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[25Ac]Ac-/[Y7Lu]Lu-PSMA-617 mutational landscape in circulating tumor DNA (ctDNA): early
clinical outcome prediction in metastatic castration-resistant prostate cancer

ABSTRACT

Metastatic castration-resistant prostate cancer (mCRPC) represents one of the most intractable
challenges in contemporary clinical oncology. In this context, prostate-specific membrane antigen
(PSMA)-targeted radioligand therapy (TRNT) with [7’Lu]Lu-PSMA-617 has emerged as a
transformative therapeutic approach, offering new hope for patients with otherwise limited
treatment options. Despite its promise, resistance to [7’Lu]Lu-PSMA ligands is observed in
approximately 30% of patients, underscoring the urgent need for improved strategies to overcome
primary treatment failure. In response to these limitations, the field has shifted toward innovative
radiotherapeutic combinations. Among them, tandem therapy—uniting the potent alpha-emitting
[*°Ac]Ac-PSMA-617 with the clinically approved [77Lu]Lu-PSMA-617—has demonstrated remarkable
potential to enhance antitumor efficacy while minimizing dose-limiting toxicities. The aim of this work
is to deliver a comprehensive evaluation of clinical real-world data from patients with mCRPC treated
with [2®Ac]Ac-/[Y"Lu]Lu-PSMA-617 under compassionate care regulations. This thesis explores the
use of tumor fraction (TFx) estimation, derived via the ichorCNA algorithm from ultra-low-pass whole
genome sequencing (ULP-WGS) of circulating free DNA (cfDNA), as a biomarker to monitor treatment
response and resistance in mCRPC patients receiving tandem actinium-lutetium therapy. Serial cfDNA
samples from 78 mCRPC patients revealed that TFx strongly correlated with PSA levels and offered
superior sensitivity in capturing metastatic burden. High pre-treatment TFx was linked to a markedly
increased risk of relapse, while genomic profiling uncovered two distinct subgroups—one with low
TFx and minimal copy number variations (CNVs), and another with elevated TFx and high genomic
instability. Strikingly, patients with lower CNV burden experienced longer survival, underscoring its
potential as a powerful prognostic biomarker. Pre-treatment status emerged as a critical determinant
of survival, offering key insights into the role of prior exposure to TRNT and chemotherapy in
influencing long-term outcomes. Gene signature linked to high CNV burden was identified,
highlighting key chromosomes and relapse-associated genes as potential drivers of poor prognosis

and therapeutic targets.
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Die Mutationslandschaft zirkulierender Tumor-DNA nach [?*°Ac]Ac-/[*"’Lu]Lu-PSMA-617
Behandlungszyklen: friihe klinische Vorhersage von Therapieansprechen bei metastasiertem
kastrationsresistentem Prostatakarzinom

ZUSAMMENFASSUNG

Das metastasierte kastrationsresistente Prostatakarzinom (mCRPC) stellt eine der grofSten
Herausforderungen der modernen klinischen Onkologie dar. Die zielgerichtete Radioligandentherapie
(TRNT) mit dem klinisch zugelassenen Therapeutikum [7’Lu]Lu-PSMA-617 gegen das
prostataspezifische Membranantigen (PSMA) konnte sich hier in den vergangenen Jahren als
transformative therapeutische Strategie etablieren und bietet neue Hoffnung fiir Patienten mit
ansonsten begrenzten Behandlungsmaoglichkeiten. Trotz ihres Potenzials wird dennoch bei etwa 30 %
der Patienten eine Resistenz gegenuiber ["’Lu]Lu-PSMA-Liganden beobachtet, was den dringenden
Bedarf verbesserter Strategien zur Uberwindung des primdren Therapieversagens hervorhebt. Als
Antwort auf diese Limitationen hat sich das Feld der Nuklearmedizin in Richtung innovativer,
radiotherapeutischer Kombinationen weiterentwickelt. Besonders vielversprechend ist hierbei eine
Tandemtherapie — die Kombination des potenten alpha-emittierenden [>2°Ac]Ac-PSMA-617 mit dem
etablierten beta-emittierenden [7’Lu]Lu-PSMA-617. Diese Therapie soll die antitumorale Wirksamkeit
steigern und gleichzeitig dosislimitierende Toxizitaten minimieren.

Ziel dieser Arbeit ist die umfassende Analyse klinischer ,,Real-World“-Daten von mCRPC-Patienten, die
im Rahmen von Hértefallregelungen mit [*®Ac]Ac-/[*’Lu]Lu-PSMA-617 behandelt wurden.
Untersucht wurde insbesondere der mogliche Einsatz der Tumorfraktion (TFx), die mithilfe des
ichorCNA-Algorithmus aus ultra-low-pass Ganzgenomsequenzierung (ULP-WGS) von zellfreier DNA
(cfDNA) berechnet wurde. Die TFx dient als Biomarker zur Uberwachung von Therapieansprechen und
Resistenzentwicklung bei Patienten, die eine Tandemtherapie mit Actinium und Lutetium erhielten.
Serielle cfDNA-Proben von 78 mCRPC-Patienten zeigten, dass die TFx stark mit dem PSA-Spiegel
korrelierte und eine Uberlegene Sensitivitat zur Erfassung der Metastasierung aufwies. Eine hohe TFx
vor Therapiebeginn war mit einem signifikant erhéhten Riickfallrisiko assoziiert. Zudem identifizierte
das genomische Profiling zwei unterschiedliche Subgruppen — eine mit niedriger TFx und minimalen
Kopienzahlverdanderungen (CNVs) und eine weitere mit hoher TFx und ausgepragter genomischer
Instabilitat. Bemerkenswerterweise wiesen Patienten mit geringer CNV-Belastung ein langeres
Uberleben auf, was die prognostische Relevanz dieses Biomarkers unterstreicht. Der
pratherapeutische Status erwies sich als entscheidender Faktor fiir das Uberleben und liefert wichtige

Erkenntnisse zur Rolle friiherer Therapien mit TRNT und Chemotherapie in Bezug auf langfristige
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Behandlungsergebnisse. Darliber hinaus wurde eine Gen-Signatur identifiziert, die mit hoher CNV-
Belastung assoziiert ist und somit sogenannte Schiisselchromosomen sowie Riickfall-assoziierte Gene
als potenzielle Indikatoren einer schlechten Prognose aber auch als eine mogliche Zielstruktur zur

Therapie darstellen kénnen.
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| INTRODUCTION

1.CANCER

Cancer arises from a single cell that progressively accumulates genetic alterations over time, which
can be inherited, induced through environmental exposures (such as radiation or chemical
carcinogens), or occur spontaneously due to replication errors. These mutations often lead to genomic
instability—a critical enabling feature that fosters the acquisition of additional cancer traits by creating
a genetically heterogeneous cell population (1-3). Moreover, defects in the mechanisms underlying
high-fidelity DNA replication significantly contribute to genome instability, thus promoting the
evolution of cancer cells (4). Once the genetic changes occur, affected cells begin to proliferate
uncontrollably, forming a tumor. Tumors are classified as benign or malignant. While benign tumors
are non-cancerous, their growth can cause local complications such as compression of adjacent
structures or hormonal imbalances, malignant tumors are capable of invading surrounding tissues and
metastasizing to distant organs, which constitutes the primary cause of cancer-associated mortality
(5). The metastatic process involves several steps including local invasion, intravasation into blood or
lymphatic vessels, survival in circulation, extravasation, and colonization at secondary sites. This
process is aided by changes in cellular adhesion properties and activation of proteolytic enzymes, as
has been delineated in studies of epithelial-mesenchymal transition (6, 7). Cancers are also commonly
classified by the tissue from which they originate. Approximately 85% of human cancers are
carcinomas that arise from epithelial tissues. Carcinomas include adenocarcinomas, which form from
glandular tissues (e.g., breast and prostate), and squamous cell carcinomas, which originate from the
skin or other mucosal linings (8). Other cancer types include sarcomas (from connective tissues),
leukemias (blood cancers), lymphomas (lymphatic system cancers), melanomas (from pigment-
producing cells), and gliomas (originating in the nervous system). Other cancer types include sarcomas
(from connective tissues), leukemias (blood cancers), lymphomas (lymphatic system cancers),
melanomas (from pigment-producing cells), and gliomas (originating in the nervous system).
Underlying the development and progression of cancer are a series of biological capabilities or
“hallmarks” that provide cancer cells a competitive advantage over normal cells. Originally described
by Hanahan and Weinberg, these hallmarks include sustained proliferative signaling, evasion of
growth suppressors, resistance to programmed cell death, replicative immortality, induction of
angiogenesis, and activation of invasion and metastasis (1). Subsequent research expanded these
hallmarks to incorporate emerging features such as deregulated cellular metabolism, evasion of
immune destruction, genomic instability, and tumor-promoting inflammation Collectively, these traits

facilitate the growth and survival of cancer cells and underlie the capacity of malignant tumors to



disseminate via the bloodstream or lymphatic system—a process that ensures that circulating tumor
cells can seed metastases in distant organs and thus drive the high mortality rate associated with
cancer (9, 10). Risk factors for cancer are multifaceted, involving both intrinsic factors such as the
natural aging process—which impairs DNA repair and cellular homeostasis—and extrinsic factors
including dietary habits, physical inactivity, smoking, alcohol consumption, infections, and various

environmental exposures (11).

1.1 Prostate Cancer

Prostate cancer (PCa), or prostatic adenocarcinoma, is the second most frequently diagnosed cancer
in men worldwide, following skin cancer, and is responsible for about 15% of all male cancer cases. It
also ranks as the fifth leading cause of cancer-related mortality among men globally (12, 13). The
prostate gland, situated in the pelvic region beneath the bladder, is a critical part of the male
reproductive system. Interestingly, a female anatomical equivalent known as the Skene’s gland has
also been associated with certain pathological conditions, including adenocarcinoma, making it
clinically relevant as well (14, 15). Although commonly associated with hormonal imbalances, the
exact underlying cause of prostate cancer remains uncertain. Elevated levels of testosterone, which
may be influenced by high-fat diets, are believed to increase susceptibility to the disease (16).
Additional risk factors include advancing age (age >55), African ancestry, certain viral infections,
cadmium exposure—found in sources like cigarettes—and a family history of PCa. Men with affected
first- or second-degree relatives have a higher risk of developing the disease (14). Prostate tumors
often grow slowly and are asymptomatic in early stages, making detection difficult. Autopsy studies
show undiagnosed prostate cancer in about one-third of men in their 50s and up to 80% in their 70s,
with many dying of unrelated age-related causes (17). When symptoms do emerge, they may
resemble those of benign prostatic hyperplasia, a non-cancerous prostate enlargement. These
symptoms include frequent urination, especially at night (nocturia), reduced urine flow, blood in the
urine (hematuria), and pain during urination (dysuria) or ejaculation (18). Not all cases are slow-
growing—aggressive forms of prostate cancer, particularly in younger individuals, can spread rapidly
via the lymphatic system or bloodstream. Common metastatic sites include the seminal vesicles,
lymph nodes, lungs, and bones, especially in the vertebral column, hips, and pelvis (19). Prostate
cancer screening often involves measuring prostate-specific antigen (PSA) levels in the blood. Men
with PSA concentrations above 4 ng/mL are typically advised to undergo a digital rectal examination
(DRE) or transrectal ultrasound (TRUS) (Chapter 1.3.1) (20). In recent years, positron emission
tomography (PET) imaging has gained traction as a valuable tool for prostate cancer diagnosis, even

in the early stages, particularly with the use of specific radiotracers (Chapter 3.2) (21). Cancer staging
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is conducted using clinical evaluation, histological analysis, or both. The most commonly applied
system is the TNM classification, which considers tumor size (T), lymph node involvement (N),
presence of distant metastases (M), PSA levels, and the Gleason score (GS), derived from microscopic

tissue analysis (Figure 1) (22-25).
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Figure 1: This figure illustrates the progression, classification, and survival outcomes associated with
prostate cancer, integrating visual staging, tumor classification, and treatment resistance categories.
Top Left: Prostate cancer stages with four schematic diagrams show prostate cancer progression from
stage I to stage IV. Top Right: Survival rates vary by tumor localization. Bottom Left: TNM Classification
T (Tumor size/local invasion) N (Lymph node involvement) M (Distant metastasis). Bottom Right:
Hormone Sensitivity Subtypes Castrate Sensitive prostate cancer (responds to androgen deprivation)
Castrate Resistant prostate cancer (progresses despite androgen deprivation therapy). Figure created

in BioRender.



1.2 Clinical management of PCa

The clinical management of PCa involves a range of treatment options (Figure 2), including surgical
intervention, hormone deprivation therapy, chemotherapy (e.g., Docetaxel), and various forms of
radiation therapy (Chapter 3.2). Treatment selection depends largely on the patient's age, general

health, and the extent and progression of the disease.

Figure 2: Schematic representation of clinical management of prostate cancer and the different

therapies options. Figure created in BioRender.

1.2.1 Surgery

Radical prostatectomy, performed through open or laparoscopic approaches, involves complete
removal of the prostate gland (26). This procedure requires incisions either in the abdominal region
or the perineum. ldeal candidates for radical prostatectomy are patients under 70 years old with
organ-confined disease, a life expectancy greater than 10 years, and minimal comorbidities. Common
complications include urinary incontinence and erectile dysfunction due to potential damage to the
urinary sphincter and neurovascular bundles (27). Cryotherapy is another surgical method involving
the insertion of cryoprobes into the prostate under ultrasound guidance, reducing the gland's

temperature to between —100°C and —200°C for approximately 10 minutes. Though effective, this



method has been linked to complications such as urinary retention, erectile dysfunction, rectal pain,

and fistula formation (28).

1.2.2 Radiation therapy

Radiation therapy is a widely utilized and effective method to destroy prostate cancer cells using
targeted high-energy radiation. It can be delivered through techniques such as brachytherapy, where
radioactive seeds are implanted directly into the prostate, and external beam radiation therapy
(EBRT), which projects energy from outside the body onto cancerous tissue. Additionally, targeted
radionuclide therapy (TRNT, e.g., PSMA-617-based therapies) is discussed in later chapters. The
primary goal of radiation therapy is to deliver high doses of energy to cancerous cells while minimizing
damage to surrounding healthy tissue. It is particularly suitable for patients ineligible for surgery (29).
Brachytherapy involves placement of radioactive materials via seeds, wires, or injections under TRUS
guidance. EBRT is commonly used to deliver high-dose radiation directly to the prostate while sparing
adjacent tissues. In intermediate- and high-risk prostate cancer cases, EBRT is often combined with
androgen deprivation therapy (ADT) for better outcomes (30). Radium-223 dichloride (**3RaCl,,
Xofigo®, Bayer, Germany) is used for patients with metastatic disease resistant to hormone therapy.
Mimicking calcium, radium-223 is selectively absorbed in bones, helping target bone metastases and

alleviate symptoms like fractures and pain (31).

1.2.3 Hormonal Therapy

Hormonal therapy, or androgen deprivation therapy (ADT), is a standard treatment for advanced or
metastatic prostate cancer. It aims to reduce or block testosterone and other androgens that fuel
tumor growth. ADT can be achieved through bilateral orchiectomy or pharmacologically via luteinizing
hormone-releasing hormone (LHRH) analogues or antagonists. LHRH agonists, such as leuprolide,
goserelin, triptorelin, and histrelin, initially stimulate the pituitary to release LH and FSH before
eventually downregulating receptors and suppressing testosterone production. In contrast, LHRH
antagonists act by directly blocking pituitary receptors, leading to immediate testosterone
suppression (32, 33). While effective, ADT is associated with a range of side effects including hot
flashes, fatigue, hyperlipidaemia, osteoporosis, cardiovascular complications, insulin resistance,

anaemia, and sexual dysfunction (34).

1.2.4 Abiraterone

Abiraterone (Zytiga®, Janssen Biotech, USA & Yonsa®, Sun Pharma, India) is a second-generation

hormonal therapy that targets androgen production in adrenal glands, the tumor itself, and the testes.
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It works by inhibiting the CYP17A enzyme and 3B-hydroxysteroid dehydrogenase, which are involved
in androgen biosynthesis (35). Administered orally in combination with prednisone and ongoing ADT,
abiraterone further suppresses testosterone levels beyond what is typically achieved with LHRH
agonists alone. However, it may cause elevated levels of upstream mineralocorticoids, leading to side
effects such as hypertension, edema, fatigue, hypokalemia, and liver toxicity, including rare cases of

acute liver failure (36).

1.2.5 Chemotherapy

Chemotherapy involves the use of cytotoxic drugs to eliminate or inhibit the growth of cancer cells.
Docetaxel (Taxotere®, Sanofi, France) remains the standard first-line chemotherapeutic agent for
treating castration-resistant prostate cancer. As an antimicrotubule compound, it binds to B-tubulin,
preventing microtubule depolymerization, thereby disrupting mitotic division and promoting
apoptosis (33, 37, 38). Doxetaxel mechanism of action depends largely on the cytochrome P450
enzyme CYP3A. Resistance to docetaxel, often linked to disease relapse, has been associated with the
overexpression of the multidrug resistance (MDR1) gene, which encodes the efflux transporter P-
glycoprotein (39). To address this resistance, cabazitaxel—a second-generation taxane—was
developed (Jevtana®, Sanofi, France). It is a semi-synthetic compound derived from yew tree needles
(Taxus species) and specifically designed to overcome P-glycoprotein-mediated resistance. Due to
additional methyl groups, cabazitaxel has a lower affinity for P-glycoprotein. It undergoes hepatic
metabolism primarily via CYP3A4/5 and, to a lesser extent, CYP2C8 (10-20%) (40-42). Common
adverse effects include fatigue, neurotoxicity, alopecia, hypotension, bronchospasm, renal
impairment, and skin reactions such as erythema or rash. In rare cases, severe diarrhea resulting in

dehydration and electrolyte disturbances has been reported following cabazitaxel treatment.

