Faculty of Engineering Sciences
Heidelberg University

Master Thesis
in Computer Engineering
submitted by
Sergej Bespalov

born in Moskau
02/06/2025

REDUCING GLOBAL MEMORY
ACCESSES IN DNN TRAINING USING
STRUCTURED WEIGHT MASKING

This Master thesis has been carried out by Sergej Bespalov
at the
Institute of Computer Engineering
under the supervision of
Prof. Dr. Holger Froning

ABSTRACT

Training large deep neural networks (DNNSs) is often constrained by
memory bandwidth, with frequent global memory accesses repre-
senting a significant performance bottleneck. This thesis investigates
the potential of dynamic structured weight masking to alleviate this
bottleneck during training, focusing on the ResMLP architecture—a
feedforward network composed exclusively of Multi-Layer Percep-
trons. A novel framework implementing block-wise masking based
on L2 norm magnitude and top-k selection was developed and evalu-
ated on the CIFAR-10 dataset. The study systematically varied block
sizes and sparsity ratios, analyzing the impact on classification accu-
racy, theoretical computational cost (FLOPs), and theoretical memory
movement.

Results indicate that model accuracy remains robust up to approxi-
mately 50% sparsity when the mask is also applied during the back-
ward pass; beyond this threshold, classification accuracy degradation
is observed. Notably, larger blocks contribute to improved compu-
tational efficiency under masked backward conditions by offering
hardware-friendly memory access patterns, whereas in unmasked
backward passes, smaller blocks tend to perform more favorably in
terms of maintaining accuracy. A key observation is the discrepancy
between the substantial reduction in computationally active weights
and the limited decrease in estimated memory movement, suggesting
that tangible memory savings can only be achieved with hardware-
aware implementations that bypass unnecessary data loads. Theoreti-
cal FLOPs decrease linearly with increasing sparsity, confirming the
potential for computational efficiency gains.

Overall, this work contributes an empirical analysis of dynamic
structured weight masking in MLP-based architectures, offering in-
sights into the trade-offs between mask ratio, block granularity, and
training stability. The findings underscore the importance of co-designing
masking patterns to achieve improvements in both computational
cost and memory access, while also highlighting considerations for
maintaining training stability. Furthermore, they provide practical
guidelines for the efficient training of DNNs on systems with limited
memory or computational resources.

ZUSAMMENFASSUNG

Das Training grofser Deep Neural Networks (DNNs) wird hiufig durch
die Memory Bandwidth eingeschrankt, wobei hdufige Global Memory
Accesses einen signifikanten Performance Bottleneck darstellen. Die-
se Arbeit untersucht das Potenzial von Dynamic Structured Weight
Masking, um diesen Engpass wéahrend des Trainings zu mildern, mit
Fokus auf die ResMLP Architecture — ein Feedforward Network, das
ausschlieflich aus Multi-Layer Perceptrons besteht. Ein neuartiges Fra-
mework, das Block-wise Masking auf Basis der L2 Norm Magnitude
und Top-k Selection implementiert, wurde entwickelt und auf dem
CIFAR-10 Dataset evaluiert. Die Studie variierte systematisch Block
Sizes und Sparsity Ratios und analysierte deren Auswirkungen auf die
Classification Accuracy, die Theoretical Computational Cost (FLOPs)
sowie das Theoretical Memory Movement.

Die Ergebnisse zeigen, dass die Model Accuracy bis zu einer Sparsi-
ty von etwa 50% robust bleibt, sofern die Maske auch im Backward
Pass angewendet wird; jenseits dieser Schwelle wird eine Verschlech-
terung der Classification Accuracy beobachtet. Bemerkenswerterweise
tragen groflere Blocke unter Bedingungen eines maskierten Backward
Pass zu einer verbesserten Computational Efficiency bei, indem sie
Hardware-friendly Memory Access Patterns ermoglichen, wihrend bei
unmaskiertem Backward Pass kleinere Blocke tendenziell vorteilhafter
hinsichtlich der Erhaltung der Accuracy sind. Eine zentrale Beob-
achtung ist die Diskrepanz zwischen der erheblichen Reduktion der
Computationally Active Weights und der begrenzten Abnahme des
geschétzten Memory Movements. Dies deutet darauf hin, dass sptirba-
re Speichereinsparungen nur durch Hardware-aware Implementations
erzielt werden konnen, die unnotige Datentransfers umgehen. Die
Theoretical FLOPs nehmen linear mit zunehmender Sparsity ab, was
das Potenzial fiir Effizienzgewinne in der Berechnung bestétigt.

Insgesamt leistet diese Arbeit einen empirischen Beitrag zur Analyse
von Dynamic Structured Weight Masking in MLP-basierten Architek-
turen und bietet Einblicke in die Kompromisse zwischen Mask Ratio,
Block Granularity und Training Stability. Die Ergebnisse unterstreichen
die Bedeutung einer sorgfiltigen Gestaltung von Masking Patterns,
um sowohl Verbesserungen bei den Computational Cost als auch beim
Memory Access zu erzielen, und heben gleichzeitig Aspekte zur Wah-
rung der Training Stability hervor. Des Weiteren liefern sie praktische
Richtlinien fiir das effiziente Training von DNNs auf Systemen mit
begrenzten Speicher- oder Rechenressourcen.

Simplicity is the ultimate sophistication.

— Leonardo da Vinci

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to several individuals and
institutions who have played a crucial role in the completion of this
Master’s thesis.

First and foremost, I extend my deepest appreciation to my supervi-
sor, Daniel Barley. His invaluable guidance, unwavering support, and
remarkable patience throughout this research journey were instrumen-
tal. I am particularly grateful for his willingness to always take the
time to answer my questions in a competent and professional manner,
which significantly contributed to my progress.

I am also profoundly grateful to Professor Holger Fronig, under
whose esteemed leadership this thesis was undertaken. His oversight
and academic direction provided a strong foundation for this work.

My thanks also go to all the members of the HAWAII Lab. The
friendly, supportive, and intellectually stimulating atmosphere they
cultivated made my research experience both enjoyable and produc-
tive.

Finally, I wish to acknowledge the ZITI at Heidelberg University.
The academic environment and resources provided by ZITI were
essential for conducting the studies that culminated in this thesis.

vil

CONTENTS

1 Introduction and Motivation 1
2 Background 5
2.1 Machine Learning Overview 5
2.1.1 Supervised Learning 6
2.1.2 Forward Pass 6
2.1.3 Loss Function 7
2.1.4 Backward Pass 7
2.1.5 Further Training Methods 8
2.2 Neural Network Architectures 9
2.2.1 Convolutional Neural Networks (CNNs) 9
2.2.2 Multi-Layer Perceptrons (MLPs) 10
2.2.3 Recurrent Neural Networks (RNNs) 10
2.2.4 ResMLP Architecture 10
2.3 GPU Acceleration in Deep Learning 13
2.4 Datasets for Image Classification 15
2.5 Pruning and Masking Techniques 15
2.5.1 Structured Sparsity in Neural Networks 16
2.5.2 Dynamic vs. Static Masking 17
2.6 PTFlops 18
3 Literature Review 19
3.1 Weight Masking and Dynamic Sparsity in Training 19
3.1.1 Principles and Applications of Weight Mask-
ing 19
3.1.2 Dynamic Sparse Training (DST) Methodologies
3.2 Structured Sparsity and Memory Efficiency in DNN
Training 22
3.2.1 Advancements in Structured Sparsity 22
3.2.2 Techniques for Memory-Efficient Training 23
3.3 Advancements in MLP-based Architectures 24

3.3.1 The Resurgence and Evolution of MLP Architec-
tures 24

3.3.2 Sparsely Activated Models: Mixture-of-Experts
(MoE) in MLPs 25

3.3.3 Situating this Thesis’s Approach to MLP Effi-
ciency 26

4 Methodology 27

4.1
4.2

43

Methodological Approach 27

Dataset and Preprocessing 28

4.2.1 CIFAR-10 Dataset 30

4.2.2 ImageNet Dataset for Scalability Exploration 30
Structured Weight Masking 31

4.3.1 Mask Application 31

20

X

I CONTENTS

4.3.2 Backward Pass with and without Masking 31
4.4 Measurement and Analysis Strategy 33
4.4.1 Computational Cost Estimation 33
4.4.2 Model Accuracy Evaluation 33
4.4.3 Masking Pattern Analysis 34
4.4.4 Theoretical Memory Movement Estimation 34
4.4.5 Extraction of Key Performance Indicators 35
Implementation 37
5.1 Introduction 37
5.1.1 Codebase Overview 37
5.2 ResMLP Model Modifications 39
5.2.1 Adaptation for CIFAR-10 and ImageNet 39
5.2.2 Model Configuration Details 41
5.2.3 Data Loading and Preprocessing 42
5.2.4 Data Loading and Preprocessing 44
5.3 Structured Weight Masking Implementation 44
5.3.1 Mask Generation 44
5.3.2 Mask Application 46
5.3.3 Masking with and without Backward Pass 47
5.3.4 FLOPs Calculation 47
5.3.5 Accuracy Evaluation 49
5.3.6 Theoretical Memory Movement Calculation 51
5.3.7 Extraction of Final Performance Metrics 52
5.4 Experimental Procedure Details 54
Benchmark and Results 57
6.1 Introduction 57
6.1.1 Computational Environment 57
6.1.2 Training Procedure 57
6.1.3 Hyperparameter Settings for Masking 58
6.1.4 Evaluation Metrics 59
6.2 Overall Performance Landscape: Accuracy and Memory
Movement 59
6.2.1 Presentation and High-Level Observations 59
6.2.2 Preliminary Results on ImageNet 62
6.3 Analysis of Memory Movement, Loaded Elements, and
Masking Granularity 63
6.4 Impact of Backward Pass Masking at High Mask Ra-

tios 64
6.5 Case Study: 32x32 Block Size at 80% Mask Ratio 66
6.5.1 Training Dynamics Comparison 66

6.5.2 Masking Pattern Visualization 67
6.6 Computational Cost Analysis (Theoretical FLOPs) 67
Discussion 71
7.1 Overview of Key Findings 71
7.2 Interpretation of Findings 72

CONTENTS | «xi

7.2.1 Accuracy-Mask Ratio Trade-off and Block Gran-

ularity 72
7.2.2 Theoretical Memory Movement versus Loaded
Elements 72

7.2.3 The Critical Role of Backward Pass Masking 73
7.2.4 Interpreting Scalability Challenges on ImageNet 75

7.3 Relation to Research Objectives and Literature 75

7.4 Implications of the Study 76

7.5 Limitations of the Study 77

Conclusion and Outlook 79

8.1 Conclusion 79

8.2 Outlook and Future Work 8o

Bibliography 83

INTRODUCTION AND
MOTIVATION

The rapid advancement of deep neural networks (DNNs) has led to sig-
nificant improvements across various domains, but it has also resulted
in ever-increasing model sizes and computational complexities. Train-
ing these large-scale models requires vast computational resources
and prolonged training times, with performance often limited by the
capabilities of underlying hardware accelerators such as Graphics
Processing Units (GPUs). A critical bottleneck in this process is the
memory subsystem—specifically, the bandwidth and latency involved
in accessing extensive weight tensors and intermediate activations
stored in global memory [10]. The frequent transfer of data between
the slower global memory and the faster on-chip memory hierarchies
(e.g., shared memory, caches, registers) can dominate execution time,
thereby impeding training efficiency and scalability. Mitigating this
memory bottleneck is essential for developing and deploying larger,
more powerful DNNSs.

Sparsity, the practice of reducing the number of active parameters
or operations, has emerged as a promising technique for enhancing
DNN efficiency, particularly in the context of model inference [10].
However, applying sparsity during the training phase presents unique
challenges and opportunities. This thesis investigates the potential
of leveraging sparsity specifically to alleviate the memory bottleneck
during DNN training. The core approach explored is dynamic struc-
tured weight masking. Unlike unstructured sparsity, which creates
irregular patterns of zeroed weights that often do not map well to
hardware, structured sparsity organizes the zeros into regular pat-
terns (e.g., blocks). This regularity aligns more effectively with the
parallel processing capabilities and memory access patterns of GPUs,
potentially enabling more efficient data handling and coalesced mem-
ory accesses [10]. Moreover, by dynamically adapting the sparsity
pattern during training via top-k selection based on the L2 norm
within blocks, this method retains greater flexibility compared to static
pruning techniques.

This research primarily focuses on applying dynamic structured
weight masking to the ResMLP architecture [25], a feedforward net-
work composed solely of Multi-Layer Perceptrons (MLPs) and de-
signed for image classification, with comprehensive evaluation per-
formed on the CIFAR-10 dataset. The ResMLP architecture is particu-
larly well-suited for this investigation as it avoids the spatial depen-
dencies inherent in convolutional networks and the complexity of
attention mechanisms present in other vision models. Furthermore, to

explore the method’s behavior on a significantly larger scale, prelimi-
nary experiments were also performed on the ImageNet dataset. These
initial tests, conducted with limited epoch counts, showed that the
masking strategies, as applied, did not achieve comparable accuracy
on ImageNet, indicating that further adaptations, not explored in this
thesis, would likely be necessary for effective performance on such
large-scale, diverse datasets. The primary objective of this work is
to assess the extent to which dynamic structured weight masking
can reduce global memory accesses during the training of ResMLP
networks, with the reduction of theoretical computational cost (FLOPs)
serving as a secondary outcome.

To achieve this objective, a dedicated framework was developed and
integrated into the ResMLP training pipeline. This framework facili-
tates the application of block-wise weight masking with variable block
sizes and sparsity ratios. A systematic experimental methodology,
including comprehensive benchmarking, was employed to analyze the
trade-offs involved.

The key contributions of this thesis include:

The development and implementation of a framework for apply-
ing dynamic structured weight masking (based on block L2 norm
and top-k selection) during the training of ResMLP networks.

Comprehensive benchmarking that evaluates the trade-offs among
classification accuracy, theoretical computational cost (FLOPs)
and theoretical memory movement across a wide range of block
sizes and sparsity ratios.

An in-depth analysis of the interplay between block granularity,
sparsity levels, and model performance, providing empirically
grounded insights for selecting appropriate masking parameters.

The identification and examination of the critical role of applying
the mask during the backward pass for maintaining training
stability, particularly at high sparsity levels.

A demonstration of the discrepancy between the significant re-
duction in computationally active parameters and the limited
reduction in theoretically calculated global memory movement,
highlighting the challenges in translating computational sparsity
into memory access savings without hardware-aware implemen-
tations.

This thesis is structured as follows: Chapter 2 provides background
information on machine learning concepts, neural network architec-
tures including ResMLP, GPU hardware, and sparsity techniques.
Chapter 3 reviews existing literature relevant to sparsity in deep learn-
ing, memory efficiency techniques, and MLP-based models. Chapter 4

INTRODUCTION AND MOTIVATION |

details the methodological approach, including the experimental de-
sign, dataset preprocessing, masking implementation strategy, and
evaluation metrics. Chapter 5 describes the technical implementation
details of the framework and measurement tools. Chapter 6 presents
the empirical results obtained from the benchmarking experiments.
Chapter 7 interprets these results, discusses their implications and lim-
itations, and relates them to the research objectives. Finally, Chapter 8
concludes the thesis by summarizing the key findings and suggesting
directions for future work.

3

Z BACKGROUND

21 MACHINE LEARNING OVERVIEW

Machine learning (ML) is a subset of artificial intelligence (AI) that
focuses on the development of algorithms enabling computers to learn
patterns from data and make decisions or predictions without being
explicitly programmed for each task. In traditional programming,
input data is processed by a predefined set of rules to produce an
output. Machine learning, however, works by allowing models to learn
those rules from data itself, automating complex decision-making and
pattern recognition processes [4, 16].

An illustration of this concept can be seen in Figure 2.1, which com-
pares traditional programming and machine learning approaches. In
traditional programming, a set of explicit rules is applied to input data,
while in machine learning, the model learns patterns from examples
(data) to make decisions or predictions.

Program

e

Result

Data ’

Figure 2.1: Comparison between Conventional Programming and Machine
Learning: In conventional programming, data and a program are
combined to produce a result, while in machine learning, data
and results are used to generate a program through learning
algorithms.

Deep neural networks (DNNs), a subset of machine learning (ML)
models and the primary focus of this work, operate based on several
key constituents. The specific learning paradigm employed in this
thesis is supervised learning, which will be described first. Subse-
quently, the core operational components common in training such
networks, namely the forward pass, loss function, and backward

6

| BACKGROUND

pass (utilizing backpropagation), will be detailed. These components
allow the model to iteratively improve its accuracy by minimizing the
loss function.

2.1.1 Supervised Learning

Supervised learning involves training a machine learning model, such
as a DNN, on labeled data, where each input is paired with the correct
output (ground truth). The model learns to map inputs to outputs by
minimizing the difference between its predictions and the actual labels,
a difference quantified by a loss function. During training, processes
like the forward pass and backward pass are used to iteratively adjust
the model’s parameters to reduce this loss. Supervised learning is
most commonly employed for tasks like classification and regression
and is a widely used technique in machine learning, with popular
algorithms including decision trees, support vector machines, and
neural networks [8].

In this work, supervised learning is the method applied to train
the ResMLP model. For example, in the image classification task
undertaken, the model is trained on a dataset where each image is
labeled with the object it contains (e.g., dog, cat, car). During training,
the model learns the distinguishing features of each class, allowing it
to classify new, unseen images effectively.

2.1.2 Forward Pass

In the forward pass, the input x passes through the layers of the
network. At each layer, the input undergoes transformations, typically
involving a linear operation (such as matrix multiplication) followed
by a non-linear activation function [6].

For a fully connected layer, the linear transformation of an input
row vector x is mathematically expressed as xW' + b, yielding the
output z. In frameworks like PyTorch®, for efficient matrix operations,
the weight matrix W is often stored such that its transposed form,
WT s directly utilized in the computation. This aligns with typical
memory layouts for optimized performance [6].

z=xW' +b (2.1)

where x is the input vector from the previous layer (or the input data
for the first layer), b is the bias vector.

After computing z, a non-linear activation function (such as ReLU,
sigmoid, or tanh) is applied [4]:

a=o0(z) (2.2)

PyTorch is a widely used deep learning framework that provides dynamic compu-
tational graphs and seamless integration with GPUs for efficient training. Official
documentation is available at https://pytorch.org/.

https://pytorch.org/

where ¢ is the activation function, and a represents the activated out-
put, which becomes the input for the next layer. The activation function
is employed to introduce nonlinearity into the model, enabling the
network to learn complex patterns[6]. This nonlinearity is crucial for
the backpropagation algorithm, as it helps ensure that gradients are
non-zero and can be propagated through the network, allowing for
meaningful weight updates during the optimization steps.

The process repeats through all layers until the final output is
obtained. The forward pass concludes with the model making a pre-
diction, which is compared to the true label using the loss function.
In the following subsection, the concept of the loss function will be
explained in detail to provide a deeper understanding of its role in
training.

2.1.3 Loss Function

The loss function £(1,y) measures how well the model’s prediction
7 matches the actual target (i.e., ground truth) y. For classification
tasks, the cross-entropy loss is commonly used [6], which penalizes
the model based on the discrepancy between its predictions and the
true labels:

C
L(@y) =- Eyi log (7:) (2.3)
iz
where C is the number of classes, y; is the true label (one-hot encoded),
and 7#; is the model’s output for class i. Note that ; is not directly
a probability but is typically transformed into probabilities using a
softmax function:

oo exp(z))

T () 0
where z; is the pre-softmax score (logit) for class i. The softmax func-
tion is crucial as it normalizes the logits into a probability distribution,
ensuring that the predicted probabilities sum to 1, which is essential
for interpreting the model’s confidence in its predictions [6]. Alterna-
tively, an argmax operation may be applied to determine the predicted
class index.

These transformations are crucial for interpreting the model’s output
and computing the loss [6]. To understand how this loss is utilized
to update the model parameters, the mechanics of the backward pass
will be detailed in the following subsection.

2.1.4 Backward Pass

After computing the loss during the forward pass, the backward pass
is used to update the model’s parameters in order to minimize the loss.

This is accomplished through backpropagation, a process in which the
gradient of the loss function with respect to each model parameter is
calculated by propagating errors backward through the network using
the chain rule of calculus [4].

For a parameter 6, the gradient of the loss function £ with respect
to 0 is computed as:

9L _ 9L oda 9z (2.5)
90 9a oz 00 5

with the following components: % is the gradient of the loss with re-
spect to the layer’s output, g—; represents the gradient of the activation
function, g—g denotes the gradient of the linear transformation.

Once the gradients are computed, the model parameters are up-
dated using an optimization algorithm like stochastic gradient descent
(SGD), through which parameters are adjusted iteratively based on
the gradient derived from randomly selected mini-batches of training
data [6]:

9<—0—11-%§ (2.6)

where 6 represents a model parameter, and this equation represents
the gradient descent update rule, with 77 being the learning rate.

