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  Abstract I 

Abstract 

Head and neck squamous cell carcinoma (HNSCC) is a biologically heterogeneous 

disease with marked differences in incidence and prognosis between sexes. While 

clinical sex differences have been increasingly recognized in HNSCC, the molecular 

consequences of sex chromosome dosage alterations, such as Loss of Y chromosome 

(LoY) and Extreme Downregulation of Y-linked genes (EDY), remain poorly understood. In 

this thesis, I investigate how such alterations contribute to tumor biology and shape the 

tumor microenvironment (TME), with particular focus on fibroblast and immune cell 

dynamics. By integrating bulk and single-cell transcriptomic datasets, I systematically 

explore the prevalence and implications of sex chromosome dosage variations across 

HNSCC patients. 

 

Using TCGA bulk RNA-seq data, I identify widespread LoY and EDY events in male 

patients, with a notable enrichment in HPV-negative tumors. These alterations are tightly 

linked, with LoY emerging as a key driver of EDY. Importantly, patients stratified by sex 

chromosome dosage, XX, XY, and XØ (EDY/LoY males), display distinct transcriptomic 

and cellular profiles. To further dissect these differences, I constructed a harmonized 

single-cell HNSCC atlas, enabling the analysis of gene expression, chromosomal 

instability, and cell-cell interactions at single-cell resolution. 

 

Tumor cells emerged as the primary site of Y chromosome downregulation, and their 

classification enabled refined stratification of the cohort. I show that the TME 

composition, particularly the abundance and activity of fibroblast subtypes (matrix and 

inflammatory cancer-associated fibroblasts (mCAFs and iCAFs, respectively)), varies 

significantly by sex chromosome dosage. Cell-cell communication analysis revealed 

that fibroblasts act as major signaling mediators, especially in XY tumors, where they 

exhibit enhanced outgoing interactions to tumor cells. Furthermore, XY iCAFs uniquely 

co-express COX2 and AR, suggesting a possible interaction between inflammatory and 

hormonal pathways that may support tumor progression. These findings were further 
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validated by deconvolution of bulk transcriptomic data, confirming higher fibroblast 

abundance in XY tumors. 

 

Collectively, this work reveals that sex chromosome dosage is a biologically meaningful 

variable in HNSCC, driving differences in tumor–stroma communication and shaping the 

microenvironment. These insights highlight the importance of moving beyond binary sex 

classifications to uncover nuanced mechanisms of sex-biased tumor biology, with 

potential implications for therapeutic stratification and biomarker development. 

 

 

 

 

 

 

 

 

 
  



  Zusammenfassung III 

Zusammenfassung 

 
Das Plattenepithelkarzinom des Kopfes und Halses (HNSCC) ist eine biologisch 

heterogene Erkrankung mit deutlichen Unterschieden in der geschlechtsspezifischen 

Inzidenz und Prognose. Während das klinische Geschlecht weitgehend erforscht ist, sind 

die molekularen Folgen von Veränderungen der Geschlechtschromosomendosierung, 

wie z. B. der Verlust des Y-Chromosoms (LoY) und die extreme Herunterregulierung von 

Y-gebundenen Genen (EDY), nach wie vor kaum verstanden. In dieser Arbeit untersuche 

ich, wie solche Veränderungen zur Tumorbiologie beitragen und die 

Tumormikroumgebung (TME) formen, mit besonderem Augenmerk auf die Dynamik von 

Fibroblasten und Immunzellen. Durch die Integration von Massen- und Einzelzell-

Transkriptomdatensätzen untersuche ich systematisch die Prävalenz und die 

Auswirkungen von Variationen der Geschlechtschromosomendosierung bei HNSCC-

Patienten. 

 

Unter Verwendung von TCGA-RNA-seq-Daten identifiziere ich weit verbreitete LoY- und 

EDY-Ereignisse bei männlichen Patienten, mit einer bemerkenswerten Anreicherung in 

HPV-negativen Tumoren. Diese Veränderungen sind eng miteinander verknüpft, wobei 

sich LoY als wesentlicher Treiber von EDY herausstellt. Wichtig ist, dass Patienten, die 

nach Geschlechtschromosomendosierung - XX, XY und XØ (EDY/LoY-Männer) - 

geschichtet sind, unterschiedliche transkriptomische und zelluläre Profile aufweisen. 

Um diese Unterschiede weiter zu entschlüsseln, habe ich einen harmonisierten 

Einzelzell-HNSCC-Atlas erstellt, der die Analyse der Genexpression, der 

chromosomalen Instabilität und der Zell-Zell-Interaktionen bei Einzelzellauflösung 

ermöglicht. 

 

Tumorzellen erwiesen sich als der primäre Ort der Downregulation des Y-Chromosoms, 

und ihre Klassifizierung ermöglichte eine verfeinerte Stratifizierung der Kohorte. Ich 

zeige, dass die TME-Zusammensetzung, insbesondere die Häufigkeit und Aktivität von 

Fibroblasten-Subtypen (Matrix- und entzündliche krebsassoziierte Fibroblasten (CAFs)), 

je nach Geschlechtschromosomendosierung erheblich variiert. Die Analyse der Zell-
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Zell-Kommunikation ergab, dass Fibroblasten als wichtige Signalvermittler fungieren, 

insbesondere in XY-Tumoren, wo sie verstärkte ausgehende Interaktionen mit 

Tumorzellen aufweisen. Darüber hinaus exprimieren XY-iCAFs in einzigartiger Weise 

COX2 und AR, was auf eine mögliche Interaktion zwischen entzündlichen und 

hormonellen Signalwegen hindeutet, die das Fortschreiten des Tumors begünstigen 

kann. Diese Ergebnisse wurden durch die Dekonvolution von transkriptomischen 

Massendaten bestätigt, die eine höhere Fibroblastenhäufigkeit in XY-Tumoren 

bestätigte. 

 

Insgesamt zeigt diese Arbeit, dass die Geschlechtschromosomendosierung eine 

biologisch bedeutsame Variable bei HNSCC ist, die Unterschiede in der Tumor-Stroma-

Kommunikation bewirkt und die Mikroumgebung prägt. Diese Erkenntnisse 

unterstreichen, wie wichtig es ist, über binäre Geschlechtsklassifizierungen 

hinauszugehen, um nuancierte Mechanismen der geschlechtsspezifischen 

Tumorbiologie aufzudecken, was sich möglicherweise auf die therapeutische 

Stratifizierung und die Entwicklung von Biomarkern auswirkt. 
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  1. Introduction 1 

1. Introduction 

1.1 HNSCC Overview 

Cancer is a heterogeneous and multifactorial disease characterized by uncontrolled cell 

growth and spread to other parts of the body. It remains one of the leading global health 

concerns, with millions of new cases diagnosed each year. Head and neck squamous 

cell carcinoma (HNSCC) is a group of cancers that develop from the mucosal epithelium 

in the oral cavity, pharynx, and larynx1. It is the sixth most common cancer worldwide, 

accounting for approximately 4.5% of all cancer diagnoses and deaths globally2,3. 

HNSCC is a prominent disease, comprising over 90% of head and neck cancers. While 

there has been significant progress in understanding the molecular and cellular 

mechanisms behind cancer, survival rates for HNSCC remain suboptimal4. In advance-

stage or high-risk cases the five-year overall survival (OS) rate is below 50%, and 

recurrence rates remain high, with over 50% of patients experiencing relapse within two 

years of treatment3. This points to the need for more effective therapeutic strategies and 

improved patient stratification based on molecular and cellular insights. 

 

HNSCC can be classified into two main categories based on the presence or absence of 

human papillomavirus (HPV) infection: HPV-negative and HPV-positive (Fig.1). These two 

forms of HNSCC exhibit distinct biological and clinical behaviors, with important 

implications for treatment and prognosis5–7. 
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HPV-negative HNSCC is traditionally associated with risk factors such as tobacco use 

and alcohol consumption8,9. This subtype is more common in older patients and is often 

diagnosed in the oral cavity, larynx, and hypopharynx3,10. HPV-negative tumors tend to be 

more aggressive, these tumors often harbor genetic mutations and alterations in 

pathways associated with carcinogenesis, such as the tumor suppressor p53 and the 

retinoblastoma (RB) pathway11–13. 

 

On the other hand, HPV-positive HNSCC is primarily associated with infection by high-

risk HPV strains particularly HPV-16, other strains have been detected in smaller 

populations such as HPV-18, 31, 33 and 521,14.  HPV-positive tumors are most commonly 

found in the oropharynx and are more prevalent in younger, non-smoking individuals3,15. 

HPV-positive tumors tend to have a better prognosis than their HPV-negative 

counterparts, with improved response to treatment and a more favorable survival rate16. 

This difference is thought to be due to the unique biology of HPV-driven carcinogenesis, 

Figure 1. Overview of HPV-negative and HPV-positive HNSCC. Differences in demographics, risk

factors, anatomical location, immune infiltration, and clinical outcomes.
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where the viral oncoproteins silence tumor suppressors like p53 and RB, reducing host 

genome mutation in these genes leading to a simpler genomic mutational load 

compared to non-viral cancers14,17. HPV-positive HNSCC also creates a distinct immune 

tumor microenvironment (TME), characterized by increased T-cell infiltration, enhanced 

activation of immune effector cells, greater diversity of T-cell receptors, and higher 

immune cytolytic activity18–20. These features make HPV-positive tumors more 

responsive to immunotherapies, such as those targeting PD-1/PD-L1, and contribute to 

a stronger immune response, with higher immune cell infiltration and better immune 

activation. While HPV-negative tumors are generally associated with greater biological 

aggressiveness and poorer prognosis, findings regarding lymph node metastasis are 

more heterogeneous. Some studies report a higher incidence of lymph node involvement 

in HPV-positive tumors, whereas others have observed increased lymphatic spread in 

HPV-negative cases21–23. These discrepancies likely reflect differences in cohort 

composition, tumor subsite, and diagnostic criteria across studies. 

 

The growing recognition of the different biological and clinical outcomes between HPV-

positive and HPV-negative HNSCC has led to the consideration of HPV status as an 

important factor in patient stratification and personalized treatment planning. HPV-

positive tumors often respond better to radiation therapy and certain immunotherapies 

and have higher cure rates compared to HPV-negative tumors, leading to ongoing efforts 

to tailor therapeutic approaches based on HPV status24,25. Furthermore, the increasing 

prevalence of HPV-positive HNSCC in non-smoking populations highlights the need for 

better screening, early detection, and targeted therapies for this subgroup of patients26. 

 

Moreover, HNSCC exhibits notable tumor heterogeneity at both the intra- and inter-

tumor levels, which poses significant challenges for diagnosis, treatment, and 

prognosis27,28. Tumor heterogeneity refers to the variation in genetic and phenotypic 

characteristics of tumor cells within a single patient, as well as between different 

patients29. This complexity arises from the dynamic interactions within the TME, 

including stromal and immune cells, which can influence tumor behavior and response 

to therapies30. This heterogeneity can lead to therapeutic resistance and relapse, as 

subpopulations of cells within the same tumor may have distinct molecular profiles, 
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altering their sensitivity to treatment31,32. Understanding the heterogeneity of HNSCC is 

critical for developing more precise and personalized treatment strategies, as targeting 

only a homogeneous group of cells may not be sufficient for long-term tumor control. The 

challenges posed by tumor heterogeneity directly inform the need for more 

sophisticated, individualized therapeutic strategies. 

 

Given these complexities, the management of HNSCC typically involves a combination 

of surgery, radiation therapy, and chemotherapy. Surgical resection is often the first-line 

treatment for localized tumors, followed by radiation therapy for patients with a higher 

risk of recurrence1,33,34. Chemotherapy is commonly used in advanced or metastatic 

disease, often in combination with radiation (chemoradiotherapy) to improve 

outcomes1,35. In recent years, targeted therapies and immunotherapies have also gained 

traction, particularly in HPV-positive HNSCC, where immune checkpoint inhibitors such 

as pembrolizumab and nivolumab have shown promise1,36. However, the treatment 

protocols for HNSCC can vary depending on the tumor subtype, stage, and HPV status, 

highlighting the need for more individualized approaches. 

 

One of the goals of current research is to improve patient outcomes through treatment 

de-escalation, especially for HPV-positive patients who generally have a better 

prognosis37,38. De-escalation strategies aim to reduce the intensity of treatment in 

selected patients, thereby minimizing side effects while maintaining effective tumor 

control. This approach is based on the understanding that certain tumors can be less 

aggressive and therefore respond well to less aggressive therapies, providing an 

opportunity to reduce the long-term health burdens associated with over-treatment. 

 

The complexity and heterogeneity of HNSCC highlight the need for personalized 

treatment strategies. While significant progress has been made in understanding the 

disease’s molecular and clinical behaviors, challenges remain, particularly in 

addressing the diverse TMEs and the biological differences between HPV-positive and 

HPV-negative tumors. Additionally, the incidence of HNSCC shows notable sex 

differences, with a significantly higher incidence in males than females. While the 

disparity in incidence has traditionally been attributed to risk factors such as tobacco 
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and alcohol use, emerging evidence suggests that underlying biological mechanisms 

also contribute to these differences. Understanding these mechanisms is critical for 

developing more personalized and effective treatment strategies for both sexes. The 

ultimate goal of ongoing research is to improve patient outcomes, not only through 

better-targeted treatments but also by implementing de-escalation strategies that 

minimize unnecessary treatment burdens and enhance the quality of life for patients. 

Through personalized approaches and improved patient stratification, it is possible to 

advance the management of HNSCC and ultimately increase survival rates while 

reducing relapse. 

1.2 Sex Dimorphism in HNSCC 

Sex dimorphism in cancer refers to the observed differences in cancer prevalence, 

progression, and therapeutic responses between males and females. These disparities 

are driven by a complex interplay of genetic, hormonal, and immune factors, all of which 

contribute to the development and progression of the disease in different ways39–41 

(Figure 2). In HNSCC, sex differences are particularly pronounced, with males being 

significantly more prone to developing the disease compared to females42. This higher 

incidence in males is often coupled with more aggressive tumor progression and poorer 

prognosis. Although tobacco and alcohol use have long been recognized as key risk 

factors, emerging evidence suggests that underlying biological mechanisms, particularly 

those related to sex chromosomes and hormones, may also play a crucial role in the 

observed sex-based disparities in cancer risk and outcomes43,44. 
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Recent studies across various cancer types have highlighted the importance of sex-

biased immune responses in contributing to these differences. For instance, in 

glioblastoma (GBM), male mice exhibit accelerated tumor growth along with decreased 

CD8+ T cell frequency and increased exhaustion in the TME, which is crucial for tumor 

progression and response to immunotherapy45. Moreover, a higher frequency of 

Tumor cells
Effector 
cytokines

Tcell

TCR

TCR Richness

NK cell

mMDSCs

MHC class 1
Neoantigen

Exhausted 
Tcell

↑ Antitumour 
immunity
↑ Effector 
cytokines
↑ Infiltration of 
T lymphocytes
↑ TCR richness

↑ Immune 
suppression
↑ T cell exhaustion
↑ T cell exclusion
↑ Tumour mutational 
burden
↑ Neoantigen load
↑ Single-nucleotide 
variation
↑ Aneuploidy

Tu
m

or
 M

ic
ro

en
vi

ro
nm

en
t

C
on

tr
ib

ut
in

g
 F

ac
to

rs
R

es
po

ns
e 

to
 

Th
er

ap
ie

s

Female biased
Escape X 
chromosome 
inactivation
↑ Oestrogen
↑ Progesterone

Male biased
• Loss of Y 
chromosome
• ↑ Androgen

Context 
dependent
• Microbiome 
variation
• Epigenetic 
regulation

Chemotherapy
↑ Blood concentration
↑ Risk of toxicity

Immune checkpoint 
inhibitor
↑ Immune-related 
adverse events

Radiation therapy
↑ Radiosensitivity

Chemotherapy
↑ Drug clearance

Immune checkpoint 
inhibitor
↑ Responsiveness

Figure 2. Overview of sex-related differences in antitumor immunity, TME, and response

to therapies. This schematic illustrates key biological and immunological differences

associated with sex. Yellow-labeled features represent female-biased processes, red-labeled

features are male-biased, and grey-labeled ones are context-dependent, varying by tumor

type, disease status, or oncogenic mechanism. The figure is organized around three levels of

influence: (1) contributing factors such as sex chromosomes, hormones, and regulatory
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variability in treatment response. Figure adapted from Xiao et al., Nat Rev Cancer (2024),

reproduced with permission from Springer Nature (License N°: 6011310409719).
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progenitor exhausted T cells in males was associated with improved responsiveness to 

anti–PD-1 treatment. These findings indicate that sex-biased T-cell behaviors, such as 

increased exhaustion in males, play a key role in driving sex differences in cancer 

progression and therapeutic response. In renal cell carcinoma (RCC), studies have 

shown that male tumors tend to have more CD8+ T cells infiltrating the TME, but these 

cells are often in an exhausted and dysfunctional state, largely driven by androgen 

signaling. This finding suggests that sex hormones, particularly androgens, may 

contribute to immune suppression in male RCC tumors46. The role of the androgen–

androgen receptor axis in sex differences further emphasizes the importance of 

considering sex when designing therapies that involve immune modulation47. A similar 

trend has been observed in esophageal cancer (EC), where immunotherapy has been 

associated with better outcomes in males compared to females. Studies show that 

males derive significantly more benefit from immunotherapy, with exhausted CD8+ T 

cells being highly infiltrated in male patients who responded to treatment48. In contrast, 

female patients showed little to no benefit from immunotherapy, which was linked to 

differences in immune cell composition and gene expression between the sexes. 

 

This growing body of evidence underscores the need for sex-specific therapeutic 

strategies. A study utilizing data from The Cancer Genome Atlas (TCGA) classified 

HNSCC as part of the “strong sex-effect” group, which includes cancers such as thyroid 

carcinoma and lung squamous cell carcinoma49. This group is characterized by extensive 

sex-biased molecular signatures across multiple data types, including somatic 

mutations, gene expression, DNA methylation, and miRNA expression. These findings 

highlight the significant sex-based molecular differences in HNSCC, where male and 

female patients exhibit distinct tumor behaviors at the genetic and molecular levels. For 

example, differences in the expression of sex-biased genes and DNA methylation 

patterns may contribute to the more aggressive tumor behavior seen in male patients. 

Understanding how these sex-related molecular differences, whether in immune cell 

infiltration, hormonal regulation, or genetic pathways, affect tumor behavior and 

treatment response could lead to more effective, personalized therapies.  

 



  1. Introduction 8 

Males with HNSCC typically experience a more aggressive disease course, which is 

reflected in higher rates of metastasis and a greater likelihood of treatment 

resistance50,51. This has led researchers to examine the molecular mechanisms by which 

sex chromosomes, sex hormones, and the TME interact to influence cancer progression. 

In particular, the Y chromosome and the effects of male sex hormones such as 

testosterone are believed to contribute to the increased susceptibility of males to certain 

cancers, including HNSCC50. The TME itself also differs between males and females, with 

immune cells, stromal cells, and fibroblasts potentially exhibiting sex-specific behaviors 

that influence tumor growth and metastasis43,52. 

 

A critical aspect of sex dimorphism in cancer is the differential response to treatment. In 

HNSCC, the response to treatment may vary between males and females, and this 

difference is not always straightforward. While some studies have found no significant 

differences in OS or treatment outcomes between males and females in certain 

subgroups, emerging evidence suggests that sex-specific factors, including immune 

system activation and hormonal influences, play a role in treatment efficacy53. For 

example, males generally show a more favorable response to immune checkpoint 

inhibitors (ICIs), with studies indicating that male patients tend to benefit more from ICIs 

compared to females54,55. However, these responses can also vary depending on the type 

of treatment and cancer subtype. While immune responses differ between sexes, with 

females often showing more activated CD8+ T lymphocytes, the overall treatment 

response in males may be more robust, particularly with ICIs, suggesting that sex-based 

approaches to treatment could enhance therapeutic outcomes54,56. 

 

The discovery of these sex-related molecular mechanisms underscores the need for sex-

specific therapeutic strategies in HNSCC treatment. Developing targeted therapies that 

take into account the biological differences between sexes can lead to more effective 

treatment regimens. For instance, exploring the role of sex hormones and immune 

checkpoint modulation could open new avenues for enhancing the efficacy of 

treatments, particularly in male patients who may benefit from therapies designed to 

address sex-specific immune responses or hormone-driven mechanisms. 
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In conclusion, the differences between males and females in terms of cancer 

prevalence, progression, and response to therapy are becoming increasingly recognized 

as important factors in developing more personalized cancer treatments. Understanding 

the underlying mechanisms of sex dimorphism in cancer is essential for improving 

patient outcomes, particularly in diseases like HNSCC where sex-related factors play a 

pivotal role. Personalized and sex-specific treatment approaches could hold the key to 

overcoming the current limitations in HNSCC management and improving long-term 

survival rates. 

 

1.2.1 Loss or Extreme Down Regulation of Y Chromosome  

 
The loss of the Y chromosome (LoY) or extreme downregulation of Y-linked genes (EDY) 

has emerged as an important phenomenon in cancer research, particularly in male-

dominated cancers such as HNSCC57,58. These genetic or transcriptomic alterations are 

associated with tumor progression, immune evasion, and resistance to therapy59–62. In 

HNSCC, LoY has been shown to correlate with increased tumor aggressiveness, altered 

immune responses, and poor prognosis in male HNSCC patients63. It is also associated 

with distinct biological differences between male and female patients. Recent research, 

including cohort analyses, has shown that LoY occurs in about one-quarter of male 

HNSCC tumors, with higher prevalence in HPV-negative tumors, underscoring potential 

differences in tumor etiology50. Additionally, loss of Y chromosome expression impacts 

the regulation of several Y-linked genes, some of which are critical for male viability and 

could play a role in cancer biology50. 

 

LoY was initially identified as an age-related phenomenon in blood cells, where it was 

found to be one of the most frequent somatic mutations in aging males60,64. This 

observation led to its association with increased mortality risk and age-related diseases, 

including neurodegenerative disorders such as Alzheimer’s disease65. However, 

subsequent studies revealed that LoY is not restricted to hematopoietic cells but is also 

present in a range of diseases, including cancer57,59,66. In tumors, LoY has been observed 

across diverse cell types, raising critical questions about its functional impact in 

different cellular compartments. While the depletion of Y chromosome genes in immune 
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cells has been linked to impaired immune surveillance and dysfunction, its presence in 

tumor cells has been associated with increased tumor aggressiveness and immune 

evasion67–69. The extent to which LoY contributes to tumor progression depends on the 

specific cellular context, making it essential to investigate in which cell populations this 

alteration exerts the most significant effects. 

 

Recent studies across different cancer types have shown that LoY/EDY is not merely a 

marker of genetic instability but plays an active role in tumor biology. This alteration, 

observed in various cancers such as bladder cancer, has been linked to impaired 

immune responses, including reduced T-cell activation, which may contribute to tumor 

progression and resistance to therapy69. In male tumors, LoY/EDY could promote 

immune dysfunction, allowing tumors to evade immune surveillance. This suggests that 

males with LoY may have a diminished response to ICIs, which rely on immune activation 

to target cancer cells70. Additionally, LoY has been associated with the dysregulation of 

immune checkpoint pathways, making tumors more resistant to treatments like PD-

1/PD-L1 inhibitors71. These findings highlight the potential of LoY as a biomarker for 

predicting treatment response and guide therapeutic strategies in cancer 

immunotherapy. 

 

Further research into LoY, EDY and the molecular mechanisms behind Y chromosome 

function alteration is critical for understanding how these genetic or transcriptomic 

alterations affect tumor biology and immune responses. This research has the potential 

to uncover novel therapeutic targets for male patients and to improve patient 

stratification based on genetic and immune profiles. In particular, targeting the pathways 

disrupted by LoY/EDY could lead to more effective therapies for male patients with 

HNSCC. 

1.3 Omics Technologies in HNSCC Research 

Omics technologies, including genomics, transcriptomics, and epigenomics, have 

revolutionized the study of cancer by providing comprehensive insights into the 

molecular foundation of tumor biology. These technologies enable large-scale analyses 
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of genetic mutations, gene expression patterns, and epigenetic modifications, 

facilitating the identification of biomarkers and therapeutic targets72–74. In HNSCC, omics 

approaches have been important in uncovering the molecular alterations that contribute 

to disease progression, metastasis, and therapy resistance. 

 

Genomic sequencing technologies, such as whole genome sequencing and targeted 

sequencing, have allowed for the identification of somatic mutations, copy number 

alterations, and structural variations in HNSCC tumors12,75. These genetic alterations can 

drive tumorigenesis and may contribute to resistance to targeted therapies76,77. Similarly, 

transcriptomics has revealed dysregulated gene expression patterns in HNSCC, often 

associated with poor prognosis and aggressive disease features78,79. Epigenomic 

approaches, including DNA methylation and histone modification profiling, have also 

provided valuable insights into the mechanisms regulating gene expression in HNSCC 

and its impact on tumor behavior and the immune microenvironment80,81. 

 

The integration of genomics, transcriptomics, and epigenomics has provided a deeper 

understanding of the molecular heterogeneity in HNSCC. This has led to the 

identification of distinct tumor subtypes with varying clinical outcomes82–84. However, 

traditional bulk RNA sequencing methods fail to account for the cellular heterogeneity 

within tumors, which can obscure critical molecular events. To address this challenge, 

single-cell RNA sequencing (scRNAseq) has emerged as a powerful tool for providing 

high-resolution insights into the cellular composition of tumors and the TME. scRNAseq 

allows for the characterization of individual cells, enabling researchers to identify 

previously unrecognized subpopulations of tumor, immune, and stromal cells, which 

contribute to cancer progression and therapeutic response85. 

