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Abstract

Under the Langlands philosophy, there should be a correspondence between certain auto-

morphic representations of GLn, certain n-dimensional Galois representations, and mo-

tives over number fields. There is a folklore heuristic that the image of the Galois repre-

sentation should be as big as possible unless there is an automorphic reason for it not to

be. In this thesis, we will formulate a precise conjecture in this direction, assuming some

standard conjectures in the literature. In the n = 2 case, this follows from the work of

Ribet, Momose, and Nekovář. We are able to prove this conjecture unconditionally in

the n = 3 case.

More precisely, Let K be a totally real field and π be a regular algebraic cuspidal

automorphic representation of GL3(AK) that is of general type, i.e. it neither satisfies

π » πbχ for a non-trivial Hecke character χ, nor π » π_ bη for any Hecke character η.

Then we show that theQp-Zariski closure of the image of the p-adic Galois representation

ρπ,p associated with π is of the form (ResFp

Qp
H) ¨Gm,Qp where Fp = F bQQp for a certain

subfield F of the Hecke field, and H/Fp is a form of SL3.
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Zusammenfassung

Gemäß der Langlands-Philosophie sollte es eineKorrespondenz zwischen bestimmten

automorphen Darstellungen von GLn, bestimmten n-dimensionalen Galoisdarstellungen

und Motiven über Zahlkörpern geben. In der Fachwelt ist eine heuristische Faustregel

geläufig, die besagt, dass das Bild der Galoisdarstellung möglichst groß sein sollte, es sei

denn, es gibt einen automorphen Grund, der dem entgegensteht. In dieser Arbeit wer-

den wir eine präzise Vermutung in dieser Richtung formulieren, unter Annahme einiger

in der Literatur bekannter Standardvermutungen. Im Fall n = 2 folgt dies aus den Ar-

beiten von Ribet, Momose und Nekovář. Wir können diese Vermutung im Fall n = 3

uneingeschränkt beweisen.

Konkret beweisen wir insbesondere das folgende Resultat: Sei K ein total reeller

Zahlkörper und π eine reguläre, algebraische, kuspidale automorphe Darstellung von

GL3(AK) vom allgemeinen Typ, d. h. es gilt weder π » π b χ für einen nicht-trivialen

Hecke-Charakter χ, noch π » π_ b η für einen beliebigen Hecke-Charakter η. Dann

zeigen wir, dass der Qp-Zariski-Abschluss des Bildes der mit π assoziierten p-adischen

Galoisdarstellung ρπ,p von der Form (ResFp

Qp
H) ¨ Gm,Qp ist, wobei Fp = F bQ Qp für

einen bestimmten Unterkörper F des Hecke-Körpers ist, und H/Fp eine Form von SL3

ist.
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Chapter 1

Introduction

1.1 Background on the Galois Side

1.1.1 Compatible Families of Galois Representations

Let K be a number field, ΓK := Gal(K/K) its absolute Galois group and p a prime

number. By a p-adic (Galois) representation of ΓK , we mean a continuous group homo-

morphism

ρ : ΓK Ñ GLn(Qp),

where ΓK is considered with its topology as a profinite group (Krull topology) and

GLn(Qp) with its canonical topology induced from that of Qp. Moreover, for a num-

ber field E Ă Qp, the representation ρ is called E-rational if it is unramified outside a

finite set of places ofK and for each such (finite) place, the characteristic polynomial of

the Frobenius element has coefficients in E.

Definition 1.1.1. Let K and E be number fields and S be a finite set of finite places of

K. For each prime number p, let Sp be the set of places of K above p. An E-rational

n-dimensional compatible family of Galois representations of ΓK unramified outside S

is a collection of Galois representations ρλ for each embedding λ : E ãÑ Qp such that

ρλ : ΓK Ñ GLn(Qp)

is a p-adic Galois representation and ρλ is unramified outside S Y Sp and for each finite

place v of K outside S there exists a polynomial fv(x) P E[x] such that for each λ and

each finite place v of K outside S Y Sλ, the characteristic polynomial of ρλ(Frobv) is

equal to λf(x) P Qp[x], i.e. it is independent of λ.

1



2 Background on the Galois Side

For instance, the ℓ-adic cyclotomic characters tχℓuℓ form a compatible family of Q-

rational Galois representations of ΓQ and the ℓ-adic Tate modules of an elliptic curve over

a number field K form a compatible family of Q-rational Galois representations of ΓK .

More generally, if X is a smooth proper variety over a number field K, then it is well-

known that its ℓ-adic cohomologiesH i
ét(XK ,Qp) form a compatible family ofQ-rational

Galois representations of ΓK .

For a number fieldK, an abelian varietyA overK is a connected projective algebraic

group over K. Morphisms and isogenies of abelian varieties are simply morphisms and

isogenies of algebraic groups. The set of the complex points A(C) of an abelian variety

A of dimension g, is isomorphic to Cg/Λ as a complex Lie group, where Λ is a rank 2g

lattice in Cg admitting a Riemann form (polarization). This identifies the subgroup of

n-torsion points of A(C) with Λ/nΛ which is isomorphic to (Z/nZ)2g. All these points

are defined over some finite Galois extension L ofK and so are endowed with an action

of the absolute Galois group ΓK which factors through Gal(L/K). In other words, we

get a continuous homomorphism

ρA[n] : ΓK Ñ GL2g (Z/nZ) .

Now let ℓ be a prime number and [ℓ] be the multiplication by ℓ map on A. Then we have

an inverse system

¨ ¨ ¨
[ℓ]
ÝÑ A[ℓ3]

[ℓ]
ÝÑ A[ℓ2]

[ℓ]
ÝÑ A[ℓ]

of ΓK-modules. Taking an inverse limit we define the ℓ-adic Tate module Tℓ(A) of A as

Tℓ(A) = lim
ÐÝ
n

A[ℓn],

which is clearly isomorphic to Z2g
ℓ and is endowed with a continuous ΓK action. We

also define the rational version of the Tate module Vℓ(A) := Tℓ(A)
Â

Z Q, which is a

2g-dimensionalQℓ-vector space. Choosing a basis for this vector space, we get an ℓ-adic

Galois representation

ρA,ℓ : ΓK Ñ GL2g(Qℓ).

It can be shown that the collection of ρA,ℓ’s form a compatible family ofQ-rational Galois

representations of ΓK .

The ℓ-adic Galois representation attached to an abelian variety carries a lot of infor-

mation about the abelian variety. However, it does not uniquely determine the abelian

variety since one can prove that isogenous abelian varieties have isomorphic Galois rep-

resentations attached to them. Faltings’ isogeny theorem, which is a special case of Tate’s
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conjecture on algebraic cycles, provides an inverse for this; It shows that the Galois rep-

resentation determines the abelian variety up to isogeny. Slightly more generally, we

have:

Theorem 1.1.2 (Faltings). Let A and B be abelian varieties over the number field K.

Then the natural map

HomK(A,B) bZ Zℓ Ñ HomZℓ[ΓK ] (Tℓ(A), Tℓ(B))

is an isomorphism.

It is not hard to see that this theorem implies that if the Galois representations Vℓ(A)

and Vℓ(B) are isomorphic, then there is an isogeny f P HomK(A,B)bZQ inducing this

isomorphism.

1.1.2 p-adic Hodge Theory

For a detailed introduction to p-adic Hodge theory, we refer the reader to [15]. Here, we

only summarize the main concepts that we need in this thesis.

LetK be a finite extension ofQp and letCp be the completion of the algebraic closure

of K. It is well-known that the action of ΓK on K extends to a well-defined action on

Cp by continuity. Let RepCp
(ΓK) be the category of finite dimensional Cp-semilinear

continuous representations of ΓK . Let χp : ΓK Ñ Qˆ
p be the p-adic cyclotomic character

and for each V P RepCp
(ΓK) and n P Z, define the n’th Tate twist of V as

V (n) := V bQp χ
n
p .

A theorem of Sen and Tate tells us that the only elements ofCp that are fixed by the action

of ΓK are the elements of K, i.e. CΓK
p = K. Moreover, for any integer n ‰ 0, there are

no non-zero elements fixed in Cp(n) by ΓK , i.e. Cp(n)
ΓK = 0.

Now let RepQp
(ΓK) be the category of finite dimensional Qp-linear continuous rep-

resentations of ΓK . For any object V of this category, V bQp Cp is an object of the

category RepCp
(ΓK). We are ultimately interested in the objects of RepQp

(ΓK) which

we call p-adic representations of ΓK . The Tate twists V (n) are defined similarly in this

case.

Now we define the graded ring BHT :=
À

nPZ Cp(n) with the evident addition and

multiplication. Notice that this is endowed with an action of ΓK and BΓK
HT = CΓK

p = K.
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As a graded ring we clearly have BHT » Cp[T, T
´1] and the Galois action turns into

acting on T n by χn
p .

Definition 1.1.3. A representation V P RepQp
(ΓK) is called Hodge-Tate, if there is a

decomposition

V bQp Cp » ‘qCp(´q)
hq

in the category RepCp
(ΓK). The values of q for which hq is non-zero are called the

Hodge-Tate weights of V and hq is called the multiplicity of weight q.

For example, the p-adic cyclotomic character is clearly Hodge-Tate of Hodge-Tate

weight ´1 which has multiplicity one. By a result of Faltings, the decomposition also

holds for the p-adic cohomologies of smooth proper varieties overK. A useful reformu-

lation of this definition is obtained using the ring BHT . Namely, V is Hodge-Tate if and

only if the natural map

αV : (V bQp BHT )
ΓK bK BHT Ñ V bQp BHT

is an isomorphism. It can be shown that this map is always injective and both sides are

of finite rank. Then checking the isomorphism reduces to comparing dimensions:

Proposition 1.1.4 (Tate). The representation V P RepQp
(ΓK) is Hodge-Tate if and only

if dimQp V = dimK(V bQp BHT )
ΓK .

Fontaine defined more refined period rings to better understand and classify objects

of the category RepQp
(ΓK). One example of such period rings is the de Rham period ring

BdR. This ring is equipped with a Galois action just like BHT , but instead of a grading it

comes with a filtration. The semi-simplification of this filtration gives exactly BHT . We

omit the construction of this ring in this discussion.

For any representation V P RepQp
(ΓK) one can consider the map

βV : (V bQp BdR)
ΓK bK BdR Ñ V bQp BdR

of filtered BdR-semilinear Galois modules and V is called a de Rham representation if

and only if βV is an isomorphism. Every de Rham representation is clearly Hodge-Tate

since one can look at the graded modules of both sides.

We also need to considermore general coefficient fields. When studying automorphic

Galois representations, one is naturally led to the situation where representations of ΓK
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have coefficients in an algebraic extension E of Qp (where the ΓK action on E is still

considered to be trivial). In this case, we can still define the map

αV : (V bQp BHT )
ΓK bK BHT Ñ V bQp BHT ,

which is now a morphism of E bBHT -modules. V is said to be Hodge-Tate if and only

if αV is an isomorphism. This is equivalent to V being Hodge-Tate when it is considered

as a Qp vector space by restriction of scalars. In particular, if E = Qp then for each

embedding τ : K Ñ Qp we define the τ -Hodge-Tate weights of V to be those integers

q for which (Cp(q) bQp,τ
V )ΓK is non-zero and the dimension of this Qp-vector space is

the multiplicity of this weight.

We finish our discussion on p-adic Hodge theory by considering global Galois rep-

resentations. LetK be a number field and consider a p-adic Galois representation

ρ : ΓK Ñ GLn(Qp).

We say that ρ is Hodge-Tate (respectively de Rham) if ρ|Kv is Hodge-Tate (respectively

de Rham) for every place v of K above p. For each embedding τ : K Ñ Qp we define

the set of τ -Hodge-Tate weights to be that of ρ|Kv , where v is the place induced by the

embedding τ (the restriction of the absolute value of Qp toK via τ ).

1.1.3 p-adic Lie Groups

For a detailed treatment of the topics in this section, we refer the reader to [36]. Here we

quickly review the main points.

Throughout this section, let K be a non-Archimedean field of characteristic 0. One

can define manifolds over K similarly to the case of Archimedean fields. Let M be a

Hausdorff topological space. An n-dimensional (locally analytic) atlas on M is a col-

lection of charts (U, ϕ) where U is an open subset of M and ϕ : U ãÑ Kn identifies

U with an open subset of Kn, such that these charts give a covering for M and all the

transitions maps ϕ(U XV ) Ô ψ(U XV ) for any two charts (U, ϕ) and (V, ψ) are locally

analytic. The notion of equivalent atlases and a maximal atlas are defined in the evident

way. There exists exactly one maximal atlas in each equivalence class which makes the

following definition plausible:

Definition 1.1.5. A (locally analytic) manifold of dimension n over K is a Hausdorff

topological spaceM equipped with an n-dimensional maximal atlas overK.
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The notions of a tangent vector and tangent space can be defined similar to the

Archimedean situation, using the local identifications ϕ : U Ñ ϕ(U) Ď Kn. Hence,

the tangent TxM space at a point x of an n-dimensional manifold M over K is an n-

dimensional K-vector space. For any locally analytic map f : M Ñ N of manifolds

over K the differential of f at x P M would then be a linear map

dfx : TxM Ñ Tf(x)N.

Definition 1.1.6. A Lie group over K is a (locally analytic) manifold over K which

carries a group structure such that the groupmultiplication and the inversemap are locally

analytic morphisms.

Let G be a Lie group over K and e P G be the identity element. Similar to the

Archimedean situation, the group action induces a (K-linear) Lie algebra structure on the

tangent space TeG, by identifying left-invariant vector fields on G with tangent vectors.

For any positive integer n, the group GLn(K) is a Lie group over K since it can

be identified with an open subset of Mn(K) » Kn2 . In fact, one of the main sources

of Lie groups over K are algebraic groups. If G is an algebraic group over K then the

set of K-points G(K) admits a natural structure of a Lie group over K by choosing a

faithful representation of G. The Lie group structure is independent of this choice. The

(analytically defined) Lie algebra of the manifoldG(K) coincides with the (algebraically

defined) Lie algebra of the algebraic group G/K.

The Lie algebra of G encodes the infinitesimal information of neighborhoods of

e P G. The naive philosophy is that properties that are expected to hold only up to an

open subgroup can be checked on the level of Lie algebras. The following theorem is the

main tool that we will need later to apply this philosophy:

Theorem 1.1.7 ( [36], Proposition 18.17). Let G1 and G2 be Lie groups over K and let

σ : Lie(G1) Ñ Lie(G2) be a homomorphism of Lie algebras. Then

1. There exist open subgroups H1 Ď G1 and H2 Ď G2 and a homomorphism of Lie

groups f : H1 Ñ H2 such that df = σ.

2. If (H 1
1, H

1
2, f

1) in place of (H1, H2, f) also satisfies part 1, then there exists an

open subgroup H Ď H1 X H 1
1 such that f |H = f 1|H .

We will use this theorem very often when we want to compute the image of Galois

representations, sometimes without directly mentioning it. It helps us go back and forth
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between the groups and their Lie algebras. Let us give one example of how we will apply

this result later.

Corollary 1.1.8. LetH Ď G be a closed subgroup of the Lie groupG overK. ThenH is

open if and only if Lie(H) = Lie(G), i.e. the embedding ι : H ãÑ G induces the identity

map on the Lie algebras.

1.2 Background on the Automorphic Side

1.2.1 Algebraic Groups and Their Forms

For a more detailed overview of the theory of algebraic groups that we might use in this

thesis, we refer the reader to [19, §1]. Here, we briefly review the main players and

discuss the construction of forms of algebraic groups which is not discussed in [19].

LetK be a field of characteristic zero.

Definition 1.2.1. An affine algebraic group overK is an affine group scheme overK (a

group object in the category of affine schemes overK) that is of finite type overK.

It can be shown (since we assumed char(K) = 0) that every affine algebraic group

over K is automatically smooth. The notion of (closed) subgroups, normal subgroups

and intersection of subgroups are defined pointwise (using the functor of points) in the

evident way. The connected component of the identity elementG˝ is a normal subgroup.

The kernel of a morphism of affine algebraic groups can also be defined point-wise and

is always a normal subgroup of the source. Defining the quotient group is more subtle,

see [19, Definition 1.3.8].

For an affine algebraic group G/K, an n-dimensional representation is a homomor-

phism (of algebraic groups overK) ρ : G Ñ GLn. Every algebraic group overK admits

a faithful representation ρ : G ãÑ GLn identifying G with a closed subgroup of GLn

for some n. An element g P G(K) is called unipotent if the matrix ρ(g) P GLn(K) is

unipotent for some faithful representation. This is independent of the choice of this repre-

sentation. The groupG is called unipotent if all the elements ofG(K) are unipotent. The

unipotent radical Ru(G) of G is defined to be the maximal connected normal unipotent

subgroup ofG. For example, the unipotent radical of GLn is trivial and the unipotent rad-

ical of upper-triangular matrices is the subgroup of upper-triangular matrices with ones

on the diagonal.
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Definition 1.2.2. A connected affine algebraic group G overK is said to be reductive if

Ru(GK) = t1u.

For an affine algebraic group G/K, we define the derived subgroup Gder = G(1)

to be the intersection of all normal subgroups N of G such that G/N is abelian. Then

Gder is normal, so it is the maximal normal subgroup with this property. Higher derived

subgroups are defined similar to the case of abstract groups by taking derived subgroups

consecutively:

G(n) :=
(
G(n´1)

)der
.

G is called solvable if there exists a positive integer n such thatG(n) = t1u. The solvable

radical R(G) of G is defined to be the maximal connected normal solvable subgroup of

G. For example, the solvable radical of GLn is the subgroup of scalar matrices, and the

solvable radical of SLn is trivial. In fact, for any reductive group G, the solvable radical

is Z(G)˝ where Z(G) is the center.

Definition 1.2.3. A connected affine algebraic groupG overK is said to be semi-simple

if R(GK) = t1u.

Therefore, SLn is both semi-simple and reductive. GLn is reductive but not semi-

simple. The group of upper-triangular matrices in GLn is neither semi-simple nor reduc-

tive, for n ą 1. Clearly any semi-simple group is reductive. For any reductive group G,

the derived subgroup Gder is semi-simple.

We finish this section by describing how to construct forms of algebraic groups from

certain cohomology classes of the group.

Let E/F be either a finite Galois extension of fields or the semi-local Galois ex-

tension Ep/Fp = (E/F ) bQ Qp for a finite Galois extension E = F (α)/F of number

fields and let Φ be the minimal polynomial of α. Let G/E be an algebraic group and let

Γ = Gal(E/F ). Let f : Γ Ñ AutE(G) be a 1-cocycle and write fσ for the image of σ.

We will construct a form of G defined over F using this cocycle.

Let G1 = ResEFG, so for every F -algebra R we have

G1(R) = G(E bF R).

Therefore, G1(R) is equipped with an action of Γ (where it acts on the first component

of the tensor product) which is clearly functorial. Hence, the collection of morphisms

σ : G1(R) Ñ G1(R) is a natural transformation and so it is induced from a morphism
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σ : G1 Ñ G1 of algebraic groups. Therefore, we can define H to be the subgroup of G1

satisfying fσ(σg) = g for every σ P Γ. In other words, H = (G1)twf (Γ) where we define

the f -twisted action of σ on G1 to be given by twf (σ)g = fσ(
σg). This gives a closed

subgroup of G1.

By base changing H Ď ResEFG to E and then projecting to the identity component

one gets

HE ãÑ (ResEFG)E =
ź

Γ

GE
πid
ÝÑ G.

We prove that this is an isomorphism by checking this on points. First, we need to give

a description of the algebraic action of Γ on
ś

ΓG via the identification (ResEFG)E =
ś

ΓG. Let R be an E-algebra. Note that ResEFG(R) = G(E bF R) and the algebraic

action of Γ is just the action on the E component. Now

G(E bF R) = G(E bF E bE R),

and the action is only on the first E component. Then

G(E bF R) = G(E bF E bE R) = G

(
E bF

F [x]

Φ(x)
bE R

)
= G

(
E[x]

Φ(x)
bE R

)
,

where the action is only on the coefficients of the first component. So

= G

(
E[x]

ś

Γ(x ´ σα)
bE R

)
= G

((
ź

Γ

E

)
bE R

)
= G

(
ź

Γ

R

)
=

ź

Γ

G(R),

where the action of γ P Γ is given by

(aσ)σ ÞÑ (γaγ´1σ)σ.

Proposition 1.2.4. With the notation as above, for any E-algebra R the map

H(R) ãÑ ResEFG(R) =
ź

Γ

G(R) Ñ G(R)

is an isomorphism of groups. Therefore, the algebraic group H is a form of G.

Proof. By definition, H(R) is the subgroup of the elements invariant under the twisted

action of Γ. Let (gσ)σ P
ś

G(R) be invariant under the twisted action:

twf (γ)(gσ)σ := (fγ(
γgγ´1σ))σ = (gσ)σ.

By looking at the component σ = γ we get

gγ = fγ(
γg1),
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so the g1 component determines all other gγ’s. This shows that the map

H(R) ãÑ
ź

Γ

G(R)
πid
ÝÝÑ G(R)

is injective.

To prove the surjectivity, we need to show that for every g1 P G(R) the element

(fσ(
σg1))σ is invariant under the twisted action:

twf (γ)(fσ(
σg1))σ = (fγ(

γ(fγ´1σ(
γ´1σg1))))σ = ((fγ ˝ γfγ´1σ)(

σg1))σ.

