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Abstract

Under the Langlands philosophy, there should be a correspondence between certain auto-
morphic representations of GL,,, certain n-dimensional Galois representations, and mo-
tives over number fields. There is a folklore heuristic that the image of the Galois repre-
sentation should be as big as possible unless there is an automorphic reason for it not to
be. In this thesis, we will formulate a precise conjecture in this direction, assuming some
standard conjectures in the literature. In the n = 2 case, this follows from the work of
Ribet, Momose, and Nekovar. We are able to prove this conjecture unconditionally in
the n = 3 case.

More precisely, Let K be a totally real field and 7 be a regular algebraic cuspidal
automorphic representation of GL3(Af) that is of general type, i.e. it neither satisfies
m ~ @ for a non-trivial Hecke character y, nor m ~ 7 ®mn for any Hecke character .
Then we show that the Q,-Zariski closure of the image of the p-adic Galois representation
Pr.p associated with 7 is of the form (Resg‘; )-Gm,0, Where F, = F ®q Q, for a certain
subfield F' of the Hecke field, and H /F), is a form of SL;.






Zusammenfassung

Gemal der Langlands-Philosophie sollte es eine Korrespondenz zwischen bestimmten
automorphen Darstellungen von GL,,, bestimmten n-dimensionalen Galoisdarstellungen
und Motiven iiber Zahlkorpern geben. In der Fachwelt ist eine heuristische Faustregel
geldufig, die besagt, dass das Bild der Galoisdarstellung moglichst grof3 sein sollte, es sei
denn, es gibt einen automorphen Grund, der dem entgegensteht. In dieser Arbeit wer-
den wir eine prédzise Vermutung in dieser Richtung formulieren, unter Annahme einiger
in der Literatur bekannter Standardvermutungen. Im Fall n = 2 folgt dies aus den Ar-
beiten von Ribet, Momose und Nekovar. Wir konnen diese Vermutung im Fall n = 3
uneingeschriankt beweisen.

Konkret beweisen wir insbesondere das folgende Resultat: Sei K ein total reeller
Zahlkorper und 7 eine reguldre, algebraische, kuspidale automorphe Darstellung von
GL;3(Af) vom allgemeinen Typ, d. h. es gilt weder 7 ~ 7 ® x fiir einen nicht-trivialen
Hecke-Charakter y, noch 7 ~ 7¥ ® 7 fiir einen beliebigen Hecke-Charakter 7. Dann
zeigen wir, dass der Q,-Zariski-Abschluss des Bildes der mit 7 assoziierten p-adischen
Galoisdarstellung p,,, von der Form (Resg’; H) - Gy g, ist, wobei F), = I' ®q Q, fiir
einen bestimmten Unterkdrper F' des Hecke-Korpers ist, und H/F), eine Form von SL;

ist.
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Chapter 1

Introduction

1.1 Background on the Galois Side

1.1.1 Compatible Families of Galois Representations

Let K be a number field, ['x := Gal(K/K) its absolute Galois group and p a prime
number. By a p-adic (Galois) representation of ['x, we mean a continuous group homo-
morphism

p:T'g — GLn(@p),

where ['x is considered with its topology as a profinite group (Krull topology) and
GL, (@p) with its canonical topology induced from that of @p. Moreover, for a num-
ber field & < @p, the representation p is called E-rational if it is unramified outside a
finite set of places of A" and for each such (finite) place, the characteristic polynomial of

the Frobenius element has coefficients in .

Definition 1.1.1. Let K and E be number fields and .S be a finite set of finite places of
K. For each prime number p, let S, be the set of places of K above p. An E-rational
n-dimensional compatible family of Galois representations of I'x unramified outside S

is a collection of Galois representations p) for each embedding \ : £/ — @p such that
p)\ : FK —> GLn(@p>

is a p-adic Galois representation and p, is unramified outside S U .S, and for each finite
place v of K outside S there exists a polynomial f,(z) € E[z] such that for each A and
each finite place v of K outside S U Sy, the characteristic polynomial of p,(Frob,) is

equal to * f(z) € Q,[z], i.e. it is independent of A.

1



2 Background on the Galois Side

For instance, the /-adic cyclotomic characters {x,}, form a compatible family of Q-
rational Galois representations of I'g and the /-adic Tate modules of an elliptic curve over
a number field K form a compatible family of Q-rational Galois representations of I'x.
More generally, if X is a smooth proper variety over a number field K, then it is well-
known that its (-adic cohomologies H}, (X7, Q,) form a compatible family of Q-rational
Galois representations of ['x.

For a number field K, an abelian variety A over K is a connected projective algebraic
group over K. Morphisms and isogenies of abelian varieties are simply morphisms and
isogenies of algebraic groups. The set of the complex points A(C) of an abelian variety
A of dimension g, is isomorphic to C9/A as a complex Lie group, where A is a rank 2¢
lattice in CY admitting a Riemann form (polarization). This identifies the subgroup of
n-torsion points of A(C) with A /nA which is isomorphic to (Z/nZ)*. All these points
are defined over some finite Galois extension L of K and so are endowed with an action
of the absolute Galois group I'x which factors through Gal(L/K). In other words, we

get a continuous homomorphism
paln] : Tk — GLyy (Z/nZ) .

Now let £ be a prime number and [¢] be the multiplication by ¢ map on A. Then we have

an inverse system
A1) Ape) S Al
of I'x-modules. Taking an inverse limit we define the /-adic Tate module 7;(A) of A as
Ty(A) = lim A[¢"),

which is clearly isomorphic to Z?g and is endowed with a continuous 'y action. We
also define the rational version of the Tate module V;(A) := Ty(A) Q, Q, which is a
2g-dimensional (Q,-vector space. Choosing a basis for this vector space, we get an /-adic
Galois representation

pae: T — GLoy(Qy).

It can be shown that the collection of p 4 ,’s form a compatible family of (Q-rational Galois
representations of I'x.

The ¢-adic Galois representation attached to an abelian variety carries a lot of infor-
mation about the abelian variety. However, it does not uniquely determine the abelian
variety since one can prove that isogenous abelian varieties have isomorphic Galois rep-

resentations attached to them. Faltings’ isogeny theorem, which is a special case of Tate’s
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conjecture on algebraic cycles, provides an inverse for this; It shows that the Galois rep-
resentation determines the abelian variety up to isogeny. Slightly more generally, we

have:

Theorem 1.1.2 (Faltings). Let A and B be abelian varieties over the number field K.

Then the natural map
H01’1’1K<147 B) ®Z Zg - HomZé[pK} (TK(A), Tg(B))
is an isomorphism.

It is not hard to see that this theorem implies that if the Galois representations V;(A)
and V;(B) are isomorphic, then there is an isogeny f € Homg (A, B) ®z Q inducing this

isomorphism.

1.1.2 p-adic Hodge Theory

For a detailed introduction to p-adic Hodge theory, we refer the reader to [[15]. Here, we
only summarize the main concepts that we need in this thesis.

Let K be a finite extension of Q, and let C,, be the completion of the algebraic closure
of K. It is well-known that the action of I'x on K extends to a well-defined action on
C, by continuity. Let RepCP(F i) be the category of finite dimensional C,-semilinear
continuous representations of I'x. Let x;, : ' — Q) be the p-adic cyclotomic character

and for each V' € Repg (I'x) and n € Z, define the n’th Tate twist of V" as
V(n) =V ®qg, X,-

A theorem of Sen and Tate tells us that the only elements of C,, that are fixed by the action
of I'k are the elements of K, i.e. C,EK = K. Moreover, for any integer n # 0, there are
no non-zero elements fixed in C,(n) by ', i.e. C,(n)'x = 0.

Now let Repg (I'x) be the category of finite dimensional Q,,-linear continuous rep-
resentations of I'x. For any object V' of this category, V' ®q, C, is an object of the
category Repc (I'rc). We are ultimately interested in the objects of Repg (I'x) which
we call p-adic representations of I'c. The Tate twists V'(n) are defined similarly in this
case.

Now we define the graded ring Byr := @, ., C,(n) with the evident addition and

multiplication. Notice that this is endowed with an action of 'y and B, = Clx =K.
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As a graded ring we clearly have Byr ~ C,[T, T~ '] and the Galois action turns into

acting on 7" by x,.

Definition 1.1.3. A representation V' € Repg (I'x) is called Hodge-Tate, if there is a

decomposition

V ®q, Cp ~ ®qCp(_Q)hq

in the category Rep(cp(l“ k). The values of ¢ for which h, is non-zero are called the

Hodge-Tate weights of V' and £, is called the multiplicity of weight q.

For example, the p-adic cyclotomic character is clearly Hodge-Tate of Hodge-Tate
weight —1 which has multiplicity one. By a result of Faltings, the decomposition also
holds for the p-adic cohomologies of smooth proper varieties over K. A useful reformu-
lation of this definition is obtained using the ring Byr. Namely, V' is Hodge-Tate if and

only if the natural map
Qy . (V ®Qp BHT)FK RKr BHT — V@Qp BHT

is an isomorphism. It can be shown that this map is always injective and both sides are

of finite rank. Then checking the isomorphism reduces to comparing dimensions:

Proposition 1.1.4 (Tate). The representation V€ Repg (I'x) is Hodge-Tate if and only
ifdil’l’l@p V= dll’l’lK(V ®Qp BHT)FK.

Fontaine defined more refined period rings to better understand and classify objects
of the category Repg (I'k). One example of such period rings is the de Rham period ring
Bgyg. This ring is equipped with a Galois action just like By, but instead of a grading it
comes with a filtration. The semi-simplification of this filtration gives exactly Byr. We
omit the construction of this ring in this discussion.

For any representation V' € Repg, (I'x) one can consider the map
By : (V ®q, Bir)'™ @k Bar — V ®q, Bar

of filtered Byr-semilinear Galois modules and V' is called a de Rham representation if
and only if 5y, is an isomorphism. Every de Rham representation is clearly Hodge-Tate
since one can look at the graded modules of both sides.

We also need to consider more general coefficient fields. When studying automorphic

Galois representations, one is naturally led to the situation where representations of I'x
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have coefficients in an algebraic extension E of @, (where the I'x action on £ is still

considered to be trivial). In this case, we can still define the map
av : (V ®qg, Bur)'* ®k Bur — V ®q, Bur,

which is now a morphism of £/ ® Byr-modules. V' is said to be Hodge-Tate if and only
if aiy 1s an isomorphism. This is equivalent to V' being Hodge-Tate when it is considered
as a Q, vector space by restriction of scalars. In particular, if £ = @p then for each
embedding 7 : K — @p we define the 7-Hodge-Tate weights of V' to be those integers
q for which (C,(q) ®g, - V)I'% is non-zero and the dimension of this @p—vector space is
the multiplicity of this weight.

We finish our discussion on p-adic Hodge theory by considering global Galois rep-

resentations. Let K be a number field and consider a p-adic Galois representation

p:Tx — GL,(Q,).

We say that p is Hodge-Tate (respectively de Rham) if p

k, 1s Hodge-Tate (respectively
de Rham) for every place v of K above p. For each embedding 7 : K — @p we define
the set of 7-Hodge-Tate weights to be that of p|x,, where v is the place induced by the

embedding 7 (the restriction of the absolute value of @p to K via 7).

1.1.3 p-adic Lie Groups

For a detailed treatment of the topics in this section, we refer the reader to [36]. Here we
quickly review the main points.

Throughout this section, let X be a non-Archimedean field of characteristic 0. One
can define manifolds over K similarly to the case of Archimedean fields. Let M be a
Hausdorff topological space. An n-dimensional (locally analytic) atlas on M is a col-
lection of charts (U, ¢) where U is an open subset of M and ¢ : U — K™ identifies
U with an open subset of K", such that these charts give a covering for M and all the
transitions maps ¢(U n'V') < (U n' V') for any two charts (U, ¢) and (V, ¢)) are locally
analytic. The notion of equivalent atlases and a maximal atlas are defined in the evident
way. There exists exactly one maximal atlas in each equivalence class which makes the

following definition plausible:

Definition 1.1.5. A (locally analytic) manifold of dimension n over K is a Hausdorff

topological space M equipped with an n-dimensional maximal atlas over K.
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The notions of a tangent vector and tangent space can be defined similar to the
Archimedean situation, using the local identifications ¢ : U — ¢(U) < K". Hence,
the tangent 7, M space at a point x of an n-dimensional manifold M over K is an n-
dimensional K-vector space. For any locally analytic map f : M — N of manifolds

over K the differential of f at x € M would then be a linear map
dfgc . TJ;M - Tf(x)N.

Definition 1.1.6. A Lie group over K is a (locally analytic) manifold over K which
carries a group structure such that the group multiplication and the inverse map are locally

analytic morphisms.

Let GG be a Lie group over K and e € G be the identity element. Similar to the
Archimedean situation, the group action induces a (K -linear) Lie algebra structure on the
tangent space 7., by identifying left-invariant vector fields on G with tangent vectors.

For any positive integer n, the group GL,(K) is a Lie group over K since it can
be identified with an open subset of M, (K) ~ K "* . In fact, one of the main sources
of Lie groups over K are algebraic groups. If G is an algebraic group over K then the
set of K-points G(K) admits a natural structure of a Lie group over K by choosing a
faithful representation of G. The Lie group structure is independent of this choice. The
(analytically defined) Lie algebra of the manifold G(K') coincides with the (algebraically
defined) Lie algebra of the algebraic group G/ K.

The Lie algebra of G encodes the infinitesimal information of neighborhoods of
e € G. The naive philosophy is that properties that are expected to hold only up to an
open subgroup can be checked on the level of Lie algebras. The following theorem is the

main tool that we will need later to apply this philosophy:

Theorem 1.1.7 ( [36], Proposition 18.17). Let Gy and G be Lie groups over K and let
o : Lie(G,) — Lie(Gy) be a homomorphism of Lie algebras. Then

1. There exist open subgroups Hy < G, and Hy < G5 and a homomorphism of Lie

groups f : Hy — Hs such that df = o.

2. If (H|, H}, ) in place of (Hy, Hy, f) also satisfies part [l then there exists an
open subgroup H < Hy n Hy such that f|g = f'|4.

We will use this theorem very often when we want to compute the image of Galois

representations, sometimes without directly mentioning it. It helps us go back and forth
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between the groups and their Lie algebras. Let us give one example of how we will apply

this result later.

Corollary 1.1.8. Let H < G be a closed subgroup of the Lie group G over K. Then H is
open if and only if Lie(H) = Lie(G), i.e. the embedding v - H — G induces the identity

map on the Lie algebras.

1.2 Background on the Automorphic Side

1.2.1 Algebraic Groups and Their Forms

For a more detailed overview of the theory of algebraic groups that we might use in this
thesis, we refer the reader to [|19, §1]. Here, we briefly review the main players and
discuss the construction of forms of algebraic groups which is not discussed in [19].

Let K be a field of characteristic zero.

Definition 1.2.1. An affine algebraic group over K is an affine group scheme over K (a

group object in the category of affine schemes over K') that is of finite type over K.

It can be shown (since we assumed char(K') = 0) that every affine algebraic group
over K is automatically smooth. The notion of (closed) subgroups, normal subgroups
and intersection of subgroups are defined pointwise (using the functor of points) in the
evident way. The connected component of the identity element G° is a normal subgroup.
The kernel of a morphism of affine algebraic groups can also be defined point-wise and
is always a normal subgroup of the source. Defining the quotient group is more subtle,
see [19, Definition 1.3.8].

For an affine algebraic group G/ K, an n-dimensional representation is a homomor-
phism (of algebraic groups over K) p : G — GL,,. Every algebraic group over K admits
a faithful representation p : G — GL,, identifying G with a closed subgroup of GL,,
for some n. An element g € G(K) is called unipotent if the matrix p(g) € GL,(K) is
unipotent for some faithful representation. This is independent of the choice of this repre-
sentation. The group G is called unipotent if all the elements of G(K ) are unipotent. The
unipotent radical R, (G) of G is defined to be the maximal connected normal unipotent
subgroup of GG. For example, the unipotent radical of GL,, is trivial and the unipotent rad-
ical of upper-triangular matrices is the subgroup of upper-triangular matrices with ones

on the diagonal.
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Definition 1.2.2. A connected affine algebraic group G over K is said to be reductive if
Ry(Gg) = {1}.

For an affine algebraic group G /K, we define the derived subgroup G4 = G
to be the intersection of all normal subgroups N of G such that G/N is abelian. Then
G is normal, so it is the maximal normal subgroup with this property. Higher derived
subgroups are defined similar to the case of abstract groups by taking derived subgroups
consecutively:

der

G .— (G(nfl))

G is called solvable if there exists a positive integer n such that G™ = {1}. The solvable
radical R(G) of G is defined to be the maximal connected normal solvable subgroup of
G. For example, the solvable radical of GL,, is the subgroup of scalar matrices, and the

solvable radical of SL,, is trivial. In fact, for any reductive group G, the solvable radical

is Z(G)° where Z(G) is the center.

Definition 1.2.3. A connected affine algebraic group G over K is said to be semi-simple
if R(Gg) = {1}.

Therefore, SL,, is both semi-simple and reductive. GL,, is reductive but not semi-
simple. The group of upper-triangular matrices in GL,, is neither semi-simple nor reduc-
tive, for n > 1. Clearly any semi-simple group is reductive. For any reductive group G,
the derived subgroup G is semi-simple.

We finish this section by describing how to construct forms of algebraic groups from
certain cohomology classes of the group.

Let E//F be either a finite Galois extension of fields or the semi-local Galois ex-
tension £,/ F, = (E/F) ®q Q, for a finite Galois extension £ = F'(«)/F of number
fields and let ® be the minimal polynomial of . Let G/ E be an algebraic group and let
I'=Gal(E/F). Let f : I' - Autg(G) be a 1-cocycle and write f, for the image of o.
We will construct a form of G defined over F' using this cocycle.

Let G’ = ResZ(@, so for every F-algebra R we have
G'(R) = G(E ®r R).

Therefore, G'(R) is equipped with an action of I' (where it acts on the first component
of the tensor product) which is clearly functorial. Hence, the collection of morphisms

o : G'(R) — G'(R) is a natural transformation and so it is induced from a morphism
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o : G' — (' of algebraic groups. Therefore, we can define H to be the subgroup of G’
satisfying f,(“g) = g for every o € I'. In other words, H = (G")"s(1) where we define
the f-twisted action of o on G’ to be given by /(?)g = f_(?g). This gives a closed
subgroup of G'.

By base changing / < Res£G to E and then projecting to the identity component
one gets

HE — (RCS?G)E = HGE SN G.
r

We prove that this is an isomorphism by checking this on points. First, we need to give
a description of the algebraic action of I' on [ [ G via the identification (ReskG)p =
[T G. Let R be an E-algebra. Note that ResZG(R) = G(E ®r R) and the algebraic

action of I is just the action on the £ component. Now
G(E®r R) = G(E®r E ®g R),

and the action is only on the first £ component. Then

G(E®r R) = G(E®r E®5 R) = G <E®F g([jj]) 5 R) e (f([g ®p R) ,

where the action is only on the coefficients of the first component. So

=G (%@ER) =G ((UE) ®ER) =G (UR) = HG(R),
where the action of v € I is given by
(a)s = (Vay-16)o-
Proposition 1.2.4. With the notation as above, for any E-algebra R the map
H(R) < RespG(R) = | | G(R) — G(R)
r
is an isomorphism of groups. Therefore, the algebraic group H is a form of G.

