Generative Machine Learning for
Simulation-based Inference
in High Energy Physics

Dissertation

Nathan Hiitsch

Dissertation

submitted to the

Combined Faculty of Mathematics, Engineering and Natural Sciences
of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by
Nathan Hiitsch

born in Frankfurt am Main, Germany

Oral examination: 04.07.2025

Generative Machine Learning for
Simulation-based Inference
in High Energy Physics

Referees: Dr. Anja Butter
Prof. Dr. Ullrich Kothe

Abstract

With the upcoming High-Luminosity LHC the volume of collider data will increase
dramatically, leading to a new era of precision measurements. However, this also creates
computational and methodological challenges. Established simulation and inference
pipelines require significant upgrades to prevent them from becoming bottlenecks. This
thesis investigates how generative machine learning can address these challenges. First,
we investigate modern generative architectures, diffusion models and autoregressive
transformers, for fast and accurate LHC event generation. We find that they can
learn complex phase space distributions to percent-level precision, demonstrating their
potential as surrogate simulators. Second, we advance the use of machine learning for
the matrix element method, showing how generative networks can be used to encode
the transfer probability and keep the phase space integration tractable. Finally, we
explore high-dimensional, unbinned unfolding using generative models. We benchmark
the performance of a range of methods on the same datasets and contribute several
methodological advancements, including a transformer-enhanced diffusion model that
achieves state-of-the-art precision.

Zusammenfassung

Mit dem bevorstehenden High-Luminosity LHC (HL-LHC) wird das Volumen der Kolli-
sionsdaten drastisch zunehmen, was eine neue Ara von Prizisionsmessungen einliutet.
Dies bringt jedoch auch erhebliche ressourcentechnische und methodische Herausforderun-
gen mit sich. Die etablierten Simulations- und Inferenzstrategien miissen grundlegend
weiterentwickelt werden, um nicht zum Engpass zu werden. In dieser Arbeit wird un-
tersucht, wie generative Methoden des maschinellen Lernens zur Bewéltigung dieser
Herausforderungen beitragen kénnen. Zunéchst evaluieren wir moderne generative Ar-
chitekturen, Diffusionsmodelle und autoregressive Transformer, im Hinblick auf eine
schnelle und prézise Ereignissimulation am LHC. Wir zeigen, dass diese Modelle kom-
plexe Phasenraumverteilungen mit einer Genauigkeit auf Prozentniveau erlernen kénnen
und damit als Ersatz-Simulatoren grofles Potenzial besitzen. Im zweiten Teil erweitern wir
den Einsatz von maschinellem Lernen fir die Matrixelementmethode, indem wir zeigen,
wie generative Netzwerke sowohl die Transferwahrscheinlichkeit modellieren als auch die
Integration iiber den Phasenraum effizient gestalten kénnen. Zuletzt widmen wir uns dem
ungebinnten, hoch-dimensionalen Unfolding mittels generativer Modelle. Wir vergleichen
die Leistung verschiedener Methoden auf denselben Datensédtzen und leisten mehrere
methodische Beitrdge, darunter ein Diffusionsmodell mit Transformer-Architektur, das
state-of-the-art Prézision erreicht.

Contents

Preface
1 Introduction
2 LHC physics

2.1 Collider physics
2.1.1 Crosssections
2.1.2 Parton distribution functions

2.2 The LHC simulation chain,
2.2.1 Hard-scattering event generation
2.2.2 Parton showering L
2.2.3 Hadronizationo
2.2.4 Detector effects

2.3 Imference in LHC physics oo
2.3.1 Reconstruction Lo
2.3.2 Observables
2.3.3 Unfolding

Machine Learning

3.1 Introduction L e

3.2 Learning tasks
3.2.1 Classification e
3.22 Regression. e
3.2.3 Generation and density estimation

3.3 Simulation-based inference o 0oL

Precision event generation with diffusion models and transformers

4.1 Novel generative networks oL
4.1.1 Denoising Diffusion Probabilistic Model
4.1.2 Conditional Flow Matching
4.1.3 Autoregressive Transformer

4.2 Toy models and Bayesian networks L.

4.3 LHC events e

4.4 Quantitative evaluation of generators

4.5 Outlook e

Precision-Machine Learning for the Matrix Element Method

5.1 ML-matrix element method oo

5.2 Two-network baseline L oL

5.3 Acceptance classifier L

5.4 Transfer diffusion

5.5 Combinatorics transformer

5.6 Outlook e
5.7 Appendix
6 The Landscape of Unfolding with Machine Learning
6.1 ML-Unfolding
6.1.1 Reweighting: OmniFold and bOmnifold
6.1.2 Mapping distributions: Schrodinger Bridge and Direct Diffusion .
6.1.3 Generative unfolding
6.2 Detector unfolding: Z-+jets
6.2.1 Data and preprocessingo
6.2.2 Reweightingo
6.2.3 Mapping distributions oo oo
6.2.4 Generative unfoldingo
6.2.5 Learned event migration oL
6.2.6 Classifier check
6.3 Unfolding to parton level: top pairs.
6.3.1 Data e
6.3.2 Generative unfolding L.
6.3.3 Generative unfolding using physics
6.4 Outlook e
7 Generative Unfolding with Distribution Mapping
7.1 Distribution Mapping
7.1.1 Distribution tonoise Lo
7.1.2 Distribution to distributiono
7.1.3 Conditional distribution mapping
7.1.4 Unfolding
7.2 Gaussian Example o0 L
7.3 Unfolding Jet Substructure Observables
7.3.1 Unfolded distributions
7.3.2 Learned Mapping
7.3.3 Classifiertest e
7.4 Unfolding Substructure and Kinematic Properties.
741 New Z+42jetsdataset. L.
7.4.2 Unfolded distributions
7.5 Conclusion e
8 Summary and Outlook
A Hyperparameters
A1 Networks from Chapter 4
A.2 Networks from Chapter 5
A.3 Networks from Chapter 6
A4 Networks from Chapter 7,
Acknowledgment
Bibliography

ii

87
88
89
89
93
99
99
100
102
104
105
105
109
109
109
111
114

115
116
116
119
123
125
126
127
128
129
131
133
133
134
135

137

139
139
141
143
145

147

149

Preface

The research presented in this thesis was conducted at the Institute for Theoretical
Physics at Heidelberg University from September 2022 to April 2025. The contents of
Chapters 4 to 7 are based on work in collaboration with other researchers and have been
previously published as

[1] Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn,
Peter Sorrenson, Jonas Spinner
Jet Diffusion versus JetGPT — Modern Networks for the LHC
SciPost Phys. Core 8, 026 (2025) 078, arXiv:2305.10475 [hep-ph]

[2] Theo Heimel, Nathan Huetsch, Ramon Winterhalder, Tilman Plehn, Anja Butter
Precision-Machine Learning for the Matrixz Element Method
SciPost Phys. 17, 129 (2024), arXiv:2310.07752 [hep-ph]

[3] N. Huetsch et al
The landscape of unfolding with machine learning
SciPost Phys. 18, 070 (2025), arXiv:2404.18807 [hep-ph]

[4] Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni,
Benjamin Nachman, Sofia Palacios Schweitzer, Tilman Plehn
Generative Unfolding with Distribution Mapping
Submitted to SciPost Phys., arXiv:2411.02495 [hep-ph]

Additionally, the author was involved in the following publications during this period,

[5] Theo Heimel, Nathan Huetsch, Fabio Maltoni, Olivier Mattelaer,
Tilman Plehn, Ramon Winterhalder
The MadNIS Reloaded
SciPost Phys. 17, 023 (2024), arXiv:2311.01548 [hep-ph]

Finally, the author is involved in ongoing projects that have not been ready for publication
at the time of writing this thesis.

iii

http://arxiv.org/abs/2305.10475
http://arxiv.org/abs/2310.07752
http://arxiv.org/abs/2404.18807
http://arxiv.org/abs/2411.02495
http://arxiv.org/abs/2311.01548

Chapter

Introduction

The Standard Model (SM) of particle physics [6-12] is one of the most successful scientific
theories ever developed. It provides a comprehensive mathematical framework that
describes all fundamental particles and unifies the description of three out of the four
known fundamental interactions. Its predictions have been confirmed with extraordinary
precision by countless experiments over more than five decades, through data collected
at over a dozen particle colliders. However, despite its remarkable success, the Standard
Model leaves some fundamental questions unanswered. The nature of dark matter [13,14]
is yet to be understood, the same is true for the origin of neutrino masses [15,16], and
the matter-antimatter asymmetry of the universe [17,18]. Finally, a full unified theory
would also have to account for gravity.

The Large Hadron Collider (LHC), the largest machine ever built by humanity, was
constructed to explore these open questions, providing unprecedented energy scales.
Its first and foremost task, finding experimental evidence of the Higgs boson [19], was
fulfilled in 2012 [20,21]. This was a tremendous achievement, it confirmed the electroweak
symmetry breaking mechanism and thereby completed the Standard Model. However,
by now this was more than a decade ago, and despite countless searches across a vast
parameter and model space, no clear signs of new physics beyond the Higgs boson have
been found.

With the upcoming High-Luminosity LHC (HL-LHC), particle physics is entering a new
era characterized by an enormous increase in data volume. This big-data regime will
enable an unprecedented level of precision measurements and significantly improve the
sensitivity to potential new physics signals. However, established methods and tools
are increasingly inadequate for handling such large-scale, complex datasets. The cost of
the necessary simulations alone is projected to grow beyond all available computational
resources, indicating that significant research efforts are required to prevent this from
becoming a major bottleneck [22].

The traditional statistical tools used in high energy physics are often designed to test
specific theory hypotheses or search for known signatures, such as the Higgs resonance.
The future of LHC physics however lies in precision searches for subtle deviations
from Standard Model predictions, if possible without strong prior assumptions about
how these deviations look. Searching for unknown signals, possibly hidden in high-
dimensional correlations, requires new inference techniques capable of extracting all
available information from the data [23].

While the most visible examples of the deep learning revolution of the last decade are
image and language generation, it has by now shown great potential to transform the
sciences as well [24]. In particular generative machine learning models promise not just

1 Introduction

minor upgrades in existing workflows, but fundamentally new approaches to statistical
inference [25,26]. These models can learn complex, high-dimensional densities to percent-
level precision, which enables scientists to forego simplifications and approximations that
were necessary in the past. In particular sciences that rely on simulations are a natural fit
for these new tools, since they bring both intractable likelihoods that need to be learned,
and access to large and clean datasets [24]. For LHC physics, the prime example of a
simulation-based science, this transformation comes just at the right time [27-29].

A major motivation for the use of generative machine learning in particle physics is
preventing the cost of the simulation chain [30-36] from becoming a bottleneck in the
high-luminosity era. Generative neural networks, such as normalizing flows [37,38] and
GANSs [39], have successfully been used to learn complex phase space densities [40-49],
demonstrating their capability as surrogate simulators. However, these models have
not quite reached the required level of precision yet, in particular in modeling complex
phase space correlations. In Chapter 4 of this thesis, we systematically study three
modern generative architectures, two diffusion models [50,51] and an autoregressive
transformer [52]. We introduce the underlying mathematical frameworks in detail and,
for each of the three models, develop Bayesian neural network versions to quantify
uncertainties. Using toy models we carefully examine the learning patterns of the
networks and finally we benchmark their performance on a dataset of Z+jets events.
This work was the first use of Conditional Flow Matching (CFM) in a particle physics
application, it has since become the leading generative model in the field.

Beyond simulation, generative machine learning enables new approaches to inference [24,
27]. Instead of using off-the-shelf techniques from the machine learning literature, these
new methods should be developed with the specific challenges of LHC physics in mind.
One example is the matrix element method (MEM) [53,54], a classical analysis technique
that leverages the analytical knowledge of the hard-scattering differential cross section.
The intractability of the forward transfer density, together with the computational cost
of the parton-level phase space integration have severely restricted the use of the MEM
in the past. In chapter 5 we present a new ML-based framework for the MEM, that
overcomes these limitations. Building on prior work [55,56], we extend the setup to three
networks, one density estimator for the transfer function, a second density estimator that
serves as a neural importance sampler to keep the integration tractable, and a classifier
that corrects for efficiency effects. For the challenging transfer function, we demonstrate
how new generative networks building on CFMs and transformers can sort out the
challenging jet combinatorics and learn the density to percent-level precision. Using a
measurement of the CP-violating phase of the top Yukawa coupling as a benchmark, we
demonstrate that the method can correctly infer the theory parameter with as little as
400 measured events.

Unfolding refers to the task of statistically inverting parts of the LHC simulation chain.
If done well, it allows to propagate measured distributions up the chain, to be compared
to theoretical predictions at an earlier stage [57-60]. Traditional unfolding algorithms
however are restricted to low-dimensional, binned observables, severely limiting their
usability. Generative models enable full-dimensional, unbinned unfolding [61-66], funda-
mentally transforming how differential cross sections can be measured and analyzed. In
Chapters 6 and 7, we present original research that builds upon prior work on generative
unfolding. We make progress on both the conceptual and ML-technical sides, taking a
significant step towards applicability in real experiments.

In Chapter 6, we extensively benchmark a wide array of modern MIL-based unfolding
methods, for the first time systematically evaluating their performance on the same

1 Introduction

datasets. We further propose a new transformer-based CFM model and demonstrate its
superior performance. This setup, for the first time, allows to unfold the high-dimensional,
multi-resonant tt-phase space to percent-level precision.

Chapter 7 presents research on how distribution mapping methods can be used for gener-
ative unfolding [61,67-69]. Established generative unfolding networks learn a mapping
between a Gaussian latent space and the target unfolded phase space, conditioned on the
reconstruction-level measurement. Distribution mapping networks however learn a direct
mapping from the reconstruction-level distribution to the unfolded distribution. While
conceptually appealing, this approach suffers from the fact that these mappings are only
meaningful at distribution level, but do not preserve the event-wise conditional distribu-
tions. We explore the mathematical formulation of distribution mapping in detail and
derive a modification that forces the network to preserve the correct single-event posterior
distributions. Finally, using a newly simulated Z+2 jets dataset that mimics a recent
ATLAS analysis [29], we showcase that this modification also increases the precision,
bringing distribution mapping to a similar level of performance as the state-of-the-art
CFM-based unfolding.

This thesis is structured as follows. Chapter 2 introduces the fundamentals of LHC
physics relevant to this research. Chapter 3 provides an introduction to machine learning,
focusing on the aspects and methods most relevant for particle physics. Chapters 4
discusses research on how diffusion models and autoregressive transformers can be used
as surrogate simulators for the LHC simulation chain. Chapter 5 presents research on
generative machine learning methods for the matrix element method. Chapters 6 and 7
focus on generative machine learning techniques for unbinned, full-dimensional unfolding,
including thorough benchmarking and methodological advancements. Finally, Chapter 8
provides a summary and outlook.

Chapter

LHC physics

The Standard Model (SM) of particle physics [6-12] is a unified description of the
known elementary particles and their interactions via the strong, electromagnetic, and
weak forces. Mathematically it is formulated as a quantum field theory with the gauge
symmetry group

SU(3)C X SU(Q)L X U(l)y .

Here SU(3)¢ governs the strong interaction (Quantum Chromodynamics) and SU(2)r, x
U(1)y describes the unified electroweak interaction. In the electroweak sector, the
symmetry is spontaneously broken by the Higgs mechanism [19], which gives masses to
the W and Z bosons.

The SM defines two classes of particles. The first are fermions, Spin—% particles that
constitute matter. Fermions are divided into quarks and leptons. Quarks carry both
color and electroweak charge and interact via the strong, weak and electromagnetic forces.
Leptons are color-neutral and can be sub-divided into charged leptons which interact via
the weak and electromagnetic forces, and neutrinos, which are electrically neutral and
interact only via the weak force. All fermions come in three generations with increasing
masses.

The second class of particles in the Standard Model are bosons, integer spin particles
that mediate interactions. The spin-1 gauge bosons are the force carriers, eight gluons
for the strong interaction, the photon for the electromagnetic interaction, and the W+
and Z bosons for the weak interaction. Finally the spin-0 Higgs boson is responsible for
electroweak symmetry breaking and provides masses to the W and Z bosons as well as
to fermions through the Higgs mechanism. The building blocks of the Standard Model
are shown in Fig. 2.1.

A compact representation of the Standard Model is given by its Lagrangian,

1 a a pv 1 7 (Y 1 v s 7
Lon = =G G = JWi, W — B BY + 4 iy Dy + Dol = V(6) =y o0,

where GY,,,, WZW, and B, are the field strength tensors corresponding to the strong,
weak, and hypercharge gauge fields, respectively. The fermion fields are denoted by v,
and ¢ is the Higgs doublet. The covariant derivative D, encodes the gauge interactions.
The Higgs potential V(¢) induces electroweak symmetry breaking, giving mass to the
weak gauge bosons. The Yukawa term v ¢ describes interactions between the Higgs
field and the fermions and is responsible for generating their masses after symmetry
breaking.

The Standard Model is an immensely successful theory of fundamental interactions.
Developed half a century ago, it has been rigorously tested for decades at numerous

2 LHC physics

three generations of matter interactions / forces
(fermions) (bosons)

mass [~22MeV Jf~13Gev)[~173Gev) [~ 125GeV
charge | +2/3 +2/3 +2/3 0
spin | 1/2 1/ 1/ 0 H
up charm top Higgs
A\ J) y y
UV (CTo7mey Y(=oomev) [(~22Gev)
X ~1/3)
Qﬁ 1/2 1/2
<
=
down strange bottom hoton
-
L) J)
‘~0511MeV |[~106MeV |[~1777Gev |[~80.4GeV N
1 -1 -1 +1
)
wnmz
electron muon tau W boson |~ ©
m . VA" J m w
2 (< 10ev J(<o01rev |[<182Mev |[~912Gev 8
Olo 0 0 0 Ll o
|_ 1)) 1 @) o
= -
a v
Ll electron muon tau Z boson w
.| neutrino || neutrino | neutrino | o>

Figure 2.1: The Standard Model of particle physics

collider experiments—from early machines like SLAC and LEP to modern hadron colliders
such as the Tevatron and the Large Hadron Collider (LHC). Its predictions have remained
accurate across many orders of magnitude in energy. This success culminated in the
discovery of the Higgs boson in 2012 at the LHC [20, 21], completing the particle content
of the Standard Model and confirming the mechanism of electroweak symmetry breaking.

Nevertheless the Standard Model has well-known shortcomings. It successfully unifies
three out of the four known fundamental interactions, but does not include gravity. It
offers no viable candidate for dark matter, and it does not account for the small but
non-zero neutrino masses inferred from oscillation experiments. Furthermore, it does not
explain the observed matter—antimatter asymmetry in the universe.

These shortcomings motivate the search for physics beyond the Standard Model. While
direct searches for new particles have historically been the dominant approach in particle
colliders experiments, increasing emphasis is now placed on precision measurements of
known processes. In this context, the Standard Model serves as a robust and indispensable
foundation. It defines the baseline against which deviations are measured, and provides
the theoretical framework for the simulation and interpretation of LHC data, as discussed
in the following sections.

In the rest of this chapter, we briefly review the key ingredients of LHC physics. We
begin with a brief overview of collider physics in Sec. 2.1, followed by a description of the
LHC simulation chain in Sec. 2.2. These sections are based on Refs. [70-72]. Finally, we
discuss traditional approaches to inference in LHC physics in Sec. 2.3.

9Figure taken from https://tikz.net/sm_particles/.

https://tikz.net/sm_particles/

2 LHC physics

2.1 Collider physics

Collider experiments, such as those conducted at the Large Hadron Collider (LHC) in
Geneva, probe our understanding of fundamental interactions by colliding particles at up
to 13.6 TeV center-of-mass energy. The primary objective is to find deviations from the
Standard Model that may indicate new physics. This requires a principled framework
to translate the abstract Standard Model Lagrangian into measurable predictions. The
central measurable quantities in collider physics are cross sections, a measure for the
likelihood of specific particle interactions occurring at a given energy.

2.1.1 Cross sections

The cross section o quantifies the probability that a specific scattering process will occur,
normalized by flux. It can be expressed differentially in terms of the final-state particle
momenta:

1 2
o= — D, , 2.1
d F]./\/l] d (2.1)

where |M|? is the squared scattering amplitude summed over initial and final spins
and colors, F' represents the incoming particle flux factor, and d®,, is the differential
n-particle phase-space element given by:

d®,, = (2r)*™ (pm -3 p¢> - (2.2)
= (27T)32El

=1

Here, p; and FE; are the three-momenta and energies of the final-state particles, and p;,
is the total initial four-momentum. Integrating over the full final-state phase space yields
the total cross section:

_ (L
a—/F\/\/l| dd,, . (2.3)

The connection between the theory Lagrangian and the measurable cross sections is in
the squared matrix element |M|?, which encodes the transition probability from a given
initial state into a given final state under the theory. It is calculated using perturbation
theory, which expands scattering amplitudes in powers of the coupling constants defined
by the Lagrangian. Interactions described by the Standard Model Lagrangian can be
translated into scattering amplitudes via Feynman diagrams, which graphically represent
particle interactions at each order in perturbation theory. Squaring and summing these
amplitudes over spins and colors yields the matrix element |M|?.

Theoretical predictions of measurable cross sections typically start from calculations of
partonic cross sections. Partonic cross sections describe fundamental scattering processes
involving quarks and gluons, computed from perturbative QCD. They explicitly depend
on the partonic center-of-mass energy § and momentum transfer Q2. The simplest
partonic cross section for a 2 — 2 scattering process (partons a, b into final-state partons
¢,d) at leading-order perturbation theory is:

. . 1
Uab—)cd(s) = W / |-/\/lab—>cd|2 dt , (24)

where t is a Mandelstam variable defined as t = (p, — p.)?, and the integration is
performed over the allowed range of t.

2 LHC physics

Next-to-leading-order (NLO) and higher-order corrections involve additional loop dia-
grams and real emission processes. Including such corrections enhances the accuracy of
predictions at the cost of significantly increasing computational complexity and intro-
ducing additional complications such as infrared and collinear divergences. These are
handled using techniques like dimensional regularization and subtraction schemes.

The LHC is a proton-proton collider. The composite nature of the colliding protons
complicates the calculation of measurable cross sections one step further. Unlike electron-
positron colliders, where initial states are well-defined elementary particles, protons
are bound states composed of quarks and gluons. The precise energy and identity of
the interacting partons within the proton are not known. This is addressed via the
introduction of parton distribution functions (PDFs), which are the subject of the next
section.

2.1.2 Parton distribution functions

Parton distribution functions f;(z, Q) quantify the probability of finding a particular
type ¢ of parton (quark or gluon) inside the proton, carrying a specific fraction x of the
proton’s total momentum at a given energy resolution scale Q2. They are normalized as

1
Z/O dz = fi(z,Q%) = 1. (2.5)

The factorization theorem of QCD allows to separate short-distance physics, the per-
turbatively calculable partonic cross sections, from the non-perturbative, long-distance
proton structure encoded in PDFs. Mathematically, this is expressed as:

1
oppx (5,Q%) = Z/o dzydzy fi(z1,Q°) fi(z2, Q%) 6ij-x(3,Q%) (2.6)
i,J

where fi(z,Q?) denotes the PDF for parton 4, and 0ij—x represents the partonic cross
section calculable using perturbative QCD.

The evolution of the PDFs with the energy scale Q? can be calculated from first-principle
QCD:

2
@ paubitr @)= "G5 [R (@) 5@ @)

this is called the DOkShitZeI”*Gl"ibOV*LipatOV*AltaI“eHi*PaI”iSi (DGLAP) equations [73-75].
Here a4(Q?) is the scale-dependent strong coupling and P;; are universal splitting
kernels [73], which describe how partons radiate other partons. While the scaling of the
PDFs with the energy scale can be computed, the PDFs themselves cannot due to their
non-perturbative nature. Instead, PDFs are extracted from global fits to experimental
data, including measurements across a wide range of energies and kinematic regimes.
The procedure involves parametrizing the PDFs at a chosen input scale and evolving
them via the DGLAP equations, adjusting the parameters to best reproduce the observed
cross sections. Precise fits of PDFs with faithful uncertainty quantification are an
essential ingredient for precision measurements at the LHC. The NNPDF collaboration
has successfully used neural networks for this task since 2009 [76].

2 LHC physics

Reco
s
9
R — R —— —_— —_— —_— ‘Z
o
3

Figure 2.2: The LHC simulation chain. Figure adapted from Ref. [26]

2.2 The LHC simulation chain

In the previous sections, we introduced cross sections as the central theoretical quantities
for collider physics. These can be calculated from the Standard Model Lagrangian using
perturbation theory and parton distribution functions, yielding predictions for partonic
scattering processes. However, parton-level cross sections are not directly accessible
in experiments. Most of the particles produced in the hard scattering decay almost
immediately, their lifetime is many orders of magnitudes below what would be necessary to
reach the detector. This is especially true for the particles that are of greatest theoretical
interest, such as the Higgs boson or the top quark. What is actually observed at the LHC
are tracks in the tracking detectors and energy depositions in the calorimeters, resulting
from the stable or long-lived decay and shower products of these short-lived particles.

This motivates the need for detailed simulations of the full collision process. The observ-
able final state is the result of a complex sequence of physical processes, from the initial
partonic interaction over showering and hadronization to the final interaction of stable
particles with the detector. Each of these steps involves intrinsic quantum or statistical
uncertainty — from the probabilistic branching of parton showers to the non-deterministic
response of the detector. Even if every stage could be described analytically, which is
not the case, the sheer number of possible configurations and stochastic interactions
renders such a calculation intractable. High-precision simulations are therefore essential:
they generate synthetic collider events that encode both the underlying physics and the
practical limitations of the measurement process. These simulations form the foundation
for interpreting experimental data, enabling both precision tests of the Standard Model
and searches for new physics.

Simulating LHC events involves a chain of steps known as the LHC simulation chain, which
can be roughly divided into four distinct steps as sketched in Fig. 2.2. It begins with the
generation of the hard scattering process from a theory Lagrangian and proceeds through
parton showering, hadronization, and detector simulation. Finally detector readouts are
interpreted in the form of reconstructed particle kinematics. While simulations follow
the forward chain from theory to observable events, data analysis conceptually follows
the inverse direction, aiming to extract information about the underlying particle-level
processes from measured data.

In the remainder of this section, we briefly review each step of the simulation chain.
We begin with the generation of the hard-scattering event generation, then describe the
modeling of QCD radiation through parton showers, the non-perturbative process of
hadronization, and finally the simulation of the detector response.

2 LHC physics

2.2.1 Hard-scattering event generation

The hard-scattering process is where the short-distance partonic interactions take place.
The underlying theory enters here directly in the form of the matrix elements, as discussed
in Sec. 2.1. Event generators utilize perturbative calculations from the theory Lagrangian
at a given order. Calculating cross sections then requires integrating the matrix elements
over the high-dimensional phase space. Aside from a few textbook examples solving these
integrals analytically is infeasible and Monte Carlo methods are employed to evaluate
the integrals numerically .

A first, naive implementation of Monte Carlo integration approximates the phase space
integral defined in Eq. (2.3) by uniformly sampling N points z; from the phase space:

S
I

v
N; f|M(xi)’2 ; (2.8)

where V' denotes the total phase-space volume. While this estimator is unbiased, its
statistical variance is given by

V21

Var[6] = — N 72

Var(|M|?) . (2.9)
This variance is typically very large because the integrand |M|? often features sharply
peaked structures localized in small regions of the phase space. As a result, most
uniformly sampled points contribute negligibly to the integral, leading to prohibitively
slow convergence. To alleviate this issue, phase space generators employ importance
sampling [77]. Instead of sampling points uniformly from phase space, one samples
according to a proposal distribution g(x). The integral estimator then takes the form

o)
||

N 2
M(x;
E ‘Fq)) , (2.10)

where the points z; are drawn from ¢(x). Under mild conditions importance sampling
leaves the expectation value of the estimator unchanged, but the variance becomes

2
Var[6] = % F2V <|/\;l|) . (2.11)

Choosing a proposal distribution ¢(z) that closely follows the shape of the integrand
|M(z)|? minimizes the variance and ensures convergence for a reasonable number of
samples. Finding such a distribution is a hard problem in itself, the most common
algorithm is VEGAS [78-81]. Recent work encoding the proposal distribution in an
invertible neural networks shows very promising results [5,82,83].

A further advantage of the Monte Carlo approach is that it naturally includes event
generation. Each sampled point in phase space represents a possible collision event with
a weight given by
M)
' q(xi)
Since nature produces unweighted measurements, experimental analyses typically desire
unweighted events, each representing equally probable outcomes of the collision. The
most straight forward way of performing such an unweighting is by rejection sampling.

(2.12)

10

2 LHC physics

Each event is accepted with probability

w;
pacc(xi) = , (2.13)

wmax

where wpax is the largest weight in the event set. Modern event generators typically
employ slightly more complicated unweighting algorithms to avoid very low unweighting
efficiencies due to single outlier events with large weights. After unweighting, the surviving
set of unweighted events follows the probability distribution derived from the underlying
scattering amplitude.

The most commonly used general-purpose event generators at the LHC are Sherpa [31]
and MadGraph5_aMC@NLO [32]. Given user-specified initial and final states these generators
automate the entire process; they generate the relevant Feynman diagrams, compute
the matrix elements, perform the Monte Carlo integration, and generate weighted or
unweighted parton-level events. In experimental analyses, it is common practice to
simulate the same process using multiple event generators. This allows for cross-checks
of theoretical assumptions, estimation of systematic uncertainties, and validation of
implementation details.

The output of this stage represents purely partonic configurations. The generated events
are passed on to the next stage of the simulation chain, the QCD showering. Most
physics analyses at the LHC are targeting the hard scattering stage, for example by
measuring some theory parameter « in the Lagrangian or searching for some new heavy
resonance. From this perspective everything that happens after this stage is a nuisance
that complicates measurements.

2.2.2 Parton showering

While hard-scattering event generation provides accurate predictions for a limited number
of final state particles, scaling to higher multiplicities quickly becomes impractical due to
the factorially growing number of diagrams. In addition, fixed-order perturbation theory
breaks down in the soft and collinear regimes.

To include these emissions, parton shower simulators rely on factorization properties
of QCD amplitudes. In the limit of soft and collinear emissions, (n + 1)-parton cross
sections factorize into n-parton cross sections and universal splitting kernels, P, ;.(2).
These quantify the probability of a parton ¢ with momentum ¢ splitting into two partons
b and ¢, with momentum fractions z and 1 — z:

2

dopt1 ~ dgngé;_dqu dz Pa%bc(z) . (2'14)

Parton showers are modeled as Markov processes by applying these splitting kernels

iteratively, resulting in a probabilistic cascade of emissions. Two sources of parton showers

have to be differentiated here. Final-state radiation emitted by outgoing partons after the

hard interaction is well described by equation Eq. (2.14). For initial-state radiation (ISR)

emitted by the incoming partons before the hard interaction we have to also account for
the parton distribution functions discussed in Sec. 2.1, modifying the equation to

%qu fb(iL'/Z,QQ)

n27r q2 fa(x7 q2) dZ Pa—>bc(z) N (215)

dopy1 ~ do

11

2 LHC physics

The most commonly used software packages to simulate parton showers at the LHC
are Pythia [33], Herwig [35], and Sherpa [31]. They generate emissions starting from
the scale defined by the hard scattering and iteratively evolve downwards until reaching
a non-perturbative cutoff scale, typically around 1 GeV. Once the energy scale of the
emissions drops below this cutoff, a regime is reached where the strong coupling becomes
too large for perturbative techniques to be applicable. The next step of the chain is the
hadronization, the conversion of partons into color-neutral hadrons.

2.2.3 Hadronization

After the parton shower, events consist of a set of quarks and gluons. However, due
to color confinement [84], only color-neutral hadrons are observed in the detector. The
process that converts colored partons into hadrons is called hadronization.

Unlike hard scattering or parton showering, there is no first-principles method to compute
hadronization from the QCD Lagrangian. It occurs in the non-perturbative regime of
QCD, where the strong coupling becomes large. Lattice QCD methods can describe this
regime in principle [85], but for now there exist no practical formulations to simulate the
real-time dynamics of hadronization needed for collider event generation. Consequently,
phenomenological models of hadronization are employed, with parameters tuned to
experimental data.

Most widely used among these phenomenological approaches is the lund string fragmen-
tation model [86,87], implemented in Pythia [33]. The color field between separating
color-anticolor partons is treated as a one-dimensional string whose energy grows linearly
with the distance between partons. Once the energy becomes large enough, a string
break occurs and a new quark-antiquark pair is formed from the vacuum. This process is
repeated recursively, resulting in a sequence of string breaks that terminates once the
remaining string energy is no longer sufficient to produce another hadron. An alternative
approach is the cluster model, used by Herwig [35].

The most commonly used simulators for hadronization are Pythia [33] (string frag-
mentation model), Herwig [35] (cluster model) and Sherpa [31] (both models). Since
hadronization is based on phenomenological models not derived from first principles, these
models contain a number of free parameters that must be fitted to data. In the case of
the string fragmentation model these parameters control the shape of the fragmentation
function, the distribution of quark flavors, and the transverse momentum distribution
of hadrons. A complication is that the string breaks that are directly controlled by the
parameters are not measurable, only the final-state hadrons are experimentally observed.
Different parameter sets can produce similar final-states, making the tuning inherently
ambiguous. The resulting tunes are validated against observables not included in the fit,
and the spread between different tunes has to be propagated to downstream analyses as
a systematic uncertainty.

2.2.4 Detector effects

The output of the hadronization process, in both nature and simulation, are color-neutral
and stable or long-lived particles that reach the detector. The final step that has to be
modeled is the interaction of these particles with the detector material. What is actually
measured in a collider experiment is not the particles directly, but indirect signals such

12

2 LHC physics

as hits in tracking detectors and energy deposits in calorimeters [88,89]. From these the
particle types and kinematics have to be reconstructed. Detector simulations model this
transformation from particle-level truth to measured signals. Their output can then be
directly compared to measurements.

Detector models have to account for a number of factors to simulate realistic measure-
ments. The finite resolution of the detector leads to a smearing of measured quantities
such as energy and momentum. This resolution is not universal, it depends on both the
particle type and kinematics. Further, the detector will generally not record all particles.
Inefficiencies arise from several sources, such as incomplete angular and momentum
coverage due to the detector geometry, or low energy particles falling below detection
thresholds. An additional complication present in all measurements is pile-up, the overlap-
ping of multiple collisions that occur within the same bunch crossing. Finally, additional
systematic uncertainties arise from technical imperfections, for example malfunctioning
detector elements, temperature fluctuations or electronic noise.

The gold standard software for detector simulations is GEANT4 [34]. It performs a full
simulation of all interactions of particles with detector components, utilizing a fine-grained
model of the detector geometry and material. While GEANT4 simulations are incredibly
detailed and highly precise, they come at significant computational cost due to the number
of modeled interactions. The full detector simulation can account for up to 90 percent
of the computational budget of an analysis. Most phenomenological studies therefore
utilize faster alternatives, which apply parametric smearing and efficiency functions to
generator-level particles. The most commonly used public tool for this is Delphes [36].
While Delphes skips over most of the details of the detector simulation, it provides
a reasonably precise approximation to GEANT4 at a fraction of the cost. Developing
surrogate simulators based on generative machine learning is a promising and active area
of research [90-106].

2.3 Inference in LHC physics

In the last section we discussed the chain of simulation tools that enables us to propagate
theoretical predictions from a theory Lagrangian all the way to detector signals. The
inference task now consists in drawing conclusions about the underlying fundamental
theory by comparing these predictions to measured data. The indirect nature of the
measurements and the complexity of the simulation chain make this a challenging problem.
In this section, we briefly discuss traditional approaches to inference at the LHC and
their limitations. Based on these limitations we will motivate the development of new
machine learning based inference techniques, which form the central subject of this thesis.

2.3.1 Reconstruction

In any LHC analysis the first step is the reconstruction of interpretable physical objects
from raw detector readouts. This requires the combination of signals recorded in the
various subsystems of the detector, charged particle tracks in the tracking detectors,
energy deposits in the electromagnetic and hadronic calorimeters, and hits in the muon
chambers. This information is processed by dedicated reconstruction algorithms that
infer the types and kinematics of particles such as photons, electrons, muons, and
hadrons. In ATLAS and CMS reconstruction is typically performed with particle flow

13

2 LHC physics

algorithms [107,108], which reconstruct individual stable particles by optimally combining
information from all detector components. The output is a set of particles characterized
by four-momenta and additional identification information. These reconstructed objects
are the basis for the rest of the analysis.

From the previous discussion on parton showering and hadronization we know that quarks
and gluons are not directly observable in the detector. Instead of a naked parton what
we see in the detector is a jet, a collimated spray of leptons and hadrons. In LHC physics
these jets are among the most studied objects. They are reconstructed from the set
of measured particles using dedicated jet clustering algorithms that work by grouping
together particles based on their proximity in phase space. These algorithms typically
define a pairwise distance measure and then proceed in an iterative way, successively
grouping the two closest particles until hitting a stopping criterion. This is an inherently
ill-posed problem that requires some design choices. The most commonly used algorithm
is the anti-k7 algorithm [109] which produces conical jet shapes favored by experimental
analyses. It utilizes the distance measure

AR,
RZ

dij = min(p73, pr) (2.16)
where AR;; is the angular distance in the rapidity-azimuth plane and R is the maximum
jet radius. The clustering continues until all particles are assigned to jets. The jet
four-momentum is then defined by summing the four-momenta of all its constituents.
Jet clustering is a physically motivated compression from low-level particles to high-
level objects that introduces a loss of information. For many physics questions the jet
four-momentum together with a small set of jet substructure variables carries sufficient
information.

Once reconstruction is completed a set of event selection cuts is applied. This serves to
suppress backgrounds and focus the analysis on regions of phase space that are enriched
in signal events. Typical selection cuts involve requirements on the number, type, and
kinematics of reconstructed objects. As an example consider a search for a Higgs boson
decaying to two photons. Requiring events to have exactly two isolated high-energy
photons with an invariant mass near the Higgs mass cuts away a significant portion of the
background. More complex analyses also reconstruct intermediate decay chains, a common
example here is a semi-leptonically decaying tt-pair (pp — tt — Wb W ~b — fv jj bb).

2.3.2 Observables

The reconstruction and selection steps discussed in the previous section reduce the raw
detector signals to a small set of reconstructed particles and jets characterized by their
four-momenta and identification information. They form the starting point for defining
physical observables, scalar quantities designed to highlight specific features of the signal
process or enhance discrimination against background. Common choices are invariant
masses, angular correlations and transverse momenta, more specialized choices are missing
transverse energy or jet substructure variables.

In a typical LHC analysis, the final inference is performed with only a few observables,
often just a single one. The measured distribution in the selected observable is binned and
the resulting histogram is compared to theoretical predictions obtained from Monte Carlo

14

2 LHC physics

simulations for various parameter values. Assuming Poisson statistics, the likelihood

takes the form
Nbyins ,ui(a)”ie_“i(o‘)

L) =]]

=1

) 2.17
- (2.17)
where n; is the bin count in bin ¢ and p;(«) the expected count under theory parameter
«. Statistical inference is performed on the basis of this binned Poisson likelihood, for
example by maximizing it with respect to the theory parameter.

The expected bin counts p;(«) are not known analytically and have to be estimated
from a finite number of Monte Carlo simulations which introduces an inherent statistical
uncertainty. Further, they are affected by the various sources of systematic uncertainty
in the simulation chain that we discussed in the previous section, from parton density
function uncertainty over hadronization tune to detector calibration. These uncertainties
are typically modeled with nuisance parameters v, and the likelihood is extended to
L(a,v). Inference then includes an additional step of profiling or marginalizing over v.

Going from continuous, high-dimensional data to a one-dimensional histogram of a
selected observable is a significant compression of the available information. Historically,
this reduction has been motivated by both practical and physical considerations. On the
practical side high-dimensional likelihood-based inference was computationally prohibitive
and approximations had to be made. Further the amount of available data and simulations
was often not sufficient to populate high-dimensional densities, especially for processes
with a low cross section. On the physics side the reduction to 1D projections allowed for
well-controlled, interpretable analyses. Up until very recently physicists always had a
very clear idea what kind of signals they were looking for, which allowed for the design of
sensitive observables. The most prominent and most recent example is the hunt for the
Higgs boson where invariant mass of its decay products served as an excellent summary
statistic.

However, in recent years both of these considerations have changed. The rapid progress
in deep learning is transforming not only language and image processing, but also the way
data is analyzed in the sciences [24]. New methods together with an increase in available
computation budget enable more involved, higher dimensional analysis strategies. At
the same time the physics program at the LHC has shifted from a targeted search for a
well-known signal, the Higgs boson, to a more open-ended search for subtle deviations
from standard model predictions. Finding small inconsistencies between theory and
measurement requires more sensitive inference methods that extract all the available
information from the data.

2.3.3 Unfolding

In the last section we reviewed how physics is learned from collider data by comparing
measured and simulated distributions at the reconstruction level. This successful approach
is behind most analyses at the LHC. An alternative approach is unfolding [57-60], the
statistical inversion of (parts of) the simulation chain. Instead of propagating theoretical
predictions all the way to the reconstruction level, unfolding propagates measured
distributions up the simulation chain to be compared to theoretical predictions at an
earlier stage.

Unfolding has several conceptual advantages over reconstruction level analyses. First, it
decouples the probed physics from detector effects allowing the combination of data sets

15

2 LHC physics

collected at different detectors. It further allows experiments to publish the data in at a
stage where theorists, who are neither knowledgeable nor interested in detector specifics,
can work with it. This in turn also substantially reduces future computational cost as it
allows testing new theory hypotheses against the unfolded data without pushing them
through the very costly detector simulation. And finally, having the ability to perform
statistical inference at earlier levels of the simulation chain enables the use of new inference
methods. In the most extreme case of parton-level unfolding the data is unfolded all the
way up to the hard-scattering level where likelihoods are analytically tractable. However
there are also drawbacks. Any unfolding algorithm introduces additional statistical
and systematic uncertainties, and potentially biases when the response model or prior
assumptions are incorrect. For most measurements, performing inference directly at the
reconstruction level leads to more precise and robust results. Ultimately unfolding trades
some precision for interpretability and reusability.

Formally we can define the unfolding problem as finding the particle-/parton-level
distribution p(zpart) that gives rise to the measured distribution pgata(Zreco) under the
forward model p(Zreco|Tpart) encoded in our simulator:

!
p(l'reco) = /dxpart p(xpart) p(zreco|$part) = pdata(l‘reco) . (218)

This is a very hard statistical problem, especially if the distributions are high-dimensional.
Further, the notion of "the" unfolded distribution is misleading as this is in general an
ill-posed inverse problem that can admit multiple solutions compatible with the observed
data. Finally, the forward model p(Zreco|part) is only implicitly accessible via simulations,
the conditional density is not tractable analytically.

Traditional unfolding algorithms make the problem tractable by simplifying it to observ-
able histograms. In the simplest form they invert the relation

r; = ZRijpj s (219)
J

where r; are the histogram entries at reconstruction level, p; is the particle-level spectrum
and R;; the response matrix that encodes the forward model. In the binned case the
forward model quantifies the probability for a particle event in bin j to be reconstructed
in detector bin 7. A naive unfolding algorithm would proceed by estimating the response
matrix R;; from the simulated histograms at particle and reconstruction level, inverting
it and applying the inverse mapping to the measured reconstruction level spectrum
to obtain the unfolded spectrum. In practice naive inversion of the response matrix
leads to unstable solutions with large statistical fluctuations. To mitigate this, unfolding
algorithms introduce regularization to stabilize the inversion, popular examples are
TUnfold [110] and iterative Bayesian unfolding [111].

While these methods work well for one- or two-dimensional histograms, they do not scale
to higher dimensionality and are sensitive to the choice of binning and regularization
scheme. The reduction of high-dimensional data to low-dimensional histograms restricts
the applicability of unfolding techniques in modern analyses. The possibility to test future
hypotheses on unfolded data is severely limited by only having access to one observable.
To truly unlock this feature, the data has to be available unbinned and full-dimensional,
allowing

Recent years have seen rapid progress in the development of machine learning-based
methods for unfolding [3]. These MIL-based approaches promise to overcome the limita-

16

2 LHC physics

tions of traditional approaches, enabling unbinned and high-dimensional unfolding. These
methods can be roughly categorized in generative methods [61-66] that aim to learn the
inverse conditional probability p(Zpart|Treco) and classifier-based methods [63,112] that
aim to learn a reweighting from a Monte Carlo prior to the unfolded distribution. While
first results are very promising [29], these new methods also introduce new challenges
related to stability, uncertainty estimation, and integration into existing workflows. This
is an active area of ongoing research and the topic of a significant part of this thesis.

17

Chapter

Machine Learning

The previous chapter reviewed the core aspects of LHC physics, from the Standard Model
over the simulation chain to traditional approaches for inference. The ever growing
amount of data collected at the LHC, combined with a shift towards precision searches
for very subtle deviations from the standard model, brings these traditional approaches
to their limits. This motivates the adoption of modern machine learning techniques,
whose rapid progress in recent years comes at just the right time for LHC physics. In
this chapter, we introduce the machine learning methods that are relevant for this thesis.
We begin in Sec. 3.1 with the core concepts of machine learning, followed by a review
of the most common learning tasks in Sec. 3.2. Finally, Sec. 3.3 discusses a number of
recently proposed machine learning methods for simulation-based inference. This chapter
is loosely based on Ref. [113].

3.1 Introduction

Machine learning is the study of algorithms that learn patterns from data and make
predictions without explicitly programmed rules. At a high level, the framework can be
summarized as defining a parametric function fy and adapting its parameters 6 such
that the function is suited for the task at hand. The learning process typically requires
four ingredients: a flexible function class, a dataset of training points, a loss function
that quantifies performance, and an optimization algorithm that finds a good set of
parameters 6. The fitted function fy should generalize well, meaning it should produce
correct predictions for new data points that were not seen during training.

Optimization

Learning from data is formulated as the minimization of a loss function, which measures
the quality of the predicted outputs. For example in a typical supervised setting such as
regression or classification the loss quantifies the discrepancy between the predicted output
fo(x) and the true target y. We will discuss specific choices of loss functions towards the
end of this section. The goal of the optimization is to find the set of parameters 6 that
minimizes the average loss on the training data set

N
£0) = 1 > (ol) (3.)
i=1

19

3 Machine Learning

Apart from a few canonical examples like linear regression, this minimization cannot be
solved in closed form. Instead, in modern machine learning the optimization is performed
using gradient descent. Starting from some random initialization 6y, the parameters are
iteratively updated based on the gradient of the loss function

0141 =0, —nVoL(0:) , (3.2)

where 7 is called the learning rate. The choice of the learning rate is an important
hyperparameter in practice. Too small learning rates can lead to slow convergence and
a tendency to get stuck in suboptimal local minima of the loss landscape, whereas too
large learning rates can lead to unstable training and a lack of precision in finding the
exact minimum. Learning rate schedulers that decay the learning rate over the course of
the training are often used to circumvent these issues.

In practice, naive gradient descent is often replaced by more advanced algorithms that
improve convergence and training stability. The most widely used optimization algorithm
in modern deep learning is Adam [114]. For each parameter #, Adam keeps track of
moving averages of the gradient m; and the squared gradient v;:

My = : Tt[gt with my = Bimy—1 + (1 — B1)VL(6) (3.3)
1

by = ljitﬁt with v = Bavi—1 + (1 — B2) [VeL(6))” (3.4)
2

where 81 and (3, are the weights in the exponential moving averages. The moving average
of the gradient determines the direction of the parameter update and the running average
of the squared gradient is used to scale the learning rate

A

m
Opp1 =0 —n- \/177:—6 ; (3.5)
¢

where € is a small constant added for numerical stability. Including first- and second-
order momentum in the parameter updates smooths out noisy gradients and allows the
algorithm to adapt the learning rate individually for each parameter.

Evaluating the loss and its gradient on the entire training dataset at each step is
computationally infeasible. Instead, modern training algorithms employ stochastic
gradient descent (SGD), where the full gradient is approximated using a small random
subset (batch) of the training data

B
L)~ 5 D ol m) (36)
=1

Besides being cheaper to compute, batch updates also introduce stochasticity into the
optimization process, which can help escape local minima and improve generalization.
The batch size is another important hyperparameter whose choice is a trade-off between
computational efficiency and more stable gradient estimators.

Generalization and overfitting
Once the training has converged to the global minimum, a set of parameters is found

such that the function fy optimally explains the training data, as measured by the
loss function. However, the real measure of performance of a machine learning model

20

3 Machine Learning

is how well it generalizes to new, unseen data. A model that performs well on the
training set but poorly on new data is of limited use. This problem is called overfitting,
it occurs when the learned function fy captures noise and fluctuations in the training
data instead of extracting the meaningful patterns. This problem is very common in
modern deep learning. Neural networks are extremely flexible functions with millions
or even billions of parameters. While this is generally a good thing as it allows them
to fit arbitrarily complex patterns and solve hard problems, it also makes them very
susceptible to overfitting.

To monitor and minimize overfitting, the dataset is usually split into disjoint training,
validation, and test sets. The training set is used for the gradient-based optimization,
while the validation set is used to track performance on unseen data. After training
is completed, the parameter set that minimized the validation loss during training is
used. It is common practice to train many models with different hyperparameter choices
on the same problem to find the best-performing setting, typically measured by the
validation loss. One subtlety to be aware of is that this can lead to an indirect fitting to
the validation dataset. The held-out test set is then used to measure the generalization
performance of the final model.

If a model is observed to be overfitting, a range of regularization strategies exist to
address this. A natural fist step is to simply reduce the size or complexity of the model
fo. Choosing an appropriate model size relative to the complexity of the problem and the
amount of available data significantly reduces the risk of encountering severe overfitting.
However, simply reducing the model size indefinitely can lead to the opposite problem
of underfitting, where the model is no longer expressive enough to solve the task at
hand. In deep learning, this trade-off can typically only be determined through trial
and error. If a satisfactory setup cannot be found based on the model size alone, more
advanced regularization techniques exist, such as weight decay, Dropout layers [115] and
data augmentation.

