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Zusammenfassung: Quantenreflexion des leichten neutralen und
oberflichenempfindlichen 3He-Atoms ist eine neue Methode zur
Untersuchung des langreichweitigen attraktiven Atom-Oberflichen-
Potentials. In dieser Dissertationsschrift wird die detaillierte Anal-
yse der experimentellen Daten priisentiert, die mit dem *He-Spinecho-
Spektrometer bei streifender Streuung des Atomstrahls von einer stark
ungeordneten dielektrischen a-Quarzoberflaiche und von einer atomar
rauhen Au-(111)-Oberfliche aufgenommen wurden. Die Daten werden
im Rahmen der vor kurzem entwickelten Theorie von Friedrich et al. in-
terpretiert. Der Quantenreflexionskoeffizient wurde bei Energien zwis-
chen eV und neV gemessen und nimmt um ca. 5 Grossenordnungen zu.
Die Parameter des langreichweitigen attraktiven Casimir-van der Waals-
Potentials, die aus den Datenanpassungen extrahiert wurden, stimmen
hervorragend mit den Literaturwerten iiberein. Die Analyse des Re-
flexionskoeffizienten von der a-Quarzoberfliche im Grenzbereich hoher
Energien bestatigt das asymptotische Verhalten, das durch das nicht-
retardierte van der Waal-Potential bestimmt ist. Das Experiment am
*He-Au(111)-System stellt die erste quantitative Messung des Casimir-
effekts bei der Wechselwirkung eines Atoms mit einer Oberfliche dar.

Abstract: Quantum reflection of the light, neutral and surface sensi-
tive *He-atom is a novel method for investigating long-range attractive
atom-surface potentials. This thesis presents the detailed analysis of
experimental data obtained with the Atomic Beam Spin Echo (ABSE)
spectrometer by scattering *He from a strongly disordered a-quartz di-
electric surface and from an atomically rough gold surface under grazing
incidence. The data are interpreted in terms of the quantum reflection
theory recently developed by Friedrich et al.. The quantum reflection
coefficient is measured at energies from peV down to neV and increases
by approximately 5 orders of magnitude. The influence of surface dis-
order is modelled and properly taken into account. The parameters
of the long-range attractive Casimir-van der Waals potential extracted
from the fits to the corrected data show excellent agreement with the
values given in literature. The analysis of the reflection coefficient from
a-quartz forms the first experimental confirmation of the high-energy
asymptotic behavior determined by the non-retarded van der Waals
potential. The scattering experiment on the *He-Au(111) system rep-
resents the first quantitative measurement of the Casimir effect for the
interaction of a single atom with a single conductive surface.
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To the memory of my grandmother
Jevgenia Petrovna Silina.

We live in a system of approximations.
Ralph Waldo Emerson (1844)
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Chapter 1

Introduction

Many physical processes completely change their behavior at very low ener-
gies. Suprising quantum phenomena may occur when the wave nature of an
atom becomes dominant with respect to its classical, particle-like behavior.
The rapidly developing experimental techniques in atomic and solid state
physics now allow consequent investigation of these phenomena, which so far
were known only theoretically. One example of such a phenomenon is quan-
tum mechanical above-barrier reflection of slow atoms, with incident kinetic
energy exceeding the barrier height. Interestingly, the barrier does not need
to be repulsive. In the quantum regime, reflection also takes place from a
purely attractive potential, which falls off with distance r faster than r 2.

In literature, quantum reflection (QR) was firstly used to describe
the “non-sticking” of atoms to a surface upon ultracold collisions. Al-
ready 1936, the sticking coefficient was predicted to vanish at low in-
cident energy proportionally to the normal momentum of the atom
[Lennard-Jones and Devonshire, 1936]. This behavior of the sticking co-
efficient at very low energies is, however, the result of QR from the
purely attractive part of the interaction potential which occurs long be-
fore the atom reaches the repulsive wall. The theoretical description of
quantum mechanical above-barrier reflection was developed for the gen-
eral case by [Pokrovskii et al., 1958].  This theory has been extended
by [Friedrich et al., 2002] to very low scattering energies. For the sys-
tem atom-surface this extended theory is presented in chapter 2. The
term QR is also used in literature for the above-barrier reflection of slow
atoms from an evanescent-wave mirror [Segev et al., 1997, Coté et al., 1998,
Henkel et al., 1996]. The nature of this effect is identical to QR of an atom
from a surface. In both systems, coupling to the short-range repulsive part
of the interaction potential is absent. However, the shape of the barrier is
quite different in the two cases.
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The experiment on scattering of a 3He atomic beam from a microscop-
ically disordered a-quartz surface at grazing incidence was performed with
the 3He atomic beam spectrometer in our group. At that time the extented
QR-theory was not yet published. The measured specularly reflected inten-
sity approximately shows an exponential dependence of the cosine of the
beam incident angle with respect to the surface normal. We initially tried
to explain the data as semi-classical reflection from an adsorbing potential.
The latter is defined by a complex function, the imaginary part of which
appears because of the surface disorder. Since the de Broglie wavelength of
slow atoms is large and the wave function vanishes at the classical turning
point on the repulsive wall an increasingly large part of the wave function
does not progress to above the potential. One then expects that the reflection
probability for slow atoms increases. The simulation of the reflection coef-
ficient was performed using the program described in Sec. 4.3.1. However,
it was impossible to reproduce the experimental data quantitatively even at
large values of the imaginary part of the potential. The strong deviation
of the simulated values from the experimental data demonstrated that the
measured reflection could not be explained by semi-classical scattering from
a strongly adsorbing potential.

The next step was to simulate QR from a truncated potential in order to
suppress reflection from the repulsive part of the potential. Again, no quan-
titative agreement between theory and experiment was achieved. The reason
was the superposition of two non-separable quantum mechanical reflection
effects: QR from the attractive part and reflection from the truncated edge
of the potential (see Sec. 4.3.1). After the extended theory on QR was pub-
lished we tried to simulate the quantum reflection coefficient using the same
simulation program with a purely attractive potential. However, the singu-
larity of the potential function close to the surface again produced additional
quantum mechanical reflection making impossible to extract the experimen-
tally measured QR-effect. Finally, a new simulation program was developed
based on the suggestions given in [Coté et al., 1997] and which is discussed
in Sec. 2.2. The simulated values for the reflection coefficient are in excellent
agreement with the experimental data when taking into account the influ-
ence of surface disordering. Since the experiment is performed at energies
perpendicular to the surface in the range from peV down to neV QR occurs
at the distance 3-10nm from the surface. At such energies the asymptotic
behavior of the QR coefficient determined by the non-retarded van der Waals
potential, given by a simple form in chapter 2, was confirmed for the first
time [Druzhinina and DeKieviet, 2002].

Being very sensitive to the local value of the potential, the measurement
of the QR coefficient as a function of the energy of the incident atom is



a powerful instrument for the investigation of long-range attractive atom-
surface potentials. The very delicate Casimir effect, which is presented in
chapter 3, can thus be quantitatively studied. A corresponding measurement
using 3He scattering from Au(111) is analyzed in detail in chapter 4. The
possibility of measuring QR and therewith probing the attractive potential
very close to the surface allows to investigate surface roughness and disorder
by means of *He atomic beam scattering in future experiments. Due to the
properties of QR, an atomically rough or a specially prepared surface (see
Sec. 4.4) can eventually be used as an efficient mirror for ultra-cold atoms.
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Chapter 2

Theory of quantum reflection

This chapter presents the theoretical description of quantum reflection by
[Pokrovskii et al., 1958, Friedrich et al., 2002]. A numerical model is devel-
oped based on the suggestions of [Coté et al., 1997] in order to interpret
recent experiments (see chapter 4). The different energy criteria for the oc-
curence of quantum reflection given in literature are evaluated and compared.
Analytic expressions for the asymptotic behavior of the reflection coefficient
are derived. The validity range for the high-energy asymptote of quantum
reflection coefficient is calculated. Recent experimental results on quantum
reflection close to the high-energy range obtained with the 3He spectrome-
ter are excellently described by the extended theory of quantum reflection.
The universal form of the sticking coefficient is shown to appear only in the
low-energy quantum regime which is also detailed in this chapter.

2.1 From classical to quantum reflection

2.1.1 Classical reflection

Before we speak about reflection in the frame of quantum mechanics, it is
necessary to clarify, what "reflection” means in classical mechanics. In the
course of this work we concentrate on the system of an atom scattering from
the surface of a solid body. In this case, the basic understanding of the nature
of reflection is obtained by treating the problem in one dimension. Because
of averaging of the interaction parallel to the surface only the perpendicular
motion is important. The perpendicular interaction potential, V(r), as a
function of the distance between an atom and a surface, r, is schematically
illustrated in Fig. 2.1 (a).
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Figure 2.1: (a) Schematic representation of the interaction potential between
an atom with the initial kinetic energy E and a surface situated at r = 0.
rs denotes the classical turning point, V' (ry) = E, from which an impinging
atom is reflected (indicated by the arrows). (b) A potential barrier of height
Vp can e.g. be caused by a layer of adsorbed molecules on the surface. rg
denotes the classical turning point, rs, and rg3 are additional points at which
V(rs) = E.

Classical turning point An incident atom with primary kinetic energy F
is accelerated towards the surface from infinity due to the long-range attrac-
tive potential. At a few Angstrom before hitting the surface it slows down
through the short-range repulsive potential, resulting from the overlap of the
electrons of the incident atom and the surface atoms. At the distance r, the
potential energy V (rs) is equal to the total energy of the atom-surface sys-
tem, F, so that the kinetic energy Ey;, = F —V (r,) vanishes. The velocity of
the atom with mass m at the distance r; is given by v(rs) = \/2Eg,/m = 0.
Thus, at this distance the atom stops. Before the atom reaches the point
rs the total energy exceeds the potential energy (E > V(r)), and the atom
velocity v(r) = /2(E — V(r))/m is real. But at distances r < r; the po-
tential energy V(r) > E and the atom velocity v(r) = i\/2(V(r) — E)/m
is an imaginary value. From the classical point of view observables such as
velocity must be real to have a physical meaning. The motion of the atom
at the distances r < ry is therefore classically forbidden. This means that
the atom reaching the point r, stops there and turns back, i.e. it is reflected,
as depicted in Fig. 2.1 (a). The coordinate ry, at which reflection occurs, is
called classical turning point.

The same classical reflection can occur from a potential barrier, if the
primary kinetic energy F is lower than the barrier height Vz. Such barrier
can be created, for instance, by molecules adsorbed on a surface. As shown in
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Fig. 2.1 (b), there are three points ryy, 75 and ry3, at which E = V. However,
there is only one turning point r,;, from which the atom is reflected, because
the motion at r between ry; and r,, is classically forbidden. If the energy F
exceeds the barrier height Vg there is again only one turning point r,3 at the
repulsive wall. This case corresponds to the one illustrated in Fig. 2.1 (a). If
the repulsive wall were absent, the atom would not be reflected at all. This
means that there is no above-barrier reflection in the classical representation.

2.1.2 Semi-classical representation.

In analogy to the dual nature of light one describes particles with mass
m quantum mechanically as a wave with the de Broglie wavelength A\;p o
(mv)~!, where v is the velocity of the particle. The value of A\sp determines
how well the physical process, which involves the particle, can be described
classically. For light and fast moving particles (small \;p) the dynamics
only slightly differs from classical motion. This is true, for instance, for the
deviation of a beam of electrons in an electron-beam tube or for scattering of
thermal atoms from a surface. Such systems can be treated in the frame of
semi-classical approximation. In this approximation, a usually complicated
wave function can be substantially simplified.

Debye-Waller-Factor and Beeby correction When reaching the classi-
cal turning point at the repulsive wall of the interaction potential the incident
wave would be completely reflected, if the crystal lattice atoms were abso-
lutely rigid. There are, however, thermal lattice oscillations, which lead to a
reduction of the elastically reflected wave intensity by the well-known Debye-
Waller-Factor D = exp(—4k? (u?)). Here, (u%) denotes the mean square de-
viation of the lattice atom from its equilibrium position and &k, = kg cos 6; is
the wave number perpendicular to the surface of the wave impinging under
the angle 0; with respect to the surface normal. Since the oscillations of the
lattice atoms increase with surface temperature T, the dependence of the
Debye-Waller-Factor on the surface temperature is given by [Hellwege, 1981]

D(T,) =e ( 3k i P( 1 )) (2.1)
s) — €x — ; .
P J_TrleﬁB@Dl @DL
with 2 ep /T,
T, T, Pl dyy
P =1+4 . 2.2
(@DL) i <9DL> /0 ev —1 22)

Here, m, and kp denote the mass of a surface atom and the Boltzmann
constant, respectively. ©p stands for the Debye temperature perpendicu-
lar to the surface, which is a material constant with typical values between
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1/4 and 3/4 of the bulk Debye temperature. At 7Ts/Op, > 1 the func-
tion P(T,/©p,) ~ 4T,/Op, and D(T,) ~ exp(—12k1h*T,/(mkpO7 )).
At T,/Op, < 1 the function P(T,/Op ) takes approximately the value
1+ (27%/3)(Ts/Op,)* and the Debye-Waller-Factor will be about D(T) ~
exp(—3k1h?/(mskpOp, )) x exp(—=2m2kI W*T? /(mskp©F, ). Even at Ty = 0
the lattice atoms perform zero-temperature oscillations and the elastically
scattered intensity is reduced by the factor exp(—3k% h?/(mskpOp,)). For a
gold surface (Au(111)) the perpendicular Debye temperature is measured in
our group by using 3He-atom scattering to be (135 + 10) K [Stoferle, 2001].

Since the incident wave ”feels” the lattice oscillations at the distance of
some Angstrom before reaching the surface, the so-called Beeby correction
can be applied. This correction assumes, that the atom accelerating into the
potential well is reflected from the classical turning point, which lies at the
hard repulsive wall (see Fig. 2.2, Eq. (2.23)). The fact, that the repulsive
part of the potential is in fact soft, is not taken into account because of
its effective range being only some Angstréom. The wave number &, in the
expression (2.1) is corrected by Beeby to [Beeby, 1971]

kL:kOUCOSQHiﬂL%. (2.3)

Here, V5 and E denote the value of the potential depth and the incident
kinetic energy, respectively. kg is the initial wave number, ky = /2mE /h?.

In the experiment discussed in this work, the incident kinetic energy of
the wave FE is of order of 1 meV and the value of the potential depth 1}
is approximately equal to 10 meV. The perpendicular wave number £k, =~
ko+/Vo/E and the Debye-Waller-Factor are thus expected to be independent
of the incident angle 6;.

WKB-approximation In quantum mechanics, the wave function of an
atom is represented by a complex function ¥(r) = ¢’ %"/"  Atom-surface
scattering processes are generally gouverned by the stationary Schrodinger
equation

B2 d>0(r)
- — E)¥(r)=0. 2.4
T (V) - By w(r) =0 (24)
From this equation we find an expression for the phase of the wave function
S(r),
1 (dS(r)\> ik d®S(r)
_ — . —FE=0. 2.
2m ( dr ) 2m  dr? +Vir) 0 (2:5)

In equations (2.4) and (2.5) V(r) represents the local potential energy of an
atom at distance r from the surface, and F is the primary kinetic energy of
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the atom before interacting with the surface. The solution of Eq. (2.5) is

found in the form of a series
> B
s=3 s (%)

n=0

n

(2.6)

The coefficients S, are independent on /. By placing Eq. (2.6) into Eq. (2.5)
we obtain

1 (dS, h dS, > 4h (d®S, h d2S,
— |+ ——+ . - :
dr dr

2m 7 2m \ dr? i dr?

+ ) +V(r)=E.

(2.7)

There are two ways to state a validity condition of the semi-classical

Wentzel-Kramers-Brillouin (WKB) approximation, which are described and
compared below:

e The first way is to compare the coefficients of # in the terms of identical
order in /i in Eq. (2.7) [Davydov, 1976]. We obtain the set of equations

1 [(dS,\°
. — == =F 2.
o () v =k, (2.5)
dS, dS, d2S,
Bt 220 =0 2.9
dr dr + dr? ’ (2.9)
(2.10)

Eq. (2.8) is the classical Hamilton-Jacoby equation and its solution is
given by

So = i/rp(r)dr, (2.11)

ro

where p(r) = \/2m(E — V(r)) represents the momentum of the particle
at distance r from the surface. By substituting Eq. (2.11) into Eq. (2.9)
we obtain the expression for Si,

1
S = ~3 Inp(r) + const. (2.12)
Thus, to an accuracy of the first order of i, S(r) is given by
r 1
S(r)= :l:/ p(r)dr — 3 Elnp(r) + consty (2.13)
i

To
and the wave function of the particle for E > V(r) has the well-known
form of the wave function in the semi-classical approximation,

1

i 5 [ o] v o 5 [ ]
) T (24

\If(’l“) == Cl
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where C; and C5 are some constants. At the classical turning point
(E = V) the momentum p(r) vanishes and expression (2.14) becomes
unphysical. Obviously, the interval of coordinates, in which the particle
wave function is given by Eq. (2.14), must not contain classical turning
points.

The semi-classical approximation is defined through the fact that the
terms in equation (2.7) containing 7 in the first order, which are of
quantum mechanical nature, contribute much less than the zero-order
term of classical nature,

1 [dSy\? N
2m \ dr

Taking into account that dSy/dr = +p(r) and dSi/dr =
—(2p(r))~" dp(r)/dr we obtain the well-known WKB-approximation

Rl L 2.1
2mi dr  dr 2m  dr? (2.15)

‘271 dSy dS, ih  d*Sp

h
p(r)

dp(r)

1 2.16
| < (2.16)

or in terms of the potential gradient

dV (r)
dr

hAm

0 < 1. (2.17)

Thus, the semiclassical approximation is valid for fast particles (large
p(r)) moving in a slowly varying potential (small dV (r)/dr).

The second way to define the validity of the semiclassical approximation
is to solve equation (2.7) for its real and imaginary parts separately
(thereby the phase S is taken with an accuracy up to the first order of
h,S=5y+ %SI),

1 [(dSo\> R [[dS;\® d2S,
: S ) = E,(2.1
R 2m < dr) 2m << ar ) T +Vir) (2:18)
dS, dS, d*>S,
9 )
dr dr + dr?

= 0. (2.19)

S
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) and Eq. (2.18) tends to the

) if

w2 (dS\\? 28, 1 (dSy\?

—(==) + < |—(=2) .

2m dr dr? 2m \ dr

By placing into this inequality the expressions for dSy/dr and dS;/dr

we obtain an alternative condition for the validity of the WKB-
approximation,

Eq. (2.19) is similar to expression (

2.9
classical Hamilton-Jacoby equation (2.8

(2.20)

K2 d2p_1/2(7”)

2 a4 | €T (220)

This criterion for the semi-classical approximation is introduced in
[Friedrich, 1994].

Which one of these conditions of validity of the WKB-approximation is more
accurate, we will see in section 2.3. The left parts in the inequalities (2.16-
2.17) and (2.21) are named ”badlands functions”.

2.1.3 Badlands functions

The badlands function B(r) determines, how well the semi-classical theory
is applicable at some distance r from the surface. At very low primary
kinetic energy of the incident atom the WKB-approximation breaks down.
As detailed in the next section, the break down occurs in the vicinity of the
distance rq, at which the absolute values of the incident kinetic and local
potential energies are equal, £ = |V (ry)| (see Fig. 2.2). In this case quantum
reflection appears, which is a purely quantum mechanical effect and cannot
be explained by classical or semi-classical theory.

Some theoretical works ([Boheim and Brenig, 1982],
[Carraro and Cole, 1998]) have suggested that the occurence of quan-
tum reflection is correlated to the break-down of the WKB approximation.
These works calculate the critical value of the incident kinetic energy, below
which quantum reflection takes place. For this, the dependence of the
maximum of the badlands function on incident energy has to be analyzed.
If the maximum of the badlands function |Max[B(r)]| < 1 then the WKB
approximation is valid and no quantum reflection is expected. If however
|Maz[B(r)]| is comparable or even larger than unity, then the semi-classical
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v

2
7
v,

Figure 2.2: Schematic representation of a hard wall atom-surface interaction
potential described by Eq. (2.23). V5 = |V (a)| denotes the potential depth.
At the distance ry the absolute value of the potential energy is equal to the
initial kinetic energy of the incoming atom, |V (ry)| = E.

approximation breaks down and quantum reflection occurs in the vicinity of
the position of the maximum of the badlands function.

In this section we discuss the dependence on distance and energy of
the badlands functions |By(r)| = |hp~2(r) dp(r)/dr| (2.16) and |By(r)| =
\B2p=32(r) d?p~'/%(r)/dr? (2.21). We will show that the location of
|Max|[Bs(r)]| approximately coincides with the distance ry.