1.3.1 Introduction to Single-Cell Transcriptomics 

 
The introduction of single-cell transcriptomics has revolutionized the study of complex 

biological systems, particularly in cancer research. Unlike traditional bulk sequencing 

methods, which analyze mixed populations of cells, single-cell technologies allow for 

the dissection of individual cells, offering unparalleled insights into cellular 
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heterogeneity and the molecular processes driving cancer86,87. scRNAseq, chromatin 

accessibility sequencing, and spatial transcriptomics have become integral tools in 

studying tumor biology, immune cell interactions, and other cellular processes at a 

granular level88,89. 

 

The transition from bulk sequencing to single-cell technologies has significantly 

impacted the study of tumors. By enabling the analysis of individual tumor cells, 

scRNAseq has revealed distinct cell populations within the TME, including immune, 

fibroblast, endothelial, and cancer-associated stromal cells87. This technology has 

enabled a more comprehensive understanding of the cellular interactions that shape 

tumor progression and metastasis, as well as their contribution to treatment resistance. 

 

Despite the promising potential of single-cell technologies, several challenges remain. 

These include inconsistencies in data annotation, experimental methodologies, and 

sample sizes across studies, which can complicate the interpretation of results. To 

address these challenges, community-driven initiatives such as Single-Cell Best 

Practices and scRNA-tools have been developed to promote standardized 

methodologies and improve data integration and analysis90,91. Additionally, with over a 

thousand computational tools dedicated to single-cell transcriptomics, including 

popular frameworks like Seurat and Scanpy, researchers now have robust methods to 

process, analyze, and visualize large-scale single-cell datasets92,93. 

 

In HNSCC, the application of scRNAseq has provided valuable insights into the immune 

landscape and stromal components of the TME6,94. By analyzing the TME at a single-cell 

resolution, researchers can identify novel immune and stromal cell types that interact 

with tumor cells, influencing their behavior and response to therapy. These insights are 

crucial for understanding the molecular interactions that drive cancer progression, 

immune evasion, and resistance to therapy. Additionally, integrating scRNAseq with 

other omics data types, such as genomics and epigenomics, offers a more 

comprehensive view of tumor biology, aiding in the identification of novel therapeutic 

targets and the development of precision medicine strategies for HNSCC89,95. The 

integration of spatial proteomics, which maps gene or protein expression patterns within 
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tissues, further enhances this understanding by providing a more detailed picture of how 

the TME affects tumor biology and treatment outcomes96. 

 

In this chapter, I will provide a comprehensive summary of the typical steps involved in 

analyzing single-cell transcriptomics, focusing on the methods I have applied throughout 

my research. This includes an overview of computational tools and best practices to 

enhance the rigor of data analysis. The insights from single-cell transcriptomics are 

crucial for advancing our understanding of HNSCC and improving patient outcomes 

through personalized therapeutic strategies. 

 

Steps in Single-Cell Genomics Analysis 
 

The process of analyzing single-cell genomics data can be broken down into several 

distinct steps (Figure 3). Each step is crucial for obtaining accurate, reliable, and 

meaningful results. The key steps in single-cell transcriptomics analysis, as applied in 

my research, are as follows: 
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1. Data Pre-processing 

 

Data preprocessing is the first and fundamental step in single-cell analysis. Raw data 

obtained from sequencing platforms typically require extensive cleaning before 

proceeding with further analysis. This includes filtering out low-quality cells, removing 

cells with low gene counts, and correcting for technical biases such as library size and 

batch effects. The goal of preprocessing is to ensure that the data is of high quality and 

Figure 3. Overview of the single-cell RNA-seq analysis workflow. The figure summarizes the main

steps of single-cell transcriptomic analysis, as applied in this study. The upper panel illustrates

preprocessing and annotation, including generation of the count matrix (A), quality control and

filtering of low-quality cells (B), feature selection of highly variable genes (C), data integration and

batch correction across datasets (D), and clustering with subsequent cell type annotation (E). The

lower panel outlines key downstream analyses: (1) differential expression analysis between cell types

or conditions, (2) pathway enrichment analysis, (3) cell–cell communication inference through ligand–

receptor interaction modeling, (4) composition analysis across samples or groups, (5) inference of

chromosomal copy number variations (CNVs), and (6) deconvolution of bulk RNA-seq data using

scRNA-seq-derived reference profiles.
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that any noise or artifacts from the sequencing process are minimized. During this step, 

cells are typically filtered based on the number of genes detected and the total number 

of unique molecular identifiers (UMIs), which helps to exclude dead or damaged cells91. 

 

2. Normalization 

 

Normalization is a critical step that compensates for technical variations between cells, 

such as differences in sequencing depth. In scRNAseq, where sequencing depth can vary 

widely across individual cells, normalization methods are used to make gene expression 

levels comparable across cells. Common normalization methods include total-count 

normalization, log-transformation, and scaling97. A widely used approach in single-cell 

analysis is SCTransform, a normalization method implemented in Seurat, which 

accounts for gene-specific technical noise and reduces variability, allowing for 

downstream analyses like clustering to be more accurate92. 

 

3. Feature Selection 

 

Feature selection identifies the most informative genes to use in downstream analyses. 

This step is crucial to reduce the dimensionality of the dataset and to avoid overfitting. 

Genes that are highly variable across cells are typically selected for further analysis 

because they are more likely to provide valuable information about cell types or states. 

Methods for feature selection often involve calculating the variance of each gene’s 

expression across cells and selecting the top N genes that exhibit the most variation. This 

selection process ensures that the most biologically relevant signals are preserved for 

further analysis92,98. 

 

4. Dimensionality Reduction 

 

After feature selection, dimensionality reduction is performed to reduce the complexity 

of the data while preserving important biological variation. This step allows researchers 

to visualize high-dimensional data in lower dimensions and to identify patterns such as 

clustering of similar cells. The most common methods for dimensionality reduction in 
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single-cell analysis include Principal Component Analysis (PCA) and t-SNE (t-Distributed 

Stochastic Neighbor Embedding), as well as UMAP (Uniform Manifold Approximation and 

Projection)99–101. These techniques allow us to explore the relationships between cells 

and visualize them in two or three dimensions, which is essential for interpreting the 

data. 

 

5. Data Integration and Batch Correction 

 

Data integration is a crucial step when working with multiple datasets, particularly when 

they originate from different experimental conditions or batches. The goal of this step is 

to remove batch effects while preserving biologically relevant differences, ensuring that 

datasets can be meaningfully compared. Common approaches include Harmony and 

Seurat’s integration workflow92,102. Some methods allow for a semi-supervised 

integration that incorporates prior cell-type information to refine alignment, such as 

STACAS103. Batch correction methods ensure that differences observed between 

samples are not due to technical artifacts while maintaining biologically meaningful 

variation across datasets. 

 

6. Clustering and Cell Type Annotation 

 

Once the data has been preprocessed, normalized, and reduced in dimensionality, the 

next step is clustering cells into distinct groups based on their gene expression profiles. 

Clustering enables the identification of cellular subpopulations and provides insight into 

the heterogeneity of the tissue. Various clustering algorithms, such as Louvain or K-

means, can be used to group cells with similar expression profiles. 

 

After clustering, cell type annotation is performed to assign biological meaning to each 

cluster, typically by identifying known marker genes associated with specific cell types. 

This process can be done manually using literature or automated using databases like 

CellMarker or SingleR104,105. Some methods allow for more refined and systematic 

annotation by incorporating predefined marker sets and decision-tree-based 

classification, such as scGate and Ikarus106,107. These approaches help improve 
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annotation accuracy by filtering out unwanted populations and ensuring consistency 

across datasets. 

 

Downstream Analysis 

 

Once the cells have been clustered and annotated, several downstream analyses can be 

performed to explore biological questions in more depth. These analyses allow for the 

identification of key drivers of disease, immune interactions, and potential therapeutic 

targets. 

 

1. Differential Expression Analysis 

 

Differential expression (DE) analysis is used to identify genes that are expressed 

differently between clusters or conditions. This step is important for understanding how 

cell populations differ in terms of gene activity. By comparing expression levels across 

different clusters, researchers can identify markers that distinguish between cell types 

or states, which is crucial for understanding disease mechanisms. DE analysis typically 

involves statistical methods like DESeq2, edgeR, or limma to detect genes that show 

statistically significant changes in expression108–110. 

 

2. Gene Set Enrichment Analysis (GSEA) 

 

Gene Set Enrichment Analysis is used to identify whether specific biological pathways or 

processes are significantly enriched in a given gene list, such as differentially expressed 

genes111,112. This method helps to understand the broader biological context of the data 

by linking genes to predefined gene sets. Tools like ClusterProfiler and Enrichr can be 

used for pathway enrichment analysis, offering insights into the functional roles of genes 

and their involvement in specific biological processes or diseases113–115. 

 

3. Cell-to-Cell Communication 
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Single-cell transcriptomics also allows for the study of intercellular communication by 

analyzing ligand-receptor interactions between different cell types. This analysis reveals 

how cells interact with each other and how signaling pathways might influence tumor 

progression or immune responses116. Tools like CellChat, CellPhoneDB and NicheNet 

can predict cell-to-cell communication by identifying potential ligand-receptor pairs that 

are active in specific cell populations, providing insights into cellular interactions and 

tissue homeostasis117–119. 

 

4. Copy Number Variant (CNV) Analysis 

 

Copy number variants (CNVs) are important in cancer research as they indicate genetic 

alterations that may contribute to tumorigenesis. CNV analysis in single-cell 

transcriptomics involves detecting variations in the number of copies of specific 

genomic regions by comparing expression profiles between reference and target cell 

clusters120. Tools like XClone, sciCNV, copyKAT, and inferCNV can be used to infer 

CNVs120–122. These tools help classify cells as either healthy or tumor cells based on the 

presence or absence of specific CNV events. CNV analysis is especially useful in 

identifying tumorigenic alterations and understanding tumor heterogeneity. 

 

5. Cell Deconvolution Analysis 

 

Cell deconvolution is a technique used to estimate the proportions of different cell types 

in bulk tissue samples, which is crucial when studying heterogeneous samples like 

tumors. Deconvolution methods rely on a reference gene expression profile from 

annotated cell types, such as pseudobulked single-cell transcriptomics data, to infer 

cell-type proportions from bulk RNA sequencing data123–125. This approach is especially 

useful for repurposing existing large-scale datasets, such as The Cancer Genome Atlas 

(TCGA), for analysis of single-cell datasets, helping to validate findings from single-cell 

studies. 

 

Single-cell technologies have made it possible to study HNSCC at a much higher 

resolution, revealing cellular and molecular features that bulk methods often miss. By 
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capturing gene expression and cell-cell interactions, these approaches help us better 

understand tumor heterogeneity, the immune and stromal landscape, and how these 

factors vary across patients. Together, these insights underscore the need to refine our 

understanding of HNSCC by accounting for the complex interplay between viral 

infection, inter- and intra-tumor diversity, sex-based biological differences, and the 

cellular architecture of the TME. The integration of bulk and single-cell omics 

technologies offers a powerful framework to uncover novel molecular mechanisms, 

identify prognostic biomarkers, and stratify patients more effectively. As the field moves 

toward precision oncology, deciphering how sex and TME factors shape disease 

progression is critical for developing targeted therapies and improving clinical outcomes 

in HNSCC. 
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2. Aims of the thesis 

The central hypothesis of this thesis is that variations in sex chromosome gene 

expression significantly influence immune cell composition and stromal interactions 

within the TME, thereby impacting tumor progression and treatment response in HNSCC. 

To address this hypothesis, this study moves beyond conventional male vs. female 

comparisons and instead focuses on the role of sex chromosome dosage as a key 

biological factor shaping tumor behavior. 

 

To test this hypothesis, the study integrates bulk and single-cell omics data to enable a 

detailed, cell-type-specific characterization of the TME. By stratifying patients based on 

HPV status and sex chromosome dosage, the aim is to uncover key immune and stromal 

cell populations that may serve as potential therapeutic targets. To achieve this, the 

study is structured around the following key aims: 

 

1. Investigating Sex Chromosome Dosage Alterations in HNSCC 

• Characterize LoY and EDY in bulk RNA-seq data, determining their 

prevalence in HNSCC and across cancer types. 

• Assess whether LoY and EDY are tumor-driven events by comparing their 

occurrence in tumor versus normal tissue. 

• Evaluate their clinical significance, particularly in relation to HPV status 

and survival outcomes. 

• Establish sex chromosome dosage groups based on sex chromosome 

gene expression and stratify patients accordingly. 

• Characterize the composition of the immune and stromal compartments 

in bulk RNA-seq data according to sex chromosome dosage groups. 

2. Building a Unified Single-Cell Atlas for HNSCC 

• Integrate multiple single-cell RNA-seq datasets into a standardized 

HNSCC atlas, enabling a cohort-wide analysis of tumor and 

microenvironmental differences. 
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• Ensure comparability between groups by harmonizing data across 

datasets, allowing for robust cross-study comparisons. 

• Validate tumor cell classification and immune/stromal annotation using a 

combination of automated and manual curation approaches, ensuring 

accurate cell-type identification. 

3. Enhancing the Resolution of Sex Chromosome Dosage Differences Using Single-

Cell Transcriptomics 

• Translate the concept of sex chromosome dosage from bulk RNA-seq to 

single-cell data, enabling a more granular assessment of how these 

alterations manifest at the individual cell level. 

• Investigate whether Y chromosome gene downregulation occurs 

homogeneously or heterogeneously within tumors, identifying potential 

cellular subpopulations that retain or lose Y chromosome expression. 

• Leverage single-cell resolution to refine the classification of immune and 

stromal compartments, ensuring a more detailed characterization of 

differences between sex chromosome dosage groups. 

• Examine tumor-intrinsic and microenvironmental variability across 

groups, providing a higher-resolution framework for understanding tumor-

immune-stroma interactions in HNSCC. 

4.  Identifying Targetable Cellular Interactions in the TME 

• Determine which immune and stromal cell types exhibit the most 

significant differences across groups, prioritizing those with known roles 

in tumor-immune interactions and therapy resistance. 

• Leverage single-cell transcriptomic data to assess cell-cell 

communication across sex chromosome dosage groups, identifying 

ligand-receptor interactions that may influence tumor progression. 

 

By addressing these aims, this thesis provides new insights into the role of sex 

chromosome dosage in HNSCC, with implications for tumor biology, immune 

modulation, and patient stratification, ultimately contributing to a more personalized 

approach to cancer research and treatment. 
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3. Material and Methods 

3.1 Bulk Methods 

3.1.1 Bulk Transcriptomic Data Collection  

 

I used RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) HNSCC 

(n = 500; 367 males, 133 females) cohort to investigate sex-based differences in gene 

expression126. Among these, 412 patients were HPV-negative (289 males, 124 females) 

and 88 were HPV-positive (58 males, 6 females). Data was downloaded using the 

TCGAbiolinks R package, specifically utilizing GDCquery to query RNA-seq data and 

GDCdownload to retrieve the files. Clinical data was also downloaded through 

TCGAbiolinks, allowing me to integrate patient characteristics with expression 

data127. 

 

3.1.2 Differential Expression Analysis 

 

To analyze sex-based gene expression differences, I used the selected RNA-seq data 

from the TCGA HNSCC cohort, which included 367 male and 133 female patients. 

Differential expression analysis (DEA) was performed using three methods, DESeq2, 

edgeR, and Limma-Voom, each offering a unique approach to identifying expression 

differences, adding robustness to our findings108–110. Only genes identified as 

differentially expressed by all three methods were kept, reducing the chance of method-

specific biases and providing a reliable set of sex-linked expression differences. 

 

The raw count data underwent preprocessing to remove genes with low expression 

across samples. To normalize the data, I used edgeR’s calcNormFactors() function, 

which accounts for library size variations. In DESeq2, I built a DESeqDataSet object with 

DESeqDataSetFromMatrix(), modeling sex as the main design variable, and used 

DESeq() to fit the model. Genes were ranked by adjusted p-values, with a threshold of 

FDR < 0.05 to identify significant changes. Similarly, edgeR analysis used a model matrix 
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to differentiate male and female samples, with dispersion estimates obtained via 

estimateGLMCommonDisp() and estimateGLMTrendedDisp(). For Limma-

Voom, log-transformed counts-per-million (logCPM) were generated using the voom() 

function, followed by linear modeling with lmFit() to examine sex differences. 

 

After each analysis, I extracted overlapping genes that met the significance criteria 

across all methods, selecting a final set of robustly differentially expressed genes 

between male and female samples for further examination of sex-linked expression 

patterns in HNSCC. 

 

3.1.3 Copy Number Index (CNI) Calculation for Chromosome Analysis 

 

To assess chromosomal aberrations, particularly in the Y chromosome, I used 

segmentation data from the TCGA cohort to compute the Copy Number Index (CNI) for 

each chromosome in every patient126. Following the methodology described by Hollows 

et al., I calculated the CNI by taking the weighted average of copy number segments, 

where each segment was weighted according to its genomic length50. Specifically, for 

each chromosome, the sum of segment copy numbers (multiplied by their lengths) was 

divided by the total length of the chromosome. For autosomal chromosomes, a CNI of 

approximately 2 was expected, indicating two copies. For sex chromosomes, expected 

CNIs were 2 for chromosome X in females and 1 for chromosomes X and Y in males. 

 

To classify male patients as experiencing LoY, I established a threshold based on the CNI 

distribution for the Y chromosome. This threshold was set at the secondary peak of the 

CNI distribution, which occurred below 0.5, indicating that these patients were 

presenting less than half of the expected Y chromosome copy number. Male patients 

with a Y chromosome CNI below this threshold were classified as LoY, suggesting a 

partial or complete loss of Y chromosome copies in these individuals. This threshold 

allowed for a systematical identification of LoY events, enabling a more accurate 

comparison of chromosomal deviations across patients, particularly in cases where Y 

chromosome expression was lower than expected. This calculation and classification 
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provided a structured framework for detecting deviations from expected CNI values, 

allowing the identification of potential loss or amplification events specific to the Y 

chromosome in male samples. 

 

3.1.4 Classification of Y Chromosome Gene Expression and Extreme 

Downregulation (EDY) 

 

To assess Y chromosome-linked gene expression levels, I analyzed the expression of 

genes specific to the Y chromosome, including SRY, RPS4Y1, ZFY, TBL1Y, USP9Y, DDX3Y, 

UTY, TMSB4Y, NLGN4Y, KDM5D, and EIF1AY. These were the only Y chromosome genes 

expressed in the tumor samples analyzed. I applied Gene Set Variation Analysis (GSVA) 

using the GSVA package in R and the gsva() function with the following parameters: 

method = "gsva", annotation = "org.Hs.eg.db", min.sz = 5, max.sz 

= 500, parallel.sz = 4, and kcdf = "Gaussian"128. This approach generated 

pathway scores for Y-linked genes across both male and female patients. 

 

To identify males with low Y chromosome expression, I set a threshold using the 

maximum expression levels observed in female patients, after assessing and removing 

any outliers. Male patients with scores below this threshold were classified as EDY, 

allowing to investigate potential regulatory differences in Y-linked gene expression 

across the cohort. 

 

3.1.5 Survival Analysis 

 

To examine the impact of Y chromosome gene expression on patient survival, I 

performed a survival analysis using overall survival (OS) as the primary endpoint. OS was 

defined as the time from diagnosis to death or last follow-up, limited to a five-year period. 

The analysis focused on male patients from the TCGA HNSCC cohort, who were 

categorized by levels of Y chromosome gene expression. 
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I used the survival and survminer R packages to generate Kaplan-Meier survival 

curves and conduct statistical comparisons between Y chromosome expression 

groups129,130. A survival object was created using the Surv() function from the survival 

package, which incorporated overall survival (OS) time (in months) and event status. 

Kaplan-Meier survival curves were then fitted with the survfit() function, stratifying 

by Y chromosome expression levels. Statistical significance between survival curves was 

assessed using the log-rank test, also available within the survival package. The 

ggsurvplot() function from the survminer package was used to visualize survival 

curves, displaying p-values to indicate the significance of observed differences across 

expression groups. 

 

3.1.6 Validation Analysis: Other cohorts 

 

CPTAC, CCLE and HIPO-HNC 
 

To validate findings across multiple cohorts, I extended our analysis to the Clinical 

Proteomic Tumor Analysis Consortium (CPTAC), Cancer Cell Line Encyclopedia (CCLE), 

and HIPO-HNC datasets131–133. The CPTAC dataset provides detailed RNA-seq data for 

HNSCC cases annotated with sex, HPV status, and other clinical features, enabling us 

to examine Y chromosome gene expression across HPV-positive and HPV-negative 

samples within an annotated cohort. 

 

In parallel, the CCLE dataset for HNSCC cell lines, which includes RNA-seq data 

annotated with sex and HPV status, served as an in vitro reference, allowing to compare 

Y chromosome expression patterns across cell lines in alignment with our TCGA findings. 

For both the CPTAC and CCLE datasets, I applied GSVA to assess Y-linked gene 

expression. 

 

Furthermore, I incorporated data from the HIPO-HNC cohort, which consists of 79 

HNSCC all HPV-negative samples with gene expression data available on the Gene 

Expression Omnibus (GSE117973). This cohort includes clinicopathological annotations 
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relevant to the study and has previously been analyzed for key pathway activations (e.g., 

EGFR and PI3K), providing a well-characterized sample set for validating gene expression 

and pathway activities related to the Y chromosome. The three datasets were processed 

similarly to TCGA data, applying GSVA for Y-linked gene expression and segmentation 

data for LoY status which enabled us the comparison with the TCGA dataset. 

 

Retrieval and Analysis of Multi-Cohort TCGA Data 
 

To broaden the analysis of the relationship between EDY and LoY, I included additional 

TCGA RNA-seq and genomic datasets from cancer types containing over 50 male 

patients. Selecting cohorts with more than 50 male samples ensured a wide spectrum of 

Y chromosome expression, increasing the statistical power of our findings across diverse 

cancer types. I used the TCGAbiolinks R package to retrieve RNA-seq expression data, 

segmentation data and relevant clinical annotations, including sex, tumor type, and 

other patient characteristics, across multiple TCGA cohorts127. 

 

The downloaded datasets were processed uniformly to calculate GSVA scores for Y 

chromosome-linked gene expression, employing the same EDY detection method as 

previously described. The LoY classification was conducted using the CNI approach, 

applying the threshold previously established to define chromosomal loss. These 

methodologies allowed consistent identification of EDY and LoY across all included 

cancer types, supporting a standardized comparison of chromosomal deviations and 

gene expression across the selected cohorts. 

 

3.1.7 Classification of Patients by Sex Chromosome Dosage and Y Chromosome 

Gene Expression 

 

To better our understanding of sex chromosome dosage beyond traditional male and 

female classifications, I developed a classification system based on Y chromosome 

gene expression levels. Y chromosome-linked gene expression levels were quantified 

using GSVA, with scores compared across male and female patients128. A threshold 
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based on expression levels in female patients was established, allowing us to identify 

male patients with Extreme Downregulation of Y chromosome-linked genes. Then male 

patients were ranked according to their GSVA score, top and low patients were selected. 

Patients were then categorized as follows: XX (female patients with no Y chromosome 

expression), XY (male patients with high Y chromosome expression), and XØ (male 

patients exhibiting low Y chromosome expression, mostly overlapping with EDY). 

 

3.1.8 Classification of Cell Types in Bulk RNA-Seq Data Using xCell 

 

To gain deeper insights into the composition of the TME, in bulk RNA-seq data, I applied 

xCell R package, a computational method that infers cell type abundances from 

transcriptomic data134. xCell utilizes gene signature enrichment analysis to estimate the 

relative proportions of various immune and stromal cell populations in a given sample. I 

applied xCell to bulk RNA-seq expression data from HNSCC patients in the TCGA cohort 

to deconvolute cell type proportions across tumors. This approach enabled the 

identification of major TME components, including tumor-infiltrating immune cells (e.g., 

macrophages, B cells, T cells, NK cells) and stromal populations (e.g., fibroblasts, 

endothelial cells). Cell type proportions were further analyzed in relation to previously 

defined patient classifications, enabling the identification of specific TME components 

enriched in XY, XØ, and XX tumors. 

 

3.1.9 Statistical Analysis 

 

All statistical analyses were performed using R (version 4.2.0). Depending on the type 

and distribution of the data, appropriate statistical tests were applied, including both 

parametric and non-parametric methods. Group comparisons were typically carried out 

using tests such as the Wilcoxon rank-sum test, Kruskal–Wallis test, or t-tests, and 

correlations were assessed using Spearman or Pearson correlation coefficients as 

appropriate. P-values were adjusted for multiple testing where necessary, and results 

were considered statistically significant at p < 0.05. 
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3.2 Single Cell Methods 

3.2.1 Single-Cell Data Collection and Integration 

 

To build a high-resolution single-cell atlas of HNSCC, I performed a comprehensive 

integration of multiple publicly available single-cell RNA sequencing (scRNA-seq) 

datasets. These datasets were carefully selected based on the availability of necessary 

clinical annotations, including sex and HPV status, to be able to explore the key 

questions researched in this manuscript. I systematically searched for datasets on the 

Gene Expression Omnibus (GEO) repository, ultimately identifying four suitable 

datasets, GSE234933, GSE182227, GSE164690, and GSE181919, based on the presence 

of such annotations like patient sex, HPV status, and sample origin (normal tissue, 

primary tumor, or metastasis)32,94,135,136. In total, the integrated dataset includes 79 

patients with HPV and sex annotations, comprising 46 HPV-negative (32 males, 14 

females) and 33 HPV-positive (31 males, 2 females) cases. 

