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Abstract

This thesis studies the Gromov-Witten and stable pair invariants of local
curves. In particular, we give a closed formula for the full descendent stable
pair theory of all (non-relative) local curves in terms of the Bethe roots of
the quantum intermediate long wave system. In the process, we derive a
new explicit description of these Bethe roots, which may be of independent
interest. We further deduce rationality, functional equation and a pole re-
striction for the descendent stable pair theory of local curves as conjectured
by Pandharipande and Pixton. Furthermore, we show how the Bethe roots
can be used to diagonalize the descedent invariants of the tube and give
explicit formulas for the first few descendents. On the Gromov-Witten side,
we conjecture that the Gromov-Witten theory of the local elliptic curve is
governed by quasi-Jacobi forms. Finally, we compute an infinite series of
special cases, which provides evidence for our conjecture.

Zusammenfassung

Diese Doktorarbeit untersucht die Gromov-Witten- und Stabile-Paare-Inva-
rianten lokaler Kurven. Insbesondere geben wir eine geschlossene Formel für
die volle Deszendenten-Theorie stabiler Paare aller (nicht-relativen) lokalen
Kurven in Termen der Bethe-Wurzeln des quantenmechanischen Intermediate-
Long-Wave-Systems an. Im Zuge dessen leiten wir eine neue Charakteris-
ierung der Bethe-Wurzeln her, die von eigenstädigem Interesse sein könnte.
Weiterhin beweisen wir die Rationalität, Funktionalgleichung und Polbes-
chränkung der Stabile-Paare-Invarianten lokaler Kurven gemäß einer Vermu-
tung von Pandharipande und Pixton. Außerdem zeigen wir wie die Bethe-
Wurzeln zur Diagonalisierung der Deszendenten-Invarianten der

”
Tube“ gen-

utzt werden können und geben explizite Formeln für einige der Deszenden-
ten an. Zudem stellen wir die Vermutung auf, dass die Gromov-Witten-
Invarianten der lokalen elliptischen Kurve Quasi-Jacobi-Formen sind. Schließ-
lich berechnen wir eine unendliche Reihe von Spezialfällen, wodurch wir diese
Vermutung untermauern.
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1 Introduction

1.1 Background and context

1.1.1 History of enumerative geometry

Enumerative geometry goes back to antiquity and is the subfield of algebraic
geometry concerned with counting the number of geometric objects satisfy-
ing certain constraints. For example: One of the very hard problems in this
area was to find the number Nd of rational degree d curves in P2

C that pass
through 3d− 1 given points in general position. The cases N1 = N2 = 1 go
back to the ancient greeks, while as late as the 1980s only the cases d ≤ 5
had been determined. In the 1990s, the subject was transformed due to the
realization that such curve counts also arise from certain N = (2, 2) super-
conformal field theories in string theory as well as in symplectic geometry.
On the physics side, a large but non-rigorous arsenal of computational tools
and ideas had by then already been developed - see [37]. Inspired by this,
Kontsevich proved:

Nd =
∑

dA+dB=d
d1,d2>0

Nd1Nd2d
2
1d2

(
d2

(
3d− 4

3d1 − 2

)
− d1

(
3d− 4

3d1 − 1

))
,(1)

which recursively determines all Nd from the trivial case N1 = 1 (c.f. [44]).
One of the main innovations of his proof was the introduction of the moduli
space of stable maps:

Theorem 1.1. [8, 44] Let X be a complex projective variety. For all choices
of β ∈ H2(X,Z)1 and integers g, n ≥ 0, there is a Deligne-Mumford stack
Mg,n(X,β) called the moduli space of stable maps, whose C-valued points
correspond to isomorphism classes of pairs

(f : C → X, p1, . . . , pn ∈ C)

so that

� C is a reduced, connected and projective complex curve whose singu-
larities are nodal.

� the pi ∈ C are pairwise distinct closed points called marked points
that lie in the smooth locus of C.

� the map f is stable i.e. there are at most finitely many automorphisms
of C fixing f and the pi.

In particular, morphisms T →Mg,n(X,β) correspond to flat families of such
pairs.

1All (co)homology groups will be with Q-coefficients unless otherwise stated.
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Remark 1.2. (1) One can relax the definition of stable maps by also al-
lowing disconnected domain curves C so that f collapses no connected
component to a point. The space parametrizing such maps is denoted
M

•
g,n(X,β).

(2) As a moduli stack, the space of stable maps has a universal family of
maps

(2)

Ug,n(X,β) X

Mg,n(X,β)

π

f

si

where si is the sections induced by the i-th marked point. One usually
writes

evi = f ◦ si : Mg,n(X,β)→ X

for the evaluation of f at the i-th marked point.

For generic points x1, . . . , x3d−1 ∈ P2, one can show that any curve
counted in Nd arises uniquely as a stable map and one has

Nd = #
(
ev−1

1 ({x1}) ∩ · · · ∩ ev−1
3d−1 ({xn})

)
=

∫
M0,3d−1(P2,d)

ev∗1(pt) · · · ev∗3d−1(pt)
(3)

for pt ∈ H4(P2) the point class. This heavily uses the nice structure of
M0,3d−1(P2, d), which turns out to be smooth of dimension 6d− 2.

Having established (3), the identity (1) is now a corollary of a relation in
H∗(M0,3d−1(P2, d)) called the Witten-Dijkgraaf-Verlinde-Verlinde relation,
which can also be viewed as the associativity of the quantum product. See
[28, 42] for further details and more on this story.

1.1.2 Gromov-Witten theory

However for general X, the space Mg,n(X,β) may no longer be smooth or
even equidimensional and can in fact be arbitrarily ill-behaved (c.f. [104]).
As a result, integrals as in (3) tend to be essentially uncomputable and are
not expected to have any good properties in general. Surprisingly, most of
these problems can be fixed using:

Theorem 1.3. [6, 7] For any smooth and projective complex variety X and
discrete data β ∈ H2(X,Z), g, n ≥ 0, the space Mg,n(X,β) admits a perfect
obstruction theory

ϕ : E→ LMg,n(X,β)

2



in the sense of [7], which induces a virtual fundamental class[
Mg,n(X,β)

]vir ∈ H2·vdim(Mg,n(X,β))

in complex homological degree

vdim = (3− dimX)(g − 1) + dβ + n(4)

where we set dβ =
∫
β c1(X).

If all components of Mg,n(X,β) have dimension equal to vdim (e.g. if
g = 0 and X = Pr c.f. [8]), then it follows from Lemma 2.8 that the virtual
class is just the usual fundamental class. Otherwise, the virtual class is a
more well-behaved alternative. We can therefore generalize the integral (3):

Definition 1.4. Using the notation of Theorem 1.3, let γ1, . . . , γn ∈ H∗(X)
and k1, . . . , kn ≥ 0 non-negative integers. We denote the corresponding
Gromov-Witten invariant by

⟨τk1(γ1) · · · τkn(γn)⟩
X,GW
g,β :=

∫
[Mg,n(X,β)]

vir
ψk11 ev∗1(γ1) · · ·ψknn ev∗n(γn)(5)

where ψi = c1(s
∗
iΩπ) ∈ H2(Mg,n(X,β)) with π and si as in (2). We call the

formal expressions τk(γ) descendent insertions. All insertions of the shape
τ0(γ) are furthermore called primary insertions.

Remark 1.5. (1) The moduli space of disconnected stable mapsM
•
g,n(X,β)

also admits a virtual class[
M

•
g,n(X,β)

]vir
∈ H2·vdim(M

•
g,n(X,β))

and the resulting invariants

⟨τk1(γ1) · · · τkn(γn)⟩
X,GW,•
g,β :=

∫
[M

•
g,n(X,β)]

vir
ψk11 ev∗1(γ1) · · ·ψknn ev∗n(γn)

(6)

are called disconnected Gromov-Witten invariants. For emphasis, we
will sometimes denote the connected invariants of Definition 1.4 by
⟨τk1(γ1) . . . τkn(γn)⟩

X,GW,◦
g,β . It turns out that connected and discon-

nected invariants determine each other, see Proposition 4.1.

(2) The case dimX = 3 is especially interesting as the first summand in
(4) vanishes. This lets us define generating series

⟨τk1(γ1) · · · τkn(γn)⟩
X,GW
β :=

∑
g∈Z

(−1)g−1z2g−2 ⟨τk1(γ1) · · · τkn(γn)⟩
X,GW
g,β

(7)
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of which all coefficients are usually non-zero. Indeed, string theor-
ists are most interested in Gromov-Witten invariants of Calabi-Yau2

threefolds as they are conjectured to encapsulate the six extra dimen-
sions of spacetime - see [16].

(3) Assuming that the γi are represented by some generic submanifolds
Mi ⊂ X, one can think of (5) as (virtually) counting the number of
stable maps

f : (C, p1, . . . pn)→ X

so that f(pi) ∈ Mi with the ψi imposing certain ramification condi-
tions on f (c.f. [76, §1.1]). However, Gromov-Witten invariants are
rarely literal curve counts - for one because most naive curve counts
do not have finite answers. The advantage of Definition 1.4 is that
it always yields rational numbers which are invariant under complex
deformation of X. Furthermore, these agree with the corresponding
curve counts arising in symplectic geometry (c.f. [47, 98]).

In practice, Gromov-Witten invariants are rather difficult to compute.
For instance, Gromov-Witten theory in case dimX ≤ 1 has been solved
completely (c.f. [43, 75, 76, 77]), but there are few varieties of higher di-
mension whose standard Gromov-Witten theory is non-trivial and has been
fully computed. This is presents a challenge as this thesis is mostly con-
cerned with the case dimX = 3.

One of the most powerful computational tools (and the one that is used
most in this thesis) is virtual localization:

1.1.3 Virtual localization

Let X be a smooth, complex, projective variety with an action by a torus
T = (C∗)N . This induces a natural T-action on Mg,n(X,β) and there is an
equivariant virtual class[

Mg,n(X,β)
]vir,T ∈ HT

2·vdim(Mg,n(X,β))

in equivariant homology3, which maps to the usual virtual class under the
canonical map HT

∗ → H∗. One can therefore define equivariant Gromov-
Witten invariants

⟨τk1(γ1) · · · τkn(γn)⟩
X,T
g,β :=

∫
[Mg,n(X,β)]

vir,T
ψk11 ev∗1(γ1) · · ·ψknn ev∗n(γn),(8)

where γ1, . . . , γn ∈ H∗
T(X). These invariants take values in HT

∗ (pt) =
Q[t1, . . . , tN ]. The connection to usual Gromov-Witten invariants comes

2i.e. smooth and projective X so that c1(X) = 0.
3See [2] for an introduction to equivariant (co)homology.
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from the fact that

⟨τk1(γ1) · · · τkn(γn)⟩
X
g,β = ⟨τk1(γ1) · · · τkn(γn)⟩

X,T
g,β |t1=...=tN=0

where γi denotes the image of γi ∈ H∗
T(X) under the canonical mapH∗

T(X)→
H∗(X), which is often surjective. The virtual localization theorem [32] gives
a means of calculating equivariant Gromov-Witten invariants:

⟨τk1(γ1) · · · τkn(γn)⟩
X,T
g,β =

∫
[Mg,n(X,β)T]

vir

ψk11 ev∗1(γ1) · · ·ψknn ev∗n(γn)
∣∣∣
MT

e(Nvir
MT/M

)

(9)

where
[
Mg,n(X,β)

T]vir ∈ H∗(Mg,n(X,β)
T) is the induced virtual class on

the fixed locus and Nvir
MT/M

∈ K0
T(M

T) is the virtual normal bundle of the

embedding MT ↪→ M . Note that the right hand side remains well-defined
in greater generality:

Situation 1. Let X be a smooth, quasi-projective complex variety equipped
with an action by a torus T = (C∗)N so that the union of all projective T-
invariant subcurves

X(T) :=
⋃

Z⊆X proj
dimZ≤1
T·Z⊂Z

Z ⊆ X

is a closed subscheme and projective.

Situation 1 guarantees that the fixed locusMg,n(X,β)
T =Mg,n(X

(T), β)T

is a proper moduli space, which enables:

Definition 1.6. In Situation 1 we set

⟨τk1(γ1) · · · τkn(γn)⟩
X,T
g,β :=

∫
[Mg,n(X,β)T]

vir

ψk11 ev∗1(γ1) · · ·ψknn ev∗n(γn)
∣∣∣
MT

e(Nvir)

which takes values in Frac(H∗
T(pt)) = Q(t1, . . . , tN ).

Indeed, this is the definition of Gromov-Witten invariants that we will
use from now on.

1.1.4 Pandharipande-Thomas invariants

Pandharipande-Thomas (or stable pair) invariants are an alternative to
Gromov-Witten theory in case dimX = 3 and have somewhat different
properties. More precisely:

5



Theorem 1.7. [87] Let X be a smooth (quasi-)projective threefold, n ∈ Z
and β ∈ H2(X). There is a (quasi-)projective scheme Pn(X,β), whose C-
valued points correspond to isomorphism classes of stable pairs i.e. morph-
isms OX

s−→ F of coherent sheaves on X so that

� F is pure of dimension 1 and has proper support.

� the cokernel of s is zero-dimensional.

� we have χ(F ) = n and [Supp(F )] = β ∈ H2(X).

Furthermore, morphisms T → Pn(X,β) correspond to isomorphism classes
of flat families of stable pairs.

Furthermore, this space admits a natural perfect obstruction theory

ϕ : E→ LPn(X,β)

which gives rise to a virtual fundamental class

[Pn(X,β)]
vir ∈ H2·vdim(Pn(X,β))

with vdim = dβ.

Since this scheme is a fine moduli space, there is a universal stable pair
OX×P → F on X × Pn(X,β). We introduce descendent insertions by4

chk(γ) := (πP )∗ (chk(F) · π∗Xγ) ∈ H∗(Pn(X,β))

for k ≥ 0 and γ ∈ H∗(X), where we used the maps

X × Pn(X,β)

Pn(X,β) X

πXπP

Since F has support of codimension 2, we have ch0(γ) = ch1(γ) = 0.
If X is as in Situation 1, then the fixed locus Pn(X,β)

T is projective and
carries a natural virtual class. Moreover, the construction of chk(γ) can be
carried out equivariantly. Hence one defines:

Definition 1.8. In Situation 1, let γ1, . . . , γn ∈ H∗
T(X), k1, . . . , kn ≥ 0. The

corresponding stable pair invariants or Pandharipande-Thomas invariants
are defined by:

⟨chk1(γ1) · · · chkn(γn)⟩
X,PT,T
n,β :=

∫
[Pn(X,β)T]vir

chk1(γ1) · · · chkn(γn) |PT

e
(
Nvir
PT/P

)
4The pushforward in cohomology is defined as the dual of the pullback in homology

which exists as πP is flat [19, Theorem VIII.5.1].
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which one puts as coefficients of the power series

⟨chk1(γ1) · · · chkn(γn)⟩
X,PT,T
β :=

∑
n∈Z

pn ⟨chk1(γ1) · · · chkn(γn)⟩
X,PT,T
n,β(10)

which takes values in Q(t1, . . . , tN )((p)).

Remark 1.9. (1) Gromov-Witten invariants can be quite far from counts
of subcurves due to the presence of contracted components and mul-
tiple covers. On the other hand, a stable pair differs from a subcurve
only by the finite cokernel of s. As a result, Pandharipande-Thomas
invariants are closer to counting subcurves.

One can also define invariants using the Hilbert scheme of subcurves
of X, which leads to Donaldson-Thomas invariants - see [18, 102]. For
reasons that will become clear shortly, we will not study them in this
thesis.

Stable pair invariants are in a sense nicer than Gromov-Witten invariants
as they are expected to have the following structure:

Conjecture A. [80, 96] In Situation 1:

(1) The stable pair invariants (10) are Laurent expansions in p of rational
functions i.e. elements in Q(t1, . . . , tN , p).

(2) Under the variable change p 7→ p−1 these rational functions transform
as follows:

⟨chk1(γ1) · · · chkn(γn)⟩
X,PT,T
β

∣∣∣
p 7→p−1

= (−1)
∑

i kip−dβ ⟨chk1(γ1) · · · chkn(γn)⟩
X,PT,T
β

(3) Stable pair invariants (10) may have p-poles only at p = 0 and where
−p is an n-th root of unity for 1 ≤ n ≤ d(β). Here, we set

d(β) := max {m > 0 | β = mβ1 + β2 for β1, β2 curve classes, β1 > 0 }

Remark 1.10. (1) For a strictly stronger version of these conjectures in-
volving connected stable pairs, see [96].

(2) There is no version of Conjecture A for Gromov-Witten theory - the
closest approximation being [72, Conjecture 24]. In terms of formulas,
Gromov-Witten invariants of threefolds are rather unpleasant and only
nice if they happen to match stable pair invariants particularly closely.

7



(3) Conjecture A was first stated in its full generality in [80] and was
historically a big driving factor for the development of stable pair
theory. Indeed, it was noted in [56] that the corresponding Donaldson-
Thomas descendent theory is irrational. Stable pairs are much better
behaved - in particular rationality of the generating series was first
conjectured in [87] with first examples being computed in [88]. For
toric threefolds and certain complete intersections the rationality was
proved in [84, 86]. The p 7→ p−1 symmetry was first formulated in
the Calabi-Yau case in [55] and related to Serre duality in [88]. This
led to a proof of rationality and symmetry in the Calabi-Yau case
in [13, 103] based on the Behrend function approach to enumerative
geometry. However, this approach does not generalize to the non-
Calabi-Yau case.

1.1.5 GW/PT correspondence

One of the most profound conjectures in enumerative geometry is the Gromov-
Witten/Pandharipande-Thomas correspondence, which asserts that the Gromov-
Witten and stable pair invariants of a threefold should determine each other.
We will now sketch this and refer to [81] for further details.

Recall the universal correspondence matrix5

K̃α,α̂ ∈ Q[c1, c2, c3]((z)),

which was constructed in [85]. Here we take α, α̂ to be two weak partitions,
by which we mean non-empty sequences

α = α1 ≥ α2 ≥ . . . ≥ αℓ(α) ≥ 0 and α̂ = α̂1 ≥ α̂2 ≥ . . . ≥ α̂ℓ(α̂) ≥ 0

of non-negative natural numbers. This matrix has the following properties:

Proposition 1.11. [85, Thm 2 and §7.3]

(1) We have K̃α,α̂ = 0 if |α|+ ℓ(α) < |α̂|+ ℓ(α̂).

(2) The z-coefficients
[zk]K̃α,α̂ ∈ Q[c1, c2, c3]

are homogeneous of degree

|α| − |α̂| − ℓ(α)− 2ℓ(α̂) + 3

where ci is defined to have degree i.

(3) We have
K̃(d),(d) = z−d

5Our matrix differs from the one introduced in [85] by the variable change z = iu and
the use of weak partitions instead of partitions.

8



Remark 1.12. The universal correspondence matrix is defined in [85] in
terms of the capped triple vertex. While it has been partially computed in
[63, 72], no full formulas for K̃ are known.

For any X as in Situation 1, one can consider K̃α,α̂ as an element in
H∗

T(X)((z)) by substituting the equivariant chern classes cTi (X) for ci. Given
γ1, . . . , γn ∈ H∗

T(X) homogeneous cohomology classes and α = (α1, . . . , αn)
a weak partition, we can use this to define a formal descendent insertion

τα1(γ1) · · · ταn(γn) :=
∑

P set part of
{1,...,n}

sgn(P )
∏
S∈P

∑
α̂

τα̂

(
K̃αS ,α̂ · γS

)
,(11)

where sgn(P ) = ±1 is the sign that arises from permuting the γi of odd
degree. Furthermore, we set αS = (αi)i∈S , γS =

∏
i∈S γi and

τα̂(γ) :=
∑
s

τα̂1
(δ1,s) · · · τα̂l

(δl,s),

where
∆small

∗ (γ) =
∑
s

δ1,s ⊗ · · · ⊗ δl,s ∈ H∗
T(X

l)

is the equivariant Künneth decomposition of the pushforward along the small
diagonal ∆small : X ↪→ X l. We are now ready to relate Gromov-Witten and
stable pair invariants:

Conjecture B. [55, 56, 85] In Situation 1, for any β ∈ H2(X), γ1, . . . , γl ∈
H∗

T(X) and weak partition α = (α1, . . . , αn) we have

(−p)−dβ/2 ⟨chα1+2(γ1) · · · chαl+2(γl)⟩X,PT,Tβ

= (−z)dβ
〈
τα1(γ1) · · · ταl

(γl)
〉X,GW,T,•

β

(12)

with the variable change p = −ez.

Remark 1.13. (1) Note that the variable change p = −ez is only well-
defined if we assume Conjecture A.(1).

(2) By Proposition 1.11.(1),(2), the α̂ occuring in (11) must satisfy

|αS | ≥ |α̂| and |αS |+ ℓ(αS) ≥ |α̂|+ ℓ(α̂).

In particular, the sum over α̂ must therefore be finite. If one of these
inequalities becomes an equality, we can use Proposition 1.11.(2) to
see that

|αS | − |α̂| ≥ ℓ(αS) + 2ℓ(α̂)− 3 ≥ 0

9



|αS |+ ℓ(αS)− (|α̂|+ ℓ(α̂)) ≥ 2ℓ(αS) + ℓ(α̂)− 3 ≥ 0

and hence we must have |S| = 1 and α̂ = αS = (d) for some d ≥ 0.
This case is described by Proposition 1.11.(3), so we have

τα1(γ1) · · · ταl
(γl) = z−|α|τα1(γ1) · · · ταl

(γl) + . . .

where “. . .” stands for summands of the shape c · τβ1(δ1) · · · τβl(δm) so
that

|α| > |β| and |α|+ ℓ(α) > |β|+ ℓ(β).

In particular, this gives

τ0(γ1) · · · τ0(γl) = τ0(γ1) · · · τ0(γl).

There has been a lot of progress towards Conjecture B. In particular, if
X is a toric variety, the conjecture is known by [57, 85]. Furthermore, many
more examples have been confirmed mostly using degeneration techniques
- see for example [61, 69, 79, 86, 89]. Recently, there was a remarkable
breakthrough in [90], where Pardon showed:

Theorem 1.14. [90] Let X be a smooth projective semi-Fano6 threefold,
γ1, . . . , γl ∈ H∗(X), β ∈ H2(X), then:

(−p)−dβ/2 ⟨ch2(γ1) · · · ch2(γl)⟩X,PTβ = (−z)dβ ⟨τ0(γ1) · · · τ0(γl)⟩X,GW,•
β

with the variable change p = −ez.

Remark 1.15. We expect that the results of [90] can be extended to the
semi-Fano version of Situation 1 using an approximation argument similar
to [90, §4.3].

1.1.6 Pardon’s proof of Theorem 1.14

We will briefly outline the gist of the proof as it serves as one of the main
motivations for this thesis. The first step is the construction of a ring called
the Grothendieck ring of semi-Fano 1-cycles H∗

c (ZsF/Cpx3) in which any
projective semi-Fano X with β ∈ H2(X) and γ1, . . . , γl ∈ H∗(X) naturally
induces an element

(13) (X,β; γ1, . . . , γl) ∈ H∗
c (ZsF/Cpx3).

Furthermore, this ring admits a bigrading so that (13) has bidegree (dβ, vdim)
where the second degree is

vdim := 2dβ −
∑
i

(deg(γi)− 2)

6i.e. c1(X) is nef, meaning that
∫
C
c1(X) ≥ 0 for any subcurve C ⊂ X.
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= deg

([
M

•
g,l(X,β)

]vir
∩
∏
i

τ0(γi)

)

= deg

(
[Pn(X,β)]

vir ∩
∏
i

ch2(γi)

)
,

which is hence dubbed the virtual dimension. It now turns out that Gromov-
Witten and stable pair theory induce ring homomorphisms

(14) H∗
c (ZsF/Cpx3)

GW−−→ Q((z)) and H∗
c (ZsF/Cpx3)

PT−−→ Q((p)),

which yield the corresponding primary Gromov-Witten and stable pair in-
variants when evaluated at (13) - indeed, this holds for any curve counting
theory that is deformation invariant and multiplicative under disjoint uni-
ons. As a result, the class (13) can be regarded as a kind of universal curve
counting invariant. Pardon then shows the following via intricate analytic
transversality arguments:

Theorem 1.16. [90, Theorem 1.1] The virtual dimension 0 part of
H∗
c (ZsF/Cpx3) is generated by the so-called equivariant local curve elements

xg,m,k ∈ H∗
c (ZsF/Cpx3)mk,0

for g,m, k ≥ 0.

Remark 1.17. (1) Since only classes of virtual dimension 0 have a non-
zero image under (14), this expresses all primary semi-Fano curve-
counting invariants as polynomials of the corresponding invariants of
the xg,m,k.

(2) The intuition behind this statement is that morally, the virtual dimen-
sion should be the actual dimension of the moduli space of curves in
X that we want to count. Thus, in virtual dimension 0, the moduli
space should consist of only finitely many curves C1, . . . , Cl ⊂ X. By
deformation to the normal cone and deformation invariance, the con-
tribution of a fixed curve Ci ⊂ X must be the same as that of the
zero-section Ci ⊂ NCi/X to the curve count of NCi/X . The equivariant
local curve elements precisely encapsulate the contributions of such
zero-sections. We can therefore replace X by

∐l
i=1NCi/X . Since the

product in H∗
c (ZsF/Cpx3) is induced by disjoint union, this implies

that the class in H∗
c (ZsF/Cpx3) corresponding to the curve count is

a product of l local curve elements. Pardon’s proof of Theorem 1.16
may be viewed as making this very imprecise argument rigorous.

To further explain the xg,m,k, recall that a local curve is a threefold which
is a total space X = TotC(L1⊕L2) for two line bundles L1, L2 of degree l1, l2
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on a smooth projective curve C. This space is equipped with the T = (C∗)2-
action scaling the two summands. Since X(T) = C is projective, we are in
Situation 1, which allows us to do curve counting on X. The xg,m,k are
constructed in [90, §4.3] so as to satisfy

GW(xg,m,k) = ⟨1⟩X,GW,T,•
m[C]

∣∣∣
t1=t2=1

and PT(xg,m,k) = ⟨1⟩X,PT,Tm[C]

∣∣∣
t1=t2=1

for any local curve X = TotC(L1 ⊕ L2) with

g = g(C) and k = c1(TX) = 2− 2g + l1 + l2.

The following theorem follows from lengthy degeneration and localization
arguments:

Theorem 1.18. [15, 79, 82, 83] For any local curve X, the empty insertions

⟨1⟩X,GW,T,•
m and ⟨1⟩X,PT,Tm

obey Conjectures A and B.

This altogether proves Theorem 1.14 and under the same assumptions
also Conjecture A since all7 statements are compatible with the ring struc-
ture and grading of H∗

c (ZsF/Cpx3) and hold for the local curve elements.
It is yet unclear how to extend this strategy to arbitrary descendent

insertions. Indeed, the fact that Conjecture B is not a straight equality, but
involves complicated (and unknown) correction terms, gives a hint that the
xg,m,k and the empty invariants on local curves may perhaps not be able to
capture the general case.

Guided by this line of thought, the main aim of this thesis is to study
the full descendent Gromov-Witten and stable pair theories of local curves,
which we see as very representative of the behaviour of general threefolds.
We further advocate for the notion that the local curve invariants are very
complicated, but should nonetheless be fully and explicitly computable.

Our results are as follows:

1.2 Stable pair theory of local curves

Let us first fix some notation. Since this section studies stable pair invari-
ants, we will drop the superscript “PT” from our invariants ⟨. . .⟩PT. It will
also be useful to turn our insertions into generating series

chz(γ) :=
∑
k≥0

zkchk(γ).

Furthermore, any boldface letter will refer to a vector whose entries are
denoted by the corresponding non-boldface letter e.g. v = (v1, . . . , vn).

7This shows only a slightly weaker version of Conjecture A.(3) - we expect that one
can prove the full statement through a more careful study of [90].
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1.2.1 Absolute theory

The first main result of this thesis is

Theorem 1.19. Conjecture A holds for all descendent invariants on local
curves.

Remark 1.20. In part this was already proved in [82, 83], where rationality
is shown for all descendents and symmetry and pole restriction for station-
ary and even descendents respectively. Their proof relies on a subtle pole
cancellation property of the stable pair vertex as well as degeneration, mono-
dromy invariance and localization. As a result, their methods also work in
the relative case, which we do not address. However, it does not seem that
these methods can yield a full proof of Theorem 1.19.8

We will deduce Theorem 1.19 from Theorem 1.24, which even gives a
closed formula for these invariants. But before we state that formula, we
must first introduce its constituents: The Bethe roots.

1.2.1.1 Bethe roots. A commonly used tool in the theory of quantum
integrable systems is the algebraic Bethe Ansatz, which goes back to [10, 26,
99]. The key observation is that many integrable systems have an associated
system of polynomial equations called Bethe equations whose solutions allow
one to diagonalize the integrals of motion of that system - see [100] for an
introduction. The connection to enumerative geometry was first observed in
[67, 68]. The Bethe equations most relevant to us come from the quantum
intermediate long wave system (ILW1 in the notation of [51, 52]), which are
as follows:

Let K be the field of Puiseux series

K = Q(t1, t2){{p}} :=
⋃
n≥1

Q(t1, t2)((p
1/n))

with Q(t1, t2) the algebraic closure of Q(t1, t2). In particular, recall that
K is algebraically closed [21, Cor 13.15]. For fixed d ≥ 1 we call a tuple
Y ∈ Kd admissible if Yi ̸= 0, t1 + t2 for any i and Yi− Yi′ ̸= t1, t2, t1 + t2 for
all i ̸= i′. We are then interested in certain admissible tuples satisfying

p = Fi(Y)(15)

for all i = 1, . . . , d, where

(16) Fi(Y) := Yi
t1+t2−Yi

∏
i′ ̸=i

0≤a,b,c≤1
(a,b)̸=(0,0)

(
(−1)c(at1 + bt2) + Yi′ − Yi

)(−1)a+b+c

.

8For the pole restriction, the problem is that the algorithm given in [75, 82, 83] relies
on inverting the cap matrix (c.f. [82, §9.1]). However, the fact that the entries of a matrix
only have certain poles does not imply that the entries of the inverse also only have said
poles.
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From now on we will simply refer to (15) as the Bethe equations. The partic-
ular solutions of these equations that are of interest to us are characterized
as follows:

Theorem 1.21. For any partition λ of size d there is a tuple Yλ :=(
Y λ
□ (p)

)
□∈λ of power series Y λ

□ (p) ∈ Q(t1, t2)[[p]] indexed by the boxes in the

Young diagram9 of λ which is uniquely determined by any of the following
equivalent descriptions:

(1) It is the unique admissible solution of (15) in Kd so that

Y λ
(i,j)(p) = −it1 − jt2 +O

(
p>0
)

for any box (i, j) ∈ λ.