Now, by the cocycle condition

fγ ˝ γfγ´1σ = fσ

hence
tw(γ)(fσ(

σg1))σ = (fσ(
σg1))σ;

which is exactly what we needed. Therefore, the map is an isomorphism for theR-points

for any R and hence an isomorphism of affine algebraic groups over E.

We can generalize Proposition 1.2.4 to understand the behavior ofH under anyGalois

base change of F .

Corollary 1.2.5. Let F Ă F0 Ă E be an intermediate field that is Galois over F and let

Γ0 = Gal(E/F0) and f0 : Γ0 Ñ AutE(G) be the restriction of f to Γ0. Then

H ˆF F0 » (ResEF0
G)twf0

(Γ0).

Proof. Apply Proposition 1.2.4 to the group (ResEF0
G)twf0

(Γ0) for the twisted action of

the group Γ/Γ0.

1.2.2 Automorphic Representations

Here we summarize some of the results that we need from the theory of automorphic rep-

resentations. We will mostly focus on the GLn case which is the main case for us. Since

giving the definition of an automorphic representation needs quite a lot of preparation,

we will not do this here and just assume that the reader is already familiar with the theory.

For further details, we refer the reader to [19].

Let K be a number field throughout this section and let π = b1πv be an automor-

phic representation of GLn(AK). Let v be a finite place of K at which π is unramified.
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Then we use the notation tv1(π), ¨ ¨ ¨ , tvn(π) for the Satake parameters of πv. Recall that

unramified representations are uniquely determined by their Satake parameters.

Recall that the Hecke characters ofK are automorphic representations of GL1(AK).

For an automorphic representation π of GLn(AK) and Hecke character χ of K, one can

consider the tensor product πbCχ of these two complex representations. It can be shown

that this is again an automorphic representation which we simply denote by π b χ from

now on. Ifα(v) P Aˆ
K is the elementα(v) = (1, ¨ ¨ ¨ , 1, ϖ, 1, ¨ ¨ ¨ )where only the v-factor

is not equal to 1 and ϖ is a uniformizer for OKv , then the Satake parameters of π b χ at

v for unramified v are equal to

ttv1(π)χ(α(v)), t
v
2(π)χ(α(v)), ¨ ¨ ¨ , tvn(π)χ(α(v))u.

Now assume that π is cuspidal. Strong multiplicity one tells us that the Satake pa-

rameters ttv1(π), ¨ ¨ ¨ , tvn(π)u for all but finitely many unramified places v determine π

uniquely. We will use this result many times throughout this thesis, usually without

mentioning it directly. More precisely, we have:

Theorem 1.2.6 (Theorem 11.7.2 in [19]). Let π and π1 be cuspidal automorphic repre-

sentations and S be a finite set of primes. Assume that for each place v R S one has

πv » π1
v. Then π » π1.

We will also need the basic properties of the Rankin-Selberg L-functions at some

point. Let π and π1 be two irreducible admissible representations of GLn(AK). Then

one can define the Rankin-Selberg L-function L(s, π ˆ π1) as in [19, §11.7] by taking

the product of local Rankin-Selberg L-functions. In general, it is not even clear if this

L-function should converge. But, if we assume that π and π1 are cuspidal automorphic

representations, then many nice analytic properties of these L-functions are known as is

summarized in the next statement:

Theorem 1.2.7 (Theorem 11.7.1 in [19]). Let π and π1 be unitary cuspidal automorphic

representations. Then L(s, π ˆ π1) admits a meromorphic continuation to the whole

complex plane with the only possible poles being simple poles at s = 0, 1. There are

poles at s = 0 and s = 1 if and only ifm = n and π » π1_.

One defines the L-function associated with an irreducible admissible representation

π as L(s, π) := L(s, π ˆ 1). When π is cuspidal automorphic, the last theorem implies

that L(s, π) has nice analytic properties.
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Now assume that π is a regular (C-)algebraic cuspidal automorphic representation.

We also need to address questions regarding the rationality of π. For more details and

the proofs, we refer the reader to [11]. Let πf be the finite part of π, i.e. πf = b1
v∤8πv

is a complex representation of GLn(A8
K). We can twist the complex structure of πf with

the automorphism σ and denote this representation by σπf .

Definition 1.2.8. The field of rationality, or the Hecke field, of π is the fixed field of

πf , i.e. the smallest subfield Q(π) of C such that for every σ P Aut(C/Q(π)) one has
σπf » πf .

Clozel proves that under the regularity assumption, Q(π) is always a number field

[11]. One can show that there exists a (unique) algebraic automorphic representation

(which would be automatically regular and cuspidal) σπ whose finite part is σπf (see [11,

Theorem 3.13]). Then we would also have σπ » π for all σ P Aut(C/Q(π)) by strong

multiplicity one. Clozel also proves that (assuming regularity) the representation πf has

a model overQ(π), i.e. there exists a representation V of GLn(A8
K) overQ(π) such that

πf » V bQ(π) C.

1.2.3 Langlands Functoriality Conjectures

Here we quickly review the Langlands functoriality conjecture. For further details and

more precise statements we refer to [19]. Fix a prime number p.

Let G be a reductive group over a field K of characteristic zero. Let TK Ď GK

be a maximal torus and let Ψ := (X˚, X˚,Φ,Φ
_) be the root datum associated with

(GK , TK). Then the dual root datum Ψ_ := (X˚, X
˚,Φ_,Φ) gives a split reductive

group over Q, which we call the Langlands dual group pG. Assume that K is a global

filed for now. If G is a split group (or an inner form of a split group) then we define the

L-group of G as
LG := pG(Qp) ˆ ΓK ,

where ΓK is the absolute Galois group of K. In the non-split case, one fixes a base for

the root datum (a Borel subgroup containing T ) and then a pinning for this root datum to

get a non-trivial action of ΓK on pG and then defines

LG := pG(Qp) ¸ ΓK

with respect to this action. For more details see [19, §7.3].



Background on the Automorphic Side 13

If K is a local field instead, then we define

LG := pG(Qp) ¸ WK ,

whereWK is the Weil group of K.

Let K be a number field and G be a reductive group over K. Then the global Lang-

lands correspondence predicts a relation between certain automorphic representations of

G(AK) and certain Galois representations (more precisely, L-parameters) with values in

the L-group of G. To have a fully satisfactory formulation of this philosophy, one needs

the existence of a hypothetical group called the Langlands group which has yet to be con-

structed. Wewill not discuss these issues here and restrict ourselves to the representations

of the Galois group.

Analogously, in the local setting when K is a p-adic field, one expects a connection

between smooth admissible representations of the p-adic groupG(K) and certain Galois

or Weil-Deligne representations (or rather L-parameters) over K. This is not a one-to-

one correspondence but to each L-parameter, one should be able to associate a finite set

of smooth admissible representations called an L-packet. Just like in the global setting,

these local L-parameters have values in the L-group of G. This suggests that if one has

a map from the L-group of one group to another, there should be a ”natural” way of

transferring the representation theory of one group to the other. This is known as the

functoriality principle in the Langlands program.

Now, let H and G be two reductive groups over a number field or a p-adic field K

and assume that G is quasi split. An L-map is a continuous group homomorphism

r : LH Ñ LG

commuting with projection to ΓK orWK such that its restriction to pH comes from a map

of algebraic groups r0 : pH Ñ pG.

Now, letK be a p-adic field and r be an L-map as above. The local Langlands func-

toriality predicts that there should be a natural way of transferring irreducible admissible

representations of H(K) to irreducible admissible representations of G(K) (or rather

L-packets of these representations), compatible with some expected behaviors and con-

structions (e.g. L-functions). More precisely, to each irreducible admissible representa-

tions π ofH(K), one can associate an L-packet of irreducible admissible representations

ofG(K), i.e. a finite set tΠiu of irreducible admissible representations ofG(K)with the

same L-parameter. In particular, if we let H = t1u then we (partially) recover the local

Langlands correspondence from the local Langlands functoriality.
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Now, let K be a number field and r be an L-map as above. Let π = b1πv be an

automorphic representation of H(AK). Each πv is an irreducible admissible representa-

tion of the local group H(Kv) and by local Langlands functoriality it gives a finite set

tΠv,iu of irreducible admissible representations of G(Kv). Then one can form (possibly

infinitely many) representations ofG(AK) by taking the restricted tensor product of these

local representations. This gives a global L-packet. The global Langlands functoriality

predicts that this L-packet is automorphic, i.e. at least one of these tensor products must

be an automorphic representation.

In other words, one should be able to transfer automorphic representations (or rather

automorphic L-packets) of H to G in a way compatible with the local Langlands func-

toriality. Again taking H to be trivial recovers the global Langlands correspondence.

Apart from the general philosophy, there are two specific known cases of the Lang-

lands functoriality that we will use in this thesis. The second symmetric power of the

standard representation of GL2 gives a homomorphism sym2 : GL2 Ñ GL3 and since

GLn splits it clearly gives an L-map

sym2 : LGL2 Ñ LGL3.

Over any number field K, the Langlands transfer is constructed for this L-map in the

work of Gelbart and Jacquet [18].

Other important cases of functoriality are automorphic base change and automorphic

induction. Let L/K be a finite Galois extension of number fields. Then we have

LResLKGLn =
(
ResLKGLn

)
(Qp) ¸ ΓK = GLn(Qp)

Gal(L/K) ¸ ΓK ,

where ΓK acts on GLn(Qp)
Gal(L/K) via its action on Gal(L/K) coming from the sur-

jection ΓK Ñ Gal(L/K). Now we can embed GLn diagonally in this product and we

get

ResLK : LGLn Ñ LResLKGLn.

The (conjectural) functoriality transfer corresponding to this map is known as automor-

phic base change. Since ResLKGLn(AK) = GLn(AL), this transfer (conjecturally) base

changes an automorphic representation of GLn(AK) to an automorphic representation of

GLn(AL). On the Galois side of the Langlands correspondence, this amounts to restrict-

ing a Galois representation of ΓK to a representation of the subgroup ΓL.

The standard action of GLn(Qp) on Qn

p and the evident action of Gal(L/K) on(
Qn

p

)Gal(L/K) give an action of LResLKGLn on
(
Qn

p

)Gal(L/K). This is an n[L : K] di-
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mensional vector space over Qp so this action induces an L-map

IndLK : LResLKGLn Ñ LGLn[L:K]

whose (conjectural) functorial transfer is called automorphic induction. This transfer

(conjecturally) takes an automorphic representation of GLn(AL) and gives an automor-

phic representation of GLn[L:K](AK). On the Galois side of the Langlands correspon-

dence, this amounts to induction of a Galois representation from the smaller group ΓL to

the larger group ΓK .

In the case that [L : K] is a prime number, automorphic base change and induction

are known in many cases by the seminal work of Arthur and Clozel [1]. We state the

results from [19, §13.4]:

Theorem 1.2.9 (Base change). Let L/K be a prime degree Galois extension of number

fields and θ be a generator for the (cyclic) group Gal(L/K). Then, for every cuspidal

automorphic representation π of GLn(AK), the base change πL = ResLK(π) exists and is

an isobaric automorphic representation of GLn(AL) such that πθ
L » πL. Moreover, πL

is cuspidal if and only if π fi π b η for all Hecke characters

η : KˆzAˆ
K/NrL/K(A

ˆ
L) Ñ Cˆ.

Conversely, if a cuspidal automorphic representation π1 of GLn(AL) satisfies π1θ » π1,

then π1 » πL for some cuspidal automorphic representation π of GLn(AK).

Theorem 1.2.10 (Induction). Let L/K be a prime degree Galois extension of number

fields and θ be a generator for the (cyclic) group Gal(L/K). If π is a cuspidal auto-

morphic representation of GLn(AL), then the automorphic induction I(π) = IndLK(π)

exists and is an isobaric automorphic representation of GLn[L:K](AK). The representa-

tion I(π) is cuspidal if and only if π fi πθ. Moreover, a cuspidal automorphic repre-

sentation π1 of GLn[L:K](AK) is the automorphic induction of a cuspidal automorphic

representation of GLn(AL) if and only if π1 » π1 b η for some non-trivial character

η : KˆzAˆ
K/NrL/K(A

ˆ
L) Ñ Cˆ.

1.3 The Problem and the Results

In this section we will discuss the problem that we are going to study in this thesis. One

can argue that the main goal of arithmetic geometry is to understand varieties defined
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over fields of arithmetic significance, e.g., number fields. This could mean understand-

ing their rational points, reductions, different cohomologies, etc. Many of these arith-

metic properties are encoded in the L-functions attached to these (motivic) objects. For

example, the famous conjecture of Birch and Swinnerton-Dyer explains how some of

the arithmetic properties of rational elliptic curves (for instance the rank of the group of

its rational points) are encoded in the analytic behavior of its L-function. These motivic

L-functions are usually very hard to understand. We often cannot even prove that they

admit analytic continuations. Automorphic representations, as introduced by Langlands,

are supposed to provide a rich supply of L-functions that are easier to understand as we

saw in Theorem 1.2.7 for instance. The dream would then be to show that any of our

motivic L-functions is equal to one of these automorphic L-functions.

As we discussed earlier, the Langlands correspondence predicts that one can asso-

ciate Galois representations to certain automorphic representations. One can also as-

sociate Galois representations to motives (namely their étale realizations). Therefore,

Galois representations are supposed to provide the bridge between the motivic and the

automorphic world. If one believes in this philosophy, one should expect to be able to

translate different features of these worlds from one to another. The feature that is of

interest to us in this thesis is the symmetries of the motivic object. It is reasonable to

think that the more symmetric the motive is, the smaller the image of the associated Ga-

lois representation should be, and these should have implications for the automorphic

representations associated with these objects. The precise (conjectural) relation of these

objects is discussed in Chapter 5.

Let us briefly summarize what is known in this direction. The more precise state-

ments and proofs will be discussed in Chapter 3. This line of study can be traced back to

the work of Serre on Galois representations associated with rational elliptic curves and

his famous open image theorem [39]. Weight 2 eigenforms with rational coefficients

correspond to rational elliptic curves in the Langlands program. Therefore, Serre’s re-

sult can also be viewed as determining the image of the Galois representations associated

with weight 2 modular forms with rational Fourier coefficients. If the weight is still 2 but

the coefficients are not rational, then there exists an abelian variety associated with the

form. Ribet realized that for general modular forms of weight 2, the endomorphism ring

of the associated abelian variety being big translates into the form having some kinds of

symmetries which he called inner-twists [32], and he was able to generalize Serre’s result

to this context [33]. Momose then worked out the higher weight case [25] and Nekovář
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generalized their work to Hilbert modular forms [27]. The main goal of this thesis is to

better understand the GL2 case and to further generalize these results to groups other than

GL2.

Let us explain the structure of this thesis and the results that we prove in this direc-

tion. A primary question in determining the image of a Galois representation is if the

representation is irreducible or not. This is related to the notion of cuspidality on the

automorphic side. This is known as the irreducibility conjecture for automorphic Galois

representations and will be explained in Chapter 2. Only special cases of this conjecture

are known, mostly for small reductive groups. All of the proofs that we know use the

analytic properties of automorphic L-functions.We will discuss the GL2 and GL3 cases

of this conjecture in more detail and give proofs in these cases over totally real fields.

In Chapter 3, we will give a proof of Serre’s open image theorem and explain how

inner-twists come into play when one wants to compute the image of modular Galois

representations. We will state the results of Ribet and Momose for classical modular

forms and Nekovář’s generalization to Hilbert modular forms. In these cases, there ex-

ists a quaternion algebraD over a certain subfield of the Hecke field of the modular form

which describes the image of the associated Galois representation. For classical modular

forms of weight 2, the work of Quer gives an explicit formula for this quaternion algebra

in terms of the Fourier coefficients of the modular form. In Section 3.3.2, we generalize

this formula to the case of Hilbert modular forms under mild assumptions. The first step

that one needs to do for this generalization is to prove some results of Ribet (that are

used by Quer in the classical case) for the case of Hilbert modular forms. The proofs are

identical to those of Ribet but they do not seem to be written down in the literature. The

second step is to mimic Quer’s strategy. Here some of the Galois cohomology compu-

tations become more complicated due to the fact that our base field K is not contained

in the coefficient field, whereas in the case of classical modular forms, K = Q is con-

tained in any field of characteristic 0. Therefore, one needs to carefully go up and down

between different fields to be able to carry out the computations.

Let us state our main result in this section which is Theorem 3.3.22 in the text. Let

K be a totally real number field such that [K : Q] is odd, and f be a Hilbert modular

newform of parallel weight 2, level N , and trivial nebentype. For every non-zero prime

ideal p of OK not dividingN , we denote the eigenvalue of the Hecke operator Tp acting

on f by ap. Let D/F be the quaternion algebra (constructed by Nekovář in this case)

which describes the image (see Section 3.2.2). We use inner-twists of f to construct a
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field extension N of K of the form

N = K(
?
t1, ...,

?
tm)

for ti P K with the property that the characters of Gal(N/K) are exactly the characters

appearing in the inner-twists of f . Let tσiu
m
i=1 be the F2-basis for Gal(N/K) satisfying

σi(
?
tj) = (´1)δi,j

?
tj . Then we prove:

Theorem 1.3.1. Let p1, ¨ ¨ ¨ , pm be a set of prime ideals of OK not dividing N and with

api ‰ 0 such that σi = Frobpi inGal(N/K) (such primes exist by Chebotarev’s theorem).

Then in Br(F ) one has:

[D] = (NrFK/F (t1), a
2
p1
)(NrFK/F (t2), a

2
p2
) ¨ ¨ ¨ (NrFK/F (tm), a

2
pm),

where (a, b) = (a, b)F denotes the Hilbert symbol.

The main objective of Chapter 4 is to generalize the results of Ribet, Momose and

Nekovář to the case of GLn. A key observation is that in this case, one should also take

into account the so-called ”outer-twists” of an automorphic representation. This is due to

the fact that not every automorphism of SLn is inner for n ą 2. Inner- and outer-twists

of a representation together form a group that we call the group of extra-twists. We

use these extra-twists to compute the p-adic Lie algebra of certain n-dimensional Galois

representations that satisfy a list of natural properties. These properties are expected to

hold for the Galois representations associated to ”general type” regular algebraic cuspidal

automorphic representations (after possibly a twist), but we are only able to prove this in

the GL3 case.

Let us state our main result in the GL3 case, which is Theorem 4.3.13 in the text. Let

K be a totally real field and let π be a regular algebraic cuspidal automorphic representa-

tion of GL3(AK) that is of general type, i.e. it neither satisfies π » πbχ for a non-trivial

Hecke character χ, nor π » π_ b η for any Hecke character η. Let Q(π) be its Hecke

field with Galois closure E, fix a prime p and let ρπ,p : ΓK Ñ GL3(Q(π) bQ Qp) be

the p-adic Galois representation attached to π and Γ Ď Aut(E) the group of extra-twists

which will be defined later. Here is our main result:

Theorem 1.3.2. Let F = EΓ be the field fixed by all extra-twists of π. Then for every

prime number p, there exists a finite extension L/K and a semi-simple algebraic group

Hp defined over Fp := F bQ Qp which is a form of SL3 (constructed using the extra-

twists), such that ρπ,p(ΓL) is contained in Hp(Fp) ¨ Qˆ
p Ď GL3(E bQ Qp) and it is open

in the p-adic topology.
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To construct the groupHp, we use the group of extra-twists of π to define a 1-cocycle

which gives us a form of SL3. To prove the openness we need to compare the Lie algebras.

We first twist away the determinant and only focus on the semi-simple part of the Lie al-

gebra. To use our earlier computations on Lie algebras, we need some information about

the Lie algebras over the algebraic closure. Here, the key ingredients are the classification

of semi-simple Lie subalgebras of sl3, Langlands functoriality for sym2 : GL2 Ñ GL3,

and automorphic induction for degree 3 extensions.

Assuming the functoriality conjectures of Langlands, one can go through the argu-

ments in the proof of the above theorem and see what assumptions are needed on π to

prove such a result for GLn, i.e. when extra-twists are enough to give a precise descrip-

tion of the image. This should intuitively mean that π is not coming from any smaller

group via a Langlands transfer. We make this precise in Section 4.3.3 and define auto-

morphic representations of general type and prove a big image theorem for the Galois

representations associated to those, assuming Langlands functoriality.

In Chapter 5, we investigate the relation of our results in Chapter 4 and the Mumford-

Tate conjecture. The conjectures of Clozel [11] predict the existence of a motive Mπ

over K (with coefficients in an extension of Q(π)) attached to π. The Mumford-Tate

conjecture for this motive tells us that the groups Hp from Theorem 1.3.2 should arise

from a global object H defined over the field F . Assuming the existence of such a

motive, we will use the action of extra-twists on the Hodge structure to construct a group

H8 over F bQ R that should be the Archimedean part of the Mumford-Tate group. We

will also use this action on the rational Hodge structure to construct a global group H .

This group will contain the (special) Mumford-Tate group and in particular its dimension

(which is equal to the dimension of all the groups Hp from the Theorem 4.3.13) bounds

the dimension of the Mumford-Tate group from above.





Chapter 2

The Irreducibility Conjecture

2.1 Harish-Chandra’s Philosophy of Cusp Forms

Harish-Chandra’s idea of reducing the study of automorphic representations to cuspidal

ones, by means of parabolic induction, is a precursor of the Langlands philosophy. Let

us explain this in a special case, in the language of Langlands functoriality:

Let K be a number field and consider the reductive group G = GLn over K. Let

P be a parabolic subgroup of GLn whose associated Levi subgroup M is given by the

natural diagonal block embedding

GLn1 ˆ ¨ ¨ ¨ ˆ GLnk
ãÑ GLn

for a partition n = n1 + ¨ ¨ ¨+nk. Since the dual group of GLn is isomorphic to GLn and

all the groups are split here, one can simply take the L-map

LM Ñ LG

to be the identity on the Galois component and the natural diagonal block embedding on

the algebraic groups:

GLn1(Qp) ˆ ¨ ¨ ¨ ˆ GLnk
(Qp) ˆ ΓK Ñ GLn(Qp) ˆ ΓK .

