
Faculty of Engineering Sciences
Heidelberg University

Master Thesis
in Computer Engineering

submitted by
Constantin Nicolai

born in Bretten, Germany
29/07/2025

O N E N E R GY M O D E L I N G O F D E E P
N E U R A L N E T W O R K O P E R AT I O N S

This Master thesis has been carried out by Constantin Nicolai
at the

Institute of Computer Engineering
under the supervision of

Holger Fröning

A B S T R A C T

The fast broader adoption of ML applications has caused a surge in
their global energy usage, necessitating a comprehensive understand-
ing of the tradeoffs between execution speed and energy consumption.
While previous work was focused on time-only or inference-only stud-
ies, we provide a more complete picture by covering a wider space
of parameters. We contribute: (1) time and energy profiling across
inference and training of DNN operations, (2) operations-level and
full DNN performance predictions trained on our profiling results
and (3) graphical evaluation and validation of profiling and predictor
results. Profiling results of Nvidia A30 performance across several
core clocks reveal an energy optimum of 900 MHz, aligning with the
manufacturer base clock of 930 MHz. This work provides the tools
which enable the correct choice of target GPU and clock speed for
existing and future models.

v

Z U S A M M E N FA S S U N G

Die rasche Verbreitung von ML Anwendungen hat zu einem starken
Anstieg ihrer globalen Energiekosten geführt und damit ein umfas-
sendes Verständnis der Tradeoffs zwischen Laufzeit und Energiever-
brauch notwendig gemacht. Der Fokus vorheriger Arbeiten liegt auf
reinen Zeit- oder reinen Inference-Studien. Hierauf bauen wir auf,
indem wir eine breitere Spanne an Parametern abdecken um ein
vollständigeres Bild der Lage abzugeben. Unsere Contributions sind:
(1) Zeit- und Energieprofiling für Inference und Training von DNN
Operations, (2) Vorhersagen für individuelle Operations und volle
DNNs trainiert auf den Profiling Ergebnissen und (3) eine grafische
Auswertung und Validierung der Profiling und Vorhersage Ergebnisse.
Messresultate der Nvidia A30 Performance über einige GPU Clocks
zeigen ein Energieoptimum bei 900 MHz, welches sich mit dem Stan-
dard Base Clock von 930 MHz deckt. Diese Arbeit stellt die Werkzeuge
zur Verfügung um die richtige GPU und den richtigen Clock Speed
für aktuelle und zukünftige Modelle zu wählen.

A C K N O W L E D G M E N T S

I would like to express my gratitude towards Daniel Barley for his
guidance and feedback throughout the thesis. I also want to thank
the sig-profiling group for providing an environment of collaboration
and reflection. Additionally, I am grateful to Alexandra Stehle for her
input early on and to Mathias Backes, Marlene Matzke, and Alexander
Seitz for their continued feedback.

vii

C O N T E N T S

1 Introduction 1

1.1 Motivation 1

1.2 Problem Statement 1

1.3 Scope 2

1.4 Contributions Overview 2

1.4.1 Dataset Collection 2

1.4.2 Prediction Model 2

1.4.3 Validation 2

2 Background 5

2.1 Graphics Processing Unit 5

2.2 Random Forest Regressor 5

2.3 XGBoost Regressor 6

2.4 Coefficient of Determination 7

2.4.1 Cross-Validation R2
7

2.4.2 Test Set R2
8

3 State of the Art and Related Work 9

3.1 State of the Art 9

3.2 Related Work 9

3.3 Research Gap 10

4 Dataset Collection 11

4.1 Operations 11

4.2 Time Profiling 12

4.2.1 Inference 14

4.2.2 Training 14

4.2.3 Proportionality 15

4.3 Energy Profiling 15

4.4 Profiling Evaluation 18

4.5 GPU Clocks 19

5 Predictor Models 21

5.1 Model Selection 21

5.2 Predictor Architecture 22

5.3 Neural Network Level Predictor 23

6 Validation 25

6.1 Dataset Validation 25

6.1.1 Methodology 25

6.1.2 Hardware Platforms 25

6.1.3 Results 26

6.1.4 Uncertainties 26

6.1.5 Tensor Core Real-World Impact 29

6.2 Operations Level Predictions 31

6.2.1 Training A30 31

ix

x contents

6.2.2 Inference A30 32

6.2.3 Training RTX2080TI 35

6.2.4 Inference RTX2080TI 35

6.3 Neural Network Level Predictions 36

6.3.1 Patterns and Observations 44

6.4 Predictor Latency 47

7 Discussion and Outlook 49

7.1 Discussion 49

7.1.1 Limitations 49

7.1.2 Application 50

7.2 Outlook 51

7.3 Conclusion 52

Bibliography 55

L I S T O F A B B R E V I AT I O N S

• DNN - Deep Neural Network

• GPU - Graphics Processing Unit

• MSE - Mean Squared Error

• XGBoost - Extreme Gradient Boosting

• CV - Cross-Validation

• R2 - Coefficient of Determination

• EDP - Energy Delay Product

xi

1 I N T R O D U C T I O N

1.1 motivation

The global increase in usage of machine learning applications illus-
trates an acceleration in adoption across both industry and the private
sector. The unfathomably large energy costs tied to this broader adop-
tion have already prompted a change in public sentiment towards
energy infrastructure. Plans for building trillion-dollar data centers
are emerging, necessitating the re-commissioning of previously de-
commissioned nuclear power plants, which were originally phased
out as part of nuclear energy reduction efforts. This reversal of nuclear
phase-out policies underscores the significant infrastructural and polit-
ical pressures exerted by the energy requirements of machine learning
technologies.
In this landscape it is more pressing than ever to gain insight into the
roots of the energy costs in order to optimize future developments on
an informed basis.
In order to facilitate a more informed pairing of workload and GPU we
introduce a framework to help guide the decision towards an optimal
choice. By allowing for optimization towards the fastest execution time
or the smallest energy footprint, our framework enables an informed
choice which prevents wasteful computation by optimizing for energy
when execution time is not critical.

1.2 problem statement

While a considerable amount of previous work has been done in pro-
filing and prediction of neural network performance, no prior work
covers both execution time and power consumption across training
and inference.
However in most cases where a new model architecture is designed
or an existing architecture is adapted, both the training and the in-
ference efficiency are relevant at some point in the model’s lifespan.
As training is typically performed in datacenters, it can be both time-
constrained by long execution times and strict deadlines, as well as
energy-constrained by infrastructure limitations in cooling capabili-
ties and energy budget. Inference on the other hand can be latency-
constrained by real-time applications but also energy-constrained on
mobile or embedded devices.

1

2 introduction

1.3 scope

We focus our work exclusively on the profiling and prediction of deep
neural networks.
The intended scope is to collect a dataset, validate its usability, use it
to perform predictions and evaluate the prediction quality.
Practical constraints narrowed our study to the Nvidia RTX 2080 TI
and the A30 GPUs and to the models available in the Pytorch Torchvi-
sion library1.
The grid-search approach across the parameters revealed some inher-
ent incompatibilities, such as models too large to fit the GPU memory
or benchmarks resulting in prohibitively long runtimes due to edge
case parameters combinations. Rather than troubleshooting every edge
case, we decided to prioritize more practical configurations and to
exclude those edge cases of limited practical relevance.

1.4 contributions overview

1.4.1 Dataset Collection

The first contribution introduces a method for automated profiling
data collection and processing into a coherent dataset.
In order to ensure repeatability, the time and power readings along
with a number of key related metrics are stored together with the
Pytorch objects of the profiled operations.
The profiling measurements are executed via a python script that
utilizes the Pytorch Benchmark library2 to conduct the time measure-
ments. The power profiling is conducted by running nvidia-smi3 in
the background during the benchmark execution.

1.4.2 Prediction Model

The second contribution presents our prediction model. By aggregat-
ing the predictions for the individual operations of a neural network,
we can infer predictions for the complete DNN. This allows us to
identify which GPU will have the shortest execution time and which
one the smallest energy footprint for any given DNN architecture.

1.4.3 Validation

The third and final contribution consists of two major sections.
The first one investigates the quality of our collected dataset of individ-

1 https://docs.pytorch.org/vision/0.22/

2 https://pytorch.org/tutorials/recipes/recipes/benchmark.html

3 https://docs.nvidia.com/deploy/nvidia-smi/index.html

https://docs.pytorch.org/vision/0.22/
https://pytorch.org/tutorials/recipes/recipes/benchmark.html
https://docs.nvidia.com/deploy/nvidia-smi/index.html

1.4 contributions overview 3

ual operations. The compositional validity of the dataset is confirmed
by comparing the aggregation of the individual operations which
compose a neural network against measurements of the full neural
network.
The second section assesses the performance of our prediction model
both for individual operations and for full neural networks.

2 B A C KG R O U N D

2.1 graphics processing unit

A graphics processing unit (GPU) is a massively parallel accelerator
which prioritizes throughput over latency in its architectural design.
Compared to a CPU which is optimized for low latency in order to
ensure a responsive user experience, a GPU is designed to excel at
massively parallel workloads.
When optimizing for throughput, there are two avenues towards
increasing it, increasing the frequency and increasing the number of
cores. By deprioritizing latency, GPU design is able to leverage the
latter and exploit the following relationship:

P ∝
1
2

CV2 f (2.1)

Where P is the power, C is the capacitivee load, V is the voltage and f
is the frequency [7].
The weaker frequency requirements on the GPU allow for an optimiza-
tion towards lower voltages, minimizing the impact of the quadratic
power scaling.
This design philosophy is the foundational reason why GPUs have
orders of magnitude more cores than CPUs, making them the perfect
fit for the massively parallel matrix operations in DNN training and
inference workloads.

2.2 random forest regressor

In order to introduce the workings of a random forest regressor model,
we first need to define a number of foundational concepts: regression,
decision trees, bootstrapping and bagging. On this basis, we can de-
scribe the concept of a random forest.
Regression is a supervised learning technique approximating a func-
tion to a continuous target variable from a set of input output pairs. In
the case of random forests, this function is learned by minimizing the
mean squared error over an ensemble of decision trees [6][p. 10]. The
MSE is an error metric calculated from the squared distance between
prediction and true value.

