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Chapter 1

Introduction

1.1 Gallbladder cancer

1.1.1 Epidemiology

Gallbladder cancer (GBC; International Classification of Diseases, 10th Revision, diagnosis

code C23) is an aggressive malignancy that accounts for approximately 89,000 deaths world-

wide each year (Bray et al., 2024). This figure is projected to increase to 74% by 2045. In

2022, GLOBOCAN estimated that GBC ranks as the 22nd most frequent cancer globally.

Despite a slight decline in incidence and mortality rates in recent years, the survival rate for

this malignancy remains alarmingly low. This is largely attributable to late-stage diagnosis

and limited treatment options, highlighting the critical need for improved prevention, early

detection methods and also novel therapeutic strategies.

1.1.1.1 Incidence

According to the GLOBOCAN data projection, about 215,000 new cases of GBC are expected

worldwide in 2045, a 57% increase over the registered cases in 2022 (Bray et al., 2024). Low-

and middle-income countries are the most affected by GBC, with 83% of cases occurring in

Asia and Latin America. In contrast, only 11% of cases are diagnosed in Europe and North

America, where GBC is relatively uncommon. In particular, the highest age-standardized

rates (ASR) of GBC per 100,000 person-years are observed in countries from Latin America
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Figure 1.1: Worldwide incidence of gallbladder cancer based on Bray et al. (2024). The top

five countries with the highest incidence of gallbladder cancer are located in Latin America

(Bolivia and Chile), East Asia (Bangladesh and Nepal), and North Africa (Algeria). Age-

standardized incidence rate: countries in dark blue, very high incidences (ASR > 1.1/100,000

person-years). ASR: age-standardized rate.

(Bolivia, ASR: 76/100,000 person-years; Chile, ASR: 57/100,000 person-years), East Asia

(Bangladesh, ASR: 53/100,000 person-years; Nepal, ASR: 44/100,000 person-years), and

North Africa (Algeria, ASR: 27/100,000 person-years). In Europe, the highest incidences

occur in the Eastern countries, such as Croatia (ASR: 13/100,000 person-years), Albania

(ASR: 12/100,000 person-years), and Bosnia Herzegovina (ASR: 12/100,000 person-years).

As a result, GBC is rare in most parts of the world but poses a significant public health

challenge in specific regions (Figure 1.1). As well as an unbalanced geographical distribution,

GBC shows a marked sex difference, affecting women (ASR: 14/100,000 person-years) more

often than men (ASR: 8.8/100,000 person-years) worldwide (Bray et al., 2024).
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1.1.1.2 Prevention

Although cholecystectomy is strongly recommended following gallstone diagnosis especially

in high-incidence regions, most patients are diagnosed too late, when surgery is not possi-

ble anymore (Kanthan et al., 2015). This late diagnosis often limits treatment options and

adversely affects patients prognosis. Prevention, therefore, plays a crucial role. Cholecystec-

tomy is recommended for individuals with symptomatic gallstones or GBC family history.

An illustrative example of a GBC public health prevention policy is the initiative launched

by the Chilean government in 2006, which integrated prophylactic cholecystectomy into the

public health program for patients with gallstones aged 35 to 49 years as a strategy for GBC

prevention (Koshiol et al., 2021). In 2010, the program was expanded to include asymp-

tomatic women over 40 years of age who presented specific risk factors, including multiparity,

and body-mass index (BMI) greater than 25, an educational level of 8 years or less, and at

least one surname originating from the Mapuche indigenous surname. In 2016, the program

was further extended to encompass high-risk individuals, both women and men over 35 years

old, based on the previously identified risk factors. Unfortunately, cholecystectomy remains

an expensive and risky procedure, especially in older patients with comorbidities (Adamsen

et al., 1997). GBC biomarkers, which can be used for population screening particularly in

high incidence areas, could rectify some of the problems associated with cholecystectomies

and promptly identify those individuals affected by early neoplastic lesions on the gallbladder.

Non-coding RNA (ncRNA) research on GBC might help on this attempt.

1.1.1.3 Survival and mortality

In the early stages, when curative treatment is still possible, GBC is often asymptomatic

or shows unspecific symptoms (Wistuba and Gazdar, 2004). Most GBC diagnoses occur at

advanced stages, when the tumor has spread beyond the gallbladder, making curative surgery

no longer possible (Kanthan et al., 2015). This, together with the very limited chemotherapy

options, increases GBC mortality rates, particularly in countries where GBC incidence is

high. Similarly to incidence, GBC death rates exhibit a clear both geographical and sex

distribution. The five countries with the highest age-standardized mortality rates are Bo-

livia (mortality ASR: 6.3/100,000 person-years), Bangladesh (mortality ASR: 4.2/100,000

person-years), Chile (mortality ASR: 3.6/100,000 person-years), Nepal (mortality ASR:
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3.3/100,000 person-years), and Republic of Korea (mortality ASR: 2.1/100,000 person-years)

(Bray et al., 2024). Globally, GBC mortality rates are higher for women (global mortality

ASR: 0.85/100,000 person-years), compared to men (global mortality ASR: 0.47/100,000

person-years). Most gallbladder tumors are diagnosed incidentally after routine cholecystec-

tomy (Choi et al., 2015; Mantripragada et al., 2017). Due to the anatomical location of the

gallbladder, the cancer rapidly spreads to nearby organs, including pancreas, liver, colon, and

duodenum. According to the American Joint Committee on Cancer (AJCC), 8th edition,

an overall 5-years survival rate from GBC of about 5-15% could be reached, if gallbladder

resection is performed on time after cancer diagnosis (Madani et al., 2022). GBC survival

rate strongly depends on the stage of the disease. Specifically, stage I GBC has a 5-year

survival rate of approximately 50%, while stage IV GBC exhibits a markedly lower survival

rate of only 3% (Roa et al., 2022).

1.1.1.4 Treatment

Particularly in patients with unresectable gallbladder, the implementation of molecular tar-

geted therapies has provided greater hope and broader opportunities for the treatment of

GBC (Zhou et al., 2023). The primary treatment options for GBC patients gemcitabine

and platinum-based chemotherapies (Roa et al., 2022; Stein et al., 2015). In recent years, the

advent of a new generation of sequencing technologies, has continuosly updated therapeu-

tic strategies for GBC. Clinical application of targeted drugs include the epidermal growth

factor receptor (EGFR), fibroblast growth factor (FGFR), and human epidermal growth

factor receptor 2 (HER2) which have both been effectively employed as therapeutic targets

in some clinical trials (Zhou et al., 2023). Thus, there is significant hope that differenti-

ated therapy may enhance patients’ survival, particularly in relation to specific molecular

alterations that provide opportunities for new targeted therapeutics.

1.1.2 Risk factors

GBC is a multifactorial disease in which genetic variability, lifestyle, and environmental

exposures contribute to an increased susceptibility to this malignancy. Some of the most

common risk factors associated with GBC include female sex, advanced age, gallstone disease,
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high BMI, high Native American ancestry proportion, family history of GBC, and smoking

(Kanthan et al., 2015).

1.1.2.1 Age, sex, and body mass index

Overall, the risk of GBC increases with age, with the median age reported in indexed liter-

ature being 67 years (Duffy et al., 2008). In Chile, GBC incidence rates increase from 1.3

per 100,000 for individuals aged 30 to 44 years, to 13 for those aged 45 to 59 years, 45.1 per

100,000 for ages 60 to 74 years, and 62.5 per 100,000 for those over 70 years (Bray et al.,

2024). The mortality rates increase accordingly (Villanueva, 2016). Female sex is also con-

sidered a risk factor for GBC, with women accounting for three out of four diagnosed cases

(Randi et al., 2009; Lai and Lau, 2008). One of the primary reasons for this difference may

be women’s greater exposure to estrogen (Randi et al., 2006). There is substantial evidence

linking excess body weight to an increased risk of GBC (Campbell et al., 2017; Jackson et al.,

2019; Li et al., 2016). When accounting for sex, the association appears to be significantly

stronger for women: overweight women have a relative risk (RR) of 1.26 compared to obese

women who present a RR of 1.67. In men, only obese subjects show a significantly higher

GBC risk (RR: 1.42) (Tan et al., 2015). A study by Barahona Ponce et al. (2021) found

a causal effect of BMI on GBC risk in Chileans through mendelian randomization (MR)

analysis.

1.1.2.2 Gallstones

According to several case-control and cohort studies, gallstone disease is one of the most

commonly reported risk factors for GBC across different populations (Lazcano-Ponce et al.,

2001; Ryu et al., 2016; Villanueva, 2016). It is estimated that about 70-90% of GBC patients

carry gallstones. Size, volume, and weight of the gallstones also seem to be correlated with

the risk of developing GBC. A study conducted by Randi et al. (2006) found that individuals

with a history of gallstone disease have a RR of 4.90 to develop GBC compared to those

without gallstones evidence. The MR study from Barahona Ponce et al. (2021) also assessed

that gallstone disease causally affects GBC risk in both Chileans and Europeans. This

suggests that genetic and environmental factors play distinct roles in the pathogenesis of

GBC. Similar to risk factors associated with GBC, gallstone biogenesis is influenced by
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both unmodifiable (such as female sex and increased age), and modifiable (such as high

BMI) conditions (Di Ciaula et al., 2018).

1.1.2.3 Family history

According to Stinton and Shaffer (2012), the familial genetic background accounts for 25%

of the total gallstone disease risk. As in most diseases, GBC familial risk may also be

transmitted by intermediate conditions that act as cancer risk factors (Hemminki et al.,

2022). For example, cholelithiasis, diabetes and obesity are strongly linked to family history

and consequently increase the risk of GBC. Additionally, gene variations in ABCB1 and

ABCB4 gene regions play a role in hepatobiliary phospholipid transporters, and have been

recognized as possible risk factors for GBC (Mhatre et al., 2017). Low frequencies of the

mismatch repair gene MLH1 have also been linked to biliary tract cancers, especially GBC.

1.1.2.4 Native American ancestry

As previously noted, GBC exhibits significant geographic variation, with particularly high

prevalence in South American countries (Wistuba and Gazdar, 2004). Native Americans,

including Chilean Mapuche, Pima Indians, and New Zealand Maori show higher rates of

GBC incidence and gallstone prevalence (Hundal and Shaffer, 2014). Moreover, the higher

prevalence of gallstones among Indigenous people, compared to the general population, sug-

gests that variants associated with gallstone susceptibility may confer at least an indirect

genetic predisposition to GBC in Native American populations (Carey and Paigen, 2002).

Mapuche, the main indigenous people in Chile, show the highest ever reported GBC inci-

dence and mortality, and are therefore the most studied subgroup in the context of GBC.

1.1.2.5 Cigarette smoking

A large Japanese prospective cohort study on biliary tract cancer found that current smokers

exhibit a 1.35-fold increased cancer mortality risk compared to individuals who have never

smoked (Lin et al., 2022). When differentiating GBC from other biliary tract cancers, the

mortality risk associated with current smoking is even more marked, with a RR of 1.89. In

men, the mortality risk associated with GBC shows a positive correlation with the number

of cigarettes smoked daily. Another prospective cohort study on Korean adults revealed that
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current (RR: 1.12) and former (RR: 1.11) smokers are associated with an increased risk of

GBC compared to non-smokers (Park et al., 2023). Stratified analyses based on the number

of cigarette packages smoked per year showed that individuals who smoke between twenty

and thirty packages annually have a 1.24 times higher risk of developing GBC compared to

those who have never smoked. The highest risk was found among individuals who smoked

more than twenty packages of cigarettes per year and also had diabetes, with a RR of 1.66

compared to non-smokers without diabetes.

1.1.3 Histopathology and pathogenesis

Microscopically, most gallbladder tumors (about 80-90%) are adenocarcinomas with cuboidal

or columnar epithelial gland formation (Menon and Babiker, 2024). The remaining cases are

mostly papillary, squamous cell, adenosquamous, undifferentiated, or small-cell carcinomas

(Lai and Lau, 2008). GBC typically develops through a sequence of molecular and histological

changes, starting with gallstone disease, then progressing to dysplasia, and ultimately leading

to invasive cancer (Wistuba and Gazdar, 2004). Most of gallbladder carcinomas are associated

with chronic inflammation by gallstone disease (chronic cholecystitis), while only a small

proportion of GBC cases (less than 1%) result from changes in the bile due to the reflux of

pancreatic juice into the common bile duct (Espinoza et al., 2016). This can be caused, as seen

particularly in Asian countries, by an anomalous pancreaticobiliary ductal junction, or by

polyps, which, if present for extended periods, lead to local inflammation (Bizama et al., 2015;

Dutta, 2012; Kamisawa et al., 2017). The mutational profile of gallbladder adenocarcinoma

predominantly features epigenetic mutations in COX2, K-Ras, TP53, CDKN2a, and c-

erb-b2 (Nakamura et al., 2015). Furthermore, gene promoter hypermethylation has been

progressively identified as a pathogenic contributor. The heterogeneity of genetic drivers

further underscores the complex pathogenesis of GBC (Giraldo et al., 2022; Brägelmann

et al., 2021).

1.2 Non-coding RNAs

The development and homeostasis of cells and tissues rely on gene expression and regulation,

which are essential processes for all living organisms (Carthew, 2021). Francis Crick first

conceptualized the relationship between genes and proteins (Crick, 1970). He stated, through
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his central dogma of molecular biology, that genetic information flows only in one direction:

deoxyribonucleic acid (DNA) is transcribed into messenger ribonucleic acid (mRNA) and is

translated into protein, or from RNA directly to protein. Consequently, for decades proteins

were regarded as the primary functional products of genetic information, despite protein-

coding genes represent less than 2% of the genome (Park et al., 2022). More recently, advances

in sequencing technologies have led to the identification of other significant RNAs with

no protein-coding prospect (Satam et al., 2023; Tripathi et al., 2017). At first, the role

of this class of RNAs was not fully understood. However, an increasing number of non-

coding RNAs (ncRNAs), which constitute nearly 60% of the transcriptional output in human

cells, have demonstrated to have regulatory functions in multiple cellular biological pathways

(Anastasiadou et al., 2018). By definition, ncRNAs are defined as an heterogeneous group of

transcripts that are not translated into proteins (ENCODE Project Consortium, 2012). Since

their discovery, the biological relevance of ncRNAs has increased more and more. Today, it

is widely acknowledged that ncRNAs are not only simple intermediaries of protein synthesis

towards RNA, but they play a crucial role as functional molecules in the regulation of gene

expression and genome organization. Recent results from the GENCODE project show that

the human genome is transcribed into more than 254,000 transcripts, of which only about

89,500 are protein coding (Frankish et al., 2019).

1.2.1 Classification

In recent decades, researchers have identified and extensively characterized many types of

ncRNAs, according to their length, conformation and cellular function (Kaikkonen et al.,

2011; Zhang et al., 2019). ncRNAs are mainly classified as either housekeeping or regula-

tory, depending on their role (Figure 1.2). Housekeeping ncRNAs are constitutively ex-

pressed in all cell types and serve as essential regulatory molecules in a variety of ribosomal

and cellular activities. They include ribosomal (rRNA), transfer (tRNA), small nuclear

(snRNA), and small nucleolar RNAs (snoRNAs). Regulatory ncRNAs are referred to as

such because they are specifically engaged in regulatory processes. Based on their length,

they consist of two main groups: small (sncRNAs, less than 200 nucleotides in length)

and long non-coding RNAs (lncRNAs, more than 200 nucleotides in length). sncRNAs

mainly comprise microRNAs (miRNAs), small interfering RNAs (siRNAs), and piwi-
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interacting RNAs (piRNAs). The lncRNAs group includes antisense RNAs (AS RNAs)

and enhancer RNAs (eRNAs). eRNAs, together with promoter-associated transcripts

(PATs), and circRNAs, vary in length and can therefore be classified as both sncRNAs

and lncRNAs. Most ncRNAs regulate the expression of nearby genes and are classified as

cis-ncRNAs (López-Jiménez and Andrés-León, 2021; Elcheva and Spiegelman, 2020). Trans-

acting ncRNAs, on the other hand, function at regions far from their transcription site,

including the cytoplasm and other compartments of the cell.

This thesis particularly focuses on two types of ncRNAs: lncRNAs and miRNAs.

Figure 1.2: Classification of non-coding RNAs. Housekeeping ncRNAs include: rRNAs, tR-

NAs, snRNAs, snoRNAs. Regulatory ncRNAs include: miRNAs, siRNAs, piRNAs, lncRNAs,

lincRNAs, and eRNAs. nt: nucleotides; rRNAs: ribosomal RNAs; tRNAs: transfer RNAs;

snRNAs: small nuclear RNAs; snoRNAs: small nucleolar RNAs; miRNAs: microRNAs;

siRNAs: short interfering RNAs; piRNAs: piwi-interacting RNAs; lncRNAs: long non-

coding RNAs; lincRNAs: long intervening RNAs; eRNAs: enhancer RNAs.
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1.2.1.1 Long non-coding RNAs: biogenesis and action mechanisms

lncRNAs are arbitrarily defined as non-coding transcripts that exceed 200 nucleotides in

length, and constitute the majority of the non-protein-coding transcripts (Mattick et al.,

2023; Mathy and Chen, 2017; Statello et al., 2021). Many lncRNAs share similar features

with mRNAs, as on a molecular level they are also capped, spliced and polyadenylated, re-

sulting in their characterization as "mRNA-like". In contrast to mRNAs, lncRNAs generally

have fewer exons and typically exhibit lower expression levels. Furthermore, the open reading

frame of lncRNAs is typically shorter than 300 nucleotides, which is considered indicative

of their non-coding properties (Salido-Guadarrama et al., 2023). As a result, lncRNAs have

not, or limited, translation properties. lncRNAs are classified into five groups, depending

on their position with respect to protein-coding genes: sense, antisense (AS), bidirectional,

intronic, and intergenic (Kaikkonen et al., 2011). The majority of lncRNAs are transcribed

as complex networks of overlapping sense and AS lncRNAs. These latest are defined ac-

cording to the nearest protein-coding gene position, and have no ability to be translated into

proteins. The lncRNA biogenesis takes place in the nucleus and shows similarities to the

synthesis of mRNAs: they are transcribed by RNA polymerase II and harbor a 5'methyl-

cytosine cap and 3'-poly (A) tail (Liu et al., 2021). Nearly all lncRNAs exhibit canonical

splice sites leading to at least two transcript isoforms, mainly composed by two exons. After

their biogenesis and processing, several lncRNAs migrate to the cytoplasm, where they or-

ganize in thermodynamically stable structures. The most recent comprehensive integration

of lncRNAs from existing databases includes 95,243 lncRNA genes and 323,950 transcripts

in humans (Li et al., 2023).

1.2.1.2 MicroRNAs: biogenesis and action mechanisms

miRNAs, one of the most studied types of sncRNAs, are defined as small RNA molecules

containing 18 to 28 nucleotides in length (Ratti et al., 2020). miRNAs are involved in RNA

silencing, and influence protein production post-transcriptionally by binding mRNAs in a

sequence-dependent manner. Canonically, miRNAs are encoded by introns of coding or non-

coding transcripts, with very few being encoded by exonic regions (Lin et al., 2006). In human

cells, miRNAs primarily act by destabilizing the mRNA. Due to their natural structure,

miRNAs target up to thousands of transcripts, making them good regulators of several
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cell signaling pathways (Ha, 2011). Similarly to lncRNAs, miRNA genes are transcribed by

RNA polymerase II, which initially yields a primary miRNA (pri-miRNA) (Lee et al., 2004).

The pri-miRNAs are recognized and cleaved at the end of the hairpin structure by the double

stranded RNA binding protein (DGCR8), which forms a nuclear miRNA processor complex

with the RNase III enzyme Drosha (pre-miRNAs). Pre-miRNAs are then exported from

the nucleus and transported into the cytoplasm, where the RNA is further elaborated by

the RISC loading complex (RLC). The RLC retains the endoribonuclease DICER1 which

discards the loop of the pre-miRNA hairpin. The resulting mature miRNA is loaded onto

the RNA induced silencing complex and the miRNA is released and degraded (Winter

et al., 2009). According to the biological database for microRNA sequences and annotations

miRBase, currently 2844 miRNAs are annotated in humans (Kozomara et al., 2019).

1.2.2 Non-coding RNAs in cancer

ncRNAs regulate key pathways involved in tumorigenesis, including apoptosis, cell cycle,

migration, metastasis, angiogenesis and drug resistance (Zhang et al., 2022; Yang et al., 2023).

Depending on their promoter or suppressor role, ncRNAs can act as either tumor suppressors

or oncogenes. RNA dysregulation in cancer occurs through a variety of mechanisms, such as

mutations in the RNA processing machinery, or alterations in DNA methylation affecting the

transcription of the pri-RNA transcript. It has also been determined that RNA signatures

can distinguish between normal and cancerous tissues, as well as differentiate between cancer

subtypes (Bhattacharyya et al., 2015; Beg et al., 2022). In the last few years, several studies

have investigated the role of ncRNAs in drug resistance as well as biomarkers for early

diagnosis (Romano et al., 2017; Uppaluri et al., 2023).

1.2.2.1 Long non-coding RNAs in cancer

The majority of studies have investigated lncRNA expression in tissue samples, and their

association with patient’s prognosis. According to several studies on ncRNAs, a lncRNA

with a major role most types of cancer is HOTTIP , derived from the HOXA gene (Ghafouri-

Fard et al., 2020). Upregulation of HOTTIP increases cancer progression in patients with

renal cell carcinoma, hepatocellular carcinoma, acute myeloid leukemia, and gastric cancer.

Current research shows that also LUCAT1 plays an oncogenic role, promoting cancer pro-
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gression in gastrointestinal tract cancers and colorectal cancer (Xing et al., 2021; Wu et al.,

2020). In osteosarcoma, LUCAT1 is a promising target for cancer treatment, as its down-

regulation is associated to a reduced cell proliferation, migration, and invasion, representing

a strategy to minimize drug resistance (Han and Shi, 2018). The tumor suppressive role of

Pvt1b, a p53-dependent isoform of the lncRNA, has emerged in lung cancer and osteosar-

coma (Olivero et al., 2020; Wang et al., 2023). In pharmacology, the deactivation of Pvt1b

has also shown to promote drug resistance. Other lncRNAs associated with a better cancer

prognosis are DIRC3, observed in melanoma and thyroid cancer patients, and MALAT1, a

nuclear lncRNA, involved in breast, gastric, and gallbladder cancer (Coe et al., 2019; Xiao

et al., 2023; Wysocki et al., 2023; Tsyganov and Ibragimova, 2023; Li et al., 2018).

1.2.2.2 MicroRNAs in cancer

In a recent German cohort study, Raut et al. (2024) derived and validated a serum-based

miRNA risk score (miR-score) for colorectal cancer and other cancer types, such as breast,

lung, and prostate cancer. This study particularly emphasized the potential of serum miRNA

biomarkers for cancer-specific risk prediction, showing that the miR-score showed significant

inverse associations with breast and lung cancer risk and a positive trend with prostate

cancer. Other studies to date, as in the case of lncRNAs, have mainly focused on tissue-

derived miRNAs. miR-125b, derived from the MIR100HG lncRNA, is one of the most

studied miRNAs (Lu et al., 2017). Through targeting the MALAT1 lncRNA, miR-125b

acts as either oncogene, or tumor suppressor, depending on the cancer type. miR-125b

is well-known for being an oncogene in haematological malignancies, but serves a tumour

suppressor in solid tumors, such as esophageal squamous cell carcinoma, bladder cancer, and

hepatocellular carcinoma (Sun et al., 2013; Yang et al., 2021). The let-7 and miR-34 families

are also rich in cancer-specific miRNAs, which mostly act as tumor suppressors, as they

target many oncogenic genes including E2F1, ARID3B, K-Ras and c-Myc (Stahlhut and

Slack, 2015). Studies on colon, lung, prostate, and pancreatic cancers highlighted that let-7a,

let-7b, and let-7c are underexpressed in patients with cancer, compared to healthy controls

(Ali et al., 2010; Ghanbari et al., 2015; Heegaard et al., 2012). In breast cancer, high miR-

34a expression is associated with inhibition of the expansion of mammary gland stem cells

through the suppression of Wnt/beta-catenin signaling (Bonetti et al., 2019). miR-34b/c



1.3. Non-coding RNAs for gallbladder cancer risk prediction 13

also enhance cell attachment and suppress cell growth in lung cancer and hepatocellular

carcinoma.