It is proved by Langlands that Langlands functoriality holds for this L-map. In particu-

lar, if π1,..., πk are automorphic representations of GLn1 ,..., GLnk
respectively, then the

automorphic representation π1 b ¨ ¨ ¨ b πk of GLn1 ˆ ¨ ¨ ¨ ˆGLnk
can be transferred to an

automorphic representation π1 ‘ ¨ ¨ ¨ ‘ πk of GLn via the above L-map. This is called

the isobaric sum of π1,..., πk.

21
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Cuspidal automorphic representations are morally the ones that cannot be found as

subquotients of the parabolic inductions of smaller groups. They serve as the building

blocks upon which other automorphic representations are constructed by parabolic in-

duction. In particular, one can start with cuspidal automorphic representations π1,..., πk
and construct a new automorphic representation π1‘¨ ¨ ¨‘πk which is no longer cuspidal.

Definition 2.1.1. An automorphic representation π of GLn is called isobaric if it is iso-

morphic to an isobaric sum π1 ‘ ¨ ¨ ¨ ‘ πk of cuspidal automorphic representations.

Not every automorphic representation is isobaric. But these are the simplest ones that

can be constructed from cuspidal automorphic representations. If π is isomorphic to an

isobaric sum π » π1 ‘ ¨ ¨ ¨ ‘ πk of cuspidal automorphic representations, then one easily

observes that

L(s, π) = L(s, π1) ¨ ¨ ¨L(s, πk),

therefore the analytic properties of L(s, π) are also understood by Theorem 1.2.7.

As was discussed in the last chapter, to have the most satisfactory formulation of the

Langlands conjectures, one needs the existence of the hypothetical LanglandsL-group of
the number field K. Nevertheless, Clozel was able to formulate precise conjectures for

the group GLn by restricting himself to algebraic automorphic representations where one

expects a correspondence to the representations of the usual Galois group ofK rather than

the L-group [11]. Let us recall a version of his conjectures (combined with a conjecture

of Fontaine and Mazur):

Conjecture 2.1.2 (Langlands, Clozel, Fontaine-Mazur). There is a (unique) bijection

between the two sets:

• algebraic isobaric automorphic representations of GLn(AK), and

• isomorphism classes of semi-simple continuous representations ΓK Ñ GLn(Qp)

that are unramified outside a finite set of places and de Rham at places above p,

such that at unramified primes, the Satake parameters match with the Frobenius eigen-

values.

The famous conjecture of Fontaine and Mazur predicts that these kinds of Galois

representations (if one adds an oddness assumption on their irreducible subquotients) are

exactly the ones that come from algebraic geometry, i.e. these are subquotients of the
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p-adic étale cohomologies of smooth proper varieties overK. By a famous conjecture of

Tate, these Galois representations are in fact semi-simple and can be written as a direct

sum of irreducible ones. As one can see from the definition of the L-map

LM Ñ LG,

the operator ‘ corresponds to the direct sum ‘ on the Galois side under the Langlands

correspondence.

Given all these, it is then natural to guess that under the above bijection, cuspidal

automorphic representations that are the building blocks on the automorphic side should

exactly correspond to irreducible Galois representations that are the building blocks on

the Galois side. This is known as the Irreducibility Conjecture:

Conjecture 2.1.3. Under the Langlands correspondence for GLn (Conjecture 2.1.2), cus-

pidal representations correspond to irreducible Galois representations.

In fact, assuming that we are in the Artin case, i.e. the Galois representation has finite

image, one can easily prove this expectation:

Proposition 2.1.4. Let π be an isobaric automorphic representation of GLn(AK) and

ρ : ΓK Ñ GLn(Qp) the associated Galois representation via Conjecture 2.1.2. Assume

that ρ(ΓK) is finite. Then π is cuspidal if and only if ρ is irreducible.

Proof. We follow the argument in the introduction of [29]. Let π be cuspidal. Then by

Theorem 1.2.7 the Rankin-Selberg L-function L(s, π ˆ π_) has a simple pole at s = 1.

Since the Satake parameters of π match with Frobenius eigenvalues of ρ outside a finite

set S of finite places ofK, we have the equality of partial L-functions

LS(s, π ˆ π_) = LS(s, ρ b ρ_),

where the superscript S indicates that we are removing the Euler factors for places in

S. This does not change the analytic properties (analyticity, order of pole, etc) at s = 1

since the removed factors are holomorphic and non-zero around s = 1. We conclude that

L(s, ρ b ρ_) has a simple pole at s = 1.

Now from the theory of Artin L-functions, the only irreducible representation whose

L-function has a pole at s = 1 is the trivial representation. This means that if we de-

compose ρ b ρ_ » End(ρ) into irreducible representations, there is exactly one trivial
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factor, which has to be the subrepresentation of the scalar matrices. But if ρ = σ ‘ η is

reducible, then

ρ b ρ_ » (σ b σ_) ‘ (σ b η_) ‘ (η b σ_) ‘ (η b η_)

contains at least two trivial representations as a direct summand (one inside σ b σ_ »

End(σ) and one inside η b η_ » End(η)). This implies that ρ is irreducible.

To prove the other direction, one reverses all the arguments and concludes using [19,

Lemma 11.8.1] that πmust have exactly one cuspidal factor in its isobaric decomposition.

Little is known about the irreducibility conjecture in general, even though the Galois

representation associated with a cuspidal automorphic representation is constructed in

many cases when the base field K is totally real or CM. In the rest of this section, we

review some of the known instances of this conjecture. In almost all of these cases, the

argument uses analytic properties of automorphic L-functions.

2.2 The GL2 Case

2.2.1 Modular Galois Representations

Let f =
ř

ně1 anq
n be a cuspidal newform of weight k ě 2, level N , and nebentype

ϵ. If k = 2, then it is well known that there exists an abelian variety Af/Q associated

with f whose dimension is the degree of the number field E = Q(f) over the rational

numbers [14, §6.6]. One can then show that the Tatemodule ofAf is a freeEp = EbQQp

module [33, §4] which has to be of rank 2 since dimAf = [E : Q]. This gives the Galois

representation
ź

p|p

ρf,p = ρf,p : ΓQ Ñ GL2(Ep) =
ź

p|p

GL2(Ep).

The Eichler-Shimura relation can be used to show that trρp(Frobℓ) = aℓ for all ℓ ∤ pN .

This means that (possibly up to semi-simplification) this is exactly the Galois representa-

tion predicted to be associated with f by Conjecture 2.1.2, viewing f as an automorphic

representation by the standard procedure. Coming from abelian varieties, the Galois rep-

resentation ρp (or rather each ρp) is de Rham with Hodge-Tate weights (0,´1).

The same story should hold for Hilbert modular forms of parallel weight 2, but this

is not known in general. We will revisit this in the next chapter.
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Now assume that k ě 2. Conjecture 2.1.2 still predicts the existence of a Galois

representation
ź

p|p

ρf,p = ρf,p : ΓQ Ñ GL2(Ep) =
ź

p|p

GL2(Ep)

whose Frobenius traces at primes away from pN are given by the Fourier coefficients

of f . This is indeed known by the work of Deligne [13]. These Galois representations

could also be found in the p-adic cohomology of certain varieties and are de Rham with

Hodge-Tate weights (0, 1 ´ k).

One can hope to be able to improve Deligne’s construction to find a more geomet-

ric object whose p-adic cohomology is the above Galois representation. In fact, Scholl

constructs a motive Mf associated with f whose p-adic realization is exactly the Ga-

lois representation constructed by Deligne [37]. When k = 2, this motive is exactly the

motive induced by (the first cohomology of) the abelian variety Af .

2.2.2 Irreducibility Using L-Functions

If f is a cuspidal newform as in the last section, the automorphic representation πf asso-

ciated to it is algebraic and cuspidal. Therefore one expects each Galois representation

ρf,p to be absolutely irreducible by Conjecture 2.1.3. We will prove this in this section.

The argument is due to Ribet. The same argument works for Hilbert modular forms.

Theorem 2.2.1. Let f be a cuspidal newform of weight k ě 2. Then, for each finite place

p of the Hecke field E = Q(f), the Galois representation

ρf,p : ΓQ Ñ GL2(Ep)

is absolutely irreducible.

Proof. Assume that ρf,p is reducible and the (Qp-valued) character η1 is a subrepresen-

tation and let η2 be the quotient representation. Then

ρssf,p = η1 ‘ η2.

As was mentioned, ρf,p is de Rham. This implies that both η1 and η2, being a subrep-

resentation and a quotient of it, are also de Rham. The Hodge-Tate weights of ρf,p are

(0, 1 ´ k) which means that one of η1 and η2 has Hodge-Tate weight 0 and the other one

1 ´ k. Since every Hodge-Tate character of ΓQ is of the form χ ¨ χn
p for some Dirichlet
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character χ, we deduce that one of η1 and η2 is a Dirichlet character η and the other one

is of the form χ ¨ χk´1
p , hence

ρssf,p = η ‘ χ ¨ χk´1
p .

Now note that f b χ´1 is also a cuspform and its associated Galois representation is

clearly equal to ρf,p b χ´1 by the Brauer-Nesbitt Theorem. Therefore twisting by χ´1

we get:

ρssfbχ´1,p = ηχ´1 ‘ χk´1
p .

Taking the L-functions of both sides we have

L(s, f b χ´1) = L(s, ηχ´1)L(s, χk´1
p ) = L(s, ηχ´1)ζ(s+ 1 ´ k),

where ζ is the Riemann zeta function. The left hand side, being the L-function of a cusp

form, has analytic continuation to an entire function. Since ζ(s + 1 ´ k) has a pole at

s = k, this should be canceled by a root of the Dirichlet L-function L(s, ηχ´1) at k.

Since Dirichlet L-functions are non-vanishing for Re(s) ą 0, we are done.

More generally, if one assumes the existence of a Galois representation associated

with a cuspidal automorphic representation of GL2(AK) for a number field K, then one

uses a sort of similar argument to show the irreducibility of this Galois representation

using analytic properties of the L-functions. See [45, Theorem 1.2.6] for more details.

2.3 The GL3 Case

The irreducibility conjecture is also known for cuspidal automorphic representation of

GL3(AK) for a totally real field K. This is proved in [6] by Böckle and Hui. In this

section we give an overview of their proof. For all of the omitted details we refer to [6].

2.3.1 Locally Algebraic Representations

In his work on abelian Galois representations, Serre defined the notion of locally alge-

braic representations, which can be seen as a precursor to more sophisticated later notions

of p-adic Hodge theory [39]. He used this in the study of the Galois representations as-

sociated with elliptic curves. See [40] for more details on this.
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Assume that K is a general number field. A p-adic representation of ΓK is called

abelian if its image is an abelian group. In other words it factors through Γab
K , the abelian-

ization of ΓK :

ϕp : Γ
ab
K Ñ GLn(Qp).

Such abelian representations can be related to adelic groups using the Artin reciprocity

map:

ArtK : Aˆ
K/K

ˆ Ñ Γab
K ,

and locally algebraic ones are those that could be described by a morphism of alge-

braic groups around identity, after the above passage via global class field theory. Let

T := ResKQGm. Here is the precise definition:

Definition 2.3.1. An abelian semi-simple p-adic Galois representation

ϕp : Γ
ab
K Ñ GLn(Qp)

is called locally algebraic if there exists a morphism of algebraic groups

r : TQp
Ñ GLn,Qp

such that the composition

T (Qp) =
ź

v|p

Kˆ
v Ñ Aˆ

K/K
ˆ ArtK

ÝÝÑ Γab
K

ϕp
ÝÑ GLn(Qp)

is equal to r|T (Qp) on a small enough neighborhood of the identity element on the p-adic

Lie group T (Qp) = (K bQ Qp)
ˆ.

The following result of Fontaine shows the relation of this notion to the more familiar

notions of p-adic Hodge theory discussed earlier.

Proposition 2.3.2 (Fontaine). For an abelian semi-simple Galois representation of ΓK ,

being locally algebraic, being de Rham at places above p and being Hodge-Tate at places

above p are equivalent.

What makes the definition of locally algebraic representations interesting is the fol-

lowing result of Serre. Recall the definition of an E-rational Galois representation from

Section 1.1.1.

Theorem 2.3.3 (Serre). For an abelian semi-simple Galois representation of ΓK , being

locally algebraic is equivalent to being E-rational for some number field E.
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At the heart of the above results (and of [6]) lies the following surprisingly strong

result of Waldschmidt that heavily uses transcendental theory:

Theorem 2.3.4 (Waldschmidt). Let

χ : ΓK Ñ Qˆ

p

be a character, unramified outside a finite set of places ofK such that at each such place

v, χ(Frobv) is an algebraic number (overQ). Then there exists a positive integerN such

that χN is locally algebraic.

The main new input of the work of Böckle and Hui in [6], is to generalize Theorem

2.3.3 to the so-called weak abelian direct summands of (not necessarily abelian) semi-

simple Galois representations.

Definition 2.3.5. Let

ρp : ΓK Ñ GLn(Qp)

be an arbitrary Galois representation and

ψp : ΓK Ñ GLm(Qp)

be a semi-simple abelian Galois representation. We say that ψp is a weak abelian direct

summand of ρp if there exists a density one set of (rational) primes L such that for each

ℓ P L and finite place v ofK above ℓ, the representations ρp and ψp are both unramified

at v and the characteristic polynomial of ψp(Frobv) divides the characteristic polynomial

of ρp(Frobv).

The obvious example of the above situation is when ψp is in fact a direct summand

of ρp but there are examples where this does not hold. Finally, here is the main result of

the work of Böckle and Hui:

Theorem 2.3.6 (Theorem 1.1 of [6]). Let E Ă Qp be a number field and

ρp : ΓK Ñ GLn(Qp)

be a semi-simple, E-rational, p-adic Galois representation. Let the representation ψp be

a weak abelian direct summand of ρp. Then ψp is locally algebraic and hence de Rham

at all places above p.
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2.3.2 Irreducibility Using L-Functions

Having Theorem 2.3.6 in hand, one can apply an L-function argument in the same spirit

as in the proof of 2.2.1 to prove the irreducibility conjecture in the GL3 case, at least over

a totally real field K. The existence of the Galois representations is known in this case.

In fact, more generally, one has:

Theorem 2.3.7 (Harris-Lan-Taylor-Thorne [22], Scholze [38]). LetK be either a totally

real or a CM number field and π be a regular algebraic cuspidal automorphic represen-

tation ofGLn(AK). Then for every embedding λ : Q(π) ãÑ Qp there exists a semi-simple

Galois representation

ρπ,λ : ΓK Ñ GLn(Qp),

unramified outside a finite set of primes S, such that for any finite place v R S ofK, the

eigenvalues of ρπ,λ(Frobv) match with the Satake parameters of π at v (after applying

λ), as predicted by Conjecture 2.1.2.

The Galois representations in the above theorem are expected to be irreducible by

Conjecture 2.1.3. It has been known for a long time, that when K is totally real, n = 3,

and π is essentially self-dual then the Galois representation associated with it is irre-

ducible [5]. The n = 3 case was also studied by [8] in the non essentially self-dual

setting. We will reduce the general case to the case of essential self-duality.

Theorem 2.3.8 (Böckle-Hui). Let K be a totally real number field and π be a regular

algebraic cuspidal automorphic representation of GL3(AK). Then for any embedding

λ : Q(π) ãÑ Qp, the Galois representation ρπ,λ is irreducible.

Proof. We write ρ := ρπ,λ for simplicity. Assume that ρ is reducible:

ρ = σ ‘ τ,

where σ is a two dimensional and τ is a one dimensional Galois representation. Therefore

τ is abelian and hence, a weak abelian direct summand of ρ. Since ρ is clearly Q(π)-

rational by its definition and Q(π) is a number field by a result of Clozel (see Definition

1.2.8), Theorem 2.3.6 implies that the character τ is de Rham. SinceK is totally real, such

a character must be a Tate-twist of a finite character and hence comes from an algebraic

Hecke character η via class field theory. Now notice that:

ľ2
ρ =

ľ2
σ ‘ (σ b τ) ‘

ľ2
τ = det(σ) ‘ (σ b τ).
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Adding τ 2 to both sides we get

τ 2 ‘
ľ2

ρ = det(σ) ‘ (ρ b τ).

In particular det(σ) is also locally algebraic by 2.3.6 and hence corresponds to an alge-

braic Hecke character χ. Twisting both sides with τ´2 we have

1 ‘ (τ´2 b
ľ2

ρ) = (ρ b τ´1) ‘ (det(σ) b τ´2).

Now we look at the (partial) L-functions of both sides. Since ρ and τ are automorphic

(associated with π and η) and Langlands functoriality is known for
Ź2 : GL3 Ñ GL3, we

can replace the associated L-functions with the automorphic ones. All the L-functions

are normalized so that the critical strip is between Re(s) = 0 to 1:

ζ(s)L(s, η´2 b
ľ2

π) = L(s, π b η´1)L(s, χη´2).

Now L(s, η´2 b
Ź2 π) is non-vanishing at s = 1 by a result of Shahidi and ζ has a pole

at s = 1. Since π b η´1 is cuspidal, L(s, π b η´1) is entire and therefore the L-function

of the character χη´2 has a pole at s = 1 and hence this character is trivial and χ = η2,

or equivalently, det(σ) = τ 2. This simply means that ρ b τ´1 is self-dual and therefore

ρ and hence π are essentially self-dual. As was mentioned, the theorem is known in this

case.

Böckle and Hui use this theorem to investigate the geometric monodromy group of

the above Galois representations and then use this to prove some p-adic Hodge theoretic

properties of them. We will make use of the following result of their work later:

Theorem 2.3.9. Keeping the notation of Theorem 2.3.8, there exists a density one set

of (rational) primes P , such that for each p P P and embedding λ : Q(π) ãÑ Qp, the

Galois representation ρπ,λ is de Rham and regular (has distinct τ -HT weights for each

embedding τ : K ãÑ R).
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Inner-Twists and 2-Dimensional Galois

Representations

3.1 Serre’s Open Image Theorem

The first case of big image theorems for Galois representations beyond class field theory

was worked out by Serre for Galois representations associated with elliptic curves over

number fields. Over the field of rational numbers, this can also be seen as computing

the image of Galois representations associated with weight 2 cuspidal newforms with

rational Fourier coefficients, since one can associate an elliptic curve to such modular

forms by a construction of Eichler and Shimura. We will give a proof of Serre’s result

using Faltings’ results on Tate’s Conjecture in this section. The case of more general

eigenforms will be discussed in the next section.

LetK be a number field andE/K an elliptic curve. It is well known that the rational

endomorphism algebra of this elliptic curve, End0Q(E) := EndQ(E) bZ Q, is either iso-

morphic to Q or to Q(
?

´d) for some square-free positive integer d ą 1. In the second

case E is said to have complex multiplication or CM for short. The first case is then

called the non-CM case. If K contains
?

´d then one can see that the Galois represen-

tation associated with E decomposes as the sum of two characters. If not, the restriction

to the Galois group ofK(
?

´d) does, so we get

ρE,p|ΓK(
?

´d)
» χ ‘ σχ,

where σ is the non-trivial element of Gal(K(
?

´d)/K). This means that in this case

ρE,p » IndK(
?

´d)
K χ. In any case, whenE has CM, the image of the Galois representation

31
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is small, i.e. it can be described by a character after at most a degree two extension.

If E is non-CM then Serre proves that the restriction of ρE,p to the Galois group of

any finite extension of K is still irreducible [39]. Here, we will give a proof based on

Faltings’ theorem.

Theorem 3.1.1 (Serre). LetK be a number field and E overK an elliptic curve without

complex multiplication. Then ρE,p is strongly absolutely irreducible, i.e. for any finite

extension L/K one has that ρE,p|ΓL
is absolutely irreducible.

Proof. Assume that there exists L such that

ρE,p|ΓL
» χ1 ‘ χ2

for two characters χ1, χ2 : ΓL Ñ Qˆ

p . This clearly means that EndQp[ΓL]
(Vp(E)) contains

Qp ˆ Qp, and hence is at least two-dimensional. By Theorem 3.1 we know that

End0L(E) bQ Qp » EndQp[ΓL]
(ρE,p),

therefore End0L(E) is at least two-dimensional which means that E has complex multi-

plication. This contradiction implies the result.

We will see later that proving a strong irreducibility result such as the one above is

always a crucial part of proving an open image theorem for p-adic Galois representations.

The next proposition gives another interpretation of strong irreducibility:

Lemma 3.1.2. Let ρ : G ãÑ GLn(Qp) be a closed embedding. Then the representation

ρ is strongly irreducible if and only if the induced Lie algebra representation

dρ : Lie(G) ãÑ gln

is irreducible.

Proof. Let V be the underlying vector space of ρ. ThenG acts on V via ρ and g = Lie(G)

acts on V via dρ. Now assume that V = W1 ‘ W2 as a representation of g. Then, by

Theorem 1.1.7, the representation g Ñ End(Wi) can be lifted to a group representation

Ui Ñ Aut(Wi) for an open subgroup Ui of G for i = 1, 2. This simply means that ρ|Ui

is reducible unless Wi is not proper. This proves that strong irreducibility implies Lie

algebra irreducibility. The other direction is obvious.