 

Some datasets were directly available as processed R objects, facilitating immediate 

loading, while others were provided in a three-part format (matrix, features, and 

barcodes), requiring the use of the Read10X()function in Seurat to construct the 

gene expression matrix accurately92. This allowed for a consistent starting point for 

integrating datasets from varying formats. I reviewed the clinical and experimental 

annotations to standardize metadata across all datasets, ensuring consistency in key 

features. For datasets provided in raw format, I incorporated metadata manually to align 

with our inclusion criteria, maintaining uniformity across cohorts. Datasets lacking 

sufficient annotations were excluded, reinforcing the quality of our integrated analysis. 

 

Data Loading and Metadata Harmonization 
 

The initial data processing involved importing each dataset into Seurat objects using 

readRDS(), followed by a series of metadata alignment steps to standardize column 

names and patient identifiers across studies. For instance, attributes such as 

“Cell_Type”, “Source”, and “Patient” were systematically adjusted within each dataset’s 
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metadata, providing consistency across datasets and enabling reliable integration. I also 

refined metadata annotations, such as HPV status, using functions like revalue() 

from the plyr package, ensuring consistent representation across studies137. 

 

Quality Control and Pre-Processing 
 

Quality control (QC) was applied to remove low-quality cells and prevent noise artifacts 

from damaged or apoptotic cells. First, I performed data normalization using 

NormalizeData() in Seurat, a step that scales each cell’s expression data, 

minimizing technical variability in the UMI counts across cells. Next, I identified highly 

variable genes with FindVariableFeatures(), a critical step for detecting 

meaningful biological differences while disregarding noise. Cells with excessively high 

mitochondrial gene expression or low UMI counts were filtered out using Seurat’s 

PercentageFeatureSet() and subset() functions, eliminating likely dead or 

dying cells. 

 

Following this, I scaled the data with ScaleData(), which centers and scales gene 

expression values, making them suitable for downstream dimensionality reduction. 

Principal component analysis (PCA) was performed with RunPCA(), a step that 

identifies the main sources of variation in each dataset, enhancing the subsequent 

integration process by focusing on biologically relevant components. 

 

Batch Correction and Data Integration 
 

To ensure batch effects did not obscure true biological differences, I used multiple 

integration methods. Seurat’s FindIntegrationAnchors() and 

IntegrateData() functions were employed to anchor datasets together by 

identifying and aligning shared biological signals across studies. Harmony was then 

applied to harmonize the datasets, effectively mitigating major sources of technical 

variability. 
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For cell-type alignment, I applied STACAS, a semi-supervised method that uses pre-

established cell-type labels to guide the integration process103. This approach enabled 

finer adjustments to cell-type boundaries, ensuring that each cell cluster reflected 

consistent biological definitions across datasets. STACAS was specifically useful here, 

because it allowed the incorporation of known cell-type information to align cell clusters 

in a biologically meaningful way.  I ran Run.STACAS() with anchor.features set to 

1000 and dims to 1:30, allowing alignment across the primary features used for 

clustering. This method assured consistency in cell-type definitions, minimizing dataset-

specific biases in the integrated dataset. 

 

Following integration, I clustered the combined dataset using Seurat’s 

FindNeighbors() and FindClusters() functions to reveal distinct cellular groups 

within the merged data. To visualize these clusters in a lower-dimensional space, I 

applied Uniform Manifold Approximation and Projection (UMAP) through RunUMAP(), 

which preserved the relationships between cells and facilitated clear and interpretable 

visualization of cellular clusters across the combined dataset. This approach allowed to 

retain both the fine cell-type distinctions and the broader biological patterns essential 

for our analyses. 

 

Cell-Type Annotation and Marker-Based Refinement 
 

To standardize cell-type annotation across the integrated datasets, I applied the scGate 

tool, which enabled consistent homogeneous relabeling by using cell-type-specific gene 

sets across all samples106. For scGate, I selected marker-based models optimized for 

cells within the TME, ensuring the robust identification of major cell types such as 

fibroblasts, and various immune cell types. These models are particularly useful in TME 

datasets due to their focus on distinguishing cell types that share complex interactions 

and closely related transcriptional profiles. 

 

By running the scGate() function with model specifications targeted to TME contexts 

and utilizing four processing cores, I achieved accurate and homogeneous annotations 

across the datasets. This approach allowed a reliable cell-type identification by aligning 
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each cell to known marker genes, providing a consistent foundation for downstream 

analysis. 

 

Tumor Cell Annotation Using the Ikarus Method 
 

For the accurate annotation of tumor cells, I employed a supervised approach using the 

Ikarus method, a model-based classifier designed to detect tumor cells with high 

specificity across complex cellular landscapes107. Unlike semi-supervised approaches, 

which utilize both labeled and unlabeled data for prediction, Ikarus operates on a fully 

supervised framework. It applies pre-trained models on fully labeled data to distinguish 

tumor cells from non-tumor cells by utilizing gene signatures known to characterize 

tumor cell profiles. 

 

The Ikarus method incorporates an automated tumor cell detection model that uses pre-

labeled gene sets to identify cells with expression profiles specific to tumor biology. For 

this analysis, I used a core model and gene signature files from the Ikarus repository, 

which provide comprehensive, pre-established gene sets specific to tumor cell markers 

and was already validated in HNSCC. To prepare our integrated Seurat object for 

compatibility with Ikarus in Python, I streamlined the data using DietSeurat() and 

then converted it into the H5AD format using the zellkonverter::SCE2AnnData 

function. 

 

Once in the H5AD format, I ran Ikarus in Python to perform automatic tumor cell 

identification across our HNSCC datasets. This fully supervised method enabled 

accurate detection by matching cells against pre-trained tumor cell signatures. To 

enhance specificity even further, I manually integrated the Ikarus-generated tumor cell 

labels with our pre-existing tumor cell annotations. This combined approach maximized 

both the reliability and precision of our tumor cell annotations, ensuring robust 

identification across the heterogeneous cellular landscape in HNSCC. 

 

Subclassification of Immune Cells and Fibroblasts 
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Following the main cell-type annotations, I applied detailed subclassification to further 

characterize immune cells and fibroblasts within the TME. For immune cells, I utilized 

the ProjectTILS framework, which references pre-labeled immune cell maps to achieve 

detailed subtype classification of key immune cell types, including dendritic cells, CD4 

T cells, and CD8 T cells138. Using ProjecTILs.classifier(), I matched each cell to 

reference immune cell signatures, achieving a refined view of immune cell diversity 

relevant to TME interactions. 

 

For fibroblasts, I created a custom reference within ProjectTILS, incorporating well-

defined markers for distinct fibroblast subtypes to capture the fibroblast heterogeneity 

that is particularly relevant in the HNSCC context. By implementing this customized 

reference, I achieved detailed annotation of fibroblast subtypes, informed by insights 

from recent studies on fibroblast roles in tumorigenesis138,139. This detailed 

subclassification of both immune cells and fibroblasts provided a robust framework to 

study cell-cell interactions and cellular dynamics within the TME, helping to reveal how 

these components vary across diverse clinical conditions. 

 

3.2.2 Sex Chromosome Dosage Classification and Patient Stratification 

 
To explore the impact of sex chromosome dosage on intercellular communication and 

TME composition, I employed a dual-level classification system: at the cellular level 

(XY/XØ cells) and the patient level (XX/XØ/XY patients).  

 

Cellular Classification: XY and XØ Cells 
 

Individual cells were classified based on their expression of Y chromosome genes. For 

each cell, I calculated the percentage of Y chromosome gene set expression relative to 

the total gene expression (denoted as pct_chrY). Cells with zero expression across all Y 

chromosome genes (pct_chrY = 0%) were classified as XØ cells, indicating an absence 

of active Y chromosome gene expression. Conversely, cells with any detectable Y 

chromosome gene expression (pct_chrY > 0%) were classified as XY cells. This binary 
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classification provided a robust framework for identifying and comparing cells within and 

across patients. 

 
Patient Stratification: XØ, Intermediate, and XY Groups 
 

To classify patients, we focused on tumor cells, which displayed the most pronounced Y 

chromosomal expression differences compared to other cell types in the TME. For each 

patient, tumor cells were aggregated to generate a pseudobulk expression profile, 

effectively summarizing the gene expression of the entire tumor cell population. Using 

these pseudobulk profiles, we performed GSVA on the Y chromosome gene set to 

calculate a chromosomal dosage score for each patient. This score provided a 

continuous measure of Y chromosome gene expression across the cohort. 

 

To avoid confounding effects from HPV status, the analysis was performed 

independently for HPV-negative and HPV-positive patients, ensuring that stratification 

was not biased by differences related to viral etiology. Within each HPV group, male 

patients were ranked based on their GSVA scores and divided into three stratification 

groups to reflect varying levels of Y chromosome expression. The top tertile of patients, 

characterized by the highest GSVA scores, were designated as XY patients, indicative of 

a strong Y chromosome expression. The bottom tertile, with the lowest GSVA scores, 

represented XØ patients, reflecting minimal or extreme downregulation of Y 

chromosome expression. Patients in the middle tertile were classified as the 

Intermediate Group, exhibiting moderate levels of Y chromosome expression. 

 

3.2.3 Analysis of Chromosomal Instability Using inferCNV 

 

I used the R package inferCNV to evaluate chromosomal instability across sex 

chromosome dosage groups140. This tool estimates chromosomal copy number 

variations (CNVs) from scRNAseq data by comparing transcriptional signals to a 

reference population of normal cells. This approach allowed me to detect large-scale 

chromosomal gains and losses indicative of genomic instability. 
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I annotated normal stromal cells (e.g., fibroblasts and endothelial cells) as the reference 

population to establish a stable baseline for comparison. To prepare the data for 

inferCNV, I extracted raw gene expression matrices using a custom function, 

as_matrix(), to convert sparse matrices into dense format. I created annotation files 

that mapped each cell to its respective group (e.g., XX, XY, XØ, or reference) and used 

the CreateInfercnvObject() function to initialize the inferCNV analysis. I used a 

gene order file based on the hg38 genome assembly to map genes to their chromosomal 

locations. 

 

I ran inferCNV with a cutoff of 0.1, enabling detection of subtle CNV signals typical of 10x 

Genomics data. To improve signal clarity, I applied denoising and Hidden Markov Model 

(HMM) filtering. Due to computational limitations, I analyzed each dataset separately but 

ensured consistency by using standardized annotations and processing steps across all 

datasets. For visualization, I used the plot_cnv() function to generate heatmaps of 

CNV profiles. 

 

3.2.4 Cell-Cell Communication Analysis with CellChat 

 

To investigate cell-cell communication in the TME, I employed the R packagge 

CellChat, a computational tool that predicts ligand-receptor interactions and infers 

communication networks from scRNAseq data117. My analysis focused on interactions 

between the homogeneously annotated cell types, with comparisons across sex 

chromosome dosage groups (XX, XY, and XØ). 

 

The analysis began by preparing the scRNAseq data for input into CellChat. The dataset, 

preprocessed in Seurat, was split into subsets by chromosomal dosage using the 

SplitObject()function. The resulting subsets (XX, XY, and XØ) were analyzed 

separately to construct chromosomal group-specific communication networks. For this 

step, the RNA expression matrix was extracted using the GetAssayData() function, 

and metadata, including cell type annotations, was included. Using CellChat’s default 

human ligand-receptor database (CellChatDB.human), I initialized communication 
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network inference with the createCellChat() function. The analysis involved 

identifying overexpressed genes (identifyOverExpressedGenes()) and ligand-

receptor pairs (identifyOverExpressedInteractions()) within each 

chromosomal group. These steps were followed by projecting the gene expression data 

onto the human protein-protein interaction (PPI) network using projectData(). To 

refine the network, I filtered low-confidence interactions using 

filterCommunication(), with a minimum threshold of 10 cells contributing to each 

interaction. 

 

The core of the analysis focused on quantifying pathway-specific communication. Using 

the computeCommunProb() and computeCommunProbPathway() functions, I 

calculated communication probabilities and aggregated these at the pathway level with 

aggregateNet(). Centrality scores, including outgoing (secretion activity) and 

incoming (reception activity), were computed for each pathway using 

netAnalysis_computeCentrality(). These scores provided a quantitative 

measure of pathway influence in mediating communication within the TME. 

 

To compare communication patterns across chromosomal dosage groups, I merged the 

networks using the mergeCellChat() function and performed differential interaction 

analysis with netVisual_diffInteraction(). Visualization of results included 

heatmaps (netVisual_heatmap()), bubble plots (netVisual_bubble()), and 

circular diagrams (netVisual_circle()). To further investigate the functional 

relevance of these pathways, I performed differential expression analysis on ligand-

receptor pairs using identifyOverExpressedGenes() and mapped these to the 

inferred networks with netMappingDEG(). Ligand-receptor pairs with significant 

differential expression were extracted using subsetCommunication(), enabling the 

identification of signaling interactions that were upregulated or downregulated in each 

chromosomal dosage group.  

 

In addition to the overall cell type interactions, I conducted a fibroblast-specific analysis 

by focusing on subtypes, including iCAFs, myofibroblasts (mCAFs), and pericytes. Using 
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the subsetCellChat() function, I isolated these cell types and evaluated their 

communication patterns with tumor cells. Centrality and interaction strengths for 

fibroblast-specific pathways were calculated and compared across dosage groups. 

 

Pathway Selection and Ranking 
 
For each pathway, differences in centrality scores across sex chromosome dosage 

groups (XX, XY, and XØ) were evaluated to highlight differential activity. Centrality scores, 

were computed using the netAnalysis_computeCentrality() function in 

CellChat, as mentioned above. These scores represent both outgoing (signals sent by a 

cell type) and incoming (signals received by a cell type) communication contributions. 

 

To identify pathways with significant differences, a custom scoring method was 

developed to rank their relative importance across groups. First, the absolute differences 

in centrality scores were calculated for each pathway between all pairwise group 

comparisons (XX vs. XY, XX vs. XØ, and XY vs. XØ). These differences were then combined 

into a single metric by taking the maximum fold change across the comparisons. This 

approach ensured that pathways with notable variation in at least one comparison were 

prioritized. 

 

The pathways were ranked based on their maximum fold change scores, and the top 20 

pathways exhibiting the most pronounced differences were selected for detailed 

analysis. Heatmaps of these pathways were generated using the pheatmap R package, 

clustering them based on their centrality scores141. This clustering allowed the 

identification of shared and unique signaling patterns, providing insights into how 

specific pathways drive interactions between tumor cells and other cell types, such as 

iCAFs. 

 

Code availability  

All scripts used for the analyses presented in this thesis are available at the following 

GitHub repository: https://github.com/DKFZ-E220/SexBias. This includes code for data 
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preprocessing, integration, annotation, and downstream analyses performed on both 

bulk and single-cell datasets. 
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4. Results 

4.1 Analysis of Bulk Transcriptomic Data 

My study started with an investigation of sex-based differences in gene expression using 

RNA-seq data from The Cancer Genome Atlas (TCGA)126. I conducted a DEA comparing 

samples clinically classified as male with those classified as female. To ensure the 

robustness of our findings, I used three distinct DEA methods: Limma, EdgeR, and 

DESeq108–110. Recognizing the variability in the stringency of these methods, I focused on 

the genes that were consistently identified across all three approaches. This stringent 

filtering resulted in 46 differentially expressed genes, which were subsequently analyzed 

in greater detail (Figure 4.A). 

 

 

Figure 4. Identification of sex-biased genes and unsupervised clustering based on sex-linked

expression profiles. (A) Venn diagram showing the overlap of differentially expressed genes (DEGs)

identified by Limma, DESeq2, and EdgeR when comparing male and female samples in the TCGA

HNSCC cohort. A total of 46 DEGs were consistently identified across all three methods and selected

for further analysis. (B) Heatmap of DEGs across all samples, stratified by clinical sex. Unsupervised

hierarchical clustering revealed a clear separation between male and female samples based on gene

expression patterns, although a subset of male patients clustered with the female group,

characterized by reduced expression of Y chromosome-linked genes.

A B Sex 
Sex 
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An unsupervised hierarchical clustering of the values for the 46 selected genes across 

samples, as shown in the heatmap (Figure 4.B), revealed significant differences in gene 

expression between male and female patients. Interestingly, a subset of male patients 

clustered alongside the female cohort. When I examined it closer, I found that these 

males exhibited lower expression levels of Y chromosome-linked genes compared to 

those who did not cluster with the females. This observation suggests that sex 

chromosome dosage may play a critical role in modulating the expression of autosomal 

genes, particularly in the context of sex differences in cancer biology. 

 

4.1.1 Copy Number Index Patterns in Male and Female Patients Reveals Loss of Y 

Chromosome in Males 

 

Building on these transcriptomic findings, I made use of the genomic data available in 

the TCGA cohort to explore potential structural alterations in the Y chromosome and if 

this presented any association to the lower expression of the Y chromosome-linked 

genes. For each patient, I calculated the Copy Number Index (CNI) for each 

chromosome, including the Y chromosome, using the segmentation data obtained from 

the TCGA platform. The CNI was computed utilizing a method proposed by Hollows et 

al., this method  takes the weighted average of the copy number segments per 

chromosome, where the weights correspond to the size of each segment50. Specifically, 

for each chromosome, the total copy number weighted by segment size was divided by 

the total size of all segments for that chromosome. 

 

For autosomal chromosomes (1 to 22), the expected normal copy number is 2, 

corresponding to the two copies of each chromosome. For sex chromosomes, the 

expected copy number depends on the patient’s biological sex: females typically have 

two X chromosomes (CNI of 2 for chromosome X and no Y chromosome), while males 

have one X and one Y chromosome (CNI of 1 for both X and Y chromosomes).  
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In male patients, the CNI distribution for the Y chromosome exhibited a bimodal pattern 

(Figure 5.A). One peak corresponded to the expected CNI value of 1, indicative of a single 

Y chromosome, while a second peak, centered around 0.48, suggested a subset of males 

with reduced Y chromosome copy numbers. Patients with CNI values below this 

secondary peak were classified as experiencing Loss of Y chromosome (LoY) (Figure 5.B). 
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Figure 5. Copy Number Index (CNI) analysis reveals Y chromosome loss in male HNSCC patients.

(A) Distribution of CNI values for chromosomes X and Y in male patients. The Y chromosome exhibits

a bimodal pattern, with peaks near 1 and ~0.48, while the X chromosome shows a unimodal peak at

the expected value of 1. (B) Classification of male patients based on Y chromosome CNI values.

Patients with CNI values below 0.48 (indicated by the red threshold) were classified as experiencing

LoY. (C) Distribution of CNI values in female patients. The Y chromosome shows a low residual signal

(peak ~0.27), likely reflecting artifacts due to X-Y homology. X chromosome CNI values range from 2 to

2.3, consistent with the presence of two X chromosomes.
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In contrast, the CNI distribution for the X chromosome in male patients showed no 

abnormal deviations, aligning with the expected values (Figure 5.A). 

 

For female patients, the CNI for the Y chromosome consistently remained below 0.45, 

with a peak at 0.27, confirming the expected near absence of the Y chromosome (Figure 

5.C). This residual signal is likely due to homologous regions shared between the X and Y 

chromosomes, which may have been inaccurately classified during the segmentation 

process. As such, it is anticipated that the CNI for the Y chromosome in female patients 

is not strictly zero, but reflects these classification artifacts. The X chromosome, on the 

other hand, displayed a CNI slightly elevated above the expected value of 2, ranging from 

2 to 2.3, but without significant abnormalities (Figure 5.C). These findings suggest that 

the primary sex chromosomal aberrations in this cohort happened predominantly in 

male patients, especially regarding the partial or complete loss of the Y chromosome. 

 

4.1.2 Y Chromosome Gene Expression Classification Identifies Extreme 

Downregulation in Males  

 

To keep the consistency with our genomic analysis, I next classified patients based on 

the expression of Y chromosome-linked genes. This approach allowed us to explore the 

relationship between genomic LoY and the expression of key Y-linked genes, SRY, 

RPS4Y1, ZFY, TBL1Y, USP9Y, DDX3Y, UTY, TMSB4Y, NLGN4Y, KDM5D, and EIF1AY, that 

were expressed in the cancerous tissues of male patients. These were the only Y 

chromosome genes exhibiting detectable expression levels above zero in these tissues. 

I applied GSVA scores to both male and female patients, facilitating a direct comparison 

of Y chromosome gene expression across sexes (Figure 6.A). GSVA is a method that 

estimates pathway activity by scoring gene sets within each sample, providing insight 

into differences at the gene set level across groups. 
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Given that females exhibit a certain level of Y-linked gene expression, likely due to 

homologies between X and Y chromosome genes (as also noted in the probe 

classification of the segmentation data), I utilized Y-linked gene expression levels in 

female patients as a threshold for determining low Y chromosome expression in males 

(Figure 6.B). Male patients with GSVA scores equal to or lower than those observed in 

females were classified as Extreme Downregulators of the Y chromosome (EDY). This 

classification allowed me to investigate the correlation between genomic LoY status and 

transcriptomic EDY status in this patient cohort. 

 

4.1.3 EDY is Closely Associated with LoY in Male Patients 

 

To identify potential causal factors underlying the downregulation of Y chromosome 

genes, I aimed to overlap the LoY and EDY classifications for each male patient, 

examining how these phenomena interact at both the genomic and transcriptomic 

levels. Using a violin plot (Figure 7.A), I compared GSVA scores across three groups: 

female patients, male patients with LoY, and male patients without LoY. The GSVA 
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Figure 6. Classification of patients based on transcriptomic Y chromosome gene expression. (A)

Heatmap showing GSVA scores for the Y chromosome gene signature across male and female

patients in the TCGA HNSCC cohort. Unsupervised hierarchical clustering revealed clear sex-based

separation, with a subset of male patients exhibiting expression profiles more similar to those of

female patients. (B) Violin plot comparing GSVA scores for the Y chromosome gene signature between

female and male patients. A red line indicates the highest GSVA score observed among females,

which was used as a threshold for defining EDY. Male patients with scores equal to or below this

threshold were classified as EDY.



  4. Results 43 

scores were significantly higher in males without LoY compared to those with LoY, 

indicating that the EDY phenomenon is primarily driven by the physical loss of the Y 

chromosome in LoY patients. 

 

A

B

Figure 7. Integration of genomic LoY and transcriptomic EDY reveals their strong association in

male HNSCC patients. (A) Violin plot comparing GSVA scores for the Y chromosome gene signature

across three groups: female patients (cyan), male patients without LoY (green), and male patients

with LoY (pink). Males without LoY exhibited significantly higher GSVA scores than those with LoY,

indicating that EDY is primarily driven by Y chromosome loss. (B) Heatmap showing unsupervised

hierarchical clustering of male patients based on the expression of 11 Y-linked genes. Patients with

both LoY and EDY predominantly cluster in the low-expression group, while those without LoY/EDY

tend to show higher expression. This clustering highlights the correlation between genomic and

transcriptomic alterations and allows for classification into high, intermediate, and low Y gene

expressors. (C) Genomic positions of the 11 Y-linked genes analyzed, plotted on the Y chromosome

ideogram. Genes are distributed across the male-specific region of the Y chromosome (MSY),

supporting the interpretation that structural alterations in this region may underlie the observed

expression differences.
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Further evidence for this connection is evidenced in the heatmap (Figure 7.B) based on 

unsupervised hierarchical clustering of male patients according to the expression of the 

11 Y-linked genes. Males classified as both EDY and LoY predominantly clustered in the 

group of lower expressors, reinforcing the conclusion that LoY and EDY are closely 

linked. This heatmap also revealed that male patients could be categorized into High, 

Intermediate, and Low expressors of Y chromosome genes, based on RNA expression 

levels. Interestingly, patients in the Intermediate group tended to show selective 

downregulation of certain Y-linked genes, while still expressing others. To explore 

whether this partial downregulation followed any spatial pattern along the Y 

chromosome, I visualized the genomic positions of the 11 Y-linked genes (Figure 7.C). 

These genes are distributed across different regions of the male-specific Y chromosome, 

and no clear clustering of expression loss within a specific chromosomal region was 

observed. This suggests that partial downregulation in the Intermediate group does not 

result from focal deletions but may instead involve heterogeneous regulatory 

mechanisms affecting subsets of Y-linked genes. 

 

Since some samples exhibiting EDY were not associated with LoY, I explored the 

possibility that epigenetic mechanisms, such as DNA methylation, might be responsible 

for the reduction in Y chromosome gene expression. To investigate this, I analyzed DNA 

methylation patterns in patients with EDY who did not display LoY. However, our analysis 

did not reveal a correlation between methylation and Y-linked gene expression in these 

cases, suggesting that other regulatory mechanisms may contribute to the 

downregulation of Y chromosome genes in this subset of males. 

 

Additionally, these findings were validated across multiple datasets, including other 

HNSCC cohorts like the CPTAC and HIPO cohorts and HNSCC cell lines from the CCLE 

(Suppl. Fig. 1-2). This validation supports the conclusion that a subset of male patients 

consistently exhibits Extreme Downregulation of the Y chromosome 11 gene set, with the 

majority of these cases overlapping with LoY, the physical loss of the Y chromosome. 
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4.1.4 EDY and LoY Are Present and Overlapping Events Across Multiple Cancer Types 

 

To extend our understanding of the relationship between EDY and LoY, I analyzed RNA-

seq and genomic data from all TCGA cohorts with more than 50 male patients, 

incorporating a multi-project analysis. Our findings show clear patterns that support LoY 

as a major driver of EDY and reveal how its presence varies across different cancer types. 

Some illustrative examples of Y chromosome gene set expression and its overlap with 

LoY status are shown in Suppl. Fig. 3, where male patient samples from ESCA, LSCC, and 

STAD display transcriptional patterns similar to those observed in HNSCC. 