These two passes, forward and backward, allow the model to iter-
atively improve by reducing the loss function and getting closer to
making accurate predictions.

2.1.5 Further Training Methods

In addition to supervised learning, other training methods such as
unsupervised learning and reinforcement learning are widely used in
machine learning. These methods differ in their approach to learning
and the type of data they utilize.

Unsupervised learning is applied to unlabeled data, where the
model identifies patterns, structures, or relationships without explicit
guidance. Traditional loss functions based on prediction error can-
not be used, as no predefined output is available. Instead, the model
is optimized to uncover internal structures or patterns within the
data. Common tasks include clustering, where similar data points are
grouped together, and dimensionality reduction, where the number
of features is reduced while preserving essential information. Tech-
niques such as k-means clustering and principal component analysis
(PCA) are frequently employed for these purposes [4]. For instance,
unsupervised learning can be used to cluster customers based on
purchasing behavior, identifying market segments such as frequent
buyers or bargain hunters.

Reinforcement learning (RL), on the other hand, involves an agent
that interacts with an environment to maximize cumulative rewards
over time. The agent takes actions and receives feedback in the form
of rewards or penalties, which are used to learn an optimal policy for
decision-making [22]. Unlike supervised learning, RL does not rely
on a loss function based on immediate accuracy. Instead, a reward
function is utilized to guide the agent toward achieving long-term
objectives. The learning process is characterized by trial and error,
with adjustments to the policy being made based on accumulated
rewards. Reinforcement learning is commonly applied in domains
such as robotics, gaming, and autonomous vehicles, where sequential
decision-making is critical.

2.2 NEURAL NETWORK ARCHITECTURES

Deep learning, a subfield of machine learning, fundamentally relies
on the use of neural networks. These networks are characterized by
multiple layers of interconnected processing units (neurons), which
enable the automatic extraction of hierarchical features from data [14].
This capability for automated feature engineering makes deep learning
particularly effective for complex tasks such as image recognition,
natural language processing, and speech recognition, often eliminating
the need for manual feature design. While early concepts in neural
networks drew some high-level inspiration from simplified models of
neural processing in the brain, modern deep learning architectures
and their training mechanisms, such as backpropagation, operate on
principles distinct from biological neural processes [29]. Depending on
the specific task and data structure, different types of neural network
architectures are employed:

2.2.1 Convolutional Neural Networks (CNNs)

CNN:s are a type of feedforward network specifically designed for pro-
cessing grid-like data structures, such as images. They are particularly
effective at image-related tasks due to their ability to capture spatial
hierarchies of features. CNNs use convolutional layers to automati-
cally learn important features like edges, textures, and patterns in the
data, progressively abstracting the information as it moves through
deeper layers [6]. In the context of image classification, CNNs have
been widely used in systems like facial recognition and medical imag-
ing. The architecture is characterized by convolutional layers, pooling
layers (which downsample the data), and fully connected layers at the
end for classification [6].

10

2.2.2 Multi-Layer Perceptrons (MLPs)

MLPs are a type of feedforward network composed of multiple fully
connected layers, where each neuron in one layer is connected to
every neuron in the next layer. MLPs are capable of learning complex
representations of data and are often used for general-purpose tasks
like classification and regression [6]. While CNNs are specialized for
spatial data, MLPs are used more broadly and often serve as final
layers in hybrid architectures to perform tasks like decision-making or
classification based on features extracted by earlier specialized layers.

2.2.3 Recurrent Neural Networks (RNNs)

RNNSs, on the other hand, are designed for sequential data, with
their looped architecture enabling the network to learn temporal
dependencies [6]. This makes them particularly useful for natural
language processing (NLP) tasks, such as language translation, speech
recognition, and text generation. A specific type of RNN, Long Short-
Term Memory (LSTM) networks, addresses issues of learning long-
term dependencies in sequences [23].

2.2.4 ResMLP Architecture

The Residual Multi-Layer Perceptron (ResMLP) [25], utilized in this
work, is a variant of the standard MLP architecture adapted for image
classification tasks, simplifying the Vision Transformer (ViT) archi-
tecture. It processes an input image through a series of stages that
transform raw image data into a final class prediction. An overview
of these stages is provided below.

INPUT PROCESSING: PATCH EMBEDDING. In the initial stage, the
input image is divided into a grid of non-overlapping patches. Each
patch is flattened into a vector and then linearly projected into an
embedding space of a specified dimension. This patch embedding
layer converts the spatial structure of the image into a sequence of
feature vectors that serve as inputs for subsequent layers. Figure 2.2
illustrates the linearization of patches for one RGB image [25].

FEATURE EXTRACTION: RESIDUAL BLOCKS The core of the ResMLP
architecture consists of a stack of residual blocks that iteratively refine
the patch embeddings. A key feature is the use of residual connec-
tions, first introduced in ResNets [6], which allow the network to
bypass certain layers by passing the input directly to the output. These
connections address the vanishing gradient problem, which can occur
during backpropagation in deep networks [4, 16]. By enabling the gra-
dient to flow through the network more easily, residual connections

2.2 NEURAL NETWORK ARCHITECTURES |

1
Poo | Po1 | Po2 p°c

<

Input Image Embedding Matrix

Figure 2.2: Visualization of the linearization of patches shown in detail for
one patch of an RGB image. The patch is flattened along the row
axis and the channel data is interleaved. The patch is thereby re-
duced by one dimension. Afterwards a linear layer scales the em-
beddings to the desired output dimension. The graphic implies
sequential handling of patches only for visual clarity. Patches are
processed in parallel in the actual implementation[1].

help improve convergence and allow the training of deeper architec-
tures. In essence, residual connections allow the network to learn both
an identity mapping and a more complex transformation, which leads
to better optimization and more stable training dynamics [10]. Each
block performs two primary operations:

Cross-Patch Mixing: This operation facilitates the exchange of infor-
mation across different patches. It involves scaling the input embed-
dings using an affine transformation, transposing them, applying a
linear layer that preserves the embedding shape, and finally transpos-
ing them back to their original configuration. A scalar factor is applied
before adding the original input via a skip connection. Figure 2.3
demonstrates the forward computation of the cross-patch layer.

Cross-Channel Mixing: This operation focuses on transforming fea-
ture representations along the channel dimension within each patch. It
typically expands the feature dimension by a certain factor (commonly
4) using a linear layer, applies a GELU [9] non-linearity, and then con-
tracts the features back to the original dimension with a second linear
layer. A residual connection adds the original input to the transformed
output. Figure 2.4 provides a detailed view of the cross-channel layer’s
forward pass.

AGGREGATION AND CLASSIFICATION After feature extraction, the
refined patch embeddings are aggregated to form a global representa-
tion of the image. This is achieved using global average pooling, which
averages the features across all patches to produce a single feature
vector. The aggregated vector is then passed through a final linear

1"

12

| BACKGROUND

Figure 2.3: Forward computation of the cross-patch layer. The input embed-
dings are scaled using an affine transformation (element-wise
multiplication with a scalar &« and addition with a second scalar
B) and transposed. The transposed embeddings are fed to a
linear layer, which maintains the embeddings’ shapes. The em-
beddings are then transposed back to their original shape and
scaled element-wise by another scalar factor 7. Finally, the origi-
nal input is added to the result, realizing the skip connection [1].

layer—the classification head—which projects the features onto the
output classes, yielding the final prediction.

SUITABILITY FOR THIS WORK In summary, the ResMLP architecture
converts an input image into a sequence of patch embeddings, refines
these embeddings through residual blocks that employ both cross-
patch and cross-channel mixing, and aggregates the learned features
for classification. ResMLP suits this work particularly well because
it offers excellent optimization potential, which aligns with the goals
of this research focusing on memory efficiency. Several factors make
ResMLP an ideal candidate for optimization through structured weight
masking;:

e Its reliance on MLP blocks, primarily involving matrix multipli-
cations (linear layers), avoids the specific computational patterns
and overhead associated with convolutional filters or complex
self-attention mechanisms.

o The architecture is well-suited for sparsity-based optimizations.
Unlike convolutional layers which operate with small, spatially
structured kernels and maintain explicit spatial hierarchies in
their feature maps, the linear layers in ResMLP process patch
embeddings through large weight matrices. The absence of small,
shared convolutional filters and the direct application of these
large matrices to the full sequence of patch embeddings allows
for a more direct and flexible application of structured block-
masking patterns to the weight parameters.

e Its architectural design, which notably omits the complex self-
attention mechanisms found in Vision Transformers (ViTs) [25],
contributes to a potentially more favorable efficiency profile.

2.3 GPU ACCELERATION IN DEEP LEARNING

E

i
:

i
b

Figure 2.4: Cross-channel layer forward pass. As with the cross-patch layer
there is pre- and post-layer affine scaling. The input is expanded
by a factor of 4 by a first linear layer. A GELU [9] non-linearity is
applied and a second linear layer contracts the patch data to the
original size. Finally, the original input is added to the output[1].

While its total parameter count might be higher than that of
CNNs due to the latter’s use of weight sharing, the simpler
per-parameter operations in ResMLP can be advantageous.

By leveraging these properties, this research focuses on optimizing
the training process of the ResMLP model through the application of
dynamic structured weight masking. The primary aim of this masking
approach is to reduce memory movement during training, with the
reduction of computational costs being a beneficial secondary effect

[2, 3]

2.3 GPU ACCELERATION IN DEEP LEARNING

Graphics Processing Units (GPUs) are crucial for accelerating deep
learning workloads due to their parallel processing capabilities. Neural
networks involve extensive computations, such as matrix multiplica-
tions on large datasets, which are inherently parallelizable. [24].

A modern GPU architecture typically consists of many parallel pro-
cessing units. In NVIDIA GPUs, these are referred to as CUDA cores?,

CUDA (Compute Unified Device Architecture) is a parallel computing platform
and programming model developed by NVIDIA, allowing developers to leverage
the power of GPUs for general-purpose computing. More details are available at
https://developer.nvidia.com/cuda-zone.

13

https://developer.nvidia.com/cuda-zone

14

| BACKGROUND

which execute computations in parallel. GPUs manage thousands
of concurrent threads, making them highly efficient for large-scale
parallel data processing common in machine learning, such as matrix
and tensor calculations. These threads are often organized into groups
(e.g., "warps" in NVIDIA terminology, typically comprising 32 threads)
that can execute the same instruction on different data (SIMD/SIMT
paradigm) [11]. Such groups are scheduled onto larger execution units
within the GPU, often called Streaming Multiprocessors (SMs) in
NVIDIA architectures, which contain multiple processing cores. This
hierarchical organization of threads, blocks of threads, and grids of
blocks enables massive parallelism [18].

A critical factor for GPU performance is coalesced memory access,
ensuring that threads within a concurrently executing group access
contiguous memory locations. Coalesced accesses allow the GPU to
consolidate multiple memory requests into fewer, larger transactions,
thereby improving the effective utilization of memory bandwidth
and reducing latency. This is vital because global memory latency
on GPUs is significantly higher than on-chip computation speeds.
Uncoalesced accesses lead to fragmented transactions, underutilizing
bandwidth and increasing overall execution time [10]. Structured
sparsity techniques, such as the block-wise masking explored in this
thesis, inherently promote coalesced memory access by organizing
active weights into contiguous blocks, which can mitigate irregular
memory access patterns often associated with unstructured sparsity.

The NVIDIA A3zo GPU, utilized in this work’s experiments, is opti-
mized for machine learning workloads. It features specialized units
like Tensor Cores for accelerating matrix operations and is equipped
with 24 GB of HBM2e memory, providing a peak memory bandwidth
of up to 933 GB/s. This high bandwidth is essential for rapidly sup-
plying data to the processing units. Furthermore, the GPU’s memory
system, including its cache hierarchy and defined cache line size (e.g.,
128 bytes for the A30), influences memory efficiency. Accessing data
aligned with cache lines allows the memory controller to fetch data
in larger, more efficient chunks, potentially reducing the number of
individual memory transactions and the overhead associated with un-
aligned or scattered data fetches, especially when data locality can be
exploited. The A3o operates at a base frequency of 930 MHz, boostable
to 1440 MHz, with memory running at 1215 MHz3.

Frameworks like PyTorch simplify the utilization of GPU paral-
lelism by abstracting many low-level details of parallel execution and
memory management, allowing developers to more easily leverage
GPU capabilities for deep learning.

Key specifications for the NVIDIA A3zo PCle GPU include 3584 CUDA cores and
224 Tensor Cores, a peak memory bandwidth of 933 GB/s, and theoretical peak
performance of 10.3 TFLOPS (FP32), 82.6 TFLOPS (TF32), and up to 165 TFLOPS (FP16
with sparsity). Source: https://www.techpowerup.com/gpu-specs/a30-pcie.c3792.

https://www.techpowerup.com/gpu-specs/a30-pcie.c3792

2.4 DATASETS FOR IMAGE CLASSIFICATION \

2.4 DATASETS FOR IMAGE CLASSIFICATION

CIFAR-10 is a widely recognized benchmark dataset for image classifi-
cation tasks. It consists of 60,000 low-resolution color images (32x32
pixels) divided into 10 distinct classes, with 50,000 images desig-
nated for training and 10,000 for testing*. The images in CIFAR-10
are characterized by their small size and depict a variety of common
objects, including airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. The low resolution of these images presents
a challenge for classification algorithms, requiring models capable of
capturing subtle visual features.

Another relevant benchmark is the CIFAR-100 dataset. While also
containing 60,000 32x32 color images (split 50,000/10,000 for train-
ing/testing), it features 100 classes. This results in finer-grained catego-
rization and a wider array of object types compared to CIFAR-10, mak-
ing it a more complex classification challenge. Both CIFAR datasets are
extensively used in the machine learning community for evaluating
the performance of image classification models, such as CNNs and
MLPs, due to their challenging nature and substantial sample sizes.

For evaluating models in more complex and realistic scenarios,
the ImageNet dataset serves as a standard large-scale benchmark>.
ImageNet comprises millions of high-resolution images distributed
across thousand object categories, representing a significantly more
demanding task for image classification models compared to the
CIFAR datasets.

2.5 PRUNING AND MASKING TECHNIQUES

To optimize computational efficiency, reduce global memory accesses,
and achieve theoretical floating-point operation (FLOP) savings during
training, masking of weights is employed in this work. Masking, in
this context, involves dynamically identifying and effectively ignoring
certain elements (e.g., weights) during computation based on specific
criteria. While the masked weights remain stored in memory, their
contribution to the forward and potentially backward pass is nulli-
tied, thereby reducing the computational cost. This approach differs
from typical pruning methods where parameters are permanently
removed from the network structure [10], although pruning itself can
also employ dynamic criteria during training. The masking method
used here focuses on ephemeral sparsity, where sparse patterns are
applied dynamically and non-destructively [2], offering flexibility by
not inducing permanent structural changes.

CIFAR datasets official website: https://www.cs.toronto.edu/ kriz/cifar.html.
ImageNet is a large-scale image dataset containing millions of labeled images across
thousand categories, commonly used for training and evaluating deep learning
models. More information can be found at https://image-net.org.

15

https://image-net.org

16

By reducing the active elements involved in computation, masking
directly contributes to theoretical FLOP savings, indicating potential
improvements in the computational efficiency of deep learning models.
Furthermore, if masking is implemented within custom compute ker-
nels (e.g., in CUDA) designed to recognize and skip masked elements,
it can substantially reduce memory movement by minimizing the
data loaded from global memory during computations. This potential
reduction in memory traffic is particularly useful for managing mem-
ory bottlenecks and computational overhead in models like ResMLP.
Applying structured masking techniques, where blocks of weights
are dynamically masked, not only reduces the theoretical FLOP count
but also creates regular sparsity patterns. These patterns are poten-
tially more amenable to hardware acceleration and optimized memory
access strategies compared to unstructured sparsity, enhancing the
prospects for practical memory efficiency gains and making it feasible
to train larger models on GPUs like the NVIDIA A3o [3].

2.5.1 Structured Sparsity in Neural Networks

Structured sparsity in neural networks refers to the deliberate orga-
nization of weight sparsity into predefined patterns, such as blocks,
rather than allowing arbitrary, unstructured sparse distributions. This
approach aligns closely with the memory hierarchies and computa-
tional capabilities of modern hardware, particularly GPUs [10]. By
grouping weights into blocks (e.g., 8 x 8 or 16 x 16), structured spar-
sity aims to reduce the overhead associated with indexing scattered
sparse elements, thereby potentially lowering memory access costs
and enabling GPU-friendly optimizations, which are central to this
work. The efficiency gains from structured sparsity are particularly
relevant for mitigating the performance bottleneck caused by global
memory accesses in deep neural network (DNN) training [10].

In the context of MLP-based architectures like ResMLP, structured
sparsity offers distinct advantages. Unlike CNNs, which have strong
spatial inductive biases due to their convolutional kernels and locally
connected layers, the linear layers in ResMLP operate on flattened
sequences of patch embeddings using large weight matrices. The
absence of these inherent, localized spatial dependencies and weight-
sharing patterns found in convolutional layers means ResMLP’s weight
matrices can be partitioned into blocks with considerable flexibility,
potentially with minimal disruption to the model’s representational
capacity [25].

This thesis explores how varying block sizes in such a structured
sparsity scheme influences computational efficiency and accuracy
when training ResMLP on the CIFAR-10 dataset. The potential benefits,
such as reducing redundant memory transactions, could lead to lower
energy costs for training and enable the deployment of larger models

on resource-constrained hardware. These outcomes directly align with
the hardware-aware optimization objectives of this research [2]. By
designing masking strategies that are cognizant of GPU memory
access patterns, this work seeks to enhance the practical feasibility
of deploying ResMLP efficiently on hardware like the NVIDIA A3o,
contributing to the overarching goal of resource-efficient DNN training

[25].

2.5.2 Dynamic vs. Static Masking

Masking strategies in neural network training can be broadly catego-
rized into static and dynamic approaches, each with distinct impli-
cations for model flexibility and performance. Static masking, often
implemented as a form of pruning, involves the application of a fixed
sparsity pattern to the network’s weights before or during training,
with the mask remaining unchanged thereafter [10]. While effective for
reducing computational complexity and memory usage, static masking
lacks adaptability, as it cannot respond to evolving training dynamics
or input-specific patterns. This rigidity can lead to suboptimal accu-
racy, especially in tasks requiring nuanced feature representations,
such as image classification with ResMLP.

In contrast, dynamic masking is employed in this work, where the
sparsity pattern is recomputed adaptively during training. Specifically,
a top-k sparsity criterion is applied per forward pass, selecting the k
most significant weights (based on magnitude) for each input batch
and masking the rest [2]. This dynamic adjustment allows the model to
adapt to the input data, preserving flexibility and potentially capturing
more relevant features compared to static methods. For instance, in
the ResMLP architecture, where layers process global information
without convolutional locality, dynamic masking ensures that the most
impactful weights are retained for each specific image, enhancing the
model’s ability to generalize across datasets like CIFAR-10 [25].

The trade-off with dynamic masking lies in its computational over-
head, as the mask must be recalculated periodically during training
(e.g., each forward pass), unlike static approaches where the sparsity
pattern is determined upfront or only once. However, in the struc-
tured approach used here, this overhead is associated with processing
block-level statistics rather than individual weights, and the result-
ing block patterns are designed to be compatible with efficient GPU
execution [3]. By combining dynamic adaptation with structured spar-
sity, a balance between flexibility and potential hardware efficiency is
achieved. This dynamic, structured approach differs significantly from
conventional static pruning techniques, which typically fix the spar-
sity pattern early on and often result in unstructured sparsity that is
harder to accelerate [10]. The adaptability inherent in recalculating the
mask is particularly valuable for maintaining accuracy across different

17

18

| BACKGROUND

sparsity ratios, a key focus of the experimental analysis conducted in
this work.

2.6 PTFLOPS

The ptflops library® was utilized in this project to calculate the theoret-
ical floating-point operations (FLOPs) of the ResMLP network. ptflops
is a lightweight Python tool designed for profiling PyTorch-based
deep learning models [17]. It operates by attaching hooks to the layers
of the network and recording the number of multiply-accumulate
operations performed during a forward pass. This count is then typi-
cally converted to FLOPs (often by multiplying by two), providing a
theoretical estimate of computational complexity rather than a direct
measurement of hardware-specific execution time or energy [17].
While a direct measurement of FLOPs reduction through special-
ized sparse kernels was not implemented in this work, the ptflops
library serves as a useful tool for theoretically quantifying the potential
computational efficiency gains of the ResMLP network under differ-
ent masking conditions. It is important to note that ptflops provides
theoretical FLOPs based on the model architecture and the applied
mask ratios; these figures may not perfectly reflect actual hardware
performance improvements. Actual speedups are contingent on factors
such as memory access patterns, cache utilization, specific hardware
optimizations, and the availability of compute kernels that can effec-
tively skip operations on masked elements. Nonetheless, the library
supports standard PyTorch layers, including convolutions and linear
operations, and allows custom definitions for unsupported layers [17].
Its straightforward API makes it adaptable for research focused on
model optimization and resource efficiency. In this project, ptflops
was employed to provide insights into the theoretical performance
trade-offs associated with sparsity in the ResMLP network.

