the generator
and the discriminator in an adversarial loop: The generator strives to align the source to
the target more convincingly, while the discriminator attempts to refine its ability to detect
misalignments. Inference requires only the trained generator, enabling direct prediction of
the deformation needed to align a new source point cloud to the target without iterative
optimization during testing.

GAN-based registration leverages high-capacity neural networks to capture complex,
non-linear deformations, embedding data-driven shape priors to avoid unnatural warping.
It is often robust to noise and partial data since the discriminator penalizes outputs deviating
significantly from realistic geometries. Using GANs shifts registration from a purely geo-
metric optimization problem to an adversarially trained framework, which can excel in sce-
narios involving large or intricate shape variations. For example, conditional GANs [128]
have been employed to learn geometric transformations for non-rigid registration [129]. In
this setup, the discriminator attempts to distinguish between transformed source shapes and
genuine target shapes, while the generator (conditioned on the source shape) learns to pro-
duce transformations that map the source to the target. This adversarial training scheme cap-
tures complex, high-dimensional deformation patterns that might be difficult to model with
direct optimization approaches. By leveraging robust adversarial objectives, GAN-based
methods can alleviate issues such as mode collapse or overfitting to specific deformation
types, making them suitable for non-rigid registration tasks where shape variation is high.

2) Recurrent Neural Networks

Although RNNs, including Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) variants, are typically associated with temporal sequence modeling, they can also
be adapted for PCR by treating the alignment task as a sequential process. In this view,
each step refines either the transformation parameters or intermediate features, gradually
converging to an accurate registration.

Sequential alignment strategy. One approach is to impose a pseudo-sequential ordering
on the points in a cloud and feed them into an RNN, allowing the hidden state to integrate
partial registration cues over multiple time steps [130]. For example, an RNN can iteratively
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refine a set of transformation parameters by comparing intermediate alignment outcomes
with the next subset of points. Each iteration makes small adjustments to reduce alignment
error, effectively distributing the registration burden over multiple recurrent steps.

Iterative update of features and transformations. Instead of directly outputting a global
transformation in one pass, an RNN can maintain an internal representation of the align-
ment status. At each step, it processes local features from the next point (or small cluster
of points) in the pseudo-ordered set, updates the transformation estimates (e.g., rotation,
translation, or non-rigid offsets), and outputs refined alignment parameters. This iterative
process continues until sufficient convergence is reached. The recurrent structure naturally
tracks alignment progress over time (i.e., steps of the iteration), mitigating large jumps that
might destabilize training.

Balancing permutation invariance and temporal ordering. Because point clouds are
inherently unordered, a key challenge is preserving the benefits of permutation invariance
while still defining a sequence for the RNN to process [130]. Potential solutions include: (1)
randomizing the order of points between training epochs to avoid overfitting to any single
ordering. (2) using spatial heuristics (e.g., sweeping from nearest to farthest) to create amore
geometrically meaningful sequence. (3) combining RNNs with global pooling or attention
mechanisms to capture global context despite sequential input.

These strategies helpmaintain robustness to different sampling densities and viewpoints.
RNN-based pipelines benefit from incremental refinement, allowing for a flexible trade-off
between computation time and registration accuracy. However, they can be more sensitive
to point ordering than architectures like PointNet or Transformers, and potentially require
more careful engineering to ensure stability, particularly when dealing with large or noisy
point clouds. Despite these considerations, RNNs remain a viable option for registration,
especially when sequential thinking (e.g., iterative correction) aligns well with the desired
application.

3) Residual Networks

Residual Networks (ResNets) [131] are commonly associated with 2D image tasks, yet they
also lend themselves well to PCR, particularly for non-rigid alignment. By integrating skip
connections, ResNets maintain stable gradient flow across many layers, which is critical
when dealing with the large parameter spaces and complex deformations inherent to PCR.

Skip connections in deformation layers. A representative method, ResNet-LDDMM
[132], weaves skip connections into the layers responsible for computing deformation fields.
Each residual block refines the estimated transformation from the previous stage (e.g., ro-
tation, translation, or a per-point offset), combining new updates with the prior state. This
incremental refinement strategy ensures that errors do not accumulate excessively, mitigat-
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ing vanishing or exploding gradients and leading to more robust convergence.
Iterative transformation refinement. Residual architectures naturally suit iterative de-

formation strategies. Rather than predicting the full alignment in one pass, a ResNet can
sequentially adjust transformation parameters, effectively “adding” corrections to the cur-
rent estimate. This setup is especially useful for handling large or complex deformations,
as each layer can focus on local adjustments relative to the latest deformation field instead
of attempting to solve the entire registration in a single step.

Benefits for high-dimensional spaces. Because PCR often operates in high-
dimensional parameter spaces (e.g., non-rigid motion, large shape variability), stable train-
ing is vital. Skip connections help preserve gradient signals, allowing deeper networks to
capture more nuanced geometric features without suffering from convergence difficulties.
Consequently, ResNet-based models can learn more detailed deformation mappings, im-
proving alignment quality across diverse shapes or complex real-world data.

4) T-Net: Spatial transformation network

T-Net is one of the most important modules to understand and study separately when work-
ing with point cloud data. Although it is not explicitly designed for PCR, it plays a critical
role in many point cloud-based applications by learning to align and normalize data, thereby
improving model invariance to geometric transformations such as rotation and scaling.

T-Net was originally introduced in the context of Spatial Transformer Networks by
[133], and later adapted in PointNet [112] as a module that learns a transformation matrix
to align input point clouds into a canonical space. The core idea is to apply a data-driven
affine transformation to the input, making the subsequent feature extraction more invariant
to spatial perturbations.

The architecture of T-Net consists of the following stages:

• Feature extraction via MLP: The input point cloud is processed by a shared multi-
layer perceptron (MLP), typically implemented as a sequence of 1D convolutional
layers with output channel sizes of 64, 128, and 1024. Each convolutional layer is
followed by instance normalization and a ReLU activation. This stage extracts local
features for each point.

• Global feature aggregation: A symmetric function, in this case, max-pooling, is ap-
plied across all point features to obtain a global feature vector of size 1024. This
vector summarizes the global structure of the entire point cloud.

• Transformation regression: The global feature vector is passed through anotherMLP
with fully connected layers of sizes 512, 256, and 9. The final layer outputs a flattened
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3×3 matrix (for 3D point clouds), which represents the affine transformation to be
applied. The outputmatrix is reshaped into a 3×3matrixT , which is used to transform
the input points

xalignedi = T · xi. (2.30)

• Regularization term (optional): To encourage the predicted matrix T to be close to
a valid rotation matrix and avoid degenerate solutions, a regularization loss such as
orthogonality loss may be added during training

Lreg = ∥TT T − I∥2F , (2.31)

where I is the identity matrix and ∥ · ∥F denotes the Frobenius norm.

T-Net is typically used in two places: (1) to align raw input point clouds, and (2) to align
intermediate feature representations. In both cases, the goal is to make the model more
robust to transformations in the data, such as varying orientations or scaling. This property
is particularly valuable in registration tasks, where misaligned coordinate frames can lead
to poor correspondence matching. T-Net serves as a learnable pre-alignment module that
improves generalization and invariance in downstream tasks involving unordered 3D point
sets.



O
verview

ofLearning-B
ased

N
on-R

igid
PointC

loud
R
egistration

M
ethods

41

Table 2.1. Overview of some learning-based non-rigid point cloud registration methods based on Transformers and DGCNN

Methods Year Network Architecture Robustness Experimental Data

PPFNet [134],
PPF-FoldNet [135]

2018 PointNet [112], MLP Partial, Noise 3DMatch [136], Synthesis [137], 7-Scenes [138], SUN3D
[139], RGB-DScenesv.2 [140], SpinImages [141], SHOT
[142], FPFH [38],USC [143]

[108] 2019 DGCNN Noise, outliers Medical dataset

PRNet [144] 2019 DGCNN, Transformer Noise, partial ShapeNetCore [145], ModelNet40 [92]

[104] 2019 EdgeConv, CNN Partial ShapNet [145]

3DSmoothNet [146] 2019 CNN Partial, Noise 3DMatch [136], ETH Dataset [147]

DispVoxNets [101] 2019 CNN Noise, deformation levels, outlier FLAME [148], Dynamic FAUST (DFAUST) [149], cloth
[150]

CoFiNet [124] 2021 Transformer Outlier, partial odometryKITTI [151], 3Dmatch [136], 3DLoMatch [152]

[107] 2021 DGCNN - Medical dataset

NrtNet [109] 2022 DGCNN, Transformer Deformation levels SURREAL [153], SHREC’19 [154], MIT [155]

[21] 2022 Transformer Outlier, partial odometryKITTI [151], 3Dmatch [136], 3DLoMatch [152]

[127] 2022 Transformer Outlier, partial 3Dmatch [136], 3DLoMatch [152], ModelNet [92]

Lepard [125] 2022 Transformer Outlier, partial, deformation levels 3Dmatch [136], 3DLoMatch [152], 4DMatch [125]

OIF-PCR [126] 2022 Transformer Outlier, partial odometryKITTI [151], 3Dmatch [136], 3DLoMatch [152]

[156] 2022 DGCNN Noise, outlier, partial, data density variation,
deformation levels

ModelNet [92], TOSCA [157], Human motion [158]

SyNoRiM [111] 2022 CNN Noise, partial, outlier, data density variation [159], Clothcap [160], 4dcomplete [161], Deepdeform [162],
SAPIEN [163]

NDP [117] 2022 MLP Outlier, partial, deformation levels 4DMatch [125]

GraphSCNet [20] 2023 GCNN Outliers, deformation levels, partial 4DMatch [125], CAPE [160], DeepDeform [162]

NIE [110] 2023 DGCNN Noise, partial SURREAL [153], FAUST [164], SCAPE [165]

MAFNet [166] 2024 Transformer Noise, partial 7-Scenes [138], ModelNet [92]





Chapter 3

Material and Methods

This chapter presents the methodologies employed in this study, along with the generated
datasets and published simulation tools, organized into Material (Section 3.1) and Methods
(Section 3.2). The Material section introduces the resources used, including SimTool [23],
a toolset for soft-body simulation based on NVIDIA Flex and Unreal Engine, as well as two
datasets developed as part of this work: The synthetic soft tissue dataset SynBench [27]
and the real-world dataset DeformedTissue [25, 26], both introduced in this dissertation.
In addition, the configuration of two widely used benchmark datasets, ModelNet [92] and
4DMatch [125], is presented.

The Methods section outlines the proposed approaches, Robust-DefReg [27] and Def-
TransNet [22], along with their iterative refinement strategies. These network architectures
are specifically designed to evaluate and improve non-rigid PCR in the context of soft tissue
deformation.

The author of this dissertation contributed to the development of all tools, datasets, and
methods mentioned above, including the SimTool framework [23], the SynBench [27] and
DeformedTissue [25, 26] datasets, the registration methods Robust-DefReg [27] and Def-
TransNet [22], and the iterative refinement framework integrated into both methods.

3.1 Material

In recent years, the generation of synthetic datasets for evaluating computer vision methods
has gained significant traction, primarily because such datasets can provide accurate ground
truth data. This is particularly valuable in domains like surgical procedures, where collect-
ing real-world data is often challenging. In this section, we present a simulation toolset
called SimTool [23] and a synthetic benchmark dataset named SynBench [27]. SimTool
is designed to simulate soft tissue deformation during resection surgery, and SynBench is
a dataset generated using this tool. In addition to SynBench, a real-world dataset named

43
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DeformedTissue has also been created and published [25, 26].

3.1.1 SimTool: Soft Body Simulation

Simulation tools for soft body deformation are essential for developing and benchmarking
non-rigid PCR methods, particularly when real data is limited or lacks ground truth. A
suitable simulation framework for this purpose must fulfill several key requirements:

• Customizability: The tool should support flexible control over object shapes, defor-
mation parameters, and material properties.

• Physical realism: It must produce plausible non-rigid deformations that approximate
real-world soft tissue or elastic material behavior.

• Surface-level output: The simulation should allow extraction of high-quality surface
point clouds from 3D scenes.

• Ground truth availability: It must support tracking and output of ground truth corre-
spondences for evaluation.

• Open-source accessibility: The tool should be publicly available to support repro-
ducibility and benchmarking.

While various soft body simulators exist (e.g., for computer graphics and gaming
[167–169]), they are often application-specific, closed-source, or lack the necessary sup-
port for data generation and control needed for machine learning research in non-rigid PCR.
To address this gap, we developed SimTool, an open-source simulation framework designed
to generate realistic and controllable soft body deformations for use in registration bench-
marks and learning-based model training. SimTool satisfies the above requirements through
a hybrid integration of:

• 3D modeling and mesh processing: This module is responsible for generating and
manipulating the geometric models used in simulation. It supports both procedurally
created shapes and pre-defined anatomical or synthetic models. Basic operations such
as mesh smoothing, resampling, slicing, and remeshing are included, allowing the
user to control surface complexity, resolution, and object topology prior to deforma-
tion.

• Physically-based soft body simulation: SimTool simulates realistic non-rigid behav-
ior using a position-based dynamics framework. Objects can undergo a wide range of
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deformations, including compression, stretching, bending, twisting, or cutting. Ma-
terial properties such as elasticity, mass, damping, and structural constraints are con-
figurable, enabling the simulation of soft tissues, elastic components, or other flexible
materials under physical interaction or external forces.

• Surface capture and point cloud generation: Following deformation, the object’s
surface is sampled to produce point clouds. These can be extracted under varying
conditions, such as different viewpoints, occlusions, or simulated sensor settings. The
tool supports exporting both the deformed point cloud and the ground truth correspon-
dence or deformation field, enabling supervised evaluation of registration accuracy
under controlled deformation levels.

The SimTool workflow consists of three main stages: Random shape generation, defor-
mation and slicing, and surface capturing. These components are described in detail in our
peer-reviewed publication [23]. They will not be elaborated upon in this thesis in order to
maintain consistency and integration with the current document, and because this is not the
primary focus of the present work.

3.1.2 SynBench and DeformedTissue Datasets

Evaluating a PCR method typically requires testing under multiple scenarios to assess the
robustness and generalization capabilities of the proposed approach. A comprehensive eval-
uation of non-rigid PCR demands datasets that incorporate key challenges such as large
deformations, noise, outliers, and incompleteness. Although several datasets exist for de-
formable PCR, none provide a complete benchmark that encompasses all these challenges,
making fair comparison across different methods difficult.

In the following, our proposed datasets will be introduced: (1) SynBench, a synthetic
soft tissue dataset, and (2) DeformedTissue, a real-world soft tissue dataset.

1) SynBench: Synthetic Soft Tissue Dataset

In the previous section, we introduced SimTool [23], a toolbox designed to simulate soft
body deformation and generate deformable point clouds. In this work, SimTool is utilized
to create a benchmark for non-rigid PCR, named SynBench, which serves as an evaluation
framework for PCR methods.

The following sections outline the dataset development process, highlighting its adapt-
ability for various applications. A more detailed discussion on dataset generation can be
found in our published paper [24] and the link to download the dataset is [170]. To empha-
size the novelty of our proposed dataset, its main contributions are summarized below:
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• A benchmark of customizable objects. Although the dataset is generated using soft
body deformation simulations, it can be adapted for broader applications. Unlike
datasets with predefined objects, such as animals or human bodies, SynBench pro-
vides a flexible framework for training machine learning models on any non-rigid
object.

• Challenges and robustness. The dataset introduces various challenges in PCR, in-
cluding different deformation levels, varying noise intensities, outlier ratios, and data
incompleteness. This comprehensive design facilitates an effective assessment of
method robustness under diverse conditions.

• Ground truth for corresponding points. SynBench includes ground truth correspon-
dences for both pre- and post-deformation objects and slices. This information is valu-
able not only for evaluating registration accuracy but also for other 3D point cloud
applications.

The proposed dataset is derived from 30 primitive objects generated using SimTool.
These objects undergo different deformation levels to create diverse test scenarios. Addi-
tionally, the dataset includes challenges such as varying outlier ratios, noise levels, and data
incompleteness, along with ground truth point correspondences.

Since all challenges are generated under small to large deformation levels, SynBench
allows users to select subsets based on their method’s capabilities and assess robustness to
complex scenarios. The dataset comprises five main subsets: ”Data,” representing the 30
primitive objects, and four challenge categories, ”Deformation Level,” ”Incompleteness,”
”Noise,” and ”Outlier”, containing 5,297, 26,485, 21,188, and 26,485 object samples, re-
spectively. Each sample consists of a source and target point cloud pair. The higher file
count in certain challenge categories arises from applying each challenge across multiple
deformation levels while varying key parameters. These parameters for each challenge are
discussed in the following sections.

Different deformation levels. To simulate varying deformation levels in a controlled
and reproducible way, two complementary strategies are implemented. Each is chosen with
respect to different requirements, physical realism in one case and mathematical control in
the other.

The first strategy involves physically simulated deformation using a soft body physics
engine. By varying gravitational force and simulation time, a range of deformation inten-
sities is applied to 30 primitive objects, resulting in a dataset that reflects real-world object
behavior under physical stress [23]. This physically grounded approach is particularly valu-
able when simulating realistic, plausible interactions such as those in surgical or mechanical
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Figure 3.1. The average mean distance for each deformation level. As deformation levels increase,
the mean distance between source and target point clouds rises, indicating greater deformation [27].

environments. However, due to limited control over exact deformation patterns and the lack
of point-to-point ground truth, an alternative strategy is introduced.