For simplicity we consider the homogeneous non-retarded attractive in-

teraction potential
h2 ﬁnf2
Vir)=——-—"— 2.22
(1) =5 2 (222)
depending on the length parameter (3, and scaling as the (—n)-th power of
the distance r. Moreover, this potential will be identified with the attractive

part of the total hard wall non-retarded interaction potential

V(r)= —ngf—i at r > a,

2.2
+0o0 at r < a. ( 3)

Wotal(r) - {
Here, a and Vj denote the position and absolute value of the potential min-
imum, respectively (see Fig. 2.2). This representation allows easy com-
parison of our calculations with literature. By normalizing the coordi-
nate r to a (r — r/a) we obtain the dimensionless attractive potential
—2ma®V (r)/h* = —g?/r"™ and local wave number k(r) = \/k2 + ¢2/r" with
the dimensionless parameter ¢ = /2ma?Vy/h? = 5,2”*2)/2, representing the
coupling constant.
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The location of the maximum of the badlands function, r,,,;, is obtained
from solving the equation

= 0. (2.24)

The calculated maxima of the badlands functions

_h dp(r) 1 dk(r) _ BI7n
Bi(r) = pZ(T). dr _k2(7"). dr— 2k3(r)rtl (2.25)

2 2, -1/2 2 2n—4 1)3n—2
p32(r) dr? 16r2n+2k5(r) 424 (r)

are located at the distances

2 _ 2 ﬁn 2
M — g |2 2.27
T'maz 0 |: n + 1 :| ( )
(2) 2 ran—2 l
Tmaxl,g = kO " [ﬁ F( " (228)
with F(n)y = 2 — 2(7512) + 4(212) — 22242 The lower indices 1 and 2 in

expression (2.28) denote the fact that for some potential power n two maxima
of By(r) appear. Plus and minus in F(n)s correspond to the first and the
second maximum of By(r), respectively. The upper indices (1) and (2) in
expressions (2.27) and (2.28) and in the following indicate the correspondence
to the first and second badlands function, respectively.

Taking into account, that ﬁg—%o‘?/” = 1y, we can calculate the positions
of the maxima as compared to the distance r,

_9 1x
1 _ n—e 0", 2.29
T'maz |:2(TL—|—1):| To, ( . )
P, = Fn)i-m. (2.30)

The same results are presented for rﬁézw in [Carraro and Cole, 1998] and for
rﬁgzm,z in [Friedrich et al., 2002]. The maximal values of B;(r) and Bs(r),

Maz[B;(r)] = By (rﬁézw) and Maz o[By(r)] = B2(r£33,$1,2), are given by

n+1) (n - 2)(%—1
(27n)2

2 n ( ) %
Maz[Bu(r)] = (ko) >[2( 1) } . (231)

Mazi[Bo(r)] = (kofh)-C-H Mz " <4Ff?n)i —n(n—|—1)>(2.32)
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n 3 4 5 6 7
F(n), 0.717 1 1.199 1.349 1.464
F(n)_ -0.017 0 0.015 0.026 0.036
rone/To 0.50 0.67 0.76 0.81 0.85
Tk /7o 0.895 1 1.037 1.051 1.056
T /T - - 0.431 0.546 0.621
1By (riae)| | 0.891koBs| 5 | 1.120kofBu| 2 | 1.18|koBs| % | 1.36|koBs| 3 | 1.54|kof37| 7
1Bo(r$2e)| | 0.41|koB5]73 | 0.62|koBa|~" | 0.91|koB5|~% | 1.26|kofs|~5 | 1.68|koS:|~ 7
By (rioss)| - - 0.02|kofs| % | 0.04]kofs|+ | 0.07|kofBr]| %

Table 2.1: The constants F'(n)., the positions of the maxima of the badlands
functions compared to ry and the absolute values of the maxima of the B-
functions for different potential power n.

with F1(n)L = F(n)y + 1.

The location and absolute values of the maxima of the badlands functions
and also the constants F'(n)y are given in Table 2.1 for different potential
power n. The maximal absolute values of both B-functions, listed in Ta-
ble 2.1, do not differ significantly. However, the positions of the maxima are
very different. The first maximum of Bs(r) lies near ry, whereas the maxi-
mum of Bj(r) is situated at a distance much closer to the surface. For very
small incident energies, when rg lies very far from the surface, this difference
becomes very important. From two maxima of By(r) we take into account
only the first, because its value is much larger than the value of the second
(see Table 2.1). Since all theoretical works agree that the incident wave is
reflected from the vicinity of ry, we conclude that Bs(r) and not By (r) is the
badlands function, which determines the WKB-approximation break-down
more accurately.

According to [Boheim and Brenig, 1982, Carraro and Cole, 1998], the
critical values for the dimensionless product k¢, and for the incident en-
ergy E = h*k2/(2m) are obtained from the condition that the absolute value
of the maximum of the badlands function reaches unity, i.e.

|Maz[By2(r)]| = 1. (2.33)
The calculated critical values for kq /3, are given by
1
2(n + 1)t (n — 2)(G-D7] =2
ko)D) { n , 2.34
( OB )crzt (2771)5 ( )
F(n)y 5n "
(ko)) = (g o) )
Vet o R (n), )72 \AF1(n),
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n 3 4 5 6 =
ko0, | 0702 | 1035 | 1318 | 1578 | 1824
koBu 2, | 0705 | 1.046 | 1.226 | 1.337 | L1412
Egz)t/% 0.49¢7° | 1.07¢™* | 1.74¢9733 | 2.49¢73 | 3.33¢g28
Egz)t/% 0.07¢g7°% | 0.38¢g7* | 0.86¢9733 | 1.41¢g73 | 2.07¢28

Table 2.2: The critical values for |ky3,| and the incident kinetic energy E with
respect to the potential depth Vj, obtained from the two different badlands
functions By (r) and By(r) for different potential power n.

for Max|[B;(r)] and Max,[By(r)], respectively. Correspondingly, for two
badlands functions the critical values for the incident kinetic energy E..; =
Wk /(2m) are represented by

s [4(n + 1)204) (n — 2)<n—2>] = 2.36)

B = V[’gm{ (27n)"

E(g) _ ng% F(n)+ ( on
(2F1(n),) 72 \AF1(n

o n(n + 1)> . (2.37)

Table 2.2 gives a list of all calculated critical values for different n, derived
from the criterion (2.33). The dependence of Eéigt/Vo on the parameter
g is given in [Béheim and Brenig, 1982]. In this work it was proposed that
quantum reflection can appear only at energies smaller or equal to this critical
value. Since the g-parameter in real atom-surface systems is of the order of
10, the critical energy is at highest 107¢ of the potential depth value Vj (for
the non-retarded potential, n = 3). This is a rather coarse estimate, because
the WKB-approximation already breaks down at much higher energies than
this critical value.

In Table 2.2 the corresponding ”critical” values for the dimensionless
product |kof,| are presented. We see, that these values are of the order
of unity. In the following we show, that quantum reflection appears at
|koBn| > 1, too. This proves that the criterion (2.33) represents only a
very rough estimate. In fact, the experimental data presented below confirm
the appearance of quantum reflection at energies much higher than 10-%Vj.

By taking into account the retardation of the potential at large distances
r> |
h2 ﬁn72
n

V= o iy

(2.38)
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the badlands functions have more complicated forms

B2 —n(r +1)]
B = L 2.39
1(r) 263 () (r + )2 (239)
58" nr+(n—1)1)>
_ 16k6 (r)r2n (r41)4
By(r) = BQ_Q[75(2z+1)(r2+)2(n2—1)rl+n(n—1)l2} (2.40)
4kA(r)yrntl(r41)3

with the local wave number k(r) = /k3 + % They are larger in

systems with a light incident atom or with a weaker potential retardation
[Friedrich et al., 2002], avoiding larger values of the quantum reflection coef-
ficient.

2.2 Simulation of quantum reflection

In this section we present a numerical model for simulating quantum reflec-
tion. This model is based on assumptions discussed in [C6té et al., 1997].
The idea is to compare the semi-classical wave function with the exact nu-
merical solution of the Schrodinger equation inside the potential, using a
matching procedure.

We have already discussed, that quantum reflection occurs in the vicinity
of the maximum of the badlands function (see 2.1.3). This maximum lies
approximately at the distance ry, where the absolute values of the incident
kinetic and the local potential energies are equal. The smaller the incident
energy, the broader the region, which yields non-negligible contributions to
quantum reflection.

We will consider the incidence of an atom from » = —oo onto the surface.
Since we calculate the above-barrier reflection from a purely attractive long-
range potential, it is correct to say, that there are three intervals of distances
r:

1) 7 < ry, where the WKB approximation is valid. From this interval no
quantum reflection appears.

2) ro < r < ry, where the WKB-approximation breaks down. From this
interval the incident wave is partially reflected.

3) r > ry, where the WKB approximation is valid again.

The interval boundaries r; and ry are losely defined by the validity condition
of the WKB-approximation.

In the first and third intervals the incident wave function can be given in
the usual semi-classical form

B(r) = —2 exp <% / rp(r')dr'). (2.41)

p(r
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Figure 2.3: The reflection coefficient |R|? plotted against the matching point
Tm. As the atom propagates from —oo through a badland the reflection
coefficient increases. When leaving the badland it oscillates around a well-
defined value (here, 0.019), approaching this value at very small r,,. The
higher the incident energy, the quicker the reflection approaches a constant
value since the badland region becomes narrower.

Because of the occurence of the reflection from the second interval we can
write the wave function in every interval of distances as

W) = % [exp (% / m p(r)dr) b Busen(ran) exp (-% / m p(r)drﬂ |
(2.42)

Here, r < r,, and r,, is a matching point, which we discuss below. It is
clear, that Ry kp(rm) = 0 at r,, < r; since no reflection occurs from the
first interval. At r,, > ro, the reflection has already occured from the second
interval and the third interval does not contribute to reflection at all. There-
fore, Rwgp(rm) = const. By shifting r,, through the second (reflecting)
interval we can see that Ry xp(r,) changes because of the changing of the
local badlands function. At r — —oo the wave function has the form (2.47).
The expression

R = Ry p(rm) exp[—in(rmy)] (2.43)

connects Ry i p(ry,) with the reflection amplitude R. The phase 7(r,,) has
the form

r——00

n(rm) =2 lim G_L /m p(r')dr'—k0r>. (2.44)
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In order to calculate Ry k5(r,) we make use of a matching procedure. We
assume that the wave function Eq. (2.42) coincides with the exact solution
of the Schrédinger equation Wy (r) with an accuracy of a constant, W(r) =
const Wi(r). In this case the matching condition

V(rp) _ Ui(rm)
\If(Tm) \1’1 (Tm)
is fulfilled in every matching point r,,. Here, ¥'(r) = d¥(r)/dr. By substi-

tuting the ratio W\ (r,,)/¥(r,,) = z and taking into account the expression
(2.42) for Ry p(ry,) we obtain

(2.45)

2 — p(rm) + 5
Ryip(rm) = —— ) (2.46)
4 ap(rm) & 56

By solving numerically the Schrodinger equation and injecting the solu-
tion into Eq. (2.46) we calculate the reflection coefficient |Ryygp|? from the
multitude of points inside the potential. Fig. 2.3 shows the dependence of
|Rwxp|? on the matching point r,,. The reflection coefficient grows from
zero outside the reflecting interval and approaches the well-defined constant
value at very small r,,. At this distance the phase 7(r,,) is a real number
and we take the constant value of |RWKB|2 at very small r,, as a final value
of the reflection coefficient | R|?.

2.3 Asymptotic behavior of quantum reflec-
tion

As we have seen in Sec. 2.1.1, reflection from a potential barrier is classically
forbidden in the case of the total energy F exceeding the potential height
Vg. This is also the case in the semi-classical picture, when the WKB-
approximation is valid. The atom is reflected only at the classical turning
point at the repulsive wall (see the Fig. 2.1 (b)).

In semi-classical as well as in quantum scattering theory the wave function
of an atom far from the surface is represented by a sum of an incoming and
an outgoing plane waves,

U(r) = A(e™" + Re or), (2.47)

Here, ky = 2mFE/h? is the incident wave number, A and R denote the wave
function amplitude and the reflectivity from the repulsive wall, respectively.
In the case of elastic scattering from a cold surface |R| ~ 1.
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In the WKB-approximation the quantum effect of above-barrier reflection
is absolutely absent. This results from the fact that reflection is treated using
perturbation theory, i.e. the phase of the wave function is expanded into a
series of terms of rising order in )‘ng' However, the effect of the above-barrier

comsty

reflection is of order e~comsti/Aap ° Here, const; > 0 and 0 < consty < 1.
Hence, the later effect is suppressed.

2.3.1 Above-barrier reflection

The first method for calculating above-barrier reflection was suggested by
[Pokrovskii et al., 1958]. For simplicity, the Schrédinger equation is written
in the dimensionless form (see App. A, Eq. (A.3))

()
d&?

Here, o« = A\yp/(27a) is the incident de Broglie wavelength \;p normalized

to 27 and some coordinate a, £ = r/a denotes the dimensionless coordinate

and k(&) = V1 -=V(§)/E = k(x)/ko represents the local wave number,

normalized to the incident wave number ky = 27 /A\y5. The coordinate a can
denote, for instance, the width of the potential barrier.

The incoming wave function in the dimensionless coordinate is given by

(see App. A, Eq. (A.8))

w(e) = ;( e (5 /g 5 k(é)d£> . (2.49)

We want to transform the Schrédinger equation (2.48) to a form, which is

convenient for using perturbation theory. After renaming fé k(&)dE o

and exp(% fé k(&)dE) «f y(&) the semi-classical wave function Eq. (2.49)

takes the form W (&) = y(§)/+/k(§). By substituting this expression into
Eq. (2.48) we obtain the desired equation for the function y(t),

d’y(t)

dt?
In this equation the term o?q(at) = o®h?p=3/2(&) d?p=1/%(€)/dE? = o?B(€)
represents the perturbation. B(&) is the badlands function By, obtained in
Sec. 2.1.2. In the semi-classical representation @ < 1 and in the WKB-

approximation |B(§)| < 1. In this case the term |o?q(at)| < 1.
In perturbation theory Eq. (2.50) is represented by

(ﬁo . 17) y(t) =1 y(t). (2.51)

+ K (€)W (€) = 0. (2.48)

+ (1 + ®q(at)) y(t) = 0. (2.50)
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Here, Hy = —d?/dt? is the unperturbed Hamiltonian with eigenvalue £ = 1
and V = o?q is the perturbation term. We want to calculate the tran-
sition amplitude from the state described by the incoming wave function
in Eq. (2.49) to the state described by the outgoing one. Since both
states have the same energy, we apply perturbation theory for the con-
tinuous spectrum [Landau and Lifschitz, 1985]. In our presentation of the
perturbed Schrédinger equation (2.50) through the function y(¢) the initial
state is described by y(t) = exp(it) and the final state by y(t) = exp(—it).
The transition from the initial to the final state occurs through a mul-
titude of states, each of which is described by a function of the type
y(t) = Cyexp(ikt) + Cyexp(—ikt). Here, k denotes the dimensionless wave
number, corresponding to the state with energy &2.

In the zero-order approximation the unperturbed equation for each state
from the continuous spectrum has to be solved,

Hoy () = k" (1), (2.52)

The solution of this equation is y,(co) (t) = Cy exp(ikt) + C5 exp(—ikt), which
corresponds to the expected function. For the initial state we have k = 1,
Ci =1, Cy =0 and for the final state one finds k = —1, C; =0 and C5 = 1.
The energies of both states F(®) = k2 = 1 are equal.

The amplitude of the transition from the state with £ = 1 to the state
with k& = —1 is given by the perturbation expression [Pokrovskii et al., 1958]

1 1 Vflk‘/kl Vi Vier ko Viea n
= — |V_ — | —==—( 2™ P dkedk
ki 2i[v1’1+27r/ 1— k2 (2n)? //1—k2 (1 —i2) e
(2.53)

Here, k; corresponds to the i-th state with energy k? and Vi, k; stands for
the matrix element of the perturbation V. All terms in equation (2.53) are
of the same order in . The matrix element Vi, k; 1s given as

Vi, = =G, Vo)) = —o’ / ek (at)dt. (2:54)

o0

The minus sign in this expression takes into account the minus sign in front
of V' in Eq. (2.51).

We introduce the new variable 7 = at = fé} k(&)d¢. Then, expres-
sion (2.54) takes the form

7

0o
Vi b = —a/ ex k)T o (1) dr. (2.55)
To give a non-negligible contribution of V4, x, in Eq. (2.53), the function ¢(7)
must have singularities in the complex plane. It can be calculated, that the
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roots and singularities of the function k%(¢) lead to such singularities of q.
However, it is necessary to note, that poles of k(&) of order > 2 do not result
in singularities of q.

In [Pokrovskii et al., 1958] the leading term of the transition amplitude
(2.53) is calculated as

i 2i €s
R=—ied™ = —jew Jeg HOE (2.56)

Here, 79 = f;o k(€)d€ and &, denote the root or the pole of the function &2 (€),
leading to the singularity of ¢. This transition amplitude is of course nothing
else than the reflection amplitude which appears if the initial kinetic energy
exceeds the potential barrier height.

There are two conditions for the validity of the expression (2.56):

e The first one is [Pokrovskii et al., 1958]

|ij,ki

< a/_+w lg(7)|dT = Ma, (2.57)

o0

where M is of order unity. However, if |k; — k;] < « then expres-
sion (2.55) for Vj, x, is not correct anymore and expression (2.56) is
not valid.

e Secondly, Eq. (2.56) is calculated for the assumption that 7y gives the
leading contribution to the effect. The contribution of the complex
conjugate of 7 must be negligible. This means that all singular poles
of ¢(7) must not be situated too close to each other. This can be
written as

AY |70 — 15| > a. (2.58)

Here, 75 denotes the complex conjugate of 7.

2.3.2 High-energy asymptotic behavior of reflection
from a homogeneous potential

It is very interesting that a barrier can be created not only by a repulsive
potential, but by an attractive one, too. A barrier is defined by its property
of preventing motion of a wave packet which leads to partial reflection. An
attractive long-range potential between a slow neutral atom with mass m
and a surface (or another atom) represents a barrier under certain conditions.
Since the incident kinetic energy of the atom is always positive, only above-
barrier reflection can appear from the atom-surface interaction potential.
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The wave function of the atom is partially reflected in the vicinity of the
virtual turning point, which is a root of the function k*(r).

In this section we calculate the asymptotic behavior of the above-barrier
reflectivity for a neutral atom scattering from a surface, using the theory
presented in the previous section. Moreover, we specify the range of energies
of the incident atom, in which the formula for the reflectivity is valid. The
reflection coefficient from a homogeneous potential (oc r~™) is calculated.
Since generally the interaction potential is non-homogeneous, the formula
can be used only in limited cases, as discussed in the next section.

The above-barrier quantum reflectivity is given as

R=—iexp ﬁ; / p(r)dr] | (2.59)

where p(r) = hk(r) denotes the local momentum of the atom, r, is a real
starting point of the atom motion lying far from the barrier and r; represents
a virtual turning point being a root of the function p(r), p(r;) = 0.

Firstly, we want to know where the virtual turning point lies inside the
interaction potential. The long-range homogeneous attractive potential of
the atom-surface (or atom-atom) interaction is given without the retardation

effect as c R
n n
V(r)= BT v (2.60)
Here, n denotes the potential power and is equal to 3 for atom-surface in-
teraction or to 6 for atom-atom interaction. The latter representation of the
potential in terms of the parameter (3, is very useful for the further calcula-
tions. 3, has the dimensionality of a length.
The local momentum of the atom is defined as p(r) = \/2m (E — V(r)).

Taking into account the expression (2.60) we obtain
h2 ﬁn72
= V2 1 S 2.61
p(r) \/ T omE 2mE ( )

The function p(r) in Eq. (2.61) has a root r; if 1+ (%?/(2mE))-(872/r*) =0
Then, this root, which is a virtual turning point, is given by

— 2 (2.62)

"t = 2mE

We recall the definition of the distance ry, at which the magnitudes of
the incident kinetic energy E and of the local potential energy |V (rg)| are
equal, E = |V (ry)| = |B?82%ry"/(2m)] (see the Fig. 2.2),

;2 L n—2\ =
ro = <2mE5;32> = (523 ) : (2.63)
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By comparing this expression with Eq. (2.62) we can rewrite r; in terms of
To, 1
ry = (—1)ET0. (264)

What can we learn from the obtained equation (2.64)? Firstly, it is clear that
not a single but n complex virtual turning points exist. Secondly, the module
of ry is equal to ro. In general, the proportionality of r, to ro(E) shows that
the reflection occurs at different distances from the surface depending on the
incident energy E. For vanishing F, ry increases and the wave is reflected
far from the surface. On the other hand, if the energy E is relatively high,
ro can move too close to the repulsive wall for above-barrier reflection to be
possible.

From n complex roots of p(r) we choose the one with the smallest positive
imaginary part. This turning point lies in the first quadrant of the complex
plane and can be written as r; = (cos 7 4 isin 7) - ro.

The integral in the exponent in the expression for the reflectivity (2.59)

b= [ [ \/m R

is calculated in App. B, Eq. (B.2),

I,, = hkgro(cos T. Iy, + isin T. Ly,). (2.66)
n n

Here, real I;,, and complex I, are defined by

1
1
I, = 14+ ——de, 2.
o= V! e s 200
! 1
I, = 1 s, 2.
2 /0 + (cos T 4 iy sin T)n & (2.68)

Expression (2.59) is then found to be

R = —iexp (2k0r0(cos T iy —sin L - Sy + mbn)) . (2.69)
n n

Since we are only interested in the real contribution, the final expression for
the asymptotic quantum reflectivity is given by the module of R,

|R| — 672korosin %QRIQ” déf efkgran, (270)

where B, = 2sin T - §R{f01 W1+ (cos T +i&sinT)~"dE,}. The values of the
parameter B, for different n are listed in Table 2.3.
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n 3 4 5 6 7
B, | 2.24050 | 1.69443 | 1.35149 | 1.12025 | 0.954997

Table 2.3: The coefficient B,, for the different potential power n.

Thus, the asymptotic behavior of the reflection coefficient, |R|?, which is
equal to the reflection probability, is

|R|? = e=2Pnkoro, (2.71)

72 el . . .
Since g = ﬁi "k, 2/n, the expression kg7 in the terms of the potential length
parameter (3, is given as korg = (koﬂn)l’%, resulting in

She

IR? = ¢ —2Bu (ko) (2.72)

The final form of the reflectivity |R| was firstly obtained in
[Friedrich et al., 2002].  There, the validity range for this formula is
given as

koBy > 1, (2.73)

which implies the fact, that the incident energy F is relatively high. More-
over, it allows to separate well this high-energy asymptotic behavior from a
different one, valid at very low energies, ko3, < 1. The latter approximation
will be discussed in Section 2.3.4.