Now, we are ready to prove the main theorem of this section:
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Theorem 3.1.3 (Serre). LetK be a number field and E overK an elliptic curve without

complex multiplication. Let

ρE,p : ΓK Ñ GL2(Zp)

be the Galois representation associated with E (after choosing a basis for the Tate mod-

ule). Then the image of this representation is open, i.e. ρE,p(ΓK) Ď GL2(Zp) is open in

the p-adic topology.

Proof. First, note that GL2(Zp) Ď GL2(Qp) is open so it is enough to prove the result

for

ρE,p : ΓK Ñ GL2(Qp).

Also, notice that GL2(Qp) is a p-adic Lie group, and since ΓK is compact, ρE,p(ΓK) is a

closed subgroup of this p-adic Lie group and therefore a Lie subgroup. Now by corollary

1.1.8, it is enough to prove that the Lie algebra of the image is gl2. Let Gp = ρE,p(ΓK)

and ρ : Gp ãÑ GL2(Qp) = Aut(Vp) be the inclusion map where Vp = Vp(E) is the

rational p-adic Tate module. Also, let gp be the Lie algebra of Gp. Notice that

dρ : gp Ñ gl2 = End(Vp)

gives us a Lie algebra representation of gp. This representation is irreducible by 3.1.2

and hence the centralizer Cgl2(gp) is a Qp-division algebra. We want to show that it

is actually equal to Qp. Choose a number field L/K such that all the endomorphisms

of E are defined over L, i.e. EndL(E) = EndQ(E). This means that for any normal

open subgroup H of ΓL one has EndL(E) bQ Qp = EndH(Vp) and hence it must hold

infinitesimally by Theorem 1.1.7:

EndL(E) bQ Qp = Endgp(Vp) = Cgl2(gp).

Now by the non-CM assumption EndQ(E) = Q and therefore Cgl2(gp) = Qp. By the

classification of irreducible Lie subalgebras of gl2, the only Lie subalgebras with this

property are sl2 and gl2. We need to exclude the first case. Assume that gp = sl2. Then

Gp X SL2(Qp) is open in Gp by Corollary 1.1.8 which means that there exists a finite

extensionM/K such that

ρE,p(ΓM) Ď SL2(Qp).

On the other hand det(ρE,p) = χp is the p-adic cyclotomic character which cannot be

trivialized by a finite extension. This implies that gp = gl2 and we are done.



34 Inner-Twists of Modular Forms

3.2 Inner-Twists of Modular Forms

3.2.1 Classical Modular Forms

If f P S2(Γ˝(N),Q) is a cuspidal newform, then there exists an elliptic curve Ef as-

sociated with it whose Tate module is the Galois representation associated with f (see

Section 2.2.1). Then the above result of Serre describes the image of ρf,p. One can natu-

rally ask what happens in more general cases. If f P Sk(N, ϵ) with Q(f) ‰ Q then even

det(ρf,p) = ϵχk´1
p does not have open image in GL1(Q(f)p), so for one thing, one needs

to be careful about the determinant. This is not hard to fix, since one can for instance

study the intersection of the image with SL2 or twist away the determinant after a finite

extension as we will see later. A more subtle issue is the existence of extra symmetries

which can already be seen in weight 2. In this case there is an abelian variety Af as-

sociated with f whose Tate module (endowed with the right Q(f)-structure) gives ρf,λ
for a place λ of Q(f) above p (or an embedding λ : Q(f) Ñ Qp if you prefer). This

abelian variety could very well have a non-trivial endomorphism ring. This forces the

image of the associated Galois representation Vp(Af ) to be smaller than usual since it

must commute with this action. To understand how this affects ρf,λ one also needs to

consider how these interact withE. Of course, one likes to rewrite this purely in terms of

the automorphic data so that it can be generalized to other situations where the associated

algebro-geometric objects are less explicit (or not available at all). As Ribet observed, if

the endomorphism ring of Af is big, then f satisfies some sort of symmetries which he

called inner-twists. Ribet defines inner-twists as follows [33, §3]:

Definition 3.2.1. Let f P Sk(N, ϵ) be a non-CM cuspidal newform of levelN , nebentype

ϵ, weight k ě 2 and Hecke field E = Q(f). An inner-twist of f is a pair (σ, χ) of an

embedding σ : E ãÑ C and a Dirichlet character χ such that for almost all primes p one

has:
σap(f) = ap(f) ¨ χ(p).

Ribet shows that in fact (even if E/Q is not Galois) one has σ(E) = E for every

σ appearing in an inner-twist. This shows that one can choose σ from Aut(E) instead.

This furthermore shows that if πf is the automorphic representation associated with f ,

then by strong multiplicity one an inner-twist could be simply thought of as a pair (σ, χ)

as above such that
σπf = πf b χ
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for any extension of σ to an automorphism of C (see the discussion after Definition 1.2.8

for the action of σ on πf ).

In the next section we will define inner-twists for Hilbert modular forms as well and

we will state many properties of inner-twists. Here, let us just mention that inner-twists

form a group under the multiplication

(σ, χ) ¨ (τ, η) = (σ ˝ τ, χ ¨ ση).

We denote this group by Γ. One can easily see (as we will in the next section) that the

projection to the first component identifies Γwith a subgroup of Aut(E). Let F = EΓ be

the field fixed by the inner-twists. Then E/F is a finite Galois extension. Now, assume

that f is of weight 2, so that there exists a simple abelian variety Af associated with it.

The following result of Ribet demonstrates the relation between the size of the group of

inner-twists Γ, and how big the endomorphism algebra of Af is:

Theorem 3.2.2 (Ribet). Keeping the notations as above, let X = End0Q(Af ). Then

E » EndQ(Af ) and E ãÑ X is a maximal subfield of the central simple algebra X .

Moreover, the center of X is identified with F Ď E under the above embedding. In

particular, dimF X = |Γ|2.

Ribet used the group of inner-twists to construct a quaternion algebra D/F which

describes the image of the Galois representation associated to f and also the class of the

endomorphism algebraX in the Brauer group. Momose generalized his results to higher

weights. We will state the theorem now but do not give the construction of D and the

proof of the theorem at this point because this will follow from our results in the next

chapter for n-dimensional Galois representations. However, in the next section, we will

give Nekovář’s construction ofD in the case of Hilbert modular forms since it is slightly

different from ours.

Theorem 3.2.3 (Ribet, Momose). Let f P Sk(N, ϵ) be a non-CM newform with Hecke

field E = Q(f), group of inner-twists Γ and F = EΓ. Let Ep = E bQ Qp and also

Fp = F bQ Qp as usual. Then there exists a quaternion algebra D over F that can be

realized inside M2(E) (as an F -algebra) and an open normal subgroup H Ď ΓQ such

that for every prime p one has

ρf,p(H) Ď Dˆ(Fp) := (D bF Fp)
ˆ Ď GL2(Ep).

Moreover, ρf,p(H) is open in the p-adic Lie group

tx P Dˆ(Fp)|Nrd(x) P Qˆ
p u.
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Note that just like the open image theorem of Serre, this theorem is giving a precise

description of the image of the Galois representation associated with f , up to p-adic

openness. In the k = 2 case, Ribet also clarifies the relation of this quaternion algebra

with the abelian variety Af :

Theorem 3.2.4 (Ribet). Keeping the notations from the last theorem, assume k = 2 and

X = End0Q(Af ). Then one has

[X] = [D] P Br(F ) = H2(ΓF , F
ˆ
).

3.2.2 Hilbert Modular Forms

Nekovář generalized the work of Ribet andMomose to the case of Hilbert modular forms

in Appendix B of [27]. When everything is done in the right way, the arguments are

similar for the most part. One difference is that in the parallel weight 2 case, where one

expects the existence of an abelian variety associated with the form, the construction of

such an abelian variety is not known in general.

Let K/Q be a totally real field of degree d, and f be a non-CM Hilbert modular

newform over K of weight (k1, ¨ ¨ ¨ , kd) and level N Ĳ OK and we assume that all of

the ki’s have the same parity. Equivalently, we can consider a non-CM cuspidal au-

tomorphic representation πf of GL2(AK) of level K1(N ) Ĳ GL2(OK b pZ) that is a

discrete series representation of weight ki at the infinite place vi, where tv1, ¨ ¨ ¨ , vdu are

the Archimedean places ofK. Assume that E = Q(f) is the Hecke field and ω = | ¨ |mφ

is the central character of πf , with φ is a finite character. Following Nekovář [27], we

define the inner-twists:

Definition 3.2.5. Keeping the notations as above, an inner-twist of f is a pair (σ, χ)

where σ : E ãÑ C is an embedding and χ is a Hecke character such that

σπf = πf b χ.

We could equivalently define inner-twists using the q-expansion of f . Let d be the

different ideal of the number fieldK, z = (z1, ¨ ¨ ¨ , zd) be a point in Hd, and

f(z) =
ÿ

n=u¨d´1

u"0

an(f)q
tr(u¨z)

be the q-expansion of f . Then a pair (σ, χ) as above is an inner-twist if and only if

σap(f) = ap(f) ¨ χ(p)
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for almost all prime ideals p of OK .

Proposition 3.2.6. Let (σ, χ) be an inner-twist of f . Then one has

1. χ2 = σω/ω = σφ/φ and hence it is finite.

2. χ = φrµ for r P Z and a quadratic character µ.

3. Im(χ) Ď E.

4. σ(E) Ď E, hence σ P Aut(E).

Proof. See [27, B.3.2].

If (σ, χ) and (σ, χ1) are two inner-twists of f , then one has

πf = πf b χ1χ´1

which implies χ = χ1 since f is non-CM. This means that for an inner-twist (σ, χ), the

character χ is uniquely determined by σ. This motivates us to use the notation (σ, χσ) for

an inner-twist sometimes. This also implies that forgetting χσ embeds the set of inner-

twists into the automorphisms of E. We usually use this identification without warning

from now on.

Proposition 3.2.7. Let Γ be the set of inner-twists of f identified with a subset ofAut(E).

Then one has:

1. Γ is a group under the multiplication

(σ, χ) ¨ (τ, η) = (σ ˝ τ, χ ¨ ση).

2. Γ Ď Aut(E) is an abelian subgroup.

3. Let F := EΓ. Then Γ = Gal(E/F ) under the above identification.

Proof. See [27, B.3.3].

Nekovář proves the results analogous to that of Ribet and Momose for the case of

Hilbert modular forms. Similar to Theorem 3.2.3 one finds a quaternion algebra describ-

ing the image of the associated Galois representation. Let us explain the construction of

this algebra locally. Let

ρ := ρf,p : ΓK Ñ GL2(Ep)
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be the p-adic Galois representation associated with f , where Ep = E bQ Qp as usual.

Now let (σ, χσ) be an inner-twist of f , i.e. σap(f) = ap(f) b χσ(p) for almost all prime

ideals p of OK . This means that the two Galois representations σρ and ρ b χσ have the

same trace at Frobenius elements Frobp for almost all p. Note that by abuse of notation,

we are denoting the Galois character associated with the finite Hecke character χσ by the

same notation. Now, since the Frobenius elements are dense by Chebotarev’s theorem,

we deduce that the two Galois representations σρ and ρ b χσ have the same trace. They

are both irreducible since f is cuspidal, therefore by the Brauer-Nesbitt theorem they are

isomorphic. This means that there exists a matrix ασ P GL2(Ep) such that

σρ = ασ(ρ b χσ)α
´1
σ .

Now let H =
Ş

σPΓ ker(χσ) Ď ΓK , which is an open subgroup of ΓK . Since all χσ’s are

trivial on H , the above equation becomes

σρ|H = ασ ¨ ρ|H ¨ α´1
σ

on H . We can Ep-linearly extend ρ|H to

ρ̃ : Ep[H] Ñ M2(Ep),

which clearly still satisfies
σρ̃ = ασ ¨ ρ̃ ¨ α´1

σ

for any σ P Γ. We define a twisted action of Γ on the matrix algebraM2(Ep) as follows.

For any inner-twist σ P Γ = Gal(E/F ) and A P M2(Ep) we define

tw(σ)A := α´1
σ ¨ σA ¨ ασ.

Therefore, every matrix in ρ(H) satisfies tw(σ)A = A. Now, we define the Fp-algebra

Dp as

Dp :=M2(Ep)
tw(Γ)

whose group of units clearly contains ρ(H).

Theorem 3.2.8 ( [27], Appendix B.4). There exists a quaternion algebraD/F such that

for every prime p one has Dp = D bF Fp. Moreover, ρf,p(H) is contained and open in

the p-adic Lie group

tx P Dˆ(Fp)|Nrd(x) P Qˆ
p u.
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3.3 Explicit Formulas

3.3.1 Quer’s Formula

Let f P Sk(N, ϵ) be a non-CM newform with Hecke field E = Q(f), group of inner-

twists Γ and F = EΓ. As we saw in Theorem 3.2.3, there exists a quaternion algebra

D/F describing the image of the Galois representation associated with f . In a more

computational direction one can ask if one can explicitly compute this quaternion algebra

(for example as an element in the Brauer group of F ) in terms of the Fourier coefficients

of f . Quer was able to find such an explicit formula for [D] P Br(F ) when k = 2 [28].

This was later generalized to arbitrary weights k ě 2 in [20]. In this section we review

Quer’s formula.

From now on we assume that k = 2. Let f =
ř

ně1 anq
n be the q-expansion of f . Let

H =
Ş

σPΓ ker(χσ). H is clearly an open normal subgroup of ΓQ so there exists a finite

Galois extension N/Q such that H = ΓN . One can show that Gal(N/Q) is a 2-torsion

group and hence it is isomorphic to (Z/2Z)m for some positive integer m. Therefore,

there exist rational numbers t1, ¨ ¨ ¨ , tm such that

N = Q(
?
t1, ¨ ¨ ¨ ,

?
tm).

Let σ1, ¨ ¨ ¨ , σm be an F2 basis for Gal(N/Q) such that

σi(
a

tj) = (´1)δi,j ¨
a

tj.

Quer also needs the following lemma of Ribet in his proof:

Lemma 3.3.1 (Ribet). Let P be the set of all rational prime numbers. Then the field

F = EΓ is the field generated by all but finitely many numbers of the form a2p/ϵ(p), i.e.

one has

F = Q
(
ta2p/ϵ(p)upPPzS

)
for any finite set S Ă P .

Now we can state Quer’s main result [28, Theorem 3]. Let cϵ be the 2-cocycle in

Br(F ) = H2(ΓF , F
ˆ
) given by the formula

cϵ(σ, τ) =
a

ϵ(σ)
a

ϵ(τ)
a

ϵ(στ)´1,

where we are considering ϵ as a Galois character. One easily sees that this cocycle takes

values in t˘1u.
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Theorem 3.3.2 (Quer). Let p1, ¨ ¨ ¨ , pm be prime numbers not dividing the level of f , such

that api ‰ 0 and σi = Frobpi in Gal(N/Q). Then one has

[D] = [cϵ]
(
t1, a

2
p1
/ϵ(p1)

) (
t2, a

2
p2
/ϵ(p2)

)
¨ ¨ ¨
(
tm, a

2
pm/ϵ(pm)

)
in Br(F ), where (¨, ¨) denotes the Hilbert symbol over F .

It follows from the Sato-Tate conjecture for f that the coefficients ap are non-zero

for a density 1 set of primes p and then the Chebotarev’s density theorem guarantees the

existence of p1, ¨ ¨ ¨ , pm in the theorem.

3.3.2 Generalization to Hilbert Modular Forms

In this section we want to generalize Quer’s result to the case of Hilbert modular forms

of parallel weight 2 with trivial nebentype, under the condition that the degree of the base

field overQ is an odd number. The material of this section is identical to the preprint [42]

by the author.

Let K be a totally real number field such that [K : Q] is odd and let f be a non-CM

(Hilbert) newform of parallel weight 2, level N where N is an ideal of OK , and finite

central character (nebentype) ϵ. It is well-known that in this case, one can use Shimura

curves to construct an abelian variety Af over K associated with f . Let p be a non-zero

prime ideal ofOK , Tp be the Hecke operator at p, and ap the eigenvalue of Tp acting on f .

Let the number field E = Q(tapup) be the Hecke field of f . The abelian variety Af/K

is of dimension d = [E : Q] and hence its ℓ-adic Tate module (after tensoring withQ) Vℓ
is of dimension 2d overQℓ. One can define anE-structure on this Tate module by letting

ap act via the Hecke operator at p. This turns Vℓ into a rank 2 free module over E bQ Qℓ

endowed with a continuous ΓK-action. This is the Galois representation associated with

f which after a choice of basis can be written as

ρf,ℓ : ΓK Ñ AutE(Vℓ) » GL2(E bQ Qℓ).

It is also well known that this Galois representation is unramified outside ℓN and for

any unramified prime ideal p, the Eichler-Shimura relation implies that the characteristic

polynomial of ρf,ℓ(Frobp) is equal to X2 ´ apX + ϵ(p)Nm(p).

As we saw in Theorem 3.2.8, Nekovář constructs a division algebraD over a subfield

F of the Hecke field E which describes the image up to p-adic openness. Just like the

case of classical modular forms (Theorem 3.2.4), in the special case where one knows
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there is an abelian variety associated with f (in particular f is of parallel weight 2) F is

equal to the center of the algebraX := EndQ(Af )bZQ [27, B.4.11]. SinceAf is of GL2-

type overK and f is non-CM, it is a Ribet-Pyle abelian variety, i.e. E » EndK(Af )bZQ

is a maximal subfield of the simple algebra X [21, Propposition 3.1]. Moreover, D and

X have the same class in the Brauer group of F [27, B.4.11].

First, we need to generalize a theorem of Ribet [34, Theorem 5.5] to our situation.

This is the main arithmetic input in the proof of Quer’s formula. Ribet’s proof works

without many changes but we will repeat the arguments for the convenience of the reader

and because this does not seem to be written down in the literature in this case. Then, we

will generalize [34, Theorem 5.6] using the work of Chi [10]. Here some of the Galois

cohomology computations become more complicated due to the fact that our base field

K is not contained in the field F , whereas in the case of classical modular formsK = Q

is contained in every number field. Therefore one needs to carefully go up and down

between different fields to be able to carry out the computations.

The first step is to generalize [34, Theorem 5.5.] to the case of Hilbert modular forms.

Ribet uses Faltings’ theorem on isogenies (Theorem 3.1) to relate the endomorphism

algebra X to the Tate module. We will do the same thing and closely follow Ribet’s

arguments. Choose a prime number ℓ that splits completely inE. Then one has d different

embeddings σ : E Ñ Qℓ. Let M be a finite Galois extension of K such that all of the

endomorphisms of Af are defined overM . Now by Faltings’ isogeny theorem one has

X bQ Qℓ = EndQℓ[ΓM ](Vℓ). (3.1)

Remember that Vℓ also carries an E-structure through the Hecke action. Every em-

bedding σ of E into Qℓ gives a E b Qℓ -module structure on Qℓ with respect to which

we can define

Vσ = Vℓ bEbQℓ,σ Qℓ,

which is a Qℓ-subspace of Vℓ of dimension 2 that is invariant under the action of ΓK .

Now note that a P E acts on Vσ via multiplication by σ(a) P E, hence for two different

embeddings σ and τ , Vσ and Vτ have trivial intersection as subspaces of Vℓ. This (together

with obvious dimension reason) gives a decomposition

Vℓ =
à

σ:EãÑQℓ

Vσ

of Qℓ[ΓK ]-modules.

The following lemma will be useful later:
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Lemma 3.3.3. For each embedding σ one has EndQℓ[ΓM ](Vσ) = Qℓ. In particular, Vσ is

absolutely irreducible as a ΓM -representation.

Proof. From (3.1) one hasX bQ Qℓ = EndQℓ[ΓM ](Vℓ). Since E is a maximal subfield of

X , taking the centralizer of E b Qℓ of both sides one gets

E bQ Qℓ = EndEbQℓ[ΓM ](Vℓ),

which means

‘σQℓ = ‘σEndQℓ[ΓM ](Vσ),

which implies the first part. Since Vσ is semi-simple by Faltings’ proof of the Tate con-

jecture, irreducibility follows immediately.

For every prime p of OK not dividing ℓN , recall that the Frobp action on Vℓ has

characteristic polynomial

X2 ´ apX + ϵ(p)Nm(p) P E[X].

Therefore, for every embedding σ : E Ñ Qℓ one has

tr(Frobp ýVσ) = σ(ap) P Qℓ.

Restricting the compatible family of Galois representation to ΓM , one gets another com-

patible family, namely for every finite place v ofM not dividing ℓN there is tv P E such

that

tr(Frobv ýVσ) = σ(tv) P Qℓ.

Let ΣℓN be the set of finite places ofM not dividing ℓN and L = Q(tv : v P ΣℓN ) Ă E.

Then one has the following:

Lemma 3.3.4. The center of the algebra EndQℓ[ΓM ](Vℓ) is L bQ Qℓ.

Proof. First note that by Faltings’ theorem

E b Qℓ = EndQℓ[ΓK ](Vℓ) Ă EndQℓ[ΓM ](Vℓ)

and since E b Qℓ centralizes itself, it should contain the center of EndQℓ[ΓM ](Vℓ).

