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Zusammenfassung

Kollagen bildet bei mechanischer Beanspruchung Radikale, gefolgt von einer
Reduktion der DOPA-Radikale durch Wasserstoffperoxid. Es ist jedoch nach
wie vor unklar, wie die Mechanoradikale zu DOPA gelangen. In der komplexen
Umgebung der Kollagenfibrille ist eine große Anzahl verschiedener Reaktionen
möglich, darunter auch der Wasserstoffatomtransfer (HAT).

In dieser Arbeit wird eine kombinierte Molekulardynamik- (MD) und kinetis-
che Monte-Carlo-Methode (KMC) als adaptiven KMC Ansatz implementiert.
Die entwickelte Software, KIMMDY, ist in der Lage, Trajektorien reaktiver
Systeme in kondensierter Phase mit langer Zeitskala zu simulieren. Mehr als
600 HAT-Reaktionen werden in einem Kollagenfibrillenmodell mit bis zu 20
aufeinanderfolgenden Reaktionen simuliert.

Um MD-Simulationen von Aminosäureradikalen zu ermöglichen, wird ein
klassisches Kraftfeld mit Hilfe der Grappa-Methode auf QM-Energien und -
Kräfte trainiert. Darüber hinaus wird ein neuronales Graphen-Netzwerk angepasst,
um HAT-Raten für Ensembles vorherzusagen, welche aus MD-Simulationen in
einem neuartigen transition path sampling Ansatz erzeugt wurden.

Diese drei methodischen Fortschritte ermöglichen die Anwendung reak-
tiver Simulationen in der Kollagenfibrille zur Beobachtung der HAT pathways
vom Ort der Homolyse zum posttranslationalen Oxidationsprodukt von Pheny-
lalanin und Tyrosin, DOPA. Das DOPA-Radikal wird in Simulationen Reak-
tionsprodukt und die kinetischen Eigenschaften bestätigen die Rolle als radical
scavenger. Ein weiterer radical scavenger, Pyridinolin (PYD), wird identi-
fiziert und seine mechanochemischen Eigenschaften charakterisiert. KIMMDY
bietet eine neue Perspektive auf radikalische Reaktionen in Kollagen und ist so
konzipiert, dass es auf neuartige Moleküle und Reaktionen angewendet werden
kann.
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Abstract

Collagen has recently been found to form radicals when subjected to mechani-
cal stress, followed by detoxification of DOPA radicals via hydrogen peroxide.
However, it remains unclear how mechanoradicals reach DOPA. Within the
complex environment of the collagen fibril, numerous different reactions are
possible, including hydrogen atom transfer (HAT).

In this work a combined molecular dynamics (MD) and kinetic Monte Carlo
(KMC) method is implemented within an adaptive KMC framework. The de-
veloped software, KIMMDY, is capable of simulating long timescale trajecto-
ries of reactive condensed phase systems. More than 600 HAT reactions are
simulated in a collagen fibril model with up to 20 consecutive reactions.

To make MD simulations of amino acid radicals possible, a highly accurate
classical force field is trained on QM energies and forces using the Grappa
method. Furthermore, a graph neural network is adapted to predict HAT
rates for ensembles generated from MD simulations in a novel approach to
transition path sampling.

These three methodological advances facilitate the application of reactive
simulations in the collagen fibril to observe HAT pathways from the homolysis
site to the post-translational oxidation product of phenylalanine and tyrosine,
DOPA. The DOPA radical can be observed in simulations and kinetic prop-
erties confirm the radical scavenger role. Another radical scavenger, pyridi-
noline (PYD) is proposed and its mechanochemical properties characterised.
KIMMDY provides a new perspective on radical reactions in collagen and is
designed to be applied to novel molecules and reactions.
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Chapter 1

Introduction

1.1 Molecular simulations may aid in under-

standing protein ageing

Proteins are frequently subjected to chemical modifications after biosynthe-
sis.[1] Some modifications are performed at specifically targeted sites by en-
zymes, contributing to diverse protein functions[2, 3], while non-enzymatic
modifications are of a more stochastic nature[4, 5].

Because these unspecific modifications are difficult to control, they have
solely been thought of as damage[4] but there is a delicate balance between
damage and regulatory signal[6]. However, for long-lived proteins like lens
crystallin or collagen, these modifications can accumulate over time and impair
protein function.[7, 8, 9, 10] Some long-lived proteins are load-bearing, which
is known to lead to polymer ageing[11], an insight that recently led to the
investigation of the structural protein collagen in this regard[12, 13, 14]

Due to the stochastic nature of reactions in protein ageing, diverse reaction
products are formed, which are hard to investigate by bulk methods. Molecular
simulations are ”computational microscopes”[15] and could be an ideal tool to
study reactive pathways in single molecules. However, this is complicated by
the fact that force fields used for biomolecular simulations assume molecules to
be chemically inert to improve simulation speed in order to reach biologically
relevant time scales.[16] This shortcoming can be circumvented, paving the way
for molecular simulations of protein ageing processes.

1.2 Several chemical modifications occur in col-

lagen

Collagen is a prime candidate for the study of protein ageing because it is
subjected to mechanical stress and long-lived. A high stress experiment is a
well defined scenario with a high potential for ageing events to occur and can be
modelled with constant force molecular dynamics simulations. Furthermore,
tissue such as cartilage, tendons and ligaments has a high concentration of
collagen, which facilitates experimental validation of computational results.

The hierarchical structure of collagen spans several orders of magnitude.

1



2 Introduction

Figure 1.1: Collagen fibrils have a periodic pattern. Cryo EM micro-
graph of a rattus norvegicus tendon sample. The scale bar has a length of
25 nm. Figure provided by Aysecan Ünal.

[17] Collagen-rich tissue is made up of collagen fibres with a length in the
millimetre range. Proteoglycans act as interfibrillar connections between fibrils
on the µm scale.[18] Fibrils (Fig. 1.1) are built out of cross-linked triple helices
and also stabilised by non-covalent interactions. On the smallest scale, the
triple helix is a unique quaternary structure of individual collagen strands with
a hydrogen bonding pattern that is facilitated by a repeating Gly-Pro-Xaa or
Gly-Xaa-Hyp sequence.[19] Here, Xaa refers to any amino acid.

Hydroxyproline (Hyp) is a post-translational modification that stabilises
triple helices because of a preference for a certain proline ring conformation.[19].
In the collagen model studied here, it is the fourth most common amino acid
(Fig. 1.2).

Figure 1.2: Frequency of amino acids in collagen. The amino acids
frequency is analysed for a triple helix in collagen type I of rattus norvegicus.
The color scheme is chosen according to physico-chemical properties of the
amino acids. L5Y and L4Y are cross-link amino acids and constitute HLKNL.

Another set post-translational modifications of collagen are the aforemen-
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tioned cross-links. Most cross-links are derived from lysine but cross-links
involving other amino acids and non-protein components exist as well.[20, 21,
22] Among the lysine derived cross-links, a main distinction is drawn between
divalent and ”mature” trivalent cross-links. Interestingly, lysine is enzymati-
cally modified in the endoplasmatic reticulum by the lysyl hydroxylase and in
the extracellular matrix by the lysyl oxidase but these reactions are only per-
formed to create the reactants for the cross-linking reaction.[23] Cross-linking
occurs spontaneously with a range of possible mechanisms, especially for triva-
lent cross-link formation (Fig. 1.3a,b). [24]

Figure 1.3: Cross-link formation is spontaneous. a, Mechanism of di-
valent cross-link formation (here HLKNL) from allysine. b, Mechanism of
trivalent cross-link formation from two divalent cross-links. Multiple reaction
mechanisms for trivalent cross-link formation have been proposed, one of which
is this variation.[24]

DOPA is an oxidation product of tyrosine and phenylalanine in collagen
(Fig. 1.4). This oxidation can occur spontaneously by radical reactions or
enzymatically in the free or protein-bound tyrosine and phenylalanine.[25, 26]
A free L-DOPA can be incorporated into proteins during biosynthesis. In recent
studies, DOPA has been proposed as radical scavenger for the detoxification of
mechanoradicals.[12, 13, 14]. The role of DOPA in radical mechanisms seems
to be a more general pattern as it has also been observed in a ribonucleotide
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reductase.[27]

Figure 1.4: Oxidation of aromatic amino acids. Oxidation of pheny-
lalanine and tyrosine leads to DOPA formation. Further reactions can include
deprotonation and HAT to a DOPA radical anion that reacts with molecular
oxygen to superoxide with an eventual hydrogen peroxide follow-up reaction.

Taken together, the family of collagen proteins has a diverse post-translational
chemistry. Several unusual modifications are known to occur in collagen, some
of which accumulate over the long lifespan of collagens.

1.3 Collagen radicals are scavenged by DOPA

Many cellular processes involve redox reactions, requiring a balance between
oxidising and reducing agents. Both ends of the redox spectrum are detri-
mental with a physiological state termed ”redox eustress” in-between.[28] To
regulate the redox status of a cell, feedback loops are used.[28] Diverse sources
of oxidative stress, including endogenous stress like aerobic cell metabolism or
exogenous stress such as UV irradiation, can produce reactive species. These
species function as redox signals that are sensed, often including reversible thiol
redox switches. As a consequence, gene expression is modulated and cell stress
proteins expressed.

Interestingly, there are no cysteines in mammalian tropocollagen, which
precludes the existence of any thiol-based redox sensors.[29] This absence is
likely due to an incompatibility of disulfide bonds with the triple helix struc-
ture, as cysteine mutations are associated with collagen diseases.[30, 31]

Mechanoradicals have recently been discovered in collagen under tension
through DOPA radical measurements,[12] but whether the quantities released
under these conditions are physiologically relevant remained unclear. The exis-
tence of a non-thiole radical sensing system in collagen would point to a certain
significance from an evolutionary standpoint. Because collagen is a long-lived
protein, even slow accumulation of damage would be detrimental and could
justify a cellular response. In a follow-up study, Rennekamp et al.[14] iden-
tified specific homolysis sites, especially the Cα-Cβ bond of the short arm of
the PYD cross-link (R2 in fig. 1.3). The radical scavenging activity of DOPA
in collagen was also confirmed and the occurrence of DOPA shown to be at
phenylalanine and tyrosine positions.[13] Detoxification of DOPA radicals can
occur via hydrogen peroxide (Fig. 1.4).

At this point, the radical initiation step has been established to be ho-
molytic cleavage at cross-link bonds and the termination, at least within the
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context of collagen, occurs at DOPA. However, the propagation steps that lead
to radical migration from the homolysis site to DOPA are not clear. Protein
radicals can undergo a range of reactions, including hydrogen atom transfer
(HAT)[32], dimerisation, peroxidation, decarboxylation, β-scission or deproto-
nation.[33, 34]. Out of these, only HATs could lead to a DOPA radical. While
dimerisation and peroxidation reactions generally seem more favourable than
HAT[34], a limited solvent accessibility and low radical species concentration
in collagen makes HAT a plausible alternative. HATs have been observed in
free amino acids with rates in the order of 106 s−1[33] but steric effects in a
folded protein may influence the reaction rate. Hence, a mechanism that in-
cludes HATs to DOPA after homolytic cleavage at a cross-link seems plausible
(Fig. 1.5).

Figure 1.5: Homolysis is followed by HATs. Homolytic cleavage occurs at
the Cα-Cβ bond of the short arm of a PYD cross-link. Conformational change,
in part due to the cleavage, leads to a different local environment of the radicals.
HAT reactions lead to different radical species, potentially including tyrosine
or DOPA. This mechanism was first proposed by Zapp et al.[12]

Without nearby thioles, DOPA seems to be the best radical scavenger avail-
able[35] in collagen. It has also been noted that aromatic residues are enriched
in the vicinity of cross-links[12], which follows the principle of co-localisation of
reactive species sources and targets[6]. A remaining question is whether DOPA
is not only thermodynamically the most stable radical in collagen but also ki-
netically accessible after homolysis. An indication for this would be if a direct
HAT from the homolysis site to DOPA is possible. Also, for determining the
role of tyrosine as alternative redox sensor, a tyrosine reducing system would
also need to be identified, as irreversible modifications are more indicative of
molecular damage than of a sensing system.[28]

Apart from the lack of thioles, collagen also produces radicals in the extra-
cellular matrix, which is an untypical location.[6] However, this is not problem-
atic for radical sensing and a response to oxidative stress because the signalling
molecule hydrogen peroxide can diffuse from the extracellular matrix into cells
via aquaporins or interact with receptors[28] and there are extracellular cell
stress proteins [36].

1.4 Reactive simulation methods have a di-

verse scope

Using computational methods, the radical propagation mechanism can be fur-
ther investigated. A suitable model should satisfy two conditions: First, the
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protein environment of radicals should be taken into consideration. HAT rates
from free amino acids cannot be expected to apply to protein radicals because
the conformational flexibility in proteins is limited. Second, protein HATs oc-
cur roughly in the µs range[33], which must be attainable by the computational
method.

The second condition is problematic for most reactive atomistic simula-
tion methods. QM/MM simulations[37] have the additional limitation that
only a small region is reactive, ReaxFF[38] would need to be parametrised
for the target application and EVB[39] simulations are quite fast but difficult
to parametrise and scales dependent on the number of possible reactions in a
system. Machine learning force fields (MLFFs) promise to emulate QM cal-
culations at a much higher simulation speed. Recently, molecular systems of
a size unattainable for QM calculations have been simulated with MLFFs[40].
However, current MLFFs are still 50 - 100 times slower than classical MM
force fields, especially when considering long-range interactions.[41] Classical
MM force fields are non-reactive but simulation times in the µs to ms range
can be reached.

For simulating reactions, it is not strictly necessary to simulate the move-
ment of atoms. In fact, if the likelihood of reactions within a time interval
is known, the time evolution of conformations need not be simulated at all.
Kinetic Monte Carlo methods propagate reactive systems over time and time
steps depend on the fastest reactions in a given system.[42, 43] Reaction rates
can be informed by molecular structures, thus both conditions can be satisfied.
This is typically done by QM-based transition state search[44] but can also be
emulated by cheaper methods, including graph neural networks (GNNs)[45].
In practice, commonly used KMC implementations require a fixed list of pos-
sible events with associated rates.[44, 46] This would mean an exhaustive list
of every possible HAT reaction in a collagen model is required before starting
a KMC simulation, posing a strong limitation.

In adaptive kinetic Monte Carlo, the event/reaction list is constructed anew
for every KMC step.[47] It follows that only reaction rates for reactions starting
from populated states need to be calculated, greatly reducing the number of
rate calculations for large systems. So far, the event list has been constructed
using QM-based transition state search[47, 48], high-temperature MD for non-
reactive transitions[49] and heuristic models based on observables of structures
generated with MD simulations[50, 51, 52, 53, 54].

The idea to sample collagen dynamics in the µs timescale with classical MM
force fields and using a heuristic to determine HAT rates seems promising. Ef-
fectively, the current reactive state is sampled and transitions to neighbouring
states can be found from the conformational ensemble. In contrast to a simple
heuristic model, one with quantitative interpretability would allow for valu-
able insights from reactive simulations. To that end, a HAT GNN method has
recently been developed that emulates DFT calculations.[45]



Chapter 2

Research Aim

The aim of this work is to gain insights on the radical migration from collagen
homolysis sites to DOPA sites using reactive molecular simulations. No current
simulation method is capable of performing these simulations, so a method is
developed that combines KMC and MD simulations with a machine learning
(ML) model for HAT rate prediction (Fig. 2.1). Apart from this method, fur-
ther method development is also needed for MD simulations of protein radicals
and HAT rate prediction.

Figure 2.1: A reactive molecular simulation method. A collagen fibril
model is simulated with a novel method. This method combines kinetic Monte
Carlo and molecular dynamics simulations with a machine learning model.
MD simulations generate a conformational ensemble, the ML method predicts
reaction rates based on the ensemble and a KMC algorithm is used to choose
the next reaction. This triad can run in a loop. From this, a radical migration
network can be constructed.

To generate an ensemble of collagen structures after homolytic cleavage
using MD simulations, a force field for protein radicals is built. A novel ML
method for predicting classical MD parameters of arbitrary molecular systems
is trained on radical peptides to obtain the required parameters.

The aforementioned HAT GNN has not been applied to predict HAT rates

7
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from MD simulations before. For this use case, the HAT GNN method is
adapted and conditions for robustly predicting HAT rates from MD simulations
are investigated.

The reactive molecular simulation method is implemented and generalised
to facilitate the simulation of a range of reactions. The method is named after
a previous MD/KMC method[55], KIMMDY, which stands for Kinetic Monte
Carlo Molecular DYnamics.

Finally, the newly developed simulation method is applied to simulations
of a collagen fibril. The role of DOPA as a radical scavenger is investigated
from a kinetics standpoint and further radical scavengers are proposed.



Chapter 3

Theory and Methods

3.1 Molecular dynamics

Algorithm

GROMACS[56] is used as MD engine and algorithmic details follow the GRO-
MACS documentation[57]. MD simulations are used to propagate the position
of atoms over time using Newton’s equations of motion,

d2ri
dt2

=
Fi

mi

, (3.1)

for an atom i with a force F , mass m and position r. Thus, to propagate
the system over time, initial coordinates, velocities and forces acting on atoms
according to a potential V ,

Fi = −δV
δri

, (3.2)

are necessary. Initial coordinates need to be supplied by the user and
velocities are generated for every atom along every dimension j according to
the Boltzmann distribution at a certain temperature using a standard normally
distributed random variable s,

vi,j = s

√
kbT

mi

. (3.3)

The potential acting on the atom is described by the force field.
Using the leap-frog algorithm[58], velocity and position are updated in al-

ternating steps.

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F (t)

r(t+∆t) = r(t) + ∆tv(t+
1

2
∆t)

(3.4)

The algorithm up to now would sample states in the NVE ensemble. For
most applications, the use of a thermostat and barostat is sensible to sam-
ple from the NPT ensemble. Several options exist for both. The Berendsen

9
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thermostat[59] and related methods[60] couple the molecular system to an ex-
ternal heat bath. Effectively, the kinetic energy of the molecular system is
scaled to correct the current temperature in the direction of the given temper-
ature. This leads to a scaling of the velocities and in consequence the atom
positions. A barostat scales the box size and the atom coordinates in it to
correct the pressure.

The size of a MD time step is determined by the fastest vibration. Typ-
ically, that would be bond-vibrations but these are accurately modelled by
holonomic constraints.[61] This allows for using a time step of 2 fs, significantly
increasing the accessible time scales compared to 0,5 fs or 1 fs time steps. The
LINCS constraints are another modification to the coordinates and velocities
of a system.

External forces can be added to added to atoms to mimic interactions from
outside the model. A simple example is constant force pulling, where the force
is applied to the center of mass of two groups of atoms.

Force field

The potential V determines a molecule’s dynamics and is defined by a force
field. Different functional forms have been applied in the past. [62, 63, 64, 65,
66] For simulations of biomolecules, class I force fields[67] with additive terms
for bonded and non-bonded interactionsare most commonly used.[68] The most
popular force field families for biomolecular simulations are AMBER[69] and
CHARMM[70]. The force field details below mostly apply for both families
but are centred around AMBER force fields.

Vpot = Vnon-bonded + Vbonded

Vnon-bonded = Vlennard-jones + Vcoulomb

Vbonded = Vbond + Vangle + Vdihedral

(3.5)

The non-bonded interactions are separated in Van der Waals interactions,
modelled with a Lennard-Jones potential and the coulomb potential for elec-
trostatic interactions. Both are pairwise-additive , which leads to a faster
simulation speed compared to higher-order terms.

The Lennard-Jones potential contains a 1/r12 repulsive and a 1/r6 attrac-
tive term:

Vlennard-jones(rij) =
C

(12)
ij

r12ij
−
C

(6)
ij

r6ij
(3.6)

The 1/r12 term has been chosen for computational efficiency and overesti-
mates the initial repulsion compared to a more physically motived Buckingham
potential with a 1/er repulsive term. Consequently, the Lennard-Jones poten-
tial of atoms connected by three bonds (1-4 interactions) is scaled down by a
factor to avoid artifacts.[71] Interactions between atoms with fewer bonds are

completely excluded. The parameters C
(12)
ij and C

(6)
ij are combined from pa-

rameters from either atom using the geometric or arithmetic mean. Parameters
are typically fit on condensed phase properties. [64]
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Pair-wise potentials in a non-optimised form would scale with O(N2) for
N particles. Due to the short range of Van der Waals interactions, a cut-off is
applied and pairs with distances larger than the cut-off are not explicitly calcu-
lated. Neighbour-lists are constructed with a buffer region slightly larger than
the cut-off to reduce the number of neighbour searches. An energy and pres-
sure correction for long-range Van der Waals interactions is applied dependent
on the cut-off distance and system density.