 

When I examined the GSVA scores for Y chromosome-linked gene expression across 

projects, I observed that female patients consistently displayed lower scores, as 

expected due to the absence of Y chromosome expression (Figure 8.A). In contrast, male 

patients exhibited a broader range of GSVA scores, which varied across cancer types. 

Certain projects showed considerable overlap in the GSVA distributions between male 

and female patients, while in others there is almost no overlap, meaning that there are 

no male patients having a very low expression of the Y chromosome. This variability 

points to the need for further investigation into cancer type specific drivers influencing Y 

chromosome-linked gene expression. 
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I analyzed the number of male and female patients per project since it can provide 

context to our EDY findings (Figure 8.B). I observed that some cohorts, such as TCGA-
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Figure 8. Expression of Y chromosome genes and sex distribution across TCGA cohorts. (A) GSVA

scores for the Y chromosome gene set across all TCGA cancer types with more than 50 male patients.

Female patients (orange) consistently show low scores, while male patients (light blue) display

variable expression levels depending on the cancer type. Some cohorts show considerable overlap in

GSVA scores between sexes, while others display distinct separation, suggesting variability in Y

chromosome gene downregulation across tumor types. (B) Number of male and female patients per

TCGA project. Sex representation varies across cohorts, with some (e.g., TCGA-HNSC, TCGA-LUSC)

being male-dominated, which may influence the observed frequency of EDY events. Projects with a

more balanced sex distribution provide additional context for interpreting expression-based

classifications.
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LGG and TCGA-COAD, had a more balanced representation of sexes, whereas others, 

including TCGA-HNSCC and TCGA-LUSC, exhibited a male-dominated composition. 

This imbalance is significant because projects with more male representation often 

showed a higher number of EDY cases. 

 

The percentage of EDY males, defined by those with GSVA scores lower than the highest 

female score when corrected for outliers within the same project, varied significantly 

(Figure 9.A). I found that in many cancer types, a considerable fraction of the male cohort 

exhibited EDY, showing that is widespread event. In projects where EDY was more 

prevalent, I often observed a much larger number of male patients compared to females, 

suggesting a potential link between cohort composition and the observed EDY rates. 

 

Finally, the overlap analysis between EDY and LoY (Figure 9.B) indicated that while the 

majority of male patients did not exhibit either event, more than half of those identified 

as EDY also presented LoY. This supports the hypothesis that LoY, characterized by the 

physical loss of the Y chromosome, may be a significant contributor to EDY. However, as 

seen before, the EDY cases without LoY points towards additional regulatory 

mechanisms influencing Y chromosome gene expression beyond chromosomal loss. 
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These findings highlight the presence of EDY across various cancer types and emphasize 

its significant role in Y chromosome gene regulation. While our analysis confirms that 

LoY is a major contributor to EDY, it is not the only factor involved. This points towards 

the importance of EDY as a critical feature in cancer biology and to the need for further 

research into additional regulatory mechanisms influencing Y chromosome expression. 
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Figure 9. Prevalence and overlap of EDY and LoY events across TCGA cancer types. (A) Percentage

of male patients classified as EDY across TCGA cohorts with more than 50 male patients. EDY was

defined using cohort-specific thresholds based on female GSVA scores. A substantial proportion of

males exhibited EDY in several cancer types, suggesting this is a widespread event. In many cases,

higher EDY prevalence was observed in male-dominated cohorts, indicating that sample composition

may influence observed EDY rates. (B) Overlap analysis between EDY and LoY classifications across

all cohorts. Most male patients were classified as non-EDY and non-LoY. However, among those

identified as EDY, more than half also exhibited LoY, supporting the link between genomic Y

chromosome loss and transcriptomic downregulation. The remaining EDY cases without LoY suggest

the involvement of additional regulatory mechanisms beyond chromosomal loss.
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4.1.5 LoY and EDY Are Predominantly Found in HPV-Negative Patients, with Higher Y 

Chromosome Expression in HPV-Positive Cases 

 

Another important finding in our study is the observed prevalence of LoY/EDY in HPV-

negative patients, with these phenomena being almost absent in HPV-positive cases. To 

validate this observation, I compared Y chromosome gene expression levels between 

HPV-negative and HPV-positive male patients using GSVA scores. This comparison 

revealed a significantly higher expression of Y chromosome genes in HPV-positive cases 

(t-test, p = 0.0000225), supporting the idea that Y expression is largely preserved in these 

tumors (Figure 10.A). To explore Y chromosome expression patterns, I divided the male 

patients into three groups, High, Intermediate, and Low Y chromosome expressors, using 

unsupervised hierarchical clustering based on Y-linked gene expression. This 

stratification is visualized in the heatmap (Figure 10.C), where patient HPV status is 

indicated in the annotations, and the enrichment of HPV-positive patients in the High 

expressor group is evident. In parallel, I evaluated the distribution of HPV status across 

the Y expression stratification groups. While HPV-negative patients were more evenly 

distributed across the three categories, HPV-positive patients were strongly enriched in 

the High expressor group. This association was statistically significant (Fisher’s exact 

test, p = 0.0000331), further reinforcing the link between HPV status and Y chromosome 

gene expression levels (Figure 10.B). 

 



  4. Results 50 

 
 

After establishing these groups, I performed a survival analysis and discovered that 

patients classified as high expressors of Y chromosome genes had significantly better 
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Figure 10. Y chromosome expression is enriched in HPV-positive tumors and is associated with

improved survival. (A) Violin plot comparing GSVA scores for Y chromosome gene expression

between HPV-negative (coral) and HPV-positive (steel blue) male patients. Y chromosome expression

was significantly higher in HPV-positive cases (t-test, p = 2.25e-5). (B) Stacked bar plot showing the

distribution of HPV status across Y expression groups. HPV-positive patients were predominantly

classified as High expressors, while HPV-negative patients were more evenly distributed (Fisher’s

exact test, p = 3.31e-5). (C) Heatmap of Y chromosome gene expression in male patients, clustered

into three groups (High, Intermediate, Low) using unsupervised hierarchical clustering. Annotation

bars indicate HPV status, revealing enrichment of HPV-positive cases in the High expression group. (D)

Kaplan–Meier survival analysis comparing overall survival among Y expression groups. Patients in the

High expression group showed significantly better survival outcomes (p = 0.029).
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survival outcomes (Figure 10.D). Upon further investigation, I observed that the high 

expressor group was predominantly enriched with HPV-positive patients. While I could 

not definitively conclude that high Y chromosome expression directly contributes to 

improved survival, our results indicate a clear trend: HPV-positive patients tend to exhibit 

higher Y chromosome expression levels. 

 

I then extended our analysis to the CPTAC cohort, which consists exclusively of HPV-

negative cases. In this cohort, the differences in survival across the three groups (High, 

Intermediate, and Low) were no longer apparent (Figure 11.A-B). Similarly, when I 

restricted our analysis to only HPV-negative patients within the TCGA cohort, the 

difference in survival became nonsignificant among groups, reinforcing the idea that the 

presence of HPV plays a key role in the expression patterns of Y chromosome genes. 
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A
B

C

Figure 11. Y chromosome expression does not impact survival in HPV-negative cohorts and is

predominantly altered in tumor tissue. (A) Heatmap of Y chromosome gene expression in the

CPTAC cohort (HPV-negative only), stratified into High, Intermediate, and Low expressor groups via

unsupervised clustering. (B) Kaplan–Meier survival analysis for the CPTAC cohort comparing overall

survival across Y expression groups. No significant differences in survival were observed (log-rank p =

0.34). (C) Heatmap of Y-linked gene expression in the TCGA cohort comparing matched primary tumor

(PT) and adjacent normal tissue (NT) from the same patients. Y-linked gene expression was

consistently lower in tumor tissue compared to adjacent normal samples, suggesting that EDY is a

tumor-specific event.
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Additionally, I examined the expression of Y-linked genes in adjacent normal tissue and 

matched primary tumors (Figure 11.C). In these comparisons, I observed that adjacent 

normal tissues exhibited a lower incidence of EDY compared to the primary tumors, even 

in patients who showed significant EDY in their tumor samples. This suggests that the 

downregulation of Y chromosome genes is primarily a tumor-specific phenomenon and 

is less pronounced in normal tissue. 

 

4.1.6 Patients Can Be Stratified by Sex Chromosome Dosage to Reveal Distinct 

Biological Profiles 

 

Based on the findings from our analyses, it became clear that classifying patients 

according to their sex chromosome status, rather than relying only on clinical 

annotations of biological sex, provided a more accurate framework for exploring sex-

related differences in HNSCC. This approach allowed us to refine the stratification of 

patients beyond traditional classifications based on clinical sex, providing a more 

biologically representative model of sex. To improve the clarity of these distinctions, I 

chose to focus on more extreme groups by excluding the intermediate expressors of Y 

chromosome genes. Although this decision resulted in a reduction in the number of 

patients included in the final analysis, it allowed for sharper contrasts between the 

defined groups, providing a clearer understanding of the underlying phenomena. 

 

With this approach, I developed a classification system that stratifies patients according 

to their sex chromosome dosage state. This classification includes female patients, 

expected to show no Y chromosome expression, grouped as XX. Male patients with high 

expression of Y chromosome genes, are classified as XY. Finally, male patients exhibiting 

low Y chromosome gene expression, characterized by Extreme Downregulation of Y 

chromosome genes (EDY), are grouped as XØ. 

 

Our findings consistently demonstrated that EDY and LoY are closely related events, with 

LoY serving as a primary driver of Y chromosome downregulation in the majority of cases. 

Additionally, I found that EDY is predominantly present in HPV-negative patients, while 
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HPV-positive patients tend to show a higher Y chromosome expression, further 

highlighting the complex interplay between viral oncogenesis and sex chromosome 

dynamics. Importantly, validation of these results across multiple cohorts, including the 

CPTAC and CCLE datasets, reinforces the robustness of our conclusions. By adopting 

this classification system and narrowing the focus to extreme expressors, I now have a 

precise tool to explore the biological implications of Y chromosome loss or 

downregulation.  

 

4.1.7 Cell Composition Varies by Sex Chromosome Dosage 

 

To investigate how sex chromosome dosage influences cell composition, I analyzed 

xCell-derived scores and performed Kruskal-Wallis tests to assess statistical 

significance between groups. I identified several immune cell types that differed 

significantly (p < 0.05) across sex chromosome dosage groups and examined the 

directionality of these changes (Figure 12). A summary of the mean enrichment scores 

for each group is provided in Suppl. Table 1. 
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I observed that B cells (p = 0.0419) followed a progressive increase in abundance from 

X0 (lowest) to XY (highest), suggesting a dosage-dependent effect. Similarly, CD4+ naïve 

T cells (p = 0.000031) were most abundant in XX individuals, followed by XY, and showed 

the lowest scores in X0 individuals, supporting the idea that X chromosome dosage 

influences T cell differentiation and function. I also found significant differences in CD8+ 

T cell subsets, where CD8+ naïve T cells, CD8 central memory T cells (CD8Tcm), and CD8 

effector memory T cells (CD8Tem) varied across sex chromosome dosage groups. XX 

individuals showed the highest proportions across all CD8+ populations, while X0 males 

consistently displayed the lowest levels. These differences suggest a trend in CD8+ T cell 

abundance that may be influenced by sex chromosome dosage. 

 

Beyond T and B cell populations, I observed notable myeloid lineage differences, with 

monocytes, neutrophils, dendritic cells (DCs), and macrophages (global and M1 

subsets) displaying significant variability across sex chromosome dosage groups. XX 

* ns ns **** ns ns ns ns ******** ** **** ns ns ns ns ** ** ns * ns **** * **** ns * **** * ns ns ns *** ***

0.0

0.5

1.0

B−
ce

lls

Bas
op

hils

CD4+
 m

em
ory

 T−
ce

lls

CD4+
 na

ive
 T−

ce
lls

CD4+
 T−

ce
lls

CD4+
 Tcm

CD4+
 Te

m

CD8+
 na

ive
 T−

ce
lls

CD8+
 T−

ce
lls

CD8+
 Tcm

CD8+
 Te

m DC

End
oth

elia
l ce

lls

Eos
ino

ph
ils

Epit
he

lial
 ce

lls

Fibr
ob

las
ts

Mac
rop

ha
ge

s

Mac
rop

ha
ge

s M
1

Mac
rop

ha
ge

s M
2

Mas
t c

ells

Mem
ory

 B−
ce

lls

Mon
oc

yte
s

na
ive

 B−
ce

lls

Neu
tro

ph
ils

NK ce
lls

NKT
pD

C

Peri
cyt

es

Plas
ma c

ells

pro
 B−

ce
lls

Th1
 ce

lls

Th2
 ce

lls
Tre

gs

Cell Type

Sc
or

e

Chr_Dosage
X0

XX

XY

Cell Type Scores by Chr_Dosage in xCell

Figure 12. Immune composition varies across sex chromosome dosage groups.

Boxplot of xCell-derived cell type enrichment scores across X∅, XY, and XX groups. Several immune

and stromal cell types showed significant differences in abundance based on sex chromosome

dosage (Kruskal–Wallis test). Asterisks indicate significance levels: p < 0.05 (*), p < 0.01 (**), p < 0.001

(***), and p < 0.0001 (****).
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individuals showed the highest proportions across these myeloid populations, while X0 

males consistently exhibited the lowest levels. Additionally, I found significant 

differences in regulatory T cells (Tregs), natural killer T cells (NKT), and T-helper 2 (Th2) 

cells, further emphasizing the impact of sex chromosome dosage on immune 

composition. Tregs were most enriched in XX individuals, aligning with prior observations 

that higher X chromosome dosage correlates with increased regulatory immune 

functions. In contrast, NKT and Th2 cells showed the highest proportions in X0 

individuals, suggesting a distinct immune profile in this group. 

 

Overall, my findings highlight distinct immune composition patterns associated with sex 

chromosome dosage, suggesting that chromosomal dosage differences influence 

immune regulation and TME dynamics.  

4.2 Analysis of Single Cell Transcriptomic Data 

Single-cell transcriptomics has become an essential tool in our research, given that sex 

chromosome expression occurs at the level of individual cells. Single-cell 

transcriptomics allows us to extrapolate the concept of sex chromosome dosage at the 

level of individual cells, allowing us to distinguish between different cell types and assess 

how variations in sex chromosome expression manifest within the TME. 

 

4.2.1 HNSCC Atlas Construction 

 

Our study involves constructing a comprehensive single-cell atlas of HNSCC by 

integrating data from multiple single-cell experiments. By pooling data from various 

studies, I increase statistical power and improve the robustness of our analysis, enabling 

the detection of non-abundant cell populations and subtle transcriptional changes that 

might be missed in isolated datasets. This approach addresses the limitations of 

individual datasets by combining findings into a unified ‘master atlas,’ providing a more 

comprehensive understanding of the cellular heterogeneity in HNSCC. A manuscript 

detailing the construction and analysis of this atlas has been submitted to 

Communications Medicine. 
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To achieve this, I conducted an extensive search for publicly available single-cell RNA-

seq datasets that include samples from HNSCC. All identified HNSCC datasets with 

single-cell RNA-seq data are listed in Supplementary Table 2, extracted from Conde-

Lopez et al. (2024)85. From this pool, I selected four datasets, GSE234933, GSE182227, 

GSE164690, and GSE181919, based on the presence of appropriate clinical annotations, 

including sex, HPV status, and the origin of the sample (whether normal tissue, primary 

tumor, or metastasis). Prior to integration, I conducted a meticulous review and 

validation of all clinical and experimental annotations to ensure consistency and 

homogeneity across the datasets. Any datasets that did not meet my inclusion criteria 

were excluded, establishing a solid foundation for accurate and reliable dataset 

integration. 

 

I integrated these datasets to gain a more detailed understanding of the TME, capturing 

cellular phenotypes with greater resolution and exploring variability between datasets 

(Figure 13). This strategy allowed us to robustly cross-validate our findings across a 

diverse range of patient samples and experimental conditions. I used the Seurat pipeline 

for data normalization and initial integration, followed by STACAS, a semi-supervised 

data integration tool, to make use of the existing labels in the datasets92,103. By using pre-

assigned labels, I guide the integration process, preserving biologically relevant 

differences and enhancing both accuracy and interpretability. 

 



  4. Results 58 

 

Figure 13. Workflow for creating the HNSCC atlas. The workflow involves three main stages. First,

single-cell RNA-seq datasets are collected and curated based on key metadata, including sex, HPV status,

and sample origin. Next, data processing is performed with Seurat for quality control, normalization, and

scaling, followed by dataset harmonization using STACAS for semi-supervised integration. Cell relabeling

is refined with scGate, and tumor cells are specifically annotated using Ikarus. Finally, the harmonized

atlas allows comprehensive downstream analyses, for example cell composition profiling, cell-cell

communication inference, and trajectory analysis. This figure is adapted from my manuscript

currently under review: Conde Lopez et al., A Unified Single-Cell Atlas of HNSCC: Uncovering HPV

and Sex Variability in the Tumor Microenvironment, submitted 2025.
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For cell type annotation, I applied scGate, which uses pre-defined gating models to 

ensure consistent and homogeneous identification of cell types across our normalized 

and integrated datasets. This approach allowed us to maintain reliability in cell type 

classification across different studies, ensuring consistency in our analysis. Together, 

these tools enabled us to effectively integrate and analyze single-cell data in HNSCC, 

enhancing our ability to characterize the complex cellular landscape of the TME. 

 

To accurately identify tumor cells in our integrated atlas, I employed a combination of 

approaches due to the limitations of scGate for this task. I applied the Ikarus algorithm, 

which is a machine learning-based tool specifically designed for cell type classification 

in single-cell RNAseq data. Ikarus follows a supervised learning approach, allowing us to 

train the model using pre-annotated datasets from HNSCC and other cancer types and 

then apply the trained model to predict tumor cells in our HNSCC datasets107. This 

method is particularly effective for distinguishing tumor cells based on their gene 

expression profiles. In parallel, I utilized the existing tumor cell annotations provided by 

each individual study. By combining the output from Ikarus with these pre-defined labels, 

I ensured a more robust and accurate identification of tumor cells across our dataset. 

This dual approach allowed us to improve tumor cell classifications, reducing potential 

inconsistencies that could come from relying on a single method or dataset. 

 

In addition to the broad cell type annotations, I further expanded the classification of 

immune cells and fibroblasts within the TME. For immune cells, I utilized the ProjectTILS 

framework, which applies reference-based labeling for key immune subsets such as 

dendritic cells, CD4⁺ T cells, and CD8⁺ T cells138. This provided a more detailed 

subclassification of immune populations across our integrated datasets, ensuring 

greater specificity in cell type identification. For fibroblasts, I applied the classification 

reference established by Cords et al.139. Using the data provided in this study, I 

implemented their classification into the ProjectTILS framework, enabling accurate 

identification of fibroblast subtypes. This combination of immune and fibroblast 

subclassification allowed for a clearer characterization of the TME across our datasets. 
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4.2.2 Validation of the Integrated Atlas Through Comparison with Original Labelling 

 

I evaluated the reliability of our integrated atlas by comparing the original cell type 

annotations with those obtained after reclassification using scGate. This comparison, 

visualized through UMAP plots (Figure 14.A-B) and further quantified in the mosaic plot 

(Figure 14.C), underscores the improvements in cell type homogeneity across the 

HNSCC datasets. 

 

The UMAP plots provide a clear visual distinction: Figure 13.A illustrates the original 

labelling, while Figure 14.B highlights the relabelled classifications by scGate. The 

relabelling process significantly enhances the segregation of critical cell types, 

particularly improving the distinction between T cells and myeloid populations. Notably, 

scGate’s gating models have improved the representation of previously 

underrepresented or misclassified populations such as endothelial cells and fibroblasts. 
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Figure 14. Cell type integration and relabelling in the HNSCC atlas. (A) UMAP plot displaying

original cell type annotations across the integrated single-cell RNA-seq datasets. (B) UMAP

visualization showing updated cell labels after applying scGate-based relabelling, complemented by

tumor cell classification using Ikarus. (C) Mosaic plot comparing the distribution of original and

relabelled cell types, highlighting major shifts in classification. This figure includes content adapted

from the submitted manuscript: “A Unified Single-Cell Atlas of HNSCC: Uncovering HPV and Sex
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The mosaic plot (Figure 14.C) quantifies these improvements, displaying the frequency 

and distribution of original versus scGate-relabelled cell types. It reveals a shift towards 

greater coherence, especially in the classification of T cells, while reducing the number 

of mislabeled myeloid cells. Additionally, tumor-labeled cells identified using Ikarus and 

previous annotation methods were included in this analysis. A large proportion of cells 

previously labelled as epithelial were now reclassified as tumor cells in the final labelling. 

These results demonstrate the effectiveness of automated tools like scGate or Ikarus in 

correcting inconsistencies and enhancing the accuracy of cell type annotation across 

diverse technical backgrounds. 

 

After constructing the single-cell atlas of HNSCC, I sought to explore how key clinical 

variables, such as HPV status and sex, influence the cellular composition and 

heterogeneity within the TME. This comparative analysis allowed us to gain a deeper 

understanding of how these variables shape the immune and stromal profiles of HNSCC 

patients. 

 

4.2.3 Comparative Analysis of the Tumor Microenvironment by HPV Status and 

Clinical Sex in HNSCC Atlas 

 

As previously described, HPV status and sex are known to significantly influence the TME 

in HNSCC. HPV-positive tumors typically display a more active immune response, while 

sex differences can affect both immune and stromal cell composition. By integrating 

these variables into our single-cell atlas, I was able to examine their contributions to 

cellular heterogeneity more closely. Our analysis revealed distinct immune and stromal 

profiles that varied across HPV status and sex, offering new insights into the complexity 

of the TME in HNSCC. 

 

In our analysis of the stromal compartment, comprising endothelial cells, epithelial 

cells, and fibroblasts, I observed notable sex-dependent differences in the composition 

of HPV-positive patients. Females displayed a substantially higher stromal proportion, 

accounting for 36.9% of their TME, compared to only 14.8% in males (Figure 15.A, Suppl. 
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Table 3). Conversely, in the HPV-negative group, this trend reversed, with males 

exhibiting a higher stromal composition (23%) relative to females (19.9%). However, 

these differences between sexes in the HPV-negative group were less pronounced than 

those observed in HPV-positive individuals. 
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Figure 15. Composition of major cell types in HNSCC tumors by sex and HPV status. (A) Stacked

bar plot displaying the relative abundance of major cell types in male and female patients, separated

by HPV-positive and HPV-negative groups. (B) Distribution of overall immune cell populations across

the same groups, showing notable shifts between sexes depending on HPV status. (C) CD4⁺ T cell

subtype composition across male and female patients, stratified by HPV status. (D) CD8⁺ T cell

subtype distribution across the same groups. (E) Composition of dendritic cell (DC) subsets by sex

and HPV status. (F) Distribution of fibroblast subtypes. This figure incorporates panels adapted from

the submitted manuscript: “A Unified Single-Cell Atlas of HNSCC: Uncovering HPV and Sex Variability

in the Tumor Microenvironment” by Conde Lopez et al., 2025.
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Regarding tumor cells, I found that males consistently showed a higher proportion of 

tumor cell populations across both HPV-positive and HPV-negative patients, where 

tumor cells constituted over 20% of the TME in males in both contexts. 

 

In the immune compartment, our findings confirmed and expanded upon previous 

research, particularly emphasizing differences in immune cell distribution by HPV status 

(Figure 15.B, Suppl. Table 4). HPV-positive patients exhibited a significant increase in 

adaptive immune cells, such as B cells, plasma cells, TH1 and TH2 CD4+ T cells, NK 

cells, and CD8+ T cells. These findings align with studies indicating robust immune 

activation in HPV-positive HNSCC142. In contrast, HPV-negative patients showed higher 

levels of innate immune cells, monocytes, macrophages, NK T cells, and neutrophils, 

corresponding to a more immunosuppressive, or “cold,” immune environment142,143. 

 

When analyzing immune cell distributions by sex, I observed that females exhibited a 

higher proportion of immune infiltrates compared to males, suggesting a more active 

immune profile. This finding is consistent with previous studies that report males having 

a more exhausted CD8+ T cell profile46,48. In our study, this phenomenon was particularly 

evident in HPV-positive males, while HPV-negative cases showed relatively constant T 

cell proportions between sexes. Notably, HPV-negative females displayed a higher 

proportion of neutrophils than their male counterparts. Further investigation of 

intratumoral immune infiltration revealed that males with HPV-positive HNSCC had 

significantly higher proportions of B cells compared to females. 

 

Our analysis highlights specific patterns shaped by both HPV status and sex. For 

instance, HPV-positive females displayed a higher percentage of cytotoxic CD8+ T cells 

and lower T cell exhaustion compared to males, potentially influencing their response to 

immunotherapies targeting exhausted T cells (Figure 15.C-E, Suppl. Table 5-7). In 

contrast, males, particularly those with HPV-negative status, showed lower levels of 

immune infiltration, suggesting they may derive less benefit from conventional 

immunotherapy strategies. The definitions and functional annotations of the immune 

cell subtypes discussed can be found in Supplementary Table 8. These findings highlight 
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the importance of considering both viral and sex-related factors when developing 

tailored therapeutic approaches for HNSCC, as these variables significantly influence 

the immunological landscape and potential treatment efficacy. 

 

The comparative analysis of HPV status and sex in HNSCC provided key insights into the 

cellular composition of the TME. Given the significant influence of sex on immune and 

stromal cell populations, I next sought to explore the role of sex chromosome dosage 

(XX, XY, XØ) in shaping the TME. This step allowed us to further investigate how sex 

chromosome dosage contributes to the observed variations in cellular composition and 

immune infiltration across the TME. 