1.2.6 Enzalutamide

Enzalutamide (Xtandi®, Astellas Pharma, Japan & Pfizer, USA), approved in 2012, is a second-
generation androgen receptor (AR) inhibitor used in the treatment of prostate cancer. Its therapeutic
mechanism is multifaceted, targeting critical steps in androgen signaling, which is crucial for the
growth and survival of prostate cancer cells. Enzalutamide exerts its antineoplastic activity primarily
through three mechanisms. First, it competitively inhibits the binding of androgens—specifically
testosterone and dihydrotestosterone—to the AR. By occupying the ligand-binding domain,
enzalutamide prevents endogenous androgens from activating the receptor, subsequently reducing
downstream gene transcription that drives tumor proliferation (43). Second, the agent impedes the

nuclear translocation of the activated AR. Under normal physiological conditions, upon ligand binding,



the AR translocates from the cytoplasm to the nucleus, where it recruits cofactors and binds to DNA.
Enzalutamide disrupts this intracellular trafficking, inhibiting the recruitment of coactivators and the
receptor’s association with DNA, thus blocking the transcription of target genes essential for cancer
cell survival. Finally, by inhibiting the binding of the activated AR complex to DNA, enzalutamide
curtails the transcriptional activation of genes involved in cell proliferation and survival. Collectively,
these sequential actions block AR signaling at multiple junctures, distinguishing enzalutamide from
earlier antiandrogens that demonstrated a more limited scope of inhibition (44-46). Clinically, the
efficacy of enzalutamide in patients with mCRPC is well-documented, where the interruption of the
androgen signaling cascade translates to significant prolongation of survival and delay in disease

progression.

1.3 Metastatic castration resistant PCa

For over seven decades, the primary approaches for treating prostate cancer have included surgery,
radiation therapy, and pharmacologic strategies aimed at lowering testosterone and its derivatives
through androgen deprivation. This approach, commonly achieved using LHRH agonists—with or
without antiandrogens—has been effective in controlling tumor growth for a defined period in many
cases (47). However, disease progression often occurs despite continued hormone suppression,
leading to the development of castration-resistant prostate cancer (CRPC). CRPC is particularly
debilitating due to its strong tendency to metastasize to the bone, significantly increasing the risk of
pathological fractures and skeletal complications such as spinal cord compression and hypercalcemia.
Although only around 3% of patients show bone metastases at initial diagnosis, this figure escalates
to approximately 90% in those with metastatic CRPC (mCRPC) (48). Visceral metastases—including
those affecting the lungs, liver, adrenal glands, and kidneys—occur in about 25% of cases and are
typically associated with a more aggressive disease phenotype (49). A major advancement occurred
in 2022 with the approval of [Y’Lu]Lu-PSMA-617 (Pluvicto®, Novartis, Switzerland) by the Food and
Drug Administration (FDA) and European Medicines Agency (EMA) for treating mCRPC. This
radioligand therapy demonstrated significant clinical benefits in patients who had previously
undergone multiple lines of treatment (50). Despite these achievements, approximately 30% of
mCRPC patients eventually fail to respond to beta radiation, owing to inherent or acquired resistance
(51). Pioneering clinical trials have explored the combination of PSMA-617 with the alpha-emitting
radionuclide 22°Ac ([*°Ac]Ac-PSMA-617), demonstrating remarkable efficacy in heavily pre-treated
mMCRPC patients with diffuse bone marrow infiltration who no longer respond to conventional
therapies (Chapter 3.4) (52-54). PSA is often used as a monitoring tool for the progression of the

mCRPC disease. Nevertheless, the level of PSA and PSA kinetics are treatment-sensitive parameters.



For example, non-rising PSA with metastatic radiographic progression is often observed in mCRPC
patients treated with enzalutamide (54, 55). Several other biomarkers can also be found as factors in
multivariable analysis, improving the prognostic model performance. Besides the previously
mentioned biomarkers, such as PSA, PSA kinetics, and inflammatory response cells, the other
biomarkers can be divided into several categories. General cancer-related biomarkers are represented
by alkaline phosphatase (ALP) — an indicator of bone metastatic tumor load (56), lactate
dehydrogenase (LDH) — an increased biomarker of highly proliferating cancer cells connected with
enhanced glycolysis (57). Furthermore, the amount of tumor-originated ctDNA (Chapter 4.1) in plasma
has been suggested as an independent prognostic biomarker for mCRPC, in particular in combination

with PSA evaluation (54, 58, 59).

1.4 Tumor Markers for PCa and mCRPC

Tumor markers (TM) are critical tools in the diagnosis and clinical management of PCa, including its
advanced stage, mCRPC. While PSA remains the most widely used biomarker, its limitations—
especially in the setting of emerging therapeutic approaches—have prompted extensive investigation
into molecular and genetic biomarkers that may offer improved prediction of disease trajectory,

treatment efficacy, and the onset of resistance.

1.4.1 Prostate-specific antigen (PSA)

PSA is a serine protease believed to play a physiological role in liquefying seminal fluid. In PCa, PSA is
released into the bloodstream, often elevating serum levels by up to 10°-fold. However, elevated PSA
can also result from benign conditions such as benign prostatic hyperplasia (BPH) or prostatitis, which
limits its specificity. Despite these limitations, PSA has been widely adopted as a biomarker for both
the detection and monitoring of PCa (60). In the United States, the FDA approved PSA as a monitoring
tool for PCa patients in 1986 and later, in 1994, as a diagnostic marker. The widespread use of PSA
screening led to an increased detection rate of prostate cancer, contributing to stage migration and a
reduction in the number of cases diagnosed at advanced or metastatic stages (61, 62). PSA
transcription is regulated by androgens, which limits its expression predominantly to prostate
epithelial cells. It is produced in normal prostate tissue, in BPH, and across all stages and grades of PCa
. PSA is primarily secreted into seminal fluid, where its concentration typically ranges from
approximately 0.3 to 3 mg/mL (10-100 pumol/L). Because PSA is specific to prostate tissue rather than
prostate cancer, elevated levels can also be found in non-malignant conditions. Consequently, a
prostate biopsy is often required to confirm a cancer diagnosis in men with elevated PSA levels (38,

63). Functionally, PSA acts as a chymotrypsin-like serine protease that cleaves gel-forming proteins in



seminal fluid, such as semenogelin | and I, contributing to the liquefaction of semen. PSA is part of
the kallikrein family of serine proteases. The genes encoding the 15-known human kallikreins,
including PSA, are located on chromosome 19q13.3-4, within a locus spanning approximately 280 kb.
The gene for PSA, KLK3, is regulated by androgen response elements within its promoter region. KLK2,
which encodes human kallikrein 2 (hK2), is the closest paralog of KLK3 and is also regulated by

androgens through similar elements (64, 65).

1.4.2. Lactate dehydrogenase (LDH)

LDH is a key metabolic enzyme present in various tissues and measurable in serum. It plays a central
role in energy metabolism by catalysing the reversible conversion between pyruvate and lactate
during glycolysis and gluconeogenesis. Elevated LDH levels have long been associated with multiple
malignancies, often exceeding those found in normal tissues (66). In many solid tumors, LDH serves as
a prognostic marker, correlating with tumor burden and believed to reflect the aggressiveness and
proliferative capacity of the cancer (67). As tumors grow and infiltrate surrounding tissues, increased
cell turnover and necrosis can lead to LDH release from both malignant cells and damaged
neighbouring tissue, contributing to elevated serum concentrations (68). Clinical evidence from a
range of cancers—including lung, colorectal, breast, and ovarian—has consistently highlighted the

prognostic significance of LDH levels in assessing disease progression and patient outcomes (69-71).

1.4.3. Alkaline phosphatase (ALP)

ALP refers to a group of enzymes that play a vital role in several biological processes (72). These
enzymes function by catalysing the hydrolysis of phosphate esters under alkaline conditions, resulting
in the release of inorganic phosphate (73). ALP is expressed in multiple tissues throughout the body,
including the bones, liver, intestines, and placenta. Its enzymatic activity is especially important for
bone development and growth, particularly during childhood and adolescence. Alterations in ALP
levels have been noted in various malignancies, where elevated expression often correlates with
pathological processes. In the context of cancer, increased ALP levels are commonly linked to bone
and liver involvement, reflecting tumor activity or metastasis in these regions (74, 75). Overproduction
of ALP in these settings can lead to its leakage into the bloodstream, making it a useful biomarker in
certain cancers. At the molecular level, ALP expression in tumors is influenced by several signaling
pathways. For instance, activation of the Wnt/B-catenin pathway has been shown to upregulate ALP
expression in various cancers, including those of the colon, liver, and bone. In this pathway, nuclear
translocation of B-catenin enhances the transcription of ALP-related genes (76). Additionally, the bone

morphogenetic protein (BMP) signaling pathway has been implicated in the upregulation of ALP,



especially in bone metastases of solid tumors where cancer cells exhibit osteoblast-like characteristics

(77).

2. Prostate-specific membrane antigen (PSMA)

Prostate-specific membrane antigen (PSMA) was initially discovered in 1987 using the LNCaP human
prostate adenocarcinoma cell line (78). It is a type Il transmembrane glycoprotein composed of 750
amino acids, with a molecular weight of approximately 84 kDa. Structurally (Figure 3), PSMA features
a short cytoplasmic tail, a transmembrane region, and a large extracellular domain (amino acids 44—
750), which includes apical, helical, and protease-like regions involved in substrate binding and
enzymatic activity (79). The PSMA gene is located on the short arm of chromosome 11 in humans (80).
Functionally, PSMA exists either as a monomer or a homodimer, though enzymatic activity is confined

to its dimeric form (81).

Extracellular C terminal

activity site of PSMA inhibitor = 591

Intracellular N terminal

Figure 3: Schematic representation of PSMA, illustrating its cellular receptor and structural features.
PSMA is expressed in over 90% of prostate cancer cases. Its expression increases with tumor
progression and metastasis, showing particularly strong expression in advanced, androgen-
independent prostate cancers. The 7E11 antibody targets an intracellular epitope of PSMA, whereas

J591 binds to an extracellular domain (82).



2.1 PSMA as a treatment target

Although PSMA is primarily associated with prostate tissue, low levels of physiological expression have
been identified in several non-prostatic organs, including the kidneys, salivary glands, spleen, small
intestine, liver, testes, ovaries, and brain (83, 84). In prostate cancer, however, PSMA expression is
markedly increased—typically 8- to 12-fold higher than in normal prostate tissue—and is further
elevated in metastatic and treatment-resistant forms of the disease. Estimates suggest that up to 10°
PSMA molecules may be present on a single PCa cell, underscoring its value as a molecular target. This
overexpression has been correlated with higher Gleason scores, suggesting a potential role for PSMA
in tumor progression and invasiveness. Notably, variations in PSMA glycosylation have been observed
across different PCa cell lines, and these distinct glycan patterns may influence the invasive capacity
of tumor cells (85-87). While PSMA is a well-established marker for prostate cancer, elevated
expression has also been reported in other malignancies, such as kidney and bladder cancers, as well
as in the neovasculature of various solid tumors (88). As a result, PSMA is no longer regarded as
exclusively prostate-specific, but rather as a broader tumor-associated antigen with relevance across

multiple cancer types.

3.NUCLEAR MEDICINE

Nuclear medicine is an evolving interdisciplinary field that integrates elements of physics, chemistry,
and medicine to diagnose and treat diseases through the use of radioactive substances. In this
approach, radionuclides are typically linked to biologically active molecules that guide their
distribution within the body (89). These specialized compounds, known as radiopharmaceuticals or
radiotracers, enable both diagnostic imaging and targeted therapy for a wide range of conditions—
including various cancers, endocrine disorders, cardiovascular diseases, and neurological dysfunctions
such as alterations in dopamine receptor density (90, 91). One of the distinguishing features of nuclear
medicine is its ability to provide functional and metabolic information at the cellular and even
molecular level, offering insights that go beyond anatomical imaging. Radiopharmaceuticals can be
designed to target specific cellular receptors or biological pathways, allowing for highly specific
imaging of individual organs or even full-body scans when systemic targeting is required—such as in
the case of white blood cell tracking (91). This capacity enables the early detection of disease
processes, often before structural changes or clinical symptoms appear, and supports the monitoring

of real-time responses to therapeutic interventions.
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3.1 Imaging strategies

Accurate diagnostic assessment is fundamental for developing an effective treatment strategy in PCa
and mCRPC. Imaging plays a central role across various stages of disease management, including
diagnosis, prognosis, treatment planning, and monitoring. The diagnostic workup typically begins with
cross-sectional anatomical imaging, most commonly via computed tomography (CT) or magnetic
resonance imaging (MRI). MRI, owing to its superior soft tissue contrast and ability to capture images
in multiple sequences, provides enhanced detail for tumor localization, tissue differentiation, and
evaluation of disease extent—making it particularly valuable for precise treatment planning (92).
However, CT continues to serve as the first-line modality in certain clinical scenarios, such as the
evaluation of new or worsening neurological symptoms, due to its widespread availability and rapid
acquisition speed. CT is also preferred when MRI is contraindicated, for example, in patients with
pacemakers or other non-compatible implants, and remains useful for detailed assessment of bone
structures (93). Beyond anatomical imaging, nuclear medicine techniques—particularly single-photon
emission computed tomography (SPECT) and positron emission tomography (PET)—offer functional
insights that enhance the diagnostic landscape in PCa and mCRPC. These methods rely on the
administration of radiotracers that reflect specific physiological processes. Both PET and SPECT
produce three-dimensional images, but differ in their detection mechanisms. SPECT captures gamma
emissions using rotating photomultiplier detectors, while PET detects photons produced by positron
annihilation, with detectors arranged in circular arrays for high sensitivity and resolution. The
tomographic capability of SPECT significantly enhances the differentiation of abnormal tracer uptake
from normal physiological activity (94-97), while PET offers even greater spatial resolution. Common
tracers, such as Tc-99m-labeled pertechnetate and Ga-68-labeled diethylenetriaminepentaacetic acid
(DTPA), provide high-contrast resolution for various clinical applications. In recent years, radiotracers
targeting PSMA—including Tc-99m-, ®Ga-, and ®F-labeled compounds—have demonstrated
substantial clinical value for detecting and evaluating bone metastases in prostate cancer patients,

further advancing imaging precision in both SPECT and PET modalities (89, 98).

3.2 PSMA-targeted radioligand therapy

The introduction of [7’Lu]Lu-PSMA-617 (Pluvicto®) in 2022 represented a major advancement in the
treatment landscape for prostate cancer, receiving regulatory approval from both the FDA and EMA
due to its demonstrated efficacy in patients who had undergone multiple prior therapies (99-102).
More recently, on March 28, 2025, the FDA approved an expanded indication for Pluvicto®, allowing
its use in PSMA-positive mCRPC patients who have progressed following treatment with androgen

receptor pathway inhibitors (ARPIs) and are candidates for delaying chemotherapy (103-105).
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Considering that nearly 50% of mCRPC patients may not survive to receive second-line therapy,
integrating effective and well-tolerated treatments earlier in the disease course is of critical
importance. Once internalized by the target cell, the radiopharmaceutical releases the radionuclide
lutetium-177 (""Lu), which has a half-life of approximately 6.6 days and emits beta-minus (B~) particles
with a relatively low linear energy transfer (LET) of around 0.2 keV/um (106). These particles travel
short distances—on average 0.67 mm—within tissues, delivering cytotoxic radiation primarily to
PSMA-positive tumor cells while and inducing cellular damage by causing DNA lesions, including both
single-strand breaks (SSBs) and more lethal double-strand breaks (DSBs) (Figure 4) (107). The
radiation-induced damage is particularly effective in the presence of oxygen, which facilitates the
formation of reactive oxygen species (ROS) and free radicals that enhance cellular injury (108).
Approximately 30% of patients exhibit primary resistance to this treatment. In such cases, therapies
based on alpha-emitting radionuclides may present a promising alternative. Alpha particles are
characterized by a much higher LET, approximately 80 keV/um, and a limited tissue penetration range
of up to 100 um. These physical properties allow for highly localized and potent cytotoxic effects,
primarily through the generation of more frequent and long-lasting DSBs (109, 110). However, this
intense energy deposition can also impact healthy tissues that express PSMA physiologically—such as
the salivary glands—potentially leading to off-target toxicity and imposing limitations on the
maximum tolerable dose (50, 111-113). Despite the challenges, targeted alpha therapy represents an
attractive option for patients that develop resistance to the beta-emitting [*”’Lu]Lu-PSMA-617 or are
not responsive in the first place (51, 114). Pioneering clinical trials have explored the combination of
PSMA-617 with the alpha-emitting radionuclide ?°Ac ([**Ac]Ac-PSMA-617), demonstrating
remarkable efficacy in heavily pre-treated mCRPC patients with diffuse bone marrow infiltration who
no longer respond to conventional therapies, including Pluvicto®(52, 53). [***Ac]Ac-PSMA-617 seems
to be highly effective against microscopic metastatic disease, leveraging its short range (50-100 pum)
for precise, cell-specific ionization (115). Actinium-225 (***Ac), with a half-life of approximately 10
days, possesses potent radiobiologic properties ideal for localized tumor ablation. However, its use as
a standalone therapy poses challenges in treating larger tumor masses and is often associated with
significant toxicities, such as higher-grade xerostomia (116-118). Over time, various radiotherapeutic
strategies have been evaluated, with tandem therapy emerging as a means to optimize efficacy and
minimize adverse effects (52, 119, 120). Despite the clinical success of tandem [?°Ac]Ac-/[*"’Lu]Lu-
PSMA-617 (actinium-lutetium) therapy, which leverages the complementary benefits of both
radionuclides, identifying and addressing resistance mechanisms remains a significant challenge in

treating mCRPC (52).
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Figure 4: Schematic representation of the rationale behind PSMA-targeting radiopharmaceuticals. A targeting moiety

is conjugated to a chelator, which coordinates a radioactive isotope emitting either beta or alpha particles. Upon
intravenous administration, the radiopharmaceutical circulates through the body and selectively binds to its molecular
target on tumor cells, in this case PSMA. Such interaction also often leads to internalization of the compound. The
emitted radiation induces DNA damage—primarily SSBs or DSBs—ultimately leading to cancer cell death. Figure

created in BioRender.
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4. LIQUID BIOPSY

