Aus dem Deutschen Krebsforschungszentrum
(Vorstand: Prof. Dr. med. Michael Baumann, Ursula Weyrich)
Abteilung fiir Medizinische Bildverarbeitung
(Leiter: Prof. Dr. rer. nat. Klaus H. Maier-Hein)

Robustness of Medical Image
Segmentation Algorithms in the
Context of Federated Data

Inauguraldissertation
zur Erlangung des Doctor scientiarum humanarum (Dr. sc. hum.)
an der
Medizinischen Fakultdt Heidelberg
der
Ruprecht-Karls-Universitét

vorgelegt von
Maximilian Armin Zenk
aus
Bad Soden-Salmiinster

2025






Dekan: Prof. Dr. med. Michael Boutros
Doktorvater: Prof. Dr. rer. nat. Klaus H. Maier-Hein






Contents

Acronyms

List of Figures

List of Tables

1 Introduction

1.1 Motivation . . . . . . . . . e e
12 Background . .. .. ... ... ...
1.2.1 Medical Image Segmentation . . . ... .. ... .. ... ......
1.2.2 Distribution Shifts and Medical Imaging . . . ... ... ... ...
1.2.3 Predictive Uncertainty Estimation . . . ... ... ... . ... ...
124 Medical Image Analysis Competitions . . . . . ... .........
1.3 Related Work . . . . . . . . . . . e
1.3.1 Generalization . . ... .. ... ... ... e
1.3.2 Failure Detection . . . .. ... .. ... ... ... . .. . .. ...
1.4 Objectives and Contributions . . . . ... ...................
1.4.1 Generalization . .. ... .. .. .. ... ...
1.4.2 Failure Detection . . . . . ... ... .. ... ... ... . .. ...,
1.5 Outline . . . . . . . . e

2 Materials and Methods

2.1 Generalization . . . . . . . . ... e
2.1.1 Challenge Organization . . ... ....................
2.1.2 Datasets . . . . . . . . e e
2.1.3 Annotation Quality Control . . . .. ... ... ... .. ... ...
2.1.4 Performance Assessment Methods . . . . . ... ... ... .....
2.1.5 Statistical Analyses . . . ... ... ... o Lo
2.1.6 Technical Infrastructure . . .. ... ... ... ... .. .......

iii

vii

O B Rk

11
14
16
17
21
27
27
28
29



2.2 Failure Detection . . . . . . . . . . . .. .. ... e
221 Task Definition . . ... ... ... .. .. .. ... ...
222 Evaluation . . . . . . .. ...
223 Datasets . . . . . . .. e
224 Segmentation Algorithm . . . . ... ... ... 00000
2.2.5 Failure Detection Methods . . . . . . .. ... ... ... .......

3 Results

3.1 Generalization . . . . . . . . ... e
3.1.1  Results of the FeTS challenge 2021 (Pilot Study) . . ... ... ...
3.1.2 Results of the FeTS challenge 2022 . . . . . . ... ... .......
3.2 Failure Detection . . . ... . .. . . .. . . ...
3.2.1 Failure Detection Benchmark Results . . . ... ... ... .....
3.2.2 Extensions of the Benchmark . . .. ... ... ... ... ......
3.2.3 Analysis of the Evaluation Protocol . . ... .............

4 Discussion

41 Generalization . . . . . . . . ...
41.1 Interpretation of the Challenge Results . . . ... ... ... ... ..
41.2 Comparison to Related Work . . ... ... ... ... ..... ...
4.1.3 Limitationsand Future Work . . . . ... ... ... ... ......
42 Failure Detection . . . . . . . . . . . . . ...
42.1 Interpretation of the Benchmark Results . . . . ... ... ... ...
422 Comparison to Related Work . . . ... ... ... .. ..... ...
423 Limitationsand Future Work . . . . ... ... ... ... ......
43 OverallConclusions. . . . . . . . . . . i i e

5 Summary

6 Zusammenfassung

Bibliography

Own Contributions and Publications
Own share in data acquisition and dataanalysis . . . ... ... .........

Own Publications

A Appendix

A1 AdditionalResults. . . . . . . . . . .
A.1.1 Generalization . . ... .. . . . ...

