LAI ASSESSING OF WHEAT STANDS FROM AISA-DUAL IMAGERY
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ABSTRACT:

In this study the spatial assessment of the LAlafavheat field in Saxony-Anhalt (Germany) from higpectral imagery (AISA-
DUAL) is presented. Prediction of LAl has been atrout by partial least squares regression (PLSR) the PARLeS software
using in-situ LAl measurements and their corresmmndpectra in the hyperspectral imagédrge LAl was predicted with values of
r2, higher than 0.85. In order to assess the influefidche number of spectral bands on LAI predictidiSA-DUAL spectra have
been resampled by spectral binning to 50% (183tsgddzands) and 33% (122 spectral bands) of thgirai number of spectral
bands, respectivelyPredicted LAl obtained from hyperspectral imagergrevwell in line with in-situ LAl measurements and
represented the spatial inner-field variations.

1. INTRODUCTION

Biochemical properties like chlorophyll content, aratontent and mineral components influence thetsgdeeflectance of plants.
In this context the leaf area index (LAI) allowsdmaw conclusions on the photosynthetic activity¢bemin et al., 2006) and hence
the productivity of vegetation which makes it aateariable of crop growth models. The LAl is arportant factor for high quality
of yield estimates in agriculture since it is sgghninfluenced by yield reducing factors such asnpldiseases and mismanagement
(Boegh et al., 2002; Carter, 1994; Daughtry et &92). In the past the spatial assessment of sdadpmamics of the LAI was
limited by in-situ measurement techniques. Whileirdy past decades LAI prediction from optical reeneénsing data was mainly
performed by utilizing multispectral sensors, hgperctral data has already proven the potentidiifgrer quality of LAI prediction
(Lee et al., 2004, Jarmer 2013). Furthermore, tadability of several new hyperspectral sensonsnits to assess the seasonal LAI
dynamics with high spatial accuracy. In this sttiy spatial assessment of the LAI for a wheat fiel&axony-Anhalt (Germany)
from hyperspectral imagery provided by the AISA-DUgystem will be presented.

2. STUDY AREA AND DATA

2.1 Study area

The study site (11°88, 51°47N) is located close to the city of K&then, SaxomhaAlt, Germany (fig. 1). This region is
characterized by a slightly undulated tertiary plaith an altitude of 70 m above sea level whickdsered by a thin Loess layer.
Since the study site is located in the rain shadbthe Harz Mountains, the region is distinctly dvith 430 mm mean annual
precipitation. The investigated field has a sizeapprox. 80 ha cropped with winter whedtificum aestivum). Chernozems in

conjunction with Cambisols and Luvisols form thedmminant soil type. Soils properties are highlyedse with fine-scale patterns
of soil texture and organic matter.

2.2 Fidd data

Field survey was performed after a spring droughtaal and during dry weather conditions dhahd & May 2011 In total, 37
sampling plots (50 x 50 cm?) of winter wheat atrrstelongation have been measured under clear skgittms and the exact
position of each sampling plot has been locatediffgrential GPS (fig. 1). Green leaves area infleXl) was determined using a
SunScan (Delta-T Devices Ltd., USA) using the ayeraf six measurement at each sampling plot. Ttudgcnon-representative
single measurements, the average was calculatedef@surements which were within one standard dewiat
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Figure 1. Location of the test site with the irtigeted field in the federal state of Saxony-AnlalGermany (left) and investigated
wheat field with sampling plots positions (backgnduAISA-DUAL) (right)

2.3 Hyperspectral imagery

Hyperspectral data of the airborne system AISA-DUSpecim Ltd.) was used for the spatial mappinthefLAl. AISA-DUAL is a
hyperspectral pushbroom scanner combining the AERGLE (VIS/NIR, 400-1000 nm) and the AISA-HAWK (SWIR0Q00-2500
nm) sensor. The AISA-DUAL imagery of the study sitas acquired on 10of May 2011 in 367 spectral bands in the wavelengt
range of 400-2500 nm with a spatial resolution ah3During pre-processing of the image data the RQid&riping algorithm
(RogaR et al., 2011) was applied to reduce sensarafibration effects leaving deficient lines aldrack in the images. FLAASH
(Fast Line-of-sight Atmospheric Analysis of spekttryyper cubes) was used for atmospheric correctind an empirical line
correction was conducted with spectral ground measents of different dark and bright targets caddcin the test site during
AISA-DUAL data acquisition time (Smith and Miltod999). The geometric correction of the AISA-DUALtaavas realized with
the software CaliGeo while orthorectification wasfpened with the software ENVI. In total, three igeay stripes were combined
to allow analysis of the entire wheat field.