Liquid biopsy has rapidly emerged as a transformative tool in oncology, enabling detailed molecular
analysis of body fluids—most commonly blood—to gather tumor-related information. Its minimally
invasive nature allows for repeated sampling, making it ideal for monitoring disease progression,
treatment response, and emerging resistance mechanisms. The foundation of this technology dates
back to 1948, when circulating free DNA (cfDNA) and RNA were first identified in human blood,
marking the earliest observation of what would later become a cornerstone of modern cancer
diagnostics. Since then, liquid biopsy approaches have evolved significantly, becoming a routine part
of clinical practice while also accelerating cancer research by revealing key insights into tumor biology.
(121) These approaches have rapidly expanded beyond cfDNA to include additional tumor-derived
components such as circulating cell-free RNA—including both messenger and noncoding RNA—
extracellular vesicles, and tumor-educated platelets and circulating tumor cells (CTCs) (122-126). The
clinical utility of liquid biopsy is multifaceted. By providing real-time insights into the tumor’s genetic
and epigenetic landscape, liquid biopsies facilitate early detection, monitor disease progression,
evaluate treatment response, and help uncover mechanisms of drug resistance (Figure 5)(127). Unlike
traditional tissue biopsies, liquid biopsies can be performed repeatedly with minimal risk and
discomfort, allowing clinicians to monitor tumor heterogeneity and evolution over time. This dynamic
approach not only enhances our understanding of malignant growth at the molecular level but also
supports personalized therapeutic strategies that are critically needed in modern oncology. Moreover,
the liquid biopsy platform has expanded research capabilities by enabling the interrogation of tumor-
derived biomarkers from easily accessible blood samples. This has accelerated efforts to decipher the
complex molecular events underlying tumor initiation and progression, ultimately contributing to a
more robust integration of molecular diagnostics into routine clinical practice (128-131). In ongoing
interventional studies, the clinical utility of CTCs and ctDNA for treatment decisions is being evaluated.
In particular, the use of CTCs and ctDNA as real-time liquid biopsy has received attention over the past
years (126, 132, 133). Both CTCs and ctDNA occur at very low concentrations in the peripheral blood,
which poses a serious challenge for any analytic system (126). With the introduction of next-
generation sequencing (NGS) technologies, the diverse and often complex genomic landscape of
cancer has been deciphered in major cancer types. Based on these studies, genetic events which are
strongly linked to tumor cell transformation and appear to ‘drive’ the disease evolution have been

identified (134).
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Figure 5: Schematic representation of liquid biopsy concept and different applications in the clinical
field. The analysis of liquid biopsy can be used to identify CTCs, epigenetic modification, point
mutations, translocations, amplifications &deletions, chromosomal abnormalities, protein expression

phosphorylation and in vivo/in vitro culture of isolated cells. Figure created in BioRender.
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4.1 Circulating free DNA (cfDNA)

cfDNA refers to short DNA fragments found circulating in plasma and other bodily fluids, including
saliva, lymph, breast milk, bile, urine, cerebrospinal fluid, and amniotic fluid (135, 136). This DNA
originates from both nuclear and mitochondrial sources and is released by various cell types
throughout the body (134, 137). cfDNA enters the extracellular space primarily through cell death
processes such as apoptosis and necrosis, although active secretion has also been described. The
characteristics of cfDNA—its size and composition—can reflect the underlying mechanism of release.
For instance, apoptosis typically produces DNA fragments around 160-180 base pairs in length,
corresponding to DNA segments wrapped around nucleosomes. Other release mechanisms may
generate different fragment patterns, and ongoing research continues to explore which of these
signatures are most relevant for specific physiological or disease states (134, 138). In healthy
individuals, most cfDNA found in plasma—about 60% to 90%—originates from hematopoietic cells.
The liver contributes an additional 2% to 18%, while the rest comes from a variety of tissues (137, 139,
140). cfDNA is rapidly cleared from circulation, with a half-life ranging from approximately 16 minutes
to 2.5 hours. This clearance occurs via degradation by nucleases, phagocytosis in the liver and spleen,
and excretion through the kidneys (141, 142). Under normal physiological conditions, cfDNA
concentrations in the bloodstream typically range from 1 to 10 ng/mL, with an average level of 6

ng/mL—equivalent to roughly 2,000 haploid genome copies per milliliter of plasma (134).

4.2 Circulating tumor DNA (ctDNA)

In cancer patients, circulating levels of total cfDNA are significantly elevated in comparison to healthy
individuals, often exceeding 1000 ng/mL, with average concentrations around 180 ng/mL. This marked
increase suggests that tumor cells contribute substantially to the total cfDNA pool. The term
circulating tumor DNA (ctDNA) was introduced after researchers studying pancreatic cancer detected
matching mutations in both tumor tissue and DNA fragments isolated from patient plasma (143-146).
Interestingly, cfDNA fragments derived from malignant cells tend to be shorter than those released
by non-malignant cells. This finding has driven the development of size-selection approaches aimed
at enriching shorter DNA fragments, thereby improving the sensitivity of ctDNA detection as a cancer-
specific biomarker (147, 148). The evolution of next-generation sequencing (NGS) technologies has
further advanced the field by allowing comprehensive, high-resolution analysis of ctDNA. These
techniques enable the identification of point mutations, gene fusions, epigenetic alterations, and
large-scale chromosomal changes using very small quantities of input DNA, supporting applications
such as tumor monitoring, minimal residual disease detection, and prediction of treatment response

(149). As a result, many new molecular biomarkers are being uncovered, offering opportunities for
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earlier and more accurate cancer diagnosis. Among these, copy number alterations (CNAs) are
particularly prevalent. CNAs involve gains or losses of chromosomal segments, which can result in
gene dosage imbalances that promote oncogenesis through oncogene amplification or tumor
suppressor gene loss. These genomic alterations are key drivers of tumor heterogeneity and

progression, making them valuable both diagnostically and therapeutically (150-158).

4.3 Applications of ctDNA in the clinic

The clinical applications of liquid biopsy are broad and span multiple tumor types. For instance, in
thyroid cancer, the use of liquid biopsy to detect cell-free nucleic acids and other circulating
biomarkers has shown promise in improving early diagnosis and guiding treatment decisions, although
further integration into routine clinical practice is still needed (128, 159). ctDNA has emerged as a
promising non-invasive biomarker with broad applications across the cancer care continuum. Derived
from tumor cells undergoing apoptosis or necrosis, ctDNA reflects the genomic landscape of
malignancies in real time and offers significant advantages over traditional tissue biopsies, particularly
in capturing tumor heterogeneity and enabling longitudinal monitoring (160). Clinically, ctDNA is
increasingly utilized for early cancer detection (Figure 6), where it enables the identification of
molecular alterations in asymptomatic individuals, including somatic mutations and epigenetic
changes. It is also a powerful tool for minimal residual disease (MRD) detection, capable of identifying
microscopic disease post-surgery or treatment, thus predicting relapse well before radiological
evidence emerges. Furthermore, ctDNA serves as a dynamic marker for treatment response, with
changes in ctDNA levels correlating closely with therapeutic efficacy or resistance. Its application
extends to the identification of resistance mechanisms, allowing the detection of emergent mutations
and guiding subsequent therapy decisions without the need for repeat biopsies. ctDNA analysis also
supports tumor genotyping, providing actionable insights for personalized treatment, and has
demonstrated prognostic value, with elevated ctDNA levels often associated with higher tumor

burden and poorer clinical outcomes (150, 161-163).
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Figure 6: Schematic representation of ctDNA clinical application that range from early cancer

detection, surveillance for micrometastatic disease and treatment selection and response monitoring

in patients with metastatic disease. Figure created in BioRender.
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Il AIM OF THE STUDY

PCais the most frequently diagnosed malignancy among elderly men in Western societies and remains
a leading cause of cancer-related mortality within this demographic. Despite notable advancements
in diagnostic modalities and therapeutic interventions, the prognosis for patients diagnosed with
advanced mCRPC remains poor. This is primarily due to the limited efficacy and durability of existing
treatment options, particularly in later stages of the disease (51). The clinical challenges underscore
an urgent need for improved strategies in patient stratification and the development of novel, more
effective therapeutic approaches capable of addressing the aggressive nature of mCRPC.

A major advancement in recent years has been the clinical introduction of [*’Lu]Lu-PSMA-617, a beta
minus-emitting radiopharmaceutical for targeted radioligand therapy. Approved in 2022 by multiple
regulatory bodies—including the FDA, MHRA, Health Canada, and EMA- this radiopharmaceutical is
indicated as a third-line treatment for patients with advanced-stage mCRPC (100). Commercially
available under the trade name Pluvicto® (Novartis, Switzerland), [Y’Lu]Lu-PSMA-617 has
demonstrated a substantial clinical benefit by reducing both the risk of disease progression and
mortality by up to 60%. However, up to 30% of patients either fail to response adequately to this
therapy or eventually develop resistance to beta minus radiation. To address this limitation, an alpha-
emitting targeted radioligand therapy with [*2°Ac]Ac-PSMA-617 has emerged as a promising
alternative, demonstrating encouraging efficacy, particularly in patients who are refractory to
[Y7Lu]Lu-PSMA-617. Nevertheless, therapeutic resistance and suboptimal outcomes are still
observed, with approximately 37% of patients showing either poor responses or early resistance to
[2Ac]Ac-PSMA-617 (164). This highlights a critical unmet need for further research to elucidate the
biological mechanisms driving resistance to alpha emitters and to identify robust predictive
biomarkers for patient stratification. In response to these challenges, combination—or “tandem” —
therapies that incorporate both [?®Ac]Ac-PSMA-617 and [Y’Lu]Lu-PSMA-617 are currently being
explored. These tandem approaches aim to exploit the complementary therapeutic advantages of
beta and alpha emitters to improve clinical efficacy and reduce resistance rates.

This study aims to comprehensively investigate the therapeutic potential and associated limitations
of [2®Ac]Ac-/[Y"Lu]Lu-PSMA-617. A key component of this investigation involves the integration of
non-invasive liquid biopsy techniques, such as cfDNA and ctDNA analysis, with clinical, molecular, and

imaging data to identify predictive biomarkers for treatment response and resistance ( Figure 7).
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Figure 7: Overview of the study’s objective to stratify mCRPC patients undergoing PSMA-targeted
radioligand therapy. Clinical data, imaging, and plasma-derived cfDNA are analyzed to evaluate tumor
burden and resistance. Patients are classified as responders, non-responders, or mixed responders,
aiming to enhance treatment prediction and optimize therapeutic strategies. Figure created in

BioRender.

Plasma samples were collected at bimonthly intervals prior to each treatment cycle and processed to
isolate cfDNA. Subsequent analyses using the IchorCNA platform enable the assessment of tumor

burden dynamics, clonal evolution, and emerging resistance patterns over time (Figure 8).

Figure 8: Schematic depiction of the molecular workflow from cfDNA extraction to sequencing.

Figure created in BioRender.

By elucidating the mechanisms underlying resistance to both beta minus and alpha emitter-based
radioligand therapies, and by evaluating the efficacy of tandem treatment regimens, this study seeks
to refine current patient selection criteria and improve the predictive accuracy of a treatment
response. Ultimately, the goal is to advance the development of more effective, individualized

therapeutic strategies that will enhance clinical outcomes for patients with mCRPC.
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IIl MATERIAL & METHODS

1. ETHICAL APPROVAL

The study, titled “Molekulare Charakterisierung der Tumorevolution im Rahmen von
Endoradiotherapien des metastasierten Prostatakarzinoms “(“Molecular Characterization of Tumor
Evolution in the Context of Endoradiotherapies for Metastatic Prostate Cancer”), received ethical
approval (5-882/2020) from the Ethics Committee of the Medical Faculty at Heidelberg University. This
project is a non-interventional, exploratory investigation focusing on therapy resistance in patients
treated with [*2°Ac]Ac-/[*’Lu]Lu-PSMA-617. The study complies with national regulations, the
Declaration of Helsinki, and Good Clinical Practice (GCP) guidelines. Furthermore, in accordance with
Paragraph 13(2b) of the German Pharmaceuticals Law, the therapy was administered as a salvage
treatment for patients with mCRPC who had progressive disease and were either resistant to or
ineligible for approved therapeutic options. Written informed consent was obtained from all
participants prior to inclusion, ensuring that patients could withdraw their consent at any time without
repercussions. The study involves the collection of blood samples from mCRPC patients scheduled for
bimonthly [#2°Ac]Ac-/[*"7Lu]Lu-PSMA-617 cycles, with no additional risks or burdens to participants.
Subsequent to the blood collection, samples were pseudonymized to protect patient confidentiality
in accordance with the EU General Data Protection Regulation (GDPR). The protocol was designed to
ensure compliance with ethical and legal standards, and the study does not involve any commercial

sponsorship or conflicts of interest.

2. PATIENTS

This doctoral thesis encompasses a cohort of 78 patients who received [?Ac]Ac-/[*’Lu]Lu-PSMA-617
under the conditions of the updated declaration of Helsinki, paragraph 37 (Unproven Interventions in
Clinical Practice). The clinical work was performed at the Heidelberg University Hospital under the
supervision of Dr. med. Clemens Kratochwil and the support of Dr. med. Erik Winter, Dr. Jorge Hoppner
and Dr. Andreas Merkel. Clinical and imaging data, were generously provided by Dr. med. Clemens
Kratochwil. Survival data were provided from both Dr. med. Clemens Kratochwil and PD Dr. med.
Hendrik Rathke consulting the national death record registers. The cohort included individuals with
mCRPC who had exhausted all approved standard therapies, including second-generation androgen
receptor inhibitors, taxane-based chemotherapy, or other unproven clinical interventions. Following
a comprehensive evaluation by the tumor board and in light of the absence of alternative treatment

options, PSMA-directed RLT was proposed as a last-resort intervention for these patients. Allincluded
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patients demonstrated a PSMA-positive tumor phenotype as confirmed by imaging with either
[¢®Ga]Ga-PSMA-11 and [*¥F]PSMA-1007 in PET(/CT), or [**™Tc]Tc-PSMA-GCKO1 in SPECT. The selection
of patients for [**Ac]Ac-/[*"’Lu]Lu-PSMA-617 therapy was primarily based on the presence of
extensive bone marrow infiltration and diffuse liver or other organs metastases, which precluded the
use of [*’Lu]Lu-PSMA-617 (Pluvicto®) as stand-alone therapy (165). From the total cohort, 41 patients
had available paired samples at baseline and one follow-up, 57 patients had only baseline samples,
and 17 patients had baseline and relapse samples (Table 1). These subsets were selected for

subsequent molecular and clinical analyses.

Table 1: Patient grouping strategy for clinical and molecular evaluations.

Group Number of patients
Total cohort 78
Baseline sample only 57
Baseline + 1 follow-up sample 48
Baseline + 1 relapse sample 17

3. SAMPLES

A total of 172 samples were collected from 78 patients enrolled in this study (Table 2). The number of
samples per patient varied between 1 and 7, depending on the clinical context and the number of
treatment cycles completed (Table Al, Appendix). Samples were obtained at various treatment
stages, including baseline (cycle 0) and subsequent treatment cycles. Of the total, 57 samples were
collected at baseline (treatment cycle 0), representing the highest number of samples at a single time
point. The majority of the remaining samples were obtained during the early treatment phases, with
treatment cycle 1 contributing a significant proportion. The number of samples decreased
progressively in later treatment cycles, primarily due to patient dropout, therapy discontinuation, or

unknown clinical constraints (Table 3).
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Table 2: Number of patients and samples in total included in the study.

Group Count
Total number of Patients 78
Total number of samples 172

Table 3: Number of samples per cycle in total included in the study.

Cycle treatment Sample count
0 57
1 55
2 33
3 14
4 8
5 3
6 2

3.1 Sample collection & processing

Venous blood samples (7-14 mL) were prospectively collected in EDTA-coated tubes (BD Biosciences)
and processed within 30 minutes of collection upon the patients' arrival at the clinic, prior to
undergoing therapy. Once collected, the clinic notified the research team, and the samples were
transported from the Nuclear Medicine Department (Nuklearmedizin) of the University Hospital
(Universitatsklinikum Heidelberg) to the DKFZ for processing as shown in Figure 9. The samples
underwent density gradient centrifugation at 2000 x g for 10 minutes at 4°C without braking to
separate the plasma and buffy coat employing Heraeus Christ Minifuge GL 4400 centrifuge (Heraeus
Christ, Osterode am Harz, Germany). The plasma was carefully isolated, transferred to 15 mL Falcon
tubes, and separated from the buffy coat. Immediately after processing, the plasma samples were

frozen at —80°C to ensure preservation until further analysis.
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Figure 9: Overview of the bimonthly blood collection schedule prior to therapy administration,

including the associated sample processing workflow. Figure created in BioRender.
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3.2 cfDNA extraction quantification and quality control

cfDNA was extracted from thawed plasma aliquots using the QlAamp MinElute ccfDNA Midi Kit
(Qiagen, Hagen, Germany; Cat. No./ID: 55284) following the manufacturer’s protocol. Prior to
extraction, buffers ACB and ACW2 were prepared by adding isopropanol and ethanol, respectively, as
instructed. Magnetic bead suspension was vortexed and maintained in suspension during pipetting.
Plasma samples were first incubated with bead binding buffer and magnetic beads in 15 mL tubes at
room temperature with gentle agitation. After magnetic separation and washing, the beads were
resuspended in bead elution buffer and transferred to Eppendorf 5415D Digital microcentrifuge
(Eppendorf, Hamburg, Germany). Following additional incubation and magnetic separation, the
supernatant was mixed with Buffer ACB and applied to QlAamp UCP MinElute columns for DNA
binding. Subsequent wash steps were performed using Buffer ACW2, followed by high-speed
centrifugation to dry the membrane. DNA was eluted in 50 pL of ultra-clean water, with an additional
re-elution step to maximize yield. The extracted cfDNA, eluted in 50 pl, was stored at —80°C until
further analysis. Quantification of the extracted cfDNA was performed using the Qubit 1X dsDNA High
Sensitivity (HS) Assay Kit (Thermo Fisher, Karlsruhe, Germany) on a Qubit 4 Fluorometer (Thermo
Fisher, Karlsruhe, Germany; Q33238). For DNA fragment analysis, including quantification, sizing, and
purity determination, the High Sensitivity D1000 ScreenTape assay (Agilent, Waldbronn, Germany)
was employed. This method allowed for precise sizing of DNA fragments within the range of 35 to
1000 bp and detection of low-abundance samples with concentrations as low as 5 pg/uL (Figure 10,
Figure 11). In the graph displays the quality control assessment of optimal cfDNA samples. The x-axis
represents fragment size in base pairs (bp), while the y-axis indicates sample intensity, reflecting the
fluorescence signal generated by DNA fragments binding to an intercalating dye during capillary
electrophoresis. This signal is directly proportional to the DNA concentration at each fragment size.
Lower and upper markers provide size references for evaluating fragment distribution. As expected,
the cfDNA profile shows a predominant peak between 100-200 bp, consistent with high-quality
mononucleosomal ctDNA suitable for downstream analysis. Data analysis was conducted using
TapeStation Analysis Software 5.1, with 150 bp defined as the target fragment size. In Figure 11 a
suboptimal cfDNA profile is observed, characterized by low overall sample intensity, which reflects a

low cfDNA concentration across the fragments size range.
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Figure 11: Suboptimal cfDNA profile obtained using the TapeStation.
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3.3 cfDNA library preparation

The cfDNA samples were transported to the EMBL GeneCore Facility, where library preparation and
next-generation sequencing were conducted under the supervision of Dr. Vladimir Benes, Head of the
GeneCore Facility, with technical support provided by Hilal Ozgur. cfDNA library preparation was
conducted using the Collibri PS DNA Library Prep Kit (Thermo Fisher, Karlsruhe, Germany) for lllumina

sequencing platforms (lllumina Inc., San Diego, CA, USA) as illustrated in Figure 12.