The more accurate validity range than the one given by Eq. (2.73) we
can calculate, taking into consideration the accuracy condition for the above-
barrier reflection theory. This condition includes the approximation, that all
singularities of the badlands function must be well separated from each other.
It has the following mathematical form

1 [
: / p(r) > k. (2.74)

*
t

From this expression one derives (see Eq. (B.8) in App. B)

kOﬁn > (Sin% ) |I3n|)ﬁ déf Gn; (275)
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n 3 4 5 6 7
Gy, | 0.08891 | 0.34830 | 0.60531 | 0.84339 | 1.06659

Table 2.4: The validity range parameter (G, in dependence on the potential
power 7.

where I3, is equal to

1
1
I3, = 1 - dé&s. 2.76
’ /_1 \/ * (cos T + i&sin 7)n &2 (2.76)

We define the right hand side of the inequality (2.75) as a dimensionless
constant G,,, which is given in Table 2.4 for different n. From the expression
(2.75) it can be calculated that the asymptotic formula (2.72) is valid at large
incident energies

h? G, \° 1
FE 2 — “ —. .
> QmBgG” ( 2m ) Crni2 (2.77)

2.3.3 High-energy asymptotic behavior of reflection
from a non-homogeneous potential

In the previous section we have studied the high-energy behavior of the re-
flection coefficient Eq. (2.72) at quantum scattering from the homogeneous
attractive potential Eq. (2.60). The validity range of this asymptote is given
by Eq. (2.75) and depends on the shape and the magnitude of the potential.
In reality, the long-range attractive potential is non-homogeneous due to the
effect of retardation. This effect will be discussed in detail in Chapter 3.
While playing no significant role in classical scattering, retardation is very
important in quantum reflection. The retarded potential is well described by

Cn h2 ﬁnf2
Viry=—-———=—-—+—F7F—— 2.78
(r) rn=t(r +1) 2m = Hr +1) (2.78)
with the asymptotic tails

_Cami 2 BT at a < rg <1

V(r)= et j2m it 0 ’ (2.79)
Cn — _ 1B Bn
T Tom atr0>>l.
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Figure 2.4: Solid line: Attractive atom-surface interaction potential including
retardation for the *He-Au(111) system with [ = 93 A and Cy = 48eVA*,
Dashed line: The non-retarded van der Waals potential approximates the
interaction potential for r < [. Dotted line: The purely retarded Casimir
potential, which the interaction potential tends to at r > [. At the distance
[ the value of the interaction potential amounts to half of the values of the
asymptotic potential tails, which are equal at this distance.

The potential in Eq. (2.78) for the atom-atom or atom-surface interaction
is called Casimir-van der Waals potential. The transition length [ separates
these two homogeneous parts and is defined as the distance from the surface,
at which the values of both parts in Eq. (2.79) are equal, —C,_,/I""1 =

—C, /1" _H2K?2/(2m). One obtains

Co _ B
[l = =2 2.80
Onfl TTLL:% ( )

The magnitude of the retarded non-homogeneous potential in Eq. (2.78) at
the distance [ is only half of the value of the asymptotic tails in Eq. (2.79) at
this distance, as it is sketched in Fig. 2.4. The inequality a < r( in the first
expression of Eq. (2.79) qualitatively illustrates the boundary for . Close to
the potential minimum position a the influence of the short-range forces can
become significant. In this range the interaction potential becomes flatter
than r=2? and no quantum reflection is expected.
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The very important dimensionless parameter p is introduced by
[Friedrich et al., 2002]

(n—2)(n—3) n—3

def 2m Cn (ﬁnl) ? — (ﬁn1>2 (281)
; .

P KOZ h2 Onfl ﬁn
This parameter describes the interacting system in general because of its
dependence on all parameters of the potential and the mass of the incident
atom. We will see, that its value influences dramatically the reflection be-
havior not only in the high-energy limit, but also in the limit of very small
energies.

Unfortunately, an analytic form for the reflection coefficient in the case
of the potential Eq. (2.78) in analogy to Eq. (2.72) cannot be found. It is
only possible to make some approximations. From the vicinity of the point
ro the largest contribution to the reflected wave occurs. If ry lies much closer
to the surface than the transition distance [, a < ry < [, the local potential
in the vicinity of rg is very weakly retarded, V (r) &~ —Cj,_1/r"~!. Thus, the
high-energy reflection coefficient can be described by formula (2.72),

__2
|Rn—1|2 — 672Bn—1(k0ﬁn—1)1 n—1 ata < ro <& L. (2.82)

However, if g > [ the purely retarded tail V' (r) = —C,,/r™ dominates in the
vicinity of ry and the reflection coeffecient can be written as

Sho

|Rn|2 _ 672Bn(k0ﬁn)17 at ro > L. (283)

Now we take into account, that rq is a point of equal incident kinetic and local
potential energies, i.e. ro = B;(koB;)~%*. Here, i = (n — 1) or n depending
on which tail of Eq. (2.79) is dominant. The validity ranges of the equations
(2.82) and (2.83) are transformed to

ﬁn—l

a

a<rg<l — ( ) > kiofBu_y > pi-3, (2.84)

ro > [ — koﬁn < p#, (285)
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respectively. Since the high-energy asymptote, given by the analytic form of
Eq. (2.72) has its general validity range given by Ineq. (2.75), the inequality
(2.85) has the complete form

Gp < ko3 < po-2. (2.86)

In terms of the incident wave number (or the incident energy) the validity
ranges for |R,_|? and |R,|* are given by

IRy |? % > k0>>g : (2.87)
n—1
G pi-s
R,|*: L kK . 2.88
Bl 5, < R<T (2.88)

It is clear, that the energy ranges of both asymptotes have to be sepa-
rated by the same value of ko, i.e. p»~V/(»=3)/3 | has to be equal to
pV (=2 /3,. Using formula (2. 81) we obtain 3, | = 3, - p2/(»=2/("=3) and in
fact pn=1/(n=3) /3 | = pr/("=2) /3 The intersection point of both asymp-
totes at kg = p" /(=3 /3 | moves in the direction of lower energies by
decreasing the parameter p. Thus, at a very large value of p it is very difficult
if not impossible to observe the asymptote |R, 1|?. If the value of p is not
much larger than G" 2/ it is impossible to measure the asymptote |R, 2.
In this case the probablhty to observe |R, 1|? increases.

Since p is proportional to the square of the atom mass, the choice of the
incident atom plays a decisive role in the behavior of the reflection coefficient
far from threshold E — 0 (in the high-energy limit). We will see in Chapter 4,
that scattering of light *He atoms from a dielectric surface (weak retardation
effect) opens up the possibility for measuring the asymptote | R, 1|> (n = 4).

The value of the reflection coefficient in the intersection point of both
asymptotes |R,_1|> and |R,|* is equal to exp(—2B,p). It follows that as p
grows larger the reflection coefficient becomes smaller and therefore more
and more difficult to measure.

It is useful to plot the asymptotes Eq. (2.82) and Eq. (2.83) on a In(— In)-
scale, since the reflection coefficient takes the form of a straight line with
respect to In kg,

2

(2Ba 1By )+ (1= 32) Inky
n_1> (2.89)

=In
n—3
at %ln <ﬁﬁj) > Inky > In <pﬁn °

In(—In |R,[?) = In(2B, 88 ") + (1 — 2) Ink
<p;_;, (2.90)

at In <ﬁ—”) <L Inky < In
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Figure 2.5: Reflectivity |R| on the In(—In)-scale versus In k at (a) p = 0.59,
(b) p = 3.0 and (¢) p = 10.0. The dot-dashed and dashed straight lines
with slopes 1/3 and 1/2 represent the analytic reflectivities, the squares of
which are given by Eq. (2.82) and Eq. (2.83), respectively. The solid curve
shows the numerically simulated reflectivity from the Casimir-van der Waals
potential. Increasing the incident atom energy E corresponds to increasing
In ko and larger values of In(—In|R|) correspond to smaller values of |R|.
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The slopes of the straight lines, (1 — 2/i) with ¢ = n or (n — 1), depend
only on the power 7 of the potential. The intersection of these straight lines
with the ordinate axis are equal to the first terms in the equations (2.89) and
(2.90) and depend not only on the potential power, but also on the potential
strength. By measuring the reflection coefficient in the high-energy limit it is
possible to extract information about the attractive potential directly from
these analytical expressions. From the slope of the straight line on a In(— In)-
scale the potential power n is determined. By placing this n in the term of
the intersection with the ordinate axis ln(QBnﬁﬁZ/"), the potential length
parameter (3, (and therewith the potential strength C,,) can be obtained.
Fig. 2.5 depicts three cases for the reflectivity, |R|?, at different values of
the parameter p. On the In(—In)-scale, it is possible to observe the asymp-
totes |R,| and |R,—1| in the form of straight lines. The potential power n is
equal to 4, which is equivalent to scattering of an atom from a surface. The
dot-dashed and dashed lines with the slopes 1/3 and 1/2 in the figure repre-
sent the |R3| and | R4| asymptote, respectively. The solid curve shows the non-
analytical reflection coefficient from the non-homogeneous Casimir-van der
Waals potential V(r) = —(h?/(2m))-(83r=3/(r+1)), obtained using a numer-
ical simulation, which will be described in the next section. The (a), (b) and
(c) parts in the figure correspond to the values of p = /G4=0.59, 3 and 10, re-
spectively. One clearly sees that at small p = 0.59 the reflectivity approaches
the asymptote |R3| (Fig. 2.5 (a)) and the asymptote |R,| does not exist. At
the large value p = 10, the asymptote |Ry| is well observable (Fig. 2.5 (c))
and |Rs| is situated at much higher incident energies and is therefore omit-
ted here. At p = 3 the reflectivity approaches the |R3|-asymptote, but the
asymptote |R4| below the intersection point dominates. The picture shows
also that the value of the reflectivity differs strongly depending on the mag-
nitude of p. At the same incident energy, given by Inky = 0, In(—In|R]) is
approximately equal to 1.4, 2.0 and > 2.4 (i.e |[R| =~ 1.7 1072, 0.6 103 and
> 1.6 107°) at p = 0.59, 3 and 10, respectively. It is necessary to note, that
the larger value of the In(—In|R|) corresponds to the smaller value of |R)|.

2.3.4 Low-energy asymptote

For an atom, falling onto the surface of a solid it is possible to calculate
analytically the behavior of the reflection coefficient at very low incident
energies. The interaction potential between this atom and the surface is
given by a non-homogeneous long-range attractive potential (see Eq. (2.78)).
As we have seen in Section 2.2, the value of the reflectivity from the badland
is well defined at very small matching distance r,,, which is situated inside
the WKB-region. The wave function in this region at r < r,, is given by
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the semi-classical expression (2.42). By writing the reflectivity Ry xp(rm)
through the phase ¢,,, which the atom picks up when going through the
badland up to the distance r,,,

RWKB = exp(—i¢m), (291)

we obtain the amplitude-phase description of the expression (2.42)

V() = —2 COSG_L /r;p(r)dr—¢—m>. (2.92)

p(r) 2

At very small incident energy the wave function in the same WKB-region
can be represented as a linear combination of two independent solutions of
the Schrodinger equation at zero incident energy F =0, ¥y and Uy,

T(r) = Uy (r) + ikoWy (). (2.93)

At r — —oo this wave function has to take the form of an outgoing free wave
function e?*o". Thus, the boundary conditions for ¥, and ¥, at r — —oo are

Uy (r — —o0) o< cos(kor) o’ 1, (2.94)
Uy (r — —o0) o< sin(kor) X kor. (2.95)

The zero-energy wave functions inside the WKB-region satisfies the ex-

pression (2.92), with p(r) = po(r) denoting the local momentum at
zero incident energy, A = Dy; and ¢, = ¢o1. At kg — 0
the absolute value of the wave function in Eq. (2.93) is expanded
D D
U(r) = 0 [cos (m—@>+i—lk0c0s (m—ﬁ>]

X CoS (m— %) [1+i%kgcos <¢0;¢1>] _
z&k sin <¢0 — ¢1> sin <x - @>
Dy " 2 2
2" cos (:E - @> — tkobsin <x - @>
2 2

2" cos (x - %) cos(ikob) — sin <x — %) sin(ikob)
( o — 2ik0b>
= cos|lz———F],

(2.96)

2
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where z = =" [" po(r)dr and

def Dy . Po — P1
b = ESIH( 5 ) (2.97)

is a length parameter [Eltschka et al., 2000].

By comparing this expression with Eq. (2.92) the reflectivity in Eq. (2.91)
can be calculated. The phase ¢,, is given by ¢,, = ¢¢ — 2ikob and the
reflectivity is given by

RWKB = exp(—igbg — ngb) (298)
The reflection coefficient | Ry xp|? is equal to

|Rivxs|? = exp(—4kob) "5 1 — dkob. (2.99)

Fortunately, the amplitudes and phases of the zero-energy wave functions
in the non-homogeneous potential (2.78) with the retarded potential power
n = 4 (the atom-surface interaction) can be obtained exactly. In this case
the Schrodinger equation for the wave function in the attractive atom-surface
potential at zero incident energy

B3l
Ty ————y(r) =0 2.100
b0+ gy Yolr) (2:100)
can be rewritten in the form
"W (r) + clar +b)" " Wo(r) = 0 (2.101)

with n = 3, ¢ = (31, a = 1 and b = [. By transforming the coordinate r to
& =r/(r+1) and the wave function Wy (r) to w = Wy(r)/(r +1) this equation
takes the form of the Bessel equation [Polyanin and Zaitsev, 1996]

w"(€) + 7€ Pw(€) = 0. (2.102)

Here, v = cb=2 = [33/1. This equation has the well-known solution

w(€) = /€ |const; - Jﬁ(%f%) + consty - N_o_( 2\_/§2§2_Tn) (2.103)

n

with n = 3. J,(z) and N,(z) are the v-order Bessel and Neumann' functions
(the Bessel functions of the first and second kind), respectively. Going back

1 This function is usually called Neumann function N, (z) by physicists whereas in math-
ematical books it is denoted as Y, (2)
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to the coordinate r» and the wave function ¥,, we obtain two independent
zero-energy wave functions,

Wo,1(r) = /r(r +1)[Ao1J1(2) + BoiNi(2)], (2.104)

satisfying the boundary conditions Eq. (2.94) and Eq. (2.95). Here, z =
2y/B3/r + B3/l and the constants Ay, and By, are given by

Ay = _EN1(2P)a
Bo = ——J1(2p),
. (2.105)
A = w(pN{(2p) + §N1(2P)),
By = —m(pN|(2p) + %Nl(QP))-

The dimensionless parameter p is defined by Eq. (2.81). At the matching
point r,,, < (3 the large-argument asymptotes for the Bessel functions

[ 2 1 1
E COoS | 2 — 51/71' — Zﬂ- s
(2.106)
2 . 1 1
N,(2) = —sin|z—gum— o

can be applied. In this case the amplitudes and phases of the wave functions
Uy(r) and Wy(r) are calculated to [Friedrich et al., 2002]

<
&
2

Dy = Vhiy/ A2, + B3, (2.107)

3 B
b0, = 3T~ 4p + 2 arctan Azj.

By taking into account the expression (2.97) for the length paramater b we
obtain

(2.108)

J1(2p)N1(2p) — Ni(2p) J1(2p)

T (2p) + Nt (2p)
n (2.109) Here

Ji(2p) + N7 (2p)

b = pl-

we have simplified calculations using [Abramovitz and Stegun, 1984]

JNL(2) = No(2)To(2) = W{I(2), N(2)} = —. (2.110)

w4
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The Wronskian W{.J,(z), N, (z)} is defined as the determinant of the matrix
J,(z) Ny(z)
(50 M )
At p — oo, the sum JZ(2p) + Y(2p) — (7p)~" and the length parameter
b— Bs. At p — 0, we have JZ(2p) + Y2(2p) = (7p) 2 and b — 7[3s.
At very small r,,, the reflectivity |Ry x| = |R| (see Section 2.2) and the
experimentally observed reflection coefficient has the form

|R|2 _ e—4bko kog() 1 — 4kyb. (2111)

The validity range of this formula is approximatelly given by

kob < 1. (2.112)

On a In(—In)-scale the low-energy asymptote, Eq. (2.111), is written as
In(—In|R|?*) = In(4b) + In kg at Inky < —Inb. (2.113)

The function In(—1In|RJ?) of Inkg is a straight line with unity slope and
its intersection with the ordinate axis is In(4b). By measuring this asymp-
totic behavior of the reflection coefficient at very low incident energies only
parameter b can be obtained. Since b depends on the parameter p no infor-
mation about potential strengths C3 and C); can be extracted, as long as p
is unknown.

In the experiment by [Shimizu and Fujita, 2002], a set of surfaces was
studied. The surfaces of the same material (silicon) differed from each other
by different surface atom density. The strengths of the van der Waals po-
tential C5 and therefore the parameters p were different for these surfaces.
From the set of experiments by measuring of the reflection coefficient for
each surface the function b(p) can be obtained. The analysis of the results is
presented in Section 4.4.

2.4 Sticking process

In the 30-ties of the 20th century Lennard-Jones and Devonshire predicted,
that the interaction of a cold atom with a surface of a liquid or a solid differs
significantly from the classical system [Lennard-Jones and Devonshire, 1936].
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In classical mechanics the atom comes close to the surface and at a distance
of some A interacts with surface atoms through short-range forces. The
atom couples to the surface by exciting surface phonons (lattice oscillations).
The excitation propagates in the direction of the given momentum from the
impact region of the atom onto the surface further through the coupling
between the atoms in the lattice. If the incident energy of the impinging
atom is comparable to the energy transferred to the lattice the atom adsorbs
to the surface, because it has not enough kinetic energy to leave the field of
attraction.

The process of the adsorption of the atom is called sticking onto the
surface. In the classical consideration the probability to stick onto the surface
grows to the maximal value equal to unity as the incident kinetic energy

of the atom approaches zero, s E—O> 1. Some time after sticking onto the
i

surface the atom can desorb from the surface, obtaining the necessary energy
from the surface lattice oscillations. However, this desorption process is
inelastic with respect to the incidence of the atom onto the surface. From
the quantum-mechanical point of view the adsorption of a cold atom to a
surface has a completely different character. At low incident energy the
atom’s wave nature dominates over its classical nature of a particle. The
atom is described rather by a de Broglie wavelength A\, = h/(mwv), which
depends on the mass m and velocity v of the atom and has a pure quantum
mechanical character (the proportionality to the Planck’s constant h).

By lowering the energy of the incident wave a growing fraction is re-
flected from an attractive part of the potential. Consequently, the in-
tensity reaching the region of short range forces close to the surface di-
minishes. It has been realized already 70 years ago that reflection at
large distance from the surface would lead to the suppression of the stick-
ing process [Lennard-Jones and Devonshire, 1936]. Is was proposed that
the origin of the reflection is the break-down of the WKB-approximation
[Béheim and Brenig, 1982]. However, no detailed explanation of the reflec-
tion mechanism was given. It was in fact experimentally observed that the
sticking coefficient approaches zero when decreasing the incident energy of
the atom down to zero, s - 0 [Yu et al., 1993]. This effect could not

i —0
be explained in terms of classical adsorption. Therefore the phenomenon of
reflection at low incident energy was called quantum reflection.
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2.4.1 Vanishing of the wave function amplitude near
the surface

Many authors of theoretical works on quantum reflection supposed, that the
proportionality of the wave function amplitude near the surface to the inci-
dent wave number k;, |¥(r)| o< k;, is a necessary condition for the existence of
quantum reflection ([Chung and George, 1988|, [B6heim and Brenig, 1982],
[Doak and Chizmeshya, 2001]). This linear decrease of the wave function
amplitude at vanishing incident wave number leads to the "universal” stick-
ing behavior, s oc v/E;, which does not depend directly on the shape of the
attractive interaction potential. The real phenomenon, quantum reflection
from an attractive potential, however, occurs at incident energies, larger than
those required by the latter condition. We will show, that the energies for
the "universal” sticking behavior lie in the energy range of the low-energy
asymptote. At these incident energies only a small part of the intensity
reaches the surface through a ”badland”. The transmission coefficient in the
case of the low-energy limit is proportional to the incident energy, and the
transmitted wave function amplitude is, of course, a linear function of the
incident wave number k;.

Firstly it will be shown that the wave function amplitude is in fact pro-
portional to k; near the surface at very small incident atom energies E; o< k2.
These calculations are presented in detail in [Boheim and Brenig, 1982]. For
simplicity, a hard wall non-retarded potential, Eq. (2.23), is used (see
Fig. 2.2). By normalizing the coordinate r to the position of the poten-
tial minimum a, r — r/a, the dimensionless Schrédinger equation for the
incident wave can be written as

2

ko (1) + (% + k§> Wy, (r) =0, (2.114)

with the boundary condition Wy, (1) = 0. The dimensionless parameter
g = \/2ma?Vy/h? represents the coupling constant. The local wave num-

ber is equal to k = /k2 + ¢?/r® and correspondingly the local de Broglie
wavelength is represented by \gg = 27/k = 21 (k2 + ¢%/r3))""/2

At zero incident energy, E; = 0, the solution of the Schrodinger equation
for a general long range potential oc ="

2
T (r) + f—n%(r) =0 (2.115)
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with the boundary condition ¥y(1) = 0 is given by

2g 2—n Nﬁ(n?—gZ) 2g 2—n
) = ————J 1 2 .
n—2 Ji(75) 7 \n—2

=i
(2.116)
Here, N%z and J1%2 are the Neumann and Bessel functions of the (n—2)~!