6 The ptflops library by Dmitry Nikolaev is available at https://github.com/
sovrasov/flops-counter.pytorch.

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch

LITERATURE REVIEW

This chapter reviews existing literature relevant to the core themes
of this thesis: enhancing the efficiency of deep learning model train-
ing. The review focuses on techniques related to sparsity, particularly
dynamic and structured approaches, memory efficiency strategies
during training, and relevant advancements in MLP-based architec-
tures pertinent to this work, such as ResMLP. The aim is to situate
the contributions of this thesis within the context of current research,
building upon foundational concepts introduced in Chapter 2.

3.1 WEIGHT MASKING AND DYNAMIC SPARSITY IN
TRAINING

3.1.1 Principles and Applications of Weight Masking

Weight masking, in its general sense, refers to the selective deacti-
vation or modulation of certain weights within a neural network.
This is typically achieved by multiplying weights with a binary or
continuous-valued mask, effectively removing or down-weighting
their contribution to the network’s computations for a given input or
task. While this thesis focuses on dynamic structured weight mask-
ing for training efficiency, the principle of weight masking has been
explored in literature for a diverse range of other purposes.

One significant application is the enhancement of model robustness
against adversarial examples. For instance, Kubo et al. [12] proposed
the Stochastic-Gated Partially Binarized Network (SGBN), where a
gate module, itself a shallow convolutional network, learns input-
dependent probabilities for stochastically masking (turning on or off)
individual weights in the main network’s convolutional filters. This dy-
namic, input-specific masking aims to make the model less susceptible
to small, crafted perturbations designed to cause misclassification.

Another area where weight masking has been applied is machine
unlearning, which focuses on making a model "forget" specific data it
was trained on. Wang et al. [26] propose a method for class-specific
unlearning where weights associated with the feature vectors of a
target class to be forgotten are masked. Their approach identifies
class-specific weights by analyzing feature vector statistics and aims
to render the model unable to recognize the forgotten class without

19

20

retraining or significant additional computation, while preserving
performance on retained classes.

Furthermore, weight masking techniques are being investigated to
improve fairness and mitigate biases in machine learning models. Xue
et al. [27] introduce Bias-based Weight Masking Fine-Tuning (BMFT),
a post-processing method. BMFT first generates a mask to identify
model parameters (weights) that contribute most significantly to bi-
ased predictions concerning sensitive attributes. It then employs a
two-step fine-tuning strategy: initially fine-tuning the feature extractor
on these identified bias-influenced weights to debias it, followed by
fine-tuning a reinitialized classification layer to maintain discrimina-
tive performance on a small, group-balanced external dataset.

These examples illustrate the versatility of weight masking. However,
they differ fundamentally from the focus of this thesis. The aforemen-
tioned methods employ masking for objectives such as adversarial
defense, targeted data forgetting, or post-hoc bias mitigation, often
involving different mask generation strategies or application scopes
(e.g., post-processing). In contrast, this thesis investigates dynamic
structured weight masking applied consistently during the training
phase of DNNs, with the primary goal of improving training efficiency
by reducing global memory accesses and, secondarily, computational
cost.

3.1.2 Dynamic Sparse Training (DST) Methodologies

Dynamic Sparse Training (DST) encompasses a class of techniques
that adaptively adjust a neural network’s sparsity pattern throughout
the training process. Unlike static pruning methods that determine
sparsity before or after training, DST allows for the exploration of
different sparse subnetworks during training, potentially leading to
better performance-efficiency trade-offs by allowing connections to
be pruned and regrown based on evolving criteria of importance [10].
This adaptability can be particularly beneficial as the significance of
weights and connections can change during the learning process.

Several distinct approaches to DST have been proposed in the litera-
ture:

MAGNITUDE-BASED DST WITH CONNECTION REGROWTH: Many DST
methods, including the one explored in this thesis, rely on weight
magnitudes to prune less salient connections and often incorporate
mechanisms to regrow connections. For example, RigL (Rigging the
Lottery) [5] periodically prunes a fraction of weights with the smallest
magnitudes and regrows the same number of connections by activating
weights with the largest gradient magnitudes. Sparse Evolutionary
Training (SET) [15] also prunes small-magnitude weights but regrows

connections randomly. These methods aim to find well-performing
sparse subnetworks from scratch or during training.

STRUCTURED SPARSE-TO-SPARSE TRAINING: Building upon DST
principles, Structured RigL (SRigL) [13] extends the Rigl method-
ology to learn fine-grained structured N:M sparsity patterns. SRigL
imposes a constant fan-in constraint (a specific case of N:M sparsity)
and dynamically updates the sparse connectivity by pruning small-
magnitude weights and regrowing connections based on gradient
magnitudes, while maintaining the structural constraint. It can also
incorporate neuron ablation to further improve performance at very
high sparsities by effectively reducing layer width. This approach aims
to achieve the benefits of DST while producing hardware-friendly
sparse patterns.

SPARSIFYING ACTIVATIONS AND GRADIENTS: Other DST techniques
focus on sparsifying not only weights but also activations or gradi-
ents. Dynamic Forward and Backward Sparse Training (DFBST) [19]
proposes to dynamically sparsify both the forward pass (weights/acti-
vations) and the backward pass (gradients) using separate trainable
masks. These masks are generated using trainable thresholds, and for
the backward pass, a variance penalty term is included in the loss
function to guide the learning of gradient thresholds. The goal is to
achieve a completely sparse training schedule, reducing computational
overhead in both passes.

DYNAMIC FILTER PRUNING DURING TRAINING: Instead of pruning
individual weights, some methods dynamically prune entire filters
(or channels) in convolutional neural networks during the training
process. Roy et al. [21] propose a "pruning while training" strategy
where filters are gradually pruned based on criteria like L1-norm
magnitude at regular intervals throughout training. This avoids a
separate retraining phase and allows the network to adapt to the
reduced filter set as training progresses, aiming to minimize accuracy
loss while achieving model compression.

SPARSE WEIGHT ACTIVATION TRAINING (SWAT): Another notable
approach is Sparse Weight Activation Training (SWAT) introduced
by Raihan and Aamodt [20]. SWAT aims to reduce training time
and computational FLOPs by sparsifying weights in the forward
pass, and both weights and activations during the computation of
gradients in the backward pass. A distinguishing feature of SWAT
is its update mechanism: it generates dense weight gradients which
are then used to update all network weights, including those that
were temporarily masked in the forward pass. This strategy facilitates
dynamic exploration of the network topology during training. SWAT

21

22

can be applied to induce both unstructured and structured sparsity,
such as channel pruning.

The dynamic structured weight masking approach employed in
this thesis shares similarities with magnitude-based DST in its use
of weight magnitudes (specifically, the Frobenius norm of blocks) for
selection. However, it differs significantly from the aforementioned
methods. Its primary distinction lies in its focus on creating block-
structured sparsity via top-k selection of entire blocks of weights, with
the main objective of reducing global memory accesses during training.
This contrasts with SRigL’s N:M patterns, DFBST’s focus on trainable
thresholds for both forward and backward pass sparsity, the filter-
level granularity of dynamic filter pruning, and SWAT’s emphasis
on FLOP reduction and its specific gradient update strategy. While
all aim for efficiency, the specific sparsity structure and the targeted
benefit (memory access patterns for blocks in this thesis) differentiate
the approach.

3.2 STRUCTURED SPARSITY AND MEMORY EFFI-
CIENCY IN DNN TRAINING

Achieving true performance gains from sparsity often necessitates
structured approaches, as unstructured sparsity can be challenging
to accelerate effectively on parallel hardware like GPUs. This section
reviews advancements in structured sparsity and techniques for im-
proving memory efficiency during DNN training, focusing on key
architectural patterns and their implications for hardware acceleration.

3.2.1 Advancements in Structured Sparsity

Structured sparsity refers to the organization of sparsity in predefined,
regular patterns, such as blocks or N:M configurations, which can
better align with hardware capabilities compared to arbitrary, un-
structured sparsity [10]. This regularity is intended to facilitate more
efficient memory access and computation on parallel processors like
GPUs.

Key approaches in structured sparsity include:

Block Sparsity: This involves partitioning weight matrices into
blocks and treating entire blocks as units for pruning or masking.
The method explored in this thesis is a form of dynamic block
sparsity. The rationale is that operating on contiguous blocks
can be more hardware-friendly than managing individual sparse
weights.

N:M Fine-Grained Structured Sparsity: This pattern mandates
that within a small, contiguous group of M weights, a specific

number N must be non-zero. For instance, NVIDIA’s Ampere
architecture introduced support for a 2:4 sparsity pattern, where
two out of every four weights can be pruned, allowing for spe-
cialized hardware acceleration [18].

Recent research has also focused on dynamically learning structured
patterns during training. For example, Structured RigL (SRigL) [13]
adapts dynamic sparse training principles to learn N:M structured
patterns by iteratively adjusting connections while maintaining the
structural constraint. Efficiency improvements have also been sought
by targeting specific parts of the training pipeline; for instance, by
using structured formats like Block Sparse Compressed Row (BSR) for
compressing data, such as activations, during the backward pass to
reduce memory overhead [2].

This thesis contributes by analyzing dynamic top-k block masking
applied to ResMLP weights, evaluating its impact on accuracy and
theoretical efficiency metrics.

3.2.2 Techniques for Memory-Efficient Training

The substantial memory requirements for training large DNNs, stem-
ming from weights, activations, and optimizer states, present a signifi-
cant bottleneck [10]. Several strategies aim to alleviate this:

Compression of Model Components:

— Weight Compression: Techniques such as NeuZip [7] aim
to compress the model weights themselves by exploiting
the statistical properties and entropy of their floating-point
representations, thereby reducing storage and potentially
data transfer costs.

— Activation Compression: Similarly, methods have been
developed to compress activation maps, particularly those
stored for gradient computation in the backward pass, to
reduce their significant memory footprint during training

[3].

Sparsification Techniques: As discussed, introducing sparsity
through pruning or masking (whether structured or unstruc-
tured) inherently reduces the number of active parameters. While
the focus of this thesis is on dynamic structured weight masking
for its potential impact on memory access patterns related to
weights, various sparsity approaches contribute to reducing the
overall model complexity [10].

The dynamic structured weight masking explored in this thesis is
presented as a strategy that complements these approaches by specifi-
cally targeting the memory accesses related to weight tensors during

23

24

the computational passes of training. It aims to reduce the amount of
weight data that effectively participates in computation by dynamically
selecting active blocks of weights.

3.3 ADVANCEMENTS IN MLP-BASED ARCHITEC-
TURES

3.3.1 The Resurgence and Evolution of MLP Architectures

Recent advancements in computer vision have seen a renewed ex-
ploration of architectures built primarily from Multi-Layer Percep-
trons (MLPs), moving beyond traditional convolutional designs. The
ResMLP architecture, introduced by Touvron et al. [25], exemplifies
this trend. It is designed as an architecture built entirely upon MLPs
for image classification, aiming for simplicity and encoding little prior
information about images.

The ResMLP model processes image patches through an initial lin-
ear projection followed by a sequence of residual operations. These
operations consist of: (i) a cross-patch linear layer where image patches
interact, applied independently and identically across channels, and (ii)
a two-layer feed-forward network (a single-layer MLP in terms of hid-
den layers) where channels interact independently per patch [25]. This
structure is inspired by Vision Transformers (ViTs) but introduces key
simplifications. Notably, ResMLP replaces the self-attention sublayer
of ViTs with a linear layer for cross-patch communication. According
to Touvron et al. [25], this modification contributes to more stable
training compared to ViTs under similar training schemes, allowing
for the removal of batch-specific or cross-channel normalizations like
BatchNorm or LayerNorm in favor of simpler affine transformations.

The authors demonstrate that ResMLP, when trained with modern
strategies including heavy data augmentation and optional distillation,
can achieve a surprisingly good accuracy/complexity trade-off on
ImageNet, even when trained from scratch without pre-training on
larger datasets, and without requiring complex normalization schemes
[25]. The paper also notes compatibility with self-supervised learning
and potential for adaptation to other domains like machine translation.
The architectural simplicity of ResMLP, particularly its reliance on
linear layers and basic MLP blocks for its core operations, makes it a
pertinent choice for investigating efficiency enhancements such as the
dynamic structured weight masking explored in this thesis.

3.3.2 Sparsely Activated Models: Mixture-of-Experts (MoE) in
MLPs

A significant direction in enhancing the capacity and efficiency of
large neural networks, including MLP-based architectures, involves
the use of sparsely activated components, notably through the Mixture-
of-Experts (MoE) paradigm. In general, an MoE layer consists of
multiple "expert" sub-networks and a "gating" network or router that
dynamically selects a small subset of these experts to process each
input, allowing for increased model capacity without a proportional
rise in computational cost per example.

Recent work by Yu et al. [28] has specifically explored sparsely acti-
vated all-MLP architectures for Natural Language Processing (NLP).
They propose a "sparse all-MLP" (sMLP) where dense blocks in an
existing all-MLP model (gMLP) are replaced with sparse MoE blocks.
This approach aims to improve the expressiveness of the all-MLP
architecture while keeping the compute cost constant. According to Yu
et al. [28], their sMLP applies sparsity to two fundamental operations:

Hidden Dimension Operation (Feed-Forward Layers): MoE
structures are adopted for the feed-forward layers, drawing
parallels with how MoEs are used in some Transformer-based
models.

Token-Mixing Operations: For token mixing, they design a new
MoE module (sMoE) which processes chunks of hidden represen-
tations through different experts, with each expert performing a
spatial projection.

The authors report that this sparse all-MLP with MoEs can improve
language modeling perplexity and training efficiency compared to
dense counterparts and some Transformer-based MoE models [28].
The sparsely activated expert paradigm, as exemplified by the sMLP
in [28], shares a conceptual similarity with the dynamic weight mask-
ing explored in this thesis: both result in only a subset of the model’s
parameters being computationally active for a given forward pass.
However, the underlying mechanisms and primary objectives differ.
MoE architectures, like sSMLD, are explicitly designed with distinct
expert modules and a routing mechanism (which Yu et al. [28] discuss
with deterministic and partial prediction strategies) to decide which
expert(s) to activate. Sparsity is inherent in this architectural choice
of activating entire expert sub-networks. In contrast, the dynamic
structured weight masking investigated in this thesis is applied to an
existing, typically dense, architecture (ResMLP). It does not involve
separate expert modules or a learned input-dependent router; instead,
it dynamically deactivates blocks of weights within the standard layers
based on a global, magnitude-based heuristic (Frobenius norm and
top-k selection). While both lead to a form of conditional computation,

25

26

MoEs as described by Yu et al. [28] primarily aim to increase model
capacity and expressiveness efficiently, whereas the block masking in
this work primarily targets the reduction of memory movement and
computational cost for a given base architecture by making its existing
layers dynamically sparse during training.

3.3.3 Situating this Thesis’s Approach to MLP Efficiency

The renewed interest in MLP-based architectures, such as ResMLP
[25], and efforts to enhance their efficiency and capacity, for instance
through sparsely activated Mixture-of-Experts as explored by Yu et al.
[28], form an important context for this thesis. While MoE approaches
introduce sparsity by design through explicit expert sub-networks and
learned or deterministic routing mechanisms to scale model capacity
with controlled computational cost, the work undertaken in this thesis
explores a different paradigm for improving the training efficiency of
MLP-based models.

This research focuses specifically on the ResMLP architecture and
investigates the application of dynamic structured weight masking
directly to its existing, nominally dense layers. The primary goal is not
to increase model capacity via sparsely activated experts, but rather to
reduce the operational burden during the training of a given ResMLP
model, particularly concerning global memory accesses and, secon-
darily, computational FLOPs. The mechanism employed—dynamic
selection and masking of entire blocks of weights based on their mag-
nitude (Frobenius norm)—differs from the input-dependent learned
routing or structured expert selection characteristic of MoE systems.
Therefore, this thesis contributes to the broader efforts in MLP effi-
ciency by examining a distinct method of inducing and leveraging
dynamic, structured sparsity within the layers of an established MLP
architecture during its training phase.

METHODOLOGY

41 METHODOLOGICAL APPROACH

This research employs an experimental, quantitative methodology
to explore the impact of dynamic structured weight masking on the
performance of ResMLP networks for image classification tasks, with a
primary focus on improving hardware efficiency by reducing memory
traffic. Specifically, the study addresses the following question: How
do varying block sizes and masking ratios in dynamic structured
weight masking, applied during ResMLP training, impact classifi-
cation accuracy and theoretical memory movement? The aim is to
theoretically estimate the potential reduction in global memory move-
ments achieved by this masking mechanism while ensuring that classi-
fication accuracy does not deteriorate significantly. This methodology
was applied to experiments primarily on CIFAR-10. Additionally, an
initial set of experiments on the ImageNet dataset was conducted to
observe the approach’s characteristics under more demanding condi-
tions. A full optimization of the approach for ImageNet was beyond
the scope of this work. The core masking, measurement, and analysis
methodologies described herein were applied consistently to both the
CIFAR-10 and the ImageNet experiments.

To investigate this, a weight masking mechanism is integrated into
the ResMLP architecture. Fixed masking parameters—namely, block
sizes and mask ratios—are established for the duration of training,
while the weight mask is dynamically applied via a top-k selection
process during each forward pass. In practice, the weight masking
forms an iterative loop within the training process, where the mask
is recalculated and applied at every iteration. This design allows for
a systematic analysis of the trade-offs between potential memory
movement reduction and maintained accuracy by isolating the effects
of varying block sizes and mask ratios within this dynamic, per-
iteration masking framework.

The overall methodological workflow, illustrated conceptually in
Figure 4.1, commences with data preprocessing. Subsequently, the
core training process is executed, employing the ResMLP architecture
integrated with the dynamic structured weight masking mechanism.
This masking is applied iteratively throughout the training phase. The
workflow concludes with an evaluation stage, where key performance
metrics, including classification accuracy and theoretical memory
movement, are systematically recorded and analyzed.

27

28

This work utilizes an existing ResMLP codebase. Key model param-
eters were adapted to operate on the CIFAR-10 dataset, which served
as the primary benchmark. This dataset was selected not only for its
relevance to image classification but also because its faster training
times allow for more detailed measurements and a comprehensive
exploration of the parameter space within a shorter timeframe. For
the preliminary exploration on ImageNet, specific adaptations to the
model and training procedure were also made, as detailed in subse-
quent sections. For CIFAR-10, the unmasked network was first tuned
to serve as a baseline, achieving an accuracy exceeding 80% over
200 training epochs. This baseline performance provides a reference
for evaluating the impact of the weight masking approach on both
accuracy and theoretical memory movement for this dataset.

This work makes several important contributions:

It provides a novel empirical evaluation of dynamic structured
weight masking on a ResMLP network—an approach that has
been primarily explored in other architectures—thereby offer-
ing fresh insights into its effectiveness on a purely MLP-based
model for image classification, particularly concerning potential
hardware efficiency gains.

By investigating the interplay between block size, mask ratio,
and accuracy, the research deepens our understanding of the
efficiency-accuracy trade-offs inherent to dynamic structured
masking.

The systematic analysis of various block sizes and mask ratios
contributes to determining the optimal ranges for these hyperpa-
rameters, thereby balancing computational efficiency with robust
model performance.

Overall, this methodological framework, as depicted in Figure 4.1,
facilitates a thorough investigation into how structured weight mask-
ing—applied dynamically as part of the training process—can po-
tentially reduce global memory accesses, a key factor in hardware
efficiency, without significantly compromising classification perfor-
mance.

4.2 DATASET AND PREPROCESSING

This study primarily utilizes the CIFAR-10 dataset for a comprehensive
evaluation of the masking techniques. Additionally, the ImageNet
dataset was employed for preliminary scalability exploration.

4.2 DATASET AND PREPROCESSING | 29

Q]

Update
Model
Param.

Masked Backward Pass

Normal Backward Pass

Figure 4.1: Conceptual overview of the training loop incorporating dynamic
structured weight masking, highlighting the two alternative back-
ward pass configurations investigated. The standard training
steps include data preparation, forward pass, loss calculation,
gradient computation (backward pass), and parameter optimiza-
tion. Model parameters are used to dynamically generate a bi-
nary mask (via top-k selection of blocks based on their norm),
which is then applied to the weights during the forward pass
(indicated by the circled dot, representing element-wise multipli-
cation). The subsequent backward pass for gradient computation
is explored under two distinct, alternative configurations: (1) a
masked backward pass, where gradients are computed consid-
ering the applied mask (arrow labeled "Masked Backward Pass"),
or (2) an unmasked backward pass, where gradients are com-
puted with respect to the original, full weights (arrow labeled
"Normal Backward Pass"). Only one of these backward pass con-
figurations is active in any given experiment. The optimization
step then updates the original model parameters.