The trade-off between flexibility and generalization is central to machine learning. In LHC
physics applications, the availability of very large datasets, from both real experiments
and simulations, reduces the risk of overfitting to small sample sizes and motivates the
use of large and expressive models. Combined with the complex and high-dimensional
nature of the data, this is one of the key reasons why machine learning methods are
particularly well suited for LHC physics.

Neural networks

Artificial neural networks are the class of machine learning models that is behind the
recent rapid progress of the field. The core idea is to build a flexible function by
concatenating many simple, differentiable operations. The most common architecture
is the fully connected feedforward neural network, also called a multilayer perceptron
(MLP). The function fy is composed of successive layers where the output of each layer
constitutes the input of the next

fow) = fP o fE Vo0 fW(z). (3.7)

Each layer f() consists of two parts, a linear transformation followed by a non-linear
activation function:
FO() = o(WWz + D) . (3.8)

21

3 Machine Learning

The learnable parameters of the model § = {W), b(l)}lL: , are the weight matrices w®
and the bias vectors of the linear mappings. Note the crucial importance of the non-linear
activations ¢ without whom the network would be a composition of linear mappings
which in turn would be a linear mapping. The composition of linear operations with
non-linear activations makes fy a flexible and highly expressive function. Further, as a
concatenation of differentiable functions fy itself is also differentiable and can be trained
via gradient based optimization as described in the last section:

_ 9L Ofy

VoL©®) = 57 5g

(3.9)

It turns out that simple and efficient activation functions work very well in practice. The
most common choice in modern deep learning is the rectified linear unit (ReLU). It is
possibly the simplest non-linear function imaginable, defined as the identity for positive
inputs and 0 for negative inputs:

ReLU(z) = {x ifz>0 (3.10)

0 otherwise

While the function is technically not differentiable in = = 0, this is not problematic in
practice.

The final layer of a network is often equipped with a task-specific activation function,
that differs from intermediate activations. In binary classification for example, the final
activation is typically chosen to be a sigmoid function

1

o(z) =———. 3.11
()= 1 (311)
This choice enforces outputs in the interval [0,1] which can be interpreted as class
probabilities. Another common example are exponential functions as final activations in

regression tasks with only positive targets.

Besides linear layers and activation functions, modern networks often include additional
layers. In the last section we already mentioned Dropout [115] layers as a regulariza-
tion technique for neural networks. These layers randomly set a subset of inputs to
zero, which encourages the network to learn more robust features and prevents it from
simply memorizing the training data. Normalization layers such as batch normaliza-
tion [116] standardize the inputs across a batch which was empirically found to accelerate
convergence and stabilize training.

Beyond fully connected networks, more specialized architectures have been developed for
specific application areas [113]. Convolutional neural networks (CNNs) exploit spatial
locality which makes them well-suited for image processing task [117]. Recurrent neural
networks (RNNs) were designed for sequential data, they maintain an internal state that
is updated with each new observation [118]. While these architectures were dominant
in their respective domains for some time, in recent years the literature has shifted
focus towards transformer architectures [52]. Originally developed for language modeling,
transformers have since become state-of-the-art in nearly all data domains. We will
explore transformers in more detail in Sec. 4.

22

3 Machine Learning

3.2 Learning tasks

So far, we introduced the foundations of machine learning. In this section, we briefly
review the three types of learning tasks that are relevant for this thesis. We begin
with classification and regression, the two central supervised learning tasks. The goal
is to predict a label or a continuous target variable given input data. We then discuss
generative modeling and density estimation, two closely related unsupervised learning
tasks. Instead of predicting some target given an input, generative learning aims at
modeling the underlying data distribution.

3.2.1 Classification

In classification tasks, the goal is to predict a discrete class label given an input . We
will focus the discussion on binary classification y € {0, 1}, which is relevant for many
particle physics problems such as acceptance classification. The discussed concepts can
be generalized to multi-class classification y € {1,...,C}.

For the sake of this discussion we define f5 : R? — [0,1] as a function that maps input
features to a probability estimate. In practice this is achieved with neural networks with
a sigmoid final activation function, as discussed in the last section. The canonical choice
of loss function for a binary classification task is the binary cross-entropy

N
£06) =~ Dl log fole) + (1 - vi)log(1 — fo(z)] (312
=1

which is equivalent to the negative log-likelihood under a Bernoulli model.

Although machine learning models are often viewed as black boxes, in this setup we can
rigorously derive what the classifier is learning. To that end, consider the continuous
limit of Eq. (3.12)

£l = = [dedy p@.y) log fola) + (1 =) log(l = fo(e))] . (313

During optimization we minimize this loss functional with respect to the learned function
fo(x). Taking the the functional derivative of L[f] with respect to f yields

3L[fe] _ R
iy = et | s - (3.14)

Setting the derivative to zero and solving for fy we find

fi@) = [dyyplyla) = Elyle) = ply = 1fo) . (315)

An optimal classifier trained with binary cross-entropy learns the posterior class proba-
bility. This justifies a probabilistic interpretation of its outputs.

Likelihood ratios

While classification itself is already an important task in particle physics, in recent years
an alternative usage of classifier networks has gained a lot of attention. It is based on the

23

3 Machine Learning

observation that an ideal classifier in the sense of Eq. (3.15) can be used to approximate
the likelihood ratio between the classes

fole) ply=1]z) _plzly=1)
1—f5(x) ply=0]z) plzly=0)"

where we have assumed equal class priors for simplicity. Likelihood ratios between
distributions are a very powerful tool, so this remarkably simple result has been put
to use in a long list of problems including unfolding [63,112] and simulation-based
inference [24,28]. It will also repeatedly appear throughout this thesis.

(3.16)

3.2.2 Regression

In regression tasks, the goal is to predict a continuous-valued target variable y given an
input z, using a flexible function fy(z) trained on a dataset {(x;,;)}~,. The canonical
loss function for regression is the mean squared error (MSE)

Z fG -Tz yl . (3.17)
z:l

Like the BCE loss in classification, the MSE also allows for a probabilistic interpretation.
It is the negative log-likelihood under a homoscedastic Gaussian model

y ~ N(fo(x),0?) . (3.18)
We again consider the continuous version of the loss functional

Llfo) = [dady plo.y) (o(a) — v’ (319)

to understand what function is learned by minimizing the MSE loss. Taking the functional
derivative with respect to fp yields

OL] fe
dfo(x

Setting the derivative to zero we find the unique minimizer to be

—2 [dy plyla) (folw) -) (3.20)

fi@) = [dyyp(yle) = Elyla]. (3.21)

A regression network trained with MSE loss yields a function that approximates the
conditional mean of the target variable given the input.

A widely used extension of this setup is the heteroskedastic loss. It adapts the underlying
Gaussian model to

y ~ N(fo(x),00(2)?) . (3.22)

This forces the network to not only learn a mean prediction, but also a pointwise
uncertainty estimate on its own prediction. In practice, this is implemented by giving
the network two outputs per input, one for the mean and one for the (log) variance, and
including an additional loss term.

24

3 Machine Learning

3.2.3 Generation and density estimation

While classification and regression focus on predicting a target variable given input data,
generative modeling and density estimation aim to model the underlying distribution of
the data itself. Typically we have access to a dataset of events x ~ p(z), but no truth
values for the density making this an unsupervised learning task. Depending on the
application the goal is either to learn the underlying probability distribution explicitly
(density estimation), or to generate new samples that follow the same distribution as
the dataset (generation). These two problems are closely related and many methods,
though not all, solve both at once. There are many use cases for generative learning in
LHC physics, from fast surrogate simulators over likelihood-based inference methods to
statistical inversion. It is at the heart of the research presented in the later chapters of
this thesis.

A wide range of generative machine learning methods have been developed, all of which
share the same underlying design principle: they learn a mapping between a simple latent
distribution and the complex target distribution

s~ platent(z) S T P0($) ~ pdata(x)) (323)
where latent distribution is typically a standard multi-dimensional Gaussian,
platent(z) == N(Z, O7 1) . (324)

The mathematical formulation of this mapping and how it is fitted to data are what
differentiates the methods from one another. Two types of generative methods that have
been very successful in particle physics applications will play a central role in this thesis,
Invertible Neural Networks (INNs) [119-121] and diffusion models [50,51,122,123]. We
will give a short introduction to INNs in Sec. 3.2.3. The development of diffusion models
for LHC physics is a central part of the original research presented in this thesis, they
will be introduced in depths in Ch. 4.

Invertible neural networks

Invertible neural networks belong to the class of normalizing flows, generative networks
that define the mapping between the latent and phase space as an invertible function

GQ(Z) —
2 ~ Platent (%) S T~ po(z) . (3.25)
— G, ()

The bijection allows to write the model density using the change of variables formula as

—1
po) = Prtens (G (2)) |det (W> ‘ | (3.26)

ox

With direct access to the model likelihood, the network can be trained via maximum
likelihood estimation

cINN = —<logpg(33)> (327)

T~Pdata

While conceptually very simple, this approach requires a bijective map that is flexible
enough to model complex transformations, while still allowing for efficient computation

25

3 Machine Learning

of the Jacobian determinant. In INNs this complex invertible map is constructed as a
chain of simple invertible transformation blocks. This follows the same design idea as
neural networks, building complex functions by concatenating many simple operations.
The INNs used for the work presented in this thesis employ spline blocks [124].

Invertible neural networks are particularly well suited for scientific applications because
they combine generative modeling and tractable likelihood estimation in a single frame-
work. Their bijective structure allows sampling from complex distributions as well as
evaluation of exact likelihoods via the change-of-variables formula. Finally, thanks to
their efficient sampling and fast likelihood evaluation, invertible neural networks are well
suited for time-sensitive applications such as neural importance sampling [5,82,83].

3.3 Simulation-based inference

In particle physics, as in many scientific disciplines, inference must be performed in
a setting where the likelihood function p(z|f) is intractable, but indirectly accessible
via simulators. These simulators can be used to generate samples = ~ p(z|f) for
given parameters . This problem is known as likelihood-free inference or simulation-
based inference (SBI). Formally speaking, the simulator encodes a joint distribution
(0,x) ~ p(f,x) over parameters and observations, but only forward samples are available

0~p), z~npxld). (3.28)

The task is then to infer the parameters for a given measurement of true data. There are
three common approaches to statistical inference in this setting: estimating the posterior
p(f]z), the likelihood p(z|@), or the likelihood ratio ;’((j“e?) to some reference point in
parameter space.

Traditional statistical inference methods include Markov Chain Monte Carlo (MCMC),
variational inference, and Approximate Bayesian Computation (ABC). While these
methods have been successfully used in science for many years, they suffer from poor
scalability to high-dimensional data, low sample efficiency, and the need for handcrafted
summary statistics. Moreover, these classical methods are typically non-amortized—they
must perform a separate, costly inference procedure for every new observation. With
upgrades on both the experimental and computational side, particle physics is currently
transitioning into a big data regime where these methods break down.

Recent advances in machine learning have produced a new generation of simulation-based
inference methods [24]. These SBI algorithms use simulated datasets and powerful
neural networks to learn surrogate models for the likelihood, likelihood ratio, or posterior
distribution. A key advantage of these techniques is amortization: once trained, the
network can infer parameters for new observations with negligible additional cost.

In the remainder of this section, we will briefly review the three main approaches neural
likelihood ratio estimation (NLRE), neural likelihood estimation (NLE), and neural
posterior estimation (NPE). Each of these approaches approximates a different statistical
quantity using a slightly different ML implementation. For a detailed review on the topic
see Ref. [24] and the references therein.

26

3 Machine Learning

Neural likelihood ratio estimation

Neural likelihood ratio estimation (NLRE) [125,126] aims to approximate the likelihood

ratio
p(z|01)
p(]bh) ’
which, according to the Neyman-Pearson lemma, is the optimal test statistic to decide
between the parameter settings 6y and 6. The crucial insight in NLRE is that this
likelihood ratio can be extracted from a binary classifier, without having access to the
individual likelihoods. As discussed in Sec. 3.2, an optimal classifier trained to distinguish
between samples from p(z|0y) and p(x|6;) with binary cross-entropy learns the posterior
class probability. From this, the likelihood ratio can be recovered via
f(z)

T(x;90,91) = 1_7]0(1‘) . (330)

r(x;00,01) = (3.29)

While this setup estimates the likelihood ratio between two fixed parameter settings, many
inference tasks require evaluating r(x; 6, 6y) for arbitrary 6. A common generalization,
known as likelihood-to-evidence ratio estimation, enables this by learning a classifier
over the full parameter space. It works by training a classifier f(6,x) between the joint
distribution p(#, x) and the product of the marginal distributions p(6)p(z). Samples from
p(0,z) = p(0)p(x|0) can be generated using the simulator, whereas samples from p(0)p(z)
can be trivially generated by random shuffling the 6 entries in the simulated samples
to break the correlation between 6 and z. Note that the network is now a function of
both the observed data and the parameter. The learned classifier can then be used to
calculate the ratio

fr(x,0) p(z,0) _ p(x|6)p(6) _ p(z|6) . (3.31)

1—f*(z,0) p(x)p(0) p(x)p(0) p(z)

Access to this likelihood-to-evidence ratio enables statistical inference in two different
ways. Maximizing this ratio with respect to 6 is equivalent to maximum likelihood

estimation because the denominator is independent of 6. Alternatively taking the ratio

of 2&lf) apq ploy) gives access to the likelihood ratio 2 (2l0h) g5y arbitrary parameter
p(x) p(x) p(]0o)

choices 6y and 6.

Neural likelihood estimation

Neural likelihood estimation (NLE) [127,128] aims to approximate the likelihood function
p(z|0) directly with a neural density estimator. This is conceptually different from
likelihood ratio estimation, which learns a discriminative function between two likeli-
hoods. Instead, NLE employs generative machine learning to model the full conditional
distribution over observations given parameters. The trained model then constitutes a
machine learning surrogate for the forward simulator.

Once the model is trained and real data x is measured, the surrogate likelihood enables
a variety of inference strategies. For instance, maximum likelihood estimation can
be performed by finding the parameter set fy g that maximizes the likelihood of the
observed data x

OvLE = arg max ps(x]0) . (3.32)

27

3 Machine Learning

Since neural networks are by construction differentiable, the maximum can be searched
via gradient ascent. Alternatively, Bayesian inference can be performed by plugging the
learned likelihood into Bayes’ theorem

p(0lz) o< p(x|0) p(0) , (3.33)
and exploring the posterior using Markov Chain Monte Carlo.

In theory, neural likelihood estimation is strictly more powerful than neural likelihood
ratio estimation since having access to likelihoods automatically also gives access to
likelihood ratios. However, as a rule of thumb classifiers are generally easier to train
than density estimators, so the choice between the two methods is a trade-off. Learning
a reliable and precise surrogate for p(z|f) is a very difficult task, in particular if the
observation space is high-dimensional.

A related, particle-physics-specific inference method is the matrix element method [53,54].
It makes use of the fact that in LHC physics the reconstruction level likelihood p(Zreco|6)
can often be factorized as

p(xrecole) = /dxhard p(xhard‘a) p(xreco‘xhard) s (3-34)

where the dependence on the theory parameter enters only in the parton level hard-
scattering likelihood p(xparq|@). Crucially, this factor can be analytically calculated from
the underlying quantum field theory. The forward transfer function p(Zyeco|Thara) however
is not known and must be approximated. Historically, the need for hand-crafted transfer
functions has limited the use of the matrix element method to very specific settings. In
Ch. 5 we will discuss how to overcome this limitation by encoding this transfer function
in a generative neural network. Compared to standard neural likelihood estimation, this
approach has the advantage that it makes use of the analytically tractable, 0-dependent
part of the simulation chain. Only the intractable, 8-independent part is approximated
with a neural network, significantly reducing the complexity of the learning task.

Neural posterior estimation

Neural posterior estimation (NPE) [129-132] approximates the posterior distribution
p(0|z) directly with a neural conditional density estimator. On the technical level, it tries
to solve exactly the inverse task of neural likelihood estimation. It is particularly well
suited for Bayesian inference settings where the posterior distribution over the parameter
space is the final inference target.

To train the model, samples are drawn from the joint distribution (6, x) ~ p(6) p(x|6).
These samples are used to train a neural network to approximate the posterior via
conditional density estimation. Whereas in NLE the network inputs are the parameters 6
and the outputs the density over observations p(x|f), in NPE the roles are reversed. Once
trained, the model can be evaluated on new observations xg to produce an approximate
posterior p(f | xp). Since the model is amortized, this requires only a forward pass
through the network, making it orders of magnitude more efficient than traditional
methods like MCMC.

The fact that NPE gives direct access to the posterior distribution has an important

28

3 Machine Learning

implication. According to Bayes’ theorem every posterior is proportional to a prior

p(0) p(x|0)

E (3.35)

p(0]x) =
When using NPE, the prior p(6) is the distribution used to generate the training samples
for the network. While Bayesian inference with a well-motivated prior is the method
of choice in some fields, LHC physics is generally a frequentist field that sees prior
dependence as undesirable. This issue can be alleviated through the use of iterative
methods, where the posterior estimated in one round is used as the prior for the next.

29

Chapter

Precision event generation with diffusion
models and transformers

The research presented in this chapter is based on work in collaboration with Anja Butter,
Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, and Jonas Spinner, and has
been previously published in Ref. [1]. The content is similar or identical to the content of
this article.

The future of LHC physics lies in a systematic and comprehensive understanding of
all aspects of the recorded data in terms of fundamental theory. This can be achieved
through simulation-based analyses, applying and adapting modern data science methods.
As obvious from the name, this method relies on a fast and precise simulation chain,
starting with the hard scattering evaluated for a given Lagrangian, to fast detector
simulations. Because LHC physics is driven by fundamental questions, these simulations
have to be based on first principles, mere modeling would not allow us to extract relevant
or interesting information from the data. Moreover, for theory predictions to not become
a limiting factor to the entire LHC program, this simulation chain has to be (i) precise,

(ii) fast, and (iii) flexible.

Modern machine learning (ML) has shown great potential to transform LHC analyses and
simulations [25,26]. The leading ML-tools for LHC simulations are, obviously, generative
networks, which combine unsupervised density estimation over phase space with a fast
sampling into the learned density. The list of tasks where (generative) neural networks can
improve LHC simulations is long [25]. It starts with phase space integration [133,134] and
phase space sampling [82,135-138] of ML-encoded fast transition amplitudes [139, 140].
More advanced tasks include event subtraction [141], event unweighting [142,143], or
super-resolution enhancement [144, 145]. Prototypical applications which allow for a
systematic evaluation of the network performance are NN-event generators [40-45],
NN-parton showers [146-151], or detector simulations [90-106]. Even when trained on
first-principle simulations, such fast generators are easy to handle, efficient to ship, and
powerful in amplifying statistical limitations of the training samples [152,153].

Classical generative network architectures include variational autoencoders (VAEs) and
generative adversarial networks (GANs). Both of them can generate high-dimensional
data, assuming that the intrinsic dimensionality of the problem is much smaller than the
apparent dimensionality of its representation. However, both have not been shown to
fulfill the precision requirements of the LHC. Precise density estimation points to bijective
generative networks, for instance normalizing flows [37,46-49] and their invertible network

31

4 Precision event generation with diffusion models and transformers

(INN) variant [119-121], which are limited to lower-dimensional sampling but sufficient
at least for the hard process at the LHC.

LHC studies are consistently showing promising results for normalizing flows', including
transformative tasks, like probabilistic unfolding [61-65], inference from high-dimensional
data [154], or the matrix element method [56]. One reason why INNs have established a
new level of stability, control and uncertainty estimation, is the combination with Bayesian
neural network (BNN) concepts [155-161], discriminator-training and reweighting [162,
163], and conditional training on augmented data. In the spirit of explainable AI, Bayesian
generative networks allow us to understand how networks learn a given phase space
distribution, in the case of INNs very similar to a traditional fit [161]. They systematically
improve the precision of the underlying density estimation and track the effects from
statistical and systematic limitations of the training data [45]. In this study we will first
compare the successful INNs with new diffusion networks [50,51,122,164,165] on the task
of unconditional phase space generation. This allows us to benchmark their performance
as surrogate simulators [45,152,153], as well as prepare their future usage for conditional
tasks such as probabilistic unfolding [61-65].

An aspect of neural networks which is often overlooked is that in precision LHC simulations
the intrinsic dimension of the physics problem and the apparent dimension of its phase
space are similar; for this dimensionality we need to encode all correlations [166, 167].
This implies that the network size, its training effort, and its performance tend to scale
poorly with the number of particles and suffer from the curse of dimensionality. This is
the motivation to also include an autoregressive [168,169] transformer [170] in our study
of modern generative networks.

In this paper we will introduce two new different diffusion models for particle physics
applications in Secs. 4.1.1 and 4.1.2. We then introduce a new autoregressive, eventually
pre-trained, transformer architecture (JetGPT) with an improved dimensionality scaling
in Sec. 4.1.3. For all three networks we develop new Bayesian versions, to control their
learning patterns and the uncertainty in the density estimation step. In Sec. 4.2 we
illustrate all three models for two toy models, a two-dimensional linear ramp and a
Gaussian ring. Finally, in Sec. 4.3 we use all three networks to generate Z+jets events
for the LHC, the same reference process as used for uncertainty-aware INNs in Ref. [45].
This standard application allows us to quantify the advantages and disadvantages of the
three new architectures and compare them to the INN benchmark.

4.1 Novel generative networks

At the LHC, generative networks are used for many simulation and analysis tasks, typically
to describe virtual or real particles over their correlated phase space. The number of
particles ranges from few to around 50, described by their energy and three momentum
directions, sometimes simplified through on-shell conditions. Typical generative models
for the LHC then map simple latent distributions to a phase space distribution encoded
in the training data,

r~ platent(r) A pg(m’@) ~ pdata(x) . (4'1)

!Note that in these applications autoregressive flows do not outperform advanced coupling layers.

32

4 Precision event generation with diffusion models and transformers

The last step represents the network training, for instance in terms of a variational ap-
proximation of pgata(x). The latent distribution is typically a standard multi-dimensional
Gaussian,

Platent (1) = N (7;0,1) . (4.2)

We focus on the case where the dimensionalities of the latent space r and the phase
space x are identical, and there is no lower-dimensional latent representation. For these
kinds of dimensionalities, bijective network architectures are promising candidates to
encode precision correlations. For strictly symmetric bijective networks like INNs the
forward and backward directions are inverse to each other, and the network training and
evaluation is symmetric. However, this strict symmetry is not necessary to generate LHC
events or configurations.

The success of normalizing flows or INNs for this task motivates a study of so-called
diffusion or score-based models as an alternative. We will introduce two different models
in Sec. 4.1.1 and 4.1.2, one with a discrete and one with a continuous time evolution.
The main question concerning such diffusion models in LHC physics is if their precision
matches the INNs, how we can benefit from their superb expressivity, and if those benefits
outweigh the slower evaluation.

A major challenge for all network applications in LHC physics is the required precision
in all correlations, and the corresponding power-law scaling with the number of phase
space dimensions. This scaling property leads us to introduce and test an autoregressive
transformer in Sec. 4.1.3. Again, the question is how precise and how expressive this
alternative approach is and if the benefits justify the extra effort in setup and training.

Because fundamental physics applications require full control and a conservative and
reliable uncertainty estimation of neural networks, we will develop Bayesian versions
of all three generative models. This allows us to control the uncertainty in the density
estimation and to derive an intuition how the different networks learn the phase space
distribution of the data.

4.1.1 Denoising Diffusion Probabilistic Model
Architecture

Denoising Diffusion Probabilistic Models (DDPM) [50] transform a model density by
gradually adding Gaussian noise. This setup guarantees that the network links a non-
trivial physics distribution to a Gaussian noise distribution, as illustrated in Eq. (4.1).
The task of the reverse, generative process is to to denoise this diffused data. The
structure of diffusion models considers the transformation in Eq. (4.3) a time-dependent
process with t =0 ... T,

forward—

po(x0l0) ——— Platent(27) - (4.3)

+backward

The DDPM discretizes the time series in Eq. (4.3) in the forward direction and encodes
is it into a neural network for the backward direction. We start with the forward process,

33

4 Precision event generation with diffusion models and transformers

which turns the physical distribution into noise. The corresponding joint distribution is
factorized into discrete steps,

T
p(z1, ..., x7|T0) = Hp Te|xi—1)
=1

with p(@e|vi—1) = N (23 V1 = Biae—1, Br) - (4.4)

Each conditional step p(x|z;—1) adds noise with variance ; around the mean /1 — Byxs_1.
The combination of x; as a variable and the mean proportional to x;—_; implies that the
successive steps can be combined as Gaussian convolutions and give the closed form

t—1
p(t|wo) :/Hd%‘ p(wt|we—1)p(xilTio1)
=1

t

= N(zi;\/1 = Bxo,) with 1-5,=][1-8). (4.5)

i=1

The scaling of the mean with /1 — 3; prevents the usual addition of the variances and
instead stabilizes the evolution of the Gaussian over the time series. The variance can be
adapted through a schedule, where 8; — 1 for t — T should be guaranteed. As suggested
in Ref. [50] we choose a linear increase with 41 = 10~"T and Sy = 2 - 107°7.

As a first step towards reversing the forward diffusion, we apply Bayes’ theorem on each
slice defined in Eq. (4.4),

p(ﬂft |$t—1)P(CCt—1) '
p(xt)

p(xi-1lzt) = (4.6)

However, a closed-form expression for p(z;) only exists if conditioned on xg, as given
in Eq. (4.5). Using p(x¢|xi—1,20) = p(z¢|ri—1) we can instead compute the conditioned
forward posterior as a Gaussian

p(xe|xi—1)p(zi—1|x0)

= N(@¢-1; fu(zt, 20), Bt)

p(xi—1l|ze, x0) =

p(¢|2o)
with fi(z, zg) = - ! _ﬁﬂt_lﬁ ! _5 it z; and f; = Btﬁ ! (4.7)
t t t

The actual reverse process starts with Gaussian noise and gradually transforms it into the
phase-space distribution through the same discrete steps as Eq. (4.4), without knowing
xo a priori. The corresponding generative network needs to approximate Eq. (4.6) for
each step. We start by defining our modeled phase-space distribution

po(x0|0) = /da:l...da;T p(zo, ..., z7|0) | (4.8)

and assume that the joint probability is again given by a chain of independent Gaussians,

T
p(:co,...,:cT|9) platent T H xt 1|xt

with pg(x—1|z¢) = N(I‘t—l;Me(ﬂﬂt,t),ﬂe(xt,t)) : (4.9)

34

4 Precision event generation with diffusion models and transformers

Here, g and oy are learnable parameters describing the individual conditional probability
slices zy — x4—1. It turns out that in practice we can fix o2 (2, t) — o7 [50]. We will see
that the advantage of the discrete diffusion model is that we can compare a Gaussian
posterior, Eq. (4.7), with a reverse, learned Gaussian in Eq. (4.9) for each step.

Loss function

Ideally, we want to train our model by maximizing the posterior py(6|x¢), however, this is
not tractable. Using Bayes’ theorem and dropping regularization and normalization terms
this is equivalent to minimizing the corresponding negative log likelihood in Egs. (4.8)
and (4.9),

(—log po(x0l6))

Pdata

T
— / do paata(ro) log (/ dzy...dzp Platent(21) Hpe(xt_l\xt)>
t=1

po(Ti-1|w
= —/deo Pdata(T0) log /dfﬁl-ude Platent (T7)p(T1, ..., T1|T0) H po(@i-ilze) t
=1 P (zt|me—1)

Pe Tt— 1|$t

/de pdata(x()) 10g<platent xT >
5 p(@ilwi1) Lpan . e

(4.10)

In the first step, we insert a one into our loss function by dividing Eq. (4.4) with itself.
Using Jensen’s inequality f((z)) < (f(z)) for convex functions we find

T
Tt_1|T
- / Ao Paata(®o) <log (zomm(m 11 M) >
p(x1,...,x7)|T0)

i—1 p(ze|wi-1)

o(xi—1|x
= IOg platent JUT Hptil,t)
i—1 p(xt|re-1)
(0, T)

= < log pratent (1) Zlo po(@-1]zt) — log pg(w0|x1)>
p(xe|i—1) p(z1|z0) p(zo,.a7)

= LDDPM - (4.11)

IA

(—1og pp(0/6))

Pdata

As suggested above, we would like to compare each intermediate learned latent distribution
po(xi—1|zt) to the real posterior distribution p(z;—1|z¢, xo) of the forward process. To
reverse the ordering of the forward slice we use Bayes’ theorem,

Lpppm = <_logplatent o) Zl pa zia|od)p(eialzo) p(”(x()’xl>
xt 1’$t,$0) (xt‘xo) p(x1|x0) p(20,--,TT)

= <_1nglatent J,‘T Zl w _ 1Og (| 0) nge(l'o|$1)>
p(xi—1|74, T0) p(ar|xo) p(z1|xo) p(z0,..57)

<—10g platent xT Zl PB Tt— 1| t)) _ 10gp9($0’x1)>

(x7|x0) (21|24, T0 P(0,e-,2T)

I
M=

(KLlp(zle zo), po(eelen)]) (= logm(eolen)) + const
Z0,Tt

(0, TT)

I
[}

35

4 Precision event generation with diffusion models and transformers

T
~ S (KL[p(ar 1 |1, o), p (-1 [22)]) (4.12)
t=2 p("EOv"Et)

Now, the KL-divergence compares the forward Gaussian step of Eq. (4.7) with the
reverse, learned Gaussian in Eq. (4.9). The second sampled term will always be negligible
compared to the first T'— 1 terms. The KL-divergence between two Gaussian, with means
po(xs,t) and fi(z4,) and standard deviations o7 and 3, has the compact form

T

L
Lpppm = Z<2 | — ,u9|2> + const. (4.13)

t=2 20} p(xo,zt)

This implies that py approximates fi. The sampling follows p(xg, x¢) = p(x¢|x0) Pdata(To)-
We numerically evaluate this loss using the reparametrization trick on Eq. (4.5)

z¢(z0,€) = \/ 1 — Brxo + \/ Bre with e ~N(0,1)

& zo(xt, €) = \/11_7& <xt - \/@6) . (4.14)

These expressions provide, for example, a closed form for ji(z, zp), but in terms of z;
and e,

1

[i = ——— [x¢(x0,€ fﬂe
iz, €) = \/1_—&(t(zo, €) \/E) . (4.15)

For the reverse process we choose the same parametrization, but with a learned €g(z¢, t),

. 1 B
o (e, t) = fi(xy, €9) = —— | &y — —=¢€g(x¢, 1) | - (4.16)
e)

Inserting both expressions into Eq. (4.13) gives us

€—€p (\/1—7@960 + 1/ Bre, t)

The sum over ¢ can be evaluated numerically as a sampling. We chose our model variance
o} = ﬁt to follow our true variance. Often, the prefactor in this form for the loss is
neglected in the training, but as we need a likelihood loss for the Bayesian setup and no
drop in performance was observed, we keep it.

T 2
EDDPM—Z< L - . (4.17)

=\207 (1 - B,)By

2>
IONPdatazewN(ovl)

The DDPM model belongs to the broad class of score-based models, and Eq. (4.13) can
also be reformulated for the model to predict the score s(xt,t) = Vg, log p(xt) of our
latent space at time ¢. It can be shown that sg(x¢,t) = —ep(z,t) /oy [171].

Training and sampling

The training algorithm for the DDPM is illustrated in Fig. 4.1. For a given phase-space
point g ~ Pdata(To) drawn from our true phase space distribution we draw a time step
t ~U(1,T) from a uniform distribution as well as Gaussian noise ¢ ~ N'(0,1) at each
iteration. Given Eq. (4.15) we can then calculate our diffused data after ¢ time steps x4,

36

4 Precision event generation with diffusion models and transformers

t~ UL T)

Y

Ty ~ Pdata ({Eo) =1 - tho + Btf

A

e~N(0,1) —— e

Figure 4.1: DDPM training algorithm, following Ref. [50], with the loss derived
in Eq. (4.17).

1 B} D)
207 (1— ﬂt)ﬁt'e €|

which is fed to the DDPM network together with our condition t. The network encodes
€9 and we compare this network prediction with the true Gaussian noise ¢ multiplied
by a t-dependent constant as given in the likelihood loss of Eq. (4.17). Note that we
want to ensure that our network sees as many different time steps ¢ for many different
phase-space points x(as necessary to learn the step-wise reversed diffusion process, which
is why we use a relatively simple residual dense network architecture, which is trained
over many epochs.

The sampling algorithm for the DDPM is shown in Fig. 4.2. We start by feeding our
network our final timestep 7" and xp ~ Platent (z7) drawn from our Gaussian latent space
distribution. With the predicted ¢y and drawn Gaussian noise zp_1 ~ N(0,1) we can
then calculate xp_1, which is a slightly less diffused version of zp. This procedure is
repeated until reaching our phase-space and computing xg, where no additional Gaussian
noise is added. Note that during sampling the model needs to predict €g T' times, making
the sampling process slower than for classic generative networks like VAEs, GANs, or
INNs.

zp ~N(0,1) z~N(0,1)

l

@ e w12 = b (o7 =) o 2~ N0, 1)
L l

t=T —1 w T = 1/32 +0'2z

A

Figure 4.2: DDPM sampling algorithm, following Ref. [50].

37

4 Precision event generation with diffusion models and transformers

Likelihood extraction
To calculate the model likelihood we can use Eq. (4.8) or its sampled estimate,

po(0/6) = (py(wol1)) (4.18)

)
p(z1,.27|0)

but this is very inefficient. The problem is that pg(z¢|xi) is a narrow distribution,
essentially zero for almost all sampled x1. We can improve the efficiency by importance
sampling and use instead

plold) = { Py, 27l6) plole))

p(x1,...,27|T0) p(z1,...,x7|Z0)
_ < p(xo, ..., z7(f) > _ (4.19)
p(xlv s ,%T’JJO) p(x1,....x7|T0)

This samples a diffusion process starting from xy and into the latent space, meaning that
it represents a likely forward and backward path. This means the integrand should not
just be zero most of the time.

Bayesian DDPM

The key step in the training of generative networks is the density estimation over phase
space, from which the network then samples. Like any neural network task this density
estimation comes with uncertainties, for instance from a limited amount of training
data, a lack of model flexibility, or even training data which we know cannot be trusted.
This means that the density estimation step of the generative network should assign an
uncertainty to the extracted phase space density, ideally in form of a second map over
the target phase space. This problem has been tackled for bijective normalizing flows
through a Bayesian network extension [161], which can be combined with other measures,
like conditional training on augmented data [45].

The idea behind Bayesian networks is to train network weights as distributions and
evaluate the network by sampling over these distributions. This will provide a central value
and an uncertainty for the numerically defined network output [155-157].2 Because general
MCMC-methods are expensive for large networks, we use variational inference [172] to
learn Gaussian approximations for each weight distribution. Because of the non-linear
nature of the network this does not mean that the network output has to come with a
Gaussian uncertainty [160].

We repeat the main steps in deriving the Bayesian loss for any neural network approxi-
mating, for instance, a density map p(x) = pg(z) following Ref. [23]. The expectation
value is defined as

()@= (p)= [dpppte) with p(p) = [0 p(pl6) pBlawam) . (4:20)
where we omit the z-dependence. We use the variational approximation to approximate

p(o) = [48 p(pl6) p(Olzurain) ~ [@0 p(ol6) () (4.21)

2We cannot emphasize often enough that Bayesian networks for uncertainty quantification have nothing
to do with Bayesian inference.

38

4 Precision event generation with diffusion models and transformers

where ¢(0) is also a function of . The variational approximation step requires us to
minimize

LBNN = KL[q(Q),p(9|$train)] = <10g p(@tyl.ii)am)>
- q(0)
= /d9 q(0) logm

= —/d9 q(0) log p(wtrain|®) + KL[q(6), p(6)] + const ,
(4.22)

where we use Bayes’ theorem to transform the untractable p(€|zirain), introducing the
prior p(@) for the network weights. This so-called ELBO loss combines a likelihood loss
with a regularization term, their relative size fixed by Bayes’ theorem.

It turns out that for sufficiently deep networks we can choose ¢(f) as uncorrelated
Gaussians per network weight [157], such that the training parameters are a set of means
and standard deviations for each network weight. Compared to the deterministic network,
its Bayesian version is twice the size, but automatically regularized, keeping the additional
numerical effort minimal. While p(#), also chosen as a Gaussian, is formally defined as a
prior, we emphasize that in our case the step from the prior to the posterior has nothing
to do with Bayesian inference. The Gaussian width of p(#) can be treated as a network
hyperparameter and varied to improve the numerical performance. We typically find
that the result is stable under varying the width by several orders of magnitude, and
width one works well.

The derivation of Eq. (4.22) can be easily extended to the density estimation step of
a generative networks, in the same way as for the Bayesian INN [161]. The Bayesian
DDPM loss follows from the deterministic likelihood loss in Egs. (4.11) and (4.17) by
adding a sampling over 6 ~ ¢(#) and the regularization term,

Lppppr = <LDDPM>M +KLq(60),p(0)] - (4.23)
Switching a deterministic network into its Bayesian version includes two steps, (i) swap the
deterministic layers to the corresponding Bayesian layers, and (ii) add the regularization
term to the loss. For the latter, one complication arises. We estimate the complete loss
from a dataset including N events in M batches, which means the likelihood term is
summed and then normalized over M batches, while the regularization term comes with
the complete prefactor 1/N.

To evaluate the Bayesian network we need to again sample over the network weight
distribution. This way we guarantee that the uncertainty of the network output can
have any functional form. The number of samplings for the network evaluations can be
chosen according to the problem. We choose 30 for all problems discussed in this work.
To compare the Bayesian network output with a deterministic network output we can
either go into the limit ¢(8) — §(6 — 6p) or only evaluate the means of the network weight
distributions.

Our network is implemented in PYTORCH [173] and uses ADAM [114] as optimizer. All

hyperparameters are given in Tab. A.1. As already mentioned we use a simple residual
network which consists of multiple fully connected dense layers with SiLU activation

39

4 Precision event generation with diffusion models and transformers

functions. Within our setup a significant increase in performance is achieved when
initializing the weights of the last layer in each block to zero.

4.1.2 Conditional Flow Matching
Architecture

As an alternative, we study Conditional Flow Matching (CFM) [51,164,165]. Like the
DDPM, it uses a time evolution to transform phase space samples into noise, so the
reverse direction can generate samples as outlined in Eq. (4.3). Instead of a discrete
chain of conditional probabilities, the time evolution of samples in the CFM framework
follows a continuous ordinary differential equation (ODE)

dz(t)
dt

=v(z(t),t) with z(t=0) ==z, (4.24)

where v(z(t),t) is called the velocity field of the process. This velocity field can be linked
to a probability density p(z,t) with the continuity equation

WD) 9, b o)) = 0. (4.25)

These two equations are equivalent in the sense that for a given probability density path
p(z,t) any velocity field v(z,t) describing the sample-wise evolution Eq. (4.24) will be a
solution of Eq. (4.25), and vice versa. Our generative model employs p(z, t) to transforms
a phase space distribution into a Gaussian latent distribution

pdata(l') t—0
plet) = {platent(:c) = N(z;0,1) t—1. (4.26)

The associated velocity field will allow us to generate samples by integrating the ODE of
Eq. (4.24) fromt=1tot=0.

As for the DDPM, we start with a diffusion direction. We define the time evolution from
a phase space point zy to the standard Gaussian as

Zo t—0

e ~N(0,1) t—1, (4.27)

x(tlxzg) = (1 — t)zo + te — {

following a simple linear trajectory [165], after not finding better results with other
choices. For given x(we can generate z(t|zg) by sampling

p(x, tlxo) = N(x; (1 — t)zo, t) . (4.28)

This conditional time evolution is similar to the DDPM case in Eq. (4.5), and it gives us
the complete probability path

pla.t) = [deo ple.tzo) pasta(ao) (4.29)

It fulfills the boundary conditions in Eq. (4.26),

p(x,0) = /dxo p(x,0[x0) Pdata(T0) = /dﬂfo d(x — 20) Pdata(T0) = Ddatal(x)

40

4 Precision event generation with diffusion models and transformers

p(e.1) = [dao pla, o) pasca(w) = N(w30,1) [dwo passa(an) = N(@:0,1) . (430

From this probability density path we need to extract the velocity field. We start with
the conditional velocity, associated with p(z,t|xo), and combine Eq. (4.24) and (4.27) to

d
v(x(t|zo), tlxg) = p [(1—t)zo+te] = —x0+ €. (4.31)
The linear trajectory leads to a time-constant velocity, which solves the continuity
equation for p(z,t|zo) by construction. We exploit this fact to find the unconditional
v(x,t)

ot _/dxo ot

= —/dxo Vi [v(m,t|xo)p(l‘,t!$o)] pdata(x())

_ P x 7)(1?,t‘.’lfo)p(l’,t‘$0)pdma($0)
- V:c |:p(at)/d 0 p(a:,t)
=V, [p(:z,t)v(x,t)]) (4.32)

Pdata (1‘0)

by defining

oo, 1) = [doo ”(9”’t'”gO)px;’i';{’)p‘i“a(“) . (4.33)

While the conditional velocity in Eq. (4.31) describes a trajectory between a normal
distributed and a phase space sample zy that is specified in advance, the aggregated
velocity in Eq. (4.33) can evolve samples from pqata tO Platent and vice versa.

Like the DDPM model, the CFM model can be linked to score-based diffusion models, [164]
derive a general relation between the velocity field and the score of a diffusion process
that for our linear trajectory reduces to s(z,t) = —1(z + (1 — t)v(z,t)).

Loss function

Encoding the velocity field in Eq. (4.33) is a simple regression task, v(z,t) = vg(x,t).
The straightforward choice for the loss is the mean squared error,

<[U9(a:,t) — U(l’,t)]2> == <vg(1‘,t)2> — <2v9(x, t)v(:n,t)> + const |

t,z~p(z,t)
(4.34)

t,pr(I,t) tvx’\’p(xvt)

where the time is sampled uniformly over ¢ € [0,1]. While we would want to sample
x from the probability path given in Eq. (4.29) and learn the velocity field given in
Eq. (4.33), neither of those is tractable. However, it would be easy to sample from the
conditional path in Eq. (4.28) and calculate the conditional velocity in Eq. (4.31). We
rewrite the above loss in terms of the conditional quantities, so the first term becomes

<U0(x7t)2>t,x~p(x,t) = </d:vv9(x,t)2/dxo p(x,t|x0)pdata(xg)>
= <Ue($7t)2>

t

t,£0~Pdata,T~pP(T,t|T0)

41

4 Precision event generation with diffusion models and transformers

t~U((0,1]) l

To ~ Pdata(T0), € ~ N(0, 1) — z(t|zo) = (1 — t)zo + te

=£=<v9—(6—$0))2 0

Figure 4.3: CFM training algorithm, with the loss derived in Eq. (4.37).

= (va((tl0),1)*) (4.35)

t,Z0~Ddata,€

Using Eq. (4.33) we can rewrite the second loss term as

o fdxo’l)(ﬁ,t|$0)p(l’,t‘l‘0)pdata($0)
= —2</dx p(z, t)vg(z,t) (@) >t

= —2</dwdm0 vg(x,t) v(x, t|zo) p(z, t|zo) Pdata(330)>

—2<vg(x,t)v(x, t)>

t,z~p(x,t)

= —2(vy(x,) v(, t}xo))

t,zo diataerp(zzﬂ'TO)

= —2(vg(x(tlw0), t) v(w(t|z0), t}xo)) : (4.36)

t,Z0~Ddata,€

The (conditional) Flow Matching loss of Eq. (4.34) then becomes

Loru = ([vo(@(t]z0),1) = v(a(two), t|z0)]”)

_ <[v9<x(ﬂxo>,t> - dx(gfo))ﬁt,wm,e

= {[up((1 = t)o + te, 1) — (e — m0)]”) . (4.37)

,£0~Pdata €

t,20~Pdata,€

Training and Sampling

The CFM training is illustrated in Fig. 4.3. At each iteration we sample a data point
Zo ~ Pdata(To) and a normal distributed € ~ N(0,1) as starting and end points of a
trajectory, as well as a time ¢ ~ ([0, 1]). We then compute z(t|z) following Eq. (4.27)
and the associated conditional velocity v(x(t|zg),t|zo) following Eq. (4.31). The point
x(t|zg) and the time ¢ are passed to a neural network which encodes the conditional
velocity field vg(z,t) = v(z,t|zp). One property of the training algorithm is that the
same network input, a time ¢ and a position x(t|xg), can be produced by many different
trajectories, each with a different conditional velocity. While the network training is
based on a wide range of possible trajectories, the CFM loss in Eq. (4.37) ensures that
sampling over many trajectories returns a well-defined velocity field.

Once the CFM model is trained, the generation of new samples is straightforward. We
start by drawing a sample from the latent distribution 1 ~ piatent = N (0, 1) and calculate

42

4 Precision event generation with diffusion models and transformers

its time evolution by numerically solving the ODE backwards in time from t =1 to ¢ =0

%x(t) —upla(t),t) with @y =a(t=1)

1
= Ty =T — / vg(x, t)dt = Go(x1) , (4.38)
0
We use the scipy.solve_ivp function with default settings for this. Under mild regularity

assumptions this solution defines a bijective transformation between the latent space
sample and the phase space sample Gy(x1), similar to an INN.

Likelihood extraction

The CFM model also allows to calculate phase space likelihoods. Making use of the
continuity equation we can write

dp(z,t) _ op(x,t)

+ Vap(z,t) v(x,t)

dt ot
= 8’%',1;’25) + V, [p(x, t)U($, t)] — p(x, t)vxv(x’ t)
= —p(z,t)Vyo(z,t) . (4.39)
Its solution is
p(xlv 1) _ platent(G9_1<l’0)) ~ex B 1 ola
p(xo,O) N p9($0|9) o p(‘/0 dtvx ((t)vt)>) (4.40)

and we can write in the usual INN notation [23]

oGy,
Pol0/0) = P (G5 (10) e 222120
-1 1
= ‘detw — exp (/ dtvxvg(aj(t),t)) . (4.41)
Oz 0

Calculating the Jacobian requires integrating over the divergence of the learned velocity
field. This divergence can be calculated using automatic differentiation approximately as
fast as n network calls, where n is the data dimensionality.

Bayesian CFM

Finally, we also turn the CFM into a Bayesian generative model, to account for the
uncertainties in the underlying density estimation [161]. From the Bayesian DDPM we
know that this can be achieved by promoting the network weights from deterministic
values to, for instance, Gaussian distributions and using variational approximation for
the training [155-157,172]. For the Bayesian INN or the Bayesian DDPM the loss is a
sum of the likelihood loss and a KL-divergence regularization, Eq. (4.23). Unfortunately,
the CFM loss in Eq. (4.37) is not a likelihood loss. To construct a Bayesian CFM loss we
therefore combine it with Bayesian network layers and a free KL-regularization,

Lp.crm = <£CFM>) + cKL[q(0), p(9)]. (4.42)

O~q

43

4 Precision event generation with diffusion models and transformers

While for a likelihood loss the factor ¢ is fixed by Bayes’ theorem, in the CFM case it
is a free hyperparameter. We find that the network predictions and their associated
uncertainties are very stable when varying it over several orders of magnitude.

Our network is implemented in PYTORCH [173] and uses ADAM [114] as optimizer. All
hyperparameters are given in Tab. A.2. We employ a simple network consisting of fully
connected dense layers with SiLU activation functions. Given limited resources, simple
and fast networks trained for a large number of iterations produces the best results. For
the LHC events we used two blocks of dense layers connected by a residual connection.
In our setup dropout layers lead to significantly worse results, while normalization layers
have no visible impact on the results. We find that the training of CFM models can be
very noisy, using a large batch size can help to stabilize this.

In general, training diffusion models requires a relatively large number of epochs, as
indicated in Tabs. A.1 and A.2. A key result of our study is to use a cosine-annealing
learning rate scheduler for the CFMs and one-cycle scheduling for the DDPM, as well
as significantly downsizing the models compared to INNs, to allow for more training
epochs. For the entire hyperparameter setup, our B-DDPM implementation turns out to
be slightly more sensitive than the B-CFM.

4.1.3 Autoregressive Transformer
Architecture

A distinct shortcoming of traditional generative models like GANs, INNs, and diffusion
models is that they learn the correlations in all phase space directions simultaneously.
This leads to a power-law scaling for instance of the training effort for a constant precision
in the learned correlations [166]. The autoregressive transformer (AT) [52,174] instead
interprets the phase space vector x = (z1, ...x,) as a sequence of elements z; and factorizes
the joint n-dimensional probability into n probabilities with a subset of conditions,

n

po(x|0) = [[p(wilz1, ..., i1) = Paata(@) , (4.43)
i1

as illustrated in Fig. 4.4. This autoregressive approach improves the scaling with the
phase space dimensionality in two ways. First, each distribution p(z;|z1,...x;—1) is easier
to learn than a distribution conditional on the full phase space vector x. Second, we
can use our physics knowledge to group challenging phase space directions early in the
SeqUENCE T, ..., Tp.

The network learns the conditional probabilities over phase space using a representation
plai|w™) = p(ai|zy, ..zi1) | (4.44)

where the parameters w1 encode the conditional dependence on x1,...x;_1. A naive
(i-1)

choice are binned probabilities w; per phase space direction,
. 1)
plailw ™) = 37 wf W (@), (4.45)
bins j

44

4 Precision event generation with diffusion models and transformers

Ty > w(())

T > w(1>

) > w(2>
Tp—1 > (=1

Figure 4.4: Autoregressive approach to density estimation. The attention matrix
A;; defined in Eq. (4.50) encodes information between components z;. We
introduce an auxiliary condition xzg = 0 for the first phase space component .

where ¥U)(z) is one for x inside the bin j and zero outside. A more flexible and
better-scaling approach is a Gaussian mixture,
plai|wl=Y) = Z w](-ifl)./\/’(azi;ug-ifl),aj(-ifl)) . (4.46)
Gaussian j

It generalizes the fixed bins to a set of learnable means and widths.

Our architecture closely follows the Generative Pretrained Transformer (GPT) mod-
els [174], illustrated in Fig. 4.5. The network takes a sequence of z; as input and evaluates
them all in parallel. We use a linear layer to map each value z; in a d-dimensional latent
space, denoted as z;,. The network consists of a series of TransformerDecoder blocks,
combining a self-attention layer with a standard feed-forward network. Finally, a linear
layer maps the latent space onto the representation w*=1) of the conditions.