\Ifo(r) = A\/?j N

1
n—2

order, respectively, and A is some constant. At the potential power n = 3
the zero-energy solution is

Uo(r) = AVF [Nl (%) _ %,ﬁ (%)] | (2.117)

Next, two important approximations are made:
1) The coupling constant g is suggested to be large, such that 2¢g > 1. In
real systems the parameter ¢ is of order of 10, so that this approximation
is reasonably well satisfied. Thus, N;(2g) and J;(2g) are determined by the
asymptotic expansions for large arguments

[ 2 3
Ni(29) = 29 sin <2g — Zﬂ') ,

[ 2 3
J1(2g) = 7'('—29 COS (29 — Zﬂ-> .

2) The wave function is considered at large distances between an atom and
a surface, where the Neumann and Bessel functions have asymptotic expan-

sions for small arguments
29 1129 29 29,1 29
Ny | —= —|—=ln(y—F=) - 2(—=) — —=
(B) = 5 [Fmogp - o]
J 29\ _ 2
\vr) T e
Here, « is determined through the Euler-Mascheroni constant C' = lny =
0.5772.

Using these two approximations we obtain the form of the zero-energy
wave function W(r) at large distances from the surface

Uo(r) ~ —Ag {tan(2g - Zﬂ) + % (m(@) + o+ 1)] S (2.120)

In the square brackets the leading term at large distances is r/(mwg?), so that
we can write

(2.118)

(2.119)

Wo(r) ~ —Aﬂig. (2.121)
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In the case if kg > ¢ the wave function Wy, (r) at large distances and
nonzero k, can be represented by

Uy, (1) ~ sin(kor + 0(ko)), (2.122)

where 0(kg) is some phase shift.

The distance ry, where the incident kinetic energy and the absolute value
of the local potential energy are equal, E; = |V (rg)|, separates two regions
of distances, where k < ¢?r~3 and k? > ¢°r®. The first of these regions
lies closer to the surface than the second one. In order to construct one con-
tinuous function we match both wave functions Eq. (2.121) and Eq. (2.122)
in the separation point r5. From the matching condition, Wy(ry)/Wo(ry) =
Wy (10) /Wiy (r0), we see that Wo(rg) oc Wy, = sin(koro + (ko)), which is ap-
proximately equal to kgry at very small ky. By comparing this formula with
Eq. (2.121) we obtain

A o mgky, (2.123)

which gives a proportionality of the wave function amplitude |¥y (r)] to ko
at the distances r < rg. This means, that at very small incident energy the
turning point, which is situated at the repulsive potential wall, smears out
to a turning region up to the distance ry.

The calculations given above are valid only if ry is situated far from
the surface, so that the incident energy is very small. The required energy
value is given in [Béheim and Brenig, 1982] by the value which leads to the
WEKB-approximation break-down (see Section 2.1.3). It is, however, im-
possible to extract from these calculations a quantitative description of the
quantum reflection mechanism. One can only specify that reflection occurs
at distances larger than ry. Interestingly, the low-energy quantum reflec-
tion leads to a linear vanishing of the wave function amplitude at the dis-
tances between the surface and the badland (or ry). Obviously, the theory of
[Boheim and Brenig, 1982] is equivalent with the low-energy approximation
in the theory of [Friedrich et al., 2002].

Sufficiency condition for the linearity of the wave function ampli-
tude with respect to k; In [Doak and Chizmeshya, 2001] it was calcu-
lated numerically that at ky < kggr, where

9 — )2\ -5
e (S

the absolute value of the wave function amplitude vanishes linearly with k,
below the distance ry = (872/k2)'/". In Eq. (2.124) n is the power of
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Figure 2.6: (a) The absolute value of the wave function versus the atom-
surface distance z for five different values of the incident wave number
kE = 10 10%, 10°, 10* and 10°m™', from top to bottom. The vertical
dashed line depicts the characteristic length © = Bs given by Eq. (2.125) for
the system *He-Cu(111). The short vertical bars denote the distances z - (k)
of equal potential and initial kinetic energies. At x.~ (k) > Bj; the regime
of linear vanishing of |¥| with & occurs below z.~ (k). (b) All characteristic
lengths kor, <~ (k) and the de Broglie wavelength A(k) are plotted as a func-
tion of the incident wave number k. The region of the WKB-approximation
break-down is indicated by the thick solid line. Both (a) and (b) are extracted
from [Doak and Chizmeshya, 2001].

the attractive interaction potential and 3, = (2mC,/h?)"/("=2) denotes the
potential length parameter. The wave function amplitude vanishes with kg,
if rg is equal to or exceeds the characteristic length,

B, = (42 —n) H)Y23 (2.125)

In this case the sufficiency condition (2.124) is satisfied. Table 2.5 lists the
maximal values for kq 3, for different potential powers n, for which the linear
behavior of the wave function amplitude is fulfilled. For n = 3 and n = 4
these values are of order of GG,,, given in Table 2.4. This confirms once again
the fact, that the linearity of the wave function amplitude with respect to kg
appears only in the low-energy asymptotic range.

Fig. 2.6 (a) from [Doak and Chizmeshya, 2001] shows the absolute value
of the wave function |¥(z, k)| versus the atom-surface distance x for different
ko (denoted as k in the figure). The figure is given for the case of the non-
retarded attractive potential in the system *He-Cu(111). The values of ko[
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n 3 4 5 6 7
korfBn | 0.09 | 1.00 | 1.97 | 2.83 | 3.61

Table 2.5: The maximal value of kyf3,, kgrfBn, at which the wave function
amplitude is proportional to kg, in dependence on the potential power n.

are equal to 512, 5, 5 1072, 5 10~* and 5 10~® from the top to the bottom
curve, respectively. The short vertical bars on each curve indicate the dis-
tances rg, at which the magnitudes of the incident kinetic and local potential
energies are equal. In the figure 7 is denoted as z.~ (k). Fig. 2.6 (b) displays
the characteristic lengths kgg, ro and A(ko) = 27 /ko. The range, in which
the WKB-approximation (2.16) is not valid, is depicted by the thick solid
line.

2.4.2 Sticking to the surface of liquid *He

The first theoretical and experimental works on quantum reflection focused
on scattering of a light neutral atom (hydrogen, helium) from the surface
of liquid *He. The interaction hydrogen-liquid helium is an intensely in-
vestigated system with only one well-defined bound state of the energy on
the order of -1 K. The excitations of liquid helium are also well-known and
experimentally observed.

The theory of specular reflection of an atom from the lig-
uid helium surface including the coupling to surface ripplons was
firstly described in [Zimmerman and Berlinsky, 1983] and reviewed in
[Basdevant and Dalibard, 2000].

A liquid *He film on a solid substrate has a sharp density profile

p(F,2) = pof(—(z + h(7))). (2.126)

Here, z denotes the coordinate perpendicular to the surface, 7 is a two-
dimensional coordinate vector in the plane z = 0, py = 0.145 g/cm? denotes
the “He bulk density and 0(—(z + h(7))) is the Heaviside step-function

0 at z+h(F) >0,

~ 2.127
1 at z+h(F) <O0. ( )

0(—(z +h())) = {

The operator () determines the height profile of the surface. The system
hydrogen - liquid *He is schematically depicted in Fig. 2.7.

Even at zero temperature there are elementary quantized excitations in
the film, so-called ripplons. These excitations are described by the Hamilto-
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H-atom

substrate

Figure 2.7: Schematic illustration of a hydrogen atom with coordinates (R, Z)
inciding onto the surface of a liquid helium film of thickness d deposited on
a substrate. The surface has a height profile h(7).

nian

qmazx

Hyipp =) hw iy, (2.128)
q

where ?;I and 7 represent the ripplon creation and annihilation operators and
w, is the frequency of the ripplon state |¢) with the wave number ¢ = |¢]. The
surface height fluctuations can be expressed in terms of the ripplons through

R 1 g
h(r) = hy(TTe " 4 774" with h, = 2.129
)= i ST R = [ @120

In this equation the proportionality to (L,L,) /% occurs because of the nor-

malization of the wave function squared to the volume L,L,L, of some box.
The dispersion relation for the ripplons of the liquid helium film of a
thickness d is given in [Berkhout and Walraven, 1992] by

3C

2 3 v 3

pu— — 2-1
wy [<g+m ) 4>q+ 0q}tamh(qd), (2.130)

where v = 3.54 - 10~* Jm~2 is the *He surface tension, ¢ is the gravitational
acceleration constant, Cj is of the order of 0.1 VA3 [Webster et al., 1980] and
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denotes the strength of the van der Waals potential between liquid He-atoms
and the subtrate and my, = 6.68 - 1027 kg is the mass of the *He-atom.

For a thick helium film (d 2 1 um) the dispersion relation (2.130) takes
the form

W= gg+ L. (2.131)
Po

A neutral hydrogen atom with the coordinates (R, Z > 0) propagates in
the effective atom-surface potential

3 7) = nie / d?f/:O U (B = 72+ (Z — 22)0((7) - 2), (2.132)

where ng, denotes the *He density and U is the interaction potential between
a H-atom and a *He-atom. R

By placing the expression (2.129) for h(7) into Eq. (2.132), expanding
0 into a Taylor series, 0(h(F — z)) ~ 6(—z) — 6'(—2)h(F), and taking into
account that 6'(—z) = §(—z) we obtain

V(R, Z) ~WZ — nHe/dQFU( (R_ )2 + Z2) th(?g-e—i(if+?qeiif).

q
(2.133)
This expression can be rewritten as

V(R Z) 2 Vo(Z) + 3 (hy(Vie 7T 4 Vi), (2.134)
q

with

\7;1» = Nye / dQT’?JreW Uy e Z?),
) - (2.135)
V,q‘ = MNgHe / dZﬁ?qeizq‘rlU( \V 7"_; + ZQ),

where ' = B — 7.
In equations (2.133) and (2.134) the first term

+o0 03
_ nHe/d r/ AU (72 + (2~ 2P)0(—2) = —
(2.136)
represents the long-range attractive interaction potential between the atom
and the flat surface. The second term is the interaction with surface atoms,
located below or above z = 0 and describes the coupling to the ripplons.
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In a closed system the energy during the scattering process must be con-
served, F; = FE;. The initial state kinetic energy E; is a sum of the energies
perpendicular and parallel to the surface

R2(k2 + k?)

E; =
2m

, (2.137)
where m denotes the mass of the H-atom. By the coupling to the surface
at the distance of some A the energy normal to the surface is transformed
into the binding energy Ep < 0, thereby exciting resonantly a ripplon with
frequency w,. The energy parallel to the surface changes only because of the
modification of the parallel wave vector from EH to EII — ¢. Thus, the energy
of the final state is given by
12 (k| — @)

E;=FEp+ o + hwy. (2.138)
Since h%q%/(2m) is comparable to Ey we can set h2(k,q)/m = /2hk //m -
hgv/2m ~ \/2hk \/Eg/\/m = \/2h2k> Eg/m. For the same reason the term
in the dispersion relation (2.130), which contains the gravitational constant
g, is negligible with respect to the other term, gq ~ g/2mEg/h? ~ 10"
s72 L v¢3/po ~ v(2mEg/1?)%/?/py ~ 10?2 s72. Thus, the dispersion relation
Eq. (2.130) can be approximated by

2 _ 7 3
w; = —q"°. 2.139
) ( )
We now assume that the incident energy perpendicular to the surface is
negligible with respect to the bound state energy, A%k? /(2m) < Eg. By
using this approximation and the dispersion relation (2.139) the equation for
the energy conservation

Pk + k) 12 (k) — )
I =4
—— W g4+ Y 4y 2.14
o B+ 9 + hwy ( 0)
takes the form 12,2
T hy ) gd = |Eg. (2.141)
2m Po

In the scattering process elastic reflection from the repulsive potential wall
cannot be taken into account. If we want to consider this type of reflection we
must add to the right-hand side of Eq. (2.140) the term const h*k? /(2m) with
0 < const < 1. This term stands for the constant energy part of the wave re-
flected from the repulsive wall. However, since we assumed i%k? /(2m) < Ep



44 CHAPTER 2. THEORY OF QUANTUM REFLECTION

the reflected energy const hi?k? /(2m) is much smaller than Ep and therefore
must be neglected in the frame of this theory.

The transition probability for an atom from the initial state |i) to the
final state |f) per unit time is given by [Davydov, 1976]

pivs = (S VIP3(Bs — Ei). (2.142)

27
7
In this expression, v represents the perturbation operator, which couples
state |i) to state |f). Since the final state has a finite energy width dEy,
the correct probability for a ¢ — f transition results from the integration
over the level density of final states p(E;). Thus we obtain the well-known
Fermi’s Golden Rule for the case E; = Ey, which is of particular interest
here,

Py = [ posol B, = ST RATIOPAES)  at By =B (2143
This transition probability with energies E; and Ey given by Eq. (2.137)
and (2.138) describes nothing else than the adsorption probability into the
bound state, which is accompanied by one ripplon excitation. We can write
the sticking coefficient by normalizing P;_,; to the incident flux vl =
hk L7'/(2m),

(2.144)

Pi%f 2T Si12 2mLz
= = |(fIV E .
oLt WIVIRFe(Er) 2o

To calculate the level density of the final state p(E;) we
consider a ring in the wave number space, which has the
radius ¢ and the thickness dq (see Fig. 2.8) [Cassels, 1982].
The volume of this ring is given by a, = 4mq®dg. The
number of eigenvalues of ¢, in the interval dg, is equal to
L,/(2r) and the number of eigenvalues of ¢ in the vol-
ume dg = dq,dq,dq, amounts to L,L,L,/(2r)>. Thus,
the number of levels |f) in the volume a, is equal to
dN = L,L,L,a,/(27)®. Using the expression (2.138) for

Fi 2.8: A
the energy of the final state we obtain ri;ggursf the ra-
- 5 7 s 1 dius ¢ and the
dg = (Eq + ih‘ /%(ﬂ) dEy. (2.145) " thickness dq in
| . o ‘ the wave num-
By placing this equation into the expression for dN we ob- ber space.

tain the relation between dN and dEy
L,L,L, 47 q?
AN = 2t .
(2m) q+ 5hy /22

(2.146)

m
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Since p is defined as p(Ef) = dN/dE} it is clear that
L,L,L,

2m*h h+ m\/i

As expected, the density p(E;) has the dimensionality of inverse energy, J .
At the sticking process of a hydrogen atom onto the liquid *He-surface
one ripplon is excited. Thus, only the ripplon creation operator plays a role,
i.e. the perturbation V' is equal to V7.
In the following, we make the very important assumption that the incident
wave function of the initial state |i) is proportional to the square root of the
normal incident energy Ak, /v/2m. Thus, we obtain

hk |
2mL,

p(Ey) = (2.147)

(fIVali) = M(q), (2.148)
where M({) is the proportionality coefficient. This assumption has already
been discussed in Sec. 2.4.1. It is based on the fact that strong quantum
reflection takes place far from the surface.

The proportionality of (f|V;]i) to L;'? results from the normalization of
the normal incident wave function squared to L' (free wave function) and
of the final normal wave function squared to unity (localized wave function).
Obviously, (f|‘7q—|z> has the dimensionality of energy, J, and M (g) has the
unit (Jm)'/2.

By placing Eq. (2.148) into Eq. (3.15) we obtain the proportionality of
the sticking coefficient to the normal wave number £, and subsequently, to
the square root of the normal incident energy E; cos6;,

_ LLyL 2mg: | M(Q)? VP, _ J/F,cos6; (2.149)
7h 3my + 2h\/7poq Z ) |

where #; denotes the incident angle between the atomic beam axis and the
surface normal. The proportionality coefficient s/k; differs from the one
obtained in [Basdevant and Dalibard, 2000]. In contrast to the latter one,
s/k; in Eq. (2.149) has the expected dimensionality of a length, m. We
therefore claim Eq. (2.149) to be correct.

Numerous experiments have been performed in order to confirm the pre-
dicted proportionality of the sticking coefficient to the square root of the
incident normal energy at small values [Doyle et al., 1991, Yu et al., 1993,
Berkhout and Walraven, 1992|. It was observed that only sticking to a thick
liquid helium film or to a liquid helium bulk leads to this energy dependence.
Fig. 2.9 (a) from [Doyle et al., 1991] shows that the theoretically predicted
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Figure 2.9: The dependence on the atom energy F (or the temperature
T = E/kp) of the sticking probability (a) onto a thin liquid-*He film and
(b) onto a thick liquid-*He film. (a), circles and crosses with error bars:
experimental data, obtained in [Doyle et al., 1991]; solid and the dot-dashed
lines: different theoretical curves for the sticking onto a thin film; dashed line:
theoretically predicted sticking on bulk helium. (b), circles with error bars:
experimental ”universal” sticking coefficient s oc v/T from [Yu et al., 1993];
triangles: experimental data of [Berkhout et al., 1989] at energies compa-
rable to the bound state energy ("non-universal” sticking); solid lines (the
binding energies were taken to be 1.1 and 1.0 K for these two curves) and
dashed line represent two different theoretical predictions.

dependence of s on the energy for a thin He film (solid and dot-dashed lines)
differs from that for a bulk (dashed line). This results from the fact that the
substrate below the He film attracts the atom and the effective atom-surface
interaction potential becomes deeper than in the case of a liquid He bulk or a
thick film [Carraro and Cole, 1998]. In the deeper potential, a second bound
state appears leading to a larger sticking probability. The experimental data
were obtained at MIT [Doyle et al., 1991] for hydrogen atoms sticking to a
relatively thin (on the order of 50 A) liquid helium film. The H-atoms were
magnetically trapped and evaporatively cooled down to temperatures in the
submillikelvin regime.

Fig. 2.9, (b) depicts the experimental results for H-atoms sticking onto a
thick (> 150 A) film [Yu et al., 1993]. The proportionality of the sticking co-
efficient to the square root of the atom temperature (s = (0.3040.03)y/7) is
clearly observed in the range of the temperature T'= E;/kp between 0.1 and
10 mK (open circles). At higher atom temperatures the energy-dependence
of the sticking coefficient does not display this universal form. In the experi-
ment of Berkhout and Walraven [Berkhout and Walraven, 1992] the function
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s(T) is observed rather to be linear with 7' (s(T") = 0.33 T') for atom temper-
ature being between approximately 100 and 1000 mK (open triangles). Solid
and dashed lines in this figure represent the different theoretical predictions.
In this case, the sticking coefficient is strongly dependent on the shape of the
long-range attractive atom-surface interaction potential, including retarda-
tion at large distances. The linear vanishing of the wave function amplitude
with k£, which is a sufficient condition for universal sticking behavior is only
valid in the low-energy range.

The universality of the sticking coefficient in the system of a light atom
scattering from a thick liquid helium film provides qualitative information
about quantum reflection. At low incident energies the reflection from the
repulsive wall contributes only negligibly to the reflection amplitude. This
universal behavior is, however, a peculiar feature of the system light atom
scattering from a thick liquid helium film. This is due to the existence of
only one bound state. Thus, studying the behavior of the sticking coefficient
is not a general method for the investigation of quantum reflection even in
the low energy limit.

Moreover, at higher energies it is impossible to separate reflection from the
repulsive wall from quantum reflection by measuring the sticking coefficient.
This difficulty can be overcome by choosing an experimental configuration,
in which the short-range coupling to the surface is absent. The experiments
discussed in this work are carried out with such a system, i.e. *He scattering
from an atomically rough surface (see chapter 4).
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Chapter 3

Casimir effect

The measurement of quantum reflection of an atom from a surface as a
method for sensitive probing of the attractive long-range potential can be
used for observing the delicate Casimir effect. This chapter presents an intro-
duction into this well-known effect and the Casimir-van der Waals potential
is discussed in detail for the relevant case of atom-surface interaction.

In the first part, the van der Waals and Casimir interactions are described
qualitatively and the general expression for the Casimir-van der Waals force is
presented. In particular, the cases of an atom interacting with a dielectric and
a metal surface are considered. In this work, the well-known description for
the atom-surface system is extended in order to include the influence of finite
temperature and imperfectly conducting surfaces. Besides, the influence of
the microscopic surface disorder is studied and the possibility of detecting
the atomic roughness of the surface by utilizing quantum reflection is pointed
out. The derived corrections are required for the analysis of the experimental
data which is presented in chapter 4.

3.1 Van der Waals and Casimir potentials

Van der Waals forces The force acting between two atoms or between an
atom and a surface at distances of a few Angsrém or larger is the so-called
van der Waals force. This force belongs to the dispersion forces which are
named according to their relation to the dispersion of light in the UV and
visible parts of the spectrum.

The dispersion forces have the following properties: They are
1) long-range forces;
2) of quantum-mechanical nature;
3) non-additive;

49
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4) repulsive or attractive. For the atom-atom or atom-surface interaction in
vacuum they are always attractive.

The van der Waals force is electromagnetic in origin and can be called
polarization force or fluctuating dipole force. Its quantum-mechanical nature
reveals itself for example in the interaction of two helium atoms whose classi-
cal electric dipole moments are equal to zero. From the quantum-mechanical
point of view there exists a non-zero atomic dipole because of fluctuations
of the electron distribution resulting in its temporary asymmetry with re-
spect to the atom core. The time average of the temporary dipole moment,
however, vanishes. When approaching another atom, the electric field of this
temporary dipole induces a dipole in the neighboring atom. Both dipoles
interact with each other during a finite time resulting in a non-zero time
averaged van der Waals force. Formaly, the quantum-mechanical character
of the force is expressed by its proportionality to Planck’s constant .

