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Abstract

This thesis studies the Gromov-Witten and stable pair invariants of local
curves. In particular, we give a closed formula for the full descendent stable
pair theory of all (non-relative) local curves in terms of the Bethe roots of
the quantum intermediate long wave system. In the process, we derive a
new explicit description of these Bethe roots, which may be of independent
interest. We further deduce rationality, functional equation and a pole re-
striction for the descendent stable pair theory of local curves as conjectured
by Pandharipande and Pixton. Furthermore, we show how the Bethe roots
can be used to diagonalize the descedent invariants of the tube and give
explicit formulas for the first few descendents. On the Gromov-Witten side,
we conjecture that the Gromov-Witten theory of the local elliptic curve is
governed by quasi-Jacobi forms. Finally, we compute an infinite series of
special cases, which provides evidence for our conjecture.

Zusammenfassung

Diese Doktorarbeit untersucht die Gromov-Witten- und Stabile-Paare-Inva-
rianten lokaler Kurven. Insbesondere geben wir eine geschlossene Formel fiir
die volle Deszendenten-Theorie stabiler Paare aller (nicht-relativen) lokalen
Kurven in Termen der Bethe-Wurzeln des quantenmechanischen Intermediate-
Long-Wave-Systems an. Im Zuge dessen leiten wir eine neue Charakteris-
ierung der Bethe-Wurzeln her, die von eigenstadigem Interesse sein konnte.
Weiterhin beweisen wir die Rationalitdt, Funktionalgleichung und Polbes-
chrankung der Stabile-Paare-Invarianten lokaler Kurven geméf einer Vermu-
tung von Pandharipande und Pixton. Auflerdem zeigen wir wie die Bethe-
Wurzeln zur Diagonalisierung der Deszendenten-Invarianten der ,, Tube* gen-
utzt werden konnen und geben explizite Formeln fiir einige der Deszenden-
ten an. Zudem stellen wir die Vermutung auf, dass die Gromov-Witten-
Invarianten der lokalen elliptischen Kurve Quasi-Jacobi-Formen sind. Schlief3-
lich berechnen wir eine unendliche Reihe von Spezialféllen, wodurch wir diese
Vermutung untermauern.
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Published contents

The work presented in Section [2| and Section has appeared in the article
[96]. The corresponding introductions in Section [1.2.1] and [1.2.2] are also
adaptations of the introduction of [96]. Furthermore, our account of quasi-
modular and quasi-Jacobi forms in Appendix [A]is closely modelled after the
presentation in [95, Appendix A].
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1 Introduction

1.1 Background and context
1.1.1 History of enumerative geometry

Enumerative geometry goes back to antiquity and is the subfield of algebraic
geometry concerned with counting the number of geometric objects satisfy-
ing certain constraints. For example: One of the very hard problems in this
area was to find the number Ny of rational degree d curves in IP)% that pass
through 3d — 1 given points in general position. The cases Ny = No =1 go
back to the ancient greeks, while as late as the 1980s only the cases d < 5
had been determined. In the 1990s, the subject was transformed due to the
realization that such curve counts also arise from certain N' = (2,2) super-
conformal field theories in string theory as well as in symplectic geometry.
On the physics side, a large but non-rigorous arsenal of computational tools
and ideas had by then already been developed - see [37]. Inspired by this,
Kontsevich proved:

3d—4 3d—4
1 Ny = Ny, Ny, dids | d —d
(1) d > Ny d212<2<3d1_2> 1<3d1—1>>’
da+dp=d
dy,d2>0
which recursively determines all Ny from the trivial case N1 =1 (c.f. [44]).
One of the main innovations of his proof was the introduction of the moduli
space of stable maps:

Theorem 1.1. [8, 44] Let X be a complex projective variety. For all choices
of B € Ho(X, Z)E] and integers g,n > 0, there is a Deligne-Mumford stack
Mg, (X, B) called the moduli space of stable maps, whose C-valued points
correspond to isomorphism classes of pairs

(f:C%vala"wpneC)

so that

e (' is a reduced, connected and projective complex curve whose singu-
larities are nodal.

e the p; € C are pairwise distinct closed points called marked points
that lie in the smooth locus of C.

e the map f is stable i.e. there are at most finitely many automorphisms
of C fixing f and the p;.

In particular, morphisms 7' — M, (X, 8) correspond to flat families of such
pairs.

1AL (co)homology groups will be with Q-coefficients unless otherwise stated.



Remark 1.2. (1) One can relax the definition of stable maps by also al-
lowing disconnected domain curves C so that f collapses no connected

gr.nponent to a point. The space parametrizing such maps is denoted
M, (X, B).

(2) As a moduli stack, the space of stable maps has a universal family of
maps

Upn(X,8) —L— X
(2) |7

Mgn(X,5)

where s; is the sections induced by the i-th marked point. One usually
writes

evi=fos;: Mgn(X,0) > X
for the evaluation of f at the i-th marked point.

For generic points z1,...,234_1 € P2, one can show that any curve
counted in Ny arises uniquely as a stable map and one has

Ng=#(evi' ({z1}) N Nevyy ; ({zn}))
®) _ / evi(pt) -+ evig_1 (pt)

Mo 3q—1(P?,d)

for pt € H*(P?) the point class. This heavily uses the nice structure of
Mo,gd_l(PQ, d), which turns out to be smooth of dimension 6d — 2.

Having established , the identity is now a corollary of a relation in
H*(Moygd_l(IF’Q,d)) called the Witten-Dijkgraaf- Verlinde- Verlinde relation,
which can also be viewed as the associativity of the quantum product. See
[28, 42| for further details and more on this story.

1.1.2 Gromov-Witten theory

However for general X, the space Mgﬂ(X , #) may no longer be smooth or
even equidimensional and can in fact be arbitrarily ill-behaved (c.f. [104]).
As a result, integrals as in tend to be essentially uncomputable and are
not expected to have any good properties in general. Surprisingly, most of
these problems can be fixed using:

Theorem 1.3. [6]|7] For any smooth and projective complex variety X and
discrete data 3 € Ha(X,Z), g,n > 0, the space M, (X, 3) admits a perfect
obstruction theory

¢: B =Ly, .(x)



in the sense of [7], which induces a virtual fundamental class

(Myn(X,8)]" € Hasain(Myn(X, 8))
in complex homological degree
(4) vdim= (3 —dimX)(g— 1) +dsg+n
where we set dg = [, c1(X).

If all components of M, (X, 3) have dimension equal to vdim (e.g. if
g=0and X =P" c.f. [§]), then it follows from Lemma [2.8 that the virtual
class is just the usual fundamental class. Otherwise, the virtual class is a
more well-behaved alternative. We can therefore generalize the integral :

Definition 1.4. Using the notation of Theorem let v1, ..., € H*(X)
and ki,...,k, > 0 non-negative integers. We denote the corresponding
Gromov- Witten invariant by

PR evi(m) -k evE ()

Mg,n(X,ﬁ)]

(5) {7 (1) - i ()5 EY = /[

where ¢; = ¢1(s} Q) € H?(M (X, 8)) with 7 and s; as in (2)). We call the

formal expressions 7x(7) descendent insertions. All insertions of the shape
70(7) are furthermore called primary insertions.

Remark 1.5. (1) The moduli space of disconnected stable maps M;m(X e)
also admits a virtual class

(350%™ € Havain (V0 (X. )

and the resulting invariants

(6)
X,GW,e

(T (V1) = T () 7 = Uit evi(m) - i evi (m)

/[M;,nuw)]”
are called disconnected Gromov-Witten invariants. For emphasis, we
will sometimes denote the connected invariants of Definition by
(Tky (V1) -+ - They, (7,1));(’BGW’°. It turns out that connected and discon-
nected invariants determine each other, see Proposition [£.1}

(2) The case dim X = 3 is especially interesting as the first summand in
vanishes. This lets us define generating series

(7)

(T (71) =+ T (o)) Y =D (=192 (g (1) ()
gEZ



of which all coefficients are usually non-zero. Indeed, string theor-
ists are most interested in Gromov-Witten invariants of Calabi- Yau
threefolds as they are conjectured to encapsulate the six extra dimen-
sions of spacetime - see [16].

(3) Assuming that the ; are represented by some generic submanifolds
M; C X, one can think of as (virtually) counting the number of
stable maps

f: (C7p17' : pn) — X

so that f(p;) € M; with the v; imposing certain ramification condi-
tions on f (c.f. [76, §1.1]). However, Gromov-Witten invariants are
rarely literal curve counts - for one because most naive curve counts
do not have finite answers. The advantage of Definition is that
it always yields rational numbers which are invariant under complex
deformation of X. Furthermore, these agree with the corresponding
curve counts arising in symplectic geometry (c.f. |47, 98]).

In practice, Gromov-Witten invariants are rather difficult to compute.
For instance, Gromov-Witten theory in case dim X < 1 has been solved
completely (c.f. [43, 75, |76, [77]), but there are few varieties of higher di-
mension whose standard Gromov-Witten theory is non-trivial and has been
fully computed. This is presents a challenge as this thesis is mostly con-
cerned with the case dim X = 3.

One of the most powerful computational tools (and the one that is used
most in this thesis) is virtual localization:

1.1.3 Virtual localization

Let X be a smooth, complex, projective variety with an action by a torus
T = (C*)". This induces a natural T-action on M, (X, 3) and there is an
equivariant virtual class

[(Myn(X, 8] € Hy gia (M gn(X, 8))

in equivariant homologyEL which maps to the usual virtual class under the
canonical map H) — H,. One can therefore define equivariant Gromov-
Witten invariants

(8) (7 (n) o (1)) = /[

— ir,T
Mg,n(XvB)]Vlr

P evi () -k evE (),

where v1,...,7, € H#(X). These invariants take values in Hy (pt) =
Q[t1,...,tn]. The connection to usual Gromov-Witten invariants comes

%i.e. smooth and projective X so that ¢;(X) = 0.

3See [2] for an introduction to equivariant (co)homology.



from the fact that

(T (1) T TV pep = (e (1) T (). ==ty

where 7; denotes the image of v; € H3(X) under the canonical map Hj(X) —
H*(X), which is often surjective. The virtual localization theorem [32] gives
a means of calculating equivariant Gromov-Witten invariants:

9)

k1 * k *
ev R e
- (71)"'Tkn(%)>;(gr _ / B Y1t evi(mn) V?f (Yn) MT
' [Mgn(X,8)T] G(NMT/M)

where [Mg,(X,5)"] e H,(M,,(X,B)T) is the induced virtual class on
the fixed locus and N]‘\’/}ET/M € K%(M7) is the virtual normal bundle of the
embedding MT < M. Note that the right hand side remains well-defined

in greater generality:

Situation 1. Let X be a smooth, quasi-projective complex variety equipped
with an action by a torus T = (C*)"V so that the union of all projective T-
invariant subcurves
XM= 1) zcx
ZCX proj

dim Z<1
T-ZCZ

is a closed subscheme and projective.

Situationguarantees that the fixed locus Mg, (X, BT = Mg,n(X(T), BT
is a proper moduli space, which enables:

Definition 1.6. In Situation [Il we set

(7 (1) -+ Th () g =

MT

Urtevi(m) - evi(m)
/[Mg,n (x,8)T]"" e(NIr)
which takes values in Frac(H3(pt)) = Q(t1,...,tN).

Indeed, this is the definition of Gromov-Witten invariants that we will
use from now on.
1.1.4 Pandharipande-Thomas invariants

Pandharipande-Thomas (or stable pair) invariants are an alternative to
Gromov-Witten theory in case dim X = 3 and have somewhat different
properties. More precisely:



Theorem 1.7. [87] Let X be a smooth (quasi-)projective threefold, n € Z
and B € Ha(X). There is a (quasi-)projective scheme P, (X, ), whose C-
valued points correspond to isomorphism classes of stable pairs i.e. morph-
isms Ox 3 F of coherent sheaves on X so that

e F'is pure of dimension 1 and has proper support.
e the cokernel of s is zero-dimensional.
e we have x(F) = n and [Supp(F)] = 5 € Ha(X).

Furthermore, morphisms 7" — P, (X, 3) correspond to isomorphism classes
of flat families of stable pairs.
Furthermore, this space admits a natural perfect obstruction theory

¢Z E — ]L'Pn(X,ﬂ)

which gives rise to a virtual fundamental class

[Po(X, B)]" € Havaim(Pa(X, 8))
with vdim = dg.

Since this scheme is a fine moduli space, there is a universal stable pair
Oxxp — Fon X x P,(X, ). We introduce descendent insertions byﬁ

chy(7) = (mp)« (chi(F) - mxv) € H*(P(X, §))

for k > 0 and v € H*(X), where we used the maps

X x Pp(X, B)

Pu(X, ) X

Since F has support of codimension 2, we have chy(y) = ch;(v) = 0.

If X is asin Situation then the fixed locus P, (X, 8)T is projective and
carries a natural virtual class. Moreover, the construction of chy(y) can be
carried out equivariantly. Hence one defines:

Definition 1.8. In Situation let v1,...,v € Hi(X), k1,...,k, > 0. The
corresponding stable pair invariants or Pandharipande-Thomas invariants
are defined by:

(chg, ('Yl)"'Chkn('Yn»igT’T ::/ A b (’yl)mc.hkn(%) L
[P (X)) e (N3 )

4The pushforward in cohomology is defined as the dual of the pullback in homology
which exists as 7p is flat |19, Theorem VIIL.5.1].




which one puts as coeflicients of the power series

(10)  (chg, (72) -+~ chy, (7)) 5" T =D p" {chgy (1) - chy, () s
neZ

which takes values in Q(t1,...,tn)((p))-

Remark 1.9. (1) Gromov-Witten invariants can be quite far from counts
of subcurves due to the presence of contracted components and mul-
tiple covers. On the other hand, a stable pair differs from a subcurve
only by the finite cokernel of s. As a result, Pandharipande-Thomas
invariants are closer to counting subcurves.

One can also define invariants using the Hilbert scheme of subcurves
of X, which leads to Donaldson-Thomas invariants - see |18} [102]. For
reasons that will become clear shortly, we will not study them in this
thesis.

Stable pair invariants are in a sense nicer than Gromov-Witten invariants
as they are expected to have the following structure:

Conjecture A. [80,[96] In Situation [1}

(1) The stable pair invariants are Laurent expansions in p of rational
functions i.e. elements in Q(¢1,...,tN,p).

(2) Under the variable change p +— p~! these rational functions transform
as follows:

X,PT,T
(e (32) -+ e, () 37|
p—=p

= (—1)Zikip% (chy, (1) - chg, (v )5 T
(3) Stable pair invariants may have p-poles only at p = 0 and where
—p is an n-th root of unity for 1 < n < d(8). Here, we set

d(B) =max{m > 0|8 =mp1 + B2 for B1, P2 curve classes, 51 > 0 }

Remark 1.10. (1) For a strictly stronger version of these conjectures in-
volving connected stable pairs, see [96].

(2) There is no version of Conjecture Al for Gromov-Witten theory - the
closest approximation being |72, Conjecture 24]. In terms of formulas,
Gromov-Witten invariants of threefolds are rather unpleasant and only
nice if they happen to match stable pair invariants particularly closely.



(3) Conjecture [A| was first stated in its full generality in [80] and was
historically a big driving factor for the development of stable pair
theory. Indeed, it was noted in [56] that the corresponding Donaldson-
Thomas descendent theory is irrational. Stable pairs are much better
behaved - in particular rationality of the generating series was first
conjectured in [87] with first examples being computed in [88]. For
toric threefolds and certain complete intersections the rationality was
proved in [84] [86]. The p ~— p~! symmetry was first formulated in
the Calabi-Yau case in [55] and related to Serre duality in [88]. This
led to a proof of rationality and symmetry in the Calabi-Yau case
in 13| [103] based on the Behrend function approach to enumerative
geometry. However, this approach does not generalize to the non-
Calabi-Yau case.

1.1.5 GW/PT correspondence

One of the most profound conjectures in enumerative geometry is the Gromov-
Witten/Pandharipande- Thomas correspondence, which asserts that the Gromov-
Witten and stable pair invariants of a threefold should determine each other.
We will now sketch this and refer to [81] for further details.

Recall the universal correspondence matri

Koa,a € Q[Cb C2, 63]((2)),

which was constructed in [85]. Here we take o, @ to be two weak partitions,
by which we mean non-empty sequences

oz:ozl2@2Z...zag(a)ZOanda:al2@22...28%(&)20
of non-negative natural numbers. This matrix has the following properties:
Proposition 1.11. [85, Thm 2 and §7.3]
(1) We have K, 5 = 0 if |o| + £() < |a] + £(@).

(2) The z-coefficients

[2*] Ko € Qler, 2, c3]
are homogeneous of degree
la] — |a] — (a) — 20(@) + 3
where ¢; is defined to have degree .

(3) We have
> —d
Ka),a) = 2

®Our matrix differs from the one introduced in [85] by the variable change z = iu and
the use of weak partitions instead of partitions.



Remark 1.12. The universal correspondence matrix is defined in [85] in
terms of the capped triple vertex. While it has been partially computed in
[63, [72], no full formulas for K are known.

For any X as in Situation [l one can consider f(a@ as an element in
HZ(X)((2)) by substituting the equivariant chern classes c; (X) for ¢;. Given
Y-+ Yo € Hp(X) homogeneous cohomology classes and o = (v, ..., ap)
a weak partition, we can use this to define a formal descendent insertion

(11) Tou (71) T Tozn('Yn) = Z sgn(P) H ZT@ (I?a&a . 75) ,

P set part of SeP a
{17"'7n}

where sgn(P) = +1 is the sign that arises from permuting the ~; of odd
degree. Furthermore, we set ag = (a;)ics, 75 = [[;c5 7 and

7a(7) =) Tay (06) -+~ 78, (O),

where

Aiman(’}’> _ Z (51,5 R R (5175 S H%(Xl)

is the equivariant Kiinneth decomposition of the pushforward along the small
diagonal As™al: X < X! We are now ready to relate Gromov-Witten and
stable pair invariants:

Conjecture B. [55, 56, 85| In Situation for any g € Ho(X), 71,...,7 €
H3(X) and weak partition o = (a1, ..., a,,) we have

(—p) %2 (chay+2(m1) - - chgy 2 () 5T

(12) >X,GW,T,.

= (=2)% (e (1)~ Ta (1)

with the variable change p = —e”.

Remark 1.13. (1) Note that the variable change p = —e” is only well-
defined if we assume Conjecture [Alj(1)}

(2) By Proposition [L.11}{(1)f(2)] the @ occuring in (11]) must satisfy
lag| > |a] and |ag| + £(ag) > |a| + £(a).

In particular, the sum over & must therefore be finite. If one of these
inequalities becomes an equality, we can use Proposition [1.11[(2)| to
see that

las| — |a] > l(ag) +2¢(@) —3 >0



las| + l(ag) — (|a] + (@) > 2l(ag) + (@) —3 >0

and hence we must have |S| = 1 and @ = ag = (d) for some d > 0.
This case is described by Proposition (3), so we have

—le]

7_0!1(71)"'7-041('71) =z 7-041(71)"'7-041('71)_"'--

where “...”

that

stands for summands of the shape c-73,(61) - - - 7,(dm) s0

o] > |8] and [a + () > [B] + £(5).

In particular, this gives

70(71) - To(v) = T0(71) - - - 0(1)-

There has been a lot of progress towards Conjecture [B] In particular, if
X is a toric variety, the conjecture is known by [57, 85]. Furthermore, many
more examples have been confirmed mostly using degeneration techniques
- see for example [61, 69, 79, 86, [89]. Recently, there was a remarkable
breakthrough in [90], where Pardon showed:

Theorem 1.14. [90] Let X be a smooth projective semi—Fancﬁ threefold,
V-5 € H*(X)u 5 € HQ(X)7 then:

(—p) /% (chy(y1) - - 'Chz(%))?g{’PT = (—2)% (ro(m1) -+~ T()(’yl»g(’GW’.

with the variable change p = —e”.

Remark 1.15. We expect that the results of [90] can be extended to the
semi-Fano version of Situation [I| using an approximation argument similar

to [90, §4.3).

1.1.6 Pardon’s proof of Theorem [1.14

We will briefly outline the gist of the proof as it serves as one of the main
motivations for this thesis. The first step is the construction of a ring called
the Grothendieck ring of semi-Fano 1-cycles H}(Zs/Cpxs) in which any
projective semi-Fano X with 8 € Hy(X) and ~1,...,y € H*(X) naturally
induces an element

(13) (X, 857, ---,m) € H (Zsr/Cpxy).

Furthermore, this ring admits a bigrading so that has bidegree (dg, vdim)
where the second degree is

vdim := 2dg — Z(deg('yi) -2)

(2

Si.e. ¢1(X) is nef, meaning that Joe1(X) > 0 for any subcurve C' C X.

10



= deg ([M;,I(X, 5" [ (%-))
= deg ([Pn(Xa ﬁ)]Vir N H Ch?(%)) )

which is hence dubbed the virtual dimension. It now turns out that Gromov-
Witten and stable pair theory induce ring homomorphisms

(14)  H(Z#/Cpxs) <% Q((2)) and H; (Z/Cpxs) — Q((p)),

which yield the corresponding primary Gromov-Witten and stable pair in-
variants when evaluated at - indeed, this holds for any curve counting
theory that is deformation invariant and multiplicative under disjoint uni-
ons. As a result, the class can be regarded as a kind of universal curve
counting invariant. Pardon then shows the following via intricate analytic
transversality arguments:

Theorem 1.16. |90, Theorem 1.1] The virtual dimension 0 part of
H}(Z4r /Cpxs) is generated by the so-called equivariant local curve elements

Tgmk € He (Zsr/CPX3)mk,0
for g,m, k > 0.

Remark 1.17. (1) Since only classes of virtual dimension 0 have a non-
zero image under , this expresses all primary semi-Fano curve-
counting invariants as polynomials of the corresponding invariants of
the Tgm.k-

(2) The intuition behind this statement is that morally, the virtual dimen-
sion should be the actual dimension of the moduli space of curves in
X that we want to count. Thus, in virtual dimension 0, the moduli
space should consist of only finitely many curves C1,...,C; C X. By
deformation to the normal cone and deformation invariance, the con-
tribution of a fixed curve C; C X must be the same as that of the
zero-section C; C N¢;/x to the curve count of N¢,/x. The equivariant
local curve elements precisely encapsulate the contributions of such
zero-sections. We can therefore replace X by H§:1 N¢,/x. Since the
product in H}(Zsr/Cpxs) is induced by disjoint union, this implies
that the class in H}(Zsp/Cpxs) corresponding to the curve count is
a product of [ local curve elements. Pardon’s proof of Theorem [1.16
may be viewed as making this very imprecise argument rigorous.

To further explain the x, ,, 1, recall that a local curve is a threefold which
is a total space X = Toto (L1 @ Le) for two line bundles L1, Ly of degree I3, l2
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on a smooth projective curve C. This space is equipped with the T = (C*)2-
action scaling the two summands. Since X(T = C is projective, we are in
Situation |1, which allows us to do curve counting on X. The z4,, are
constructed in |90, §4.3] so as to satisfy

GW (sgmk) = (i) " and PT(xgm k) = (i)

m[C] t1=to=1 m[C] t1=to=1

for any local curve X = Totco(L; & L) with
g=9(C)and k=c1(TX) =2—-2g+ 11 + lo.

The following theorem follows from lengthy degeneration and localization
arguments:

Theorem 1.18. [15, 79,82, 83| For any local curve X, the empty insertions
X,GW,T,e X,PT,T
L and (1),
obey Conjectures [A] and

This altogether proves Theorem and under the same assumptions
also Conjecture |A| since al]lZ] statements are compatible with the ring struc-
ture and grading of H}(Zsr/Cpxs) and hold for the local curve elements.

It is yet unclear how to extend this strategy to arbitrary descendent
insertions. Indeed, the fact that Conjecture [B|is not a straight equality, but
involves complicated (and unknown) correction terms, gives a hint that the
Zgm,k and the empty invariants on local curves may perhaps not be able to
capture the general case.

Guided by this line of thought, the main aim of this thesis is to study
the full descendent Gromov-Witten and stable pair theories of local curves,
which we see as very representative of the behaviour of general threefolds.
We further advocate for the notion that the local curve invariants are very
complicated, but should nonetheless be fully and explicitly computable.

Our results are as follows:

1.2 Stable pair theory of local curves

Let us first fix some notation. Since this section studies stable pair invari-
ants, we will drop the superscript “PT” from our invariants (...)FT. It will
also be useful to turn our insertions into generating series

ch,(vy) = Z ZFehi (7).
k>0

Furthermore, any boldface letter will refer to a vector whose entries are
denoted by the corresponding non-boldface letter e.g. v = (v1,...,vy).