1.3 Non-coding RNAs for gallbladder cancer risk prediction

1.3.1 State of the art

Due to its heterogeneous nature, GBC’s molecular abnormalities underlying its pathogenesis

are still not fully understood. Nonetheless, recent studies have succeeded in the attempt of

identifying ncRNAs whose expression either promotes or inhibits GBC progression.

1.3.1.1 Long non-coding RNAs and gallbladder cancer

As in most human cancers, p53 overexpression is frequently observed in GBC (Yang et al.,

2023). A study on Indian patients highlighted that overexpression of p53 is common in 56.25%

of GBC cases compared to subjects with chronic cholecystitis or controls (Ghosh et al., 2013).

In an old study on Spanish patients, 70.7% of gallbladder carcinomas exhibited overexpression

of p53, with the expression increasing by tumor stage (Hidalgo Grau et al., 2004). The tumor

suppressor MEG3 is another lncRNA contributing to the regulatory mechanisms of GBC.

MEG3 provides a better GBC prognosis by modifying the activity of the p53 promoter,

and through regulation of proliferation and apoptosis of GBC cells via induction of NF -kB

signaling (Li et al., 2022). In GBC cell lines, MEG3 overexpression has shown to reduce the

colony-forming ability of GBC cells and increase apoptosis rates by interacting with p53 (Xu

et al., 2022). The oncogene MALAT1, responsible for tumor cell proliferation and metastasis,

is overexpressed in GBC tissue samples by activating the ERK/MAPK signaling pathway.

A higher expression of CCAT1 in GBC tissue is correlated with advanced tumor stages (T3

+ T4) than early stages (T1 + T2) (Ma et al., 2015). CCAT1, known for its association

with lymph node invasion in various cancers, has also been linked to metastasis in GBC,

indicating that CCAT1 is a potential marker of poor GBC prognosis.

1.3.1.2 MicroRNAs and gallbladder cancer

Compared to lncRNAs, relatively few miRNA-GBC biomarkers have been identified over

the past years. In 2013, a Japanese study determined that upregulation of miR-155 in GBC
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patients is associated with a poor prognosis, significantly increasing the risk of lymph node

metastasis and vessel invasion (Kono et al., 2013). A Chinese study on GBC cell lines found

similar properties for miR-144, which promotes migration and invasion of GBC cells by

inhibiting the RECK gene (Zheng et al., 2020). Goeppert et al. (2019) suggested that miR-

145-5p plays a functional role in biliary tract cancer by activating STAT1. Ishigami et al.

(2018) demonstrated that IL-6/STAT -3 signaling pathway plays a crucial role in the growth

of bile duct cancer cells and is associated with suppression of miR-31 expression. miR-

125b, miR-136, and miR-30a-5p have been further identified as potential GBC suppressors

(Yang et al., 2017; Niu et al., 2020; Ye et al., 2018). Another miRNA, miR-33a, has shown

tumor-suppressive activity in GBC by inhibiting IL-6-mediated tumor progression through

its interaction with Twist, a key regulator of cancer cell metastasis and invasion (Gao et al.,

2020).

1.4 Recent advancements in non-coding RNA

expression quantification

Nowadays, the identification and detection of an increasing number of ncRNAs have been

facilitated by the advancement of next-generation sequencing (NGS) technologies. This

process goes through sample preprocessing, library preparation, sequencing, and finally to

bioinformatics analysis (Satam et al., 2023).

Below is a summary of the main sequencing techniques commonly used today, along with

the public resources utilized in this thesis for analysis and prediction of ncRNA interactions

with other biomolecules.

1.4.1 Microarrays

Microarray is a popular method used to perform global or parallel transcriptome expression

analysis in different cell or tissue types (Yan et al., 2012). In brief, a large number of oligonu-

cleotide probes are spotted on a solid surface. Then, sequences are hybridized from samples,

and finally target sequences are fluorescently labeled. Despite its popularity, microarray holds

some limitations, as it is only able to detect RNAs whose sequences are already known (Sun

et al., 2020). Therefore, discovery of novel transcripts is not possible with such technique.



1.4. Recent advancements in non-coding RNA
expression quantification 15

1.4.2 RNA sequencing

RNA sequencing (also called RNA-seq) is currently the most popular sequencing technology

for ncRNA expression detection and discovery (Djebali et al., 2012; Wang et al., 2009).

One more reason of this technique’s popularity is that it can also identify single nucleotide

polymorphisms (SNPs). RNA-seq is performed by converting RNAs into complementary

DNAs (cDNAs) with either oligo (dT)-primers or random primers (Boone et al., 2018).

1.4.3 Non-coding RNA data preparation and exploration techniques

The aim of data pre-processing for large scale expression data, is to address systematic exper-

imental bias and technical variation through preservation of biological variation (Nazer et al.,

2023). Additionally, visually exploring ncRNA data is essential for gaining insights into the

data characteristics. A comprehensive analysis of sequencing data facilitates the characteri-

zation of variation among replicates and helps determine whether the defined experimental

groups exhibit significant differences.

In this thesis, quantile normalization is employed as the primary data preparation technique,

while principal component analysis (PCA) is utilized for data exploration. This section

provides a brief overview of both methodologies.

1.4.3.1 Quantile normalization

The purpose of normalization is to eliminate or minimize technical variability. Dozens of

normalization methods have been implemented in the last twenty years to account for experi-

mental differences between arrays. Some examples are quantile normalization, the Reads Per

Kilobase per Million mapped reads (RPKM), and the DESeq (Bolstad et al., 2003; Mortazavi

et al., 2008; Love et al., 2014). Quantile normalization, initially designed for gene expression

microarrays, has since been adapted for use across a wide range of high-dimensional omics

platforms, including RNA sequencing (Zyprych-Walczak et al., 2015). Quantile normaliza-

tion is designed to align the distribution of RNA counts across different runs. Its fundamental

assumption is that all samples, regardless of their class or condition, exhibit a similar dis-

tribution of ncRNA expression levels. This helps reduce technical variation and enhance

comparability across datasets. The quantile normalization process is straightforward: RNAs
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within each sample are ranked according to their expression values. For RNAs occupying

the same rank across samples, their average value is calculated. This average is then assigned

to all RNAs holding that particular rank. The final step involves reordering the RNAs in

each sample back to their original positions, maintaining their relative ranks. In this thesis,

a specialized form of quantile normalization, known as class-specific quantile normalization,

is applied. This approach first separates the data based on phenotype classes, such as disease

versus control groups, and then performs quantile normalization independently within each

class. After normalization, the data from both classes are recombined into a single dataset.

This method helps mitigate false positives or negatives that may arise when averaging out

samples with different expression profiles, such as those from cancerous and normal tissues.

1.4.3.2 Genetic principal component analysis

PCA is a statistical technique that processes large datasets by reducing data dimensionality

to a smaller set of linearly transformed dimensions, which capture the overall variation present

in the dataset (Ringnér, 2008). PCA is often employed as a preliminary analysis for data

exploration and description in population genetics research. Its applications are extensive:

it can be used to assess the population structure among a group of individuals, exemplify

ancestry and relatedness, analyze admixture, and detect outliers. One of the key advantages

of PCA in population genetics is that the distances between clusters of individuals may

correspond to the genetic and geographic distances between those groups. PCA results

are typically illustrated as a two-dimensional plot, where the axes represent the principal

components (PCs) that account for the variation within the dataset. The first principal

component (PC1) captures the highest level of variation, followed by the second principal

component (PC2), and so on.

1.4.4 Public resources

In recent years, multiple databases cataloging interactions between ncRNAs and genes or

proteins have emerged (Rigden and Fernández, 2021). These advancements were driven by

bioinformatics innovations, which enabled the development of databases and open-source

tools offering summary statistics from genetic association studies (e.g., the ncRNA-eQTL

database), pathway analysis (e.g., DIANA miRPath, MiEAA software), and experimentally
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derived data. These resources present substantial benefits, significantly reducing both costs

and time in ncRNA research and functional annotation.

1.4.4.1 DIANA miRPath

DIANA-miRPath v3.0 offers an online platform designed to analyze the regulatory functions

of miRNAs and identify the pathways they influence (Vlachos et al., 2015). The latest

version supports functional annotation of single or multiple miRNAs through standard hy-

pergeometric distributions, empirical distributions, and meta-analysis statistics. It includes

comprehensive coverage of KEGG molecular pathways and various segments of Gene Ontology

across seven species, including Homo Sapiens. The platform integrates over 600,000 exper-

imentally validated miRNA targets from DIANA-TarBase, allowing users to supplement or

replace in silico predictions with high-quality experimental data from DIANA-microT-CDS

and TargetScan (Vergoulis et al., 2012). One of the advantages of using this tool is that it is

open-source and freely accessible without the need for user registration.

1.4.4.2 MiEAA software

MiEAA is a web-based tool that offers a wide range of statistical tests, such as over repre-

sentation analysis and miRNA set enrichment analysis (Aparicio-Puerta et al., 2023; Backes

et al., 2016). In addition to its variety of statistical analyses, MiEAA provides extensive

functionality in terms of miRNA classifications. The tool includes over 14,000 miRNA sets,

covering areas like pathways, diseases, organs, and target genes. Notably, MiEAA is applica-

ble to both miRNA precursors and mature miRNAs, enhancing its utility across different

types of analyses. Like the DIANA miRPath software, MiEAA is open-source and freely

accessible to users without requiring registration.

1.4.4.3 ncRNA-eQTL database

The ncRNA-eQTL database is an extensive resource focused on ncRNA-related expression

quantitative trait loci (eQTLs), utilizing large cancer sample datasets to assess the impact

of genetic variants on ncRNA expression (Li et al., 2020). This database includes cis- and

trans-eQTLs, survival-eQTLs, and genome-wide association study (GWAS) eQTLs, and

offers an intuitive interface for querying, browsing, and downloading relevant data. To the
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best of current knowledge, it is the first resource specifically designed to identify ncRNA-

eQTLs across multiple cancer types, with the number of detected eQTLs increasing with

sample size. While many previous eQTL studies analyzed fewer than 300 samples (Ongen

et al., 2016), this database includes 12 cancer types with over 300 samples, making it one of

the most comprehensive available ncRNA-eQTL resources.

1.5 Objectives

The primary objective of this thesis is to investigate the genetic and molecular mechanisms

that contribute to the development of GBC, an aggressive and understudied malignancy.

Specifically, it seeks to identify, validate, and functionally characterize circulating ncRNA

biomarkers for early GBC detection and risk prediction before clinical onset. By examining

the role of ncRNAs in two distinct populations, this thesis sheds light on their involvement

in GBC development across Europeans and Latin Americans. The research presented here

is structured around two major ncRNA types, lncRNAs and miRNAs, and focuses on two

distinct populations: Chileans and Europeans, respectively. In two separate studies, ncRNA

expression levels were evaluated in both tissue and serum samples.

Study 1: Identification of circulating long non-coding RNAs associated with gallbladder

cancer risk:

• Preselect lncRNAs based on their expression changes along the sequence of gallstones,

dysplasia, and GBC in gallbladder tissue samples.

• Identify and validate genetic variants (cis-lncRNA-eQTLs) associated with the expres-

sion of the preselected lncRNAs in serum samples.

• Predict lncRNA expression levels based on individual genotypes and assess their asso-

ciation with GBC risk in additional serum samples.

Study 2: Identification and validation of circulating microRNAs associated with gallbladder

cancer risk in Europeans:

• Preselect miRNAs based on expression differences between normal and GBC tissue

from German patients with GBC and gallstone disease.
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• Screen miRNA expression differences in prospective serum samples from GBC cases

and controls.

• Validate the miRNA-GBC risk associations in additional European prospective cohort

serum samples.

• Investigate the interaction between identified miRNAs and their target genes through

pathway analysis.

• Perform meta-analysis on validated miRNAs.

Through these analyses, this thesis aims to contribute to the understanding of ncRNA dys-

regulation in GBC and to develop potential non-invasive diagnostic tools for early detection

and risk assessment.

Major parts of the content of this thesis have already been published (Blandino et al., 2022).

All calculations were performed with the statistical software package R, version 4.2.2 (R Core

Team, 2023). Codes to reproduce all the results are provided in Appendix B.



20 Chapter 1. Introduction



Chapter 2

Materials and methods

2.1 Study design, investigated patients and samples

Comment: Parts of the following Chapter have already been published in Cancers (Blandino

et al., 2022). The original manuscript was written by myself, but also contains comments

and corrections from the co-authors.

2.1.1 Identification of circulating long non-coding RNAs

associated with gallbladder cancer risk

2.1.1.1 Study design

In the first study, lncRNAs linked with GBC progression are identified through a three-

stage study design. This involves the screening of three distinct Chilean datasets, each one

containing unique information on lncRNA expression profiles and individual genotypes.

lncRNAs exhibiting expression changes between gallstones, dysplasia, and GBC were first

preselected on a dataset (lncRNA preselection dataset) comprising exclusively lncRNA ex-

pression data from gallbladder formalin-fixed paraffin-embedded (FFPE) tissue. lncRNAs

were declared as preselected and passed to the next step only if they met the defined sig-

nificance thresholds (adjusted p-value < 0.05), were measured in serum, were annotated as

lncRNAs, and are not duplicated.
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Then, SNPs in close proximity (located on the same chromosome as the lncRNA) to the pre-

selected lncRNAs (cis-lncRNA-eQTLs) were identified through the ncRNA-eQTL database:

http://ibi.hzau.edu.cn/ncRNA-eQTL/ (Li et al., 2020). These cis-lncRNA-eQTLs were sub-

sequently validated in a second independent dataset, the lncRNA-eQTL validation dataset,

which includes both lncRNA expression and individual genotypes.

Genetic associations from the previous step were exploited in a third independent data source

containing only SNP information (the lncRNA-GBC association dataset) to predict the

expression levels of circulating lncRNAs based on individual genotypes. The relationship

between predicted lncRNA expression and GBC risk was finally evaluated and consistency

with the preselection findings examined, as described in detail in the following sections.

2.1.1.2 Investigated patients and samples

For the lncRNA preselection dataset, 98 cholecystectomized Chilean patients diagnosed with

gallstones (n = 31), dysplasia (n = 35), or GBC (n = 32) were invited to enroll to the

study. With the exception of two patients with GBC who had missing information regarding

gallstones, all GBC and dysplasia individuals in the study were confirmed to carry gallstones.

Upon obtaining written informed consent, patients’ tissue samples and clinical data were

collected using standardized case report forms. Patients were recruited across seven hospitals

throughout Chile. Exclusions were made for samples stored for over 5 years, and for patients

with porcelain gallbladder, polyps, non-cholesterol stones, or abnormalities of the pancreatic

or bile ducts. The study has been approved by the appropriate ethics committees in Chile.

Additional details on the samples are described into more details in the following paper from

Brägelmann et al (2021).

The dataset used for the identification and validation of cis-lncRNA-eQTLs comprises genome-

wide data along with serum lncRNA expression data from 110 participants enrolled in

Chilean studies on Chagas (n = 88) and chronic obstructive pulmonary disease (COPD,

n = 22) (Díaz-Peña et al., 2022; Apt et al., 2021). COPD patients were recruited after pro-

viding written informed consent at the Hospital Regional de Talca located in Talca, south of

Chile. Study participants have been previously described by Olloquequi et al. (2018). Ethics

approvals were obtained from the Ethics Committees of Maulean Health Service and Univer-
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sidad Autónoma de Chile. Patients with Chagas disease, i.e. individuals showing clear signs

of chronic T cruzi infection, were invited to participate in the study upon medical written

informed consent.

Prediction of serum lncRNA expression was performed using individual genotype data from

540 Chilean GBC patients and 2397 population-based controls. GBC subjects were re-

cruited under informed consent between 2014 and 2020, with the majority (77%) diagnosed

following cholecystectomy, except for a few cases diagnosed without surgical intervention.

Ethics approvals were provided by the Medical Faculty of the Universidad de Chile (approval

#123-2012), Southeast Health Service of the Santiago Metropolitan Region, Health Service

of Concepcion Hospital (approval #16-11-97) and Central Santiago Metropolitan Health Ser-

vice (approval #135). Controls were selected from the Chilean cohort of the Consortium for

the Analysis of the Diversity and Evolution of Latin America (CANDELA), as well as from

Chilean studies on COPD and Chagas disease (Barahona Ponce et al., 2021; Lorenzo Bermejo

et al., 2017; Boekstegers et al., 2020). Recruitment of the CANDELA samples was performed

upon written informed consent in Arica, in the northern part of Chile. Part of the collective

has been previously described by Ruiz-Linares et al (2014). Ethics approvals for the controls

were obtained from the Universidad de Tarapacá and the University College London.

The complete applied methodology and the main datasets’ characteristics are represented in

Figure 2.1.

2.1.2 Identification and validation of circulating microRNAs

associated with gallbladder cancer risk

2.1.2.1 Study design

The design of the second study of this thesis is shown in Figure 2.2. This study follows

a three-stage approach based on preselection, screening, and validation of differentially ex-

pressed miRNAs in European GBC individuals. Preselection relied on miRNAs exhibiting

expression differences in GBC FFPE tissue samples compared to gallstone patients. Can-

didates which were not measured in serum as well as miRNAs which according to literature

are potentially linked to confounders in serum (age, sex, smoking, BMI and physical activ-

ity), were excluded prior screening (Rounge et al., 2018). The preselected candidates were
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Figure 2.1: Flowchart of the long non-coding RNA study design. lncRNA: long non-coding

RNA; FDR: false discovery rate; J-T test: Jonckheere-Terpstra test; SNP : single nucleotide

polymorfism; PC: principal component; p-value: probability value; GS: gallstones; Dys:

dysplasia; GBC: gallbladder cancer; AIC: Akaike’s information criterion; MAD: median

absolute deviation; FFPE: Formalin-fixed paraffin-embedded; eQTL: expression quantitative

trait loci. (Adapted from Blandino et al. (2022))
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subsequently screened in prospective European serum samples, and only miRNAs displaying

expression patterns consistent with those observed during preselection were chosen for further

validation. Validation was carried out on additional serum samples and supported by meta-

analysis. As sensitivity analysis, pathway analysis was conducted on the set of preselected

miRNAs in FFPE tissue. Correlations between target genes from the significant pathways

and the validated miRNAs were finally investigated in the pooled serum data.

It is important to note that following preselection and screening, and prior to miRNA se-

quencing for validation, this study and the miRNA validation protocol were officially regis-

tered at the German Clinical Trials Register (drks.de, March, 5th 2021) and the Interna-

tional Clinical Trials Registry Platform of the World Health Organization (WHO,

https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00024573).

2.1.2.2 Investigated patients and samples

The preselection dataset used to identify miRNAs differentially expressed in FFPE tissue

includes eight normal, non-neoplastic gallbladders and 40 GBC samples. Tissue samples

from patients who underwent surgical removal of the gallbladder (cholecystectomy) were

obtained by the tissue bank of the National Centre for Tumour Diseases (NCT Heidelberg,

Germany). Cancer patients underwent cholecystectomy at the time of diagnosis and received

no treatment prior to sampling. GBC cases were histologically confirmed by at least two

specialized pathologists at the Institute of Pathology at Heidelberg University Hospital. Non-

neoplastic gallbladder tissue samples were collected from cholecystectomized patients with

gallstone disease and served as the reference group for normal tissue in this study. More

information of this cohort can be found in the publication from Goeppert et al. (2019).

After miRNA preselection based on FFPE gallbladder tissue, 74 serum samples were inves-

tigated from three European prospective cohorts (n = 37 GBC case-control pairs, screening

dataset). Data and samples were provided by the Norwegian Janus Serum Bank (n = 27

GBC case-control pairs), the German Early Detection and Optimised Therapy of Chronic

Diseases in the Elderly Population (ESTHER) study (n = 9 GBC case-control pairs), and

the German Heinz Nixdorf Recall (HNR) study (n = 1 GBC case-controls pair). The Janus

Serum Bank is a population-based biobank for cancer research that contains pre-diagnostic
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biospecimens from 318,628 Norwegians (Langseth et al., 2017). Between 1972 and 2004,

residual blood serum samples were collected in 17 Norwegian counties. The average age of

study participants at enrollment was 41 years. Individuals were followed up from the date

of first serum donation to the date of cancer diagnosis, emigration or death. Information on

smoking, physical activity and BMI was available for 90% of participants. The ESTHER

study is a cohort study conducted in Saarland, a federal state in south-west Germany (Raum

et al., 2007). Between 2000 and 2002, 9,940 participants aged between 50 and 74 years were

enrolled as part of routine medical check-ups. Cancer cases were determined on the basis of

the cancer diagnoses reported by the participants themselves, which were also confirmed by

physicians, and by record linkage with the Saarland Cancer Registry. The HNR study is a

cohort study where study participants were selected at random from mandatory lists of places

of residence (Stang et al., 2005). Between 2000 and 2003, 4,814 participants aged between

45 to 75 years were enrolled in the metropolitan Ruhr area in Germany and followed up for

a median of 5 years. As only one case-control pair was available from the HNR study, this

cohort was merged with the ESTHER study, both of which consist of German individuals.

All controls were matched by age and sex with GBC cases.

The most promising miRNAs identified in the screening dataset were subsequently investi-

gated in the validation dataset, which includes data and serum samples (n=36 GBC case-

control pairs) from three large European prospective cohorts: the Norwegian Helseunder-

søkelsen i Nord-Trøndelag Health (HUNT ) study (n = 15 GBC case-control pairs), the

Finnish FINRISK cohort (n = 9 GBC case-control pairs), and the Swedish TwinGene

Registry (n = 12 GBC case-control pairs). HUNT is a Norwegian population-based health

study (Krokstad et al., 2013). Since 1984, more than 229,000 adults aged 20 years or older

have joined the study. Biological samples were available from 95,000 study participants who

were followed for nearly 40 years. The participation rate of those invited to join the study

was high, ranging from 54% to 89%, making the cohort a good representation of the general

Norwegian population. The Finnish population-based FINRISK study is part of the eval-

uation of the North Karelia project, a large community-based disease intervention started

in 1972 (Borodulin et al., 2018). The target population of the FINRISK study was 25 to

74-year-old Finns who had lived in Finland for at least one year. To date, the FINRISK

study has reached a total of 101,451 individuals from nine cross-sectional studies, who were
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followed up until 2014. The Swedish TwinGene Registry was established in the late 1950s

to initially investigate the role of environmental factors such as smoking and alcohol on dis-

ease (Lichtenstein et al., 2002). In 2004, 22,000 twins among the older study participants

were invited for blood collection for DNA and serum biobanking. The sample collection was

completed in 2008 with an overall response rate of 56%. All controls included in the study

were age- and sex-matched with the GBC cases.