(2) Let the sequence vn = (vn□(p))□∈λ of tuples of power series vn□(p) ∈
Q(t1, t2)[[p]] be defined by

v0□(p) := 0

for n = 0 and for n > 0 we recursively set

vn□(p) :=
p

F̃λ
□(Y(λ)(vn−1))

,

where

F̃ λ□(Y)

= (−1)d−1 Y
1−δ□,(0,0)
□
t1+t2−Y□

∏
□̸=□′∈λ
0≤a,b,c≤1
(a,b)̸=(0,0)

□′ ̸=□+(−1)c(a,b)

(at1 + bt2 + (−1)c(Y□′ − Y□))(−1)a+b+c

and Y(λ)(v) =
(
Y

(λ)
□ (v)

)
□∈λ

has entries given by

Y
(λ)
(i,j)(v) := −it1 − jt2 +

∑
λ/µ conn. skew

(i,j)∈λ/µ

∏
□∈λ/µ

v□(17)

with the sum running over all connected skew partitions contained in
λ. We now have 10

Y λ
□ (p) = lim

n→∞
Y

(λ)
□ (vn).

9c.f. Section 2.1.1 for the relevant notation.
10All factors occuring in F̃λ

(i,j)(Y
(λ)(vn−1)) have a non-zero p0-coefficient. It follows

from this that vn□(p)− vn−1
□ (p) = O(pn) and hence Y

(λ)
□ (vn)−Y

(λ)
□ (vn−1) = O(pn) for all

n. Therefore the limit exists.
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(3) One has the following closed formula:

Y λ
□ (p) = [v0]

(∥∥∥∂F□(Y(λ)(v))/∂v□′
F□(Y(λ)(v))

∥∥∥ ·∏
□∈λ

1
1−p·F□(Y(λ)(v))

)

where
∥∥. . .∥∥ denotes the determinant of a matrix and [v0] means taking

the coefficient of
∏

□∈λ v
0
□ in the expression to the right, all of whose

p-coefficients turn out to be Laurent series in v. Furthermore, Y(λ)(v)
is as in (17).

Remark 1.22. (1) The uniqueness in (1) is not immediate and part of
the statement. Also note that the Bethe equations are symmetric in
the Yi which allows us to use the boxes of λ as indices.

(2) The Bethe roots are usually characterized using (1). However, explicit
descriptions like (2) and (3) have to our knowledge not appeared in
the literature before.

From now on we will call the Yλ simply Bethe roots. One might hope
that they are the only solutions of (15). However, there are more - for

example Y = (Yi)
d
i=1 with Yi = (t1 + t2)

(−1)d−1p
(−1)d−1p+1

for all i is one such. In

order to further narrow things down, we call a solution Y = (Yi)
d
i=1 fully

admissible if in addition to being admissible we have Yi ̸= Yi′ for all i ̸= i′.
Indeed, it is believed that this get rid of all unwanted solutions.

Conjecture C. [51, §3] Up to permutations of tuple-entries, the Yλ de-
scribed in Theorem 1.21 are the only fully admissible solutions of the Bethe
equations (15) over K.

This would give us an entirely algebraic characterization of the Bethe
roots whereas the descriptions in Theorem 1.21 were all somewhat analytic.
Though we can not prove Conjecture C, we will provide the following partial
result:

Proposition 1.23. The Bethe equations have only finitely many admissible
solutions Y over K all of which are of the shape

Yi = ait1 + bit2 +O(p>0)

for ai, bi integers with |ai|, |bi| ≤ d.

1.2.1.2 The main formula. From now on we will fix a curve C of genus
g and

α1, . . . , αg, β1, . . . , βg ∈ H1(C,Z)

a symplectic basis i.e. so that

αi · αj = βi · βj = 0 and αi · βj = δi,j · pt
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for any 1 ≤ i, j ≤ g and pt ∈ H2(C,Z) the point class. As a result we
get a basis B = { 1, α1, . . . , αg, β1, . . . , βg,pt } of H∗(C). Let further L1, L2

be line bundles of degrees l1, l2 respectively and X = TotC(L1 ⊕ L2) the
associated local curve with T-action.

For fixed degree d ≥ 0, free variables Y = (Yi)
d
i=1 and classes γi ∈ B we

define the formal bracket

⟨chz1(γ1) . . . chzn(γn)⟩
X,form
d ∈ Q(t1, t2,Y)[[z]]

to be the unique super-commutative expression that vanishes in case

|{ i | γi = αl }| ≠ |{ i | γi = βl }|

for some l = 1, . . . , g and is otherwise given by

〈
a∏
i=1

chxi(1) ·
b∏
i=1

chyi(pt) ·
g∏
l=1

(
chzl1

(αl)chwl
1
(βl) . . . chzlcl

(αl)chwl
cl
(βl)

)〉X,form
d

=
a∏
i=1

xi ·
∑

∐g
i=−1 Si={ 1,...,a }
□i∈λ for i∈S−1

∏
i∈S−1

∇Y
i

∏
i∈S−1

E(xi, Y□i)

·
∏
i∈S0

(
l1B(xit1) + l2B(xit2)

)
E(xi,Y) ·

b∏
i=1

E(yi,Y)

·
g∏
i=1

(
zi,wi;xSi | Y

)
M(Y)−1 ·A(Y)g−1 ·B1(Y)l1 ·B2(Y)l2 .

(18)

Here, we denoted

M(Y) :=
(
∂Fj(Y)/∂Yi

Fj(Y)

)
i,j
,

where the Fi(Y) are as in (16) and

∇Y
i :=

∑
i′

(
M(Y)−1

)
i,i′

∂
∂Yi′
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as well as

A(Y) :=
d∏
i=1

(Yi · (t1 + t2 − Yi)) ·
∥∥M(Y)

∥∥
·

∏
1≤i,j≤d
0≤a,b≤1

(a,b,i−j)̸=(0,0,0)

(at1 + bt2 + Yi − Yj)(−1)a+b+1
,

B1(Y) :=
d∏
i=1

(t1 + t2 − Yi)−1 ·
d∏

i,j=1

1∏
b=0

(t1 + bt2 + Yi − Yj)(−1)b+1

,

B2(Y) :=
d∏
i=1

(t1 + t2 − Yi)−1 ·
d∏

i,j=1

1∏
a=0

(at1 + t2 + Yi − Yj)(−1)a+1

.

(19)

We also wrote
B(t) := 1

et−1 −
1
t = −

1
2 +

∑
i≥1

B2i
t2i−1

(2i)!

with Bn the n-th Bernoulli number and

(z,w;x | Y)N :=(−1)n
∑

a=(ai)
m
i=1,

b=(bi)
m
i=1,

c=(ci)
n
i=1

∥∥Na⊔c;b⊔c
∥∥ · n∏

i=1

xiE(xi,Yci)

·
m∏
i=1

ziwiE(zi,Yai)E(wi,Ybi)

for any d × d-matrix N , vectors z,w of length m and x of length n. The
E(z,Y) are defined by

E(z, Y ) := (1−e−t1z)(1−e−t2z)
t1t2

ezY

E(z,Y) :=
d∑
i=1

E(z, Yi)
(20)

Note in particular that ⟨. . . ⟩X,formd is symmetric in the Yi.
The main result of this section now specifies the relationship of the formal

bracket with the actual stable pair invariant:

Theorem 1.24. One can evaluate

⟨chz1(γ1) . . . chzn(γn)⟩
X,form
d

at Y = Yλ for any Bethe root Yλ and we have

⟨chz1(γ1) . . . chzn(γn)⟩
X,T
d = pd(1−g)

∑
λ⊢d
⟨chz1(γ1) . . . chzn(γn)⟩

X,form
d |Y=Yλ .

(21)
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Remark 1.25. (1) Theorem 1.24 is new even without insertions. We
will prove it using a strategy similar to [62], where the fixed locus of
the stable pair moduli space is identified as the double nested Hilbert
scheme. Our formula is made possible by an explicit description of the
geometry of the double nested Hilbert scheme.

(2) In [62], the case of no insertions and t1 = −t2 was considered. In
particular, one should be able to obtain [62, Theorem 1.3] as a special
case of Theorem 1.24, however one can show that

Y λ
(i,j)(p)

∣∣∣
t1=−t2

= t1(i− j)

and hence setting t1 = −t2 makes some numerators and denominators
in (19) vanish. This makes it difficult to compute the limit t1 → −t2.

The upshot of Theorem 1.24 is the following slogan:

The structure of stable pair invariants
is induced by the structure of the Bethe roots!

Indeed, this is how we will prove Theorem 1.19. Assuming Conjecture C,
rationality is immediate, symmetry comes from the invariance of the Bethe
equations under the involution

ti 7→ ti, p 7→ p−1, Yi 7→ t1 + t2 − Yi

and pole restriction is connected to the fact that the Y λ
□ (p) are convergent

power series that can be locally analytically continued to any p in

C \ { ζ | (−ζ)n = 1 for some 1 ≤ n ≤ d } .

In the absence of Conjecture C, we can give a very similar proof by instead
deducing it from certain special cases proved in [82, 83].

1.2.2 Relative theory

Although the above results only apply to absolute local curves, one can still
use them to gain information about the relative case:

Consider the threefold X = C2 × P1 and the smooth divisor D = C2 ×
{0,∞} together with the diagonal T = (C∗)2-action on the C2-factor. This
geometry is often referred to as the tube. Recall that one can define moduli
spaces Pn(X/D, d) of relative stable pairs [48] together with evaluation maps

Hilbd(C2)
ev0←−− Pn(X/D, β)

ev∞−−→ Hilbd(C2)

to the Hilbert scheme of points on C2 and an equivariant virtual class

[Pn(X/D, d)]
vir ∈ HT

∗ (Pn(X/D, d))⊗Q(t1, t2).
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Using this one can define invariants via11

⟨ϵ|chz1(γ1) . . . chzn(γn)|δ⟩X/D,T

:=
∑
n≥d

pn−d
∫
[Pn(X/D,d)]vir

chz1(γ1) . . . chzn(γn)ev
∗
0(ϵ)ev

∗
∞(δ) ∈ Q(t1, t2)[[p, z]],

where ϵ, δ ∈ H∗
T(Hilb

d(C2)). As shown in [82, 86], these power series are
Taylor expansions of rational functions. Moreover, by [78, 79] these invari-
ants also encode quantum multiplication on Hilbn(C2). Now consider the
Q(t1, t2)((p))-vector space

H := H∗
T(Hilb

d(C2))⊗Q[t1,t2] Q(t1, t2)((p)).

We encode the stationary invariants of X/D in terms of endomorphism-
valued power series

M(z) ∈ End (H) [[z]]

for z = (z1, . . . , zn). Indeed, these are defined by taking the functionals of
the shape

H⊗ H −→Q(t1, t2)((p))[[z]]

γ ⊗ δ 7−→⟨γ|chz1(pt) . . . chzn(pt)|δ⟩X/D,T

and using the identification

End(H) = H∨ ⊗ H = H∨ ⊗ H∨ = (H⊗ H)∨ ,

which comes from equivariant Poincaré duality for Hilbd(C2). Recall fur-
thermore that the set of fixed points Hilbd(C2)T is in natural bijection with
the set of partitions λ ⊢ d i.e. of size d and the associated classes [λ] ∈ H of
the fixed points form a basis of H.

Theorem 1.26. There is a basis (vλ)λ of H so that

vλ = [λ] +O(p)

and

M(z)vλ =

n∏
i=1

E(zi,Y
λ)vλ

for all n and λ ⊢ d, where Yλ = (Y λ
□ (p))□∈λ is the Bethe root associated to

λ and the E(z,Y) are as in (20).

11One can show that Pn(X/D, d) = ∅ for n < d.
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Various versions of this had already been shown in [1, 27, 52] (see also
[93]). Indeed,M(z) is very closely related to the integrals of motion of ILW1,
which is why it is natural to expect that its eigenvalues can be expressed in
terms of Bethe roots. We will give a new proof by deducing it from The-
orem 1.24. See [97] for a generalization of this approach to the enumerative
geometry of Nakajima quiver varieties.

For the rest of this section we aim to studyM(z) more concretely, which
will also shed new light on the Bethe roots via Theorem 1.26. In order to
state our results, we first recall the Fock space description of H, see [35, 66]
for more details.

The Fock space F is freely generated over Q by commuting creation
operators α−k for k > 0 acting on the vacuum vector |∅⟩ ∈ F . There are
also annihilation operators αk for k > 0 so that αk ·|∅⟩ = 0 with commutation
relation

(22) [αk, αl] = kδk,−l.

From these we get a new family of operators

αv =
∏
i

vi<0

αvi ·
∏
i

vi>0

αvi

for any integer vector v = (vi)
l
i=1 ∈ Zl̸=0. There is a natural basis of F given

by the vectors of shape

|µ⟩ = 1

z(µ)
α−µ|∅⟩

for µ any partition and normalization factor

z(µ) = |Aut(µ)|
∏
i

µi.

There is furthermore a natural inner product on F defined by

⟨µ|ν⟩ = δµ,ν
z(µ)

,

for which αk and α−k are adjoint operators. The significance of F for us
lies in the existence of an isomorphism

F ⊗Q Q[t1, t2] ∼=
⊕
d≥0

H∗
T(Hilb

d(C2))(23)

where the graded component H∗
T(Hilb

d(C2)) on the right is generated by |µ⟩
for |µ| = d on the left. Note that αv preserves this grading only for v ∈ Vl
where Vl is the set of all vectors v ∈ Zl̸=0 with

∑
i vi = 0. Moreover, the

equivariant Poincaré pairing on the right of (23) corresponds to the pairing

(24) ⟨µ|ν⟩′ = (−1)|µ|−ℓ(µ)

(t1t2)ℓ(µ)
δµ,ν
z(µ)
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on F , for which (αk)
∗ = (−1)k−1(t1t2)

sgn(k)α−k. Using the isomorphism
(23), we can now use the basis |µ⟩ to represent M(z) as a matrix with
entries

M(z)µ,ν = (−1)|µ|−ℓ(µ)(t1t2)ℓ(µ)z(µ)⟨µ|chz(pt)|ν⟩X/D,T.

We will now give a partial description of its z-coefficients Mk = [zk]M(z).

Theorem 1.27. For any k ≥ 0, there is a unique collection of fk(v) ∈
Q(p)[t1, t2] depending on v ∈ Vl with 2 ≤ l ≤ k which is invariant under
permutation of the vector entries and so that

(25) Mk =
∑

2≤l≤k
v∈Vl

(−1)p(v)−1(t1t2)
n(v)−1fk(v)

αv

l!
,

where n(v) and p(v) are the number of negative and positive entries of v
respectively. For any v ∈ Vl we can further expand

fk(v) =
∑
a,b≥0

2a+b+l=k

(t1t2)
a(t1 + t2)

bfka,b(v)

for some fka,b(v) ∈ Q(p). The fka,b have the following properties:

(1) for any a, b,v we have:

fka,b(v)
∑
i

v2i
(−p)vi + 1

(−p)vi − 1
=

∑
i

s+t=vi
sgn(s)=sgn(t)

sgn(vi)stf
k
a−1,b+1(v \ (vi) ∪ (s, t))

−
∑
i ̸=j

(vi + vj)f
k
a,b+1(v \ (vi, vj) ∪ (vi + vj)),

where v \ (vi, vj) ∪ (vi + vj) = (v1, . . . , v̂i, . . . , v̂j , . . . , vn, vi + vj) and
v \ (vi) ∪ (s, t) = (v1, . . . , v̂i, . . . , vn, s, t).

(2) One has

fk0,k−2(v,−v) =
vk−2

(k − 1)!

(−p)(k−1)v − 1

((−p)v − 1)k−1

for any v > 0.

(3) for all 0 ≤ a ≤ k
2 and v ∈ Vk−2a:

fa,0(v) =

(
−1

4

)a ∑
nl≥0∑
l nl=a

∏
l

v2nl
l

(2nl + 1)!
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Remark 1.28. (1) Any linear operator M ∈ End(F) which preserves the
grading (23) must be of the shape

M =
∑
v∈Vl

f(v)αv

for a uniquely determined symmetric f . Imposing a bound ℓ(v) ≤ k
is however a very strong constraint on M and means that M |µ⟩ is a
linear combination of |λ⟩ where λ is obtained from µ by at most k− 2
cuts and joins.

(2) The functions fk are all even in the sense that fk(−v) = fk(v) for
any v. Indeed, by construction, Mk must be self-adjoint with respect
to the Poincaré pairing (24). By applying (· · · )∗ to (25) and using
uniqueness of the fk, this gives us fk(−v) = fk(v) as desired.

(3) As we will see later, equation (1) is equivalent to the fact that M3 and
Mk commute, which follows from degeneration.

While Theorem 1.27 does not fully determine theMk, only a small num-
ber of additional calculations are sufficient to show:

Theorem 1.29.

M0 =M1 = 0,

M2 =
∑
v>0

α−vαv,

M3 = (t1 + t2)
∑
v>0

v
2
(−p)v+1
(−p)v−1α−vαv

+
1

2

∑
v1,v2>0

(t1t2α−v1α−v2αv1+v2 − α−v1−v2αv1αv2),

M4 = (t1 + t2)
2
∑
v>0

v2

6
(−p)3v−1
((−p)v−1)3

α−vαv − t1t2
∑
v>0

v2

12α−vαv

+ t1+t2
8

∑
v1,v2>0

(
(v1 + v2)

(−p)v1+v2+1
(−p)v1+v2−1

+ v1
(−p)v1+1
(−p)v1−1 + v2

(−p)v2+1
(−p)v2−1

)
· (t1t2α−v1α−v2αv1+v2 − α−v1−v2αv1αv2)

+ 1
6

∑
v1,v2,v3>0

(
t21t

2
2α−v1α−v2α−v3αv1+v2+v3 + α−v1−v2−v3αv1αv2αv3

)
− t1t2

4

∑
v1,v2,v3,v4>0
v1+v2=v3+v4

α−v1α−v2αv3αv4 ,

M5 = (t1 + t2)
3
∑
v>0

v3

24
(−p)4v−1
((−p)v−1)4

α−vαv
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− t1t2(t1+t2)
24

∑
v>0

( ∑
0<i<v

2i(v − i) (−p)
i+1

(−p)i−1
+ (5v2+1)v

6
(−p)v+1
(−p)v−1

)
α−vαv

+ (t1+t2)2

48

∑
v1,v2>0

(
v1v2

(−p)v1+1
(−p)v1−1

(−p)v2+1
(−p)v2−1 + v1(v1 + v2)

(−p)v1+1
(−p)v1−1

(−p)v1+v2+1
(−p)v1+v2−1

+ v2(v1 + v2)
(−p)v2+1
(−p)v2−1

(−p)v1+v2+1
(−p)v1+v2−1

+ v21

(
(−p)v1+1
(−p)v1−1

)2
+ v22

(
(−p)v2+1
(−p)v2−1

)2
+(v1 + v2)

2
(
(−p)v1+v2+1
(−p)v1+v2−1

)2
+

v21+v
2
2

2

)
· (t1t2α−v1α−v2αv1+v2 − α−v1−v2αv1αv2)

+ t1+t2
96

∑
v1,v2,v3,v4>0
v1+v2=v3+v4

(
2

4∑
i=1

vi
(−p)vi+1
(−p)vi−1 + 2(v1 + v2)

(−p)v1+v2+1
(−p)v1+v2−1

+
∑
i=1,2
j=3,4

(vi − vj) (−p)
vi−vj+1

(−p)vi−vj−1

α−v1α−v2αv3αv4

+ t1+t2
72

∑
v1,v2,v3,v4>0
v1+v2=v3+v4

(
2

3∑
i=1

vi
(−p)vi+1
(−p)vi−1 + 2(v1 + v2 + v3)

(−p)v1+v2+v3+1
(−p)v1+v2+v3−1

+
∑

1≤i<j≤3

(vi + vj)
(−p)vi+vj+1

(−p)vi+vj−1

 · (α−v1−v2−v3αv1αv2αv3

+ t21t
2
2α−v1α−v2α−v3αv1+v2+v3)

+ 1
24

∑
v1,v2,v3,v4>0

(t31t
3
2αv1+v2+v3+v4

4∏
i=1

α−vi − α−v1−v2−v3−v4

4∏
i=1

αvi)

+
t1t2
12

∑
v1,v2,v3,v4,v5>0
v1+v2+v3=v4+v5

(α−v4α−v5αv1αv2αv3 − t1t2α−v1α−v2α−v3αv4αv5),

where 0 · (−p)
0+1

(−p)0−1
:= 0.

Remark 1.30. (1) The formulas for M≤2 are trivial and the one for M3

was first shown in [78], though our proof of it is different. However,
the formulas for M4 and M5 are new.

(2) Theorem 1.26 and Theorem 1.29 together determine the first three
power sums of the Bethe roots. For example, taking the trace of M3

yields∑
d≥1

qd
∑
λ⊢d
□∈λ

Y λ
□ (p) = (t1+t2)

∏
d≥1

1

1− qd
∑
v>0

v

2

qv

1− qv

(
v
(−p)v + 1

(−p)v − 1
+ 1

)
,
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which seems nearly impossible to tell from the Bethe equations alone.

Theorem 1.29 is also a consequence of the following conjecture.

Conjecture D. For any k ≥ 0 we have

fk0,1(v) =
1
4

∑
S1⊔S2={1,...,k−1}

(|S1|−1)!(|S2|−1)!
(k−2)! vS1

(−p)vS1+1

(−p)vS1−1

fk0,2(v) =
1
8

∑
S1⊔S2⊔S3={1,...,k−2}

(|S1|−1)!(|S2|−1)!|S3|!
(k−2)!

· vS1vS2

(−p)vS1+1

(−p)vS1−1

(−p)vS2+1

(−p)vS2−1
+ 1

48

∑
i

v2i

fk0,3(v) =
1
48

∑
S1⊔S2⊔S3⊔S4={1,...,k−3}

(|S1|−1)!(|S2|−1)!(|S3|−1)!(|S4|+1)!
(k−2)!

· vS1vS2vS3

(−p)vS1+1

(−p)vS1−1

(−p)vS2+1

(−p)vS2−1

(−p)vS3+1

(−p)vS3−1

+ 1
16

∑
S1⊔S2⊔S3⊔S4={1,...,k−3}

|S1|!(|S2|−1)!|S3|!(|S4|−1)!
(k−2)!

· (vS1 + vS4)vS2vS4

(−p)vS1
+vS4+1

(−p)vS1
+vS4−1

(−p)vS2+1

(−p)vS2−1

(−p)vS4+1

(−p)vS4−1

− 1

24

∑
S1⊔S2⊔S3={1,...,k−3}

|S1|!|S2|!(|S3|−1)!
(k−2)! vS1(vS2 + vS3)vS3

(−p)vS3+1

(−p)vS3−1

− 1
96

∑
S1⊔S2⊔S3={1,...,k−3}

(|S1|−1)!(|S2|+1)!(|S3|−1)!
(k−2)! vS1vS2vS3

(−p)vS3+1

(−p)vS3−1

− 1
48

∑
S1⊔S2⊔S3={1,...,k−3}

(|S1|−1)!|S2|!|S3|!
(k−2)! vS1v

2
S2

(−p)vS3+1

(−p)vS3−1

fk1,1(v) = − 1
48

∑
S1⊔S2={1,...,k−3}

(|S1|−1)!(|S2|−1)!
(k−4)! vS1

(−p)vS1+1

(−p)vS1−1

− 1
12

∑
S1⊔S2⊔S3={1,...,k−3}

|S1|!|S2|!(|S3|−1)!
(k−2)! vS1(v

2
S1
− 1) (−p)

vS1
+vS2+1

(−p)vS1
+vS2−1

− 1
48

∑
S1⊔S2={1,...,k−3}

|S1|!|S2|!
(k−2)! vS1(v

2
S1
− 1) (−p)

vS1+1

(−p)vS1−1

− 1
4

∑
S1⊔S2={1,...,k−3}

s+t=vS1
sgn(s)=sgn(t)

|S1|!|S2|!
(k−2)! sgn(vS1) · st ·

(−p)s+1
(−p)s−1 ,

where we set vS :=
∑

i∈S vi and 0 · (−p)
0+1

(−p)0−1
:= 0 as before. Furthermore,

these formulas for fka,b(v) only hold if 2a+b+ l = k where v ∈ Vl - otherwise
we have fka,b(v) = 0.
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Remark 1.31. The formulas above were found through extensive computer
search and fit a large amount of data. Moreover, it is straightforward to
check that Conjecture D is consistent with Theorem 1.27 in the sense that
the right hand sides satisfy Theorem 1.27(1) and specialize to Theorem
1.27(2) in case a = 0 and b = k − 2.

1.3 Gromov-Witten theory of local curves

We will now consider the T-equivariant Gromov-Witten theory of a local
curve X = TotC(L1 ⊕ L2) of genus g = g(C) and li = c1(Li). As a result,
we will drop the superscript “GW” from our invariants. The specific flavor
of Gromov-Witten theory, which in our case is most convenient, comes from
the moduli space

M
′
g,n(X, d).

This is the space of stable maps from possibly disconnected curves where
every connected component maps nontrivially and receives a marking. The
difference between the resulting invariants ⟨. . .⟩X,′d and the disconnected in-
variants we encountered earlier is encapsulated by the following consequence
of Theorem 1.18 and Theorem 1.24.

Proposition 1.32.

⟨1⟩X,T,•d

= (−z2)d(g−1)
(
zez/2

)−d(l1+l2)∑
λ⊢d

A(Yλ)g−1B1(Y
λ)l1B2(Y

λ)l2
∣∣∣
p=−ez

where Yλ(p) is the Bethe root corresponding to λ.

At first, one might hope that a sufficiently careful spelling out of the
localization formula might yield similarly comprehensive results as in Section
1.2.1. Unfortunately, this does not work since the fixed locusM

′
g,n(X, d)

T =

M
′
g,n(C, d) is not as nice as the double nested Hilbert scheme and admits no

explicit description. As a result, the Gromov-Witten theory of local curves
is much more difficult to compute and we will restrict ourselves mostly to
g = 1 and l1 = l2 = 0 i.e. the local elliptic curve X = C2 × E. This is in
some sense the easiest local curve as for example Proposition 1.32 simplifies
greatly in this case. By expanding Definition 1.6, one can show that the
Gromov-Witten theory of X is equivalent to double Hodge integrals over the
elliptic curve:

Definition 1.33. For γ1, . . . , γn ∈ H∗(E) we set〈
E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

〉E,′
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:=
∑
g∈Z
d≥0

l1,...,ln∈Z

(−1)g−1z2g−2qd
n∏
i=1

zli+1
i

〈
E∨(1)E∨(x)

n∏
i=1

τli(γi)

〉E,′
g,d

∈ Q[[q]][x±, z±1 , . . . , z
±
n ]((z)),

where

E∨(x) =

g∑
i=0

(−1)iλixg−i ∈ H∗(M
′
g,n(E, d))[x]

with λi = ci(E) the i-th chern class of the Hodge bundle E = π∗Ω
1
π of the

forgetful map π : M
′
g,n+1(E, d)→M

′
g,n(E, d).

See Section 4.1 for more details. What makes the local elliptic curve
particularly attractive is the fact that it is based on the Gromov-Witten
theory of the elliptic curve, which has been fully computed and is quasi-
modular - see [75, 76, 91]. Moreover, in case x = −1 one can use Mumford’s
relation (c.f. [65])

(26) E∨(1)E∨(−1) = (−1)g

to remove both Hodge classes. As a result, the explicit formulas for the
Gromov-Witten theory of the elliptic curve given in [76, §5] and [91, Pro-
position 3.3.2] imply:

Theorem 1.34. Let B = {1, α, β,pt} be the basis of H∗(E) introduced in
Section 1.2.1.2. For all γ1, . . . , γn ∈ B we have〈
E∨(1)E∨(−1)

n∏
i=1

γi
1/zi − ψi

〉E,′

= −z−n
∑

{1,...,n}=
∐

I∈S I
∪i∈Iγi=±pt

sgn(S)
∏
I∈S

∏
i∈I

zi

(∑
i∈I

zi

)|I|−2
F|S|

(
(
∑
i∈I

zzi)I∈S

)
,

where sgn(S) is the sign that arises out of super-commuting the γi into the
shape S. Here, Fn is the Bloch-Okounkov correlation function

Fn(z1, . . . , zn) =
∑
σ∈Sn

∥∥∥∥(Θj−i+1(zσ(1)+...+zσ(n−j))

(j−i+1)!

)
i,j

∥∥∥∥
Θ(zσ(1))Θ(zσ(1) + zσ(2)) · · ·Θ(zσ(1) + . . .+ zσ(n))

with Θ(z) the Jacobi theta function as in Appendix A.

Since Gromov-Witten invariants of the elliptic curve are quasi-modular
forms (c.f. Appendix A), one has for all x:
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Theorem 1.35. We have〈
E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

〉E,′
∈ QMod[x±, z±1 , . . . , z

±
n ]((z))

so that the coefficient of zk is quasi-modular of weight k +
∑

i degR(γi).
Moreover, there is the following holomorphic anomaly equation:

d

dG2

〈
E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

〉E,′

= −xz2
(

n∑
i=1

zi

)2〈
E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

〉E,′

− 2

n∑
i=1

(∫
E
γi

)
z−1
i

〈
E∨(1)E∨(x)

n∏
l=1

γ
1−δi,l
i

1/zl − ψl

〉E,′
,

(27)

where the formal derivative with respect to G2 is taken coefficient-wise.

Remark 1.36. The holomorphic anomaly equation was first proven in [91]
and later extended in [70].

As far as we know, this modularity has no clear analogue for stable pair
invariants of the local elliptic curve.

It is well-known from the literature on Hodge integrals on Mg,n that
generating series as in Definition 1.33 tend to be most approachable if
z1, . . . , zn ∈ Z>0 - see for example [22, 23, 24, 53, 74, 77]. Our main conjec-
ture of this section attempts to make this precise:

Conjecture E. Let x ∈ Z̸=0, z1, . . . , zn ∈ Z>0, γ1, . . . , γn ∈ H∗(E) and µ a
partition of degree |µ| = d and length ℓ(µ) = n.

(1) If x > 0, then

zd(x+1)+n

〈
E∨(1)E∨(x)

n∏
i=1

γi
1/µi − ψi

〉E,′
∈ QJac[z]

is a polynomial in z with coefficients in the ring of quasi-Jacobi forms
QJac - see Appendix A. Furthermore, the z-degree of the polynomial
is at most d− n.

(2) If x < 0, then

zd(x+1)+n

〈
E∨(1)E∨(x)

n∏
i=1

γi
1/µi − ψi

〉E,′
=

∑
a=(ai)i∈S∑
i∈S ai=d

2

ϕa ·
∏
i∈S

Θ(iz)aix
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where

S =

{
0 ̸=

∑
i∈M

µi

∣∣∣∣∣M ⊂ {1, . . . , n}
}

and ϕa ∈ QJac[z] of z-degree at most n−
∑

i degC γi.

In either case, the Hodge integral is homogeneous of weight
∑

i degR(γi) and

index xd2

2 . See Remark A.2(4) for the definition of weight and index.