Electrostatic interactions are modelled with the Coulomb potential:

Vcoulomb(rij) =
1

4πϵ0

qiqj
ϵrrij

(3.7)

The variable q denotes charges, ϵ0 is the vacuum dielectric constant and ϵr
the relative dielectric constant. The same scaling problem applies here as well
and a short-range interactions within cut-off are directly calculated. Because of
the 1/r distance scaling, the contribution of long-range electrostatics is much
larger and needs to be accurately modelled. Another complication factor is that
simulations use periodic boundary conditions to avoid surface artifacts. The
calculation of long-range electrostatics would thus scale even worse than O(N2)
but the calculation of interactions in periodic images can be split into a sum of
direct space and reciprocal space contributions. Using the particle-mesh Ewald
method[72], the reciprocal space calculation is further optimised to a scaling of
O(N log(N) by approximation the charge distribution on a grid and performing
a fast Fourier transformation on this data. The energy can then be summed
over the grid in reciprocal space and transformed back. Different charge models
exist, for example Mulliken charges or RESP charges[73], which are fit on QM
electrostatic potentials for specific conformations of small molecule units.

The bonded potential is split into two, three and four atom interactions:

Vbond(rij) =
1

2
kbij(rij − r0ij)

2

Vangle(θijk) =
1

2
kaijk(θijk − θ0ijk)

2

Vdihedral(ϕijkl) = kdijkl(1− cos(nϕijkl − ϕ0
ijkl))

(3.8)

A simplified dihedral potential can be used where ϕ0
ijkl is either 0

◦ or 180 ◦,

which can be parametrised with a single kdijkl because cos(nx+π) = −cos(nx).
For the non-pairwise terms, distributing the force on individual atoms has an
analytic solution. [74]. Equilibrium bond and angle values are obtained from
experimental structures and their force constants fit to vibrational frequency
data of reference compounds.[71, 64]. Dihedrals are often fit on QM dihedral
screens by minimising the difference between relative QM energies and MM
energies without a dihedral term.[75] As a result, bonded parameters depend
on the set of nonbonded parameters used for the dihedral fit.

Application

MD simulations with class I force fields are able to capture structural dynam-
ics of molecules in the µs to ms range due to their efficient functional form.
Using enhanced sampling techniques to capture non-reactive transitions[76],
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rare events occuring on longer can be selectively sampled. From the trajec-
tories, experimental observables can be calculated and molecular mechanisms
proposed. Applications include drug discovery, protein folding, electrophys-
iology and structural biology.[68] However, as a fundamental limitation, the
functional form does not allow for chemical reactions. This has sparked the
development of variations that allow for the most common chemical reactions
in biomolecular systems, including protonation.[77, 78]

3.2 Quantum chemistry methods

Motivation

The task of assigning an energy to a system of atoms with positions x is also
fundamental to quantum mechanics. Solving the eigenvalue problem known as
the time-independent Schrödinger equation,

Ĥ|Ψ⟩ = E|Ψ⟩, (3.9)

the system energy can be obtained. Ĥ is the Hamiltonian operator and |Ψ⟩
the wave function for the system. The Hamiltonian operator can further be
decomposed into nuclear n and electronic e contributions and their interaction
to the kinetic energy T̂ and the potential energy V̂ :

Ĥ = T̂n + T̂e + V̂nn + V̂ne + V̂ee (3.10)

Using the Born-Oppenheimer approximation, the nuclei positions can be
treated as fixed. Hence, T̂n is zero and V̂nn is a constant, leading to following
simplification:

Ĥe = T̂e + V̂ne + V̂ee (3.11)

For molecular systems, the Schrödinger equation can not be solved exactly.
Various methods exist to find an approximate solution, including density func-
tional theory (DFT).

DFT

The idea behind DFT is to model the electron density of a system instead of
individual electrons. According to the Hohenberg-Kohn theorems[79], the wave
function is uniquely determined by the electron density. In theory, ground-state
properties could thus be calculated from the electron density. Density func-
tional calculations became practically feasible when Kohn and Sham proposed
to calculate the energy of a system of non-interacting electrons with the same
electron density as the interacting system.[80] The Hamiltonian for a system
of non-interacting electrons can be solved iteratively in a self-consistent field
approach, providing the total energy for the interacting system. However, elec-
tron exchange and correlation interactions are only approximately modelled in
density functional theory. A higher accuracy can be gained from including the
exact exchange energy from Hartree-Fock theory. The combined methods are
known as hybrid functionals and contain a variable fraction of exact exchange.
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The set of functions that represent an atomic orbital can be chosen such
that their influence is eliminated, which is called the complete basis set limit.
A computation with such a basis set would be computationally expensive and a
range of finite basis sets that introduce only a small error have been developed
over the decades.[81] Taken together, DFT uses an empirical functional form
based on quantum mechanics with a much higher accuracy than the previously
described force fields that comes with a higher computational cost.

Application

Having calculated the energy and possibly some derivatives of it for a set of
positions x using the iterative self consistent field method, multiple compu-
tational experiments can be performed. If the goal is to simply calculate the
single-point energy and forces because the current structure is the target of
investigation, the experiment is finished. A minimisation can be performed,
typically using a quasi-Newton method to find a local minimum. [82] Several
minimisations could be chained with an internal coordinate frozen to a par-
ticular value in a relaxed potential energy scan. In case the target structure
is not a minimum but a saddle point, as in transition state search, the lowest
value eigenvalue of the Hessian can be followed.

Alternatively, the DFT-calculated energies and forces can be used for molec-
ular dynamics. Multiple approaches, such as Born-Oppenheimer MD or Car-
Parrinello MD, exist. Due to the computational cost, the molecular system
size tends to be limited and timescales are typically in the ps to ns range.[83]
For cases where an improved accuracy is only necessary in specific regions of
the system, e.g. enzymes, a combined QM/MM approach can be used.[37]

3.3 Kinetic Monte Carlo

Motivation

The motivation for using the kinetic Monte Carlo method follows the excel-
lent reviews of Gillespie[84] and Andersen et al.[44] with the simplification of
assuming unimolecular reactions with a single molecule as product.

Reactive MD simulations, e.g. Born-Oppenheimer MD, could be used to
count how often reactions occur within a certain time interval and determine
the reaction rate r:

∆s

∆t
= r(s) (3.12)

Here, s is the number of molecules of the simulated species. For unimolecu-
lar reactions, the reaction rate of individual molecules is treated as independent
and the reaction rate is r(s) = ks for the rate constant k. Unfortunately, most
reactions occur rarely within the time scales of reactive MD simulations and
the rate constant can not reliably be determined.

However, if there was a way to know the probability of a reaction event
within a time interval, it would be unnecessary to perform molecular simula-
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tions to model the number of molecules of a certain species. This is called the
fundamental premise of stochastic chemical kinetics:

aj(s)dt ≜
the probability, given S(t) = s, that one Rj reaction will occur some-
where inside a constant volume in the next infinitesimal time [t,t+dt]

(3.13)
S(t) denotes the state of the system at time t, specifically the number of re-

active molecules. The constant value is only relevant for bimolecular reactions
and for the unimolecular case, aj(s) = cjs. Hence, the deterministic reaction
rates for systems with many molecules relates to the probabilistic propensity.

Using the propensity, it would be possible to find following probability:

P (s, t|so, to) ≜ Prob{S(t) = s, given S(t0) = x0} (3.14)

A chemical master equation can be constructed to propagate the system
over time by calculating the probability of entering and leaving a state:

δP (s, t|so, to)
δt

=
M∑
j

[ak(s− 1)P (s− 1, t|s0, t0)− ak(s)P (s, t|s0, t0)] (3.15)

For applications with a large state space or many reactions, the system of
equation becomes too large to compute. Instead, a single trajectory of S(t) is
simulated with the goal of finding a new probability:

p(τ, j|s, t) ≜
the probability, given S(t)=s, that the next reaction in the sys-
tem will occur in the infinitesimal time interval [t + τ ,t+τ+dt),
and will be an Rj reaction.

(3.16)
Assuming reactions can be modelled as Poisson point processes, the above

probability is given as:

p(τ, j|s, t) = aj(s) exp(−τ
∑
i

ai(s) (3.17)

Algorithm

Using two standard uniform random numbers u1 and u2, the time until the
next reaction τ and the identity of the next reaction j can be calculated as:

τ =
1

a0(s)
ln(

1

u1
)

j = the smallest integer satisfying

j∑
j′

aj′(s) > u2ao(s)

(3.18)

This leads to the stochastic sampling algorithm[42], also called rejection-
free KMC algorithm:

0. Initialise the system with the time t = t0 and the state s = s0.
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1. For the given state, evaluate all aj(s).

2. Calculate τ and j as above.

3. Effect the reaction by updating time and state.

4. Repeat steps 1-3, else end the simulation.

Application

Many KMC simulations are performed on crystalline material because system
states can be mapped on a lattice and matched to a limited list of reactions
with associated propensities. [44] Consequently, a KMC step consists mainly
of event table look-ups for gathering the full list of propensities and no reaction
rates have to be computed during the simulation. A fundamental limitation to
this approach is that all possible reactions have to be explicitly defined in the
first place, which limits the potential insight from these simulations.

A more explorative approach is possible using adaptive KMC[47], where
the event list is generated by performing transition state searches during the
simulation. The transition state search can be conducted in different ways,
including dimer search[48] and high-temperature MD[49]. Even though various
optimisation approaches exist, this type of KMC simulation is much slower than
lattice KMC.

3.4 Reaction rate calculation

So far, it has only been assumed that a propensity, as defined in the fundamen-
tal premise of stochastic chemical kinetics, exists. A relation has been defined
to the experimentally observable reaction rate has been made and for uni-
molecular reactions in a system with a reactive single molecule, the propensity
is equal to the rate constant.

Arrhenius described an empirical relation[85] between activation energy Ea

and rate constant using a pre-exponential factor A:

k = A exp(
−Ea

RT
) (3.19)

Following a statistical mechanics perspective, Eyring found an expression
for A[86] that forms the basis for transition state theory (TST):

A = κ0
kBT

h

kTST = κ0
kBT

h
exp(

−Ea

RT
)

(3.20)

Several extensions to TST exist that use different expression for the trans-
mission coefficient κ0[87], including harmonic TST[44], where vibrational modes
at the reactant and transition state are calculated to estimate the likelihood
of barrier crossing events. In practice, κ0 is often estimated to be in the range
of 1 - 10.[44]
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This simplifies the task of finding a rate constant to finding a reaction
barrier. Many QM-based methods exist to find transition states from energy
minima, including the nudged elastic band method and gradient based search
methods like the Dimer method.[88, 82, 44] While a vibrational analysis can
be performed to confirm the putative transition state as a saddle point, mean-
ing the hessian has one negative eigenvalue[82], there is no guarantee that
this transition state is along a minimum energy path that carries most of the
reaction flux.

3.5 HAT GNN

Motivation

The hydrogen atom transfer (HAT) barrier calculation in proteins is compli-
cated by the fact that a range of different hydrogen donors and acceptors exist
in the 20 natural amino acids. Additionally, the minimum energy path for
HATs in isolated amino acids is likely to have an increased barrier in a protein
from reorganising the protein environment in a way that facilitates the HAT
along that path. This energy contribution expected to be different for differ-
ent HAT paths, thus, the path with the most reaction flux can depend on the
protein environment. DFT calculations of HATs in every protein environment
would be prohibitively expensive and a HAT GNN has been developed recently
to emulate reactions for individual conformations.[45] It predicts barriers that
can be used to calculate reaction rates using the Eyring equation mentioned
above.

When combined with a method that generates conformations, e.g. MD,
the HAT GNN predicts barriers for paths that are accessible in the current
conformational ensemble.

Architecture

As input, the HAT GNN takes the atom positions and elements of the reac-
tant and product structure. Instead of being encoded as hydrogen, the HAT
hydrogen is treated as pseudo-element at the start and end position. Using
two message and update blocks from the PaiNN architecture[89] alternately,
an atom embedding for the hydrogen at the start and end position is generated.
This embedding is concatenated and passed to a multilayer perceptron (MLP)
with two layers and 128 nodes each, followed by the output node.

Training

The original HAT GNN dataset consists of three different parts: a synthetic
dataset of one or two amino closed-shell acids positioned for a HAT from the
position of one hydrogen to another, tabulated force field collagen trajectory
data with capped cut-outs of amino acids with hydrogens in close proximity to
each other and an optimised dataset with geometry optimised structures from
either of the first datasets.
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For the synthetic and trajectory dataset, hydrogen start and end position
are the positions of the respective hydrogens, i.e. the hydrogen at the end
position is removed for the start structure and vice versa. The transition state
is determined by linear interpolation between both hydrogen positions. As
only the HAT hydrogen is mobile/unfrozen for the DFT calculations, data
generated in this way is hereafter referred to as layer 0 unfrozen data.

HAT barriers correlate with the translation distance (Fig. 3.1,5.13a) and
are sampled with a focus on the important low translation distance region.
Structures with atoms within 0.8 Å of the interpolated HAT path are discarded
because the transition state would have a geometric clash.

Figure 3.1: HAT translation distance. For a HAT from the Cα of a
NME-Gly-Ace peptide to the Cϵ of a NME-Phe-Ace peptide. The translation
distance, i.e. the distance from hydrogen start to end position, indicated in
orange, is shown.

The optimisation is performed with all atoms frozen but the HAT acceptor
and donor and their bonded hydrogen atoms (layer 1 unfrozen data). A local
transition state search is performed to find the transition state structure and
validate it with frequency calculations. For all DFT calculations, the hybrid
BMK functional[90] with 6-31+G(2df,p) basis set is used.

Training on the layer 0 unfrozen barriers results in a test data MAE of
2.4 kcal/mol for translation distances below 2 Å. In a transfer learning step
without freezing parts of the model, the model is trained on predicting layer
1 unfrozen barriers from the initial non-optimised structures. For this experi-
ment, the test data MAE is 3.64 kcal/mol.

The initial dataset neglected the local structure of radical atoms because
molecules were generated with closed-shell geometries. In a subsequent work,
the Grappa[91] force field is used to simulate protein radicals for an improved
dataset.[92] To this end, a collagen fibril was modelled with 200 randomly
abstracted hydrogens. HATs from six replicates were gathered and their layer
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1 unfrozen barriers calculated. Transfer learning was again used to retrain
the original model with this extended dataset for a final test set MAE of
3.24 kcal/mol for translation distances below 2 Å. In contrast to the initial
dataset with barriers as low as 12 kcal/mol, the lowest calculated barrier is at
20 kcal/mol.

3.6 Grappa

Motivation

Reactive simulations can lead to products that are not parametrised in tabu-
lated force fields. Even general force fields[93, 94] may lack certain parameters
for a molecule and would require a parametrisation process involving QM cal-
culations. Espaloma[95, 96], a machine learning model for predicting classical
MM parameters, relies on machine-learned atom embeddings instead of tabu-
lated atom type interactions. With this approach and given a diverse training
dataset, a range of molecule force field parameters can be reliably predicted.

Limitations of Espaloma led to the development of Grappa[91] under my
supervision. Grappa can deal with open-shell data, quickly parametrises large
molecules, directly writes parameter files readable by GROMACS[56] and works
with different non-bonded parameter sets.

Architecture

As input for molecule parametrisation, Grappa uses solely the atom elements,
partial charges, the number of neighbours and the ring membership based on an
atom connectivity graph (Fig. 3.2). In practice, this information is parsed from
the molecular system definition of the respective force field. For GROMACS,
the topology file is used. Atom positions are not used for parameter prediction.

Atom embeddings ν are constructed in a Graph Attention Network that
resembles the transformer architecture[97]. The attention mechanism is con-
strained to the graph edges, hence updates are kept local and the atom embed-
ding contains only informations on atoms within a certain number of edges,
i.e. bonds.

Another transformer is used to obtain bonded parameters from the atom
embeddings. Bonded parameters ξ should be invariant under certain permu-
tations:

ξ
(bond)
ij = ξ

(bond)
ji

ξ
(angle)
ijk = ξ

(angle)
kji

ξ
(dihedral)
ijkl = ξ

(dihedral)
lkji

(3.21)

Permutation invariance is achieved in two steps: first, a positional encoding
that is invariant under the respective permutation is appended to the atom
embedding, e.g.

(νi, νj, νk) 7→ (νi ⊕ 0, νj ⊕ 1, νk ⊕ 0) , (3.22)
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Figure 3.2: Grappa architecture overview. Bonded parameters are pre-
dicted from the molecular graph via atom embeddings. Molecule-specific quan-
tities are represented in grey, functions in blue. Reused with permission from
[91].

second, the modified atom embeddings are pooled over all invariant permu-
tations, resulting in permutation invariant parameter scores z. These scores
are then mapped to the range of sensible parameters, e.g. (0,∞) for the bond
force constant. Furthermore, parameters are initialised according to the pa-
rameter distribution in a supplied force field to get a good initial guess, if
available, which leads to better convergence during training.

Training

For training, the Grappa architecture is embedded in a larger workflow (Fig.
3.3). A set of molecule conformations is used to calculate MM energies and
forces for the MM parameters predicted by Grappa. The QM energies and
forces associated with the molecule conformations are then used to calculate a
loss:

L =MSE(EMM, EQM) + λFMSE(∇xEMM,∇xEQM) +

λMMMSE(ξ, ξref) + λdih∥ξ(dih)∥22
(3.23)

Apart from the hyperparameter λF that weights energy and force, addi-
tional regularisation of the difference to reference MM parameters and the
magnitude of dihedral parameters is possible by tuning λMM and λdih. Finally,
the loss is backpropagated through both the symmetric transformers and graph
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attentional neural network to update learnable parameters. It should be noted
that while molecular conformations are used for training Grappa, and thus
determine the weights and biases of the model, the parameter prediction is
independent of the three-dimensional structure of the target molecule.

Figure 3.3: Grappa training workflow. The Grappa inference architec-
ture (grey box) is integrated into a training workflow for learning MM pa-
rameters from molecule positions with associated QM energies and forces.
Conformation-specific quantities are represented in green. Reused with per-
mission from [91].

Since one set of MM parameters is only valid for a certain non-reactive state,
formation energies do not have to be reproduced. Instead, energy differences
of conformations are the optimisation target and thus the mean of target and
predicted energies is subtracted before the loss evaluation.

In the original publication, Grappa was trained on a combination of SPICE[98]
and QCArchive dataset[99]. The included molecules cover small drug-like
molecules, peptides and nucleic acids.

3.7 Simulation details

Molecular dynamics

General

Unless noted otherwise, molecular dynamics simulations are performed with
GROMACS[56] versions 2019 to 2024. The Grappa version 1.4.0 force field is
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used together with Amber non-bonded parameters originating from ff94[64].
As water model, TIP3P[100] is used. Typically, 2 fs time steps with LINCS[61]
constraints on H-bonds are employed. Simulations are kept at 300K using the
v-rescale thermostat[60] and, except for NVT equilibrations, 1 bar using the
Parrinello-Rahman barostat[101]. The Coulomb and Lennard-Jones cutoffs
are at 1 nm.

NMR validation

The J-coupling benchmark simulations of (Xaa)n and Gly-Xaa-Gly peptides,
where Xaa denotes different amino acids, are performed with a box size with
1.4 nm padding around the peptide. The pH of J-coupling experiments was at
2, which is modelled by protonating all carboxy groups. Charges are neutralised
with Na+ and Cl− ions with the parameters of Joung and Cheatham[102]. Af-
ter short equilibration simulations, triplicates with 500 ns simulation length
were simulated for each of the 13 peptides. Apart from the Grappa 1.4.0 sim-
ulations with Amber charges, the same experiment was repeated with Grappa
1.3.0, Grappa 1.4.0 with AM1-BCC charges[103], Espaloma 0.3[96] and Amber
ff14SB[75].