67
67
68
72
88
88
99
104

109
109
110
112
114
115
115
117
119
121

123

125

129

169
169
171



A.1.2 Failure Detection . . . . . . . . . . . . e 175

A.2 Additional Image Samples from the Failure Detection Benchmark . . . . . 175
A.3 Details on the FeTS Challenge Submissions (Algorithm Characteristics) . 189
A.4 Dokumentation der verwendeten KI-Hilfsmittel . . . ... ... ... ... 191
Acknowledgments 193
Eidesstattliche Versicherung 195

Angaben zu verwendeten Kl-basierten Elektronischen Hilfsmitteln 197






Acronyms

MRI
CT

T1

T2
T1-Gd
FLAIR
ET

TC
WT
ED
NCR
FeTS
BraT$S
LGG
HGG
OCT
UsS
DSC
HD
NSD
MAE
AUROC
AUROC;

magnetic resonance imaging
computed tomography

native T1-weighted
T2-weighted
contrast-enhanced T1-weighted
Fluid Attenuated Inversion Recovery
enhancing tumor

tumor core

whole tumor

edema

necrotic core/necrocyst
Federated Tumor Segmentation
Brain Tumor Segmentation
low-grade glioma

high-grade glioma

optical coherence tomography
ultrasound

Dice similarity coefficient
Hausdorff distance

normalized surface dice

mean absolute error

area under the receiver operating curve

area under the receiver operating curve using binary failure labels



Acronyms

AURC
PC
SC
ReLU
BN
GPU
CE
IOR
OOD
iid.
RQ
MIC
DKFZ
MICCAI
CSF
CNN
NN
DNN
Al
DL
SGD
PE
MI
RF
ROI
ML
VAE
MC
FD
IDH

ii

area under the risk-coverage curve
Pearson correlation coefficient
Spearman correlation coefficient
rectified linear unit

batch normalization

graphics processing unit
cross-entropy

interquartile range
out-of-distribution

independent and identically distributed
research question

Medical Image Computing
German Cancer Research Center
medical image computing and computer assisted intervention
confidence scoring function
convolutional neural network
neural network

deep neural network

artificial intelligence

deep learning

stochastic gradient descent
predictive entropy

mutual information

regression forest

region of interest

Machine Learning

Variational autoencoder

Monte Carlo

failure detection

isocitrate dehydrogenase



List of Figures

1.1

1.2
1.3
1.4

1.5

2.1
2.2

2.3

24
2.5
2.6
2.7
2.8
29
2.10

3.1

3.2
3.3
34
3.5

Examples of segmentation algorithm predictions on brain tumor data from
severalorigins. . . . . . . ... L L L
Example for semantic segmentation in medical images. . . .. ... .. ..
Architecture visualizationof the U-Net . . . ... ... ... .. .....
Probabilistic model and examples for distribution shifts encountered in
medical image segmentation. . . . ... ... ... .. 0 0oL
[lustration of two sources of uncertainty in model predictions in a two-
dimensional, artificial example . . . ... ... ... 0 00000

Partitioning of training and test sets by geographically distinct institutions.

Geographical distribution of the participants, as well as training and testing
institutions in the FeTS22 challenge. . . . . ... ... ... ... ... ...
Patient population in terms of sex, IDH status, and age across 32 institutions
that contributed test datasets to FeTS22. . . . . ... ... ... ... ....
Training case example from the FeTS Challenge 2022. . . . . ... ... ..

Diagram of the federated evaluation workflow used in the FeTS Challenge.

Example for the risk-coverage curve based on synthetic data. . . . . . . ..
Examples from the CT and MRI datasets used for the benchmark. . . . . .
Examples from the non-CT/MRI datasets used for the benchmark.

Schematic of the segmentation network backbone (U-Net). . . . . . .. ..
Overview of the components involved in failure detection. . . . ... ...

Distribution of metric values for each institution and participating team of
the FeTS21 challenge. . . . . . . . ... ... .. ... .. ... .. ......
Ranking statistics for the FeTS21 challenge. . . . . ... ... ... ... ..
Aggregated challenge results of the FeTS22 challenge. . . . . . ... .. ..
Detailed results of the FeTS22 challenge of the top-ranked submissions. . .
Examples of common segmentation errors in the FeTS Challenge. . . . . .