The non-additive character of the polarization force means that the in-
teraction potential of three bodies is not equal to the sum of all independent
two-body interaction potentials. For instance, the atom-surface interaction
is only qualitatively described through the pairwise summation of the in-
teractions between the incident atom with all atoms of the crystal. This
potential acting on the incident atom at the distance r from the surface is in
first approximation given by

7Csp def Cs

Vi(r)=-— = ——. 3.1
()= - (31)
Here, p denotes the atom density in the crystal and
3 I I
Cp=—2. Q10 142 (3.2)

2 (271'60)2 - Il —|—IQ

is the strength coefficient of the interaction between the incident atom and
one of the crystal atoms, as it was calculated by London in 1930 (see also
[Israelachvili, 1985]). ay 2 and I; 5 o< fi represent the electric polarizabilities
and the first ionization potentials of both atoms, respectively, and ¢, = 8.854-
1072 C2J'm™! is the vacuum permittivity.

In the description of the atom-surface potential by summation over atom-
atom potentials the influence of the interaction between the surface atoms
and their influence on the dipole moment of the incident atom are not taken
into account. Therefore the resulting interaction potential is only a rough
estimate. The problem of non-additivity can be avoided by representing
the surface as a continuous medium, as it is done in the Lifshitz theory
[Lifshitz and Pitaevskii, 1980]. This theory describes the medium in terms
of the dielectric constant or the refractive index. The atom falling onto the
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surface is assumed as a positive core and an electron oscillating at distance
u around the core. The core, which at large distance r from the surface
is represented as a point charge +e, induces the image point charge ¢ =
e(l1 —€)/(1 + €) located at the same distance from the surface within the
crystal [Liith, 1993]. Here, € denotes the crystal dielectric constant.

The Coulomb interaction between all pairs of real and image charges aver-
ages out to zero. The non-zero dipole-induced dipole interaction determines
the atom-surface potential,

e—1 d? 1
e+1 16mey 13’

V(r)= (3.3)
where d = eu denotes the temporary dipole moment of the incident atom.
For a perfect conductive (metal) surface (¢ — 0o) the coefficient (e—1)/(e+1)
is equal to unity.

More precisely, the potential strength C'3 at the interaction of an atom

with a perfectly conductive surface is represented in [Marinescu et al., 1997]
by

Cy = /Oooad(iw)dw, (3.4)

" 4r

where ay(iw) is the complex frequency (w)-dependent polarizability of the
incident atom.

Effect of retardation The atom-surface interaction can be described by
the expression V(r) = C3/r® only if the atom is not located very far from
the surface. If, however, the propagation time of the electric field signal from
the atom to the surface and back becomes comparable with the period of
the atom dipole fluctuation, the dipole induced by this electric field interacts
with the dipole of the incident atom, which has already changed. Due to the
phase shift of the interacting dipoles the interaction potential becomes weaker
and therefore the potential falls off faster than oc r—3. This effect is called
the retardation effect. Qualitatively, the atom-surface distance, at which the
retardation plays a role, can be written as 1., = ctpe ~ 13709 =~ 10nm,
where ¢ represents the speed of light, ag = 0.592 A denotes the Bohr radius
and t,.; = B/ Epyq ~ 107'7s is the time-scale of the dipole fluctuation, which
is represented through the excitation time of a hydrogen atom (Egy,q = 13.8
eV- the Rydberg energy) [Bruder, 1997]. More precisely, the time ¢, is given
through the atomic transition between the ground |g) and the first excited |e)
states in the atom, ¢,.s = i/ Ejgy_jey. Thus, the distance r..; = Ajg)— ) /(27)
differs according to the species of the incident atom. Here, A5, denotes
the corresponding wavelength of the atomic transition |g) — |e).
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For the surface-surface interaction in vacuum the retardation effect is
much smaller than for the atom-surface interaction, because of the larger
rrer- This distance is defined by the characteristic adsorption lengths of
the interacting surfaces, which lye in the visible or infra-red range of the
spectrum. The surface-surface interaction was directly measured for the first
time with two quartz glass surfaces separated by the distance of 100-400 nm
[Derjaguin and Abrikossova, 1954]. By placing the interacting surfaces in
another medium the retardation effect can be increased, as it was observed
in the experiment with two mica surfaces in aqueous electrolyte solutions at
5-10nm distance from each other [Israelachvili and Adams, 1978].

The retardation effect in an atom-surface system was firstly quantitatively
measured only recently [Sukenik et al., 1993]. In the latter experiment a
cavity was formed by two coated plates, which sodium atoms were guided
through. The Lamb shift of the sodium atoms in the cavity was measured
using laser spectroscopy in dependence of the atomic beam deviation from the
center of the cavity. The measured Lamb shift resulting from the interaction
potential is not only a function of the distance between the atoms and the
center of the cavity but also of the distance between the cavity plates (see
Sec. 3.2). A simpler quantitative measurement including only one surface
was performed in our group and will be presented in Chapter 4.

Casimir effect The retardation effect discussed in the previous section
additionally lowers monotonously the potential energy as a function of the
distance between the interacting bodies. It was firstly published in 1948
by H. Casimir and D. Polder, that at distances much larger than r,. the
interaction potential will be represented by the product of the non-retarded
potential and a function proportional to r—*

const
V(T > ’rret) = V(’I“ < rret) ' :

(3.5)

It is logical to expect that the constant of proportionality contains the speed
of light ¢, which manifests the nature of this retarded potential. From the
expression (3.5) it is clear, that the non-retarded form of the atom-atom
potential oc r~% is transformed into the retarded form oc r—7 and the non-
retarded atom-surface potential oc 72 becomes proportional to r—* at large
distances [Casimir and Polder, 1948],

23hcaay Nilgyosiey
Va om—atom = T - t 97, 3.6
tom—atom (7) 4gr? s> 21 (36)

3h A e
Vatomfsurface(r) = @ at r > M (37)

8t 27
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Here, oy and a4 denote the static polarizabilities of the two interacting atoms
(a- in the case of the atom-surface system) and \; , | ., (i = 1 or 2) is the
wavelength of the lowest energy |g) — |e) electric dipole transition in both
interacting atoms. As expected, the interaction potential is proportional to
¢ (the nature of a retarded potential) and to i (the quantum-mechanical
nature). The expression (3.7) is written for the case of a neutral atom in-
teracting with a perfectly conducting surface. For a dielectric surface with
the dielectric constant € the interaction potential has to be multiplied by a
function of e. This function is calculated in [Dzyaloshinskii et al., 1961] to
be equal to

Gl = e =g ke itV
Arcsh(ve —1)
2(6—1)%

\/;_1 (Arcsh(\/g) - Arcsh(\/g_l)) .

In [Spruch and Tikochinsky, 1993] the correction function is given in a dif-
ferent form,

(14 €4 2e(e — 1)) + (3.8)

e—1

— . 3.9
6+S—§ ( )

Po =
Both functions ¢; and ¢, and also the correction term for van der Waals
interaction between an atom and a dielectric surface (¢ — 1)/(e + 1) are
plotted in Fig. 3.1.

The pure retarded potential is known as a Casimir or as a Casimir-Polder
potential. Although the Casimir potential was firstly calculated as an asymp-
totic function for the retarded van der Waals potential at very large dis-
tances, a quite different presentation of this effect is possible. This modern
description comes from quantum field theory. In this theory the vacuum is
represented by a resonator. The electromagnetic field in this resonator can
be described through eigenmodes. Each mode corresponds to a quantum-
mechanical harmonic oscillator with the frequency w. At zero temperature of
the space, there nevertheless exist zero-temperature oscillations with energy
Eq = hw/2. The vacuum is then characterized by these zero-point fluctua-
tions. The presence of some bodies in the vacuum modifies the spectrum of
these zero-point fluctuations, leading to an attractive force between the bod-
ies. This attraction can be explained by the fact, that in the space between
two bodies not all vacuum modes are sustained, depending on the bound-
ary conditions imposed by the presence of the bodies. Between two parallel
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Figure 3.1: Three known functions of € correcting the atom-dielectric surface
interaction potential to the atom-conductive surface interaction potential.

metallic plates separated by the distance r, for example, only the modes of
the wavelength A proportional to n-r, n =1,2,3,... are present because of
the requirement that the tangential electromagnetic field component on the
metallic surface must vanish. The more densely populated spectrum outside
the two bodies presses onto them, whereas the more "empty” space between
them exerts a smaller pressure not compensating the pressure from outside.
The force leading to the resulting attraction can be described through the
difference between the zero-point energy outside the bodies and its value
between them
dE(r)

F(r) = ——=. (3.10)

At finite temperature T" of the space the general expression for the force
acting between two dielectric bodies at the distance r per unit area is calcu-
lated by [Dzyaloshinskii et al., 1961],

kT o= 2 5 [~ of ((51+D)(s2+D) 20ta -1
F(r) = ; d cTVe
(r) ; /1 pp (<(sl—p)(82_p)e )"+
(3.11)

Here, s; = y/€;/es — 1+ p? (i =1,2) represent the functions of the dynamic
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Figure 3.2: Schematical representation of an atom-plate system in vacuum.
The more densely populated spectrum outside the system compared with
the one inside results in a Casimir force which attracts the atom towards the
plate.

dielectric constants of both interacting bodies, €; = €;(i&,) and e = €,(i,),
depending on the imaginary frequency w = i&,. kg denotes the Boltzmann
constant. &, = 2mnkgT/h is proportional to the integer number n. €3 is
the dielectric constant of the medium separating both interacting bodies,
p denotes the integration parameter and the prime on the summation sign
is to show that the (n = 0)-term contributes only to one half to the sum.
For rkgT/(ch) < 1 the sum can be replaced by the integral over dn =
d¢ h/(2rkgT).

For two perfectly conducting plates (e, €2 — 00) separated by vacuum
(e3 — 1) the force per unit area takes the form

kgT h > > 2dpp?
F = = . dg, &3 — =
(r) 7rc3 27rkBT/ & 6”/ e2pénr/c — |

A&
- 03 dpp / e 1 (3.12)
h /°° dpp*n*  w’he
m2c3 J;  15(2pr/c)t  240r%
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At d =1 pm the force per unit area is equal to 0.13 - 107% N/cm? which is a
small but a measurable value.

The description of the Casimir force through the modification of the
zero-point vacuum fluctuations allows to present the effect of this force
not only as the asymptotic case of the van der Waals interaction but as
an independent and many-sided quantum effect, known as the Casimir
effect. This effect has been observed and plays an important role in
as different fields as atomic physics, cosmology and gravitation theory
[Mostepanenko and Trunov, 1997]. Moreover, the lateral Casimir effect was
recently measured [Chen et al., 2002]. The dynamical Casimir effect is theo-
retically predicted to be observable as radiation emitted by a cavity moving
in vacuum [Lambrecht et al., 1996]. The nature of the effect of sonolumi-
nescence, which was initially unclear, can be explained by the dynamical
Casimir effect [Eberlein, 1996].

3.2 Atom-wall interaction potential

Interaction between an atom and a surface At the interaction of
a polarizable system (e.g. an atom) with a dielectric wall with dielectric
constant € through the vacuum, ¢; and €; can be rewritten by the dielectric
constants of a rarified gas

€1(w) =1+ 4rNa(w) (3.13)

and by the one of the wall e53(w) = €(w), respectively. Here, the density of
atoms, NV, with the dynamic polarizability a(w), is suggested to be very small
such that ¢; &~ 1. The sum in the brackets in Eq. (3.11) can be simplified to

TNa(i&,)p 2 exp(—2&,pr/c)H (p, €(i&,)), where

s—p 9\ S — €D
H — 1-2
(ps€) S+p+( p)8+6p,

s = ye—1+p (3.15)

The interaction potential between a neutral atom and a dielec-
tric wall (surface), including the retardation effect, is calculated by
[Tikochinsky and Spruch, 1993],

(3.14)

h oo ) oo B e )
‘/;Ltom—dielectric(r) = _2 3 / dfnﬁza(lﬁn)/ dpe 2npr/ H(p, 6(Zgn))
w3 o 1
(3.16)
The exponent in the integrand in expression (3.16) is required to be not

p21
too large so that &, < ¢/(2rp) < ¢/(2r). At very large distances, r >
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Aig)s|ey/ (2), the ratio ¢/(2r) is much smaller than wygy_, ), where wyg e is
the corresponding frequency of the atomic dipole transition. At this condition
&n also becomes much smaller than wy_, ) and the dynamic polarizability
and the dielectric constant can be replaced by their static values a(i§,) =
a(0) = a and €(i&,) = €(0) = €. By using

00 4
/ de, E3e %nrle — ¢ <i> (3.17)
0

2rp

the pure retarded potential becomes

Aloyosle 3% °  H(p,
9ol 04a/ dp (p46) _
2m 8mr 1 2p

C4a7m e—1 . C4a7d
S €—|—1¢(6)__ '

Vatom—dielectric (T >

(3.18)

The strength coefficient of the atom-dielectric surface interaction, Cy, ,, is
related to the strength coefficient of the atom-metal surface (¢ — 0o0) inter-
action, Cy,_ = 3hca/(87), through

e—1 _3hcae—1

Ctoca = Ctan €+ 1¢(6) 87 e+1

b(e). (3.19)

Here,

o(€) =

e+1 /oo H(p+1,¢) (3.20)

2(e —1) (p+1)*

can be directly calculated to ¢(e) = ¢1(e + 1)/(e — 1). The function ¢,
is given by the expression (3.8). It is necessary to note, that the equa-
tion for the retarded potential Eq. (3.18) is presented in the same form in
[Dzyaloshinskii et al., 1961], but it is obtained there using a different method.

Casimir-van der Waals potential In order to simplify the expression
(3.16) the interaction potential as a function of the atom-surface distance r
is represented by the Casimir-van der Waals potential

Cy

VC—udW(T) = —m,

(3.21)
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where Cy denotes the potential strength Cy,_, or Cy, , and [ is the transition
length [ = Ajgyjey/(2m). At r > [ this potential approaches the Casimir
potential Eq. (3.7) for the interaction with a conductive surface and the
Casimir potential Eq. (3.18) for the interaction with a dielectric surface. At
r < [ the Casimir-van der Waals potential approaches the non-retarded van
der Waals potential V' (r) = C3/r* with the strength coefficient Cj related to
the strength coefficient Cy by

Cy = =2 (3.22)

The Casimir-van der Waals potential parameters Cy and [ can be experi-
mentally obtained by measuring the quantum reflection coefficient versus the
incident energy of the atomic beam scattering from a surface. The analysis of
experimental data obtained for the system *He atoms-a-quartz surface and
3He atoms-gold (111)-surface is presented in chapter 4.

An atom between two plates For an atom with the polarizability o
situated between two parallel, perfectly conducting walls [Barton, 1987] the
interaction potential looks more complicated (the formulas are presented in
[Marinescu et al., 1997])

Vmetal—atom—metal(za L) - TQ(L) - Tl (Za L)a (323)
where

1 [ t?cosh(2zt/L) [U/erst .
Tz, L) = — .24
(D) = [ = [T dea, o)

a? 0o ) [ee] eft

To(L) = 2 d ‘ dt . 2
() = 2 [Caegatie) | = (3.25)

Here, L denotes the distance between the plates, z is the deviation of the
atom position from the center of the cavity formed by these two plates and
aps = 7.29720 10 ? represents the fine structure constant. The potential
shows the asymptotic behavior of pure non-retarded van der Waals and pure
retarded Casimir potentials when varying the value of the interval L from
zero to large values. At small L the potential is non-retarded

4
Vmetal—atom—metal(za small L) = _ﬁT(Z/L)C?) (326)
with
1 o0

= — ] 2

Cs 47r/0 dw a(iw), (3.27)
> t?cosh(2tz/L)

T(z/L) = dt . .2

(/L) /0 sinh (1) (3.28)
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At very large L the potential looks like a retarded Casimir potential

m™a [ 1 3—2cos?*(r/L)
aps Lt | 360 8 cost(mz/L)

Vmetalfatomfmetal (Za large L) = (329)

3.3 Corrections to the atom-surface interac-
tion potential

Temperature dependence In the general expression for the interaction
force between two dielectric bodies Eq. (3.11) the sum can be replaced by an
integral over dn for rkT/(ch) < 1 only in first approximation. More correctly,
Euler’s summation formula has to be applied [Dzyaloshinskii et al., 1961]

~ [ 1 df (n) 1 d3f(n)
;f(n)_/o Fo)dn = o T30 a1 dnd o T B30

Here, f(n) is some function of n. In the case of the interaction between an
atom and a conductive surface (¢ — oo) the function H(p,¢€) in expression
(3.16) takes the value 2p>. With the accuracy of the third derivative with
respect to n the atom-conductive surface potential can be written as

kgT h o o
‘/;Ltom—metal (’I“) = _L < / dgn 7?;62;1)5”7*/0/ dp 2p2 +
0 1

A\ 2rkgT
(3.31)
n:O) ) ’

1<2kaT>3 (idf(n) 1 df(n)
() = 2n%alit,) / " dp pre-wenl/e (3.32)

n=0 30-4! dn3

2 h 12 dn
with
1

By calculating (df (n)/dn)| _, = 0 and (d*f(n)/dn®)| _ = —4a we obtain
the temperature correction of the interaction potential at small values of T’

Alg)=le) 3hca( 8 (rmrkgT 4
atom—meta — ) = — 1—— ) 333
Vatom=metat (r > —97=) = =5 135\ ch (3.33)

At the atom-surface distance r = 1 um the temperature is relatively small,
T < 3000K, i.e. at smaller distances the zero-temperature correction is
valid. At room temperature 7'~ 300 K and at » = 10 nm the correction term
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0.059(mrkgT/(ch))* is of the order of 10~ and at the distance » = 1 um
it is of the order of 1073. The deviation of the potential from its zero-
temperature approximation reaches 10% at room temperature for an atom-
surface distance r &~ 3 um. The experiments discussed in chapter 4 are
performed at room temperature. At the distances of the order of 10nm
where quantum reflection occurs the correction term is negligible.

At large values of the temperature the (n = 0)-term of the sum in
Eq. (3.11) plays the dominant role. Thus, at T' > fic/(kpr) the interac-
tion potential between an atom and a metallic surface adopts a different
form

)\@H‘e)) _ h (6] 27TkBT 3

5 fn/ dp 2pPe=2Pénr/e, (3.34)

‘/L-zomfmea r - ’S
! tat (1> 2me? 2 h 1

The integral in this equation is equal to 4(2&,7/c)™3. Finally we obtain the
expression for the interaction potential at large temperatures

)‘\gH\e)) _ksTa

‘/;J, om—meta 3.35
¢ tar (1> - o3 ( )

In order to observe this potential form at the atom-surface distance of 10 ym
the temperature has to be much larger than room temperature.

Atom-imperfectly conducting plate !

As it is discussed in the previous section, at large atom-surface distances
7> Agy—sley/ (27) the frequency &, greatly exceeds the frequency correspond-
ing to the atom dipole transition. If A5 _,)/(27) has a value of 10nm (He-
atom), the corresponding frequency is 3-10'® Hz. Thus, the frequency &, lies
in infra-red or visible parts of the spectrum. The dynamic dielectric constant
of the surface is represented in these parts of the spectrum as

w? w?
é(w)zl—w—’; :1+§—§, (3.36)
where w = i&,, w, = \/47wN.e?/m, denotes the plasma frequency. N, is

the density of surface free electrons with charge e and mass m,. Since the
surface represents an imperfect conducter, it is clear, that the deviation of the
dielectric constant from oo is small, i.e. §,/w, < 1. By placing the expression

!The calculations of the correction for imperfection of the conducting surface in the
case of interaction between two conductive plates are presented in [Milonni, 1994]
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for the surface dielectric constant, Eq. (3.36), into expression (3.14) for the
function H (p, €(i&,)) we obtain an approximation of this function

. NS
H(p, e(i¢n)) =~ 2p* = 2(3p —p')==. (3.37)
P
This approximation is expected because H = 2p? is the value of the function
H for a perfectly conducting surface and the correction term is of the order
of the small value &, /w,.
The interaction potential between a neutral atom and an imperfectly

conducting surface can be expressed by

‘/:Ltom—metall(r) - ‘/:Ltom—metall(r) +

(ervo0) (e=00)
7 o0 A serrpre [ L > tlazle
; —26nrp/cC o ez
i /0 &, &a(i&a)e /1 dpBp—p~) =~ = (3.38)

3hca ] 8c
8mrt ( 5wpr> '

For a gold (Au) surface the free electron density is given by N, =
5.90 10*2 cm™3 [Ashcroft and Mermin, 2001], the corresponding plasma fre-
quency is equal to w, = 1.37 10'©Hz and the correction term has the form
8¢/(5wpr) = 3.5 1078 /r, where r has to be expressed in meter. At the dis-
tance r = 100 nm the value of the correction term is 0.35 and the value of the
interaction potential at this distance is only 75% of the value of the potential
in the case of the perfectly conducting surface. From these calculations we
conclude that it is very important to check the validity of the expression for
the pure retarded Casimir potential for a certain atom-surface distance.