Fragmented DNA  End Conversion End conversion reaction
(clear) Master Mix (blue) mix (light blue)
DNA-Adaptor  Ligation Master
+ # mix (green) Mix (red)
'
+
+ - "
Dual-Indexed Adaptors Ligation reaction  Cleanup
(yellow) mix (purple) beads
+ ‘f’
'r
1 Purified DNA
? library (clear)
Post-ligation
cleanup on = =y
magnetic rack c E'I .

Figure 12: Collibri PS DNA Library Prep Kit steps from the manufacturer manual description.

Input cfDNA amounts ranged from 3—20 ng, with a size selection of 100-200 bp, optimized for ultra-
low-pass whole genome sequencing (ULP-WGS). Briefly, cfDNA was first subjected to end-repair and
dA-tailing in a single reaction tube to prepare DNA fragments for adaptor ligation. Dual-indexed
Illumina-compatible adaptors were then ligated to the end-repaired DNA fragments. After dual-index
adapter ligation, a 1X clean-up was conducted using magnetic beads, and libraries were eluted in 20
uL of elution buffer. Subsequently, library amplification by PCR was conducted with the number of
cycles optimized based on the input DNA concentration. PCR amplification was tailored to the quality
of the cfDNA: optimal-quality samples underwent 8 cycles, while suboptimal-quality samples required
12 cycles. All subsequent steps, including the preparation and clean-up of amplified libraries, adhered
to the manufacturer's standard protocol to ensure high-quality libraries while minimizing over-
amplification. Following library preparation, quality control (QC) was performed using the
Bioanalyzer High Sensitivity DNA Assay (Agilent, Waldbronn, Germany) to verify the fragment size
distribution, targeting a peak at 300 bp (Figure 13). As previously described, the x-axis in Figure 13 and

Figure 14 represents the fragment size in bp, while the y-axis displays the fluorescence intensity, which
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reflects the concentration of the cfDNA library. cfDNA concentrations were measured using the Qubit
4 Fluorometer (Thermo Fisher, Karlsruhe, Germany) using the Qubit High Sensitivity Kit (Thermo
Fisher, Karlsruhe, Germany). Occasionally, a minor peak corresponding to adapter dimers (~150 bp)
was observed. This observation is consistent with the information provided in the Collibri™ PS DNA
Library Prep protocol (see pages 16 and 41). To address the impact of primer dimers on sequencing
coverage, a clean-up was performed on each individual sample was performed. This involved a 0.85X
magnetic bead clean-up to effectively remove primer dimers, followed by a second QC using the Qubit
and Bioanalyzer. Libraries were pooled based on cfDNA concentration and size distribution, ensuring
a consistent fragment size selection of approximately 300 bp. Library molarity was calculated using

the standard formula (Equation 1):

Equation 1: DNA molarity calculation

DNA concentration (%)

Molarity (M) = x 1,000,000

(650 * fragment size(bp))

To normalize the libraries, the volume of each sample was calculated by dividing its measured molarity
by a predefined target molarity, which was selected based on the range between the highest and
lowest molarity values of the processed samples. This ensured equimolar representation of each
sample in the final pool. The calculated volume was consistent across all samples, allowing for
proportional molarity-based normalization (Equation 2). The normalized libraries were then pooled

together and used for subsequent sequencing steps.

Equation 2: Volume required for pooling

Measured Molarity (M)
Target Molarity (M)

Volume (ul) =
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Figure 13: cfDNA library quality showing a primary ~300 bp peak starting from an optimal cfDNA,
assessed using the Bioanalyzer.
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Figure 14: cfDNA library quality showing a primary ~300 bp peak starting from a suboptimal cfDNA,
assessed using the Bioanalyzer.
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Figure 15: cfDNA library profile after adapter dimer removal, showing a primary peak at ~300 bp.
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After verifying the pool concentration and Bioanalyzer profile, the molarity was recalculated using
Equation 1. The sample was then diluted to 2 nM. A final loading concentration of 650 pM was used

for insertion into the sequencing cartridge.

4. NEXT GENERATION SEQUENCING

Libraries were sequenced on the Illumina NextSeq 2000 platform (lllumina Inc., San Diego, CA, USA)
with sequencing kits selected based on the number of samples processed per time point. For 16
samples, the P2 200 cycles kit (100 PE); and for larger sample pools of up to 32 samples, the P3 200
cycles kit (100 PE) was employed. "PE" refers to paired-end sequencing, where both ends of the DNA
fragment are read, and "200 cycles" indicates the total number of sequencing cycles—100 cycles for
each end, resulting in a total read length of 200 base pairs (2 x 100 bp). The number of reads generated
per sequencing run varied depending on the flow cell kit used. Specifically, the P2 kit yielded around
400 million paired-end reads, while the P3 kit generated up to 1 billion paired-end reads. Given the
human genome size of approximately 3 billion base pairs, resulting in mean theoretical coverage of
~1.67x for 16 samples (P2), and ~0.83x for 32 samples (P3). To ensure comparability between datasets
generated from different kits and depths, coverage normalization was performed using Samtools to
downsample all samples to a uniform depth suitable for ultra-low-pass whole genome sequencing

(ULP-WGS) analysis using ichorCNA.

4.1 ULP-WGS data analysis

The upstream analysis was conducted with the support of Dr. Tobias Rausch at the EMBL Gene Core
Facility in Heidelberg. ULP-WGS of cfDNA was performed, achieving an average genome-wide
coverage of approximately 2x. From this data, segmental copy number alterations and TFx were
estimated using the ichorCNA tool (166, 167). In brief, the genome was segmented into non-
overlapping bins of 1 megabase (Mb), and aligned sequencing reads were quantified within each bin
using the HMMcopy Suite. To avoid artifacts, centromeric regions were excluded based on
chromosome gap coordinates from the UCSC Genome Browser for hg38 (GRCh38), along with 1 Mb
upstream and downstream flanking regions. Normalization of read counts was carried out using the
HMMcopy R package, correcting for GC content and mappability biases. Log2 copy number ratios were
then calculated for each bin by comparing them to a reference panel of ULP-WGS data from 27 healthy
donors. Since cfDNA represents a mixture of tumor- and non-tumor-derived fragments, copy number
calling and TFx estimation were performed using a hidden Markov model (HMM) approach. This
method assigns discrete copy number states, including hemizygous deletion (HETD, 1 copy), copy-

neutral (NEUT, 2 copies), gain (GAIN, 3 copies), amplification (AMP, 4 copies), and high-level
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amplification (HLAMP, >=5 copies). Due to resolution limitations, homozygous deletions, which tend
to occur at smaller scales than 1 Mb, were not included in the analysis (167). The software ichorCNA

is available at https://github.com/broadinstitute/ichorCNA.

5. BIOSTATISTICAL ANALYSIS

All statistical analyses were conducted under the guidance and support of Thomas Hielscher from the
Biostatistics Core Facility at DKFZ. Using R Studio (version 4.3.1), a range of biostatistical methods was
applied to evaluate biomarker dynamics, survival outcomes, and their correlations with clinical and
genomic parameters. The analyses included survival analyses (e.g., Kaplan-Meier and Cox proportional
hazards models), correlation studies (e.g., Pearson and Spearman coefficients), group comparisons
(e.g., t-tests, ANOVA, and non-parametric tests), and regression modelling to assess associations
between variables. All the packages used can be found in Table A2 (Appendix). Graphs were created
using the ggplot2 package in R and further refined using Adobe lllustrator for publication-quality

figures. All codes are available in the group's GitHub repository https://git.dkfz.de/m076r/mcrpc-

cfdna.

5.1 Biomarker dynamics across treatment cycles

The dynamics of tumor markers across treatment cycles were assessed to evaluate biomarker trends
throughout the treatment cycles. Key variables, including PSA, ALP, and LDH, were integrated and
processed using anonymized clinical reports kindly provided by Dr. med. Clemens Kratochwil. TFx was
derived from ichorCNA analysis. Data were reshaped into a wide format to enable paired observations
across treatment cycles. Both patients with complete and incomplete biomarker measurements for
any treatment cycle were included in the analysis. Pairwise comparisons of biomarkers across
treatment cycles (0-5) were performed using the Wilcoxon signed-rank test, appropriate for non-
parametric paired data. p-values for these comparisons were calculated and adjusted to identify
significant differences (p < 0.05). Visualizations of biomarker dynamics, including TFx, PSA, LDH, and
ALP, were generated as box plots with overlaid dot plots using the ggpubr and ggplot R packages.
Pairwise comparisons were annotated on the box plots using the stat_pvalue_manual function from
ggpubr, with p-values displayed directly on the plots. Statistical significance thresholds were set to p

< 0.05, and significant changes between treatment cycles were highlighted in the visualizations.
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5.2 Analysis of TM distribution across metastasis stages

Given the relevance of PSA and TFx, the distribution of PSA and TFx was analysed to evaluate their
utility for stratifying patients based on metastasis burden. This analysis was performed at a single time
point, baseline (prior to treatment cycle 1), and included only patients with documented metastatic
stages and available baseline assessments for both tumor markers (TM). Clinical and TM data were
merged using patient identifiers to incorporate metastasis stage information. Patients were
categorized into three groups based on metastasis localization: (1) bone-only, (2) bone and lymph
nodes, and (3) bone, lymph nodes, and additional organs. TM were stratified according to these
metastasis categories for statistical analysis and visualization. The Kruskal-Wallis test, a non-
parametric method, was used to compare the distributions of PSA and TFx across the metastasis
groups, assessing whether the median values differed significantly between categories. Violin plots
were generated using the ggpubr package in R to visualize the distributions of PSA and TFx across the
metastasis groups, with Kruskal-Wallis p-values displayed on the plots to highlight the statistical

significance of observed differences.

5.3 Correlation analyses

The relationships between TFx and the biomarkers PSA, ALP, and LDH were assessed using Pearson’s
correlation coefficients and linear regression models. All patients where included and considering all
the timepoints available in the dataset. For each patient, correlations were analyzed comparing TFx
values with corresponding PSA, ALP, and LDH measurements. Scatter plots with regression lines and
95% confidence intervals were created to visualize these associations. Pearson’s correlation
coefficients (r values) and p-values were reported to quantify the strength and significance of each

correlation.

5.4 Longitudinal biomarker dynamics and correlation

Clinical and biomarker data were integrated using unique patient identifiers to align relevant clinical
information with treatment cycles. The analysis included 41 patients who had recorded both a
baseline and at least one follow-up treatment cycle. Variables of interest included TFx, PSA, LDH, and
treatment cycles. Only those patients were included in this analysis for whom a complete set of data
(i.e. baseline to last treatment cycle) were included to ensure data quality and comparability. To
evaluate the dynamic relationships between changes in TFx and changes in PSA, ALP, or LDH over time,
fold-change analyses were conducted. The fold-change was calculated using biomarker values at the
baseline and the latest recorded time point for each patient. For each patient, fold-change calculations

were performed to assess the dynamic relationships between biomarkers over time. The TFx fold
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change was calculated as the difference between TFx at the latest recorded treatment cycle and the

baseline (Equation 3).

Equation 3: TFx fold change calculation

TFx fold change = TFx latest cycle — TFx baseline

For PSA and LDH, the differences were normalized using a logarithmic transformation to reduce
variability and minimize the influence of extreme values. This approach was proposed by Dr. Thomas
Hielscher. The PSA fold change was calculated as the log2 ratio of the baseline PSA level to the latest

recorded PSA level (Equation 4).

Equation 4: PSA fold change calculation

PSA baseline
PSA latest cycle

Log,(PSAfold change) = Log,(

Similarly, the LDH fold change was determined as the log?2 ratio of the baseline LDH level to the latest

recorded LDH level (Equation 5).

Equation 5: LDH fold change calculation

LDH baseline
LDH latest cycle

Log,(LDHfold change) = Log,(

These calculations allowed for a standardized evaluation of biomarker dynamics across patients while
accounting for variability in baseline and follow-up measurements. Biomarker values were scaled to a
standard deviation of 1 (without centring) to retain the directionality of changes while ensuring
comparability across variables. This integrated approach facilitated the evaluation of longitudinal
biomarker associations across treatment cycles, providing insight into dynamic relationships between

TFx, PSA, ALP, and LDH changes over time.
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6. RISK ANALYSIS

Based on treatment response and disease progression, the potential of ctDNA-based markers as
predictive and prognostic indicators was evaluated in mCRPC patients. Receiver Operating
Characteristic (ROC) curve analysis was used to assess the predictive value of pre-treatment
biomarkers, including PSA, TFx, and LDH, in determining therapy cycle response. Furthermore, a multi-
marker model was developed to evaluate whether integrating multiple biomarkers enhanced
predictive accuracy. To examine prognostic significance, Cox Proportional Hazards analysis was
performed to assess TFx dynamics over time, investigating whether increases in TFx during treatment
cycles correlated with a higher risk of disease progression. Additionally, survival analysis was
conducted to evaluate the impact of clinical and genomic factors on overall survival (OS). Kaplan-Meier
survival analysis and Cox Proportional Hazards modeling were employed to estimate survival

distributions and identify key risk factors influencing patient outcomes.

6.1 Predictive performance using ROC analysis

ROC curve analysis was performed to evaluate the predictive performance of pre-treatment
biomarkers in distinguishing clinical response and disease progression. Biomarkers analysed included
PSA, TFx, and LDH. Data were filtered to include only patients with complete pre-treatment biomarker
measurements (PSA, TFx, and LDH) and corresponding clinical outcome information for at least two
consecutive treatment cycles. Logistic regression models were employed to calculate predictive
probabilities for treatment response. Two types of models were used: (1) individual biomarker models
for PSA or TFx (2) a multi-marker model that combined TFx, PSA, and LDH. For the multi-marker model,
PSA and LDH values were log-transformed to account for right-skewed distributions and reduce
variability. Fitted probabilities from these models were used as inputs for the ROC analysis. ROC curves
were generated to assess the ability of each biomarker and the multi-marker model to distinguish
between response outcomes. Sensitivity and specificity discrimination were assessed by ROC curve
analysis and corresponding AUC with 95% confidence interval. To account for the clustered structure
of the data, with repeated measures within patients, a nonparametric clustered ROC analysis was
performed based on the methodology described by Obuchowski (1997) (168). This approach adjusted
for intra-patient correlations, ensuring robust comparisons of AUCs between individual biomarkers
and the multi-marker model. Data pre-processing involved aligning pre-treatment biomarker values
(PSA, TFx, and LDH) with clinical response outcomes for each cycle. Logistic regression models were
fitted for each biomarker and for the combined multi-marker model to predict treatment response
(e.g., partial response versus progressive disease). Sensitivity and specificity calculations for varying

thresholds allowed the construction of ROC curves, while AUC values with 95% confidence intervals
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were calculated to quantify predictive performance. Finally, ROC curves were plotted for individual

biomarkers and the multi-marker model, enabling a visual comparison of their predictive capabilities.

6.2 Cox hazard ratio analysis

The prognostic significance of increases in TFx as a time-dependent risk factor for progressive disease
was assessed using a Cox Proportional Hazards model. Patient and clinical data were organized by
treatment cycles, and only those patients with multiple TFx measurements and corresponding clinical
response data across different cycles were included in the analysis. Patients with fewer than two TFx
assessments or those who experienced progressive disease at the first available TFx measurement
were excluded to ensure accurate evaluation of TFx dynamics over time. For each patient, the time to
progressive disease was calculated as the treatment cycle when progressive disease was first observed
during the follow-up period. The time to the first increase in TFx was defined as the treatment cycle
when TFx first showed an increase prior to the occurrence of progressive disease. Changes in TFx
between consecutive treatment cycles were determined to identify increases, and an increase in TFx
was defined as any positive change observed before the clinical onset of progressive disease. Patients
were followed until the occurrence of progressive disease or their last documented follow-up cycle,
whichever occurred first. The Cox Proportional Hazards model was used to evaluate the relationship
between increases in TFx and the time to progressive disease annotation. The outcome variable was
the time at which progressive disease was first documented, while the primary predictor variable was
the time at which an increase in tumor fraction was first observed. The model estimated the hazard
ratio and the corresponding confidence intervals to quantify the relative risk associated with increases
in TFx. To visualize the treatment course and TFx dynamics for individual patients, swimmer plots were

generated.

6.3 Survival analysis

The prognostic value of clinical and genomic factors on OS was assessed using Kaplan-Meier survival
analysis and Cox Proportional Hazards (Cox PH) modelling. Kaplan-Meier curves were generated to
estimate OS distributions, with patient stratifications performed based on different grouping
modalities. Survival times, defined as months since therapy initiation, were compared using the log-
rank test to determine statistical significance. Median survival times were calculated to summarize
survival outcomes across groups. Specifically, comparisons were made between patients with low
versus high copy number variation (CNV) burden, as well as among those receiving different treatment
regimens, including chemotherapy naive, ADT combined with chemotherapy, and ADT in combination

with chemotherapy and PSMA-TRNT. Additionally, survival outcomes were evaluated based on TFx,
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which was stratified into three categories: low TFx (0.000—-0.225), intermediate TFx (0.225-0.434), and
high TFx (0.434-0.794). To evaluate the impact of individual clinical and genomic markers on OS,
univariable Cox PH models were applied. Hazard ratios (HRs) and 95% confidence intervals (Cls) were
calculated to quantify the risk associated with each factor. The analysis was conducted using the R
survival package, and Kaplan-Meier curves were visualized using the prodlim package. All statistical
tests were two-sided, with a significance threshold set at p < 0.05. This approach allowed for the
assessment of both independent and combined effects of clinical and genomic factors on OS within

the studied cohort.

7. GENOMIC ANALYSIS

To gain deeper insights into the genomic landscape of mCRPC and radiation resistance, a
comprehensive genomic analysis was conducted, focusing on copy number alterations (CNAs),
oncogene and tumor suppressor identification, and pathway enrichment analysis. By leveraging
bioinformatics tools, this study aimed to improve patient stratification and treatment response
predictions, providing valuable insights for precision oncology strategies. To achieve this, CNAs and
TFx distributions were analysed using hierarchical clustering, correlating these genomic features with
clinical outcomes. The GISTIC algorithm was employed to identify significant regions of genomic
amplification and deletion, distinguishing key driver events from background alterations and
pinpointing genomic instabilities that may contribute to disease progression. Following the

identification of key CNAs, the COSMIC database (https://cancer.sanger.ac.uk/cosmic/census) was

utilized to classify altered genes as potential oncogenes or tumor suppressors, assessing their
biological relevance radiation resistance. To further investigate the functional implications of these
genomic alterations, pathway enrichment analysis was conducted using EnrichR, identifying key

biological processes and signalling pathways associated with the affected genes.