11

13

34

35

36
38
43
49
54
55
57
58

70
71
76
77
80

iii



List of Figures

v

3.6 2D-Histograms of true region size versus segmentation metrics for all test
cases in the FeTS22 challenge. . . . . . .. ... .. ... ........... 81
3.7 Ranking stability for each region and metric evaluated in the FeTS22 challenge. 82
3.8 Test set segmentation performance measured by DSC, of a single U-Net . 89
3.9 Performance difference (DSC) between prediction models on the test set. . 90
3.10 Comparison of aggregation methods in terms of AURC scores for all datasets. 91
3.11 Ranking distribution obtained through bootstrapping for aggregation meth-
ods. . . . 92
3.12 Comparison of image-level failure detection methods in terms of AURC
scores forall datasets . . . ... ..... ... ... ... .. L. 95
3.13 Scatter plot of confidence scores produced by mean pairwise DSC versus
true DSCscores. . . . . .. .. ... 96
3.14 Qualitative analysis of ensemble predictions on all datasets. . . ... ... 98
3.15 Test set segmentation performance measured by DSC of a single U-Net on
non-CT/MRI datasets. . . . . . . . . . . . @ i i i i it 100
3.16 Experimental results for varying number of training samples in the heart
dataset. . . . ... ... 103
3.17 Ranking distribution plots based on 1000 bootstrap samples, compared
between different risk functions. . . .. ... ... ... o 0oL 104
3.18 Example illustrating why AURC is most suitable as a failure detection metric106
3.19 Comparison of OOD-AUROC scores for different failure detection methods 108
A1l Aggregated challenge results of the FeTS22 challenge for each evaluated
model and institution . . . . . ... Lo Lo oo 176
A.2 Case-level challenge results of the top-ranked algorithm for each institution
ofthetestset . . . . . ... .. . ... 177
A.3 Effect of annotation quality control on rankings. . . . ... ... ... ... 178
A4 Effect of annotation quality control on the mean Dice similarity coefficient
(DSC) distributions for the best-performing model. . . . .. ... ... .. 178
A5 AURC scores for all datasets and methods in the failure detection benchmark.179
A.6 Pearson correlation coefficient for all datasets and methods in the failure
detectionbenchmark. . . . .. ... ... .. o oo o o oL 181
A.7 Spearman correlation coefficient for all datasets and methods in the failure
detectionbenchmark. . . . ... ... ... . o oo oo oL 182
A.8 Samples from the test set of the 2D brain (toy) dataset. . . ... ... ... 183
A9 Samples from the test set of the brain tumor dataset. . . . . . .. ... ... 184
A.10 Samples from the test set of the heart dataset. . . . . . ... ... .. .. .. 185
A.11 Samples from the test set of the kidney tumor dataset. . . . . .. ... ... 186



List of Figures

A.12 Samples from the test set of the prostate dataset. . . . . ... ... ... .. 187
A.13 Samples from the test set of the Covid dataset. . . ... ... ........ 188



List of Figures

vi



List of Tables

1.1

1.2

21
2.2

2.3
24
25

2.6

3.1

3.2

3.3
34

3.5

3.6

Al
A2

Comparison of related work for evaluating generalization on unseen institu-

tions. . . . .. 20
Comparison of related studies with benchmarking character. . . . . . . .. 26
Statistics of the training, validation and test cases for the FeTS challenges . 33
Comparison of geographical diversity between the test sets of the BraTS

2021 and FeTSchallenges. . . . . . ... ... ... ... ... ..... 35
Metric candidates for segmentation failure detection. . . . ... ... ... 48
Summary of datasets used in the failure detection benchmark. . . . . . . . 51
Hyperparameters for the segmentation and failure detection methods used

in the failure detection benchmark. . . . . . ... ... ... ... .. .. .. 59
Overview of failure detection methods included in the benchmark . . . . . 65

Extended ranking and algorithm characteristics of all models evaluated in

the FeTS Challenge 2022 . . . . . ... ... ... ... ... ... ...... 83
AURC scores on the test sets for different pixel-level uncertainty measures
and aggregationmethods . . . .. ... ... ... o 0L 93

Mean AURC scores on the test sets for different failure detection methods. 94
AURC scores on the test sets of the non-CT/MRI datasets for confidence

aggregationmethods. . . . . . .. ... . o oL oL Lo 100
Comparison of the AURC scores of failure detection methods with different

segmentation backbones. . . . . .. ... oo L Lo L Lo 101
Multi-metric comparison of failure detection methods. . . . .. ... ... 107