MSE(y, ŷ) =
1
n

n−1

∑
i=0

(yi − ŷi)
2 (2.2)

5

6 background

With n the number of samples, ŷi the predicted value of the i-th sample
and yi the corresponding true value [1].
A decision tree is a predictor which recursively partitions the input
feature space in order to provide specific predictions for each region.
In the tree, at each decision node one feature and a corresponding
threshold are chosen to split the current input feature space into two
regions. This feature and threshold are chosen by considering all
features and many thresholds and identifying the lowest MSE combi-
nation. At each leaf node, a prediction value is assigned based on the
data points within that region [6][p. 307].
Bootstrapping describes the process of sampling with replacement
from the training dataset. For each tree in an ensemble, a new training
subset is created by randomly sampling data points from the full
training dataset, explicitly allowing for duplicates. This results in each
tree being trained on a slightly different subset of the training dataset,
while preserving the overall data distribution across the ensemble of
trees.
The ensemble technique of aggregating the results from the inde-
pendently trained trees is called bagging. For regression tasks, the
individual predictions are averaged, which serves to reduce model
variance and improve robustness across the ensemble.
Similar to the bagging approach, a random forest is an ensemble of
trees. The only step necessary to move from standard bagging to a
random forest model, is to adapt the process of building the decision
trees. Instead of considering all features at every decision node, in a
random forest only a smaller random subset of features is considered
at each node. Introducing randomness within the building of the trees
increases variety between the trees. This reduced correlation between
individual trees is the core improvement over the standard bagging
approach. The individual trees being more independent results in
reduced variance in the average across the ensemble [6][p. 588].
The twofold introduction of randomness through bootstrapping and
the random forest approach is the key to the overall strengths of the
random forest model in strong robustness, little overfitting and good
generalization.

2.3 xgboost regressor

XGBoost is another tree based ensemble method for regression. In
contrast to the random forest regressor, it builds its trees sequentially
instead of concurrently like the random forest does.
Classic gradient boosting proceeds by building an initial tree to fit
the original targets. When using MSE, this is typically the mean of
the targets. From then on, it works iteratively. Each subsequent tree
is trained to predict the negative partial derivative of the loss with

2.4 coefficient of determination 7

respect to the current prediction. The trees are then added to the
ensemble and weighted with a learning rate which determines the
contribution of each step and controls the convergence behavior of the
model [4].
The primary drawback of classic gradient boosting is its tendency
to overfit, especially for larger ensembles of trees. XGBoost builds
upon classic gradient boosting in order to preserve its strengths and
improve its generalization.
One improvement is its inclusion of regularization. It uses a leaf weight
penalty term which encourages sparsity by driving leaf weights to zero.
It also introduces a minimum loss reduction threshold that controls
node splitting. In practice that means, if a split does not improve
the loss function by at least the threshold amount, no split occurs
[4]. XGBoost also often uses a small learning rate which requires a
large number of trees, but improves the training stability. Another
extension is early stopping. It evaluates performance on a held-out
validation set during training, stopping if no further improvement
occurs. The combination of more stable training and early stopping
reduces overfitting.

2.4 coefficient of determination

The coefficient of determination, denoted as R2, is a statistical measure
used to evaluate the performance of regression models. It measures the
proportion of the variance in the dependent variable that is predictable
from the independent variables.

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2.3)

where yi are the observed values, ŷi are the predicted values and ȳ is
the mean of the observed values [2].
An R2 score of 1 indicates perfect predictions. A score of 0 indicates
the predictor performs equally to predicting the mean of the training
target values. If the model performs worse than predicting the mean,
the score ranges below 0.
Before the training process of any model begins, the dataset is split
into a training set and a test set. The test set is held out for the final
evaluation of the predictive performance on unseen data.

2.4.1 Cross-Validation R2

In k-fold cross-validation, the training set is partitioned into k subsets
called folds. The regressor is trained on k − 1 folds and the R2 score
is evaluated on the remaining fold. This process is repeated k times
across all folds. The k scores are then averaged into a CV R2. This

8 background

process only simulates a holdout set without actually interacting with
the test set. Therefore it is a measure of how well the model works
compared to other models and while it can give an indication of the
predictive performance, it is not a conclusive measure its performance.

2.4.2 Test Set R2

In contrast, the test set R2 score is a measure of the models real-world
performance, since its evaluation is performed on a true holdout set.
It provides a conclusive measure of the models generalization and its
real-world performance.

3 S TAT E O F T H E A R T A N D
R E L AT E D W O R K

3.1 state of the art

The challenge of predicting neural network performance has invited a
multitude of approaches. Apart from the methodological approaches
they also differ in a number of other aspects. While execution time is
commonly the metric of choice, only few go further and also study
metrics like power consumption and memory footprint. Another im-
portant distinction is the workload studied in the work, more specifi-
cally, whether both training and inference are studied. For practical
reasons it is also relevant which machine learning framework is used
and what hardware targets are required and can be predicted for.
These many dimensions of possibility result in no work covering all
possibilities, but allows for many different approaches which have use
cases in a given situation.

3.2 related work

Kaufmann et al. take an approach of performance modeling by means
of the computation graph. They are however limited to the Google
Tensor Processing Unit in this work [9].
Justus et al. take an approach exploiting the modular and repetitive
nature of DNNs. Given the same operations are repeated over and over
in training, often only varying in a few key parameters, the execution
time for these base building blocks is measured. This is then done
for one batch in the training process and generalized to the whole
training process from there. There is however no presentation of the
methodology for the execution time measurements [8].
Qi et al. present PALEO which employs an analytical approach to-
wards predicting the execution for both training and inference of deep
neural networks. The analytical approach brings both advantages and
disadvantages with it. It does not require a dataset of measured execu-
tion times as a training set in the same way many other works do, but
on the other hand it also is based on more fixed assumptions about
the DNN execution than a more data driven approach [10].
Wang et al.’s approach uses a multi-layer regression model to predict
execution time for training and inference. Their work is however rather
limited in terms of hardware targets and different DNNs studied [13].
Cai et al. focus their work, NeuralPower, on CNNs running on GPUs.
For each target GPU, they collect a dataset and fit a sparse polynomial

9

10 state of the art and related work

regression model to predict power, runtime, and energy consumption.
While NeuralPower achieves good results, its usefulness has become
limited due to its exclusive focus on CNNs, as other DNN architec-
tures have grown in popularity [3].
Gianitti et al. also exploit the modular nature of DNNs in their ap-
proach. They define a complexity metric for each layer type, optionally
including back propagation terms, allowing them to predict execution
times for both training and inference. However, their method faces
significant limitations, as the complexity metric is only defined for
a specific set of operations, making it incompatible with networks
that include layers not covered in the original work. As a result, their
approach is essentially limited to classic CNN architectures [5].
Velasco-Montero et el. also take the familiar per-layer approach. Their
predictions are based on linear regression models per type of layer,
but again for a specific set of predefined operations. Given their focus
on low-cost vision devices these restrictions are reasonable, but limit
generalizability [12].
Sponner et al. take a broad approach in their work. It works in the
TVM framework giving it high flexibility in target hardware and stud-
ied metrics. It is in fact the only work to include execution time, power
consumption and memory allocation. Given the automated data col-
lection used to create the dataset basis for the predictions, there are
also few limitations to the networks that can be studied with this.
The predictions are based on an extremely randomized tree (ERT)
approach with XGBoosting applied. The only major drawback for this
work is its limitation to only study inference, due to TVMs limitation
to inference [11].

3.3 research gap

Despite a considerable amount of work on this topic, no single study
has covered all possible angles of interest. Given the current landscape
of available publications our work will focus on finding the best GPU
for a PyTorch job. In order to achieve that, we will cover execution
time, power and energy consumption and will provide inference and
training predictions for these metrics. Our approach also employs a
method of automatic dataset collection, which allows for a broad field
of study. Power readings are collected directly through nvidia-smi.
While this limits our work to Nvidia GPUs, this methodology could
just as well be applied to any other hardware target which supports
reporting power readings.

4 DATA S E T C O L L E C T I O N

This contribution outlines the method used to collect a profiling
dataset. The dataset serves as a training set for the prediction model.
The parameters covered are various Torchvision models and input
sizes, execution time and power, both the inference and the training
case as well as multiple GPUs and various GPU clocks.

4.1 operations

In order to increase generality, our approach exploits the layer wise
structure of DNNs by working at the layer level rather than the model
level. In order to ensure rigor we must clarify our terminology.
On the layer level, the workload characteristics are determined by the
layer and its input features. On this level, the objects with an identical
characteristic workload are layers with specific settings and input
feature dimensions. We will refer to these objects as operations.
At the model level, the objects with an identical characteristic work-
load are models with specific input dimensions. We will refer to these
as model-input sets.
This study could have been conducted on the model level, the opera-
tions level or the kernel level.
We chose the operations level over the kernel level, because it is closer
to the model level which determines the performance of real-world
applications. We chose it over the model level itself, because all the
combinations of operations open up a wider space of possibilities
than the model level itself ever could. The operations level’s relative
proximity to the model level allows us to infer predictions for the
model level behavior from it.
With these considerations, the units for which we will make predic-
tions are individual operations. To this end, we collect a dataset of
operations, profiling execution time and power for each individual
operation. To ensure that the dataset reflects operations encountered
in real-world scenarios, we selected a number of representative model-
input sets from models of the Torchvision library.
Before profiling, the set of all operations occurring in any of these
model-input sets is filtered using a manually defined whitelist of
PyTorch layers. This whitelist excludes layers that contribute only
negligible computational load, because their operations would intro-
duce more measurement overhead than execution time data into the

11

12 dataset collection

profiling results. Their inclusion would reduce the accuracy of the
aggregation approach towards modeling full neural networks.