Protein folding

Simulations of the CLN025 variant of chignolin were performed at the exper-
imental melting temperature of 340K in duplicates of 4µs simulation time.
The padding distance is 20 Å around the experimental structure (PDB acces-
sion code: 5awl[104]) and ions are added to firstly neutralise the protein charge
and secondly reach a NaCl concentration of 0.1M.

Radical training

A total of 146 radical peptides were generated through homolysis at the Cα-C
bond or through hydrogen abstraction. Instead of in GROMACS, simulations
to obtain training conformations were performed in OpenMM[105] with 1 fs
time steps and a intermediate Grappa model fine-tuned on QM optimisation
data of radical peptides. A padding of 10 Å around the radical was used and the
salt concentration set to 0.1M. For keeping the system temperature at 300K
and 1000K, respectively, a Langevin integrator was used. 100 conformations
were sampled, with 100 ps inbetween them. The first 50 ps are simulated at
1000K and the 50 ps before saving a conformation are simulated at 300K.

Collagen fibril HAT sampling

For sampling HAT in the collagen fibril, a model of type I collagen in Rattus
norvegicus with HLKNL cross-links was generated from ColBuilder[106]. It
is comprised of about 320 000 protein atoms with 41 individual triple helices
and spans one central overlap as well as half a gap region on either side. The
aromatic residues, phenylalanine and tyrosine, were randomly mutated to 20%
DOPA and 26.6% tyrosine and either DOPA anion.
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The protein model is aligned along the z axis, placed in a 16.3 nm x 17.7 nm
x 95.0 nm triclinic box, solvated, neutralised and the NaCl concentration set to
150mM. Afterwards, a 10 ns NVT equilibration with restrained protein heavy
atoms and a 10 ns NPT equilibration with 1 nN pulling force per protein chain
is conducted.

Homolysis sites are sampled from recently conducted extensive simulations,
weighted by the number of sampled breaks.[14] Three sampled breaks are com-
bined and proposed for further simulation if they are more than 40 Å apart and
not connected. Out of the proposed break groups, four variations with diverse
homolysis locations and including cross-link sites were taken.

The three homolysis reactions per break group are simultaneously effected
and a 10 ps slow-growth simulation performed to receive the product state
structure. Simulations with radicals use the Grappa 1.4.1-radical force field
that is developed in this work. Subsequently, another 10 ns NPT equilibration
is performed. The Simulation of one break group with a loose fragment crashed
and was discarded.

For sampling HATs, three types production simulations were run: 500 ps
simulations with 10 fs stride,i.e. write-out frequency, 5 ns simulations with
100 fs stride and a subsequent 50 ns with 1 ps stride. For every NPT equili-
bration, three replicates were used for the production runs, starting after 6 ns,
8 ns and 10 ns of the NPT equilibration. Two individual simulations crashed
and were discarded, for a total of 7 simulated systems. The 50 ns simulations
were only performed for the triplicates of one break group.

KIMMDY

PYD homolysis sites

Starting from the same model of type I collagen in Rattus norvegicus, another
model was created with N- and C-terminal PYD crosslinks with a connectivity
of 9.C-5.B-944.B and 1047.C-1047.A-98.B, respectively. All aromatic residues
were mutated to a DOPA-anion and the two variants randomly distributed.
The same equilibration scheme as above was used up to the homolysis reac-
tion. This time, combinations of breaks at three of the eight PYD short arm
Cα-Cβ bond (compare Fig. 7.1b) were sampled with the same connectivity
and distance criteria as above. A total of 12 different homolysis patterns were
generated, with every PYD cross-link being included in three simulation sys-
tems. Again, three replicates were used by starting from different snapshots of
the post-break NPT equilibration.

For production runs, 500 ps equilibration and 500 ns sampling simulations
were conducted with the latter having a stride of 10 fs. The slow-growth simula-
tion is over 10 ps. All simulations use the C-rescale[107] barostat. Simulations
are performed with the Grappa 1.4.1-radical force field.

The KIMMDY configuration options are shown in Figure 3.4. The 36 sim-
ulations with 20 reactions each would sample at most 720 reactions. Due to
crashes, 600 (83.3%) reactions were actually sampled.
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Figure 3.4: KIMMDY PYD simulation configuration file. Configura-
tion options in a YAML file. Lines starting with ’#’ are treated as comments.
Note the KIMMDY task sequence definition in the last lines.

Diverse homolysis sites

KIMMDY simulations with diverse homolysis sites are performed from the
equilibrated radical structures of the collagen fibril HAT sampling (see above).
For production runs, the MD settings are the same as above. All simulations
use the C-rescale barostat. Simulations are performed with the Grappa 1.4.1-
radical force field.

The configuration options are set as in the PYD simulations above but
only 10 reactions were sampled per system. The seven simulated systems were
simulated with triplicates for a sum of 21 simulations. Out of 210 expected
reactions, 146 (70%) were performed because some systems encountered errors
during the simulation.
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Chapter 4

Generating a protein radical
force field

4.1 Radical MD parameters are necessary for

modeling HAT

Protein force fields (see 3.1) have been under development for many decades[71,
64, 108, 75, 69] to achieve better agreement with QM and experimental data.
Observables of interest in MD studies often depend on a fine balance between
conformations[109, 70] because energy differences, according to the Boltzmann
distribution, have an exponential effect on the population of states. Typically,
conformations are discernible in the backbone dihedral space (Fig. 4.1a). This
is why particular effort went into improving the agreement with QM or exper-
imental observables by adjusting backbone dihedral parameters directly[108,
75, 69, 70]

Figure 4.1: QM optimized structures of alanine and its radical. Both
panels show QM optimised structures of an alanine peptide with acetyl and
N-methyl capping groups. a, Natural, closed-shell peptide. ϕ and ψ backbone
dihedrals are shown. b, Cα radical peptide. The radical peptide is formed by
hydrogen abstraction at the natural amino acid Cα atom.

For modelling protein radical species, which are the reactants of protein
HAT reactions, accurate radical force field parameters are crucial. Apart from

25
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the general need for accurate parameters to correctly model the occupancy
of different conformations, the local environment of radical atoms may in-
clude different neighbouring atoms. These neighbouring atoms are potential
H-donors to the radical atom. HAT reaction rates correlate exponentially with
the distance of reactants[45], thus, accurate conformational sampling and local
environments are crucial for modelling reactions. Even small force field inac-
curacies or artifacts may drastically alter the relative rates of competing HAT
reactions. With the exception of the glycine Cα radical [110, 111], no protein
radicals have been parametrised so far, highlighting the necessity to create
a high-quality force field for protein radicals to perform reactive KIMMDY
simulations of HATs in collagen.

4.2 Protein radicals adopt untypical confor-

mations

4.2.1 About different 200 radical amino acids need to
be modelled

Radicals in collagen are the product of either homolytic cleavage or HAT with
both reactions resulting mostly in different species (Fig. 4.2a,b). The number
of possible radical species is larger than the number of amino acids since ho-
molytic cleavage produces a Cα radical with a broken Cα-C bond, as well as
a radical ketone group connected to the nitrogen of the following amino acid
which likely warrants reparametrisation of that amino acid. Other backbone
bonds are unlikely to be homolytically cleaved under physiological conditions
[14]. Even more peptide radical species can be formed by hydrogen abstrac-
tion. For every heavy atom bound to a hydrogen a different radical species can
be formed. Taken together, roughly 200 different radical amino acid species
need to be parametrised.

Figure 4.2: Radical species of alanine. a, Homolytic cleavage leads to a
Cα-radical and a radical ketone group. b, HAT radicals are different if the
H-abstraction occurs at different heavy atoms.

Albeit changes to a protein force field to model the different radicals would
likely be similar for different species because they are produced by the same
mechanism, this work would require huge efforts in the framework of tradi-
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tional force field development, which moves at a pace of few changes to select
parameters per publication.[108, 75] In a first step, changes to the molecular
structure upon radical formation are investigated to get an understanding of
the necessary parametrisation steps.

4.2.2 Tetrahedral carbons adopt a planar geometry as
radicals

To illustrate differences in the molecule geometry between closed-shell amino
acid and their radical counterparts, the alanine Cα radical, from H-abstraction,
is taken as example (Fig. 4.1a,b). As a backbone radical it can have a large
impact on the surrounding geometry. The carbon radical changes from a tetra-
hedral geometry to planar, making this an example with rather large differences
compared to other positions. Interestingly, the radical can be approached from
both sides of the plane created by its bonded neighbours. The planarity leads
to a different relative position of the side chain compared to the backbone.
This could lead to slight structural rearrangements or folding of longer side
chains back on to the backbone for a side chain to backbone HAT.

4.2.3 H-abstraction has an impact on internal coordi-
nates

Changes in the molecule geometry also lead to changes in the internal co-
ordinates, i.e. bond, angle and dihdral values. Because of their relation to
bonded MM parameters, analysis of the internal coordinate changes upon H-
abstraction or homolytic cleavage gives first insights on the magnitude of pa-
rameter changes to model radicals.

Figure 4.3: Bonds and angles are affected by radical formation. a,
Bond distances at radical atoms by involved elements for QM optimized struc-
tures of radical amino acids and at the same positions for their corresponding
natural amino acids. b, Angles around radical atoms for QM optimized struc-
tures of radical amino acids and at the same positions for their corresponding
natural amino acids. Radical amino acids were formed by H-abstraction.

Bond distances slightly decrease at the radical atoms (Fig. 4.3a). As the
bond distance itself, changes upon radical formation depend on the involved



28 Generating a protein radical force field

elements. Bonds involving hydrogen atoms are barely affected, while most
heavy atom to heavy atom bonds decrease in distance. In contrast, angles
(Fig. 4.3b) mainly increase from around 110° to 120°. This corresponds to
the previously mentioned change from tetrahedral to planar geometry. Small
populations can also be found at angles below 115° and above 125°. Taken
together, bond distances and angles show clear trends when a nearby radical
is introduced. Introducing radicals can, however, also change internal coordi-
nates further away from the radical atom. Bond and angle force constants are
comparably high, so small distance or angle errors would result in large energy
errors. The derivation of such paremeters for radicals, however, is challenging
because they are traditionally fit to experimental vibrational frequencies and
structures[64], which are not available for radicals.

Figure 4.4: Ramachandran plots. a, Backbone dihedral values of 500
X-ray structures deposited in the PDB[112]. b, Free-energy surface of the
data presented in panel a. c, QM potential energy surface of the alanine
dipeptide backbone dihedrals in vacuo. QM potential energy surface of the
alanine dipeptide Cα radical backbone dihedrals in vacuo.

H-abstraction heavily influences dihedrals. The backbone dihedral space
has several minima, which can be distinguished in a Ramachandran plot[113],
also called ϕ/ψ plot. Here, the ϕ is defined as C(-1)-N-Cα-C and the ψ as
N-Cα-C-N(+1) dihedral angle, where the subscripts denote membership to the
previous or upcoming amino acid. These minima are defined from dihedral
values of X-ray structures deposited in the PDB (Fig. 4.4a). Conversion of
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binned counts via Boltzmann inversion to a free-energy surface (FES) leads to
an interpretable energy surface (Fig. 4.4b).

In comparison, in vacuo potential energy surfaces (PES) of alanine and
the alanine Cα radical (Fig. 4.4c,d) are much simpler. The alanine PES has
minima in the β region, between ppII and αR region and below the αL re-
gion. These differences to the protein FES arise from solvation and entropic
effects.[69] The alanine Cα radical PES is even simpler, with a single main
minimum at (180,180). As the Ramachandran plot is periodic in both x- and
y-axis, this minimum is shown at the four corners of the plot. A further mini-
mum with relatively high energy is located around (0,0). Ramachandran plots
for other Cα radicals look similar, indicating a general trend. The backbone
dihedral parametrisation, which required the most attention for natural amino
acid[108, 75, 69] results indicate that Cα radical backbone dihedrals, which
parametrisation. Again, radicals other than Cα radicals are expected to also
influence backbone dihedrals and other dihedrals around them, highlighting
the complexity of the parametrisation task.

4.2.4 Radical van der Waals parameters are difficult to
obtain

Partial charges of atoms in a molecule undergoing homolytic cleavage or H-
abstraction must change to keep integer charges of the resulting fragments.
Traditional charge parametrisation for Amber force fields is done with RESP
charges[114] using HF/6-31G* functional and basis set. This choice of func-
tional and basis set is known to over-polarize but was intentional to account for
the polarization in water compared to in vacuo. Fortunately, this also leads to
computationally inexpensive QM optimizations for partial charge calculations.

In Amber force fields, van der Waals parameters are completely identical
for all types of carbon and nitrogen atoms, indicating little adaptation to the
chemical context. Historically, protein van der Waals parameters were derived
from condensed-phase simulations and fit to reproduce experimental observ-
ables[64], which is not possible for radicals due to lacking experimental data.

4.3 Graph neural networks can facilitate rad-

ical parametrisation

Since there is no clear allocation of energy contributions to MM terms, it is
possible to partially compensate deficiencies in one set of parameters with other
contributions. Hence, fitting bonded parameters given a certain set of subopti-
mal non-bonded parameters may still yield an accurate force field. A recently
introduced method, Espaloma[95, 96], uses a graph neural network (GNN) to
fit bonded parameters for an extensive set of small molecules, peptides and
nucleic acids. Espaloma uses the molecular graph and hand-crafted chemical
features, such as formal charge, hybridization and aromaticity, to create atom
embeddings. These embeddings are then used to predict bond, angle and di-
hedral parameters by minimizing the energy and force loss compared to QM
data. Intriguingly, the method predicts classical MM parameters independent
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of the molecule conformation, as conformations are only used for training but
not as an input to the model during inference. This allows for using Espaloma
parameters in the same way as a classical force field without loosing simulation
speed.

Given a suitable QM data set of peptide radicals, a method like Espaloma
can also predict the parameters required for reactive simulations of HATs in
collagen. However, implementation details limit the applicability of Espaloma.
First, Espaloma is designed to predict charges[115] and was trained on AM1-
BCC[103] charges which is itself a approximation of RESP charges. Contrast-
ingly, a method predicting bonded parameters with non-bonded parameters as
input would be more versatile and allow for testing different charge models for
protein radicals. Second, handcrafted chemical features may be helpful in pro-
viding an inductive bias for data-efficient training but also add limitations to
the model if they are not straightforwardly available. Third, formal charges can
lead to non-physical parameters for mesomeric structures[96] and in the cur-
rent implementation, open-shell molecules can not be processed in Espaloma.
Finally, parameter prediction for large proteins is prohibitively slow.

To address these limitations, a new method, Grappa[91], was developed in
a master’s thesis by Leif Seute under my supervision (see 3.6). Grappa uses
non-bonded parameters as input feature and does not depend on handcrafted
chemical features. This design, together with an efficient implementation that
is less prone to limitations inherited from specialised software dependencies
solves many shortcomings of Espaloma. In the sections below, we show that
Grappa is a suitable method for parametrising proteins. A major benefit of
starting our force field development and validation with natural amino acids
is that QM datasets are available for training and several benchmarks exist to
evaluate the force field performance. Furthermore, a highly accurate protein
force field is of general interest to the MD community. In a second step we use
the now validated Grappa to parametrise amino acid radicals.

4.4 Validation of Grappa for proteins

The results presented in this subsection originate from collaborative work of
Leif Seute and myself.

4.4.1 Grappa accuracy is state-of-the-art

For comparison with Espaloma, Grappa was trained on a combination of
SPICE[98] and QCArchive dataset[99] used in the most recent Espaloma pub-
lication[96]. Grappa consistently outperforms Espaloma in energy and force
RMSE by a slight margin (Table 4.1). Both the accuracy of Espaloma and
Grappa far outperform traditional force fields, including the general force field
Gaff-2.11[93] and the specialized force fields ff14SB[75](protein) and OL3[118](RNA).
The mean predictor shows average absolute deviations from the sample mean
and serves as a reference to assess the distribution of energies and forces in the
datasets.

Even though training, validation and test data were strictly separated, an
argument could be made that the training data for both GNN methods is more
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Dataset Test Mols Confs RMSE Grappa Espaloma Gaff-2.11
ff14SB, Mean

RNA.OL3 Predictor

SPICE-Pubchem 1411 60853
Energy 2.3 2.3 4.6 18.4
Force 6.1 6.8 14.6 23.4

SPICE-DES-Monomers 39 2032
Energy 1.3 1.4 2.5 8.2
Force 5.2 5.9 11.1 21.3

SPICE-Dipeptide 67 2592
Energy 2.3 3.1 4.5 4.6 18.7
Force 5.4 7.8 12.9 12.1 21.6

RNA-Diverse 6 357
Energy 3.3 4.2 6.5 6.0 5.4
Force 3.7 4.4 16.7 19.4 17.1

RNA-Trinucleotide 64 35811
Energy 3.5 3.8 5.9 6.1 5.3
Force 3.6 4.3 17.1 19.7 17.7

Table 4.1: Accuracy of Grappa, Espaloma and tabulated general (Gaff-2.11)
and specialized (ff14SB, OL3) force fields. All force fields use ff99SB VdW pa-
rameters and all use AM1-BCC partial charges except for ff14SB, which uses
RESP charges. States in all datasets were MD sampled at temperatures of
300K or 500K. RMSEs of zero-centred energies are in kcal/mol, component-
wise RMSEs of forces in kcal/mol/Å. SPICE-Pubchem is a small-molecule
dataset, SPICE-DES-Monomers and SPICE-Dipeptide peptide datasets and
RNA-Diverse and RNA-Trinucleotide are RNA datasets. The ωB97M-D3(BJ)
functional[116] and def2-TZVPPD[117] basis set were used. Reused with per-
mission from [91].

Figure 4.5: Sampling types for QM datasets. a, Using QM geometry op-
timisations leads to few points outside minima, corresponding to initial starting
structures and many structures very close to minima. b, QM screens result in
equally spaced data points along the screened coordinate, irrespective of the
underlying PES. c, MD sampling yields Boltzmann distributed samples. E -
Energy, CV - Collective variable.

similar to the test data than what the general or specialized tabulated force
fields were fit on. Consequently, accuracy differences in the test set would be
biased towards the GNN methods. A good dataset, however, should be repre-
sentative of the real world applications of the methods under investigation. In
this regard, use of the SPICE and QCArchive datasets are a major step for-
ward because they contain single-point QM energies and forces of MD sampled
states. Given that MD states are sampled from the Boltzmann distribution,
accessible conformational states are included and weighted by the probability
of their occurrence. Most applications of protein simulations are in aqueous
solution, hence the system should be solvated (compare Fig. 4.4) to sample
conformations that occur frequently during the application. This considera-
tion is relatively novel in force field fitting.[69] Fortunately, the system needs
to be solvated only during the sampling and not for QM calculations because
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the bonded parameters depend on solute atoms only. QM optimized struc-
tures are helpful additions to the MD sampled datasets to improve sampling
at minima and relaxed QM screens can be beneficial to learn barriers or more
generally the edges of probable region in state space (Fig. 4.5). To sum up, the
datasets used for training and testing Grappa are far more extensive and closer
to MD applications than previous datasets used for fitting MM parameters.

One remaining assumption is that learning MM parameters from the QM
energies and forces of small peptides is enough to apply these parameters to pro-
teins. This assumption has been long-standing and many successful traditional
force fields, especially of the Amber family, have been developed under this as-
sumption. Recent CHARMM force fields[119, 70] challenged it and developed
parameters with a greater emphasis on reproducing experimental data, for ex-
ample with ϕ/ψ torsional correction maps (CMAPS) based on experimentally
measured occupancies of different regions of the Ramachandran plot. These
’empirical force fields’ may not be highly accurate compared to QM energies
and forces but are still very valuable for studies relating to experimental ob-
servables. Another indication for this behavior can be seen when comparing
the energy and force RMSEs for Gaff-2.11 and ff14SB on the SPICE-Dipeptide
dataset. Both are similarly accurate but ff14SB is arguably more suited to
reproduce experimental observables and be used as a protein force field. With
steadily increasing computational resources, the assumption may no longer be
necessary: Whole protein[120] or protein fragment[121, 41] QM datasets are
becoming available. By fine-tuning on these datasets, Grappa can be instru-
mental in exploring advantages from training on these kinds of datasets.