AURC scores (x100) on the test sets for all compared failure detection methods180
Mapping from model ID to scientific publication for the subset of BraTS
2021 models evaluated within FeTS22 . . . . ... .. ... ... ...... 190

vil



List of Tables

viii



1 Introduction

1.1 Motivation

Imaging plays an important role in today’s medicine, as it can provide rich information
about the patient with noninvasive technology. Consequently, the demand for radiological
examinations is rising, with the combined number of computed tomography (CT) and
magnetic resonance imaging (MRI) scans acquired per year increasing by 29.8 % in England
within the past five years (NHS 2023). Data from the Royal College of Radiologists for the
United Kingdom suggests that growth in the workforce cannot keep pace, estimating that
1962 additional clinical radiologists would have been required in 2023, corresponding to
a gap of 30 % (RCR 2023). This development does not only lead to high workloads and
stress for radiologists, but it can ultimately also cause harm to patients through delayed or
inaccurate radiological readings (Alexander et al. 2022). Technological assistance through
artificial intelligence (AI) tools is a promising strategy to alleviate the aforementioned
challenges, as they can automate time-consuming or tedious tasks (Kalidindi and Gandhi
2023).

One such task is semantic segmentation, which is the focus of this thesis and consists in
annotating for each pixel in an image whether it belongs to a region of interest, such as an
organ or a lesion. The resulting segmentation masks are required as an intermediate step
for many medical image analysis pipelines, enabling, for instance, volumetric assessment
of tumor burden (Kickingereder et al. 2019), organs-at-risk delineation for radiotherapy
planning (Nikolov et al. 2021), and extraction of imaging phenotypes for large-cohort
association studies (Aerts et al. 2014; Bai et al. 2020). Unfortunately, manual segmentation is
laborious and introduces variability between or within annotators (Harari et al. 2010; Nelms
et al. 2012; Menze et al. 2015; Joskowicz et al. 2019). This motivates research in automatic
segmentation algorithms, as they have the potential to improve the efficiency of the clinical
workflow while also making the segmentations more reproducible (Kickingereder et al.
2019; Nikolov et al. 2021). Advancements in deep learning (DL) methodology (LeCun
et al. 2015) and hardware accelerators have revolutionized the field of computer vision
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Chapter 1. Introduction

and medical image analysis in the past decade. Segmentation algorithms were devised
that learn to generate segmentations on unseen images, which can match the quality of
human annotations if given enough example pairs of images and segmentation masks as a
training dataset. State-of-the-art methods can even adapt automatically to diverse medical
image segmentation tasks (Isensee et al. 2021a).

To make such models useful in clinical applications, they need to produce trustworthy
results not only for research datasets but also when used at various hospitals not seen
during model development. However, it is well known that the performance of DL models
can decrease when applied to data with distribution shifts (AlBadawy et al. 2018; Zech
et al. 2018; Badgeley et al. 2019; Beede et al. 2020; Campello et al. 2021), which means that
characteristics of the data distribution differ between the model training and deployment
stage. In the context of medical image segmentation, distribution shifts are expected when
using data from hospitals not seen during training, for instance due to different scanners or
patient populations (Castro et al. 2020). Examples for the task of brain tumor segmentation
are shown in fig. 1.1. Including training data from every environment at which the model
should be deployed is not practical in medical image analysis, because clinical data usually
cannot be shared outside the institution where they were acquired, due to privacy concerns
and data protection regulations. Hence, the amount of accessible multicentric data is still
small for many segmentation tasks and additional methods that improve the robustness of
segmentation models are necessary to make them reliable in real clinical applications.

This thesis investigates two complementary approaches to the robustness problem and
addresses existing gaps in research for each of them from a comparative, benchmarking
perspective:

1. Generalization: The objective of this approach is to produce high-quality segmenta-
tions even on images with distribution shifts, thus preventing segmentation failures
in the first place. Although various methods have been proposed towards this goal
(Zhou et al. 2023; Yoon et al. 2024 ), systematic evaluation efforts are limited. The
standard for benchmarking medical image analysis methods are public biomedical
competitions (Maier-Hein et al. 2018), as they provide fair and reproducible con-
ditions for comparing algorithms. Such competitions have only recently begun to
address generalization to distribution shifts between training and test data on a small
scale, by collecting multicentric data and setting aside data from a few institutions
for testing (Campello et al. 2021; Aubreville et al. 2023; Payette et al. 2024). How-
ever, it remains an open question how well state-of-the-art segmentation algorithms
generalize when tested on large-scale data originating from many, geographically
distributed institutions unseen during training, with a diversity close to applications
“in the wild”.