It is more interesting to calculate the correction of the non-ideal con-
ductivity at small distances, r < Ajg_(ey/(27). In this case we obtain the
attractive interaction potential by assuming &,r/c < 1 in the form

3h o0 ,
47Twp67“2/0 dgn fna(zfn)
(3.39)

Two inequalities, r < Ajgyjey/(27) and &,7/c < 1, allow to assume that &, is
of order of the frequency of the first electric dipole transition, i&, ~ wg_e)-
Thus, Eq. (3.39) can be approximated by the expression

Alg)—le I .
Vztomfmetall(/r << M) — / dén O{(Zgn)_F
0

(ervo0) 2T B 473

Algy—sle C 3cr (Ngysley\
Vztomfmetall(r << M) = _7"_; (1 + ﬂ <M> ) . (340)

(erso0) 2T Wp 2
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The value for the van der Waals attractive potential strength Cj is calculated
to be

h

C3 = E/O dén a(lgn) (341)

With an accuracy of 7 this expression coincides with Eq. (3.4), in which w
plays the role of &,. Due to the quantum-mechanical character of the van
der Waals force the strength coefficient has to be proportional to Planck’s
constant . Therefore expression (3.41) is correct.

Besides the contribution of short-range interactions, the correction given
by Eq. (3.40) leads to different values of the potential depth in the interaction
of an atom with different conductive surfaces. This correction is taken into
account in the analysis of the 3He-gold surface interaction in chapter 4.

Determination of the van der Waals potential strength A one-
dimensional total interaction potential between an atom and a surface is
often represented in the form of the Lennard-Jones potential (LJ(n,m)),

Vi =ve- ——-[(2) = 2 (4)"]. (3.42)

n—m r m \r

Here, n and m denote the power of the repulsive and attractive parts of the
potential, respectively, and V5 = V(a) is the value of the potential mini-
mum, which is situated at the distance a from the surface. The first term in
Eq. (3.42) denotes the short-range repulsive part of the potential. This repul-
sive force appears at small distances because of the overlap of the electrons of
the incident atom with the electrons of the surface atoms. The second term
in Eq. (3.42) is the long-range attractive part of the interaction potential,
which is discussed above in detail. By rewriting Eq. (3.42) in the form

V()= 2 _m (3.43)

where C,, and (), are the strength coefficients of the repulsive and attractive
potential parts, respectively, one can see that the effect of retardation is
not taken into account. By correcting this, the attractive term takes the
form Cp,p1r~™/(r +1). Then the LJ(n,m)-potential is given by the more

complicated form
a m
: (;> ] . (3.44)
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For simplicity, we write f, = n(l + a/l) and f,, = m +a(m + 1)/l. By as-
suming that the retardation effect plays a role only very far from the surface,
Eq. (3.44) approaches Eq. (3.42). The representation of the interaction po-
tential by Eq. (3.42) is not false, because in classical scattering problems only
the potential form near the surface is important. However, equation (3.44)
is more exact without any approximations. From Eq. (3.44) does not follow
that the strength coefficients C), and C,, depend on the transition length [,
but that the value V4 of the potential depth depends on [. The attractive
part of the potential can be written either through the potential strength
Cmy1 or through the value of the potential minimum Vj,

r

C f (14+94) /sa\m
%tt?(r):_ﬁz_%'f _nf '(1+é)'( ) .

n m 1
By taking into consideration that the van der Waals interaction between a
neutral atom and the surface of a solid has the power m = 3, the van der

Waals potential strength C3 = C,/I can be calculated from Eq. (3.45),

(3.45)

n

n—3-—

1 (3.46)
1+l/a

Cy = Vod® (1+ %)

This formula will be used for the analysis of the *He-a-quartz and the 3He-
gold systems in chapter 4 for comparing the potential parameters with liter-
ature values.

3.4 Surface roughness and disorder

3.4.1 Stepped surface with large terraces

In this section instead of a flat (or atomically rough) surface we consider
a microscopically disordered surface. The surface consists of many steps
of different height perpendicular to the surface, separated by large terraces
which are only atomically rough (see Fig. 3.3). The height of the steps is
distributed according to a Gaussian function. By setting the most probable
z-coordinate of all terraces as z = 0,

n(A,) = 21 exp <——i> (3.47)

terraces have the coordinate z = +4,,, where o, the Gaussian width, is the
root mean square of the z-distribution of the terraces.
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Figure 3.3: Schematic illustration of a crystal with disordered surface. The
stepped surface with Gaussian distribution of the step heights of the width
A, centered at A, = 0 . The steps are separated by terraces with large
length L. The incident and reflected waves are assumed to be dependent
only on the coordinate z perpendicular to the suface.

Dephasing of the wave packet Firstly we consider only the motion of
the impinging wave perpendicular to the surface. The fact that the wave in-
cides onto the surface under the angle 6; with respect to the surface normal
is taken into account by the value of the de Broglie wavelength perpendicular
to the surface, \yp, = Agp/cosf;. We assume that A\gp, is comparable or
smaller than the maximal height of the surface steps. In this case we must
take into account that the wave is reflected incoherently from all terraces. To
calculate the reflection coefficient of coherent scattering we must represent
the reflected wave function from the stepped surface as a sum of the reflected
wave functions from all terraces with different phases. At de Broglie wave-
lengths parallel to the surface Agp, ~ Agp much smaller than the average
terrace length L in beam direction, the wave-terrace interaction is approxi-
mately equal to the wave-smooth surface interaction. The wave function of
the wave reflected from the terrace with the coordinate —A\,, and detected
far from the surface has the form

hk?
LIJTCfln (Za kUa t) = €exp <Zk0(3 + 2An) — ZQ—Tr[zt) . (348)
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The wave function of the wave reflected from the stepped surface is given by

Urepi(z, ko, t) = 3 (D) Urep, (2, ko, t). (3.49)

n

The incident wave (or the atomic beam) illuminates a large number of
terraces. Thus, the sum over n can be replaced by the integral over A,
from the minimum z-coordinate, —A,, _ , to the maximum one, A If
n(Ap,...) < n(0), the integral can be written as the integral from —oo to
+00. The wave function of the wave packet detected far from the surface is
equal to

Nmaz *

komaz 00
Uyopi(zt) = / ko (ko) / Ay (A Tyt (2, oy t)y (3.50)

ko —00

min

where ¢(ko) is the initial wave number distribution of the atomic beam. Tak-
ing into account that [*°_dA, exp(2ikoA, — A2/(20%)) = /2 o we obtain

fomaz ~ kg 27.2
U,ei(z,t) = i dko (ko) exp | ikoz — z%t —20%kg ) . (3.51)

Omin

The term exp(—202(ko)?) = exp(—202(2m)%/(\ap, )?) describes the effect of
dephasing of the wave function reflected from the stepped surface with large
terraces with respect to the wave reflected from a smooth surface.

The reflection coefficient of the wave paket from the stepped surface at
the average wave number (ko), |Rseppea((ko))|?, is calculated to be

| Rsteppea( (ko)) = | Remootn (ko)) I” exp (=40 (ko)*), (3.52)

where | Rgmootn({(ko))|? denotes the reflection coefficient from the smooth sur-
face, which has the coordinate z = 0. At (A4p, ) much larger than o the
exponent, exp(—40%(ky)?), approaches unity and the incident wave ”does
not see” the surface disorder. The reflection coefficient is given by the one
from the smooth surface. At (A\gp,) comparable or smaller than o the effect
of the dephasing becomes more significant which leads to the reduction of
the reflected beam intensity.

Losses from steps At scattering from a stepped surface not only the
dephasing of the wave function leads to a drop of the reflection coeffi-
cient. At large incident angles the interaction of the incident wave with
the steps becomes non-negligible. This effect depends on the incident angle
of the atomic beam and on the geometric dimensions of the terraces and
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steps. Qualitatively, the part of the wave, which meets a step with a height
h > Ltan(90° — 6;) from the side will be lost for the specular beam.

Since the atomic beam illuminates a large number of surface terraces and
steps, the probability that a step has the height h, n(h), is equal to n(A,)
(Eq. (3.47)). In terms of the angle § = arctan(h/L) the probability for the
wave inciding under the angle 6; = 90° — # to meet the step with the height

h is given by
1 tan? 6
0) = — —_—. :
n () 5o, OXP ( 2(0/L)2> (3.53)

Qualitatively speaking, all steps having the height h = Ltanf with the
probability n(8 < 90° —6;) do not contribute to the loss of the wave function.
Their number, f(6;), is given by

90°—0; an2
IN df exp <—ﬁ)

90° 20
Jo do exp <_222/L)2>

1(6) = (3.54)

At grazing incidence of the atomic beam one can approximate f = tanf
and therefore

f(0;) ~ m /090°—9i df exp (—%) : (3.55)

The final form for the reflection coefficient from a stepped surface is given
by

| Ratepped((ko))|? = | Romootn (ko)) |? exp(—4a?(ko)?) f(6:). (3.56)

The factor f(6;) becomes more significant at increasing incident angle 6; and
leads to a reduction of the reflected beam intensity at grazing beam incidence,
playing no role at relatively small incident angles.

It is important to note that the measured reflection coefficient from a
surface, which is described above, satisfies Eq. (3.56) only if the transfer
width exceeds the average terrace length significantly. Only in this case the
Gaussian distribution of the step heights can be used in the calculations. The
correction (3.56) is used for the data analysis of the 3He-a-quartz system in
chapter 4 (see Fig. 4.14).
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3.4.2 Surface roughness

One of the most interesting applications of measuring the attractive long-
range atom-surface potential by means of quantum reflection is studying the
surface roughness. As discussed in the previous section the information about
a microscopic surface disorder can be extracted from the behavior of the re-
flection coefficient. Not only the microscopic disorder but also atomic surface
rougness can change the value of the interaction potential and therefore the
value of the measured quantum reflection coefficient. The influence of the
atomic surface roughness on the interaction potential between macroscopic
bodies is investigated for a few systems. For instance, this influence on the
interaction between a rough surface and a dielectric sphere is precisely mea-
sured by [Mohideen and Roy, 1998]. The experimental data are in very good
agreement with the theoretically predicted values [Klimchitskaya et al., 1999]
for the function describing the roughness, obtained from a separate AFM
measurement. Reflection of an atom from the evanescent wave mirror in the
case of a rough prism surface is investigated in [Henkel et al., 1997].

In [Maradudin and Mazur, 1980, Mazur and Maradudin, 1981] the cor-
rection of the van der Waals potential between two planes separated by the
distance [ is calculated in the cases when one of the interacting surfaces or
both surfaces are atomically rough. The resulting van der Waals force per
unit area between a flat and an atomically rough surface is obtained to be

s 82[C, C o
F(l):—l—;—g[l—f+l—55+...]+0<g>- (3.57)

Here, a denotes the transverse correlation length, i.e. the mean distance
between consecutive peaks on the rough surface. The length parameter §
represents the root-mean-square deviation of the surface from flatness. The
parameters C5, C4 and C5 denote the van der Waals force coefficients of
a flat surface and similar coefficients dependent on the dynamic dielectric
surface constants. In the case that the interacting surfaces are identical with
dynamical dielectric constants satisfying Eq. (3.36) the corrected van der
Waals force per unit area is given by

0.7810 1072 62 /0.05597 0.03245 a2 5%
F(l) = —hw, | ———— + < ¢4 a +O(l‘6)>+0<

E a? [t E at
(3.58)
The typical value of d/a is of the order of 0.1. Thus, at the separation of
the surfaces by the distance [ = a the correction of the van der Waals force
due to the surface roughness is expected to be of the order of 10%. At larger

separations the correction decreases significantly.

)]
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As far as we know only one theoretical work [Bezerra et al., 2000] is de-
voted to the correction of the interaction potential between a neutral atom
and a surface. This correction is calculated for the Casimir potential and is
valid only for atom-surface distances much larger than the dipole transition
length of the atom. The Casimir potential corrected to the surface roughness
is obtained with the accuracy up to fourth order of the roughness amplitude
for the case that the surface roughness is a periodic function. Here, we give
this expression only up to the second correcting term

2

) . (3.59)

Vi(za,ya,r) =V(r) <1 + hi(za,ya, T)é + ha(z4,Ya, T)ﬁ
where V(r) represents the Casimir potential between the atom and the
flat surface, x4 and y, are the coordinates of the incident atom in the
plane of the flat surface, r denotes the atom-surface distance and A
represents the surface roughness amplitude. The expansion coefficients
hi(xa,ya,7) and ho(za,ya,7) are some complex functions dependent on
the Fourier-coefficients of the periodic surface roughness function (see
[Bezerra et al., 2000]). For large-scale roughness when the transverse cor-
relation length is much larger than the atom-surface distance the correction
is obtained to be proportional to the roughness amplitude A. For small-scale
roughness (a < r) only the correction term with squared amplitude plays
a role, which coincides with the results of [Maradudin and Mazur, 1980]. It
is calculated in [Bezerra et al., 2000] that at large-scale roughness the cor-
recting term can give a contribution of order of ten percent to the Casimir
potential, while the short-scale roughness gives a contribution of the order of
some percent of the net interaction energy.

It is clear that at smaller atom-surface distances the influence of the
surface roughness on the interaction potential is much larger than on the
Casimir potential. The deviation of the measured attractive potential from
the predicted one for a flat surface opens the possibility to investigate not
only the scale of the atomic roughness but also the parameters of the surface
roughness function. It is necessary, however, to calculate the correction term
in the case of the Casimir-van der Waals potential, or at least, in the case
of the van der Waals potential, which is valid at much smaller atom-surface
distances, where the surface roughness correction is predominant.



Chapter 4

Experimental observation of
quantum reflection and Casimir
effect

A number of experiments have been performed with the goal of observing the
purely non-classical phenomenon of quantum reflection. In the experiments
reported on in [Doyle et al., 1991, Yu et al., 1993, Berkhout et al., 1989],
quantum reflection was observed indirectly by studying the behavior of the
sticking coefficient at low energies of the incident atom (see chapter 2). Direct
measurements of quantum reflection were performed by [Nayak et al., 1983,
Shimizu, 2001]. However, the data in [Nayak et al., 1983] are not unambigu-
ously interpreted. The experiment of [Shimizu, 2001] represents the first
direct observation of quantum reflection. These experimental data are well-
described by the recently developed theory of quantum reflection by Friedrich
and Coté [Friedrich et al., 2002, Coté et al., 1997] (see Sec. 4.4).

In this chapter we present an experiment for directly observing quantum
reflection exclusively from the attractive interaction potential (Sec. 4.1). In
contrast to the experiment of [Shimizu, 2001] performed close to the low-
energy limit, our experiment includes the energy range up to the high-energy
asymptote [Druzhinina and DeKieviet, 2002]. The data are analyzed taking
into account all relevant experimental details (Sec. 4.2). In the frame of the
theory by Friedrich et al. our experimental data are fully explained (Sec. 4.3).
Moreover, quantum reflection measurements are utilized for quantitatively
characterizing the Casimir effect in the system atom-surface for the first
time (Sec. 4.3) [Druzhinina et al., 2003].

69
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Figure 4.1: The electronic structure of the helium atom in the singlet state,
adapted from [Haken and Wolf, 1993].

4.1 Experimental setup

The experimental data on quantum reflection discussed in this chapter are
obtained using the *He atomic beam spectrometer [DeKieviet et al., 1995].
Since this work focuses on the theoretical interpretation of the experimental
data, the experimental setup is described only schematically in this section.
For more detailed information about the apparatus and the spin echo method
the reader is referred to [Schmidt, 1996, Hafner, 1999]. However, some parts
of the setup that are particularly important for the experiments on quantum
reflection are discussed in more detail in the next section.

4.1.1 The *He-atom

The scattering of a *He atomic beam is a powerful instrument for studying
the surface of a solid. Because of the Pauli-principle, the 3He-atom is reflected
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from the surface at some A above the top layer of surface atoms. Thus, in
contrast to neutron, electron or X-ray-beams the helium atomic beam does
not penetrate into the surface. The de Broglie wavelength of the beam is
on the order of some A, which is comparable with the lattice constant of
a solid body. Therefore, coherent elastic (or quasi-elastic) scattering of a
3He atomic beam is a well suited method for studying the surface structure.
By using the spin echo method dynamical processes on the surface can be
investigated on the nano- and even pico-second time-scale with an energy
resolution in the neV-range. The 3He-atom is chosen because of its extreme
surface sensitivity and also because it has a nuclear spin I = 1/2. Due to the
strong shielding of the nuclear spin by the closed electron shell the nuclear
spin direction remains unchanged during the interaction with the surface.
This is a necessary condition for the applicability of the spin echo method
for surface analysis.

3He atomic beam scattering has additional advantages concerning the
measurement of quantum reflection:

e 3He is one of the lightest atoms. Since p oc /m (see Eq. (2.81)) a light
atom is more likely to be quantum reflected than a heavy one. There-
fore, the effect of quantum reflection of *He-atoms can be measured
even at relatively high incident kinetic energies perpendicular to the
surface.

e Due to the small static polarizability of a *He-atom in its ground
state, «, the attractive atom-surface interaction potential is particu-
larly weak, Cy o . Due to the (|R|? o exp(—v/Bi) = exp(—Ci'*))-
scaling at low energies (see Eq. (2.83)) the effect of quantum reflection
is more pronounced than it is for instance for a metastable Ne-atom.

e The 3He atomic beam is extremely sensitive to the surface disorder. In
the case of high surface roughness on the atomic scale or in the case
of surface contamination the atomic beam is reflected diffusively, not
contributing to the specular peak. This property of the atomic beam
is used for suppressing the reflection from the repulsive potential wall
in order to measure pure quantum reflection from the attractive part
of the potential.

Here, we give some important values for the *He-atom.

Magnetic moment The magnetic moment of the 3He-atom, u, is given
by
1= Ghin, (4.1)
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| mlke] | pmeV/T]| oA ] Mg i/ [A]]
15.0082410%" |  -67 | 0.207 | 93 |

Table 4.1: The relevant properties of the 3He-atom: atomic mass m, mag-
netic moment p, static polarizability o and the normalized wavelength of the
lowest-energy electric dipole transition g/ (27).

where the g-factor for 3He-atoms is equal to —2.127624 and the nuclear
magneton (i, is given by u, = pugm./m, = eh/(2m.) - m./m, with m, =
9.10956 107! kg, m,, = 1.6726 1072" kg and pup = 9.2741 1072* JT~" denote
electron mass, proton mass and the Bohr magneton, respectively. Thus, the
magnetic moment of 3He-atom is equal to y = —67neV/T.

Static polarizability The static polarizability of a *He-atom can be cal-
culated from the measured value of the dielectric susceptibility x of a 3He
gas. This gas is assumed to be ideal with the atomic density N and the
pressure Py = NkgT. The polarization, P, is related to the refractive index,
n, by
P
2

— 14—, 4.2
n o (4.2)
where E is the electric field and €y = 8.85 1072 C?m~" is the vacuum per-
mittivity. The refractive index is given by the ratio of the speed of light ¢

and the phase velocity of radiation v, [Jones, 2000],
_1
2

SR L) sy (4.3)

U (epo) 2 €0

Here, € is the permittivity of the atomic gas. The dielectric susceptibility x
is defined through the permittivity as € = €y(1+ x). Taking into account that
the polarization P is connected to the atomic polarizability a by P = NaFE,
we obtain from all these formulas

€0 X kBT

CTN T e

(4.4)

Using the value of x = 6.49 1075, given in [Tab, 1980] for the atmospheric
pressure Py = 101kPa and the room temperature 7" = 293 K, we obtain
the value for the static polarizability of a 3He-atom o = 2.3 10~* Fm?. In
order to give this value in terms of A3 we have to multiply it by the factor
1/(4mep) = 8.99 10° (Fm)~". Thus, we obtain a = 0.207 A®. The value of
a = 0.20 A% is given in [Israelachvili, 1985] for a He-atom.
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Figure 4.2: Schematic overview of the 3He atomic spectrometer, adapted
from [Teichert, 1999].

Wavelength of the lowest-energy electric dipole transition The
lowest-energy electric dipole transition in the He-atom is the 1'S— 2'P-
transition in the singlet system (see the level-scheme in Fig. 4.1 from
[Haken and Wolf, 1993]. The energy of this transition is listed in the Atomic
Energy Levels Data Base of [NIST, 1999], AE = 171135cm~"'=21.218eV.
The corresponding wavelength is given by Ay = 58.43nm, from which
we calculate the normalized wavelength A gy e/ (27) = 93 A.

Table 4.1 summarizes the relevant atomic properties of the 3He-atom.

4.1.2 Preparation of the atomic beam

Beam source 2He gas is transferred through a capillary from a storage
tank to a nozzle. The capillary is conducted through a “He bath cryostat,
where the gas is cooled down to 4.2 K. By extracting the vapor from the
‘He bath, the temperature of the *He gas can be decreased down to 1.3K.
The cooled gas expands with supersonic velocity through the nozzle with the
diameter of 500 gm into the vacuum undergoing a pressure difference from
10 mbar to 107" mbar (at a flux of 40 sccem=1.8 10! atoms per second). The
atomic beam is formed by two appertures: A skimmer and a collimator with
diameters 1.5 mm and 2.0 mm, which are situated at the distances of 20 mm
and 85 mm from the nozzle, respectively. Behind these appertures only 107>
of the initial number of atoms leaving the nozzle remain in the beam.
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Wavelength distribution The beam, cooled down to 4.2 K has an average
de Broglie wavelength of 5.7 A and a full width at half maximum (FWHM) of
the wavelength distribution of about 20%. The average de Broglie wavelength
and the width of the distribution (FWHM) for a 1.3K atomic beam are
9.0 A and 15%, respectively.

Attenuation of the beam Since the detector has a saturation rate of
2MHz, it is necessary to attenuate down to this rate the beam intensity,
which is to be detected. In order to do this so-called flags can be inserted into
the beam. The first flag transmits about 10% of the helium beam intensity,
and the second one about 2%. In addition, a chopper can be inserted into
the beam behind the flags. The beam is chopped by this rotating chopper
wheel into small bunches. This opens the possibility to perform time of
flight spectroscopy. Since the chopper has a transmission factor of 1/32, it
also attenuates the beam intensity. When both flags and the chopper are in
the beam only 2.2 10~ of the beam intensity in front of the flags reaches the
detector.