4.4.2 Grappa captures peptide backbone J-coupling best

Figure 4.6: Relation between dihedral and J-coupling value. a, Visuali-
sation of the Karplus equation for the 3JHN,C coupling of Ala3. b, Visualisation
of the Karplus equation for the 1JN,CA coupling of Ala3. Both panels show the
density of MD sampled states, the J(θ) function, the reference Jexp value, and
the calculated average JMD value, which is obtained by averaging J(θ) over the
MD sampled states.

A key metric for protein force field quality is its agreement with backbone
J-coupling data. As mentioned previously, protein backbone parameters de-
termine the occupancy of different conformational states and thus strongly
influence key observables. J-coupling refers to interactions of spins connected
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through chemical bonds. Depending on bond distances and angles of the con-
necting bonds, the coupling strength varies. In the Karplus equation[122] this
dependence is used to relate backbone dihedral values to J-coupling values of
backbone atoms through empirical constants. Empirical constants A, B, C
and ∆ are calculated for specific molecules but are treated as transferable to
a certain extent[96], introducing a source of error in the relation.

J(θ) = A cos2(θ +∆) +B cos(θ +∆) + C (4.1)

To evaluate the peptide backbone parameters, an extensive MD simula-
tion of the molecule of interest is performed. For each snapshot, the dihedral
observable is calculated and a J-coupling value derived using the Karplus equa-
tion. Finally, the average computationally calculated J-coupling value JMD is
compared to the experimental Jexp value using the RMSE or χ2 value. Two
representative J-coupling relations, one with strong agreement, the other with
a rather large error, are shown in Figure 4.6.

χ2 =
1

Nobs

∑
obs

(JMD − Jexp)
2

σ2
model

(4.2)

Several dihedral distributions can lead to the same average JMD value, mak-
ing the validation underdetermined. However, if several J-couplings are cal-
culated for the same dihedral, the space of possible dihedral distributions is
limited. Further assuming a sensible ϕ/ψ dihedral surface reduces the valida-
tion to assessing the relative populations of mainly the β, ppII and αR region.
This is the limited but very valuable information that can be gained from the
comparison of backbone J-coupling data.

For the J-coupling analysis, we use the benchmark dataset and analysis
pipeline established by the Open Force Field Initiative[123]. The same bench-
mark has also been used by the Espaloma authors[96], which facilitates com-
parison. It includes the peptides Ala3, Ala4, Ala5, Gly3, Val3, GAG, GEG,
GFG, GKG, GLG, GMG, GSG and GVG for a total of 121 observables. In
agreement with NMR experiments, simulations are performed at pH 2. For
every peptide, triplicates of 500 ns simulation time are simulated. Seven differ-
ent J-couplings, namely 1JN,CA[124],

2JN,CA [125], 3JHA,C [126], 3JHN,CB [127],
3JHN,C [127], 3JHN,HA [127], 3JHN,CA[128] with a modified Karplus equation, are
analyzed. The same J-couplings can be evaluated for different residues of the
same molecule.

Grappa and Espaloma both reproduce J-coupling values more accurately
than the tabulated ff14SB force field (Fig. 4.7a). Glycine, valine and alanine
have off-diagonal points, indicating weaker agreement with Jexp than other
residues. In the case of alanine, this could be attributed to the fact that a high
fraction of all observables is for alanine. Espaloma and Grappa results show a
similar pattern of JMD values. This points to both architectures learning sim-
ilar parameters from the underlying data. The χ2 value for Grappa improves
more than the RMSE comapred to Espaloma. Because the χ2 value contains a
correction for experimental uncertainty σ2

model , this means that Grappa perfor-
mance improved for J-couplings with low uncertainty, while the overall squared
error to the reference Jexp values remains similar. The Ala3 PES (Fig. 4.7b)
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for Espaloma and Grappa is notably broader than for ff14SB. Areas of the Ra-
machandran plot found in X-ray structures (compare Fig. 4.4a,b) are generally
more stable in contrast to the sharp ff14SB minima. Hand-crafted force fields
like ff14SB are known to overstabilize folded conformations[129], an artifact
that could be related to the observed narrow minima.

Figure 4.7: Peptide backbone parameters are evaluated with J-
couplings. a, Experimental and computational J-coupling values for 13 pep-
tides. Points are colored by the amino acid to which the dihedral belongs.
As quantitative measure, RMSE and χ2 value are included. The classical
force field ff14SB, Espaloma, Grappa and two Grappa variants, Grappa-1.3
and Grappa-am1bcc are evaluated. ff14SB, Grappa and Grappa-1.3 use RESP
charges, while Espaloma and Grappa-am1bcc use AM1-BBC charges. b, Free-
energy surfaces of the Ala3 peptide for the same force fields, calculated from
the population density observed in MD.

A main difference between Espaloma and Grappa in the previous results
is the charge model. Grappa is compatible with charge models it encountered
during training, i.e. RESP, AM1BCC and CHARMM ESP charges. To further
understand the differences between Espaloma and Grappa, the same AM1BCC
charge model is used for a direct comparison (Fig. 4.7a). RMSE and χ2 value
are almost identical between Espaloma and Grappa-am1bcc. Hence, the pre-
viously observed differences between Espaloma and Grappa can be attributed
to the charge model.

Furthermore, the training dataset was extended with single-point QM ener-
gies and forces of peptides sampled in the gas-phase at 300K, 500K and 1000K
to train the Grappa-1.3 model. The performance of this model is considerably
worse than Grappa models trained on the original dataset (Fig. 4.7a) and only
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on-par with ff14SB. Still, the PES of Ala3 appears only slightly different (Fig.
4.7b).

Taken together, different GNN methods for predicting bonded parameters
reach the same accuracy in the employed J-coupling benchmark if they are
trained on the same dataset and use the same non-bonded parameters. Grappa
is compatible with different non-bonded parameter sets by design and can thus
be combined with high-quality RESP charges to reproduce backbone J-coupling
far better than tabulated force fields, the current gold standard. The training
dataset influences the performance of Grappa models and even the addition of
peptide data sampled in gas-phase instead of in solution leads to a degraded
force field quality.

4.4.3 Grappa reproduces important features on dihe-
dral surfaces

Backbone dihedrals are the most important observable to judge the quality of
a protein force field. A popular approach is thus to tune only the dihedral pa-
rameters to improve agreements with experiments. For example, Amber force
fields up to ff14SB were mainly modified at their backbone dihedral parameters
to improve the agreement with QM screens and experimental data[75], produc-
ing highly symmetric backbone dihedral PESs. Reproducing diagonal elements
is not possible with this approach, because there is no cross-term for dihedrals.
CHARMM 22 first introduced grid-based cross-terms, called CMAPs, to re-
produce QM dihedral screens[94] and the same approach has been used in
Amber ff19SB to create residue-specific CMAPs. However, force field parame-
ters other than dihedral parameters also influence the dihedral PES and their
optimisation can improve the agreement with experimental data. Without
using CMAPs, Grappa reproduces key features of implicit solvent QM dihe-
dral screens (Fig. 4.8). Most notably, the αR basin has a diagonal shape, an
additional minimum is found between ppII and αR region at (-90°, 80°) and
transition regions between minima are more shallow.

Figure 4.8: Implicit solvent dihedral screens. Implicit solvent QM
backbone dihedral screens of Ace–Ala–Nme are shown for ff14SB, ff19SB and
Grappa. As implicit solvent model, GB-Neck2[130] was used. Own figure
reused with permission from [91].

MM dihedral screens in OpenMM[105] can be decomposed by the different
energy contributions (Fig. 4.9). Large differences between ff14SB and Grappa
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Figure 4.9: Energy contributions to a QM dihedral screen. Backbone
dihedral screens are performed in implicit solvent for Ace-Ala-Nme for ff14SB
and Grappa. The contribution type is mentioned in the panel. Own figure
reused with permission from [91].

in the PES of a capped alanine peptide can not only be found for the screened ϕ
and ψ dihedrals but also for the angle and non-screened dihedral contributions.
It can be seen that the angle contributions differ especially around (0°,0°) and
are responsible for diagonal elements in the ϕ/ψ space. The non-screened
dihedral surface also shows several differences, for example lower energies in
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the ϕ > 90° region. Grappa training data does contain dihedral screens, but
no particular emphasis has been put on reducing the loss for these screens
compared to optimisation or MD sampled data. In comparison, tabulated force
fields relied more on QM dihedral screens for parameter fitting. The sampling
strategy for Grappa could have lead to an underestimation of the energy in the
ϕ > 90° region because it is barely sampled. However, a ML based simultaneous
prediction of bond, angle and dihedral parameters can make use of non-trivial
correlations between different parameters to create a highly accurate force field
without requiring explicit special treatment of dihedral screens.

Interestingly, ff19SB could not outperform ff14SB in a NMR J-coupling
benchmark[69]. Although Grappa has not been compared directly to ff19SB
due to the long MD simulations required to calculate JMD, it seems likely that
Grappa is more accurate. From this perspective, residue-specific CMAPS,
which have not been implemented in the popular MD engines OpenMM and
GROMACS[56] six years after the publication of ff19SB, may not be neces-
sary for high-quality force fields. Further evidence could be provided by using
Grappa to fit CMAP parameters on the Espaloma dataset and comparing the
performance of both Grappa force fields. In general, Grappa offers the possi-
bility to evaluate different bonded and non-bonded functional forms, including
class II force fields[63], in a comparable setting and could be further used as a
force field development tool.

4.4.4 Grappa is accurate for folding small proteins

A major challenge in force field parameterisation is to model protein fold-
ing. Accurate folding simulations would require the force field to model un-
folded and folded states while disfavoring misfolded states. Tertiary contacts
and hence non-bonded interactions are important for protein folding[109] but
bonded parameters also have a strong influence on folding energies as studies
with different force fields that share their non-bonded parameter set show[109,
70].

We apply Grappa to folding free energy simulations of CLN025[104] (PDB
accession code: 5awl), a variant of the small protein chignolin. Following the
simulation setup of Shabane et al.[131], we simulate two replicates for 4µs
at the experimental melting temperature of 340K, starting from the folded
structure. At this temperature, the folding free energy is per definition 0 kT.
Multiple folding and unfolding events occur but CLN025 remains folded dur-
ing most of the simulations (Fig. 4.10b). This behavior is also reflected in
the free energy profile along the backbone RMSD (Fig. 4.10a) with a deep
minimum around 1 Å from the folded structure. Still, the calculated folding
free energy of -3.0 kT is closer to the experimental value than the -4.0 kT pre-
viously reported with ff99SB with the same non-bonded parameters and water
model[131]. Folded and unfolded states are defined in a three-state model with
an intermediate state and boundaries at 1.5 Å and 4.5 Å.

∆G = − log

(
p(RMSD < 1.5 Å)

p(RMSD > 4.5 Å

)
(4.3)

Bonded parameters can hardly be evaluated solely by folding free energies.
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Figure 4.10: Folding free energy simulations with Grappa. a, Folding
free energy profile for CLN025. The intermediate state between folded and
unfolded state is shaded in gray. On the right, the CLN025 X-ray structure is
shown in gray and the structure representing the center of the largest cluster
from Grappa MD simulations is shown in blue. b, RMSD for two replicates of
the CLN025 folding simulations. Own figure reused with permission from [91].

Rather, the whole parameter set with non-bonded and water parameters has
to fit together. The water model OPC[132] is known to stabilize the unfolded
state for CLN025 simulations[133] and force fields with CHARMM non-bonded
parameters tend to overstabilize proteins less than with Amber non-bonded
parameters[134]. Grappa bonded parameters overstabilize folded proteins less
than traditional tabulated parameter sets. Hence, combining Grappa with
CHARMM non-bonded parameters (Fig. 4.11) leads to folding free energies
further away from the experimental value than with the reference tabulated
force field (0.65 kT vs 0.1 kT). We also note that other approaches simulated
CLN025 for an order of magnitude longer to calculate folding free energies.[133,
70] Certainly, our results are influenced by a sampling effect but longer simu-
lations are beyond the scope for showing possible applications for a novel force
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field.

Figure 4.11: CLN025 folding free energy profiles with CHARMM
non-bonded parameters. a, Folding free energy profile and RMSD for
CHARMM 36m b, Folding free energy profile and RMSD for Grappa with
CHARMM non-bonded parameters.

Pinpointing which parameter set should account for a certain effect would
be difficult. Preferably, bonded parameters should be fit for explicit solvent
single-point QM energies and forces based on a certain water model and non-
bonded parameter set or ideally all parameters optimised together. Piecing
together force field parameters can lead to cherry-picking and is mainly useful
for finding areas of application where this combination reproduces experimen-
tal data accurately but not for validation of a parameter subset. To sum
up, we show that Grappa produces reasonable results in protein folding sim-
ulations. Simulations with Grappa parameters show a reduced stability of
CLN025 compared to tabulated force field parameters, which may be desirable
in some simulation contexts but not in others.

4.4.5 Grappa accuracy is determined by the dataset and
functional form

In the previous sections, Grappa has been shown to be superior to the gold
standard for classical force fields, i.e. tabulated force fields. The success of
Grappa can be attributed to training on a large QM energy and force dataset
and predicting all bonded parameters simultaneously. However, a small ad-
dition of data points from a less relevant region of the dihedral PES to the
dataset already negatively impacts the agreement with J-coupling data. This
points to little robustness towards the conformational distribution in the train-
ing datasets.

The functional form of classical force fields is a tradeoff between speed and
accuracy. A more expressive E(3) equivariant GNN[66] that predicts ener-
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gies and forces based on the molecular coordinates achieves a 10 times higher
accuracy on a small molecule benchmark[135] than Grappa. On the other
hand, classical force fields are roughly three orders of magnitude faster than
E3NNs[91], while most of the computational cost goes into long-range electro-
statics calculations, which are not modeled in E3NNs[41], and typically less
than 1% is spent on bonded energy. This accuracy and speed gap creates a
large design space for reevaluation of established functional forms[63] and novel
bonded functional forms.

4.5 Treatment of non-bonded interactions

A prerequisite for predicting bonded parameters for peptide radicals is to have
a suitable non-bonded parameter set. As a first approach, the VdW parameters
are left unchanged and only partial charges are reparametrised. Amber amino
acid partial charges were derived from simultaneously fitting partial charges
to Ace-X-Nme peptides in the αR and β basin.[73] Here, due to the simpler
backbone dihedral landscape of radical amino acids, only optimised structures
at the (180°,180°) minimum are used.

Figure 4.12: Partial charge fitting for radicals. a, Partial charge differ-
ences per atom for the 20 canonical amino acids between ff99SB RESP par-
tial charges and BMK/6-311+G(2df,p). ff99SB partial charges were derived
using the HF/6-31G∗ functional and basis set. b, Partial charge differences
per atom for the 20 canonical amino acids between HF/6-31G∗ and BMK/6-
311+G(2df,p). c, Partial charge differences per atom between natural amino
acids and radical amino acids created through H-abstraction. Scatter points
are coloured by the number of bonds to the radical atom. d, Relative ESP
RMSE[136] for natural and radical amino acid charge fits.

For fitting partial charges of Ace-X-Nme radical peptides in Antecham-
ber[137], both the standard functional and basis set for RESP partial charge
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derivation, HF/6-31G∗ and BMK/6-311+G(2df,p), which is suitable for mod-
eling radicals, were tested (Fig. 4.12a,b). The resulting partial charges are
strongly correlated and differences to the partial charges of the ff99SB force field
can be attributed to conformational differences. Hence, BMK/6-311+G(2df,p)
derived RESP charges should be compatible with HF/6-31G∗ derived RESP
charges. A third partial charge set, based on heuristically moving the charge
of an abstracted hydrogen onto the previously bonded heavy atom, or restor-
ing integer charge of two fragments after homolytic cleavage by adjusting the
partial charges of the atoms involved in homolysis, is also tested. In first tests
on radical QM optimisation and QM screen data, no large differences in final
energy and force RMSE of combined non-bonded Grappa bonded parameters
were found between the charge sets. For ease of implementation in the adaptive
KMC framework, the heuristic partial charge set is currently in use.

Partial charges of the heuristic model do not change for any non-radical
atom while the BMK RESP charges can change for atoms with several bonds
between them and the radical (Fig. 4.12c). Thus, it seems promising to further
investigate the impact of an improved radical non-bonded parameter set. A
collaboration with the authors of ffparaim[138], a software that calculates non-
bonded parameters from QM calculations, is ongoing to calculate radical non-
bonded parameters.

4.6 Grappa predicts radical parameters

Following the lessons from the previous peptide parameter validation, I created
three peptide radical datasets with QM optimisations, QM dihedral scans and
MD sampled single-point energies and forces. For all datasets, Ace-X-Nme
peptides are used, where X denotes a peptide radical amino acid. No force field
existed for the peptide radicals of interest before this work, so a first Grappa
model was trained on the Espaloma dataset and the first two peptide radical
datasets. This intermediate model was then used for simulating radicals for
10 ns each. 100 equally spaced frames per trajectory were used for single point
QM calculations in Psi4[139] using BMK/6-311+G(2df,p)[90] functional and
basis set. A final model, Grappa-radical, is trained on the Espaloma dataset
and the peptide radical datasets.

Grappa-radical is the only force field applicable to peptide radical molecules,
thus, accuracy can only be evaluated relative to other datasets with a similar
mean predictor. Overall, the accuracy is on a high level but slightly worse on
radical structures compared to the other test sets (Table 4.2). Grappa-radical
consistently has a higher accuracy than any classical force field on any of the
shown datasets. The test sets, and due to the 80:10:10 split also the training
sets, are smaller for peptide radicals than for natural peptides.

As shown in section 4.2, peptide radicals have a simpler backbone dihe-
dral PES than natural amino acids and may have been a simple target for
parametrisation. The benchmark shows that Grappa is able to accurately
predict parameters for peptide radicals, albeit slightly less accurate than for
closed-shell molecules. A focus of the parametrisation effort was the backbone
dihedral parameters but it is possible that radicals in the side chain have a
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Dataset Test Mols Confs RMSE Grappa Grappa-radical Mean predictor

SPICE-Pubchem 1411 60853
Energy 2.3 2.4 18.4
Force 6.1 6.4 23.4

SPICE-DES-Monomers 39 2032
Energy 1.3 1.4 8.2
Force 5.2 5.5 21.3

SPICE-Dipeptide 67 2592
Energy 2.3 2.5 18.7
Force 5.4 5.7 21.6

RNA-Diverse 6 357
Energy 3.3 3.5 5.4
Force 3.7 4.4 17.1

RNA-Trinucleotide 64 35811
Energy 3.5 3.7 5.3
Force 3.6 4.3 17.7

Peptide-Radical-Opt 17 818
Energy 3.7 6.9
Force 9.1 7.7

Peptide-Radical-Scan 1 1235
Energy 2.9 5.0
Force 4.9 3.9

Peptide-Radical-MD 16 1598
Energy 2.4 5.3
Force 8.7 19.7

Table 4.2: Accuracy of Grappa and Grappa-radical on MD sampled datasets
from the Espaloma datasets and on peptide radical datasets. RMSEs of
zero-centered energies are in kcal/mol, component-wise RMSEs of forces in
kcal/mol/Å.

Figure 4.13: A force field artifact in an amide group. Rendering of a
short peptide containing asparagine. The asparagine side chain amide group
located towards the bottom of the figure has too close hydrogen atoms. A
QM optimised structure would have a planar amide nitrogen with 120° angle
between the hydrogens.

complex local environment that is currently not adequately sampled. Also, an
improved non-bonded parameter set could increase the accuracy.

Facing the same issue of missing experimental data for the validation of the
radical parameters as previous authors[110, 111], only the general plausibility
of the simulated structures and agreement with QM data can be assessed. The
preliminary Grappa model trained without MD sampled radical data predicted
parameters with an artifact for the amino acids asparagine and glutamine,
where the hydrogen positions at the side chain amide group are too close when
a solvent anion is nearby (Fig. 4.13). This has not been observed for Grappa-
radical for which the Cα radical structure minimum is captured accurately
(Fig. 4.14). Artifacts of hydrogen placement would be problematic for reac-
tive HAT simulations because suboptimal hydrogen positions would lower the
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barrier for H-abstraction and lead to high rates for non-reactive moieties. In
summary, peptide radical parameters cannot be validated to the same extent
as natural peptide parameters because experimental data is missing. Despite
this limitation, Grappa-radical QM benchmark results look promising and no
major artifacts have been observed, yet.