In this study, miRNA expression levels of ten GBC cell lines (G-415, GB-d1, Mz-Cha-1,

NOZ, OCUG-1, OZ, SNU308, TGBC1 (also known as TGBC1TKB), TGBC2 (also known

as TGBC2TKB) and Y oMi were also analyzed. Cell lines were tested for mycoplasma con-

tamination using MycoAlert (Lonza, Basel, Switzerland) and authenticated by short tandem

repeat analysis. More details on the cell-lines are available on the paper from Scherer et al.

(2020).

All European samples analyzed in this study were collected upon ethical approval by the fol-

lowing institutions: Medical Faculty Heidelberg (Preselection dataset, ESTHER, #58/2000,

HNR), the THL Biobank (FINRISK, #BB2016_32), the Regional Committee for Med-

ical and Health Research Ethics (Janus, #2016/1290, HUNT , #2016/1222), and EPN

(TwinGene, #2016/2:11). All participants provided written informed consent prior to par-

ticipation.

2.2 Generation of small-RNA expression and genome-wide

genotype data

2.2.1 RNA and DNA extraction

The protocol followed for RNA extraction, isolation, and profiling from FFPE gallbladder

tissue has been described previously (Goeppert et al., 2019). Briefly, small-RNA samples

were purified for microarray hybridization from microdissected FFPE material using the

miRNeasy FFPE Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instruc-

tions. Agilent SurePrint Human miRNA microarrays (G4872A, miRBase Release 19.0, Ag-

ilent Technologies, Santa Clara, CA), which include 2006 human miRNAs, were used for
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Figure 2.2: Flowchart of the microRNA study design. miRNA: microRNA; GBC: gallblad-

der cancer; BMI: Body-mass index; FFPE: Formalin-fixed, paraffin-embedded.
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miRNA profiling of normal gallbladder and GBC tumor samples. Labelling, hybridization

and data processing were performed following the manufacturer’s recommendations.

The protocol applied for small-RNA extraction and sequencing from serum samples has also

been previously described (Umu et al., 2018; Rounge et al., 2018). Briefly, RNA was extracted

from 2 x 200 µl (screening) and 1 x 200 µl of serum (validation) using phenolchloroform

separation and the miRNeasy serum kit (Cat. no 1071073, Qiagen) on a QIAcube (Qiagen).

During RNA extraction, G glycogen (Cat. no AM9510, Invitrogen) was used as carrier.

Ampure beads XP (Agencourt) were used to concentrate the eluate.

Genomic DNA was extracted under standard laboratory procedure and standard commercial

kits. As quality control measures, intraplate and interplate replicates and blinded duplicates

were employed at 5%.

2.2.2 Small-RNA sequencing

The NEBNext Small-RNA kit was used to produce RNA sequencing libraries, which were

sequenced on the HiSeq 2500 and 4000 (screening), and Novaseq 6000 (validation) platforms

(Illumina, San Diego, CA, USA) for average depths of 18 M (screening) and 22 M reads per

sample (validation), enabling to capture mapped sncRNAs fragments of up to 47 base pairs.

RNA counts were calculated using the sncRNA pipeline (https://github.com/sinanugur/

sncRNA-workflow/) (Umu et al., 2018). First, reads were adapter-trimmed (AdapterRemoval

v2.1.7) (Schubert et al., 2016). Then, adapter-trimmed reads were mapped to the human

genome (hg38) by Bowtie2 v2.2.9 aligner in end-to-end mode (Langmead and Salzberg, 2012).

HTSeq was used to count reads mapped to sncRNA regions in miRBase (v22.1) and GEN-

CODE v26 annotations (Anders et al., 2015).

2.2.3 Genotyping and data quality control

Genotyping of study participants was conducted using Illumina’s OmniExpress and Global

screening arrays (GSA). Both arrays included more than 700,000 genome-wide SNPs.

Genetic variants were filtered to exclude SNPs with a minor allele frequency (MAF ) lower

than 1% or a missing call rate above 5% . Also samples with a missing call rate over 5%

were left out. Identity by descent (IBD) kinship coefficients were calculated to address for
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relatedness among individuals (IBD > 0.1). Within each related pair of individuals, the

subject showing the lowest call rate was systematically excluded from the analysis. Following

linkage disequilibrium (LD) pruning at r2 > 0.1, 36,175 variants from the GSA array were

utilized for subsequent genetic PCA, and Mahalanobis distances (MD) were computed to

account for samples with outlying genotypes, specifically targeting the 5% of individuals

exhibiting the lowest statistical depth. Calculation of MAF and call rates was implemented

using the R package available in the Bioconductor’s repository snpStats (Solé et al., 2006).

IBD kinship coefficients and LD pruning were performed using the R package SNPRelate

(Zheng et al., 2012). PCA was carried out using the eigenstrat function available at:

www.popgen.dk/software/index.php/Rscripts (Price et al., 2006).

2.3 Statistical analyses

2.3.1 Multiple imputation of missing genotype data

Missing genotypes were imputed with the TOPMed reference sample via the TOPMed im-

putation server, accessible at https://imputation.biodatacatalyst.nhlbi.nih.gov/

(Taliun et al., 2021).

2.3.2 Prediction of small-RNA expression based on individual genotypes

In the first study of this thesis, after obtaining the list of cis-lncRNA-eQTLs associated with

the preselected lncRNAs from the ncRNA-eQTL database, robust linear regression models

were fitted to validate the identified associations. Models were adjusted for confounders, as

individual age, sex and the first ten genetic PCs:

log2Expression ∼ SNP + Age + Sex + 10 PCs (2.1)

The investigated models included four types of penetrances: additive (number major alleles),

three-genotype (genotype as a factor), dominant (affect allele against the other genotypes),

recessive (other allele against the affect allele). After fitting single models for each genetic

variant, model selection was performed including the different configurations of the identified

cis-lncRNA-eQTLs. Also here, models were adjusted for age, sex, and the first ten PCs.
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The selected model for prediction was the one with the lowest robust Akaike’s information

criterion (RAIC).

Individual genotype-based lncRNA expression in serum was predicted considering the sum-

mary statistics from the previous step (βi) and the individual genotype (Ai) encoded based

on the selected penetrance model:

Predicted log2Expression =
k∑

i=1
βiAi (2.2)

Ultimately, the association between genotype-based serum lncRNA expression and GBC risk

was evaluated on the lncRNA-GBC association dataset through robust logistic regression

models. The fitted models employed a tuning constant c of 1.2 in Huber’s psi-function, while

accounting for individual age, sex, and the first ten genetic PCs:

GBC status ∼ Predicted log2Expression + Age + Sex + 10 PCs (2.3)

The function rlm from the R package MASS was used to fit robust linear regression mod-

els (Venables and Ripley, 2002). Coefficients’ p-values were calculated using the function

rob.pvals from the R package repmod (Marin, 2021). RAICs were obtained using the

function AIC in the R package AICcmodavg (Mazerolle, 2023).

2.3.3 Long non-coding RNA association analyses

lncRNA counts were log2-transformed and expression values with a median absolute devia-

tion (MAD) equal to zero were left out from further statistical analyses. Counts were quantile

normalized, first considering gallstone, dysplasia, and GBC samples separately, and then al-

together. After normalization, global lncRNA expression profiles were examined through

PCA. 5% of patients exhibiting outlying expression profiles, i.e. a low MD, were not in-

cluded in the final dataset.

lncRNA preselection was carried out using both non-parametric and machine learning (ML)

techniques. Monotonic increasing or decreasing changes from gallstones to GBC were firstly

evaluated through two-sided Jonckheere-Terpstra (J-T ) tests with 5000 permutations (Jon-

ckheere, 1954). P -values were adjusted for multiplicity using false discovery rates (FDRs).

The second method used to preselect differentially expressed lncRNAs is the extreme gra-

dient boosting (XGBoost) algorithm, applied to train three-class classification ML models
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(Chen and Guestrin, 2016). The preselection dataset was divided at random into training (n

= 77) and test (n = 21) sets. The training dataset achieved class balance through upsampling,

resulting in 27 samples each for gallstones, dysplasia, and GBC. Model’s hyperparameters

were tuned through five-fold cross validation using the training set only, and a random grid

search approach was employed. Cross validation assessed the best model, i.e. the model with

the lowest mean per class error. The model’s performance was evaluated on the test set based

on both mean per class error and weighted average area under the curve (AUC). Finally,

lncRNA were sorted by relative importance.

The J-T tests were performed using the JonckheereTerpstraTest function available in the

R package DescTools, and the ML algorithm was implemented using the h2o R package

(Signorell, 2024; Fryda et al., 2014).

2.3.4 MicroRNA association analyses

miRNA read counts were log2-transformed and miRNAs with low MAD were excluded

from subsequent analyses. In the preselection dataset, quantile normalization was first ap-

plied separately to GBC and normal samples, and then simultaneously to all samples. In

the screening and validation datasets, quantile normalization was first applied to each cohort

separately, then to GBC cases and controls, and finally to the complete dataset. miRNA ex-

pression profiles were examined through PCA. Outlying samples were subsequently excluded

based on MD. The R package stats was used for PCA and statistical depth calculation (R

Core Team, 2023).

Preselection, screening and validation of differentially expressed miRNAs were based on

robust linear regression. The preselection regression models included GBC status, age cate-

gorized into quartiles, and sex. The screening and validation regression models additionally

included BMI categorized into quartiles. BMI information was not available in the prese-

lection dataset, and was therefore not considered as confounder in the model.

In the preselection stage, p-values from robust linear regression were adjusted for multiplicity

using the Bonferroni method (for subsequent screening) and FDR (for pathway analysis),

taking into account the number of miRNAs with MAD greater than zero. In the screening

stage, Bonferroni and FDR adjustments for multiplicity considered the number of pres-
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elected miRNAs that were expressed in the serum samples, while in the validation stage

multiplicity corrections were carried out according to the number of differentially expressed

miRNAs identified in the screening stage. Robust linear regression models and each coef-

ficients’ p-values were evaluated, respectively, through the functions rlm in the R package

MASS, and rob.pvals in the R package repmod (Venables and Ripley, 2002; Marin, 2021).

2.3.5 Calculation of genetic gallstone disease risk score

Genotype information was available for some participants in the ESTHER (n = 18), HUNT

(n = 29), FINRISK (n = 16), and TwinGene (n = 17) studies. Therefore, differences in

miRNA expression were also investigated as a function of individual polygenic risk scores

(PRS) for gallstone disease. The summary statistics used on this purpose relied on the

association between genetic variants and gallstone disease from the UK Biobank (18,417

gallstone disease cases and 390,150 controls) for variants that were robustly (p-value < 5x10-

8) associated with gallstone disease in the study by Ferkingstad et al. (2018). After excluding

variants and samples with missing call rates of more than 5%, variants with a MAF of less

than 1%, LD pruning (r2 > 0.1), and harmonization of reference and alternative alleles in the

UK Biobank and in the investigated prospective cohorts, PRS were calculated by multiplying

the estimated additive genetic effects (βi) by the individual allele counts (Ai).

PRSj =
N∑

i=1
βiAi (2.4)

2.3.6 Meta-analysis

After validation, meta-analysis was performed to combine the results from all serum prospec-

tive cohorts using the rma function in the Metafor package (Viechtbauer, 2010). The input

values for the function were beta estimates with their corresponding standard errors from

each cohort, and the cohort sample sizes as weights. Both fixed-effects and random-effects

meta-analysis were taken into account, using the function forest, also from the Metafor

package, to plot the results of the meta-analysis, and creating the remaining plots using the

R package ggplot2 (Wickham, 2016).
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2.4 Pathway analyses

Based on the list of preselected miRNAs in FFPE gallbladder tissue, the web-based software

DIANA-miRPath v3.0 was used (http://diana.imis.athena-innovation.gr) for miRNA-based

pathway analysis (Vlachos et al., 2015). The over-represented pathways were then sorted

by FDR-corrected p-values. In addition to miRNA expression, mRNA expression values

based on small RNA sequencing were also available for the analyzed serum samples, and

this information was used to investigate the relationship between miRNA and mRNA ex-

pression for the validated miRNAs. The total number of genes in the five pathways with

the smallest FDR-corrected p-values was considered for Bonferroni adjustment of p-values

from one-sided Spearman tests (negative miRNA-mRNA correlation), and possible differ-

ences in mRNA expression between GBC cases and controls were assessed by robust linear

regression models adjusted for age, sex, and BMI. Finally, the miRNA-mRNA relationship

was visually inspected, as well as differences between GBC cases and controls in mRNA

expression, and mRNA expression in GBC cell lines using scatter and dot-and-box plots.
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Results

Comment: Parts of the following Chapter have already been published in Cancers (Blandino

et al., 2022). The original manuscript was written by myself, but also contains comments

and corrections from the co-authors.

3.1 Identification of circulating long non-coding RNAs

associated with gallbladder cancer risk

3.1.1 Long non-coding RNA preselection in tissue

In the preselection dataset, a total of 7,500 lncRNAs was detected. Among these, 7,168

lncRNAs exhibited a MAD of 0, leading to their exclusion from subsequent analyses. The

lncRNA expression profiles of the remaining 332 lncRNAs are depicted on the PCA plot

in Figure 3.1, panel A. The expression profiles of patients with gallstones and dysplasia

displayed notable similarities (represented by green and yellow dots), whereas GBC cases

were predominantly located in the upper region of the graph. Furthermore, five outlying

individuals were excluded from the analyses due to their lower statistical depth in comparison

to the other global expression profiles (indicated by black empty dots). After exclusion, the

preselection dataset consisted of 332 lncRNAs, and 93 samples, which included 28 patients

with gallstones, 34 with dysplasia, and 31 diagnosed with GBC.
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Two-sided J-T tests were used to assess the monotonic increase or decrease in expression from

gallstones, to gallbladder dysplasia, and to GBC of 36 lncRNAs (FDR < 0.05) (Figure 3.1,

panel B, Table A.1). In contrast, the applied ML model (AUC = 0.88, mean per class error =

0.23) identified 39 lncRNAs with relative importance greater than the median (Figure A.1).

Eighteen lncRNAs in total were selected both by J-T tests and ML, which were all annotated

as lncRNAs and not duplicated. Only the log2 expression of six of them exhibited a MAD

greater than 0 in serum samples from the cis-lncRNA-eQTL validation dataset. cis-eQTL

information from the eQTL-database was only available for AC084082.3, LINC00662, and

C22orf34, which were the only ones to undergo lncRNA-eQTL validation (Figure 3.1, panel

C). The expression of AC084082.3 and LINC00662 was associated with an increased risk of

GBC, while expression levels of C22orf34 decreased advancing malignancy. In Table 3.1 the

stratified expression characteristics in gallstones, dysplasia, and GBC of the three preselected

candidates are shown. On average, except for LINC00662, the expression differences were

larger between gallstone and GBC patients, than between gallstone and dysplasia. Stratified

analyses revealed that larger expression differences were solely observed in relation to age,

with LINC00662 being overexpressed especially in younger GBC patients (Age < 60), and

C22orf34 being downregulated in older ones (Age ⩾ 60).

3.1.2 Expression quantitative trait loci validation in serum

Data pre-processing determined the exclusion, in the validation dataset, of 460,632 SNPs

with MAF smaller than 0.01, four subjects due to low call rate, and eight related individ-

uals (IBD Kinship coefficients > 0.1). In Figure 3.2, panel A the genetic profiles of all the

included individuals are shown. The genetic PCA plot highlighted the presence of five out-

lying individuals with low statistical depth (represented by empty dots). These samples were

therefore excluded from the final dataset, which included only 93 individuals.

Based on data from the ncRNA-eQTL database, 161 SNPs were linked to the expression of

AC084082.3. However, ten of these had low MAF or call rate and were, therefore, excluded

from subsequent analyses. Furthermore, regardless of the four penetrance models examined,

robust linear regression analyses did not validate any associations with AC084082.3.



3.1. Identification of circulating long non-coding RNAs
associated with gallbladder cancer risk 37

Figure 3.1: Long non-coding RNA preselection in tissue. (A) Principal component analysis

for the long non-coding RNA expression profiles in the preselection dataset. (B) Volcano

plot for the preselection results. -log10 p-values obtained by Jonckheere-Terpstra tests are

represented on the y-axis. The applied significant threshold (FDR < 0.05) is represented by

the black horizontal line. Preselected long non-coding RNAs with both non-parametric and

machine learning techniques are depicted in red. Blue dots indicate long non-coding RNAs

which, in addition, were also measured in serum samples. (C) Dot-and-box plots for the

expression of AC084082.3, LINC00662, and C22orf34 in the preselection dataset. PC:

principal component, p-value: probability value; GS: gallstones; Dys: dysplasia; GBC:

gallbladder cancer. Adapted from Blandino et al. (2022)
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Table 3.1: Expression of AC084082.3, LINC00662, and C22orf34 in the preselection dataset.

Results are both global and stratified by patients’ age and sex.

Subgroup lncRNA FDR
log2 expression

GS samples

Median [5th;95th]

log2 expression difference

Dys vs GS

Estimate [95%CI]

log2 expression difference

GBC vs GS

Estimate [95%CI]

All AC084082.3 0.009 8.23 [1.45-9.93] 0.51 [0.04;0.99] 0.76 [0.09;1.44]

n=28 GS; n=34 Dys; LINC00662 0.009 1.48 [0.55-4.38] 1.09 [0.62;1.56] 0.86 [0.30;1.42]

n=31 GBC C22orf34 0.04 1.44 [0.48-3.68] -0.24 [-0.49;0.005] -0.28 [-0.54;-0.01]

Women AC084082.3 0.04 8.23 [1.45-9.78] 0.67 [0.18;1.15] 0.89 [0.15;1.63]

n=26 GS; n=20 Dys; LINC00662 0.01 1.47 [0.54-4.07] 1.09 [0.61;1.56] 1.01 [0.45;1.57]

n=24 GBC C22orf34 0.02 1.44 [0.48-3.80] -0.30 [-0.57;-0.03] -0.34 [-0.63;-0.04]

Men AC084082.3 0.99 10.01 -0.52 [-1.02;-0.03] -0.30 [-2.19;1.59]

n=1 GS; n=8 Dys; LINC00662 0.99 4.53 -0.52 [-1.24;0.21] -1.09 [-2.85;0.68]

n=6 GBC C22orf34 0.99 0.49 0.43 [-0.66;1.53] 0.27 [-0.19;0.72]

Age < 60 AC084082.3 0.43 8.23 [1.45-10.19] 0.73 [0.13;1.33] 0.64 [-0.22;1.50]

n=18 GS; n=11 Dys; LINC00662 0.51 1.81 [0.58-4.33] 0.93 [0.30;1.55] 0.66 [-0.13;1.45]

n=9 GBC C22orf34 0.58 1.43 [0.47-3.08] -0.35 [-0.72;0.02] -0.29 [-0.67;0.09]

Age ⩾ 60 AC084082.3 0.17 8.96 [1.47-9.86] 0.29 [-0.33;0.90] 0.84 [-0.10;1.77]

n=9 GS; n=16 Dys; LINC00662 0.05 1.46 [0.78-3.84] 1.24 [0.67;1.81] 1.06 [0.36;1.77]

n=18 GBC C22orf34 0.17 1.46 [0.50-3.44] -0.18 [-0.52;0.16] -0.34 [-0.68;0.006]

lncRNA: long non-coding RNA; FDR: false discovery rate; GS: gallstones; Dys: dysplasia; GBC:

gallbladder cancer; 5th;95th: 5th and 95th percentiles; CI: confidence interval. Adapted from

Blandino et al. (2022)
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Table 3.2: Identification and validation of cis-long non-coding RNA-expression quantitative

trait loci for AC084082.3, LINC00662, and C22orf34.

lncRNA
log2 expression

Median [5th;95th]

Location

(GRCh38)

# cis-eQTLs

(database)

# cis-eQTLs

(validated)

# cis-eQTLs

(predictors)

Adjusted r2

(best model)

AC084082.3 6.59 [1.74;9.06] chr8:66112667 161 - - -

LINC00662 3.40 [0.35;5.60] chr19:27684580 1576 2 2 0.26

C22orf34 0.58 [0.03;2.65] chr22:49414524 395 45 3 0.24

lncRNA: long non-coding RNA; 5th;95th: 5th and 95th percentiles; GRCh38: Genome Reference

Consortium Human Build 38; chr: chromosome ; r2: r-squared; eQTL: expression quantitative loci.

Adapted from Blandino et al. (2022)

Among the 1,576 cis-LINC00662-eQTLs identified by the ncRNA-eQTL database, 1,388

met the quality control criteria and were included in subsequent analyses. Two SNPs were

associated with the expression of LINC00662: rs11083486 (associated in all four penetrance

models), and rs142521755 (associated in the dominant model). Both SNPs were not in LD

(r2 = 0.001), and the best model for prediction was the one including rs11083486 additively,

and rs142521755 with dominant penetrance (RAIC = 357).

According to the ncRNA-eQTL database, 396 cis-lncRNA-eQTLs were associated with the

expression of C22orf34. After selection criteria, 45 SNPs were associated with C22orf34 in

the validation dataset. Most of them (42 cis-lncRNA-eQTLs) were in LD, resulting in three

selected SNPs for prediction. rs5770650 and rs9628049 were selected from both additive and

dominant models, while the association with rs6009824 emerged from the three-genotypes

model. The best model used for prediction of C22orf34 included rs5770650 and rs9628049

additively, and rs6009824 as factor (RAIC = 214.5).

The comparisons between predicted and observed expressions of LINC00662 and C22orf34

are shown in Figure 3.2, panels B and C. More details on all identified and validated cis-

lncRNA-eQTLs are available in Table 3.2 and Table A.2.
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Figure 3.2: Long non-coding RNA expression quantitative trait loci validation in serum. (A)

Genetic principal component analysis in the long non-coding RNA expression quantitative

trait loci validation dataset. (B,C) Predicted against measured long non-coding RNA expres-

sion for LINC00662 and C22orf34. PC: principal component, r2: r-squared. Adapted from

Blandino et al. (2022)
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3.1.3 Association between genotype-based long non-coding RNA

expression and gallbladder cancer risk

The ultimate objective of this study was to identify circulating lncRNAs as potential GBC-

risk biomarkers. Therefore, the final step was to assess the association between the genotype-

based lncRNA expressions for LINC00662 and C22orf34 and GBC risk. The used dataset

(lncRNA-GBC association dataset) was larger than the previous ones, being composed by

540 GBC cases and 2,397 population-based controls.

The predicted expression of LINC00662, consistently with the one observed in tissue, was

higher in GBC cases compared to population-based controls (Figure 3.3). Most specifically,

the risk related with the overexpression of this lncRNA was 25% higher in GBC cases than

in controls (OR = 1.25, p-value = 0.02, Table 3.3). In contrast, although also the genotype-

based expression levels of C22orf34 were coherent we the ones in tissue, the association with

GBC risk was not statistically significant (OR = 0.90, p-value = 0.59, Figure A.2, Table 3.3).

Figure 3.3: Predicted expression of LINC00662 in the third long non-coding RNA dataset.