30

4.2.1 CIFAR-10 Dataset

The CIFAR-10 dataset served as the primary benchmark for this re-
search. For training, it was prepared using a custom data loader, and
the following specific preprocessing steps were applied:

4.2.1.1 Normalization for CIFAR-10

To ensure stable and efficient training, the pixel values of the CIFAR-
10 images are normalized by subtracting the channel-wise mean and
dividing by the channel-wise standard deviation. The normalization
parameters used are the standard values for CIFAR-10 as provided by
the PyTorch library:

Mean: (0.4914, 0.4822, 0.4465) (for Red, Green, and Blue channels,
respectively)

Standard Deviation: (0.2470, 0.2435, 0.2616) (for Red, Green, and
Blue channels, respectively)

4.2.1.2 Data Augmentation for CIFAR-10

To enhance the model’s generalization ability and robustness on
CIFAR-10, several data augmentation techniques are employed on
the training set:

Random Horizontal Flipping: Images are randomly flipped
horizontally with a probability of o.5.

Random Cropping: Random crops of the resized images are
taken to promote robustness to variations in object position and
scale.

Mixup: New synthetic training samples are generated by taking
a weighted average of two randomly selected images and their
corresponding labels, which encourages linear behavior between
classes and reduces overfitting.

CutMix: This technique replaces a random portion of an image
with a patch from another image, with target labels adjusted
proportionally to the area of the patch.

4.2.2 ImageNet Dataset for Scalability Exploration

For preliminary experiments to assess the scalability of the proposed
masking approach, a large-scale ImageNet dataset comprising approx-
imately 14 million training images across 1,000 object categories was
utilized, along with a standard validation set. Input images for these
experiments had dimensions of 224 x224 pixels. Preprocessing steps,
including channel-wise normalization and data augmentation (such as

random resized cropping and horizontal flipping), were applied in a
manner conceptually similar to those used for CIFAR-10, but adapted
to suit the characteristics and scale of the ImageNet dataset.

4.3 STRUCTURED WEIGHT MASKING

4.3.1 Mask Application

To evaluate the impact of structured sparsity on the ResMLP model, a
weight masking technique is employed that selectively masks less im-
portant blocks of weights based on their magnitude. In this approach,
the mask generation process uses a magnitude-based method where
the Frobenius norm serves as the measure of a block’s importance.

For each target weight tensor, the weights are partitioned into non-
overlapping blocks (groups). Within each group, the Frobenius norm
is computed. Based on the predetermined mask ratio, a top-k selection
strategy is applied: only the weight groups (blocks) with the highest
Frobenius norms are retained, while the weights within the remaining
blocks are effectively set to zero by the mask. This binary mask, which
matches the shape of the weight tensor, is generated dynamically
during every forward pass.

During the forward pass, the binary mask is applied via element-
wise multiplication, effectively nullifying the contributions of the
weights within the masked blocks. Although this masking does not
reduce memory accesses in the current implementation (since all
weights are loaded from memory), it facilitates an evaluation of the
model’s performance with these weights computationally ignored,
while the potential memory movement reduction is later calculated
theoretically.

Figure 4.2 provides an illustrative example of the masking process.
In this visualization, a 16 x 16 neural network weight matrix is parti-
tioned into 44 blocks. A sparsity ratio of 50% is enforced via a top-k
selection strategy based on the L2 norm, where the highest scoring
blocks are retained and the remaining blocks are masked (displayed
in teal).

4.3.2 Backward Pass with and without Masking

To better understand the role of masking during gradient propagation,
two configurations were examined. In the first configuration, the
binary weight mask generated and applied during the forward pass
is also considered during the backward pass; consequently, weights
that were masked (effectively treated as zero) in the forward pass
do not contribute to the gradient computation for their own updates,
and their values are not updated. In the second configuration, the

32 | METHODOLOGY

Block 1,4

Block 1,3

Block 2,1 Block 2,2

Active

Block 4,1 Block 4,4

16x16 Weight Matrix with 4x4 Blocks and
50% Sparisty

Figure 4.2: 16 x 16 neural network weight matrix partitioned into 4 x4 blocks.
A sparsity ratio of 50% is enforced via a top-k selection strategy,
where the highest scoring blocks are retained and the remaining
blocks are masked (teal), facilitating hardware-efficient pruning

while maintaining model performance.

mask was applied only during the forward pass, thereby allowing
the gradients to be propagated through the full weight tensor, and all
weights (including those masked in the forward pass) could receive
updates during backpropagation.

This experimental setup was designed to enable a systematic anal-
ysis of how the application of the mask during the backward pass
affected gradient computation and overall training dynamics. By com-
paring the two approaches, it was determined whether the treatment of
masked weights during gradient computation influenced the model’s
convergence, stability, and final performance, or if allowing full gradi-
ent propagation for all weights yielded different results.

4.4 MEASUREMENT AND ANALYSIS STRATEGY

A comprehensive strategy was employed to evaluate the impact of the
dynamic block-wise masking technique on both estimated computa-
tional resources and the performance of the trained ResMLP models.
The evaluation encompassed several key aspects:

4.4.1 Computational Cost Estimation

The theoretical computational cost, measured in Floating Point Oper-
ations (FLOPs), was estimated for the trained models under various
masking conditions. The estimation process began by calculating the
FLOPs required for a standard, dense forward pass of the ResMLP
architecture. This baseline value was then refined by adjusting the
FLOP count on a layer-wise basis, specifically for the linear layers sub-
ject to masking. The adjustment accounted for the applied mask ratio
for each configuration, providing an estimate of the effective FLOPs
utilized during sparse training. The total theoretical computational
cost over the entire training duration was subsequently estimated by
scaling the per-epoch FLOPs accordingly.

4.4.2 Model Accuracy Evaluation

The primary metric for model performance was Top-1 classification
accuracy, evaluated on the validation dataset at the end of each training
epoch. To assess the influence of applying the mask during gradient
computation and weight updates, two distinct experimental conditions
were compared: one where the mask was applied during the backward
pass, and one where it was not. The final validation accuracy for both
conditions provides insight into the stability and effectiveness of the
masking approach under different gradient handling strategies.

33

34

4.4.3 Masking Pattern Analysis

To gain qualitative insights into the behavior of the dynamic masking
mechanism, visualizations of the masking patterns were generated.
These visualizations, typically presented as heatmaps, illustrate the
cumulative activity (i.e., the frequency of being non-masked) of weight
blocks within the network’s key linear layers throughout the training
process. Analyzing these patterns helps in understanding the stabil-
ity and evolution of the learned sparsity structures under different
experimental conditions.

4.4.4 Theoretical Memory Movement Estimation

A theoretical analysis is performed to estimate the potential reduc-
tion in global memory movement attributable to dynamic structured
weight masking during training. This estimation serves as an indicator
of potential hardware efficiency gains by quantifying the volume of
weight data theoretically accessed from global memory.

The underlying memory model for this estimation is built upon
several key considerations. It accounts for the specific layer dimen-
sions (input features, output features) and the total number of weights
within each linear layer of the ResMLP model. The model also in-
corporates the masking configuration, namely the dimensions of the
blocks used for partitioning weight matrices and the target mask ratio
applied to these blocks. A fundamental hardware-related parameter
influencing data transfer, the memory cache line size of the target
GPU architecture, is a critical component of this model, as a cache line
represents the smallest unit of data transferable between main mem-
ory and the GPU’s cache. The estimation operates on the assumption
that for each non-masked block of weights, all cache lines that this
block occupies, even partially, must be loaded from global memory.
Furthermore, a worst-case alignment scenario is assumed for these
active (non-masked) blocks relative to cache line boundaries. This
implies that even if only a small portion of a cache line is needed for
an active block, the entire cache line is counted as accessed; similarly,
if an active block spans multiple cache lines, all those cache lines are
considered loaded. This conservative assumption provides a theoret-
ical upper bound on the memory traffic generated by accessing the
necessary weight elements.

By modeling these factors, the analysis calculates the total data
volume corresponding to the cache lines occupied by all non-masked
blocks across all relevant layers for each forward pass. This per-pass
estimate is then aggregated over the total number of training itera-
tions to provide an overall estimate of the total theoretical memory
movement for weights under different masking configurations. This
theoretical value helps in understanding the potential upper limits of

4.4 MEASUREMENT AND ANALYSIS STRATEGY \

memory access savings before considering more complex run-time
factors such as actual cache hit rates or specific memory controller
behaviors.

4.4.5 Extraction of Key Performance Indicators

To facilitate quantitative comparisons across different masking config-
urations, key performance indicators were extracted post-training.
These included the total number of computationally active (non-
masked) weight elements aggregated over the entire training duration,
providing a measure of the actual computational load reduction. Ad-
ditionally, the final Top-1 validation accuracy achieved under each
experimental condition (varying block sizes, mask ratios, and back-
ward pass treatments) was systematically recorded for comparative
analysis.

35

5 IMPLEMENTATION

5.1 INTRODUCTION

A detailed account of the technical implementation of the dynamic
structured weight masking approach and the associated measurement
tools described in the methodology is provided in this chapter. The
primary aim is to present how dynamic masking is integrated within
the ResMLP architecture and to explain the design of the profiling
and visualization tools used to evaluate computational efficiency and
model performance. In doing so, it is ensured that the experimental
setup is both reproducible and clearly documented.

The chapter is organized to reflect the experimental workflow de-
scribed in the methodology. Initially, the modifications made to the
ResMLP model for the CIFAR-10 dataset are outlined, including adjust-
ments to patch sizes, embedding dimensions, and training parameters.
The dynamic structured weight masking mechanism is then described,
with a focus on the generation and application of masks based on the
Frobenius norm and a top-k selection strategy. Subsequent sections de-
tail the measurement and profiling techniques employed to compute
FLOPs, analyze memory movement, and evaluate model accuracy, as
well as the data visualization strategies and experimental procedures,
including hyperparameter sweeps and reproducibility measures.

5.1.1 Codebase Overview

The experimental framework for this thesis is built upon a modu-
lar Python codebase, which originates from and is maintained by
the HAWAII Lab at ZITI, Heidelberg University. This codebase, de-
signed for clarity and reproducibility, was adapted and extended for
the specific investigations undertaken in this work. The core func-
tionality is implemented in a set of well-organized scripts. For in-
stance, the main training loop and model evaluation routines reside
in training.py, while the profiling functions for computing FLOPs
and monitoring memory usage are located in measurement.py and
memory_calculation.py. Post-processing tasks, such as calculating
the number of loaded elements and extracting final accuracy, are
handled by loaded_values.py and masked_accuracy.py, respectively.
Configuration parameters—including model settings, training hyper-
parameters, and grid search configurations—are maintained in YAML

37

38

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

| IMPLEMENTATION

files, such as grid_cifarl0.yaml, located within the project’s main
directory.

Figure 5.1 on page 56 illustrates the directory structure of the project.
This file tree delineates the hierarchical organization of the codebase,
including key directories and scripts necessary for implementing the
dynamic structured weight masking approach. Notably, a dedicated
masked directory was created to contain all files that were modified
for the masking experiments.

Listing 5.1 provides an example of such a YAML configuration file.
This file details the hyperparameters, model settings, dataset param-
eters, and grid search configurations used in conjunction with the
LaunchPad library to automatically generate SLURM job submission
scripts for the experiments, ensuring the setup is transparent and
reproducible.

hp:
model_config:

- "\"ResMLP5_@_XChannel_=_masked_0.9_(1,_1); _XPatch_=_masked_0.9_
(1, 1);\""

- "\"ResMLP5_@_XChannel_=_masked_0.9_(1,_2); _XPatch_=_masked_0.9_
(1,.2);\""

- "\"ResMLP5_@_XChannel_=_masked_0.9_(1,_4); _XPatch_=_masked_0.9_
(1,.4);\""

- "\"ResMLP5_@_XChannel_=_masked_0.9_(1,_8); _XPatch_=_masked_0.9_,
(1,.8);\""

- "\"ResMLP5_@_XChannel _=_masked_0.9_(16,_16);_XPatch_=_masked,
0.9.(16,_16);\""

- "\"ResMLP5_@_XChannel _=_masked_0.9_(32,_32); _XPatch_=_masked,
0.9,.(32,.32);\""

- "\"ResMLP5_@_XChannel_=_masked _0.9_(64,_64); _XPatch_=_masked_
0.9.(64,_64);\""

meta:
run: slurm
gpus: 1
mode: grid
prefix: block_test_masked_backprop_masked_ratio_09
repeat: 1
sandbox: /csghome/tr312/Project/Run_model _master_mask
script: "python_/csghome/tr312/Project/Run_model_master_mask/
training.py"

fixed:
data_dir: /csghome/tr312/Project/data
data_set: CIFAR10
batch_size: 128
num_classes: 10
epochs: 200
image_size: 32
weight_decay: 0.0001
lr: 0.01
warmup_lr: 0.001
opt: Adam
patch_size: 4
embedding_dim: 64

33
34
35
36
37
38
39
40
41
42
43
44
45

© ® N o AW N R

=
1S}

-
=

5.2 RESMLP MODEL MODIFICATIONS \

mixup: 0.2

cutmix: 0.8
mixup_prob: 1
pretrained_classes: 10

sbatch:
partition: rivulet
gpus: 1
cpus-per-task: 8
mem: 16G
export: ALL
time: "7-00:00:00"
chdir: /csghome/tr312/Project/Run_model_master_mask

Listing 5.1: Training configuration for ResMLP experiments. This YAML
file specifies the hyperparameters, model configurations, dataset
parameters, and grid settings used in the experiments, ensuring
consistency and reproducibility throughout the training process.

5.2 RESMLP MODEL MODIFICATIONS

5.2.1 Adaptation for CIFAR-10 and ImageNet

Modifications were made to adapt the original ResMLP model (typi-
cally designed for ImageNet-scale tasks) for the datasets used in this
work. For the CIFAR-10 dataset, key parameters such as the patch size,
embedding dimension, and network depth were adjusted to accommo-
date the smaller 32x32 images, as detailed in Table 5.1. Similarly, for
the preliminary experiments on ImageNet, the ResMLP model param-
eters were configured to suit the larger dataset scale and complexity,
with these specific settings outlined in Table 5.2. In order to manage
and utilize the diverse training configurations defined in the YAML
file for both datasets, a set of Python scripts was employed to parse
these settings and instantiate the corresponding ResMLP models.

In the helper.py script, dataclasses define the different types of
architectural modifications. The BlockMasking dataclass, central to
this work, was added to accommodate the masked configurations
defined in the YAML file. The corresponding implementation is shown
in Listing 5.2.

from dataclasses import dataclass, fields, asdict
from typing import Tuple, Optional

@dataclass
class BlockMasking:
mask_ratio: float = 0.0
block _size: Tuple[int, int] = (1, 1)

def keys(self):
return (f.name for f in fields(self))

39

40

12
13
14
15
16

[< R T N

N}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

37
38

39

40

| IMPLEMENTATION

def __getitem_ _(self, item):

return getattr(self, item)

def as_dict(self):
return asdict(self)

Listing 5.2: Dataclass for representing block-wise masking in the ResMLP
model (helper.py).

Furthermore, the factory.py script contains the core logic for pars-
ing model configuration strings from the YAML file. The relevant parts
for handling the "masked" configuration are presented in Listing 5.3.

import re
from collections import defaultdict
from typing import Tuple, Mapping, Any, Optional

from .helper import BlockMasking

Regex patterns for model and layer configurations
layer_pattern = r"""
([A-Za-z]+) (7: (\d+)) ?\s*=\s*

uuuuuuuuuuuuuu sparse\s+(-?\d+\.\d+)\s+(\ (\s*-?\d+,\s*-?\d+\s*\))
compressed\s+(\ (\sx-?\d+, \s*-?\d+\sx*\))

(?:\s+(\ (\s*-?2\d+,\s*-?2\d+\sx*\)))?

(?:\s+(\w+))?

(?:\s+(\w+))?

(?:\s+(-?2\d+\.\d+))?

[TR T
[TR T

masked\s+(-?\d+\.\d+)\s+(\ (\sx-?\d+,\s*-?\d+\s*\))

[T R

def _parse_model_configuration_string(
config: str,
) -> Tuple[str, int, Mapping[str, Any]]:
... (rest of the function until the layer parsing loop)

Parse each layer configuration
for layer in layers:
try:
... (other parsing logic)
mask_ratio = float(layer[9]) if layer[9] else None
mask_block_size = tuple(map(int, layer[10].strip("()").
split(","))) if layer[10] else None

Create the appropriate block object based on the parsed
data
... (other conditions)
elif mask_ratio is not None:
current = BlockMasking(mask_ratio=mask_ratio,
block_size=mask_block_size)
... (rest of the loop and function)

O ® N o AW N R

T s T < S T
® N o G A~ W N RO

5.2 RESMLP MODEL MODIFICATIONS \

1

Listing 5.3: Relevant parts of the model factory for parsing masked
configurations (factory.py).

In addition, fixed configuration settings in the training YAML file
were adjusted to specify the general parameters for running ResMLP
on the CIFAR-10 dataset instead of ImageNet, as shown in Listing 5.4.
Specific model parameters for each dataset are detailed in their respec-
tive configuration tables.

fixed:
data_dir: /csghome/tr312/Project/data
data_set: CIFAR10O
batch_size: 128
num_classes: 10
epochs: 200
image_size: 32
weight_decay: 0.0001
lr: 0.01
warmup_lr: 0.001
opt: Adam
patch_size: 4
embedding_dim: 64
mixup: 0.2
cutmix: 0.8
mixup_prob: 1
pretrained_classes: 10

Listing 5.4: Fixed configuration settings in the training YAML file that specify
the parameters for running ResMLP on the CIFAR-10 dataset
instead of ImageNet.

5.2.2 Model Configuration Details

The ResMLP model architecture, including its depth and any applied
masking modifications, is defined via a configuration string provided
through the model_config parameter within the YAML configuration
files (see Listing 5.1 for an example). For instance, a configuration
string such as

"ResMLP12 @ XPatch=masked 0.5 (2, 2); XChannel=masked
0.3 (1, 1);"

specifies that the base model is a ResMLP with a depth of 12 layers.
It further defines a masking ratio of 0.5 applied to 2x2 blocks in
the XPatch layers and a mask ratio of 0.3 applied to 1x1 blocks in
the XChannel layers. Other key hyperparameters, such as embedding
dimension and patch size, are set according to the specific dataset
being used: parameters for the CIFAR-10 experiments are detailed in
Table 5.1, and those for the ImageNet experiments are specified in
Table 5.2.

41

42

Category Parameters and Values

Model Parameters Batch size: 128

Image size: 32

Patch size: 4

Embedding dimension: 64
Depth: 5

Number of classes: 10
Sparsity: 0.0

Sparsity at epoch: 10
Granularity: 64

Train/test: False

Learning Parameters | Epochs: 200

Weight decay: 0.0001
Decay rate: 0.1
Learning rate (Ir): 0.01
Minimum Ir: 1e-5
Warmup Ir: 0.001
Warmup epochs: 5
Cooldown epochs: 10
Scheduler: cosine
Optimizer: Adam

Momentum: 0.005

Mixup Settings Mixup: 0.2

Cutmix: 0.8

Cutmix min/max: None
Mixup probability: 1.0
Mixup switch probability: 0.5
Mixup mode: batch

Mixup off epoch: o

Smoothing: 0.1

Table 5.1: Training Configuration Overview

5.2.3 Data Loading and Preprocessing

Data loading and preprocessing are managed using PyTorch’s built-
in dataset utilities, accessed via a dedicated generate_data_loader
function within the codebase. The standard CIFAR-10 train-test split
(50,000 training, 10,000 testing images) was utilized throughout the ex-
periments. For ImageNet, the standard ILSVRC2012 dataset splits were

Category Parameters and Values

Model Parameters Batch size: 64

Image size: 224

Patch size: 14

Embedding dimension: 384
Depth: 12

Expansion factor: 4
Number of classes: 1000
Masking start epoch: o

Train/test: False

Learning Parameters | Epochs: 300

Weight decay: 0.005
Decay rate: 0.1
Learning rate (Ir): 0.001
Minimum Ir: 1e-5
Warmup lIr: 1e-5
Warmup epochs: 5
Cooldown epochs: 10
Scheduler: cosine
Optimizer: AdamW

Momentum: 0.005

Mixup Settings Mixup: 0.8

Cutmix: 1.0

Cutmix min/max: None
Mixup probability: 1.0
Mixup switch probability: 0.5
Mixup mode: batch

Mixup off epoch: o

Smoothing: 0.1

Table 5.2: Training Configuration Overview (Updated for ImageNet Run)

used. The overall data loading and preprocessing pipeline was largely
inherited from the existing codebase. Minimal modifications were
required, primarily in the adjustment of mixup and cutmix parame-
ters, to ensure that the CIFAR-10 dataset was processed appropriately.
For ImageNet, specific data loading and augmentation procedures
common for this dataset were implemented. All other standard prepro-
cessing steps—such as image resizing and normalization as detailed

43

44

in the Methodology chapter—were implemented as provided in the
original framework or adapted as necessary for each dataset.