 

4.2.4 Y Chromosome Downregulation in Single-Cell Data Reveals Tumor Cells as the 

Primary Source of Dosage Variability 

 

Since the single-cell data available for our analysis consists solely of transcriptomic 

data, the first step was to translate the concept of EDY into a framework applicable to 

individual cells. In bulk data, EDY is defined at the patient level, with a score assigned 

based on the overall expression of Y chromosome genes. However, in the single-cell 

context, I assign this classification at the cell level, identifying XØ cells as those with no 

detectable Y chromosome gene expression. This key difference makes the single-cell 

analysis not directly comparable to the bulk data, as the former reflects Y chromosome 

dosage variability at the resolution of individual cells rather than providing an aggregated 

score per patient. 

 

To select XØ cells, I evaluated the expression of all detectable Y chromosome genes 

within the single-cell transcriptomic data. I calculated the percentage of expression for 

the Y chromosome gene set over the expression of all genes for each cell. Any cell with a 

score equal to zero across all Y chromosome genes was classified as an XØ cell. This 

process was conducted for both male and female patients. As expected, female patients 

exhibited no Y chromosome gene expression (Figure 16.A). In the visualization of the 

percentage of Y chromosome expression, I observed a small number of outliers among 
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the female samples, these outliers might be attributed to the homology between certain 

Y and X chromosome genes. Nevertheless, the general trend toward zero Y chromosome 

expression is clearly maintained, reinforcing the reliability of our classification. 

Importantly, XØ cells were observed in all male patients, making the presence of XØ cells 

a homogenous event across the cohort (Figure 16.B) 

 

Figure 16. Single-cell quantification of Y chromosome expression highlights dosage variability

across sex and cell types. (A) Distribution of Y chromosome gene set expression per cell, shown as

the percentage of Y chromosome gene expression over total gene expression. Female samples show

near-zero expression. In contrast, male samples display a wide range of Y chromosome expression.

(B) Per-patient distribution of Y chromosome expression across male samples. Despite variability in

expression levels, all male patients have a proportion of XØ cells, supporting the notion that Y

chromosome downregulation is a widespread and consistent phenomenon across the cohort.
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Having classified XØ cells within our single-cell data, I next aimed to investigate whether 

specific cell types were driving the observed differences between XØ and XY males in the 

bulk data. My hypothesis was that, while some cell types might exhibit a consistent, 

homogenous proportion of XØ cells across patients, others could show greater 

heterogeneity. Identifying the cell types that display this variability could provide insight 

into the specific cell populations responsible for the sex chromosome dosage 

differences observed in the bulk analysis. 

 

To test this, I examined the percentage of XØ cells across various cell types, assessing 

whether these proportions remained stable across patients or if certain cell types were 

more heterogeneous in their distribution. I began by looking at the overall percentages of 

XØ cells in each cell type, correcting for the representation of each population to ensure 

meaningful comparisons (Figure 17.A). Although neutrophils showed a relatively high 

percentage of XØ cells, their representation in the data was minimal and inconsistent 

across patients (Figure 17.B), making them less relevant for driving the bulk-level 

differences.  



  4. Results 68 

  
The most relevant findings emerged from my analysis of tumor cells. Not only did tumor 

cells exhibit the highest percentage of XØ cells when corrected for representation, but 

they were also the most abundant cell type in males (Figure 18.A). Additionally, the 

distribution of XØ cells within tumor cells varied significantly among patients (Figure 

18.B). This combination of high percentage, abundance, and variability made tumor cells 
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Figure 16. Cell type-specific variability in the proportion of XØ cells across male patients. (A)

Distribution of the percentage of XØ cells across different cell types, normalized per patient. Each

point represents an individual patient’s percentage of XØ cells for a given cell type, enabling

visualization of both central tendency and variability. (B) Number of male patients in which each cell

type was detected. This information ensures that conclusions drawn about XØ percentages are

supported by adequate patient coverage. Although neutrophils appear to have high XØ percentages,

they are inconsistently represented across the cohort and thus likely do not contribute substantially to

the bulk-level observations.
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the ideal choice for classifying patients. This finding highlights tumor cells as a key factor 

in the observed differences between XØ and XY males. Understanding the enrichment of 

XØ cells in this population may provide deeper insights into the biological implications 

of Y chromosome downregulation and loss in HNSCC.  
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Figure 18. Tumor cells are the most abundant cell type across male patients and exhibit patient-

specific variability in X∅ cell proportions. (A) Absolute number of cells per cell type in male and

female patients. Tumor cells are the most represented population in males, supporting their

relevance for downstream analyses involving sex chromosome dosage. (B) Percentage of X∅ tumor

cells per male patient. While tumor cells consistently appear across patients, the fraction of X∅ cells

within them varies considerably, indicating inter-patient heterogeneity in Y chromosome expression

among tumor cells.
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4.2.5 Patient Classification Based on Tumor Cell XØ Characteristics 

 

While the previous section focused on detecting individual XØ cells and examining their 

distribution across different cell types and patients, the next step required me to classify 

patients according to their XØ characteristics, translating the concept of sex 

chromosome dosage that I had established in bulk data in order to allow to directly 

compare my single-cell results with bulk data, where classifications were made at the 

patient level. 

 

To achieve this, I needed a consistent framework for patient classification, and given our 

findings from the previous section, I chose to base this classification on tumor cells. 

Tumor cells had emerged as the cell type of primary interest due to their high percentage 

of XØ cells, abundance in the data, and variability across patients. I hypothesized that 

focusing on tumor cells would allow us to more accurately track the source of sex 

chromosome dosage variability and draw clearer parallels to the bulk data results. 

 

I pseudobulked the transcriptomes of tumor cells from each patient and performed a 

GSVA analysis using the predefined set of 11 Y chromosome genes that I had established 

in bulk data (Results 4.2.1). After calculating the GSVA scores for the Y chromosome 

gene set, I observed that, as expected, males had higher scores than females except for 

some that showed lower expression which marks them as possible XØ patients (Figure 

19.A). When focusing on male patients and examining their HPV status (Figure 19.B), I 

observed a clear trend similar to what was seen in the bulk data: HPV-positive patients 

tend to have significantly higher GSVA scores for the Y chromosome gene set compared 

to HPV-negative patients. These findings further strengthen our previous observations 

regarding the relationship between HPV status and Y chromosome expression. 
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To classify male patients more effectively, I decided to calculate GSVA scores separately 

for the HPV-positive and HPV-negative cohorts. Given that GSVA scores are dataset-

dependent, this separation was crucial to avoid HPV status acting as a confounding 

factor. By independently calculating the scores for each cohort, I could classify the 

highest-scoring patients as XY (high expressors) and the lowest-scoring patients as XØ 

(low expressors), without skewing the results in favour of HPV-positive patients (Figure 

20). Without this separation, all highest-scoring patients would have been HPV-positive, 

and all lowest-scoring patients would have been HPV-negative, making it difficult to 

compare the two groups meaningfully.  

 

This approach allowed for a more balanced classification across dosage groups: among 

HPV-negative and HPV-positive patients, respectively, there were 10 and 10 classified as 

intermediate, 10 and 10 as XØ, 14 and 2 as XX, and 12 and 11 as XY. To further sharpen 

the contrast between high and low expressors, I decided to exclude the intermediate 
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Figure 19. Y chromosome gene expression in tumor cells mirrors trends observed in bulk data,

with HPV status influencing dosage levels. (A) GSVA scores for the Y chromosome gene set

calculated from pseudobulked tumor cells per patient, grouped by sex. As expected, male patients

showin general higher expression of Y chromosome genes compared to females. (B) Focusing on

male patients, Y chromosome gene expression is stratified by HPV status. HPV-positive males exhibit

significantly higher Y chromosome expression than HPV-negative counterparts, consistent with

patterns observed in bulk transcriptomic data.
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group. While this meant sacrificing some patients from the analysis, it allowed us to draw 

more distinct comparisons, which I expect will yield more informative insights.  

 

In the current analysis (Figure 20.B), I plotted the proportion of XØ and XY tumor cells per 

patient, ordered by their Y chromosome GSVA score. As seen in the graph, patients with 

HPV-negative status tend to have much lower GSVA scores compared to those with HPV-

positive status. Furthermore, the distribution of XØ and XY cells reveals a clear 

relationship between GSVA score and Y chromosome expression (Figure 20.B). Patients 

with lower GSVA scores exhibit a higher proportion of XØ tumor cells, indicating a 

complete lack of Y chromosome gene expression in these cells. Conversely, patients 

with higher GSVA scores demonstrate a much lower percentage of XØ cells and a 

correspondingly higher proportion of XY cells. 
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This visualization confirms my earlier hypothesis: patients with lower Y chromosome 

expression (as reflected by their GSVA scores) tend to harbor a higher fraction of XØ 

tumor cells, while higher Y chromosome expression is associated with a predominance 
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Figure 20. GSVA-based classification of male patients reveals distinct X∅/XY tumor cell profiles

linked to HPV status. (A) GSVA scores for Y chromosome gene expression in tumor cells of male

patients were computed separately for HPV-negative (left) and HPV-positive (right) cohorts to prevent

HPV status from acting as a confounder. Patients were classified into X∅ (low expressors, blue), XY

(high expressors, red), and Intermediate (green) groups. This separation allowed for more accurate

inter-cohort comparisons by mitigating bias introduced by the global score shift observed between

HPV statuses. (B) Proportions of X∅ (blue) and XY (red) tumor cells per patient, stratified by HPV status

and ordered by their Y chromosome GSVA score. A strong correlation is observed: patients with lower

GSVA scores tend to exhibit a higher proportion of X∅ tumor cells, while those with higher scores

predominantly harbor XY cells. This confirms the relevance of Y chromosome downregulation as a

biologically meaningful feature across HPV contexts.
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of XY cells. The combination of these two independent metrics—GSVA scores and XØ/XY 

cell proportions—provides further insight into the biological relevance of Y chromosome 

downregulation, especially in the context of HPV status. 

 

In this section, I used single-cell transcriptomic data to investigate sex chromosome 

dosage variability, focusing on the identification of XØ tumor cells, which lack detectable 

Y chromosome gene expression. My analysis revealed distinct differences between HPV-

positive and HPV-negative patients, with the former showing higher GSVA scores for Y 

chromosome genes and a predominance of XY cells, while the latter exhibited lower 

scores and a higher proportion of XØ cells. To further define my analysis, I classified male 

patients into XØ (low expressors) and XY (high expressors) groups based on their Y 

chromosome expression. However, due to the complexity of disentangling the effects of 

HPV from sex chromosome dosage and the potential confounding influence of the virus, 

I decided to focus exclusively on HPV-negative patients in the subsequent analyses. This 

decision enabled a more accurate classification of sex chromosome dosage, ensuring 

that I could better interpret the differences between the of XØ and XY patients without 

interference from viral factors, and offering clearer insights into the biological variability 

of sex chromosome dosage in HNSCC. 

 

4.2.6 Chromosomal Instability is Present Across Sex Chromosome Dosage Groups 

but Does Not Correlate with Y Chromosome Expression Loss 

 

To explore whether the loss of the Y chromosome expression in XØ cells could be linked 

to broader chromosomal instability, I conducted an analysis using inferCNV, a tool that 

estimates chromosomal CNVs from single-cell RNA sequencing data. inferCNV infers 

chromosomal ploidy by assessing transcriptional signals relative to a reference 

population of normal cells, allowing us to detect large-scale chromosomal gains and 

losses that may indicate broader genomic instability. This analysis was critical to 

determine whether the observed loss of the Y chromosome was an isolated 

phenomenon or part of a larger pattern of genomic instability. If the chromosomal 

anomalies extended beyond the Y chromosome, it would suggest that the observed loss 
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of the Y chromosome was simply one aspect of a more generalized genomic instability, 

making it a less specific event. 

 

Due to computational limitations, I applied inferCNV separately to each dataset, but 

because the cell types were homogeneously annotated across datasets, this did not 

affect the consistency of our analysis. Normal stromal cells served as the reference 

population, providing a stable baseline for comparison. I clustered the tumor cells based 

on their sex chromosome dosage status (XX, XY, and XØ) to investigate chromosomal 

instability within these distinct groups. 

 

The results from inferCNV (Figure 21) revealed that all groups, regardless of their sex 

chromosome dosage, exhibited a higher degree of chromosomal instability compared to 

the normal stromal reference cells. Each group showed patterns of chromosomal 

anomalies, with certain genomic regions demonstrating clear deviations from the 

baseline reference. Interestingly, while chromosomal instability was present across all 

groups, the specific patterns of gains and losses were not consistent between XX, XY, 

and XØ cells. Each group displayed distinct patterns of chromosomal aberrations, 

suggesting that while instability was a shared characteristic, the particular genomic 

regions affected varied between the sex chromosome dosage groups. 

 

Moreover, despite the variability in chromosomal anomalies, all three groups (XX, XY, 

and XØ) showed evidence of instability, with no single group exhibiting a significantly 

higher level of chromosomal aberrations than the others. This observation indicates that 

chromosomal instability is a common feature in all tumor cell groups, but it does not 

disproportionately affect XØ cells. As such, the loss of the Y chromosome in XØ cells 

does not appear to be a result of an overall increase in chromosomal instability. Rather, 

it remains a specific event, separate from the general chromosomal anomalies observed 

across other chromosomes. 

 

These findings reinforce the biological relevance of categorizing cells into XX, XY, and XØ 

groups. The Y chromosome downregulation observed in XØ cells appears to be a distinct 

event, rather than a manifestation of broader genomic instability. This highlights the 
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importance of continuing to investigate the implications of sex chromosome dosage as 

a specific factor influencing the tumor microenvironment in HNSCC. 
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4.2.7 Analysis of Cell Type Proportions and Tumor Microenvironment Composition 

Among Sex Chromosome Dosage Groups in HPV-Negative Patients 

 

To further investigate the impact of sex chromosome dosage on the TME, I analyzed the 

cell type proportions across XX, XY, and XØ groups, focusing exclusively on HPV-negative 

patients. My analysis revealed differences in the composition of the stromal and immune 

compartments between these sex chromosome dosage groups. 

 

The stromal compartment was notably more pronounced in XY individuals, followed by 

XX, compared to those in the XØ group (Figure 22). This enrichment was particularly 

evident for fibroblasts, which constituted a substantial proportion of the TME in XY 

patients. These observations suggest that the presence of a functional Y chromosome 

may contribute to the expansion or maintenance of the stromal compartment. In 

contrast, tumor cells were the dominant population in XØ males, indicating a potentially 

more aggressive tumor profile with reduced immune infiltration in this group. 

Figure 20. Chromosomal instability analysis using inferCNV across tumor cells with different sex

chromosome dosage statuses. To determine whether the loss of Y chromosome expression in XØ

cells was associated with broader chromosomal instability, we performed inferCNV analysis using

stromal cells as the reference (upper panel). Tumor cells were clustered by sex chromosome dosage

groups (XY (Tumor), XX (Tumor_XX), and XØ (Tumor_X0)) and analyzed separately for each dataset

(lower panel). inferCNV identifies large-scale chromosomal gains and losses based on gene

expression patterns along the genome. (A) inferCNV results from dataset GSE234933. (B) inferCNV

results from dataset GSE18227. (C) inferCNV results from dataset GSE164690. (D) inferCNV results

from datasetGSE181919.
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For the immune compartment (Figure 22, Suppl. Table.9) B cells were most abundant in 

XY tumors, followed by XX tumors, and were least prevalent in XØ tumors. This 

distribution suggests a potentially stronger humoral immune response in XY individuals, 

while XØ tumors, with their lower B cell representation, may experience reduced 

antibody-mediated immunity. Natural Killer (NK) cells followed a similar trend, being 

more abundant in XX tumors compared to XY and XØ tumors. The higher presence of NK 

cells in XX tumors may indicate a more robust innate immune surveillance, whereas the 

diminished NK cell proportions in XØ tumors suggest a weakened innate immune 

response in this group. For the myeloid populations, macrophages were more prevalent 

in XØ tumors compared to XX and XY tumors, indicating a more immunosuppressive 
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Figure 22. Cell type composition across sex chromosome dosage groups in HPV-negative

patients. Bar plot displaying the aggregated proportions of all annotated cell types across XX, XY, and

XØ groups, considering only HPV-negative tumors. Cell type annotations were derived from the

establisand grouped by sex chromosome dosage category. Proportions were calculated across all

cells within each group to allow comparative visualization of the TME composition. This approach

enables the assessment of differences in stromal, immune, and tumor compartments between sex

chromosome dosage groups.



  4. Results 81 

environment that may contribute to tumor progression in XØ individuals. Monocytes, on 

the other hand, were most abundant in XX tumors, followed by XY tumors, and were least 

common in XØ tumors. When considering all immune cell types together, XX tumors 

exhibited the highest overall immune cell content, suggesting a more immune-active 

microenvironment. In contrast, XØ tumors had the lowest immune cell infiltration, 

pointing to a more immunosuppressive TME in these individuals. 

 

With respect to T cell composition, XY tumors demonstrated a higher proportion of CD8⁺ 

T exhausted and CD4⁺ T naive cells compared to XØ and XX tumors, aligning with the 

hypothesis that XY individuals exhibit a less robust immune infiltration in their primary 

tumors (Figure 23.A-B, Suppl. Table. 10-11). In contrast, XX female tumors were 

characterized by a higher overall proportion of immune cells, particularly enriched in 

follicular helper T cells, cytotoxic CD4⁺ T cells, and more active CD8⁺ T cells. This is 

consistent with studies that suggest females have a more active immune phenotype than 

males45,46,48. Interestingly, XØ tumors showed the highest levels of regulatory T cells and 

slightly lower proportions of naive CD4⁺ T cells compared to their XY counterparts, 

further supporting the idea that sex chromosome dosage not only influences the quantity 

of immune infiltration but also the functional state of T cell populations within the TME. 
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To further extend our investigation into the TME in HPV-negative patients, I focused on 

the fibroblast compartment, exploring the distribution of fibroblast subtypes across the 

sex chromosome dosage groups (XX, XY, and XØ). Using the classification system 

established by Cords et al., I identified several distinct fibroblast subtypes, each 

characterized by unique gene expression profiles and functional roles139. These subtypes 

include Matrix CAFs (mCAFs), Inflammatory CAFs (iCAFs), Vascular CAFs (vCAFs), 

Tumor-like CAFs (tCAFs), and others, with each subtype contributing differently to the 

tumor stroma. 

 

The analysis of fibroblast subtype proportions across the sex chromosome dosage 

groups is illustrated in Figure 24, Suppl. Table 12. The most striking observation is the 

dominance of mCAFs across all groups, with this subtype being particularly prevalent in 

XY and XØ tumors. mCAFs are known for their involvement in matrix remodeling and are 

heavily enriched in genes related to extracellular matrix production, such as collagen-

encoding mRNAs. Their higher representation in XY tumors may indicate more extensive 

matrix remodeling processes, which could be linked to increased tumor progression in 
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Figure 23. Distribution of T cell subtypes across sex chromosome dosage groups in HPV-negative

tumors. (A) Relative proportions of CD8⁺ T cell subtypes, including exhausted and cytotoxic

populations, in XX, XY, and XØ tumors. (B) Relative proportions of CD4⁺ T cell subtypes, including

naïve, regulatory, follicular helper, and cytotoxic CD4⁺ T cells across the same groups.
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this group. Interestingly, while XØ tumors also showed a significant proportion of mCAFs, 

other fibroblast subtypes were less represented in this group, suggesting that matrix 

remodeling may play a more central role in XØ tumors than in those of XX or XY 

individuals. 

 

  
 

iCAFs, characterized by their expression of pro-inflammatory cytokines like IL6 and 

CXCL12, were more prominent in XY tumors than in XØ or XX tumors. The increased 

presence of iCAFs in XY individuals suggests an environment with higher inflammatory 

signalling, which may influence immune cell recruitment and activation within the tumor. 

In contrast, XØ tumors had a much lower proportion of iCAFs, potentially reflecting a 

different inflammatory landscape, with implications for immune modulation and tumor-

immune interactions in these patients. 
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Figure 23. Distribution of fibroblast subtypes across sex chromosome dosage groups in HPV-

negative tumors. Relative proportions of annotated fibroblast subtypes—including matrix CAFs

(mCAFs), inflammatory CAFs (iCAFs), vascular CAFs (vCAFs), tumor-like CAFs (tCAFs), and others—

across XX, XY, and XØ groups. Fibroblasts were classified using the reference framework described by

Cords et al. (2023), which distinguishes subtypes based on distinct transcriptional and functional

profiles.
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Interestingly, XX tumors exhibited a higher proportion of tumor-like CAFs (tCAFs), 

characterized by the expression of genes associated with stress response, proliferation, 

and metastasis, such as PDPN, MME, and TMEM158. The increased presence of tCAFs, 

alongside the higher proportion of vCAFs in XX tumors, points to a distinct stromal 

composition in female patients. These differences suggest that the stroma in XX tumors 

might have unique functional properties compared to XY and XØ tumors, although 

further investigation is needed to explore how these characteristics might influence 

tumor behaviour and progression. 

 

Taken together, these findings highlight the complex interactions between fibroblast 

subtypes and sex chromosome dosage within the TME. The differences in fibroblast 

composition across the XX, XY, and XØ groups suggest that sex chromosome dosage 

plays a significant role in shaping the stromal environment of HPV-negative tumors. 

Specifically, the higher prevalence of matrix remodelling and inflammatory fibroblast 

subtypes in XY tumors may contribute to more aggressive tumor behaviour, while the 

reduced presence of iCAFs in XØ tumors could point to a less inflamed, but still highly 

matrix-remodelled, microenvironment. 

 

In summary, our compositional analysis of the TME in HPV-negative patients, stratified 

by sex chromosome dosage (XX, XY, and XØ), reveals distinct differences in both immune 

and stromal cell populations. XX tumors exhibited a higher overall immune cell 

infiltration, including a more active T cell profile, enriched in follicular helper T cells and 

cytotoxic CD4⁺ T cells. In contrast, XY tumors displayed a more exhausted T cell state 

with increased CD8⁺ T cell exhaustion, while XØ tumors showed the lowest immune 

infiltration and higher levels of immunosuppressive regulatory T cells. Additionally, the 

fibroblast compartment showed significant variability, with mCAFs more prominent in XY 

and XØ tumors, and tumor-like CAFs tCAFs and vCAFs more abundant in XX tumors.  

 

4.2.8 Fibroblast-Mediated Communication Drives Differential Tumor 

Microenvironment Dynamics Across Sex Chromosome Dosage Groups 
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Cell-to-cell communication plays a pivotal role in the coordination of various biological 

processes within the TME. In this section, I used the CellChat tool to investigate how 

communication patterns vary among the XX, XY, and XØ sex chromosome dosage groups 

in HPV-negative patients117. CellChat provides a comprehensive framework for analyzing 

intercellular communication by inferring ligand-receptor interactions based on single-

cell transcriptomic data. It assesses the signaling pathways and their interactions, taking 

into account both the number of interactions (based on ligand-receptor pairs) and their 

overall strength, which reflects the expression levels of the receptors and ligands in each 

interacting cell type. The tool integrates both the frequency of interactions and the extent 

of expression, providing insight into which cell types are sending and receiving signals 

most actively. 

 

In the analysis, I focused on the differential interaction strength between the XX, XY, and 

XØ groups. As defined by CellChat, interaction strength is not simply the count of 

interactions but a combinative measure that factors in the expression level of the 

interacting receptors and ligands, scaled according to the number of cells in each group. 

This allows us to visualize and compare how strongly certain cell types communicate 

with one another across the sex chromosome dosage groups. 

 

The results of our cell-cell communication analysis underscored the significant role of 

the stromal compartment, particularly fibroblasts, in mediating interactions within the 

TME (Figure 25.A-B). In XY tumors, fibroblasts were particularly active in outgoing 

signaling, especially in communication with tumor cells, suggesting their prominent role 

in tumor-stromal interactions in XY individuals. Conversely, XØ tumors showed 

increased communication between NK cells and fibroblasts, indicating a stronger NK 

cell-mediated immune response in this group. The interaction strength between 

fibroblasts and other cell types was weakest in XX tumors, reflecting reduced stromal 

communication compared to XY and XØ groups. Additionally, in both XX and XY tumors, 

there was a higher interaction strength between CD8⁺ T cells and neutrophils, a pattern 

absent in XØ tumors. These findings reveal distinct immune and stromal interaction 

dynamics across sex chromosome dosage groups. 
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Incorporating fibroblast subtypes into the analysis provided additional insights into their 

role in the TME. mCAFs and iCAFs emerged as key players across all sex chromosome 

dosage groups. These fibroblast subtypes demonstrated the strongest outgoing signals, 

further highlighting their central role in coordinating communication within the TME 

(Figure 26.A). However, when comparing the differential interaction strength between the 

groups, I found that mCAFs and iCAFs displayed the most variation in their 

communication behavior between the XØ, XX, and XY groups (Figure 26.B). This suggests 

X0 vs XX                                     X0 vs XY                                     XX vs XY
Differential Interaction Strength 

Figure 25. Differential cell-cell communication strength across sex chromosome dosage groups

in HPV-negative tumors. The analysis visualizes differential interaction strength, as defined by

CellChat, between cell types in XØ, XX, and XY tumors. Red indicates stronger signaling in the second

group of the comparison, while blue reflects stronger signaling in the first group. (A) Chord diagrams

depict global intercellular communication networks for each pairwise comparison (XØ vs XX, XØ vs

XY, and XX vs XY), with edge thickness corresponding to the relative strength of interactions. (B)

Heatmaps quantify the relative interaction strength between sender (rows) and receiver (columns)

cell types, highlighting specific interaction patterns across groups. Fibroblasts emerge as major

stromal signaling hubs, consistently exhibiting the highest differential interaction strength across all

comparisons. This effect is particularly pronounced in XY tumors, where fibroblasts show enhanced

outgoing communication toward tumor cells, highlighting their pivotal role in shaping the tumor–

stroma interface.