Equations (4.45) and (4.46) do not provide an actual structure correlating phase space
regions and phase space directions. This means the transformer needs to construct an
appropriate basis and correlation pattern by transforming the input z into an z’, with
the same dimension as the input vector and leading to the w representation. Its goal
is to construct a matrix A;; that quantifies the relation or similarity of two embedded
phase space components x;, and ;. We construct the single-headed self-attention [52]
of an input x in three steps.

1. Using the conventions of the first layer, we want to measure the relation between z;
and a given xj, embedded in the d-dimensional latent space. Replacing the naive
scalar product ;o7 ;, we introduce learnable latent-space transformations WK

4 N\
N !
= TransformerDecoder "1
g . N ’ § (4)
= T o Tia . X xz; g WY
S Self-Attention Feed-Forward Y3
= /
Tid Liq
. J

Figure 4.5: Architecture of the autoregressive transformer. All phase space
components x; are evaluated in parallel, see Fig. 4.4.

45

4 Precision event generation with diffusion models and transformers

to the elements
w9 WK ..
Gioe = Waﬁxlg and kjo = WapTjs , (4.47)
and use the directed scalar product
Ai]’ ~ Qiakja (448)

to encode the relation of x; with x; through k; and ¢;. While the scalar product
is symmetric, the attention matrix does not have to be, A;; # Aj;. These global
transformations allow the transformer to choose a useful basis for the scalar product
in latent space.

2. The first problem with A;; given in Eq. (4.48) is that it grows with the latent space
dimensionality, so it turns out to be useful to replace it by A;; — A;;/ vd. More
importantly, we want all entries j referring to a given i to be normalized,

Ay €[0,1] and > Aj=1. (4.49)
J

This leads us to the definition
Ay = Softmax; Toe iin Softmax; (2) = — 450
ij = Softmax; Nz wi o max](wj)—w. (4.50)
Similar to the adjacency matrix of a graph, this attention matrix quantifies how
closely two phase space components are related. Our autoregressive setup sketched
in Fig. 4.4 requires us to set

Aij =0 for j>1. (451)

3. Now that the network has constructed a basis to evaluate the relation between two
input elements z; and x;, we use it to update the actual representation of the input
information. We combine the attention matrix A;; with the input data, but again
transformed in latent space through a learnable matrix WV,

_ \% L Ay,
Vja = Wogtjp = Tiq = Aijvja

Q. wK...
W5 iy WioTjo

7 Wyszjs. (4.52)

= Softmax;

In this form we see that the self-attention vector z’ just follows from a general
basis transformation with the usual scalar product, but with an additional learned
transformation for every input vector.

The self-attention can be stacked with other structures like a feed-forward network, to
iteratively construct an optimal latent space representation. This can either be identified
with the final output w® or linked to this output through a simple linear layer. To
guarantee a stable training of this complex structure, we evaluate the self-attention as
an ensemble, defining a multi-headed self-attention. In addition, we include residual
connections, layer normalization, and dropout just like the GPT model. Because the sum
over j in Eq. (4.52) leads to permutation equivariance in the phase space components,
we break it by providing explicit positional information through a linear layer that takes

46

4 Precision event generation with diffusion models and transformers

o N G WO — plagw®) —— .

5 HI : : L = -3 logp(zilw)
Tp—1 —> —> w(”*” —_— p(xn|w(n71))

Ty v *

L

Figure 4.6: Training algorithm for the autoregressive transformer.

the one-hot encoded phase space position ¢ as input. This positional embedding is then
added to the latent representation x;4.

Training and sampling

The training of the autoregressive transformer is illustrated in Fig. 4.6. We start with an
universal o = 0 in p(z1|w®) for all events. The transformer encodes all parameters w
needed for p(z;|w® 1) in parallel. The chain of conditional likelihoods for the realized
values z; gives the full likelihood pg(z|#), which in turn can be used for the loss function

Lar = <—10gp9(90’9)>

T~Pdata

= zn:<—logp(mi\w(i_l))> . (4.53)
i=1

IT~Pdata

The successive transformer sampling is illustrated in Fig. 4.7. For each component, w1
encodes the dependence on the previous components 1, ..., x;_1, and correspondingly we
sample from p(xz-]w(ifl)). The parameters w(@ ...w(# =2 from the sampling of previous
components are re-generated in each step, but not used further. This way the event
generation is less efficient than the likelihood evaluation during training, because it cannot
be parallelized.

Bayesian version

As any generative network, we bayesianize the transformer by drawing its weights from a
set of Gaussians ¢(6) as defined Eq. (4.21). In practice, we replace the deterministic layers

g o)
> (0)
w
L» I > AT w(l)_> p(lew(l))
|

0 WG W
— > AT :
. S) plafwt)
|—>zn71

Lol

Figure 4.7: Sampling algorithm for the autoregressive transformer.

47

4 Precision event generation with diffusion models and transformers

of the transformer by Bayesian layers and add the KL-regularization from Eq. (4.22) to
the likelihood loss of the transformer, Eq. (4.53)

Losr = (Lar), -+ KL{t(®).p(0)] (4.54)

O~q(

For large generative networks, we encounter the problem that too many Bayesian weights
destabilize the network training. While a deterministic network can switch of unused
weights by just setting them to zero, a Bayesian network can only set the mean to zero,
in which case the Gaussian width will approach the prior p(6). This way, excess weights
can contribute noise to the training of large networks. This problem can be solved by
adjusting the hyperparameter describing the network prior or by only bayesianizing a
fraction of the network weights. In both cases it is crucial to confirm that the uncertainty
estimate from the network is on a stable plateau. For the transformer we find that the
best setup is to only bayesianizing the last layer.

To implement the autoregressive transformer we use PYTORCH [173] with the RADAM [175]
optimizer. All hyperparameters are given in Tab. A.3. We propose to couple the number
of parameters m in the parametrization vector w1 to the latent space dimensionality
d, because the latent space dimensionality naturally sets the order of magnitude of
parameters that the model can predict confidently.

4.2 Toy models and Bayesian networks

Before we can turn to the LHC phase space as an application to our novel generative
models, we study their behavior for two simple toy models, directly comparable to
Bayesian INNs [161]. These toy models serve two purposes: first, we learn about the
strengths and the challenges of the different network architectures, when the density
estimation task is simple and the focus lies on precision. Second, the interplay between
the estimation of the density and its uncertainty over phase space allows us to understand
how the different network encode the density. We remind ourselves that an INN just
works like a high-dimensional fit to the correlated 2-dimensional densities [161].

Denoising Diffusion Probabilistic Model

Our first toy example is a normalized ramp, linear in one direction and flat in the second,

pramp(l‘la $2) =2x3 . (4.55)

The network input and output are unweighted events. The hyperparameters of each
model are given in Tabs. A.1, A.2, and A.3. A training dataset of 600k events guarantees
that for our setup and binning the statistical uncertainty on the phase space density is
around the per-cent level. To show one-dimensional Bayesian network distributions we
sample the z;-direction and the f-space in parallel [45,161]. This way the uncertainty in
one dimension is independent of the existence and size of other dimensions.

Starting with the DDPM we show the non-trivial one-dimensional distributions in Fig. 4.8.
In the left panel we see that the network learns the underlying phase space density well,
but not quite at the desired per-cent precision. The uncertainty from the B-DDPM
captures remaining deviations, if anything, conservatively. In the right panel we see that

48

4 Precision event generation with diffusion models and transformers

[*]

Normalized
[

= True

O = ook

6[%] ppPM

= O O Vo
0

Figure 4.8: Ramp distribution from the DDPM. We show the learned density and
its B-DDPM uncertainty (left) as well as the absolute and relative uncertainties
with a range given by 10 independent trainings (right). We use 6 = |Model —
Truth|/Truth.

the absolute uncertainty has a minimum around z; = 0.7, similar to the behavior of the
Bayesian INN and confirmed by independent trainings. We can understand this pattern
by looking at a constrained fit of the normalized density

1
p(ze) =axa+b=a (xg - 2) +1 with x9 € 10,1] . (4.56)
A fit of a then leads to an uncertainty in the density of

c=Ap~

1
Tg — 2‘ Aa , (4.57)

just using simple error propagation. The minimum in the center of the phase space plan
can be interpreted as the optimal use of correlations in all directions to determine the
local density.

For the DDPM the minimum is not quite at zo = 0.5, and the uncertainty as a function
of x5 is relatively flat over the entire range. Because of the statistically limited training

0.20

N

0.15 I o
£ 0.10 ‘

0.05

Normalized
[\S]

0.00 =
0.3
L‘

DDPM

0 0.21 Ty Iy
= ‘
o} g

0.1 Ty

= True

O = oom

6[%]

= O O Vo O

0.0

0.8 1.0 1.2
R

Figure 4.9: Gaussian ring distribution from the DDPM. We show the learned
density and its B-DDPM uncertainty (left) as well as the absolute and relative
uncertainties with a range given by 10 independent trainings (right).

49

4 Precision event generation with diffusion models and transformers

sample, the network output comes with a relatively large uncertainty towards xo = 0.
For larger xo-values, the gain in precision and uncertainty is moderate. For x5 > 0.75
the absolute and relative uncertainties increase, reflecting the challenge to learn the edge
at xo = 1. These results are qualitatively similar, but quantitatively different from the
INN case, which benefits more from the increase in training data and correlations for
x9 = 0.1 ... 0.5.

The second toy example is a Gaussian ring, or a Gaussian sphere in two dimensions,

Pring(71, 22) = N(y/2} + 23;1,0.1). (4.58)

The DDPM result are shown in Fig. 4.9. The precision on the density is significantly
worse than for the ramp, clearly missing the per-cent mark. The agreement between the
training data and the learned density is not quite symmetric, reflecting the fact that
we train and evaluate the network in Cartesian candidates but show the result in R.
Especially for large radii, the network significantly overestimates the tail, a failure mode
which is covered by the predictive uncertainty only for R < 1.3. In the right panels of
Fig. 4.9 the main feature is a distinct minimum in the uncertainty around the mean
of the Gaussian. As for the ramp, this can be understood from error propagation in a
constrained fit. If we assume that the network first determines a family of functions
describing the radial dependence, in terms of a mean and a width, the contribution from
the mean vanishes at R = 1 [161]. Alternatively, we can understand the high confidence

o2

g

&

Z,

o1.1
ésr
—10.0
= 1.0
“ 01

'04 —— True 0.04

g —— CEM .

‘Ez Train 0.02

5

Z.

0.00
0 L=

o 1.1 Ml B -
BlELo PR i 201
—10.0]] : g ol ®
5 Lol mT Il‘}mnmp L I.,w:u ! T‘ 0.05
Pttt nlidtatisiah 000

0.8 1.0 1.2 : 0.8 1.0 1.2
R R

Figure 4.10: Ramp (upper) and Gaussian ring (lower) distributions from the
CFM. We show the learned density and its B-CFM uncertainty (left) as well as
the absolute and relative uncertainties with a range given by 10 independent
trainings (right).

50

4 Precision event generation with diffusion models and transformers

of the network through the availability of many radial and angular correlations in this
phase space region.

Conditional Flow Matching

To confirm that the diffusion architecture is behind the DDPM features, we repeat our
study with the CFM model in Fig. 4.10. The main difference to the DDPM is that the
agreement between the learned and the training densities is now at the per-cent level, for
the ramp and for the Gaussian ring. This shows that diffusion models are indeed able to
learn a phase space density with the same precision and stability as normalizing flows or
INNs. As before, the predictive uncertainty from the B-CFM model is conservative for
the entire phase space of the ramp, but it fails in the exponentially suppressed tail of the
Gaussian ring for R 2> 1.3. We emphasize that as a function of R this problem is clearly
visible when we increase R to the point where o(R) = O(p(R)).

Looking at the pattern of the predicted uncertainty ¢ in x2 and in R, we see a similar
behavior as for the INN and for the DDPM. As for the DDPM, the minimum in the
middle of the ramp is flatter than for the INN, and its position has moved to zs =~ 0.3.
For the radial distribution of the Gaussian ring there is the usual minimum on the peak.

< 2
S 0.02
% b
< 0.00
Egéﬁé £2.0.02
.)
gl(l)g f0s it ;'11%311; it ‘\SM\."HHTMZTA‘T“'T
i o TP STRITTBAIIE | el L TR, 0.00
0.2 0.4 0.6 0.8 ’ 0.2 0.4 0.6 0.8
X5 X2
N —— Truth
E AT 0.02
Té’ 2 Train © 0.01
3
< 0.00
51.(1) 0.04
= £L0 &
— 183 iy © 0.02
S 1of
© 01 0.00

Figure 4.11: Ramp (upper) and Gaussian ring (lower) distribution from the
autoregressive transformer with a binned likelihood. We show the learned density
and its Bayesian network uncertainty (left) as well as the absolute and relative
uncertainties with a range given by 10 independent trainings, compared to the
statistical uncertainty of the training data in blue (right).

51

4 Precision event generation with diffusion models and transformers

Summarizing our findings for the two diffusion models, they behave similar but not
identical to the INN. For all of them, the relation between the density and its uncertainty
shows patterns of a constrained fit, suggesting that during the the training the networks
first determine a class of suitable models and then adjust the main features of these
models, like the slope of a ramp or the position and width of a Gaussian ring.

Autoregressive Transformer

Finally, we target the two-dimensional ramp, Eq. (4.55), and the Gaussian ring, Eq. (4.58)
with the transformer. In Fig. 4.11 we start with a simple representation of the phase space
density using 64 bins. In this naive setup the densities of the ramp and the Gaussian ring
are described accurately, within our per-cent target range. The largest deviations appear
in the tails of the Gaussian ring, but remain almost within the statistical limitations of
the training data.

Unlike for the INN and the diffusion models, the uncertainty in the right panels of
Fig. 4.11 does not show any real features for the ramp or the Gaussian ring. This shows
that the transformer does not use a fit-like density estimation and does not benefit from
the increased correlations in the center of phase space. Both of these aspects can be
understood from the model setup. First, the autoregressive structure never allows the

9?2 0.04
% b
%) 0.02
2z,
0.00
0.04
51.1
S &
—10.0 ©0.02
210 +Tml+w+*’m‘!mTummn‘m.pquzwmW:T
et A S S AESAn AN 0.00
0.2 0.4 0.6 0.8 ’ 0.2 0.4 0.6 0.8
X3 X3
4
—— Truth
? —— AT
'S 2 Train ©0.02
:
4
0.00
0
=1.11f Em B
%‘5(1).8 il Y - : &o 05
—10.0 e It °
§‘ 1.0 “uufu‘t T §Tw;. il * T
S 01 AT 0.00
0.8 1.0 1.2

Figure 4.12: Ramp (upper) and Gaussian ring (lower) distribution from the
autoregressive transformer with a Gaussian mixture likelihood. We show the
learned density and its Bayesian network uncertainty (left) as well as the absolute
and relative uncertainties with a range given by 10 independent trainings,
compared to the statistical uncertainty of the training data in blue (right).

52

4 Precision event generation with diffusion models and transformers

1 —— Truth —— Truth —— Truth
AT

p(x1)
|
E
= O)N
|
=1

p(xax;
=
p(xax;

Figure 4.13: Conditional likelihoods for the Gaussian ring. We show the full
Gaussian mixture as well as the 21 individual Gaussians, compared to the truth
distribution.

transformer to see the full phase space density and encode global (symmetry) patterns;
second, the main motivation of the transformer is to improve the power-law scaling
with the dimensionality of all possible correlations and only focus on the most relevant
correlations at the expense of the full phase space coverage.

In Fig. 4.12 we show the same results for a mixture of 21 Gaussians. For this small
number of dimensions the advantage over the binned distribution is not obvious. The
main problem appears at the upper end of the ramp, where there exists enough training
data to determine a well-suited model, but the poorly-suited GMM just fails to reproduce
the flat growth towards the sharp upper edge and introduces a significant artifact, just
covered by the uncertainty. For the Gaussian ring the GMM-based transformer is also less
precise than the binned version, consistent with the lower resolution in the 2-dimensional
model.

The uncertainty predicted by the Bayesian transformer is typically smaller than for
diffusion models. We therefore add the statistical uncertainty of the training data to the
right panels of Figs. 4.11 and 4.12, providing a lower bound on the uncertainty. In both
cases, the uncertainty of the Bayesian transformer conservatively tracks the statistical
uncertainty of the training data.

Finally, in Fig. 4.13 we illustrate the unique way in which the GMM-based transformer
reconstructs the density for the Gaussian ring successively. In the left panel, we show
po(x1) after the first autoregressive step, constructed out of 21 learned Gaussians. The
peaks at +1 arise from the marginalization along the longest line of sight. The marginal-
ization also distorts the form of the Gaussians, which are distributed along the ring.
The density after the second autoregressive step, pg(z2|x1), is conditioned on the first
component. In the second panel we show py(z2|z1 = 0) with sharp peaks at £1 because
the event has to be at the edge of the ring. The Gaussians building the left and right
peak are distributed roughly equally. On the other hand, pyg(z2|z1 = 1) has a broad
plateau in the center, again from the z;-condition.

4.3 LHC events

Most generative network tasks at the LHC are related to learning and sampling phase
space densities, for instance event generation at the parton or reconstruction level, the

53

4 Precision event generation with diffusion models and transformers

Njets

Z9 Puis Pugs Pjy

Njets

Zy4 » @—> Pjy
l Y
Zy4 > @—~ Pjs

Figure 4.14: Conditional Sampling Architecture.

description of detector effects at the reconstruction level, the computation of event-wise
likelihoods in the matrix element method, or the inversion and unfolding of reconstructed
events. This is why we benchmark our new networks on a sufficiently challenging set of
LHC events. Following Ref. [45] we choose the the production of leptonically decaying
Z-bosons, associated with a variable number of QCD jets,

— Zyp + {1,2,3} jets . (4.59)

The network has to learn the sharp Z-peak as well as correlated phase space boundaries
and features in the jet-jet correlations. We generate the training dataset of 5.4M events
(4.0M + 1.1M + 300k) using SHERPA2.2.10 [31] at 13 TeV, including ISR and parton
shower with CKKW merging [176], hadronization, but no pile-up. The jets are defined
by FASTJET3.3.4 [177] using the anti-k7 algorithm [109] and applying the basic cuts

pr; > 20 GeV and AR;; >04. (4.60)

The jets and muons are each ordered in transverse momentum. Our phase space dimen-
sionality is three per muon and four per jet, i.e. 10, 14, and 18 dimensions. Momentum
conservation is not guaranteed, because some final-state particles might escape for in-
stance the jet algorithm. However, the physically relevant phase space dimensionality is
reduced to 9, 13, and 17 by removing the global azimuthal angle.

Our data representation includes a minimal preprocessing. Each particle is represented
by

{pr,n,0,m } . (4.61)

Given Eq. (4.60), we provide the form log(pr — prmin), leading to an approximately
Gaussian shape. All azimuthal angles are given relative to the leading muon, and the
transformation into artanh(A¢/m) again leads to an approximate Gaussian. The jet
mass is encoded as logm. Finally, we centralize and normalize each phase space variable
as (¢i — gi)/o(¢;) and apply a whitening/PCA transformation separately for each jet
multiplicity for the two diffusion models.

54

4 Precision event generation with diffusion models and transformers

Denoising Diffusion Probabilistic Model

The additional challenge for Z+jets event generation is the variable number of jets, which
we tackle with a conditional evaluation [45], illustrated in Fig. 4.14. The training is
independent for the three jet multiplicities. We start by giving the information for the
Z + 1-jet sub-process, 12 phase space dimensions, to a first network. It is supplemented
with the one-hot encoded jet count. The second network then receives the 4-momentum
of the second jet as an input, and the Z + 1-jet information additionally to the jet count
as a condition. Analogously, the third network learns the third jet kinematics conditioned
on the Z + 2-jet information. For democratic jets this conditioning would be perfect,
but since we order the jets in pp it has to and does account for the fact that for higher
jet multiplicities the interplay between partonic energy and jet combinatorics leads to
differences in the spectra of the leading jets at a given multiplicity.

As discussed in Sec. 4.1.1 time is a crucial condition for the DDPM network, and we
embed it into the full conditioning of the LHC setup as a high-dimensional latent vector
linked by a linear layer. We also add a second block to our network architecture, where
the conditions are fed to each block individually. The amount of training data is different
for the different jet multiplicities and corresponding networks. As shown in Tab. A.1,
the first network uses the full 3.2M events, the second 850k events with at least two jets,
and the third network 190k events with three jets. This hierarchy is motivated by the
way the chain of conditional networks add information and also by the increasing cost of
producing the corresponding training samples. We could balance the data during training,
but for the B-DDPM model this leads to a slight performance drop. We compensate the
lack of training data by increasing the number of epochs successively from 1000 to 10000.

Going from toy models to LHC events, we increase the number of blocks to two, which
improves the performance. The reason is that we attach the condition to the input at the
beginning of each block, so the second block reinforces the condition. Going to even more
blocks will slightly improve the performance, but at the expense of the training time.

In Fig. 4.15 we show a set of kinematic distributions for different jet multiplicities,
including the jet-inclusive scalar sum of the up to three pr ;. These distributions will be
the same for all three network in this paper and can be compared directly to the Bayesian
INN results in Fig. 11 of Ref. [45], serving as a precision baseline. Starting with the
almost featureless pr-distributions in the left panels, we see that for all three distributions
the deviation from the truth, given by high-statistics training data, is similar for the
actual training data and for the DDPM-generated events. The network really extracts all
available information from the training data combined with its fit-like implicit bias. For
sufficient training statistics, the precision on the phase space density as a function of pr is
below the per-cent level, easily on par with the INN baseline. For a given jet multiplicity
this precision drops with increasing pr and correspondingly decreasing training data, an
effect that is correctly and conservatively modeled by the uncertainty estimate of the
B-DDPM. Combining all n-jet samples into one observable is no problem for the network
and does not lead to any artifacts.

In the right panels of Fig. 4.15 we show the most challenging phase space correlations.
We start with the Z-peak, which governs most of the events, but requires the network to
learn a very specific phase space direction very precisely. Here, the agreement between
the true density and the DDPM result drops to around 10% without any additional phase
space mapping, similar to the best available INN. The deviation is not covered by the
Bayesian network uncertainty, because it arises from a systematic failure of the network

55

4 Precision event generation with diffusion models and transformers

Z+1 jet exclusive 0.25 Z+1 jet exclusive
]

< 1072 - 0.20
.g — True g — True
Tés —— DDPM Té* ' —— DDPM
51073 - i g
o Train o
Z Z

T vof i e il g“l’g ’tlff ' it
il Sl 1 e il
25 50 75 100 125 150 80 85 90 95 100
prj1 [GeV] M, [GeV]
107 Z+2 jet exclusive 0.5 Z+2 jet exclusive
E —— True EOA — True
T10 —— DDPM 'Téo'g —— DDPM
g 202 —— Train

0.0 -
1.2 B
2210 A A
aF~ T HETE
0.8 =
. 10.0 o e%% x f
— t .5 813800
§ 1.0 f.!i 4 * *T” ? ‘Tt I T T 1 c\o 1.0 TSRS A SN 21 “.. : *T I T T
= aa LA ’ = ol IHHATTAT L
0.1 0.1
20 40 60 80 2 4 6
prj2 [GeV] ARjyjo
Z+jets inclusive 0.4 Z+3 jet exclusive
1072
o
S — True EO'B —— True
g =
é . —— DDPM EO.Z —— DDPM
2 10 g —— Train
0.1
107* 0.0 |
1.2 =
3l _ = w1.2 - R
BlEL0] &lE1.0rRH =
2 —HH
0.8 0.8 B
10.0 10.0] | #%s 4o evessasssiattatTerbyttitisey’
— . : — *? Teegtet? !
L 10l 4] ‘HTT*+ : mi S 10l Wrpttastis W\‘.I‘I ! ‘I$
= o1 T el TR ' o LEEIOA LT LA e LT
011l 0.1 |
50 100 150 200 3 4 3
2. brji [GeV] ARjyj3

Figure 4.15: Bayesian DDPM densities and uncertainties for Z + 1 jet (upper),
Z + 2 jets (center), and Z + 3 jets (lower) from combined Z+ jets generation.
The uncertainty on the training data is given by bin-wise Poisson statistics. The
network architecture is given in Tab. A.1. For a comparison with the INN we
refer to Fig. 11 of Ref. [45].

56

4 Precision event generation with diffusion models and transformers

in the phase space resolution, induced by the network architecture. However, this effect
is less dramatic than it initially looks when we notice that the ratio of densities just
describes the width of the mass peak being broadened by around 10%. If needed, it can
be easily corrected by an event reweighting of the Z-kinematics. Alternatively, we can
change the phase space parametrization to include intermediate particles, but most likely
at the expense of other observables.

Next, we study the leading challenge of ML-event generators, the jet-jet correlations and
specifically the collinear enhancement right at the hard jet-separation cut of AR;; > 0.4.
Three aspects make this correlation hard to learn: (i) this phase space region is a sub-
leading feature next to the bulk of the distribution around AR;; ~ 7; (ii) it includes a
sharp phase space boundary, which density estimators will naturally wash out; and (iii),
the collinear enhancement needs to be described correctly, even though it appears right
at the phase space boundary. Finally, for this correlation the conditional setup and the
Bayesian extension are definitely not helpful.

What helps for this correlation is the so-called magic transformation introduced in
Ref. [45]. It scales the ARj;-direction in phase space such that the density in this phase
space direction becomes a monotonous function. While from a classic Monte Carlo
perspective the benefits of this transformation are counter-intuitive, from a a fit-like
perspective the magic transformation can simplify the class of function which the network
then adapts to the data, as shown for the toy models in the previous section. This
argument is confirmed by the fact that for our diffusion networks this transformation is
helpful, just like for the INN, but for the transformer it is not needed. Both, for the 2-jet
and the 3-jet sample we see that with the magic transformation the DDPM learns the
ARj; features, but at the same 10% level as the INN and hence missing our 1% target.
The Bayesian uncertainty estimate increases in this phase space region as well, but it is
not as conservative as for instance in the pr-tails.

The challenge of current diffusion networks, also the DDPM, is the evaluation speed.
For each additional jet we need to call our network 1000 times, so sampling 3-jet events
takes three times as long as sampling 1-jet events. However, none of the networks
presented in this study are tuned for generation speed, the only requirement for a limited
hyperparameter scan is the precision baseline given by the INN.

Conditional Flow Matching

For the CFM diffusion network we follow the same conditional setup as for the DDPM
and the INN to account for the variable number of jets. The network is described in
Tab. A.2, unlike for the DDPM the three networks do not have the same size, but the
first network with its 9 phase space dimensions is larger. Also the number of epochs
increases from 1000 to 10000 going to the 3-jet network. For the CFM we combine the
embedding of the time and the conditioning on the lower jet multiplicities. We find the
best results when encoding time, the kinematic condition, and the actual network input
separately into same-sized latent vectors with independent linear layers. Then all three
are concatenated and given to the network.

The kinematic distributions generated by the CFM are shown in Fig. 4.16. Again,

the transverse momentum spectra are learned with high precision, with decreasing
performance in the tails, tracked correctly by the Bayesian network uncertainty. The

57

4 Precision event generation with diffusion models and transformers

correlation describing the Z-peak is now modeled as well as the bulk of the single-
particle distributions, a significant improvement over the INN baseline [45]. For the
most challenging AR;; distributions the CFM uses the same magic transformation as the
DDPM and achieves comparable precision. This means that while there might possibly
be a slight benefit to our CFM implementation with an ODE approach to the discrete
time evolution in terms of precision, our level of network optimization does not allow
us to attribute this difference to luck vs network architecture. Similarly, in the current
implementation the CFM generation is about an order of magnitude faster than the
DDPM generation, but this can mostly be attributed to the linear trajectory and the
extremely efficient ODE solver.

Autoregressive Transformer

For the third network, a generative transformer, we already know from Sec. 4.2 that it
learns and encodes the phase space density different from normalizing flows or diffusion
networks. A key structural difference for generating LHC events is that the transformer
can generate events with different jet multiplicities using the same network. The one-
hot-encoded jet multiplicity is provided as an additional condition for the training. The
autoregressive structure can work with sequences of different length, provided there is
an appropriate way of mapping the sequences onto each other. For the LHC events we
enhance the sensitivity to the angular jet-jet correlations through the ordering

((¢u 77)]'1,2,3? (pTan)mv (pT7¢vn)u2’ (pT’m)jl,Q,B) . (4.62)

While the Bayesian transformer does learn the angular correlations also when they appear
at the end of the sequence, this ordering provides a significant boost to the network’s
precision. For the transformer training, we want the features of the 3-jet to be well
represented in the set of vectors defined in Eq. (4.62). To train on equal numbers of
events with one, two, and three jets, we sample 1-jet and 2-jet events randomly at the
beginning of each epoch. The loss is first evaluated separately for each jet multiplicity,
and then averaged for the training update.

In Fig. 4.17 we show the standard set of kinematic observables for the autoregressive
transformer based on a Gaussian mixture model, with the architecture given in Tab. A.3.
Just like the two diffusion models, and the INN, it learns the different pp-distributions
with a precision close to the statistics of the training data. Sampling a variable number
of jets with the multiplicity as a condition leads to no additional complication.

Looking at the correlations in the right panels, the Z-mass now comes with an increased
width and a shift. This is, in part, an effect of the ordering of the input variables, where
the lepton information comes after the angular information on the jets. The benefit
of this ordering can be seen in the AR;; distributions, which are reproduced at the
per-cent precision without any additional effort. This is true for AR; ;, and ARj, s,
reflecting the democratic ordering and training dataset. The sharp phase space boundary
at ARj; = 0.4 can be trivially enforced during event generation.

58

4 Precision event generation with diffusion models and transformers

Normalized

Normalized

Normalized

—
9
N

1073

1071

1072

—
9
N

1073

Z+1 jet exclusive

— True
— CFM
—— Train

Z+2 jet exclusive

— True
— CFM

—— Train

Z+jets inclusive

— True
— CFM
—— Train

100
Zi Prj, [GeV]

150

200

0.25

e ©
= [\
vl o

Normalized
o
Fa
o

0.5

o ©°2
oo

Normalized
o
N

o o
W

Normalized
o
N

Z+1 jet exclusive

— True
— CFM

80 85 90 95 100
M, [GeV]
Z+2 jet exclusive
— True
— CFM

—— Train

.
.
-
ore

Z+3 jet exclusive

True
CFM
Train

Figure 4.16: Bayesian CFM densities and uncertainties for Z 4 1 jet (upper),
Z + 2 jets (center), and Z + 3 jets (lower) from combined Z+ jets generation.
The uncertainty on the training data is given by bin-wise Poisson statistics. The
network architecture is given in Tab. A.2. For a comparison with the INN we
refer to Fig. 11 of Ref. [45].

59

4 Precision event generation with diffusion models and transformers

Z+1 jet exclusive Z+1 jet exclusive
E 10°% Truth E’ Truth
& E
g 103 g 0.1
Z Z
1074
£1.2
g|21.0;
0.8 ; ;
,?10.0 e {I I I Tﬁ I 1007, . e I Oo.o...of i
R R R S 1ot ! by I
< ox AT R LI < oo LT it T
25 50 75 100 125 150 80 85 90 95 100
pr,1[GeV] M,,,[GeV]
107 Z+2 jet exclusive Z+2 jet exclusive
o < 0.4
kS| Truth = —— Truth
‘T 107 E —— AT
E
5 go'z —— Train
Z Z
0.0
1.2 e
|5 1.0 [oAt
0.8 -
~.10.0{ %,
=10 ‘Ig 4idaesdiig I +: ! !
0 et i \
2 4 6
pT,jZ[GeV] ARjy j»
Z+jets inclusive 0.4 Z+3 jet exclusive
1072
E Truth FQS-]) 0.3 —— Truth
E E —— AT
E_ £ 0.2
;5 107 5 —— Train
Z0.1
1074 0.0
12 - 1.21]
“fE10 i <10
0.8
|—|10'0 $ ‘Tﬂ: ﬁlgg L 284 ¢ I ; T f; T
S, vo L J 2 voj it ittt I I J
0.1 Mﬂl#ﬁ m Hi © 01 H ‘ ! ‘ ‘ ‘ ‘ ‘
50 100 150 200 b 4 6
ZipT,ji ARjy j3

Figure 4.17: Bayesian autoregressive transformer densities and uncertainties for
Z+1 jet (upper), Z+2 jets (center), and Z+3 jets (lower) from combined Z+ jets
generation. The uncertainty on the training data is given by bin-wise Poisson
statistics. The network architecture is given in Tab. A.3. For a comparison with
the INN we refer to Fig. 11 of Ref. [45].

60

4 Precision event generation with diffusion models and transformers

True True True
—— DDPM — CFM — AT

Normalized
-
(=]
b
Normalized
-
o
b
Normalized
-
b

H
1
L
o
3
1
-
3
1

H
9
&
-
5]
&
—
Q
&

| 1 !
102 107! 10° 10! 10% 102 107! 10° 10! 10? 102 107! 10° 10! 10?
weights weights weights

Figure 4.18: Classifier weight distribution for each of the three networks evaluated
on Z+2j events.

4.4 Quantitative evaluation of generators

Following Ref. [178] we evaluate the quality of the networks by training binary classifiers
to distinguish between generated and true samples. The output C'(x) of a well-trained
classifier gives access to the likelihood ratio between the true and the model density via

ptrue(l') _ C(:L')
pmodel($) 1- C(l’) ‘

w(z) =

(4.63)

This is done individually for all three models, DDPM, CFM and AT, following the
training procedure as discussed in [178]. The corresponding weight distributions are
shown in Fig. 4.18. For all three models the weight distribution shows a similar structure.
The overwhelming majority of events is clustered around weights of one, indicating a
good agreement between the model and the true distribution. The weak tail to the right
shows that no phase space region is systematically underpopulated. Lastly, all three
models show a peak in the overflow bin to the left, indicating a clear failure mode. Low
values of w(x) correspond to regions where pyye is approaching zero whereas ppoder 18
not. We checked that this excess is due to the already discussed mismodeling around the
hard cut-off Alejg =04.

4.5 Outlook

Generative neural networks are revolutionizing many aspects of our lives, and LHC
physics is no exception. Driven by large datasets and precise first-principle simulations,
LHC physics offers a wealth of opportunities for modern machine learning, in particular
generative networks [26]. Here, classic network architectures have largely been surpassed
by normalizing flows, especially its INN variant, but cutting-edge new approaches are
extremely promising. Diffusion networks should provide an even better balance between
expressivity and precision in the density estimation. Autoregressive transformers should
improve the scaling of network size and training effort with the phase space dimensionality.

In this paper we have provided the first comprehensive study of strengths and weaknesses
of these new architectures for an established LHC task. We have chosen two fundamentally
different approaches to diffusion networks, where the DDPM learns the time evolution
in terms of discrete steps, while the CFM encodes the continuous time evolution into
in a differential equation. The autoregressive JetGPT transformer follows the standard

61

4 Precision event generation with diffusion models and transformers

GPT architecture, where for our relatively simple setup we get away without actual
pretraining.

For each architecture we have first implemented a Bayesian network version, which
allows us to understand the different ways they approach the density estimation. While
the diffusion networks first identify classes of functions and then adapt them to the
correlations in phase space, much like the INN [161], the transformer learns patterns
patch-wise and dimension by dimension.

Next, we have applied all three networks to the generation of Z+jets events, with a focus
on the conditional setup for variable jet multiplicities and the precision in the density
estimation [45]. The most challenging phase space correlations are the narrow Z-peak
and the angular jet—jet separation combined with a collinear enhancement.

Our two diffusion models are, conceptually, not very far from the INNs. We have found
that they face the same difficulties, especially in describing the collinear jet—jet correlation.
Just like for the INN, the so-called magic transformation [45] solved this problem. Both
diffusion networks provided an excellent balance between expressivity and precision, at
least on part with advanced INNs. This included the density estimation as well as the
uncertainty map over phase space. The main advantage of the CFM over the DDPM
was a significantly faster sampling for our current implementation, at the level of the
INN or the transformer. In contrast, the DDPM model is based on a proper likelihood
loss, with all its conceptual and practical advantages for instance when bayesianizing
it. Both networks required long training, but fewer network parameters than then INN.
We emphasize that ML-research on diffusion models it far from done, so all differences
between the two models found in this paper should be considered with a grain of salt.

Finally, we have adapted the fundamentally different GP'T architecture to LHC events. Its
autoregressive setup provided a different balance between learning correlations and scaling
with the phase space dimension, and it has never been confronted with the precision
requirements of the LHC. The variable numbers of particles in the final state was
implemented naturally and without an additional global conditioning. Our transformer
is based on a Gaussian mixture model for the phase space coverage, and we have used
the freedom of ordering phase space dimensions in the conditioning chain to emphasize
the most challenging correlations. This has allowed the transformer to learn the jet—jet
correlations better than the INN or the diffusion models, but at the expense of the
description of the Z-peak. The generation time of the transformer is comparable with
the fast INN.

Altogether, we have found that new generative network architectures have the potential
to outperform even advanced normalizing flows and INNs. However, diffusion models and
autoregressive transformers come with their distinct set of advantages and challenges.
Given the result of our study we expect significant progress in generative network
applications for the LHC, whenever the LHC requirements in precision, expressivity, and
speed can be matched by one of the new architectures.

62

Chapter

Precision-Machine Learning for the Matrix
Element Method

The research presented in this chapter is based on work in collaboration with Theo
Heimel, Ramon Winterhalder, Tilman Plehn and Anja Butter, and has been previously
published in Ref. [2]. The content is similar or identical to the content of this article.

Optimal analyses are the key challenge for the current and future LHC program, including
specific model-based as well simulation-based search strategies. A classic method is
the matrix element method (MEM), developed for the top physics program at the
Tevatron [53,54]. It derives its optimality from the Neyman-Pearson lemma and the fact
that all information for a given hypothesis is encoded in the differential cross section. In
the MEM, we compute likelihood ratios for individual events, such that the log-likelihood
ratio of an event sample is the sum of the event-wise log-likelihood ratios. A combination
of events to a kinematic distribution is not necessary [179].

The MEM was first used in the top mass measurement [180-183] and the discovery of
the single-top production process [184] at the Tevatron. At the LHC, there exist several
studies [185-191] and analysis applications [190,192-195]. The critical challenge to MEM
analyses is the integration over all possible parton-level configurations which could lead
to the analyzed observed events. It can be solved by using modern machine learning
(ML) for a fast and efficient combination of simulation and integration [55,56]. A related
ML approach to likelihood extraction is the classifier-based estimation of likelihood
ratios [125].

We present a comprehensive simulation and integration framework for the MEM, based
on modern machine learning [23,26]. It makes extensive use of generative networks,
which are transforming LHC simulations and analyses just like any other part of our lives.
This starts with phase-space integration and sampling [82,134-138] and continues with
more LHC-specific tasks like event subtraction [141], event unweighting [142,143], loop
integrations [196], or super-resolution enhancement [144,145]. At the LHC, generative
networks generally work in interpretable physics phase spaces, for example scattering
events [1,40-45], parton showers [105,147,149-151,197-199], and detector simulations [90,
91,93-104,106,200-208]. These networks can be trained on first-principle simulations and
are easy to handle, efficient to ship, powerful in amplifying the training samples [152,153],
and — most importantly — precise [45,163,178,209]. Conditional versions of these
established generative networks then enable new analysis methods, like probabilistic
unfolding [61-65,68,210-212], inference [56, 154], or anomaly detection [213-218].

63

5 Precision-Machine Learning for the Matrix Element Method

We introduce a new MEM-ML-analysis framework in Sec. 5.1. It combines two generative
network and one classifier network and pushes the precision beyond our conceptual
study [56], towards an experimentally required level. For a fast and bi-directional
evaluation we use the established cINNs with advanced coupling layers [45], updated
to current precision requirements in Sec. 5.2. In Sec. 5.3, we add a learned acceptance
network. In Sec. 5.4, we show how a generative diffusion network [1] improves the precision,
albeit at the expense of speed. Finally, we employ a transformer architecture [1,170,219]
to solve the jet combinatorics in Sec. 5.5. This series of improvements allows us to extract
likelihood distributions from small and moderate-size event samples without a network
bias and with close-to-optimal performance.

Reference process

The focus of this paper is entirely on our new ML-method to enable MEM analyses at
the LHC. However, we use an established, challenging, and realistic physics process to
illustrate our method. This reference process is introduced and discussed in Ref. [56].
We target the purely hadronic signature

pp — tHj — (bjj) (vy) j + jets , (5.1)

with up to four additional jets from QCD radiation. The production process allows for a
measurement of a CP-phase in the top Yukawa coupling at future LHC runs [220-228].
The challenge of having to work with small event numbers is motivated by choosing the
rare decay channel H — ~7, which allows us to control continuum backgrounds efficiently.
The total cross section is 43.6 fb, when we combine top and anti-top production.

To probe the symmetry structure of the Yukawa coupling, we introduce a mixed CP-even
and CP-odd interaction [229],

o w 5+ ibsina B
Ly = NG [a cos v tt + ibsin a tvyﬁ} H . (5.2)
Choosing a = 1 and b = 2/3 [230] keeps the cross section for gg — H constant. The
model parameter we target with the matrix element method is the CP-angle o. For more
details on this reference process we refer to our conceptual study [56]. Obviously, all our
findings can be generalized to other LHC processes.

5.1 ML-matrix element method

The matrix element method is a simulation-based inference method which uses the fact
that for a given parameter of interest, «, the likelihood can be extracted from a simulation
of the differential cross section. It describes the hard scattering process and factorizes
into the total cross section and a normalized probability density,

do(a) 1 do(a)
AT nard = O'(Oé) p(xhard‘a) ~ P(l’hard|04) = @ drard .

(5.3)

Given the hard process, we then simulate the parton shower, hadronization, detector
effects, and the reconstruction of analysis objects, with a forward-transfer or response

64

5 Precision-Machine Learning for the Matrix Element Method

function r [231]. This function is assumed to be independent of the theory parameter o

r(xreco ‘xhard)
—) :L'I‘eCO

Lhard — 5.4
L rejected (5-4)
preject(xhard)

The detector geometry and acceptance cuts will lead to, either, a valid reco-level event xyeco
or a rejected event, introducing preject (Thard) as the probability that a given hard event
Thard 1S rejected. The transfer function 7 is not normalized, and a proper normalization
condition defines the efficiency or acceptance function,

6(afhard) = /dxreco T(xreco‘xhard) =1~ Preject (xhard) . (5-5)
Using the transfer function we can parametrize the forward evolution of the differential

cross section following

do(a)
dx hard

d
dosa(@) _ / dZhard (Zreco|Thard)

5.6

dZreco ’ ()

where the subscript ‘fid’ indicates that the reco-level phase space is different from the
parton level. In this relation we can use Eq.(5.5) to replace r with a normalized transfer

probability p(Zreco|Thard)s

r(mrecolxhard) = 6(xhard) p(mrecolxhard) with /dxreco p(xreco‘xhard) =1. (5-7)

Inserting Eq.(5.7) in Eq.(5.6) we obtain the final expression for the differential cross
section

do(a)

do fid (a
T T
dmhard

) = /dxhard 6(xhaurd) p(xreco|-7;hard) (58)

AT reco

Equivalent to Eq.(5.3) we can now define the likelihood for reco-level events in terms of
the fiducial cross section and the differential cross section

doe (e 1 dogg(a
ﬂ = O'ﬁd(a) p($reco|a) = p(fvreco‘a) - O’ﬁd(a) d;d() ’

(5.9)

dZreco

To obtain the fiducial cross section ogq(), we now need to integrate Eq.(5.8) over the
reco-level phase space

do(a
Uﬁd(a) = /dxreco/d$hard E(xhard) p(xreco|xhard) d.%‘}f ()1
ar
do(«)
= [dxhard €(Thar
/ hard (h d) dxhard
= U(a) / dwhard 6(-Thard) p(xhard’a)
= 0(a) (€(Thard)) yop(ayale) (5.10)

where we first use Eq.(5.7) to integrate out the reco-level phase space and then replace
the differential cross section using Eq.(5.3). This allows us to express the integral in
terms of the average acceptance (e), which is used to evaluate the integral numerically.

65

5 Precision-Machine Learning for the Matrix Element Method

Using Eq. (5.8) in Eq. (5.9) we obtain the final expression for the reco-level likelihood

1 do(a
p<xreco|a) = m /dxhard da;}f()i 6(xhard) p<33rec0’xhard) . (5-11)

Note that in our training dataset, consisting of simulated event pairs (Zyeco, Thard), the
hard-scattering momenta are not distributed according to Eq.(5.3), because it does not
contain events xp.q that have been rejected. Consequently, the accepted xparq are
distributed as

1 do(a)
ofd() dnard

Phid(Thard|) = €(Thard) - (5.12)

This means, we can directly relate the reco-level likelihood to a modified parton-level
likelihood

p(xreco‘a) = /dwhard p(wrec0|xhard) pﬁd(xhard|04) s (5'13)

which connects the MEM with the completeness relation from statistics.

Acceptance classifier and transfer network

To compute the reco-level likelihood defined in Eq.(5.11) we rely on €(2hara) and
P(Treco|Thard), defined through a forward simulation. We encode both functions in
neural networks trained on these forward simulations.

First, the acceptance €(xnaq) can be encoded as a standard classifier network

Acceptance network

Thard €y (Thard) (5.14)

where 1 denotes the trainable network parameters. Given the input xpa.q it learns the
labels 1 for accepted events and 0 otherwise. Because the network is a classifier with a
cross entropy loss, its output will be the acceptance probability for the given event.

The transfer probability introduced in Eq.(5.7) is encoded in a generative network with
density estimation capability, like a normalizing flow or diffusion model, and is trained
on event pairs (Zyeco, Thard). For this training dataset, we only include accepted events.
The generative network defines a bijective mapping between Gaussian random numbers
and reco-level phase space conditioned on parton-level events,

T f k
Lreco ™~ p@(xreco‘xhard) M) T ~ Dlatent (T) y (515)

with trainable parameters 6. This mapping can than be used for density estimation in
the forward direction and for conditional generation of reco-level events in the inverse
direction.

Sampling-cINN

The integration in Eq.(5.13) is challenging, because the differential cross section spans
several orders of magnitude, and the transfer probability typically forms a narrow peak.

66

5 Precision-Machine Learning for the Matrix Element Method

Lreco

{T ‘ T ~ Platent (’l")}

> ® {Thara} Transfer

(67 > CcINN " network

Y
Acceptance
network
_ 1 p (xreco |
p(xrcco|a/) - Ofid

Figure 5.1: Three-network MEM integrator evaluating Eq.(5.23) through sam-
pling r. The Sampling-cINN is conditioned on the CP-angle v and the reco-level
event Tyeco. 1he Transfer network is conditioned on the hard-scattering event
Thard- For the three-network setup the acceptance €(xparq) is encoded in a
network.

We solve the integral using Monte Carlo integration sampling harq ~ ¢(Zhard|Treco, @) =
Q(ajhard)a

p(xreco‘a) = /dxhard pﬁd(ajhard|a) p&(xreco|xhard)

1
=\ ——— pﬁd<1’hard’a) p@(wrecomhard) s (5'16)
Q(xhard)
mhardNQ(xhard)
Ideally, this assumes
p@(xreco|$hard) = p(ajreco|$hard) s (517)
in which case we can use Bayes’ theorem to arrive at
1
p(xreco|05) =\ 77 pﬁd(whard|a) p(xreco‘xhard)
Q(xhard)
xhardNQ(xhard)
1
=\ 77—~ p(xhard‘xrecm a)p(xreco‘a) . (518)
Q(xhard)
Clfhard"’Q(mhamd)
For this integral the variance vanishes when
Q(xhard) = Q(xhard|xrec0, a) 0.8 p(mhard|$recoa Oé) 5 (519)

where p(Zhard|Treco,) corresponds to the generative unfolding probability from reco-
level to parton-level [64]. However, in practice, we cannot expect the learned transfer
probability to match its truth counterpart perfectly. In that case the condition in Eq.(5.19)

67

5 Precision-Machine Learning for the Matrix Element Method

becomes

Q(xhard’xrecm a) X pﬁd(xhard‘a) p&(xreco‘xhard) . (520)

In both cases, we train a second conditional normalizing flow with trainable parameters
 to encode this optimal transformation of the integration variables,

Sampling-cINN
—

T~ platent(r) xhard(r) ~ QQO(xhard’wrecm a) y (521)

which allows to parameterize the conditional sampling density as

r
Q<p(xhard|33rec07a) = Q4p(xhard(r)|$recova) = ant()
Jo(r)
OZnara(T; ,
with J,(r) = ’ Phard (73 Treco, @ “0)‘ . (5.22)
or
The MEM integral in Eq.(5.11) now reads
1 do(«)
P(Treco|¥) = /err[€p(x Do (Zreco|T }
(eco‘) aﬁd(a) go() dxhard w(hard) (eco‘ hard) Ehuaed (FiEroco 110)
1 Jo(r do(«a
= < ‘P() |:d ()6¢(xhard)p9(xreco‘xhard)] > .
Uﬁd(a) platent(r) ZThard Thard (T5Treco,04) rep(r)

(5.23)

The architecture of our MEM integrator is illustrated in Fig. 5.1.

5.2 Two-network baseline

In the proof-of-concept implementation of Ref. [56] we used a series of ad-hoc fixes to sta-
bilize the critical phase space integration in Eq.(5.11). Before we present more substantial
improvements to our framework, we introduce a series of numerical improvements to our
baseline two-cINN setup. For the two-network setup we assume that we can neglect the
phase-space dependence of the acceptance in the MEM integration,

1 do(a)
reco ~ d ard 7 reco ar . 524
P(Zreco|) aﬁd(a)/ Thard g Po(Treco|Thard) (5.24)

Single-pass integration over model parameters

Initially, we integrate over the phase space for each theory parameter value separately.
This general approach does not make use of the fact that the detector response does
not depend on «, and the mapping for the importance sampling only has a small a-
dependence. The phase space samples Thard ~ ¢y (Zhard |Zreco, @) and the corresponding
values of pg(Zyeco|Thard) can be used to evaluate the differential cross section for multiple
points in . Moreover, parts of the cross section calculation only depend on the phase
space point and not on «, like for example parton densities.

