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Abstract

The rich information in medical images fuels the need for an increasing number of acquisi-
tions, ultimately resulting in a high workload for clinicians. Finding relevant structures in
these images resembles a needle in the haystack problem, and when conducted manually,
it is an error-prone and time-consuming process. Computer Aided Diagnosis (CAD) tools
offer an alternative and can help to alleviate the current burden by speeding up clinical
workflows and assisting with a second opinion. Diagnostic tasks, building the backbone
of daily clinical routines, require the fast and accurate identification of critical structures
like (1) vessel occlusions, which can potentially cause an Acute Ischemic Stroke, the
second leading cause of death worldwide or (2) lung cancer manifesting as spherical
structures, the leading cause for cancer-related death. Current work on medical image
analysis predominantly focuses on semantic segmentation, which has shown great suc-
cess for precise voxel-wise delineation of targets. However, diagnostic decision-making
requires the correct localisation and classification of objects rather than voxels, which
can not be accurately captured by semantic segmentation. Object detection methods
can learn to identify objects in an end-to-end fashion, providing great utility by directly
solving diagnostic tasks. Adoption in the domain is hampered by limited experience with
these methods and complex configuration of application-specific parameters. This thesis
explores the wide range of medical detection tasks and builds the foundation for future
work in this important domain.

Three studies are presented to gain insights into important configuration choices of
detection methods and highlight their versatility and competitiveness. The first case
study revolves around an international challenge to tackle the detection of mediastinal
lesions in Computed Tomography (CT) images. Despite its clinical relevance, no public
benchmark was available to develop suitable methods for this anatomical region. Our
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solution based on a one-stage anchor-based detection model achieves an excellent Free-
response Receiver Operating Characteristic (FROC) score of 0.9897, resulting in near-
optimal sensitivity for this task. The submitted method achieved the third rank in the
challenge, underlining the competitiveness of detection methods for diagnostic tasks.

The second study explores the quick and reliable identification of vessel occlusions in
Computed Tomography Angiography (CTA) images. Instead of relying on hand-crafted
heuristics and extensive pre-processing schemes that limit the applicability of current
solutions, our method can detect an arbitrary number of occlusions without restrictions
on certain vessels. Our study includes three cohorts, two of which were collected in a
pseudo-prospective manner from external hospitals to evaluate the real-world impact
of our method. The proposed method achieves high sensitivity (≥81%) and negative
predictive value (≥93%) on these cohorts, highlighting its clinical utility for identifying
patients at risk. Qualitative inspection revealed the ability to find High-grade Stenosis
(HGS), whichwere not labelled within the training cohort but constitute clinically relevant
findings. We compared our method against two commercially available CE-marked and
FDA-approved software solutions and demonstrated significant improvements over these,
especially for the difficult to detect Medium Vessel Occlusions (MeVOs). Our solution is
publicly available via a web platform: https://stroke.ccibonn.ai.

Thirdly, the feasibility of different detection models for the medical domain is explored.
Detection Transformer models do not rely on additional proxy formulations with prior
anchor boxes and offer direct set prediction capabilities, bypassing the requirement for
manual heuristics during training and inference. Our study explores the utility of these
models for diagnostic tasks by comparing the performance of three direct set prediction
models with varying complexity against a strong anchor-based detection baseline. Two
simpler designs, using single-scale information, are not able to compete with anchor-
based approaches while the more complex model, using multi-scale deformable attention,
performs on par with or better than the baseline.

Based on a newly established development pool consisting of ten data sets and equipped
with the experiences from the initial three case studies, we developed the first generalising
detection method, nnDetection. Following nnU-Net’s design principles, we systematise
the configuration process of medical detection methods by identifying rule-based, fixed
and empirical design choices. It distils the knowledge from hundreds of experiments and
several years of experience into a self-configuring method design. We build a unified
framework to incorporate a heterogeneous set of object detection models based on single-
stage, two-stage and direct-set prediction designs. To offer the best possible utility of our
method, models with box-level and a combination of box- and voxel-level supervision
are incorporated to handle diverse annotation types. We evaluate our method on nine
previously unseen detection tasks, introducing new modalities, anatomical regions and
object structures. nnDetection outperforms two baselines and five ablation models on this
diverse pool of tasks. Additionally, we compare the generalising design of our method on
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Abstract

three benchmarking data sets against current task-specific detection solutions and show
that nnDetection achieves state-of-the-art results. Our work establishes a standardised
baseline and easy entry point in the detection domain to catalyse future research. It
democratises the availability of volumetric detection methods by offering out-of-the-box
applicability to new data sets without requiring expert knowledge.

In summary, the work in this thesis has the potential to revolutionise the field of medical
object detection by establishing a new development paradigm aimed at designing a
generalising method. Our experiments on manually configuring detection methods
demonstrate the utility and superiority of the proposed approaches over existing solutions.
By distilling our findings into a self-configuringmethod, wemake our knowledge available
to the entire community and build the foundation for the next generation of medical
detection methods. We have already leveraged the capabilities of nnDetection to compete
in several international challenges with great success: ADAM 2020 (first rank detection
track), MELA 2022 (third rank), TDSC-ABUS 2023 (second rank detection track) and
INSTED 2024 (first rank). The code release of a preliminary version of nnDetection has
already attracted a lot of interest in the community and can be found under https:
//github.com/MIC-DKFZ/nnDetection.
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Zusammenfassung

Die vielfältigen Informationen in medizinischen Bildern führen zu einem steigenden
Bedarf an Aufnahmen und dadurch zu einer hohen Arbeitsbelastung für Kliniker:innen.
Das Auffinden relevanter Strukturen in diesen Bildern ähnelt einem Nadel-im-Heuhaufen-
Problem und ist bei manueller Durchführung fehleranfällig und zeitaufwändig. Computer-
gestützte Verfahren bieten eine Alternative und können dazu beitragen, die aktuelle
Belastung zu verringern, indem sie klinische Arbeitsabläufe beschleunigen und eine
Zweitmeinung unterstützen. Diagnostische Aufgaben, die das Rückgrat des täglichen
klinischen Arbeitsablaufs bilden, erfordern die schnelle und genaue Identifikation kri-
tischer Strukturen wie (1) Gefäßverschlüsse, die potenziell einen akuten ischämischen
Schlaganfall verursachen können, die weltweit zweithäufigste Todesursache oder (2)
Lungenkrebs, der sich durch kugelförmige Strukturen manifestiert und die häufigste To-
desursache im Zusammenhang mit Krebs darstellt. Aktuelle Arbeiten zur medizinischen
Bildanalyse konzentrieren sich hauptsächlich auf die semantische Segmentierung, die
sich als sehr erfolgreich für die präzise Voxel-weise Erfassung von Zielen erwiesen hat.
Diagnostische Entscheidungen erfordern jedoch die korrekte Lokalisierung und Klassifi-
zierung von Objekten anstelle von Voxeln, was von der semantischen Segmentierung
nicht genau erfasst werden kann. Objekterkennungsmethoden können lernen, Objekte
in einem ununterbrochenen (End-to-End)-Verfahren zu identifizieren und bieten einen
großen Nutzen, indem sie diagnostische Aufgaben direkt lösen. Die Akzeptanz im Bereich
wird durch begrenzte Erfahrungen mit diesen Methoden und die komplexe Konfiguration
von anwendungsspezifischen Parametern verringert. Diese Arbeit untersucht das breite
Spektrum medizinischer Erkennungsaufgaben und legt den Grundstein für zukünftige
Arbeiten in diesem wichtigen Bereich.
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Drei Studien werden vorgestellt, um Einblicke in wichtige Konfigurationsentscheidungen
von Erkennungsmethoden zu gewinnen und ihre Vielseitigkeit undWettbewerbsfähigkeit
hervorzuheben. Die erste Fallstudie dreht sich um einen internationale Wettbewerb zur
Erkennung von mediastinalen Läsionen in Computertomographie (CT)-Bildern. Obwohl
diese anatomische Region klinisch höchst relevant ist, stand kein öffentlicher Daten-
satz zur Verfügung, um geeignete Methoden für diese Region zu entwickeln. Unsere
Lösung, die auf einem einstufigen, ankerbasierten Erkennungsmodell basiert, erzielt
einen ausgezeichneten Free-response Receiver Operating Characteristic (FROC)-Wert
von 0.9897, was zu einer nahezu optimalen Sensitivität für diese Aufgabe führt. Die
eingereichte Methode erreichte den dritten Platz in dem Wettbewerb und unterstreicht
die Wettbewerbsfähigkeit von Erkennungsmethoden für diagnostische Aufgaben.

Die zweite Studie untersucht die schnelle und zuverlässige Identifizierung von Gefäß-
verschlüssen in CT Angiographie Bildern (CTA). Anstatt auf handgefertigte Heuristiken
und umfangreiche Vorverarbeitungsschemata zurückzugreifen, die die Anwendbarkeit
aktueller Lösungen einschränken, kann unsere Methode eine beliebige Anzahl von Ver-
schlüssen ohne Einschränkungen bestimmter Gefäße erkennen. Unsere Studie umfasst
drei Kohorten, von denen zwei in einem pseudo-prospektiven Verfahren aus externen
Krankenhäusern gesammelt wurden, um den realen Einfluss unserer Methode zu be-
werten. Die vorgeschlagene Methode erreicht auf diesen Kohorten eine hohe Sensiti-
vität (≥81%) und einen hohen negativen prädiktiven Wert (≥93%), was ihre klinische
Nützlichkeit bei der Identifizierung gefährdeter Patienten unterstreicht. Die qualitative
Inspektion zeigte die Fähigkeit, hochgradige Stenosen (HGS) zu finden, die nicht in der
Trainingskohorte gekennzeichnet waren, aber klinisch relevante Befunde darstellen. Wir
verglichen unsere Methode mit zwei kommerziell erhältlichen CE-gekennzeichneten und
FDA-zugelassenen Softwarelösungen und zeigen signifikante Verbesserungen gegenüber
diesen, insbesondere bei den schwer zu erkennenden Verschlüssen eines mittleren hirn-
versorgenden Gefäßes (MeVO). Unsere Lösung ist öffentlich über eine Webplattform
verfügbar: https://stroke.ccibonn.ai.

Drittens wird die Machbarkeit verschiedener Erkennungsmodelle für den medizinischen
Bereich untersucht. Detektions-Transformer-Modelle (DETR) stützen sich nicht auf zu-
sätzliche indirekte Aufgabenformulierungen mit vorherigen Ankerboxen und können
Mengen direkt erstellen, um die Anforderung an manuelle Heuristiken während des
Trainings und der Inferenz zu umgehen. Unsere Studie untersucht die Nützlichkeit dieser
Modelle für diagnostische Aufgaben, indem sie die Leistung von drei DETR-Modellen
mit unterschiedlicher Komplexität mit einer starken ankerbasierten Methode vergleicht.
Zwei simple Modele, die Informationen einer einelnen Auflösung verwenden, können
nicht mit ankerbasierten Ansätzen konkurrieren, während das komplexere Modell, das
mehrere Auflösung verwendet, auf Augenhöhe oder besser als die Vergleichsmethode
abschneidet.
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Zusammenfassung

Basierend auf einer neu etablierten Sammlung von 10 Entwicklungsdatensätzen und mit
den Erfahrungen aus den ersten drei Fallstudien, haben wir die erste generalisierende
Erkennungsmethode, nnDetection, entwickelt. Nach den Prinzipien von nnU-Net sy-
stematisieren wir den Konfigurationsprozess von medizinischen Erkennungsmethoden,
indem wir regelbasierte, feste und empirische Entwicklungsentscheidungen identifizieren.
Es destilliert das Wissen aus Hunderten von Experimenten und mehreren Jahren Erfah-
rung in eine selbstkonfigurierende Methode. Wir bauen ein einheitliches Framework auf,
um mehrere heterogene Objekterkennungsmodellen aufzunehmen, die auf Ein-Stufen-,
Zwei-Stufen- und Direkter-Mengen-Vorhersage basieren. Um die bestmögliche Nützlich-
keit unserer Methode zu bieten, werden Modelle mit Box-Level- und einer Kombination
aus Box- und Voxel-Level Information integriert, um verschiedene Arten von Annota-
tionen zu handhaben. Wir evaluieren unsere Methode an neun zuvor nicht gesehenen
Datensätzen, die neue Modalitäten, anatomische Regionen und Objektstrukturen einfüh-
ren. nnDetection übertrifft zwei Vergleichsmodelle und fünf Ablationsmodelle in diesem
vielfältigen Aufgabenspektrum. Darüber hinaus vergleichen wir das generalisierende
Konzept unserer Methode an drei Vergleichsdatensätzen mit aktuellen aufgabenspezi-
fischen Erkennungslösungen und zeigen, dass nnDetection kompetitive oder bessere
Ergebnisse erzielt. Unsere Arbeit etabliert ein standardisiertes Werkzeug und einen einfa-
chen Einstiegspunkt im Erkennungsbereich, um zukünftige Forschung zu katalysieren.
Es erhöht die Verfügbarkeit volumetrischer Erkennungsmethoden, indem es ohne Exper-
tenwissen auf neue Datensätze angewendet werden kann. Der Programmcode ist unter
https://github.com/MIC-DKFZ/nnDetection verfügbar.
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CHAPTER 1

Introduction

Human vision is one of the five senses that help us navigate the world, spot hazards from
a far distance and appreciate the beauty of our surroundings. Due to its central role in our
daily lives, researchers have long attempted to develop systems that can capture images
to replicate this human ability with the help of cameras [1] and computers [2]. Humans
are able to qickly learn to recognize objects from a young age [3] but machines are still
struggling to achieve this goal [2]. ’Moravec’s paradox’ [4] describes this observation in
robotics and artificial intelligence, where higher-level reasoning can be modelled easily
by machines, but replicating basic skills requires enormous efforts and computational
resources. The previously described task of localising and classifying objects in images is
called object detection in computer vision.

Natural images aim to replicate the capabilities of the human eye which captures infor-
mation in the visible spectrum. However, the electromagnetic spectrum is much wider,
and more advanced imaging techniques can be used to capture even more information
about surfaces and retrieve information within objects without requiring invasive proce-
dures [5]. This type of imaging has tremendous potential in the medical field and falls
within the radiology domain. Information retrieval is not just limited to two-dimensional
(2D) information, but medical systems can retrieve Computed Tomography (CT) scans or
Magnetic Resonance Images (MRIs), which contain volumetric (or three-dimensional, 3D)
information [5]. These images contain essential information about soft tissues, bones,
ligaments, tendons, blood vessels, and organs, which expert personnel, like radiologists,
can interpret to derive accurate diagnoses, quantify the extent of injuries or diseases, and
create treatment plans.
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1 Introduction

Due to the immense potential of these images, many clinically relevant procedures have
integrated them as a central part of their routine:

• Surgical Planning: By obtaining a first view of the anatomy and location of
relevant structures, clinicians can create a detailed plan for upcoming surgeries,
which results in shorter intervention times and reduced risk of follow-up compli-
cations [6].

• Minimal Invasive Surgery/Intervention: This type of interventional procedure
only requires a small cut which reduces blood loss, pain, risk of infection and
duration of patient stays in the hospital. Examples of these include closures of
holes in the heart [7] and thrombectomy to remove blood clots from arteries [8].

• Radiotherapy: This procedure destroys cancer cells via ionizing radiation. Medi-
cal imaging enables the acquisition of fine-grained scans to create a plan for the
radiation dose in order to maximize its effectiveness and minimize the impact on
healthy tissue [9, 10].

• Diagnostic Imaging: Many diseases manifest as connected structures within the
human body and can be visually identified in medical images. Timely diagnosis
of these is essential to maximize survival chances, for example, during cancer
diagnostics to avoid metastases or in case of an acute ischemic stroke where it is
critical to restore the blood flow to the brain.

This thesis focuses on diagnostic imaging, which builds the foundation of clinical decision-
making. Its use cases extend across a vast array of image modalities, anatomical regions
and object structures as depicted in Figure 1.1 with examples for rib fractures in CT
images [11, 12], lung nodules in CT images [13, 14], kidney tumours in CT images [15],
pancreas tumours in CT images [16], cerebral aneurysms in Rotational X-Ray Angiogra-
phies (3DRA) and MRI [17, 18], mediastinal lesions in CT images [19], microbleeds in
MRI [20, 21, 22, 23, 24] and breast lesions in contrast-enhanced MRI [25, 26].

1.1 Motivation

The broad range of applications and utility of medical imaging leads to a constantly
increasing number of acquisitions that need to be inspected by expert personnel, such as
radiologists. A study by Smith-Bindman et al. (2008) included data from a large health
plan between 1997 and 2006, reporting an increase in CT acquisitions by a factor of
two and an increase in MRI acquisitions by a factor of three [27]. Further evidence for
this phenomenon can be obtained by the annual statistical release of the NHS England,
which shows the continued increase in CT and MRI acquisitions over recent years [28]
in England. In 2013/14, 3.8 million CT images were acquired, almost doubling by 2021/22
with close to 6.8 million acquisitions. A similar pattern can be observed for MRI scans,
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Diagnostic 
Tasks

(B)
Lung Nodules in CT Images

(A)
Rib Fractures in CT Images

(E)

Aneurysms in MR Images

(F)

Mediastinal Lesions in CT Images

(D)

Breast Cancer in MR Images
(C)

Kidney Tumours in CT Images

Legend: 1st Image: Scan, Target Object (Mask) 2nd Image: Scan,Target Object (Mask), automated Predictions (Box) 3rd Image: 3D Visualisation

Figure 1.1: Overview of medical image modalities and object structures requiring di-
agnostic decision making. Diagnostic tasks can be found for various medical
image modalities to capture different tissue properties, anatomical regions and object
structures. A subset of all possible clinical tasks is presented in this visualisation,
including (A) rib fractures in CT images [11, 12] (B) lung nodules in CT images [13]
(C) kidney tumours in CT images [15] (D) breast cancer in contrast-enhanced MR
images [25, 26] (E) cerebral aneurysms in 3DRA images [17] (F) mediastinal lesions
in CT images [19].

with an increase from 2.6 million in 2013/14 to 3.8 million acquisitions in 2021/22. This
increase in volumetric imaging data puts an ever-increasing workload on radiologists,
which impacts the quality of care and therefore the patients health.

Computer Aided Diagnosis (CAD) systems aim to support clinicians by providing a timely
second opinion and automating repetitive parts of their workflow. The support system
can provide information on different abstraction levels, directly depending on the desired
clinical question. An overview of these levels and an exemplary use case for rib fracture
diagnosis is depicted in Figure 1.2 and explained in the following:
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Figure 1.2: Different levels of abstraction for Computer Aided Diagnosis support. Au-
tomated systems can provide information on different abstraction levels, ranging
from the image level down to the voxel level. The granularity of detail in the output
influences their suitability to answer certain clinical questions and requires addi-
tional aggregation techniques when deriving insights about more abstract levels. The
evaluation metrics directly operate on the selected granularity level to measure the
performance of the respective model.

• Image-Level: The highest level of decision support is derived at the image-level
(or patient-level in this thesis) where the CAD system provides a single numerical
value indicating a class or confidence score for the entire image. In this case, no
further information is provided, and the location of clinically relevant regions
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1.1 Motivation

remains unknown. Methodologically, these use cases can be directly modelled by
image classificationmethods like ResNet [29, 30], DenseNet [31, 32], ConvNeXt [33],
Vision Transformer (ViT) [34] which are trained with image-level labels. These
labels can be obtained with the least amount of effort since image-level results are
usually available within the Picture Archiving and Communication System (PACS)
of hospitals, allowing for efficient large-scale collection efforts. On the other hand,
methods that do not provide further information on their reasoning can often be
seen as black boxes that are undesirable in clinical practice. Driven by the clinical
needs, common evaluation metrics for these tasks include the Receiver Operating
Curve (ROC), sensitivity and specificity.

• Object-Level: The next granularity level is represented by object-level informa-
tion and object detection methods. These systems produce outputs that encompass
individual objects, usually in the form of bounding boxes or instance segmentations,
and can be trained end-to-end. This allows them to efficiently support diagnostic
tasks which depend on the location of regions of interest or the number of objects
in an image. Typical methods include Retina Net [35], R-CNN models [36, 37] and
DEtection TRansformer (DETR) models [38, 39]. By following the typical clinical
diagnostic reasoning chain, patient-level results can easily be obtained from object-
level results by aggregating the information. For example, if a patient presents
multiple rib fractures in a CT image, the patient level result indicates necessary
follow-up treatment. Evaluation metrics combine information about True Positive
(TP), False Positive (FP) and False Negative (FN) predictions to quantify the ability
to localise and classify objects. Metrics like mean Average Precision (mAP) and
Free-response Receiver Operating Characteristic (FROC) measure performance in
a confidence threshold agnostic manner, while sensitivity and precision can be
used after deriving a confidence threshold for the method.

• Voxel-Level: The finest spatial granularity is presented on the pixel- or voxel-
level with semantic segmentation methods, which can derive information about
the shape and volume of regions of interest. These methods are usually based on
an encoder-decoder architecture like a U-Net [40] or DeepLab [41] to predict the
class correspondence per voxel. Different objects of the same class are not further
differentiated in this type of use case. Evaluation is often performed with the
Dice Similarity Coefficient (DSC), sometimes complemented with the Normalised
Surface Distance (NSD) to assess the quality of the segmentation. Manual heuristics
are needed to group the voxels into clusters and aggregate the confidence scores to
derive object- or patient-level information.

Clinical decision making is ultimately performed on the patient level with grounded
information from the object- or voxel-level. Due to its relevance for diagnostic decisions,
this thesis focuses on developing CAD applications that can directly operate on the
object-level. Most of the evaluation metrics are directly targeted towards measuring
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the object-level performance of these methods and extend to the patient-level when
evaluating the impact in clinical scenarios.

1.2 Research Questions

The medical image computing domain is predominantly working on the development of
semantic segmentation methods as evidenced by the study of Maier-Hein et al. (2018),
which analysed 150 biomedical image analysis challenges and found that 70% revolved
around segmentation. Existing work on object detection is limited to a few medical
applications like lung nodule detection [43, 14], aneurysm detection [44, 18], and breast
cancer detection [45, 46]. However, possible clinical applications are much more far-
reaching, and thus, it is necessary to explore the possibilities of these methods in the
wider medical domain and establish powerful and robust detection methods.

1.2.1 RQ1: Which methodological design decisions are important
for good object detectors?

The medical domain encompasses various tasks [47] with vastly varying properties like
image modalities, anatomical regions, object structures and annotation types. Deep
Learning (DL) is a powerful technology allowing the design of data-driven methods
which can be applied to different medical tasks. The correct configuration of these
methods requires iterative hyperparameter tuning based on a deep understanding of the
detection model and profound knowledge of the clinical problem. This constitutes an
error-prone process which often yields sub-optimal results and creates a bottleneck for
current research. Until now, it has been unclear which methodological design decisions
are essential for creating optimal detection models for varying medical tasks. As part of
the first research question, this thesis presents three case studies focussing on the manual
configuration of detection models:

RQ 1.1: Are detection methods competitive in international benchmarks?

International competitions, also called challenges, provide a platform to benchmark
current state-of-the-art methods by comparing submissions from all over the globe with
a standardised evaluation protocol on the same data. The Mediastinal Lesion Analysis
(MELA) Challenge 2022 is one such benchmarking effort which attracted prestigious
teams from all over the world. It provides the first publicly available data set for medi-
astinal lesions, esteblashing a good environment to develop highly performant detection
methods. In our solution, we explore the design space of a single-stage anchor-based
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detector named Retina U-Net [46]. Figure 1.3 shows three central aspects of our solution
to enhance the performance of the proposed detection method: (1) Adjust to target
metric: the localisation criterion [48] for this task is set to 0.3 which shifts the emphasis
of the detection problem towards the precise localisation of the object rather than detect-
ing its appearance (2) Scale to available hardware: available hardware resources can
significantly influence the configuration of the model and making the best use of it helps
to enhance the performance (3) Model Ensembling: combining the predictions from
multiple models is a powerful technique to compensate for shortcomings of individual
ones.

Research Question

Method

+

Model EnsemblingScale to available HardwareAdjust to target metric

+/-30 Degree +/-10 Degree

Data Fingerprint

CT

Lesion Bounding Boxes

Mediastinum

Detection Model?

Competitive?

Proposed Model Improvements

Retina U-Net

RQ 1.1: Are detection methods competitive in international benchmarks?

Figure 1.3: RQ1.1 - International Challenge: Design aspects of our submission to the
MELA 2022 Challenge. Creating state-of-the-art detection models requires careful
design of every component in the training and inference pipeline. Our solution for
detecting mediastinal lesions in CT images focuses on the augmentation pipeline
to reduce bounding box artefacts, scaling to available compute resources to avoid
stitching artefacts during inference and model ensembling to combine strength from
different models. The CT image is from the MELA data set [19]. The GPU icon was
taken and adapted from [49].
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RQ1.2: Can detection models offer a clinical value over existing solutions for
vessel occlusion recognition?

The second-leading cause of death worldwide can be attributed to strokes [50]. It repre-
sents the third-leading cause of death and disability combined. One in four persons aged
over 25 will experience a stroke during their lifetime [51]. Acute Ischemic Stroke (AIS)
represents one possible cause for stroke where the blood flow to the brain is blocked. In
the year 2019 alone, around 101.5 million people have suffered from a stroke, 77.2 million
of which had AIS [52]. Blockage through vessel occlusions is a life-threatening condition
which necessitates immediate intervention by expert personnel. Quick and reliable iden-
tification of vessel occlusions is therefore a highly important clinical task. Mechanical
thrombectomy is a common treatment for accessible occlusion types but requires precise
information about the occlusion’s location. This information can be obtained from sev-
eral different imaging modalities, namely Computed Tomography Angiography (CTA),
Non-Contrast Computed Tomography (NCCT) and Computed Tomographic Perfusion
(CTP). Automated detection systems can help prioritize patients in these scenarios by
providing a fast and reliable assessment of the acquired images.

Designing detection models for clinical applications introduces additional requirements
which do not occur when trying to solely maximize their performance. In this case,
additional constraints on the inference time are imposed to ensure timely feedback to
the attending clinician. It is necessary to select a cutoff value for the confidence scores
and evaluate the performance on the patient level to mimic diagnostic decision support.
We incorporate these requirements in the methodological design of our solution in three
aspects: (1) Adjust to annotation style: vessel occlusions do not present boundaries like
other pathologies but rather represent regions of interest which can be effectively detected
by a model using box-level supervision, (2) Adjust to inference time constraints: the
size of the occlusions only varies between two sizes, which can be effectively captured
with two anchors to reduce the inference time of the model and (3) Scale to available
hardware: by making use of the available computational resources, we design a multi-
Graphics Processing Unit (GPU) inference scheme to efficiently process large CTA scans.
An overview of the contributions is shown in Figure 1.4.

Additionally, an extensive analysis of our results on the patient-level and object-level,
with and without cutoff selection, shows the potential impact on clinicial decision making.
We benchmark our method against two CE— and FDA-cleared software solutions and
demonstrate its superiority on two external cohorts.

RQ1.3: Are direct set prediction models beneficial for medical object detection?

Convolutional Neural Networks (CNNs) are not capable of natively modelling a varying
number of objects in an image. This has led to the development of different detection
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Figure 1.4: RQ1.2 - Clinical Application: Design aspects for developing a clinically rele-
vant vessel occlusion detection model. Clinical scenarios pose different require-
ments on detection models than comparative or exploratory studies. In this study,
we develop a detection model to identify vessel occlusions in CTA images. Since the
identification of AIS is an extremely time-sensitive diagnostic task, we specifically
tailor the model to be fast during inference. We achieve this by removing unnecessary
components during the training, reducing the number of anchors to better represent
the limited diversity of the annotated objects, and scaling our training and inference
resources to the available hardware budget. The GPU icon was taken and adapted
from [49].

formulations, like one-stage anchor-based [35], two-stage anchor-based [36, 37, 53, 54],
centre-point based [55], extreme point-based [56, 57, 58] or direct set prediction [38, 59, 60,
61, 39, 62, 63] based detectionmodels. Each of these detection formulations has advantages
and disadvantages, which can make them more or less feasible for diagnostic tasks in the
detection domain. Anchor-based detectors are used for multiple diagnostic applications,
but direct set prediction models have not yet become widely adopted despite several
advantages over anchor-based detectors in the natural image processing domain. To
address this shortcoming, this research question investigates the feasibility of transformer-
based direct set prediction models for medical object detection tasks, see Figure 1.5.
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Figure 1.5: RQ1.3 - Overview of anchor-based and direct set prediction models. Anchor-
based detectors require careful configuration of anchor properties and hand-designed
heuristics for training and inference. Three transformer-based direct set prediction
models are evaluated using four medical data sets with varying anatomical regions
and object structures.

1.2.2 RQ2: How can object detection methods be configured
automatically?

As outlined in RQ1, every medical task has a unique combination of available image
modalities, anatomical regions, object structures and annotation types. Most developers
expect that data-driven approaches, like deep learning models, can learn these intricate
characteristics from the underlying data distribution without encoding additional infor-
mation. In reality, each medical task requires careful configuration to achieve optimal
results, constituting an active research bottleneck due to sub-optimal baseline perfor-
mance, limited generalisation of methods, and high time and resource demands in the
domain. This is caused by the complex design of current methods, which depend on
the correct selection of loss functions, patch sizes, architectures, supervision signals and
model-specific parameters like anchors.

Current work focusses on designing task-specific solutions [64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 11, 12] which are tailored toward a single data set. Determined
configurations might work well for the current task but potentially degrade for other
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tasks. As a consequence, many methods fall short of their promises, which hampers
clinical adoption and impacts patient care. A recent study has analysed these pitfalls in
the semantic segmentation domain [81].

nnU-Net [47] was the first method to systematise the configuration process of semantic
segmentation models and move away from the prevailing development paradigm towards
designing models generalising across many medical tasks. It introduces a self-configuring
method which is based on three groups of parameters: rule-based parameters are adapted
based on properties of the underlying task, fixed parameters remain constant across tasks,
and empirical parameters are empirically optimised for each task based on cross-validation
results. However, detection models depend on a different set of hyperparameters than
segmentation models, necessitating a different internal design. Anchor-based models
require the definition of anchor sizes and density, which are absent from other domains.
Direct set prediction models have a strict upper limit of the possible number of predic-
tions and variation of this parameter leads to different training dynamics and inference
performance. All detection models require careful design of their architectural blueprint,
data loading strategy and loss functions. Additional layers of complexity specific to the
detection domain are added on top of this:

• Detector Types: Current studies only focus on the design of individual detector
types, making it difficult to obtain a broader view across detector models. It remains
unclear if a single model can adapt to all medical detection tasks without requiring
changes to its architecture.

• Annotation Types: Diagnostic tasks encapsulate a large diversity of object struc-
tures, which necessitates the usage of different annotation types. Voxel-wise
segmentation offers the richest signals but suffers from high annotation costs, re-
stricting the annotation of large data sets. Coarser annotation styles, like bounding
boxes or spheres, can accelerate the annotation process and allow the annotation
of regions without clear structural boundaries.

• Metrics: The clinical use cases can differ between tasks, which necessitates the
usage of different localisation-quality thresholds and metrics. These variations in
the evaluation are needed to capture multiple aspects of a method. A thorough
performance analysis is not limited to a single metric but aims to capture the full
bandwidth of applications to provide an adequate view of the model’s performance
across different requirements and tasks [48].

To make detection models available to the entire medical community, including both do-
main experts and Machine Learning (ML) practitioners, this thesis develops nnDetection,
the first self-configuring medical object detection method. Two major research questions
are tackled in this work: (RQ 2.1) Is there enough data for developing general
detection methods? and (RQ 2.2) How can the design of detection methods be
automated? The proposed development process encompasses 10 different detection
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data sets with varying tasks, and the evaluation is performed on 9 additional data sets,
which include previously unseen image modalities, anatomical regions, object structures
and annotation types. By unifying the design of single-stage, two-stage, and direct-set
prediction models in a single framework, it can leverage the benefits of each model as part
of an ensemble. nnDetection automates the configuration process of all integrated models
and can be applied with no user intervention to any 3D detection problem, see Figure 1.6.
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Figure 1.6: RQ 2: Overview of current task-specific design versus proposed self-
configuring method design for detection models. Shows the gap between
task-specific design (current) and self-configuring (proposed) method design. Deep
learning-based detection models require correct configuration to achieve the best
possible performance. The configuration process must be repeated for each new task
due to varying characteristics. Self-configuring methods, like nnDetection, automate
the entire hyperparameter tuning process and provide robust performance across
detection tasks without manual intervention. This figure is adapted from [82].
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1.3 Outline

This thesis comprises seven chapters in total. The first chapter introducesmedical imaging
and motivates the need for computer-aided diagnostic tools in the form of detection
models.

Chapter 2 explains the fundamentals of object detection. First, the internal mechanics
of two-stage detection models, which represent the previous state-of-the-art in the
natural image processing domain, are explained. Afterwards, one-stage detection models
are introduced as a simpler alternative while achieving competitive results. Direct set
prediction models that use the transformer architecture, representing the current state-
of-the-art, are described last. mAP and FROC are explained as central metrics in the
medical detection domain.

Chapter 3 highlights relevant literature about medical object detection. The first part
discusses models which are manually configured to solve individual medical tasks. The
second part introduces the concept of self-configuring models represented by nnU-Net.

Our methodological work for different detection tasks is explained in Chapter 4. It first
highlights the development of three detection models: (1) a model for mediastinal lesion
detection in the context of an international challenge, (2) developing a detection model
for vessel occlusions in CTA images with multiple clinically relevant data sets and (3)
exploring direct set prediction models for medical tasks. The second part showcases
our work on nnDetection, the first self-configuring medical object detection method. It
provides detailed descriptions of each component to automatically configure one-stage,
two-stage, and direct set prediction models.

Chapter 5 provides an overview of our experiments and initial analysis. The impact of
individual design decisions is showcased based on our submission to the MELA challenge,
where it ranked third on the test leaderboard. Detailed analysis of the developed vessel
occlusion model on two external pseudo-prospective cohorts is provided, showcasing
the superiority of our approach when compared to two CE- and FDA-approved software
solutions. Experiments on four data sets demonstrate the feasibility of direct set prediction
models in the medical detection domain, outperforming previous state-of-the-art anchor-
based detection models.

The second part of Chapter 5 evaluates nnDetection across ten development, nine general-
isation and three benchmarking data sets. The generalisation pool introduces previously
unseen image modalities, anatomical regions, object structures and annotation types.
The benchmarking pool allows for the comparison against cutting-edge task-specific
models and showcases that nnDetection is not just able to compete against these methods
but also achieves new state-of-the-art performance on the PN9 [14] and CTA-A [83] data
sets.
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Chapter 6 discusses our findings in the broader scope of the medical detection domain by
showing its limitations and impact on current work.

A summary of our work in the context of the previously introduced research questions
and future research directions is provided in Chapter 7. An overview of the corresponding
sections for the research questions is shown in Table 1.1.

Table 1.1: Overview of research questions in this thesis.
Research Questions Related Work Methods Results Discussion

RQ 1.1 Section 3.1.1 Section 4.1.1 Section 5.1.1 Section 6.1.1
RQ 1.2 Section 3.1.2 Section 4.1.2 Section 5.1.2 Section 6.1.2
RQ 1.3 Section 3.1.5 Section 4.1.3 Section 5.1.3 Section 6.1.3

RQ 2
Section 3.1.4 Section 4.2 Section 5.2 Section 6.2
Section 3.2

Disclosure of Contributions

The presented data sets, experiments, and discussions are part of a multidisciplinary
effort that involves several clinical and technical expert-level collaborators. To
reflect these collaborative efforts, this thesis uses the “we” form rather than the
“I” form to reflect these efforts. Chapter A contains detailed information on my
contributions and publications.

15



1 Introduction

16



CHAPTER 2

Fundamentals

Assigning spatial and categorical information to objects in images is a fundamental task
of computer vision algorithms. The granularity of the predicted spatial information
can vary between applications; delineation by bounding boxes is commonly referred to
as object detection [84, 85, 86, 87] and pixel-wise delineation is referred to as instance
segmentation [88, 85, 89]. Early works on object detection rely on a sliding window
scheme in combination with manual feature descriptors like Viola-Jones [90] or histogram
of oriented gradients (HOG) [91] to classify blocks in an image. After the huge success
of CNN based approaches, in the form of AlexNet [92] and VGG [93], in the ImageNet
competition [94] research started exploring possibilities to model the object detection
task with deep learning. Since the vast majority of today’s detection systems are based
on state-of-the-art neural networks, the following sections will explain different design
philosophies of deep learning-based object detection approaches.

2.1 Object Detection

2.1.1 Two-Stage Object Detection

All two-stage detection methods generate their predictions by first creating a large
number of, usually class-agnostic, region proposals, followed by a second classification
and regression module to refine the initial region proposals and assign the final class and
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confidence score to them. One of the earliest methods to leverage neural networks for
object detection is the Regions with CNN features (R-CNN) [95] framework, a commonly
used two-stage detector design which will be explained in the following sections.

Regions with CNN features (R-CNN)

The introduction of the R-CNN [95] model marks a significant leap forward, outperform-
ing previous efforts on multiple detection data sets by a large margin. It aims to replicate
the success of CNN based architectures from the ImageNet [94] classification benchmark
in the object detection domain.

Network design: The high-level structure of the R-CNN [95] method consists of three
central components: (1) a region proposal module to generate an initial set of region
candidates, (2) a CNN based feature extractor which encodes the information from
the regions into a single, fixed-sized vector and (3) class-specific classifier modules to
determine the class of each region. The overall architecture is depicted in Figure 2.1.

Region Proposal Feature Extraction RoI Classification

Input Image Warped 
Regions Encoder Feature 

Vector

Is this a rib fracture?

Yes

SVM Classifier Result

No(1) (2) (3)

Cls 0
Cls 1

Figure 2.1: Structural overview of Regions with CNN features (R-CNN) [95] detection
method. An initial set of region proposals is generated via the selective search
algorithm [96] and warped into fixed-sized regions (blue). Alex Net [92] is used
to extract a feature vector (red) from each region and processed by linear Support
Vector Machines (SVMs) [97] to classify the proposals. CT slice taken from RibFrac
data set [11, 12]. Reference segmentations are shown to indicate Regions of Interest
(RoIs). The structure of this figure is adapted from [95].

Region proposals: The region proposal module is realized via the selective search
method [96] to enable a fair comparison against prior work. However, there are no
restrictions on the design of the region proposal algorithm and other methods can be
used instead. Selective search first generates a large number of small segments [98],
aiming to find potential object positions without encapsulating multiple objects into a
single segment. These segments are progressively grouped into larger clusters, generating
a hierarchical grouping that captures objects on multiple scales. The groups present
potential objects and are called region proposals. During the inference process of the
R-CNN method, 2000 initial class agnostic region proposals are generated.
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2.1 Object Detection

Feature extraction: The feature extractor (encoder) is represented by Alex Net [92],
which generates a feature vector of size 4096 for each region proposal. Object detection
labels are scarce and expensive to annotate, which poses a significant problem for data-
hungry neural networks. To alleviate this problem, the feature extractor is first pre-
trained on the ImageNet [94] data set to initialize its weights. Since the selected CNN
architecture requires an input image size of 227 × 227, all-region proposals undergo affine
image warping to a fixed image size. To adapt to the changed classification setting of
the warped region proposals, the network is then fine-tuned on the target data set via a
classification task. This requires the assignment of a target label to each region proposal:
region proposals with an Intersection over Union (IoU) of 0.5 and higher are considered
positive examples during training, while all other classes are considered negative. The
classification layer of this network is not further used for detection.

Region classification: The classifier for the object detection stage is represented by class-
specific linear Support Vector Machines (SVMs). Greedy Non-maximum suppression
(NMS) removes duplicate predictions for each class separately. The label assignment
of the SVM classifier differs from the assignment rule used for the feature extractor:
only ground truth bounding boxes are considered as positive samples, while proposal
boxes with an IoU below 0.3 are considered negative. Proposals which are above an
IoU threshold of 0.3 are ignored during training. To balance the positive and negative
samples, Hard Negative Mining (HNM) [99, 100] is used.

Optionally, during a third training stage, additional regression targets can be predicted
to refine the initial proposal bounding box to boost the localisation performance. The
proposals are only used for this training step if their IoU with the most similar ground
truth bounding box exceeds 0.6. The regression targets 𝑡{𝑐,𝑠} are set to

𝑡𝑐 =
(𝑏𝑐 − �̂�𝑐)

�̂�𝑠
(2.1)

𝑡𝑠 = log(
𝑏𝑠
�̂�𝑠
) (2.2)

where 𝑏𝑐 is the centre of the ground truth, 𝑏𝑠 is the size of the ground truth, �̂�𝑐 is the center
of the prediction and �̂�𝑠 is the size of the prediction.

Fast R-CNN

The original R-CNN approach suffers from several downsides: (1) the training needs to be
conducted in three stages by first finetuning the CNN, second training the SVM models
for classification and finally training the regression models and (2) training and inference
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are very slow since each region is propagated individually through the neural network.
Fast R-CNN [101] tackles these problems by simplifying the training into a single-stage
process and sharing the feature computation across the region proposals. A schematic
overview is shown in Figure 2.2.

RoI Pooling

Project RoI

Image

Region Proposals

Encoder Feature Maps

Cls 0
Cls 1
Cls 2

Feature Vector

Shared 
FC

Classification Regression

RoI Head

Region Proposals Feature Extraction

Figure 2.2: Structural overview of the Fast R-CNN [101] detection method. The entire
image is processed by an encoder network to extract a low-resolution feature represen-
tation. Region proposals are then projected into the same low resolution, and Region
of Interest Pooling (RoI Pooling) is used to extract information into a fixed-sized
feature vector. Fully Connected (FC) layers first process the created representation,
followed by a classification and regression branch to create the final predictions. CT
slice is taken from the LIDC [13] data set. Reference segmentations are shown to
indicate Regions of Interest (RoIs).