Proof. By definition, H(R) is the subgroup of the elements invariant under the twisted
action of I'. Let (g,), € | | G(R) be invariant under the twisted action:

O (g0)o = (F1095-10))0 = (G0)o-

By looking at the component o = v we get

gy = f’y(vgl%
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so the g; component determines all other g,’s. This shows that the map
H(R) — [ [ G(R) ™ G(R)
r

is injective.
To prove the surjectivity, we need to show that for every g; € G(R) the element

(f-(?g1)), is invariant under the twisted action:

I (f))e = (o (0790 = (Fy 07 Fy-10) (")

Now, by the cocycle condition
f’y © ’yfv—lo' = fa’
hence

(o0 91)e = (fo"01))o

which is exactly what we needed. Therefore, the map is an isomorphism for the R-points

for any R and hence an isomorphism of affine algebraic groups over E. ]

We can generalize Proposition to understand the behavior of 4 under any Galois
base change of F.

Corollary 1.2.5. Let F' < Iy < E be an intermediate field that is Galois over F' and let
'y = Gal(E/Fy) and fy : Ty — Autg(Q) be the restriction of f to T'y. Then

H xp Fy ~ (ResgoG)twfo(FO).

Proof. Apply Proposition to the group (Resf, G)"5 1) for the twisted action of
the group I'/T. O

1.2.2 Automorphic Representations

Here we summarize some of the results that we need from the theory of automorphic rep-
resentations. We will mostly focus on the GL,, case which is the main case for us. Since
giving the definition of an automorphic representation needs quite a lot of preparation,
we will not do this here and just assume that the reader is already familiar with the theory.
For further details, we refer the reader to [[19].

Let K be a number field throughout this section and let 7 = ®'7, be an automor-

phic representation of GL,,(Ax). Let v be a finite place of K at which 7 is unramified.
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Then we use the notation ¢} (7),--- ,t" () for the Satake parameters of 7,. Recall that
unramified representations are uniquely determined by their Satake parameters.

Recall that the Hecke characters of K are automorphic representations of GL;(A).
For an automorphic representation 7 of GL,,(A k) and Hecke character y of K, one can
consider the tensor product 7 &®¢ x of these two complex representations. It can be shown
that this is again an automorphic representation which we simply denote by 7 ® x from
now on. If a(v) € Ay isthe element a(v) = (1,--- ,1,w, 1, - - ) where only the v-factor
is not equal to 1 and w is a uniformizer for O, , then the Satake parameters of 7 ® y at

v for unramified v are equal to

{t1(m)x(a(v)), t3(m)x((v)), - -, tn(m)x(e(v))}-

Now assume that 7 is cuspidal. Strong multiplicity one tells us that the Satake pa-
rameters {t{(m),--- ,t’(m)} for all but finitely many unramified places v determine 7
uniquely. We will use this result many times throughout this thesis, usually without

mentioning it directly. More precisely, we have:

Theorem 1.2.6 (Theorem 11.7.2 in [19]). Let m and 7’ be cuspidal automorphic repre-
sentations and S be a finite set of primes. Assume that for each place v ¢ S one has

T, ~ 7. Thenm ~ 7',

We will also need the basic properties of the Rankin-Selberg L-functions at some
point. Let 7 and 7’ be two irreducible admissible representations of GL,,(Ag). Then
one can define the Rankin-Selberg L-function L(s, 7 x 7’) as in [19, §11.7] by taking
the product of local Rankin-Selberg L-functions. In general, it is not even clear if this
L-function should converge. But, if we assume that 7 and 7" are cuspidal automorphic
representations, then many nice analytic properties of these L-functions are known as is

summarized in the next statement:

Theorem 1.2.7 (Theorem 11.7.1 in [[19]). Let 7 and 7’ be unitary cuspidal automorphic
representations. Then L(s,m x ©') admits a meromorphic continuation to the whole
complex plane with the only possible poles being simple poles at s = 0,1. There are

poles at s = 0 and s = 1 if and only if m = n and 7 ~ 7'V,

One defines the L-function associated with an irreducible admissible representation
mas L(s,m) := L(s,m x 1). When 7 is cuspidal automorphic, the last theorem implies

that L(s, 7) has nice analytic properties.
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Now assume that 7 is a regular (C-)algebraic cuspidal automorphic representation.
We also need to address questions regarding the rationality of 7. For more details and
the proofs, we refer the reader to [[11]. Let 7/ be the finite part of 7, i.e. 7/ = ®;m7rv
is a complex representation of GL,,(A%). We can twist the complex structure of 7/ with

the automorphism o and denote this representation by “7/.

Definition 1.2.8. The field of rationality, or the Hecke field, of 7 is the fixed field of
7/, i.e. the smallest subfield Q(7) of C such that for every o € Aut(C/Q()) one has

onf ~ g,

Clozel proves that under the regularity assumption, Q(7) is always a number field
[11]. One can show that there exists a (unique) algebraic automorphic representation
(which would be automatically regular and cuspidal) 7 whose finite part is 7/ (see [[11),
Theorem 3.13]). Then we would also have “m ~ 7 for all ¢ € Aut(C/Q()) by strong
multiplicity one. Clozel also proves that (assuming regularity) the representation 7/ has
a model over Q(r), i.e. there exists a representation V' of GL,,(A%) over Q(7) such that

ml ~ V@Q(ﬂ) C.

1.2.3 Langlands Functoriality Conjectures

Here we quickly review the Langlands functoriality conjecture. For further details and
more precise statements we refer to [[19]. Fix a prime number p.

Let G be a reductive group over a field K of characteristic zero. Let T = Gy
be a maximal torus and let ¥ := (X* X, ® &) be the root datum associated with
(G, T%). Then the dual root datum UY := (X,, X* &Y, ®) gives a split reductive
group over Q, which we call the Langlands dual group G. Assume that K is a global
filed for now. If GG is a split group (or an inner form of a split group) then we define the
L-group of G as

Lg .= @(@p) x 'k,

where ['j is the absolute Galois group of K. In the non-split case, one fixes a base for
the root datum (a Borel subgroup containing 7") and then a pinning for this root datum to

get a non-trivial action of I'x on G and then defines
LG :=G@,) » Tk

with respect to this action. For more details see [[19, §7.3].
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If K is a local field instead, then we define
Lq = G(Q,) x Wk,

where Wi is the Weil group of K.

Let K be a number field and GG be a reductive group over K. Then the global Lang-
lands correspondence predicts a relation between certain automorphic representations of
G(Ak) and certain Galois representations (more precisely, L-parameters) with values in
the L-group of GG. To have a fully satisfactory formulation of this philosophy, one needs
the existence of a hypothetical group called the Langlands group which has yet to be con-
structed. We will not discuss these issues here and restrict ourselves to the representations
of the Galois group.

Analogously, in the local setting when K is a p-adic field, one expects a connection
between smooth admissible representations of the p-adic group G(K) and certain Galois
or Weil-Deligne representations (or rather L-parameters) over K. This is not a one-to-
one correspondence but to each L-parameter, one should be able to associate a finite set
of smooth admissible representations called an L-packet. Just like in the global setting,
these local L-parameters have values in the L-group of (G. This suggests that if one has
a map from the L-group of one group to another, there should be a “natural” way of
transferring the representation theory of one group to the other. This is known as the
functoriality principle in the Langlands program.

Now, let H and GG be two reductive groups over a number field or a p-adic field K

and assume that G is quasi split. An L-map is a continuous group homomorphism
r:tH @

commuting with projection to I'x or W such that its restriction to H comes from a map
of algebraic groups ry : H-G.

Now, let K be a p-adic field and r be an L-map as above. The local Langlands func-
toriality predicts that there should be a natural way of transferring irreducible admissible
representations of H(K) to irreducible admissible representations of G(K') (or rather
L-packets of these representations), compatible with some expected behaviors and con-
structions (e.g. L-functions). More precisely, to each irreducible admissible representa-
tions m of H(K'), one can associate an L-packet of irreducible admissible representations
of G(K), i.e. a finite set {II;} of irreducible admissible representations of G(K’) with the

same L-parameter. In particular, if we let H = {1} then we (partially) recover the local

Langlands correspondence from the local Langlands functoriality.
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Now, let K be a number field and r be an L-map as above. Let 7 = ®'r, be an
automorphic representation of H(Af). Each 7, is an irreducible admissible representa-
tion of the local group H(K,) and by local Langlands functoriality it gives a finite set
{II, ;} of irreducible admissible representations of G(X,). Then one can form (possibly
infinitely many) representations of G(A ) by taking the restricted tensor product of these
local representations. This gives a global L-packet. The global Langlands functoriality
predicts that this L-packet is automorphic, i.e. at least one of these tensor products must
be an automorphic representation.

In other words, one should be able to transfer automorphic representations (or rather
automorphic L-packets) of H to GG in a way compatible with the local Langlands func-
toriality. Again taking H to be trivial recovers the global Langlands correspondence.

Apart from the general philosophy, there are two specific known cases of the Lang-
lands functoriality that we will use in this thesis. The second symmetric power of the
standard representation of GL, gives a homomorphism sym? : GL, — GL3 and since

GL,, splits it clearly gives an L-map
Syl’l’l2 : LGL2 — LGL3.

Over any number field K, the Langlands transfer is constructed for this L-map in the
work of Gelbart and Jacquet [|18].
Other important cases of functoriality are automorphic base change and automorphic

induction. Let L/ K be a finite Galois extension of number fields. Then we have
"Res;;GL, = (ResiGL,) (Q,) x I'x = GL,(Q,) /%) x T,

where I'c acts on GL,,(Q,)%(*/%) via its action on Gal(L/K) coming from the sur-
jection 'y — Gal(L/K). Now we can embed GL,, diagonally in this product and we
get

Res% : “GL, — “Res%GL,.

The (conjectural) functoriality transfer corresponding to this map is known as automor-
phic base change. Since Res% GL, (Ax) = GL,(Ay), this transfer (conjecturally) base
changes an automorphic representation of GL,, (A ) to an automorphic representation of
GL,(A}). On the Galois side of the Langlands correspondence, this amounts to restrict-
ing a Galois representation of 'k to a representation of the subgroup I';.

The standard action of GL,(Q,) on @Z and the evident action of Gal(L/K) on

(@Z)Gal(L/K) give an action of “Res%GL, on (@Z)Gal(L/ ¥ This is an n[L : K] di-
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mensional vector space over @p so this action induces an L-map
Ind} : “ResiGL,, — “GL .z

whose (conjectural) functorial transfer is called automorphic induction. This transfer
(conjecturally) takes an automorphic representation of GL,,(A ) and gives an automor-
phic representation of GL,,1.x)(Ak). On the Galois side of the Langlands correspon-
dence, this amounts to induction of a Galois representation from the smaller group ', to
the larger group ['g.

In the case that [L : K] is a prime number, automorphic base change and induction
are known in many cases by the seminal work of Arthur and Clozel [I]. We state the

results from [|19, §13.4]:

Theorem 1.2.9 (Base change). Let L/ K be a prime degree Galois extension of number
fields and 0 be a generator for the (cyclic) group Gal(L/K). Then, for every cuspidal
automorphic representation © of GL,,(A ), the base change 1y, = Resk () exists and is
an isobaric automorphic representation of GL,,(AL) such that 7% ~ 7;. Moreover, 7y,

is cuspidal if and only if T # w ® n for all Hecke characters

n: KX\A;{/NI'L/K(AZ) — C*.

Conversely, if a cuspidal automorphic representation 7' of GL,, (A1) satisfies 7% ~ 7,

then m' ~ 7y, for some cuspidal automorphic representation m of GL,, (A ).

Theorem 1.2.10 (Induction). Let L/ K be a prime degree Galois extension of number
fields and 6 be a generator for the (cyclic) group Gal(L/K). If 7 is a cuspidal auto-
morphic representation of GL,,(AyL), then the automorphic induction I(r) = Ind%(7)
exists and is an isobaric automorphic representation of GL,, 1.k (Ak). The representa-
tion I(m) is cuspidal if and only if m % 7°. Moreover, a cuspidal automorphic repre-
sentation 7' of GLy1.k1(Af) is the automorphic induction of a cuspidal automorphic

representation of GL,,(Ay) if and only if 7' ~ 7' ® n for some non-trivial character

n: KX\A;((/NI'L/K(AE) — C*.

1.3 The Problem and the Results

In this section we will discuss the problem that we are going to study in this thesis. One

can argue that the main goal of arithmetic geometry is to understand varieties defined
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over fields of arithmetic significance, e.g., number fields. This could mean understand-
ing their rational points, reductions, different cohomologies, etc. Many of these arith-
metic properties are encoded in the L-functions attached to these (motivic) objects. For
example, the famous conjecture of Birch and Swinnerton-Dyer explains how some of
the arithmetic properties of rational elliptic curves (for instance the rank of the group of
its rational points) are encoded in the analytic behavior of its L-function. These motivic
L-functions are usually very hard to understand. We often cannot even prove that they
admit analytic continuations. Automorphic representations, as introduced by Langlands,
are supposed to provide a rich supply of L-functions that are easier to understand as we
saw in Theorem for instance. The dream would then be to show that any of our

motivic L-functions is equal to one of these automorphic L-functions.

As we discussed earlier, the Langlands correspondence predicts that one can asso-
ciate Galois representations to certain automorphic representations. One can also as-
sociate Galois representations to motives (namely their étale realizations). Therefore,
Galois representations are supposed to provide the bridge between the motivic and the
automorphic world. If one believes in this philosophy, one should expect to be able to
translate different features of these worlds from one to another. The feature that is of
interest to us in this thesis is the symmetries of the motivic object. It is reasonable to
think that the more symmetric the motive is, the smaller the image of the associated Ga-
lois representation should be, and these should have implications for the automorphic
representations associated with these objects. The precise (conjectural) relation of these

objects is discussed in Chapter f.

Let us briefly summarize what is known in this direction. The more precise state-
ments and proofs will be discussed in Chapter B|. This line of study can be traced back to
the work of Serre on Galois representations associated with rational elliptic curves and
his famous open image theorem [39]. Weight 2 eigenforms with rational coefficients
correspond to rational elliptic curves in the Langlands program. Therefore, Serre’s re-
sult can also be viewed as determining the image of the Galois representations associated
with weight 2 modular forms with rational Fourier coefficients. If the weight is still 2 but
the coefficients are not rational, then there exists an abelian variety associated with the
form. Ribet realized that for general modular forms of weight 2, the endomorphism ring
of the associated abelian variety being big translates into the form having some kinds of
symmetries which he called inner-twists [32], and he was able to generalize Serre’s result

to this context [33]]. Momose then worked out the higher weight case [25] and Nekovar
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generalized their work to Hilbert modular forms [27]. The main goal of this thesis is to
better understand the GL, case and to further generalize these results to groups other than
GL,.

Let us explain the structure of this thesis and the results that we prove in this direc-
tion. A primary question in determining the image of a Galois representation is if the
representation is irreducible or not. This is related to the notion of cuspidality on the
automorphic side. This is known as the irreducibility conjecture for automorphic Galois
representations and will be explained in Chapter . Only special cases of this conjecture
are known, mostly for small reductive groups. All of the proofs that we know use the
analytic properties of automorphic L-functions.We will discuss the GL, and GL3 cases
of this conjecture in more detail and give proofs in these cases over totally real fields.

In Chapter 3§, we will give a proof of Serre’s open image theorem and explain how
inner-twists come into play when one wants to compute the image of modular Galois
representations. We will state the results of Ribet and Momose for classical modular
forms and Nekovai’s generalization to Hilbert modular forms. In these cases, there ex-
ists a quaternion algebra D over a certain subfield of the Hecke field of the modular form
which describes the image of the associated Galois representation. For classical modular
forms of weight 2, the work of Quer gives an explicit formula for this quaternion algebra
in terms of the Fourier coefficients of the modular form. In Section B.3.2, we generalize
this formula to the case of Hilbert modular forms under mild assumptions. The first step
that one needs to do for this generalization is to prove some results of Ribet (that are
used by Quer in the classical case) for the case of Hilbert modular forms. The proofs are
identical to those of Ribet but they do not seem to be written down in the literature. The
second step is to mimic Quer’s strategy. Here some of the Galois cohomology compu-
tations become more complicated due to the fact that our base field K is not contained
in the coefficient field, whereas in the case of classical modular forms, X = Q is con-
tained in any field of characteristic 0. Therefore, one needs to carefully go up and down
between different fields to be able to carry out the computations.

Let us state our main result in this section which is Theorem in the text. Let
K be a totally real number field such that [K : Q] is odd, and f be a Hilbert modular
newform of parallel weight 2, level AV, and trivial nebentype. For every non-zero prime
ideal p of Ok not dividing AV, we denote the eigenvalue of the Hecke operator 7, acting
on f by a,. Let D/F be the quaternion algebra (constructed by Nekovar in this case)
which describes the image (see Section B.2.2). We use inner-twists of f to construct a
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field extension N of K of the form

N = K(VE, s /o)

for t; € K with the property that the characters of Gal(N /K) are exactly the characters
appearing in the inner-twists of f. Let {0;}", be the Fy-basis for Gal(/N/K) satisfying
0i(\/t;) = (—1)%4,/t;. Then we prove:

Theorem 1.3.1. Let by, - - -, p,, be a set of prime ideals of Ok not dividing N and with
ap, # 0such that o; = Frob,, in Gal(N / K) (such primes exist by Chebotarev s theorem,).
Then in Br(F') one has:

= Npr/p(l1), Gy, Trr/F(l2), Q) - (NCFK/P(lm), Gy ),
[D] = (Nrpr/p(ty), ag, ) (Nrpg/p(t2), ap,) - - (Nvpr/p () gy, )
where (a,b) = (a,b)r denotes the Hilbert symbol.

The main objective of Chapter [ is to generalize the results of Ribet, Momose and
Nekovaft to the case of GL,,. A key observation is that in this case, one should also take
into account the so-called ”outer-twists” of an automorphic representation. This is due to
the fact that not every automorphism of SL,, is inner for n > 2. Inner- and outer-twists
of a representation together form a group that we call the group of extra-twists. We
use these extra-twists to compute the p-adic Lie algebra of certain n-dimensional Galois
representations that satisfy a list of natural properties. These properties are expected to
hold for the Galois representations associated to ’general type” regular algebraic cuspidal
automorphic representations (after possibly a twist), but we are only able to prove this in
the GL; case.

Let us state our main result in the GL3 case, which is Theorem in the text. Let
K be a totally real field and let 7 be a regular algebraic cuspidal automorphic representa-
tion of GL3(A ) that is of general type, i.e. it neither satisfies 7 ~ 7 ® x for a non-trivial
Hecke character x, nor 7 ~ 7¥ ® 7 for any Hecke character . Let Q() be its Hecke
field with Galois closure F, fix a prime p and let p,,, : ['x — GL3(Q(7) ®q Q,) be
the p-adic Galois representation attached to w and I' € Aut(E) the group of extra-twists

which will be defined later. Here is our main result:

Theorem 1.3.2. Let F = EV be the field fixed by all extra-twists of . Then for every
prime number p, there exists a finite extension L /K and a semi-simple algebraic group
H, defined over F,, := F ®q Q, which is a form of SL3 (constructed using the extra-
twists), such that p ,(I'y) is contained in H,(F,) - Q) < GL3(E ®q Q,) and it is open
in the p-adic topology.
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To construct the group H,,, we use the group of extra-twists of 7 to define a 1-cocycle
which gives us a form of SL3. To prove the openness we need to compare the Lie algebras.
We first twist away the determinant and only focus on the semi-simple part of the Lie al-
gebra. To use our earlier computations on Lie algebras, we need some information about
the Lie algebras over the algebraic closure. Here, the key ingredients are the classification
of semi-simple Lie subalgebras of sl3, Langlands functoriality for sym? : GL, — GLs,
and automorphic induction for degree 3 extensions.