Consequently, we can understand the integrand for a given Monte Carlo sample as a
smooth function of «, so the integral will also be a smooth function of a. This means
we do not have to fit an explicit function to the likelihood values and instead extract a

68

5 Precision-Machine Learning for the Matrix Element Method

smooth log-likelihood as a function of @. The MEM integration for a given e, and a
discrete set {a} can be performed as:

1. For j € {1,...,N}, draw a9 from {a} randomly;

2. Using the sampling network, sample a:g];a)rd ~ ¢ (Thard|Treco, al9))y;

3. Evaluate the transfer probability py (xrec0|x£f2rd) for each sample.
4. Evaluate the differential cross section do(«)/ dml(il)rd for each sample xfﬁrd and «;

5. Compute the MC integral Eq.(5.24) for all a values at the same time

1 1 1 da(xflj)d|a))
Treco|(X) =~ -~ - ar Treco|Thar 5.25
p(|) Uﬁd(a) N ; q@(xl(lgrd’m'recm a(])) dwhard p@(‘ h d) ()

This integral converges quickly for some events, while more statistics are needed for
others. One reason is that the peaks of the transfer probability and the importance
sampling distribution are not perfectly aligned for some events, resulting in a higher
variance. To reduce the integration time while guaranteeing a small integration error, we
compute the integral iteratively. We specify the number of samples per iteration as well
as a minimal and maximal number of iterations. Furthermore, we specify a threshold for
the maximum relative uncertainty over the results for all values of . The integration
is repeated for new batches of samples until the combined uncertainty drops below the
threshold. In practice, a batch size of 10000, at least two and at most 15 iterations meet
a target uncertainty of 2%. The uncertainty on the normalized negative log-likelihood
will be much smaller than these 2% because of the correlation between different «.

Integration uncertainties

Using this single-pass integration, the results for different a values become correlated,
because the new algorithm ensures that the result is a smooth function of a. This means
that the MC integration error cannot be easily estimated point-wise. The uncertainty on
the likelihood ratio should be much smaller than the uncertainty of the absolute value of
the likelihood before normalization. To account for the correlations, we use bootstrapping
to resample the integrand multiple times and propagate the resulting replicas through
the downstream tasks. For this bootstrapping we take our samples of the integrand
I (a;) and randomly draw M batches of N samples from {I¥)(a;)|j € {1,...,N}}
with replacement. We compute the mean over the N samples per batch, defining M
replicas of the integral as a function of . They can be used to estimate uncertainties on
the following normalized negative log-likelihoods.

Next, we can quantify the uncertainty from the training of the transfer probability using
a Bayesian network [155-161]. To estimate the training uncertainty we perform the phase
space integration for different samples from the distribution over the trainable parameters.
In Ref. [56] this is done by repeating the integration for different sampled networks.
However, the idea of the single-pass integration also applies to the Bayesian transfer
probabilities. The same importance sampling distribution should work well for different
sampled networks, making the integration more efficient. The training uncertainty
estimation can be combined with the bootstrapping procedure described above. For each
replica, we do not only resample the integrand but also compute the transfer probability
for a different sample from the distribution over the trainable parameters.

69

5 Precision-Machine Learning for the Matrix Element Method

Factorization of differential cross section

For our example process, single-top plus Higgs production with an anomalous CP-phase,
the Lagrangian given in Eq.(5.2) can be written as

L =L +sina L+ cosats, (5.26)
and the squared matrix element has the corresponding form

do (Thara|a)

= g1 +sina go + cosa gz + sina cos a g4 + sin® a gs , (5.27)
dThard

with phase space dependent g;(Znarq). This is an example where the matrix element fac-
torizes into an xparq-dependent and an a-dependent part. Similar factorization properties
hold for SMEFT corrections where it is often referred to as operator morphing [232]. For

do (Tharq|a)
d;;i Zf; @) gi (Thard) (5.28)

the MEM integration in Eq.(5.24) becomes

p(xreco|05) Z fz /dxhard gl(mhard) p9($r600|xhard) (529)

Uﬁd(

The same can be done for the Monte Carlo estimate of the integral,

1 1 N 1 da(xl(lj) d‘a))
Treco|OV) R~ — i ar Treco| Ty 5.30
Plneale) ¥ C Y T M) (530)
1 Zf(a)i XN: 1 -(x(j)) pola ‘x(j))
7hid (Ol) i Z N i=1 4y (xl(1j2rd|xreco’ a(j)) 9 hara) POKErecolFhara) »

(5.31)

where mg)rd ~ qw(xhard|xreco,a(j)). The exact functional form of the integral is only

preserved if the same $£Qrd are used for all values of a.

Importance sampling trained on transfer probability

The training of the Sampling-cINN assumes that the transfer network encodes p(Zreco|Thard)
perfectly. The Sampling-cINN is then used for importance sampling. From that perspec-
tive, it is less important to learn the truth distribution

Q<p(xhard|xrccm 05) ~ p(fvhard’:prcco’ Oé) X p(xreco|xhard)pﬁd($hard‘04) . (5-32)

than the modeled distribution

ng(xhard’xrecm a) ~ p@(xreco’xhard)pﬁd(xhard‘a) . (5-33)

The training data, consisting of tuples (<, Thard, Treco) should then be modified by replacing
the reco-level momentum with the generated Zreco ~ Po(Zreco|Thard). ToO increase the
training statistics we re-sample the reco-level momenta at the beginning of each epoch.
Because of the sharply peaked form of the transfer probability, even small deviations from

70

5 Precision-Machine Learning for the Matrix Element Method

the truth that do not have a significant impact on the inference performance, can lead to
a significant misalignment with the importance sampling distribution. Hence, training
the importance sampling on the learned transfer probability leads to a significantly better
variance of the integrations weights and a faster convergence of the integral.

Vegas latent space refinement

Even when the Sampling-cINN is trained on the learned transfer probability, some events
lead to a large variance in the MEM integration. This can be solved by further adapting
the proposal distribution during the integration. Specializing the importance sampling
network for such an event is impracticable. An alternative is to refine the INN latent
space using VEGAS. Instead of directly sampling random numbers and mapping them to
phase space, we transform them with a VEGAS grid first. Note, that the grid is shared for
all a because of the small o dependence of the importance sampling. After each iteration
of the integration, this grid is adapted to reduce the variance of the integral. Because
we need to pass the integrand value back to VEGAS, we choose a value in the middle of
the relevant a-interval being evaluated. The results from the different iterations of the
integrals are combined by weighting them by the inverse variance to reduce the overall
variance and especially the effect of early iterations where the grid is not yet well adapted.

Figure 5.2 illustrates the effect of training the Sampling-cINN on the transfer probability
and using VEGAS refinement for the MEM integration performance with 1000 SM events
and networks with a similar architecture and hyperparameters as in Ref. [56]. For our
baseline, we use single-pass integration including a factorized differential cross section.
While this guarantees smooth likelihood curves as a function of «, we find that the
integration uncertainty does not meet the target precision of 2% within 15 iteration for
most events. Running the integration with VEGAS refinement improves the convergence,
and the importance sampling trained on the transfer probability leads to a even larger
improvements. The combination of both methods ensures that the target precision is
reached within 15 iterations for most events. This shows that the Sampling-cINN, trained

— baseline — baseline
800 VEGAS 4001 VEGAS
— trained on TP —— trained on TP
é —— VEGAS, trained on TP é —— VEGAS, trained on TP
€ 600 £ 300
[} ()
kS kS
2400+ £ 2001
200 1004
2 4 6 8 10 12 14 0.00 0.05 0.10 0.15 0.20 0.25 0.30
number of iterations relative error

Figure 5.2: Integration performance with and without importance sampling
trained on the transfer probability and VEGAS refinement. Left: number of
iterations (10000 samples each) to reach the 2% target precision, with 2 to 15
iterations. Right: relative integration error after 10 iterations of 10000 samples
each.

71

5 Precision-Machine Learning for the Matrix Element Method

on the transfer function and with VEGAS refinement, appears to be sufficiently precise to
ensure fast convergence of the phase space integral.

Two-network cINN benchmark

The purple line in Fig. 5.3 shows the extracted log-likelihoods for our example process,
using all improvements described in this section, and similar architecture and hyperpa-
rameters as in Ref. [56]. In the top two rows we show the extracted likelihoods from a
small set of 400 events and from a large set of 10k events. In both cases, we compare
the likelihood extracted from the reconstructed events to the hard-process truth. Note
that we show the integration uncertainties as error bands in the plots, but due to our
low error threshold and the single-pass integration these are barely visible. By repeating
the integration with the same networks, we confirm that the result is perfectly stable
and consistent with these uncertainties.

10

a = 0° 400 events

a = 45°

, 400 events

a = 90° 400 events

10 10
— hard hard — hard
N cINN N cINN N CINN
w/o acc. ~ w/oacc. w/o acc.
— cINN _ cINN — cINN
£ 64 £ 64 S 64
~ ~ ~
o0 o0 o0
2 2 8
a4 a4 a4
21 24 24
k . — . 0- 0+— : . .
—-20 —-10 0 10 80 90 100 110
CP-phase a [°] (‘P phdh(, a [’ CP-phase a [°]
a = 0°, 10000 events o = 45°, 10000 eve (‘lltb o = 90°, 10000 events
10 10 10
84 84 84
= 6 = 6 = 6
~ ~ ~
o0 o0 o0
2 2 2
21 / 21 21
0- . . T 0+ . 0+— T - .
—10 —5 0 42 44 48 86 88 90 92
CP-phase a [°] CP-phase a [1 CP-phase a [°]
a = 0° 100x 100 events a = 45°, 100 x 100 events a = 90°, 100 x 100 events
0.4+ — normal 0.5 — normal 0.41 — normal
___cINN __cINN __cINN
w/o acc. 0.4 w/o acc. w/o acc.
0-31 cINN cINN 0.31 cINN
]]]
S S 034 K|
=] = =
£02 £ £0.2
2 So2 g
0.1]
0.1 0.1
0.0 ‘ ‘ ~1L1 0.0 L : ‘ 0.0 = : ~1
—5.0 —2.5 0.0 2.5 5. —5.0 —2.5 0.0 2.5 5.0 —5.0 —2.5 0.0 2.5 5.0

(o = ayum) /o

(o = ayum) /o

(o = ayum) /o

Figure 5.3: cINN benchmark and learned acceptance: likelihoods for
different CP-angles. We use the same architecture as in Ref. [56], but with the
improved integration. The purple curve shows the two-network cINN benchmark
and the orange curve also includes the learned acceptance. From top to bottom:
likelihoods for 400 events, 10000 events, and pulls.

5 Precision-Machine Learning for the Matrix Element Method

Performance issues occur when we increase the number of events. The precision of the
combined likelihood increases and leads to a systematic deviation between the hard-
process and the reconstructed likelihoods. This is not caused by the integration, and
we will target this shortcoming by improving the architecture and the training of the
transfer probability.

5.3 Acceptance classifier

Moving from the two-network setup in Sec. 5.2 to the new, three-network setup introduced
in Sec. 5.1, we are back to the more general form of the MEM-integral,

do(a)

p(xreco‘a) = €y (‘rhard) Po (-rreco|whard) . (534)

L /dxhard
aﬁd(a)
The acceptance function will be encoded in a straightforward classifier network. It targets
the scenario where the jet from the hard process escapes detection, i.e. |n;| > 2.4, while
the event is still accepted since a ISR jet is tagged instead.The two possible origins of
the jets are taken into account by the transfer probability. An additional challenge is the
significant drop in acceptance which is now remedied automatically by the introduction
of the classifier to include the acceptance rate.

dx hard

We train the classifier on a dataset of hard process configurations with the additional
information of the acceptance label. Its output then provides e, (2pard) to solve Eq.(5.34).
Its hyperparameters are given in Tab. A.4, and its training only takes a few minutes.
The learned and true acceptances as a function of different kinematic observables are
shown in Fig. 5.4. Indeed, we see a large jump in the acceptance at |n;| = 2.4, by almost
a factor three. Also for other observables, like the py of the top, the acceptance varies
considerably over phase space.

We then evaluate the MEM integral, now including the learned acceptance. Comparing
the new results (orange) with the two-network baseline (purple) in Fig. 5.3 we see a
considerable improvement. For the small set of 400 events there is no bias left between
the extracted likelihoods and the hard-process truth. Also for 10k events the large bias
from Fig. 5.3 is reduced to a level where it is comparable to the statistical precision. Even
for the challenging SM-case o = 0° the extracted likelihoods agrees well with the truth

= _ —1] N
a S | —— Truth 10 e
0.1251 5 ; Classifier 10-2 ‘:‘1_;-‘ i (F
€ 0.1001 . g g
< S 10—
2 =107°
gg 0.0751 §
N P 5 ® 10+
0.050 1 e — o —— Truth
u | 10754 Classifier
00233 1.2
ZE10 E10
== Zl=
08 T T T T T 08 T T T T T
—7.5 —5.0 —2.5 0.0 5 5.0 7 200 400 600 800 1000
1j pry [GeV]

Figure 5.4: Truth (dashed line) and learned (solid line) acceptance as a function
of different kinematic observables.

73

5 Precision-Machine Learning for the Matrix Element Method

extracted from the hard process. The remaining question is how close we can bring the
widths of the extracted likelihood-curves to the optimal outcome from the hard process,
and if a remaining systematic bias can keep up with statistical improvements. From now
on, we will keep the acceptance network within our MEM setup throughout the rest of
our paper.

5.4 Transfer diffusion

Instead of a Transfer-cINN [56], as discussed in Sec. 5.1, we can also use other neural
networks to encode the transfer probability. The great advantages of the INN are
its stability, its controlled precision in estimating the density, and its speed in both
directions. However, these advantages come at the prize of limited flexibility, and we can
use diffusion networks to slightly shift this balance [1]. Conditional flow matching (CFM)
networks [51,164,165] allow for more flexibility in encoding an underlying density, with
the main disadvantage of a significant loss in speed in the likelihood evaluation. While
this speed might become a relevant factor eventually, we compare the performance of
the cINN with the CFM at face value. For a detailed introduction of conditional flow
matching in the context of particle physics we refer to Ref. [1] and only repeat the key
points here.

The Transfer-CFM replaces the Transfer-cINN in Eq.(5.15). The CFM models the
transformation between a latent distribution piatent(r) and a conditional phase space
distribution pg(Zreco|Thard) inspired by a a time-dependent process. The time evolution
is described by an ordinary differential equation

dx(t)
dt

=v(z(t),t), (5.35)

with the velocity field v(x(t),t). The corresponding time-dependent probability density
p(z,t) obeys the continuity equation

Op(z, t)
To obtain a generative model we need a velocity field that evolves the probability density
in time such that

pg({L‘) ~ pdata(x) t—0

5.37
Platent () = N (x;0,1) t—1. (5.37)

p(z,t) — {

To construct this velocity field we start from a sample-conditional diffusion trajectory

xo t—0

r ~N(0,1) t—1, (5.38)

x(tlzg) = (1 — t)xg + tr — {

that evolves the phase space sample zg towards a latent space sample. The associated
sample-conditional velocity field directly follows from the ODE Eq.(5.35)

o(@ (o), o) = % (1=) + tr] = —a0 + 7. (5.39)

74

5 Precision-Machine Learning for the Matrix Element Method

The desired velocity field for the generative model is then given by [51]

v(a,t) = /dwo ”(x’t"r‘))pngf)())pd“a(x”) . (5.40)

Learning the velocity field from data is a straightforward regression task and can again
be reformulated in terms of the conditional velocity field [51]

Len = ([vola,t) = v(a,1)]*)

)
t,CCNp(I,t)

l reparametrization + neglecting constants

Lopm = t|ao), t) — v(a(t|zo), t|zo)]? 5.41
orv = {[o(a(tlzo),t) = v(e(tlzo) thao)f?) oo (541)
Once the model is trained to encode the velocity it defines a bijective mapping between
the latent and the phase space via numerically solving the ODE Eq.(5.35). Crucially

for our application the Jacobian of this transformation is tractable through another
ODE [233]

dlogp(x(t),t)

- = —V,u(z(t), 1). (5.42)

To calculate the likelihood of a phase space sample z we map it to the latent space
according to Eq.(5.35) and calculate the jacobian determinant of this transformation
according to Eq.(5.42)

r(z) =z + /0 L gt with ’g;‘ — exp < /0 1 dtvxvg(:r(t),t)> L (543)
S (@) = praten (r(z)) exp < /0 LAY g (a(8), t)) (5.44)

Solving the ODEs numerically with the required precision takes O(100) evaluations of
the function. For the transformation ODE this is relatively fast as the function is just
the velocity, i.e. the neural network. For the likelihood ODE however evaluating the
function means calculating the gradients of all components of the velocity with respect
to the inputs, making likelihood calculation significantly slower.

The hyperparameters of our CFM network are given in Tab. A.5. It is straightforward
to replace the Transfer-cINN with a Transfer-CFM in our MEM architecture, so we
can benchmark the performance gain through the increased expressivity, at the possible
expense of speed.

The likelihoods extracted with the help of the Transfer-CFM are illustrated in Fig. 5.5
and can be compared to the same MEM setup, but with a Transfer-cINN in Fig. 5.3. For
400 events the difference between the Transfer-cINN and the Transfer-CFM is not visible,
suggesting that both of them work extremely well given the statistical limitations and
the phase space integration. There is no systematic bias, and the width of the extracted
likelihoods are close to the optimal hard-process curves.

For the high-precision case with 10k events the Transfer-CFM leads to a significant
improvement over the cINN architecture. Now, the picture is the same as for 400 events,
where the extracted likelihoods do not show any significant bias, and the extracted
likelihoods are extremely close to the optimal information.

75

5 Precision-Machine Learning for the Matrix Element Method

a = 0° 400 events a = 45°, 400 events a = 90° 400 events
10 10 10
—— hard —— hard / —— hard
81 — CFM 81 — CFM ‘ 81 — CFM
cINN cINN / cINN
< o < 6] = 6
~ ~ ~
o0 o0 o0
ES) kS ie}
7 4 7 1 7 4
21 24 24
0- . = . 0- - : - - 01— \ - -
—10 0 10 35 40 45 50 80 90 100 110
CP-phase a [°] CP-phase a [°] CP-phase a [°]
a = 0°, 10000 events a = 45°, 10000 events a = 90°, 10000 events
10 10 10
— hard — hard — hard
84 — CFM 84 — CFM 84 — CFM
cINN cINN cINN
= 6 = 6 = 6
~ ~ =~
o0 o0 o0
2 2 =
7 4 7 4 7 4
21 / 24 24
0- . — . . 04 - - : : 0+ . : . .
—5.0 —-2.5 0.0 2.5 42 43 44 45 46 88 90 92 94
CP-phase a [°] CP-phase a [°] CP-phase a [°]
a = 0°, 100x 100 events « = 45°, 100 x 100 events a = 90°, 100 x 100 events
0.41 — normal 0.59 M — normal 0.6 — normal
— CFM — CFM 05 — CFM
0.4]
03] INN INN INN
=2 2 = 0.44
S S 0.3 S
5 E E
£02 £ g 0.3 L
L 202 g
0.2
0.1 [
0.1 0.11 y
0.0+ : ‘ : ‘ 0.0+ — ‘ ‘ ‘ 0.0+ : ‘ L
—5.0 —2.5 0.0 2.5 5.0 —5.0 —2.5 0.0 2.5 5.0 —5.0 —2.5 0.0 2.5 5.0
(o — ayum) /o (o — ayum) /o (o — ayum) /o

Figure 5.5: Transfer-CFM: likelihoods for different CP-angles. We compare
the cINN baseline with a CFM diffusion network, both including the learned
acceptance. From top to bottom: likelihoods for 400 events, 10000 events, and
pulls.

5.5 Combinatorics transformer

In our last step, we introduce a transformer [1,170,219] to combine the stability and
precision of the Transfer-cINN and Transfer-CFM with an appropriate treatment of
jet combinatorics [234]. The structure follows the idea that the transfer probability
turns a sequence of parton-level momenta into a sequence of reco-level momenta. The
Transfer-Transformer, in short Transfermer, should be ideal to encode the correlations
between the different particles, without relying on locality or any other physics-inspired
requirement.

Transfermer

The challenge of using a transformer in our MEM setup is that it is not invertible
and does not guarantee a tractable Jacobian. We can solve this problem by making
the architecture autoregressive at the level of reco-level momenta and splitting it into

76

5 Precision-Machine Learning for the Matrix Element Method

two parts, as illustrated in the left panel of Fig. 5.6: (i) the transformer encodes the
correlations between the parton-level and reco-level objects. Their cross-correlation
describes the input-output combinatorics; (ii) a small and universal cINN encodes the
correlations between the momentum components of a single particle, conditioned on the
output of the transformer ¢(*.

To guarantee a tractable Jacobian of the full normalizing flow, we apply an autoregressive
factorization of the transfer probability defined in Eq.(5.49),

n

P(Zreco| Thard) = H p(xl(“é)co|c(el(‘ggo’ EER el(ré;ol)» €hard)) - (5.45)

i=1
The function ¢ denotes the transformer encoding. We define a special starting token eEQQO,
shift the inputs by one and mask the self-attention matrix using a triangular mask to

(4)

ensure that every momentum is only conditioned on the previous momenta. ereco and
e}(lgrd denote the particle-wise embeddings of the momenta and their position. We define
this embedding as the concatenation of the momenta and their one-hot-encoded position
in the event, padded with zeros. Using a single linear layer instead of the zero-padding
does not lead to any performance improvements. We then sample from the transfer
probability iteratively, which requires n Transfermer evaluations,

p(xgé)co’xhard) = p(xﬁ@{o\c(eﬁggo, e aeggol)v €hard)) - (5.46)
Since all ¢® can be computed in a single step from the reco-level momenta, density
estimation and training this model is very fast. This is also the way the Transfermer is
used during the MEM integration.

=1

xhard o ‘rhard 10(0 Lreco
~
* * *ﬁ *
m
: 4 :
Transformer-Encoder Transformer-Decoder 9 RQ? > 77(7) :
Self-Attention: Masked Self-Attention: A4)
Hard-level correlations Reco-level correlations P T3 ——— @—4—» ¢(7) :

Cross-Attention:
Combinatorics

"

p(xleco|rlla1d = p re(o|c rero|c)

Figure 5.6: Left: transformer combined with cINN, encoding the transfer prob-
ability. Right: cINN used to learn individual momenta, where r is the usual
latent space to parametrize a generative model.

77

5 Precision-Machine Learning for the Matrix Element Method

a = 0°, 400 events a = 45°, 400 events a = 90°, 400 events
10 10 10
—— hard — hard —— hard
81 —— Transfermer 81 —— Transfermer 81 —— Transfermer
—— Transfusion —— Transfusion —— Transfusion
< 64 < 64 < 64
~ ~ ~
o0 o0 o0
ES) kS ie}
T T4 T4
2 24 2
0- - - - 0+ - - - 01— - - -
—10 0 10 35 40 45 50 80 90 100 110
CP-phase a [°] CP-phase a [°] CP-phase a [°]
a = 0°, 10000 events a = 45°, 10000 events a = 90°, 10000 events
10 10 10
— hard — hard — hard
84 —— Transfermer] —— Transfermer 84 —— Transfermer
—— Transfusion —— Transfusion —— Transfusion
= 6 = = 6
~ ~ =~
o0 o0 o0
2 2 K]
T q T
21 24
01 - - - - 01 - . - 0
—7.5 —5.0 —2.5 0.0 2.5 43 44 45 46 88 90 92 94
CP-phase a [°] CP-phase a [°] CP-phase a [°]
a = 0°, 100x 100 events « = 45°, 100 x 100 events a = 90°, 100 x 100 events
0.4 — normal — normal — normal
— Transfermer 0.41 — Transfermer 0.6 — Transfermer
03] —— Transfusion —— Transfusion —— Transfusion
g 2 0.31 g
S N =044
= = E
0.2 £ E
g 502 8
= =S =]
0.2
0.1 01
0.0 g . ; . 0.0+ d . ; . 0.0k < . > }
—-5.0 =25 0.0 2.5 5.0 —-5.0 =25 0.0 2.5 5.0 —-5.0 =25 0.0 2.5 5.0
(o — ayum) /o (o — ayum) /o (o — ayum) /o

Figure 5.7: Transfermer and Transfusion: likelihoods for different CP-angles
using a transformer for the transfer probability, combined with a cINN or a CFM
network, respectively. From top to bottom: likelihoods for 400 events, 10000
events, and pulls. Only the Transfermer curve includes the training uncertainties
estimated with the Bayesian network.

The transfer probability in Eq.(5.45) still has to be converted into a probability distribution
for the 4-momentum components of the external particles. To encode massless and massive
particles in the same cINN we factorize it into

p(o|eD) = p(pl 0@, 30Dy 5 p(m@pl 5D, @ @y | (5.47)

such that the generation of the mass direction can be omitted without affecting the
other three components. The corresponding cINN architecture is given in the right
panel of Fig. 5.6. Rational quadratic spline coupling layers model the one-dimensional
distributions. By transforming each momentum component once and conditioning it on
the other components and the transformer output, using a feed-forward network, we
build a minimal cINN that is able to model the correlations between the momentum
components.

In practice, we use normalized versions of log pr and log m as inputs for the network and
map them to Gaussian latent spaces. Similarly, we map ¢ and 7 to uniform latent spaces,

78

5 Precision-Machine Learning for the Matrix Element Method

taking into account the detector-level 7 cuts. For ¢ we use periodic RQS splines [212].
The cINN for single momenta and the transformer are trained jointly by minimizing the
negative log-likelihood loss £ = —log pg(Zreco|Thard)-

We implement the Transfermer with the standard PYTORCH [173] transformer module
and the cINN architecture described above. The hyperparameters are given in Tab. A.5.
In Fig. 5.7, we show the likelihoods for the Transfermer architecture. This plot shows
much larger error bands because they also include the systematic uncertainty from the
Transfermer training, estimated with a Bayesian network. For the other architectures,
we omit these due to runtime constraints. The likelihoods can be compared to the cINN
results in Fig. 5.3, and we see that their bias and accuracy have improved. Even for 10k
events, the likelihoods are largely unbiased, albeit not significantly better than for the
Transfer-CFM from Fig. 5.5. The Transfermer architecture can be easily generalized to
support variable numbers of reco-level jets. We show this extension in Appendix 5.7 but
do not find any additional improvements for our reference process. Furthermore, we show
how sensitive this architecture is to the choice of simulation tool in Appendix 5.7.

Transfusion

As a last transfer architecture we consider the CFM equivalent of the Transfermer, an
autoregressive Transfusion. We keep the autoregressive structure and the masked self-
attention from Fig. 5.6 and simply replace the small cINN with a small CFM network to
generate the individual particle momenta. The CFM learning task is a simple regression
of the velocity field. As long as we can track gradients through the network, we obtain a
tractable Jacobian according to Eq.(5.42). The velocity of the i*! particle is then denoted
in analogy to Eq.(5.45)

VD (@00 (1), tleletdos - - s elica) ehard)) (5.48)
From the velocity field the likelihoods are again obtained by solving the ODEs Eq.(5.44),
in the Transfusion setup now autoregressively for each particle. For on-shell and off-shell
particles, we use two different small CFMs, one 3-dimensional and one 4-dimensional.
This setup outperforms just using the same 4-dimensional network and discarding the
generated masses for on-shell particles. The hyperparameters of the Transfusion network
are given in Tab. A.6.

We show the MEM likelihoods obtained with the Transfusion in Fig. 5.7 and find that
they are indistinguishable from the Transfermer results. This indicates that the difference
between the cINN and CFM likelihoods can be attributed to cINN issues with the
jet combinatorics. Outsourcing this task to the transformer significantly improves the
performance. For the CFM the corresponding improvement is minimal.

5.6 Outlook

The matrix element method is an example of an LHC inference method, which is hugely
attractive but only enabled by modern machine learning [56]. Specifically, it requires a
fast and precise forward-transfer probability, an extremely efficient phase space mapping
for the integration over the hard phase space, and a flexible encoding of the detector
efficiency. We have shown, for a CP measurement in the associated production of a Higgs
and a single top, how each of these tasks can be assigned to a neural network. This

79

5 Precision-Machine Learning for the Matrix Element Method

1072
1073)
1073
S Truth E Trutl
E u = 104 ruth
£ .{— INN ! —— INN
2107 —— crm 2 sl — omu
08l T Transfermer —— Transfermer
—— Transfusion 10-8] Transfusion
1.2 f 1.241 H
| =l= il
251.01 = = Byl EEI.O‘ = S50 - B
08 T T T 7! — T 08 T T T 1
500 1000 1500 2000 2500 200 400 600
Ejl [GCV] Pr.j [GCV]
Truth
0.31 INN
k]] CFM
[} (9]
% % 0.2 Transfermer
g INN § Transfusion
=] =}
So12{ —— CFM o1
—— Transfermer
0.104 —— Transfusion
0.0
1.2 1.2 J
10 ZE1.01— :
= == E
0.8 0.8 ¢ -
-3 -2 -1 0 1 2 3 0 1 2 3 4 5 6
Ad)l\ 2J2 ARjzv]':;

Figure 5.8: Reco-level distributions for different kinematic observables, ob-
tained from the different generative transfer networks, conditioned on the
hard-scattering momenta. Truth corresponds to the high-statistics training
data.

combination of three networks with modern architectures provides the required precision
and speed.

To illustrate the performance of the different network architectures and MEM frameworks,
we show a set of kinematic observables from the generative transfer networks in Fig. 5.8.
Before integrating the likelihood, we can show the distributions at the reco-level and
compare them to the truth, or training data. We immediately see that the standard
cINN is stable and extremely fast, but limited in its expressivity. The CFM diffusion
network improves the performance significantly. The transformer architectures, i.e. the
cINN-driven Transfermer and the CFM-driven Transfusion deliver a precision at least on
par with the CFM diffusion network.

For the likelihood, we have compared the extracted likelihoods from the different ar-
chitectures with the hard-process target. As a benchmark, we first improved a range
of numerical aspects of our concept paper [56], with a focus on the integration with
the Sampling-cINN. The improved precision of the integration raises two questions: a
systematic bias in the minimum of the extracted likelihoods especially going from 400
to 10k events; and the optimality of the extracted likelihoods seen in the widths in the
CP-angle o. These benchmark results are shown in Fig. 5.3.

We then upgraded our two-network setup to a three-network setup, with a learned
acceptance as a function of phase space. In Fig. 5.3, we saw that this removes the leading
source of systematic bias, including the challenging SM-case a = 0°.

80

5 Precision-Machine Learning for the Matrix Element Method

Next, we targeted the performance of the transfer network by replacing it with a more
expressive, albeit slower CFM diffusion network. This did not improve the low-statistics
results, but for the high-statistics case of 10k events the Transfer-CFM showed a clear
advantage over the cINN, as can be seen in Fig. 5.5.

Finally, we solved the problem with the jet multiplicity of the cINN approach by applying
a generative autoregressive Transfer-Transformer, i.e. combining a transformer with a
cINN network (Transfermer) and a CFM-model (Transfusion). In Fig. 5.7, we saw that
both transformer-based models outperformed the cINN, but showed similar performance
as the Transfer-CFM. Notably, both transformer-based models can naturally be extended
to describe a variable number of particles at both reco- and parton-level. This feature
will eventually be needed for a proper description of the MEM at NLO.

In our LO example, all three models, CFM, Transfermer and Transfusion, parametrize
the transfer probability flexibly and reliably. However, the Transfermer integration
is approximately a factor 30 faster than the two diffusion-based models. This gap
might eventually be closed using techniques like diffusion distillation [235-237]. Further
improvements on the architecture, like the parallel Transfusion introduced in Appendix 5.7,
might also improve the performance for more complex processes. Altogether, we conclude
that a range of modern generative networks are available for the MEM, awaiting final
judgment from an actual analysis.

5.7 Appendix

A.1 Variable jet number and permutation invariance
Transfermer with variable jet number

The Transfermer is easy to generalize to events with a variable number of jets at the
reconstruction level. To this end, we split the inclusive transfer probability and evaluate
it autoregressively,

p($rec0a n|$hard) = p(n|xhard) p(xrecolmhardv TL)
n

= p(n|Tnara) p(xgégmin”xhardv n) H p(xgélomgg)_l), Thard, M)

1=Nmin+1

(5.49)

where n is the number of final-state particles, xl(«éclf)) denotes the first & reco-level momenta,
xﬁf@o denotes the k-th reco-level momentum and n,y;, is the minimal number of momenta
for an accepted event. The probability p(n|znaq) can be extracted using a simple
classifier network with a categorical cross-entropy loss and the number of additional
jets as labels. The autoregressive factorization of p(Zyeco|Thard,) matches the way in
which the Transfermer learns these probabilities. We pass the information about the
number of additional jets to the Transfermer by appending it to the embedding of xy,.q in
one-hot encoded form. We can sample from the transfer probability by first sampling the
multiplicity using the probabilities given by the classifier and then sampling the momenta
as described in Eq.(5.46). Note that it is even possible to generalize the Transfermer to a
variable number of hard-scattering momenta, because the transformer encoder accepts a

81

5 Precision-Machine Learning for the Matrix Element Method

a = 0°, 400 events a = 45°, 400 events a = 90°, 400 events
10 10 10
— hard — hard — hard
81 —— Transfermer 81 —— Transfermer 81 —— Transfermer
—— Parallel TFusion —— Parallel TFusion —— Parallel TFusion
< 64 < 64 < 64
~ ~ ~
o0 o0 &0
ES) i) i)
‘T 44 0‘1 44 L\I] 44
2 21 2
0 - - . 01 - : - 01— : - -
—10 0 10 35 40 45 50 80 90 100 110
CP-phase a [°] CP-phase a [°] CP-phase a [°]
10 a = 0°, 10000 events o = 45°, 10000 events 10 o = 90°, 10000 events
— hard — hard — hard
84 —— Transfermer] —— Transfermer 84 —— Transfermer
= 6 = = 6
~ ~ ~
o0 o0 o0
2 2 2
T q T
21 21
01 - T - - 0 - - - 01— . . -
=75 —5.0 -2.5 0.0 2.5 44 45 46 88 90 92 94
CP-phase a [°] CP-phase a [°] CP-phase a [°]
a = 0°, 100x 100 events a = 45° 100 x 100 events a =90° 100x 100 events
0.41 — normal 0.51 — normal — normal
— Transfermer — Transfermer 0.5 — Transfermer
0.4
0.3 04
E = 203
£02 £ £
2 202 2 0.2
0.1
0.1 0.14
0.0 1 Z . ; O 0.0+ d . > . 0.0+ d . > .
—-5.0 =25 0.0 2.5 5.0 —-5.0 =25 0.0 2.5 5.0 5.0 =25 0.0 2.5 5.0
(o — ayum) /o (o — ayum) /o (o — ayum) /o

Figure 5.9: Transfermer with variable jet numbers and parallel Trans-
fusion: likelihoods for different CP-angles using the Transfermer with variable
jet multiplicity and the parallel Transfusion as the transfer probability. From
top to bottom: likelihood for 400 events, 10000 events, and pulls.

variable number of inputs without any further changes to the architecture, making it a
good candidate for a machine-learned MEM at NLO.

We train the jet multiplicity classifier with the hyperparameters given in Tab. A.4. We
observe that they are mostly flat for the top and Higgs, but there is a stronger variation as
a function of the forward jet momentum, especially 7;. Like for the acceptance function,
this is explained by ISR jets being tagged instead of the forward jet, leading to a lower
probability of extra jets for |n| > 2.4.

We then run the MEM integration to obtain the results shown in Fig. 5.9. They are
mostly similar to the results with fixed multiplicity shown in Fig. 5.7. It shows that for
our specific process, we do not gain constraining power by including the information from
additional jets. However, that might be different for other processes and especially at

NLO. So the ability to deal with a variable number of jets is still a valuable addition to
our MEM toolbox.

82

5 Precision-Machine Learning for the Matrix Element Method

Permutation-invariant Transfusion

The Transfusion can be generalized to events with a variable jet number in complete
analogy to the Transfermer. However, as diffusion models do not require invertibility, they
allow for an additional approach in combining the transformer with the CFM network
where we drop the autoregressive setup and instead generate all particle 4-momenta in
parallel.

Before, in the autoregressive setup the transformer calculates a condition based on the
hard-level momenta and the already generated reco-level momenta, which is then fed
to the CFM that predicts the time-dependent velocity field. Crucially, the transformer
itself has no time dependence. In the alternative parallel setup, the transformer decoder

no longer sees the first ¢ — 1 reco-level particles :L'l(ré&;"i_l) to describe c(¥, Instead, its

inputs are the conditional and time-dependent diffusion states 2l (t|xo), as defined
in Eq.5.38, of all n reco-level particles, and the time t. The encoder, which acts only on
the hard-level momente, is unchanged. Now, the transformer calculates time-dependent
embeddings, one for each particle. These time-dependent embeddings are then again fed
to a small CFM network predicting the velocity field. In this setup the velocity field of

the i*" particle is calculated as

'U(i)(c(erem(t)a €hard; 1), 1) 5 (5.50)
where the transformer c is now a time-dependent function of the embeddings e of all

momenta. The overall setup is illustrated in Fig. 5.10. In practice, a single linear layer

SRR R O R (71 o) B (IR (71) B

reco reco

Emb
Emb
Emb

Transformer-Encoder Transformer-Decoder

Hard-level correlations Reco-level correlations

B

‘ Self-Attention: ’ ‘ Self-Attention: ’

Cross-Attention:
Combinatorics

e)

{

<

4
=
8

U(xre(z()(t)y t|£hard> = (U(1> (C(l)a t)7 T U(n)(c(n)7 t))

Figure 5.10: Parallel Transfusion architecture. Compared to the autoregressive
setup we no longer use masked self-attention in the transformer decoder, but
instead make it time-dependent.

83

5 Precision-Machine Learning for the Matrix Element Method

1072
10°*
1073
] o
S 107 5
E =107
£ 10 :
= —— Truth = _ .1 —— Truth
. 10774 .
106 —— Autoregressive —— Autoregressive
—— Parallel ¢] — Parallel
10-64
1.2 1.2 ==
=l 4 A —
CER e e i P 108 _;ﬁ,__HE._HHL‘IHqu ﬂ
2E —_— | SE R T A
0 8 T T T T T 0 8 T T T
500 1000 1500 2000 2500 200 400 600
Ejl [GCV] Pr.j [GCV]
0.4
0.200 —— Truth —— Truth
—— Autoregressive 0.31 —— Autoregressive
= 0.175 1 —— Parallel e —— Parallel
g 0.175 S
£ 0.150] z 09
: :
0.125 0.1
0.100 1 004
1.2 : 1.2 =i
ELor
0.8 0.8 -
-3 -2 -1 0 1 2 3 0 1 2 3 4 5 6
A¢72~]b ARJ’LJ&

Figure 5.11: Reco-level distributions for different kinematic observables, obtained
from the autoregressive and parallel Transfusion networks, conditioned on the
hard-scattering momenta. Truth corresponds to the high-statistics training data.

is sufficient to map the transformer outputs to the velocity field components. Note,
that during sampling the initial input to the transformer is the unconditional latent
space vector r which is then mapped onto xyeco with the learned velocity field and the
ODE solver. The parallel Transfusion setup naturally generalizes to varying particle
multiplicities at both hard- and reco-level without requiring an arbitrary autoregressive
order, as it is permutation-invariant at both levels.

Reco-level distributions for different kinematic observables are shown in Fig. 5.11. The
marginal distributions show no difference between the parallel Transfusion and the other
networks, but for the angular correlations we see the parallel Transfusion having a clear
edge. Giving the transformer itself a time-dependence forces us to evaluate it repeatedly
inside the ODE solver, making sampling and likelihood calculation in this setup even
slower than for the pure CFM or the autoregressive Transfusion. We show integration
results for 400 events using the parallel Transfusion in Fig. 5.9, finding that they are
comparable to the results from the autoregressive Transfusion. Due to the slow likelihood
calculation this setup did not scale up to 10000 events. The strong performance on
the observable distribution level indicates that this architecture might proof useful in
combination with speed-up techniques like diffusion distillation or for applications that
do not require likelihood calculation.

84

5 Precision-Machine Learning for the Matrix Element Method

A.2 Evaluating on Herwig

The critical backbone of our inference method is the learned transfer probability pg(Zreco|Thard)-
We have demonstrated that generative networks can learn this conditional density from
simulated data to very high precision. However, even a perfect network will only encode
the forward transfer of the simulation, which is close but not necessarily identical to
nature. In this section, we investigate how this impacts the results of our method by
using different simulation setups:

1. a baseline simulation with PYTHIA8 for network training ;

2. an alternative simulation based on HERWIG [35] for inference, emulating the truth
reco-level data of the experiment. The detector effects are still modeled with
DELPHES.

The results obtained with our method in this setup are shown in Fig. 5.12. For 400
events we find that the extracted reco-level likelihoods mostly agree with the hard-
level likelihoods. Note that the hard-level likelihoods are not fixed but also affected
by the underlying simulation assumption, most visible for &« = 90°. This is because
the fiducial hard-level likelihood is only defined on hard-level events xp..q leading to
accepted Tyeco events, which critically depends on the efficiency €(xharq) of the underlying
normalized transfer function r, as defined in Eqs.(5.5) and (5.12). This effectively encodes
a dependence on the assumed forward simulation

pﬁd(mhard|a) = pPYTHIA8(fEhard‘a) . (5'51)

Hence, evaluating the fiducial hard-level likelihoods on the HERWIG simulation can
generally lead to a bias in the likelihood distribution. In the high-statistics scenario with
10k events, we observe good agreement for o = 0, 45°, comparable to the results when
evaluating on PYTHIA8, which means we can assume

pPYTH1A8($hard’a) ~ PHERWICG ($hard’a) . (5'52)

In these cases, we find that the reco-level likelihood obtained using our method still agrees
well with the hard-scattering likelihood, and the results are still well-calibrated. However,
for & = 90° the hard-level likelihoods are significantly off from the true value, indicating
that Eq.(5.52) is no longer valid. Further, training the transfer function on events that
do not follow the true distribution of the measured data may introduce a-dependent
effects. Consequently, we also find a large deviation between the hard- and reco-level
likelihoods.

85

5 Precision-Machine Learning for the Matrix Element Method

a = 0°, 400 events

«a = 45°, 400 events a = 90° 400 events
10 10 10
— hard hard — hard
8 —— Transfermer 3 Transfermer 3 Transfermer
= 6 = 6 = 6
~ ~ ~
o0 0 o0
i) i) k)
7 4 7 4 7 4
21 21 21
0- . . . 0- : > ; . 0+ . : .
—10 0 10 40 45 50 55 80 90 100 110 120
CP-phase a [°] CP-phase a [°] CP-phase a [°]
a = 0°, 10000 events o = 45°, 10000 events a = 90°, 10000 events
10 10 10
— hard — hard hard
—— Transfermer —— Transfermer 81 Transfermer
< 6
3
20
°
[I
|
21
- - - - - 01— - - - -
-2 0 46 47 48 95 100 105 110 115
CP-phase « [°] CP-phase « [°] CP-phase a [°]
a =0°,100x 100 events a = 45°,100x 100 events . a =90° 100x 100 events
— normal 041 — normal 06 — normal
0.5 1 — Transfermer ’ — Transfermer 0.5 — Transfermer
- 0.4 - 0.3 ~ 04
= 0.3 = =
: = 02 =07
< < S
=02 = =02
0.1
0.1 0.1
0.0+ : : : 4 00k 1 : L] ook : : : ‘
—5.0 —2.5 0.0 2.5 5.0 —5.0 —2.5 0.0 2.5 5.0 —5.0 —2.5 0.0 2.5 5.0
(” - “tmth)/” (ﬂ - “uurh)/ﬂ ((1 - (Nu-urh)/”
Figure 5.12: Transfermer applied on Herwig simulation: likelihoods

for different CP-angles using the Transfermer trained on PYTHIAS8 simulations

but evaluated on HERWIG simulations. From top to bottom: likelihood for 400
events, 10000 events, and pulls.

86

Chapter

The Landscape of Unfolding with Machine
Learning

The research presented in this chapter is based on work in collaboration with Javier
Marino Villadamigo, Alexander Shmakov, Sascha Diefenbacher, Vinicius Mikuni, Theo
Heimel, Michael Fenton, Kevin Greif, Benjamin Nachman, Daniel Whiteson, Anja Butter
and Tilman Plehn and has been previously published in Ref. [3]. The content is similar
or identical to the content of this article.

Particle physics experiments seek to reveal clues about the fundamental properties of
particles and their interactions. A key challenge is that predictions from quantum
field theory are at the level of partons, while experiments observe the corresponding
detector signatures. Precise and detailed simulations link these two levels [30]. They fold
predictions for the hard process through QCD effects, hadronization, and the detector
response to compare with data. This statistically powerful forward inferences approach
has been widely used.

However, forward inference requires access to the data and accurate detector simulations.
These conditions are rarely satisfied outside of a given experiment, severely limiting the
ability of the broader community to study particle physics data. In addition, analysis of
data from the high-luminosity LHC with forward inference will require precise simulations
for every hypothesis, challenging available computing resources.

An alternative approach is unfolding. Rather than correcting predictions for the effects
of the detector, the data are adjusted to provide an estimate of their pre-detector
distributions. Since the effects described by our forward simulation are stochastic, this
adjustment is performed on a statistical basis. Unfolding offers important advantages,
such as making data analysis possible by a broader community and enabling an efficient
combination of data from several experiments, such as in global analyses of the Standard
Model Effective Theory [238,239].

Traditional unfolding algorithms have been used extensively, successfully delivering a mul-
titude of differential cross section measurements [57-60]. The most widely-used methods
are Iterative Bayesian Unfolding [111,240-242], Singular Value Decomposition [243], and
TUnfold [110]. However, each of these methods can only be applied to binned datasets of
small dimensionality, such that the unfolded observables and their binning have to be
selected in advance.

87

6 The Landscape of Unfolding with Machine Learning

Machine learning (ML) techniques have revolutionized unfolding by allowing for unbinned
cross sections to be measured across many dimensions [26,59]. Where sufficient infor-
mation is unfolded, new observables can be calculated from unbinned data, long after
the initial publication. The first ML-based unfolding method applied to data is Omni-
Fold [63,112], which uses classifiers to reweight simulations. It has recently been applied to
studies of hadronic final states at H1 [244-247], LHCb [248], CMS [249], and STAR [250].
Alternative ML-unfolding methods use generative networks, either for distribution map-
ping [61,67-69] or for probabilistic, conditional generation [62,64,65,210-212,251].

The goal of this paper is to lay out and extend the landscape of ML methods. We bench-
mark a diverse set of approaches on the same datasets, to facilitate direct comparisons.
Some methods have been studied with an iterative component to mitigate the sensitivity
to starting particle-level simulations. To simplify the setup and reduce stochastic effects
from iterating, we apply all methods with only a single step. The goal is to estimate
the posterior with the starting simulation as the prior. Performing this step well is the
essential component of a full unfolding approach.

We begin with a brief introduction of the different methods for ML-based unfolding in
Sec. 6.1. In Sec. 6.2, we show how all approaches can accurately unfold from detector
level to the particle level using a Z+jets benchmark dataset. For certain theory questions
it is useful to further unfold to the parton level, treating QCD radiation as a distortion
to be corrected like detector effects. As an example of this type of unfolding, we study
top quark pair production in Sec. 6.3. In Sec. 6.4 we summarize the advantages of the
different methods, to help the experimental collaborations pick the method(s) best-suited
for a given task.

6.1 ML-Unfolding

We define our unfolding problem using four phase space densities, which are encoded in
the corresponding samples, in the sense of unsupervised density estimation in ML-terms.
We rely on simulated predictions at the particle/parton level, pgen(Zpart), and the detector
or reconstruction (reco) level, pgim(Zreco). Unfolding turns the measured pqata into punfold,

unfolding inference

Pgen Punfold (xpart)
simulationl I unfolding
forward inference
Psim pdata(xreco) (61)

Our simulated samples come in pairs (Zpart, Zreco); Which can be used for unfolding.
Data only exist on the o level. The features of the unfolded data punfolq should be
determined by pgata, but will always include a data-independent bias from the assumed
Pgen- The question how we can minimize the resulting model dependence will be part of
a follow-up of this study.

Established ML-techniques for unfolding rely on one of two approaches. They either
reweight simulated samples, or they generate unfolded samples from conditional proba-
bilities. We will briefly introduce both original methods [62-64], as well as a more recent
hybrid approach of mapping distributions using generative networks.

88

6 The Landscape of Unfolding with Machine Learning

6.1.1 Reweighting: OmniFold and bOmnifold

The deep learning-based approach to unfolding via re-weighting is OmniFold [63,112].
It is based on the Neyman—Pearson lemma [252], stating that an optimally trained,
calibrated classifier C' will learn the likelihood ratio of the two underlying phase space
distributions. If we use a binary cross entropy (BCE) loss to distinguish between data and
simulated reco-level events, then the following combination approximates the likelihood
ratio:

Pdata (J:reco) C(«Treco)
= . 6.2
psim(xreco) 1-— C(xreco) ()

w(fﬂreco)

OmniFold computes these classifier weights at the reco-level, and uses the paired simulated
data to pull these weights from the reco-level events to the particle-level events. The
re-weighted simulated events then define

punfold(l'part) = w(xreco) pgen(fﬁpart) . (63)

This weight-pushing is the first step in the two-step iterative OmniFold algorithm. Because
we are leaving out the model dependence to a dedicated second study, we restrict ourselves
to this first iteration, which in the scheme of Eq.(6.1) looks like

apply reweighting
Pgen Punfold ($part)

pull Weightsw

train reweighting

Psim pdata(xreco) (64)

Bayesian neural network (BNN) Bayesian versions can be derived for any deterministic
neural network with a likelihood loss [23,155-158]. The BNN training does not fix the
network parameters, but allows them to learn distributions, such that sampling over the
network parameters gives the probability distribution in model space, i.e. for the network
output. Based on studies for regression [159,166] and classification tasks [160], there is
evidence that for a sufficiently deep network we can assign independent Gaussians to
each network parameter [157]. This effectively doubles the size of the network which now
learns a central prediction and the error bar simultaneously. Even though the weights
are Gaussian distributed, the final network output is generally not a Gaussian. As we
will see below, Bayesian networks can be generalized to generative tasks [1,45,161].