4.2 time profiling

Model A (batch size, channels, height, width)

△ ⋆ ◦ □ △ ◦ ⋆ △ ◦ ◦ ⋆ □ ⋆

Model B (batch size, channels, height, width)

□ ◦ △ ⋄ ⋄ ◦ △ □ □ ⋄ ⋄ ◦ △ □

Operations Extractor A: 3△, 2□, 4⋆, 4◦

B: 3△, 4□, 4⋄, 3◦

Whitelist A: 3△, 2□, 4◦

B: 3△, 4□, 3◦

Unique Ops △ □ ◦

Benchmark warmup runs

profiling iterations
}

power logging

Dataset

Validation time(Model A) ≈ ∑ time(△△△ ◦ ◦ ◦ ◦□)

Figure 4.1: Example models A and B illustrate the workflow. Operations
within each model are represented as shapes. The Operations
Extractor tracks each operation and its occurrence count in per
model lists. The whitelist removes operations of negligible com-
putational impact. From these lists, a global set of unique opera-
tions is created and then profiled in the Benchmark. Validation
uses the per model lists to ensure aggregated times reflect full
model execution.

4.2 time profiling 13

10 4 10 3 10 2 10 1 100

Runtime [s]

100

101

102

103

104

105
Ite

ra
tio

ns
Iteration Runtime Proportionality with 5 Bounds

Data
Linear Fit (Top 6/7)
5 Outliers
+5 Bound
-5 Bound
Largest Outlier 0.00034s

Figure 4.2: This plot shows the proportionality of the runtime with the num-
ber of iterations ran for an operation. A linear fit is performed
to the 6

7 of data points with most iterations. From this fit the
standard deviation for the linear section is found. This allows us
to identify the largest outlier below which the proportionality
breaks. In order to do this we search for the largest runtime in
the 5σ outliers.

The time profiling is performed using the benchmark utility from
torch.utils.benchmark called Timer. This enables us to run our
benchmark function with specific layers and input features as in-
put parameters, allowing us to run it for individual operations.
To achieve more stable execution time profiling and improve the si-
multaneous power profiling we aggregate more statistics by running
the benchmark for each operation for a duration of at least a few sec-
onds. Different workload characteristics and different computational
capabilities depending on the GPU configuration being profiled result
in different requirements for individual profiling runs in order to en-
sure sufficient repetitions. In order to accommodate this requirement,
the duration of the benchmark is configurable via a command-line
parameters.
For the initialization of the operations instances within the bench-
mark script we have to be careful to avoid two extreme cases in order

14 dataset collection

to achieve a sensible approximation of the execution characteristics
within a neural network. The first case we want to avoid is initializing
one instance of the operation and performing each benchmark loop
on that instance. This would result in hitting the cash every time and
would not be representative. The second extreme we want to avoid
is initializing a new instance for each loop of the benchmark run,
which would add the initialization overhead and the larger latency
of having to access the GPU main memory every time, skewing our
results in the opposite direction. We have therefore chosen the middle
ground approach of initializing a sizable block of operation instances
with random weights and biases, which are then looped over by the
benchmark kernel, resulting in a moderate reuse of layers, stressing
the memory system in a sensible manner.

4.2.1 Inference

The central difference between inference and training profiling ap-
pears in the design of the benchmark function.
For inference profiling we put our operations into eval mode and call
them within a torch.inference_mode environment, which is equiv-
alent to the execution in a typical inference forward pass through a
model. Within the loop we call the operator on a preinitialized random
input tensor for the forward pass. The input tensor is a single instance,
as it represents the activations from the previous layer which can be
expected to live in high level memory in our memory hierarchy. Since
this forward pass is everything we want to profile for inference, this
benchmark loop is sufficient.

4.2.2 Training

For the training profiling we put our operations into train mode
and omit the environment used in the inference case. In order to
portray the training process for a single operation, we need to run a
forward pass and a backward pass. The forward pass is still handled
identically. In order to execute the backward pass we need a substitute
for the gradients flowing backward trough the model. This is achieved
by preinitializing a random torch vector with the dimensions of our
operation’s output which we can then call the backward pass on.
Other than that, we only have to make sure the runtime retains the
gradients for all operation instances for the appropriate duration and
keep resetting the input vector gradients for each loop iteration.

4.3 energy profiling 15

4.2.3 Proportionality

Since our benchmark function assumes the number of benchmark
iterations and the resulting total runtime to be proportional, we need
to test that assumption. In order to do that, we plot their relationship
in Figure 4.2. By identifying how short the total runtime needs to
become for the linear relationship to break, we can find a lower bound
to our desired benchmark duration for each operation we study. Our
investigation reveals a lower bound of 100 ms. As every operation
is benchmarked for at least several seconds in our actual measure-
ments, we are well above that threshold and justified in assuming
proportionality.

4.3 energy profiling

The energy profiling is conducted by measuring the power in watts.
Combined with the time measurements this gives us the energy re-
sults.
We are starting nvidia-smi as a background process and logging the
power readings into a temporary csv file, which is used to calculate
each operation’s power average.
A second instance of nvidia-smi runs during the complete benchmark
process. The resulting log can be compared to the timestamps included
in the dataset of profiled operations, in order to investigate surprising
anomalies in the results.
Due to the nature of our measurement pipeline, some preparations
and processing after the fact are necessary to ensure robust results.
As can be seen in Figure 4.3, showing the power measurement over
time for alternating idle times and benchmark calls, the transition is
not instant. There are some power readings in between the steady
states of idle and benchmark.
In order to illustrate the existence of a startup effect without idle times
between the benchmark runs, Figure 4.4 shows five looped benchmark
runs of the same benchmark overlayed. For each run we can observe
the startup effect.
We do not want to keep this startup effect in our result, because it is a
result of our benchmark execution and not representative of the much
more integrated execution pipeline in a neural network.
In order to keep it from affecting our results, we use a 3σ channel
around the initial mean of the power readings and drop everything
outside the channel.
As a second precaution, the script also employs some warmup runs in
order to further minimize the impact of the startup effect.

16 dataset collection

0 50 100 150 200 250 300
Time (seconds)

50

100

150

200

250

Po
we

r [
W

]

Continous Power

Threshold
Power 0

Figure 4.3: Power log on the RTX 2080 TI for alternating sleep and bench-
mark calls. Benchmark and sleep are marked as coloured sections.
At each transition there are a few readings in between the two
steady states. Those are the startup effect, that we are filtering out
by the use of a 3σ channel around the initial mean and dropping
all readings outside.

4.3 energy profiling 17

0 5 10 15 20 25
Time (seconds)

60

80

100

120

140

160

Po
we

r [
W

]

5 Looped Runs

Power 0
Power 1
Power 2
Power 3
Power 4

Figure 4.4: Power logs on the A30 for five runs of the same benchmark. They
are overlayed to illustrate the reproducable pattern. Since the
benchmark was run in the loop, we conclude the startup effect
is not a result of the idle time introduced by the sleep calls in
Figure 4.3, but is also present in our actual measurement script.

18 dataset collection

4.4 profiling evaluation

The following section explains the details of how we arrive at our
results from log files collected in the benchmark runs. Below you can
see a snippet from one of the log files. The third entry in each row is
the power reading.

2024/10/10 13:18:58.369, 81, 145.99, 4396, 11264

2024/10/10 13:18:58.407, 81, 182.11, 4396, 11264

2024/10/10 13:18:58.428, 81, 182.11, 4396, 11264

2024/10/10 13:18:58.439, 81, 182.11, 4396, 11264

2024/10/10 13:18:58.490, 81, 178.50, 4396, 11264

2024/10/10 13:18:58.514, 81, 178.50, 4396, 11264

2024/10/10 13:18:58.538, 81, 178.50, 4396, 11264

Let us begin with the power evaluation. The log file is read in via
pandas1. Any existing rows containing a non-numerical value are
dropped from the dataframe. We then find the standard deviation for
the power and drop all rows containing a power reading outside a 3 σ

range. The following formulae are used for the mean and standard
deviation:

W =
1
n

n

∑
i=1

Wi (4.1)

σW =

√
1

n − 1

n

∑
i=1

(Wi − W)2 (4.2)

W f iltered = W such that |W − W| < 3σW (4.3)

With n being the number of timestamps and W being the power.
The same two formulae are used to find the mean power W f iltered and
standard deviation σW f iltered

of the filtered power.
Both the total runtime ttot and its standard deviation σttot are provided
by torch.utils.benchmark.
In the next step we find the total run energy Etot and its error σEtot .

Etot = W f iltered · ttot (4.4)

σEtot = σW f iltered
· ttot (4.5)

1 pandas

https://pandas.pydata.org/

4.5 gpu clocks 19

From this, we find the time per iteration t and the energy per
iteration e, as well as the error for the time per iteration σt and for the
energy per iteration σe with the number of iterations being N.

t =
ttot

N
(4.6)

e =
Etot

N
(4.7)

σt =
σttot

N
(4.8)

σe =
σEtot

N
(4.9)

The most interesting results here are the time and energy per itera-
tion with their respective errors, as well as the average power.

4.5 gpu clocks

The last parameter we needed to build a test methodology for is the
GPU core clock. A dedicated clocking script2 takes command line
parameters to set the desired clock speed. A range of clock speeds
was tested in order to gain insight into the relationships between clock
speed, runtime and energy consumption.

2 Because using nvidia-smi to change the clock requires lower level permissions, this
was done in a separate script with additional permissions, which was then called
from the sbatch script used to run the benchmark.

5 P R E D I C TO R M O D E L S

In this chapter we will introduce the regression model used for provid-
ing predictions based on the collected dataset. We will go into the idea
and decisions in creating it in this specific way and provide insight
into the implementation.

5.1 model selection

Since we are interested in predicting time and energy, we need two
dedicated prediction models. More precisely, we need one model for
runtime predictions and one for power predictions. By multiplying
the two predictions we obtain our energy predictions.
In order to enable sufficient interpretability of the predictions, a high
level of transparency into the prediction process is desirable. At the
same time, we need to limit the predictor latency to ensure using
the predictor exhibits lower latency than simply profiling the same
workload instead.
Since using a DNN as our predictor fails to meet those requirements,
we decided to use a random forest regressor. It includes decision
paths allowing the interpretation of individual predictions and feature
importance metrics which provide insight into the overall predic-
tor behavior. Additionally it is also a computationally much more
lightweight solution, because it utilizes orders of magnitude fewer
parameters.
From the same family of tree based ensemble methods, we also ran
some tests with an extremely randomized trees regressor, but did not
find improved prediction results over the random forest.
A similar attempt was made with an extreme gradient boosting regres-
sor. Using XGBoost resulted in similar performance to the random
forest model. Each model outperformed the other one is some set-
tings. For the sake of simplicity we will continue forward with the
random forest model. It is both simpler in concept and exhibits better
scalability characteristics due to its inherent parallelization.