RoI Pooling: By propagating the entire image through the neural network at once,
the feature computation is shared across all RoIs, which allows efficient training of Fast
R-CNN. The resulting representation of the image has smaller spatial dimensions than
the original image, usually by stride 𝑆 = 32. As a consequence, the region proposals
need to be projected into the low-resolution space first. The top left corner can be
projected with 𝑝𝑙𝑜𝑤 = ⌊𝑝𝑓 𝑢𝑙𝑙/𝑆⌋ − 1, and the bottom right corner is represented via
𝑝𝑙𝑜𝑤 = ⌈𝑝𝑓 𝑢𝑙𝑙/𝑆⌉ + 1 as proposed in [102]. 𝑝𝑙𝑜𝑤 and 𝑝𝑓 𝑢𝑙𝑙 refer to the coordinates in low
and full resolution, respectively. To obtain a fixed-sized feature vector, the projected RoI
is divided into roughly equally sized bins, where max pooling is applied. The coordinates
of the individual bins follow the same rounding convention as the projection formula [101,
102].

Region classification and regression: The features are then processed by two shared
Fully Connected (FC) layers and followed by two branches: the classification branch
assigns the class probabilities, including background, to the individual proposals, and
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the regression branch provides additional regression offsets to refine the initial proposal.
Multi-task learning is used to train the two branches simultaneously with a classification
𝐿cls and regression 𝐿reg loss, defined as Equation (2.3).

𝐿( ̂𝑦 , 𝑦 , 𝑡𝑦, 𝑏) = 𝐿cls( ̂𝑦 , 𝑦) + 𝜆reg1𝑦≠0𝐿reg(𝑡𝑦, 𝑏) (2.3)

𝑡𝑦 denotes the predicted regression targets for class 𝑦. 𝐿cls is set to the Cross Entropy (CE)
loss and is used to train the classification branch. 𝑦 = 0 indicates the background class,
letting the indicator function filter for predictions which are assigned to a foreground
object for the regression loss. 𝜆reg is a scalar factor to balance the different loss functions.
𝐿reg is set to the smooth L1 loss [101] formalised in Equation (2.4)

𝐿reg = ∑
𝑖∈{𝑐,𝑠}]

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡
𝑦, 𝑏) (2.4)

smooth𝐿1(𝑥) = {
0.5𝑥2 if |𝑥 | < 1
|𝑥| − 0.5 otherwise

(2.5)

The regression targets 𝑡 follow the same formulation as Equations (2.1) and (2.2).

Mini-batches of RoIs are assembled by sampling one of four samples with an IoU of at
least 0.5, which are considered positives, and the remaining RoIs are sampled with an IoU
between [0.1, 0.5) which are considered negatives. The regression is performed for each
class separately, and NMS is used to suppress duplicate predictions. The computational
efficiency of the network can be further improved by using a truncated Singular Value
Decomposition (SVD) to compress the fully connected layers, which become a bottleneck
when using a large number of RoIs.

Faster R-CNN

Previous iterations of the R-CNN method still rely on external region proposal mech-
anisms, like selective search [96], which become a bottleneck during real-time object
detection and can hamper performance. Faster R-CNN [36] replaces the external region
proposal mechanism with a CNN, which simultaneously generates the feature repre-
sentation used for the Fast R-CNN detector. An overview of the model is provided
in Figure 2.3.

Region Proposal Network (RPN): A neural network, in the original publication,
realized as a CNN [36], is used to extract a high-dimensional feature representation of
the input image. A sliding window scheme is used to run through all spatial locations
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Figure 2.3: Structural overview of Faster R-CNN [36] detection method. An encoder
network is used to project the image into a high-dimensional feature space. A sliding
window approach, in combination with predefined anchors, is used to predict a set
of region proposals by classifying and regressing the anchors. RoI Pooling is used
to extract fixed-sized feature vectors from the feature maps, which are processed
by two branches like the Fast R-CNN detector. CT slice is taken from the LIDC [13]
data set. Reference segmentations are shown to indicate RoIs.

and predict multiple region proposals per location. Each location is associated with
multiple anchor boxes [36] with varying scales and aspect ratios to represent templates
for objects of different sizes. The prediction is performed via a lightweight classification
and regression head consisting of a single shared FC layer and two small branches with
one FC layer for classification and regression each. Since the head is shared across
all locations, the sliding window scheme, as well as the FC layers, can be efficiently
implemented via convolutions. This module is responsible for predicting an initial set of
region proposals for the Fast R-CNN detector and is called RPN.

RPN training: During training, the anchors must be assigned a label for the classification
and regression losses. Anchors with an IoU of at least 0.7 with a ground truth object
or the best matching anchor for an otherwise unassigned ground truth are considered
positive examples. This assignment scheme is also called a one-to-many assignment
rule since multiple anchors can be assigned to the same ground truth object. Anchors
with an IoU below 0.3 are considered negative examples, and anchors between the two
IoU thresholds are ignored for the loss computation. The loss functions follow a similar
formulation as in Fast R-CNN, see Equation (2.3), where the CE loss (normalised by the
batch size) is used to train the classification branch and the smooth L1 loss (normalised
by the number of anchor locations) is used for the regression branch. 𝜆reg is set to 10
to balance the contributions of the classification and regression losses. Notably, the
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parameters are shared across spatial locations, but an independent regressor is trained
for each class and anchor scale. To balance foreground and background samples, the
same number of foreground and background anchors is sampled to compute the losses.
If there are not enough positive anchors, additional negative anchors are added to keep
the batch size consistent.

This design allows for efficient end-to-end training of the Faster R-CNN detector. The
training can either be performed in an alternating fashion [36], where only the RPN
or the RoI head is trained at a time, or in an approximate joint fashion [36] where the
RPN and RoI head are trained simultaneously and no gradients are backward-propagated
through the bounding box coordinates of the RPN. The approximate joint training
scheme has demonstrated results similar to those of the alternating training scheme while
speeding up the training. The method is not just significantly faster to train than previous
approaches but also achieves improved performance on the PASCAL VOC2012 [84] and
MS-COCO [85] data sets.

Mask R-CNN

In some scenarios, predicting bounding boxes can be limiting and exact delineations in
the form of segmentations are required, such as determining the exact volume of a lesion.
Instance segmentation algorithms which produce additional masks for the presented
objects are needed for these applications. Mask R-CNN [37] provides a simple extension
to the Faster R-CNN detector by adding an additional mask prediction branch to the
RoI head. As a result, it can produce high-quality instance segmentations and shows
improved bounding box detection performance [37].

Mask head: The mask head uses a fully convolutional design to process the feature
map and can be combined with a transposed convolution [103] to increase the spatial
resolution of the prediction. The loss used to train the RoI head Equation (2.3) is extended
with an additional mask component 𝐿mask to learn the segmentation. Since the classifier
branch determines the predicted class, binary segmentation masks for each class are
computed. The Binary Cross Entropy (BCE) loss compares the mask predictions against
the reference annotations.

RoI Align: Predicting segmentations requires the precise alignment of the features to
the pixel output and necessitates a refined cropping and resizing strategy for the RoIs.
RoI pooling [101](Section 2.1.1) has multiple quantization steps: (1) the quantization of
the RoI from the image to the low-resolution feature space and (2) the quantization of
the individual bins for the pooling operation. These can lead to misalignments between
the features and the produced output, which must be avoided for precise masks. RoI
Align [37] avoids these quantization steps by representing the coordinates via floating
point numbers and using bilinear interpolation for four regularly spaced points within
each bin. A max pooling operation aggregates these points to derive the fixed-sized RoI.
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R-CNN Extensions

Due to the effectiveness and wide adoption of the R-CNN detector scheme, several
extensions were proposed to refine its design and further improve its result. Cascade
R-CNN [53] and Hybrid Task Cascade (HTC) [54] extend the two-stage detection process
to multiple stages, which iteratively refine the region proposals of the previous stage.
This design aims to progressively refine the initial proposals and improve the localisation
quality. The RoI head was further refined in [104], which found that the classification
and regression branches benefit from different architectural designs. [105] and [106]
identify shortcomings in the assignment and sampling procedures which can be improved
to further boost performance. Furthermore, using one-stage detectors (Section 2.1.2)
as RPNs provides informative confidence scores for region proposals which can be
used to improve the final scores of the predictions [107]. Sparse R-CNN [108] moved
away from the design of predicted region proposals and instead learns constant region
proposals, which are processed by several refinement stages. This design does not require
additional de-duplication steps, removing the need for NMS. Finally, different feature
extraction networks, also called backbones, can be used to scale up the capacity of R-CNN
detection models and achieve highly competitive results on the MS-COCO data set [109].
The backbone is not limited to CNN architectures; ViTs [34] offer a highly effective
alternative [110, 111, 112].

2.1.2 One-Stage Object Detection

One-stage detection methods predict objects in a single shot without requiring operations
to be executed on individual RoIs. This simplifies the design of the methods and allows
for quicker inference procedures, which are essential in certain applications.

You Only Look Once (YOLO)

The You Only Look Once (YOLO) detector follows a simple design principle by dividing
the image into a grid of cells and predicting objects in each cell. The image is propagated
forward in its entirety, allowing the network to reason across the whole image in a
single shot. Each grid cell can predict 𝑀 bounding boxes and 𝑀 confidence scores. The
confidence scores provide an estimate for the presence of an object ̂𝑝(𝑜𝑏𝑗𝑒𝑐𝑡) (also referred
to as objectness) and the quality of the predicted bounding box �̂�. A cell only predicts
those objects whose centre lies inside the cell. The quality of the predicted bounding box
is measured by the IoU with the ground truth object. Furthermore, each cell predicts class
confidence scores ̂𝑝(𝑐𝑙𝑠|𝑜𝑏𝑗𝑒𝑐𝑡) representing the conditional probability of the predicted
bounding box corresponding to an object of the respective class.
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To obtain the final object confidence score ̂𝑜pred during inference, the predicted confidence
score and the class confidence score are multiplied according to Equation (2.6).

̂𝑜pred = ̂𝑝(𝑐𝑙𝑠|𝑜𝑏𝑗𝑒𝑐𝑡) ∗ ̂𝑝(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ �̂� = ̂𝑝(𝑐𝑙𝑠) ∗ �̂� (2.6)

As a consequence, each cell is only capable of predicting a single class, which can be a
limitation in images with dense object clusters. To avoid duplicate predictions, NMS is
utilized. The concept of the YOLO detector is depicted in Figure 2.4.

Input Image Encoder Grid Prediction

(1) Confidence Score x M 

(2) Bounding Box x M 

(3) Class Scores

Figure 2.4: Structural overview of You Only Look Once (YOLO) [113] detection method.
The input image is forwarded through a CNN to produce a low-resolution feature
representation which natively divides the image into grid cells. Each grid cell can
predict a fixed number of bounding boxes and confidence scores to learn size-specific
object properties. A single set of class scores is predicted for each cell representing
the conditional class probability. Reference segmentations are shown to indicate
RoIs. CT slice taken from RibFrac data set [11, 12].

Network design: The input image is processed by an encoder, originally using a deep
neural network inspired by GoogLeNet [114], to extract features from the image in a
grid-like structure. The density of the grid is directly influenced by the stride of the
network. In order to benefit from the availability of large image classification data sets in
the natural image processing domain, the original publication proposes to pre-train the
network on the ImageNet [94] data set and only perform a fine-tuning for the detection
task.

Assignment and losses: During the training, the predictions must be assigned to a
corresponding ground truth object to compute the losses. The procedure of assigning a
prediction to a ground truth object is also referred to as assignment in this thesis. The
bounding box with the highest IoU is selected for predicting the ground truth object.
Ground truth bounding box centres are encoded with respect to the cell boundaries,
and the whole image normalizes its size. The sum-squared error is used to optimize the
coordinates, the square root of the sizes, the confidence score and the class confidence
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scores between the predictions and ground truths. To balance the loss, those cells that
only contain background present a lower weight for loss computation.

YOLOv2: The originally presented design for YOLO still suffers from some disadvantages
when compared to other architectures like Fast R-CNN [101] and Faster R-CNN [36]: (1)
a comparably large number of localization errors and (2) rather low recall. YOLOv2 [115]
introduces several design changes to alleviate the aforementioned challenges. The net-
work is replaced with a more powerful CNN network, called Darknet-19 [115], which
utilities Batch Normalization [116] to speed up the convergence speed.

Furthermore, the anchor scheme, initially introduced in Faster R-CNN [36](Section 2.1.1)
is integrated into the model to increase its recall. The anchor sizes in [36] were manually
chosen andmight not achieve the best coverage across the given data set. To automatically
derive an improved set of anchors, this model utilizes k-means clustering to find better
object clusters and give a more appropriate anchor initialization. Furthermore, the
encoding of the predicted regression targets is exchanged to stabilize the training: the
coordinates are encodedwith respect to the current cell, and a sigmoid function normalizes
the outputs of the network.

Finally, to force the network to learn scale-adaptive features, a multi-scale training scheme
is utilized to change the resolution of the input images during the training. The resulting
model shows promising results on the Pascal VOC 2007 [84] and MS-COCO [85] data
sets.

YOLOv3: The design can be further refined by integrating additional components into
the detector. Instead of relying on a one-to-many assignment for training like [101, 36],
it uses a one-to-one assignment where the ground truth object is only assigned to the
anchor with the best IoU. Any anchor exceeding the pre-defined IoU threshold without
being assigned to a ground truth object is only used to compute the objectness loss and
ignored otherwise. Each classifier is trained independently by using the BCE loss and a
sigmoid activation function. Furthermore, the CNN structure was extended with residual
connections [29] and scaled in depth. The resulting network is called Darknet-53. Instead
of relying on a single scale for prediction, a design inspired by the Feature Pyramid
Network (FPN) [117] is utilized to predict objects from multiple scales, which boosts
performance on small objects. The developed method follows the original principles of
YOLO by offering a good trade-off between detection performance and runtime.

Single Shot MultiBox Detector (SSD)

The Single Shot MultiBox Detector (SSD) [118] follows a similar design principle as the
YOLO [113] detector by circumventing region proposals and directly producing the object
outputs. It utilizes a similar anchor design as Faster R-CNN[36] and combines it with
a multi-scale feature approach to predict at multiple resolution levels. By varying the
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anchor scales between levels, features can specialize on different object sizes. A schematic
of this approach is visualized in Figure 2.5
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Figure 2.5: Structural overview of Single Shot MultiBox Detector (SSD) [118] detection
method. The input image is processed by an encoder, for example, a CNN, which
produces features at multiple resolution levels. Each level used for the detection task
is processed by a detection module to classify and regress the pre-defined anchors.
The sizes of the anchors are varied between the levels to learn size-specific features.
The output from the levels is collected and processed with NMS to deduce the final
set of predictions. Reference segmentations are shown to indicate RoIs. CT slice
is taken from the LIDC [13] data set. The structure of this figure was adapted
from [118].

Network design: The VGG-16 [93] network is used as the basis for the design of the
SSD detector. It is modified to a fully convolutional design, and additional convolutions
progressively reduce the spatial dimensions of the features, which are appended at the
end. This design allows the extraction of feature maps of varying sizes that capture
information at different granularity levels.

Each feature map used for detection contributes 𝐴 anchor boxes per spatial location.
A 3 × 3 convolution is used to represent a sliding window approach which refines and
classifies (𝐶 classes) the anchors at each position. Each anchor is regressed via four
coordinates in the 2D case. Given a feature map of size 𝑀 × 𝑁, this results in 𝑀 ∗ 𝑁 ∗ 𝐴
object predictions represented as a (4+𝐶)∗𝐴×𝑀 ×𝑁 feature map. The regression targets
follow the same encoding as in the R-CNN detector [95].

Anchors and multi-scale features: In theory, there are no restrictions on how the
anchor boxes are selected for the different feature levels. Intuitively, levels with low
resolution are located deeper in the network and have larger receptive fields, which
allows them to capture information from larger objects effectively. High-resolution
feature maps can encode fine-grained information, which is essential for predicting small
and potentially dense objects. To encode this behaviour into the network, levels can be
associated with different scales such that larger anchors are positioned in deeper layers,
and small anchors are located in earlier layers. This design allows the levels to specialize
in different object sizes. If 𝐿 levels should be utilized for the detection, the scales can be
distributed as in Equation (2.7).
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𝑠𝑙 = 𝑠min +
𝑠max − 𝑠min

𝐿 − 1
(𝑙 − 1), 𝑙 ∈ [1, 𝐿] (2.7)

𝑠min represents the minimal scale and is set to 0.2 [118], 𝑠max represents the maximal scale
and is set to 0.9 [118]. The intermediate scales are distributed regularly. Additionally, each
location is associated with anchors of different shapes, which are modelled by different
aspect ratios of their sizes. The centre of each anchor is placed at the centre of the
respective feature location.

Training scheme: All anchors with an IoU above 0.5 and the best matching anchor per
ground truth object are considered positive examples. A multi-task loss is utilized, being
composed of a classification and coordinate regression loss. The CE loss is used to train
the classifier, while the smooth L1 [101] loss is used to train the regressor. The proposed
detection design suffers from a large class imbalance since there are many more negative
anchors than positive ones. Hard Negative Mining (HNM) is used to counteract this
imbalance by only sampling the highest-scoring negatives up to a ratio of three (negative):
one (positive) anchors. Furthermore, extensive data augmentation forces the network to
learn multi-scale information by either sampling an entire image, extracting a sub-patch
with a minimal IoU with ground truth objects or extracting a random sub-patch.

Retina Net

The previously presented one-stage detectors offer a simple design and quick inference
speed but fail to compete with state-of-the-art two-stage detection detectors on common
natural image benchmarks like the MS-COCO [85] data set. One of the major bottlenecks
when training this type of detector is the presence of many more negative anchors than
positive ones, skewing the gradients and making training inefficient. Furthermore, the
vast majority of these negative examples are located in easy-to-classify regions, which
only contribute to minor improvements in detection performance. To alleviate this prob-
lem, different variants of HNM were used in detectors [118, 119] but failed to adequately
tackle this issue for one-stage detectors. In contrast to two-stage detectors, one-stage de-
tectors work with a larger number of anchors, aggravating the aforementioned imbalance
of positive and negative examples.

Focal Loss: To address the significant imbalances between positive and negative anchors
as well as easy and hard-to-classify examples, the focal loss [35] was proposed. This loss
is presented as a central contribution of Retina Net [35] and presents an alternative to
HNM to automatically adjust the weighting, see Equation (2.8).

𝐿focal = −𝛼𝑡(1 − ̂𝑝𝑡)𝛾 log( ̂𝑝𝑡) (2.8)
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̂𝑝𝑡 = {
̂𝑝, if 𝑦 = 1

1 − ̂𝑝, if 𝑦 = 0
, 𝛼𝑡 = {

𝛼, if 𝑦 = 1
1 − 𝛼, if 𝑦 = 0

𝑦 ∈ 0, 1 indicates the binary ground truth class, ̂𝑝 is the predicted probability of the
classifier for a single class. By using a sigmoid activation function on the output of
the classifier and one-hot encoded reference classes, the loss can be extended to the
multi-class case. Focal loss can be adjusted via two hyperparameters: (1) 𝛼 can be used to
balance the importance of positive and negative examples, and (2) 𝛾 balances the weight
of easy and hard examples. By setting 𝛾 ≥ 1, easy-to-classify examples receive a much
lower weight than hard examples. If 𝛾 = 0, the focal loss becomes equivalent to the
commonly used BCE loss.

In addition to the focal loss, the initialization of the anchor classification layer is changed
to stabilize convergence at the beginning of training, where many negative examples can
dominate the training signal. The prior value 𝑝prior is introduced as a hyperparameter,
for example 𝑝prior = 0.01 [35], and Equation (2.9) is used to initialize the bias value of the
last convolution of the classification branch in the detection head.

bias = −𝑙𝑜𝑔(
1 − 𝑝prior
𝑝prior

) (2.9)

Feature PyramidNetwork (FPN): The effective usage of multi-scale features is essential
for achieving robust performance with one-stage detectors. To achieve this, Retina
Net [35] uses a ResNet [29] backbone network to extract features and a Feature Pyramid
Network (FPN) to recombine coarse features with fine-grained ones. Features from the
lower levels are progressively up-sampled via bilinear interpolation and combined with
higher-level features via elementwise addition. All created feature maps have the same
number of channels, so the detection head can be shared across all levels. The detection
head of Retina Net [35] consists of a classification and regression branch, each with
four intermediate convolutions and an additional output convolution. The classification
branch is responsible for classifying the anchor, while the regression branch predicts
regression offsets for each class-agnostic anchor. The parameters between the branches
are not shared. The resulting network architecture is shown in Figure 2.6

Ablation experiments in [35] show that increasing the number of anchors per location
improves performance. Consequently, each spatial location in the feature maps is associ-
ated with a set of nine anchors defined by three sizes and three aspect ratios. The final
model is the first detector able to unify the simple design of one-stage detectors with
state-of-the-art results from two-stage detection models.
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Figure 2.6: Structural overview of Retina Net [35] detection method. The input image
is first processed by an encoder-decoder (also called backbone-neck in this thesis)
architecture to extract multi-scale information. Each level is processed by a shared
detection head consisting of two branches: one for classification and one for re-
gression. The outputs are collected and processed via NMS to remove duplicate
predictions. Reference segmentations are shown to indicate RoIs. CT slice is taken
from the LIDC [13] data set.

One-stage Detection Extensions

YOLO: This line of detectors is still continued by various other authors with a focus
on balancing speed and performance. Over time many more variations were proposed
including YOLOv4 [120], YOLOv6 [121], YOLOv7 [122], YOLOv9 [123] and YOLOX [124]
using more powerful backbone architectures, more sophisticated augmentation schemes,
different loss functions and model scaling.

Architecture scaling: The availability of increasingly larger data sets and faster comput-
ing resources fuels the development of powerful models. Pre-training is still an essential
part of the object detection community, which started leveraging bigger classification
data sets like ImageNet21k [125] for training backbones and large-scale detection data
sets like Objects365 [87] for pre-training-entire detection networks [126, 127]. Further
advancements for backbones are driven by self-supervised learning like Masked Au-
toencoders [128, 109] or Multi-Modal settings [112, 111, 129, 130] which allows the usage
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of unlabeled data to learn representations across millions of images [129]. These rich
resources enable the training of other feature extractors like ViTs [34, 110]. Increasing
the model’s capacity is not just limited to the encoder network but is also pursued by the
decoder network, which is responsible for recombining low-level features with high-level
ones. These designs add additional connections [131, 132, 133] to the decoder to combine
information from different layers or apply the decoder several times [126]. Scaling in-
dividual components might be suboptimal for achieving the best possible performance.
Hence, different model scaling strategies have been proposed to analyse the impact of
training length, augmentation settings and compound scaling [134, 126].

Loss functions: Further advancements can be observed in the development of loss
functions to improve both the classification and localization performance of current
detection models. The generalized focal loss [135, 136] follows a similar idea as the
YOLOv1 [113] detector by merging the quality measure of the bounding box prediction
and the classification information into a single value. This forces the neural network to
align the confidence score to the expected bounding box quality and avoids diverging
predictions. Loss functions to regress the anchors are also improving by moving away
from approximations to directly penalize the difference in IoU between the prediction
and the reference box. The formulation of the IoU loss can be found in [137] but is usually
replaced by the Generalised Intersection over Union (GIoU) loss [138]. The original
IoU loss was not able to compute gradients between predictions and reference boxes,
which did not overlap with each other. This downside is alleviated by the GIoU loss,
which relies on the encapsulating box of the prediction and ground truth to penalize
non-overlapping boxes. Further extensions in the form of the Distance IoU [139] loss and
Complete IoU [139] loss incorporate additional characteristics of the centre points and
shapes to refine the regression performance.

Assignment strategies: The assignment of anchor boxes to ground truth boxes is
realized as a manual heuristic which can be manipulated and exchanged for alternative
formulations. Adaptive Training Sample Selection (ATSS) [140] moved away from a single
static IoU threshold towards a more flexible formulation which can derive a dynamic
threshold based on the presented characteristics of the object. The proposed change in
the assignment can bridge the gap between classic anchor-based detection approaches
and newer approaches like Fully Convolutional One-Stage Object Detection (FCOS) [55],
which do not rely on the design of prior anchor boxes. Other assignment strategies which
aim to remove the dependency on an IoU can also be used, for example, in the form of a
probabilistic assignment strategy [141]. Instead of solely relying on the similarity of the
boxes, it is also possible to implement other similarity measures that combine differences
from classification and localization into a single score. Multi-task loss functions are able
to quantify these differences and can be combined with optimization techniques, like
optimal transport, to derive an assignment [142]. Recently, one-to-one [143] or one-to-
few[144] assignment strategies have become more popular to avoid the dependence on
NMS for de-duplicating predictions.
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2.1.3 Direct Set Prediction for Object Detection

DEtection TRansformer (DETR)

Anchor-based models decompose object detection as a classification and regression
task by using a surrogate task. This workaround is needed for CNN based approaches,
which are not natively able to predict a dynamic number of objects. As a consequence,
these approaches rely on several manual heuristics: sizes and shapes of anchor boxes,
assignment rules to find correspondences between anchor and ground truth boxes, as
well as the NMS heuristic to remove duplicate predictions. The DEtection TRansformer
(DETR) model popularized a different formulation for object detection tasks, namely
direct set prediction. Instead of relying on anchors [35, 36, 37] or other priors (like
centre points [55]), matching is directly performed on the outputs by searching for an
optimal bipartite matching. This yields a one-to-one correspondence between predictions
and ground truth objects, eliminating the need for handcrafted heuristics. The core
functionality of DETR models can be split into two components: (1) a mechanism to
match predictions and ground truth objects to compute the detection loss and (2) an
architecture able to predict a set of bounding boxes and class correspondences.

Matching and Loss: In order to compute a loss between the predictions and ground
truth objects, which is necessary to train any deep learning-based detection model, a
matching between the set of predictions and the set of ground truth objects needs to be
derived. The mechanism to perform the matching needs to fulfil two requirements: (1)
No additional postprocessing steps, like NMS, should be required to produce the outputs.
This necessitates that the network only produces a single output per object and requires
a one-to-one matching strategy during training. (2) The matching must be permutation
invariant since objects do not have a natural ordering within images.

Let ̂𝑦 denote the set of predictions from the model and 𝑦 the set of ground truth objects.
The number of predictions the model provides remains constant for all images, while
the number of ground truth objects naturally varies between images. To ensure that
all objects in an image can be predicted, the number of predictions, represented as a
hyperparameter, must exceed the number of objects in the image. To still compute a one-
to-one assignment, the set of ground truth objects is extended with additional ”no object”
∅ elements until it has the same size as the set of predictions. To fulfil the previously
derived requirements for the matching strategy, an optimal bipartite matching can be
determined; see Figure 2.7.

To find a suitable matching, it is necessary to measure the similarity between predictions
and ground truth objects to assign a cost for each potential pair. The cost function 𝐿cost
measures both similarity in the class assignment and spatial similarity. 𝐿cost-cls measures
the similarity between the predicted class and the assigned class and follows a similar
design as a classification loss function. Spatial similarity can be measured via typical
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No Object  ∅ No Object  ∅

Ltrain(y, ̂y, θopt) = λclsLcls + λref Lreg

Matching  to find  θoptPrediction   ̂y Ground Truth   y

Training Loss   Ltrain

Lcost(y, ̂y, θ) = λcost−clsLcost−cls + λcost−regLcost−reg

optimise 
matching  θ

optimal 
matching  θopt

Cost Function   Lcost

Figure 2.7: Matching between predictions and ground truth of DEtection TRansformer
(DETR) [38] detection method. A direct set prediction method produces a set
̂𝑦 representing bounding boxes and class correspondences. The ground truth set
of objects is extended with additional elements representing background (or ”no
object”) until it contains the same number of elements as the set of predictions.
The cost function 𝐿𝑐𝑜𝑠𝑡 measures the similarity between the predictions and ground
truth objects to assign a cost to the current assignment 𝜃. After finding the best
matching 𝜃𝑜𝑝𝑡, the training loss can be computed. Reference segmentations are shown
to indicate RoIs. CT slice is taken from the LIDC [13] data set.

regression loss functions and is expressed as 𝐿cost-reg. Let 𝑖 denote the 𝑖-th pair between
the two sets, 𝑐𝑖 the class of the ground truth, ̂𝑝𝑖 the predicted probability for element 𝑖, ̂𝑏𝑖
the predicted bounding box, 𝑏𝑖 the assigned ground truth bounding box and 𝐿𝐺𝐼 𝑜𝑈 the
GIoU loss. The cost for an assignment 𝜃, which defines the pairing between the sets, can
then be written as

𝐿cost(𝑦 , ̂𝑦 , 𝜃) =
𝑁
∑
𝑖
𝜆cost-cls𝐿cost-cls,𝑖 + 𝜆cost-reg𝐿cost-reg,𝑖

=
𝑁
∑
𝑖
−𝜆cost-cls ̂𝑝𝑖 + 𝜆cost-reg1𝑐𝑖≠∅(𝜆𝐿1‖𝑏𝑖 − ̂𝑏𝑖‖ + 𝜆𝐺𝐼 𝑜𝑈𝐿𝐺𝐼 𝑜𝑈(𝑏𝑖, ̂𝑏𝑖)).

The resulting matching problem can be effectively solved by using the Hungarian
method [145] to find the optimal bipartite matching 𝜃𝑜𝑝𝑡. After finding the matching
which minimizes the cost function, the training loss function 𝐿𝑡𝑟𝑎𝑖𝑛 can be formulated as

𝐿(𝑦, ̂𝑦 , 𝜃𝑜𝑝𝑡) = 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠 + 𝜆𝑟𝑒𝑔𝐿𝑟𝑒𝑔 (2.10)

where 𝐿𝑐𝑙𝑠 is set to the CE loss and 𝐿𝑟𝑒𝑔 is set to the sum of the GIoU and L1 loss. This
design allows the direct prediction of a set of bounding boxes and confidence scores
without relying on any other proxy task formulation.

Architecture: An overview of the individual components of the DETR architecture
is shown in Figure 2.8. The first component of the DETR architecture is an encoder
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Figure 2.8: Architectural components of DEtection TRansformer (DETR) [38] detection
method. An encoder network first processes the image to extract low-resolution
representation. Afterwards, it is fed into a transformer model with an encoder and
a decoder model. The decoder uses cross-attention and learned object queries to
produce an initial set of features which are predicted by a shared Feedforward Neural
Network (FFN) to produce the final confidence scores, classes and bounding boxes.
Reference segmentations are shown to indicate RoIs. CT slice is taken from the
LIDC [13] data set.

network which processes the input image to extract a low-resolution feature map. Since
the design does not impose any special restrictions on the architecture, both CNN and
transformer-based feature extraction networks can be used. A point-wise convolution
reduces the number of channels of the generated feature representation. The spatial
dimensions of the result are flattened into a sequence where each spatial location is
interpreted as a token. To maintain information about the location of individual tokens,
a spatial encoding is added to them. The spatial encoding is an alternating collection
of sine and cosine functions with different frequencies to provide a unique indicator
for each position in the feature map. The one dimensional formulation [146] is shown
in Equation (2.11),

𝑃𝐸(𝑙,2𝑘) = sin( 𝑙

10000
2𝑘
𝑑

), 𝑃𝐸(𝑙,2𝑘+1) = cos( 𝑙

10000
2𝑘
𝑑

) (2.11)

where 𝑙 denotes the spatial position, 𝑘 is the index of the channel, and 𝑑 refers to the
dimension of the feature vector.

Transformers [146] are powerful models to process sequences of information with Multi-
Head Attention (MHA). The core design depends on the attention mechanism, which
can be interpreted as a weighted dictionary lookup. Let the queries 𝑄, keys 𝐾 and values
𝑉 be represented by matrices. The scaled dot-product attention [146] mechanism can than
be formulated as

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑
)𝑉 (2.12)
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where the dot product between 𝑄 and 𝐾 measures their similarity. The result is used to
assign a weight to the entries in 𝑉. MHA uses multiple of these attention operations in
parallel by first applying different linear projections to its inputs and concatenating the
results after the attention operation. Another linear layer processes the concatenated
output. When the same input is used for 𝑄, 𝐾 and 𝑉, this operation is also called Multi-
Head Self-Attention (MHSA).
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Figure 2.9: Transformer architecture of DEtection TRansformer (DETR) [38] detection
method. The transformer encoder processes the flattened feature map from the
backbone network with multiple transformer blocks using MHSA. Positional embed-
dings are to preserve the location information of individual tokens. The transformer
decoder decodes multiple queries in parallel using self-attention and cross-attention.
Object queries are added to ensure the prediction of different objects. Image adapted
from [38].

An overview of the transformer architecture of the DETR detector is shown in Figure 2.9.
The transformer encoder consists of 𝐸 = 6 transformer blocks, each using a MHSA
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operation, two normalization layers, a FFN and two residual connections. The positional
encoding is added to the keys and queries before each attention layer in the encoder
network. The transformer decoder allows the decoding of queries while obtaining
information from the transformer encoder. This is achieved by using cross-attention,
where the information from the transformer encoder is used as the keys, and the queries
are computed from the decoder. Due to the permutation invariance of the transformer
operations, an additional positional encoding is added to the decoder’s queries to make
them distinct from each other. These encodings are represented as learnable embeddings
and are called object queries. The decoder consists of 𝐷 = 6 transformer decoder blocks
where the intermediate outputs are also processed by the detection head to produce
additional auxiliary losses.

The detection head is represented by two branches responsible for classification and
bounding box prediction. A linear layer represents the classification branch, while the
bounding box branch is a three-layer Multilayer Perceptron (MLP). To further optimize
ranking-based detection metrics, the highest-scoring foreground class is used for each
prediction.

Deformable DETR

While the introduction of the direct set prediction scheme via transformers marked
the beginning of a new type of detection model, it also suffered from some downsides
when compared to classical detectors. The transformer and, thus, the detection process
only has access to a single resolution, due to the quadratic increase in compute and
memory with longer sequence length. As a consequence, it obtains very promising results
for large objects but suffers from performance deficits for detecting smaller structures.
Furthermore, it requires a significantly extended training schedule to compete against
anchor-based detectors. The model was trained for 500 epochs on the MS-COCO [85]
data set, exceeding typical training times from Faster R-CNN by an entire magnitude.

To address these shortcomings, Deformable DETR [147] introduces the concept of De-
formable Attention, which replaces the typical self-attention mechanism in the encoder
and cross-attention layers of the decoder. By further refining its design with iterative
bounding box refinement [147] and a two-stage formulation [147], it achieves highly
promising results on the MS-COCO [85] benchmark.

Multi-Scale Deformable Attention: MHSA sets each point in relation to all other
points, which produces a lot of computational overhead. Deformable Attention [147] uses
a sparse attention mechanism by restricting computations to a sparse set of reference
points. The basic principle is visualised in Figure 2.10. The query feature is used to
predict multiple offsets from the reference point where the information is extracted from
a feature map. Additionally, a linear layer and a softmax operation are used to determine
attention weights from the query feature. The information from the points and the
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attention weights are aggregated into a single vector. Like multi-head attention, this
operation is performed for multiple heads in parallel, using different projection layers
to extract information from different sampling offsets. The results from the heads are
concatenated and processed by a linear layer. This principle can be extended to process
multi-scale information by projecting the reference point to different resolution levels
and predicting separate offsets and attention weights for them.
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Figure 2.10: Schematic of Deformable Attention [147]. The query feature is used to predict
offsets and attention weights for the reference point. The offsets are applied to the
reference point to extract information from multiple spatial locations of a feature
map. Attention weights are used to aggregate the information from different
positions. This process is performed for multiple attention heads in parallel, and the
result is concatenated. The final output is obtained by applying a linear layer to the
concatenated features. Information can also be extracted from multiple resolution
levels simultaneously, but only a single level is shown for simplicity. Image structure
adapted from [147].

Iterative Bounding Box Refinement: All intermediate features produced by the
transformer decoder are used to produce auxiliary bounding box predictions. Instead of
predicting the boxes from scratch each time, iterative bounding box refinement refines
the predicted bounding box from the previous block. The bounding box 𝑏 of block 𝑏𝑙
can be obtained by 𝑏𝑏𝑙 = 𝑏𝑏𝑙−1 + △𝑏𝑙 where △𝑏𝑙 denotes the predicted regression delta
from the 𝑏𝑙-th block (coordinate normalization is omitted for simplicity). In contrast
to the original DETR model, the FFN detection heads are not shared between decoder
blocks. To stabilize training, the gradients are only propagated back through the predicted
regression deltas and not through the previous bounding boxes. Since the bounding boxes
are iteratively refined, their centres can be used as reference points for the deformable
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attention operation. Additionally, the sampling offsets can be scaled by the predicted
bounding box size.

Two-Stage Deformable DETR: Using each spatial position as a query in the transformer
decoder results in unreasonable memory consumption. Therefore, an initial set of object
proposals is generated first. To obtain a high-quality set of initial reference points, the
encoder features are first processed by a detection head which predicts confidence scores
and bounding boxes. Each spatial location in the feature map serves as an initial template
with scale 0.05∗2.0𝑙 where l denotes the l-th level used for prediction. The highest-scoring
predictions are selected as reference points for the transformer decoder. Furthermore,
the predictions undergo a positional encoding step and linear projection to be used as
positional embeddings of the queries.

Training Details: Deformable DETR is based on the same principles as the original
DETR architecture and follows a direct set prediction approach. Since the number of
predicted objects is usually significantly larger than the number of ground truth objects in
the image, many objects are assigned to the ’no object’ category, leading to an imbalanced
classification task. This can be alleviated by using the focal loss [35], which assigns a
dynamic weight to the predictions and allows for a further increase in the number of
predictions from the model. The final prediction is based on the top-k highest-scoring
predictions.

DETR Extensions

The introduction of the DETR architecture sparked the interest of the domain, and a
large number of follow-up publications improved upon its design principles. Conditional
DETR [61] decouples the spatial information from the content information in the attention
operation to speed up training convergence. Additionally, reference points are used to
represent spatial information of the object queries. This direction was further developed
into the design of Dynamic Anchor Box - DETR (DAB-DETR) [60], which is not limited to
reference points but introduces learnable anchor boxes to incorporate information about
the size of the objects. This improves the focus of the queries, and the attention operation
can be interpreted as a soft RoI Pooling in this scenario. DN-DETR [59] introduces
denoising groups to accelerate the training due to instabilities in the Hungarian matching.
Ground truth objects are augmented via noise, and the model is tasked to reconstruct the
proposals, which provides an additional auxiliary task to stabilize the training. DINO-
DETR [39] proposes a contrastive denoising task, a mixed query selection scheme to
initialize the positional part of the decoder queries while keeping the content parts static
and a refined scheme for iterative bounding box refinement.
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2.1.4 Other Detection Approaches

While this thesis focuses on the design of anchor-based one-stage, anchor-based two-
stage and direct set prediction methods due to their popularity in the natural image
processing domain, more formulations for the detection task exist. FCOS [55] proposes a
one-stage detection design which is built upon centre points rather than anchor boxes.
This design reduces the number of hyperparameters associated with the design of a
one-stage detector and shows improved performance. Zhang et al. [140] investigated
the performance difference between point-based and anchor-based one-stage detection
models and close the gap by proposing a new matching strategy.

Instead of directly representing objects, extreme point detectors formulate the detec-
tion task as a keypoint prediction and grouping problem. CornerNet [56] represents
objects by their top-left and bottom-right corner points, which are predicted as part of a
heatmap. The grouping of the points is determined via predicted associative embeddings.
ExtremeNet [57] uses all four corners and the centre point to represent objects. Grouping
is performed by looking at each possible combination of corners and using geometrical
constraints to filter irrelevant combinations.

Pix2Seq [148] takes inspiration from the language modelling domain and represents
objects and labels as tokens which are conditioned on the image. The proposed approach
includes minimal task-specific biases and produces its output via next-token prediction.

2.2 Evaluation

The evaluation of object detection tasks requires multiple sequential steps since the
predicted set of objects and the set of ground truth objects do not naturally inhibit
correspondence. Consequently, the similarity between the predicted bounding boxes and
the ground truth bounding boxes must be measured via a localization criterion. Based on
the measured similarities and the confidence scores from the predictions, it is possible
to match predictions and ground truth objects. This assigns the matched label to each
prediction and determines missed ground truth objects, as visualised in Figure 2.11. Given
a defined confidence threshold, this yields the number of True Positives (TPs), False
Positives (FPs), and False Negatives (FNs), which can be used in subsequent ranking-
based or counting-based metrics to quantify the detector performance. Evaluation on the
object level does not consider True Negative (TN) predictions since there is an infinite
number of possible predictions which do not correspond to any object in the image.
To weigh each class equally, each step is performed separately for all classes, and the
results are averaged at the end. This also ensures that only predictions and reference
objects of the same class are matched. A systematic approach for selecting the correct
localization criterion, matching scheme and metric can be found in [48]. Potential pitfalls
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for individual components can be found in [149]. The following sections will introduce
the localization criterion, matching scheme and metrics used in this thesis.
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Figure 2.11: Object-level evaluation procedure. Object detection tasks have two sets of
objects: ground truth objects and predictions with an associated confidence score.
A localization criterion calculates the similarity between the predictions and ground
truth objects. During the matching phase, predictions are assigned to a single object
and a matched label is derived. Based on the matched labels and the false negatives,
it is possible to compute counting and ranking-based metrics.

2.2.1 Localization Criterion

The localization criterion defines the desired granularity of the spatial information pro-
duced by the detectionmodel. If the location and size of the objects should be incorporated,
for example, when a rough delineation is needed, the Intersection over Union (IoU) can
be used:

IoU(𝐴, 𝐵) = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

=
Intersection(𝐴, 𝐵)

Union(𝐴, 𝐵)
. (2.13)

The IoU measures the overlap between two objects and can be applied to both instance
segmentation and bounding boxes. Since most evaluation metrics depend on counting
statistics, at least one additional IoU threshold 𝑡𝐼 𝑜𝑈 must be derived to define a sufficiently
accurate prediction. A typical choice is the selection of multiple thresholds to reflect
varying degrees of granularity in the predictions. Since the IoU has a cubic decline in 3D
and quadratic decline in 2D cases, the IoU thresholds are usually lower for 3D detection
tasks.