One benefit of Bayesian networks is that they automatically include a generalized dropout
and a weight regularization [23,253,254], derived from Bayes’ theorem together with the
likelihood loss. This means that BNNs are automatically protected from overtraining
and an attractive option for applications where the precision of the network is critical,
like the classifier reweighting in OmniFold.

6.1.2 Mapping distributions: Schrodinger Bridge and Direct Diffusion

Instead of reweighting phase-space events, we can use generative neural networks to
morph a base distribution to a target distribution. In our case, we train a network to

89

6 The Landscape of Unfolding with Machine Learning

map event distributions from #;eco t0 Zpart based on the paired or unpaired simulated
events and apply this mapping to pgata(Zreco) t0 generate punsold (Tpart):

Pgen Punfold (fpart)
training[] distribution mapping
correspondence
Psim S pdata(fvreco) (65)

As mentioned above, the trained mapping assumes that pgm, and pgata describe the
same features at the reco-level. Two ML-methods that we study for this task include
Schrodinger Bridges [68] and Direct Diffusion [69], see also Ref. [61] for an early study.

Schrodinger Bridge

Schrodinger Bridges define the transformation between particle-level events Tpart ~ Dgen
to reco-level events Zyeco ~ Psim as a time-dependent process following a forward-time
stochastic differential equation (SDE)

do = f(z,t)dt + g(t)dw . (6.6)

The drift term f controls the deterministic part of the time-evolution, ¢ is the noise
schedule, and dw a noise infinitesimal. For such an SDE, the reverse time evolution
follows the SDE

dz = [f(z,t) — g(t)*Vlog p(z, t)]dt + g(t)dw , (6.7)

with the corresponding score s(z,t) = Vlogp(x,t). To construct an unfolding, we need
to find f and g for our forward process from particle level to reco level, and then encode
the score function in the unfolding network sg(z,t) [123].

Constructing a forward-time SDE that transforms an arbitrary distribution into another
is much more challenging than mapping a distribution into a noise distribution with
known probability density (e.g. a Gaussian), as is the case for standard SDE-based
diffusion networks. A framework to construct a transport plan in the general case was
proposed by Erwin Schrodinger [255]. It introduces two wave functions describing the
time-dependent density as p(z,t) = W(z,t)U(z,t). By setting the drift coefficient to
f =9g(t)?V1og ¥(z,t) the forward and reverse SDEs in Eqs.(6.6) and (6.7) become

der = g(t)*?Vleg U (x,t)dt + g(t)dw
dz = —g(t)>Vlog U(z, t)dt + g(t)dw . (6.8)

If the two wave-functions fulfill the coupled partial differential equations

WD) gy av(e.n
3‘1’5‘7’5) - %g(t)2A\fl(:c,t) : (6.9)

90

6 The Landscape of Unfolding with Machine Learning

with the boundary conditions

V(e t)U(z, 1) = {i ggi i _ (1) (6.10)

then the SDEs in Eq.(6.8) transform particle-level events to reco-level events and vice
versa.

Next, we need to find ¥, ¥ that fulfill the conditions. The authors of Ref. [256] observe
that reverse generation following Eq. £6.8) does not require access to the wave functions,

but only to the score function Vlog W. For paired training data,

(‘T()?‘Tl) ~ (pgenapsim) (611)

the posterior encoded in the SDEs in Eq.(6.8), conditioned on the respective initial and
final states, has the analytic form

q(.’E’.’EO,xl) = N(xta /J/t(x()7 .’L'l), Et)
5.2 2 2=2

¢ 521 and Xy =
t

) 2
op +0j

with (o, 21) = zo + (6.12)

O
o2 +o
denoting o7 = [¢ g?(7)dr and 67 = ftl g%(7)dr. This allows for the generation of samples
from this stochastic process as x¢(x, 1) = ut + Xre with € ~ N(0,1) and (29, x1), a pair

of reco-level and particle-level events. Moreover, the score Vlog ¥ can be learned by
minimizing the loss

:L"t(ﬂco, 961) — Zo 2

) e
Tt t~U([0,1]),(z0,21)~p(Tpart sTreco)

Lsp = <[€9(l‘t($0,$1)at) -

where z; is sampled according to Eq.(6.12). After training, the network unfolds by
numerically solving the reverse SDE Eq.(6.8) with the xycco values as the initial conditions.

We follow a slight variation, where the dynamics are reduced to a deterministic pro-
cess [256]. This can be achieved by replacing the posterior distribution Eq.(6.12) by its
mean and training the network to encode not the score function, but the velocity field of
the reverse process, which then takes the form of an ordinary differential equation:

dxy = vi(xe|zo)dt = %(mt — x0)dt . (6.14)
¢

For the noise schedule, we follow Ref. [68] and use g(t) = /5(t), with 5(¢) the triangular
function

—_ N[

(6.15)

IAIA
IN A

~ JBo+2(BL— o)t
At = {51 —2(B1 — Po) (t - %)

o= O

with By = 107> and #; = 1074,

Direct Diffusion

Like the Schrodinger Bridge, Direct Diffusion (DiDi) describes a time evolution between
particle-level events at ¢ = 0 and reco-level events at ¢ = 1. Following the Conditional

91

6 The Landscape of Unfolding with Machine Learning

Flow Matching (CFM) [51] framework, DiDi uses an ordinary differential equation (ODE)

dx(t)
dt

= vg(x(t),t) , (6.16)

with a velocity field vg(x(t),t) encoded in a neural network. This time evolution of
the individual events is related to the time evolution of the underlying density via the
continuity equation

Op(x,t

pgi) Vs [p(a,)vg(z, £)] = 0. (6.17)
The learning task is then to find a velocity field that transforms the density p(z,t) such
that

Pgen(z) t—0
p(z,t) = {pim(x) . (6.18)

Such a velocity field can be constructed by building on event-conditional velocity fields.
For a given particle-level event xg ~ pgen(xpart), the algorithm samples a corresponding
reco-level event =1 ~ Psim(Zreco|Tpart = o), and the two are connected with a linear
trajectory

t—0
z(t|zg) = (1 — t)xo + txy — {xo (6.19)
gl Np(mreco|l'part = ZL'O) t—1.

Differentiating this trajectory defines the conditional velocity field

v(x(t|xo), t|zo) = % [(1—1t)xg+tay] = —zo + 1 . (6.20)

This is not yet useful as an unfolding network, as it can only unfold to a pre-specified
hard event. The desired unconditional velocity field can be obtained via

oty = | dng A) oo

where p(z,t|zg) is the conditional density defined via sampling from equation (6.19) and
p(z,t) is obtained by integrating out the condition x¢. In practice, it is sufficient to train
on fixed data pairs (Zpart, Treco) instead of resampling the posterior p(Zreco|Zpart = o) in
each epoch. The velocity field can be learned from data as a simple regression task with
the MSE loss

Lpipi = <[U0((1 —t)xo + txy,t) — (z1 — xo)]2>t~LI([0,1]),(ro,11)~p(xpart,mreco) . (6.22)

Once the network is trained, a reco-level event z1 ~ p(Zyeco) can be transferred by
numerically solving the coresponding ODE in Eq.(6.16)

To =1 — /01 vg(x(t),t)dt . (6.23)

Unpaired DiDi The starting premise of most unfolding methods is that the forward
model p(Zreco|Tpart) is known, within uncertainty. There may be cases where it is not
known [67] and instead of pairs (Zpart, Treco), We only have access to the marginals {2 part },

92

6 The Landscape of Unfolding with Machine Learning

{Zreco}- There is no unique solution to this problem even if the detector response is
deterministic; however, we can proceed by assuming that the function corresponds to
the optimal transport map. We consider a variation of DiDi for this configuration by
dropping the pairing information between training events [69]. This can be achieved
by modifying the conditional trajectory so that x; is sampled independently of zg, so
Eq.(6.19) becomes

t—0
z(t|zg) = (1 — t)xo + tx; — {xo (6.24)
1 ~ P(Treco) t— 1.

The loss function is

Lpipi-u = <[UG((1 —t)xo +txy,t) — (1 — xo)]2>t’\‘u([071])7xONp(xpart)yx1Np(xreco) . (6.25)

During training we now sample events independently of each other, and the learned map
will be purely determined by the network and its training.

Bayesian network Because the distribution mapping loss function does not have a
straightforward interpretation as a likelihood, it cannot be simply transformed into a
Bayesian network from first principles. However, we can add the relevant features of
a Bayesian network, as for the CFM [1,69]. This includes Bayesian layers, Gaussian
distributions of all or some network parameters, and a KL-term regularizing the network
parameters towards a Gaussian prior,

LB.crM = <ECFM>6) + ¢KL[q(0),p(0)] . (6.26)

~q
The factor ¢ balances the deterministic loss with the Bayesian-inspired regularization. If
the network loss follows from a likelihood, this factor is fixed by Bayes’ theorem. In all
other cases it is a hyperparameter. We have checked that the network performance as well
as the extracted posteriors are stable when varying ¢ over several orders of magnitudes,
suggesting that the learned weight distribution corresponds to an inherent property of
the setup.

6.1.3 Generative unfolding

Generative unfolding uses conditional generative networks to learn the conditional proba-
bility describing the inverse simulation py(Zpart|Zreco)s

Pgen Punfold (wpart)
paired data[L}g (Tpart|Treco)
correspondence
Psim pdata(ﬂfreco) (627)

Building a forward surrogate network for p(z;eco|Zpart) uses the same data and has nearly
the same setup as learning the inverse probability p(2part|Zreco). The usual assumption
of unfolding is that the detector response is universal, which breaks the symmetry of the

93

6 The Landscape of Unfolding with Machine Learning

forward and backwards networks via Bayes’ theorem,

X
p(xpart|$reco) = p(xreco|$part) M . (628)
p($reco)

For the forward simulation, we assume that the condition on zp,+ does not induce a
significant prior for the generated pgiy,. For the inverse simulation, this prior dependence
is relevant and it formally implies that there is no notion of unfolding single events, even
though the generative unfolding tools provide the corresponding conditional probabilities.

Technically, we start from a simple latent distribution, where the generative network
transforms the required phase space distribution,

GQ (Z;xreco)

z~ platent<z) Tpart ~ PO (xpart’xreco) . (6-29)

The phase space distribution of an unfolded dataset is then given as

punfold(xpart) = /dxreco p@(xpart‘wreco) pdata(xreco) . (630)

This approach is based on posterior distributions for individual events, which means that
we can also take single measured events and run them through the model any number of
times. In practice, Eq. 6.30 is achieved by sampling from py(Zpart|Zreco) for data events
that follow pgata(Zreco) and then ignoring the yeco argument from the resulting dataset
of pairs (Zpart, Treco)- 1f we wanted to sample further from the result and/or iterate the
procedure, we would need to do something like the second step of OmniFold, which is a
local averaging as done for generative models in Ref. [65]. A key ingredient to unfolding
with generative networks [62] is to either train this network with a likelihood loss [64], like
for the cINN, or to guarantee the probabilistic interpretation through the mathematical
setup, like in the CFM.

Conditional INN

The original generative network used for unfolding is a normalizing flow [37] in its
conditional invertible neural network (cINN) variant [38,64]. It defines the mapping
between the latent and phase space as an invertible function, conditioned on the reco-level
event,

GQ(Z§xreco) —
z platent(z) <1—> Tpart ™~ pe(xpart|$reco) . (631)
<~ Gg (mparﬁzrcco)

The bijection form allows us to write down the learned density as

1 .
8G9 (prarta !Treco)
8ajpamt

Do (xpart |$reco) = platent(Gng(-Tpart; xreco)) det (632)

Having access to the network likelihood enables us to use it directly as loss function and
train via maximum likelihood estimation

'CCINN = _<10g Do (xpart‘xreco)>((633)

Z0,T1)Np(xpart 7xreco) '

This approach requires a bijective map that is flexible enough to model complex transfor-
mations, while still allowing for efficient computation of the Jacobian determinant. We

94

6 The Landscape of Unfolding with Machine Learning

employ coupling blocks [64], but replace the affine coupling blocks with the more flexible
rational quadratic spline blocks [124].

Transformer-cINN We also consider a transformer extension to the standard cINN [2].
The architecture translates a sequence of reco-level momenta into a sequence of particle-
level momenta. A transformer network encodes the correlations between all event
dimensions at particle level as well as their correlation with the reco-level event. A small
1D-cINN then generates the hard-level momenta conditioned on the transformer output.
To guarantee invertibility and a tractable Jacobian, the likelihood and the generation
process are factorized autoregressively

n
Po(Tpart|Treco) = H pG(xl(agrt|C(93I(>?rt’ e 7xl()z;tl)’ Treco)) - (6.34)
=1

The product in Eq.(6.34) covers all dimensions at particle level. The function c is learned
by the transformer to encode the information about the reco-level momenta as well as
the already generated hard-level momenta. The one-dimensional conditional densities
are encoded in the cINN. Note that in contrast to Ref. [2], this so-called transfermer is
autoregressive in individual one-dimensional components, instead of in the four momenta
grouped by particles.

Conditional Flow Matching

As an alternative generative network, we employ a diffusion approach called Conditional
Flow Matching (CFM) [1,51]. The mathematical structure is the same as for the DiDi
network introduced in Sec. 6.1.2. The key difference here is that the CFM now samples
from a Gaussian latent distribution, conditional on a reco-level event, Eq.(6.29). This
means the time-evolving density is conditional and interpolates between the boundary
conditions

p(xpart|$reco) t—0
z,t|Ty — 6.35
P(@, t{Treco) {/\/(:;;;0,1) t—1, (6:35)
while the ODE now reads
dx(t
:255) = vp(z(t), t|Treco) - (6.36)

The information about the reco-level event to unfold is no longer encoded in the initial
condition of the ODE, but in an additional input to the network that predicts the velocity
field. Again we start with paired training data, o ~ p(Zpart) and €1 ~ p(Zreco| Tpart = Z0),
and define a simple conditional trajectory towards Gaussian noise,

xo t—0
x(t|xg, Treco) = (1 — t)xg + te — 6.37
(t|zo)= (1—1t)xo {ENN(O,l) - (6.37)

The conditional velocity field is defined via the derivative of the trajectory

d
v(x(t|xo, Treco), |0, Treco) = pn [(1—t)zg+te] = —x0+€. (6.38)

95

6 The Landscape of Unfolding with Machine Learning

7 () 20 (t) T("p)(t) "

reco reco part “part

L1 —+

e o
g g
= =
s N
Transformer-Encoder Transformer-Decoder

Self-Attention Self-Attention
Reco-level correlations Part-level correlations

\—, ‘ Cross-Attention ’

Combinatorics
- J

C(l) C("p)

.

7}($part(t)vt‘xrec0) = (U(l)(c(1)7t)7 A v(n)(c(np)vt)>

Figure 6.1: TraCFM architecture, combining the CFM generator with a Trans-
former encoder-decoder combination to improve combinatorics.

The rest of the derivation follows analogously to the DiDi derivation. The loss function
is given by the MSE

Lerm = ([va((1 =)z0 +te, t.01) = (€= 20)]")y (10 1)) (w000 mpparestroco et = (639

After training, the CFM can unfold by sampling from the latent noise distribution and
solving the ODE in Eq.(6.36) conditioned on the reco-level event we want to unfold. The
crucial difference to DiDi is that this procedure allows us to unfold the same reco-level
event repeatedly, each time from different noise as starting point, to sample the posterior
distribution pg(zpart|Zreco)-

Transformer-CFM The velocity field can be encoded in any type of neural network,
in that sense CFMs do not impose any architectural constraints. While linear layers
already achieve high precision [1,69], we find that when dealing with complex correlations
employing a Transformer network further improves results [2], similar to the INN vs
Transfermer case.

Our TraCFM architecture encoding v(Zpart, t|Zreco) is shown in Fig. 6.1. Its inputs are
the reco-level event, the intermediate noisy diffusion state zpar(t) and the time ¢. First,
each of the reco-level and particle-level dimensions is individually mapped into a higher-
dimensional embedding space. This is done by concatenating the kinematic variable
with its one-hot-encoded position and filling with zeros up to the specified embedding
dimension [2]. For the particle-level dimensions we also concatenate the time ¢ to the
vector before filling with zeros. We experimented with more sophisticated embedding
strategies, but found no performance improvements. The reco-level embeddings are then

96

6 The Landscape of Unfolding with Machine Learning

fed to the transformer encoder, which encodes the correlations among them using a
self-attention mechanism. The transformer decoder does the same for the particle-level
dimensions. Finally, the updated embeddings are fed to a cross-attention block that learns
to resolve the combinatorics between reco-level and particle-level objects and outputs a
final condition ¢ for each particle-level dimension. A single linear layer, shared between
all dimensions, maps this condition together with the time ¢ to the individual velocity
field components.

To unfold, we start with a sample from the latent distribution as zpar(t = 1) = € ~ N(0,1)
and solve the ODE Eq. (6.36) numerically. Notice that the transformer encoder has no
time dependence, so we do not need to recalculate it at every function call.

Bayesian generative network The concept of Bayesian networks can be applied to
generative networks by assigning an uncertainty to the learned underlying phase space
density. This way, the network learns an underlying density to sample from, and an
uncertainty on this density which it can report as an error of the unit-weight of each
generated event [45,161]. Because the loss of the normalizing flow is a maximized
likelihood, the relation between the likelihood loss and the regularizing KL-divergence
can be derived from Bayes’ theorem. As an approximation to the full posterior, the error
bars reported by Bayesian networks are a learned approximation to the true uncertainty
on the phase space density.

Latent Variational Diffusion

To reduce the disparity between different parameterizations of the set of observables
and to enable a more robust network, Latent Variational Diffusion [211] introduces a
Variational Autoencoder to initially map observables from particle/parton phase space
to a latent space. This particle encoder learns the mapping

Tpart — 2 = ENCODERpart (Zpary) € RPLatent (6.40)

It is implemented as a deep feed-forward network. This latent space can be fine-tuned for
the diffusion step, allowing enhanced control over the generation process before mapping
the result back to the observables.

To accommodate variable-length reco-level objects, an additional detector encoder maps
them to a fixed-length latent vector

Treco — W = ENCODERyeco (Zreco) € RPratent | (6.41)

It utilizes a deep feed-forward network for fixed-length inputs and a transformer encoder
for variable-length inputs.

These latent observables provide the inputs for a conditional variational diffusion net-
work [171]. VLD employs a continuous- time, variance-preserving, stochastic diffusion
process with a noise-prediction parameterization for the score function. The governing
stochastic differential equations are

dz = f(z,t)dt + g(t) dw (VLD Forward SDE)
dz = [f(20,1) = *(t)so(z,w,1)] dt + duw (VLD Reverse SDE) (6.42)

97

6 The Landscape of Unfolding with Machine Learning

where f is the drift term of the SDE, g is the diffusion coefficient, and s is the score
function, as in Eqgs. (6.6) and (6.7). The drift and diffusion terms are parameterized
through a learnable noise schedule v4(t), which controls the diffusion rate. It is encoded
in a monotonically increasing deep network as a function of ¢,

f(z,t) = —% LZ log (1 + e%(t))} z

g(t) = \/jt log (1 + ew’(t)) : (6.43)

This simplifies the forward process to a time-dependent normal distribution, controlled
by v4(t), now interpreted as the logarithmic signal-to-noise ratio.

zp ~ N (0(=74(t)) 2, 0(74(t)) I) where o(z) =4/ 1 +1e_90 . (6.44)

The diffusion score is parameterized via a noise-prediction network,

€o(ze,w,t)
o(—76(t) ’

trained to predict the sampled noise used to generate the forward sample from the diffusion
process [171,211]. Tt is implemented as a deep feed-forward network, concatenating the
three inputs before processing.

sp(z,w,t) = (6.45)

Finally, a decoder transforms the initial noisy latent particle representation back into
phase space observables,

20 — Zpart = DECODER(%p) . (6.46)

It is again implemented as a deep feed-forward network and outputs real-valued estimates
of the observables.

All networks are trained in a end-to-end fashion using a unified loss which allows the
encoders and decoders to fine-tune the latent space to the diffusion process, while
accurately reconstructing the observables. We use a standard normal distribution as the
prior over the final noisy latent vector, p(z1) ~ N(0,I). The denoising network, v,(t), is
trained to minimize the variance of the following loss term, while all other networks are
trained to minimize its expectation value:

Lyip = KL[g(z1]2), p(21)] (Prior Loss)
+ <||DECODER(z0) - xH§> ol (Reconstruction Loss)
q(zo0|z
+ <7;,(t)He — ép(z, w, t>H%>e~N(0 Dt (Denoising Loss) (6.47)

98

6 The Landscape of Unfolding with Machine Learning

6.2 Detector unfolding: Z+jets

6.2.1 Data and preprocessing

As a first test case for the various ML-Unfolding methods we use a new, bigger version of
the public dataset from Ref. [63], now available at Ref. [257]3. The events describe

pp — Z + jets (6.48)

production at /s = 14 TeV, simulated with Pythia 8.244 [33] with Tune 26. In contrast to
the original dataset, detector effects are now simulated with the updated Delphes 3.5.0 [36],
and the CMS tune, that uses particle flow reconstruction. The jets are clustered using
all particle flow objects available at detector level and all stable non-neutrino truth
particles at particle level. Jets are defined by the anti-k7 algorithm [109] with R = 0.4, as
implemented in FastJet 3.3.2 [177]. The dataset contains around 24M simulated events,
20M for training and 4M for testing.

We focus on six observables describing the leading jet: mass m, width Tl(B :1), multiplicity

N, soft-drop [259,260] mass p = m2p/p% and momentum fraction z, using zey; = 0.1 and

B =0, and the N-subjettiness ratio 791 = TQ(BZI)/Tl('BZI) [261]. For 0.8% of the events we
map an undefined jet groomed mass log p or N-subjettiness ratio 71 to zero.

The distributions are shown in Fig. 6.2. We apply a dedicated preprocessing to the jet
multiplicity and the groomed momentum fraction. The jet multiplicity is an integer
feature, which forces the network to interpolate, so we smooth the distribution by adding
uniform noise u ~ U[—0.5,0.5). This preprocessing can be inverted. The groomed
momentum fraction features a discrete peak at z, = 0 and sharp cuts at z; = 0.1 and
0.5. We move the peak to z; = 0.097 and add uniform noise u ~ ¢[0,0.003). Next, we
take the logarithm to make the distribution more uniform. We then shift and scale the

3For a comparison with classical unfolding methods, we refer to Refs. [63] and [258].

— reco
— part
10"

Normalized
Normalized
=)
&

— reco

— part

Normalized
Normalized
o

—125 —100 —75 =50 —25 01 02 03 0.4 0.5
log p 2

Figure 6.2: Subjet distributions for the Z+jets dataset, at the particle level, and
at the reco level.

99

6 The Landscape of Unfolding with Machine Learning

distribution to stretch from —1 to +1 and take the inverse error function to transform its
shape to an approximate normal distribution. Finally, all six observables are standardized
by subtracting the means and dividing by the standard deviations.

Also in Fig. 6.2, we show the effect of the detector simulation. They are most significant
for the jet multiplicity, the groomed jet mass, and the N-subjettiness ratio. All these
shifts are driven by the finite energy threshold of the detector.

6.2.2 Reweighting

As in Sec. 6.1, we start with the OmniFold reweighting on the Z + jets dataset. We then
introduce the Bayesian version (bOmniFold) and compare their performance. We train
both networks for two different unfolding tasks. First, we evaluate their performance on
the same dataset as the other generative networks, splitting it in two halves, but adding
noise to one of them as described below. Then, we go back to the previous Pythia dataset
and task the classifiers with learning the likelihood ratio between Pythia and Herwig.
We use this ratio to reweight Herwig onto Pythia.

Training on Pythia with added noise

For this section, we employ the combination of Pythia with the updated Delphes version.
We merge the training and test sets with 24.3M events, of which we use 10.9M for training,
1.2M for validation, and 12.2M for testing. In each of these splits, we label half of the
events as Pythia 1 and the other half as Pythia 2. The classifier has to learn to reweight
Pythia 1 onto Pythia 2.

If we train (b)Omnifold on this task, it will just learn a constant classifier value of 0.5,
so we add Gaussian noise £ ~ N (0, 1) to each of the raw features before preprocessing,

0.06
— Pythia reco 2 — Pythia reco 2
— Pythia part 2 — Pythia part 2
0.04 — OmniFold o o0 — OmniFold
g — bOmniFold g g — bOmniFold
2 £
; 1074] — Pythia reco 2 /5 S
! — Pythia part 2 < 0.02
| — OmniFold
10 — bOmniFold
I 0.00
221051 HEW 22205
100 S === T 100 Y-
1001 e O A et o
0.95 T u] 0.95
10 20 30 10 50 0 0.0 0.2 0.4 0.6 10 20 30 10 50
m [GeV] w N
10)
0.20{ — Pythiareco 2 — Pythia reco 2 31 — Pythia reco 2
— Pythia part 2 6 — Pythia part 2 — Pythia part 2
—015] — OmniFold . — OmniFold _ — OmniFold
g€ 7| — bOmniFold g1 — bOmniFold g 21 — bOmniFold
0.0 £3 E
Z Z Zi1
0.05 2
0.00 0F
_.105 } _.105 _.105 Lr]%nm
e LO0 P S E‘_El.()([e A e E‘_El.()(Y S
~70.95 FE ~70.95 1] “0.95
—14 —12 —-10 -8 —6 —4 -2 0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 1.0
log p zy o1

Figure 6.3: Unfolded distributions from event reweighting using OmniFold and
bOmniFold. The bOmniFold error bar is based on drawing 20 Bayesian samples.
For OmniFold the error bar represents the bin-wise statistical uncertainty.

100

6 The Landscape of Unfolding with Machine Learning

‘ m [GeV] ‘ w ‘ N
OmniFold | 0.59098 / 0.12493 / 13.72203 0.01001 / 1.62601 / 2.99618 0.67919 / 0.03034 / 18.47942
bOmniFold | 0.37180 / 0.14208 / 9.89718 0.00542 / 1.64286 / 2.24587 | 0.22693 / 0.02176 / 4.97982
‘ log p ‘ Zg ‘ 21
OmniFold 0.40320 / 0.72494 / 15.60005 0.01550 / 15.30356 / 4.81947 0.00931 / 0.02746 / 1.40143
bOmniFold | 0.12501 / 0.67605 / 5.59003 | 0.01109 / 15.27470 / 4.51572 0.00956 / 0.02183 / 1.54405

Table 6.1: Metrics evaluating the performance of the different unfolding networks,
for each of the one-dimensional kinematic distributions. We show the Wasserstein
1-distance (x10), the triangular distance (x1000), and the energy distance
(x1000).

scaled by the standard deviation of the respective feature o, and an additional custom
factor f to modify the relative importance of the noise,

rT—=T=x+f 06 with e~N(0,1), (6.49)

where we use f =0.1.

We train OmniFold (13k parameters) and its Bayesian-network counter part bOmniFold
(2x13k parameters) with identical settings for 30 epochs. The unfolded distributions
are shown in Fig. 6.3. While this reweighting task might not be realistic, it defines
an illustrative benchmark for the performance of an unfolding network. For each of
the one-dimensional kinematic distributions, the agreement between the unfolded and
true particle-level events is at the percent level over most of the phase space. The only
exceptions are sparsely populated tails with too little training data, or sharp features
with limited resolution. The differences between the OmniFold and bOmniFold results
are even smaller. A selection of summary statistics are presented in Tab. 6.1, where we
show the Wasserstein 1-distance, the triangular distance, and the energy distance for
the six kinematic observables. The two methods were not separately optimized, we just
started with a generic OmniFold setup and supplemented it with the Bayesian network
features. Uncertainties on the statistics are not included in these illustrative metrics.

For the uncertainties, we see that it tends to cover the deviation of the unfolded distribu-
tions from the truth target towards increasingly sparse tails. Far in the tails, where there
is too little training data altogether, the networks learn neither the density nor an error
bar on it.

Reweighting Herwig onto Pythia

For a more realistic (b)OmniFold task, we go back to the original Pythia dataset, for
which we also have a Herwig [262] version with the same version of Delphes, as introduced
in Ref. [63]. We train (b)OmniFold for 500 epochs on 2M events, and test on 664k
events [68].

First, we show the losses as a function of the training in Fig 6.4. This comparison shows
the challenge of the classifier training, which rapidly overtrains after about 20 epochs.
This behavior does not appear in the previous study with noisy Pythia events and is due
to the smaller training data for the Herwig reweighting. For large numbers of training
epochs, the loss on the validation dataset indicates a decreasing performance due to
overtraining. For applications which require an LHC-level of precision, such overtraining

101

6 The Landscape of Unfolding with Machine Learning

may become a problem. It can be avoided, for instance, using regularization techniques,
such as dropout. Both of these mechanisms are part of the Bayesian network architecture,
in case of the regularization with a strength given by Bayes’ theorem. In Fig. 6.4 we see
that the bOmniFold training continues to improve even after a large number of epochs,
with no overtraining. Interestingly, bOmniFold has larger epoch-to-epoch fluctuations
and has a worse minimum validation loss than OmniFold, but does not show signs of
overtraining. This illustrates a potential tradeoff between accuracy and stability.

We verified that the unfolded observables between OmniFold and bOmbiFold are in
agreement. Because of the difference between the training data, or prior, and the data
we then unfold, the true particle-level distributions are not exactly reproduced. The
interesting feature of the bOmniFold training is that it has suppressed tails in the weight
distribution with respect to OmniFold, as shown in Fig. 6.5, even though both networks
learn the same reweighting map. Large and small weights lead to undesired statistical
dilution of the dataset, and it will be interesting to explore in the future the interplay
between statistical dilution and accuracy.

6.2.3 Mapping distributions

The same subjet unfolding can be tackled with distribution mapping, using the Schrédinger
Bridge and Direct Diffusion, both introduced in Sec. 6.1.2. The implementation of the
Schrodinger Bridge follows the original Pytorch [173] implementation [68]. The noise
prediction network is implemented using a fully connected architecture with additional
skip connections, specifically using six RESNET [263] blocks, with each residual layer
connected to the output of a single MLP through a skip connection. The Bayesian
version replaces the original MLPs. The training uses the Adam [114] optimizer. The
total number of trainable parameters is around 2M split equally between the mean and
standard deviation of the trainable weights.

During data generation, we sample using the MAP prediction, i.e. fix every network
weight at the learned mean. Uncertainties are derived by sampling 50 times from the
learned weight distributions. In Fig. 6.6, we quantify the agreement between the unfolded
and truth one-dimensional kinematic distributions. The unfolding performance can be

0.680
0.679
0.678
= 0.677
0.676] - Omn. BCE train e
—— Omn. BCE val T .
0.6751 ----- bOmn. BCE train
bOmn. BCE val
0.674 0 100 200 300 400 500

Epoch

Figure 6.4: BCE losses during training for 500 epochs for Omnifold (green) and
bOmnifold (red), for Herwig-to-Pythia reweighting.

102

6 The Landscape of Unfolding with Machine Learning

10(]‘ 1004
—— Pythia

107"y —— Herwig 1071

E 10724 ’"§10*2

§10734 21073

o o

“104 “ 104

10 1074 h

1076 1076 } L .
1072 107! 100 10! 102 1072 107t 100 10! 102

w(z) w(z)

Figure 6.5: Weight distribution (clipped at 200) in the training set for Herwig-
to-Pythia reweighting: OmniFold (left) vs bOmniFold (right). For each network
we histogram the weights for the Herwig and Pythia data points.

reco
part
bSB

10°

reco
part

Normalized

107y — bSB DiDi-P
— DiDi-P DiDi-U
2y — Dibi-U
s [0
| I=anl T
O TS ieman T
I)
IT
5] PEa: L |
e R T
I1, =
=i =E =10

20 30 40 50

reco
part
bSB
DiDi-P
DiDi-U

N oW O

Normalized
Normalized

- S 3
2095 — HARE 2095
ER e N =
2 0:95HH = A0
22103 22103
ZEL 00 et — ZEL00
SE095 =5 2E0.95 = :
- 12 -1 8 6 -4 2 01 02 03 04 05 02 04 06 08 10
log p 2y o

Figure 6.6: Unfolded distributions from distribution mapping, using the
Schrodinger Bridge and DiDi. The Bayesian error bars are based on draw-
ing 50 samples.

compared to the noisy reweighting benchmark in Fig. 6.3. The agreement between
unfolded and truth-level observables is still precise to the percent level. Notably, the
largest deviations from the truth distribution occur in the low-statistics edges, while
the bulks of the distributions are well described by the generative mapping, and the

deviations from the truth are well covered by the Bayesian uncertainty.

An alternative method for the same tasks is Direct Diffusion. We encode the velocity field
in a standard Bayesian MLP, after not seeing better results with more advanced networks.
Again, we implement the network in Pytorch, train it using the Adam optimizer, use the
MAP prediction, and draw 50 Bayesian weight samples to estimate the uncertainties. We
use the same setup for paired and unpaired DiDi. The only difference is the reshuffling
of the reco-particle pairings at the beginning of each epoch in the unpaired setting. The
network size comes to about 3M parameters, 1.5M weights each associated with the mean

and the standard deviation.

103

6 The Landscape of Unfolding with Machine Learning

reco
part

cINN
CFM
VLD

H
B A T
o=

10 20 30 40 50 60
m [GeV] w

=10 -8

log p 2 71
Figure 6.7: Unfolded distributions from conditional generation, using cINN,
CFM and VLD. For cINN and CFM, the Bayesian errors are based on drawing
50 samples, and the MAP estimate is obtained by unfolding each event 30 times.
For VLD, we show the bin-wise mean and standard deviation of 33 unfoldings.

The results are compared to the Schréodinger Bridge in Fig. 6.6. Both variants of Direct
Diffusion learn the observables with percent precision over the entire phase space, and
better than that in the well-sampled bulk. For the central prediction, the paired training
data makes the unfolding slightly more precise and more stable.

A difference between paired and unpaired DiDi is that the latter might be slightly less
stable and learns significantly larger Bayesian uncertainties. This is consistent over several
trainings. At the level of kinematic distribution we do not observe any shortcoming for
unfolding through distribution matching, and the difference between paired and unpaired
training data is minor. We will come back to the conceptual difference in Sec. 6.2.5.

6.2.4 Generative unfolding

The third unfolding method we study is based on learned conditional probabilities, as
defined in the statistical description of unfolding. It relies on paired training data.
Differences appear when we vary the generative network architecture used. We skip
the original GAN implementation [62], because more modern generative networks have
been shown to learn phase space distributions more precisely [1,45]. The cINN [64]
is implemented in PyTorch [173] and uses the FrEIA library [264] with RQS coupling
blocks. By default, we use its Bayesian version [161], which tracks the uncertainty in the
learned phase space density as variations of unit event weights. Our CFM [1] encodes the
velocity field in the same linear layer architecture as DiDi, including the Bayesian version.
Predictions are obtained by unfolding each event 30 times with the MAP weights, and the
uncertainties are obtained from drawing 50 sets of weights from the Bayesian network.

VLD is implemented and trained using the same JAX codebase released alongside
Ref. [211]. Observables are first pre-processed so that each marginal distribution follows
a standard normal via a quantile transform. Predictions are generated using the DPM++

104

6 The Landscape of Unfolding with Machine Learning

multi-step solver [265] with 1000 inference steps and the learned schedule. Unlike the other
models, VLD is not implemented as a Bayesian network. Uncertainties are estimated by
sampling each unfolding 33 times using a different seed for generating the prior noise.

In Fig. 6.7 we show the results from the cINN, CFM, and VLD. As for the (b)OmniFold
reweighting and the distribution matching, all kinematic distributions are reproduced at
the percent level or better. While the performance of the cINN and the CFM are very
similar, the VLD approach shows slightly larger deviations from the target distributions.

6.2.5 Learned event migration

For the generative network methods, it can be instructive to examine the learned map
between reco events and truth events. In the top panels of Fig. 6.8 we start with the
migration described by the paired events from the forward detector simulation. We
show three of the kinematic distributions defined in Fig. 6.2. The results for the other
distributions lead to the same conclusions. For the jet mass, the multiplicity, and 7o
we see that the optimal transport defined by the detector is quite noisy. While for the
jet mass most events form a diagonal with little bias, the jet multiplicity shows a linear
correlation with a non-trivial slope, and 797 indicates a saturation effect in the forward
direction Zpart — Treco, such that 79 (Zreco) does not reach one.

In the next row we show the results from the Schrédinger Bridge, which is similar, but
slightly noisier than DiDi trained on paired events, shown in the third row. Using paired
events, these generative networks learn a very efficient diagonal transport map, with a
spread that is more narrow than the actual detector. The main features of the detector
truth are reproduced well.

Next, we see that the unpaired DiDi network again learns an efficient transport map, but
with a significantly broader spread than the same network trained on paired events. The
reason is that ignoring the event pairing leads to a noisier training, but again reproducing
the main features of the detector. We emphasize that unpaired training seems to bring
DiDi-like implementations closer to describing the actual detector, but this is an artifact
in that the detector mapping is noisier than the optimal transports from distribution
mapping, and training on unpaired samples is also noisier, but the two are not positively
related. Finally, we show the transport learned by the conditional CFM networks. Not
shown are the corresponding cINN and VLD results, which are visually identical to
the CFM results. The conditional generative models indeed learn the correct detector
transport from the paired events, indicating that conditional generative networks indeed
encode the conditional probabilities from Eq.(6.27).

6.2.6 Classifier check

Finally, there is the question if the learned distributions have failure modes that cannot
be seen from the marginal distributions. Following [162,178,266], we systematically
search for mis-matched correlations using a trained binary classifier between the true
training events and the same number of unfolded events. Using Eq.(6.2) this classifier
can be turned into a re-weighting function w(x), evaluated for each data point in phase
space.

We train individual classifiers for each of the discussed methods, the results are presented
in Fig. 6.9. The top left plot shows the phase space weights w for the three distribution

105

6 The Landscape of Unfolding with Machine Learning

Truth Truth Truth

N (part)

0.5 1.0
T (reco)

bSB

m [GeV] (reco)
bSB

40 0.5 1.0
m [GeV] (reco) Ty (reco)
DiDi-P DiDi-P
=

- 0.5 1.0
m [GeV] (reco) N (reco) To1 (reco)
DiDi-U DiDi-U DiDi-U

0.5
71 (reco)

CFM (cINN, VLD)

m [GeV] (reco)
CFM (¢INN, VLD)

N (part)

20 40 60 z 0.5
m [GeV] (reco) 791 (reco)

Figure 6.8: Migration maps for three representative distributions. From the top:
forward detector simulation, Schrodinger Bridge, paired DiDi, unpaired DiDi,
and CFM/cINN/VLD, which are all looking identical. The bin contents are
normalized such that each row sums to one.

mapping methods bSB, DiDi-P and DiDi-U. For all three networks, the dominant feature is
a sharp peak in w ~ 1, showing overall excellent agreement between the learned unfolding
and the truth distribution. A tail towards higher weights indicates the existence of phase

106

6 The Landscape of Unfolding with Machine Learning

space regions that are underpopulated by the network, while lower weights indicate an
overpopulated region. While for all three networks weak tails in both directions exist,
they are suppressed by several orders of magnitude compared to the peak around unit
weights. The right plot shows the same weight distribution zoomed into the area around
w(x) =1 to better visualize the peak. Comparing the three methods, we find a slightly
sharper peak for the DiDi networks compared to the bSB implementation.

The bottom row of Fig. 6.9 shows the same two plots for the three generative networks,
cINN, CFM, and VLD. Again, for all three methods almost all events fall into a sharp
peak around weight one. Tails towards high and low weights exist, but are again strongly
suppressed compared to the peak and only visible due to the logarithmic scale of the
y-axis. Comparing the three networks, we find a slightly larger spread for the VLD.
The right plot shows the zoomed-in version of the same distribution. Here we see that
the density in the peak is about one order of magnitude larger for the CFM and cINN,
compared to the VLD.

Finally, we can compare the distribution mapping methods in the top row to the generative
networks in the bottom row. They show overall very similar performance, indicating
that despite their different migration patterns shown in Fig. 6.8, both model classes can
recover the unfolded distribution with high precision. In the high resolution plots on the
right, we find a slightly sharper peak around unit weights for the CFM and the cINN,
indicating the overall best agreement with the truth distribution, as measured by the
trained classifier.

107

6 The Landscape of Unfolding with Machine Learning

Weight Distribution Weight Distribution
1 1
0 —— bSB 1021 —— bSB
—— DiDi-P 1ol —— DiDi-P
107! —— DiDi-U —— DiDi-U
£10°3 £
= =
z Z
107>
| 1
1077 ‘ 107°
1072 107! 10° 10! 102 0.8 0.9 1.0 1.1 1.2
Weights Weights
Weight Distribution Weight Distribution
10! i
A ¢INN
—— CFM
107! —— VLD
o el
3 kS|
£10°3 £
e —
2 z
107>
10—7 ! | . H | . ” . 1,
1072 107! 10° 10! 102
Weights

Weights

Figure 6.9: Classifier weight distribution on the Z+jets dataset. The top row
shows the results for the distribution mapping methods, the bottom row for the
generative methods. The left plots show the weight distribution over a large
range, the right plots are zoomed in to resolve the area around w = 1.

108

6 The Landscape of Unfolding with Machine Learning

6.3 Unfolding to parton level: top pairs

6.3.1 Data

As a second benchmark we apply ML-methods to top quark pair production, unfolding
from reco-level to parton level, i.e. the level of the top quarks and their decay products
from the hard scattering, before undergoing hadronization. While more physics assump-
tions/approximations are required for this type of unfolding, it is often performed by
ATLAS and CMS [267-274]. Parton-level results are extremely useful, for instance, to
combine measurements into a global analysis [238,239], extract SM parameters [274,275],
or to compare new theory predictions without requiring these to be matched to parton
showering programs [276].

The task is to map reco-level 4-momenta to parton-level 4-momenta defined by the 2 — 2
scattering and subsequent decays, in our case [211]

qd/gg — tt — (blTvy) (bqq) with £=e,u , q=u,d,s,c, (6.50)

plus the charge-conjugated process. The events are simulated with Madgraphb 3.4.2 [32]
at /s = 13 TeV and with a top quark mass m; = 173 GeV. One of the W bosons decays
leptonically, the other hadronically. Showering and hadronization are simulated with
Pythia 8.306 [33], and detector effects with Delphes 3.5.0 [36] with the standard CMS
card. We again reconstruct jets using the anti-kr algorithm [109], now with R = 0.5 and
a pr-dependent b-tagging efficiency. Leptons and jets are subject to the acceptance cuts
pr > 25 GeV and |n| < 0.25. We only keep events with exactly one lepton, at least 2
b-tagged jets, and at least two more jets.

This second benchmark process is technically more challenging than the Z+jets unfolding
in terms of the six subjet observables, because of the higher phase space dimensionality
and because we can no longer directly match reco-level and parton-level observables. To
reconstruct the hard scattering, the network has to learn the non-trivial combinatorics
as well as complex correlations reflected in the intermediate mass peaks. We focus on a
comparison of the different generative unfolding methods, which reproduce the forward
simulation in their event-wise migration, but are most challenging from an ML-perspective.
As before, we postpone the important question of model dependence to a later paper.

6.3.2 Generative unfolding

As a first attempt, we employ a straightforward phase space parametrization for the six
top decay products,

(pT,bgv Moy s ¢bga pTe,Ne, ¢€a Prv, M, ¢V)
(pT,bh’ Tby, 5 ¢bha Mgy PTq15 g1 d)qlv PT,q25 g2 ¢q2) . (651)

The lepton masses are common to all events, and we set them to zero at the level of our
simulations. The bottom jets are generated with a common finite bottom mass. For the
remaining jets, we have to keep track of the charm mass in the corresponding charm jets.
This leads to a binary degree of freedom, in addition to the 18 standard phase space
dimensions.

109

6 The Landscape of Unfolding with Machine Learning

— part
¢INN

—— Transfermer

—— CFM

—— TraCFM

VLD

0.31 — part
¢INN

0.29 —— Transfermer
—— CFM
014 — TraCFM
VLD

— part
¢INN
Transfermer
—— CFM
0.11 — TraCFM
VLD

0.010

normalized
normalized
normalized

65 70 75 80 85 90 160 165 170 175 180 50 100 150 200
mu; [GeV] my, [GeV] pray [GeV]

— part
¢INN

—— Transfermer

—— CFM

—— TraCFM

VLD

—— part
¢INN

029 —— Transfermer

—— CFM

011 — TraCFM

VLD

— part
¢INN
Transfermer
—— CFM
0.11 — TraCFM
VLD

0.010

normalized
normalized

a1 B T W ok L
_Fu—ﬂ ,%ifﬁg

65 70 75 80 85 90 160 165 170 175 180
i, [GeV] my, [GeV]

; o
Transfe) o]
- CFM
—— TraCFM

— VLD

0.0100 —— part
cINN
Transfermer
CFM
TraCFM
VLD

=3
P

£ 0.0075
g

normalized
=)
o

= 0.0025

0.1

0.0000

e

TR R

3 1 5 —100 0 100 200
ARy, Pras

-
=N
o

Figure 6.10: Unfolded top pair distributions from conditional generation using
the naive phase space parametrization of Eq.(6.51). For the Bayesian cINN,
Transfermer, CFM and TraCFM the error bars are based on drawing 50 samples.
For the VLD the error bars are given by unfolding each event 128 times and
showing the bin-wise mean and standard deviation.

While at parton level all events have the same number of particles, at reco level we
see a variable number of jets. Jets are produced in top and W-decays, but also in
initial-state and final-state radiation, multi-parton interactions, underlying event, or
pileup. Their number also strongly depends on the acceptance cuts. Naively, these
additional jets are not expected to carry information on the hard process. However,
they can sometimes cause events to pass selections by replacing top decay jets which
do not pass the acceptance cuts, or lead to challenging event reconstruction due to jet
combinatorics [2]. This means we cannot just ignore them.

While the standard cINN and CFM require a fixed-dimensionality condition, their trans-
former variants can handle variable dimensionality. Alternatively, we could employ an
embedding network to overcome this limitation. Testing the impact of additional jets
on our specific unfolding task with the Transfermer and TraCFM networks, we find
that they do not benefit from additional reco-level jets significantly. Consequently, we
restrict ourselves to a fixed maximum number of particles at reco-level for these networks.
The particles we include in an ordered vector are the lepton, the missing transverse
momentum, the two leading b-jets, and the two leading light-flavor jets. VLD does
naturally includes all jets in an un-ordered fashion. The masses and transverse momenta
of the particles are log-scaled before feeding them to the network.

We again use an RQS-cINN implementation from the FrEIA library [264], in the last
block we replace the linear layers with Bayesian layers to track the network uncertainties.

110

6 The Landscape of Unfolding with Machine Learning

The CFM encodes the velocity in a standard MLP network. The time ¢ is embedded to a
higher dimension using a random Fourier feature encoding [277] before being concatenated
to the other network inputs, as we found that this improves results in higher-dimensional
tasks. Following [278] we only make the last network layer Bayesian, as too many Bayesian
weights can make the training of large networks unstable. For the two Transformer-based
networks we employ the standard PyTorch Transformer implementation. The attention
blocks are then followed by a single Bayesian RQS block or a single Bayesian linear layer
for the Transfermer and the TraCFM respectively. For the TraCFM we employ the same
time embedding as for the CFM and concatenate the encoded time to the transformer
output before feeding it to the final layer.

The results for the cINN, its Transfermer variant, the CFM, and its TraCFM variant along
with VLD are shown in Fig. 6.10. In the plots we focus on the challenging distributions,
mainly the intermediate mass resonances and the angular correlations. We have checked
that the rest of the kinematics is reproduced mostly at the percent level by the generative
networks. Generally, we find that the lepton and neutrino kinematics are learned slightly
better than the quark kinematics. As shown in the top rows, the correlations describing
the intermediate particles are not learned as well. For the resonances, all networks
struggle. Because they only require to correlate two independent 4-momenta, the W-
peaks are learned a little better than the top peaks. Also, the leptonic decay is learned
better than the hadronic decay. Altogether, the Transformer-enhanced networks perform
better than the CFM, which in turn beats the cINN.

6.3.3 Generative unfolding using physics

The choice of phase space parametrization can be crucial for the performance of generative
networks [209]. To solve the problems with intermediate on-shell propagators, we employ
the dedicated top-mass parametrization proposed in Ref. [212]. It directly predicts the top
and W-kinematics and makes the simpler decay kinematics accessible via correlations. As
the phase space basis we choose the top 4-momentum in the lab frame, three components
of the W 4-momentum in the top rest frame, and two (three for the hadronic case)
components of the first W-decay product in the W rest frame,

L L L T T w W
(mtapT,mnt 7¢t7 mW7nW7¢W7 né 7¢f)

L L L T T w W
(mtapT,tv Un 7¢t y MW, N ¢W7 Mgy Ny, 7¢q1) . (652)

The superscripts L, T, W denote the rest frames. We then employ a Breit-Wigner mapping
using the mass values in the event generator

2
V2 % erfinv | = arctan(m — Mpeak) | (6.53)

s
to turn the sharp mass peaks into a Gaussian-like shape.

The results with this paramerization are shown in Fig. 6.11. We drop the cINN and focus
on the better CFM implementations. Now that the intermediate masses are directly
predicted by the networks, we reproduce them within a few percent. The kinematics of
the decay particles, now correlations between the directly predicted dimensions, are also
faithfully modeled. Because the learning task has become easier, the difference between
the CFM and the TraCFM is smaller. So physics helps, as it tends to.