The second strategy is based on Thin-Plate Splines (TPS) [68], a kernel-based interpola-
tion method widely used in non-rigid registration. TPS was selected for its ability to gener-
ate smooth, globally coherent deformations by separating affine and non-affine components.
Unlike spectral or eigenfunction-based methods, such as those relying on Laplacian eigen-
maps or eigenfaces, TPS operates directly on point sets and does not require mesh topology
or consistent connectivity. This makes it especially suitable for use with unstructured 3D
point clouds.

The TPS deformation of a point x is defined as

f(x) = A · x+ b+
k∑

i=1

wi · ϕ(∥x− ci∥), (3.1)

where x ∈ R3 is a point in the source point cloud, A ∈ R3×3 is the affine transformation
matrix, b ∈ R3 is the translation vector, ci ∈ R3 are the control points, wi ∈ R3 are the
weights associated with each control point, and ϕ(r) is the radial basis function defined as

ϕ(r) = r2 log(r), (3.2)

with r = ∥x− ci∥ denoting the Euclidean distance between point x and control point ci.
This specific RBF was chosen because it minimizes the bending energy of the deformation
field, ensuring smooth transitions and natural-looking deformations.

To generate different deformation levels, we apply controlled displacements to the con-
trol points ci. The control points are initially sampled uniformly across the bounding region
of the object. Each control point is then perturbed by a displacement vector drawn from a
zero-mean isotropic Gaussian distribution

c′i = ci +N (0, σ2), (3.3)
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Figure 3.2. The number of source and target point cloud pairs at different deformation levels [27].

where σ is the standard deviation that controls the magnitude of the deformation. This
stochastic perturbation is not intended to simulate measurement noise, but rather to intro-
duce controlled variability into the deformation field. The choice of a Gaussian distribution
provides spatially unbiased, symmetric perturbations around each control point, with a sin-
gle parameter (σ) that allows for continuous adjustment of deformation strength. Alterna-
tive distributions such as uniform or Poisson were considered, but Gaussian was preferred
due to its continuous support and natural ability to localize deformation while preserving
global smoothness. Uniform distributions do not concentrate around the origin and are less
appropriate for localized, smooth shifts, while Poisson distributions are generally used for
modeling discrete events rather than continuous vector fields.

The final deformation field is then computed by evaluating the TPS transformation based
on the displaced control points c′i. The resulting transformation includes: Affine and non-
affine. The affine component is define as

A · x+ b, (3.4)

where A governs linear transformations such as rotation, scaling, and translation, while
b represents a translation vector. The non-affine component, responsible for non-linear de-
formations, is given by

k∑
i=1

wi · ϕ(∥x− ci∥), (3.5)

which models deformations using radial basis functions.
Three key factors influence the severity and complexity of the resulting deformation:

1. The number of control points k: More control points allow finer-grained deformation.

2. The standard deviation σ: Governs the displacement magnitude of control points.

3. The spatial spread of the radial basis function ϕ(r): Larger distances r reduce influ-
ence, producing localized deformation.
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(a) Deformation level: 0.1 (b) Deformation level: 0.3 (c) Deformation level: 0.5 

   
(d) Deformation level: 0.6 (e) Deformation level: 0.8 (f) Deformation level: 0.9 

 

Figure 3.3. Visualization of the proposed SynBench dataset used in this study. Subfigures (a), (b),
(c), (d), (e), and (f) depict different deformation levels (0.1, 0.3, 0.5, 0.6, 0.8, and 0.9) within the
SynBench dataset. In these point cloud visualizations, the source point clouds are shown in green,
while the target point clouds are shown in red, illustrating varying degrees of deformation [27].

No explicit constraints are imposed on the topology of the object. The TPS-based de-
formation operates on unstructured point sets and does not require connectivity or mesh
information. This topology-agnostic property is essential for PCR scenarios where the ob-
ject geometry may be irregular or incomplete.

To quantitatively measure deformation levels, we compute the average Euclidean dis-
tance between corresponding source and target points. LetX = {x1, x2, . . . , xn} ⊂ R3 and
Y = {y1, y2, . . . , yn} ⊂ R3 denote the original and deformed point clouds, respectively.
The distance between corresponding points is

d(xi, yi) =
√
(x1

i − y1i )
2 + (x2

i − y2i )
2 + (x3

i − y3i )
2, (3.6)

and the mean deformation level is defined as

Dmean =
1

n

n∑
i=1

d(xi, yi) =
1

n

n∑
i=1

√
(x1

i − y1i )
2 + (x2

i − y2i )
2 + (x3

i − y3i )
2. (3.7)

Visualizations of point clouds at different deformation levels are shown in Figure 3.3.
Corresponding quantitative statistics of mean distance and dataset distribution are presented
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(a) Noise level: 0.01,  

Deformation level: 0.2 
(b) Noise level: 0.03,  

Deformation level: 0.4 
(c) Noise level: 0.04,  

Deformation level: 0.8 

  
 

(d) Outlier level: 5,  
Deformation level: 0.1 

(e) Outlier level: 25,  
Deformation level: 0.5 

(f) Outlier level: 45,  
Deformation level: 0.7 

 

Figure 3.4. Visualization of the SynBench (synthetic) datasets under different noise and outlier lev-
els. Sub-figures (a), (b), and (c) illustrate varying deformation and noise levels within the SynBench
dataset, while sub-figures (d), (e), and (f) depict different deformation and outlier levels. In the point
cloud visualizations, the source point clouds are displayed in green, and the target point clouds are
displayed in red, representing varying degrees of deformation [27]. Outliers are shown as blue points.

in Figures 3.1 and 3.2, respectively.

Different levels of noise. Evaluating the robustness of methods to noise is a common
practice in the literature [7]. Since the SynBench dataset is synthetically generated, the
initial point clouds are noise-free. To better simulate real-world scenarios, varying levels of
synthetic noise are introduced. In this study, Gaussian noise is added to the point sets with
zero mean and varying standard deviations. Gaussian noise, commonly used in research,
follows a normal distribution N (0, σ2), where µ = 0 ensures the noise is centered around
zero, and σ determines its magnitude. Larger values of σ result in noisier data. Reported
values in the literature typically range between 0.01 and 0.04, representing small to large
noise levels [114, 171]. Based on this, four noise categories are generated in the dataset:
σ = 0.01, σ = 0.02, σ = 0.03, σ = 0.04.

For each point xi = (x1
i , x

2
i , x

3
i ) in the original noise-free source point cloudX , a noisy

point x′
i is generated as

x′
i = xi +N (0, σ2), (3.8)

where Gaussian noise is independently added to each coordinate of xi. The noisy dataset
categories, corresponding to different noise levels, are illustrated in Figure 3.4.
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Different levels of outliers. Outliers pose a significant challenge in point cloud process-
ing, often arising from sensor inaccuracies, environmental disturbances, or misalignment
during data acquisition. In this context, an outlier is defined as a point that deviates substan-
tially from the spatial distribution of the main object surface.

To systematically evaluate robustness under varying levels of contamination, synthetic
outliers are introduced into the dataset. These outlier points are generated by sampling from
a Gaussian distribution N (µ, σ2), where µ ∈ R3 specifies the mean location relative to the
main point cloud, and σ controls the spatial spread of the outliers. By adjusting µ, outliers
can be positioned at varying distances from the object surface, while larger values of σ
produce more dispersed outlier patterns.

The number of outliers added to each point cloud is determined as a proportion of the
original point set size. Inspired by prior work [172, 173], we generate five variants of each
dataset, corresponding to outlier levels of 5%, 15%, 25%, 35%, and 45%.

Let X = {x1, x2, . . . , xn} denote the original point cloud. The augmented version X ′

is constructed by appending m = p
100
· n outlier points, sampled independently from the

specified Gaussian distribution. The resulting point cloud size is given by

|X ′| = n+
p

100
· n, (3.9)

where p ∈ {5, 15, 25, 35, 45} denotes the outlier percentage. Each outlier point oj is
sampled as

oj ∼ N (µ, σ2). (3.10)

This procedure enables controlled generation of varying outlier densities and spatial
distributions, allowing systematic evaluation of the robustness of registration methods. It is
important to note that the choice of outlier magnitude and density may vary depending on
application-specific constraints or performance benchmarks under investigation.

2) DeformedTissue: Real-world Soft Tissue Dataset

Tissue deformation, also known as tissue shift, is a significant challenge in soft-tissue surg-
eries. It results in the displacement of anatomical landmarks, complicating navigationwithin
soft tissues. Such deformations occur after the surgical opening due to the release of tension,
changes in patient positioning, or removal of tissue, and are influenced by the tissue’s texture
and shape. This phenomenon has been well documented in neurosurgery [174]. However,
tissue displacement is also a concern in head and neck surgeries, particularly during tumor
resections, where vital structures lie close together and must be preserved.

Following tumor removal, the pathological TNM classification plays a key role in guid-



52 Material

C
ol

d
 

W
ar

m
 

 a) Resected cavity b) Cut shape c) Resected cavity d) Cut shape 
 

Figure 3.5. 3D camera and head-mounted display images of cut tissue shapes (CTs) and their corre-
sponding resection cavities (RCs). Anatomical directions, cranial, caudal, rostral, and occipital, are
indicated with arrows and lines to guide 3D imaging and photogrammetry. (a) T-shape (branched
geometry), resection cavity; (b) T-shape, excised tissue piece; (c) Rectangular shape (compact ge-
ometry), resection cavity; (d) Rectangular shape, excised tissue piece. Tissue temperatures: Cold =
7.91 ± 4.1 ◦C, warm = 36.37 ± 1.28 ◦C. [26].

ing treatment decisions and predicting outcomes. Accurately determining the pathological
T stage requires pathological examination of the tumor, which becomes more complex when
tissue is malformed. Variations in tumor shape and tissue displacement further complicate
the assessment of frozen sections for both surgeons and pathologists [26].

This experimental study utilized 45 pig head cadavers (Schradi Frischfleisch GmbH,
Mannheim, Germany) and was approved by the Mannheim Veterinary Office (DE 08 222
1019 21). The use of cadavers enabled the generation of large datasets suitable for training
deep learning models. In contrast, real tumor specimens are scarce and not reproducible,
which motivated the cadaver-based approach. To capture tissue morphology before and
after controlled heat-induced deformation, 3D cameras and head-mounted displays were
employed. Examples of the tissue images, both pre- and post-heating, are shown in Figure
3.5. The data were further processed using tools such as Meshroom, MeshLab, and Blender
to produce and analyze 2½Dmesh models. The outcomes of this study have been published
in peer-reviewed journals, and additional technical details can be found in [25, 26].

After generating the natural deformations, we adopted the same methodology as in the
SynBench dataset to construct a large-scale dataset for training and evaluating neural net-
works. It includes 5,126 samples for the ”Deformation Level” challenge (ranging from 0.1 to
0.7), 20,504 for ”Noise”, and 25,630 for ”Outlier”, ensuring compatibility with SynBench
for comparative evaluation. Example images captured using HoloLens 2 and ArtecEva,
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(a) Image of resection cavity (b) Image of resected tissue piece (c) Image of resection cavity 

  
 

(d) The 3D point cloud of the 
resection cavity (a) 

(e) The 3D point cloud of the 
resected tissue piece (b) 

(f) The 3D point cloud of the 
resection cavity (c) 

Head-mounted display images of resection cavities and cut tissue pieces are shown in the first row and the 
second row demonstrates the extracted 3D point cloud. The dataset is available upon request to readers. 

 
Figure 3.6. Head-mounted display images of resection cavities and cut tissue pieces are shown in
the first row and the second row demonstrates the extracted 3D point cloud. [22].

along with the corresponding point clouds, are shown in Figure 3.6. The dataset is publicly
available at [175].

3.1.3 ModelNet10 Dataset

ModelNet10 [92] is a widely used benchmark dataset consisting of clean, synthetic 3D CAD
models. It is a subset of the larger ModelNet40 collection and includes 4,899 shapes across
10 object categories, such as bathtub, bed, chair, desk, dresser, monitor, nightstand, sofa,
table, and toilet. Each object is pre-aligned to a canonical orientation, which facilitates com-
parison across registration methods. The dataset is split into 3,991 training samples (80%)
and 908 test samples (20%). To simulate more realistic variations during training, we apply
random rotations of up to 45 degrees around the z-axis to the point clouds. ModelNet10
is particularly useful for evaluating registration methods under clean, rigid transformations,
serving as a baseline before introducing more complex non-rigid scenarios. To extend this
baseline to non-rigid cases, we adapted the ModelNet10 dataset by introducing varying lev-
els of deformation, following the same procedure described in the previous section for gen-
erating our SynBench dataset. The dataset is available at: [92].

3.1.4 4DMatch/4DLoMatch Dataset

4DMatch [125] is a dynamic point cloud dataset derived from the 4DComplete dataset [161],
designed to benchmark registration and correspondence estimation in scenes undergoing
temporal geometric changes. It includes dense ground-truth correspondences between par-
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tial scans, with a low-overlap variant referred to as 4DLoMatch.

Each sample includes a source point cloudX , deformation arrayD, a target point cloud
Y , a rotation matrix R, a translation vector t, an overlap ratio, and point correspondences.
To align with our method’s requirements and maintain consistency, the target point cloud is
regenerated using the transformation

Y = tT + (X +D)RT (3.11)

This transformation is applied only to points with valid correspondences, ensuring the
structural integrity of overlapping regions. Point clouds are resampled to have equal cardi-
nality, which is necessary for our method. Based on overlap ratios, samples are categorized
into 4DMatch (> 0.45) and 4DLoMatch (< 0.45). The dataset contains 47,738 training
pairs, 6,400 validation pairs, and a test set of 10,327 4DMatch and 4,590 4DLoMatch sam-
ples. Link to download the dataset: [125].

3.2 Methods

In this chapter, we present the proposed methods for non-rigid PCR: Robust-DefReg [27],
a graph-based coarse-to-fine registration network; DefTransNet [22], a Transformer-based
architecture designed to handle complex deformations; and Learning-to-Refine, an iterative
refinement strategy that improves registration accuracy across architectures. Each approach
is designed to address a specific challenge identified in the research questions (RQ2–RQ4)
and to validate the corresponding hypotheses (H2–H4) (see Section 1.2).

To address RQ2 and test H2, we introduce Robust-DefReg [27], a graph-based non-rigid
registration method built on a coarse-to-fine strategy. It encodes local geometric relation-
ships by constructing a graph over the point cloud and applying graph convolutional layers
to learn neighborhood-aware features. The model integrates a spatial transformer network
(T-Net) for pre-alignment and employs a Loopy Belief Propagation (LBP) module to en-
force local smoothness in the estimated displacement field. This design ensures resilience
to deformation and spatial noise by explicitly leveraging local geometric structures, a critical
factor in achieving robust registration under challenging conditions.

To address RQ3 and validate H3, we propose DefTransNet [22], a Transformer-based
non-rigid PCR network that enhances Robust-DefReg by incorporating global attention
mechanisms. While graph-basedmethods excel at modeling local geometry, theymay strug-
gle in regions with repetitive or ambiguous structures. DefTransNet mitigates this issue
by combining EdgeConv layers for local feature encoding with a Transformer module that
models long-range dependencies between source and target point clouds. This enables the
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network to resolve feature ambiguity and establish correspondences in complex, non-local
deformation scenarios. The architecture also includes a T-Net for affine pre-alignment, aid-
ing in convergence and structural consistency.

To address RQ4 and test H4, we introduce Learning-to-Refine, an iterative refinement
strategy applied atop both Robust-DefReg and DefTransNet. This model-agnostic frame-
work improves registration by incorporating a probabilistic perspective into the learning
process. Specifically, it refines displacement predictions over multiple iterations using a
combined loss that includes geometric alignment and Kullback-Leibler (KL) divergence
terms. The latter imposes a prior over the deformation distribution, enabling uncertainty
modeling that enhances convergence stability and reduces overfitting. This approach is
particularly beneficial in scenarios with ambiguous or incomplete correspondences, where
deterministic single-pass models often fail to generalize.

3.2.1 Robust-DefReg: GCNN-Based Method

Accurate non-rigid PCR under large deformation and noise remains an open problem, espe-
cially in applications like soft tissue simulation, where local geometric variations and sparse
correspondences introduce substantial complexity. Traditional methods often fall short due
to the following limitations:

• Sensitivity to deformation: Voxel-based or pointwise methods often lose geometric
details and cannot generalize well under non-rigid deformation.

• Vulnerability to noise and outliers: Sparse keypoint matching and global models can
easily be disrupted by local noise or partial occlusions.

• Lack of local geometric awareness: Many registration pipelines ignore spatial re-
lationships between neighboring points, leading to inconsistencies in the predicted
deformation field.

To address these limitations, and to answer RQ2 and validate H2 (see Section 1.2), our
method aims to:

• Explicitly model local geometric relationships using graph-based learning.

• Improve spatial coherence in the predicted displacement field via regularization over
a neighborhood graph.

• Enhance robustness under deformation and noise through message-passing-based re-
finement.
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Figure 3.7. The proposed network architecture of Robust-DefReg [27].

We propose Robust-DefReg, a graph-based learning method that models local geometric
structure via GCNNs and enforces spatial regularity using LBP. Considering X and Y as
source and target point cloud, the goal is to estimate a continuous displacement field D =

{di}Ni=1, where di ∈ R3 aligns xi with a corresponding point in Y.