Remark 1.37. (1) The case x = −1 follows from Theorem 1.34. We
did not mention the case x = 0 as it only makes sense for connected
Hodge integrals. By [91, Lemma 4.4.1], these are moreover equal to
their constant coefficients (67).

(2) Recall that the space QJacm,k of quasi-Jacobi forms of specified weight
and index is finite-dimensional. Conjecture E therefore implies that
each such Hodge integral is determined finitely many of its coefficients.

(3) The claim on weight and index follows from Theorem 1.35, (92) and
the rest of Conjecture E.

(4) Conjecture E is partially motivated by [71, Conjecture C] which asserts
that stable pair invariants (and hence also Gromov-Witten invariants)
of compact elliptic fibrations are quasi-Jacobi. Despite the fact that
C2 × E is not compact, Hodge integrals as in E still appear in the
localization formula for S × E with S a projective toric surface.

Our main theorem in this section is:

Theorem 1.38. Conjecture E holds if µ = (1n) or µ = (2).

Remark 1.39. Besides Theorem 1.34, Theorem 1.38 is the only evidence
of Conjecture E that we currently have. As a result, it is not unlikely that
one would have to modify Conjecture E. However, all Hodge integrals of
the same degree |µ| = d must be related to each other via tautological
relations similar to those appearing in the proof of Proposition 4.11. It
would therefore seem somewhat unexpected if some Hodge integrals behave
differently than others.

We will deduce this from the following explicit formulas:

Theorem 1.40. If x > 0, we have〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′
=

(−1)n(n− 1)!Θ(z)nx

xn−1znx+2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

∏
i ̸=j

Θ(z + ui − uj)
Θ(ui − uj)

x

·
N−1∏
m=1

A(ulm − ulm+1)
lm+1−lm

(n− lm) · (lm+1 − lm)!

(28)
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and if x < 0,〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′
= 2

(−1)n(n− 1)!Θ(z)nx

xn−1znx+2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

s1,...,sn

∏
i ̸=j

Θ(z + u′i − u′j)
Θ(u′i − u′j)

x

·
N−1∏
m=1

A(u′lm − u
′
lm+1

)lm+1−lm

(n− lm) · (lm+1 − lm)!
,

(29)

where all residues are taken for z ̸= 0. Moreover, we set u′i = ui + siz and
s1, . . . , sn is a sequence of integers so that s1 = 0, s2 = 1 and for any j,
we have {s1, . . . , sj} = Z ∩ [a, b] for some a, b ∈ Z. Finally, A(u) is as in
Appendix A.

2 Stable pair theory of absolute local curves

We now turn towards the proof of the results in Section 1.2.1. The content
of this section is taken from the paper [96].

2.1 Double nested Hilbert schemes and their irreducible com-
ponents

In this section we recall the double nested Hilbert scheme of a smooth pro-
jective curve and give a description of its irreducible components, which all
turn out to have the same dimension (c.f. Proposition 2.4). This fact is
what enabled all calculations in this section. In Section 2.1.1 we recall some
combinatorial notation necessary for stating this result.

2.1.1 Notation

By a partition λ of size d ≥ 0 (or λ ⊢ d for short) we mean a finite sequence
of positive integers λ0 ≥ λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0 so that

|λ| :=
n−1∑
i=0

λi = d.

We call the integer l(λ) := n the length of λ. Furthermore, we will always
identify λ with its Young diagram which is the set of all (i, j) ∈ N2

0 so that
0 ≤ j < λi

12. For any box (i, j) ∈ λ it is often convenient to write □ = (i, j)
when the coordinates i and j are not used.

12Note that the top left box is denoted (0, 0) and not (1, 1) as in most of the combinat-
orics literature.
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(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1)

(2,0) (2,1)

(3,0)

0 0 4 42

1 2

2 2

3

Figure 1: On the left: The Young diagram of λ = (4, 2, 2, 1) with coordin-
ates. In the middle: The Young diagram of λ = (4, 3, 1, 1). On the right: A
reverse plane partition on λ

We write λ for the unique partition whose Young diagram is

{ (i, j) | (j, i) ∈ λ }

i.e. the Young diagram of λ flipped along the diagonal. We further denote

n(λ) =
∑

(i,j)∈λ

i.

Recall that a skew partition λ/µ is a pair of partitions λ and µ so that
µi ≤ λi for any i. This is equivalent to the Young diagram of µ being
contained in the Young diagram of λ and we will often identify λ/µ with the
complement of Young diagrams λ\µ - in particular we write |λ/µ| := |λ\µ|.
Note here that a subset S ⊂ λ is a skew partition S = λ/µ if and only if
□ ∈ S and □ ≤ □′ ∈ λ imply □′ ∈ S. Unless stated otherwise, we will

Figure 2: Skew partitions λ/µl and λ/µr respectively with λ = (4, 2, 2, 1),
µl = (4, 1), µr = (4, 1, 1) and complements in red. The left one is connected
and the right one is disconnected.

from now on require all skew partitions to be connected i.e. any two boxes
□,□′ ∈ λ/µ must be connected via a sequence of boxes in λ/µ in which any
two consecutive boxes share an edge.

One can equip N2
0 with the partial order given by

(i, j) ≤ (i′, j′) iff i ≤ i′ and j ≤ j′.

A tuple of natural numbers n = (n□)□∈λ on a partition λ is called a reverse
plane partition if for any □,□′ ∈ λ

□ ≤ □′ implies n□ ≤ n′□.
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In this case we denote
|n| :=

∑
□∈λ

n□.

Observe furthermore that for any tuple of numbers m =
(
mλ/µ

)
λ/µ

indexed

over the connected skew partitions in λ one gets an associated reverse plane
partition n = (n□)□∈λ defined by

n□ =
∑

□∈λ/µ

mλ/µ.

We will abbreviate this relation as |m| = n or m ⊢ n. Further, we will write

∥m∥ := |n| =
∑
λ/µ

|λ/µ| ·mλ/µ.

Lemma 2.1. Any reverse plane partition n is |m| for some m as above.
Furthermore, if n□ ≤ 1 for all □ ∈ λ, then m is unique.

Proof. First note that any possibly non-connected skew partition λ/µ is
uniquely a disjoint union of connected skew partitions. Indeed, for existence
note that the connected components λ/µ are connected skew partitions. For
uniqueness note that if λ/µ = λ/µ1 ⊔ · · · ⊔λ/µn, then any λ/µi ⊂ λ/µ must
be closed under ≤ and ≥ hence making it a maximal connected subset.
Applying this fact to

λ/µ := {□ ∈ λ | n□ = 1 }

we obtain the second claim.
We show the first claim by induction on |n|. For this let λ/µ0 be a

connected component of {□ ∈ λ | n□ > 0 }. One easily sees that n′ defined
by

n′□ :=

{
n□ − 1, if □ ∈ λ/µ0,
n□, else

is again a reverse plane partition of smaller size. Hence for any m′ ⊢ n′ we
get an m ⊢ n defined by

mλ/µ :=

{
m′
λ/µ + 1, if µ = µ0

m′
λ/µ, else.

.
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2.1.2 Double nested Hilbert schemes

For the rest of this section we fix a partition λ, a reverse plane partition
n = (n□)□∈λ and a smooth projective curve C over the complex numbers.
We further denote by

C(n) := Hilbn(C) = Cn/Symn

the Hilbert scheme of n points on C.

Definition 2.2. For any tuple of natural numbers m = (mi)
l
i=1 we write

C(m) :=

l∏
i=1

C(mi)

for the product of Hilbert schemes of C.
Furthermore, the double nested Hilbert scheme associated to n is defined

as

C [n] :=

{
(D□)□∈λ

∣∣∣∣ D□ ⊂ C divisor of length n□ such that
for □ ≤ □′ we have D□ ⊂ D□′

}
⊂ C(n).

Remark 2.3. More precisely, C [n] is the scheme representing the obvious
moduli functor. For more details see [62, §2.2].

Given a tuple of nonnegative numbers m = (mλ/µ)λ/µ so that m ⊢ n we
get an induced map

ϕm,n : C
(m) −→ C [n]

(Dλ/µ)λ/µ 7−→

 ∑
□∈λ/µ

Dλ/µ


□∈λ

.

Taking the disjoint union over all such tuples we obtain

ϕ :
∐
m⊢n

C(m) −→ C [n].

Proposition 2.4. The morphism ϕ is birational and both sides are pure of
dimension

n0,0 −
∑

(i,j),(k,l)∈λ
0≤a,b≤1

(k,l)=(i+a,j+b)

(−1)a+b(nk,l − ni,j).

In particular, the fundamental class of C [n] can be written as[
C [n]

]
=
∑
m⊢n

ϕ∗

[
C(m)

]
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Proof. To show that ϕ is birational it suffices to show that ϕ restricts to
a bijection ϕ−1(U) → U of dense open subsets and that C [n] is generically
smooth and pure of the desired dimension. Indeed, this would imply that
the domain and codomain of ϕ are both pure of the same dimension and
by restricting to an appropriate dense open subset of C [n], [64, Proposition
3.17] then implies that ϕ restricts to a degree 1 map to a normal scheme
which must be birational.

We first show that ϕ is surjective, hence take an arbitraryD = (D□)□∈λ ∈
C [n]. It suffices to treat the case whenD is supported on a single point x ∈ C
since any D is a sum of such tuples. In this case, D is in the image of ϕm,n

for any m ⊢ n and by Lemma 2.1 such an m exists.
Furthermore, this process gives a unique preimage if D ∈ S for S ⊂ C [n]

the open set of tuples D for which D□ is reduced for any □ ∈ λ. Denoting
by S′ ⊂

∐
m⊢nC

(m) the dense open consisting of tuples of mutually disjoint
reduced divisors it follows that ϕ(S′) ⊂ S and by surjectivity of ϕ and
denseness of S′ it follows that S and ϕ−1(S) must also be dense. This
establishes the generic injectivity.

It remains to check generic smoothness of the double nested Hilbert
scheme. For this we consider the closed embedding

C [n] −→ C(n0,0) ×
∏

(i,j)∈λ
j≥1

C(ni,j−ni,j−1) ×
∏

(i,j)∈λ
i≥1

C(ni,j−ni−1,j) =: X

(Di,j)(i,j)∈λ 7−→ (D0,0, (Di,j −Di,j−1)(i,j)∈λ, (Di,j −Di−1,j)(i,j)∈λ).

This embedding was already considered in [62, §2.4] in which it was noted
that C [n] is cut out by the set of equations

D1
i−1,j +D2

i,j = D2
i,j−1 +D1

i,j ,

where (i, j) ∈ λ is any box with i, j ≥ 1 and we denote a point in X by
(D0, (D1

□)□∈λ, (D
2
□)□∈λ). Letting U ⊂ X be the open set consisting of tuples

of reduced divisors we note that U ∩C [n] ⊂ C [n] is dense since it contains S
defined above. It therefore suffices to show that U ∩ C [n] is smooth. Under
the product of the quotient maps Cn ↠ Cn/Sn = C(n) one can pull U back
to an open set:

Ũ ⊂ Cn0,0 ×
∏

(i,j)∈λ
j≥1

Cni,j−ni,j−1 ×
∏

(i,j)∈λ
i≥1

Cni,j−ni−1,j

giving an étale cover Ũ → U . This reduces us to showing that the preimage
of U ∩C [n] in Ũ , which we denote by Ũ ∩C [n], is smooth. Since smoothness
is étale local, we may further assume C = A1, in which case we denote the
coordinates of Ũ by sl, t□,l, u□,l. The equations cutting out Ũ ∩C [n] therefore
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become:

fi,j,m :=

ni−1,j−ni−1,j−1∑
l=0

tmi−1,j,l +

ni,j−ni−1,j∑
l=0

umi,j,l

−
ni,j−1−ni−1,j−1∑

l=0

umi,j−1,l −
ni,j−ni,j−1∑

l=0

tmi,j,l

for 1 ≤ m ≤ ni,j − ni−1,j−1. We will now show that the Jacobian of these
equations has maximal rank by induction on |λ|. For this we pick point
in Ũ ∩ C [n], a box (i0, j0) ∈ λ with (i0 + 1, j0), (i0, j0 + 1) ̸∈ λ and set
λ̃ := λ \ {(i0, j0)}. We now need to show that if for a given tuple of complex
numbers (ai,j,m)i,j,m one has∑

i′,j′,m′

ai′,j′,m′ · ∂ti,j,lfi′,j′,m′ = 0 and
∑

i′,j′,m′

ai′,j′,m′ · ∂ui,j,lfi′,j′,m′ = 0

at that point for all i, j, l, then we must have ai0,j0,m = 0 for all m as the

claim for λ̃ gives the rest. Indeed, looking at partials with respect to ui0,j0,l
the above equations yield in particular∑

m

ai0,j0,m ·mum−1
i0,j0,l

= 0

for all l, which gives ai0,j0,m = 0 by the distinctness of the ui0,j0,l and the
invertibility of the Vandermonde matrix. Furthermore, this implies that
C [n] is pure of dimension

dim (U)−
∑

(i,j)∈λ
i,j≥1

(ni,j − ni−1,j−1)

= n0,0 +
∑

(i,j)∈λ
i≥1

(ni,j − ni−1,j) +
∑

(i,j)∈λ
j≥1

(ni,j − ni,j−1)−
∑

(i,j)∈λ
i,j≥1

(ni,j − ni−1,j−1)

as desired.

Remark 2.5. Note that the proof in particular shows that C [n] is a local
complete intersection. A more thorough study of the geometry of C [n] has
been undertaken in [33], where Proposition 2.4 was independently proved
using slightly different methods. In particular, it is shown that C [n] is con-
nected and reduced and that ϕ is its normalization.

2.2 Description of the fixed loci and virtual normal bundle

In this section we will recall the discussion of [62, §3.3] and explore the
consequences that Proposition 2.4 has for our stable pair calculation.
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Resuming the notation in the introduction we let X = TotC(L1⊕L2) be
the local curve over C with line bundles Li of degree li and T = (C∗)2 the
torus acting on X.

In order to compute the equivariant stable pair theory of X we must
first compute the fixed locus Pn(X, d)

T of the induced T-action.
Indeed, an element [OX → F ] ∈ Pn(X, d)T is the same as an equivariant

stable pair. By pushing it down to C and decomposing it into its weight
spaces, this must be of the shape

s = (si,j) : OX =
⊕
i,j≥0

L−i
1 ⊗ L

−j
2 · t

−i
1 t−j2 −→

⊕
i,j≥0

Fi,j ⊗ L−i
1 ⊗ L

−j
2 · t

−i
1 t−j2

for some coherent Fi,j on C and morphisms si,j : OC → Fi,j . Since F
is of compact support, we must have Fi,j = 0 for all but finitely many
i, j and the stability is equivalent to each Fi,j being pure of dimension 1
(hence locally free) and each si,j having finite cokernel. For any given i, j
this forces either Fi,j = OC(Di,j) for some effective divisors Di,j ⊂ C and
si,j the canonical inclusion or Fi,j = 0 and si,j = 0. We write S ⊂ N2

0

for the set on which the former happens. The compatibility of s with the
multiplication on OX is then equivalent to S = λ for some partition λ and
D□ ⊂ D□′ for any □ ≤ □′ ∈ λ. Therefore [OX → F ] corresponds to an
element (D□)□∈λ ∈ C [n] for n□ = degD□. Since this argument can also be
performed in flat families, one gets:

Proposition 2.6 ([62, Proposition 3.1]). The T-fixed locus of Pn(X, d) is a
disjoint union

Pn(X, d)
T =

∐
λ⊢d

∐
n

C [n],

where the second disjoint union is over those reverse plane partitions n =
(n□)□∈λ satisfying

d(1− g)− n(λ) · l1 − n(λ̄) · l2 + |n| = n.

Furthermore, the K-theory class of the universal stable pair on a component
of the fixed locus C [n] is given by

F =
∑

(i,j)∈λ

ι∗OC×C[n](Di,j)⊗ L−i
1 ⊗ L

−j
2 · t

−i
1 t−j2 ∈ K

0
T(X × C [n]),

where Di,j ⊂ C × C [n] is the universal divisor at the box (i, j) ∈ λ and
ι : C × C [n] ↪→ X × C [n] is the inclusion of the zero-section. We wrote
ti ∈ K0

T(pt) for the K-theory classes associated to the standard coordinate
representations of T.

Using this description and Proposition 2.4 one can now express stable
pair invariants on X in terms of integrals on symmetric products of C:
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Proposition 2.7. Given an insertion of the shape γ = chz1(γ1) . . . chzn(γn)
on X, the associated stable pair invariant in degree d can be written as

(30) ⟨γ⟩X,Td = pd(1−g)
∑
λ⊢d

∑
m=(mλ/µ)λ/µ

mλ/µ≥0

p∥m∥−n(λ)·l1−n(λ̄)·l2
∫
C(m)

γ̃
e(Nm) .

The K-theory class Nm ∈ K0
T
(
C(m)

)
is given by

Nm

=
∑

(i,j)∈λ
(i,j)̸=0

Rπ∗

(
OC×C(m)(Di,j)⊗ L−i

1 ⊗ L
−j
2

)
t−i1 t−j2

+
∑

(i,j)∈λ

Rπ∗

(
OC×C(m) (−Di,j)⊗ Li+1

1 ⊗ Lj+1
2

)
ti+1
1 tj+1

2

−
∑

(i,j),(k,l)∈λ
0≤a,b≤1

(i+a,j+b) ̸=(k,l)

(−1)a+bRπ∗
(
OC×C(m) (Dk,l −Di,j)⊗ Li−k+a1 ⊗ Lj−l+b2

)
ti−k+a1 tj−l+b2 ,

where
D□ =

∑
□∈λ/µ

Dλ/µ

is a sum over universal divisors Dλ/µ ⊂ C ×C(m) and π : C ×C(m) → C(m)

is the projection onto the second factor. Furthermore, we have

γ̃ = ˜chz1(γ1) . . . ˜chzn(γn) ∈ H∗(C(m)),

where

c̃hz(γ)

:= (1−e−t1z)(1−e−t2z)
t1t2

π∗

[
chz(F̃) ·

(
1 + zptC

(
l1B(zt1) + l2B(zt2)

))
· π′∗γ

]
(31)

with ptC ∈ H2(C×C(m)) the pullback of the point class along the projection
π′ : C × C(m) → C to the first factor and

(32) F̃ :=
∑

(i,j)∈λ

OC×C[n](Di,j)⊗ L−i
1 ⊗ L

−j
2 · t

−i
1 t−j2 ∈ K

0
T(C × C [n]).

Proof. Recall that

⟨γ⟩X,Tn,d =

∫
[Pn(X,d)T]vir

γ|
Pn(X,d)T

e(Nvir)
.

36



To define everything on the right hand side recall from [38] that Pn(X, d) has
a perfect obstruction theory which is the morphism in Db(Pn(X, d)) given
by the Atiyah class

E = RHomπ(I, I)∨0 [−1]→ LPn(X,d),

where the target is the cotangent complex LPn(X,d) of Pn(X, d) with I =
[OX×Pn(X,d) → F ] the universal stable pair on X × Pn(X, d) and π : X ×
Pn(X, d) → Pn(X, d) the projection to the second factor. This can be seen
to be T-equivariant [94, Example 4.6] so that the invariant part

ET
∣∣∣
Pn(X,d)T

→ LT
Pn(X,d)

∣∣∣
Pn(X,d)T

= LPn(X,d)T

of the restriction to the fixed locus is again a perfect obstruction theory
and by [7] this induces a virtual class [Pn(X, d)

T]vir ∈ H∗(Pn(X, d)
T) whose

restriction to any connected component C [n] sits in degree 2 · rk
(
ET∣∣

C[n]

)
.

Furthermore, the virtual normal bundle is defined as the K-theory class of
the non-fixed part:

Nvir := (E∨∣∣
Pn(X,d)T

)mov ∈ K0
T(Pn(X, d)

T).

Here, K0 denotes the K-theory of locally free sheaves as opposed to K0 the
K-theory of coherent sheaves. In [62, Section 4] the following identity in
KT

0 (Pn(X, d)
T) was shown:

E∨∣∣
C[n]

=
∑

(i,j)∈λ

Rπ∗

(
OC×C[n](Di,j)⊗ L−i

1 ⊗ L
−j
2

)
· t−i1 t−j2

+
∑

(i,j)∈λ

Rπ∗

(
OC×C[n]] (−Di,j)⊗ Li+1

1 ⊗ Lj+1
2

)
· ti+1

1 tj+1
2

−
∑

(i,j),(k,l)∈λ
0≤a,b≤1

(−1)a+bRπ∗
(
OC×C[n] (Dk,l −Di,j)⊗ Li−k+a1 ⊗ Lj−l+b2

)
· ti−k+a1 tj−l+b2 ,

(33)

where the D□ ⊂ C × C [n] is the universal divisor corresponding to □ ∈ λ
and π : C×C [n] → C [n] is the projection to the second factor. However, the
argument given there also works in K0

T(Pn(X, d)
T) with pushforwards along

equivariant perfect morphisms being defined analogously to [9, §IV.2.12].
We now claim that the virtual class [C [n]]vir = [C [n]] is just the usual fun-
damental class. Indeed, using Lemma 2.8 it suffices to show that C [n] is of
dimension rk

(
ET∣∣

C[n]

)
. Furthermore, one can use Riemann-Roch to calcu-

late this rank:

rk
(
ET
∣∣∣
C[n]

)
= rk

(
Rπ∗

(
OC×C[n](D0,0)

))
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−
∑

(i,j),(k,l)∈λ
0≤a,b≤1

(k,l)=(i+a,j+b)

(−1)a+brk
(
Rπ∗

(
OC×C[n] (Dk,l −Di,j)

))

= n0,0 + 1− g −
∑

(i,j),(k,l)∈λ
0≤a,b≤1

(k,l)=(i+a,j+b)

(−1)a+b (nk,l − ni,j + 1− g)

Using Proposition 2.4 it therefore suffices to show that

1−
∑

(i,j),(k,l)∈λ
0≤a,b≤1

(k,l)=(i+a,j+b)

(−1)a+b = 0.

Indeed, one can deduce this from the fact that the number of pairs (i, j), (k, l)
for which (a, b) = (0, 0), (1, 0), (0, 1) and (1, 1) is d, d− l(λ) = d−λ0, d− l(λ)
and d− λ0 − l(λ) + 1 respectively. This establishes the claim.

Because of the projection formula and Proposition 2.4 we now only need
to show that

(34) ϕ∗m,nchz(γ) = c̃hz(γ)

and Lϕ∗m,nN
vir = Nm. For the second claim one looks at (33) and sees that

this would easily follow from Lϕ∗m,nRπ∗ = Rπ∗L (Id×ϕm,n)
∗ with the maps

coming from the cartesian diagram:

(35)

C × C(m) C × C [n]

C(m) C [n]

π

Id×ϕm,n

π

ϕm,n

As π is flat, ϕm,n and π are Tor-independent and therefore the desired
commutativity of pushforward and pullback follows from [9, Proposition
IV.3.1.1]. To show (34) we recall that

chz(γ) = π̃∗
(
chz(F) · (π̃′)∗γ

)
,

where π̃ : X × C [n] → C [n] and π̃′ : X × C [n] → X are the projection to
the second and first factor respectively. Using equivariant Grothendieck-
Riemann-Roch [3, Corollary after Theorem 1.1] and F = ι∗F̃ for the zero
section ι : C × C [n] ↪→ X × C [n] we obtain

chz(F) = ι∗

(
chz(F̃) · td−1

C/X

)
= ι∗

(
chz(F̃) · (1−e

−(t1+l1ptC )z)(1−e−(t2+l2ptC )z)
(t1+l1ptC)(t2+l2ptC)

)
= (1−e−t1z)(1−e−t2z)

t1t2
ι∗

[
chz(F̃) ·

(
1 + zptC

(
l1B(zt1) + l2B(zt2)

))]
.
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From the projection formula and π = π̃ ◦ ι and π′ = π̃′ ◦ ι it then follows
that

chz(γ)

= (1−e−t1z)(1−e−t2z)
t1t2

π∗

[
chz(F̃) ·

(
1 + zptC

(
l1B(zt1) + l2B(zt2)

))
· π′∗γ

]
,

where pullbacks and pushforwards are along π : C×C [n] → C [n] and π′ : C×
C [n] → C. It now suffices to show that (35) satisfies ϕ∗m,nπ∗ = π∗ (Id×ϕm,n)

∗

in cohomology, which is dual to π∗ (ϕm,n)∗ = (Id×ϕm,n)∗ π
∗ in homology.

This however follows from flat base change [19, Theorem VIII.5.1(2)], which
finishes the proof.

The following Lemma was needed in the above proof and is a well-known
piece of folklore for which the author claims no originality. However, due to
the apparent lack of a reference and for the sake of completeness we give a
full proof.

Lemma 2.8. Let X be of finite type over some field k and of pure dimension
d together with a perfect obstruction theory ϕ : E→ LX of rank rk (E) = d.
It follows that ϕ is a quasi-isomorphism, X is lci and the virtual class must
agree with the fundamental class i.e.

[X]vir = [X] ∈ CHd(X).

Proof. Since this is a local question we may assume that E = [E−1 → E0] for
Ei locally free and that the morphism E→ LX results from a commutative
diagram

E−1 E0

I/I2 ΩM |X

ϕ

δ

where we used τ≥−1LX = [I/I2 → ΩM |X ] for I the ideal sheaf cutting out a
closed embedding X ↪→ M into M non-singular. Recall that E → τ≥−1LX
is an obstruction theory if and only if

E−1 → E0 ⊕ I/I2 → ΩM |X → 0

is exact. After tensoring with the residue field k(x) for some arbitrary x ∈ X
we therefore obtain

dim (I ⊗ k(x)) = dim
(
I/I2 ⊗ k(x)

)
≤ dim(M)− d

meaning that I is locally generated by at most (indeed exactly) dim(M)−
d elements which must form a regular sequence. Therefore X is a local
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complete intersection and I/I2 must be a vector bundle of rank dim(M)−d.
It then follows from rank considerations that

0→ E−1 → E0 ⊕ I/I2 → ΩM |X → 0

is exact i.e. E → τ≥−1LX = LX is a quasi-isomorphism. Finally, [7, Pro-
position 5.3] and the example following it give us [X]vir = [X].

2.3 The main computation

2.3.1 Intersection theory of symmetric products of curves

We now want to compute the integrals appearing in Proposition 2.7. In order
to do that we first need to recall the intersection theory of the symmetric
product of a connected smooth projective curve C of genus g as outlined for
example in [4].

For any m > 0 and fixed c ∈ C we have an embedding

ι : C(m−1) ↪→ C(m)

D 7−→ D + c

of a divisor with cohomology class u ∈ H2(C(m)). Note that u does not
depend on the choice of c as C is connected. More generally, for any n ≥ 0
the subvariety

ιn : C
(m−n) ↪→ C(m)

D 7−→ D +m · c

represents un ∈ H2n(C(m)), which in particular implies
∫
C(m) un = δm,n.

Furthermore, we have the Abel-Jacobi maps

AJm : C(m) −→ Pic0(C)

D 7−→ OC(D −m · c)

to the Jacobian of C, which are compatible with the ιn. It can be shown
that this induces an isomorphism on H1 and so H1(C(m)) = H1(Pic0(C)) =
H1(C). Recall that H1(C) has a symplectic base α1, . . . , αg, β1, . . . , βg ∈
H1(C) i.e. so that

∫
C αiβj = δi,j and

∫
C αiαj =

∫
C βiβj = 0 for all 1 ≤

i, j ≤ g. By abuse of notation we will also denote the pullback of this basis
by αi, βi in H

1(Pic0(C)) and in H1(C(m)). Furthermore, we will denote by
θ ∈ H2(Pic0(C)) the theta divisor [4, §I.4] as well as its pullback along AJm
in H2(C(m)). More explicitly, we have

θ =

g∑
i=1

αiβi.
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We can now state Poincaré’s formula [4, §I.5] which says

(AJm)∗ (1) =

{
θg−m

(g−m)! , if m ≤ g
0, otherwise

In particular, one can rewrite this without case distinction as

(AJm)∗ (1) =
∑

I⊂{1,...,g}
|I|=g−m

∏
i∈I

αiβi.

The following Lemma will be very useful for computations later on:

Lemma 2.9. For any m,n ≥ 0 and I ⊂ {1, . . . , g} we have∫
C(m)

un
∏
i∈I

αiβi = δ|I|+n,m

and for any two distinct subsets I, J ⊂ {1, . . . , g}∫
C(m)

un
∏
i∈I

αi
∏
j∈J

βj = 0.

Proof. For the first integral note that the second factor is pulled back under
the Abel-Jacobi map, which commutes with ιn : C

(m−n) ⊂ C(m). Using the
projection formula we can rewrite the integral as∫

C(m)

un
∏
i∈I

αiβi =

∫
Pic0(C)

(AJm−n)∗ (1)
∏
i∈I

αiβi

=
∑

J⊂{1,...,g}
|J |=g−m+n

∫
Pic0(C)

∏
j∈J

αjβj
∏
i∈I

αiβi,

where we used Poincaré’s formula in the last equality. Now the only sum-
mand that can contribute is the one corresponding to J = Ic, which occurs
in the sum only if m − n = |I|, proving the first claim. The second claim
follows by a similar argument.

Remark 2.10. This means that whenever we are computing an integral on
C(m) we can replace the expression

∏
i∈I αiβi by u

|I| without changing the
value of the integral.

Now denote by D ⊂ C × C(m) the universal divisor of C(m). As shown
in [4, p. 354] one can write it in cohomology as

(36) D = m · ptC + u+ γ
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with ptC and u implicitly pulled back from C and C(m) respectively while
γ is defined as

γ :=

g∑
i=1

(βi × αi − αi × βi) ∈ H2(C × C(m)).

One can check that γ2 = −2ptC · θ and ptC · γ = γ3 = 0. Denoting for any
K-theory class F ∈ K0(X) on a scheme X:

cT (F) :=
∑
i≥0

ci(F) · T rk(γ)−i ∈ H∗(X)[T±]

we now have:

Lemma 2.11. For any tuplem = (mi)
n
i=1 of nonnegative integers, a1, . . . , an ∈

Z and L a line bundle of degree l on C:

cT

(
Rπ∗

(
OC×C(m)

(
n∑
i=1

aiDi

)
⊗ L

))

= exp
(
−

∑n
k,l=1 akalθk,l
T+

∑n
i=1 aiui

)
·

(
T +

n∑
i=1

aiui

)1−g+l+
∑n

i=1 aimi

,

(37)

where π : C × C(m) → C(m) is the projection to the second factor, Di ⊂
C ×C(m) is the universal divisor divisor of the i-th factor, θk,l is defined as

θk,l =

g∑
i=1

αki × βli

and γk is understood to be pulled back from the projection

C(m) =
n∏
i=1

C(mi) → C(mk)

to the k-th factor.