111

6 The Landscape of Unfolding with Machine Learning

Similar to Sec. 6.2.5, we again train a classifier to distinguish the generated events from
the training data truth. In Fig. 6.12 we show the distribution of learned classifier weights
for the three generative unfoldings. In this case, we see that while the one-dimensional
kinematic distributions look similarly good for the three models in Fig. 6.11, there are
significant differences in the precision with which the generative networks reproduce the
multi-dimensional target distributions. The fact that all weight distributions are peaked
around w =~ 1 and that the tails on the parton-level training and generated datasets
are identical indicates that there is no definite failure mode [178]. On the other hand,
the level of agreement is significantly improved, going from the VLD to the CFM, and
then adding the transformer feature of the TraCFM to encode combinatorics [2]. For the
latter, we again reach the percent-level precision we observed for the Z+jets detector
unfolding in Sec. 6.2.

part
VLD
CFM

—— TraCFM

g [GeV] my, [GeV]

0.0075

— part
—— VLD
— CFM
TraCFM

— part
—— VLD
—— CFM
TraCFM

£0.0050
H

©

g
S
E

500025

0.0
i T = _0:0000 =
§ﬁ‘qk g EERNI P o =
= ,—H“DL—JD P e e
9 ey F
= = T
§ B i s g o A =)
H e - L e

P L
S e e e e

75 80 85 90 50 100 150 200 250 300
muy, [GeV) my, [GeV] praw, [GeV]

0.4

04 o 0.010
—— VLD
—— CFM
TraCFM

— part
—— VLD
— CFM
TraCFM

—— part
—— VLD T
— CFM |
TraCFM g

normalized
o
o
S
=

4 ; 3
ARy ARy g Py

Figure 6.11: Unfolded top pair distributions from conditional generation using
the dedicated phase space parametrization of Eq.(6.52). For the Bayesian cINN,
Transfermer, CFM and TraCFM the error bars are based on drawing 50 amples.
For the VLD the error bars are given by unfolding each event 32 times and
showing the bin-wise mean and standard deviation.

112

6 The Landscape of Unfolding with Machine Learning

——- Part — VLD
1014 —— Gen — CFM
—— TraCFM
0]
- 10
S
10
S
Z,
10-24
10-34

Figure 6.12: Weight distributions from a trained classifer between true and

generated top pair events. The corresponding AUC values are 0.53 for the VLD,
0.51 for the CFM and 0.501 for the TraCFM.

113

6 The Landscape of Unfolding with Machine Learning

6.4 Outlook

Machine learning is changing the face of LHC physics, and one of the most exciting
developments is that it enables unbinned, high-dimensional, precise unfolding. This
includes detector unfolding as well as inverting the first-principle simulations to the
parton level. There exist three different ML-methods and tools for such an unfolding, (i)
event reweighting or OmniFold, (ii) mapping distributions, and (iii) conditional generative
unfolding. All these methods have been developed to a level, where they are ready to be
further studied for use by the LHC experiments. In this paper, we give an overview of
the different methods and corresponding tools, including an update to the most recent
neural network architectures and a rough comparison of the strengths of the different
methods.

Our first task is to unfold detector effects for a set of six subjet observables in Z+jets
production. Here, reweighting-based unfolding, a supervised classification task, reproduces
all true particle-level distributions and defines a precision benchmark shown in Fig. 6.3.
A new Bayesian variant of OmniFold might provide complementary strengths to the
existing method.

Alternatively, distribution mapping can be trained on matched events efficiently. We
found that the (Bayesian) Schrodinger Bridge and Direct Diffusion implementations
consistently provide high performance, shown in Fig. 6.6. Alternatively, distribution
mapping can be trained on unmatched data, which limits its ability to reproduce the
actual detector effects, but can be useful when one is missing matched training data.

Third, unfolding by learning and sampling conditional inverse probabilities is ideally suited
to model complex detector effects, but also the most challenging network architecture.
We have compared a series of tools, including invertible networks without and with a
transformer encoding, as well as diffusion networks without and with a transformer, and
with an enhanced latent representation. In Fig. 6.7 we have shown that the conditional
generative tools match the precision of distribution mapping. In addition, we have shown
to which level the different methods learn the event migration or optimal transport
defined by the forward detector simulation, rather than an abstract mapping defined by
the network architecture.

Finally, we have applied our unfolding methods and tools to invert ¢ events to the hard
process of top pair production with subsequent decays. Here, correlations pose a serious
challenge, specifically the intermediate mass peaks. We have found that they can be
learned precisely once we represent the phase space in a physics-inspired kinematic basis,
as can be seen in Fig. 6.11. In addition to the physics pre-processing, the combination
of a diffusion model with a transformer guaranteed the best performance among the
conditional generative unfolding networks.

Altogether, we have shown a multitude of different methods and tools for ML- unfolding,
with dedicated individual strengths.? All of them are ready to be studied further in the
context of LHC analyses. Their complementarity is a strength for building confidence in
advanced tools for high-dimensional cross section measurements. Future work will focus
on how the different approaches handle prior dependence, backgrounds, and acceptance
effects, as well as a comprehensive treatment of the uncertainties associated with these
steps.

4Many of the codes used in this paper will be made publicly available, together with a set of tutorials
accompanying Ref. [23].

114

https://github.com/heidelberg-hepml/ml-tutorials

Chapter

Generative Unfolding with Distribution
Mapping

The research presented in this chapter is based on work in collaboration Anja Butter,
Sascha Diefenbacher, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and
Tilman Plehn, and has been previously published in Ref. [4]. The content is similar or
identical to the content of this article.

Differential cross sections are the central currency of exchange in particle and nuclear
physics. These objects connect theory with experiment, allowing for most of the data
analysis performed at particle colliders. Simulations of collisions from the smallest
distance scales up to the macroscopic size of detectors enable comparisons of synthetic
and real data [30]. Comparing fully simulated and real events directly has a number of
advantages, but it also requires access to the experimental data and prespecifying the
physics questions and calculations. An alternative approach that trades off precision
with versatility /longevity is unfolding, where the data are corrected for detector effects.
In this way, the resulting differential cross sections are independent of their detector and
can be interrogated with a number of questions and calculations, even those that were
not known at the time of the measurement.

Classical unfolding methods act on histograms to produce binned, differential cross
section measurements [57,58,60,279]. These tools have been used for a multitude of
measurements over decades and have in turn been used for many downstream analyses.
However, traditional approaches are fundamentally limited in scope. Recently, there
have been a number of proposals to use modern machine learning (ML) to address these
limitations [26,59]. ML-unfolding is either based on reweighting [63,112, 280, 281] or
generative networks [3,61,62,64,65,67-69,211,212,251,282], and it allows for unbinned
measurements with a large number of input and output dimensions. This greatly increases
the long-term utility of the measurements, as the cross section of new observables can
be automatically extracted from the result. Experimental results with these tools are
already being published, including measurements based on the OmniFold method [63,112]
from H1 [244-247], LHCD [248], CMS [249], STAR [250], and ATLAS [29]. These results
are promising, but due to the ill-posed nature of the problem, it is essential to have
alternative methods.

In this paper, we focus on generative unfolding, and in particular, on the key step
of sampling from likely particle-level (gen-level) events given detector-level (reco-level)

115

7 Generative Unfolding with Distribution Mapping

events®. One class of generative model-based approaches use distribution mapping,
whereby the experimental events are morphed to match the corresponding gen-level
events. By starting from the experimental events directly, the generative model only
needs to move the events a little (assuming a precise detector), whereas other generative
approaches need to map generic Gaussian random variables into the data distribution.
Previously, two distribution mapping approaches were proposed, both based on conditional
diffusion models [122]: one using Schrodinger Bridges (SBUnfold [68]) and one using
Direct Diffusion (DiDi [3]). Previous work showed that these techniques showed excellent
performance on the marginal distributions of the target cross sections, but they were not
able to preserve the conditional distributions of the detector response. This could lead to
a strong dependence on the gen-level simulation and is thus undesirable. The goal of this
paper is to remedy this issue through conditioning [283]. Along the way, we introduce a
new benchmark dataset, inspired by the recent ATLAS measurement [29], that can be
used for distribution mapping as well as any unfolding method.

This paper is organized as follows. Section 7.1 explains distribution mapping in detail,
including a remedy to the challenge with current methods. This section provides important
and useful derivations, but it can be skipped without interrupting the flow of the paper.
Section 7.2 highlights the fix to distribution mapping methods with a simple, illustrative
example. Next, the new methods are tested on a benchmark dataset of single jet
substructure 7.3 and then we create a a new dataset describing a 22-dimensional phase
space in Z + 2-jets at the Large Hadron Collider 7.4. This latter dataset combines jet
substructure and kinematic information. For all applications, we provide a detailed
discussion of the conditional Schrédinger Bridge and Direct Diffusion performance and
a comparison with the state of the art in generative unfolding, a diffusion model using
transformer layers [3,64]. The paper ends with conclusions and outlook in Sec. 7.5.

7.1 Distribution Mapping

Diffusion networks offer the possibility of sampling a phase space distribution from any
given distribution, not just from Gaussians or other standard distributions [3,68,69,208].
Before we use this for unfolding, we review in some detail about how this feature can be
realized for stochastic conditional sampling. The derivations presented in this section are
not new and not necessary to understand the results for the simple model in Sec. 7.2 and
for the physics examples in Secs. 7.3 and 7.4. Nevertheless, we use this opportunity to
carefully describe the methods in a physics context and illustrate how score matching
(Schrodinger Bridge) and velocity matching (Direct Diffusion) approaches unify.

7.1.1 Distribution to noise

We want to design a process p(z,t) that transforms a general data distribution (at reco
level) into a general latent distribution (at gen level),

o pdata(x) t=20
p($’t) B {platent(l') t=1. (71)

A complete unfolding approach might include approaches to mitigate the dependence on the starting
simulation [65] as well as acceptance effects [112].

116

7 Generative Unfolding with Distribution Mapping

This can be done using the stochastic differential equation (SDE)
de = f(z,t) dt + g(t) dW . (7.2)

Here f(z,t) is the so-called drift coefficient, describing the deterministic part of the time
evolution. The diffusion coefficient g(t) describes the strength of the noising process, and
W is a standard Wiener process, dWW a noise infinitesimal. The connection between the
evolving density in Eq.(7.1) and the trajectories in Eq.(7.2) is given by the Fokker-Planck
equation (FPE)

g(t)?
2

op(z,t)
ot

For g(t) = 0 the SDE reduces to an ordinary differential equation (ODE), and the FPE
to the usual continuity equation. Unlike ODEs, SDEs are not time-symmetric. This is
because adding noise to a system is fundamentally different from removing noise. It can
be shown that the time-reversal of Eq.(7.2) is given by another diffusion SDE [284],

— VLl Op(a,t)] + LV, t) | (7.3)

de = [f(x,t) — g(t)* Vi logp(z,t)] dt + g(t) dW . (7.4)

where dW is the noise infinitesimal corresponding to the reverse Wiener process. The
new and unknown element is the score function

8(.’,1:‘,t) =V Ing(LIZ‘,t)) (75)
where p(z,t) is the solution to the forward and reverse SDEs. If we know the score

function, we can use numerical SDE solvers to propagate samples backward in time.

Forward process

Diffusion generative networks usually define the latent space to be a standard Gaussian
N(0,1). We can construct the forward process Eq.(7.2) by simplifying the drift to be
linear in x, i.e.

f(z,t) = 2 f(t). Now the SDE and the FPE read
de =z f(t) dt + g(t) dW .

WD (e, t) — o f (Ve 1) +

g(t)?
2

Vip(z,t) . (7.6)

In this case, we can analytically derive the solution of the FPE for given f(¢) and g(t). We
make the ansatz that the time evolution starting from an event xg ~ pqata is a Gaussian

_ _ ! (z — pu(t)
p(x, tlzo) = N(z|u(t),o(t)) = WGXP <—W>
& x(t|zg) = pu(t) + o(t)e with e~ N(0,1), (7.7)

with time dependent mean x(t) and standard deviation o(¢). Using this ansatz in the
FPE Eq.(7.6), we obtain

x—pdp (x—p)?ds 190 z—p g@)? ((z—p)* 1
S R e Gl G K ()

117

7 Generative Unfolding with Distribution Mapping

204
(7.8)

Sorting this equation by powers of (x — p) and comparing coefficients we find relations
between u(t),o(t) and f(t),g(t),

W) syt
oo(t) _ (1)
S = f0e + 355 (7.9)

The solutions of those two differential equations with initial conditions ¢(0) = 0 and
w1(0) = zp are

u(t) = zoalt)

coa?]" T
() = a(t) /0 dt with a(f) = exp /0 d'fEy. (7.10)

a(t')?

If these equations are fulfilled, the Gaussian ansatz is the solution to the FPE. This gives
us a solution for general f(t),g(t). However, only if the boundary conditions a(1) =0
and o(1) = 1 are fulfilled, the full unconditional density follows

p(z,0) = /dﬂ?o p(x,0]|z0) pdata(zo) = /dwo d(x — x0) Pdata(T0) = Ddata(x)
p(z,1) = /dxo p(z,1]20) pdata(xo) = N (z;0, 1)/d:c0 Pdata(z0) = N(0,1), (7.11)

as specified in Eq.(7.1).

Relation to CFM

Equations (7.7) and (7.10) describe the mathematics behind all generative diffusion
networks. Conditional flow matching (CFM) [51], a specific type of diffusion network
that has seen a lot of success in particle physics [1,2,69,199,285,286], can be derived
from this formalism. First, we use the fact that for any diffusion SDE there exists an
associated ODE that encodes the same time-dependent density p(z,t). It can be derived
by rewriting the FPE (7.3) as

877(;”5) = -V, [(f(x,t) - %g(t)QVx 10gp($¢)> P(xvt)]
= —V.(v(z,t)p(x,t))
with wv(z,t) = f(z,t) — %g(t)QVx log p(z,1t) . (7.12)

This continuity equation corresponds to the ODE
dx = v(z,t) dt . (7.13)

The deterministic (ODE) and stochastic (SDE) processes are equivalent in the sense that
they have the same density solution p(z,t). The difference between the SDE drift f(z,t)
and the ODE velocity v(z,t) is that the former can be hand-crafted such that the forward

118

7 Generative Unfolding with Distribution Mapping

SDE transports from the data to the latent distribution. To generate samples the score
function s(x,t) is also required. The velocity field combines the forward drift and the
score function of the underlying process into one time-symmetric description. For known
f(z,t) and g(t) the velocity and the score functions can be converted into each other.

CFMs work directly with the velocity field v of the ODE, the underlying SDE is not
explicitly constructed. Instead, the trajectories Eq.(7.7) are used to define a forward
process from data to noise. Following Ref. [1], we set a(t) = (1 —t) and o(t) = t, defining
linear trajectories

z(tlxzg) = (1 —t)zo + te . (7.14)
We then encode the ODE-velocity in a network using an MSE loss

Lcrm = <[U€($at) - U(fUat|x0)]2>tNu(0’1),rowpdata(mo),ewj\/‘ . (7.15)

For a detailed derivation of the formalism and the loss function see e.g. Refs. [1,3]. In
practice, we can use a wealth of network architectures to encode the velocity, from a
simple fully connected network [1], to transformers [2], vision transformers [286], and
Lorentz-equivariant transformers [287,288].

7.1.2 Distribution to distribution

We now extend the SDE formalism to two arbitrary distributions. The generative
direction starts from the initial p(xg) and samples the p(z1). The goal is to find a drift
function f(z,t) such that the SDE moves from xo ~ p(zo) at time ¢t = 0 to z1 ~ p(x;) at
time ¢ = 1.

Doob’s h-transform

The key ingredient to this generalization is Doob’s h-transform [289]. It conditions a
given SDE, called the reference process, on a pre-defined final point. The reference
process follows an SDE like Eq.(7.2),

dxref = f(z,t) dt + g(t) dW . (7.16)

From ¢t = 0 to ¢t = 1 it encodes a time-evolving density pyet(z,t) for the entire stochastic
process, as well as the conditional pyet(z,t|zo) describing the stochastic trajectories
starting from a specific .

We modify this SDE to guarantee that the endpoint is a pre-defined x;, by adding a
term to the drift function,
do = [f(z,1) + g(t)*h(x, t,21)| dt+ g(t)dW
with h(z,t,x1) = Vg log pret(z1,t = 1|x) . (7.17)
The Doob’s h-transform function depends on the current state of the SDE x(t) at time
t and on the specified final point z;. The density pyef(x1,t = 1|x) is the transition
probability that the reference process reaches x1 at t = 1 conditioned on the state x(t) at

time ¢. Including this term in the drift forces the trajectories to walk up the gradient of
this density and pushes them towards intermediate states that are more compatible with

119

7 Generative Unfolding with Distribution Mapping

the desired final state. This way, it corrects the initial SDE by forcing it towards the
specified x7.

We note that h depends on the reference process through pyef(z1,t = 1|x). This correction
adapts to the chosen initial SDE. Different initial values f(x,t) and ¢(t) lead to a different
correction from the Doob’s h-transform, but eventually arrive in the specified z1. This
means we can simplify the reference process into a pure noising,

f(z,t) =0 = daret = g(t) dW . (7.18)
For this choice we can use Eqs.(7.10) and (7.17) to calculate the h-transform
apef(t) =1
Ore(t)” = tl dt'g(t')?

Pre(@1,t = 1]a) = N (132, 07e1(8)) ox exp [_1@51—9«“@»2]

2 opef(t)?
x1 — x(t)
h(x,t = —0". 7.19
(l'v ;xl) O'ref(t)z ()
We have explicitly constructed a forward SDE
_ 9®)?
dx = (x(t) —xy) dt + g(t) AW, (7.20)

Uref(t)2

for which the solution trajectories are guaranteed to end in x; ~ p;. According to Eq.(7.3)
the underlying probability distribution fulfills

ap(x7 t’II)
ot

90 (@(t) — z)p(atler) | g(0)

2 : 21
Uref(t)Q 9 pr(xvﬂxl) (7)

-V,

Using the same method, we can also describe a reverse process, for which the solution
trajectories end in xg ~ pg. The reference process

dfiref = g<t) dW) (722)

moves from t = 1 to £ = 0. In complete analogy, it encodes the conditional probability
Dref(Z(t)|z1) starting from a specific point 1. Applying the h-transform leads to the SDE

dz = [~g(t)*h(x,t,20)| dt+ g(t)dW
with h(Z,t,x0) = Vzlog pref(z0,t = 0|Z) , (7.23)

and modifies Eq.(7.19) to

Fref(t)? = ; dt'g(t')?

- xrog — z(t
Again we constructed a generating SDE
o9 =
dz = (Z(t) — xo) dt + g(t) dW . (7.25)

a'ref(t)z

120

7 Generative Unfolding with Distribution Mapping

whose solutions end in zy and the underlying probability density follows

9(t)*(@(t) — z0)p(7, t|zo) g(t)?
5’ref(t)2 2

8]5(1', t|$0)
ot

=-Vz Vip(Z,tlwo) . (7.26)

So far, we have constructed the forward and the reverse processes independently. We now
assume that they are the time-reversal of each other and that the forward and reverse
FPEs (7.21) and (7.26) have a common Gaussian solution

p(z, t|zo, x1) = p(T, t|zo, 21) = N (x|p(t),o(t)) . (7.27)

Inserting this ansatz into the forward FPE (7.21), we obtain

r—pdp (x—p)?do 100 92(mrﬂwx—m%4>+920x—m2 1>.
2

o Ot o3 Ot oot ok o? ot o?
(7.28)
It is solved by
Ou(t) _ g(t)*(z1 — p(t))
ot O'ref(t)2
dot) _ gt)*o(t) , g(t)
ot oe()? 20(t) (7:29)
From the reverse FPE (7.26) we find the corresponding
opu(t) _ g(t)*(u(t) — z0)
ot Tref(t)?
do(t) _ gt)*o(t) _ g(t)®
o aD? 2000 (7.30)
Equating Eq.(7.29) and Eq.(7.30) yields
_ Uref() x1 +Uref(t) Zo
<t> B Uref() + Uref(t)
_ Oref(t)*orer(t)?
olt) = \/ oet(D? + oe(1)2 (7.31)

This solves Eq.(7.29) and Eq.(7.30) with the boundary conditions ¢(0) = o(1) = 0,
1(0) = o and u(1) = x1. Finally, the conditional probability of both processes is given
by

_ 5-ref(t)21:l + O'ref(t)QJ:O 5'ref(t)20'ref(t)2
p(lli(t)a t|5130, 1:1) - N <l’ 5’ref(t)2 + Jref(t)2 ’ \/5'ref(t)2 + Uref(t)2>

x N (z|xo, arer) N (|21, Oref) - (7.32)

121

7 Generative Unfolding with Distribution Mapping

Loss function

The full unconditional density encoded in the constructed stochastic process is obtained
by marginalizing over the conditions.

p(x,t) = /dwo dxy ptrain(xo,ml) p(x, t|xo, 1)

_ / dwo dzy p™ ™ (zo, 1) N (2|u(t), o(t)) = {p(’(x) t=0 (7.33)
pi(z) t=1.

The joint distribution p'™®(zg,x1) is defined by the pairing in the training data, in
the case of unpaired data it factorizes to p*™®®(zg,z1) = po(xo)p1(x1). Both limits of
the stochastic process are fulfilled independent of the choice of joint distribution. For
instance, for unfolding, we can use the pairing between reco-level and gen-level events
from the forward simulation.

To construct a generative network, we need to remove the conditions on the two end
points. This means we want to find an SDE that encodes the distribution from Eq.(7.33),
but with a drift function that only depends on the current state of the SDE. We can
derive this unconditional drift term similarly to the unconditional CFM-velocity [1,51],
starting with the FPE (7.3),

ap(aﬂf;t) _ /dxodfﬂlptram(l‘[),:ﬂl)

Op(@, tlxo, 1)
ot

. 2
= /dxodxlptram(xo’:vl) l_vx[f($at|x0a$1)p($at|x0ax1)] + %Vgp(l‘,ﬂxo,.rl)]

f(z, t|zo, x1)p(x, t|xo, xl)}

_ train
= Vm |:p(x7t) /dx(]dxlp (.’L'(),.’L'l) p(m,t)

2
+ %Vi/dl’odxlptraln(lbo,$1)p(l’,t|$o,$1)
2

= V(e t)f(z,8)] + %vip(x, 1), (7.34)

where we define

f(xv t‘$0’ l’l)p(l‘, t‘:EO’ xl)
p(x,t)

With this drift function and a diffusion term ¢(t), the solution of the FPE is given by
Eq.(7.33). This gives us an SDE which propagates samples between x1 ~ p; and ¢ ~ po,
only depending on the current state z(t). Starting from one of the distributions and
numerically solving the SDE generates samples from the other distribution.

f(z,t) = /d%dfﬁlptrain(xo,m) (7.35)

The last problem with the drift in Eq.(7.35) is that we cannot evaluate it analytically,
so we encode it into a network fy. For this regression problem the natural loss is the
MSE, but this requires training samples f(z,t). We re-write this objective in terms
of the conditional drift f(z,¢|zo,z1) defined in the SDE Eq.(7.20) and the conditional
trajectories p(x,t|zg, z1) defined in Eq.(7.39), as these allow for efficient generation of
training samples. Following all steps from Ref. [1] the distribution mapping loss becomes

Loy = <<f9(:v,t) — f(z, t|xo, 1)

)
t,(z0,x1)~ptrain (zo,21),x~p(,t|z0,21)

122

7 Generative Unfolding with Distribution Mapping

= { (s, 1) - L2 0) (7.36)

2>
) |
U(t) t,(xo,x1)~pt*ain(zo,z1),2~p(2,t|20,21)

The learned drift function depends on the pairing information in the training data,
encoded via p¥"(zq, r1). Different pairings lead to different SDEs encoding different
trajectories, but they all result in a generative network with the correct boundary
distributions in Eq.(7.33).

Noise schedules for SB and DiDi

Choosing g(t) = 1/B(t), with B(t) the triangular function

Bo +2(B1 — Bo)t

B1—2(B1 — Po) <75 - ;)

1
B(t) = 2 (7.37)

and 3y = 107° and #; = 10~%, we obtain the SB formulation [68,256].

For constant g(t) = g, Eq.(7.19) simplifies to Guer(t) = gVt and opep(t) = gv/1 —t.
Consequently, Eq.(7.31) yields

pu(t) = (1 —t)xo + tay and o(t) =gy\/t(l —1t). (7.38)
Our trajectory and probability distribution take the form
z(t) =1 —t)zg+txr + g\ /t(1 —t) e with e ~N(0,1)
& p(z(t), tlxo, 1) = N (x(t)|(1 —)z + ta1, g\/t(1 — 1)) . (7.39)

The noise term vanishes at the endpoints ¢ = 0, 1 and takes its maximum at ¢t = 1/2. This
constructs an SDE that interpolates between two arbitrary distributions and reduces to
DiDi [69] for g — 0. To see this we start from Eq.(7.20) and insert the training trajectory
from Eq.(7.39),

du(t) = S =20 gy ko aw

t
1 NG
:(t)xo + txy —i—tg t(1—1t)e—m dt + g dW
NG
= (21— o) dt + g (t)edt+dW . (7.40)

For g — 0 the training SDE reduces to the training ODE from DiDi, with the linear
velocity field 1 — x¢ and the distribution mapping loss reduces to the flow matching loss.

7.1.3 Conditional distribution mapping

In the last section we have constructed an SDE-based mapping between two arbitrary
distributions. We now describe the new aspect of adapting this DM-formalism to
reproduces the correct conditional distributions [283]. Specifically, we look at the
trajectories p(z,t|z1) obtained when solving the learned SDE repeatedly from the same

123

7 Generative Unfolding with Distribution Mapping

starting point 1 ~ p1, and modify our formalism such that for ¢ — 0 it reproduces the
correct data pairing p'™" (zg|z1).

First, we check how this density looks in our conditional training trajectories p(x(t), t|zo, z1)
by marginalizing over zp. Similar to Eq.(7.33) we can write

plastlen) = [dao p™@olan) p(a(t). oo,)

train(

-/ dxoptf%om)N(xm(t),a(t))={p wle) b= (7.41)

0(x1—x) t=1

This conditional density has the correct boundary behavior. When conditioned on a
latent-space event x1 ~ Piatent, the density converges to a delta peak around this event
at time ¢ = 1 and converges to the training pairing conditional distribution p**#"(z|z1)
at time ¢ = 0.

However, there is no guarantee that the generative SDE defined via the drift from
Eq.(7.35) shares these conditional densities. We have derived this drift f by showing
that it solves the same unconditional FPE in Eq.(7.34) as our training process, so we are
only sure that they share the unconditional density p(x,t).

We need a drift function leading to an SDE that shares the conditional density p(x,t|z1)
of the training trajectories. This can be achieved by going through the same derivation
as we did for the drift initially, but this time with the FPE for the conditional density

ap(:c, t’xl

: op(x, t|xg, x
5):/dl,optram(xowl) p(‘ 0 1)

ot

‘ 2
= /d:cop“am(a:o\wl) l—Vx[f(m,t|x0,$1)p(:v,t|xo,a:1)] + Q;Vip(m,ﬂxg,xl)]

=-V, |:p((13,t|$1) /dxoptrain<x0|xl)f(l"t|x0)$1)p($)t‘xo’xl):|

p(x, tlzy)

2 .
+ %Vg/dxoptram(xo\xl)p(x,t\xo,xl)
2
=~V [p(z, 1) f(z, tla1)] + %vgp(x,ﬂxl) . (7.42)

Here, we identify the conditional drift term to be

f(xv t‘l‘o, xl)p(x, t’.l"o, xl)

Pz, i) (7.43)

flx, tlxy) = /dxo ptram(xo|m1)

Sampling a latent 1 ~ piatent and solving the SDE with this drift function samples from
the conditional density p*™®®(z|z1). This new conditional drift is not only a function of
the current state of the SDE, but also of the initial state x;. This additional input acts
as the condition under which we want to generate a sample from the data distribution,
similar to the way the CFM velocity is a function of the current state of the ODE and of
the condition.

124

7 Generative Unfolding with Distribution Mapping

t ~U(0,1)

Lgen ™~ Pgen, € ~~ N(07 1) g l‘(taxgena €) —

Lreco ™~ Preco

t~ U(0,1)
|

Lgen ™~ Pgen; (6 ~ N<O; 1)) > ‘r(t7 Tgeny Lrecos (5)) %DlDl/SB

|

t ~U(0,1)
|

Lreco ™ Preco

Lgen ™~ Pgen, € ~~ N(O7 1) g x(tyxgenvxrecoa 6) -

|

Figure 7.1: Schematic illustration of the training procedure of a CFM-based
(top), a distribution mapping-based (middle) and a conditional distribution
mapping-based (bottom) generative unfolding pipeline.

Lreco ™~ Preco

Loss function

This conditional drift is once again encoded in a network. Repeating the derivation of
Ref. [1], we obtain the conditional distribution mapping (CDM) loss

Lepm = <<f9(5”’t,931) - f(x,t|a:o,x1))2>

t7(7:071‘1)Np($07$1)7$Np(xvt|$07m1)

_ <(f9(a:,t,x1) - W)2> o (7.44)

(t £ (20,1 ~pain (20,21) aop(e o 1)

It is identical to the standard DM-loss, except for the network also using the initial
condition z1 as a third input. This is the only change necessary to allow the network to
learn the proper conditional densities.

7.1.4 Unfolding

For unfolding, we want to transform a measured reco-level distribution preco to the
corresponding gen-level distribution pgen. Recent implementations [3] of generative

125

7 Generative Unfolding with Distribution Mapping

unfolding use a CFM network to generate samples from the posterior distribution
P(Zgen|Treco)- It learns the velocity v(x,t, Zreco), linked to the posterior distribution via
Eq.(7.12) and flowing between a point of a Gaussian latent space and a point in the
gen-level phase space conditioned on a given rec-level event. A schematic illustration of
the training procedure is shown in the top part of Fig. 7.1.

Alternatively, we can also map reco-level events directly to their gen-level counterpart
either using the SB or DiDi. The key difference to standard generative unfolding is
that we use the reco-level information to define the trajectories instead of treating it
as an additional input to the network. This is visualized in the center of Fig. 7.1. We
learn the drift term of the probability p(x,t) as described in Eq.(7.36). Optionally, we
can add Gaussian noise to the trajectories to make the networks stochastic rather than
deterministic. The impact of the noise is governed by the choice of the diffusion term

g(t).

Finally, we can combine the conditional generative approach with the DM by giving the
reco-level information to the network directly. The training objective is to learn a drift
term linked to the conditional probability p(z(t), t|Zreco) as in Eq.(7.44). In this scenario
adding noise is not optional. The exact training procedure is illustrated in the lower part
of Fig. 7.1.

7.2 Gaussian Example

To illustrate the motivation for using conditional DM for unfolding, we turn to a
simple example: a Gaussian mixture model (‘double Gaussian’) with equally weighted

components, unit variances, and means at u; = —4 and ps = 4. We run this distribution
through an extreme hypothetical detector which inverts all observations
flx)=—x. (7.45)

Since our initial distribution is symmetric around x = 0, this detector leaves the marginal
distribution unchanged, but allows us to see how the mapping is learned by the network.

We compare the mapping constructed by the standard and conditional Schrédinger Bridge
(SB). The results are shown in Fig. 7.2. Each of the displayed plots is divided into three
panels. The left panels show the marginal distributions for the staring double Gaussian
(blue, solid) and the starting point of the SB network (red, dotted). The right panels
show the marginals of the double Gaussian after the inversion function is applied (blue,
solid), as well as of the final step of the SB (red, dotted). The central panels show the
SB trajectories which transform a subset of points. Each path is color coded to indicate
whether the sign of the transported point changes; a blue line corresponds to a correct
mapping f(z) = —x, while a red line indicates an incorrect mapping f(z) ~ .

In the upper part of Fig. 7.2, we see that for the unconditional SB a large number of
mappings are incorrect. Notably, the mappings can be seen to converge around x = 0
after half the number of total steps, and diverge after. However, the majority of paths do
not cross over from x to —x, as required, but return to the original peak. This is because
at x = 0, both paths intersect. Since the network moves points one step at a time, it no
longer has any information where to map a point once it reaches £ = 0. As discussed in
Sec. 7.1.3, we can break this degeneracy by providing the original starting point as input.

126

7 Generative Unfolding with Distribution Mapping

The lower part of Fig. 7.3 shows the result of a conditional SB network. We see that all
paths are blue, indicating a correct mapping.

So far, the marginal distribution is not impacted by the mis-modeled mapping. The
network still reproduces the overall target distribution available during training. However,
the mapping can present an issue to the quality of the final marginal distribution if the
data the network is unfolding differs in composition to the training data. We illustrate an
extreme case in Fig. 7.3. In the top part we apply the unconditional bridge, trained on
the full double Gaussian, only to the positive peak. Now, the unconditional SB produces
a wrong marginal distribution, where only a small fraction of points is mapped to the
correct negative peak, and the majority remains in the positive peak. In contrast, the
lower part of Fig. 7.3 shows that the conditional SM learns the correct mapping and
therefore easily produces the correct marginal distribution.

7.3 Unfolding Jet Substructure Observables

As a first physics example, we consider the updated version [257] of the OmniFold
dataset [63] which has become a standard benchmark for unfolding methods [3, 68, 281].
It consists of events describing

pp — Z + jets (7.46)

production at /s = 14 TeV. The events are generated and decayed with Pythia 8.244 [33]
with Tune 26, the detector response is simulated with Delphes 3.5.0 [36] with the CMS
card, that uses particle flow reconstruction. At both pre-detector (gen level) and post-
detector (reco level) jets are clustered with the anti-k7 algorithm [109] with R = 0.4, as
implemented in FastJet 3.3.2 [177].

Not Conditional

End Distr. |
=== Bridge End

— Start Distr.
— =~ Bridge Start

Same Sign
= Opposite Sign

40000 30000 20000 10000 0 200 400 600 800 0 10000 20000 30000 40000

Conditional
10 — Start Distr. Same Sign End Distr. | 10
— =~ Bridge Start = Opposite Sign ==~ Bridge End

40000 30000 20000 10000 0 200 400 600 800 0 10000 20000 30000 40000

Figure 7.2: Non-conditional (top) vs conditional (bottom) distribution mapping
when learning a * — —z mapping of a double-Gaussian.

127

7 Generative Unfolding with Distribution Mapping

Not Conditional

10 —— Start Distr. Same Sign EndDistr. | 10
=== Bridge Start = Opposite Sign === Bridge End
3 =
=<
01 o
=51 =5
T T T T T T T T T T T T T
40000 30000 20000 10000 0 200 400 600 800 0 10000 20000 30000 40000
Conditional
10 —— Start Distr. Same Sign End Distr. | 10
=== Bridge Start = Opposite Sign === Bridge End
51 FsS
=<
01 o
=51 =5
T T T T T T T T T T T T T
40000 30000 20000 10000 0 200 400 600 800 0 10000 20000 30000 40000

Figure 7.3: Non-conditional (top) vs conditional (bottom) distribution mapping
when learning a * — —z mapping of a double-Gaussian, applied only to the
positive peak

We unfold six jet substructure observables of the leading jet: mass m, width 78 :1),

multiplicity N, soft drop mass [259,260] p = m2p/p%, momentum fraction z, using
Zewt = 0.1 and 8 = 0, and the N-subjettiness ratio 191 = 7'2(521)/7'1(6:1) [261]. The dataset
contains about 24M simulated events, 20M for training and 4M for testing.

7.3.1 Unfolded distributions

We unfold the 6-dimensional phase space using all five network implementations of the
three methods

o conditional generative (Conditional Flow Matching, CFM);
e unconditional distribution mapping DiDi and SB; and
o conditional distribution mapping C-DiDi and C-SB.

The respective velocity fields and drift terms are encoded in standard MLPs, the hyper-
parameters are given in Tab. A.12. All networks are implemented in PyTorch [173] and
trained with the Adam [114] optimizer. We follow the preprocessing from Ref. [3].

Due to the varying numerical requirements of different networks, we choose suitable
numerical solvers for their evaluation. For the CFM, an ODE-based network, we unfold
reco-level samples using a numerical ODE-solver [50]. The SDE-based networks C-DiDi
and C-SB use the DDPM SDE-solver [50]. For the unconditional DiDi and SB we have
the choice between an ODE-based formulation with noise scale ¢ = 0 and an SDE-based
formulation with g > 0. We observe no significant difference in performance between
them, the shown results use the SDE formulation.

In Fig. 7.4 we show all unfolded distribution together with the true gen-level and reco-level
distributions. For CFM, DiDi and SB, we reproduce the results shown in Ref. [3]. Both

128

7 Generative Unfolding with Distribution Mapping

— Rec C-DiDi — Rec C-DiDi
—Gen ~— SB — Gen — SB

— CFM — C-SB 21 —CFM — C-SB
— DiDi — DiDi

— Rec C-DiDi
— Gen — SB

— CFM — C-SB
— DiDi

Normalized
—

215100 | e e P 2157700 L - mefn afl | 2001 Ao . = e
ZEL [Wseo Ty | =l (i = e EES R i
=1 0.95 =1 0.95 Nii S 0.951 18 c]
10 20 30 40 50 60 10 20 30 40 50 60 0.2 0.4 0.6 0.8 1.0 1.2
Jet mass m Jet multiplicity N N-subjettiness ratio T,

0.15
2
T w0 3 S107
E 0.0 " E iDi
g — Rec C-DiDi g “— Rec C-DiDi g — Rec C-DiDi
2 10! —Gen —SB E 0.05 —Gen — SB z —Gen —SB
— CFM — C-SB i — CFM — C-SB 10 — CFM — C-SB
° —pibi — DiDi
0.00
7,105 A1 3 105 Il 5105
Zslo0 Frv—g— PYSppmecet, Syl 1 B Ty . T N S——u——" - N - e B A
g1 e RASRERRR I 0 OfF 5 e S gEL 520l
S170.95 1+ e R B e 370,95 i
0.0 0.1 0.2 0.3 0.4 0.5 —12 —10 -8 —6 —4 0.1 0.2 0.3 0.4 0.5
Jet width w Groomed mass log p Groomed momentum fraction z,

Figure 7.4: Unfolded distributions of the 6d jet-substructure dataset using
CFM, DiDi, C-DiDi, SB and C-SB. All unfolded distributions reproduce the
truth at percent level. The remaining differences are well covered by the BNN
uncertainties.

methods can reliably solve this unfolding task to sub-percent precision. The new C-DiDi
and C-SB give a precision on par with the established CFM method. For all networks,
we only observe significant deviations from the truth far into the tails or at hard edges,
for instance, in the groomed momentum fraction z,.

The uncertainties reported in the figures are produced from posterior sampling. This
is possible by making all of the models Bayesian neural networks, approximated with
independent Gaussians for every network parameter, doubling the number of model
parameters [23,155-157]. Previous studies in the context of the LHC have shown that
the posterior is a reasonable estimate of the variation introduced by the limited size of
the training dataset [159,160,166]. Even though the weights are Gaussian distributed,
the final network output is generally not a Gaussian. The concept of BNNs can also be
applied to the density estimation in generative networks [1,45,161], including diffusion
generators [1,69].

The uncertainties shown in Fig. 7.4 are obtained by evaluating the respective networks 20
times, each time with a new set of network weights sampled from the learned distribution.
The deviations from the true gen-level distribution as well as the differences between the
five networks are generally covered by these uncertainties. As expected, the uncertainty
increases in regions of low training statistics e.g. the tail of the jet mass distribution m.

7.3.2 Learned Mapping

Next, we check if the learned mapping between the reco-level and gen-level distributions
agrees with the physical forward simulation. We show migration matrices for some of the
observables in Fig. 7.5: the first row shows the truth encoded in the training data; the
following columns show the learned event-wise mapping from the the CFM, unconditional
DiDi/SB and C-DiDi/C-SB. While the 6-dimensional unfolded distributions are nearly
identical for all methods, the migration plots show a significant difference between the
unconditional and conditional networks.

129

7 Generative Unfolding with Distribution Mapping

Truth Truth

1.0

To1 (Gel’l)
log p (Gen)

1
IS

0.2

(=}
=)

0.2 0.4 . 0.8 1.0 —-12 -10 —8 —6
T4 (Rec) log p (Rec)
CFM CFM

-4 -2

To1 (Gen)
log p (Gen)

0 T

0 10 2’0 3’0 4’0 50 0.2 0.4 0.6 0.8 1.0 —12 —10 —8 —6 —4 —2
N (Rec) 751 (Rec) log p (Rec)
DiDi / SB DiDi / SB DiDi / SB

To1 (Gen)
log p (Gen)

(’) 1’0 2’0 3’0 4’0 5’0 0.2 0.4 0.6 0.8 1.0 —12 —10 —'8 —'6 —'4 -2
N (Rec) T4 (Rec) log p (Rec)
C-DiDi / C-SB C-DiDi / C-SB X C-DiDi / C-SB

= .

To1 (Gen)
log p (Gen)

(’) 1'0 2’0 3’0 4’0 S’O 0.2 0.4 X 0.8 1.0 —12 —10 —8 —6 —4 —2
N (Rec) 751 (Rec) log p (Rec)

=]
o

Figure 7.5: Migration maps for the 6D OmniFold dataset, truth compared to
three different methods. We only show DiDi and C-DiDi, after verifying that
the results are indistinguishable from SB and C-SB.

The conditional CFM generator is, by design, trained to reproduce the conditional

130

7 Generative Unfolding with Distribution Mapping

distribution p(Zgen|reco). In contrast, the unconditional DM learns to map p(Zreco) —
P(Zgen), but with an unphysically diagonal optimal transport prescription, as showcased
in the third row. Finally, we see that the conditional C-DiDi and C-SB encode the
conditional probabilities just like the CFM does.

Finally, we take a closer look at the learned posterior distributions p(Zgen|reco). While
single-event-unfolding is an ill-defined analysis task, we can use the per-event posterior to
illustrate the performance of the different unfolding generators [2,56]. All our methods
are inherently non-deterministic when inputting the same reco-level event repeatedly,
which allows us to generate non-trivial learned posteriors. For the CFM, we sample the
latent Gaussian distribution, for any one given latent space point the ODE trajectory
is deterministic. In contrast, the DM-methods always start from the same latent space
point, the reco event, but evolve it using a non-deterministic SDE.

In Fig. 7.6, we show some single-event posterior distributions from the three methods,
obtained by unfolding the same reco-event 10000 times. For reference, we include the
unfolded event at reco-level, the gen-level truth, and the full unconditional gen-level
distribution. Again, we observe a different behavior between the unconditional DM on
the one hand and the CFM and conditional DM on the other. As expected from the
derivation and from the migration plots, the unconditional DiDi network does not learn a
physics-defined posterior, and our sampled distribution shows simply Gaussian smearing.
The width of the Gaussian is related to the noise scale g of the SDE, which we verified by
varying the noise scale over four orders of magnitude. The two conditional methods learn
physically meaningful posteriors. Their shapes vary widely for the shown events and
observables, but they agree between the different methods. We checked that the C-DiDi
posteriors are invariant when varying the SDE noise scale g, so the learned single-event
unfoldings illustrate how the CFM and the conditional DM-methods learn the same
non-trivial conditional posteriors.

7.3.3 Classifier test

One approach to quantitatively test the performance of unfolding across the entire
measured phase space is to use a post-hoc classifier, assuming that supervised classifier
training is more effective than unsupervised density estimation® as part of the generative
networks [3,178]. A well-trained and calibrated classifier C' comparing training and
generated events will approximate the likelihood ratio

o ptrue(l‘gen) - C(xgen)
w(a?gen) B p@(xgen) B 1—- C(l'gen) .

(7.47)

With a slight modification, we can employ this technique to evaluate the quality of our
learned posterior distributions. Instead of training the classifier only on gen-level, we
train on the joint reco-level and gen-level data. This gives us access to the likelihood
ratio of the joint distributions. Making use of the fact that the reco-level distribution is
the same for generated and true, we can write

C(l‘gem xrec) _ ptrue(xgeny Irec)
1- C(mgem mrec) Po («Tgenv xrec)

In practice, if this is the case, the post-hoc classifier could be used to improve the quality of the
generative model [162].

131

7 Generative Unfolding with Distribution Mapping

Event 2

Event 2
—— Event Rec 1 081 — Event Rec
61 —— Event Gen ’ — Event Gen
— CFM — CFM
—— DiDi/SB 0.6{ — DiDi/sB
2 C-DiDi/C-SB 9 C-DiDi/C-SB
N 4 Full Gen N Full Gen W
< <
§ § 0.4
z | Z
21 = |
4‘.‘}_\\-‘“—':'_&1 02‘ r
] & C
— 5 = . =
0 7 = T T T 0.0 y Y —C T r
0.2 0.4 0.6 0.8 1.0 -12.5 -100 -7.5 =50 =25
N-subjettiness ratio 7, Groomed mass log p
Event 4 Event 4
—— Event Rec —— Event Rec]
121 — Event Gen — Event Gen il
| — CFM 0.31 — cmM it
10 —— DiDi/SB —— DiDi/SB H
E 8 C-DiDi/C-SB | g C-DiDi/C-SB | H
= Full Gen E Full Gen M
< < 0.2 L
E 6 g
9] 3
Z 4
4 0.1
§y TN, &
21 o e
0 : : , , 0.0 : , : = :
0.1 0.2 0.3 0.4 0.5 -12.5 -100 -7.5 =50 =25
Groomed momentum fraction 2, Groomed mass log p

Figure 7.6: Posterior distributions obtained from unfolding single events with
CFM, DiDi and C-DiDi on the 6D OmniFold dataset. Each of the three events is
unfolded 10000 times. For reference, we also show the full gen-level distribution.

o ptrue(xrec)ptrue(fpgen |55rec)
B p@(xrec)pﬂ(l'gen’xrec)
. ptrue(l‘gen’xrec)
B p@(ﬂjgenhf'rec)

= W(Tgen|Trec) - (7.48)
Therefore, a classifier trained on the joint distributions gives us access to the likelihood
ratio between the true and learned posterior distributions.

For each of our five networks we train a classifier, using the hyperparameters listed in
Tab. A.12. First we only look at the gen-level unnfolded distributions and discriminate
them from the true gen-level distribution. We show the corresponding weight distributions,
evaluated on the generated events, in the left panel of Fig. 7.7. For all networks we
see a dominant peak in one, indicating that for the overwhelming majority of events,
the classifier cannot tell truth from generated. The tail towards lower weights indicates
events which should not be there and which the classifier weight tries to remove, i.e.
phase space regions that the network overpopulates. The right tail marks events and
phase space regions underpopulated by the generative unfolding network.

Comparing the five networks and the three underlying methods, the CFM shows the
smallest tails in both directions. The conditional DiDi network is almost on par with
the CFM, the difference is covered by the classifier training fluctuations. Unconditional
DiDi leads to a larger tail towards large weights, but hardly any events with small

132

7 Generative Unfolding with Distribution Mapping

100 Gen distribution weights 10! Joint distribution weights

107! 107!
9]
Q ()
51073 £107%
® [2+]
£ e
o o
1075 Z10-5

By
—7 -7 | il
10 10 i
102 107! 10° 10! 10 102 107! 10° 10" 102
Weights Weights

Figure 7.7: Classifier weight distributions for each network applied to the 6D
OmniFold dataset. The left panel shows the gen-level weights according to
Eq.(7.47), the right panel the joint distribution weights defined in Eq.(7.48).

weights, indicating a bias in learning features or their correlations. The SB networks
show a slightly larger spread in the weight distribution, and the conditional SB is again
significantly narrower than the unconditional version.

The right panel of Fig. 7.7 shows the weight distributions for the conditional phase space
distributions. While for the conditional CFM and the conditional DM-networks the
difference to the left panel is marginal, we now see that the unconditional DM-networks
show little structure and large overflow bins, indicating that the learned joint distributions
do not reproduce the training data.

7.4 Unfolding Substructure and Kinematic Properties

In order to stress-test the methods with a mixture of jet substructure and kinematic infor-
mation, we simulated a dataset similar to the one used by a recent ATLAS analysis [29].
The resulting dataset has 22 instead of 6 dimensions, as in the previous dataset’.

7.4.1 New Z + 2 jets dataset
We now consider the process

PP — Zyu + 2 jets. (7.49)

We generate the events with Madgraph 5 [32], showering and hadronization are simulated
with Pythia 8.311 [290], and detector effects are included via Delphes 3.5.0 [36] using
the default CMS card. Jets are clustered at gen-level and reco-level using an anti-kp
algorithm with R = 0.4 implemented in FastJet 3.3.4 [177].

We apply a set of selections resembling the ATLAS analysis: events are required to have
exactly two muons with opposite charge and

pry >25GeV and my, € [81,101] GeV . (7.50)

"The OmniFold dataset does have the full set of jet constituents, but this is a high-dimensional
variable-length set, which is beyond the scope of this paper.

133

7 Generative Unfolding with Distribution Mapping

Furthermore, we require at least two jets with
pr; > 10 GeV and AR,; >04. (7.51)

All events must pass all selections on gen and reco level (acceptance effects are small
and ignored). The training set consists of 1.5M events, and the test set consists of 400k
events.

Instead of restricting ourselves to jet substructure observables of the leading jet, we
now unfold both kinematic information of the muons and leading jets as well as the
substructure of the leading two jets. At the subjet level, we include the number of jet
constituents NV and the subjettiness variables 71, 72 and 73 [261] for each jets. In total
this defines a 22-dimensional phase space to unfold into:

((pT7777¢)u1“u27 (pT7777 ¢7m7N7 7_177_277_3)j1,j2) . (752)

The challenge is to reproduce all correlations, most notably the di-muon kinematics and
the angular separation R;;. In contrast to classifier-based unfolding, generative unfolding
does not easily allow to over-constrain the physical phase space with redundant degrees of
freedom. Instead, we choose a phase space parametrization that makes key correlations
directly accessible to the network [3,212]. To this end, we replace pr,, — my, in the
event representation and extract it later via

2

m
Pl = — : (7.53)
2p7,u, (cosh Any,, — cos Ay,

We standardize our training data in each dimension. For m,, we apply a Breit-Wigner
mapping [3].

To accommodate the more challenging phase space, we replace the MLPs in all our
generators with transformers [2,3,287]. We follow the transformer architecture proposed
in Ref. [3], the network and training hyperparameters are listed in Tab. A.13 in the
Appendix.