Figure 4.14: Grappa captures the alanine dipeptide Cα radical min-
imum. Rendering of a Ace-Ala-NME peptide with Cα radical. The QM
reference structure is colored in silver and the Grappa-radical structure is col-
ored in cyan. The heavy atom RMSD between both structures is 0.04 Å.

The development of a force field for hundreds of different protein rad-
ical species is a milestone and is the foundation not only for HATs after
mechanoradical formation but also for other biological systems with open-shell
amino acids, e.g. radical enzymes[140, 141] and those affected by molecular
ageing[142]. Without the recent development of GNN-based force field fitting,
this development would not have been possible. With the appropriate datasets,
the same Grappa extension approach could be utilised to model diverse amino
acid modifications in a range of settings.
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Chapter 5

Optimising the reaction search

5.1 A new method for reaction search is pro-

posed

Before moving on to the full reactive molecular simulation method with KMC,
MD and ML components (compare Fig. 2.1), the combination of the MD and
ML component is investigated. Here, HAT reactions and their associated rates
are predicted with a HAT GNN[45] based on the conformational ensemble of
non-reactive MD simulations. The combined MD/ML method can therefore
be seen as a transition state search for multiple competing HAT reactions or
as event list generation step from a KMC perspective.

This approach should prove to be more accurate than previously used
heuristics[53, 54] because the HAT GNN emulates QM energy barrier calcu-
lations. Energy barriers are calculated hundreds of times, which would have
necessitated computationally expensive calculations without machine learning
models at hand.

The duration of the event list generation step determines how long an it-
eration of the KMC algorithm takes. To get a comparison for the method
timing, a reference for typical KMC and adaptive KMC applications is estab-
lished in the following section. Then, we investigate different approaches for
efficient MD simulations of collagen conformational ensembles. Finally, the
combined MD/ML method is optimised on a collagen HAT dataset and the
timing compared to other methods.

5.2 Adaptive KMC is several orders of magni-

tude slower than regular KMC

Packages for standard KMC reach a speed of 1 million reactions per second on
a standard consumer CPU.[46] In comparison, one of the first applications of
adaptive KMC, using the Dimer method[88] for finding transitions in Al(100)
surface models with hundreds of atoms, evaluated new states at 2 KMC steps
per hour.[47] The novelty in adaptive KMC is that the event list is constructed
during the KMC simulation for every state by performing a reaction search.
Due to the symmetry of the system, many states are equal and their event list

45
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can be reused. This led to a speed-up to 600 KMC steps per hour.
In biological systems, very few radicals are equal (an example would be

the Cγ or Cδ atoms of phenylalanine or tyrosine) and the overall number of
radical positions is high, indicating that many reaction searches will have to be
conducted for extensive collagen HAT simulations. Hence, the two components
of the reaction search step, ensemble generation and reaction emulation, need
to be efficient.

5.3 HAT reactions are unlikely to occur dur-

ing MD timescales

Following the definition from Gillespie[84], the propensity (or rate constant for
0th order reactions) function for all modelled reactions a must be known for
the interval [t, t + τ + dτ ] with t defined as current time and τ as the time to
the next reaction.

aj(s)dt ≜
the probability, given S(t) = s, that one Rj reaction will occur some-
where inside a constant volume in the next infinitesimal time [t,t+dt]

(5.1)
Using Monte Carlo theory, the total propensity

a0(s) ≜
M∑
i=1

ai(s) (5.2)

is related to the time to the next reaction τ

τ =
1

a0(s)
ln(

1

u1
), (5.3)

where u1 is a uniformly distributed random number [0,1]. This means the
ensemble generation via MD must be as long as the order of τ or converge to
constant propensities to know aj for the required time interval.

No experimental HAT rates for collagen or proteins in general are avail-
able. One study measured cysteamine thiyl radical transfer to amino acid side
chains[143] in a range of 103 - 105M−1 s−1 at 310K and measurements on in-
tramolecular HAT in alkanes[144, 23] can be extrapolated to up to 102 s−1 at
300K. In free amino acid experiments, HAT rates were estimated to be in the
order of 106 s−1.[33] Intramolecular HAT barriers of a glycine dipeptide radical
were calculated to be as low as 7.5 kcal/mol in a QM study, but the reactions
would require significant rearrangements that may not be possible inside a
protein.[145] Using the Eyring equation for a barrier of 7.5 kcal/mol at 300K
with a transmission coefficient of 1 results in a rate of 2.15*107 s−1, slightly
out of range for MD simulations of large molecular systems. Accounting for
tunnelling effects[146] would further raise the rates by two to three orders of
magnitude. However, the training data from collagen fibril simulations of the
GNN model that is used here scarcely contains that low barriers[45], indicating
that times to the next reaction above the achievable MD sampling time will
likely occur. Hence, MD sampling should be long enough to yield constant
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propensities/rates, which is difficult to achieve given that MD sampling is typ-
ically not ergodic[76]. The convergence of rates is therefore a main component
for testing the MD/ML method.

5.4 MD simulation

5.4.1 Simulating the first equilibrated collagen fibril en-
semble takes multiple days

As we want to calculate the HAT rates for a given reaction as an ensemble
property, it is useful to start sampling with a starting structure drawn from
the equilibrium distribution. For the modelled collagen fibril this is computa-
tionally expensive because it contains 33 triple helices in the gap region and
is 67 nm in length for a total of about 200 000 protein atoms and 2.6 million
atoms overall (Fig. 5.1a,b).

Figure 5.1: Collagen fibril structure. a, Rendering of the collagen fibril in
water. The collagen triple helices are displayed in cyan and ions as cyan and
blue spheres. b, Two triple helices connected through trivalent PYD cross-
links depicted as spheres. The collagen gap region is at the edges of the fibril
and the overlap region in the centre between the cross-links.

Starting from a deposited non-solvated collagen structure[106, 147], general
ensemble properties, such as system energy, temperature and pressure, are
quick to converge[148] after previous solvation and energy minimization, taking
less than 1 ns to reach the target value (Fig. 5.2a,b,c,d). The collagen fibril
is simulated under mechanical stress to model the experimental setting[13],
thus, the fibril end-to-end distance is a system specific observable of interest.
It also converges within 1 ns (Fig. 5.2e) but can show a drift over tens of
nanoseconds[14].

A further relaxation effect is the solvation of the protein because water
is placed based on geometric considerations and is unlikely to be optimally
distributed. To avoid structural disruptions of the protein, protein atoms are
initially constrained to allow water to populate cavities. Following a safe equi-
libration protocol of 10 ns simulations in NVT and then NPT ensemble takes
two days on a A100 or four days on a RTX 2080 consumer GPU. Hence, the
first simulation of an equilibrated collagen fibril can only be started after mul-
tiple days of simulation. The simulation that would be used for calculating
HAT rates could only then be started, potentially taking several more hours.
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Figure 5.2: Collagen fibril equilibration simulations. General and sys-
tem specific equilibrium properties a, potential energy, b, kinetic energy, c,
temperature, d, pressure and e, end-to-end distance for 10 ns NVT and NPT
simulations. The pressure is displayed as more negative than the reference
value of 1 bar because of interactions with the pulling code.

5.4.2 Subsequent simulations start from equilibrated re-
actant structures

Luckily, it is not necessary to equilibrate a structure from a non-solvated state
every time because the reactant state should be similar to the product state.
When starting from an equilibrated reactant structure with MD parameters for
the product structure, it should be possible to quickly generate an equilibrated
product structure. A previous solution[55], in a different method framework
than adaptive KMC, used a MD simulation with smaller time steps after ho-
molytic cleavage for relaxation but this leads to severe artifacts (Fig. 5.3) with
potentially multiple Morse bonds breaking at one homolysis site.

Figure 5.3: Simulating after a reaction can lead to artifacts. In a
previous KIMMDY implementation a bond was chosen to be homolytically
cleaved according to the KMC algorithm. Then, that bond was removed from
the simulation parameters. Afterwards, a simulation with small time steps
(shown in green) was started to relax the structure from the reactant state to
the product state. Data generated from a single triple helix simulation.
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Energy minimisation after a reaction is an option because properties like
end-to-end distance and solvation are unaffected by the local minimisation.
HAT mainly involves the movement of a hydrogen atom through unoccupied
space and would be a good target for minimization. Other reactions that
involve larger movements, e.g. homolytic cleavage from large pulling forces,
may not reach a minimum without steric clashes from an energy minimisation.
Still, for HAT reactions and assuming the general ensemble properties to be
equilibrated after 500 ps of simulation in the NPT ensemble after an energy
minimisation, a starting structure for reaction sampling can be obtained within
two to three hours.

5.4.3 Slow-growth simulations generate equilibrated prod-
uct from reactant structures

Figure 5.4: Transition schemes from reactant to product state. A
HAT reaction in Ace-Ala3-NME is modelled alchemically with small time step
MD, energy minimisation and slow-growth MD. The HAT hydrogen is depicted
in orange, as well as the bonds to H-donor and H-acceptor atom. Using small
time step MD for HAT leads to simulation failure because the hydrogen is
no longer bound to the H-donor nitrogen and strong VdW repulsion drives
the hydrogen away. Energy minimisation and slow-growth MD lead to similar
transition and end structures. All atoms are propagated through time during
the second option.

Another MD simulation method to change a molecular system from one
state to another is called ”slow-growth”. Here, force field parameters for both
states are linearly interpolated by using a coupling parameter λ, which amounts
to slowly changing from the state A Hamiltonian to state B Hamiltonian,[149]

Hλ = (1− λ)HA + λHB. (5.4)

The slow-growth method is typically used to calculate free energy differ-
ences using thermodynamic integration.[149] Applications of thermodynamic
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integration include drug discovery or interacting molecules in general[150]. It
should be noted that the pathways between both states are alchemical and do
not accurately model the reaction pathway.

Starting from a reactant state A conformation, it is thus possible to obtain
a product state B conformation in a continuous MD trajectory that only differs
from a classical simulation at the reaction centre (Fig. 5.4). In theory, general
equilibrium properties are not affected at all and the system only needs to
relax due to PES differences in both states. This would reduce the task of
optimising the equilibration and sampling times for a reaction to only one
relevant property, i.e. the convergence of reaction rates. In small example
systems, this method works reliably to obtain product state structures.

In practice, there is no straightforward way to interpolate perfectly between
reactant and product state of chemical reactions in GROMACS. Bonded terms
can be individually accessed and start and end parameters defined. However,
non-bonded parameters can only be manipulated per atom, meaning that non-
bonded interactions of a particle are either entirely turned off or on. Options
exist to distinguish between intramolecular and intermolecular non-bonded in-
teractions but are tailored toward the usual drug discovery application. non-
bonded parameter changes are crucial because interactions of atoms connected
by a certain number of bonds are partially or completely excluded and chang-
ing bonds also impact these exclusions. An alternative is to define all changing
non-bonded interactions as pair interactions, which can be interpolated.

Figure 5.5: Collagen fibril slow-growth simulations. General equilibrium
properties a, potential energy, b kinetic energy, c temperature and d pressure
for a 10 ps slow-growth simulation. Note the different time scale and y-axis
limits compared to Figure 5.2.

Even for a reasonable start and end parameter set difficulties related to
non-bonded interactions can arise. Their highly non-linear nature can lead to
sudden jumps in energy especially at the start and end of a slow-growth simula-
tion, which lead to the development of soft-core potentials.[149] Unfortunately,
we found no way to use these soft-core potentials for alchemical transitions for
reactions. Another detail likely related to the slow-growth implementation in
GROMACS is the reinitialisation of thermostat and barostat in the beginning
of the simulation (Fig. 5.5), leading to a short equilibration period. All in all,
despite the currently not realised potential of the slow-growth implementation
in GROMACS for alchemical transitions for reactions, it is still a convenient
approach and implemented in KIMMDY.
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5.5 HAT GNN prediction

Figure 5.6: HAT barrier prediction. a, Start, transition and end structure
for a HAT from a glycine Cα to the Cϵ radical atom of phenylalanine. Atoms
that are free to move during a QM saddle point optimisation are shown in gray
for freezing atoms after bond layer 1 (left), layer 2 (centre), layer 3 (right). The
shown structures correspond to overlays of input structures for the HAT GNN
and interpolated transition state, i.e. the reacting hydrogen is depicted in the
three states while all other atoms remain in the same position. b, Predicted
barriers for the reaction depicted in panel a over 100 fs. Prediction are con-
ducted every 0.5 fs for the the HAT GNN and every 5 fs for QM optimisations
of start, transition and end structure. Data and visualisation for panel B were
generated by Evgeni Ulanov.
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5.5.1 The HATGNN delegates conformational sampling
to MD

A hydrogen atom transfer (HAT) GNN has recently been developed for pre-
dicting reaction rates based on MD structures (see 3.5).[45] This is the method
that will receive the generated ensemble and predict HAT rates for the re-
active molecular simulations. The application is conceptually different from
homolytic cleavage[12] because the rates are not derived from an ensemble
property like bond distances but are predicted per frame using a machine
learning model. Hence, the model is called multiple times per reaction for a
potentially high computational cost and the rates need to converge, not the
property that is used to derive the rates.

In contrast to transition state search with the aim of finding the minimum
energy path from reactant state global minimum to global state minimum and
the energy barrier with it,[151] the HAT GNN learns the barrier for an instan-
taneous transition to the product state given a reactant state structure. The
reaction rate is calculated from the barrier using the Arrhenius or Eyring equa-
tion (see 3.4). This setup simplifies the transition state search to a local saddle
point optimisation with a reduced mobility of atoms not directly involved in
the reaction. The overall system flexibility is accounted for through the MD
sampled input structures for the HAT GNN. Prediction of barriers based on
reactant structures (or only physicochemical properties) has been shown for
small organic molecules. [152] In the context of protein HAT such a predic-
tion would be extremely difficult because the GNN would have to learn the
geometric restraints on transition states from the conformational flexibility of
HAT sites within the protein environment. A local saddle point optimisation is
implemented by freezing all atoms except for donor- and acceptor heavy atoms
and the hydrogens connected to them during the optimisation (Fig. 5.6a, left).

To get an understanding on the implications of freezing atoms during the
QM optimisations, a model system is investigated with a different set of frozen
atoms (Fig. 5.6b). The molecular system was generated by abstracting random
hydrogens in a collagen fibril and simulating it for a short period of time. The
particular reaction was chosen for having a low barrier during the simulation.
The prediction target for the HAT GNN is the layer 1 QM calculation. In
this example, the MAE is 6.25 kcal/mol, double the error than reported for
the HAT GNN model test set of 3.15 kcal/mol. Interestingly, the error is not
systematic but the HAT GNN fluctuates around the layer 1 DFT calculation.
Both layer 2 and 3 have drastically lower barriers with MAEs of 11.13 kcal/mol
and 19.85 kcal/mol, leading to rate differences in the order of 108 and 1014 s−1,
respectively. Also, the barriers of layer 2 and 3 QM calculations fluctuate
less than layer 1 and the HAT GNN prediction, which reduces the required
frequency of predictions to accurately sample the rate over time. The choice
for training on layer 1 QM calculations was made to prevent artifacts from atom
movements that would not be possible in the whole fibril structure[45] but this
comes at the cost of severely limiting concerted heavy-atom movement during
the hydrogen atom transfer from H-donor to H-acceptor. As a consequence,
the chance of finding the minimum energy path is slim and conformational
sampling is delegated to the MD simulation (Fig. 5.7) although the functional
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form may not allow for structures that stabilize the transition state.

Figure 5.7: Combined MD and ML transition path search with the
HAT GNN. The scheme shows a conformational landscape in the space that
can be sampled by classical MD i.e. the local geometry of H-donor and acceptor
on the x-axis and the reaction coordinate that separates between reactant
and product state on the y-axis. Reactant and product state are shaded in
grey. A MD trajectory (black line) with multiple structures (black dots) is
the starting point for HAT rate predictions (red lines). For predictions with
a HAT GNN trained on barriers calculated with many frozen atoms, the local
geometry does not change and only the HAT hydrogen moves from H-donor
to H-acceptor (vertical dotted red line), resulting in a transition path through
high barrier regions (blue). Optimisations with a more flexible local geometry
would find low-energy transition paths (dashed red line) for different reactant
conformations.

A combined MD and ML transition path search also means that the starting
structure of the ML prediction is not necessarily in the global minimum of the
reactant state (Fig. 5.8a,b). Hence, the HAT GNN barrier EML,HAT is not the
total barrier E‡, because the EMD,conf contribution is missing. As the HAT
GNN is trained to predict barriers from QM optimised minima to transition
states, with some atoms frozen, the constant rate ri for the reaction i can be
seen as sum of rates for different states, weighted by the probability of being
populated,

ri =
states∑

j

pjri,j. (5.5)

An adjacent argument can be made using a potential of mean force[153]
approach. The probability of a state is related to its energy by
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pj =
1

Z
e−βEj; Z =

states∑
j

e−βEj. (5.6)

The energy difference between two states can thus be expressed as difference
in their probabilities

∆E = Ej − Ek = −kT ln
pj
pk
. (5.7)

For the practical use in simulations, states i and j can be defined as bins
along a coordinate.[153, 154] Defining ∆E = EMD,conf = Ej −Emin, the miss-
ing part of the energy barrier in Figure 5.8 could be calculated. The above
description of states in equilibrium and the potential of mean force approach
lead to a similar prefactor of pj and

pj
pmin

for the calculation of the constant
rate ri, respectively.

Figure 5.8: The HAT GNN barrier does not account for the whole
activation energy. a, 2D energy landscape showing reactant and product
state. MD sampled states (black dots) are the starting points of HAT rate pre-
dictions (red dotted lines) along different paths. b, Two reaction paths along
the reaction coordinate. The total barrier E‡ is different and its constituents
EMD,conf and EML,HAT contribute a varying fraction.

Interestingly, both approaches do not only consider rates from crossing
the barriers on the minimum energy path but for the ensemble of reactive
trajectories in transition tubes[155]. Since the rates are related to barriers
exponentially, the lowest energy path likely contributes most to the constant
rate.
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Figure 5.9: HAT rate fluctuations over time. Three reactions were chosen
for their high number of HAT GNN predictions (translation distance < 3 Å)
in a 5 ns MD trajectory with a sampling frequency of 100 fs. The predictions
are shown as light grey dots. A 20 frame running minimum, corresponding
to predicting the lowest barrier within 1 ps of atom movement, is shown in
dark grey and a 200 frame running minimum in black. Data generated from a
collagen fibril simulations with randomly abstracted H-atoms.

To sum up, the previous development of a HAT GNN allows for the pre-
diction of instantaneous barriers from MD trajectories. The current model is
trained on optimised structures with only layer 1 unfrozen atoms, delegating
all conformational sampling to MD. Further investigations are necessary to
determine the ideal stiffness, i.e. constraints used in the training dataset of
the GNN, for an efficient prediction of low-energy transition paths. Learning
atom movements within 1-10 ps would already smoothen the predicted barriers
down to very few required predictions (Fig. 5.9). Further theoretical work is
also necessary for connecting the new possibility of predicting instantaneous
barriers over time to the existing theory on transition paths.

5.5.2 Many samples are necessary to find low barriers

Next, we want to survey the dependence of mean reaction rates on the number
of sampled conformations. Using a collagen fibril system with six radicals,
100 000 frames spanning a simulation time of 55 ns are analysed (Fig. 5.10).

Figure 5.10: Impact of conformations on mean rate. For three simu-
lations with 500 reactions the mean rate is calculated per reaction. From the
initial 100 000 frames, every nth frame is taken for predictions with a reduced
number of conformations. Inside the violin plot that represents the rate dis-
tributions, a boxplot is shown with the white line denoting the median, the
box showing the interquartile range and whiskers indicating the most extreme
value. The right panel is a cutout of the left panel.
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From 1000 conformations upwards the median increases by 2 orders of
magnitude for a tenfold increase of sampled number of conformations with-
out reaching a plateau. In contrast, the highest rate, 90%ile and 95%ile are
equal for the last two observations, indicating the start of a plateau for the
most relevant part of the rate distribution.