Assuming the functoriality conjectures of Langlands, one can go through the argu-
ments in the proof of the above theorem and see what assumptions are needed on 7 to
prove such a result for GL,,, i.e. when extra-twists are enough to give a precise descrip-
tion of the image. This should intuitively mean that 7 is not coming from any smaller
group via a Langlands transfer. We make this precise in Section and define auto-
morphic representations of general type and prove a big image theorem for the Galois
representations associated to those, assuming Langlands functoriality.

In Chapter [, we investigate the relation of our results in Chapter § and the Mumford-
Tate conjecture. The conjectures of Clozel [|[11] predict the existence of a motive M,
over K (with coefficients in an extension of Q(7)) attached to 7. The Mumford-Tate
conjecture for this motive tells us that the groups H,, from Theorem [1.3.2] should arise
from a global object H defined over the field . Assuming the existence of such a
motive, we will use the action of extra-twists on the Hodge structure to construct a group
H,, over I' ®@g R that should be the Archimedean part of the Mumford-Tate group. We
will also use this action on the rational Hodge structure to construct a global group H.
This group will contain the (special) Mumford-Tate group and in particular its dimension
(which is equal to the dimension of all the groups H,, from the Theorem 4.3.13)) bounds

the dimension of the Mumford-Tate group from above.






Chapter 2

The Irreducibility Conjecture

2.1 Harish-Chandra’s Philosophy of Cusp Forms

Harish-Chandra’s idea of reducing the study of automorphic representations to cuspidal
ones, by means of parabolic induction, is a precursor of the Langlands philosophy. Let
us explain this in a special case, in the language of Langlands functoriality:

Let K be a number field and consider the reductive group G = GL,, over K. Let
P be a parabolic subgroup of GL,, whose associated Levi subgroup M is given by the

natural diagonal block embedding
GL,, x---xGL,, — GL,

for a partition n = ny + - - - + ng. Since the dual group of GL,, is isomorphic to GL,, and

all the groups are split here, one can simply take the L-map
LM N LG

to be the identity on the Galois component and the natural diagonal block embedding on

the algebraic groups:

GL,,(Q,) x --- x GL,,(Q,) x I'x = GL,(Q,) x I'x.
It 1s proved by Langlands that Langlands functoriality holds for this L-map. In particu-
lar, if 7y,..., m;, are automorphic representations of GL,, ..., GL,,, respectively, then the
automorphic representation m; @ - - - @ m, of GL,,, x - - - x GL,,, can be transferred to an
automorphic representation 7; [ - - - H w3, of GL,, via the above L-map. This is called

the isobaric sum of 7q,..., m.

21
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Cuspidal automorphic representations are morally the ones that cannot be found as
subquotients of the parabolic inductions of smaller groups. They serve as the building
blocks upon which other automorphic representations are constructed by parabolic in-
duction. In particular, one can start with cuspidal automorphic representations 71,..., 7y

and construct a new automorphic representation 71 - - -FH 7, which is no longer cuspidal.

Definition 2.1.1. An automorphic representation m of GL,, is called isobaric if it is iso-

morphic to an isobaric sum 71 (- - - H 75, of cuspidal automorphic representations.

Not every automorphic representation is isobaric. But these are the simplest ones that
can be constructed from cuspidal automorphic representations. If 7 is isomorphic to an
isobaric sum 7 ~ 7 (- - - 7 of cuspidal automorphic representations, then one easily
observes that

L(s,m) = L(s,m) - L(s, ),

therefore the analytic properties of L(s, 7) are also understood by Theorem [1.2.7.

As was discussed in the last chapter, to have the most satisfactory formulation of the
Langlands conjectures, one needs the existence of the hypothetical Langlands £-group of
the number field K. Nevertheless, Clozel was able to formulate precise conjectures for
the group GL,, by restricting himself to algebraic automorphic representations where one
expects a correspondence to the representations of the usual Galois group of K rather than
the L-group [[L1]. Let us recall a version of his conjectures (combined with a conjecture

of Fontaine and Mazur):

Conjecture 2.1.2 (Langlands, Clozel, Fontaine-Mazur). There is a (unique) bijection

between the two sets:

» algebraic isobaric automorphic representations of GL,,(A ), and

* isomorphism classes of semi-simple continuous representations I'x — GL,,(Q,)

that are unramified outside a finite set of places and de Rham at places above p,

such that at unramified primes, the Satake parameters match with the Frobenius eigen-

values.

The famous conjecture of Fontaine and Mazur predicts that these kinds of Galois
representations (if one adds an oddness assumption on their irreducible subquotients) are

exactly the ones that come from algebraic geometry, i.e. these are subquotients of the
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p-adic étale cohomologies of smooth proper varieties over /. By a famous conjecture of
Tate, these Galois representations are in fact semi-simple and can be written as a direct
sum of irreducible ones. As one can see from the definition of the L-map

LM—>LG

?

the operator [ corresponds to the direct sum @ on the Galois side under the Langlands
correspondence.

Given all these, it is then natural to guess that under the above bijection, cuspidal
automorphic representations that are the building blocks on the automorphic side should
exactly correspond to irreducible Galois representations that are the building blocks on

the Galois side. This is known as the Irreducibility Conjecture:

Conjecture 2.1.3. Under the Langlands correspondence for GL,, (Conjecture 2.1.2), cus-

pidal representations correspond to irreducible Galois representations.

In fact, assuming that we are in the Artin case, i.e. the Galois representation has finite

image, one can easily prove this expectation:

Proposition 2.1.4. Let 7 be an isobaric automorphic representation of GL,,(A) and
p:I'x - GL, (@p) the associated Galois representation via Conjecture 0.1.2. Assume
that p(U'x) is finite. Then 7 is cuspidal if and only if p is irreducible.

Proof. We follow the argument in the introduction of [29]. Let 7 be cuspidal. Then by
Theorem the Rankin-Selberg L-function L(s, 7 x ) has a simple pole at s = 1.
Since the Satake parameters of m match with Frobenius eigenvalues of p outside a finite

set .S of finite places of K, we have the equality of partial L-functions
L(s,mx ) =L%(s,p®p"),

where the superscript S indicates that we are removing the Euler factors for places in
S. This does not change the analytic properties (analyticity, order of pole, etc) at s = 1
since the removed factors are holomorphic and non-zero around s = 1. We conclude that
L(s,p® p") has a simple pole at s = 1.

Now from the theory of Artin L-functions, the only irreducible representation whose
L-function has a pole at s = 1 is the trivial representation. This means that if we de-

compose p ® p* ~ End(p) into irreducible representations, there is exactly one trivial
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factor, which has to be the subrepresentation of the scalar matrices. Butif p = c @7 is

reducible, then
p@pv ~ (U®O'v)(—B(O’@?]v)@<77®0'v)@<77®77v)

contains at least two trivial representations as a direct summand (one inside 0 ® 0¥ ~
End(c) and one inside n ® n¥ ~ End(n)). This implies that p is irreducible.

To prove the other direction, one reverses all the arguments and concludes using [|19,
Lemma 11.8.1] that 7 must have exactly one cuspidal factor in its isobaric decomposition.

[]

Little is known about the irreducibility conjecture in general, even though the Galois
representation associated with a cuspidal automorphic representation is constructed in
many cases when the base field K is totally real or CM. In the rest of this section, we
review some of the known instances of this conjecture. In almost all of these cases, the

argument uses analytic properties of automorphic L-functions.

2.2 The GL, Case

2.2.1 Modular Galois Representations

Let f = }} -, a,q" be a cuspidal newform of weight k£ > 2, level N, and nebentype
e. If k = 2, then it is well known that there exists an abelian variety A;/Q associated
with f whose dimension is the degree of the number field £ = Q(f) over the rational
numbers [[14, §6.6]. One can then show that the Tate module of Ay isa free £, = EQ®gQ,
module [B3, §4] which has to be of rank 2 since dim Ay = [E : Q]. This gives the Galois

representation

pr,p = prp Lo = Glo(E,) = H GLy(Ep).
plp plp

The Eichler-Shimura relation can be used to show that trp,(Frob,) = a, for all £ { pN.
This means that (possibly up to semi-simplification) this is exactly the Galois representa-
tion predicted to be associated with f by Conjecture R.1.2, viewing f as an automorphic
representation by the standard procedure. Coming from abelian varieties, the Galois rep-
resentation p, (or rather each p,) is de Rham with Hodge-Tate weights (0, —1).

The same story should hold for Hilbert modular forms of parallel weight 2, but this

is not known in general. We will revisit this in the next chapter.



The GL, Case 25

Now assume that £ > 2. Conjecture still predicts the existence of a Galois

representation

[ [pre =rsp:Tq — GLa(E,) = | [ GL2(E})
plp plp

whose Frobenius traces at primes away from p/N are given by the Fourier coefficients
of f. This is indeed known by the work of Deligne [13]]. These Galois representations
could also be found in the p-adic cohomology of certain varieties and are de Rham with
Hodge-Tate weights (0,1 — k).

One can hope to be able to improve Deligne’s construction to find a more geomet-
ric object whose p-adic cohomology is the above Galois representation. In fact, Scholl
constructs a motive M associated with f whose p-adic realization is exactly the Ga-
lois representation constructed by Deligne [37]. When k = 2, this motive is exactly the

motive induced by (the first cohomology of) the abelian variety Ay.

2.2.2 Irreducibility Using L-Functions

If f is a cuspidal newform as in the last section, the automorphic representation 7, asso-
ciated to it is algebraic and cuspidal. Therefore one expects each Galois representation
pyp to be absolutely irreducible by Conjecture R.1.3. We will prove this in this section.

The argument is due to Ribet. The same argument works for Hilbert modular forms.

Theorem 2.2.1. Let f be a cuspidal newform of weight k = 2. Then, for each finite place
p of the Hecke field E = Q(f), the Galois representation

prp : Do = GL2(E})
is absolutely irreducible.

Proof. Assume that p;, is reducible and the (@p-valued) character 7, is a subrepresen-

tation and let 7, be the quotient representation. Then

PFy =M ®na.

As was mentioned, py, is de Rham. This implies that both 1; and 7, being a subrep-
resentation and a quotient of it, are also de Rham. The Hodge-Tate weights of py, are
(0,1 — k) which means that one of 7, and 7, has Hodge-Tate weight 0 and the other one
1 — k. Since every Hodge-Tate character of ['g is of the form - x;, for some Dirichlet
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character y, we deduce that one of 7; and 7, is a Dirichlet character 7 and the other one

is of the form x - x5!, hence
Ple=n@X X,

Now note that f ® x ! is also a cuspform and its associated Galois representation is
clearly equal to ps, ® x~' by the Brauer-Nesbitt Theorem. Therefore twisting by x

we get:

Prox-1p =X ®xp

Taking the L-functions of both sides we have

L(s, f@x") = L(s,nx ) L(s,xp~") = L(s,nx )¢(s + 1 — k),

where ( is the Riemann zeta function. The left hand side, being the L-function of a cusp
form, has analytic continuation to an entire function. Since ((s + 1 — k) has a pole at
s = k, this should be canceled by a root of the Dirichlet L-function L(s,nx~!) at k.

Since Dirichlet L-functions are non-vanishing for Re(s) > 0, we are done. O

More generally, if one assumes the existence of a Galois representation associated
with a cuspidal automorphic representation of GLy(A ) for a number field K, then one
uses a sort of similar argument to show the irreducibility of this Galois representation

using analytic properties of the L-functions. See [45, Theorem 1.2.6] for more details.

2.3 The GLj3 Case

The irreducibility conjecture is also known for cuspidal automorphic representation of
GL3(Ak) for a totally real field K. This is proved in [6] by Bockle and Hui. In this

section we give an overview of their proof. For all of the omitted details we refer to [6].

2.3.1 Locally Algebraic Representations

In his work on abelian Galois representations, Serre defined the notion of locally alge-
braic representations, which can be seen as a precursor to more sophisticated later notions
of p-adic Hodge theory [39]. He used this in the study of the Galois representations as-

sociated with elliptic curves. See [40] for more details on this.
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Assume that K is a general number field. A p-adic representation of 'y is called
abelian if its image is an abelian group. In other words it factors through I'{2, the abelian-

1zation of '
op : T% — GL,(Q,).
Such abelian representations can be related to adelic groups using the Artin reciprocity
map:
Artg : A% /K™ — T4,
and locally algebraic ones are those that could be described by a morphism of alge-

braic groups around identity, after the above passage via global class field theory. Let

T := Res(g G,,,. Here is the precise definition:

Definition 2.3.1. An abelian semi-simple p-adic Galois representation
¢p : T — GL,(Q,)
is called locally algebraic if there exists a morphism of algebraic groups
T T@p — GLn’@p
such that the composition

X X X 110'¢ a p ray
T(Q) = | [ K} = Af/EK™* 25 TR 2 GL,(@,)

v|p

is equal to 7|7 (g,) on a small enough neighborhood of the identity element on the p-adic

Lie group T(Q,) = (K ®q Q,)*.

The following result of Fontaine shows the relation of this notion to the more familiar

notions of p-adic Hodge theory discussed earlier.

Proposition 2.3.2 (Fontaine). For an abelian semi-simple Galois representation of 'k,
being locally algebraic, being de Rham at places above p and being Hodge-Tate at places

above p are equivalent.

What makes the definition of locally algebraic representations interesting is the fol-

lowing result of Serre. Recall the definition of an E-rational Galois representation from

Section [I.1.1.

Theorem 2.3.3 (Serre). For an abelian semi-simple Galois representation of I, being

locally algebraic is equivalent to being F-rational for some number field F.
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At the heart of the above results (and of [6]) lies the following surprisingly strong

result of Waldschmidt that heavily uses transcendental theory:

Theorem 2.3.4 (Waldschmidt). Let
x:Ix —>Q,

be a character, unramified outside a finite set of places of K such that at each such place
v, x(Frob,) is an algebraic number (over Q). Then there exists a positive integer N such

that XV is locally algebraic.

The main new input of the work of Béckle and Hui in [6], is to generalize Theorem
to the so-called weak abelian direct summands of (not necessarily abelian) semi-

simple Galois representations.

Definition 2.3.5. Let
pp : FK - GLn(@p)

be an arbitrary Galois representation and

Y : T > GL,(Q,)

be a semi-simple abelian Galois representation. We say that v, is a weak abelian direct
summand of p, if there exists a density one set of (rational) primes £ such that for each
¢ € L and finite place v of K above /, the representations p, and 1, are both unramified
at v and the characteristic polynomial of ¢, (Frob, ) divides the characteristic polynomial

of p,(Frob,).

The obvious example of the above situation is when v, is in fact a direct summand
of p, but there are examples where this does not hold. Finally, here is the main result of

the work of Bockle and Hui:
Theorem 2.3.6 (Theorem 1.1 of [6]). Let E = Q, be a number field and
pp: T = GL,(Q,)

be a semi-simple, E-rational, p-adic Galois representation. Let the representation 1, be
a weak abelian direct summand of p,. Then 1), is locally algebraic and hence de Rham

at all places above p.
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2.3.2 Irreducibility Using L-Functions

Having Theorem in hand, one can apply an L-function argument in the same spirit
as in the proof of to prove the irreducibility conjecture in the GL3 case, at least over
a totally real field K. The existence of the Galois representations is known in this case.

In fact, more generally, one has:

Theorem 2.3.7 (Harris-Lan-Taylor-Thorne [22], Scholze [38]). Let K be either a totally
real or a CM number field and  be a regular algebraic cuspidal automorphic represen-
tation of GL,,(Ak ). Then for every embedding \ : Q(w) — Q,, there exists a semi-simple

Galois representation

Pr - I — GLn(Qp)a

unramified outside a finite set of primes S, such that for any finite place v ¢ S of K, the
eigenvalues of p, »(Frob,) match with the Satake parameters of ™ at v (after applying
N, as predicted by Conjecture 2.1.2

The Galois representations in the above theorem are expected to be irreducible by
Conjecture R.1.3. It has been known for a long time, that when K is totally real, n = 3,
and 7 is essentially self-dual then the Galois representation associated with it is irre-
ducible [5]. The n = 3 case was also studied by [§] in the non essentially self-dual

setting. We will reduce the general case to the case of essential self-duality.

Theorem 2.3.8 (Bockle-Hui). Let K be a totally real number field and 7 be a regular
algebraic cuspidal automorphic representation of GL3(Ak). Then for any embedding

A : Q(w) — Q,, the Galois representation py. is irreducible.

Proof. We write p := p,  for simplicity. Assume that p is reducible:
p=0®T,

where o is a two dimensional and 7 is a one dimensional Galois representation. Therefore
T is abelian and hence, a weak abelian direct summand of p. Since p is clearly Q(x)-
rational by its definition and Q(7) is a number field by a result of Clozel (see Definition
[1.2.8), Theorem implies that the character 7 is de Rham. Since K is totally real, such
a character must be a Tate-twist of a finite character and hence comes from an algebraic

Hecke character 7 via class field theory. Now notice that:

/\2p:/\2a®(0®7)@/\27:det(J)GD(o@T).
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Adding 72 to both sides we get

2o N\ p=det(o) @ (p®7).

In particular det(o) is also locally algebraic by and hence corresponds to an alge-

braic Hecke character y. Twisting both sides with 7=2 we have
2
1o (7?0 /\ n)=(er )& ([ddto) o).

Now we look at the (partial) L-functions of both sides. Since p and 7 are automorphic
(associated with 7 and ) and Langlands functoriality is known for /\2 : GL3 — GL3, we
can replace the associated L-functions with the automorphic ones. All the L-functions

are normalized so that the critical strip is between Re(s) = 0 to 1:

C()L(s,n2® \ m) = Lis,m @) Lis.xn ).

Now L(s,n%® /\2 7) is non-vanishing at s = 1 by a result of Shahidi and ¢ has a pole
at s = 1. Since 7 @ n~ ! is cuspidal, L(s, 7 ® 1) is entire and therefore the L-function
of the character yn~2 has a pole at s = 1 and hence this character is trivial and y = 72,
or equivalently, det(c) = 72. This simply means that p ® 77! is self-dual and therefore
p and hence 7 are essentially self-dual. As was mentioned, the theorem is known in this

case. ]

Bockle and Hui use this theorem to investigate the geometric monodromy group of
the above Galois representations and then use this to prove some p-adic Hodge theoretic

properties of them. We will make use of the following result of their work later:

Theorem 2.3.9. Keeping the notation of Theorem there exists a density one set
of (rational) primes P, such that for each p € P and embedding \ : Q(mw) — @p, the
Galois representation p; y is de Rham and regular (has distinct T-HT weights for each

embedding 7 : K — R).



Chapter 3

Inner-Twists and 2-Dimensional Galois

Representations

3.1 Serre’s Open Image Theorem

The first case of big image theorems for Galois representations beyond class field theory
was worked out by Serre for Galois representations associated with elliptic curves over
number fields. Over the field of rational numbers, this can also be seen as computing
the image of Galois representations associated with weight 2 cuspidal newforms with
rational Fourier coefficients, since one can associate an elliptic curve to such modular
forms by a construction of Eichler and Shimura. We will give a proof of Serre’s result
using Faltings’ results on Tate’s Conjecture in this section. The case of more general
eigenforms will be discussed in the next section.

Let K be a number field and £// K an elliptic curve. It is well known that the rational
endomorphism algebra of this elliptic curve, End%(E) = Endg(F) ®z Q, is either iso-
morphic to Q or to Q(+/—d) for some square-free positive integer d > 1. In the second
case F is said to have complex multiplication or CM for short. The first case is then
called the non-CM case. If K contains y/—d then one can see that the Galois represen-
tation associated with £ decomposes as the sum of two characters. If not, the restriction

to the Galois group of K (+/—d) does, so we get

e
pE,p‘FK(\/_—d) = X@ X

where o is the non-trivial element of Gal(K (1/—d)/K). This means that in this case

PEp = Indg(\/jd) X. In any case, when E has CM, the image of the Galois representation

31
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is small, i.e. it can be described by a character after at most a degree two extension.
If £/ is non-CM then Serre proves that the restriction of pg , to the Galois group of
any finite extension of K is still irreducible [39]. Here, we will give a proof based on

Faltings’ theorem.

