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Rapid 3D passive needle localization for automatic slice alignment in MR-guided interven-
tions
In Magnetic Resonance Imaging (MRI)-guided needle interventions, typically 2D real-time imag-
ing is used for the visual tracking of the needle. For imaging planes insufficiently aligned with
the needle, realignment can become necessary for better needle display. In this work, techniques
for the visualization of metallic needles with MRI and rapid 3D needle localization for automatic
imaging plane alignment were developed and investigated.

First, the image artifact of a needle was characterized quantitatively for conventional gradient-
echo (GRE) imaging with the fast low-angle shot (FLASH) technique, as well as for a positive,
susceptibility-based imaging technique (dephased GRE). A model-based method for needle
localization, using a baseline-subtracted radial FLASH k-space acquisition, was then developed
and evaluated in phantom measurements, as well as demonstrated in an animal experiment.
Additionally, a localization method based on undersampled dephased FLASH imaging and
Convolutional Neural Network-based postprocessing was developed, investigated, and compared
with the model-based method.

The needle artifacts were well described by the developed quantitative models (measured deviation
≤ 2 pixels). Both developed localization methods allowed for fast 3D needle localization (under
1 s). Feasibility of automatic slice alignment of 2D imaging planes with the detected needles was
demonstrated retrospectively.

The developed methods for rapid, passive 3D needle localization can accelerate the workflow of
MRI-guided interventions and facilitate clinical applicability.





Schnelle passive 3D Nadellokalisierung zur automatischen Schichtausrichtung bei MR-
geführten Interventionen

In Magnetresonanztomographie (MRT)-geführten Nadelinterventionen wird üblicherweise eine
2D-Echtzeitbildgebung zur visuellen Verfolgung der Nadel eingesetzt. Bei unzureichender Aus-
richtung der bildgebenden Schicht an der Nadel kann eine Schichtnachführung für eine bessere
Darstellung der Nadel notwendig werden. In dieser Arbeit wurden Techniken zur Visualisierung
metallischer Nadeln mit der MRT und zur schnellen 3D-Nadellokalisierung für eine automatische
Schichtausrichtung entwickelt und untersucht.

Zunächst wurde das Bildartefakt einer Nadel für konventionelle Gradientenechobildgebung (GRE)
mit der fast low-angle shot (FLASH)-Methode sowie für eine positive, suszeptibilitätsbasierte
Bildgebungsmethode (dephasierte GRE) quantitativ charakterisiert. Anschließend wurde eine
modellbasierte Methode zur Nadellokalisierung unter Verwendung einer referenz-subtrahierten
radialen FLASH-Abtastung des k-Raums entwickelt und in Phantommessungen evaluiert sowie
in einem Tierversuch demonstriert. Zusätzlich wurde eine Lokalisierungsmethode, basierend auf
einer unterabgetasteten Bildaufnahme mit dephasiertem FLASH-Kontrast und einer anschließen-
den Bildverarbeitung mithilfe eines Convolutional Neural Networks, entwickelt, untersucht und
mit der modellbasierten Methode verglichen.

Die Nadelartefakte ließen sich durch die entwickelten quantitativen Modelle gut beschreiben
(gemessene Abweichungen ≤ 2 Pixel). Beide entwickelten Lokalisierungsansätze erlaubten eine
schnelle 3D-Nadellokalisierung (unter 1 s). Die Möglichkeit der automatischen Ausrichtung einer
2D-bildgebenden Schicht entlang lokalisierter Nadeln wurde retrospektiv demonstriert.

Die entwickelten Methoden zur schnellen, passiven 3D-Nadellokalisierung können den Arbeits-
ablauf von MRT-geführten Interventionen beschleunigen und somit die klinische Anwendbarkeit
vereinfachen.
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1 Introduction

Magnetic resonance (MR)-guided percutaneous needle interventions are minimally invasive
medical procedures performed for diagnostic or therapeutic purposes [5–7]. These include,
e.g., tissue biopsies, ablation procedures and targeted drug application. Interventions can be
performed under interactive real-time image guidance employing magnetic resonance imaging
(MRI), allowing the interventionalist to monitor needle placement on an in-room monitor while
performing the in-bore procedure [8]. A metallic needle itself is invisible to the MRI machine
because it does not contain resonant hydrogen nuclei, which are used for imaging. However,
because its magnetic susceptibility differs from the tissue surrounding the needle, it will locally
disturb the magnetic field which can cause an artifact in the MR image [9–11]. This artifact
is usually used by the interventionalist to locate the needle and visually follow the path of the
needle.

1.1 Delineation of needles in magnetic resonance imaging

The appearance of the image artifact caused by a metallic needle depends on the imaging
technique, or, more specifically, on the MR pulse sequence used for the image acquisition [12].
The needle-induced inhomogeneity of the local magnetic field leads to the establishment of a
magnetic field gradient in the proximity of the needle [9, 10]. For gradient echo (GRE) imaging,
this field gradient can locally dephase the magnetization, leading to a decrease in signal intensity
[11]. Consequently, a hypointense needle artifact is formed due to the presence of the needle. In
the past, the shape and size of the needle artifact for GRE imaging have been characterized in
simulations and measurements [11–17].

Furthermore, susceptibility-based, positive contrast imaging techniques have been introduced
for the delineation of interventional devices [18–23]. These techniques make use of the local
field inhomogeneity introduced by the needle to generate a hyperintense needle artifact on an
otherwise signal-suppressed background. A popular approach is dephased GRE [20]. By the
introduction of an additional external magnetic field gradient, the local needle-induced field
gradient can be counteracted, leading to restoration of phase coherence and, therefore, signal
intensity near the needle (referred to as white marker (WM) phenomenon [24]). Coincidentally,
magnetization further away from the needle, which experiences a homogeneous magnetic field, is
dephased by the external gradient (WM gradient) and the signal is suppressed. In the past, a WM
gradient has been introduced in different variations of GRE pulse sequences, creating variants of
the dephased GRE contrast technique: dephased spoiled fast low-angle shot (d-FLASH) [20],
dephased steady-state free precession (d-SSFP) [21] and dephased balanced steady-state free
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Figure 1.1: Needle intervention in a porcine animal model. (a) Misalignment of 2D real-time
imaging plane with the needle artifact results in the need for correction of the position and
orientation of the 2D plane. Manual correction steps can lead to longer procedure times. Incor-
rectly aligned planes can prevent successful image guidance during an MR intervention. (b) An
(automatic) realignment of the imaging plane with the needle artifact can restore needle visibility
to the interventionalist and image guidance is again feasible. Image data used in this figure was
reformatted from a 3D image for demonstration purposes and has been previously published by
Faust et al. [4].

precession (d-bSSFP) [25–27]. Empirically, d-bSSFP was found to be favorable to d-FLASH in
terms of achieved positive artifact signal magnitude [27].

1.2 Passive needle localization for automatic slice positioning

For MR-guided in-bore needle interventions, interventionalists commonly use 2D real-time
imaging planes for guidance. If the imaging slices are not correctly aligned with the needle so
that the needle artifact is either only partly or not visible at all (see Fig. 1.1), visual tracking of the
needle and targeting will be impaired and manual slice realignment is required. This can involve
multiple iterative realignment steps, usually performed by a technologist operating the MR system
during the intervention, which can complicate and prolong the workflow [8]. Alternatively, a
technique for automatic slice realignment, or automatic slice positioning (ASP), can be used.
Automatic methods can reduced the number of manual steps necessary and, therefore, have the
potential of accelerating the interventional procedure. For an automatic slice realignment, the

2



orientation and position of the needle can be determined using 3D needle localization and a 2D
real-time imaging slice is then automatically aligned with the detected needle trajectory. Passive
localization techniques hereby only rely on the intrinsic effect of the needle (or, sometimes,
attached passive markers) on the MR image, i.e., the needle artifact. They do not leverage
additional electronic tracking hardware, such as, e.g., local radiofrequency (RF) coils that can
be integrated into interventional devices, but are associated with additional safety risks such as
RF-induced heating [28]. Various methods for 3D passive needle localization have been proposed
in the past, which can be classified by the implemented type of algorithm: methods that localize
the needle by matching a template image with an acquired image [29–31], methods that localize
the needle by artifact segmentation in the image [32–34] or methods that optimize over a forward
model to find needle positional and orientational parameters that fit to an acquired image [35, 36].
For 3D artifact segmentation, the use of convolutional neural networks (CNNs) was originally
proposed by Mehrtash et al. [32]. They localized the needle artifact in intra-procedural MR
images of prostate biopsies. A necessity for real-time interventions is a rapid needle localization
and subsequent slice alignment to interrupt the workflow as little as possible. Full 3D MR image
acquisition, as e.g. employed by Mehrtash et al., is time intensive and therefore only of limited
real-time applicability. Some methods explored in the past for automatic slice alignment make
use of 2D tracking slices to localize a needle trajectory in 3D which reduces acquisition times
compared to a full 3D acquisition. De Oliveira et al. investigated a cross-correlation method to
localize a passive marker, attached to a needle, in two 2D tracking slices [29]. Li et al. proposed
to localize the needle artifact in multiple adjacent image slices, using a CNN, which would
then allow for the alignment of a 2D real-time slice with the needle trajectory [33]. Strehl et
al. proposed a 3D needle tracking approach based on modeling the needle artifact in multiple
2D images, parallel and orthogonal to the needle path, and evaluated the method in phantoms
[35]. 2D tracking slices require pre-positioning before the localization which can also complicate
and prolong the workflow, making a fully-3D needle localization with a rapid/accelerated, and
therefore real-time applicable acquisition desirable.

In this work, the artifact of a biopsy needle was characterized for GRE (more specifically fast
low-angle shot (FLASH)), as well as dephased GRE imaging as a first step. For FLASH, the
artifact was quantitatively compared to a simple dephasing model. For dephased GRE, artifact
size and shape were theoretically derived and validated in measurements for the three variants
d-FLASH, d-SSFP and d-bSSFP. For that purpose, models were introduced to describe the
positive signal formation in d-SSFP and d-bSSFP. Characteristics of the emerging positive signal
were then compared for the related dephased GRE techniques, including d-FLASH. In a second
step, a method for rapid 3D needle localization, based on modeling baseline-subtracted radial
FLASH k-space data, was introduced and investigated for the purpose of ASP. To accelerate the
method, localization from only a limited number of sampled k-space lines was evaluated. In a
third and last step, an alternative method for rapid 3D needle localization without the need for
a baseline scan before the insertion (as required by the first investigated method) was proposed
and investigated, using an undersampled positive contrast acquisition with d-FLASH and a
CNN-based postprocessing algorithm.
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2 Theory

This chapter provides an overview on the theoretical background essential for the investigations
conducted in this dissertation. After a condense general introduction to the origin of the MR
signal and MR imaging, the effect of a metallic needle in MRI is analyzed for the two imaging
techniques used in this work, GRE (more specifically FLASH) and dephased GRE imaging.
Lastly, a theoretical motivation for needle localization from an undersampled k-space acquisition
is given.

2.1 MR imaging basics

This section introduces the fundamental principles of the generation, acquisition and spatial en-
coding of the MR signal, as well as the reconstruction of MR images. More detailed explanations
on MR imaging can be found in the standard literature by Slichter [37], Brown et al. [38] and
Bernstein et al. [39].

2.1.1 Proton spin and macroscopic magnetization

At the basis of MRI lies the nuclear spin, a quantum-mechanical angular momentum carried by

atomic nuclei with an odd number of nucleons. It can be represented by the operator ˆ⃗
I and is

linked to a magnetic moment
ˆ⃗µ = γ

ˆ⃗
I. (2.1)

Here, γ is the gyromagnetic ratio. For conventional proton MRI, making use of the spin of
hydrogen nuclei, the proton gyromagnetic ratio is used.

For the spin operator with ˆ⃗
I = (Îx, Îy, Îz), the following commutator relations hold:

[Îi, Îj ] = ϵijkℏÎk

[
ˆ⃗
I2, Îi] = 0

(2.2)

Choosing the z-axis as the axis of quantization, we find the eigenvalue equations:

ˆ⃗
I2|I,m⟩ = I(I + 1)ℏ2|I,m⟩,
Îz|I,m⟩ = mℏ|I,m⟩.

(2.3)
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The eigenfunctions |I,m⟩ of the spin operator are characterized by the spin quantum number
I , which has a value of 1

2 for protons, and the magnetic quantum number m, for which we find
values from −I to I in integer steps, ergo ±1

2 for protons.

Let a spin magnetic moment with operator ˆ⃗µ now be placed in an external magnetic field
B⃗0 = (0, 0, B0), which is aligned here in the z-direction without loss of generality. The system’s
behavior can be described with the Hamiltonian

Ĥ = − ˆ⃗µB⃗0 = −γB0Îz. (2.4)

To find the energy eigenvalues of the quantum states, we solve the time-independent Schrödinger
equation

Ĥ|I,m⟩ = Em|I,m⟩, (2.5)

The splitting of quantum energy states in an external magetic field is called the Zeeman effect
[40]. With m = ±1

2 , we find that the two possible energy eigenvalues for the proton spin are
given by

Em = −mγℏB0. (2.6)

We now consider an ensemble of nuclear spins. The occupation probability pm for the energy
eigenstates of the spins is governed by the Boltzmann distribution with

pm =
1

I∑
m=−I

e
− Em

kBT

e
− Em

kBT , (2.7)

where kB is the Boltzmann constant and T is the temperature. To describe the statistics of
a quantum-mechanical system occupying the quantum eigenstates |I,m⟩ with the occupation
probability pm as introduced above, the density operator ρ̂ is used with

ρ̂ =
∑
m

pm|I,m⟩⟨I,m|. (2.8)

For a spin from an ensemble prepared as above and described by the density operator ρ̂, we can
now calculate the expectation value for Îi as

⟨Îi⟩ = Tr{ρ̂Îi}. (2.9)

At room temperature, the exponential function of the Boltzmann distribution can be approximated
by a first-order Taylor expansion as Em ≪ kBT . For an ensemble of spins, calculating the
sum of the expectation values ⟨Îz⟩ for all Nspins spins per volume V results in the macroscopic
magnetization along z-direction

Mz =
1

V

Nspins∑
i=1

⟨µ̂z⟩ =
1

V

Nspins∑
i=1

γ⟨Îz⟩ ≃
Nspinsℏ2γI(I + 1)B0

V 3kBT
. (2.10)
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An analogous treatment as above for the x- and y-components of the spin magnetic moment
leads to vanishing expectation values in thermal equilibrium with the magnetic field oriented in
z-direction. We therefore find the equilibrium magnetization M⃗0 = (0, 0,M0) oriented along the
B⃗0-field with

M0 ≃
Nspinsγ

2ℏ2B0

V 4kBT
. (2.11)

2.1.2 Equation of motion and relaxation processes

The dynamics of a quantum-mechanical ensemble are described by the von-Neumann equation

iℏ
dρ̂

dt
= [Ĥ, ρ̂]. (2.12)

We can use Eq. 2.12 to calculate the time evolution of the expectation value of the magnetic
moment as given in Eq. 2.9. As the magnetic moment ˆ⃗µ as given in Eq. 2.1 is not explicitly
time-dependent, we get

d⟨ ˆ⃗µ⟩
dt

= − i

ℏ
⟨[ˆ⃗µ, Ĥ]⟩. (2.13)

Inserting the Hamiltonian from Eq. 2.4 and applying the commutator relations for the angular
momentum from Eq. 2.3 yields the equation of motion for the macroscopic magnetization

dM⃗
dt

= M⃗ × γB⃗. (2.14)

This equation is analogous to the equation describing a classical spinning top. For a magneti-
zation oriented in z-direction, which is also called the longitudinal magnetization M∥, the time
derivative of M⃗ vanishes, resulting in a constant time evolution. If the magnetization has a
component orthogonal to the z-direction, the equation describes a precession movement of the
magnetization around the direction of the magnetic field B⃗. Introducing a complex description of
the magnetization in the xy-plane, which is also called the transversal magnetization M⊥, the
solution to Eq. 2.14 is calculated as

M∥(t) = M∥(0)

M⊥(t) = Mx(t) + iMy(t)

= M⊥(0)e
−iω0t+iΦ0

(2.15)

Here, ω0 describes the precession frequency of the transversal magnetization and Φ0 is a phase
offset at time t = 0. ω0 is called the Larmor frequency or, for proton nuclear magnetic resonance
(NMR), the proton resonance frequency (PRF), with

ω0 = γB0, (2.16)

The solution describes the magnitude of the longitudinal and transversal magnetization as time-
independent. However, in reality, the magnetization in the xy-plane decreases with time while
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the magnetization in z-direction returns to the thermal equilibrium value provided in Eq. 2.11. To
describe these effect mathematically, Bloch introduced two relaxation terms to Eq. 2.14, leading
to the phenomenological Bloch equations of motion [41]

dMx

dt
= γ(M⃗ × B⃗)x −

Mx

T2
,

dMy

dt
= γ(M⃗ × B⃗)y −

My

T2
,

dMz

dt
= γ(M⃗ × B⃗)z −

M0 −Mz

T1
.

(2.17)

Here, the relaxation parameter T1 describes the return of the longitudinal magnetization to its
equilibrium state while the parameter T2 describes the decay of the transversal magnetization.
The solutions for the Bloch equations are found as

M∥(t) = M0 −
(
M0 −M∥(0)

)
e
− t

T1 ,

M⊥(t) = M⊥(0)e
− t

T2 e−iω0t+iΦ0 .
(2.18)

The decay of the transversal magnetization is attributed to a loss of phase coherence of the
individual spins due to mutual interaction. An additional dephasing effect can appear due to a
time-constant local distortion of the magnetic field, described by the relaxation constant T

′
2. To

account for this effect, the effective relaxation constant T ∗
2 can be introduced with

1

T ∗
2

=
1

T2
+

1

T
′
2

(2.19)

To account for transversal relaxation with T ∗
2 , it can be swapped with T2 in the solution to

the Bloch equations given by Eq. 2.18. The dephasing attributed to a local field disturbance is
reversible, in contrast to pure T2 relaxation (see Section 2.2.1 on the spin-echo imaging technique).
The decay of the transversal magnetization over time is called free induction decay (FID).

2.1.3 Magentic resonance and NMR signal

The underlying physical principle of MRI is the NMR phenomenon, which was discovered by
Bloch [41], Purcell et al. [42] and Rabi et al. [43]. It describes the manipulation of the nuclear
spin, placed in an external magnetic field, by an oscillating magnetic field and, in response, the
production of an electromagnetic signal. For a large ensemble of spins as introduced above, the
response of the macroscopic magnetization to an oscillating magnetic field can be understood
from the equation of motion Eq. 2.14. In thermal equilibrium, the magnetization M⃗ is oriented
along the direction of the main magnetic field B⃗0 as described in Section 2.1.1. By applying a
RF-excitation, the orientation of M⃗ can be manipulated. We introduce the oscillating magnetic
field B⃗1 with

B⃗1(t) = B1(e⃗x cos(ω1t+ΦRF) + e⃗y sin(ω1t+ΦRF)), (2.20)
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where e⃗x and e⃗z are the unit vectors along the x- and the z-axis. The field is oriented orthogonally
to the main magnetic field B⃗0 and circularly polarized with the frequency ω1 and a phase offset
ΦRF. For a simpler calculation, the reponse of the magnetization to the oscillating field can be
investigated in a coordinate frame rotating with ω1 around the z-axis. The effective magnetic
field is then given by

B⃗eff =
(ω0 − ω1) e⃗z′ + ω1(e⃗x′ cos(ΦRF) + e⃗y′ sin(ΦRF))

γ
, (2.21)

where e⃗x′ and e⃗z′ are the unit vectors in the rotating coordinate system. We can rephrase equation
Eq. 2.14 in the rotating frame as

d

dt
M⃗rot = γM⃗rot × B⃗eff. (2.22)

For the on-resonant case ω0 = ω1, the z′-component of the effective magnetic field disappears
and we find the solution to Eq. 2.22 as

M⃗rot = M0[(sin(ω1t) cos(ΦRF))e⃗x′ + (sin(ω1t) sin(ΦRF))e⃗y′ + cos(ω1t)e⃗z′ ]. (2.23)

Magnetization is therefore rotated around the rotation axis e⃗x cos(ΦRF) + e⃗y sin(ΦRF) with the
so-called flip angle

fa =

∫ tRF

0
ω1(t) dt = γ

∫ tRF

0
B1(t) dt, (2.24)

where tRF is the duration time of the RF pulse. Changing the orientation of B1 in the rotating
frame (phase of the RF pulse) therefore allows a change in rotation axis of the magnetization. For
the rectangular-shaped RF pulses used in this work (hard pulses), Eq. 2.24 can be simplified to

fa = γtRFB1(t). (2.25)

A precessing magnetization in the transverse plane can induce a current in a coil which is placed
near the excited volume (Faraday induction). The magnitude of the signal depends on system-
dependent factors, such as coil sensitivities or amplification, but is proportional to the magnitude
of the transversal magnetization:

S(t) ∝ M⊥(0)e
− t

T∗
2 e−iω0t+iΦ0 . (2.26)

2.1.4 Spatial signal encoding and image reconstruction

Magnitude and phase of the local magnetization generally vary across the investigated volume,
e.g., due to differences in spin density or relaxation times and local differences in magnetic field
strength due to distortions in the main magnetic field. A spatially varying MR signal constitutes

9



the origin of the MR image contrast. To spatially encode the signal, external magnetic field
gradients G⃗(t) can be applied to the magnetization [44]:

G⃗(t) =
∂Bz(t)

∂x
e⃗x +

∂Bz(t)

∂y
e⃗y +

∂Bz(t)

∂z
e⃗z

= Gx(t)e⃗x +Gy(t)e⃗y +Gz(t)e⃗z

(2.27)

A spatially varying magnetic field due to an external gradient introducing a linear field variation
in space causes a local change in Larmor frequency

ω(x⃗, t) = γ(B0 + x⃗G⃗(t)). (2.28)

Here, x⃗ describes the position vector in space. If the gradient is applied for a time t, local
magnetization will acquire a phase

Φ(x⃗, t) = γ

t∫
0

G⃗(t′) dt′x⃗ = 2πk⃗(t)x⃗. (2.29)

Here, the wave vector k⃗ was defined as

k⃗(t) =
γ

2π

t∫
0

G⃗(t′) dt′. (2.30)

The measured MR signal is proportional to the transverse magnetization integrated over the
sensitivity volume of the coil. As elucidated in Section 2.1.2, the magnitude of the transverse
magnetization will depend on the initial value after excitation and, due to transverse relaxation,
on the time of acquisition. The time after which the center of k-space is acquired is called echo
time TE. Neglecting relaxation effects during the acquisition process, we find the expression

S(k⃗(t)) ∝
∫
V

M⊥(x⃗, TE)e
−2πik⃗(t)x⃗ dx⃗ ≡ F{M⊥(x⃗, TE)} (2.31)

We can see from Eq. 2.31 that the measured signal S(k⃗(t)) is given by the Fourier transform (FT)
of the local magnetization F{M⊥(x⃗, TE)}. The magnitude and phase of the local magnetization
can therefore be determined by performing an inverse FT on the acquired signal

M⊥(x⃗, TE) ∝
∫

S(k⃗(t))e2πik⃗(t)x⃗ dk⃗ ≡ F−1{S(k⃗(t))}. (2.32)

Using different gradient coils, it is possible to generate magnetic field gradients in all three spatial
directions. In this way, different values for k⃗(t) can be generated. Applying the gradient fields
with different timings and order allows to acquire the various parts of the so-called k-space,
following different types of trajectories (see below for Cartesian and non-Cartesian sampling).
For 2D imaging, a slice selection technique can be applied before the encoding of k-space. Using
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tailored RF pulses while applying a magnetic field gradient in slice selection direction allows to
only excite magnetization in a slice with a certain thickness and not all of the investigated volume,
making a subsequent 2D k-space encoding of the excited slice sufficient for image generation. As
only 3D k-space encodings were used in the scope of this thesis, the slice selection technique is
not further discussed here.

Cartesian acquisition

As described above, the spatial information of the image is encoded in the MR signal using
magnetic field gradients. Applying magnetic field gradients subsequently in varying spatial
directions allows to acquire k-space data, following a certain k-space trajectory. After the
acquisition of k-space, an image of the local magnetization can be reconstructed by means of a
multidimensional FT (compare Eq. 2.32). For Cartesian imaging techniques, k-space is sampled
by traversing it along parallel lines. Discrete sampling points are hereby placed on an evenly
spaced finite sampling grid.

For a 3D Cartesian readout of k-space, usually, after excitation of the magnetization, a position at
the edge of k-space is first selected by applying so-called phase encoding gradients G⃗PE (prior
to the actual acquisition). The k-space is then subsequently traversed while acquiring the data
in regular intervals, applying a gradient G⃗FE in so-called frequency encoding direction. The
signal is hereby discretly sampled by the MR hardware, using a so-called analogue-to-digital
converter (ADC). Without loss of generality, we choose a phase encoding in x- and y-direction
and a readout in z-direction. In this case, Cartesian sampling can therefore be described by the
acquired wave vectors

k⃗Cartesian = m
γGPE,xtPE,x

NPE,x
e⃗x + j

γGPE,ytPE,y

NPE,y
e⃗y + p

γGFEtFE

NFE
e⃗z

= m∆kPE,xe⃗x + j∆kPE,ye⃗y + p∆kFEe⃗z.

(2.33)

Here, tPE,x and tPE,y, as well as tFE describe the application times of the respective gradients and
m = −NPE,x

2 , . . . ,
NPE,x

2 − 1, j = −NPE,y

2 , . . . ,
NPE,y

2 − 1 and p = −NFE
2 , . . . , NFE

2 − 1 are defined
with the number of sampling steps NPE,x

2 , NPE,y

2 , NFE
2 in each respective encoding direction. The

time interval between the acquisition of two samples for the frequency encoding step is called the
dwell time td, from which the receiver bandwidth is defined as

bw =
1

td
=

NFE

tFE
=

γGFE

∆kFE
. (2.34)

By subsequent acquisition of parallel k-space lines with varying phase encoding, k-space is
filled during the acquisition process. Commonly, RF excitation pulses are applied between the
acquisition of different lines of k-space to (re-)excite the magnetization that, in practice, strives
back to its equilibrium value with time due to relaxation. The time between RF excitation pulses
is called repetition time TR. Depending on the timing and type of applied gradients and RF
pulses, different magnetization states can be reached, including different types of steady-state
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magnetization, leading to differences in established contrast for the various techniques (see
Section 2.2).