7.1 TFx clustering and CNV burden correlation analysis

CNAs were assessed using logR values extracted from 1Mb chromosomal bins. Hierarchical clustering
of samples was performed using the pheatmap function in R, stratifying patients based on tumor
fraction and baseline response. To evaluate the chromosomal distribution of logR values and their
correlation with clinical features, heatmaps were constructed using processed logR data from
common 1 Mb chromosomal bins. The logR values for each sample were extracted from segment files
(*.cna.seg) using the ichorCNA pipeline. To analyse logR values for a specific treatment cycle, samples

from Cycle 0 were filtered based on patient data. Chromosome start and end positions were
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standardized across samples. Chromosome identifiers were converted to numeric values. Data were
organized into a matrix for visualization, with rows representing chromosomal regions and columns
representing samples. Heatmaps were generated using the pheatmap package in R to visualize logR
values across all samples. Columns (samples) were clustered using hierarchical clustering with Ward'’s
minimum variance method (ward.D), which iteratively merges clusters to minimize the total within-
cluster variance, resulting in compact and homogeneous groupings. Row clustering was omitted. A
continuous color gradient from blue (low logR values) to red (high logR values) was applied to enhance
visual interpretation. Clinical metadata—including treatment cycle, metastasis status, and overall
response—was annotated on the columns. The resulting dendrogram was cut to define two main
sample clusters, representing low and high CNV groups. These cluster assignments were added as

metadata for downstream analyses.

7.2 TFx correlation with CNV burden

The TFx for each cluster was extracted, and normality of the distributions was assessed using the
Shapiro-Wilk test. Since one cluster was not normally distributed, the Wilcoxon rank-sum test was
used to compare TFx values between clusters. Boxplots of TFx by cluster were created using the
ggplot2 package. Statistical significance between clusters was indicated with p-values annotated
directly on the plots, formatted in scientific notation. Custom colour palettes were applied for
visualization. This approach allowed for the integration of genomic data with clinical features, enabling
detailed clustering and analysis of tumor fractions in relation to chromosomal regions and treatment

response.

7.3 GISTIC analysis

To identify significant CNAs across samples, the Genomic Identification of Significant Targets in Cancer
(GISTIC) algorithm (version 2.0.23) was employed (169). This analysis aimed to pinpoint regions of
genomic amplification and deletion, distinguishing biologically relevant driver events from
background alterations. CNA data were processed using seg.txt files generated from the ichorCNA
pipeline. Key columns included the sample identifier (ID), chromosome number (chrom), segment
start and end positions (start and end), the number of markers supporting the segment (num.mark),
and the corrected copy number for the segment (Corrected_Copy_Number). Baseline samples were

selected, and segment copy number values were transformed using the formula:

39



Equation 6: Segment copy number alteration normalization

Corrected_Copy_Number
seg.cn = log, ( > )
This transformation normalized the copy number values relative to the diploid state, producing seg.cn
values, which were subsequently used as input for the GISTIC analysis. The GISTIC algorithm was
executed with the following configuration: broad events analysis was enabled with a length cut-off of
0.7 (range 0-1), amplification and deletion thresholds were set to 0.1 (considering log2 = 0 as a neutral
copy number). To limit the influence of extreme values, log2 copy number ratios were capped at 1.5.
The analysis was performed with a confidence level of 0.75 and a g-value threshold of 0.25 to ensure
statistical power. Additional settings included enabling gene-centric analysis, peeling off chromosomal
arms for better delineation of focal alterations, and using the extreme G-score calculation mode. The
analysis incorporated a reference gene file (hg38.UCSC.add_miR.160920.refgene.mat), and outputs
were generated in a specified directory. The GISTIC analysis provided several outputs, including
significant regions of amplification and deletion annotated with associated genes, genome-wide CNA
profiles highlighting regions of genomic instability, G-scores quantifying the magnitude of CNA
significance, and g-values representing the statistical significance of each region. Gene-centric outputs

detailed alterations at the individual gene level.

7.4 |dentification of oncogenes and tumor suppressors

To identify potential oncogenes and tumor suppressors associated with significant genomic
alterations, the Catalogue of Somatic Mutations in Cancer (COSMIC) database

(https://cancer.sanger.ac.uk/cosmic/census) was used as a reference. Genes identified through

GISTIC analysis, specifically those located within significant amplification and deletion peaks at a 75%
confidence interval, were selected for further evaluation. Key genes were extracted from the GISTIC
output files, including the Amplification Genes File (amp_genes.conf_XX.txt, where XX represents the
confidence level) and the Deletion Genes File (del_genes.conf XX.txt). Each amplification peak file
contained the following information:

e (Cytoband

e Q-value

e Residual Q-value

e Wide peak boundaries
These rows defined the lesion boundaries, while subsequent rows listed the genes within each wide
peak region. In cases where no genes were directly mapped to a peak, the nearest gene was listed in

brackets. The deletion gene file followed the same format, detailing deletion peaks and associated
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genes. The gene list was refined by excluding entries with minimal functional relevance based on
literature review and known annotations. The remaining genes were cross-referenced with the
COSMIC database, which provides curated annotations for oncogenes and tumor suppressors. Only
genes explicitly categorized as oncogenes or tumor suppressors were retained for further analysis.
The final set of genes was examined within the context of prostate cancer biology, evaluating their
potential roles in disease progression and their correlation with clinical parameters, such as tumor
fraction and therapeutic outcomes. This approach allowed for the prioritization of biologically
significant genomic alterations, providing insights into their potential implications for tumor behavior

and treatment response.

7.5 EnrichR analysis
To explore pathways and biological processes enriched within the genomic regions identified by GISTIC
analysis, functional enrichment analysis was conducted using EnrichR

(https://maayanlab.cloud/Enrichr/), a publicly available web-based tool. Genes associated with

significant amplification or deletion peaks from GISTIC analysis, with a confidence interval of 75%,
were selected as the input for the enrichment analysis. The analysis focused on enrichment within
three key databases available through the Enrichr platform: Gene Ontology (GO) Biological Processes,
the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the Reactome Pathway Database. The
selected gene list was uploaded to EnrichR, where enrichment scores, adjusted p-values, and fold
changes were calculated for each pathway or biological process based on the provided input. EnrichR
ranked the results according to adjusted p-values (false discovery rate, FDR), enabling the
identification of statistically significant pathways and biological processes. Pathways with an adjusted
p-value below 0.05 were considered significant and prioritized for further analysis. The results were
visualized through bar plots and tables, highlighting the top enriched terms and their corresponding
gene counts, providing insights into the biological processes and pathways potentially influenced by

the identified genomic alterations.
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IV RESULTS

1. PATIENTS

This doctoral thesis is based on a well-defined cohort of 78 patients, selected based on the predefined
inclusion criteria outlined in the ethical approval 5-882/2020. Patients presenting with a diffuse
pattern of bone marrow infiltration were included and stratified for treatment with actinium-lutetium
(165). Comprehensive demographic, clinical, and biomarker data were collected for all participants to
enable an in-depth analysis of TM dynamics and their association with clinical outcomes. Clinical data
included a detailed account of each patient’s medical history up to the initiation of treatment. The
biomarkers taken into consideration were PSA, LDH, and ALP. Patients were stratified into distinct
groups to facilitate comparisons and assess the prognostic value of tumor markers across various

clinical scenarios.

1.2 Patient cohort characterization

The study cohort comprised 78 patients, from whom 172 samples were collected across various
treatment cycles. The median age of the cohort was 76 years, with a range spanning from 55 to 91
years. The age distribution is illustrated in Figure 16, which approximates a Gaussian distribution. The
histogram reveals a slightly right-skewed pattern, with the majority of patients falling within the 70—
80 age range. The most frequent age group is between 65 and 70 years, as indicated by the tallest bar.
In contrast, fewer patients were observed at the extremes, with relatively low counts below 60 and
above 90 years. The cohort displayed considerable heterogeneity in pre-treatment regimens, which
included hormonal therapy, chemotherapy, external radiation therapy, PSMA-targeted radioligand
therapy, prostatectomy, and adjuvant treatments. These regimens varied among patients, reflecting
diverse clinical characteristics and therapeutic strategies. To enable a detailed analysis of pre-
treatment patterns, | stratified the cohort based on the number and type of therapies received.
Patients who underwent all six pre-treatment modalities—comprising hormonal therapy,
chemotherapy, external radiation therapy, PSMA-targeted radioligand therapy, prostatectomy, and
adjuvant treatments—constituted the largest subgroup, accounting for 30 patients (38.5%). The
second largest subgroup, consisting of 28 patients (35.9%), received either four or five pre-treatment
modalities. This subgroup primarily included combinations of hormonal therapy, chemotherapy, and
external radiation therapy, with or without PSMA-targeted radioligand therapy or adjuvant
treatments. A further 20 patients (25.6%) received two or three therapies, most commonly involving

hormonal therapy combined with either chemotherapy or external radiation therapy. One patient
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(1.3%) underwent a single pre-treatment modality, which was hormonal therapy. The distribution of
treatment modalities and their combinations is visualized in an UpSet plot Figure 17. Analyzing single
treatment modalities, hormonal therapy was the most frequently administered single modality,
whereas adjuvant therapy was the least common. The largest intersection, comprising 30 patients,
represents the combination of hormonal therapy and chemotherapy. Among the 78 patients, 48.7%
(38 patients) received PSMA-targeted radioligand therapy as part of their treatment. To further
characterize this subgroup, | stratified the patients based on the specific combinations of additional
therapies administered alongside PSMA-targeted radioligand therapy. The distribution of
radionuclides used in these treatments is presented in a pie chart in Figure 18. The largest segment,
representing 48.7%, corresponds to patients who are radioligand therapy (RLT) naive. 33.3% of the
patients were treated with [*’Lu]Lu-PSMA-617, making it the most frequently used radionuclide. 6.4%
received [***Ra]RaCl,. A total of 5.1% of patients received combination radionuclide therapies as part
of their pre-treatment. These included either a dual-treatment regimen with [Y’Lu]Lu-PSMA-617 and
[2*°Ac]Ac-PSMA-617, or a combination of [*°Y]Y-PSMA-617 with [*’Lu]Lu-PSMA-617. The smallest
segment, 1.3%, corresponds to patients treated with [*¥¥Re]Re-HYNIC-PSMA + [*"’Lu]Lu-PSMA-617.

Median age: 76
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Figure 16: Distribution and median age of the patients in the included cohort. Age distribution of the
patient cohort. The x-axis shows age (55-95 years), and the y-axis indicates patient count. Blue bars

represent age intervals; the red dashed line marks the mean age (76 years).
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Figure 17: Upset plot representing the patient’s pretreatments intersection. The vertical bar chart
represents the number of patients receiving specific combinations of therapies, while the horizontal
bar chart illustrates the overall number of patients treated with each individual modality. The matrix
below highlights the combinations of treatments, with black dots indicating the inclusion of specific

therapies and connected lines representing multi-treatment combinations.
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Figure 18: Pie chart illustrating the distribution of radionuclide therapies administered as pre-

treatment. 48.7% of patients were RLT-naive, 33.3% received [*Lu]Lu-PSMA-617, 6.4% received

[?3Ra]RaCl;, and 5.1% received combination therapies (either [*YLu]Lu-PSMA-617 + [?*Ac]Ac-PSMA-

617 or [*°Y]Y-PSMA-617 + [V’Lu]Lu-PSMA-617). The smallest group (1.3%) received [**Re]Re-HYNIC-

PSMA + [*”7Lu]Lu-PSMA-617.
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2. TM DYNAMICS

TM dynamics—including TFx, PSA, ALP, and LDH—were analysed across five cycles of RLT. These
markers are routinely used in clinical practice to monitor disease progression and treatment response.
The analysis aimed to evaluate TFx in comparison with the gold standard PSA, as well as LDH and ALP,
to determine whether TFx could serve as a reliable surrogate for monitoring therapy kinetics and

tumor burden over time.

2.1 TFx across treatment cycles

TFx levels were assessed at baseline (treatment cycle 0) and across five subsequent[*?*Ac]Ac-
/[*7Lu]Lu-PSMA-617 treatment cycles to monitor tumor burden dynamics during therapy. The
distribution of TFx values over these cycles is visualized in Figure 19. The figure shows a progressive
decrease in TFx levels during the initial treatment cycles, suggesting a reduction in tumor burden. The
decrease pattern has been observed from the baseline to the 3™ cycle. | performed a statistical
analysis using the Wilcoxon signed-rank test, which is appropriate for paired data comparisons. The
analysis | performed confirmed significant reductions in TFx between baseline (cycle 0) and the
following cycle 1 (p < 0.01), cycle 2 (p = 0.021), and cycle 3 (p = 0.014). While | observed a statistically
significant reduction in the early treatment cycles, this trend plateaued in the later cycles, with no
significant differences detected in cycle 4 (p = 0.873) and cycle 5 (p = 0.417). The observed increase in
TFx during treatment cycles 3 and 5 may indicate a general disease relapse or the emergence of
therapy resistance. My results show that while the treatment initially reduced tumor burden, the

effect plateaued in the later cycles, suggesting that the therapy may lose its effectiveness over time.
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Figure 19: TFx dynamics across [?*Ac]Ac-/[*”’Lu]Lu-PSMA-617 treatment cycles. The x-axis represents
treatment cycles from baseline (cycle 0) to cycle 5, while the y-axis shows the TFx values. Box plot
illustrates the interquartile range (IQR), with the median TFx marked by a horizontal line within each
box. Whiskers extend to capture the full range of observed values, while individual data points

represent patient-specific TFx measurements.
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2.2 PSA across treatment cycles

PSA levels, a key biomarker for tumor activity in mCRPC, were measured longitudinally across five
treatment cycles to evaluate therapeutic response. The distribution of PSA values over these cycles is
visualized in Figure 20. The box plot illustrates the interquartile range (IQR), with the median PSA level
marked by a horizontal line within each box. Whiskers extend to the full range of observed values,
while individual dots represent patient-specific PSA measurements. Figure 20 demonstrates a
significant decrease in PSA levels from baseline (cycle 0) through the initial treatment cycles (cycles 1
to 3), indicating a robust early therapeutic effect. | performed a statistical analysis using the Wilcoxon
signed-rank test, appropriate for paired observations since PSA levels were repeatedly measured in
the same patient cohort. Pairwise comparisons between baseline and subsequent cycles confirmed
significant PSA reductions during the early treatment phase: baseline and cycle 1 (p < 0.001), baseline
and cycle 2 (p < 0.001), and baseline and cycle 3 (p = 0.005). While | observed an initial sharp decline
in PSA levels, the reduction stabilized in the later cycles. A subset of patients exhibited increases in
PSA levels during cycles 4 and 5, which contributed to an overall rebound in median PSA values. |
observed that this trend was reflected in non-significant pairwise comparisons with cycle 4 and cycle
5 (p = 0.099 and p = 0.088, respectively). My results show that while the therapy initially led to a
significant reduction in PSA levels, the effect plateaued in the later cycles, with some patients

experiencing a rebound in PSA levels during the final cycles.
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Figure 20: PSA dynamics across [?*Ac]Ac-/[*”’Lu]Lu-PSMA-617 treatment cycles. The x-axis represents
treatment cycles from baseline (cycle 0) to cycle 5, while the y-axis shows PSA levels on a logs scale to
account for inter-patient variability. Box plots display the median, IQR, full range (whiskers), and

individual patient values (dots).
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2.3 ALP across treatment cycles

ALP levels, a marker of bone turnover and metastatic activity, were assessed over five RLT treatment
cycles to evaluate treatment response. The distribution of ALP values across cycles is visualized in
Figure 21. The box plot illustrates the IQR, with the median ALP level marked by a horizontal line within
each box. Whiskers extend to the full range of observed values, while individual data points represent
patient-specific ALP measurements. Statistical comparisons were performed using the Wilcoxon
signed-rank test, appropriate for paired observations given the repeated ALP measurements within
patients. Significant changes across cycles were annotated with corresponding p-values above the plot
to highlight key trends. Figure 21 highlights a significant decline in ALP levels during the early
treatment cycles, with a statistically significant reduction between baseline and treatment cycle 1
reaching statistical significance (p = 0.015). | noted additional decreases in ALP levels in the later cycles,
but these did not reach statistical significance: cycle 2 (p = 0.081) and cycle 3 (p = 0.052). In the later
treatment cycles (cycle 4 and cycle 5), | observed that ALP levels stabilized, with pairwise comparisons
showing no significant differences (p = 0.282 and p = 0.916, respectively). My results show that ALP
levels significantly decreased during the early cycles, but this reduction plateaued in the later cycles,

suggesting that bone turnover and metastatic activity stabilized over time.
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Figure 21: ALP dynamics across [**Ac]Ac-/[*’Lu]Lu-PSMA-617 treatment cycles. The x-axis represents
treatment cycles from baseline (cycle 0) treatment cycle 5, and the y-axis displays ALP levels on a
logarithmic scale (log10). Box plots display the median, IQR, full range (whiskers), and individual

patient values (dots).
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2.4 LDH across treatment cycles

LDH levels, a marker of cellular turnover and tumor metabolic activity, were assessed across five
treatment cycles to evaluate treatment response. The distribution of LDH values is visualized in Figure
22.The box plot illustrates the IQR, with the median LDH level marked by a horizontal line within each
box. Whiskers extend to the full range of observed values, while individual data points represent
patient-specific LDH measurements. Statistical comparisons were conducted using the Wilcoxon
signed-rank test, appropriate for paired observations due to the repeated LDH measurements within
patients. Significant changes across cycles were annotated with corresponding p-values above the
plot, highlighting key trends. Figure 22 demonstrates a marked decline in LDH levels during the early
treatment cycles, with a statistically significant reduction observed between baseline and treatment
cycle 1 (p = 0.015). Although | observed reductions in LDH levels between baseline and treatment
cycles 2 (p =0.081) and 3 (p = 0.052), these changes did not reach statistical significance. In the later
treatment cycles (cycles 4 and 5), | noted that LDH levels plateaued, with pairwise comparisons
showing no significant differences (cycle 4, cycle 5: p = 0.282, p = 0.916), indicating a stabilization

phase.
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Figure 22: LDH dynamics across [?°Ac]Ac-/[*”’Lu]Lu-PSMA-617 treatment cycles. The x-axis represents
treatment cycles from baseline (cycle 0) to cycle 5, and the y-axis displays LDH levels on a logarithmic
scale (log10) to account for the wide variability in patient-specific LDH values. Box plots display the

median, IQR, full range (whiskers), and individual patient values (dots).
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3. CORRELATION ANALYSIS

To assess the potential utility of TFx as a biomarker, | analyzed its correlation with established clinical
markers—PSA, ALP, and LDH. The analysis aimed to assess whether TFx dynamics aligned with or
complemented the behavior of established biomarkers, offering additional insights into tumor burden
and therapeutic response. | performed a correlation analysis between TFx and PSA, LDH, or ALP using
the entire cohort, incorporating all available timepoints. Additionally, | conducted a separate
correlation analysis on a subset of 41 patients who met the inclusion criteria of having both a baseline

assessment and at least one follow-up measurement.