Semi-simplicity of Vℓ implies that Vσ and Vτ are isomorphic as ΓM -representations

if and only if they have the same Frobv traces for all places v ofM not dividing ℓN , or

equivalently, σ and τ agree on L. Now let γ : L Ñ Qℓ be an embedding and define

Vγ = ‘σ|L=γVσ.
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Thus one has the decomposition V = ‘Vγ and also since there is clearly no non-trivial

endomorphism from one Vγ to another, one also has the decomposition

EndQℓ[ΓM ](Vℓ) = ‘γEndQℓ[ΓM ](Vγ).

Now let a P L. Then a acts on Vσ by σ(a), hence it acts on the whole subspace Vγ by the

scalar γ(a) P Qℓ which means (because of the decomposition above) it’s in the center

of EndQℓ[ΓM ](Vℓ). So the E-algebra structure on EndQℓ[ΓK ](Vℓ) induces this L-algebra

structure on Z(EndQℓ[ΓM ](Vℓ)) which means it is enough to prove

Z(EndQℓ[ΓM ](Vℓ)) » L b Qℓ

as L-algebras. This is easy to check:

Z(EndQℓ[ΓM ](Vℓ)) = Z(‘γEndQℓ[ΓM ](Vγ)) = ‘γZ(EndQℓ[ΓM ](Vγ)) » ‘γQℓ = L b Qℓ.

Corollary 3.3.5. L is the center of X, i.e. L = F .

Proof. Recall that from Faltings’ isogeny theorem we have

X bQ Qℓ = EndQℓ[ΓM ](Vℓ).

Now from the last lemma it follows that

L b Qℓ = Z(EndQℓ[ΓM ](Vℓ)) = Z(X bQ Qℓ) = F b Qℓ

which implies F = L.

Lemma 3.3.6. If σ, τ : E Ñ Qℓ are embeddings that agree on F then there exists a

character ϕ : ΓK Ñ Qˆ
ℓ such that Vσ » Vτ b ϕ as representations of ΓK .

Proof. From the proof of Lemma 3.3.4 we know that since σ and τ agree on F = L,

Vσ and Vτ are isomorphic as representations of ΓM . So we can choose two bases for Vσ
and Vτ such that the homomorphisms ρσ : ΓK Ñ GL2(Qℓ) and ρτ : ΓK Ñ GL2(Qℓ)

associated with Vσ and Vτ are equal on ΓM . Now define

ϕ(g) := ρ´1
σ (g)ρτ (g).

A priori ϕ is just a map ϕ : ΓK Ñ GL2(Qℓ) which is trivial on ΓM . We want to prove

that it is actually a homomorphism with values in the center (hence actually a character).
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Let g P ΓK and h P ΓM . Note that ρσ(h) = ρτ (h) and ρσ(ghg´1) = ρτ (ghg
´1) since

ΓM is normal in ΓK . Now the following computation shows that ϕ(g) = ρ´1
σ (g)ρτ (g)

commutes with ρτ (h):

ρ´1
σ (g)ρτ (g)ρτ (h) = ρ´1

σ (g)ρτ (gh) = ρ´1
σ (g)ρτ (ghg

´1)ρτ (g)

= ρσ(g
´1)ρσ(ghg

´1)ρτ (g) = ρσ(h)ρ
´1
σ (g)ρτ (g) = ρτ (h)ρ

´1
σ (g)ρτ (g).

Now since EndQℓ[ΓM ](Vτ ) = Qℓ we are done.

Corollary 3.3.7. Using the notation of the last lemma, ϕ2 =
σϵ
τ ϵ

and for any prime p of

K of good reduction for Af , one has

σ(ap) = ϕ(Frobp)τ(ap).

Proof. Note that Vσ » Vτ b ϕ. Taking determinants of both sides one gets the first part

and taking trace one gets the second part.

Ribet also proves that in the K = Q case, the field F is generated by ta2p/ϵ(p)up∤N .

This is also true in our case. In fact, by [27, B.4.11] F is exactly the field fixed by inner-

twists and the above result is known in much more generality in this context by the results

of [12].

Proposition 3.3.8 ( [12], Corollary 4.12). The fieldF is generated overQ by the numbers

a2p/ϵ(p) for p ∤ N .

If σ P ΓK , then σ acts on theQ-endomorphisms ofAf by σ(ϕ)(x) := σ(ϕ(σ´1x)) and

this linearly extends to an action onX . E is clearly invariant under the action of ΓK on X

(we are identifyingE with the maximal subfield ofX). Since this is an automorphism of

F -algebras, By the Skolem-Noether theorem the action of σ is given by conjugation by

some element α(σ) P X . Since E is invariant under the Galois action, α(σ) commutes

with E and therefore α(σ) P E because E is a maximal subfield and hence its own

centralizer. The next theorem relates the map α which is of geometric (motivic) nature

to the (automorphic) data of Hecke eigenvalues.

Theorem 3.3.9. For every σ P ΓK one has α(σ)2/ϵ(σ) P Fˆ. Moreover, for every prime

ideal p of OK away from ℓN , if ap ‰ 0 then α(Frobp) ” ap modulo Fˆ.

Proof. As usual, let ℓ be a prime number that splits completely in E. It enough to prove

that for every pair of embeddings σ and τ of E inQℓ that agree on F one has σ(α2/ϵ) =

τ(α2/ϵ).



Explicit Formulas 45

Now if σ and τ agree onF then by Lemma 3.3.6 there exists a characterϕ : ΓK Ñ Qˆ
ℓ

such that Vσ » Vτ b ϕ as representations of ΓK . In particular, it implies that as 1-

dimensional representations of ΓK one has

HomQℓ[ΓM ](Vσ, Vτ ) » ϕ.

Also note that if the embeddings σ and τ do not agree on F then they are not isomorphic

as ΓM -representations and hence

HomQℓ[ΓM ](Vσ, Vτ ) = 0.

Therefore we can completely understand X b Qℓ:

End0M(Af ) b Qℓ » EndQℓ[ΓM ](‘Vγ) = ‘σ,τHomQℓ[ΓM ](Vσ, Vτ ).

Now remember that on the LHS, g P ΓK acts via conjugation by α(g). Hence, it acts

on Vσ and Vτ by σ(α(g)) and τ(α(g)) respectively. Now assume that σ and τ agree

on F . Then g acts on HomQℓ[ΓM ](Vσ, Vτ ) by σ(α(g))/τ(α(g)). On the other hand as

a representation of ΓK this is just ϕ, so σ(α(g))/τ(α(g)) = ϕ(g). Since ϕ2 =
σϵ
τ ϵ

one

deduces that σ(α2/ϵ) = τ(α2/ϵ) and the result follows.

For the second part, first notice that

ϕ(Frobp) = σ(α(Frobp))/τ(α(Frobp)) = σ(ap)/τ(ap),

therefore

σ(α(Frobp)/ap) = τ(α(Frobp)/ap)

which implies the result.

Our second goal is to prove an analogue of [34, Theorem 5.6] in our setting. Ribet

uses a result of Chi to prove this theorem. In [10], Chi studies the twists of a central

simple algebra by a 1-cocycle. We need to review some of his results and generalize

some of those to our setting.

First note that the endomorphism ring EndQ(Af ) acts on the space of differential 1-

forms on Af/Q (which we denote by Ω1
Q) via pull back. For an endomorphism ϕ and a

1-form ω we use the usual notation ϕ˚ω for this action. This action linearly extends to

an action of X on this space and we use the same notation for this action as well. Also,

note that for any σ P ΓK and ϕ P X one has

σ(ϕ˚ω) = (σϕ)˚(σω) = (α(σ) ¨ ϕ ¨ α(σ)´1)˚(σω). (3.2)
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For σ and τ in ΓK , define cα(σ, τ) := α(σ)α(τ)α(στ)´1. This commutes with every

element in X so it lands in F . Therefore α gives a well-defined group homomorphism

αK : ΓK Ñ
Eˆ

Fˆ
.

Let αFK be the restriction of αK to ΓFK . We sometimes use the same notation to denote

the composition of this map with the canonical map to (EK)ˆ/(FK)ˆ:

αFK : ΓFK Ñ
Eˆ

Fˆ
Ñ

(EK)ˆ

(FK)ˆ
.

Let XFK := X bF FK. This is an algebra over FK. Note that every element in FK is

a sum of the form
ř

i fiki for fi P F and ki P K, soXFK is generated by pure tensors of

the form
ř

i ϕi b ki for ki P K.

As in [10] one can look at the twist of this algebra with (the 1-cocycle defined by) α

which we denote by XFK(αFK) following Chi.

Proposition 3.3.10 ( [10], Proposition 1.1). One has

dimFK XFK(αFK) = dimFK XFK = dimFX.

Moreover

XFK(αFK) bFK Q » XFK bFK Q.

Therefore, XFK(αFK) is a central simple FK-algebra.

One can also view XFK as a K-algebra and twist it with αK instead to get the K-

algebra XFK(αK). Let us recall the definition of this algebra. First for any σ P ΓK we

define the twisted action of σ on XFK bK Q as follows. On pure tensors of the form

ϕ b k b λ for ϕ P X , k P K and λ P Q we define:

tw(σ) ¨ (ϕ b k b λ) := α(σ)ϕα(σ)´1 b k b σ(λ).

Note that k = σ(k) in the above expression. Now we define

XFK(αK) := (XFK bK Q)tw(ΓK).

ThisK-algebra also has the structure of an FK-algebra via a ¨
ř

ψi b λi :=
ř

aψi b λi

for a P FK, ψi P XFK and λi P Q.

Proposition 3.3.11 ( [10], Proposition 1.2). One has XFK(αFK) » XFK(αK) as FK-

algebras.
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This implies that XFK(αK) = (XFK bK Q)tw(ΓK) is also a central simple FK-

algebra. From now on we simply write XFK(α) for this central simple algebra.

E is a subfield of XFK . Let L be a maximal subfield of XFK containing E. Then L

contains EK as well. So one can look at αFK as a group homomorphism

αFK : ΓFK Ñ
Lˆ

(FK)ˆ

which has values in E. Now one can apply [10, Proposition 2.4] to get

XFK(αFK) bFK EndFKL » XFK bFK EndFKL(αFK).

We can conclude that in the Brauer group Br(FK) one has

[XFK(α)] = [XFK ] + [EndFKL(αFK)].

From this point onward, we assume that the central character ϵ of f is trivial for simplic-

ity. In the general case, one also needs to carry the 2-cocycle cϵ = [EndFKL(ϵ)] in the

computations. Now we can prove:

Lemma 3.3.12. Assuming ϵ is trivial, the order of [XFK(α)] in Br(FK) divides 2.

Proof. So far we proved

[XFK(α)] = [XFK ] + [EndFKL(αFK)]

in Br(FK). By [27, Proposition B.4.12] we know that X and hence XFK have Schur

index dividing 2. Also from Theorem 3.3.9 we know that α2 = ϵ modulo Fˆ. Applying

[10, Proposition 2.2] we get

2 ¨ [EndFKL(αFK)] = [EndFKL(α
2
FK)] = [EndFKL(ϵ)].

Since ϵ = 1 we are done.

From Section 2 of [10] we know that the class [EndFKL(αFK)] in the Brauer group

Br(FK) = H2(ΓFK ,Q) is the same as the image of the cohomology class defined by α

in H1(ΓFK , PGLn(Q)) under the connecting homomorphism

δ : H1(ΓFK , PGLn(Q)) Ñ H2(ΓFK ,Q)

where n = [L : FK]. More concretely, one can view every ℓ P L as an FK-linear

endomorphism ℓ : L Ñ L given by multiplication by ℓ. So every ℓ can be viewed as an
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nˆnmatrix with FK-entries. Now viewing every α(σ) P E as such a matrix, conjuga-

tion by this matrix gives an element in PGLn(FK) Ă PGLn(Q). This gives a 1-cocycle

with PGLn(FK) or rather with PGLn(Q) values that is invariant under the ΓFK action.

Since the connecting homomorphism δ sends a 1-cocycle f to f(σ)σ(f(τ))f(σ, τ)´1,

one concludes:

Corollary 3.3.13. Let cα(σ, τ) = α(σ)α(τ)α(στ)´1 be a 2-cocycle for the trivial action

of ΓK on Fˆ. Then the image of [cα] under the sequence

H2(ΓK , F
ˆ)

res
ÝÑ H2(ΓFK , F

ˆ)
ι˚
ÝÑ H2(ΓFK ,Q

ˆ
)

is exactly the class of [XFK(α)] in H2(ΓFK ,Q) = Br(FK).

Corollary 3.3.14. In Br(FK) one has

[XFK(α)] = [XFK ] + ι˚(res([cα])).

Our next goal is to prove thatXFK(α) is trivial in the Brauer group. The main ingre-

dient is the next proposition.

Proposition 3.3.15. XFK(α) acts (linearly) on Ω1
K .

Proof. First, we define an action ofXFKbQ onΩ1
Q by extending the action ofX linearly,

namely we define

(ϕ b k b λ)˚ω := kλϕ˚ω

for ϕ P X , k P K and λ P Q. Now using (3.2) one easily sees that for any σ P ΓK and

ψ P XFK b Q,

σ(ψ˚ω) = (tw(σ) ¨ ψ)˚σω

which means that if ψ is invariant under the twisted Galois action and ω is invariant

under the usual Galois action, then ψ˚ω is also invariant. This means that XFK(α) acts

on Ω1
K .

Proposition 3.3.16. XFK(α) P Br(FK) is trivial.

Proof. Let XFK(α) = Mn(D) for some division algebra D over FK of dimension s2.

By Corollary 3.3.12 one has s|2. Now dimXFK(α) = n2s2 which should be equal to

the dimension of X over F , therefore ns = [E : F ]. By Proposition 3.3.15, Ω1
K is an
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Mn(D)-module. So there is aD-vector spaceW such that Ω1
K » W n. The dimension of

Ω1
K overK is equal to the dimension of the abelian variety Af , which is [E : Q]. Hence

s2 = dimFK D| dimFK W =
[E : Q]

n[FK : K]
=

ns[F : Q]

n[F : F X K]
= s[F X K : Q].

This implies s|[F X K : Q], but since s|2 and [K : Q] is odd, one has s = 1.

From Proposition 3.3.16 and Corollary 3.3.14 and the fact that [XFK ] P Br(FK) has

order dividing 2, one deduces:

Corollary 3.3.17. In Br(FK) one has

[XFK ] = ι˚(res([cα])).

Now we need to go down from FK to F to compute the class [X] in Br(F ) using α.

We can use the corestriction map to do so. First, note that by the last corollary we know

that in the following diagram, the image of [cα] in H2(ΓFK , F
˚
) is [XFK ] which is the

image of [X] under the restriction.

[cα] P H2(ΓK , F
˚) H2(ΓFK , F

˚)

[X] P H2(ΓF , F
˚
) H2(ΓFK , F

˚
)

res

ι˚

res

cor

This means that

ι˚(res([cα])) = res([X]).

On the other hand, cor ˝ res = [FK : F ] = [K : F X K] which is an odd integer. Since

X has order dividing 2 in the Brauer group, cor(res([X])) = X .

Finally, we can conclude the generalization of [34, Theorem 5.6] to the case of Hilbert

modular form (with trivial central character):

Corollary 3.3.18. In Br(F ) one has

[X] = cor(ι˚(res([cα]))).

Nowwe have all the ingredients to generalize [28]. The proof is essentially the same.

First notice that from Theorem 3.3.9 (and the assumption ϵ = 1) we know that α2 is

trivial, hence

α2 : ΓK Ñ Fˆ/(Fˆ)2
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is a homomorphism. Let N be the finite Galois extension of K associated with its ker-

nel, i.e. ker(α2) = ΓN . Since Gal(N/K) » Im(α2) Ă Fˆ/(Fˆ)2 is a 2-torsion

group, one has Gal(N/K) » (Z/2Z)m for some positive integer m. Therefore, N =

K(
?
t1, ...,

?
tm) for some ti P K and if one defines σi P Gal(N/K) with the relations

σi(
a

tj) = (´1)δi,j
a

tj,

then σ1, ..., σm form an F2-basis for Gal(N/K).

Lemma 3.3.19. In Br(FK) on has

ι˚(res([cα])) = (t1, α(σ1)
2)(t2, α(σ2)

2) ¨ ¨ ¨ (tm, α(σm)
2),

where (a, b) = (a, b)FK denotes the Hilbert symbol.

Proof. First notice that since α(σ)σ(α(τ))α(στ)´1 is a coboundary, the 2-cocycle [cα]

is also given by the formula (σ, τ) ÞÑ
α(τ)

σ(α(τ))
.

For each τ P ΓK let

τ(
?
ti) = (´1)xi(τ)

?
ti.

Then xi : ΓK Ñ Z/2Z is clearly a group homomorphism. Similarly let yi : ΓFK Ñ

Z/2Z be the homomorphism given by

σ(α(σi)) = (´1)yi(σ)α(σi)

for σ P ΓFK . Now since tσiu
m
i=1 provides an F2 basis for Gal(N/K), every element

τ P ΓK can be written as η
śm

i=1 σ
xi(τ)
i where η is in ΓN = ker(α2). Applying α2 to both

sides one gets

α2(τ) ”

m
ź

i=1

α2(σi)
xi(τ) (mod Fˆ2)

which implies

α(τ) = λ
m

ź

i=1

α(σi)
xi(τ)

for some λ P Fˆ. Now one can use this to give a description of [cα]. Applying σ P ΓFK

to the both sides one has

σ(α(τ)) = λ
m

ź

i=1

σ(α(σi))
xi(τ) = λ

m
ź

i=1

(´1)yi(σ)xi(τ)α(σi)
xi(τ) = α(τ)

m
ź

i=1

(´1)yi(σ)xi(τ)

which gives the description
m

ź

i=1

(´1)yi(σ)xi(τ)

for ι˚(res([cα])) in Br(FK). Now, it is well-known that the 2-cocycle (´1)yi(σ)xi(τ) is

represented by the Hilbert symbol (ti, α2(σi)) so we are done.
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From [27] we know that Γ » Gal(E/F ) is the group of inner-twists of the form f .

Namely, for each σ P Gal(E/F ) there exists a unique character χσ : ΓK Ñ Cˆ such that

χσ b f = σf . This is equivalent to saying that for every finite place p ofK not dividing

N one has

χσ(Frobp) ¨ ap = σ(ap),

where ap is the p’th Fourier coefficient (Hecke eigenvalue) of f .

Lemma 3.3.20. The characters χσ appearing in the inner-twists are exactly characters

of ΓK that factor through Gal(N/K). In particular, the number of inner-twists of f is

2m.

Proof. First, we prove that allχσ’s are trivial onΓN = ker(α2). The Sato-Tate conjecture

for Hilbert modular forms is known by [2]. This implies that the set of prime ideals p of

OK for which ap ‰ 0 has density 1. Then by Chebotarev’s density theorem the Frobenius

elements of these primes are dense in ΓK , therefore it is enough to check that χσ is trivial

on the elements of the form Frobp P ΓK that are in the kernel of α2 and ap ‰ 0.

Now if ap ‰ 0 then by Theorem 3.3.9, α2(Frobp) ” a2p modulo Fˆ2. Hence, if

Frobp P ker(α2) then ap P F . This implies that χσ(Frobp) = 1 by the definition of an

inner-twist. So we are done.

To prove that these are all such characters, it is enough to prove that the number of

character factoring through Gal(N/K) is equal to the number of the inner-twists. The

group of character factoring through Gal(N/K) is the dual group of Gal(N/K) and

since this is abelian it has exactly 1
2m

elements. Then by Chebotarev’s density theorem

the density of primes p (with ap ‰ 0) for which Frobp P ΓN or equivalently ap P Fˆ is
1
2m

.

Now, notice that if (σ, χσ) is an inner-twist then by definition χσ(Frobp) ¨ap = σ(ap).

So all χσ’s are trivial on Frobp if and only if ap P F . Also, since a2p P F for all p, χ2
σ = 1.

By [27, Proposition B.3.3] Γ is a finite 2-torsion abelian group. Hence, Γ » (Z/2Z)n

for some n. Clearly, n ď m since all χσ’s factor through Gal(N/K). Now choose an

F2 basis σ(1), ¨ ¨ ¨ , σ(n) for Γ = Gal(E/F ). Let ΓM be the intersection of kernel of all

χσ’s which is equal to the intersection of the kernel of all χσ(i)’s. Now by Chebotarev’s

density theoremM = N because they contain the same Frobenius elements of ΓK . Since

ΓN is the intersection of the kernels of χσ(i)’s which are all of order 2, one deduces that

n ě m. This implies n = m and we are done.
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By the last lemma, the group form by the characters χσ is the dual group of the

group Gal(N/K) » (Z/2Z)m. Recall that tσiu
n
i=1 is an F2 basis for Gal(N/K) satisfy-

ing σi(
?
tj) = (´1)δi,j

?
tj where N = K(

?
t1, ...,

?
tm). Now let σ(1), ¨ ¨ ¨ , σ(m) be a

dual basis for this (so each σ(i) appears in an inner-twist), i.e.

σ(j)(σi) = (´1)δi,j .

Notice that the fixed field of ker(σ(j)) is just K(
?
tj).

Recall that we need to apply the corestriction map to get back over F and find a

formula for [X] in Br(F ). The following well-known lemma helps us to do that.

Lemma 3.3.21 ( [41], Exercise XIV.2.4). Let L/F be a finite separable extension and

let cor : Br(L) Ñ Br(F ) be the corestriction map. Then for any a P Lˆ and b P Fˆ one

has

cor(a, b)L = (NrL/F (a), b)F .

Now we can finally state and prove our main theorem of this section. Note that for

any finite place p away from N one has a2p P F by Proposition 3.3.8.