Proof. We closely follow the Proof of [4, Lemma VIII.2.5]. First we write

D =

n∑
i=1

aiDi, M =

n∑
i=1

aimi, u =

n∑
i=1

aiui, γ =

n∑
i=1

aiγi, θ =

n∑
i,j=1

aiajθi,j

and F = Rπ∗
(
OC×C(m) (D)⊗ L

)
for short. Using Grothendieck-Riemann-

Roch we can further compute

ch(F ⊗O(−u)) = π∗

(
eD+lptC−u · tdC

)
= π∗

(
e(M+l)ptC+γ · (1 + (1− g)ptC)

)
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= π∗ ((1 + (M + l − θ)ptC + γ) · (1 + (1− g)ptC))
=M + l + 1− g − θ

where we have used γ · ptC = 0, γ2 = −2ptC · θ and γ3 = 0. Recall further
that the conversion from chern character to chern class reads

∑
k≥0

ck(F) · tk = exp

∑
k≥1

(−1)k−1(k − 1)!chk(F) · tk


and therefore

cT (F ⊗O(−u)) = T rk(F)
∑
k≥0

ck(F ⊗O(−u)) · T−k

= TM+l+1−ge−
θ
T ,

where we have used rk(F) =M+l+1−g which follows from Riemann-Roch.
This finally implies

cT (F) = cT+u(F ⊗O(−u)) = (T + u)M+l+1−ge
− θ
T+u

as desired.

Remark 2.12. Note that one can rewrite (37) as(
T +

∑
i

aiui

)1−g+l

exp

− n∑
k,l=1

θk,l
∂fk(u)/∂ul
fk(u)

 n∏
k=1

fk(u)
mk ,

where we treat ul in

fk(u) =

(
T +

∑
i

aiui

)ak
.

as a formal variable before taking derivatives and as a cohomology class
afterwards.

In order to be able to work with the θk,l as above, we will need the
following Lemma

Lemma 2.13. For any tuple m = (mi)
n
i=1 of nonnegative integers and

tuples a1 =
(
a1i
)s1
i=1

, . . . ,ag = (agi )
sg
i=1 ,b

1 =
(
b1i
)t1
i=1

, . . . ,bg = (bgi )
tg
i=1 , c

1 =(
c1i
)t
i=1

, c2 =
(
c2i
)t
i=1

of numbers in { 1, . . . , n } we have

∫
C(m)

n∏
i=1

uni
i

g∏
j=1

( rj∏
i=1

α
aji
j

sj∏
i=1

β
bji
j

)
t∏
i=1

θc1i ,c2i

n∏
i1,i2=1

ezi1,i2θi1,i2 = 0
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unless sl = tl for all l in which case the integral equals

(−1)
∑g

i=1

ri·(ri−1)
2

∑
∐g

i=1 Si={ 1,...,t }

[um]

n∏
i=1

uni+g
i

∥∥M∥∥g g∏
i=1

∥∥∥(M−1)ai⊔c1Si
,bi⊔c2Si

∥∥∥ ,
where ⊔ denotes the concatenation of tuples and for any set S = {s1 < · · · <
sl} we defined cjS := (cjsi)

l
i=1. Furthermore we setM = (δi,j/ui + zj,i)1≤i,j≤n

and for any matrix N = (ni,j)i,j and tuples of indices a = (al)l, b = (bl)l we
denote Na,b :=

(
nai,bj

)
i,j
.

Proof. Let us first examine the case t = 0. In Remark 2.10 we noted how to
compute integrals of the above kind. First, we have to express the product
of classes pulled back from

∏n
i=1 Pic

0(C) in terms of monomials in the αil, β
i
l .

Then we delete all unbalanced monomials and replace all balanced ones by
the appropriate powers of ui. Furthermore, we can write

g∏
l=1

(
rl∏
i=1

α
al,i
l

sl∏
i=1

β
bl,i
l

)
n∏

i1,i2=1

ezi1,i2θi1,i2

=

g∏
l=1

 rl∏
i=1

α
al,i
l

sl∏
i=1

β
bl,i
l

n∏
i1,i2=1

ezi1,i2α
i1
l β

i2
l

(38)

and the different factors of the outer product do not influence each other
during this process. We can therefore assume g = 1. Any z-monomial in the
above product now corresponds to a directed graph on the vertices 1, . . . , n
as the occurrence of a zi1,i2α

i1βi2 can be viewed as an edge from i2 to i1.
The balancing condition is equivalent to the graph consisting of two parts:

(1) a set of vertex-disjoint non-repeating directed cycles C on the vertices
not in a ∪ b

(2) a set of vertex-disjoint non-self-intersecting directed paths P which
start at the entries in a and end at the entries of b. Furthermore, we
have r = s and therefore there must be a permutation σ ∈ Sr so that
the path starting at ai ends at bσ(i) or ai = bσ(i).

Moreover, both sets are not allowed to have common vertices. The pair
F = (P,C) is precisely what is referred to in [101, Definition 2.3] as a self-
avoiding flow on the complete directed graph on { 1, . . . , n } connecting a to
b. By weighting each edge e = (i → j) by wt(e) = −uizj,i and taking into
account the signs produced by rearranging the α’s and β’s, we can therefore
replace (38) by

(−1)r(r−1)/2 ·
∑
(F,σ)

as above

sgn(F) ·
∏

e∈E(F)

wt(e),

44



where sgn(F) = sgn(P) · sgn(C) with sgn(P) = sgn(σ) and sgn(C) =
(−1)|C| and (−1)r(r−1)/2 the sign that arises out of permuting the factors
of
∏r
i=1

(
αaiβbi

)
back into the order in which they appear in (38). By [101,

Theorem 2.5] this is equal to

(−1)r(r−1)/2 ·

∑
C

sgn(C)
∏

e∈E(C)

wt(e)

 · ∥∥∥(M̃−1
)
a,b

∥∥∥ ,
where M̃ = (δi,j + uizj,i)1≤i,j≤n. Moreover, the second factor is easily seen

to be
∥∥∥M̃∥∥∥ =

∏n
i=1 ui ·

∥∥M∥∥ and so our expression is

(−1)r(r−1)/2 ·
n∏
i=1

ui ·
∥∥M∥∥ · ∥∥∥(M−1

)
a,b

∥∥∥ ,
which establishes the claim in the case t = 0. For the general claim one
simply takes derivatives in zi1,i2 . For this one uses Jacobi’s identity [17,
Lemma A.1(e)] which says that for any tuples a = (a1 < . . . < as),b =
(b1 < . . . < bs) of elements in { 1, . . . , n }:∥∥M∥∥ · ∥∥∥(M−1

)
a,b

∥∥∥ = (−1)
∑r

i=1(ai+bi)
∥∥Mbc,ac

∥∥
and therefore

∂
∂zi1,i2

(∥∥M∥∥ · ∥∥∥(M−1
)
a,b

∥∥∥)
=

{∥∥∥M∥∥∥ · ∥∥∥(M−1
)
a⊔(i1),b⊔(i2)

∥∥∥ , if i1 ̸∈ a and i2 ̸∈ b

0, else

which holds even when the entries of a and b are not in increasing order.

2.3.2 Proof of Theorems 1.24, 1.19(1) and (2)

We now use the results of Section 2.3.1 to derive Theorem 1.24 from Pro-
position 2.7. In addition to Theorem 1.24 we will show the following re-
formulation which will be more useful when proving Theorem 1.19(3) later
on.

Theorem 2.14. We have

⟨chz1(γ1) . . . chzn(γn)⟩
X,T
d = pd(1−g)

∑
λ⊢d
⟨chz1(γ1) . . . chzn(γn)⟩Xλ

∣∣
p□=p
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where ⟨. . . ⟩Xλ ∈ Q(t1, t2)[[p]] is the power series in p = (p□)□∈λ determined
by super-commutativity and

〈
a∏
i=1

chxi(1) ·
b∏
i=1

chyi(pt) ·
g∏
l=1

(
chzl1

(αl)chwl
1
(βl) . . . chzlcl

(αl)chwl
cl
(βl)

)〉X
λ

:=

a∏
i=1

xi ·
∑

∐g
i=−1 Si={ 1,...,a }
□i∈λ for i∈S−1

∏
i∈S−1

(
p□i

∂
∂p□i

) ∏
i∈S−1

E(xi, Y
λ
□i
)

·
∏
i∈S0

(
l1B(xit1) + l2B(xit2)

)
E(xi,Y

λ) ·
b∏
i=1

E(yi,Y
λ)

·
g∏
i=1

(
zi,wi;xSi | Yλ

)
M̃(p)

·A(Yλ)g−1 ·B1(Y
λ)l1 ·B2(Y

λ)l2 ,

(39)

where

M̃(p) =

(
p□

∂Y λ
□′ (p)

∂p□

)
□,□′∈λ

and Yλ =
(
Y λ
□ (p)

)
□∈λ is as in Theorem 2.16.

Proof of Theorem 1.24 and Theorem 2.14. First, we express (30) in terms
of the cohomology classes introduced in Section 2.3.1. For this we fix a
summand corresponding to a partition λ and a tuple m = (mλ/µ)λ/µ as in
Proposition 2.7 and let n := |m|. It follows from (32) that

chz(F̃) =
∑

(i,j)∈λ

exp (z (Di,j − (il1 + jl2)ptC − it1 − jt2))

with Di,j =
∑

(i,j)∈λ/µDλ/µ and Dλ/µ ⊂ C × C(m) the universal divisors.
We recall from (36) that

Dλ/µ = mλ/µ · ptC + uλ/µ + γλ/µ,

where

γλ/µ =

g∑
l=1

(
β1l × α

λ/µ
l − α1

l × β
λ/µ
l

)
.

One can check that

γλ/µ1γλ/µ2 = −ptC ·
(
θλ/µ1,λ/µ2 + θλ/µ2,λ/µ1

)
,

which gives

chz(F̃)
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=
∑

(i,j)∈λ

exp

z ∑
(i,j)∈λ/µ

(mλ/µptC + uλ/µ + γλ/µ)− (il1 + jl2)ptC − it1 − jt2


=
∑

(i,j)∈λ

exp

z ∑
(i,j)∈λ/µ

(uλ/µ + γλ/µ)− it1 − jt2


·
(
1 + z(n(i,j) − il1 − jl2)ptC

)
=
∑

(i,j)∈λ

exp

z ∑
(i,j)∈λ/µ

uλ/µ − it1 − jt2

 · (1 + z(n(i,j) − il1 − jl2)ptC
)

·

1 + z
∑

(i,j)∈λ/µ

γλ/µ − z2ptC
∑

(i,j)∈λ/µ1,λ/µ2

θλ/µ1,λ/µ2


=
∑

(i,j)∈λ

exp

z ∑
(i,j)∈λ/µ

uλ/µ − it1 − jt2

 ·
1− z2ptC

∑
(i,j)∈λ/µ1,λ/µ2

θλ/µ1,λ/µ2

+ z
∑

(i,j)∈λ/µ

(
γλ/µ + (n(i,j) − il1 − jl2)ptC

) .

Finally, using

γλ/µ · α1
l = ptC · α

λ/µ
l

γλ/µ · β1l = ptC · β
λ/µ
l

and (31) we see

chz(1) = z
∑

(i,j)∈λ

E(z, Yi,j) ·

(
ni,j − il1 − jl2 + l1B(zt1) + l2B(zt2)

− z
∑

(i,j)∈λ/µ1,λ/µ2

θλ/µ1,λ/µ2

)

chz(αl) = z
∑

(i,j)∈λ

E(z, Yi,j) ·
∑

(i,j)∈λ/µ

α
λ/µ
l

chz(βl) = z
∑

(i,j)∈λ

E(z, Yi,j) ·
∑

(i,j)∈λ/µ

β
λ/µ
l

chz(pt) = E(y,Y),

where we wrote Y = (Y□)□∈λ for

Yi,j := −it1 − jt2 +
∑

(i,j)∈λ/µ

uλ/µ,
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which using (48) can be written as Y = Y
λ
(u) with u = (uλ/µ)λ/µ. Using

Lemma 2.11 we can further expand the denominator:

1
e(Nm) = A

g−1 ·Bl1
1 ·B

l2
2 ·
∏
λ/µ

F
λ
λ/µ(Y)−mλ/µ · h

for

A(Y) :=
∏

0̸=(i,j)∈λ

Yi,j ·
∏

(i,j)∈λ

(t1 + t2 − Yi,j)

·
∏

(i,j),(k,l)∈λ
0≤a,b≤1

(k,l) ̸=(i+a,j+b)

(at1 + bt2 + Yk,l − Yi,j)(−1)a+b+1
,

B1(Y) :=
∏

(i,j)∈λ

Y i
i,j

(t1+t2−Yi,j)i+1

∏
(i,j),(k,l)∈λ
0≤a,b≤1

(at1 + bt2 + Yk,l − Yi,j)(i−k+a)(−1)a+b

B2(Y) :=
∏

(i,j)∈λ

Y j
i,j

(t1+t2−Yi,j)j+1

∏
(i,j),(k,l)∈λ
0≤a,b≤1

(at1 + bt2 + Yk,l − Yi,j)(j−l+b)(−1)a+b

h := exp

 ∑
λ/µ,λ/µ′

θλ/µ,λ/µ′ ·
∂F

λ
λ/µ(Y)

∂uλ/µ′
/F

λ
λ/µ(Y)

 ,

where F
λ
λ/µ(Y) is as in (49). Using Lemma 2.13 we can see that the contri-

bution of m is the coefficient of um in

P λ(u) ·
∏
λ/µ

F
λ
λ/µ(Y)−mλ/µ ·

∏
λ/µ

uλ/µ ·
∥∥Mskew(u)

∥∥ ,
where

P λ(u) =
a∏
i=1

xi ·
∑

∐g
i=0 Si={ 1,...,a }

(in,jn)∈λ for n∈S0

b∏
i=1

E(yi,Y) ·
g∏
i=1

(
zi,wi;xSi

)′
·
∏
n∈S0

E(xn, Y(in,jn)) ·
(
n(in,jn) − int1 − jnt2 + l1B(xnt1) + l2B(xnt2)

)

·

A(Y) ·
∏
λ/µ

uλ/µ ·
∥∥Mskew(u)

∥∥g−1

·B1(Y)l1 ·B2(Y)l2 ,

(40)
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where

(z,w;x)′ :=(−1)n
∑

µ(j)=(λ/µ
(j)
i )i

j=1,2,3,4

□(1)
i ∈λ/µ(1)i ,□(2)

i ∈λ/µ(2)i

□(3)
i ∈λ/µ(3)i ,λ/µ

(4)
i

∥∥∥(Mskew(u)
−1
)
µ(1)⊔µ(3);µ(2)⊔µ(4)

∥∥∥

·
m∏
i=1

ziwiE(zi, Y□(1)
i

)E(wi, Y□(2)
i

) ·
n∏
i=1

xiE(xi, Y□(3)
i

)

and

Mskew(u) :=

(
δλ/µ,λ/µ′

uλ/µ
+

∂F
λ
λ/µ′ (Y)/∂uλ/µ

F
λ
λ/µ′ (Y)

)
λ/µ,λ′/µ′

.

By using multivariate Lagrange inversion [31, Theorem A] we see that this
is the same as the coefficient of pm in P λ(u(p)) where u(p) =

(
uλ/µ(p)

)
λ/µ

is the unique power series in p =
(
pλ/µ

)
λ/µ

satisfying uλ/µ(p) = O(p>0)

and
pλ/µ = uλ/µ(p) · F

λ
λ/µ(Y

λ
(u(p))).

for any λ/µ. Note however that neither the expression P λ(u) nor the ac-
companying prefactor

(41) p∥m∥−n(λ)·l1−n(λ̄)·l2 = p|n|−n(λ)·l1−n(λ̄)·l2

in (30) depend on m, but rather on n. Therefore we may consider the sum
over all coefficients of pm with m ⊢ n for a fixed n. This sum can be
expressed as: ∑

m⊢n
[pm]P λ(u(p)) = [pn]P λ(u

λ(p))

with uλ(p) as in Theorem 2.16(3) and p = (p□)□∈λ a new set of variables.
As a result, Y is the multivariate Bethe root Yλ(p) constructed in Theorem
2.16. Using Lemmas 2.21 and 2.22 we see that

A(Y) ·
∏
λ/µ

uλλ/µ(p) ·
∥∥Mskew(u

λ(p))
∥∥ = A(Y) ·

∥∥M(Y)
∥∥

and
(z,w;x)′ = (z,w;x | Y)M(Y)−1 .

By making these substitutions in P λ we obtain an expression that only
depends on Yλ as opposed to uλ. In that expression we can furthermore
replace n(i,j) by n(i,j) + it1 + jt2. Because of the shift in the prefactor (41)
and

B1(Y) = B1(Y) ·
∏

(i,j)∈λ

F
λ
λ/µ(Y)i =

∏
(i,j)∈λ

pi(i,j) ·B1(Y)

49



B2(Y) = B2(Y) ·
∏

(i,j)∈λ

F
λ
λ/µ(Y)j =

∏
(i,j)∈λ

pj(i,j) ·B2(Y)

we may write〈
a∏
i=1

chxi(1) ·
b∏
i=1

chyi(pt) ·
g∏
l=1

(
chzl1

(αl)chwl
1
(βl) . . . chzlcl

(αl)chwl
cl
(βl)

)〉X
d

= pd(1−g)
∑
λ⊢d

Pλ|p□=p

for

Pλ =

a∏
i=1

xi ·
∑

∐g
i=−1 Si={ 1,...,a }
□i∈λ for i∈S−1

∏
i∈S−1

(
p□i

∂
∂p□i

) ∏
i∈S−1

E(xi, Y
λ
□i
)

·
∏
i∈S0

(
l1B(xit1) + l2B(xit2)

)
E(xi,Y

λ) ·
b∏
i=1

E(yi,Y
λ)

·
(
zi,wi;xSi | Yλ

)
M(Yλ)−1

·A(Yλ)g−1 ·B1(Y
λ)l1 ·B2(Y

λ)l2 .

(42)

In order for this expression to agree with (18) and (39) we need

M(Yλ)−1 =

(
p□

∂Y λ
□′

∂p□

)
□,□′∈λ

,

which can be seen by applying partials p□
∂
∂p□

to the Bethe equations (44)
i.e.

p□′ = F□′(Yλ(p)).

Using Theorem 1.24 we can now prove Theorem 1.19 part (1) and (2).

Proof of Theorem 1.19(1),(2). We first need to show that there is a locally
closed subscheme Be ⊂ AdQ(t1,t2,p)

with the following properties:

(1) Up to rearranging the coordinates, its K-valued points are exactly the
Bethe roots for partitions of size d.

(2) It is preserved under the involution

ti 7→ ti, p 7→ p−1, Yi 7→ t1 + t2 − Yi.
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Conjecture C implies that the Bethe equations (closed condition) together
with full admissibility (open condition) cut out such a subscheme. In the
absence of Conjecture C, we use [83, Theorem 2], which implies that

⟨chz1(pt) · · · chzn(pt)⟩C
2×E,T ∈ Q(t1, t2, p)[[z1, . . . , zn]]

for E the elliptic curve and

⟨chz1(pt) · · · chzn(pt)⟩C
2×E,T

∣∣∣
p 7→p−1

= ⟨ch−z1(pt) · · · ch−zn(pt)⟩C
2×E .

Theorem 1.24 also gives

[zk11 · · · z
kn
n ]

n∏
i=1

t1t2

(e
zit1
2 − e−

zit1
2 )(e

zit2
2 − e−

zit2
2 )
⟨chz1(pt) · · · chzn(pt)⟩C

2×E,T

=
∑
λ⊢d

n∏
i=1

pki

(
Yλ − t1 + t2

2
1

)
with 1 = (1, . . . , 1) and pi the i-th power sum polynomial. Note furthermore
that the left hand side gets multiplied by (−1)k1+...+kn when substituting
p 7→ p−1. Since power sum polynomials generate the ring of symmetric
functions, we get that

Emn =
∑
λ⊢d

∏
□∈λ

(
n

(
Y λ
□ −

t1 + t2
2

)
+ 1

)m
is in Q(t1, t2, p) for any n ∈ Z and m ≥ 0 and satisfies Emn |p 7→p−1 = Em−n. It
follows from Newton’s identities that the polynomial

Pn(T ) =
∏
λ⊢d

(
T −

∏
□∈λ

(
n

(
Y λ
□ −

t1 + t2
2

)
+ 1

))

is in Q(t1, t2, p)[T ] and satisfies Pn|p 7→p−1 = P−n. As a result, the subscheme

Be ⊂ AdQ(t1,t2,p)
cut out by

Pn

(∏
i

(
n

(
Yi −

t1 + t2
2

)
+ 1

))
= 0 for all n ∈ Z

satisfies (2). Furthermore, for any K-valued point Y of Be, there must be
a Bethe root Yλ so that∏

i

(
n

(
Yi −

t1 + t2
2

)
+ 1

)
=
∏
□∈λ

(
n

(
Y λ
□ −

t1 + t2
2

)
+ 1

)
for infinitely many n ∈ Z, which implies Y = Yλ up to permutation of
coordinates. This gives us Be as desired.
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Since K is algebraically closed and Be has finitely many K-points, it
follows thatBe is 0-dimensional and thus all its points areQ(t1, t2, p)-valued.
As the absolute Galois-group

G := Aut(Q(t1, t2, p)/Q(t1, t2, p))

preserves Be it thus also preserves the Bethe roots and acts on them by
a combination of permuting the coordinates and permuting the partitions.
But as (21) is invariant under such permutations, all descendent invariants

on local curves must be in Q(t1, t2, p)
G
= Q(t1, t2, p) as desired.

To prove symmetry, we deduce from (2) that Y 7→ (t1 + t2 − Yi)i
is an isomorphism from Be to the base-change of Be by Q(t1, t2, p) →
Q(t1, t2, p), p 7→ p−1. Hence replacing p by p−1 amounts to replacing Y λ

□ by
t1 + t2 − Y λ

□ since permutations of the partitions or boxes do not mat-
ter. Therefore we need to look at all the factors in (18) and see how
Y 7→ (t1 + t2 − Yi)i changes them. Indeed, A(Y) and M(Y) stay invariant
under this substitution while Bi(Y) gets replaced by

∏
j Fj(Y)−1Bi(Y). In

case no descendents of 1 are present this will give part of the p−dβ prefactor
noting that dd·[C](X) = d · (l1 + l2 + 2 − 2g). In general we will get extra
summands from ∇Y

i ,
∏
j

Fj(Y)−1

 = −
∏
j

Fj(Y)−1,

which can be absorbed into the product over S0 by using

−B(x)− 1 = B(−x).

Finally, all descendent variables get negated because of

E(z, t1 + t2 −X) = E(−z,X).

Remark 2.15. One way to prove Conjecture C would be to carry out the
original version of the algebraic Bethe Ansatz for ILW1 - see [52] for partial
progress towards this. For that one must show that any fully admissible
solution of the Bethe equations yields an eigenvector so that the eigenvalues
of the integrals of motion are all the symmetric functions in the coordinates
of the solution. As a result, each joint eigenspace contains the eigenvector
of at most one such solution (up to permutation), which bounds the number
of solutions from above by

d! · dim (ILW1)d = d! ·#{λ ⊢ d},

which is the number of Bethe roots as in Theorem 1.21. Though there are
other versions of algebraic Bethe Ansatz such as the Mellin-Barnes approach
of [1], they do not imply Conjecture C as far as we know.
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One other avenue towards Conjecture C might be to use a strategy sim-
ilar to the following proof of Proposition 1.23:

Proof of Proposition 1.23. Let Y = (Yi)
d
i=1 be an admissible solution of the

Bethe equations over K. We first show Yi = O(p0) for any i. Indeed, let
S ⊂ {1, . . . , d} be the set of indices that have negative valuation. We then
get

p|S| =
∏
i∈S

Fi(Y)

=
∏
i∈S

Yi
t1+t2−Yi

∏
0≤a,b,c≤1
(a,b)̸=(0,0)

i∈S
j ̸=i

((−1)c(at1 + bt2) + Yj − Yi)(−1)a+b+c

=
∏
i∈S

Yi
t1+t2−Yi

∏
0≤a,b,c≤1
(a,b)̸=(0,0)

i∈S
j ̸∈S

((−1)c(at1 + bt2) + Yj − Yi)(−1)a+b+c

.

As the right hand side is easily seen to have valuation 0, this must also be
true for the left hand side and thus S = ∅.

Let Be ⊂ Kd be the subset of admissible solutions to the Bethe equa-
tions. The image of any of the coordinate projections πi : Be ⊂ Kd → K has
constructible image by Chevalley’s theorem [5, Tag 00FE] which must be a
finite set or the complement of a finite set. However, since the image also
lies in the set of Puiseux series of nonnegative valuation, it could not have
been the complement of a finite set. Therefore any coordinate projection
must have finite image and so Be must be a finite set.

To show the claim about the initial coefficients, we use Y to define a
weighted directed graph on the set {1, . . . , d} of vertices. An edge going
from i to j exists if and only if Yj − Yi has p0-coefficient equal to −t1,−t2
or t1 + t2. We then set the weight to be wi→j := ν(gi,j(Y)) > 0 where ν is
the canonical valuation on K. As a result, we have

ci =
∑
j→i

wj→i −
∑
i→j

wi→j ,

where

ci =


1− ν(Yi), if Yi = O(p>0)

1 + ν(t1 + t2 − Yi), if Yi = t1 + t2 +O(p>0)

1, else.

It now suffices to prove that any vertex i0 is connected to a vertex j with
Yj = O(p>0). Indeed, take Γ to be the subgraph obtained by starting with
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i0 and repeatedly adjoining all edges that end in a vertex of Γ. It follows
that

0 =
∑
i→j
in Γ

(wi→j − wi→j) =
∑
i∈Γ

∑
j→i

wj→i −
∑
i→j
in Γ

wi→j


≥
∑
i∈Γ

∑
j→i

wj→i −
∑
i→j

wi→j

 =
∑
i∈Γ

ci

as a result one must have ci ≤ 0 for some i ∈ Γ which by the definition of ci
must satisfy Yi = O(p>0). This concludes the proof.

2.4 More on Bethe roots

We now want to prove Theorem 1.21 and Theorem 1.19(3). As mentioned in
the introduction, one would like to prove Theorem 1.19(3) by first showing
that Y λ

□ (p) is holomorphic at p = 0 and can be locally extended13 to all of

C \ { ζ | (−ζ)n = 1 for some 1 ≤ n ≤ d } .

Indeed, if all factors in (18) were polynomial in Yλ, then this would already
be enough, however most are merely rational functions and so we have no a
priori control over their poles. Luckily, one can circumvent this problem at
the cost of working with a multivariate version of the Bethe roots and using
(39) instead of (18).

2.4.1 Multivariate Bethe roots

We begin by showing a multivariable generalization of Theorem 1.21. For
this let k = Q(t1, t2) and λ be a fixed partition. For the rest of this subsection
we will fix a collection p = (p□)□∈λ of possibly repeating variables which
are otherwise free. Let ν be the non-archimedean valuation on k[[p]] given
for any

x =
∑

n=(n□)□∈λ
n□≥0

an · pn ∈ k[[p]]

by

ν(x) := inf

{
m

∣∣∣∣∣ there is n so that an ̸= 0 and m =
∑
□∈λ

n□

}
∈ N ∪ {∞}.

13By this we mean that it can be analytically continued to any simply connected open
subset thereof. However, this continuation is usually not unique. Indeed, see [92] for an
numerical investigation of the monodromy.
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Furthermore let K be any field containing k[[p]] equipped with an exten-
sion of ν which we will also denote by ν. In particular if n = 1 one may
choose K = Q(t1, t2){{p}} to be the field of Puiseux series with its canonical
valuation.

Theorem 2.16. There is a tuple Yλ(p) = (Y λ
□ (p))□∈λ of power series

Y λ
□ (p) ∈ k[[p]] characterized uniquely via any of the following equivalent

descriptions:

(1) Yλ ∈ Kd is the unique tuple such that

� it is admissible in the sense that for any □ ∈ λ we have Y λ
□ ̸∈

{0, t1+t2} and for □ ̸= □′ ∈ λ we have Y λ
□ −Y λ

□′ ̸∈ {t1, t2, t1+t2}.
� one has

(43) ν
(
Y λ
(i,j) + it1 + jt2

)
> 0

� it satisfies the multivariate Bethe equations i.e. for every □ ∈ λ
we have

p□ = F□(Y
λ),(44)

where
F□(Y) = f□(Y)

∏
□̸=□′∈λ

g□′,□(Y)

with
f□(Y) = Y□

t1+t2−Y□

and

g□,□′(Y) =
∏

0≤a,b,c≤1
(a,b)̸=(0,0)

((−1)c(at1 + bt2) + Y□ − Y□′)(−1)a+b+c

(2) It can be written as

Yλ(p) = Ỹλ(vλ),(45)

where for any tuple v = (v□)□∈λ we define Ỹλ(v) = (Ỹ λ
□ (v))□∈λ by

(46) Ỹ λ
(i,j)(v) := −it1 − jt2 +

∑
λ/µ conn. skew

(i,j)∈λ/µ

∏
□∈λ/µ

v□

and vλ = (vλ□)□∈λ is the unique tuple of power series in k[[p]] so that
vλ□ = O(p>0) for all □ ∈ λ and

p□ = vλ□ · F̃ λ□(Ỹλ(vλ)),
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where
F̃ λ□(Y) = f̃□(Y)

∏
□̸=□′∈λ

g̃□′,□(Y)

with

f̃□(Y) :=
Y

1−δ□,(0,0)
□
t1+t2−Y□

and

g̃□,□′(Y) = −
∏

0≤a,b,c≤1
(a,b)̸=(0,0)

□̸=□′+(−1)c(a,b)

(at1 + bt2 + (−1)c(Y□ − Y□′))(−1)a+b+c

.

(3) It can be written as

Yλ(p) = Y
λ
(uλ),(47)

where for any tuple u = (uλ/µ)λ/µ we define Y
λ
(u) = (Y

λ
□(u))□∈λ by

(48) Y
λ
(i,j)(u) := −it1 − jt2 +

∑
λ/µ conn. skew

(i,j)∈λ/µ

uλ/µ

and where uλ = (uλλ/µ)λ/µ is the unique tuple of power series in k[[p]]

so that uλλ/µ = O(p>0) for all □ ∈ λ and∏
□∈λ/µ

p□ = uλλ/µ · F
λ
λ/µ(Y

λ
(uλ)),

where

(49) F
λ
λ/µ(Y) =

∏
□∈λ/µ

f̃□(Y)
∏

□∈λ/µ
□′ ̸∈λ/µ

g̃□′,□(Y).

(4) Y λ
□ (p) is the coefficient of

∏
□∈λ v

−1
□ in

Ỹ λ
□ (v) ·

∥∥∥∂F□′ (Ỹλ(v))/∂v□′′

F□′ (Ỹλ(v))

∥∥∥ · ∏
□′∈λ

1

1−p□′ ·F□′ (Ỹλ(v))−1

all of whose p-coefficients turn out to be Laurent series in v. Further-
more, Ỹλ(v) is as in (46).