5.2.4 Data Loading and Preprocessing

Data loading and preprocessing are managed using PyTorch’s built-
in dataset utilities, accessed via a dedicated generate_data_loader
function within the codebase. The standard CIFAR-10 train-test split
(50,000 training, 10,000 testing images) was utilized throughout the
experiments. The overall data loading and preprocessing pipeline
was largely inherited from the existing codebase. Minimal modifica-
tions were required, primarily in the adjustment of mixup and cutmix
parameters, to ensure that the CIFAR-10 dataset was processed ap-
propriately. All other standard preprocessing steps—such as image
resizing, normalization, and data augmentation as detailed in the
Methodology chapter—were implemented as provided in the original
framework.

5.3 STRUCTURED WEIGHT MASKING IMPLEMEN-
TATION

The structured weight masking is implemented by generating a binary
mask dynamically for each forward pass based on the current weight
tensor values and the configuration specified in the YAML file (see
Listing 5.1). The mask generation function resides in prune.py and is
invoked for each weight tensor designated for masking.

5.3.1 Mask Generation

The binary mask is generated by the get_prune_mask_block function,
which takes as input the weight tensor, the desired mask_ratio, the
block_size (provided as a tuple, e.g., (2, 4) for the XChannel layer),
and the mask_order (specifying the norm type). The parsing of the
‘masked’ configuration from the YAML file occurs in factory.py (see
Listing 5.3).

The mask generation process involves the following steps:

BLOCK NORM CALCULATION (FROBENIUS NORM): For each block
within the weight tensor, the Frobenius norm is computed using
the torch.linalg.norm function. This calculation uses the specified
order (typically 2, corresponding to the Frobenius norm for matrices)

[< N, T N

|

5.3 STRUCTURED WEIGHT MASKING IMPLEMENTATION

and aggregates over the height and width dimensions of each block
(dim=(-2, -1)). The Frobenius norm of a block w is computed as

Iwllr = [C X w?, (51)
i

which provides a measure of the magnitude of the block.

norms = torch.linalg.norm(x_reshaped, ord=ord, dim=(-2, -1)).flatten

0

Listing 5.5: L2 norm calculation for block-wise masking (from prune.py).

Tor-k seLecTioN: To achieve the desired mask_ratio, the top-k
blocks are selected based on their computed Frobenius norms. The
number of blocks to retain is determined by k = [total_blocks x (1 —
mask_ratio)]|. The torch.topk function is used to obtain the threshold
value corresponding to the k-th largest norm, and blocks with norms
greater than or equal to this threshold are retained.

k = ceil(total_blocks * (1 - mask_ratio))

topk_threshold = torch.topk(norms, k=k, dim=-1, sorted=True).values.
min()

mask = norms >= topk_threshold

Listing 5.6: Top-k block selection for masking (from prune.py).

MASK CREATION: After selecting the top-k blocks, a binary mask is
created where the elements corresponding to these blocks are set to 1
(active) and the remaining elements are set to o (masked). This binary
mask is reshaped to match the original dimensions of the weight
tensor by repeating the mask values for all elements within each block
using repeat_interleave.

mask = mask.view(blocks_y, blocks_x).repeat_interleave(block_size[1],
dim=1).repeat_interleave(block_size[0], dim=0).float()

Listing 5.7: Binary mask creation and reshaping (from prune.py).

45

HANDLING BLOCK SIZES AND EDGE CASES: The get_prune_mask_block

function ensures that the dimensions of the weight tensor are divisible
by the specified block_size. Additionally, when mask_ratio is 0.0, a
mask of all ones is returned, indicating that no weights are masked.

import torch
from typing import Tuple, Union
from math import ceil

@torch.no_grad()

def get_prune_mask_block(
x: torch.Tensor,
mask_ratio: float,

46

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39

40
41

42

43
44

45
46

1

| IMPLEMENTATION

block size: Tuple[int, int],
ord: Union[int, str] = 2
) -> torch.Tensor:

Ensure input is 2D
assert x.dim() == 2, f"Expected_2D_tensor,_got_{x.dim()}D"

Check that both dimensions are divisible by block size
assert (
X.shape[0] % block_size[0] == 0 and x.shape[l] % block_size
[1] ==
), f"Shape_{x.shape}_incompatible_with_block_size_{block_size}"

No masking if mask_ratio is zero
if mask_ratio == 0.0:
return torch.ones_like(x)

Calculate number of blocks

blocks_x = x.shape[l] // block_size[1l]
blocks_y = x.shape[0] // block_size[0]
total_blocks = blocks_x * blocks_y

Calculate number of blocks to retain
k = ceil(total_blocks * (1 - mask_ratio))

Divide tensor into blocks and calculate norms
x_blocks_y = x.tensor_split(blocks_y, dim=0)
x_reshaped = torch.stack(
[torch.stack(b.tensor_split(blocks_x, dim=1), dim=0) for b in
x_blocks_y],
dim=0

)
norms = torch.linalg.norm(x_reshaped, ord=ord, dim=(-2, -1)).
flatten()

Select top-k blocks

topk_threshold = torch.topk(norms, k=k, dim=-1, sorted=True).
values.min()

mask = norms >= topk_threshold

mask = mask.view(blocks_y, blocks_x).repeat_interleave(block size
[1], dim=1).repeat_interleave(block_size[0], dim=0).float()

return mask

Listing 5.8: Implementation of the block-wise mask generation function
(from prune.py).

5.3.2 Mask Application

During the forward pass, the binary mask is applied to the weight
tensor through element-wise multiplication. This operation effectively
zeroes out the weights corresponding to the masked blocks, as demon-
strated in the following code snippet.

masked_weights = weight * weight_mask

output = torch.matmul(input, masked_weights.mT)

Listing 5.9: Mask application in the forward pass (from linear.py).

5.3.3 Masking with and without Backward Pass

Two configurations for the backward pass are implemented:

BACKWARD PASS WITH MASKING: In this configuration, the mask
is applied to the gradients during backpropagation. This means that
the gradients corresponding to the masked weights are set to zero,
preventing any updates to these weights during the optimization step.
The implementation is shown in the following snippet:

grad_input = torch.matmul(grad_output, weight * weight_mask)
grad_weight = torch.matmul(grad_output.mT, input) * weight_mask

Listing 5.10: Backward pass with mask applied to gradients (from linear.py).

BACKWARD PASS WITHOUT MASKING: Alternatively, the mask may
be applied only during the forward pass. In this case, gradients are
computed with respect to the full weight tensor, and all weights are
updated during optimization. The corresponding implementation is
provided below:

grad_input = torch.matmul(grad_output, weight)
grad_weight = torch.matmul(grad_output.mT, input)

Listing 5.11: Backward pass without mask applied to gradients (from
linear_umasked.py).

It was observed that training with the masked backward pass re-
sulted in outcomes that differed significantly from those obtained
when the backward pass was left unmasked. This observation indi-
cates that the application of the mask during gradient computation
plays a crucial role in guiding the learning process under masking
constraints.

In the subsequent sections, the measurement, profiling, and visu-
alization techniques used to assess the impact of this masking on
computational efficiency and model performance will be described.

5.3.4 FLOPs Calculation

The theoretical FLOPs are computed using the ptflops library through
the Profiler class in measurement.py. Initially, the dense FLOPs of
the model are calculated, representing the computational cost without
any masking, as demonstrated in Listing 5.12:

macs, _ = get_model_complexity_info(
self.model, tuple(self.sample_input.shape[l:]),

47

48

[S K T N)

| IMPLEMENTATION

as_strings=False, print_per_layer_stat=False
)

dense_total_flops = 2 * macs # Dense FLOPs per epoch

Listing 5.12: Dense FLOPs calculation using ptflops (from measurement.py).

The dense FLOPs are then refined by iterating through the linear lay-

ers (such as nn.Linear, MaskedLinear, SparselLinear, and CompressedLinear)

to compute their individual contributions, as shown in Listing 5.13:

for module in self.model.modules():
if isinstance(module, (nn.Linear, MaskedLinear, Sparselinear,
CompressedLinear)):
in_features = module.in_features
out_features = module.out_features
layer_dense_flops = 2 * in_features * out_features
dense_linear_flops += layer_dense_flops

Listing 5.13: Dense FLOPs calculation for linear layers (from
measurement.py).

To incorporate the effect of the applied masking configuration, the
theoretical FLOPs for each masked linear layer are adjusted based
on their respective target mask_ratio attributes. This adjustment is
achieved in the calculation by multiplying the layer’s dense FLOPs by
1 — mask_ratio, as illustrated in Listing 5.14. It is important to note
that this calculation provides a theoretical estimate based on the target
mask ratio. Due to the discrete nature of masking entire blocks, the
actual number of active (non-masked) blocks, and thus the potentially
achievable FLOP count, may exhibit step-like changes rather than
varying strictly linearly with the target ratio.

mask_ratio = getattr(module, "mask_ ratio", 0.0)
adjusted_linear_flops += layer_dense_flops * (1 - mask_ratio)

Listing 5.14: Adjusting FLOPs for sparsity (from measurement.py).

Subsequently, the total adjusted theoretical FLOPs for the model are
computed by substituting the dense FLOPs of the linear layers with
their adjusted counterparts (using the target mask ratio), as shown in
Listing 5.15:

adjusted_total_flops = dense_total_flops - dense_linear_flops +
adjusted_linear_flops

Listing 5.15: Calculating total adjusted FLOPs (from measurement.py).

Finally, the per-epoch theoretical FLOPs are scaled by the total
number of training epochs, and the results are formatted and displayed
using the log_flops method, as demonstrated in Listing 5.16:

def log_flops(self):
"""Display the FLOP count details over the entire training run.

total_dense = self.dense_flops_per_epoch * self.num_epochs
total_adjusted = self.adjusted_flops_per_epoch x self.num_epochs

® N o wu

10
11
12
13
14

5.3 STRUCTURED WEIGHT MASKING IMPLEMENTATION

total_saved = self.saved flops_per_epoch * self.num_epochs
dense_str = self._format_flops(total_dense)

adjusted_str = self._format_flops(total_adjusted)
saved_str = self._format_flops(total_saved)
print("\nFLOP_Count_(Over_Entire_Training):")

print("-" x 50)

print(f"Total_Dense_FLOPs:_ . .. _{dense_str}")
print(f"Total_Adjusted_FLOPs: _{adjusted_str}")
print(f"Total_Saved_FLOPs: _{saved_str}")

print("-" % 50 + "\n")

49

Listing 5.16: Logging FLOPs (from measurement.py).

5.3.5 Accuracy Evaluation

The validation accuracy is computed at the end of each epoch by the
validate function in training.py. Both top-1 and top-5 accuracies are
evaluated on the validation dataset. Additionally, the masked_accuracy.py
script is used to extract the top-1 validation accuracy from the training
log files at the final epoch (epoch 199, corresponding to the 200th
epoch in a o-indexed count) and to aggregate these values for fur-
ther analysis. The core logic for accuracy extraction is presented in
Listing 5.17:

[S N, T N

~

10
11
12
13
14
15
16
17
18

19
20
21

22

23

25
26
27
28

import os
import re
import pandas as pd
import numpy as np

Base directory
base_dir = '/csghome/tr312/Project/Run_model_master_mask’

List of block size directories

block_dirs = [
"block_test _masked_backprop_mask ratio 02’,
"block_test_masked_backprop_mask ratio_05',
"block_test_masked_backprop_mask ratio_08’,
"block_test_masked_backprop_mask_ratio_09’

Patterns to extract block size (A_B) and mask ratio (ZZ)
block_pattern = re.compile(r’ (\d+_\d+)

_block_test_masked_backprop_mask_ratio_\d{2}\.csv$’)
mask_pattern = re.compile(r’_(\d{2})\.csv$")

def block_sort_key(block_str):
w, h = map(int, block_str.split(’'_"))
return (w, h)

def get_epoch_199_accuracy(file_path):
try:
df = pd.read_csv(file_path, nrows=201)
acc_col = next((col for col in df.columns if ’'acc@l’ in col.
lower()), None)

50

29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80

| IMPLEMENTATION

if acc_col is None:
return None

df["Epoch’] = pd.to_numeric(df[’Epoch’], errors='coerce’)
acc_row = df[df['Epoch’] == 199]
return float(acc_row[acc_col].values[0]) if not acc_row.empty
else None
except Exception as e:
return None

Collect accuracy data
accuracy_data = {}
for dir_name in block_dirs:
results_dir = os.path.join(base_dir, dir_name, ’'results’)

if not os.path.exists(results_dir):
continue

for filename in os.listdir(results_dir):
if filename.endswith(’.csv’):
block_match = block pattern.search(filename)
mask_match = mask_pattern.search(filename)

if block_match and mask_match:
block_size = block_match.group(1)
mask_ratio = int(mask_match.group(l)) * 10 # Convert
'02" to 20%, etc.

csv_path = os.path.join(results_dir, filename)
acc = get_epoch_199_accuracy(csv_path)

if acc is not None:
accuracy_data.setdefault(block_size, {})I
mask_ratio] = acc

if not accuracy_data:
print("No_valid_data_found.")
exit()

Prepare data for CSV
block_sizes = sorted(accuracy_data.keys(), key=block_sort_key)
mask_ratios = sorted({mr for d in accuracy_data.values() for mr in d

1)
rows =
for bs in block_sizes:
row = {'Block_Size’: bs.replace(’_ ', '\times’)}

for mr in mask_ratios:
row[f'{mr}%’] = accuracy_data[bs].get(mr, np.nan)
rows .append(row)

Create DataFrame and save to CSV

df = pd.DataFrame(rows)

csv_path = os.path.join(base_dir, ’'masked_accuracy.csv’)
df.to_csv(csv_path, index=False)
print(f"Accuracy_data_saved_to_{csv_path}")

Listing 5.17: Extraction of accuracy data (from masked_accuracy.py).

[S N, T N

~

10
11
12
13
14
15

N

N AW

5.3 STRUCTURED WEIGHT MASKING IMPLEMENTATION

5.3.6 Theoretical Memory Movement Calculation

The memory_calculation.py script implements the theoretical estima-
tion of memory movement during the training process, the conceptual
basis and assumptions of which are detailed in the Methodology chap-
ter. This script utilizes the defined dimensions of both masked and
non-masked layers, the specified block sizes and mask ratios, and
considers hardware parameters like cache line size under worst-case
assumptions.

Initially, the dimensions of the masked and non-masked layers are
defined within the script, as shown in Listing 5.18:

Masked layers (block-sparse weights)
masked_layers = [

(64, 64, 5), # XPatchLinear
(256, 64, 5), # XChannelLinearl
(64, 256, 5), # XChannellLinear2

Non-masked layers (full weights)
non_masked_layers = [

(64, 48, 1), (64, 1, 1), # Embedding

(64, 1, 10), (64, 1, 10), # PreLayerAffine
(64, 1, 10), # PostLayerScale
(64, 1, 1), (64, 1, 1), # Final Norm

(64, 10, 1), (10, 1, 1), # Head

Listing 5.18: Layer dimensions (from memory_calculation.py).

The block sizes and mask ratios to be analyzed are specified, as
shown in Listing 5.19:

block_sizes = [
(1,1), (1,2), (1,4), (1,8), (1,16), (1,32), (1,64),
(2,1), (4,1), (8,1), (16,1), (32,1), (64,1),
(2,2), (4,4), (8,8), (16,16), (32,32), (64,64)

sparsity_ratios = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Listing 5.19: Block sizes and sparsity ratios (from memory_calculation.py).

The memory required for non-masked weights and activations is
precomputed by the script, as illustrated in Listing 5.20:

Precompute non-masked weight memory (fixed per batch)
non_masked_weight_bytes = sum(
math.ceil(M * N * bytes_per_float / cache_line_size) x*
cache_line_size * count
for M, N, count in non_masked_layers

Precompute activation memory per batch (fixed)
activation_bytes_per_batch = batch_size * (
(3%32%32 + 64) + # Embedding
5 x (64 + 64) + # XPatchLinear

51

52

11
12
13
14

[S NN, T N

~

10

® N o U s W

| IMPLEMENTATION

5 % (64 + 256) + # XChannellLinearl
5 % (256 + 64) + # XChannellLinear2
(64 + 10) # Norm + Head

) * bytes_per_float

Listing 5.20: Precomputing non-masked memory (from
memory_calculation.py).

Subsequently, the memory contribution from masked weights is
calculated based on the block size and mask ratio, as demonstrated in
Listing 5.21:

for ratio in sparsity_ratios:
kept_blocks = math.ceil(total_blocks * (1 - ratio))
total_memory[ratio] += kept_blocks * cache_lines x*
cache_line_size * count

Listing 5.21: Calculating masked weight memory (from
memory_calculation.py).

Finally, the total estimated memory movement over the training
run is computed by summing the contributions from masked weights,
non-masked weights, and activations, as shown in Listing 5.22:

per_batch_bytes = (
total_memory[ratio] +
non_masked_weight_bytes +
activation_bytes_per_batch
)
total_training_bytes = per_batch_bytes x total_batches
total_gb = total_training_bytes / (1024 xx 3)

Cap memory at zero-sparsity baseline
row[ratio] = min(total_gb, zero_sparsity_gb)

Listing 5.22: Calculating total training memory movement (from
memory_calculation.py).

5.3.7 Extraction of Final Performance Metrics

Final performance metrics are extracted using two dedicated scripts.
The loaded_values.py script computes the total number of loaded
(non-masked) elements by iterating over the layers, calculating the
kept elements based on the mask ratio and block size, and scaling the
count by the total number of training batches. Its implementation is
provided in Listing 5.23.

import math
import csv

def generate_scaled_loaded_elements(
masked_layers: list[tuple[int, int, int]],
block sizes: list[tuple[int, int]],
sparsity_ratios: list[float],
total_epochs: int = 200,

10
11
12
13
14

15
16
17
18
19
20
21

22

23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45

46
47
48

49
50
51
52
53
54
55
56
57
58

59
60
61

5.3 STRUCTURED WEIGHT MASKING IMPLEMENTATION

batch_size: int = 128,
train_samples: int = 50_000,
csv_filename: str = "loaded_elements.csv"

Calculate total loaded elements scaled for full training duration

Args:
masked_layers: List of (input_dim, output_dim, count) tuples
block_sizes: List of (block_rows, block_cols) tuples
sparsity_ratios: List of sparsity ratios (0.0-1.0)
total_epochs: Number of training epochs
batch_size: Samples per batch
train_samples: Total training samples
csv_filename: Output CSV filename
Calculate total batches
batches_per_epoch = math.ceil(train_samples / batch_size)
total_batches = batches_per_epoch * total_epochs

csv_rows = []

for block_size in block_sizes:
Bx, By = block_size
row = {"Block_Size": f"{Bx}x{By}"}

for ratio in sparsity_ratios:
total_loaded = 0

for M, N, count in masked_layers:
Skip incompatible block sizes
if M% Bx !=0 or N % By != 0:
continue

Calculate total blocks and the loaded (kept) blocks

blocks_per_layer = (M // Bx) = (N // By)

kept_blocks = math.ceil(blocks_per_layer * (1 - ratio
))

elements_per_block = Bx * By

total_loaded += kept_blocks * elements_per_block x*
count

Scale to full training duration
total_loaded_scaled = total_loaded * total_batches
row[ratio] = int(total_loaded_scaled)

csv_rows.append(row)

Write to CSV
with open(csv_filename, , newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=[’Block_Size’] +
sparsity_ratios)
writer.writeheader()
writer.writerows(csv_rows)
print(f"Scaled_loaded_elements_saved_to_{csv_filename}")

o

\

53

54

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8o
81
82
83

| IMPLEMENTATION

Example usage for CIFAR-10 training

if __pame__ == "__main__":
masked_layers = [
(64, 64, 5), # XPatchLinear layers
(256, 64, 5), # XChannelLinearl layers
(64, 256, 5), # XChannelLinear2 layers

]

block_sizes = [

(1,1), (1,2), (1,4), (1,8), (1,16), (1,32), (1,64),
(2,1), (4,1), (8,1), (16,1), (32,1), (64,1),

(2,2), (4,4), (8,8), (16,16), (32,32), (64,64)

’

’

1
sparsity_ratios = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

generate_scaled_loaded_elements(
masked_layers,
block_sizes,
sparsity_ratios

)

Listing 5.23: Calculation of scaled loaded elements (from loaded_values.py).