The average predicted expressions for cases and controls are marked by rhombuses. GBC:

gallbladder cancer. Adapted from Blandino et al. (2022)
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Table 3.3: Predicted expression of LINC00662 and C22orf34, and association with risk of

gallbladder cancer in the third long non-coding RNA dataset.

lncRNA
Median predicted

log2 expression
OR (GBC) 95% CI p-value

LINC00662 1.27 1.25 1.04;1.52 0.02

C22orf34 0.39 0.90 0.61;1.32 0.59

lncRNA: long non-coding RNA; OR: odds ratio; GBC: gallbladder cancer; CI: confidence

interval; p-value: probability value. Adapted from Blandino et al. (2022)

3.2 Identification and validation of circulating microRNAs

associated with gallbladder cancer risk in Europeans

3.2.1 Cohort characteristics

Table 3.4 shows the main characteristics of the investigated datasets in this study. The

preselection dataset (FFPE gallbladder tissue samples) contained more women (63%) than

men (37%), while 44% of patients were older than 71 years. Information on BMI and smoking

status was not available.

Women were also overrepresented in the screening dataset (Janus: 74%, ESTHER + HNR:

90%), and 50% of Janus participants were under 54 years, while 55% of participants in the

German ESTHER and HNR studies were aged 64 to 71 years. Differences in BMI were also

observed between the Norwegian and the German cohorts: the proportion of individuals with

a BMI over 26.2 kg/m2 was 38% in the Janus study, compared to 65% in the ESTHER and

HNR cohorts. In terms of number of years between blood collection and GBC diagnosis,

63% of Janus participants were diagnosed 9 years after blood sampling, while all ESTHER

and HNR participants were diagnosed within 9 years.

In the validation dataset, women were overrepresented in the HUNT cohort (85%), but

not in FINRISK (44%) or TwinGene (50%). The proportion of individuals older than

71 years was 23% in HUNT , 41% in FINRISK and 45% in TwinGene. Percentages of

participants with a BMI over 29.4 kg/m2 were 28% in HUNT , 53% in FINRISK and
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19% in TwinGene. Regarding the time between blood sampling and GBC diagnosis, the

proportion of participants diagnosed at least 9 years after blood draw was 73% in HUNT ,

26% in FINRISK and 0% in TwinGene.

Summing up, all the datasets investigated in this study were heterogeneous in terms of age,

sex, BMI and time from blood collection to GBC diagnosis.

3.2.2 Preselection in tissue

Among the 2,006 miRNAs detected in FFPE gallbladder tissue, 1,300 showed low expression

variability (MAD < 0.2) and were excluded from further analysis. A PCA plot based on

the remaining 706 miRNAs revealed different global expression profiles in GBC and normal

gallbladder tissue samples, with the first principal component explaining 19% of the overall

variance in miRNA expression (Figure 3.4, panel A). P -values from robust linear regression

adjusted for multiplicity using the Bonferroni method identified 376 miRNAs differentially

expressed in GBC compared to normal gallbladder tissue (Figure 3.4, panel C, Table A.3).

In particular, 215 miRNAs were overexpressed, and 161 miRNAs were underexpressed in

GBC tissue.

3.2.3 Screening in serum samples

Figure 3.4, panel B shows the global expression profiles based on MAD-positive miRNAs

in the screening dataset. In contrast to the preselection dataset, which included gallbladder

tissue samples, GBC cases and controls showed similar global miRNA expression patterns

in serum. Among the 376 preselected candidates, 186 miRNAs were also detectable in

serum (Figure 3.4, panel D). Four miRNAs associated with potential confounders in previous

research were excluded from further analysis (miR-320d, miR-4466, miR-4516, miR-4755-

3p). After robust linear regression analysis and multiplicity correction, three miRNAs were

associated with GBC risk. miR-3925-5p showed a protective effect, while miR-4533 and

miR-671-5p were associated with an increased risk of GBC. However, only miR-4533 and

miR-671-5p showed consistent expression differences in gallbladder tissue and serum samples.

miR-3925-5p was underexpressed in GBC tissue but overexpressed in serum samples from

GBC cases and was therefore excluded from further analyses.
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Table 3.4: Main patient characteristics in the investigated microRNA datasets. The prese-

lection dataset consisted of formalin-fixed paraffin-embedded gallbladder tissue samples from

gallbladder cancer and gallstone disease patients recruited in Germany. The screening dataset

included serum samples from three European prospective cohorts (Janus in Norway, ESTHER

and HNR in Germany). The validation dataset comprised serum samples from three prospec-

tive cohorts (HUNT in Norway, FINRISK in Finland, and TwinGene in Sweden).

Preselection Screening Validation

Variable Level
Hei Janus ESTHER+HNR HUNT FINRISK TwinGene

n % n % n % n % n % n %

Status
GBC 40 0.83 27 0.50 10 0.50 15 0.50 8 0.47 8 0.40

Controls 8 0.17 27 0.50 10 0.50 15 0.50 9 0.53 12 0.60

Age

Q1: 25-54 8 0.17 27 0.50 1 0.05 5 0.17 3 0.18 0 0

Q2: 54-64 10 0.21 21 0.39 6 0.30 6 0.20 2 0.12 0 0

Q3: 64-71 9 0.19 1 0.02 11 0.55 12 0.40 5 0.29 11 0.55

Q4: 71-89 21 0.44 5 0.09 2 0.10 7 0.23 7 0.41 9 0.45

Sex
Female 30 0.63 40 0.74 18 0.90 24 0.85 7 0.44 10 0.50

Male 18 0.37 14 0.26 2 0.10 4 0.14 9 0.56 10 0.50

BMI

Q1: 18.1-23.3 - - 18 0.35 4 0.20 8 0.28 1 0.06 3 0.19

Q2: 23.3-26.2 - - 14 0.27 3 0.15 7 0.24 3 0.18 6 0.38

Q3: 26.2-29.4 - - 12 0.23 7 0.35 6 0.21 4 0.24 4 0.25

Q4: 29.4-45.9 - - 8 0.15 6 0.30 8 0.28 9 0.53 3 0.19

Smoking

Never - - 16 0.31 8 0.57 11 0.42 6 0.38 - -

Former - - 15 0.28 4 0.29 9 0.34 7 0.44 - -

Current - - 22 0.41 2 0.14 6 0.23 3 0.18 - -

Follow-up

Q1: 0-3.5 - - 4 0.15 5 0.50 0 0 4 0.50 4 0.50

Q2: 3.5-9 - - 6 0.22 5 0.50 3 0.20 2 0.25 4 0.50

Q3: 9-12.5 - - 7 0.26 0 0 5 0.33 1 0.13 0 0

Q4: 12.5-18 - - 10 0.37 0 0 6 0.40 1 0.13 0 0

GBC: gallbladder cancer; BMI: body-mass index; Q1 - Q4: first to fourth quartiles; ES-

THER: Early Detection and Optimised Therapy of Chronic Diseases in the Elderly Popula-

tion; HNR: Heinz Nixdorf Recall study; HUNT: Helseundersøkelsen i Nord-Trøndelag Health

study.
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Figure 3.4: Exploratory analysis of global microRNA expression profiles in the preselection

and screening datasets. Principal component analysis plots of normalized log2 expression

counts for microRNAs in the preselection (A) and screening (B) datasets. The x-axis shows

the first principal component and its explained variance in global microRNA expression; the

y-axis shows the same information for the second principal component. Volcano plots for mi-

croRNAs in the preselection (C) and screening (D) datasets. The x-axis shows the estimated

average expression difference, and the y-axis shows the −log10 probability value from robust

linear regression. Red dots represent microRNAs expressed in both formalin-fixed paraffin-

embedded gallbladder tissue and serum samples, and the grey horizontal lines show the statis-

tical significance threshold (multiplicity-corrected Bonferroni probability value < 0.05). GBC:

gallbladder cancer; p-value: probability value; PC: principal component.
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3.2.4 Validation in serum samples

Visual inspection of the global miRNA expression profiles in the validation dataset revealed

the presence of three outlying samples, which were excluded from further analyses based on

statistical depth (Figure A.3), resulting in 31 GBC cases and 36 controls ultimately used for

validation. Robust linear regression detected no association between the two miRNAs iden-

tified in the screening dataset and GBC risk (Table A.4), but stratified analyses confirmed

overexpression of miR-4533 in prospective serum samples from GBC cases in the HUNT

cohort, especially in individuals with a BMI below 26.2 kg/m2, and with an increased ge-

netic susceptibility to gallstones. miR-671-5p showed low overall expression in the validation

dataset (Figure 3.6, panel C).

3.2.5 Meta-analysis

Both fixed-effect and random-effect meta-analyses suggested that miR-4533 expression is

associated with an increased risk of GBC (Figure 3.6, panel B), but no association emerged

for miR-671-5p (Figure 3.6, panel D). Table 3.5 shows the overall and stratified results

from robust linear regression models for the two candidates considering simultaneously all

prospective cohorts investigated. Results adjusted for age, sex and BMI confirmed the

increased expression of miR-4533 in prospective serum samples of GBC patients, particularly

in individuals younger than 63.5 years, or with a BMI below 26.2 kg/m2.
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Figure 3.5: Expression of miR-4533 and miR-671-5p in formalin-fixed paraffin-embedded gall-

bladder tissue and serum samples, and meta-analysis results. (A,C) Dot-and-box plots of log2

miR-4533 and miR-671-5p expression in the preselection dataset and in the five investigated

prospective cohorts. (B,D) Forest plots and combined average differences in serum expression

between gallbladder cancer cases and controls from fixed and random effects meta-analysis for

miR-4533 and miR-671-5p. FFPE: formalin-fixed paraffin-embedded; CI: confidence inter-

val; GBC: gallbladder cancer; ESTHER: Early Detection and Optimised Therapy of Chronic

Diseases in the Elderly Population; HNR: Heinz Nixdorf Recall study; HUNT: Helseunder-

søkelsen i Nord-Trøndelag Health study.
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Table 3.5: Overall and stratified differences in miR-4533 expression by age, sex, body-mass

index and genetic susceptibility to gallstone disease between prospective gallbladder cancer

cases and controls.

Variable Level
log2 expression in controls

Median [5th;95th]

GBC Case-Control

Difference [95% CI]

All - 0.00 [0.00; 2.21] 0.43 [ 0.17; 0.69]

< 63.5 years 0.00 [0.00; 2.42] 1.17 [ 0.63; 1.71]
Age

⩾ 63.5 years 0.00 [0.00; 1.76] 0.01 [-0.07; 0.09]

Female 0.00 [0.00; 1.99] 0.42 [ 0.14; 0.70]
Sex

Male 0.02 [0.00; 2.14] 0.32 [-0.21; 0.85]

< 26.2 kg/m2 0.00 [0.00; 1.89] 0.83 [ 0.42; 1.24]
BMI

⩾ 26.2 kg/m2 0.00 [0.00; 1.97] 0.14 [-0.06; 0.34]

< 2.88 0.00 [0.00; 1.36] 0.07 [-0.17; 0.31]
GSD-PRS

⩾ 2.88 0.01 [0.00; 1.15] -0.15 [-0.37; 0.05]

GBC: Gallbladder cancer; 5th; 95th: 5th and 95th percentiles; CI: Confidence interval;

BMI: body-mass index; GSD-PRS: Polygenic risk score for gallstone disease.

Bold type indicate that the 95% confidence interval does not include zero.

3.2.6 Pathway analyses

Pathway analyses using the DIANA mirPath software indicated that miR-4533 is involved

in the regulation of multiple cancer pathways. Sixty-five KEGG biological processes were

significantly enriched (FDR-corrected p-value < 0.05). The top five pathways involving

miR-4533 were related to proteoglycans in cancer, renal cell carcinoma, glioma, ErbB sig-

naling, and Rap1 signaling. These five pathways included 510 genes in total, but some of

them belonged to several pathways and others were not expressed in our investigated serum

samples, resulting in 308 genes examined in the miRNA-mRNA correlation analyses.
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Figure 3.6: miR-4533 and SIPA1L2 expression in serum samples and gallbladder cancer cell

lines. (A) Scatterplot of log2 miR-4533 vs SIPA1L2 expression in serum samples from control

subjects. (B) log2 SIPA1L2 expression in serum samples from control subjects (green) and

gallbladder cancer cases (red) in the five prospective cohorts investigated. (C) log2 SIPA1L2

expression in ten gallbladder cancer cell-lines. NOZ and YoMi were the two cell-lines with

the lowest and highest log2 SIPA1L2 expression, respectively. SIPA1L2: Signal Induced

Proliferation Associated 1 Like 2 gene; GBC: gallbladder cancer.

Table 3.6 shows the results for the ten genes most negatively and strongly correlated with

miR-4533 expression. Among them, only SIPA1L2 (Signal Induced Proliferation Associated

1 Like 2 gene) and FAS (Fas Cell Surface Death Receptor) were associated with GBC risk.

However, FAS was overexpressed in serum samples from prospective GBC cases, and the

focus is therefore only on SIPA1L2 (Spearman rho correlation -0.247, average GBC case-

control expression difference -0.60). Figure 3.6, panel A depicts the negative relationship

between miR-4533 and SIPA1L2 expression in the investigated prospective serum samples

from control participants. Figure 3.6, panel B shows that SIPA1L2 is downregulated in

serum samples from GBC cases compared to control. SIPA1L2 was expressed in ten GBC

cell-lines, showing its highest expression in Y oMi (Figure 3.6, panel C).

3.2.7 Literature review

Without attempting an exhaustive review of the literature, the expression in serum samples

of 34 miRNAs previously associated with GBC was examined. Most studies (74%) were
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Table 3.6: List of the top ten genes with expression values most negatively correlated with miR-

4533 expression in the 5 pathways with the smallest false-discovery-rate-corrected probability

values.

Spearman rho correlation Difference Cases vs. controls

Gene Estimate 95% CI p-value Estimate 95% CI p-value

FLT4 -0.268 [-0.48; -0.05] 0.01 0.23 [-0.10; 0.56] 0.17

RAP1A -0.262 [-0.51; -0.01] 0.01 -0.15 [-0.47; 0.17] 0.35

FGF7 -0.248 [-0.45; -0.03] 0.02 -0.01 [-0.20; 0.18] 0.93

SIPA1L2 -0.247 [-0.48; -0.02] 0.02 -0.60 [-1.18; -0.01] 0.04

ARNT2 -0.245 [-0.45; -0.02] 0.02 0.07 [-0.11; 0.27] 0.53

ITGAM -0.189 [-0.39; 0.03] 0.05 0.00 [-0.16; 0.33] 0.97

MAPK9 -0.189 [-0.39; 0.02] 0.06 0.18 [-0.03; 0.67] 0.27

RAPGEF1 -0.187 [-0.41; 0.06] 0.06 -0.28 [-0.50; 0.19] 0.09

RAPGEF5 -0.187 [-0.42; 0.06] 0.06 0.12 [-0.10; 0.39] 0.41

FAS -0.179 [-0.39; 0.06] 0.07 0.44 [ 0.16; 0.76] 0.01

GBC: gallbladder cancer; CI: confidence interval; p-value: probability value.

conducted in India, followed by China (24%), and all but one study investigated gallbladder

tissue samples (Table A.7). Of the 34 miRNAs, eight showed an association between their

serum expression levels and GBC risk (miR-145-5p, miR-144-5p, miR-196a-5p, miR-196b-

5p, miR-32-5p, miR-3613-5p, miR-374a-5p, miR-378c). The expression of three miRNAs in

serum (miR-144-5p, miR-145-5p in the Indian study (but not in the single European study)

and miR-378c) was consistent with previous reports, where miR-144-5p and miR-145-5p

were overexpressed in serum and gallbladder tissue of GBC patients, and miR-378c was

downregulated in both types of samples.



Chapter 4

Discussion

Comment: Parts of the following Chapter have already been published in Cancers (Blandino

et al., 2022). The original manuscript was written by myself, but also contains comments

and corrections from the co-authors.

This chapter summarizes the contributions of this thesis to research. Additionally, the limi-

tations of the current study are discussed, along with proposed directions for future research.

4.1 Contributions to research and limitations

GBC, the sixth most common gastrointestinal cancer globally, is one of the most prevalent

forms of biliary tract cancer (Bray et al., 2024). GBC is highly aggressive and is usually

diagnosed at advanced stages, making treatment strategies largely ineffective, and treatment

options very limited (Wistuba and Gazdar, 2004). The geographic distribution of GBC

varies significantly, with low prevalence in high-income countries, while low- and middle-

income regions, particularly Latin America, experience much higher incidence rates (Bray

et al., 2024). GBC is also strongly associated to both environmental and genetic factors.

Modification of these determinants may offer great potential in preventing the development

of this aggressive disease (Kanthan et al., 2015). Therefore, the prognosis of GBC patients

could greatly improve with the adoption of primary and secondary prevention strategies,

helping prevent tumor spread to adjacent organs.
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A primary challenge in advancing effective management options for GBC patients has been

the discovery of innovative diagnostic and prognostic biomarkers. ncRNAs, in particular,

have demonstrated, through their regulatory role in many important biological processes, sig-

nificant potential as biomarkers for cancer risk assessment and early detection (Anastasiadou

et al., 2018). Additionally, while tissue biopsy provides direct insights into the local tumor

micro environment, it is an invasive procedure (Armakolas et al., 2023). Serum circulating

ncRNAs, on another hand, offer a less invasive method for evaluating cancer progression as

they are easily accessible and very stable even under extreme temperatures and long-term

storage (Glinge et al., 2017).

This thesis aims to identify circulating ncRNAs as potential biomarkers for GBC. The

applied methodology focuses on the detection of ncRNAs that exhibit consistent expression

levels in both tissue and serum, thereby enhancing their potential as reliable biomarkers. The

first part of this thesis examines the role of lncRNAs in GBC progression among Chilean

individuals, while the second part focuses on analyzing the expression patterns of miRNAs

in European GBC cases.

The link between ncRNA expression and the development of GBC has been investigated to

some extent, although findings remain inconsistent. This inconsistency can be attributed,

partially, to the heterogeneity of the studied populations, but primarily to the low number

of conducted studies and their limited sample sizes. Given the high prevalence of GBC in

Asian regions, the majority of research on ncRNAs and GBC has been conducted in India,

followed by China. In contrast, there has been limited research focusing on European or

Latin American populations, especially considering the high incidence rate of GBC in Latin

America. Additionally, the majority of existing studies have focused solely on analyzing

the expression of specific ncRNAs in gallbladder tissue samples, a method that is both

invasive and costly, as previously mentioned. A study by Saxena et al. (2023) involving five

Indian patients identified 19 upregulated and 29 downregulated miRNAs in GBC tissue.

Among the identified candidates, miR-145-5p exhibits an oncogenic role, which diverges with

the findings from another study on 48 German patients, where miR-145-5p acts as tumor

suppressor through the activation of STAT1 (Goeppert et al., 2019). The expression of

miR-145-5p shows similar patterns as the ones observed in the aforementioned study also in
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the European prospective serum samples used for the thesis purpose. Other discrepancies

between studies involving diverse populations have also been observed for miR-122. A study

conducted in Chinese subjects demonstrated the antitumor effects of miR-122 in 20 GBC

cell lines (Lu et al., 2015). Conversely, Li et al. (2015) found that elevated expression of

miR-122 in GBC tissue is associated with a worse prognosis.

According to the results provided by this thesis, three specific lncRNAs show a progressive

alteration in tissue expression from Chilean patients throughout the sequence from gallstones

disease, to dysplasia, and ultimately to GBC: AC084082.3, C22orf34, and LINC00662. The

expression levels of AC084082.3 and LINC00662 increase as malignancy progresses, while

C22orf34 displays a decreasing trend in expression from gallstone disease to GBC. Addi-

tionally, the validation of lncRNA-eQTLs identified two cis-eQTLs linked to the expression

of LINC00662 and three associated with C22orf34, which were then used for lncRNA ex-

pression prediction. Association analyses reveal that, consistent with tissue expression mea-

surements, the genotype-based expression of LINC00662 is associated with a 25% increased

risk of developing GBC.

Currently, there is insufficient evidence to determine the role of AC084082.3 in cancer. A

study on endometriosis associated ovarian cancer indicates that this lncRNA is underex-

pressed in cancer patients compared to controls (Finall et al., 2023). In alignment with

this thesis’ findings, some studies have reported the potential tumor-suppressive relevance of

C22orf34 in cancer biology. A recent study on renal cell carcinoma suggests that C22orf34

is under expressed in cancerous tissues compared to normal controls, with elevated levels of

this lncRNA correlating with improved overall survival rates (Yang et al., 2024). Another

study reveals that higher expression levels of C22orf34 are associated with a reduced risk

of death in patients with cutaneous melanoma (Tang et al., 2022). Similar results to those

presented in this thesis have also been observed in literature in relation to LINC00662. Ac-

cording to numerous studies on the respiratory, reproductive, nervous, and digestive systems,

LINC00662 plays a significant oncogenic role by enhancing cell invasion (Xia et al., 2020;

Gong et al., 2018; Lv et al., 2021). Research conducted in gastric cancer and hepatocellu-

lar carcinoma shows that the overexpression of LINC00662 is also closely associated with

poor patient prognosis and reduced chemo sensitivity (He et al., 2021; Tian et al., 2020; Guo
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et al., 2020). Mechanistically, LINC00662 serves as ceRNA for gene regulation and influ-

ences RNA metabolism, regulating mRNA stability, and participating in numerous essential

signaling pathways, including the MAPK/ERK pathway.

This thesis also highlights that, in European subjects, miR-4533 and miR-671-5p show consis-

tent expression differences in gallbladder tissue and serum samples, both playing an oncogenic

role. However, only miR-4533 was validated through meta-analysis. Notably, miR-4533 over-

expression is especially marked in individuals under the age of 63.5 years and those with a

BMI below 26.2 kg/m2. Pathway analysis revealed that miR-4533 is implicated in sev-

eral cancer-related pathways, including proteoglycans in cancer, renal cell carcinoma, glioma,

ErbB and Rap1 signaling. Furthermore, a negative correlation between the expression of

SIPA1L2 and miR-4533 suggests that SIPA1L2 serves as target gene of miR-4533, being

underexpressed in serum samples from GBC cases.

There is little emerging evidence in the literature regarding the role of miR-4533 as a poten-

tial disease biomarker. One study demonstrated that miR-4533, through its interaction with

ABLIM1, is involved in the regulation of intervertebral disc degeneration progression (Xie

et al., 2024). A research investigating miRNA in colorectal cancer, reported the overexpres-

sion of miR-4533 in the colorectal mucosa across individuals of various ancestries, including

Hispanic, and Asian (Slattery et al., 2017). Additionally, elevated levels of miR-4533 have

been observed in breast and prostate cancer, further supporting its potential role as an

oncogenic biomarker (Lai et al., 2019). Mechanistically, miR-4533 may not be a canonical

miRNA, since it does not have a hairpin loop and is probably dicer independent. Neverthe-

less, miR-4533 is listed in the miRbase database, and results from this thesis, combined with

literature review, suggest that it is a potential serum biomarker for GBC (Griffiths-Jones

et al., 2008). Dysregulation of miR-671-5p has also been observed in numerous cancers.

miR-671-5p increases cell proliferation, invasion, and migration in hepatocellular carcinoma

by targeting ALDH2 (Chen et al., 2022). Furthermore, the overexpression of miR-671-5p has

also been associated with poor prognosis in colorectal cancer (Jin et al., 2019). Research on

renal cell carcinoma unraveled the HMGA1-mediated role of miR-671-5p, which promotes

metastasis through targeting of APC (Chi et al., 2020). The role of the SIPA1L2 gene in

the tumor environment has been widely studied. According to The Human Protein Atlas,
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SIPA1L2 is a biomarker for renal cancer (Uhlén et al., 2015). SIPA1L2 expression has also

been associated with an unfavorable prognosis and poor survival in intestinal-type gastric and

colorectal cancer patients (Zhang et al., 2018; Rahman et al., 2020). In contrast, a distinct

pattern has been observed in hepatocellular carcinoma, characterized by the upregulation of

SIPA1L2 expression (Ma et al., 2020). Among the key pathways involving the preselected

miRNAs in this thesis, the ErbB signaling pathway emerges as the most frequently mutated

in GBC, affecting 36.8% of GBC cases (Sicklick et al., 2016). The proteoglycans in cancer

pathway plays a significant role in GBC progression too. A recent study demonstrated that

this pathway is crucial for the progression of gallbladder inflammatory lesions to invasive

cancer (Rawal et al., 2023). According to existing literature, several other pathways not

identified in this thesis are also implicated in GBC pathogenesis, suggesting that the dis-

ease’s molecular mechanisms may be more complex than those explored in this work. Some

examples are the PI3K/AKT/mTOR pathway, the hepatocyte growth factor, amphiregulin,

and insulin-like growth factor 1 receptor (Sinkala, 2023; Cheng et al., 2022). Future follow-up

research to this thesis could study these candidates in other populations and explore their

potential involvement in other cancer-related pathways.