1.1. Motivation

In-distribution African clinic Pediatric patient Metastases

Prediction

Ground Truth

Figure 1.1: Examples of segmentation algorithm predictions (edema = orange, enhancing
tumor = light green, non-enhancing tumor = blue) on data from several origins. Only the
contrast-enhanced T1 MRI sequence is shown. A nnU-Net (Isensee et al. 2021a) trained
on one fold of a multi-centric dataset with brain tumor (glioma) patients performed well
on in-distribution data (adults mostly from North America and Europe). For other clinics,
populations, or tumor types, however, failures can be observed, indicating a lack of robust-
ness. Obvious errors were selected here for illustration purposes, but less severe errors
that occur more frequently in practice can also cause problems in real-world applications.
Images are from the BraTS 2021 and 2024 Challenge datasets (Baid et al. 2021; Adewole
et al. 2023; Karargyris et al. 2023; Kazerooni et al. 2024; Moawad et al. 2024).

2. Failure detection: As errors cannot always be avoided, failure detection aims to
automatically detect when segmentations might be inaccurate, so that they can be fil-
tered or manually corrected before affecting downstream image analysis tasks. Three
lines of research state failure detection as a main motivation: uncertainty estimation
aims to complement the model’s prediction with a general-purpose confidence score,
usually on the pixel-level (for example Mehrtash et al. 2020). Out-of-distribution
detection methods attempt to identify samples that are dissimilar to the training
data, as these are likely to cause prediction errors (for example Gonzélez et al. 2022).
Lastly, segmentation quality estimation is an approach that predicts segmentation
metrics values for a segmentation model’s output without access to the ground truth
(for example Valindria et al. 2017). Although failure detection is a common down-
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Chapter 1. Introduction

stream task for all of these strategies, they are usually studied separately, since there
are no standardized evaluation protocols compatible with all approaches (Jaeger
et al. 2022). Furthermore, as previous works are limited to a single segmentation
task or do not consider distribution shifts, they cannot answer how self-configuring
segmentation methods like nnU-Net can profit from failure detection. Overall, there
is currently no clear picture of which segmentation failure detection methods work
reliably when applied to different datasets with distribution shifts.

1.2 Background

1.2.1 Medical Image Segmentation

Image segmentation algorithms partition the image into multiple regions that have some
common characteristics. This thesis focuses on semantic segmentation (henceforth just
called segmentation), the task of assigning a class label to each pixel in the image, which
captures the meaning of each pixel in the context of a particular image analysis task. In
medical images, for instance, the goal is often to annotate which parts of the image belong
to different organs or pathologies, so possible classes for a segmentation task in the head
could be “skull”, “hippocampus”, “tumor”, “background”. An example for brain tumor
segmentation in MRI is shown in fig. 1.2. The segmented region of interests (ROIs) can be
used for research on imaging biomarkers (Aerts et al. 2014), volumetric quantification of
tumor burden (Kickingereder et al. 2019) or radiotherapy treatment planning (Nikolov
et al. 2021), to name a few examples. As annotating images pixel-by-pixel* is a time-
consuming effort, algorithms for automatic segmentation have been studied extensively.
In the following, a brief overview of traditional segmentation approaches is given, after
which the current state of the art based on deep learning algorithms is described. The
section ends with a description of how segmentation algorithms are evaluated.

1.2.1.1 Segmentation Methods without Deep Learning

Early approaches applied thresholds on the image intensities, detected edges, or reformu-
lated segmentation as a graph cut problem to segment images (Toennies 2017). While
such techniques can work for medical applications in which image intensities are reliable
predictors of the anatomical target structure, they have limitations in the presence of noise
or for more complex segmentation tasks.

*Radiological imaging modalities like CT or MRI are inherently three-dimensional volumes consisting of
voxels. For simplicity, in this section the basic elements of images are just called pixels, using the term voxels
only if the 3D nature should be emphasized.
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1.2. Background

Figure 1.2: Example for semantic segmentation in medical images. One slice of a T1-
weighted MRI sequence of the brain acquired with contrast agent is shown (left), next to
the overlaid ground truth segmentation mask (middle) and a 3D rendering (right). Each
pixel is assigned a segmentation class (indicated by a color overlay): peritumoral edema
(orange), enhancing tumor (light green), necrosis (dark blue) and background (no color).
The image originates from the training data published in (Zenk et al. 2025a).