Rather than relying on hard point-to-point correspondences, our method leverages a soft,
weighted approach to displacement estimation. For each source point xi, we identify k

candidate correspondences {cpi }kp=1 in the target cloud based on feature similarity. The unary
cost of assigning candidate cpi to xi is computed as

dpi = ∥f(xi)− f(cpi )∥
2
2 , (3.12)

where f(·) is the learned feature embedding function.
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To enforce spatial coherence, a pairwise regularization cost is defined between two
neighboring source points (xi, xj) ∈ E and their respective displacement candidates.

rpqij =
∥∥(cpi − xi)− (cqj − xj)

∥∥2
2
. (3.13)

This cost encourages neighboring points to undergo similar displacements, promoting a
smooth deformation field.

These costs are integrated into a pairwise graphical model, and inference is performed
using LBP. Each node (point) iteratively exchanges messages with its neighbors to refine its
belief over candidate displacements. The message update rule at iteration t is

mt
i→j(q) = min

p

dpi + α · rpqij +
∑

h∈N (i)\j

mt−1
h→i(p)

 , (3.14)

where

• dpi is the unary cost from Eq. 3.12,

• rpqij is the pairwise regularization term from Eq. 3.13,

• α controls the influence of regularization,

• mt−1
h→i are messages from other neighbors at the previous iteration.

Messages are initialized to zero and updated for a fixed number of iterations. After
convergence, the final belief distribution over candidates is normalized using Softmax

wp
i =

exp(−dpi )∑
q exp(−d

q
i )
. (3.15)

The final displacement vector di is then computed as the expected displacement

di =
k∑

p=1

wp
i · (c

p
i − xi). (3.16)

Our model architecture consists of two main stages:

• Feature descriptor network: A shared T-Net [133] (see Section 2.4.5) aligns both in-
put point clouds to a common canonical space, ensuring rotation invariance. Graphs
are constructed using k-NN, and EdgeConv [104] (see Section 2.4.2) layers extract
local shape-aware features. These features capture both positional and relational in-
formation essential for deformation-aware registration.
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Table 3.1. Overview of the main processing steps in the Robust-DefReg method

• Feature Descriptor Network.

– Shared T-Net (3×3): Both point clouds are initially aligned to a common reference frame
using a shared T-Net, enhancing rotational invariance of the features.

– k-NNGraphConstruction: Graphs are built from the aligned point clouds by connecting
each point to its k nearest neighbors.

– Shared EdgeConv Layers (32, 32, 64): Multiple EdgeConv layers are applied to extract
local geometric features from the constructed graphs.

– Shared MLP Layers (64, 64): A shared multilayer perceptron comprising two 1D con-
volutional layers (each of size 64) with instance normalization between them refines the
learned features.

• Learning Displacement Field.

– Feature Embedding: Each point in the input point clouds is embedded into a 64-
dimensional feature vector using the feature descriptor network.

– NeighborhoodMatching: For every point in the source point cloud, the k closest points in
the target cloud are identified using the squared L2 distance between their feature vectors.

– Displacement Estimation: Displacement vectors are computed from each source point
to its selected neighboring target points.

– Cost Computation: For each candidate displacement, a cost is computed based on the
average squared Euclidean distance between the feature vectors.

– LBP over k-NN Graph: A k-NN graph is formed for the source cloud, and Loopy Belief
Propagation (LBP) is employed to iteratively refine the displacement costs through mes-
sage passing.

– Softmax Aggregation: The refined costs are passed through a Softmax layer to produce
weights, which are used to compute the final displacement vector for each point as a
weighted sum of its candidate displacements.

• Displacement field estimation: For each point, candidate displacements are estimated
using feature similarity. Costs are computed as in Eq. 3.12 and refined through LBP
using Eq. 3.14. Softmax aggregation (Eq. 3.16) produces the final deformation field.

This formulation emphasizes local geometric preservation and spatially-consistent cost
refinement through graph-based message passing, enabling more robust alignment under
deformation and noise. An overview of the method is shown in Figure 3.7, and Table 3.1
further illustrates the proposed pipeline. Inspired by [107], our method incorporates a novel
feature descriptor network to enhance robustness without compromising accuracy or com-
putational efficiency. While [107] focuses on registering key points in deformed lungs, we
build on this foundation by extending Robust-DefReg into a general-purpose registration
framework applicable to various point cloud types, beyond medical data. Additionally, our
approach is designed to ensure robustness to rotation and other structural challenges.
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3.2.2 DefTransNet: Transformer-Based Method

While Robust-DefReg leverages local geometric features to achieve robust registration un-
der noise and deformation, it is inherently limited in resolving feature ambiguity, a situation
where geometrically similar regions lead to incorrect correspondences. These limitations
become particularly pronounced in scenarios involving symmetric objects, repetitive struc-
tures, or partial overlap. To overcome this, we introduce DefTransNet, which integrates
global contextual learning through a Transformer-based joint embedding. The following
key limitations motivate our design:

• Ambiguous local descriptors: Local similarity across different regions can lead to
incorrect matches.

• Limited long-range learning: Graph convolutions operate on neighborhood graphs
and lack the capacity to model cross-cloud interactions.

• Independent encoding: Treating source and target separately restricts the ability to
align semantically corresponding structures.

To address these limitations and answer RQ3 and validate H3 (see Section 1.2), our
method aims to:

• Improve contextual distinctiveness by encoding long-range spatial dependencies us-
ing Transformer attention.

• Jointly model source and target representations to disambiguate structurally similar
regions.

• Enhance global consistency and robustness to deformation, partial visibility, and noise
through sequence-level embeddings.

We propose DefTransNet, a Transformer-based framework for non-rigid PCR. Given
input point clouds X and Y, similar to Robust-DefReg, our goal is to estimate a dense dis-
placement field D = {di}Ni=1 that aligns X with Y.

We begin with a shared T-Net transformation (see Section 2.4.5) and EdgeConv (see
Section 2.4.2) layers for initial alignment and local feature encoding, respectively. The ex-
tracted features are then passed into a Transformer encoder-decoder that jointly embeds
and updates both source and target point clouds. To enhance the learned features with
long-range dependencies and contextual information, we integrate a Transformer encoder-
decoder structure. This is a major addition compared to Robust-DefReg and enables Def-
TransNet to reason jointly over source and target point clouds in a unified feature space.
Unlike methods that treat source and target clouds independently, we model them together
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Figure 3.8. The proposed network architecture of DefTransNet [22].

using an encoder-decoder Transformer. Both the encoder and decoder are built from iden-
tical blocks composed of multi-head self-attention and feedforward networks. Each block
containsmulti-head self-attention and a feedforward network. The self-attentionmechanism
evaluates inter-point similarity via

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (3.17)

where Q, K, and V are linear projections of the input features and dk is the dimension of
the keys. Multi-head attention expands this representation

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO, (3.18)

headi = Attention(QWQ
i , KWK

i , V W V
i ). (3.19)

The decoder applies cross-attention to enable feature exchange between clouds. Cross-
attention in the decoder enables the model to match features between clouds, improving
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correspondence estimation. The resulting features are updated symmetrically

ΦX = FX + ϕ(FX ,FY),

ΦY = FY + ϕ(FY ,FX ),
(3.20)

where ϕ(·) represents the cross-attention transformation that resolves ambiguity by consid-
ering mutual context.

To compute the displacement field, the enhanced features are passed into a regression
module. For each source point xi, we find its k-nearest candidate displacements cpi in the
target point cloud and evaluate their costs

dpi = |f(xi)− f(cpi )|
2
2 . (3.21)

A spatial regularization term ensures smoothness between neighboring displacements

rpqij = |(cip − xi)− (cjq − xj)|22 . (3.22)

Following the approach of Robust-DefReg, we use Loopy Belief Propagation (LBP)
to iteratively refine the displacement beliefs. The message-passing formulation propagates
updates across neighboring points. For details on this inference step, we refer the reader to
Section 3.2.1. The final displacements are computed by applying a softmax weighting over
the refined candidate scores, yielding a smooth and accurate deformation field.

Our architecture is structured in three stages:

• Feature encoding: T-Net aligns inputs; EdgeConv extracts local descriptors.

• Contextual embedding: Transformer attention models long- and cross-cloud depen-
dencies.

• Displacement estimation: LBP-refined costs are fused to predict smooth displace-
ments.

This formulation addresses RQ3 and supports H3 by resolving feature ambiguity through
globally informed, joint embedding, as demonstrated in Figure 3.8.

3.2.3 Learning-to-Refine: Iterative Refinement Approach

Despite the advances introduced in the preceding methods, Robust-DefReg for local geo-
metric encoding and DefTransNet for long-range semantic learning, non-rigid PCR remains
challenged by two persistent limitations:
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Figure 3.9. Iterative probabilistic refinement framework (Learning-to-Refine). The initial prediction
is performed by Model1, which can be instantiated by either DefTransNet or Robust-DefReg. The
same model is reused as Model2 in subsequent refinement iterations. From the second iteration on-
ward, the loss function is extended with a KL divergence term to incorporate uncertainty modeling.
Each pass predicts residual displacements that are added cumulatively to the previous estimation.
This iterative self-training framework improves alignment progressively while penalizing implausi-
ble deformation fields.

Figure 3.10. Progressive self-training with dynamic dataset splits across multiple iterations. In the
first iteration, the model is trained on an initial training set and evaluated on a separate test set. After
inference, a portion of the test set is pseudo-labeled and incorporated into the training set for the
next iteration. The remaining half of the test set becomes the new test set. This cyclical process
allows the model to progressively expand its training data while adapting to increasingly diverse and
challenging samples.

• Residual misalignment. Even after a single forward pass, both methods often fail
to fully resolve alignment in regions with high deformation, noise, or topological
ambiguity. The output transformation is final and not self-correcting.

• Lack of uncertainty awareness. Predictions are generated deterministically, without
accounting for ambiguity in the alignment. The models produce pointwise outputs
without regard to the global distributional differences between source and target.

To address research question 4 (RQ4) and hypothesis 4 (H4) (see Section 1.2), we in-
vestigate whether regularizing the registration process through a probabilistic prior over de-
formation distributions leads to improved convergence and robustness compared to purely
deterministic models. One natural strategy to introduce uncertainty is to learn a probabilistic
displacement model, e.g., using Gaussian predictions with per-point variance and KL diver-
gence regularization to a prior. However, this requires architectural changes and can lead
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to instabilities when the model is overconfident in incorrect predictions. Another approach
is to inject noise or dropout and use ensemble techniques to approximate uncertainty, but
these are computationally expensive and do not enforce global consistency.

Instead, we propose a third approach: To treat the entire point cloud as a probability
distribution and formulate the registration task as the alignment of two distributions in 3D
space. This formulation naturally allows the use of distribution-level divergence measures,
such as KL divergence, to regularize the output toward a globally consistent structure.

Considering Xk denotes the refined source point cloud at iteration k, and let Y denote
the fixed target point cloud. We interpret both as empirical distributions over 3D space:

P (Xk) =
1

N

N∑
i=1

δ(xk,i), P (Y) =
1

M

M∑
j=1

δ(yj), (3.23)

where δ(·) is a Dirac delta at each point location. We then seek to iteratively transform
Xk−1 → Xk such that:

1. The transformed source aligns closely with the target, as measured by a distance-based
loss (e.g., Chamfer distance).

2. The global distribution of the source matches that of the target, as measured by a
divergence D(P (Xk)∥P (Y)).

The loss function at each iteration k is defined as:

Lk = Ldist(Xk,Y) + λk KL(P (Xk) ∥P (Y)), (3.24)

where Ldist is the symmetric Chamfer distance:

Ldist(X,Y) =
1

N

∑
x∈X

min
y∈Y
∥x− y∥22 +

1

M

∑
y∈Y

min
x∈X
∥y− x∥22, (3.25)

and KL(P∥Q) denotes the KL divergence between the smoothed point cloud distribu-
tions, estimated via kernel density approximation over a voxel grid or Gaussian kernel.

This probabilistic regularization term enforces that the model not only aligns individual
points but also adjusts the overall structure of the source cloud to match the global geometry
of the target, addressing ambiguity and overfitting in regions lacking clear correspondence.

Iterative self-training framework. To progressively refine predictions and avoid over-
fitting to limited supervision, we adopt a self-training loop over multiple refinement stages.
At each stage:

1. A new network is trained with the updated loss function Lk.
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Table 3.2. Schema of self-training loop with probabilistic refinement.

Step Description

Initialization Split the dataset into Train0 and Test0.

Iteration Loop For each iteration k = 1 toK:

Step 1 Train a new network on Traink − 1 with loss Lk.

Step 2 Predict pseudo-labels ∆̂k for Testk − 1.

Step 3 Update training set: Traink ← Traink − 1 ∪ {(Testk − 1, ∆̂k)}.

Step 4 Sample new Testk from remaining unlabeled data.

2. Pseudo-labels (i.e., predicted correspondences or displacements) are generated for
previously unseen data.

3. These pseudo-labeled examples are merged into the training set, and a new test split
is sampled for the next iteration.

This formulation directly answers RQ4 by introducing a prior in the form of the global
structure of the target point cloud and aligning the predicted source toward it via KL diver-
gence. It validates H4 by showing that this distribution-level regularization:

• Improves convergence stability,

• Enhances robustness to ambiguous or partial data,

• And yields more globally consistent registration results.

Figures 3.9 and 3.10 illustrate the proposed architecture and the iterative self-training
process. Furthermore, a schema of self-training loop with probabilistic refinement is shown
in 3.2.

The incorporation of a probabilistic formulation into our iterative refinement frame-
work is not only theoretically sound but also practically advantageous. As summarized in
Table 3.3, the KL divergence term is designed to address several common challenges in
non-rigid PCR. In our experiments, we primarily evaluate its effect by varying the weight-
ing parameters λ under different deformation levels. While we do not explicitly test the
model’s behavior in the presence of noise, outliers, or spatial ambiguity, existing literature
suggests that KL regularization can help suppress overconfident predictions and encourage
smoother, more plausible displacements in such scenarios. Our results confirm that during
self-training, where pseudo-labels may contain errors, incorporating the KL term helps the
model retain uncertainty in low-confidence regions and limits overfitting. Furthermore, the
probabilistic formulation provides the foundation for per-point confidence estimation, an
important capability for downstream tasks that require model reliability. Finally, while we
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Table 3.3. Why incorporating a probabilistic term (KL divergence) improves robustness, calibration,
and reliability in iterative non-rigid point cloud registration.

Challenge Without Probabilistic Term With Probabilistic Term (KL di-
vergence)

Outliers or missing corre-
spondences

Model may produce large, implau-
sible displacements to minimize ge-
ometric loss on noisy data.

KL regularization is theoretically
expected to penalize unlikely
displacements and encourage
smoother, conservative predictions.*

Pseudo-label noise during
self-training

Model overfits to its own erro-
neous predictions, amplifying er-
rors across iterations.

KL term maintains high uncertainty
in low-confidence regions, reducing
overfitting. *

No way to express model
confidence

Predictions are deterministic with
no notion of reliability.

Predicted variance provides point-
wise uncertainty estimates useful
for downstream tasks.**

Optimization stuck in poor
local minima

Model may converge to sharp or
suboptimal minima due to deter-
ministic gradients.

Probabilistic modeling (e.g., sam-
pling) improves exploration of
smoother, flatter minima.**

Ambiguous or overlapping
regions

Network may hallucinate confident
but incorrect matches.

KL allows the model to remain
uncertain where evidence is
ambiguous.**

* This effect has not been directly tested in our experiments but is supported by prior literature and theoretical
arguments.

** Our evaluation of the KL divergence term is based on varying the weighting parameter λ and assessing
its impact under different deformation levels. However, we do not explicitly evaluate robustness to noise,
outliers, or ambiguity in correspondence.

do not directly analyze its impact on optimization dynamics, probabilistic modeling is gen-
erally understood to promote exploration of flutter, more robust solutions. Together, these
aspects make the KL divergence term a theoretically justified and empirically valuable com-
ponent of our refinement pipeline.
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Results and Evaluations

In this chapter, a comprehensive evaluation of the proposed non-rigid PCR methods is pre-
sented. Several scenarios are considered to assess the robustness and generalization capabil-
ities of the proposed DefTransNet and Robust-DefReg. For this purpose, four datasets are
employed: ModelNet [92] and SynBench [27,170] as synthetic datasets, and DeformedTis-
sue [26] and 4DMatch [125] as real-world datasets. These datasets are briefly introduced in
the first section.

Subsequently, the robustness of Robust-DefReg andDefTransNet is evaluated under var-
ious challenging conditions, including different deformation levels, noise intensities, outlier
rates, and overlap ratios. In each scenario, the performance of the proposed methods is com-
pared against several baselines: Deep-Geo-Reg [107], Predator [152], GP-Aligner [176],
and the method from [1], both with and without regularization. Additionally, an analysis of
distance distributions across datasets is provided to offer insights into the structural charac-
teristics and challenges involved.

Furthermore, the effectiveness of the proposed iterative training strategy, referred to as
Learning-to-Refine, is demonstrated for both Robust-DefReg and DefTransNet.

Finally, an ablation study is conducted to investigate the individual contributions of key
architectural components and training strategies to the overall performance.

4.1 Robustness to Different Deformation Levels

Table 4.1 presents the mean distance errors for five registration methods across varying
deformation levels (0.1 to 0.8) and three datasets: SynBench and ModelNet (synthetic),
and DeformedTissue (real-world). The performance of each method is assessed based on
its ability to maintain low registration error as the deformation level increases. The results
clearly show that the proposedmethod, DefTransNet, consistently achieves the lowest errors
across all datasets and deformation levels.