3. METHODS

For noise reduction and in order to assess thaanfle of the number of spectral bands on LAI ptadic AISA-DUAL spectra
have been resampled by spectral binning. Spedtraliy is a commonly used method to reduce noisgyperspectral data. In this
context adjacent spectral bands will be summedgmée new single binned spectral band to enharcsiginal-to-noise ratio (SNR)
of the data (Dell’Endice et al., 2009). In thisdtispectral binning was performed averaging two thnee adjacent original spectral
bands of the AISA-DUAL data to generate one newcspkband, respectively. In this way the numberspéctral bands was
reduced from 367 to 183 and to 122, respectivetythe SNR could be improved. Furthermore, speb@alds in the range of the
water vapour absorption bands (1354-1411 nm, 18%961m) and selected bands at the beginning atiteatnd of the AISA-
DUAL spectral range (400-418 nm, 2410-2500 nm) waeketed due to strong noise in this spectral regibthe AISA-DUAL
system leaving 100, 150 and 300 spectral bandsufther analysis. Thereafter, the spectral sigrstunf the image pixels
corresponding to the geographic position of théedéht wheat samples were extracted from the tAI8A-DUAL data sets.
Prediction of LAI has been carried out by part&ddt squares regression (PLSR) with the PARLeS s@ft{Mascarra Rossel, 2008)
using the in-situ LAl measurements and their cqoesling spectra in the hyperspectral imagery. Thgimum of latent variables
(rank) used in the PLS was limited to ten. The mpth number of latent variables used for the regraswas determined by
comparing the RMSE of predictions obtained from models with differentmbers of latent variables. PLSR model resultewer
cross-validated (cv) according to the ‘leave-one+oathod’, which means that each sample was estdrat an empirical-statistical
model that was calibrated using the remaining (sathples (Otto, 2007). The coefficient of deterriora(r%,) and the root mean
squared error (RMSE were calculated to assess the prediction accutacyddition, the ratio of prediction to standaeViation
(RPD) was determined by dividing the standard dmnabf the measured values by the RMSMalley et al., 2004).

4. RESULTSAND DISCUSSION

Due to the early seasonal time the LAI value of shenpling plots measured in the field was relagivelv varying in a range
between 0.50 mm? at minimum and 3.40 frm2 at maximum with an average value of 1.54mf (tab. 2). The relatively low
mean value indicates that measured plots with ldwérdominate. The lowest LAl was measured in &sihthe northern fringe of
the field where the plant development was hindérgdavater logging. The highest LAl was determinedhia field just outside a



drainless hollow in the centre of the field whemimized water availability with water logging rd®d in a comparatively high
LA

The hypothesis of this study was that binning @@l bands may reduce data-inherent noise angkgaently increase prediction
accuracy. However, the resampled datasets ach@yesimilar results in LAI prediction. The LAl wasedicted with an g2 of 0.67
(RMSE,, = 0.40, RPD = 1.76) for all three data sets. Obsl\guithe different spectral resolution of 100, &5@ 300 spectral bands
did not influence the modelling results. Howevehew analysing the results in details two sampléls mean LAI were found to be
overestimated disproportionately high.

n = 37 samples n = 35 samples (without outliers)

Bands 13 RMSE%, RPD r2, RMSE2, RPD

100 0.669 0.403 1.763 0.904 0.222 3.275
150 0.669 0.404 1.762 0.905 0.221 3.294
300 0.670 0.403 1.764 0.917 0.207 3.522