3.1 Correlation analysis: TFx & PSA

The relationship between TFx and PSA levels is visualized in Figure 23. A statistically significant positive
correlation was observed, as indicated by the upward trend of the regression line. The correlation
coefficient (R = 0.47) and the corresponding p-value (p = 7.7e™") suggest a moderate yet statistically
significant association between TFx and PSA levels. My results indicate that increases in tumor burden,
as measured by TFx, are correlated with elevated PSA levels, supporting the potential role of TFx as a

complementary biomarker for assessing tumor activity and therapeutic response.
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Figure 23: Scatter plot showing the correlation between TFx (x-axis) and PSA levels (y-axis). Each red
dot represents an individual patient measurement. A black linear regression line indicates the overall

trend, with the shaded area representing the confidence interval to reflect data variability.

3.2 Correlation analysis: TFx & LDH

The relationship between TFx and LDH levels is illustrated in Figure 24. A strong positive correlation
was observed between TFx and LDH levels, as indicated by the upward trend of the regression line.
This relationship is supported by a correlation coefficient (R = 0.67) and a highly significant p-value (p
< 2.2e7%%), demonstrating a robust and statistically significant association. My results suggest that
higher TFx values are strongly linked to increased LDH levels, reinforcing the role of TFx as a biomarker

for tumor burden and metabolic activity in mCRPC patients.
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Figure 24: Scatter plot showing the correlation between TFx values (x-axis) and LDH levels (y-axis).
Each red dot represents an individual patient measurement, capturing variability within the cohort. A
black linear regression line illustrates the overall trend, with the shaded area indicating the confidence

interval, reflecting uncertainty around the fit.

3.3 Correlation analysis: TFx & ALP

The relationship between TFx and ALP levels is illustrated in Figure 25. A moderate positive correlation
was observed between TFx and ALP levels, as indicated by the upward trend of the regression line.
The correlation is supported by a correlation coefficient (R = 0.47) and a statistically significant p-value
(p = 7.3e”™). My results suggest that changes in tumor burden, as measured by TFx, are associated
with variations in ALP, a marker of bone turnover and metastatic activity. My findings provide further
insight into the potential role of TFx as a biomarker, particularly in monitoring disease activity related

to bone metastases.
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Figure 25: Scatter plot showing the correlation between TFx values (y-axis) and ALP levels (x-axis). Each
red dot represents an individual patient measurement, capturing variability across the cohort. A linear
regression line illustrates the overall trend, with the shaded area indicating the confidence interval and

the uncertainty around the fit.

3.4 Correlation with clinical outcomes

| conducted patient-specific correlation analyses between TFx, LDH, and PSA levels, selecting these
markers based on their statistically significant associations and correlation strengths observed in the
initial analysis. The analysis included 41 patients with both baseline and follow-up samples available.
| chose these markers for their distinct and complementary roles in assessing tumor burden, as
supported by their correlation coefficients and p-values. | found that LDH exhibited the strongest
correlation with TFx, with a correlation coefficient (R) of 0.67 and a significant p-value (< 2.2e7'¢). PSA
showed a moderate positive correlation with TFx, with a correlation coefficient (R) of 0.47 and a

statistically significant p-value (7.7e™). Although ALP also exhibited a moderate correlation with TFx
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(R=0.47, p = 7.3e™), | excluded it from this analysis. Consequently, | focused on LDH and PSA to
investigate their relationships with TFx, emphasizing their potential as complementary biomarkers for
tumor burden and therapeutic response. To further explore the relationship between these markers
and clinical outcomes, fold changes in LDH, TFx, and PSA were calculated across individual patients as
described in the material and method section (6.4 Longitudinal biomarker dynamics and correlation)
and Figure 26. | performed hierarchical clustering to group patients based on similar patterns of
biomarker changes and to identify clusters of biomarkers with correlated dynamics. | observed that
patients who exhibited significant decreases in LDH, TFx, and PSA were more frequently associated
with favorable clinical outcomes, such as stable disease or partial remission. In contrast, patients with
increases in these biomarkers were predominantly linked to disease progression. A clear pattern of
concordance between PSA and TFx changes emerged, not only at single time points but also across
treatment cycles. My results suggest that TFx and PSA may follow similar trends over time, reflecting
individual patient responses and potentially reinforcing the role of TFx as a surrogate marker for
treatment monitoring. These findings reveal distinct biomarker patterns that align with clinical
responses, offering additional insights into the relationship between fold changes in LDH, TFx, and

PSA, and how | observed these changes relate to patient outcomes during radionuclide ligand therapy.
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Figure 26: Heatmap illustrating fold changes in LDH, TFx, and PSA levels across individual patients.
Each row represents a patient, and each column corresponds to a biomarker. The colour scale reflects
the direction and magnitude of change: red indicates positive fold changes, blue indicates negative

changes, and yellow represents minimal or no change.
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4. Distribution of TFx and PSA across metastasis group

To evaluate the association between biomarker levels and metastatic burden at baseline, | analysed
the distributions of TFx and PSA across three distinct metastasis groups: patients with bone-only
metastases, those with bone and lymph node involvement, and those with bone, lymph node, and
additional organs. This analysis was conducted on a cohort of 57 patients with available baseline
samples. Among them, 10 patients (17.5%) had bone-only metastases, 34 patients (59.6%) had bone
and lymph node involvement, and 13 patients (22.8%) presented with bone, lymph node, and
additional organ metastases. My findings provide insights into how TFx and PSA levels vary with
increasing metastatic spread, offering potential implications for disease characterization and risk

stratification.

4.1 PSA distribution across metastasis groups

Baseline PSA levels were analysed across three metastasis groups: (1) patients with bone metastases
only, (2) those with bone and lymph node metastases, and (3) those with bone, lymph node, and
additional organs. Using PSA measurements taken before treatment, | aimed to evaluate whether
baseline PSA could help stratify patients based on their metastasis status. The Kruskal-Wallis test, a
non-parametric method for comparing medians across multiple groups, was used to evaluate
differences in PSA distributions. As shown in Figure 27, the test revealed no statistically significant
differences in PSA levels among the three groups (p = 0.47). | observed the widest distribution of PSA
levels in the bone-only group (Stage 1), while the group with bone, lymph node, and additional organ
metastases (Stage 3) showed a narrower distribution. My results suggest that baseline PSA levels do
not significantly differ by metastasis status, indicating comparable PSA secretion across the groups at

the start of treatment.
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Figure 27: Violin plots showing the distribution of baseline PSA levels across three metastasis groups:
bone-only, bone and lymph node, and bone, lymph node, and additional organ involvement. The plots
depict the density and variability of PSA values within each group, with wider sections indicating

greater heterogeneity. Individual patient measurements are overlaid as points.
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4.2 TFx distribution across metastasis groups

To further explore TFx behaviour, baseline TFx values were analysed across the three metastasis
groups. The distribution of these values is visualized in Figure 28. The Kruskal-Wallis test identified
statistically significant differences in TFx distributions across the three metastasis groups (p = 0.029).
| observed that patients in Stage 1 (bone-only metastases) had the lowest TFx values, with a relatively
narrow distribution. In contrast, Stage 3 patients—those with widespread metastases involving lymph
nodes and additional visceral organs—exhibited markedly higher TFx levels. Stage 2 patients showed
intermediate TFx values but had the widest distribution, ranging from values below the detection limit
to approximately 0.8, highlighting substantial variability within this group. My results demonstrate
that TFx is a strong and reliable marker for distinguishing between different metastasis groups in this

context.
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Figure 28: Violin plots illustrating the distribution of baseline TFx levels across three metastasis groups:
bone-only, bone and lymph node, and bone, lymph node, and additional organ metastases. The x-axis
represents metastasis groups, and the y-axis shows TFx values on a linear scale. The shape of each
violin reflects the density and variability of TFx values, with wider sections indicating higher data

concentration. Individual patient measurements are overlaid as dots to show the spread within each

group.
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5. RISK ANALYSIS: TFx AS A PREDICTIVE BIOMARKER

| evaluated the potential of TFx as a predictive biomarker for treatment response and risk of relapse
during [2*Ac]Ac-/[*"’Lu]Lu-PSMA-617 therapy. To assess its clinical utility, | compared the predictive
performance of TFx to that of established biomarkers, including PSA and LDH, in order to determine
whether TFx could offer additional insights into patient outcomes. Additionally, | conducted a time-
dependent Cox proportional hazards analysis to assess whether increases in TFx serve as a significant
risk factor for disease progression. Beyond predictive modeling, the prognostic value of TFx was
examined in relation to overall survival (OS) and key clinical and molecular variables, including CNV
burden and pretreatment regimens. Kaplan-Meier survival curves were generated to estimate survival

probabilities across patient subgroups, with statistical comparisons performed using the log-rank test.

5.1 ROC analysis: sensitivity and specificity Test

The predictive performance of pre-cycle PSA levels, TFx, and a combined model incorporating PSA,
TFx, and LDH levels for treatment cycle outcomes was evaluated using ROC analysis Figure 29. My
analysis assessed the discriminative ability of these biomarkers in distinguishing treatment response
and clinical progression, using sensitivity and specificity as performance metrics. Figure 29 presents
the ROC curves, where the x-axis represents specificity (1 - false positive rate) and the y-axis represents
sensitivity (true positive rate). The ROC curve for pre-cycle PSA levels demonstrated limited predictive
capability, with an area under the curve (AUC) of 0.44 (95% Cl: 0.29-0.59). In contrast, pre-cycle TFx
exhibited improved predictive ability, achieving an AUC of 0.60 (95% Cl: 0.50—-0.70). | observed the
highest predictive accuracy in the combined model that integrated PSA, TFx, and LDH levels, which
achieved an AUC of 0.62 (95% Cl: 0.51-0.74). My results show that only the TFx ROC curve
demonstrated a solid AUC on its own, and although | combined all three markers (TFx, PSA, and LDH),

this integration did not lead to an improvement in predictive accuracy.
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Figure 29: The ROC curves depict the predictive performance of pre-cycle PSA levels (black line), pre-
cycle TFx (red line), and a combined model of PSA, TFx, and LDH (green line). The diagonal grey line

denotes a random prediction model with an AUC of 0.50, serving as a baseline for comparison.

5.2 Cox hazard ratio analysis: TFx increases and risk of relapse

| assessed the relationship between TFx increases and the risk of relapse using a Cox proportional
hazards model. My aim was to determine whether changes in TFx levels—either increases or
decreases—could reliably reflect the clinical annotations of response or relapse. | also investigated
whether discrepancies at a specific time point were later confirmed by TFx trends in subsequent
treatment cycles. My analysis demonstrated that an increase in TFx is associated with a statistically
significant 5-fold higher probability of relapse in the subsequent treatment cycle, with a p-value =
0.0259. The swimmer plot in Figure 30 provides a visual representation of the 52 patients included in
the analysis and the key clinical annotation recorded during the treatment period. A detailed
description of the methodology is provided in the Materials and Methods section. Only patients with
multiple TFx assessments were included in the analysis, providing a detailed view of tumor burden

dynamics and their association with clinical outcomes.

66



P114

Progressive disease

.No
[

Yes

Patient

TFx increase

® No
A Yes

Il Baseline

P101+4

—|— Progressive disease
X Partial remission
3 Stable Disease

P100

2 5
Treatment cycle

Figure 30: Swimmer plot visualizing treatment cycles for individual patients, with green and pink bars
indicating non-progressive and progressive disease, respectively, and symbols marking TFx increases
and key clinical milestones. The swimmer plot visualizes individual patient trajectories throughout the
treatment course, with the x-axis representing treatment cycles and the y-axis denoting individual
patients. Bars indicate the duration of treatment, with green bars representing patients who did not
experience clinically annotated progressive disease and pink bars representing those who developed
progressive disease during the observation period. Symbols overlaid on the bars denote key clinical

milestones, such as baseline assessments, partial remission, or stable disease.
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5.3 OS based on CNV burden

| assessed the relationship between OS and CNV burden using Kaplan-Meier survival analysis, as
shown in Figure 31. The Kaplan-Meier plot depicts survival probability over time (months since therapy
initiation) for two patient groups stratified by CNV burden, i.e. low CNV burden (black curve) and high
CNV burden (yellow curve). The method | used to define and assess these groups was described in
Chapter 7.1. To compare survival distributions between the two groups, | performed a log-rank test,
which yielded a p-value of 0.112, indicating no statistically significant difference. However, my data
suggest a trend—patients with low CNV burden had a longer median survival (13.8 months) compared
to those with high CNV burden (8.3 months). The Kaplan-Meier curves intersected within the first four
months and then diverged, revealing two distinct survival patterns: one group experienced prolonged
survival, while the other showed a more rapid decline. The curves converged again around the 15-

month mark, likely due to a decreased number of patients remaining in both groups.
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Figure 31: Kaplan-Meier survival curves stratified by CNV burden. The plot shows survival probability
over time (in months since therapy initiation) for two patient groups: low CNV (black), high CNV
(yellow). The y-axis indicates survival probability (0-100%), and the x-axis shows time in months.

Patient numbers at risk for each group are listed below the x-axis at defined time points.
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5.4 OS based on pre-treatment

Figure 32 presents Kaplan-Meier survival curves comparing OS among three patient groups based on
their pre-treatment regimens: chemotherapy + ADT (black curve), chemotherapy + ADT + RLT (yellow
curve), and chemo-naive patients (blue curve). Survival probability is plotted over time in months from
therapy initiation. Using a log-rank test, | found a statistically significant difference among the groups
(p = 0.0483). The chemo-naive group demonstrated the poorest overall survival, with its curve
consistently falling below the others and never intersecting them throughout the time points |
analysed. | further investigated whether age differences might explain the poorer outcomes in this
group, but my analysis showed that reduced survival could not be attributed to age alone. The survival
curves for the chemotherapy + ADT and chemotherapy + ADT + RLT groups showed substantial
overlap—particularly during the first five months and again in the later months—indicating similar
survival patterns overall. These curves diverged slightly between months 11 and 15, and intersected
again toward the end of the observation period, likely due to the decreasing number of patients

remaining at risk in both groups.
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Figure 32: Kaplan-Meier survival curves stratified by pre-treatment regimens. The plot shows survival
probability over time (in months since therapy initiation) for three patient groups: chemotherapy +
androgen deprivation therapy (black), chemotherapy + androgen deprivation therapy + radioligand
therapy (yellow), and chemo-naive (blue). The y-axis indicates survival probability (0-100%), and the
Xx-axis shows time in months. Patient numbers at risk for each group are listed below the x-axis at

defined time points.
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5.5 OS based on TFx stratification

The relationship between TFx and OS was evaluated by stratifying patients into three groups based on
TFx ranges: [0.000, 0.225], [0.225, 0.434], and [0.434, 0.794]. The Kaplan-Meier plot in Figure 33,
shows survival probabilities over time. Since there are no established thresholds in the literature for
stratifying TFx values, | determined the cut-offs empirically. To compare overall survival across the
three groups, | performed a log-rank test, which yielded a p-value of 0.0617—suggesting a trend
toward significance, though not statistically significant. Interestingly, | observed that patients with the
lowest TFx values had the longest overall survival. Somewhat unexpectedly, those in the highest TFx
group showed intermediate survival, while patients in the middle TFx range exhibited the poorest
survival among the three. Again, as | observed with the other 2 stratifications, patients began to drop

out around the 15-month mark.
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Figure 33: Kaplan-Meier survival curves stratified by TFx groups. Patients were categorized into three
TFx ranges: [0.000—-0.225] (black curve), [0.225—-0.434] (yellow curve), and [0.434-0.794] (blue curve).
The y-axis represents survival probability (0—100%), and the x-axis shows time in months since therapy
initiation. The number of patients at risk in each group is displayed below the x-axis at specified time

points.
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6. CNV ANALYSIS

CNVs, which involve the amplification or deletion of chromosomal regions, are common genomic
alterations in mCRPC. These variations are indicative of genomic instability and are often linked to
tumor progression and treatment resistance. In this section, | performed a genome-wide analysis of
CNVs using GISTIC to evaluate their potential association with TFx and clinical outcomes. The input
data consisted of copy number alteration profiles derived from ichorCNA, using baseline samples from
a total of 57 patients. These patients were selected based solely on the availability of a baseline
sample, obtained prior to the start of treatment. The method | used to extract logR values—essential
for identifying deletions and amplifications—was described in section 8.1 Tumor Fraction Clustering
and CNV Burden Correlation Analysis. Clustering and comparative analyses were performed to
evaluate the potential of CNVs as predictive biomarkers for tumor aggressiveness and response to

therapy.

6.1 CNVs clustering

To investigate genomic alterations associated with mCRPC, | performed a hierarchical clustering on
logR values representing CNVs across 1 Mb chromosomal bins spanning chromosomes 1 to 23. The
heatmap presented in Figure 34 provides a comprehensive visualization of logR values derived from
CNV analysis, organized in a matrix format to explore associations between genomic alterations, TFx,
and clinical outcomes. In this heatmap, logR values of 0 indicate neutral copy number states, negative
values represent deletions, and positive values reflect amplifications. The analysis was conducted on
baseline samples from 57 patients with available sequencing data. Unsupervised clustering of the CNV
profiles revealed two distinct patient groups: cluster 1, characterized by a low CNV burden, and cluster
2, marked by a high CNV burden, indicative of greater genomic instability. To further investigate the
link between genomic instability and tumor burden, | overlaid TFx values onto the CNV heatmap. This
integration showed that cluster 2 (high CNV burden) was associated with higher TFx values, while
cluster 1 (low CNV burden) exhibited lower TFx levels. Additionally, | overlaid treatment response data
to assess potential correlations between CNV burden and clinical outcomes. However, | observed no
clear relationship, suggesting that while CNV burden correlates with tumor burden, it may not serve

as a direct predictor of therapeutic response in this cohort.
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Figure 34: Heatmap displaying hierarchical clustering of CNVs across 1 Mb chromosomal bins.
Amplifications are shown in red, deletions in blue, and neutral CNVs in white. TFx values are overlaid
using a color gradient from purple (high TFx = 0.6) to yellow (low TFx = 0). Treatment response is
indicated by color-coded bars: blue for responders, orange for mixed responders, and pink for non-
responders. Chromosomes are displayed across the top, spanning from chromosome 1 to chromosome

Y.