Another commonly used localization criterion in the medical domain is the distance
between the centre points of the ground truth and prediction. This criterion primarily
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measures the position of the predictions rather than the correct size of the object. Sim-
ilar to the IoU localization criterion, a maximal distance needs to be defined to define
sufficiently accurate predictions. To adapt the necessary precision on a per-object basis,
the threshold can be selected based on the radius of the ground truth object. This is
especially useful for spherical annotations. For very small objects, it is also possible to
select a constant maximal distance.

2.2.2 Matching

After defining the localization criterion to measure the similarity between objects, the
actual correspondence between the prediction and ground truth must be determined. In
addition to the spatial information, all methods in this thesis produce a confidence score
to allow for general-purpose detection. In this scenario, greedy matching by confidence
score [48] can be utilized to find the correspondences. Starting with the highest scoring
prediction, the most similar ground truth object is assigned to it if the prediction is suffi-
ciently accurate and the ground truth was not assigned to another prediction. Duplicate
predictions are considered FP, and thus, each ground truth can be assigned to at most one
prediction. This process is repeated by iteratively going through all of the predictions in
descending order of their confidence scores. If no-confidence scores are available for the
predictions, other matching strategies can be used. Please refer to [48] for information
on these.

2.2.3 Counting Metrics

If the object level performance needs to be evaluated at a single confidence threshold,
also called a single working point, counting metrics can be used to compute common
statistical quantities. Recall 𝑅 (also called sensitivity) and precision 𝑃 are often used to
quantify the detection performance due to their effectiveness in incorporating TP, FP
and FN, see eqs. (2.14) and (2.15).

𝑅 = TP
TP + FN

=
|Correct Objects|

|Ground Truth Objects|
(2.14)

𝑃 = TP
TP + FP

=
|Correct Objects|
|Predicted Objects|

(2.15)

Both quantities can also be combined into a single metric which is called 𝐹𝛽 score or 𝐹1
score if 𝛽 = 1 which can be formulated as
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𝐹𝛽 = (1 + 𝛽2) 𝑃 ⋅ 𝑅
(𝛽2 ⋅ 𝑃) + 𝑅

(2.16)

(2.17)

𝐹1 = 2 𝑃 ⋅ 𝑅
𝑃 + 𝑅

= 2TP
2TP + FP + FN

. (2.18)

2.2.4 Ranking Metrics

If the predictions are associated with confidence scores, it is possible to determine the
method’s performance at all possible working points to capture the full breadth of its
capabilities. Ranking-based metrics do not depend on a single confidence threshold but
rank the predictions relative to each other to compute the counting statistics at each
working point. This is especially useful if general-purpose detection models are being
developed without a predefined task which might impose additional requirements. The
two most commonly used ranking metrics are introduced now.

mean Average Precision (mAP)

As mentioned earlier, a common combination of metrics to measure object detection
performance is precision and recall. It is possible to compute both counting metrics at
varying working points by changing the confidence threshold and thereby constructing a
precision-recall curve. To compute the final metric, the resulting curve is first smoothed
by selecting the highest precision value of all points with lower recall. The monotonically
decreasing curve is interpolated at multiple predefined recall values, which yield the
precision values ̂𝑃. The exact number of interpolation points varies between benchmarks.
For example, the MS-COCO [85] benchmark uses 101 points. Averaging the retrieved
values results in the mean Average Precision (mAP) for a single localization threshold
𝑡𝐼 𝑜𝑈, as shown in Equation (2.19).

APMS-COCO(𝑡𝐼 𝑜𝑈) =
1
|𝑟 |

∑
𝑟

P̂R=𝑟 (2.19)

𝑟 ∈ {0, 0.01, ..., 1}

Additionally, this procedure can be repeated for multiple IoU thresholds and the values
can be combined into a single value by computing their mean to capture performance
across multiple localisation thresholds.
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Free-response Receiver Operating Characteristic (FROC)

Instead of measuring the number of FPs with respect to the number of TPs, it is also
possible to relate them to the number of images. This can be expressed in the False
Positives per Image (FPPI) value and can be used in combination with the recall to
construct the Free-response Receiver Operating Characteristic (FROC). The FROC score
is computed by determining the recall at pre-defined FPPI values 𝐹 and averaging them,
see Equation (2.20).

FROC = 1
|𝐹 |

∑
𝑓 ∈𝐹

RFPPI=𝑓 (2.20)

2.2.5 Patient-Level Evaluation

In clinical scenarios, it is often necessary to aggregate object-level information to make
decisions about patients. The spatial information is irrelevant in these cases, and the
evaluation can be performed using patient-level statistics. In contrast to the object-level
evaluation, it is also possible to determine patients who were correctly rejected by the
algorithms, commonly referred to as TN. This enables the computation of additional
counting-based metrics like Specificity (𝑆𝑃), Positive Predictive Value (PPV) and Negative
Predictive Value (NPV), as shown in Equation (2.23).

𝑆𝑃 = TN
TN + FP

(2.21)

𝑃𝑃𝑉 = TP
TP + FP

(2.22)

𝑁𝑃𝑉 = TN
TN + FN

(2.23)

In addition to the counting metrics, it is also possible to compute patient-level ranking-
based metrics to capture all possible working points. The Receiver Operating Curve
(ROC) curve computes the sensitivity with respect to the false positive rate, which can
also be written as 1 − Specificty. To compare methods by means of a single value, it is
possible to compute the area under the ROC curve, which is commonly denoted as the
Area under the Receiver Operating Curve (AUROC).
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CHAPTER 3

Related Work

This chapter presents an overview of related work for medical object detection methods
for volumetric data, which is the primary focus of this thesis. It starts by highlighting
methods that aim to automate specific tasks in the medical domain, such as mediastinal
lesion-, vessel occlusion-, aneurysm-, and lung nodule detection. The second part of
this chapter showcases an alternative to this design: the development of methods that
are not limited to a single medical task but can be generalized across a broad range of
applications.

3.1 Task Specific Design of Medical Object Detection
Models

Existing solutions for volumetric object detection tasks in the medical domain focus on
individual clinical applications and design task-specific methods. The following sections
will highlight the most relevant applications in the scope of the previously defined
research questions, see Section 1.2.

3.1.1 Detecting Mediastinal Lesions

The mediastinum, a region located between the lungs, contains multiple vital anatomical
structures, including the trachea, oesophagus, nerve pathways, vessel structures and the
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heart. Its critical location and the significance of its organs require the timely detection
of lesions within the mediastinal area. Despite its clinical relevance, this detection task
did not receive significant attention in past studies, likely caused by the absence of
publicly available data sets that researchers can easily use. To address the scarcity of
publicly data sets for this region, the Mediastinal Lesion Analysis Challenge was hosted
at the The Medical Image Computing and Computer Assisted Intervention (MICCAI)
2022 conference. As part of this competition, a data set consisting of 1100 CT scans was
established by the organisers, and the training and validation cases consisting of 880
scans are publicly available.

3.1.2 Vessel Occlusion Detection

As outlined in Section 1.2.1, detecting vessel occlusions constitutes a very important prob-
lem and automated algorithms can provide additional support in these critical situations.
Mechanical thrombectomy is a common treatment for accessible occlusion types but
requires precise information about the occlusion’s location, which can be obtained from
multiple image modalities like CTA, NCCT and CTP. This thesis specifically includes a
study on CTA acquisitions, see Section 1.2.1, since it is a broadly available imaging modal-
ity. However, manually screening these scans by clinicians is a process that can be both
time-consuming and prone to errors [150]. As a result, multiple research publications as
well as commercial solutions exist in this field, which will be presented in the following:

• Amukotuwa et al. (2019) [151]: This study outlines the high-level structure of the
commercial tool RAPID-CTA and its evaluation within a cohort of 926 patients with
CTA images. The method comprises many hand-crafted processing steps, including
cropping to the head region, co-registration, bone removal, vessel extraction, and
hemisphere comparison. Occlusions are determined via manually-defined reference
values for vessel segment length or voxel intensities. A second analysis of the
performance of RAPID-CTA within a cohort of 477 patients can be found in [152].

• Barman et al. (2019) [153]: The proposed method is a deep learning-based clas-
sification network consisting of inception modules which aim to leverage the
symmetries of the brain. A high-dimensional embedding is extracted from the two
hemispheres of the brain through a neural network. By directly subtracting the
embeddings from each other, the authors aim to attenuate the differences in the
representations. The evaluation was conducted on CTA images from 217 subjects.
This line of work was continued in [153], which evaluates it on a cohort of 297
patients.

• Stib et al. (2020) [154]: Most deep learning methods can only be applied to a
sub-volume of the entire 3D scan due to Video Random Access Memory (VRAM)
limitations, which constitutes a problem for typical classification tasks. After
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extracting the vasculature and cropping the images to the brain region, it is possible
to use a Maximum Intensity Projection to project the 3D data onto a 2D plane,
which allows the direct application of common classification deep learning models.
This study specifically leverages a DenseNet-121 [31]. The data set comprises
multiphase CTA, which includes acquiring multiple time points to capture the peak
arterial, the peak venous and the late venous phase.

• Thamm et al. (2020) [155]: Many methods rely on extracting the vessel tree to
compute statistics or incorporate additional prior information. By designing an
elaborate processing pipeline consisting of several manually-defined heuristics to
remove bone structures, perform registration to a brain atlas and apply multiple
filter operations Thamm et al. extract a vessel tree from CTA images. Based on the
absence of expected vessel segments, it is possible to infer the presence of vessel
occlusions.

• Olive-Gadea et al. (2020) [156]: This study evaluates a DenseNet [31] classification
system, called Methinks LVO, on a cohort of 1453 patients with 823 Large Vessel
Occlusion (LVO) cases. In contrast to other studies, NCCT images are used for this
method.

• Dehkharghani et al. (2021) [157]: The authors evaluate the commercial software
RAPID-LVO on a cohort of 217 patients with 109 positive findings.

• Yahav-Dovrat et al. (2021) [158]: This study evaluates the commercial solution
Viz LVO and provides a high-level overview of its internal workings. A deep
learning-based segmentation approach based on the U-Net [40] architecture is used
to segment the vessel structures. Manual heuristics are applied to the extracted
vessel tree to obtain information about potential vessel occlusions.

• Rava et al. (2021) [159]: The deep learning-based Canon Auto Stroke software
solution is evaluated on a cohort of 303 patients with 202 LVO cases.

• Paz et al. (2021) [160]: 151 consecutive patients with 66 LVOs are evaluated in a
clinical setting with the RAPID-LVO software. The reported performance of this
study is significantly lower than previously conducted evaluations by other studies.

• Luijten et al. (2022) [161]: This study evaluates the performance of the StrokeViewer
software solution on two patient cohorts: (1) the MR CLEAN study consisting of
1110 patients and (2) the PRESTO cohort consisting of 646 patients. A deep learning-
based model differentiates between positive and negative cases, and a bounding
box is provided in case of a positive finding.

• Seker et al. (2022) [162]: The authors evaluate the e-CTA solution on a cohort of
627 patients.

• Thamm et al. (2022) [163]: After extracting the vessel tree from the image, for
example, with the vessel segmentation solution from Thamm et al., it is possible to
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determine occlusions without relying on additional image features. This study uses
deep learning-based classification networks to classify previously extracted vessel
trees and demonstrates the regularization effect of intense elastic deformation in
this setting. Applying these transformations to the images directly would lead
to surrealistic images due to interpolation artefacts, which are not present when
performing the classification on the vessel tree alone. A five-fold cross-validation
scheme is utilized to train and evaluate the proposed method on 168 patients.

• Thamm et al. (2022) [164]: This work follows up on [163] and proposes another
augmentation scheme to increase the diversity in the training data set. After
splitting the vessel tree into multiple sub-trees, it is possible to recombine trees
from different patients to increase the variability of the data set. The improvements
of this augmentation scheme are demonstrated in a cohort with 151 scans.

• Kassam et al. (2022) [165]: Instead of relying on CNN architectures, which are
specifically designed for images, this study presents the use of a Graph Neural
Network to classify vessel trees. To avoid overfitting, augmentation is performed
on the feature level, with the help of noise, and on the vessel level using the
recombination approach presented in [164]. The performance of this approach
is similar to CNN based networks, but the required computational resources are
drastically reduced.

In summary, previous work heavily relies on elaborate pre-processing steps to extract
vessel information, use symmetry information between the left and right hemispheres
and perform cropping operations to remove undesired anatomical regions. Consequently,
these approaches rely on a wide range of hand-crafted heuristics to function properly
and severely limit the positions of detectable occlusions. Several commercial tools exist
for detecting LVOs, but information on their internal design is sparse, and performance
numbers vary between studies and evaluation protocols. This makes a direct comparison
of these solutions difficult. An overview of all presented approaches is shown in Table 3.1.

3.1.3 Aneurysm Detection

Aneurysms represent a protrusion of vessel structures and can be located near the brain
region. Unruptered Intracranial Aneurysms (UIAs) can spontaneously rupture, causing a
Subarachnoid Haemorrhage (SAH) potentially leading to death or severe disabilities [167,
168]. CTA or Time-of-Flight MR-Angiography (TOF-MRA) scans can be used to assess the
risk or decide on follow-up treatment. Both imaging modalities consist of a large number
of axial slices which need to be manually examined by trained personnel. Automating
this cumbersome process can alleviate errors and reduce diagnostic times, which benefits
patients.
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Table 3.1: Overview of existing literature on vessel occlusion detection. Cohort size refers
to the number of used scans and the positive cases only include patient scans which
are considered as positives by the study. The method column showcases the name of
the software solution. Only a single study provides a public code release.
Name Year Cohort Positive Method Public

Size Cases Code
Amukotuwa et al. [151] 2019 926 395 RAPID-CTA
Amukotuwa et al. [152] 2019 477 106 RAPID-CTA

Sheth et al. [166] 2019 297 224 custom
Barman et al. [153] 2019 217 94 custom
Stib et al. [154] 2020 540 270 custom 3

Thamm et al. [155] 2020 - - custom
Olive-Gadea et al. [156] 2020 1453 823 Methinks LVO
Dehkharghani et al. [157] 2021 217 109 RAPID-LVO
Yahav-Dovrat et al. [158] 2021 1167 75 Viz LVO

Rava et al. [159] 2021 303 202 Canon Auto Stroke
Paz et al. [160] 2021 151 66 RAPID-LVO

Luijten et al. [161] 2022 1110 / 646 1110 / 141 StrokeViewer
Seker et al. [162] 2022 301 140 e-CTA
Thamm et al. [163] 2022 168 109 custom
Thamm et al. [164] 2022 151 - custom
Kassam et al. [165] 2022 151 - custom

The Aneurysm Detection And segMentation Challenge (ADAM) challenge is an interna-
tional competition presented at MICCAI 2020. It consisted of two tasks: one for aneurysm
detection and one for aneurysm segmentation. As part of the challenge, a public data
set was released containing 113 training cases with 129 UIAs. Treated aneurysms and
artefacts associated with the treatment were annotated but not considered during the
evaluation. The first place of the detection track was won by a preliminary version of our
method presented in Section 4.2 which is part of the second research question introduced
in Section 1.2.2. In contrast to other submissions to the challenge, this approach was
specifically tailored towards detecting objects rather than using voxel-level methods with
post-processing.

Noto et al. (2023) [18] released a second data set with annotated aneurysms containing
284 subjects with 198 aneurysms. An ablation study was conducted on the capabilities
of handling spherical labels since these labels were manually generated faster. They
propose to formulate the aneurysm detection task via semantic segmentation using a 3D
U-Net [40] architecture. Since aneurysms can only be located at vessel structures, a new
data-loading strategy is developed to incorporate this anatomical bias into the training.

This task-specific design decision can also be found in work from Assis et al. [169] who
propose a one-stage anchor-free object detection model to produce spherical predictions.
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The patches to train the model are specifically extracted from regions containing vessel
structures to alleviate the data scarcity issue.

Ceballos-Arroyo et al. [83] opt to encode the vessel information directly into the model.
The detector is based on the Deformable DETR architecture, using a positional embedding
of the image. The vessel information is encoded into a distance map and added to the
embedding to incentivize predictions near the vessel structure. This study uses a publicly
available CTA data set [170] with aneurysm annotations.

In conclusion, previous studies focus heavily on designing task-specific models which can
leverage prior information about the vessel tree to improve their predictions. Multiple
public TOF-MRA and one public CTAdata set are available to comparemodel performance
on this clinically important task.

3.1.4 Lung Nodule Detection

The highest number of cancer-related deaths worldwide is caused by lung cancer [171].
Low dose CT offers the possibility to detect lung cancer in earlier stages with better
treatment options and is subsequently a potential tool to reduce mortality from lung
cancer [172]. However this requires the assessment of an increased number of scans,
ultimately increasing the workload of clinicians. Fueled by the clinical relevance and
the need to provide automated detection systems to reduce assessment times for clini-
cians, many methods were developed to detect lung nodules in CT images. This is also
represented by the availability of multiple large-scale benchmarking data sets that are
used to compare state-of-the-art methods. The ANODE09 [173] study marks one of the
earlier benchmarks, which compares multiple systems on a standardized data set of 55
scans. The public availability of the LIDC [13] data set consisting of 1018 cases paved
the way for a second benchmark called LUNA16 [43]. This data set represents a subset
of LIDC [13], consisting of 888 images and was used by several studies over the years.
Most recently, the PN9 [14] data set was released, which contains over 8.000 CT scans
and 40.000 annotated nodules. Newer works have started evaluating their methods on
this challenging data set. An overview of current lung nodule detection methods on
LIDC [13], LUNA16 [43] and PN9 [14] is provided in Table 3.2 and the individual methods
are shortly explained in the following paragraphs.

• Dou et al.(2017) [65]: A two-stage pipeline is proposed, which first generates many
candidate locations, and these are subsequently filtered by a FPR stage. First, a CNN
is trained on small patches to differentiate between background and foreground.
Inspired by HNM approaches from detection networks, the classification network
forward propagates a large number of patches and only propagates 50% of the
samples with the highest loss back. The trained network is applied to the entire CT
scan in a fully convolutional way to extract a scoring map for nodule locations. A
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Table 3.2: Overview of existing literature on lung nodule detection on LIDC [13],
LUNA16 [43] and PN9 [14]. The detector type describes the internal design of
the proposed detection method. Methods consisting of classification modules that
do not offer additional regression capabilities were categorised as ”Other” since they
do not adhere to the typical definition of a detection method that produces proposal
boxes. The False Positive Reduction (FPR) stage only includes methods which train
a separate classification network, which is not integrated into the training of the
detection model. The second stage of the R-CNN model is sometimes also referred to
as a FPR but is not included in this definition.
Name Year Training Data Detector Type FPR Stage Public Code

Dou et al. [65] 2017 LUNA16 Other 3

Ding et al. [66] 2017 LUNA16 Two-Stage 3

Zhu et al. [75] 2018 LUNA16, LIDC Two-Stage 7 3

Wang et al. [67] 2018 LUNA16 One-Stage 3

Khosravan and Bagci [76] 2018 LUNA16 Other 7

Liao et al. [78] 2019 LUNA16, DSB17 One-Stage 7 3

Liu et al. [73] 2019 LUNA16 One-Stage 3

Tang et al. [77] 2019 LIDC Two-Stage 7 3

Cao et al. [64] 2020 LUNA16 Seg. 3

Li and Fan [72] 2020 LUNA16, LIDC One-Stage 7 3

Jaeger et al. [46] 2020 LIDC One-Stage 7 3

Gong et al. [174] 2020 LUNA16 One-Stage 7

Song et al. [74] 2020 LUNA16 One-Stage 7 3

Mei et al. [70] 2021 LUNA16, PN9 Two-Stage 7 3

Luo et al. [69] 2022 LUNA16 One-Stage 7 3

Xu et al. [71] 2022 PN9 Two-Stage 7 3

Harsono et al. [79] 2022 LIDC One-Stage 7

Lu et al. [68] 2023 LUNA16 Two-Stage 7

CNN with residual connections is used in the second stage to classify and regress
larger patches, which are extracted from the initially proposed nodule locations.

• Ding et al. (2017) [66]: A 2.5D Faster R-CNN [36] approach is used to generate
initial nodule candidates from a stack of axial CT slices. To improve the detection
performance for small nodules, an additional transposed convolution is added at
the end of the backbone to increase the resolution of the feature map used for the
detection task. This approach yields a high recall but still includes many FP. A
3D CNN is used to incorporate additional context and classify the candidates in a
separate FPR stage.

• Zhu et al. (2018) [75]: DeepLung is based on the Faster R-CNN [36] architecture
and incorporates dual path [175] blocks in its design. To improve the performance
for small nodules, a U-Net [40] like encoder-decoder design is used to up-sample
the low-level features before using them for the detection task. The outputs are
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spheres that reduce the regression problem to four coordinates (three for the centre
and one for the radius). Candidate nodules are subsequently categorized into
benign and malignant by a separate classification network.

• Wang et al. (2018) [67]: The detector design is based on a 2.5D version of the
Faster R-CNN architecture, where three consecutive slices are used as the input.
A FPN predicts objects across multiple scales with a single network. Conditional
3D NMS is introduced to suppress similar predictions across different slices. The
generated nodule candidates are processed by a 3D CNN with two branches to
reduce the number of false positive predictions. The first branch generates a
Gaussian heatmap around the nodule, which is used as an additional input channel
for the second branch, that is responsible for the binary classification.

• Khosravan and Bagci (2018) [76]: S4ND redefines the detection task as a cell-wise
classification task. The image is divided into a grid of cells and each cell is classified
by the CNN. A cell is considered positive if a nodule is located in it and a weighted
binary cross-entropy loss is used to counteract the label imbalance.

• Liao et al. (2019) [78]: This approach was originally designed for the Data Science
Bowl (DSB) 2017 [176] to differentiate between patients with and without lung
cancer. The proposed 3D detector is inspired by the U-Net [40] architecture, which
progressively up-samples low-level features. The detection is performed on the
highest-resolution feature map. Additional location information is inserted by
providing an additional location crop, which encodes normalized coordinates.
Since the DSB 2017 data set is only annotated with patient-level information, a
classification network is trained in the second stage via Multiple Instance Learning.

• Liu et al. (2019) [73]: A two-stage pipeline is proposed consisting of a 3DFPN
nodule detector and a 𝐻𝑆2 network to reduce false positive predictions. The
detector follows a one-stage detector design and uses a spherical representation
for its predictions. Each potential nodule location is represented by a Location
History Image[73] and processed by a separate classification network.

• Tang et al. (2019) [77]: NoduleNet is an end-to-end network to perform nodule
detection, classification and segmentation in a single framework. The detector
design is built on a 3D version of the Faster R-CNN [36] architecture and uses RoI
Pooling to extract features from multiple levels of the backbone. The segmentation
module progressively up-samples cropped features and recombines them with
fine-grained features.

• Cao et al. (2020) [64]: A segmentation-based approach based on the U-Net [40] ar-
chitecture generates an initial set of region proposals. The CNN utilises residual and
dense connections to improve the gradient flow. A novel patch sampling strategy is
introduced to improve detection performance. SE-ResNet [177], DenseNet [31] and
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InceptionNet [178] are used in an ensemble to build the FPR stage of the proposed
method.

• Li and Fan (2020) [72]: DeepSEED uses a one-stage detector design with an
encoder-decoder scheme as its feature extractor. Squeeze-and-excitation modules
are inserted to improve the feature extraction process. The predictions use a
spherical design to reduce the regression to four coordinates, and a dynamically
scaled CE loss is used to reduce false positive predictions.

• Jaeger et al. (2020) [46]: This work introduces the Retina U-Net architecture,
which extends the design of the Retina Net [35] model to leverage additional
semantic segmentation supervision. The baseline models include the Retina Net
architecture, theMask R-CNN [37] architecture and a segmentation-based approach.
Furthermore, extensive ablation experiments are conducted with 2D, 2.5D and 3D
versions of the networks on the LIDC [13] and a private breast diffusion MRI data
set [46]. The code is publicly released as part of the Medical Detection Toolkit
(MDT).

• Gong et al. (2020) [174]: Many detection networks use an anchor-based design
philosophy, which depends on carefully adjusted anchor sizes. Centre point-based
approaches like CenterNet [179] allow the design of detection networks which
do not rely on anchors. A 3D design of this approach, in combination with a
feature aggregation module, was used to detect lung nodules in [174]. To reduce
the number of false positive predictions, a FPR is utilized in combination with
Motion-History Images.

• Song et al. (2020) [74]: This one-stage detection method uses a centre-based
detection approach to alleviate the need for manually designed anchors. The
proposed network architecture includes additional coordinate maps and Squeeze-
and-Excitation [177] modules. Matching between centre points and ground truth
objects is performed via distancemapswhere the top k nearest points are considered
positive. Only a subset of the negative points are used for the loss computation,
which is determined via Adaptive Points Mining (APM), and the remaining ones
are ignored. The classification loss is computed via a modified version of the focal
loss called re-focal loss.

• Mei et al. (2021) [70]: SANet is based on a U-Net [40] like encoder-decoder
architecture to build a 3D RPN. The prediction is only performed on the highest-
resolution feature map. The slice-grouped non-local module is introduced to
enhance representation, which extends across multiple slices. The detection head
uses information which was cropped from multiple resolution stages to classify
the proposals from the RPN.

• Luo et al. (2022) [69]: SCPM-Net builds upon CPM-Net [74] to propose a centre-
based lung nodule detection network. Instead of producing bounding boxes, the
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predictions are represented by bounding spheres, which aim to provide a better
representation of spherical lung nodules. A sphere-based IoU (SIoU) measure is
derived to directly measure the similarity between two spheres. Combined with
additional geometric priors, multiple loss functions can be derived, which are
extensively analyzed in the presented ablation experiments.

• Xu et al. (2022) [71]: This work builds upon the design of Mei et al. but introduces
the long short slice grouping (LSSG) design to enhance the feature extraction
process. The new method is called LSSANet.

• Harsono et al. (2022) [79]: I3DR-Net is a one-stage detector based on the Retina
Net [35] design. It uses a 3D weight-inflated initialization for its backbone network
to leverage ImageNet [94] pre-training. A modified version of the FPN is used to
reduce its memory footprint and use finer features for the detection.

• Lu et al. (2023) [68]: FFNET uses a 3D FPN to predict nodules across multiple
scales with a single network. Features from a single resolution from the encoder
and decoder are used for a filter network, which is applied to low-scoring nodule
proposals. High-scoring proposals are not further processed.

The early availability of public data sets has fueled the research on lung nodule detection.
LUNA16 [43] represents the most widely used benchmark, and the recently introduced
PN9 [14] data set might become the next major benchmark due to its size and difficulty.
Two-stage and one-stage detection models are actively used to detect lung nodules
throughout the literature. All included publications except one (Jaeger et al. [46]) evaluate
theirmethod on a single pathology and do not consider other detection tasks. Furthermore,
task-specific priors such as lung segmentations or spherical representations are introduced
to improve their detection performance.

3.1.5 Detection with Detection Transformers in the Medical
Domain

The DETR model (see section 2.1.3) popularised a new way to formulate detection tasks
as a direct set prediction problem. However, the initial design suffered from several
shortcomings: the required training times significantly exceeded the training times of
anchor-based detectors, and the performance on small objects lagged behind. Follow-up
studies continued to address individual shortcomings by using sparse attention mech-
anisms in the form of deformable attention [147], introducing prior information in the
form of dynamic anchor boxes [60] and proposing additional auxiliary tasks like denois-
ing [59]. The architecture that finally demonstrated state-of-the-art performance on the
MS-COCO [85] benchmark is the DINO DETR [39] architecture.

Despite this success, the adoption of DETRmodels in themedical domain is slow. Potential
reasons for this include (1) the medical domain contains much smaller data sets than
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its natural imaging counterpart, and transformers are notorious for requiring a lot of
training data; (2) medical tasks encapsulate a broad range of tasks, each having its own
composition of image and label properties and (3) most approaches are designed for
2D images and adapting them to volumetric 3D data poses an additional overhead and
requires careful design of the entire pipeline.

One of the first works on the DETR architecture for detection problems in the medical
domain was established by Wittmann et al. [180]. The study evaluated multiple architec-
tures for organ detection and proposed its own model to incorporate prior information
about the location of anatomical structures in images. The focus of this study was on
organ detection, which emphasizes fine delineations of the organ structures rather than
requiring decisions about the existence of objects. In conclusion, this new methodological
innovation to detect pathologies in volumetric images has not been adopted, and further
research is needed to evaluate the feasibility of these models and determine important
design aspects.

3.2 Self-configuring Model Design for Medical
Applications

Task-specific methods only incorporate a single data set into their design, often aiming
to incorporate more powerful components in the form of architectural modules [70,
71], output representations [69] or other training strategies. A detailed analysis of the
KiTS19 [181] challenge, however, revealed that the impact on performance from the
careful configuration of hyperparameters is more important than architectural changes,
which are often found as novel contributions. Determining these parameters constitutes
an iterative tuning process which requires large computational resources and expert
knowledge. As a result, the performance of the same high-level method can achieve
vastly different results on a task.

As elaborated in the introduction of this thesis (see Chapter 1), automated solutions for
medical image analysis are required for many different tasks, spanning across different
anatomical regions, target structures and imaging modalities. Each application has its
own composition of acquisition parameters, which clinicians determine to capture the
most relevant information for the current situation. Typical decisions include selecting a
suitable acquisition modality, selecting an appropriate slice thickness, and only capturing
relevant regions. This aggravates the configuring problem since it needs to be repeated
for every new data set.

nnU-Net is the first method to systematically approach the configuration process of
deep learning-based semantic segmentation methods. Its application does not require
specialized knowledge of the underlying technology since it automatically determines its
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hyperparameters and can be applied without manual intervention. Data set properties
like spacing and modality are summarised in the Data Fingerprint, which is used as the
basis for the automated configuration process. All hyperparameters are divided into
three groups:

• Fixed Parameters are kept constant across all tasks since they are robust to
changes in the Data Fingerprint. These include the Model Blueprint, Optimizer,
training- and inference pipeline.

• Rule-based Parameters are adapted between tasks based on the properties from
the Data Fingerprint. They include strategies for the resampling procedures, de-
termining the network topology, patch- and batch-size for training, and adding a
cascaded model.

• Empirical Parameters must be adapted between data sets but can not be deter-
mined from the Data Fingerprint. They are empirically determined by observing
the validation performance and include parameters for post-processing and model
selection.

It is not sufficient to examine a single task to derive this categorization and determine
the correct mechanisms for adapting the hyperparameters. nnU-Net [47] proposes a
new development paradigm, by using information from the 10 tasks of the Medical
Segmentation Decathlon (MSD) [16] it aims to generate a robust configuration procedure
for arbitrary semantic segmentation tasks. To evaluate its generalization capabilities a
separate pool of data sets is needed to evaluate the performance on previously unseen
data sets. When nnU-Net [47] is applied to international challenges, it outperforms most
existing solutions, including many task-specific methods.

In summary, nnU-Net [47] establishes a new development paradigm for semantic segmen-
tation methods by systematically approaching the configuration process. However, its
design decisions are limited to semantic segmentation methods involving only voxel-level
information. The prevailing development paradigm in the medical detection domain is
still limited to individual tasks, and no self-configuring methods or diverse pool of data
sets are available to establish such methods.
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Materials and Methods

This chapter introduces two different concepts for designing medical object detection
methods: first, the manual design of detection methods is introduced, which includes
task-specific modifications to address individual shortcomings of the baseline model.
These modifications build the foundation of RQ1 (see Section 1.2.1) and provide insights
into the design of highly effective detection methods in international challenges and
clinical settings.

Second, the design of the first self-configuring medical object detection method, named
nnDetection, is presented, marking the beginning of a new development paradigm for
medical detection methods (see RQ2 in Section 1.2.2). Instead of developing a task-specific
model, it follows the design principles of nnU-Net [47] to build a generalising method
based on rule-based, fixed and empirical parameters to automate the configuration
process of one-stage, two-stage and direct set prediction models. The resulting method,
can handle various annotation types and is able to generalise across different image
modalities, anatomical regions and object structures.

The introduced methods will build the basis for the results in Chapter 5 and address the
methodological challenges arising from the research questions in Section 1.2. The design
of manual detection pipelines is based on [182, 183, 184]. The design of self-configuring
medical object detection methods is based on [185, 82].
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4.1 Task Specific Design of Object Detection Methods

This section outlines three studies where we developed manual pipelines to address
medical detection problems. Section 4.1.1 presents a detailed approach for detecting
mediastinal lesions in CT images. This method was part of the MELA challenge 2022,
where it ranked third in the competition. The challenge data set and methodological
aspects are presented in Section 4.1.1. Section 4.1.2 introduces our clinical study targeting
the detection of vessel occlusions. An overview of the three utilized cohorts is described
first. Afterwards, the proposed single-stage object detection pipeline is presented. The
manual configuration of DETR models is described in Section 4.1.3.

4.1.1 Detecting Mediastinal Lesions in CT Images

Disclosure of this work

This section includes portions of our work that has been published in:

Baumgartner, M., Full, P.M., Maier-Hein, K.H. (2023). ”Accurate Detection
of Mediastinal Lesions with nnDetection”. In: Xiao, Y., Yang, G., Song, S. (eds)
Lesion Segmentation in Surgical and Diagnostic Applications. CuRIOUS KiPA MELA
2022 2022 2022. Lecture Notes in Computer Science, vol 13648. Springer, Cham.

Data Set Analysis

Background: The provided data set comprises 1100 chest CT images (770 training,
110 validation, 220 testing), acquired using Somatom Definition AS (Siemens Medical
Systems, Germany) or Brilliance 40 (Philips Medical Systems, Netherlands) scanners at
the Shanghai Pulmonary Hospital affiliated with the Tongji University. Multiple expert
clinicians annotated lesions in the mediastinum, resulting in 884 annotated lesions in the
training and validation split. All lesions are annotated via bounding box labels rather
than voxel-wise delineation.

Preprocessing: To inject additional prior knowledge into the training by enabling
voxel-wise supervision, the provided annotations are converted into spherical object
annotations as depicted in Figure 4.1. Prior work such as [80] and [186] have shown
improved results by including segmentations as an additional auxiliary task during
training even when artificially generated from coarser annotation styles like bounding
boxes. This also enables the usage of publicly available data augmentation frameworks,
like batchgenerators [187], which are built around segmentation maps and do not support
bounding box annotations.
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Image Reference 
Annotation

Generated 
Segmentation Mask

Figure 4.1: Visualisation of the bounding box and the converted spherical segmentation
annotations for the MELA data set. The first column shows CT images from the
data set, and the second column shows the annotated bounding boxes as an overlay.
The converted spherical segmentations are shown in the third column. All images
and annotations were visualised via MITK [188].

The preprocessing of the CT images is subdivided into two steps: first, the intensity values
of the image voxels are normalised by clipping them to the [−901.0, 554.0] Hounsfield
Unit (HU) range, followed by z-score normalisation. The mean of−11.77HU and standard
deviation of 242.75 HU for the intensity normalisation are computed across the entire
training data set. Next, all images are resampled to the selected target spacing. The MELA
data set contains large objects which do not fit into typical three-dimensional patches
due to VRAM constraints of current hardware. This can lead to duplicate predictions
during the inference phase of the model, which count as FP predictions during evaluation.
Consequently, the target spacing is set to [1.40, 1.43, 1.43] mm, which is two times the
median spacing of the data set to downscale the images. We only resample those scans
where the spacing varies bymore than 5% from the determined target spacing. The images
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are resampled with third-order B-spline interpolation, while the labels are resampled
with nearest neighbour interpolation.

Methodological Design

Our method for detecting mediastinal lesions in CT images employs a single-stage object
detection model called Retina U-Net [46]. This model is simple yet effective in predict-
ing bounding boxes from pre-defined anchors. Additionally, semantic segmentation
supervision can be incorporated during the training process.

Training: All models are trained for 50 epochs, each comprising 2500 batches. Optimiza-
tion is performed using Stochastic Gradient Descent (SGD) with Nesterov momentum set
at 0.99. The baseline model is trained using a batch size of six, whereas all subsequent
models employ a batch size of eight. Each batch is constructed such that half contains at
least one foreground object, with the remaining half being sampled randomly. To make
the model more robust during inference, an additional random offset is applied to patches
which are forced to contain a foreground object. The offset is applied to each dimension
where the object size does not exceed 70% of the patch size. It is determined such that the
object does not exceed the patch boundaries. If the object size exceeds the patch size, a
random centre point within the bounding box of the object is selected as the patch centre.

Network Topology: The selected network blueprint follows the architectural model
design of Retina U-Net [46]. The encoder utilities a series of stacked convolutions, each
followed by instance normalisation [189] and a Leaky Rectified Linear Unit (LReLU)
non-linear activation function. The decoder architecture is based on the FPN [117], but
instead of employing linear interpolation, transposed convolutions [103] are used for
upsampling. The detection head, constructed from multiple convolutional layers with
group normalization[190] and LReLU activation functions, is shared across the last four
resolution levels.

The architecture of the head includes two branches: one for anchor classification, trained
using BCE loss, and another for anchor regression, trained with a weighted L1 loss. At
the highest resolution level, an additional semantic segmentation head is employed to
leverage voxel-wise supervision. A combination of the CE loss and Dice loss [191] is used
as the segmentation loss. The total training loss is defined as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐵𝐶𝐸 + 2 ⋅ 𝐿𝐿1 + 𝐿𝐶𝐸_𝑠𝑒𝑔 + 𝐿𝐷𝑖𝑐𝑒_𝑠𝑒𝑔 (4.1)

Considering the large data set size, the model’s capacity has been increased by setting
the initial number of channels to 48 (from 32), doubling in each level until a maximum
number of 384 channels is reached. The resulting network architecture is illustrated
in Figure 4.2.
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Figure 4.2: Visualisation of the Retina U-Net architecture for the MELA data set. The
model can be divided into four parts (1) the encoder consisting of consecutive down-
sampling layers and convolutions depicted in orange and green (2) a FPN as the
decoder to combine information from the encoder and the upsampled feature maps
(3) a shared detection head to predict bounding box classification and regression
targets and (4) a semantic segmentation head. This figure is adapted from [182].

Large Patch Size (LP): During inference, when object sizes extend beyond the patch size,
the same object can be predicted multiple times due to overlapping patches. Merging
these predictions can be difficult since the IoU between the predictions is lower than for
objects which are fully contained inside the patches. This phenomenon is referred to
as stitching artefacts in this thesis since the correct predictions of the network are not
correctly combined during post-processing. While the increased target spacing results in
reduced object sizes, commonly used patch sizes of [128, 128, 128] remain insufficient for
encapsulating sufficient contextual information during the training and testing phase. To
fully leverage the available computational hardware resources, training was executed on
two NVIDIA A100 (40GB) GPUs, with a batch size of four per GPU and a large patch size
of [192, 192, 192].

Reduced Rotation in Augmentation (Aug B): To mitigate overfitting and improve the
generalization of our methods, extensive spatial data augmentations are utilised. These
augmentations increase the diversity of the data set by training on augmented versions
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of the same information, specifically through rotation and scaling of the images. When
utilizing coarse annotations, such as bounding boxes or ellipsoids, rotations which are
not multiples of 90 degrees can introduce ambiguous boundaries, leading to localization
errors during training. This is crucial in the context of theMELA challenge, where the IoU
threshold is set to 0.3, necessitating precise localization for optimal model performance.

To address this problem, a second augmentation pipeline with a reduced rotation magni-
tude is used to train an additional set of models. To maintain a diverse augmentation
strategy, this pipeline also includes intensity-based augmentations and additional spatial
augmentations, such as the transpose operation and additional rotations of 90 degrees.
An overview of the entire augmentation pipeline is illustrated in Table 4.1.

Table 4.1: Shows two different augment schemes for theMELAdata set. The left column de-
scribes the augmentation operation, which is executed with the batchgenerators [187]
framework. 𝑝 refers to the probability of being applied to a single sample, and ×
indicates the absence of a transform. The magnitude of a transformation is described
by 𝑚. The columns in the middle and on the right show two different augmentation
schemes. Table reproduced from [182].

Augmentation Baseline (Aug A) Reduced Rotation (Aug B)
Elastic Deformation × ×

Rotation (m in degrees) p=0.3 m=[-30, 30] p=0.1 m=[-10, 10]
Rotation 90 × p=0.5

Transpose Axes × p=0.5
Gaussian Noise p=0.1 p=0.1
Gaussian Blur p=0.2 p=0.2
Median Filter × p=0.2

Multiplicative Brightness p=0.15 ×
Brightness Gradient × p=0.3

Contrast p=0.15 p=0.2
Simulate Low Resolution × p=0.15

Gamma p=0.3 p=0.1
Inverse Gamma p=0.1 p=0.1
Local Gamma × p=0.3
Sharpening × p=0.2

Mirror (per axes) p=0.5 p=0.5

Final submission: The organisers of the MELA challenge allowed multiple submissions
to the test leaderboard. Based on the cross-validation experiments, we submitted four
models in total. The baseline model (M1), a model trained with large patch size (M2)
and a model trained with Aug B and the large patch size (M3). The best submission was
achieved by ensembling the predictions of M2 and M3 with Weighted Box Clustering
(WBC) at an IoU threshold of 0.2.
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4.1.2 Detecting Vessel Occlusions in CTA Images

Disclosure of this work

This section includes portions of our work that has been published in:

Brugnara, G.∗, Baumgartner, M.∗, Scholze, E. D.∗, Deike-Hofmann, K., Kades, K.,
Scherer, J., ... & Vollmuth, P. (2023). ”Deep-learning based detection of vessel
occlusions on CT-angiography in patients with suspected acute ischemic stroke.”
Nature Communications, 14(1), 4938.