Table 1. Results of PLS regression (cross-validatd winter wheat LAI

Estimating the LAI of the wheat stands based orré¢heaining 35 samples enhanced prediction accwaciestantially (tab. 1). For
all data sets of the three spectral resolution®,(160 and 300 bands) the cross-validated r2 wgisehithan 0.9. While results for
100 and 150 spectral bands (0.904 and 0.905) tuomtdo be very similar, the prediction accuracy 300 spectral bands in
comparison was found to be higher resulting inZgnof 0.917 (RMSE,: 0.207) while the RPD increased from 3.29 to 3l62ll
cases the RPD was much higher than 2.0, which camédrpreted as an indicator for robust regressiodels (Dunn et al., 2002).
Although the PLSR model based on 300 spectral bpadermed slightly better, it was decided to use BLSR model with just
100 spectral bands for spatial analysis. It is meslthat the better model performance with 300 bdrad to be attributed to random
noise in the spectral measurements and not tdfisigmt spectral information.
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Figure 2. Scatterplot of predicted versus measufddor winter
wheat based on PLSR. The solid red line represkatsegressiofine
while the dashed black line represents the 1:1-line

As illustrated in figure 2, the offset observed foe estimation of wheat LAl was small, and theresgion line between predicted
and measured LAl was close to the 1:1-line, whictidates the models performances to be high anwbdeifor mapping
application. Highest over- or underestimation wess than half a LAI unit (0.45%m? and -0.37 rfim?, respectively). Residuals
were found to be normal distributed and the meas vea significantly differing from zero.

Subsequently, the developed PLS-model using 106trsppébands was applied to the AISA-DUAL data (f8). Predicted LAI
obtained from hyperspectral imagery were well imeliwith in-situ LAl measurements and represented dpatial inner-field
variations. While deviations in means between mtedi LAl and measured LAl are relatively low and/idéons in minima are
negligible, differences in maxima are relativelgthi(predicted: 4.04 ffim? field: 3.4 n¥/m?) (tab. 2). These differences in maxima
are resulting from the fact that in the field winteheat stands with highest LAI obviously were sampled (compare fig. 1 to
fig. 3).
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Figure 3. Wheat LAI predicted from AISA-DUAL hypsrectral imagery (white: no LAI)

Estimated winter wheat LAl clearly reflected sifgesific natural conditions and geomorphologic sgti In general, the year 2011
was characterised by relatively dry weather coad&ibecause of less precipitation limiting wheanhpbevelopment and resulting in
low LAI. Lowest LAl values were predicted mainly the northern area. Further on, low LAI values wesémated for the eastern
part of the field which is characterized by sandy gravelly soils resulting in insufficient wateradlability and penetration. In the
south-eastern part of the field and at the northigage areas are located (white) with no cropwgloand hence no LAl These
areas are representing sinks which were floodethglwinter and early spring resulting in crop diekaNo wheat plants were
growing in these areas. High LAl above 3.5m? primarily occurred in the south-eastern part effiald west closely to the area of
no values. The reason might be an optimal wateplgugue to lateral water flow at the edge of theksiAdditionally, high LAI
values were predicted at the southern fringe ofi#ié which might be a result from double seedimgheadlands.

predicted for all image pixel measured in the field
(n = 88,788) (n = 35)
min max3, mean std. dev min max? mean std. dev.
0.39 4.04 1.70 0.66 0.50 3.40 1.54 0.71

Table 2. Descriptive statistics of predicted arehsured winter wheat LAl

5. CONCLUSIONS

Results clearly highlight the potential of hypergpgcimagery for the spatial assessment of whealt &id provide a suitable

alternative for the conventional, often inaccuratethods to describe the LAl using physiologicalelepment approaches. At the
same time results raise the question how many rspdiinds are needed for robust parameter estimatithough the binning of

AISA-DUAL data from 300 to 100 spectral bands re=diiin an increase of the signal-noise-ratio, gaificant difference in results

of PLSR models were obtained. A reduction of spetiads during sensor calibration would minimizeoreled data volume and
data processing time significantly.
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