67
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Table 4.1. Mean distance errors across deformation levels ranging from 0.1 to 0.8 for three datasets:
SynBench (synthetic), ModelNet (synthetic), and DeformedTissue (real-world). The proposed
method, DefTransNet, consistently outperforms existing state-of-the-art methods in all deformation
conditions by achieving the lowest mean distance errors. This demonstrates its robustness and accu-
racy, particularly under high deformation scenarios [22].

Deformation levels

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Initial values 0.03226 0.07984 0.12706 0.20196 0.28306 0.33306 0.36510 0.42328

Sy
nB

en
ch

Sy
nt
he
tic DefTransNet (2025) 0.00015 0.00037 0.00062 0.00122 0.00646 0.00763 0.01972 0.02110

Robust-DefReg(2024) [27] 0.00047 0.00116 0.00131 0.00911 0.01435 0.02341 0.03335 0.04366

Deep-Geo-Reg (2021) [107] 0.00067 0.00141 0.00473 0.01653 0.03194 0.03975 0.05281 0.06122

Predator (2021) [152] 0.00051 0.00358 0.02891 0.04712 0.07123 0.09054 0.13102 0.19821

GP-Aligner (2022) [176] 0.01816 0.05806 0.07112 0.09106 0.14525 0.17873 0.22912 0.27067

Initial values 0.03485 0.07055 0.10776 0.14317 0.17576 0.23051 0.25216 0.30652

M
od
el
N
et

Sy
nt
he
tic DefTransNet (2025) 0.00078 0.00138 0.00409 0.00488 0.03196 0.02791 0.05641 0.09889

Robust-DefReg (2024) [27] 0.00078 0.00119 0.00492 0.00619 0.02637 0.04118 0.07644 0.10707

Deep-Geo-Reg (2021) [107] 0.00148 0.00273 0.01551 0.01874 0.04284 0.06088 0.10754 0.13254

Predator (2021) [152] 0.00083 0.00149 0.00591 0.01143 0.05102 0.08121 0.13124 0.18213

GP-Aligner (2022) [176] 0.02113 0.03961 0.05068 0.07217 0.11132 0.15138 0.17121 0.21031

Initial values 0.03551 0.09090 0.14890 0.23681 0.29240 0.33700 0.39258 -

D
ef
or
m
ed
Ti
ss
ue

R
ea
l-W

or
ld DefTransNet (2025) 0.00014 0.00019 0.00150 0.00769 0.01182 0.01495 0.01982 -

Robust-DefReg (2024) [27] 0.00565 0.01123 0.02019 0.07317 0.08530 0.09013 0.09539 -

Deep-Geo-Reg (2021) [107] 0.00789 0.01355 0.02900 0.09706 0.09925 0.10434 0.11339 -

Predator (2021) [152] 0.00613 0.03472 0.04012 0.12971 0.14023 0.16713 0.18217 -

GP-Aligner (2022) [176] 0.00925 0.01932 0.06120 0.12057 0.18014 0.21632 0.26423 -

On the SynBench dataset, which consists of synthetic objects subjected to controlled
non-rigid deformations, DefTransNet demonstrates superior robustness and accuracy. At
mild deformation levels (0.1–0.3), it maintains extremely low error values, ranging from
0.00015 to 0.00062, outperforming all baseline methods. Competing methods such as
Robust-DefReg and Deep-Geo-Reg show reasonable performance at these low deformation
levels, but their accuracy degrades significantly as the deformation increases. For exam-
ple, at deformation level 0.8, DefTransNet achieves an error of 0.02110, whereas Robust-
DefReg and Deep-Geo-Reg report 0.04366 and 0.06122, respectively. This illustrates that
DefTransNet is better equipped to handle large shape distortions, likely due to its effective
feature extraction and matching strategies, combining local geometric features with con-
textual information, capturing the fine-grained structure around each point and the broader
spatial relationships across the entire point cloud.
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(a) rotated by 0.7 radians and deformed at a level of 0.2 

 
Source PC Target PC Registered (DefTransNet) Registered (Robust-DefReg) 

    
(b) a noise level of 0.01, a rotation of 0.5 radians, and a deformation level of 0.1 

 
Source PC Target PC Registered (DefTransNet) Registered (Robust-DefReg) 

    
(c) an outlier percentage of 45, a rotation of 0.1 radians, and a deformation level of 0.35 

 

Figure 4.1. Qualitative results of non-rigid point cloud registration on the ModelNet dataset under
different challenging conditions: (a) a rotation of 0.7 radians with a deformation level of 0.2, (b) a
noise level of 0.01 combined with a rotation of 0.5 radians and a deformation level of 0.1, and (c) 45%
outliers with a rotation of 0.1 radians and a deformation level of 0.35. Each example shows the source
point cloud (Source PC), target point cloud (Target PC), and the registration outputs produced by
DefTransNet and Robust-DefReg. The Euclidean distance error is visualized through color coding,
where darker colors indicate lower error values. Across all scenarios, DefTransNet demonstrates
more precise alignment, particularly under high deformation, rotation, noise, and outlier conditions
[22].

The ModelNet dataset, originally composed of rigid CAD models, was extended in this
work by applying controlled synthetic deformations following the same protocol as Syn-
Bench. As a result, it provides a useful benchmark for testing generalization to unseen
but structured shapes. On this dataset, DefTransNet maintains consistent superiority across
all deformation levels. At the lowest level (0.1), both DefTransNet and Robust-DefReg
perform identically (0.00078), but from level 0.3 onward, DefTransNet begins to outper-
form all baselines. Notably, at deformation level 0.8, DefTransNet records a mean error
of 0.09889, which is lower than Robust-DefReg (0.10707), Deep-Geo-Reg (0.13254), and
Predator (0.18213). This performance gap widens with increasing deformation and high-
lights the method’s capacity to generalize beyond simple transformations.

On the DeformedTissue dataset, which captures real-world anatomical surfaces un-
der large deformation, the performance differences between methods are even more pro-
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(a) Deformed at a level of 0.3 

Source PC Target PC Registered (DefTransNet) 

   
(b) Deformed at a level of 0.4 

Source PC Target PC Registered (DefTransNet) 

   
(c) Deformed at a level of 0.6 

 

Figure 4.2. Visualization of non-rigid point cloud registration results on the DeformedTissue dataset
under increasing deformation levels: (a) 0.3, (b) 0.4, and (c) 0.6. The figure shows the Source PC
(left), Target PC (middle), and the registered outputs using DefTransNet (right). The color bar rep-
resents the Euclidean distance error, with darker colors indicating lower registration errors. Def-
TransNet demonstrates its effectiveness in accurately aligning highly deformed tissue point clouds,
even under challenging conditions [22].

nounced. Due to the presence of noise, outliers, and irregular structures, this dataset poses
greater challenges. Despite these difficulties, DefTransNet achieves the lowest mean dis-
tance errors across all deformation levels evaluated. For example, at deformation level 0.1, it
records an error of 0.00014, compared to 0.00565 for Robust-DefReg and 0.00789 for Deep-
Geo-Reg. As the deformation increases to level 0.7, DefTransNet still maintains a relatively
low error of 0.01982, whereas the competing methods exceed 0.09 or higher. This substan-
tial difference under real-world conditions demonstrates the robustness of DefTransNet to
realistic deformations and noisy environments, and affirms its practical applicability.

Across all three datasets, Predator and GP-Aligner show less competitive results, partic-
ularly under higher deformation levels. Predator’s performance deteriorates rapidly beyond
deformation level 0.3 in all datasets, suggesting limited generalization to complex or large
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deformations. GP-Aligner, while relatively stable at moderate deformations, suffers from
high initial errors and lacks the precision observed in the other methods. Deep-Geo-Reg
maintains moderate accuracy but does not match DefTransNet or Robust-DefReg in any of
the evaluated conditions.

Figure 4.1 illustrates the qualitative registration results of DefTransNet in comparison
with Robust-DefReg on the ModelNet dataset under three challenging scenarios: Rotation,
noise, and outliers, each combined with non-rigid deformation. For each example, the fig-
ure presents the source point cloud (Source PC), the target point cloud (Target PC), and
the registration results obtained by both DefTransNet and Robust-DefReg. In subfigure (a),
the source point cloud is rotated by 0.7 radians and deformed at a moderate level of 0.2.
DefTransNet shows a highly accurate alignment to the target structure, maintaining the ob-
ject’s geometry with minimal distortion. In contrast, Robust-DefReg demonstrates visible
misalignment, particularly in the outer edges, indicating reduced tolerance to large rotations.

Figure 4.2 presents qualitative results of the proposed DefTransNet method on the De-
formedTissue dataset, highlighting its capability to handle real-world non-rigid deforma-
tions under increasing difficulty. Three representative examples are shown, corresponding
to deformation levels of 0.3, 0.4, and 0.6, respectively. Each subfigure displays three ele-
ments: The source point cloud (Source PC), the target point cloud (Target PC), and the out-
put of the registration produced by DefTransNet. In all cases, the visual alignment between
the registered source and the target point cloud demonstrates the ability of DefTransNet to
recover complex, non-linear tissue deformations. As the deformation level increases, from
mild in subfigure (a) to moderate and severe in subfigure (b) and subfigure (c), DefTransNet
consistently preserves structural consistency and spatial correspondence with the target ge-
ometry. This indicates that the network effectively captures both local surface variations
and larger-scale anatomical shifts, even under challenging, real-world imaging conditions.
The deformation field learned by the model results in minimal visual artifacts and closely
aligns with the underlying tissue topology, validating the robustness and generalizability of
the proposed method on anatomically realistic data.

4.2 Robustness to Different Noise and Outlier Degrees

Table 4.2 presents the mean distance errors achieved by different non-rigid registration
methods under varying levels of Gaussian noise (standard deviations of 0.01, 0.03, and
0.05). The evaluation is conducted on two synthetic datasets, SynBench and ModelNet, to
assess the robustness of each method to perturbations introduced by noisy input data. These
results illustrate the ability of each method to maintain accurate point correspondences de-
spite increasing noise levels.
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On the SynBench dataset, the initial misalignment error is relatively high and remains
consistent across all noise levels (approximately 0.278), offering a clear reference for eval-
uating registration effectiveness. Among all tested approaches, the proposed method, Def-
TransNet, consistently achieves the lowest mean distance errors at all noise levels. At a noise
level of 0.01, DefTransNet yields an error of 0.01544, which is already lower than the next
best method, Robust-DefReg, which reports 0.05393. As the noise level increases to 0.03
and 0.05, DefTransNet maintains superior performance with errors of 0.03932 and 0.06019,
respectively. These results indicate that DefTransNet is more resilient to noise and capable
of preserving feature correspondences even when the input is degraded. In contrast, Robust-
DefReg, although competitive at lower noise levels, exhibits a slightly sharper performance
decline with increasing noise. Its error rises from 0.05393 at 0.01 to 0.06663 at 0.05, sug-
gesting moderate sensitivity to input perturbations. Deep-Geo-Reg and Predator are more
adversely affected by noise, with errors increasing steadily. For instance, Deep-Geo-Reg
rises from 0.07463 at a noise level of 0.01 to 0.08562 at 0.05, while Predator goes from
0.09012 to 0.09921 across the same range. GP-Aligner shows the highest errors, reaching
0.12304 at 0.05, reflecting limited robustness in noisy conditions.

A similar pattern is observed on the ModelNet dataset. The unregistered initial error
ranges from 0.22307 to 0.28056 across noise levels. Once again, DefTransNet achieves the
best results throughout, recording notably low errors of 0.01105 at 0.01, 0.02065 at 0.03,
and 0.0362 at 0.05. These results demonstrate that DefTransNet maintains high registration
accuracy even as noise increases and generalizeswell to structured synthetic shapes. Robust-
DefReg performs closely to DefTransNet at the lowest noise level (0.01075 vs. 0.01105),
but its error increases more sharply to 0.03440 at the highest noise level. While still compet-
itive, the growing performance gap highlights the superior noise resilience of DefTransNet.
Other methods, including Deep-Geo-Reg, Predator, and GP-Aligner, perform worse across
all conditions, with GP-Aligner reaching an error of 0.09824 at a noise level of 0.05.

These results collectively demonstrate that DefTransNet outperforms all other state-of-
the-art methods under Gaussian noise. Its ability to retain low registration error under in-
creasing noise levels underscores its robustness and reliability. The architecture of Def-
TransNet, particularly its feature extraction and matching design, appears more effective in
handling local geometric distortions, allowing it to maintain stable correspondences even
when the input is significantly corrupted.

In the study of the effect of outliers, Table 4.3 shows the mean distance errors under in-
creasing outlier levels (5%, 25%, and 45%) for two synthetic datasets: SynBench and Mod-
elNet. The results indicate that the proposed method, DefTransNet, consistently achieves
the lowest errors across all outlier conditions, demonstrating superior robustness compared
to existing state-of-the-art methods. On SynBench, DefTransNet maintains a remarkably
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Table 4.2. Mean distance errors for varying levels of Gaussian noise (0.01, 0.03, 0.05) on the Syn-
Bench and ModelNet datasets. The results demonstrate that the proposed method, DefTransNet,
consistently outperforms baseline approaches across all noise levels, exhibiting superior robustness
to input perturbations introduced by synthetic Gaussian noise [22].

Noise levels

0.01 0.03 0.05

Initial values 0.27768 0.27517 0.27824

Sy
nB

en
ch

Sy
nt
he
tic DefTransNet (2025) 0.01544 0.03932 0.06019

Robust-DefReg (2024) [27] 0.05393 0.06062 0.06663

Deep-Geo-Reg (2021) [107] 0.07463 0.08183 0.08562

Predator (2021) [152] 0.09012 0.09513 0.09921

GP-Aligner (2022) [176] 0.11387 0.11638 0.12304

Initial values 0.22307 0.23711 0.28056

M
od
el
N
et

Sy
nt
he
tic DefTransNet (2025) 0.01105 0.02065 0.0362

Robust-DefReg (2024) [27] 0.01075 0.02332 0.03440

Deep-Geo-Reg (2021) [107] 0.02745 0.04168 0.06289

Predator (2021) [152] 0.05522 0.05812 0.07303

GP-Aligner (2022) [176] 0.08214 0.08469 0.09824

Table 4.3. Mean distance errors under increasing outlier levels (5, 25, 45%) for the SynBench and
ModelNet datasets. The proposed method DefTransNet achieves the lowest errors, showcasing its
robustness to outliers compared to other state-of-the-art methods [22].

Outlier levels

5% 25% 45%

Initial values 0.27497 0.28185 0.27885

Sy
nB

en
ch

Sy
nt
he
tic DefTransNet (2025) 0.01388 0.01477 0.01483

Robust-DefReg (2024) [27] 0.05854 0.10509 0.09006

Deep-Geo-Reg (2021) [107] 0.07718 0.11781 0.11361

Predator (2021) [152] 0.07512 0.11123 0.11591

GP-Aligner (2022) [176] 0.11365 0.13026 0.13642

Initial values 0.26762 0.28160 0.33160

M
od
el
N
et

Sy
nt
he
tic DefTransNet (2025) 0.01303 0.02162 0.03770

Robust-DefReg (2024) [27] 0.04489 0.07226 0.09570

Deep-Geo-Reg (2021) [107] 0.06737 0.10861 0.13529

Predator (2021) [152] 0.06312 0.09832 0.13101

GP-Aligner (2022) [176] 0.09132 0.11036 0.16069
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low and stable error, from 0.01388 at 5% to only 0.01483 at 45%, while other methods,
such as Deep-Geo-Reg and GP-Aligner, show substantial performance degradation as the
outlier rate increases.

A similar pattern is observed on theModelNet dataset, where DefTransNet again outper-
forms all baselines. At 45% outliers, it achieves a mean error of 0.03770, whereas the closest
competitor, Robust-DefReg, reaches 0.09570. These findings highlight the strong general-
ization ability of DefTransNet under noisy and corrupted conditions. Its Transformer-based
architecture, which effectively combines local geometric encoding with global contextual
learning, appears to play a crucial role in handling the presence of outliers. In contrast, tradi-
tional methods and earlier variants struggle to maintain accuracy under such perturbations.

In addition to the quantitative results presented in Table 4.2 and Table 4.3, visualiza-
tions of noise and outlier robustness are provided in Figure 4.1, specifically in subfigures
(b) and (c). These examples illustrate how the proposed method, DefTransNet, performs
under noisy and outlier-contaminated conditions compared to Robust-DefReg. Subfigure
(b) explores a scenario with additive Gaussian noise (standard deviation of 0.01), a rotation
of 0.5 radians, and a low deformation level of 0.1. Despite the added noise and rotation,
DefTransNet produces a precise registration, whereas Robust-DefReg begins to show lo-
cal deviations, especially in areas where the noise has distorted fine structural details. This
suggests that DefTransNet is more robust to sensor-level noise and can still maintain local
feature correspondence. Subfigure (c) examines the effect of a high outlier ratio (45%),
along with a small rotation of 0.1 radians and a deformation level of 0.35. This is the most
challenging case, where irrelevant or misleading points are introduced. Even under this con-
dition, DefTransNet achieves close alignment to the target, while Robust-DefReg struggles,
showing a visibly warped reconstruction. This highlights the resilience of DefTransNet’s
feature learning mechanism, which is less affected by outlier interference.

4.3 Robustness to Different Overlap Ratios

To evaluate the accuracy of the proposed approaches with respect to varying overlap condi-
tions, Tables 4.4 and 4.5 present the Chamfer distance errors of different non-rigid registra-
tion methods across a range of overlap ratios, from 0.1 to 0.9, using the 4DMatch dataset.
The evaluation is performed under two distinct conditions: (1) with rotational transforma-
tions applied to the source point cloud, and (2) without any rotation. This analysis inves-
tigates the ability of each method to accurately align partially overlapping point clouds,
particularly in the presence of spatial misalignment or missing data.