∗ contributed equally

Data Set Analysis

This study uses one internal and two external cohorts. The University Clinic Heidel-
berg (UKHD) cohort, consisting of 1179 patients with 800 patients having at least one
vessel occlusion, was used to train and evaluate the developed model on in-distribution
images. All CTA scans within this cohort were acquired using Siemens scanners, with the
majority (1136/1179) being obtained with a Siemens SOMATOM Definition AS scanner. 1128
of the 1179 scans were reconstructed using either the B26f or I30f reconstruction kernel,
and the median slice thickness was 0.75 mm (IQR [0.75–0.75]). A total of 835 patients
were utilized for training, while 344 were reserved for the internal test set. The test set
was artificially balanced to contain the same number of control and occlusion-positive
patients. Among the test set scans, 75% (258/344) were obtained during the early arterial
phase, where most of the contrast is present in the arteries. In summary, the Heidelberg
cohort represents a large but homogeneous data set, as detailed in Tables B.1 and B.2.

The first external test set, represented by the FAST cohort, was collected from the
regional stroke consortium Rhine-Neckar and encompasses three hospitals. This cohort
was gathered in a pseudo-prospective manner, resulting in a lower prevalence of vessel
occlusions than the internal test set (52/327 patients with vessel occlusions). The FAST
cohort includes CTA scans acquired on various scanners with different reconstruction
kernels, including 167 out of 327 scans obtained using the Siemens Sensation 40 model, a
scanner not present in the Heidelberg cohort. Furthermore, a significant proportion of
the scans were performed in the Peak Arterial (41%) or Equilibrium (35%) phases, showing
a substantial distribution shift from the UKHD test set. The median slice thickness in this
cohort was 1 mm (IQR [1.00–1.00]), with additional details available in Tables B.1 and B.2.

The University Clinic Bonn (UKB) cohort, which represents the second external test
set, was collected from the University Clinic Bonn. All CTA scans in this cohort were
acquired using the Philips IQon – Spectral CT. Most scans depict the Peak Arterial and
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Peak Venous phases. The median slice thickness was 1 mm (IQR [1.00–1.00]), with further
details provided in Tables B.1 and B.2.

All visible vessel occlusions are annotated in the CTA scans with spherical markers, with
a diameter of 30 voxels for LVOs or 15 voxels for Medium Vessel Occlusions (MeVOs).
The annotations include both treated occlusion and incidental findings and were created
with the assistance of the radiological reports. Additionally, High-grade Stenosis (HGS)
were annotated in the two external cohorts. The centre of each sphere was positioned
at the most proximal point of contrast loss. Each occlusion is assigned to one of three
groups:

• Anterior LVOs which include occlusions in the common carotid artery (CCA),
internal carotid artery (ICA), the M1-segment of the middle cerebral artery (MCA)
and A1-segment of the anterior cerebral artery (ACA) [192, 183]

• Anterior MeVOs which are located in the M2-/M3-segment of the MCA or the
A2-/A3-segment of the MCA [193, 183]

• Posterior VOs which includes LVOs in the vertebral artery (VA), basilar artery
(BA) and the P1-segment of the posterior cerebral artery (PCA) and MeVOs of the
P2/3-segment of the PCA [192, 193, 183]

Methodological Design

The proposed one-stage detection model, called HD-CTA, follows a three-step process to
predict new images. First, all input images are preprocessed, including resampling to the
same image spacing and normalizing intensity values. Second, five anchor-based Retina
Net [35] detectors, trained using a cross-validation scheme, are applied to the preprocessed
images. Finally, the predictions generated by these detectors are postprocessed and
aggregated to produce the final detection results. An overview of this pipeline is illustrated
in Figure 4.3.

Preprocessing: All images were resampled to the median voxel spacing of the training
set (0.5,mm × 0.453,mm × 0.453,mm). Intensity values are clipped to [−148.0, 988.0] and
subsequently normalized using z-score normalisation. Since voxel intensities in CTA
images represent HU, which are measured on an absolute scale, the mean and standard
deviation are computed across the entire data set.

Model: The Retina Net model comprises three primary components: an encoder network,
a decoder architecture, and a detection head.

The encoder network includes six resolution levels, each comprising two convolutional
blocks. Each block consists of a convolution, an instance normalization layer [189], and
a LReLU non-linear activation function. The first convolution in each level has a stride
greater than one to represent a pooling operation and reduce the spatial dimensions of
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Figure 4.3: Inference Procedure for Vessel Occlusion Detection. First, the images are
preprocessed by resampling them to the same spacing and normalizing the voxel
intensity values. Afterwards, five Retina Net one-stage detectors are executed to
produce a set of predictions. The predictions are ensembled via WBC to produce the
final result. This figure is adapted from [183].

the feature maps. The initial level begins with 32 channels, with the number of channels
doubling at each subsequent level, up to a maximum of 320 channels.

The decoder architecture follows the design of a FPN [117] to progressively upsample
low-resolution features. These features are combined via elementwise addition with the
corresponding encoder features, which were processed by a 1×1×1 convolution to adjust
the number of channels. The decoder spans the last four resolution levels.

Retina Net [35] operates as an anchor-based detection model, where detection is per-
formed by regressing and classifying predefined bounding boxes (anchors), which are
densely distributed across the image. During training, anchors are assigned to ground
truth objects via ATSS to compute the loss function. This enables the dynamic selection
of IoU thresholds to divide anchors into positive and negative examples. The classifica-
tion branch is trained using focal loss [35], while the regression branch is only trained
on positive anchors using the smooth L1 loss [101]. An overview of the architecture is
provided in Figure 4.4.

Since the occlusion annotations are limited to two predefined sizes, the network is trained
with two anchor sizes of [8, 10, 10] and [15, 14, 14] at the first level used for the detection.
Deep levels scale these sizes via their relative stride to the first level.
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Figure 4.4: Retina Net architecture for vessel occlusion detection. Shows the Retina Net
architecture which can be divided into three parts: first an encoder is used to extract
a multi-scale representation of the image, second a decoder is used to recombine
low-resolution features with high-resolution features and third a shared detection
head is used to predict bounding box coordinates and confidence scores. This figure
is adapted from [183].

The model is trained for 60 epochs, each consisting of 2500 batches. SGD with Nesterov
momentum is used as the optimizer. Stochastic Weight Averaging (SWA) with a cyclical
learning rate is employed during the final 10 epochs. The batch size is set to eight while
ensuring that half of the samples in each batch contain at least one occlusion. Online
data augmentation was applied to artificially increase the diversity of the training data.
The augmentation pipeline closely follows nnU-Net [47] but excludes the simulation of
low-resolution data.

Inference: Inference was conducted using a sliding window approach with 50% patch
overlap. Duplicate predictions within and across patches were eliminated using NMS
with an IoU threshold of 0.3. Predictions located near the patch centre are given higher
weight than those near the edges. Low-confidence predictions below the confidence
threshold of 0.2 are discarded. WBC with an IoU threshold of 0.4 is used to ensemble the
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predictions. No additional weighting based on the volume of the predictions is applied.
Bounding boxes smaller than seven voxels in any dimension are discarded.

Inference was performed on a DGX A100 system from which four NVIDIA A100 GPUs
were used, each with 40 GB of VRAM. To enable flexible scaling to an arbitrary number of
GPUs, patches extracted from a single patient are distributed across the different devices
and aggregated prior to the ensembling step.

Threshold Selection: Detection methods predict a set of bounding boxes with asso-
ciated confidence scores to rank the predictions against each other. Fully automated
decision-making requires an additional confidence threshold to determine the final set of
predictions and discard low-scoring ones. Given that the validation sets during cross-
validation are evaluated by a single model, while the test sets are assessed using an
ensemble, there is potential for a shift in the distribution of confidence scores.

To address this issue, an additional experiment was conducted to determine the confidence
threshold using an ensemble. During the experiments, the UKHD training cohort is split
into two subsets called the mini-training set (n=418) and mini-validation set (n=417).
The mini-validation set was artificially balanced, like the internal UKHD test set, and
included 210 patients with at least one vessel occlusion and 207 control patients. Five-fold
cross-validation was used to train the ensemble on the mini-training set, followed by an
evaluation of the mini-validation set. The confidence threshold is set to 0.647 to maximize
the F2 score on the mini-validation set.

4.1.3 Exploring Detection Transformers for Medical Object
Detection

Disclosure of this work

This section includes portions of our work that has been published in:

Ickler, M. K.∗, Baumgartner, M.∗, Roy, S., Wald, T., & Maier-Hein, K. H.
(2023, June). ”Taming Detection Transformers for Medical Object Detection.” In
BVM Workshop (pp. 183-188). Wiesbaden: Springer Fachmedien Wiesbaden.

∗ contributed equally

Many methods formulate detection as a classification and regression task of predefined
anchor boxes, requiring additional post-processing steps due to duplicate predictions of
the same object. DETR models formulate detection differently as a direct set prediction
problem. The transformer architecture is used to implicitly learn to suppress duplicate
predictions and produces a set of objects, each represented by a confidence score and
a bounding box. Despite their beneficial properties, they remain under-explored in the
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context of medical detection tasks. This study analyses their feasibility by applying three
different DETR models to four medical object detection tasks. The following section
introduces the utilized data sets and methods.

Data Set Analysis

This study uses four data sets to derive insights of DETR models across different data set
sizes, object structures and task difficulties:

The CADA data set was initially used as part of a MICCAI Challenge [17] and consists
of 109 images with 127 objects. It represents the lower end of data set sizes in terms of
images and can be effectively solved by anchor-based detection models. The images
are 3DRA scans from a digital subtraction AXIOM Artis C-arm system. They were
acquired at the Neurosurgery Department, Helios Klinikum Berlin-Buch. All labels
are provided as instance segmentations. RibFrac[11, 12] represents the largest data set
regarding the number of objects. It comprises 4422 rib fractures across 500 thin slice
CT images from two scanners (GE Healthcare & Siemens Healthineers). Annotations
are provided in instance segmentation format, and no further processing is necessary. It
was originally used in the MICCAI 2020 challenge as an instance segmentation problem.
Due to the inclusion of images with many fractures, it challenges modern detection
models. KiTS19 [181] contains 204 CT scans in the corticomedullary contrast phase
who underwent nephrectomy. The data was originally part of the 2019 Kidney Tumor
Segmentation Challenge and was annotated with semantic segmentation labels. We
applied connected component analysis to the labels to cluster them and manually checked
the smallest objects to remove clustering errors. Some examples are shown in Figure 4.5.
KiTS19 represents a medium-sized data set where most tumours are quite large. The
fourth data set is LIDC [13], which encapsulates thoracic CT scans acquired from various
scanner manufacturers (GE, Philips, Siemens, and Toshiba) and reconstruction kernels.
The pulmonary nodules were annotated by multiple clinicians and span primary lung
cancer, metastasis or benign nodules. Each radiologist provided a score between one
and five to indicate the likelihood of malignancy of the nodule and segmented nodules,
which are larger than 3mm. The detection problem is formulated with two classes and
includes all nodules with at least two annotations: nodules with an average malignancy
score of three or larger were considered malignant, and all other nodules are considered
benign. The segmentation of each nodule was derived via majority voting, where missing
segmentations were considered to be zero. This data set represents the largest data set
regarding the number of images and poses a difficult classification problem since benign
and malignant nodules share a similar appearance.
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Figure 4.5: Removed object clusters from KiTS19 data set. This figure illustrates three
examples where small clusters of pixels were connected to individual objects. The
tumour is shown in yellow, the kidney in red and the cluster is delineated by a
blue circle and arrow. The lower row provides zoomed crops. Since they do not
represent real objects, they were manually removed from the annotations. This
figure is adapted from [185].

Methodological Design

This study explores the feasibility of DETR models for medical object detection tasks. It
comprises three different direct set prediction models, namely DETR [38], Conditional
DETR [61] and DINO DETR [39]. An overview of the employed architectures is shown
in Figure 4.6. The following section will shortly describe these methods.

DEtection TRansformer (DETR): Detection Transformer models [38] formulate de-
tection as a direct set prediction task without requiring additional proxy formulations.
The architecture comprises four components: a feature encoder, transformer encoder,
transformer decoder and detection head. First, a features encoder extracts low-resolution
features from the image. In our design, this is achieved by using plain blocks of convolu-
tions in combination with instance normalisation [189] and LReLU non-linear activation
functions. The final feature map is flattened to a sequence of tokens, which is used as
input for the transformer encoder, to combine information across all spatial positions. Ab-
solute positional encodings [194, 38] are added to the query and key of each self-attention
layer to retain the positional information. The resulting output is fed to the transformer
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Figure 4.6: Architectural patterns of DETR, Conditional DETR and DINO DETR. Shows
the architectural design of three DETR models [38, 61, 39], which can be divided into
a feature encoder (orange blocks), transformer encoder, transformer decoder and
detection heads. The object queries are visualised as coloured boxes. Conditional
DETR assembles the object queries from a content part and a reference point (RP).
DINO DETR replaces the reference point with a reference bounding box (RB). De-
noising queries are shown as boxes with ’DN’. Figure adapted from [184].
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decoder, which uses cross-attention to extract information about objects. Learnable object
queries are used to prompt the decoder network for objects. Finally, a FFN is applied to
predict bounding box coordinates and confidence scores, representing the detection head.
Additional auxiliary predictions and losses are computed from each transformer decoder
block while sharing FFN parameters. During inference, the second-highest confidence
score for each predicted bounding box is used if the background class is assigned the
highest confidence.

Conditional DETR: One of the major downsides of the DETR model compared to
classical anchor-based detectors is its required training length to converge properly.
Many solutions have been explored to speed up the training [61, 63, 60, 59, 39, 62, 195],
one of them being Conditional DETR [61]. The architectural design of Conditional
DETR [61] is similar to the original DETR [38] architecture but uses a different attention
mechanism. In classical attention, each key and query is composed of content {𝑘, 𝑞}𝑐
and spatial {𝑘, 𝑞}𝑠 information, which are summed to {𝑘, 𝑞}. The image features represent
the content information, and the positional information is inserted via the positional
encoding. When computing the dot product within the attention operation between
{𝑘, 𝑞} the resulting terms include several cross-dependencies between content and spatial
information, see Equation (4.2).

𝑞𝑇𝑘 = (𝑞𝑐 + 𝑞𝑠)𝑇(𝑘𝑐 + 𝑘𝑠)
= 𝑞𝑇𝑐 𝑘𝑐 + 𝑞𝑇𝑐 𝑘𝑠 + 𝑞𝑇𝑠 𝑘𝑐 + 𝑞𝑇𝑠 𝑘𝑠

(4.2)

The products where spatial information is set in correlation with the content information
can be difficult to learn, and as such, having a formulation which de-correlates these
mechanisms is preferable. Instead of building the sum of the content and spatial informa-
tion, it is also possible to concatenate them, yielding 𝑞𝑇𝑐 𝑘𝑐 + 𝑞𝑇𝑠 𝑘𝑠 as the dot product. This
formulation has shown impressive improvements in convergence speeds [61]. The spatial
information of the queries is modelled by reference points (RP), which are predicted by
a MLP from the object queries. To ensure the same representation space, the reference
points are embedded via the same sine embedding function as the positional embedding
of the keys and multiplied via a scaling factor, which is determined via a MLP from the
decoder output. A scale of one is used for the first decoder layer.

Conditional DETR [61] follows the loss design of Deformable DETR [147] and replaces
the CE loss with the focal loss [35] to train the classification branch. During inference,
the top 𝑘 highest scoring predictions are used as the detection result and 𝑘 is set to the
number of queries.

DINO DETR [39] builds upon several other proposed mechanisms to create the first
DETR based model which is competitive against state-of-the-art anchor-based detectors
on the COCO data set [85]. Instead of using reference points to encode spatial information
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of the queries, dynamic anchor boxes [60] are used to additionally encode information
about the spatial size of the proposal. Furthermore, denoising queries [59] are added
during the training process to provide additional supervision signals during training.
This concept is further refined by DINO DETR, which introduces additional negative
samples during the denoising step and is named contrastive denoising training [39]. To
leverage the power of multi-scale information during the prediction process, multi-scale
deformable attention [147] combines information from multiple levels of the encoder
network. Deformable DETR [147] introduced the concept of iterative bounding box
refinement where initial proposals are iteratively refined by the transformer decoder
network. DINO DETR extends this process to the look forward twice scheme, which
applies the predicted bounding box deltas to two bounding boxes, allowing for improved
gradient flow.

Training Parameters: To provide a fair comparison between the architectures, the same
feature extraction network is used across all methods. Training is conducted for 2500
batches per epoch with a batch size of four. The number of epochs was manually adjusted
for each model and data set, as shown in Table 4.2. PolyLR [47] with an exponent
of 0.9 starting at 0.0001 is used to adjust the learning rate throughout the training.
Gradient updates are performed via AdamW [196], and a weight decay of 0.0001 is used
as regularization. The patch size is adopted from the anchor-based baseline model and
kept the same across all models. The augmentation scheme follows a similar design as the
preliminary version of nnDetection, described in Section 4.2.6. However, it is modified to
speed up the training by decreasing the maximal rotation to 20 degrees and increasing
the lower limit of the scaling augmentation to 0.8. Our volumetric adaptation of DINO
DETR uses the lowest three resolution maps for processing multi-scale information, the
hidden dimension is set to 120 or 128, and the FFN dimension is set to 1024. The number
of queries is adapted for each data set and model, as shown in Table 4.2.

Baseline: The Retina U-Net [46] architecture is used as a strong anchor-based detection
baseline. Its effectiveness was demonstrated throughout many experiments, including
Section 5.1.1, and achieves robust performance across the selected tasks. The network
configurationwas automatically derived by the preliminary version of nnDetection, which
is introduced in Figure 4.9. All methods are implemented within the same framework
and use the same data preprocessing, data loading and inference pipeline.

Table 4.2: Hyperparameters of DETR models for selected data sets. Shows the number of
queries and training epochs for threeDETRmodels across four data sets. Abbreviations:
DE=DETR, CD=Conditional DETR, DI=DINO DETR. Table reproduced from [184].

CADA RibFrac KiTS19 LIDC
architecture DE CD DI DE CD DI DE CD DI DE CD DI

# queries (denoising) 6 12 20 (8) 20 50 90 (20) 6 12 20 (8) 12 24 40 (8)
# epochs 50 50 25 125 100 75 100 100 35 200 100 75
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Self-configuring method design offers great versatility when performed on diverse data
sets and with robust design decisions in mind. As nnU-Net [47] already demonstrated,
the resulting models can outperform task-specific models in the semantic segmentation
domain and offer easy applicability to new tasks. This results in strong and standardised
baselines for both researchers and practitioners. However, such a model does not exist
for the detection domain, which is especially important for diagnostic decision-making.
This section introduces three data set pools which are used to develop and evaluate
nnDetection, the first self-configuring medical object detection method. Afterwards, the
design of nnDetection is explained in detail and learnings from the manual design of
detection methods (Section 4.1) are highlighted. This method addresses RQ2 (Section 1.2.2)
by establishing a detection model which can be applied to all volumetric detection
problems without requiring extensive expert knowledge.

4.2.1 Data Set Analysis

The development of self-configuring methods requires at least two pools of data sets:
one pool for the development process, called the development pool, and one pool to
evaluate the performance of previously unseen data sets. The pool of evaluation data sets
in our study is divided into two parts: the generalisation pool and the benchmarking pool.
While there exist multiple publicly available data sets, each of them is used to develop
task-specific models rather than creating methods to work robustly across many tasks.
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In total, 22 data sets are used to develop and evaluate our method. An overview of all
utilized data sets is illustrated in Figure 4.7.

Medical image computing is primarily focused on semantic segmentation, with 70% of
challenges being targeted at voxel-level evaluation [42]. However, diagnostic tasks can
not be effectively evaluated at the voxel-level because they depend on the presence of
objects rather than individual voxels. Common segmentation metrics, like the Dice score,
are not capable of capturing this characteristic [149]. As a consequence, many detection
tasks are published as segmentation data sets, which complicates the development of
general-purpose object detection methods. We identified 11 data sets which can also be
used as valuable detection tasks and converted their labels into a detection-compatible
format for our study. Detailed information on each data set and the label conversion
steps are included in Section B.3.3.

Development Pool: For the development of nnDetection 10 different data sets are used
to cover various modalities, anatomical regions and object structures: MSD-L (D01, liver,
tumour) [16], MSD-P (D02, pancreas, tumour) [16], MSD-HV (D03, liver, tumour) [16],
MSD-C (D04, colon, tumour) [16], CADA (D05, brain, aneurysm) [17], RibFrac (D06,
chest, fracture) [11, 12], KiTS21 (D07, kidney, tumour and cyst) [15], PICAI (D08, prostate,
tumour) [197, 198], ADAM (D09, brain, aneurysm) [44] and LIDC (D10, lung, nodule) [13].

The smallest data set in terms of images includes 109 scans (D05), and the largest one has
1295 images (D08). D09 has the fewest annotated objects (n=125), and D06 has the highest
number of objects (n=4422). All data sets are used for cross-validation experiments
during the development phase. Cross-validation results can be found in Figure B.1. For
D01 - D04, an additional test split was extracted at the beginning of the development
process to make configuration decisions for the inference pipeline (Figure B.4).

Generalisation Pool: The first pool of data sets used for evaluating the performance
of nnDetection consists of nine additional data sets. These were withheld from the
development of nnDetection and simulate the real-world application of our method
to previously unseen data sets. The data sets include: KiPA (D11, kidney, tumor) [199,
200, 201, 202], MRA-A (D12, brain, aneurysm) [18], CT-PC (D13, pancreas, cyst) [203],
DUKE (D14, breast, primary tumor) [25, 26], BraTS-M (D15, brain, metastasis) [204, 205],
CT-PaCS (D16, pancreas, cancer) [206], MELA (D17, mediastinum, lesion) [19], VALDO-M
(D18, brain, microbleed) [20, 21, 22, 23, 24] and LNDb (D19, lung, nodule) [207].

This pool comprises upcoming detection benchmarks and data sets originally proposed
for segmentation tasks. It covers a wide variety of tasks and introduces previously unseen
anatomical regions, image modalities, object structures and annotation types. Since no
other detection baselines exist for these tasks, benchmarking is performed against nnU-
Net Plus and nnU-Net Basic (see Section 4.2.8), which extend the nnU-Net framework
with additional post-processing steps to predict bounding boxes. Each of the data sets is
split into a training and testing split.
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4 Materials and Methods

D11 has the fewest images (𝑁 = 70) and objects (𝑛 = 72) in the generalisation pool.
D16 includes the highest number of images (𝑁 = 1843), and D15 the highest number
of objects (𝑛 = 4588). The MRI data sets D14, D15, and D18 introduce modalities which
were absent from the development pool. The DUKE data set is used for primary tumour
detection in the breast area, an anatomical region which is not part of the development
pool. Furthermore, D15 and D18 introduce metastases and microbleeds as novel object
structures in the generalisation pool. The annotation style of the detection problem
varies between the data sets, including spherical annotations in D12 and bounding box
annotations in D17 and D14. In summary, the generalisation pool represents a highly
diverse collection of medical detection problems to challenge current methods in many
different scenarios. Cross-validation and test set performance visualised via box plots
can be found in Figures B.2 and B.3.

Benchmarking Pool: The benchmarking pool summarises commonly used data sets
to develop and compare task-specific models. Three data sets are used to compare
nnDetection against current state-of-the-art task-specific methods:

• LUNA16 [43] is a lung nodule detection data set consisting of 888 images. It is a
filtered subset of the LIDC [13] data set but reduces the multi-class problem to a
single-class problem. Furthermore, only spherical labels are provided, resulting
in different data fingerprints than LIDC [13]. An official split with 10 subsets is
publicly available and is used in a cross-validation fashion. Since the exact splitting
procedure is not clearly defined, different splitting approaches are possible, leading
to inconsistencies when reporting results. To provide the best possible comparison,
we ran our experiments in two variations: the ’8-1-1’ split uses eight training folds,
one validation and one testing fold and the ’9-0-1’ uses nine training folds and one
testing fold. The empirical parameters of nnDetection are directly optimised on
the test split in the latter version.

• PN9 [14] is the largest publicly available detection data set, exceeding previous
efforts in terms of the number of images and objects by a whole magnitude. Various
lung nodule classes are annotated via bounding boxes, resulting in over 40.000
object labels. The data set is split into three subsets: training, validation and testing.
All images are already resampled to a unified spacing of 1mm × 1mm × 1mm as
well as clipped and normalised to an intensity range of [0, 255].

• CTA-A [170] is a large annotated data set for the detection of aneurysms in CTA
images. It was used by Ceballos-Arroyo et al. to compare multiple detection meth-
ods. Images are split into three groups: training, internal testing and external
testing. The internal testing data set offers the opportunity to evaluate the devel-
oped method on unseen images with minimal distribution shift, while the external
testing data set was collected at different institutions.
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4.2 Self-Configuring Design of Medical Object Detection Methods

4.2.2 Development Process

The entire design of nnDetection was performed on the development pool consisting
of 10 diverse medical detection tasks. Initial design decisions were inspired by nnU-
Net [47] and consecutively questioned for validity in the detection domain. Further
experiences were carried over from the manual design of detection methods introduced
in Section 4.1. These were driven by simple yet robust methods rather than focusing
on complex architectural novelties. This results in an automatic configuration process
specifically tailored towards detection models.

nnDetection is based on the same parameter groups as nnU-Net [47]: rule-based, fixed
and empirical parameters. Initially, a data fingerprint is automatically extracted from
the data to build the basis for the following configuration process. It formalizes the
most important aspects of the data set into accessible properties, which can be used by
the rule-based design to dynamically determine data set-specific hyperparameters. The
development experiments have shown that some parameters are data set-independent
and can be kept constant; these are called fixed parameters. The last group, namely
empirical parameters, require adaptation but can not be represented by a rule. They
are determined by performing cross-validation experiments on the training data and
empirically determining the best configuration based on the obtained results.

In contrast to the semantic segmentation domain, the detection domain encapsulates
different annotation types and models, offering different strengths and weaknesses. These
inhomogeneities are incorporated into the design by supporting five detection models
within a unified framework. nnDetection offers models from three categories: 1STAGE
models (Section 2.1.2) offer a simple yet robust design to predict objects from predefined
anchors, 2STAGE models (Section 2.1.1) extend the one-stage design with an additional
RoI head and a pooling operation to refine the initial proposals. The SETPREDICT
model is based on the direct set prediction approach introduced in the DETR [38] section
(Section 2.1.3). To accommodate different annotation types, the one- and two-stagemodels
can either be trained with box-level supervision (BOX) or a combination of voxel-level and
box-level supervision (MIX). This results in five potential models: 1STAGE-BOX (Retina
Net [35], Section 4.2.6), 1STAGE-MIX (Retina U-Net [46], Section 4.2.6), 2STAGE-BOX
(Faster R-CNN [36], Section 4.2.6), 2STAGE-MIX (Mask R-CNN [37], Section 4.2.6) and
SETPREDICT (Deformable DETR [147], Section 4.2.6). To limit the number of training
runs and save computational resources, a model proposal stage is introduced to select
one representative from each model category, as further elaborated in Section 4.2.5.

4.2.3 Generalisation Process

nnDetection is a self-configuring medical object detection method which can be applied
to new data sets without manual intervention. The entire design process, including data
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fingerprint extraction and hyperparameter configuration, is automated and can be used
by practitioners as well as domain experts to train powerful detection models. This design
makes detection models available to the entire medical image computing community and
provides strong baseline performance for future research.

To evaluate the generalisation capabilities of nnDetection and simulate its real-world
adoption, experiments were conducted on two further data set pools, including 12 pre-
viously unseen detection data sets from the generalisation and benchmarking pool. As
described in Section 4.2.6 minimal interventions to the training schedule of the SET-
PREDICT model were necessary on two data sets to ensure proper convergence. These
changes are now automated for future deployments of nnDetection. The remaining
experiments are conducted without manual intervention.

4.2.4 Data Fingerprint

Medical images have a variety of different properties, like different image modalities
and voxel spacings, which are not commonly found in other imaging domains. These
properties have an impact on the configuration process of deep learningmethods and need
to be carefully incorporated into the design for optimal performance. The data fingerprint,
originally introduced in nnU-Net [47], is a collection of such properties and extracts
a compact representation of the data. However, the detection domain encapsulated
properties different from those of the semantic segmentation domain, which requires
changes to the composition of the fingerprint.

Medical images are acquired with different image modalities to highlight the clinically
needed anatomical structures. They can represent different quantities like HU, resulting
in different processing steps to make them suitable for neural networks. All images are
represented by their intensity distribution, which captures the statistical properties of
their voxel intensities. Since not all images capture the same body parts, the resulting
scans have different image sizes, which need to be handled. These sizes can be collected
and assembled to the image shape distribution of the data fingerprint. Images operate
on discretized grids of the real world, where the spacing defines the distance between
centres of voxels that the grid is made of. Furthermore, the collection of images and
labels by themselves can be used to deduce empirical parameters, like the IoU threshold
of the NMS operation, and reflect the training data by itself. Not all object structures
require the same amount of spatial detail in their annotation, which results in different
annotation types across the medical detection domain. Common styles include instance
segmentations [11, 207, 13], bounding boxes [14, 25] or spherical representations [18,
43]. All detection tasks require annotated objects, which are always associated with two
properties: object position and object size.
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4.2.5 Rule-based Parameters

Rule-based parameters use the data fingerprint to adapt hyperparameters for a given
data set. They are dynamically deduced, resulting in a custom configuration for each
data set. These rules are explained in the following paragraphs (R1-R8):

[R1] Preprocessing - Target Spacing and Resampling

Medical images capture the physical world in a discretized grid where each grid cell can
capture a varying extent of the physical world. This size is represented by the spacing
of the images, which can be divided into in-plane and out-of-plane spacing. For most
acquisition protocols, the out-of-plane spacing is higher than the in-plane spacing since
volumetric data is captured in a slice-wise manner. Capturing more slices increases the
acquisition time and, in the case of CT, also the radiation dose. Usually, the spacing
of images varies within a data set, consequently resulting in varying fields of view of
the information in the physical space. To provide the neural network with a constant
physical field of view, all images are resampled to a unified target spacing.

Choosing an appropriate target spacing is essential to standardise the data set without
removing critical information. When the target spacing is chosen too coarsely, small
objects can vanish during the resampling step, making them undetectable for the method.
Using a small target spacing results in images with many voxels, limiting the amount of
contextual information for a given patch size and resulting in longer inference times due
to the increased computational burden. nnDetection adopts the same rule as nnU-Net [47]
to determine the target spacing of the full-resolution model by using the median spacing
for each axis. If the largest spacing along any axes exceeds the smallest spacing by a
factor of three, an adapted rule is triggered, which sets the spacing to the 10th percentile
of the coarsest axis [47].

[R2] Preprocessing - Low-Resolution Models

Current 3D neural networks utilise a patch-wise training scheme due to restrictions in
the VRAM of modern GPUs. On the other hand, some detection tasks contain target
structures that extend significantly beyond currently possible patch sizes. This drastically
limits the available contextual information in a single patch and complicates the inference
process. During inference, the image is scanned via a sliding window scheme with
overlapping patches, resulting in multiple predictions for each object. If an object extends
acrossmultiple patches, it is not sufficient to suppress duplicate predictions, but it becomes
a necessity to stitch them together. This constitutes a difficult task, and stitching artefacts
can occur during the prediction, resulting in duplicate predictions of the same object.

79



4 Materials and Methods

As pointed out in our submission to the MELA challenge, see Section 4.1.1, this can be
partially circumvented by increasing the target spacing resulting in lower-resolution
images. This enables the model to learn coarser information and increases the field of
view of the physical space within a single patch. If the 99.5th percentile of the object
sizes exceeds the current patch size, additional low-resolution versions of the data set are
triggered until the condition is not fulfilled anymore. These versions are also refered to as
resolution stages in this thesis. Each stage doubles the spacing along all axes, effectively
halving the number of voxels along each axes.

[R3] Preprocessing - Intensity Normalisation

Normalising the inputs for neural networks is important to avoid numerical instabilities
during training, since unnormalised inputs can yield vanishing or exploding gradients. A
good normalisation scheme can also be used to attenuate selected properties of images,
for example, by applying thresholding operations to remove unnecessary information.

Voxel intensities of CT images represent a physical quantity, describing the absorption of
radiation in tissue, and are measured in HUs. As a result, the intensity values produced
by different CT scanners are comparable to each other. Clinicians utilise this fact to
define intensity windows which highlight clinically relevant regions in images. These
intensity windows vary between tasks and can thus not be used directly to normalise the
inputs in nnDetection. Instead, the 99.5-th percentile and the 0.5-th percentile are used as
the upper and lower bound for clipping, respectively. The mean and standard deviation
of the voxel intensities are collected across the entire data set and used to normalise each
image with z-score normalisation. This normalisation scheme first subtracts the mean
and then divides the intensities by the standard deviation. All other modalities use a
z-score normalisation where mean and standard deviation are computed on a per-image
basis. This rule was adopted from nnU-Net [47].

[R4] Training - Patch Size and Network Topology

Choosing the correct patch size for a given problem is essential to achieve the best
possible results. It has complex interactions with many other hyperparameters and needs
to balance the available contextual information for the model and compute resources.
As a starting point, the patch size is initialized to the median shape of the data set. This
represents the largest useful patch size for a given task as padding would need to be
applied to the majority of images to support even larger inputs. Most volumetric data sets
result in initial patch sizes which vastly exceed the available VRAM. Starting from there,
the patch size is iteratively reduced while keeping the physical dimensions constant
across all axes. This is repeated until the configured memory budget is met. The resulting
patch size is anisotropic for anisotropic spacings, and isotropic patch sizes are used for
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isotropic spacings. VRAM estimation is performed via a heuristic to keep the procedure
deterministic and reproducible across all devices. This principle for determining the
patch size was adopted from nnU-Net [47].

The network topology needs to be adapted depending on the configured patch size via
two configuration parameters: (1) network depth and (2) kernel and pooling sizes. Deeper
networks can capture a larger field of view in deep layers, which complements larger
patch sizes and enables the detection of large objects. However, decreasing the size of the
feature maps indefinitely can influence other operations, such as normalisation layers,
which can only provide a robust statistical estimate for larger feature maps. To avoid this
problem, the network is configured to retain a minimum feature map size of 4 × 4 × 4.
All models within the nnDetection framework use the same patch size to be comparable
with each other. The default memory budget is allocated to roughly 12-16GB of VRAM.
Second, the kernel and pooling sizes are configured in accordance with the patch size.
For isotropic patches, the pooling and kernel sizes operate along all axes equally. But
fusing information across very anisotropic axes can result in performance degradation.
In this case, early kernel sizes are configured to be anisotropic, effectively operating in a
two-dimensional mode, and information across slices is only fused later in the network.

Anchor-based detectors, like Retina U-Net [46], use predictions from multiple scales
to detect objects of different sizes. High-resolution feature maps are better suited to
detect small objects, while coarse feature maps capture large field of views to detect
larger objects. The FPN is responsible for combining information from multiple scales
and adjusting the number of channels for the shared detection head. For deep network
configurations, the deepest four levels are used for the detection heads. When small patch
sizes are used in combination with shallow networks, the FPN levels will automatically
shift upwards and use higher resolution features.

[R5] Training - Number of Objects per Patch

All detection models within nnDetection require an upper limit of detections per patch.
Choosing a good limit is essential to achieve robust performance: if the limit is set too
high, many unnecessary predictions will be produced that need to be processed. In direct
set prediction models, like DETR, this also influences the training convergence since
the loss would include much more background samples. On the other hand, using a
restrictive threshold will suppress correctly predicted objects.

Since the training and the inference procedure are conducted in a patch-wise manner, it is
not sufficient to compute statistics across the entire image. It is necessary to estimate the
number of objects that are usually contained in a single patch, a quantity that depends
on the selected patch size and data set characteristics. In order to obtain a good estimate,
the distance between the centre points of the objects is calculated and compared against
the patch size. This measure is computed for every image in the data set, and the value
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𝑂img is set to the 95th percentile across all images. The upper limit for anchor-based
detectors is set to 4∗𝑂img with a minimum of 100 predictions. The number of predictions
for DETR models is set to 3 ∗ 𝑂img with a minimum of 12 predictions. These values were
determined during the development proess and ensure that the detectors are able to
predict a sufficient number of objects.

[R6] Training - Anchor Sizes

The core component of anchor-based detection models are the predefined anchors re-
sembling potential bounding box positions. The selection of anchors influences both
the training and inference characteristics of these models. As such, an inappropriate
anchor composition will result in difficult optimisation problems during training since the
models need to learn to compensate for the large disparities. This will impact decisions
concerning the assignment heuristic and scaling of losses. However, choosing the correct
anchors is a powerful tool for injecting prior knowledge about object sizes into the model
and can be especially beneficial for smaller data sets.

Due to the large variation of object sizes across the axis, nnDetection uses 27 anchor
boxes at each position. Three different sizes are defined along each axis, and the Euclidean
product is used to combine all of the anchor sizes. The pooling strides are used to scale
the anchor sizes from the initial level to the deeper levels, reflecting the increase in the
field of view. Their initial size is determined via iterative optimisation with differential
evolution, utilising the TwoPointsDE algorithm from the nevergrad library [208]. The
IoU between the anchors and the ground truth object sizes is used as the optimisation
criterion.

[R7] Training - Pseudo 2D Augmentation

Augmentation is an essential tool to increase the diversity of the training data set and
avoid model overfitting. Section 4.1.1 outlined the importance of proper configuration of
the augmentation pipeline and evaluation scheme to obtain optimal performance. All
details regarding the augmentation pipeline are described in Section 4.2.6 as part of the
fixed parameters. Nonetheless, some spatial augmentations operate along all dimensions
equally, which implicitly assumes isotropic data. In the presence of anisotropic data,
it can be harmful to augment the data extensively along the out-of-plane axis due to
the occurrence of interpolation artefacts. To avoid this, rotation and scaling are only
performed along the in-plane axis in this scenario.
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[R8] Training - Model Proposals

The medical detection domain has a large variety of annotation types since they offer
different benefits: (1) Instance segmentations offer the richest supervision signal where
objects are delineated on the voxel level. On the other hand, they also require the highest
annotation effort. (2) Bounding boxes offer a quicker annotation solution and encapsulate
the position and size of the object. (3) Spherical annotations can be annotated the quickest
but only capture the position and largest extent of the object. The annotation type does
not solely depend on the available annotation budget, as not all medical detection tasks
benefit from additional supervision. We observed this behaviour in an initial experiment
in the context of the vessel occlusion study Section 4.1.2. If it is not possible to clearly
delineate objects by their boundaries, the availability of segmentations does not boost
the model’s performance. Based on the available annotation type, various models have
been proposed which can utilize the richer signals if available. To allow for a unified pre-
processing and augmentation pipeline, box-level annotations are converted to (pseudo)
voxel-wise labels during preparation even when the trained models do not depend on
voxel-level supervision.

nnDetection encapsulates two types of models to cope with the diversity of annotation
types: (1) BOX models are only trained with bounding box supervision and do not
incorporate additional information in the form of segmentations, and (2) MIX models are
trained with a mixture of box-level supervision and voxel-level supervision to leverage
the richer training signal when available. This implicitly assumes that the appropriate
annotation type was already determined by the clinician performing the annotations,
and objects without clear boundaries are annotated with bounding boxes. Anchor-based
models like Retina Net [35] and Faster R-CNN [36] have direct counterparts which can
use additional voxel-level supervision, namely Retina U-Net [46] and Mask R-CNN [37].
Direct set prediction models are always trained with box-level supervision since they do
not incorporate segmentations in their design. To limit the number of necessary training
runs, the model proposal stage selects three models depending on the available annotation
type: (1) if box-level annotations are available in the form of either bounding boxes or
spheres, the 1STAGE-BOX, 2STAGE-BOX and SETPREDICT models are recommended for
training and (2) if voxel-level annotations are available, the 1STAGE-MIX, 2STAGE-MIX
and SETPREDICTmodels are proposed. This ensures that the appropriate model is chosen
for the present task, utilising the available annotation to its full extent. The SETPREDICT
model is trained in both instances since it provides great results when trained on larger
data sets even when no voxel-level supervision is utilised.

4.2.6 Fixed Parameters

This parameter group encapsulates parameters that generalise robustly across detection
tasks and are thus kept constant.
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Preprocessing

The images are resampled via third-order B-spline interpolation as in [47]. Segmentation
maps can only contain discrete values where each object is encoded as a separate label
to retain the object-level information. In the case of higher-order resampling strategies,
the labels need to be encoded as one-hot vectors and discretised after interpolation.
However, this results in vastly varying memory requirements and compute times between
segmentations with few and many objects. All segmentations are resampled via nearest
neighbour interpolation in nnDetection to alleviate this concern.

Training - One-Stage Anchor-based Detection Blueprint

Two anchor-based one-stage detection models are available within nnDetection: Retina
Net [35](1STAGE-BOX) and Retina U-Net [46] (1STAGE-MIX). If voxel-level annotations
are available, the 1STAGE-MIX model is used to leverage this additional information.
Otherwise, only the 1STAGE-BOX model is used to avoid conflicting information from
pseudo-segmentation masks.

Architectural Design: Each network is divided into three components: encoder, de-
coder and detection head. The 1STAGE-MIX architecture uses an additional semantic
segmentation head at the highest resolution to leverage voxel-level supervision. An
architectural overview is provided in Figure 4.8.