A more modern approach is based on example images for which a manual reference
segmentation was generated, so-called “atlases”. As medical images usually depict similar
anatomies, two images from different subjects can often be registered, which means that
a spatial transform can be computed that aligns the anatomies of both subjects as well
as possible while ensuring the transformation remains invertible. This technique can be
used for medical image segmentation: To generate a segmentation of a new image, it is
registered to a set of atlases and the atlases” annotations are transferred back to the new
image with the identified spatial mapping. If there are multiple atlases, there are different
strategies to merge their labels (Iglesias and Sabuncu 2015).

Medical images can also be segmented using statistical shape models, which rely on
prior knowledge of the shape and image appearance of organs or other target structures.
After choosing a shape representation, such as a collection of landmarks, the shape model
captures the mean shape and variation in a training dataset with manually annotated
landmarks. To fit a shape model to a new image, two additional components are required:
an appearance model that captures the texture of the target structure and a search algorithm
that allows finding the correct location of the shape (Heimann and Meinzer 2009).

1.2.1.2 Segmentation Methods based on Deep Learning

Advancements in the field of deep learning (LeCun et al. 2015) during the last decade led
deep neural networks (DNNSs) to become state of the art in a wide range of applications,
including protein structure prediction (Jumper et al. 2021), natural language processing
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Chapter 1. Introduction

(Brown et al. 2020) and computer vision (Kirillov et al. 2023). Based on the availability
of large training datasets and hardware accelerators, most notably graphics processing
units (GPUs), these models are able to learn which features to extract from the raw data
during training to achieve low error in a supervised learning task.

Briefly summarizing LeCun et al. (2015), deep learning is based on artificial neural
networks, which are usually organized into multiple layers of processing units (neurons).
Each neuron receives input from neurons in the previous layer and applies a nonlinear
function with tunable parameters. In the simplest case, each neuron computes a weighted
sum of the outputs from the previous layer and feeds it through non-linearity like the
sigmoid or rectified linear unit (ReLU) function, known as the activation function. If
all operations in the network are differentiable, the backpropagation algorithm allows
optimization of a task-specific objective function with respect to the network parameters on
a given training set using stochastic gradient descent (SGD), enabling the network to learn
a nonlinear relation between input and output. DNNs are extremely flexible in which
building blocks to use and how to assemble them to a network, but for medical image anal-
ysis tasks, convolutional neural networks (CNNs) are currently the best-performing class
(Isensee et al. 2024). Each layer in a CNN applies multiple learnable discrete convolutions
to the output of the previous layer, which restricts the inputs of each neuron to a local
neighborhood and makes neurons share parameters, thereby processing images efficiently.

The connections between neurons, and how information flows between them, deter-
mine the architecture of a neural network. For medical image segmentation, the U-Net
architecture (Ronneberger et al. 2015) stands out, which was originally proposed for 2D
images but quickly adapted to 3D images (Cicek et al. 2016). Its layers are arranged in an
encoder-decoder construct, with additional information flow between the two branches
through skip connections (fig. 1.3). The encoder consists of multiple stages operating at
successively decreasing spatial resolution. In each stage, convolutional layers extract and
refine various image features, while the spatial dimension of the resulting feature maps is
reduced with pooling layers before the next stage. The feature representation at the end of
the encoder hence has low spatial resolution, but a high semantic depth per position. The
decoder roughly mirrors the structure of the encoder, as it is designed to upsample the
feature representation again, to convert it into a segmentation map. Transpose convolutions
are used for learnable upsampling operations in the U-Net, helping to locate the learned
information from the encoder in the original image space. Skip connections from each
stage of the encoder to the corresponding stage of the decoder are added to recover finer
information about the location of segments. Finally, convolutional layers are used in the
decoder to combine and process the information received from the skip connections and
upsampled feature maps.