A

B
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that the functional role of these fibroblast subtypes may differ based on the sex 

chromosome dosage, potentially influencing tumor progression in distinct ways across 

the different groups. 
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Figure 26. Differential signaling profiles of fibroblast subtypes across sex chromosome dosage

groups. Cell–cell communication analysis was extended by incorporating fibroblast subtypes,

providing a more granular view of stromal interactions in the TME. (A) The upper panel shows the

absolute interaction strength of each sender–receiver cell type pair within the XØ, XX, and XY groups.

(B) The lower panel presents the differential interaction strength between groups (XØ vs XX, XØ vs XY,

and XX vs XY). In this analysis, red indicates stronger interactions in the second group of the

comparison, while blue indicates stronger interactions in the first. mCAFs and iCAFs emerged again

as the fibroblast subtypes with pronounced differences in communication across sex chromosome

dosage groups.
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Together, these findings highlight the importance of cell-cell communication in shaping 

the TME and reveal how differences in sex chromosome dosage can alter the signaling 

landscape, particularly through the activity of fibroblasts. By integrating these 

communication patterns into our broader understanding of the TME, I gain further insight 

into how cellular interactions contribute to the distinct biological behaviors of tumors 

across XX, XY, and XØ individuals. 

 

4.2.9 Patient-Specific Analysis Reveals Distinct Patterns of Tumor-iCAF Interactions 

by Sex Chromosome Dosage 

 

To ensure the observed cell-to-cell communications reflect interactions occurring within 

individual tumors, I performed a patient-specific analysis focusing on interactions 

between tumor cells and iCAFs, given that this was the most differential interaction 

across sex chromosome dosage groups. By examining interactions on a per-patient 

basis within XX, XY, and XØ groups, I aimed to distinguish true intra-tumoral signaling 

from potential inter-patient artifacts in pooled datasets. 

 

For each patient, I visualized the interaction strength using heatmaps categorized by the 

presence and activity of iCAFs: (1) iCAFs detected and interacting with tumor cells, (2) 

iCAFs detected but without interaction with tumor cells, and (3) patients with no iCAFs 

detected, and example of each type can be found in Figure 27. These visualizations 

allowed me to assess variations in tumor-iCAF signaling dynamics across individual 

patients within each sex chromosome dosage group, highlighting not only the presence 

of specific iCAF populations but also the direct communication channels active within 

each patient’s TME. 
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My patient-specific analysis of iCAF presence and interactions with tumor cells reveals 

distinct patterns across the XX, XY, and XØ groups, underscoring the heterogeneity in 

stromal-tumor communication linked to sex chromosome dosage (Figure 28). 
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Figure 27. Patient-level variation in iCAF–tumor interactions across the TME. To investigate inter-

patient variability in iCAF activity, heatmaps were generated to visualize cell–cell communication

strength, stratified by iCAF presence and interaction status. Each heatmap represents an example

patient from one of three categories: (Left) iCAF detected and interacting with tumor cells: strong

communication signals between iCAFs and tumor cells suggest active stromal involvement in the

TME. (Middle) iCAF detected but not interacting with tumor cells: iCAFs are present but show no direct

signaling toward tumor cells, indicating a potential functional disconnect or niche restriction. (Right)

iCAF not detected: no iCAF population was observed in the TME.
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In the XY group, the majority of patients exhibited iCAF presence, with six out of twelve 

patients displaying active interactions between iCAFs and tumor cells. This relatively 

high frequency of tumor-iCAF communication suggests a prominent role for 

inflammatory signaling in XY individuals, potentially facilitating tumor progression and 

influencing immune cell recruitment within the TME. In four additional XY patients, iCAFs 

were present but not actively engaging with tumor cells, and only two patients had no 

detectable iCAFs. These findings imply that the inflammatory signaling potential, while 

generally high, varies among XY individuals, reflecting a degree of intra-group 

heterogeneity. 

 

For XØ patients, no cases showed active interactions between iCAFs and tumor cells, 

with six patients displaying iCAFs without interaction and four patients having no 

detectable iCAFs. The absence of direct iCAF-tumor cell interactions across XØ patients 

could indicate a less inflamed and more immunosuppressive TME in this group, which 

aligns with findings of reduced immune activity previously observed in XØ tumors. This 
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Figure 28. Proportion of patients with different iCAF–tumor interaction states across sex

chromosome dosage groups. Bar plot showing the percentage of patients within each sex

chromosome dosage group (XY, XØ, XX) classified into three categories based on iCAF presence and

interaction with tumor cells: (1) iCAF detected and interacting with tumor cells (dark red), (2) iCAF

detected but not interacting (orange), and (3) no iCAF detected (peach). XY patients showed the

highest proportion of iCAF–tumor interactions, while XØ patients had the lowest, highlighting sex

chromosome dosage–linked differences in stromal engagement.
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absence of interaction suggests that, in XØ patients, iCAFs may play a more limited or 

indirect role in modulating tumor behavior. 

 

In the XX group, the variability in iCAF-tumor interactions was notable. While four 

patients showed active iCAF-tumor interactions, these varied in strength, with two 

patients exhibiting high interaction strength and two displaying low strength. This 

diversity, coupled with five patients showing iCAFs without active tumor interactions and 

five with no iCAFs, suggests a more variable inflammatory landscape in XX tumors. The 

range of interaction strengths and presence of non-interacting iCAFs may indicate that, 

in XX patients, iCAF activity and tumor engagement are more context-dependent, 

potentially influenced by additional factors such as immune infiltration and local TME 

composition. 

 

Importantly, Fisher’s exact test revealed a statistically significant difference in the 

distribution of iCAF–tumor interaction patterns between XY and XØ patients (p = 0.035), 

underscoring a potential biological divergence in the role of iCAFs across sex 

chromosome dosage groups. 

 

4.2.10 Tumor-Stroma Crosstalk in HNSCC Reveals That XY Fibroblasts Promote 

Tumor Survival, Stemness, and Collective Invasion 

 

To investigate potential functional differences among iCAFs across chromosome dosage 

groups, I first analyzed Hallmark pathway enrichment related to fibroblast activity (Figure 

29.A). The analysis revealed that XY iCAFs exhibited the highest scores across most 

fibroblast-associated pathways, including Epithelial-Mesenchymal Transition (EMT), 

TGF-beta signaling, hypoxia and angiogenesis, suggesting a metabolic and signaling 

profile distinct from XØ and XX iCAFs. Conversely, XØ and XX fibroblasts displayed 

relatively higher scores in specific pathways, such as inflammatory response, glycolysis 

and Wnt-Beta Catenin signaling, indicating potential differences in immune modulation 

and stromal maintenance. 
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To further explore molecular differences, I performed a DE analysis across the three 

fibroblast groups. This analysis identified a set of 41 genes (Figure 29.C) consistently 

differentially expressed across all comparisons. Several of these genes are functionally 

relevant to fibroblasts and HNSCC, including VIM (Vimentin), a key EMT marker; CXCL8 

and CXCL14, chemokines involved in immune modulation; and FBLN1 (Fibulin-1), an 

extracellular matrix protein with roles in fibroblast function and tumor-stroma 

interactions. Additionally, SFRP1 and SFRP2, known regulators of Wnt signaling, were 

differentially expressed, supporting a role for fibroblast-associated pathways in tumor 
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Figure 29. Comparative analysis of iCAFs across sex chromosome dosage groups.

(A) Heatmap displaying Hallmark pathway enrichment scores for iCAFs stratified by sex

chromosome dosage (XØ, XX, XY), highlighting variation in fibroblast-related signaling activity across

groups. (B) Dot plot showing scaled expression values and detection frequency of selected

differentially expressed genes in iCAFs across XØ, XX, and XY tumors. The size of the dots reflects

gene detection rate, while the color scale indicates average expression level. (C) Venn diagram

summarizing the overlap of differentially expressed genes identified in pairwise comparisons

between XØ, XX, and XY iCAFs, with 41 genes shared across all three comparisons.
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progression. Notably, JUNB and FOS, transcription factors involved in fibroblast 

activation, as well as NFKBIA and CXCL8, regulators of inflammatory signaling, exhibited 

stronger expression in XØ fibroblasts, while VIM, CXCL14, FBLN1, and SFRP family 

members were more highly expressed in XY fibroblasts, suggesting distinct activation 

states between these groups (Figure 29.B). 

 

To gain insight into the biological processes underlying these transcriptional differences, 

I performed Gene Ontology (GO) enrichment analysis separately for each chromosome 

dosage group (Figure 30). XØ iCAFs were enriched for pathways associated with tumor 

necrosis factor (TNF) response, lipopolysaccharide (LPS) signaling, and ATP 

biosynthesis, suggesting an inflammatory and metabolically active fibroblast phenotype. 

In contrast, XY iCAFs exhibited significant enrichment in extrinsic apoptotic signaling 

regulation, stem cell fate commitment, and planar cell polarity, indicating a distinct role 

in tumor-stromal interactions and fibroblast differentiation. Notably, XX iCAFs showed 

limited pathway enrichment, with only cytoplasmic translation emerging as a 

significantly enriched term, suggesting a more general fibroblast phenotype compared 

to XØ and XY groups. 
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Together, these results indicate that fibroblasts within the HNSCC TME exhibit distinct 

functional states depending on their chromosome dosage status, with XY fibroblasts 

demonstrating a more pro-tumorigenic role, contributing to tumor-stroma interactions 

through enhanced survival signaling, stemness promotion, and facilitation of collective 

invasion, while XØ fibroblasts are characterized by a heightened inflammatory response, 

and XX fibroblasts present a less specialized transcriptional program. 

 

4.2.11 Deconvolution of TCGA Data Reveals Differences in mCAFs and iCAFs 

Proportions Across Sex Chromosome Dosage Groups 

 

To further investigate if the cellular composition differences observed in my single-cell 

analysis can also be traced back into the bulk RNA-seq data, I used BayesPrism to 
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Figure 30. Gene Ontology (GO) enrichment analysis of iCAFs by sex chromosome dosage. Bar

plots display the top significantly enriched GO biological processes for differentially expressed genes

in iCAFs from (top left) XY, (top right) XØ, and (bottom) XX tumors. Bar length indicates gene count per

term, while the color gradient reflects the adjusted p-value (FDR), with darker hues denoting higher

significance. The XY and XØ groups show enrichment in distinct pathways, while the XX group

presents limited enrichment, with only a single significant term identified.
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deconvolute the TCGA dataset. BayesPrism is a deconvolution tool designed for bulk 

transcriptomic data, using probabilistic modeling to assign proportions of various cell 

types based on single-cell RNA-seq reference profiles. This approach allows us to infer 

the cellular composition in bulk datasets, using information from our detailed single-cell 

atlas to identify and quantify specific cell populations within the TCGA data. By doing so, 

I aimed to check if specific cell type distributions observed in the single-cell setting 

across XX, XY, and XØ sex chromosome dosage groups are also detectable in the bulk 

data. 

 

The box plots (Figure 31.A-B) illustrate the estimated proportions of each cell type across 

the three dosage groups. Kruskal-Wallis tests were conducted to identify significant 

differences among XX, XY, and XØ groups for each cell type. Notably, key fibroblast 

populations, including mCAFs and iCAFs, showed significant differences among the sex 

chromosome dosage groups (Suppl. Table 13). These findings suggest that these 

fibroblast subtypes may have distinct roles in the TME across different sex chromosome 

configurations. Importantly, the directionality of these differences aligns with our single-

cell findings. Specifically, the deconvolution results indicate that fibroblast populations 

are most abundant in XY tumors, followed by XØ, and least abundant in XX tumors (Table 

X). This trend mirrors our single-cell analysis, reinforcing the notion that fibroblast 

presence, particularly mCAFs and iCAFs, is enriched in XY tumors. These observations 

further support the idea that fibroblast-driven stromal remodeling may be influenced by 

sex chromosome dosage, potentially shaping the tumor microenvironment in a dosage-

dependent manner. 
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These results strengthen our single-cell findings, showing that some of the differences in 

cell type composition can also be seen in the bulk data. The alignment between single-

cell and bulk RNA-seq data for key cell populations, especially iCAFs and mCAFs, 

highlights the important role these fibroblast subtypes play in shaping the unique TME 

characteristics of the XX, XY, and XØ groups. 

A

B

Figure 31. Cell type deconvolution of TCGA bulk RNA-seq data using BayesPrism and single-cell

reference profiles. Box plots display the estimated proportions of cell types ((A) all TME cell types, (B)

fibroblast subtypes) in bulk tumor samples across XX, XY, and XØ sex chromosome dosage groups.

Inference was performed using BayesPrism, with reference signatures derived from my single-cell

HNSCC atlas. Each dot represents an individual patient, and boxes show interquartile range and

median for each group. This approach enables the comparison of bulk-level cellular composition

across dosage groups and highlights differences in fibroblast subtype abundance detectable at the

bulk transcriptome level.
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4.2.12 Enrichment of COX2 and AR Expression in iCAFs and mCAFs Highlights 

Potential Tumor-Stromal Interactions Specific to Sex Chromosome Dosage Groups 

 

Building on our initial exploration into COX2’s role as a driver of inflammation in cancer 

and its differences in expression among the sexes in HNSCC patient stainings, I revisited 

its impact within the TME by examining PTGS2 (COX2) and androgen receptor (AR) 

expression across the sex chromosome dosage groups (XX, XY, and XØ). COX2, known 

for promoting inflammatory signaling, has been associated with processes that favor 

tumor progression, such as immune cell recruitment, angiogenesis, and cell 

proliferation144. Earlier studies pointed to COX2 overexpression as a potential marker of 

more aggressive tumor behavior, leading us to explore its function within specific cell 

types in the TME. Likewise, AR, though mainly studied in hormone-responsive cancers, 

has shown signs of influencing cellular behaviors in a broader range of contexts47. 

 

With the single-cell RNA sequencing atlas now available, I aimed to see if COX2 and AR 

have specific expression patterns within distinct cell types that might help explain the 

differences in the TME linked to each sex chromosome dosage group. By examining these 

expression patterns, I aimed to determine whether and how COX2 and AR contribute to 

shaping the stromal and immune composition and behavior in ways that correspond with 

the observed TME variations across these groups. 

 

In our analysis of PTGS2 (COX2) expression across general cell types, I observed 

distribution across multiple cell populations, which led me to examine fibroblasts more 

closely given their established role as a key cell type of interest (Figure 32.A). When I 

specifically analyzed fibroblast subtypes, I found that COX2 expression was particularly 

elevated in iCAFs and mCAFs within the XY group, with comparatively lower expression 

in XX and XØ fibroblasts (Figure 32.C). In contrast, AR expression was largely confined to 

fibroblasts across the general cell types, but it still showed higher levels in the XY group 

compared to XX and XØ (Figure 32.B). Within fibroblast subtypes, I again observed that 

iCAFs and mCAFs in XY patients displayed the most prominent AR expression (Figure 
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32.D). While these findings suggest that COX2 and AR may contribute to the distinct 

stromal environment observed in XY tumors, their restricted expression to select cells 

within the population highlights the need for further investigation into whether 

downstream inflammatory and androgen-related pathways are broadly activated within 

the fibroblast compartment. 

 

 
 

Further exploration of the co-expression of COX2 and AR revealed that in the XY group, 

iCAFs demonstrated the highest levels of simultaneous expression of these two markers, 

a pattern not observed in the XX or XØ groups (Figure 32). This co-expression within iCAFs 

suggests a possible interaction between inflammatory and androgen receptor-mediated 

pathways that could modulate the TME in XY patients. The presence of co-expressing 

iCAFs in XY tumors might indicate a unique fibroblast-mediated mechanism contributing 
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Figure 32. Expression patterns of PTGS2 (COX2) and AR across general cell types and fibroblast subtypes

in the HNSCC single-cell atlas. (A, B) Violin plots showing the expression levels of PTGS2 (A) and AR (B) across

major cell types, with fibroblasts highlighted in red boxes. PTGS2 shows widespread distribution, while AR

expression is primarily restricted to fibroblasts. (C, D) Expression of PTGS2 (C) and AR (D) within annotated

fibroblast subtypes. Both genes show elevated expression in inflammatory (iCAF) and matrix (mCAF)

fibroblasts, with highest levels in the XY group, suggesting sex chromosome dosage–linked modulation of

stromal signaling within the TME.
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to the tumor’s immune and stromal landscape, potentially facilitating tumor-stromal 

communication and supporting tumor growth. 

 

 
 

4.2.13 Differential Incoming/Outgoing Communication Pathways Between Tumor 

Cells and iCAFs Across Sex Chromosome Dosage Groups 

 

To explore the communication landscape between tumor cells and iCAFs across sex 

chromosome dosage groups (XX, XY, and XØ), I investigated signaling pathways using the 

SC atlas data processed through the CellChat framework. I used the calculated pathway 

communication scores to get a clearer picture of how much and how strongly tumor cells 

and iCAFs interact in the TME. By focusing on these pathways, I wanted to see if 
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Figure 33. UMAP visualization of PTGS2 (COX2) and AR co-expression in fibroblast subtypes

across sex chromosome dosage groups. UMAPs display expression levels of PTGS2 (left), AR

(middle), and their combined co-expression (right) in mCAFs and iCAFs for XØ (top row), XX (middle

row), and XY (bottom row) fibroblast populations. The composite color scale (top right) represents

joint expression, with green indicating high AR expression, red indicating high PTGS2, and yellow

indicating co-expression of both markers. iCAFs in XY tumors exhibit the most prominent co-

expression of PTGS2 and AR, a pattern absent in XX and XØ groups.
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differences in sex chromosome dosage affect the way these cells communicate, 

especially in pathways involved in immune response and cell growth. 

 

I calculated pathway communication scores for each sex chromosome dosage group 

and selected interactions between tumor cells and iCAFs. This was done calculating 

centrality scores, which measure how much influence each pathway has on 

communication by looking at both signals sent out and received by each cell type. This 

let us quantify how important specific pathways are for communication in each group. 

To improve the comparability across groups, I identified a shared set of pathways and 

designed a ranking metric which highlighted pathways showing differences between the 

XX, XY, and XØ groups. From this ranking, I selected the top 20 pathways, as these 

showed the most differences and were therefore the most relevant and I clustered the 

pathways to find pathways specific for each sex chromosome dosage group. For this I 

did it from both perspectives, incoming and outgoing signals for iCAFs and incoming and 

outgoing singnals for tumor. 

 

For the analysis of incoming and outgoing pathways in tumor cells (Figure 34.A-B), the XX 

group exhibited stronger scores across all pathways, suggesting that tumor cells in this 

group might have a more active signaling behavior. I observed that pathways such as Apo 

A, FASLG, IL1, and NPR2 were exclusively present in the XØ group for incoming signals. 

There was limited overlap between XØ and XY groups, while more pathways were shared 

between XY and XX, including Activin, SEMA3, and BMP. Unique pathways for the XX 

group included TGFβ, IL4, and PARs, highlighting a more active communication role in 

this dosage group. For outgoing pathways, the XØ group displayed activation of pathways 

such as VEGF, MPZ, CD40, and JAM, which were shared with XX. Notably, IL1 was strong 

but specific to XØ, while pathways like KIT, SEMA4, and VTN were stronger in XY and 

shared with XX. 
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In contrast, the signaling in iCAFs revealed a different pattern (Figure 35.A-B). Overall, 

pathway scores were much weaker in the XX group compared to the XY and XØ groups. 

Incoming signals seem frequently shared between XØ and XY and included IL4, CNTN, 

IFN-II, and VEGF, whereas pathways like RELN, SEMA3, and ncWNT were more activated 

only in XØ. NPR2 and NT were more activated in the XY group. The XX group showed 

activation primarily of PLAU, which was unique to this group, and IL1, which was shared 

with XY. For outgoing signals, VEGF, IL4, and IFN-II were again shared between XØ and 

XY, while CD40 and NPR2 were more prominent in XY. Pathways like SEMA4 and BMP 
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Figure 34. Heatmap visualization of incoming and outgoing signaling pathway activity in tumor

cells across sex chromosome dosage groups. (A) Incoming signaling pathways show the relative

strength of pathway activity received by tumor cells from iCAFs in XØ, XX, and XY groups. (B) Outgoing

signaling pathways show the relative strength of pathway activity sent from tumor cells to iCAFs in XØ,

XX, and XY groups.
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were more exclusive to XØ. In the XX group, IL1 and VTN were more active, with IL1 shared 

with XY and VTN present in both XY and XØ but primarily active in XØ. 

 

 
 

To further understand the shared communication pathways between tumor cells and 

iCAFs, I extended my analysis by selecting pathways that appeared in both the outgoing 

signals from one cell type and the incoming signals to the other. This allowed us to focus 

on pathways that facilitate reciprocal interactions within the TME. I identified these 

shared pathways by intersecting the top-ranked outgoing and incoming pathways for 

both tumor cells and iCAFs. This comparison was performed for two sets of pathways:  

outgoing tumor to incoming iCAF and outgoing iCAF to incoming tumor (Figure 36.A-B). 
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Figure 35. Heatmap visualization of incoming and outgoing signaling pathway activity in iCAFs

across sex chromosome dosage groups. (A) Incoming signaling pathways represent the relative

strength of pathway activity received by iCAFs from tumor cells in XØ, XX, and XY groups. (B) Outgoing

signaling pathways show the strength of signals sent from iCAFs to tumor cells across dosage groups.
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In this analysis IL1 and IL4 had strong outgoing and incoming pathway scores. This 

finding indicates the importance of these pathways in tumor-iCAF crosstalk, where they 

may be involved in modulating immune responses. The strength of IL4 in the XY group, 

Shared Pathways (Outgoing Tumor vs Incoming iCAF)

XX XY X0

IL1_Incoming iCAF

IL1_Outgoing Tumor

IL4_Incoming iCAF

IL4_Outgoing Tumor

JAM_Incoming iCAF

JAM_Outgoing Tumor

NPR2_Incoming iCAF

NPR2_Outgoing Tumor

VEGF_Incoming iCAF

VEGF_Outgoing Tumor

Type

Type
Tumor
iCAF

0.2

0.4

0.6

0.8

1

Shared Pathways (Incoming Tumor vs Outgoing iCAF)

XX XY X0

BMP_Incoming Tumor

BMP_Outgoing iCAF

CD40_Incoming Tumor

CD40_Outgoing iCAF

CNTN_Incoming Tumor

CNTN_Outgoing iCAF

Cholesterol_Incoming Tumor

Cholesterol_Outgoing iCAF

IFN−II_Incoming Tumor

IFN−II_Outgoing iCAF

IL1_Incoming Tumor

IL1_Outgoing iCAF

IL4_Incoming Tumor

IL4_Outgoing iCAF

NPR2_Incoming Tumor

NPR2_Outgoing iCAF

Type

Type
Tumor
iCAF

0.2

0.4

0.6

0.8

1

A

B

Figure 36. Shared signaling pathways mediating reciprocal communication between tumor cells

and iCAFs across sex chromosome dosage groups. (A) Heatmap of pathways identified as both

outgoing from tumor cells and incoming to iCAFs in each group (XØ, XX, XY), representing potential

tumor-to-stroma signaling. (B) Heatmap of pathways identified as both outgoing from iCAFs and

incoming to tumor cells, indicating potential stroma-to-tumor signaling.
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particularly, points to an immune-modulatory role that may be influenced by sex 

chromosome dosage.  BMP and CD40 appeared with notable intensity in incoming tumor 

and outgoing iCAF signaling, especially within XY and XØ groups, suggesting a potential 

enhancement in immune-related feedback mechanisms, fibroblast activation states 

and the regulation of cell proliferation, differentiation, and apoptosis. NPR2 was also 

present in both directions and showed differences between XX and XØ/XY groups, the 

lack of receptor and ligand in the XX group made the score be NA. This could indicate that 

chromosomal dosage could affect pathways involved in matrix remodeling or cellular 

adhesion, with potential implications for tumor progression and microenvironment 

interactions. 

 

In summary, this analysis reinforced the critical roles of IL4, IL1, and CD40 as central 

mediators in tumor-iCAF communication, with distinct activity patterns linked to 

chromosomal dosage. The observed variations suggest that sex chromosome dosage 

may significantly influence not only the strength but also the directionality of signaling 

pathways. This provides insights into potential therapeutic targets, as disrupting these 

key pathways could impact feedback-rich communication networks and potentially alter 

tumor behavior and treatment responses. 
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5. Discussion 

 

This study presents a comprehensive analysis of sex chromosome dosage differences in 

HNSCC, integrating bulk and single-cell transcriptomic data to investigate their impact 

on tumor biology and the TME. 