"This shows only a slightly weaker version of Conjecture - we expect that one
can prove the full statement through a more careful study of [90].

12



1.2.1 Absolute theory

The first main result of this thesis is

Theorem 1.19. Conjecture [A] holds for all descendent invariants on local
curves.

Remark 1.20. In part this was already proved in |82} [83], where rationality
is shown for all descendents and symmetry and pole restriction for station-
ary and even descendents respectively. Their proof relies on a subtle pole
cancellation property of the stable pair vertex as well as degeneration, mono-
dromy invariance and localization. As a result, their methods also work in
the relative case, which we do not address. However, it does not seem that
these methods can yield a full proof of Theorem [1.19.

We will deduce Theorem from Theorem which even gives a
closed formula for these invariants. But before we state that formula, we
must first introduce its constituents: The Bethe roots.

1.2.1.1 Bethe roots. A commonly used tool in the theory of quantum
integrable systems is the algebraic Bethe Ansatz, which goes back to |10} |26
99]. The key observation is that many integrable systems have an associated
system of polynomial equations called Bethe equations whose solutions allow
one to diagonalize the integrals of motion of that system - see [100] for an
introduction. The connection to enumerative geometry was first observed in
[67, 68]. The Bethe equations most relevant to us come from the quantum
intermediate long wave system (ILW7 in the notation of [51}, 52]), which are
as follows:
Let K be the field of Puiseux series

K = Q(t1, 12){{p}} = | Qt1, t2)((0"/"))
n>1
with Q(t1,t2) the algebraic closure of Q(t1,t2). In particular, recall that
K is algebraically closed [21, Cor 13.15]. For fixed d > 1 we call a tuple
Y € K% admissible if Y; % 0,t1 +to for any i and Y; — Yy #£ t1,to,t1 + to for
all i # i’. We are then interested in certain admissible tuples satisfying

(15) p=Fi(Y)
foralli=1,...,d, where
v, (71)a+b+c
(16) F(Y) = H ((—1)C(at1 + bty) + Yir — Yz)
0<abe<t
(a,b)#(0,0)

8For the pole restriction, the problem is that the algorithm given in |75, 82} |83] relies
on inverting the cap matrix (c.f. [82} §9.1]). However, the fact that the entries of a matrix
only have certain poles does not imply that the entries of the inverse also only have said
poles.
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From now on we will simply refer to as the Bethe equations. The partic-
ular solutions of these equations that are of interest to us are characterized
as follows:

Theorem 1.21. For any partition A of size d there is a tuple Y* =
(YD)\(p))DeA of power series Y2 (p) € Q(t1,t2)|[[p]] indexed by the boxes in the
Young diagranﬂ of A which is uniquely determined by any of the following
equivalent descriptions:

1) It is the unique admissible solution of (I5]) in K¢ so that
(

Y(/i\,j)(p) = —ity — jto + O (p>0)
for any box (i,7) € .

(2) Let the sequence v" = (v{y(p))e, of tuples of power series vfi(p) €
Q(t1,t2)[[p]] be defined by

v (p) =0
for n = 0 and for n > 0 we recursively set

n — p
v (p) = BY®(ve-1))’

where
FA(Y)
1-40,(0,0)
1Y _1\a+b+c
= ()" e I (e bt () - Ye) Y
O£0'ex
0<a,b,c<1
(a,b)#(0,0)

O’ £0+(—1)%(a,b)

and YOV (v) = (YD()‘) (v))DG/\has entries given by

A . .
(17) YN ) = —iti—jta+ Y. [ o
A/p conn. skew DEN/p
(4.5)EN 1
with the sum running over all connected skew partitions contained in

. We now have [[0]

Ya(p) = lim ¥V (v").

9c.f. Section for the relevant notation.
'9All factors occuring in Fé’j)(Y()‘)(v"*l)) have a non-zero p®-coefficient. It follows

from this that v (p) —vf " (p) = O(»™) and hence YD(M(V’“) - Y[(]M(Vn71) = O(p") for all
n. Therefore the limit exists.
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(3) One has the following closed formula:

Y AFH (YN (v)) /BUD/
a( Fo(YN (v

H 1—p-Fo( Y(’\) )))

where H . H denotes the determinant of a matrix and [v%] means taking
the coefficient of [, U% in the expression to the right, all of whose
p-coefficients turn out to be Laurent series in v. Furthermore, Y (v)

is as in .

Remark 1.22. (1) The uniqueness in is not immediate and part of
the statement. Also note that the Bethe equations are symmetric in
the Y; which allows us to use the boxes of )\ as indices.

(2) The Bethe roots are usually characterized using However, explicit
descriptions like [(2)| and have to our knowledge not appeared in
the literature before.

From now on we will call the Y* simply Bethe roots. One might hope
that they are the only solutions of . However, there are more - for

example Y = (V;)L, with ¥; = (t; + t2)((1)971i1 for all 4 is one such. In
order to further narrow things down, we call a solution Y = ( i)z‘:l fully
admissible if in addition to being admissible we have Y; # Y}/ for all i # ¢'.

Indeed, it is believed that this get rid of all unwanted solutions.

Conjecture C. [51, §3] Up to permutations of tuple-entries, the Y de-
scribed in Theorem are the only fully admissible solutions of the Bethe

equations over K.

This would give us an entirely algebraic characterization of the Bethe
roots whereas the descriptions in Theorem were all somewhat analytic.
Though we can not prove Conjecture [C, we will provide the following partial
result:

Proposition 1.23. The Bethe equations have only finitely many admissible
solutions Y over K all of which are of the shape

Yi = ait1 + bita + O(p~°)
for a;, b; integers with |a;|, |b;| < d.
1.2.1.2 The main formula. From now on we will fix a curve C of genus

g and
1,09, B1,..., 8, € HY(C,Z)

a symplectic basis i.e. so that

o;i-a;=0;-B;=0and a; - Bj = b;; - pt
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for any 1 < 4,5 < g and pt € H?(C,Z) the point class. As a result we
get a basis B={1,a1,...,aq,61,...,08y,pt } of H*(C). Let further Ly, Ly
be line bundles of degrees 1,12 respectively and X = Totc(L; @ L) the
associated local curve with T-action.

For fixed degree d > 0, free variables Y = (¥;)%_; and classes 7; € B we
define the formal bracket

(cha, (11) - - - chz, (1)) ™™ € Q(t1, 12, Y)[[2]

to be the unique super-commutative expression that vanishes in case

{ilvi=a}[#[ilv=703

for some [ =1,..., ¢ and is otherwise given by
(18)
a b g X, form
<H1 chg, (1) - H1 y; (Dt) H ( (az)ch,i (Br) - - chy (ar)ehy, (5z)>>
i= i= = d

a

=[]z > II v¥ ] E@i.vo)
i=1 9. _,8={1,.,a}iesS-1 €51
O,eX for i€S_4

b
. H (llfB(.mtl) + lQSB(xitz))E(aj‘i,Y) . HE(%’Y)
1€Sp =1
g . .
H (ZZ,W’L;XSI- ’ Y)M(Y)*l .A(Y)g—l 'B1(Y)l1 _BQ(Y)lQ_
=1

Here, we denoted
[ 0F;(Y)/)0Y;
M(Y) = (7}3,0() )Z ,

where the F;(Y) are as in and
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as well as

’:]&

(i +t—Y5)) - HM(Y)H

z:l
H (at1 + bty +Y; — Yj)(_l)“b“a
1<i,j<d
0<a,b<1
(19) (a,b,i=4)#(0,0,0)
d d 1 b
Bi(Y)=[]th+t2—¥)™" J] J] 1 +bta+vi— ¥V,
i=1 1,7=1b=0
d d 1 L
By(Y) =[]t + 12— ¥3) H H (aty +tp +Y; — ;)0
=1 j=1

We also wrote

2i—1
iB(t) = 7@’51— —%: 2+2322t2z
i>1

with B,, the n-th Bernoulli number and

n
(ZaW;X ‘ Y)N ::(_1)71 Z HNauc;bucH : HxlE(xl)YCz)

a:(ai)ﬁlz =1
b=(bi)iZy,
c=(ci)y
m
. H Zi’lUiE(Zi, Yaz)E(wZ) Ybl)
=1

for any d x d-matrix N, vectors z, w of length m and x of length n. The
E(z,Y) are defined by

E(Z,Y) = (1_67]&12)(1_67]&22)67;}/

tito
(20) d
E(z,Y) = ZE(Z, Y:)
i=1
Note in particular that (... >§’form is symmetric in the Y;.

The main result of this section now specifies the relationship of the formal
bracket with the actual stable pair invariant:

Theorem 1.24. One can evaluate
(chay (1) - - ch, (7))
at Y = Y* for any Bethe root Y* and we have

(21)

(chz (M) ... chs, ('771) =) E chz, (1) h., (’Yn)>Xf0rm Y=Y* -
A-d
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Remark 1.25. (1) Theorem is new even without insertions. We
will prove it using a strategy similar to [62], where the fixed locus of
the stable pair moduli space is identified as the double nested Hilbert
scheme. Our formula is made possible by an explicit description of the
geometry of the double nested Hilbert scheme.

(2) In [62], the case of no insertions and t; = —ty was considered. In
particular, one should be able to obtain [62, Theorem 1.3] as a special
case of Theorem however one can show that

Y3, =t1(i — Jj)

t1=—12

and hence setting ¢t; = —t2 makes some numerators and denominators
in vanish. This makes it difficult to compute the limit t; — —t».

The upshot of Theorem [1.24] is the following slogan:

The structure of stable pair invariants
is induced by the structure of the Bethe roots!

Indeed, this is how we will prove Theorem Assuming Conjecture [C]
rationality is immediate, symmetry comes from the invariance of the Bethe
equations under the involution

timtiyp=p LYt - Y;

and pole restriction is connected to the fact that the YD’\ (p) are convergent
power series that can be locally analytically continued to any p in

C\{<¢|(=¢)"=1forsomel<n<d}.
In the absence of Conjecture [C| we can give a very similar proof by instead
deducing it from certain special cases proved in [82, 83|.
1.2.2 Relative theory

Although the above results only apply to absolute local curves, one can still
use them to gain information about the relative case:

Consider the threefold X = C? x P! and the smooth divisor D = C? x
{0,000} together with the diagonal T = (C*)*-action on the C2factor. This
geometry is often referred to as the tube. Recall that one can define moduli
spaces P, (X/D,d) of relative stable pairs [48] together with evaluation maps

Hilb(C?) &2 P,(X/D, ) <= Hilbd(C?)
to the Hilbert scheme of points on C? and an equivariant virtual class

[P,(X/D,d)”" € HY(P,(X/D,d)) ® Q(t1, t3).

18



Using this one can define invariants ViaE|
(€lchz, (1) -+ - chy, (')’n)|5>X/D7T

=3 /[ A (M) - .- chs, (yn)evg (€)evie (6) € Q(t, t)[[p, 2],

n>d

where ¢,d € HA(HilbY(C?)). As shown in [82, [86], these power series are
Taylor expansions of rational functions. Moreover, by [78, |79] these invari-
ants also encode quantum multiplication on Hilb™(C?). Now consider the

Q(t1,t2)((p))-vector space
H := Hi(Hilb"(C?)) @qs, 1) Qlt1, 12)(()).

We encode the stationary invariants of X/D in terms of endomorphism-
valued power series

M (z) € End (H) [[z]]

for z = (21,...,2,). Indeed, these are defined by taking the functionals of
the shape

H&H —Q(t, t2)((p))[[2]
v ® & —s(y|chs, (pt) . .. chy, (pt)|8)X/PT

and using the identification
EndH)=H"@H=H"@H' = (HaH)",

which comes from equivariant Poincaré duality for Hilb?(C?). Recall fur-
thermore that the set of fixed points Hilb?(C?)T is in natural bijection with
the set of partitions A\ F d i.e. of size d and the associated classes [A] € H of
the fixed points form a basis of H.

Theorem 1.26. There is a basis (vy) of H so that
vy =[Al+O(p)

and
n

M(z)vy = H E(zi,YM)u,
i=1

for all n and A - d, where Y* = (Y3(p))oey is the Bethe root associated to
A and the E(z,Y) are as in (20).

1 One can show that P,(X/D,d) = ) for n < d.
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Various versions of this had already been shown in [1, 27, [52] (see also
[93]). Indeed, M (z) is very closely related to the integrals of motion of ILW1,
which is why it is natural to expect that its eigenvalues can be expressed in
terms of Bethe roots. We will give a new proof by deducing it from The-
orem See [97] for a generalization of this approach to the enumerative
geometry of Nakajima quiver varieties.

For the rest of this section we aim to study M (z) more concretely, which
will also shed new light on the Bethe roots via Theorem In order to
state our results, we first recall the Fock space description of H, see [35, [66]
for more details.

The Fock space F is freely generated over Q by commuting creation
operators a_j for k > 0 acting on the vacuum vector |@) € F. There are
also annihilation operators ay, for k& > 0 so that aj-|()) = 0 with commutation
relation

(22) [Oék, al] = kékﬁl-

From these we get a new family of operators

1 K3
v; <0 v; >0

for any integer vector v = (v;)}_; € Z;O. There is a natural basis of F given

by the vectors of shape
1) = o0}
H)=—a_
3w "

for p any partition and normalization factor

3() = [Aut ()] T] wi

There is furthermore a natural inner product on F defined by
5“7”
3(w)

for which oy and «_j are adjoint operators. The significance of F for us
lies in the existence of an isomorphism

(23) F ®q Q[t1,ts] = @H{E(Hilbd(CQ))
d>0

{ulv) =

Y

where the graded component H:(Hilb?(C?)) on the right is generated by |u)
for |u| = d on the left. Note that a, preserves this grading only for v € V!
where V' is the set of all vectors v € Zl#o with ), v; = 0. Moreover, the
equivariant Poincaré pairing on the right of corresponds to the pairing

' (_1)Iul4(u) Oy
(trta)*) 3(p)

(24) {ulv)
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on F, for which (ag)* = (=1)"1(t1t5)*¥**)a_,. Using the isomorphism
([3), we can now use the basis |u) to represent M (z) as a matrix with
entries

M (2) 1 = (=)W= (1) 05 () (b (pt) [1) ¥/ 2T
We will now give a partial description of its z-coefficients Mj, = [2F]M ().

Theorem 1.27. For any k > 0, there is a unique collection of f*(v) €
Q(p)[t1,t2] depending on v € V! with 2 < [ < k which is invariant under
permutation of the vector entries and so that

(25) M= 3 (—1P0 ()"0 ) S,
2<i<k
vevt

where n(v) and p(v) are the number of negative and positive entries of v
respectively. For any v € V! we can further expand

FFoy=" Y (k)" (b1 + 1) fp(v)
2a?&-’ll7)-|2-l0:k

for some fclf’b(v) € Q(p). The fc]f,b have the following properties:

(1) for any a,b, v we have:

Z 2 ivz—l Z sgn(vi)st fy_q 1 (v \ (01) U (5,1))

i
s+t=v;
sgn(s)=sgn(t)

= (Wi + ) fE o (v (0,07) U (v + 05)),
i#]

where v \ (vj,vj) U (v; +v;) = (vi,...,05,...,0j,...,0n, v + vj) and
V\(Ui)U(S,t): (Ula"'al/)\iv"'vvnasvt)'
(2) One has

f(ﬁk—2(v7 _U) =

for any v > 0.

or a <a<szandveE et
3) for all 0 b and v € Vh-2a

faolv) = <_411> 2 H 2n12—?z1

nl>0

Zlnl a
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Remark 1.28. (1) Any linear operator M € End(F) which preserves the

3)

grading must be of the shape

M= f(v)ay

vevl

for a uniquely determined symmetric f. Imposing a bound ¢(v) < k
is however a very strong constraint on M and means that M|u) is a
linear combination of |A) where A is obtained from p by at most k — 2
cuts and joins.

The functions f* are all even in the sense that f*(—v) = f¥(v) for
any v. Indeed, by construction, M} must be self-adjoint with respect

to the Poincaré pairing (24). By applying (---)" to and using
uniqueness of the f*, this gives us f*(—v) = f*(v) as desired.

As we will see later, equation is equivalent to the fact that M3 and
M}, commute, which follows from degeneration.

While Theorem does not fully determine the My, only a small num-
ber of additional calculations are sufficient to show:

Theorem 1.29.

M3 = (tl + t2) Z % E:i;:t} A _yQly

v>0
1

+ 5 E (tlt?a—vla—v2av1+v2 = Ay —vp Qo a02)7

v1,v2>0

2 3v_q 2
My = (t; +to)? Z %(53701)304 vy — t1lo Z T30y

v>0 v>0

_p\v1tv v v
+ % Z ((111 +U2)E_§;vi+vzi_i +U1E p;vl T+ V2 E g;vzi—}>

v1,v2>0

: (tlt?a*vla*vzavﬁrvz = Qyy—vp Qo av2)

1 2,2
+ 6 E (t1t2a—vla—v2a—v3avl+v2+’03 + Oy vy 3 Oy av2a113)

v1,v2,v3>0

tita
- i E Oy Oy Qg3 Oy

Ms =

v1,02,03,04>0
v1+v2=v3+v4

4v —1
tl + t2 Z 24 5311 1 —vQy
v>0
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v>0 \0<i<v

2 v 1 v 1 _m\? 1 (—=p)? +v 1
+ (tll_éz) Z (vlvzg P§”1+1§ p;”z+1 +v1(vr + 02)5_37}1: E_i;viﬂzfl

- - (—p)? 0?2 v (—p)?
B t1t2(;i+t2) Z ( Z 2i(v — 1) E_ggiﬂ + (5 ;1) g_i;:}) Q_yy Oy

v1,v2>0

2 2
2 [ (—p)?1+1 2 ((=p)"2+1
et gty o (E) +8 ()

(=
(-
v1+v2+1 + 2
+(v1 —I-Uz) (E zgv1+v2_1> + U12vz>
(120 Oy Qg vy — Oy g Oy Ol
4
t1+t 1’z-i-l —p)v1tv24q
+ 13-62 Z <2sz T +2(vq —l—vg)g_gmiﬂ@_l
=1

v1,02,03,04>0
v1tv2=v3+v4

p)¥2+1 (—p)¥1 V241

+ U2(U1 + vz)

} : p)i 41
+ (Ui - Uj)miv_l QA —yy By Oy Oy

3
titts vl"‘l (=p)1tv2trs+l
T Z <2 Z vl p)Pi—1 +2(v1 + vz + v3) (Cp)PiFoaFos 1
v1,v2,v3,04 >0 =1
v1tv2=v3+v4

'U7,+'UJ+1
+ Z (Ui + /U])E g; v+ 1 : (a—’U1—’U2—’U3a’U1 avgav3

2,2
+ tthOé,leé,an,Us avl+v2+vs)

4 4
1 2 : 3.3
+ 24 (t1t2a01+v2+v3+v4 H O—p; — Q—py—va—v3—0v4 H avi)
v1,v2,v3,04 >0 i=1 =1
lito Z
E (a—v4a—U5 Qlyy Qyy Olyyg — ttha—’Ul Qg Oy Qlyy Qlyg ) )

v1,02,V3,V4,05>0
v1+v2+v3=v4+5

where 0 - E:i;gi = 0.

Remark 1.30. (1) The formulas for M<o are trivial and the one for Ms

was first shown in [78], though our proof of it is different. However,
the formulas for My and My are new.

(2) Theorem and Theorem together determine the first three
power sums of the Bethe roots. For example, taking the trace of Mz

yields

—p)’+1
St S VA = (+t) [ d221_q ( _p)v_1+1>7
a>1 éié(i d>1
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which seems nearly impossible to tell from the Bethe equations alone.
Theorem is also a consequence of the following conjecture.

Conjecture D. For any k£ > 0 we have

S1|—D!(|S2|—1)! _p\VS
foiv) =1 3 ISl o
S1USa={1,....,k—1}
fo 2(v ): Z (|SII_1)(!1£IE%1_1)!IS?’“

S1USaUS3={1,...,k—2}

(o (o 2
"VS1VS2 (T VST (—p) B2 - 482

St = 1)!(|S2|—1)!(| S5 |~ 1)!(|Sa|+1)!
fis(v) = % > (RIS (?_%)fl 1)!(|Sal+1)
S1US2US31USy={1,...,k—3}

: (=p) Sl+1( p) 5241 (—p) 93 +1
V51V52V53( p)"51 1(— p)v‘9271 (7p)V5371

+ L Z |S1[!(|S2]|=1)!]S5]!(] Sa|—1)!
16 (k—2)!
S1US2LS3LS,={1,...,k—3}

(=p) 75175441 (—p)"S2 41 (=p)"S441
(Vsl + VS4>VS2VS4( p)vsl+v54 ( ) 52_1 (_p)vs4_1

1 |51]!152]!(|S3]-1)! (=n)"*:
p) 341
DY Z ooy Vsi(Vsy +V53)V53( p) 5% _1
51U52u53={1,...,k—3}
1 (81| =D)!(|S2|+1)¥(|S3]—1)! (=p)"S8+1
~ 56 > (—2)! VSV Vs (st
S1USaUS3={1,...,k—3}
_ 1 (IS1=1)!]S2[!S3]! 2 (=p) 5341
a8 Z (k—2)! VSV S (Cp) 7S 1
51U82US3:{1,...,]€—3}
k __1 (IS1/=D!(S2| =D, (=p)"5141
le(V) — T 48 Z (k—4)! Vs, (_p)"Sl 1
S1US2={1,...,k—3}
1 1S4 [!1]S2]1(]S5]—1)! 2 (=p)"S17V52 41
12 Z (k72)! vSl (V31 - 1) (—p)vsl+v52 1
S1USeLS3={1,...,k—3}
1 |S1]!]S2|! 2 (=p)"S1+1
T 48 Z k—2)I VS (Vsl - 1) (—p)¥S1-1
S1USs={1,....k—3}
1 |S1[!].S2|! (=p)°+1
—1 Z (k—2)! sgn(vs, ) - st - (—p)y—1°
S1USo={1,....k—3}
s+t:V51
sgn(s)=sgn(t)
. , (=p)°+1 ._
where we set vg == >, gv; and 0 - S 0 as before. Furthermore,

these formulas for fib(v) only hold if 2a+b+1 = k where v € V' - otherwise
we have ff,b(") = 0.
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Remark 1.31. The formulas above were found through extensive computer
search and fit a large amount of data. Moreover, it is straightforward to
check that Conjecture [D] is consistent with Theorem [1.27] in the sense that
the right hand sides satisfy Theorem and specialize to Theorem

1.27(2)[in case a =0 and b =k — 2.

1.3 Gromov-Witten theory of local curves

We will now consider the T-equivariant Gromov-Witten theory of a local
curve X = Toto (L1 @ La) of genus g = g(C) and I; = ¢1(L;). As a result,
we will drop the superscript “GW” from our invariants. The specific flavor
of Gromov-Witten theory, which in our case is most convenient, comes from
the moduli space

M, (X,d).

!/

g,n(
This is the space of stable maps from possibly disconnected curves where
every connected component maps nontrivially and receives a marking. The
difference between the resulting invariants (. . .>§’/ and the disconnected in-
variants we encountered earlier is encapsulated by the following consequence

of Theorem [[LI18 and Theorem [1.24]

Proposition 1.32.

X,T,e
1)y

— (=z2)d) (zez/z)‘d<“*’2

) Z A(Y)\)g—lBl(Y)\)hBQ(Y)\)lz

—_p?
A-d p==e

where Y*(p) is the Bethe root corresponding to .

At first, one might hope that a sufficiently careful spelling out of the

localization formula might yield similarly comprehensive results as in Section
—

Unfortunately, this does not work since the fixed locus M, (X, d)T =

Mgvn(c, d) is not as nice as the double nested Hilbert scheme and admits no
explicit description. As a result, the Gromov-Witten theory of local curves
is much more difficult to compute and we will restrict ourselves mostly to
g=1and l; =1l = 0ie. the local elliptic curve X = C? x E. This is in
some sense the easiest local curve as for example Proposition simplifies
greatly in this case. By expanding Definition [1.6] one can show that the
Gromov-Witten theory of X is equivalent to double Hodge integrals over the
elliptic curve:

Definition 1.33. For v1,...,v, € H*(E) we set

n ‘ By
<EV(1)EV(35) I1 1/z7_¢>

i=1
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n n By
— Z (_1)97122972qd H z§¢+1 <EV(1)EV(.’L') H 7, (%)>

= i=1 i=1 g.d
d>0
11, n€Z

€ Qlla)lz™, 21, -, 22 1((2)),

where
g

BY(2) = (1N € (3, (B, d)lo
=0
with A; = ¢;(E) the i-th chern class of the Hodge bundle E = 7,0
forgetful map : M;,n+1(E7 d) — M;yn(E, d).