Acquiring discrete samples of the continuous k-space signal, given in Eq. 2.31, as described by
Eq. 2.33 has consequences for image reconstruction. The discrete sampling of the signal can be
mathematically described with the sampling or “comb” function

X∆k(k) =
1

∆k
X
(

k

∆k

)
≡

∞∑
n=−∞

δ(k − n∆k). (2.35)

Here δ denotes the Dirac delta function. While Eq. 2.35 represents the one-dimensional sampling
function, a generalization to multiple dimensions is straight forward. For the sake of brevity, we
continue here with the 1D sampling function. Its FT is given by

F{X∆k(k)} =
1

∆k
X1/∆k(x) = X(∆kx). (2.36)

The discretely sampled signal S′(k) can be represented by multiplying the continuous signal
S(k) with Eq. 2.35:

S′(k) = S(k) ·X∆k(k) =

∞∑
n=−∞

S(n∆k) δ(k − n∆k). (2.37)

Applying a FT to Eq. 2.37 allows to calculate the spatial representation of the transverse magneti-
zation

M ′
⊥(x) = F−1{S′(k)} ∝ M⊥(x) ∗X(∆kx) =

1

∆k

∞∑
n=−∞

M⊥

(
x− n

∆k

)
. (2.38)

From Eq. 2.38, we can see that the spatial representation of the magnetization M ′
⊥(x) is given by

periodic repetition of the physical magnetization M⊥(x) with the sampling rate 1
∆k , allowing the

definition of the FOV as
FOV =

1

∆k
. (2.39)

If the imaged object (with extend Lobject in the respective spatial direction) is larger than the FOV,
the reconstructed image will present with so-called aliasing artifacts, allowing the formulation of
the so-called Nyquist-Shannon sampling theorem as a criterion for aliasing-free imaging [45]:

∆k <
1

Lobject
. (2.40)

In practice, k-space is not only sampled discretly, but also only up to a maximum wave number
kmax = Nk∆k

2 in the respective direction, with Nk being the total number of k-space points
sampled (compare Eq. 2.33). The finite sampling can be mathematically modeled by multiplying
the discretized signal equation Eq. 2.37 with the rectangular function

rect

(
k

2kmax

)
=


0, if |k| > 2kmax

2
1
2 , if |k| = 2kmax

2

1, if |k| < 2kmax
2 ,

(2.41)
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with the width of the acquired k-space 2kmax = Nk∆k. We can calculate the FT of Eq. 2.41 as

F
{
rect

(
k

2kmax

)}
= 2kmax

sin(π2kmaxx)

π2kmaxx
≡ 2kmax sinc (π2kmaxx) . (2.42)

The discretely sampled signal with finite support in k-space can hence be expressed as the
multiplication of the continuous signal with infinite support S(k) with the

S′(k) = S(k) ·X∆k(k) · rect
(

k

2kmax

)
=

Nk/2−1∑
n=−Nk/2

S(n∆k) δ(k − n∆k). (2.43)

Applying the FT again allows us to find an expression for the spatial representation of the
transverse magnetization (now for discrete and finite sampling)

M ′
⊥(x) = F−1{S′(k)} ∝ M⊥(x) ∗X(∆kx) ∗ 2kmax sinc(π2kmaxx). (2.44)

The image of the transverse magnetization is convoluted with a sinc-function, leading to a
blurring in the image. The resolution of MR image is usually described as the physical distance
between two objects that can still be visually separated in an image. A possible definition of the
resolution is therefore given by the distance between the maximum of the sinc function and its
first minimum

res =
1

2kmax
. (2.45)

To reconstruct an image from the discretly sampled k-space, a discrete FT can be employed.
An acquisition of Nk samples allows the reconstruction of Nx voxels with voxel edge length
res in the respective direction. The reconstructed intensity for each voxel is hereby not merely
the complex sum of the magnetization across the voxel, but is defined by the voxel sensitivity
function (VSF), which can be deduced directly from the characteristics of the FT [46]:

q(x) =
1

Nx
·

sin
(
π x
∆x

)
sin
(
π x
Nx∆x

) . (2.46)

Here, ∆x is the width of the voxel in the respective spatial direction. Partial magnetization from
off-center locations in a voxel is therefore underrepresented in the reconstructed image. For
example, with Nx = 64, only a fraction of q(∆x

2 ) ≈ 0.64 q(0) of partial magnetization from the
voxel edge will contribute to the voxel’s intensity.

An advantage of Cartesian sampling is that due to sampling on the regular grid, the fast and
computationally efficient fast Fourier transform (FFT) algorithm can be used for rapid image
reconstruction [47].
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Non-Cartesian acquisition

The magnetic field gradients in the different spatial directions (Eq. 2.27) can be arbitrarily
combined. This allows the traversing of k-space following non-Cartesian trajectories. Traversing
k-space along straight lines through it’s origin with a varying spherical angle constitutes a radial
k-space trajectory, as was also used in this thesis. The coordinates in k-space along one radial
spoke, defined by its angular orientation (θk, ϕk), are given as

k⃗radial = m∆kFE sin θk cosϕk e⃗x +m∆kFE sin θk sinϕk e⃗y +m∆kFE sinϕk e⃗z. (2.47)

with m = −NFE
2 , . . . , NFE

2 − 1. The direction of the frequency encoding changes with the angular
orientation of the spoke.

If the trajectory sampling the k-space does not follow the Cartesian grid, the application of the
FFT algorithm is not directly applicable. Instead, a so-called non-uniform fast Fourier transform
(NUFFT) can be performed to reconstruct the image from the acquisition. The application of a
NUFFT for non-Cartesian image reconstruction was, e.g., summarized by Pauly et al. [48] or
Block [49]. It includes the following steps:

1. Sampling of the k-space on a non-cartesian grid

2. Density compensation to counterbalance a disproportionally sampled k-space

3. Convolution of the k-space samples with an interpolation kernel (gridding [50])

4. Evaluation of the interpolated k-space on a Cartesian grid

5. Inverse FFT to transform k-space to image space

6. Correction for apodization by division with the FT of the interpolation kernel

7. Cropping of the image to chosen FOV to remove oversampling

We can therefore express the spatial representation of the transverse magnetization after the
NUFFT procedure with the equation

M⊥
′(x) = F{[(S(k) ·Anc(k) ·W (k)) ∗ C(k)] ·X∆k(k)}/F{C(k)} (2.48)

Here, C(k) is a gridding kernel (with its FT given by F{C(k)}), Anc(k) is the non-Cartesian
sampling function and W (k) is the weighting function for the density compensation. The gridded
k-space can then be transformed to image space using the standard FFT procedure, similar to
Cartesian image reconstruction.

The non-Cartesian sampling function Anc(k) is defined by the non-equidistantly distributed
samples in k-space ki, defined by the k-space trajectory as, e.g., given in Eq. 2.47:

Anc(k) =
∑
i

δ(k − ki). (2.49)
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For the interpolation kernel, usually a Kaiser-Bessel function is chosen as a finite approximation
of the sinc function [51], which corresponds to a rectangular function in image space

C(k) =


1

dKB
I0

(
βKB

√
1−

(
2k
dKB

)2)
for |k| ≤ dKB

2

0 for |k| > dKB
2

(2.50)

Here, I0 is the zeroth-order Bessel function, dKB is the width of the Kaiser-Bessel window and
βKB is an empirically determined shape factor [52].

Many non-Cartesian trajectories sample the k-space unevenly, e.g. acquiring disproportionally
many samples from the center region. To counteract this imbalance, each acquired k-space point
must be weighted according to the local sampling density. Pipe et al. proposed a numerical
iterative method to calculate the weightings for each sampling point, which takes the coordinates
of the sampled k-space points as input [53]. Initializing the weights as a matrix of ones W 0, the
weight matrix is iteratively updated with

W t+1 =
W t

(CF)(CF)HW t
. (2.51)

Here, C is again the chosen interpolation kernel and F denotes theFFT. After a chosen number
of iterations, the final weight matrix is extracted.

The convolution of the non-uniformly sampled k-space with a finite gridding kernel (apodization)
will lead to a modulation of the image space signal with the Fourier transform of the kernel. This
can be corrected for by deviding the image space signal by the kernel’s Fourier transform.

The use of a finite interpolation kernel also leads to the occurrence of side lobes, signal originally
placed outside the FOV, but aliased back into the image. Typically, a two-fold oversampling is
used for non-Cartesian imaging in the frequency readout direction, allowing the reconstruction of
a FOV twice as large. Aliasing will now mainly affect the image outside the original FOV size to
which the image is then cropped in a final step of the NUFFT procedure.

To prevent aliasing in the image when, e.g., encoding k-space using a radial trajectory, the Nyquist-
Shannon sampling theorem must be fulfilled not only for the frequency encoding direction, but
also for angular sampling. The distance between two radial spokes through the k-space center
will be greatest for the outmost points of the spokes. From Eq. 2.40, we can infer a limitation for
the angular sampling increments ∆ϕk and ∆θk:

kmax∆ϕk = kmax∆θk =
1

FOV
. (2.52)

Considering a uniform angular distribution of center-through k-space spokes, we can calculate
the required number of spokes Nspokes to prevent aliasing, making use of the spherical angle 4π,
as (cf. Park et al. [54])

Nspokes =
1

2

4π

∆ϕk∆θk
= 2π

(
NFE

2

)2

. (2.53)
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Undersampling k-space in the angular dimension, i.e. sampling less radial k-space spokes than
required by Eq. 2.53, will cause the image to present with characteristic streaking artifacts, lines
of high signal intensity extending through the image.

2.2 Image contrast and MR pulse sequences

The contrast of an MR image is determined by the magnitude and phase of the local transverse
magnetization, as described in Section 2.1.4. The magnitude of the local signal hereby depends
on various tissue parameters, for example spin density, the initial value of the transverse mag-
netization after excitation, and relaxation constants, while the phase can be influenced by local
inhomogeneities in the magnetic field.

An MR pulse sequence describes a series of RF pulses, used for the excitation of transverse
magnetization in an MR acquisition, and external magnetic field gradient moments, applied by
the MRI machine, that also influence magnitude and phase of the local magnetization. In the
following, the sequence types used in this thesis will be introduced.

2.2.1 Spin-echo imaging

In a spin echo (SE) acquisition, magnetization is flipped into the transversal plane by an initial
excitation RF pulse. Local inhomogeneities in the magnetic field can lead to an intra-voxel phase
distribution, which can cause a decrease in signal due to destructive interference of the partial
magnetization (T ∗

2 relaxation, see Section 2.1.2). To counteract the decay of signal due to local
inhomogeneities in the magnetic field, an additional RF puls is introduced to the sequence after
the initial excitation pulse. This second RF pulse is usually applied after a time of TE

2 with a flip
angle of fa = 180◦, so that it reverses the orientation of the magnetization in the transverse plane
and causes a rephasing (“spin echo” [55]) of the magnetization at TE, which is then sampled by
the ADC. Common implementations of SE sequences can be found in the standard literature,
such as in Bernstein et al. [39].

SE sequences can, e.g., be used to create T2-weighted images, as influences leading to T ∗
2

relaxation are reversed by the 180◦ pulse. The SE sequence type is therefore also inherently
immune to dephasing artifacts caused by metallic devices, e.g., biopsy needles, that can invoke
a magnetic field inhomogeneity in their proximity (see Section 2.3 below). In this thesis, SE
sequences were used only for the acquisition of reference scans without needle dephasing
artifacts.

2.2.2 Gradient-echo imaging

In GRE imaging, no extra RF pulse is played out between the excitation pulse and the acquisition,
i.e., the FID is sampled directly. For GRE sequences, typically RF-spoiled GRE (commonly
called RF-spoiled FLASH, or simply FLASH) and (balanced) steady-state free precession (SSFP)
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are distinguished [56]. The signal and contrast of an image acquisition depend on the used GRE
sequence subtype and is described in the following sections.

For the different GRE sequence types, different magnetization steady-states SSS can be established
which govern the general signal magnitude. For GRE sequences, image contrast will also
be determined by the intra-voxel phase distribution Φ as, compared to the SE technique, an
accumulated phase difference between partial magnetization is not (fully) reversed and signal
from partial magnetization within a voxel will interfere either constructively or destructively,
depending on the respective local phase. For an intra-voxel phase distribution Φ(z) established
along a voxel of edge length ∆z, neglecting relaxation processes and assuming a uniform voxel
sensitivity function (therefore neglecting Eq. 2.46), the integrated voxel signal magnitude can be
expressed by (cf., e.g., Bakker et al. [20])

Svoxel = SSS

∣∣∣∣∫ rect(
z

∆z
)e−iΦ(m0,z,τ) dz

∣∣∣∣ . (2.54)

Here, the steady-state voxel signal magnitude SSS is assumed to be location-independent. The
intra-voxel phase distribution Φ can depend on m0 =

∫ TE
0 G(t)dt, which is the induced gradient

moment at TE for a gradient G(t) acting on local magnetization in z-direction, and a local
additional phase offset τ . An intra-voxel phase distribution can hereby be introduced by local
gradients in the main magnetic field (e.g., susceptibility-induced gradients in the proximity of
metallic devices as described in Section 2.3 below) or by external gradients played out during the
MR acquisition.

Spoiled fast low-angle shot

The FLASH pulse sequence was proposed to allow for rapid imaging with TR shorter than the
tissue’s longitudinal relaxation time T1 [57]. Due to the short TR, magnetization cannot return
to equilibrium between to RF pulses. Each RF pulse is therefore only able to flip the fraction
of the magnetization into the transverse plane, that has already been restored to the longitudinal
direction trough T1 relaxation. Commonly, a so-called RF-spoiling mechanism is used with
FLASH imaging to disrupt transverse coherences at the end of each TR. Otherwise, the transverse
component of the magnetization would also experience an excitation with the flip angle of the
RF pulse and could contribute to the signal which is undesired as it would change the contrast.
For effective spoiling, Zur et al. proposed to apply a quadratic RF phase cycling scheme [58],
meaning the phase ΦRF of each applied RF pulse is shifted by an angle ΦRF,j which can be
calculated using the recursive formula

ΦRF,j =
ΦRF,0

2
(j2 + j + 2). (2.55)

This shift in RF phase is combined with a spoiler gradient moment Gspoil dephasing the transverse
magnetization at the end of TR by 2π

px for effective spoiling of the transverse magnetization.
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After a transition phase of several TR, a so-called incoherent steady-state magnetization is reached,
with SSSI, the steady-state signal magnitude per voxel, given by (see, e.g., Brown et al. [38])

SSSI ∝ M0

sin(fa)
(
1− e

(
−TR

T1

))
1− cos(fa)e

(
−TR

T1

) . (2.56)

The FLASH signal magnitude is characterized by this steady-state magnetization and the T ∗
2

relaxation up to the echo time TE. As can be seen from Eq. 2.56, the magnitude of the steady-state
magnetization is dependent on the applied flip angle fa by the RF pulses. The optimal flip angle,
allowing for maximum signal, is the so-called Ernst angle faE [59]. It can be calculated by
maximizing Eq. 2.56 (∂SSSI

∂(fa)
!
= 0), leading to

faE = arccos(e−TR/T1). (2.57)

Applying a gradient moment m0 up to TE will introduce a phase Φ to the local magnetization.
As the transverse magnetization is spoiled at the end of each TR for a FLASH sequence, local
phase at TE will depend linear on the applied gradient moment up to TE (ergo, not influenced by
any phase evolution from previous TR). Assuming a gradient moment m0 acting in z-direction,
causing a linear field variation, the phase of the local magentization can be calculated as

Φspoiled(z,m0, τ) = γm0z + τ , (2.58)

with τ being a constant phase offset, characterizing the position of the evaluated local magneti-
zation with respect to the resonance (i.e., characterizing the location z where Φ = 0). Inserting
Eq. 2.58 into Eq. 2.54, the integrated voxel signal magnitude for a FLASH sequence can be
shown to be characterized by the well-known sinc function (cf., e.g., Bakker et al. [20]):

SFLASH = SSSI

∣∣∣∣∫ rect
( z

∆z

)
e−i(γm0z)dz

∣∣∣∣
= SSSI

∣∣∣∣sinc
(
γm0∆z

2

)∣∣∣∣ (2.59)

Here, τ could be neglected for the integration as it is only a constant phase factor. The sinc
function is maximized for m0 = 0, i.e., a constant intra-voxel phase distribution.

In MR-guided interventions, the variation in magnetic susceptibility between metallic inter-
ventional devices and the adjacent tissue creates a local magnetic field gradient. This leads
to dephasing of local magnetization, and therefore, according to Eq. 2.59, signal loss [9, 11],
contributing to a characteristic device artifact, which is discussed in Section 2.3.2 for biopsy
needles.
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(Balanced) steady-state free precession

In comparison to RF-spoiled FLASH, no RF-spoiling is performed at the end of TR for SSFP
sequences and therefore, there is no disruption of transverse coherences [60, 61]. For short
repetition times TR ≪ T1, the magnetization has not enough time to return to the equilibrium
state and the RF puls at the start of TR will act on the longitudinal as well as on the transversal
component of the magnetization which is not yet fully relaxed from previous excitations. For
a train of RF pulses, this characteristic will cause the magnetization to, after passing through a
transient phase, approach a so-called coherent steady state with magnitude per voxel SSSC and a
characteristic local phase Φunspoiled [62, 63].

To bring the magnetization close to the coherent steady state to start imaging without awaiting
the passing of the transient phase, the magnetization can be prepared before the start of the image
acquisition using different strategies (see [64]). A popular approach is the application of a (fa/2
- TR/2) preparation pulse, meaning an RF pulse is applying only half of the flip angle to the
magnetization, followed by a waiting period of TR/2 before the first TR of the actual image
acquisition [65].

When the steady state is reached, magnitude SSSC(Θ) and phase Φunspoiled(Θ) of the signal at time
TE will depend on the net gradient moment acting on the magnetization during TR, introducing a
certain phase advance Θ to the local magnetization. In the following, we assume an induced net
gradient moment of 2m0 to act across TR. Depending on the placement of TE in relation to the
induced gradient moment, different contrast techniques can be distinguished [56]. Signal readout
is commonly placed either after the RF pulse and before the introduction of the residual gradient
moment 2m0, creating a so-called fast imaging with steady-state free precession (FISP) sequence.
Alternatively, the signal readout can be placed after the introduction of 2m0, constituting a
so-called time-reversed fast imaging with steady-state free precession (PSIF) sequence. The FISP
and the PSIF sequence have some unique properties that render them useful for various imaging
applications in the clinical routine (see, e.g., [66]), but are however not used in the context of
this thesis which is why they will not be further discussed here. We instead investigate a readout
placed in such a way that half of the induced residual gradient moment (1m0) is induced before
TE and the other half (1m0) is induced after TE. The total phase advance of local magnetization
at position x between two consecutive RF pulses is then given by Θ = 2(γm0z + τ). Here, τ
is again a discrete phase offset, characterizing the position of the evaluated local magnetization
with respect to the resonance. The signal magnitude is then given as [67, 68]

SSSC(Θ) ∝
∣∣∣∣(1− E1)(E2 sin fa sinΘ) + i(1− E1)((1− E2 cosΘ) sin fa)

D

∣∣∣∣ , (2.60)

with E1,2 = e
−TR
T1,2 and D = (1 − E1 cosα)(1 − E2 cosΘ) − (E1 − cosα)(E2 − cosΘ)E2.

Figure 2.1 shows the signal magnitude, depending on the local phase advance at TE. The
magnitude changes with the induced phase advance, becoming zero for multiples of Θ = 2π.
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Figure 2.1: Magnitude of the coherent steady-state signal for an induced phase advance γm0z+ τ
of the local magnetization at TE (normed signal magnitude, example sequence parameters:
T1 = 40TR, T2 = 20TR, fa = 70◦). In the context of the model introduced by Lebel et al. (“shell
model” [69], used in this thesis), a constant signal magnitude is assumed.

Similar to the signal magnitude, the local phase depends on the induced phase advance Θ of the
local magnetization between two TR with

Φunspoiled(Θ) = arg
(
(1−E1)(E2 sin(fa) sinΘ)+i(1−E1)((1−E2 cosΘ) sin(fa))

D

)
. (2.61)

Figure 2.2 shows the signal phase at TE, depending on the local phase advance. A gradient
moment will induce a “flip” in phase where the induced phase advance at TE locally surpasses
multiples of π. If no external net magnetic gradient moment is applied throughout TR to the
local magnetization (can be achieved by balancing all applied gradient moments at the end of TR
with an additionally applied gradient moment of opposite polarity), no phase flips are introduced
and the contrast is called balanced steady-state free precession (bSSFP). The resonance offset
2τ = π is usually set to maximize the signal. Gradient moments that are balanced within a TR
are, similarly to spoiled gradient moments (see section on FLASH imaging above), not seen
by the magnetization in subsequent TR. A balanced gradient will therefore, similarly to spoiled
gradients, induce a linear phase variation with m0.

The relations Eq. 2.60 and Eq. 2.61 appear quite complex and can be impractical for use in
derivations. Lebel et al. therefore proposed two simplifications to provide a simplified model of
magnitude and phase of the SSFP signal: (i) to model the magnitude as constant and independent
of the net gradient moment induced, and (ii) to model the phase as a simple square wave
function:

Φspoiled or balanced(z,m0, τ) = γm0z + τ

Φunspoiled/unbalanced(z,m0, τ) = SW(γm0z + τ)

=

{
π for (2k − 1)π < γm0z + τ < 2kπ

0 for 2kπ < γm0z + τ < (2k + 1)π,

(2.62)
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Figure 2.2: For a gradient moment m0 acting on local magnetization along the z-direction at
TE, the phase of local magnetization at TE varies depending on whether the acting gradient
moment is spoiled or balanced, or unspoiled/unbalanced at the end of TR. While the phase at TE
depends linearly on m0 for a spoiled or balanced gradient moment, the dependence on m0 for
an unspoiled/unbalanced gradient moment is more complex and can be described by Eq. 2.61
(assuming a net induced gradient moment of 2m0 at the end of TR; example sequence parameters:
T1 = 40TR, T2 = 20TR, fa = 70◦). Lebel et al. modeled this dependency as a simple square
wave as given in Eq. 2.62 (“shell model” [69]). Figure adapted from Faust et al. [2].
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with k ∈ Z. Lebel et al.’s model, which is termed “shell model”, is additionally depicted in
Fig. 2.1 and Fig. 2.2.

Near a metallic perturber, such as a biopsy needle, a local susceptibility-induced gradient (see
Section 2.3) can cause phase flips which are spaced closer together for stronger gradient moments
that usually appear closer to the device. This can form a local hypointense needle artifact, similar
to FLASH imaging, in bSSFP images.

2.2.3 Susceptibility-based positive contrast imaging using dephased GRE

Artifacts introduced by metallic needles in conventional FLASH imaging, as described below
in Section 2.3.2, are often characterized by signal voids in the proximity of the device due to
susceptibility-induced dephasing. The device artifact can be used by the interventionalist to
localize the needle in the image (see, e.g., Weiss et al. [5]). Signal voids in MR images can,
however, have ambiguous origin (different tissue types, flow artifacts, non-tissue background etc.),
and notable voids situated near devices can obstruct accurate device localization. Dephased MRI
is a technique that exploits the inhomogeneity in the magnetic field caused by a metallic device to
create increased signal intensities close to the interventional device and, therefore, allow for the
visualization of metallic devices by the evocation of a hyperintense device artifact while suppress-
ing the background signal further away from the device [20]. In dephased MRI, introducing an
additional external gradient moment, prior to image readout, can counteract the gradient moment
induced by the local susceptibility difference between the device and the surrounding material,
thereby restoring phase coherence of the local magnetization and recovering signal. Meanwhile,
this external gradient dephases signal further away from the device where the magnetic field
remains largely unaffected by the susceptibility-induced inhomogeneity, thus diminishing the
background signal and creating a hyperintense device artifact in the image. Seppenwoolde et al.
achieved a positive device signal aritfact by shortening the slice-selection rephaser gradient in a
FLASH sequence, deliberately creating a residual excess gradient moment in the slice-selection
direction to locally balance a susceptibility-induced gradient moment [19]. The evoked emergence
of a hyperintense device artifact was called the “WM phenomenon”. Later, Bakker et al. extended
the principle of introducing a global gradient dephasing, e.g. for device visualization by evoking
the WM phenomenon, to general gradient directions (analogous to shifting the image reconstruc-
tion window of the acquisition k-space) and coined the term “dephased MRI” [20]. Dephased
contrast imaging has been implemented for locating paramagnetic markers and interventional
devices [19, 31]. A similar technique using gradient compensation has been applied to generate
positive contrast for superparamagnetic iron oxides (SPIO)–labeled cells [70].

Generally, creating dephased contrast is achievable with GRE-type sequences, as in spin-echo
sequences, susceptibility-induced dephasing is inherently counteracted (see Section 2.2.1). In
the following, an additional gradient moment introduced into a GRE imaging sequence to
generate dephased GRE will be termed a WM gradient moment, thereby reflecting on the
work of Seppenwoolde et al. [19]. As listed in Section 2.2.2, GRE-type sequences generally
include RF-spoiled GRE (commonly known as spoiled FLASH), SSFP, and bSSFP [56]. While
Seppenwoolde et al.’s original work utilized dephased spoiled FLASH contrast [19], referred to
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here as d-FLASH, Patil et al. introduced the "echo-dephased SSFP" method [21], which will be
called dephased SSFP (d-SSFP) in the following. Dephased bSSFP (d-bSSFP) has also been used
by various authors for visualizing interventional catheters and needles [25, 26]. Reiß et al. showed
in preliminary experimental work that d-bSSFP contrast can provide a higher positive signal
intensity compared to d-FLASH [27]. In the following, signal models for d-SSFP and d-bSSFP
are introduced, characterized and compared to the well-known signal model for d-FLASH [20].

In their study, Seppenwoolde et al. explored the appearance of bright contrast near metallic devices
following the application of an external gradient GWM [19]. They attributed this effect, referred
to as the WM phenomenon as mentioned earlier, to the compensation of local gradient moments.
A susceptibility-induced magnetic field inhomogeneity near a metallic object can be described
by a local magnetic field gradient Gsusc. For small voxels, this gradient can be approximated as
constant, which corresponds to a first-order Taylor approximation of the magnetic field distortion.
Let GWM(t) and Gsusc(t) therefore be magnetic field gradients that generate linear field variations
in z-direction (without loss of generality) and that act on local magnetization at time t during the
repetition time TR. At the echo time TE, the gradients will have introduced a gradient moment
m0,WM =

∫ TE
0 GWM(t)dt and m0,susc =

∫ TE
0 Gsusc(t)dt, respectively. An external WM gradient

moment is now assumed to introduce a phase γm0,WM = 2π
∆z to local magnetization at TE. An

underlying susceptibility-induced gradient moment m0,susc (assumed to similarly act in the z-
direction) is considered to be applied to the local magnetization, simultaneously with the external
WM gradient. Three cases can be distinguished:

1. Both the effects of m0,susc and m0,WM on the magentization are spoiled at the conclusion
of TR and induced intra-voxel phase is therefore described by the relation Φspoiled or balanced
given in Eq. 2.62. This case corresponds to the contrast type of d-FLASH described
by Seppenwoolde et al. and Bakker et al. [19, 20]. Due to the employed spoiling, the
steady-state magnitude is described by SSSI.

2. Both the effects of m0,susc and m0,WM on local magnetization remain unspoiled at the
conclusion of TR and the gradients are also not balanced. This case corresponds to the
contrast type of d-SSFP described and simulated by Patil et al. [21]. To further evaluate
this sequence type with a closed-form signal model, Lebel et al.’s magnitude and phase
description (see above Eq. 2.62 [69]) was employed in this dissertation with the phase
introduced by both gradients described by Φunspoiled/unbalanced. As no spoiling is employed,
the steady-state magnitude is described by SSSC (assumed as constant by the terms of Lebel
et al.’s model).