 

5.1 LoY and EDY Are Highly Prevalent in HNSCC and Are More Frequent in HPV-

Negative Tumors 

 
I first identified loss of the Y chromosome (LoY) and extreme downregulation of Y 

chromosome genes (EDY) in bulk RNA-seq data, revealing that these phenomena are 

highly prevalent among male HNSCC patients, as it was previously described in 

literature50,145. Across multiple cancer types, LoY has been widely documented as a 

frequent somatic event, particularly in hematological malignancies, bladder cancer, and 

renal cancer, where it has been implicated in tumor progression and immune 

evasion146,147. However, my analysis suggests that HNSCC is among the tumor types 

where LoY and EDY occur with the highest frequency, indicating a strong selection 

pressure for the loss or silencing of Y chromosome genes in these tumors. Additionally, 

I found that in the majority of cases where LoY was present, EDY was also detected, 

indicating that extreme downregulation of Y chromosome genes can often be traced to 

the physical loss of the chromosome. However, a subset of tumors exhibited EDY in the 

absence of detectable LoY, suggesting the involvement of additional regulatory 

mechanisms such as epigenetic modifications or transcriptional repression. For 

instance, transcriptional repression via dysregulated transcription factors or noncoding 

RNAs may contribute to EDY145. These cases highlight the need for further investigation 

into the non-genetic factors contributing to Y chromosome gene silencing and their 

potential implications for tumor progression. 
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A key observation in my study is that LoY is significantly more prevalent in HPV-negative 

tumors compared to HPV-positive tumors, aligning with the distinct molecular and 

immune landscapes of these subtypes50,148. HPV-negative HNSCC, which is 

predominantly associated with tobacco and alcohol exposure, exhibited higher rates of 

LoY, suggesting that this phenomenon may be linked to environmental carcinogens or 

intrinsic genomic instability associated with HPV-negative disease26,149. The lower 

frequency of LoY in HPV-positive tumors may reflect differences in tumor evolution, 

immune selection pressures, or the presence of viral-driven oncogenic pathways that 

preserve Y chromosome gene expression150. 

 

Additionally, my analysis demonstrated that LoY and EDY are significantly more 

pronounced in tumor tissue compared to adjacent normal tissue, reinforcing the 

hypothesis that these events are cancer-driven rather than background somatic 

alterations70,145,151. While previous studies have reported age-related LoY in non-

malignant cells, my findings suggest that the selective pressure for Y chromosome loss 

is not only a byproduct of aging but a specific feature of tumorigenesis in HNSCC152,153. 

The increased occurrence in tumor cells, combined with the relatively lower frequency 

in normal tissues, highlights the potential functional role of Y chromosome genes in 

suppressing oncogenic processes. 

 

I examined the association between EDY and patient survival, finding that patients with 

lower Y chromosome expression had significantly worse overall survival (p = 0.029) when 

analyzing all HPV-positive and HPV-negative cases together. However, when stratified by 

HPV status, this difference was only significant in the combined cohort, as HPV-positive 

tumors predominantly fell into the high expressor group. Within the HPV-negative 

subgroup, EDY did not reach statistical significance, suggesting that while not the sole 

driver of tumor aggressiveness, it may contribute to molecular vulnerabilities that could 

be targeted for therapy. A previous study reported significantly shorter overall survival in 

HPV-negative HNSCC patients with LoY (p = 0.003)50. This contrasts with my findings, 

where EDY alone was not a significant prognostic factor in HPV-negative cases. This 

discrepancy may arise from differences in classification, as LoY reflects chromosomal 

loss, while EDY represents transcriptional downregulation. Though often linked, these 
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processes do not always overlap, suggesting distinct biological implications. Further 

investigation is needed to clarify the functional consequences of Y chromosome 

inactivation and its role in shaping patient outcomes. 

 

Overall, our findings establish LoY and EDY as recurrent and functionally relevant events 

in HNSCC, particularly in HPV-negative tumors, where their prevalence suggests a 

potential role in shaping tumor progression and therapeutic responses. While the exact 

mechanisms through which LoY and EDY drive tumor aggressiveness remain to be fully 

elucidated, the strong association with immune exclusion and tumor-intrinsic genomic 

instability highlights their potential as biomarkers for patient stratification. Moreover, the 

distinct differences in LoY and EDY frequency between HPV-positive and HPV-negative 

tumors suggest that these subtypes are driven by distinct oncogenic mechanisms, 

underscoring the need for treatment strategies tailored to their specific molecular 

landscapes. 

 

5.2 Sex Chromosome Dosage Influences Tumor Heterogeneity and Immune 

Evasion in HNSCC 

To better capture the role of sex chromosome dosage in tumor biology, I developed a 

classification framework that moves beyond conventional clinical sex categories. 

Instead of grouping patients solely by male or female status, I classified tumors into XY 

(tumors with retained Y chromosome expression), XØ (tumors exhibiting extreme Y 

chromosome gene downregulation), and XX (female patients). This approach provides a 

refined perspective on tumor heterogeneity, offering potential applications for prognosis 

and therapeutic decision-making. 

 

Beyond HNSCC, LoY has been implicated in immune evasion across multiple cancers. 

Tumors with LoY often exhibit reduced immune infiltration, impaired antigen 

presentation, and a more immunosuppressive microenvironment154,155. In bladder 

cancer, LoY promotes CD8+ T-cell exhaustion (elevated PD-1, TIM-3) and reduces IFN-γ 

signaling and dendritic cell activation, driven by the loss of KDM5D and UTY147. Similarly, 
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in lung adenocarcinoma (LUAD), LoY suppresses cancer/testis antigens (CTAs) and 

reduces HLA class I/II expression, leading to diminished CD4+/CD8+ T-cell infiltration156. 

In line with this, my analysis of bulk TCGA RNA-seq data indicated a reduced presence 

of several immune cell types across sex chromosome dosage groups. The CD8+ T cell 

compartment showed the highest proportions in XX patients while XØ males exhibited 

the lowest levels, suggesting that the loss of Y chromosome expression may be 

associated with reduced cytotoxic T cell infiltration. Similarly, key myeloid cell types, 

including monocytes and macrophages, were most abundant in XX individuals and 

lowest in X0 tumors, reinforcing a potential link between Y chromosome dosage and 

altered immune cell composition. These findings further support the idea that LoY/EDY 

may contribute to immune evasion mechanisms in HNSCC, potentially shaping the TME 

in a way that impacts immune surveillance and anti-tumor immunity. 

5.3 Single-Cell Integration Enhances Resolution of the HNSCC TME 

Given the complexity of bulk transcriptomic data and its inherent limitations in resolving 

cellular heterogeneity, I sought to extend this analysis to the single-cell level. A major 

limitation of bulk RNA-seq is that it averages gene expression across all cells in a tumor 

sample, potentially obscuring cell type-specific differences. To overcome this, I 

constructed a comprehensive HNSCC single-cell atlas, integrating multiple datasets 

into a unified framework that enables a higher-resolution examination of the TME. 

 

Compared to previous single-cell studies in HNSCC, which often relied on smaller 

sample sizes, manual cell type annotation, or lacked robust integration across datasets, 

my atlas represents a significant advancement. Prior approaches have typically been 

constrained by dataset heterogeneity, where technical batch effects and 

inconsistencies in annotation methods have limited cross-cohort comparability. 

Compared to previous efforts in integrating single-cell data from HNSCC samples, such 

as the work by Dai et al., my approach stands out for incorporating an integration strategy 

and refined annotation methodologies that build upon existing approaches. While Dai et 

al. integrated five datasets using the standard Seurat pipeline with manual annotation 

based on cluster markers, I expanded upon this by incorporating STACAS for semi-
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supervised integration, leveraging existing labels to guide the harmonization process157. 

In addition, I implemented automated annotation pipelines, including Ikarus and scGate, 

which improved reproducibility, minimized subjective biases, and ensured consistency 

across datasets106,107. Unlike studies that relied solely on manual clustering and marker-

based annotation, these refinements not only enhance the accuracy of cell type 

identification but also provide a scalable framework that can be applied to future multi-

cohort analyses. 

 

Several previously published HNSCC single-cell atlases have provided foundational 

insights into tumor heterogeneity and immune dynamics, but their scope has often been 

limited by dataset size, focus, or annotation methodology85. The pioneering atlas by 

Puram et al. profiled ~6,000 cells from 18 patients, primarily characterizing malignant 

and non-malignant cell types and exploring tumor progression at the single-cell level158. 

Subsequent studies expanded upon these efforts by incorporating larger datasets or 

focusing on specific disease subtypes, such as Kürten et al., who profiled tumor-

infiltrating leukocytes and non-immune cells to investigate inflammation and HPV-

associated differences, and Choi et al., who mapped the progression of HNSCC from 

normal tissue to metastases, highlighting shifts in T cell infiltration and regulatory T cell 

involvement32,136. The largest HNSCC single-cell dataset to date, presented by Bill et al., 

included 52 tumor samples from 51 patients and provided new insights into tumor-

associated macrophage polarization and its influence on the TME94. However, while 

these studies have deepened our understanding of HNSCC at the single-cell level, most 

have remained limited to single-cohort analyses, potentially restricting their ability to 

capture broader interpatient variability. 

 

By integrating multiple datasets into a single standardized framework, I build upon these 

previous efforts while addressing key limitations. My atlas harmonizes data from 79 

patients and 274,911 cells across independent cohorts, allowing for a more 

comprehensive and statistically robust characterization of the HNSCC TME. The 

integration strategy I implemented not only mitigates dataset-specific biases but also 

improves the resolution of cellular heterogeneity and enhances cross-cohort 

comparability. Additionally, the use of STACAS, Ikarus, and scGate ensures greater 
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reproducibility and scalability, refining tumor and stromal cell classification with 

increased precision. In doing so, I provide a more detailed and biologically meaningful 

representation of the TME, particularly in the context of sex chromosome dosage, and 

establish a high-resolution resource for investigating tumor-immune-stroma 

interactions in HNSCC. These improvements underscore the importance of large-scale 

data harmonization in single-cell oncology research and demonstrate the power of 

integrated approaches in revealing novel insights into tumor biology. 

5.4 HPV and Clinical Sex Shape the Immune and Stromal Landscape in 

HNSCC 

Before stratifying tumors by sex chromosome dosage, I first examined how HPV status 

and clinical sex influence the TME, revealing differences in immune and stromal 

composition. The analysis showed that HPV-positive tumors from female patients 

exhibited a higher stromal content than those from males, whereas the opposite trend 

was observed in HPV-negative tumors, where males had a more prominent stromal 

compartment. These findings suggest that sex-dependent factors shape the tumor 

stroma in an HPV-dependent manner. Prior studies across multiple cancer types have 

reported that females generally exhibit a higher stromal score compared to males, 

indicating a potential sex-linked regulation of fibroblast activity and extracellular matrix 

remodeling159. However, for HNSCC, the evidence regarding sex-specific differences in 

stromal composition remains inconclusive, with some studies reporting variability in 

fibroblast abundance but without a consistent pattern across cohorts160. Given that HPV-

positive tumors are typically characterized by a more inflammatory microenvironment, 

the increased stromal content observed in female HPV-positive tumors may reflect a 

heightened fibroblast response to immune activation161. Conversely, the higher stromal 

content in HPV-negative males could correspond to a more rigid, fibrotic tumor 

architecture, contributing to immune exclusion and treatment resistance162,163. While 

these findings support a role for sex and viral status in shaping the TME, further 

investigation is needed to determine whether these differences reflect inherent stromal 

biology or are secondary to other tumor-intrinsic and extrinsic factors. 
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Further analysis of the immune compartment revealed that HPV-positive tumors from 

females harbored a higher proportion of cytotoxic CD8+ T cells and displayed reduced T 

cell exhaustion compared to their male counterparts, consistent with previous reports 

indicating stronger immune activation in females164. In contrast, HPV-negative tumors 

from males exhibited a more immunosuppressive immune profile, with increased 

regulatory T cells and lower cytotoxic activity. These differences in immune composition 

suggest that both HPV-negative and HPV-positive males, with their higher levels of 

exhausted CD8+ T cells, may represent a subgroup that is particularly responsive to 

immune checkpoint blockade. The increased abundance of exhausted T cells in these 

tumors indicates a pre-existing, albeit dysfunctional, immune response, which could be 

effectively reinvigorated by anti-PD-1/PD-L1 therapies165,166. 

5.5 Single-Cell Resolution of Sex Chromosome Dosage in HNSCC 

To extend the analysis of sex chromosome dosage beyond bulk data, I utilized single-cell 

RNA sequencing to refine the assessment of Y chromosome downregulation at the 

cellular level and enable patient stratification to ensure comparability across datasets. 

To do so, I classified individual tumor cells as XØ if they exhibited no detectable 

expression of any Y chromosome genes. This approach allowed for the identification of 

XØ cells across the dataset, revealing that they were present in all male patients and in 

all cell types, confirming that Y chromosome gene silencing is a widespread 

phenomenon in HNSCC tumors. Importantly, while XØ cells were detected across 

various cell populations, tumor cells exhibited the highest proportion, suggesting that Y 

chromosome downregulation may be particularly enriched in malignant cells rather than 

being uniformly distributed across the TME. 

 

To extend this analysis to the patient level, I pseudobulked the tumor cell transcriptomes 

from each patient and calculated a GSVA score for Y chromosome gene expression. 

Based on these scores, I classified male patients into XØ (low expressors) and XY (high 

expressors), ensuring that comparisons were made within HPV-specific cohorts to avoid 

confounding effects. This patient-level stratification revealed a clear relationship 

between Y chromosome expression and the proportion of XØ tumor cells, with patients 
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exhibiting lower GSVA scores showing a higher fraction of XØ cells. Notably, HPV-

negative tumors exhibited significantly lower Y chromosome expression scores, further 

reinforcing the link between HPV status and Y chromosome gene regulation. 

 

These findings suggest that Y chromosome gene silencing in tumor cells is not a random 

event but may be under selective pressure, particularly in HPV-negative tumors where 

immune infiltration is lower. Prior studies in bladder and lung adenocarcinoma have 

demonstrated that loss of the Y chromosome in tumor cells is associated with immune 

evasion, including increased CD8+ T-cell exhaustion and reduced HLA class I/II antigen 

presentation69,156. In these cancers, tumors with LoY exhibit impaired antigen 

presentation and cytokine signaling, contributing to an immunosuppressive 

microenvironment. The enrichment of XØ cells in HPV-negative tumors, which are 

already characterized by lower immune infiltration and reduced adaptive immune 

activation, raises the possibility that Y chromosome silencing may contribute to immune 

evasion in HNSCC as well167–169. 

 

By refining the classification of HNSCC tumors using single-cell transcriptomics and 

GSVA-based scoring, this study provides a framework for understanding how sex 

chromosome dosage differences shape tumor behavior and the TME, with potential 

implications for treatment stratification. The integration of single-cell and bulk 

transcriptomic data offers a more detailed approach to classifying tumors, moving 

beyond traditional male-female distinctions and providing a biologically informed 

perspective on sex chromosome dosage variability in cancer. 

5.6 Single-Cell Analysis Reveals TME Differences Across HPV-negative 

HNSCC Sex Chromosome Dosage Groups 

Given that the XØ group appeared more relevant in HPV-negative tumors and that patient 

groups were better balanced in this subset, I focused the analysis of TME composition 

on HPV-negative patients. This revealed distinct differences across sex chromosome 

dosage groups in tumor, immune, and stromal compartments. XØ tumors exhibited a 

markedly higher tumor cell composition (47.5%) compared to XX (10.4%) and XY (10.2%) 



  5. Discussion 113 

tumors, suggesting a more tumor-dominant microenvironment with reduced stromal 

and immune cell infiltration. The increased proportion of tumor cells in XØ tumors may 

contribute to a more aggressive phenotype, potentially enhancing tumor growth, 

immune evasion, and resistance to therapy. The immune compartment also exhibited 

notable differences, with XX tumors showing the highest overall immune cell infiltration, 

particularly enriched in T cells. In contrast, XØ tumors displayed the lowest levels of 

immune infiltration, reinforcing the hypothesis that extreme Y chromosome 

downregulation may contribute to immune exclusion. This aligns with previous findings 

in bladder and lung adenocarcinoma, where tumors with LoY exhibited impaired antigen 

presentation and cytokine signaling, leading to increased CD8+ T-cell exhaustion and a 

more suppressive microenvironment66,69. XY tumors exhibited intermediate immune 

infiltration but retained a distinct profile, suggesting that chromosomal dosage 

influences both immune composition and the extent of immune engagement in the TME. 

The stromal compartment further reflected these differences, with fibroblasts being 

most abundant in XY tumors (22.9%), compared to 8.8% in XX and only 5.1% in XØ 

tumors. The depletion of fibroblasts in XØ tumors suggests a less structured stromal 

environment, which could impact extracellular matrix remodeling and immune cell 

recruitment. Together, these findings indicate that sex chromosome dosage shapes the 

TME, with XX tumors exhibiting a more immune-active landscape, XY tumors retaining 

stromal complexity, and XØ tumors presenting a tumor-dominant and immune-depleted 

phenotype. 

 

The lower immune infiltration in HPV-negative XØ and XY tumors, combined with the 

increased stromal remodeling in XY, suggests that these tumors may be more resistant 

to immunotherapy, necessitating alternative therapeutic strategies. Some studies show 

the relation between lower fibroblast infiltrate with a better prognosis170,171. One potential 

avenue for intervention could involve targeting fibroblast-mediated immune 

suppression, particularly in XY tumors where matrix remodeling is prominent. Previous 

studies have demonstrated that fibroblast-targeting therapies, such as TGF-β inhibitors, 

can help disrupt fibroblast-driven immune exclusion and enhance response to 

checkpoint blockade in immune-cold tumors, raising the possibility that such 

approaches could be beneficial in XY HNSCC172,173. 
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5.7 Fibroblast Heterogeneity and Tumor-Stroma Interactions Across Sex 

Chromosome Dosage Groups 

Given the key role of fibroblasts in mediating tumor-stroma interactions, I further 

examined the distribution of cancer-associated fibroblasts (CAFs) subtypes across sex 

chromosome dosage groups. CAFs in HNSCC are highly heterogeneous, with multiple 

subtypes playing distinct roles in tumor progression and immune modulation171. scRNA-

seq studies have helped classify CAFs based on their expression of specific markers 

such as α-SMA, fibroblast activation protein (FAP), and podoplanin (PDPN). Among 

these, matrix CAFs (mCAFs), inflammatory CAFs (iCAFs), and antigen-presenting CAFs 

(apCAFs) have been identified as key subtypes, with unique functional roles in shaping 

the TME174.  

 

In this study, I used the CAF subtype classification proposed by Cords et al. (2023), which 

provides a comprehensive classification of CAF subtypes across multiple cancers, 

including HNSCC139. The most notable changes were observed in mCAFs and iCAFs, 

which displayed distinct enrichment patterns depending on the chromosomal dosage 

group. XØ tumors showed an increased presence of mCAFs, suggesting a more rigid 

extracellular matrix that could contribute to immune exclusion by creating physical 

barriers to immune cell infiltration. Meanwhile, iCAFs were more abundant in XY tumors, 

but rather than driving a pro-inflammatory response, they likely modulate immune 

signaling within the TME. iCAFs are characterized by high expression of cytokines such 

as IL-6, CXCL12, and CXCL14, which play key roles in immune regulation171,175. Through 

the activation of pathways such as IL-6-JAK-STAT3 and KRAS signaling, iCAFs can shape 

the local immune environment, potentially facilitating immune suppression rather than 

direct immune activation176. Notably, certain subsets of iCAFs, particularly CKS2+ iCAFs, 

have been associated with glycolytic metabolic activity, supporting tumor survival by 

providing metabolic intermediates that help sustain tumor cell proliferation under 

hypoxic conditions174. Additionally, iCAFs exhibit strong interactions with tumor cells 

through ligand-receptor signaling, which may contribute to immune evasion. Their 

negative correlation with CD8+ T cells and NK cells, along with their positive association 

with exhausted CD8+ T cells, further suggests a role in promoting T-cell dysfunction27,177. 
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These findings indicate that while XY tumors retain a more fibroblast-enriched stroma, 

the functional properties of iCAFs may ultimately contribute to immune modulation 

rather than an outright pro-inflammatory response.  

 

Patient-specific analyses revealed distinct patterns of tumor-iCAF interactions across 

sex chromosome dosage groups. While iCAFs were present in most XY tumors, only a 

subset showed active interactions with tumor cells, indicating variability in fibroblast-

driven signaling within this group. In contrast, XØ tumors largely lacked direct tumor-

iCAF interactions, reinforcing a more immunosuppressive TME. XX tumors displayed the 

greatest variability, with some patients showing strong tumor-iCAF communication 

while others had minimal engagement, suggesting that iCAF activity in XX tumors may be 

more context-dependent. Given their involvement in resistance to ICIs, targeting specific 

iCAF subpopulations, such as CKS2+ iCAFs, may represent a potential therapeutic 

avenue, particularly in XY tumors where their enrichment is more pronounced. 

 

My analysis of iCAF function across chromosomal dosage groups revealed distinct roles 

in shaping the TME. In XY tumors, fibroblasts exhibited the highest enrichment in 

pathways associated with EMT, TGF-β signaling, and angiogenesis, suggesting a more 

tumor-supportive role through extracellular matrix remodeling, stromal crosstalk, and 

immune evasion178–180. In contrast, in XØ tumors fibroblasts displayed increased 

activation of inflammatory pathways and Wnt/β-catenin signaling, indicating a 

microenvironment shaped by chronic inflammation but potentially lacking effective anti-

tumor immunity181,182. These functional differences were further reflected in 

transcriptional profiles, as fibroblasts in XY tumors showed upregulation of genes 

involved in extracellular matrix regulation (VIM, FBLN1, and SFRP family members), while 

fibroblasts in XØ tumors exhibited higher expression of inflammatory mediators (JUNB, 

FOS, NFKBIA, and CXCL8), reinforcing their distinct activation states183–186. Interestingly, 

fibroblasts in XX tumors displayed a less specialized transcriptional profile, with limited 

pathway enrichment, suggesting that they may remain more plastic and adaptable in 

response to TME cues rather than adopting a fixed functional role. Given the established 

link between iCAFs and resistance to immune checkpoint blockade, I found that their 

greater abundance and signaling activity in XY tumors suggest they may serve as a barrier 
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to effective immunotherapy in this group187–189. Conversely, the inflammatory phenotype 

observed in fibroblasts in XØ tumors may contribute to a dysfunctional immune 

landscape, where inflammation fails to translate into effective anti-tumor immunity. 

These findings reinforce the need for tailored therapeutic strategies that specifically 

target fibroblast-mediated immune modulation, potentially suppressing fibroblast-

driven immune evasion in XY tumors while reprogramming dysfunctional inflammatory 

signaling in XØ tumors. 

 

A deeper analysis of cell-cell communication provided further insight into how tumor 

cells and iCAFs interact across sex chromosome dosage groups. By leveraging CellChat-

based pathway inference, I identified key ligand-receptor interactions that differentiate 

the TME composition of XX, XY, and XØ tumors. The communication landscape varied 

notably across groups, with XX tumors exhibiting the highest communication scores in 

tumor cells, both in outgoing and incoming signaling. This suggests that tumor cells in XX 

tumors may engage in more active signaling across multiple pathways. Interestingly, 

while XX tumors had the most active tumor cell signaling, XY tumors exhibited the highest 

scores for incoming and outgoing signaling specifically in iCAFs. This aligns with the 

observation that iCAFs are more abundant in XY tumors and suggests that these 

fibroblasts play a more active role in shaping the TME in this group. XY tumors exhibited 

stronger activation of KIT, SEMA4, and VTN, pathways that were also shared with XX 

tumors but showed greater specificity in XY. The activation of KIT, which is involved in cell 

proliferation and survival, suggests that tumor cells in XY tumors may engage in signaling 

that supports fibroblast expansion and maintenance190,191. SEMA4, a known modulator of 

immune and stromal interactions, may also play a role in dictating the fibroblast-

mediated immune landscape in XY tumors192,193. 

 

To further examine fibroblast-mediated interactions, I analyzed pathways shared 

between tumor cell signaling and iCAF responses. IL1 and IL4 emerged as central 

mediators across all groups, with IL1 being particularly strong in XØ tumors, suggesting 

a role in chronic inflammation and immune suppression, while IL4 was more prominent 

in XY tumors, shaping fibroblast-immune interactions194,195. BMP and CD40 signaling in 

both XY and XØ tumors indicate active fibroblast involvement in stromal remodeling and 
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immune modulation196. Overall, tumor-fibroblast communication varied by sex 

chromosome dosage, with XØ tumors primarily engaging in VEGF, IL1, and CD40 

signaling, potentially reinforcing immune exclusion, while XY tumors displayed 

enrichment for KIT, SEMA4, and VTN, suggesting a role in stromal remodeling. These 

differences underscore fibroblasts’ distinct contributions to the TME across 

chromosomal dosage groups, highlighting potential therapeutic targets to disrupt tumor-

fibroblast signaling and enhance immune responses in immune-cold tumors. 

 

The expression patterns of COX2 (PTGS2) and androgen receptor (AR) in fibroblasts 

provided additional mechanistic insights into how stromal interactions may be 

modulated by sex chromosome dosage. COX2 expression was highest in iCAFs and 

mCAFs within XY tumors, suggesting that inflammatory signaling is more pronounced in 

these tumors. Prior studies have shown that COX2 overexpression in the TME is 

associated with increased tumor-associated inflammation and immune suppression, 

with COX2 inhibitors being explored as a potential strategy to improve responses to 

immunotherapy144,197,198. Similarly, AR expression was enriched in fibroblasts in XY 

tumors, particularly in iCAFs and mCAFs, raising the possibility that androgen signaling 

may contribute to stromal remodeling and immune modulation in these tumors. Given 

that AR inhibitors have been explored in other cancers, including prostate and lung, their 

potential role in XY HNSCC warrants further investigation199–201. 