Theorem 3.1.1 (Serre). Let K be a number field and E over K an elliptic curve without
complex multiplication. Then pg, is strongly absolutely irreducible, i.e. for any finite

extension L/ K one has that pg ,|r, is absolutely irreducible.

Proof. Assume that there exists L such that

PEpIT, = X1 D X2

for two characters y1, x2 : I'y, — @; - This clearly means that Endg 1, ) (V,(E)) contains
Q, x Q,, and hence is at least two-dimensional. By Theorem B.1| we know that

End}(E) ®q Q, ~ Endg r,1(05,);

therefore End' (E) is at least two-dimensional which means that £/ has complex multi-

plication. This contradiction implies the result. [

We will see later that proving a strong irreducibility result such as the one above is
always a crucial part of proving an open image theorem for p-adic Galois representations.

The next proposition gives another interpretation of strong irreducibility:

Lemma 3.1.2. Let p : G — GL,(Q,) be a closed embedding. Then the representation

p is strongly irreducible if and only if the induced Lie algebra representation
dp : Lie(G) — gl,
is irreducible.

Proof. LetV be the underlying vector space of p. Then GG actson V via pand g = Lie(G)
acts on V' via dp. Now assume that V' = W; @ W, as a representation of g. Then, by
Theorem [1.1.7, the representation g — End(W;) can be lifted to a group representation

U; — Aut(W;) for an open subgroup U; of G for i = 1,2. This simply means that p|y,
is reducible unless W; is not proper. This proves that strong irreducibility implies Lie

algebra irreducibility. The other direction is obvious. [

Now, we are ready to prove the main theorem of this section:
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Theorem 3.1.3 (Serre). Let K be a number field and E over K an elliptic curve without
complex multiplication. Let

PEp - 'k — GL2(Zp>

be the Galois representation associated with I (after choosing a basis for the Tate mod-
ule). Then the image of this representation is open, i.e. pg,(I'x) © GL2(Z,) is open in

the p-adic topology.

Proof. First, note that GLy(Z,,) < GL»(Q,) is open so it is enough to prove the result

for

pEp : T — GLa(Qy).

Also, notice that GL»(Q),) is a p-adic Lie group, and since ' is compact, pg,(I'x) is a
closed subgroup of this p-adic Lie group and therefore a Lie subgroup. Now by corollary
1.1.8, it is enough to prove that the Lie algebra of the image is gl,. Let G, = pg,(I'x)
and p : G, — GLy(Q,) = Aut(V,) be the inclusion map where V), = V,(E) is the
rational p-adic Tate module. Also, let g, be the Lie algebra of (,. Notice that

dp : gp — gly = End(V})

gives us a Lie algebra representation of g,. This representation is irreducible by
and hence the centralizer Cy,(g,) is a Q,-division algebra. We want to show that it
is actually equal to Q,. Choose a number field L/K such that all the endomorphisms
of I are defined over L, i.e. End.(F) = Endg(£). This means that for any normal
open subgroup H of I';, one has End;(E) ®¢ Q, = Endy(V,) and hence it must hold
infinitesimally by Theorem [I.1.7:

End.(F) ®q Qp = Endg, (V) = Coi, (85)-

Now by the non-CM assumption Endg(FE) = Q and therefore Cy,(g,) = Q,. By the
classification of irreducible Lie subalgebras of gl,, the only Lie subalgebras with this
property are sl; and gl,. We need to exclude the first case. Assume that g, = sl,. Then
G, N SLy(Q,) is open in G}, by Corollary which means that there exists a finite
extension M /K such that

pE,p(FM) - SL?(QP)‘

On the other hand det(pg,) = ¥, is the p-adic cyclotomic character which cannot be

trivialized by a finite extension. This implies that g, = gl, and we are done. ]
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3.2 Inner-Twists of Modular Forms

3.2.1 Classical Modular Forms

If f e Sy(I'o(N),Q) is a cuspidal newform, then there exists an elliptic curve E; as-
sociated with it whose Tate module is the Galois representation associated with f (see
Section 2.2.1)). Then the above result of Serre describes the image of p ,p- One can natu-
rally ask what happens in more general cases. If f € Si(N, €) with Q(f) # Q then even
det(py,) = exp ' does not have open image in GL;(Q(f),), so for one thing, one needs
to be careful about the determinant. This is not hard to fix, since one can for instance
study the intersection of the image with SL, or twist away the determinant after a finite
extension as we will see later. A more subtle issue is the existence of extra symmetries
which can already be seen in weight 2. In this case there is an abelian variety Ay as-
sociated with f whose Tate module (endowed with the right Q( f)-structure) gives py
for a place \ of Q(f) above p (or an embedding A : Q(f) — Q, if you prefer). This
abelian variety could very well have a non-trivial endomorphism ring. This forces the
image of the associated Galois representation V,,(A) to be smaller than usual since it
must commute with this action. To understand how this affects p; \ one also needs to
consider how these interact with £. Of course, one likes to rewrite this purely in terms of
the automorphic data so that it can be generalized to other situations where the associated
algebro-geometric objects are less explicit (or not available at all). As Ribet observed, if
the endomorphism ring of Ay is big, then f satisfies some sort of symmetries which he

called inner-twists. Ribet defines inner-twists as follows [33, §3]:

Definition 3.2.1. Let f € S; (N, €) be anon-CM cuspidal newform of level NV, nebentype
e, weight k > 2 and Hecke field £ = Q(f). An inner-twist of f is a pair (o, x) of an
embedding o : ¥ — C and a Dirichlet character y such that for almost all primes p one

has:
“ay(f) = ap(f) - x(p)-

Ribet shows that in fact (even if £/Q is not Galois) one has o(E) = FE for every
o appearing in an inner-twist. This shows that one can choose o from Aut(FE) instead.
This furthermore shows that if 7 is the automorphic representation associated with f,
then by strong multiplicity one an inner-twist could be simply thought of as a pair (o, x)

as above such that

U7Tf:7Tf®X
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for any extension of o to an automorphism of C (see the discussion after Definition
for the action of o on 7).

In the next section we will define inner-twists for Hilbert modular forms as well and
we will state many properties of inner-twists. Here, let us just mention that inner-twists

form a group under the multiplication

(:x) - (1,m) = (007, x - 7).
We denote this group by I'. One can easily see (as we will in the next section) that the
projection to the first component identifies I" with a subgroup of Aut(E). Let F' = E' be
the field fixed by the inner-twists. Then £/ F is a finite Galois extension. Now, assume
that f is of weight 2, so that there exists a simple abelian variety Ay associated with it.
The following result of Ribet demonstrates the relation between the size of the group of

inner-twists I', and how big the endomorphism algebra of Ay is:

Theorem 3.2.2 (Ribet). Keeping the notations as above, let X = End%(Af). Then
E ~ Endg(Af) and E — X is a maximal subfield of the central simple algebra X.
Moreover, the center of X is identified with F' < E under the above embedding. In

particular, dimp X = |T|2

Ribet used the group of inner-twists to construct a quaternion algebra D/F which
describes the image of the Galois representation associated to f and also the class of the
endomorphism algebra X in the Brauer group. Momose generalized his results to higher
weights. We will state the theorem now but do not give the construction of D and the
proof of the theorem at this point because this will follow from our results in the next
chapter for n-dimensional Galois representations. However, in the next section, we will
give Nekovai’s construction of D in the case of Hilbert modular forms since it is slightly

different from ours.

Theorem 3.2.3 (Ribet, Momose). Let f € Si(N,€) be a non-CM newform with Hecke
field E = Q(f), group of inner-twists T and F = E'. Let E, = E ®q Q, and also
F, = F ®q Q, as usual. Then there exists a quaternion algebra D over F' that can be
realized inside Ms(E) (as an F-algebra) and an open normal subgroup H < T'g such

that for every prime p one has
prp(H) = D*(F,) :== (D ®r F,)* < GLa(E)).
Moreover, ps,(H) is open in the p-adic Lie group

{r e D*(F,)|Nrd(z) € Q, }.
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Note that just like the open image theorem of Serre, this theorem is giving a precise
description of the image of the Galois representation associated with f, up to p-adic
openness. In the £ = 2 case, Ribet also clarifies the relation of this quaternion algebra

with the abelian variety A;:

Theorem 3.2.4 (Ribet). Keeping the notations from the last theorem, assume k = 2 and
X = End%(Af). Then one has

[X] = [D] € Br(F) = H*(Tp, F).

3.2.2 Hilbert Modular Forms

Nekovar generalized the work of Ribet and Momose to the case of Hilbert modular forms
in Appendix B of [27]. When everything is done in the right way, the arguments are
similar for the most part. One difference is that in the parallel weight 2 case, where one
expects the existence of an abelian variety associated with the form, the construction of
such an abelian variety is not known in general.

Let K/Q be a totally real field of degree d, and f be a non-CM Hilbert modular
newform over K of weight (ki,--- , kq) and level N' < O and we assume that all of
the k;’s have the same parity. Equivalently, we can consider a non-CM cuspidal au-
tomorphic representation 7y of GLy(Ag) of level K1(N) < GLy(Ox ® 7) that is a
discrete series representation of weight k; at the infinite place v;, where {vy,--- , vy} are
the Archimedean places of K. Assume that £ = Q(f) is the Hecke fieldand w = |- |™¢
is the central character of 7¢, with ¢ is a finite character. Following Nekovar [27], we

define the inner-twists:

Definition 3.2.5. Keeping the notations as above, an inner-twist of f is a pair (o, x)

where 0 : £ <— C is an embedding and y is a Hecke character such that
=1 X-

We could equivalently define inner-twists using the g-expansion of f. Let ? be the

different ideal of the number field K, z = (zy,- - , z4) be a point in H¢, and
F) = )5 an(f)g?
n=yu-9"!

u>»0

be the g-expansion of f. Then a pair (o, x) as above is an inner-twist if and only if

ap(f) = ap(f) - x(p)
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for almost all prime ideals p of O
Proposition 3.2.6. Let (0, x) be an inner-twist of f. Then one has
1. X* =°w/w = %¢/p and hence it is finite.
2. x = " uforr e Z and a quadratic character L.
3. Im(x) € E.
4. o(E) € E, hence o € Aut(FE).
Proof. See [27, B.3.2]. ]
If (o, x) and (o, x’) are two inner-twists of f, then one has
Tr=m; XX

which implies y = x’ since f is non-CM. This means that for an inner-twist (o, x), the
character y is uniquely determined by . This motivates us to use the notation (o, ) for
an inner-twist sometimes. This also implies that forgetting x, embeds the set of inner-

twists into the automorphisms of £. We usually use this identification without warning

from now on.

Proposition 3.2.7. Let I be the set of inner-twists of f identified with a subset of Aut(E).

Then one has:
1. T is a group under the multiplication
(0,x) - (1) = (@ o7, X 7n).
2. I' € Aut(FE) is an abelian subgroup.
3. Let F := E". Then T = Gal(E/F) under the above identification.

Proof. See [27, B.3.3]. ]

Nekovar proves the results analogous to that of Ribet and Momose for the case of
Hilbert modular forms. Similar to Theorem one finds a quaternion algebra describ-
ing the image of the associated Galois representation. Let us explain the construction of

this algebra locally. Let
p=prp: T — GLa(Ep)
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be the p-adic Galois representation associated with f, where £, = E ®g Q, as usual.
Now let (0, x,-) be an inner-twist of f,i.e. “a,(f) = ay(f) ® x,(p) for almost all prime
ideals p of Ok . This means that the two Galois representations “p and p ® x, have the
same trace at Frobenius elements Frob, for almost all p. Note that by abuse of notation,
we are denoting the Galois character associated with the finite Hecke character y,, by the
same notation. Now, since the Frobenius elements are dense by Chebotarev’s theorem,
we deduce that the two Galois representations “p and p ® X, have the same trace. They
are both irreducible since f is cuspidal, therefore by the Brauer-Nesbitt theorem they are

isomorphic. This means that there exists a matrix o, € GL2(F),) such that

p=aa(p@®xo)a; .

(e

Now let H =) ker(x») < 'k, which is an open subgroup of I'x. Since all y,,’s are

trivial on H, the above equation becomes
o _ -1
/0|H = Qg p|H C 0

on H. We can E,-linearly extend p|y to

which clearly still satisfies

p = O - ﬁ ’ OCO'
for any o € I'. We define a twisted action of I' on the matrix algebra M(E,) as follows.
For any inner-twist 0 € I' = Gal(E/F) and A € M,(E,) we define

twlo) A . — a;l A ay.

Therefore, every matrix in p(H) satisfies ") A = A. Now, we define the F},-algebra
D, as

whose group of units clearly contains p(H).

Theorem 3.2.8 ( [27], Appendix B.4). There exists a quaternion algebra D/ F such that
for every prime p one has D, = D ®p F,. Moreover, ps,(H) is contained and open in
the p-adic Lie group

{r e D*(F,)|Nrd(z) € Q; }.
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3.3 Explicit Formulas

3.3.1 Quer’s Formula

Let f € Si(N,¢) be a non-CM newform with Hecke field E = Q(f), group of inner-
twists ' and ' = E'. As we saw in Theorem [3.2.3, there exists a quaternion algebra
D/F describing the image of the Galois representation associated with f. In a more
computational direction one can ask if one can explicitly compute this quaternion algebra
(for example as an element in the Brauer group of F) in terms of the Fourier coefficients
of f. Quer was able to find such an explicit formula for [D] € Br(F") when k = 2 [28].
This was later generalized to arbitrary weights £ > 2 in [20]. In this section we review
Quer’s formula.

From now on we assume that k = 2. Let f = Y| _, a,¢" be the g-expansion of f. Let

n=1

H = (), ker(x,). H is clearly an open normal subgroup of I'g so there exists a finite
Galois extension /N /Q such that H = I'y. One can show that Gal(N /Q) is a 2-torsion
group and hence it is isomorphic to (Z/27)™ for some positive integer m. Therefore,

there exist rational numbers ¢4, - - - ,%,, such that
N =QWt, ,Vtm).
Let oy, - , 0y, be an Fy basis for Gal(N/Q) such that
oi(y/B) = (~1) -\
Quer also needs the following lemma of Ribet in his proof:

Lemma 3.3.1 (Ribet). Let P be the set of all rational prime numbers. Then the field
F = E" is the field generated by all but finitely many numbers of the form a;/€(p), i.e.

one has
F=Q ({ap/e(p)}per\s)
for any finite set S < P.

Now we can state Quer’s main result [28, Theorem 3]. Let ¢, be the 2-cocycle in
Br(F) = H*(T'y, F") given by the formula

ce(0,7) = Ve(o)/e(r)\/ e(oT) 7,

where we are considering € as a Galois character. One easily sees that this cocycle takes

values in {+1}.
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Theorem 3.3.2 (Quer). Let py, - - - , pm be prime numbers not dividing the level of f, such
that a,, # 0 and o; = Frob,, in Gal(N /Q). Then one has

[D] = [66] (t17 a;?)l/e(pl)) (t27 a§2/6(p2)) e (tmv a]%m/e(pm))
in Br(F'), where (-, ) denotes the Hilbert symbol over F.

It follows from the Sato-Tate conjecture for f that the coefficients a, are non-zero
for a density 1 set of primes p and then the Chebotarev’s density theorem guarantees the

existence of py, - -+ , p,,, in the theorem.

3.3.2 Generalization to Hilbert Modular Forms

In this section we want to generalize Quer’s result to the case of Hilbert modular forms
of parallel weight 2 with trivial nebentype, under the condition that the degree of the base
field over QQ is an odd number. The material of this section is identical to the preprint [42]
by the author.

Let K be a totally real number field such that [K : Q] is odd and let f be a non-CM
(Hilbert) newform of parallel weight 2, level N" where A is an ideal of O, and finite
central character (nebentype) €. It is well-known that in this case, one can use Shimura
curves to construct an abelian variety A, over K associated with f. Let p be a non-zero
prime ideal of O, T} be the Hecke operator at p, and a, the eigenvalue of 7}, acting on f.
Let the number field £ = Q({a,},) be the Hecke field of f. The abelian variety A;/K
is of dimension d = [E : Q] and hence its ¢-adic Tate module (after tensoring with Q) V
is of dimension 2d over (Q;. One can define an F-structure on this Tate module by letting
a, act via the Hecke operator at p. This turns V; into a rank 2 free module over F ®q Q
endowed with a continuous I i-action. This is the Galois representation associated with

f which after a choice of basis can be written as
Pre - FK - AutE(W) =~ GLQ(E @Q @g)

It is also well known that this Galois representation is unramified outside /A" and for
any unramified prime ideal p, the Eichler-Shimura relation implies that the characteristic
polynomial of p;,(Frob,) is equal to X2 — a, X + €(p)Nm(p).

As we saw in Theorem B.2.§, Nekovai constructs a division algebra D over a subfield
F of the Hecke field £ which describes the image up to p-adic openness. Just like the

case of classical modular forms (Theorem B.2.4), in the special case where one knows
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there is an abelian variety associated with f (in particular f is of parallel weight 2) F' is
equal to the center of the algebra X := Endg(A;)®zQ [27, B.4.11]. Since Ay is of GL,-
type over K and f is non-CM, it is a Ribet-Pyle abelian variety, i.e. £ ~ Endx(A;)®zQ
is a maximal subfield of the simple algebra X [21, Propposition 3.1]. Moreover, D and
X have the same class in the Brauer group of F' [27, B.4.11].

First, we need to generalize a theorem of Ribet [34, Theorem 5.5] to our situation.
This is the main arithmetic input in the proof of Quer’s formula. Ribet’s proof works
without many changes but we will repeat the arguments for the convenience of the reader
and because this does not seem to be written down in the literature in this case. Then, we
will generalize [34, Theorem 5.6] using the work of Chi [[10]. Here some of the Galois
cohomology computations become more complicated due to the fact that our base field
K is not contained in the field F', whereas in the case of classical modular forms K = Q
is contained in every number field. Therefore one needs to carefully go up and down
between different fields to be able to carry out the computations.

The first step is to generalize [34, Theorem 5.5.] to the case of Hilbert modular forms.
Ribet uses Faltings’ theorem on isogenies (Theorem B.1]) to relate the endomorphism
algebra X to the Tate module. We will do the same thing and closely follow Ribet’s
arguments. Choose a prime number ¢ that splits completely in £. Then one has d different
embeddings o : £ — Q. Let M be a finite Galois extension of K such that all of the

endomorphisms of A are defined over M. Now by Faltings’ isogeny theorem one has

X ®q Q¢ = Endg,r,,1(V2)- (3.1

Remember that V; also carries an E-structure through the Hecke action. Every em-
bedding o of F into Q, gives a £ ® Q, -module structure on QQ, with respect to which
we can define

VO’ = ‘/E ®E®Qg,a @@7

which is a Qy-subspace of V; of dimension 2 that is invariant under the action of I'f.
Now note that a € F acts on V,, via multiplication by o(a) € E, hence for two different
embeddings o and 7, V,, and V- have trivial intersection as subspaces of V. This (together
with obvious dimension reason) gives a decomposition
Vi= @ V.
o E—Qy

of Q[I" k]-modules.

The following lemma will be useful later:
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Lemma 3.3.3. For each embedding o one has Endg,r,,|(V,) = Qu. In particular, V, is

absolutely irreducible as a 1 \;-representation.