The encoder network is responsible for extracting multi-scale features from the original
image and passing them to the decoder network. It follows a simple CNN design where
each level consists of two stacked convolutions followed by Instance Normalisation [189]
and a Leaky ReLU non-linear activation function. The first convolution of each level is
responsible for performing the downsampling operation, which is realised via strided
convolutions. A FPN is used as the decoder architecture and is responsible for recom-
bining coarse information with fine-grained information. Upsampling is performed via
transposed convolutions, and features from different levels are combined using element-
wise addition. If the 1STAGE-MIX architecture is used, the decoder is extended to the full
image resolution, and higher levels consecutively reduce the number of feature maps that
are not used by the detection head. The depth, kernel sizes, pooling sizes and detection
head levels are determined via the configuration process outlined in Section 4.2.5. The
detection head is shared across multiple levels, predicting objects across various scales
and consists of a classification and a regression branch. Both branches share the same
design with two convolutions followed by Group Normalisation [190] and Leaky ReLU
non-linear activation functions. The outputs are generated via pointwise convolutions to
produce confidence scores and regression deltas. The optional segmentation head uses a
pointwise convolution to produce the segmentation outputs as well.
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Figure 4.8: One-Stage Anchor-based Architectural Blueprint. Shows the Retina U-Net
architecture (1STAGE-MIX) using object-level and voxel-level supervision. The en-
coder consists of stacked convolutions with Instance Normalisation and Leaky ReLU
non-linear activation functions. The decoder is realised via a FPN with transposed
convolutions. The detection head is shared across multiple levels and consists of a
classification and regression branch. Semantic Segmentation is performed at the
highest resolution level of the decoder and removed for the 1STAGE-BOX model.
This figure is adapted from [82].

The anchor classification is trained via the focal loss (Section 2.1.2) with 𝛾 = 1 and
𝛼 = 0.75 (Equation (2.8)). The normalisation of the loss is performed by taking the mean
across classes 𝑌 and sum across all anchors 𝐴 to stabilise gradients, see Equation (4.3).

𝐿𝑐𝑙𝑠 = ∑
𝐴

1
|𝑌 |

∑
𝑦𝑖∈𝑌

𝐿𝑓 𝑜𝑐𝑎𝑙(𝑦𝑖, ̂𝑦𝑖) (4.3)

The smooth L1 (Section 2.1.1) is used to regress the regression targets for the positive
anchors. The classification and regression losses are normalised by the moving average
of the number of positive anchors. The bounding box deltas are encoded the same way

85



4 Materials and Methods

as in the original R-CNN publication [95] (see Section 2.1.1). The segmentation branch is
trained via a combination of the Dice (batch dice version without smoothing factor) and
CE loss. The full loss function can be written as Equation (4.4).

𝐿1𝑠𝑡𝑎𝑔𝑒 = 0.3 ∗ 𝐿𝑐𝑙𝑠 + 𝐿𝑟𝑒𝑔 + 𝐿𝑠𝑒𝑔,𝐷𝑖𝑐𝑒 + 𝐿𝑠𝑒𝑔,𝐶𝐸 (4.4)

Trainig Schedule: Both models are trained for 50 epochs with a batch size of 4 and 2500
training batches per epoch. SGD with Nesterov momentum of 0.99 is used to update the
parameters of the model. The learning rate starts at 1𝑒 −6 and is linearly increased to 0.01
over 4000 iterations. A PolyLR [47] schedule is used onwards. If numerical instabilities
are encountered, training is automatically restarted with a momentum of 0.9. A complete
overview of model-specific parameters is visualised in Figure 4.9.

Training - Two-Stage Anchor-based Detection Blueprint

Two-stage models use a RPN to generate an initial set of candidates and refine them via
the RoI head. nnDetection encapsulates a 2STAGE-BOX model (Faster R-CNN [36]) and
a 2STAGE-MIX model (Mask R-CNN [37]) which are dynamically selected based on the
annotation type.

Architectural Design: The RPN model uses the same architectural blueprint as the
1STAGE models but replaces the focal loss (Section 2.1.2) with a combination of stochastic
online HNM and the BCE loss. Available anchors are subsampled to balance the number
of positive (one-third) and negative (two-thirds) matches. Since balanced sampling is
not possible for patches without objects, the anchors are selected across the entire batch
rather than individual images. A 3D version of the RoI Align (Section 2.1.1) operation is
used to pool features from the selected feature level for the RoI head.

The RoI head consists of a classification, regression and segmentation branch. Feature
maps are pooled to a size of 5 × 5 × 5 for the regression and classification branch and
processed by four convolutions. Each convolution is followed by a Group Normalisa-
tion [190] layer and Leaky ReLU non-linear activation function. Afterwards, an average
pooling layer and a pointwise convolution are used to classify and regress the original
proposals. The segmentation branch is only present for the 2STAGE-MIX architecture
and produces binary segmentation masks for each object. It processes features of size
9 × 9 × 9 and uses a transposed convolution to increase the output resolution of the mask
to 18 × 18 × 18. An architectural overview of the RoI head is shown in Figure 4.10.

The BCE loss is used to train the classification branch, and the smooth L1 loss [101] is
used to refine the proposals. Stochastic online HNM balances the number of positive
and negative proposals for the loss computation. Candidates with an IoU below 0.2 are
considered negative examples, and candidates above 0.3 are considered positive examples.
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Parameter DescriptionDependencies

Network Topology & 
FPN Levels &  

Patch Size

Median Image Shape, 
Target Spacing, GPU 

Memory Budget

The patch size is initialised with the median image shape after resampling 
and iteratively decreased until the memory requirements are met. The 
physical field of view of the patch is kept constant. 
 
The network topology defines the depth, kernel sizes and pooling sizes 
based on the current patch size. For deep configurations the last four levels 
are used for predicting objects. For shallow configurations the levels are 
shifted upwards. 

Three anchor sizes per axes are used and combined with the Euclidean 
product to derive a set of 27 anchors per position. The sizes are optimised 
to achieve the highest IoU with reference object sizes. 

Anchor Optimisation
Object Sizes, Target 
Spacing, Network 

Topology

The Retina U-Net (1STAGE-MIX) model is used in presence of 
segmentation annotations. For other annotation types, the Retina Net 
(1STAGE-BOX) architecture is used.

Model Proposal Annotation Type

Inference parameters are derived by empirical optimisation on the training 
data. Specifically, the IoU threshold for NMS per model, IoU threshold for 
WBC, a lower limit for the confidence score, a lower limit for object sizes are 
derived.

Empirical Parameter 
Optimization Training Data

Optimiser & 
Learning Rate

The learning rate is linearly increased from 1e-6 to 1e-2 for the first 4000 
iterations. A PolyLR schedule is used for the remaining training. SGD with 
Nesterov momentum of 0.99 is used to update the parameters. If training 
does not converge, an automatic restart with momentum 0.9 is triggered.

Anchor 
Matching

The assignment between anchors and reference objects is performed via 
Adaptive Training Sample Selection (ATSS), using a dynamic IoU threshold 
for each object. 

Architecture Template

Encoder: stacked convolutions with Instance Normalisation and Leaky ReLU 
non-linear activation functions. 
  
Decoder: FPN style decoder network with transposed convolutions to 
upsample features. Number of channels decreases for upper levels. 
 
Detection Head: classification and regression branch each consisting out of 
two convolutions with Group Normalisation and Leaky ReLU activations. The 
outputs are generated via pointwise convolutions. 
 
Segmentation Head: convolution to produce semantic segmentation. Only 
used for 1STAGE-MIX model.

Loss Functions

Classification Branch: Focal loss with alpha set to 0.75 and gamma to 1. 
The classification loss is weighted with 0.3 inside the multi-task loss. 
 
Regression Branch: The smooth L1 loss is used to regress deltas which 
are encoded in the R-CNN style. 
 
Segmentation Branch is trained with the Cross-Entropy loss and Dice loss. 
It only distinguishes between foreground and background. Only used if 
1STAGE-MIX model is used. 

Determines the number of objects located within the current patch size, 
denoted by  . Number of predictions is set to the 95th percentile 
multiplied by 4 and a minimum of 100.

OimgNumber of Predictions Object Positions, 
Patch Size

Figure 4.9: One-Stage Anchor-based Model Configuration. Visualizes the configuration
of the 1STAGE-MIX and 1STAGE-BOX models. Only model-specific configuration
options are shown here; model-agnostic parameters are omitted to provide a better
overview. Additional dependencies for the parametrization are shown in the second
column, and additional details are provided in the third column. Fixed parameters
are shown in light blue, rule based parameters are shown in orange and empirical
parameters are shown in purple. This figure is adapted from [82].
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Figure 4.10: Two-Stage RoI Head Architecture. Shows the RoI head of the 2STAGE-MIX
model using object-level and voxel-level supervision. The RPN is omitted for sim-
plicity. The head comprises three branches responsible for classification, regression,
and segmentation. The classification and regression branches follow the same
design with four convolutions, an average pooling and a final point-wise convolu-
tion. The segmentation branch replaces the pooling operation with a transposed
convolution to produce object masks. This figure is adapted from [82].

Region proposals between these two thresholds are ignored during loss computation.
In contrast to the RPN, only one out of eight of the proposals contributing to the loss
computation are positive, and seven out of eight are negative. To stabilise training in the
beginning, ground truth bounding boxes are added as additional candidates to ensure
that at least one positive proposal is present for foreground patches. The regression and
the classification loss are normalised by the running mean over the number of selected
positive proposals.

Trainig Schedule: Similar to the 1STAGE models, a training schedule with 50 epochs
and 2500 batches per epoch is used. Each batch consists of 4 patches, and SGD with
Nesterov momentum is used to update the parameters. The momentum term is set to
0.9, and the PolyLR learning rate schedule is used. An overview of all model-specific
parameters is provided in Figure 4.11.
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Parameter DescriptionDependencies

The Retina U-Net 2 Stage Mask (2STAGE-MIX) model is used if voxel-level 
annotations are available. For other annotation types, the Retina Net 2 
Stage (2STAGE-BOX) architecture is used.

Model Proposal Annotation Type

Optimiser & 
Learning Rate

The learning rate is linearly increased from 1e-6 to 1e-2 for the first 4000 
iterations. A PolyLR schedule is used for the remaining training. SGD with 
Nesterov momentum of 0.9 is used to update the parameters. 

Anchor 
Matching

 
RoI: Proposals with IoU below 0.2 are considered negative and above 0.3 
as positives. Proposals which an IoU between these two thresholds are 
ignored.

Architecture Template

RoI Detection Head: classification and regression branch each consisting 
of four convolutions with Group Normalisation and Leaky ReLU activation 
functions. Outputs are generated with pointwise convolutions. 
 
RoI Mask Head: mask branch with four convolutions each with Group 
Normalisation and Leaky ReLU activation functions. A transposed 
convolution is used to upsample the features. The output is generated via a 
pointwise convolution. Only used for 2STAGE-MIX model.

Loss Functions

RPN Classification: Online Stochastic Hard negative mining (1/3 positive 
and 2/3 negative) in combination with the BCE loss. 
 
RoI Classification: The BCE loss is used to train the classification of the 
proposals. Online Stochastic Hard negative mining (1/8 positive and 7/8 
negative) is use for subsampling proposals. 
 
RoI Regression: The smooth L1 loss is used to train the proposal 
refinement. 
 
RoI Segmentation:  The mask prediction branch is trained via the BCE 
loss. Only used for 2STAGE-MIX model.

RoI  
Pooling

Detection Branch: Feature maps processed by the detection branch are 
pooled via RoI Align to a size of 5x5x5 . 
 
Mask Branch: Feature maps for the segmentation branch are pooled via 
RoI Align to a size of 9x9x9 . Only used for 2STAGE-MIX model.

Uses a 1STAGE detection model as the Region Proposal Network. This 
includes all corresponding rule-based, fixed and empirical parameters of the 
model.

One-Stage Detector 
as RPN

Figure 4.11: Two-Stage Anchor-based Model Configuration. Visualizes the configuration
of the 2STAGE-MIX and 2STAGE-BOX models. Only model-specific configuration
options are shown here; model-agnostic options are omitted to provide a better
overview. RPN parameters are only shown if they differ from the 1STAGE models
to provide an improved overview. Additional dependencies for the parametrization
are shown in the second column, and additional details are provided in the third
column. Fixed parameters are shown in light blue, rule based parameters are shown
in orange and empirical parameters are shown in purple. This figure is adapted
from [82].
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Training - Direct Set Detection Blueprint

The initial study described in Section 4.1.3 introduced several DETR models which can be
used to perform direct set prediction. nnDetection uses the Deformable DETR architec-
ture, which yielded similar results to DINO DETR during the development experiments
while having a simpler design. The following sections about nnDetection refer to the
Deformable DETR model as SETPREDICT.

Architectural Design: DETR models only use an encoder to extract multi-scale features
from images. To keep the results comparable the same encoder design as for the 1STAGE
and 2STAGE models is used. Each level uses two convolutions with Instance Normalisa-
tion [189] and Leaky ReLU non-linear activation functions. Downsampling is performed
via strided convolutions. The deepest four levels are used by the transformer modules for
further processing. Absolute positional encoding is used to retain positional information
when flattening the features into sequences. The output of each level is followed by a
convolution to adjust the number of feature channels. Three transformer blocks, each
with Multi-Scale Deformable Attention (Section 2.1.3), Layer Normalisation layers and
a MLP are used within the transformer encoder. All positions of the feature maps are
considered reference points and used within the transformer encoder. The transformer
decoder consists of 6 blocks with Multi-Scale Deformable Attention, Self-Attention, Layer
Normalisation and a MLP. It is used to process reference boxes via cross-attention with
the help of the encoder features. The same two-stage DETR design is used as in the
original publication [147] (Section 2.1.3). Each decoder block predicts a refined version of
the reference boxes via non-shared detection heads. The classification branch is trained
via the focal loss [35]. A combination of the L1 and GIoU loss [138] is used to train the
regression branch. The architectural blueprint is visualised in Figure 4.12.

Trainig Schedule: The model is trained for 100 epochs with 2500 batches per epoch and
a batch size of four. The AdamW [196] optimiser is used to perform the parameter updates,
and the learning rate is set to 3𝑒 − 4. AMSGrad [209] is enabled during the training.
The PolyLR learning rate schedule is used to change the learning rate throughout the
training. After initial application to the generalisation pool, convergence issues were
noticed on two data sets. An automatic restart mechanism was added to the model, where
the learning rate is reduced to 1𝑒 − 4, and a warm-up period is used in the beginning.
Model-specific configurations are summarised in Figure 4.13.

Training - Dataloading

Processing entire volumetric images with deep neural networks requires large amounts
of VRAM, constituting a major limitation. To reduce the required memory footprint,
typical 3D networks are trained with smaller patches, which are extracted from the whole
image. The majority of medical detection tasks have target structures that only occupy
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Figure 4.12: Direct Set Prediction Architectural Blueprint. Shows the Deformable DETR
model (SETPREDICT) using object-level supervision. The transformer encoder and
decoder leverage multi-scale deformable attention to process features and produce
the embeddings used for predicting the objects. The decoder uses reference boxes
to define reference points and modulate offsets. Two small networks are responsible
for processing the transformer decoder output to produce confidence scores and
bounding boxes. This figure is adapted from [82].

a small portion of the entire image, introducing a severe imbalance between patches
that do not contain objects (background patches) and patches that contain at least one
object (foreground patches). To counteract this imbalance, the data loading procedure
in nnDetection automatically balances batches by enforcing that 50% of the sampled
patches are foreground patches. All models are trained with a batch size of four to balance
compute requirements and training stability.
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Uses Deformable DETR as a direct set prediction model denoted by 
SETPREDICT. 

Model Proposal Annotation Type

Parameter DescriptionData Fingerprint

Network Topology & 
Patch Size

Median Image Shape, 
Target Spacing, GPU 

Memory Budget

The patch size is initialised with the median image shape after resampling 
and iteratively decreased until the memory requirements are met. The 
physical field of view of the patch is kept constant. 
 
The network topology defines the depth, kernel sizes and pooling sizes 
based on the current patch size.

Determines the number of objects located within the current patch size, 
denoted by  . Number of predictions is set to the 95-th percentile 
multiplied by 3 and a minimum of 12.

OimgNumber of Predictions Object Positions, 
Patch Size

Inference parameters are derived by empirical optimisation on the training 
data. Specifically, the IoU threshold for NMS per model, IoU threshold for 
WBC, a lower limit for the confidence score, a lower limit for object sizes are 
derived.

Empirical Parameter 
Optimization Training Data

Optimiser & 
Learning Rate

Parameter updates are performed via the AdamW optimiser with a learning 
rate of 3e-4 and a PolyLR learning rate schedule. In case of convergence 
issues, an automatic restart is initiated with a reduced learning rate of 1e-4 
and a learning rate warm up from 1e-6 over 10.000 iterations.

Architecture Template

Encoder: Stacked convolutions with Instance Normalisation and Leaky ReLU 
non-linear activation functions. 
 
Positional Embedding: Absolute positional embeddings based on sine and 
cosine functions are used to preserve location information of the features. 

Transformer: The transformer encoder consists of three transformer blocks 
and the decoder is assembled from six blocks. All blocks use multi-scale 
deformable attention to save compute. Two stage DETR and iterative 
bounding box refinement are utilised. 
 
Detection Heads: The classification branch consists of a single linear layer to 
map to the output logits. The regression branch consists of three linear layers 
where first two layers are followed by a ReLU activation function. 

Loss Functions

Classification Branch: Focal loss with alpha set to 0.75 and gamma to 1. 
 
Regression Branch: A combination of the L1 loss and the GIoU loss are 
used to train the regression branch. The L1 loss is weighted by 5 and the 
GIoU loss by 2.  
 
Auxiliary Losses: Auxiliary losses are computed at each decoder block to 
refine the predictions.

Figure 4.13: Direct Set Prediction Model Configuration. Visualizes the configuration of the
SETPREDICT model. Only model-specific configuration options are shown here;
model-agnostic options are omitted to provide a better overview. Additional depen-
dencies for the parametrization are shown in the second column, and additional
details are provided in the third column. Fixed parameters are shown in light blue,
rule based parameters are shown in orange and empirical parameters are shown in
purple. This figure is adapted from [82].
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Some medical detection tasks are not limited to a single foreground class but present
multiple classes. This introduces another potential imbalance during training which
needs to be considered. Furthermore, not all patients may include objects at all. This
requires additional consideration when selecting patients during data loading. To address
both concerns, nnDetection performs the selection process on the object-level, where
each foreground class is assigned the same sampling probability. For background patches,
a random patient and position are sampled.

To ensure a diverse sampling behaviour of foreground objects, an additional offset is
introduced for the selection of the centre point of foreground patches:

• When the patch size exceeds the image size, the image is centred in the middle and
padded on both sides.

• If the selected foreground object exceeds 70% of the patch size, a random point
within the bounding box of the object is selected as the centre.

• In the remaining cases, the object centre is initially used as the patch centre and
an additional offset is introduced to vary the position during training. Since the
entire object should remain within the patch, the maximum offset is determined
by the object- and patch size. A magnitude parameter 𝑀 = 0.7 is introduced as a
hyperparameter to adjust the severity of the translation.

In summary, this data loading scheme ensures a balanced sampling of objects, foreground
classes and background patches.

Training - Augmentation

Data augmentation is essential for avoiding overfitting and making neural networks
robust against image perturbations. nnDetection uses the volumetric augmentation frame-
work Batchgenerators [210] due to its optimised processing pipeline and a broad range
of available transformations. The pipeline follows a similar design as nnU-Net [47] with
changes in the interpolation granularity and removal of the low-resolution augmentation.
All augmentations and their parameterizations are described as follows:

• [A1] Spatial Augmentation: This augmentation applies spatial distortions to
the images to make neural networks robust against rotations and changes in ob-
ject size. A random rotation is applied with 20% probability where the rotation
angle for each axis is sampled from a uniform distribution 𝑈 (−30∘, 30∘). Additional
scaling is applied with a probability of 20% and sampled within 𝑈 (0.7, 1.4). The
resulting deformation map is cropped around the centre before applying the inter-
polation. Linear interpolation is used for the image data, and nearest neighbour
interpolation is used for the labels. Lower-order interpolation methods ensure
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high throughput during the training and reduce the risk of Central Processing Unit
(CPU) bottlenecks.

• [A2] Pseudo 2D Transformation: As introduced in Section 4.2.5, applying
augmentations along anisotropic axes can lead to severe artefacts and decreased
performance. This augmentation is only present if the rule-based parameter is
triggered, which ensures that spatial augmentations like rotation, scaling, and
mirroring are only applied along the in-plane axes. Furthermore, in this case the
rotation angles are sampled within 𝑈 (−180∘, 180∘).

• [A3] Gaussian Noise Transformation: Additive Gaussian noise is added to the
images with a probability of 10%.

• [A4] Gaussian Blur Transformation: Gaussian blurring is applied to the images
with a probability of 15% where each channel is augmented with a probability of
50%. The standard deviation of the Gaussian kernel is sampled from 𝑈 (0.5, 1).

• [A5] Brightness Transformation: With a probability of 15% a multiplicate
brightness augmentation is applied to the image. The scale range is sampled from
𝑈 (0.75, 1.25).

• [A6] Contrast Transformation: The contrast augmentation is executed with a
probability of 15% and a magnitude sampled from 𝑈 (0.75, 1.25).

• [A7] Gamma Transformation: Gamma transformation is another intensity
augmentation which is applied with a probability of 30% and gamma being sampled
from 𝑈 (0.7, 1.5). An inverted gamma augmentation is applied with a probability of
10%. The original mean and standard deviation of the image are retained in both
augmentations.

The augmentation pipeline A[1-7] is applied consecutively to the training images. The
online validation images are not augmented.

Inference - Pipeline

Since training and inference are conducted in a patch-wise fashion, it is necessary to
post-process the predictions from all models. Figure 4.14 shows an overview of the
utilised inference pipeline.

The first step of the inference procedure is the prediction with a sliding window scheme
to obtain predictions across the entire image. Objects located at the border of the patches
contain less contextual information, which may lead to suboptimal detection performance
at the edges of the patch. By using a sliding window scheme with 50% patch overlap,
each object can be predicted near the centre of the patch. Additionally, based on the
distance of the prediction to the patch centre, an additional weighting factor 𝑃weight is
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Figure 4.14: Overview of the Inference Pipeline. The inference pipeline can be divided into
four steps: (A) a sliding window inference scheme is employed to predict the entire
image by all models and test time augmentation transformations. For simplicity,
only a small subset of the windows is shown. (B) All predictions are collected and
placed correctly into the image space, resulting in multiple predictions per object
due to overlapping patches. (C) NMS is used to suppress duplicate predictions, and
predictions with small objects or low confidence are removed. (D) Predictions from
cross-validation models and different test time augmentations are ensembled and
filtered by an optional minimal confidence score.

computed, which can be used during later processing steps. Test time augmentation
with mirroring along all axis combinations is used to improve the detection performance.
This process is performed for each model from the cross-validation phase. During the
second processing step, the predictions of a single model are collected, and NMS is used to
suppress duplicate predictions resulting from overlapping patches. Empirical parameter
optimisation is used to find the optimal NMSmethod and IoU, see Section 4.2.7. Two NMS
methods are available, one representing the typical functionality and one which uses the
previously computed weights 𝑃weight to scale the confidence scores of the predictions.
The second variant, called weighted NMS, assigns higher importance to predictions which
are located close to the patch centre. Furthermore, small objects, as well as low-scoring
predictions, are removed. During the final step, the predictions across the models and test
time augmentations are ensembled via Weighted Box Clustering [46], which performs
an averaging across spatial coordinates and confidence scores while incorporating the
number of expected predictions.
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4.2.7 Empirical Parameters

Some design decisions can not be automatically derived by rules but require adjust-
ment between data sets. Empirical parameters represent these and include the model
ensembling step and the parameterization of the inference pipeline.

Inference Pipeline Parametrization

The inference pipeline requires several hyperparameters to suppress duplicates and group
similar predictions from different models. These parameters are difficult to estimate from
the data characteristics alone but can be efficiently determined by empirically evaluating
their performance on the cross-validation predictions. To keep the number of possible
parameter combinations reasonable, they are optimised in an iterative fashion starting
from a general starting configuration. All parameter ranges, and their respective starting
values are shown in Table 4.3.

Table 4.3: Overview of empirical inference parameters. Shows an overview of all empiri-
cally optimised inference parameters, including the value range for which they are
optimised and the initial configuration. Table reproduced from [82].

Parameter Range Starting Value

NMS IoU [1 × 10−5, 0.1, 0.2, 0.3, 0.4, 0.5] 0.1
NMS Method [”NMS”, ”wNMS”] ”wNMS”
WBC IoU [1 × 10−5, 0.1, 0.2, 0.3, 0.4, 0.5] 0.5
Min Size [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] 1𝑒 − 2
Min Score [1 × 10−2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0] 0.0

No additional training runs are needed to perform this empirical parameter optimisation
since the network output can be saved once and reused to process the output with
different parameterizations.

Training - Model Selection and Ensembling

nnDetection triggers multiple models for training to determine the optimal target spacing
and model composition for inference.

Determine best resolution: For data sets with large objects, multiple resolution stages
are generated to allow for the efficient detection of large objects. These may span
across numerous patches in fine-grained image acquisition protocols. To save upon
computational resources, it is usually sufficient to train a single detector type on the
different resolution stages, for example, 1STAGE-MIX or 1STAGE-BOX, which offer the
shortest training times. Based on the cross-validation results, the best resolution can be
determined for the remaining models.
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Heterogeneousmodel ensembling: Section 5.1.3 presented promising results for DETR
based detection models showing the potential impact of utilising different detection
mechanisms. However, as will be presented in Section 5.2, none of the individual detector
types is superior across all tasks and selecting the correct model or model ensemble
is critical for achieving the best possible performance. As a consequence, the model
proposal stage ([R8] Section 4.2.5) selects one one-stage model, one two-stage model
and one direct set prediction model for training. The best individual model or model
ensemble is determined based on the cross-validation results and selected for inference
on the test set. Our experiments on the test sets of the development pool showed that the
best performance can be achieved by using NMS to combine the predictions, as shown
in Figure B.4.

4.2.8 nnU-Net Baselines

Current work uses semantic segmentation based approaches for object-level evaluation,
either for object detection [64, 46, 18, 211] or instance segmentation [11, 212, 213, 214, 215,
216, 217]. To represent this practice, we build two baselines based on the highly compet-
itive ”3d fullres” model of the nnU-Net framework. nnU-Net [47] is a self-configuring
semantic segmentation method which can be applied to unseen data sets without manual
intervention. It is the only other method which offers out-of-the-box adaptability and
represents a state-of-the-art segmentation method.

nnU-Net Basic: represents a common approach for building instances from segmenta-
tions. The output probabilities are converted to class maps via the ’argmax’ operation,
and connected component analysis is used to build object clusters. A confidence score
per object is computed by aggregating the values of the probability maps within the
objects. All clusters with less than five voxels are removed from the predictions.

nnU-Net Plus: leverages an empirical optimisation scheme to determine task-specific
postprocessing parameters. Instead of using the ”argmax” operation, an adjustable
probability threshold is used to derive the class map. Tasks withmore than one foreground
class pose an especially difficult problem since objects may be partially predicted as
different classes. Besides the approach described for nnU-Net Basic, nnU-Net Plus offers a
second clustering mode called ”voted”. In this scenario, connected component analysis is
applied to a binarised version of the class map, and majority voting is used to determine
the class of each object. The minimal number of voxels per object, the probability
threshold and the aggregation method of the confidence scores are optimised empirically
on the cross-validation predictions. An overview of the parameters is shown in Table 4.4.

Task specific changes: During our experiments, convergence problems of the nnU-Net
models were observed on three tasks. The smoothing coefficients were removed from
the Dice loss for D09 and D10 to ensure proper convergence of the models. This design
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Table 4.4: Overview of empirical parameters for nnU-Net Plus. Shows the empirical param-
eters and their ranges during the optimisation process. Table reproduced from [82].

Parameter Range
Cluster Mode [”connected”, ”voted”]

Min. Voxels per Object [0, 5, 10, 15, 20]
Min. Confidence Score per Object [0, 0.1, 0.2, 0.3, 0.4, 0.5]
Confidence Score Aggregation [”max”, ”median”, ”mean”, ”95th percentile”]

avoids potential local minima in the loss landscape. D16 required additional design
modifications since it contains difficult-to-detect objects, and many scans were acquired
from negative patients. The modifications include: (1) patient balancing during the
data loading procedure, (2) an offset was added to the object locations as an additional
regularisation effect, and (3) the AdamW [196] optimiser with an initial learning rate of
1𝑒 − 4.
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CHAPTER 5

Experiments and Results

This chapter presents the results from both the manually and automatically configured
detection pipelines, with each section including details about the experimental design
and observed results. The findings are interpreted in the scope of their respective study,
and interpretations in the broader context are deferred to Chapter 6. The structure of the
experiments follows Chapter 4.

Section 5.1.1 shows the effectiveness of large patch size training, adjustments to the
augmentation pipeline to reflect the target metric and ensembling of multiple models to
boost model performance in competitive settings. Results for our clinical evaluation in
the context of vessel occlusion detection are presented in Section 5.1.2. The analysis is
performed on the object-level and patient-level to reflect on both diagnostic requirements.
A comparison of two CE- and FDA-approved commercial solutions reveals the useful-
ness of our method. Section 5.1.3 provides the results of the first application of DETR
models to lesion and aneurysm detection tasks in volumetric images. It demonstrates
the abilities of these models across four data sets against a state-of-the-art anchor-based
detection baseline. These results provide the necessary empirical evidence to answer
RQ1 Section 1.2.1.

The extensive analysis of our self-configuring medical object detection model is presented
in Section 5.2. We demonstrate the advantages of our design across 22 data sets, including
the generalisation to previously unseen image modalities, anatomical regions and object
structures. Further comparison against current cutting-edge task-specific models is
conducted on two benchmarking data sets where nnDetection sets a new record on the
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PN9 data set [14]. These results summarise the utility, effectiveness and adaptability of
models which are developed under RQ2 Section 1.2.2.

The design of manual detection pipelines is based on [182, 183, 184]. The design of
self-configuring medical object detection methods is based on [185, 82].

5.1 Task Specific Design of Object Detection Methods

This section describes three manually configured detection methods to (1) detect medi-
astinal lesions in CT images, see Section 5.1.1 (2) detect vessel occlusions in CTA images,
see Section 5.1.2 and (3) leveraging DETR models in the scope of lesion and aneurysm
detection, see Section 5.1.3.

5.1.1 Detecting Mediastinal Lesions in CT Images

Experimental Setup

The official training and validation data sets were combined into a unified training
cohort of 880 CT images to perform five-fold cross-validation. This approach generates
one model per fold, five models in total, which were used as an ensemble during the
inference phase. The primary evaluation metric employed is the FROC score, assessed at
[1/8, 1/4, 1/2, 1, 2, 4, 8] FPPI. A prediction was considered correct if it exceeded an IoU
threshold of 0.3. Furthermore, the cross-validation experiments were evaluated at an
additional IoU threshold of 0.1 and with respect to the mAP metric.

Benchmarking of Mediastinal Lesion Detection Models

Since multiple submissions per day to the leaderboard were allowed, we opted for four
submissions in total. Table 5.1 shows cross-validation and leaderboard results from all
submitted models.

The baseline model demonstrates a high FROC score of 0.984 during cross-validation,
underscoring its good performance on the underlying task. Increasing the patch size
during training leads to improvements in the FROC score at both IoU thresholds, although
a slight decrease in the AP score is observed at an IoU threshold of 0.1. Adding the
Aug B scheme to the training pipeline further enhances performance across all metrics,
yielding the best results for coarse detection tasks evaluated at an IoU threshold of 0.1.
Moreover, ensembling the two large patch size models, M2 and M3, achieves superior
performance at an IoU threshold of 0.3. This improvement directly translates to the
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Table 5.1: Shows mAP and FROC results of MELA models. Each row contains the results
for a single model, which was evaluated in the cross-validation experiments and
submitted to the leaderboard. The best results, obtained from the ensemble model, at
an IoU threshold of 0.3 for both FROC and mAP translate directly to the leaderboard
results. For coarser IoU values, a single model with LP and Aug B training achieves
the best results. Table reproduced from [182].

Model Config AP CV FROC CV FROC Leaderboard

IoU 0.1 IoU 0.3 IoU 0.1 IoU 0.3 IoU 0.3

M1 Baseline 0.970 0.961 0.984 0.976 0.9824
M2 LP 0.968 0.962 0.986 0.981 0.9851
M3 Aug B, LP 0.980 0.974 0.992 0.986 0.9851

M2 + M3 Ensemble 0.978 0.976 0.992 0.988 0.9897

challenge leaderboard. The best-performing model achieved an FROC score of 0.9897 on
the challenge leaderboard, resulting in the third rank in the MELA challenge.

The FROC curves for the baseline model and the ensemble from the cross-validation
experiments are depicted in Figure 5.1.
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Figure 5.1: Cross-validation results for MELA baseline and final ensemble. (A) The left
plot presents the FROC curves for the baseline and ensemble models, evaluated at
an IoU threshold of 0.1. (B) The right plot displays the FROC curves for both models,
evaluated at an IoU threshold of 0.3.

At an average false positive rate of one per eight images (0.125 FPPI), the baseline model
achieves a sensitivity over 97% at the coarse IoU threshold and over 96% at the fine IoU
threshold. The ensemble model further improves upon these results, outperforming the
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baseline model across all false positive per image thresholds, and achieves a sensitivity
above 99% when evaluated at an IoU threshold of 0.1.

5.1.2 Detecting Vessel Occlusions in CTA Images

Experimental Setup

Data Splits: Five-fold cross-validation was used to train an ensemble of Retina Net
models on the training split of the UKHD data. The individual data splits were generated
randomly with stratification at the patient-level to ensure a similar prevalence of sub-
categories in the individual folds. The least frequent class in the data set was selected
as the patient-level label for stratification. The UKHD test set served as an internal test
set containing unseen images of the same distribution as the training data. Additionally,
two external cohorts, FAST and UKB, were collected in a pseudo-prospective manner
to demonstrate the generalization capability of the proposed method. The images were
acquired from different hospitals and included distribution shifts in the acquisition phase
and scanner parameters (for example, prevalence, slice thickness and reconstruction
kernel).

Evaluation and Statistical Analysis: The proposed method is evaluated on two gran-
ularity levels: (1) object-level evaluation is used to assess the number of correctly
detected vessel occlusions with respect to the number of false positive predictions and
(2) patient-level evaluation reflects the ability of the model to differentiate patients with
and without vessel occlusions. Bootstrapping with 1000 iterations was applied to derive
95% confidence intervals for the evaluation metrics.

Predictions from the object-level are aggregated to the patient-level by determining the
maximum confidence score from all predictions. This evaluation scheme does not require
the accurate localization of occlusions, meaning that a correct patient-level prediction
could potentially arise from an incorrectly positioned prediction. Patients who presented
at least one vessel occlusion were considered occlusion-positive. The primary evaluation
metric for patient-level performance is the AUROC. Additional results evaluated at the
selected confidence threshold can be found in Section B.1.

For object-level performance, the FROC is used, which averages the sensitivity at pre-
defined FPPI thresholds. To adhere to previous studies [43, 14, 173, 11, 12, 19], the FPPI
thresholds were set to 1/8, 1/4, 1/2, 1, 2, 4, 8. A prediction was considered correct if the
IoU exceeds a threshold of 0.1. This threshold was adopted from other studies [46, 185]
reflecting the underlying diagnostic task, which depends on the coarse localization of
occlusions. Duplicate predictions of the same vessel occlusion were considered false
positive predictions. The clinical problem was formulated as a binary detection task
without explicitly differentiating between different types of vessel occlusions. Since false
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positive predictions can not be assigned to vessel segments, subgroup analysis on the
object-level only considers the sensitivity per group, while all false positives are included
in the calculations.

The external cohorts, FAST and UKB, were additionally annotated with HGS labels to
extend the evaluation. The annotation of the HGS follows the protocol as the vessel
occlusions and are considered if over 70% of the vessel lumen were occluded When HGS
was included, a patient was considered positive if they presented with at least one vessel
occlusion or HGS.

Furthermore, two FDA-cleared and CE-marked commercial software solutions, referred
to as CS1 and CS2, are included to compare against currently available solutions. The
real names of the solutions can not be disclosed at any point in time. No further details
regarding the internal design are available due to their proprietary nature. These solutions
were compared to the proposed method regarding sensitivity, specificity, PPV, and NPV.
A prediction was considered correct if it was located on the correct vessel without
requiring precise localization of the occlusion. All patients were evaluated, but only
vessel segments supported by the commercial solutions were considered: the internal
carotid artery (ICA) and the M1 segment of the middle cerebral artery for large vessel
occlusions (LVOs), and in the M2- and M2-segment of the middle cerebral artery for
medium vessel occlusions (MeVOs). Statistical significance for sensitivity and specificity
was determined using McNemar’s test, while a comparison of relative predictive values
for PPV and NPV was conducted using the ”rpv.test” function from R’s DTComPair
package.

Benchmarking of Vessel Occlusion Detection Model

Patient and Object Level Performance across Test Sets: The ROC curve for the
patient-level results and the FROC curve for the object-level performance across the
three patient cohorts are illustrated in Figure 5.2. The proposed method achieved an
AUROC of 0.96 [0.95, 0.98] and an FROC score of 0.79 [0.73, 0.84] on the internal UKHD
test set. At 0.5 FPPI, an object-level sensitivity of 0.74 [0.67, 0.81] was achieved, which
increased to 0.79 [0.73, 0.85] at 1 FPPI. At the determined confidence threshold of 0.647 a
sensitivity of 0.73 [0.67, 0.79] was achieved, as illustrated in Table B.4. At this working
point, the patient-level sensitivity was 0.94 [0.90, 0.97] (161/172), and specificity was 0.83
[0.77, 0.88] (142/172), see Table B.7. In the first external test set, the FAST cohort, the
performance decreased slightly, yielding an AUROC of 0.90 [0.84, 0.94] and an FROC
score of 0.75 [0.65, 0.85]. At 0.5 FPPI, an object-level sensitivity of 0.76 [0.64, 0.86] was
obtained, increasing to 0.79 [0.68, 0.89] at 1 FPPI. A sensitivity of 0.72 [0.61, 0.83] was
evaluated at the determined threshold, as shown in Table B.5. On the patient-level a
sensitivity of 0.87 [0.77, 0.95] (45/52) and specificity of 0.77 [0.72, 0.82] (212/274) was
observed, see Table B.8. Evaluation on the UKB cohort resulted in an AUROC of 0.85
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[0.79, 0.91] and a FROC score of 0.74 [0.66, 0.82]. At 0.5 FPPI, a sensitivity of 0.73 [0.63,
0.82] and at 1 FPPI a sensitivity of 0.76 [0.67, 0.85] was achieved. A sensitivity of 0.71
[0.60, 0.80] was observed at the confidence threshold, as shown in Table B.6. Patient-level
sensitivity was 0.81 [0.71, 0.90] (65/80), and specificity was 0.81 [0.75, 0.85] (196/243),
see Table B.9.
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(b) Object Level Results

Figure 5.2: Patient and Object level performance of vessel occlusion detection model
across Heidelberg, FAST and UKB cohorts. (a) Patient Level Results: The ROC
curves show the patient-level performance of the detection model on the Heidel-
berg, FAST, and UKB cohorts. The AUROC values are 0.96, 0.90, and 0.85 for the
Heidelberg, FAST, and UKB cohorts, respectively. (b) Object Level Results: The Free-
response Receiver Operating Characteristic (FROC) curves illustrate the object-level
performance of the model, averaged across seven predefined FPPI thresholds. The
model achieves FROC scores of 0.79, 0.75, and 0.74 at an IoU threshold of 0.10 for
the Heidelberg, FAST, and Bonn cohorts, respectively. Figure is adapted from [183].

In summary, the best performance was observed on the internal UKHD test set. Since
the training data was sourced from the same hospital and scanner type, this test set
exhibits the smallest distribution shift. Additionally, the UKHDCTA scan had the smallest
slice thickness without acquisition phase shifts, see Table B.1, which may enhance the
detection performance of smaller occlusions. When generalizing to the heterogeneous
external cohorts, a performance decline was noted, although patient-level performance
still remained above an AUROC of 0.85 in both cohorts. Even though all images are
resampled to the same spacing before being processed by the neural network, both data
sets contain images with greater slice thicknesses, potentially resulting in images that
look different from the training set. Moreover, there is a significant shift in the acquisition
phases between the Heidelberg test set and the external test sets. While the majority
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of the UKHD test set was acquired in the Early Arterial Phase, the majority of FAST
scans were acquired in the Peak Arterial and Equilibrium Phases, and the majority of
UKB cases were acquired in the Equilibrium and Peak Venous Phase, see Table B.2. The
additional venous overlay in these images leads to an increase in false positive predictions,
see Table B.10.

Object Level Performance on Sub-Categories: When further subdividing the vessel
occlusion classes, as shown in Figure 5.3 for the Heidelberg test set, the highest perfor-
mance is reached for LVOs in the anterior circulation with an object-level sensitivity of
0.81 [0.74, 0.88] at 0.5 FPPI and a sensitivity of 0.85 [0.78, 0.91] at 1 FPPI.

For MeVOs, a performance drop to a sensitivity of 0.65 [0.53, 0.77] at 0.5 FPPI and a
sensitivity of 0.71 [0.60, 0.82] at 1 FPPI is observed. The most challenging occlusions are
located in the posterior circulation, where a sensitivity of 0.50 [0.31, 0.7] at 0.5 FPPI and
0.59 [0.4, 0.78] at 1 FPPI is achieved. The performance across the individual subcategories
is proportional to their prevalence in the test and training sets, indicating the potential
for future extensions of the data set to cover a larger amount of rare occlusion types.