Viewing the data on the linear instead of logarithmic scale makes the dimin-
ishing effect of additional sampling clear but certainly the obtained reaction
rates can not be seen as independent of the sampling size. However, it would
be exceedingly computationally expensive to obtain orders of magnitude more
conformations to further quantify the sampling effect. Given these constraints,
the prediction of rates from 50 000 conformations is a reasonable trade-off be-
tween accuracy and speed.

With the number of conformations set, the impact of the overall sampling
time can be examined. Three collagen fibril datasets with the same radicals but
different simulation time and sampling frequency were examined. The 500 ps
simulation has a sampling frequency of 10 fs, and the 5 ns and 50 ns simulations
have a one order of magnitude higher writing frequency each for a total of 50 000
frames per dataset. All three datasets show a similar distribution of barrier of
mean rates per reaction (Fig. 5.11). The sampled minimum barriers are all
around 30 kcal/mol but the number of reactions doubles for a tenfold increased
simulation time.

Figure 5.11: Distributions of HAT prediction datasets. For three
datasets of 500 ps, 5 ns and 50 ns simulation time and 50 000 frames each,
the barrier of mean rate distributions are shown. The barrier of mean rate

is defined as ∆Ei = −RT ln
( 1

N

∑
j ri,j

kBT/h

)
. Individual barriers are shown as black

dots.

A reaction-wise comparison of the datasets reveals that mostly the same re-
actions are sampled irrespective of the simulation time (Fig. 5.12a). Especially
for the comparatively shorter simulations, almost all reactions are also found
in the other simulation, i.e. the intersection of both sets of reactions. For the
longer simulation, a few reactions with low-barriers are exclusively sampled
but most are above 40 kcal/mol. When all conformations with a translation
distance above 2 Å are filtered out, the number of sampled reactions halves
(Fig. 5.12b). For these most relevant barriers, the MAE between datasets is 4
- 5 kcal/mol, only slightly above the HAT GNN MAE of 3.15 kcal/mol. Taking
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the computational cost of simulating for 10 or 100 times longer into considera-
tion, the 500 ps simulations seem long enough for capturing possible reactions
of a state. However, this choice may lead to underrepresentation of reactions
that require large-scale molecular movements.

Figure 5.12: Reaction-wise rate comparison. Barrier of mean rates for
comparing two simulation datasets, respectively. For each dataset, the barriers
are split into those not observed in the other simulation (left,right) and the
intersection with observations in both datasets (center). a, Barrier of mean
rates for all predicted reactions. b, Barrier of mean rates for reactions with at
least one conformation with a translation distance below 2 Å.

It should be noted that this extensive sampling of more than 1000 different
reactions for a total of 150 000 frames produced minimum barriers of mean
rate of around 30 kcal/mol. Compared to the 21 frames analysed for a single
reaction in Figure 5.6b, which contained a 30 kcal/mol barrier for the layer
2 calculations and a 23 kcal/mol barrier of the layer 3 calculations, this is
unexpectedly high. In the extensive dataset, radicals were created by homolytic
cleavage of bonds that are likely to break and thus good at stabilising radicals.
The exploration of layer freezing effects was on a random H-abstraction radical
at a phenyl group, which is an unstable radical. Still, it seems unlikely that
the sampled HAT barriers include the minimum energy path for the respective
simulations. Absolute rates and barriers are therefore not meaningful and the
interpretation should be focussed on relative rates and barriers.

5.5.3 The number of HAT predictions can be reduced

From the previous section it is clear that a large number of conformations
needs to be generated per reaction to find low barriers. However, not every
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conformation is equally likely to harbour a low-barrier reaction. From the HAT
GNN training data[45] and rate predictions in the collagen fibril (Fig. 5.13a) a
correlation between translation distance (see 3.5) and HAT barrier is apparent.
This effect can also be seen for individual reactions (Fig. 5.13b).

Figure 5.13: HAT barriers depend on the translation distance. a,
Barrier over translation distance for 960 000 individual predictions. The right
panel is a cutout region of the left panel. b Barrier over time for the same
examples shown above. Individual predictions are shown as points and are
coloured by the translation distance.

The barrier-translation correlation can be used to perform predictions only
for a limited number of small translation distance conformations per reaction.
In this approach, the conformations that were not used for predictions are as-
sumed to have a rate of zero. For a collagen fibril test dataset with 7 5 ns
simulations with 50 000 conformations each, most reaction rates are accurately
predicted using only a fraction of the conformations (Fig. 5.14a,b). For exam-
ple, predicting the rates for the 100 conformations with the smallest translation
distance, i.e. 0.2% of the conformations, 90% of the rates are within 1.1% of
the rate predicted from using all conformations.

In the test dataset, and likely most applications due to the exponential
relation between barrier and reaction rate, a few reactions contribute most of
the total rate rtot =

∑
ri. The choice of which reaction happens in the KMC

algorithm depends on the fraction ri
rtot

and thus it is most important that the
relatively high rates are accurately predicted. The rate fraction of reactions
with the 10 highest rates per simulation are accurately reproduced using only
the 100 conformations with smallest translation distance (Fig. 5.15a). Because
the rate fractions are a probability, the predictions can be compared with the
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Figure 5.14: Rate predictions of conformations with small translation
distances. a, Predicted mean rate for n smallest translation distances divided
by the mean rate for all frames. Boxplots show the median and IQR, whiskers
show the most extreme values within 1.5 times the IQR and outliers are shown
as points. Data from 7 collagen fibril MD simulations with 50 000 frames and
a total of 1084 reactions. b, Individual barrier predictions for three example
reactions mentioned above. The barriers with the 100 lowest translations are
shown in red.

divergence function of the Brier score[156],

d(p, q) =
reactions∑

i

(pi − qi)
2. (5.8)

Compared to the baseline of predicting an equal probability for every re-
action, which leads to a median divergence of 0.45, the prediction based on
100 conformations has a small median divergence compared to predicting on
all conformations of 0.002 (Fig. 5.15b). To sum up, this mode of prediction is
very accurate and reduces the number of predictions by several orders of magni-
tude. Unless mentioned otherwise, predictions for the 100 smallest translation
distances per reaction are used after this section. The exact number of pre-
dictions per reaction is a hyperparameter and should be determined anew for
every system and sampling time.

A further speed-up can be gained from implementing an idea from Xu et
al.[48], who proposed to the limit rate calculations to rates within a fraction of
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Figure 5.15: Reaction probabilities are reproduced by efficient pre-
dictions. a, The mean rate for a reaction i divided by total rate, i.e. the
reaction probability in KMC, is shown. For the dataset of 7 simulations with
50 000 frames, reactions are ranked by probability for each simulation and ag-
gregated over the simulations. On the left panel, the probabilities are shown
for predicting on the 100 smallest translations, on the right for predicting on all
frames. b, Divergence function of the Brier score for predicting on all frames,
on the 100 smallest translations and for assigning all reactions the same prob-
ability. The divergence function can take values between 0 and 2.

the highest rate. For example, reactions with a rate of lower than a billionth of
the highest rate have a likelihood to be chosen of less than one in a billion. For a
transmission coefficient of 1 and at 300K, this translates to a barrier difference
of 12.35 kcal/mol using the Eyring equation. The barrier can not be known
before the prediction but the HAT GNN is using an ensemble prediction with
a MAE of 3.15 kcal/mol compared to a single model MAE of 3.55 kcal/mol.
Given the single model barrier is predicted to be higher than 12.35 + 2*SD
kcal/mol, it is not necessary to use the other nine models for the ensemble
prediction.
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5.6 The reaction search efficiency is improved

Having reduced the number of predictions the HAT GNN needs to do to for
the same results, we want to see how this translates into the elapsed real time
of a HAT GNN call. The timing is tested on simulations with 50 000 frames
and six radicals. In the case of predicting rates for all HATs with hydrogens
within 3 Å of a radical, 1 million rates are predicted. Using the ensemble
prediction, this makes a total of 10 million predictions. About 4 reaction rates
are predicted every frame for an average of 2 predictions every three frames
per radical. The prediction of all sampled HATs takes 117 h on 20 CPU cores
with a RTX 2080 GPU (Fig. 5.16). Taking only the conformations with the
100 smallest translation distances per reaction reduces the number of predicted
rates to 8 000 - 10 000, and the prediction time to 13 h. Out of these 13 hours,
all but a half hour are spent on the pre- or post-processing of the trajectory
data.

Figure 5.16: HAT GNN walltime. The walltime is split into pre-processing,
i.e. parsing the MD trajectory and writing out subsystems centred around a
radical and nearby hydrogen, the HAT GNN prediction and converting the
results for the KMC simulation. Three different settings were tested, including
the full prediction on all conformations with a hydrogen to radical translation
distance below 3 Å, taking only the 100 smallest translation distances and the
same with a refactored HAT GNN code. Data generated from a collagen fibril
MD simulation with 50 000 frames and six radicals.

Most of the time is spent on accessing the trajectory file with a size of more
than 50GB through MDAnalysis[157]. The number of files the trajectory file
is accessed can be reduced, which leads to a final walltime of less than 4 h.
Still, most of the time is spent on preparing structures for predicting from the
MD trajectory. A faster library could be used to further improve on the HAT
GNN speed.

To sum up, HAT reaction rates for a MD sampled state of the collagen
fibril can be predicted within 4 h. Choosing a sampling time of 500 ps leads to
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some reactions not being sampled compared to 50 ns simulations, likely those
depending on larger motions for the hydrogen to come close to the radical.
However, simulating for 500 ps for both the equilibration and sampling would
lead to an overall time of the KMC step of 12 h. Compared to previous adaptive
KMC applications[48], this is three to four orders of magnitude slower, signif-
icantly limiting the number of reactions that can be sampled. This increased
computational cost is the price for accounting for the conformational flexibility
of biomolecules and without this sampling, the transition path search would
be incomplete.

Nevertheless, the current standard for reactive structure-based modelling
in proteins, QM/MM[37], is typically used to study single reactions, albeit
with higher accuracy and chemical transition mechanism modelling. The data
generated from QM/MM simulations could be used to train a neural network
in an approach similar to the HAT GNN but would be too slow by itself in a
KMC setting. With this HAT sampling setup, we have all necessary parts for
adaptive KMC simulations of HATs in collagen. Hundreds of competing HAT
reactions can be sampled within hours to choose one reaction according to its
probability.

5.7 Further optimisation

Multiple approaches to reduce the amount of necessary sampling for adaptive
KMC have been published.[48] As mentioned previously, rates from previous
KMC steps can be reused because they sampled the same state. In the con-
text of HATs after homolytic cleavage, at least two radicals exist in a system.
For every additional homolytic cleavage, two more radicals would be sampled.
Hence, at least half of the reactions can be reused for every adaptive KMC
step. Additionally, if the same forward and backward reactions are sampled
multiple times because their rates are much higher than for other reactions,
these states could be aggregated as ”superbasins”. Reactions out of either
state would then be considered simultaneously and reactions within the same
superbasin ignored.

Also, improved MD sampling, for example by enhanced sampling tech-
niques[76, 158] could be used to sample more diverse conformations. In that
case, the bias energy needs to be considered in the barrier calculation because
states are no longer Boltzmann distributed.



Chapter 6

Implementing a transferable
adaptive KMC software

Jannik Buhr, Kai Riedmiller and myself contributed equally to KIMMDY, the
software described in this section. Parts of the text, that was solely written by
myself, are also used for a manuscript that is currently in preparation with the
authors Eric Hartmann, Jannik Buhr, Kai Riedmiller, Evgeni Ulanov, Boris
Schüpp, Denis Kiesewetter, Daniel Sucerquia, Camilo Aponte-Santamaŕıa and
Frauke Gräter.[92]

6.1 Motivation

Now that the combined MD/ML method for HAT reaction search has been
established, it is integrated into a KMC scheme for reactive molecular simu-
lations. Mechanoradicals in collagen were first studied in an early version of
KIMMDY that used a hybrid MD/KMC algorithm and could only perform the
first homolysis step in a cascade of reactions following radical generation.[55,
12] In this work, the reactive repertoire of KIMMDY is extended to HAT reac-
tions but more reactions would have to be modelled for an accurate description
of the molecular system, e.g. the hydrolysis of peptide bonds that is competing
with homolysis. Reactive pathways in other condensed phase systems with in-
tramolecular reactions or that do not satisfy the assumption of well-mixedness
can also be investigated with KIMMDY. Hence, we decided to create a trans-
ferable adaptive KMC method that facilitates the extension to new reactions
and combines MD and KMC simulations with a firm theoretical background.

63
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6.2 KIMMDY is an adaptive KMCmethod for

reactive biomolecules

Choose reaction

Effect reactionSearch reaction
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Figure 6.1: A KMC step in KIMMDY. a, Propagating a system to the
next state and time using the KMC algorithm is divided into three modules
in KIMMDY. The first module generates a list of possible reactions with the
associated rates from a MD ensemble using a prediction model. A reaction
and time step is chosen according to the KMC algorithm and finally, parame-
ters and coordinates of the molecular system are adapted to the new product
state. b, The search reaction module has multiple options for both ensemble
generation and reaction emulation. The prediction model can be heuristic,
machine-learned or physical. Visualised by Denis Kiesewetter in the context
of Hartmann et al.[92].
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6.2.1 Adaptive KMC

KIMMDY simulates a stochastic walk through the reactive state space[84] of
biomolecules. It uses the rejection-free KMC (rfKMC) algorithm[84, 43], which
consists of the following steps:

1. From an initial state, create an event list of all N possible transition rates,

2. Draw a uniform random number u1 and select the event for which F (pi−1) <
u1 ≤ F (pi), where F is the cumulative function and pi the probability of
event i.

3. Draw a uniform random number u2 to update the time according to
∆t = − lnu2

R
, where R is the total rate.

4. Carry out the event i.

Adaptive KMC[47, 48, 49] is a variation of rfKMC where the event list for
a state is calculated only if it is populated during the KMC simulation. This
approach is beneficial if the state space is too vast or the number of possi-
ble events per state too large to precompute the transition probabilities. In
biopolymers and in general soft matter systems, most atoms exhibit unique
reactivities because they are embedded in a certain structural context with
electrostatics, solvent accessibility and steric effects. This dependence on the
environment necessitates to calculate reaction rates individually for every set
of reactant atoms, rendering their reactive simulation an ideal application for
adaptive KMC. For a detailed description of KMC methods and especially
adaptive KMC, see 3.3. In KIMMDY, a KMC step is divided into three mod-
ules (Fig. 6.1a). First, possible reactions are sampled by generating a confor-
mational ensemble of the current state, which then is used to predict reaction
rates to neighbouring states either by a heuristic, physical or machine learned
model (Fig. 6.1b). The second module comprises selecting the event and a
corresponding update time according to the KMC algorithm. Finally, MD
simulation parameters and coordinates are adapted according to obtain the
product state.

6.2.2 Sample reaction

For reaction sampling, a molecular system, described by coordinates and MD
parameters, is simulated using MD to predict reaction rates for transitions to
chemical states not sampled in the simulation. One approach to calculate the
event list from the conformational ensemble generated with MD or by other
means is by using ensemble averages of properties and relate them to reaction
rates by physics-based or empirical models. This is the case for homolytic cleav-
age, where average bond distances are used to calculate the force on a bond
and from this the dissociation energy barrier using a Morse potential.[55] For
HAT, we use a machine-learned model to predict transition rates from individ-
ual snapshots to calculate a constant average rate per reaction over the whole
ensemble. This has the additional benefit of accounting for entropic effects by
sampling how frequent highly reactive conformations are visited. For the HAT
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application, using the conformation ensemble instead of a single structure rep-
resenting a state, the prediction task is significantly simplified from emulating
a complete transition state search to local optimization of the reacting atoms.
Still, the MD sampling problem[158] may lead to an underestimation of reac-
tion rates. The simulation setup is automated within KIMMDY and relies on
user supplied simulation parameters. KIMMDY is designed as a framework to
be extended to diverse reactions. To this end, a plugin architecture providing
a stable interface is available.

6.2.3 Choose reaction

This module takes an event list and chooses a reaction. It then associates
with this event a time update from all predicted reactions. We implemented
different KMC algorithms in a modular fashion in KIMMDY. Here, only the
rfKMC algorithm with adaptive event list generation is used.

6.2.4 Effect reaction

To effect the chosen reaction, the corresponding reaction recipe is applied to
change the molecular system topology, parameters and coordinates to the prod-
uct state. Recipes define reactions through elementary ’recipe steps’. ’Bind’
and ’break’ reference the two involved atoms and modify the MD bond def-
initions. Angles, dihedrals and pairs are modified accordingly. Changes of
force field parameters are either handled by supplying a force field that has
parameters for all reaction products or by re-parameterising the bonded pa-
rameters with the general machine-learned Grappa force field[91] combined
with heuristics for the non-bonded parameters (Sec. 3.6). To generate the
product coordinates, ’Place’ moves an atom in a certain snapshot to a new
position and, as an alternative, ’Relax’ starts a MD simulation with the slow-
growth feature of GROMACS[56] to interpolate smoothly between reactant
and product parameters. For each predicted rate, the associated snapshot in
the analysed MD trajectory is defined in the recipe to identify snapshots with
high rate conformations. Recipes with identical recipe steps are aggregated
because they denote a transition to the same product state. Finally, an equili-
bration MD simulation is performed to generate a start structure for the next
reaction sampling step. This has the benefit of sampling from the product
state Boltzmann distribution. Thus, KIMMDY models state transitions as a
Markov process.

6.3 A framework architecture imposes the con-

trol flow and facilitates extensibility

The goal of KIMMDY as a software is to automate or give useful defaults
for most parts of the adaptive KMC application. Only parts that need to
be changed to enable a certain application shall be modified by the user. In
the context of adaptive KMC, this means the sequence of sample, choose and
effect reactions is set. Defaults for the choose reaction and effect reaction
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module exist but can be modified for special applications. The search reaction
module specific to the reaction and can be defined without modifying the main
KIMMDY code.

A framework architecture[159] is ideal to comply with these requirements.
Key features of a framework architecture are inversion of control and extensi-
bility that set a framework apart from a standard library. Inversion of control
means that the control flow, here search, choose and effect reaction is defined
by the framework and can not be changed by the user. I.e. if a reaction
has been chosen, parameters and coordinates will always be adapted before
the next reaction search starts. We allow the user to extend KIMMDY by
providing abstract base classes for reaction rate prediction and force field pa-
rametersiation and using user-supplied MD configuration files. The exact input
and output that is required for each module is programatically defined. Also,
a library functionality is implemented to facilitate extensions by the user. Fur-
ther utilities and resources help the user in using and understanding KIMMDY
and retain a certain code quality.

Figure 6.2: A class diagram of KIMMDY. Classes are represented as grey
boxes with a C icon. Abstract base classes have a A icon and are a template for
classes and define an interface through the definition of an abstract method.
Interfaces are indicated with an I icon and packages outside of KIMMDY de-
noted as a transparent directory. Classes have attributes that are variables
stored in a class object and methods that are functions defined within the con-
text of a class. Both are shown as non-exhaustive lists below the class name.
Lines indicate a relation between classes. Generalisations are special relations
that indicate the general abstract class with an arrow. Aggregration is shown
with a diamond and indicates that one or multiple class objects are aggregated
in another class.
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In KIMMDY, the RunManager is the central class (Fig. 6.2). It receives
the run configuration and builds a queue of tasks. Tasks are called sequentially
and receive the necessary information from the RunManager, e.g. a represen-
tation of the system connectivity and force field parameters, called topology,
or a parameteriser that updates force field parameters. The ReactionPlugin is
an abstract base class that provides the interface for reaction rate prediction
extensions. It is a generalisation of the implemented reaction classes HAT and
Homolysis. A Reaction is defined as Recipe with instructions on how to effect
the reaction, called recipe steps, associated rates and timespans for which the
rates are valid. Recipes are aggregated in a RecipeCollection that is returned
from a ReactionPlugin to the RunManager. The choose and effect recipe steps
are functions of the RunManager.

6.4 Flow of control

Configuration file

While the control flow is fixed, the code that is run for a specific module
is specified in the configuration file in YAML format. In YAML, files are
a list of key-value pairs that are potentially nested or have scalars as value.
Reaction rate prediction modules are defined under the ’reactions’ key and
MD simulation configurations can be defined under the ’mds’ key. The defined
modules can then be used to construct a sequence of MD simulations and
reaction modules. Furthermore, KIMMDY run settings and simulation files
can be defined in the configuration file.