Remark 2.17. Theorem 1.21 follows from Theorem 2.16 by taking p =
(p, · · · , p). In particular, the recursion of Theorem1.21(2) is just Banach
fixed point iteration.
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Proof. Indeed, the tuples in (2) and (3) are not just unique over k[[p]], but
also over K. We will only show this for (2) as (3) is similar. For this note
that on the set

U :=
{
v = (v□)□∈λ ∈ Kd

∣∣∣ ν(v□) > 0 for all □ ∈ λ
}

the map G : U → U ,v 7→ (G□(v))□∈λ given by

G□(v) := p□ · F̃ λ□(Ỹλ(v))−1

is a contraction with respect to the metric induced by ν. Therefore the
Banach fixed point theorem implies that there can only be at most one fixed
point and since the complete subset U ∩ k[[p]]d is invariant with respect to
G it follows that this fixed point exists and its coordinates must be power
series.

To show the uniqueness in (1) and the equivalence of (1), (2) and (3)
it will suffice to establish bijections (indeed we will give isomorphisms of
varieties) between

Be :=

{
Y = (Y□)□∈λ ∈ Kd

∣∣∣∣ Y is admissible and
for all □ ∈ λ : p□ = F□(Y)

}
and

B̃e :=

{
v = (v□)□∈λ ∈ Kd

∣∣∣∣∣ Ỹλ(v) is admissible and for all □ ∈ λ :
p□ = v□ · F̃ λ□(Ỹλ(v))

}

and

Be :=

 u = (uλ/µ)λ/µ ∈
∏
λ/µ

K

∣∣∣∣∣∣ Y
λ
(u) is admissible and for all λ/µ :∏

□∈λ/µ p□ = u□ · F
λ
□(Y

λ
(u))


so that the conditions ν(Yi,j + it1 + jt2) > 0, ν(v□) > 0 and ν(uλ/µ) > 0

become equivalent and Y = Ỹλ(v) = Y
λ
(u). We claim that

B̃e←→ Be

v 7−→ u(v) = (uλ/µ(v))λ/µ

v(u) = (v□(u))□∈λ ←− [ u

for
v□(u) := p□ · F̃ λ□(Y

λ
(u))−1

and
uλ/µ(v) :=

∏
□∈λ/µ

v□
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is one such bijection. Indeed, we have

Y
λ
(u(v)) = Ỹλ(v),

which shows the well-definedness of u(v) and v(u(v)) = v. For the rest can
use g̃□,□′(Y) = g̃□′,□(Y)−1 to see that

F
λ
λ/µ(Y) =

∏
□∈λ/µ

F̃ λ□(Y)

and therefore

uλ/µ(v(u)) =
∏

□∈λ/µ

(
p□ · F̃ λ□(Y

λ
(u))−1

)
=

∏
□∈λ/µ

p□·F
λ
λ/µ(Y

λ
(u))−1 = uλ/µ,

which gives the rest. Finally, it follows from Lemma 2.20 that

B̃e −→ Be

v 7−→ Ỹλ(v)

is a bijection with inverse Y 7→ ṽλ(Y) and for the unique v with ν(v□) > 0

one has ν
(
Ỹ λ
(i,j)(v) + it1 + jt2

)
> 0. For the converse observe that for

any Y = (Y□)□∈λ with ν
(
Y(i,j) + it1 + jt2

)
> 0 one has ν(v□(Y)) = 1 −

ν(F̃ λ□(Y)) = 1 > 0 and therefore Y is also unique.
It remains to prove the formula in ((4)) forYλ as in ((1)), ((2)) and ((3)).

For this we note that the characterization ((2)) can be seen as an inversion of
power series. As F̃ λ□(Ỹ

λ(0)) ̸= 0 we can use multivariate Lagrange inversion
in the shape of [31, Theorem A] to conclude that for any tuple of natural
numbers n = (n□)□∈λ we have

[pn]Y λ
□ (p)

= [vn]

(
Ỹλ

□(v)
∏
□′∈λ

F̃ λ□′(Ỹλ(v))−n□′

∥∥∥∥δ□′,□′′ + v□′
∂F̃λ

□′′ (Ỹ
λ(v))/∂v□′

F̃λ
□′′ (Ỹ

λ(v))

∥∥∥∥
)

= [vn−1]

(
Ỹλ

□(v)
∏
□′∈λ

F̃ λ□′(Ỹλ(v))−n□′
∥∥∥∂F□′′ (Ỹλ(v))/∂v□′

F□′′ (Ỹλ(v))

∥∥∥)

= [v−1]

(
Ỹλ

□(v)
∏
□′∈λ

F λ□′(Ỹλ(v))−n□′
∥∥∥∂F□′′ (Ỹλ(v))/∂v□′

F□′′ (Ỹλ(v))

∥∥∥) ,
where we used v□ ·F̃ λ□(Ỹλ(v)) = F λ□(Ỹ

λ(v)) in the second and third equality
which follows from Lemma 2.20. After summing over n we get the claimed
formula.
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2.4.2 Proof of Theorem 1.19(3)

For the rest of this section we will fix an embedding Q(t1, t2) ↪→ C. Let
p = (p1, . . . , pd) to be a tuple of free variables (without repetitions). We
then take Yλ(p) to be the multivariate Bethe roots described in Theorem
2.16 where p is re-indexed by the boxes of λ in an arbitrary way. Our first
step is to show:

Lemma 2.18. The coordinates Yλ
□(p) ∈ C[[p]] of the multivariate Bethe

roots Yλ(p) are holomorphic near the origin and can be locally analytically
continued to any point in the complement of

X =

{
(pi)i ∈ Cd

∣∣∣∣∣ there exists ∅ ≠ S ⊂ { 1, . . . , d } so that
∏
i∈S

(−pi) = 1

}
.

Proof. We consider the subset Z ⊂ Cd × Cd consisting of (Y,p) so that Y
is admissible, the multivariate Bethe equations

pi = Fi(Y)

are satisfied and so that the Jacobian
(
∂Fi(Y)
∂Yj

)
i,j

is invertible. As a result, Z

is smooth of dimension d. Since the multivariate Bethe roots come as inver-
sions of convergent power series they themselves converge in a small enough
neighborhood. Furthermore, they are admissible and have a nonvanishing
Jacobian determinant on the level of power series which implies that there is
an open subset of Cd on which they all give sections of π2 : Z → Cd. There-
fore π2 is dominant and on the complement of some big enough proper
algebraic subset Y ⊂ Cd it is also finite [36, Exercise II.3.7], flat [5, Tag
052A], unramified (characteristic 0) and hence a holomorphic covering. All
Bethe roots therefore admit local analytic continuations to any point in this
complement.

By Riemann’s extension theorem [34, §1] one now only needs to show
that these stay bounded when approaching any point in the complement of
X. For this let p(n) be a sequence of points in Cd \ Y converging to a point
p ∈ Cd \X and assume that each Y λ

□ (p(n)) either stays bounded or diverges
to ∞. Let S ⊂ { 1, . . . , d } be the set of indices where the latter happens.
We then have ∏

i∈S
p
(n)
i =

∏
i∈S

fi(Y
λ(p(n)))

∏
i∈S
j ̸=i

gj,i(Y
λ(p(n)))

=
∏
i∈S

fi(Y
λ(p(n)))

∏
i∈S
j ̸∈S

gj,i(Y
λ(p(n))),

where we used gj,i(Y) = gi,j(Y)−1 in the second equality. Since the right
hand side converges to (−1)|S| we must have S = ∅.
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This lets us control the poles of most of the factors appearing in (39).
The only ones that need to be dealt with in more detail are A, B1 and B2.

Lemma 2.19. For any λ the germs A(Yλ(p)), B1(Y
λ(p)) and B2(Y

λ(p))
can be locally analytically continued to all of (C∗)d \ X so that the latter
two have no zeros. Here X is as in Lemma 2.18.

Proof. Viewing A(Y) purely as an element of Q(t1, t2, Y1, . . . , Yd) it was
observed in the proof of Theorem 2.14 that for any partition λ and any
re-indexing of Y by the boxes of λ one can write

A(Y) =
∏

(i,j),(k,l)∈λ
0≤a,b≤1

(k,l)̸=(i+a,j+b)

(at1 + bt2 + Yk,l − Yi,j)(−1)a+b+1 ·
∥∥Mskew(u(ṽ

λ(Y)))
∥∥

·
∏

0̸=(i,j)∈λ

Yi,j ·
∏

(i,j)∈λ

(t1 + t2 − Yi,j) ·
∏
λ/µ

uλ/µ(ṽ
λ(Y))

with notation as in Lemma 2.22. It follows from this that the denominator
of A(Y) can therefore consist only of products of expressions of the shape
at1 + bt2 + (−1)c(Y(i,j)− Y(k,l)) where (i, j) ̸= (k+ (−1)ca, l+ (−1)cb). Note
that these factors heavily depend on the indexing of the Y(i,j), however A(Y)
is symmetric in Y and so the set of possible factors in the denominator also
has to be invariant under index change. Indeed, this excludes all factors and
as a result A(Y) must actually be in Q(t1, t2)[Y1, . . . , Yd]. Lemma 2.18 now
implies the first part of the claim.

For the rest we will only examine B1 as B2 is similar. The function
B1(p) := B1(Y

λ(p)) is certainly meromorphic. We aim to show that it
extends holomorphically to any point p0 ∈ (C∗)d \X and is not zero there.
For this we define an equivalence relation on { 1, . . . , d } by

i ∼ j if and only if Y λ
i (p0)− Y λ

j (p0) ∈ Z · t1 + Z · t2.

Let S0, S1, . . . , Sn be the equivalence classes so that S0 is the set of i with
Y λ
i (p0) ∈ Z · t1 + Z · t2 if there are such i and otherwise we artificially set
S0 = ∅. We further choose elements s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn and take
ι : { 1, . . . , d } → Z to be the map so that for i ∈ S0 one has

Y λ
i (p0) + ι(i)t1 ∈ Z · t2

and for any i ∈ Sj with j > 0 we need

Y λ
i (p0)− Y λ

sj (p0) + ι(i)t1 ∈ Z · t2.

For p in a dense open subset of Cd one now has:

d∏
i=1

p
ι(i)
i B1(p) =

d∏
i=1

Fi(Y
λ(p))ι(i)B1(p)
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= ±
d∏
i=1

Y λ
i (p)ι(i)

(t1+t2−Y λ
i (p))ι(i)+1

·
∏
i ̸=j

0≤a,b≤1

(
at1 + bt2 + Y λ

j (p)− Y λ
i (p)

)(ι(i)−ι(j)+a)(−1)a+b

.

As a result, none of the factors in the second product are zero at p0. The
factors in the first product may only vanish for i ∈ S0 so that Y λ

i (p0) = 0 or
Y λ
i (p0) = t1 + t2. However, in the first case we have ι(i) = 0 and ι(i) = −1

in the second - in each case the vanishing factor is removed. Therefore the
whole product is holomorphic and non-vanishing near p0.

In case our local curve has genus at least 1 it now follows from (39)
and the previous two Lemmas that Pλ is holomorphic on (C∗)d \X and the
restriction along p□ = p can only have poles at p = 0 or where −p is an
n-th root of unity for 1 ≤ n ≤ d. This finishes the proof of Theorem 1.19(3)
in this case. In order to similarly deduce the g = 0 case we would need to
know that A(Yλ(p)) also never vanishes on (C∗)d \X, but it is not clear to
us how to show this. However, since P1 has only even cohomology classes
we can use [82, Theorem 5], which establishes the pole statement in that
case.

2.5 Auxiliary lemmas

Let Q(t1, t2) ⊂ K be any field extension.

Lemma 2.20. The morphism

AdK ⊃ {Y = (Y□)□∈λ | Y is admissible } −→ AdK
Y 7−→ ṽλ(Y),

where ṽλ(Y) = (ṽλ□(Y))□∈λ with
(50)

ṽλ□(Y) = Y
δ□,0

□

∏
0≤a,b,c≤1
(a,b)̸=(0,0)

□′:=□+(−1)c(a,b)∈λ

(at1 + bt2 + (−1)c(Y□′ − Y□))(−1)a+b+c

is an open immersion with image

U =
{
v = (v□)□∈λ

∣∣∣ Ỹλ(v) is admissible
}

on which Ỹλ defined as in (46) is the inverse.

Proof. It suffices to show Ỹλ(ṽλ(Y)) = Y. Indeed, this would imply that
the Jacobian of Y 7→ ṽλ(Y) is invertible everywhere which makes the map
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étale and therefore flat. As it is also a monomorphism, [5, Tag 06NC] implies
that it must be an open immersion and hence for any v in its image Ỹλ(v)
must be admissible and ṽλ(Ỹλ(v)) = v.

Assume the claim has been shown for any partition of smaller size and
let Y = (Y□)□∈λ be an admissible tuple and (i0, j0) ∈ λ be an arbitrary box.
First, we define for any λ/µ

v[λ/µ] :=
∏

□∈λ/µ

ṽλ□(Y)

= Y
[(0,0)∈λ/µ]
(0,0)

∏
□∈λ/µ,□′ ̸∈λ/µ

0≤a,b,c≤1
□′=□+(−1)c(a,b)

(at1 + bt2 + (−1)c(Y□′ − Y□))(−1)a+b+c

,

where [P ] is defined as

(51) [P ] :=

{
1, if P is true

0, if P is false

and we used that any factor of (50) occuring in the first product cancels if
it involves boxes □,□′ ∈ λ/µ. We now want to prove

(52) Y(i0,j0)
!
= −i0t1 − j0t2 +

∑
(i0,j0)∈λ/µ

v[λ/µ].

The claim is trivial if (i0, j0) = (0, 0) hence we may assume without losing
generality that i0 > 0. Let λ′ be the partition λ′ = λ1 ≥ . . . ≥ λl(λ)−1 which
has degree |λ′| = |λ| − λ0 < |λ|. We will identify the Young diagram of
λ′ with the set of boxes (i, j) ∈ λ with i > 0. Using this identification we
denote Y′ := (Y□)□∈λ′ and

v′[λ′/µ′] :=
∏

□∈λ′/µ′
ṽλ

′
□ (Y′).

In this case one can express the right hand side of (52) in the following way:

− i0t1 − j0t2 +
∑

(i0,j0)∈λ′/µ′

∑
λ/µ s.t.

(λ/µ)∩λ′=λ′/µ′

v[λ/µ]

= −i0t1 − j0t2 + Y(0,0)

+
∑

(i0,j0)∈λ′/µ′
v′[λ′/µ′]

(
t1+Y(1,0)−Y(0,0)

Y(1,0)

)δλ′/µ′,λ′ λ1−1∏
l=hλ′/µ′
l>0

t1+Y(1,l)−Y(0,l)
t1+t2+Y(1,l)−Y(0,l−1)

+
∑

(i0,j0)∈λ′/µ′
v′[λ′/µ′]

(
t1+Y(1,0)−Y(0,0)

Y(1,0)

)δλ′/µ′,λ′ λ1−1∑
j=hλ′/µ′
j>0

t2+Y(0,j)−Y(0,j−1)

t1+t2+Y(1,j)−Y(0,j−1)
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·
j−1∏

l=hλ′/µ′
l>0

t1+Y(1,l)−Y(0,l)
t1+t2+Y(1,l)−Y(0,l−1)

= −i0t1 − j0t2 + Y(0,0)

+
∑

(i0,j0)∈λ′/µ′
v′[λ′/µ′]

(
t1+Y(1,0)−Y(0,0)

Y(1,0)

)δλ′/µ′,λ′ λ1−1∏
l=hλ′/µ′
l>0

t1+Y(1,l)−Y(0,l)
t1+t2+Y(1,l)−Y(0,l−1)

+
∑

(i0,j0)∈λ′/µ′
v′[λ′/µ′]

(
t1+Y(1,0)−Y(0,0)

Y(1,0)

)δλ′/µ′,λ′ λ1−1∑
j=hλ′/µ′
j>0

(
1− t1+Y(1,j)−Y(0,j)

t1+t2+Y(1,j)−Y(0,j−1)

)

·
j−1∏

l=hλ′/µ′
l>0

t1+Y(1,l)−Y(0,l)
t1+t2+Y(1,l)−Y(0,l−1)

= −i0t1 − j0t2 + Y(0,0) +
∑

(i0,j0)∈λ′/µ′ ̸=λ′
v′[λ′/µ′] + t1 + Y(1,0) − Y(0,0)

= −(i0 − 1)t1 − j0t2 +
∑

(i0,j0)∈λ′/µ′
v′[λ′/µ′],

where we set

hλ′/µ′ := min
{
j
∣∣ (1, j) ∈ λ′/µ′ } ∈ N0 ∪ {∞ } .

The claim now follows by induction on |λ|.

We now determine the Jacobian determinant of the above bijection. This
comes up in the proof of Theorem 2.14.

Lemma 2.21. For any admissible Y as above, the Jacobian matrix of the
above map i.e.

M =
(
∂ṽλ□(Y)

∂Y□′

)
□,□′∈λ

has determinant ∏
(i,j)̸=(k,l)∈λ

0≤a,b≤1
(k,l)=(i+a,j+b)

(at1 + bt2 + Yk,l − Yi,j)(−1)a+b
.

Proof. We have ∥∥M∥∥ = Y0,0

∥∥∥∥(∂ṽλ□(Y)/∂Y□′

ṽλ□(Y )

)
□,□′∈λ

∥∥∥∥
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and furthermore

∂ṽλ□(Y)/∂Y□′

ṽλ□(Y)
=

δ□,0δ□′,0
Y0,0

+
∑

□′′ ̸=□ s.t.
∃0≤a,b,c≤1:

□′′:=□+(−1)c(a,b)∈λ

(−1)a+b(δ□′,□′′−δ□′,□)

at1+bt2+(−1)c(Y□′′−Y□) .

If one removes the first summand in the above, then the matrix would have
determinant 0. Indeed, it is easily checked that (1, . . . , 1) is in the kernel.
By looking at the Leibniz formula for the determinant it therefore follows
that ∥∥M∥∥ =

∥∥∥∥(∂ṽλ□(Y)/∂Y□′

ṽλ□(Y)

)
(0,0)̸=□,□′∈λ

∥∥∥∥ .
We now note that the above expression is a minor of the Laplacian of the
undirected weighted graph Γλ defined as follows:

Its vertices are given by the boxes in λ and two □,□′ ∈ λ are connected
by an edge if there are 0 ≤ a, b, c ≤ 1 with (a, b) ̸= (0, 0) so that □′ =
□ + (−1)c(a, b). In this case the weight of the corresponding edge is given
by

w□,□′ =
(−1)a+b+1

at1 + bt2 + (−1)c(Y□′ − Y□)
.

In particular, the whole graph is a union of cycles of length 3 and for each
such cycle consisting of the vertices □,□′,□′′ we have

(53) w□,□′w□′,□′′ + w□′,□′′w□′′,□ + w□′′,□w□,□′ = 0

or equivalently

(54) w−1
□,□′′ + w−1

□,□′ + w−1
□′,□′′ = 0.

We will furthermore call cycles consisting of vertices of the shape (i, j), (i, j+
1), (i + 1, j + 1) ∈ λ upper cycles. It follows from the weighted matrix tree
theorem [12, Theorem II.3.12] that∥∥M∥∥ =

∑
T⊂Γλ

spanning tree

∏
e=(□,□′)
edge in T

we.

We will now define an permutation σ (c.f. Figure 3) on the set of all such
spanning trees which will help us remove some of the summands. For this
we first fix an ordering on the set of all upper cycles. For a given tree T we
then let C(T ) be the first upper cycle so that two of its edges are in T . If
no such cycle exists we set σ(T ) := T . Otherwise let e1, e2, e3 be the edges
of C(T ) named in counter-clockwise direction so that e1 is not in T whereas
e2, e3 are in T . Removing e2 from T will turn the tree into a forest consisting
of two connected components - one containing e3 and the other containing
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Figure 3: On the left a spanning tree T in Γλ for λ = (4, 2, 2, 1), in the
middle σ(T ) and to the right σ2(T ). The red edges belong to the unique
upper cycle intersecting T along two edges.

the vertex incident to both e1 and e2. Hence by adding e1 into the subgraph
we obtain another spanning tree different from T which we denote by σ(T ).
Since the upper cycles are pairwise edge-disjoint we get C(σ(T )) = C(T ) if
σ(T ) ̸= T and hence one easily sees that σ has order 3. Moreover it follows
from (53) that those spanning trees for which σ(T ) ̸= T cancel in the sum,
which yields ∥∥M∥∥ =

∑
T⊂Γλ

spanning tree
σ(T )=T

∏
e=(□,□′)
edge in T

we.

We now claim that those trees T with σ(T ) = T are the same as sets of non-
diagonal edges which have exactly one edge in common with every upper
cycle and contain each horizontal or vertical edge that is not part of an
upper cycle. If we assume this to be true, then it follows from (54) that∑

T⊂Γλ
spanning tree
σ(T )=T

∏
e=(□,□′)
edge in T

we

=
∏

(i,j),(i,j+1)∈λ

w(i,j),(i,j+1)

∏
(i,j),(i+1,j)∈λ

w(i,j),(i+1,j)

·
∏

C=(ehor,evert,ediag)
upper cycle

(w−1
ehor

+ w−1
evert)

=
∏

(i,j),(i,j+1)∈λ

w(i,j),(i,j+1)

∏
(i,j),(i+1,j)∈λ

w(i,j),(i+1,j)

∏
C=(ehor,evert,ediag)

upper cycle

(−w−1
ediag

),

which is what we wanted to show.
To show the characterization of trees with σ(T ) = T we first note that

each subset as described above is a spanning tree of Γλ. Indeed, there are∑l(λ)−1
i=1 (λi − 1) many upper cycles and l(λ)− 1 +

∑l(λ)−1
i=0 (λi − λi+1) many

edges not part of an upper cyle, hence any set of edges as described above
has |λ|−1 edges and is incident to all boxes, which makes it a spanning tree
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if it is connected. And indeed one easily sees that each box (i, j) ∈ λ in the
subgraph is connected to either (i+ 1, j) or (i, j + 1) and hence each vertex
is connected to (l(λ)− 1, 0).

Conversely, the above calculation shows that each spanning tree T with
σ(T ) = T must have exactly one edge in common with any upper cycle and
must contain all edges not part of an upper edge. If it contained a diagonal
edge e, then we could choose it so that there is no other diagonal edge
below the diagonal line going through the vertices of e. Removing e from T
would then make its two adjacent vertices (i, j) and (i+ 1, j + 1) lie in two
distinct connected components. However, by the same argument as above,
both boxes must be connected to (l(λ)−1, 0) which is a contradiction. This
concludes the proof.

Next, we relate the Jacobian matrices of two kinds of Bethe equations
arising during the proof of Theorem 2.14.

Lemma 2.22. For a fixed partition λ, Y = (Y□)□∈λ and u = (uλ/µ)λ/µ free
variables we set

MBethe(Y) :=
(
∂F□′ (Y)/∂Y□

F□′ (Y)

)
□,□′∈λ

and

Mskew(u) :=

(
δλ/µ,λ/µ′

uλ/µ
+

∂F
λ
λ/µ′ (Y

λ
(u))/∂uλ/µ

F
λ
λ/µ′ (Y

λ
(u))

)
λ/µ,λ′/µ′

.

We now claim that given v = (v□)□∈λ and u(v) = (uλ/µ(v))λ/µ with
uλ/µ(v) :=

∏
□∈λ/µ v□ we have

∏
λ/µ

uλ/µ(v) ·
∥∥Mskew(u(v))

∥∥ =
∏
□∈λ

v□ ·
∥∥∥∥(∂Ỹ λ

□ (v)

∂v□′

)
□,□′∈λ

∥∥∥∥ · ∥∥∥MBethe(Ỹ
λ(v))

∥∥∥
(55)

and for Q the matrix
Q = ([□ ∈ λ/µ])λ/µ,□

we have
QT ·Mskew(u(v))

−1 ·Q =MBethe(Ỹ
λ(v))−1.

Proof. From now on we abbreviateM =Mskew(u(v)) andN =MBethe(Ỹ
λ(v)).

First we show the claim about determinants. Consider the matrix(
[□ ≥ □′]

)
□,□′∈λ

with [P ] as in (51). Taking a total refinement of the partial ordering on
boxes one can realize it as a lower triangular matrix with 1’s on the diagonal
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and hence it is invertible of determinant 1. We will write its inverse as
A = (a□,□′)□,□′ and extend it to a matrix

A′ =

box not box( )
box A 0

not box 0 I
(56)

where I is the identity matrix and “box” denotes the connected skew parti-
tions of λ that are of the shape

□ :=
{
□′ ∣∣ □ ≤ □′ }

for some box □ ∈ λ and “not box” the other ones. Since we can also write

M =

 δλ/µ,λ/µ′

uλ/µ
+

∑
□∈λ/µ′

∂F̃λ
□(Y

λ
(u))/∂uλ/µ

F̃λ
□(Y

λ
(u))


λ/µ,λ/µ′

this gives

M ·A′ =



(
a□,□′
u□

+
∂F̃λ

□′ (Y
λ
(u))/∂u□

F̃λ
□′ (Y

λ
(u))

)
□,□′

 ∑
□′∈λ/µ

∂F̃λ
□′ (Y

λ
(u))/∂u□

F̃λ
□′ (Y

λ
(u))


□,λ/µ(

∂F̃λ
□(Y

λ
(u))/∂uλ/µ

F̃λ
□(Y

λ
(u))

)
λ/µ,□

 δλ/µ,λ/µ′

uλ/µ
+
∑

□∈λ/µ′

∂F̃λ
□(Y

λ
(u))/∂uλ/µ

F̃λ
□(Y

λ
(u))


λ/µ,λ/µ′

where the blocks of the matrix are organized as in (56). Using further row
operations we can get rid of most terms in the second i.e. “not box” row.
More precisely, writing

B =

box not box( )
box I (−[□ ∈ λ/µ])□,λ/µ

not box 0 I

we get

M ·A′ ·B =

box not box
box

(
a□,□′
u□

+
∂F̃λ

□′ (Y
λ
(u))/∂u□

F̃λ
□′ (Y

λ
(u))

)
□,□′

(
1
u□

∑
□′∈λ/µ a□′,□

)
□,λ/µ

not box

(
∂F̃λ

□(Y
λ
(u))/∂uλ/µ

F̃λ
□(Y

λ
(u))

)
λ/µ,□

(
δλ/µ,λ/µ′

uλ/µ

)
λ/µ,λ/µ′
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Now we subsitute u = u(v) into the matrix and using

∂
∂v□

=
∑

□∈λ/µ

uλ/µ
v□

∂
∂uλ/µ

we see that

C ·M ·A′ ·B =

box not box
box N ′

(
∂F̃λ

□(Y
λ
(u))/∂uλ/µ

F̃λ
□(Y

λ
(u))

)
□,λ/µ

not box 0
(
δλ/µ,λ/µ′

uλ/µ′

)
λ/µ,λ/µ′

for

C =

box not box( )
box

(
[□ ≥ □′]

u
□′
v□

)
□,□′

(
[□ ∈ λ/µ]uλ/µv□

)
□,λ/µ

not box 0 I

and

N ′ =

(
δ□,□′
v□

+
∂F̃λ

□′ (Ỹ
λ(v))/∂v□

F̃λ
□′ (Ỹ

λ(v))

)
□,□′

Finally note that because of Lemma 2.20 we have F□(Ỹ
λ(v)) = v□·F̃ λ□(Ỹλ(v))

and therefore
N ′ = D ·N

with

D =

(
∂Ỹ λ

□′ (v)

∂v□

)
□,□′∈λ

.

Hence we get∥∥M∥∥ =
∥∥C∥∥−1 ∥∥CMA′B

∥∥ =
∥∥D∥∥∥∥N∥∥∏

λ/µ

u−1
λ/µ

∏
□∈λ

v□

which proves the first claim. For the second claim we need to show

QTM−1Q = N−1

for

Q =

box( )
box ([□ ≤ □′])□,□′

not box ([□ ∈ λ/µ])λ/µ,□

Indeed, one can verify that

QTA′B =
box not box
( )box I 0
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Figure 4: Degeneration of an elliptic curve to a circle of n = 5 copies of P1

joined end to end each receiving one marked point.

and

CQ =

box( )
box D

not box ([□ ∈ λ/µ])λ/µ,□

which implies

QTM−1Q = QTA′B(CMA′B)−1CQ = N−1

as desired.

3 Stable pair theory of relative local curves

This section provides proofs and further details of the results in Section
1.2.2.

3.1 Proof of Theorem 1.26

We will now deduce Theorem 1.26 from Theorem 1.24.

Proof of Theorem 1.26. It suffices to show the claim in case n = 1 since

M(z1, . . . , zn) =M(z1) . . .M(zn).

Indeed, this follows from [48, §6] applied to the degeneration of P1 to a chain
of n P1s glued end to end and each point class is lifted to the degneration
space so that each Using the degeneration formula we have

and hence the claim only has to be shown for n = 1. Furthermore, we
can degenerate C2×E to a circle formed by copies of C2×P1 where C2×{∞}
in each copy is identified with C2×{0} inside the next copy - see Figure 4..
This gives
(57)

Tr
[
M(z1, . . . , zn)

]
= ⟨chz1(pt) . . . chzn(pt)⟩

C2×E,T
d =

∑
λ⊢d

n∏
i=1

∑
□∈λ

E(zi, Y
λ
□ ),
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where we used Theorem 1.24 in the last equality. In particular, if we define
Mk so that

t1t2
(1−e−t1z)(1−e−t2z)

M(z) =
∑
k≥0

Mk
zk

k!

then we get

Tr
[
Mn
k

]
=
∑
λ⊢d

(∑
□∈λ

(
Y λ
□

)k)n
.