L of the

™

See Section for more details. What makes the local elliptic curve
particularly attractive is the fact that it is based on the Gromov-Witten
theory of the elliptic curve, which has been fully computed and is quasi-
modular - see [75, 76, 91]. Moreover, in case x = —1 one can use Mumford’s
relation (c.f. [65])

(26) EY(DEY(-1) = (=1)?

to remove both Hodge classes. As a result, the explicit formulas for the
Gromov-Witten theory of the elliptic curve given in [76, §5] and [91, Pro-
position 3.3.2] imply:

Theorem 1.34. Let B = {1,«, 3, pt} be the basis of H*(E) introduced in
Section [1.2.1.2] For all v1,...,7, € B we have

n . Ey
<EV<1)EV<—1> I1 M>

i=1
[7]—2
=—2" > s ] (I <Z Zi) Fig ((Z ZZi)IeS) :
(1) =1lyes T reés \icr  \ier iel
Uiervi=%pt

where sgn(.S) is the sign that arises out of super-commuting the 7; into the
shape S. Here, F,, is the Bloch-Okounkov correlation function

|

Fo(z1,...,2,) =
( ! ) O'Z;n @(’za(l))@('za(l) + zo‘(Z)) s 6(20(1) 4+ ...+ Za(n))

(9j_i+1(20(1)+~~-+2a(n—j)) )
G—it1)! i

with ©(z) the Jacobi theta function as in Appendix

Since Gromov-Witten invariants of the elliptic curve are quasi-modular
forms (c.f. Appendix , one has for all x:
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Theorem 1.35. We have

n ' E,y
<]EV(1)EV< )H 1/271 1/)1> € QMOd[Z’i, Zit7 te 72:]((2))

so that the coefficient of z* is quasi-modular of weight k + 3, degg(v:).
Moreover, there is the following holomorphic anomaly equation:

E,
d v - Vi 7
i <E (LEY <:c>z[[1/2i_¢i>

n 2 n E,
(27) = —z2? (Z zl> <Ev(1)Ev(x) H 1/21%_%>

=1

% 1 vy o T Vil_éi’l -
—22(/]570 z] <]E (DE ($)£[1M> )

=1
where the formal derivative with respect to G is taken coefficient-wise.

Remark 1.36. The holomorphic anomaly equation was first proven in [91]
and later extended in [70].

As far as we know, this modularity has no clear analogue for stable pair
invariants of the local elliptic curve.

It is well-known from the literature on Hodge integrals on Mg,n that
generating series as in Definition tend to be most approachable if
21y .-y 2n € Lsq - see for example |22, 23| |24, 53, |74, 77]. Our main conjec-
ture of this section attempts to make this precise:

Conjecture E. Let © € Z4g, 21,...,2n € Z>0, V1,---,% € H*(E) and p a
partition of degree |u| = d and length ¢(p) = n.

(1) If z > 0, then

n

Ey
d(z+1)+n Vi
Ld(@+1)+ <EV(1)EV( )anl/m ¢Z> € QJaclz]

is a polynomial in z with coefficients in the ring of quasi-Jacobi forms
QJac - see Appendix [A] Furthermore, the z-degree of the polynomial
is at most d — n.

(2) If z < 0, then

n By
T ’YZ - a;x
Ld(@+1)+n <Ev( )EV(Q;)HW_W> = Z ¢a.H@(zz)
i=1 ' ! a=(a;); ies
Ziesaiifp
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where
S = { 0# Z i
ieM
and ¢, € QJac[z] of z-degree at most n — ), degc ;.

MC{l,...,n}}

In either case, the Hodge integral is homogeneous of weight > . degp(7;) and

index

%. See Remark for the definition of weight and index.

Remark 1.37. (1) The case z = —1 follows from Theorem We

did not mention the case x = 0 as it only makes sense for connected
Hodge integrals. By [91, Lemma 4.4.1], these are moreover equal to
their constant coefficients (]@

Recall that the space QJac,,, , of quasi-Jacobi forms of specified weight
and index is finite-dimensional. Conjecture [E| therefore implies that
each such Hodge integral is determined finitely many of its coefficients.

The claim on weight and index follows from Theorem and
the rest of Conjecture

Conjectureis partially motivated by |71, Conjecture C] which asserts
that stable pair invariants (and hence also Gromov-Witten invariants)
of compact elliptic fibrations are quasi-Jacobi. Despite the fact that
C? x E is not compact, Hodge integrals as in [F still appear in the
localization formula for S x E with S a projective toric surface.

Our main theorem in this section is:
Theorem 1.38. Conjecture [E| holds if p = (1") or p = (2).

Remark 1.39. Besides Theorem Theorem [1.38] is the only evidence
of Conjecture [E] that we currently have. As a result, it is not unlikely that
one would have to modify Conjecture [E] However, all Hodge integrals of
the same degree |u| = d must be related to each other via tautological
relations similar to those appearing in the proof of Proposition It
would therefore seem somewhat unexpected if some Hodge integrals behave
differently than others.

We will deduce this from the following explicit formulas:

Theorem 1.40. If x > 0, we have

(28)

n Ey
<wumwm pt>

el
(=D"(n - D'O(x)"

= gn—1nz+2n Resun—lzun T Resu1=u2

xT

O +u—u)\ Y Alu, —u,,,
2 11 Ot —w) gik

1=l <-<Iy=n \i#j el U lm) - (lms1 — ln)!

)lm+1_l'm

28



and if x < 0,

n Ey
<Ev(1)Ev($) 115 Etwi>

i=1
(—1)"(n — 1)1O(2)"*
(29) =2 pn—1ynz+2n Res“nflzun T Resulzug

X
O(z + uj — u}) N Alwy, — u;mﬂ)lmﬂ_lm

O (uj — uj) . H (n—lm) - (Ut = bp)!”

m=1

2.

1=l <--<Iy=n \i#j
51y--55n

where all residues are taken for z # 0. Moreover, we set u; = u; + s;z and
$1,-..,8n 18 a sequence of integers so that s; = 0, s3 = 1 and for any j,
we have {si,...,s;} = ZN[a,b] for some a,b € Z. Finally, A(u) is as in
Appendix [A]

2 Stable pair theory of absolute local curves

We now turn towards the proof of the results in Section The content
of this section is taken from the paper [96].

2.1 Double nested Hilbert schemes and their irreducible com-
ponents

In this section we recall the double nested Hilbert scheme of a smooth pro-
jective curve and give a description of its irreducible components, which all
turn out to have the same dimension (c.f. Proposition [2.4). This fact is
what enabled all calculations in this section. In Section [2.1.1] we recall some
combinatorial notation necessary for stating this result.

2.1.1 Notation

By a partition X\ of size d > 0 (or A - d for short) we mean a finite sequence
of positive integers A\g > A1 > Ao > ... > A—1 > 0 so that

n—1

=D N=d

=0

We call the integer [(\) := n the length of A. Furthermore, we will always
identify \ with its Young diagram which is the set of all (i, j) € N2 so that
0<j< )\H For any box (7,j) € A it is often convenient to write O = (4, 7)
when the coordinates ¢ and j are not used.

2Note that the top left box is denoted (0, 0) and not (1,1) as in most of the combinat-
orics literature.
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(0,0)[(0,1) (0,2)|(0,3)‘ 4 | 42 ‘

(1,0)[(1,1)

0

1
20)21) 212

3

(3,0)

Figure 1: On the left: The Young diagram of A = (4,2,2,1) with coordin-
ates. In the middle: The Young diagram of A = (4,3,1,1). On the right: A
reverse plane partition on A

We write ) for the unique partition whose Young diagram is

{(@5) G e}
i.e. the Young diagram of A flipped along the diagonal. We further denote

n(\)= > i
(4,9)EX
Recall that a skew partition \/p is a pair of partitions A and p so that
w; < A; for any 4. This is equivalent to the Young diagram of u being
contained in the Young diagram of A and we will often identify A/u with the
complement of Young diagrams A\ i - in particular we write [A/p| = | A\ pl.
Note here that a subset S C A is a skew partition S = \/p if and only if
OeSand O< [ e Ximply [ € S. Unless stated otherwise, we will

Figure 2: Skew partitions A/u; and A/, respectively with A = (4,2,2,1),
w = (4,1), ur = (4,1,1) and complements in red. The left one is connected
and the right one is disconnected.

from now on require all skew partitions to be connected i.e. any two boxes
0,00 € A\/u must be connected via a sequence of boxes in A/ in which any
two consecutive boxes share an edge.

One can equip N2 with the partial order given by

(4,4) < (7',5') iff i < i and j < /.

A tuple of natural numbers n = (ng)gey on a partition A is called a reverse
plane partition if for any O, € A

O < O implies ng < n’D.
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In this case we denote

In| = Z no.
OeA

Observe furthermore that for any tuple of numbers m = (m,\ /u) M indexed

over the connected skew partitions in A one gets an associated reverse plane
partition n = (ng)gey defined by

ng = Z m/\/ﬂ.

OeX/p

We will abbreviate this relation as |m| = n or m - n. Further, we will write

lml| = | = I\ ul - may,.

M

Lemma 2.1. Any reverse plane partition n is |m| for some m as above.
Furthermore, if no < 1 for all J € A, then m is unique.

Proof. First note that any possibly non-connected skew partition A/u is
uniquely a disjoint union of connected skew partitions. Indeed, for existence
note that the connected components A/u are connected skew partitions. For
uniqueness note that if \/p = \/p U--- U/ iy, then any A/p; C A/p must
be closed under < and > hence making it a maximal connected subset.
Applying this fact to

AMp={0O€eX|ng=1}

we obtain the second claim.

We show the first claim by induction on |n|. For this let A/ug be a
connected component of { J € X\ | ng > 0}. One easily sees that n’ defined
by

nD =

, ng— 1, if O € X/ po,
no, else

is again a reverse plane partition of smaller size. Hence for any m’ - n’ we
get an m F n defined by

My, = M+ 1, 3 1= po
/n m’/\/#, else.
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2.1.2 Double nested Hilbert schemes

For the rest of this section we fix a partition A, a reverse plane partition
n = (ng)gey and a smooth projective curve C' over the complex numbers.
We further denote by

C™ = Hilb"(C) = C"/Sym,,

the Hilbert scheme of n points on C.

Definition 2.2. For any tuple of natural numbers m = (m;)!_; we write

for the product of Hilbert schemes of C.
Furthermore, the double nested Hilbert scheme associated to n is defined
as

[n] ._
= { (Do)oex for 0 < 0 we have Doy C Dy

Dg C C divisor of length ng such that } c oM.

Remark 2.3. More precisely, CI" is the scheme representing the obvious
moduli functor. For more details see [62, §2.2].

Given a tuple of nonnegative numbers m = (my/, )/, so that m - n we
get an induced map

bmn: C —

(Dx/u)r/p — Z Dijp
Der/u Oex

Taking the disjoint union over all such tuples we obtain

¢: J[ ¢™ — M.

mkn

Proposition 2.4. The morphism ¢ is birational and both sides are pure of

noo— Y, (=D (ngg —nij).
(4,4), (kD) EX
0<a,b<1
(k,1)=(i4a,j+b)

dimension

In particular, the fundamental class of CI? can be written as

[C[nl} =Y o [C<m>]

mkn
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Proof. To show that ¢ is birational it suffices to show that ¢ restricts to
a bijection ¢~ 1(U) — U of dense open subsets and that C is generically
smooth and pure of the desired dimension. Indeed, this would imply that
the domain and codomain of ¢ are both pure of the same dimension and
by restricting to an appropriate dense open subset of C™ [64 Proposition
3.17] then implies that ¢ restricts to a degree 1 map to a normal scheme
which must be birational.

We first show that ¢ is surjective, hence take an arbitrary D = (Dg)pey €
C | Tt suffices to treat the case when D is supported on a single point x € C'
since any D is a sum of such tuples. In this case, D is in the image of ¢m n
for any m F n and by Lemma such an m exists.

Furthermore, this process gives a unique preimage if D € S for § c C™
the open set of tuples D for which Dg is reduced for any [ € A. Denoting
by S’ C [ uen C™ the dense open consisting of tuples of mutually disjoint
reduced divisors it follows that ¢(S’) € S and by surjectivity of ¢ and
denseness of S’ it follows that S and ¢~ !(S) must also be dense. This
establishes the generic injectivity.

It remains to check generic smoothness of the double nested Hilbert
scheme. For this we consider the closed embedding

ol . o(noo) « H CMij—nij-1) H Ccmij—ni-13) — x

(3,5)EX (,5)€EX
ji>1 i>1

(Dij)iijyer — (Do,0; (Dij — Dij—1)gjyens (Dij — Dic1,4)(ij)er)-

This embedding was already considered in [62, §2.4] in which it was noted
that C™ is cut out by the set of equations

D} ,;+D};=D}; |+ D},

i—1,5

where (i,7) € X is any box with 4,7 > 1 and we denote a point in X by
(D°, (DY)mex, (DE)men)- Lettingd € X be the open set consisting of tuples
of reduced divisors we note that & N C™ ¢ CM is dense since it contains S
defined above. It therefore suffices to show that ¢ N C™ is smooth. Under
the product of the quotient maps C" — C™/S,, = C™ one can pull U back
to an open set:

U C C™0.0 % H OMini Mg =1 ¢ H O"inj — i1,
(4,4)EA (4,5)€A
521 i>1
giving an étale cover U — U. This reduces us to showing that the preimage
of U N C™M in ¢, which we denote by U N C™ | is smooth. Since smoothness
is étale local, we may further assume C' = Al, in which case we denote the
coordinates of U by s;,t0,, un;. The equations cutting out UNCM! therefore
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become:

Mi—1,j—Ni—1,j-1 Mij—Ni—1,j

.- m m

fijm = > Pt Y uly
=0 =0
Mi,j—1—Mi—1,j—1 M, j —Ti,j—1
m m
u7/7]_1vl Z t7’7]7l

1=0 =0

for 1 <m < n;; —nij—1,;-1. We will now show that the Jacobian of these
equations has maximal rank by induction on |A|. For this we pick point
in U N CM | a box (ig,jo) € A with (i + 1,Jo), (i0,50 + 1) & A and set
X = A\ { (40, jo)}. We now need to show that if for a given tuple of complex
numbers (a; jm)i,jm one has

E ai’,j’,m’ . ati,j,lfilvjlum, =0 and E ai’,j’,m’ . 8ui,j,lfi’,j’,m’ =0
i/,j/,ml i,7j/7m/

at that point for all 7, j,/, then we must have a;, j,,m = 0 for all m as the

claim for X gives the rest. Indeed, looking at partials with respect to u;, j, .
the above equations yield in particular

E S m—1 _
Qig,jo,m muio,jo,l =0
m

for all I, which gives a;, j,,m = 0 by the distinctness of the u;, j,; and the
invertibility of the Vandermonde matrix. Furthermore, this implies that
"l is pure of dimension

dim (U) — Z (Mij —mi-1,j-1)

(4,3)€A
P21
=no0+ Y (nig—ni15) + (nig —nig-1) = Y (nig—ni-1j-1)
(i,4)EA (1,4) €A (,7) €A
21 i1 21
as desired. O

Remark 2.5. Note that the proof in particular shows that C® is a local
complete intersection. A more thorough study of the geometry of C™ has
been undertaken in [33], where Proposition was independently proved
using slightly different methods. In particular, it is shown that C! is con-
nected and reduced and that ¢ is its normalization.

2.2 Description of the fixed loci and virtual normal bundle

In this section we will recall the discussion of [62, §3.3] and explore the
consequences that Proposition has for our stable pair calculation.
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Resuming the notation in the introduction we let X = Totc (L1 @ Lo) be
the local curve over C with line bundles L; of degree I; and T = (C*)? the
torus acting on X.

In order to compute the equivariant stable pair theory of X we must
first compute the fixed locus P, (X, d)T of the induced T-action.

Indeed, an element [Ox — F] € P,(X,d)T is the same as an equivariant
stable pair. By pushing it down to C' and decomposing it into its weight
spaces, this must be of the shape

s=(si;): Ox = P L' @ Ly? t7'ty) — P Fiy @ L' @ Ly - 76,7
1,>0 i.5>0

for some coherent F;; on C' and morphisms s;;: Oc — F;;. Since F
is of compact support, we must have F;; = 0 for all but finitely many
i,J and the stability is equivalent to each F;; being pure of dimension 1
(hence locally free) and each s;; having finite cokernel. For any given i, j
this forces either F; ; = O¢/(D; ;) for some effective divisors D;; C C and
s;; the canonical inclusion or F;; = 0 and s;; = 0. We write S C N3
for the set on which the former happens. The compatibility of s with the
multiplication on Ox is then equivalent to S = A for some partition A\ and
Dp C Dy for any O < ' € X\. Therefore [Ox — F| corresponds to an
element (D)pey € C ) for n = deg Dp. Since this argument can also be
performed in flat families, one gets:

Proposition 2.6 ([62, Proposition 3.1]). The T-fixed locus of P,(X,d) is a

disjoint union
px,d)" =[] c™,
AHd n
where the second disjoint union is over those reverse plane partitions n =
(no)gen satisfying

d(1—g)—n(\)-l1 —n(A) - la + n| =n.

Furthermore, the K-theory class of the universal stable pair on a component
of the fixed locus C™ is given by

F= Y tOgeem(Dij) ® L' @ Ly - 7,7 € KX x C),
(i,9)€X

where D; ; € C x O is the universal divisor at the box (i,j) € A and
1: C x CM < X x O is the inclusion of the zero-section. We wrote
t; € KQ(pt) for the K-theory classes associated to the standard coordinate
representations of T. O

Using this description and Proposition one can now express stable
pair invariants on X in terms of integrals on symmetric products of C:
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Proposition 2.7. Given an insertion of the shape v = ch,, (71) ... ch,, (7n)
on X, the associated stable pair invariant in degree d can be written as

XT _  d(1- m||—n(\)-11—n(X)-l vy
(30) (KT =pla-9 S 3 plmlonh <>2/ .

(m)
Ad m=(mx )5/ ¢
M /20

The K-theory class Ny, € K% (C’ (m)) is given by
Nm

= 3 Br (O (Dig) @ L' © Ly ) 7t
(i)ex
(1,)#0
+ Y Rm (OCXcm) (-Dij) @ Lit' @ LJQH) 6t
(4.4)EX
- > (-1)""'Rmr, (OCXC(“‘) (Dry—Dij) ® LT ® L%_Hb) ti R,
(4,9),(k,D)EX

0<a,b<1

where

Do= Z Disu
OeX/u

is a sum over universal divisors D)/, C C X C™) and 7: C x ¢(m) — ¢(m)
is the projection onto the second factor. Furthermore, we have

e~ e~

7 =chz (1) ... chs, () € H*(C(m))v
where

(31)

e~

ch,(v)

= O e @) (14 2t (WB(e) + (1)) ) 7]

with pto € H2(C'x C(™)) the pullback of the point class along the projection
7' C x C™ — C to the first factor and

(32)  Fi= Y Opyem(Dij) @ L' @ Ly7 - t7't57 € KR(C x M),
(4,5)EX

Proof. Recall that
Vp (x,d)T
n,d [P (X, d)T]vir e(Nvir)
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To define everything on the right hand side recall from [38] that P, (X, d) has
a perfect obstruction theory which is the morphism in D?(P,(X,d)) given
by the Atiyah class

E= RHOmn(H, H)E)/[_l] - ]LPH(er)’

where the target is the cotangent complex Lp, x4y of Pn(X,d) with T =
[Oxxp,(x,dq) — F] the universal stable pair on X x P,(X,d) and 7: X x
P,(X,d) — P,(X,d) the projection to the second factor. This can be seen
to be T-equivariant [94, Example 4.6] so that the invariant part

ET — LT —

Pn(X,d)T Po(Xd) | p (x.q)T Lp,(x.ar

of the restriction to the fixed locus is again a perfect obstruction theory
and by [7] this induces a virtual class [P, (X,d)"]""" € H,(P,(X,d)") whose
restriction to any connected component CM sits in degree 2 - rk (ET‘ C[n])'
Furthermore, the virtual normal bundle is defined as the K-theory class of
the non-fixed part:

NP = (B, )™ € K2(Pu(X, d)T).

Here, K denotes the K-theory of locally free sheaves as opposed to K the
K-theory of coherent sheaves. In [62, Section 4] the following identity in
KJ(Py(X,d)") was shown:

= Y Rm, (OCXc[n] (Dij) @ L' @ L2_j) St

n Z R, (OCXC[“H (-Dy) @ szrl ® L%‘+1) ,tli+1tjé+l
(1,4) €A

— Z (_1)a+bR7r* (OCxcan (Diy —Dij) ® in—k+a ® L%—H—b) .ti_k+at32'—l+b’

where the Do € C x CM is the universal divisor corresponding to [J € A
and m: C x CM — ¢ is the projection to the second factor. However, the
argument given there also works in K9(P,(X,d)") with pushforwards along
equivariant perfect morphisms being defined analogously to [9, §IV.2.12].
We now claim that the virtual class [C™]"" = [CI?] is just the usual fun-
damental class. Indeed, using Lemma it suffices to show that C is of
dimension rk (ET‘ C[“])' Furthermore, one can use Riemann-Roch to calcu-
late this rank:

rk (ET’C[H]) = 1k (Rms (O¢ ol (Doy)))
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- > (=1)""1k (R (Opyom (Dra — Diyj)))
(i.4). (R )EA

0<a,b<1
(kl)=(i4a,j+b)
=npo+1—g— Z (—l)aer (ngg—ni;+1—g)
(4,9),(k,D)EX
0<a,b<1

(k,1)=(i+a,j+b)

Using Proposition [2.4] it therefore suffices to show that

1- ) (-p*P=o.

(4,9), (kD) EX
0<a,b<1
(k,D)=(i+a,j+b)

Indeed, one can deduce this from the fact that the number of pairs (i, j), (k, )
for which (a,b) = (0,0), (1,0),(0,1) and (1,1) is d,d —I(X) = d— Xg, d —I()\)
and d — Ao — I[(\) + 1 respectively. This establishes the claim.

Because of the projection formula and Proposition [2.4] we now only need
to show that

—_—~—

(34) (Zsjn,nChz (7) = Chz(V)

and Log, N VI = Npy. For the second claim one looks at and sees that
this would easily follow from Lo}, , Rmy = RmyL (Id X¢pmn)" with the maps
coming from the cartesian diagram:

C x ) mn o o]

(35) lﬂ lﬁ

C(m) __9mn ]
As 7 is flat, ¢z n and 7 are Tor-independent and therefore the desired
commutativity of pushforward and pullback follows from [9, Proposition
IV.3.1.1]. To show we recall that

ch:(7) = 7 (ch=(F) - (7)) ,

where 7: X x O — ¢l and 7: X x ¢ — X are the projection to
the second and first factor respectively. Using equivariant Grothendieck-
Riemann-Roch [3, Corollary after Theorem 1.1] and F = 1. F for the zero
section ¢: C' x O™ — X x ¢ we obtain

_ =y (1—e(1thipte)z) (1 e~ (t2+i2ptc)?)
> —_— L* (Chz <]F) (tl'HlPtc)(tz—i-lzptc)

ch,(F) = . <Chz(ﬁ) . tda}X

= (173—751;)876—7522)& [Chz(ﬁ) . (1 + zpto (llB(ztl) + lQB(ZtQ))):| .
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From the projection formula and 7 = T o+ and 7/ = 7 o+ it then follows
that

ch,(7)

= (1_6%1;)8_6%22)%* [Chz(]A}_*;) . <1 + zpto (llB(ztl) + l28(2t2)>> -y

)

where pullbacks and pushforwards are along 7: C' x C — ¢ and 7/: C' x
Cl — C. Tt now suffices to show that satisfies ¢f, ,7s = i (Id XPmn)”
in cohomology, which is dual to 7 (¢mmn), = (Id XP¢mmn), 7 in homology.
This however follows from flat base change |19, Theorem VIII.5.1(2)], which
finishes the proof. O

The following Lemma was needed in the above proof and is a well-known
piece of folklore for which the author claims no originality. However, due to
the apparent lack of a reference and for the sake of completeness we give a
full proof.