21

22 predictor models

[0 1 3 1 64 1 7.0 7.0 1.0 3.0 3.0 1.0 2.0 2.0 1.0 -1 0 -1 0

-1 0 -1 0 -1.0 0 -1.0 0 -1 0 -1.0 0 -1.0 0.0 -1.0 0.0 -1.0

0.0 -1.0 0.0 -1.0 -1.0 0.0 False False False True False

False False False False False False False 32.0 1.0 3.0 1.0

224.0 1.0 224.0 1.0 1440]

Figure 5.1: Example of the input vector formatting for the random forest
predictor.

5.2 predictor architecture

We are using an existing random forest implementation provided by
sklearn1. Therefore most work went into formatting and preprocessing
the dataset. In order to give the model as much useful input informa-
tion as possible we needed to provide the operator name, the input
size and the GPU clock along with all potentially useful attributes of
the operation’s pytorch object to the predictor.
Because random forest models only use numerical inputs, we made
sure to format the input vector in a suitable way. The final format can
be seen in Figure 5.1.
For the operator names, this means we have a fixed number of cat-
egories in our dataset and can therefore use one-hot encoding to
identify each type in a way that is readable to the random forest
model. Another challenge arose from the fact, that different operations
do not always have the same attributes. Along the same lines, the
length of the input size tuple also is not equal for all operators. We
do however want to support all operators in one predictor model,
which in turn means, we needed to find a solution for this asymmetry
in attributes for the different operators. The approach we ended up
using, was to introduce a boolean flag for each attribute entry in the
input vector, signifying whether is applicable for this operator.
For example, a linear layer expects an input tensor of the shape:
(batch_size, in_features), but a Conv2d layer expects: (batch_size,
in_channels, height, width). With that, the input size tuple for for
a linear layer with (batch_size=32, input_features=128) would be
encoded as (32,1,128,1,-1,0,-1,0), whereas the input size tuple for
a Conv2d layer with (batch_size=32, in_channels=16, height=256,

width=256) would result in (32,1,16,1,256,1,256,1). This way we
can construct a meaningful input vector for the random forest model,
which has a constant length and meaningful entries. We use -1 as our
entry for non applying fields, as there are no negative input sizes. For
the flags, a 1 signifies the entry being applicable, while a 0 signifies it
not being applicable.
In a similar fashion, there is a field in the input vector for stride. For
convolutions, this carries the information of the stride, but for other
operators like linear layers or ReLUs, it simply carries a minus one,

1 sklearn random forest implementation

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

5.3 neural network level predictor 23

with a zero flag in the next entry signifying it does not apply for this
operator.
This encoding approach is used on a predefined list of attributes which
are likely to have an impact on the computational characteristics of the
operation. The choice of these parameters was conducted in a heuris-
tic fashion, based on our understanding of the operators in question.
However, further work could try to minimize the number of necessary
attributes by quantitatively investigating their computational impact
and including or excluding attributes accordingly. With the heuristic
approach used here, we have leaned towards over-inclusion of at-
tributes rather than under-inclusion to ensure inclusion of all relevant
attributes.
The last important input vector entry we need to mention is the GPU
clock speed. The initial implementation used to train runtime and
power predictors for each individual clock speed in our dataset. How-
ever, treating the GPU clock as a parameter for the model reduces
unnecessary complexity without negatively impacting the prediction
accuracy. Treating it as an additional parameter for the monolithic
runtime and power predictors simplifies both the training process, as
well as the utilization of the predictor models, since the monolithic
predictors eliminate the need to select the appropriate clock speed
specific predictor model.

5.3 neural network level predictor

Our prediction models work on the operations level. This makes them
directly applicable for any applications requiring operations level pre-
dictions.
However, most applications are expected to require predictions for
full neural networks. In these cases the workflow is very similar to the
dataset creation workflow. All operations and their number of occur-
rences are extracted from the neural network. After the whitelist fil-
tering, the operations-level predictor provides results for each unique
operation. Those are then aggregated according to their number of
occurrences in order to provide a prediction for the complete neural
network.
Critically, due to the modular nature of the approach, there is no need
for the neural network being predicted to be actually executed or even
exist in functioning form. As long as the operations are available and
it is known how often they occur predictions can be made.

6 VA L I DAT I O N

While the previous contributions provided insight into the building
blocks of this work, this chapter will serve to present its results. By
providing quantitative results we are validating the methodology
and providing an informed impression of both its capabilities and
limitations.

6.1 dataset validation

Our focus in this first section is to ensure the datasets we collect for
the training of our predictors are reasonably accurate. This prevents
the introduction of a strong bias due to dataset inaccuracies.

6.1.1 Methodology

Our measurements of the individual operations should resemble how
they behave when executed within a complete DNN. Since our in-
dividual operations are merely building blocks, we cannot compare
them directly to the entire neural network. Instead, we aggregate the
measurements of the operations which compose the DNN and com-
pare that total to the execution of the full model for validation.
Our measurements for the complete DNN executions are performed
using the same pipeline used to measure the individual operations.
This is desirable because using the same pipeline for all measurements
ensures comparable results.
We also built a script that extracts which unique operations are present
in a specific DNN in a way which also tracks how often each unique
operation occurs. This way, we can sum the results from our collected
dataset of operations accordingly.

6.1.2 Hardware Platforms

The two hardware platforms studied here are the Nvidia RTX 2080 TI
and the Nvidia A30. The Nvidia RTX 2080 TI is based upon the Turing
architecture from the year 2018 and features 4352 CUDA cores and
544 first generation tensor cores with FP16 support. The Nvidia A30 is
based upon the Ampere architecture form the year 2020 and features
3584 CUDA cores and 224 second generation tensor cores with TF32

support.

25

26 validation

Given the capability of working with FP32 values using the TF32

datatype on the A30, we decided to probe its performance characteris-
tics between having its tensor cores enabled and disabled. We cannot
make the same differentiation for the 2080TI, because its tensor cores
do not support FP32 native nor TF32 and all our benchmarks use FP32

values.
This leaves us with three configurations for the dataset validation. The
2080TI with default settings, the A30 with default settings and the
A30 with its tensor cores disabled.

6.1.3 Results

RTX 2080 TI Our results for the 2080TI are mixed. Agreement between
measured and summed results does look rather promising for larger
model-input sets. However, for smaller ones, there are instances where
the agreement is weaker. The model-input sets displaying this behav-
ior are the EfficientNetB0 (32, 3, 224, 224), the ResNet18 (32, 3, 32,32)
and the ResNet34 (32, 3, 56, 56). In these instances, the summation
overestimates both runtime and energy. However, the overestimation
is more pronounced for runtime than for energy.
A30 Tensor Cores Disabled Our results for the A30 with its tensor
cores disabled are already more precise than the 2080TI’s. While the
same trends are visible, they are much less pronounced and our sum-
mation yields a closer approximations of the measurements overall.
A30 with Tensor Cores Enabled Our results for the A30 with its tensor
cores enabled are very promising. While the earlier trends did not
completely vanish, they are even less pronounced than for the A30

with disabled tensor cores. This hardware configuration yielded the
most precise summation of the three configurations.

6.1.4 Uncertainties

The standard deviation in our results is very small, both for the
summation and for the measurements. It is clear that the discrepancies
between the two cannot be solely caused by statistical noise. Systematic
uncertainties are the larger contributor which dominates the remaining
statistical noise in our measurements. For this reason, statistical errors
are omitted in the evaluations following the dataset validation. The
wide range of potential systematic sources makes the identification
of specific systematic contributors very difficult. Since that was not
required for the performance assessment of our predictor models it
was not the focus of this project.

RTX2080TI

Runtime Energy

A30 no TC

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

56
, 5

6)

Model and Input Size

0

5

10

15

20

Ru
nt

im
e

(m
s)

Measured
Summed

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

56
, 5

6)

Model and Input Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
er

gy
 C

on
su

m
pt

io
n

(J)

Measured
Summed

A30 with TC

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

56
, 5

6)

Model and Input Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt

im
e

(m
s)

Measured
Summed

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

56
, 5

6)

Model and Input Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
er

gy
 C

on
su

m
pt

io
n

(J)

Measured
Summed

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

56
, 5

6)

Model and Input Size

0

2

4

6

8

10

12

Ru
nt

im
e

(m
s)

Measured
Summed

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

56
, 5

6)

Model and Input Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
er

gy
 C

on
su

m
pt

io
n

(J)

Measured
Summed

TABLE I: Measured and predicted runtime and energy consumption for smaller model-input sets. The left
column shows the runtimes we measured with full model-input runs compared to our approximations. The
right column shows the same comparison for the energy consumption. The approximations were obtained by
summing the individual findings for all operations within the model-input set. The error bars show the standard
deviation for the full model-input runs and the result of error propagation of the individual standard deviations
for the summed approximation.

6.1 dataset validation 27

RTX2080TI

Runtime Energy

A30 no TC

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

50

100

150

200

250

300

350

400

Ru
nt

im
e

(m
s)

Measured
Summed

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

10

20

30

40

50

60

70

En
er

gy
 C

on
su

m
pt

io
n

(J)

Measured
Summed

A30 with TC

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

50

100

150

200

250

300

350

400

Ru
nt

im
e

(m
s)

Measured
Summed

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

10

20

30

40

50

60

70

En
er

gy
 C

on
su

m
pt

io
n

(J)

Measured
Summed

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

50

100

150

200

250

300

350

400

Ru
nt

im
e

(m
s)

Measured
Summed

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

10

20

30

40

50

60

En
er

gy
 C

on
su

m
pt

io
n

(J)

Measured
Summed

TABLE II: Measured and predicted runtime and energy consumption for larger model-input sets. The left column
shows the runtimes we measured with full model-input runs compared to our approximations. The right column
shows the same comparison for the energy consumption. The approximations were obtained by summing the
individual findings for all operations within the model-input set. The error bars show the standard deviation
for the full model-input runs and the result of error propagation of the individual standard deviations for the
summed approximation.