It follows that the eigenvalues of Mk must be the sums∑
□∈λ

(
Y λ
□

)k
for λ ⊢ d. We now claim that one can choose k so that all of these power
sums are distinct and the power sum corresponding to λ has an eigenvector
of the shape vλ = [λ] +O(p). For this we recall that

Pd(C2 × P1/{0,∞}, d) = Hilbd(C2)

and Mk|p=0 corresponds to multiplication by k! · chk(π∗OZ) where Z ⊂
C2 × Hilbd(C2) is the universal 0-dimensional subscheme. Furthermore, the
fixed points λ ∈ Hilbd(C2) form an eigenbasis for multiplication by any class.
Since

H0 (Oλ) =
⊕

(i,j)∈λ

C · t−i1 t−j2

it follows that Mk|p=0 has eigenvalue
∑

(i,j)∈λ(−it1 − jt2)k at [λ]. To prove
the distinctness on power sums we first specialize t1, t2 so that the −it1−jt2
for 0 ≤ i, j ≤ d − 1 are distinct nonnegative numbers. One can show that
any two sets of nonnegative numbers whose power sums agree for infinitely
many powers must be equal14 - hence any k0 ≫ 0 will work. As a result,
Mk0 has simple spectrum since Mk0 |p=0 has and is therefore diagonalizable.
Furthermore, for any λ we have

∑
□∈λ

(
Y λ
□

)k0∣∣∣∣∣
p=0

=
∑

(i,j)∈λ

(−it1 − jt2)k0

by Theorem 1.21(1) and so we must have vλ|p=0 = [λ] for an appropriate

eigenvector vλ with eigenvalue
∑

□∈λ
(
Y λ
□

)k0 . It now remains to show that
the vλ form an eigenbasis of M(z) with eigenvalues as claimed. For this we
note that

M(z1)M(z2) =M(z1, z2) =M(z2, z1) =M(z2)M(z1)

14This follows from max(S) = lim
k→∞

(∑
i∈S ik

)1/k
for any non-empty finite S ⊂ R≥0.
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by degeneration and hence M(z) commutes with Mk0 . Therefore the vλ
indeed diagonalize M(z) and we can write aλ(z) for the eigenvalue at vλ. It
follows that

Tr
[
M(z)Mn

k0

]
=
∑
λ⊢d

aλ(z)

(∑
□∈λ

(
Y λ
□

)k0)n
for any n ≥ 0. But by (57) this must also equal∑

λ⊢d

(∑
□∈λ

E(z, Y λ
□ )

)(∑
□∈λ

(
Y λ
□

)k0)n
and as the eigenvalues of Mk0 are pairwise distinct, this implies

aλ(z) =
∑
□∈λ

E(z, Y λ
□ )

by the invertibility of the Vandermonde matrix.

Remark 3.1. One could have shortened the proof somewhat by using that
M3 has simple spectrum [78, Proof of Corollary 1]. Recalling that stable
pairs on C2 × C are the same thing as quasi-maps from C to Hilbd(C2)
(c.f. [73, Exercise 4.3.22]), this corresponds to the fact that the quantum
cohomology of Hilbd(C2) is generated by divisors. However, we chose to
circumvent this fact since the analogous claim for general Nakajima quiver
varieties is still a conjecture [58, Question 1]. This makes it possible to
repeat the above proof for quasi-maps to quiver varieties, which gives a new
proof of the fact that the spectrum of quantum multiplication is described
by solutions of Bethe equations. See [97] for more details and consequences.

3.2 Proof of Theorem 1.27 and Theorem 1.29

We will start by proving a version of Theorem 1.27 for the Gromov-Witten
theory of the tube i.e.

⟨µ|τk(pt)|ν⟩∗ := ⟨µ|τk(pt)|ν⟩C
2×P1/{0,∞},GW,T,∗ ,

where µ and ν are unordered partitions, ∗ ∈ {◦, •} and the right hand side
is defined as in Definition 4.2 and Remark 4.3(3). By Proposition 4.4, one
has
(58)

⟨µ|τk(pt)|ν⟩C
2×P1/{0,∞},GW,T,◦

g =
1

t1t2

〈
µ|E∨(t1)E∨(t2)τk(pt)|ν

〉P1/{0,∞},GW,◦
g

.

We then define MGW
k to be the matrix with entries(

MGW
k

)
µ,ν

= (−t1t2z2)ℓ(µ)z(µ) ⟨µ|τk(pt)|ν⟩• ,

where the prefactor is chosen so that degeneration becomes matrix multi-
plication like in the proof of Theorem 1.26.
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Lemma 3.2. We have

(59) MGW
k =

∑
|µ|=|ν|

2≤ℓ(µ)+ℓ(ν)≤k+2

(−t1t2z2)ℓ(µ) ⟨µ|τk(pt)|ν⟩◦ α−µαν ,

where the connected invariants satisfy:

(1) ⟨µ|τk(pt)|ν⟩◦ ∈ 1
t1t2
·Q((z))[t1, t2] is homogeneous of degree k− ℓ(µ)−

ℓ(ν) in t1, t2.

(2) We have

− t1t2z2 ⟨(d)|τk(pt)|(d)⟩◦

= (t1 + t2)
k[tk]

∑
r≥1

(dz)r−1 edrz − 1

(edz − 1)r
tr−1

(t+ 1) · · · (t+ r)
+O(t1t2)

up to terms in t1t2 ·Q((z))[t1, t2].

Proof. It follows from standard considerations that connected and discon-
nected one-point invariants are related in the following way

⟨µ|τk(pt)|ν⟩• =
∑
λ≤µ,ν

(−t1t2z2)−ℓ(λ)

z(λ)
⟨µ− λ|τk(pt)|ν − λ⟩◦ ,

where we write λ ≤ µ if ml(λ) ≤ ml(µ) for all l and µ − λ is the unique
partition with ml(µ − λ) = ml(µ) − ml(λ) for all l. Here, we used the
notation

ml(λ) = #{i | λi = l}.

On the other hand, one can show that∑
ρ,σ

cρ,σ⟨µ|α−ρασ|ν⟩ =
∑
λ≤µ,ν

cµ−λ,ν−λ
z(λ)

for any set of constants (cρ,σ)ρ,σ. Since
(
MGW
k

)
µ,ν

= z(µ)⟨µ|MGW
k |ν⟩, this

implies that

MGW
k =

∑
µ,ν

(−t1t2z2)ℓ(µ) ⟨µ|τk(pt)|ν⟩◦ α−µαν

From (1) it follows that the connected invariants are 0 unless ℓ(µ) + ℓ(ν) ≤
k + 2, so to get (59) it suffices to show (1). This however follows directly
from (58). To show (2), we use the degeneration formula

⟨τk(pt)⟩C
2×E,GW,T,• =

∑
µ

q|µ|(−t1t2z2)ℓ(µ)z(µ)⟨µ|τk(pt)|µ⟩•
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=
∑
µ,λ

q|µ|+|λ|(−t1t2z2)ℓ(λ)
z(λ+ µ)

z(µ)
⟨λ|τk(pt)|λ⟩◦

arising from the degeneration of the elliptic curve E to the rational nodal
curve. We can isolate the summands coming from

cd := [tk1](−t1t2z2)⟨(d)|τk(pt)|(d)⟩◦

by looking at the tk1 coefficient, which is

[tk1]⟨τk(pt)⟩C
2×E,GW,T,• =

∑
µ,d

qd+|λ| z((d) + µ)

z(µ)
cd

=
∑

(ml)l≥1,d

qd+
∑

l l·ml(ml + 1)dcd

=
∏
d≥1

1

1− qd
∑
d≥1

dcd
qd

1− qd

and hence

(60) [tk1]⟨τk(pt)⟩
C2×E,GW,T,◦
d =

∑
m|d

mcm.

Furthermore, one has

⟨τk(pt)⟩C
2×E,GW,T,◦

d

=
∑
g≥0
a,b≥1

a+b=k+2

(−1)g−1+a+bta−1
1 tb−1

2 z2g−2 ⟨λg−aλg−bτk(pt)⟩E,GW,◦
g,d ,

where the summands with a = 0 or b = 0 were excluded as they vanish due
to [91, Lemma 4.4.1]. We can therefore replace the left hand side of (60) by
a Hodge integral, which leads to∑

g≥0

z2g−2
〈
λg−1E∨(1)τk(pt)

〉E
g,d

=
∑
m|d

mcm.

The left hand side can be expressed as〈
λg−1E∨(1)τk(pt)

〉E
g,d

=

∫
Mg,1

λg−1E∨(1)ψk1Cg,d(pt),

where we denoted the Gromov-Witten classes of the elliptic curve by

(61) Cg,d(γ1, . . . , γn) = π∗
(
[Mg,n(E, d)]

vir ∩ ev∗1(γ1) · · · ev∗n(γn)
)
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for π : Mg,n(E, d)→Mg,n the forgetful map. Here we used that π∗(ψ1) = ψ1

without boundary terms as all maps from rational curves to E are constant.
Using [70, Example 6.9], we get∫
Mg,1

λg−1E∨(1)ψk1Cg,d(pt) = (−1)g−1 4g

B2g

∑
m|d

m2g−1

∫
Mg,1

λgλg−1E∨(1)ψk1 .

We hence have

cd =
∑
g≥0

(−1)g−1 4g

B2g
(dz)2g−2

∫
Mg,1

λgλg−1E∨(1)ψk1

=
∑
g≥0

(−1)g 4g

B2g
(dz)2g−2 |B2g|

2g
[tkx2g−1]

∑
r≥1

(
x

ex − 1

)r tr−1

(t+ 1) · · · (t+ r)

= [tk]
∑
r≥1

(dz)r−1 edrz − 1

(edz − 1)r
tr−1

(t+ 1) · · · (t+ r)
,

where we used [25, Theorem 3] and [25, Theorem 3 in Appendix] in the

second equality and replaced
(

x
ex−1

)r
by

1

2

((
x

ex − 1

)r
−
(
−x

e−x − 1

)r)
=
xr

2

1− erx

(ex − 1)r

in the third equality to kill all even powers of x. This concludes the proof.

Using this, we will now prove Theorem 1.27.

Proof of Theorem 1.27. By [86, §3], the relative GW/PT correspondence
holds for C2×P1 relative to {0,∞}. Together with degeneration, this implies
that under the variable change p = −ez:

(62) Mk =
∑

k1,...,kn≥0

K̃(k−2),(k1,...,kn)(t1t2)
n−1z−LMGW

k1 · · ·MGW
kn zL,

where K̃ is the correspondence matrix of Section 1.1.5 evaluated at ci =
ci(TC2×P1 [−0−∞]) = ci(TC2 ⊕O) i.e.

c1 = t1 + t2, c2 = t1t2 and c3 = 0

and L is the linear operator determined by

L|µ⟩ = ℓ(µ)|µ⟩.

Note also that the power (t1t2)
n−1 comes from the equivariant diagonal class

of C2. This implies that Mk is indeed of the shape (25), where the bound
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ℓ(v) ≤ k holds because K̃(k−2),(k1,...,kn) = 0 unless k ≥
∑

i(ki + 2), which
follows from Proposition 1.11(2). Furthermore, Lemma 3.2(1) implies that
fk(v) must be a symmetric polynomial in t1, t2 of degree k − ℓ(v).

To prove Theorem 1.27(2), we observe that any term of the shape c ·
α−vαv in (62) arises either if n = 1 or if n > 1 and several α’s annihilated
via the commutation relation (22). However, the latter case only contributes
terms to fk(v,−v) that are divisible by t1t2 and hence can be ignored. By
setting t1 = 1 and t2 = 0 to weed out terms divisible by t1t2, it follows that

fk0,k−2(v,−v) =
∑
k′≥0

K̃(k−2),k′

∣∣∣
c1=1,c2=c3=0

· [tk′ ]
∑
r≥1

(vz)r−1 (−p)vr − 1

((−p)v − 1)r
tr−1

(t+ 1) · · · (t+ r)

=
vk−2

(k − 1)!

(−p)(k−1)v − 1

((−p)v − 1)k−1
,

where the last equality uses Lemma 3.4. To show Theorem 1.27(3), we first
observe thatMk is independent of p in case we specialize t1+t2 = 0. Indeed,
via a cosection argument as in [84, §4.3] one can see that the virtual class
on Pn(C2 × P1/{0,∞}, d) vanishes if n > d. Moreover, as observed in the
proof of Theorem 1.26 above, we have

Pd(C2 × P1/{0,∞}, d) = Hilbd(C2)

and the fixed points give a basis [λ] ∈ H∗
T(Hilb

d(C2)) indexed by partitions
λ ⊢ d so that M(z)|p=0 has eigenvalue

(1− e−t1z)(1− e−t2z)
t1t2

∑
(i,j)∈λ

e(−it1−jt2)z

at [λ]. The restriction M(z)|t1=−t2=1 therefore has eigenvalue

ς(z) ·
∑
i≥0

e(λi−i−
1
2
)z − 1

at [λ]|t1=−t2=1, where

(63) ς(z) = ez/2 − e−z/2.

Furthermore, [49, 54] tell us that the restriction [λ]|t1=−t2=1 is proportional
to the fermionic Fock space basis (which corresponds to the Schur functions).
By comparing eigenvalues and [76, (2.9)] it hence follows that

M(z)|t1=−t2=1 = ς(z)E0(z)− 1,
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where E0(z) is the operator defined in [76, §2.2.1]. More generally, there are
operators Er(z) for any r ∈ Z which are determined by their commutation
relation

[αk, Er(z)] = ς(kz)Ek+r(z)

and the vacuum expectation

⟨∅|Er(z)|∅⟩ =
δr,0
ς(z)

.

As a result of this, it is straightforward to show

⟨µ|M(z)|t1=−t2=1 |ν⟩ =
∑
λ≤µ,ν

∏
i zS((µ− λ)iz) ·

∏
i zS((µ− λ)iz)

z(λ) · |Aut(µ− λ)| · |Aut(ν − λ)|
,

where

(64) S(z) =
ς(z)

z

and similar to the proof of Lemma 3.2, we get

M(z)|t1=−t2=1 =
∑
µ,ν

∏
i

zS(µiz)
∏
i

zS(νiz)
α−µαν

|Aut(µ)| · |Aut(ν)|

=
∑
v∈Vl

zl
∏
i

S(viz)
αv

l!

Taking zk-coefficients therefore gives

fa,0(v) = (−1)a[z2a]
∏
i

S(viz) =

(
−1

4

)a ∑
nl≥0∑
l nl=a

∏
l

v2nl
l

(2nl + 1)!

as desired.

Remark 3.3. Denote by V = π∗OZ the universal bundle of rank n on
Hilbn(C2), where Z ⊂ C2 × Hilbn(C2) is the universal subscheme and

π : C2 × Hilbn(C2)→ Hilbn(C2)

is the projection to the second factor. The last part of the above proof then
expresses the cup products

chk(V)∪ : H∗
T(Hilb

n(C2))→ H∗
T(Hilb

n(C2))

for t1 = −t2 in terms of Nakajima operators. Indeed, this is already known
and the above argument appears for example in [72, Proof of Proposition
12]. We nonetheless included it since we were unable to find a canonical
reference.
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In the above proof, we relied on the following special case of the GW/PT
correspondence.

Lemma 3.4. We have

K̃(k),(l)

∣∣∣
c2=c3=0

= ck−l1 z−k
∑

1≤i1<...<ik−l≤k

1

i1 · · · ik−l

if k ≥ l and K̃(k),(l)

∣∣∣
c2=c3=0

= 0 otherwise. Furthermore

k∑
l=0

K̃(k),(l)

∣∣∣
c2=c3=0

[tl]
k+1∑
r=1

(zt)r−1

(1 + tc1) · · · (r + tc1)
ar =

ak+1

(k + 1)!

for all a1, . . . , ak+1.

Proof. It suffices to show the second identity as it implies the first one by [29,
Appendix]. For that we use the description of the correspondence matrix K̃
in case c3 = c1c2 given in [63, 72]. This involves a set of formal descendents
ak(γ) on the Gromov-Witten side, which in case c2 = 0 is determined by∑

r≥0

trτr(γ) =
∑
r>0

(tz)r−1

(1 + tc1) · · · (r + tc1)
ar(γ)

and by [63, (1.14)], we must15 have

k∑
l=0

K̃(k),(l)

∣∣∣
c2=c3=0

τl(γ) =
ak+1(γ)

(k + 1)!
,

which concludes the proof.

We are now ready to give a proof of Theorem 1.29.

Proof of Theorem 1.29. It is straightforward to verify that our formulas sat-
isfy all conclusions of Theorem 1.27. By Lemma 3.6, this implies that they
must also have the correct fk0,k−3, which proves our formulas for M≤4. For
M5, we can again use Lemma 3.6 to see that it suffices to check that we have
the correct f50,1(1, 1,−1,−1) and f51,1(1,−1). Since these values are determ-
ined by M5|Hilb≤2 , we can use degeneration and [83, Theorem 1] to express
these in terms of M<5|Hilb≤2 , which we already know. This concludes the
proof.

Remark 3.5. The above strategy would not allow one to prove any potential
formula for M6. Indeed, one can show that Theorem 1.27 in this case still
leaves infinitely many degrees of freedom undetermined.

15Indeed, the computation in [63, §9.2.1] shows that modulo c2 all contributions but
one are of the shape ak1 · · · akn for n ≥ 2 - even in the equivariant case.
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However, Theorem 1.27 does determine the fka,b to the following extent:

Lemma 3.6. Let k ≥ 0 and f̃ka,b(v) ∈ Q(p) be another set of rational

functions indexed by a, b and symmetric in v ∈ Vk−2a−b. If it satisfies
Theorem 1.27(1),(2) i.e.

(1) for any a, b,v

f̃ka,b(v)
∑
i

v2i
(−p)vi + 1

(−p)vi − 1
=

∑
i

s+t=vi
sgn(s)=sgn(t)

sgn(vi)stf̃
k
a−1,b+1(v \ (vi) ∪ (s, t))

−
∑
i ̸=j

(vi + vj)f̃
k
a,b+1(v \ (vi, vj) ∪ (vi + vj)).

(2) for any v > 0

f̃k0,k−2(v,−v) =
vk−2

(k − 1)!

(−p)(k−1)v − 1

((−p)v − 1)k−1

then it follows that f̃k0,b(v) = fk0,b(v) for all b and generic v. Here, we
call v generic if there is no proper subset ∅ ̸= S ⊊ {1, . . . , k − b} with
vS =

∑
i∈S vi = 0.

Moreover, if for any fixed a and b we know that

� f̃ka−1,b = fka−1,b and f̃
k
a,b−1 = fka,b−1.

� f̃ka,b(v) = fka,b(v) for all v off-diagonal i.e. not of the shape v =
(v1, . . . , v k−2a−b

2
,−v1, . . . ,−v k−2a−b

2
) up to permutation.

� f̃ka,b(1) = fka,b(1) where 1 = (1
k−2a−b

2 , (−1)
k−2a−b

2 ) i.e. 1 and −1 occur
k−2a−b

2 many times each.

then we must have f̃ka,b = fka,b.

Proof. We prove the first claim by downward induction on b, where the case
b = k− 2 holds by (2). Note that any join of a generic v is still generic. For
b < k−2 we can therefore use induction for the right hand side of (1) to get

f̃k0,b(v)
∑
i

v2i
(−p)vi + 1

(−p)vi − 1
= fk0,b(v)

∑
i

v2i
(−p)vi + 1

(−p)vi − 1
.

By looking at poles one can see that
∑

i v
2
i
(−p)vi+1
(−p)vi−1 = 0 if and only if v =

(v1, . . . , v k−b
2
,−v1, . . . ,−v k−b

2
) up to permutation - in particular, since v is

generic and b < k − 2 we get f̃k0,b(v) = fk0,b(v) as desired.
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For the second claim, we note that (1) gives us
(65)∑
i ̸=j

(vi+vj)f̃
k
a,b+1(v\(vi, vj)∪(vi+vj)) =

∑
i ̸=j

(vi+vj)f
k
a,b+1(v\(vi, vj)∪(vi+vj))

for any v. From this it suffices to deduce f̃ka,b(λ,−λ) = fka,b(λ,−λ) for λ a
partition of length k − 2a− b. We will do this by induction on |λ|, the case
|λ| = k − 2a − b holding by assumption. Now, assume that the claim has
been shown for λ′ with |λ′| < |λ| and let i0 be maximal so that λi0 > 1. We
then let

v = (λ0, . . . , λi0+1, λi0 − 1, 1m1(λ)+1,−λ).

For this choice of v, (65) boils down to f̃ka,b(λ,−λ) = fka,b(λ,−λ) modulo
off-diagonal and lower degree summands, which concludes the proof.

4 Gromov-Witten theory of local curves

This section contains the proofs of the results stated in Section 1.3. In the
process, we also derive formulas for certain Gromov-Witten invariants of the
tube geometry as well as certain triple Hodge integrals on the moduli space
of curves. See Theorem 4.14 and Corollary 4.16 respectively.

4.1 Generalities

We start by giving further details on the discussion at the beginning of
Section 1.3. For that, we will first recall the precise connection between
the three different kinds of Gromov-Witten theory considered in this thesis.
Let X,T be as in Situation 1 and γ1, . . . , γn ∈ H∗

T(X) be homogeneous
generators ofH∗

T(X) as aH∗
T(pt)-module. We then have the following formal

descendent insertion
γ =

∑
i≥0

1≤j≤n

ti,jτi(γj)

with ti,j free variables satisfying

ti1,j1ti2,j2 = (−1)deg(γj1 )·deg(γj2 )ti2,j2ti1,j1 .

There are three Gromov-Witten partition functions defined by

Z∗ =
∑
g∈Z

β∈Eff(X)

(−1)g−1z2g−2qβ ⟨exp(γ)⟩X,T,∗g,β

for ∗ ∈ {◦, •, ′} and Eff(X) ⊂ H2(X,Z) the submonoid generated by effective
curve classes.
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Proposition 4.1. We have

Z• = exp(Z◦)

Z• = Z∅ · Z ′,

where Z∅ = Z•|ti,j=0.

Proof. One can show that

(66) M
•
g,n(X,β) =

∐
∐l

s=1 Is={1,...,n}∑l
s=1 gs=g+l−1∑l

s=1 βs=β

l∏
s=1

M
◦
gs,Is(X,βs)/Aut((gs, ns, βs)s,Is=∅)

and same for M
′
g,n(X,β), where one additionally requires Is ̸= ∅ for all s.

The identities for the Z∗ follow from the fact that the virtual classes of both
sides of (66) agree.

Up to the datum of Z∅ all three flavours of Gromov-Witten theory are
thus equivalent to each other.

For computational purposes we will also need to use relative Gromov-
Witten theory. For this, let X be smooth and projective and D ⊂ X a
smooth divisor with components D1, . . . , Dm. Furthermore, let β ∈ H2(X)
and a1, . . . ,am be ordered partitions of same size (β.D). For ∗ ∈ {◦, •, ′}
we denote by M

∗
g,n(X/D, β,a1, . . . ,am) the moduli space (c.f. [45, 46])

of n-pointed genus g relative stable maps with appropriate connectedness
condition to a target expansion of X with contact profile ai along Di. This
space comes equipped with a virtual class[

M
∗
g,n(X/D, β,a1, . . . ,am)

]vir
∈ H2·vdim(Mg,n(X/D, β,a1, . . . ,am))

in complex degree

vdim = (3− dimX)(g − 1) +

∫
β
(c1(X)−D) + n+ ℓ(a1) + . . .+ ℓ(am).

As in the absolute case, there are evaluation maps at the markings

evi : M
∗
g,n(X/D, β,a1, . . . ,am)→ X

for i = 1, . . . , n. Therefore we can define

Definition 4.2. Let γ1, . . . γn ∈ H∗(X), k1, . . . , kn ≥ 0 and
γ ∈ H∗(M

∗
g,n(X/D, β,a1, . . . ,am)). We set

⟨γ · τk1(γ1) · · · τkn(γn)|a1, . . . ,am⟩
X/D,∗
g,β
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:=

∫
[M

∗
g,n(X/D,β,a1,...,am)]

vir
γ ·

n∏
i=1

ψkii ev∗i (γi)

for ∗ ∈ {◦, •, ′}. If µ1, . . . , µm are unordered partitions of same size (β.D),
then we define the following unordered version of relative invariants

⟨γ · τk1(γ1) · · · τkn(γn)|µ1, . . . , µm⟩
X/D,∗
g,β

:=

m∏
i=1

1

|Aut(µi)|
⟨γ · τk1(γ1) · · · τkn(γn)|µ1, . . . ,µm⟩X/D,∗g,β .

Remark 4.3. (1) Similar to Definition 1.6, if X is in Situation 1, then
this definition can also be carried out equivariantly. For D = ∅, this
recovers the usual non-relative Gromov-Witten invariants.

(2) The above discussion can be carried out more generally. In particu-
lar, Proposition 4.1 also works in the relative case and one could put
insertions on the relative markings in Definition 4.2. However, we will
use neither generalization.

(3) In accordance with the stable pair case, we will also denote the invari-
ants of local C2 × P1 relative to 0 and ∞ by

⟨a|· · ·|b⟩C
2×P1/{0,∞},T,∗ = ⟨ · · · |a,b⟩C

2×P1/{0,∞},T,∗ .

In this chapter, we will consider X = C2×C relative to D′ = C2×D for
C a smooth projective curve and D = {p1, . . . , pm} ⊂ C a reduced divisor.
As in the introduction, we will equip X with its canonical T = (C∗)2-action,
which we need in order for its relative Gromov-Witten invariants to be well-
defined.

Proposition 4.4. For cohomology classes γ1, . . . , γn ∈ H∗(C), k1, . . . , kn ≥
0 and ordered partitions a1, . . . ,am of same size d, we have:

⟨τk1(γ1) . . . τkn(γn)|a1 . . .am⟩
X/D′,T,∗
g,d

=
1

t1t2

〈
E∨(t1)E∨(t2)τk1(γ1) · · · τkn(γn)

∣∣a1, . . . ,am〉C/D,∗g,d

= tc1t
−1
2

〈
E∨(1)E∨( t2t1 )τk1(γ1) . . . τkn(γn)

∣∣∣a1, . . . ,am〉C/D,∗
g,d

,

where c =
∑

i (ki + degC(γi)− 1)− dχ(C \D)−
∑

i ℓ(ai) + 1 and

E∨(x) =

g∑
i=0

(−1)iλixg−i ∈ H∗(Mg,n(C/D, d,a1, . . . ,am))[x],

where λi = ci(E) is the i-th chern class of the Hodge bundle E = π∗Ω
1
π of

the forgetful map

π : M
∗
g,n+1(C/D, d,a1, . . . ,am)→M

∗
g,n(C/D, d,a1, . . . ,am).
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Proof. The first equality follows from the definition. The second equality
follows by noting that multiplying each cohomology class γ in the bracket

by t
degC(γ)
1 is the same as multiplying the entire expression by tvdim1 .

As claimed in the introduction, this reduces us to studying double Hodge
integrals over curves:

Definition 4.5. For γ1, . . . , γn ∈ H∗(C) and a1, . . . ,am ordered partitions.
Then we set:〈

E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

∣∣∣∣∣a1, . . . ,am
〉C/D,∗
d

:=
∑
g∈Z

l1,...,ln∈Z

(−1)g−1z2g−2
∏
i

zli+1
i

〈
E∨(1)E∨(x)

∏
i

τli(γj)

∣∣∣∣∣a1, . . . ,am
〉C/D,∗
g,d

∈ Q[x±, z±1 , . . . , z
±
n , (zi + zj)

−1][((z)),

where ∗ ∈ { ◦, •, ′ } and negative descendents are defined as in [72, 91]. If
m > 0, we will omit d as it is determined by the ai.

Remark 4.6. If ∗ = ◦, then the negative descendents only give non-zero
contributions in case g = d = 0 and n ≤ 2, where we have〈

E∨(1)E∨(x)
γ

1/z1 − ψ1

∣∣∣∣ ∅〉C/D,◦
0,0

=
1

z1

∫
C
γ

and 〈
E∨(1)E∨(x)

γ1
1/z1 − ψ1

γ2
1/z2 − ψ2

∣∣∣∣ ∅〉C/D,◦
0,0

=
z1z2
z1 + z2

∫
C
γ1 ∪ γ2.

In particular, this extends the formula
(67)〈
E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

∣∣∣∣∣ ∅
〉C/D,◦

0,0

= z1 · · · zn

(∑
i

zi

)n−3 ∫
C
γ1∪ · · · ∪γn

for n ≥ 3 to the case n = 1, 2.

If D = ∅, Proposition 1.32 determines the empty contribution Z∅. Hence
it follows from Proposition 4.1 and Proposition 4.4 (or by a more direct
argument) that all three versions of Hodge integrals are equivalent. As a
result, we will not consider the •-version any more. The other two versions
are related as follows:
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Corollary 4.7. We have:〈
E∨(1)E∨(x)

n∏
i=1

γi
1/zi − ψi

〉C,′
d

=
∑

{1,...,n}=
∐

I∈S I∑
I∈S dI=d

x1−|S|sgn(S)
∏
I∈S

〈
E∨(1)E∨(x)

∏
i∈I

γi
1/zi − ψi

〉C,◦
dI

,

where we sum over those set partitions so that ∅ ̸∈ S and sgn(S) is the sign
that arises from super-commuting the γi.

4.2 Invariants of local P1 relative to 0 and ∞

Using degeneration, one can see that the Gromov-Witten theory of local P1

relative to 0 and ∞ is determined by the invariants

(68)

〈
a

∣∣∣∣E∨(1)E∨(x)
pt

1/µ0 − ψ1

1

1/µ1 − ψ2
· · · 1

1/µl − ψl+1

∣∣∣∣b〉P1/{0,∞},◦

for µ a partition. This section studies such expressions - partly with the aim
of using them to gain information about the local elliptic curve in Section
4.3. As a result, all invariants in this section will be connected and we will
drop the superscript “◦”. The following Proposition and its proof are taken
from the authors master’s thesis.

Proposition 4.8. [95, Lemma 5.11] For a = (ai)
n
i=1 and b = (bi)

m
i=1 ordered

partitions of the same size:〈
a

∣∣∣∣E∨(1)E∨(x)
pt

1− ψ1

∣∣∣∣b〉P1/{0,∞}
= −z−2S(z)x

n∏
i=1

S(aiz)

m∏
i=1

S(biz),

where S(z) is as in (64).

Proof. We denote the size by d = |a| = |b|. Using Mumford’s relation (26)
and [76, (3.11)], we see that the claim holds for x = −1. Hence, we only need
to show that F (x) is proportional to S(z)x in x. To this end, we consider
the invariant for fixed d and g〈

(a1, H), ..., (an, H)| E∨(x) |(b1, H), ..., (bm, H)
〉P1×P1/{0,∞}×P1,∼
g,(d,1)

,

which is rubber in the first factor and H ∈ H2(P1) is the hyperplane class in
the second factor. In fact, this invariant is independent of x as (−1)gλg is the
only summand of E∨(x) that gives a nonzero contribution. We now equip
the second variable with an action by T = C∗ so that TP1,0 becomes the
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standard T-representation, which corresponds to the generator t ∈ H2
T(pt).

Moreover, we lift H to H2
T(P1) so that H|0 = t and H|∞ = 0. The only fixed

loci which contribute in localization consist of a tube with degree one in the
second factor and two curves D1 and D2, where D1 has genus g1 and maps
of degree d onto P1×{0} and D2 is a curve of genus g2 with a constant map
to P1 × {∞} and empty ramification profile. See Figure 5. By specializing

Figure 5: Fixed locus in rubber localization16

t = 1, we get: ∑
g1+g2=g

〈
a

∣∣∣∣E∨(1)E∨(x)
1

1− ψ1

∣∣∣∣b〉P1/{0,∞},∼

g1,d

·
〈
∅
∣∣∣∣E∨(1)E∨(−x) 1

1− ψ1

∣∣∣∣ ∅〉P1/{0,∞},∼

g2,0

=
∑

g1+g2=g

〈
a

∣∣∣∣E∨(1)E∨(x)
pt

1− ψ1

∣∣∣∣b〉P1/{0,∞}

g1,d

·
〈
∅
∣∣∣∣E∨(1)E∨(−x) pt

1− ψ1

∣∣∣∣ ∅〉P1/{0,∞}

g2,0

=
∑

g1+g2=g

〈
a

∣∣∣∣E∨(1)E∨(x)
pt

1− ψ1

∣∣∣∣b〉P1/{0,∞},

g1,d

·
∫
Mg2,1

E∨(0)E∨(1)E∨(−x) 1

1− ψ1
,

where we used rigidification [59, Lemma 2] in the second equality. The
last Hodge integral was implicitly computed as gx(z) in the proof of [24,
Proposition 3]:∑

g≥0

(−1)gz2g
∫
Mg,1

E∨(0)E∨(1)E∨(x)
1

1− ψ1
= S(z)x

16This is Figure 2 from [60], where essentially the same kind of localization is considered.
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and so F (x)S(z)−x is constant in x, which concludes the proof.