Proof. From (B.1) one has X ®q Q,; = Endg,r,,;(V2). Since E is a maximal subfield of
X, taking the centralizer of ¥ ® Q, of both sides one gets

E %) Qe = EndE@QZ[FM](W)v

which means

(‘BUQK == C—BO'End@g [Car] (Va>7

which implies the first part. Since V,, is semi-simple by Faltings’ proof of the Tate con-

jecture, irreducibility follows immediately. O

For every prime p of Ok not dividing (N, recall that the Frob, action on V; has

characteristic polynomial
X? — a,X + ¢(p)Nm(p) € E[X].
Therefore, for every embedding o : £ — Q, one has
tr(Frob, C V,) = o(a,) € Q.

Restricting the compatible family of Galois representation to I';, one gets another com-
patible family, namely for every finite place v of M not dividing /N there is ¢, € E such
that

tr(Frob, C V,) = o(t,) € Qy.

Let ¥4y be the set of finite places of M not dividing /N and L = Q(¢, : v € Xyy) < FE.

Then one has the following:
Lemma 3.3.4. The center of the algebra Endg,r,,1(Vi) is L ®g Q.

Proof. First note that by Faltings’ theorem
E®Q,= End@e[FK](vf) < End@z[rM](VE)

and since £ ® Qy centralizes itself, it should contain the center of Endg,r,,;(V7).
Semi-simplicity of V, implies that V, and V. are isomorphic as I'j;-representations
if and only if they have the same Frob, traces for all places v of M not dividing N, or

equivalently, o and 7 agree on L. Now let v : L — @Q, be an embedding and define

Vy =g, = Vo
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Thus one has the decomposition V' = @V/, and also since there is clearly no non-trivial

endomorphism from one V/, to another, one also has the decomposition
Endg, [Tar] (Vp) = @’YEndQZ[FM] (VW)

Now let @ € L. Then a acts on V,, by o(a), hence it acts on the whole subspace V/, by the
scalar y(a) € Q, which means (because of the decomposition above) it’s in the center
of Endg,r,,1(Vi). So the E-algebra structure on Endg,r,(V;) induces this L-algebra

structure on Z(Endg,r,,; (V7)) which means it is enough to prove

Z(Enng[rM](Ve)) ~ L ®Q

as L-algebras. This is easy to check:

Z(EndQé[FM](w)) = Z(C"B’VEndQé[FM](V’Y)) = @“/Z<End@e[FM}(VV)) ~@,Q =L Q.

[
Corollary 3.3.5. L is the center of X, i.e. L = F.
Proof. Recall that from Faltings’ isogeny theorem we have
X ®q Q¢ = Endg,r,,j (Vo).
Now from the last lemma it follows that
L®Qe = Z(Endg,rr, (Ve)) = Z(X ®q Q) = FF@Qy
which implies ' = L. ]

Lemma 3.3.6. If 0,7 : E — Q, are embeddings that agree on F then there exists a

character ¢ : I'xy — Q such that V, ~ V. ® ¢ as representations of I' .

Proof. From the proof of Lemma we know that since o and 7 agree on F' = L,
V, and V, are isomorphic as representations of I';;. So we can choose two bases for V,
and V. such that the homomorphisms p, : I'x — GLy(Qy) and p, : I'x — GLy(Qy)

associated with V, and V. are equal on I');. Now define

o(9) == p; ' (9)p-(9)-

A priori ¢ is justamap ¢ : 'y — GLy(Qy) which is trivial on I');. We want to prove

that it is actually a homomorphism with values in the center (hence actually a character).
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Letg € T'x and h € T';. Note that p,(h) = p.(h) and p,(ghg™") = p,(ghg™") since
"5 is normal in T'g. Now the following computation shows that ¢(g) = p,'(9)p-(g)

commutes with p, (h):

0, (9)p-(9)p-(h) = p (9)p-(gh) = p; " (9)p-(ghg™")p-(9)

= po(g ps(ghg™ ) p-(g) = pa(h)p; (9)p-(g) = pr(R)p; " (9)p-(9).

Now since Endg,r,,)(V;) = Q¢ we are done. [

Corollary 3.3.7. Using the notation of the last lemma, ¢* = :—E and for any prime p of
K of good reduction for Ay, one has

o(ay) = ¢(Frob,)T(ay).

Proof. Note that V, ~ V, ® ¢. Taking determinants of both sides one gets the first part

and taking trace one gets the second part. U

Ribet also proves that in the K = Q case, the field F is generated by {a>/e(p)} -
This is also true in our case. In fact, by [27, B.4.11] F' is exactly the field fixed by inner-
twists and the above result is known in much more generality in this context by the results
of [12].

Proposition 3.3.8 ([12], Corollary 4.12). The field F is generated over QQ by the numbers
ag/€(p) forp t N.

Ifo € Tk, then o acts on the Q-endomorphisms of A by o(¢)(z) := o(¢(0cz)) and
this linearly extends to an action on X. F is clearly invariant under the action of [' on X
(we are identifying F with the maximal subfield of X'). Since this is an automorphism of
F-algebras, By the Skolem-Noether theorem the action of ¢ is given by conjugation by
some element a(0) € X. Since F is invariant under the Galois action, a(c) commutes
with E and therefore a(0) € E because F is a maximal subfield and hence its own
centralizer. The next theorem relates the map o which is of geometric (motivic) nature

to the (automorphic) data of Hecke eigenvalues.

Theorem 3.3.9. For every o € I'i one has a(0)?/e(c) € F*. Moreover, for every prime
ideal p of Ok away from (N, if a, # 0 then a(Frob,) = a, modulo F*.

Proof. As usual, let ¢ be a prime number that splits completely in £. It enough to prove

that for every pair of embeddings o and 7 of F in Q, that agree on F one has o(a?/¢) =

7(a?/e).
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Now if 0 and 7 agree on F' then by Lemma there exists a character ¢ : I'x — Q/
such that V, ~ V. ® ¢ as representations of I'x. In particular, it implies that as 1-

dimensional representations of I"x one has
Hosz[FM](VU’ Vi)~ ¢.

Also note that if the embeddings o and 7 do not agree on F' then they are not isomorphic

as I'j/-representations and hence
Hole[FM](VU? V;') =0.
Therefore we can completely understand X ® Q;:

End?\/[(Af) ® Qf = End@é[FM] (®V7) = C—DUJHom@Z[FM} (VU7 VT)

Now remember that on the LHS, g € ' acts via conjugation by a(g). Hence, it acts
on V, and V, by o(a(g)) and 7(«(g)) respectively. Now assume that o and 7 agree
on F. Then g acts on Homg,r,,1(V5, V;) by o(a(g))/7(a(g)). On the other hand as
a representation of I' this is just ¢, so o(a(g))/7(a(g)) = ¢(g). Since ¢* = Z£ one
deduces that o(a?/e) = 7(a?/€) and the result follows.

For the second part, first notice that

¢(Froby) = o(a(Froby))/7(x(Froby)) = o(ap)/7(ap),

therefore

o(a(Froby) /ay) = 7(a(Froby) /a)
which implies the result. []

Our second goal is to prove an analogue of [34, Theorem 5.6] in our setting. Ribet
uses a result of Chi to prove this theorem. In [[10], Chi studies the twists of a central
simple algebra by a 1-cocycle. We need to review some of his results and generalize
some of those to our setting.

First note that the endomorphism ring Endg(A;) acts on the space of differential 1-
forms on A/Q (which we denote by Q}@) via pull back. For an endomorphism ¢ and a
I-form w we use the usual notation ¢*w for this action. This action linearly extends to
an action of X on this space and we use the same notation for this action as well. Also,

note that for any o € I'x and ¢ € X one has

o(¢*w) = (0¢)"(ow) = (a(0) - ¢ - a(0) )" (ow). (3.2)
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For o and 7 in ', define ¢, (0, 7) := a(o)a(r)a(or) ™. This commutes with every
element in X so it lands in F'. Therefore a gives a well-defined group homomorphism
E’X
Fx’

aK:FK—>

Let ap g be the restriction of arg to I' . We sometimes use the same notation to denote
the composition of this map with the canonical map to (FK)*/(FK)*:

EX  (EK)*
F<  (FK)<

apg  'rrg —

Let Xri := X ®r FK. This is an algebra over F' /K. Note that every element in F' K is
a sum of the form ), f;k; for f; € Fand k; € K, so Xk is generated by pure tensors of
the form ) . ¢; ® k; for k; € K.

As in [10] one can look at the twist of this algebra with (the 1-cocycle defined by) «
which we denote by Xrx (apx) following Chi.

Proposition 3.3.10 ( [[LO], Proposition 1.1). One has
dlmFK XFK(Q{FK) = dln’lFK XFK = dszX

Moreover

Xrk(ark) Qrk Q =~ Xrx ®rk Q.

Therefore, Xk (arr) is a central simple F K -algebra.

One can also view Xy as a K-algebra and twist it with ax instead to get the K-
algebra X pg (ag). Let us recall the definition of this algebra. First for any o € I'x we
define the twisted action of o on Xpx ®x Q as follows. On pure tensors of the form
d@k@Nforpe X, ke K and \ € Q we define:

tw(o) - (¢ @k N) == a(o)palc) 'Rk a(N).
Note that £ = o (k) in the above expression. Now we define
Xrx(ok) == (Xrx @ Q)1

This K -algebra also has the structure of an F'K-algebra viaa - Y 1, ® \; := > a; ® \;
fora e FK,1; € Xpx and \; € Q.

Proposition 3.3.11 ( [[10], Proposition 1.2). One has Xrx(ark) ~ Xpg(ak) as FK-

algebras.
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This implies that X (k) = (Xrx ®x Q)™ T'%) is also a central simple FK -
algebra. From now on we simply write X i («) for this central simple algebra.
E is a subfield of Xrx. Let L be a maximal subfield of X g containing £. Then L
contains KK as well. So one can look at avp as a group homomorphism
LX
Tpg > ———
orkx L Fr (FK)~

which has values in £/. Now one can apply [|10, Proposition 2.4] to get

Xrk(apk) @rk Endpg L ~ Xpr ®pi Endpg L(apk).

We can conclude that in the Brauer group Br( /' K') one has
[XFK<04)] = [XFK] + [EHdFKL(OzFK)]

From this point onward, we assume that the central character € of f is trivial for simplic-
ity. In the general case, one also needs to carry the 2-cocycle ¢, = [Endpg L(€)] in the

computations. Now we can prove:
Lemma 3.3.12. Assuming € is trivial, the order of [ X g ()] in Br(F K) divides 2.

Proof. So far we proved
[(Xrr(a)] = [Xrk] + [Endpx L(ark))]

in Br(FK). By [27, Proposition B.4.12] we know that X and hence Xpx have Schur
index dividing 2. Also from Theorem we know that a? = ¢ modulo F*. Applying
[10, Proposition 2.2] we get

2- [El’ldFKL(OzFK)] = [EHdFKL(Oz%Kﬂ = [EndFKL(e)]
Since e = 1 we are done. ]

From Section 2 of [[10] we know that the class [Endpx L(cp )] in the Brauer group
Br(FK) = H?(I'rg, Q) is the same as the image of the cohomology class defined by o
in H' (T prc, PGL,,(Q)) under the connecting homomorphism

§ : H'(Tpg, PGL,(Q)) — H*(Trx, Q)

where n = [L : FK]|. More concretely, one can view every ¢ € L as an F K-linear

endomorphism ¢ : L — L given by multiplication by ¢. So every ¢ can be viewed as an
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n x n matrix with F'K -entries. Now viewing every a(o) € E as such a matrix, conjuga-

tion by this matrix gives an element in PGL,,(F K') = PGL,,(Q). This gives a 1-cocycle

with PGL,,(F K) or rather with PGL,,(Q) values that is invariant under the I'rf action.
Since the connecting homomorphism § sends a 1-cocycle f to f(o)o(f(7))f(o,7)71,

one concludes:

Corollary 3.3.13. Let c, (0, 7) = a(o)a(r)a(or) ™! be a 2-cocycle for the trivial action

of T'ic on F*. Then the image of [c,] under the sequence
H* (T, F*) ™ HX(Tpge, F*) % HX(Tpg, Q)
is exactly the class of [ X rx ()] in H* (I pi, Q) = Br(FK).
Corollary 3.3.14. In Br(F' K) one has
[(Xrx ()] = [Xrr] + ta(res([ca])).

Our next goal is to prove that X px («) is trivial in the Brauer group. The main ingre-

dient is the next proposition.
Proposition 3.3.15. Xy () acts (linearly) on Q..

Proof. First, we define an action of X px®Q on Q}@ by extending the action of X linearly,

namely we define

(6 Rk ® \)*w == kA¢*w

for p € X, k € K and A € Q. Now using (B.2) one easily sees that for any o € T'xc and
YeXpk®Q,

o(P*w) = (tw(o) - ) ow
which means that if ¢ is invariant under the twisted Galois action and w is invariant

under the usual Galois action, then ¢)*w is also invariant. This means that Xz (o) acts
on QL. O

Proposition 3.3.16. Xpx(«) € Br(FK) is trivial.

Proof. Let Xrpi (o) = M, (D) for some division algebra D over F'K of dimension s
By Corollary one has s|2. Now dim X (a) = n?s? which should be equal to
the dimension of X over F, therefore ns = [E : F]. By Proposition B.3.15, Q} is an



Explicit Formulas 49

M,,(D)-module. So there is a D-vector space W such that 2}, ~ W". The dimension of

Qj; over K is equal to the dimension of the abelian variety Ay, which is [E : Q]. Hence

) . FE F
s* = dimpg D|dimpg W = n[[FKQ]K] = n[gs[ I ;\Q]K] =s[FnK:Q

This implies s|[F' n K : Q], but since s|2 and [K : Q)] is odd, one has s = 1. O

From Proposition and Corollary and the fact that [ X px| € Br(F K) has

order dividing 2, one deduces:

Corollary 3.3.17. In Br(F K) one has

[Xri] = ta(res([eal))-

Now we need to go down from F'K to F' to compute the class [X] in Br(F') using a.
We can use the corestriction map to do so. First, note that by the last corollary we know
that in the following diagram, the image of [co] in H2(T'pg, ) is [Xpx] which is the

image of [ X] under the restriction.

[Ca] € Hg(FK,F*) L) H2(FFK,F*)

This means that
L« (res([ca])) = res([X]).

On the other hand, corores = [FK : F] = [K : F' n K] which is an odd integer. Since
X has order dividing 2 in the Brauer group, cor(res([X])) = X.
Finally, we can conclude the generalization of [34, Theorem 5.6] to the case of Hilbert

modular form (with trivial central character):

Corollary 3.3.18. In Br(F') one has

[X] = cor(ts(res([ca])))-

Now we have all the ingredients to generalize [28]. The proof'is essentially the same.
First notice that from Theorem (and the assumption ¢ = 1) we know that o? is
trivial, hence

0® : Ty — F*J(F*)’
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is a homomorphism. Let N be the finite Galois extension of K associated with its ker-
nel, i.e. ker(a?) = T'y. Since Gal(N/K) ~ Im(a?) < F*/(F*)? is a 2-torsion
group, one has Gal(N/K) ~ (Z/2Z)™ for some positive integer m. Therefore, N =
K(\/t1,...,4/tm) for some t; € K and if one defines o; € Gal(N /K') with the relations

oi/t) = (=1)"\/4;,
then o7, ..., 0, form an Fy-basis for Gal(N/K).
Lemma 3.3.19. /n Br(F'K) on has
te(res([ca])) = (t1, a(01)?)(t2, 4(02)) -+« (tm, a(omn)?),
where (a,b) = (a,b)pi denotes the Hilbert symbol.
Proof. First notice that since a(o)o(a(7))a(or)™! is a coboundary, the 2-cocycle [c,]
7)

o

o(a(r))”

is also given by the formula (o, 7) —
For each 7 € I' let
(Vi) = ()7,
Then z; : 'y — 7Z/2Z is clearly a group homomorphism. Similarly let y; : T'px —
7,/27 be the homomorphism given by

o(a(oy)) = (=1)"Va(oy)

for 0 € I'p. Now since {o;}7, provides an [, basis for Gal(N/K), every element

"“( ) where nis in 'y = ker(a?). Applying o to both

7 € I'g can be writtenas n [ [1~,
sides one gets

H o?(0;)") (mod F*?)
which implies
=\ H (o)™
i=1

for some A\ € F*. Now one can use this to give a description of [¢,]|. Applying o € T'px

to the both sides one has

0(04(7')) = AHO’(O&(Ji>)x¢(7) — )\H(_l)yi(a)m(‘r)a( 1_[ yz(a zi(7)
=1 i=1 i=1
which gives the description
H(_l)yZ(U)xZ(T)
i=1

for 1 (res([c,])) in Br(FK). Now, it is well-known that the 2-cocycle (—1)¥(?)¥i(7) jg
represented by the Hilbert symbol (¢;, a?(0;)) so we are done. O



Explicit Formulas 51

From [27] we know that I" ~ Gal(E/F) is the group of inner-twists of the form f.
Namely, for each o € Gal(E/F) there exists a unique character x,, : 'y — C* such that
Xo ® f = 7 f. This is equivalent to saying that for every finite place p of K not dividing

N one has
Xo (Froby) - a, = o(ay),

where q, is the p’th Fourier coefficient (Hecke eigenvalue) of f.

Lemma 3.3.20. The characters x, appearing in the inner-twists are exactly characters
of U'k that factor through Gal(N /K). In particular, the number of inner-twists of f is
2m,

Proof. First, we prove that all x,,’s are trivial on I'y = ker(a?). The Sato-Tate conjecture
for Hilbert modular forms is known by [2]. This implies that the set of prime ideals p of
Og for which a, # 0has density 1. Then by Chebotarev’s density theorem the Frobenius
elements of these primes are dense in ['f, therefore it is enough to check that ., is trivial
on the elements of the form Frob, € I' that are in the kernel of o and a,, # 0.

Now if a, # 0 then by Theorem B.3.9, o*(Frob,) = a2 modulo F*2. Hence, if
Frob, € ker(a?) then a, € F. This implies that x,(Frob,) = 1 by the definition of an
inner-twist. So we are done.

To prove that these are all such characters, it is enough to prove that the number of
character factoring through Gal(N/K) is equal to the number of the inner-twists. The
group of character factoring through Gal(N/K) is the dual group of Gal(N/K') and
since this is abelian it has exactly 2%,1 elements. Then by Chebotarev’s density theorem

the density of primes p (with a, # 0) for which Frob, € I'y or equivalently a, € F'* is
1

S -

Now, notice that if (o, x,,) is an inner-twist then by definition y,, (Frob,)-a, = o(ay).
So all x,,’s are trivial on Frob,, if and only if a, € F'. Also, since a; € F forall p, 2 = 1.
By [27, Proposition B.3.3] I is a finite 2-torsion abelian group. Hence, I ~ (Z/27,)"
for some n. Clearly, n < m since all x,’s factor through Gal(N/K). Now choose an
F, basis V) --- 0™ for T' = Gal(E/F). Let I'j; be the intersection of kernel of all
X s which is equal to the intersection of the kernel of all ) ’s. Now by Chebotarev’s
density theorem M = N because they contain the same Frobenius elements of ['x. Since
['y is the intersection of the kernels of x . ’s which are all of order 2, one deduces that
n > m. This implies n = m and we are done.

]
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By the last lemma, the group form by the characters y, is the dual group of the
group Gal(N/K) ~ (Z/27)™. Recall that {o;}!"_; is an [, basis for Gal(/NV/K) satisfy-
ing 0;(1/%;) = (—1)%i,/t; where N = K(\/t1,...;\/tm). Now let oV ... o™ be a

dual basis for this (so each o) appears in an inner-twist), i.e.
oW (g;) = (=1)%.

Notice that the fixed field of ker(o\?)) is just K (/).
Recall that we need to apply the corestriction map to get back over F' and find a

formula for [X] in Br(F'). The following well-known lemma helps us to do that.