6.2 TFx and CNV burden correlation

| further investigated the relationship between TFx and CNV burden by categorizing patients into high
and low CNV burden groups. As shown in Figure 35, | observed that patients with high CNV burden
exhibited significantly higher TFx values compared to those with low CNV burden. This clear separation
between the groups supports a positive association between genomic instability and tumor burden.
The difference was statistically significant, as confirmed by the Wilcoxon rank-sum test (p = 8.09 x

1078).

p = 8.09e-08
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Figure 35: Box plot showing the distribution of TFx values across high and low CNV burden groups. The
x-axis represents CNV burden categories (low = yellow vs. high = purple) while the y-axis displays TFx
values on a linear scale. Boxes indicate the IQR, with the median shown as a horizontal line within each

box.
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7. GENOMIC ANALYSIS

To investigate the genomic landscape of mCRPC, | performed GISTIC analysis on ctDNA samples
derived from segmentation data generated using ichorCNA. The analysis aimed to identify recurrent
CNAs. The analysis was conducted on baseline samples from a cohort of 57 patients. These patients
were selected based solely on the availability of a baseline sample, obtained prior to the start of
treatment. To validate my findings, results were compared with a publicly available tumor tissue
dataset from the SU2C/PCF Dream Team study on mCRPC, accessible via

https://www.cbioportal.org/study/cnSegments?id=prad su2c 2015 . This dataset includes whole-

exome sequencing (WES) and transcriptomic profiling of bone or soft tissue tumor biopsies from a
cohort of 150 mCRPC patients, collected through a multi-institutional clinical sequencing effort. The
corresponding clinical data for this cohort is available at:

https://www.cbioportal.org/study/clinicalData?id=prad su2c 2015 . In addition to the baseline

analysis, | applied GISTIC to subgroup-specific comparisons, focusing on clusters with low and high
CNV burden, as identified through prior clustering analysis. This approach allowed me to explore
genomic alterations unique to each cluster and their potential implications. To further examine the
genomic drivers of relapse, | analyzed paired baseline and progressive disease (PD) samples from 17
patients. My goal was to identify amplifications and deletions that persist or emerge during disease
progression, providing insights into key genomic alterations associated with tumor burden, treatment
response, and disease progression. Collectively, these analyses contribute to a deeper understanding

of the molecular mechanisms underpinning mCRPC and highlight potential therapeutic targets.
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7.1 GISTIC analysis on baseline ctDNA samples

| conducted a GISTIC analysis on baseline ctDNA samples from 57 patients with mCRPC to identify
recurrent CNAs, as shown in Figure 36. My analysis identified key deletions on 1g31.1, 2g22.1,
3926.31, 5g12.1, 5g21.3, 6g16.1, 8g21.3, 10g23.31, 11g23.2, 13q14.3, 16g23.3, and 18qg22.3. | also
observed amplifications on 1932.1, 8921.3, 9933.2, 10922.3, 11q14.1, 12924.11, and 20913.33. These
recurrent genomic alterations highlight regions that may play critical roles in mCRPC pathogenesis and
progression, providing insights into potential mechanisms driving tumor evolution and therapeutic
resistance. The plot presented in the figure includes G-scores (top) and g-values (bottom)
corresponding to amplifications for all markers across the analyzed genomic regions. The G-scores
represent the magnitude of amplification, while g-values reflect the statistical significance of the
detected alterations. This dual representation provides a comprehensive view of the genomic

landscape in mCRPC.
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Figure 36: GISTIC analysis of cfDNA from 57 mCRPC patients, highlighting significant genomic alterations. The
plot displays regions of significant amplifications (red) and deletions (blue), with key loci annotated. The x-axis
represents GISTIC g-values, where lower values indicate greater statistical significance. The green vertical line
denotes the significance threshold, and the y-axis lists chromosomal regions with notable copy number

alterations.
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7.2 Validation of baseline ctDNA alterations using tumor tissue data
To validate the genomic alterations identified in baseline ctDNA samples, | performed GISTIC analysis
on 150 mCRPC tissue samples obtained from the publicly available SU2C/PCF Dream Team dataset

(2015) via cBioPortal (https://www.cbioportal.org/study/cnSegments?id=prad su2c 2015) (170). My

results, depicted in Figure 37, reveal statistically significant copy number alterations, including

deletions (left panel, blue) and amplifications (right panel, red).
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Figure 37: GISTIC analysis of tissue samples from the cBioPortal mCRPC dataset, identifying significant
genomic deletions (left panel, blue) and amplifications (right panel, red). The top panels display G-
scores, indicating the magnitude of alterations, while the bottom panels show g-values, reflecting
statistical significance. The green vertical line marks the significance threshold, and key loci are

annotated.
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7.3 GISTIC analysis on Cluster 1

GISTIC analysis was performed on Cluster 1 patients, categorized as the low CNV burden group shown
in Figure 38. My analysis identified relatively fewer significant genomic alterations compared to other
patient clusters, with deletions observed on 5g21.3 and 6q16.2, and no amplifications detected.
Cluster 1 patients exhibited a distinct genomic profile characterized by a lower frequency of copy

number alterations, consistent with their classification as a low CNV burden group.

Figure 38: GISTIC analysis of Cluster 1 (low CNV burden), showing limited genomic alterations.
Deletions are presented in the left panel (blue) and amplifications in the right panel (red). The top
panels display G-scores, indicating the magnitude of each alteration, while the bottom panels show g-
values representing statistical significance. The green vertical line denotes the significance threshold,

and key loci are annotated.
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7.4 GISTIC analysis on Cluster 2

Cluster 2 patients, classified as the high CNV burden group, were analysed using GISTIC as reported in
Figure 39. My results revealed a significantly higher frequency of amplifications (red) and deletions
(blue) compared to Cluster 1, indicating increased genomic instability. Notable deletions were
identified on 5q11.2, 6921, 8p21.3, 10g23.31, 11923.2, 13g14.3, and 16g23.3, while amplifications
were detected on 1932.1, 89g21.3, 9933.2, 10g22.3, and 12g24.22. My findings validate that Cluster 2
patients possess a distinct genomic profile characterized by a higher frequency of copy number

alterations, consistent with their classification as a high CNV burden group.
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Figure 39: GISTIC analysis of Cluster 2 (high CNV burden), highlighting significant genomic alterations.
Amplifications (red) and deletions (blue) are shown, with the x-axis representing GISTIC g-values—lower values
indicate higher statistical significance—and the y-axis listing chromosomal regions with detected alterations.

The green vertical line marks the significance threshold.

78



7.5 GISTIC analysis on baseline and PD samples

To investigate genomic regions potentially associated with treatment resistance or alterations that
persist from baseline to disease progression, | performed a GISTIC analysis on ctDNA samples collected
at the time of clinically defined PD from 17 metastatic mCRPC patients. To ensure high data quality, |
included only samples with a TFx greater than 0.10 in the analysis. Notably, | selected the PD timepoint
based on clinical progression, irrespective of the treatment cycle number. In the baseline samples, my
analysis identified significant genomic alterations, including a deletion on 5g21.3 and amplifications
on 8q21.3, 9g33.2, and 10g21.3 (Figure 40). In contrast, analysis of the PD group revealed
amplifications only, specifically on 8g21.3 and 10g21.2 (Figure 41). This comparative analysis reveals
that amplification changes are the alterations most likely to persist or evolve between baseline and
progressive disease stages, offering important insights into the mechanisms of treatment resistance

and tumor evolution in mCRPC.

Figure 40: GISTIC analysis of baseline ctDNA samples from 17 mCRPC patients with TFx > 0.10,
highlighting key genomic alterations. The x-axis represents GISTIC g-values, with lower values
indicating greater statistical significance, and the y-axis lists chromosomal regions with notable

amplifications and deletions. The green vertical line denotes the threshold for statistical significance.
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Figure 41: GISTIC on 17 patients testing the respective progressive disease group of samples. Filtering
for TFx > 0.10. The x-axis represents GISTIC g-values, with lower values indicating greater statistical
significance, and the y-axis lists chromosomal regions with notable amplifications and deletions. The

green vertical line denotes the threshold for statistical significance.
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8. GENE SIGNATURE IDENTIFICATION

Gene signature identification is crucial for unravelling the molecular mechanisms driving mCRPC
[25Ac]Ac-/[Y7Lu]Lu-PSMA-617 resistance. In this section, | used GISTIC analysis to examine genomic
regions of amplification and deletion, allowing me to isolate key genes associated with these
alterations. | then intersected the identified genes with the COSMIC database of oncogenes and tumor
suppressor genes to identify critical genomic drivers linked to tumor progression and treatment

resistance.

8.1 Baseline vs. Cluster 2 gene signatures

As described in Chapter 5.3 Overall Survival Based on CNV Burden, patients within Cluster 2—defined
by high CNV burden—demonstrated the poorest overall survival, although the difference was not
statistically significant. To further investigate the potential genomic drivers contributing to this trend,
we conducted gene-level classification analyses to identify key alterations associated with poor
outcomes. Specifically, the analysis outlined in section 8.4 Identification of Oncogenes and Tumor
Suppressors was applied to Cluster 2. In parallel, the same approach was performed using the GISTIC
results from baseline samples of the 17 patients who had matched PD samples, as detailed in section
8.5 GISTIC Analysis on Baseline and Progressive Disease Samples. This dual analysis aimed to uncover
consistent gene signatures that may be linked to tumor aggressiveness and treatment resistance. This
comparison was conducted primarily as an internal control to assess the consistency of detected gene
alterations, given that both datasets represent baseline samples. The goal was to determine whether
the same genes would emerge in both analyses, thereby validating the approach. The comparison
between the baseline samples and Cluster 2 revealed a largely overlapping set of tumor suppressor
deletions, as shown in Figure 42. These included RB1, PTEN, PIK3R1, MGMT, FANCA, BRCA2, ATM,
TNC, SUFU, RAD17, PRDM1, LEPROTL1, FAS, SDHD, CCNC, and CPEB3, all commonly altered in both
groups. In contrast, a few oncogenes such as PTPN11, MDM4, and TNC showed amplifications
exclusively in Cluster 2 and were not altered in the baseline group. Notably, the oncogene CDH17 was
consistently amplified in both groups. The overall pattern suggests an increased number of genomic

alterations in Cluster 2, with additional deletions and amplifications compared to baseline.
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Figure 42: Gene signature baseline — progressive disease. The plot provides a visualization of the gene
classification across baseline and Cluster 2, depicting the distribution of tumor suppressor deletions

(blue) and oncogene amplifications (red).
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9. EnrichR

To further explore the biological significance of the identified gene signatures, | performed pathway
enrichment analysis using EnrichR on the oncogenes and tumor suppressor genes identified in Figure
42. My results revealed key pathways associated with the genomic alterations in these subgroups,
highlighting their involvement in critical cellular processes such as DNA damage response, cell cycle
regulation, apoptosis, and signalling pathways like PI3K/AKT and TP53 signalling. The enrichment
results provide a deeper understanding of the molecular mechanisms driving tumor progression and
treatment resistance in patients with high CNV burden and poor clinical outcomes. My findings

emphasize the potential of these pathways as therapeutic targets for improving outcomes in mCRPC.

9.1 EnrichR pathway analysis of oncogenes in Cluster 2

EnrichR pathway analysis was conducted on oncogenes with gain-of-function alterations in Cluster 2
to identify significantly enriched biological pathways and processes as shown in Figure 43. My analysis
revealed key pathways implicated in tumor progression and cellular signalling. Among these, cell-cell
communication emerged as the most significantly enriched pathway, followed by MET activation of
PTPN11 and STATS5 activation, both critical for signal transduction and cancer development. Additional
enriched pathways included Netrin-mediated repulsion signals, MAPK (ERK1/ERK2) activation, and
Interleukin-6 signaling, all of which play vital roles in promoting cell proliferation, survival, and

metastasis in high CNV burden patients.
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Figure 43: EnrichR pathway analysis of oncogenes with gain-of-function alterations in Cluster 2. The x-
axis represents pathway enrichment significance as -log10(p-value), highlighting the critical

disruptions in DNA damage response and genomic stability.
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9.2 EnrichR pathway analysis of tumor suppressor genes in Cluster 2

EnrichR pathway analysis was performed on tumor suppressor genes exhibiting loss-of-function
alterations in Cluster 2 to identify significantly enriched pathways (Figure 44). My results revealed
strong enrichment in pathways associated with DNA damage repair and homologous recombination.
Among the most significantly enriched pathways were impaired BRCA2 binding to RAD51, DNA repair,
and the presynaptic phase of homologous DNA pairing and strand exchange, underscoring key
disruptions in mechanisms maintaining genomic stability. Other pathways, such as defective
Homologous Recombination Repair (HRR) due to BRCA2 loss of function, homology directed repair,
and transcriptional regulation by TP53, further highlight the compromised DNA repair processes in

high CNV burden patients.

Reactome 2022
Impaired BRCA2 Binding To RAD51 R-HSA-9709570 *2.20e-06

DNA Repair R-HSA-73894 *2.29e-06

Presynaptic Phase Of Homologous DNA Pairing And Strand Exchange R-HSA-5693616 *3.32e-06

Defective Homologous Recombination Repair (HRR) Due To BRCA2 Loss Of Function R-HSA-9701190 *3.58e-06
Homologous DNA Pairing And Strand Exchange R-HSA-5693579 *4.14e-06

Diseases Of DNA Repair R-HSA-9675135 *6.96e-06

HDR Thru Homologous Recombination (HRR) R-HSA-5685942 *1.59e-05

HDR Thru Homologous Recombination (HRR) Or Single Strand Annealing (SSA) R-HSA-5693567 *7.81e-05
Homology Directed Repair R-HSA-5693538 *8.87e-05

Transcriptional Regulation By TP53 R-HSA-3700989 *1.13e-04

0 1 2 3
—logio(p-value)

Figure 44: EnrichR pathway analysis of tumor suppressor genes with loss-of-function alterations in
Cluster 2. The x-axis represents pathway enrichment significance as -log10(p-value), highlighting the

critical disruptions in DNA damage response and genomic stability.
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10. CASE STUDIES: CHEMO-RESISTANT PATIENTS

In this section, | present a comprehensive analysis of patient responses to actinium-lutetium therapy,
covering a range of outcomes including complete response, partial response, relapse, and non-
response. | describe eight individual case studies, detailing each patient’s pre-treatment history,
imaging data, and therapy response, which | via tumor marker kinetics over the course of actinium-
lutetium therapy. Table 4 and Table 5 summarize the clinical pre-treatment characteristics and initial
diagnoses. A detailed description of each treatment course and outcome is provided, offering insights
into the common and distinct clinical trajectories observed in PSMA-TRNT. All patients included in this
study have undergone complete ctDNA collection cycles, sequencing, and corresponding imaging
assessments both before and after treatment, ensuring a thorough evaluation of therapeutic
response. A table with reference values for all the markers described in the following section is

provided in Table A3 and A4 (Appendix).

Table 4: Initial diagnosis status of the case studies patients.

Patient # Response iDiagnosis iGS iPSA (ng/mL) iTumor Status

Patient 5 Responder 2012 7b (4 + 3) 19 pT3b, pNO, RO

Patient 10 Responder 2015 9 (4+5) 60 pT3b, pN1

Patient 38 Mixed 2015 7a (3+4) 15 pT1la, cNO, cM1
responder

Patient 37 Mixed 2009 9 (4+5) 64 pT3b pN1(1/12)
responder MO R1

Patient 11 Mixed 2015 7 (4+43) 170 cN1 cM1b
responder

Patient 34 Non- 2018 10 (5+5) 32 pT4, N1, M1
responder

Patient 40 Non- 2020 9 (5+4) 100 cM1b
responder

Patient 91 Non- 2018 9 (5+4) NA pT3 pN1(2/19)
responder RO

iDiagnosis: initial diagnosis, iGS: initial Gleason score, a/b in GS: Used to differentiate between
Gleason patterns within the same score, iPSA: initial PSA level, iTumor status: initial tumor status. T
(Tumor): Size and extent of the primary tumor, N (Nodes): Indicates whether cancer has spread to
regional lymph nodes, M (Metastasis): Indicates whether cancer has spread to distant organs, R
(Resection Margin): Indicates whether cancer cells are present at the surgical margin after tumor

removal.
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Patient #

Patient 5

Patient 34

Patient 38

Patient 10

Patient 37

Patient 40

Patient 91

Patient 11

Table 5: Pre-treatments status of the case studies patients.

Hormonal Therapy

ADT, Enzalutamide Olaparib

Enzalutamide,
Abiraterone/Prednisone
Leuproreline, Bicalutamide,
Enzalutamide

ADT, Enzalutamide,
Prednisone, Abiraterone,
Olaparib
ADT, Enzalutamide,
Abiraterone

ADT, Abiraterone

ADT, Enzalutamide,
Abiraterone
ADT, Enzalutamide,
Abiraterone

Surgery

Radical
prostatectomy
Radical
prostatectomy
NA

Radical
prostatectomy
Lymphadectomy
Radical
prostatectomy
Lymphadectomy
NA

Radical
prostatectomy
NA

Chemotherapy
2C Docetaxel/Carboplatin 6C
Cisplatin/Etopoxid
12C Docetaxel

6C Cabazitaxel
2C Docetaxel

6C Docetaxel

2C Cabazitaxel

9C Docetaxel

9C Docetaxel

6C Docetaxel

6C Docetaxel
6C Cabazitaxel

Metastasis

PUL OSS HEP
LYM
0SS MAR HEP

0SS, MAR,
HEP

(ORN

0SS

0SS, LYM,
ADR

0SS, LYM,
HEP
(ORN)

Radiation Pre PSMA-
TRNT
External NA
radiation
Not applied NA
Palliative NA
external
radiation
External NA
radiation
External NA
radiation
External NA
radiation
Not applied Lutetium
External Lutetium
radiation

ADT: Androgen Deprivation Therapy, C: Cycles, PUL (Pulmonary): Lungs, OSS (Osseous): Bones, HEP (Hepatic): Liver, LYM (Lymphatic): Lymph nodes, MAR

(Marrow): Bone marrow, ADR (Adrenal): Adrenal glands, NA (Not applied)
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10.1 Patient 5

Patient 5, with widespread metastatic involvement identified on PSMA-SPECT using [*™Tc]Tc-PSMA-
GCKO1 (Figure 45, Figure 46), underwent actinium-lutetium therapy. Available imaging includes a pre-
treatment scan, three post-treatment scans following radioligand administration, and one post-
therapy scan for assessing treatment efficacy. An adaptive dosing strategy led to a dramatic reduction
in PSA levels, from 0.50 ng/mL to a nadir of 0.01 ng/mL after two cycles (Figure 47A). Simultaneously,
TFx decreased from 0.47 to below detection levels (Figure 47B), as reflected in CNA profiles (Figure
48). These improvements were mirrored in tumor biomarkers AP and LDH, both of which showed a
marked decline (Figure 47). Post-treatment imaging demonstrated complete resolution of metastatic
lesions on PSMA-SPECT Figure 45 with MRI confirming eradication of liver metastases (Figure 46).
Renal function remained generally stable, with intermittent mild impairments (Table 6). However,
hematologic side effects, including persistent anaemia and episodic leukopenia, were observed post-

treatment.