Lemma 2.8. Let X be of finite type over some field k£ and of pure dimension
d together with a perfect obstruction theory ¢: E — Lx of rank rk (E) = d.
It follows that ¢ is a quasi-isomorphism, X is lci and the virtual class must
agree with the fundamental class i.e.

X" = [X] € CH(X).

Proof. Since this is a local question we may assume that E = [E~! — E°] for
E* locally free and that the morphism E — Ly results from a commutative
diagram

g1 % , go

| !

I/IQ L) QM‘X

where we used 7>_1Lx = [[/I? — Q| x] for I the ideal sheaf cutting out a
closed embedding X — M into M non-singular. Recall that E — 7>_1Lx
is an obstruction theory if and only if

E'SEeI/I? = Qulx =0

is exact. After tensoring with the residue field k(x) for some arbitrary z € X
we therefore obtain

dim (I ® k(z)) = dim (I/1* ® k(z)) < dim(M) —d

meaning that I is locally generated by at most (indeed exactly) dim(M) —
d elements which must form a regular sequence. Therefore X is a local
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complete intersection and I/I? must be a vector bundle of rank dim(M) —d.
It then follows from rank considerations that

0 E 'S E@I/I* = Qu|x — 0

is exact i.e. E — 7>_jLx = Lx is a quasi-isomorphism. Finally, [7, Pro-
position 5.3] and the example following it give us [X]"" = [X]. O

2.3 The main computation
2.3.1 Intersection theory of symmetric products of curves

We now want to compute the integrals appearing in Proposition[2.7] In order
to do that we first need to recall the intersection theory of the symmetric
product of a connected smooth projective curve C of genus g as outlined for
example in [4].

For any m > 0 and fixed ¢ € C' we have an embedding

v 0 o om)
D— D+c¢

of a divisor with cohomology class u € H?(C(™)). Note that u does not
depend on the choice of ¢ as C' is connected. More generally, for any n > 0
the subvariety

bn cm=n) —y ¢(m)
D—D+m-c

represents u"" € H 2"(C(m)), which in particular implies fC(m> u" = dpmn.
Furthermore, we have the Abel-Jacobi maps

A C — Pic%(C)
D+— Oc(D —m-c)

to the Jacobian of C, which are compatible with the ¢,. It can be shown
that this induces an isomorphism on H' and so H*(C(™) = H'(Pic’(C)) =
HY(C). Recall that H!(C) has a symplectic base a1, ...,a4,B1,...,8 €
HY(C) i.e. so that [,8; = 6;; and [ aia; = [,B:iB; = 0 for all 1 <
1,7 < g. By abuse of notation we will also denote the pullback of this basis
by a;, B; in H'(Pic?(C)) and in H'(C™). Furthermore, we will denote by
0 € H?(Pic’(C)) the theta divisor [4} §1.4] as well as its pullback along AJ,,
in H2(C™). More explicitly, we have

g
0= Z azﬁz
i=1
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We can now state Poincaré’s formula [4, §1.5] which says

99—

(Adm), (1) = {(g

my iftm<gyg

0, otherwise

In particular, one can rewrite this without case distinction as

AL, )= 3 JJab

Ic{1,....,g} i€l
[1|=g—m

The following Lemma will be very useful for computations later on:

Lemma 2.9. For any m,n >0 and I C {1,...,g} we have

n —
/(m) u" [ iBi = 8112nm
¢ iel

and for any two distinct subsets I,J C {1,...,g}

Proof. For the first integral note that the second factor is pulled back under
the Abel-Jacobi map, which commutes with ¢, : C(™= ¢ C(™)_ Using the
projection formula we can rewrite the integral as

/C(m) ungaiﬁi = /Plc o) AJm n Hazﬁz

el

= / 1T s [ i
Jc{l, g} TPI(C) e icl
|J|=g~— m+n

where we used Poincaré’s formula in the last equality. Now the only sum-
mand that can contribute is the one corresponding to J = I¢, which occurs
in the sum only if m —n = |I|, proving the first claim. The second claim
follows by a similar argument. O

Remark 2.10. This means that whenever we are computing an integral on
C(m) we can replace the expression [Lic; B by ull without changing the
value of the integral.

Now denote by D C C' x C™ the universal divisor of C(™). As shown
in [4, p. 354] one can write it in cohomology as

(36) D=m-ptcg+u+ry
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with pto and v implicitly pulled back from C' and C(™) respectively while
v is defined as

g
vi=Y (B X ai — oy x ;) € H*(C x Ct™).
=1

One can check that 2 = —2pt. - 6 and pte -y = 42 = 0. Denoting for any
K-theory class F € K°(X) on a scheme X:

er(F) =Y a(F) - T e H*(X)[T¥]
i>0

we now have:

Lemma 2.11. For any tuple m = (m;)?"_, of nonnegative integers, a1, ..., a, €
Z and L a line bundle of degree [ on C:

n
er (Rw* ((DCXc(m) (Z aﬂ)l) ® L))
=1
o 0 -
_q1 ara
o (- Figeet) (74 Y
=1

where 7: C x C(™) — CM) i5 the projection to the second factor, D; C
C x C™) ig the universal divisor divisor of the i-th factor, 01 is defined as

(37)

)

> 179+Z+Z?:1 a;m;

g

§ : k l
Hk,l = oy X 62

i=1

and ¥ is understood to be pulled back from the projection

om) — Hc(mi) — O'(mk)

i=1
to the k-th factor.
Proof. We closely follow the Proof of [4, Lemma VIII.2.5]. First we write
n n n n n
D = Zaﬂ)i, M = Zaimi, u = Zaiui, Y= ZCLZ"W,G = Z aiajﬁm
i=1 i=1 i=1 i=1 ij=1

and F = Rm, (Ogy o) (D) ® L) for short. Using Grothendieck-Riemann-
Roch we can further compute

ch(F @ O(~u)) = m. (PHPC tdc) = m, (NPT (14 (1 - g)pic))
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=1 (1+ (M +1—0)pte +7) - (1L + (1 — g)pte))
=M+Il+1—g—10

where we have used 7 - pto = 0, 42 = —2pt - 0 and 42 = 0. Recall further
that the conversion from chern character to chern class reads

D er(F)-tF=exp | Y (—1F (k= 1)lchy(F) - ¢F
k>0 k>1
and therefore

er(F@O(-u) = TN e (F @ O(-u)) - T7F
k>0

6
— TM+lH1=g,~T

where we have used rk(F) = M +1+1— g which follows from Riemann-Roch.
This finally implies
[/
CT(‘F) = CT+u(.F® O(—u)) — (T + U)MJrH,l,ge,m
as desired. .

Remark 2.12. Note that one can rewrite as

n

1—g+1 n
<T+Zaiui> exp —ZG 6f’“ /aul H

k=1

where we treat u; in

ak
= <T + Z aiui> .

as a formal variable before taking derivatives and as a cohomology class
afterwards.

In order to be able to work with the 6; as above, we will need the
following Lemma

Lemma 2.13. For any tuple m = (m;)!"; of nonnegative integers and
t

tuples a! = (a})jil,...,ag = (af)}2,,b! = (bl)l Lo DI = (b)) ¢t =

(cz-l)::1 ,c2 = (C?)Zzl of numbers in { 1,...,n } we have

n

/C’(m)Hunl 1<Ha Hﬁ )HG H eZirizbinia — ()

Jj= 21,i2:1
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unless s; = t; for all [ in which case the integral equals

ri-(ri=1) n g
(—1) e A Z [u™] H u?”“g HMHg H H(Mil)aiUC}gi,biUC%i
9, Si={1,....t} i=1 i=1

)

where LI denotes the concatenation of tuples and for any set S = {51 < --- <
si} we defined ¢ = (c},)!_,. Furthermore we set M = (8; ; /u; + Zji)i<ij<n
and for any matrix N = (n; ;);; and tuples of indices a = (a;);, b = (b;); we

denote Nap = (n“i»bj)i,j'

Proof. Let us first examine the case ¢ = 0. In Remark [2.10] we noted how to
compute integrals of the above kind. First, we have to express the product
of classes pulled back from [}, Pic’(C) in terms of monomials in the o, 5;.
Then we delete all unbalanced monomials and replace all balanced ones by
the appropriate powers of u;. Furthermore, we can write

T S b n
i Li 2iq ig0iy i
[T\ ILer I18" ) IT et
=1 =1

=1 i1,02=1
n

9 il b i1 g2
_ ag 1,3 Zi1 e O
01 R0 ) (R
=1 \:i=1 i=1

= =1 =1

(38)

Tl

and the different factors of the outer product do not influence each other
during this process. We can therefore assume g = 1. Any z-monomial in the
above product now corresponds to a directed graph on the vertices 1,...,n
as the occurrence of a zil,moﬁ'lﬁi? can be viewed as an edge from iy to 7.
The balancing condition is equivalent to the graph consisting of two parts:

(1) aset of vertex-disjoint non-repeating directed cycles C on the vertices
not inaUb

(2) a set of vertex-disjoint non-self-intersecting directed paths P which
start at the entries in a and end at the entries of b. Furthermore, we
have r = s and therefore there must be a permutation ¢ € S, so that
the path starting at a; ends at b, ;) or a; = b, ;).

Moreover, both sets are not allowed to have common vertices. The pair
F = (P, C) is precisely what is referred to in [101, Definition 2.3] as a self-
avoiding flow on the complete directed graph on { 1,...,n } connecting a to
b. By weighting each edge e = (i — j) by wt(e) = —u;2;; and taking into
account the signs produced by rearranging the o’s and §’s, we can therefore

replaceby
(=02 N sen(F) - [T we(e),

(F,o) e€cE(F)
as above
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where sgn(F) = sgn(P) - sgn(C) with sgn(P) = sgn(c) and sgn(C) =
(=1)!€l and (=1)7"=1/2 the sign that arises out of permutmg the factors
of [Ti_; (« ( ai 3bi ) back into the order in which they appear in . By [101,
Theorem 2.5] this is equal to

(—1yr=D/2, ngn H wt(e .H(M*)a’b

ecE(C

where M = (6;; + uizm)l <ij<n’ Moreover, the second factor is easily seen

to be HMH =1l wi- HMH and so our expression is

1y =02 - 0] - |47,
=1

which establishes the claim in the case ¢ = 0. For the general claim one
simply takes derivatives in z;, ;,. For this one uses Jacobi’s identity [17,
Lemma A.1(e)] which says that for any tuples a = (a1 < ... < ag),b =
(b1 <...<bs) of elements in { 1,...,n }:

It 1) = (-1

7ac

and therefore

oy (I )
’MH H(M_l)au(“) bLitis) || ifiiaandis €b

a {0, else

which holds even when the entries of a and b are not in increasing order. [

2.3.2 Proof of Theorems 1.19(1)| and

We now use the results of Section 2.3.1] to derive Theorem [[.24] from Pro-
position In addition to Theorem [I.24] we will show the following re-
formulation which will be more useful when proving Theorem [1.19(3)| later
on.

Theorem 2.14. We have

(chay (1) -+ - chay () = ™79 > (eh, (1) - cha, (7))3
A-d

|pD:p
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where (... )X € Q(t1,t2)[[p]] is the power series in p = (pn)oex determined
by super-commutativity and

(39)

a b g X
<H chy, (1) - ] [ ehy, (t) - [ | (Chzg (cr)chy,t (B1) - - chyy (ar)ehy, (50) >
=1 =1 A

=1

a
I SIS | N (P ) R TGS
=1 I19__, Si={1,..,a}i€S_1 " ies
;€N for t€S_1

b
(ll‘B(xitl) + lg%(mitz))E(wi,Y)‘) . H E(yi,Y)‘)

i€Sy i=1
g
I (#wixs, 1Y) AT B (Y Ba(Y)",
paiey M(p)
where

T 8Y’\,( )
W) - (m25)
O,0/ex

and Y* = (Y3 (p)) is as in Theorem m

OeX

Proof of Theorem [1.24 and Theorem[2.1]} First, we express in terms
of the cohomology classes introduced in Section 2.3.1] For this we fix a
summand corresponding to a partition A and a tuple m = (my/,)\/, as in
Proposition and let n := |m|. It follows from that

chz(IA?) = Z exp (2 (D j — (ili + jlo)pto — ity — jta))
(4,9)EX

with D; ; = Z(i NeA/u Dy, and Dy, C C X C™) the universal divisors.
We recall from that

Diju = M- Pto + Un/p + Yayps

where
g

=3 (B x @t = af x g").

=1
One can check that
YA/ VA /e = —Ple - (9>\/M1,>\/M2 + HA/M«\/M) )
which gives

ch, (F)
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= Z exp (2’ Z (masupte + un/u + Yazu) — (G + jle)pte — it — jt?)
(4.4

(4,4)EX JEN 1
= Z exp (Z (Un/p + ajp) — it — th)
(4,9)EX (L.7)EN 1

. (1 =+ z(n(m) — il — le)ptC)

= Z exp (Z Z UN/p — 1t1 jtg) : (1 + z(n(i,j) - ill —jlz)ptc)

(i,9)EN 11

: (1 +z Z M\~ 2pte Z Hx\/uw\/uz)
(

i,j)e)\/u (iaj)GA/HIaA/M2

= Z exp (Z Z Up/p — U jt2) : (1221)'50 Z O/ 11,7/
(

(ivj)e)‘ Z:J)EA/H (ivj)e)‘/lj‘ly)‘/pﬂ

+ 2 Z (Va/p + (0 gy — il — jl2)pt0)) :
(i,5)EN 1

Finally, using

A
M CYll =pte - Qg /"

Yaju - Bl =Pt - le\/u

and we see

Chz(l) =z Z E(Z, Y;’j) . (nm — ill — jlg + llB(Ztl) + lQB(ZtQ)
(3,7)EN

-z Z ‘9/\/u1,/\/u2>

(1,5)EN pa, A/ 2

ch,(a;) =z Z (2,Y;;) - Z a

(,)€X (1,)EN 1
ch,(5) == Z (2,Y;;) - Z ﬁ)‘/“
(,5)€EX (1,)EN 1

ch.(pt) = E(y,Y),

where we wrote Y = (Yg)ge) for

Yij = —it1 — jla + Z U /s
(1.4)EX/ 1
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which using can be written as Y = ?)‘(u) with u = (uy/,)x/,- Using

Lemma [2.11] we can further expand the denominator:

1 =l —=A —m
v = A L Bs [ () h
M
for
Z(Y) = H Y;J H t1 +to — Y;J')
0#(1,5) €A (4.9)EA

_1\a+b+1
H (aty + bty + Vi — Vi),
(4,9), (kD) EX
0<a,b<1
(k1) #(i+a,j+b)

5} Yzz i—k+a a+b
B1(Y) = H m H (aty + bty + Yy — Y )( k+a)(-1)

(i,5)EX (4,9), (k) EX
0<a,p<1
o vi e
Bo(Y) = [ gmmigpe I (ot bt 4+ Yiy —vi )t
(nI)EN (5.9),(kDEN
0<a,b<1

OF
h := exp Z ON/un/p - dZ/A/, /F /\/,u( )]
M/

where Fi/“(Y) is as in . Using Lemma [2.13| we can see that the contri-
bution of m is the coefficient of u™ in

11) ' Hfi/u(Y)*mA/u . HU)\/M : HMskew(u)

A A

)

where

(40)
a b
=l= > 1IEmY
=1 9 0Si={1,.,a}i=1 =1
(in,jn)EN for n€Sy

T B@n Yanim) - (. = ints = dnta + 1B(wntr) + 12B(zats))
neSy

Em

zwxs

g—1

AY) - [Twau - [Maew @) | - Bi(Y)" - Ba(Y)",
A

48



(2, w;x)":=(=1)" Z H(Mskew(u)_l)u(l)u“<3>;u<2>u“<4)

OO en/u™ o ex/ul®
0P ex/ul® A7ul®

m n

: H ZiUJZ'E(ZZ', YEI(.1> )E(wi, YD(_z)) : H ZEZ'E(I'Z', YD(B))

i=1 ' =l '

and

é , 7
Mgew (1) == < AZM)\/M + 8F/\/u>\(Y)/8uA/u> ‘
Py F)\/;U(Y) >\/H‘7>\I/NI
By using multivariate Lagrange inversion |31, Theorem A] we see that this
is the same as the coefficient of p™ in P, (u(p)) where u(p) = (u)\ I (ﬁ))/\/#

—>0)

is the unique power series in p = (@\/#) ; satisfying uy,,(P) = O(P

A
and o,
Pajp = ta/u(P) - Fy (Y (u(P)))-
for any \/u. Note however that neither the expression Pj(u) nor the ac-
companying prefactor

(41) pHm||—n(>\)~l1 —n(A)-l2 _ p|n|—n()\)~l1—n(5\)'l2

in depend on m, but rather on n. Therefore we may consider the sum
over all coefficients of p™ with m F n for a fixed n. This sum can be
expressed as:

> [P™Px(u(p)) = [P"|Pxr(u*(p))

mkn

with u*(p) as in Theorem [2.16(3) and p = (po)oex a new set of variables.
As a result, Y is the multivariate Bethe root Y*(p) constructed in Theorem

Using Lemmas and we see that
AY) [T/ P) - [ Makew (0 (p)) || = ACY) - | M(Y)]|
M
and

(z,w;x) = (z,w;X | Y) vyt -

By making these substitutions in P, we obtain an expression that only
depends on Y* as opposed to u*. In that expression we can furthermore
replace n(; ;) by n; ;) + it1 + jt2. Because of the shift in the prefactor (41J)
and

B A i i
B\(Y)=B(Y)- [[ Fr¥)= [] #lij) Br(Y)
(4,5)eX (4,5)eX
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Ba(Y) = Bo(Y) - [[ Fr(¥) = [] vl Ba(Y)
(4,5)EN (4,7)EN

we may write

X

a b g
<H chy, (1) - HChyi (pt) - H (chzzl(oq)chwz1 By) .- .Chz‘l:l (al)chwél (Bl)>>
i=1 i=1 d

=1
=p0 Z Palpy—p

A-d
for
=1 I, Si={1,.,a}i€S 1 "ies
;€N for 1€5_4
(42) b
. H <l1%(xit1) + l2%($it2))E($i,Y/\) : HE(%,Y)‘)
1€So =1
A A ' Ayg—1 AN Ao
(z wixs, | Y )M(YA)A ACYNI7L. By (YN - Bo(YH)e.

In order for this expression to agree with and we need

_ Y,
MO = ()
O,0ren

which can be seen by applying partials pg% to the Bethe equations (44)
i.e.

po = Fo(YA(p)).
O
Using Theorem we can now prove Theorem part and
Proof of Theorem [1.19(1))(2). We first need to show that there is a locally

closed subscheme Be C Aé(tl t2.) with the following properties:

(1) Up to rearranging the coordinates, its K-valued points are exactly the
Bethe roots for partitions of size d.

(2) It is preserved under the involution

tisti,psp LYt +t— Y
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Conjecture |C| implies that the Bethe equations (closed condition) together
with full admissibility (open condition) cut out such a subscheme. In the
absence of Conjecture |C, we use |83, Theorem 2|, which implies that

(chs, (pt) - - - chs, (pt)S BT € Q(tr, b2, p)[[21, - - - , 20]]

for E the elliptic curve and

(e () oy (POIEE| = et () - hos, (p1) 5,

—1

p—p
Theorem also gives
n
o T s s (ehey (p1) -+l (pt)) 57
S T Y R 2

with 1 = (1,...,1) and p; the i-th power sum polynomial. Note furthermore
that the left hand side gets multiplied by (—1)F**Fn when substituting
p — p~!. Since power sum polynomials generate the ring of symmetric
functions, we get that

B =01 (v (8- 52 1)

A-d OeA

is in Q(t1,t2,p) for any n € Z and m > 0 and satisfies E)|
follows from Newton’s identities that the polynomial

P.(T) =] <T I1 (n <YD’\ tl;h) +1>)

A-d Oex

ot = BT Tt

is in Q(t1,t2, p)[T] and satisfies P,| 1 = P_,,. As aresult, the subscheme

d
BeCAQ

p—=p~

(t1,t2,p) cut out by

Pn<H<n(Yi—t1_gt2>+l)):0foralln€Z

(2

satisfies Furthermore, for any K-valued point Y of Be, there must be
a Bethe root Y* so that

H(n<Yi—tl;t2>+1>:DI_IGA(n(YDA—“;tQ)Jrl)

(2

for infinitely many n € Z, which implies Y = Y* up to permutation of
coordinates. This gives us Be as desired.
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Since K is algebraically closed and Be has finitely many K-points, it
follows that Be is O-dimensional and thus all its points are Q(t1, t2, p)-valued.
As the absolute Galois-group

G = Aut(Q(t1, t2,p) /Q(t1, 12, p))

preserves Be it thus also preserves the Bethe roots and acts on them by
a combination of permuting the coordinates and permuting the partitions.
But as is invariant under such permutations, all descendent invariants

on local curves must be in Q(¢1, tg,p)G = Q(t1,t2,p) as desired.

To prove symmetry, we deduce from that Y — (t1 + t2 — Y));
is an isomorphism from Be to the base-change of Be by Q(t1,t2,p) —
Q(t1,t9,p), p— p~ L. Hence replacing p by p~! amounts to replacing Y3 by
t1 + tg — YD)‘ since permutations of the partitions or boxes do not mat-
ter. Therefore we need to look at all the factors in and see how
Y — (t1 + ta — Y;); changes them. Indeed, A(Y) and M(Y) stay invariant
under this substitution while B;(Y) gets replaced by []; Fj(Y) 'B;i(Y). In
case no descendents of 1 are present this will give part of the p~9 prefactor
noting that dg.(c)(X) = d - (1 + 2 + 2 — 2g). In general we will get extra
summands from

Y -1 -1
v s =-115M
J J
which can be absorbed into the product over Sy by using
—B(z) — 1 = B(—=z).
Finally, all descendent variables get negated because of
E(Z,tl + 19 — X) = E(—Z,X).
O
Remark 2.15. One way to prove Conjecture [C| would be to carry out the
original version of the algebraic Bethe Ansatz for ILW; - see [52] for partial
progress towards this. For that one must show that any fully admissible
solution of the Bethe equations yields an eigenvector so that the eigenvalues
of the integrals of motion are all the symmetric functions in the coordinates
of the solution. As a result, each joint eigenspace contains the eigenvector

of at most one such solution (up to permutation), which bounds the number
of solutions from above by

d! - dim (ILW,),, = d! - #{\ F d},

which is the number of Bethe roots as in Theorem Though there are
other versions of algebraic Bethe Ansatz such as the Mellin-Barnes approach
of 1], they do not imply Conjecture |C| as far as we know.
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One other avenue towards Conjecture [C] might be to use a strategy sim-
ilar to the following proof of Proposition [1.23

Proof of Proposition[1.23. Let Y = (Y;)%_, be an admissible solution of the
Bethe equations over K. We first show Y; = O(pY) for any 4. Indeed, let
S C {1,...,d} be the set of indices that have negative valuation. We then
get

PP =T F(Y)

€S
3 __1\a+b+c
=l ] (—1)(ats +bts) +¥; — ¥;)Y
€S 0<a,b,c<1
(a,)2(0,0)
€S
J#i
: _1)a+b+c
=[] I (—D%ats +bta) + ¥ — )
€S 0<a,b,c<1
(a,b)#(0,0)
€S
J¢€S

As the right hand side is easily seen to have valuation 0, this must also be
true for the left hand side and thus S = 0.

Let Be C K¢ be the subset of admissible solutions to the Bethe equa-
tions. The image of any of the coordinate projections 7;: Be ¢ K¢ — K has
constructible image by Chevalley’s theorem [5, Tag 00FE] which must be a
finite set or the complement of a finite set. However, since the image also
lies in the set of Puiseux series of nonnegative valuation, it could not have
been the complement of a finite set. Therefore any coordinate projection
must have finite image and so Be must be a finite set.

To show the claim about the initial coefficients, we use Y to define a
weighted directed graph on the set {1,...,d} of vertices. An edge going
from 4 to j exists if and only if ¥; — Y has pP-coefficient equal to —t1, —to
or t; + to. We then set the weight to be w;_,; = v(g;;(Y)) > 0 where v is
the canonical valuation on K. As a result, we have

¢ = g Wj—j — E Wi— 5,
Jj— i—]

where
1—v(Y;), if Y; = O(p~?)
c; = 1+V(t1+t2—1/i), if}/{:t1+t2+0<p>0)
1, else.