Lemma 3.3.21 ( [41], Exercise XIV.2.4). Let L/F be a finite separable extension and
let cor : Br(L) — Br(F) be the corestriction map. Then for any a € L™ and b € F* one

has

COI’(G, b)L = (NI‘L/F(G), b)p

Now we can finally state and prove our main theorem of this section. Note that for

any finite place p away from N one has ag e F by Proposition 3.3.8.

Theorem 3.3.22. Let py, - - - , p,, be a set of prime ideals of Oy not dividing N and with
ay, # 0such that o; = Frob,, in Gal(N / K) (such primes exist by Chebotarev's theorem,).
Then in Br(F) one has

[X] = (Nrpgyp(th), af ) (Nrpgp(te), ay,) - - (Ntpg (), a; ),
where (a,b) = (a, b)r denotes the Hilbert symbol.

Proof. Using Lemma one only needs to notice that av(Frob,, )* = a;. modulo F'*?,

so they only differ by a square which doesn’t affect the Hilbert symbol. Therefore

ta(res([ea]) = (1,02 ) (t2,02,) -+ (s a2, ):

Now one applies the corestriction map to both sides. The left hand sides gives us [X] by
Corollary and the right hand side gives us

(Nt p(th), ag )(Ntpk /e (ta), ag,) - - - (Ntpg s p(tn), ap,)

by the previous lemma, since a2

o € F7. This proves the statement of the theorem. [



Chapter 4

Extra-Twists and Image of Galois

Representations

In this chapter, we study extra-twists for automorphic representations of GL,, and use
them to give a precise description of the image of the Galois representations associ-
ated with regular algebraic cuspidal automorphic representations of GL3 over totally real
fields. We also formulate a conjecture for the GL,, case and show how it follows from
some standard conjectures in the Langlands program. The main difference to the case of
GL, from last chapter is the possibility of the existence of outer-twists.

Let K be a number field and 7 be a cuspidal automorphic representation of GL,, (A k)

such that
7 is not self-twist, i.e. there is no Hecke character y # 1 such that 7 ~ 7 ® x, and

» If n > 2, 7 is not essentially self-dual, i.e. there is no Hecke character 7 such that

T~ Q.

In comparison to the GL,, case, these two conditions are analogues to a classical modular
form being non-CM in the work of Ribet and Momose. It turns out that these condi-
tions are enough in the GL3 case to have a big image theorem for the associated Galois
representation as we will see later, but of course not in the GL,, case.

Let Q(7) < Cbe the Hecke (number) field of 7 and let E be a number field containing
Q(7). In what follows, we will frequently use strong multiplicity one (Theorem [1.2.6)

for cuspidal automorphic representations of GL,, without mentioning it.

53
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4.1 Inner and OQuter Twists

In this section we define extra-twists for certain automorphic representations and Galois

representations.

Definition 4.1.1. An (£-)extra-twist of the automorphic representation 7 is either of the

following two:

1. (An inner-twist) A pair (o, x) where ¢ € Aut(F) and x : A /K* — C*isa

Hecke character, such that 7 ~ 7 ® .

2. (Anouter-twist) A pair (7,7) where 7 € Aut(E) andn : Aj; /K> — C* isaHecke

character, such that "7 =~ 7¥ ® 7).
Remark 4.1.2. We make three remarks about this definition.

(a) The role of E might seem a bit auxiliary and one might think it should be enough
to take £ = Q(7). But, making this slightly more general definition will help
us on the Galois side when dealing with issues regarding the field of definition
of automorphic Galois representations. Also, later it will be more convenient to
assume that £ is Galois over Q. Since we will always fix F to begin with, we will

usually drop it from the notation.

(b) Notice that the Galois action in the above definition is on the coefficients. In par-
ticular, do not confuse an outer-twist with an essential conjugate self-dual of an

automorphic representation over a CM field (e.g. as in [3]).

(c) For a general reductive group, there should be a class of extra-twists for every
automorphism of a (fixed) based root datum. This would also make sense on the
Galois side since the automorphism group of the dual root datum is canonically

isomorphic to the one for the group.

One can similarly define the notion of extra-twists for Galois representations. Let £
be a number field, p a (rational) prime number, and £}, = F®@q Q, = [],,, £}. Assume

that we have a continuous irreducible Galois representation

[[re=p:Tk — GLW(E,) = | [GL.(E,),
plp plp

which is unramified outside a finite set of places. We also assume that p is neither self-

twist nor essentially self dual in the n > 2 case, i.e. it neither satisfies p ~ p® x for a
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non-trivial Galois character y, nor p ~ p¥ ® n for any Galois character 7 in the n > 2

casc.

Definition 4.1.3. An inner-twist of p is a pair (o, x) where o € Aut(FE) is an automor-
phism and x : 'x — E,” is a (continuous) Galois character, such that 7p =~ p ® x.
An outer-twist of p is a pair (7,7) where 7 € Aut(F) and 7 a Galois character, such that

Tp = p¥ @n. An extra-twist of p is either an inner- or an outer-twist.

Remark 4.1.4. Note that p" is just isomorphic to the representation p~7 and hence has
coefficients in £, (and not just E ®q Q,). This easily implies that the characters x
appearing in the extra-twists are forced to have values in E and we do not lose any

generality by making this assumption in the definition.

From now on, we assume that K is totally real and 7 is a regular algebraic cuspidal
automorphic representation. Then it is known (see [22], [38]) that there exists a com-
patible family of Galois representations p, , associated with 7. We will see in Lemma
that this compatible family can be defined over a coefficient field E of finite degree
and Galois over Q. Then we get a bijection between the set of F-extra-twists of 7 and

E-extra-twists of p := p, ,. Therefore, we usually identify the two.

The most basic properties of the extra-twists of p (or m) are summarized in the next

lemma.

Lemma 4.1.5. Let K be totally real and p : 'y — GL,(E,) be a p-adic Galois rep-
resentation that is neither self-twist nor essentially self-dual in the n > 2 case. Then

extra-twists of p satisfy the following properties:

(i) For an extra-twist (0, X), the automorphism o uniquely determines .
(ii) If (o, x) is an inner-twist and (T,1) an outer-twist, then o # T.
(iii) Extra-twists form a group under the operation (o, x) o (1,m) :== (0 oT,x - “n).

(iv) Inner-twists form a subgroup of the group of all extra-twists. If at least one outer-

twist exists, then this is an index 2 subgroup.

(v) If p is associated with an algebraic automorphic representation T, then for any

inner-twist (o, x), the character x is finite.
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Proof. First assume that (o, ;) and (o, x2) are both inner-twists. Then p ~ p® x1x5 >
which implies x; = x2 by our assumptions on p. A similar argument proves the other
cases of (i) and also (ii). For part (iii), let us assume that both (o, y) and (7, n) are inner-

twists. Then
(Tp)=(p®N) ="pRN=pRXxQN.

The other cases are similar. For part (iv), one just needs to note that the product of two
outer-twists is clearly an inner-twist. Finally, to see (v), note that since K is totally real,
the central character of = must be of the form | - |"w for some m € Z and a finite order
character w. Hence, det(p) = €;'w where ¢, is the p-adic cyclotomic character and we
are viewing w as a finite Galois character. Now, taking the determinant of both sides of

’p=p®X, we get

n_ Cdet(p)  w
X = det(p) w’
which implies that x" (and hence ) is a finite order character. ]

We will denote the group of all extra-twists of a Galois representation (or an automor-
phic representation) by I', the subgroup of inner-twists by '™, and the set of outer-twists
by "', Lemma shows that we can identify I" with a subgroup of Aut(E) by for-
getting the character and we will do so from now on. Let ' := E' be the field fixed
by all the extra-twists and F'™ := ET™ be the field fixed by the inner-twists. In partic-
ular, I' = Gal(E/F) and I'™ = Gal(E/F™). If there is at least one outer-twist, then
[Fim ;. F] = 2. Otherwise, F' = [,

4.2 The Lie Algebra Computations

In this section we fix a p-adic Galois representation satisfying a list of natural properties
(including the property that the @p—Lie algebra of the image is big) and use the extra-
twists to determine the Q,-Lie algebra of the image of this Galois representation. In the
next section, we will apply the results of this section to the Galois representations asso-
ciated with certain automorphic representations. We will need to use some automorphic
input to show that in the 3-dimensional case this list of properties is satisfied.

Let K be a number field as usual and ' its absolute Galois group. Let £ be another
number field that is assumed to be Galois over Q and let £, = F ®q Q, = Hp|p E,.

Assume that for each finite place p|p of E, we have a continuous semi-simple Galois
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representation p, : I'x — GL,(E,). It is usually more convenient to work with the

product of all these Galois representations

[Tes = p: T = GLA(E,) = [ | GLu(E,)

plp plp

or equivalently a free £,-module V,, of rank n, with a continuous Galois action on it.
Then, for each p|p we have an n-dimensional vector space V, = V, ®g, £, over E, with
a continuous Galois action, such that V,, = @PI » Vp as Q-vector spaces.

Each embedding \ : £ — @p induces an absolute value and hence gives a finite
place p of I/ above p. Therefore, A extends to an embedding A : E, — @p by continuity.

Now we define

Vi =V, @, 2id Q, = V;, ®5,1 Q,,

which is an n-dimensional vector space over @p with a continuous Galois action. We
denote this representation by p,. Note that p) : 'y — GL,, (@p) is essentially the same
object as p, : I'x — GL,,(Ey), it is just considered with coefficients in @p instead of F,
via A.

Now, we need to make the following list of natural assumptions on our Galois repre-
sentations to be able to compute the Lie algebra of the image later. These properties are
expected to hold for Galois representations attached to regular cuspidal algebraic auto-

morphic representations of general type, after possibly a finite base change and a twist

by a character.

Definition 4.2.1. Keeping the above notations, the representation p, : I'x — GL,,(E),)
is called valid if

 Each p, is continuous and unramified outside a finite set S of places of K contain-

ing the Archimedean places and all places above p.
. (x) := CharPoly(p,(Frob,)) has coefficients in £, for each place v ¢ S.
 Each p, is neither self-twist nor essentially self-dual for n > 2.
* det(p,) is trivial.
« For each ), the Q,-Lie algebra of the p-adic Lie group p) (') is equal to s[,,(Q,).

Remark 4.2.2. We make the following four remarks about this definition:
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1. Note that by the last condition, each p, is strongly irreducible, i.e. the restriction
of py to 'z, the absolute Galois group of L, is irreducible for any finite extension
L/K. This is simply because going to a finite extension does not affect the Lie
algebra. In practice, we will usually need to prove this first in order to show that a

Galois representation is valid.

2. Note that for n = 2, we are not excluding essential self-duality, but we are exclud-

ing being self-twist.

3. The condition on the determinant is not very restrictive because we can trivialize
the determinant by going to a finite extension of K and a twist. Since our first
goal is to compute the semi-simple part of the Lie algebra of the image, it doesn’t

change anything if we restrict to an open subgroup or twist with a character.

4. In the case where the p)’s come from a compatible family of semi-simple Galois
representations, it is enough to check the last condition at only one A. More pre-
cisely, by Theorem 3.19 and Remark 3.22 of [23], the semi-simple rank and the for-
mal character of the tautological representation of the algebraic monodromy group
are both independent of A. Then [24, Theorem 4] implies that this pair uniquely
determines the Lie algebra in the type A, case, hence if we have sl,, as our Lie

algebra at one place A\, we should have sl,, at every place.

4.2.1 Extra-Twists and Galois Representations

From now on, we assume that p,, is a valid Galois representation. There are two cases that
we have to deal with. Namely, p, either has an outer-twist or it does not. Note that in the
n = 2 case we only have inner-twists since every representation is essentially self-dual.
We try to deal with both cases at the same time but at some places it is easier to make a

distinction. We need a few lemmas:
Lemma 4.2.3. For every extra-twist (o, X,) of p,, one has that x, is a finite character.

Proof. This is always true for inner-twists as we saw in Lemma §.1.5. Let (0, x,,) be an
outer-twist. Then

“Pp = Py ® Xo-
Looking at the determinants of both sides, it follows that x! = 1, which implies the
result. O
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Lemma 4.2.4. Let L be a finite Galois extension of K and let V| and V5 be p-adic finite
dimensional 1 i -representations such that the restriction of Vs to ', is absolutely irre-
ducible. If Vi ~ V; as representations of Iy, then Vi ~ V, ® ¢ as representations of I'g,

for some character ¢ of I'k.

Proof. First of all, we can choose two bases for V; and V5 such that the representations
p1: ' — GL, (@p) and p, : 'y — GL, (@p) associated with V; and V; are equal when

restricted to I';. Now define

o(g) == p1 ' (9)p2(9).

A priori ¢ is just amap ¢ : I'y — GL,(Q,) which is trivial on I';. We want to prove
that it actually has values in the group of scalar matrices; and this easily implies that ¢ is
a homomorphism, hence a character.

Let g € T'xc and h € T'z. Note that p;(h) = pa(h) and p1(ghg™) = pa(ghg™") since
', is normal in I'x. Now the following computation shows that ¢(g) = p; ' (g)p2(9)

commutes with ps(h):

p1 (9)p2(9)p2(h) = pr(9)p2(gh) = p1'(9)p2(ghg ) pa(g)

= pilg p1(ghg pa(g) = pr(h)py (9)p2(9) = p2(h)py (9)p2(g).

Now, since V5 is absolutely irreducible when restricted to I'y,, we have Endr, (V2) = (QTP

and we are done. [

Now fix a valid Galois representation p,. Note that by the third assumptions in Def-
inition #.2.1, it makes sense to consider the group I' = Aut(F) of all the extra-twists of
pp. Let T'™ F = ET and F™ = E™ be as usual. By Lemma [.1.3, the character x
in an extra-twist (o, x) is uniquely determined by o, so we use the notation y, for this
character.

We assumed in Definition that we know the @p—Lie algebra of the image. The
next two lemmas are our main tool to compute the Q,-Lie algebra. The next lemma is

the only place where we use the assumption that £/Q is Galois.

Lemma 4.2.5. LetT';, = (), ker(x,) and let L' be a finite extension of L that is Galois
over K. For every finite unramified place v of L', let a,,, b, € E be such that

fu(x) := charPoly(p,(Fr,)) = X" — @, X" ' 4+ + (=1)""1p, X + (=1)™.

Then, F™ = Q({a,},) and F = Q({a, + b, },).
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Proof. We first prove that f,(z) € F"[z]. This is because for any inner-twist (o, x),
the character y becomes trivial after restricting to I'z/, s0 p,|r,, = ?p,|r,,, which means
that f, is invariant under the action of I';,,,,, which then implies the result. Now, if (7, )
is an outer-twist, after restriction to Iz one has p,|r,, = "p, T|FL,. Looking at the char-

acteristic polynomials of Fr, on both sides, one gets
X" a, X" o ()", X (1) = X T, X e (D) g, X (1)

In particular, a,, + b, is invariant under any outer-twist 7. This implies that a, + b, € F.

Now, let F' = Q({a,},) S F"™. We want to prove that F” is the field fixed by
the inner-twists. This suffices because £ was assumed to be Galois over Q and hence
it is Galois over F". Therefore, it is enough to construct an inner-twist of p,, for every
o € Gal(Q/F"). Note that p,|r,, has traces in F”, so p,|r,, and “p,|r,, have the same
traces and since they are semi-simple, they must be conjugate. Now, by Lemma
there exists a character such that p, ® x ~ ?p,, so we are done.

Atlast, let F” = Q({a,+b,},) S F""". We want to prove that F” is the field fixed by
all extra-twists. It is enough to construct an inner-twist or an outer-twist of p,, for every
o € Gal(Q/F"). Now, note that (p, ® p, 7)|r,, has traces in F” because the trace of the
image of Fr, would be a, + b,. Therefore, (p, ® p,")Ir,, and *(p, @ p,”)|r,, have the

same trace, and since they are semi-simple, they must be conjugate. Now, by the strong

irreducibility assumption, we must have either p,|r,, =~ “p,|r,, or pylr,, ~ “p;7|r,,.
Then by Lemma §.2.4, we get either an inner-twist or an outer-twist. O]

Lemma4.2.6. Let \, ;1 : E — Q, be two places of E above pand letT';, = (), . ker(x,)
and L' a finite extension of L that is Galois over K. Then, in the case that there are outer-

twists one has

i. V\ >V, as representations of 'y, if and only if X pinn = pt| pinn.

ii. Vi~V as representations of I'y, if and only if N[ = p|p but N pinn # 1] pinn.

and in the case that there are no outer-twists one has that F = F'™ = Q({a,},), and

part i of the above is true and part ii never occurs.

Proof. Since all our representations are semi-simple, it is enough to check the equality
on the characteristic polynomials, and since they are continuous it is enough to check
this on a dense subset. We check this on the Frobenius elements of finite places of L’ at

which p,, is unramified.
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Keeping the notation of Lemma §.2.9, the characteristic polynomial of Fr, acting on
V)\ 18
X" = May) X" o+ (DA X + (1),

andon V), is

X" = plan) X" (1) (b)) X+ (-1

Since the a,’s generate F'™ by Lemma §.2.5, part i follows. For part ii, notice that the
characteristic polynomial of Fr, actingon V" is X" —i(by) X"+ - -+(=1)"""pu(a,) X +
(=1)". So, if V) ~ V¥ then A(a,) = wu(b,) and A\(b,) = p(a,), which implies that
Aay, + by) = p(a, + b,) and hence M| = p|r. On the other hand, V) is not essentially
self-dual, so by Lemma its restriction to I'z, cannot be self-dual. Thus, V) and V),
are not allowed to be isomorphic as I';/-representations in this case, which means that
M| pinn # pi|pinn. The other direction also follows easily since the characteristic polyno-

mials of Frobenius elements at unramified places clearly match. ]

4.2.2 The Lie Algebra of the Image

Now, we want to compute the Q,-Lie algebra of the image of p,,. First, we need to use the
results of Section to construct the right algebraic group which contains the image,
and then compare the Lie algebra of the image with the (algebraic) Lie algebra of this
group.

Recall that we assumed that p, has trivial determinant. Therefore we have
pp: Ik — SL,(E,).

We first define a 1-cocycle f : I' — Autg, (SL,) using extra-twists. For every inner-twist
o € '™ one has that p,|r, and ?p,|r, have the same trace. Since each p, is strongly
irreducible, this means that they are isomorphic and there exists a,, € SL,,(E,) (after
possibly slightly enlarging E if necessary) such that p,|r, = a, - 7p,|r, - o, . For the
inner-twist (o, x,), we define f, = ad(a,). If 7 € '™ is an outer-twist (if there exist
any), then p,|r, and 7p, " |r, have the same trace and there exists a; € SL,(£},) such that
pplr, = a7 - "p,Tlr, - o', For the outer-twist (7, x,), we define f, = ad(a,) o (-)~".
One can easily check that f : I' — Autg, (SL,) defined above is in fact a 1-cocycle.
Now, as in Section [[.2.1], we can define the twisted action of " by this cocycle on SL,,.

From the construction of f, it is clear that every matrix in the image of [';, is invariant
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under this twisted action. Let H = (Resf:;’ SL,,)"s() which is an algebraic group over

F,. Then it follows:
Corollary 4.2.7. The representation p,|r, factors through H(F,) < SL,,(E,).

Note that by Proposition [1.2.4, H is a form of SL,, and in particular is a semi-simple
group. Also, note that since [';, is open in ', the Lie algebras of the p-adic Lie groups
pp('k) and p, (') are the same. Let g be the Lie algebra (over Q,) of p,(I';) and b
be the Lie algebra of the algebraic group H /F),, both viewed as Lie subalgebras of the
Lie algebra of SL,,(E,). Our next goal is to show that these two Lie algebras are in fact

equal.
Proposition 4.2.8. With the notation as above, g = b.