To address population and specimen bias, this thesis develops a multiple-stage approach for

identifying circulating ncRNAs associated with GBC progression. The applied framework,

which represents one of the novelties of this thesis, is based on the integration of data from

diverse datasets, ancestry, and both tissue and serum biomarkers. Therefore, the identi-

fied biomarkers do not only rely on a single cohort or sample type. ncRNAs that do not

demonstrate consistent directional expression across different datasets are excluded, thereby

enhancing the selection of viable candidates and ensuring robustness of the results. The

first study examined in this thesis on lncRNAs and GBC in Chileans, for example, con-

sists of three independent datasets: the preselection dataset includes exclusively lncRNA

expression from 98 FFPE tissue samples; the cis-lncRNA-eQTL validation dataset encom-

passes both lncRNA expression and genotype information over 110 serum samples; and the

lncRNA-GBC association dataset contains genotype information alone for 540 GBC cases

and 2397 population-based controls. The study design applied for the miRNA-GBC study

in Europeans follows a similar structure, through miRNA preselection in 48 FFPE tis-

sue samples, screening of miRNA expression differences in 72 prospective serum samples,
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and subsequent miRNA validation in additional 67 prospective serum samples. A limita-

tion of the ncRNA identification framework applied in this thesis is the reduced number of

identified ncRNAs compared to one-stage designs. In one-stage designs, the chances of of

discovering new biomarkers are higher, since the selection of potential candidates does not

undergo multiple filtering steps, which may decrease the chances of success. However, this

streamlined approach raises concerns about the reliability of the findings, which, as discussed

earlier in this chapter, may be limited to a specific population or specimen, potentially lack-

ing broader applicability. Like the proposed design presented in this thesis, the development

of adaptive study designs that optimize both cost-efficiency and time, while still effectively

identifying biomarkers, presents a promising avenue for future research. These designs could

strike a balance between comprehensive biomarker discovery and the need for external val-

idation. One important strength of the applied design is the registration of the miRNA

validation after preselection and screening on the German (drks.de, March, 5th 2021) and

the International Clinical Trials Registry Platform of the World Health Organization (WHO,

https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00024573).

Although the two studies conducted in this thesis are relatively large given the rarity of

GBC, especially in Europe, the small sample sizes in the used datasets still represent a

limitation in terms of the robustness and generalization of the findings. As a result, in the

lncRNA study, only six lncRNAs out of the 332 screened were preselected. Although 2,137

instrumental variables were identified from the eQTL-database, only five associations could

be validated in the lncRNA-eQTL validation dataset, which is likely due to the small sample

size. As for the second study, even after combining data and samples from large European

cohorts and conducting the largest prospective study to date, the sample size is still relatively

small. Moreover, the heterogeneity of the prospective studied cohorts (diverging in terms of

age, sex, BMI, and time from blood retrieval to GBC diagnosis) translates into a good

representativeness of the results, but on the other hand, miRNA expression differences that

are population-specific have been likely overlooked.

Sample size and power analyses are well-established methodologies in traditional biological

studies, including GWAS and microarray gene expression studies (Uffelmann et al., 2021).

These tools help ensure adequate statistical power to detect significant associations, guiding
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researchers in optimizing study design and interpretation of findings. Sample size and statisti-

cal power are heavily influenced by several key factors, including the number of comparisons

(and methods used to account for multiple testing), biological variability within the data,

data dispersion, the underlying distribution of the data, and the available budget. Careful

consideration of these elements is essential for ensuring valid and reproducible results. To

date, while tools like RnaSeqSampleSize are available to estimate the optimal sample size

for differential gene expression analysis, there are no established tools specifically designed

for sample size calculation in ncRNA studies (Zhao et al., 2018). This gap presents a sig-

nificant challenge in ensuring adequate statistical power for ncRNA research. In an effort

to determine the optimal sample size for further investigating the two miRNAs identified

in this thesis, the R tool for sample size estimation, pwr.t.test, has been utilized (Bartlett

and Charles, 2022). The obtained results indicate that to attain a statistical power of 0.80,

51 case-control pairs would be required to adequately detect miR-4533 (effect size: 0.62).

Conversely, a considerably larger sample size of 531 case-control pairs is necessary to validate

miR-671-5p (effect size: 0.19). These findings suggest that the sample sizes utilized in this

study are likely sufficient for miR-4533, which shows clear expression differences between

cases and controls, but are not enough for miR-671-5p. Therefore, further validation in

additional cohorts is needed to confirm the utility and accuracy of the identified lncRNAs

and miRNAs as serum biomarkers. Follow-up studies that include a larger number of study

participants are necessary to identify and validate a higher number of ncRNAs, and more

accurate estimates of individual GBC risk. Larger cohorts would provide more statistical

power, improving the reliability and broader applicability of the identified biomarkers.

A review of the existing literature on GBC biomarker studies indicates that inadequate

sample sizes are a widespread challenge, especially in studies which involve serum samples.

For example, a study by Srivastava et al. (2023) examined only 34 paired serum samples,

identifying five potential miRNA candidates. However, it is fundamental to report that

their identification was based on p-values that were not adjusted for multiple comparisons.

This implies that applying multiplicity corrections would have resulted in the exclusion of

all miRNAs from the previous selection. A somewhat larger study included 85 GBC tissue

samples alongside 11 normal gallbladder mucosas (Chang et al., 2013). A study conducted by

Ma et al. (2015) on lncRNAs validated the oncogenic role of CCAT1, utilizing only 40 GBC-
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control pairs in tissue samples. Similarly, Li et al. (2015) attempted to identify differentially

expressed miRNA in blood, based on 40 peripheral blood samples. Additionally, Xue et al.

(2019) incorporated only 58 tissue samples in total. Overall, these findings underscore that

the two studies presented in this thesis show the largest sample sizes reported to date in

GBC research, particularly in relation to serum analyses.

Regarding the unsuccessful validation of the cis-eQTL associations in the first study of this

thesis, it is important to briefly discuss on the prevalence of genetic association studies on

individuals of European descent. As of September 2023, most of the 6,574 publications and

552,954 associations included in the GWAS catalog are based on European studies (Sollis

et al., 2023). The absence of GWAS data for populations outside of European ancestry is,

therefore, a notable concern. This gap is particularly evident in African populations, whose

unique haplotypic structures are well-suited to enable targeted genetic discoveries (The In-

ternational HapMap Consortium, 2007). The situation is even more complicated for research

on Latin Americans, as these populations are characterized by admixture primarily involving

African, Native American, and European ancestries. Notably, only 1.3% of both discovery

and replication studies have been conducted within these populations, and proportions of

Native American ancestry are not taken into account (Bryc et al., 2015; Mills and Rahal,

2019). In this context, a Japanese study examined the association between prostate cancer

and 23 SNPs that had been previously identified through GWAS on heterogeneous pop-

ulations (Yamada et al., 2009). 16 SNPs emerged from studies on Europeans, two from

Africans and five from diverse populations. The findings of this study revealed that only

seven out of the 23 SNPs are linked with prostate cancer risk in the Japanese population,

while the remaining 16 SNPs show no association or, as in five SNPs, opposite point esti-

mates compared to what had been previously reported. Comparable considerations can be

extended to type 2 diabetes, asthma, and cardiovascular diseases, conditions that are highly

prevalent among Latin American populations, but which have been predominantly studied in

European populations (Aguayo-Mazzucato et al., 2019; Maldonado et al., 2023). Therefore,

catalogs should take this bias into account to ensure that population-specific variants are not

overlooked.
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A key strength and originality of this research lies not only in the investigated hypotheses,

but in the approach used to identify disease effects in tissue by leveraging omics data. Based

on current knowledge, the two studies presented in this thesis are the first to identify differ-

entially expressed ncRNAs in GBC by combining both tissue samples and RNA sequencing

data. While a moderate number of studies have explored the link between tissue and serum

biomarkers, the existing literature on this topic in the context of GBC is still insufficient.

In relation to breast cancer, a study by Karimi et al. (2020) underscored the importance of

circulating biomarkers, demonstrating that key markers such as CEA(O), CK19, ER, and c-

Myc are detectable exclusively in blood samples and not in tissue samples. The concordance

between tissue and plasma markers was also investigated in a study on lung adenocarcinoma,

revealing that CA 19-9 and CY FRA21-1 exhibit same expression patterns in both tissue and

serum samples (Jiao et al., 2021). Another study on non-alcoholic fatty liver disease, has also

attempted to explore the connection between tissue and transcriptomics data using direct

serum protein measurements to identify noninvasive biomarkers (Darci-Maher et al., 2023).

A recent study on metastatic testicular cancer found that six miRNAs hold high sensitivity

(96%) and specificity (78%) for cancer detection in serum samples, whereas their specificity

in tissue is notably low (Ujfaludi et al., 2024). In the context of circulating metabolites,

Cao et al. (2021) identified 17 metabolites that exhibited consistent expression alterations in

pancreatic ductal adenocarcinoma compared to controls both in tissue and serum samples. In

conclusion, the overexpression of miR-4533 and LINC00662 in both tissue and serum sug-

gests their potential utility as diagnostic biomarkers for GBC. However, these encouraging

findings require validation and further refinement in future studies, particularly concerning

their applicability to other sample types (e.g., whole blood and plasma).

In this thesis, various statistical methods are tested and compared to identify differentially

expressed ncRNAs in GBC. Preselection of lncRNAs exhibiting monotonically increasing

or decreasing expression levels from gallstones to GBC relies on both the non-parametric

two-sided J-T test, and ML XGBoost algorithm, used to train three-class classification ML

models (Jonckheere, 1954; Chen and Guestrin, 2016). On the other hand, the preselection,

screening and validation of differentially expressed miRNAs are conducted using robust lin-

ear regression, with validation further reinforced by metanalysis. The majority of existing

literature indicates a general preference of research for methodologies such as the R package



60 Chapter 4. Discussion

DESeq2 or standard linear regression for the identification of differentially expressed RNAs

(Love et al., 2014). Both methods hold certain advantages, but they are also accompanied

by inherent limitations. Li et al. (2022) examined the performance of the DESeq2 package,

specifically evaluating its propensity to generate false positives. Interestingly, their findings

revealed that DESeq2 erroneously classifies 15.3% of cases as false positives. Soneson and

Delorenzi (2013) reported that DESeq2 demonstrates effective performance, particularly with

smaller sample sizes (Soneson and Delorenzi, 2013). However, they also noted that DESeq2

tends to yield an excess of large p-values and is associated with a lower number of true pos-

itives compared to other methodologies. Conversely, linear regression is a widely employed

tool in clinical practice for assessing the relationship between disease status and the expres-

sion of specific molecular phenotypes, while effectively adjusting for potential confounders,

thereby enhancing the accuracy of estimates and reducing bias. The efficacy of standard

linear regression is compromised in the context of RNA-Seq data, where distributions are

frequently skewed, and outlying observations are prevalent (Kvam et al., 2012). In fact,

estimates from standard linear regression are heavily influenced by the presence of these di-

vergent observations (Alanamu et al., 2023). This results in a loss of valuable information

and a reduction in statistical power. Robust regression, in contrast, yields reliable coefficient

estimates even in the presence of outliers by diminishing the influence of these outliers on

the squared error loss, thereby minimizing their effect on the regression estimates (Yu et al.,

2014). Similar considerations can be extended to non-parametric tests, which are free from

assumptions and therefore more flexible (Sedgwick, 2015).

The methodology utilized in the first study to predict lncRNA expression based on individ-

ual genotypes represents another strength of this thesis. Prediction of lncRNA expression

on GBC cases and controls with only genotype information available is carried out by ex-

ploiting the summary statistics from the association between cis-eQTLs and the expression

of preselected lncRNAs candidates on a distinct cohort of 110 controls. The plausibility of

the findings is strengthened by the positive association between the genotype-based expres-

sion of LINC00662 and GBC risk, which is consistent with the results from the preselection

stage. Given the absence of existing softwares capable of predicting ncRNA expression for

specific traits, the development of a methodology such as the one described here is essential

for facilitating the assessment of cancer risk. Thousands of variants associated to complex



4.1. Contributions to research and limitations 61

disease have been identified since the advent of GWAS, with approximately 50% of these

being eQTLs (Ding et al., 2024). In the last decade, a gene-based software known as PrediX-

can has been implemented and is largely employed to predict tissue-specific gene expression

from individual genotypes (Gamazon et al., 2015). However, research has demonstrated that

the prediction accuracy of PrediXcan can be adversely affected by factors such as population

stratification (Mikhaylova and Thornton, 2019).

A limitation of both studies presented in this thesis is the directionality of the associations,

which specifically investigates whether GBC causes changes in either lncRNA or miRNA

expression. While this type of information is particularly relevant for risk prediction and

disease prevention, the reverse direction, ”lncRNA/miRNA expression changes cause GBC”

cannot be investigated using the approach outlined in this thesis. A future objective is

to explore the causality of these associations through MR. To date, no studies have yet

employed MR to investigate the causal relationship between miRNA expression and GBC.

More broadly, only a limited number of studies have applied this technique to either GBC or

ncRNAs. In recent years, MR studies have successfully established the causal link between

GBC and type 2 diabetes, gallstones, BMI, and C-Reactive protein (Cheng et al., 2024;

Barahona Ponce et al., 2021). Although no MR studies have been applied to investigate the

role of miRNAs on biliary tract cancers, little evidence exists regarding the causal association

between miRNA expression and other diseases, such as severe COVID-19, schizophrenia,

Parkinson’s disease, and lung cancer (Li et al., 2021; Mu et al., 2023; Shi et al., 2024; Huang

et al., 2020). The lack of MR studies extends to research on lncRNAs as well, with only

a few published studies exploring the relationship between lncRNA expression and type 2

diabetes (de Klerk et al., 2023; Pan et al., 2020).

The absence of data on gallstone disease in the miRNA study constitutes another limitation

of this thesis. In contrast, this information was partially available in the lncRNA study,

providing a more comprehensive analysis. The most important factor described for GBC

development is individual history of gallstones, which are present in almost 85% of patients

diagnosed with GBC in Chile (Randi et al., 2006). Gallstone disease incidence is higher in

individuals with Native American ancestry compared to other populations, yet it remains a

significant risk factor for GBC in European populations as well (Liebe et al., 2015). Chronic
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inflammation and irritation caused by gallstones increase the susceptibility of the gallblad-

der’s mucosa to malignant transformation, thereby elevating the risk of developing cancer

(Wistuba and Gazdar, 2004). In terms of gallstone size, those bigger than 3 cm in diameter

are associated with a tenfold increase in the risk of GBC compared to smaller ones (Rawla

et al., 2019). To address the lack of gallstone information in the miRNA study, a polygenic

risk score was calculated using genetic variants robustly associated with gallstone disease.

However, the analysis was constrained by the availability of genetic data for only 80 indi-

viduals, limiting the statistical power of the findings. Future studies following up this thesis

should also address this lack of information.

4.2 Conclusions

In summary, GBC remains an under-researched malignancy that is relatively rare in high-

income countries, yet it is poses a significant public health challenge in certain low-income

regions, such as Chile, where mortality rates rank among the highest globally. Current

research on molecular phenotypes, including ncRNAs, associated with GBC development is

still limited. Moreover, the relationship between tissue and serum biomarkers, which are less

invasive and easily accessible, has not been extensively studied in the context of GBC.

This thesis sought to address this gap by identifying circulating lncRNAs and miRNAs as

potential biomarkers for the prevention and early diagnosis of GBC. Both studies presented

in this thesis focused on preselecting biomarkers in tissue and validating them in serum,

targeting two distinct populations: Chileans, where GBC is highly prevalent, and Europeans,

where GBC is rare and no robust risk biomarkers have been established.

In Chileans, the lncRNAs AC084082.3 and LINC00662 demonstrated a progressive increase

in expression across the spectrum of gallstones, dysplasia, and cancer, while a lower expression

of C22orf34 in GBC patients was linked to poorer GBC outcome. Moreover, the genotype-

based expression of LINC00662 showed also a positive association with GBC progression,

confirming its potential as cancer risk biomarker.

In European prospective serum samples, miR-4533 and miR-671-5p showed elevated expres-

sion levels in GBC cases, but only miR-4533 was validated through meta-analysis. The
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overexpression of miR-4533 was particularly evident in younger individuals and those with a

lower BMI. Pathway analyses also uncovered SIPA1L2 as a novel target gene, which was

downregulated in GBC cases, shedding light on the molecular mechanisms underlying GBC

pathogenesis.

In conclusion, this thesis represents a significant contribution to the understanding of ncRNAs

in GBC, highlighting few key lncRNAs and miRNAs as potential biomarkers for the disease.

The findings provide a basis for future research aimed at improving the risk prediction and

early diagnosis of GBC. Furthermore, these results offer a foundation for the development of

non-invasive diagnostic tools, which could especially benefit regions with limited healthcare

resources. Reducing unnecessary cholecystectomies while maintaining high sensitivity for

GBC detection is of particular relevance in countries like Chile, where the healthcare burden

of GBC is substantial. The findings also underscore the need for continued investigation into

ncRNA dysregulation in GBC, with the ultimate goal of developing novel prevention strate-

gies and non-invasive screening tools, crucial for early detection and better clinical outcomes

in this often asymptomatic disease. A better understanding of individual GBC risk could lead

to more tailored surveillance strategies and inform decision-making regarding prophylactic

cholecystectomy, particularly for high-risk individuals.
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Chapter 5

Summary

This thesis focuses on the identification of circulating non-coding RNAs associated with the

risk of developing gallbladder cancer, an aggressive disease with poor prognosis. Globally,

gallbladder cancer exhibits high prevalence and mortality rates in specific geographic regions,

such as Latin America, while remaining relatively rare in Europe. The molecular and genetic

mechanisms underlying gallbladder cancer development have been partially explored, yet the

precise contributions of specific biomarkers to its development remain inadequately under-

stood. Non-coding RNAs play a central role in regulating abnormal cell processes, and hold

promise as valuable biomarkers of early disease detection. Two different types of non-coding

RNAs were investigated in this thesis: long non-coding RNAs and microRNAs. Long non-

coding RNA expression levels were evaluated in the Chilean population, while microRNA

regulation was investigated in individuals of European ancestry. Both studies relied on the

combination of tissue and serum non-coding RNA expression data.

The first study integrated three datasets containing long non-coding RNA expression data

alone (gallstone n = 31, dysplasia n = 35, gallbladder cancer n = 32), both long non-coding

RNA expression and genotype data (controls n = 110), and genotype information exclusively

(controls n = 2397, gallbladder cancer cases n = 540). On the first dataset, differentially

expressed long non-coding RNAs along the progression from gallstones, to dysplasia and

gallbladder cancer were preselected. In the second dataset, the associations between genetic

variants (SNPs) and the serum expressions of the preselected long non-coding RNAs were
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assessed, and the best models for prediction were selected. Finally, serum long non-coding

RNA expressions were predicted based on individual genotypes, and the association with

gallbladder cancer risk was estimated. AC084082.3 and LINC00662 exhibited increased ex-

pression levels (p-value = 0.009), while C22orf34 showed downregulation in progressing from

gallstones to gallbladder cancer (p-value = 0.04). Two SNPs were identified and validated

for LINC00662 (r2 = 0.26) and three for C22orf34 (r2 = 0.24). Only the predicted serum

expression of LINC00662 was significantly associated with gallbladder cancer risk, and linked

to a 25% higher risk of developing cancer (odds ratio = 1.25, p-value = 0.02).

In the second study, a three-step approach was applied to preselect microRNAs from German

formalin-fixed paraffin-embedded tissue samples (gallstone n = 8, gallbladder cancer n = 40),

screen microRNA expressions in serum prospective samples from three European cohorts (n

= 37 gallbladder cancer case-control pairs), and validate the identified microRNAs in serum

samples from three additional prospective cohorts (controls n = 36, gallbladder cancer cases

n = 31). Statistical analyses also included pathway and meta-analysis, and examination of

expression correlation between microRNAs and target genes. miR-4533 and miR-671-5p were

overexpressed both in gallbladder cancer tissue and in the first set of serum samples. However,

only the overexpression of miR-4533 was validated both in the second set of prospective serum

samples, and through meta-analysis (p-value = 4.1x10−4). miR-4533 was mostly upregulated

in individuals under 63.5 years, and with a body-mass index below 26.2 kg/m2. Pathway and

correlation analyses revealed that miR-4533 targets SIPA1L2 in the Rap1 signaling pathway.

This thesis demonstrates the heterogeneous nature of gallbladder cancer molecular profiles.

Results from the first study suggest that preselection of long non-coding RNAs based on

tissue samples and exploitation of related genetic variants facilitates the identification of cir-

culating long non-coding RNAs linked to cancer risk. The second study draws attention to

the importance of integrating tissue and serum biomarkers for the preselection, screening and

validation of differentially expressed microRNAs. Both studies highlight the need for inter-

national research collaborations to identify and validate biomarkers for secondary prevention

of rare tumours such as gallbladder cancer. These results need to be validated and further

refined in future studies, also with regard to their transferability to other sample types and

populations.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Charakterisierung von zirkulierenden nicht-kodierenden

RNAs, die mit dem Risiko der Entwicklung von Gallenblasenkrebs, einer aggressiven Erkrankung

mit schlechter Prognose, verbunden sind. Weltweit weist Gallenblasenkrebs in bestimmten

geographischen Regionen wie Lateinamerika eine hohe Prävalenz und eine hohe Sterblichkeit-

srate auf, während die Erkrankung in europäischen Ländern relativ selten vorkommt. Die

molekularen und genetischen Mechanismen, die dem Gallenblasenkrebs zugrunde liegen, sind

zum Teil erforscht, doch die genauen Beiträge spezifischer Biomarker sind noch unzureichend

bekannt. Nichtcodierende RNAs spielen eine zentrale Rolle bei der Regulierung abnormaler

Zellprozesse und versprechen wertvolle Biomarker für die Früherkennung von Krankheiten zu

sein.

In dieser Doktorarbeit wurden zwei verschiedene Arten von nicht-kodierenden RNAs unter-

sucht: lange nicht-kodierende RNAs und microRNAs. Die Expressionsniveaus von langen

nichtkodierenden RNAs wurden in der chilenischen Bevölkerung bewertet, während die Reg-

ulierung von microRNAs bei Personen europäischer Abstammung untersucht wurde. Beide

Studien stützten sich auf die Kombination von Daten von nicht codierenden RNAs aus

Gewebe und Serum.