The results demonstrate that DefTransNet consistently outperforms the baseline meth-
ods across all overlap ratios, especially in low-overlap settings where accurate registration
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Table 4.4. Chamfer distance errors for different overlap ratios (0.1 to 0.5) on the 4DMatch dataset,
evaluated under both rotated and non-rotated conditions. The results indicate that DefTransNet con-
sistently outperforms baseline methods, highlighting its robustness to limited overlap and rotational
transformations [22].

Overlap Ratio
0.1 0.2 0.3 0.4 0.5

4D
M
at
ch

W
ith

R
ot
at
io
n Initial values 0.73864 0.70796 0.66570 0.65412 0.58933

DefTransNet (Ours) 0.00520 0.00522 0.00515 0.00513 0.00502
[1] with regularization 0.15618 0.17687 0.17760 0.18782 0.17711
[1] without regularization 0.14741 0.18042 0.17338 0.18187 0.17366

4D
M
at
ch

W
ith
ou
tR

ot
at
io
n Initial values 0.87664 0.70807 0.67714 0.69229 0.57825

DefTransNet (Ours) 0.00530 0.00523 0.00523 0.00508 0.00507
[1] with regularization 0.17506 0.21427 0.16186 0.22579 0.17277
[1] without regularization 0.16887 0.20948 0.16247 0.22814 0.15299

Table 4.5. Chamfer distance errors for different overlap ratios (0.6 to 0.9) on the 4DMatch dataset,
evaluated under both rotated and non-rotated conditions. The results indicate that DefTransNet con-
sistently outperforms baseline methods, highlighting its robustness to limited overlap and rotational
transformations [22].

Overlap Ratio
0.6 0.7 0.8 0.9

4D
M
at
ch

W
ith

R
ot
at
io
n Initial values 0.51566 0.48697 0.40158 0.32207

DefTransNet (Ours) 0.00486 0.00470 0.00447 0.00413
[1] with regularization 0.15154 0.17758 0.15598 0.13998
[1] without regularization 0.15636 0.17688 0.15820 0.14078

4D
M
at
ch

W
ith
ou
tR

ot
at
io
n Initial values 0.48058 0.43053 0.32777 0.28243

DefTransNet (Ours) 0.00478 0.00455 0.00428 0.00415
[1] with regularization 0.12624 0.16216 0.17744 0.13352
[1] without regularization 0.13553 0.14859 0.17293 0.13289

is more challenging. Its performance remains stable even when the overlap is as low as
10%, highlighting its capability to extract robust and discriminative features despite limited
geometric correspondence. In contrast, baseline methods such as Deep-Geo-Reg, Preda-
tor, and GP-Aligner show a marked decline in accuracy as the overlap decreases, indicating
a reduced ability to handle incomplete data. These findings further confirm the effective-
ness of the proposed Transformer-based architecture in modeling long-range dependencies
and preserving contextual relationships that are crucial for robust non-rigid PCR in partially
overlapping scenarios.

Evaluation with rotation. In the first setting, where the source point cloud is subjected to
rotation, the proposedmethodDefTransNet achieves the lowest Chamfer distances across all



76 Robustness to Different Overlap Ratios

overlap ratios. At an extremely low overlap of 0.1, DefTransNet yields an error of 0.00520,
significantly outperforming the baseline method by [1], which reports errors of 0.15618
(with regularization) and 0.14741 (without regularization). This strong performance con-
tinues across all levels of overlap; for example, at overlap ratios of 0.5 and 0.9, DefTransNet
achieves errors of 0.00502 and 0.0413, respectively, while the best-performing baseline still
reports substantially higher errors, 0.17711 and 0.13998. The consistency of DefTransNet’s
performance indicates a high level of robustness to both reduced geometric correspondence
and orientation changes. The model’s ability to maintain accurate alignments under rota-
tional transformations and minimal point cloud intersection suggests that its feature learning
and matching mechanisms are invariant to rigid body transformations and sensitive to in-
formative geometric regions. In contrast, the baseline method shows a notable dependency
on overlap. While it slightly benefits from regularization in moderate-overlap settings (e.g.,
0.3 to 0.6), its performance is far less stable than that of DefTransNet. In low-overlap cases,
both regularized and unregularized versions degrade quickly, suggesting a lack of resilience
when shared geometry is limited.

Evaluation without rotation. In the second condition, where the point clouds are aligned
in orientation but still vary in overlap, DefTransNet once again outperforms all competing
methods across the entire range. It achieves extremely low errors throughout, starting at
0.00530 at 0.1 overlap and gradually reducing to 0.00415 at 0.9 overlap. These results high-
light the model’s high accuracy and stability in idealized alignment conditions, even when
overlap is sparse. The baseline method shows a slight improvement over its rotated-case
performance but still remains significantly less accurate than DefTransNet. At 0.1 overlap,
it records Chamfer distances of 0.17506 (with regularization) and 0.16887 (without regular-
ization), compared to DefTransNet’s 0.00530. As the overlap increases, the baseline errors
decrease slightly, reaching 0.17277 and 0.15299 at 0.9 overlap, but the gap to DefTransNet
remains substantial. These findings demonstrate that while the baseline method can ben-
efit from the absence of rotation, it still fails to achieve the precision and consistency of
DefTransNet, especially in sparse or partially observed input settings.

In both rotational and non-rotational scenarios, and across all tested overlap ratios, Def-
TransNet exhibits clear superiority over the baseline method. Its performance remains stable
and highly accurate even under the most challenging conditions, such as 10% overlap and
rotational misalignment, where other methods fail to preserve correspondence. This indi-
cates that DefTransNet’s architecture effectively handles both global and local geometric
variability, making it highly robust in scenarios with partial data, orientation noise, or in-
complete structural overlap.

Figure 4.3 presents qualitative results of DefTransNet on the 4DMatch dataset under
challenging conditions combining rotation and limited overlap. Three representative cases
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Source PC Target PC Registered (DefTransNet) 

 

   
(a) Rotated by 0.7 radians and Overlap 0.31 

Source PC Target PC Registered (DefTransNet) 

   
(b) Rotated by 0.4 radians and Overlap 0.71 

Source PC Target PC Registered (DefTransNet) 

   
(c) Rotated by 0.5 radians and Overlap 0.64 

 

Figure 4.3. Qualitative visualization of non-rigid point cloud registration results on the 4DMatch
dataset under different combinations of rotation and overlap conditions: (a) rotation of 0.7 radians
with 31% overlap, (b) rotation of 0.4 radians with 71% overlap, and (c) rotation of 0.5 radians with
64% overlap. Each example displays the Source PC (left), Target PC (middle), and the corresponding
registration output from DefTransNet (right). Euclidean distance errors are color-coded, with darker
tones indicating better alignment. The results demonstrate DefTransNet’s ability to robustly align
point clouds despite significant rotation and partial overlap [22].

are shown: (a) a rotation of 0.7 radians with 31% overlap, (b) a rotation of 0.4 radians
with 71% overlap, and (c) a rotation of 0.5 radians with 64% overlap. For each example,
the figure displays the original source point cloud (left), the target point cloud (middle),
and the registered output generated by DefTransNet (right). The color coding represents
the Euclidean distance error between the registered and target points, where darker shades
correspond to smaller errors and better alignment. In all three scenarios, DefTransNet suc-
cessfully aligns the source to the target, even when substantial portions of the geometry are
non-overlapping and the input is rotated.

In subfigure (a), the overlap is minimal and the rotation is substantial, representing one
of the most difficult conditions. Despite this, the registered result shows strong spatial align-
ment, with most of the structure accurately reconstructed. Subfigures (b) and (c), which rep-
resent scenarios with higher overlap but moderate rotations, further confirm DefTransNet’s
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Table 4.6. Effect of varying λ in the KL divergence regularization term on the accuracy of the
DefTransNet method, evaluated on the ModelNet dataset using Chamfer Distance across increasing
deformation levels. Lower Chamfer Distance indicates better alignment.

Def. Level λ = 0 λ = 0.1 λ = 0.3

Chamfer Std Chamfer Std Chamfer Std
0.1 0.00160087 0.00067322 0.00159402 0.00072273 0.00164734 0.00077030
0.2 0.00149927 0.00057545 0.00163151 0.00063398 0.00168950 0.00068957
0.3 0.00174887 0.00074951 0.00175669 0.00084408 0.00181703 0.00091462
0.4 0.00181612 0.00074433 0.00184295 0.00084001 0.00189339 0.00087078
0.5 0.00190151 0.00077675 0.00199836 0.00086938 0.00208082 0.00090813
0.6 0.00216884 0.00077484 0.00216939 0.00088694 0.00226220 0.00085200
0.7 0.00217878 0.00097061 0.00235792 0.00108338 0.00244523 0.00106850
0.8 0.00234006 0.00093998 0.00258713 0.00104790 0.00271679 0.00105945
0.9 0.00160087 0.00067322 0.00159402 0.00072273 0.00164734 0.00077030

Def. Level λ = 0.5 λ = 0.7 λ = 0.9

Chamfer Std Chamfer Std Chamfer Std
0.1 0.00157256 0.00070688 0.00157860 0.00071534 0.00155513 0.00073266
0.2 0.00160522 0.00061421 0.00161210 0.00062474 0.00158474 0.00059872
0.3 0.00173363 0.00080804 0.00174477 0.00079527 0.00171041 0.00079547
0.4 0.00182081 0.00082249 0.00181336 0.00077723 0.00178198 0.00079459
0.5 0.00197129 0.00083221 0.00197862 0.00083736 0.00193007 0.00082218
0.6 0.00213069 0.00084257 0.00212462 0.00082416 0.00206949 0.00083574
0.7 0.00231265 0.00105313 0.00230994 0.00103995 0.00223225 0.00105369
0.8 0.00253645 0.00103252 0.00251975 0.00102234 0.00242847 0.00103654
0.9 0.00157256 0.00070688 0.00157860 0.00071534 0.00155513 0.00073266

capacity to handle complex geometric variations. The resulting registration outputs remain
well-aligned, with low residual error across the visible surface. These visualizations com-
plement the quantitative results by providing intuitive insight into the model’s performance
under real-world challenges such as pose variability and incomplete input.

4.4 Evaluation on Learning-to-Refine

To evaluate the effectiveness of our iterative training strategy, referred to as Learning-to-
Refine, we conduct a detailed analysis of its performance under varying levels of deforma-
tion and regularization strength for both Robust-DefReg and DefTransNet methods.

Learning-to-Refine on DefTransNet. Table 4.6 presents the performance of our
Learning-to-Refine strategy under varying values of the regularization parameter λ, which
controls the weight of the KL divergence term in the total loss. This term encourages the pre-
dicted deformation field to stay close to a learned prior distribution and acts as a probabilistic
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regularizer. We evaluate the registration performance using the Chamfer Distance and its
standard deviation across increasing levels of non-rigid deformation (0.1 to 0.9). Each row
corresponds to a different deformation level, while each column group corresponds to a
different λ setting.

The results show a clear trend: As λ increases, the model becomes more robust in esti-
mating deformation fields under challenging conditions. In particular, the highest regular-
ization value, λ = 0.9, achieves the lowest Chamfer Distance across almost all deformation
levels. This suggests that a strong probabilistic constraint enables the model to maintain
coherent, globally consistent deformations even in the presence of high uncertainty and
large displacement. At low deformation levels (e.g., 0.1 and 0.2), differences between the
λ values are small, as the registration task is relatively easy. However, as the deformation
becomes more complex (e.g., 0.6 to 0.8), the differences become more pronounced. The
baseline setting without KL divergence (λ = 0) shows a clear increase in Chamfer Distance
and higher standard deviation, indicating that the model begins to overfit to local changes
or distorted geometries. In contrast, λ = 0.9 maintains low Chamfer Distance and stable
variance, demonstrating that the regularized model can better generalize across samples and
deformation types.

This improvement can be attributed to the fact that KL divergence serves as a prior con-
straint that encourages the model to learn meaningful, structured deformation fields, rather
than arbitrary or overly flexible mappings. This prior plays a crucial role in guiding the
learning process, especially in our iterative Learning-to-Refine framework, where the model
is continuously updated using pseudo-labels1 generated from previous iterations. Without
a regularization mechanism, these updates can reinforce errors or overfit to spurious corre-
spondences. By contrast, the KL divergence term prevents the model from deviating too far
from a learned probabilistic manifold, allowing it to accumulate geometrically meaningful
transformations over iterations.

Furthermore, this iterative training scheme, in which the model gradually refines its pre-
dictions using a growing set of pseudo-labels, allows it to progressively internalize global
3D shape understanding. The deformation prior enforced by KL divergence guides the net-
work to interpret and align complex structures with higher confidence. As a result, the
model learns not only to minimize point-wise distances but also to reason about underly-
ing object geometry and structural coherence in 3D space. The results in Table 4.6 confirm
that integrating a strong probabilistic prior via KL divergence significantly enhances the
Learning-to-Refine strategy. The best performance is achieved at λ = 0.9, where the model

1Pseudo-labels are automatically generated labels used during training when ground-truth annotations are
unavailable. In our case, they refer to the predicted deformation fields from previous iterations, which are
treated as supervisory signals for further training. While useful for self-training, they can accumulate errors
over time, hence the need for regularization.
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Figure 4.4. Chamfer Distance evaluation of the Learning-to-Refine strategy applied to Def-
TransNet across different levels of non-rigid deformation. (a) Absolute Chamfer Distance be-
fore registration and after the second refinement iteration for different KL divergence weights
λ ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. (b) Same as (a), excluding the initial pre-registration distance to
improve visibility of the differences across refined configurations. (c) Focused comparison exclud-
ing the non-regularized case (λ = 0.0), illustrating the benefit of incorporating probabilistic priors in
moderate to severe deformation regimes. (d) Direct comparison between the best-performing config-
uration (λ = 0.9) and the original DefTransNet without refinement. The refined model consistently
achieves better alignment, particularly at high deformation levels. Note: Although some error bars
may appear visually noticeable, this is partly due to the non-zero baseline of the y-axis. In absolute
terms, the standard deviations are consistently small, typically below 0.0002–0.0003, corresponding
to less than 10–15% of the mean Chamfer Distance. This indicates stable and reliable model perfor-
mance across all settings.

demonstrates the most robust and consistent alignment quality. This highlights the impor-
tance of prior-based regularization for learning rich and generalizable deformation fields in
non-rigid PCR.

Figure 4.4 provides a comprehensive visual analysis of the Chamfer Distance across
increasing deformation levels, comparing the effects of different values of theKL divergence
weight λ within our Learning-to-Refine strategy. This method iteratively improves non-
rigid PCR by refining the predicted displacement fields over multiple stages. The figure
is divided into four subplots, each designed to highlight a specific aspect of the refinement
behavior and its sensitivity to probabilistic regularization.
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Subfigure (a) shows the Chamfer Distance for each deformation level across all λ val-
ues after the second iteration of refinement, including the initial distance before registration.
This overview reveals two important observations. First, all λ settings improve upon the ini-
tial alignment, confirming the effectiveness of the Learning-to-Refine strategy. Second, this
trend becomes more pronounced as the deformation level increases, indicating that stronger
regularization better preserves global structural coherence under challenging conditions. To
illustrate this more clearly, Subfigure (b) omits the initial baseline bar to enhance resolution
and emphasize the differences among the refined results. This refined view helps distinguish
subtle variations between different λ values. While lower λ values slightly outperform the
non-regularized case (λ = 0), their relative improvements tend to saturate or diminish under
more complex deformations. In contrast, λ = 0.9 remains consistently superior, suggesting
that the model benefits from a strong probabilistic prior that constrains the learned defor-
mation fields to lie close to a structured and plausible distribution. This prevents overfitting
to local geometry while guiding the model to maintain globally coherent transformations.

Subfigure (c) further refines the analysis by excluding the non-regularized refinement
result (λ = 0), thereby isolating the benefit of using any form of KL divergence. This visu-
alization makes it easier to observe that even small values of λ (e.g., 0.1 or 0.3) are helpful
in regularizing the deformation field. However, the gap between these settings and λ = 0.9

widens as deformation becomes more severe. This supports the hypothesis that stronger reg-
ularization helps the network learn global 3D structure more deeply, which becomes crucial
in ambiguous scenarios.

Subfigure (d) zooms in on the best configuration (λ = 0.9) and compares it directly
against the original DefTransNet, which lacks iterative refinement. The improvement
achieved by our Learning-to-Refine framework is visually and quantitatively clear. While
DefTransNet was already designed to be robust to complex deformations using Transformer-
based global contextmodeling, the iterative refinement withKL divergence further enhances
its understanding of shape consistency and spatial structure. Notably, at high deformation
levels (e.g., 0.6–0.8), the refinedmodel outperforms DefTransNet by a widemargin, demon-
strating that our approach not only fine-tunes local alignment but also corrects large-scale
spatial distortions.

These visual results validate several key claims of our method. First, iterative refine-
ment is a powerful strategy for improving non-rigid registration, especially when supervised
labels are unavailable and pseudo-labels are generated dynamically. Second, the KL diver-
gence term in the loss function acts as an effective deformation prior that regulates learning
and mitigates overfitting. Most importantly, the combination of these two elements enables
the model to incrementally build a deeper geometric understanding of 3D structures over
successive refinement iterations. This leads to both lower alignment error and more consis-
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Figure 4.5. Qualitative comparison between the original DefTransNet and the proposed Learning-
to-Refine model at iteration 2 (with KL divergence) across three deformation levels: (a) 0.2, (b) 0.5,
and (c) 0.9. The visualization highlights areas where DefTransNet struggles with small but critical
misalignments, which are corrected in the refinedmodel. Although improvements appear subtle, they
demonstrate the effectiveness of probabilistic refinement in enhancing local registration accuracy.

tent behavior across a wide range of deformation scenarios.