4.1.3 Polarizer

Beam polarization The *He atomic beam is polarized by means of a
quadrupole electro-magnet with a maximal magnetic field of 1.2T. As in
the Stern-Gerlach experiment one spin component with respect to the beam
axis is focused, the other one is defocused. The atoms of the latter spin
component are blocked. The separation of both spin components is more
effective for a slow atomic beam. In order to globalize the locally separated
spin component the spins are coupled adiabatically in a permanent magnet,
the so-called guiding field. The direction of this field, which is perpendicular
to the beam axis, defines the direction of the polarization of the beam.

Wavelength distribution at the surface The wavelength distribution
of the atomic beam when reaching the probed surface depends not only on
the initial wavelength distribution behind the source. The focusing prop-
erties of the polarizer influence the wavelength distribution at the surface
significantly. By means of filter bands, which are fixed in the polarizer and
analyzer, the wavelength distribution can be optimized. After the adjustment
of the polarizer the average de Broglie wavelength takes a value between 5
and 9 A for an initial 4.2 K-atomic beam and the FWHM of the wavelength
distribution lies between 15 and 40%.
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4.1.4 Spin echo coils

The 3He atoms polarized perpendicularly to the beam axis propagate into
the first spin echo coil of the length of 520 mm. This coil creates a magnetic
field parallel to the beam axis. The change in orientation of the magnetic
field from perpendicular (guiding field) to parallel to the beam axis (spin
echo coil) causes the atomic spins to flip by 7/2. In order to realize the
spin flip the transition from one magnetic field to the other must be non-
adiabatic. The second spin echo coil is situated behind the first one and is
constructed completely identically. Only the direction of the magnetic field
in this coil is opposite to the direction of the magnetic field of the first one.
This corresponds to a w-flip in the region between these coils. More details
on the spin echo coils can be found in [Schmidt, 1996].

4.1.5 Preparation and scattering chambers

The non-magnetic UHV scattering chamber is situated between the two
spin echo coils. The preparation chamber is built on top of it. The tar-
get is mounted on the cooling finger of a liquid-helium cryostat which has
two functions: To cool the target and to manipulate the target position
[Reetz-Lamour, 2001]. In the preparation chamber the surface is prepared
and subsequently lowered down into the scattering chamber for the follow-
ing experiment. The special construction of the scattering chamber and its
connections with the tubes containing the spin echo coils allow to rotate this
chamber by an angle of up to 45°. The detector arm of the apparatus can
be rotated around the scattering chamber by up to 90° with respect to the
beam axis without vacuum losses. Thus, scattering angles between 90° and
180° can be scanned continuously.

4.1.6 Analyzer

The analyzer situated behind the second spin echo coil consists of a guiding
field and a hexapole magnet with a magnetic field of 0.6-0.8 T. Between
the second spin echo coil and the guiding field occurs a second 7/2-flip.
After that one of two spin components (in dependence on the polarity of the
guiding field) is adiabatically transferred into the hexapole magnet, where
this separated component is focused into the detector. The apertures on the
front and back side of the analyzer have an inner diameter of 6 and 3 mm,
respectively.
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4.1.7 Detector

The detector consists of a mass spectrometer and an electron multiplier. The
atoms with separated spin component, which are focused by the analyzer into
the detector, are ionized by collisions with an electron beam superimposed
onto the atomic beam. In the last sector magnet the accelerated ions are
deflected into the electron multiplier according to the ratio e/m. The pulse
rate in the detector reflects the rate of incident *He atoms. The number of
atoms with spin up (in the direction of the initial polarization), Ny, and the
one with spin down (in the opposite direction), N, are measured separatelly
by switching the polarity of the guiding field of the analyzer. The polarization
of the atomic beam is given by

_M-N

- . 45
N+ N, (4.5)

4.1.8 Angular resolution of the *He spectrometer

The full width at half maximum of the direct beam profile determines the
angular resolution of the *He spectrometer to A©; = 3.5mrad. This value
is defined by the beam divergence from the exit aperture of the polarizer
to the enterance aperture of the analyzer. The transfer width w depends
on the instrumental resolution AOf, w = A\gp/(AOfcosfy) [Comsa, 1979),
where \sp denotes the average de Broglie wavelength and ¢ is the angle of
the reflected beam with respect to the surface normal. The transfer width
corresponds to a linear scale in the plane of the surface on which information
about the surface percularities are directly measured. Therefore, this value
is also named the coherence length. A small angular resolution and thus the
large value of the coherence length are some of the advantages of the *He
spectrometer.

4.2 Data analysis

4.2.1 Wavelength distribution from spin rotation or
spin echo curve

In this work we only give a short introduction into the spin echo princi-
ple. For the measurement of quantum reflection this method is useful only
for the direct and exact determination of the distribution of the de Broglie
wavelengths in our polychromatic atomic beam. We restrict ourselves to the
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Figure 4.3: Semi-classical representation of the spin echo method, adapted
from [Schmidt, 1996].

semi-classical representation of the spin echo method. More detailed and
profound descriptions are found in [Schmidt, 1996, Hafner, 1999].

A 3He-atom, which is polarized perpendicularly to the beam axis, prop-
agates with the velocity v into the magnetic field of the first spin echo coil
oriented parallel to the beam axis. The spin with magnetic moment pu pre-
cesses around the z-axis of the magnetic field B(z) with the Larmor frequency
wr, = 2uB(z)/h = vB(z), where v = —27-32.334 MHz T~" denotes the gyro-
magnetic ratio for 3He atoms. Behind the magnetic field the spin has picked
up an additional precession phase ¢ = fOL dz vB(z)/v = yBL/v, where B
is the magnetic field averaged over the length L of the coil. The projection
of the spin onto the initial spin direction gives the value of the polarization
after the first spin echo coil

P = §R(ei¢) = €0S ¢ = cos (’y%) . (4.6)

The polarization of the polychromatic atomic beam after the first spin echo
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Figure 4.4: Left: Experimental spin rotation curve (dots) and fit curve (solid
line). Right: Wavelength distribution obtained from the spin rotation curve
by Fourier transformation (solid line) and time of flight measurement (open
symbols), adapted from [Lang, 1998].

coil is given through the de Broglie wavelength distribution n(\yp) as

00 I _
P = / d)\dB TL()\dB) COS (’YmT)\dBB> . (47)
0

From Eq. (4.7) one can see that the polarization is the cosine-Fourier trans-
formed function of the de Broglie wavelength distribution n(Agz). The enve-
lope of the measured polarization is related to n(Agg) through the Fourier-
transformation. The functional dependence of the polarization after the first
spin echo coil on the magnetic field integral BL is the so-called spin rotation
curve, which is depicted on the left-hand side of Fig. 4.4. The corresponding
wavelength distribution is plotted on the rigth-hand side of Fig. 4.4.

In the second spin echo coil identical to the first one but with opposite
orientation of the magnetic field the spins precess back. Behind this coil the
polarization takes the value of the initial polarization before the first spin echo
coil. The function of the polarization on the detuning of the magnetic field
integral of one of each coils represents the so-called spin echo group. Thus,
one can obtain the wavelength distribution as a Fourier-transformed function
of the spin echo group behind each of the two spin echo coils separately, i.e.
before or after the scattering process. In the case of elastic scattering, the spin
echo groups are indentical and symmetric with respect to the zero detuning
of the magnetic field integral.
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Figure 4.5: Beam profile measurement: Intensity of the direct beam as a
function of the detector position. (a) The intensity in logarithmic scale is
plotted versus the detector position in isel-steps. The maximum [, deter-
mines the value of the scattering angle §; = 180°. (b) The same data is
plotted in linear scale versus the scattering angle #, in degrees.

If, however, the atom is inelastically scattered from the surface, which
is situated between the two spin echo coils, its kinetic energy is altered. It
propagates in the second spin echo coil for a different time than in the first
one and acquires a different precession phase. The latter phase no longer
compensates the phase, which it is accumulated in the first coil. In the case
of the inelastic scattering the spin echo curve is asymmetric with respect to
the zero-detuning of the magnetic field integral.

Advantages of the determination of the wavelength distribution
from the spin echo curve for the quantum reflection measurement

e The spin echo curves can be obtained by the detuning of the magnetic
field integral of one of each spin echo coils. Thus, we obtain the de
Broglie wavelength distribution directly before or after the scattering
process. From time of flight measurements the wavelength distribution
behind the nozzle is obtained. By going through the polarizer it can
however be changed. This changed distribution can be obtained only
by Fourier-transformation of a spin rotation or a spin echo curve.

e The asymmetry of the spin echo curve with respect to the zero mag-
netic field integral indicates the inelastic scattering process. Quantum
reflection being absolutely elastic must lead to a symmetric spin echo

group.
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Figure 4.6: Measurement of the direct beam intensity as a function of the
incident angle ; by rotating the target. The curve is symmetric with respect
to #; = 90° which proves correct positioning of the target with respect to the
rotation axis. The left parts of the curves are fitted with functions discussed
in the text (solid lines). (a) Experimental data obtained with an a-quartz
crystal. The scattering plane at 6; = 90° coincides with the beam axis. (b)
Experimental data obtained with a gold crystal. The target is inserted into
the beam across the beam axis.

e The width of the spin echo group is related to the width of the wave-
length distribution. In the quantum reflection process the wavelength
distribution must be conserved after the scattering. The measurement
of the wavelength distribution before and after the scattering process
therefore gives the possibility to check it.

4.2.2 Determination of the total scattering angle

The first step in the experiments discussed in this work is the determination
of the reference angle between the incident beam axis and the axis of the
detector arm. The reference angle is chosen to be 180° such that it can be
adjusted by scanning the angle in the presence of a direct beam without a
target. The reference angle is determined by the angle at which maximum
beam intensity is detected. In the following, all specifications of the angle re-
ferring to the detector position, 6, will be given with respect to the reference
angle. Fig. 4.5 (a) depicts the detected intensity profile of the direct beam
in logarithmic scale as a function of 6, given in isel-steps. The position of
the maximum intensity I, determines the reference angle. The same data are
plotted on a linear scale versus the corresponding scattering angle in degrees
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*He source detector

Figure 4.7: Inserting the target into the beam. The surface plane is separated
from the beam axis by the distance b. I, and I denote the incident and
detected beam intensities.

in Fig. 4.5 (b). The point, around which the detector arm is rotated, lies
under the cryostat axis with a possible deviation of the order of 0.5 mm. The
symmetry axis of the probed surface coincides with the cryostat axis. Thus,
for a fixed angle 6, the angle of the probed surface #; can be tilted around
the symmetry axis in order to detect a Bragg reflex. The angle 6; at which
the Bragg reflex has maximum intensity represents the incident angle. The
fixed angle 0, represents the scattering angle 6, = 6; +- 0. The incident angle
f; is measured between the incident beam axis and the normal to the probed
surface.

4.2.3 Placing the target into the beam

After determining the scattering angle the detector is fixed under #;, = 180°
and the target is placed into the beam. The scattering plane is adjusted
parallel to the incident beam axis. The incident angle 6; is automatically
scanned from 90° to 0° and from 90° to 180° using a gear mechanism. Fig. 4.6
displays the detected intensity of the direct beam while rotating the probed
surface by an angle #;. In Fig. 4.6 (a) and (b) an a-quartz target and a
gold surface were used, respectively. The position of maximum intensity
determines the reference angle 6; = 90°. Perfect adjustment of the symmetry
axis of the probed surface with respect to the rotating axis of the detector arm
becomes manifest by a symmetric intensity curve with respect to 6; = 90°.
We will concider the two possible initial positions of the surface plane:

1) The incident beam axis falls into the surface plane, and

2) the incident beam axis lies in a plane parallel to the surface plane.

In the first case the target is inserted into the direct beam such that half
of the initial beam intensity, Iy, is detected (see Fig. 4.6 (a)). The scattering
point, to which the position of the detector is optimized, lies in this case in
the middle of the target surface and simultaneously on the incident beam
axis. We now fix some scattering angle 6, and look for a specular peak by
varying the incident angle ;. The value 26;, at which the maximum of the
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Figure 4.8: Schematic representation of the elastic scattering in the case of a
shifted surface plane by the distance b with respect to the scattering point to
which the detector position is aligned. The real scattering angle 26; exceeds
the adjusted scattering angle 6.

specular reflected intensity is detected, will be in fact equal to the scattering
angle f;, which was held fixed.

In the second case, when the beam axis falls into a plane parallel to the
surface plane, the scattering point does not lie in the surface plane. There is
some distance b between the scattering point and the surface (see Fig. 4.7).
Only part of the direct beam intensity reaches the detector. If the surface
plane is situated below the beam axis, the value of this intensity is smaller
than I/2 (see Fig. 4.6 (b)). We now fix some scattering angle ; and look for
a specularly reflected peak by rotating the target. The maximum intensity
of this peak occurs, however, not at the incident angle 6; = 6,/2, but at
0; > 60,/2. This confirms the fact that the scattering point, to which the
detector is optimized, does not lie in the surface plane, from which the beam
is reflected. By measuring the values of the scattering and incident angles,
the distance b can be obtained from a geometrical picture [Rowntree, 1990].
We denote the distance between the scattering point and the detector as 74,
the minimal distance from the detector up to the incident beam axis as =,
the distance between the intersection point of the incident beam axis with x
and the one of the incident beam axis with the surface as y and the distance
between the intersection point of the incident beam axis with the surface
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Figure 4.9: Distance b in mm as a function of 6; calculated from the ex-
perimental data according Eq. (4.8) (full squares). Since the measurement
is performed at grazing incidence the applied equation yields inaccurate re-
sults. This becomes manifest from the rising distance b with increasing ;.
The solid line represents a linear fit of the data in order to illustrate this
trend.

and the scattering point as Ay (see Fig. 4.8). Since y = z/tan(26;) =
Tget Sin 05/ tan(260;) and Ay = b/ cosf; we obtain the distance b from the
equation y + Ay = 74 cos by,

sin 6,
_ . __smbs 4.
b = rge; cosb; (cos 0, fan(20,) ) (4.8)

The distance b between the scattering point and the surface can be ob-
tained in such a way only if the incident angle is not too large. In the latter
case the incident beam axis will hit the side of the target without intersecting
the surface. The reflected intensity results from a part of the incident beam,
which reaches the surface at this incident angle. The specular peak therefore
has an asymmetric shape. Since the reflected beam goes through an aperture
situated at the exit of the scattering chamber, the beam profile is partially
symmetrized.

The detected maximum of the symmetrized reflex, however, does not
correspond to the maximum of the incident beam. Therefore, the incident
angle, at which this maximum value occurs, does not correspond to the real
incident angle of the beam. The determination of the distance b from the
difference between the fixed scattering angle and 26; by equation (4.8) is not
correct anymore.

In the experiment with the gold surface the target was inserted into the
beam, such that at §; = 90° only 10~* of the direct incident beam intensity
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Figure 4.10: Selected profiles of the measured specular reflexes at grazing
beam incidence for increasing #; (from top left to bottom right graph). The
asymmetry of the profiles becomes visible at larger #;. Due to quantum re-
flection the maximum intensity rises for increasing ;. For simplicity, the data
are fitted with a Gaussian function. However, the position of the intensity
maximum is still to be corrected in order to give the true incident angle of
the beam 6;.
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was detected. At grazing incidence in the range of incident angles between
86° and 89.8° the incident beam axis intersects the side of the target. The
profiles of the specularly reflected beams at very large 6; have a well visible
asymmetrical shape, as it is depicted in Fig. 4.10. For simplicity, they are
fitted by a Gaussian function. Fig. 4.9 displays the value of the distance
b obtained from Eq. (4.8) as a function of ;. The incident angles 6; are
determined from the positions of the maxima of the Gaussian functions. One
can see that the value of b increases with #; at grazing incidence. The solid
line represents the result of a linear fit in order to illustrate this trend. The
rising deviation of b from a constant value confirms the fact that #; cannot be
determined correctly from Gaussian fits. The correct relation between #; and
O, can be found from independent measurement of the value b, as discussed
in the following section.

4.2.4 Reflection coefficient at grazing beam incidence

At increasing incident angle #; between the beam axis and the surface normal
the projection of the surface onto the plane perpendicular to the beam axis
decreases. This means that at large 6; part of the beam does not reach the
surface. By placing the target into the beam such that half of the incident
beam intensity reaches the detector at #; = 90° the beam is truncated sym-
metrically with respect to the incident beam axis. One of two equal parts of
the beam which do not reach the surface, Ijos5e5(0;), is measured by rotating
the target in the direct beam. The results of such measurements are depicted
in Fig. 4.6.
The reflection coefficient |R|?> from a surface S is equal to

P, /dS

R]?> =
| d®,/dS’

(4.9)
where ®; and ®; denote the flux incident to the surface and the flux reflected
from the surface, respectively. Since the detected intensity is the flux through

the surface perpendicular to the beam axis, Sy, the reflection coefficient as a
function of #; has the form

_ (d@l/dSO) COS 92 _ Ispecul(gi)
(d@o/ng) COS 92 IO — 2Ilosses(9i) '

|RI*(6;) (4.10)

Here, I;,cqu represents the detected intensity of the specularly reflected beam
and [ is the intensity detected without inserting the target into the beam. In
the experiment with the surface of an a-quartz crystal the function [},sses(6;)
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is represented in Fig. 4.6 (a) and fitted by the fourth-order polynomial func-
tion P(cosf;) = (a+bcosf;+ccos? §;+d cos® O;+e cos' 0;) I,/2. The resulting
fit parameters are a = 1, b = —16.6, c =0, d = 1144.7, and e = —4756.6.

In the case that the surface and the scattering point are separated by
some distance b the losses from both sides of the incident beam axis at graz-
ing incidence are not equal. The incident beam profile perpendicular to the
beam axis is well described by a Gaussian function, (w/7) ! exp(—2?/w?)
with rms-width w. The beam axis is situated at the coordinate x = 0.
The fraction of the incident beam intensity reaching the surface at the in-

cident angle 6; is equal to Iycos8;(w+/T)~ fLLCZ(S)SH/?;bb dr exp(—x?/w?) =

Iy cos 0;(wy/m)~ fLchzge/jz dr exp(—(x —b)?/w?). Here, L denotes the diam-
eter of the surface. The detected intensity Ispec, is equal to the reflected
flux through the surface S; to which the detector position is optimized.
From equations S;/S = cosf; = cos(f; — 6;) and Eq. (4.8) it follows that

(0s — ;) = 6; — arcsin(2bsin6;/rqe;). We obtain the reflection coefficient

Ispecur COS (0 — ar051n(2bsm‘9 ))
REG) = —— e )
Iowff Lcoso dx exp( %) cos B;
(4.11)

cos (0 — arcsm(%jig )) 1 Loosd; P (z — b)? N
cos 6; wy\/T _ Loost; P w?

2
|Runcorr|

where |Runcorr|> denotes the reflection coefficient before correcting for the
intensity losses and the deviation of the surface center from the scattering
point.

Determination of the lengths b and w The unknown parameters in the
expression for the reflection coefficient Eq. (4.2.4), b and w, can be obtained
from the measurements plotted in Fig. 4.6 (a) and Fig. 4.6 (b) for quartz and
gold surfaces, respectively. In the latter measurement the probed surface was
shifted by the distance b with respect to the incident beam axis.

The curve in Fig. 4.6 (b) for the gold surface was fitted by the function

(wym)~ [ Leosti/2 gy exp(—(x —b)? /w?) using the programm Mathematica.
The resultmg fit parameters are b = 0.93 mm and w = 0.57 mm.
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Figure 4.11: AFM-scan of the a-quartz surface. Top picture: Top view of
a 20 x 20 pm2-region of the surface. The left gray-scale displays the local
surface height. Bottom graph: Height profile of the same region in horizontal
direction.

4.3 Results

3SHe-a-quartz measurement Our first quantum reflection experiment
was performed by Christian Schmidt on an a-quartz crystal (SiOy) with
a thickness of 1 mm and a polished surface of the diameter of 25 mm. Be-
fore chemical etching of the surface of the sample, an atomic force microscopy
(AFM) measurement is performed in order to check the quality of the surface.
This measurement indicates that the surface is stepped with terraces between
the steps of a length in the scanning direction of the order of 0.1 um (see
Fig. 4.11). The rms surface roughness, which is the rms-width of the distri-
bution of the step heights, is determined to be 12 A [DeKieviet et al., 1997].
The further etching could reduce this roughness, but not significantly. For
our data analysis we have used a rms-width of (10 +2) A. At small incident
angles no low-energy electron diffraction (LEED) image and no specular re-
flection are obtained. From such a strongly disordered surface the beam is
reflected completely diffusively. The target position is optimized to detect
half of the direct beam intensity, i.e. b =0 (see section 4.2.3).

A 4.2K cold *He atomic beam with the corresponding average de Broglie
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Figure 4.12: Measured reflection coefficient from the a-quartz surface at
grazing incidence with respect to the dimensionless average wave number
(full triangles). The open circles depict the corrected reflection coefficient to
the case that the entire beam intensity reaches the surface.

wavelength of 5 A is formed as described in Sec. 4.1.2. In the range of incident
angles between 84° and 89.73° specular reflection is measured. Since the
intensity of the reflected beam is much lower than the intensity of the incident
beam it was not necessary to strongly attenuate the incident beam. The rate
of incident atoms per second through a surface perpendicular to the beam
axis, intensity Iy, is fixed to 1.8 103 Hz '

The measured reflection coefficient is equal to the ratio of the measured
specular reflected beam intensity to the incident one. It is depicted by the full
triangles in Fig. 4.12 as a function of the dimensionless average incident wave
number normal to the surface, k;a = kg cos 6;a. Here, kg = 0.93 A-land a =
2.65 A denote the incident wave number and the position of the 3He-atom-
a-quartz-surface potential minimum [Kunc and Shemansky, 1985]. The data
are corrected to the incident beam intensity losses at grazing incidence as it
is detailed in Sec. 4.2.4. These corrected data are represented in Fig. 4.12
by open circles and denote the values of the reflection coefficient in the case
when the entire incident beam intensity would reach the surface.