28 validation

6.1 dataset validation 29

6.1.5 Tensor Core Real-World Impact

As can be seen in Figure 6.1 and Figure 6.2 showing the measured en-
ergy for the full model-input set runs on all three GPU configurations,
tensor cores do have a significant impact on the energy efficiency of
running PyTorch models. This is illustrated by the difference between
the results for the A30 with tensor cores and without tensor cores.
This difference is more pronounced for smaller model-input sets and
appears to become continually smaller for larger and more complex
ones. But the difference does not appear to simply be proportional to
the model’s energy cost either. At first glance and without studying
the individual model architectures in detail, it would appear that the
difference decreases with the model’s dependency complexity.
In this context, dependency complexity refers to the depth and quan-
tity of dependencies in a model. Depth is defined as the number of
layers a dependency spans when it goes beyond a sequential connec-
tion between adjacent layers. Skip connections are a prime example of
this phenomenon.
When comparing the results for different flavors of ResNets to the
results for model architectures with higher dependency complexity
such as ConvNext, EfficientNet and DensetNet, it can be seen that the
results are much closer for the latter ones, while for the ResNets the
tensor cores get to show their potential.
Taking a step back from studying the impact of the tensor cores, there
are also interesting findings in comparing the results for the 2080TI to
the other GPU configurations. We find worse energy efficiency for the
2080TI compared to the A30 running with tensor cores for all models.
When the tensor cores are disabled this trend gets reversed. Overall
the difference between the 2080TI and the A30 without tensor cores
is smaller than the difference between the 2080TI and the A30 with
its tensor cores enabled. However, the pattern of the energy efficiency
being best on the A30 with tensor cores, the 2080TI occupying the
middle position, and the A30 without tensor cores having the worst
energy efficiency remains the same for all model-input sets.

30 validation

res
ne

t18
 (3

2,
3,

22
4,

22
4)

ale
xn

et
(32

, 3
, 2

24
, 2

24
)

res
ne

t34
 (3

2,
3,

56
, 5

6)

inc
ep

tio
n_v

3 (
32

, 3
, 2

99
, 2

99
)

ale
xn

et
(32

, 3
, 2

99
, 2

99
)

eff
icie

ntn
et_

b0
 (3

2,
3,

22
4,

22
4)

de
nse

ne
t12

1 (
32

, 3
, 2

24
, 2

24
)

res
ne

t34
 (3

2,
3,

22
4,

22
4)

res
ne

t34
 (3

2,
3,

29
9,

29
9)

res
ne

t50
 (3

2,
3,

22
4,

22
4)

res
ne

t18
 (3

2,
3,

32
, 3

2)

res
ne

t18
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

2

4

6

8

En
er

gy
 C

on
su

m
pt

io
n

(J)

Energy Meausurements 3 GPUs, small model-input sets
A30 with TC
A30 no TC
2080TI

Figure 6.1: Comparison of energy measurements for the 2080TI and the A30

with tensor cores once disabled and once enabled. The resulting
ordering is identical for all model-input sets. However, the rela-
tive differences show a lot of variation, being more pronounced
for these smaller model-input sets.

con
vn

ext
_ba

se
(32

, 3
, 2

24
, 2

24
)

res
ne

t10
1 (

32
, 3

, 2
24

, 2
24

)

eff
icie

ntn
et_

b4
 (3

2,
3,

38
0,

38
0)

res
ne

t10
1 (

32
, 3

, 2
99

, 2
99

)

con
vn

ext
_ba

se
(32

, 3
, 3

84
, 3

84
)

res
ne

t50
 (3

2,
3,

29
9,

29
9)

Model and Input Size

0

10

20

30

40

50

60

70

En
er

gy
 C

on
su

m
pt

io
n

(J)

Energy Meausurements 3 GPUs, large model-input sets
A30 with TC
A30 no TC
2080TI

Figure 6.2: For these larger model-input sets, we maintain the ordering, but
we observe far weaker relative differences between the hardware
configurations. For model-input sets with a high dependency
complexity, like the ConvNext Base model, we find the most
similar energy results across the configurations.

6.2 operations level predictions 31

6.2 operations level predictions

We begin our evaluation of the prediction performance by evaluating
our prediction model on the operations level.
We are using the implementations from the sklearn and xgboost

libraries and have investigated XGBRegressor1, ExtraTreesRegressor2

and RandomForestRegressor3 for use as our prediction model. Initial
tests showed clearly that ExtraTreesRegressor performed worse than
the others in terms of predictive power, so we focused on the other
two.
We chose to use the coefficient of determination (R2, 2.4) as our metric
to evaluate the prediction accuracy.
In order to provide a more well rounded representation, both the R2

score for a test set separate from the training set, as well as the mean
R2 score for a 15 fold cross-validation are given.
The inference and training datasets are conceptually separate and
measured independently. Therefore, the prediction models and their
evaluation are separate as well.

6.2.1 Training A30

Training A30 Random Forest XGBoost

CV R2
time 0.876 ± 0.073 0.912 ± 0.04

Test Set R2
time 0.90 0.90

CV R2 power 0.977 ± 0.007 0.985 ± 0.003

Test Set R2
power 0.98 0.99

Table 6.1: Operations level results for the random forest and XGBoost A30

predictors. Cross-validation slightly favors XGBoost but the test
set scores are stable across both regressors.

The resulting values for the model predicting training performance
can be found in Table 6.1. The scores show a small amount of variation
depending on the random seed used for the predictions models and
the test set, training set split.
For the A30 training predictor, the XGBoost model performs slightly
better in terms of prediction performance. However the random for-
est model has the advantage of being more simple in nature and is
expected to exhibit better scalability properties in general. For this
reason and in order to keep the predictor model constant between
different predictors, all results past the operations level evaluation
were acquired using the random forest model.

1 xgboost XGBRegressor
2 sklearn Extra Trees Regressor
3 sklearn Random Forest Regressor

https://xgboost.readthedocs.io/en/latest/python/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

32 validation

We also included Figure 6.3 in order to convey a visual impression of
the prediction performance. For a random subset of operations from
the test set, it shows the predicted value alongside the measurement
value.
Both the R2 score results as well as the visual interpretation tell a
similar story. We have more accurate predictions for the power model
than for the runtime model.
For either model, prediction performance and prediction latency re-
quirements will determine whether the performance we can provide
is suitable for any given application.

6.2.2 Inference A30

The resulting values for the model predicting inference performance
can be found in Table 6.2. Our resulting R2 scores are similar to the
ones for the training model.
Both the runtime model with XGBoost and the runtime random forest
test set evaluation score slightly lower than in the training case. One
possible explanation originates from the smaller absolute runtimes for
inference. Smaller runtimes with the same measurement methodology
result in similar absolute uncertainties and therefore in larger relative
uncertainties. These larger relative uncertainties cause the slightly
weaker predictive performance we observe for the inference predictor.
Disregarding minor uncertainties introduced by the random seed, the
random forest and XGBoost power models perform identically to the
training case.
Given the very similar results, both in these metrics and in the visual
interpretation of Figure 6.4, our conclusions for the inference model
are the same as for the training model. The lower predictive power of
the runtime model compared to the power model will result in a limit
of its suitable applications, but it remains application dependent.

Inference A30 Random Forest XGBoost

CV R2
time 0.890 ± 0.66 0.898 ± 0.05

Test Set R2
time 0.88 0.89

CV R2 power 0.981 ± 0.003 0.988 ± 0.002

Test Set R2
power 0.99 0.99

Table 6.2: Operations level results for the random forest and XGBoost A30

predictors. Both cross-validation and test set scores are stable
across both regressors.

6.2 operations level predictions 33

Operation Predictions Training Model

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ru
nt

im
e

[m
s]

Measured Runtime
Predicted Runtime

0

20

40

60

80

100

120

140

160

Po
we

r [
W

]

Measured Power
Predicted Power

Con
v2

d (
12

x1
2x

16
32

x3
2)

90
0 M

Hz

Batc
hN

orm
2d

 (1
4x

14
x4

80
x3

2)
12

00
 MHz

Batc
hN

orm
2d

 (1
4x

14
x1

12
x3

2)
60

0 M
Hz

Con
v2

d (
14

x1
4x

51
2x

32
) 3

00
 MHz

Con
v2

d (
35

x3
5x

25
6x

32
) 1

20
0 M

Hz

Con
v2

d (
56

x5
6x

64
x3

2)
60

0 M
Hz

Ad
ap

tiv
eA

vg
Poo

l2d
 (1

90
x1

90
x4

8x
32

) 1
44

0 M
Hz

Re
LU

 (7
x7

x6
40

x3
2)

30
0 M

Hz

Batc
hN

orm
2d

 (1
0x

10
x2

04
8x

32
) 1

20
0 M

Hz

Sig
moid

 (1
x1

x3
2x

32
) 2

10
 MHz

0

50

100

150

200

250

300

En
er

gy
 [m

J]

Measured Energy Consumption
Predicted Energy Consumption

Figure 6.3: Comparison of predictions to measurements for ten operations
from the test set for the A30 training prediction model. While we
have outstanding agreement for most of them, we can see the
limits of our predictive power in the results for operations 1 and
6. This illustration can give us a more intuitive impression of the
R2-error of 0.90 for the runtime and of 0.98 for the power.