This settles the case |µ| = 1. For |µ| > 1, the above localization argument
fails and it is somewhat unclear how to compute more cases of (68). Using
large amounts of computer data, we were however able to find the following
conjectural formulas:

Conjecture F. For any x ∈ Z<0, we have:〈
a

∣∣∣∣E∨(1)E∨(x)
pt

1/2− ψ

∣∣∣∣b〉P1/{0,∞}

=
S(2z)2x

∏
i S(aiz)

∏
i S(biz)

xz3
(−2x
−x
) −x∑

i=0

(
−2x
−x+ i

)

· [t0]

∏
i

(
tai/2 + t−ai/2

)∏
i

(
tbi/2 + t−bi/2

) ( ez−t
1−tez

)i
−
(
1−tez
ez−t

)i
2


(69)

for a = (ai)i and b = (bi)i ordered partitions of the same size.

Remark 4.9. (1) For x = −1, Conjecture F follows from Mumford’s re-
lation (26) and [76, (3.11)].

(2) It follows from the definitions that the z-coefficients of the left hand
side are polynomials in x. This is not as obvious for the right hand
side, where it follows from Lemma 4.15.

Though we do not know how to prove Conjecture F, we will provide
some evidence for it later on - see Theorem 4.14.

4.3 Invariants of the local elliptic curve

In this section we use Proposition 4.8 to derive some formulas for double
Hodge integrals on the elliptic curve. The following proposition is an in-
termediate step and was obtained in collaboration with Jan-Willem van
Ittersum:

Proposition 4.10. For any x ∈ Z \ {0} we have〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′

=
(−1)nΘ(z)nx

xn−1znx+2n

 ∏
1≤i ̸=j≤n

(
Θ(z + ui − uj)
Θ(ui − uj)

)x
p0

,

(70)

where we set pi = eui and take the coefficient of
∏
i p

0
i in the sense of (80).
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Proof. We prove this by degenerating the elliptic curve to a circle of n cop-
ies of P1 joined end to end with each receiving a single point insertion as
depicted in Figure 4. We then apply the degeneration formula of [45, 46] to
this degeneration, which expresses the above Gromov-Witten invariant of E
in terms of Gromov-Witten invariants of P1 relative to 0 and∞. For each of
the occuring stable maps to a single P1, there is a unique component which
receives the marking. It further follows from [70, Lemma 1] that

(71)
〈
a
∣∣E∨(1)E∨(x)

∣∣b〉P1/{0,∞}
g

=

{
1
a , if g = 0,a = b = (a),

0, else,

which forces all other components to be tubes. As a result, the contributions
of the degeneration formula consist of n many factors of〈

a

∣∣∣∣E∨(1)E∨(x)
pt

1− ψ

∣∣∣∣b〉P1/{0,∞}
,

which are connected to each other via contributions of chains of tubes going
around the circle. Here a chain of degree a tubes of length m contributes a
factor of am+1 1

am = a, which results from (71) and the m+1 glueing points
each contributing a factor of a. In total, this gives〈

E∨(1)E∨(x)
n∏
i=1

pt

1− ψi

〉E,′
= x1−n

∑
(ai,jl )

ni,j
l=1 ,(b

i,j
l )

ni,j
l,i,j

∀i :
∑

l,j a
i,j
l =

∑
l,j a

j,i
l

ai,jl ,bi,jl >0 and bi,jl ≡j−i(n)

q
∑

l,i,j a
i,j
l bi,jl

n (−xz2)
∑

i,j ni,j
∏
l,i,j

ai,jl

·
n∏

i,j=1

1

ni,j !

n∏
i=1

〈
((ai,jl )l)j

∣∣∣∣E∨(1)E∨(x)
pt

1− ψ

∣∣∣∣ ((aj,il )l)j

〉P1/{0,∞}
,

where qn is a new variable satisfying qnn = q. The sum arises from number-
ing the components of the circle of P1s by i = 1, . . . , n in counter-clockwise
direction. We then define ni,j to be the number of chains of tubes wrapping

around the circle in counter-clockwise direction from i to j, with ai,jl the

degree of the l-th chain and bi,jl one more than the length of that chain.

It follows from this that bi,jl ≡ j − i modulo n and one can show that any

collection of (ai,jl )
ni,j

l=1 and (bi,jl )
ni,j

l=1 satisfying the above conditions corres-

ponds to such a geometric contribution with total degree
∑

l,i,j a
i,j
l bi,jl

n . Using
Proposition 4.8, we get〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′
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=
(−1)n

xn−1z2n
S(z)nx

∑
(ai,jl )

ni,j
l=1 ,(b

i,j
l )

ni,j
l,i,j

∀i :
∑

l,j a
i,j
l =

∑
l,j a

j,i
l

ai,jl ,bi,jl >0 and bi,jl ≡j−i(n)

n∏
i,j=1

1

ni,j !

ni,j∏
l=1

(−xz2)ai,jl S(a
i,j
l z)

2q
ai,jl bi,jl
n

=
(−1)n

xn−1z2n

exp
x n∑

i,j=1

Cj−i(n)

(
z, qn,

pi
pj

)′

p0

,

where the bracket [· · · ]′p0 denotes the act of expanding the power series in qn
and taking the coefficient of

∏n
i=1 p

0
i in each qkn-coefficient. Note here that

those qkn-coefficients are Laurent polynomials in p1, . . . , pn. We also wrote

Cγ(n)(z, q, p) = δγ,0 logS(z)−
∑
a,b>0
b≡γ(n)

ς(az)2

a

(
pqb
)a

for any γ ∈ Z. From this we get

exp
(
Cγ(n)(z, q, p)

)
= S(z)δγ,0

∏
b>0

b≡γ(n)

(1− ezpqb)(1− e−zpqb)
(1− pqb)2

.

Using this, one can phrase [· · · ]′p0 in a more analytic way by noting that the
q-expansion inside the bracket converges if∣∣∣∣ pipj qbn

∣∣∣∣ < 1 for all i, j and b > 0 with b ≡ j − i(n)

for x ≥ 0 and∣∣∣∣e±z pipj qbn
∣∣∣∣ < 1 for all i, j and b > 0 with b ≡ j − i(n)

for x < 0. Hence [· · · ]′p0 can also be interpreted as taking the coefficient

of
∏n
i=1 p

0
i in the Laurent expansion in the respective domains. Moreover,

setting p̃i = piq
i
n gives

exp(
n∑

i,j=1

Cj−i(n)(z, qn,
p̃i
p̃j
))

=
Θ(z)n

zn

∏
1≤i<j≤n

l>0

(1− ez pipj q
l−1)(1− e−z pipj q

l−1)(1− ez pjpi q
l)(1− e−z pjpi q

l)

(1− pi
pj
ql−1)2(1− pj

pi
ql)2

=
Θ(z)n

zn

∏
1≤i<j≤n

Θ(z + ui − uj)Θ(−z + ui − uj)
Θ(ui − uj)2
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=
Θ(z)n

zn

∏
1≤i ̸=j≤n

Θ(z + ui − uj)
Θ(ui − uj)

,

where we wrote pi = eui and used

Θ(z) = −e−z/2
∏
l>0

(1− ezql−1)(1− e−zql)
(1− ql)2

in the second equality as well as Θ(−z) = −Θ(z) in the third. By keeping
track of the shift in the pi, we therefore get〈

E∨(1)E∨(x)
n∏
i=1

pt

1− ψi

〉E,′

=
(−1)nΘ(z)nx

xn−1znx+2n

 ∏
1≤i ̸=j≤n

(
Θ(z + ui − uj)
Θ(ui − uj)

)x′′

p0

,

where [· · · ]′′p0 denotes taking the coefficient of
∏n
i=1 p

0
i in the Fourier expan-

sion in u in the domain defined by

|q| <
∣∣∣∣ pipj q

∣∣∣∣ < 1 for all 1 ≤ j < i ≤ n

if x ≥ 0 and

|q| <
∣∣∣∣e±z pipj q

∣∣∣∣ < 1 for all 1 ≤ j < i ≤ n

if x < 0. Using the notation of Section 4.5, we have [· · · ]′′p0 = [· · · ]p0,Id,
where Id ∈ Sn is the identity permutation. Since the function inside the
bracket is symmetric in the ui, we get [· · · ]p0,Id = [· · · ]p0 , which concludes
the proof.

We are now ready to give a proof of Theorem 1.40. We recall its state-
ment for the sake of convenience:

Theorem 1.40. If x > 0, we have〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′
=

(−1)n(n− 1)!Θ(z)nx

xn−1znx+2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

∏
i ̸=j

Θ(z + ui − uj)
Θ(ui − uj)

x

·
N−1∏
m=1

A(ulm − ulm+1)
lm+1−lm

(n− lm) · (lm+1 − lm)!

(28)
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and if x < 0,〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′
= 2

(−1)n(n− 1)!Θ(z)nx

xn−1znx+2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

s1,...,sn

∏
i ̸=j

Θ(z + u′i − u′j)
Θ(u′i − u′j)

x

·
N−1∏
m=1

A(u′lm − u
′
lm+1

)lm+1−lm

(n− lm) · (lm+1 − lm)!
,

(29)

where all residues are taken for z ̸= 0. Moreover, we set u′i = ui + siz and
s1, . . . , sn is a sequence of integers so that s1 = 0, s2 = 1 and for any j,
we have {s1, . . . , sj} = Z ∩ [a, b] for some a, b ∈ Z. Finally, A(u) is as in
Appendix A.

Proof of Theorem 1.40. Using the terminology of Section 4.5, it follows from
(89) that

F (u; z, τ) =

∏
i ̸=j

Θ(z + ui − uj)
Θ(ui − uj)

x

is Λτ -invariant and has a pole datum given by Si,j = {0} for x > 0 and
Si,j = {±1} for x < 0. Hence (28) follows directly from Corollary 4.21 and
Proposition 4.10. For x < 0, this however gives us:〈

E∨(1)E∨(x)
n∏
i=1

pt

1− ψi

〉E,′
=

(−1)n(n− 1)!Θ(z)nx

xn−1znx+2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

s1,...,sn

∏
i ̸=j

Θ(z + u′i − u′j)
Θ(u′i − u′j)

x

·
N−1∏
m=1

A(u′lm − u
′
lm+1

)lm+1−lm

(n− lm) · (lm+1 − lm)!
,

(72)

where u′i = ui + siz and s1, . . . , sn ∈ Z are so that s1 = 0 and for any j > 1
we either have |sj − sr| = 1 for some r < j or j = lt+1 for some t ≥ 1 and
sj = slt . Note now that the summands with s2 = 0 all vanish. Indeed, in
this case F (u′; z, τ) has positive order at u1 = u2 and the factor containing
the A’s only has negative order if lm+1 = 2, in which case it has order −1.
As a result, the product is holomorphic at u1 = u2 and so Resu1=u2 = 0.
Furthermore, the summand corresponding to s1, . . . , sn is the same as the
one corresponding to −s1, . . . ,−sn. This is because

Resz=af(z) = −Resz=−af(−z).
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Denoting by G(u′) the function that we are taking the residue of, we there-
fore see that

Resun−1=un · · ·Resu1=u2G(u′) = (−1)n−1Resun−1=un · · ·Resu1=u2G(−u′′)

= Resun−1=un · · ·Resu1=u2G(u′′)

where u′′i = ui − siz and the last equality used G(−u) = (−1)n−1G(u),
which follows from A(−u) = −A(u). This redundancy can be removed
by requiring s2 = 1 and giving the right hand side in (72) a factor of 2.
Moreover, if s2 = 1, then the above conditions on si are equivalent to those
stated in Theorem 1.40. Note also that the requirement z ̸= 0 coming from
Section 4.5 is only necessary for (29) and not for (28) since the latter has
no poles that involve z.

Using slightly different methods, we also derived recursive formulas for
certain Hodge integrals in [95, Appendix B]. We will now recall this result
as well as its proof. Meanwhile we freely use the notation of Appendix A.

Proposition 4.11. [95, Proposition B.1] For x ∈ Z̸=0, we have the following
formulas:

(1) For x > 0 we have:〈
E∨(1)E∨(x)

1

1− ψ1

pt

1− ψ2

〉E,′
=

Θ4x4x

x
(
2x
x

)
z2x+4

a(x)〈
E∨(1)E∨(x)

pt

1− ψ1

pt

1− ψ2

〉E,′
= − Θ4x4x+1

x
(
2x
x

)
z2x+4

[
G2a(x) + b(x)

]
〈
E∨(1)E∨(x)

pt

1/2− ψ1

〉E,′
=

Θ4x

z2x+3

[
(A+ 2zG2)a(x) + z2b(x) + 2c(x)

]
for quasi-Jacobi forms a(x), b(x), c(x) ∈ Q[℘, ℘′, G4] of weights 2x− 2,
2x and 2x− 1 respectively. They are characterized by

a(1) = −1

4
, b(1) = −1

8
℘, c(1) = 0

and the recursive formula:

a(x) =
1

2x
Da(x− 1) +

4x− 3

2x
℘a(x− 1) +

1

x
b(x− 1)

b(x) =
1

2
℘a(x)−Dzc(x) + (x− 1

2
)c(x− 1)℘′

c(x) =
1

2x
Dc(x− 1) +

4x− 3

2x
℘c(x− 1) +

1

8x(x− 1/2)
Dza(x)

for all x ≥ 2, where D is the operator

D = −Dτ + ADz − 2G2wt

of degree 2. It is easily checked that D indeed preserves Q[℘, ℘′, G4].
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(2) Likewise, formulas for x < 0 are given by:〈
E∨(1)E∨(x)

1

1− ψ1

pt

1− ψ2

〉E,′
=

Θ(2z)2x+1

4z2x+4Θ4(x+1)

[
2zd(x)− e(x)

]
〈
E∨(1)E∨(x)

pt

1− ψ1

pt

1− ψ2

〉E,′
=

Θ(2z)2x+1

Θ4(x+1)z2x+4

[
Ad(x) +G2e(x) + f(x)

]
〈
E∨(1)E∨(x)

pt

1/2− ψ1

〉E,′
=

Θ(2z)2x+1

Θ4(x+1)4x+1
(−2x
−x
)
z2x+3

d(x),

where again d(x), e(x), f(x) ∈ Q[℘, ℘′, G4] are of weights −4(x + 1),
−4x− 5 and −4x− 3 and determined by

d(−1) = −2, e(−1) = 0, f(−1) = 0

and the recursive formula:

d(x) = D(x)d(x+ 1)

e(x) = −2

x
℘′d(x+ 1) +D(x)e(x+ 1)

f(x) = D(x)f(x+ 1)− 1

x
℘℘′d(x+ 1),

which holds for x < −1. Here, D(x) is the operator

D(x) =
1

x
℘′Dz + 2℘′′x+ 3/2

x

Sketch of proof. It will be somewhat more convenient to instead work with
the connected invariants:

F (x) :=

〈
E∨(1)E∨(x)

1

1− ψ1

pt

1− ψ2

〉E,◦
=

〈
E∨(1)E∨(x)

1

1− ψ1

pt

1− ψ2

〉E,′
G(x) :=

〈
E∨(1)E∨(x)

pt

1− ψ1

pt

1− ψ2

〉E,◦
=

〈
E∨(1)E∨(x)

pt

1− ψ1

pt

1− ψ2

〉E,′
− Θ2x

xz2x+4

H(x) :=

〈
E∨(1)E∨(x)

pt

1/2− ψ1

〉E,◦
=

〈
E∨(1)E∨(x)

pt

1/2− ψ1

〉E,′
.

These are also well-defined for x = 0, in which case [91, Lemma 4.4.1] implies

F (0) = − 1

2z2
, G(0) = 0, H(0) = − 1

2z2
.

We will now use certain tautological relations on Mg,2 to derive the above
recursions. In our case, these relations come from Mg,2(P1, 2). More spe-
cifically, we look at the bundle

E(n) := R1π∗f
∗OP1(n)

for n = 0,−1, which comes from P1 via the maps:
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Mg,3(P1, 2) P1

Mg,2(P1, 2)

f

π

where π is the map forgetting the third marking and f is the evaluation at
that marking. We now equip P1 with a T = C∗-action so that TP1,0 is the
standard T-representation with first chern class t ∈ H2

T(pt). For any integer
x ∈ Z, we can turn OP1(n) into an equivariant bundle so that OP1(n)|0
has weight (n + x)t and OP1(n)|∞ has weight xt. We further denote by
H0, H∞ ∈ H2

T(P1) the two lifts of the points class so that H0|∞ = H∞|0 = 0
and H0|0 = − H∞|∞ = t. Using Riemann-Roch, we see that E(n) also
becomes an equivariant bundle of rank g if n = 0 and rank g + 1 if n = −1.
As a result, the following integrals are independent of t and hence also of x:∫

[Mg,2(P1,2)]vir,T
ev∗1(H

3+n
∞ )ev∗2(H0)e

T (E(n))p∗Cg(pt, 1)∫
[Mg,2(P1,2)]vir,T

ev∗1(H
2+n
∞ )ψ2ev

∗
2(H0)e

T (E(n))p∗Cg(pt, 1)∫
[Mg,2(P1,2)]vir,T

ev∗1(H
2+n
∞ )ev∗2(H∞)eT (E(n))p∗Cg(pt, pt).

Here we wrote
Cg(· · · ) =

∑
d≥0

qdCg,d(· · · )

for Cg,d the Gromov-Witten classes of the elliptic curve as in (61). Moreover,
we pull these classes back along the forgetful map p : Mg,2(P1, 2) → Mg,2.
We now set t = 1 and compute the above expressions using localization.
Note for this that the Euler class eT (E(n)) can be computed using the
normalization sequence on every fixed locus (c.f. [24, §2]). Using Theorem
1.34 and Mumford’s relation (26) we can deduce

F (−1) = − 1

zΘ(2z)
, G(−1) = 1

z2Θ2
− 2A

z2Θ(2z)
, H(−1) = − 1

zΘ(2z)

and hence compute the three integrals for x = −1 and all g. After summing
over g, the independence of x then gives the following two systems of linear
equations:

F (−x)
[xΘ2x−2

z2x−2
+ x(1− x)z2G(x− 1)

]
+G(−x)

[
x(x− 1)z2F (x− 1)

]
+H(−x)

[
(2− 4x)H(x− 1)

]
=

(x− 1)z2x−2

Θ2x
F (x− 1),
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F (−x)
[
x(x− 1)z2(zDz + 2)G(x− 1) + 2x

Θ2x−2

z2x
((x− 1)zA− x)

]
+G(−x)

[
x(1− x)z2(zDz + 2)F (x− 1)

]
+H(−x)

[
(4x− 2)(zDz + 1)H(x− 1)

]
=

(1− x)z2x−2

Θ2x
(zDz + 2)F (x− 1) +

2

xz3Θ(2z)
,

F (−x)
[
4x(1− x)DτΘΘ2x−3

z2x
− 2x(x− 1)z2DτG(x− 1)

]
+G(−x)

[
x
Θ2x−2

z2x
+ x(x− 1)z2(G(x− 1) + 2DτF (x− 1))

]
+H(−x)

[
(4− 8x)DτH(x− 1)

]
= (x− 1)

z2x−2

Θ2x
(G(x− 1) + 2DτF (x− 1)) +

1

z4Θ2
− 2

A

z4Θ(2z)

and

F (x)
[
− z2x−2

Θ2x
+ xz2G(−x)

]
+G(x)

[
− xz2F (−x)

]
+H(x)

[
− 4H(−x)

]
=

Θ2x

z2x+2
F (−x),

F (x)
[
− xz2(zDz + 2)G(−x) + 2

z2x−2

Θ2x
(−xzA+ x− 1)

]
+G(x)

[
xz2(zDz + 2)F (−x)

]
+H(x)

[
4(zDz + 1)H(−x)

]
= − Θ2x

z2x+2
(zDz + 2)F (−x),

F (x)
[
2xz2DτG(−x) + 4x

z2x−2DτΘ

Θ2x+1

]
+G(x)

[z2x−2

Θ2x
− xz2(G(−x) + 2DτF (−x))

]
+H(x)

[
− 8DτH(−x)

]
=

Θ2x

z2x+2
(G(−x) + 2DτF (−x)).

The derivatives Dz and Dτ come from the dilaton and divisor equations
respectively (note that both hold on the level of cycles). The z−2-coefficient
of the two systems have determinants 2x2(1−2x) and −2 respectively. Hence
F (x), G(x) and H(x) are uniquely determined by these equations and the
values for x = 0,−1. Now one simply inserts the claimed recursions for
x < 0 and x > 0 into these equations and shows inductively that they are
indeed satisfied.
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Remark 4.12. The tautological relations here are the ones used by Okounkov
and Pandharipande to prove the Mariño-Vafa formula in [74].

We are now ready to show Theorem 1.38.

Proof of Theorem 1.38. By Proposition 4.11, we see that Theorem 1.38 holds
for 〈

E∨(1)E∨(x)
pt

1/2− ψ

〉E,′
.

Moreover, we have 〈
E∨(1)E∨(x)

γ

1/2− ψ

〉E,′
= 0

for all γ ∈ H≤1(E). In case γ = α, β, this follows from the algebraicity of
the virtual class, whereas γ = 1 vanishes because of [40, Proposition 2]. It
therefore remains to consider µ = (1n). For this, we first claim that any
Hodge integral 〈

E∨(1)E∨(x)
n∏
i=1

γi
1− ψi

〉E,′
for γi ∈ {1, α, β,pt} can be written as a linear combination of Hodge integ-
rals with γi ∈ {1,pt}. Indeed, there can not be more than one α as one
could otherwise swap two α-insertions at the cost of introducing a sign〈

E∨(1)E∨(x) · · · α

1− ψi
α

1− ψi+1
· · ·
〉E,′

= −
〈
E∨(1)E∨(x) · · · α

1− ψi
α

1− ψi+1
· · ·
〉E,′

,

which shows that the invariant must vanish. Furthermore, all invariants with
an unequal number of α’s and β’s must be zero due to the algebraicity of the
virtual class. Hence the only nonzero Hodge integrals with odd insertions
are of the shape〈

E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

m∏
j=1

1

1− ψj+n
α

1− ψn+m+1

β

1− ψn+m+2

〉E,′
.

By [40, Proposition 2], this is equal to

1

n+ 1

〈
E∨(1)E∨(x)

n+1∏
i=1

pt

1− ψi

m+1∏
j=1

1

1− ψj+n

〉E,′
,

94



which reduces to the case of even cohomology insertions. In this case, it
follows from (27) that〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

m∏
j=1

1

1− ψj+n

〉E,′

=
n!

(−2)m(n+m)!

((
d

dG2

)
z

+ xz2(n+m)2
)m〈

E∨(1)E∨(x)
n+m∏
i=1

pt

1− ψi

〉E,′
.

If we assume that Theorem 1.38 holds for point descendents, then by (92)
we get〈

E∨(1)E∨(x)
n∏
i=1

pt

1− ψi

m∏
j=1

1

1− ψj+n

〉E,′

=
n!

(−2)m(n+m)!

(
d

dG2
− 2z

d

dA

)m〈
E∨(1)E∨(x)

n+m∏
i=1

pt

1− ψi

〉E,′
,

which implies Theorem 1.38 if x < 0 and also for x > 0 if one has

d

dA

〈
E∨(1)E∨(x)

n∏
i=1

pt

1− ψi

〉E,′
= 0.

Finally, one can deduce the point descendent case by explicitly expanding
the residues in Theorem 1.40. The vanishing of d

dA for x > 0 follows from
the identity

(73)
d

dA
[uk]F (u+ z) = [uk]

(
2muF (u+ z) +

(
d

dA
F

)
(u+ z)

)
,

where F is a meromorphic quasi-Jacobi form of index m. This is a con-
sequence of (93).

From Theorem 1.40, we can derive the following formulas, which will be
useful for providing evidence for Conjecture F in the next section.

Corollary 4.13. For x ∈ Z<0 we have〈
E∨(1)E∨(x)

pt

1/2− ψ

〉E,′
=

Θ(z)2x

2x
(−2x
−x
)
z2x+3

Resu=0

(
Θ(u+ 2z)Θ(u)

4Θ(u+ z)2

)x
〈
E∨(1)E∨(x)

pt

1− ψ1

1

1− ψ2

〉E,′
=

Θ(z)2x

xz2x+4
Resu=0

(
Θ(u+ 2z)Θ(u)

Θ(u+ z)2

)x
(u+ z)〈

E∨(1)E∨(x)
pt

1− ψ1

pt

1− ψ2

〉E,′
=

2Θ(z)2x

xz2x+4
Resu=0

(
Θ(u)Θ(u+ 2z)

Θ(u+ z)2

)x
A(u+ z),
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where all residues are taken for z ̸= 0 and and for x ∈ Z>0:〈
E∨(1)E∨(x)

pt

1− ψ1

1

1− ψ2

〉E,′
=

Θ(z)2x

2xz2x+4
Resu=0

(
Θ(u+ z)Θ(u− z)

Θ(u)2

)x
u〈

E∨(1)E∨(x)
pt

1− ψ1

pt

1− ψ2

〉E,′
=

Θ(z)2x

xz2x+4
Resu=0

(
Θ(u− z)Θ(u+ z)

Θ(u)2

)x
A(u)

Proof. The formulas for
〈
E∨(1)E∨(x) pt

1−ψ1

pt
1−ψ2

〉E,′
are special cases of The-

orem 1.40. Using the holomorphic anomaly equation (27), we get〈
E∨(1)E∨(x)

pt

1− ψ1

1

1− ψ2

〉E,′
= −

(
xz2 +

1

4

(
d

dG2

)
z

)〈
E∨(1)E∨(x)

pt

1− ψ1

pt

1− ψ2

〉E,′
,

where
(

d
dG2

)
z
is the z-coefficientwise holomorphic anomaly operator for

quasi-modular forms (not to be confused with d
dG2

acting on QJac). The
last formula follows from Proposition 4.11(2), which implies that〈

E∨(1)E∨(x)
pt

1/2− ψ

〉′
=

z

4x+1
(−2x
−x
) d
dA

〈
E∨(1)E∨(x)

pt

1− ψ1

pt

1− ψ2

〉′
.

The right hand side is then simplified using (73).

4.4 Applications and consequences

Using the Corollary 4.13, we can deduce the following formulas for invariants
of the tube:

Theorem 4.14. Conjecture F holds for a = b = ∅ and a = b = (1). We
also have the following identities: For x < 0:

⟨∅|E∨(1)E∨(x)
pt

1− ψ1

1

1− ψ2
|∅⟩P1/{0,∞}

=
(2S(2z))2x

xz3
f−x(z)−

(2S(2z))2x

2z4

∑
i+j=−x

fi(z)fj(z)

ij
,

where

(74) fn(z) =
n∑
i=0

(
2n

n+ i

)
ς(2iz)

with ς(z) = ez/2 − e−z/2 as in (63) and for x ≥ 0:

⟨∅|E∨(1)E∨(x)
pt

1− ψ1

1

1− ψ2
|∅⟩P1/{0,∞} = − S(z)2x

x
(
2x
x

)
z2

x∑
i=0

iS(iz)2
(

2x

x+ i

)
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⟨(1)|E∨(1)E∨(x)
pt

1− ψ1

1

1− ψ2
|(1)⟩P1/{0,∞}

=
S(z)2x+2(x+ 1)

2xz2
(
2x
x

) [
4

x∑
i=2

(
2x

x+ i

)
iS(iz)2

(i− 1)(i+ 1)

−S(z)2
(

2x

x+ 1

)(
1 + 2

x+1∑
k=1

1

k

)]
.

Proof of Theorem 4.14. In principle, one should be able to show that the
above formulas follow from Proposition 4.11. We will however find it easier
to work with Corollary 4.13 instead. For the most part, this proof consists
of checking that the above formulas agree with the q≤1-coefficients of those
in Corollary 4.13, which must hold by degeneration. For instance, in case
x < 0, Corollary 4.13 and taking q0-coefficients yield
(75)〈
∅
∣∣∣∣E∨(1)E∨(x)

pt

1/2− ψ

∣∣∣∣ ∅〉P1/{0,∞}
=

ς(z)2x

2x
(−2x
−x
)
z2x+3

Resu=0

(
ς(u+ 2z)ς(u)

4ς(u+ z)2

)x
.

To show the empty set case of Conjecture F, we therefore have to show

(76) Resu=0

(
ς(z)2ς(u+ 2z)ς(u)

ς(2z)2ς(u+ z)2

)x
= f−x(z),

where f−x(z) is as in (74). From Lemma 4.15 we can deduce the following
differential equation:

(77) D2
zfn(z) = n2fn(z)− 2n(2n− 1)fn−1(z).

To check that this differential equation also holds for the left hand side of
(76), one uses Lagrange inversion to see that

Resu=0

(
ς(z)2ς(u+ 2z)ς(u)

ς(2z)2ς(u+ z)2

)x
= −x[u−x]F (u, z),

where F (u, z) is the compositional inverse in u of G(u, z) = ς(z)2ς(u+2z)ς(u)
ς(2z)2ς(u+z)2

.

Equation (77) is therefore equivalent to

(78) D2
zF (u, z) =

(
uDu + u2D2

u − 4u3D2
u − 6u2Du

)
F (u, z).

By using

DuF (u, z) =
1

(DuG)(F (u, z), z)
, DzF (u, z) = −

(DzG)(F (u, z), z)

(DuG)(F (u, z), z)

to express the derivatives of F in terms of the derivatives of G, we see that
this is equivalent to

2(DuG)(DzG)DuDzG− (DuG)
2D2

zF − (DzG)
2D2

uG

97



= G(DuG)
2 −G2D2

uG+ 4G3D2
uG− 6G2(DuG)

2,

which holds by explicit computation. Since (77) is second order and both
sides of (76) are odd functions in z, it remains only to check that the z1-
coefficients on both sides match as desired. The simplest17 way to see this
is to use the fact that the left hand side of (75) has z−2-coefficient 1

2 .
For the degree 1 case, degeneration and Corollary 4.13 give

⟨(1)|E∨(1)E∨(x)
pt

1/2− ψ
|(1)⟩P1/{0,∞}

= − 1

xz2
[q1]

〈
E∨(1)E∨(x)

pt

1/2− ψ

〉E,′
=

ς(z)2x+2

x
(−2x
−x
)
z2x+5

Resu=0

(
ς(u+ 2z)ς(u)

4ς(u+ z)2

)x(
1 +

eu+z + e−u−z

2

)
=
S(2z)2xS(z)2

x
(−2x
−x
)
z3

(
f−x(z)−

x

2
[u−x]ς(2F (u, z) + 2z)

)
,

where the last equality uses Lagrange-Bürmann inversion. Using G(u, z) =
ς(z)2

ς(2z)2

(
1− ς(z)2

ς(u+z)2

)
we can further deduce that

ς(2F (u, z) + 2z) = ς(F (u, z) + z)
√

4 + ς(F (u, z) + z)2

=
ς(2z)

√
1− 4u

1− ς(2z)2

ς(z)2
u
.