Additionally, the masked_accuracy.py script extracts and aggre-
gates the top-1 validation accuracy from the training logs, with the
results saved to a CSV file for further analysis. The extraction logic
was previously presented in Listing 5.17.

5.4 EXPERIMENTAL PROCEDURE DETAILS

For the CIFAR-10 dataset, experiments were conducted by systemat-
ically varying two key hyperparameters: block size and mask ratio,
with the specific ranges detailed in the Methodology chapter. To en-
sure reproducibility, a fixed random seed was used so that identical
settings yield exactly the same results.

For the preliminary scalability exploration on the ImageNet dataset,
experiments were conducted for a fixed configuration: a 3232 block
size with an 80% mask ratio. Training on ImageNet was performed
for go epochs due to time constraints, unlike the 200 epochs used for
CIFAR-10. A fixed random seed was also employed for these ImageNet
experiments.

Job scheduling for all experiments was managed via SLURM, al-
though a detailed discussion of SLURM configuration is beyond the
scope of this work.

Additionally, external code contributions were incorporated into
the experimental framework. In particular, the LaunchPad® Python
library was utilized. This library leverages the YAML configuration

1 https://github.com/danielbarley/LaunchPad

https://github.com/danielbarley/LaunchPad

54 EXPERIMENTAL PROCEDURE DETAILS \

file to automatically generate SLURM job submission scripts for each
configuration specified, thereby streamlining the launch of multiple
experiments across different parameter settings.

In summary, experiments on CIFAR-10 were systematically executed
by varying block sizes and mask ratios. For ImageNet, a specific,
promising configuration from the CIFAR-10 exploration was tested
under a reduced epoch count to gain initial insights into scalability.
Results for all experiments were logged and aggregated for subsequent
analysis.

In this chapter, a detailed account was provided of the technical
implementation of the dynamic structured weight masking approach
and its associated measurement, profiling, and analysis tools. The
modifications to the ResMLP model for CIFAR-10 were described.
The implementation of block-wise masking using the Frobenius norm
and top-k selection was detailed, along with the application of the
mask during both forward and backward passes. A comprehensive
measurement framework was developed to compute adjusted FLOPs,
estimate theoretical memory movement, and enable the generation of
visualizations for masking patterns and training progress. Addition-
ally, the experimental procedure was briefly outlined, emphasizing the
systematic variation of block sizes and mask ratios, the use of a fixed
random seed for reproducibility, and the integration of a LaunchPad
library to automate experiment setup. Overall, a robust framework
has been established that provides the foundation for evaluating the
effectiveness of the proposed masking techniques. The next chapter
will present and analyze the experimental results.

55

56 | IMPLEMENTATION

Run_Model_Master_Mask
— models

L deep_sparse_nine
+— compressed

|— core.py

— functions

L affine.py
+— batchnorm.py
— compress.py

t— convolution.py

L— linear.py
L—__init__.py

— masked

|— core.py

— functions

— affine.py

— batchnorm.py
— convolution.py
t— linear.py

t— linear_unmasked.py

L prune.py

L— __init__.py

L sparse

|— core.py

— functions

L affine.py
+— batchnorm.py
t— convolution.py

t— linear.py

L prune.py

L— __init__.py
+— factory.py
t— helper.py

— measurement.py

L— ResMLP.py

— grid_cifarl@.yaml
— main.py

+— masked_accuracy.py
+— loaded_values.py

+— memory_calculation.py

L— training.py

Figure 5.1: Directory structure of the Master Thesis project. This tree illus-
trates the organization of the codebase, including key directories
such as models, and various measurement and training scripts.
Note that the masked directory was newly created and contains
all the adjusted files required for the experiments.

6 BENCHMARK AND RESULTS

6.1 INTRODUCTION

This chapter presents the empirical results obtained from benchmark-
ing the ResMLP model integrated with the dynamic structured weight
masking mechanism, as detailed in Chapters 4 and 5. The experiments
were designed primarily to evaluate the trade-offs between model
accuracy and theoretical memory movement when applying varying
levels of weight sparsity using different block granularities during
training on the CIFAR-10 dataset. The impact on theoretical computa-
tional cost (FLOPs) is also briefly examined. The analysis begins with
an overview of the comprehensive results on CIFAR-10, followed by a
focused investigation of a specific case exhibiting significant theoreti-
cal memory savings and interesting accuracy behavior. Additionally,
preliminary findings from applying the approach to the ImageNet
dataset, where maintaining performance under masking proved more
challenging, will be briefly presented. The chapter concludes with a
summary of the computational cost analysis.

This section details the experimental configuration used to obtain
the benchmark results presented in this chapter. It covers the compu-
tational environment, core training procedures, key hyperparameter
ranges explored for structured weight masking, and the metrics used
for evaluation for both CIFAR-10 and the preliminary ImageNet ex-
periments.

6.1.1 Computational Environment

The experiments were conducted on a system equipped with an
NVIDIA A3zo GPU running Linux. The software environment uti-
lized Python 3.12.2, PyTorch 2.5.1, and CUDA 12.4. Table 6.1 provides
a comprehensive summary of the system setup.

6.1.2 Training Procedure

For the CIFAR-10 dataset, the ResMLP model was trained for a total of
200 epochs using the Adam optimizer. An initial learning rate of 0.01
was employed and dynamically adjusted via a cosine annealing sched-
uler (warmup: 5 epochs at 0.001, cooldown: 10 epochs, minimum LR:
1e-5). Standard training practices were followed, including model ini-
tialization, optimizer/scheduler setup, and the use of a cross-entropy

57

58

Category Details

System Information | Python Version: 3.12.2

PyTorch Version: 2.5.1

CUDA Version: 12.4

Operating System Linux

OS Version: #1 SMP PREEMPT_DYNAMIC
Debian 6.1.112-1 (2024-09-30)

Hardware Details Machine: x86_64

GPU: NVIDIA A3zo

Table 6.1: System Setup and Environment Details

loss function with label smoothing (0.1). The training framework facil-
itated experiments both with the standard (dense) model and with the
dynamic structured weight masking mechanism central to this work.
For the preliminary ImageNet experiments, training was conducted
for 9o epochs due to time constraints, utilizing the AdamW optimizer
with parameters as detailed in Table 5.2. Other aspects of the training
procedure, such as the learning rate scheduler and loss function, were
consistent with the ImageNet-specific setup described in Chapter 5.

6.1.3 Hyperparameter Settings for Masking

To systematically evaluate the impact of dynamic structured weight
masking on CIFAR-10, two key hyperparameters were explored: the
masking block granularity (block size) and the target mask ratio.

BLOCK SIZES (CIFAR-10): The granularity of masking was con-
trolled by varying the block size. A wide range of block dimensions
were tested, encompassing fine-grained masking, vector-like blocks,
and large square blocks. Specifically, the tested sizes included:

Fine-grained: 1 x1 (operating on individual weights).
Vector-like: 1xN and Nx1 where N € {2,4,8,16,32,64}.
Square: NxN where N € {2,4,8,16,32,64}.

This selection allows for investigating how different masking struc-
tures influence performance. Finer granularities (like 1x 1) offer maxi-
mum precision in selecting important weights but may lack structural
benefits for hardware. Conversely, larger block sizes (e.g., 32x32,
64 % 64) enforce a coarser, more structured sparsity pattern. Such pat-
terns, consisting of large contiguous masked regions, are potentially
more amenable to hardware acceleration techniques that can skip
memory transactions for zeroed blocks, thereby offering a potential
pathway to improved memory efficiency.

6.2 OVERALL PERFORMANCE LANDSCAPE: ACCURACY AND MEMORY MOVEMENT | 59

MASK RATIOS (CIFAR-10): In parallel, for the CIFAR-10 experi-
ments, the target mask ratio (determining the fraction of weight blocks
to be masked) was varied across the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}.

SETTINGS FOR IMAGENET: For the preliminary ImageNet experi-
ments, a fixed masking configuration was used: a block size of 32x32
and a target mask ratio of 0.8 (80%). This configuration was cho-
sen as an illustrative example, and an exhaustive sweep of masking
hyperparameters was not performed for ImageNet.

It should be noted that for all experiments, while the binary mask
is dynamically recalculated via a top-k selection strategy during each
forward pass based on block norms, the target mask ratio remains
fixed throughout the training process after an initial warmup phase
(e.g., the first 10 epochs of training).

6.1.4 Evaluation Metrics

Model performance was primarily evaluated on the respective test/-
validation sets (CIFAR-10 test set, ImageNet validation set) using
top-1 classification accuracy. Training accuracy was also monitored
during the training process to assess convergence and identify po-
tential overfitting. These metrics provide a comprehensive view of
the model’s classification performance and generalization capability
under different masking configurations and datasets.

6.2 OVERALL PERFORMANCE LANDSCAPE: ACCU-
RACY AND MEMORY MOVEMENT

To provide a comprehensive overview of the model’s behavior across
the explored hyperparameter space, the final validation accuracy and
the estimated total memory movement are presented together. This
allows for an initial assessment of the interplay between block size,
mask ratio, and the two backward pass configurations (mask applied
vs. not applied during gradient computation).

6.2.1 Presentation and High-Level Observations

In the heatmaps (Figure 6.1 and 6.2), the y-axis represents block size
and the x-axis represents the mask ratio. Each cell shows the final
Top-1 validation accuracy (percentage and color) and the theoretical
memory movement (GB) after 200 epochs.

Several key observations emerge from these heatmaps:

60 | BENCHMARK AND RESULTS

Validation Accuracy and Memory Movement by Block Size and Mask Ratio

Mask Ratio (%)
20 50 8

0
72.40%
(317.981 GB)
72.24%
(317.981 GB)
71.50%
(317.981 GB)
71.42%
(307.318 GB)
71.16%
(285.851 GB)
72.32%
ez
73.50% 70.15%
164

71.42%
2x1 (317.981 GB)

90

1x1

1x2

1x4

1x8

1x16

71.38%
g o :
— 2
)]
71.33% o
g <
= 71.15% S
70.33%
8x1 (317.981 GB)
72.04%
8x8 (307.923 GB)

71.48%
1 6 x 1
73.34%
16x16 (286.689 GB)
71.26%
32x1 (317.981 GB)

72.72%
32x32 (271.788 GB)

71.84%
oaxt

64x64

Figure 6.1: Final Top-1 Validation Accuracy (color scale and percentage) and
Theoretical Memory Movement (GB) for varying Block Sizes and
Mask Ratios, with the mask applied during the backward pass.

6.2 OVERALL PERFORMANCE LANDSCAPE: ACCURACY AND MEMORY MOVEMENT | 61

Validation Accuracy and Memory Movement by Block Size and Mask Ratio

Mask Ratio (%)

20 30 40 50 80

1x1

1x2

1x4

1x8

=

1x32

2x1
— c
s =
o 4x4 £

8x1
8x8
16x1

32x32

64x1

64x64

Figure 6.2: Final Top-1 Validation Accuracy (color scale and percentage) and
Theoretical Memory Movement (GB) for varying Block Sizes and
Mask Ratios, without applying the mask during the backward
pass.

62

When the mask is applied during the backward pass, accuracy
generally remains high for mask ratios up to approximately 50%,
after which it tends to decline.

The rate and extent of accuracy degradation at higher mask
ratios are strongly dependent on the block size. Larger block
sizes sometimes maintain accuracy better at moderate mask
ratios but can degrade sharply later.

Theoretical memory movement reductions are most apparent at
high mask ratios (e.g., 80%, 90%) combined with large block sizes
(e.g., 32x32, 64x64). Many other configurations show minimal
theoretical savings based on the calculation method.

A noticeable difference in final accuracy exists between the
masked and unmasked backward pass conditions, particularly
visible in certain high-mask-ratio, large-block configurations like
32x32 at 80% mask ratio.

These trends motivate a closer look at the relationship between loaded
elements, memory movement, and the impact of the backward pass
condition, particularly in regimes where memory savings appear
possible.

6.2.2 Preliminary Results on ImageNet

To gain initial insights into the scalability of the dynamic structured
masking approach to larger and more complex datasets, preliminary
experiments were conducted on the ImageNet ILSVRC2012 dataset.
As detailed in the Benchmarking Setup, these experiments utilized a
ResMLP model adapted for ImageNet (Table 5.2) and were run for go
epochs.

The baseline ResMLP model, when trained densely (without any
masking) on ImageNet for 9o epochs, achieved a top-1 validation
accuracy of 40.60%.

For the masked experiment on ImageNet, a configuration employing
32 %32 block sizes with an 80% target mask ratio was evaluated. Under
these conditions, the model achieved a top-1 validation accuracy of
16.51% after 9o epochs.

These preliminary results indicate a significant drop in accuracy
when applying the tested masking configuration to ImageNet com-
pared to the dense baseline on the same dataset, suggesting that the
specific masking strategy and parameters require further adaptation
for effective performance on this larger scale.

63 ANALYSIS OF MEMORY MOVEMENT, LOADED ELEMENTS, AND MASKING GRANULARITY | 63

63 ANALYSIS OF MEMORY MOVEMENT, LOADED
ELEMENTS, AND MASKING GRANULARITY

A primary goal of this work is to investigate the potential for reduc-
ing global memory accesses during the forward pass. The memory
movement values presented in the overview heatmaps (Figures 6.1
and 6.2) quantify the theoretically estimated data transferred for all
layers in the forward pass, including both masked and unmasked
weight layers.

A predominant observation from the heatmaps is the frequent oc-
currence of the maximum calculated value (approximately 318 GB in
many cells). When this maximum is reached, it indicates that the theo-
retical memory movement, as calculated, is not reduced by masking
under those specific configurations and assumptions.

To illustrate the actual reduction in the number of computationally
active elements, Table 6.2, included below, presents the total number of
loaded (non-masked) weight elements, scaled over the entire training

duration.

Block Size ‘ Sparsity

‘ 10% 20% 30% 40% 50% 60% 70% 80% 90%
1X1 12.97B 11.53B 10.09B 8.65B 7.21B 577B 4.32B 2.88B 1.44B
X2 12.97B 11.53B 10.09B 8.65B 7.21B 577B 4.33B 2.88B 1.44B
1X4 12.97B 11.53B 10.09B 8.65B 7.21B 577B 4.33B 2.89B 1.44B
1x8 12.98B 11.54B 10.09B 8.65B 7.21B 577B 4.33B 2.89B 1.45B
1X16 12.98B 11.54B 10.10B 8.66B 7.21B 577B 4.34B 2.89B 1.45B
1X32 12.99B 11.55B 10.11B 8.67B 7.21B 578B 4.34B 2.90B 1.46B
1X64 13.01B 11.56B 10.13B 8.68B 7.21B 581B 4.35B 2.93B 1.48B
2X1 12.97B 11.53B 10.09B 8.65B 7.21B 577B 4.33B 2.88B 1.44B
4X1 12.97B 11.53B 10.09B 8.65B 7.21B 577B 4.33B 2.89B 1.44B
8x1 12.98B 11.54B 10.09B 8.65B 7.21B 577B 4.33B 2.89B 1.45B
16x1 12.98B 11.54B 10.10B 8.66B 7.21B 5.77B 4.34B 2.89B 1.45B
32X1 12.99B 11.55B 10.11B 8.67B 7.21B 578B 4.34B 2.90B 1.46B
64x1 13.01B 11.56B 10.13B 8.68B 7.21B 581B 4.35B 2.93B 1.48B
2x2 12.97B 11.53B 10.09B 8.65B 7.21B 577B 4.33B 2.89B 1.44B
4X4 12.98B 11.54B 10.10B 8.66B 7.21B 577B 4.34B 2.89B 1.45B
8x8 13.01B 11.56B 10.13B 8.68B 7.21B 581B 4.35B 2.93B 1.48B
16x16 13.11B 11.71B 10.21B 8.81B 7.21B 591B 4.50B 3.00B 1.60B
32X32 13.61B 12.01B 10.81B 9.21B 7.21B 6.41B 4.80B 3.60B 2.00B
64x64 14.41B 14.41B 11.21B 11.21B 8.01B 8.01B 8.01B 4.80B 4.80B

Table 6.2: Loaded weights (in billions) for various block sizes and sparsity
levels from a 200-epoch training run of the ResMLP network on
the CIFAR-10 dataset.

As clearly demonstrated in Table 6.2, increasing the mask ratio
consistently and significantly reduces the total number of loaded el-
ements required for computation, largely independent of block size

64

| BENCHMARK AND RESULTS

(minor variations notwithstanding). This reduction directly reflects
the potential for computational savings. However, a disparity exists
between this substantial reduction in loaded elements and the limited
reduction observed in the calculated memory movement for many
configurations, highlighting a challenge in directly translating com-
putational sparsity into theoretical memory access savings using this
model.

The process of masking discrete blocks also introduces granularity
effects. The actual number of masked elements may not increase
linearly with the target mask ratio, especially for large blocks where
masking a single block removes a large chunk of weights. This effect
is illustrated in Figure 6.3, which plots the actual number of masked
elements versus the target mask ratio for different block sizes. Small
block sizes (e.g., 2x2, left plot) result in a near-linear increase in masked
elements as the target ratio increases. Intermediate block sizes (e.g.,
32x32, center plot) show noticeable steps, while large block sizes (e.g.,
64x64, right plot) exhibit pronounced steps and plateaus.

Masked Elements vs Sparsity Ratio Masked Elements vs Sparsity Ratio Masked Elements vs Sparsity Ratio
Block Size 2x2 13.08 Block Size 32x32 Block Size 64x64
A 12.4
12.08B 11587 .

10.88”
1020

12.0B

,_.
~
o
@

9.6B 9.6B

g
=
@
©
=
@
®
o
@
©
o
@

o
=)
@
o
=)
@
w
N
@
o
o
@

N
Rio
Q

w
o
@
w
o
@
~
kN
©
w
o
@

Number of Masked Elements

Number of Masked Elements
w
50
@

Number of Masked Elements

g
EEN
@

01M” ,
G 0 o
0.1 02 03 04 05 0.6 0.7 0.8 0.9 0.1 0.2 03 04 05 06 0.7 0.8 09 01 02 03 04 05 06 0.7 0.8 09
Mask Ratio Mask Ratio Mask Ratio

Figure 6.3: Comparison of Masked Elements vs. Target Mask Ratio for dif-
ferent block sizes: 2x2 (Left), 32x32 (Center), and 64x64 (Right).
Larger block sizes exhibit more pronounced step-like increases
due to block granularity.

These steps occur because masking proceeds block by block based
on the top-k selection using the ceiling function (math.ceil) to de-
termine the number of blocks to keep. For large blocks like 64x64,
increasing the target mask ratio slightly (e.g., from 50% to 60%, or 80%
to 90%) might not be sufficient to change the discrete number of blocks
that are actually masked. Consequently, the total number of masked
elements plateaus within these ranges, as seen in the rightmost plot of
Figure 6.3.

64 IMPACT OF BACKWARD PASS MASKING AT HIGH
MASK RATIOS

Given the observed variations in accuracy across different block sizes,
mask ratios, and backward pass conditions, particularly the interac-
tion between block size and mask ratio highlighted in the heatmaps,
this section delves into the impact of masking gradients during the
backward pass.

64 IMPACT OF BACKWARD PASS MASKING AT HIGH MASK RATIOS |

Figure 6.4 provides a comparative view of the validation accuracy
progression over epochs for all tested block sizes at a fixed, high mask
ratio of 80%. The left plot shows the results when the mask is applied
during the backward pass, while the right plot shows the results when
it is not.