3. The effect of m0,susc on local magnetization is unspoiled/unbalanced while m0,WM is
balanced at the conclusion of TR. This case corresponds to the contrast type of d-bSSFP,
which was employed in the past for device imaging [25, 26], but not yet thoroughly
introduced or analyzed. The phase of the acting gradient moments is again proposed to
be described by Φunspoiled/unbalanced and Φspoiled or balanced in Eq. 2.62, respectively. As no
spoiling is employed, the steady-state magnitude is described by SSSC (assumed as constant
by the terms of Lebel et al.’s model).
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Table 2.1: Type of the gradient moments m0,WM and m0,susc that act in superposition on local
magnetization when applying the investigated dephased GRE techniques (d-FLASH, d-SSFP, and
d-bSSFP) for positive susceptibility-based contrast imaging. Depending on the applied technique,
gradient moments are either spoiled or balanced, or unspoiled/unbalanced, determining their
influence on the phase of the local magnetization (cf. Eq. 2.62). Table reproduced from Faust et
al. [2].

Table 2.1 summarizes the types of acting gradient moments for the distinct contrast approaches.
By incorporating the phase relationships from Eq. 2.62 into Eq. 2.54, the mean voxel signal
amplitudes S̄d-FLASH, S̄d-SSFP, and S̄d-bSSFP can be computed based on the gradient types:

S̄d-FLASH = SSSI

∣∣∣∣∫ rect
( z

∆z

)
e−i(γm0,suscz+

2π
∆z

z)dz
∣∣∣∣

S̄d-SSFP = SSSC

∫ 2π
0

∣∣∣∫ rect
(

z
∆z

)
e−i SW(γm0,suscz+

2π
∆z

z+τ)dz
∣∣∣ dτ

2π

S̄d-bSSFP = SSSC

∫ 2π
0

∣∣∣∫ rect( z
∆z )e

−i(SW(γm0,suscz+τ)+ 2π
∆z

z)dz
∣∣∣ dτ

2π

(2.63)

In the case of d-FLASH, a discrete phase offset is not accounted for when integrating the signal
across the voxel because it merely introduces a constant factor that does not alter the integrated
signal’s magnitude. However, for d-SSFP and d-bSSFP, it is essential to average over a discrete
phase offset τ to determine the average signal magnitude. A closed-form solution for the signal
equations (up to the initial signal maximum at γm0,susc = ± 2π

∆z for S̄d-bSSFP) can be found in
Appendix A.1 and is given by Eq. A.1. In Fig. 2.3, the voxel signal magnitudes are plotted for the
three investigated contrast types (S̄d-bSSFP is numerically continued for |γm0,susc| > 2π

∆z ). The
solution for S̄d-FLASH is the familiar sinc function, as was already described for d-FLASH by
Bakker et al. [20]. The sinc fucntion appears shifted so that signal is maximzed for complete
gradient compensation γm0,WM = −γm0,susc = 2π∆z. For S̄d-SSFP, the maximum signal occurs
in a similar way for complete gradient compensation. In contrast to d-FLASH and d-SSFP,
d-bSSFP exhibits two signal maxima instead of one. The signal is maximized at γm0,WM =
−γm0,susc = 2π

∆z and also at γm0,WM = +γm0,susc = 2π
∆z . While the full SSSI and SSSC signal

magnitudes can be attained with d-FLASH and d-SSFP at maximum gradient compensation,
approximately 64% of the full SSSC signal can be achieved with d-bSSFP, according to the model
described in Eq. A.1. To better illustrate signal formation at these maxima, Fig. 2.4 depicts
the intra-voxel phase for the two cases γm0,WM = −γm0,susc and γm0,WM = +γm0,susc for
d-FLASH, d-SSFP, and d-bSSFP. For d-FLASH and d-SSFP, phase coherence is reestablished
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Figure 2.3: For d-FLASH, d-SSFP, and d-bSSFP contrast (γm0,WM = 2π
∆z ), the average voxel

signal magnitude Eq. 2.63 is plotted for a varying susceptibility-induced gradient moment m0,susc.
For d-SSFP,d-bSSFP and d-FLASH the signal magnitude is normalized to the underlying coherent
(SSSC) or incoherent (SSSI) steady-state signal magnitude, respectively. Figure adapted from
Faust et al. [2].

only when m0,susc and m0,WM are of opposite polarities, whereas for d-bSSFP, limited phase
coherence is reestablished regardless of the gradient polarities.

2.3 Delineation of needles in interventional MRI

A metallic biopsy needle itself does not invoke an MR signal as it does not contain resonant
hydrogen nuclei, but can be delineated in the MR image as it can cause an image artifact, attributed
to the needle’s interaction with the main magnetic field B⃗0. This distinctive artifact in the MR
image can be employed for passive localization of the device, aiding the interventionalist in
navigation [5, 7, 8, 12]. In the following, the interaction of the needle with B⃗0 is described. The
emerging needle image artifact is then discussed for GRE, more specifically FLASH imaging, as
well as for dephased GRE imaging. Lastly, a theoretical motivation is given on how the effect of
the needle on the MR signal can allow the encoding of the needle positional and orientational
parameters in a subset of k-space, enabling the 3D localization of a needle from a limited,
and therefore rapid, k-space acquisition as employed by the two needle localization methods
investigated in this thesis.

2.3.1 Physical effect of a metallic needle on a magnetic field

Ladd et al. proposed to model a metallic biopsy needle as an infinite metallic cylinder that interacts
with the main magnetic field of the MR scanner [9], which is described in the following.

Let the needle, without loss of generality, be oriented along y-direction in a right-handed coor-
dinate system (schematically shown in Fig. 2.5). Let, furthermore, the needle enclose an angle
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Figure 2.4: For d-FLASH, d-SSFP, and d-bSSFP, the intravoxel phase (voxel edge length ∆z)
of the local magnetization at TE is analyzed for the two acting gradient moments m0,susc and
m0,WM. The two cases γm0,WM = −γm0,susc = 2π

∆z (expected signal maximum for d-FLASH,
d-SSFP, and d-bSSFP) and γm0,WM = γm0,susc = 2π

∆z (expected additional signal maximum
for d-bSSFP) are evaluated. Following Eq. 2.62, the intravoxel phase is plotted for m0,susc and
m0,WM acting independently (for illustrative purposes) and both gradient moments acting in
superposition (effective phase). Due to the gradients acting in superposition effectivly canceling
each other out, magnetization across the voxel does not experience any resulting dephasing at
m0,susc = −m0,WM for d-FLASH and d-SSFP, while for m0,susc = +m0,WM, further dephasing
of the signal is induced (no resulting signal magnitude). For d-bSSFP, intravoxel phase is partially
rephased for m0,susc = ±m0,WM. Lines are drawn with a slight offset for better visibility. Figure
reproduced from Faust et al. [2].
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Figure 2.5: An needle (modeled as an infinite metallic cylinder) is placed in a right-handed
coordinate system with the x-axis going into the image plane (not depicted for the sake of clarity).
Figure adapted from Faust et al. [4].

θ with the field B⃗0 = (0, B0 cos θ,B0 sin θ). A metallic needle, characterized by the material’s
magnetic susceptibility χi = µr,in − 1 with µr,in being the relative permeability of the material,
will cause a local change in the magnetic field. Modeling the needle as an infinite metallic
cylinder and characterizing the outer material with χe = µr,ext − 1, the magnetic field inside
the cylinder B⃗in and outside the cylinder B⃗ext can be calculated from the Laplace equation of
magnetostatics ([10, 71]). For the two cases of the needle being oriented orthogonal or parallel to
B⃗0, the exterior field B⃗ext is given by

B⃗ext(θ = 0◦) = B0 e⃗y

B⃗ext(θ = 90◦) = B0{e⃗z
[
1 +R2

(
µr,ext − µr,in

µr,ext + µr,in

)(
z2 − x2

(z2 + x2)2

)]
+ e⃗x

[
2R2

(
µr,ext − µr,in

µr,ext + µr,in

)(
zx

(z2 + x2)2

)]
}.

(2.64)

For the needle enclosing an arbitrary angle θ with the B0 field, the field can be calculated as a
superposition of the two cases in Eq. 2.64:

B⃗ext(θ) = B⃗ext(θ = 0◦) cos θ + B⃗ext(θ = 90◦) sin θ

= B0{e⃗z
[
1 +R2

(
µr,ext − µr,in

µr,ext + µr,in

)(
z2 − x2

(z2 + x2)2

)]
sin θ

+ e⃗x

[
2R2

(
µr,ext − µr,in

µr,ext + µr,in

)(
zx

(z2 + x2)2

)]
sin θ + e⃗y cos θ}.

(2.65)
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From Eq. 2.65, the susceptibility-introduced change ∆Bsusc of the magnetic field in the direction
of the main magnetic field B0 can now be calculated. Usually, materials with a susceptibility
|χi| ≪ 1 are used for devices that find application in interventional MR. Here, the relation
µr,ext−µr,in
µr,ext+µr,in

≃ χe−χi

2 usually holds and the change of the magnetic field is found as

∆Bsusc = B0 −Bext,z sin θ −Bext,y cos θ

= B0R
2

(
χe − χi

2

)
sin2 θ

(
x2 − y2

(x2 + y2)2

)
.

(2.66)

2.3.2 MR image artifacts caused by a needle

A metallic needle can introduce an artifact in the MR image. Three separate effects can be
observed that describe the influence of the needle on the MR signal (see, e.g., Ladd et al. [9]):

1. Hypointensity in the signal due to tissue displacement

2. Spatial shift artifact due to varying PRF near the needle

3. Dephasing artifact due to susceptibility-induced magnetic field gradient

The three effects determine together the visual representation of the needle artifact in the MR
image and are discussed in the following paragraphs.

The needle itself will deplace the surrounding material, i.e. the tissue, along its path with
consequently no signal being emitted from the location of the needle. This will lead to a
hypointensity in the MR image, corresponding to the shape of the needle. This hypointensity is
independent of the orientation of the needle to the B⃗0 field.

Due to the susceptibility-introduced distortion of the magnetic field, the PRF varies in proximity
of the needle. As described in Section 2.1.4, the MR signal is spatially encoded by modulating the
PRF using external magnetic field gradients. For the frequency encoding direction, a modulation
due to a susceptibility-induced field distortion can compromise the spatial encoding, leading to
a spatial mismatch of the signal in the MR image. For a frequency encoding gradient G⃗FE, the
spatial shift of signal from position x⃗ to position x⃗′ can be calculated as (cf. [9, 10])

x⃗′ = x⃗+

(
∆Bsusc

GFE

)(
G⃗FE

GFE

)
(2.67)

Due to this spatial mismatch in signal, regions of signal pile-up and respective signal loss can
appear in the image. Ladd et al. found that this effect would lead to a displacement of the
apparent center of the needle as deduced from the artifact in relation to its physical center [9].
As the receiver bandwidth is directly proportional to the magnitude of the frequency encoding
gradient moment (see Eq. 2.34), choosing a higher bandwidth for imaging can mitigate the spatial
shift effect. For non-Cartesian, e.g., radial imaging, the direction of the readout, i.e., frequency
encoding gradient, usually varies during the acquisition. Due to averaging effects, a varying
readout direction rather leads to blurring of the artifact than to a discrete spatial shift [38].
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A third effect characterizing the artifact of a needle can be attributed to a susceptibility-induced
magnetic field gradient G⃗susc = ∇⃗ (∆Bsusc) in proximity of the device. At TE, the gradient will
have introduced a gradient moment m⃗0,susc =

∫ TE
0 G⃗susc dt. Calculating the derivative of Eq. 2.66,

we find for m⃗0,susc (cf. [11])

m⃗0,susc = TEB0R
2

(
χe − χi

2

)
sin2(θ)

(
2x(−3z2 + x2)

(z2 + x2)3
e⃗x +

−2z(z2 − 3x2)

(z2 + x2)3
e⃗y

)
. (2.68)

For GRE sequences, this gradient moment can induce an intra-voxel phase, changing the signal
according to Eq. 2.54. Depending on the chosen imaging bandwidth and the thickness of the
needle, the dephasing effect can become the dominant source of the artifact in GRE-based
sequences and in this thesis, all investigations are based on the assumption, that the other two
effects influencing the artifact are negligable. In the following, the dephasing artifact is further
elucidated for GRE, more specifically FLASH, as well as for dephased GRE imaging.

FLASH imaging

In the following, a simple model is proposed and described, modeling the dephasing FLASH
image artifact for a needle as a dephased disk in 2D or, respectively, a dephased cylinder in 3D.
We assume a needle, modeled as an infinite cylinder according to Ladd et al. [9], oriented in a
coordinate system as described above in Section 2.3.1 and as depicted in Fig. 2.5. Figure 2.6
shows the needle piercing the zx-plane and the orientation of the induced magnetic field gradient
moment, given in Eq. 2.69. We now assume image voxels of isotropic size with edge length dvoxel
and assume the susceptibility-induced gradient moment to always act along the voxel edge, ergo
we neglect the orientation dependency of the gradient and proceed using its absolute value. From
Eq. 2.68, we can calculate |m⃗0,susc| as

|m⃗0,susc| = TEB0R
2(χe − χi) sin

2 θ

√
1

(x2 + z2)3
. (2.69)

From Eq. 2.69, it can be seen that |m⃗0,susc| is radially symmetric (concentric gradient magnitude
isolines) and decreases with increasing distance

√
x2 + z2 to the needle. In terms of these model

simplifications and plugging Eq. 2.69 into Eq. 2.59, the voxel signal magnitude can be expressed
as

Svoxel = SSSI

∣∣∣∣ sinc(
γ|m⃗0,susc|dvoxel

2
)

∣∣∣∣ . (2.70)

To distinguish between voxels that are considered part of the needle artifact (with voxel signal
magnitude Sartifact) and the background, determined by the steady-state signal SSSI, we set a
threshold of Sartifact < 0.5SSSI. Using Eq. 2.70, we can calculate the radius

√
x2 + z2 of the

gradient magnitude isoline, where the signal decreases below the set threshold. We numerically
find γ|m⃗0,susc| ≈ 1.21π

dvoxel
to solve |Svoxel| = 0.5SSSI. Inserting the found value for m⃗0,susc in

Eq. 2.69 and solving for
√
x2 + z2, we find for the radius of the artifact in zx-plane

rFLASH =
3

√
sin2 (θ)TEγB0R2 (χe − χi) dvoxel

1.21π
. (2.71)
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Figure 2.6: A metallic needle can introduce a local gradient moment m0,susc at time TE due to its
susceptibility differing from the surrounding material. For a needle oriented along the y-direction
in a right-handed coordinate system, the induced gradient field in the zx-plane is plotted with the
gray arrows indicating the orientation of the local gradient moment. Within the blue disk (radius r
as defined in Eq. 2.71), the gradient moment induces a dephasing of γm0 >

1.21π
dvoxel

, corresponding
to the voxel signal decreasing to < 50%SSSI. Figure adapted from Faust et al. [72].
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The model therefore predicts a circular hypointense dephasing needle artifact with the radius
given in Eq. 2.71, which consequently constitutes a cylinder-shaped hypointense artifact in 3D,
and is therefore refered to in this thesis as “dephased disk” or “dephased cylinder” model.

Dephased GRE imaging

To model the positive signal artifact for a needle imaged with dephased GRE, Ladd et al.’s infinite
cylinder model was combined with the models for dephased GRE contrast from Section 2.2.3.
The susceptibility-induced magnetic field gradient moment for a needle, induced locally at the
time TE, derived from Ladd et al.’s infinite cylinder needle model [9] was given in Eq. 2.68.
Furthermore, a WM gradient moment is considered, acting on the local magnetization at TE
with

m⃗0,WM = m0,WM cos (θ)e⃗y +m0,WM sin (θ)e⃗z, (2.72)

as also indicated in Fig. 2.5. As derived in Section 2.2.3, for a susceptibility-induced and WM
gradient moment acting along the same axis of orientation, the maximum signal magnitude for
both d-FLASH and d-SSFP contrast occurs when the susceptibility-induced and WM gradient
moments are equal in magnitude but have opposite polarity. Furthermore, any component of
m⃗0,WM which cannot be counteracted by m⃗0,susc will lead to a dephasing and, therefore, a decrease
in signal. Consequently, for m0,WM and m0,susc as given in Eq. 2.72 and Eq. 2.68, the signal
is maximized when m0,susc,x = 0, because any susceptibility-induced gradient moment in the
x-direction cannot be counterbalanced by Eq. 2.72, and when m0,susc,z is fully compensated
by the WM gradient moment, ergo when m0,susc,z = −m0,WM,z . The y-component of m0,WM
causes a global dephasing that remains non-zero if the needle orientation includes a component
parallel to B0. For d-bSSFP contrast, maximum signal magnitude is additionally achieved
when the susceptibility-induced and WM gradient moments are equal in magnitude and have
the same polarity: m0,susc,z = m0,WM,z . Thus, the conditions for achieving maximum signal
magnitude when imaging a needle with dephased GRE can be expressed by the following system
of equations:

B0R
2χe − χi

2
sin2(θ)TE

(
2x(−3z2 + x2)

(z2 + x2)3

)
= 0

B0R
2χe − χi

2
sin2(θ)TE

(
−2z(z2 − 3x2)

(z2 + x2)3

)
±m0,WM sin (θ) = 0

(2.73)

To determine the location of the expected signal maxima for a needle, Eq. 2.73 is now solved
for a WM gradient induced phase of γm0,WM = 2π

∆z . While the condition m0,susc,x = 0 holds
for z = 0x and z = ±

√
3x, |m0,susc| = m0,WM,z is satisfied on a concentric circle within the

zx-plane having the radius

rd-GRE =
3

√
sin2 (θ)TEγB0R2 (χe − χi)∆z

2π
. (2.74)

31



Combining the conditions m0,susc,x = 0 and |m0,susc| = m0,WM,z , the positions of maximum
signal in the zx-plane can hence be further calculated as

x⃗1,2 = (z1,2, x1,2) =

(
± 3

√
sin (θ)TEγB0R2 (χe − χi)∆z

2π
, 0

)

x⃗3,4 = (z3,4, x3,4) = (± 3

√
sin (θ)TEγB0R2 (χe − χi)∆z

16π
,

√
3

3

√
sin (θ)TEγB0R2 (χe − χi)∆z

16π
)

x⃗5,6 = (z5,6, x5,6) = (± 3

√
sin (θ)TEγB0R2 (χe − χi)∆z

16π
,

−
√
3

3

√
sin (θ)TEγB0R2 (χe − χi)∆z

16π
).

(2.75)

Figure 2.7 illustrates the local gradient field induced by a cylindrical needle within the zx-plane,
overlaid with the WM gradient field. The x-component of the susceptibility-induced gradient
moment becomes zero along the dashed black lines depicted in Fig. 2.7. On the solid black
concentric line positioned at radius rd-GRE, the magnitude of the susceptibility-induced gradient
moment equals that of the WM gradient moment’s z-component. Three intersection points (x⃗1,
x⃗4, x⃗6) are located where the susceptibility-induced gradient moment is opposite in polarity to the
WM gradient moment, indicated by yellow triangles. At these intersections, maximum signal can
be attained with d-FLASH, d-SSFP, and d-bSSFP. Additionally, three more points (x⃗2, x⃗3, x⃗5)
can be found where the gradient moments are characterized by the same magnitude and polarity,
marked by yellow crosses. Here, additional signal maxima are anticipated in the zx-plane for
d-bSSFP. Consequently, in a three-dimensional view, the WM needle artifact appears as either
three or six stripes of hyperintense signal alongside the needle shaft.

Following the signal model introduced in Section 2.2.3, the anticipated ratio between the maxi-
mum signal magnitude for d-bSSFP and d-SSFP can be determined as approximately 0.64 (see
Eq. A.1). As described by Eq. 2.75, the d-bSSFP needle artifact exhibits twice the number of
voxels with maximum signal, resulting in a predicted cumulative signal magnitude ratio of about
1.27. Predicting either the maximum or cumulative signal magnitude ratio for d-FLASH in
comparison to d-SSFP and d-bSSFP is not straightforward due to the formation of two distinct
steady states, coherent steady state in the case of d-SSFP and d-bSSFP, and incoherent steady
state for d-FLASH. The maximum signal magnitude for the incoherent state depends on T1 and
TR (optimized at the Ernst angle), whereas, for the coherent steady-state, it is dependent on both
T1 and T2 [73], rendering the signal intensity ratios between d-FLASH and d-SSFP, as well as
between d-FLASH and d-bSSFP, dependent on tissue properties.
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Figure 2.7: Similar to Fig. 2.6, the magnetic gradient field (zx-plane) induced by a needle
(modeled as infinite metallic cylinder, orientation as defined in Fig. 2.5) is depicted schematically
(gray arrows). Additionally, an overlying WM field gradient is indicated (red arrows). Three
points (marked by yellow triangles) can be identified where m0,susc,z = −m0,WM,z. At these
points, signal maxima are expected for d-FLASH, d-SSFP, and d-bSSFP. Three additional points
(marked by yellow crosses) can be identified with m0,susc,z = m0,WM,z, where additional signal
maxima are expected for d-bSSFP. Figure reproduced from Faust et al. [2].
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2.3.3 Encoding of positional and orientational needle parameters in a
subset of k-space

A needle, inserted into tissue, is characterized by only a limited number of degrees of freedom
(insertion depth, angular orientation and insertion position, or, alternatively, entry and tip point
coordinates). Due to this limited number of free parameters, it appears feasible to, for the sole
purpose of localization, encode the positional and orientational information for the needle in a
limited k-space acquisition, therefore without acquiring full k-space information necessary for a
complete image reconstruction as described in Section 2.1.4. By extracting the needle position
and orientation from only a subset of k-space can speed up the acquisition with the purpose of
allowing for a rapid needle localization that can be integrated into real-time workflows.

In the past, several authors have investigated such a needle localization from only a limited
number of acquired k-space lines. Kochavi et al. introduced a forward model-based needle
localization method for the purpose of rapid 2D needle tip tracking [74]. For their technique, the
authors acquired two sets of 2D k-space data with the needle being advanced in between. The
subtraction k-space would then comprise a distinct signature of the advancing needle part, which,
when transformed to image space, would closely resemble an isolated hyperintense rectangle:
the isolated needle artifact of the advanced needle part with the background suppressed through
the conducted subtraction. The authors then modeled the acquired subtraction k-space as a 2D
sinc function, which corresponds to such an isolated rectangle if the modeled subtraction k-space
was transformed to image space (the FT of a 1D sinc function correponds to a rect function,
the 2D sinc function corresponds to a rectangle). By optimizing over the parameters of this
2D sinc function, the authors fitted the modeled subtraction k-space to the acquired subtraction
k-space. They then mapped the 2D sinc function parameters, corresponding to the positional and
orientational parameters characterizing the corresponding rectangle in image space, directly to
the positional and orientational parameters of the needle artifact. Using the best fit parameters,
feasibility of robust needle localization was shown in phantom experiments from an acquired
subset of only six Cartesian central k-space lines. Schmidt et al. proposed a similar approach
as Kochavi et al. for 3D needle tracking and evaluated the method in phantoms [15]. They
acquired baseline subtracted k-space data (a few orthogonal k-space lines) for multiple parallel
2D slices. Instead of performing a model fit directly in k-space, they performed a 1D FFT on the
acquired orthogonal k-space lines and fitted 1D rectangular functions to the Fourier-transformed
k-space lines to determine the needle’s progression through the acquired parallel slices. Their
approach therefore allows for 3D localization of the needle path but requires acquisition of data
for multiple slices and the prepositioning of the tracking slices. Reichert et al. investigated the
localization of a passive marker attached to a needle outside the patient’s body in undersampled
2D tracking slices. As the marker is positioned outside the body, it created an isolated artifact at
the piercing point through the acquired 2D tracking slices. They localized the marker by matching
the undersampled FLASH image to a template image of the marker. The 2D tracking image slices
were herby reconstructed from only 4 radial k-space spokes. Zijlstra et al. acquired undersampled
2D d-FLASH images (inherent background suppression as described in Section 2.2.3) of needle
insertions and localized the needle tip, also by matching a template to the acquired image [31].
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All of the described methods aim to restrict the information encoded in acquired 2D k-space to
the needle itself by suppressing the background, either by employing the subtraction of a baseline
image when imaging the needle artifact, by acquiring images which only show a needle-attached
marker outside the body or by employing d-FLASH imaging where the background is inherently
suppressed. They then extract positional and orientational information on the needle from only
a subset of k-space, which usually does not hold enough information for the reconstruction of
an image with a resolution that would be sufficient for image guidance, but can hold sufficient
information for needle localization. The acquisition of the limited k-space, as investigated by
these methods, is therefore used solely to allow for a rapid localization of a needle that can be
integrated in a real-time workflow.

The methods described above make use of one or multiple 2D image acquisitions for 2D or
limited 3D needle localization using 2D tracking slices. If, in a real-time guidance workflow
for a needle intervention, the needle is not visible in the 2D real-time images, a 3D localization
can become necessary to automatically realign the 2D real-time images with the needle, as
described in the introduction (Chapter 1). A 3D MRI acquisition for a 3D localization of the
needle can hereby be particularly time-intensive and performing a full k-space acquisition for a
3D needle localization with the purpose of automatic real-time 2D slice alignment might not be
practical for real-time workflows. In the following, an argument is proposed how the positional
and orientational parameters of a needle could be encoded in a subset of a radial 3D k-space
acquisition as described in Section 2.1.4. A prerequisite for this argument, as for the 2D methods
described above, is that an image is acquired where the needle is characterized by an isolated
artifact at the position of the needle, with no other information present in the image represented
by the acquired k-space (therefore, some kind of image background suppression is required). We
therefore assume a limited number of acquired radial k-space spokes with an employed image
contrast so that, if an image were reconstructed, it would only show the needle artifact without
any image background. Using the fundamental projection slice theorem, each acquired radial
k-space spoke can be linked to a single 1D image projection of the imaged volume [75]. Let P1

be a 1D projection through a 3D object f(x, y, z), e.g. the isolated needle artifact in a background
subtracted image). The Fourier-slice theorem then states that a radial spoke through the center of
the 3D FT F3 of the object, characterized by the 1D slice operator S1, corresponds to the 1D FT
F1 of the 1D projection through the object, parallel to the slice:

F1{P1{f(x, y, z)}} = S1{F3{f(x, y, z)}}. (2.76)

We can therefore represent a limited acquisition of k-space spokes as a set of 1D projections of
the image volume. Figure 2.8 now schematically shows how a limited number of 1D projections
of an isolated needle artifact could uniquely encode the positional and orientational information
on the needle. Moving the needle inside the sampled volume will change at least one of the
acquired 1D projections. This hence motivates the idea to localize a needle via a limited set of
acquired k-space spokes.

In the course of this dissertation, two methods for 3D needle localization from an undersampled
3D k-space/image acquisition are investigated, that attempt a localization from only a limited
number of 3D radial k-space spokes with employed image background suppression, as motivated
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Figure 2.8: Each acquired radial k-space line corresponds to a 1D projection in image space
(projection slice theorem). The schematic drawing shows two isolated needle artifacts (idealized
as thin cylinder in 3D FOV) and their 1D projections onto five example projection axes. A change
in artifact position, length, or orientation, e.g. transforming artifact 1 into artifact 2, will alter at
least one projection. The needle’s position and orientation are therefore uniquely encoded in a
small subspace of k-space.
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by Fig. 2.8. The first method (Section 3.2) employs modeling of a baseline-subtracted FLASH
k-space acquisition, following Kochavi et al. (see above). The second investigated method
employs a CNN-based localization approach, using d-FLASH to acquire images with intrinsic
background suppression (Section 3.3).
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3 Methods

After the characterization of the MR image artifact induced by a metallic needle for conventional
(FLASH) and dephased GRE imaging (Section 3.1), two methods for rapid 3D passive needle
localization were investigated. The first method used a baseline-subtracted FLASH k-space
acquisition (Section 3.2) while the second method localizes the needle in d-FLASH images
(Section 3.3).