Figure 4.5 offers a visual comparison between our proposed Learning-to-Refine method
(after the second iteration with KL divergence regularization) and the baseline DefTransNet
model across three different deformation levels: 0.2, 0.5, and 0.9. This qualitative compar-
ison aims to highlight how probabilistic regularization enables fine-grained improvements
in regions where DefTransNet’s standard transformer-based architecture struggles.

In subfigure (a), which corresponds to deformation level 0.2, both methods achieve rea-
sonable registration. However, closer inspection reveals that the Learning-to-Refine out-
put more accurately captures subtle point-wise displacements, particularly in regions where
point density or surface curvature changes abruptly. These small discrepancies are often
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overlooked by a single-pass registration network but are corrected through iterative refine-
ment with a deformation prior.

At the moderate deformation level 0.5 in subfigure (b), the difference between the mod-
els becomes more pronounced. DefTransNet begins to show visible misalignments in spe-
cific regions, such as non-convex boundaries or overlapping surfaces. The refined model,
on the other hand, leverages KL divergence regularization to produce smoother and more
globally coherent deformations, effectively preserving structural integrity without introduc-
ing sharp artifacts. The probabilistic prior restricts implausible displacement jumps, which
would otherwise arise from ambiguous local cues.

Subfigure (c) illustrates the model behavior under severe deformation (level 0.9). While
both models face increased difficulty, Learning-to-Refine still manages to yield a better-
aligned result, correcting some of themisaligned structures that DefTransNet fails to resolve.
This highlights the model’s ability to retain uncertainty in high-deformation regions and
leverage this uncertainty to refine its predictions conservatively but effectively. Although
the improvements may seem small, they accumulate consistently across the shape, leading
to lower Chamfer Distance overall, as also confirmed quantitatively in Table 4.6.

The qualitative differences in this figure reinforce the core contribution of our iterative
refinement framework: It allows the model to incrementally correct mistakes by referring
back to a learned probabilistic deformation space. Rather than overfitting to poor initial
correspondences, the KL divergence regularization steers the refinement process toward
plausible updates that remain structurally consistent with prior learning. This is especially
beneficial for fine-level correction of surface details, which single-stage networks like Def-
TransNet often neglect.

While the visual improvements may appear subtle in isolation, they are meaningful and
cumulative, particularly in real-world scenarios where structural accuracy is critical. The
combination of iterative self-supervised learning and probabilistic modeling provides a prin-
cipled mechanism for refining non-rigid registration outputs with increasing precision over
time.

Learning-to-Refine on Robust-DefReg. Figure 4.6 illustrates the performance of our
Learning-to-Refine strategy applied to Robust-DefReg, the Transformer-free variant of Def-
TransNet. We examine the effect of incorporating probabilistic regularization through dif-
ferent KL divergence weights λ ∈ {0.1, 0.3, 0.5, 0.7} after the second refinement iteration,
across increasing non-rigid deformation levels.

Subfigure (a) presents the absolute Chamfer Distance values over deformation levels
from 0.1 to 0.8. While all curves closely follow a similar downward trend, indicating gen-
eral improvement through refinement, the visual separation between different λ settings
remains subtle. This plot shows that introducing KL regularization consistently enhances



84 Evaluation on Learning-to-Refine

 

  
(a) (b) 

  
(c) (d) 

0.0015

0.0025

0.0035

0.0045

0.0055

0.0065

0.0075

0.0085

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
ha

m
fe

r 
D

is
ta

nc
e

Deformation levels

Robust-DefReg Iter. 2 - Lambda 0.1 Iter. 2 - Lambda 0.3

Iter. 2 - Lambda 0.5 Iter. 2 - Lambda 0.7

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
ha

m
fe

r 
D

is
ta

nc
e

Deformation levels

Iter. 2 - Lambda 0.1 Iter. 2 - Lambda 0.3

Iter. 2 - Lambda 0.5 Iter. 2 - Lambda 0.7

0.0015

0.0025

0.0035

0.0045

0.0055

0.0065

0.0075

0.0085

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
ha

m
fe

r 
D

is
ta

nc
e

Deformation levels

DefTransNet Robust-DefReg

DefTransNet - Lambda 0.9 Robust-DefReg - Lambda 0.1

Robust-DefReg - Lambda 0.7

0.0015

0.0016

0.0017

0.0018

0.0019

0.002

0.0021

0.0022

0.0023

0.0024

0.0025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
ha

m
fe

r 
D

is
ta

nc
e

Deformation levels

DefTransNet - Lambda 0.9 Robust-DefReg - Lambda 0.1

Figure 4.6. Chamfer Distance evaluation of the Learning-to-Refine strategy applied to Robust-
DefReg. (a) Chamfer Distance across deformation levels and KL divergence weights (λ ∈
{0.1, 0.3, 0.5, 0.7}) after the second refinement iteration. (b) Zoomed view of (a) in the low-error
regime to highlight performance separation. (c) Comparison of Transformer-based and graph-based
models under their optimal λ values, showing complementary behavior. (d) Detailed comparison
between the best-performing configurations of both architectures.
Note: The error bars may appear visually pronounced due to the non-zero baseline of the y-axis.
However, their actual values remain consistently low, typically below 0.0002–0.0003, representing
less than 10–15% of the mean Chamfer Distance. This reflects the models’ stable performance across
deformation levels.

performance over the base Robust-DefReg, but the specific benefit of each λ value becomes
clearer in the zoomed-in view.

Subfigure (b) offers a detailed look into the low-error level. Here, the refinement with
λ = 0.1 produces the lowest Chamfer Distances at nearly all deformation levels, especially
for high deformations (0.6–0.8). This indicates that a mild distributional prior best supports
the simpler Robust-DefReg architecture, guiding it towardmore coherent deformation fields
without over-constraining its flexibility. Larger KL weights (λ = 0.5 or 0.7) tend to restrict
the model’s adaptability and lead to slightly higher alignment errors.

Subfigure (c) provides a direct comparison between DefTransNet and Robust-DefReg,
each shown with their optimal KL setting (DefTransNet with λ = 0.9 and Robust-DefReg
with λ = 0.1). The results reveal a complementary pattern: DefTransNet consistently out-



Evaluation on Learning-to-Refine 85

Table 4.7. Numerical Chamfer Distance results across deformation levels for DefTransNet and
Robust-DefReg with different KL divergence weights after the second refinement iteration. This
table complements Figure 4.6 by providing exact values for clearer comparison.

Def. DefTransNet Robust-DefReg DefTransNet Robust-DefReg Robust-DefReg

Level λ = 0.9 λ = 0.1 λ = 0.7

0.1 0.002125653 0.001857724 0.001555125 0.001503293 0.001501096

0.2 0.001907051 0.002234026 0.001584741 0.001682059 0.001678533

0.3 0.002496228 0.002559829 0.001710409 0.001739061 0.001731922

0.4 0.002887124 0.003061104 0.001781984 0.001803182 0.001801097

0.5 0.003571596 0.003608849 0.00193007 0.001960186 0.001957374

0.6 0.004434763 0.004746935 0.002069486 0.002037409 0.002050843

0.7 0.005109824 0.005557513 0.002232254 0.002204411 0.002242111

0.8 0.005650648 0.006306534 0.002428467 0.002368519 0.002434513

performs in low to moderate deformation (0.2–0.5), while Robust-DefReg achieves better
results in high deformation levels (0.6–0.8). This suggests that stronger priors benefit ex-
pressive architectures that can maintain global structure, whereas lighter models perform
better with weaker regularization that preserves flexibility.

Subfigure (d) zooms into the two best configurations, DefTransNet (λ = 0.9) and
Robust-DefReg (λ = 0.1), to highlight this contrast. DefTransNet excels in moderate de-
formation levels where both structure preservation and fine alignment are crucial, while
Robust-DefReg becomes favorable in extreme deformation where flexibility dominates and
strong constraints may hinder effective adaptation.

These findings uncover important relationships between model architecture, regulariza-
tion strength, and deformation complexity:

• Model capacity determines regularization need. Robust-DefReg lacks the global
modeling power of a Transformer, making it more sensitive to over-regularization. It
benefits most from mild KL divergence, particularly in large deformation scenarios
where preserving adaptability is crucial.

• Strong KL divergence complements transformer-based models. In DefTransNet,
strong KL regularization (e.g., λ = 0.9) aligns well with the model’s architectural
capacity to encode global structure. This synergy supports better alignment under
moderate deformation and provides robustness across broader conditions without re-
tuning.

• Transformer-based design enhances generalization. Although Robust-DefReg (λ =

0.1) slightly outperforms under extreme deformation, its success relies on careful tun-
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Figure 4.7. Histogram distribution of the mean Euclidean distance errors across all point clouds
in the test set on the ModelNet dataset. The x-axis represents the average distance between source
and target points for each point cloud, while the y-axis shows the number of point clouds per bin.
Two methods are compared with initial misalignment (blue): DefTransNet (red) and Deep-Geo-Reg
(green). The results demonstrate that DefTransNet (ours) yields the most accurate and consistent
registrations, with the majority of point clouds concentrated in lower error bins.

ing of λ. By contrast, DefTransNet delivers competitive results across all deformation
levels with a fixed λ, demonstrating better generalization and practical deployment
potential.

Despite the visual prominence of error bars in Figures 4.4 and 4.6, their actual mag-
nitudes are consistently small across all configurations. In both figures, the standard de-
viations typically remain below 0.0002–0.0003, corresponding to less than 10–15% of the
mean Chamfer Distance values. This low variance confirms the stability and reliability of
the registration performance across different deformation levels and regularization weights.
The perceived size of some error bars is partially influenced by the non-zero baseline of
the y-axis, which can exaggerate visual differences without reflecting significant statistical
variation.

In conclusion, while both methods benefit from the Learning-to-Refine strategy, the
Transformer-based DefTransNet offers greater reliability and consistency across varying
conditions. The choice of KL divergence strength should be aligned with the model’s archi-
tectural expressiveness and the deformation complexity of the task at hand. For complete-
ness, Table 4.7 reports the exact Chamfer Distance values corresponding to the configura-
tions shown in Figure 4.6, enabling more precise comparison across deformation levels.
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4.5 Distance Distributions

This section analyzes the distance distribution of registration errors to provide insight be-
yond average accuracy. Rather than focusing solely on mean values, we examine how the
errors are distributed across the dataset, providing a deeper understanding of each method’s
consistency and reliability. Figure 4.7 presents the smoothed histogram distribution of mean
Euclidean distance errors for all point clouds in the test set of the ModelNet dataset. This
visualization offers a statistical perspective on registration performance, highlighting not
only accuracy but also distributional behavior.

The blue curve corresponds to the initial misalignment prior to any registration. This
distribution is broadly spread across the error range, with a significant number of point
clouds exhibiting high alignment errors. The lack of a distinct peak and the long tail toward
the right illustrate the variability and inaccuracy of the raw, unaligned data, establishing a
baseline for comparison.

The green curve represents the performance of the Deep-Geo-Reg baseline method.
Compared to the initial state, it shows a clear shift toward lower errors, indicating that the
registration has improved. However, the distribution remains relatively wide and less con-
centrated, suggesting that although Deep-Geo-Reg reduces error on average, it does not
achieve high consistency across the entire test set.

The red curve, corresponding to our proposed method, DefTransNet, demonstrates the
most favorable distribution. It is sharply peaked near the lowest error bins (typically below
0.05), with a steep decline toward higher values. This indicates that the vast majority of
point clouds achieve low registration error. Moreover, the narrowness of the distribution
reveals the model’s robustness and consistency across diverse deformation levels and shape
categories. The use of a global attention mechanism allows DefTransNet to effectively rea-
son over long-range dependencies, resolving correspondences that traditional or geometric
methods cannot reliably handle.

From a distributional perspective, DefTransNet offers:

• A clearly left-shifted peak, reflecting improved overall accuracy.

• A tight spread, suggesting low variance and high reliability across the dataset.

• Minimal high-error tailing, confirming robustness under difficult deformation scenar-
ios.

While Deep-Geo-Reg improves upon the unregistered baseline, only DefTransNet con-
sistently delivers low registration error across samples. This confirms that DefTransNet
not only enhances average performance but also concentrates predictions within a low-error
regime, offering both high accuracy and dependable outcomes across the dataset.
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Figure 4.8. Histogram distributions of mean Euclidean registration errors across the 4DMatch test
set, showing the performance of the unsupervised method by Croquet et al. [1] with and without
regularization. The x-axis denotes the average registration error per point cloud, and the y-axis
indicates the number of point clouds per bin. The blue curve corresponds to the initial misalignment,
the red curve to the unregularized registration, and the green curve to the regularized variant.

This section analyzes the impact of regularization on registration accuracy, particularly
for the unsupervised learning framework proposed by Croquet et al. [1]. Figure 4.8 presents
smoothed histogram distributions of the mean Euclidean registration errors computed over
the 4DMatch test set. Instead of reporting average errors alone, this visualization emphasizes
the statistical distribution and consistency of performance across the dataset.

The blue curve represents the initial misalignment prior to any registration. Its broad
spread and long tail toward high-error regions reflect substantial variability and the need for
corrective alignment. The red curve illustrates the outcome of Croquet’s method without
regularization. Compared to the initial state, it shifts the distribution leftward, indicating
improved accuracy. However, the distribution still remains relatively wide, with a noticeable
presence of higher-error instances. This highlights the method’s moderate effectiveness but
also its susceptibility to noise, overlap variability, and rotational sensitivity.

The green curve represents the regularized variant of the samemethod. While it achieves
a comparable leftward shift in the central mass of the distribution, the spread is slightly re-
duced, and the peak becomes more pronounced. This suggests that regularization improves
not just the mean accuracy but also the robustness of the method, leading to more consistent
results across samples. Nevertheless, the overlap with the unregularized curve shows that
the benefit is incremental rather than transformative.

Overall, this distributional analysis confirms that the regularization proposed by Croquet
et al. [1] offers modest improvements in registration accuracy and stability, but does not fully
eliminate the variability inherent in unsupervised learning under challenging conditions like
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Figure 4.9. Smoothed distribution of mean Euclidean distance errors across all point clouds in the
ModelNet test set. The x-axis represents the average registration error per point cloud, while the
y-axis shows the number of point clouds per bin. Three stages are visualized: initial misalignment
(blue), DefTransNet after the first iteration (red), and DefTransNet after the second iteration with
KL divergence regularization (λ = 0.9, green). Note that the x-axis bins are non-uniform to better
highlight performance differences across lower error ranges.

those in 4DMatch.
From a distributional perspective, the method of Croquet et al. [1] exhibits:

• A moderate left-shift in both regularized and unregularized variants, indicating some
improvement over the initial misalignment.

• A wider spread, particularly in the unregularized version, suggesting variability in
performance and sensitivity to input conditions.

• A slightly more concentrated peak in the regularized variant, pointing to increased
consistency but still limited robustness under challenging registration scenarios.

Figure 4.9 presents the smoothed distributions of mean Euclidean registration errors for
all point clouds in the ModelNet test set. Each curve represents a different stage in the
registration pipeline: the blue line corresponds to the initial unaligned input; the red line
shows results after the first application of DefTransNet; and the green line represents the
refined results after a second iteration with KL-divergence regularization (λ = 0.9).

To better visualize the error behavior in low-error regions, where most improvements
occur, the x-axis uses non-uniform bin spacing. This design choice enhances the visibility
of differences in the critical low-error regime, which would otherwise appear compressed
on a linear or uniform scale.
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The initial distribution (blue) exhibits a broad and right-skewed shape, with a high num-
ber of samples having relatively large registration errors. After one iteration of DefTransNet
(red), the curve shifts significantly to the left, indicating a substantial reduction in mean er-
ror. However, some spread remains, suggesting residual misalignments for a subset of sam-
ples. The second iteration (green) yields the most favorable distribution, narrow, sharply
peaked near the origin, and with minimal presence in higher error bins. This reflects not
only improved mean performance but also higher reliability and generalization across the
dataset.

• Clear leftward shift: Each stage reduces the registration error, as seen by the progres-
sive shift in the distribution’s peak.

• Improved compactness: The second iteration concentrates predictions into a narrower,
low-error regime.

• Non-uniform x-axis bins: This choice enhances visibility in low-error regions, where
most of the differentiation occurs.

These findings demonstrate the strength of the Learning-to-Refine framework. Iterative
refinement, especially with probabilistic regularization, not only lowers average registration
errors but also enhances consistency, producing accurate and stable alignments across varied
input shapes and deformation conditions.

4.6 Ablation Study

To evaluate the specific contribution of each architectural component in our registration
framework, we conduct an ablation study using five model variants. Each variant incre-
mentally removes a key module, T-Net, Transformer, or both, while keeping the rest of the
architecture intact. All models are evaluated across eight deformation levels (0.1 to 0.8) us-
ing the average point-wise Euclidean distance. The results, illustrated in Figure 4.10, help
quantify how each module contributes to robustness and accuracy under increasing geomet-
ric complexity.