It now suffices to prove that any vertex iy is connected to a vertex j with
Y; = O(p~?). Indeed, take I' to be the subgraph obtained by starting with
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1o and repeatedly adjoining all edges that end in a vertex of I'. It follows
that

0= Z(wiﬁj — Wiyj) = Z ijm - Zwmj

i—j iel \ j—i i—j
in T’ inI’
= E § Wi — E Wi | = § Ci
i€l \j—i i—j i€l

as a result one must have ¢; < 0 for some i € I which by the definition of ¢;
must satisfy Y; = O(p>?). This concludes the proof. O

2.4 More on Bethe roots

We now want to prove Theorem and Theorem[1.19(3)l As mentioned in
the introduction, one would like to prove Theorem by first showing
that YD/\ (p) is holomorphic at p = 0 and can be locally extende to all of

C\{¢|(=¢)"=1forsomel<n<d}.

Indeed, if all factors in were polynomial in Y*, then this would already
be enough, however most are merely rational functions and so we have no a
priori control over their poles. Luckily, one can circumvent this problem at
the cost of working with a multivariate version of the Bethe roots and using

(39) instead of .

2.4.1 Multivariate Bethe roots

We begin by showing a multivariable generalization of Theorem [1.21] For
this let & = Q(¢1, t2) and X be a fixed partition. For the rest of this subsection
we will fix a collection p = (po)gen of possibly repeating variables which
are otherwise free. Let v be the non-archimedean valuation on k[[p]] given
for any

z= Y  an-p"€k[p]

n=(ng)gex
nn>0

by

v(z) == inf { m

there is n so that an # 0 and m = an } € NU{oo}.
Oex

13By this we mean that it can be analytically continued to any simply connected open
subset thereof. However, this continuation is usually not unique. Indeed, see [92] for an
numerical investigation of the monodromy.

54



Furthermore let K be any field containing k[[p]] equipped with an exten-
sion of v which we will also denote by v. In particular if n = 1 one may

choose K = Q(t1,t2){{p}} to be the field of Puiseux series with its canonical
valuation.

Theorem 2.16. There is a tuple Y*(p) = (Y3 (p))oex of power series
Y2(p) € k[[p]] characterized uniquely via any of the following equivalent
descriptions:

(1) Y* € K9 is the unique tuple such that

e it is admissible in the sense that for any [J € A we have YD’\ ¢
{O,tl—i-tg} and for O 7& O’ € X\ we have Yé\—Yé‘/ ¢ {tl,tg,tl—i-tg}.

e one has
(43) v (Y(/z\]) + ity +jt2> >0
e it satisfies the multivariate Bethe equations i.e. for every (0 € A
we have
(44) po = FD(Y)‘),
where
m(Y) = foY) [] g9oo(Y)
O£/ e
with
fa(y) = _ Yo
= PE=P
and
oo (Y)= ] ((=D)(ats +bto) + Y5 — Vi) (D
0<a,b,c<1
(a,b)#(0,0)

(2) It can be written as
(45) Y2(p) = YA+,
where for any tuple v = (vg)pey we define YA (v) = (?D’\(V))De)\ by

(46) ?(é\,j)(v) =ity — jla+ Y I o
A/p conn. skew OeEN/p
(1.4)EN 1

and v* = (v})pey is the unique tuple of power series in k[[p]] so that
vd = O(p?) for all J € X and

po = vy - FA(YA(VY),
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where

(YY) =fa(Y) [] doolY)

O#£0'e
with
~ YD1—5D,(0,0>
oY) = fm—v
and
§D7D/(Y) = — H (atl + th + (*1)C(YD . YDI))(,I)a-&-b-&-c .
0<a,b,c<1
(a,b)#(0,0)

O£ +(—1)%(a,b)
It can be written as
(47) Yi(p)=Y
where for any tuple u = (uy/,)/, we define ?)\(u) = (?é(u))ge)\ by

A . .
(48) Vi) =—iti —jta+ > uyy,
A/p conn. skew

(i,5)EN/ 11

and where u* = (u} //t) A/ 18 the unique tuple of power series in k[[p]]

so that uﬁ/u = O(p~Y) for all J € \ and

=\ A
H po= “:\\/p ’ F)\/,u(Y (u)\))a
OeX/u
where
—=A = ~

(49) o) = T[] oY) I] dooM).
OeX/u OeX/u
O'gx/u

Y3 (p) is the coefficient of []c, vg! in

SA OF 5 (YA (v))/Ovan
Ya(v): H D)

1
I:Il’_e[A 1—pry Fry (YA (v) 2

all of whose p-coefficients turn out to be Laurent series in v. Further-

more, Y (v) is as in ({46).

Remark 2.17. Theorem follows from Theorem by taking p =

(p’..

-, p). In particular, the recursion of Theorem]1.21|(2)| is just Banach

fixed point iteration.
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Proof. Indeed, the tuples in and are not just unique over k[[p]], but
also over K. We will only show this for as is similar. For this note
that on the set

u;:{v:(vD)DeAeKd‘V(vg)>0forallD€)\}

the map G: U — U, v — (Go(V))oex given by
Go(v) =po - FA(Y ()

is a contraction with respect to the metric induced by v. Therefore the
Banach fixed point theorem implies that there can only be at most one fixed
point and since the complete subset U N k[[p]]? is invariant with respect to
G it follows that this fixed point exists and its coordinates must be power
series.

To show the uniqueness in and the equivalence of and
it will suffice to establish bijections (indeed we will give isomorphisms of
varieties) between

Be: {Y (Yo) c K¢ Y is admissible and }
= = (YO)oex

for all O € A\: po = Fu(Y)

and

Be = {V = (vO)gen € K4

Y (v) is admissible and for all O € \:
o =vo - FA(YA(v))

and

<\
Y (u) is admissible and for all A/pu:
Be = § u= (ux/u)a/u € HK () =X A /
VP HDeA/uPD =up - Fp(Y ™ (u))
so that the conditions v(Y;; + it1 + jt2) > 0, v(vg) > 0 and v(uy/,) > 0
become equivalent and Y = Y*(v) = Y (u). We claim that
Be +— Be
v u(v) = (U, (V))a/u
v(u) = (vo(u))ger +—u
for N
vo(u) = po - FACY ()~

and

Uy (V) = H U

OeX/u
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is one such bijection. Indeed, we have

Y (u(v)) = YA(v),

which shows the well-definedness of u(v) and v(u(v)) = v. For the rest can
use goo(Y) = goo(Y) ™! to see that

7>\ ~
Fyu(Y)= 1] FA(Y)
OeX/u

and therefore

wuv@) = T (o B @) ™) = TT oo Fan(0 @)™ = .
OeX/u OeX/u

which gives the rest. Finally, it follows from Lemma that

]§é—>Be

vi— YA(v)

is a bijection with inverse Y + v*(Y) and for the unique v with v(vg) > 0

one has v (Y(i‘j)(v) + ity —i—jtg) > 0. For the converse observe that for
any Y = (Yo)oex with v (Y(i,j) + ity —|—jt2) > 0 one has v(vg(Y)) =1 —
I/(ﬁé‘(Y)) =1 > 0 and therefore Y is also unique.

It remains to prove the formula in for Y> as in , and .
For this we note that the characterization ((2))) can be seen as an inversion of
power series. As ﬁé\(?)‘(O)) # 0 we can use multivariate Lagrange inversion
in the shape of [31, Theorem A] to conclude that for any tuple of natural
numbers n = (ng)gey we have

[P"]Y? (P)
Conr [ o NS WA OF, (YMv))/dvey
= [v"] (YD(V) DI;IAF 5 (Y)Y oo o+ vo i) )

_ [on—17 [ TA =X oA —nes || 0F0 (YA () /0vgy
- ]<YD(V) le_e[AFDI(Y V)™ DFD”({”(V)) - )

_1o=17 [ A A oA —nm || 0F0 (YA (v)) /vy
- ]<YD(V)DI;[AFD(Y (V) ) DFuf/(f”(v)) - )j

where we used vg-ﬁé\(ﬂvﬁ‘ (v))=F} (Y*(v)) in the second and third equality
which follows from Lemma After summing over n we get the claimed
formula. O
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2.4.2 Proof of Theorem [1.19(3)]

For the rest of this section we will fix an embedding Q(t1,t2) < C. Let
p = (p1,-.-,pq) to be a tuple of free variables (without repetitions). We
then take Y*(p) to be the multivariate Bethe roots described in Theorem
where p is re-indexed by the boxes of A in an arbitrary way. Our first
step is to show:

Lemma 2.18. The coordinates YA (p) € C[[p]] of the multivariate Bethe
roots Y*(p) are holomorphic near the origin and can be locally analytically
continued to any point in the complement of

X = { (pz>z ECd

there exists ) # S C {1,...,d } so that H(—pi) =1 } .
€S

Proof. We consider the subset Z C C? x C? consisting of (Y, p) so that Y
is admissible, the multivariate Bethe equations

pi = F(Y)

are satisfied and so that the Jacobian <8Ig}(f3{)> ~isinvertible. As aresult, Z
7

is smooth of dimension d. Since the multivariate Bethe roots come as inver-
sions of convergent power series they themselves converge in a small enough
neighborhood. Furthermore, they are admissible and have a nonvanishing
Jacobian determinant on the level of power series which implies that there is
an open subset of C% on which they all give sections of my: Z — C%. There-
fore 7o is dominant and on the complement of some big enough proper
algebraic subset Y C C? it is also finite [36, Exercise 11.3.7], flat [5, Tag
052A], unramified (characteristic 0) and hence a holomorphic covering. All
Bethe roots therefore admit local analytic continuations to any point in this
complement.

By Riemann’s extension theorem |34, §1] one now only needs to show
that these stay bounded when approaching any point in the complement of
X . For this let p™ be a sequence of points in C% \ 'Y converging to a point
p € C?\ X and assume that each Y2 (p(™) either stays bounded or diverges
to co. Let S C {1,...,d} be the set of indices where the latter happens.
We then have

[12" =TT £ ™) [T 9540 ™))

€S i€S €S
i
=1 E") ] 9:4(Y* ™)),
€8 €S
J2S

where we used g;;(Y) = ¢;;(Y)"! in the second equality. Since the right
hand side converges to (—1)!°l we must have S = 0. O
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This lets us control the poles of most of the factors appearing in .
The only ones that need to be dealt with in more detail are A, B; and Bs.

Lemma 2.19. For any A the germs A(Y*(p)), B1(Y*(p)) and Bo(Y*(p))
can be locally analytically continued to all of (C*)?\ X so that the latter
two have no zeros. Here X is as in Lemma 2.18

Proof. Viewing A(Y) purely as an element of Q(t1,t2,Y1,...,Yy) it was
observed in the proof of Theorem [2.14] that for any partltlon A and any
re-indexing of Y by the boxes of A one can write

A(Y) = H (atl + bty + Ykl — Y )( DR HMskew (~)\(Y)))H
(4,9),(k,L)EX
0<a,b<1
(k,1)#(i+a,j+b)
II Y II tivte—Yip)- [TuruG*(Y))
0#(4,5)EX (3,5)€EX A p

with notation as in Lemma [2.22] Tt follows from this that the denominator
of A(Y) can therefore consist only of products of expressions of the shape
aty + bt + (=1)°(Yi ) — Y(k,)) where (i, 5) # (k+ (=1)%, 1+ (=1)°b). Note
that these factors heavily depend on the indexing of the Y{; ;), however A(Y)
is symmetric in Y and so the set of possible factors in the denominator also
has to be invariant under index change. Indeed, this excludes all factors and
as a result A(Y) must actually be in Q(t1,¢2)[Y1,...,Yy]. Lemma now
implies the first part of the claim.

For the rest we will only examine B; as By is similar. The function
Bi(p) = Bi(Y*(p)) is certainly meromorphic. We aim to show that it
extends holomorphically to any point pg € (C*)?\ X and is not zero there.
For this we define an equivalence relation on { 1,...,d } by

i ~ j if and only if Y;*(po) — Y;'(po) € Z - t1 + Z - ts.

Let Sy, S1,...,S5, be the equivalence classes so that Sy is the set of ¢ with
Y Mpo) € Z - t1 + Z - t if there are such i and otherwise we artificially set
So = 0. We further choose elements s; € S1,52 € S, ...,5, € S, and take
t: {1,...,d} = Z to be the map so that for i € Sy one has

YA (po) + t(i)ty €Z - to
and for any i € S; with j > 0 we need
Y (po) — Y2 (po) + t(i)t1 € Z - 1.

For p in a dense open subset of C* one now has:

d

Hp“”B =[] F:(Y ()" Bi(p)

i=1
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Y'i)\(p)L(i)
(tiFt2—Y ) (p)) O
i=1
I1 (atl + bt + Y} (p) — Y\(P)

i#]
0<a,b<1

) (i) = () +a)(=1)*F?

As a result, none of the factors in the second product are zero at pg. The
factors in the first product may only vanish for i € Sy so that Y;*(pg) = 0 or
Y (po) = t1 + t2. However, in the first case we have (i) = 0 and ¢(i) = —1
in the second - in each case the vanishing factor is removed. Therefore the
whole product is holomorphic and non-vanishing near pg. ]

In case our local curve has genus at least 1 it now follows from
and the previous two Lemmas that P is holomorphic on (C*)?\ X and the
restriction along pg = p can only have poles at p = 0 or where —p is an
n-th root of unity for 1 < n < d. This finishes the proof of Theorem
in this case. In order to similarly deduce the g = 0 case we would need to
know that A(Y*(p)) also never vanishes on (C*)?\ X, but it is not clear to
us how to show this. However, since P! has only even cohomology classes
we can use [82, Theorem 5], which establishes the pole statement in that
case.

2.5 Auxiliary lemmas
Let Q(t1,t2) C K be any field extension.

Lemma 2.20. The morphism

A% D {Y = (Yo)oen | Y is admissible } — A%

Y — vNY),
where V’\(Y) = (5S(Y))De/\ with
(50)
f'ljé(Y) — YSD,O H (atl 4 th + (_1)C(YD/ . YD))(_l)a+b+c
0<a,b,c<1
(a,b)#(0,0)

O :=0+(-1)¢(a,b)eX

is an open immersion with image
U= {v = (vo)oex ’ Y*(v) is admissible }

on which Y* defined as in is the inverse.

Proof. 1t suffices to show Y*(¥*(Y)) = Y. Indeed, this would imply that
the Jacobian of Y ~ v*(Y) is invertible everywhere which makes the map
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étale and therefore flat. As it is also a monomorphism, [5, Tag 06NC] implies
that it must be an open immersion and hence for any v in its image Yv)
must be admissible and v (Y*(v)) = v.

Assume the claim has been shown for any partition of smaller size and
let Y = (Y5)gen be an admissible tuple and (i, jo) € A be an arbitrary box.
First, we define for any \/u

UP\/H} = H 5%(Y)

OeX/p
__1\a+b+c
=Yg’ T (ah b+ (—1) (0 = Y)Y
OeX/p0'éN/p
0<a,b,c<1

O/ =0+(—1)%(a,b)

where [P] is defined as

51) P {1, if P is true

- 0, if P is false

and we used that any factor of occuring in the first product cancels if
it involves boxes (1,0 € A/u. We now want to prove

(52) Yio,jo) = —tot1 — Jotz + Z YN/ u)-

(i0,J0)EX/
The claim is trivial if (ig, jo) = (0,0) hence we may assume without losing
generality that ig > 0. Let \’ be the partition ' = X\; > ... > A1 which
has degree |[N| = |A] — Ag < |A|. We will identify the Young diagram of
X with the set of boxes (i,7) € A with ¢ > 0. Using this identification we
denote Y’ := (Yg)gen and

) ~N
’Uf}\//’u/} = H U0 (Y/)
OeN /u/
In this case one can express the right hand side of in the following way:

—ipt1 — Jot2 + Z Z Y

(i0,J0)EN /1! M s.t.
NN =N /!

= —igt1 — jot2 + Y(0,0)

-1
+ Z o <4t1+y<1»0>*y(0a0))6*'/“’**’ 11_[ t1+Y,)— Yo,
(N /w'] Y1,0) ti+te+Y(1 ) —Y0,-1)
(0,Jo)EN /1 I=hyr /0
>0
A1
+ Z v (fﬁy(lﬁory(o,m)5*'/“’7” 12: t2+Y0,5)—Y(0,5-1)
/1] Y(1,0) ti+t2+Y(1,5)=Y(0,5-1)
(Go,j0)EN /1 J=hat
§>0
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J—1
H t1+Yu n—Yo,)
ti+t2 Y, —Y0,1-1)

l=h>\//ul
>0

= —igl1 — jol2 + Y(0,0)
M-l

n Z o t14+Y(1,0)—Y{0,0) 5>\//H/,,\/ H t1+Y(1,— Y0,
V/w] Y10 ti+t2+Y (1,1~ Y(0,1-1)
(G0,50)EN /1 l:?k’/u’
>0
A—1
n Z o 141,00~ Yi0,0) \ OV /' N Z 1 — _bfYan—Ye,)
(N /w'] Y10 t1+t2+Y(1,5)=Y(0,5-1)
(i0,J0)EN /1! J=hr
7>0
J—1
H t1+Ya .0 =Y.
i tit+te+Y1,n—Y0,-1)
TN !
>0

= —igt1 — jola + Y(O,O) + Z ’Uf,\//ﬂq +i+ Y(l,[)) - Y(O,O)
(i0,jo) €N /W #N

= _(ZO - 1)t1 - j0t2 + Z v{A//M/]7
(i0,jo)EXN /1!

where we set
hyyw =min{j | (1,j) € N/i'} e NoU{oo}.
The claim now follows by induction on |A|. O

We now determine the Jacobian determinant of the above bijection. This
comes up in the proof of Theorem

Lemma 2.21. For any admissible Y as above, the Jacobian matrix of the
above map i.e.

T (Y)
m= (%)
Yy Jomrea
has determinant
[I (ati+bta+vi, - Y; ;) DT
(4,9)#£(k,D)eX
0<ab<1

(k,1)=(i+a,j+b)

Proof. We have
( o (Y)/0Yy,

] = Yoo | (5267 ) oo
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and furthermore

85%(Y)/6YD/ . 5[“)6‘:‘/’0 + Z (*1)a+b(6D/’D//*5D/’D)
7 (Y) Yoo at1+bta+(—1)°(Yon—Yn) "
0”0 s.t.
30<a,b,c<1:
O":=0+(—1)(a,b)eX

If one removes the first summand in the above, then the matrix would have
determinant 0. Indeed, it is easily checked that (1,...,1) is in the kernel.
By looking at the Leibniz formula for the determinant it therefore follows
that
<<%é (Y)/0Yey )

DY)/ (0,0)20,00ex

] - |

We now note that the above expression is a minor of the Laplacian of the
undirected weighted graph I' defined as follows:

Its vertices are given by the boxes in A and two [J,[J € X are connected
by an edge if there are 0 < a,b,¢c < 1 with (a,b) # (0,0) so that [0 =
O+ (=1)%(a,b). In this case the weight of the corresponding edge is given
by

(_1)a+b+1
N at1 + bty + (—1)C(YD/ — YD) '

In particular, the whole graph is a union of cycles of length 3 and for each
such cycle consisting of the vertices (1, (1, 0" we have

wo,

(53) wo,ywoy o+ woy orwor o + wor pwoo =0
or equivalently

-1 -1 -1
(54) wD,DN + wD,D’ + wD’,D” =0.

We will furthermore call cycles consisting of vertices of the shape (i, j), (i, 7+
1),(i4+ 1,7+ 1) € X upper cycles. It follows from the weighted matrix tree
theorem [12, Theorem I1.3.12] that

= > H)We-

TCIy e:(D,D/
spanning tree edge in T’

We will now define an permutation o (c.f. Figure |3) on the set of all such
spanning trees which will help us remove some of the summands. For this
we first fix an ordering on the set of all upper cycles. For a given tree T' we
then let C(T') be the first upper cycle so that two of its edges are in T'. If
no such cycle exists we set o(T") := T. Otherwise let e1, ez, e3 be the edges
of C(T') named in counter-clockwise direction so that e; is not in 7" whereas
e2,e3 are in T'. Removing eg from 7' will turn the tree into a forest consisting
of two connected components - one containing e and the other containing
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Figure 3: On the left a spanning tree T' in I'y for A = (4,2,2,1), in the
middle o(T) and to the right o?(T). The red edges belong to the unique
upper cycle intersecting T' along two edges.

the vertex incident to both e; and es. Hence by adding e; into the subgraph
we obtain another spanning tree different from 7" which we denote by o (7).
Since the upper cycles are pairwise edge-disjoint we get C'(o (1)) = C(T) if
o(T) # T and hence one easily sees that o has order 3. Moreover it follows
from that those spanning trees for which o(7T') # T cancel in the sum,

which yields
Il = > I[ we
TCT\  e=(O,0)
spanning tree edge in T’

o(T)=T
We now claim that those trees T with o(T) = T are the same as sets of non-
diagonal edges which have exactly one edge in common with every upper
cycle and contain each horizontal or vertical edge that is not part of an

upper cycle. If we assume this to be true, then it follows from that

> I w
TCTy 6=(D,Dl)
spanning tree edge in T

o(T)=T
- H W(ig), (6,5 +1) H Wi, ), (i+1.9)
(4,9), (65 +1) €A (4,9),(i41,5) €A

—1 —1
H (wehor + wevert)

C= (ehor s€vert 7€diag)
upper cycle

= I wipessn I wesnens 11 (=teyi,,):
(4,9), (1,3 +1) €A (6,5),(i+1,5) €A C=(enor-vert,Cdiag)
upper cycle
which is what we wanted to show.

To show the characterization of trees with (7)) = T we first note that
each subset as described above is a spanning tree of I'y. Indeed, there are
Zi(z)‘l)fl()\i — 1) many upper cycles and [(\) — 1+ Zﬁ‘j&”(& — Ai+1) many
edges not part of an upper cyle, hence any set of edges as described above
has |\| — 1 edges and is incident to all boxes, which makes it a spanning tree
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if it is connected. And indeed one easily sees that each box (7,j) € A in the
subgraph is connected to either (i + 1,7) or (i,j + 1) and hence each vertex
is connected to (I(A) —1,0).

Conversely, the above calculation shows that each spanning tree T" with
o(T) = T must have exactly one edge in common with any upper cycle and
must contain all edges not part of an upper edge. If it contained a diagonal
edge e, then we could choose it so that there is no other diagonal edge
below the diagonal line going through the vertices of e. Removing e from T'
would then make its two adjacent vertices (,7) and (i + 1,5 + 1) lie in two
distinct connected components. However, by the same argument as above,
both boxes must be connected to (I(A) —1,0) which is a contradiction. This
concludes the proof. O

Next, we relate the Jacobian matrices of two kinds of Bethe equations
arising during the proof of Theorem [2.14]

Lemma 2.22. For a fixed partition A, Y = (Yo)gex and u = (uy,,)z/, free

variables we set

_ ((0Fm(Y)/0Yg
Mpehe(Y) = (W)D O'ex

and o
Mew(u) = <6*{;"”“’ + X @)/aux/u) '
A FA/H’(Y (u)) N

We now claim that given v = (vo)oex and u(v) = (uy/,(v))r/, with

ux/u(v) = IIneny, vo we have

(55)
HUA/#(V) ) HMskew<u(V))H = El;[}\”‘:' : H <8§ED(/V)>D7D,E>\ ) HMBethe(?/\(V))H

and for () the matrix
Q=(0O€eXu.n

we have _
QT ) Mskew(u(v))il ' Q = MBethe(Y)\(V))il-

Proof. From now on we abbreviate M = Mew(u(v)) and N = Mpeinhe(YA(V)).
First we show the claim about determinants. Consider the matrix

(OO g0

with [P] as in (5I). Taking a total refinement of the partial ordering on
boxes one can realize it as a lower triangular matrix with 1’s on the diagonal
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and hence it is invertible of determinant 1. We will write its inverse as
A = (agy)oy and extend it to a matrix

box not box

(56) 4 —  box (A 0 )

not box 0 I

where I is the identity matrix and “box” denotes the connected skew parti-
tions of A that are of the shape

O={0|0<0}

for some box [0 € A and “not box” the other ones. Since we can also write

s , OFN (Y () /ou
M = A pAlw Z O A p

Ux/ FA(Y (u
. Oe/u! D( W) N/ !
this gives
M-A =
(ag o aﬁg,w*(u»/aug) OF, (Y (w)/dugs
T T == Z = v
0 R Jag v BT |
<(9F~E\(~Y'/\(u)\))/8u)\/u> NP, +Z 3ﬁ££?A£1;))/3“A/u
BEW /.0 U/ R W)
’ HeA/u N A/ w!

where the blocks of the matrix are organized as in (H6)). Using further row
operations we can get rid of most terms in the second i.e. “not box” row.
More precisely, writing

box not box

p= Pox (T (=[BeMulgy,

not box \ 0 I
we get
M-A-B=
box not box
aD,D/ 8?5/(?)\(1.1))/871/5 L /
box ( ‘o B (Y (w) 00 (ui 2rer/u a0 D)DJ\/M
not box (aﬁé(yk(li))/au”“) (M)

Fé(Y (u)) )‘/M,D UN/p )\/H,)\/,LLI
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Now we subsitute u = u(v) into the matrix and using

0 Z Ux/p __ 0
ovg vg Ouy/,

OeX/u
we see that
box not box
vox [N <8ﬁ5‘(~Y/\(U))/3uk/u>
C-M-A-B= B o
not box \ 0 (M>
U TN A
for
box not box
= UN/u
C= box ([D > 0] uo )D,D/ ([D €Al v >D,>\/u
not box 0 !
and

Soor . OF (Y (v))/ovg
N/ — 0,0 o _
<vu TTR®W) >D7D,

Finally note that because of Lemma we have Fiy (Y (v)) = U[rﬁé,‘(?A (v))
and therefore
N =D-N

D oY), (v)
- ovg .
0,0/ex

| = lel llomas| = D IN] T, [T oo
A Oex

with

Hence we get

which proves the first claim. For the second claim we need to show

QTM—lQ — N—l

for
box
_ box (B <0Dap
not box \ ([O € A/y] A p,0

Indeed, one can verify that

box not box
Q"A'B= pox (1 0 )
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Figure 4: Degeneration of an elliptic curve to a circle of n = 5 copies of P!
joined end to end each receiving one marked point.

and
box

box D
cQ =
not box (([D € A/ﬂ])A/u,D)
which implies
Q'M'Q = QTA'B(CMA'B)"\CQ = N

as desired. 0

3 Stable pair theory of relative local curves

This section provides proofs and further details of the results in Section

L.2.2

3.1 Proof of Theorem [1.26]
We will now deduce Theorem [1.26] from Theorem [1.24]

Proof of Theorem [1.26, 1t suffices to show the claim in case n = 1 since
M(z1,...,2n) = M(z1) ... M(z).