7.4.2 Unfolded distributions

The unfolding results obtained with all five networks representing all three methods
are shown in Fig. 7.8. All of them unfold the bulk of the phase space distributions
with a precision that is at the per-cent level. Small deviations from the true gen-level
distributions as well as differences between different methods are only visible in the tails
of the distributions or at hard edges. For 7,2 and ¢;2, we expect the unfolding to be
close to an identity mapping, with hard boundaries. While the DM-networks should be
well-suited to those observables, we also find no performance loss for the classic CFM
unfolding. Instead, we observe minor deviations of the (C-)SB networks at the hard
edges, likely indicating a lack of expressivity in our specific implementation.

Since we turned it into a network input, the di-muon mass m,,, is learned well by all
networks. Moving on to complex correlations like the transverse momentum of the first
muon, computed from Eq.(7.53), we still observe excellent agreement. With the exception
of (C-)SB networks in the low-pp region, the precision is at the level of a few per-cent
except for fluctuating tails. A known challenge to all generative networks is the AR;q;2
distribution. This observable defines a non-trivial derived feature, combining collinear

134

7 Generative Unfolding with Distribution Mapping

o
7

0.10

Normalized

o
°
@

Y

ER I £ 15 g V- === =g ey 1 =Y =

EL 1A Ak 20 * £55 5.

095 H T i, 1l

0.00 005 010 0.15 020 025 0.30 0.35
T3,j2

Figure 7.8: Unfolded distributions of the 22-dimensional Z+2 jets dataset using
CFM, DiDi, C-DiDi, SB and C-SB.

enhancement with a hard phase cut. All five networks struggle with this feature, and all
conditional networks show superior performance.

At the subjet level, the number of jet constituents, Nj2, tends to be larger at gen-level
than at reco-level, since not all particle are eventually detected. This explains the strange
peak at zero for 73 ;, at reco-level. Here, the jet algorithm clusters less than two particles
within one jet, indeed giving 73 j, = 0. At gen-level this effect is highly suppressed. The
CFM and C-DiDi manage to reliably unfold even this small excess of zeros, while the
other networks fit through it. DiDi and the SB deviate above 10% from the truth when
getting closer to the tails of the distributions. To compensate the SB is overpopulating
the peak region.

7.5 Conclusion

In this paper, we have extended two distribution-mapping, ML-based unfolding methods,
SBUnfold and DiDi and benchmarked them with an updated conditional generative
unfolding method (CFM). The two distribution-mapping methods have been shown to
accurately reproduce the marginal distributions of the target distributions, but were not
able to model the correct detector response. By augmenting them with conditioning,
C-SB and C-DiDi faithfully reproduce the detector response as well as the marginal
target distributions. Like other ML-based unfolding methods, C-SB and C-DiDi are
unbinned and readily extend to unfolding in many dimensions simultaneously.

We have started with a detailed discussion of the theoretical foundations of distribu-
tion mapping, conditional distribution mapping, and the relation of the SB and DiDi
approaches. While this discussion is not needed to understand our results, it allows us
to systematically understand the similarities and the benefits of the different generative
unfolding architectures. In essence, C-SB and C-DiDi are two realization of the same

135

7 Generative Unfolding with Distribution Mapping

SDE description, and the main difference between the two implementations is the noise
schedule chosen. In addition, within our (C)-SB implementation we sample discrete time
steps during training, whereas all other models samples ¢ continuously over a uniform
distribution. The impact of conditioning was illustrated simply with a Gaussian example
following the mathematical exposition.

Our first benchmark dataset is the well-studied OmniFold/MultiFold dataset composed
of six substructure observables. All five networks representing the three methods, classic
conditional generation, unconditional DM, and conditional DM, accurately reproduce
the distributions in the target unfolding phase space. The two DM-methods are each
implemented in Schrodinger Bridge and Direct Diffusion versions. Between our five
networks and relative to the truth, the six marginal distributions vary at the per-cent
level, with sizable deviations appearing only in the tails of distributions that are consistent
with the uncertainty estimate from the Bayesian neural network implementations. The
migration analysis for both conditional methods reproduce the physics encoded in the
forward simulation. A classifier analysis of the generated unfolded events shows high
precision and no clear failure mode for any of the three conditional networks.

Second, we apply generative unfolding to a new, high-dimensional Z + 2 jets dataset with
22 phase space dimensions, combining event-level and subjet phase spaces. Again, we
find that all networks reproduce the true phase space distribution before the detector
with high fidelity. For many of the networks, the one-dimensional marginal distributions
agree with the truth at the per-cent level or better, and sizable deviations again appear
only in kinematic tails.

With the release of the updated methods, codified in publicly available software, we have
added a new ML-based unfolding method to the collider physics toolkit. Just as with
classical unfolding, it is critical to have multiple, comparably accurate/precise techniques
that have different methodological assumptions. Distribution mapping is a third type
of method that can now be used to compare with standard conditional-generation and
likelihood-ratio methods. Further work is required to fully integrate all aspects of a cross
section measurement into generative unfolding (e.g. acceptance effects), but the core
component (inverting the forward model) is now highly advanced. We look forward to
the application of these methods to experimental data in the near future.

136

Chapter

Summary and Outlook

As particle physics enters the high-luminosity era of the LHC (HL-LHC), the enormous
increase in data volume presents both immense opportunities and significant methodolog-
ical challenges. LHC physics is in the privileged position of having access to a chain of
very precise, mostly first-principles based simulation tools. This simulation chain is the
backbone of the entire LHC physics program, however it is currently projected to become
a major computational bottleneck if major upgrades are not implemented. Besides
the simulation software, progress is also required in the inference methodology. Most
traditional statistical tools are designed for specific hypotheses and become inadequate
when searching for subtle, unknown signals in high-dimensional data.

Generative machine learning models offer a powerful new approach for learning complex,
high-dimensional probability densities with remarkable accuracy. Their flexibility and
scalability open up a broad range of applications in LHC physics, many of which are still
being actively explored. This thesis addressed a subset of these opportunities, focusing
on simulation and inference tasks where generative models can be used to mitigate
existing computational and methodological limitations. For a broader overview of recent
developments in this rapidly evolving field, see Ref. [291].

Chapter 4 systematically examined the capability of three modern generative architectures,
DDPM diffusion models, CFM diffusion models and autoregressive transformers, for
simulating LHC event data. We demonstrated that all three of these architectures can
learn complex physical phase spaces to percent level precision, outperforming the previous
state-of-the-art normalizing flows. We developed Bayesian network implementations that
provided uncertainty estimates of the learned densities. Using toy models we analyzed the
uncertainty patterns to extract insights into how the models learn the underlying densities.
Diffusion models balanced expressivity and precision very well, most notably seen in the
challenging Z-boson mass resonance. The autoregressive transformer excelled in learning
angular jet correlations, however at the cost of a slightly mismodelled Z-resonance. Our
results provided a strong motivation for the future use of these models. In particular
Conditional Flow Matching (CFM), which we proposed for the first time in the context
of particle physics, has since been established as the leading generative architecture in
the field.

In Chapter 5, we addressed limitations of the classical matrix element method through
generative machine learning. We developed a novel three-network framework that accounts
for the transfer probability, efficiency effects and the computationally intensive phase
space integration. Compared to prior work, we were able to significantly improve accuracy
and computational efficiency of the method. We replaced the normalizing flows with
advanced model architectures including CFMs and transformers, demonstrating how

137

8 Summary and Outlook

generative networks can efficiently handle the complex jet combinatorics and encode
the transfer probability to percent-level precision. Using a measurement of the CP-
violating top Yukawa coupling as a benchmark example, we showcased that our setup
can accurately measure the underlying theory parameter, even with very limited event
numbers.

Chapter 6 presented a comprehensive benchmark study of ML-based unfolding methods,
systematically comparing reweighting (OmniFold), distribution mapping, and conditional
generative unfolding. All methods demonstrated excellent performance, suggesting that
experimental collaborations should consider adopting ML-based unfolding techniques. In
particular the proposed transformer-enhanced diffusion model enabled unprecedented
precision in unfolding the challenging multi-resonant ¢t phase space. We further showed
how theory-inspired parametrizations can significantly enhance the models’ capability to
capture complex correlations. Using classifiers, we rigorously verified that no correlations
were mismodeled and confirmed that the models truly learned the full high-dimensional
distributions. Overall, this chapter highlighted the readiness of generative unfolding tools
for LHC analyses and established clear benchmarks that future progress can be compared
against.

Chapter 7 expanded the methodological toolbox further by introducing conditional
versions of distribution mapping approaches, specifically Schrédinger Bridge and Direct
Diffusion methods. These conditional approaches overcame previous limitations by
accurately modeling both marginal distributions and detector responses. Through a
detailed theoretical discussion, we clarified the connection between these two methods
as well as the connection to diffusion models. Using a new 22-dimensional Z + 2 jets
dataset, we demonstrated that they can achieve precision comparable to state-of-the-art
CFM-based generative unfolding. The availability of complementary methods, each
based on different theoretical frameworks, enhances the robustness and reliability of the
unfolding toolkit.

Looking into the future, it is clear that generative machine learning techniques hold great
promise for fundamentally reshaping statistical inference in collider physics. They not
only address critical computational challenges of the HL-LHC era but also enable entirely
new analytical methodologies. However, bridging the gap between phenomenological
studies and real analyses requires further work. Future research should therefore prioritize
the robust integration of these methods into actual LHC analyses, ensuring they reliably
work under realistic experimental conditions. This includes, but is not limited to,
comprehensive investigations of uncertainties and improved techniques to deal with
simulation-data differences. Once these questions are answered, physicists have new
possibilities to navigate the enormous datasets ahead, maximizing discovery potential
and bringing us closer to answering the fundamental open questions that extend beyond
the current Standard Model of particle physics.

138

Chapter

Hyperparameters

A.1 Networks from Chapter 4

hyperparameter ‘ toy models LHC events
Timesteps 1000 1000

Time Embedding Dimension - 64

Blocks 1 2

Layers per Block 8 5
Intermediate Dimensions 40 64

Model Parameters 20k 75k

LR Scheduling one-cycle one-cycle
Starter LR 104 1074
Maximum LR 1073 1073
Epochs 1000 1000, 3000, 10000
Batch Size 8192 8192, 8192, 4096
Training Events 600k 3.2M, 850k, 190k
Generated Events 1M 1M, 1M, 1M

Table A.1: Training setup and hyperparameters for the Bayesian DDPM genera-
tor.

139

A Hyperparameters

hyperparameter toy models LHC events
Embedding Dimension - 32

Blocks 1 2
Layers per Block 8)
Intermediate Dimensions 40 128, 64, 64
Model Parameters 20k 265k, 85k, 85k

LR Scheduling cosine annealing cosine annealing

Starter LR 102 1073
Epochs 1000 1000, 5000, 10000
Batch Size 8192 16384

Training Events 600k 3.2M, 850k, 190k
Generated Events 1M 1M, 1M, 1M

Table A.2: Training setup and hyperparameters for the Bayesian CFM generator.

hyperparameter toy models LHC events
Gaussians m 21 43

Bins m 64 -

TransformerDecoder N 4 4

Self-attention Heads 4 4
Latent Space Size d 64 128

Model Parameters 220k 900k
LR Scheduling one-cycle one-cycle
Starter LR 3x 1074 1074
Maximum LR 3x 1073 1073
Epochs 200 2000
Batch Size 1024 1024
RADAM e 10-8 10~*

Training Events 600k 2.4M, 670k, 190k
Generated Events 600k 1M, 1M, 1M

Table A.3: Training setup and hyperparameters for the Bayesian autoregressive
transformer.

140

A Hyperparameters

A.2 Networks from Chapter 5

Parameter ‘ Acceptance Multiplicities
Optimizer Adam

Learning rate 0.0001

LR schedule One-cycle

Maximum learning rate 0.0003

Batch size 1024

Epochs 10

Number of layers 6

Hidden nodes 256

Activation function ReLU

Preprocessing TN, O, M

Loss Binary cross-entropy Categorical cross-entropy
Training samples oM 3.4M
Validation samples 500k 340k
Testing samples 4.5M 3.1M
Trainable parameters 266k 266k

Table A.4: Hyperparameters of the classifiers learning the acceptance €(xhard)
(left) and the jet multiplicity used in Appendix 5.7 (right).

Parameter Value Parameter ‘ Value
Optimizer Adam Optimizer RAdam
Learning rate 0.001 Learning rate 0.0001
LR schedule Cosine-annealing LR schedule One-cycle
Batch size 16384 Maximum learning rate 0.0003
Epochs 1000 Batch size 1024
Number of layers 8 Epochs 200
Feed-forward dimension | 512 Number of heads 8
Activation function SiLU Number of encoder layers 6
Training samples 3.4M Number of decoder layers 8
Validation samples 340k Embedding dimension 64
Testing samples 3.1M Transformer feed-forward dimension | 256
Trainable parameters 3.2M Number of subnet layers)
ODE solver method Runge-Kutta 4 Subnet hidden nodes 256
Solver step-size 0.05 Subnet activation function ReLU
RQS spline bins 16
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 2.6M

Table A.5: Hyperparameters of the CEFM (left) and the Transfermer (right).

141

A Hyperparameters

Parameter Value Parameter Value

Optimizer Adam Optimizer Adam

Learning rate 0.001 Learning rate 0.001

LR schedule Cosine-annealing LR schedule Cosine-annealing
Batch size 8192 Batch size 8192

Epochs 600 Epochs 600

Number of heads 8 Number of heads 4

Number of encoder layers | 6 Number of encoder layers | 6

Number of decoder layers | 8 Number of decoder layers | 6

Embedding dimension 64 Embedding dimension 128

Transf. feed-forward dim | 256 Transf. feed-forward dim | 512

Number of layers CFM 6 Training samples 3.4M

Hidden nodes CFM 400 Validation samples 340k

Activation function CFM | ReLU Testing samples 3.1M

Training samples 3.4M Trainable parameters 2.TM

Validation samples 340k ODE solver method Runge-Kutta, order 4
Testing samples 3.1M Solver step-size 0.05

Trainable parameters 3.56M

ODE solver method

Solver step-size

Runge-Kutta, order 4

0.05

Table A.6: Hyperparameters of the autoregressive Transfusion (left) and the
parallel Transfusion (right)

142

A Hyperparameters

A.3 Networks from Chapter 6

Parameter ‘ (b)OmniFold Py-to-Py (b)OmniFold He-to-Py
Optimizer Adam

Learning rate 0.001

LR schedule Cosine annealing

Batch size 128

Epochs 30 500

Network MLP

Number of layers 4

Hidden nodes 80

Bayesian regularization 1 1

Table A.7: Network and training hyperparameters for the OmniFold and bOm-
niFold networks in Figs. 6.3, 6.4, and 6.5.

Parameter DiDi CFM Z+jets CFM tt TraCFM
Optimizer Adam

Learning rate 0.001

LR schedule Cosine annealing

Batch size 16384

Epochs 500 400 1000 500
Network MLP MLP MLP Transformer
Number of layers 8 8 8 -
Hidden nodes 512 512 1024 -
Transformer blocks - - - 6
Transformer heads - - - 4
Embedding dim - - - 128
Bayesian regularization 1

Table A.8: Network and training hyperparameters for the Direct Diffusion and

CFM networks in Figs. 6.6,

6.7, 6.10, and 6.11

143

A Hyperparameters

Parameter cINN Z-+jets cINN tt Transfermer
Optimizer Adam

Max Learning rate 0.0003

LR schedule One cycle

Batch size 1024

Epochs 75 130 250
Network RQS-INN RQS-INN Transformer+RQS
INN blocks 10 20 1

RQS bins 24 30 30
Subnet layers 5 5 5
Subnet dim 200 256 256
Transformer blocks - - 6
Transformer heads - - 4
Embedding dim - - 128

Table A.9: Network and training hyperparameters for the cINN and Transfermer

in Figs. 6.7 and 6.10.

Parameter SB
Optimizer Adam
Learning rate 0.001

Batch size 128

Network Updates 250000
Network Fully connected ResNet
Blocks 6

MLP size 256

Table A.10: Network and training hyperparameters for the Schrodinger Bridge

in Fig. 6.6.

Parameter VLD Z+jets VLD tt
Optimizer Adam Adam
Initial Learning rate 5x 1074 5x 1074
Fine-tune Learning rate 1x1074 1x1074
Batch size 1024 1024
Updates 1 Million 1 Million
Hidden Dimensions 64 64
Denoising Layers 8 8
Detector Encoder Layers 6 6
Part* Encoder Layers 6 6
Part* Decoder Layers 6 6

Table A.11: Network and training hyperparameters for the VLD networks in

Figs 6.7, 6.10, and 6.11.

144

A Hyperparameters

A.4 Networks from Chapter 7

Parameter | CFM DiDi C-DiDi | SB C-SB Classifier
Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
LR schedule Cosine annealing Exponential decay Cosine annealing
Batch size 16384 128 128
Epochs 300 20 20
Network MLP MLP MLP
Number of layers 5 6 5
Hidden nodes 128 256 256
Dropout - - 0.1
Noise scale - 0.1 0.1 0.1 0.1 -
BNN regularization 1 - -

Table A.12: Network and training hyperparameters for all networks trained on
the 6d jet substructure dataset. Results are shown in Figs. 7.4, 7.5, and 7.6

Parameter CFM DiDi C-DiDi | SB C-SB
Optimizer Adam Adam
Learning rate 0.001 0.001
LR schedule Cosine annealing Exponential decay
Batch size 16384 128
Epochs 500 500 2000 200 200
Network Transformer Transformer
Embedding dim 64 64
Transformer blocks 6 6
Attention heads 4 4
Feedforward dim 256 256
Noise scale - 0.001 0.1 0.1 0.1
BNN regularization 1 -

Table A.13: Network and training hyperparameters for all networks trained on
the full-dimensional Z+2j dataset. Results shown in Figs. 7.8

145

Acknowledgment

First, I would like to thank my advisors Anja Butter and Tilman Plehn for giving me
the opportunity to do my PhD in the Heidelberg Pheno group despite my questionable
loyalty to particle physics. I am grateful for all the opportunities to research, to travel,
and most importantly to learn. After these three years, I am convinced that the physicist
way is the right way to do machine learning.

I also want to thank Anja Butter and Ullrich K6the for refereeing this thesis, and Tilman
Plehn and Ulrich Uwer for completing my committee.

Next, I would like to thank Sofia Palacios Schweitzer for all the support, culminating in
proof-reading this thesis on Easter Sunday. In this context I want to also thank ChatGPT
for proof-reading this thesis.

The research presented in this thesis would not have been possible without my collab-
orators. I am very grateful to all of them, in particular to Sofia Palacios Schweitzer,
Jonas Spinner, Theo Heimel, Ramon Winterhalder, Javier Marino, Sascha Diefenbacher,
Vinicius Mikuni, and Benjamin Nachman.

A special thanks to all the current and former members of the Heidelberg Pheno and
Cosmo groups for creating a fun and inspiring environment.

Finally, I would like to thank my family and friends for their unwavering support.

147

Bibliography

[1]

A. Butter, N. Huetsch, S. Palacios Schweitzer, T. Plehn, P. Sorrenson and J. Spinner,
Jet Diffusion versus JetGPT — Modern Networks for the LHC, SciPost Phys. Core
8, 026 (2025), doi:10.21468/SciPostPhysCore.8.1.026, arXiv:2305.10475.

T. Heimel, N. Huetsch, R. Winterhalder, T. Plehn and A. Butter, Precision-
machine learning for the matriz element method, SciPost Phys. 17, 129 (2024),
doi:10.21468 /SciPostPhys.17.5.129, arXiv:2310.07752.

N. Huetsch et al., The landscape of unfolding with machine learning, SciPost Phys.
18, 070 (2025), doi:10.21468/SciPostPhys.18.2.070, arXiv:2404.18807.

A. Butter, S. Diefenbacher, N. Huetsch, V. Mikuni, B. Nachman, S. Pala-
cios Schweitzer and T. Plehn, Generative Unfolding with Distribution Mapping
(2024), arXiv:2411.02495.

T. Heimel, N. Huetsch, F. Maltoni, O. Mattelaer, T. Plehn and R. Winterhalder, The
MadNIS reloaded, SciPost Phys. 17, 023 (2024), do0i:10.21468 /SciPostPhys.17.1.023,
arXiv:2311.01548.

S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22, 579
(1961), doi:10.1016/0029-5582(61)90469-2.

S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19, 1264 (1967),
doi:10.1103 /PhysRevLett.19.1264.

A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519, 367
(1968), doi:10.1142/9789812795915_ 0034.

G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge
Fields, Nucl. Phys. B 44, 189 (1972), do0i:10.1016/0550-3213(72)90279-9.

H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the Color Octet Gluon
Picture, Phys. Lett. B 47, 365 (1973), doi:10.1016/0370-2693(73)90625-4.

D. J. Gross and F. Wilczek, Ultraviolet Behavior of Non-Abelian Gauge Theories,
Phys. Rev. Lett. 30, 1343 (1973), doi:10.1103/PhysRevLett.30.1343.

H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev.
Lett. 30, 1346 (1973), doi:10.1103/PhysRevLett.30.1346.

P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron.
Astrophys. 594, A13 (2016), doi:10.1051/0004-6361/201525830, arXiv:1502.01589.

R. Adam et al., Planck 2015 results. 1. Overview of products and scientific re-
sults, Astron. Astrophys. 594, Al (2016), doi:10.1051/0004-6361/201527101,
arXiv:1502.01582.

149

https://doi.org/10.21468/SciPostPhysCore.8.1.026
http://arxiv.org/abs/2305.10475
https://doi.org/10.21468/SciPostPhys.17.5.129
http://arxiv.org/abs/2310.07752
https://doi.org/10.21468/SciPostPhys.18.2.070
http://arxiv.org/abs/2404.18807
http://arxiv.org/abs/2411.02495
https://doi.org/10.21468/SciPostPhys.17.1.023
http://arxiv.org/abs/2311.01548
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
https://doi.org/10.1051/0004-6361/201527101
http://arxiv.org/abs/1502.01582

Bibliography

[15]

[16]

[17]

[18]

[19]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev.
Lett. 81, 1562 (1998), doi:10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003.

Q. R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral
current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89,
011301 (2002), doi:10.1103/PhysRevLett.89.011301, arXiv:nucl-ex/0204008.

E. W. Kolb and M. S. Turner, The Early Universe, vol. 69, Taylor and Francis,
ISBN 978-0-429-49286-0, 978-0-201-62674-2, doi:10.1201/9780429492860 (2019).

G. Steigman, Observational tests of antimatter cosmologies, Ann. Rev. Astron.
Astrophys. 14, 339 (1976), doi:10.1146/annurev.aa.14.090176.002011.

P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.
12, 132 (1964), doi:10.1016/0031-9163(64)91136-9.

G. Aad et al., Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012),
d0i:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV
with the CMS FExperiment at the LHC, Phys. Lett. B 716, 30 (2012),
doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

ATLAS Software and Computing HL-LHC Roadmap, Tech. rep., CERN, Geneva
(2022).

T. Plehn, A. Butter, B. Dillon, T. Heimel, C. Krause and R. Winterhalder, Modern
Machine Learning for LHC Physicists (2022), arXiv:2211.01421.

K. Cranmer, J. Brehmer and G. Louppe, The frontier of simulation-based in-
ference, Proc. Nat. Acad. Sci. 117, 30055 (2020), doi:10.1073/pnas.1912789117,
arXiv:1911.01429.

A. Butter and T. Plehn, Generative Networks for LHC events (2020),
arXiv:2008.08558.

S. Badger et al., Machine learning and LHC' event generation, SciPost Phys. 14,
079 (2023), doi:10.21468 /SciPostPhys.14.4.079, arXiv:2203.07460.

G. Aad et al., An implementation of neural simulation-based inference for parameter
estimation in ATLAS (2024), arXiv:2412.01600.

V. Chekhovsky et al., Model-agnostic search for dijet resonances with anomalous jet
substructure in proton-proton collisions at \/s = 13 TeV (2024), arXiv:2412.03747.

G. Aad et al., Simultaneous Unbinned Differential Cross-Section Measurement of
Twenty-Four Z+jets Kinematic Observables with the ATLAS Detector, Phys. Rev.
Lett. 133, 261803 (2024), doi:10.1103/PhysRevLett.133.261803, arXiv:2405.20041.

J. M. Campbell et al., Event generators for high-energy physics experiments, SciPost
Phys. 16, 130 (2024), doi:10.21468/SciPostPhys.16.5.130, arXiv:2203.11110.

E. Bothmann et al., Fvent Generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019),
d0i:10.21468 /SciPostPhys.7.3.034, arXiv:1905.09127.

150

https://doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1103/PhysRevLett.89.011301
http://arxiv.org/abs/nucl-ex/0204008
https://doi.org/10.1201/9780429492860
https://doi.org/10.1146/annurev.aa.14.090176.002011
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/2211.01421
https://doi.org/10.1073/pnas.1912789117
http://arxiv.org/abs/1911.01429
http://arxiv.org/abs/2008.08558
https://doi.org/10.21468/SciPostPhys.14.4.079
http://arxiv.org/abs/2203.07460
http://arxiv.org/abs/2412.01600
http://arxiv.org/abs/2412.03747
https://doi.org/10.1103/PhysRevLett.133.261803
http://arxiv.org/abs/2405.20041
https://doi.org/10.21468/SciPostPhys.16.5.130
http://arxiv.org/abs/2203.11110
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/1905.09127

Bibliography

[32]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S.
Shao, T. Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-
level and next-to-leading order differential cross sections, and their matching to
parton shower simulations, JHEP 07, 079 (2014), doi:10.1007/JHEP07(2014)079,
arXiv:1405.0301.

T. Sjostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen and P. Z. Skands, An introduction to PYTHIA
8.2, Comput. Phys. Commun. 191, 159 (2015), doi:10.1016/j.cpc.2015.01.024,
arXiv:1410.3012.

S. Agostinelli et al., GEANT4 - A Simulation Toolkit, Nucl. Instrum. Meth. A
506, 250 (2003), doi:10.1016,/S0168-9002(03)01368-8.

J. Bellm et al., Herwig 7.1 Release Note (2017), arXiv:1705.06919.

J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens
and M. Selvaggi, DELPHES 3, A modular framework for fast simulation of a
generic collider experiment, JHEP 02, 057 (2014), doi:10.1007/JHEP02(2014)057,
arXiv:1307.6346.

D. Rezende and S. Mohamed, Variational inference with normalizing flows, In
F. Bach and D. Blei, eds., Proceedings of the 32nd International Conference on
Machine Learning, vol. 37 of Proceedings of Machine Learning Research, pp. 1530—
1538. PMLR, Lille, France (2015), arXiv:1505.05770.

L. Ardizzone, C. Liith, J. Kruse, C. Rother and U. Kothe, Guided image generation
with conditional invertible neural networks (2019), arXiv:1907.02392.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville and Y. Bengio, Generative adversarial networks (2014),
arXiv:1406.2661.

S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen,
D. Podareanu, R. Ruiz de Austri and R. Verheyen, Event Generation and Statis-
tical Sampling for Physics with Deep Generative Models and a Density Informa-
tion Buffer, Nature Commun. 12, 2985 (2021), doi:10.1038/s41467-021-22616-z,
arXiv:1901.00875.

B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-specific
datasets with Generative Adversarial Networks (2019), arXiv:1901.05282.

R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, Dijet-
GAN: A Generative-Adversarial Network Approach for the Simulation of QCD
Dijet Events at the LHC, JHEP 08, 110 (2020), doi:10.1007/JHEP08(2019)110,
arXiv:1903.02433.

A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC FEvents, SciPost Phys.
7,075 (2019), doi:10.21468/SciPostPhys.7.6.075, arXiv:1907.03764.

Y. Alanazi et al., Simulation of electron-proton scattering events by a Feature-
Augmented and Transformed Generative Adversarial Network (FAT-GAN) (2020),
d0i:10.24963 /ijcai.2021/293, arXiv:2001.11103.

A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot and
S. Vent, Generative networks for precision enthusiasts, SciPost Phys. 14, 078
(2023), doi:10.21468/SciPostPhys.14.4.078, arXiv:2110.13632.

151

https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012
https://doi.org/10.1016/S0168-9002(03)01368-8
http://arxiv.org/abs/1705.06919
https://doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1907.02392
http://arxiv.org/abs/1406.2661
https://doi.org/10.1038/s41467-021-22616-z
http://arxiv.org/abs/1901.00875
http://arxiv.org/abs/1901.05282
https://doi.org/10.1007/JHEP08(2019)110
http://arxiv.org/abs/1903.02433
https://doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1907.03764
https://doi.org/10.24963/ijcai.2021/293
http://arxiv.org/abs/2001.11103
https://doi.org/10.21468/SciPostPhys.14.4.078
http://arxiv.org/abs/2110.13632

Bibliography

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[61]

I. Kobyzev, S. Prince and M. Brubaker, Normalizing flows: An introduction and
review of current methods, IEEE Transactions on Pattern Analysis and Machine
Intelligence p. 1-1 (2020), doi:10.1109/tpami.2020.2992934, http://dx.doi.org/
10.1109/TPAMI.2020.2992934.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed and B. Lakshmi-
narayanan, Normalizing flows for probabilistic modeling and inference (2019),
arXiv:1912.02762.

I. Kobyzev, S. Prince and M. A. Brubaker, Normalizing flows: An introduction
and review of current methods (2019), arXiv:1908.09257.

T. Miiller, B. McWilliams, F. Rousselle, M. Gross and J. Novak, Neural importance
sampling (2018), arXiv:1808.03856.

J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic models (2020),
https://arxiv.org/abs/2006.11239, arXiv:2006.11239.

Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel and M. Le, Flow matching
for generative modeling (2023), arXiv:2210.02747.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, .. Kaiser
and I. Polosukhin, Attention is all you need, Advances in neural information
processing systems 30 (2017), arXiv:1706.03762.

K. Kondo, Dynamical Likelihood Method for Reconstruction of Fvents With Missing
Momentum. 1: Method and Toy Models, J. Phys. Soc. Jap. 57, 4126 (1988),
doi:10.1143/JPSJ.57.4126.

K. Kondo, Dynamical likelihood method for reconstruction of events with missing
momentum. 2: Mass spectra for 2 —> 2 processes, J. Phys. Soc. Jap. 60, 836
(1991), doi:10.1143/JPSJ.60.836.

F. Bury and C. Delaere, Matriz element regression with deep neural networks —
Breaking the CPU barrier, JHEP 04, 020 (2021), doi:10.1007/JHEP04(2021)020,
arXiv:2008.10949.

A. Butter, T. Heimel, T. Martini, S. Peitzsch and T. Plehn, Two invert-
ible networks for the matrix element method, SciPost Phys. 15, 094 (2023),
doi:10.21468 /SciPostPhys.15.3.094, arXiv:2210.00019.

G. Cowan, A survey of unfolding methods for particle physics, Conf. Proc. C
0203181, 248 (2002).

F. Spano, Unfolding in particle physics: a window on solving inverse problems,
EPJ Web Conf. 55, 03002 (2013), doi:10.1051/epjconf/20135503002.

M. Arratia et al., Publishing unbinned differential cross section results, JINST 17,
P01024 (2022), doi:10.1088/1748-0221/17/01/P01024, arXiv:2109.13243.

L. Brenner, P. Verschuuren, R. Balasubramanian, C. Burgard, V. Croft, G. Cowan
and W. Verkerke, Comparison of unfolding methods using RooFitUnfold (2020),
https://arxiv.org/abs/1910.14654, arXiv:1910.14654.

K. Datta, D. Kar and D. Roy, Unfolding with Generative Adversarial Networks
(2018), arXiv:1806.00433.

152

https://doi.org/10.1109/tpami.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://arxiv.org/abs/1912.02762
http://arxiv.org/abs/1908.09257
http://arxiv.org/abs/1808.03856
https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/2006.11239
http://arxiv.org/abs/2210.02747
http://arxiv.org/abs/1706.03762
https://doi.org/10.1143/JPSJ.57.4126
https://doi.org/10.1143/JPSJ.60.836
https://doi.org/10.1007/JHEP04(2021)020
http://arxiv.org/abs/2008.10949
https://doi.org/10.21468/SciPostPhys.15.3.094
http://arxiv.org/abs/2210.00019
https://doi.org/10.1051/epjconf/20135503002
https://doi.org/10.1088/1748-0221/17/01/P01024
http://arxiv.org/abs/2109.13243
https://arxiv.org/abs/1910.14654
http://arxiv.org/abs/1910.14654
http://arxiv.org/abs/1806.00433

Bibliography

[62]

[63]

[64]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder,
How to GAN away Detector Effects, SciPost Phys. 8, 070 (2020),
d0i:10.21468 /SciPostPhys.8.4.070, arXiv:1912.00477.

A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman and J. Thaler,
OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev. Lett.
124, 182001 (2020), doi:10.1103/PhysRevLett.124.182001, arXiv:1911.09107.

M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder,
L. Ardizzone and U. Kothe, Invertible Networks or Partons to Detector and
Back Again, SciPost Phys. 9, 074 (2020), doi:10.21468/SciPostPhys.9.5.074,
arXiv:2006.06685.

M. Backes, A. Butter, M. Dunford and B. Malaescu, An unfolding method based
on conditional invertible neural networks (cINN) using iterative training, SciPost
Phys. Core 7, 007 (2024), doi:10.21468 /scipostphyscore.7.1.007, arXiv:2212.08674.

L. Favaro, R. Kogler, A. Paasch, S. Palacios Schweitzer, T. Plehn and D. Schwarz,
How to Unfold Top Decays (2025), arXiv:2501.12363.

J. N. Howard, S. Mandt, D. Whiteson and Y. Yang, Learning to simulate high energy
particle collisions from unlabeled data, Sci. Rep. 12, 7567 (2022), doi:10.1038 /s41598-
022-10966-7, arXiv:2101.08944.

S. Diefenbacher, G.-H. Liu, V. Mikuni, B. Nachman and W. Nie, Improving
generative model-based unfolding with Schrodinger bridges, Phys. Rev. D 109,
076011 (2024), doi:10.1103/PhysRevD.109.076011, arXiv:2308.12351.

A. Butter, T. Jezo, M. Klasen, M. Kuschick, S. Palacios Schweitzer and T. Plehn,
Kicking it off(-shell) with direct diffusion, SciPost Phys. Core 7, 064 (2024),
d0i:10.21468 /SciPostPhysCore.7.3.064, arXiv:2311.17175.

T. Plehn, Lectures on LHC Physics, Lect. Notes Phys. 844, 1 (2012),
doi:10.1007/978-3-642-24040-9, arXiv:0910.4182.

M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge
University Press, ISBN 978-1-107-03473-0, 978-1-107-03473-0 (2014).

M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory,
Addison-Wesley, Reading, USA, ISBN 978-0-201-50397-5, 978-0-429-50355-9, 978-
0-429-49417-8, doi:10.1201/9780429503559 (1995).

G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B
126, 298 (1977), doi:10.1016,/0550-3213(77)90384-4.

Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scatter-
ing and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics.,
Sov. Phys. JETP 46, 641 (1977).

V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation
theory, Sov. J. Nucl. Phys. 15, 438 (1972).

R. D. Ball et al., The path to proton structure at 1% accuracy, Eur. Phys. J. C 82,
428 (2022), doi:10.1140/epjc/s10052-022-10328-7, arXiv:2109.02653.

S. Weinzierl, Introduction to monte carlo methods (2000), arXiv:hep-ph/0006269.

153

https://doi.org/10.21468/SciPostPhys.8.4.070
http://arxiv.org/abs/1912.00477
https://doi.org/10.1103/PhysRevLett.124.182001
http://arxiv.org/abs/1911.09107
https://doi.org/10.21468/SciPostPhys.9.5.074
http://arxiv.org/abs/2006.06685
https://doi.org/10.21468/scipostphyscore.7.1.007
http://arxiv.org/abs/2212.08674
http://arxiv.org/abs/2501.12363
https://doi.org/10.1038/s41598-022-10966-7
https://doi.org/10.1038/s41598-022-10966-7
http://arxiv.org/abs/2101.08944
https://doi.org/10.1103/PhysRevD.109.076011
http://arxiv.org/abs/2308.12351
https://doi.org/10.21468/SciPostPhysCore.7.3.064
http://arxiv.org/abs/2311.17175
https://doi.org/10.1007/978-3-642-24040-9
http://arxiv.org/abs/0910.4182
https://doi.org/10.1201/9780429503559
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1140/epjc/s10052-022-10328-7
http://arxiv.org/abs/2109.02653
http://arxiv.org/abs/hep-ph/0006269

Bibliography

[78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J.
Comput. Phys. 27, 192 (1978), d0i:10.1016/0021-9991(78)90004-9.

G. P. Lepage, VEGAS: AN ADAPTIVE MULTIDIMENSIONAL INTEGRATION
PROGRAM (1980).

G. P. Lepage, Adaptive multidimensional integration: VEGAS enhanced, J. Comput.
Phys. 439, 110386 (2021), doi:10.1016/j.jcp.2021.110386, arXiv:2009.05112.

T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization,
Comput. Phys. Commun. 120, 13 (1999), doi:10.1016/S0010-4655(99)00209-X,
arXiv:hep-ph/9806432.

T. Heimel, R. Winterhalder, A. Butter, J. Isaacson, C. Krause, F. Maltoni, O. Mat-
telaer and T. Plehn, MadNIS - Neural multi-channel importance sampling, SciPost
Phys. 15, 141 (2023), doi:10.21468/SciPostPhys.15.4.141, arXiv:2212.06172.

T. Heimel, O. Mattelaer, T. Plehn and R. Winterhalder, Differentiable MadNIS-Lite,
SciPost Phys. 18, 017 (2025), doi:10.21468/SciPostPhys.18.1.017, arXiv:2408.01486.

K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10, 2445 (1974),
d0i:10.1103 /PhysRevD.10.2445.

M. Constantinou et al., Parton distributions and lattice-QCD calcula-
tions: Toward 3D structure, Prog. Part. Nucl. Phys. 121, 103908 (2021),
doi:10.1016 /j.ppnp.2021.103908, arXiv:2006.08636.

B. Andersson, G. Gustafson and B. Soderberg, A General Model for Jet Fragmen-
tation, Z. Phys. C 20, 317 (1983), doi:10.1007/BF01407824.

T. Sjostrand, Jet Fragmentation of Nearby Partons, Nucl. Phys. B 248, 469 (1984),
d0i:10.1016/0550-3213(84)90607-2.

G. Aad et al., The ATLAS Ezxperiment at the CERN Large Hadron Collider, JINST
3, S08003 (2008), doi:10.1088/1748-0221/3/08/S08003.

S. Chatrchyan et al., The CMS Experiment at the CERN LHC, JINST 3, S08004
(2008), doi:10.1088/1748-0221/3/08/S08004.

M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with
Generative Adversarial Networks: An Application to 38D Particle Show-
ers in Multilayer Calorimeters, Phys. Rev. Lett. 120, 042003 (2018),
doi:10.1103/PhysRevLett.120.042003, arXiv:1705.02355.

M. Paganini, L. de Oliveira and B. Nachman, CaloGAN : Simulating 3D high energy
particle showers in multilayer electromagnetic calorimeters with generative adver-
sarial networks, Phys. Rev. D 97, 014021 (2018), doi:10.1103/PhysRevD.97.014021,
arXiv:1712.10321.

P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle Detectors
Using Generative Adversarial Networks, Comput. Softw. Big Sci. 2, 8 (2018),
d0i:10.1007/s41781-018-0015-y, arXiv:1805.00850.

M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refin-
ing particle detector simulations using the Wasserstein distance in adversarial
networks, Comput. Softw. Big Sci. 2, 4 (2018), doi:10.1007/s41781-018-0008-x,
arXiv:1802.03325.

154

https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/j.jcp.2021.110386
http://arxiv.org/abs/2009.05112
https://doi.org/10.1016/S0010-4655(99)00209-X
http://arxiv.org/abs/hep-ph/9806432
https://doi.org/10.21468/SciPostPhys.15.4.141
http://arxiv.org/abs/2212.06172
https://doi.org/10.21468/SciPostPhys.18.1.017
http://arxiv.org/abs/2408.01486
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/j.ppnp.2021.103908
http://arxiv.org/abs/2006.08636
https://doi.org/10.1007/BF01407824
https://doi.org/10.1016/0550-3213(84)90607-2
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1103/PhysRevLett.120.042003
http://arxiv.org/abs/1705.02355
https://doi.org/10.1103/PhysRevD.97.014021
http://arxiv.org/abs/1712.10321
https://doi.org/10.1007/s41781-018-0015-y
http://arxiv.org/abs/1805.00850
https://doi.org/10.1007/s41781-018-0008-x
http://arxiv.org/abs/1802.03325

Bibliography

[94]

[95]

[96]

[98]

[99]

[100]

[101]

[102]

103]

[104]

105

[106]

M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic
calorimeter showers using a Wasserstein Generative Adversarial Network, Comput.
Softw. Big Sci. 3, 4 (2019), doi:10.1007/s41781-018-0019-7, arXiv:1807.01954.

D. Belayneh et al., Calorimetry with deep learning: particle simulation
and reconstruction for collider physics, Eur. Phys. J. C 80, 688 (2020),
doi:10.1140/epjc/s10052-020-8251-9, arXiv:1912.06794.

E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and
K. Kriiger, Getting High: High Fidelity Simulation of High Granularity Calorimeters
with High Speed, Comput. Softw. Big Sci. 5, 13 (2021), doi:10.1007/s41781-021-
00056-0, arXiv:2005.05334.

E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and
K. Kriiger, Decoding Photons: Physics in the Latent Space of a BIB-AFE Generative
Network, EPJ Web Conf. 251, 03003 (2021), doi:10.1051 /epjconf/202125103003,
arXiv:2102.12491.

C. Chen, O. Cerri, T. Q. Nguyen, J. R. Vlimant and M. Pierini, Analysis-Specific
Fast Simulation at the LHC with Deep Learning, Comput. Softw. Big Sci. 5, 15
(2021), doi:10.1007/s41781-021-00060-4.

C. Krause and D. Shih, Fast and accurate simulations of calorime-
ter showers with normalizing flows, Phys. Rev. D 107, 113003 (2023),
doi:10.1103 /PhysRevD.107.113003, arXiv:2106.05285.

J. C. Cresswell, B. L. Ross, G. Loaiza-Ganem, H. Reyes-Gonzalez, M. Letizia and
A. L. Caterini, CaloMan: Fast generation of calorimeter showers with density
estimation on learned manifolds, In 36th Conference on Neural Information Pro-
cessing Systems: Workshop on Machine Learning and the Physical Sciences (2022),
arXiv:2211.15380.

S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, C. Krause, I. Shekhzadeh and
D. Shih, L2LFlows: generating high-fidelity 3D calorimeter images, JINST 18,
P10017 (2023), doi:10.1088/1748-0221/18/10/P10017, arXiv:2302.11594.

A. Xu, S. Han, X. Ju and H. Wang, Generative machine learning for detector
response modeling with a conditional normalizing flow, JINST 19, P02003 (2024),
doi:10.1088/1748-0221/19/02/P02003, arXiv:2303.10148.

S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Kriiger, P. McKeown
and L. Rustige, New angles on fast calorimeter shower simulation, Mach. Learn.
Sci. Tech. 4, 035044 (2023), doi:10.1088/2632-2153/acefa9, arXiv:2303.18150.

V. Mikuni and B. Nachman, Score-based generative models for calorimeter shower
simulation, Phys. Rev. D 106, 092009 (2022), doi:10.1103/PhysRevD.106.092009,
arXiv:2206.11898.

V. Mikuni, B. Nachman and M. Pettee, Fust point cloud generation with
diffusion models in high energy physics, Phys. Rev. D 108, 036025 (2023),
doi:10.1103 /PhysRevD.108.036025, arXiv:2304.01266.

B. Hashemi, N. Hartmann, S. Sharifzadeh, J. Kahn and T. Kuhr, Ultra-high-
granularity detector simulation with intra-event aware generative adversarial net-
work and self-supervised relational reasoning, Nature Commun. 15, 4916 (2024),

155

https://doi.org/10.1007/s41781-018-0019-7
http://arxiv.org/abs/1807.01954
https://doi.org/10.1140/epjc/s10052-020-8251-9
http://arxiv.org/abs/1912.06794
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1007/s41781-021-00056-0
http://arxiv.org/abs/2005.05334
https://doi.org/10.1051/epjconf/202125103003
http://arxiv.org/abs/2102.12491
https://doi.org/10.1007/s41781-021-00060-4
https://doi.org/10.1103/PhysRevD.107.113003
http://arxiv.org/abs/2106.05285
http://arxiv.org/abs/2211.15380
https://doi.org/10.1088/1748-0221/18/10/P10017
http://arxiv.org/abs/2302.11594
https://doi.org/10.1088/1748-0221/19/02/P02003
http://arxiv.org/abs/2303.10148
https://doi.org/10.1088/2632-2153/acefa9
http://arxiv.org/abs/2303.18150
https://doi.org/10.1103/PhysRevD.106.092009
http://arxiv.org/abs/2206.11898
https://doi.org/10.1103/PhysRevD.108.036025
http://arxiv.org/abs/2304.01266

Bibliography

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

do0i:10.1038/s41467-024-49104-4, [Erratum: Nature Commun. 115, 5825 (2024)],
arXiv:2303.08046.

A. M. Sirunyan et al., Particle-flow reconstruction and global event description with
the CMS detector, JINST 12, P10003 (2017), doi:10.1088/1748-0221/12/10/P10003,
arXiv:1706.04965.

M. Aaboud et al., Jet reconstruction and performance using particle flow with the
ATLAS Detector, Eur. Phys. J. C 77, 466 (2017), doi:10.1140/epjc/s10052-017-
5031-2, arXiv:1703.10485.

M. Cacciari, G. P. Salam and G. Soyez, The anti-k; jet clustering algorithm, JHEP
04, 063 (2008), doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

S. Schmitt, TUnfold: an algorithm for correcting migration effects in high en-
ergy physics, JINST 7, T10003 (2012), doi:10.1088/1748-0221/7/10/T10003,
arXiv:1205.6201.

G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem,
Nucl. Instrum. Meth. A 362, 487 (1995), doi:10.1016/0168-9002(95)00274-X.

A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, A. Suresh and
J. Thaler, Scaffolding Simulations with Deep Learning for High-dimensional De-
convolution, In 9th International Conference on Learning Representations (2021),
arXiv:2105.04448.

Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521, 436 (2015),
doi:10.1038 /nature14539.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017),
https://arxiv.org/abs/1412.6980, arXiv:1412.6980.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors (2012),
arXiv:1207.0580.

S. Toffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift (2015), arXiv:1502.03167.

A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, In F. Pereira, C. Burges, L. Bottou and K. Wein-
berger, eds., Advances in Neural Information Processing Systems, vol. 25. Curran
Associates, Inc. (2012).

R. M. Schmidt, Recurrent neural networks (rnns): A gentle introduction and
overview (2019), arXiv:1912.05911.

L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen,
L. Maier-Hein, C. Rother and U. Kéthe, Analyzing inverse problems with invertible
neural networks (2018), arXiv:1808.04730.

L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using real nvp (2016),
arXiv:1605.08803.

D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolu-
tions (2018), arXiv:1807.03039.

156

https://doi.org/10.1038/s41467-024-49104-4
http://arxiv.org/abs/2303.08046
https://doi.org/10.1088/1748-0221/12/10/P10003
http://arxiv.org/abs/1706.04965
https://doi.org/10.1140/epjc/s10052-017-5031-2
https://doi.org/10.1140/epjc/s10052-017-5031-2
http://arxiv.org/abs/1703.10485
https://doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
https://doi.org/10.1088/1748-0221/7/10/T10003
http://arxiv.org/abs/1205.6201
https://doi.org/10.1016/0168-9002(95)00274-X
http://arxiv.org/abs/2105.04448
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/1808.04730
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1807.03039

Bibliography

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan and S. Ganguli, Deep unsu-
pervised learning using nonequilibrium thermodynamics, CoRR abs/1503.03585
(2015), http://arxiv.org/abs/1503.03585, 1503.03585.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon and B. Poole,
Score-based generative modeling through stochastic differential equations (2021),
arXiv:2011.13456.

C. Durkan, A. Bekasov, I. Murray and G. Papamakarios, Cubic-spline flows (2019),
arXiv:1906.02145.

J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: Machine learning-
based inference for particle physics, Comput. Softw. Big Sci. 4, 3 (2020),
doi:10.1007/s41781-020-0035-2, arXiv:1907.10621.

J. Hermans, V. Begy and G. Louppe, Likelihood-free meme with amortized approz-
imate ratio estimators (2020), arXiv:1903.04057.

G. Papamakarios, D. C. Sterratt and I. Murray, Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows (2019), arXiv:1805.07226.

M. Glockler, M. Deistler and J. H. Macke, Variational methods for simulation-based
inference (2022), arXiv:2203.04176.

G. Papamakarios and 1. Murray, Fast e-free inference of simulation models with
bayesian conditional density estimation (2018), arXiv:1605.06376.

J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Ocal, M. Nonnenmacher and
J. H. Macke, Flexible statistical inference for mechanistic models of neural dynamics
(2017), arXiv:1711.01861.

S. T. Radev, U. K. Mertens, A. Voss, L. Ardizzone and U. Kéthe, Bayesflow:
Learning complex stochastic models with invertible neural networks (2020),
arXiv:2003.06281.

M. Dax, J. Wildberger, S. Buchholz, S. R. Green, J. H. Macke and B. Schélkopf,
Flow matching for scalable simulation-based inference (2023), arXiv:2305.17161.

M. D. Klimek and M. Perelstein, Neural Network-Based Approach to Phase Space
Integration (2018), arXiv:1810.11509.

I1.-K. Chen, M. D. Klimek and M. Perelstein, Improved neural network Monte
Carlo simulation, SciPost Phys. 10, 023 (2021), doi:10.21468/SciPostPhys.10.1.023,
arXiv:2009.07819.

E. Bothmann, T. Janflen, M. Knobbe, T. Schmale and S. Schumann, FEzplor-
ing phase space with Neural Importance Sampling, SciPost Phys. 8, 069 (2020),
doi:10.21468 /SciPostPhys.8.4.069, arXiv:2001.05478.

C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional Integration and
Sampling with Normalizing Flows, Mach. Learn. Sci. Tech. 1, 045023 (2020),
doi:10.1088/2632-2153 /abab62, arXiv:2001.05486.