In der ersten Studie wurden drei separate Datensätze zusammengeführt: Der erste Datensatz

enthielt ausschließlich Daten zur Expression langer nichtkodierender RNAs (Gallenstein
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n = 31, Dysplasie n = 35, Gallenblasenkrebs n = 32), der zweite Datensatz umfasste sowohl

Daten zur Expression langer nichtkodierender RNAs als auch Genotypdaten (Kontrollen

n = 110) und der letze Datensatz enthielt nur Genotypinformationen (Kontrollen n = 2397,

Gallenblasenkrebsfälle n = 540). Zunächst wurden die unterschiedlich exprimierten langen

nichtkodierenden RNAs entlang der Progression von Gallensteinen über Dysplasie bis hin

zu Gallenblasenkrebs vorselektiert. Im zweiten Datensatz wurden danach die Assoziatio-

nen zwischen Einzelnukleotidpolymorphismen (SNPs) und der Serumexpression der vorselek-

tierten langen nicht-kodierenden RNAs bewertet und die besten Modelle für die Prediktion

ausgewählt. Schließlich wurden die Ausprägungen der langen nicht-kodierenden RNAs im

Serum auf der Grundlage der einzelnen Genotypen vorhergesagt, und der Zusammenhang

mit Gallenblasenkrebsrisiko wurde bestimmt. AC084082.3 und LINC00662 wiesen erhöhte

Expressionswerte auf (p-Wert = 0.009), während C22orf34 bei der Entwicklung von Gallen-

steinen zu Gallenblasenkrebs herunterreguliert war (p-Wert = 0.04). Zwei SNPs wurden für

LINC00662 (r2 = 0.26) und drei für C22orf34 (r2 = 0.24) identifiziert und validiert. Be-

merkenswert ist, dass nur die vorhergesagte Serumexpression von LINC00662 signifikant mit

dem Gallenblasenkrebsrisiko assoziiert und mit einem 25% höheren Krebsrisiko verbunden

war (Odds Ratio = 1.25, p-Wert = 0.02).

In der zweiten Studie wurde ein dreistufiger Ansatz angewandt, um microRNAs aus deutschen

formalinfixierten Gewebeproben (Gallenstein n = 8, Gallenblasenkrebs n = 40) vorzuselek-

tieren, Screening der microRNA-Expressionsniveaus in prospektiven Serumproben aus drei

europäischen Kohorten (n = 37 Gallenblasenkrebs-Fall-Kontroll-Paare) durchzuführen, und

die identifizierten microRNA-Kandidaten in Serumproben aus drei weiteren prospektiven

Kohorten (Kontrollen n = 36, Gallenblasenkrebs-Fälle n = 31) zu validieren. Die statistis-

chen Analysen umfassten auch Pathway- und Meta-Analyse sowie eine Untersuchung der Ex-

pressionskorrelation zwischen mikroRNAs und Zielgenen. miR-4533 und miR-671-5p waren

sowohl im Gallenblasenkrebsgewebe als auch in der ersten Gruppe von Serumproben über-

exprimiert. Allerdings wurde nur die Überexpression von miR-4533 sowohl im zweiten Satz

prospektiver Serumproben als auch durch Meta-Analyse validiert (p-Wert = 4.1x10−4). miR-

4533 war besonders bei Personen unter 63.5 Jahren und mit einem Body-Mass-Index unter

26.2 kg/m2 hochreguliert. Pathway- und Korrelationsanalysen ergaben außerdem, dass miR-

4533 auf SIPA1L2 im Rap1-Signalweg abzielt.
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Die Ergebnisse dieser Dissertation zeigen, wie heterogen die Genetik von Gallenblasenkrebs

ist. Die Ergebnisse der ersten Studie deuten darauf hin, dass die Vorauswahl langer nichtkodieren-

der RNAs auf der Grundlage von Gewebeproben und die Nutzung verwandter genetischer

Varianten die Identifizierung zirkulierender langer nichtkodierender RNAs, die mit dem Kreb-

srisiko verbunden sind, ermöglicht. Die zweite Studie weist auf die Bedeutung der Integra-

tion von Gewebe- und Serum-Biomarkern für die Vorauswahl, das Screening und die Vali-

dierung von unterschiedlich exprimierten microRNAs hin. Beide Studien unterstreichen die

Notwendigkeit internationaler Forschungskooperationen zur Identifizierung und Validierung

von Biomarkern für die Sekundärprävention von seltenen Tumorerkrankungen wie Gallen-

blasenkrebs. Diese vielversprechenden Ergebnisse müssen in künftigen Studien validiert und

weiter verfeinert werden, auch im Hinblick auf ihre Übertragbarkeit auf andere Probenarten

und Populationen.
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Appendix A

Appendix A: Additional Tables and

Figures

A.1 Identification of circulating long non-coding RNAs

associated with gallbladder cancer risk

Comment: Parts of the following Chapter have already been published in Cancers (Blandino

et al., 2022). The original manuscript was written by myself, but also contains comments

and corrections from the co-authors.
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Figure A.1: 39 high-quality preselected long non-coding RNA candidates using machine learn-

ing, ordered by relative importance.
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Figure A.2: Genotype-based expression of C22orf34 in the long non-coding RNA-gallbladder

cancer association dataset. GBC: gallbladder cancer. Rhombuses indicate the average log2

expression in cases and controls, respectively.
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Table A.1: Preselected long non-coding RNAs based on Jonckheere-Terpstra tests.

lncRNA p-value
Log2 expression GS

Median [5th;95th]

OR Dys

Estimate [95% CI]

OR GBC

Estimate [95% CI]

AC084082.3 0.009 8.23 [ 1.45 - 9.93 ] 2.10 [ 0.86 - 5.11 ] 1.39 [ 1.04 - 1.85 ]

FAM95B1 0.009 1.44 [ 0.48 - 2.49 ] 0.15 [ 0.03 - 0.78 ] 0.13 [ 0.03 - 0.64 ]

HCG11 0.009 1.50 [ 0.65 - 2.78 ] 3.01 [ 1.14 - 7.99 ] 2.99 [ 1.12 - 7.96 ]

LINC00472 0.009 1.48 [ 0.63 - 2.53 ] 0.89 [ 0.43 - 1.88 ] 0.11 [ 0.02 - 0.64 ]

LINC00662 0.009 1.48 [ 0.55 - 4.38 ] 2.73 [ 1.41 - 5.30 ] 2.00 [ 1.12 - 3.58 ]

LINC00869 0.009 2.62 [ 0.92 - 3.97 ] 2.41 [ 1.19 - 4.85 ] 3.35 [ 1.48 - 7.56 ]

MIR155HG 0.009 7.66 [ 1.47 - 9.73 ] 1.55 [ 1.03 - 2.31 ] 2.33 [ 1.29 - 4.18 ]

MIR3142HG 0.009 10.56 [ 3.42 - 13.29 ] 1.31 [ 0.94 - 1.84 ] 3.14 [ 1.30 - 7.59 ]

PVT1 0.009 1.02 [ 0.45 - 1.75 ] 0.43 [ 0.10 - 1.86 ] 4.36 [ 0.87 - 21.86 ]

PWAR6 0.009 1.65 [ 0.85 - 3.37 ] 0.70 [ 0.33 - 1.47 ] 0.26 [ 0.08 - 0.80 ]

RP1.60O19.1 0.009 3.02 [ 0.92 - 5.32 ] 1.04 [ 0.67 - 1.64 ] 0.58 [ 0.34 â€“ 1.00 ]

RP11.701H24.4 0.009 11.03 [ 1.47 - 12.47 ] 1.07 [ 0.87 - 1.32 ] 0.31 [ 0.11 - 0.84 ]

RP4.561L24.3 0.009 6.76 [ 1.44 - 8.87 ] 2.23 [ 1.24 - 4.03 ] 2.63 [ 1.30 - 5.34 ]

TERC 0.009 1.50 [ 0.73 - 2.85 ] 2.60 [ 1.17 - 5.78 ] 3.61 [ 1.53 - 8.55 ]

LL0XNC01.237H1.2 0.02 1.02 [ 0.45 - 1.96 ] 2.11 [ 0.90 - 4.93 ] 3.14 [ 1.13 - 8.73 ]

RP11.78F17.1 0.02 1.20 [ 0.50 - 1.82 ] 0.20 [ 0.04 - 0.98 ] 0.09 [ 0.02 - 0.52 ]

FENDRR 0.02 1.49 [ 0.82 - 2.88 ] 1.99 [ 0.75 - 5.26 ] 0.13 [ 0.02 - 0.71 ]

LINC00261 0.02 2.07 [ 0.54 - 4.41 ] 1.04 [ 0.64 - 1.67 ] 0.45 [ 0.22 - 0.90 ]

LINC02001 0.03 4.30 [ 1.20 - 6.60 ] 1.86 [ 1.21 - 2.86 ] 1.68 [ 1.12 - 2.50 ]

RP11.498C9.15 0.03 0.98 [ 0.46 - 1.59 ] 1.60 [ 0.58 - 4.45 ] 2.29 [ 0.73 - 7.15 ]

RP11.170M17.1 0.03 1.44 [ 0.45 - 4.27 ] 0.70 [ 0.38 - 1.29 ] 0.14 [ 0.02 - 0.77 ]

SNHG9 0.03 2.55 [ 1.09 - 4.33 ] 2.10 [ 1.07 - 4.13 ] 3.50 [ 1.43 - 8.60 ]

MEG3 0.03 3.69 [ 1.44 - 6.23 ] 0.95 [ 0.60 - 1.50 ] 0.39 [ 0.18 - 0.83 ]

RP6.74O6.2 0.03 1.46 [ 0.50 - 2.79 ] 0.77 [ 0.36 - 1.62 ] 0.51 [ 0.21 - 1.26 ]

RP1.140K8.5 0.04 1.49 [ 0.59 - 3.05 ] 1.02 [ 0.55 - 1.90 ] 0.34 [ 0.11 - 1.02 ]

RP11.304L19.13 0.04 1.44 [ 0.52 - 3.16 ] 1.43 [ 0.69 - 2.96 ] 2.77 [ 1.17 - 6.56 ]

CTD.2311M21.4 0.04 1.42 [ 0.45 - 2.79 ] 0.00 [ 0.00 - 0.15 ] 0.25 [ 0.06 - 1.02 ]

CTD.2626G11.2 0.04 1.44 [ 0.50 - 2.20 ] 0.17 [ 0.04 - 0.86 ] 0.42 [ 0.10 - 1.75 ]

OLMALINC 0.04 1.48 [ 0.51 - 2.91 ] 0.76 [ 0.35 - 1.64 ] 0.29 [ 0.09 - 0.95 ]

C22orf34 0.04 1.44 [ 0.48 - 3.68 ] 0.28 [ 0.08 - 1.07 ] 0.36 [ 0.10 - 1.28 ]

CTD.2210P24.2 0.04 1.46 [ 0.61 - 4.85 ] 0.85 [ 0.45 - 1.63 ] 2.52 [ 1.10 - 5.77 ]

MIR34AHG 0.04 6.35 [ 1.44 - 9.78 ] 1.60 [ 1.13 - 2.28 ] 2.02 [ 1.23 - 3.34 ]

CYTOR 0.04 1.44 [ 0.48 - 2.18 ] 0.85 [ 0.33 - 2.16 ] 2.27 [ 0.59 - 8.70 ]

RP11.714M23.2 0.04 1.44 [ 0.51 - 2.26 ] 0.91 [ 0.46 - 1.80 ] 0.36 [ 0.10 - 1.35 ]

lncRNA: long non-coding RNA; p-value: probability value; 5th;95th: 5th and 95th per-

centiles; GS: gallstones; OR: odds ratio; GBC: gallbladder cancer; CI: confidence interval.
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Table A.2: Identified and validated cis-expression quantitative trait loci for LINC00662 and

C22orf34.

LINC00662

SNP ID Location MAF Model β1 p-value1 β2 p-value2

rs11083486 chr19:28407449:G:T 0.31 Additive -0.74 0.01 - -

rs11083486 chr19:28407449:G:T 0.31 Three-Geno -0.96 0.03 -1.57 0.01

rs11083486 chr19:28407449:G:T 0.31 Dominant -0.86 0.03 - -

rs11083486 chr19:28407449:G:T 0.31 Recessive 1.29 0.03 - -

rs142521755 chr19:27284894:T:A 0.07 Dominant 1.08 0.04 - -

C22orf34

SNP ID Location MAF Model β1 p-value1 β2 p-value2

rs5770650 chr22:49683714:A:C 0.13 Additive 0.48 0.01 - -

rs9628049 chr22:49551343:C:T 0.06 Additive -0.60 0.02 - -

rs5770650 chr22:49683714:A:C 0.13 Dominant 0.52 0.01 - -

rs9628049 chr22:49551343:C:T 0.06 Dominant -0.60 0.02 - -

rs80641 chr22:49548950:G:T 0.11 Three-Geno -2.19 0.006 -1.99 0.01

rs135786 chr22:49550809:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135787 chr22:49550871:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135788 chr22:49551103:T:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135789 chr22:49551309:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135791 chr22:49552575:C:T 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135792 chr22:49553166:G:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135793 chr22:49553257:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135794 chr22:49553508:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135796 chr22:49554141:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135797 chr22:49554220:G:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135798 chr22:49554437:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135799 chr22:49554674:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135800 chr22:49555086:C:T 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135801 chr22:49555128:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs8140696 chr22:49555464:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs8140728 chr22:49555542:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs8140866 chr22:49555658:A:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs1054180151 chr22:49555702:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135803 chr22:49555956:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009
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rs135804 chr22:49556003:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135805 chr22:49556247:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135806 chr22:49556251:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135807 chr22:49556406:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135810 chr22:49557021:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135811 chr22:49557199:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135812 chr22:49557423:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135813 chr22:49557486:A:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135814 chr22:49557526:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs9627745 chr22:49557770:C:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs35356406 chr22:49558924:G:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135815 chr22:49559001:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135816 chr22:49559524:C:T 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135817 chr22:49560766:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135821 chr22:49562360:T:G 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs13055340 chr22:49562667:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs1661563636 chr22:49562872:C:T 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs112515352 chr22:49563159:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135822 chr22:49563851:T:C 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135823 chr22:49564023:G:A 0.12 Three-Geno -2.25 0.004 -1.98 0.009

rs135826 chr22:49565810:G:A 0.11 Three-Geno -2.25 0.004 -1.98 0.009

rs6009823 chr22:49692686:C:T 0.12 Three-Geno 1.58 0.004 0.96 0.04

rs6009824 chr22:49692725:G:A 0.12 Three-Geno 1.58 0.004 0.96 0.04

SNP : single nucleotide polymorfism; MAF : minor allele frequency; p-value: probability value; chr:

chromosome.
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A.2 Identification and validation of circulating microRNAs

associated with gallbladder cancer risk

Figure A.3: Global microRNA expression profiles in the validation dataset. GBC: gallbladder

cancer; PC: principal component.



114 Appendix A. Appendix A: Additional Tables and Figures

Figure A.4: Global microRNA expression profiles in all the investigated cohorts. PC: prin-

cipal component; ESTHER: Early detection and optimised therapy of chronic diseases in the

elderly population; HNR: Heinz Nixdorf recall study; HUNT: Nord-Trøndelag Health study.
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Figure A.5: Boxplots for the total number of reads and the number of microRNAs for the

investigated cohorts. ESTHER: Early detection and optimised therapy of chronic diseases

in the elderly population; HNR: Heinz Nixdorf recall study; HUNT: Nord-Trøndelag Health

study.
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Table A.3: List of preselected microRNAs based on formalin-fixed paraffin-embedded tissue

samples also expressed in serum samples from the screening dataset.

Preselection Screening

miRNA
Expression in controls

Median [5th;95th]

Case-control

Difference

[95% CI]

Expression in controls

Median [5th;95th]

Case-control

Difference

[95% CI]

miR-204-5p 7.49 [6.59;8.74] -2.61 [-2.87;-2.35] 7.06 [5.16;7.95] 0.6 [-0.2;1.41]

miR-495-3p 7.64 [6.7;8.39] -2.53 [-2.84;-2.23] 9.91 [8.82;10.78] 1.65 [0.41;2.9]

miR-379-5p 6.71 [6.26;7.19] -1.48 [-1.7;-1.26] 9.72 [9.14;9.85] 1.14 [-0.27;2.55]

miR-1224-5p 8.73 [8.35;9.57] 2.01 [1.71;2.3] 9.75 [8.79;10.66] 0.37 [-0.62;1.35]

miR-136-3p 6.89 [5.95;7.64] -1.92 [-2.2;-1.63] 5.51 [5.2;5.67] 0.13 [-0.87;1.12]

miR-29c-5p 8.13 [7.62;9.06] -2.28 [-2.65;-1.9] 6.62 [5.93;7.78] 0.61 [-0.23;1.46]

miR-381-3p 7.9 [7.27;8.49] -2.2 [-2.57;-1.83] 9.98 [9.45;10.66] 1.22 [0.01;2.44]

miR-145-3p 8.85 [8.24;9.41] -3.11 [-3.64;-2.58] 9.82 [8.08;10.09] 0.14 [-1.37;1.65]

miR-144-3p 8.98 [7.8;10.45] -3.65 [-4.26;-3.04] 5.92 [5.22;6.47] 0.01 [-1.31;1.33]

miR-411-5p 6.52 [5.85;7.24] -1.67 [-1.94;-1.41] 5.94 [5.41;6.23] 0.49 [-0.57;1.54]

miR-654-3p 6.99 [6.41;7.59] -1.49 [-1.76;-1.22] 5.83 [5.52;6.12] 1.03 [-0.29;2.34]

miR-126-5p 8.29 [7.73;8.97] -2.38 [-2.83;-1.94] 7.8 [7.41;8.2] 0.4 [-0.56;1.36]

miR-136-5p 8 [6.94;8.73] -2.28 [-2.7;-1.85] 6.25 [5.73;6.65] 1.24 [0.22;2.27]

miR-4497 9.27 [9.02;10.32] 2.19 [1.78;2.61] 6.53 [6.21;7.66] -0.68 [-1.57;0.21]

miR-493-5p 6.14 [5.68;6.55] -1.06 [-1.27;-0.85] 5.02 [4.88;5.35] 1.48 [0.18;2.78]

miR-4443 9.79 [8.9;12.61] 2.68 [2.16;3.21] 5.67 [5.19;5.81] -0.09 [-1.11;0.93]

miR-32-5p 6.28 [5.22;7.4] -1.37 [-1.63;-1.11] 6.92 [6.05;7.55] 1.23 [-0.03;2.49]

miR-382-5p 6.97 [6.5;7.66] -1.42 [-1.72;-1.12] 5.79 [5.49;6.4] 1.29 [0.14;2.44]

miR-30e-3p 7.66 [6.54;8.23] -1.95 [-2.37;-1.52] 6.09 [5.52;6.83] 0.66 [-0.35;1.68]

miR-30a-3p 8.14 [7;8.82] -2.28 [-2.78;-1.79] 5.7 [5.14;6.49] -0.21 [-0.97;0.55]

miR-10b-3p 6.19 [5.09;6.86] 1.74 [1.37;2.11] 8.73 [8.35;9.57] 0.26 [-0.57;1.09]

miR-3679-5p 9.66 [9.14;10.58] 1.3 [1.02;1.58] 7.77 [7.19;8.11] 0.17 [-0.75;1.1]

miR-6126 8.64 [8.07;9] 1.34 [1.04;1.65] 8.44 [7.85;8.93] -0.7 [-1.45;0.04]

miR-99b-3p 6.05 [5.7;6.95] 1.4 [1.09;1.71] 8.06 [7.74;8.67] 0.72 [-0.16;1.61]

miR-320b 9.95 [9.52;10.21] -1.19 [-1.46;-0.92] 11.45 [10.85;11.96] 0.61 [-0.09;1.31]

miR-505-3p 6.43 [6.18;6.77] -0.98 [-1.2;-0.75] 8.15 [7.68;8.93] 1.54 [0.57;2.52]

miR-361-3p 7.99 [6.68;8.39] -2 [-2.47;-1.53] 5.19 [4.95;5.55] 0.13 [-0.52;0.79]

miR-484 7.45 [6.91;7.7] -1.22 [-1.5;-0.93] 6.36 [5.58;7.44] 1.01 [-0.24;2.27]

miR-127-3p 9.12 [8.45;9.56] -2.58 [-3.21;-1.95] 14.42 [13.85;14.74] 1.38 [0.49;2.27]
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miR-4508 5.65 [5.09;5.97] 1.24 [0.94;1.54] 7 [6.61;7.81] 0.08 [-0.84;1.01]

miR-99a-5p 12.4 [11.85;12.68] -4.16 [-5.19;-3.13] 6.04 [5.57;6.27] 0.74 [0;1.48]

miR-877-5p 5.79 [5.5;6.18] 1.13 [0.85;1.41] 7.52 [6.87;8.1] 0.18 [-0.83;1.19]

miR-338-5p 5.94 [5.41;6.23] 0.93 [0.7;1.16] 8.17 [7.47;9.17] 0.58 [-0.68;1.84]

miR-150-5p 10.27 [9.24;10.8] -2.86 [-3.61;-2.12] 11.48 [9.35;12.9] 0.69 [-0.19;1.56]

miR-451a 13.94 [12.34;15.23] -5.46 [-6.86;-4.07] 9.61 [8.68;10.01] 1.27 [-0.42;2.96]

miR-143-3p 11.21 [10.32;11.97] -3.84 [-4.85;-2.84] 7.84 [6.92;8.36] -0.27 [-1.31;0.76]

miR-340-5p 7.22 [6.59;8.29] -1.65 [-2.08;-1.22] 8.25 [7.79;8.92] 0.6 [-0.59;1.8]

miR-100-5p 12.21 [11.99;12.51] -3.54 [-4.52;-2.55] 11.22 [10.31;11.6] 0.32 [-0.45;1.09]

miR-140-5p 8.47 [7.85;9.31] -2.33 [-2.95;-1.7] 6.26 [5.41;7.17] -0.08 [-1.2;1.03]

miR-342-3p 10.1 [9.49;10.37] -2.17 [-2.77;-1.58] 5.62 [5.12;6.42] 1.2 [0.15;2.25]

miR-140-3p 9.1 [8.36;9.66] -2.25 [-2.86;-1.65] 6.09 [5.97;6.92] -0.55 [-1.49;0.4]

miR-660-5p 8.2 [7.03;9.18] -2.09 [-2.66;-1.52] 7.49 [6.93;8.04] -0.01 [-1.15;1.12]

miR-1268a 10.2 [9.42;10.6] 1.45 [1.05;1.86] 10.46 [9.69;10.53] -0.75 [-1.61;0.11]

miR-142-5p 8.39 [7.79;9.7] -2.01 [-2.58;-1.44] 6.7 [6.02;7.32] 0.89 [-0.24;2.03]

miR-3925-5p 6.08 [5.16;7.36] 2.07 [1.5;2.65] 7.27 [6.16;7.69] -3.35 [-4.33;-2.37]

miR-186-5p 8.12 [7.85;8.53] -1.53 [-1.98;-1.09] 9.68 [9.06;10.73] 0.71 [-0.25;1.67]

miR-185-5p 7.55 [7.14;8.63] -1.49 [-1.92;-1.06] 8.59 [7.99;9.65] 0.67 [-0.57;1.9]

miR-320e 9.72 [9.14;9.85] -1.43 [-1.85;-1.01] 9.93 [9.51;10.38] 0.48 [-0.27;1.24]

miR-345-5p 6.74 [5.95;7.55] 1.38 [0.98;1.78] 11.26 [10.92;12.3] 0.61 [-0.52;1.75]