Indeed, this follows from [48| §6] applied to the degeneration of P! to a chain
of n P's glued end to end and each point class is lifted to the degneration
space so that each Using the degeneration formula we have

and hence the claim only has to be shown for n = 1. Furthermore, we
can degenerate C? x E to a circle formed by copies of C? x P! where C? x {oo}
in each copy is identified with C2 x {0} inside the next copy - see Figure .
This gives
(57)

Tr[M(z1,...,2n)] = (ch., (pt)...chs, (pt)>§2XE’T = Z H Z E(2,Y3),

A-d i=10eX
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where we used Theorem in the last equality. In particular, if we define
M. so that

tit k
e msenn M (2) = Z My
k>0

then we get .
k
Te[My] =3 (Z (12) ) .
A-d \OeA

It follows that the eigenvalues of My must be the sums

k
> (1)
OeA
for A - d. We now claim that one can choose k so that all of these power
sums are distinct and the power sum corresponding to A has an eigenvector
of the shape vy = [A] + O(p). For this we recall that

Py (C% x P /{0, 00}, d) = Hilb%(C?)

and Mk’p:o corresponds to multiplication by k! - chy(m.Oz) where Z C

C? x Hilb%(C?) is the universal O-dimensional subscheme. Furthermore, the
fixed points A € Hilb%(C?) form an eigenbasis for multiplication by any class.

Since o
H (0= @ C 7'ty
(3,7)EN

it follows that Myl,_, has eigenvalue 3, ey (—it1 — jt2)* at [A]. To prove
the distinctness on power sums we first specialize t1, t3 so that the —it1 — jto
for 0 < 4,5 < d—1 are distinct nonnegative numbers. One can show that
any two sets of nonnegative numbers whose power sums agree for infinitely
many powers must be equa]lﬂ - hence any kg > 0 will work. As a result,
My, has simple spectrum since My, | p=0 has and is therefore diagonalizable.
Furthermore, for any A we have

> ()"

OeX

= Y (it — jta)P

by Theorem and so we must have UA’p:o = [A] for an appropriate

eigenvector vy with eigenvalue .y (Ym’\)ko. It now remains to show that
the vy form an eigenbasis of M (z) with eigenvalues as claimed. For this we
note that

M(Zl)M(ZQ) = M(Zl,ZQ) = M(ZQ,Zl) = M(ZQ)M(Zl)

"This follows from max(S) = lim (3, ¢ ik)l/k for any non-empty finite S C Rxo.

k—oo
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by degeneration and hence M (z) commutes with My,. Therefore the vy
indeed diagonalize M (z) and we can write ay(z) for the eigenvalue at vy. It

follows that "
Te[M(2)MPE] =Y ax(2) (Z( )\)k())

A-d OeX
for any n > 0. But by this must also equal

> (z E(zm) (z (Ya)’“)”

A=d \Oea Oex

and as the eigenvalues of My, are pairwise distinct, this implies

=Y E(z,Y2)

OeA

by the invertibility of the Vandermonde matrix. O

Remark 3.1. One could have shortened the proof somewhat by using that
M3 has simple spectrum |78, Proof of Corollary 1]. Recalling that stable
pairs on C? x C are the same thing as quasi-maps from C to Hilbd((C2)
(c.f. [73, Exercise 4.3.22]), this corresponds to the fact that the quantum
cohomology of Hilbd((Cz) is generated by divisors. However, we chose to
circumvent this fact since the analogous claim for general Nakajima quiver
varieties is still a conjecture [58, Question 1]. This makes it possible to
repeat the above proof for quasi-maps to quiver varieties, which gives a new
proof of the fact that the spectrum of quantum multiplication is described
by solutions of Bethe equations. See [97] for more details and consequences.

3.2 Proof of Theorem and Theorem [1.29]

We will start by proving a version of Theorem for the Gromov-Witten
theory of the tube i.e.

(|7 (PO [v)" = (a7 (pt

where p and v are unordered partitions, x € {o, e} and the right hand side
is defined as in Definition and Remark [4.3(3)l By Proposition one
has
(58)

2, pl 0o ° 1 P1/{0.00}.GW.0
(b (po))g 7 AOHEWTE = 2 (Y (1) B () mplw ), (1O

) |V>(C2 XPl/{0,00},GW,T,* 7

We then define M ,?W to be the matrix with entries

(MEY),,, = (=tat22®) W3 () (ulmi(pt) ),

where the prefactor is chosen so that degeneration becomes matrix multi-
plication like in the proof of Theorem [1.26
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Lemma 3.2. We have

(59) MV = > (—t122%) W) (|7 (pt)[1)° v,
ul=vl
2<U(p)+0(v) <k+2
where the connected invariants satisfy:

(1) (u|mk(pt)|v)° € i -Q((2))[t1,t2] is homogeneous of degree k — ¢(u) —
(V) in t1, to.

(2) We have
— tit22* ()| (pt)|(d))°

= (t1 + tg)k[tk] ;(dzyl (ed= — 1) (t4+1)---(t+7)

drz __ 1 tr—l

+ O(tit2)

up to terms in t1to - Q((2))[t1, o).

Proof. Tt follows from standard considerations that connected and discon-
nected one-point invariants are related in the following way

—tytg22) )
oty = 3 )T

3(>\) <:u’_)“7—k(pt)’1/_)‘>o7
A<,y

where we write A < p if my(\) < my(p) for all [ and g — A is the unique
partition with m;(p — A) = my(u) — my(\) for all I. Here, we used the
notation

mi(\) = #{i | A = 1},
On the other hand, one can show that

Cu—Av—2X
Zcp,a<u|a—paayy> = Z 113(7)\)

ps0 )\SMJ’

for any set of constants (c,s)p0. Since (MEW)IW = 3(u) (| MEW|v), this
implies that 7

Mk:GW = Z(_tlt?z?)é(u) (k7 (pt)[v)® a—pon,
8%

From [(1)] it follows that the connected invariants are 0 unless £(u) + £(v) <
k + 2, so to get it suffices to show This however follows directly
from (58). To show [(2)] we use the degeneration formula

(7 (pt)) PO = 5 gl (—t122%) 3 (1) (| v () |)®
s

72



N7 G gy 2y IR )
Zq —t1t52%) ) mEoIN

arising from the degeneration of the elliptic curve E to the rational nodal
curve. We can isolate the summands coming from

ca = [t](~t1t22%){(d) |7k (pt) | ()

by looking at the t’f coefficient, which is

(18] (7 (pt)) C X E-CW .o qu+\)\|3((d) M)Cd

p 3(w)
= Z qd+zll'ml (m; + 1)dcq
(mi)i>1,d
=Tl = deay ™
dzl d>1
and hence
(60) ) mt))g P =3 e,
mld
Furthermore, one has
<Tk(pt)>(c x B GW T o
— Z (_1)9*1+a+bt?—1t3—122g72 (Ag—adg— ka(pt»fde o
9>0
a,b>1
a+b=k+2

where the summands with a = 0 or b = 0 were excluded as they vanish due
to [91, Lemma 4.4.1]. We can therefore replace the left hand side of by
a Hodge integral, which leads to

2229 2 </\ L4EY(1) 7 pt chm

g>0 m|d

The left hand side can be expressed as

ot BY (o)) = [ A B (DutCyatot).

g,1

where we denoted the Gromov-Witten classes of the elliptic curve by

(61)  Coa(n,---m) = e ([(Mgn(E )" Nevi(n) - -evi(m))
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form: My ,(E,d) — Mg, the forgetful map. Here we used that 7*(¢1) = 1
without boundary terms as all maps from rational curves to ' are constant.
Using [70, Example 6.9], we get

4
/ Ag—1EY (1)¢1Cya(pt) = (~1)7~ 1Bg Z v 1/ Aghg—1EY (1)¢f.
M 29

9,1

We hence have

4
= Z(—l)g‘leg(dz)Qg—Q / Ay 1EY (Lsh

g>0 Mg,
_Z 2)20- 2|B2g’[t1€ 29— 1]Z< x >T !
= 29 = et —1) (t+1)---(t+r)
drz -1 tr—l
— tk d r—1 € ,
| @ I @ T

where we used |25, Theorem 3] and [25, Theorem 3 in Appendix] in the
second equality and replaced (ef—_l) by

1 x O\ —x \"\ _ 2" 1-e"

2 \\er -1 et —1 2 (er —1)r
in the third equality to kill all even powers of x. This concludes the proof.
O

Using this, we will now prove Theorem

Proof of Theorem[I.27. By [86, §3], the relative GW/PT correspondence
holds for C% x P! relatlve to {0,00}. Together with degeneration, this implies
that under the variable change p = —e®

(62) My, = Z K (2, (ht, o) (t182)" 2B MGV R
k1,....,kn>0

where K is the correspondence matrix of Section evaluated at ¢; =
ci(T(CQXIP’l [—0 — OO]) = Ci(T(cz D O) i.e.

c1 =1t +ta, cg =tito and c3 =0

and L is the linear operator determined by

Lip) = €(p) ).

Note also that the power (t1¢2)" ! comes from the equivariant diagonal class
of C2. This implies that M}, is indeed of the shape , where the bound
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follows from Proposition [1.11{2)l Furthermore, Lemma implies that
f%(v) must be a symmetric polynomial in ¢y, s of degree k — £(v).

To prove Theorem [1.27(2)| we observe that any term of the shape c -
Q0 I arises either if n = 1 or if n > 1 and several a’s annihilated
via the commutation relation . However, the latter case only contributes
terms to f¥(v, —v) that are divisible by t1to and hence can be ignored. By
setting t1 = 1 and to = 0 to weed out terms divisible by t1t9, it follows that

fé“,k,z(v,—v) = Z [N((k—Q),k’

k>0

L N (=p)" —1
D A
B pk—2 (_p)(kfl)v_l
S G- D DR T

where the last equality uses Lemma To show Theorem [1.27(3) we first
observe that M}, is independent of p in case we specialize t; +t9 = 0. Indeed,
via a cosection argument as in [84, §4.3] one can see that the virtual class
on P,(C? x P'/{0,c},d) vanishes if n > d. Moreover, as observed in the
proof of Theorem above, we have

c1=1,ca=c3=0

tr—l

P,(C% x P! /{0, 00}, d) = Hilb%(C?)

and the fixed points give a basis [\] € HA(Hilb?(C?)) indexed by partitions
At d so that M(z)|,_, has eigenvalue

(1 —e h2)(1 — e7127) Z o(—iti—jt2)z

tit
1 (i.d)EX

at [A]. The restriction M(z)|,, __;,_, therefore has eigenvalue
§(z) - Ze(’\i_i_%)z -1

at [All;,—_4,—1, where
(63) o(z) = e*/? —e77/2,

Furthermore, [49, 54] tell us that the restriction [A][, __, _, is proportional
to the fermionic Fock space basis (which corresponds to the Schur functions).
By comparing eigenvalues and [76, (2.9)] it hence follows that

M(Z)‘t1=7t2=1 =q(2)€(2) — 1,
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where £y(z) is the operator defined in |76, §2.2.1]. More generally, there are
operators &.(z) for any r € Z which are determined by their commutation
relation

[k, Er(2)] = < (k2)Expr (2)

and the vacuum expectation

W) = 5.

As a result of this, it is straightforward to show

Z [1; 25((n = N)iz) - 11; 25((1n = A)iz)
3(A) - [Aut(p = A)| - [Aut(v = A)[

(u| M(z) ’t1:7t2:1 lv) =

where
(64) S() = &)
and similar to the proof of Lemma we get

M(2)]y=ty=1 = ZHZS piz HZS(”Z'Z)|Aut(5)7yI-L|OXut(u)|
— Z z HS ’UiZ ZT

veVvl i

Taking z*-coefficients therefore gives

1 a 1}2m
2a - e
fao(v) = HSU% —< ) > H(in+1)!
n; >0 l
Zl ni=a
as desired. O

Remark 3.3. Denote by V = w,0Oz the universal bundle of rank n on
Hilb"(C?), where Z C C? x Hilb™(C?) is the universal subscheme and

7: C? x Hilb"(C?) — Hilb™(C?)

is the projection to the second factor. The last part of the above proof then
expresses the cup products

ch,(V)U: Hi(Hilb™(C?)) — Hi(Hilb™(C?))

for t; = —t9 in terms of Nakajima operators. Indeed, this is already known
and the above argument appears for example in |72, Proof of Proposition
12]. We nonetheless included it since we were unable to find a canonical
reference.
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In the above proof, we relied on the following special case of the GW/PT
correspondence.

Lemma 3.4. We have

~ 1
K =il P EE—
O 0leycamo — ™ 1<i1<Z<ikl<k Ptk
if k>1and —f((k),(z) 0= 0 otherwise. Furthermore
co=c3=
k k41 -1
~ t)" ak+1
K 4 (2 _
> Rl LY e

for all a1,...,a41-

Proof. Tt suffices to show the second identity as it implies the first one by [29,
Appendix]. For that we use the description of the correspondence matrix K
in case c¢3 = c1c2 given in |63] [72]. This involves a set of formal descendents
ai(7y) on the Gromov-Witten side, which in case co = 0 is determined by

o (2!
PREACIEDS e o™

r>0 r>0

and by |63, (1.14)], we musﬂ have

k
” a41(7)
K = —
> Runal, i) = 220
which concludes the proof. ]

We are now ready to give a proof of Theorem [1.29

Proof of Theorem [1.29, 1t is straightforward to verify that our formulas sat-
isfy all conclusions of Theorem By Lemma this implies that they
must also have the correct fé“ w—3» Which proves our formulas for M<4. For
M5, we can again use Lemma to see that it suffices to check that we have
the correct f05,1(17 1,—1,—1) and f15,1(17 —1). Since these values are determ-
ined by Ms|;,<2, we can use degeneration and [83, Theorem 1] to express
these in terms of M 5|y, ,<2, which we already know. This concludes the
proof. O

Remark 3.5. The above strategy would not allow one to prove any potential
formula for Mg. Indeed, one can show that Theorem [1.27]in this case still
leaves infinitely many degrees of freedom undetermined.

Indeed, the computation in |63 §9.2.1] shows that modulo ¢z all contributions but
one are of the shape ay, ---ag, for n > 2 - even in the equivariant case.
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However, Theorem does determine the fc]f,b to the following extent:

Lemma 3.6. Let £ > 0 and f:fb(v) € Q(p) be another set of rational
functions indexed by a,b and symmetric in v € VF72¢7b If it satisfies

Theorem (2)|1.e.

(1) for any a,b,v

Zv EOEE Y sm@)sti (v () U (5,)

p”—l -
s+t=v;
sgn(s)=sgn(t)
= i+ v) fE (v (0i,05) U (03 + v5).
i#£]
(2) for any v >0
Uk—2 _\(k—1)v _ 1

Py afo, =) = )

(k=D ((=p)" = DF!

then it follows that ]f"v(’fb(v) = fk,(v) for all b and generic v. Here, we
call v generic if there is no proper subset ) # S C {1,...,k — b} with

Vs = cg¥ = 0.
Moreover, if for any fixed a and b we know that

k _ rk Tk _ rk
¢ fafl,b - fafl,b and fa,bfl - fa,bfl‘

° ]A”Zzb(V) = C’f’b(v) for all v off-diagonal i.e. mnot of the shape v =
(V1. ,Vk—2a-b, —V1,...,—VUk—2a-5) UP tO permutation.
2 2
° f,fb(l) ( ) where 1 = (11%2& b, (—1)k722a7b) i.e. 1 and —1 occur

k2ab

any times each.

then we must have f b= f(’fb

Proof. We prove the first claim by downward induction on b, where the case
b =k — 2 holds by Note that any join of a generic v is still generic. For
b < k —2 we can therefore use induction for the right hand side of |(1)[to get

fOb Zv Z _fOb Zv i”l_l

2(=p)¥i+l

i (-p)ti-1

(v1,...,Vkb,—01,...,—Vr_s) Up to permutation - in particular, since v is
2 2

By looking at poles one can see that ) v = 0 if and only if v =
generic and b < k — 2 we get %fb(v) = f[]ib(v) as desired.

78



For the second claim, we note that gives us

(65)
> Wit v;) e (V\ (0, ) U (it ;) = D (0i0) £ (V\ (03, 05)U(vi+0)))
i£] 7]

for any v. From this it suffices to deduce ﬂ"’b()\, =) = fF, (A, =) for X a
partition of length k — 2a — b. We will do this by induction on |A|, the case
IA| = & — 2a — b holding by assumption. Now, assume that the claim has
been shown for A" with |\'| < |A| and let ip be maximal so that \;, > 1. We
then let

vV = ()\0, ce 7)\1'0—0—17 )‘io - 1, 1m1()\)+1’ —)\)

For this choice of v, boils down to ﬁ,b(A’ -\ = f(f,b()\, —\) modulo
off-diagonal and lower degree summands, which concludes the proof. ]

4 Gromov-Witten theory of local curves

This section contains the proofs of the results stated in Section In the
process, we also derive formulas for certain Gromov-Witten invariants of the
tube geometry as well as certain triple Hodge integrals on the moduli space

of curves. See Theorem and Corollary respectively.

4.1 Generalities

We start by giving further details on the discussion at the beginning of
Section [1.3] For that, we will first recall the precise connection between
the three different kinds of Gromov-Witten theory considered in this thesis.
Let X, T be as in Situation [l and ~1,...,7, € Hj(X) be homogeneous
generators of H7(X) as a Hi(pt)-module. We then have the following formal

descendent insertion
y= Y tim(y)

>0
1<j<n

with #; ; free variables satisfying

ti17j1 bisjo = (_1)deg(7j1 )'deg('77'2)7fiz,j2ti1,j1 .

There are three Gromov-Witten partition functions defined by

_ _ X,T,*
Zr= Y (=) (exp ()
geZL
BEEM(X)

for * € {o,e,7} and Eff(X) C Hy(X,Z) the submonoid generated by effective
curve classes.
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Proposition 4.1. We have

Z* =exp(2°)
Z* =2y Z,
where Zj = Z.‘tijzo
Proof. One can show that
(66) Mg, (X,8) = H HMgs 1,(X, Bs) [ Aut((gs, s, Bs)s,1,=0)

ls 1 {17 7n}8 1
Zi,l gs=g+Il—1
22:1 ﬁs:B

and same for M;’R(X ,B), where one additionally requires Is # () for all s.
The identities for the Z* follow from the fact that the virtual classes of both
sides of agree. O

Up to the datum of Zj all three flavours of Gromov-Witten theory are
thus equivalent to each other.

For computational purposes we will also need to use relative Gromouv-
Witten theory. For this, let X be smooth and projective and D C X a
smooth divisor with components Dy, ..., D,,. Furthermore, let 5 € Ho(X)
and aj,...,a,, be ordered partitions of same size (5.D). For x € {o, e, /}
we denote by M;N(X/D,ﬁ,al,...,am) the moduli space (c.f. [45, 46])
of n-pointed genus g relative stable maps with appropriate connectedness
condition to a target expansion of X with contact profile a; along D;. This
space comes equipped with a virtual class

— % vir J—
Mg7n(X/D7 Baala s >am)} € H2~vdim(Mg,n(X/D7 ﬁa ar, ... 7am))

in complex degree

vdim= (3 —dim X)(g — 1) + /B(cl(X) —D)+n+/la;)+...+an).

As in the absolute case, there are evaluation maps at the markings
ev;: H;n(X/D,B,al, coanm) = X
for i = 1,...,n. Therefore we can define

Deﬁn1t10n42 Let v1,...v, € H*(X), k1,...,ky, > 0 and
v e H*(M on(X/D, B a1, ... an)). We set

X /D%
(7T, (1) T, () @1, A
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n
o /* vir /7 ’ ,QZ}’L evi (’77/)
[M, ,.(X/D,Ba1,....am)] P

for x € {o,e,/}. If py,. ..,y are unordered partitions of same size (5.D),
then we define the following unordered version of relative invariants

X/D,*
(- Ty (1) T (o) 11, )

1 1 X/D,x
= 1:11 mw Ty (1) T ()| B, )

Remark 4.3. (1) Similar to Definition if X is in Situation (1} then
this definition can also be carried out equivariantly. For D = (3, this
recovers the usual non-relative Gromov-Witten invariants.

(2) The above discussion can be carried out more generally. In particu-
lar, Proposition also works in the relative case and one could put
insertions on the relative markings in Definition However, we will
use neither generalization.

(3) In accordance with the stable pair case, we will also denote the invari-
ants of local C? x P! relative to 0 and oo by

(a]-- .|b>62xﬂ1’1/{0,oo}ﬂl* = (- |a, b><C2xﬂ’)1/{0,oo},T,* _

In this chapter, we will consider X = C? x C relative to D' = C? x D for
C' a smooth projective curve and D = {p1,...,pm} C C a reduced divisor.
As in the introduction, we will equip X with its canonical T = (C*)2-action,
which we need in order for its relative Gromov-Witten invariants to be well-
defined.

Proposition 4.4. For cohomology classes v1,...,v, € H*(C), k1,...,kp >

0 and ordered partitions ay, ..., a,, of same size d, we have:
X/D' T«
(T (1) - T ()] @1 - A )
1 C/D,x
= 1 (VY (2)m, (1) 7, () @ am)
_ C/D
5 (Y OB () 1) 700 al,...,am>gd ,

where ¢ =), (k; + dege(vi) —1) —dx(C\ D) — >, ¢(a;) + 1 and

g
EY(z) =) (-1)'Na?" € H*(Myn(C/D,d,ay, ... an)),
=0

where \; = ¢;(E) is the i-th chern class of the Hodge bundle E = 7,QL of
the forgetful map

7 M,,.(C/D,d,ay,...,an) = M,,(C/D,d,ai,... ap).
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Proof. The first equality follows from the definition. The second equality

follows by noting that multiplying each cohomology class v in the bracket

by t;ieg@(v) is the same as multiplying the entire expression by t‘l’dim. O

As claimed in the introduction, this reduces us to studying double Hodge
integrals over curves:

Definition 4.5. For ~v1,...,v, € H*(C) and ay,...,a,, ordered partitions.

Then we set:
C/D,x
. al, ..., am>

<EV(1)EV(:U) I1 Uz%w
i=1 v ¢ d

— Z ( 1)9 1 29 QHZZ +1<E\/ E\/ HTl ,Yj

gEZL
ll I 7ln EZ

EQ[ X3 7"'775:7(2@'+Zj)71][((2>)7

C/D,x
al,...,a >
g,d

where x € {o,e,/} and negative descendents are defined as in [72, 91]. If
m > 0, we will omit d as it is determined by the a;.