 

These findings underscore the critical role of fibroblasts in shaping the TME across sex 

chromosome dosage groups, revealing distinct stromal compositions and fibroblast-

mediated immune modulation. XY tumors exhibited the highest fibroblast abundance, 

particularly enriched in iCAFs, which contribute to immune suppression through 

cytokine signaling and extracellular matrix remodeling. In contrast, XØ tumors displayed 

a more rigid extracellular matrix with increased mCAF presence, yet lacked significant 

iCAF-tumor interactions, reinforcing a more immune-excluded phenotype. Meanwhile, 

XX tumors demonstrated a more variable fibroblast landscape, suggesting a context-

dependent stromal role. The differential enrichment of key signaling pathways and gene 

expression further highlights how fibroblast activity varies by chromosomal dosage, 

potentially influencing immune responses and tumor progression. Given the established 
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link between fibroblast-mediated immune suppression and resistance to 

immunotherapy, these findings open new avenues for therapeutic intervention. 

Fibroblast-targeting strategies, such as TGF-β inhibitors, could help overcome stromal 

barriers in XY tumors, while approaches aimed at reprogramming inflammatory 

fibroblasts in XØ tumors may restore immune competence. These insights provide a 

framework for integrating fibroblast-targeted strategies into personalized treatment 

approaches for HNSCC, particularly in the context of sex chromosome dosage-driven 

tumor heterogeneity. 
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6. Conclusion and Outlook 

This study provides a comprehensive, multi-layered analysis of sex chromosome dosage 

in HNSCC, revealing how Y chromosome loss or downregulation shapes tumor biology 

and modulates the tumor microenvironment. Through integration of bulk and single-cell 

transcriptomic data, I identified that EDY and LoY are frequent events in HNSCC, 

particularly in HPV-negative tumors. By translating these findings to the single-cell level, 

I refined patient classification into biologically meaningful XY, XØ, and XX categories, 

uncovering distinct immune, stromal, and transcriptional profiles that transcend 

traditional male–female stratifications. 

 

Sex chromosome dosage was shown to influence not only tumor cell-intrinsic features 

but also the broader architecture of the TME. XØ tumors displayed a tumor-dominant and 

immune-depleted phenotype with elevated mCAF presence, while XY tumors were 

enriched in iCAFs and showed a more fibroblast-driven, immunomodulatory 

environment. XX tumors exhibited greater immune infiltration and a more variable 

fibroblast profile, potentially reflecting a more adaptable stromal context. These 

patterns suggest that Y chromosome downregulation contributes to immune exclusion 

and fibroblast-mediated immune suppression, both of which may impact response to 

therapy, particularly immunotherapy. 

 

While these findings provide mechanistic insight and establish a novel classification 

framework, translational validation remains essential. Future efforts could involve 

spatial profiling approaches, such as multiplexed imagingor spatial transcriptomics, to 

assess the expression and localization of key stromal, immune, and tumor markers in 

HNSCC tissue sections. Such experiments would enable validation of transcriptionally 

inferred patterns, like differential fibroblast abundance, immune exclusion, and cytokine 

signaling, within their native spatial context. Moreover, spatial resolution would offer the 

opportunity to explore immune–fibroblast interactions and assess whether sex 

chromosome dosage shapes gradients of immune suppression within the TME. 
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Ultimately, this work lays the foundation for incorporating sex chromosome dosage into 

future HNSCC stratification efforts, with implications for biomarker development and 

therapeutic targeting. The prospect of tailoring fibroblast- or immune-modulatory 

therapies, such as TGF-β or COX2 inhibition, in a sex chromosome dosage aware way 

represents an exciting avenue for precision oncology. As spatial transcriptomic and 

proteomic technologies continue to evolve, they will be instrumental in validating and 

expanding these insights, helping bridge the gap between single-cell discovery and 

clinical application. 
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Supplementary Materials 

 

HNSCC LUAD

LSCC

A B

C

Supplementary Figure 1. Heatmap showing Y chromosome gene expression in male cell lines

from the Cancer Cell Line Encyclopedia (CCLE) for HNSCC (A), LUAD (B), and LSCC (C). The

heatmaps include 11 Y chromosome genes from the HNSCC gene set. Each column represents a

male cell line, with annotations for LoY and EDY. Expression values are scaled, and genes and

samples are clustered by similarity. A clear downregulation pattern is visible in EDY samples,

consistent with what we see in patient data.
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SIGN

Supplementary Figure 2. Y chromosome gene expression and GSVA-based clustering across HNSCC

patient bulk datasets. (A) Heatmap of scaled expression for 11 Y chromosome genes in the CPTAC

HNSC cohort. Only male samples are shown, annotated for LoY. (B) Heatmap showing the GSVA

enrichment score of the Y chromosome gene set in the HIPO cohort. Both male and female samples are

included, annotated by sex and EDY status. Some male samples cluster together with females, indicating

reduced Y chromosome activity in those cases.

A

B
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ESCA LUSC

STAD

Supplementary Figure 3. Expression of Y chromosome gene set across male patient samples

from three additional TCGA cancer types. Heatmaps show scaled expression of the 11 Y

chromosome genes in (A) Esophageal Carcinoma (ESCA), (B) Lung Squamous Cell Carcinoma (LSCC),

and (C) Stomach Adenocarcinoma (STAD). Samples are annotated for LoY. A similar transcriptional

downregulation pattern is observed in LoY-classified samples across all three cancer types,

consistent with findings in HNSCC.



  Supplementary Materials 148 

Supplementary Table 1. Mean xCell-derived enrichment scores for each cell type 

across sex chromosome dosage groups (X0, XX, and XY). To investigate the influence of 

sex chromosome dosage on cell composition, enrichment scores were computed using 

xCell and compared between groups using Kruskal–Wallis tests. Several immune cell 

types showed significant differences (p < 0.05), as described in Figure 11. This table 

provides a detailed summary of the mean scores per group. 

Cell_Type X0 XX XY 

Bcell 0.00180792048982 0.00111845236062 0.00198960499867 

CD4T 0.00130213008617 0.00123661094076 0.00110940286231 

CD8T 0.00533037156298 0.00506523075327 0.00385897000729 

Endothelial 0.01237560741828 0.00817258588318 0.01413446530205 

Epithelial 0.05727558644811 0.05836944749523 0.05313055922096 

Fibroblast 0.00403467294506 0.00243849624142 0.00396174460154 

IDO_CAF 0.01675392352409 0.01703127795680 0.01112690167099 

Macrophage 0.03772692240728 0.02808252630797 0.03883320514009 

Mast 0.00630571382764 0.00246436541151 0.00285374179025 

Monocyte 0.00245853873497 0.00118040021371 0.00087564273447 

Multi 0.00245243939455 0.00135731080218 0.00366643819432 

NK 3,62E+09 0.00037796679362 7,36E+09 

Neutrophils 0.00161288772601 0.00109782562344 0.00086878692315 

Pericyte 0.00377072004144 0.00367867901840 0.00303867650096 

PlasmaCell 0.00389026528807 0.00273358576945 0.00401886807404 

Tumor 0.60583950518437 0.62332323382870 0.61241897405784 

Unknown 8,39E+09 0.00018585396906 9,31E+09 
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apCAF 0.00092915478160 0.00032421463611 0.00065089915753 

dCAF 0.14753871751695 0.16355179918619 0.14947328330123 

hsp_tpCAF 0.00104134966799 0.00111993996276 0.00214445608988 

iCAF 0.00091318140449 0.00090527762374 0.00145881840844 

mCAF 0.06109814765637 0.04641448870211 0.06297348508529 

other 0.00253785825958 0.00161801330286 0.00344259077818 

panDC 0.00500297576270 0.00466713030394 0.00387840362183 

rCAF 9,01E+09 0.00032162717189 0.00065199581718 

rCAF+apCAF 0.00289187320592 0.00393845431483 0.00579612724865 

tpCAF 0.00811624409517 0.01255097727271 0.00568322393209 

vCAF 0.00678312899904 0.00667422815341 0.00779401814278 
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Supplementary Table 2. Summary of publicly available human HNSCC single-cell RNA-

seq datasets.This table provides an overview of HNSCC single-cell transcriptomic 

datasets deposited in the Gene Expression Omnibus (GEO), including accession 

numbers, publication year, first authors, data type, tissue types analyzed, number of 

samples, and number of cells. This table was extracted from: Conde-Lopez, C., 

Marripati, D., Elkabets, M., Hess, J., & Kurth, I. Unravelling the complexity of HNSCC 

using single-cell transcriptomics. Cancers 16, 3265 (2024). 

Accession 
Number 

Year Publication Data type Tissue types 
Sample 
Number 

Cell 
Number 

GSE234933 2023 

Bill R, Wirapati P, 
Messemaker M, Roh W et 

al. CXCL9:SPP1 
macrophage polarity 

identifies a network of 
cellular programs that 

control human 
cancers. Science 2023 

Aug 4;381(6657):515-524 

scRNAseq 
Primary tumor 

Local recurrence 
Distant metastasis 

52 87399 

GSE182227 2022 

Puram SV, Mints M, Pal A, 
Qi Z et al. Cellular states 
are coupled to genomic 

and viral heterogeneity in 
HPV-related 

oropharyngeal 
carcinoma. Nat 

Genet2023 Apr;55(4):640-
650 

scRNAseq 
Primary tumor 
Normal tissue 

24 70970 

GSE139324 2019 

Cillo AR, Kürten CHL, 
Tabib T, Qi Z et al. Immune 

Landscape of Viral- and 
Carcinogen-Driven Head 

and Neck 
Cancer. Immunity 2020 

Jan 14;52(1):183-199.e9. 

scRNAseq 
Peripheral/Intra-tumoral 

CD45+ populations 
63 131224 

GSE164690 2021 

Kürten CHL, Kulkarni A, 
Cillo AR, Santos PM et 

al. Investigating immune 
and non-immune cell 

interactions in head and 
neck tumors by single-cell 

RNA sequencing. Nat 
Commun 2021 Dec 

17;12(1):7338 

scRNAseq 
Primary tumor 

Pheripheral Blood 
Leucocytes 

51 134606 

GSE103322 2017 

Puram SV, Tirosh I, Parikh 
AS, Patel AP et al. Single-

Cell Transcriptomic 
Analysis of Primary and 

scRNAseq Primary tumor 18 5902 
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Metastatic Tumor 
Ecosystems in Head and 
Neck Cancer. Cell 2017 

Dec 14;171(7):1611-
1624.e24. 

GSE181919 2022 

Choi JH, Lee BS, Jang JY, 
Lee YS et al. Single-cell 

transcriptome profiling of 
the stepwise progression 

of head and neck 
cancer. Nat 

Commun 2023 Feb 
24;14(1):1055. 

scRNAseq 

Primary tumor 
Normal tissue 

Leukoplakia 
Lymph-node metastasis 

37 54239 

GSE173647 2022 --- scRNAseq Primary tumor 2 13903 

GSE195832 2022 

Obradovic A, Graves D, 
Korrer M, Wang Y et 

al. Immunostimulatory 
Cancer-Associated 

Fibroblast Subpopulations 
Can Predict 

Immunotherapy Response 
in Head and Neck 

Cancer. Clin Cancer 
Res 2022 May 

13;28(10):2094-2109. 

scRNAseq Primary tumor 8 22906 

GSE140042 2021 --- scRNAseq 
Primary tumor 

Lymph-node metastasis 
9 --- 

GSE200996 2022 

Luoma AM, Suo S, Wang 
Y, Gunasti L et al. Tissue-

resident memory and 
circulating T cells are early 
responders to pre-surgical 

cancer 
immunotherapy. Cell 2022 

Aug 4;185(16):2918-
2935.e29. 

scRNAseq + 
scTCR 

Peripheral/Intra-tumoral 
CD45+ populations 

204 74557 

GSE153559 2020 

Wieland A, Patel MR, 
Cardenas MA, Eberhardt 
CS et al. Defining HPV-

specific B cell responses 
in patients with head and 
neck cancer. Nature 2021 
Sep;597(7875):274-278. 

scRNAseq 

B cells 
Primary tumor 

Lymph-node metastasis 
Pheriphery 

7 8271 

GSE180268 2021 

Eberhardt CS, Kissick HT, 
Patel MR, Cardenas MA et 

al. Functional HPV-
specific PD-1(+) stem-like 

CD8 T cells in head and 
neck cancer. Nature 2021 
Sep;597(7875):279-284. 

scRNAseq 
TILs Primary 

tumor/Lymph-node 
metastasis 

39 --- 

GSE162025 2020 
Liu Y, He S, Wang XL, Peng 

W et al. Tumour 
heterogeneity and 

scRNAseq + 
scTCR 

Primary 
tumor/Pheripheral Blood 

Leucocytes 
40 176447 
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intercellular networks of 
nasopharyngeal 

carcinoma at single cell 
resolution. Nat 

Commun2021 Feb 
2;12(1):741 

GSE150321 2020 

Song L, Zhang S, Yu S, Ma 
F et al. Cellular 

heterogeneity landscape 
in laryngeal squamous 

cell carcinoma. Int J 
Cancer 2020 Nov 

15;147(10):2879-2890. 

scRNAseq Primary tumor 2 12985 

GSE213047 2022 

Lin M, Sade-Feldman M, 
Wirth L, Lawrence MS et 

al. Single-cell 
transcriptomic profiling 
for inferring tumor origin 

and mechanisms of 
therapeutic 

resistance. NPJ Precis 
Oncol 2022 Oct 

10;6(1):71. 

scRNAseq 
Primary tumor/Normal 

tissue/Lymph-node 
metastasis 

3 11470 

GSE172577 2021 

Peng Y, Xiao L, Rong H, Ou 
Z et al. Single-cell profiling 

of tumor-infiltrating 
TCF1/TCF7(+) T cells 

reveals a T lymphocyte 
subset associated with 

tertiary lymphoid 
structures/organs and a 

superior prognosis in oral 
cancer. Oral Oncol2021 

Aug;119:105348. 

scRNAseq Primary tumor 6 --- 
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Supplementary Tables 3–7. Cell type composition in HNSCC tumors by sex, 

stratified by HPV status. These tables provide a detailed overview of cell type 

proportions across female and male patients, separately for HPV-positive and HPV-

negative tumors: (3) Proportions of major cell types across sex groups by HPV status. (4) 

Proportions of major immune cell types across sex groups by HPV status. (5) Proportions 

of CD8⁺ T cell subtypes across sex groups by HPV status. (6) Proportions of CD4⁺ T cell 

subtypes across sex groups by HPV status. (7) Proportions of DC subtypes across sex 

groups by HPV status.These tables were adapted from: Conde Lopez, C., Marripati, D., 

Besso, M. J., Roscher, M., Han, R., Hadiwikarta, W. W., Elkabets, M., Hess, J., & Kurth, I. 

A unified single-cell atlas of HNSCC: uncovering HPV and sex variability in the tumor 

microenvironment. Submitted to Communications Medicine (2025). 

3. 

Percentage All Cell Types 

 HPV - HPV + 

 Female Male Female Male 
Bcell 4.4% 3.6% 7.7% 10.20% 
CD4T 23.9% 18.7% 22.5% 20.00% 
CD8T 21.7% 17.2% 9.5% 16.30% 
Endothelial 8.9% 6.8% 17.0% 4.90% 
Epithelial 1.6% 2.0% 1.6% 2.00% 
Fibroblast 6.7% 10.9% 18.3% 5.50% 

Macrophage 4.2% 5.9% 1.3% 2.90% 
Mast 0.5% 0.9% 1.7% 0.40% 
Monocyte 7.8% 4.2% 0.8% 0.80% 
Multi 1.2% 0.9% 1.4% 0.90% 
NK 5.5% 3.1% 1.0% 2.70% 

Neutrophils 1.6% 2.2% 0.0% 0.00% 
PlasmaCell 0.9% 3.0% 3.5% 4.60% 
Tumor 8.4% 16.9% 11.2% 26.10% 
panDC 2.9% 3.7% 2.7% 2.90% 
     
 
4. 

Percentage Immune Cell Types 

 HPV - HPV + 

 Female Male Female Male 
Bcell 6.0% 6.0% 16.3% 18.2% 
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CD4T 33.0% 31.4% 47.7% 35.6% 
CD8T 29.9% 28.8% 20.1% 29.0% 
Macrophage 5.9% 9.9% 2.8% 5.2% 
Mast 0.7% 1.5% 3.7% 0.7% 
Monocyte 10.7% 7.1% 1.6% 1.4% 
NK 7.5% 5.2% 2.1% 4.8% 
Neutrophils 2.3% 3.8% 0.0% 0.1% 
panDC 4.0% 6.3% 5.7% 5.1% 
 
5. 

Percentage CD8 Cell Types 

 HPV - HPV + 

 Female Male Female Male 
CD8.CM 23.0% 14.8% 37.1% 20.3% 
CD8.EM 29.6% 35.4% 28.5% 40.2% 
CD8.MAIT 0.5% 0.4% 0.0% 0.4% 
CD8.NaiveLike 0.8% 1.0% 1.3% 2.2% 
CD8.TEMRA 1.2% 1.3% 0.3% 0.4% 
CD8.TEX 43.3% 45.5% 26.6% 33.6% 
CD8.TPEX 1.6% 1.6% 6.2% 3.0% 
 
6. 

Percentage CD4 Cell Types 
 HPV - HPV +  

 Female Male Female Male 
CD4.CTL_EOMES 1.2% 2.7% 12.8% 2.9% 
CD4.CTL_Exh 8.0% 6.0% 1.2% 3.5% 
CD4.CTL_GNLY 1.5% 2.0% 12.5% 2.1% 
CD4.NaiveLike 29.5% 33.8% 46.3% 47.9% 
CD4.Tfh 12.4% 9.3% 11.2% 11.5% 
CD4.Th17 2.0% 3.9% 2.8% 3.2% 
CD4.Treg 45.5% 42.2% 13.1% 28.9% 
 
7. 

Percentage DC Cell Types 

 HPV - HPV + 

 Female Male Female Male 
AS-DC 2.3% 5.0% 1.0% 1.5% 
DC3 23.1% 20.5% 29.5% 18.9% 
MonoDC 1.7% 0.9% 1.0% 2.4% 
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cDC1 9.2% 8.4% 17.1% 12.1% 
cDC2_CD1A 5.4% 5.7% 6.7% 10.1% 
cDC2_CLEC10A 27.4% 34.6% 24.8% 28.1% 
pDC 30.9% 25.0% 20.0% 27.0% 
 

 

Supplementary Table 8. Overview of CD8⁺, CD4⁺, and dendritic cell subtypes. This 

table summarizes the major subtypes of CD8⁺ T cells, CD4⁺ T cells, and dendritic cells 

(DCs), providing definitions and outlining their functional roles in immune regulation. It 

serves as a reference framework for the classification and functional annotation of these 

immune subsets in HNSCC tumors, supporting cross-study comparisons and 

interpretability of single-cell data.This table was adapted from: Conde Lopez, C., 

Marripati, D., Besso, M. J., Roscher, M., Han, R., Hadiwikarta, W. W., Elkabets, M., Hess, 

J., & Kurth, I. A unified single-cell atlas of HNSCC: uncovering HPV and sex variability in 

the tumor microenvironment. Submitted to Communications Medicine (2025). 

Cell Type Description 
CD8.NaiveLike Antigen-naive T cells 
CD8.CM Central Memory T cells 
CD8.EM Effector Memory T cells 

CD8.TEMRA Effector Memory cells re-expressing CD45RA. Sometimes called Short Lived 
Effectors (SLEC), or Cytotoxic effectors 

CD8.TPEX Progenitor exhausted T cells 
CD8.TEX Exhausted T cells 

CD8.MAIT Mucosal-associated invariant T cells, innate-like T cells defined by their 
semi-invariant αβ T cell receptor 

CD4.NaiveLike T cells with naive-like phenotype 
CD4.Tfh T follicular helper cells 
CD4.Th17 Th17 helper cells 
CD4.Treg T regulatory cells 
CD4.CTL_EOMES Cytotoxic CD4 T cells expressing EOMES and GZMK 
CD4.CTL_GNLY Cytotoxic CD4 T cells expressing GNLY 
CD4.CTL_Exh Cytotoxic CD4 T cells with exhaustion phenotype 
AS-DC AXL+ SIGLEC6+ Dendritic Cells, also referred to as DC5 or Pre-DCs 

cDC1 Conventional Dendritic Cells type 1, specialized in antigen cross-
presentation and CD8+ T cell activation 

cDC2_CD1A Conventional Dendritic Cells type 2 subset expressing CD1A, involved in 
CD4+ T cell activation 

cDC2_CLEC10A Conventional Dendritic Cells type 2 subset expressing CLEC10A, 
functionally distinct from CD1A-expressing cDC2 
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DC3 Tissue-resident DCs, lacking a direct counterpart in circulation, potentially 
derived from cDC1 or cDC2/MoDC 

MonoDC Monocyte-derived Dendritic Cells, inflammation-induced, with similarities 
to cDC2 

pDC Plasmacytoid Dendritic Cells, key producers of type I IFNs, fostering 
antitumor immunity 

 

 

Supplementary Tables 9–12. Cell type composition in HNSCC tumors by sex 

chromosome dosage. These tables provide a detailed overview of cell type proportions 

across XX, XØ and XY patients (9) Proportions of major cell types across sex 

chromosome dosage groups. (10) Proportions of CD8⁺ T cell subtypes across groups. 

(11) Proportions of CD4⁺ T cell subtypes across groups. (12) Proportions of fibroblast 

subtypes across groups. 

9. 
Percentage All Cell Types  

XX XØ XY 
Bcell 4.6% 1.3% 5.1% 
CD4T 20.2% 10.0% 14.0% 
CD8T 22.8% 8.9% 14.8% 
Endothelial 8.8% 4.5% 9.2% 
Epithelial 2.5% 1.6% 0.8% 
Fibroblast 8.6% 5.1% 22.9% 
Macrophage 5.5% 7.6% 5.9% 
Mast 0.4% 0.6% 1.5% 
Monocyte 5.2% 3.0% 3.5% 
Multi 0.9% 0.7% 0.7% 
Neutrophils 2.1% 0.5% 0.3 
NK 3.1% 1.5% 1.8% 
panDC 3.9% 2.7% 4.6% 
PlasmaCell 1.3% 4.6% 4.7% 
Tumor 10.4% 47.5% 10.2% 
    
 
 
10. 

Percentage CD8 Cell Types    

 XX XØ XY 
CD8.CM 23.0% 18.2% 13.0% 
CD8.EM 29.6% 44.2% 31.0% 
CD8.MAIT 0.5% 0.5% 0.3% 
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CD8.NaiveLike 0.8% 0.4% 1.3% 
CD8.TEMRA 1.2% 2.3% 0.9% 
CD8.TEX 43.3% 32.5% 52.2% 
CD8.TPEX 1.6% 1.9% 1.4% 
 
 
 
11. 

Percentage CD4 Cell Types    

 XX XØ XY 
CD4.CTL_EOMES 1.2% 3.6% 2.2% 
CD4.CTL_Exh 8.0% 5.6% 6.2% 
CD4.CTL_GNLY 1.5% 2.0% 2.1% 
CD4.NaiveLike 29.5% 26.8% 38.1% 
CD4.Tfh 12.4% 6.3% 11.0% 
CD4.Th17 2.0% 3.4% 4.3% 
CD4.Treg 45.5% 52.2% 36.2% 
 
12. 

Percentage Fibroblast Cell Types 

 XX XØ XY 
apCAF 0.6% 0.7% 0.5% 
dCAF 0.0% 0.1% 0.3% 
hsp-tpCAF 0.0% 0.0% 0.0% 
iCAF 10.6% 1.6% 30.7% 
IDO-CAF 0.6% 1.1% 1.7% 
mCAF 67.7% 84.5% 47.5% 
other 0.1% 0.0% 0.1% 
Pericyte 6.3% 5.5% 10.9% 
rCAF 0.2% 0.1% 0.4% 
rCAF+apCAF 0.0% 0.0% 0.0% 
tpCAF 12.5% 6.1% 5.5% 
vCAF 1.0% 0.2% 0.8% 
 
 

Supplementary Table 13. Statistical comparison of BayesPrism-inferred cell type 

proportions across sex chromosome dosage groups in TCGA HNSCC tumors.This 

table reports the results of Kruskal–Wallis tests assessing differences in estimated cell 

type proportions across XX, XY, and XØ groups in bulk RNA-seq data deconvoluted with 
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BayesPrism. For each cell type, the Kruskal–Wallis p-value is provided along with a 

summary of pairwise significance. Several stromal and immune cell populations, 

including mCAFs, iCAFs, apCAFs, and macrophages, showed significant differences 

between dosage groups, supporting findings from the single-cell analysis (Figure 30.A–

B). 

Cell_Type KW_p_value Pairwise_significant_pairs 
Tumor 0,808446 Non-significant 
CD8T 0,9221 Non-significant 
CD4T 0,586958 Non-significant 
Macrophage 0,020996 Significant 
Multi 0,018843 Significant 
NK 0,068868 Non-significant 
Unknown 0,20964 Non-significant 
Monocyte 0,374392 Non-significant 
panDC 0,432993 Non-significant 
Neutrophils 0,646379 Non-significant 
Mast 0,164652 Non-significant 
Bcell 0,114387 Non-significant 
mCAF 0,000354 Significant 
tpCAF 0,24684 Non-significant 
Endothelial 0,00017 Significant 
PlasmaCell 0,501215 Non-significant 
Epithelial 0,459779 Non-significant 
IDO_CAF 0,730948 Non-significant 
iCAF 0,008151 Significant 
apCAF 0,000318 Significant 
Pericyte 0,607022 Non-significant 
rCAF+apCAF 0,003405 Significant 
hsp_tpCAF 0,13569 Non-significant 
vCAF 0,20199 Non-significant 
other 0,004678 Significant 
rCAF 0,0053 Significant 
Fibroblast 0,025889 Significant 
dCAF 0,432031 Non-significant 

 

 

 

 

 



   

 

 