Proof. First, note that g < h by Corollary #.2.7. Since b is semi-simple, it suffices to
prove that gder = gder ®aq, Q,isequaltoh = h ®aq, Q,.

For every embedding o : F' — @p, fix an extension ¢ : F — @p of 0. All of the
other extensions of ¢ can be obtained by composing with different elements of the Galois
group I' = Gal(E/F), i.e. they are all of the form &7 for some 7 € I'. Now, we base
change our representation p,|r, to @ to get

:T;, — SL,(E,) — SL,(E,) ——— Res£(SL,)(F,)

o~ I J J

> H(F}) — ResE(SL,)")(F,),

where E,, := E, ®q, Q, and F,, := F, ®qg, Q, = [].,. FoT, Q,. Note that we have

ResP(SL,)(F,) = [[ SLu(E®r, Q) = [[ SLi(E®rE®rs Q)
o F—Q, o:F—>Qp
= [[ [Ista@) =~ [] sL.@),
o:F—Q, T NE—Qp

where A = &7 for 7 € T. By Proposition [1.2.4, projecting to the identity component of
I gives the isomorphism of the form Res%(SL,,)*) of SL,, with SL,, over E,. So we

have:

Pp: FL B SL”<EP) — HU:F‘—%QTP HF SL"(@) ;> HA:EMQTP SL”(QTP)

~ ]

H(F,) —— [lp.peg, SLa(Q)
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For each embedding 0 : F' — @p, the composition
po Ty — H(F) — ] SL.(Q,) = SL.(Q,)
0:FQ,
corresponds to the action of ', on the vector space V), for some embedding A : £ — @p
extending 0. Note that by Lemma §.2.6, these V,’s are neither isomorphic nor dual to
each other after any finite extension. This is the main point of the rest of the argument.

On the level of the Lie algebras, we have the embedding

Let gdr < sl,, (@p) be the projection of gér to the o-component of the above map. This
is the @p-Lie algebra of the image of the representation p, (= p, for some A\ extending

o), so by our assumption of p, being valid, we have g = s[,,(Q, ).

g

Now we can apply [33, Lemma 4.6] to

glrch— [[ sh(@,).
o FQ,
We only need to prove that for every o, 7 : [ <— @p the projections (pr, x pr.) (W) and
(pr, x pr,)(h) are equal. We follow the arguments of [39, §6.2].

Clearly, it is enough to show that (pr, x pr_)(gér) = sl, (Q,) x s1,(Q,). Note that
the first factor corresponds to the representation V,, and the second to V.. Now by the
Lie algebra version of the Goursat’s theorem [31, Lemma 5.2.1], if (pr, x pr,)(gd) is
not equal to sl,(Q,) x s1,,(Q,), then it has to be the graph of an isomorphism. Let us call
this automorphism ¢ : s[,,(Q,) — s[,(Q,). Since sl, is simple, the group of its outer
automorphisms is isomorphic to the group of the automorphisms of its Dynkin diagram,
which is trivial for n = 2 and is isomorphic to % inthe n > 2 case. In this case, the class
of this non-trivial outer automorphism is given by the map X — —X7. So ¢ is either an
inner automorphism or a conjugate of this outer automorphism.

First, assume ¢ is an inner automorphism and is given by conjugation with some

matrix a. In other words, we have the following diagram:

n(Qp)

sl,(Q,)

s, (
g ¢=ad(a)
R
(
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which means that V,, and V. are isomorphic as representations of g. This implies that they
are indeed isomorphic as representations of some open subgroup of I';, which contradicts
Lemma §4.2.6. Now assume that ¢ is a conjugate of X — —X7. Similarly, this means
that V, =~ V¥ as representations of some small enough open normal subgroups of I';,

which again contradicts Lemma §.2.6. This implies the result. O]

Corollary 4.2.9. The image of I', under the representation p,, is an open subgroup of the
p-adic Lie group H(F,).

If p, has no outer-twists, then the cocycle f is always defined by an inner automor-
phism and H is an inner-form of SL,,. If there is at least one outer-twist, then this is not
true anymore, but  becomes an inner-form after a degree two extension. In fact, the re-
striction of f to the index two subgroup I'™ factors through Inn 5,(SLy) < Autg, (SLy,).
Then by Corollary [[.2.5, the base change of H to F;““ = F'™ ®q Q, is an inner-form.

In any case we have:

Corollary 4.2.10. The group Hpim, the base change of H to F;;nn, is an inner-form of the
group SL,, which splits over E,. Moreover, if p splits in the extension F;n“ /F, (p splits

in F'™ “more” than it does it F), then H is an inner-form of SL,,.

Proof. The first part follows from the discussion above. For the second part, if there
are no outer-twists, then there is nothing to prove. Otherwise, notice that when p splits,
F;,nn ~ [}, x F}, so if H becomes an inner-form over F;,““, it was already an inner-form

over I, O

Remark 4.2.11. The arguments of the last two sections can be done for more general
reductive groups with the right definition of extra-twists. Although, relating these to the
automorphic side would be more difficult as we will see that one needs some cases of

Langlands functoriality for this.

4.3 Application to Automorphic Galois Representations

In this section, we will apply the results of the previous section to Galois representations
attached to certain automorphic representations. Inthe case of GLo, we recover the results
of Ribet, Momose, and Nekovar. Throughout this section, we assume that K is a totally
real number field and 7 is a regular cuspidal algebraic automorphic representation of

GL,(Ak). It is known by the work of Harris-Lan-Taylor-Thorne [22] or Scholze [38],
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that there is a compatible family of p-adic Galois representations associated with 7. Our
goal is to understand the image of these representations.

Let |.|™w be the central character of m where w is a finite order Hecke character and
m > 1 an integer. Then, for each embedding A : Q(7) — Q, there exists a continuous

semi-simple Galois representation

pxx T — GLn(QTp)

that is an unramified Galois representation for all unramified places of 7 not above p, and
at each such finite place, say v, the characteristic polynomial of Frob, is determined by
the Satake parameters of 7 at v. In other words, these representations form a compatible
family of Galois representations. Moreover, det(prx) = (A ow) - €' where ¢, is the
(global p-adic) cyclotomic character and we are regarding the finite order character w as
a Galois character via class field theory.

It is not known wether we can conjugate these Galois representations to have values in
the completions of the Hecke field Q(7). Nevertheless, we will show that we can do this
for a finite extension £ of Q(7). This is exactly the reason why we defined extra-twists
for any Galois coefficient field containing the Hecke field in Definition §.1.1].

The Galois representations p, » are expected to be irreducible since 7 is cuspidal.
Lett, : I'x — @p be the trace of p, . This is an irreducible pseudo-representation
and it clearly takes values in Q(7),. Then by a result of Rouquier [35, Theorem 5.1] (or
more generally Chenevier [9, Corollary 2.23]), there exists a central simple algebra D,
over Q(7), of dimension n? such that this pseudo-representation can be realized as the
reduced trace of a representation I'xx — Dy'. The base change of this representation to
@p clearly gives back p;  because of the Brauer-Nesbitt Theorem. In other words, the

image of p, ) is in fact in Dy:
PrA 'k — D,\X < (D,\ () @p)x = GLn(@p)'

Lemma 4.3.1 (Chenevier). Assume that p, » is irreducible for all \ and regular for at
least one \. Then, there exists a finite extension E/Q(r) that is Galois over Q, such
that for all finite places \ of Q(m) and any place i of E above ), the central simple
algebra D) splits over E,,. In particular, there exists a finite extension E/Q(m) such
that all representations p \ can be defined over E (can be conjugated to have values in

completions of I).
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Proof. First, recall that a central simple algebra Dy = M,,(Q,) splits in an extension M
of F, if and only if it contains an element with n pairwise distinct eigenvalues in M. Let
v be a place of K at which 7 is unramified, and let f(*)(z) € Q(7)[z] be the characteristic
polynomial of the Frobenius element at v, which is independent of A. Then, as in the proof
of [B, Lemma 5.3.1], choosing a A for which p;. , is regular, we get that for infinitely many
places v, one has that f(*)(x) has distinct roots. This shows that if £’ is the splitting field
of f)(z), then D, splits over the completion of £’ at any finite place coprime to v and
the level of 7. Since it clearly splits over some finite extension of £ as well, we can
find a number field £ which splits all D)’s at the same time. To conclude, we take the
Galois closure over Q.

O

Remark 4.3.2. A natural question that arises after this lemma is if one should expect the
D)’s to come from a global object D /Q(7). We will discuss this more in the next chapter.
In particular, in the special case of n < 3, this follows from our results, the existence of

a motive associated to 7, and the Mumford-Tate conjecture for that motive.

From now on, we take E to be the number field coming from Lemma §.3.1], and we
take our Galois representations to have values in GL,,(E,,) for finite primes p of £. So,

we are in the setting of the pervious sections and we can define p; ,, as follows:

[ [ pre =t prp: Tic = GLA(E,) = | [ GL.(E),
plp plp

where E, = E®q Q, = [],, Ey as usual.

From now on, we assume that 7 is neither self-twist nor essentially self-dual in the
n > 2 case. Then it makes sense to talk about F-extra-twists of 7. Since E is fixed, we
will drop it from the notation from now on. By multiplicity one, inner-twists of 7 and
pr p agree (we are using class field theory to identify the characters). So, let I', '™, Tout,
F, and F'™ be as usual.

The determinant of p,, is given by w - €;". To apply the results of the last section, we
first need to kill the determinant. This is always possible after a finite extension. In fact,
after a finite extension, the cyclotomic character will have values in 1 + pZ,, and then we
can use the p-adic logarithm on it. Therefore, there exists a finite extension M /K such
that €,|r,, has an n’th root. We fix one of those characters and denote it by e;,/ ". Now,

we enlarge M to trivialize w if necessary. Then,

p;'yp = pﬂ':p‘FJM & E;m/n Ty — GLn(Ep)
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has trivial determinant. This is the Galois representation that we will apply our results
from the last section to. Notice that the extra-twists of p/. , and p , are the same. More
precisely, the characters might have changed after the twist but the group I' © Aut(E)

has not. It is also not hard to see how the Lie algebra of the image changes.

Lemma 4.3.3. Assumethat p/, ,is valid. Let g’ := Lie(p), ,(I'ss)) and g = Lie(pr,(I'1)).
Then g% = g'.

Proof. Let G = prp(I'y) and G" = pl (I'ar), and let Z be the center of GL,(F,).
Then, we clearly have G € G’ - Z and G’ < G - Z. Taking the Lie algebras we find that
g < g +j3and g’ < g+ 3 where j is the Lie algebra of the center. Since g’ is semi-simple,

by Proposition §4.2.8, this implies that g is reductive and g% = g'. [

In the case that p/ is valid, let H,,/ F;, be the semi-simple group from Corollary
applied to p . Then we have:

Proposition 4.3.4. [f p;  is valid, then there exists a finite extension L of K such that
prp(L'L) is contained and p-adically open in H,(F},) - Q) < GL,(E,).

Proof. Since the image of p/,  is contained in H,,(F),) after a finite extension, and the im-
age of /™ is in Z) , the image of p, , is contained in H,,(F),) - Q) after a finite extension.
The image is open in H, < SL,(E,) by Lemma and the image of the determinant

is open in Q, so we are done. [

This in particular implies that the connected component of the Q,-Zariski closure of
the image is the algebraic group (Resgi H,) - Gy, 0,- Now, we only need to check the
validity of p/ .

4.3.1 The GL> Case

As we mentioned in the introduction, essentially everything is known in this case, by the
work of Ribet [33], Momose [25], and Nekovar [27]. We repeat the arguments for the
sake of completeness. In this case, all representations are essentially self dual, so there
are no outer-twists and I' = I"™, One can in fact take £ = Q(m) (then I" would be
abelian), but it is not necessary for our discussion. Recall that we assumed that 7 is not
self-twist, i.e. does not satisfy m ~ 7 &® x for x # 1. In this case it is more common to

say that  does not have complex multiplication (CM).

Proposition 4.3.5. Assume that n = 2 and m does not have CM. Then p;_, is valid.
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Proof. Most of the properties are clear from the analogous properties for p. ,. We only
need to check strong irreducibility and compute the @p-Lie algebra.

It is known that p,  is irreducible (see Theorem R.2.1)). It is also known that it is
de Rham and the Hodge-Tate weights are distinct. Strong irreducibility of p/ , and pr
are clearly equivalent. Assume that p, |, is reducible for some finite Galois extension
L/K. Since p, , is semi-simple, so is its restriction to ', and we have p \|r, ~ x1@X2.
Since p, ) is Hodge-Tate with distinct Hodge-Tate weights, so is p, x|r,. This implies
that x; # 2. Let K’ be the fixed field of the stabilizer of y;. Then it is clearly a degree
2 extension of K and if Gal(K'/K) = {1, 0}, then yo = ox; (otherwise y; would be a
direct summand of p, »). This means that p, , ~ Ind? (x1), which implies that 7 is CM.
Therefore, p. » and hence p , are strongly irreducible.

Now, let g < sl,(Q,) be the derived part of the Q,-Lie algebra of the image of
Prx s T — SLy (Q,). Since Pl is strongly irreducible, the irreducibility holds in-
finitesimally, i.e. g, < gl, (@p) is an irreducible representation. This means that the

centralizer of g and hence its center are in the center of gl,(Q,), which implies that

der
g

sly 1s itself, so we are done.

c sl5(Q,) is also irreducible. The only irreducible semi-simple Lie subalgebra of

[]

Now, from Proposition it follows:

Corollary 4.3.6. Let m be a regular algebraic cuspidal automorphic representation of
GLy(A k) that does not have complex multiplication and let F' be the field fixed by the
inner-twists. Then, there exists an inner form H, of SLy over F), and a finite extension L

of K such that the image of pr,(I'r) is contained and open in H,(F},) - Q; < GLy(F,).

In the work of Ribet, Momose and Nekovar, they construct an Azumaya algebra
D,/ F, which contains the image. The relation to the last corollary is that if D is the
algebraic group of units of D,, then (D )4 = H,,. In the case that 7 has parallel weight
2, where we expect an abelian variety to be associated with 7, this algebra D, is closely
related to the endomorphism ring of that abelian variety. We will explain the relation of

these results to the Mumford-Tate conjecture for that abelian variety in Chapter .

4.3.2 The GL3 Case

In this section we prove our main result. The CM-case for n = 2 can be thought of as

the 7 essentially coming from GL; by induction. Similarly, in the n = 3 case we need to
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first exclude all the cases where m comes from smaller groups via a Langlands transfer,
in which case the image would be easy to describe by previous results. It turns out that

we only need to exclude the following two cases to be able to describe the image:

1. mis essentially sym?, i.e. there exists an automorphic representation 6 of GL, (A )

and a Hecke character 7 such that 7 = sym?(6) ® 1.

2. 7 is an induction of a character, i.e. there exist a degree 3 extension L/K and a

Hecke character 77 of Ay such that 7 = Ind% (n).

Notice that Langlands functoriality is known for sym? : GL, — GLj3 by [18] and
automorphic base change is known for prime degree extensions by [|l]. In the first case
above, determining the image reduces to the GL, case and in the second case to the GL
case. The next two lemmas give equivalent classifications for the above cases and show
that they follow from our primary assumptions on 7 (not being essentially self-dual or

self-twist) that are needed to define extra-twists to begin with.

Lemma 4.3.7. 7 is essentially sym? if and only if there exist a Hecke character x such

thatm =71 ® X.

Proof. Since GL, representations are essentially self-dual, the ”only if” part is clear.
Now assume m = 7% ® x and let w be the central character of w. Taking the central
characters of both sides we have x* = w? So x = (wx~!)? has a square root and by
twisting out this square root we can assume that 7 is self-dual. Now the result follows

from [30]. [

Remark 4.3.8. Since we assumed that K is totally real and 7 is cuspidal regular alge-
braic and hence the existence of the associated Galois representations is known, one can
equivalently work with the associated Galois representation, by strong multiplicity one.
Then, one can give a different proof in the Galois side by investigating the projective

image of the representation. We will leave the details to the reader.
We also need the following lemma from [|1, Lemma 6.3].

Lemma 4.3.9. 7 is an induction of a character if and only if there exists a Hecke char-

acter x such thatm =1 ® x.

Definition 4.3.10. An automorphic representation 7 of GL3(A) is said to be of gen-
eral type, if 7 is neither essentially self-dual nor self-twist. Equivalently, 7 is neither

essentially sym? nor an induction of a character.
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Since we know strong multiplicity one for GL,,, Langlands functoriality for the map
sym? : GL, — GLj3, and automorphic induction for degree 3 extensions, these assump-
tions are equivalent to similar assumptions on each of the Galois representations p; .

Recall that in [6], Bockle and Hui prove that (in the n = 3 case), p, » is irreducible
for all \. They also prove that for a density 1 set of rational primes P, p. » is de Rham
with distinct Hodge-Tate weights for all A : E < Q, and p € P. We will use these
results to check the validity of p/ , (in fact we only need regularity at one place A by part

4 of Remark §.2.2).

Proposition 4.3.11. Assume that « is not self-twist. Then foreachp € Pand )\ : E — @p,

one has that pl; , is strongly irreducible.

Proof. Assume that p, ,|r, is reducible for some finite Galois extension L/K. Since
pr.x 1s semi-simple (in fact irreducible), so is its restriction to I';, and we have that p, 5|,
decomposes into the sum of irreducible direct summands. If it decomposes into two irre-
ducible summands, then the action of I' - cannot switch the two summands for dimension
reasons and hence each summand is actually a subrepresentation of p, 5, which is a con-
tradiction. So we must have pr alr, >~ x1 ® X2 @ x3. Since p,, is Hodge-Tate with
distinct Hodge-Tate weights, so is p |r, . This implies that the three characters are dis-
tinct. Let K’ be the fixed field of the stabilizer of x;. The action of I ;- on these characters
must be transitive, so K’ is a degree 3 extension of K and if Gal(K'/K) = {1, 0, 0*} then
X2 = ox1 and xs = 2x; (or the other way around). This means that p, , ~ Ind% (1),
which implies that 7 is also a degree three automorphic induction of a character, and
hence is self-twist, which contradicts the assumption. Therefore, p, y and hence p;, ) are

strongly irreducible. [

Proposition 4.3.12. Assume that 7 is of general type. Then, for each prime number p

and embedding \ : E — @p one has that the @p-Lie algebra of the image of p; , is

5[3 (Qp)

Proof. First assume that p € P. Let V) be the underlying vector space of p , and let
g\ 5[3(@p) be the @p-Lie algebra of the image of o/ , : I'yy — SL3 (@p). Since ol

is strongly irreducible, for every finite extension N of M we have Endr, (V) = @p,

hence this should be true infinitesimally and we have Endg, (V) = @p. This means that

the standard representation g, — End@p(V,\) ~ gl3(Q,) is an irreducible faithful repre-

sentation, which implies that gy is reductive. Let gi be its derived subgroup and hence
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a semi-simple subgroup of s[3(Q,). Since the center of gl; acts by scalar multiplication,

der
any g,

centralizer of g and hence its center are in the center of gl (@p), which then implies that

-invariant subspace is automatically g,-invariant as well, which implies that the

g < gl5(Q,) is also irreducible.