On the other hand, Conjecture F predicts that

⟨(1)|E∨(1)E∨(x)
pt

1/2− ψ
|(1)⟩P1/{0,∞}

=
S(2z)2xS(z)2

x
(−2x
−x
)
z3

(
f−x(z) +

ς(2z)

2
Dzf−x(z)

)
.

To prove this prediction it thus suffices to show that

√
1− 4u

1− ς(2z)2

ς(z)2
u
− 1 = DzF (u, z).

Indeed, one can check that both sides satisfy (78) and are even in z. Hence
it suffices to check that the z0-coefficients agree, which follows from

1√
1− 4u

=
∑
n≥0

(
2n

n

)
un.

17Note that Resu=0 and [z1] do not commute as the residue has to be taken in the
domain z ̸= 0.
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Taking the q0-coefficient of the second equation in Theorem 4.14 yields〈
∅|E∨(1)E∨(x)

pt

1− ψ1

1

1− ψ2
|∅
〉P1/{0,∞}

=
ς(z)2x

xz2x+4
Resu=0

(
ς(u+ 2z)ς(u)

ς(u+ z)2

)x
(u+ z)

=
ς(2z)2x

xz2x+4
Resu=0G(u, z)

x(u+ z) = − ς(2z)
2x

z2x+4
[u−x]

(
F (u, z)2

2
+ zF (u, z)

)
.

The desired formula for the Hodge integral now follows from (76).
For x ≥ 0, we first show that

⟨∅|E∨(1)E∨(x)
pt

1− ψ1

1

1− ψ2
|∅⟩P1/{0,∞} = − S(z)2x

xz2
(
2x
x

) x∑
i=0

iS(iz)2
(

2x

x+ i

)
,

which by Corollary 4.13 is equivalent to

− 1(
2x
x

) x∑
i=0

ς(iz)2

i

(
2x

x+ i

)
= Resu=0

(
ς(u+ z)ς(u− z)

ς(u)2

)x u
2

= Resu=0

(√
ς(u+ z)ς(u− z)

ς(u)

)2x
u

2

=
x

2
[u2x]H(u, z),

(79)

where H(u, z) is the compositional inverse in u of ς(u)√
ς(u+z)ς(u−z)

. As above,

one can check this by matching up the z2-coefficients and checking that the
differential equation

D2
zgx(z) = x2(gx(z)− gx−1(z)),

which holds for the left hand side of (79) by Lemma 4.15, also holds for the
right hand side. The formula for ⟨(1)|E∨(1)E∨(x) pt

1−ψ1

1
1−ψ2
|(1)⟩P1/{0,∞} can

be proved in a similar manner.

The above proof used the following purely combinatorial lemma, for
which we could not find an adequate reference:

Lemma 4.15. Let c = c0, c1, . . . be an arbitrary infinite sequence of num-
bers and n ∈ Z. For any x ≥ 0 we let

pcn(x) =
1(
2x
x

) x∑
i=0

(
2x

x+ i

)
cii

2n+1.

This satisfies the recursion

pcn+1(x) = x2 (pcn(x)− pcn(x− 1))

99



for all n and x > 0. Let further 1 = 1, 1, 1, . . . the sequence consisting of 1s.
If n ≥ 0, then p1n is polynomial of degree n+1 in x and we have the special
values

p10(x) =
x

2
and p1−1(x) =

1

2

x∑
k=1

1

k

Proof. The claim p10(x) =
x
2 follows from the identity(

2x

x

)
x

2
−
(

2x

x+m

)
x−m

2
=

m∑
i=0

(
2x

x+ i

)
i,

which one can show by induction on m. The recursion relation is easily
checked and together with p10(x) =

x
2 implies the other claims.

We close this section by noting that Theorem 1.40 implies the following
formula for certain triple Hodge integrals on the moduli space of curves
Mg,n =M

◦
g,n(pt, 0):

Corollary 4.16. For x > 0, we have∑
g≥0

(−1)g−1z2g−2

∫
Mg,n

E∨(0)E∨(1)E∨(x)

n∏
i=1

1

1− ψi
=

=
(−1)n(n− 1)!S(z)nx

xn−1z2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

∏
i ̸=j

ς(z + ui − uj)
ς(ui − uj)

x

·
N−1∏
m=1

(ulm − ulm+1)
lm+1−lm

(n− lm) · (lm+1 − lm)!
,

where E∨(x) ∈ H∗(Mg,n)[x] is defined in the same way as above. For x < 0,
we have:∑

g≥0

(−1)g−1z2g−2

∫
Mg,n

E∨(0)E∨(1)E∨(x)
n∏
i=1

1

1− ψi
=

= 2
(−1)n(n− 1)!S(z)nx

nxn−1z2n
Resun−1=un · · ·Resu1=u2

∑
1=l1<···<lN=n

s1,...,sn

∏
i ̸=j

ς(z + u′i − u′j)
ς(u′i − u′j)

x

·
N−1∏
m=1

(u′lm − u
′
lm+1

)lm+1−lm

(n− lm) · (lm+1 − lm)!
,

where all residues are taken for z ̸= 0 and the si are as in Theorem 1.40.

The proof, which to some extent already appeared above, consists of first
using 27 to obtain formulas for〈
E∨(1)E∨(x)

pt

1− ψ1

n∏
i=2

1

1− ψi

〉E,′
=

〈
E∨(1)E∨(x)

pt

1− ψ1

n∏
i=2

1

1− ψi

〉E,◦
,
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where the equality follows from 4.7 and [40, Proposition 2]. By taking the
q0 coefficient of this and using the description for degree 0 Gromov-Witten
theory given in [30, §2], we get the desired claim.

4.5 Details on p0-coefficients

In this section, we make the p0-coefficients that appear in Theorem 4.10
precise and more explicit - the main result being Corollary 4.21. This section
is also heavily inspired by and closely modelled on [70, Appendix A] with
most arguments being almost identical. We nonetheless present them in full
detail for the convenience of the reader. Throughout, we use the notations

H = {z ∈ C | Im(z) > 0}

for the upper half plane and C∗ = C \ {0}. Our main objects of study are
holomorphic functions of the following kind:

Situation 2. Let n ≥ 2 and F (u1, . . . , un; z, τ) be a holomorphic function
on a domain of the shape

US =

{
(u; z, τ) ∈ Cn × C∗ ×H

∣∣∣∣ for all i ̸= j, λ ∈ Λτ and m ∈ Si,j :
ui ̸= uj +mz + λ

}
for finite sets Si,j ⊂ Z for 1 ≤ i ̸= j ≤ n. We call a choice of S = (Si,j)i,j
so that F is holomorphic on US a pole datum for F if Sj,i = −Si,j . We
furthermore require that

F (u+ λ; z, τ) = F (u; z, τ)

for any λ ∈ Λnτ where Λτ = 2πiZ+ 2πiτZ.

Because of translation invariance, any such function can be written as

F (u; z, τ) = F (p; z, τ)

for p = (p1, . . . , pn) with pi = eui and F holomorphic on a certain subdomain
of (C∗)n+1×H. We would like to take the constant coefficient in the Laurent
series expansion of F in p around the origin, but because of the existence
of poles, such an expansion may not exist on all of (C∗)n+1 × H. It does
however exist on domains which are unions of products of annuli in (C∗)n

and do not touch any poles. In particular, for any permutation σ ∈ Sn, we
have a Fourier expansion

F (u; z, τ) =
∑

m∈Zn

a
(σ)
m (z, τ)pm1

1 · · · p
mn
n

on the domain

U (S)
σ :=

{
(u; z, τ) ∈ US

∣∣∣∣ for 1 ≤ j < i ≤ n and m ∈ Sσ−1(i),σ−1(j) :

0 < Re(uσ−1(i) − uσ−1(j) −mz) < 2πIm(τ)

}
.
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We view the coefficients a
(σ)
m as germs of holomorphic functions on a punc-

tured neighborhood of {0} × H ⊂ C × H. Note furthermore that they are
independent of the choice of pole datum S. We can therefore define

[F ]p0,σ := a
(σ)
0

and

(80) [F ]p0 :=
1

n!

∑
σ∈Sn

[F ]p0,σ.

Our main goal in this section will be to study such constant coefficients.

Lemma 4.17. For any σ ∈ Sn we have

[F ]p0,σ = [F ]p0,σ̃

for σ̃ a cyclic permutation of σ.

Proof. Let σ̃ ∈ Sn be the unique permutation so that

σ̃(i) ≡ σ(i) + 1 (mod n).

For any (a; z, τ) ∈ U (S)
σ we have

[F ]p0,σ =
1

(2πi)n

∫
Ca1

· · ·
∫
Can

F (u; z, τ)dun · · · du1,

where Ca is the line segment going from a to a + 2πi. By Λτ -invariance of
F , this integral does not change if we replace a by ã where

ãl =

{
al, if σ(l) ̸= n

al + 2πiτ, if σ(l) = n.

However, if z was small enough, then we have (ã; z, τ) ∈ U (S)
σ̃ , which shows

that [F ]p0,σ = [F ]p0,σ̃ as desired.

The following proposition will make these Fourier coefficients more ex-
plicit. For that, we denote by

Resua=ubF (u1, . . . , un; z, τ)

the (one-variable) residue in ua at ua = ub on US. This residue again satisfies
Situation 2 and has pole datum S̃, where S̃ is determined by S̃i,j = Si,j for

i, j ̸= b and S̃b,j = Sa,j ∪ Sb,j . Note also that we needed to impose z ̸= 0 in
the definition of US as the residue might otherwise not even be a continuous
function as the example

Resu1=u2
1

z + u1 − u2
= δz,0

shows.
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Proposition 4.18. Let F be as in Situation 2 and S a pole datum for F
with 0 ∈ S1,n. We then have

[F ]p0,σ =∑
l≥1

∑
i=(i1,...,il)
s1,...,sl

[
Resuil−1

=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 2− ni,σ
l − 1

)]
p0,σ

,

(81)

where the inner sum runs over all non-recurring18 sequences i1, . . . , il ∈
{1, . . . , n} with i1 = 1 and il = n and integers sj so that s1 = 0 and for any
j > 1 there is some r < j so that sj − sr ∈ Sij ,ir . We further wrote ni,σ for
the number of 1 ≤ m ≤ l− 1 so that σ(im+1) > σ(im) and u′ = (u′i)i for the
shift

u′j =

{
uj + srz, if j = ir

uj + slz, if j ̸∈ {i1, . . . , il}.

Remark 4.19. Note that the functions on the right hand side of (81) satisfy
Situation 2 as they are again Λτ -invariant and have a pole datum S̃ determ-
ined by S̃i,j = Si,j for i, j ̸∈ {i1, . . . , il} and S̃n,j =

⋃l
r=1 (Sir,j + sr − sl).

Their p0 coefficients are therefore well-defined.

Proof. We will prove (81) by showing the following by induction on L:

[F ]p0,σ =

L∑
l=0

∑
i=(i1,...,il)
s1,...,sl

[
Resuil−1

=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 2− ni,σ
l − 1

)]
p0,σ

(82)

where notations are as in (81) except for the non-recurring sequences i1, . . . , il ∈
{1, . . . , n}, where il = n is imposed only if l < L, but we still require i1 = 1
and im ̸= n for all l and m < l.

The case L = 0 is trivial. Assume therefore that (82) holds for L and
we want to deduce it for L+1. Consider any summand for which l = L and
il ̸= n. The function inside of the bracket

Resuil−1
=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 2− ni,σ
l − 1

)
(83)

almost satisfies Situation 2 except for the invariance under translation by
2πiτ in uil and un. It does however admit a pole datum S̃ determined

18i.e. is ̸= it if s ̸= t.
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a

Ca

a+ 2πi

a+ 2πi+ 2πiτ

a+ 2πiτ

Figure 6: The closed path Ba

by S̃i,j = Si,j for i, j ̸∈ {i1, . . . , il} and S̃il,j =
⋃l
r=1 (Sir,j + sl − sr). Its

[· · · ]p0,σ is therefore well-defined and is also the p0-coefficient of

1

2πi

∫
Ca

Resuil−1
=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 2− ni,σ
l − 1

)
duil

(84)

for any a ∈ C and other variables so that

(u1, . . . , uil−1, a, uil+1, . . . , un; z, τ) ∈ U (S̃)
σ .

As before, the path Ca denotes the line segment from a to a + 2πi. Using
the Λτ -invariance of F and (90) it follows that (84) is equal to

1

2πi

∫
Ba

H(u)duil ,

where

H(u) = Resuil−1
=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 1− ni,σ
l

)
and Ba is the closed contour depicted in Figure 6. By the residue theorem,
we have

(85)
1

2πi

∫
Ba

H(u)duil =
∑
j,m,λ

Resuil=uj+mz+λH(u),

where the sum goes over all uil-poles in the interior of Ba, which are exactly
points of the shape

uil = uj +mz + λ

for j ̸∈ {i1, . . . , il},m ∈ S̃il,j and appropriate λ ∈ Λτ . Since H(u) is invariant
under translation by 2πi, we may take λ = 2πiτm′ for some m′ ∈ Z. By
requiring |Re(z)| to be small enough, we can furthermore force m′ = 1 if
σ(j) > σ(il) and m′ = 0 if σ(j) < σ(il) meaning that ni′,σ = ni,σ +m′ for
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i′ = (i1, . . . , il, j). Using Resz=r+sf(z) = Resz=rf(z + s) repeatedly, (85)
simplifies to∑

j ̸∈{i1,...,il}
m∈S̃il,j

Resuil=uj · · ·Resui1=ui2F (u
′′) ·
(
A1,n(u

′′) + l − 1− ni′,σ
l

)
(86)

where u′′ = (u′′i )i is defined by

u′′i =

{
u′i +mz, if i ∈ {i1, . . . , il}
u′i, else.

Since [· · · ]p0,σ and the residues are invariant under shift of all variables, we
can instead also take

u′′i =

{
u′i, if i ∈ {i1, . . . , il}
u′i −mz, else.

and the p0-coefficient of (86) would have been the same. Defining sl+1 = sl−
m yields the l = L+ 1 summands in (82), which finishes the induction.

Summing over all σ yields:

Proposition 4.20. Let F be as in Situation 2 and pole datum S with
0 ∈ S1,n. Then

[F ]p0 =∑
l≥1

∑
i=(i1,...,il)
s1,...,sl

[
Resuil−1

=uil
· · ·Resui1=ui2F (u

′) · A1,n(u
′)l−1

(l − 1)!

]
p0

(87)

with notations and summation variables are as in Proposition 4.18.

Proof. By Lemma 4.17, we have

[F ]p0 =
1

n!

∑
σ∈Sn

[F ]p0,σ =
1

(n− 1)!

∑
σ∈Sn
σ(n)=n

[F ]p0,σ.

Using Proposition 4.18, we get

[F ]p0 =
1

(n− 1)!

∑
l≥1

∑
i=(i1,...,il)
s1,...,sl∑

σ∈Sn
σ(n)=n

[
Resuil−1

=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 2− ni,σ
l − 1

)]
p0,σ

.
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Note that the functions inside of the brackets on the right hand side only
depend on ui for i ∈ {1, . . . , n} \ {i1, . . . , il−1}. From this, one can see that
given a choice of i and s1, . . . , sl as above, any two permutations σ, σ′ ∈ Sn
that induce the same ordering on {1, . . . , n−1}\{i1, . . . , il−1} will yield equal
summands on the right hand side. We can therefore split the inner most
sum into a sum over all permutations τ of {i1, . . . , il−1}, all permutations
ρ of {1, . . . , n − 1} \ {i1, . . . , il−1} and all the

(
n−1
l−1

)
ways of shuffling these

together. This gives us

[F ]p0 =
∑
l≥1

∑
i=(i1,...,il)
s1,...,sl

∑
ρ∈Sn−l

1

(n− l)! · (l − 1)! ∑
τ∈Sl−1

Resuil−1
=uil
· · ·Resui1=ui2F (u

′) ·
(
A1,n(u

′) + l − 2− ni,τ
l − 1

)
p0,ρ

.

The proposition now follows from Worpitzky’s identity∑
τ∈Sl−1

(
x+ l − 2− aτ

l − 1

)
= xl−1,

where aτ is the number of all 1 ≤ i ≤ l − 2 so that τ(i+ 1) > τ(i).

The main case that we want to apply Proposition 4.20 to is (70), which
has a lot of symmetry. This yields the following simplification:

Corollary 4.21. Let F be as in Situation 2 and invariant under permutation
of the ui. Let furthermore S ⊂ Z be so that Si,j = S for all i ̸= j is a pole
datum for F . Then we have

[F ]p0 = (n− 1)!
∑

1=l1<l2<...<lN=n
s1,...,sn

Resun−1=un · · ·Resu1=u2

F (u′) ·
N−1∏
m=1

Alm,lm+1(u
′)lm+1−lm

(n− lm) · (lm+1 − lm)!
,

(88)

where the s1, . . . , sn are integers so that s1 = 0 and for any j > 1 one of the
following must hold:

� j = lt+1 for some t ≥ 0 and sj = slt .

� There is some r < j so that sj − sr ∈ S.

We further wrote u′ = (u′j)j , where u
′
j = uj + sjz.

Remark 4.22. Note that the right hand side of (88) only depends on z and
τ . Indeed, the only other variable that it a priori depends on is un in which
it is holomorphic on all of C for fixed z and τ . By Λτ invariance it must
however be constant in un.
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Proof. Note that (88) follows from repeatedly applying the following claim:

Claim. Let F be as in Situation 2 and invariant under permuting the ui for
i ≥ 2. Let S1, S2 ⊂ Z be so that S1,j = Si,1 = S1 and Si,j = S2 for i, j ≥ 2
determines a pole datum for F . Then

[F ]p0 =
∑
l≥1

∑
s1,...,sl

[
Resul−1=ul · · ·Resu1=u2F (u

′) ·
(
n− 1

l − 1

)
A1,l(u

′)l−1

n− 1

]
p0
,

where the sj are integers so that s1 = 0 and for any j > 1 we must have one
of:

� There is some 1 < r < j so that sj − sr ∈ S2

� sj ∈ S1

� j = l and sj = 0.

We furthermore wrote and u′ = (u′j)j with

u′j =

{
uj + sjz, if j ≤ l
uj , else.

This claim directly follows from Proposition 4.20 by using that any of the
(n−2)!
(n−l)! many non-recurring sequences 1 = i1, . . . , il of length l which occur
there give the same contribution as the case ij = j due to symmetry. The
exceptional case of sl = 0 is due to the fact that we have to include 0 in
S1,l.

A Quasi-modular and quasi-Jacobi forms

This appendix recalls basic facts about the theories of quasi-modular and
quasi-Jacobi forms, which we use throughout Section 4. We only collect the
bare essentials that are important for this thesis. For more on quasi-modular
forms, see in particular [11, 14, 41] and [20] for Jacobi forms. Quasi-Jacobi
forms were first introduced in [50]. See also [39, §2].

A.1 Quasi-modular forms

For us, the ring of quasi-modular forms will be the subring

QMod = Q[Gk | k ≥ 2 even] ⊂ Q[[q]]

generated by the Eisenstein series

Gk = −
Bk
2k

+
∑
n≥1

(∑
d|n

dk−1

)
qn
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for even k ≥ 2 with Bk the kth Bernoulli number. The Bernoulli numbers
are determined by the identity∑

k≥0

Bk
k!
zk =

z

ez − 1
,

which is the convention that is used throughout this thesis.
One can also characterize QMod⊗Q C as the ring of holomorphic func-

tions on the upper half plane that satisfy certain transformation properties
- see [11, 14, 41] for details. From this, one can derive that QMod admits a
natural grading called weight :

QMod =
⊕
k≥0

QModk

so that Gk ∈ QModk. Furthermore, QMod is freely generated by G2, G4, G6,
which allows one to define the formal derivative d

dG2
, which is called holo-

morphic anomaly operator. Moreover, the derivative Dτ := q ddq preserves
QMod and satisfies the relation[

d

dG2
, Dτ

]
= −2 · wt,

which turns QMod into an sl2-representation.

A.2 Quasi-Jacobi forms

The most important example of a quasi-Jacobi form is the Jacobi Θ-function

Θ(z, τ) = ς(z)
∏
k≥1

(1− qkez)(1− qke−z)
(1− qk)2

= ze
−2

∑
k≥1G2k

z2k

(2k)! ,

where we wrote ς(z) = ez/2 − e−z/2 and q = e2πiτ . All other quasi-Jacobi
forms can be expressed in terms of Θ. For example, we have

A =
DzΘ

Θ
=

1

z
− 2

∑
k≥1

G2k
z2k−1

(2k − 1)!
,

where Dz =
d
dz and ℘ the Weierstrass ℘-function, which we can write as

℘ = −2G2 −DzA.

We also denote ℘′ = Dz℘.

Definition A.1. The ring of quasi-Jacobi forms is the subring

QJac ⊂ Q[Θ,A, G2, ℘, ℘
′, G4] ⊂ Q[[q]]((z))

108



of power series in z and q = e2πiτ which are holomorphic as functions (z, τ) ∈
C×H→ C. The ring is doubly graded

QJac =
⊕
k,m

QJack,m

by weight k and index m, which is specified on generators as follows:

form weight index

Θ −1 1/2
A 1 0
G2 2 0
℘ 2 0
℘′ 3 0
G4 4 0

Remark A.2. (1) Similar to quasi-modular forms, one can also define
quasi-Jacobi forms as functions that satisfy certain transformation
laws. For example:

Θ(z + 2πiτλ+ 2πiµ, τ) = (−1)λ+µe−λzq−λ2/2Θ(z, τ) for λ, µ ∈ Z,

Θ

(
z

cτ + d
,
aτ + b

cτ + d

)
=
e

cz2

2πi(cτ+d)

cτ + d
Θ(z, τ) for

(
a b
c d

)
∈ SL2(Z).

(89)

This determines the transformation laws of all other quasi-Jacobi forms.
In particular:

A(z + 2πiλ+ 2πiτµ, τ) = A(z, τ)− λ for λ, µ ∈ Z

A

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2

(
A(z, τ) +

cz

2πi(cτ + d)

)
for

(
a b
c d

)
∈ SL2(Z).

(90)

(2) One can show
QJac∗,0 = QMod∗.

Indeed, the Weierstrass equation

G6 =
12

7
℘3 − 3

7
(℘′)2 − 60

7
℘G4

gives G6 ∈ QJac6,0 and hence ”⊃”.

(3) The weight of a given quasi-Jacobi form ϕ ∈ QJack,m can be seen from
the z-expansion. Indeed, we always have:

(91) ϕ(z) =
∑

g≫−∞
agz

g

with ag ∈ QModg+k (c.f. [20, Theorem 3.1]).
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(4) Since all quasi-Jacobi forms are invariant under z 7→ z+2πi, it follows
that z is algebraically independent over QJac. As a result, one can
extend the double-grading to QJac[z±]:

form weight index

Θ −1 1/2
A 1 0
G2 2 0
℘ 2 0
℘′ 3 0
G4 4 0
z −1 0

(5) QJac is closed under Dz and Dτ = q ddq , which have degrees (1, 0) and

(2, 0) respectively. Furthermore, Θ,A, G2, ℘, ℘
′, G4 are algebraically

independent, which allows one to define holomorphic anomaly operat-
ors d

dA and d
dG2

. These have degrees (−1, 0) and (−2, 0) respectively.
Note here that d

dG2
is not the same as applying the holomorphic an-

omaly operator of Section A.1 on each z-coefficient of (91). Indeed,

denoting the latter operator by
(

d
dG2

)
z
:

(92)

(
d

dG2

)
z

= −2z2 · ind− 2z
d

dA
+

d

dG2
.

We also have the following commutation relations:[
d

dG2
, Dτ

]
= −2 · wt,

[
d

dA
, Dz

]
= 2 · ind[

d

dG2
, Dz

]
= −2 d

dA
,

[
d

dA
, Dτ

]
= Dz.

(93)

(6) There is a notion of Hecke-operators for Jacobi forms - one of which is

ϕ(z) 7→ ϕ(n · z)

for n ≥ 0 (see [20]), which also extends to quasi-Jacobi forms and
maps QJack,m to QJack,n2m. For instance:

Θ(2z) = −Θ4℘′.
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logy. Astérisque 408 (2019), 1–212.

[59] D. Maulik and R. Pandharipande: A topological view of Gromov-
Witten theory. Topology 45 (5) (2006), 887–918.

[60] D. Maulik, R. Pandharipande and R. Thomas: Curves on K 3 surfaces
and modular forms. Journal of Topology 3 (4) (2010), 937–996.

[61] D. Maulik and D. Ranganathan: Logarithmic enumerative geometry
for curves and sheaves. (2023). arXiv: 2311.14150.

114

https://arxiv.org/abs/2311.14150


[62] S. Monavari: Double nested Hilbert schemes and the local stable pairs
theory of curves. Compositio Mathematica 158 (9) (2022), 1799–
1849.

[63] M. Moreira, A. Oblomkov, A. Okounkov and R. Pandharipande: Vi-
rasoro constraints for stable pairs on toric 3-folds. Forum of Math-
ematics Pi 10 (e20) (2020).

[64] D. Mumford: Algebraic Geometry, I. Complex Projective Varieties.
Vol. 221. Grundlehren der mathematischen Wissenschaften. Berlin:
Springer, (1976).

[65] D. Mumford: Towards an enumerative geometry of the moduli space
of curves. English. (1983).

[66] H. Nakajima: Lectures on Hilbert schemes of points on surfaces. Vol. 18.
University Lecture Series. Providence, RI: American Mathematical
Society, (1999).

[67] N. Nekrasov and S. Shatashvili: Quantum Integrability and Super-
symmetric Vacua. Progress of Theoretical Physics Supplement 177
(2009), 105–119.

[68] N. Nekrasov and S. Shatashvili: Supersymmetric Vacua and Bethe
Ansatz. Nuclear Physics B - Proceedings Supplements 192–193 (2009),
91–112.

[69] G. Oberdieck: Marked relative invariants and GW/PT correspond-
ences. Advances in Mathematics 439 (2024), 109472.

[70] G. Oberdieck and A. Pixton: Holomorphic anomaly equations and the
Igusa cusp form conjecture. Inventiones mathematicae 213 (2018),
507–587.

[71] G. Oberdieck and M. Schimpf: Pandharipande-Thomas theory of el-
liptic threefolds, quasi-Jacobi forms and holomorphic anomaly equa-
tions. (2023). arXiv: 2308.09652.

[72] A. Oblomkov, A. Okounkov and R. Pandharipande: GW/PT Des-
cendent Correspondence via Vertex Operators. Communications in
Mathematical Physics 374 (3) (2020), 1321–1359.

[73] A. Okounkov: Lectures on K-theoretic computations in enumerative
geometry. (2017). arXiv: 1512.07363.

[74] A. Okounkov and R. Pandharipande: Hodge integrals and invariants
of the unknot. Geometry and Topology 8 (2) (2004), 675–699.

[75] A. Okounkov and R. Pandharipande: Virasoro constraints for target
curves. Inventiones mathematicae 163 (1) (2005), 47–108.

[76] A. Okounkov and R. Pandharipande: Gromov–Witten theory, Hur-
witz theory, and completed cycles. Annals of Mathematics 163 (2)
(2006), 517–560.

115

https://arxiv.org/abs/2308.09652
https://arxiv.org/abs/1512.07363


[77] A. Okounkov and R. Pandharipande: The equivariant Gromov-Witten
theory of P1. Annals of Mathematics 163 (2006), 561–605.

[78] A. Okounkov and R. Pandharipande: Quantum cohomology of the
Hilbert scheme of points in the plane. Inventiones mathematicae 179 (3)
(2009), 523–557.

[79] A. Okounkov and R. Pandharipande: The local Donaldson–Thomas
theory of curves. Geometry and Topology 14 (3) (2010), 1503–1567.

[80] R. Pandharipande: Descendents for stable pairs on 3-folds. Modern
Geometry (2018), 251–287.

[81] R. Pandharipande: Moduli of curves and moduli of sheaves. (2025).
arXiv: 2501.15607.

[82] R. Pandharipande and A. Pixton: Descendents on local curves: ra-
tionality. Compositio Mathematica 149 (1) (2012), 81–124.

[83] R. Pandharipande and A. Pixton: Descendents on local curves: Sta-
tionary theory : Geometry and Arithmetic. EMS Press, 2012, 283–
307.

[84] R. Pandharipande and A. Pixton: Descendent theory for stable pairs
on toric 3-folds. Journal of the Mathematical Society of Japan 65 (4)
(2013).

[85] R. Pandharipande and A. Pixton: Gromov–Witten/pairs descend-
ent correspondence for toric 3–folds. Geometry and Topology 18 (5)
(2014), 2747–2821.

[86] R. Pandharipande and A. Pixton: Gromov-Witten/Pairs correspond-
ence for the quintic 3-fold. Journal of the American Mathematical
Society 30 (2) (2016), 389–449.

[87] R. Pandharipande and R. Thomas: Curve counting via stable pairs
in the derived category. Inventiones mathematicae 178 (2) (2009),
407–447.

[88] R. Pandharipande and R. Thomas: Stable pairs and BPS invariants.
Journal of the American Mathematical Society 23 (1) (2009), 267–
297.

[89] R. Pandharipande and H. Tseng: Higher genus Gromov-Witten the-
ory of Hilbn(C2) and CohFTs associated to local curves. Forum of
Mathematics, Pi 7 (2019), 63.

[90] J. Pardon: Universally counting curves in Calabi–Yau threefolds. (2023).
arXiv: 2308.02948.

[91] A. Pixton: Gromov–Witten theory of an elliptic curve and quasi-
modular forms. Senior thesis (2009).

116

https://arxiv.org/abs/2501.15607
https://arxiv.org/abs/2308.02948


[92] T. Procházka and A. Watanabe: On Bethe equations of 2d conformal
field theory. (2024). arXiv: 2301.05147.

[93] P. Pushkar, A. Smirnov and A. Zeitlin: Baxter Q-operator from quantum
K-theory. Advances in Mathematics 360 (2020), 106919.

[94] A. Ricolfi: The equivariant Atiyah class. Comptes Rendus. Mathématique
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