34 validation

Operation Predictions Inference Model

0.0

0.1

0.2

0.3

0.4

Ru
nt

im
e

[m
s]

Measured Runtime
Predicted Runtime

0

20

40

60

80

100

120

140

Po
we

r [
W

]

Measured Power
Predicted Power

Con
v2

d (
12

x1
2x

16
32

x3
2)

90
0 M

Hz

Batc
hN

orm
2d

 (1
4x

14
x4

80
x3

2)
12

00
 MHz

Batc
hN

orm
2d

 (1
4x

14
x1

12
x3

2)
60

0 M
Hz

Con
v2

d (
14

x1
4x

51
2x

32
) 3

00
 MHz

Con
v2

d (
35

x3
5x

25
6x

32
) 1

20
0 M

Hz

Con
v2

d (
56

x5
6x

64
x3

2)
60

0 M
Hz

Batc
hN

orm
2d

 (7
5x

75
x6

4x
32

) 9
00

 MHz

Re
LU

 (7
x7

x6
40

x3
2)

30
0 M

Hz

Batc
hN

orm
2d

 (1
0x

10
x2

04
8x

32
) 1

20
0 M

Hz

Sig
moid

 (1
x1

x3
2x

32
) 2

10
 MHz

0

5

10

15

20

25

30

35

En
er

gy
 [m

J]

Measured Energy Consumption
Predicted Energy Consumption

Figure 6.4: Comparison of predictions to measurements for ten operations
from the test set for the A30 inference prediction model. The
different orders of magnitude make the plot challenging to read,
but we can see decent agreement between predictions and mea-
surements. We do however see slight overpredictions for the
resulting energy for operations 1 and 6.

6.2 operations level predictions 35

6.2.3 Training RTX2080TI

The prediction model for the RTX2080TI does not provide predictions
for specific clock speeds. Instead it is trained on a dataset collected
running the GPU in its default configuration. Its prediction perfor-
mance is not as strong as the A30 predictor.
The results can be seen in table 6.3. This predictor breaks the pattern
of XGBoost performing slightly better. We find both cases where it
performs better and cases where it performs worse than the random
forest. A possible explanation of this behavior the property of random
forests to generalize well, even with smaller training sets. Compared
to the A30 where the training set spans six clock speeds, this training
set is six times smaller.

Training 2080TI Random Forest XGBoost

CV R2
time 0.755 ± 0.122 0.684 ± 0.359

Test Set R2
time 0.81 0.79

CV R2 power 0.920 ± 0.058 0.921 ± 0.054

Test Set R2
power 0.87 0.87

Table 6.3: Operations level results for the random forest and XGBoost 2080TI
predictors. Test set scores are stable across both regressors, but the
cross-validation indicates the random forest is the better choice.

6.2.4 Inference RTX2080TI

The resulting R2 scores for our 2080TI inference predictor can be seen
in table 6.4. For the runtime models we see a steep drop in R2 score
from the random forest to the XGBoost model.
But even for the better performing random forest model, this is still
the worst performing predictor out of our four predictor models. This
can be explained by a combination of multiple factors. It is trained
on a smaller dataset, since it is not a multi-clock model and it is an
inference predictor, which means it has to predict smaller absolute
values, which will have larger relative errors in its training set. Lastly,
since the 2080TI is a consumer GPU and not a datacenter GPU, its
behavior is tuned to focus on the best burst load performance, but not
necessarily on the greatest consistency and stability compared to a
datacenter GPU such as the A30.

36 validation

Inference 2080TI Random Forest XGBoost

CV R2
time 0.735 ± 0.088 0.607 ± 0.079

Test Set R2
time 0.77 0.61

CV R2 power 0.939 ± 0.034 0.944 ± 0.026

Test Set R2
power 0.91 0.86

Table 6.4: Operations level results for the random forest and XGBoost 2080TI
predictors. For the time predictor, the cross-validation prefers the
random forest. This is strongly confirmed by the test set scores.
The test set scores for the power predictor are not as far apart, but
the random forest still performs better.

6.3 neural network level predictions

In this next step, we will evaluate the prediction performance of the
random forest model for the A30 on the neural network level.
Since this prediction model is capable of providing predictions for
different clock speeds, we will conduct the validation for each clock
speed. As this is a graphical validation, we will provide the measured
results for each clock speed with the predicted results below. This way
both the direct comparison between measurement and prediction is
visible, as well as the behavior across different clock speeds.
Results are given for both inference and training across all metrics.
The covered metrics are runtime, energy and energy delay product,
defined in Equation 6.2. The energy delay product serves to illustrate
a trade-off between optimizing for either time or energy on their own.
Due to the large differences in absolute values, the results for the EDP
are normalized per model-input set in order to maintain readability
of the plots.
6.5 As expected for the inference runtime measurements, the runtime
decreases with an increase in clock speed for all tested models.
6.6 The corresponding inference runtime predictions manage to main-
tain the ordering between different clock speeds. This allows the
predictions to be used to determine the optimal clock speed.
6.7 As opposed to the monotonous relationship between runtime and
clock speed, the optimal clock speed for the inference energy measure-
ments is 900 MHz.
6.8 As expected from the operations level results, we can see that the
predictions for the inference energy are closer to their corresponding
measurements than the inference runtime predictions are to theirs.
They also maintain the clock speed optimum found in the measure-
ments, making these predictions suitable for energy optimizations.
6.9 For the training runtime measurements we observe the same be-
havior we saw in the inference case. Lower clock speeds lead to longer
runtimes.
6.12 In the training runtime predictions, we see a similar prediction

6.3 neural network level predictions 37

performance to the inference case. The predictions provide the correct
ordering in this case too.
6.11 Identically to the inference case, the optimal clock speed in terms
of training energy measurement lies at 900 MHz. The absolute energy
costs for training are between 2 and 5 times as high as the inference
costs.
6.12 Comparing these training energy predictions to the corresponding
measurements just above illustrates how capable our predictions are
at reproducing the real world behavior. These predictions are the most
precise ones among the presented cases. The ordering is maintained
in this case as well.
6.13 Different from the 900 MHz optimum for energy, we find the
optimum for the inference measurement of the energy delay product
at 1200 MHz. Being the product of runtime and energy it provides a
more balanced metric to optimize along.
6.14 For the inference predictions of the energy delay product, we
find larger discrepancies between measurement and prediction, than
for the energy predictions. From the operations level evaluation, we
know the power predictions perform better than the time predictions.
The fact that time contributes to the energy delay product both as a
factor in the energy and then again being multiplied with the energy
prediction to form the EDP explains the larger discrepancies.
6.15 For the training measurements of the energy delay product, there
is not a lot of change to be observed compared to the inference mea-
surement results in the normalized plot. This indicates a roughly
proportional scaling of the energy delay product between inference
and training.
6.16 In the training predictions of the energy delay product, we see
much larger deviations between measurement and predictions com-
pared to the inference case. Runtime predictions are less precise than
power predictions and absolute runtimes are several times larger for
training than for inference. This effect is amplified by the squared
contribution of time towards the EDP. This squared contribution of a
larger absolute value which is less precise is a possible explanation of
the larger deviations.

38 validation

Measured Time per Model Inference

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

50

100

150

200

250

300

350

Ti
m

e
[m

s]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.5: Inference time measurements for 18 model-input sets across six
clock speeds.

Predicted Time per Model Inference

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

50

100

150

200

250

300

350

Ti
m

e
[m

s]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.6: Inference time predictions for 18 model-input sets across six clock
speeds.

6.3 neural network level predictions 39

Measured Energy per Model Inference

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

5

10

15

20

En
er

gy
 [J

]
Clock Speed [MHz]

210
300
600
900
1200
1440

Figure 6.7: Inference energy measurements for 18 model-input sets across
six clock speeds.

Predicted Energy per Model Inference

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

5

10

15

20

En
er

gy
 [J

]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.8: Inference energy predictions for 18 model-input sets across six
clock speeds.

40 validation

Measured Time per Model Training

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
[m

s]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.9: Training time measurements for 18 model-input sets across six
clock speeds.

Predicted Time per Model Training

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
[m

s]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.10: Training time predictions for 18 model-input sets across six
clock speeds.

6.3 neural network level predictions 41

Measured Energy per Model Training

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

10

20

30

40

50

60

70

80

En
er

gy
 [J

]
Clock Speed [MHz]

210
300
600
900
1200
1440

Figure 6.11: Training energy measurements for 18 model-input sets across
six clock speeds.

Predicted Energy per Model Training

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0

10

20

30

40

50

60

70

80

En
er

gy
 [J

]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.12: Training energy predictions for 18 model-input sets across six
clock speeds.

42 validation

Measured Normalized Energy Delay Product per Model Inference

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pr

od
uc

t o
f T

im
e

an
d

En
er

gy

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.13: Inference energy delay product measurements for 18 model-
input sets across six clock speeds.

Predicted Normalized Energy Delay Product per Model Inference

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pr

od
uc

t o
f T

im
e

an
d

En
er

gy

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.14: Inference energy delay product predictions for 18 model-input
sets across six clock speeds.

6.3 neural network level predictions 43

Measured Normalized Energy Delay Product per Model Training

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Pr
od

uc
t o

f T
im

e
an

d
En

er
gy

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.15: Training energy delay product measurements for 18 model-
input sets across six clock speeds.

Predicted Normalized Energy Delay Product per Model Training

ale
xn

et
[32

, 3
, 1

18
, 1

18
]

de
nse

ne
t12

1 [
32

, 3
, 2

56
, 2

56
]

eff
icie

ntn
et_

b1
 [3

2,
3,

22
4,

22
4]

eff
icie

ntn
et_

b5
 [3

2,
3,

29
9,

29
9]

go
og

len
et

[32
, 3

, 1
64

, 1
64

]

mob
ilen

et_
v3

_la
rge

 [3
2,

3,
28

4,
28

4]

mob
ilen

et_
v3

_sm
all

[32
, 3

, 1
52

, 1
52

]

reg
ne

t_x
_40

0m
f [3

2,
3,

18
9,

18
9]

res
ne

t10
1 [

32
, 3

, 2
05

, 2
05

]

res
ne

t18
 [3

2,
3,

12
4,

12
4]

res
ne

t50
 [3

2,
3,

11
5,

11
5]

res
ne

t50
 [3

2,
3,

24
0,

24
0]

res
ne

t50
 [3

2,
3,

31
0,

31
0]

shu
ffle

ne
t_v

2_x
1_0

 [3
2,

3,
19

6,
19

6]

squ
ee

zen
et1

_1
[32

, 3
, 2

21
, 2

21
]

vg
g1

1_b
n [

32
, 3

, 1
18

, 1
18

]

vg
g1

6 [
32

, 3
, 2

12
, 2

12
]

wide
_re

sne
t50

_2
[32

, 3
, 2

24
, 2

24
]

Model and Input Size

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pr

od
uc

t o
f T

im
e

an
d

En
er

gy

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.16: Training energy delay product predictions for 18 model-input
sets across six clock speeds.