miR-769-5p 5.93 [5.74;6.21] -0.63 [-0.82;-0.44] 7.03 [6.56;7.77] -0.22 [-1.05;0.62]

miR-150-3p 8.15 [7.68;8.61] 1.29 [0.9;1.67] 8.47 [7.85;9.31] -0.49 [-1.38;0.41]

miR-30a-5p 11.45 [10.85;11.96] -2.56 [-3.34;-1.78] 8.25 [7.17;8.76] -0.43 [-1.11;0.25]

miR-4488 6 [5.71;7.04] 1.35 [0.94;1.76] 5.78 [5.23;6.28] -1.24 [-2.33;-0.15]

miR-125a-5p 10.46 [9.69;10.53] -2.21 [-2.89;-1.54] 6.57 [6.21;6.91] -0.35 [-1.12;0.43]

miR-374a-5p 9.91 [8.82;10.78] -2.42 [-3.17;-1.68] 10.3 [9.5;10.79] 1.8 [0.44;3.16]

miR-409-3p 7.16 [6.91;7.99] -1.39 [-1.82;-0.97] 8.65 [6.9;9.64] 1.01 [-0.03;2.04]

miR-1307-5p 6.26 [5.41;7.17] 1.62 [1.12;2.11] 6.59 [5.99;7.48] -0.86 [-2.03;0.31]

miR-4538 7.31 [6.57;7.74] 1.27 [0.88;1.65] 10.42 [9.61;11.01] 0.29 [-0.55;1.14]

miR-30e-5p 10.15 [9.47;10.95] -2.06 [-2.71;-1.41] 12.78 [11.75;13.11] 0.25 [-0.8;1.3]

miR-4535 6.84 [6.16;7.39] 0.96 [0.67;1.24] 5.83 [5.52;6.03] -1.21 [-2.13;-0.3]

miR-502-3p 6.47 [5.91;7] -0.98 [-1.29;-0.68] 9.62 [8.85;9.99] 0.93 [-0.41;2.28]

miR-744-5p 5.67 [5.16;6.06] -0.69 [-0.9;-0.47] 8.89 [8.11;10.21] 0.02 [-1.03;1.07]

miR-10b-5p 9.62 [8.93;10.15] -2.58 [-3.39;-1.76] 6.08 [5.87;6.31] -0.18 [-0.91;0.54]

miR-28-5p 8.35 [7.09;8.86] -2.14 [-2.81;-1.47] 6.89 [6.46;7.46] 0.97 [0.07;1.87]
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miR-125b-5p 14.42 [13.85;14.74] -3.61 [-4.77;-2.45] 9.72 [9.02;10.53] -0.19 [-0.89;0.5]

miR-126-3p 12.28 [11.99;12.68] -3.1 [-4.11;-2.1] 6.54 [6;7.03] 0.82 [0;1.64]

miR-374b-5p 9.22 [7.93;9.85] -2.29 [-3.01;-1.56] 5.59 [5.15;6.8] 1.28 [-0.02;2.58]

miR-4470 6.72 [5.98;7.37] 0.78 [0.55;1.01] 6.82 [6.55;8.04] 0.33 [-0.45;1.11]

miR-532-5p 7.57 [7.15;8.33] -1.6 [-2.12;-1.09] 7.9 [7.27;8.49] -0.42 [-1.53;0.7]

miR-29b-3p 12.23 [10.77;13.19] -3 [-3.98;-2.03] 5.72 [5.33;6.52] 0.97 [-0.14;2.08]

miR-335-5p 7.27 [6.16;7.69] -1.43 [-1.89;-0.97] 10.62 [9.94;11.47] 0.86 [-0.39;2.12]

miR-30c-5p 10.6 [9.09;11.01] -2.71 [-3.59;-1.83] 6.37 [5.66;7.06] 0.54 [-0.36;1.43]

miR-363-3p 6.53 [6.21;7.66] -1.34 [-1.76;-0.91] 5.33 [4.92;5.64] 1.13 [-0.21;2.46]

miR-223-3p 10.26 [9.93;10.99] -2.36 [-3.15;-1.56] 6.69 [5.8;7.21] 1.96 [0.59;3.33]

miR-29a-3p 12.75 [11.84;13.48] -2.41 [-3.22;-1.61] 8.22 [7.13;8.9] 0.48 [-0.47;1.43]

miR-99b-5p 9.02 [8.5;9.33] -1.72 [-2.3;-1.15] 9.61 [8.51;10.37] -0.29 [-0.99;0.41]

miR-29c-3p 13.27 [11.7;14.36] -3.45 [-4.6;-2.29] 11.65 [11.04;12.47] 0.11 [-0.77;1]

miR-101-3p 10.12 [8.84;11.01] -2.68 [-3.58;-1.78] 9.81 [8.97;10.6] -0.35 [-1.45;0.76]

miR-486-5p 7.61 [6.84;8.72] -0.89 [-1.16;-0.62] 7.67 [6.85;8.3] 0.09 [-0.89;1.07]

miR-22-5p 6.62 [5.93;7.78] -1.21 [-1.61;-0.81] 7.02 [6.38;7.82] 1.29 [-0.13;2.71]

miR-361-5p 8.75 [7.73;9.09] -1.87 [-2.51;-1.23] 5.66 [5.32;6.28] 0.73 [-0.49;1.96]

miR-142-3p 10.76 [9.93;12] -2.11 [-2.85;-1.37] 11.3 [10.16;11.41] 0.94 [0.01;1.87]

miR-500a-3p 6.47 [5.98;6.84] -0.75 [-1.01;-0.49] 6.44 [5.71;7.04] 0.68 [-0.61;1.97]

miR-422a 5.68 [5.09;6.12] 1.07 [0.7;1.44] 7.22 [6.59;8.29] -0.21 [-1.16;0.74]

miR-652-3p 6.44 [5.56;7.03] -1.1 [-1.48;-0.72] 10.42 [9.78;11.48] 0.35 [-0.94;1.64]

miR-30d-5p 9.93 [9.51;10.38] -1.38 [-1.88;-0.89] 12.77 [12.24;12.98] 0.43 [-0.51;1.36]

miR-671-5p 8.05 [7.57;9.06] 1.42 [0.92;1.92] 6.54 [6.16;7.43] 1.28 [0.75;1.81]

miR-22-3p 11.65 [11.04;12.47] -2.19 [-2.98;-1.39] 5.06 [4.88;5.2] -0.47 [-1.34;0.4]

miR-130a-3p 11.3 [10.16;11.41] -2.86 [-3.91;-1.81] 6.33 [5.89;6.85] 0.95 [-0.17;2.07]

miR-92a-3p 10.15 [9.72;10.58] -1.42 [-1.94;-0.89] 7.86 [7.59;9.22] 0.09 [-1.02;1.21]

miR-148b-3p 7.3 [6.39;7.79] -1.36 [-1.85;-0.86] 6.01 [5.66;6.54] -0.51 [-1.6;0.58]

miR-10a-3p 5.28 [5.08;5.5] 0.53 [0.33;0.73] 11.27 [10.53;12.41] 0.1 [-0.67;0.86]

miR-1268b 10.34 [9.39;11.02] 1.21 [0.76;1.65] 5.11 [4.7;5.58] -0.71 [-1.58;0.16]

miR-224-5p 8.35 [6.12;8.92] -1.96 [-2.68;-1.25] 12.01 [11.62;12.33] 0.63 [-0.48;1.75]

miR-30b-5p 11.51 [9.85;12.09] -2.75 [-3.77;-1.72] 6.29 [5.28;6.8] 1.96 [0.73;3.18]

miR-221-5p 5.7 [5.14;6.49] -0.78 [-1.06;-0.5] 8.98 [8.26;9.54] 0.72 [-0.33;1.78]

miR-4665-5p 6.66 [6.03;7.57] 1.42 [0.89;1.95] 8.16 [7.86;8.94] 0.4 [-0.61;1.42]

miR-19b-3p 11.63 [10.35;12.29] -2.54 [-3.51;-1.57] 6.15 [5.45;6.93] -0.1 [-1.38;1.19]

miR-642a-3p 11.43 [9.74;13.73] 2.54 [1.59;3.49] 8.74 [7.45;9] -0.29 [-0.97;0.39]
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miR-125a-3p 8.74 [8.23;9.61] 1.46 [0.91;2.01] 5.01 [4.72;5.28] 0.12 [-1.18;1.43]

miR-23b-3p 12.78 [11.75;13.11] -2.74 [-3.8;-1.69] 11.7 [8.87;12.52] 1.27 [0.15;2.4]

miR-19a-3p 9.68 [8.4;10.69] -2.38 [-3.29;-1.46] 9.06 [8.35;10.8] 0.36 [-0.93;1.65]

let-7g-5p 12.64 [11.37;13.24] -2.75 [-3.82;-1.68] 10.01 [8.47;10.7] 0.66 [-0.44;1.77]

miR-574-3p 9.29 [8.68;9.69] -1.07 [-1.49;-0.65] 8.41 [7.34;9.22] 1.46 [0.35;2.57]

miR-151b 8.86 [7.68;9.33] -1.7 [-2.36;-1.05] 11.21 [10.32;11.97] -0.16 [-1.15;0.84]

miR-199b-5p 10.21 [9.87;10.82] -2.67 [-3.74;-1.6] 5.76 [5.29;6.25] 0.66 [-0.37;1.7]

miR-27b-3p 12.27 [11.18;12.93] -2.36 [-3.3;-1.43] 9.06 [7.21;10.66] 0.55 [-0.38;1.48]

miR-3180-3p 5.54 [4.96;6.14] 1.18 [0.71;1.65] 12.75 [11.84;13.48] -0.19 [-0.94;0.56]

miR-151a-3p 7.92 [7.67;8.71] -1.06 [-1.49;-0.63] 10.76 [9.93;12] 0.42 [-0.46;1.29]

miR-501-3p 6.12 [5.88;6.53] -0.51 [-0.71;-0.31] 6.14 [6.05;6.77] 0.79 [-0.56;2.14]

miR-139-5p 6.01 [5.66;6.54] -0.79 [-1.1;-0.48] 9.47 [8.77;10.48] 0.71 [-0.02;1.43]

miR-16-5p 12.6 [12.2;13.08] -2.21 [-3.12;-1.31] 8.64 [7.79;9.6] 1.28 [-0.22;2.78]

miR-151a-5p 9.96 [8.47;10.41] -2.24 [-3.15;-1.34] 8.39 [7.79;9.7] -0.06 [-1.32;1.2]

miR-3196 10.3 [9.5;10.79] 0.81 [0.48;1.14] 8.13 [7.62;9.06] -0.78 [-1.69;0.12]

miR-4738-3p 6.87 [6.2;7.91] 1 [0.61;1.4] 4.85 [4.67;5.21] 0.15 [-0.71;1.01]

miR-98-5p 8.33 [7.34;9.15] -1.94 [-2.73;-1.14] 9.51 [7.99;10.44] 1.96 [0.64;3.28]

miR-26b-5p 12.3 [10.74;12.75] -2.9 [-4.09;-1.7] 9.12 [7.76;9.76] 0.64 [-0.36;1.63]

let-7i-5p 12.25 [11.9;12.87] -2.12 [-3.02;-1.21] 12.21 [11.99;12.51] 1.02 [0.02;2.01]

let-7d-5p 11.31 [9.94;11.47] -2.44 [-3.45;-1.42] 12.64 [11.37;13.24] 1.06 [-0.08;2.21]

let-7b-5p 14.19 [13.63;14.46] -2.09 [-2.96;-1.21] 11.31 [9.94;11.47] -0.06 [-1.05;0.93]

miR-425-5p 8.41 [7.34;9.22] -1.73 [-2.45;-1.01] 11.61 [10.34;12.64] 1.12 [0.05;2.18]

miR-4429 5.89 [5.52;6.59] 0.81 [0.47;1.16] 7.99 [6.68;8.39] 0.61 [-0.06;1.27]

miR-146b-5p 8.64 [7.79;9.6] -1.83 [-2.61;-1.04] 6.89 [5.95;7.64] 0.31 [-0.47;1.08]

miR-939-5p 9.85 [9.13;10.55] 0.86 [0.5;1.23] 6.72 [5.98;7.37] 0.15 [-0.77;1.07]

miR-15a-5p 9.68 [9.06;10.73] -2.03 [-2.93;-1.13] 8.85 [8.24;9.41] 1.29 [0.22;2.35]

miR-3620-5p 6.82 [6.55;8.04] 1.34 [0.75;1.94] 4.93 [4.65;5.21] 0.11 [-0.61;0.84]

miR-24-3p 12.32 [11.05;12.43] -2.03 [-2.94;-1.12] 11.56 [9.23;12.29] 0.2 [-0.8;1.21]

let-7f-5p 13.79 [12.93;14.44] -2.57 [-3.74;-1.41] 12.25 [11.9;12.87] 0.75 [-0.54;2.04]

miR-199a-5p 12.01 [11.62;12.33] -2.45 [-3.57;-1.33] 7.55 [7.14;8.63] 0.78 [-0.33;1.9]

let-7a-5p 14.46 [13.58;14.88] -2.56 [-3.73;-1.39] 14.19 [13.63;14.46] 0.71 [-0.49;1.92]

miR-26a-5p 13.17 [12.12;13.64] -2.48 [-3.62;-1.33] 10.78 [9.38;11.46] 0.97 [-0.01;1.96]

miR-20b-5p 9.12 [7.76;9.76] -1.89 [-2.77;-1.01] 7.55 [7.07;8.33] 0.34 [-0.83;1.5]

miR-199a-3p 13 [12.6;13.4] -2.48 [-3.66;-1.29] 4.98 [4.77;5.23] 1.22 [-0.08;2.52]

miR-4306 8.41 [8.01;8.94] -0.54 [-0.79;-0.29] 4.92 [4.72;5.04] 0.34 [-0.31;0.99]
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miR-4492 4.69 [4.54;4.87] 0.43 [0.22;0.63] 5.47 [4.99;5.98] -0.03 [-0.78;0.71]

miR-103a-3p 11.22 [10.31;11.6] -1.89 [-2.8;-0.98] 6.19 [5.09;6.86] 0.62 [-0.51;1.75]

miR-107 11.03 [9.78;11.34] -2.11 [-3.15;-1.08] 11.61 [11.04;13.46] 0.65 [-0.61;1.91]

miR-1299 6.25 [5.73;6.65] 0.57 [0.3;0.83] 7.18 [5.73;8.66] 0.9 [-0.5;2.31]

miR-23a-3p 12.77 [12.24;12.98] -1.76 [-2.63;-0.89] 9.68 [8.4;10.69] 1.93 [0.88;2.99]

miR-3141 8.67 [8.22;9.32] 0.84 [0.43;1.25] 11.59 [11.01;12.27] -0.03 [-0.7;0.63]

miR-452-5p 6.68 [5.95;7.24] -0.65 [-0.97;-0.33] 6.78 [5.86;7.48] 0.54 [-0.53;1.61]

let-7e-5p 10.79 [9.93;11.17] -2.23 [-3.37;-1.1] 5.63 [5.37;6.39] 0.2 [-0.68;1.08]

miR-1260b 10.52 [9.73;11.77] -1.5 [-2.28;-0.73] 8.74 [8.23;9.61] 1.13 [-0.02;2.28]

miR-27a-3p 11.59 [11.01;12.27] -1.35 [-2.05;-0.64] 8.41 [7.42;9.68] 1.22 [0.25;2.2]

miR-20a-5p 10.78 [9.38;11.46] -2.14 [-3.28;-1] 9.67 [8.32;10.11] 0.51 [-0.87;1.9]

miR-148a-3p 9.82 [9.1;11.08] -1.73 [-2.67;-0.79] 8 [6.94;8.73] 0.82 [-0.3;1.93]

miR-17-5p 9.65 [8.2;10.22] -1.81 [-2.77;-0.84] 7.89 [7.64;9.29] 0.2 [-1.04;1.44]

miR-324-3p 9.98 [9.45;10.66] -0.75 [-1.15;-0.34] 4.81 [4.65;6.03] -0.37 [-1.41;0.66]

miR-15b-5p 10.06 [9.31;10.67] -1.67 [-2.59;-0.75] 6.03 [5.3;6.89] 2.18 [0.79;3.56]

miR-1290 7.21 [6.86;7.94] 0.98 [0.44;1.52] 9.12 [8.45;9.56] -1.76 [-2.77;-0.75]

miR-378c 5.55 [5.18;5.85] 0.37 [0.17;0.56] 5.12 [4.88;5.47] -0.33 [-1.4;0.75]

miR-424-3p 6.57 [5.77;6.96] 0.79 [0.36;1.23] 6.74 [5.95;7.55] -0.33 [-1.54;0.89]

miR-181a-3p 5.53 [5.29;6.29] -0.46 [-0.72;-0.21] 7.3 [6.39;7.79] -0.7 [-1.63;0.23]

miR-5585-3p 9.16 [8.37;9.77] 0.62 [0.27;0.97] 6.57 [5.77;6.96] -1.33 [-2.56;-0.1]

miR-1260a 11.42 [9.82;12.51] -1.62 [-2.56;-0.67] 5.24 [4.93;5.71] 1.03 [-0.13;2.2]

miR-4448 5.51 [5.05;5.99] 0.57 [0.23;0.91] 7 [6.07;8.18] 0.39 [-0.57;1.35]

miR-1246 9.72 [9.02;10.53] 0.99 [0.4;1.57] 11.7 [10.99;12.83] -0.67 [-1.81;0.47]

miR-200a-3p 11.7 [8.87;12.52] -2.37 [-3.79;-0.95] 5.24 [5.03;5.5] 0.8 [-0.21;1.81]

miR-106b-5p 9.81 [8.97;10.6] -1.41 [-2.28;-0.54] 6.42 [6.03;6.94] 0.25 [-1;1.49]

miR-654-5p 5.63 [5.46;5.94] 0.5 [0.19;0.81] 8.41 [8.01;8.94] 0.46 [-0.63;1.55]

miR-25-3p 9.65 [9.4;10.43] -1.34 [-2.19;-0.5] 6.08 [5.06;6.98] 0.77 [-0.47;2]

miR-4646-5p 8.05 [7.47;8.68] 0.56 [0.22;0.9] 5.51 [5.19;6.08] 0.04 [-0.62;0.69]

miR-3960 14.24 [13.19;15] 0.79 [0.31;1.27] 7.34 [6.51;7.94] -0.94 [-1.74;-0.15]

miR-196b-5p 5.06 [4.88;5.2] 0.7 [0.26;1.15] 7.25 [6.83;7.41] 0.96 [0.05;1.87]

miR-431-5p 5.21 [4.94;6.02] 1.11 [0.41;1.81] 6.63 [5.96;6.87] 0.49 [-0.43;1.41]

miR-194-5p 12.74 [9.24;13.34] -2.84 [-4.63;-1.04] 8.42 [7.86;8.87] 0.8 [-0.46;2.06]

miR-192-5p 12.33 [9.43;13.3] -2.74 [-4.5;-0.97] 9.65 [8.2;10.22] -0.09 [-0.91;0.74]

miR-200c-3p 11.56 [9.23;12.29] -2.08 [-3.42;-0.73] 5.12 [5.01;5.6] 0.93 [-0.1;1.97]

miR-129-5p 5.39 [5.04;5.77] 0.37 [0.13;0.61] 10.34 [9.39;11.02] 0.3 [-0.7;1.3]
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miR-10a-5p 10.04 [9.55;10.42] -1.54 [-2.59;-0.5] 5.84 [5.46;6.1] -0.2 [-0.98;0.59]

miR-155-5p 7.79 [7.19;8.52] 0.46 [0.15;0.77] 8.98 [7.8;10.45] 0.71 [-0.07;1.49]

miR-450a-5p 5.57 [5.3;6.48] -0.45 [-0.77;-0.13] 7.42 [6.2;8.01] 0.17 [-1;1.34]

miR-146a-5p 7.44 [6.96;9.24] -1.1 [-1.89;-0.31] 8.89 [6.7;10.33] 0.47 [-0.63;1.57]

miR-200b-3p 12.02 [9.63;12.76] -1.76 [-3.06;-0.46] 5.93 [5.46;6.51] 0.73 [-0.24;1.7]

miR-197-3p 7.02 [6.38;7.82] -0.51 [-0.89;-0.13] 6.15 [5.76;7.06] 1.18 [0.05;2.31]

miR-4533 5.2 [4.73;6.14] 0.58 [0.14;1.02] 10.19 [9.22;11.1] 1.71 [1.02;2.39]

miR-93-5p 8.92 [8.24;9.4] -1.02 [-1.81;-0.23] 4.63 [4.49;4.76] -0.22 [-1.6;1.16]

miR-181b-5p 8.42 [7.86;8.87] -0.59 [-1.07;-0.1] 8.15 [7.68;8.61] 0.07 [-0.82;0.95]

miR-221-3p 8.12 [7.57;8.93] -0.77 [-1.41;-0.12] 11.06 [10.37;12.36] 1.2 [0.06;2.33]

miR-3614-5p 5.98 [5.65;6.74] 0.69 [0.1;1.28] 5.37 [4.96;5.56] 0.95 [-0.04;1.93]

miR-181a-5p 10.05 [9.65;10.73] -0.81 [-1.52;-0.11] 5.95 [5.29;6.57] 0.1 [-0.8;1.01]

miR-3605-5p 6.63 [5.96;6.87] 0.28 [0.04;0.53] 5.04 [4.83;5.32] 0.09 [-0.92;1.11]

miRNA: microRNA; 5th;95th: 5th and 95th percentiles; CI: confidence interval.
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Table A.4: Overall and stratified differences in microRNA expression by age, sex, body-mass

index and genetic susceptibility to gallstone disease between prospective gallbladder cancer

cases and controls, by cohort.

miR-4533

Janus ESTHER+HNR HUNT FINRISK TwinGene

Median β 95% CI p-value β 95% CI p-value β 95% CI p-value β 95% CI p-value β 95% CI p-value

<63.5 1.69 [1.17;2.20] 0.002 -0.02 [-0.22;0.17] 0.81 0.13 [-0.21;0.47] 0.47 -0.23 [-0.32;-0.14] 0.001 -0.61 [-0.81;-0.23] 0.004
Age

>63.5 1.34 [-0.07;2.75] 0.07 0.06 [-0.15;0.26] 0.62 0.05 [-0.15;0.25] 0.61 0.001 [-0.01;0.02] 0.52 0.00 [0.002;0.005] 0.002

F 1.58 [0.84;2.33] 0.002 -0.001 [-0.14;0.14] 0.99 0.14 [-0.04;0.33] 0.14 0.00 [-0.01;0.03] 0.44 -0.22 [-0.51;0.08] 0.19
Sex

M 2.00 [0.89;3.11] 0.004 0.00 [0.00;0.00] 0.99 -0.12 [-0.45;0.22] 0.56 -0.27 [-0.27;0.30] 0.75 -0.03 [-0.12;0.06] 0.46

<26.2 2.13 [1.47;2.79] 0.002 -0.08 [-0.70;0.53] 0.79 0.32 [0.16;0.47] 0.002 -0.27 [-0.27;-0.23] 0.002 -0.29 [-0.72;0.14] 0.22
BMI

>26.2 1.15 [0.03;2.27] 0.05 0.02 [-0.05;0.09] 0.66 -0.13 [-0.53;0.27] 0.54 0.00 [-0.03;0.03] 0.99 -0.03 [-0.12;0.05] 0.46

<2.88 - - - 0.01 [-0.01;0.03] 0.41 0.02 [-0.39;0.44] 0.91 0.15 [-0.59;0.89] 0.70 0.00 [-0.02;0.02] 0.75
PRS-GS

>2.88 - - - 0.13 [-0.41;0.66] 0.66 0.17 [0.04;0.31] 0.04 -0.15 [-0.36;0.06] 0.21 -0.19 [-0.47;0.10] 0.24

miR-671-5p

Janus ESTHER+HNR HUNT FINRISK TwinGene

Median β 95% CI p-value β 95% CI p-value β 95% CI p-value β 95% CI p-value β 95% CI p-value

<63.5 0.71 [-0.06;1.48] 0.08 -0.11 [-0.20;-0.01] 0.05 0.00 [-0.00;0.00] 0.72 -0.02 [-0.22;0.17] 0.83 -0.02 [-0.02;0.05] 0.26
Age

>63.5 0.30 [-0.57;1.17] 0.51 -0.69 [-2.29;0.91] 0.46 0.07 [-0.16;0.31] 0.55 0.00 [0.00;0.00] 0.99 0.00 [0.00;0.00] 0.99

F 0.63 [0.009;1.25] 0.05 -0.15 [-0.22;-0.09] 0.001 -0.01 [-0.01;0.04] 0.68 -0.62 [-1.10;-0.13] 0.06 0.00 [0.00;0.00] 0.99
Sex

M 0.17 [-1.08;1.42] 0.79 0.00 [0.00;0.00] 0.99 0.20 [-1.11;1.51] 0.79 0.00 [-0.02;0.02] 0.89 0.00 [-0.01;0.01] 0.57

<26.2 0.61 [-0.14;1.37] 0.12 -0.20 [-0.21;-0.19] 0.01 0.01 [-0.004;0.02] 0.23 0.00 [0.00;0.00] 0.99 0.00 [0.00;0.00] 0.99
BMI

>26.2 0.38 [-0.48;1.24] 0.39 -0.01 [-0.04;0.03] 0.65 -0.01 [-0.04;0.002] 0.52 -0.67 [-0.99;-0.33] 0.01 0.00 [0.00;0.00] 0.99

<2.88 - - - -0.10 [-0.11;-0.09] 0.003 0.00 [-0.02;-0.01] 0.03 -0.002 [-0.001;0.04] 0.62 0.00 [-0.01;0.01] 0.75
PRS-GS

>2.88 - - - -0.14 [-0.41;0.14] 0.33 0.01 [0.01;0.80] 0.001 -0.10 [-0.36;0.16] 0.46 0.00 [0.00;0.00] 0.99

BMI: body-mass index; PRS: polygenic risk score; GS: gallstones ; CI: confidence inter-

val; p-value: probability value; ESTHER: Early detection and optimised therapy of chronic

diseases in the elderly population; HNR: Heinz Nixdorf recall study; HUNT: Nord-Trøndelag

Health study.
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Table A.5: Results from pathway analysis for the preselected microRNAs.