C. Gao, S. Hoche, J. Isaacson, C. Krause and H. Schulz, Fvent Gen-
eration with Normalizing Flows, Phys. Rev. D 101, 076002 (2020),
doi:10.1103 /PhysRevD.101.076002, arXiv:2001.10028.

157

http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/2011.13456
http://arxiv.org/abs/1906.02145
https://doi.org/10.1007/s41781-020-0035-2
http://arxiv.org/abs/1907.10621
http://arxiv.org/abs/1903.04057
http://arxiv.org/abs/1805.07226
http://arxiv.org/abs/2203.04176
http://arxiv.org/abs/1605.06376
http://arxiv.org/abs/1711.01861
http://arxiv.org/abs/2003.06281
http://arxiv.org/abs/2305.17161
http://arxiv.org/abs/1810.11509
https://doi.org/10.21468/SciPostPhys.10.1.023
http://arxiv.org/abs/2009.07819
https://doi.org/10.21468/SciPostPhys.8.4.069
http://arxiv.org/abs/2001.05478
https://doi.org/10.1088/2632-2153/abab62
http://arxiv.org/abs/2001.05486
https://doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/2001.10028

Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]
[150]

[151]

[152]

K. Danziger, T. Janflen, S. Schumann and F. Siegert, Accelerating Monte Carlo
event generation — rejection sampling using neural network event-weight estimates,
SciPost Phys. 12, 164 (2022), doi:10.21468/SciPostPhys.12.5.164, arXiv:2109.11964.

F. Bishara and M. Montull, Machine learning amplitudes for faster event gener-
ation, Phys. Rev. D 107, L071901 (2023), doi:10.1103/PhysRevD.107.1.071901,
arXiv:1912.11055.

S. Badger and J. Bullock, Using neural networks for efficient evaluation of high mul-
tiplicity scattering amplitudes, JHEP 06, 114 (2020), doi:10.1007/JHEP06(2020)114,
arXiv:2002.07516.

A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Subtraction, SciPost
Phys. Core 3, 009 (2020), doi:10.21468/SciPostPhysCore.3.2.009, arXiv:1912.08824.

B. Stienen and R. Verheyen, Phase space sampling and inference from
weighted events with autoregressive flows, SciPost Phys. 10, 038 (2021),
d0i:10.21468 /SciPostPhys.10.2.038, arXiv:2011.13445.

M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Un-
weighting, SciPost Phys. 10, 089 (2021), doi:10.21468/SciPostPhys.10.4.089,
arXiv:2012.07873.

F. A. Di Bello, S. Ganguly, E. Gross, M. Kado, M. Pitt, L. Santi and J. Shlomi,
Towards a Computer Vision Particle Flow, FEur. Phys. J. C 81, 107 (2021),
d0i:10.1140/epjc/s10052-021-08897-0, arXiv:2003.08863.

P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F. Keilbach, T. Plehn,
G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost Phys.
13, 064 (2022), doi:10.21468/SciPostPhys.13.3.064, arXiv:2012.11944.

E. Bothmann and L. Debbio, Reweighting a parton shower using a neural net-
work: the final-state case, JHEP 01, 033 (2019), doi:10.1007/JHEP01(2019)033,
arXiv:1808.07802.

L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example:
Location-Aware Generative Adversarial Networks for Physics Synthesis, Comput.
Softw. Big Sci. 1, 4 (2017), doi:10.1007/s41781-017-0004-6, arXiv:1701.05927.

A. Andreassen, 1. Feige, C. Frye and M. D. Schwartz, JUNIPR: a Framework for
Unsupervised Machine Learning in Particle Physics, Eur. Phys. J. C79, 102 (2019),
doi:10.1140/epjc/s10052-019-6607-9, arXiv:1804.09720.

K. Dohi, Variational Autoencoders for Jet Simulation (2020), arXiv:2009.04842.

E. Buhmann, G. Kasieczka and J. Thaler, EPiC-GAN: Equivariant
point cloud generation for particle jets, SciPost Phys. 15, 130 (2023),
doi:10.21468 /SciPostPhys.15.4.130, arXiv:2301.08128.

M. Leigh, D. Sengupta, G. Quétant, J. A. Raine, K. Zoch and T. Golling, PC-JeD:i:
Diffusion for particle cloud generation in high energy physics, SciPost Phys. 16,
018 (2024), do0i:10.21468/SciPostPhys.16.1.018, arXiv:2303.05376.

A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying
event samples, SciPost Phys. 10, 139 (2021), doi:10.21468/SciPostPhys.10.6.139,
arXiv:2008.06545.

158

https://doi.org/10.21468/SciPostPhys.12.5.164
http://arxiv.org/abs/2109.11964
https://doi.org/10.1103/PhysRevD.107.L071901
http://arxiv.org/abs/1912.11055
https://doi.org/10.1007/JHEP06(2020)114
http://arxiv.org/abs/2002.07516
https://doi.org/10.21468/SciPostPhysCore.3.2.009
http://arxiv.org/abs/1912.08824
https://doi.org/10.21468/SciPostPhys.10.2.038
http://arxiv.org/abs/2011.13445
https://doi.org/10.21468/SciPostPhys.10.4.089
http://arxiv.org/abs/2012.07873
https://doi.org/10.1140/epjc/s10052-021-08897-0
http://arxiv.org/abs/2003.08863
https://doi.org/10.21468/SciPostPhys.13.3.064
http://arxiv.org/abs/2012.11944
https://doi.org/10.1007/JHEP01(2019)033
http://arxiv.org/abs/1808.07802
https://doi.org/10.1007/s41781-017-0004-6
http://arxiv.org/abs/1701.05927
https://doi.org/10.1140/epjc/s10052-019-6607-9
http://arxiv.org/abs/1804.09720
http://arxiv.org/abs/2009.04842
https://doi.org/10.21468/SciPostPhys.15.4.130
http://arxiv.org/abs/2301.08128
https://doi.org/10.21468/SciPostPhys.16.1.018
http://arxiv.org/abs/2303.05376
https://doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2008.06545

Bibliography

[153]

[154]

[155]

[156]
[157]
[158]

[159]

160

[161]

[162]

163

[164]

[165]

[166]

[167]

168

S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen,
G. Kasieczka, B. Nachman, T. Plehn and M. Trabs, Calomplification — the power
of generative calorimeter models, JINST 17, P09028 (2022), doi:10.1088/1748-
0221/17/09/P09028, arXiv:2202.07352.

S. Bieringer, A. Butter, T. Heimel, S. Hoche, U. Kéthe, T. Plehn and S. T. Radev,
Measuring QCD Splittings with Invertible Networks, SciPost Phys. 10, 126 (2021),
d0i:10.21468 /SciPostPhys.10.6.126, arXiv:2012.09873.

D. MacKay, Probable Networks and Plausible Predictions — A Review of Practical
Bayesian Methods for Supervised Neural Networks, Comp. in Neural Systems 6,
4679 (1995), http://www.inference.org.uk/mackay/network.pdf.

R. M. Neal, Bayesian learning for neural networks, Ph.D. thesis, Toronto (1995).
Y. Gal, Uncertainty in Deep Learning, Ph.D. thesis, Cambridge (2016).

A. Kendall and Y. Gal, What Uncertainties Do We Need in Bayesian Deep Learning
for Computer Vision?, Proc. NIPS (2017), arXiv:1703.04977.

S. Bollweg, M. Haufimann, G. Kasieczka, M. Luchmann, T. Plehn and J. Thompson,
Deep-Learning Jets with Uncertainties and More, SciPost Phys. 8, 006 (2020),
doi:10.21468 /SciPostPhys.8.1.006, arXiv:1904.10004.

G. Kasieczka, M. Luchmann, F. Otterpohl and T. Plehn, Per-Object
Systematics using Deep-Learned Calibration, SciPost Phys. 9, 089 (2020),
doi:10.21468 /SciPostPhys.9.6.089, arXiv:2003.11099.

M. Bellagente, M. Haussmann, M. Luchmann and T. Plehn, Understanding
Event-Generation Networks via Uncertainties, SciPost Phys. 13, 003 (2022),
d0i:10.21468 /SciPostPhys.13.1.003, arXiv:2104.04543.

S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B. Nachman and D. Shih,
DCTRGAN: Improving the Precision of Generative Models with Reweighting, JINST
15, P11004 (2020), doi:10.1088/1748-0221/15/11/P11004, arXiv:2009.03796.

R. Winterhalder, M. Bellagente and B. Nachman, Latent Space Refinement for
Deep Generative Models (2021), arXiv:2106.00792.

M. S. Albergo and E. Vanden-Eijnden, Building normalizing flows with stochastic
interpolants (2023), arXiv:2209.15571.

X. Liu, C. Gong and Q. Liu, Flow straight and fast: Learning to generate and
transfer data with rectified flow (2022), arXiv:2209.03003.

S. Badger, A. Butter, M. Luchmann, S. Pitz and T. Plehn, Loop
amplitudes from precision mnetworks, SciPost Phys. Core 6, 034 (2023),
doi:10.21468 /SciPostPhysCore.6.2.034, arXiv:2206.14831.

D. Maitre and H. Truong, A factorisation-aware Matrixz element emulator, JHEP
11, 066 (2021), doi:10.1007/JHEP11(2021)066, arXiv:2107.06625.

G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural
Networks for Jet Physics, JHEP 01, 057 (2019), doi:10.1007/JHEP01(2019)057,
arXiv:1702.00748.

159

https://doi.org/10.1088/1748-0221/17/09/P09028
https://doi.org/10.1088/1748-0221/17/09/P09028
http://arxiv.org/abs/2202.07352
https://doi.org/10.21468/SciPostPhys.10.6.126
http://arxiv.org/abs/2012.09873
http://www.inference.org.uk/mackay/network.pdf
http://arxiv.org/abs/1703.04977
https://doi.org/10.21468/SciPostPhys.8.1.006
http://arxiv.org/abs/1904.10004
https://doi.org/10.21468/SciPostPhys.9.6.089
http://arxiv.org/abs/2003.11099
https://doi.org/10.21468/SciPostPhys.13.1.003
http://arxiv.org/abs/2104.04543
https://doi.org/10.1088/1748-0221/15/11/P11004
http://arxiv.org/abs/2009.03796
http://arxiv.org/abs/2106.00792
http://arxiv.org/abs/2209.15571
http://arxiv.org/abs/2209.03003
https://doi.org/10.21468/SciPostPhysCore.6.2.034
http://arxiv.org/abs/2206.14831
https://doi.org/10.1007/JHEP11(2021)066
http://arxiv.org/abs/2107.06625
https://doi.org/10.1007/JHEP01(2019)057
http://arxiv.org/abs/1702.00748

Bibliography

[169]

[170]

[171]

[172]

[173]

[174]

175

[176]

[177]

178

[179]

[180]

[181]

[182]

[183]

J. Liu, A. Ghosh, D. Smith, P. Baldi and D. Whiteson, Geometry-aware Autore-
gressive Models for Calorimeter Shower Simulations, In 36th Conference on Neural
Information Processing Systems: Workshop on Machine Learning and the Physical
Sciences (2022), arXiv:2212.08233.

T. Finke, M. Kramer, A. Miick and J. Ténshoff, Learning the language of QCD
jets with transformers, JHEP 06, 184 (2023), doi:10.1007/JHEP06(2023)184,
arXiv:2303.07364.

D. P. Kingma, T. Salimans, B. Poole and J. Ho, Variational diffusion models
(2023), https://arxiv.org/abs/2107.00630, arXiv:2107.00630.

D. M. Blei, A. Kucukelbir and J. D. McAuliffe, Variational inference: A review for
statisticians, Journal of the American statistical Association 112, 859 (2017).

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf et al., Pytorch: An imperative
style, high-performance deep learning library (2019), https://arxiv.org/abs/
1912.01703, arXiv:1912.01703.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., Language
models are unsupervised multitask learners, OpenAl blog 1, 9 (2019).

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao and J. Han, On the variance of the
adaptive learning rate and beyond (2021), https://arxiv.org/abs/1908.03265,
arXiv:1908.03265.

S. Catani, F. Krauss, R. Kuhn and B. R. Webber, QCD matrixz elements + parton
showers, JHEP 11, 063 (2001), doi:10.1088/1126-6708/2001/11/063, arXiv:hep-
ph/0109231.

M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72,
1896 (2012), doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

R. Das, L. Favaro, T. Heimel, C. Krause, T. Plehn and D. Shih, How to
understand limitations of generative networks, SciPost Phys. 16, 031 (2024),
doi:10.21468 /SciPostPhys.16.1.031, arXiv:2305.16774.

K. Cranmer and T. Plehn, Mazximum significance at the LHC and Higgs decays
to muons, Eur. Phys. J. C 51, 415 (2007), doi:10.1140/epjc/s10052-007-0309-4,
arXiv:hep-ph/0605268.

B. Abbott et al., Measurement of the Top Quark Mass in the Dilepton Channel,
Phys. Rev. D 60, 052001 (1999), doi:10.1103/PhysRevD.60.052001, arXiv:hep-
ex/9808029.

V. M. Abazov et al., A precision measurement of the mass of the top quark, Nature
429, 638 (2004), doi:10.1038/nature02589, arXiv:hep-ex,/0406031.

A. Abulencia et al., Top quark mass measurement from dilepton events at
CDF II with the matriz-element method, Phys. Rev. D 74, 032009 (2006),
doi:10.1103 /PhysRevD.74.032009, arXiv:hep-ex/0605118.

F. Fiedler, A. Grohsjean, P. Haefner and P. Schieferdecker, The Matriz Element
Method and its Application in Measurements of the Top Quark Mass, Nucl. Instrum.
Meth. A 624, 203 (2010), doi:10.1016/j.nima.2010.09.024, arXiv:1003.1316.

160

http://arxiv.org/abs/2212.08233
https://doi.org/10.1007/JHEP06(2023)184
http://arxiv.org/abs/2303.07364
https://arxiv.org/abs/2107.00630
http://arxiv.org/abs/2107.00630
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1908.03265
https://doi.org/10.1088/1126-6708/2001/11/063
http://arxiv.org/abs/hep-ph/0109231
http://arxiv.org/abs/hep-ph/0109231
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
https://doi.org/10.21468/SciPostPhys.16.1.031
http://arxiv.org/abs/2305.16774
https://doi.org/10.1140/epjc/s10052-007-0309-4
http://arxiv.org/abs/hep-ph/0605268
https://doi.org/10.1103/PhysRevD.60.052001
http://arxiv.org/abs/hep-ex/9808029
http://arxiv.org/abs/hep-ex/9808029
https://doi.org/10.1038/nature02589
http://arxiv.org/abs/hep-ex/0406031
https://doi.org/10.1103/PhysRevD.74.032009
http://arxiv.org/abs/hep-ex/0605118
https://doi.org/10.1016/j.nima.2010.09.024
http://arxiv.org/abs/1003.1316

Bibliography

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

195

[196]

A. Giammanco and R. Schwienhorst, Single top-quark production at
the Tevatron and the LHC, Rev. Mod. Phys. 90, 035001 (2018),
doi:10.1103 /RevModPhys.90.035001, arXiv:1710.10699.

P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matriz
element reweighting method, JHEP 12, 068 (2010), doi:10.1007/JHEP12(2010)068,
arXiv:1007.3300.

J. Alwall, A. Freitas and O. Mattelaer, The Matrix Element Method and QCD
Radiation, Phys. Rev. D 83, 074010 (2011), doi:10.1103/PhysRevD.83.074010,
arXiv:1010.2263.

J. R. Andersen, C. Englert and M. Spannowsky, FExtracting precise Higgs cou-
plings by using the matriz element method, Phys. Rev. D 87, 015019 (2013),
doi:10.1103 /PhysRevD.87.015019, arXiv:1211.3011.

P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling
tth wvia the Matrixz Element Method, Phys. Rev. Lett. 111, 091802 (2013),
doi:10.1103/PhysRevLett.111.091802, arXiv:1304.6414.

C. Englert, O. Mattelaer and M. Spannowsky, Measuring the Higgs-
bottom coupling in weak boson fusion, Phys. Lett. B 756, 103 (2016),
doi:10.1016 /j.physletb.2016.02.074, arXiv:1512.03429.

D. E. Ferreira de Lima, O. Mattelaer and M. Spannowsky, Searching for processes
with invisible particles using a matriz element-based method, Phys. Lett. B 787,
100 (2018), doi:10.1016/j.physletb.2018.10.044, arXiv:1712.03266.

S. Brochet, C. Delaere, B. Frangois, V. Lemaitre, A. Mertens, A. Saggio, M. Vi-
dal Marono and S. Wertz, MoMEMta, a modular toolkit for the Matriz Element
Method at the LHC, Eur. Phys. J. C 79, 126 (2019), doi:10.1140/epjc/s10052-019-
6635-5, arXiv:1805.08555.

V. Khachatryan et al., Search for a Standard Model Higgs Boson Produced in
Association with a Top-Quark Pair and Decaying to Bottom Quarks Using a Matrix
Element Method, Eur. Phys. J. C 75, 251 (2015), doi:10.1140/epjc/s10052-015-
3454-1, arXiv:1502.02485.

G. Aad et al., Evidence for single top-quark production in the s-channel in proton-
proton collisions at /s =8 TeV with the ATLAS detector using the Matriz Ele-
ment Method, Phys. Lett. B 756, 228 (2016), doi:10.1016/j.physletb.2016.03.017,
arXiv:1511.05980.

V. Khachatryan et al., Measurement of Spin Correlations in tt Production using
the Matriz Element Method in the Muon+Jets Final State in pp Collisions at
Vs = 8 TeV, Phys. Lett. B 758, 321 (2016), doi:10.1016/j.physletb.2016.05.005,
arXiv:1511.06170.

A. V. Gritsan, R. Réntsch, M. Schulze and M. Xiao, Constraining anomalous Higgs
boson couplings to the heavy flavor fermions using matriz element techniques, Phys.
Rev. D 94, 055023 (2016), doi:10.1103/PhysRevD.94.055023, arXiv:1606.03107.

R. Winterhalder, V. Magerya, E. Villa, S. P. Jones, M. Kerner, A. Butter, G. Hein-
rich and T. Plehn, Targeting multi-loop integrals with neural networks, SciPost
Phys. 12, 129 (2022), doi:10.21468/SciPostPhys.12.4.129, arXiv:2112.09145.

161

https://doi.org/10.1103/RevModPhys.90.035001
http://arxiv.org/abs/1710.10699
https://doi.org/10.1007/JHEP12(2010)068
http://arxiv.org/abs/1007.3300
https://doi.org/10.1103/PhysRevD.83.074010
http://arxiv.org/abs/1010.2263
https://doi.org/10.1103/PhysRevD.87.015019
http://arxiv.org/abs/1211.3011
https://doi.org/10.1103/PhysRevLett.111.091802
http://arxiv.org/abs/1304.6414
https://doi.org/10.1016/j.physletb.2016.02.074
http://arxiv.org/abs/1512.03429
https://doi.org/10.1016/j.physletb.2018.10.044
http://arxiv.org/abs/1712.03266
https://doi.org/10.1140/epjc/s10052-019-6635-5
https://doi.org/10.1140/epjc/s10052-019-6635-5
http://arxiv.org/abs/1805.08555
https://doi.org/10.1140/epjc/s10052-015-3454-1
https://doi.org/10.1140/epjc/s10052-015-3454-1
http://arxiv.org/abs/1502.02485
https://doi.org/10.1016/j.physletb.2016.03.017
http://arxiv.org/abs/1511.05980
https://doi.org/10.1016/j.physletb.2016.05.005
http://arxiv.org/abs/1511.06170
https://doi.org/10.1103/PhysRevD.94.055023
http://arxiv.org/abs/1606.03107
https://doi.org/10.21468/SciPostPhys.12.4.129
http://arxiv.org/abs/2112.09145

Bibliography

[197]

[198]

[199]

200]

[201]

[202]

[203]

[204]

205

[206]

207]

208]

209

[210]

[211]

A. Andreassen, 1. Feige, C. Frye and M. D. Schwartz, JUNIPR: a Framework for
Unsupervised Machine Learning in Particle Physics, Eur. Phys. J. C 79, 102 (2019),
d0i:10.1140/epjc/s10052-019-6607-9, arXiv:1804.09720.

E. Bothmann and L. Debbio, Reweighting a parton shower using a neural net-
work: the final-state case, JHEP 01, 033 (2019), doi:10.1007/JHEP01(2019)033,
arXiv:1808.07802.

E. Buhmann, C. Ewen, D. A. Faroughy, T. Golling, G. Kasieczka, M. Leigh,
G. Quétant, J. A. Raine, D. Sengupta and D. Shih, EPiC-ly Fast Particle Cloud
Generation with Flow-Matching and Diffusion (2023), arXiv:2310.00049.

L. de Oliveira, M. Paganini and B. Nachman, Controlling Physical Attributes in
GAN-Accelerated Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser.
1085, 042017 (2018), doi:10.1088/1742-6596,/1085/4/042017, arXiv:1711.08813.

ATLAS Collaboration, AtlFast3: the next generation of fast simulation in AT-
LAS, Comput. Softw. Big Sci. 6, 7 (2022), doi:10.1007/s41781-021-00079-7,
arXiv:2109.02551.

C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate Generation of
Calorimeter Showers with Normalizing Flows (2021), arXiv:2110.11377.

E. Buhmann, S. Diefenbacher, D. Hundhausen, G. Kasieczka, W. Korcari, E. Eren,
F. Gaede, K. Kriiger, P. McKeown and L. Rustige, Hadrons, better, faster,
stronger, Mach. Learn. Sci. Tech. 3, 025014 (2022), doi:10.1088/2632-2153/ac7848,
arXiv:2112.09709.

ATLAS Collaboration, Deep generative models for fast photon shower simulation
in ATLAS (2022), arXiv:2210.06204.

C. Krause, I. Pang and D. Shih, CaloFlow for CaloChallenge Dataset 1 (2022),
arXiv:2210.14245.

E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, W. Ko-
rcari, K. Kriiger and P. McKeown, CaloClouds: Fast Geometry-Independent
Highly-Granular Calorimeter Simulation (2023), arXiv:2305.04847.

M. R. Buckley, C. Krause, I. Pang and D. Shih, Inductive CaloFlow (2023),
arXiv:2305.11934.

S. Diefenbacher, V. Mikuni and B. Nachman, Refining Fast Calorimeter Simulations
with a Schrédinger Bridge (2023), arXiv:2308.12339.

B. Nachman and R. Winterhalder, Elsa: enhanced latent spaces for improved collider
simulations, Eur. Phys. J. C 83, 843 (2023), doi:10.1140/epjc/s10052-023-11989-8,
arXiv:2305.07696.

M. Leigh, J. A. Raine, K. Zoch and T. Golling, v-flows: Conditional neutrino
regression, SciPost Phys. 14, 159 (2023), doi:10.21468/SciPostPhys.14.6.159,
arXiv:2207.00664.

A. Shmakov, K. Greif, M. Fenton, A. Ghosh, P. Baldi and D. Whiteson, FEnd-
To-End Latent Variational Diffusion Models for Inverse Problems in High Energy
Physics (2023), arXiv:2305.10399.

162

https://doi.org/10.1140/epjc/s10052-019-6607-9
http://arxiv.org/abs/1804.09720
https://doi.org/10.1007/JHEP01(2019)033
http://arxiv.org/abs/1808.07802
http://arxiv.org/abs/2310.00049
https://doi.org/10.1088/1742-6596/1085/4/042017
http://arxiv.org/abs/1711.08813
https://doi.org/10.1007/s41781-021-00079-7
http://arxiv.org/abs/2109.02551
http://arxiv.org/abs/2110.11377
https://doi.org/10.1088/2632-2153/ac7848
http://arxiv.org/abs/2112.09709
http://arxiv.org/abs/2210.06204
http://arxiv.org/abs/2210.14245
http://arxiv.org/abs/2305.04847
http://arxiv.org/abs/2305.11934
http://arxiv.org/abs/2308.12339
https://doi.org/10.1140/epjc/s10052-023-11989-8
http://arxiv.org/abs/2305.07696
https://doi.org/10.21468/SciPostPhys.14.6.159
http://arxiv.org/abs/2207.00664
http://arxiv.org/abs/2305.10399

Bibliography

[212]

[213]

214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

J. Ackerschott, R. K. Barman, D. Gongalves, T. Heimel and T. Plehn, Re-
turning CP-observables to the frames they belong, SciPost Phys. 17, 001 (2024),
doi:10.21468/SciPostPhys.17.1.001, arXiv:2308.00027.

B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev.
D 101, 075042 (2020), doi:10.1103/PhysRevD.101.075042, arXiv:2001.04990.

A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quad-
fasel, M. Schlaffer, D. Shih and M. Sommerhalder, Classifying anoma-
lies through outer density estimation, Phys. Rev. D 106, 055006 (2022),
d0i:10.1103/PhysRevD.106.055006, arXiv:2109.00546.

J. A. Raine, S. Klein, D. Sengupta and T. Golling, CURTAINs for your sliding
window: Constructing unobserved regions by transforming adjacent intervals, Front.
Big Data 6, 899345 (2023), doi:10.3389/fdata.2023.899345, arXiv:2203.09470.

A. Hallin, G. Kasieczka, T. Quadfasel, D. Shih and M. Sommerhalder, Resonant
anomaly detection without background sculpting, Phys. Rev. D 107, 114012 (2023),
doi:10.1103 /PhysRevD.107.114012, arXiv:2210.14924.

T. Golling, S. Klein, R. Mastandrea and B. Nachman, Flow-enhanced
transportation for anomaly detection, Phys. Rev. D 107, 096025 (2023),
doi:10.1103 /PhysRevD.107.096025, arXiv:2212.11285.

D. Sengupta, S. Klein, J. A. Raine and T. Golling, CURTAINs flows for flows:
Constructing unobserved regions with maximum likelihood estimation, SciPost Phys.
17, 046 (2024), doi:10.21468/SciPostPhys.17.2.046, arXiv:2305.04646.

V. Mikuni and F. Canelli, ABCNet: An attention-based method for particle
tagging, Eur. Phys. J. Plus 135, 463 (2020), doi:10.1140/epjp/s13360-020-00497-3,
arXiv:2001.05311.

M. R. Buckley and D. Goncalves, Boosting the Direct CP Measure-
ment of the Higgs-Top Coupling, Phys. Rev. Lett. 116, 091801 (2016),
doi:10.1103 /PhysRevLett.116.091801, arXiv:1507.07926.

J. Ren, L. Wu and J. M. Yang, Unwveiling CP property of top-Higgs coupling
with graph neural networks at the LHC, Phys. Lett. B 802, 135198 (2020),
doi:10.1016/j.physletb.2020.135198, arXiv:1901.05627.

B. Bortolato, J. F. Kamenik, N. Kosnik and A. Smolkovi¢, Optimized probes of
CP -odd effects in the tth process at hadron colliders, Nucl. Phys. B 964, 115328
(2021), doi:10.1016/j.nuclphysb.2021.115328, arXiv:2006.13110.

H. Bahl, P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters, M. Saimpert,
T. Stefaniak and G. Weiglein, Indirect CP probes of the Higgs-top-quark inter-
action: current LHC constraints and future opportunities, JHEP 11, 127 (2020),
doi:10.1007/JHEP11(2020)127, arXiv:2007.08542.

T. Martini, R.-Q. Pan, M. Schulze and M. Xiao, Probing the CP structure of the
top quark Yukawa coupling: Loop sensitivity versus on-shell sensitivity, Phys. Rev.
D 104, 055045 (2021), doi:10.1103/PhysRevD.104.055045, arXiv:2104.04277.

D. Gongalves, J. H. Kim, K. Kong and Y. Wu, Direct Higgs-top CP-phase mea-
surement with tth at the 14 TeV LHC and 100 TeV FCC, JHEP 01, 158 (2022),
doi:10.1007/JHEP01(2022)158, arXiv:2108.01083.

163

https://doi.org/10.21468/SciPostPhys.17.1.001
http://arxiv.org/abs/2308.00027
https://doi.org/10.1103/PhysRevD.101.075042
http://arxiv.org/abs/2001.04990
https://doi.org/10.1103/PhysRevD.106.055006
http://arxiv.org/abs/2109.00546
https://doi.org/10.3389/fdata.2023.899345
http://arxiv.org/abs/2203.09470
https://doi.org/10.1103/PhysRevD.107.114012
http://arxiv.org/abs/2210.14924
https://doi.org/10.1103/PhysRevD.107.096025
http://arxiv.org/abs/2212.11285
https://doi.org/10.21468/SciPostPhys.17.2.046
http://arxiv.org/abs/2305.04646
https://doi.org/10.1140/epjp/s13360-020-00497-3
http://arxiv.org/abs/2001.05311
https://doi.org/10.1103/PhysRevLett.116.091801
http://arxiv.org/abs/1507.07926
https://doi.org/10.1016/j.physletb.2020.135198
http://arxiv.org/abs/1901.05627
https://doi.org/10.1016/j.nuclphysb.2021.115328
http://arxiv.org/abs/2006.13110
https://doi.org/10.1007/JHEP11(2020)127
http://arxiv.org/abs/2007.08542
https://doi.org/10.1103/PhysRevD.104.055045
http://arxiv.org/abs/2104.04277
https://doi.org/10.1007/JHEP01(2022)158
http://arxiv.org/abs/2108.01083

Bibliography

[226]

[227]

[228]

[229]

[230]

[231]

[232]

233

[234]

[235]

[236]

237]

238

239]

[240]

[241]

[242]

R. K. Barman, D. Gongalves and F. Kling, Machine learning the
Higgs boson-top quark CP phase, Phys. Rev. D 105, 035023 (2022),
d0i:10.1103/PhysRevD.105.035023, arXiv:2110.07635.

H. Bahl and S. Brass, Constraining CP-violation in the Higgs-top-quark
interaction wusing machine-learning-based inference, JHEP 03, 017 (2022),
doi:10.1007/JHEP03(2022)017, arXiv:2110.10177.

M. Kraus, T. Martini, S. Peitzsch and P. Uwer, Exploring BSM Higgs couplings in
single top-quark production (2019), arXiv:1908.09100.

P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11, 043 (2013),
doi:10.1007/JHEP11(2013)043, arXiv:1306.6464.

F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in as-
sociation with a single top quark at the LHC, Eur. Phys. J. C 75, 267 (2015),
doi:10.1140/epjc/s10052-015-3475-9, arXiv:1504.00611.

G. Cowan, Statistical data analysis, ISBN 978-0-19-850156-5 (1998).

J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A Guide to Constraining
FEffective Field Theories with Machine Learning, Phys. Rev. D 98, 052004 (2018),
d0i:10.1103/PhysRevD.98.052004, arXiv:1805.00020.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. Duvenaud, Neural ordinary
differential equations (2019), arXiv:1806.07366.

B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and L. Vo-
gel, Symmetries, safety, and self-supervision, SciPost Phys. 12, 188 (2022),
doi:10.21468 /SciPostPhys.12.6.188, arXiv:2108.04253.

T. Salimans and J. Ho, Progressive distillation for fast sampling of diffusion models
(2022), arXiv:2202.00512.

Y. Song, P. Dhariwal, M. Chen and I. Sutskever, Consistency models (2023),
arXiv:2303.01469.

E. Buhmann, F. Gaede, G. Kasieczka, A. Korol, W. Korcari, K. Kriiger and P. McK-
eown, CaloClouds II: ultra-fast geometry-independent highly-granular calorimeter
simulation, JINST 19, P04020 (2024), doi:10.1088/1748-0221/19/04/P04020,
arXiv:2309.05704.

I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vryonidou, S. Westhoff
and C. Zhang, O new physics, where art thou? A global search in the top sector,
JHEP 02, 131 (2020), doi:10.1007/JHEP02(2020)131, arXiv:1910.03606.

N. Elmer, M. Madigan, T. Plehn and N. Schmal, Staying on Top of SMEFT-
Likelihood Analyses (2023), arXiv:2312.12502.

L. B. Lucy, An iterative technique for the rectification of observed distributions,
Astron. J. 79, 745 (1974), doi:10.1086,/111605.

W. H. Richardson, Bayestan-based iterative method of image restoration, J. Opt. Soc.
Am. 62, 55 (1972), doi:10.1364/JOSA.62.000055, http://www.osapublishing.
org/abstract.cfm?URI=josa-62-1-55.

L. B. Lucy, An iterative technique for the rectification of observed distributions,
Astron. J. 79, 745 (1974), doi:10.1086/111605.

164

https://doi.org/10.1103/PhysRevD.105.035023
http://arxiv.org/abs/2110.07635
https://doi.org/10.1007/JHEP03(2022)017
http://arxiv.org/abs/2110.10177
http://arxiv.org/abs/1908.09100
https://doi.org/10.1007/JHEP11(2013)043
http://arxiv.org/abs/1306.6464
https://doi.org/10.1140/epjc/s10052-015-3475-9
http://arxiv.org/abs/1504.00611
https://doi.org/10.1103/PhysRevD.98.052004
http://arxiv.org/abs/1805.00020
http://arxiv.org/abs/1806.07366
https://doi.org/10.21468/SciPostPhys.12.6.188
http://arxiv.org/abs/2108.04253
http://arxiv.org/abs/2202.00512
http://arxiv.org/abs/2303.01469
https://doi.org/10.1088/1748-0221/19/04/P04020
http://arxiv.org/abs/2309.05704
https://doi.org/10.1007/JHEP02(2020)131
http://arxiv.org/abs/1910.03606
http://arxiv.org/abs/2312.12502
https://doi.org/10.1086/111605
https://doi.org/10.1364/JOSA.62.000055
http://www.osapublishing.org/abstract.cfm?URI=josa-62-1-55
http://www.osapublishing.org/abstract.cfm?URI=josa-62-1-55
https://doi.org/10.1086/111605

Bibliography

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. In-
strum. Meth. A 372, 469 (1996), doi:10.1016/0168-9002(95)01478-0, arXiv:hep-
ph/9509307.

V. Andreev et al., Measurement of Lepton-Jet Correlation in Deep-Inelastic
Scattering with the H1 Detector Using Machine Learning for Unfolding, Phys. Rev.
Lett. 128, 132002 (2022), doi:10.1103/PhysRevLett.128.132002, arXiv:2108.12376.

H1 Collaboration, Machine learning-assisted measurement of multi-differential
lepton-jet correlations in deep-inelastic scattering with the H1 detector, Hlprelim-
22-031 (2022), https://www-hl.desy.de/hl/www/publications/htmlsplit/
Hiprelim-22-031.long.html.

V. Andreev et al., Unbinned deep learning jet substructure measurement
in high Q2ep collisions at HERA, Phys. Lett. B 844, 138101 (2023),
d0i:10.1016/j.physletb.2023.138101, arXiv:2303.13620.

H1 Collaboration, Machine learning-assisted measurement of azimuthal angu-
lar asymmetries in deep-inelastic scattering with the HI1 detector, Hlprelim-
23-031 (2023), https://www-hl.desy.de/hl/www/publications/htmlsplit/
Hiprelim-23-031.1long.html.

R. Aaij et al., Multidifferential study of identified charged hadron distributions
in Z-tagged jets in proton-proton collisions at /s =13 TeV, Phys. Rev. D 108,
L031103 (2023), do0i:10.1103/PhysRevD.108.1.031103, arXiv:2208.11691.

P. T. Komiske, S. Kryhin and J. Thaler, Disentangling quarks and gluons in CMS
open data, Phys. Rev. D 106, 094021 (2022), doi:10.1103/PhysRevD.106.094021,
arXiv:2205.04459.

Y. Song, Measurement of CollinearDrop jet mass and its correlation with SoftDrop
groomed jet substructure observables in /s = 200 GeV pp collisions by STAR
(2023), arXiv:2307.07718.

M. Vandegar, M. Kagan, A. Wehenkel and G. Louppe, Neural Empirical Bayes:
Source Distribution Estimation and its Applications to Simulation-Based Inference
(2020), arXiv:2011.05836.

J. Neyman and E. S. Pearson, On the problem of the most efficient tests of statistical
hypotheses, Phil. Trans. R. Soc. Lond. A 231, 289 (1933).

D. Molchanov, A. Ashukha and D. Vetrov, Variational dropout sparsifies deep
neural networks (2017), arXiv:1701.05369.

V. Fortuin, Priors in bayesian deep learning: A review (2022), arXiv:2105.06868.

E. Schrédinger, “iber die Umkehrung der Naturgesetze,, Sitzungsberichte
der Preuss Akad. Wissen. Phys. Math. Klasse Sonderausgabe 9, 144 (1931),
doi:https://doi.org/10.1002/ange.19310443014.

G.-H. Liu, A. Vahdat, D.-A. Huang, E. A. Theodorou, W. Nie and A. Anandkumar,
Psb: Image-to-image schrodinger bridge (2023), arXiv:2302.05872.

B. Nachman and V. Mikuni, Large version of the omnifold dataset, Zenodo,
doi:10.5281 /zenodo.10668638 (2024).

165

https://doi.org/10.1016/0168-9002(95)01478-0
http://arxiv.org/abs/hep-ph/9509307
http://arxiv.org/abs/hep-ph/9509307
https://doi.org/10.1103/PhysRevLett.128.132002
http://arxiv.org/abs/2108.12376
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-031.long.html
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-031.long.html
https://doi.org/10.1016/j.physletb.2023.138101
http://arxiv.org/abs/2303.13620
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-23-031.long.html
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-23-031.long.html
https://doi.org/10.1103/PhysRevD.108.L031103
http://arxiv.org/abs/2208.11691
https://doi.org/10.1103/PhysRevD.106.094021
http://arxiv.org/abs/2205.04459
http://arxiv.org/abs/2307.07718
http://arxiv.org/abs/2011.05836
http://arxiv.org/abs/1701.05369
http://arxiv.org/abs/2105.06868
https://doi.org/https://doi.org/10.1002/ange.19310443014
http://arxiv.org/abs/2302.05872
https://doi.org/10.5281/zenodo.10668638

Bibliography

[258]

[259]

260]

[261]

[262]

[263]

[264]

[265]

[266]

267]

[268]

[269]

[270]

[271]

[272]

M. Backes, A. Butter, M. Dunford and B. Malaescu, Fvent-by-event comparison
between machine-learning- and transfer-matriz-based unfolding methods, Eur. Phys.
J. C 84, 770 (2024), doi:10.1140/epjc/s10052-024-13136-3, arXiv:2310.17037.

A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05, 146
(2014), doi:10.1007/JHEP05(2014)146, arXiv:1402.2657.

M. Dasgupta, A. Fregoso, S. Marzani and G. P. Salam, Towards an understand-
ing of jet substructure, JHEP 09, 029 (2013), doi:10.1007/JHEP09(2013)029,
arXiv:1307.0007.

J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness,
JHEP 03, 015 (2011), doi:10.1007/JHEP03(2011)015, arXiv:1011.2268.

G. Bewick et al., Herwig 7.3 release note, FEur. Phys. J. C 84, 1053 (2024),
doi:10.1140/epjc/s10052-024-13211-9, arXiv:2312.05175.

K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition,
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778 (2016).

L. Ardizzone, T. Bungert, F. Draxler, U. Kéthe, J. Kruse, R. Schmier and P. Sor-
renson, Framework for Easily Invertible Architectures (FrEIA) (2018-2022).

C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li and J. Zhu, DPM-solver++: Fast solver
for guided sampling of diffusion probabilistic models (2023), https://openreview.
net/forum?id=4vGwQqviud5.

O. Amram et al., CaloChallenge 2022: A Community Challenge for Fast Calorime-
ter Sitmulation (2024), arXiv:2410.21611.

G. Aad et al., Differential tt cross-section measurements using boosted top quarks
in the all-hadronic final state with 139 fb~' of ATLAS data, JHEP 04, 080 (2023),
doi:10.1007/JHEP04(2023)080, arXiv:2205.02817.

G. Aad et al., Measurements of top-quark pair single- and double-differential
cross-sections in the all-hadronic channel in pp collisions at \/s = 13 TeV us-
ing the ATLAS detector, JHEP 01, 033 (2021), doi:10.1007/JHEP01(2021)033,
arXiv:2006.09274.

G. Aad et al., Measurements of top-quark pair differential and double-differential
cross-sections in the {+jets channel with pp collisions at \/s = 13 TeV using the
ATLAS detector, Eur. Phys. J. C 79, 1028 (2019), doi:10.1140/epjc/s10052-019-
7525-6, [Erratum: Eur.Phys.J.C 80, 1092 (2020)], arXiv:1908.07305.

A. Tumasyan et al., Differential cross section measurements for the production of
top quark pairs and of additional jets using dilepton events from pp collisions at \/s
= 13 TeV, JHEP 02, 064 (2025), doi:10.1007/JHEP02(2025)064, arXiv:2402.08486.

A. Tumasyan et al., Measurement of differential tt production cross sections in the
full kinematic range using lepton+jets events from proton-proton collisions at \/s
= 13 TeV, Phys. Rev. D 104, 092013 (2021), doi:10.1103/PhysRevD.104.092013,
arXiv:2108.02803.

A. M. Sirunyan et al., Measurement of differential tt production cross sections using
top quarks at large transverse momenta in pp collisions at \/s = 13 TeV, Phys.
Rev. D 103, 052008 (2021), doi:10.1103/PhysRevD.103.052008, arXiv:2008.07860.

166

https://doi.org/10.1140/epjc/s10052-024-13136-3
http://arxiv.org/abs/2310.17037
https://doi.org/10.1007/JHEP05(2014)146
http://arxiv.org/abs/1402.2657
https://doi.org/10.1007/JHEP09(2013)029
http://arxiv.org/abs/1307.0007
https://doi.org/10.1007/JHEP03(2011)015
http://arxiv.org/abs/1011.2268
https://doi.org/10.1140/epjc/s10052-024-13211-9
http://arxiv.org/abs/2312.05175
https://openreview.net/forum?id=4vGwQqviud5
https://openreview.net/forum?id=4vGwQqviud5
http://arxiv.org/abs/2410.21611
https://doi.org/10.1007/JHEP04(2023)080
http://arxiv.org/abs/2205.02817
https://doi.org/10.1007/JHEP01(2021)033
http://arxiv.org/abs/2006.09274
https://doi.org/10.1140/epjc/s10052-019-7525-6
https://doi.org/10.1140/epjc/s10052-019-7525-6
http://arxiv.org/abs/1908.07305
https://doi.org/10.1007/JHEP02(2025)064
http://arxiv.org/abs/2402.08486
https://doi.org/10.1103/PhysRevD.104.092013
http://arxiv.org/abs/2108.02803
https://doi.org/10.1103/PhysRevD.103.052008
http://arxiv.org/abs/2008.07860

Bibliography

[273]

[274]

[275]

[276]

277]

[278]

279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

A. M. Sirunyan et al., Measurement of the top quark polarization and tt spin corre-
lations using dilepton final states in proton-proton collisions at /s = 13 TeV, Phys.
Rev. D 100, 072002 (2019), doi:10.1103/PhysRevD.100.072002, arXiv:1907.03729.

A. M. Sirunyan et al., Measurement of tt normalised multi-differential cross sections
in pp collisions at /s = 13 TeV, and simultaneous determination of the strong
coupling strength, top quark pole mass, and parton distribution functions, Eur. Phys.
J. C 80, 658 (2020), doi:10.1140/epjc/s10052-020-7917-7, arXiv:1904.05237.

M. V. Garzelli, J. Mazzitelli, S. O. Moch and O. Zenaiev, Top-quark pole mass extrac-
tion at NNLO accuracy, from total, single- and double-differential cross sections for
tt + X production at the LHC, JHEP 05, 321 (2024), doi:10.1007/JHEP05(2024)321,
arXiv:2311.055009.

M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to leptonic
observables in top-quark pair production and decay, JHEP 05, 212 (2021),
doi:10.1007/JHEP05(2021)212, arXiv:2008.11133.

P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul, M. Davaadorj,
D. Nair, S. Paul, W. Berman, Y. Xu, S. Liu et al., Diffusers: State-of-the-art
diffusion models, https://github.com/huggingface/diffusers (2022).

F. Ernst, L. Favaro, C. Krause, T. Plehn and D. Shih, Normalizing Flows
for High-Dimensional Detector Simulations, SciPost Phys. 18, 081 (2025),
doi:10.21468 /SciPostPhys.18.3.081, arXiv:2312.09290.

T. Adye, Unfolding algorithms and tests using RooUnfold, In PHYSTAT 2011, pp.
313-318. CERN, Geneva, doi:10.5170/CERN-2011-006.313 (2011), arXiv:1105.1160.

C.-C. Pan, X. Dong, Y.-C. Sun, A.-Y. Cheng, A.-B. Wang, Y.-X. Hu and H. Cai,
SwdFold:A Reweighting and Unfolding method based on Optimal Transport Theory
(2024), arXiv:2406.01635.

K. Desai, B. Nachman and J. Thaler, Moment extraction wusing an
unfolding protocol without binning, Phys. Rev. D 110, 116013 (2024),
d0i:10.1103/PhysRevD.110.116013, arXiv:2407.11284.

C. Pazos, S. Aeron, P.-H. Beauchemin, V. Croft, Z. Huan, M. Klassen and T. Wongji-
rad, Towards Universal Unfolding of Detector Effects in High-FEnergy Physics using
Denoising Diffusion Probabilistic Models (2024), arXiv:2406.01507.

V. D. Bortoli, G.-H. Liu, T. Chen, E. A. Theodorou and W. Nie, Augmented bridge
matching (2023), arXiv:2311.06978.

B. D. Anderson, Reverse-time diffusion equation models, Stochastic Processes and
their Applications 12, 313 (1982).

J. Birk, E. Buhmann, C. Ewen, G. Kasieczka and D. Shih, Flow matching beyond
kinematics: Generating jets with particle identification and trajectory displacement
information, Phys. Rev. D 111, 052008 (2025), do0i:10.1103/PhysRevD.111.052008,
arXiv:2312.00123.

L. Favaro, A. Ore, S. P. Schweitzer and T. Plehn, CaloDREAM - Detector
Response Emulation via Attentive flow Matching, SciPost Phys. 18, 088 (2025),
doi:10.21468 /SciPostPhys.18.3.088, arXiv:2405.09629.

167

https://doi.org/10.1103/PhysRevD.100.072002
http://arxiv.org/abs/1907.03729
https://doi.org/10.1140/epjc/s10052-020-7917-7
http://arxiv.org/abs/1904.05237
https://doi.org/10.1007/JHEP05(2024)321
http://arxiv.org/abs/2311.05509
https://doi.org/10.1007/JHEP05(2021)212
http://arxiv.org/abs/2008.11133
https://github.com/huggingface/diffusers
https://doi.org/10.21468/SciPostPhys.18.3.081
http://arxiv.org/abs/2312.09290
https://doi.org/10.5170/CERN-2011-006.313
http://arxiv.org/abs/1105.1160
http://arxiv.org/abs/2406.01635
https://doi.org/10.1103/PhysRevD.110.116013
http://arxiv.org/abs/2407.11284
http://arxiv.org/abs/2406.01507
http://arxiv.org/abs/2311.06978
https://doi.org/10.1103/PhysRevD.111.052008
http://arxiv.org/abs/2312.00123
https://doi.org/10.21468/SciPostPhys.18.3.088
http://arxiv.org/abs/2405.09629

Bibliography

[287] J. Spinner, V. Bresd, P. de Haan, T. Plehn, J. Thaler and J. Brehmer, Lorentz-
Equivariant Geometric Algebra Transformers for High-Energy Physics (2024),
arXiv:2405.14806.

[288] J. Brehmer, V. Bres6, P. de Haan, T. Plehn, H. Qu, J. Spinner and J. Thaler, A
Lorentz- Equivariant Transformer for All of the LHC (2024), arXiv:2411.00446.

[289] J. Doob, Conditional brownian motion and the boundary limits of harmonic
functions, Bulletin de la Société Mathématique de France 85, 431 (1957).

[290] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA
8.8, SciPost Phys. Codeb. 2022, 8 (2022), doi:10.21468/SciPostPhysCodeb.8,
arXiv:2203.11601.

[291] HEP ML Community, A Living Review of Machine Learning for Particle Physics.

168

http://arxiv.org/abs/2405.14806
http://arxiv.org/abs/2411.00446
https://doi.org/10.21468/SciPostPhysCodeb.8
http://arxiv.org/abs/2203.11601

	Preface
	Introduction
	LHC physics
	Collider physics
	Cross sections
	Parton distribution functions

	The LHC simulation chain
	Hard-scattering event generation
	Parton showering
	Hadronization
	Detector effects

	Inference in LHC physics
	Reconstruction
	Observables
	Unfolding

	Machine Learning
	Introduction
	Learning tasks
	Classification
	Regression
	Generation and density estimation

	Simulation-based inference

	Precision event generation with diffusion models and transformers
	Novel generative networks
	Denoising Diffusion Probabilistic Model
	Conditional Flow Matching
	Autoregressive Transformer

	Toy models and Bayesian networks
	LHC events
	Quantitative evaluation of generators
	Outlook

	Precision-Machine Learning for the Matrix Element Method
	ML-matrix element method
	Two-network baseline
	Acceptance classifier
	Transfer diffusion
	Combinatorics transformer
	Outlook
	Appendix

	The Landscape of Unfolding with Machine Learning
	ML-Unfolding
	Reweighting: OmniFold and bOmnifold
	Mapping distributions: Schrödinger Bridge and Direct Diffusion
	Generative unfolding

	Detector unfolding: Z+jets
	Data and preprocessing
	Reweighting
	Mapping distributions
	Generative unfolding
	Learned event migration
	Classifier check

	Unfolding to parton level: top pairs
	Data
	Generative unfolding
	Generative unfolding using physics

	Outlook

	Generative Unfolding with Distribution Mapping
	Distribution Mapping
	Distribution to noise
	Distribution to distribution
	Conditional distribution mapping
	Unfolding

	Gaussian Example
	Unfolding Jet Substructure Observables
	Unfolded distributions
	Learned Mapping
	Classifier test

	Unfolding Substructure and Kinematic Properties
	New Z+2 jets dataset
	Unfolded distributions

	Conclusion

	Summary and Outlook
	Hyperparameters
	Networks from Chapter 4
	Networks from Chapter 5
	Networks from Chapter 6
	Networks from Chapter 7

	Acknowledgment
	Bibliography