Theorem 3.3.22. Let p1, ¨ ¨ ¨ , pm be a set of prime ideals of OK not dividingN and with

api ‰ 0 such that σi = Frobpi inGal(N/K) (such primes exist by Chebotarev’s theorem).

Then in Br(F ) one has

[X] = (NrFK/F (t1), a
2
p1
)(NrFK/F (t2), a

2
p2
) ¨ ¨ ¨ (NrFK/F (tm), a

2
pm),

where (a, b) = (a, b)F denotes the Hilbert symbol.

Proof. Using Lemma 3.3.19 one only needs to notice that α(Frobpi)2 ” a2pi modulo Fˆ2,

so they only differ by a square which doesn’t affect the Hilbert symbol. Therefore

ι˚(res([cα])) = (t1, a
2
p1
)(t2, a

2
p2
) ¨ ¨ ¨ (tm, a

2
pm).

Now one applies the corestriction map to both sides. The left hand sides gives us [X] by

Corollary 3.3.18 and the right hand side gives us

(NrFK/F (t1), a
2
p1
)(NrFK/F (t2), a

2
p2
) ¨ ¨ ¨ (NrFK/F (tm), a

2
pm)

by the previous lemma, since a2pm P Fˆ. This proves the statement of the theorem.



Chapter 4

Extra-Twists and Image of Galois

Representations

In this chapter, we study extra-twists for automorphic representations of GLn and use

them to give a precise description of the image of the Galois representations associ-

ated with regular algebraic cuspidal automorphic representations of GL3 over totally real

fields. We also formulate a conjecture for the GLn case and show how it follows from

some standard conjectures in the Langlands program. The main difference to the case of

GL2 from last chapter is the possibility of the existence of outer-twists.

LetK be a number field and π be a cuspidal automorphic representation of GLn(AK)

such that

• π is not self-twist, i.e. there is no Hecke character χ ‰ 1 such that π » πbχ, and

• If n ą 2, π is not essentially self-dual, i.e. there is no Hecke character η such that

π » π_ b η.

In comparison to the GL2 case, these two conditions are analogues to a classical modular

form being non-CM in the work of Ribet and Momose. It turns out that these condi-

tions are enough in the GL3 case to have a big image theorem for the associated Galois

representation as we will see later, but of course not in the GLn case.

LetQ(π) Ă C be theHecke (number) field of π and letE be a number field containing

Q(π). In what follows, we will frequently use strong multiplicity one (Theorem 1.2.6)

for cuspidal automorphic representations of GLn without mentioning it.

53
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4.1 Inner and Outer Twists

In this section we define extra-twists for certain automorphic representations and Galois

representations.

Definition 4.1.1. An (E-)extra-twist of the automorphic representation π is either of the

following two:

1. (An inner-twist) A pair (σ, χ) where σ P Aut(E) and χ : Aˆ
K/K

ˆ Ñ Cˆ is a

Hecke character, such that σπ – π b χ.

2. (An outer-twist) A pair (τ, η)where τ P Aut(E) and η : Aˆ
K/K

ˆ Ñ Cˆ is a Hecke

character, such that τπ – π_ b η.

Remark 4.1.2. We make three remarks about this definition.

(a) The role of E might seem a bit auxiliary and one might think it should be enough

to take E = Q(π). But, making this slightly more general definition will help

us on the Galois side when dealing with issues regarding the field of definition

of automorphic Galois representations. Also, later it will be more convenient to

assume that E is Galois overQ. Since we will always fix E to begin with, we will

usually drop it from the notation.

(b) Notice that the Galois action in the above definition is on the coefficients. In par-

ticular, do not confuse an outer-twist with an essential conjugate self-dual of an

automorphic representation over a CM field (e.g. as in [3]).

(c) For a general reductive group, there should be a class of extra-twists for every

automorphism of a (fixed) based root datum. This would also make sense on the

Galois side since the automorphism group of the dual root datum is canonically

isomorphic to the one for the group.

One can similarly define the notion of extra-twists for Galois representations. Let E

be a number field, p a (rational) prime number, and Ep = E bQ Qp –
ś

p|pEp. Assume

that we have a continuous irreducible Galois representation
ź

p|p

ρp = ρ : ΓK Ñ GLn(Ep) =
ź

p|p

GLn(Ep),

which is unramified outside a finite set of places. We also assume that ρ is neither self-

twist nor essentially self dual in the n ą 2 case, i.e. it neither satisfies ρ » ρ b χ for a
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non-trivial Galois character χ, nor ρ » ρ_ b η for any Galois character η in the n ą 2

case.

Definition 4.1.3. An inner-twist of ρ is a pair (σ, χ) where σ P Aut(E) is an automor-

phism and χ : ΓK Ñ Ep
ˆ is a (continuous) Galois character, such that σρ – ρ b χ.

An outer-twist of ρ is a pair (τ, η) where τ P Aut(E) and η a Galois character, such that
τρ – ρ_ b η. An extra-twist of ρ is either an inner- or an outer-twist.

Remark 4.1.4. Note that ρ_ is just isomorphic to the representation ρ´T and hence has

coefficients in Ep (and not just E bQ Qp). This easily implies that the characters χ

appearing in the extra-twists are forced to have values in Eˆ
p and we do not lose any

generality by making this assumption in the definition.

From now on, we assume that K is totally real and π is a regular algebraic cuspidal

automorphic representation. Then it is known (see [22], [38]) that there exists a com-

patible family of Galois representations ρπ,p associated with π. We will see in Lemma

4.3.1 that this compatible family can be defined over a coefficient fieldE of finite degree

and Galois over Q. Then we get a bijection between the set of E-extra-twists of π and

E-extra-twists of ρ := ρπ,p. Therefore, we usually identify the two.

The most basic properties of the extra-twists of ρ (or π) are summarized in the next

lemma.

Lemma 4.1.5. Let K be totally real and ρ : ΓK Ñ GLn(Ep) be a p-adic Galois rep-

resentation that is neither self-twist nor essentially self-dual in the n ą 2 case. Then

extra-twists of ρ satisfy the following properties:

(i) For an extra-twist (σ, χ), the automorphism σ uniquely determines χ.

(ii) If (σ, χ) is an inner-twist and (τ, η) an outer-twist, then σ ‰ τ .

(iii) Extra-twists form a group under the operation (σ, χ) ˝ (τ, η) := (σ ˝ τ, χ ¨ ση).

(iv) Inner-twists form a subgroup of the group of all extra-twists. If at least one outer-

twist exists, then this is an index 2 subgroup.

(v) If ρ is associated with an algebraic automorphic representation π, then for any

inner-twist (σ, χ), the character χ is finite.
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Proof. First assume that (σ, χ1) and (σ, χ2) are both inner-twists. Then ρ » ρb χ1χ
´1
2 ,

which implies χ1 = χ2 by our assumptions on ρ. A similar argument proves the other

cases of (i) and also (ii). For part (iii), let us assume that both (σ, χ) and (τ, η) are inner-

twists. Then
σ(τρ) – σ(ρ b η) = σρ b ση – ρ b χ b ση.

The other cases are similar. For part (iv), one just needs to note that the product of two

outer-twists is clearly an inner-twist. Finally, to see (v), note that since K is totally real,

the central character of π must be of the form | ¨ |mω for some m P Z and a finite order

character ω. Hence, det(ρ) = ϵmp ω where ϵp is the p-adic cyclotomic character and we

are viewing ω as a finite Galois character. Now, taking the determinant of both sides of
σρ – ρ b χ, we get

χn =
σ det(ρ)
det(ρ)

=
σω

ω
,

which implies that χn (and hence χ) is a finite order character.

We will denote the group of all extra-twists of a Galois representation (or an automor-

phic representation) by Γ, the subgroup of inner-twists by Γinn, and the set of outer-twists

by Γout. Lemma 4.1.5 shows that we can identify Γ with a subgroup of Aut(E) by for-

getting the character and we will do so from now on. Let F := EΓ be the field fixed

by all the extra-twists and F inn := EΓinn be the field fixed by the inner-twists. In partic-

ular, Γ = Gal(E/F ) and Γinn = Gal(E/F inn). If there is at least one outer-twist, then

[F inn : F ] = 2. Otherwise, F = F inn.

4.2 The Lie Algebra Computations

In this section we fix a p-adic Galois representation satisfying a list of natural properties

(including the property that the Qp-Lie algebra of the image is big) and use the extra-

twists to determine the Qp-Lie algebra of the image of this Galois representation. In the

next section, we will apply the results of this section to the Galois representations asso-

ciated with certain automorphic representations. We will need to use some automorphic

input to show that in the 3-dimensional case this list of properties is satisfied.

LetK be a number field as usual and ΓK its absolute Galois group. Let E be another

number field that is assumed to be Galois over Q and let Ep = E bQ Qp –
ś

p|pEp.

Assume that for each finite place p|p of E, we have a continuous semi-simple Galois
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representation ρp : ΓK Ñ GLn(Ep). It is usually more convenient to work with the

product of all these Galois representations

ź

p|p

ρp = ρp : ΓK Ñ GLn(Ep) =
ź

p|p

GLn(Ep)

or equivalently a free Ep-module Vp of rank n, with a continuous Galois action on it.

Then, for each p|p we have an n-dimensional vector space Vp = Vp bEp Ep over Ep with

a continuous Galois action, such that Vp =
À

p|p Vp as Qp-vector spaces.

Each embedding λ : E ãÑ Qp induces an absolute value and hence gives a finite

place p of E above p. Therefore, λ extends to an embedding λ : Ep ãÑ Qp by continuity.

Now we define

Vλ := Vp bEp,λbid Qp = Vp bEp,λ Qp,

which is an n-dimensional vector space over Qp with a continuous Galois action. We

denote this representation by ρλ. Note that ρλ : ΓK Ñ GLn(Qp) is essentially the same

object as ρp : ΓK Ñ GLn(Ep), it is just considered with coefficients in Qp instead of Ep

via λ.

Now, we need to make the following list of natural assumptions on our Galois repre-

sentations to be able to compute the Lie algebra of the image later. These properties are

expected to hold for Galois representations attached to regular cuspidal algebraic auto-

morphic representations of general type, after possibly a finite base change and a twist

by a character.

Definition 4.2.1. Keeping the above notations, the representation ρp : ΓK Ñ GLn(Ep)

is called valid if

• Each ρλ is continuous and unramified outside a finite set S of places ofK contain-

ing the Archimedean places and all places above p.

• f (p)
v (x) := CharPoly(ρp(Frobv)) has coefficients in E, for each place v R S.

• Each ρλ is neither self-twist nor essentially self-dual for n ą 2.

• det(ρp) is trivial.

• For each λ, theQp-Lie algebra of the p-adic Lie group ρλ(ΓK) is equal to sln(Qp).

Remark 4.2.2. We make the following four remarks about this definition:
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1. Note that by the last condition, each ρλ is strongly irreducible, i.e. the restriction

of ρλ to ΓL, the absolute Galois group of L, is irreducible for any finite extension

L/K. This is simply because going to a finite extension does not affect the Lie

algebra. In practice, we will usually need to prove this first in order to show that a

Galois representation is valid.

2. Note that for n = 2, we are not excluding essential self-duality, but we are exclud-

ing being self-twist.

3. The condition on the determinant is not very restrictive because we can trivialize

the determinant by going to a finite extension of K and a twist. Since our first

goal is to compute the semi-simple part of the Lie algebra of the image, it doesn’t

change anything if we restrict to an open subgroup or twist with a character.

4. In the case where the ρλ’s come from a compatible family of semi-simple Galois

representations, it is enough to check the last condition at only one λ. More pre-

cisely, by Theorem 3.19 and Remark 3.22 of [23], the semi-simple rank and the for-

mal character of the tautological representation of the algebraic monodromy group

are both independent of λ. Then [24, Theorem 4] implies that this pair uniquely

determines the Lie algebra in the type An case, hence if we have sln as our Lie

algebra at one place λ, we should have sln at every place.

4.2.1 Extra-Twists and Galois Representations

From now on, we assume that ρp is a valid Galois representation. There are two cases that

we have to deal with. Namely, ρp either has an outer-twist or it does not. Note that in the

n = 2 case we only have inner-twists since every representation is essentially self-dual.

We try to deal with both cases at the same time but at some places it is easier to make a

distinction. We need a few lemmas:

Lemma 4.2.3. For every extra-twist (σ, χσ) of ρp, one has that χσ is a finite character.

Proof. This is always true for inner-twists as we saw in Lemma 4.1.5. Let (σ, χσ) be an

outer-twist. Then
σρp – ρ_

p b χσ.

Looking at the determinants of both sides, it follows that χn
σ = 1, which implies the

result.
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Lemma 4.2.4. Let L be a finite Galois extension ofK and let V1 and V2 be p-adic finite

dimensional ΓK-representations such that the restriction of V2 to ΓL is absolutely irre-

ducible. If V1 » V2 as representations of ΓL, then V1 » V2 bϕ as representations of ΓK ,

for some character ϕ of ΓK .

Proof. First of all, we can choose two bases for V1 and V2 such that the representations

ρ1 : ΓK Ñ GLn(Qp) and ρ2 : ΓK Ñ GLn(Qp) associated with V1 and V2 are equal when

restricted to ΓL. Now define

ϕ(g) := ρ´1
1 (g)ρ2(g).

A priori ϕ is just a map ϕ : ΓK Ñ GLn(Qp) which is trivial on ΓL. We want to prove

that it actually has values in the group of scalar matrices; and this easily implies that ϕ is

a homomorphism, hence a character.

Let g P ΓK and h P ΓL. Note that ρ1(h) = ρ2(h) and ρ1(ghg´1) = ρ2(ghg
´1) since

ΓL is normal in ΓK . Now the following computation shows that ϕ(g) = ρ´1
1 (g)ρ2(g)

commutes with ρ2(h):

ρ´1
1 (g)ρ2(g)ρ2(h) = ρ´1

1 (g)ρ2(gh) = ρ´1
1 (g)ρ2(ghg

´1)ρ2(g)

= ρ1(g
´1)ρ1(ghg

´1)ρ2(g) = ρ1(h)ρ
´1
1 (g)ρ2(g) = ρ2(h)ρ

´1
1 (g)ρ2(g).

Now, since V2 is absolutely irreducible when restricted to ΓL, we have EndΓL
(V2) = Qp

and we are done.

Now fix a valid Galois representation ρp. Note that by the third assumptions in Def-

inition 4.2.1, it makes sense to consider the group Γ Ď Aut(E) of all the extra-twists of

ρp. Let Γinn, F = EΓ, and F inn = EΓinn be as usual. By Lemma 4.1.5, the character χ

in an extra-twist (σ, χ) is uniquely determined by σ, so we use the notation χσ for this

character.

We assumed in Definition 4.2.1 that we know the Qp-Lie algebra of the image. The

next two lemmas are our main tool to compute the Qp-Lie algebra. The next lemma is

the only place where we use the assumption that E/Q is Galois.

Lemma 4.2.5. Let ΓL =
Ş

σPΓ ker(χσ) and let L1 be a finite extension of L that is Galois

over K. For every finite unramified place v of L1, let av, bv P E be such that

fv(x) := charPoly(ρp(Frv)) = Xn ´ avX
n´1 + ¨ ¨ ¨ + (´1)n´1bvX + (´1)n.

Then, F inn = Q(tavuv) and F = Q(tav + bvuv).
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Proof. We first prove that fv(x) P F inn[x]. This is because for any inner-twist (σ, χ),

the character χ becomes trivial after restricting to ΓL1 , so ρp|ΓL1 – σρp|ΓL1 , which means

that fv is invariant under the action of Γinn, which then implies the result. Now, if (τ, η)

is an outer-twist, after restriction to ΓL1 one has ρp|ΓL1 – τρ´T
p |ΓL1 . Looking at the char-

acteristic polynomials of Frv on both sides, one gets

Xn´avX
n´1+¨ ¨ ¨+(´1)n´1bvX+(´1)n = Xn´τbvX

n´1+¨ ¨ ¨+(´1)n´1τavX+(´1)n.

In particular, av + bv is invariant under any outer-twist τ . This implies that av + bv P F .

Now, let F 1 = Q(tavuv) Ď F inn. We want to prove that F 1 is the field fixed by

the inner-twists. This suffices because E was assumed to be Galois over Q and hence

it is Galois over F 1. Therefore, it is enough to construct an inner-twist of ρp for every

σ P Gal(Q/F 1). Note that ρp|ΓL1 has traces in F 1, so ρp|ΓL1 and σρp|ΓL1 have the same

traces and since they are semi-simple, they must be conjugate. Now, by Lemma 4.2.4

there exists a character such that ρp b χ » σρp, so we are done.

At last, let F 2 = Q(tav+bvuv) Ď F inn. We want to prove that F 2 is the field fixed by

all extra-twists. It is enough to construct an inner-twist or an outer-twist of ρp, for every

σ P Gal(Q/F 2). Now, note that (ρp ‘ ρ´T
p )|ΓL1 has traces in F 2 because the trace of the

image of Frv would be av + bv. Therefore, (ρp ‘ ρ´T
p )|ΓL1 and σ(ρp ‘ ρ´T

p )|ΓL1 have the

same trace, and since they are semi-simple, they must be conjugate. Now, by the strong

irreducibility assumption, we must have either ρp|ΓL1 » σρp|ΓL1 or ρp|ΓL1 » σρ´T
p |ΓL1 .

Then by Lemma 4.2.4, we get either an inner-twist or an outer-twist.

Lemma 4.2.6. Let λ, µ : E ãÑ Qp be two places ofE above p and letΓL =
Ş

σPΓ ker(χσ)

andL1 a finite extension ofL that is Galois overK. Then, in the case that there are outer-

twists one has

i. Vλ » Vµ as representations of ΓL1 if and only if λ|F inn = µ|F inn .

ii. Vλ » V _
µ as representations of ΓL1 if and only if λ|F = µ|F but λ|F inn ‰ µ|F inn .

and in the case that there are no outer-twists one has that F = F inn = Q(tavuv), and

part i of the above is true and part ii never occurs.

Proof. Since all our representations are semi-simple, it is enough to check the equality

on the characteristic polynomials, and since they are continuous it is enough to check

this on a dense subset. We check this on the Frobenius elements of finite places of L1 at

which ρp is unramified.
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Keeping the notation of Lemma 4.2.5, the characteristic polynomial of Frv acting on

Vλ is

Xn ´ λ(av)X
n´1 + ¨ ¨ ¨ + (´1)n´1λ(bv)X + (´1)n,

and on Vµ is

Xn ´ µ(av)X
n´1 + ¨ ¨ ¨ + (´1)n´1µ(bv)X + (´1)n.

Since the av’s generate F inn by Lemma 4.2.5, part i follows. For part ii, notice that the

characteristic polynomial of Frv acting onV _
µ isXn´µ(bv)X

n´1+¨ ¨ ¨+(´1)n´1µ(av)X+

(´1)n. So, if Vλ » V _
µ then λ(av) = µ(bv) and λ(bv) = µ(av), which implies that

λ(av + bv) = µ(av + bv) and hence λ|F = µ|F . On the other hand, Vλ is not essentially

self-dual, so by Lemma 4.2.4 its restriction to ΓL1 cannot be self-dual. Thus, Vλ and Vµ
are not allowed to be isomorphic as ΓL1-representations in this case, which means that

λ|F inn ‰ µ|F inn . The other direction also follows easily since the characteristic polyno-

mials of Frobenius elements at unramified places clearly match.

4.2.2 The Lie Algebra of the Image

Now, we want to compute theQp-Lie algebra of the image of ρp. First, we need to use the

results of Section 1.2.1 to construct the right algebraic group which contains the image,

and then compare the Lie algebra of the image with the (algebraic) Lie algebra of this

group.

Recall that we assumed that ρp has trivial determinant. Therefore we have

ρp : ΓK Ñ SLn(Ep).

We first define a 1-cocycle f : Γ Ñ AutEp(SLn) using extra-twists. For every inner-twist

σ P Γinn one has that ρp|ΓL
and σρp|ΓL

have the same trace. Since each ρλ is strongly

irreducible, this means that they are isomorphic and there exists ασ P SLn(Ep) (after

possibly slightly enlarging E if necessary) such that ρp|ΓL
= ασ ¨ σρp|ΓL

¨ α´1
σ . For the

inner-twist (σ, χσ), we define fσ = ad(ασ). If τ P Γout is an outer-twist (if there exist

any), then ρp|ΓL
and τρ´T

p |ΓL
have the same trace and there exists ατ P SLn(Ep) such that

ρp|ΓL
= ατ ¨ τρ´T

p |ΓL
¨ α´1

τ . For the outer-twist (τ, χτ ), we define fτ = ad(ατ ) ˝ (¨)´T .

One can easily check that f : Γ Ñ AutEp(SLn) defined above is in fact a 1-cocycle.

Now, as in Section 1.2.1, we can define the twisted action of Γ by this cocycle on SLn.

From the construction of f , it is clear that every matrix in the image of ΓL is invariant
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under this twisted action. Let H = (ResEp

Fp
SLn)

twf (Γ) which is an algebraic group over

Fp. Then it follows:

Corollary 4.2.7. The representation ρp|ΓL
factors through H(Fp) Ď SLn(Ep).

Note that by Proposition 1.2.4,H is a form of SLn and in particular is a semi-simple

group. Also, note that since ΓL is open in ΓK , the Lie algebras of the p-adic Lie groups

ρp(ΓK) and ρp(ΓL) are the same. Let g be the Lie algebra (over Qp) of ρp(ΓL) and h

be the Lie algebra of the algebraic group H/Fp, both viewed as Lie subalgebras of the

Lie algebra of SLn(Ep). Our next goal is to show that these two Lie algebras are in fact

equal.