3.1 Characterization of needle artifacts

The artifact induced by a needle was investigated for conventional GRE imaging (dephasing
artifact), more specifically FLASH imaging (Section 3.1.1), as well as for imaging with dephased
GRE contrast, comprising d-FLASH, d-SSFP and d-bSSFP (Section 3.1.2). Artifact magnitude,
shape and size were characterized, using the respective signal models (see Section 2.3.2), and
compared with acquired phantom images.

3.1.1 Needle artifacts in FLASH imaging

The dephasing artifact introduced by a biopsy needle for FLASH imaging was investigated. The
artifact was compared with the model discussed in Section 2.3.2 for different sets of imaging
parameters.

In Section 2.3.2, the needle artifact was defined as the image volume around the needle where
the signal decreases below 50% of the signal. The dephased volume was modeled as a dephased
cylinder or, respectively, for an imaging plane orthogonal to the needle orientation, as a dephased
disk where the radius of the disk depends on the material and imaging parameters used (Eq. 2.71).
To evaluate how well this disk model can approximate the actual dephasing artifact induced
by a needle in a FLASH image, images of a needle inside a water phantom, shown in Fig. 3.1,
were acquired. The artifact was investigated for a 20-gauge (R = 0.040 59 cm) needle (Cook
Medical, Bloomington, IN, USA), made of Inconel (χi = 568× 10−6 [76]) and placed in a water
phantom (χe = −9.05e− 6 [77]), at three different field strengths B0,1 = 0.55T, B0,2 = 1.5T
and B0,3 = 3T (MAGNETOM Free.Max, MAGNETOM Sola, MAGNETOM Vida; Siemens
Healthineers AG, Erlangen, Germany). The needle was inserted into the phantom at an inclination
angle of θ = 90◦ to B⃗0, as defined in Fig. 2.5. For each field strength, images were acquired with
a conventional FLASH pulse sequence employing a Cartesian readout scheme (see Section 2.2.2
and Section 2.1.4), at three different echo times TE,1 = 5ms, TE,2 = 15ms and TE,3 = 25ms
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(a) (b)

Needle

Figure 3.1: A 20-gauge (R = 0.040 59 cm) needle (Cook Medical, Bloomington, IN, USA),
made of Inconel (χi = 568 × 10−6 [76]) and shown in (a), was placed in a water phantom
(χe = −9.05e− 6 [77]) as shown in (b). Figure adapted from Faust et al. [4].

with two investigated image resolutions res1 = (1mm)3 and res2 = (2mm)3. Furthermore,
the following set of imaging parameters was used: TR = 30ms, fa = 10◦, FOV = (128mm)3,
bw = 260Hz px−1. To limit this investigation of the FLASH needle artifact to dephasing effects
only, and suppress any potential spatial mismatch due to the locally altered PRF in proximity of
the needle according to Eq. 2.67, the frequency-encoding gradient direction was chosen parallel
to the needle shaft as the magnetic field distortion only extends orthogonally to the needle shaft
(Eq. 2.66). Additional to the FLASH images, reference images with SE contrast were acquired
(res = (1mm)3, FOV = (128mm)3, bw = 501Hz px−1, TR = 3000ms, TE = 150ms).

Two metrics were used for comparison of the measured artifact and the dephased disk model
to assess the accuracy with which the model can describe the measured artifact. The Dice
similarity coefficient DSC and the Hausdorff distance dH were calculated for the measured and
modeled artifact and compared for all measurements. While the DSC (defined as the number of
overlapping voxels as a fraction of the average number of voxels of the measured and modeled
artifact) can serve as a measure to assess the general resemblance of the model and the measured
artifact, the Hausdorff distance can be interpreted as deviation of the radius of the modeled and
the measured artifact (assuming the measured artifact to be approximately disk-shaped, otherwise
the radius could not be defined), as it is defined as the largest of all distances between the center of
a voxel of the measured to the center of the respectively closest voxel of the modeled artifact. For
the evaluation of the metrics, a background and an artifact region of interest (ROI) were defined
for 2D images, orthogonal to the needle orientation, in a slab of 10 slices, containing the needle
inserted into the water phantom. The background signal magnitude was calculated by averaging
over the background ROI (with size (15 px)2 and (7 px)2 for res1 and res2, respectively) and the
artifact area was determined by masking the artifact ROI for pixels with a signal magnitude larger
than 50% of the background signal. The disk-shaped artifact model was centered at the position
of the needle shaft as extracted from the spin-echo reference images for the center slice of the
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evaluated slab and compared to the measured artifact, using the mentioned metrics. Average
values for the two metrics and standard deviation across the evaluated 10 slices were calculated
for each set of parameters described above.

3.1.2 Needle artifacts in dephased GRE imaging

The artifact of a biopsy needle was investigated for the three dephased GRE contrast types
d-FLASH, d-SSFP and d-bSSFP (as were described in Section 2.2.3). For that purpose, three
different research MR pulse sequences were implemented and images of a needle in a water
phantom were acquired. Results were compared with the theoretically predicted artifacts (see
Section 2.3.2), using the sinc model [20] for d-FLASH contrast and the introduced models for
d-SSFP and d-bSSFP.

MR pulse sequence implementation

Three research MR pulse sequences were implemented (IDEA MR pulse sequence programming
framework; Siemens Healthineers AG, Erlangen, Germany) for 3D imaging with d-FLASH,
d-SSFP and d-bSSFP contrast (Fig. 3.2b–d).

To alleviate potential spatial misregistration of the signal near a metallic needle resulting from
spatial frequency mismatches caused by altered PRF as described in Section 2.3.2 (and also in
preparation for a use of the implemented d-FLASH sequence as part of the localization method
presented in Section 3.3), a radial k-space trajectory (see Section 2.1.4) was selected for the
image acquisition (Fig. 3.2a). As a result of the varying frequency encoding direction of the
collected k-space spokes for the chosen 3D sampling scheme, a spatial frequency mismatch will
result in blurring instead of causing distinct spatial shifts of signal in the image [38]. To radially
sample k-space, the angular orientation of each acquired k-space spoke was varied by advancing
the inclination and azimuthal angles of each spoke (see Eq. 2.47) with the so-called golden means
[80]:

ϕk = arccos(0.4656n)

θk = 2π(0.6823n).
(3.1)

Here, n is the number of the sampled radial k-space spoke with n = 0 · · ·nspokes, with nspokes
being the total number of sampled spokes. The golden means sampling scheme, related to the
“golden angle” in 1D, allows an approximately uniform distribution of consecutively sampled
spokes in radially-sampled 3D k-space. As Eq. 3.1 only encompasses angles from one hemisphere,
every second k-space spokes was sampled backwards to guarantee a uniform distribution of the
frequency encoding direction.

To generate d-FLASH contrast (Fig. 3.2b), the spoiling mechanism proposed by Zur et al. [58]
was implemented (see Section 2.2.2). A spoiler gradient is applied in the x-direction before the
end of TR (orthogonal to the WM gradient direction, as the assumption of effective spoiling is only
valid if the magnetization is not affected by any dephaser gradients at the readout [78]), resulting
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Figure 3.2: Three MR pulse sequences diagrams of the sequences that were implemented for
image acquisitions with d-FLASH (b), d-SSFP (c), and d-bSSFP (d) contrast. The implemented
sequences allow for the sampling of k-space along a 3D radial trajectory (a). The components
G⃗FEx, G⃗FEy and G⃗FEz of the readout gradient G⃗FE applied along the different orientational axes
vary with the direction of the sampled k-space spokes. A WM gradient moment (depicted in
red) with γm0,WM = 2π

∆z is implemented for all three sequence types, which can be interpreted
as an introduced global shift of the acquisition k-space (a) in z-direction by 2π. For d-FLASH,
RF-spoiling is implemented (requires an additional spoiler gradient implemented in x-direction
and reverting of all other gradient moments [78, 79]). For d-SSFP, a total gradient moment of
2m0,WM must be played out before the end of TR with TE = TR

2 [21]. To generate d-bSSFP, all
gradients must be balanced at the end of each TR, again with TE = TR

2 . Figure adapted from [2].
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in a dephasing of the magnetization with an induced phase of 2π per voxel. Additionally, a
quadratic RF phase cycling was implemented. In order to guarantee effective spoiling by applying
the same spoiler gradient moment (concerning magnitude and orientation) to the magnetization at
the end of each TR, the readout gradient is reverted at the end of each TR as its direction changes
with each acquired spoke [79]. A WM gradient moment was implemented in the sequence before
the readout (shown in red), causing a shift in the acquired k-space along the z-direction with an
induced dephasing of γm0,WM = 2π

∆z .

For the generation of d-SSFP contrast (Fig. 3.2c), no spoiling of the transverse magnetization
is employed at the end of TR. Again, a WM gradient moment with m0,WM = 2π

∆z is employed
before the readout. Following Patil et al. [21], an additional gradient moment, equivalent to
the WM gradient moment, is implemented after TE. This results in a net external gradient
moment of 2m0,WM by the conclusion of TR. Moreover, TE is set to TE = TR

2 so that a resultant
susceptibility-induced gradient moment of 2m0,susc occurs during TR, ensuring that Eq. 2.62 is
applicable (see Section 2.2.3). To allow for a quick transition of the magnetization to coherent
steady state, an (fa/2 - TR/2) preparation pulse [65] was implemented before the start of the
acquisition (see Section 2.2.2).

To generate d-bSSFP contrast, again no spoiling is employed. At the conclusion of TR, all gradient
moments are balanced, including the WM gradient, with TE remaining again set as TE = TR

2 .
When this sequence is applied, only the external gradient moments, meaning the gradients applied
by the sequence, acting on the local magnetization are balanced. A locally varying suscepibtility-
induced gradient moment will remain unbalanced as described in Section 2.2.3. Again, a (fa/2 -
TR/2) preparation pulse [65] was added.

For the implemented sequences, an offline image reconstruction pipeline was built, employing
a NUFFT (see Section 2.1.4). The reconstruction was implemented in Python using the SigPy
package [81].

Artifact shape, signal and radius measurements

To evaluate the proposed models for d-SSFP and d-bSSFP, as well as the well-established sinc
model for d-FLASH [20], and assess the positive contrast formation for a needle imaged with
the three investigated dephased GRE techniques, a 20-gauge (R = 0.040 59 cm) MR-compatible
aspiration needle (Cook Medical, Bloomington, IN, USA) composed of Inconel (χi = 568×10−6

[76]) was positioned in a flask phantom filled with deionized water (χe = −9.05×10−6 [77]), i.e.,
the same phantom, depicted in Fig. 3.1, as used for the investigation of FLASH needle artifacts
described in Section 3.1.1. The needle was positioned at an angle of θ = 90◦ relative to B⃗0 as
defined in Fig. 2.5.

Images with d-FLASH, d-SSFP, and d-bSSFP contrast were acquired with the implemented
sequences (see previous section). The phantom was imaged at B0 = 0.55T (MAGNETOM
Free.Max; Siemens Healthineers, Erlangen, Germany) with a 12-channel head coil (data from
4 channels used for image reconstruction). The chosen sequence parameters were: FOV =
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(128mm)3; res = (2mm)3; TR = 40ms; TE = 20ms, bw = 900Hz px−1, fa = 70◦ (d-
SSFP, d-bSSFP) / 10◦ (d-FLASH, optimized for the Ernst angle with a parameter sweep of
2◦ increments). Additionally, a reference image of the needle phantom was obtained using
an SE sequence with chosen parameters: FOV = (128mm)3; res = (1mm)3; TE = 152ms;
TR = 3000ms; bw = 501Hz px−1.

For a needle (modeled as an infinite metallic cylinder [9]) imaged with dephased GRE, the models
for the three investigated contrast techniques predict either 3 (for d-FLASH and d-SSFP) or 6
signal maxima in the respective zx-plane as defined in Fig. 2.5 (see Section 2.3.2). The maximum
artifact signal magnitude for the needle in the water phantom (averaged for the 3 or 6 points
of maximum artifact signal in the zx-plane over a slab of 10 image slices) was evaluated for
the different contrast methods and the ratio between the d-bSSFP and the d-SSFP maximum
artifact signal was compared to the theoretically expected value (see Section 2.3.2). Moreover,
the cumulative artifact signal magnitude (the summed magnitude of the 3 or 6 points of maximum
artifact signal in the zx-plane, averaged over 10 slices) for the d-SSFP and the d-bSSFP needle
artifact was likewise compared with the expected theoretical ratio. To further assess model
precision, d-bSSFP contrast images were acquired with different TE times (TE,1 = 3.4ms,
TE,2 = 10ms, TE,3 = 20ms, TE,4 = 30ms, TE,5 = 40ms, TE,6 = 50ms; TE,1 was the
minimum possible echo time, other imaging parameters were chosen as given above). The artifact
radius (distance between needle axis and signal maxima) was measured for the images acquired
at the different TE by averaging the distance between the needle shaft position (determined from
the spin-echo reference) to the position of pixels with maximum signal magnitude (distances were
measured between pixel centers; a measurement accuracy of ±1mm was assumed, corresponding
to half of the resolution). The measured artifact radius was then compared to the theoretically
predicted artifact radius (Eq. 2.74) to evaluate model precision. Furthermore, Eq. 2.74 was fitted,
in an additional step, to the measured radius values for the different TE (Levenberg-Marquardt
algorithm, using SciPy [82]), choosing the needle’s susceptibility χi as the free parameter over
which the algorithm performed the optimization.

3.2 Forward model-based 3D needle localization using a
baseline-subtracted FLASH acquisition

A technique for rapid 3D needle localization from a baseline-subtracted radial k-space acquisition
was introduced and the technique was evaluated in an ex-vivo phantom study. Feasibility of ASP,
using the investigated localization technique, was retrospectively demonstrated for a sample from
the ex-vivo dataset, as well as for an in-vivo proof-of-principle needle insertion.

3.2.1 Technique for needle localization

The investigated needle localization technique operates on subtraction datasets obtained from
radially sampled FLASH k-space acquisitions before and after a needle insertion. The subtraction
k-space contains a distinct signature of the needle. By fitting a model to the subtraction k-space,
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Figure 3.3: (a) Sampled k-space trajectory (30 example spokes) of implemented FLASH sequence,
following a golden means sampling scheme [32]. (b) Pulse sequence diagram for implemented
FLASH sequence. The components G⃗FEx, G⃗FEy and G⃗FEz of the readout gradient G⃗FE applied
along the different orientational axes vary with the direction of the sampled k-space spokes. At
the end of TR, a spoiler gradient G⃗spoil (always applied in the same direction, after balancing of
the readout, for effective spoiling [79]) introduces a phase of 2π

px along the x-axis (+ implemented
RF spoiling [58]).

orientational and positional parameters of the needle are determined which can then be used for
ASP of a 2D real-time imaging slice.

Radial FLASH acquisition

For data acquisition, a 3D FLASH pulse sequence (Fig. 3.3b) was implemented (IDEA MR pulse
sequence programming framework; Siemens Healthineers AG, Erlangen, Germany). A radial
golden means k-space trajectory was chosen (Fig. 3.3a, compare implementation of dephased
GRE sequences described in Section 3.1.2) to allow for retrospective cropping of the acquired data
to an arbitrary number of k-space lines, while simultaneously allowing for a uniform distribution
of the acquired set of spokes in 3D k-space [80]. For the proposed needle localization technique,
two data acquisitions were performed: one baseline acquisition before the needle insertion and one
acquisition after the (partial) insertion of the needle. From the two acquisitions, the subtraction k-
space was calculated and processed by the needle localization algorithm. The following sequence
parameters were used for all acquisitions: FOV = (256mm)3; res = (4mm)3; TR = 15ms;
TE = 10ms; fa = 10◦; bw = 160Hz px−1.

Needle model

As described in Section 2.3, a metallic needle can introduce an inhomogeneity of the magnetic
field B0 in its surrounding, establishing a local magnetic field gradient. For FLASH imaging, this
gradient can induce a loss of local phase coherence, leading to a hypointense image artifact near
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the needle. Approximating the needle as an (infinite) metallic cylinder [9], the FLASH needle
artifact was modeled as a dephased disk in 2D images, consequently forming a dephased cylinder
in 3D (see Section 2.3.2). In other words, the region where signal magnitude decreases below a
certain threshold compared to the signal in the magnetically undisturbed background is cylindrical,
leading to a cylindrical hypointense image artifact (according to the model, neglecting the artifact
region near the needle tip) in an acquired 3D image, with the axis of the artifact coinciding with
the axis of the needle. Therefore, a baseline-subtracted image of a needle inserted into tissue
or a phantom, reconstructed from a baseline-subtracted k-space acquisition, would be expected
to show a hyperintense cylindrical artifact on an otherwise suppressed background, assuming
the background signal remains the same before and after the needle insertion and is nullified by
the subtraction. The acquired subtraction k-space itself, similar to the reconstructed subtraction
image, would equally be characterized by a distinct signature, which would correspond to the
hyperintense cylinder artifact expected for the reconstructed subtraction image space.

The 3D subtraction k-space of a needle insertion was modeled with an analytic function with the
parameters of the function corresponding to the needle’s positional and orientational parameters.
For that purpose, a 3D sinc function was used as modeling function (derivated from Kochavi et
al.’s idea to use a 2D sinc function to model a subtraction 2D k-space for 2D needle tracking [74],
see also Section 2.3.3). Transformed to image space, the proposed 3D sinc function model does
not correspond to a cylinder but to a cuboid (as a 1D sinc corresponds to a rect pulse, and a 2D
sinc function corresponds to a rectangle), which is, however, used to approximate the expected
cylindrical artifact (see discussion in Section 5.2.1). The proposed k-space signal model is given
by

S(k⃗, (xac, yac, zac, θ, ϕ, lc, wc)) = sinc
(wc

2π
(kxvc,1,x(θ, ϕ) + kyvc,1,y(θ, ϕ) + kzvc,1,z(θ, ϕ))

)
· sinc

(wc

2π
(kxvc,2,x(θ, ϕ) + kyvc,2,y(θ, ϕ) + kzvc,2,z(θ, ϕ))

)
· sinc

(
lc
2π

(kxvc,0,x(θ, ϕ) + kyvc,0,y(θ, ϕ) + kzvc,0,z(θ, ϕ))

)
· exp(kxxac + kyyac + kzzac),

(3.2)

with the wave vector-encoded signal S, the k-space coordinates (kx, ky, kz), the cuboid width and
length (lc, wc), the unit vector along the long axis of the cuboid ˆ⃗vc,0 = (vc,0,x,vc,0,y,vc,0,z), the unit
vectors along the short axes of the cuboid ˆ⃗vc,1 = (vc,1,x,vc,1,y,vc,1,z) and ˆ⃗vc,2 = (vc,2,x,vc,2,y,vc,2,z),
and the cuboid center coordinates (xac,yac,zac). The orientation of ˆ⃗vc,0 can be characterized
by two angles (θ, ϕ). The two vectors ˆ⃗vc,1 and ˆ⃗vc,2 (short axes of cuboid) are, by definition,
orthonormal to ˆ⃗vc,0 (long axis of cuboid) and can be determined from ˆ⃗vc,0 using the well-known
Gram-Schmidt process (see Appendix A.2).

As described above, Eq. 3.2 was used to model the needle artifact signature in k-space and the
parameters (xac,yac,zac,θ,ϕ) are therefore identified with the center of the needle artifact and the
needle’s orientation. Figure 3.4 schematically shows how the angles θ and ϕ characterize the
needle orientation in 3D. θ hereby describes the inclination of the needle to the B0 field, with
an inclination of 0◦ indicating a needle orientation parallel to B⃗0 (same convention as used in
Fig. 2.5 for the investigation of needle artifacts in conventional and dephased GRE imaging). ϕ is
the corresponding azimuthal angle of the needle axis.
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Figure 3.4: The orientation of the needle artifact is defined by the angle θ, the inclination
angle enclosed with B⃗0, and the angle ϕ, which is the respective azimuthal angle, defined as
depicted. The “upright” position of the needle (orthogonal to B⃗0) is, therefore, characterized by
(θ, ϕ = (90◦, 90◦)).

In Fig. 3.5, the proposed modeling approach is illustrated for explanatory purposes. For an
example needle insertion into a tissue phantom, a baseline image acquired before the needle
insertion and an image after the needle insertion are depicted together with the subtraction image,
reconstructed from the respective k-space data (FLASH sequence implementation as described
in Section 3.2.1). A hyperintense, cylinder-shaped needle artifact is visible in the baseline-
subtracted image. The respective k-space is modeled using Eq. 3.2 and also reconstructed with
the image showing the expected cuboid model artifact. The modeling approach was illustrated
for a fully-sampled and undersampled k-space acquisition.

Localization algorithm

Based on the 3D sinc model used to describe the needle artifact in a baseline-subtracted k-space
acquisition of a needle insertion, an algorithm for 3D needle artifact localization is proposed
(schematically illustrated in Fig. 3.6):

1. Baseline-subtracted k-space acquisition
To localize the needle after a needle insertion, a k-space acquisition is performed using
a radial sampling scheme (see above). An additional baseline acquisition is performed
before the needle insertion and the subtraction k-space is calculated.

2. Preprocessing
In a second step, the acquired baseline-subtracted k-space data is preprocessed. First,
the magnitude of the acquired k-space data is normalized. As the introduced 3D sinc
k-space model, corresponding to a cuboid in image space as described above, is only
designed to approximate the magnitude information of the acquired subtraction image
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Figure 3.5: Proposed modeling approach for a baseline-subtracted k-space acquisition of an
example needle insertion into a porcine tissue phantom (FLASH contrast with radial sequence
implementation as described in Section 3.2.1) for an example sampling of 6434 (fully sampled)
and 16 radial k-space spokes. From a baseline acquisition and an acquisition during the needle
insertion, a subtraction k-space is calculated that contains a distinct signature of the needle
corresponding to a cylindrical hyperintense needle artifact in image space (according to the model
described in Section 2.3.2). The subtraction k-space is modeled using a 3D sinc function, serving
as an approximation to the acquired subtraction k-space (for demonstration purposes, positional
and orientational parameters of the needle insertion were extracted manually from the acquired
image and used for the model). Images reconstructed from the acquisition and model k-space
(using a NUFFT) are shown for illustration purposes only and not required for the k-space-based
localization algorithm. Undersampling artifacts (streaking, i.e. aliasing) can be seen for the image
reconstruction from 16 k-space spokes.
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Figure 3.6: Algorithm for rapid 3D needle localization. After a baseline-subtracted k-space
acquisition for a needle insertion (i), here shown for an example needle insertion into a porcine
tissue phantom, the data is first preprocessed (ii) and then the proposed k-space model (Eq. 3.2)
is fitted to the data (iii). The model parameters (xac, yac, zac, θ, ϕ) are directly identified with the
needle artifact center and orientation and the best fit parameters issued by the algorithm can be
used to automatically align an imaging slice with the fitted needle orientation (green dashed line).
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space (i.e., the hyperintense needle artifact) and cannot represent a varying image phase
across different acquired coil channels for data acquired with multichannel receiver coils,
an image phase stripping step is performed. The image phase is nullified for each coil
channel by performing a 1D FFT along each k-space spoke (computationally cheaper
compared to a full 3D NUFFT of the complete acquired k-space) and the phase is set to
zero. The data is then transformed back into k-space using an inverse 1D FFT.

3. Model fit procedure
After the preprocessing of the baseline-subtracted k-space acquisition, the proposed 3D
sinc model (Eq. 3.2) is fitted to the subtraction k-space using a downhill-simplex method
[82, 83], mimimizing the L2 norm between the model and the acquired data. To make use
of all available data for acquisitions with multichannel coils, the optimization problem
is formulated in such a way that acquired k-space data from each channel is treated
independently and the model’s parameters are optimized for the summed loss function
across all channels to be minimized. As described above, the model parameters can be
directly identified with the position and orientation of the needle artifact. The phase term
of the model hereby encodes the centroid coordinates of the needle artifact (xac,yac,zac).
The needle orientation, characterized by the angles ϕ and θ, is encoded by the magnitude
of Eq. 3.2, as well as the length lc of the cuboid modeling the artifact (the width of the
cuboid wc is treated as fixed and an an empirical value was used for the optimization, see
below). Following Kochavi et al. [74], magnitude and phase of the model Eq. 3.2 were
optimized individually to fit to the acquired subtraction k-space data instead of a more
complex joint optimization over all variables at once.

The determined position and orientation of the needle, as found by the performed model fit,
can then be used to align a 2D imaging slice with the fitted needle trajectory to allow for ASP.
The proposed localization algorithm was implemented in Python (Python Software Foundation,
Wilmington, DE, US).

3.2.2 Study on localization performance

To evaluate the proposed needle localization technique, needle insertions were performed in
a tissue phantom with different orientational and positional parameters. A set of metrics was
defined to characterize the accuracy of the performed needle localizations. Performance of the
proposed needle localization technique was evaluated retrospectively with the acquired dataset,
using the defined accuracy metrics, and ASP was demonstrated retrospectively for an example
needle insertion from the ex-vivo dataset, as well as an in-vivo proof-of-principle case.

Datasets

An ex-vivo dataset of needle insertions into a tissue phantom was acquired. Additionally, a needle
insertion from an animal experiment is reported to demonstrate an in-vivo needle localization as
a proof-of-principle. Acquisition parameters are summarized in Table 3.1.
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Table 3.1: Description of needle insertion datasets (sampled needle trajectories): (a) ex-vivo study
and (b) in-vivo proof-of-principle experiment.

86.222
54 88

88
80.2

* Due to symmetry, angles θ > 90° and φ > 90° were mapped to the interval [0°, 90°] by deriving 180° - θ and 180° - φ, respectively.

* 

* 

For the ex-vivo study, k-space data for 14 needle insertions with baseline acquisitions was
acquired with a prototype interventional loop coil (iLoop Interventional Coil 0.55T, NORAS MRI
products GmbH, Hoechberg, Germany) and a spine coil at B0 = 0.55T (MAGNETOM Free.Max;
Siemens Healthineers AG, Erlangen, Germany). The needle (22-gauge aspiration needle, Cook
Medical LLC, Bloomington, IN, USA) was repeatedly inserted randomly in a porcine phantom
(thigh tissue) with a varying insertion angle (with inclinations of θ ∈ [54◦, 88◦], see Table 3.1).

For the in-vivo proof-of-principle demonstration, data was acquired using a flex coil and and a
spine coil with an analogous system as used for the acquisition of the ex-vivo data. A 20-gauge
aspiration needle was used (Cook Medical LLC, Bloomington, IN, USA).

For all data acquisitions, 6434 radial k-space spokes were acquired, corresponding to a fully
sampled k-space with the chosen resolution and FOV size as reported in Table 3.1 (see Eq. 2.52
for calculation of the number of required spokes for full sampling). The number of k-space
spokes was then retrospectively cropped to evaluate the localization performance depending on
the number of acquired k-space lines (see below).

To determine the ground truth of the needle position and orientation, an additional 3D FLASH
reference image for each needle insertion was acquired for the ex-vivo scans (FOV = (256mm)3;
res = (2mm)3; TR = 4.5ms; TE = 3.21ms; fa = 6◦; bw = 1300Hz px−1) and a 3D bSSFP
reference image for the in-vivo scan (FOV = (256mm)3; res = (2mm)3; TR = 5.56ms; TE =
2.78ms; fa = 706◦; bw = 558Hz px−1). A low TE was chosen to create a concise needle artifact.
The needle position and orientation were determined by manually annotating the tip and the entry
point of the needle in the 3D reference images. The tip and entry locations were hereby estimated
from the visual artifact impression in the reference image (corresponding to the largest extension
of the needle image artifact).
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Figure 3.7: Three metrics to analyze the accuracy of the needle localization. ∆α describes the
angular deviation between the ground truth needle orientation. ∆c describes the distance between
the center point of the ground truth needle artifact and the detected needle axis. ∆s describes the
distance between the annotated ground truth needle artifact tip and the detected needle axis.