44 validation

6.3.1 Patterns and Observations

Given all our profiling data on the A30, we studied the results in
search for the emergence of interesting patterns.
We were not surprised to find higher clock speeds resulting in lower
runtimes, but apart from this obvious causality we did not find any
other curious patterns in our execution time profiling.
We did however find an interesting pattern in our energy profiling.
Both for the training and the inference case we observed a "U" pattern
across the clock speeds. Figure 6.17 shows very high energy costs
for very low clock speeds and high energy costs for very high clock
speeds. We find the energy minimum at a more moderate clock speed
of 900 MHz. This pattern remains stable across both training and
inference and for all tested model-input sets.
The fact that the highest clock speeds are not the most efficient choice
is explained by the power consumption formula for transistors [7].

P ∝
1
2

CV2 f (6.1)

Where P is the power, C is the capacitive load, V is the voltage and f
is the frequency.
For a whole GPU this is scaled by its number of transistors, but the
proportionality remains intact. In order to maintain stability at the
highest clock speed settings, it is necessary to increase the voltage. The
squared contribution of the voltage towards the power consumption
makes it very sensitive to larger voltages. This is the reason why the
highest achievable clock speed is rarely the most efficient one.
We do however observe high energy costs for low clock speeds as well.
This is where another effect comes into play. Every GPU has an idle
power consumption that is independent of the current workload. At
very low clock speeds, a GPU takes much longer to complete its task,
resulting in a larger share of the energy usage being caused by its idle
power.
These two counteracting effects result in the energy optimum lying
at neither extreme. So even if a future DNN had a slightly different
optimum, the optimum we found here would still be a good starting
point when optimizing for energy efficiency.
While energy efficiency favors moderate clock speeds, in practice we
often require a different balance between energy and runtime. The
energy delay product 6.2, quantifies this tradeoff by squaring the time
contribution. Optimizing for the EDP shifts our optimum towards
higher clock speeds. In Figure 6.13 and Figure 6.15 we observe a
similar "U" pattern in our EDP profiling results, showing an optimum
at 1200 MHz across both inference and training.

6.3 neural network level predictions 45

The shift of the optimum towards higher clock speeds is explained
by the definition of the EDP:

Energy Delay Product = P · t2 (6.2)

Where P is the power and t is the time.
The optimum is still the result of the same two counteracting effects.
However, since the contribution of the time is squared, the optimum
moves to a higher clock speed.
Our predictions do not reproduce this pattern perfectly for the training
case. Since the runtime has a squared contribution to the EDP and
the absolute values for training are larger, this combination leads to
a scenario where our predictor’s precision for the runtime becomes
insufficient to predict the correct optimum.

46 validation

Energy Cost "U" Pattern

resnet50 [32, 3, 310, 310]
0

2

4

6

8

En
er

gy
 [J

]

Clock Speed [MHz]
210
300
600
900
1200
1440

Figure 6.17: Energy measurements across different clock speeds for a single
model-input set. The "U" pattern which is present for all model-
input sets becomes even more apparent. In terms of energy cost
it is most efficient to run both inference and training tasks at a
clock speed of 900 MHz for all our tested model-input sets.

6.4 predictor latency 47

6.4 predictor latency

Other than the predictor performance in terms of accuracy, its perfor-
mance in terms of latency is also a concern.
The loading of the dataset turned out to be a very time intensive oper-
ation. Even after improving the performance, we arrived at a loading
time of around 30 seconds for the full set of model-input sets used to
validate the predictor. These 30 seconds are in a completely different
order of magnitude in terms of execution time compared to their
preprocessing, their prediction or even their execution. Realistically,
this time is more comparable to having to download a model before
being able to benchmark it.
The next largest contributor in terms of execution time is preprocess-
ing the dataset in order to format is in a way that can be used as
an input for our predictor models. In its current form this step takes
somewhere around 500 ms. For the full validation set of 18 model-
input sets it takes around 600 ms. For an individual model it takes
less than 500 ms.
The most important evaluation regarding predictor latency is the exe-
cution time of the actual predictor model. Predicting time and energy
at a specific clock speed for all model-input sets in the validation set
demonstrates very good performance. Across multiple clock speeds
and for both for the training predictor and the inference predictor the
resulting execution time hovers around 30 ms. Even for the scenario
with the smallest execution time, inference at maximum clock speed,
this is still faster than the validation set’s collective execution time of
around 300 ms by one order of magnitude. This comparison shifts only
further in favor of the predictor model when we look at a still very
reasonable scenario of training at a clock speed of 930 MHz. With this,
the collective execution time is close to 2000 ms, while the prediction
time is not affected. Here we have a predictor latency over 60 times
lower than performing the measurement instead.

7 D I S C U S S I O N A N D O U T LO O K

7.1 discussion

The approach we took in this work was of an exploratory nature.
Rather than diving deep into one specific configuration, we chose to
go wide and look at multiple hardware and many neural network
scenarios. That approach turned out to be both a blessing and a curse.
A blessing, because the results can be used in a wide field of applica-
tions and our findings are understandable at a more abstract level. A
curse, because we have to hamper our scientific curiosity not to follow
every rabbit hole we encounter along our journey.
Given the wide approach, we also discovered a wide range is trou-
bleshooting issues which vary in their importance to the study itself.
This balancing act of weighing the cost and benefit of following up on
interesting trends and deciding whether or not to invest the time to
overcome the troubleshooting obstacles was the most difficult part of
this work. In order to understand the choices we made concerning the
scope, it is important to see that even in our quest to go wide, it lies in
the nature of exploratory research, that no state of completeness can
ever be achieved.

7.1.1 Limitations

In order to go wide, one would like to include a large number of
hardware scenarios and study all of them with the same set of accurate
tools. Ideally, we would like to include GPUs from Nvidia, AMD and
Intel alongside FPGAs and other ML accelerators. But the platforms
and tools are too varied, such that even if we found tooling which
was capable of measuring power for all of the above, we would likely
give up both time and power resolution in exchange for that improved
compatibility. Another simple but very important limitation is the
hardware available to us. Both because of these considerations, as well
as in order to keep the scope of this thesis in check, we decided to
limit ourselves to Nvidia GPUs.
Another dimension to go wide in, is the plurality of neural networks.
Here our decision was determined by our platform of choice. Due to
prior experience with the platform we chose PyTorch. In order to use
well known networks and implementations, we decided to work with
neural networks from the torchvision library. This also improves the
easy of reproducing our study. Our GPU with the smallest amount

49

50 discussion and outlook

of global memory added a limit to which model-input sets we were
able to include in our suite profiled for the training set, since each
model-input set had to be able to complete all benchmarks on all
hardware configurations.
Our choice to study both time and energy for inference and training
was shaped by the desire to study a novel section of the field and to
add value to our research.
After initial attempts to include both GPUs in the clock speed study,
the 2080TI was dropped from this part of the overall study after
running into issues.

7.1.2 Application

The predictor models for the A30 and the 2080TI only differ in the A30

predictor including clock speed specific predictions. Apart from that
they are built identically. In our evaluation of which type of predictor
model we want to use, we are therefore looking for the model type
that is the most stable across all our scenarios. This will enable it
to serve as a recommendation suitable for various settings of neural
networks and hardware.
With that in mind, let us recap our predictor results. For the 2080TI, the
evaluation of the R2 score showed similar or better performance using
the random forest model over the XGBoost model for both the training
and inference predictors. The evaluation of the A30 predictor revealed
slightly better scores using the XGBoost predictor. However, its im-
provements over the random forest model were much smaller than the
drop-off observed for the 2080TI predictor going from random forest
to XGBoost. This behavior leads us to believe that the random forest
approach serves as a more stable and consistent path across the plu-
rality of hardware configurations this methodology might encounter
in the future.
Earlier in this discussion it was mentioned that this is an exploratory
work. In the same way it is also a foundational work. Each contribu-
tion aids to explore which paths can be taken and helps building a
foundation of methodology and due diligence.
Our work provides the tools for the collection of a required dataset
and demonstrates the resilience of the resulting dataset through a
direct validation. Since the predominant interest in the research com-
munity lies in finding insights regarding complete neural networks,
the nature of our validation ensures our findings are applicable to full
neural network executions. For the same reasons, the A30 predictor is
evaluated on a neural network level. Operations level results alone do
not guarantee applicability to full neural networks and our validation
ensures their broader utility.
While the primary reason for these evaluations and validations is
to establish the capabilities and limitations of the specific predictors

7.2 outlook 51

trained in this work, they also serve to establish the soundness of the
approach and methodology on a broader level, demonstrating their
suitability as a base for future work.

7.2 outlook

The nature of this work opens up a number of avenues for future
work. In light of our goal to guide towards the use of the best fitting
hardware for specific tasks and requirements, the most promising av-
enue is to expand the study to a larger number of hardware platforms.
The lowest friction way of doing that would be to collect datasets
for further Nvidia GPUs at their default clocks and adding the GPU
model as a parameter to the prediction model, in the same way the
clock speed was added for the A30 predictor.
Another direction could be an attempt to improve the prediction per-
formance. A good starting point would be the expansion of the set
of model-input sets which were used to build the training set for the
predictors in this work. Including operations from more model-input
sets, especially types of models not included in this work, could go a
long way towards improving the predictor’s accuracy and generaliz-
ability beyond its current state.
Even though we limited our GPU clock study to the A30 in this work,
there is no conceptual reason why these kinds of clock speed studies
could not be expanded to a more GPUs, as long as they support setting
the clock speed manually. This kind of study always carries the chance
of discovering interesting patterns and behaviors.
Another avenue for expansion are the metrics included in the study.
The metrics used in our work were fixed from a very early point
onward. It covers time, power and energy. A prime candidate for the
next metric to add would be the memory usage.
The complexity in the addition of further metrics lies in the tooling.
The more tools are used, the harder the expansion towards additional
hardware platforms becomes.
The last and widest avenue for expansion is the inclusion of more
hardware platforms. Our current tooling for power readout is Nvidia
specific, but provided equivalent tools, an expansion towards GPUs
from different manufacturers like AMD and Intel would be very inter-
esting. Combined with real-time pricing this would allow determining
the most cost effective GPU for a specific task including power costs
across the entire GPU market.
The last and most difficult step is moving from GPU studies towards
the inclusion of CPUs and more exotic accelerators like FPGAs and
IPUs. This step will be the most limiting to our selection of suit-
able metrics, since they all need to be meaningfully applicable to all
included hardware platforms. Expanding the number and types of

52 discussion and outlook

hardware platforms is the most fascinating avenue for future work,
but it is also the one moving the furthest away from the foundation
presented in this work and the least predictable in its development.
In summary, there are many opportunities for future expansion upon
the basis presented here. Some of them will require a lot of additional
work, while others are direct continuations, which should present
minimal friction.