Proposition 4.2.8. With the notation as above, g = h.

Proof. First, note that g Ď h by Corollary 4.2.7. Since h is semi-simple, it suffices to

prove that gder = gder bQp Qp is equal to h = h bQp Qp.

For every embedding σ : F ãÑ Qp, fix an extension rσ : E ãÑ Qp of σ. All of the

other extensions of σ can be obtained by composing with different elements of the Galois

group Γ = Gal(E/F ), i.e. they are all of the form rστ for some τ P Γ. Now, we base

change our representation ρp|ΓL
to Qp to get

ρp : ΓL SLn(Ep) SLn(Ep) ResEF (SLn)(Fp)

H(Fp) H(Fp) ResEF (SLn)
tw(Γ)(Fp),

=

=

where Ep := Ep bQp Qp and Fp := Fp bQp Qp =
ś

σ:F ãÑQp
Qp. Note that we have

ResEF (SLn)(Fp) »
ź

σ:F ãÑQp

SLn(E bF,σ Qp) »
ź

σ:F ãÑQp

SLn(E bF E bE,rσ Qp)

»
ź

σ:F ãÑQp

ź

Γ

SLn(Qp) »
ź

λ:EãÑQp

SLn(Qp),

where λ = rστ for τ P Γ. By Proposition 1.2.4, projecting to the identity component of

Γ gives the isomorphism of the form ResEF (SLn)
tw(Γ) of SLn with SLn over Ep. So we

have:

ρp : ΓL SLn(Ep)
ś

σ:F ãÑQp

ś

Γ SLn(Qp)
ś

λ:EãÑQp
SLn(Qp)

H(Fp)
ś

σ:F ãÑQp
SLn(Qp)

=
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For each embedding σ : F ãÑ Qp, the composition

ρσ : ΓL Ñ H(Fp) ãÑ
ź

σ:F ãÑQp

SLn(Qp)
prσ
ÝÝÑ SLn(Qp)

corresponds to the action of ΓL on the vector space Vλ, for some embedding λ : E ãÑ Qp

extending σ. Note that by Lemma 4.2.6, these Vσ’s are neither isomorphic nor dual to

each other after any finite extension. This is the main point of the rest of the argument.

On the level of the Lie algebras, we have the embedding

gder Ď h
»
ÝÑ

ź

σ:F ãÑQp

sln(Qp).

Let gderσ Ď sln(Qp) be the projection of gder to the σ-component of the above map. This

is the Qp-Lie algebra of the image of the representation ρσ (= ρλ for some λ extending

σ), so by our assumption of ρp being valid, we have gderσ = sln(Qp).

Now we can apply [33, Lemma 4.6] to

gder Ď h Ñ
ź

σ:F ãÑQp

sln(Qp).

We only need to prove that for every σ, τ : F ãÑ Qp the projections (prσ ˆprτ )(gder) and

(prσ ˆ prτ )(h) are equal. We follow the arguments of [39, §6.2].

Clearly, it is enough to show that (prσ ˆ prτ )(gder) = sln(Qp) ˆ sln(Qp). Note that

the first factor corresponds to the representation Vσ and the second to Vτ . Now by the

Lie algebra version of the Goursat’s theorem [31, Lemma 5.2.1], if (prσ ˆ prτ )(gder) is

not equal to sln(Qp)ˆ sln(Qp), then it has to be the graph of an isomorphism. Let us call

this automorphism ϕ : sln(Qp) Ñ sln(Qp). Since sln is simple, the group of its outer

automorphisms is isomorphic to the group of the automorphisms of its Dynkin diagram,

which is trivial for n = 2 and is isomorphic to Z
2Z in the n ą 2 case. In this case, the class

of this non-trivial outer automorphism is given by the mapX ÞÑ ´XT . So ϕ is either an

inner automorphism or a conjugate of this outer automorphism.

First, assume ϕ is an inner automorphism and is given by conjugation with some

matrix α. In other words, we have the following diagram:

sln(Qp)

g

sln(Qp)

ϕ=ad(α)

prσ

prτ
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which means that Vσ and Vτ are isomorphic as representations of g. This implies that they

are indeed isomorphic as representations of some open subgroup ofΓL, which contradicts

Lemma 4.2.6. Now assume that ϕ is a conjugate of X ÞÑ ´XT . Similarly, this means

that Vσ – V _
τ as representations of some small enough open normal subgroups of ΓL,

which again contradicts Lemma 4.2.6. This implies the result.

Corollary 4.2.9. The image of ΓL under the representation ρp is an open subgroup of the

p-adic Lie group H(Fp).

If ρp has no outer-twists, then the cocycle f is always defined by an inner automor-

phism and H is an inner-form of SLn. If there is at least one outer-twist, then this is not

true anymore, butH becomes an inner-form after a degree two extension. In fact, the re-

striction of f to the index two subgroup Γinn factors through InnEp(SLn) Ă AutEp(SLn).

Then by Corollary 1.2.5, the base change of H to F inn
p = F inn bQ Qp is an inner-form.

In any case we have:

Corollary 4.2.10. The groupHF inn
p
, the base change ofH to F inn

p , is an inner-form of the

group SLn which splits over Ep. Moreover, if p splits in the extension F inn
p /Fp (p splits

in F inn ”more” than it does it F ), then H is an inner-form of SLn.

Proof. The first part follows from the discussion above. For the second part, if there

are no outer-twists, then there is nothing to prove. Otherwise, notice that when p splits,

F inn
p » Fp ˆ Fp so if H becomes an inner-form over F inn

p , it was already an inner-form

over Fp.

Remark 4.2.11. The arguments of the last two sections can be done for more general

reductive groups with the right definition of extra-twists. Although, relating these to the

automorphic side would be more difficult as we will see that one needs some cases of

Langlands functoriality for this.

4.3 Application to Automorphic Galois Representations

In this section, we will apply the results of the previous section to Galois representations

attached to certain automorphic representations. In the case of GL2, we recover the results

of Ribet, Momose, and Nekovář. Throughout this section, we assume thatK is a totally

real number field and π is a regular cuspidal algebraic automorphic representation of

GLn(AK). It is known by the work of Harris-Lan-Taylor-Thorne [22] or Scholze [38],
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that there is a compatible family of p-adic Galois representations associated with π. Our

goal is to understand the image of these representations.

Let |.|mω be the central character of π where ω is a finite order Hecke character and

m ě 1 an integer. Then, for each embedding λ : Q(π) ãÑ Qp there exists a continuous

semi-simple Galois representation

ρπ,λ : ΓK Ñ GLn(Qp)

that is an unramified Galois representation for all unramified places of π not above p, and

at each such finite place, say v, the characteristic polynomial of Frobv is determined by

the Satake parameters of π at v. In other words, these representations form a compatible

family of Galois representations. Moreover, det(ρπ,λ) = (λ ˝ ω) ¨ ϵmp where ϵp is the

(global p-adic) cyclotomic character and we are regarding the finite order character ω as

a Galois character via class field theory.

It is not knownwether we can conjugate these Galois representations to have values in

the completions of the Hecke fieldQ(π). Nevertheless, we will show that we can do this

for a finite extension E of Q(π). This is exactly the reason why we defined extra-twists

for any Galois coefficient field containing the Hecke field in Definition 4.1.1.

The Galois representations ρπ,λ are expected to be irreducible since π is cuspidal.

Let tπ,λ : ΓK Ñ Qp be the trace of ρπ,λ. This is an irreducible pseudo-representation

and it clearly takes values in Q(π)λ. Then by a result of Rouquier [35, Theorem 5.1] (or

more generally Chenevier [9, Corollary 2.23]), there exists a central simple algebra Dλ

over Q(π)λ of dimension n2 such that this pseudo-representation can be realized as the

reduced trace of a representation ΓK Ñ Dˆ
λ . The base change of this representation to

Qp clearly gives back ρπ,λ because of the Brauer-Nesbitt Theorem. In other words, the

image of ρπ,λ is in fact in Dˆ
λ :

ρπ,λ : ΓK Ñ Dˆ
λ Ă (Dλ bQ(π)λ Qp)

ˆ » GLn(Qp).

Lemma 4.3.1 (Chenevier). Assume that ρπ,λ is irreducible for all λ and regular for at

least one λ. Then, there exists a finite extension E/Q(π) that is Galois over Q, such

that for all finite places λ of Q(π) and any place µ of E above λ, the central simple

algebra Dλ splits over Eµ. In particular, there exists a finite extension E/Q(π) such

that all representations ρπ,λ can be defined over E (can be conjugated to have values in

completions of E).
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Proof. First, recall that a central simple algebraDλ Ă Mn(Qp) splits in an extensionM

of Eλ if and only if it contains an element with n pairwise distinct eigenvalues inM . Let

v be a place ofK at which π is unramified, and let f (v)(x) P Q(π)[x] be the characteristic

polynomial of the Frobenius element at v, which is independent ofλ. Then, as in the proof

of [3, Lemma 5.3.1], choosing a λ for which ρπ,λ is regular, we get that for infinitely many

places v, one has that f (v)(x) has distinct roots. This shows that ifE 1 is the splitting field

of f (v)(x), then Dλ splits over the completion of E 1 at any finite place coprime to v and

the level of π. Since it clearly splits over some finite extension of Eλ as well, we can

find a number field E which splits all Dλ’s at the same time. To conclude, we take the

Galois closure over Q.

Remark 4.3.2. A natural question that arises after this lemma is if one should expect the

Dλ’s to come from a global objectD/Q(π). Wewill discuss this more in the next chapter.

In particular, in the special case of n ď 3, this follows from our results, the existence of

a motive associated to π, and the Mumford-Tate conjecture for that motive.

From now on, we take E to be the number field coming from Lemma 4.3.1, and we

take our Galois representations to have values in GLn(Ep) for finite primes p of E. So,

we are in the setting of the pervious sections and we can define ρπ,p as follows:
ź

p|p

ρπ,p =: ρπ,p : ΓK Ñ GLn(Ep) =
ź

p|p

GLn(Ep),

where Ep = E bQ Qp –
ś

p|pEp as usual.

From now on, we assume that π is neither self-twist nor essentially self-dual in the

n ą 2 case. Then it makes sense to talk about E-extra-twists of π. Since E is fixed, we

will drop it from the notation from now on. By multiplicity one, inner-twists of π and

ρπ,p agree (we are using class field theory to identify the characters). So, let Γ, Γinn, Γout,

F , and F inn be as usual.

The determinant of ρp is given by ω ¨ ϵmp . To apply the results of the last section, we

first need to kill the determinant. This is always possible after a finite extension. In fact,

after a finite extension, the cyclotomic character will have values in 1+pZp, and then we

can use the p-adic logarithm on it. Therefore, there exists a finite extensionM/K such

that ϵp|ΓM
has an n’th root. We fix one of those characters and denote it by ϵ1/np . Now,

we enlargeM to trivialize ω if necessary. Then,

ρ1
π,p := ρπ,p|ΓM

b ϵ´m/n
p : ΓM Ñ GLn(Ep)
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has trivial determinant. This is the Galois representation that we will apply our results

from the last section to. Notice that the extra-twists of ρ1
π,p and ρπ,p are the same. More

precisely, the characters might have changed after the twist but the group Γ Ď Aut(E)

has not. It is also not hard to see how the Lie algebra of the image changes.

Lemma 4.3.3. Assume that ρ1
π,p is valid. Let g1 := Lie(ρ1

π,p(ΓM)) and g = Lie(ρπ,p(ΓL)).

Then gder = g1.

Proof. Let G = ρπ,p(ΓM) and G1 = ρ1
π,p(ΓM), and let Z be the center of GLn(Ep).

Then, we clearly have G Ď G1 ¨ Z and G1 Ď G ¨ Z. Taking the Lie algebras we find that

g Ď g1+ z and g1 Ď g+ zwhere z is the Lie algebra of the center. Since g1 is semi-simple,

by Proposition 4.2.8, this implies that g is reductive and gder = g1.

In the case that ρ1
π,p is valid, letHp/Fp be the semi-simple group from Corollary 4.2.7

applied to ρ1
π,p. Then we have:

Proposition 4.3.4. If ρ1
π,p is valid, then there exists a finite extension L of K such that

ρπ,p(ΓL) is contained and p-adically open in Hp(Fp) ¨ Qˆ
p Ď GLn(Ep).

Proof. Since the image of ρ1
π,p is contained inHp(Fp) after a finite extension, and the im-

age of ϵ1/np is in Zˆ
p , the image of ρπ,p is contained inHp(Fp) ¨Qˆ

p after a finite extension.

The image is open in Hp Ď SLn(Ep) by Lemma 4.3.3 and the image of the determinant

is open in Qˆ
p , so we are done.

This in particular implies that the connected component of the Qp-Zariski closure of

the image is the algebraic group (ResFp

Qp
Hp) ¨ Gm,Qp . Now, we only need to check the

validity of ρ1
π,p.

4.3.1 The GL2 Case

As we mentioned in the introduction, essentially everything is known in this case, by the

work of Ribet [33], Momose [25], and Nekovar [27]. We repeat the arguments for the

sake of completeness. In this case, all representations are essentially self dual, so there

are no outer-twists and Γ = Γinn. One can in fact take E = Q(π) (then Γ would be

abelian), but it is not necessary for our discussion. Recall that we assumed that π is not

self-twist, i.e. does not satisfy π » π b χ for χ ‰ 1. In this case it is more common to

say that π does not have complex multiplication (CM).

Proposition 4.3.5. Assume that n = 2 and π does not have CM. Then ρ1
π,p is valid.
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Proof. Most of the properties are clear from the analogous properties for ρπ,p. We only

need to check strong irreducibility and compute the Qp-Lie algebra.

It is known that ρπ,λ is irreducible (see Theorem 2.2.1). It is also known that it is

de Rham and the Hodge-Tate weights are distinct. Strong irreducibility of ρ1
π,λ and ρπ,λ

are clearly equivalent. Assume that ρπ,λ|ΓL
is reducible for some finite Galois extension

L/K. Since ρπ,λ is semi-simple, so is its restriction to ΓL and we have ρπ,λ|ΓL
» χ1‘χ2.

Since ρπ,λ is Hodge-Tate with distinct Hodge-Tate weights, so is ρπ,λ|ΓL
. This implies

that χ1 ‰ χ2. LetK 1 be the fixed field of the stabilizer of χ1. Then it is clearly a degree

2 extension of K and if Gal(K 1/K) = t1, σu, then χ2 = σχ1 (otherwise χ1 would be a

direct summand of ρπ,λ). This means that ρπ,λ » IndK
1

K (χ1), which implies that π is CM.

Therefore, ρπ,λ and hence ρ1
π,λ are strongly irreducible.

Now, let gderλ Ď sl2(Qp) be the derived part of the Qp-Lie algebra of the image of

ρ1
π,λ : ΓM Ñ SL2(Qp). Since ρ1

π,λ is strongly irreducible, the irreducibility holds in-

finitesimally, i.e. gλ Ď gl2(Qp) is an irreducible representation. This means that the

centralizer of g and hence its center are in the center of gl2(Qp), which implies that

gderλ Ď sl2(Qp) is also irreducible. The only irreducible semi-simple Lie subalgebra of

sl2 is itself, so we are done.

Now, from Proposition 4.3.4 it follows:

Corollary 4.3.6. Let π be a regular algebraic cuspidal automorphic representation of

GL2(AK) that does not have complex multiplication and let F be the field fixed by the

inner-twists. Then, there exists an inner formHp of SL2 over Fp and a finite extension L

ofK such that the image of ρπ,p(ΓL) is contained and open inHp(Fp) ¨ Qˆ
p Ď GL2(Ep).

In the work of Ribet, Momose and Nekovar, they construct an Azumaya algebra

Dp/Fp which contains the image. The relation to the last corollary is that if Dˆ
p is the

algebraic group of units ofDp, then (Dˆ
p )

der = Hp. In the case that π has parallel weight

2, where we expect an abelian variety to be associated with π, this algebra Dp is closely

related to the endomorphism ring of that abelian variety. We will explain the relation of

these results to the Mumford-Tate conjecture for that abelian variety in Chapter 5.

4.3.2 The GL3 Case

In this section we prove our main result. The CM-case for n = 2 can be thought of as

the π essentially coming from GL1 by induction. Similarly, in the n = 3 case we need to
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first exclude all the cases where π comes from smaller groups via a Langlands transfer,

in which case the image would be easy to describe by previous results. It turns out that

we only need to exclude the following two cases to be able to describe the image:

1. π is essentially sym2, i.e. there exists an automorphic representation θ of GL2(AK)

and a Hecke character η such that π = sym2(θ) b η.

2. π is an induction of a character, i.e. there exist a degree 3 extension L/K and a

Hecke character η of AL such that π = IndLK(η).

Notice that Langlands functoriality is known for sym2 : GL2 Ñ GL3 by [18] and

automorphic base change is known for prime degree extensions by [1]. In the first case

above, determining the image reduces to the GL2 case and in the second case to the GL1

case. The next two lemmas give equivalent classifications for the above cases and show

that they follow from our primary assumptions on π (not being essentially self-dual or

self-twist) that are needed to define extra-twists to begin with.

Lemma 4.3.7. π is essentially sym2 if and only if there exist a Hecke character χ such

that π = π_ b χ.

Proof. Since GL2 representations are essentially self-dual, the ”only if” part is clear.

Now assume π = π_ b χ and let ω be the central character of π. Taking the central

characters of both sides we have χ3 = ω2. So χ = (ωχ´1)2 has a square root and by

twisting out this square root we can assume that π is self-dual. Now the result follows

from [30].

Remark 4.3.8. Since we assumed that K is totally real and π is cuspidal regular alge-

braic and hence the existence of the associated Galois representations is known, one can

equivalently work with the associated Galois representation, by strong multiplicity one.

Then, one can give a different proof in the Galois side by investigating the projective

image of the representation. We will leave the details to the reader.

We also need the following lemma from [1, Lemma 6.3].

Lemma 4.3.9. π is an induction of a character if and only if there exists a Hecke char-

acter χ such that π = π b χ.

Definition 4.3.10. An automorphic representation π of GL3(AK) is said to be of gen-

eral type, if π is neither essentially self-dual nor self-twist. Equivalently, π is neither

essentially sym2 nor an induction of a character.
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Since we know strong multiplicity one for GLn, Langlands functoriality for the map

sym2 : GL2 Ñ GL3, and automorphic induction for degree 3 extensions, these assump-

tions are equivalent to similar assumptions on each of the Galois representations ρπ,λ.

Recall that in [6], Böckle and Hui prove that (in the n = 3 case), ρπ,λ is irreducible

for all λ. They also prove that for a density 1 set of rational primes P , ρπ,λ is de Rham

with distinct Hodge-Tate weights for all λ : E ãÑ Qp and p P P . We will use these

results to check the validity of ρ1
π,p (in fact we only need regularity at one place λ by part

4 of Remark 4.2.2).

Proposition 4.3.11. Assume that π is not self-twist. Then for each p P P andλ : E ãÑ Qp,

one has that ρ1
π,λ is strongly irreducible.

Proof. Assume that ρπ,λ|ΓL
is reducible for some finite Galois extension L/K. Since

ρπ,λ is semi-simple (in fact irreducible), so is its restriction to ΓL and we have that ρπ,λ|ΓL

decomposes into the sum of irreducible direct summands. If it decomposes into two irre-

ducible summands, then the action of ΓK cannot switch the two summands for dimension

reasons and hence each summand is actually a subrepresentation of ρπ,λ, which is a con-

tradiction. So we must have ρπ,λ|ΓL
» χ1 ‘ χ2 ‘ χ3. Since ρπ,λ is Hodge-Tate with

distinct Hodge-Tate weights, so is ρπ,λ|ΓL
. This implies that the three characters are dis-

tinct. LetK 1 be the fixed field of the stabilizer ofχ1. The action ofΓK on these characters

must be transitive, soK 1 is a degree 3 extension ofK and if Gal(K 1/K) = t1, σ, σ2u then

χ2 = σχ1 and χ3 = σ2χ1 (or the other way around). This means that ρπ,λ » IndK
1

K (χ1),

which implies that π is also a degree three automorphic induction of a character, and

hence is self-twist, which contradicts the assumption. Therefore, ρπ,λ and hence ρ1
π,λ are

strongly irreducible.

Proposition 4.3.12. Assume that π is of general type. Then, for each prime number p

and embedding λ : E ãÑ Qp one has that the Qp-Lie algebra of the image of ρ1
π,λ is

sl3(Qp).

Proof. First assume that p P P . Let Vλ be the underlying vector space of ρ1
π,λ and let

gλ Ď sl3(Qp) be the Qp-Lie algebra of the image of ρ1
π,λ : ΓM Ñ SL3(Qp). Since ρ1

π,λ

is strongly irreducible, for every finite extension N of M we have EndΓN
(Vλ) = Qp,

hence this should be true infinitesimally and we have Endgλ(Vλ) = Qp. This means that

the standard representation gλ ãÑ EndQp
(Vλ) » gl3(Qp) is an irreducible faithful repre-

sentation, which implies that gλ is reductive. Let gderλ be its derived subgroup and hence
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a semi-simple subgroup of sl3(Qp). Since the center of gl3 acts by scalar multiplication,

any gderλ -invariant subspace is automatically gλ-invariant as well, which implies that the

centralizer of g and hence its center are in the center of gl3(Qp), which then implies that

gderλ Ď gl3(Qp) is also irreducible.