Deep-Geo-Reg (baseline). This non-learning baseline does not include any of the pro-
posed modules. It lacks feature learning, global alignment, or deformation modeling. As
expected, its performance declines steeply with increasing deformation, from 0.00148 at
level 0.1 to 0.1354 at level 0.8, highlighting its inability to adapt to non-rigid transforma-
tions. This serves as a lower bound for comparison.
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DefTransNet without T-Net vs. DefTransNet. The T-Net is designed to estimate a
global alignment transformation that coarsely aligns the source and target point clouds be-
fore learning finer deformations. When the T-Net is removed, as in the “DefTransNet with-
out T-Net” variant, we observe a clear performance drop across all deformation levels (e.g.,
0.00391 vs. 0.00078 at level 0.1, and 0.09795 vs. 0.09889 at level 0.8). Although the Trans-
former can partially compensate at high deformation levels, the absence of an initial global
alignment increases the learning burden on downstream modules. Without T-Net, the net-
work starts training from a misaligned state, leading to slower convergence and suboptimal
optimization, particularly at low-to-moderate deformation levels where coarse alignment is
most effective.

RobustDefReg without T-Net vs. Robust-DefReg. A similar pattern is seen in the graph-
based setting: Adding the T-Net to Robust-DefReg improves accuracy across the board. For
example, at level 0.4, the error drops from 0.01617 (without T-Net) to 0.00419 (with T-Net).
This confirms that even in architectures without global attention, a learnable alignment prior
significantly helps reduce the initial displacement and allows the model to focus on learning
local residuals.

Robust-DefReg vs. DefTransNet. The Transformer enables the model to capture long-
range dependencies and global context across the point cloud. Removing this module re-
duces the model to relying only on local geometric learning and global alignment (T-Net +
EdgeConv). As a result, while the model performs well at low deformation levels (0.00078
at 0.1), it deteriorates significantly at higher levels (0.10707 at 0.8), where non-local dis-
placements dominate. The lack of self-attention makes it difficult to resolve feature ambigu-
ity and correspondences that lie far apart spatially but are semantically similar, a challenge
common in large deformations.

Deep-Geo-Reg vs. all learning-based models The baseline model performs the worst
under all deformation levels, confirming the critical role of learned features. The EdgeConv-
based GCNN enables each point to aggregate local neighborhood information, enhancing
robustness to noise and partial deformation. All models using EdgeConv (RobustDefReg,
DefTransNet variants) significantly outperform Deep-Geo-Reg, particularly at high defor-
mation (e.g., 0.10489 vs. 0.1354 at level 0.8), validating the importance of local geometric
learning in capturing fine-grained shape changes.

DefTransNet (full model) By integrating T-Net, GCNN (EdgeConv), and Transformer
modules, DefTransNet combines global alignment, local structure learning, and global con-
text modeling. This synergy results in the most stable and accurate registration performance
across all deformation levels, demonstrated by minimal error fluctuations (e.g., 0.00078 to
0.09889) and no steep error escalation. The architecture benefits from the interplay of three
key functional components:
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Deep-Geo-Reg 0.00148 0.00273 0.01551 0.01874 0.04284 0.06088 0.10754 0.1354

RobustDefReg - Without Tnet 0.00444 0.00947 0.01062 0.01617 0.03025 0.0556 0.08353 0.10489

DefTransNet - Without Transformer (Robust-DefReg) 0.00078 0.00119 0.00492 0.00419 0.02637 0.04118 0.07644 0.10707

DefTransNet - Without Tnet 0.00391 0.00817 0.00959 0.0142 0.0254 0.04714 0.07547 0.09795

DefTransNet 0.00078 0.00138 0.00409 0.00488 0.03196 0.02791 0.05641 0.09889
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Figure 4.10. Ablation study comparing the mean registration error across deformation levels. Our
full model (DefTransNet) consistently outperforms all ablated variants and the baseline (Deep-Geo-
Reg). Each curve corresponds to a model configuration, and lower values indicate better alignment.

• A global alignment initializer, which provides a coarse pre-alignment between source
and target point clouds. This helps reduce large initial displacements, enabling the
network to converge more efficiently by narrowing the search space during optimiza-
tion.

• A local neighborhood feature extractor, which learns spatially-aware descriptors by
aggregating geometric information from nearby points. This component enhances the
model’s sensitivity to fine-grained deformations and structural variations, especially
in moderately distorted regions.

• A global context learningmechanism, whichmodels long-range dependencies across
the point cloud. By capturing relationships between distant but semantically related
regions, it helps resolve ambiguities in correspondence and improves robustness under
severe, non-local deformation.

This ablation study reveals the functional necessity of each of these components:

• Removing the global alignment initializer results in poor initialization, which can
lead to slower convergence and reduced accuracy, particularly under small to moder-
ate deformations where coarse alignment is crucial.

• Disabling the global context learning module limits the network’s ability to capture
long-range structural relationships. As a result, the model fails to generalize under



Ablation Study 93

high-deformation settings where local geometry alone is insufficient.

• Eliminating all learning components and relying purely on geometric heuristics, as
in the classical baseline, leads to a dramatic performance drop across all conditions,
underscoring the importance of feature learning in non-rigid registration.

The complete model demonstrates that these three components act in a complementary
manner: The global initializer ensures a good starting point, the local feature extractor cap-
tures detailed deformations, and the global learning unit facilitates high-level structural un-
derstanding. When combined, they enable the model to effectively manage the hierarchical
complexity of non-rigid PCR under a wide range of deformation scenarios.





Chapter 5

Discussion

This chapter provides a critical discussion of the three non-rigid PCR methods proposed
in this thesis: Robust-DefReg, DefTransNet, and the iterative Learning-to-Refine strategy.
Building upon the quantitative and qualitative findings reported in Chapter 4, we analyze the
behavior of thesemethods under varying deformation conditions and discuss their respective
advantages and limitations.

We begin with a high-level visual analysis that summarizes the overall performance of
eachmethod across deformation levels using accuracy–robustness diagrams. These compact
representations offer an interpretable overview of how different methods compare in terms
of both registration quality and stability, complementing the detailed level-wise evaluations
previously presented.

The remainder of this chapter is structured around two perspectives, potential and lim-
itations, for each of the three proposed techniques. Finally, we conclude with a section on
further development, identifying promising directions for future research and refinement.

5.1 Comparative Analysis of Accuracy and Robustness

Before delving into the individual strengths and limitations of the proposed methods, we be-
gin with a high-level visual analysis that synthesizes performance across deformation levels.
To this end, we introduce a compact and interpretable representation of each method’s accu-
racy and robustness using scatter plots for three benchmark datasets: SynBench, ModelNet,
and DeformedTissue. These plots serve as an entry point into the discussion by highlight-
ing the overall positioning of each method in terms of both registration quality and stability
under deformation. By summarizing results along two key dimensions, mean error and
robustness, this section complements the detailed level-wise evaluations in Chapter 4 and
offers a holistic view of each method’s behavior across diverse deformation scenarios.

Accuracy and robustness computation. To visualize the performance of each method
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Figure 5.1. Accuracy–robustness summary for SynBench. DefTransNet shows the lowest aver-
age error and the highest robustness with minimal variation, outperforming all baseline methods.
Robust-DefReg follows closely, while classical approaches show poor consistency and accuracy un-
der deformation. For statistical comparisons, see Table 5.1.

Figure 5.2. Accuracy–robustness summary for ModelNet. While DefTransNet maintains the best
overall performance, the gap to Robust-DefReg is narrower than in SynBench. This reflects the sim-
pler geometric structure of ModelNet objects, where both global and local methods perform compa-
rably well. For statistical comparisons, see Table 5.1.



Comparative Analysis of Accuracy and Robustness 97

Figure 5.3. Accuracy–robustness summary for DeformedTissue. DefTransNet substantially outper-
forms other methods, especially under anatomically realistic deformation. The model achieves high
robustness and low error, demonstrating strong generalization to real-world, irregular deformation.
For statistical comparisons, see Table 5.1.

across varying deformation levels, we construct accuracy–robustness plots. The following
metrics are used to evaluate and visualize performance:

Mean distance (X-axis). The average registration error across all deformation levels is
computed as

Mean Distance =
1

N

N∑
i=1

errori (5.1)

where N denotes the total number of deformation levels.
Robustness (Y-axis). Robustness is defined as the inverse of the absolute error spread

between the lowest and highest deformation levels:

Robustness = 1− (errormax − errormin) (5.2)

This formulation avoids instability when the lowest error is near zero and better reflects
consistency across the deformation spectrum.

Error variation (Error Bars). The horizontal error bars represent the standard deviation
of the registration error across all deformation levels:

Error Bar =

√√√√ 1

N

N∑
i=1

(errori − ¯error)2 (5.3)
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Table 5.1. Paired t-test results comparing DefTransNet with classical and learning-based baselines
across all datasets. A result is considered statistically significant if p < 0.05.

Dataset Compared Method t-test p-value Significant

SynBench Deep-Geo-Reg 0.011658121 Yes

SynBench Predator 0.018424738 Yes

SynBench GP-Aligner 0.003064767 Yes

ModelNet Deep-Geo-Reg 0.017692665 Yes

ModelNet Predator 0.047145691 Yes

ModelNet GP-Aligner 0.000911098 Yes

DeformedTissue Deep-Geo-Reg 0.008273284 Yes

DeformedTissue Predator 0.008743768 Yes

DeformedTissue GP-Aligner 0.015281038 Yes

where ¯error is the mean registration error across all levels.
Statistical significance tests. To quantify the reliability of the observed performance

differences, we conducted a paired t-test, a parametric statistical test used to compare the
means of two related groups under the assumption of normality. Table 5.1 presents the
results, where significance is determined using p < 0.05.

All comparisons between DefTransNet and the baselines result in p-values below the
0.05 threshold, indicating statistically significant differences. This confirms that the supe-
rior performance observed visually in Figures 5.1–5.3 is not due to random variation but
reflects meaningful and consistent improvements. Table 5.1 presents the results of paired
t-tests comparing DefTransNet with each baseline method (Deep-Geo-Reg, Predator, and
GP-Aligner) across all three benchmark datasets. For each pair, the test evaluates whether
the observed performance improvements of DefTransNet are statistically significant, that is,
unlikely to have occurred by chance. Specifically:

• On the SynBench dataset, DefTransNet significantly outperforms all classical and
learning-based baselines, with particularly low p-values against GP-Aligner.

• On ModelNet, although the geometric structure is simpler, the differences remain sta-
tistically significant, reinforcing that even in less challenging scenarios, DefTransNet
maintains a reliable edge.

• On DeformedTissue, which involves real-world anatomical deformation, the signifi-
cance of all comparisons emphasizes DefTransNet’s practical generalizability.

These findings further support the hypothesis that integrating global attention with lo-
calized geometric features not only improves average accuracy but also ensures consistently
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better performance across deformation scenarios.
SynBench: Global learning improves robustness. On the SynBench dataset, as shown

in Figure 5.1, the proposed DefTransNet clearly outperforms all baseline methods, exhibit-
ing both the lowest average error and the highest robustness. This is reflected by its top-left
position in the plot, with short error bars indicating minimal performance variation across
deformation levels. Robust-DefReg shows relatively strong performance but greater sensi-
tivity to increasing deformation. Deep-Geo-Reg, Predator, and GP-Aligner perform poorly
in both accuracy and robustness, especially under large deformation. This visualization sup-
ports our hypothesis that the integration of local and global features, specifically through the
Transformer-based design of DefTransNet, enhances the model’s ability to handle both fine-
grained and long-range correspondences under synthetic deformation.

ModelNet: Diminishing returns in structured geometry. In the ModelNet bench-
mark, as shown in Figure 5.2, DefTransNet maintains top performance, though the gap
to Robust-DefReg narrows. This suggests that in structured geometric datasets, where ob-
ject categories exhibit clear and repeatable shapes, the added capacity of global attention
contributes less to the overall registration accuracy. Nonetheless, DefTransNet’s consis-
tency and reduced variability still demonstrate its advantage over classical and feature-
matching baselines. These results confirm that while Transformer-based models may be
over-parameterized for simple geometries, they remain at least as good, if not better, than
simpler methods, even when their full capacity is not fully required.

DeformedTissue: Superior robustness in real-world deformationOn theDeformedTis-
sue dataset, as shown in Figure 5.3, which contains real-world, non-linear anatomical de-
formation, DefTransNet again stands out as the most accurate and most robust method. The
wide gap between DefTransNet and all other baselines underlines its ability to generalize be-
yond synthetic benchmarks and into real-world scenarios. Its robustness remains high, and
error bars remain short, showing that performance does not degrade substantially even un-
der irregular and complex deformations. This validates the architecture’s suitability for real
applications such as soft tissue tracking or surgical navigation, where deformation patterns
are unpredictable and spatial context is essential.

5.2 Robust-DefReg: GCNN-Based Method

Robust-DefReg, introduced in Chapter 3.2, was a graph-based non-rigid registration frame-
work that combined local geometric learning with a coarse-to-fine alignment strategy. By
leveraging EdgeConv for local feature extraction and T-Net for spatial normalization, the
method was designed to handle moderate deformations while maintaining computational
efficiency. Its modular architecture allowed for clear interpretation and adaptability, and
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served as a strong baseline for further refinement through the Learning-to-Refine strategy.
Below, we discuss the key strengths and limitations of Robust-DefReg based on the evalu-
ation results.

5.2.1 Potential

The following discussion highlights the main strengths of Robust-DefReg, focusing on its
coarse-to-fine registration, stability under low-to-medium noise and deformation, modular-
ity and interpretability, and its capacity for effective refinement.

Coarse-to-fine registration. Robust-DefReg is designed around a hierarchical, coarse-
to-fine strategy that allows it to handle complex deformation by progressively refining
local geometric correspondences. The use of EdgeConv enables the model to encode
neighborhood-level structure, capturing intricate shape deformations in a local region. This
makes it well-suited for scenarios where fine-scale surface changes dominate. During train-
ing, this architecture allows Robust-DefReg to first identify global structure through coarse
alignment and then correct local misalignments through finer updates, improving stability
and convergence.

Stability under low-to-medium noise and deformation. In synthetic datasets like Syn-
Bench and ModelNet, as well as real-world scenarios such as DeformedTissue, Robust-
DefReg consistently demonstrates strong performance in the presence of mild to moderate
deformation (e.g., up to level 0.5). The method maintains relatively low registration errors
even when exposed to Gaussian noise or partial outliers, indicating that its local feature ag-
gregation and spatial learning strategy offers inherent robustness. This resilience makes it a
viable choice in real-world environments where data may be imperfect but still structurally
meaningful.

Modularity and interpretability. The architecture of Robust-DefReg is composed of
interpretable and modular components, EdgeConv for local topology, T-Net for spatial nor-
malization, and a graph-based correspondence mapping mechanism. The absence of a
Transformer makes the model more transparent and allows for more straightforward de-
bugging, tuning, and architectural ablation. Each module serves a distinct role, and this
separation of concerns makes the system easier to analyze, maintain, and extend for specific
applications or domain adaptations.

Effective refinement. Although the model lacks a global learning module, Robust-
DefReg benefits significantly from iterative refinement when paired with the Learning-to-
Refine strategy. Particularly with light KL divergence regularization (λ = 0.1), the model
improves its alignment even at higher deformation levels (e.g., 0.7–0.8), where a single
pass would struggle. The low-regularization setting allows the graph-based method to re-
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tain flexibility while benefiting from probabilistic constraints, confirming that the method
can be extended to more challenging tasks when embedded in a self-corrective loop.

5.2.2 Limitation

Despite its advantages, Robust-DefReg also exhibited several limitations, particularly re-
lated to its limited global learning, performance saturation under large deformation, and
sensitivity to KL regularization during iterative refinement.

Limited global learning . Robust-DefReg, by design, does not incorporate a mechanism
for capturing long-range dependencies across the point cloud. As a result, it struggles when
deformation extends beyond the local neighborhood, such as when large object parts shift
globally or rotate independently. This limitation becomes evident in scenarios with signifi-
cant shape deformation, sparse overlap, or strong rotation, where purely local learning fails
to establish meaningful global correspondences.

Performance saturates under large deformation. While the model performs well un-
der moderate deformation, its accuracy deteriorates noticeably at higher levels. On both
synthetic and real-world datasets, when deformation exceeds 0.6, error rates increase more
sharply than for Transformer-based models. This suggests that Robust-DefReg lacks the ca-
pacity to generalize across samples with highly non-linear structural changes, and its coarse-
to-fine mechanism alone is insufficient to handle large-scale shifts in object geometry.

KL sensitivity. When embedded in the Learning-to-Refine framework, the performance
of Robust-DefReg becomes sensitive to the choice of regularization strength. Specifically,
using high KL divergence weights (λ > 0.3) introduces over-regularization, constraining
themodel’s flexibility and impairing its ability to explore plausible deformation spaces. This
contrasts with DefTransNet, which benefits from stronger regularization. For graph-based
methods, such constraints can stifle performance, especially in regions requiring adaptive
deformation.

5.3 DefTransNet: Transformer-Based Method

DefTransNet, presented in Chapter 3.2, was a Transformer-based registration framework
designed to capture both local geometry and global contextual relationships within non-
rigidly deformed point clouds. It extended the architecture of Robust-DefReg by incor-
porating a self-attention mechanism, enabling long-range feature interaction and improved
generalization under complex deformations. Combined with T-Net and EdgeConv modules,
DefTransNet demonstrated strong robustness across various challenging conditions. In the
following, we examine its main potential and limitations as observed through the experi-
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mental results.

5.3.1 Potential

The strengths of DefTransNet are reflected in its superior accuracy and generalization, its
ability for global context modeling, strong robustness to perturbations, consistent and reli-
able performance across diverse conditions, and its support for scalable refinement through
iterative learning.