KEGG pathway p-value # genes# miRNAs

Proteoglycans in cancer 0.000000002 156 68

Renal cell carcinoma 0.000001 60 55

Glioma 0.000001 55 55

ErbB signaling pathway 0.000001 75 63

Rap1 signaling pathway 0.00001 164 73

Hippo signaling pathway 0.00003 115 65

Amphetamine addiction 0.00003 53 62

Axon guidance 0.00003 98 63

Sphingolipid signaling pathway 0.00003 92 67

Ras signaling pathway 0.00003 168 72

Pancreatic cancer 0.00004 54 55

Choline metabolism in cancer 0.0001 83 64

Adherens junction 0.0001 62 60

cAMP signaling pathway 0.0001 154 71

FoxO signaling pathway 0.0001 105 65

mTOR signaling pathway 0.0002 52 54

Signaling pathways of stem cells 0.0002 107 68

TGF-beta signaling pathway 0.0002 62 61

Colorectal cancer 0.0002 54 57

Focal adhesion 0.0002 157 69

N-Glycan biosynthesis 0.0002 39 51

Oxytocin signaling pathway 0.0002 121 69

Pathways in cancer 0.0002 288 76

MAPK signaling pathway 0.0002 187 77

Cocaine addiction 0.0002 38 56

Prostate cancer 0.0003 72 63

Thyroid hormone signaling pathway 0.0004 90 64

AMPK signaling pathway 0.0005 96 68

Long-term depression 0.0005 46 53

Endocytosis 0.0005 156 73

Adrenergic signaling in cardiomyocytes 0.0005 108 75

Circadian rhythm 0.0008 28 47

Glutamatergic synapse 0.002 86 62
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Endometrial cancer 0.002 43 53

Chronic myeloid leukemia 0.002 58 54

Neurotrophin signaling pathway 0.002 93 64

Acute myeloid leukemia 0.002 47 52

Platelet activation 0.002 97 64

Melanoma 0.002 58 60

Ubiquitin mediated proteolysis 0.003 102 61

Wnt signaling pathway 0.004 108 68

Transcriptional misregulation in cancer 0.004 122 73

Prolactin signaling pathway 0.004 53 54

Non-small cell lung cancer 0.005 44 55

Dopaminergic synapse 0.005 97 71

PI3K-Akt signaling pathway 0.01 238 73

TNF signaling pathway 0.01 83 61

Estrogen signaling pathway 0.01 72 66

mRNA surveillance pathway 0.01 70 63

Hepatitis B 0.01 100 68

cGMP-PKG signaling pathway 0.01 121 73

Phosphatidylinositol signaling system 0.01 58 54

Prion diseases 0.01 20 34

Insulin signaling pathway 0.02 103 64

Small cell lung cancer 0.02 65 56

Regulation of TRP channels 0.02 71 59

Regulation of actin cytoskeleton 0.02 152 69

Long-term potentiation 0.02 52 60

ARVC 0.02 53 52

Type II diabetes mellitus 0.02 38 49

Aldosterone-regulated sodium reabsorption 0.02 32 48

Lysine degradation 0.03 35 60

Dorso-ventral axis formation 0.03 23 40

Bacterial invasion of epithelial cells 0.04 57 61

Cholinergic synapse 0.05 82 64

p-value: probability value; miRNAs: microRNAs.
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Table A.6: List of genes negatively correlated with the expression of miR-4533 in the five

most significant pathways.

Gene Spearman Rho 95% CI p-value

FLT4 -0.268 [-0.47;-0.04] 0.011

RAP1A -0.262 [-0.49;0.01] 0.013

FGF7 -0.248 [-0.44;-0.02] 0.018

SIPA1L2 -0.247 [-0.48;-0.02] 0.018

ARNT2 -0.245 [-0.44;-0.01] 0.019

ITGAM -0.19 [-0.39;0.03] 0.055

MAPK9 -0.189 [-0.39;0.04] 0.055

RAPGEF1 -0.187 [-0.42;0.05] 0.057

RAPGEF5 -0.187 [-0.42;0.07] 0.058

FAS -0.179 [-0.39;0.05] 0.066

CAMK4 -0.176 [-0.4;0.07] 0.069

FLNB -0.176 [-0.4;0.06] 0.069

RAPGEF4 -0.17 [-0.38;0.05] 0.077

EGLN1 -0.167 [-0.38;0.06] 0.08

IQGAP1 -0.163 [-0.38;0.07] 0.086

MAPK8 -0.163 [-0.38;0.08] 0.086

PIK3R2 -0.157 [-0.37;0.08] 0.093

SHH -0.157 [-0.36;0.07] 0.093

VAV1 -0.158 [-0.36;0.07] 0.093

RAC1 -0.157 [-0.37;0.07] 0.095

E2F2 -0.15 [-0.35;0.09] 0.105

FGF10 -0.145 [-0.36;0.08] 0.113

AKT2 -0.144 [-0.38;0.11] 0.114

INSR -0.142 [-0.37;0.09] 0.117

ANK3 -0.141 [-0.35;0.09] 0.118

E2F1 -0.14 [-0.36;0.1] 0.12

PRKACB -0.133 [-0.35;0.1] 0.132

MAP2K4 -0.132 [-0.35;0.11] 0.134

RASGRP3 -0.13 [-0.35;0.13] 0.138

HGF -0.128 [-0.34;0.11] 0.142

p-value: probability value; CI: confidence interval.
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Table A.7: Serum microRNA expression in controls, and expression differences between

prospective gallbladder cancer cases and controls for 34 microRNAs previously linked with

gallbladder cancer in literature.

miRNA PMID Pop Sample N Regulation
log2 expression

in controls

Median [5th;95th]

Case-Control

Difference

[95% CI]

Same

miR-133a-3p 27904763 Chinese Tissue 23 down 1.19 [0.00; 5.03] 0.13 [-0.31; 0.56] No

miR-145-5p 30886199 European Tissue 48 down 0.00 [0.00; 2.04] 0.28 [0.07; 0.49] No

miR-146b-5p 25760482 Chinese Tissue 92 down 10.09 [9.62; 11.55] -0.03 [-0.16; 0.10] Yes

miR-26b-5p 31570091 Chinese Tissue 35 down 7.26 [4.87; 9.93] 0.09 [-0.12; 0.29] No

miR-122-5p 37925508 Indian Tissue 5 up 15.41 [13.22;16.61] -0.02 [-0.26; 0.22] No

miR-127-5p 37925508 Indian Tissue 5 up 0.01 [0.00;3.53] -0.10 [-0.34; 0.14] No

miR-1284 37925508 Indian Tissue 5 down 0.00 [0.00;2.29] 0.03 [-0.07; 0.14] No

miR-144-5p 37925508 Indian Tissue 5 up 2.91 [0;5.57] 0.75 [0.34; 1.17] Yes

miR-145-5p 37925508 Indian Tissue 5 up 0.00 [0.00;2.04] 0.28 [0.07; 0.49] Yes

miR-196a-5p 37925508 Indian Tissue 5 down 0.00 [0.00;2.19] 0.17 [0.03; 0.31] No

miR-196b-5p 37925508 Indian Tissue 5 down 0.17 [0.00;2.90] 0.55 [0.30; 0.81] No

miR-21-5p 37925508 Indian Tissue 5 down 12.48 [10.74;15.15] -0.11 [-0.25; 0.03] Yes

miR-214-5p 37925508 Indian Tissue 5 up 0.00 [0.00;2.25] 0.00 [-0.05; 0.05] No

miR-23a-5p 37925508 Indian Tissue 5 up 2.55 [0.00;4.57] 0.32 [-0.05; 0.68] Yes

miR-32-5p 37925508 Indian Tissue 5 down 2.76 [0.00;4.97] 0.77 [0.40; 1.14] No

miR-3613-5p 37925508 Indian Tissue 5 down 0.36 [0.00;3.48] 0.38 [0.04; 0.73] No

miR-374a-5p 37925508 Indian Tissue 5 down 1.07 [0.00;5.46] 0.49 [0.13; 0.84] No

miR-378c 37925508 Indian Tissue 5 down 5.52 [0.00;7.25] -0.26 [-0.50; -0.02] Yes

miR-382-5p 37925508 Indian Tissue 5 up 6.70 [3.64;8.73] 0.03 [-0.28; 0.34] Yes

miR-432-5p 37925508 Indian Tissue 5 up 6.52 [0.00;7.91] -0.09 [-0.43; 0.24] No

miR-452-5p 37925508 Indian Tissue 5 up 2.99 [0.00;4.91] -0.12 [-0.55; 0.31] No

miR-4732-5p 37925508 Indian Tissue 5 up 4.57 [0.00;6.45] 0.19 [-0.24; 0.61] Yes

miR-486-5p 37925508 Indian Tissue 5 up 14.97 [12.87;16.61] 0.05 [-0.12; 0.23] Yes

miR-493-5p 37925508 Indian Tissue 5 up 3.08 [0.00;5.22] 0.51 [-0.02; 1.03] Yes

miR-499a-5p 37925508 Indian Tissue 5 down 2.86 [0.00;5.42] 0.07 [-0.27; 0.42] No

miR-6852-5p 37925508 Indian Tissue 5 down 2.94[0.00;5.08] -0.13 [-0.50; 0.24] Yes

miR-766-5p 37925508 Indian Tissue 5 up 3.57[0.00;5.76] -0.07 [-0.38; 0.23] No

miR-9-5p 37925508 Indian Tissue 5 down 1.90 [0.00;4.85] 0.01 [-0.43; 0.45] No
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miR-96-5p 37925508 Indian Tissue 5 down 0.48[0.00;3.67] 0.14 [-0.13; 0.41] No

miR-218-5p 25569100 Chinese Tissue 80 down 0.45 [0.00; 4.74] 0.06 [-0.24; 0.37] No

miR-30d-5p 29569755 Chinese Tissue 80 down 11.80 [10.90; 13.24] 0.05 [-0.06; 0.17] No

miR-143-3p 29416013 Chinese Tissue 98 down 10.16 [8.89; 11.78] -0.09 [-0.29; 0.10] Yes

miR-29c-5p 28060377 Chinese Tissue 80 down 0.66 [0.00; 3.56] 0.01 [-0.28; 0.30] No

miR-92b-3p 32514152 Chinese Serum 243 up 3.62 [0.00; 4.90] -0.11 [-0.45; 0.23] No

miRNA: microRNA; PMID: PubMed study ID; Pop: study population; 5th; 95th: 5th and 95th

percentiles; CI: confidence interval.
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Appendix B

Appendix B: Implementations in R

Comment: Parts of the following Chapter have already been published in Cancers (Blandino et al.,

2022). The original manuscript was written by myself, but also contains comments and corrections

from the co-authors.

B.1 R Code: Identification of circulating long non-coding RNAs

associated with gallbladder cancer risk

The following R codes describe the preselection of differentially expressed lncRNAs, model selection

for prediction, and the prediction of the genotype-based lncRNA expression.

Preselection of differentially expressed lncRNAs - Jonckheere-Terpstra Test
# ######################################################
#
# program name: 01_ LINC00662 _ preselection .R
# program title: Preselection of differentially expressed lncRNAs

along the sequence GS -> Dys -> GBC
# author : Alice Blandino
# version : 1.0
# description : Calculation of two -sided Jonckheere - Terpstra test

# input files: 01_data_ LINC00662 _ preselection .txt
# Available at www. biometrie .uni - heidelberg .de/
# StatisticalGenetics / Software _and_Data
#
# ######################################################
# "01_data_ LINC00662 _ preselection .txt"
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# A text file with a header line , and then one line per participant
# with the following two fields :
# LINC00662 expression of LINC00662 in FFPE tissue
# group patients ’ status (gallstones ,dysplasia ,GBC)

# install and activate package to run two -sided J-T test
install . packages (" DescTools ", dependencies = TRUE)
library ( DescTools )
# load data of study participants
setwd ("*Path :\*")
data_ preselection <- read. table ("01_data_ LINC00662 _ preselection .txt",

header =T)
# order the group variable
data_ preselection $group <- factor (data_ preselection $group ,

levels =c("GBC", " dysplasia ", "
gallstones "),

ordered =TRUE)
# perform J-T test
jt.test <- JonckheereTerpstraTest (data_ preselection $LINC00662 ,

data_ preselection $group ,
alternative = "two.sided",nperm =

5000)

Selection of the best model for prediction based on robust AIC from robust
linear regression models
# ######################################################
#
# program name: 02_ LINC00662 _ validation .R
# program title: Selection of best model for prediction
# author : Alice Blandino
# version : 1.0
# description : Model selection based on robust AIC from robust

linear regression models
# input files: 02_data_ LINC00662 _ validation .txt
# Available at www. biometrie .uni - heidelberg .de/
# StatisticalGenetics / Software _and_Data
#
# ######################################################
# "02_data_ LINC00662 _ validation .txt"
#
# A text file with a header line , and then one line per participant
# with the following fields :
#
# LINC00662 LINC00662 expression in serum
# rs11083486 genotype for rs11083486 (0=G/G ;1=G/T ;2=T/T)
# rs142521755 genotype for rs142521755 (0=A/A ;1=A/T ;2=T/T)
# age study participants ’ age
# sex study participants ’ sex
# PC1 -PC10 first 10 PCs

# install and activate package to add variables to dataframe
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install . packages ("dplyr", dependencies = TRUE)
library (dplyr)

setwd ("*Path :\*")
data_ validation <- read.table ("02_data_ LINC00662 _ validation .txt",

header =T)

# add new variables where:
# rs11083486 is once encoded dominantly (0+1 vs. 2), once encoded

recessively (0 vs. 1+2)
# rs142521755 is encoded dominantly (0+1 vs. 2)
data_ validation _new <-data_ validation %>%

mutate ( rs11083486 . dominant = ifelse ( rs11083486 =="0"
,1, rs11083486 ),

rs11083486 . recessive = ifelse ( rs11083486 =="2
" ,1, rs11083486 ),

rs142521755 . dominant = ifelse ( rs142521755 =="
0" ,1, rs142521755 ))

# model selection
# install and activate package to run robust linear regression models
install . packages (c("MASS"," repmod "," AICcmodavg "), dependencies = TRUE)
library (MASS)
library ( repmod )
library ( AICcmodavg )
# 1.
# MODELS WITH rs11083486 ONLY
# additive
model . rs11083486 . additive <-rlm( LINC00662 ~ rs11083486 +age+sex+PC1+PC2+

PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_ validation _new)
# three - genotypes
model . rs11083486 .three <-rlm( LINC00662 ~as. factor ( rs11083486 )+age+sex+

PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_ validation _new)
# dominant
model . rs11083486 .dom <-rlm( LINC00662 ~ rs11083486 . dominant +age+sex+PC1+

PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_ validation _new)
# recessive
model . rs11083486 .rec <-rlm( LINC00662 ~ rs11083486 . recessive +age+sex+PC1+

PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_ validation _new)

# 2.
# MODEL WITH rs142521755 ONLY
# rs142521755 dominant
model . rs142521755 .dom <-rlm( LINC00662 ~ rs142521755 . dominant +age+sex+PC1+

PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_ validation _new)

# 3.
# MODELS WITH BOTH rs11083486 AND rs142521755
# rs11083486 additive & rs142521755 dominant
model .add.dom <-rlm( LINC00662 ~ rs11083486 + rs142521755 . dominant +age+sex+

PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_ validation _new)
# rs11083486 three - genotypes & rs142521755 dominant
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model .three.dom <-rlm( LINC00662 ~as. factor ( rs11083486 )+ rs142521755 .
dominant +age+sex+PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=
data_ validation _new)

# rs11083486 dominant & rs142521755 dominant
model .dom.dom <-rlm( LINC00662 ~ rs11083486 . dominant + rs142521755 . dominant +

age+sex+PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_
validation _new)

# rs11083486 recessive & rs142521755 dominant
model .rec.dom <-rlm( LINC00662 ~ rs11083486 . recessive + rs142521755 . dominant

+age+sex+PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 ,data=data_
validation _new)

# create a dataframe with each model ’s name and its AIC
# vector with AICs:
AICs <-c(AIC( model . rs11083486 . additive ),AIC( model. rs11083486 .three),AIC

(model . rs11083486 .dom),AIC( model . rs11083486 .rec),
AIC(model . rs142521755 .dom),AIC( model .add.dom),AIC( model .three.

dom),AIC(model .dom.dom),AIC( model .rec.dom))
# vector with models ’ characteristics
models <-c(" rs11083486 . additive "," rs11083486 .three"," rs11083486 .

dominant "," rs11083486 . recessive ",
" rs142521755 . dominant "," additive + dominant ","three+ dominant ",

" dominant + dominant "," recessive + dominant ")
# dataframe with both AIC and models ’ characteristics
summary .AIC <-data.frame (AICs , models )
# find which model has the lowest RAIC
summary .AIC[ order ( summary .AIC$AICs),,drop=FALSE] [1,]

Prediction of lncRNA expression based on individual genotype data and
quantification of GBC risk
# #######################################################
# program name: 03_ LINC00662 _ prediction .R
# program title: genotype -based lncRNA expression prediction
# author : Alice Blandino
# version : 1.0
# description : prediction of lncRNA based on individual genotypes

and GBC risk quantification
# input files: 03_data_ LINC00662 _ prediction .txt
# Available at www. biometrie .uni - heidelberg .de/
# StatisticalGenetics / Software _and_Data
#
# ######################################################
# "03_data_ LINC00662 _ prediction .txt"
#
# A text file with a header line , and then one line per participant
# with the following fields :
#
# rs11083486 genotype for rs11083486 (0=T/T ;1=G/T ;2=G/G)
# rs142521755 genotype for rs142521755 (0=A/A ;1=A/T ;2=T/T)
# pheno patients ’ status (Control , Case)
# age study participants ’ age
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# sex study participants ’ sex
# PC1 -PC10 first 10 PCs

# install and activate package to add variables to dataframe
install . packages (c(" robustbase ","dplyr"), dependencies = TRUE)
library ( robustbase )
library (dplyr)

setwd ("*Path :\*")
data_ prediction <- read.table ("03_data_ LINC00662 _ prediction .txt",

header =T)

# calculate the SNP -based expression
data_ prediction _ calculation <-data_ prediction %>%

mutate ( rs11083486 .coeff= ifelse ( rs11083486 =="0" , -0.7352*0, ifelse (
rs11083486 =="1" , -0.7352*1 , -0.7352*2)),

rs142521755 .coeff= ifelse ( rs142521755 =="0" ,1.0797*0, ifelse (
rs142521755 =="1" ,1.0797*0 ,1.0797)),

predicted . LINC00662 =0.9267+ rs11083486 .coeff+ rs142521755 .coeff
)

# association analysis fitting robust logistic regression model

# set controls as baseline category
data_ prediction _ calculation $pheno <-ordered (data_ prediction _ calculation

$pheno , levels = c(" Control ", "Case"))

# model fitting
mod <-glmrob (as. factor (data_ prediction _ calculation $ pheno)~ predicted .

LINC00662 +age+sex+PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10 , family
= binomial , method = "Mqle",control = glmrobMqle . control (tcc =1.2) ,
data=data_ prediction _ calculation )

summary (mod)

# extract Oddsratio for Cases
exp( summary (mod)$ coefficients [2])

# extract lower and upper limits for confidence intervals
exp( summary (mod)$ coefficients [2] + qnorm (c (0.5 ,0.025 ,0.975) ) * summary

(mod)$ coefficients [2 ,2]) [2]
exp( summary (mod)$ coefficients [2] + qnorm (c (0.5 ,0.025 ,0.975) ) * summary

(mod)$ coefficients [2 ,2]) [3]
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Mir ist bewusst, dass insbesondere der Versuch einer nicht dokumentierten Nutzung KI-basierter

Hilfsmittel als Täuschungsversuch zu werten ist:

Gem. § 16 Abs. 2 der Promotionsordnung "Dr. med./dent.":

"Ergibt sich vor Aushändigung der Promotionsurkunde, dass der Kandidat/die Kandidatin bei einer

Promotionsleistung getäuscht hat, so können einzelne oder alle Promotionsleistungen für ungültig

erklärt werden. In schweren Fällen kann die Zulassung zum Promotionsverfahren zurückgenommen

werden."

Und § 16 Abs. 2 der Promotionsordnung "Dr. sc. hum.":

"Ergibt sich vor Aushändigung der Promotionsurkunde, dass der Doktorand / Doktorandin bei einer

Promotionsleistung getäuscht hat, so kann der Promotionsausschuss diese Promotionsleistung oder

alle bisher erbrachten Promotionsleistungen für ungültig erklären. In besonders schweren Fällen kann

der Promotionsausschuss die Annahme als Doktorand / Doktorandin endgültig widerrufen."

Ort und Datum Unterschrift
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