The only irreducible, semi-simple Lie subalgebras of sl3 up to conjugation are sl3 and

sl2 embedded into sl3 by sym2. We need to show that the latter does not happen. Assume

that gderλ is the image of sym2 : sl2 Ñ sl3. Since sym2 is an irreducible representation,

its centralizer in gl3 is the center, which means that gλ = gderλ ‘ z(gλ) is in the image of

sym2 : gl2 Ñ gl3. This means that there is an open subgroup of ΓM whose image under

ρ1
π,p is in the image of sym2 : GL2 Ñ GL3. So there exists a finite Galois extensionM 1

ofM such that ρ1
π,p(ΓM 1) is in the image of sym2 : GL2(Eλ) Ñ GL3(Eλ) and hence is

essentially self-dual. Since the determinant of ρ1
π,p is trivial, there exist a finite extension

N of M 1 (which clearly can be taken to be Galois over M ) such that the restriction to

ΓN is in fact self-dual. Now, applying Lemma 4.2.4 to the two representations ρ1
π,p|ΓN

and ρ1
π,p|_

ΓN
, there exists a character ϕ such that ρ1

π,p » (ρ1
π,p)

_ b ϕ, which contradicts

non-essential-self-duality of π. This contradiction implies the result in the case where

p P P .

Now by [6, Theorem 3.2], the irreducible type of ρπ,λ is independent of λ. This

in particular means that if the Qp-Lie algebra of the image of ρπ,λ contains sl3 for one

λ (irreducible type A2), it contains sl3 for every λ. This clearly implies the result in

general.

Now we can easily deduce our main result:

Theorem 4.3.13 (Theorem 1.1 in [43]). Let F = EΓ be the field fixed by all the extra-

twists of π. Then, there exists a finite extension L/K and a semi-simple algebraic group

Hp defined over Fp := F bQ Qp, which is a form of SL3 (constructed using the extra-

twists), such that ρπ,p(ΓL) is contained in Hp(Fp) ¨ Qˆ
p Ď GL3(E bQ Qp) and it is open

in the p-adic topology.

Proof. The last two propositions imply that for π of general type, ρ1
π,p is valid for any

prime number p. Then Proposition 4.3.4 implies the result.

In other words, for all p, the algebraic group (ResFp

Qp
Hp) ¨ Gm,Qp is the connected

component of the Qp-Zariski closure of the image and the image is open in there. Let us

apply this theorem to some explicit examples:
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Example 4.3.14. In [17], van Geeman and Top construct a 3-dimensional Q(i)-rational

compatible family of (motivic) Galois representations of ΓQ which is neither self-twist

nor essentially self-dual, and an automorphic representation of GL3(AQ) that should cor-

respond to it. We can apply our results to the Galois representations they construct. For

each prime p they construct a Galois representation

ρp : ΓQ Ñ GL3(Q(i) b Qp)

which has the property that ρp » ρp
_ b ϵp where (¨) indicates complex conjugation. For

each unramified p, the characteristic polynomial of Frobp is of the form

X3 ´ bpX
2 + pbpX ´ p3

and they give a list of values of bp P Q(i) for small primes.

Now, in our notation, the coefficient field isE = Q(i). There is one outer twist (¨, ϵp)

and there cannot be any more non-trivial extra-twists since Aut(E) » Z/2Z. Therefore,

F inn = Q(i) as well and F = Q. Then, for each prime p we can construct a form Hp of

SL3 over the fieldQp as before and the image of ρp is contained and open inHp(Qp) ¨Qˆ
p .

Hence, we get an algebraic groupHp ¨ Gm Ď ResQ(i)p
Qp

GL3 whose Qp points describe the

image. We know that Hp is a form of SL3. Recall that it is constructed as

Hp = (ResQ(i)p
Qp

SL3)
tw(Gal(Q(i)/Q)).

Similar to Corollary 4.2.10, if p is a prime that splits inQ(i), i.e. a prime that is congruent

to 1modulo 4, thenHp is in fact isomorphic to SL3 overQ(i)p » Qp ˆQp. Otherwise, it

is not an inner-form and since it splits overQ(i), it is isomorphic to the the special unitary

group SU3 for the degree two field extensionQ(i)p/Qp. So, for half of the primes (primes

of the form p = 4k + 1) the (Zariski closure of the) image is GL3 and for the other half

(primes of the form p = 4k+3) it is SU3 ¨Gm. Finding the right candidate for the group

H8 over R, one should be able to prove that all these groups Hp come from a global

group H/Q.

Example 4.3.15. In [44], Upton constructs a 3-dimensional Q(ζ3)-rational compatible

family of (motivic) Galois representations of ΓQ(ζ3) which is neither self-twist nor essen-

tially self-dual, and gives a precise description of its image. It is clear from her construc-

tion that these Galois representations have an outer-twist. She also observes the same

phenomenon as in the last example. Namely, that for half of the primes the image is GL3
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and for the other half it is a unitary group. Although, we believe there is a slight error in

her conclusion and the image in the latter case should be SU3 ¨ Gm as above, rather than

the general unitary group GU3 as she claims. In fact since in the split case the image is

9-dimensional (as it is GL3), if one believes in the Mumford-Tate conjecture, the image

cannot be the 10-dimensional group GU3 in the non-split case.

Even though in her case K is not totally real, we can still directly apply Corollary

4.2.9 to a twist of the Galois representations she constructs (after a finite extension) and

then deduce openness. It is easy to check the validity of this twistedGalois representation.

4.3.3 The GLn Case

In this section we discuss the GLn case. Everything we say here is conjectural for n ą 3.

We assume the irreducibility conjecture (Galois representations associated with cuspidal

automorphic representations are irreducible), Langlands functoriality, and the expected

p-adic Hodge theoretic properties (de Rhamwith distinct Hodge-Tate weights) of our Ga-

lois representations. We want to see, assuming all these, when we can apply Proposition

4.3.4 to a regular cuspidal algebraic automorphic representation π of GLn(AK). First of

all, we need to assume that π is neither self-twist nor essentially self-dual (in the n ą 2

case). Then we only need to check that ρπ,λ is strongly irreducible for each λ and that

the Qp-Lie algebra of the image of ρ1
π,λ is sln.

Assume that ρπ,λ is reducible after restricting to ΓL for a finite Galois extension L of

K. The irreducible direct summands of ρπ,λ|ΓL
are distinct since the Hodge-Tate weights

are distinct and the action of ΓK on them is transitive since ρπ,λ is irreducible. This easily

implies that ρπ,λ is an induction of a representation of a proper subgroup. This means

that the automorphic representation π is an induction, assuming that the automorphic

induction is true. So in order to make sure that ρπ,λ is strongly irreducible, we only need

to assume that it is not an induction.

Now, let g be the Qp-Lie algebra of the image of ρ1
π,λ. Since ρπ,λ and hence ρ1

π,λ

are strongly irreducible, g is an irreducible Lie subalgebra of gln and hence reductive.

We only need to show that gder = sln. It is well known that since gder is semi-simple,

there exists a semi-simple (connected) algebraic subgroup G1 of GLn (over Qp) such

that Lie(G1) = gder. This implies that after a finite Galois extension M/K, the im-

age of ΓM under ρπ,p lies in G0(Qp) Ĺ GLn(Qp) for the (connected) reductive group

G0 = G1 ¨ Gm Ĺ GLn. This is exactly the connected component of the Qp-Zariski clo-
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sure of the image of ρπ,λ. Let the whole image be G. Then the stabilizer of G0 would

give a finite Galois extensionL/K and the component group is isomorphic to Gal(L/K).

The nicest situation would be ifG(Qp) = G0(Qp)¸Gal(L/K). But it is not clear if this

should happen. Nevertheless, one has the following result of Brion [7]:

Lemma 4.3.16 (Brion). Let G be an algebraic group over a field k and let

1 Ñ N Ñ G Ñ Q Ñ 1

be a short exact sequence (of algebraic groups over k) such that Q is finite. Then there

exists a finite subgroup F of G, such that G = N ¨ F . In other words, F surjects to Q

and G is a quotient of N ¸ F , where F acts on N by conjugation.

Now using this result, one can at least find a finite Galois extensionM/K such that

G is the quotient ofG0(Qp)¸Gal(M/K). Now, we can form the L-groupG0(Qp)¸ΓK

where the ΓK action factors through the Gal(M/K) action from above. Fix a maxi-

mal torus and a Borel subgroup of G0 containing it. The above action of Gal(M/K) on

G0(Qp) gives an action on the based root datum, which in turn gives an action on the dual

root datum. This finally gives a reductive group H over K which splits overM whose

Langlands L-group is G0(Qp) ¸ ΓK with the above action. Now, the Langlands func-

toriality for the L-map LH Ñ LGLn implies that π should come from an automorphic

representation of the non-split reductive group H via the Langlands transfer induced by

the above L-map. This motivates the following definition:

Definition 4.3.17. A regular cuspidal automorphic representation π of GLn(AK) is said

to be of general type, if it is neither self-twist, nor essentially self-dual (in the n ą 2

case), and there does not exists any reductive group H overK that is a form of a proper

subgroup of GLn such that π is the image of an automorphic representation of H(AK)

under the Langlands transfer attached to the L-map

LH Ñ LGLn,K .

For instance, in the GL2 case this just means that π is not CM and in the GL3 case it

agrees with Definition 4.3.10. Note that the condition above also automatically includes

that π is not an induction since it would be in the image of the following L-map then:

LResLKGLd Ñ LGLd[L:K].
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The discussion above shows that if one believes in Langlands functoriality, the irre-

ducibility conjecture, and that ρπ,λ is de Rham with distinct Hodge-Tate weights, then

ρ1
π,p is valid. In conclusion, we make the following conjecture:

Conjecture 4.3.18. LetK be totally real and π be a regular cuspidal algebraic automor-

phic representation of GLn(AK) of general type. Let E = Q(π) and let F be the field

fixed by theE-extra-twists of π. Then, there exists a semi-simple groupH over F which

is a form of SLn and a finite extension L/K such that for any prime p, the image of

ρπ,p(ΓL) is contained and open in H(Fp) ¨ Qˆ
p .

Remark 4.3.19. If π is not of general type, then it comes from a smaller groupH . Since

the dimension of the group is getting smaller, there should be an optimal choice for H .

Loosely speaking, π should be of general type for some group. Then one has to study the

image inside this smaller group, via the extra-twists for the Langlands dual of this group.

Then it might be possible to give a precise description of the image as above, using the

extra-twists.





Chapter 5

Relations to the Mumford-Tate

Conjecture

In this chapter we study the relation of our constructions in Chapter 4 with the Mumford-

Tate group of the motive associated with an algebraic automorphic representation under

the conjectures of Clozel. Almost everything we discuss here is conjectural, but it could

give an idea of why one should believe in the conjectures presented here.

5.1 Mumford-Tate Groups

In this section, we give a very quick review of the Mumford-Tate Conjecture for motives.

For more details, we refer the reader to [26]. Throughout this chapter, we are thinking of

a motive as a collection of realizations whose different structures are compatible through

a set of comparison isomorphisms, as in [16, Chapter III].

LetM be a motive over a number fieldK. Then, the Betti and the de Rham realiza-

tions of M , together with their comparison isomorphism, give rise to a rational Hodge

structure V P Q-VS given by

hM : S Ñ GL(V )R,

where S = ResCRGm is the Deligne torus.

Definition 5.1.1. The Mumford-Tate group ofM is defined to be the smallest algebraic

group MT(M) Ď GL(V ) (defined overQ) such that hM factors throughMR Ď GL(V )R.

In other words, MT(M) is the intersection of all closed subgroups of GL(V )/Q with the

above property.

77
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One can also realize theMumford-Tate group from a Tannakian perspective. Namely,

the rational Hodge structure (V, hM) generates a Tannakian subcategory of the cate-

gory of all rational Hodge structures. One can easily show that the forgetful functor

ω : (V, hM) ÞÑ V is a fiber functor whose automorphism group is the Mumford-Tate

group MT(M). Therefore, the Tannakian category generated by (V, hM) is equivalent to

the category of representations of MT(M).

Now, let the Qℓ-vector space Vℓ be the ℓ-adic realization of M . Then, the absolute

Galois group ΓK acts on Vℓ and this gives a Galois representation

ρM,ℓ : ΓK Ñ GLn(Qℓ).

Let GM,ℓ be the Qℓ-Zariski closure of the image of this Galois representation and G˝
M,ℓ

be its connected component of identity.

Conjecture 5.1.2 (Mumford-Tate Conjecture). With the notations as above, there exists

an isomporphism

G˝
M,ℓ » MT(M) ˆQ Qℓ

for every prime number ℓ.

In particular, this implies that G˝
M,ℓ/Qℓ is independent of ℓ, i.e. they are all base

changes of a single global object MT(M)/Q.

5.2 Extra-Twists of a Motive

Clozel predicts that there should be a correspondence between algebraic automorphic

representations of GLn(AK) and motives overK with coefficients in number fields. Let

K be totally real as before and π be a regular cuspidal algebraic automorphic represen-

tation of GLn(AK). Then, Clozel predicts the existence of a motive M = Mπ over K

with coefficients in a number field E containing Q(π) that is associated to π in the way

explained in [11]. As mentioned, a motive for us is just a collection of different coho-

mology theories compatible via a set of comparison isomorphisms. From now on, we

assume that such a motive exists. Let HB(M), HdR(M) and Hp(M) be the Betti, de

Rham and p-adic realizations ofM . Note that the first two are E-vector spaces and the

last one is an Ep-module.

Let V = HB(M). The real and complex Betti cohomologies V bQR and V bQC have

an E bQ R and E bQ C =
ś

λ:EãÑC C structure, respectively. Similarly, the complex
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de Rham cohomology HdR(M) bQ C has an E bQ C =
ś

λ:EãÑC C structure. The

(EbQC-modules) comparison isomorphism between Betti and de Rham cohomologies,

VC » HdR(M) bQ C, equips V with a rational Hodge structure. We denote this Hodge

structure with

hπ : S Ñ GL(VR),

where S is the Deligne torus. Fixing an E-basis for VQ which in turn gives an E b R

basis for VR enables us to write this as

hπ,8 : S Ñ GLn(E bQ R).

This representation should be thought of as the analogue of our p-adic Galois represen-

tations ρπ,p : ΓK Ñ GLn(E bQ Qp) from pervious chapters, associated to the prime at

infinity. Note that this is equipped with an action of Aut(E) on the coefficients.

Now, let π be of general type and Γ be the group of E-extra-twists of π. Let |.|mω be

the central character of π, where ω is a finite order Hecke character. From now on, for

simplicity, we assume thatm is divisible by n. So, letm = nd. Then the outer-twists of π

are of the form (τ, | ¨ |2dη) for a finite character η and hence the outer-twists of ρπ,p are of

the form (τ, ϵ2dp η)where ϵp is the p-adic cyclotomic character and we think of η as a finite

Galois character. The extra-twist of π then induce extra-twists on the motive Mπ. An

inner-twist (σ, χ) induces an isomorphism σMπ » Mπ b χ where χ is the Artin motive

associated with the finite character χ. The outer-twist (τ, | ¨ |2dη) induces an isomorphism
τMπ » M_

π b Q(2d) b η.

In particular, the extra-twists also induce symmetries on the Hodge-structure since

E acts on the motive M via endomorphisms. Twisting with finite characters does not

affect the Hodge structure and twisting with the 2d’th power of the cyclotomic charac-

ter amounts to twisting with Tate’s Hodge structure Q(2d). This means that for each

inner-twist σ P Γinn, one has σhπ » hπ, and for each outer-twist τ P Γout, one has
τhπ » h_

π bQ Q(2d). Now, if we twist hπ with Q(´d), we still get σhπ(´d) » hπ(´d)

for each inner-twist and τhπ(´d) » hπ(´d)
_ for each outer-twist. This is analogous to

the representation ρ1
π,p from the previous chapter.

Since an isomorphism of rational Hodge structures comes from an isomorphism over

Q between the underlying rational vector spaces, and since everything is compatible with

the E-structures, we can find matrices ασ, ατ P GLn(E) that give the isomorphisms
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above by conjugation. So we get
$

&

%

hπ,8(´d) = ασ ¨ σhπ,8(´d) ¨ α´1
σ

hπ,8(´d) = ατ ¨ τh´T
π,8(´d) ¨ α´1

τ .

Note that the determinant of hπ,8(´d) is trivial, so it has values in SLn. Define the 1-

cocycle f : Γ Ñ AutE(SLn) by sending an inner-twist σ to ad(ασ) and an outer-twist

τ to ad(ατ ) ˝ (¨)´T . Then, as in Section 1.2.1, we can define the twisted action of Γ

on ResEFSLn and the matrices in the image of hπ,8(´d) are clearly invariant under this

action. We define the groupsH8 := (ResEbR
FbRSLn)

tw(Γ) andH := (ResEFSLn)
tw(Γ). Note

that H8 is the base change of H to R and it is the Archimedean analogue of the groups

Hp from Chapter 4.

Remark 5.2.1. We could also define the groupH8 without assuming the existence of the

motive, only from the real Hodge structure coming from the Archimedean part of π. But

then the connection to the Mumford-Tate group is of course less clear.

Lemma 5.2.2. The Mumford-Tate group of the motive Mπ is contained in the group

ResFQ(H) ¨ Gm.

Proof. The image of hπ,8(´d) lies inH8 by the definition ofH8. This implies that the

map hπ,8 factors through H8 ¨ Gm,R and therefore the map hπ factors through the base

change of the group ResFQ(H) ¨ Gm,Q to R. This implies the result.

Note that the dimension of the group H is equal to the dimension of all the groups

Hp from the pervious chapter. Our results in Chapter 4 make it reasonable to make the

following conjecture.

Conjecture 5.2.3. If π is of general type then the Mumford-Tate group of Mπ is equal

to ResFQ(H) ¨ Gm,Q.

We showed that the group H (or any of the Hp’s from before) gives an upper bound

for the Mumford-Tate group. On the other hand, in the special case thatM is an abelian

motive, Deligne shows that the Mumford-Tate group MT(Mπ), after base changing to

Qp, always contains the connected component of the image of the p-adic Galois repre-

sentation. Therefore, if we know that the image is open in Hp even for one prime, the

conjecture above follows. In particular we have the following result in the n = 2 case

(which was probably known to Nekovář):
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Corollary 5.2.4. Let f be a non-CM Hilbert modular newform of parallel weight 2 over

the totally real field K and assume there is an abelian variety Af associated to it. Then

Conjecture 5.2.3 and the Mumford-Tate conjecture hold for Af .

Proof. Note that MT(Mπ)bQQp is contained in (ResFQ(H) ¨Gm)bQp by Lemma 5.2.2

and contains the connected component of the Zariski-closure of the image of ρf,p which

is equal to ResFp

Qp
Hp(Qp) ¨ Qˆ

p by 4.3.6. Since the dimensions match, both inclusions

must be equality.

At the end, we want to come back to Remark 4.3.2. Recall that by [9], for each prime

p there exist an Azumaya algebra Dp over Q(π)p := Q(π) bQ Qp such that the Galois

representation ρπ,p factors throughDp Ă DpbQ(π)E » Mn(Ep), assuming irreducibility

of the Galois representation. We are interested in seeing if the local objects Dp should

come from a global object D defined over Q(π). In the n = 1 case, this is clear. In the

n = 2 case, since ρπ,p is odd, the residual representation is multiplicity free and a result

of Bellaïche and Chenevier [4] shows that in this case every pseudo-representation can

be defined over its trace field and hence Dp » M2 for all primes p. So, D » M2 works.

Now assume that π is of general type and assume Conjecture 5.2.3 and the Mumford-

Tate Conjecture. First, notice that for every σ P Gal(E/Q(π)) we have an inner-twist

π » σπ, therefore F Ď Q(π). Now, we know by our assumptions that for some finite

Galois extensionL/K, the image of ρπ,p|ΓL
is open inHp(Fp)¨Qˆ

p . This is theQp-Zariski

closure of the image, hence the Fp-Zariski closure of the image isHp(Fp) ¨Fˆ
p . Note that

the inner product is happening inside GLn, so sinceHp is a form of SLn, we deduce that

Gp := Hp ¨ Gm,Fp is a form of GLn. Since the image is contained in Dˆ
p which is an

algebraic group over Q(π)p and Fp Ď Q(π)p, we have

Gp(Fp) Ď Dˆ
p (Q(π)p) Ď GLn(Ep),

and the base change of either Gp or Dˆ
p to Ep is equal to GLn. This implies that Dˆ

p

is the Q(π)p-Zariski closure of the image of the Galois representation. In particular, by

the Mumford-Tate conjecture, the groups Dˆ
p should come from a global group, namely

the Q(π)-Zariski closure of the image of the map hπ,8. This is an inner-form of GLn,

because all the Gp’s become inner-forms over F inn
p . Hence, it is the group of the units of

a central simple algebra D over Q(π).

In particular in the n = 3 case, π is either an induction of a character from a degree

3 extension, essentially sym2, or of general type. In the first two cases Dp being global
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reduces to the n = 1 and n = 2 case and in the third case it follows from the discus-

sion above (assuming all the above conjectures). This makes it reasonable to make the

following conjecture:

Conjecture 5.2.5. Let π be a regular cuspidal algebraic automorphic representation of

GLn(AK) and ρπ,p the associated Galois representation and Dp the Azumaya algebra

coming from [9, Proposition 2.18]. Then there exists a central simple algebra D over

Q(π) such that Dp » D bQ(π) Q(π)p for every p.

In particular, this conjecture implies that for all but finitely many primes, the repre-

sentation ρπ,p can be defined over its trace field.
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