At 1 FPPI, the sensitivity observed across various vascular segments are as follows: 0.20
in the Common carotid artery, 0.79 for Carotid bifurcations, 0.69 in the Internal carotid
artery, 0.90 in the Carotid T, 0.96 in the Middle cerebral artery (M1 segment), 0.82 in the
Middle cerebral artery (M2 segment), 0.33 in the Middle cerebral artery (M3/4 segment),
0.00 in the Vertebral artery (V1-3 segment), 0.25 in the Vertebral artery (V4 segment),
0.85 in the Basilar artery, 1.00 in the Anterior cerebral artery (A1 segment), 0.36 in the
Anterior cerebral artery (A2/3 segment), 1.00 in the Posterior cerebral artery (P1 segment)
and 0.00 in the Posterior cerebral artery (P2/3 segment). The majority of vessel occlusions
in the Heidelberg test set are located in the M1 segment of the Middle cerebral artery,
where 92% of them are correctly detected. In the smaller and more difficult M2 segment
82% of this artery, a sensitivity of 0.82% is reached.

Patient Level Performance with High-grade Stenosis (HGS): During the qualitative
assessment of predictions in the FAST and UKB cohorts, multiple false positive predictions
were observed at HGS locations. When including HGS as additional detection targets in
these cohorts, the patient-level performance improves, as illustrated in Figure 5.4.

In the FAST cohort, patient-level AUROC increased from 0.90 [0.84, 0.94] to 0.92 [0.88,
0.96], and on the UKB cohort, the performance increased from 0.85 [0.79, 0.91] to 0.88
[0.83, 0.93]. HGS, which were previously considered false positive predictions, are now
classified as true positive predictions, leading to a general uplift in performance. At the
selected confidence cutoff the patient-level specificity increased from 0.77 [0.72, 0.82] to
0.85 [0.80, 0.90 in the FAST cohort and from 0.81 [0.75, 0.85] to 0.88 [0.83, 0.92] in the
UKB cohort, see Tables B.8 and B.9. This change in specificity is achieved while retaining
the same sensitivity on the FAST cohort and a small sensitivity shift by 1% on the UKB
cohort. These results show that although no HGS were annotated in the training data
set, the network learned to detect vessels with fading contrasts.
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Figure 5.3: Object Level Performance Across Vessel Occlusion Subgroups on the UKHD
Test Set. (a) High-level Categorization: The highest detection performance is ob-
served for LVOs in the anterior circulation, followed by medium performance for
MeVOs in the anterior circulation. A further decline in performance is seen for vessel
occlusions in the posterior circulation. The model’s performance correlates with
the prevalence of the subcategories. (b) Fine-grained Categorization: Performance
is shown for the fine-grained categorization of occlusion types, with larger vessel
occlusions being easier to detect than smaller ones. This figure is adapted from [183].
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Figure 5.4: Patient-Level Performance on External Cohortswith andwithout Inclusion of
HGS. (a) FAST Cohort : The model achieves an AUROC of 0.90 when only evaluating
vessel occlusions. The performance increases to an AUROC of 0.92 when HGS are
also included in the evaluation. (b) UKB Cohort : The model achieves an AUROC
of 0.85 when evaluating on vessel occlusions alone. When HGS is included, the
AUROC improves to 0.88. This improvement stems from detected HGS, which are
not considered false positives anymore. This figure is adapted from [183].

Benchmarking against Commercially Available Solutions: In the UKB cohort, HD-
CTA was compared against two commercially available software solutions, as shown
in Table 5.2. The proposed method achieved a significantly higher sensitivity of 0.83
[0.72–0.91], compared to 0.38 [0.27–0.51] for CS1 and 0.45 [0.32–0.57] for CS2. The
performance difference is particularly evident for MeVOs where HD-CTA reaches a
sensitivity of 0.70 [0.50–0.86] while the other methods reach at most 0.19 [0.06–0.38].
Importantly, this increase in sensitivity is observed while achieving a better specificity,
0.87 [0.82–0.90] for HD-CTA, 0.78 [0.73–0.83] for CS1 and 0.84 [0.79–0.88] for CS2. These
results show the capabilities of our proposed method, which achieves a significant gain
in sensitivity without introducing more false positive predictions.

Due to contractual restrictions, benchmarking in the FAST cohort was limited to a single
commercially available solution (CS2). In this cohort, HD-CTA achieved a sensitivity
of 0.92 [0.79–0.98], surpassing CS2 with a sensitivity of 0.67 [0.50–0.81] while also
demonstrating a higher specificity. Although the performance difference between the
compared solutions for LVOs was not significant, HD-CTA showed a significantly better
performance for MeVOs.
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Table 5.2: Performance Comparison of HD-CTA, CS1 and CS2 on UKB Cohort. Compari-
son of sensitivity, specificity, PPV, and NPV between HD-CTA, CS1 and CS2 across
overall occlusions, LVOs, and MeVOs in the UKB data set. Statistical significance
was measured via McNemar’s two-tailed test for sensitivity and specificity, and a
comparison of relative predictive values was used for PPV and NPV (rpv.test function
of R’s DTComPair package, two-tailed). No correction for multiple comparisons was
conducted. P values which are considered significant are bold. Table reproduced
from [183].

Software Sensitivity Specificity PPV NPV

Overall (Occlusions n=65/323)
HD-CTA (ours) 0.83 [0.72–0.91] 0.87 [0.82–0.90] 0.61 [0.50–0.71] 0.95 [0.92–0.98]
CS 1 0.38 [0.27–0.51] 0.78 [0.73–0.83] 0.30 [0.21–0.42] 0.84 [0.78–0.88]
p value p < 0.001 p = 0.007 p < 0.001 p < 0.001
CS 2 0.45 [0.32–0.57] 0.84 [0.79–0.88] 0.41 [0.29–0.53] 0.86 [0.81–0.90]
p value p < 0.001 p = 0.310 p < 0.001 p < 0.001

LVO only (ICA, M1 – n=38)
HD-CTA (ours) 0.92 [0.79–0.98] 0.87 [0.82–0.90] 0.50 [0.38–0.62] 0.99 [0.96–1.00]
CS 1 0.61 [0.43–0.76] 0.78 [0.73–0.83] 0.29 [0.19–0.40] 0.93 [0.89–0.96]
p value p = 0.001 p = 0.007 p < 0.001 p < 0.001
CS 2 0.63 [0.46–0.78] 0.84 [0.79–0.88] 0.36 [0.25–0.49] 0.94 [0.90–0.97]
p value p = 0.002 p = 0.310 p = 0.020 p = 0.002

MeVO only (M2, M3 – n=27)
HD-CTA (ours) 0.70 [0.50–0.86] 0.87 [0.82–0.90] 0.35 [0.23–0.49] 0.97 [0.93–0.99]
CS 1 0.07 [0.01–0.24] 0.78 [0.73–0.83] 0.03 [0.00–0.12] 0.89 [0.84–0.93]
p value p < 0.001 p = 0.007 p < 0.001 p < 0.001
CS 2 0.19 [0.06–0.38] 0.84 [0.79–0.88] 0.11 [0.04–0.23] 0.91 [0.86–0.94]
p value p < 0.001 p = 0.310 p = 0.002 p = 0.002

Inference time measurements on the test set of the Heidelberg cohort showed that the
median inference time for HD-CTA is below 2 minutes, specifically 103 s (IQR 83–142 s),
which is essential for this time-sensitive application. The distribution of the measured
inference time is depicted in Figure 5.5. The primary bottleneck of the pipeline was
identified as the pre-processing step, which took 83 s (IQR 67–113 s), rather than the
inference step itself, which, when executed on multiple GPUs, took 20 s (IQR 16–28 s).
Future work could explore further optimisation of this method by experimenting with
other resampling techniques and computer vision libraries.

Further Results: Table B.3 and Table B.7 provide further results from the cross-validation
experiments. The FROC score was 0.85 [0.82, 0.87] with a sensitivity of 0.83 [0.80, 0.86]
at 0.5 FPPI and 0.87 [0.84, 0.89] at 1 FPPI. 90% [87%-93%] of the LVOs and 84% [77%, 89%]
of the MeVOs in the anterior circulation were observed during cross-validation. The
patient-level AUROC of 0.96 [0.95, 0.97] was similar to the Heidelberg test set despite
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Table 5.3: Performance Comparison of HD-CTA and CS2 on FAST Cohort. Comparison
of sensitivity, specificity, PPV, and NPV between HD-CTA and CS2 across overall
occlusions, LVOs, andMeVOs in the FAST data set. It was not possible to evaluate CS1
on this cohort due to contractual restrictions. Statistical significance was measured via
McNemar’s two-tailed test for sensitivity and specificity, and a comparison of relative
predictive values was used for PPV and NPV (rpv.test function of R’s DTComPair
package, two-tailed). No correction for multiple comparisons was conducted. P values
which are considered significant are bold. Table reproduced from [183].

Software Sensitivity Specificity PPV NPV

Overall (Occlusions n=39/320)
HD-CTA (ours) 0.92 [0.79–0.98] 0.85 [0.80–0.89] 0.46 [0.35–0.58] 0.99 [0.96–1.00]
CS 2 0.67 [0.50–0.81] 0.82 [0.77–0.86] 0.34 [0.23–0.45] 0.95 [0.91–0.97]
p-value p=0.003 p=0.298 p=0.021 p=0.003

LVO only (ICA, M1 – n=26)
HD-CTA (ours) 0.92 [0.75–0.99] 0.85 [0.80–0.89] 0.36 [0.25–0.49] 0.99 [0.97–1.00]
CS 2 0.85 [0.65–0.96] 0.82 [0.77–0.86] 0.30 [0.20–0.42] 0.98 [0.96–0.97]
p-value p=0.321 p=0.30 p=0.174 p=0.296

MeVO only (M2, M3 – n=13)
HD-CTA (ours) 0.92 [0.64–1.00] 0.85 [0.80–0.89] 0.22 [0.12–0.36] 1.00 [0.98–1.00]
CS 2 0.31 [0.09–0.61] 0.82 [0.77–0.86] 0.07 [0.02–0.18] 0.96 [0.93–0.98]
p-value p=0.004 p=0.298 p=0.006 p=0.004

changes in the distribution of positive and control patients between the training and test
sets.

Public Web Interface: The proposed method is available via a public web interface at
https://stroke.ccibonn.ai, which allows the upload of CTA scans and provides
the user with the results via a web-based DICOM viewer. The methodological design of
the deployed algorithms follows Section 4.1.2 but was extended with additional utilities
to process DICOM data and run computer-aided de-identification (e.g. defacing) of the
images. Users can voluntarily donate their data for future development of this method.
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Figure 5.5: Inference Time on Heidelberg Test Set. Box plots showing the distribution of
total processing time, pre-processing time, and model inference time in seconds. The
centre line represents the median value, while the box spans from the first to the
third quartile, and the whiskers extend up to 1.5 times the interquartile range. The
scatter points represent individual data samples. This figure is adapted from [183].

5.1.3 Exploring Detection Transformers for Medical Object
Detection

Experimental Setup and Evaluation

The selected data sets do not provide official leaderboards, so we performed five cross-
validation experiments. Object-level performance is evaluated via the mAP at an IoU
threshold of 0.1 and 0.5, which is directly targeted towards coarse and precise locali-
sation tasks. Furthermore, FROC curves with an IoU threshold of 0.1 are provided at
1/8, 1/4, 1/2, 1, 2, 4, 8 FPPI to show an intuitive impression of the performance. 95% con-
fidence intervals are determined via bootstrapping with 1000 iterations where samples
are drawn randomly on the patient level.
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Benchmarking of Detection Transformers

The performance comparison for the coarse localisation task evaluated at an IoU threshold
of 0.1 can be found in Figure 5.6 (a) and table B.11. The original DETR model shows the
worst performance of the compared models across all data sets while requiring the longest
training schedule. Conditional DETR improves the results for all data sets and uses a
shortened training schedule. Compared to Retina U-Net [185] it still shows a performance
deficit on three out of four data sets. DINO DETR shows the best performance across
all data sets, also outperforming the anchor-based baseline model. Simultaneously, it
also uses the shortest training schedule among all of the DETR models. When the IoU
threshold is increased to 0.5, as shown in Figure 5.6 (b) and table B.12, all models show
reduced performance since predictions which do not fulfil the localisation criterion
are now considered false positives. The relative performance gap between DETR and
Conditional DETR clearly widens compared to the other two models across all data sets.
Figure 5.7 visualizes the performance of the models across seven FPPI working points.
DETR and Conditional DETR show decreased performance compared to Retina U-Net
across all working points for CADA, KiTS19 and LIDC. On RibFrac, only DETR shows
reduced performance, and Conditional DETR achieves the same result as the anchor-
based model. DINO DETR demonstrates the best results on LIDC and RibFrac, while
Retina U-Net achieves the best results on CADA and KiTS19.
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Figure 5.6: mean Average Precision of Detection Transformers on four data sets. Object-
level detection performance of detection transformer models on CADA [17],
RibFrac [11, 12], KiTS21 [15] and LIDC [13] is shown. Bootstrapping with 1000
iterations was applied to analyse the stability of the metrics. The whiskers span to
the 1.5 IQRs of the lower and upper quartile while the boxes extend to the lower
and upper quartile. Values outside of these ranges are depicted as points. DETR
and Conditional DETR perform worse than the anchor-based baseline on both IoU
thresholds while requiring significantly longer training schedules. The performance
deficit between these methods to DINO DETR and Retina U-Net widens on all data
sets when the IoU threshold is increased. At an IoU threshold of 0.1, DINO DETR
shows the best performance across all data sets. Retina U-Net shows similar or better
performance on CADA and KiTS19 when the IoU threshold is increased to 0.5.
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Figure 5.7: FROC curves of Detection Transformers at IoU threshold of 0.1. Shows
object-level detection performance of detection transformer models on CADA [17],
RibFrac [11, 12], KiTS21 [15] and LIDC [13]. Bootstrapping with 1000 iterations
is applied to analyse the stability of the metrics and provide confidence intervals
for the curves. DETR and Conditional DETR show the worst performance across
all data sets. DINO DETR provides the best performance on RibFrac. Retina U-Net
outperforms DINO DETR on CADA and KiTS19.

113



5 Experiments and Results

5.2 Self-Configuring Design of Medical Object
Detection Methods

This section presents the results of our self-configuring object detection method nnDe-
tection described in Section 4.2. The evaluation is divided into two parts: (1) The general-
isation pool is used to compare against the only other available self-configuring method,
named nnU-Net [47], on 9 previously unseen detection tasks. Two baselines, nnU-Net
Basic and nnU-Net Plus, are used to represent state-of-the-art semantic segmentation-
based detection models. The data sets introduce new object structures, image modalities,
and anatomical regions. Furthermore, they are annotated with different annotation types,
reflecting the true heterogeneity of the medical detection domain. (2) The benchmarking
pool, consisting of three additional data sets, is used to compare nnDetection against
current state-of-the-art task-specific models. Evaluation is performed on LUNA16 [43],
PN9 [14] and CTA-A [170].

5.2.1 Experimental Setup and Evaluation

The generalisation pool is evaluated with multiple metrics to benchmark different aspects
of the proposed method. Ranking-based metrics are used over threshold-based metrics
since the working point might vary between tasks, and the primary evaluationmetrics aim
to develop a general-purpose detection method. The primary metric is the mAP metric at
an IoU threshold of 0.1 to focus on the diagnostic performance of the developed detection
method. In this scenario, the exact delineation of the target object is less important,
and the main objective is to identify the coarse location correctly. To complement
this evaluation, ablation experiments with a higher IoU threshold of 0.3 are presented,
focusing on the delineation of the objects. The mAP metric does not restrict the number
of false positive predictions, which can be exploited by providing a large number of
low-scoring predictions aiming to detect the remaining objects and boosting performance
in clinically irrelevant areas [149]. The FROC score, evaluated at 1/8, 1/4, 1/2, 1, 2, 4, 8
FPPI, is used as a secondary metric to circumvent this shortcoming. Since all tasks have
various numbers of objects and varying difficulties, a ranking-based evaluation scheme
is adopted that assigns the same weight to each task. Bootstrapping with 1000 iterations
is used to compute the ranking histograms and determine the performance statistics of
the methods.

Additional comparative evaluationmetrics are used to compare against the strong baseline
model nnU-Net Plus. The average relative improvement (in %) is computed for each task
with respect to the baseline and averaged across the tasks. The number of improved data
sets is measured based on the mAP metric at an IoU threshold of 0.1.

114



5.2 Self-Configuring Design of Medical Object Detection Methods

Tasks in the benchmarking pool are evaluated with the official evaluation script to provide
a fair comparison against prior work. LUNA16 [43] uses the FROC score averaged over 1/8,
1/4, 1/2, 1, 2, 4, 8 FPPI. Predictions are considered positive if their centre point is located
within the radius of the ground truth object. PN9 [14] uses the same evaluation scheme.
Ceballos-Arroyo et al. [83] use the CTA-A [170] data set and evaluate the detection
performance at an IoU threshold of 0.3. The FROC metric with the same FPPI values is
used as in the other studies. We use the same evaluation script with ground truth object
coordinates extracted from the unprocessed labels.

The SETPREDICT model did not converge on VALDO-M [20, 21, 22, 23, 24] and PN9 [14]
in its original configuration and adjustments to the learning rate were needed to ensure
proper convergence, please refer to Section 4.2.6.

5.2.2 Benchmarking on the Generalisation Pool

Evaluation of the generalisation pool consisting of 9 unseen data sets shows that nnDetec-
tion achieves the best performance across various metrics. An overview of the aggregated
metrics is provided in Figure 5.8. The two segmentation models, nnU-Net Basic and
nnU-Net Plus, represent the only other available self-configuring methods and are used
as baselines. Further ablation experiments are conducted by evaluating the performance
of each model within the nnDetection framework. Rankings for each task are visualised
in Figure 5.9, and further details are provided in the following sections.

Comparison against segmentation baselines

nnU-Net Basic, representing the basic post-processing scheme for semantic segmentation
methods, ranks the worst among all methods with an average mAP of 59.66. The kidney
tumour detection task in D11 is the only task where the model achieves ranks among
the best methods. nnU-Net Plus shows better performance on the majority of tasks and
achieves an average mAP of 67.68. It is only outperformed by nnU-Net Basic on D14 and
D17, which have bounding box annotations and it achieves the same performance on
D11. On average, it shows a relative performance improvement of 13.9% over nnU-Net
Basic, which shows the importance of proper post-processing parameterization for these
methods. All object detection methods in the nnDetection framework show improved
performance over nnU-Net Plus, reaching average mAP scores between 72.28 and 74.56.
The best individual model across all tasks is the 2STAGE-BOX model, with a mean rank
of 2.34. The best performance is achieved by nnDetection with a mean rank of 1.48 and
an average mAP score of 74.99. It achieves an average relative performance improvement
of 13.2% over the nnU-Net Plus baseline and outperforms it on 7 out of 9 tasks.
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Figure 5.8: Aggregated results from the test sets of the generalisation pool. Shows the
performance of the proposed method against two baseline models and five ablation
models. Mean and median ranks were computed via bootstrapping with 1000 itera-
tions and collected across all data sets. mAP at IoU 0.10 was computed per data set
and averaged in a subsequent step. The relative improvement over the nnU-Net Plus
baseline was computed for each data set and averaged afterwards. The improved
data sets show the number of data sets where the mAP at IoU 0.10 improved over
the nnU-Net Plus baseline. Averaging was performed as a subsequent step to ensure
equal weighting of each task. nnDetection (ours) shows the best performance across
all metrics. This figure is adapted from [82].

Comparison against ablation models

Further analysis of the results for individual data sets (Figure 5.9) reveals that none of the
individual detection models can achieve the best result across all tasks. This shows that
different models have different strengths and weaknesses, and selecting an appropriate
subset is important. The SETPREDICT model has the lowest performance among the
detection-based approaches with an average mAP of 72.28. The 1STAGE models show
improved performance with an average mAP of 74.10 for the 1STAGE-MIX model and
73.64 for the 1STAGE-BOX model. The best individual performance is achieved by the
2STAGE models with 74.12 average mAP for the 2STAGE-MIX model and 74.56 for the
2STAGE-BOX model. Ensembling the dynamically selected models achieves the best
average performance and is represented by nnDetection.
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Variation in Metrics: Changes in the evaluation metric can lead to differences in the
rankings shown in Figure 5.10. Exchanging the mAP metric for the FROC metric leads to
minor variations in the rankings where the 1STAGE-MIX model outperforms the 2STAGE
models. The relative ranking order remains unchanged otherwise. nnDetection remains
the leading method even when exchanging the metric.

Detection applications are not limited to diagnostic scenarios, and more fine-grained
delineation of the objects might be needed for some tasks. Especially upcoming interac-
tive segmentation models, like SAM [218], offer the potential to convert bounding box
predictions into high-quality segmentations. However, more precise bounding boxes
might be needed for them to limit the ambiguity in the target structures. To reflect this
need, the IoU threshold is increased from 0.1 to 0.3, putting a larger emphasis on the exact
delineation of the objects. As shown in Figure 5.10, the rankings change more drastically.
Notably, the different detector types remain clustered while the 1STAGEmethods are over-
taken by the SETPREDICT model. Additional supervision from voxel-level information
improved the delineation performance of the 1STAGE and 2STAGE models, indicating
that these models can learn to better delineate the boundaries. The lead of nnDetection
over the ablation models is reduced, but it remains the overall best-performing method.

Variation in Annotation Type: The generalisation pool is not limited to a single
annotation type but includes instance segmentations, bounding boxes and spherical
annotations. Different annotation types offer varying localisation granularity, which
influences the model’s performance. Figure 5.11 visualizes changes in the rankings
when evaluating subsets of the generaliation pool. Spherical annotations are considered
equivalent to bounding boxes and are thus considered as box-level tasks. The 1STAGE-
BOX and SETPREDICT models gain ranks when only considering tasks with box-level
annotations. All three top-performing methods are only based on methods utilising
box-level supervision. Especially, the 2STAGE-MIX model shows reduced performance,
potentially due to the tight integration of voxel-level supervision during training for
the RPN and RoI head. nnDetection utilises ensembles from models with box-level
supervision and achieves the best rank. When only evaluating tasks with voxel-level
annotations, the trend changes, andmodels that can utilise the additional information gain
performance compared to their counterparts. While the 2STAGE models still outperform
the other detector types, the MIX models outperform the BOX models. nnDetection
selects an ensemble from the 1STAGE-MIX, 2STAGE-MIX, and SETPREDICT models in
these scenarios and archives the best overall result.

117



5 Experiments and Results

SETPREDICT

2STAGE-MIX

2STAGE-BOX

1STAGE-MIX

1STAGE-BOX

Ablations
nnDetection (ours)

Ours

nnUNet Plus
nnUNet Basic

Baselines

Ranking: Lower is better 

Mean Rank

Median Rank X

Legend

A
bl

at
io

ns
O

ur
s

B
as

el
in

es
A

bl
at

io
ns

O
ur

s
B

as
el

in
es

A
bl

at
io

ns
O

ur
s

B
as

el
in

es

Figure 5.9: Ranking histogram for each test set of the generalisation pool. Shows the
ranking of nnDetection, two baselines and five ablation models on the test sets of
the generalisation pool. Bootstrapping with 1000 iterations was used with the mAP
metric at an IoU threshold of 0.1. Lower rankings correspond to better performance.
The dotted line and cross denote the mean and median rank for each method and
task, respectively. None of the methods can outperform all competing methods
across all data sets. nnDetection performs among the best methods for all data sets.
This figure is adapted from [82].

118



5.2 Self-Configuring Design of Medical Object Detection Methods

nnDetection (ours)Ours

SETPREDICT
2STAGE-MIX

2STAGE-BOX

1STAGE-MIX

1STAGE-BOX
Ablations

nnUNet Plus

nnUNet Basic
Baselines

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

SETPREDICT

1STAGE-BOX

1STAGE-MIX

2STAGE-MIX

2STAGE-BOX

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

SETPREDICT

1STAGE-BOX

1STAGE-MIX

2STAGE-MIX

2STAGE-BOX

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

2STAGE-BOX

2STAGE-MIX

1STAGE-BOX

SETPREDICT

1STAGE-MIX

2STAGE-BOX

2STAGE-MIX

SETPREDICT

1STAGE-MIX

1STAGE-BOX

Figure 5.10: Performance comparison with different metrics on the test sets of the gen-
eralisation pool. Shows the aggregated rankings of nnDetection, two baselines
and five ablation models on the test sets of the generalisation pool. Bootstrapping
with 1000 iterations and varying metrics were used to compute the rankings. Lower
rankings indicate better performance. The left side denotes the default metric mAP
at an IoU threshold of 0.1. The upper row shows changes in the ranking if the
FROC metric is used at the same IoU threshold. The lower row shows performance
changes when the IoU threshold is increased from 0.1 to 0.3. nnDetection (ours)
shows the best performance across all metrics. This figure is adapted from [82].

119



5 Experiments and Results

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

SETPREDICT

1STAGE-BOX

1STAGE-MIX

2STAGE-MIX

2STAGE-BOX

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

SETPREDICT

1STAGE-BOX

1STAGE-MIX

2STAGE-MIX

2STAGE-BOX

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

SETPREDICT

1STAGE-BOX

1STAGE-MIX

2STAGE-MIX

2STAGE-BOX

nnDetection (ours)

nnU-Net Basic

nnU-Net Plus

SETPREDICT

1STAGE-BOX

1STAGE-MIX

2STAGE-MIX

2STAGE-BOX

nnDetection (ours)Ours

SETPREDICT
2STAGE-MIX

2STAGE-BOX

1STAGE-MIX

1STAGE-BOX
Ablations

nnUNet Plus

nnUNet Basic
Baselines

Figure 5.11: Performance comparison with different metrics on the test sets of the gener-
alisation pool. Shows the aggregated rankings of nnDetection, two baselines and
five ablation models on the test sets of the generalisation pool. Bootstrapping with
1000 iterations was used with the mAP metric at an IoU threshold of 0.1. Lower
rankings indicate better performance. The left side shows the aggregated rankings
across all data sets. The upper row shows changes in the results when only data
sets with box-level annotations are considered. The lower row visualises differences
in the rankings when only data sets with voxel-level annotations are considered.
nnDetection (ours) shows the best performance across both annotation types. This
figure is adapted from [82].
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5.2.3 Benchmarking against Task-specific Methods

Due to the limited availability of generalising detection models, the generalisation pool
can only be evaluated with a limited number of models. The benchmarking pools consist
of data sets that are used to compare detection methods from prior work.

Benchmarking on LUNA16

This benchmark data set is a subset of the LIDC [13] data set from the development
pool of nnDetection but underwent an additional filtering step by the authors of the
challenge [43]. The annotations were reduced to spherical labels, and only nodules that
were annotated by at least three out of four radiologists were considered positive. The
remaining nodule locations are marked as irrelevant, and predictions that are located near
them are ignored during the evaluation [43]. Due to the changes in image and annotation
characteristics, nnDetection configures a different pipeline, and thus, we consider this as
a separate task.

LUNA16 [43] is used by many prior works and constitutes one of the most widely used
medical detection data sets to date. The data set is officially divided into 10 subsets, which
should be used in a cross-validation fashion. Some publications specifically mention
their split, while others only refer to the cross-validation scheme. However, different
versions of the split can be used with either eight training folds, one validation fold and
one testing fold (’8-1-1’ split) or a more classical nine training folds and one testing fold
setup (’9-0-1’ split) can be utilised for the experiments. The latter will result in overly
positive results due to the absence of a dedicated test set. Since many methods did not
open source their exact training and evaluation setup, it remains unclear which setup was
used by prior work. To provide the best possible comparison, nnDetection is evaluated in
both scenarios. Our study includes 18 baseline models, including Liao et al. [78] Harsono
et al. [79] Dou et al. [65] Tang et al. [77] Li and Fan [72] Lu et al. [68] Mei et al. [70] Wang
et al. [67] Song et al. [74] Gong et al. [174] Ding et al. [66] Luo et al. [69] Khosravan and
Bagci [76] Cao et al. [64] Zhu et al. [75] and Liu et al. [73]. A subset of these methods was
benchmarked on the LUNA16 data set as part of the study from [70]. Figure 5.12 shows
the FROC score for all methods and the FROC curves of the best performing methods. All
nnDetection models rank among the best methods, only being outperformed by Liu et al.
with an additional FPR stage. The ensembling strategy does not significantly improve the
results in these scenarios, likely due to the small validation sets imposed by the official
split and the additional labels that are ignored in the official evaluation script but not
during training in nnDetection.
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Figure 5.12: Benchmarking results against task-specific models on LUNA16. Shows re-
sults of nnDetection (ours) against 16 task-specific models and 3 ablation models.
Experiments were conducted with an ’8-1-1’ and ’9-0-1’ split. Performance was
measured with the official evaluation script using the FROC metric. Predictions
were considered positive if the centre point was within the radius of the ground
truth annotation. The right side shows the FROC curves of nnDetection and the
three best-performing methods. A subset of the baseline results was taken from [70].
This figure is adapted from [82].

Benchmarking on PN9

The PN9 [14] data set is a comparably new benchmark consisting of over 8.000 images and
40.000 object annotations. Official splits are provided for the training, validation and test
subset. nnDetection is compared against 11 baseline models, including Lin et al. [35] Ren
et al. [36] Liu et al. [118] Liao et al. [78] Zhu et al. [75] Harsono et al. [79] Tang et al. [77]
Li and Fan [72] Mei et al. [70] and Xu et al. [71]. The majority of baseline results were
taken from [70]. The cross-validation experiments were conducted on the training split,
and the validation split was not used at all in this scenario. An additional experiment
was conducted with a single SETPREDICT model, which was trained on the training
split and empirical parameters determined on the validation split. No further model
ensembling is used in this scenario, and the model is denoted as ‘SETPREDICT (single)‘.
This experiment is intended to compare the performance of a single SETPREDICT with
previous works which do not utilise model ensembling.

Figure 5.13 provides an overview of all FROC scores and the FROC curve for the best
performing methods. All nnDetection models outperform the previous state-of-the-art
task-specific models on the test set. Notably, the SETPREDICT (single) model shows
better single model performance than the baselines while using significantly fewer
computational resources (SANet [70] uses 4 GPUs, and LSSANet [71] uses 3 GPUs).
nnDetection establishes a new state-of-the-art on the PN9 test set.
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Figure 5.13: Benchmarking results against task-specific models on PN9. Shows results
of nnDetection (ours) against 11 task-specific models and 3 ablation models. Ex-
periments were conducted using the official training, validation, and testing splits.
Performance was measured with the official evaluation script using the FROC met-
ric. Predictions were considered positive if the centre point was within the radius
of the ground truth annotation. An additional ablation experiment was conducted
where a single SETPREDICT model was trained and evaluated. The right side shows
the FROC curves of nnDetection and the three best-performing methods. The
majority of baseline results were taken from [70]. This figure is adapted from [82].

Benchmarking on CTA-A

Detecting aneurysms in CTA scans is a difficult task since the images need to be acquired
with fine details, and aneurysms only occupy a tiny portion of the entire scan. The
CTA-A data set has two test splits: one internal split, which contains scans from a similar
distribution as the training data, and one external test data set. nnDetection models were
trained in a cross-validation fashion on the training split and applied to both test sets. The
baseline models were established in Ceballos-Arroyo et al. and include Xie et al. [219] Luo
et al. [69] and Ceballos-Arroyo et al. [83]. The method from Ceballos-Arroyo et al. [83] is
based on the Deformable DETR architecture. Figure 5.14 summarises the results across
the two test sets and shows the FROC of the best-performing methods. All nnDetection
models outperform the previous state-of-the-art on the internal test set, and 2 out of
3 individual models show better performance on the external test set. nnDetection
achieves the best result on the external test set. The SETPREDICT model configured by
nnDetection achieves similar or better results than the baseline while requiring fewer
computational resources (the baseline model was trained on a node with 4 ×24GB VRAM
GPUs). Furthermore, no prior information in the form of vessel segmentations is used by
our method.
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Figure 5.14: Benchmarking results against task-specific models on CTA-A. Shows results
of nnDetection (ours) against 3 task-specific models and 3 ablation models on the
internal and external test sets. Performance was measured with the publicly avail-
able evaluation script using the FROC metric. Predictions were considered positive
if their IoU exceeded 0.3. The right side shows the FROC curves of nnDetection and
the best-performing task-specific method. Baseline results were taken from [83].
This figure is adapted from [82].
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CHAPTER 6

Discussion

This chapter places the results from Chapter 5 into the broader context of the medical
image computing domain. In the first part, insights about the manual configuration of
detection models are discussed based on the case studies of mediastinal lesion detection,
vessel occlusion detection and detection with direct set prediction models. The second
part discusses the impact and implications of self-configuring detection models on current
development and evaluation practices.

The design of manual detection pipelines is based on [182, 183, 184]. The design of
self-configuring medical object detection methods is based on [185, 82].

6.1 Task Specific Design of Object Detection Methods

6.1.1 Detecting Mediastinal Lesions in CT Images

In Section 4.1.1, we outlined our approach for detecting mediastinal lesions for the
MELA challenge 2022. Our method relies on multiple Retina U-Net one-stage detection
models trained with different configurations to fully leverage available computational
hardware resources and adapt to the challenge’s evaluation scheme. We emphasised the
refinement of the model configuration rather than introducing novel architectures or
detection concepts. Notably, the baseline model already demonstrated excellent detection
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performance, achieving a FROC score of 0.9824 on the leaderboard, leaving limited room
for further improvement.

Given the large size of the presented mediastinal lesions in the data set, we identified
potential stitching artefacts during inference, likely caused by duplicate predictions of
the same object from different patches, as a central problem of the baseline. To mitigate
this, we used a large patch size of [192 × 192 × 192], which reduces the number of sliding
window inference patches and thus reduces the probability of introducing such artefacts.
Furthermore, the official challenge evaluation is performed at a high IoU threshold of
0.3, which emphasises the need for precise lesion delineation. To incorporate this design
decision into our training pipeline, we reduced the spatial augmentation’s rotation angles
to minimize imprecise bounding boxes. Interestingly, this approach also enhances the
coarse localization performance at an IoU threshold of 0.1, yielding the best single-model
performance across all cross-validation metrics. Ensembling predictions from multiple
models further improves performance at the higher IoU threshold.

Despite these improvements, detecting smaller lesions remains a big challenge, even for
the ensembled models. Since the IoU decreases cubically in three-dimensional detec-
tion tasks, achieving high IoU values for small lesions is particularly difficult, as minor
deviations can already have a substantial impact. Future research could explore more
sophisticated methods for accurately delineating such lesions. Visual inspection of cross-
validation results also indicated that the developed model can detect suspicious regions
located in the lung near the mediastinum. Although considered false positives in the
scope of this challenge, they still pose relevant clinical findings. Qualitative results are
displayed in Figure 6.1.

In summary, we developed a simple yet highly effective model for detecting mediastinal
lesions in CT images. By leveraging a large patch size and a different augmentation
scheme, we achieved improvements across the entire FROC curve. The final model
achieved a promising FROC score of 0.9897 on the challenge leaderboard, ultimately
ranking third in the overall competition.

6.1.2 Detecting Vessel Occlusions in CTA Images

Our proposed method, as outlined in Section 4.1.2, can label any number of occlusions
without restrictions on vessel size or anatomical location. This is accomplished through
a generic object detection algorithm that directly predicts the position of the vessel
occlusion rather than relying on manual heuristics to determine its position. The method
operates directly on high-resolution CTA scans with minimal pre-processing, thereby cir-
cumventing any dependence on vessel segmentations or maximum intensity projections.
The proposed method was developed on a single institutional homogeneous data set
collected from the Heidelberg University clinic, where it achieved an AUROC of 0.96 [0.95,
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Figure 6.1: Qualitative results of cross-validation results on MELA data set. The first row
contains the CT images, and the second row contains the predictions and ground
truth annotations. Predictions are shown as bounding boxes with the associated
predicted class and confidence score. Ground truth objects are represented by their
spherical segmentation. (A) Shows a true positive prediction (green). (B) Depicts a
prediction of a suspicious region in the lung (red) and a missed mediastinal lesion.
(C) A false negative lesion. This figure is adapted from [182].

0.98] and patient-level sensitivity of 0.94 [0.90, 0.97]. Further evaluations were conducted
in two pseudo-prospectively collected cohorts with heterogeneous data incorporating
new vendors, scanner models, reconstruction kernels and shifts in the acquisition phases.
In the first external cohort, called FAST, we observed slightly degraded results with an
AUROC of 0.90 [0.84, 0.94] and patient-level sensitivity of 0.87 [0.77, 0.95]. The second
external cohort, from the University Clinic Bonn, showed an AUROC of 0.85 [0.79, 0.91]
and patient-level sensitivity of 0.81 [0.71, 0.90]. Given that patients flagged by an au-
tomated system will undergo additional clinical review by clinicians, our experiments
focused on achieving high sensitivity and NPV. Missing occlusions could lead to reduced
prioritisation of patients in clinical practice, which can have detrimental effects in the
case of time-sensitive applications like the diagnosis of ischemic stroke. Qualitative
inspection of the results showed that the developed model is able to correctly detect HGS,
which were not present in the training data set but also constitute clinically relevant
findings. Benchmarking against two CE-marked and FDA-approved software solutions
demonstrated significantly better sensitivity while being on par or superior in specificity.
The largest performance differences were observed for the more difficult-to-detect MeVOs
(M2- and M3-segment occlusions).
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The reported performance metrics for commercial solutions in the literature vary con-
siderably depending on the cohort and method used for analysis. Specifically, sensitiv-
ity/specificity of 82%/90% have been reported for Viz-LVO (Viz.ai), 84%/96% for e-CTA
(Brainomix), 93–96%/78% for StrokeViewer (Nico-LAB), 73%/98% for AUTOStroke LVO
(Canon) and 96%/98% for RAPID-LVO (RapidAI) [159, 161, 162, 158, 157]. These solutions
are primarily aimed towards the detection of LVOs in the anterior circulation, with
reported performance for MeVOs being lower [159, 161]. In contrast, our approach is
not limited to individual anatomical regions and can detect vessel occlusion in arbi-
trary positions, including the posterior circulation and extracranial occlusions. We have
demonstrated high patient-level sensitivity across all cohorts exceeding 80%. Commercial
software solutions performed below-reported values in literature, potentially due to
the difficulty of the external data sets, which comprised heterogeneous data from four
hospitals, several scanner types and acquisition phases. The presence of venous overlay
in the external cohorts can easily introduce additional false positive predictions and
pose an especially difficult problem. Existing deep learning-based approaches to localize
vessel occlusions exist in literature but are combined with manual heuristics to derive
information about the presence and localization of LVOs. One potential heuristic is based
on the identification of vessel asymmetries [220]. These formulations might explain the
drastic performance drop since not all occlusions in peripheral vascular territories, such
as the M2 segment, are accompanied by a drop in vascular density and can present high
interpersonal variability [162, 220, 154, 151]. Our developed approach, which does not
depend on such priors, offers a potentially superior task formulation compared to current
commercial tools.

Further analysis of the results revealed the promising capability of detecting HGS in
CTA scans, suggesting that the developed network is able to detect a reduction in vessel
contrast even without a complete blockage. Although not the primary focus of this
study, localizing HGS can be an important extension of future solutions since they
represent clinically relevant findings, potentially requiring further follow-up treatment
by clinicians. Further work will be necessary to reliably detect HGS in CTA scans by
collecting additional data and re-training the algorithm.

Qualitative evaluation of the results in the FAST and UKB cohort showed that many
false positive predictions made by our method were located on small veins. This is likely
attributed to a systematic shift towards delayed acquisition phases, which introduces a
venous overlay. In such cases, veins tend to lose contrast, resembling the appearance of
contrast loss in arteries. This phenomenon not only challenges automated detection but
also complicates manual diagnosis by trained clinicians and thus highlights the need for
high-quality acquisition protocols.

Our study on vessel occlusion detection has several limitations. (1) Although we collected
a large data set, it still includes significant class imbalance, posing challenges in terms of
model training and evaluation of rare occlusion types. Decentralised studies can facilitate
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the collection of larger data sets covering a higher number of rare pathologies, which
can be used to train more powerful algorithms in the future. The included online web
platform, with its crowd-sourcing capabilities, might be a first step in this direction. This
scheme could be extended to include other vessel pathologies, such as HGS, to train
more general models in the future. (2) The median processing time of our proposed
method was 103s, allowing processing of high-resolution CTA scans below 2 minutes.
However, further optimisation of the preprocessing pipeline can still significantly reduce
the inference time, as our analysis showed that the preprocessing of the images takes up
to 80% of the total time. Exploring alternative preprocessing techniques and computer
vision libraries could alleviate the current bottleneck. (3) Our study only included a
subset of the commercially available software solutions. Expanding this analysis to
cover a broader range of solutions, as well as potentially publicly available tools in the
future, could provide additional insights into the advantages and disadvantages of current
methods. By making our solution available via a web platform, we hope to take the
first step in the right direction. (4) Finally, this study only included cohorts which were
manually cleaned from artefacts and image corruptions. A potential clinical deployment
of this algorithm would require automated checks to ensure sufficient image quality.

In summary, we presented a generic detection method to localize vessel occlusions in
CTA scans, which is not limited to any particular anatomical region and does not depend
on extensive manual heuristics. Applying the model to two heterogeneous external
cohorts revealed promising results and the capability to detect HGS. Benchmarking
against two CE-marked and FDA-approved software solutions showed substantially
better performance by our proposed method. We made the presented model available via
a web platform, which can be found at https://stroke.ccibonn.ai.

6.1.3 Exploring Detection Transformers for Medical Object
Detection

This study presents the first usage of DETR models for medical object detection tasks
on lesions and aneurysms. The empirical results show that the original DETR model
requires long training schedules while achieving inferior results compared to state-of-the-
art anchor-based models. Introducing conditional (cross-)attention partially helps with
long convergence times and provides a slight performance boost. Themost complexDETR
model, DINO DETR, converges significantly faster and provides the best performance
across all models for most tasks. Compared to anchor-based detectors, it does not require
manual heuristics for anchors, anchor matching or Non-Maximum Suppression. The
training length and number of queries used to control the number of predictions are two
of the very few detector-specific parameters of the model.