Accuracy metrics

To evaluate the accuracy of the needle localization, the three metrics ∆α, ∆c and ∆s were
defined (Fig. 3.7). ∆α is a common metric for needle localization accuracy evaluation and
describes the angular deviation between the ground truth and the detected needle orientation [32,
33]. As described above, the proposed localization algorithm uses two independent optimization
procedures to fit the needle orientation (magnitude of Eq. 3.2) and position (phase of Eq. 3.2).
To determine the performance of the positional fit, a second metric was introduced ∆c, which
describes the distance between the ground truth center of the annotated needle artifact in the
reference image and the axis of the optimized model after the localization fit. In MR-guided
interventions, visibility of the needle artifact tip is of importance to the interventionalist to
successfully hit the target tissue. To account for this, ∆s is introduced to identify the maximum
distance between the annotated needle artifact tip and the found needle trajectory based on the
optimized model parameters after the localization fit. Thus, this metric can be interpreted as the
maximum distance of the needle artifact’s annotated tip to an arbitrarily oriented slice positioned
along the localized needle trajectory.
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Performance evaluation and demonstration of automatic slice alignment

For every needle insertion from the ex-vivo dataset, 6434 k-space spokes were acquired (see
above). The implemented radial acquisition scheme, as described in Section 3.2.1, allowed a
retrospective cropping of the number of acquired k-space spokes (any continuously acquired
subset of k-space spokes is approximately uniformly distributed across the radial dimension of
k-space due to the implemented golden means acquisition scheme [80]) to investigate a needle
localization from a reduced number of sampled k-space lines. In Section 2.3.3, the feasibility
of a 3D needle localization from a limited number of k-space spokes was discussed (minimum
of 5 k-space lines required to extract positional and orientational parameters as schematically
illustrated in Fig. 2.8). For the acquired ex-vivo dataset and the in-vivo proof-of-principle, the
localization performance was analyzed depending on the number of k-space spokes utilized by
retrospectively cropping the number of used lines for the localization to nspokes,1 = 5, nspokes,2 =
16, nspokes,3 = 32 and nspokes,4 = 64. The corresponding acquisition times were tacq(nspokes,1) =
0.0625 s, tacq(nspokes,2) = 0.2 s, tacq(nspokes,3) = 0.4 s and tacq(nspokes,4) = 0.8 s.

Three sets of initial optimization parameters were defined and used for the localization algorithm.
These can be seen as orientational and positional parameters of an initially more or less severe
misaligned 2D imaging slice which could serve as a starting point from which an automatic slice
alignment could be triggered. To analyze the localization from different sets of initial parameters,
a shift was applied to the ground truth artifact center coordinates (xac, yac, zac)true and needle
angles (ϕ, θ)true (as extracted from the annotated reference images) for each needle insertion to
calculate the initial optimization parameters.

1. Initial parameters set (1):
(xac, yac, zac)true each shifted by an absolute distance of 3.2 cm;
(ϕ, θ)true each shifted by an absolute angle of 15◦.
→ slight misalignment

2. Initial parameters set (2):
(xac, yac, zac)true each shifted by an absolute distance of 6.4 cm;
(ϕ, θ)true each shifted by an absolute angle of 30◦.
→ medium misalignment

3. Initial parameters set (3):
(xac, yac, zac)true each shifted by an absolute distance of 12.8 cm;
(ϕ, θ)true each shifted by an absolute angle of 60◦.
→ severe misalignment

The initial parameter for the cuboid model length was kept fixed at lc = 6 cm for all investiga-
tions.

For the ex-vivo dataset, the localization quality was evaluated with the introduced metrics and
the medians ∆̃α, ∆̃c and ∆̃s for the different initial parameter sets and number of used k-space
spokes (fixed cuboid width wc = 0.8 cm used for optimization) were calculated. The median was
chosen to characterize the ex-vivo dataset as it is robust to outliers produced by failed localization
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attempts (see discussion in Section 5.2.3). The mean localization time (t̄loc) was also calculated
(data preprocessing + optimization run time).

For the in-vivo demonstration case, the localization accuracy was equally evaluated with respect
to the number of acquired k-space spokes and for initial parameter sets 1 and 2 (fixed cuboid
width set to wc = 1.2 cm for optimization as a slightly larger needle was used, see Table 3.1b).

To further investigate the optimization procedure, an image reconstruction of the acquired
subtraction k-space was performed for one example localization from the ex-vivo dataset (image
reconstruction was performed only for evaluation, not used for localization), together with an
image reconstruction for the optimized k-space model. Additionally, the cost function of the
angular optimization was evaluated for this chosen example from the ex-vivo dataset and the
optimization procedure was compared for the initial parameter sets 1 and 3.

The feasibility of ASP was additionally retrospectively investigated for the selected example from
the ex-vivo dataset and the in-vivo demonstration case, using the conducted needle localization to
reformat a 2D imaging slice along the detected needle axis from the acquired 3D reference image
(chosen slice thickness of 8mm).

3.3 3D needle localization using dephased FLASH contrast
and CNN-based postprocessing

A second method for rapid 3D passive needle localization was investigated. Instead of localizing
the needle using a baseline-subtracted FLASH k-space acquisition as described in Section 3.2,
the needle is localized in (undersampled) d-FLASH images, which are inherently background-
suppressed, using a CNN-based postprocessing algorithm.

3.3.1 Technique for needle localization

The proposed needle localization approach utilizes (undersampled) 3D d-FLASH images of a
needle insertion. In the images, the position and orientation of the needle were determined with a
localization algorithm employing a CNN.

3D radial d-FLASH image acquisition

Compared to the approach proposed in Section 3.2 where a baseline was subtracted from a FLASH
acquisition to generate a subtraction k-space which only contained the signature of the needle
(background suppression through the subtraction of the baseline), a d-FLASH image acquisition
was now employed to generate images with a hyperintense needle artifact and intrinsic background
suppression. The same d-FLASH sequence as described and investigated in Section 3.1.2 was
used for data acquisition. The utilized radial sampling technique, employing a golden means
sampling scheme (same sampling scheme as implemented for conventional FLASH imaging in
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Figure 3.8: Proposed algorithm for 3D needle localization from an (undersampled) 3D d-FLASH
acquisition. The algorithm comprises the following steps: (i) Image reconstruction of an (un-
dersampled) 3D d-FLASH acquisition after needle insertion (shown here for example ex-vivo
porcine tissue phantom with inserted aspiration needle). (ii) Processing of the image by a trained
CNN to perform regression towards the needle path. (iii) Extraction of the needle position and
orientation from the CNN’s output heatmap (thresholded + largest connected component search)
by performing a principal component analysis (PCA) (orientation of the first principle axis is
interpreted as the needle’s orientation). Figure adapted from Faust et al. [4].

Section 3.2.1), enabled retrospective undersampling while maintaining an approximately uniform
k-space coverage [80].

Algorithm for needle localization

An algorithm for 3D needle localization, employing a CNN, was implemented using Python
(Python Software Foundation, Wilmington, DE, US). Figure 3.8 illustrates how the implemented
localization pipeline processes a d-FLASH acquisition for a sample needle insertion in a porcine
tissue phantom to determine the needle position and orientation. The algorithm encloses the
following steps:

1. Image reconstruction of an (undersampled) 3D d-FLASH acquisition after needle insertion

2. Processing of the acquired image by trained CNN

3. Extraction of the needle localization parameters from the CNN’s output heatmap

After k-space data was captured with the implemented 3D radial d-FLASH MR pulse sequence
(see above and Section 3.1.2), it was subsequently reconstructed using a NUFFT method (incor-
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porating density correction [53], gridding, and, ultimately, an FFT as described in Section 2.1.4)
using the SigPy package [81].

The reconstructed magnitude image is then fed into a CNN for processing. The CNN is employed
to map the input image to a heatmap (same resolution as the input d-FLASH image) that represents
the needle path. CNNs are a class of models that can represent complex relationships between
data [84–86]. The data is processed by applying a number of filters to the data in a specific manner
(forming the so-called architecture of the network). By changing the parameters characterizing the
network, the CNN can be optimized to represent a specific relationship between input (feature) and
output (label) data. CNNs were hereby specifically designed to perform well on data which holds
interrelated information, such as images. A CNN is typically arranged in layers, through which the
data is passed in one direction (feed-forward network), and consists of different building blocks,
which commonly include convolutional layers, activation functions and down-/upsampling layers.
Convolutional layers consist of filters (also referred to as kernels), matrices of a distinct size and
characterized by their values (weights). The input data is multiplied with the filters by sliding
them across it (convolution operation) with a certain stride length. Applying a certain number of
filters to the input data will create an according number of output (feature) maps which can be
passed to the next layer of the network. Each filter interacts with certain features in the input data.
Convolution layers are often applied together with a non-linear activation function, e.g. a rectifier,
which is defined as ReLU(x) = max(0, x) [87]. Another type of commonly employed building
blocks are down-/upsampling layers. These layers allow to reduce or increase the size of a feature
map. This can be achieved by, e.g., employing a so-called max-pooling operation by sliding a
maximum filter of a certain size across the feature map or by locally duplicating the feature map’s
elements. The reasoning behind scaling the feature maps’ size with down-/upsampling layers is
that a convolutional filter with a certain size which is applied to differently sized feature maps acts
on varying scales, due to the varying size of receptive field, and can therefore take into account
correlations of different scales in the input data. Due to the multitude of variable parameters
characterizing a CNN, it can serve as a mapping or function approximater which is customized
by optimizing over the parameters of the model to approximate a specific relation. In contrast to a
handcrafted approach where a mapping function is predefined, a machine learning (ML) approach
as employed with CNNs uses a set of pairs of corresponding input and output data (so-called
training data) to approximate the mapping by optimizing over the parameters of the employed
net (supervised learning), aiming to increase the resemblence of the net’s output and the ground
truth output data. This resemblance is hereby measured by a loss function. An employed loss
function for regression tasks is the mean squared error (MSE)- or L2 loss [88]. Trained models
can often outperform handcrafted models, as they are capable of capturing relevant relations
between the input and output data. Common optimization algorithms are used for the training of
the network, with a stochastic gradient descent (SGD) algorithm being used in this work. CNNs
have been employed in the past to localize a needle from acquired MR images by various authors
[32, 33, 89]. Due to their ability to efficiently capture spatial correlation, they are often used for
image segmentation or regression tasks ([88, 90]). A commonly used architecture is the so-called
U-Net [91, 92]. Applying a series of down- and consequent upsampling operations, together with
so-called skip connections directly linking different layers of the network, it is able to capture
relations of different scales as common in image data. For the localization algorithm implemented
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Figure 3.9: Construction of the implemented CNN (3D U-Net architecture [92]) for the proposed
rapid 3D needle localization method. A 3D image is fed into and consequently processed by the
net. The boxes represent the layers of the net and are labeled with the image matrix size and
the number of the respective feature maps (image matrix × number of feature maps). Figure
reproduced from Faust et al. [4].

in this work, a U-Net was used to model the mapping from the acquired d-FLASH image of
the needle insertion to a heatmap, indicating the needle path. A 3D U-Net architecture [92]
was implemented with Tensorflow (Google Brain, Mountain View, CA, USA) and is depicted
schematically in Fig. 3.9. The implemented network comprises a contracting and expanding
path. Each contracting step involves two 3× 3× 3 convolutions (zero-padded, stride of 1), each
succeeded by a ReLU activation, followed by a 2× 2× 2 downsampling operation (max-pooling)
with a stride of 2. After the final downsampling step, a bottleneck step follows with another two
3× 3× 3 convolutions (zero-padded, stride of 1), each with a ReLU activation, before the data is
fed to the expanding path. Here, each step includes a 2×2×2 upsampling with stride 1, followed
by two 3×3×3 convolutions (zero-padded, stride of 1), each with ReLU activation. The number
of feature maps doubles after each downsampling step and is halved after each upsampling step.
Skip connections link steps in the contracting path to their expanding counterparts, concatenating
the respective feature maps. Ultimately, a linear activation convolution layer reduces the number
of feature maps to a single one at the end.

From the CNN output heatmap, the position and orientation of the needle path were determined
by first applying a threshold (> 50% of the heatmap maximum value). If the thresholded heatmap
comprises multiple connected segments, i.e. multiple regions are presumed by the network to
potentially contain a needle, the largest segment is chosen (as only one needle is inserted at a
time into the tissue). To determine the needle orientation from this preprocessed heatmap, a PCA
is performed. This technique, as previously employed for determining object orientation in MR
scans from CNN-based segmentation by Zhao et al. [93], essentially fits an ellipsoid to the data.
The primary principal axis derived is interpreted as the needle axis. The centroid of the CNN
heatmap is interpreted as the center point of the needle path.

3.3.2 Study on localization performance

To investigate the proposed algorithm for 3D needle localization, the implemented CNN was first
trained using data acquired from ex-vivo needle insertions in porcine tissue phantoms. To evaluate
achievable localization accuracy with the proposed method, an ex-vivo study was conducted
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using similar phantoms. The method was additionally applied to needle insertions in two different
porcine animal models to provide an in-vivo proof-of-principle.

Due to the intrinsic background suppression with dephased GRE imaging, the acquired images
of a needle insertion were expected to contain an isolated positive contrast needle artifact,
characterized by the positional and orientational parameters of the inserted needle, as investigated
in Section 3.1.2. In Section 2.3.3, feasibility of a needle localization from a limited k-space
acquisition, considering the limited number of degrees of freedom characterizing the needle
insertion, was discussed. Following this argument, a fit of the investigated needle model to only
a few acquired subtraction k-space lines was evaluated for the localization method described
in Section 3.2. For the CNN-based needle localization algorithm employing an intrinsically
background-suppressed d-FLASH acquisition as introduced here, needle localization in an image
reconstructed from a similarly undersampled k-space acquisition was equally investigated to
accelerate the needle localization for real-time applicability.

Datasets

To train the CNN and evaluate the needle localization technique, three datasets were collected as
described in Table 3.2. Each dataset was obtained at a magnetic field strength of B0 = 0.55T
(MAGNETOM Free.Max; Siemens Healthineers AG, Erlangen, Germany).

Training Dataset To create a dataset of corresponding input (d-FLASH images of needle
insertions) and output data (heatmaps showing the respective needle path) for the training of the
CNN, a 22-gauge MR-compatible aspiration needle (Cook Medical, Bloomington, IN, USA)
was repeatedly inserted into seven porcine tissue phantoms (muscle tissue, permeated with fatty
tissue). In total, d-FLASH image data was acquired for 274 needle paths in the selected angular
range (refer to Table 3.2 for details on the dataset acquisition). A 4-fold data data augmentation
was conducted by randomly shifting the FOV reconstructed from the acquired d-FLASH k-space
data (care was taken to ensure that the needle path still remained entirely within the FOV after
shifting). In addition to the d-FLASH acquisition, a conventional RF-spoiled FLASH image
was acquired for each needle insertion (FOV = (256mm)3; res = (2mm)3; TR = 4.5ms;
TE = 2.31ms; fa = 6◦; bw = 1600Hz px−1). From the FLASH image, the ground truth needle
path was determined by manually annotating the entry and tip point of the needle in the tissue
sample. From the manually annotated needle entry and tip positions, label images were created by
drawing a Gaussian filter-blurred line (standard deviation of 6mm) between the points (Gaussian
heatmaps for CNN-based regression were previously used in [88]). Annotation and label creation
are shown for an example needle insertion in Fig. 3.10. For the acquisition of the training data,
the phantom was rotated for each insertion to increase variation in the image data as some signal
in the image, unrelated to the needle (e.g., due to partial volume effects [24], also see discussion
in Section 5.2.2), was expected to persist despite the intrinsic background suppression with the
d-FLASH acquisition technique. By rotating the phantom, any artifacts unrelated to the needle
would be expected to present differently in the images, decreasing the risk of the CNN learning
any image characteristics unrelated to the needle, but specific to a particular phantom used in
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Table 3.2: Description of datasets used for training of the implemented CNN, in the ex-vivo
localization study and in the in-vivo proof-of-principle experiments investigating the proposed
CNN-based rapid 3D needle localization technique. d-FLASH imaging sequence parameters and
sampled needle trajectories are provided. Table adapted from Faust et al. [4] (angle definition
adjusted to match Fig. 3.4).

89.7°[60°, 90°] [60°, 90°]

* Due to symmetry, angles θ > 90° and φ > 90° were mapped to the interval [0°, 90°] by deriving 180° - θ and 180° - φ, respectively.

74.3° 72.7°*
*
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Figure 3.10: (a) Annotation of the acquired ex-vivo data for training of the implemented CNN and
evaluation of the proposed CNN-based rapid 3D needle localization method. Needle entry and tip
point were marked in reference 3D FLASH images acquired together with the d-FLASH images
used for localization. Here, a 2D plane containing the needle artifact was reformatted from an
acquired 3D reference image of the training dataset to illustratively show the annotation. (b)
Label creation for training of the implemented CNN. The label images were created automatically
from the annotation data by connecting the marked entry and tip point of the needle with a
gaussian-blurred line (standard deviation = 6mm). Figure adapted from Faust et al. [4].

the training dataset. For the acquisition of the training data, the phantoms were placed in a head
coil to simplify repositioning of the phantoms without altering the coil set-up. Orientations of
the needle insertions were sampled randomly, characterized by the angles θ and ϕ defined in
Fig. 3.4 as also used to characterize needle orientation for the localization method described in
Section 3.2. θ was sampled from θ ∈ [73◦, 90◦] and ϕ was sampled from ϕ ∈ [60◦, 90◦] (due
to symmetry, angles θ > 90◦ and ϕ > 90◦ were mapped to the interval [0◦, 90◦] by deriving
180◦ − θ and 180◦ − ϕ, respectively). Insertion depths were set manually and ranged from 4 cm
to 5 cm.

Ex-vivo test dataset To evaluate the achievable localization precision for needle localizations
using the implemented method, the same 22-gauge needle as used to create the training data for
the CNN was inserted into four additional ex-vivo porcine tissue models, generating a test dataset
of d-FLASH images. Again, additional reference FLASH images were acquired for each needle
insertion (same sequence parameters used as for the training dataset) to extract the ground truth
needle tip and entry points. A total of 109 needle insertions were sampled (see Table 3.2 for
details on the dataset). The needle orientations were randomly sampled, manually inserting the
needle within an angular range of θ ∈ [78◦, 90◦] and ϕ ∈ [60◦, 90◦], again adjusting the depth
of insertion between 4 cm and 5 cm. The sampled insertion angles and depths were selected to
lie within the range sampled for the acquisition of the training dataset. The data was acquired
using the spine coil of the used MRI system and a loop coil (iLoop Interventional Coil 0.55T;
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NORAS MRI products GmbH, Höchberg, Germany), dedicated for interventional MRI (depicted
in Fig. 3.8).

In-vivo proof-of-concept experiment A 20-gauge and 22-gauge needle (Cook Medical, Bloom-
ington, IN, USA) were inserted into the thigh muscle of two pigs (details found in Table 3.2)
in a proof-of-concept in-vivo experiment. Similar to the acquisition of the ex-vivo test dataset,
d-FLASH and reference FLASH images (same sequence parameters for FLASH as given above)
were obtained for the needle insertion in the first pig, while d-FLASH and bSSFP images were
collected for the insertions in the second pig. bSSFP imaging was used here as an alternative
contrast technique for reference image acquisition due to a favorable signal-to-noise ratio (SNR),
using the following sequence parameters: FOV = (256mm)3; res = (2mm)3; TR = 5.56ms;
TE = 2.78ms; fa = 70◦; bw = 558Hz px−1.

Training of the CNN

For the evaluation of the proposed localization technique, the implemented CNN was first trained,
utilizing the aforementioned training dataset. In order to evaluate the needle localization from an
undersampled k-space acquisition, d-FLASH images were reconstructed from various numbers
of k-space spokes by retrospectively cropping the collected k-space data: nspokes,1 = 6434
(corresponds to a fully sampled image acquisition according to the Nyquist theorem for uniform
radial k-space coverage [54] as described in Section 2.1.4), nspokes,2 = 256, nspokes,3 = 128,
nspokes,4 = 64, nspokes,5 = 32, nspokes,6 = 16. For each number of employed k-space spokes for
image reconstruction (nspokes,1 to nspokes,6), a separate CNN model was trained. The CNN was
optimized to regress from the (undersampled) d-FLASH image to the needle path (label image)
using an L2 loss function and a SGD optimizer (number of epochs = 200; learning rate = 0.1;
learning rate decay = 1× 10−6; Nesterov momentum = 0.9; batch size = 8). Therefore, a total of
six models were created. Training was performed on a DGX-1 cluster with 8 Tesla V100 32 GB
GPUs (Nvidia Corporation, Santa Clara, CA, USA).

Accuracy Metrics and Performance Evaluation

To evaluate the localization accuracy, the same metrics as introduced in Section 3.2 and defined in
Fig. 3.7 were used, without ∆c. ∆α refers to the angle between the ground truth needle axis and
the axis as detected by the localization algorithm. If the localization technique were to be used
for ASP, ∆α would indicate the greatest angular discrepancy between an automatically chosen
imaging plane and the actual needle orientation. As also described in Section 3.2, ∆α serves
as a standard metric for assessing the orientation accuracy of needle localization and has been
reported in the literature for other needle localization techniques [32, 33]. ∆s was defined as
the distance between the ground truth needle tip location and the detected needle axis, therefore
describing the largest possible distance from the tip to a selected imaging plane aligned with
the detected needle axis. A large ∆s hence indicates that the tip will likely not be visible in an
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automatically aligned 2D image plane. In contrast to the evaluation of the method investigated in
Section 3.2, ∆c, which was introduced as a metric describing the distance of the ground truth
needle path center to the detected needle axis, was not evaluated here. In Section 3.2, ∆c was
introduced to individually assess the separate optimization over the magnitude and phase of the
introduced complex k-space model. As the phase of the model was independent of the orientation,
but dependent on the position of the needle artifact, ∆c was introduced as a metric in order
to take this into account (not applicable to the CNN approach). Therefore, for the introduced
CNN-based needle locliazation, the ex-vivo test dataset, as well as the samples from the in-vivo
proof-of-principle experiment were assessed for ∆α and ∆s only.

In the implemented d-FLASH imaging sequence (see Section 3.1.2), the WM gradient G⃗WM is
applied in the same direction as B⃗0. The needle therefore encloses the angle θ with the WM
gradient, as well as also with the B⃗0 field. In Section 2.3.2, it was described how a WM gradient
moment, acting at an angle θ to a needle, can only be partially counteracted by the needle-
related susceptibility-induced gradient moment, as the susceptibility-induced gradient always acts
orthogonal to the needle axis for the infinite cylinder model [9]. The component of G⃗WM acting
orthogonal to the needle will therefore always introduce a global dephasing, reducing the overall
signal magnitude of the artifact. In order to evaluate how the angle of the needle in relation to the
B⃗0 and G⃗WM direction affects the quality of the localization, considering an expected decrease
of signal magnitude for needle orientations increasingly parallel to B⃗0 and G⃗WM, the samples
from the ex-vivo test dataset were categorized into three groups based on different inclination
angle ranges: θ ∈ (86◦, 90◦]; θ ∈ (82◦, 86◦]; θ ∈ (78◦, 82◦]. For each subset, the medians ∆̃α

and ∆̃s along with the median absolute deviation were computed for the evaluated metrics. All
localizations were performed retrospectively on PC hardware (Core i7-10850H CPU with 2.70
GHz base frequency, Intel, Santa Clara, CA, USA; Quadro T2000 GPU, Nvidia, Santa Clara,
CA, USA). Reconstructions were computed on the CPU (non-parallelized), while the GPU was
employed for the CNN predictions.

The localization accuracy required to align a 2D imaging plane with a needle so that the needle
is visible in the 2D image, depends on the thickness of the imaging slice chosen, as well as
the dimensions of both the needle and the induced artifact. Ensuring the needle tip is visible
in the selected slice is particularly critical during interventions to verify accurate targeting,
e.g., of suspicious lesions. Thus, the defined metric ∆s holds significant clinical value for
interventionalist. A successful ASP demands a minimal ∆s value. For the conducted ex-vivo
study, the number of acceptable localizations was hence assessed by setting a threshold below
which the value ∆s must lie for the localization to be considered successful. The localization
success rate (number of samples with ∆s < threshold / total number of samples) was investigated
for the three angular bins described above and three distinct thresholds: ∆s < 4mm; ∆s <
8mm; ∆s < 12mm.

Additionally to the evaluation of the defined metrics for the investigated needle insertions, for
the in-vivo proof-of-principle and two example needle insertions from the ex-vivo dataset, the
feasibility of ASP was investigated by retrospectively reformatting a 2D imaging slice from the
3D reference image acquired with each d-FLASH image, utilizing the position and orientation
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of the needle as detected with the proposed localization algorithm (chosen slice thickness =
4mm).
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4 Results

Findings for the conducted characterization of needle artifacts with conventional and dephased
GRE (see Section 3.1) were reported in Section 4.1. Evaluation results for the investigated
forward model-based needle localization approach (see Section 3.2) were reported in Section 4.2
and results for the investigated CNN-based localization approach (see Section 3.3) were reported
in Section 4.3.

4.1 Characterization of needle artifacts

In Section 4.1.1, evaluation results for the conducted investigation of needle dephasing artifacts
for FLASH imaging (see Section 3.1.1) were reported. In Section 4.1.2, evaluation results for
the conducted investigation of positive susceptibility-based contrast imaging of needles with
dephased GRE (see Section 3.1.2) were reported.

4.1.1 Needle artifacts in FLASH imaging

In Fig. 4.1, three example 2D images slices are shown, depicting the artifact of the investigated
needle in a water phantom (xy-plane and zx-plane, as well as zx-plane image masked at 50%
of the background signal evaluated in an ROI), which were selected from the set of 3D FLASH
images acquired with different imaging parameters (as described in Section 3.1.1). The proposed
dephased disk model (see Section 2.3.2) is indicated in the image by a circle with the predicted
artifact radius (Eq. 2.71) for the respective imaging parameters and according to the model.