The only irreducible, semi-simple Lie subalgebras of sl3 up to conjugation are sl3 and
sl; embedded into sl3 by sym?. We need to show that the latter does not happen. Assume
that i is the image of sym? : sl — sl3. Since sym? is an irreducible representation,
its centralizer in gl is the center, which means that g, = g5 @ 3(g,) is in the image of
sym? : gl, — gl;. This means that there is an open subgroup of I'j; whose image under
P » 1s in the image of sym? : GL, — GLs. So there exists a finite Galois extension M’
of M such that o (I'y) is in the image of sym? : GLy(E») — GL3(E)) and hence is
essentially self-dual. Since the determinant of p/ , is trivial, there exist a finite extension
N of M’ (which clearly can be taken to be Galois over M) such that the restriction to
['y is in fact self-dual. Now, applying Lemma to the two representations ] |r
and p/ |1, there exists a character ¢ such that p! , ~ (p/ ,)¥ ® ¢, which contradicts
non-essential-self-duality of 7. This contradiction implies the result in the case where
peP.

Now by [6, Theorem 3.2], the irreducible type of p. » is independent of A. This
in particular means that if the @p-Lie algebra of the image of p, ) contains sl; for one
A (irreducible type A,), it contains sl3 for every A. This clearly implies the result in

general. [
Now we can easily deduce our main result:

Theorem 4.3.13 (Theorem 1.1 in [43]). Let F' = E' be the field fixed by all the extra-
twists of w. Then, there exists a finite extension L/ K and a semi-simple algebraic group
H, defined over I, .= F ®q Q,, which is a form of SL3 (constructed using the extra-
twists), such that pr.,(U'1,) is contained in H,(F,) - QX = GL3(E Qq Q,) and it is open
in the p-adic topology.

Proof. The last two propositions imply that for 7 of general type, p; , is valid for any

prime number p. Then Proposition implies the result. ]

In other words, for all p, the algebraic group (Res(gi H,) - Gm,q, 1s the connected
component of the Q,-Zariski closure of the image and the image is open in there. Let us

apply this theorem to some explicit examples:
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Example 4.3.14. In [[17], van Geeman and Top construct a 3-dimensional Q(7)-rational
compatible family of (motivic) Galois representations of I'p which is neither self-twist
nor essentially self-dual, and an automorphic representation of GL3(Aq) that should cor-
respond to it. We can apply our results to the Galois representations they construct. For

each prime p they construct a Galois representation

pp i Tg — GL3(Q(1) ® Q)

which has the property that p, ~ p," ® €, where (-) indicates complex conjugation. For

each unramified p, the characteristic polynomial of Frob, is of the form
X% — b, X? + pb, X — p?

and they give a list of values of b, € Q(¢) for small primes.

Now, in our notation, the coefficient field is £ = Q(7). There is one outer twist (-, ¢,,)
and there cannot be any more non-trivial extra-twists since Aut(F) ~ Z/27Z. Therefore,
F™ = Q(i) as well and F' = Q. Then, for each prime p we can construct a form H,, of
SL3 over the field Q, as before and the image of p,, is contained and open in H,(Q,)- Q.
Hence, we get an algebraic group H, - G, = Resgs)pGLg whose QQ,, points describe the

image. We know that /1, is a form of SL3. Recall that it is constructed as
H, = (Resg7SLy)"(GHIQ0/Q),

Similar to Corollary #.2.10, if p is a prime that splits in Q(4), i.e. a prime that is congruent
to 1 modulo 4, then H,, is in fact isomorphic to SL; over Q(¢), ~ Q, x Q,. Otherwise, it
is not an inner-form and since it splits over Q(), it is isomorphic to the the special unitary
group SUj for the degree two field extension Q(7),/Q,. So, for half of the primes (primes
of the form p = 4k + 1) the (Zariski closure of the) image is GL3 and for the other half
(primes of the form p = 4k + 3) it is SU3 - G,,,. Finding the right candidate for the group

H,, over R, one should be able to prove that all these groups H, come from a global

group H/Q.

Example 4.3.15. In [44], Upton constructs a 3-dimensional Q((3)-rational compatible
family of (motivic) Galois representations of I'g(c,) which is neither self-twist nor essen-
tially self-dual, and gives a precise description of its image. It is clear from her construc-
tion that these Galois representations have an outer-twist. She also observes the same

phenomenon as in the last example. Namely, that for half of the primes the image is GL3
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and for the other half it is a unitary group. Although, we believe there is a slight error in
her conclusion and the image in the latter case should be SUj3 - ,,, as above, rather than
the general unitary group GUsj as she claims. In fact since in the split case the image is
9-dimensional (as it is GL3), if one believes in the Mumford-Tate conjecture, the image
cannot be the 10-dimensional group GUj in the non-split case.

Even though in her case K is not totally real, we can still directly apply Corollary
to a twist of the Galois representations she constructs (after a finite extension) and

then deduce openness. It is easy to check the validity of this twisted Galois representation.

4.3.3 The GL,, Case

In this section we discuss the GL,, case. Everything we say here is conjectural for n > 3.
We assume the irreducibility conjecture (Galois representations associated with cuspidal
automorphic representations are irreducible), Langlands functoriality, and the expected
p-adic Hodge theoretic properties (de Rham with distinct Hodge-Tate weights) of our Ga-
lois representations. We want to see, assuming all these, when we can apply Proposition
to a regular cuspidal algebraic automorphic representation = of GL,,(A ). First of
all, we need to assume that 7 is neither self-twist nor essentially self-dual (in the n > 2
case). Then we only need to check that p, ) is strongly irreducible for each A and that
the Q,-Lie algebra of the image of p/, , is sl,..

Assume that p,  is reducible after restricting to I';, for a finite Galois extension L of
K. The irreducible direct summands of p, )|, are distinct since the Hodge-Tate weights
are distinct and the action of I'x on them is transitive since p, y is irreducible. This easily
implies that p, ) is an induction of a representation of a proper subgroup. This means
that the automorphic representation 7 is an induction, assuming that the automorphic
induction is true. So in order to make sure that p, ) is strongly irreducible, we only need
to assume that it is not an induction.

Now, let g be the @p—Lie algebra of the image of p ,. Since p,x and hence o

are strongly irreducible, g is an irreducible Lie subalgebra of gl,, and hence reductive.

der der

We only need to show that g = sl,,. It is well known that since g is semi-simple,

there exists a semi-simple (connected) algebraic subgroup G’ of GL,, (over @p) such
that Lie(G') = g%". This implies that after a finite Galois extension M /K, the im-
age of I'y; under p,,, lies in G°(Q,) < GL,(Q,) for the (connected) reductive group

G° =G’ - G,, < GL,,. This is exactly the connected component of the @p-Zariski clo-
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sure of the image of p, . Let the whole image be G. Then the stabilizer of G° would
give a finite Galois extension L/ K and the component group is isomorphic to Gal(L/K).
The nicest situation would be if G(Q,) = G°(Q,) x Gal(L/K). But it is not clear if this

should happen. Nevertheless, one has the following result of Brion [[7]:
Lemma 4.3.16 (Brion). Let G be an algebraic group over a field k and let
1> N-G—-Q—1

be a short exact sequence (of algebraic groups over k) such that () is finite. Then there
exists a finite subgroup F' of G, such that G = N - F. In other words, F surjects to )

and G is a quotient of N x F, where F acts on N by conjugation.

Now using this result, one can at least find a finite Galois extension M /K such that
G is the quotient of G°(Q, ) x Gal(M / K). Now, we can form the L-group G°(Q,) x I'
where the I'x action factors through the Gal(M /K) action from above. Fix a maxi-
mal torus and a Borel subgroup of G° containing it. The above action of Gal(M /K) on
G°(Q,) gives an action on the based root datum, which in turn gives an action on the dual
root datum. This finally gives a reductive group H over K which splits over M whose
Langlands L-group is G°(Q,) x ['x with the above action. Now, the Langlands func-
toriality for the L-map “H — “GL,, implies that 7 should come from an automorphic
representation of the non-split reductive group H via the Langlands transfer induced by

the above L-map. This motivates the following definition:

Definition 4.3.17. A regular cuspidal automorphic representation 7 of GL,,(A) is said
to be of general type, if it is neither self-twist, nor essentially self-dual (in the n > 2
case), and there does not exists any reductive group H over K that is a form of a proper
subgroup of GL,, such that 7 is the image of an automorphic representation of H (A)

under the Langlands transfer attached to the L-map
"H - 'GL, k.

For instance, in the GL, case this just means that 7 is not CM and in the GLj3 case it
agrees with Definition §#.3.10. Note that the condition above also automatically includes

that 7 is not an induction since it would be in the image of the following L-map then:

LRCS%(GLd — LGLd[L:K] .
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The discussion above shows that if one believes in Langlands functoriality, the irre-
ducibility conjecture, and that p, \ is de Rham with distinct Hodge-Tate weights, then

P p 18 valid. In conclusion, we make the following conjecture:

Conjecture 4.3.18. Let K be totally real and 7 be a regular cuspidal algebraic automor-
phic representation of GL,,(Ax) of general type. Let E = Q(m) and let F' be the field
fixed by the F-extra-twists of . Then, there exists a semi-simple group H over F' which
is a form of SL,, and a finite extension L/K such that for any prime p, the image of

prp(I'L) is contained and open in H (F},) - Q.

Remark 4.3.19. If 7 is not of general type, then it comes from a smaller group H. Since
the dimension of the group is getting smaller, there should be an optimal choice for H.
Loosely speaking, 7 should be of general type for some group. Then one has to study the
image inside this smaller group, via the extra-twists for the Langlands dual of this group.
Then it might be possible to give a precise description of the image as above, using the

extra-twists.






Chapter 5

Relations to the Mumford-Tate

Conjecture

In this chapter we study the relation of our constructions in Chapter 4 with the Mumford-
Tate group of the motive associated with an algebraic automorphic representation under
the conjectures of Clozel. Almost everything we discuss here is conjectural, but it could

give an idea of why one should believe in the conjectures presented here.

5.1 Mumford-Tate Groups

In this section, we give a very quick review of the Mumford-Tate Conjecture for motives.
For more details, we refer the reader to [26]. Throughout this chapter, we are thinking of
a motive as a collection of realizations whose different structures are compatible through
a set of comparison isomorphisms, as in [|16, Chapter III].

Let M be a motive over a number field /. Then, the Betti and the de Rham realiza-
tions of M, together with their comparison isomorphism, give rise to a rational Hodge

structure V' € Q-VS given by
hM 'S — GL(V)]R,
where S = Res;G,, is the Deligne torus.

Definition 5.1.1. The Mumford-Tate group of M is defined to be the smallest algebraic
group MT (M) < GL(V) (defined over Q) such that i, factors through Mz < GL(V )g.
In other words, MT(M ) is the intersection of all closed subgroups of GL(V') /Q with the
above property.
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One can also realize the Mumford-Tate group from a Tannakian perspective. Namely,
the rational Hodge structure (V) hj;) generates a Tannakian subcategory of the cate-
gory of all rational Hodge structures. One can easily show that the forgetful functor
w : (V,hy) — V is a fiber functor whose automorphism group is the Mumford-Tate
group MT (M ). Therefore, the Tannakian category generated by (V, hy) is equivalent to
the category of representations of MT(M).

Now, let the Q;-vector space V; be the (-adic realization of M. Then, the absolute

Galois group I' acts on V; and this gives a Galois representation

pae s 'k — GL,(Qy).

Let Gyr ¢ be the (Qy-Zariski closure of the image of this Galois representation and Gl

be its connected component of identity.

Conjecture 5.1.2 (Mumford-Tate Conjecture). With the notations as above, there exists
an isomporphism

M MT(M) xq Q;
for every prime number /.

In particular, this implies that Gj, ,/Q, is independent of /, i.e. they are all base
changes of a single global object MT (M) /Q.

5.2 Extra-Twists of a Motive

Clozel predicts that there should be a correspondence between algebraic automorphic
representations of GL,,(A ;) and motives over K with coefficients in number fields. Let
K be totally real as before and 7 be a regular cuspidal algebraic automorphic represen-
tation of GL,,(A k). Then, Clozel predicts the existence of a motive M = M, over K
with coefficients in a number field F containing Q(r) that is associated to 7 in the way
explained in [[I1]. As mentioned, a motive for us is just a collection of different coho-
mology theories compatible via a set of comparison isomorphisms. From now on, we
assume that such a motive exists. Let Hg(M ), Har(M) and H,(M) be the Betti, de
Rham and p-adic realizations of M. Note that the first two are £-vector spaces and the
last one is an £,-module.

LetV = Hp(M). The real and complex Betti cohomologies V®gR and V®C have
an £ ®g R and £ ®g C = [],.5_ ¢ C structure, respectively. Similarly, the complex



Extra-Twists of a Motive 79

de Rham cohomology Har(M) ®g C has an £ ®y C = [],.z_cC structure. The
(£ ®g C-modules) comparison isomorphism between Betti and de Rham cohomologies,
Ve ~ Hr(M) ®q C, equips V' with a rational Hodge structure. We denote this Hodge

structure with

hw 'S - GL(VR),

where S is the Deligne torus. Fixing an E-basis for Vg which in turn gives an &/ @ R

basis for Vg enables us to write this as
hrow S — GL,(E ®g R).

This representation should be thought of as the analogue of our p-adic Galois represen-
tations p., : ['x — GL,(E ®q Q,) from pervious chapters, associated to the prime at

infinity. Note that this is equipped with an action of Aut(E) on the coefficients.

Now, let 7 be of general type and I be the group of E-extra-twists of 7. Let |.|"w be
the central character of 7, where w is a finite order Hecke character. From now on, for
simplicity, we assume that m is divisible by n. So, let m = nd. Then the outer-twists of 7
are of the form (7, | - |**n) for a finite character  and hence the outer-twists of p, , are of
the form (7, egdn) where ¢, is the p-adic cyclotomic character and we think of 7 as a finite
Galois character. The extra-twist of 7 then induce extra-twists on the motive M. An
inner-twist (o, x) induces an isomorphism “ M, ~ M, ® x where y is the Artin motive
associated with the finite character y. The outer-twist (7, | -|?*n) induces an isomorphism
"My~ MY ®Q(2d)®n.

In particular, the extra-twists also induce symmetries on the Hodge-structure since
E acts on the motive M via endomorphisms. Twisting with finite characters does not
affect the Hodge structure and twisting with the 2d’th power of the cyclotomic charac-
ter amounts to twisting with Tate’s Hodge structure Q(2d). This means that for each
inner-twist ¢ € '™ one has “h, ~ h,, and for each outer-twist 7 € '™, one has
Thy ~ hY ®p Q(2d). Now, if we twist h, with Q(—d), we still get “h,(—d) ~ h,(—d)
for each inner-twist and "h,(—d) >~ h,(—d)" for each outer-twist. This is analogous to
the representation p , from the previous chapter.

Since an isomorphism of rational Hodge structures comes from an isomorphism over
Q between the underlying rational vector spaces, and since everything is compatible with

the E-structures, we can find matrices «a,, ., € GL,(F) that give the isomorphisms
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above by conjugation. So we get

h7r7gc(_d) . O{o— . o-haﬂ-,oo<_d) . Oé;l
hroo(—d) = a, - Th;?o;(—d) cal.

Note that the determinant of A, ,,(—d) is trivial, so it has values in SL,,. Define the 1-
cocycle f : I' — Autg(SL,) by sending an inner-twist o to ad(c,) and an outer-twist
7 to ad(a,) o (-)~7. Then, as in Section [L.2.1, we can define the twisted action of T’
on Res%SL,, and the matrices in the image of A, ,(—d) are clearly invariant under this
action. We define the groups Ho, := (RespgiSL,)"™ ™ and H := (ReszSL, )™ ™). Note
that H, is the base change of H to R and it is the Archimedean analogue of the groups
H,, from Chapter H.

Remark 5.2.1. We could also define the group H,, without assuming the existence of the
motive, only from the real Hodge structure coming from the Archimedean part of 7. But

then the connection to the Mumford-Tate group is of course less clear.

Lemma 5.2.2. The Mumford-Tate group of the motive M, is contained in the group
Res((H) - Gp.

Proof. The image of h, ,(—d) lies in H,, by the definition of H,,. This implies that the
map h o, factors through H,, - G,, g and therefore the map A, factors through the base
change of the group Resg(H ) - Gy, @ to R. This implies the result. O

Note that the dimension of the group H is equal to the dimension of all the groups
H, from the pervious chapter. Our results in Chapter i make it reasonable to make the

following conjecture.

Conjecture 5.2.3. If 7 is of general type then the Mumford-Tate group of M, is equal
to Resgy(H) - Gy -

We showed that the group H (or any of the H,,’s from before) gives an upper bound
for the Mumford-Tate group. On the other hand, in the special case that M is an abelian
motive, Deligne shows that the Mumford-Tate group MT(M,,), after base changing to
Qy, always contains the connected component of the image of the p-adic Galois repre-
sentation. Therefore, if we know that the image is open in H,, even for one prime, the
conjecture above follows. In particular we have the following result in the n = 2 case

(which was probably known to Nekovar):
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Corollary 5.2.4. Let f be a non-CM Hilbert modular newform of parallel weight 2 over
the totally real field K and assume there is an abelian variety Ay associated to it. Then

Conjecture and the Mumford-Tate conjecture hold for Ay.

Proof. Note that MT (M) ®g Q, is contained in (Res{y(H) - G,,,) ® Q, by Lemma
and contains the connected component of the Zariski-closure of the image of p, which
is equal to Resgz H,(Q,) - Q; by 4.3.4. Since the dimensions match, both inclusions
must be equality. O

At the end, we want to come back to Remark §#.3.2. Recall that by [9], for each prime
p there exist an Azumaya algebra D,, over Q(7), := Q(7) ®qg Q, such that the Galois
representation p. ,, factors through D, ¢ D,®qr) E ~ M, (E,), assuming irreducibility
of the Galois representation. We are interested in seeing if the local objects D, should
come from a global object D defined over Q(7). In the n = 1 case, this is clear. In the
n = 2 case, since p; , is odd, the residual representation is multiplicity free and a result
of Bellaiche and Chenevier [4] shows that in this case every pseudo-representation can
be defined over its trace field and hence D, ~ M, for all primes p. So, D ~ M, works.

Now assume that 7 is of general type and assume Conjecture and the Mumford-
Tate Conjecture. First, notice that for every o € Gal(E/Q(7)) we have an inner-twist
7 ~ 77, therefore ' < Q(7). Now, we know by our assumptions that for some finite
Galois extension L/ K, the image of p, ,|r, is openin H,,(F},)-Q,’. This is the Q,-Zariski
closure of the image, hence the F,-Zariski closure of the image is H,,(F},) - F*. Note that
the inner product is happening inside GL,,, so since I, is a form of SL,,, we deduce that
Gp = H, - Gy, r, is a form of GL,,. Since the image is contained in D; which is an

algebraic group over Q(7), and F,, < Q(7),, we have

Gp(Fy) < D (Q(m),) < GL,(E,),

p

and the base change of either G, or D) to E, is equal to GL,,. This implies that D
is the Q(),-Zariski closure of the image of the Galois representation. In particular, by
the Mumford-Tate conjecture, the groups D’ should come from a global group, namely
the Q()-Zariski closure of the image of the map h .. This is an inner-form of GL,,
because all the G,’s become inner-forms over F;““. Hence, it is the group of the units of
a central simple algebra D over Q().

In particular in the n = 3 case, 7 is either an induction of a character from a degree

3 extension, essentially sym?, or of general type. In the first two cases D, being global
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reduces to the n = 1 and n = 2 case and in the third case it follows from the discus-
sion above (assuming all the above conjectures). This makes it reasonable to make the

following conjecture:

Conjecture 5.2.5. Let 7 be a regular cuspidal algebraic automorphic representation of
GL,(Ak) and p, the associated Galois representation and D, the Azumaya algebra
coming from [9, Proposition 2.18]. Then there exists a central simple algebra D over

Q(m) such that D), ~ D ®q(x) Q(7), for every p.

In particular, this conjecture implies that for all but finitely many primes, the repre-

sentation p , can be defined over its trace field.
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