Superior accuracy and generalization. DefTransNet consistently outperforms all ex-
isting baselines and proposed alternatives across a broad spectrum of experimental settings.
Whether under synthetic conditions (SynBench, ModelNet) or real-world deformations (De-
formedTissue, 4DMatch), and whether subject to large rotation, noise, or sparse overlap, it
maintains the lowest registration errors. Its high accuracy does not come at the cost of over-
fitting, as evidenced by the tight error distributions observed in multiple histogram analyses,
indicating strong generalization to diverse, unseen data.

Global context modeling. The Transformer module is the core innovation of Def-
TransNet, enabling it to reason over the entire point cloud context. Unlike graph-based or
correspondence-based methods, the attention mechanism allows each point to be informed
by both its local neighborhood and distant regions of the shape. This proves especially
powerful in settings with missing data, sparse overlap, or long-range dependencies, where
local methods fail. Through its self-attention layers, DefTransNet learns not just point-wise
features but also higher-order relationships, enabling precise alignment even when part cor-
respondences are ambiguous.

Robustness to perturbations. DefTransNet exhibits exceptional resilience under vari-
ous perturbations. In scenarios involving significant noise (up to σ = 0.05), high outlier
ratios (up to 45%), or minimal overlap (as low as 10%), the method still produces stable and
accurate results. These conditions simulate real-world constraints such as occlusion, mea-
surement errors, or partial visibility. The robustness likely stems from the network’s ability
to filter out irrelevant input regions and concentrate attention on structurally meaningful
areas during registration.

Consistent and reliable. Histogram analyses of registration errors show that Def-
TransNet not only lowers average error but also reduces variance across test samples. The
model consistently clusters outputs in the low-error bins, with very few outliers or catas-
trophic failures. This consistency is critical for applications in clinical or industrial environ-
ments where reliability across different cases is essential. The structural regularity captured
by the Transformer and stabilized by the T-Net ensures that the model performs predictably
across varied geometric conditions.
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Scalable refinement. When integrated with the Learning-to-Refine strategy, Def-
TransNet continues to improve in performance. With a high KL divergence weight (λ =

0.9), it maintains coherence across iterations and avoids overfitting to noisy pseudo-labels.
This setup enables the model to incrementally correct registration errors, particularly un-
der high deformation, by enforcing a probabilistic prior over plausible deformation fields.
The synergy between global attention and probabilistic regularization makes the model both
expressive and controlled.

5.3.2 Limitation

Despite its strong performance, DefTransNet also presents some limitations, including high
model complexity, dependence on strong priors for effective refinement, and sensitivity to
unnormalized or misaligned input data.

High model complexity. A significant drawback of DefTransNet is its computational
cost. Transformer-based architectures inherently involve quadratic complexity with respect
to the number of points due to the self-attention mechanism. As a result, the model re-
quires more memory, longer training times, and higher computational resources compared
to graph-based alternatives. This limits its practicality in real-time or embedded applica-
tions, such as surgical navigation or mobile robotics, where inference speed and resource
efficiency are critical.

Dependent on strong priors for refinement. Although DefTransNet benefits greatly
from iterative training, it is highly dependent on well-calibrated regularization. Without KL
divergence during Learning-to-Refine, the model can overfit to inaccurate pseudo-labels,
particularly at higher deformation levels where the initial registration may contain substan-
tial errors. This suggests that while the architecture is expressive, it needs the additional
guidance of a deformation prior to avoid drifting into implausible or unstable deformation
spaces during training.

Sensitivity to unnormalized input. While the inclusion of T-Net mitigates input irregu-
larities, the model still exhibits some sensitivity to misalignment or inconsistent point dis-
tribution. If the input is highly skewed or lacks a meaningful canonical orientation, early
attention layers may struggle to converge to optimal alignment, especially when operating
in low-overlap or noisy settings. Preprocessing, such as normalization or canonicalization,
may still be required to achieve optimal performance.
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5.4 Learning-to-Refine: Iterative Refinement Approach

Learning-to-Refine, introduced in Chapter 3.2, was developed as an iterative training strat-
egy aimed at progressively improving registration accuracy without relying on ground truth
correspondences. By reusing predicted deformation fields as pseudo-labels and incorpo-
rating a KL divergence-based probabilistic prior, the method guided both DefTransNet and
Robust-DefReg toward more coherent and stable solutions over multiple refinement stages.
The following discussion explores its key advantages and limitations observed during eval-
uation.

5.4.1 Potential

The key advantages of Learning-to-Refine lie in its ability to enable progressive improve-
ment of registration results, its incorporation of uncertainty through probabilistic regulariza-
tion, its flexibility to support different network architectures, and its scalability in scenarios
where ground truth annotations are unavailable.

Progressive improvement. The Learning-to-Refine strategy introduces an iterative
training loop that improves registration quality over successive passes. Each iteration uses
the output deformation field as a pseudo-label for the next, enabling the model to refine its
understanding of the underlying geometry. Across both DefTransNet and Robust-DefReg,
this leads to a consistent reduction in Chamfer and Euclidean distances, with each iteration
yielding a more accurate and coherent registration outcome. The framework helps mitigate
initial misalignments and allows for correction over time, particularly beneficial in high-
deformation regimes.

Incorporation of uncertainty. The addition of a KL divergence regularization term en-
ables the model to learn deformation fields that are not only precise but also statistically
plausible. This probabilistic prior constrains the learned displacement vectors to lie within
a structured latent space, avoiding erratic or overconfident mappings. It also enables the
network to encode geometric uncertainty, which is critical when operating under noisy, in-
complete, or ambiguous input conditions. Higherλ values enforce stronger priors, providing
global coherence especially in Transformer-based architectures.

Flexible framework. A key strength of Learning-to-Refine lies in its compatibility
with both graph-based and transformer-based networks. While DefTransNet benefits from
stronger regularization, Robust-DefReg requires lighter priors, showing that the refinement
strategy can adapt to the underlying model’s expressive capacity. This flexibility allows
Learning-to-Refine to be viewed as a meta-algorithm for improving any base registration
method, provided it is capable of producing pseudo-labels and supporting deformation reg-
ularization.
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Scalable without ground truth. One of the most important practical advantages is that
Learning-to-Refine operates effectively in semi-supervised or fully unsupervised regimes.
By using predictions from previous iterations as pseudo-labels, it circumvents the need for
dense ground truth correspondence, a major limitation in medical and real-world datasets.
This allows the model to bootstrap its learning process and accumulate accuracy over time
without relying on costly annotations.

5.4.2 Limitation

Despite its effectiveness, Learning-to-Refine also has several limitations, including sensi-
tivity to parameter tuning (especially the KL divergence weight), the potential accumulation
of errors from inaccurate pseudo-labels, and the fact that performance gains vary depending
on the underlying model architecture.

Parameter sensitivity. Themethod is sensitive to the choice of the KL divergenceweight
λ, which controls the strength of the probabilistic prior. Incorrect tuning can either make
the model too rigid (over-constrained) or too flexible (under-regularized), degrading per-
formance. Furthermore, the optimal λ differs between model types and dataset complexity,
requiring cross-validation or empirical testing for best results.

Accumulation of errors. The refinement framework is built upon pseudo-labels gen-
erated from previous iterations. If the initial predictions are of low quality, e.g., due to
sparse overlap or large initial misalignment, these pseudo-labels may reinforce incorrect
correspondences, creating a feedback loop of accumulated errors. While KL regularization
mitigates this risk, it does not eliminate it entirely, especially if the early iterations are poorly
conditioned.

Model-specific gains. The degree of improvement introduced by Learning-to-Refine is
model-dependent. While DefTransNet consistently benefits from the framework across all
conditions, Robust-DefReg shows improvements primarily at high deformation levels and
with carefully tuned regularization. This variability indicates that the strategy is not univer-
sally optimal and that its benefits must be evaluated in the context of specific architectural
and data constraints.

5.5 Further Developments

Building upon the findings of this thesis, several promising directions emerge for extending
and improving non-rigid PCR methods. These directions span architectural innovations,
probabilistic modeling, multi-modal integration, and practical deployment optimization.

Enhancing hybrid architectures beyond DefTransNet. DefTransNet already demon-
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strates the potential of hybrid architectures by combining EdgeConv-based local fea-
ture extraction with global self-attention mechanisms. This design effectively leverages
neighborhood-level detail and long-range spatial learning , offering strong generalization
under challenging deformation conditions. However, future research could further enhance
this paradigm by exploring tighter and more dynamic coupling between the graph and at-
tention modules. For example, instead of using static EdgeConv followed by Transformer
layers, future models could implement joint graph-attention blocks, where attention scores
are modulated by local geometric affinities, or use graph-attentional message passing to
unify the two operations in a shared representation space. Moreover, multi-scale graph hi-
erarchies could be aligned with multi-head attention patterns to better encode both coarse
and fine structures in an anatomically consistent way. Such improvements may increase
both efficiency and alignment precision, especially in low-resolution or partially missing
regions.

Learning richer deformation priors via generative models. The current use of KL di-
vergence in Learning-to-Refine assumes a fixed, often isotropic Gaussian prior over defor-
mation fields, which may be too simplistic for capturing the complex, non-linear patterns
observed in real anatomical deformations. To address this, future work could leverage deep
generative models such as Variational Autoencoders (VAEs), normalizing flows, or diffu-
sion models to learn deformation priors directly from data. For instance, a VAE trained on
a large collection of plausible deformation fields could encode typical motion patterns in
soft tissue or mechanical surfaces, which can then be used to guide the registration model
during refinement. Normalizing flows would allow for exact likelihood modeling and re-
versible sampling, offering tighter control over the prior distribution. These learned priors
would enable the network to model multi-modal, structured deformation behaviors, leading
to more realistic and constrained registration outcomes, especially in ambiguous regions.

Cross-Modal supervision and anatomically informed constraints. In medical contexts,
relying solely on geometric correspondences may be insufficient, particularly in cases with
partial views, occlusion, or tissue resection. Future research could explore the integration
of cross-modal information, such as preoperative MR or CT imaging, intraoperative en-
doscopic video, or ultrasound scans, to provide auxiliary supervision during registration.
These modalities can offer anatomical context or segmentation-based landmarks that sup-
plement the point cloud data. Moreover, incorporating biomechanical simulation data or
known anatomical constraints (e.g., joint limits, volume preservation, tissue elasticity) can
serve as priors during both training and inference. Embedding such constraints into the
loss function or architecture, through physics-informed neural networks or energy-based
regularizers, may enhance the plausibility, stability, and interpretability of the predicted de-
formations.
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Model compression and real-time optimization. For deployment in real-world applica-
tions such as image-guided surgery or mobile robotics, registration methods must operate
under strict latency and hardware constraints. Transformer-based models, while powerful,
are computationally expensive due to their quadratic scaling with respect to the number of
points. Future work should explore methods such as sparse attention (e.g., Linformer, Per-
former, or windowed attention), low-rank projection layers, and point pruning techniques to
reduce model size and computational complexity. Knowledge distillation, where a smaller
”student” model is trained to mimic a larger ”teacher” network, could further compress the
model without significant loss in accuracy. Additionally, real-time online refinement mech-
anisms could be developed to incrementally update the deformation field as new data arrives,
enabling interactive feedback in time-sensitive scenarios. Combining these strategies could
make high-performing models like DefTransNet suitable for real-time clinical deployment
or embedded systems.

Advanced representation learning for deformation modeling. Beyond the architec-
tural improvements explored in this thesis, several cutting-edge techniques in representation
learning present exciting opportunities for advancing non-rigid PCR. Recent advances, such
as diffusion models and flow matching, offer powerful generative formulations for model-
ing complex deformation trajectories, which could replace or augment current refinement
modules. Normalizing flows and invertible neural networks enable exact likelihood mod-
eling and bidirectional mapping between deformation spaces, making them ideal for learn-
ing reversible and structure-preserving transformations. Furthermore, metric flow learning
could be employed to directly learn geodesic-consistent deformation fields, which may im-
prove robustness in topology-altering scenarios. As alternatives to attention-based archi-
tectures, state space models offer scalable sequence modeling and have shown promise in
long-range learning tasks, potentially enabling lower-latency deformation tracking. Finally,
recent efforts in adapting foundation models to 3D data suggest that pre-trained cross-task
embeddings could serve as powerful priors or feature extractors for registration, especially
in low-data or zero-shot settings. Integrating such trends could pave the way toward more
generalizable, interpretable, and data-efficient registration frameworks.

Benchmark expansion and robustness evaluation. Finally, future work should consider
expanding current evaluation protocols to cover a broader spectrum of real-world variability.
This includes testing across more anatomical regions, deformation types (e.g., pathological
swelling, surgical cutting), sensor modalities (e.g., Lidar, structured light, RGB-D), and fail-
ure modes such as data dropout or motion blur. The current SynBench and DeformedTissue
datasets provide valuable testbeds, but further development of standardized benchmarks
with annotated ground truth in real surgical or industrial settings will be essential for fair
comparison and robust validation. Moreover, uncertainty quantification techniques, such
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as Monte Carlo dropout or ensemble variance estimation, can be integrated to assess confi-
dence in the predicted deformation, which is particularly important in critical applications
like neurosurgery or prosthetic design.



Chapter 6

Summary and Conclusion

This thesis presented a comprehensive investigation into the problem of non-rigid PCR, with
a particular emphasis on scenarios involving soft tissue deformation. Motivated by the lim-
itations of rigid and classical deformable models in capturing the complex, local-to-global
transformations encountered in surgical environments, we formulated and addressed key re-
search questions regarding the capabilities of deep learning models to enhance registration
accuracy and robustness under realistic deformation, noise, and partial overlap conditions.

The research progressed through the development of three novel methods: Robust-
DefReg, DefTransNet, and Learning-to-Refine. Each method was designed to address spe-
cific limitations observed in existing approaches, leading to a stepwise improvement in ac-
curacy, generalization, and stability. These contributions moved from local feature model-
ing using graph-based architectures to global attention mechanisms, and finally to iterative
refinement guided by probabilistic regularization.

Robust-DefReg introduced a graph-based registration pipeline that leveraged a coarse-
to-fine framework to capture local geometric variations. Using EdgeConv layers and T-Net
modules, the method extracted rich local features and learned spatial transformations ca-
pable of handling moderate non-rigid deformations. The refinement of displacement fields
using Loopy Belief Propagation further improved robustness, particularly under noisy and
partially missing data.

DefTransNet addressed the limitations of purely local models by incorporating a
transformer-based architecture for global feature embedding. Local descriptors generated
via graph convolutions were passed through self-attention layers, enabling the network to
model long-range dependencies across the point cloud. This significantly improved per-
formance under severe deformations and challenging topological variations. Experimental
results demonstrated that DefTransNet outperformed prior approaches in both synthetic and
real-world datasets, particularly in scenarios with limited overlap.

Learning-to-Refine extended this framework by introducing an iterative strategy that
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optimized deformation fields across multiple steps. At each stage, a KL divergence term
was used to regularize the learned displacements against a predefined isotropic Gaussian
prior. This formulation promoted more stable and plausible deformation learning while
preventing overfitting to noisy or overly complex geometries. Results showed that stronger
regularization improved performance, especially for high-deformation cases, and that the
iterative nature of the model led to consistent error reduction over time.

In addition to method development, this thesis contributed two novel datasets designed
to benchmark non-rigid PCR under realistic conditions. The SynBench dataset provided
a synthetic yet controlled environment for studying soft tissue deformation, incorporating
variations in deformation intensity, noise, and partiality. The DeformedTissue dataset com-
plemented this with real-world scans collected from medical simulations, offering an im-
portant validation ground for the practical applicability of the proposed models. Together,
these datasets enabled standardized comparisons across different methods and contributed
to the advancement of benchmarking practices in this field.

Quantitative and qualitative results across all datasets revealed that the three proposed
methods consistently outperformed state-of-the-art baselines, including Deep-Geo-Reg and
Diffeomorphic models. The transformer-based and iterative frameworks achieved particu-
larly strong results under difficult conditions, validating the initial research hypothesis that
combining attention-based architectures with regularization can significantly enhance non-
rigid registration performance. The ablation studies further confirmed that each architectural
component contributed meaningfully to the final performance, and that the T-Net blocks im-
proved robustness against random spatial transformations, supporting the second hypothesis
stated in the introduction.

The scientific contributions of this work can be summarized as follows.

• First, a graph-based architecture (Robust-DefReg) was proposed for learning coarse-
to-fine deformations using local feature aggregation and message passing.

• Second, a hybrid transformer-graph model (DefTransNet) was introduced to capture
both local and global context for non-rigid alignment.

• Third, an iterative refinement method (Learning-to-Refine) was developed using KL
divergence to constrain the deformation space, improving convergence and structural
coherence.

• Finally, the SynBench and DeformedTissue datasets were developed and released to
facilitate comprehensive benchmarking of deformable registration tasks.

The findings of this thesis demonstrate that deep learning models, when carefully de-
signed with a balance of local structure, global context, and probabilistic regularization, can
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offer significant improvements in non-rigid PCR. These models are well-suited to applica-
tions in surgical navigation, soft tissue modeling, and medical image-guided procedures,
where robustness, accuracy, and adaptability are critical.

Future work may explore extending these models to temporal sequences for dynamic
registration, incorporating anatomical priors to enforce domain-specific constraints, or in-
tegrating multimodal inputs such as segmentation masks or imaging data. Additionally,
adapting these methods for deployment in real-time clinical environments will require fur-
ther investigation into model compression, latency reduction, and hardware optimization.
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