The DETR and Conditional DETR models require up to four times the number of epochs
than the anchor-based detector Retina U-Net [185]. Even though the time per step of
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DETR models is shorter than for Retina U-Net, the resulting training times still pose a
significant disadvantage. DINO DETR uses additional mechanisms to effectively speed
up the training convergence, like deformable multi-scale attention [39, 147], resulting in
training times which are comparable to the anchor-based model.

DINO DETR provides the best results of the analysed DETR models, which shows a
direct trade-off between model complexity and performance. Simpler models, not relying
on multi-scale deformable attention, provide worse results on data sets with smaller
objects like CADA and LIDC, while the more complex design of DINO DETR shows
clear convergence and performance advantages. DETR and Conditional DETR can use
higher resolution feature maps to leverage more fine-grained information but require
significantly more VRAM due to the quadratic memory and compute increase of the
attention operation with increasing sequence lengths. DINO DETR processes the last
three feature maps, resulting in features which are four times more fine-grained along
each axis than the features processed by other DETR models. We hypothesize that this
is the reason for its improved performance and convergence speed. On the other hand,
DINO DETR introduces additional hyperparameters which require expert knowledge
and computational resources to be adjusted accurately.

Currently, state-of-the-art medical detection models [46] rely on additional segmentation
supervision to achieve the best possible performance. This provides them with additional
supervision but leads to long annotation times. DETR models are trained with bounding
box supervision, which enables the annotation of large-scale data sets due to the decreased
annotation time per object.

Since this study aims to assess the feasibility of DETR models for medical object detection,
it is still limited in some aspects: (1) Due to VRAM limitations of modern GPUs, all 3D
detection models are trained in a patch wise fashion. During inference, a sliding window
scheme is used to avoid border artefacts but this introduces duplicate predictions of
the same objects. As a result, additional post-processing steps, like NMS, are still used
and require the correct adjustment of IoU thresholds. (2) While this study analysed
three different DETR models, many additional extensions are available that promise
further improvements in performance and convergence speed. Furthermore, additional
ablation experiments will be needed in the future to understand the most impactful design
decisions of the DINO DETR model in the medical domain. (3) Our analysis only included
four medical detection tasks which is larger than most studies but does not cover the
full breadth of the detection domain. Finally, (4) the DETR models were manually tuned
for these experiments which limits their potential user base to experts with profound
knowledge.
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6.2 Self-Configuring Design of Medical Object
Detection Methods

Section 4.2 presented the design of nnDetection, the first self-configuring medical object
detection method. The empirical evaluation showcases the versatility of the developed
method which is able to generalise to unseen modalities, anatomical regions and object
structures. Additionally, it extends beyond a single annotation type and incorporates
models for training with box-level and mixed supervision. Its design incorporates one-
stage, two-stage and direct-set prediction models to generalise across a wide spectrum
of volumetric detection tasks. All models are part of a unified framework that offers
automated model proposals, heterogeneous model ensembling, and configuration via rule-
based, fixed, and empirical parameters. The results presented in Section 5.2 indicate that
a single detection model is not able to achieve optimal performance across all detection
tasks, and ensembling a diverse set of detector types can alleviate this shortcoming. The
presented method’s development and evaluation included 22 data sets, establishing a
robust set of detection tasks in the domain. nnDetection outperforms strong segmentation-
based methods on the generalisation pool, consisting of 9 previously unseen data sets
with an average relative improvement of 13%. Further benchmarking on three data sets
against task-specific models shows the benefits of our robust and general design, which
achieves new state-of-the-art performance.

A preliminary version of nnDetection was published in 2021 and has collected over 500
stars on Github and nearly 100 forks. The method presented in this thesis is the result of
several hundred experiments on the development pool and 5 years of continuous efforts
to find the best possible detection models. nnDetection was used as the foundation for
several top ranking submissions to international challenges, including ADAM 2020 [44]
(1st rank detection track), MELA 2022 [19, 182] (3rd rank), TDSC-ABUS 2023 [221] (2nd
rank detection track) and INSTED 2024 [222] (1st rank). By developing an even more
general method and including a diverse set of models for ablation experiments, we hope
to further accelerate the adoption of detection methods in the community.

Isensee et al. [81] performed a standardised evaluation of recent semantic segmentation
methods and observed several pitfalls in the domain. Among them are (P1) the suitable
configuration of baseline methods, (P2) the appropriate selection of high-quality data
sets as well as a sufficient quantity of tasks and (P3) different reporting practices between
publications. During this study, we have seen the emergence of these pitfalls in the
detection domain as well. Baseline methods for the PN9 [14] data set include a 3D Faster
R-CNN model which ranked among the worst methods in [70]. The 2STAGE-BOX model
of nnDetection follows the same design but is able to outperform all existing solutions
without relying on other bells and whistles like squeeze-and-excitation blocks [177,
74, 72], dual path blocks [175, 75], slice grouped non-local modules [70] or long short
slice-aware modules [71]. This highlights the importance of proper configuration of the
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baseline methods and shows the impact of the self-configuring capabilities of nnDetection
for future work. Prior work focuses on the development and evaluation of individual
detection tasks [83, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 174, 78, 18, 169]
which leads to task-specific design choices and limited generalisation of the design.
The presented results showcase that evaluation across multiple tasks is essential to
guarantee robust decision-making when developing and evaluating methods. The data
pools establish a diverse development and evaluation suite that future studies can use
to develop general object detection methods on a robust set of tasks. Finally, we also
observed potential differences in reporting strategies for the LUNA16 [43] data set,
impacting the experimental design and evaluation of our method. By using accessible
data sets and making our code for preparing them publicly available, we hope to set the
foundation for the next generation of object detection benchmarks.

Currently, all models within nnDetection are trained from scratch for each new task,
which may be a limiting factor for small data sets. Foundation models, which learn
general representations from a large corpus of data, represent a different paradigm where
the model only requires fine-tuning on downstream tasks. In contrast to our approach, the
pre-training usually depends onmassive amounts of computing resources, so the resulting
model is kept constant across different tasks. Exploring these models as future work offers
great potential, especially in combination with detection models which do not incorporate
extensive prior knowledge like DETR based direct set prediction models. nnDetection
offers a great development platform for these use cases by providing an extensive number
of baseline models, reference implementations for different detector categories and easy
access to many data sets for downstream evaluation. Furthermore, foundation models
like the Segment Anything Model (SAM) can also extend the capabilities of nnDetection
by processing the produced bounding box to generate instance segmentations, which
allow for the voxel-wise delineation of objects.

While the presented results offer a wide range of tasks and generalisation scenarios, there
are still some limitations to this study: (1) Our method focuses on volumetric data, which
poses an especially difficult problem due to imbalanced data and large images that require
careful design of the entire processing pipeline. Nevertheless, the impact of 3D images
on patient care is immense due to the relevance and broad applicability of sequences like
MRI and CT. (2) All models within the nnDetection framework are designed for GPUs
with 11-16GB of VRAM to make the models available to a large community. However,
this also limits the capacity of the models and adding further extensions to scale to
larger memory budgets can significantly enhance the performance on large data sets like
PN9 [14]. (3) The presented generalisation and benchmarking pools are built upon public
data and evaluation is performed via the official scripts. This ensures the comparability
of studies based on the available data and evaluation parameters but does not impose any
limits on the number of test set evaluations. Since the entire data set is publicly available,
hyperparameter tuning on the test set is theoretically possible.
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In summary, the first self-configuring medical object detection method was presented,
and 22 data sets were used during its development and evaluation. It follows in nnU-Net’s
footsteps and systematizes the configuration process by categorising parameters into
rule-based, fixed and empirical. A unified framework leverages one-stage, two-stage and
direct-set prediction models in a heterogeneous ensemble. The resulting method can
handle commonly used annotation types and generalises to new volumetric detection
tasks without manual intervention.
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CHAPTER 7

Conclusion

7.1 Summary

This thesis made significant contributions to the field of medical object detection and
paved the way for the democratization of deep learning-based detection models. Identi-
fying objects in medical images presents an essential clinical task for radiologists and
computer vision algorithms. This thesis made contributions as outline by the research
questions from Section 1.2. RQ 1.1 involved the deployment of detection models to an
international challenge. This showcased the feasibility of object detection models in
the medical domain and highlighted the importance of proper configuration. However,
curated data sets only cover a limited number of applications, and generalising them
to other hospitals poses a difficult problem during deployment in clinical settings. RQ
1.2 resulted in the development of a specialized model for vessel occlusion detection in
CTA images and showed promising generalisation performance to external cohorts. RQ
1.3 investigated the feasibility of direct set prediction approaches via the transformer
architecture for medical detection tasks.

All model of RQ1 were manually configured for the underlying task, limiting their usabil-
ity to a small number of experts. Self-configuring models require a different development
paradigm but offer out-of-the-box applicability to previously unseen tasks. RQ 2.1 in-
vestigated the availability of detection data sets for building models that can generalise
across tasks. Finally, RQ 2.2 established a systematic configuration process for volumetric
detection models.
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7.1.1 Manual Design of Detection Methods

The first part of this thesis focused on the feasibility of detection models for medical
tasks and their manual configuration. For RQ 1.1, a detection model was developed to
identify mediastinal lesions in CT images and submitted to an international challenge
with great success. Central components of the approach include generating pseudo masks
to provide auxiliary supervision during training, scaling the patch size to use the full
extent of the available hardware resources, adjusting the augmentation scheme to reflect
the task’s requirements, and ensembling multiple models. The submitted model achieved
a FROC score of 0.9897 on the MELA leaderboard and ranked third in the challenge. A
corresponding publication was published as part of the challenge proceedings Lesion
Segmentation in Surgical and Diagnostic Applications and I orally presented the solution
at the virtual workshop.

The clinical deployment of algorithms is not limited to curated data sets and usually
incorporates more difficult tasks, like the generalisation to external hospitals. Under the
consideration of task-specific requirements, the design of a detection model for vessel
occlusions was presented as part of RQ 1.2. The configuration included scaling to the
available hardware resources, selecting an appropriate model for the object structure,
reducing the number of anchors to match the diversity in object sizes, and decreasing the
inference time. The developed model offers a robust design that only involves a minimal
set of preprocessing operations, enabling the application to arbitrary occlusion types.
The evaluation was performed on a single internal data set and two external cohorts,
which included a heterogeneous set of scans. The detection performance correlated with
the number of occlusions per category. Scans in the internal test set can be processed
with a median processing time of less than 2 minutes. Furthermore, the model was
able to detect HGS, which were not annotated in the training data set but constitute a
relevant clinical finding. A comparison against two CE- and FDA-approved commercially
available software solutions revealed significantly better performance of our model.
The performance differences were especially pronounced on more difficult-to-detect
structures like MeVOs. Our findings were published in Nature Communications, and the
model is publicly available as part of a web service with crowdsourcing capabilities.

Many detection methods rely on an anchor-based design, which requires multiple manu-
ally defined heuristics, such as anchor size and density, additional post-processing for
deduplication, and assignment rules. Direct set prediction models offer an alternative
formulation and can train detection models end-to-end. RQ 1.3 investigated the feasibility
of these models for diagnostic tasks in the medical domain. Section 5.1.3 presented em-
pirical evidence demonstrating the usefullness of DETR based models. Simpler models
like DETR and Conditional DETR are not able to produce competitive results, but more
complex models like DINO DETR outperformed a strong anchor-based baseline model on
four detection tasks. This work was presented as a full paper at the German Conference
on Medical Image Computing (BVM) and received the third rank for the best paper award.
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7.1.2 Self-Configuring Design of Detection Methods

Manually configuring deep learning models poses a difficult problem due to the required
expert knowledge, available time and needed computational resources. However, moving
away from the current development practice requires two key components: a large
number of data sets to cover many different tasks (RQ 2.1) and a different development
concept (RQ 2.2).

The medical domain encompasses many different modalities, anatomical regions, and
object structures, which need to be reflected throughout the model’s development and
evaluation cycle. Additional difficulty is added to the detection domain due to different
annotation styles, which are tailored towards the clinical task and available annotation
budget. Three data set pools were compiled to address these requirements: the develop-
ment pool, which consists of 10 data sets; the generalisation pool, which consists of 9
unseen data sets; and the benchmarking pool, which consists of 3 additional data sets. A
total of 22 data sets are assembled, which are annotated with instance segmentations,
bounding boxes, or spherical annotations. Due to the prevalence of semantic segmenta-
tion methods in the domain, multiple clinically relevant data sets were reformulated as
detection tasks. The generalisation pool includes previously unseen characteristics like
anatomical regions and object structures compared to the development pool. Prior work
utilised individual data sets to develop task-specific models, which were assembled into
the benchmarking pool, including two widely used data sets LUNA16 [43] and PN9 [14].

Given enough data sets, developing a general detection model required robust perfor-
mance across multiple tasks. During the development process, the pipeline parameters
were divided into rule-based, fixed and empirical groups and adjusted throughout many
experiments. Several insights from RQ 1 about the manual design of detection methods
were incorporated into the design to ensure robust performance across the development
pool. The resulting method, named nnDetection, provides a unified configuration system
for one-stage, two-stage and direct-set prediction models. Robust generalisation across
tasks is achieved by using a heterogeneous ensemble of different detector types. An
heterogeneous set of models is used for ensembling based on the available annotation
type to incorporate as much information as possible.

nnDetection showed notable gains over commonly used segmentation-based baselines
and multiple ablation models across the generalisation pool. It remained the best-
performing method even when varying the metric and performing analysis on annotation
type-specific sub-groups. nnDetection sets new state-of-the-art performance on the
benchmarking pool, outperforming task-specific models and showing the capabilities
of self-configuring methods. A preliminary version was published at The Medical Im-
age Computing and Computer Assisted Intervention (MICCAI) conference and included
a public code release which has gathered over 500 Github stars and more than 100
forks. An abstract of the method was accepted at the German Conference on Medical
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Image Computing (BVM), where I presented it as an oral presentation and received the
Best Presentation Award. Furthermore, solutions based on nnDetection ranked within
the top three solutions in several international challenges: ADAM 2020 [44, 223] (1st
rank detection track, team ”mibaumgartner”), MELA 2022 [224, 182] (3rd rank, team
”mibaumgartner”), TDSC-ABUS 2023 [225] (2nd rank detection track, team ”Deadluck”)
and INSTED 2024 [226, 222] (1st rank, team ”MIC”). nnDetection, as described in this
thesis, is currently in preparation for submission to a high impact journal.

7.2 Outlook

This thesis sets the potential foundation for future research on medical object detection
and provides an easy-to-use entry point to the domain. Nevertheless, several directions
can be explored in the future to further advance the field.

Extension to Instance Segmentation

Producing voxel-level predictions for each object via deep learning-based models com-
bines the object detection domain with the semantic segmentation domain. This is called
Instance segmentation and is necessary to provide exact delineations of individual objects
to allow reasoning on the voxel and object levels simultaneously. It is an essential tool for
performing clinical measurements, such as assessing the volume of lesions, which rely
on information from both levels. Since algorithmic solutions of the object detection and
semantic segmentation domain follow different model designs, methods from both do-
mains can be adopted to solve instance segmentation tasks. Bottom-up methods, extend
segmentation models by grouping their voxel-level output into regions via heuristics [227,
228, 229, 230]. Top-down methods first generate region proposals and create binary
segmentation masks as a secondary step; these include methods presented in this thesis
like Mask R-CNN [37]. They first follow an object-centric approach and predict the
voxel-level mask as an additional output in a subsequent step. Direct set prediction mod-
els, like DETR, offer new possibilities in this domain by merging object-level reasoning
with voxel-level information. The Mask (2) Former architecture [231, 232] combines
these two aspects and achieves promising performance, for instance segmentation and
semantic segmentation in the natural image processing domain. While these methods
start to emerge in the medical domain [233] they follow a task-specific development and
evaluation scheme. Since the range of applications for instance segmentation is equally
broad as for object detection and semantic segmentation, focussing on a generalising
design is essential to establish it as a cornerstone in the medical domain and provide
these capabilities to a broad audience.
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Using an instance segmentation method might only be one direction to explore in this
context: foundation models like the Segment Anything Model (SAM) [218] are contin-
uously gaining traction for interactive segmentation scenarios. These models can be
prompted via points or bounding boxes to provide segmentations for the respective entity.
Given a model capable of producing a segmentation from an initial bounding box prompt,
the instance segmentation task is effectively reduced to a detection task. Using the divide
and conquer principle, specialized models can be optimised to provide the best possible
detection and segmentation separately and combined in a stage-wise pipeline.

The work presented in this thesis follows an object-centric pipeline and evaluation
scheme, which sets the foundation for both potential model designs. Furthermore, many
of the data sets which are part of the development and evaluation strategy of nnDetection
are annotated via instance segmentations. The availability of a diverse pool of data sets
for this task significantly reduces the burden of entry for future research.

Is the future static or dynamic?

This thesis presented a self-configuring design for medical object detection models to
achieve generalisation across many data sets. This approach aims to find the optimal
configuration for any given task, which is characterised by certain properties. In this
scenario, no additional data is required, and all models can be trained from scratch,
ultimately yielding a dynamic expert model for each task. On the other hand, foundation
models gain traction by popularising a new development paradigm. Instead of creating a
model for each task separately, these models aim to solve many tasks without adaptation.
Training foundation models requires large amounts of data and computational resources,
yielding a general model which can leverage synergies between tasks. They are able
to generate a general representation of the data, which results in a static design for all
tasks. On a high level, two major approaches can be considered when developing this
type of models: supervised and self-supervised models.

Supervised models are trained on massive annotated data sets to learn general represen-
tations. These data sets are often created with human-in-the-loop annotation schemes,
where model predictions are refined, and the training is performed iteratively. SAM [218]
represents one of these foundation models primarily targeted towards the natural image
processing domain, and initial efforts are being developed for the medical domain like
TotalSegmentator [234, 235] and AbdomenAtlas [236]. The large number of individually
annotated medical data sets offers an alternative to individual data sets. Many partially
annotated data sets can be pooled together to train a single model, solving all tasks
simultaniously [237, 238, 239, 240] and leading to a generalizing model.

Self-supervised models do not rely on annotations, which allows them to be trained on
an even larger number of images. The objective of the training varies with different pre-
training styles with contrastive pre-training [241, 242], student-teacher models [243, 244,
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245] and masked auto encoders [128, 246, 109] representing popular options. Contrastive
pre-training aims to generate similar representations for similar images and dissimilar
representations for the rest. The construction of similar and dissimilar images varies
between approaches and is often driven by augmentations. Student-teacher networks
follow a similar scheme. The teacher has more information available than the student,
but the student is tasked with reconstructing the teacher’s output. Masked auto encoders
formulate self-supervised learning as a reconstruction task by masking out large parts of
the image and forcing the network to reconstruct them. The initial paper popularising
this approach [128] on large-scale data sets used the transformer architecture, which can
leverage additional speed-ups during training since the masking step can be performed
directly on the tokens. Extensions to convolutional neural networks [246] have become
available and allow scaling these networks, too.

Broad access to foundation models has the potential to revolutionise the medical image
computing domain by offering easy-to-use feature extractors which can be embedded
into arbitrary downstream models. It remains to be seen whether future models will be
dynamic, static, or even a mixture of these, but the incorporation of large-scale data into
the model design will substantially impact model robustness and generalisation. Our
work, nnDetection offers a well-suited platform for future models, independent of their
design since it allows for easy integration of arbitrary feature extractors and seamless
rollout to many detection data sets.

7.3 Closing

In conclusion, this thesis presented the development and deployment of volumetric
object detection methods across various medical applications. It presented methods that
achieved state-of-the-art results in international challenges, analysed the feasibility of new
methods for medical tasks, and developed custom solutions for clinically relevant tasks.
All of the gathered knowledge was distilled into a unified method called nnDetection,
which democratizes the availability of detection methods. The preliminary code release
has already attracted many users, and we hope that it will help fuel the next generation
of research in this domain.
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APPENDIX A

Own Contributions and Publications

A.1 Own Contributions

The following section outlines my contributions to the research questions examined in
this thesis.

RQ 1.1: Are detection methods competitive in international benchmarks?

This work describes my submission to the MELA challenge and was published in the
challenge proceedings Lesion Segmentation in Surgical and Diagnostic Applications. The
method ranked third in the overall competition. Furthermore, my solutionwas presented
orally at the virtual challenge workshop. I was responsible for developing and submitting
the models as well as writing the manuscript.

RQ1.2: Can detection models offer a clinical value over existing solutions for
vessel occlusion recognition?

This work was published in Nature Communications. My contributions to this work
were the development of the model, performing object-level and patient-level evaluation,
creating an initial prototype of the web platform, and contributing to the manuscript’s
writing process.

RQ1.3: Are direct set prediction models beneficial for medical object detection?

This work resulted from Marc Kevin Ickler’s master’s thesis, which I supervised. My
contributions include conceptualisation of the research question, providing the base
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framework for the model integration, regular feedback and strategic planing during
weekly meetings and writing parts of the submitted manuscript. I presented the work
orally at the German Conference on Medical Image Computing (BVM) and it received the
third rank for the best paper award.

RQ2: How can object detection methods be configured automatically?

The preliminary version of this work was published at the The Medical Image Computing
and Computer Assisted Intervention (MICCAI) conference and includes a public code
release. The method, named nnDetection, was used by myself and teams of the MIC
department to participate in several challenges: ADAM 2020 (1st rank detection track,
team ”mibaumgartner”), MELA 2022 (3rd rank, team ”mibaumgartner”), TDSC-ABUS
2023 (2nd rank detection track, team ”Deadluck”) and INSTED 2024 (1st rank, team
”MIC”). nnDetection, as described in this thesis, is currently in submission.

My contributions to this work was the development and maintenance of the entire
framework, identifying suitable detection tasks, analysing and identifying shortcomings
of current models, finding innovative solutions to improve model performance, leading
the detection based challenge participations and writing the manuscript.

Supervised Theses
I supervised the thesis from Marc Kevin Ickler titled Taming Detection Transformers for
Medical Object Detection, which investigated the feasibility of Detection Transformer
models in the medical detection domain. The results of this work were published at the
German Conference on Medical Image Computing (BVM) and received the third rank for
the best paper award.

A.2 Own Publications

This section includes all publications that I have first-authored or co-authored, including
poster presentations, oral presentations, journal publications, and pre-prints.

First Author Publications
1. Michael Baumgartner, Paul F Jäger, Fabian Isensee, and Klaus HMaier-Hein. “nnDe-

tection: a self-configuring method for medical object detection”. In: Medical Image
Computing and Computer Assisted Intervention–MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24.
Springer, 2021, pp. 530–539. isbn: 3030872394

2. Michael Baumgartner, Marc K. Ickler, Paul F. Jäger, Fabian Isensee, Constantin
Ulrich, Tassilo Wald, Julius Holzschuh, Balint Kovacs, Partha Ghosh, for the ALFA
study, and Klaus H. Maier-Hein. “nnDetection: A Self-configuring Method for
Volumetric 3D Object Detection”. In: In preparation (2025)
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3. Gianluca Brugnara, Michael Baumgartner, Edwin David Scholze, Katerina Deike-
Hofmann, Klaus Kades, Jonas Scherer, Stefan Denner, Hagen Meredig, Aditya
Rastogi, Mustafa Ahmed Mahmutoglu, Christian Ulfert, Ulf Neuberger, Silvia
Schönenberger, Kai Schlamp, Zeynep Bendella, Thomas Pinetz, Carsten Schmeel,
Wolfgang Wick, Peter A Ringleb, Ralf Floca, Markus Möhlenbruch, Alexander
Radbruch, Martin Bendszus, Klaus Maier-Hein, and Philipp Vollmuth. “Deep-
learning based detection of vessel occlusions on CT-angiography in patients with
suspected acute ischemic stroke”. In: Nature Communications 14 (1 2023), p. 4938.
issn: 2041-1723. doi: 10.1038/s41467-023-40564-8. url: https://doi.
org/10.1038/s41467-023-40564-8

4. Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy,
Klaus Maier-Hein, and Paul F. Jäger. “nnU-Net Revisited: A Call for Rigorous
Validation in 3D Medical Image Segmentation”. In: Medical Image Computing and
Computer Assisted Intervention – MICCAI 2024. Ed. by Marius George Linguraru,
Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, and
Julia A. Schnabel. Cham: Springer Nature Switzerland, 2024, pp. 488–498. isbn:
978-3-031-72114-4

5. Marc K Ickler, Michael Baumgartner, Saikat Roy, Tassilo Wald, and Klaus H Maier-
Hein. “Taming Detection Transformers for Medical Object Detection”. In: BVM
Workshop. Springer, 2023, pp. 183–188

6. Michael Baumgartner, Peter M Full, and Klaus H Maier-Hein. “Accurate Detection
of Mediastinal Lesions with nnDetection”. In: Springer, 2022, pp. 79–85

7. Michael Baumgartner, P Jaeger, Fabian Isensee, and Klaus H Maier-Hein. “Retina
U-Net for aneurysm detection in MR images”. In: Automatic Detection and SegMen-
tation Challenge (ADAM) (2020)

Co-Author Publications
1. Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D Tizabi, Florian Buet-

tner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal
Kozubek, et al. “Metrics reloaded: recommendations for image analysis validation”.
In: Nature methods 21 (2 2024), pp. 195–212. issn: 1548-7091

2. Annika Reinke, Minu D Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen
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Michela Antonelli, et al. “Understanding metric-related pitfalls in image analysis
validation”. In: Nature methods 21.2 (2024), pp. 182–194
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gartner, and Klaus H Maier-Hein. “MultiTalent: A Multi-dataset Approach to
Medical Image Segmentation”. In: Medical Image Computing and Computer As-
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Additional Results

B.1 Detecting Vessel Occlusions in CTA Images
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Table B.1: Scanner, Convolution Kernel and Slice Thickness Details Across Vessel Occlu-
sion Cohorts. Table reproduced from [183].

Scanner Model Heidelberg Cohort (n=1179) FAST Cohort (n=327) UKB Cohort (n=323)
Siemens SOMATOM Definition AS 1136 (96%) 124 (38%) 0 (0%)
Siemens SOMATOM X.cite 0 (0%) 36 (11%) 0 (0%)
Siemens Sensation 16 31 (3%) 0 (0%) 0 (0%)
Siemens Sensation 40 0 (0%) 167 (52%) 0 (0%)
Siemens Sensation Open 7 (1%) 0 (0%) 0 (0%)
Siemens SOMATOM Definition Flash 4 (0%) 0 (0%) 0 (0%)
Siemens SOMATOM Definition 1 (0%) 0 (0%) 0 (0%)
Philips IQon – Spectral CT 0 (0%) 0 (0%) 323 (100%)
Convolution Kernel
B26f 746 (63%) 0 (0%) 0 (0%)
I30f 382 (32%) 0 (0%) 0 (0%)
H30f 31 (3%) 85 (26%) 0 (0%)
Hv40f 0 (0%) 1 (3%) 0 (0%)
B25f 0 (0%) 42 (13%) 0 (0%)
B30f 7 (1%) 0 (0%) 0 (0%)
B31f 0 (0%) 40 (12%) 0 (0%)
Bv40f 0 (0%) 35 (11%) 0 (0%)
D26f 4 (0%) 0 (0%) 0 (0%)
I26f 4 (0%) 124 (38%) 0 (0%)
B46f 3 (0%) 0 (0%) 0 (0%)
B10f 1 (0%) 0 (0%) 0 (0%)
B20f 1 (0%) 0 (0%) 0 (0%)
B 0 (0%) 0 (0%) 323 (100%)
Slice Thickness
0.75 mm 1110 (94%) 4 (1%) 0 (0%)
0.80 mm 0 (0%) 40 (12%) 0 (0%)
0.6 mm 60 (5%) 0 (0%) 0 (0%)
1.0 mm 8 (1%) 209 (64%) 323 (100%)
1.2 mm 0 (0%) 38 (12%) 0 (0%)
1.5 mm 0 (0%) 36 (11%) 0 (0%)
2.0 mm 1 (0%) 0 (0%) 0 (0%)
Slice Thickness, median [IQR] 0.75 [0.75-0.75] 1.00 [1.00-1.00] 1.00 [1.00-1.00]

Table B.2: Acquisition PhaseAcross VesselOcclusion Test Sets. Table reproduced from [183].
Acquisition phase of the CT angiography in the test sets

Early Arterial Peak Arterial Equilibrium Peak Venous Late Venous
HD cohort n = 258/344 (75%) n = 39/344 (11%) n = 40/344 (12%) n = 4/344 (1%) n = 3/344 (1%)
FAST cohort n = 42/327 (13%) n = 134/327 (41%) n = 114/327 (35%) n = 33/327 (11%) n = 4/327 (1%)
UKB cohort n = 32/323 (10%) n = 73/323 (23%) n = 133/323 (41%) n = 65/323 (20%) n = 21/323 (7%)
p-values <0.001 <0.001 <0.001 <0.001 <0.001
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Table B.3: Object-level results in the training set (cross-validation) of the Heidel-
berg cohort. Abbreviations: VO=vessel occlusion; LVO=large vessel occlusion,
MeVO=medium vessel occlusion, FROC=free-response operating characteristic, S=sen-
sitivity, FFPI=Number of false positives per image, VO = vessel occlusion, n=Number
of VO. Table reproduced from [183].

Cohort FROC S@0.5FPPI S@1FPPI S@Thresh

VO (n = 727) 0.85 [0.82, 0.87] 0.83 [0.80, 0.86] 0.87 [0.84, 0.89] 0.85 [0.82, 0.88]
Anterior Circulation
LVO (n = 456) - 0.89 [0.85, 0.91] 0.90 [0.87, 0.93] 0.90 [0.87, 0.92]
MeVO (n = 200) - 0.77 [0.70, 0.83] 0.84 [0.77, 0.89] 0.81 [0.74, 0.86]
Posterior Circulation
VO (n = 71) - 0.68 [0.56, 0.78] 0.73 [0.63, 0.84] 0.70 [0.60, 0.80]

Table B.4: Object-level results in the test set of the Heidelberg cohort. Abbreviations:
VO=vessel occlusion; LVO: large vessel occlusion, MeVO: medium vessel occlusion;
FROC=free-response operating characteristic; S=sensitivity; FFPI=Number of false
positives per image; VO = vessel occlusion, n=Number of VO. Table reproduced
from [183].

Cohort FROC S@0.5FPPI S@1FPPI S@Thresh
All (n = 239) 0.79 [0.73, 0.84] 0.74 [0.67, 0.81] 0.79 [0.73, 0.85] 0.73 [0.67, 0.79]
Anterior Circulation
LVO (n = 154) - 0.81 [0.74, 0.88] 0.85 [0.78, 0.91] 0.81 [0.74, 0.87]
MeVO (n = 63) - 0.65 [0.53, 0.77] 0.71 [0.60, 0.82] 0.63 [0.51, 0.75]
Posterior Circulation
VO (n = 22) - 0.50 [0.31, 0.7] 0.59 [0.4, 0.78] 0.50 [0.31, 0.7]

Table B.5: Object-level results in the test set of the FAST cohort. Abbreviations: VO=vessel
occlusion, LVO: large vessel occlusion, MeVO: medium vessel occlusion, FROC=free-
response operating characteristic, S=sensitivity, FFPI=Number of false positives per
image, VO = vessel occlusion, n=Number of VO. Table reproduced from [183].

Metrics FROC S@0.5FPPI S@1FPPI S@Thresh
Full data set
VO (n = 58) 0.75 [0.65, 0.85] 0.76 [0.64, 0.86] 0.79 [0.68, 0.89] 0.72 [0.61, 0.83]
Anterior Circulation
LVO (n = 31) - 0.84 [0.70, 0.96] 0.84 [0.70, 0.96] 0.77 [0.62, 0.91]
MeVO (n = 15) - 0.87 [0.67, 1.00] 0.87 [0.67, 1.00] 0.87 [0.67, 1.00]
Posterior Circulation
VO (n = 12) - 0.42 [0.11, 0.71] 0.58 [0.25, 0.86] 0.42 [0.11, 0.71]
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Table B.6: Object-level results in the test set of the UKB cohort. Abbreviations: VO=vessel
occlusion, LVO: large vessel occlusion, MeVO: medium vessel occlusion, FROC=free-
response operating characteristic, S=sensitivity, FFPI=Number of false positives per
image, VO = vessel occlusion, n=Number of VO. Table reproduced from [183].

Cohort FROC S@0.5FPPI S@1FPPI S@Thresh
n=Num VO
VO (n = 89) 0.74 [0.66, 0.82] 0.73 [0.63, 0.82] 0.76 [0.67, 0.85] 0.71 [0.60, 0.80]
Anterior Circulation
LVO (n = 41) - 0.83 [0.70, 0.94] 0.88 [0.78, 0.96] 0.83 [0.70, 0.94]
MeVO (n = 29) - 0.69 [0.50, 0.86] 0.72 [0.55, 0.88] 0.66 [0.48, 0.83]
Posterior Circulation
VO (n = 19) - 0.58 [0.33, 0.82] 0.58 [0.35, 0.83] 0.53 [0.29, 0.78]

Table B.7: Patient-level performance of HD-CTA on Heidelberg cohort. Abbreviations:
AUROC = Area Under Receiver Operating Characteristic, PPV = Positive Predictive
Values, NPV = Negative Predictive Value, VO = Vessel Occlusion. Table reproduced
from [183].

Cohort AUROC Sensitivity Specificity PPV NPV
Cross-Validation
VO (n = 628) / Controls (n = 207) 0.96 [0.95, 0.97] 601/628; 0.96 [0.94, 0.97] 159/207; 0.77 [0.71, 0.82] 601/649; 0.93 [0.91, 0.95] 159/186; 0.85 [0.80, 0.90]
Test Set
VO (n = 172) / Controls (n = 172) 0.96 [0.95, 0.98] 161/172; 0.94 [0.90, 0.97] 142/172; 0.83 [0.77, 0.88] 161/192; 0.84 [0.79, 0.89] 142/153; 0.93 [0.88, 0.96]

Table B.8: Patient-level performance of HD-CTA on FAST cohort. Abbreviations: AUROC =
Area Under Receiver Operating Characteristic, PPV = Positive Predictive Values, NPV
= Negative Predictive Value, VO = Vessel Occlusion. Table reproduced from [183].

Cohort n = Num Patients AUROC Sensitivity Specificity PPV NPV
VO (n = 52)/Controls (n = 274) 0.90 [0.84, 0.94] 45/52; 0.87 [0.77, 0.95] 212/274; 0.77 [0.72, 0.82] 45/107; 0.42 [0.32, 0.51] 212/219; 0.97 [0.94, 0.99]
VO + HGS (n = 79)/Controls (n = 247) 0.92 [0.88, 0.96] 69/79; 0.87 [0.79, 0.94] 209/247; 0.85 [0.80, 0.90] 69/107; 0.64 [0.55, 0.74] 209/219; 0.95 [0.92, 0.98]

Table B.9: Patient-level performance of HD-CTA on UKB cohort. Abbreviations: AUROC =
Area Under Receiver Operating Characteristic, PPV = Positive Predictive Values, NPV
= Negative Predictive Value, VO = Vessel Occlusion. Table reproduced from [183].

Cohort n = Num Patients AUROC Sensitivity Specificity PPV NPV
VO (n = 80)/Controls (n = 243) 0.85 [0.79, 0.91] 65/80; 0.81 [0.71, 0.90] 196/243; 0.81 [0.75, 0.85] 65/112; 0.58 [0.49, 0.67] 196/211; 0.93 [0.89, 0.96]
VO + HGS (n = 106)/Controls (n = 217) 0.88 [0.83, 0.93] 85/106; 0.80 [0.72, 0.87] 190/217; 0.88 [0.83, 0.92] 85/112; 0.76 [0.68, 0.83] 190/211; 0.90 [0.86, 0.94]

Table B.10: Number of false positives on object level in FAST and UKB cohort shown for
different acquisition phases. Pearson’s chi-squared test was used for comparing
the distribution. P-values considered significant are shown in bold. Table reproduced
from [183].

Early Arterial Peak Arterial Equilibrium Peak Venous Late Venous p-value
FAST data set

False Positives [n=48] 3/48 (6%) 18/48 (38%) 25/48 (52%) 2/48 (4%) 0/48 (0%) p<0.001
False Positives on veins [n=26] 0/26 (0%) 11/26 (42%) 14/26 (54%) 1/26 (4%) 0/26 (0%) p<0.001

UKB data set
False Positives [n=44] 1/44 (2%) 6/44 (14%) 17/44 (39%) 12/44 (27%) 7/44 (16%) p<0.001

False Positives on veins [n=27] 1/27 (4%) 3/27 (11%) 10/27 (37%) 8/27 (30%) 4/27 (15%) p<0.001
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B.2 Exploring Detection Transformers for Medical
Object Detection

Table B.11: mean Average Precision at an IoU threshold of 0.1 for DETR models and
Retina U-Net across four data sets.

CADA KiTS19 LIDC RibFrac
DETR 0.874 0.875 0.522 0.763
Conditional DETR 0.887 0.899 0.565 0.777
DINO DETR 0.935 0.917 0.626 0.785
RetinaU-Net V1 0.923 0.916 0.605 0.766

Table B.12: mean Average Precision at an IoU threshold of 0.5 for DETR models and
Retina U-Net across four data sets.

CADA KiTS19 LIDC RibFrac
DETR 0.647 0.664 0.352 0.404
Conditional DETR 0.626 0.700 0.395 0.421
DINO DETR 0.874 0.791 0.560 0.466
RetinaU-Net V1 0.874 0.808 0.482 0.449

B.3 Self-Configuring Design of Medical Object
Detection Methods

B.3.1 Additional Results
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Figure B.1: Cross-validation performance on development pool. Shows the distribution of
the detection performance with the mAP metric at an IoU threshold of 0.1. Boot-
strapping with 1000 iterations was performed to generate the distribution. This
figure is adapted from [82].
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Figure B.2: Cross-validation performance on generalisation pool. Shows the distribution
of the detection performance with the mAP metric at an IoU threshold of 0.1. Boot-
strapping with 1000 iterations was performed to generate the distribution. This
figure is adapted from [82].
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D11: KiPA D12: MRA-A D13: CT-PC D14: DUKE D15: BraTS-M D16: CT-PaCS D17: MELA D18: VALDO-M D19: LNDb
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Figure B.3: Test set performance on generalisation pool. Shows the distribution of the
detection performance with themAPmetric at an IoU threshold of 0.1. Bootstrapping
with 1000 iterations was performed to generate the distribution. This figure is
adapted from [82].