Initialisation

The configuration file is parsed and validated during initialisation of the Config
class. All files mentioned in the configuration have to exist on the filesystem.
The GROMACS[56] version has to fit to the specified options, e.g. compati-
bility with PLUMED[160]. The specified Parameterisers and ReactionPlugins
have to be installed.

For initialisation of the RunManager, a queue of tasks is generated from
the sequence in the configuration file. Files containing information that tasks
may need, like the topology file, are parsed and stored as an attribute of the
RunManager.

RunManager

The RunManager manages the control flow. It starts the next task from the
queue, provides it with input data and parses the output. The output data is
processed to update RunManager attributes, add new tasks to the queue or
update a list of current files. Tasks are methods of the RunManager.
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6.5 Extensibility

Sampling interface

Currently, the ensemble generation is tailored around the MD engine GRO-
MACS[56]. GROMACS allows for unbiased or biased simulations, especially
using a version patched with PLUMED[160]. Biased simulations have an ex-
ternal force to drive a molecular system in certain conformations. Simulations
with MLIPs[161] are planned for an upcoming release. We interact with GRO-
MACS using the command-line interface, which has the benefit of being fairly
stable between releases. However, different environments may require different
GROMACS binary names and prefixes to the command that can be specified
in the KIMMDY configuration file. MD runs can be completely customized
within the boundaries of GROMACS because KIMMDY takes user-specified
GROMACS configuration files (mdp files) as input.

In theory the ensemble generation could be performed with any method
that generates a collection of conformations, including ML methods based on
Boltzmann generators[162, 163] or flow matching[164]. Most of these methods
require a template of the molecular system in the state for which an ensemble
should be generated. For proteins, the predicted ensembles are either trained
on classical MD simulations[164] or by finding multiple solutions to predict-
ing experimentally resolved structures based on the amino acid sequence[165].
While this helps to generate ensembles more quickly, the fundamental limita-
tion of long-timescale structural modelling to account for chemical reactions is
not solved. Thus, KIMMDY synergises with novel ensemble generation meth-
ods for reactive modelling and integrating them into KIMMDY may lead to
faster adaptive KMC steps.

Reaction plugins

The reaction module is implemented as a plugin and has to contain a class that
inherits from the ReactionPlugin abstract base class. In KIMMDY, an entry
point is defined for reaction plugins. Referring to this entry point in a python
package makes KIMMDY recognize the reaction plugin.

The reaction class has to return a list of reaction recipes from an ensemble
of structures (Fig. 6.3). Hence, it performs parts of the ”search reaction” step,
specifically the ”emulate reactions” component. How a reaction plugin derives
the rates is outside of the scope of KIMMDY but it contains functions and
classes to help with writing the extension (see 6.6). So far, rate prediction
models based on experimental heuristics, physical models and neural networks
have been applied. The operations on the system connectivity and coordinates
to effect the reaction are expressed as recipe steps (see 6.6).

Parametrisation plugins

After each reaction, the product state needs to be parametrised. In KIMMDY,
two options are available: basic parametrisation and Grappa[91] parametrisa-
tion (see 3.6). All topology changes are based on the chosen reaction recipe.
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Figure 6.3: The reaction plugin interface. A ensemble of structures, called
trajectory, is passed to the reaction plugin that has to derive rates and reaction
recipes from it. ”KIMMDY” refers to the software framework that does not
include specific realisations of the reaction search. The reaction search code for
a specific reaction is interfacing with KIMMDY through a plugin architecture.

Usage of the basic parametriser assumes that the product molecule parameters
are contained in the force field included in the topology file, not modifying the
topology beyond the instructions in the recipe.

Grappa parametrises around the atoms involved in the reaction. The whole
structure is parametrised with Grappa either before a KIMMDY run or at the
start, producing consistent parameters for any reaction. A basic distinction de-
fined in the KIMMDY configuration file is between reactive and non-reactive
molecules. By default, solute atoms are defined as reactive and are conse-
quently parametrised with Grappa. In this case, solvent atoms are defined as
non-reactive and have classical force field parameters.

KMC algorithms

Different KMC algorithms are available in KIMMDY and can be specified in
the configuration file. In this work, only the adaptive variant of the rfKMC
algorithm is used (see above and 3.3). All implemented KMC variants have
in common that they have an event list of reactions with propensities/rate
constants ai (Fig. 6.4a). The probability of choosing an event is equal to ai∑

j aj

(Fig. 6.4b).

6.6 Library functionality

Recipes

A recipe provides the language for a reaction plugin to define which reaction
occurs with which rate. It contains the rates and associated timespans of
validity, as well as recipe steps as instructions for the effect reaction module.
Recipe steps define the breakage and formation of a bonds and modification of
all bonded and non-bonded interactions with it. Also, atoms can be placed at
some coordinates or a specific MD simulation for relaxation requested that is
executed as the next task.
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Figure 6.4: Choosing a reaction. a, An event list denotes all possible
transitions to different final states. b, The selection probability depends on
the fraction a reaction constant contributes to the total rate.

Parameter interpolation

For relaxing the system coordinates after a reaction, we use the slow-growth
method implemented in the GROMACS free-energy module. It interpolates
between product and reactant state for continuous parameter and coordinate
changes. Subsequently, a short equilibration is necessary to ensure the states
are Markovian.

Currently, exact continuations of MD simulations in GROMACS are only
possible from checkpoint files, which offer very limited options for changing the
molecular system. We use only reactant coordinates and velocities to continue
MD simulations, which leads to a short period where thermostat and barostat
equilibrate again. Another source of discontinuities is the parameter interpola-
tion of non-bonded parameters, especially for Van der Waals interactions, that
can quickly lead to high energies and forces due to the exponential nature of
the potential. In practice, the impact of these discontinuities appears limited
for applications tested so far but it should always be assessed for new reactions
and systems.

Topology class

The topology class allows access to all individual bonded interactions and non-
bonded parameters as well as the force field defined in the user supplied GRO-
MACS topology file. This is helpful for parametrisation and the effect reaction
module in general. Reaction plugins may also retrieve topology information
for the rate prediction.
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6.7 Utilities and resources

Checkpoints and restarting

A checkpoint system faciliates long KIMMDY simulations. Conveniently, GRO-
MACS simulations can be restarted from checkpoints and the end of a sim-
ulation is a state where the current system state is written explicitly in files.
Thus, we implemented KIMMDY restarting during and after GROMACS sim-
ulations. Files previously written by KIMMDY are parsed as well, to reproduce
the current state of the KIMMDY simulation faithfully. All tasks started after
the last GROMACS task can not be used and are discarded.

HPC infrastructure

KIMMDY simulations are easily parallelisable and require extensive resources,
typically available on HPC systems. We added utilities to run KIMMDY on
HPC systems using SLURM[166] and expose prefixes to the GROMACS com-
mands necessary for running it in an MPI setting.

Analysis

We provide some analysis functions to visualise KIMMDY simulations. Energy
terms that are recorded in the GROMACS energy file can be displayed over all
KIMMDY steps. Radical populations can be shown by number of occurrences
or KMC time in a plot or as a structure in VMD[167]. A visualisation of the
migration pathway is implemented with PyMOL[168] and is shown in Figure
7.2.

Testing

The promise of a framework is for the user to only having to care about the
specific extension they need for their application. While an understanding of
the method is beneficial, the implementation should be reliable. Due to the
flexibility of the framework, the code contains more abstractions and is more
complex than necessary for a bespoke implementation and implementing an
adaptive KMC algorithm may be easier than understanding the whole code
base of KIMMDY. Thus, it is essential to test units and whole use cases for
KIMMDY. We have implemented 120 tests to identify regressions but further
work is needed to increase the coverage of KIMMDY tests.

Documentation and tutorials

Documentation and tutorials are available on https://graeter-group.github.
io/kimmdy/. Sections of the documentation are automatically generated from
docstrings in the code and explain how to interact with certain elements of the
code. Others are curated and revolve around setting up or applying KIMMDY.
Tutorials give a first usage example of KIMMDY.

https://graeter-group.github.io/kimmdy/
https://graeter-group.github.io/kimmdy/
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File parsing

Functions to read (and write) a GROMACS topology and other GROMACS
files, PLUMED files, JSONs and CSVs are implemented.
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Chapter 7

Adaptive KMC in the collagen
fibril

7.1 Motivation

KIMMDY is finally applied to HAT reactions in the collagen fibril. The main
aim of this chapter is to find out whether DOPA can directly scavenge radicals
from common homolysis sites. This would complete the radical detoxification
mechanism from homolysis to hydrogen peroxide generation via DOPA or other
phenoxy groups.

Before moving on to the analysis of HATs involving DOPA, specifics of
the simulated model are detailed and an overview of the sampled reactions
provided. As the simulations freely sample any possible HAT reaction, other
radical scavengers in collagen are also investigated. Furthermore, enantiomeri-
sation at Cα atoms resulting in the formation of D-amino acids is observed.

7.2 Collagen fibrils break at cross-links

Collagen is a structural protein that forms large hierarchical structures from
triple helices. As a main component of several tissues, it is comparatively easy
to perform mechanical experiments on. These can be modelled computation-
ally with constant-force MD simulations (Fig. 7.1a,b) using an experimentally
determined structure (PDB accession code: 3hr2[147]) and structural mod-
elling[106]. Main features, such as gap and overlap regions are only accounted
for in relatively large structures, making it computationally expensive to sim-
ulate for extended time scales.

Interestingly, previous studies have shown that pulling forces, in a collagen
fibril model spanning one gap and overlap region, concentrate in few specific
bonds, especially in or nearby enzymatically formed cross-links[169] between
neighbouring triple helices.[12, 14] This force concentration has been associated
with homolytic cleavage, producing mechanoradicals. The short arm (LY2)
Cα-Cβ bond of PYD is one of these bonds acting as a sacrificial bond that
breaks with high rates but keeps the two triple helices connected through the
other two arms.[14]

In this work, the divalent cross-link HLKNL and the trivalent cross-link
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Figure 7.1: Structure of the collagen fibril. a, Relaxed atomistic model
of type I collagen with a cartoon backbone representation. The HLKNL cross-
links between gap (outer) and overlap (inner) region are coloured in green. b,
Collagen model under 1 nN force per strand. The whole fibril extends from
65 nm to 82ṅm and the cross-links orient towards the pulling direction. c,
HLKNL cross-link (left panel) and PYD cross-link (right panel). Force field
amino acid names are shown with L5Y including the nitrogen in HLKNL. LYX
in PYD includes the aromatic ring, LY2 and LY3 only the atoms up to the
ring system.

PYD (Fig. 7.1c) are modelled (see 3.7). While general structural properties of
collagen fibrils are accurately captured[106], the available collagen fibril struc-
tures represent a limited set of possible conformations and cross-link positions.
For example, mechanical stretching has been shown to alter the structure of
collagen fibrils.[170] Slight changes like these are not accounted for in the col-
lagen fibril model but change the local environment of sacrificial bonds like the
short arm Cα-Cβ bond of PYD. This can have a strong impact on the observed
HAT reactions. Still, a stochastically exact time trajectory of reactive states
for a plausible collagen fibril can be obtained using KIMMDY. This means not
all HATs that could be observed in experiments will have high rates in the sim-
ulations shown here because the necessary conformations are not sampled but
it should be possible to identify high rate HATs for the given set of accessible
conformations.

7.3 Numerous different HAT reactions occur

in collagen

To understand how the simulated HATs behave, they are first shown from a
structural perspective. The HAT pathways analysed here start at four short
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arm PYD Cα-Cβ homolysis sites (Fig. 7.2). At one site, a DOPA anion
residue is nearby and scavenges the radical (Fig. 7.2 left zoom-in). Apart from
the initial LY2 Cβ radical, the pyridine-bound hydroxy group of PYD and a
aspartate Cβ group also harbour a radical at one point of the simulation. A
visualisation of HAT directions at a different homolysis site (Fig. 7.2 right
zoom-in) shows back-and forth reactions with various groups, again including
DOPA and PYD, as well as arginine, glycine and proline.

Figure 7.2: HAT reactions in collagen. In a collagen model with PYD
cross-links (red) and DOPA anions (blue) shown, radical positions and migra-
tion pathways are visualised. The zoom-ins show different homolysis sites and
were chosen because they include DOPA reactions. The structure was chosen
for visual clarity and does not represent a high-rate structure for any partic-
ular reaction. Any actual distances between H-donor and H-acceptor in the
ensemble for which a reaction was chosen may differ from this representation.

Overall, during a total of 600 HATs, many different reactions occur. Con-
sistent with the HAT GNN validation on alkanes[92] and QM calculations[145],
HATs occur seldom between bonded atoms (1-2 transfer) or for reactants that
would have to form small ring systems during the transition state (Fig. 7.3)a.
1-6 HATs are unexpectedly rare and most HATs are between atoms that are
many bonds apart or intermolecular. Most reactions were found only once
during the 36 different simulations with 12 different homolysis patterns and
3 repeats (Fig. 7.3b), indicating a large diversity of possible reactions, also
for the same chemical state. Almost every amino acid is involved in a HAT
reaction as H-donor (Fig. 7.3c). Missing reaction involvement can be due to
the amino acid being absent in the collagen fibril (tryptophan, cysteine), far
away from homolysis sites or because other amino acids have higher rates as
H-donors.

In addition to their diversity, HAT reactions take place in a large volume
surrounding the original homolysis site. Their minimal distance from the Cα
or Cβ atom of LY2 can reach more than 15 Å (Fig. 7.4). A sphere with a 15 Å
radius in collagen would include roughly 1600 atoms, reaching the limits of
traditional QM/MM reactive modelling[37]). From the same data it is apparent
that most radical atoms are still Cα or Cβ atoms of LY2 after 20 reactions.
Both sites are stable radicals and many HAT reaction products appear to be
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more reactive than the remaining Cα and Cβ atoms, leading to few sites with
many consecutive reactions and other, stable sites.

Figure 7.3: Characterisation of HAT reactions. a, Reaction count defined
by the number of bonds between H-donor and H-acceptor. 1-2 HATs are
between bonded atoms, 1-3 HATs have a single atoms between them et cetera.
b, Number of times the same reactions occurred over all 36 simulations in
the presented dataset. c HAT barrier distribution of reactions chosen with the
KMC algorithm by H-donor amino acid. PYD is split into the three amino acids
LY2, LY3 and LYX. Amino acids are sorted by physicochemical properties.

Figure 7.4: Transfer distance of radicals. The distance of radical atoms
at a certain reaction number to the nearest Cα or Cβ atoms of LY2 that
were involved in homolytic cleavage. The distribution is shown separately for
every reaction step, starting with n=288 radicals and is decreased towards
higher reaction numbers due to a few simulations ending before sampling all
20 reactions. The right panel shows the density for the 20th reaction.
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7.4 DOPA radicals are kinetically accessible

The initial goal of this work was to establish DOPA as a kinetically accessi-
ble radical scavenger in the collagen fibril. DOPA is generated through post-
translational oxidation of phenylalanine and tyrosine residues in collagen.[13]
In the previous section, DOPA has been identified as a H-donor in HAT re-
actions. A radical scavenger should furthermore donate its hydrogen in a low
barrier reaction but not easily accept hydrogen atoms again. This way, nearby
radicals are quickly scavenged and then withheld from the environment until
further detoxification steps occur.

To test this property of DOPA, reactions involving the hydroxy group as
a H-donor are tested for lower barrier than non-DOPA reactions and hydroxy
group H-acceptor reactions are tested for higher barriers (Fig. 7.5a). As ex-
pected, reactions with a DOPA hydroxy group H-donor have lower barriers and
thus higher rates than non-DOPA reactions. The distribution appears to be
long-tailed with many barriers around and below 20 kcal/mol. At 300K using
the Eyring equation, rates in the seconds to minutes range can be obtained.
The median barrier difference is 4.5 kcal/mol, which amounts to 1800 times
faster reactions. In contrast, H-acceptor DOPA hydroxy group reactions have
no higher barrier than the reference. The median is even slightly lower than
for non-DOPA reactions. A low HAT reaction barrier for reactions to a radical
scavenger is not necessarily inconsistent, because HATs could frequently occur
between neighbouring scavengers.

Figure 7.5: DOPA is a radical scavenger. a, Distributions of DOPA hy-
droxy group H-donor, H-acceptor and reactions without DOPA involvement
are shown. The Welch’s t-test is performed to test differences in the distribu-
tions and their significance is shown. The number of samples is n=49, n=41
and n=467, respectively. b, H-acceptors for reactions with DOPA hydroxy
group H-donors. Homolysis radical H-acceptors are depicted in brown, PYD
H-acceptors in pink and others in grey. c, H-donors for reactions with DOPA
hydroxy group H-acceptors.
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For reactions with a DOPA hydroxy group H-donor, the H-acceptor was
often one of the two homolysis radicals, LY2 Cα and Cβ (Fig. 7.5b), con-
firming a direct transfer from the homolysis site to DOPA. H-donors for a
DOPA hydroxy group H-acceptor include surprisingly many nitrogen atoms
and, notably, the PYD hydroxy group at the aromatic ring (LYX O11) (Fig.
7.5c).

The high number of reactions involving nitrogen atoms is unexpected, as
many have BDEs above the average protein BDE.[171] The thermodynamic
property BDE correlates with reaction rates[172, 173], making the scenario
of high BDE and low barrier HATs unlikely. Rather, the HAT GNN could
overestimate HAT rates involving nitrogen compared to HATs with oxygen or
carbon. Another possibility is the simplified protonation state modelling. pKa
differences after HATs are not accounted for because the protonation state
is only determined at the beginning of the KIMMDY simulation. Further
investigation, ideally with QM data and accounting for pKa shifts is necessary
to illuminate the role of nitrogen atoms for protein HAT.

Nevertheless, DOPA hydroxy group radicals are kinetically accessible and
scavenge nearby radicals with high rates. The main aim of this work has thus
been achieved. Caveats still exist, especially the generally low rate predictions
of the HAT GNN (see 5.5.1) that obscure whether likely reaction paths have
actually been found or are just exceedingly rare on timescales sampled by MD.
The dataset generated here contains 6 000 000 evaluated structures and can
increase the HAT GNN accuracy on application scenarios by supplementing
the original dataset of 20 000 structure-barrier pairs if the QM energy barriers
are calculated.

7.5 PYD and lysine also scavenge radicals

Previously shown data indicates that not only HATs to DOPA have low barriers
and thus high rates (compare Fig. 7.3c). In a multiple testing scenario, lysine
and the LYX part of the cross-link PYD also have a significantly lower barrier
(Fig. 7.6). Lysine has been found to have the most stable Cα radical[171] but
in the KIMMDY simulations most reactions involved the Cγ and Nζ atoms. In
LYX, the hydroxy group in the aromatic ring acts as a frequent H-donor. This
moiety has not been investigated as potential radical scavenger before but is
ideally positioned, since it is always exceptionally close to the PYD short arm
Cα and Cβ atoms (compare Fig. 7.2). If the hydroxy group is deprotonated
upon homolytic cleavage of the Cα-Cβ bond, the Cβ atom, aromatic ring and
deprotonated hydroxy group would form a resonant system, further stabilising
the previously mentioned stable Cβ radical. Thus, PYD with a deprotonated
aromatic ring hydroxy group has been identified as a plausible further radical
scavenger in the collagen fibril.

Resonant systems stabilise radicals and are hence major objects of this
investigation. In these systems, the unpaired electron density is distributed
over multiple atoms and can engage in HAT reactions from there. For example,
the DOPA radical anion (compare Fig. 1.4) can react with a H-donor at both
oxygens. This effect is currently not accounted for in the HAT GNN. The same
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applies for the previously mentioned different protonation states that have a
sizeable influence on BDEs and reaction rates. An improved HAT GNN model
should include these effects.

Figure 7.6: Testing for further radical scavengers. In a multiple testing
scenario, the Welch’s t-test is applied to test differences in the distribution
of HAT barriers by H-donor amino acids. The p-value is corrected using the
Benjamini and Hochberg approach to correcting the false discovery rate.[174]
Amino acids with less than two HAT observations are assigned a p-value of 1
(light grey). All observed corrected p-values are shown in grey.