As described in Section 3.1.1, the two metrics DSC and dH were evaluated for all sampled
imaging parameters in a slab of 10 slices (indicated by white dotted lines for example images
in Fig. 4.1) with mean values and standard deviation reported in Table 4.1. Found DSC values
were above 86% for all investigated imaging parameters. The found maximum values for dH ,
interpreted as the deviation of of the measured and modeled artifact radius, were approximately
1.5 times the chosen voxel size for the investigated cases (e.g., dH = 2.8mm for the artifact at
B0 = 1.5T, TE = 25ms and res = (2mm3)).
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Figure 4.1: Needle (diameter: 20-gauge, material: Inconel) placed in a water phantom orthogonal
to B0, imaged at 0.55T (a), 1.5T (b) and 3T (c) using a FLASH sequence with TE = 25ms.
Following the description in Fig. 2.5, the FLASH needle artifact is depicted in the xy-plane (first
column) and the zx-plane (second column). Additionally, the image showing the needle in the
zx-plane was masked (S < 0.5SBG; background signal SBG averaged over indicated ROI) and
the masked image is depicted in the third column. The artifact model as described by Eq. 2.71 is
indicated by the blue circle. DSC and dH were evaluated (see Table 4.1) for the modeled and
the measured artifact within a defined artifact ROI and for a slab of 10 slices, indicated by the
white dotted lines in the xy-plane view. Figure reproduced from Faust et al. [1].
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Table 4.1: Results of the comparison of the needle artifact in acquired FLASH images to the
proposed artifact model for various sequence parameters, using DSC and dH . The artifact radius
rFLASH, as calculated from Eq. 2.71, is also given. Maximum and minimum found DSC values
are highlighted in green and red, respectively. A zero standard deviation indicates no found
differences for the respective metric across the slices of the evaluated slab. Table adapted from
Faust et al. [1].
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rFLASH rFLASH rFLASH

rFLASH rFLASH rFLASH
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4.1.2 Needle artifacts in dephased GRE imaging

Dephased GRE contrast imaging of a needle in a water phantom was evaluated as described in
Section 3.1.2. In Fig. 4.2, a reference SE image of the needle phantom is shown, as well as images
acquired with the implemented d-FLASH, d-SSFP, and d-bSSFP sequences. In both the d-FLASH
and d-SSFP contrast images, three signal maxima are observed within the zx-plane, forming
three stripes alongside the needle shaft. The formed positive contrast artifact is axisymmetric with
the axis of symmetry running through the needle shaft in z-direction. For d-bSSFP contrast, six
signal maxima are present in the depicted zx-plane image, constituting a point-symmetric artifact.
While the d-FLASH and d-bSSFP images exhibit a spatially uniform positive contrast needle
artifact, the artifact in the d-SSFP image is interrupted by multiple dark bands (see discussion in
Section 5.1.2).

The maximum artifact magnitude observed for d-bSSFP and d-FLASH, relative to d-SSFP, was
found to be 0.56±0.09 and 0.19±0.04. The theoretically expected signal ratio between d-bSSFP
and d-SSFP (approximately 0.64, see Section 2.3.2) was thus found to lie within one standard
deviation of the experimental measurement. The measured cumulative signal magnitude for
d-bSSFP and d-FLASH, again evaluated relative to the d-SSFP cumulative magnitude, was found
to be 1.13± 0.07 and 0.19± 0.01. Therefore, the theoretical cumulative signal ratio for d-bSSFP
and d-SSFP (approximately 1.27, see again Section 2.3.2) lies within two standard deviations of
the value observed experimentally. When directly contrasting d-bSSFP with d-FLASH, d-bSSFP
shows a maximum artifact signal and cumulative signal magnitude that are 2.9±0.5 and 5.9±0.4
times higher, respectively, than those of d-FLASH.

Figure 4.3 illustrates how the needle artifact for d-bSSFP imaging varies for different TE. d-bSSFP
images corresponding to four example TE are depicted in Fig. 4.3a. The radius of the needle WM
artifact increased with increasing TE. Some stripe-like artifacts that appear in the water phantom
can be noticed, seemingly unrelated to the needle (potentially eddy current-induced effects that
can appear when employing a radial image acquisition for bSSFP contrast [94]; see dicussion in
Section 5.1.2). The position of the needle shaft was extracted from the reference spin-echo image
and indicated in the depicted d-bSSFP images (marked with a white dot). Dashed and solid lines
indicate the estimated location where m0,susc,x vanishes and |m0,susc| = m0,WM,z , following the
investigated model for the d-bSSFP needle artifact (see Section 2.3.2) and as shown schematically
in Fig. 2.7. The position of the pixels with the highest signal intensity, predicted by the model to
lie on the dashed lines, deviate by no more than one pixel from the dashed lines. In Fig. 4.3b,
the radius of the artifact, as measured in the acquired images, is plotted against TE. The plot
also includes the predicted artifact radius derived from the model. The measurements of the
artifact radius from the experiment were found to be in accordance with the model’s predictions,
remaining within the measurement uncertainty margin, across all examined TE. Performing a fit
of the artifact radius model Eq. 2.74 to the acquired radius measurements (not depicted in the
image), choosing the needle susceptibility χi as a free parameter, resulted in a found value of
χi,exp = (8 ± 2) × 10−4 for which the literature value of χi = 568 × 10−6 (value for Inconel
[76]) lies within the range of two standard deviations.
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Figure 4.2: Images with d-FLASH, d-SSFP, and d-bSSFP contrast show a needle (diameter:
20-gauge, material: Inconel), placed in a water phantom orthogonal to B⃗0. Additionally, a
reference spin-echo image is shown. The needle artifact is shown in the xy-plane, zy-plane, and
zx-plane as defined in Fig. 2.5. The needle axis (extracted from the SE reference) is indicated by
the dotted white line. For the zx-plane, an additional zoomed view is shown for the dephased
GRE images. To depict the positive needle artifact in the dephased GRE images, the xy-plane
view is slightly shifted in z-direction compared to the reference image. White solid lines in the
xy-plane and zy-plane images indicate a slab of 10 slices for which the average artifact signal
was calculated (see Table 4.2). Figure reproduced from Faust et al. [2].
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Figure 4.3: Investigation of the d-bSSFP positive contrast artifact generated by a needle in a
water phantom for six different echo times TE: TE,1 = 3.4ms, TE,2 = 10ms, TE,3 = 20ms,
TE,4 = 30ms, TE,5 = 40ms, and TE,6 = 50ms. (a) For TE,1, TE,2, TE,4 and TE,6, the needle
artifact is shown in the yz-plane and zx-plane as defined in Fig. 2.5, with an additional zoomed
view on the artifact for the zx-plane view. While the background signal in the water phantom
appears largely suppressed, some stripe-like artifacts emerge that seem unrelated to the needle
(orange arrow). (b) For each investigated TE, the radius of the needle artifact rd-GRE is measured
(average distance between the reference needle position and pixels of maximum signal, assumed
measurement uncertainty of half a pixel) and plotted together with the modeled radius from
Eq. 2.74. Figure adapted from Faust et al. [2].
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Table 4.2: Comparative overview of the investigated dephased GRE imaging techniques (d-
FLASH, d-SSFP, and d-bSSFP). The different techniques were compared regarding the exhibited
positive artifact symmetry, the sensitivity to banding artifacts, and the maximum as well as the
cumulated artifact signal magnitude (normalized to d-SSFP magnitude, given with standard
deviation). The different steady-state magnetizations (coherent steady-state for d-SSFP and
incoherent steady-state for d-FLASH) make the signal magnitude ratio tissue-dependent when
comparing d-FLASH with d-SSFP, rendering a general prediction of the signal magnitude ratio
not feasible (see Section 2.3.2). Table reproduced from Faust et al. [4].

In Table 4.2, the findings comparing the three investigated contrast types (concerning artifact
symmetry, sensitivity to banding artifacts, as well as the theoretically anticipated versus measured
signal magnitude) are again presented in summary.

4.2 Forward model-based 3D needle localization using a
baseline-subtracted FLASH acquisition

The proposed forward model-based 3D needle localization method was investigated according to
Section 3.2. In Section 4.2.1, needle localization results for the evaluated ex-vivo study and the
in-vivo demonstration case are reported. The result of the retrospective demonstration of ASP is
described in Section 4.2.2.

4.2.1 Needle localization

In Fig. 4.4, the accuracy of the localization in terms of the defined metrics for the conducted
ex-vivo study is displayed as boxplots. Medians (± median absolute deviation) for the localization
are presented in Table 4.3a for the ex-vivo study. For better interpretability, accuracy values
worse than a set performance threshold of ∆̃s > 1.0 cm were marked gray in the table. For
initial parameter set 1, a median tip localization accuracy of ∆̃s ≤ 0.8 cm could be reached for
as few as 5 acquired k-space spokes, allowing for a combined acquisition and localization time of
tacq + tloc < 0.2 s. For initial parameter set 2, a similar accuracy for ∆̃s could be reached for 16
(tacq + tloc < 0.4 s), 32 (tacq + tloc < 0.8 s) and 64 (tacq + tloc < 1.4 s) acquired k-space spokes.
For 5 k-space spokes, median tip localization accuracy decreased below the set performance
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(a)

(b)

(c)

c
c

c

Figure 4.4: Performance (metrics ∆c, ∆α, ∆s) of the proposed needle localization algorithm for
the conducted ex-vivo study with different sets of initial parameters for the model optimization:
(a) Initial parameter set 1 – angles shifted by 15◦, centroid shifted by 3.2 cm; (b) Initial parameter
set 2 – angles shifted by 30◦, centroid shifted by 6.4 cm; (c) Initial parameter set 3 – angles shifted
by 60◦, centroid shifted by 12.8 cm (= FOV/2). Each metric was evaluated for a localization from
5, 16, 32 and 64 radial k-space spokes. The boxes represent the interquartal range (IQR), with
whiskers extending to 1.5 times the IQR. Outliers are shown as circles, and medians are marked
by black crosslines. Note the different vertical scales in (a), (b) and (c).
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Table 4.3: Accuracy of needle localization with the investigated method from 5, 16, 32 and
64 acquired k-space spokes, depending on the initial set of optimization parameters. For each
defined set of initial optimization parameters, the median (± the median absolute deviation) of the
achieved accuracy was calculated for the introduced metrics (∆̃c), (∆̃α) and (∆̃s) and the mean
runtime of the localization algorithm (t̄loc) was determined. For localizations with an achieved
accuracy worse than a threshold of ∆̃s > 1.0 cm, cells are marked in gray.
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threshold with ∆̃s = 1.9 cm. For initial parameters set 3, a localization above the set threshold
was possible from 32 and 64 k-space spokes (with ∆̃s < 0.8 cm). The achieved localization
accuracy, broken down by the angular orientation of the respective needle orientation for the
individual samples in the ex-vivo study dataset is provided in Fig. A.1.

Figure 4.5 shows an example localization from the ex-vivo dataset from 5, 16, 32 and 64 acquired
k-space spokes using (a) set 1 and (b) set 3 of initial optimization parameters. The image
columns show localizations from different numbers of acquired k-space lines (nspokes = 5; 16;
32; 64). The first row shows the image-reconstructed acquired subtraction k-space as maximum
intensity projection (MIP). The needle axes according to the ground truth annotation (blue dashed
line), initial k-space model parameters (red dashed line) and the optimized parameters (green
dashed line) are shown. The second row shows the image-reconstructed modeled k-space with the
optimized k-space model parameters. The image reconstructions serve visualization purposes only
as no image reconstruction is required for the investigated k-space-based localization. For initial
parameter set 1, an accuracy of ∆s ≤ 0.5 cm was reached for localizations from all investigated
numbers of k-space spokes. For the initial parameter set 3, reconstructed images of the k-space
model show the increased misalignment of the initial artifact model axis and the true artifact
axis compared to the initial parameter set 1. The best localization accuracy of ∆s = 0.3 cm was
achieved for the optimization using 64 k-space spokes. While the accuracy of the positional fit
was in the same order of magnitude for all numbers of used k-space lines (∆c ≤ 0.3 cm), the
performance of the angular optimization decreased for less than 64 k-space spokes (∆α ≥ 70◦),
consequently leading to a large discrepancy for the tip distance (∆s ≥ 2.3 cm).

In Fig. 4.6, the cost function of the angular fit for the example needle insertion from Fig. 4.5 is dis-
played for the localization from all investigated numbers of acquired k-space lines. Corresponding
to Fig. 4.5, optimization paths are shown for the initial parameter sets 1 and 3. Global minima
of the optimization surfaces are indicated, as well as the initial and final angular optimization
parameters and the ground truth (annotated) angular orientation. Optimization starting from initial
parameter set 1 successfully reaches the angular global minimum for all investigated numbers
of k-space lines. Optimization with set 2 seemingly gets stuck in local minima for 5, 16 and 32
k-space spokes and cannot reach the global minimum, which appears close to the true angular
parameters. It is only for 64 spokes that the angular cost function appears convex enough for the
optimization to find the global minimum with the initial parameter set 3.

The calculated metrics for the in-vivo proof-of-principle demonstration case are given in Ta-
ble 4.3b. For initial parameter set 1, localization accuracy was assessed to be within the set
performance threshold for 16, 32 and 64 k-space spokes (∆s ≤ 0.9 cm) and below the set
threshold (with ∆s = 1.2 cm) for the 5 spoke case (grayed-out cell). ∆α is largest (∆α = 10.2◦)
for the localization from 64 spokes (see discussion). For the initial parameter set 2, localization
within the performance threshold was only possible from 64 spokes (∆s = 0.9 cm).
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Figure 4.5: Example localization (with θ = 96.4◦ and ϕ = 103.8◦) from the acquired ex-vivo
dataset with two sets of initial model optimization parameters: (a) angles shifted by 15◦, centroid
shifted by 3.2 cm (set 1); (b) angles shifted by 60◦, centroid shifted by 12.8 cm (set 3).
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Figure 4.6: Visualization of the cost function for the performed angular optimization in the
example of Fig. 4.5 (fixed artifact model length lc at ground truth value for needle insertion depth
l) with the two angles ϕ and θ. For a localization from (a) 5, (b) 16, (c) 32 and (d) 64 k-space
lines, the optimization pathways are shown with the initial optimization parameter sets 1 and 3.
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4.2.2 Automatic slice alignment

The third row of the two subfigures in Fig. 4.5 respectively displays reformatted 2D slices (slice
thickness = 8mm) from the acquired 3D reference scan with the imaging plane aligned with the
fitted needle trajectory (retrospective ASP). For localizations with the initial parameters set 1
from all investigated nspokes, the needle artifact was visible for the full needle insertion depth in
the realigned image plane. For localizations with the initial parameters set 3, the needle artifact is
only fully visible in the automatically aligned slice for the localization from 64 k-space spokes
(the needle only “punctures” the slice for the localizations from less spokes).

Figure 4.7 displays the proof-of-principle demonstration of an in-vivo needle localization in the
porcine animal model. The image-reconstructed acquired subtraction k-space with an overlay
of the true artifact axis, the initial and the fitted modeled artifact axes are shown. Some areas of
hyperintense signal that appear unrelated to the needle artifact are visible in the reconstructed
subtraction images (see discussion). Reformatted slices from a 3D reference scan show an
imaging plane aligned with the initial and the fitted model. While the needle artifact is not visible
in the initially misaligned slice, it is fully visible in the realigned image plane for the localization
from all investigated numbers of k-space spokes, including the 5 spoke case.

4.3 3D needle localization using dephased FLASH contrast
and CNN-based postprocessing

The proposed CNN-based 3D needle localization method was evaluated according to Section 3.3.
In Section 4.3.1, needle localization results for the evaluated ex-vivo study and in-vivo proof-
of-principle experiment are reported. The results of the retrospective demonstration of ASP are
described in Section 4.3.2.

4.3.1 Needle localization

In Fig. 4.8, the results for the metrics ∆α and ∆s, calculated for the investigated ex-vivo
test dataset, are depicted as boxplots (for localization from 6434, 256, 64, and 32 spokes;
binned for the inclination angle). The medians ∆̃α and ∆̃s of the employed metrics, calculated
for the investigated ex-vivo test dataset, are presented in Table 4.4. Medians (± the median
absolute deviation) are reported for localizations from images reconstructed with all evaluated
undersampling factors and samples binned based on the needle inclination angle θ. On the
employed PC hardware, the performed retrospective localizations with the investigated algorithm
took between 2 s and 41 s per acquisition. Reconstruction times for 3 reconstructed coil channels
were trecon = 39.4 s for 6434 spokes, trecon = 1.9 s for 256 spokes, trecon = 1.2 s for 128 spokes,
trecon = 0.8 s for 64 spokes, trecon = 0.6 s for 32 spokes and trecon = 0.5 s for 16 spokes. The
processing time of the needle localization algorithm was below 1 s. Acquisition times tacq for the
samples from the ex-vivo study (nspokes times TR) ranged from tacq(nspokes = 6434) = 80.43 s
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Figure 4.7: In-vivo proof-of-principle demonstration of automatic slice alignment using the
investigated forward model-based localization algorithm. The first row of the image shows the
reconstructed subtraction k-space (only for demonstration purposes, not part of the localization)
for 5, 16, 32 and 64 acquired k-space spokes. Ground truth needle orientation and needle artifact
tip, as extracted from the reference scan, are indicated with a blue line and cross. The needle
trajectory as determined using the proposed localization algorithm is indicated by the green line
and the initially misaligned axis with a red line. The second and third row show the initially
misaligned as well as an automatically positioned 2D image slice (thickness = 8mm) based on
the performed needle localization (auto-reformatted from 3D reference scan).
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(a)
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θ ∈ (86°, 90°] θ ∈ (82°, 86°] θ ∈ (78°, 82°]

θ ∈ (86°, 90°] θ ∈ (82°, 86°] θ ∈ (78°, 82°]

Figure 4.8: Performance evaluation investigating the proposed CNN-based rapid 3D needle
localization technique for the conducted ex-vivo study. Samples in the test set were binned into
three subsets of different needle inclination angles θ and the measured values for ∆α and ∆s
are presented as boxplots for localizations from images reconstructed from different numbers
of sampled k-space spokes. The boxes represent the IQR, with whiskers extending to 1.5 times
the IQR. Outliers are shown as circles, and medians are marked by black crosslines. Figure
reproduced from Faust et al. [4].
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Table 4.4: Accuracy evaluation for the performed ex-vivo study analyzing the proposed CNN-
based rapid 3D needle localization. Samples from the test set were binned into 3 subsets of
different needle inclination angles θ, each containing a different number n of samples. Medians
(± the median absolute deviation) for the introduced metrics ∆̃α and ∆̃s are provided for
each subset and localizations from different numbers of acquired k-space spokes. The cells of
the table were colored to highlight differences in ∆̃s: white =̂ (4mm > ∆̃s); light grey =̂

(8mm > ∆̃s ≥ 4mm); dark grey =̂ (∆̃s ≥ 8mm). Table adapted from Faust et al. (2024) [4].

tacq + tloc ≈ 121 s tacq + tloc ≈ 6 s tacq + tloc ≈ 4 s tacq + tloc ≈ 3 s tacq + tloc ≈ 2 s tacq + tloc ≈ 2 s

to tacq(nspokes = 16) = 0.2 s. The median accuracy of the binned samples decreases as the
number of spokes is reduced and the needle trajectories become more aligned with B⃗0, and,
therefore, also with G⃗WM. For inclination angles θ = (86◦, 90◦], values of ∆̃α = (2.6± 1.4)◦

and ∆̃s = (1.9 ± 0.6)mm were found for localizations using 6434 k-space spokes, as well
as ∆̃α = (9.5 ± 4.7)◦ and ∆̃s = (4.7 ± 3.0)mm for localizations using 16 spokes. For, e.g.,
localizations from 64 spokes, the computed median accuracy decreased from ∆̃α = (4.1± 1.4)◦

and ∆̃s = (2.6 ± 0.7)mm for insertion angles θ = (86◦, 90◦] to ∆̃α = (6.8 ± 2.7)◦ and
∆̃s = (3.5± 1.5)mm for insertion angles θ = (78◦, 82◦].

In Figure 4.9, two localizations from the assessed ex-vivo test dataset are depicted, using 6434,
256, 64, and 32 sampled k-space spokes. The first row of the images displays a manually selected
slice from the acquired (undersampled) 3D WM image, showing the WM needle artifact. The
second row presents the 3D d-FLASH image as MIP with the CNN localization overlay. In
the example of Fig. 4.9a, the needle was inserted at an inclination angle of θ = 88.1◦, nearly
orthogonal to B⃗0. Despite the higher noise level, the WM needle artifact remains discernible
even in the images reconstructed from fewer k-space spokes. With as few as 32 k-space spokes,
localization accuracies of ∆α ≤ 3.4◦ and ∆s ≤ 2.5mm could be achieved. In the example of
Fig. 4.9b, the needle was inserted with an inclination angle of θ = 78.2◦ with B⃗0. The visibility
of the WM needle artifact diminishes for lower numbers of sampled k-space spokes. At 32 spokes,
the needle artifact becomes visually nearly indistinguishable from the background noise in the d-
FLASH image. While the needle was localized with accuracies of ∆α ≤ 3.8◦ and ∆s ≤ 2.2mm
for image reconstructions from 6434, 256, and 64 sampled spokes, localization accuracy was
diminished for the 32 spokes reconstruction, with ∆α = 13.9◦ and ∆s = 8.3mm.

In Table 4.5, the localization success rate (a successful localization was characterized by ∆s
being below a specified threshold, refer to Section 3.3.2) is reported for the ex-vivo test dataset.
A lower success rate was found for localizations using a lower number of sampled k-space
spokes, as well as for needle insertions increasingly parallel to the direction of B⃗0 and GWM.
For needle inclination angles θ ∈ (86◦, 90◦], a success rate of ≥ 72% was reached with a set
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Figure 4.9: Performance evaluation for two example needle insertions from the ex-vivo test dataset
with needle inclination angles of θ = 88.1◦ (a) and θ = 78.2◦ (b) relative to B⃗0, investigating the
proposed CNN-based rapid 3D needle localization technique. Blue cross corresponds to ground
truth needle tip, blue dashed line corresponds to ground truth needle axis, green dashed line
corresponds to predicted needle axis. Figure adapted from Faust et al. [4].
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Table 4.5: Evaluation of the calculated success rate (number of samples with ∆s < 4mm,
∆s < 8mm or ∆s < 12mm) for the performed ex-vivo study analyzing the proposed CNN-
based rapid 3D needle localization. Samples from the test set were binned into 3 subsets of
different needle inclination angles θ and success rates were calculated for localizations from
different numbers of acquired k-space spokes. The cells of the table were colored to highlight
differences in the achieved success rate: white =̂ (success rate ≥ 75%); light grey =̂ (75% >
success rate ≥ 50%); dark grey =̂ (success rate < 50%). Table reproduced from Faust et al. [4].
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threshold of ∆s = 4mm for localizations from all assessed numbers of sampled k-space spokes
(nspokes1 = 6434 to nspokes5 = 32). For needles inserted at an angle θ ∈ (78◦, 82◦], a success
rate of ≥ 82% was achieved, setting a threshold of ∆s = 8mm for localizations from as few as
64 spokes.

In Fig. 4.10, localization results for the in-vivo proof-of-concept needle insertions are depticted.
A 20-gauge needle (a) and a 22-gauge needle (b,c) were inserted into the thighs of two pigs, with
images captured using a spine and loop coil (a,c) and a spine and flex coil (b). The needles were
positioned at angles to B⃗0 of θ1 = 87.7◦ (a), θ2 = 88.8◦ (b), and θ3 = 77.6◦ (c). The first row of
each subfigure displays a manually chosen slice from the (undersampled) 3D d-FLASH image,
showing the needle WM artifact and residual tissue WM artifacts (see discussion in Section 5.2.2).
The second row presents the CNN prediction overlaid on a MIP of the d-FLASH image. The third
row features a reformatted slice (slice thickness = 4mm) from a 3D FLASH/bSSFP reference
dataset, selected based on the CNN-based needle localization. Localizations were evaluated from
nspokes1 = 6434 to nspokes5 = 32 k-space spokes. For needles inserted nearly parallel to the
transversal plane, localization accuracy from just 32 sampled k-space spokes reached ∆α = 3.4◦

and ∆s = 1.4mm for the insertion shown in Fig. 4.10a, and ∆α = 4.1◦ and ∆s = 6.9mm for
the insertion shown in Fig. 4.10b. For the insertion evaluated in Fig. 4.10c, where the needle was
angled further away from the transversal plane, an accuracy of ∆α = 6.8◦ and ∆s = 5.3mm
was measured for a localization from only 128 sampled spokes. For the localization attempts
with 64 and 32 sampled spokes, the algorithm failed to identify the needle correctly.

4.3.2 Automatic slice alignment

For both ex-vivo cases depicted in Fig. 4.9, a 2D slice (slice thickness = 4mm) was reformatted
from the acquired 3D reference FLASH image, which was aligned with the identified needle axis
from the respective localization result to retrospectively evaluate the feasibility of automatic slice
alignment following the proposed localization algorithm (picture in third row of the two figure
parts). For the example depicted in Fig. 4.9a, the needle artifact is visible for the entire insertion
depth of the needle in the automatically chosen slice for localizations from all investigated
numbers of sampled k-space spokes. In the example shown in Fig. 4.9b, although the entire
needle artifact is visible for localizations from 6434 to 64 k-space spokes, the detected needle
axis was too oblique to the ground truth needle needle path for localization from investigated
numbers of k-space spokes below 64, causing the needle artifact to be located partially out of the
reformatted plane. In particular, the needle artifact is not visible for the needle tip.

For the in-vivo proof-of-principle case depicted in Fig. 4.10a, the needle trajectory was entirely
visible in the reformatted d-FLASH 2D image slice for localizations from 6434 down to 64
k-space spokes (∆α ≤ 2.2◦; ∆s ≤ 2.4mm). The needle axis, as detected by the localization
algorithm, had an increased obliqueness to the true needle axis for the localization from 32
k-space spokes, causing the needle artifact to not be visible for part of insertion depth of the
needle in the automatically reformatted 2D image plane (∆α = 3.4◦; ∆s = 1.4mm). The
artifact at the tip, nevertheless, remained visible in the aligned plane. For the case shown in
Fig. 4.10b, the needle artifact is partly visible in all reformatted 2D bSSFP slices. However, the
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Figure 4.10: Investigation of the proposed CNN-based rapid 3D needle localization technique in
proof-of-principle in-vivo experiments with needles inserted at θ1 = 87.7◦ (a), θ2 = 88.8◦ (b),
and θ3 = 77.6◦ (c). Coloring of needle axes as in Fig. 4.9. Figure adapted from Faust et al. [4].
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visibility of the artifact is restricted at the tip for localizations from all investigated nspokes except
for nspokes = 6434. For the localizations from fewer k-space spokes, ∆s is noticeably larger then
the chosen slice thickness of 4mm. For the case depicted in Fig. 4.10c, the needle artifact is fully
visible in the aligned planes for localizations from 6434 (∆α = 1.9◦; ∆s = 0.3mm) down to
128 spokes (∆α = 6.8◦; ∆s = 5.3mm). For localizations from fewer sampled spokes (64 & 32
spokes), needle localization did not succeed, resulting in failing ASP for these cases (needle not
visible in reformatted slice).
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5 Discussion

Automatic slice alignment of 2D real-time imaging planes with the needle during MR-guided
needle interventions can support the interventionalist by simplifying and accelerating the workflow
of the procedure. 3D needle localization is required to allow for automatic slice alignment with
the needle. Passive localization techniques only use the effect of the metallic needle itself on the
MR image. In this dissertation, the needle artifact was first characterized for conventional FLASH
imaging, as well as for dephased GRE. Two methods for rapid passive 3D needle localization were
then investigated with the purpose of enabling automatic slice alignment during MR-guided in-
bore interventions. While the first method made use of a baseline-subtracted FLASH acquisition,
the second method employed positive contrast imaging with dephased FLASH to localize the
needle from a limited acquisition of radial k-space lines.

5.1 Delineation of needles in MRI

Needle artifacts were characterized and evaluated for conventional FLASH imaging, as well as
for susceptibility-based positive contrast imaging using dephased GRE. For FLASH, measured
needle artifacts were compared to a simple dephasing model. To evaluate dephased GRE contrast,
three different research MR pulse sequences were implemented to enable d-FLASH, d-SSFP
and d-bSSFP imaging. Signal models for d-SSFP and d-bSSFP contrast were proposed and
compared with the well-known d-FLASH signal model [20]. The artifact of a cylindrical biopsy
needle was theoretically investigated with the introduced signal models and evaluated in phantom
experiments.