For every incident angle, at which the specular reflex is measured, the spin
rotation curve is recorded in order to know the exact wavelength distribution

!During the adjustment of the target in the direct beam the incident intensity I is
attenuated to the value of 1.8 MHz due to the saturation rate of the detector of the order
of 2MHz (see Fig. 4.6 (a))
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Figure 4.13: Wavelength distributions before the scattering process at dif-
ferent incident angles obtained from Fourier-transformation of the measured
spin rotation curves.

before the scattering process. This measurement is performed by detuning
the magnetic field integral of the first spin echo coil, which is situated in front
of the target. The de Broglie wavelength distributions, which are obtained by
Fourier-transformation of the spin rotation curves, are plotted in Fig. 4.13.
The shift of the average de Broglie wavelength in the direction of larger
values and the appearance of a second maximum of the curves result from
a combination of filter peculiarities of the polarizer and the analyzer. At
0; = 89.73° the average de Broglie wavelength is measured to be 6.5 A. The
corresponding incident beam energy E, = h*(2m)?)\;5/(2m) then amounts
to 0.63meV. In the course of data analysis the shift of the average incident
energy from this value for different 6; is taken into account.

For the interaction of a 3He-atom with the dielectric a-quartz surface
the potential strength C) is obtained by multiplying the C-coefficient of the
interaction with a perfectly conducting surface with a function of the surface
dielectric constant € = 4.5 [Tab, 1980] (see Eq. (3.19)). Since the function
(e—1)/(e+1)¢(¢) is equal to 0.492, C, takes the value Cy = 3.93 10~ Jm* =
23.6eVA?. The attractive Casimir-van der Waals potential between the *He-
atom and an a-quartz surface as a function of the atom-surface distance r in
units A, is given in eV by

23.6

V(r)= —m.

(4.12)

The numerical simulation for quantum reflection from this potential is
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represented by a solid line in Fig. 4.14. The method for this simulation is
already discussed in chapter 2, section 2.2. Since the quantum reflection is
simulated for scattering from a smooth surface, the further correction of our
data obtained from a strong disordered surface is necessary. The correction
factors for the reflection coefficient from a stepped surface with Gaussian dis-
tributed step heights are calculated in chapter 3, section 3.4.1. The transfer
width in the interval of the incident angles, in which quantum reflection is
measured, has the values between 2 ym and 40 pym and is much larger than
the average terrace length L ~ 0.1 um. Thus, these factors can be used to
transform the data obtained from our disordered surface to the data for a
smooth surface in order to compare them with the simulated curve. The re-
sulting values of the reflection coefficient at scattering from a smooth surface
are depicted in Fig. 4.14 by full circles. They are in excellent agreement with
the expected, numerically calculated values. Open circles in the same figure
correspond to the open circles in Fig. 4.12.

The figure in the right top corner of Fig. 4.14 shows the reflection co-
efficient on a In(—In)-scale in order to observe the high- and low-energy
asymptotes as straight lines with respect to In(k;a). As one can see, our
data lye in the energy-region between the low-energy asymptote, Eq. (2.111),
and the high-energy asymptote, Eq. (2.72), coming very close to the latter
asymptote. Since the p-parameter for the system *He-atom-a-quartz-surface
is small, p = (1.940.2), the high-energy asymptote is determined only by the
non-retarded van der Waals potential and is given by Eq. (2.82). In Fig. 4.14
this asymptote is represented by a solid straight line with the slope 1/3. It
is the first theoretically explained measurement of the quantum reflection
very close to the high-energy limit, which can be analytically described in
the frame of the ¢ uasi-classical approximation (see Sec. 2.3).

In order to compare the calculated potential strength Cy = 253.8 meV A3,
which is confirmed by our measurement with the accuracy of 11%, we use the
formula (3.46) and the parameters V5 = 9.6 meV, a = 2.65 A and n = 13.5
from [Kunc and Shemansky, 1985]. The given literature values lead to the
parameter C5 = 236.4 meV A?, which corresponds to the calculated value
with the accuracy of 7%.

At the incident angles #; lying between 84° and 89.73° the incident normal
energy E; = Ejcos?0; is between 6.9 peV and 14 neV. The distance rq is
determined from the equation r3(ry + 1) = C4/E; and lies between 30 A and
183 A. Since quantum reflection occurs from the vicinity of ro we probe the
interaction potential approximately at the distances between 30 and 200 A.
The temperature correction at such distances is predicted to be negligible
(see Sec. 3.2).
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Figure 4.14: Reflection coefficient as a function of the dimensionless incident
wave number k;a (o< cosf;). Open circles: Experimental data from the
stepped surface. Full circles: Corrected data, representing QR from the
smooth surface. Solid line: Computer simulation using the potential given
by Eq. (3.21) parametrized with C; = 23.6eVA* and [ = 9.3nm. Inset:
Replot of the same data on a In(— In)-scale versus In(k;a). The straight line
of slope=1/3 shows the asymptote Eq. (2.111) with §3 = 347 A; the straight
line at small In(k;a), with slope=1 and ordinate axis intercept ~ In(2.43;/a)
for p & 1.9 [Friedrich et al., 2002], is the low-energy asymptote Eq. (2.111).

SHe-gold (Au(111)) measurement In the scattering experiment with
3He and a gold surface, performed by Thilo Stoferle, the atomic beam is
cooled down to a temperature of 1.3 K. This *He atomic beam has a wave-
length distribution with a relative width of about 20% at an average de
Broglie wavelength of 9 A. The corresponding average kinetic energy of the
beam amounts to 0.337 meV. The target is placed into the beam with the
surface plane being at the distance b from the beam axis (see Fig. 4.7). The
(111)-surface of an Au crystal of a diameter of 2cm was atomically rough
so that no LEED and no *He specular peak were observed at small inci-
dent angles #;. At the incident beam intensity of 5 MHz quantum reflection
was measured in the interval of the incident angle #; between 86.283° and
89.833°. The measured reflection coefficient as a function of the incident nor-
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Figure 4.15: Measured reflection co-
efficient from Au(111) at grazing in-
cidence versus the energy of the inci-
dent atoms perpendicular to the sur-
face (open circles). Reflection coef-
ficient corrected to the case that the
entire incident beam intensity reaches
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Figure 4.16: Same corrected data as

in Fig. 4.15 in a In(—In)-scale versus
the In of the dimensionless wave num-
ber (full circles). The solid line corre-
sponds to the numerical simulation in
Fig. 4.15. The solid straight line with
slope 1/2 represents the high-energy

asymptote which is determined by the
pure retarded Casimir potential.

the surface (full circles). The solid line
depicts the result of the numerical sim-
ulation.

mal kinetic energy FE; is represented by open circles in Fig. 4.15. At grazing
incidence only a fraction of the beam intensity reaches the surface. We take
this into account by correcting the reflection coefficient as it is described in
detail in Sec. 4.2.4. All numerical parameters are presented in section 4.2.4
as well. The reflection coefficient from a smooth surface in the case that
the entire beam intensity reaches the surface is depicted as a function of the
incident energy by full circles in Fig. 4.15.

The potential strength Cy for the Casimir-van der Waals attractive in-
teraction between a neutral *He atom and a perfectly conducting surface,
given by equation Cy = 3hca/(87), takes the value Cy = 7.783 1075 Jm* =
48 eVA*. Taking into account the transition length I = 93 A the attractive
potential between the perfectly conducting surface and the *He atom as a
function of the distance r in A is given in eV by

48

V(r)= Ig.

(4.13)

In the interval of #; from 86.283° to 89.833°, in which our experiment is
performed, the normal incident beam kinetic energy lies between 1.1 peV
and 2.4 neV. The corresponding distance 7 falls between 64 and 356 A, re-
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spectively. We probe the interaction potential approximately in this interval.
At such large distances it is assumed that the atomic roughness does not in-
fluence the attractive potential, however it destroys specular reflection from
the repulsive potential wall. Numerical simulation of the quantum reflection
coefficient from a flat conductive surface is carried out in analogy to the one
in the previous experiment and is depicted by a solid line in Fig. 4.15. In this
simulation the parameter [ is held fix at 93 A and C is varied in order to fit
the experimental data. We obtain the value Cy = (454 6) eVA*, which is in
perfect agreement with the calculated value of 48 eVA*. Fig. 4.16 shows the
experimental data and the numerical simulation on a In(— In)-scale versus
the In of the average incident wave number k; normalized to the Bohr radius
ap = 0.529177 A. The solid straight line with the slope of 1/2 represents the
hight-energy asymptote Eq. (2.83), which is determined by the pure retarded
Casimir potential —Cy/r*. For the parameter p = 2.9 we calculate the valid-
ity range of this asymptote from Eq. (2.88) to be —7.3 < In(k;a9) < —4.1.
In the latter range this asymptote is the dominating one. Since, however,
the parameter p is relatively small, the range in which this asymptote dom-
inates is comparatively small. At much higher energies In(k;ap) > —4.1
the behavior of the reflection coefficient is determined by the non-retarded
potential.

We calculate the van der Waals potential strength C3 = C,/l =
516 meVA? and obtain the value of Cy = (484 + 65) meVA? from fitting our
data. We can compare the van der Waals potential in the vicinity of the posi-
tion of the potential minimum with a literature value. Since however at r < [
the imperfection of the surface conductivity changes the value of C'; we must
take this effect into account. By using the literature values for the interaction
potential Vy = 8 meV, a = 3.98 A and n = 12 [Vidali et al., 1991] we obtain
the value of the potential strength from the formula (3.46) Cs = 703 meVA?.
Taking into account the correction of C3 given by Eq. (3.40) at the position
of the potential minimum the strength coefficient at this distance amounts
to Cy(corrected in a)= (629 + 85) meVA?, which is in agreement with the
value of 703 meVA? obtained by using the literature potential parameters.

4.3.1 Reflection from a truncated potential

In [B6heim and Brenig, 1982] the quantum reflection process is described by
the reflection coefficient from a truncated potential. This potential has the
form of the real interaction potential at atom-surface distances exceeding the
position of the potential minimum a and a constant value of the potential
minimum —V{ at smaller distances. The potential is plotted in Fig. 4.17. The
motivation for such a description of the reflection process is that quantum
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Figure 4.17: Schematic illustration of the truncated interaction potential.
The real total interaction potential is truncated at the position of the po-
tential minimum a and continued by the constant value of the potential
minimum —V; for distances smaller than a. The arrows to the right of the
distance a indicate the incident and reflected wave functions very far away
and close to the surface. The arrow to the left of the distance a represents
the wave function of the transmitted wave.

reflection occurs already from the attractive part of the potential. In the
truncated potential the repulsive wall is absent. In this case one can assume
that the part of the wave reaching the potential minimum (or the repulsive
wall in the real potential) propagates further with constant velocity. This
corresponds to the complete adsorption to the surface in the case of a real
interaction potential. The entire reflection from the truncated potential then
results from the attractive part of the potential.

The  formula  for  the  reflection  coefficient  given  in
[Boheim and Brenig, 1982] is calculated in the following way. The
wave function near the surface propagating towards the surface can be
represented by a linear combination of two functions of the coordinate,
U(r) = A(C(r) —iS(r)). At very large distance r these functions behave
as cos(kor) and sin(kor), respectively, so that at r — oo, ¥(r) ap-
proaches the wave function of the free wave propagating towards the surface,
Aexp(—ikor). Here, A denotes the initial wave amplitude. The reflected part
of the wave function is represented by ¥*(r) = iBW¥(r) = B(iC(r) + S(r)).
The transmitted wave propagating further in the constant part of the poten-
tial is described by the wave function of a free wave, Wy(r) = Cexp(ik,r),
where k, = /k3 +2mVy/h?. The constants B and C' denote the am-
plitude of the corresponding wave functions. By matching the sum
U(r) + U*(r) to Wo(r) at the position of the potential minimum a,
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Figure 4.18: Simulated reflection co-
efficient from the truncated potential
versus the dimensionless wave number
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to the case of a smooth surface (full
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Figure 4.19: Same simulated data
points as in Fig. 4.18 (stars). The
full and open squares correspond to
the simulated reflection coefficients
from the potentials with factor 10
smaller and factor 10 larger potential

strengths, respectively.

(U'(a) + ¥(a))/(¥(a) + ¥*(a)) =
coefficient

Ui (a)/¥o(a), we obtain the reflection

P B_ Alcky
A (C"(a) — koS(a))? + (S"(a) + koC(a))?”

(4.14)

Here, the prime denotes the derivative with respect to r. In this calculation
the Wronskian W{C(r), S(r)} is fixed to be equal to k.

We simulate the scattering process of *He-atom from the truncated po-
tential with the attractive part of the *He-atom-a-quartz-surface in order to
compare the simulated reflection coefficient with our experimental data. For
simplicity, the retardation effect is ommited. The values of the reflection
coefficient resulting from the numerical simulation are represented by stars
in Fig. 4.18. In the same figure, the experimental data corrected to the ex-
pected values of the reflection coefficient from a smooth surface are depicted
by solid circles. One observes a strong deviation between the simulated and
experimental values especially for higher energies.

This deviation can be explained in simple terms. The reflection coefficient
given by Eq. (4.14) describes the process of the reflection from the step,
which is formed by the truncated potential. The reason for this process is
the shifting of the phase of the wave function near the surface to the phase
of the wave function of the free wave penetrating ”"deep into the surface”.
In contrast to this process quantum reflection occurs far from the surface
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and is independent of this phase shift. In spite of the similar behavior of the
reflection probability from the step as a function of the energy of the incident
wave, the reflection coefficient has a larger value than the quantum reflection
coefficient. It includes the values of the quantum reflection coefficient and
the reflection coefficient resulting from the phase shift at the edge of the
potential step. At lower energies the deviation between the values of the
reflection coefficient from the truncated potential and the quantum reflection
coefficient vanishes, because the largest part of the incident wave is firstly
quantum reflected far from the surface, thereby suppressing reflection near
the surface.

Fig. 4.19 shows the dependence of the reflection coefficient from the trun-
cated potential on the dimensionless wave number of the incident wave for
three different values of the potential strength. The stars, full boxes and
open boxes correspond to the real value, to the factor 10 smaller value and
to the factor 10 larger value of the real potential strength, respectively. For
smaller values of the potential strength the reflection coefficient increases,
which coincides with predictions for quantum reflection. However, the quan-
titative description of quantum reflection by the reflection from the truncated
potential is not possible as is discussed above.

Simulation of the reflection from the truncated potential The first
version of a program for simulating the reflection coefficient from a potential
with boundary conditions, for instance from the truncated potential, was
written by Ulrich Schmidt in Mathematica [Schmidt, 2002]. The important
feature of this program is the possibility to observe the dynamical develop-
ment of wave packets from infinity towards the surface and the other way
around. A wave packet describes a non-monochromatic beam and has a wave
function given by the integral over all monochromatic wave functions with
corresponding probabilities.
The program works in the following steps:

e The interaction potential is subdivided into many linear intervals. This
modelled potential approaches the real potential shape when the inter-
val lengths are very small.

e Boundary conditions must be defined. Firstly, very far from the surface
the potential is assumed to be zero. Secondly, the condition for the
potential near the surface has to be determined. In the case of the
truncated potential this condition is described by the constant value
of the potential at the coordinates smaller than the position of the
potential minimum.



4.4. ANALYSIS OF THE EXPERIMENTS BY SHIMIZU ET AL. 97

e The wave function is given in an analytic form in every coordinate
interval. In the intervals, in which the potential has a constant value,
i.e. very far from the surface and ”deep inside the surface”, the wave
functions have the exponential form for a freely propagating wave. In
an interval, in which the potential is linear with the coordinate, the
wave function is given by linear combination of Airy-functions, A: and
Bi. The argument of these functions depends on the coordinate, wave
number and the potential value in the interval.

e The propagation time can be chosen for instance such that at t = 0
the wave reaches the position of the potential minimum. At very large
negative times the wave function is still very far away from the surface
and at very large positive times the wave function of the reflected wave
is already far away from the surface.

e The dynamic development of the wave function from ¢ ~ —oo to
t ~ 400 is realized by matching the wave functions of neighbouring
intervals.

e A wave packet is approximated by the sum of a large finite number
of weighted wave functions with different wave numbers. For every
value the development of the corresponding wave function is deter-
mined. This results in the development of the total wave paket.

e The intensity of the wave packet is calculated by integrating the ab-
solute value of the wave function squared over the coordinate. The
simulated value of the reflection coefficient is given by the ratio of the
reflected intensity to the incident one far from the surface.

Unfortunately, the simulation of the quantum reflection coefficient using
this program is hardly possible. The reason is the necessity to give the
boundary condition for the potential at ¢ = 0. All such conditions lead to
a phase shift of the wave function, resulting in additional reflection. Since
quantum reflection occurs solely at small values of the incident atom energy
the wave packet is correspondingly very broad. Thus, it is impossible to
spatially separate quantum reflection from the additional reflection.

4.4 Analysis of the experiments by Shimizu
et al.

In this section we present the analysis of the experimental data published
by [Shimizu, 2001, Shimizu and Fujita, 2002]. In one out of two experiments
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Figure 4.20: Schematic illustra- Figure 4.21: Scanning microscope

tion of the experimental setup for photograph of the silicon grating sur-

measuring quantum reflection, from face. Top: Cross-sectional view. Bot-

[Shimizu and Fujita, 2002]. tom: Expanded view of the ridge.
From [Shimizu and Fujita, 2002].

quantum reflection of metastable neon atoms from a silicon (1,0,0) surface
(and also from a BK7 glass surface) is measured at very low incident energies.
In the second experiment, which is performed with the same experimental
setup, the surfaces of four silicon samples are specially prepared, as it will
be discussed below.

The experimental setup is schematically shown in Fig. 4.20 from
[Shimizu and Fujita, 2002]. Neon atoms in the state 1s; are trapped and
cooled in a magneto-optical trap (MOT). They are optically pumped into
the metastable state 1s3 and are released from the trap, falling under the
gravitational force with the average velocity (vy) of 3m/s. The atoms reach
the silicon surface and are specularly reflected. The atom energy perpendic-
ular to the surface is varied by changing the angle between the surface and
the incident atomic beam. The value of this angle is measured by a reflex of
an additional He-Ne laser, which is directed onto the surface from aside. The
reflected beam forms a line-shaped image on a microchanel plate detector
(MCP). The internal energy of roughly 10eV of the metastable neon is large
enough to produce a signal in the MCP detector.

In the first experiment quantum reflection from a smooth surface is stud-
ied as a function of the incident atom velocity normal to the surface. In
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[sample  [p[um] [d[um] | d/p | Bs[pm] [ Bi[pm] ] p [ In({v;) [mm/s])< |
non-ridged
surface 1 1 1 6.0 0.60 10 1.7
1 100 11 0.11 0.66 0.20 3.31 2.8
2 100 1 0.01 0.06 0.06 1 4.0
3 10 41072 | 0.004 0.024 0.038 | 0.63 4.4
4 30 41072 | 0.0013 | 0.008 0.022 | 0.37 5.0

Table 4.2: List of the relevant parameters for five experiments by
[Shimizu, 2001, Shimizu and Fujita, 2002] with different surface shapes: pe-
riodicity of the ridges p, width of the top of the ridges d, ratio d/p, length
paramters for van der Waals and Casimir potentials (3 and 3, parameter p,
and validity range of the low-energy asymptote in terms of the logarithm of
the normal atom velocity.

the second experiment periodic ridges with flat top are prepared on the sur-
faces of four silicon samples (see Fig. 4.21 from [Shimizu and Fujita, 2002]).
The details of the experiments and the surface preparation are presented in
[Shimizu, 2001, Shimizu and Fujita, 2002].

The periodicity of the ridges, p, and the width of the top, d, are different
for each sample. These values for all samples are listed in Tab. 4.2. The
motivation for studying such surfaces is the following. In all formulas (see
Eq. (2.82), Eq. (2.83) and Eq. (2.111)) the quantum reflection coefficient is a
function of the product (k;b), where b is proportional to 85 or 3;. This means
that the reflection coefficient increases not only with decreasing energy of the
atom perpendicular to the surface (or k;), but also with decreasing potential
strength 3 o< C3 (or B4 o v/Cy). In the first order of accuracy the potential
strength C3 (or Cy) is proportional to the density of surface atoms. For a
ridged surface the potential strength is reduced by approximately the factor
d/p, C3 — (d/p) Cs, if we assume that the reflection occurs above the first
surface layer, i.e. above the plane of the top of the ridges. In this case
the potential length (3 is also reduced by the same factor d/p, the length
parameter of the Casimir potential 3, and the parameter p by the factor
\/M, Bs — (d/p) B3, By — \/% By and p — \/M p. The experiments
are performed in the same region of normal velocities of the incident atoms
between approximately 1 and 33 mm/s. For the samples with different ratio
d/p one expects that the reflection coefficient increases with smaller d/p.
Fig. 4.22 shows the measured behavior of the reflection coefficient (in the
figure denoted as reflectivity). One can see that for smaller ratio d/p the
reflection coefficient is larger at the same atom velocity.
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Figure 4.22: Measured reflection coefficient versus the normal incident
velocity: smooth surface (solid line) and ridged surfaces with d/p =
0.11, 0.01, 0.004, and 0.0013, (crosses, open triangles, open circles, 