Figure 7.7: Further investigation of the PYD radical. a, BDEs of
the DOPA anion and PYD with deprotonated aromatic ring hydroxy group
compared to other protein BDEs from Treyde et al.[171]. b, EPR signal of a
rat achilles tendon stretched at 14.7N for 1000s with a simulated DOPA anion
and deprotonated PYD spectrum. Experimental measurement from Kurth et
al [13]. Data gathered, calculated and visualised by Daniel Sucerquia.
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7.6 QM data and EPR experiments corrobo-

rate the scavenger role of PYD

Compared to other protein BDEs[171], PYD with a deprotonated hydroxy
group has an exceptionally low BDE on par with the lysine Cα atom and less
than 10 kcal/mol above the DOPA anion hydroxy group (Fig. 7.7a). This
shows the strong radical stabilisation capabilities of PYD. Encouragingly, the
EPR absorption spectrum of said PYD radical is within a region that has an
experimental signal (Fig. 7.7b). The region above 6.405T has an intensity
that is currently not explained by the DOPA anion and can only partially
be explained by other DOPA species. The peak of the PYD signal does not
perfectly match the second-highest experimentally measured peak at 6.406T
but this could be attributed to environment effects and slight differences in the
spin delocalisation.

As the PYD radical is closer to sites of homolytic cleavage but does not
stabilise radicals as well as the DOPA anion, one explanation would be that
PYD initially stabiles mechanoradicals until HAT transfer leads to a DOPA
radical. The available experimental data does not prove the existence of stable
PYD radicals in collagen but there is also no reason to deny this hypothesis.
An experiment to shed light on the existence of stable PYD radicals would be
time-resolved EPR[175] to identify a shift of a PYD radical population to the
DOPA radical population.

7.7 Only homolytic cleavage products of PYD

are near DOPA

Another observation on PYD is the different structural response after ho-
molytic cleavage occurs. For PYD, a broken short arm Cα-Cβ bond still leaves
the long arm as a connection to the same triple helix. The structure changes
only locally. For divalent cross-links and backbone breaks, the broken ends
move apart because the strain from one side is lifted, similar to a broken
rubber band. The concentration of aromatic residues at the border between
fibril gap and overlap region (compare Fig. 7.2) results in the mechanorad-
icals from backbone and divalent cross-link breaks being further away from
potential radical scavengers (Fig. 7.8). Hence, non-PYD mechanoradicals are
potentially less likely to be captured and can cause more side-reactions than
PYD mechanoradicals. This kind of co-localisation is a pattern for ROS sensing
systems.[6]



D-amino acids are HAT products 83

Figure 7.8: PYD mechanoradicals are close to DOPA. The mechanorad-
ical distance to the hydroxy group of DOPA is shown after backbone and di-
valent cross-link, as well as trivalent cross-link homolytic cleavage. Distances
are shown for a single snapshot directly after the homolysis reaction for n=72
radicals for non-trivalent cross-link radicals and n=32 for trivalent cross-link
radicals. Distances in the area up to 3 Å can lead to HAT reactions and are
depicted in grey. The average Cα distance to the hydroxy group of DOPA in
the collagen fibril model is shown as dashed line.

7.8 D-amino acids are HAT products

Figure 7.9: Mechanism of D-amino acid formation. A L-amino acid
(left panel) donates its Cα hydrogen to a nearby radical, creating a resonance
stabilised Cα radical (centre panel). In a consecutive HAT reaction, the Cα
radical receives a hydrogen atom. The hydrogen atom can be donated from
either side of the N-Cα-C plane, which results in either a L- or D-amino acid.
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Recently, D-amino acids have been brought to attention as interesting tar-
get for basic research and therapeutic applications with huge risks attributed
to the creation of mirror bacteria. [176]. D-amino acids are enantiomers of
the natural L-amino acids, determined by the chiral Cα atom. Small quanti-
ties of D-amino acids are generated by molecular ageing processes. Aspargine
and aspartate racemize via a cyclic succinimide intermediate[177] and other
mechanism can lead to racemisation in a serine and leucine[178]. In bacteria,
alanine is enzymatically racemised to be incorporated in the cell wall.[179] A
degradation pathway exists and includes the D-amino acid oxidase.[180]

In chemical synthesis, reversible HAT has been used to selectively form
enantiomers at chiral sites.[181, 182] In the KIMMDY simulations of HAT in
collagen fibrils, formation of D-amino acids was also observed (Fig. 7.9). The
D-amino acid is formed by two consecutive HAT reactions at a Cα atom with
an initial H-donor and then H-acceptor role.

HATs at backbone atoms were uncommon in the 600 sampled reactions,
contributing only 49 reactions with backbone H-donor and 35 reactions with
backbone H-acceptor atoms (Fig. 7.10a,b). Out of these, seven reactions were
at a Cα stereocenter at a total of 4 different sites. At three sites, including
those with multiple reactions, the D-amino acid was formed. In the case of
multiple reactions at the same site, always the D-amino acid was formed.

Figure 7.10: Location of heavy atoms involved in HAT. a, H-donor
location, divided into backbone, side chain and cross-link atoms. b, H-acceptor
location as described in panel a.

Further sampling is necessary to achieve a better understanding on the
factors contributing to D-amino acid formation and whether certain amino acid
positions preferably accept hydrogens from a direction that results in D-amino
acids. D-amino acid formation appears to be the result of a minor fraction
of HAT reactions but unless the absolute rate of HAT reactions in proteins is
clarified, the abundance of D-amino acids due to this effect can not be clearly
estimated.

The proposed mechanism is independent of the amino acid side chain and
would give rise to an increased fraction of D-amino acids in proteins that
are subject to mechanical stress, especially close to the weakest bonds in the
molecule. D-amino acids can be measured experimentally using chiral column
chromatography. [183] However, depending on the kind of sample, the limit of
detection may be too high to measure these enantiomers.
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7.9 Uncovering novel functions of trivalent cross-

links

The discovery of a sacrificial bond in the trivalent cross-links of collagen[14]
creates a new view on cross-links as a mechanochemically active instead of an
inert compound that solely increases the mechanical strength of collagen[184].
Using a computational approach, PYD was identified as a radical scavenger
with a low BDE at the pyridinium ring. Homolytic cleavage of PYD keeps
radicals close to the interface of gap and overlap region that is rich in amino
acids with aromatic moieties. This allows DOPA, a post-translational mod-
ification of tyrosine or phenylalanine, to scavenge mechanoradicals more effi-
ciently. Side-reactions, such as conversion of amino acids to the D-enantiomer,
are thereby minimised.

Taken together, KIMMDY simulations reveal a picture according to which
collagen funnels radicals through specific and partially direct radical migration
paths onto DOPA to avoid molecular damage.
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Chapter 8

Conclusion and Outlook

This work is part of a larger effort to establish a method for long timescale
reactive simulations in condensed phase systems. Hydrogen atom transfer is
the second type of reaction brought to an application in simulations of the
collagen fibril in a hybrid KMC/ MD setting. The combination of KMC and
MD in adaptive KMC seems like a promising theoretical framework for the
novel approach to sample a reactive state with classical MD and predict tran-
sition rates to neighbouring states. With the insights gained in this work, an
improved HAT GNN could be trained that predicts absolute HAT rates and
serve as a reference for future ML-based models that predict a diverse range
of reaction as well as their rates.

Grappa, a machine learned classical force field, has been validated for pro-
teins and trained on peptide radicals. Its accuracy compared to QM energies
and forces is higher than the current gold standard, tabulated force fields.
Grappa has the potential to predict even more accurate force field parameters
if high fidelity bonded terms are implemented or the non-bonded parameters
are improved upon.

Apart from the bespoke implementation of reactive HAT simulations, sig-
nificant effort went into creating a general reactive simulation program, KIM-
MDY. KIMMDY has a framework architecture that allows users to implement
custom reactions within a python plug-in and manages the control flow for
adaptive KMC steps. Due to the modular design, KIMMDY can be com-
bined with machine learning force fields or ML methods that directly generate
conformational ensembles of proteins.

Reactive simulations in the collagen fibril show that DOPA is kinetically
accessible after homolytic cleavage and direct transfers from the homolysis site
to DOPA were observed. This provides a mechanistic explanation for the miss-
ing link between homolysis and detoxification of DOPA radicals in collagen. In
addition, PYD was found to act as another radical scavenger. A small popu-
lation of PYD radicals in stressed rat tendons is plausible from analysis of the
available data. Further unique properties of PYD as a trivalent cross-link in a
mechanochemistry setting are identified. To confirm these observations, time-
resolved EPR measurements could be used to identify PYD radical populations
directly after homolysis occurs.

A mechanism for D-amino acid enantiomerisation in proteins under me-
chanical stress is proposed and could be tested experimentally. Especially chi-
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ral column chromatography or a method with a lower limit of detection could
provide a means to measure D-amino acid concentrations in proteins under
mechanical stress. Alternatively, small peptides could be designed with radical
initiators at a position that favours HAT reactions to a Cα atoms for a higher
yield of D-amino acids than in collagen samples isolated from tissue.
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[118] Marie Zgarbová et al. “Refinement of the Cornell et al. Nucleic Acids Force Field
Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles”.
In: Journal of Chemical Theory and Computation 7.9 (Sept. 2011). Publisher: Amer-
ican Chemical Society, pp. 2886–2902. issn: 1549-9618. doi: 10.1021/ct200162x.
url: https://doi.org/10.1021/ct200162x.

https://doi.org/10.1063/5.0020514
https://pubs.aip.org/jcp/article/153/11/114107/199610/Pressure-control-using-stochastic-cell-rescaling
https://pubs.aip.org/jcp/article/153/11/114107/199610/Pressure-control-using-stochastic-cell-rescaling
https://pubs.aip.org/jcp/article/153/11/114107/199610/Pressure-control-using-stochastic-cell-rescaling
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/prot.22711
https://doi.org/10.1126/science.1208351
https://www.science.org/doi/abs/10.1126/science.1208351
https://www.science.org/doi/abs/10.1126/science.1208351
https://doi.org/10.1002/jcc.20962
https://onlinelibrary.wiley.com/doi/10.1002/jcc.20962
https://onlinelibrary.wiley.com/doi/10.1002/jcc.20962
https://doi.org/10.1002/prot.10286
https://onlinelibrary.wiley.com/doi/10.1002/prot.10286
https://onlinelibrary.wiley.com/doi/10.1002/prot.10286
https://doi.org/10.1016/S0022-2836(63)80023-6
https://linkinghub.elsevier.com/retrieve/pii/S0022283663800236
www.amber.ucsf.edu/amber/
https://doi.org/10.1021/acs.jpca.4c01287
https://doi.org/10.1063/1.4952647
https://pubs.aip.org/jcp/article/144/21/214110/313155/B97M-V-A-combinatorially-optimized-range-separated
https://pubs.aip.org/jcp/article/144/21/214110/313155/B97M-V-A-combinatorially-optimized-range-separated
https://pubs.aip.org/jcp/article/144/21/214110/313155/B97M-V-A-combinatorially-optimized-range-separated
https://doi.org/10.1039/b508541a
https://xlink.rsc.org/?DOI=b508541a
https://xlink.rsc.org/?DOI=b508541a
https://doi.org/10.1021/ct200162x
https://doi.org/10.1021/ct200162x


BIBLIOGRAPHY 99

[119] Jing Huang and Alexander D. MacKerell Jr. “CHARMM36 all-atom additive protein
force field: Validation based on comparison to NMR data”. In: Journal of Computa-
tional Chemistry 34.25 (2013). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23354,
pp. 2135–2145. doi: https://doi.org/10.1002/jcc.23354. url: https://
onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23354.

[120] Tong Wang et al. “AIMD-Chig: Exploring the conformational space of a 166-atom
protein Chignolin with ab initio molecular dynamics”. en. In: Scientific Data 10.1
(Aug. 2023), p. 549. issn: 2052-4463. doi: 10.1038/s41597-023-02465-9. url:
https://www.nature.com/articles/s41597-023-02465-9 (visited on 04/25/2025).

[121] Oliver T. Unke et al. “Biomolecular dynamics with machine-learned quantum-mechanical
force fields trained on diverse chemical fragments”. In: Science Advances 10.14 (2024).
eprint: https://www.science.org/doi/pdf/10.1126/sciadv.adn4397, eadn4397. doi: 10.
1126/sciadv.adn4397. url: https://www.science.org/doi/abs/10.1126/
sciadv.adn4397.

[122] Martin. Karplus. “Vicinal Proton Coupling in Nuclear Magnetic Resonance”.
en. In: Journal of the American Chemical Society 85.18 (Sept. 1963), pp. 2870–2871.
issn: 0002-7863, 1520-5126. doi: 10.1021/ja00901a059. url: https://pubs.acs.
org/doi/abs/10.1021/ja00901a059 (visited on 04/25/2025).

[123] Lily Wang et al. “The Open Force Field Initiative: Open Software and Open Science
for Molecular Modeling”. In: The Journal of Physical Chemistry B 128.29 (July
2024). Publisher: American Chemical Society, pp. 7043–7067. issn: 1520-6106. doi:
10.1021/acs.jpcb.4c01558.

[124] Julia Wirmer and Harald Schwalbe. “Angular dependence of \(ˆ1J(N i,C \alpha i)\)
and \(ˆ2J(N i,C \alpha i-1)\) coupling constants measured in J-modulated HSQCs”.
In: Journal of Biomolecular NMR 23.1 (May 2002), pp. 47–55.

[125] Keyang Ding and Angela M. Gronenborn. “Protein Backbone 1HN13C and 15N13C
Residual Dipolar and J Couplings: New Constraints for NMR Structure Determina-
tion”. In: Journal of the American Chemical Society 126.20 (2004), pp. 6232–6233.

[126] Jin-Shan Hu and Ad Bax. “Determination of and 1 Angles in Proteins from 13C13C
Three-Bond J Couplings Measured by Three-Dimensional Heteronuclear NMR. How
Planar Is the Peptide Bond?” In: Journal of the American Chemical Society 119.27
(1997), pp. 6360–6368.
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[135] Dávid Péter Kovács et al. “Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE”. In: Journal of Chemical Theory and Computation 17.12
(2021), pp. 7696–7711.

[136] Brent H. Besler, Kenneth M. Merz, and Peter A. Kollman. “Atomic charges derived
from semiempirical methods”. en. In: Journal of Computational Chemistry 11.4 (May
1990), pp. 431–439. issn: 0192-8651, 1096-987X. doi: 10.1002/jcc.540110404. url:
https://onlinelibrary.wiley.com/doi/10.1002/jcc.540110404 (visited on
04/28/2025).

[137] Junmei Wang et al. “Automatic atom type and bond type perception in molecular
mechanical calculations”. In: Journal of Molecular Graphics and Modelling 25.2 (Oct.
2006), pp. 247–260. issn: 10933263. doi: 10.1016/j.jmgm.2005.12.005.

[138] QCMM group. ffparaim. 2022. url: https://github.com/QCMM/ffparaim.

[139] D. G. A. Smith, L. A. Burns, and et al. Simmonett. “Psi4 1.4: Open-Source Software
for High-Throughput Quantum Chemistry”. In: J. Chem. Phys. (2020). doi: 10.
1063/5.0006002.

[140] Hugo Lebrette et al. “Structure of a ribonucleotide reductase R2 protein radical”.
en. In: Science 382.6666 (Oct. 2023), pp. 109–113. issn: 0036-8075, 1095-9203. doi:
10.1126/science.adh8160. url: https://www.science.org/doi/10.1126/
science.adh8160 (visited on 04/28/2025).
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[163] Leon Klein, Andreas Krämer, and Frank Noe. “Equivariant flow matching”. In: Ad-
vances in Neural Information Processing Systems. Ed. by A. Oh et al. Vol. 36. Curran
Associates, Inc., 2023, pp. 59886–59910. url: https://proceedings.neurips.cc/
paper_files/paper/2023/file/bc827452450356f9f558f4e4568d553b- Paper-

Conference.pdf.

[164] Nicolas Wolf et al. Learning conformational ensembles of proteins based on backbone
geometry. Version Number: 1. 2025. doi: 10.48550/ARXIV.2503.05738. url: https:
//arxiv.org/abs/2503.05738 (visited on 05/07/2025).

[165] Hannah K. Wayment-Steele et al. “Predicting multiple conformations via sequence
clustering and AlphaFold2”. en. In: Nature 625.7996 (Jan. 2024), pp. 832–839. issn:
0028-0836, 1476-4687. doi: 10.1038/s41586-023-06832-9. url: https://www.
nature.com/articles/s41586-023-06832-9 (visited on 05/07/2025).

[166] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Util-
ity for Resource Management”. In: Job Scheduling Strategies for Parallel Process-
ing. Ed. by Gerhard Goos et al. Vol. 2862. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60. isbn: 978-
3-540-20405-3 978-3-540-39727-4. doi: 10.1007/10968987_3. url: http://link.
springer.com/10.1007/10968987_3 (visited on 05/07/2025).

[167] William Humphrey, Andrew Dalke, and Klaus Schulten. “VMD: Visual molecular
dynamics”. In: Journal of Molecular Graphics 14.1 (Feb. 1996), pp. 33–38. issn:
02637855. doi: 10.1016/0263- 7855(96)00018- 5. url: https://linkinghub.
elsevier.com/retrieve/pii/0263785596000185.

[168] Schrödinger, LLC. “The PyMOL Molecular Graphics System, Version 1.8”. Nov.
2015.

[169] David R. Eyre, Mary Ann Weis, and Jiann-Jiu Wu. “Advances in collagen cross-
link analysis”. en. In: Methods 45.1 (May 2008), pp. 65–74. issn: 10462023. doi:
10.1016/j.ymeth.2008.01.002. url: https://linkinghub.elsevier.com/
retrieve/pii/S104620230800025X (visited on 05/10/2025).

https://doi.org/10.1002/jcc.21787
https://onlinelibrary.wiley.com/doi/10.1002/jcc.21787
https://doi.org/10.1016/j.bbagen.2014.10.019
https://linkinghub.elsevier.com/retrieve/pii/S0304416514003559
https://linkinghub.elsevier.com/retrieve/pii/S0304416514003559
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1016/j.cpc.2013.09.018
https://linkinghub.elsevier.com/retrieve/pii/S0010465513003196
https://linkinghub.elsevier.com/retrieve/pii/S0010465513003196
https://doi.org/10.1016/j.cossms.2025.101214
https://linkinghub.elsevier.com/retrieve/pii/S1359028625000014
https://doi.org/10.1126/science.aaw1147
https://www.science.org/doi/10.1126/science.aaw1147
https://www.science.org/doi/10.1126/science.aaw1147
https://proceedings.neurips.cc/paper_files/paper/2023/file/bc827452450356f9f558f4e4568d553b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bc827452450356f9f558f4e4568d553b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bc827452450356f9f558f4e4568d553b-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2503.05738
https://arxiv.org/abs/2503.05738
https://arxiv.org/abs/2503.05738
https://doi.org/10.1038/s41586-023-06832-9
https://www.nature.com/articles/s41586-023-06832-9
https://www.nature.com/articles/s41586-023-06832-9
https://doi.org/10.1007/10968987_3
http://link.springer.com/10.1007/10968987_3
http://link.springer.com/10.1007/10968987_3
https://doi.org/10.1016/0263-7855(96)00018-5
https://linkinghub.elsevier.com/retrieve/pii/0263785596000185
https://linkinghub.elsevier.com/retrieve/pii/0263785596000185
https://doi.org/10.1016/j.ymeth.2008.01.002
https://linkinghub.elsevier.com/retrieve/pii/S104620230800025X
https://linkinghub.elsevier.com/retrieve/pii/S104620230800025X


BIBLIOGRAPHY 103

[170] Thomas Kress and Melinda J. Duer. “Solid-State NMR Spectroscopy Investigation of
Structural Changes of Mechanically Strained Mouse Tail Tendons”. en. In: Journal of
the American Chemical Society 147.11 (Mar. 2025), pp. 9220–9228. issn: 0002-7863,
1520-5126. doi: 10.1021/jacs.4c13930. url: https://pubs.acs.org/doi/10.
1021/jacs.4c13930 (visited on 05/25/2025).

[171] Wojtek Treyde, Kai Riedmiller, and Frauke Gräter. “Bond dissociation energies of
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