Remark 4.6. If x = o, then the negative descendents only give non-zero
contributions in case g =d = 0 and n < 2, where we have

<EV(1)EV( y— ®>C/DO: 1
1/z1 —4n 21 Jo
and
<EV<1>EV<x> = = @>C/D’°= / 71 U,
1/z1 =1 1/zo — b2 | /0 21+ 22 Jo

In particular, this extends the formula

(67) C/D,o -3
<EV(1)EV( )H 1/%% - > — 2z, (Zzl> /C»YIU...U%
0,0 7

for n > 3 to the case n =1, 2.

If D = (), Proposition @ determines the empty contribution Zj. Hence
it follows from Proposition FJ_—ll and Proposition (or by a more direct
argument) that all three versions of Hodge integrals are equivalent. As a
result, we will not consider the e-version any more. The other two versions
are related as follows:
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Corollary 4.7. We have:

n ' Cy
<IEV(1)IEV($) || s ¢i>

=1 d
C,o
_ 1-|S \Y v i
(1 =11jes 1 Ies iel dr
Z]EsdI:d

where we sum over those set partitions so that ) ¢ S and sgn(S) is the sign
that arises from super-commuting the ~;.

4.2 Invariants of local P! relative to 0 and co

Using degeneration, one can see that the Gromov-Witten theory of local P!
relative to 0 and oo is determined by the invariants

pt 1 1
Vpo—v1 1/ —ve 1/ — i

for p a partition. This section studies such expressions - partly with the aim
of using them to gain information about the local elliptic curve in Section
As a result, all invariants in this section will be connected and we will
drop the superscript “o”. The following Proposition and its proof are taken
from the authors master’s thesis.

EY(1)EY (z) b

P1/{0,00},0
(68) <a >

Proposition 4.8. [95, Lemma 5.11] For a = (a;)]~; and b = (b;)!"; ordered
partitions of the same size:

PL/{0,00} n m
<a EY(1)EY (z) : f’t ™ b> = —228(2)" [ [ Saiz) [[ S(biz),
=1 =1

where S(z) is as in (64).

Proof. We denote the size by d = |a| = |b|. Using Mumford’s relation
and |76}, (3.11)], we see that the claim holds for z = —1. Hence, we only need
to show that F'(x) is proportional to S(z)* in z. To this end, we consider
the invariant for fixed d and g

P! xP!/{0,00} xP!,~

<(CL1, H)7 ey (aTM H)| ]Ev(x) |(bl7 H)? ) (b'”“ H)>g,(d,1) ’

which is rubber in the first factor and H € H?(P!) is the hyperplane class in
the second factor. In fact, this invariant is independent of x as (—1)9), is the
only summand of EY(x) that gives a nonzero contribution. We now equip
the second variable with an action by T = C* so that Tp1 ( becomes the

83



standard T-representation, which corresponds to the generator ¢ € H%(pt).
Moreover, we lift H to H%(P!) so that H|, =t and H|, = 0. The only fixed
loci which contribute in localization consist of a tube with degree one in the
second factor and two curves Dj and Do, where D; has genus g; and maps
of degree d onto P! x {0} and Dj is a curve of genus go with a constant map
to P! x {oo} and empty ramification profile. See Figure |5, By specializing

D, — e e

D,

Figure 5: Fixed locus in rubber localization

t=1, we get:
1 P! /{0,00},~
> <a EV(1)EV@;)1 b>
g1+92=9 — % g1,d
o |Ev e L, P00}~
O EY QR (~2
(0¥ @B ()= >0
P! /{0,00}
- ¥ <a Ev(l)EV(az)lpt >
g1+92=g e g1,d
P! /{0,00}
t
A0 EV(DEY (—2)—2 >
(o[pomen o)
P1/{0.00},
- ¥ <a EV(1)EV(9C)1Pt b>
g1+92=9 — % g1.d
1
: EY(0)EY(1)EY (—2)——o,
f, B0 R

where we used rigidification [59, Lemma 2] in the second equality. The
last Hodge integral was implicitly computed as g, (z) in the proof of |24}
Proposition 3:

\ \ Vv 1 _ T
S (1 [ BBV ()E (2) = = (2

9>0 Mg,

16This is Figure 2 from |60], where essentially the same kind of localization is considered.
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and so F(z)S(z)™7 is constant in x, which concludes the proof. O

This settles the case |u| = 1. For |u| > 1, the above localization argument
fails and it is somewhat unclear how to compute more cases of . Using
large amounts of computer data, we were however able to find the following
conjectural formulas:

Conjecture F. For any z € Z.o, we have:

P! /{0,00}
<a Ev(l)Ev(a:)l/th_w‘b>
_S(22)% I, S(aiz) IT; S(biz) ~~ [ —2x
(69) w23 (72 ; (—3: - z>

O T (e ) T (02 170°) () X (=)’

i i
for a = (a;); and b = (b;); ordered partitions of the same size.

Remark 4.9. (1) For x = —1, Conjecture [F| follows from Mumford’s re-
lation and [76], (3.11)].

(2) It follows from the definitions that the z-coefficients of the left hand
side are polynomials in x. This is not as obvious for the right hand
side, where it follows from Lemma

Though we do not know how to prove Conjecture [F} we will provide
some evidence for it later on - see Theorem [4.14]
4.3 Invariants of the local elliptic curve

In this section we use Proposition [£.§] to derive some formulas for double
Hodge integrals on the elliptic curve. The following proposition is an in-
termediate step and was obtained in collaboration with Jan-Willem van
Ittersum:

Proposition 4.10. For any € Z \ {0} we have

(—1)"0 ()™ 10 <@(z+ui—uj))x |

xn—lznx—l-Zn O(u: — us;
1<i#j<n (ui = uj) o

where we set p; = e and take the coefficient of ], p? in the sense of .
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Proof. We prove this by degenerating the elliptic curve to a circle of n cop-
ies of P! joined end to end with each receiving a single point insertion as
depicted in Figure |4 We then apply the degeneration formula of [45, 46] to
this degeneration, which expresses the above Gromov-Witten invariant of £
in terms of Gromov-Witten invariants of P! relative to 0 and co. For each of
the occuring stable maps to a single P!, there is a unique component which
receives the marking. It further follows from [70, Lemma 1] that

00 if g=0,a=b=(a)
71 EV 1 EV b Pl/{ov } — a’ 1 )
(1) (alE () (@) b)] .

which forces all other components to be tubes. As a result, the contributions
of the degeneration formula consist of n many factors of

E\/ \/ IPI/{O,OO}
<a (WE w’ > ’

which are connected to each other via contributions of chains of tubes going
around the circle. Here a chain of degree a tubes of length m contributes a
factor of am+1 L — @, which results from and the m + 1 glueing points
each contrlbutmg a factor of a. In total, thls gives

n ¢ Ey
EY(1)EY (z P
< @12
1=
— xl_n Z qnzlvi!j a?]b;,] (_xZQ)Z'L,] ni,j H a;:’j

(a7, i RUR b bind

Vi le l _le
ap? b7 >0 and bj7=j—i(n)

e g < ’”Ev w'

1]1’

>P1/ {0,00}
where ¢, is a new variable satisfying ¢, = ¢. The sum arises from number-
ing the components of the circle of P's by i = 1,...,n in counter-clockwise
direction. We then define n; ; to be the number of chams of tubes wrapping
around the circle in counter-clockwise direction from i to j, with al’] the
degree of the [-th chain and bl’] one more than the length of that chain.
It follows from this that bf’j = j — 4 modulo n and one can show that any
collection of (q; b ) and (bf’j )14 satisfying the above conditions corres-

7 ] 7,7
ponds to such a geometric contribution with total degree L

Proposition [£.8] we get

n " Ey
\Y v p
<E (HEY () 11 1—1/Jz‘>

Using
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(—1)n - 1 ‘ o\ i i o abibd
= WS(Z)”JU Z H — H(il‘Z )a;]S(a;jz) g
(%J)?zf(%,j)iiﬁ i,j=1 ,J =1

Viz 35,5007 =3 ;0
a;? by >0 and b7 =j—i(n)
/
n
(=" Pi
= —li.on |EXP | X E Cj—z(n) Z5qn, — )
T ij=1 pj
. pO

where the bracket [- - - ];0 denotes the act of expanding the power series in ¢,

and taking the coefficient of [];", pY in each qk-coefficient. Note here that
those ¢F-coefficients are Laurent polynomials in p1,...,p,. We also wrote

2
glaz a
Cyn) (2,4, p) = 040log S(z) — Z %) (qu>
a,b>0
b=vy(n)

for any v € Z. From this we get
1 —e*pa®)(1 — e #pg®
exp (Cym)(2,4,0)) = S(2) [] ( pg°)( Pe)

— pab
0 (1-pg")?
b=vy(n)

Using this, one can phrase [- - -];o in a more analytic way by noting that the

g-expansion inside the bracket converges if

%qg <1 forall i,j and b > 0 with b= j —i(n)
j
for x > 0 and
e+ PLbl < 1 for all i, j and b > 0 with b= j — i(n)
]
for + < 0. Hence [- --];o can also be interpreted as taking the coefficient

of [T, p? in the Laurent expansion in the respective domains. Moreover,
setting p; = p;q., gives

exp ZC zqn,p))

1,j=1

_6(2)" 11

(1—e*2ig™ (1 —e?Dg™ (1 - e*Pa) (1 — e *Pd)

_ Pii—1\2(] _ Pi_l\2
1<i<j<n (1 p; ¢ (1= 5rd')
>0
09" H O(z +u; — uj)O(—2z + u; — uy)
= 2
" 1<i<j<n O(ui — u;)
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()" H O(z + u; — uy)

1<igjen O W)

)

where we wrote p; = e% and used

1_ezl1(1_ezl)
_ —z/2 q
o) = H (1—¢")?
>0

in the second equality as well as ©(—z) = —©(z) in the third. By keeping
track of the shift in the p;, we therefore get

n Ey
<Ev(1)Ev(x) 115 Etw'>
i=1 !

_ E)re)™ 1 (M)x |

n—1,nx+2n Sy
a1z \<ivii<n O(u; — uy) ,
where [- - ]go denotes taking the coefficient of [, p? in the Fourier expan-
sion in u in the domain defined by
lq| < i ‘<1foralll<]<z<n
Dj

if x > 0 and

lq| < 2Py <lforalll<j<i<n

j

if © < 0. Using the notation of Section {4.5[ we have [-- -]Zo =[]0 1as
where Id € S, is the identity permutation. Since the function inside the
bracket is symmetric in the u;, we get [--+] o4 = [---] 0, which concludes
the proof. ]

We are now ready to give a proof of Theorem We recall its state-
ment for the sake of convenience:

Theorem 1.40. If x > 0, we have

n ¢ Ey
<EV(1)EV(x) 117 E z/}i>

(—1)"(n — 1)1O()™
(28) - n—1ynz+2n R Sup—1=un

Z H Oz +ui—u) | ]ﬁl Aluy,, — g, )t
@(ul - uj) (n - lm) : (lm—H - lm)'

1=l <<ly=n 7,75] m=1

-~ Resy, =u,
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and if x < 0,

n Ey
<Ev(1)Ev($) 115 Etwi>

=1
(~1)"(n — 1)!O(=)™
(29) =2 pn—1ynz+2n Res“nflzun T Resulzug
/ z N—1 / - / lm —lm
Z H Z—‘ru j) . H Ay, ulm+1) +1 )
1=l <<Iy=n \i#j @ m=1 (n - lm) : (lm-i-l - lm)-
51y--55n

where all residues are taken for z # 0. Moreover, we set u, = u; + s;z and
$1,-..,8n 18 a sequence of integers so that s; = 0, s3 = 1 and for any j,
we have {si,...,s;} = ZN[a,b] for some a,b € Z. Finally, A(u) is as in
Appendix [A]

Proof of Theorem [1.40, Using the terminology of Section[4.5 it follows from

that

T

O(z + u; — uy)
F(u;z,7) = —_— " )
g O(u; — uj)

is Ar-invariant and has a pole datum given by S;; = {0} for z > 0 and
S;; = {£1} for x < 0. Hence follows directly from Corollary and
Proposition For = < 0, this however gives us:

n Ey
<Ev(1)Ev($) 115 Etw@->

=1
(—1)"(n — 11O ()™
(72) - xn—lznx—l—Zn Sup_1=un """ Resu1:u2
X
N—-1 / / Lt —lm
Z H (z+ u j) . H A(ulm — ulm+1) +1
_ — ] — T
1=l <<Iy=n \i#j @ U u m=1 (TL lm) (lm+1 lm)
81y--35n
where U; =u; + s;z and s1,...,8, € Z are so that s; = 0 and for any 7 > 1

we either have |s; — s,| = 1 for some r < j or j = l;41 for some ¢t > 1 and
sj = s;,. Note now that the summands with s3 = 0 all vanish. Indeed, in
this case F'(u'; z,7) has positive order at u; = ug and the factor containing
the A’s only has negative order if [,,41 = 2, in which case it has order —1.
As a result, the product is holomorphic at u; = ug and so Resy =y, = 0.
Furthermore, the summand corresponding to si,...,s, is the same as the
one corresponding to —sy,...,—s,. This is because

Res,—af(2) = —Res,—_of(—2).
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Denoting by G(u’) the function that we are taking the residue of, we there-
fore see that

Resy, —u, = - Resy, =4, G(1W') = (—1)”_1Resun_1:un - Resy, —u, G(—u)
= Resy, ,—u, *** Resy,—u, G(u")

where u! = u; — s;z and the last equality used G(—u) = (—1)""1G(u),
which follows from A(—u) = —A(u). This redundancy can be removed
by requiring s = 1 and giving the right hand side in (72)) a factor of 2.
Moreover, if s = 1, then the above conditions on s; are equivalent to those
stated in Theorem Note also that the requirement z # 0 coming from
Section is only necessary for and not for since the latter has
no poles that involve z. O

Using slightly different methods, we also derived recursive formulas for
certain Hodge integrals in |95, Appendix B]. We will now recall this result
as well as its proof. Meanwhile we freely use the notation of Appendix [A]

Proposition 4.11. |95, Proposition B.1] For « € Z_(, we have the following
formulas:

(1) For z > 0 we have:

1 pt >Ev’ ©lrye

<EV(1)IEV(33)

Tol-tn)  aEeen®
pt pt E7/ B (__)4x4:v+1
<]EV(1)]EV(3£) T 1= ¢2> =) (Gaalw) +b(x)|

Ey 4x
v v pt "0
for quasi-Jacobi forms a(z), b(z), c(z) € Q[p, ¢', G4] of weights 2z — 2,
2z and 2x — 1 respectively. They are characterized by

a(1) = —i, b(1) = —ép, ¢(1) = 0

and the recursive formula:

1 4xr — 3 1
a(z) = %Da(aj -1)+ x2$ pa(r — 1)+ Eb(w -1)

b(a) = 5pa(z) — Dacla) + (z — 3)elz —1)gf
o) = %Dc(m S+ 4x2; 3pc(gj -1+ MDZCL(QJ)

for all x > 2, where D is the operator
D=-D,+AD, — 2Gowt

of degree 2. It is easily checked that D indeed preserves Q[p, ', G4].
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(2) Likewise, formulas for < 0 are given by:

<]Ev(1)]Ev(:n) ! pt >E7/ = 4@(%)2“&) {2zd(x) — e(m)}

T— 11— 2etdQi(atl
Ey O(2 2x+1
<EV(1)IEV(35)1 E)twl 1 E)t¢2> _ @4(5:;% [Ad(a:) + Goe(x) + f(a:)}
pt By 0(2z)%x+!
<]EV(1)EV(CE)1/2 — ¢1> = Qi@+l gatt (—_29;) 20+3 d(x),

where again d(z),e(z), f(z) € Q[p, ¢, G4] are of weights —4(x + 1),
—4x — 5 and —4x — 3 and determined by

d(—=1) = -2, e(-1) =0, f(-=1)=0
and the recursive formula:

d(z) = D(z)d(z + 1)

®
—
8
~—
Il

—%p’d(x + 1)+ D(z)e(x + 1)

f() = D(@)f( +1) — pgld(e + 1),

which holds for x < —1. Here, D(z) is the operator

1 2
D(z) = —¢'D: + 2@"$+f/

Sketch of proof. It will be somewhat more convenient to instead work with

the connected invariants:

E,o Ey
F(z) = <IEV(1)IEV(1:)1 _1% - ft¢2> = <EV(1)EV(a:)1 _1w1 1 ft¢2>

E.o
) = (B 2 )

Ey 2r
pt pt ©
~(BoR @2 - S

H(z) = <EV(1)EV(95)1/2PEW>E’O _ <IEV(1)IEV(J:)1/;)EM>E7/.

These are also well-defined for x = 0, in which case [91, Lemma 4.4.1] implies
1 1
——,G(0)=0,H(0) = ——.
22’2’ ( ) Y ( ) 222

We will now use certain tautological relations on M, to derive the above
recursions. In our case, these relations come from M g,g(]P)l, 2). More spe-
cifically, we look at the bundle

E(n) == R'7,f*Op1 (n)

for n = 0, —1, which comes from P! via the maps:

F(0) =
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Mys(P,2) — 5 P!

y
Mo (P, 2)

where 7 is the map forgetting the third marking and f is the evaluation at
that marking. We now equip P! with a T = C*-action so that Tp1 o is the
standard T-representation with first chern class t € H2(pt). For any integer
x € Z, we can turn Opi(n) into an equivariant bundle so that Opi(n)|o
has weight (n + )t and Opi(n)| has weight xt. We further denote by
Hy, Ho € H2(P') the two lifts of the points class so that Hy|, = Hso|, =0
and Hol, = — Hx|,, = t. Using Riemann-Roch, we see that E(n) also
becomes an equivariant bundle of rank ¢ if n = 0 and rank g+ 1 if n = —1.
As a result, the following integrals are independent of ¢ and hence also of x:

/[M (FL2)vi TSUT(HSO‘*‘H)ev;(HO)eT(E(n))p*Cg(pt, 1)
gy2 s vir,

/[M - EUT(H§O+7L)T’Z)2€U;(HO)BT(E(TL))p*Cg(pt’ 1)
9,2 s vir,

/[M B2y Vi (HE)evs(Hoo)e" (E(n))p" Cy(pt, D).
9,2 s vir,

Here we wrote
Col+) = X 4'Cal- )
d>0
for Cy 4 the Gromov-Witten classes of the elliptic curve as in . Moreover,
we pull these classes back along the forgetful map p: M, 2(PL,2) — M.
We now set ¢ = 1 and compute the above expressions using localization.
Note for this that the Euler class e’ (E(n)) can be computed using the

normalization sequence on every fixed locus (c.f. [24, §2]). Using Theorem
and Mumford’s relation we can deduce

1 1 2A 1
F(-1)=—,G(-1) = — H(-1)=-
(=1) 20(2z2)’ (=1) 2202 220(2z2)’ (=1) 20(22)
and hence compute the three integrals for x = —1 and all g. After summing

over g, the independence of x then gives the following two systems of linear
equations:

F(—z) ["332_22 ta(l - 2)22G(x — 1)]

+ G(—x) [:U(aj —1)22F(z — 1)]

+ H(-a)[(2 — ) H(z 1)) = (w1222
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2x—2

F(—z) [:v(:v —1)22(2D, + 2)G(x — 1) + 2z ((z —1)2A — x)]

S2x
+ G(—x) [m(l —2)2%(2D, 4+ 2)F (z — 1)}
+ H(—2) [(4g; —2)(2D, + 1) H (x — 1)]

(1 — )22 2
Y D+ F(r—1) 4 ———
o2 (2D: +9)F(w 1)+ r230(22)

DT®@2173

F(—z) [4m(1 - o) T,

2r—2
+G(~2) [mezgx ta(r—1)22(Gx — 1) + 2D, Fz — 1))}

—2z(z — 1)2°D,G(zx — 1)}

+ H(~2) [(4 — 82)D, H(z — 1)

Z2x—2 1 A

= (z—1) &% (G(x —1)+2D;F(z— 1))+ 492 224@(22)

and

@2&6

+ H(z) [ - 4H(—a;)} = (o),
Z2x72

@238

F(m)[—x22(zDz+2)G(—1:) +2 (—xzA+ 2 —1)

+ G(x) [a:zQ(zDZ + 2)F(—x)}
2z
+ H(z) [4(ZDZ n 1)H(—:c)] . z(;)f”+2 (2D, + 2)F(—x),

2?"72D.0
Q2r+1 }

F(z) [zxZQDTG(—x) +da

Z?x—Q
+G(2) [W — 222G~z + 2DTF(—g;))}
2z
+H@)[ 8D H(—0)] = g (Gla) + 2D, F(~)).

The derivatives D, and D, come from the dilaton and divisor equations
respectively (note that both hold on the level of cycles). The z~2-coefficient
of the two systems have determinants 22%(1—2z) and —2 respectively. Hence
F(z), G(z) and H(z) are uniquely determined by these equations and the
values for x = 0,—1. Now one simply inserts the claimed recursions for
x < 0 and z > 0 into these equations and shows inductively that they are
indeed satisfied. ]
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Remark 4.12. The tautological relations here are the ones used by Okounkov
and Pandharipande to prove the Marino-Vafa formula in [74].

We are now ready to show Theorem

Proof of Theorem [1.38, By Proposition[d.11] we see that Theorem holds

" <Ev(1)Ev(m)1/2pt_¢>EJ .

Moreover, we have

<IEV(1)IEV(33) : /27_ w>E’, —0

for all v € HSY(E). In case v = a, 3, this follows from the algebraicity of
the virtual class, whereas v = 1 vanishes because of |40, Proposition 2]. It
therefore remains to consider g = (1"). For this, we first claim that any
Hodge integral

n By
EY(1)EY (z i
< we'e [,
for v; € {1,a, B, pt} can be written as a linear combination of Hodge integ-

rals with 7; € {1,pt}. Indeed, there can not be more than one a as one
could otherwise swap two a-insertions at the cost of introducing a sign

Ey
\/ \/ DY a a DY
<E (WE () 1=t 1 =i >

E,
— _{EY(EY(g)... & @ .
= <IE (HEY(x) T p—— > ,

which shows that the invariant must vanish. Furthermore, all invariants with
an unequal number of a’s and 5’s must be zero due to the algebraicity of the
virtual class. Hence the only nonzero Hodge integrals with odd insertions
are of the shape

m

n E,
<EV<1>EV<w>H el | B : > -
i=1 !

=1 1- ¢j+n 1 —Ynimi1 1 — Yngme2

By [40, Proposition 2], this is equal to

1 n+1 pt m—+1 1 E,
EV(DEY (x ,
n+1< (1) ()};[11—¢ij1;[11—¢j+n>
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which reduces to the case of even cohomology insertions. In this case, it
follows from that

n

m E,
<EV( e (@) Hl—wz.U w]+n>

B <-2>m€ii +m)! <<d2> +a2(n+ m>2)m <EV<1>EV<x> ﬁ e w>E

If we assume that Theorem holds for point descendents, then by
we get,

Ey
1
< H1_¢1H1_¢j+n>

. n! d d\™ y Y n+m pt Ey
~ () (n+m)! <dG2 2 dA> <E (DE () 1_11 1_wi> :

which implies Theorem [I.38]if 2 < 0 and also for z > 0 if one has

d Ey
dA< H1¢Z> =0

Finally, one can deduce the point descendent case by explicitly expanding
the residues in Theorem The vanishing of % for > 0 follows from
the identity

(73) diA[uk]F(u t2) = [uf] <2muF(u b4 (iF) (u + z)) ,

where F' is a meromorphic quasi-Jacobi form of index m. This is a con-
sequence of . O

From Theorem we can derive the following formulas, which will be
useful for providing evidence for Conjecture [F]|in the next section.