7.3 conclusion

We identified the research gap as the lack of works covering operations-
level DNN performance predictions for runtime and energy for both
training and inference workloads. In order to address this, we de-
signed our profiling and prediction frameworks to cover time, power
and energy for both inference and training operations.
Our first contribution covers the profiling part of this work. Here
we presented our method for collecting a dataset of individual op-
erations which serves as training data for our predictor. The second
contribution presents our choice of the random forest model for our
predictor, as well as the preprocessing of the dataset. Our third and
largest contribution is focused on validating and evaluating the work
product of the first two contributions. It contains a validation of the
dataset quality by comparing full DNN execution results with the
aggregated result from all of its individual operations. The random
forest predictor models are evaluated via R2 score with both cross-
validation and test set performance on the operations level. On the
neural network level, a set of unknown model-input sets is used to
validate the predictor performance by comparing direct measurements
of the full neural network runs to the summed up operations-level
predictions. Profiling over a number of clock speeds also yielded the
insight, that 900 MHz is the most energy efficient setting on the A30

across all model-input sets used for the validation.
With R2 scores of 0.77 to 0.90 for runtime predictions and 0.87 to 0.99
for power predictions on the operations level, we already contribute a
tool which can be of considerable help in deciding which GPU and
which clock speed to run a specific model at. Additionally the raw
profiling data itself bears the potential of providing insight into useful
patterns like the most energy efficient clock speed or the optimal clock
setting for a minimal energy delay product.
Our work serves as an exploratory and foundational step into the
profiling and prediction of an ever broadening zoo of parameter com-
binations between models, inputs, hardware platforms, clock settings,
metrics and workload types. And while we contribute valuable find-
ings and tools towards that goal, the available research potential in this
field is far from exhausted and we hope our findings and contributions

7.3 conclusion 53

can help to pave the way and guide future researchers in search of
that same goal.

B I B L I O G R A P H Y

[1] 3.4. Metrics and scoring: quantifying the quality of predictions. en.
url: https://scikit- learn.org/stable/modules/model_
evaluation.html#mean-squared-error (visited on 07/25/2025).

[2] 3.4. Metrics and scoring: quantifying the quality of predictions. en.
url: https://scikit- learn.org/stable/modules/model_
evaluation.html#r2-score-the-coefficient-of-determination

(visited on 07/25/2025).

[3] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana
Marculescu. “NeuralPower : Predict and Deploy Energy-Efficient
Convolutional Neural Networks.” en. In: ().

[4] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System.” en. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
San Francisco California USA: ACM, Aug. 2016, pp. 785–794.
doi: 10.1145/2939672.2939785. url: https://dl.acm.org/
doi/10.1145/2939672.2939785 (visited on 07/17/2025).

[5] Eugenio Gianniti, Politecnico di Milano, and Li Zhang. “Perfor-
mance Prediction of GPU-based Deep Learning Applications.”
en. In: ().

[6] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The
elements of statistical learning: data mining, inference, and prediction.
eng. Second edition. Springer series in statistics. New York, NY:
Springer, 2009. isbn: 978-0-387-84858-7. url: https://search.
ebscohost.com/login.aspx?direct=true&scope=site&db=

nlebk&db=nlabk&AN=277008 (visited on 07/17/2025).

[7] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. 5th. Burlington, MA, USA: Morgan
Kaufmann Publishers Inc., 2017.

[8] Daniel Justus, John Brennan, Stephen Bonner, and Andrew
Stephen McGough. “Predicting the Computational Cost of Deep
Learning Models.” In: 2018 IEEE International Conference on Big
Data (Big Data). Dec. 2018, pp. 3873–3882. doi: 10.1109/BigData.
2018.8622396. url: https://ieeexplore.ieee.org/document/
8622396/?arnumber=8622396 (visited on 11/27/2024).

[9] Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi
Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and Mike Bur-
rows. A Learned Performance Model for Tensor Processing Units. en.
arXiv:2008.01040 [cs]. Mar. 2021. doi: 10.48550/arXiv.2008.

55

https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score-the-coefficient-of-determination
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score-the-coefficient-of-determination
https://doi.org/10.1145/2939672.2939785
https://dl.acm.org/doi/10.1145/2939672.2939785
https://dl.acm.org/doi/10.1145/2939672.2939785
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=277008
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=277008
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=277008
https://doi.org/10.1109/BigData.2018.8622396
https://doi.org/10.1109/BigData.2018.8622396
https://ieeexplore.ieee.org/document/8622396/?arnumber=8622396
https://ieeexplore.ieee.org/document/8622396/?arnumber=8622396
https://doi.org/10.48550/arXiv.2008.01040
https://doi.org/10.48550/arXiv.2008.01040
https://doi.org/10.48550/arXiv.2008.01040

56 bibliography

01040. url: http://arxiv.org/abs/2008.01040 (visited on
02/05/2025).

[10] Hang Qi, Evan R Sparks, and Ameet Talwalkar. “PALEO: A
PERFORMANCE MODEL FOR DEEP NEURAL NETWORKS.”
en. In: (2017).

[11] Max Sponner, Bernd Waschneck, and Akash Kumar. “AI-Driven
Performance Modeling for AI Inference Workloads.” en. In:
Electronics 11.15 (Jan. 2022). Number: 15 Publisher: Multidisci-
plinary Digital Publishing Institute, p. 2316. issn: 2079-9292. doi:
10.3390/electronics11152316. url: https://www.mdpi.com/
2079-9292/11/15/2316 (visited on 11/27/2024).

[12] Delia Velasco-Montero, Jorge Fernández-Berni, Ricardo Carmona-
Galán, and Ángel Rodríguez-Vázquez. “PreVIous: A Methodol-
ogy for Prediction of Visual Inference Performance on IoT De-
vices.” In: IEEE Internet of Things Journal 7.10 (Oct. 2020). Confer-
ence Name: IEEE Internet of Things Journal, pp. 9227–9240. issn:
2327-4662. doi: 10.1109/JIOT.2020.2981684. url: https://
ieeexplore.ieee.org/document/9040398/?arnumber=9040398

(visited on 02/06/2025).

[13] Chuan-Chi Wang, Ying-Chiao Liao, Ming-Chang Kao, Wen-Yew
Liang, and Shih-Hao Hung. “PerfNet: Platform-Aware Perfor-
mance Modeling for Deep Neural Networks.” en. In: Proceed-
ings of the International Conference on Research in Adaptive and
Convergent Systems. Gwangju Republic of Korea: ACM, Oct.
2020, pp. 90–95. isbn: 978-1-4503-8025-6. doi: 10.1145/3400286.
3418245. url: https://dl.acm.org/doi/10.1145/3400286.
3418245 (visited on 02/05/2025).

https://doi.org/10.48550/arXiv.2008.01040
https://doi.org/10.48550/arXiv.2008.01040
https://doi.org/10.48550/arXiv.2008.01040
https://doi.org/10.48550/arXiv.2008.01040
http://arxiv.org/abs/2008.01040
https://doi.org/10.3390/electronics11152316
https://www.mdpi.com/2079-9292/11/15/2316
https://www.mdpi.com/2079-9292/11/15/2316
https://doi.org/10.1109/JIOT.2020.2981684
https://ieeexplore.ieee.org/document/9040398/?arnumber=9040398
https://ieeexplore.ieee.org/document/9040398/?arnumber=9040398
https://doi.org/10.1145/3400286.3418245
https://doi.org/10.1145/3400286.3418245
https://dl.acm.org/doi/10.1145/3400286.3418245
https://dl.acm.org/doi/10.1145/3400286.3418245

E R K L Ä R U N G

Ich versichere, dass ich diese Arbeit selbständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe.

Heidelberg, den 29/07/2025

Constantin Nicolai

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Scope
	1.4 Contributions Overview
	1.4.1 Dataset Collection
	1.4.2 Prediction Model
	1.4.3 Validation

	2 Background
	2.1 Graphics Processing Unit
	2.2 Random Forest Regressor
	2.3 XGBoost Regressor
	2.4 Coefficient of Determination
	2.4.1 Cross-Validation R2
	2.4.2 Test Set R2

	3 State of the Art and Related Work
	3.1 State of the Art
	3.2 Related Work
	3.3 Research Gap

	4 Dataset Collection
	4.1 Operations
	4.2 Time Profiling
	4.2.1 Inference
	4.2.2 Training
	4.2.3 Proportionality

	4.3 Energy Profiling
	4.4 Profiling Evaluation
	4.5 GPU Clocks

	5 Predictor Models
	5.1 Model Selection
	5.2 Predictor Architecture
	5.3 Neural Network Level Predictor

	6 Validation
	6.1 Dataset Validation
	6.1.1 Methodology
	6.1.2 Hardware Platforms
	6.1.3 Results
	6.1.4 Uncertainties
	6.1.5 Tensor Core Real-World Impact

	6.2 Operations Level Predictions
	6.2.1 Training A30
	6.2.2 Inference A30
	6.2.3 Training RTX2080TI
	6.2.4 Inference RTX2080TI

	6.3 Neural Network Level Predictions
	6.3.1 Patterns and Observations

	6.4 Predictor Latency

	7 Discussion and Outlook
	7.1 Discussion
	7.1.1 Limitations
	7.1.2 Application

	7.2 Outlook
	7.3 Conclusion

	 Bibliography
	Declaration