5.1.1 Needle artifacts in FLASH imaging

A simple analytical model was investigated to predict the shape and size of the dephasing artifact
introduced by a needle in FLASH imaging. Dice similarity coefficient (DSC) and Hausdorff
distance (dH ) were used to assess the quality of the model. Comparing the measured artifact with
the model at different field strengths, echo times and image resolutions, good correspondence
between the modeled and measured needle artifact was observed (DSC ≥ 86% and dH ≤ 2 px
for all investigated cases).

The artifact was hereby defined to include pixels with a signal intensity reduced by 50% compared
to the background signal intensity. Other authors have measured the size of needle artifacts in MR
images by determining the width of the artifact through visual inspection [12, 13]. The chosen
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threshold of Sartifact < 50%SBG in this work, which was evaluated within a manually positioned
artifact ROI, was found to fit well to the visual impression of the artifact (see Fig. 4.1).

The measurements performed in this study were subject to several limitations. The dephased
disk/cylinder model as investigated in this thesis was derived from the description of a biopsy
needle as a metallic cylinder of infinite length by Ladd et al. [9]. This condition is violated
at the tip of the needle. Müller-Bierl et al. [16] proposed a numerical investigation of the
field inhomogeneity at the needle tip to investigate the emerging artifact, describing the tip
artifact as “ball-shaped” (depending on the tip geometry and the needle orientation to the main
magnetic field). The investigated dephased disk/cylinder model is therefore only intended to
describe the artifact at a certain distance from the needle tip, which is also expected to depend on
needle orientation, imaging parameters, and tip geometry. Furthermore, the artifact model was
investigated for conditions that might not necessarily be matched in an MR-guided intervention,
and that should be addressed in future work. The images used in the study were acquired with an
isotropic image resolution. The model, as introduced in Section 2.3.2, neglects the orientation of
the local susceptibility-introduced magnetic field gradient and assumes the gradient to always act
along the voxel edge. In addition, the gradient is assumed to be approximately linear across one
voxel. Switching to an anisotropic voxel grid or larger voxels, the increasing violation of these
modeling conditions could increase the deviation of the observed artifact from the investigated
dephased cylinder/disk model. Therefore, if an anisotropic resolution is chosen for imaging, a
more complex analytical or numerical treatment might become necessary to satisfactorily model
the needle artifact. Furthermore, to suppress any potential positional signal mismatch due to local
changes of the PRF in proximity of the needle, a frequency encoding direction along the needle
shaft was chosen for the conducted measurements, as no magnetic field distortion is expected
in this direction (see Section 2.3). If the frequency-encoding direction is not aligned with the
needle shaft, signal shifts due to spatial frequency mismatch, that can distort the observed artifact,
must additionally be considered. For high receiver bandwidths, the dephasing artifact is, however,
expected to dominate over local image distortions (see Section 2.3.2).

5.1.2 Needle artifacts in dephased GRE imaging

After the investigation of needle-induced dephasing artifacts for conventional GRE contrast,
more specifically spoiled FLASH contrast (see discussion in previous section Section 5.1.1),
needle-induced positive signal artifacts were investigated for dephased GRE contrast, more
specifically d-FLASH, d-SSFP and d-bSSFP contrast. Signal models were introduced for d-SSFP
and d-bSSFP and, together with a well-established model for d-FLASH [20], the predictions
of the models on the shape, size, and magnitude of the artifacts were evaluated in phantom
measurements.

The d-bSSFP signal model predicted a point-symmetric positive signal artifact for a needle
modeled as an infinite cylinder, while for d-FLASH and d-SSFP, an axisymmetric artifact was
expected. Consistent with the theoretical prediction, phantom measurements verified the predicted
artifact symmetries, which can be attributed to the combination of discrete and continuous phase
evolutions induced by different types of WM and susceptibility-induced gradients (spoiled or
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balanced vs. unspoiled/unbalanced), as illustrated in Fig. 2.4. While the d-bSSFP signal model
was studied for the example of a cylindrical needle in the context of this dissertation, a point-
symmetric artifact would also be anticipated for spherical objects such as fiducial markers, as
these, similar to the cylindrical geometry, also evoke a symmetric field distortion [10].

Using the described models for the three investigated types of dephased GRE contrast, theoret-
ical signal magnitude ratios were derived for d-SSFP and d-bSSFP, comparing the maximum
artifact signal as well as the cumulated artifact signal. The different steady-state magnetizations
(coherent steady-state for d-SSFP and d-bSSFP, or incoherent steady-state for d-FLASH) make
the signal magnitude ratios tissue-dependent when comparing d-FLASH with d-SSFP and d-
bSSFP, rendering a general prediction of the respective signal magnitude ratio not feasible (see
Section 2.3.2). In general, a higher signal magnitude can be reached with coherent steady-state
imaging techniques than with incoherent steady-state imaging [64, 73]. The experimental analysis
of the three contrast methods matched the anticipation of higher maximum signal magnitudes for
d-SSFP and d-bSSFP imaging compared to d-FLASH (see Table 4.2). Comparing the d-bSSFP
with the d-SSFP signal magnitude, a slightly lower maximum signal ratio (within one standard
deviation) and cumulative signal ratio (within two standard deviations) were found as would have
been expected from the theoretical prediction. Discrepancy between the models’ predictions
and measured signal magnitude ratios may be a consequence of the simplifications made by the
signal models. An assumption made by the models was that the gradients acting on the local
magnetization were spatially constant within a voxel. Due to the susceptibility-induced spatially
varying field distortion, this is only an approximation (first-order Taylor approximation of the
magnetic field inhomogeneity). In addition, the models assumed the coherent steady-state signal
magnitude to be constant across individual voxels (following Lebel et al. [69]). As described in
Section 2.2.2, the coherent steady-state signal magnitude depends on the locally-induced phase
advance during TR. Another simplification that the model makes is that it also presupposes a
constant VSF. However, as described in Section 2.1.4, the sampled imaged magnitude does not
uniformly represent the distribution of transverse magnetization within the voxel, but is modified
by the VSF given in Eq. 2.46 [46]. All these simplifications could result in measurements diverg-
ing from the models’ prediction, as the observed signal might not accurately reflect the phase
coherence established by the gradients acting throughout the voxels. Nevertheless, the highest
cumulative artifact signal was found for d-bSSFP experimentally, as expected.

To further assess the accuracy of the introduced signal model, the radius of the d-bSSFP needle
artifact was examined for six distinct TE. The model for the artifact radius was fitted to the
measured radius for the evaluated TE, choosing χi as a free parameter and finding its value to
lie within two standard deviations of the literature value. Deviations of the measured value from
the expected value might not only be attributed to the shortcomings of the model as described
above. The needle material’s susceptibility is known from literature, however its true value
might be different depending, e.g., on the manufacturing process of the material [76]. Also, the
assumed magnetic field strength of the scanner might locally differ due to distortions induced
by the phantom susceptibility and geometry. However, as can be seen in Fig. 4.3b, for each
TE analyzed, the predicted artifact radius was found to be within the margins of error of the
respective measurement, supporting the relationship found for the artifact radius in Eq. 2.74 and
indicating good applicability of the model.
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Some of the d-bSSFP images depicted in Fig. 4.3a were found to contain stripe-like artifacts
within the water phantom. These artifacts, seemingly unrelated to the needle artifact due to
their spatial separation in the image, may originate from eddy currents caused by the radial
readout trajectory used for image acquisition. Scheffler et al. described how rapid changes in
the orientation of the k-space trajectory can lead to changing eddy currents across multiple TR
which then again evoke residual unbalanced net gradient moments in bSSFP imaging [94]. A
similar effect might occur in d-bSSFP imaging, evoking phase flips in certain voxels. Partial
phase coherence could then be reestablished by the WM gradient in these voxels, leading to the
observed hyperintensities. It is anticipated that adopting a Cartesian readout trajectory would
mitigate the occurrence of these artifacts.

As was shown in Fig. 4.2, the d-FLASH and d-bSSFP positive contrast artifacts appear homoge-
neous along the needle shaft while the d-SSFP artifact is disturbed by dark banding artifact as
are known from bSSFP imaging. In conventional bSSFP imaging, all external gradient moments
are balanced at the end of TR (see Section 2.2.2). An underlying unbalanced gradient moment
(e.g. due to a field inhomogeneity) can however evoke a phase flip in certain voxels (as modeled
by Eq. 2.62). This can lead to a decrease in signal, as partial magnetization with opposite phase
interferes destructively. d-SSFP contrast is sensitive to banding due to the same mechanism. As
outlined in Section 2.3.2, the susceptibility-induced gradient is locally balanced in d-SSFP by a
compensating external WM gradient. Where gradients are fully compensated, no net gradient
exists and the signal mimics conventional bSSFP contrast [21, 95]. Therefore, for full gradient
compensation, the local signal consequently becomes inherently prone to banding artifacts typical
for bSSFP. In contrast, d-bSSFP imaging avoids banding issues. Here, at points of maximum
signal compensation, the susceptibility-induced gradient deliberately introduces a phase flip with
partial constructive interference reestablished by the overlying linear phase due to the WM gradi-
ent. Minor background gradients, e.g. from imperfect shimming, will only cause insubstantial
changes to the deliberately unbalanced gradient.

To investigate and compare the different types of dephased GRE, the proposed signal models for
d-SSFP and d-bSSFP were evaluated together with the well-established sinc model for d-FLASH
[20]. As described in Section 2.2.3, these models allow for the prediction of the average signal
magnitude for a susceptibility-induced gradient moment, acting together with the external WM
gradient on the local magnetization, with the acting gradient moments being either spoiled or
balanced or unspoiled/unbalanced at the end of TR. For the application of unspoiled/unbalanced
gradient moments, the local phase introduced takes discrete values (Eq. 2.62). This makes the
voxel-integrated d-SSFP and d-bSSFP signals dependent on a local discrete phase offset, which
does not affect the integrated signal magnitude for a continuous phase evolution as in d-FLASH.
By averaging over a varying phase offset, the mean voxel signal magnitudes S̄d-SSFP and S̄d-bSSFP
were calculated in Eq. 2.63. For a small, spatially uniform, unspoiled/unbalanced gradient
moment (induced dephasing < 2π

pixel ) acting on magnetization, a modulation in signal magnitude
across voxels, based on the local phase offset, could potentially result in bright bands in d-bSSFP
that are spaced closer together for higher gradient compensation, similar to conventional bSSFP
imaging where a constant weak background gradient moment can introduce phase flips in regular
spatial intervals (depending on the local phase offset), which manifest as dark banding artifacts in
the image. Nevertheless, such discrete effects were not observed in the conducted experiments.

90



For the investigated needle-induced field distortion, the magnitude of the susceptibility-induced
gradient rapidly decreases (with 1

r3
as can be derived from Eq. 2.68) as the distance from the

device increases, likely preventing band formation.

The three research pulse sequences, implemented in this work to acquire images with d-FLASH,
d-SSFP, and d-bSSFP contrast, sample the k-space following a radial acquisition method. In radial
sampling, an altered PRF near a magnetic disturber will result in a signal blurring rather than in
discrete spatial signal shifts (see Section 3.1.2). However, if a Cartesian approach were considered
to acquire images with dephased GRE contrast, increasing the receiver bandwidth would similarly
be expected to mitigate any potential artifact distortions (cf. Section 2.3.2). In the implemented
pulse sequences, the WM gradient moment was played out along the B0 axis. Alternatively,
the gradient moment could be oriented in a different direction, with the artifact signal maxima
positions being derivable from a modified Eq. 2.73 in a way similar to the calculations performed.
While changing the gradient direction might alter the artifact’s orientation, its basic appearance
and symmetry would likely remain unchanged, due to the independence of the signal models
Eq. 2.63 from the WM orientation.

In the first part of this dissertation, conventional (FLASH) and dephased GRE (d-FLASH, d-
SSFP, d-bSSFP) contrast techniques were investigated as negative and positive contrast imaging
methods for needles. Both contrast regimes allow for a delineation of the needle in the MR image,
producing either distinct hypo- or hyperintense artifacts which were investigated by evaluating
respective signal models in phantoms. For FLASH imaging, the dephasing artifact in the image
was well described by a simple dephased disk model (corresponding to a dephased cylinder
along the needle shaft in 3D). MR-guided needle interventions can benefit from prior knowledge
of needle artifact size and shape, as the artifact is important for instrument visualization and
localization [12]. The investigated model allows a prediction of needle dephasing artifacts for
a given set of imaging parameters. The analysis, therefore, provides an understanding of the
artifact formation and could, e.g., be used to guide needle intervention planning (e.g., choice of
needle type and imaging parameters at a given field strength). In the context of this dissertation,
it was used to motivate the proposed 3D sinc approach to model a needle artifact in a baseline-
subtracted k-space as described in Section 3.2.1, which corresponds to a cuboid in image space,
approximating the cylinder-shaped artifact. In addition to needle artifacts for conventional FLASH
imaging, the positive signal artifacts for three types of positive susceptibility-based contrast
imaging with dephased GRE were investigated and compared. Signal models were developed for
d-SSFP and d-bSSFP to predict, together with the well-known signal model for d-FLASH [20],
the positive signal artifact produced by a cylindrical aspiration needle. The evaluation showed that,
in contrast to d-FLASH and d-SSFP, the d-bSSFP needle artifacts exhibited greater symmetry and
increased overall artifact signal. Furthermore, the d-bSSFP positive signal artifact is, in contrast
to the d-SSFP positive signal artifact, inherently unaffected by banding. These characteristics
render d-bSSFP, compared to d-FLASH and d-SSFP, a potentially advantageous technique for
applications in interventional MRI such as needle localization, as investigated in the further course
of this dissertation. For instance, the greater symmetry found for the d-bSSFP positive signal
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device artifact improves visibility due to increased number of established signal maxima (six
rather than three maxima for the needle as depicted in Fig. 2.7), simplifying the task of identifying
the artifact’s center. Furthermore, the additional maxima in the d-bSSFP artifact add redundancy
which might prove particularly useful when analyzing the artifact in heterogeneous tissues instead
of a homogeneous water phantom, as signal intensity can vary for different tissue due to a varying
steady-state signal magnitude influenced by the tissues’ characteristics (see Section 2.2.2). Some
sensitivity to hyperintense artifacts in the image, likely unrelated to the device, was found for
d-bSSFP. The found artifacts for d-bSSFP imaging could potentially be eddy-current related and
associated with the employed radial acquisition strategy [94]. However, further investigations
are required to confirm this hypothesis. As for the investigated localization technique in this
dissertation, a good suppression of background signal by the employed imaging technique is
crucial (see Section 2.3.3), d-FLASH was used for the conducted localization experiments, despite
its lower signal intensity and reduced symmetry.

5.2 3D rapid passive needle localization for automatic slice
positioning

Two passive needle localization methods were investigated for the purpose of ASP in MR-guided
needle interventions, which make use of the artifact introduced by the needle. While the first
investigated method made use of a baseline-subtracted, limited radial k-space acquisition with
FLASH contrast, the second method employed an undersampled d-FLASH acquisition without
the need for a baseline scan.

Both investigated methods for needle localization were evaluated with the same metrics (∆s
and ∆α). An additional metric ∆c was used to evaluate the artifact center deviation for the
model-based method to characterize the split optimization over phase (encoding the positional
parameters of the needle) and magnitude (encoding the angular parameters of the needle) of
the k-space model, which does not necessarily provide useful additional information for the
CNN-based approach, for which the evaluation of this additional metric was therefore omitted.
The visibility of the needle tip in an automatically positioned imaging slice is especially crucial to
the interventionalist as it can allow for accurate targeting. The visibility of the needle (tip) artifact
in an imaging plane depends on the quality of the slice alignment, slice thickness and on the
width of the needle artifact, which in turn depends on various factors including size and material
of the needle, magnetic field strength and chosen imaging sequence parameters (see Section 2.3
or cf., e.g., [12]). In MR-guided interventions, the use of relatively thick slices (thickness 0.5 cm
to 1 cm [8]) can be common to increase artifact and target structure visibility. By definition, ∆s
can be considered a conservative metric to evaluate feasible automatic slice positioning as it
describes the “worst-case” distance of the ground truth needle tip position to a slice aligned with
the detected needle trajectory, motivating the threshold of ∆s ≤ 1.0 cm that was set to assess
localizations in Table 4.3 and the evaluated thresholds in Table 4.5. Mehrtash et al. recommended
employing a similar metric to ∆s by measuring the distance between the needle tip and a defined
axial plane. The introduced ∆s offers greater versatility by not restricting the chosen plane to
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an axial direction, but rather, it defines the maximum distance from the needle tip to a selected
plane, independent of the plane’s orientation angle, making it therefore a slightly more general
metric. With the proposed metrics, the achieved accuracy for the performed ex-vivo studies was
characterized by calculating the median (± median absolute deviation) as a measure of central
tendency, as also used by various other authors to characterize achieved accuracy for investigated
needle localization methods [32–34]. The median was chosen as a characterizing property of the
investigated datasets as it is robust with respect to outliers (compared to the mean), which were
expected for failed localization attempts. If the localization of the needle failed completely, either
due to an unsuccessful optimization for the forward model-based localization approach or an
unsuccessful detection of the needle path by the employed CNN, the output needle parameters
produced by the algorithm are not expected to be correlated to the true localization and can
therefore be considered outliers which cannot be used to estimate the reachable accuracy for
successful localization attempts.

5.2.1 Forward model-based 3D needle localization using a
baseline-subtracted FLASH acquisition

The first method investigated in this dissertation for passive 3D rapid needle localization was
based on a baseline-subtracted limited radial FLASH k-space acquisition after a needle insertion.
The subtraction k-space data was then modeled using a 3D sinc function, and a fitting procedure
was used to determine the needle’s positional and orientational parameters. The detected needle
location and orientation could then be employed for ASP.

As demonstrated in Section 4.1.1, the needle artifact for FLASH imaging can be well described
with a dephased disk/dephased cylinder model (Section 2.3.2). The needle artifact in an image
reconstructed from a baseline-subtracted k-space acquisition after a needle insertion consequently
resembles a hyperintense cylinder (the isolated dephasing artifact) on a suppressed image back-
ground. To model the needle artifact in the baseline-subtracted FLASH k-space data, a 3D sinc
model was employed. Transferred to image space, this model corresponds to a hyperintense
cuboid. While a more sophisticated model might be able to approximate a cylinder-shaped artifact
in image space, and, therefore, the true artifact k-space signature, more closely, the chosen 3D
sinc function was shown to be a simple and robust modeling approach in the conducted ex-vivo
study and accurate localization of a needle artifact in 3D from as few as 5 k-space spokes was
shown to be feasible (see Section 4.2).

The success of the localization with the investigated method was evaluated for different choices
of initial optimization parameters used for the model fit, as well as numbers of acquired k-space
spokes employed for the localization. If the proposed needle localization method were to be
used for an automatic slice alignment, the initial optimization parameters could be interpreted to
correspond to a more or less severe initial slice misalignment to be corrected by the use of ASP. For
initial optimization parameters corresponding to a more severe initial slice misalignment, a lower
median localization accuracy was found for the samples from the ex-vivo study (represented by all
three employed localization metrics, see Table 4.3). An investigation of the model’s angular cost
function for a selected ex-vivo sample (Fig. 4.6) suggested the conclusion that the optimization,

93



especially from very few k-space spokes, is non-convex and the employed downhill-simplex
optimizer can, therefore, become stuck in local minima. For the example in Fig. 4.6, it can be
seen that the global minimum of the angular cost function and the true angular parameters of
the needle insertion coincide, indicating that an extraction of the true needle parameters from
as few as 5 k-space spokes might still be feasible with a brute-force global minimum search
across the cost function. This conclusion also supports the theoretical motivation presented in
Section 2.3.3, describing the extraction of a needle’s positional and orientational parameters
from a limited k-space acquisition. Such a global approach to find the optimization minimum
would, however, be computationally expensive and increase localization time. Severe initial
slice misalignments that could make such a global minimum search necessary are also not to be
expected in many use cases. Typically, a needle trajectory is selected in a 3D planning image
by the interventionalist before the needle insertion and the initial 2D real-time imaging planes
are aligned with that trajectory [8]. The interventionalist can then chose the insertion point and
angle using visual feedback from the real-time image and the chosen real-time imaging plane
is not expected to deviate much from the needle trajectory. Increasing the number of sampled
k-space spokes used for localization stabilized the optimization in the conducted ex-vivo study
(see Fig. 4.6 and Table 4.3).

In the conducted initial ex-vivo study, a needle insertion depth of l = 5 cm was chosen for all
needle insertions. Other, especially shorter, insertion depths could affect the performance of the
localization algorithm and might require an additional fine-tuning of the chosen initial cuboid
length lc for the optimization algorithm. As described above, initial plane alignment is usually
established using direct visual feedback from the real-time images, and many misalignments
are expected to only affect artifact visibility after a certain insertion depth is reached (needle
“moving out” of 2D imaging plane). For the ex-vivo study, needle inclination angles were sampled
by manually inserting the needle randomly into the phantom with angles up to 36◦ from the
orthogonal to the B⃗0 field. The susceptibility-induced field distortion by the needle that causes
its FLASH artifact diminishes with a smaller inclination angle to B⃗0, leading to a vanishing
shaft artifact for a needle orientation parallel to the magnetic field (see Eq. 2.71 or cf. [9, 12]).
In this case, the proposed localization method would likely fail as no dephasing artifact could
be modeled (a slight artifact can remain due to tissue displacement, see Section 2.3). Further
investigations should evaluate a potential dependency of the needle localization accuracy on the
needle inclination and limits of the proposed technique concerning steep inclination angles more
parallel to B⃗0. As the artifact changes in size with a changing inclination angle, an optimization of
the cuboid model width (treated as fixed empirical value in this work) could potentially improve
the algorithm’s performance for trajectories sampled from a wide range of inclination angles. This
would however increase the optimization’s complexity by one dimension. Transversal or near
transversal trajectories, as investigated in the conducted ex-vivo study, are, however, a common
choice in MR guided interventions [96].

For an example from the ex-vivo study dataset, as well as for an in-vivo proof-of-principle case,
successful retrospective slice realignment was demonstrated using the proposed localization
algorithm. The in-vivo data evaluated in this work was acquired under free breathing. Images
reconstructed from the acquired subtraction k-space for the displayed proof-of-principle in-vivo
experiment in Fig. 4.7 show hyperintense areas which appear unrelated to the needle artifact itself.
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This incomplete suppression of background could be related to motion. The proposed needle
localization method requires the acquisition of a baseline dataset. The acquisition of the two
datasets at different points in time makes the calculated subtraction k-space inherently sensitive to
motion-induced tissue displacement or deformation. Due to a potential misregistration of the two
acquired k-spaces, areas that are subjected to such motion might present with residual signal. As
residual background signal due to a motion-induced misregistration of the k-space acquisitions
before and after the needle insertion is not included in the 3D sinc model, it could corrupt the
optimization, leading to a decrease in localization accuracy or failure of localization. For the
in-vivo localization using initial parameter set 1, ∆α was largest with 64 acquired k-space spokes
(see Table 4.3). Here, motion (e.g., breathing-induced tissue displacement in the exterior of the
FOV) could potentially have led to an increasing inconsistency in sequentially acquired k-space
spokes as the acquisition time is longer for a higher number of sampled k-space lines, causing
the decrease in localization performance. For the in-vivo demonstration, the needle was inserted
into the thigh of the animal. More challenges concerning subject motion might also arise when
translating the method to interventions in tissue that is directly affected by breathing, e.g., liver.
Robustly localizing the needle in in-vivo scenarios with expected tissue motion might therefore
require the application of motion correction strategies, such as the acquisition of multiple baseline
datasets at different breathing stages or the application of motion triggering to time the acquisition.
For ventilated patients, the proposed rapid needle localization could also be performed during a
breath hold. Future work must investigate the robustness of the proposed technique for application
under in-vivo conditions in a dedicated study.

5.2.2 3D needle localization using dephased FLASH contrast and
CNN-based postprocessing

A second approach to rapid 3D passive needle localization in MR-guided interventions was
introduced and assessed, leveraging a CNN-based algorithm and susceptibility-based positive
contrast imaging with d-FLASH. Due to the inherent background suppression with dephased
GRE techniques, no baseline scan was required for the generation of a background-suppressed
image with a hyperintense needle artifact.

Needle localization with the proposed approach was evaluated in an ex-vivo study and demon-
strated in proof-of-concept in-vivo experiments. The potential for automated slice repositioning
was confirmed in retrospective analyses. Only sampling a reduced number of radial k-space
spokes (undersampled image acquisition), analogous to the limited radial k-space sampling for the
investigated forward model-based approach discussed in the previous section and, again, follow-
ing the theoretical motivation given in Section 2.3.3, enabled an accelerated needle localization
for needles placed with insertion angles close to the perpendicular to the B⃗0 field.

In the performed ex-vivo study, the median localization accuracy was reduced as the number of
sampled k-space spokes used for the localization decreased and for needle paths aligned more
closely with B⃗0 and G⃗WM. Similarly, in the in-vivo proof-of-principle experiments, localization
performed better for the cases where the needle was more closely aligned with the perpendicular
to the B⃗0 and G⃗WM direction than when the needle was tilted further towards B⃗0. While, for
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the examples from the ex-vivo dataset depicted in Fig. 4.9, the WM needle artifact could be
clearly delineated in the d-FLASH images reconstructed using full k-space sampling, increased
background noise obscured the artifact visibility in images reconstructed using less sampled
k-space spokes, particularly for the case Fig. 4.9b, where the needle inclination deviated further
from the orthogonal to B⃗0 and G⃗WM then for the case Fig. 4.9a. As described in Section 2.3.2,
a WM gradient moment, e.g., applied along the B⃗0 direction, as it was implemented in this
work, can no longer be entirely counteracted by the local susceptibility-induced gradient G⃗susc
for needle orientations tilted against this orientation, as G⃗susc always remains orthogonal to the
needle and the non-counteracted part of the gradient leads to global dephasing and, consequently,
a diminished artifact signal. This reduction in artifact visibility appeared to impair the CNN’s
ability to accurately regress to the needle path, resulting in lower accuracy reached for needle
localization from fewer sampled k-space spokes and needle orientations more aligned with B⃗0

and G⃗WM. In the performed ex-vivo study, localization of needles inserted with inclination
angles in the range of θ = [78◦, 90◦] was examined. A further reduction in localization accuracy
is anticipated for insertion angles beyond this range. Consequently, the proposed method for
rapid localization is primarily applicable to needle paths with an inclination near the transversal
plane. As an alternative to dephased GRE techniques, other susceptibility-based, positive contrast
techniques that allow the generation of hyperintense artifacts for metallic devices have been
investigated in the past [18, 22, 23, 97]. These alternative positive contrast techniques might
reduce the angular dependence of the contrast, as they are not explicitly direction-dependent
compared to dephased GRE. Dharmakumar et al. proposed a susceptibility-based positive
contrast technique which makes use of the flip angle-dependent signal magnitude relation of
bSSFP contrast with the locally induced dephasing [97]. Stuber et al. propose the suppression of
the on-resonant tissue signal, i.e., the background signal further away from a metallic disturber,
while only acquiring signal from the proximity of the metallic device where the PRF is altered
[22]. Employing an alternative positive contrast method to dephased GRE could, however, come
with other limitations, such as reduced background suppression [18]. Future research might
explore a similar CNN-based needle localization technique as applied in this work, which, instead
of using undersampled d-FLASH images, employs another positive susceptibility-based contrast
method with the potential of decreasing angular dependency of the localization accuracy results.
However, any employed susceptibility-based technique will still be inherently angular-dependent
to a certain degree as the field disturbance introduced by a cylindrical needle (as modeled by
Eq. 2.69) reduces with increasing parallel orientation of the needle with respect to B⃗0. Recently,
CNN-based needle localization using undersampled d-FLASH images (WM gradient applied
along three orthogonal axes) was investigated for interventional needles that were specifically
designed to include susceptibility markers placed along the shaft [98]. The WM artifact, evoked
by the susceptibility markers, was also visible for a needle orientation parallel to the B0 direction
and a localization of the needle was feasible. The results indicate that, using sophisticated needle
designs, the angular constraint for the investigated localization method can be mitigated. As
already noted in Section 5.2.1, transversal paths or needle paths with an inclination close to
θ = 90◦ are, however, common in MR-guided interventions [96].