Comparison of Validation Accuracy Across Files Comparison of Validation Accuracy Across Files
80 80
70
70
60
z 3
g 60 50
=1 5
o o
g o]
< <
s §40
© 50 ®
o hed
s 230
40
20
10
30
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs
—— 16_1_block_test_masked_backprop_mask_ratio_08 —— 1_32_block_test_normal_backprop_mask_ratio_08
—— 1_64_block_test_masked_backprop_mask_ratio_08 —— 32_1_block_test_normal_backprop_mask_ratio_08
—— 1_2_block_test_masked_backprop_mask_ratio_08 —— 1_2_block_test_normal_backprop_mask_ratio_08
—— 4_4_block_test_masked_backprop_mask_ratio_08 —— 4_4_block_test_normal_backprop_mask_ratio_08
—— 4_1_block_test_masked_backprop_mask_ratio_08 —— 4_1_block_test_normal_backprop_mask_ratio_08
—— 16_16_block_test_masked_backprop_mask_ratio_08 —— 64_1_block_test_normal_backprop_mask_ratio_08
1_16_block_test_masked_backprop_mask_ratio_08 16_16_block_test_normal_backprop_mask_ratio_08
—— 2.2 block_test_masked_backprop_mask_ratio_08 —— 2.2 block_test_normal_backprop_mask_ratio_08
1_1_block_test_masked_backprop_mask_ratio_08 32_32_block_test_normal_backprop_mask_ratio_08
—— 64_1_block_test_masked_backprop_mask_ratio_08 —— 1_16_block_test_normal_backprop_mask_ratio_08
—— 32_32_block_test_masked_backprop_mask_ratio_08 —— 1_1_block_test_normal_backprop_mask_ratio_08
—— 8_8_block_test_masked_backprop_mask_ratio_08 —— 8_8_block_test_normal_backprop_mask_ratio_08
—— 1_32_block_test_masked_backprop_mask_ratio_08 —— 16_1_block_test_normal_backprop_mask_ratio_08
—— 1_8_block_test_masked_backprop_mask_ratio_08 —— 64_64_block_test_normal_backprop_mask_ratio_08
—— 2_1_block_test_masked_backprop_mask_ratio_08 —— 2_1_block_test_normal_backprop_mask_ratio_08
—— 1_4_block_test_masked_backprop_mask_ratio_08 —— 1_64_block_test_normal_backprop_mask_ratio_08
8_1_block_test_masked_backprop_mask_ratio_08 1_8_block_test_normal_backprop_mask_ratio_08
—— 64_64_block_test_masked_backprop_mask_ratio_08 —— 1_4 block_test_normal_backprop_mask_ratio_08
32_1_block_test_masked_backprop_mask_ratio_08 8_1 block_test_normal_backprop_mask_ratio_08

Figure 6.4: Comparison of Validation Accuracy Across All Block Sizes at 80%
Mask Ratio. Left: Mask applied during backward pass. Right:
Mask not applied during backward pass. Each line represents a
different block size configuration.

While the density of plots in Figure 6.4 makes detailed inspection
of individual block size performance challenging, the overall trend
is strikingly clear. When the mask is applied during the backward
pass (left plot), most configurations, despite the high 80% mask ratio,
manage to learn and achieve varying levels of final accuracy, gener-
ally converging towards values between 70% and 79% as seen in the
heatmap (Figure 6.1). However, when the mask is not applied during
the backward pass (right plot), the training behavior is drastically
different. Most configurations exhibit highly unstable accuracy curves,
often collapsing to very low values, and fail to converge effectively.
This strongly indicates that allowing gradients to propagate through
masked weights at high mask ratios is detrimental to the learning pro-

65

66

| BENCHMARK AND RESULTS

cess across almost all block granularities. This observation motivates
the subsequent detailed case study focusing on a configuration where
this effect is particularly pronounced.

6.5 CASE STUDY: 32X32 BLOCK SIZE AT 80%
MASK RATIO

To delve deeper into the observed phenomena, particularly the impact
of the backward pass condition in a regime with potential memory
savings, this section focuses on the configuration using a 32x32 block
size with an 80% mask ratio. This case is selected because Figures 6.1
and 6.2 show a substantial theoretical memory movement reduction (to
approx. 277 GB) and, as reinforced by Figure 6.4, a striking difference
in final accuracy between the masked backward pass (approx. 75.19%)
and the unmasked backward pass (approx. 10.00%).

6.5.1 Training Dynamics Comparison

Figure 6.5 isolates the Top-1 validation accuracy and training loss
curves for the 32x32 @ 80% configuration, directly contrasting the two
backward pass conditions.

Masked Backward Pass Normal Backward Pass

—— Validation Accuracy
30 —— Train Loss

5

)
Train Loss
Train Loss

Validation Accuracy
G

Validation Accuracy

40

16 0.5
10

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs

Figure 6.5: Comparison of Training Dynamics for 32x32 Block Size at 80%
Mask Ratio. Left: Mask applied during backward pass. Right:
Mask not applied during backward pass. The plots show Top-1
Validation Accuracy (green) and Training Loss (blue) over 200
epochs.

The contrast in training dynamics is pronounced. When the mask is
applied during the backward pass (Figure 6.5, left), the model trains
relatively well, achieving over 75% final accuracy. The training loss
decreases steadily, and the validation accuracy increases consistently,
indicating stable learning despite the high mask ratio. Conversely,
when the mask is not applied during the backward pass (Figure 6.5,
right), the training becomes highly unstable. The training loss exhibits
large, erratic spikes, and the validation accuracy fails to improve sig-
nificantly, remaining near random chance level (around 10%). This

instability is attributed to gradients being computed with respect to
the full weight tensor, including contributions from weights that were
masked (and thus did not contribute) during the forward pass. Such
gradients, derived from inactive weights, can be noisy or dispropor-
tionately scaled, leading to detrimental parameter updates that hinder
effective learning.

6.5.2 Masking Pattern Visualization

Visualizing the distribution of active (non-masked) blocks within the
network layers can offer qualitative insights into how the masking
mechanism operates under the different backward pass conditions.
Figure 6.6 presents heatmaps of the cumulative block activity counts
over the training duration for the three main linear layer types within
the first ResMLP block (Block o) for the 32x32 with 80% mask ratio
configuration. The left column corresponds to the stable training
run (mask applied during backward pass), and the right column
corresponds to the unstable run (mask not applied).

Comparing the heatmaps in Figure 6.6, a visual difference in the
masking dynamics emerges. In the stable run (left column, masked
backward pass), the patterns of active blocks (brighter colors) appear
somewhat more structured or consistent over time. Conversely, the un-
stable run (right column, unmasked backward pass) exhibits patterns
that seem more varied or potentially erratic, suggesting that the set of
active blocks might be changing more frequently or less predictably.
This qualitative observation aligns with the idea that unstable gradient
updates in the unmasked backward pass case could interfere with
the top-k selection mechanism, leading to less stable sparsity patterns
compared to the masked backward pass condition where training is
stable.

While these visualizations are qualitative, they provide support-
ing evidence suggesting that the backward pass masking not only
stabilizes gradient updates but might also lead to more consistent dy-
namic sparsity patterns during training, especially under challenging
high-mask-ratio conditions.

6.6 COMPUTATIONAL COST ANALYSIS (THEORETI-
CAL FLOPS)

For completeness, the theoretical computational cost reduction is
presented. Figure 6.7 plots the calculated theoretical FLOPs per epoch
against the mask ratio.

The plot illustrates the linear decrease in theoretical FLOPs inherent
in the calculation methodology as the mask ratio increases, a direct
consequence of the model’s assumption that computational cost scales

67

68

BENCHMARK AND RESULTS

Block O - xpatch Linear

-80000

60000

40000

Output Feature Blocks

20000

Input Feature Blocks

Block 0 - xchannel Linear 1

o- 92292 93999
-80000
- 12 37
ﬁ b —
8 60000
@
om
2
©
i
E - 93990 94002 40000
5
2
5
[}

’ IIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIII
—— -
©
N‘IIIIIIIIIIHHIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIII
0
0 1
Input Feature Blocks

Block O - xchannel Linear 2

o©- 93997 94002 94002 93984
40000
~ 0 0 2 0 0
20000
0
0 1 2 3 4 5 6 7

-80000

60000

Output Feature Blocks

Input Feature Blocks

Block O - xpatch Linear

o 1235

ﬁI““““‘%““““‘\““““‘{{““““\ ||
0 1

Input Feature Blocks

79598

Output Feature Blocks

Block 0 - xchannel Linear 1

°
”

3488 2
g"
o

°

o

om- 81217 81425
2

®

3

L 18017 11587
5

=

5

Oun- 66855 67131

0 1

Input Feature Blocks

Block 0 - xchannel Linear 2

GEIRNEEN 20268 | 21239 64249
| 1)
1 3 4 6

2 5
Input Feature Blocks

Output Feature Blocks

-70000

60000

50000

40000

30000

20000

10000

-80000

70000

60000

50000

40000

30000

20000

10000

0

-70000

60000

50000

40000

30000

20000

10000

Figure 6.6: Comparison of Block Activity Heatmaps for Block o Layers (32x32
Block Size, 80% Mask Ratio). Left column: Mask applied during
backward pass. Right column: Mask not applied during back-
ward pass. Rows correspond to XPatch Linear, XChannel Linear
1, and XChannel Linear 2 layers, respectively. Colors indicate the
cumulative count of times each block was active (non-masked)

over 200 epochs.

FLOPs vs. Sparsity

5000 4860

4000

&
S

3400.

2920.0

w
S
<3
3

2430.0

1950.0

FLOPs (MFLOPs)
S

1460.0

1000 972.6

QQ 0’.\ Q’L Q’b Q > Q") Qe Q/\ Q‘b Qq
Sparsity

Figure 6.7: Theoretical FLOPs per epoch as a function of Mask Ratio. The
plot demonstrates a linear decrease in computational operations
as the mask ratio increases, reflecting the reduction in active
weight elements.

with the number of active (non-masked) elements (Table 6.2). This
simplified theoretical calculation indicates that at an 80% mask ratio,
the total theoretical FLOPs are reduced by approximately 5x compared
to the dense equivalent. While practical speedups depend on hard-
ware/software support, this quantifies the computational efficiency
potential estimated by this model.

The theoretical FLOPs for the CIFAR-10 experiments, as analyzed,
demonstrated the expected linear reduction in computation with in-
creasing mask ratio. Overall, the results presented in this chapter
emphasize the critical role of co-designing the mask ratio and block
granularity to balance accuracy and efficiency, and highlight the dis-
tinction between reducing computation and reducing memory traffic
in theoretical assessments. The handling of gradients during the back-
ward pass also emerged as a critical factor for training stability at
high mask ratios, particularly evident in the CIFAR-10 experiments.
Furthermore, preliminary tests on ImageNet indicated that apply-
ing this masking approach to larger, more complex datasets presents
substantial challenges requiring dataset-specific adaptations.

69

7 DISCUSSION

This chapter interprets the empirical results presented in Chapter 6, fo-
cusing on the interplay between dynamic structured weight masking,
model accuracy, theoretical memory movement, and computational
cost within the ResMLP architecture. The findings are discussed in
relation to the research objectives, situated within the context of ex-
isting literature, and considered for their practical implications and
limitations.

7.1 OVERVIEW OF KEY FINDINGS

The benchmarking experiments yielded several notable insights re-
garding the effects of dynamic structured weight masking during the
training of ResMLP networks. For the CIFAR-10 dataset, key find-
ings include: First, when employing a masked backward pass, model
accuracy on CIFAR-10 remained robust for mask ratios up to approxi-
mately 50%, beyond which accuracy typically deteriorated. The onset
and degree of this degradation were further modulated by the granu-
larity of the block size, as illustrated in Figure 6.1 (masked backward
pass) and contrasted with the behavior observed with an unmasked
backward pass (Figure 6.2). Second, a marked discrepancy was ob-
served between the substantial reduction in loaded (non-masked)
elements and the modest decrease in estimated theoretical memory
movement. While the number of active elements decreased nearly
linearly with increasing mask ratio (see Table 6.2), the calculated mem-
ory movement showed significant reductions only for configurations
employing large block sizes at high mask ratios (Figures 6.1 and 6.2).
Third, the strategy for handling gradients during the backward pass
proved critical. Specifically, applying the mask during backpropaga-
tion was essential for ensuring training stability and preserving final
accuracy—especially at high mask ratios (e.g., 80%)—whereas allow-
ing gradients to propagate through masked weights frequently led
to instability or collapse (Figures 6.4 and 6.5). Finally, the theoretical
computational cost for CIFAR-10 experiments, quantified in FLOPs,
decreased linearly with increasing mask ratio, directly reflecting the
reduction in active weight elements (Figure 6.7).

Furthermore, preliminary experiments on ImageNet, limited to
90 epochs and a specific masking configuration (32 x 32 blocks, 80%
mask ratio), demonstrated that this setup led to a marked decrease in
accuracy from 40.60% (dense) to 16.51% (masked). This underscores

71

72

the increased difficulty of applying the tested masking strategies
effectively to more complex datasets without further, dataset-specific
adjustments.

7-2 INTERPRETATION OF FINDINGS

7.2.1 Accuracy-Mask Ratio Trade-off and Block Granularity

The decline in classification accuracy observed at mask ratios ex-
ceeding approximately 50% when employing a masked backward
pass is primarily attributable to the removal of a substantial por-
tion of weight parameters, leading to a loss of critical information
necessary for the model to capture complex data features. This 50%
threshold for maintaining robust accuracy is a key characteristic of
the masked backward pass configuration. In this scenario, the model
tolerates higher mask ratios, and employing larger blocks can even
help capture important features more effectively. In contrast, when
the backward pass is unmasked, accuracy degrades at lower mask
ratios, and the selective elimination provided by fine-grained (smaller
block) masking performs better. Additionally, larger blocks result
in more hardware-friendly memory access due to their contiguous
structure, which facilitates coalesced memory transactions on GPUs.
This observation underscores the critical role of the backward pass
masking strategy: with backward pass masking, larger blocks yield
superior performance, whereas without it, smaller blocks are prefer-
able. Furthermore, an additional observation is that for larger block
configurations, increasing the target mask ratio yields little change in
the number of masked elements until a critical threshold is reached,
at which point a sudden jump occurs (Figure 6.3).

7.2.2 Theoretical Memory Movement versus Loaded Elements

A critical observation from the results is the discrepancy between
the substantial reduction in loaded (non-masked) elements (Table 6.2)
and the relatively modest decrease in estimated theoretical memory
movement, particularly for smaller block sizes or lower mask ratios
(Figures 6.1 and 6.2). This disparity likely stems from the conserva-
tive assumptions underpinning the theoretical memory movement
calculations used in this work. Specifically, factors such as cache line
granularity—where accessing even a single element within a cache
line may necessitate loading the entire line—and assumptions about
worst-case alignment of data blocks relative to cache lines can lead to
overestimations of the required memory traffic. Consequently, unless
large, contiguous memory regions corresponding to full cache lines or
multiples thereof are masked, the calculated reduction in data transfer

remains limited. Such a condition, where theoretical memory savings
become apparent, is met primarily in configurations employing large
block sizes (e.g., 32x32, 64x64) at high mask ratios.

Furthermore, the granularity effect observed in the actual number
of masked elements (Figure 6.3) can also contribute to the behavior
seen in the theoretical memory movement estimations. The plateauing
of actual achieved mask level for large blocks across certain target
mask ratio ranges means the number and configuration of loaded
blocks may not change significantly. If the access patterns for these
loaded blocks remain similar, the calculated memory movement may
also stay constant or change minimally across those ranges, despite
increases in the target mask ratio.

This analysis highlights that while structured masking significantly
reduces the number of active parameters (Table 6.2) and thus potential
computation, achieving corresponding reductions in global memory
accesses, as estimated theoretically here, is more challenging. The theo-
retical memory model suggests that realizing tangible memory access
savings likely requires hardware-aware optimizations. These might in-
clude the use of specialized sparse matrix libraries or custom compute
kernels designed to explicitly bypass memory loads for masked re-
gions and to exploit the coalesced memory access patterns potentially
offered by structured sparsity. The potential for such savings appears
strongly linked to using large block sizes at high mask ratios, where
both the granularity effect is pronounced and the potential alignment
with memory transaction units (like cache lines) is greater.

7.2.3 The Ciritical Role of Backward Pass Masking

The experiments unequivocally demonstrate that applying the weight
mask during the backward pass is crucial for training stability, partic-
ularly at high mask ratios (Figures 6.4 and 6.5). When the mask was
omitted during backpropagation, gradients were computed with re-
spect to the entire weight tensor, including contributions from masked
weights that did not influence the forward pass. These spurious gradi-
ents, calculated for weights that made no contribution to the forward
pass output and thus to the computed loss, effectively introduce er-
roneous information into the learning process. Such gradients can
be noisy, as they do not reflect a genuine contribution to the error;
disproportionately scaled, as the optimization algorithm might assign
undue importance to changes in these inactive weights; or otherwise
misleading, by suggesting parameter adjustments that are not per-
tinent to the actual network behavior observed during the forward
pass. Consequently, the optimizer may perform pathological updates,
adjusting parameters based on this flawed information, which can
disrupt the learning trajectory, prevent convergence, and ultimately
destabilize the entire training process. In contrast, applying the mask

73

74

during the backward pass ensures that only gradients corresponding
to the active weights are propagated. This alignment between forward
and backward computations yields a more stable and meaningful
learning signal.

The approach taken by Sparse Weight Activation Training (SWAT) [20]
provides an interesting counterpoint, particularly as its evaluations
were primarily conducted on Convolutional Neural Networks (CNNss).
SWAT also sparsifies weights and activations for the computation
of gradients in the backward pass but critically, it computes dense
weight gradients which are then used to update all network weights,
including those that were inactive during the forward pass. Raihan
and Aamodt [20] report that this method allows for stable training
and enables dynamic exploration of the sparse topology within these
CNN architectures. The stability reported by SWAT, despite updating
all weights, suggests that the method of gradient derivation and the
consistent application of these gradients to all parameters (active or
inactive) are key factors. This contrasts with the instability observed
in the ‘'unmasked backward pass’ configuration of this study, where
gradients were also computed for all weights. The differing outcomes
might be attributed to the specific update strategy of SWAT, the dis-
tinct architectural contexts (CNNs vs. the ResMLP used here), or the
interaction with the top-k selection mechanism employed in this work.
This highlights that the nuanced details of gradient computation, its
application, and the underlying network architecture are paramount
when weights involved in the forward pass differ from those being
updated.

Further qualitative support for this interpretation comes from com-
paring the masking pattern visualizations from the case study (Fig-
ure 6.6). In the stable run (left column, masked backward pass), the
patterns of active blocks (brighter colors) appear somewhat more
structured or consistent over time. Conversely, the unstable run (right
column, unmasked backward pass) exhibits patterns that seem more
varied or potentially erratic, suggesting that the set of active blocks
might be changing more frequently or less predictably. This qualitative
observation aligns with the idea that unstable gradient updates in the
unmasked backward pass case could interfere with the top-k selection
mechanism, leading to less stable masking patterns compared to the
masked backward pass condition where training is stable. While these
visualizations are qualitative, they provide supporting evidence sug-
gesting that the backward pass masking not only stabilizes gradient
updates but might also lead to more consistent dynamic masking
patterns during training, especially under challenging high-mask-ratio
conditions.

7.2.4 Interpreting Scalability Challenges on ImageNet

The preliminary experiments on ImageNet, which showed a significant
drop in accuracy for the masked model (16.51%) compared to its dense
counterpart (40.60%) even with a configuration (32 x32 blocks, 80%
mask ratio) that was relatively successful on CIFAR-10, highlight the
substantial challenges in scaling dynamic structured masking to larger
and more complex datasets. Several factors likely contribute to this
observed performance.

Firstly, the ImageNet dataset is vastly larger and more diverse than
CIFAR-10, demanding greater model capacity and potentially different
architectural considerations for the ResMLP model to learn effectively,
even before masking is applied. The baseline dense accuracy of 40.60%
after 9o epochs itself suggests that the model might have been un-
dertrained or that the base architecture requires further scaling for
optimal ImageNet performance.

Secondly, the masking configuration tested on ImageNet was not
specifically tuned for this dataset but was chosen as an illustrative
example from the space explored for CIFAR-10. It is plausible that
the optimal block granularity and mask ratio for ImageNet differ
significantly from those suitable for CIFAR-10. Aggressively masking
80% of a model that may already be struggling with capacity or
training duration on a complex task could disproportionately harm
its ability to learn critical features.

Finally, the limitation to 9o training epochs for the ImageNet experi-
ments, due to time constraints, further complicates the interpretation.
Models trained on ImageNet typically require hundreds of epochs
to converge fully. The observed accuracy for both dense and masked
models might be far from their potential with more extensive training.

Therefore, the lower accuracy of the masked model on ImageNet
should be interpreted with caution. It primarily indicates that a direct
application of the tested masking setup is insufficient for this challeng-
ing task and that achieving effective performance would necessitate
further, dataset-specific adaptations. This could involve adjustments to
the base model architecture, a dedicated search for optimal masking
hyperparameters for ImageNet, and more extensive training, all of
which were beyond the scope of this thesis’s preliminary ImageNet
exploration.

7-3 RELATION TO RESEARCH OBJECTIVES AND LIT-
ERATURE
The primary objective of this study was to investigate the potential

for reducing global memory accesses in deep neural network training
through dynamic structured weight masking. The findings indicate

75

76

that while the technique significantly reduces the number of active pa-
rameters, the translation of these reductions into decreased theoretical
memory movement is constrained by the underlying memory model
assumptions. Nevertheless, the observed reduction in active elements
highlights the potential for actual memory savings, provided that
hardware-aware optimization strategies are employed. Unlike conven-
tional pruning methods, which focus on static sparsity for inference,
this work advances the understanding of dynamic masking during
training. By situating these results alongside studies on activation
compression [2, 3] and unstructured dynamic sparsity [13, 19], this
thesis offers a nuanced perspective on block-based dynamic weight
masking within an MLP architecture. A notable contribution is the
empirical demonstration of the necessity for backward pass masking
to ensure training stability under high sparsity conditions.