D01: MSD-L D02: MSD-P D03: MSD-HV D04: MSD-C
Task

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AP
_I

oU
_0

.1
0

0.
81

80
84

0.
80

72
75

0.
71

17
1

0.
70

17
99

0.
78

77
71

0.
80

83
02

0.
69

34
1

0.
69

95
23

Ensembling NMS (ours)
Ensembling WBC

Figure B.4: Test set performance on development pool. Performance comparison between
NMS and WBC ensembling of models on four test sets of the development pool.
Detection performance is measured via the mAP metric at an IoU threshold of 0.1.
This figure is adapted from [82].
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B.3.2 Data Set Results

Table B.13: Cross-Validation detection performance on the MSD-L data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.589 0.491 0.330 0.426 0.324 0.233
nnUNet Plus 0.651 0.572 0.400 0.541 0.483 0.347

Anchor Single Stage
1STAGE-MIX 0.658 0.575 0.324 0.495 0.443 0.270
1STAGE-BOX 0.625 0.545 0.329 0.470 0.420 0.271

Anchor Two Stage
2STAGE-MIX 0.637 0.558 0.332 0.452 0.406 0.248
2STAGE-BOX 0.632 0.550 0.322 0.480 0.429 0.244

Set Prediction
SETPREDICT 0.681 0.587 0.327 0.515 0.453 0.271

Ensemble
nnDetection (ours) 0.704 0.604 0.342 0.539 0.473 0.289

Table B.14: Test set detection performance on the MSD-L data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-MIX,
SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Anchor Single Stage
1STAGE-MIX 0.787 0.700 0.475 0.688 0.620 0.447
1STAGE-BOX 0.770 0.691 0.453 0.667 0.609 0.423

Anchor Two Stage
2STAGE-MIX 0.776 0.701 0.532 0.675 0.616 0.481
2STAGE-BOX 0.779 0.708 0.484 0.682 0.632 0.454

Set Prediction
SETPREDICT 0.795 0.721 0.517 0.714 0.657 0.477

Ensemble
nnDetection (ours) 0.818 0.723 0.492 0.733 0.661 0.461
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Table B.15: Cross-Validation detection performance on the MSD-P data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.690 0.523 0.286 0.721 0.593 0.361
nnUNet Plus 0.730 0.574 0.359 0.768 0.626 0.428

Anchor Single Stage
1STAGE-MIX 0.784 0.622 0.341 0.816 0.665 0.426
1STAGE-BOX 0.764 0.614 0.350 0.808 0.654 0.427

Anchor Two Stage
2STAGE-MIX 0.788 0.610 0.333 0.823 0.677 0.398
2STAGE-BOX 0.820 0.610 0.304 0.845 0.672 0.367

Set Prediction
SETPREDICT 0.754 0.556 0.231 0.807 0.628 0.349

Ensemble
nnDetection (ours) 0.820 0.643 0.331 0.859 0.712 0.396

Table B.16: Test set detection performance on the MSD-P data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-MIX,
2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Anchor Single Stage
1STAGE-MIX 0.785 0.610 0.392 0.832 0.687 0.484
1STAGE-BOX 0.763 0.579 0.322 0.822 0.662 0.422

Anchor Two Stage
2STAGE-MIX 0.788 0.602 0.353 0.834 0.671 0.445
2STAGE-BOX 0.794 0.580 0.278 0.839 0.655 0.373

Set Prediction
SETPREDICT 0.807 0.588 0.309 0.849 0.662 0.415

Ensemble
nnDetection (ours) 0.807 0.614 0.356 0.859 0.686 0.455
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Table B.17: Cross-Validation detection performance on the MSD-HV data set. The best model
is highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.689 0.615 0.466 0.729 0.657 0.483
nnUNet Plus 0.750 0.705 0.592 0.758 0.716 0.609

Anchor Single Stage
1STAGE-MIX 0.716 0.655 0.428 0.725 0.670 0.479
1STAGE-BOX 0.718 0.669 0.405 0.732 0.688 0.450

Anchor Two Stage
2STAGE-MIX 0.725 0.643 0.360 0.742 0.676 0.405
2STAGE-BOX 0.733 0.633 0.357 0.749 0.661 0.400

Set Prediction
SETPREDICT 0.732 0.671 0.424 0.739 0.682 0.472

Ensemble
nnDetection (ours) 0.743 0.660 0.381 0.760 0.693 0.423

Table B.18: Test set detection performance on the MSD-HV data set. The best model is high-
lighted in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-
MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Anchor Single Stage
1STAGE-MIX 0.697 0.639 0.404 0.703 0.656 0.443
1STAGE-BOX 0.692 0.607 0.389 0.703 0.627 0.423

Anchor Two Stage
2STAGE-MIX 0.686 0.600 0.346 0.712 0.640 0.408
2STAGE-BOX 0.697 0.573 0.317 0.709 0.618 0.392

Set Prediction
SETPREDICT 0.683 0.604 0.405 0.700 0.636 0.451

Ensemble
nnDetection (ours) 0.712 0.610 0.383 0.730 0.653 0.445
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Table B.19: Cross-Validation detection performance on the MSD-C data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.486 0.475 0.371 0.532 0.516 0.416
nnUNet Plus 0.545 0.521 0.433 0.579 0.546 0.474

Anchor Single Stage
1STAGE-MIX 0.632 0.583 0.488 0.683 0.625 0.535
1STAGE-BOX 0.612 0.559 0.423 0.659 0.598 0.462

Anchor Two Stage
2STAGE-MIX 0.621 0.575 0.365 0.672 0.625 0.447
2STAGE-BOX 0.610 0.581 0.467 0.667 0.631 0.509

Set Prediction
SETPREDICT 0.580 0.543 0.464 0.655 0.614 0.518

Ensemble
nnDetection (ours) 0.665 0.628 0.412 0.722 0.684 0.504

Table B.20: Test set detection performance on theMSD-C data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-MIX,
2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Anchor Single Stage
1STAGE-MIX 0.719 0.577 0.445 0.744 0.605 0.492
1STAGE-BOX 0.722 0.581 0.431 0.756 0.632 0.474

Anchor Two Stage
2STAGE-MIX 0.669 0.535 0.349 0.733 0.605 0.436
2STAGE-BOX 0.712 0.561 0.415 0.759 0.624 0.455

Set Prediction
SETPREDICT 0.695 0.536 0.465 0.741 0.617 0.530

Ensemble
nnDetection (ours) 0.702 0.562 0.373 0.763 0.624 0.459
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Table B.21: Cross-Validation detection performance on the CADA data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.932 0.922 0.887 0.945 0.937 0.906
nnUNet Plus 0.956 0.956 0.903 0.961 0.961 0.921

Anchor Single Stage
1STAGE-MIX 0.961 0.960 0.893 0.970 0.969 0.901
1STAGE-BOX 0.942 0.925 0.892 0.948 0.935 0.900

Anchor Two Stage
2STAGE-MIX 0.944 0.943 0.914 0.952 0.952 0.922
2STAGE-BOX 0.945 0.936 0.902 0.958 0.953 0.921

Set Prediction
SETPREDICT 0.944 0.925 0.894 0.953 0.937 0.907

Ensemble
nnDetection (ours) 0.963 0.956 0.908 0.975 0.970 0.919

Table B.22: Cross-Validation detection performance on the RibFrac data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.658 0.560 0.402 0.533 0.344 0.218
nnUNet Plus 0.688 0.597 0.453 0.591 0.504 0.358

Anchor Single Stage
1STAGE-MIX 0.780 0.662 0.447 0.646 0.532 0.349
1STAGE-BOX 0.784 0.660 0.458 0.652 0.530 0.358

Anchor Two Stage
2STAGE-MIX 0.789 0.677 0.490 0.668 0.563 0.392
2STAGE-BOX 0.784 0.675 0.483 0.655 0.554 0.385

Set Prediction
SETPREDICT 0.793 0.664 0.483 0.666 0.544 0.382

Ensemble
nnDetection (ours) 0.795 0.668 0.484 0.666 0.545 0.383
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Table B.23: Cross-Validation detection performance on the KiTS21 data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.754 0.721 0.644 0.666 0.639 0.571
nnUNet Plus 0.816 0.790 0.699 0.792 0.768 0.681

Anchor Single Stage
1STAGE-MIX 0.806 0.773 0.631 0.749 0.722 0.595
1STAGE-BOX 0.804 0.772 0.627 0.749 0.721 0.589

Anchor Two Stage
2STAGE-MIX 0.818 0.782 0.631 0.758 0.731 0.602
2STAGE-BOX 0.803 0.763 0.626 0.758 0.724 0.594

Set Prediction
SETPREDICT 0.813 0.779 0.628 0.758 0.733 0.594

Ensemble
nnDetection (ours) 0.829 0.784 0.640 0.781 0.745 0.615

Table B.24: Cross-Validation detection performance on the PICAI data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.331 0.284 0.132 0.751 0.675 0.453
nnUNet Plus 0.378 0.338 0.185 0.769 0.706 0.487

Anchor Single Stage
1STAGE-MIX 0.463 0.397 0.188 0.789 0.693 0.423
1STAGE-BOX 0.460 0.389 0.193 0.780 0.671 0.409

Anchor Two Stage
2STAGE-MIX 0.398 0.342 0.170 0.692 0.618 0.382
2STAGE-BOX 0.438 0.345 0.156 0.760 0.617 0.377

Set Prediction
SETPREDICT 0.443 0.388 0.180 0.803 0.724 0.460

Ensemble
nnDetection (ours) 0.487 0.414 0.186 0.827 0.721 0.424
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Table B.25: Cross-Validation detection performance on the ADAM data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.616 0.545 0.356 0.631 0.566 0.363
nnUNet Plus 0.673 0.626 0.407 0.691 0.645 0.481

Anchor Single Stage
1STAGE-MIX 0.768 0.705 0.392 0.799 0.738 0.463
1STAGE-BOX 0.766 0.697 0.422 0.793 0.721 0.488

Anchor Two Stage
2STAGE-MIX 0.788 0.725 0.396 0.813 0.745 0.474
2STAGE-BOX 0.780 0.724 0.418 0.808 0.747 0.509

Set Prediction
SETPREDICT 0.734 0.662 0.387 0.762 0.696 0.465

Ensemble
nnDetection (ours) 0.799 0.737 0.388 0.825 0.765 0.477

Table B.26: Cross-Validation detection performance on the LIDC data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.470 0.462 0.417 0.432 0.424 0.386
nnUNet Plus 0.536 0.524 0.454 0.468 0.457 0.406

Anchor Single Stage
1STAGE-MIX 0.645 0.640 0.568 0.621 0.616 0.557
1STAGE-BOX 0.654 0.647 0.580 0.632 0.627 0.574

Anchor Two Stage
2STAGE-MIX 0.612 0.597 0.525 0.594 0.584 0.524
2STAGE-BOX 0.614 0.601 0.525 0.601 0.592 0.530

Set Prediction
SETPREDICT 0.639 0.631 0.564 0.630 0.623 0.566

Ensemble
nnDetection (ours) 0.650 0.644 0.573 0.636 0.630 0.573
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Table B.27: Cross-Validation detection performance on the KiPA data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.954 0.954 0.954 0.980 0.980 0.980
nnUNet Plus 0.971 0.971 0.971 0.980 0.980 0.980

Anchor Single Stage
1STAGE-MIX 0.964 0.946 0.939 0.983 0.963 0.954
1STAGE-BOX 0.965 0.960 0.946 0.974 0.966 0.954

Anchor Two Stage
2STAGE-MIX 0.979 0.979 0.944 0.989 0.989 0.949
2STAGE-BOX 0.985 0.984 0.952 0.994 0.994 0.960

Set Prediction
SETPREDICT 0.961 0.961 0.906 0.980 0.980 0.920

Ensemble
nnDetection (ours) 0.986 0.986 0.925 0.994 0.994 0.937

Table B.28: Test set detection performance on the KiPA data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 2STAGE-MIX,
SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.950 0.901 0.901 0.955 0.909 0.909
nnUNet Plus 0.950 0.950 0.950 0.955 0.955 0.955

Anchor Single Stage
1STAGE-MIX 0.940 0.939 0.906 0.948 0.942 0.916
1STAGE-BOX 0.932 0.924 0.893 0.942 0.935 0.909

Anchor Two Stage
2STAGE-MIX 0.942 0.942 0.896 0.948 0.948 0.903
2STAGE-BOX 0.948 0.947 0.900 0.955 0.955 0.909

Set Prediction
SETPREDICT 0.933 0.924 0.870 0.948 0.942 0.883

Ensemble
nnDetection (ours) 0.944 0.944 0.901 0.948 0.948 0.909
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Table B.29: Cross-Validation detection performance on the MRA-A data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-BOX, 2STAGE-BOX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.657 0.507 0.311 0.728 0.590 0.432
nnUNet Plus 0.733 0.626 0.351 0.777 0.690 0.469

Anchor Single Stage
1STAGE-MIX 0.793 0.660 0.374 0.840 0.719 0.462
1STAGE-BOX 0.778 0.655 0.336 0.834 0.712 0.430

Anchor Two Stage
2STAGE-MIX 0.788 0.670 0.366 0.827 0.720 0.485
2STAGE-BOX 0.795 0.679 0.372 0.844 0.725 0.478

Set Prediction
SETPREDICT 0.749 0.602 0.301 0.797 0.672 0.412

Ensemble
nnDetection (ours) 0.803 0.690 0.372 0.852 0.739 0.480

Table B.30: Test set detection performance on the MRA-A data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-BOX,
2STAGE-BOX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.737 0.594 0.342 0.758 0.606 0.394
nnUNet Plus 0.814 0.572 0.481 0.883 0.658 0.563

Anchor Single Stage
1STAGE-MIX 0.825 0.734 0.413 0.883 0.797 0.515
1STAGE-BOX 0.825 0.702 0.345 0.900 0.788 0.481

Anchor Two Stage
2STAGE-MIX 0.784 0.673 0.294 0.887 0.810 0.476
2STAGE-BOX 0.834 0.722 0.379 0.896 0.792 0.481

Set Prediction
SETPREDICT 0.755 0.676 0.258 0.848 0.775 0.420

Ensemble
nnDetection (ours) 0.828 0.711 0.366 0.896 0.788 0.455
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Table B.31: Cross-Validation detection performance on the CT-PC data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.417 0.342 0.225 0.445 0.339 0.255
nnUNet Plus 0.474 0.432 0.321 0.485 0.453 0.347

Anchor Single Stage
1STAGE-MIX 0.422 0.399 0.284 0.429 0.412 0.314
1STAGE-BOX 0.401 0.369 0.263 0.407 0.384 0.299

Anchor Two Stage
2STAGE-MIX 0.449 0.431 0.318 0.452 0.442 0.348
2STAGE-BOX 0.422 0.392 0.274 0.433 0.411 0.307

Set Prediction
SETPREDICT 0.438 0.410 0.309 0.441 0.418 0.340

Ensemble
nnDetection (ours) 0.450 0.433 0.331 0.455 0.444 0.358

Table B.32: Test set detection performance on the CT-PC data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 2STAGE-MIX,
SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.390 0.348 0.248 0.398 0.356 0.253
nnUNet Plus 0.464 0.433 0.347 0.476 0.448 0.360

Anchor Single Stage
1STAGE-MIX 0.435 0.410 0.315 0.428 0.407 0.328
1STAGE-BOX 0.420 0.397 0.326 0.409 0.394 0.335

Anchor Two Stage
2STAGE-MIX 0.450 0.426 0.336 0.440 0.422 0.340
2STAGE-BOX 0.440 0.424 0.327 0.429 0.418 0.334

Set Prediction
SETPREDICT 0.442 0.431 0.362 0.427 0.423 0.368

Ensemble
nnDetection (ours) 0.452 0.438 0.350 0.439 0.432 0.359
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Table B.33: Cross-Validation detection performance on the DUKE data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-BOX, 2STAGE-BOX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.738 0.520 0.235 0.809 0.611 0.329
nnUNet Plus 0.718 0.558 0.299 0.778 0.630 0.381

Anchor Single Stage
1STAGE-MIX 0.876 0.761 0.459 0.919 0.817 0.556
1STAGE-BOX 0.881 0.774 0.477 0.918 0.817 0.564

Anchor Two Stage
2STAGE-MIX 0.870 0.752 0.421 0.909 0.817 0.493
2STAGE-BOX 0.873 0.751 0.396 0.908 0.812 0.481

Set Prediction
SETPREDICT 0.864 0.759 0.456 0.901 0.814 0.554

Ensemble
nnDetection (ours) 0.894 0.764 0.406 0.931 0.827 0.494

Table B.34: Test set detection performance on the DUKE data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-BOX,
2STAGE-BOX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.695 0.471 0.223 0.770 0.559 0.318
nnUNet Plus 0.688 0.494 0.291 0.757 0.583 0.377

Anchor Single Stage
1STAGE-MIX 0.852 0.707 0.458 0.891 0.772 0.548
1STAGE-BOX 0.858 0.735 0.475 0.890 0.793 0.565

Anchor Two Stage
2STAGE-MIX 0.832 0.698 0.420 0.875 0.778 0.542
2STAGE-BOX 0.842 0.733 0.455 0.876 0.787 0.564

Set Prediction
SETPREDICT 0.842 0.715 0.487 0.889 0.771 0.572

Ensemble
nnDetection (ours) 0.853 0.730 0.451 0.890 0.777 0.551
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Table B.35: Cross-Validation detection performance on the BraTS-M data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.662 0.610 0.496 0.494 0.461 0.327
nnUNet Plus 0.764 0.717 0.573 0.680 0.629 0.481

Anchor Single Stage
1STAGE-MIX 0.837 0.807 0.615 0.731 0.701 0.515
1STAGE-BOX 0.833 0.795 0.608 0.731 0.696 0.481

Anchor Two Stage
2STAGE-MIX 0.849 0.817 0.640 0.747 0.718 0.454
2STAGE-BOX 0.849 0.820 0.636 0.739 0.711 0.449

Set Prediction
SETPREDICT 0.845 0.812 0.619 0.732 0.699 0.512

Ensemble
nnDetection (ours) 0.864 0.825 0.635 0.758 0.725 0.455

Table B.36: Test set detection performance on the BraTS-M data set. The best model is high-
lighted in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-
MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.641 0.598 0.497 0.554 0.454 0.325
nnUNet Plus 0.743 0.699 0.579 0.667 0.603 0.484

Anchor Single Stage
1STAGE-MIX 0.747 0.732 0.612 0.678 0.662 0.546
1STAGE-BOX 0.755 0.741 0.616 0.675 0.664 0.537

Anchor Two Stage
2STAGE-MIX 0.768 0.754 0.636 0.696 0.684 0.568
2STAGE-BOX 0.761 0.748 0.642 0.688 0.676 0.572

Set Prediction
SETPREDICT 0.761 0.746 0.616 0.682 0.668 0.541

Ensemble
nnDetection (ours) 0.781 0.761 0.632 0.702 0.685 0.568
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Table B.37: Cross-Validation detection performance on the CT-PaCS data set. The best model
is highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.294 0.232 0.151 0.595 0.517 0.405
nnUNet Plus 0.426 0.362 0.268 0.687 0.598 0.475

Anchor Single Stage
1STAGE-MIX 0.633 0.570 0.402 0.815 0.710 0.504
1STAGE-BOX 0.619 0.552 0.407 0.801 0.684 0.511

Anchor Two Stage
2STAGE-MIX 0.625 0.562 0.404 0.758 0.681 0.510
2STAGE-BOX 0.644 0.572 0.422 0.791 0.685 0.518

Set Prediction
SETPREDICT 0.548 0.475 0.365 0.754 0.654 0.506

Ensemble
nnDetection (ours) 0.648 0.577 0.414 0.804 0.702 0.529

Table B.38: Test set detection performance on the CT-PaCS data set. The best model is high-
lighted in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-
MIX, 2STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.461 0.322 0.194 0.772 0.637 0.421
nnUNet Plus 0.586 0.418 0.269 0.776 0.650 0.501

Anchor Single Stage
1STAGE-MIX 0.713 0.608 0.393 0.898 0.766 0.543
1STAGE-BOX 0.720 0.590 0.406 0.895 0.741 0.524

Anchor Two Stage
2STAGE-MIX 0.729 0.636 0.466 0.865 0.753 0.579
2STAGE-BOX 0.729 0.635 0.451 0.870 0.763 0.569

Set Prediction
SETPREDICT 0.629 0.513 0.390 0.816 0.706 0.570

Ensemble
nnDetection (ours) 0.726 0.630 0.459 0.880 0.761 0.566
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Table B.39: Cross-Validation detection performance on the MELA data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-BOX, 2STAGE-BOX. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.909 0.895 0.849 0.945 0.928 0.891
nnUNet Plus 0.912 0.901 0.865 0.944 0.930 0.897

Anchor Single Stage
1STAGE-MIX 0.964 0.959 0.877 0.982 0.976 0.925
1STAGE-BOX 0.967 0.957 0.897 0.981 0.973 0.930

Anchor Two Stage
2STAGE-MIX 0.967 0.958 0.886 0.983 0.975 0.924
2STAGE-BOX 0.967 0.956 0.891 0.984 0.974 0.926

Set Prediction
SETPREDICT 0.962 0.955 0.883 0.975 0.967 0.906

Ensemble
nnDetection (ours) 0.968 0.957 0.893 0.984 0.975 0.930

Table B.40: Test set detection performance on the MELA data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-BOX,
2STAGE-BOX. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.919 0.909 0.880 0.938 0.926 0.906
nnUNet Plus 0.911 0.903 0.882 0.938 0.930 0.909

Anchor Single Stage
1STAGE-MIX 0.974 0.967 0.863 0.987 0.981 0.917
1STAGE-BOX 0.976 0.973 0.886 0.983 0.979 0.918

Anchor Two Stage
2STAGE-MIX 0.977 0.971 0.899 0.981 0.975 0.914
2STAGE-BOX 0.980 0.955 0.890 0.984 0.964 0.910

Set Prediction
SETPREDICT 0.984 0.966 0.899 0.990 0.973 0.927

Ensemble
nnDetection (ours) 0.981 0.957 0.890 0.986 0.965 0.912
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Table B.41: Cross-Validation detection performance on the VALDO-M data set. The best model
is highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, 2STAGE-MIX. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.193 0.186 0.151 0.214 0.200 0.160
nnUNet Plus 0.305 0.292 0.248 0.331 0.318 0.261

Anchor Single Stage
1STAGE-MIX 0.357 0.312 0.063 0.366 0.337 0.107
1STAGE-BOX 0.292 0.239 0.041 0.317 0.274 0.093

Anchor Two Stage
2STAGE-MIX 0.365 0.323 0.075 0.373 0.337 0.121
2STAGE-BOX 0.359 0.317 0.050 0.370 0.334 0.096

Set Prediction
SETPREDICT 0.326 0.305 0.046 0.335 0.314 0.096

Ensemble
nnDetection (ours) 0.368 0.325 0.072 0.374 0.339 0.118

Table B.42: Test set detection performance on the VALDO-M data set. The best model is high-
lighted in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-
MIX, 2STAGE-MIX. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.246 0.238 0.166 0.247 0.240 0.172
nnUNet Plus 0.566 0.512 0.420 0.492 0.448 0.368

Anchor Single Stage
1STAGE-MIX 0.663 0.603 0.397 0.521 0.490 0.341
1STAGE-BOX 0.625 0.547 0.254 0.518 0.440 0.251

Anchor Two Stage
2STAGE-MIX 0.673 0.617 0.460 0.547 0.505 0.375
2STAGE-BOX 0.662 0.562 0.306 0.538 0.452 0.294

Set Prediction
SETPREDICT 0.631 0.611 0.262 0.504 0.500 0.257

Ensemble
nnDetection (ours) 0.653 0.595 0.426 0.526 0.489 0.361
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Table B.43: Cross-Validation detection performance on the LNDb data set. The best model is
highlighted in bold, the second best model is underlined. nnDetection ensemble:
1STAGE-MIX, SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.340 0.316 0.243 0.360 0.314 0.255
nnUNet Plus 0.399 0.359 0.299 0.393 0.364 0.315

Anchor Single Stage
1STAGE-MIX 0.516 0.447 0.316 0.473 0.420 0.333
1STAGE-BOX 0.508 0.446 0.321 0.468 0.418 0.337

Anchor Two Stage
2STAGE-MIX 0.514 0.448 0.341 0.473 0.427 0.351
2STAGE-BOX 0.500 0.444 0.328 0.463 0.424 0.342

Set Prediction
SETPREDICT 0.522 0.470 0.346 0.483 0.448 0.354

Ensemble
nnDetection (ours) 0.541 0.479 0.336 0.494 0.453 0.347

Table B.44: Test set detection performance on the LNDb data set. The best model is highlighted
in bold, the second best model is underlined. nnDetection ensemble: 1STAGE-MIX,
SETPREDICT. Table reproduced from [82].

Model AP FROC

IoU 0.10 IoU 0.30 IoU 0.50 IoU 0.10 IoU 0.30 IoU 0.50
Segmentation
nnUNet Basic 0.330 0.313 0.273 0.334 0.318 0.279
nnUNet Plus 0.368 0.355 0.287 0.365 0.355 0.300

Anchor Single Stage
1STAGE-MIX 0.520 0.472 0.341 0.467 0.437 0.337
1STAGE-BOX 0.517 0.470 0.349 0.464 0.436 0.341

Anchor Two Stage
2STAGE-MIX 0.516 0.475 0.376 0.462 0.438 0.364
2STAGE-BOX 0.516 0.478 0.371 0.451 0.430 0.353

Set Prediction
SETPREDICT 0.529 0.492 0.370 0.463 0.438 0.358

Ensemble
nnDetection (ours) 0.531 0.485 0.355 0.473 0.447 0.353

169



B Additional Results

Table B.45: Overview of LUNA16 results. Shows the FROC score and individual sensitivities
at the working points. ’SM’ indicates the reference to the method, and ’SR’ indicates
the reference to LUNA16 results. Table reproduced from [82].

Method SM SR Split 1/8 1/4 1/2 1 2 4 8 Score

Liao et al. (2019) [78] [70] 0.594 0.727 0.781 0.844 0.875 0.891 0.898 0.801
Harsono et al. (2022) [79] [70] 0.636 0.713 0.798 0.853 0.876 0.899 0.915 0.813
Dou et al. (2017) [65] [247] 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839
Tang et al. (2019) [77] [70] 0.652 0.768 0.839 0.875 0.911 0.929 0.938 0.844
Li et al. (2020) [72] [70] 0.739 0.803 0.858 0.888 0.907 0.916 0.920 0.862
Lu et al. (2023) [68] [68] 0.712 0.792 0.858 0.900 0.928 0.949 0.961 0.871
Mei et al. (2022) [70] [70] 0.712 0.802 0.865 0.901 0.937 0.946 0.955 0.874
Wang et al. (2018) [67] [247] 0.676 0.776 0.879 0.949 0.958 0.958 0.958 0.878
Song et al. (2020) [74] [74] 0.723 0.838 0.887 0.911 0.928 0.934 0.948 0.881
Gong et al. (2020) [174] [174] 0.713 0.801 0.867 0.917 0.950 0.962 0.971 0.883
Ding et al. (2017) [66] [247] 0.748 0.853 0.887 0.922 0.938 0.944 0.946 0.891
Luo et al. (2022) [69] [69] 0.743 0.829 0.889 0.922 0.939 0.958 0.964 0.892
Khosravan et al. (2018) [76] [247] 0.709 0.836 0.921 0.953 0.953 0.953 0.953 0.897
Gong et al. (2020) [174] [174] 0.784 0.847 0.906 0.938 0.950 0.955 0.961 0.906
Cao et al. (2020) [64] [64] 0.848 0.899 0.925 0.936 0.949 0.957 0.960 0.925
SETPREDICT 811 0.810 0.874 0.908 0.930 0.950 0.969 0.979 0.917
nnDetection (ours) 811 0.790 0.879 0.916 0.948 0.958 0.975 0.980 0.921
2STAGE-BOX 811 0.811 0.877 0.917 0.949 0.963 0.970 0.977 0.923
1STAGE-BOX 811 0.821 0.873 0.923 0.947 0.962 0.971 0.980 0.925
Zhu et al. (2018) [75] [247] 901 0.692 0.769 0.824 0.865 0.893 0.917 0.933 0.842
Liu et al. (2019) [247] [247] 901 0.848 0.876 0.905 0.933 0.943 0.957 0.970 0.919
1STAGE-BOX 901 0.824 0.889 0.923 0.945 0.966 0.978 0.985 0.930
2STAGE-BOX 901 0.828 0.895 0.929 0.952 0.965 0.978 0.987 0.934
nnDetection (ours) 901 0.831 0.901 0.933 0.954 0.972 0.980 0.987 0.937
SETPREDICT 901 0.844 0.898 0.933 0.951 0.967 0.979 0.986 0.937
Liu et al. (2019) [247] [247] 901 0.904 0.914 0.933 0.957 0.971 0.971 0.971 0.952
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Table B.46: Overview of PN9 results. Shows the FROC score and individual sensitivities at
the working points. ’SM’ indicates the reference to the method, and ’SR’ indicates
the reference to PN9 results. Table reproduced from [82].

Method SM SR 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Score

RetinaNet (2D) [35] [70] 0.084 0.130 0.201 0.291 0.404 0.525 0.654 0.327
Faster R-CNN (2D) [36] [70] 0.108 0.158 0.232 0.329 0.466 0.619 0.755 0.381
SSD512 (2D) [118] [70] 0.123 0.188 0.280 0.403 0.569 0.732 0.865 0.451
Leaky Noisy-OR [78] [70] 0.281 0.364 0.470 0.567 0.661 0.738 0.817 0.557
3D Faster R-CNN [36] [70] 0.276 0.366 0.468 0.580 0.700 0.800 0.883 0.582
I3DR-Net [79] [70] 0.240 0.344 0.468 0.600 0.729 0.836 0.896 0.588
NoduleNet [77] [70] 0.273 0.383 0.494 0.611 0.731 0.833 0.898 0.603
DeepLung [75] [70] 0.286 0.391 0.502 0.623 0.726 0.820 0.886 0.605
DeepSEED [72] [70] 0.292 0.406 0.511 0.622 0.738 0.832 0.897 0.614
SANet [70] [70] 0.381 0.450 0.545 0.645 0.753 0.839 0.900 0.645
LSSANet [71] [71] 0.516 0.516 0.582 0.669 0.773 0.853 0.899 0.687
1STAGE-BOX 0.394 0.502 0.615 0.728 0.827 0.897 0.942 0.701
2STAGE-BOX 0.394 0.510 0.626 0.726 0.826 0.892 0.935 0.701
SETPREDICT (ours 0.417 0.511 0.629 0.730 0.825 0.896 0.943 0.707
SETPREDICT 0.425 0.521 0.635 0.736 0.829 0.899 0.943 0.713
nnDetection (ours) 0.422 0.523 0.631 0.740 0.835 0.905 0.945 0.714

Table B.47: Overview of CTA-A internal test set results. Shows the FROC score and individ-
ual sensitivities at the working points. ’SM’ indicates the reference to the method,
and ’SR’ indicates the reference to CTA-A results. Table reproduced from [82].

Method SM SR 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Score

Xie et al. (2023) [219] [83] 0.706 0.754 0.817 0.849 0.913 0.929 0.929 0.842
Song et al. (2020) [74] [83] 0.723 0.812 0.901 0.911 0.941 0.941 0.941 0.881
Ceballos-Arroyo et al. (2024) [83] [83] 0.841 0.897 0.897 0.913 0.929 0.929 0.929 0.905
SETPREDICT 0.857 0.897 0.937 0.937 0.952 0.960 0.960 0.929
nnDetection (ours) 0.857 0.921 0.937 0.937 0.952 0.952 0.952 0.930
1STAGE-MIX 0.857 0.921 0.937 0.944 0.952 0.960 0.968 0.934
2STAGE-MIX 0.905 0.929 0.952 0.952 0.968 0.968 0.976 0.950

Table B.48: Overview of CTA-A external test set results. Shows the FROC score and individ-
ual sensitivities at the working points. ’SM’ indicates the reference to the method,
and ’SR’ indicates the reference to CTA-A results. Table reproduced from [82].

Method SM SR 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Score

Xie et al. (2023) [219] [83] 0.515 0.733 0.812 0.901 0.970 0.970 0.970 0.839
Song et al. (2020) [74] [83] 0.723 0.812 0.901 0.911 0.941 0.941 0.941 0.881
1STAGE-MIX 0.861 0.950 0.960 0.970 0.980 0.990 0.990 0.957
Ceballos-Arroyo et al. (2024) [83] [83] 0.861 0.960 0.970 0.970 0.980 0.990 0.990 0.960
SETPREDICT 0.941 0.960 0.960 0.960 0.960 0.980 0.980 0.963
2STAGE-MIX 0.921 0.931 0.970 0.980 0.980 0.980 0.980 0.963
nnDetection (ours) 0.921 0.970 0.980 0.980 0.980 0.980 0.980 0.970
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B.3.3 Data Set Information

Label Preparation

D05 [17], D06 [11, 12], D12 [18], D19 [207] provided instance segmentations and did not
undergo additional preparation steps.

D14 [25, 26], D17 [19], D20 [43], D21 [14] provided bounding box annotations and did not
undergo additional filtering steps. The boxes of D14 were converted to bounding box
like segmentations. The annotations of D17, D20 and D21 were converted to ellipsoid like
segmentations.

The semantic segmentation labels of D01 [16], D11 [199, 200, 201, 202] were processed via
connected component analysis to derive object level annotations. No further modifica-
tions were applied to the labels.

The semantic segmentation labels of D02 [16], D03 [16], D04 [16] were processed via
connected component analysis to derive object level annotations. The smallest and largest
instances were manually checked and obvious errors were corrected.

D07 [15] provided segmentations from mutiple raters for each instance. The majority
vote of the raters was used as ground truth object delineations. If voxels of neighboring
objects overlapped, the voxels were assigned to the closest object center.

Semantic segmentation labels of D08 [197, 198] were converted to instance segmentations
by connected component analysis via the official script.

D09 [44] underwent connected component analysis to convert semantic segmentations
into instance segmentations. Only untreated intracranial aneurysms were considered as
targets.

D10 [13] provides instance annotations from multiple readers. Only nodules annotated by
at least two readers were considered as correct. Nodules with a malignancy score greater
than three were considered malignant, the rest was considered benign. The detection
network was tasked to differentiate benign and malignant nodules. Instances which were
not automatically resolvable by pyLIDC [248] were manually resolved.

D13 [203] was processed via connected component analysis to derive object level annota-
tions. Instances with a volume below 10mm3 were discarded as outlined in the original
publication [203].

D15 [204, 205] underwent connected component analysis to convert semantic segmen-
tations into instance segmentations. The conversion protocol was adapted from the
object-level evaluation of the original mauscript [204, 205].

Semantic segmentation labels from D16 [206] were processed via connected component
analysis to derive object level annotations. Patients with PDAC and missing manual
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annotations were removed. All images from D02 were removed from the data set since
they are part of the development pool.

D18 [20, 21, 22, 23, 24] was processed via connected component analysis to convert
semantic segmentations into instance segmentations.

D22 [170, 83] was processed via connected component analysis to convert semantic
segmentations into instance segmentations. The additional file indicating the number of
objects per image was used to ensure the correct number of objects per image.

Configurations

Table B.49: Configuration of parameters for data set: MSD-L. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 1.00 x 0.76 x 0.76 2.00 x 1.52 x 1.52

Training
Patch Size 128 x 128 x 128 112 x 128 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 2.0, 5.0, 8.0
Ax1: 7.0, 9.0, 12.0
Ax2: 6.0, 8.0, 11.0

Ax0: 3.0, 5.0, 10.0
Ax1: 4.0, 6.0, 14.0
Ax2: 4.0, 6.0, 12.0

Estimated number of objects in patch 16 27
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Table B.50: Configuration of parameters for data set: MSD-P. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 2.50 x 0.80 x 0.80

Training
Patch Size 40 x 256 x 224

Blueprint Parameters

Downsampling strides
[1, 2, 2], [2, 2, 2], [2, 2, 2]
[2, 2, 2], [1, 2, 2], [1, 2, 1]

Convolutional kernels
[1, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 4.0, 6.0, 10.0
Ax1: 26.0, 15.0, 20.0
Ax2: 21.0, 16.0, 26.0

Estimated number of objects in patch 1
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Table B.51: Configuration of parameters for data set: MSD-HV. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 1.50 x 0.79 x 0.79 3.00 x 1.58 x 1.58

Training
Patch Size 64 x 224 x 192 64 x 192 x 192

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 5.0, 8.0, 14.0
Ax1: 9.0, 12.0, 16.0
Ax2: 9.0, 12.0, 15.0

Ax0: 3.0, 5.0, 8.0
Ax1: 6.0, 8.0, 11.0
Ax2: 6.0, 8.0, 11.0

Estimated number of objects in patch 4 5
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Table B.52: Configuration of parameters for data set: MSD-C. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 3.00 x 0.78 x 0.78

Training
Patch Size 64 x 192 x 192

Blueprint Parameters

Downsampling strides
[1, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]

Convolutional kernels
[1, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 2.0, 6.0, 4.0
Ax1: 13.0, 8.0, 18.0
Ax2: 12.0, 14.0, 19.0

Estimated number of objects in patch 1
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Table B.53: Configuration of parameters for data set: CADA. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 0.54 x 0.54 x 0.54

Training
Patch Size 128 x 160 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 5.0, 7.0, 16.0
Ax1: 5.0, 7.0, 15.0
Ax2: 5.0, 7.0, 16.0

Estimated number of objects in patch 2
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Table B.54: Configuration of parameters for data set: RibFrac. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.25 x 0.74 x 0.74

Training
Patch Size 96 x 160 x 160

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 5.0, 7.0, 9.0
Ax1: 9.0, 13.0, 19.0
Ax2: 8.0, 11.0, 16.0

Estimated number of objects in patch 8
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Table B.55: Configuration of parameters for data set: KiTS21. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 0.78 x 0.78 x 0.78 1.56 x 1.56 x 1.56

Training
Patch Size 160 x 128 x 128 160 x 128 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 7.0, 10.0, 13.0
Ax1: 6.0, 8.0, 11.0
Ax2: 6.0, 8.0, 11.0

Ax0: 4.0, 6.0, 19.0
Ax1: 4.0, 6.0, 18.0
Ax2: 4.0, 6.0, 18.0

Estimated number of objects in patch 6 6
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Table B.56: Configuration of parameters for data set: PICAI. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 3.00 x 0.50 x 0.50 6.00 x 1.00 x 1.00

Training
Patch Size 16 x 320 x 320 12 x 192 x 192

Blueprint Parameters

Downsampling strides
[1, 2, 2], [1, 2, 2], [2, 2, 2]
[2, 2, 2], [1, 2, 2], [1, 2, 2]

[1, 2, 2], [1, 2, 2], [2, 2, 2]
[1, 2, 2], [1, 2, 2]

Convolutional kernels
[1, 3, 3], [1, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3]

[1, 3, 3], [1, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 2.0, 3.0, 4.0
Ax1: 9.0, 12.0, 16.0
Ax2: 11.0, 15.0, 19.0

Ax0: 3.0, 2.0, 15.0
Ax1: 7.0, 10.0, 15.0
Ax2: 6.0, 10.0, 16.0

Estimated number of objects in patch 1 1
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Table B.57: Configuration of parameters for data set: ADAM. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 0.50 x 0.36 x 0.36

Training
Patch Size 56 x 224 x 224

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[1, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 6.0, 5.0, 8.0
Ax1: 8.0, 6.0, 11.0
Ax2: 6.0, 8.0, 12.0

Estimated number of objects in patch 2
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Table B.58: Configuration of parameters for data set: LIDC. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.38 x 0.70 x 0.70

Training
Patch Size 80 x 192 x 160

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 4.0, 6.0, 3.0
Ax1: 10.0, 8.0, 6.0
Ax2: 8.0, 6.0, 11.0

Estimated number of objects in patch 3
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Table B.59: Configuration of parameters for data set: KiPA. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 0.62 x 0.62 x 0.62 1.25 x 1.25 x 1.25

Training
Patch Size 160 x 128 x 128 112 x 80 x 80

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3]

First Anchor Level 2 1

Detector Parameters

Anchor sizes at first anchor level
Ax0: 10.0, 12.0, 17.0
Ax1: 12.0, 10.0, 17.0
Ax2: 10.0, 14.0, 16.0

Ax0: 5.0, 6.0, 17.0
Ax1: 6.0, 5.0, 15.0
Ax2: 5.0, 6.0, 15.0

Estimated number of objects in patch 1 1
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Table B.60: Configuration of parameters for data set: MRA-A. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 0.70 x 0.41 x 0.41

Training
Patch Size 64 x 224 x 192

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 3.0, 6.0, 10.0
Ax1: 5.0, 6.0, 16.0
Ax2: 5.0, 6.0, 16.0

Estimated number of objects in patch 2
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Table B.61: Configuration of parameters for data set: CT-PC. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.00 x 0.75 x 0.75

Training
Patch Size 128 x 128 x 160

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 6.0, 5.0, 8.0
Ax1: 5.0, 7.0, 9.0
Ax2: 5.0, 7.0, 10.0

Estimated number of objects in patch 6
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Table B.62: Configuration of parameters for data set: DUKE. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 1.00 x 0.70 x 0.70 2.00 x 1.41 x 1.41

Training
Patch Size 80 x 192 x 192 80 x 192 x 192

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 5.0, 8.0, 12.0
Ax1: 10.0, 13.0, 17.0
Ax2: 9.0, 12.0, 16.0

Ax0: 5.0, 7.0, 9.0
Ax1: 9.0, 12.0, 16.0
Ax2: 8.0, 14.0, 10.0

Estimated number of objects in patch 1 1
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Table B.63: Configuration of parameters for data set: BraTS-M. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.50 x 1.00 x 1.00

Training
Patch Size 80 x 160 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 3.0, 2.0, 14.0
Ax1: 3.0, 4.0, 5.0
Ax2: 3.0, 4.0, 23.0

Estimated number of objects in patch 28
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Table B.64: Configuration of parameters for data set: CT-PaCS. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].

Plan: D3V002 3d 3dlr1

Preprocessing
Target spacing (mm) 1.50 x 0.74 x 0.74 3.00 x 1.48 x 1.48

Training
Patch Size 80 x 160 x 160 80 x 160 x 160

Blueprint Parameters

Downsampling strides
[1, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]
[1, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]

Convolutional kernels
[1, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

[1, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 4.0, 6.0, 8.0
Ax1: 9.0, 12.0, 15.0
Ax2: 10.0, 13.0, 17.0

Ax0: 4.0, 2.0, 6.0
Ax1: 7.0, 9.0, 12.0
Ax2: 8.0, 10.0, 13.0

Estimated number of objects in patch 1 1
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Table B.65: Configuration of parameters for data set: MELA. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’
plan refers to the full-resolution data, while ’3dlr1’ refers to the low-resolution data.
Convolutional kernels and downsampling strides are sorted by their level. ’Ax[0-2]’
refer to different axes of the preprocessed image. Table reproduced from [82].
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B Additional Results

Table B.66: Configuration of parameters for data set: VALDO-M . The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 0.80 x 0.49 x 0.49

Training
Patch Size 80 x 192 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 7.0, 10.0, 15.0
Ax1: 4.0, 6.0, 8.0
Ax2: 5.0, 6.0, 8.0

Estimated number of objects in patch 5
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Table B.67: Configuration of parameters for data set: LNDb. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.00 x 0.64 x 0.64

Training
Patch Size 96 x 160 x 160

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 2.0, 4.0, 3.0
Ax1: 4.0, 5.0, 7.0
Ax2: 5.0, 7.0, 4.0

Estimated number of objects in patch 4

191



B Additional Results

Table B.68: Configuration of parameters for data set: LUNA16. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.25 x 0.70 x 0.70

Training
Patch Size 80 x 192 x 160

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 3.0, 8.0, 2.0
Ax1: 4.0, 5.0, 13.0
Ax2: 4.0, 5.0, 13.0

Estimated number of objects in patch 3
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Table B.69: Configuration of parameters for data set: PN9. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 1.00 x 1.00 x 1.00

Training
Patch Size 96 x 128 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [1, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 3.0, 4.0, 12.0
Ax1: 5.0, 6.0, 9.0
Ax2: 5.0, 6.0, 9.0

Estimated number of objects in patch 7

193



B Additional Results

Table B.70: Configuration of parameters for data set: CTA-A. The rows denote different
parameters of the plan, while different columns denote different plans. The ’3d’ plan
refers to the full-resolution data. Convolutional kernels and downsampling strides
are sorted by their level. ’Ax[0-2]’ refer to different axes of the preprocessed image.
Table reproduced from [82].

Plan: D3V002 3d

Preprocessing
Target spacing (mm) 0.40 x 0.46 x 0.46

Training
Patch Size 160 x 128 x 128

Blueprint Parameters

Downsampling strides
[2, 2, 2], [2, 2, 2], [2, 2, 2]

[2, 2, 2], [2, 2, 2]

Convolutional kernels
[3, 3, 3], [3, 3, 3], [3, 3, 3]
[3, 3, 3], [3, 3, 3], [3, 3, 3]

First Anchor Level 2

Detector Parameters

Anchor sizes at first anchor level
Ax0: 7.0, 11.0, 9.0
Ax1: 6.0, 8.0, 11.0
Ax2: 7.0, 9.0, 11.0

Estimated number of objects in patch 2
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