After the acquisition of the d-FLASH data, the proposed localization algorithm includes an image
reconstruction step and a CNN-based postprocessing step, as was outlined in Section 3.3. While
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the processing time for the reconstructed d-FLASH images remained constant, the reconstruction
time itself depended on the number of acquired k-space samples. Utilizing specialized hardware
like GPUs could allow to reduce image reconstruction times [99] and therefore further accelerate
the localization.

For needle localization from a fully- and undersampled k-space with different numbers of sampled
k-space lines, distinct CNN models were trained using the network architecture and the same
set of optimization hyperparameters were employed for network training with no dedicated
hyperparameter optimization performed on the used training/validation set except for choosing
an appropriate number of training epochs (200) to reduce overfitting (see Appendix A.4 for the
model loss). While accuracy results for the localization metrics are in the order of the image
resolution of the reference images (and therefore also in the order of the annotation accuracy) for
the localization from fully sampled images (∆̃s ≈ 2mm for θ ∈ [86◦, 90◦]) and a further increase
in localization accuracy would not be expected, a further increase of localization precision might
be achievable by conducting a systematic optimization of hyperparameters or changes in the
network’s architecture for needle localization from undersampled images. The physical restriction
of a reduced artifact signal magnitude for high undersampling factors and needle inclination
angles increasingly parallel to G⃗WM and B⃗0, however, remains. The CNN utilized for the
implemented localization algorithm was trained using images of needle insertions into ex-vivo
porcine tissue phantoms which were acquired with the phantoms placed in a head coil. The set-up
facilitated the data acquisition for the training set, as it was easy to move, exchange, and rotate
the phantoms during the extensive generation of training data. Successful localizations with the
ex-vivo test dataset showed that the network effectively generalized to the adapted, dedicated
interventional coil configuration used for the acquisition of the ex-vivo test dataset (loop coil
+ spine coil), as well as the coil configuration used for the in-vivo animal proof-of-principle
experiments (using both loop + spine coil and flex + spine coil). For the needle localizations in
the first animal, a slightly larger needle type was used than for the training. The in-vivo animal
models were also larger and characterized by more complex anatomical features as represented
by the ex-vivo phantoms (as well as subject to physiological processes as breathing motion,
blood flow etc.), resulting in various background artifacts. Other differences to the training data
comprise a different needle insertion depth and slightly altered imaging parameters (changed
bandwidth and TR). Localization was still successfully demonstrated for the proof-of-principle
in-vivo cases (2D slice fully or partially aligned with the needle), indicating a certain robustness of
the CNN-based WM needle detection mechanism. Future investigations must assess the proposed
method’s reliability, especially when applying it to in-vivo scenarios that might pose additional
challenges to the localization, such as abdominal interventions where patient motion, e.g. due
to breathing, could have a larger influence. With the the implemented golden means sampling
scheme, the method would however allow the number of k-space spokes acquired, and thus the
acquisition duration, to be adjusted based on the anticipated extent of patient motion.
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5.2.3 Comparative analysis of the investigated needle localization
methods

In the dissertation, two methods for passive 3D rapid needle localization for MR guided interven-
tions were investigated. Both methods made use of MR artifacts induced by a metallic needle. The
first introduced method for needle localization employed an optimization over a 3D sinc function
to model the needle signature in a baseline-subtracted k-space acquisition with a FLASH pulse
sequence. The subtraction k-space (calculated by the subtraction of a baseline acquisition before
needle insertion from an acquisition after needle insertion) only contained the k-space signature
of the needle, assuming no misregistration between the two acquisitions, e.g., due to patient
motion, which could corrupt the subtraction of the background signal. To address and remove
the constraint of a motionless or motion-corrected baseline subtraction, the second investigated
localization method employed d-FLASH contrast to generate a background-suppressed image
with a hyperintense needle artifact. The needle was localized from the (undersampled) d-FLASH
images using a CNN-based postprocessing algorithm.

With reported frame rates used in MR-guided needle interventions of 2 to 5 frames per second [8],
a localization with an acquisition time below 1 s would likely not be considered a major disruption
to the workflow. For the investigated forward model-based needle localization approach, a median
localization accuracy of ∆̃s = 0.5 cm and ∆̃α = 7◦ were achieved in the ex-vivo study for
localization from 64 acquired k-space spokes (tacq = 0.8 s) with insertion angles sampled up to
36◦ out of the orthogonal to B⃗0 (most general set 3 of initial parameters, see Table 4.3). For the
CNN-based approach, a median accuracy of ∆̃s = 0.4 cm and ∆α = 7◦ was found, equally for
a localization from 64 sampled k-space spokes and for insertion angles sampled between 8◦ and
12◦ out of the orthogonal to B⃗0, with a higher median localization achieved for angles closer to
the transversal plane. For the two investigated needle localization approaches, achieved needle
localization accuracy, in terms of the defined metrics, was therefore found to be of the same
order of magnitude for localizations for a data acquisition time just below one second, with the
forward model-based method, however, being evaluated for a larger range of insertion angles. For
both investigated needle localization methods, ASP employing the performed localization was
successfully demonstrated (full and partial retrospective alignments of 2D imaging slice) for slice
thicknesses common in interventions [8] (4mm and 8mm for the demonstrations in Fig. 4.9 as
well as Fig. 4.10, and Fig. 4.5 as well as Fig. 4.7, respectively).

For the implemented forward model-based localization approach, success of the localization
was dependent on the initial set of optimization parameters (e.g., corresponding to an initial
misalignment of a chosen imaging plane), while the CNN-based approach has the advantage that
it does not rely on prior information of the needle position and orientation. However, using a
higher number of acquired k-space spokes for the forward model-based algorithm allowed for
accurate needle localization in the ex-vivo study, also for a very general set of initial optimization
parameters that can be interpreted as essentially no prior information on the needle position and
orientation (a shift of FOV for each artifact center coordinate implicates that the position of the
needle is unknown a priori, similar to a shift of 60◦ in angular parameters being larger than the
investigated angular range in the study).
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Due to the directional orientation of the WM gradient moment, the WM artifact signal magnitude
was diminished for insertion angles tilted out of the orthogonal to G⃗WM and B⃗0, which impacted
needle path localization. The needle artifact for the employed FLASH imaging is also orientation
dependent (Eq. 2.71) and further research must investigate potential angular limits for the
localization (for completeness, localization results from the conducted ex-vivo study, broken
down individually for the angular orientation of the needle insertion can be found in Fig. A.1).

The CNN-based algorithm employed for the second investigated localization technique was
designed to robustly extract the needle parameters from an undersampled d-FLASH image, which
can be affected by background artifacts unrelated to the needle, with the use of ML. While the
method does not require a baseline acquisition and is therefore inherently insensitive to inter-
acquisition patient motion, the employed CNN needed to be trained for the localization of the
needle, requiring the acquisition and annotation of a training dataset. The forward model-based
needle localization method investigated has the advantage that it can be used without the need
for training data and might therefore pose an alternative needle localization method if no trained
network is available for a certain needle device or imaging scenario. While they are able to
generalize and perform well on previously unseen data, deep learning (DL) models are often
described as a "black box" [100], making it challenging to predict their performance for data
which might differ from the samples in the training dataset (different scanned anatomies, coil
positioning, noise levels, sequence parameters, needle types etc.). While the reported in-vivo
experiments served as a proof-of-principle that localization is generally feasible with the CNN
trained in an ex-vivo scenario with a different needle and slightly different imaging parameters
(see discussion above in Section 5.2.2), for moving from ex-vivo training data to an in-vivo
application, an extensive in-vivo study would be required to determine the robustness of the
trained network. Larger amounts of training data with a high data variety could make the model
more robust and improve the performance on previously unseen data and acquisition scenarios.

The d-FLASH contrast leveraged in the second method to circumvent the need for a baseline
acquisition is sensitive to local magnetic field gradients as they appear near a metallic needle
(see Section 2.3.2). A forward model-based localization technique, as proposed for a baseline-
subtracted k-space acquisition, could potentially also be employed to model the d-FLASH image
of a needle insertion. However, while signal from areas with a homogeneous magnetic field
(background signal) is generally suppressed with d-FLASH contrast, some image intensity
unrelated to the needle can remain (as could be seen in Fig. 4.9 and Fig. 4.10). This residual
signal can, e.g., be attributed to other susceptibility interfaces in the imaged volume [19] or partial
volume effects [24]. If a voxel is partially filled with different tissue material, or located at an
air/tissue interface, the WM gradient moment will only partially dephase the magnetization of
a respective tissue in the voxel which can cause residual signal intensity to remain. Accidental
rephasing of signal by the employed WM gradient moment at fat/muscle tissue interfaces,
where fat and water in the muscle tissue experience a different PRF (chemical shift effect),
can also induce undesired residual signal intensity [24, 101]. Residual, non-suppressed image
intensities, appearing in addition to the WM needle artifact, would be challenging to included
into a handcrafted forward model of the image or k-space, such as the proposed 3D sinc model
in Section 3.2. An alternative to such a handcrafted model is the employment of a ML-based
approach, as used for the second needle localization method investigated in this dissertation,
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which can recognize the needle artifact, but also discern WM artifacts unrelated to the needle, as
was shown by the successful localizations.

In the past, different methods for 3D passive MR needle localization to allow for ASP have been
investigated, which shall be compared to the approaches investigated in this dissertation. Reichert
et al. attached a passive marker to a needle outside the body [30] and used two undersampled
2D tracking slices and a cross-correlation approach [29] to identify the marker position in the
undersampled images. They achieved a mean localization accuracy of 1mm, collecting a total
of 4 radial k-space lines. The method, as it relies on an external marker and pre-positioned
tracking slice, could be too restrictive for some workflows as opposed to a direct 3D needle
localization, e.g., employing localization concept as introduced in this work. Additionally, since
the marker is tracked instead of the needle, potential bending of the needle within body tissues
must be accounted for. Zijlstra et al. used phase-correlation (similar to Reichert et al.) to
track a needle tip in undersampled 2D d-FLASH images [31]. A fully-3D correlation approach
(avoiding the use of 2D tracking slices) might come with certain pitfalls such as, e.g., a potential
requirement of a large dictionary of templates to exhaustively include different needle orientations
and lengths, potentially rendering a full 3D template-based technique challenging for ASP. Patil
et al. successfully localized a paramagnetic marker, attachable to interventional devices, using
three echo-dephased spatial projections (concept similar to dephased GRE imaging), achieving
an accuracy of 4.5mm [102]. Their approach was intended to localize only a single marker on a
device and, therefore, no information on the device orientation was extracted. In recent work,
using d-FLASH imaging for needles with several susceptibility markers, together with CNN-based
localization, was shown to be a promising extension of the work conducted in this dissertation [98]
(see discussion above in Section 5.2.2 on how to overcome the angular range restriction for the
investigated d-FLASH-based needle localization approach). Mehrtash et al. proposed a 3D CNN-
based method [32] (similar architecture to the approach investigated in this work) to segment the
needle artifact from 3D spin-echo images (resampled to res = 0.88mm× 0.88mm× 3.6mm)
during prostate biopsies. The method allowed the determination of the position of the needle tip
and the orientation of the needle trajectory. The authors attained a median accuracy of 0.88mm
for localizing the needle tip (not to be confused with the metric ∆s evaluated for the localization
methods in this work, which is the distance of the ground truth needle tip to the detected needle
axis) and 0.68◦ median deviation in determining the trajectory orientation. With acquisition times
of approximately one minute for the employed conventional spin-echo imaging, the approach by
Mehrtash et al. is not optimized for real-time automatic slice alignment, which is the designated
application for the rapid 3D needle localization methods investigated in this dissertation, but rather
for needle placement verification/target hit confirmation. Li et al. employed a CNN-based needle
localization method, localizing the needle in a 15mm thick slab of three 2D slices. They achieved
a median positional accuracy of 2.2mm and an orientation accuracy of 1.2◦ [33]. Li et al.’s
method requires some prior knowledge of the needle’s position and orientation for initial imaging
slice alignment, unlike the fully 3D CNN-based technique proposed in this work. Mehrtash et al.’s
and Li et al.’s CNN-based approaches employ cross-entropy and dice loss functions for network
training, which are common in segmentation challenges [86]. For the CNN-based approach
investigated in this dissertation, an L2 loss function was employed for network training which is
prevalent in regression tasks [86, 88]. The MR needle artifact characteristics vary with the needle
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type, material, and employed sequence parameters as discussed in Section 2.3 and the artifact,
due to positional signal shifts, signal dephasing or the positive signal formation mechanism,
might not necessarily coincide with the needle axis. CNNs have been shown to be capable of
inferring the true location of the needle from the artifact [33]. Consequently, the goal of directly
identifying the needle axis/vector from MR images could be seen as a regression task rather
than a segmentation task, motivating the squared L2 norm being employed as a loss function
for network training. Also, whereas generating a Gaussian heatmap for the needle axis labels
in a regression task merely requires marking two points in each feature image of the training
dataset (label is automatically generated from annotated needle entry point and tip as described in
Section 3.3), accurate binary segmentation of WM needle artifacts would require a labor-intensive
3D pixel annotation for each feature image in the training dataset, thereby making the annotation
process less time-efficient. Recently, Zhou et al. [34] suggested the use of a vision transformer
as an alternative to the CNN architecture for needle segmentation from 3D intra-procedural
MR images. Their experiments yielded promising outcomes (1.48mm and 0.98◦ in median
localization error for tip and axis, respectively). While their implementation was not intended
for real-time applicable 3D localization for the purpose of slice realignment (acquisition time
13 s), integrating transformer architecture could be a potential future development step in the
3D d-FLASH framework investigated in this dissertation. Employing a transformer architecture
may also facilitate direct image-to-needle vector regression without a PCA post-processing
step, whereas direct mappings between an image and a vector remains a challenge for CNN
architectures [103]. However, additional training data might be necessary when employing a
transformer architecture to achieve similar localization precision as with a CNN architecture [104].
The rapid 3D passive needle localization techniques investigated in this dissertation comprise
a method which optimizes a model of baseline-subtracted FLASH k-space data to extract the
localization parameters of a needle, as well as a CNN-based method to localize the needle in
undersampled d-FLASH images.

In this dissertation, two methods for rapid 3D needle localization for the purpose of enabling ASP
were proposed and investigated. Once the needle’s position and orientation are determined by
the algorithms, 2D real-time imaging planes can be aligned with the needle trajectory, ensuring
the needle artifact is visible to the interventionalist in the real-time images. Without ASP, 2D
real-time imaging planes must be adjusted manually, usually involving multiple iterative steps
executed by an MR technician, which can be a time- and attention-demanding process, potentially
impeding the workflow. A fast automatized approach, such as offered by the proposed methods,
could therefore provide an acceleration and simplification of the workflow. While the feasibility of
a successful localizations from a greatly undersampled k-space was shown with both methods (in
some instances, localization was successful from 5 or 16 sampled k-space spokes), a localization
from this greatly reduced number of sampled k-space spokes (compared to a fully-sampled
k-space with the chosen acquisition scheme and parameters, sampling only 16 spokes would
correspond to a 402-fold acceleration) is most likely not necessary for automated slice positioning
in most use cases, as less aggressive undersampling would still allow the method to be rapid
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enough to enhance needle intervention workflows. ASP was demonstrated retrospectively with
both localization methods. Even a partial alignment of the imaging slice with the needle, as, e.g.,
for some of the alignments depicted in Fig. 4.10, could still be useful during an intervention.
Even for the case of an imperfect automatic slice alignment, 3D needle localization methods, as
investigated in this dissertation, could help minimize the manual adjustments needed to reposition
the 2D imaging plane, e.g., for when the needle is not visible at all in the initially selected
slice. This could happen, e.g., when there is a mismatch between the planned and actual needle
trajectories or insertion points, or when patient movement causes the needle to exit the imaging
slice (for motion, the CNN-based approach would be favorable, as discussed above). A partial
alignment can either provide a starting point for manual fine-tuning of the slice alignment or be
complemented by a method as proposed by Li et al. [33], which comprises capturing multiple
adjacent slices to detect the needle and adjust for minor misalignments between needle and a
real-time imaging slice. In case the automatic slice alignment fails, a reversion to the initial
slice and a manual slice alignment could still serve as a fallback method. Employing one of the
proposed localization methods for ASP during interventions, it is likely also not necessary to
constantly update the alignment of the 2D real-time images, for example, by interleaving the
radial FLASH or d-FLASH acquisition, used solely for automatic needle localization, with every
acquisition of 2D real-time images, used for the image guidance of the intervention. Instead, ASP,
and, therefore, a dedicated acquisition for localization, could be initiated by the user only when
required. During an MR-guided intervention, the user could balance the the number of k-space
spokes acquired to achieve a certain localization precision against the acceptable acquisition
time required for the localization sequence. Another factor that can influence the visibility of the
needle artifact is the chosen slice thickness for the automatically aligned 2D real-time imaging
slice, as discussed above, and relaxing the constraint on a thin slice could make the artifact visible
for some cases of partial needle alignment. The two investigated methods for rapid 3D needle
localization could also complement 2D needle tracking techniques. Submillimeter precision for
localization of the needle tip and determination of the needle’s orientation within a 2D plane to
an accuracy of about one degree have been reached with existing 2D needle localization methods
[31, 89, 105]. However, any 2D technique requires prior knowledge on position and orientation
of the image slice that includes the needle. In contrast, fully-3D methods, as investigated in this
dissertation, can allow for a needle localization without requiring prior location information, or,
with limited prior information (initial parameters for optimization in Section 3.2), enabling the
automated positioning of a 2D imaging slice aligned with the needle. Compared with 2D needle
tracking techniques for MR-guided interventions, the proposed rapid 3D localization methods
can therefore also be seen to offer a complementary solution: Rapid 3D methods, such as the
two proposed methods, could be incorporated into real-time imaging sequences as a tracking
module, allowing for fast slice realignment when the needle is lost or not entirely visible in the
2D real-time image. After ASP using a fast 3D localization, a 2D tracking technique can then
monitor the needle’s movement within the 2D imaging slice for precise needle tip localization
in order to accurately assess the tip-to-target distance based on the MR image or to confirm if
a target was hit. Any 2D localization technique, however, requires visibility of the artifact in
the selected 2D plane, which, in case of plane misalignment, can then be restored with a 3D
localization technique.
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6 Conclusion

In this work, methods were investigated to enable rapid 3D passive needle localization for the
purpose of automatic slice alignment during MR-guided interventions.

In a first step, the MR image artifact generated by a metallic needle was characterized for
conventional GRE imaging using FLASH contrast, as well as for positive, susceptibility-based
contrast imaging using dephased GRE. The hypointensive FLASH needle artifact was well
described with a dephased disk/dephased cylinder model. When comparing positive needle
artifacts for three different variants of dephased GRE, it was shown that d-bSSFP exhibits a
higher cumulated signal magnitude and increased signal symmetry compared to d-SSFP and
d-FLASH and greater signal homogeneity than d-SSFP, but potentially suffers from eddy current-
induced artifacts for radial sampling strategies.

In a next step, a 3D needle localization method was proposed and implemented that models
a baseline-subtracted 3D FLASH acquisition and uses an optimization procedure to find the
best fitting model parameters corresponding to the orientation and position of the needle. A
3D sinc was used to model the subtraction k-space, corresponding to a cuboid in image space,
which approximates the cylindrical needle artifact. Inter-acquisition motion after the baseline
scan could lead to a corrupted subtraction k-space and will likely require the implementation of
motion compensation strategies. Feasibility of successful needle localization from a very low
number of acquired k-space spokes was shown for needle insertions within a limited range of
inclination angles near the transversal plane and ASP was successfully performed retrospectively
in an ex-vivo tissue sample, as well as in an in-vivo proof-of-principle demonstration case.

Based on an undersampled d-FLASH image acquisition, a second localization method was
proposed and implemented that does not require a baseline scan, employing a CNN-based
algorithm for needle localization. In an ex-vivo study, localization accuracy was found to be
reduced for needle orientations increasingly tilted towards the direction of G⃗WM and B⃗0, which
could be partially balanced by longer acquisition times (less undersampling). Successful needle
localization based on highly undersampled images was shown for trajectories near the transversal
plane and ASP was retrospectively demonstrated for examples from the ex-vivo dataset and in
in-vivo animal experiments.

Both localization techniques were retrospectively shown to allow for ASP. The methods were
accelerated to real-time applicability. Therefore, they offer the potential to accelerate and facilitate
needle intervention workflows in the future.
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Appendix

A.1 Closed solutions to dephased GRE signal models

As described in Section 2.2.3, the signal equations Eq. 2.63 describe the mean voxel signal
magnitude for the three investigated dephased GRE sequences. The solution for d-FLASH
contrast is the well-known sinc function, which is shifted so that the maximum signal appears
at full gradient moment compensation γm0,susc = γm0,WM [20]. For d-SSFP and d-bSSFP, a
closed solution is provided in the following (up to first signal maximum at γm0,susc = ± 2π

∆z for
S̄d-bSSFP):

S̄d-FLASH = SSSI

∣∣∣∣∫ rect
( z

∆z

)
∗ e−i(γm0,susc− 2π

∆z
)zdz

∣∣∣∣
= SSSI |sinc (γm0,susc∆z/2− π)|

S̄d-SSFP = SSSC

∫ 2π
0

∣∣∣∫ rect
(

z
∆z

)
∗ e−i SW((γm0,susc− 2π

∆z
)z+τ)dz

∣∣∣ dτ
2π

= SSSC


1 for γm0,susc∆z = −2π

tri(mod(γm0,susc∆z,2π)/π−1)
|γm0,susc∆z+2π|/π

(
1− tri(mod(γm0,susc∆z,2π)/π−1)

2

)
for γm0,susc∆z ̸= −2π

S̄d-bSSFP = SSSC

∫ 2π
0

∣∣∣∫ rect( z
∆z ) ∗ e

−i(SW(γm0,suscz+τ)− 2π
∆z

z)dz
∣∣∣ dτ

2π

= SSSC



4
π3 |γm0,susc∆z| for |γm0,susc∆z| < π

2|γm0,susc∆z|
π3 (cos( π

γm0,susc∆zmod(|γm0,susc∆z|, π))− cos( π2

γm0,susc∆z ))

+ 2
π2 sin(

π2

|γm0,susc∆z|)mod(|γm0,susc∆z|, π) for π ≤ |γm0,susc∆z| < 2π

2
π for |γm0,susc∆z| = 2π

(A.1)

Here, rect is the rectangular function (rect(x) = 1 for |x| < 0.5; rect(x) = 0.5 for x = ±0.5;
rect(x) = 0 elsewhere); tri is the triangular function (tri(x) = max(1− |x|, 0)); and mod(a, b)
describes the modulo operation. For the signal maximum, the signal magnitude is, therefore,
given by S̄d-bSSFP(γm0,susc = ± 2π

∆z ) ≈ 0.64SSSC.

A.2 Reparametrization of subtraction k-space needle model

For the implementation of the optimization procedure for the localization algorithm described in
Section 3.2.1, Eq. 3.2 was reparametrized by expressing the vector ˆ⃗vc,0 in terms of the angles θ
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and ϕ:
ˆ⃗vc,0 = cos θ cosϕe⃗x + cos θ sinϕe⃗y + sin θe⃗z (A.2)

with the unit vectors e⃗x, e⃗y and e⃗z along the coordinate axes. To determine the two vectors ˆ⃗vc,1
and ˆ⃗vc,2, which are defined as orthonormal to ˆ⃗vc,0, the Gram-Schmidt process (see, e.g., [106]) is
used which is initialize with a random vector u⃗, e.g., u⃗ = (1, 1, 1). For the vector ˆ⃗vc,1, we find

v⃗c,1 = u⃗− ⟨u⃗, ˆ⃗vc,0⟩
⟨u⃗, u⃗⟩

u⃗

ˆ⃗vc,1 =
v⃗c,1
|v⃗c,1|

,

(A.3)

and for the vector ˆ⃗vc,1, we find

v⃗c,2 = ˆ⃗vc,0 × ˆ⃗vc,1

ˆ⃗vc,2 =
v⃗c,2
|v⃗c,2|

.
(A.4)

A.3 Accuracy for forward model-based localization by angular
orientation

Figure A.1 depicts the localization accuracy (∆s), broken down by angular orientation of the
inserted needle, for the ex-vivo study investigating the proposed forward model-based needle
localization method.

A.4 Model loss of CNN used for needle localization

Figure A.2 depicts the training and validation loss curves for the trained CNNs. A seperate CNN
was trained for the different employed undersampling factors (d-FLASH images reconstructed
from nspokes1 to nspokes6).

In Table A.1, the model losses are reported for the training, validation and test sets. As explained
in Section 3.3, the test set was binned for the needle inclination angle θ.
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Figure A.1: Localization accuracy (∆s), broken down by angular orientation of the inserted
needle, for the ex-vivo study investigating the proposed forward model-based needle localization
method. Each insertion is plotted as a datapoint with its coordinates indicating the needle angles
ϕ and θ, as defined in Fig. 3.4. The accuracy for ∆s is color-coded. Note the different ranges of
the colorbars. Accuracy is given for localization from the different sets of initial optimization
parameters 1-3 (see Section 3.2) and different numbers nspokes of sampled k-space lines. Angles
θ > 90◦ and ϕ > 90◦ were mapped to the interval [0◦, 90◦] by deriving 180◦ − θ and 180◦ − ϕ,
respectively.
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(f)

Loss (nspokes,1 = 6434 spokes) Loss (nspokes,2 = 256 spokes)

Loss (nspokes,3 = 128 spokes)

Loss (nspokes,5 = 32 spokes)

Loss (nspokes,4 = 64 spokes)

Loss (nspokes,6 = 16 spokes)

Figure A.2: Plots depict the development of the training and validation loss for the implemented
CNN. Seperate models were trained over 200 epochs with d-FLASH images reconstructed
from (a) nspokes,1 = 6434, (b) nspokes,2 = 256, (c) nspokes,3 = 128, (d) nspokes,4 = 64, (e)
nspokes,5 = 32 and (f) nspokes,6 = 16.
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Table A.1: Model loss of CNN, employed for needle localization as described in Section 3.3, for
training, validation and ex-vivo test set, as well as for proof-of-principle in-vivo needle insertions.
As described in Section 3.3, the test set was binned for the needle inclination angle θ.
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