Corollary 4.13. For x € Zy we have

<Ev(1)Ev(w) pt >E Qx(@(z)% Resu:()(@(u—i-lz)@(u))x

12— ) 3043 10(u t 2)2
NPy t 1 \" ek O(u+22)0(u)\”
<E (VE"(@) 1 Elﬁl 1- ¢2> N UCZSQBMRGSUZO (W) (u+2)

v v B 90(z)2 O(u)O(u+22)\"
(B r ) 2P = 20 Resuc (X2 ) A+ 2),
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where all residues are taken for z # 0 and and for x € Z~:

<EV(1)EV(£L‘) pt 1 >E7/—@(2)2mResu:o< (u—i—z()@(u—z)) "

1—111—1 2 z2e+4 O(u)?
pt pt \ %’ _ O(z)* (u—2)0(u+2)\"
<EV(1)EV((L‘) 11— ¢1 1— ¢2> = WRGSUZO ( @(u)2 ) A(U)

Ey
Proof. The formulas for <EV(1)EV (x)% 1%2 > are special cases of The-

orem Using the holomorphic anomaly equation , we get

<EV(I)EV ($> pt 1 >E,/
L= 1 =1

<~”Uz + = 1 <dé2> > <Ev(1)Ev(x)1 ft% : Et¢2>E,,7

where <ﬁ> is the z-coefficientwise holomorphic anomaly operator for
z

quasi-modular forms (not to be confused with ﬁ acting on QJac). The
last formula follows from Proposition 4.11§(2), which implies that

v v pt /_ z d v v pt pt /
(PR @5y) - 4w+1(_2;”)dA<E R @)

The right hand side is then simplified using . O

4.4 Applications and consequences

Using the Corollary we can deduce the following formulas for invariants
of the tube:

Theorem 4.14. Conjecture [F| holds fora=b =0 and a =b = (1). We
also have the following identities: For xz < 0:

<®\EV<1>EV<x> pt #\@W”{Om}

1—9y11 ¢2
i+j=—x
where
" 2n
(74) fn(2) = ) <(2iz)
; (n + z> °

with ¢(z) = e*/2 —e~#*/? as in and for x > 0:

z)%® x
OB ) 2 ) = S s ()
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(DE (B (@) 2 =

S(2)= (x4 1) 4Zx: <$2j—: Z) ; _le()z(zZ)i -

N 2z2? (2:;:) i=2

x
o[ 2z any
—S(z) <x N 1> (1 +2)° k)
k=1
Proof of Theorem[{.1]]. In principle, one should be able to show that the
above formulas follow from Proposition We will however find it easier
to work with Corollary instead. For the most part, this proof consists
of checking that the above formulas agree with the ¢='-coefficients of those

in Corollary [4.13] which must hold by degeneration. For instance, in case
x < 0, Corollary and taking ¢’-coefficients yield

(75)
B1/{0.00} z)%® Uu 2)s(u)\*

To show the empty set case of Conjecture [F], we therefore have to show

1 o0
(1)) /(0o

s(2)%s(u+2z)s(u)\*
§(22)%¢(u + 2)? ) = f-al2),

where f_,(z) is as in (74). From Lemma we can deduce the following
differential equation:

(77) szn(z) =n2f,(2) —2n(2n — 1) fr_1(2).

To check that this differential equation also holds for the left hand side of
, one uses Lagrange inversion to see that

(76) Res,—o <

s(2)%(u + 22)s(u)
¢(22)2%¢(u + 2)?

Resaco ) = —au "] (u, 2),

where F'(u, z) is the compositional inverse in u of G(u,z) = %
Equation is therefore equivalent to
(78) D?F(u,z) = (uDy + u*D2 — 4’ D2 — 6u*D,,) F(u, z).
By using
1 D.G)(F
D, F(u.2) = D.F(u,z) = — D2 2)

(DyG)(F(u,z),z) (DyG)(F(u,z2),z)

to express the derivatives of F' in terms of the derivatives of G, we see that
this is equivalent to

2(D,G)(D,G)D,D.G — (D,G)*D?F — (D,G)*D3G
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= G(D,G)* — G*D2G + 4G3D2G — 6G*(D.G)?,

which holds by explicit computation. Since is second order and both
sides of are odd functions in z, it remains only to check that the z'-
coefficients on both sides match as desired. The simplesﬂ way to see this
is to use the fact that the left hand side of has z~2-coefficient %

For the degree 1 case, degeneration and Corollary give

((1) |EV(1)EV(g;)p7t,(1»11»1/{0,00}

1/2— 9
1 v v pt Ey
- L (B R @)
_ s(2)>+? clu+22)s(u)\”* Utz 4 gu—z
=it () ()
S(22)%*85(2)?

O —
el ek G O S W 2F (u, z) + 2 ) :
pearal GEORE UECIORRED
where the last equality uses Lagrange-Biirmann inversion. Using G(u, z) =

:((222)22 (1 — g(ifi)jy) we can further deduce that

S(2F (u, 2) + 22) = ¢(F(u, 2) + 2)/4 + <(F(u, 2) + 2)?

_ ¢(22)v1 — 4u'

¢(22)2
=G0

On the other hand, Conjecture [F] predicts that

(DY ()EY (2)—L25—|(1))P/(0:00)

12— 4
_5(22)%5(2)? ¢(2z)
= W <fx(z) + 5 szm(z)> .

To prove this prediction it thus suffices to show that

Vv1—4u

s(22)2
1-— <)z Y

—1=D,F(u,z).

Indeed, one can check that both sides satisfy and are even in z. Hence
it suffices to check that the z%-coefficients agree, which follows from

1 2n\ ,,

"Note that Resy—o and [2'] do not commute as the residue has to be taken in the
domain z # 0.
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Taking the ¢%-coefficient of the second equation in Theorem yields

v v pt 1 P! /{0,00}
<®|E (D () 2 | >
z 2 U 2 U T
= 5229)0—1-4 Resu=o (W) (u+ 2)
2x 2% 9
= ;(j2i)+4 Resu:OG(U, Z)JC(U + Z) = —%[ —x] <F(u2,z) + ZF(U, Z)) )

The desired formula for the Hodge integral now follows from .
For x > 0, we first show that
()

v Vv pt 1 P! /{0,00} __
OB (VB () 2 P10 =

which by Corollary is equivalent to
1 Ke(iz)?f 2z s(u (u—2)\"u
- (2:1:) Z i x4 = Resu=o 2
2z
79 —
(79) — Res,_ O<\/§ (u z))

u
2
= 2 H (u, 2)
s(u) )
s(u+tz)s(u—=z)

one can check this by matching up the z?-coefficients and checking that the
differential equation

where H (u, z) is the compositional inverse in u of As above,

D2ga(2) = 2(92(2) — gz-1(2)),

which holds for the left hand side of by Lemma also holds for the
right hand side. The formula for ((1)|EY(1)EY(z) 13&1 1_1w2 |(1))B'/10:20} can
be proved in a similar manner. ]

The above proof used the following purely combinatorial lemma, for
which we could not find an adequate reference:

Lemma 4.15. Let ¢ = ¢, c1,... be an arbitrary infinite sequence of num-
bers and n € Z. For any x > 0 we let

o = g 3 ([ e

x /) 1=0

This satisfies the recursion
Py (x) = 2® (0§ () — pls(z — 1))
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for all n and = > 0. Let further 1 = 1,1, 1,... the sequence consisting of 1s.
If n > 0, then p} is polynomial of degree n + 1 in x and we have the special
values

x
pé(x):f and p*( Z
2 k
Proof. The claim p}(z) = 5 follows from the identity
22\ x 2c \x—m .
()5 () == ()

which one can show by induction on m. The recursion relation is easily
checked and together with pf(z) = £ implies the other claims. O

We close this section by noting that Theorem implies the following
formula for certain triple Hodge integrals on the moduli space of curves
My, =M,,(pt,0):

Corollary 4.16. For x > 0, we have

n

_1)9-1,29-2 v v Vig I
S [ oo @ ][

g>0 Mgn
(=1)"(n— DIS(z)™
- mTL*lZQTL Up—1=Un """ Resulzug
X
N-1 _
3 HM I (W, = Utyyy) 10
=l <mely=n \i%j §(ui — uj) AL (0= 1) - (g1 — ln)!

where EV(z) € H*(M,,)[z] is defined in the same way as above. For z < 0,
we have:

n

S (—1)0 122 / EY(0)EY (VEY () [ 11% _

g>0 Mg.n i=1
—1)"(n — DS ()™
- 2( ) ’ngn—lz)%L ( ) Resun—lzun T Res’u1=u2

x
/ / _ —
¢(z —l—,ui —/u. ‘ L 7
Z II _ II _ . _ |
1=l <--<Iy=n \i#j < (uj uj) m (n = lm) - (41 = bm)!
515,80

where all residues are taken for z # 0 and the s; are as in Theorem

The proof, which to some extent already appeared above, consists of first
using [27] to obtain formulas for

n n

Ey Eyo
it o zsits)”
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where the equality follows from and [40, Proposition 2]. By taking the
q° coefficient of this and using the description for degree 0 Gromov-Witten
theory given in [30, §2], we get the desired claim.

4.5 Details on p’-coefficients

In this section, we make the p°-coefficients that appear in Theorem m
precise and more explicit - the main result being Corollary [£.21] This section
is also heavily inspired by and closely modelled on |70, Appendix A] with
most arguments being almost identical. We nonetheless present them in full
detail for the convenience of the reader. Throughout, we use the notations

H={z€C|Im(z) >0}

for the upper half plane and C* = C\ {0}. Our main objects of study are
holomorphic functions of the following kind:

Situation 2. Let n > 2 and F(uq,...,uy;2,7) be a holomorphic function
on a domain of the shape

Us—{(u;z,T)EC"xC*x]HI for all i # j, A € Ar and m € 5; ; : }

ui#uj+mz+)\

for finite sets S; ; C Z for 1 < i # j < n. We call a choice of S = (5, ;)i,;
so that F' is holomorphic on Us a pole datum for F if S;; = —5;;. We
furthermore require that

Flu+ X z,7)=F(u;z,7)
for any A € A”? where A; = 2miZ + 2miTZ.

Because of translation invariance, any such function can be written as

F(u;z,7) = F(p;2,7)

for p = (p1,...,pp) with p; = €% and F holomorphic on a certain subdomain
of (C*)"*! x H. We would like to take the constant coefficient in the Laurent
series expansion of F in p around the origin, but because of the existence
of poles, such an expansion may not exist on all of (C*)"*! x H. It does
however exist on domains which are unions of products of annuli in (C*)"
and do not touch any poles. In particular, for any permutation o € S, we
have a Fourier expansion

F(u;z,7) = Z agﬂ)(z,T)pTl it
mezn

on the domain

U = { (u;2,7) € Us

for1<j<i<nandm € S;-13),-1(3)
0 < Re(ug—1(3) — ug-1¢jy — mz) < 2wlm(7)
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(o)

We view the coefficients apy’ as germs of holomorphic functions on a punc-
tured neighborhood of {0} x H C C x H. Note furthermore that they are
independent of the choice of pole datum S. We can therefore define

and
(80) [Fl,0 = 1 > [Flyos-

Our main goal in this section will be to study such constant coefficients.

Lemma 4.17. For any o € S,, we have

for ¢ a cyclic permutation of o.

Proof. Let 6 € S,, be the unique permutation so that
(i) =0(i) + 1 (mod n).

For any (a;z,7) € USS we have

[Flp0.0 = 27” / / (w; 2z, 7)duy, - - - duy,

where C, is the line segment going from a to a + 27i. By A -invariance of
F, this integral does not change if we replace a by a where

_ ay, if o(l) #n
a) =
: a; + 2miT, if o(l) = n.

However, if z was small enough, then we have (a;z,7) € Ué,s), which shows

that [F], , = [F]0 5 as desired. O

The following proposition will make these Fourier coefficients more ex-
plicit. For that, we denote by

Resyy=u, F(U1, ..., Un; 2,T)

the (one-variable) residue in u, at u, = up on Us. This residue again satisfies
Situation [2{ and has pole datum S, where S is determined by S; ij = 9, for

1,7 # b and de Sa,j U Sp ;. Note also that we needed to impose z # 0 in
the definition of Ug as the residue might otherwise not even be a continuous
function as the example

shows.
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Proposition 4.18. Let F be as in Situation [2[ and S a pole datum for F
with 0 € S1,,. We then have

(81)
[F]po,a =
A () +1—2—mny

Z Z [Resuil1:“il ”'ResuilzuizF(u/) . < Ln( ) -1 1’0>:| ’
1>1 i=(i1,....i1) o

S1y--4351
where the inner sum runs over all non—recurringﬂ sequences iq,...,4 €
{1,...,n} with iy = 1 and ¢; = n and integers s; so that s; = 0 and for any

J > 1 there is some r < j so that s; — s, € S;, ;.. We further wrote n;, for
the number of 1 < m <[ —1 so that o(in+1) > 0(im) and u’ = (u}); for the
shift

, uj + spz, if j =i,

u [pu—

J uj+ sz, if j & {iv, ..., 4}
Remark 4.19. Note that the functions on the right hand side of satisfy
Situation as they are again A;-invariant and have a pole datum S determ-
ined by Sz"j = Si’j for i,j & {il, e ,il} and Snyj = Uiﬂ:l (Sir,j + 8y — Sl).
Their p° coefficients are therefore well-defined.

Proof. We will prove by showing the following by induction on L:

(82)
[F]po,a =
L , Aln(u’)—i—l—Q—nig
Z Z Res“il—1:“iz o .ResuilzuizF(u ) ’ 7 -1 ’
1=0 i=(i1,....i;) .o
S14.-455]
where notations are as in except for the non-recurring sequences iy, ..., €
{1,...,n}, where i; = n is imposed only if [ < L, but we still require i; = 1

and i, # n for all [ and m <.

The case L = 0 is trivial. Assume therefore that holds for L and
we want to deduce it for L + 1. Consider any summand for which [ = L and
iy # n. The function inside of the bracket

Alp(0)+1-2—m
(83) Resuy,  =u;, - Resy, =y, F(0) - ( 1 () 1’U>

-1

almost satisfies Situation [2| except for the invariance under translation by
2miT in w; and w,. It does however admit a pole datum S determined

18ie. i # iy if s £t
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a+ 2wt + 2miT

a—+ 2w

Cq
a -+ 2mr

a

Figure 6: The closed path B,

by gi,j = Si’j for 1,7 € {il,.. . ,il} and §il,j = Ui:l (Sir,j + 87 — ST). Its
[-++]p0,0 is therefore well-defined and is also the p®-coefficient of

(84)
1

211 Cq

Alp(0)+1—-2—m
ReSuililzuil ctt ResuilzuiQF(u,) . ( l’n( ) l . 1 170> dUil

for any a € C and other variables so that
S
(Uly e ooy Uiy 1y Ay Uyt 1y - ey Up5 2, T) € UsS).

As before, the path C, denotes the line segment from a to a + 2mwi. Using
the A, -invariance of F and it follows that is equal to

1

i 5. H (u)duil 5

where

Alp(W)+1—1—ni,
H(u) = Resy, —u, -+ Resy, —y, F(U) - () + ni,
i1 ] i1 i

l

and B, is the closed contour depicted in Figure [f] By the residue theorem,
we have

1
(85) % 5 H(u)duzl = Z Resuil:uj+mz+)\H(u),
“ FEL
where the sum goes over all u;,-poles in the interior of B, which are exactly
points of the shape
U;

=uj +mz+ A\

1

for j & {i1,..., i1}, m € gil,j and appropriate A € A,. Since H(u) is invariant
under translation by 2mi, we may take A = 2mwiTm’ for some m’ € Z. By
requiring |Re(z)| to be small enough, we can furthermore force m’ = 1 if
o(j) > o(i) and m’ = 0 if 0(j) < o(i;) meaning that ny , = ni, +m' for
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i" = (i1,...,1,7). Using Res,—r+sf(2) = Res,—.f(z + s) repeatedly, (85)
simplifies to

Alnu// +l—1—ni,a
(86) Z Resy, —u; - - Resy, =, F(u") - ( n(u”) l 7 >
jg{ill-.,il}

mESil,j

where u” = (u); is defined by
o w, +mz, if i € {i1,...,9}
! u;, else.
Since [---],0, and the residues are invariant under shift of all variables, we
can instead also take

ui:

, {u;, if i€ {iy,....0}

u, —mz, else.

and the p®-coefficient of would have been the same. Defining ;11 = $;—
m yields the [ = L + 1 summands in , which finishes the induction. [J

Summing over all o yields:

Proposition 4.20. Let F' be as in Situation [2] and pole datum S with
0 € S1n. Then

[Flpo =

pO

(87) Z Resy;  —u; -~ Resy,

1>1 i=(%1,...,%;)
81,...,8]

:ui2

, A ’n(u/)l—l
F') - l(l—l)! LO

with notations and summation variables are as in Proposition |[4.18

Proof. By Lemma [£.17], we have

Pl =5 X Flpo = 5y 3 (Flo

" oeSy oESy
(n)=n
Using Proposition [4.18] we get
1
Flp = oo 2 2
(n—1l&e
ZZI 1:(7‘17 77'l)
S15--+551
A / 1 —2—n;
L N O H (S | I
-1 1] 11 i9 l - 1 .
Uesn p-,0
o(n)=n
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Note that the functions inside of the brackets on the right hand side only
depend on w; for ¢ € {1,...,n}\ {i1,...,4-1}. From this, one can see that
given a choice of i and s1,...,s; as above, any two permutations o,0’ € S,
that induce the same ordering on {1,...,n—1}\{i1,..., 41} will yield equal
summands on the right hand side. We can therefore split the inner most
sum into a sum over all permutations 7 of {i1,...,4_1}, all permutations
pof {1,...,n—1}\ {i1,...,ii—1} and all the (7}~ 1) ways of shuffling these
together. This gives us

Flp=2>. > 2. (n—1)! 1—1)

I>1 i=(i1,...,i;) PESH—1
81,00,81

AL (u’) +1-2— ny,
Z Res“ikl:uil o .Resuﬁ :“izF(UI) ‘ < ' [—1 7
TS P

The proposition now follows from Worpitzky’s identity

l—2—

Z T + Qar _ .ZUl_l,
-1
TESl_l

where a, is the number of all 1 <i <[ —2so that 7(i+ 1) > 7(7). O

The main case that we want to apply Proposition to is , which
has a lot of symmetry. This yields the following simplification:

Corollary 4.21. Let F be as in Situation[2]and invariant under permutation
of the u;. Let furthermore S C Z be so that S;; = S for all i # j is a pole
datum for F. Then we have

[Flypo = (n—1)! Z Resy,, =u, - - - ReSy;—u,
1=l <l2<...<Iny=n
815---8n
(88) v
H Alm, m+1 (u,)lm+1_lm
m:l (n—1Im) - (lnt1 — lm)!
where the s1,..., s, are integers so that s; = 0 and for any j > 1 one of the

following must hold:
e j=1li11 for some t >0 and s; = s,.
e There is some r < j so that s; — s, € S.

We further wrote u’ = (u);, where v/,

J J

Remark 4.22. Note that the right hand side of only depends on z and
7. Indeed, the only other variable that it a priori depends on is u,, in which
it is holomorphic on all of C for fixed z and 7. By A, invariance it must
however be constant in w,,.

=u; + s52.
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Proof. Note that follows from repeatedly applying the following claim:

Claim. Let F be as in Situation 2 and invariant under permuting the u; for
t > 2. Let S1,5 C Z be so that S1; = S;1 = 51 and S; ; = Sy for i,7 > 2
determines a pole datum for F'. Then

- o (n— 1\ Ay (u)t
[Flpo = lz>; Z [Resul—l—uz ++ Resuy =, F(0) - (l - 1>nl 00
>1 81,004,851

where the s; are integers so that s; = 0 and for any j > 1 we must have one
of:

e There is some 1 < r < j so that Sj—STESQ
L] SjESl
e j=1land s; =0.

We furthermore wrote and u’ = (u’;); with

, uj + 85z, it j <1
uA =
I uj, else.

This claim directly follows from Proposition by using that any of the

% many non-recurring sequences 1 = i1,...,4; of length [ which occur

there give the same contribution as the case i; = j due to symmetry. The
exceptional case of s; = 0 is due to the fact that we have to include 0 in
S O

A Quasi-modular and quasi-Jacobi forms

This appendix recalls basic facts about the theories of quasi-modular and
quasi-Jacobi forms, which we use throughout Section 4l We only collect the
bare essentials that are important for this thesis. For more on quasi-modular
forms, see in particular |11} 14, 41] and [20] for Jacobi forms. Quasi-Jacobi
forms were first introduced in [50]. See also [39, §2].

A.1 Quasi-modular forms

For us, the ring of quasi-modular forms will be the subring
QMod = Q[G, | k > 2 even] C Q[[q]]

generated by the Fisenstein series

G = _%+Z (de—1>qn

n>1 N dln
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for even k > 2 with By the kth Bernoulli number. The Bernoulli numbers
are determined by the identity

Z k! e —1’
k>0

which is the convention that is used throughout this thesis.

One can also characterize QMod ®g C as the ring of holomorphic func-
tions on the upper half plane that satisfy certain transformation properties
- see |11}, 14, |41] for details. From this, one can derive that QMod admits a
natural grading called weight:

QMod = P QMod,
k>0

so that G}, € QMod,,. Furthermore, QMod is freely generated by G2, G4, Gé,
which allows one to define the formal derivative ﬁ, which is called holo-

morphic anomaly operator. Moreover, the derivative D, = qdiq preserves
QMod and satisfies the relation

d
D =-2-wt,
[dG2’ } "

which turns QMod into an sla-representation.

A.2 Quasi-Jacobi forms

The most important example of a quasi-Jacobi form is the Jacobi ©-function

22k

_ ko2 _ k,—z
0(z,7) = <) [] I G = e O,

k>1

where we wrote ¢(z) = ¢*/? — ¢7#/2 and q = ™. All other quasi-Jacobi

forms can be expressed in terms of ©. For example, we have

D, 1 Z2k—1
A= ==--2Y Gy
0 =z kzx 2k —1)r

where D, = d% and p the Weierstrass p-function, which we can write as
O = —2G2 — DZA

We also denote ¢’ = D, p.

Definition A.1. The ring of quasi-Jacobi forms is the subring

QJac C Q[O,A, G, p, ¢, Ga] C Q[lg]]((2))
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of power series in z and ¢ = e

27T which are holomorphic as functions (z,7) €

C x H — C. The ring is doubly graded

QJac = EB QJacy, ,

k,m

by weight k and index m, which is specified on generators as follows:

form weight index

e -1 1/2
A 1 0
G 2 0
© 2 0
o 3 0
Gy 4 0

Remark A.2. (1) Similar to quasi-modular forms, one can also define

quasi-Jacobi forms as functions that satisfy certain transformation
laws. For example:

(89)
O(z + 2miTA + 2mip, ) = (—1)’\+“6_’\2q_)‘2/2@(z, T) for A\, pu € Z,

‘cz2
< z aTt + b> e 2mi(cT+d)

a b
cr+d cer+d)  cr+d Oz, ) for (c d) €5L:(2).

This determines the transformation laws of all other quasi-Jacobi forms.
In particular:

A(z + 2mi\ + 2miTp, 7) = A(z,7) — A for \,u € Z
z ar+b 9 cz
Al ——, —— | = d)* (A —_—
(90) (CT +d’ e+ d> (er +d) < (z,7) + 2mi(er + d)>

a b
for <c d) € SLy(Z).

QJac, o = QMod,.
Indeed, the Weierstrass equation
12 3 60
Ge = —0° — 2 ()2 — —pG
6= =% 7(@) 7 PLd
gives G € QJacg( and hence ”D7.

One can show

The weight of a given quasi-Jacobi form ¢ € QJacy,,,, can be seen from
the z-expansion. Indeed, we always have:

(91) o)=Y agf

g>—00
with a, € QMod,, . (c.f. [20, Theorem 3.1]).
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(4) Since all quasi-Jacobi forms are invariant under z — z + 24, it follows
that z is algebraically independent over QJac. As a result, one can
extend the double-grading to QJac[z*]:

form weight index

e -1 1/2

S O O O OO

(5) QJac is closed under D, and D, = qdiq7 which have degrees (1,0) and
(2,0) respectively. Furthermore, ©,A, G, p, o', G4 are algebraically
independent, which allows one to define holomorphic anomaly operat-
ors % and dé These have degrees (—1,0) and (—2,0) respectively.

Note here that T is not the same as applying the holomorphic an-
omaly operator of Section on each z-coefficient of (| . Indeed,

denoting the latter operator by <@> :
z

d d d
(92) (dGQ) =222 ind— 22— 4+ ——.

We also have the following commutation relations:

d d .
|:dG2,DT:| —2 - wt, [dAD}—Zlnd

d d [d
— . D,| =-2—,|—,D.| =D..
[dGQ’ ] dA [dA ]

(93)

(6) There is a notion of Hecke-operators for Jacobi forms - one of which is

¢(z) = o(n - 2)

for n > 0 (see [20]), which also extends to quasi-Jacobi forms and
maps QJacy, ,, to QJacy, ,2,,,. For instance:

0(2z) = -0y
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