A relevant baseline for dynamic sparsity in training is the Sparse
Weight Activation Training (SWAT) methodology [20]. While both
this thesis and SWAT explore dynamic sparsity during training, their
primary objectives and specific mechanisms differ. SWAT’s main goal
is the reduction of training time via decreased computational FLOPs,
achieved by sparsifying weights in the forward pass and both weights
and activations during backward pass gradient computations, followed
by updating all network weights using the derived dense gradients.
This contrasts with the primary objective of this thesis, which is to
reduce global memory accesses through dynamic structured block-
wise masking. Furthermore, the approach in this thesis focuses on
a specific form of structured sparsity (blocks) and investigates the
critical impact of how gradients for masked elements are handled,
particularly the finding that not updating masked weights (masked
backward pass) is essential for stability. SWAT, on the other hand,
reports stable training while updating all weights, enabling dynamic
topology exploration, and can be applied to both unstructured and
structured (e.g., channel-level) sparsity. Thus, while SWAT provides a
valuable reference for achieving computational speedups via dynamic
sparsity, this work investigates a distinct strategy focused on memory
access reduction and the intricacies of maintaining training stability
with block-structured dynamic masking.

7-4 IMPLICATIONS OF THE STUDY

The practical implications of this research are multifaceted. For the
ResMLP architecture on CIFAR-10, maintaining a mask ratio of up
to approximately 50% appears to strike an optimal balance between
preserving model accuracy and reducing computational load. More-
over, the choice of block size is a critical hyperparameter that interacts
with the treatment of the backward pass. When the backward pass

is masked, larger blocks can better preserve essential features while
also facilitating hardware-friendly memory access, thereby enhancing
training stability even at high mask ratios. In contrast, when the back-
ward pass is unmasked, the more selective elimination provided by
smaller blocks tends to perform better, as unmasked gradients from
inactive weights may destabilize training. These findings for CIFAR-10
suggest that achieving significant memory access reductions while
maintaining performance and stability involves careful co-design of
the masking strategy, block granularity, and backward pass handling.

The preliminary results from the ImageNet experiments further
inform the implications regarding scalability. The contrasting perfor-
mance on ImageNet, where a tested configuration performed poorly
compared to its dense counterpart, suggests that masking strategies
and their optimal parameters are likely dataset-dependent and not
directly transferable across datasets of vastly different scales and com-
plexities. It implies that realizing benefits from dynamic structured
masking on large-scale tasks such as ImageNet necessitates careful,
dataset-specific adjustments. This could involve modifications to the
base model architecture, dedicated optimization of masking parame-
ters, or different training regimes, an exploration which was outside
the scope of this thesis’s ImageNet investigation.

Collectively, these findings suggest that while dynamic structured
masking shows promise for improving training efficiency, achieving
significant memory access reductions, particularly on diverse and
large-scale tasks, will likely require co-design strategies that inte-
grate hardware-friendly sparse algorithms with dedicated software
or hardware support, alongside dataset-aware tuning of the masking
approach.

7-5 LIMITATIONS OF THE STUDY

This study has several limitations that must be acknowledged. Firstly,
the evaluation relies on theoretical estimates of FLOPs and memory
movement (computed using the ptflops library [17]), which do not
fully capture real-world hardware behaviors such as cache effects,
memory bandwidth limitations, and kernel launch overheads. Conse-
quently, the reported computational and memory savings represent
theoretical potentials rather than empirically measured performance
gains. Moreover, the current implementation within the PyTorch frame-
work applies masking via element-wise multiplication, which zeroes
out weights but does not prevent them from being loaded into memory
or from participating in computations within dense linear layers.
Additionally, while the primary experiments were conducted on
a single model architecture (ResMLP) and dataset (CIFAR-10), the
preliminary exploration on ImageNet also had specific constraints.

77

78

| DISCUSSION

The investigation on ImageNet was intended as an initial scalabil-
ity check and was limited to go training epochs and a single, fixed
masking configuration (32x 32 blocks, 80% mask ratio). A dedicated
optimization of the masking approach for ImageNet, which would
involve a search for suitable masking parameters, model adaptations,
or more extensive training, was not conducted as the primary research
objective was not to find optimal masking parameters for diverse
network-dataset combinations. Consequently, the observed accuracy
of 16.51% for the masked model on ImageNet (compared to a 40.60%
dense baseline) reflects the performance of this specific, untuned setup
rather than an optimized application of the masking technique on this
dataset. It is plausible that with further, dataset-specific adaptations,
performance could be improved. These factors limit the generalizabil-
ity of the specific quantitative findings from ImageNet, though they
highlight important scalability considerations.

Finally, for all experiments, only the Frobenius norm (based on L2
calculations) was employed as the criterion for top-k block selection,
and the target mask ratio was held fixed after an initial warmup
phase; alternative selection criteria, such as utilizing the L1 norm of
block weights or incorporating gradient magnitudes to assess block
importance, or adaptive mask ratio strategies might yield different
performance trade-offs.

8 CONCLUSION AND OUTLOOK

This concluding chapter summarizes the primary findings of the thesis
regarding the reduction of global memory accesses in deep neural
network (DNN) training through dynamic structured weight masking
applied to the ResMLP architecture. It reiterates the key contributions
and outlines promising directions for future research stemming from
this work.

8.1 CONCLUSION

The central objective of this thesis was to evaluate the efficacy of dy-
namic structured weight masking as a means to mitigate the bottleneck
imposed by global memory accesses during DNN training, with a spe-
cific focus on the ResMLP model. A block-wise masking mechanism,
based on Frobenius norm magnitude (derived from L2 calculations)
and top-k selection, was implemented. Its impact on model accuracy,
theoretical computational cost (FLOPs), and estimated memory move-
ment was thoroughly assessed across various block sizes and mask
ratios, primarily using the CIFAR-10 dataset.

Empirical results from the CIFAR-10 experiments indicate that dy-
namic structured weight masking significantly reduces the computa-
tional load, as evidenced by a near-linear decrease in the number of
active (loaded) weight elements and theoretical FLOPs with increasing
mask ratio (see Table 6.2 and Figure 6.7). Regarding model accuracy,
experiments employing masked backward passes demonstrated that
accuracy could be maintained for mask ratios up to approximately
50%, beyond which performance degradation typically occurred; this
behavior was strongly influenced by the chosen block granularity, with
larger blocks often proving beneficial under these masked conditions
(Figure 6.1). This 50% threshold for robust accuracy was not observed
in experiments using unmasked backward passes; these instead ex-
hibited a lower overall tolerance to masking, with accuracy declining
at lower mask ratios, where the advantages of finer, smaller blocks
became more apparent (Figure 6.2).

A key observation on CIFAR-10 was the discrepancy between the
reduction in computationally active elements and the limited decrease
in estimated theoretical memory movement. This disparity likely re-
sults from the assumptions made regarding cache line granularity,
combined with a conservative estimate of worst-case alignment, sug-
gesting that significant memory savings may only be realized under

79

80

specific configurations involving large block sizes and high mask ra-
tios. Furthermore, the study underscores the critical importance of
applying the mask during the backward pass. Without backward pass
masking, gradients are computed for inactive weights, leading to un-
stable training dynamics and poor convergence—particularly at high
mask ratios (e.g., 80%) (Figures 6.4 and 6.5).

Preliminary application of the approach to the ImageNet dataset
(90 epochs, 32x32 blocks, 80% mask ratio) resulted in a substantial
accuracy reduction for the masked model (16.51%) compared to its
dense counterpart (40.60%). This indicates that while the core mecha-
nisms of dynamic structured masking are in place, achieving effective
performance on larger, more complex datasets requires further inves-
tigation into appropriate model and masking adaptations, an aspect
not fully explored in this thesis.

In summary, this thesis provides a detailed empirical evaluation of
dynamic structured weight masking for training ResMLP networks,
primarily on CIFAR-10. It quantifies the trade-offs between accuracy,
mask ratio, and block size, highlights the limitations of theoretical
memory movement estimates in standard frameworks, and demon-
strates the necessity of backward pass masking for stable high-mask-
ratio training. This work contributes valuable insights into the appli-
cation of structured sparsity during DNN training, identifies practical
challenges, particularly concerning scalability to larger datasets, and
outlines potential benefits.

8.2 OUTLOOK AND FUTURE WORK

The findings and limitations of this study open several promising
avenues for future research aimed at further enhancing the efficiency
of DNN training through sparsity:

Implementation of True Sparse Operations: Future work should
move beyond masking within dense operations by implement-
ing true sparse tensor representations and computations. Lever-
aging libraries such as PyTorch Sparse or developing custom
CUDA kernels would ensure that masked elements are entirely
excluded from computation, thereby preventing unnecessary
loading of data from global memory. This approach is essential
for validating the theoretical memory savings in practice.

Hardware-Specific Performance Evaluation: Empirical evalua-
tion on target hardware is critical. Future studies should profile
performance on various GPUs (e.g., the NVIDIA A3o and others)
using tools such as NVIDIA Nsight Systems or nvprof. Mea-
suring real-world metrics—including wall-clock time, memory
bandwidth utilization, cache hit/miss rates, and energy con-

sumption—under different mask ratio configurations would
provide a clearer picture of the practical benefits and limitations.

Evaluation and Adaptation for Diverse Models and Datasets:
To assess and improve the generalizability of dynamic structured
weight masking, future research should extend the evaluation
to other architectures, such as Convolutional Neural Networks
(CNNs) and Transformers. Critically, further work is needed
for larger datasets like ImageNet. Given the preliminary perfor-
mance on ImageNet with the tested configuration, future efforts
should focus on strategies for adapting and optimizing struc-
tured masking for such large-scale tasks. This includes investi-
gating the interplay with model architecture scaling, appropriate
training regimes, and dedicated exploration of masking parame-
ters (e.g., block sizes and mask ratios) suited for these complex
datasets, moving beyond the initial fixed-configuration tests con-
ducted in this thesis’s exploratory phase. It is conceivable that
with such dataset-specific adjustments, improved performance
could be achieved.

Adaptive Masking Strategies: Exploring adaptive masking tech-
niques—where the mask ratio and block size are dynamically
adjusted during training based on performance metrics or com-
putational constraints—could lead to more optimal trade-offs
between accuracy and efficiency, potentially offering a more
robust solution across different datasets and training stages.

By addressing these areas, future research can build upon the foun-
dation laid by this thesis, paving the way for more resource-efficient,
scalable, and practically applicable methods for sparse neural network
training tailored to modern hardware architectures.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Daniel Barley. “Reducing the State of Large-Scale MLPs by Com-
pressing the Backward Pass.” Supervised by Holger Froning.
Master’s thesis. Heidelberg University, Faculty of Engineering
Sciences, 2023.

Daniel Barley and Holger Froning. “Compressing the Backward
Pass of Large-Scale Neural Architectures by Structured Activa-
tion Pruning.” In: Proceedings of the Computing Systems Group,
Institute of Computer Engineering, Heidelberg University. arXiv
preprint arXiv:2311.16883. 2023.

Daniel Barley and Holger Froning. “Less Memory Means Smaller
GPUs: Backpropagation with Compressed Activations.” In: Com-
puting Systems Group, ZITI, Heidelberg University. arXiv preprint
arXiv:2409.11902. 2024.

Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and
Erich Elsen. “Rigging the Lottery: Making All Tickets Winners.”
In: arXiv preprint arXiv:1911.11134 (2019). Version v3, Jul 23, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

Yongchang Hao, Yanshuai Cao, and Lili Mou. “NeuZip: Memory-
Efficient Training and Inference with Dynamic Compression of
Neural Networks.” In: arXiv preprint arXiv:2410.20650 (2024).

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2009.

Dan Hendrycks and Kevin Gimpel. “Gaussian Error Linear
Units (GELUs).” In: arXiv preprint arXiv:1606.08415 (2016).

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. “Sparsity in Deep Learning: Pruning
and Growth for Efficient Inference and Training in Neural Net-
works.” In: Journal of Machine Learning Research 23 (2021), pp. 1—-
124.

David B. Kirk and Wen-mei W. Hwu. Programming Massively
Parallel Processors: A Hands-on Approach. 1st. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2010.

83

84

| BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Yoshimasa Kubo, Michael Traynor, Thomas Trappenberg, and
Sageev Oore. “Learning Adaptive Weight Masking for Adversar-
ial Examples.” In: International Joint Conference on Neural Networks
(IJCNN). 2019.

Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani A.
Ioannou. “Dynamic Sparse Training with Structured Sparsity.”
In: International Conference on Learning Representations (ICLR).
2024.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing.” In: Nature 521.7553 (2015), pp. 436—444. DOIL: 10 .1038/
naturel4539.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong
H. Nguyen, Madeleine Gibescu, and Antonio Liotta. “Scalable
Training of Artificial Neural Networks with Adaptive Sparse
Connectivity Inspired by Network Science.” In: Nature Commu-
nications 9.1 (2018), pp. 1-12.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective.
MIT Press, 2012.

Dmitry Nikolaev. ptflops: FLOPs counter for PyTorch models. https :
//github. com/sovrasov/flops - counter.pytorch. Accessed:
2024-11-18. 2020.

NVIDIA Corporation. NVIDIA AMPERE GA102 GPU ARCHI-
TECTURE: Second-Generation RTX. White Paper. V2.0, Updated
with NVIDIA RTX A6ooo and NVIDIA Ao Information. Avail-
able at: https://www.nvidia. com/ content/dam/en- zz/
Solutions/geforce/ampere/pdf/NVIDIA-ampere- GA102 - GPU-
Architecture-Whitepaper-V2.pdf [Accessed: YYYY-MM-DD].
NVIDIA Corporation, Jan. 2021. URL: https://www.nvidia.com/
content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-
ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf.

Tejas Pote, Muhammad Athar Ganaie, Atif Hassan, and Swanand
Khare. “Dynamic Forward and Backward Sparse Training (DF-
BST): Accelerated Deep Learning Through Completely Sparse
Training Schedule.” In: Proceedings of Machine Learning Research.
Vol. 189. PMLR, 2022, pp. 1027-1041.

Md Aamir Raihan and Tor M. Aamodt. “Sparse Weight Activa-
tion Training.” In: arXiv preprint arXiv:2001.01969 (2020).

Sourjya Roy, Priyadarshini Panda, Gopalakrishnan Srinivasan,
and Anand Raghunathan. “Pruning Filters While Training for Ef-
ficiently Optimizing Deep Learning Networks.” In: arXiv preprint
arXiv:2003.02800 (2020).

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2010.

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V2.pdf

[23]

[24]

[25]

[26]

[27]

[28]

[29]

BIBLIOGRAPHY |

Ralf C. Staudemeyer and Eric Rothstein Morris. “Understanding
LSTM - a tutorial into Long Short-Term Memory Recurrent
Neural Networks.” In: arXiv preprint arXiv:1909.09586 (2019).

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer.
“Efficient Processing of Deep Neural Networks: A Tutorial and
Survey.” In: Proceedings of the IEEE 105.12 (Dec. 2017). arXiv
preprint arXiv:1703.09039 [cs.CV], version v2 dated Aug 13,
2017, pp. 2295-2329. DOIL: 10.1109/JPR0OC.2017.2761740.

Hugo Touvron et al. “ResMLP: Feedforward networks for im-
age classification with data-efficient training.” In: arXiv preprint
arXiv:2105.03404 (2021).

Jiali Wang, Hongxia Bie, Zhao Jing, Yichen Zhi, and Yongkai
Fan. “Weight Masking in Image Classification Networks: Class-
Specific Machine Unlearning.” In: Knowledge and Information
Systems (2025), pp. 1-23.

Yuyang Xue, Junyu Yan, Raman Dutt, Fasih Haider, Jingshuai
Liu, Steven McDonagh, and Sotirios A. Tsaftaris. “BMFT: Achiev-
ing Fairness via Bias-Based Weight Masking Fine-Tuning.” In:
arXiv preprint arXiv:2408.06890 (2024).

Ping Yu, Mikel Artetxe, Myle Ott, Sam Shleifer, Hongyu Gong,

Ves Stoyanov, and Xian Li. “Efficient Language Modeling with
Sparse All-MLP.” In: arXiv preprint arXiv:2203.06850 (2022).

Yongchen Zhou and Richard Jiang. “Advancing Explainable Al
Toward Human-Like Intelligence: Forging the Path to Artificial
Brain.” In: arXiv preprint arXiv:2402.06673 (2024).

85

https://doi.org/10.1109/JPROC.2017.2761740

ERKLARUNG

Ich versichere, dass ich diese Arbeit selbstindig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe.

Heidelberg, den 02/06/2025

Your Name Here

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction and Motivation
	2 Background
	2.1 Machine Learning Overview
	2.1.1 Supervised Learning
	2.1.2 Forward Pass
	2.1.3 Loss Function
	2.1.4 Backward Pass
	2.1.5 Further Training Methods

	2.2 Neural Network Architectures
	2.2.1 Convolutional Neural Networks (CNNs)
	2.2.2 Multi-Layer Perceptrons (MLPs)
	2.2.3 Recurrent Neural Networks (RNNs)
	2.2.4 ResMLP Architecture

	2.3 GPU Acceleration in Deep Learning
	2.4 Datasets for Image Classification
	2.5 Pruning and Masking Techniques
	2.5.1 Structured Sparsity in Neural Networks
	2.5.2 Dynamic vs. Static Masking

	2.6 PTFlops

	3 Literature Review
	3.1 Weight Masking and Dynamic Sparsity in Training
	3.1.1 Principles and Applications of Weight Masking
	3.1.2 Dynamic Sparse Training (DST) Methodologies

	3.2 Structured Sparsity and Memory Efficiency in DNN Training
	3.2.1 Advancements in Structured Sparsity
	3.2.2 Techniques for Memory-Efficient Training

	3.3 Advancements in MLP-based Architectures
	3.3.1 The Resurgence and Evolution of MLP Architectures
	3.3.2 Sparsely Activated Models: Mixture-of-Experts (MoE) in MLPs
	3.3.3 Situating this Thesis's Approach to MLP Efficiency

	4 Methodology
	4.1 Methodological Approach
	4.2 Dataset and Preprocessing
	4.2.1 CIFAR-10 Dataset
	4.2.2 ImageNet Dataset for Scalability Exploration

	4.3 Structured Weight Masking
	4.3.1 Mask Application
	4.3.2 Backward Pass with and without Masking

	4.4 Measurement and Analysis Strategy
	4.4.1 Computational Cost Estimation
	4.4.2 Model Accuracy Evaluation
	4.4.3 Masking Pattern Analysis
	4.4.4 Theoretical Memory Movement Estimation
	4.4.5 Extraction of Key Performance Indicators

	5 Implementation
	5.1 Introduction
	5.1.1 Codebase Overview

	5.2 ResMLP Model Modifications
	5.2.1 Adaptation for CIFAR-10 and ImageNet
	5.2.2 Model Configuration Details
	5.2.3 Data Loading and Preprocessing
	5.2.4 Data Loading and Preprocessing

	5.3 Structured Weight Masking Implementation
	5.3.1 Mask Generation
	5.3.2 Mask Application
	5.3.3 Masking with and without Backward Pass
	5.3.4 FLOPs Calculation
	5.3.5 Accuracy Evaluation
	5.3.6 Theoretical Memory Movement Calculation
	5.3.7 Extraction of Final Performance Metrics

	5.4 Experimental Procedure Details

	6 Benchmark and Results
	6.1 Introduction
	6.1.1 Computational Environment
	6.1.2 Training Procedure
	6.1.3 Hyperparameter Settings for Masking
	6.1.4 Evaluation Metrics

	6.2 Overall Performance Landscape: Accuracy and Memory Movement
	6.2.1 Presentation and High-Level Observations
	6.2.2 Preliminary Results on ImageNet

	6.3 Analysis of Memory Movement, Loaded Elements, and Masking Granularity
	6.4 Impact of Backward Pass Masking at High Mask Ratios
	6.5 Case Study: 32x32 Block Size at 80% Mask Ratio
	6.5.1 Training Dynamics Comparison
	6.5.2 Masking Pattern Visualization

	6.6 Computational Cost Analysis (Theoretical FLOPs)

	7 Discussion
	7.1 Overview of Key Findings
	7.2 Interpretation of Findings
	7.2.1 Accuracy-Mask Ratio Trade-off and Block Granularity
	7.2.2 Theoretical Memory Movement versus Loaded Elements
	7.2.3 The Critical Role of Backward Pass Masking
	7.2.4 Interpreting Scalability Challenges on ImageNet

	7.3 Relation to Research Objectives and Literature
	7.4 Implications of the Study
	7.5 Limitations of the Study

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook and Future Work

	 Bibliography
	Declaration