ID Pre PSMA-TRNT Mid PSMA-TRNT Post PSMA-TRNT

1%t cycle 2" cycle 3"cycle 4™ cycle

Figure 45: Imaging overview of Patient 5 throughout actinium-lutetium PSMA-TRNT. Baseline and
post-treatment SPECT imaging were performed using [*°"Tc]Tc-PSMA-GCKO1 to assess initial disease
burden and therapeutic response, respectively. Mid-treatment assessment refers to therapy-related

scans conducted during the PSMA-TRNT course.
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Pre PSMA-TRNT Mid PSMA-TRNT Post PSMA-TRNT

After 3 cycle

Figure 46: Overview image sequence for Patient 5. A liver metastasis (arrow) demonstrates intense
uptake of the radiopharmaceutical through initial PSMA-SEPCT and MRI before treatment with
[?°Ac]Ac-/["Lu]Lu-PSMA-617. Intermediate MRI after the 3™ cycle revealing partial remission of this

metastasis, and final MRI post-therapy, showcasing successful treatment impact.
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Figure 47: Comprehensive overview of the dynamic changes in A) PSA, B) TFx, C) LDH and D) ALP in

Patient 5, following [**Ac]Ac-/[Y’Lu]Lu-PSMA-617 regimen. Data points are plotted over the

treatment period, providing insights into the therapeutic response.
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Figure 48: CNA profiles for Patient 5 across multiple treatment timepoints. Each panel represents a
distinct timepoint, starting with the baseline (pre-treatment) followed by sequential post-treatment

cycles. CNV profiles are depicted as log2 copy number ratios plotted against genomic coordinates.
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Table 6: Longitudinal assessment of GFR-CKD-EPI, creatinine, hemoglobin and leukocyte count during

[?°Ac]Ac-/[Y’Lu]Lu-PSMA-617 application of Patient 5.

Time point GFR-CKD-EPI Creatinine Hemoglobin Leukocyte
(mL/min/1.73qm) (mg/dL) (g/dL) (G/nL)
Baseline 59.1 11 9.1 3.9
1% treatment cycle 71.9 0.97 9.6 3.3
2" treatment cycle 79.8 0.87 8.3 3.5

GFR-CKD-EPI: Glomerular Filtration Rate estimated using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation, expressed in mL/min/1.73 m?.

10.2 Patient 10

Patient 10, showing PSMA positive metastasis on PSMA-PET/CT with [*8F]PSMA-1007 (Figure 49) ,
exhibited a PSA decline from 190 ng/mL to 21.2 ng/mL over five cycles of actinium-lutetium therapy
(Figure 51A), despite the persistence of bone metastases. This reduction in PSA was accompanied by
a dramatic decrease in TFx, dropping from an initial value of 0.46 to below detection levels after the
first cycle and remaining undetectable throughout subsequent three cycles (Figure 51B, Figure 53).
Renal function remained stable, with normal creatinine levels and high GFR. However, persistent
leukopenia and moderate anaemia were observed as side effects (Table 7). After reaching the
cumulative renal dose limit, the patient transitioned to a regimen of Abiraterone and Olaparib.
Following a two-year hiatus from TRNT, the tumor board reassessed the case (Figure 50). Given the
persistence of bone metastases and the patient’s ineligibility for conventional therapies, actinium-
lutetium therapy was resumed. At the second baseline, the tumor profile had undergone significant
changes, presenting a completely different genomic landscape compared to the initial assessment.
TFx increased from 0.41 to 0.61 after the first cycle of the resumed therapy (Figure 52B), with evolving
regions of genomic amplification detected (Figure 54). Conversely, PSA levels remained stable,
decreasing slightly from 82.1 ng/mL to 73.5 ng/mL (Figure 52). Renal function results indicate
impairment, with values of 46.9 and 56 falling below the reference range, along with a persistent

anaemia and low leukocyte count (Table 8).

92



ID Pre PSMA-TRNT Mid PSMA-TRNT Post PSMA-TRNT

10

After 3" cycle

Figure 49: Imaging overview of Patient 10 undergoing actinium-lutetium PSMA-TRNT. [*6F]PSMA-1007
PET imaging was performed at three time points: baseline (pre-PSMA-TRNT) for initial staging, mid-

therapy following the third treatment cycle to assess interim response, and post-therapy to evaluate

overall treatment efficacy.

ID Pre PSMA-TRNT

10

Figure 50: Imaging conducted after a two-year treatment hiatus and subsequent transition to Olaparib

and Abiraterone therapy for Patient 10. PSMA-PET using [*F]PSMA-1007 for evaluating the patient's

current clinical status.
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Figure 51: Comprehensive overview of the dynamic changes in A) PSA B) TFx, C) ALP, and D) LDH in Patient
10, following [***Ac]Ac-/[*"’Lu]Lu-PSMA-617 regimen. Data points are plotted over the treatment period,

providing insights into the therapeutic response.
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Figure 52: Comprehensive overview of the dynamic changes in in A) PSA B) TFx, C) ALP, and D) LDH in

Patient 10, following a two-year treatment break and a therapy switch to Olaparib and Abiraterone.
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Figure 53: CNA profiles for Patient 10 across four treatment timepoints. Each panel represents a
distinct timepoint, starting with the baseline (pre-treatment) followed by sequential post-treatment

cycles. CNV profiles are depicted as log2 copy number ratios plotted against genomic coordinates.
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Figure 54: CNA profiles for Patient 10 one treatment cycle. Each panel represents a distinct timepoint,
starting with the baseline (pre-treatment) following a two-year treatment break and a therapy switch
to Olaparib and Abiraterone. Subsequent panels display the CNA profiles after receiving one cycle of

[P Ac]Ac-/[*Lu]Lu-PSMA-617 therapy.
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Table 7: Longitudinal assessment of GFR-CKD-EPI, creatinine, hemoglobin and leukocyte count during

[?°Ac]Ac-/[*’Lu]Lu-PSMA-617 therapy of Patient 10.

Time point GFR-CKD-EPI Creatinine Hemoglobin (g/dL) Leukocyte
(mL/min/1.73qm) (mg/dL) (G/nL)
Baseline 99.7 0.75 3.6 3.6
1 treatment cycle 99.2 0.76 5.6 2.9
2" treatment cycle 103 0.70 2.9 2.9
3" treatment cycle 94.7 0.85 2.3 2.3
4 treatment cycle 91.9 0.90 2.5 2.5

GFR-CKD-EPI: Glomerular Filtration Rate estimated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation, expressed in mL/min/1.73 m?

Table 8: Longitudinal assessment of GFR-CKD-EPI, creatinine, hemoglobin and leukocyte count

following a two-year treatment break and a therapy switch to Olaparib and Abiraterone.

Time point GFR-CKD-EPI Creatinine Hemoglobin Leukocyte
(mL/min/1.73qm) (mg/dL) (g/dL) (G/nL)
Baseline 46.9 1.5 7.0 4.5
1% treatment cycle 56.0 1.3 5.9 2.9

GFR-CKD-EPI: Glomerular Filtration Rate estimated using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation, expressed in mL/min/1.73 m?2
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10.3 Patient 38

Patient 38 presented with extensive red marrow infiltration observed on PSMA-SPECT using [**™Tc]Tc-
PSMA-GCKO1 before starting TRNT (Figure 55). Actinium-lutetium therapy initially led to a reduction
in PSA levels, from over 446 ng/mL to 113 ng/mL (Figure 56A). However, by the fourth cycle, PSA levels
increased to 145 ng/mL, indicating relapse. This relapse was preceded by a rise in TFx to 0.15 during
the third cycle (Figure 56B), signalling early disease progression. TFx further increased to 0.41 in the
fourth cycle, confirming the relapse and mirroring baseline genomic patterns (Figure 57). Despite
these challenges, renal function remained stable, with creatinine levels and GFR consistently within
acceptable ranges. However, hematologic monitoring revealed variability in leukocyte counts and

persistent mild to moderate anaemia (Table 9).

ID Pre PSMA-TRNT Mid PSMA-TRNT Post PSMA-TRNT
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Figure 55: Imaging overview of Patient 38 throughout [?*Ac]Ac-/[*”’Lu]Lu-PSMA-617. Baseline and
post-treatment SPECT imaging were performed using [*°"Tc]Tc-PSMA-GCKO1 to assess initial disease
burden and therapeutic response, respectively. Mid-treatment assessment refers to therapy-related

scans conducted during the PSMA-TRNT course.
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Figure 56: Comprehensive overview of the dynamic changes in A) PSA, B) TFx, C) LDH and D) ALP in
Patient 38, following with [?*Ac]Ac-/[*"’Lu]Lu-PSMA-617 regimen. Data points are plotted over the

treatment period, providing insights into the therapeutic response and disease progression.
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Figure 57: CNA profiles for Patient 38 across four treatment timepoints. Each panel represents a
distinct timepoint, starting with the baseline (pre-treatment) followed by sequential post-treatment

cycles. CNV profiles are depicted as log2 copy number ratios plotted against genomic coordinates.

Table 9: Longitudinal assessment of GFR-CKD-EPI, creatinine, hemoglobin and leukocyte count

during [?*Ac]Ac-/[*"7Lu]Lu-PSMA-617 of Patient 38.

Time point GFR-CKD-EPI Creatinine Hemoglobin Leukocyte
(mL/min/1.73gm) (mg/dL) (g/dL) (G/nL)
Baseline 92.0 0.73 9.8 5.5
1* treatment cycle 89.5 0.78 10.1 3.8
2" treatment cycle 89.4 0.77 10.1 3.9
3" treatment cycle 84.6 0.88 9.5 3.9
4t treatment cycle 79.5 0.94 8.7 4.3

GFR-CKD-EPI: Glomerular Filtration Rate estimated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation, expressed in mL/min/1.73 m?
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10.4 Patient 37

Patient 37 started the therapy with high bone marrow infiltration as shown in Figure 58. Initially, the
patient presented with a PSA level of 2586 ng/mL at the baseline. Following the first cycle of PSMA-
TRNT, a significant PSA decline to 202 ng/mL was observed, indicating an initial therapeutic response
(Figure 59A). The downward trend continued, reaching 84.1 ng/mL after the second cycle and 78.8
ng/mL after the third cycle. However, by the fourth cycle, PSA levels exhibited an increase to 348
ng/mL, suggesting a relapse. TFx reflects the same kinetics. The initial TFx value of 0.55 at baseline
dropped to below detection levels <0 TFx after the first cycle and remained undetectable across
subsequent cycles. However, during the fourth cycle, TFx increased to 0.13, further supporting the
observation of disease relapse (Figure 59B). The CNV profile of the last cycle as we can observe,
reflects the profile of the baseline profile (Figure 60). LDH and ALP levels, which serve as surrogate
markers for tumor activity and bone turnover, showed corresponding trends (Figure 59C, Figure 59D).

Patient’s white blood cell counts remained stable along with renal function (Table 10).

ID Pre PSMA-TRNT Mid PSMA-TRNT Post PSMA-TRNT
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Figure 58: Imaging overview of Patient 37 treated with [?*Ac]Ac-/[*"’Lu]Lu-PSMA-617. Baseline and post-treatment
SPECT imaging were performed using [*"Tc]Tc-PSMA-GCKO1 to assess initial disease burden and therapeutic
response, respectively. Mid-treatment assessment refers to therapy-related scans conducted during the PSMA-TRNT

course.
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Figure 59: Comprehensive overview over the dynamic changes in A) PSA, B) TFx, C) LDH and D) ALP in
Patient 37, following [?*Ac]Ac-/[*”’Lu]Lu-PSMA-617 regimen. Data points are plotted over the

treatment period, providing insights into disease progression.
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Figure 60: CNA profiles for Patient 37 across four treatment timepoints. Each panel represents a
distinct timepoint, starting with the baseline (pre-treatment) followed by sequential post-treatment

cycles. CNV profiles are depicted as log2 copy number ratios plotted against genomic coordinates.

Table 10: Longitudinal assessment of GFR-CKD-EPI, creatinine, hemoglobin and leukocyte count

during [?*Ac]Ac-/[*"7Lu]Lu-PSMA-617 of Patient 37.

Time point GFR-CKD-EPI Creatinine Hemoglobin Leukocyte
(mL/min/1.73qm) (mg/dL) (g/dL) (G/nL)
Baseline 70.7 1.0 9.6 35
1 treatment cycle 64.4 1.1 11.2 5.9
2" treatment cycle 84.2 0.89 11.1 3.3
3" treatment cycle 83.6 0.89 9.7 3.0
4 treatment cycle 83.6 0.89 9.6 3.5

GFR-CKD-EPI: Glomerular Filtration Rate estimated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation, expressed in mL/min/1.73 m?.

10.5 Patient 11

Patient 11 underwent a [*®Ga]Ga-PSMA-11 PET/CT scan, which revealed extensive skeletal and nodal
metastases, indicating a high tumor burden (Figure 61). At baseline, PSA was 584 ng/mL, and TFx was
0.39. With the initiation of PSMA-RLT, these values demonstrated a marked reduction. Following the
first treatment cycle, PSA decreased to 99.4 ng/mL, while TFx dropped to 0.05. This trend continued
through the second cycle, with PSA declining further to 28.2 ng/mL and TFx becoming undetectable.
By the third cycle, PSA reached its nadir at 1.7 ng/mL, and TFx remained below the detection limit
(Figure 63A, Figure 63B). LDH followed a kinetic pattern similar to that of TFx and PSA, showing a
consistent decline during the first three cycles. In contrast, AP exhibited a progressive increase
throughout the initial three cycles before decreasing at the onset of clinical relapse (Figure 63C, Figure
63D). Imaging performed after therapy confirmed the therapeutic response. However, a follow-up
scan conducted five months post-treatment revealed new metastatic lesions, indicating emerging

resistance (Figure 62). By the fourth cycle, PSA had risen sharply to 546 ng/mL, and TFx increased to
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0.47, signifying disease relapse. Consistent CNA profiles were observed throughout the treatment,
with the fourth cycle revealing distinct new amplifications and deletions in the genome (Figure 64).
Hematological and renal function markers demonstrated impairment throughout the course of

treatment (Table 11), with hemoglobin levels falling below the normal range and renal function

remaining compromised.

ID Pre PSMA-TRNT Mid PSMA-TRNT Post PSMA-TRNT
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Figure 61: Imaging overview of Patient 11 treated with [?>Ac]Ac-/[*”’Lu]Lu-PSMA-617 therapy. Pre-therapy staging
was performed using [*®Ga]Ga-PSMA-11 PET imaging. Mid-treatment assessment refers to therapy-related scans
acquired during the PSMA-TRNT course. Post-therapy response evaluation was conducted using PSMA-SPECT with
P Tc]Te-PSMA-GCKO1.

107



Pre PSMA-TRNT

Mid PSMA-TRNT

11

4t cycle

Figure 62: Imaging five months staging post-PSMA-RLT in Patient 11 treated with PSMA-TRNT using

PSMA-SPECT using [*"Tc]Tc-PSMA-GCKO1, followed by treatment scan upon 4% treatment

administration.
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Figure 63: Comprehensive overview over the dynamic changes in A) PSA, B) TFx, C) LDH and D) ALP in
Patient 11, following [?*Ac]Ac-/[*”’Lu]Lu-PSMA-617 regimen. Data points are plotted over the

treatment period, providing insights into disease progression.
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Figure 64: CNA profiles for Patient 11 across four treatment timepoints. Each panel represents a
distinct timepoint, starting with the baseline (pre-treatment) followed by sequential post-treatment

cycles. CNV profiles are depicted as log2 copy number ratios plotted against genomic coordinates.

110



Table 11: Longitudinal assessment of GFR -CKD-EPI, creatinine, hemoglobin and leukocyte count

during [?°Ac]Ac-/[*”’Lu]Lu-PSMA-617 of Patient 11.

Time point GFR-CKD-EPI Creatinine Hemoglobin Leukocyte
(mL/min/1.73qm) (mg/dL) (g/dL) (G/nL)
Baseline 70.6 1.0 10.4 5.9
1% treatment cycle 84.6 0.93 9.2 3.6
2" treatment cycle 74.8 1.0 9.4 4.9
3" treatment cycle 79.5 0.98 10.1 6.2
4 treatment cycle 65.0 1.1 11.2 4.4

GFR-CKD-EPI: Glomerular Filtration Rate estimated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation, expressed in mL/min/1.73 m?.
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10.6 Patient 34

Patient 34, classified as a non-responder, presented with widespread liver and bone marrow lesions
identified on a pre-treatment PSMA-SPECT scan using [*™Tc]Tc-PSMA-GCKO1 (Figure 65). Actinium-
lutetium therapy initially reduced PSA levels from 279 ng/mL to 174 ng/mL after the first cycle (Figure
66A). However, by the second cycle, PSA levels rose sharply to 1367 ng/mL, indicating rapid disease
progression. TFx decreased from 0.68 to 0.48 after the first cycle but increased significantly to 0.82 by
the second cycle (Figure 66B). The constant tumor burden was also observed due to the consistent
CNA detected at each cycle (Figure 67). While the patient’s white blood cell counts remained stable,
renal function deteriorated significantly, marked by a sudden rise in creatinine levels and a
corresponding drop in GFR, consistent with acute renal impairment (Table 12). Post-therapy imaging

is not available.
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Figure 65: Imaging overview of Patient 34 treated with [?*Ac]Ac-/[*”’Lu]Lu-PSMA-617. Baseline SPECT imaging
were performed using [*°"Tc]Tc-PSMA-GCKO1 to assess initial disease burden. Mid-treatment assessment refers

to therapy-related scans conducted during the PSMA-TRNT course. Post PSMA-TRNT imaging are not available.
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Figure 66: Comprehensive overview over the dynamic changes in A) PSA, B) TFx, C) LDH and D) ALP in

Patient 34, following [**Ac]Ac-/[*”’Lu]Lu-PSMA-617 regimen. Data points are plotted over the

treatment period, providing insights into disease progression.
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Figure 67: CNA profiles for Patient 34 across four treatment timepoints. Each panel represents a
distinct timep