State-of-the-art segmentation pipelines based on deep learning are complex algorithms
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Figure 1.3: Architecture visualization of the U-Net (Ronneberger et al. 2015). Computa-
tional operations by the network are indicated by arrows, while feature representations
are visualized as boxes with spatial dimensions annotated on the left and feature channel
dimensions on the top. The kernel size is given for convolution operations (as in conv
3x3) and similarly the extent of local pooling operations. The decoder can produce a
high-resolution segmentation map by aggregating the rich semantics from lower layers
with additional localization information from the skip connection. Figure by Ronneberger
et al. (2015) reproduced with permission from Springer Nature.

that depend not only on their network architecture but also on many other components,
such as the loss function, optimizer, data loading pipeline, and pre-/post-processing
steps. Configuring all hyperparameters associated with these components is a difficult
task that needs to be performed for each application in which the segmentation network
should be used. Isensee et al. (2021a) developed nnU-Net, an algorithm for medical
image segmentation that automatically configures the segmentation algorithm based on
dataset properties, which include the imaging modality as well as the distribution of
voxel intensities and spacings. The resulting segmentation algorithm has three groups
of parameters: Fixed parameters are dataset-agnostic, rule-based parameters are derived
based on the dataset characteristics, and empirical parameters are set based on the results
of different variants in cross-validation. The details of all configuration parameters are
beyond the scope of this thesis and can be found in the original publication (Isensee et al.
2021a). One interesting finding of their study is, however, that a fixed, U-Net-like network
architecture performs well on many datasets if the rest of the segmentation pipeline is
configured appropriately. The automatic configuration by nnU-Net remains a strong
baseline for medical image segmentation until today (Isensee et al. 2024) and is an ideal
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Chapter 1. Introduction

foundation for developing new methods. As it can be applied to new datasets without
user input, nnU-Net is also promising for studying generalization to distribution shifts in
this thesis.

1.2.1.3 Evaluation of Segmentation Methods

Without a good measure of segmentation performance, developing a new method is impos-
sible. Performance metrics for semantic segmentation compare two binary segmentation
masks A and B, which can correspond to the reference segmentation and model prediction,
for example. For multi-class segmentation problems, metrics are computed for each class
separately and can be averaged to obtain an overall segmentation quality measure, if
necessary. Following Reinke et al. (2021), segmentation metrics can be categorized into
overlap-based or boundary-based metrics. The most popular overlap-based metric is the
Dice similarity coefficient (DSC), mathematically defined as

_2AnB]

DSC = p
|Al + |B]

(1.1)

where |A| denotes the number of elements in A. DSC can assume values between 0 (no
overlap) and 1 (equivalent to A = B). Two examples for boundary-based metrics are
the Hausdorff distance (HD) and the normalized surface dice (NSD). HD measures the
largest distance between the boundaries of two segmentation masks:

HD(A, B) = max {rarlea}i( d(a,B), rg\eag d(b,A)} , (1.2)

where d(a,B) = min,cy lla — bl| is the distance of point a to the set of points in B. A
good segmentation minimizes the HD. The NSD (Nikolov et al. 2021) takes a different
approach, introducing a tolerance parameter 7, which can be adapted to the application
and determines how much deviation between the boundaries is acceptable. Denoting the
boundary of a segmentation mask with 5, which is a surface in a 3D volume, and the
border region with width 7 around that surface with B(7), the NSD is calculated as

154 0 B+ 155 0 B

NSD =
1541 + 155

(1.3)

Here, |54 N ﬁ?)f;)l is defined as the length of that part of the boundary 54 that is contained
in the border region JBéT). Similar to DSC, this metric ranges from 0 to 1, but it focuses on
boundary overlap instead of volume overlap.

Since all metrics have their particular pitfalls and measure different aspects of the
segmentation performance, it is usually recommended selecting them for validation based

8



1.2. Background

on the dataset and annotation characteristics in a particular application (Maier-Hein et al.
2024). If possible, evaluating both overlap-based metrics and boundary-based metrics
allows a more comprehensive analysis.

1.2.2 Distribution Shifts and Medical Imaging

Supervised DL usually minimizes a loss function on the available training data, but the
final goal is to achieve low error on unseen data as well. While these algorithms usually
generalize to new samples from the same data distribution, often referred to as independent
and identically distributed (i.i.d.) samples, they often exhibit higher error rates in real-
world applications with data from a different distribution (Koh et al. 2021). The dis-
crepancy between training and testing distribution is called distribution shift or dataset
shift (Moreno-Torres et al. 2012; Quifionero-Candela et al. 2022). This section describes
the theoretical background and how distribution shifts practically arise in many medical
imaging applications.

Mathematically, for a supervised learning task with random variables X as input
features and Y as prediction targets, let the training data distribution Py, (X, Y) and the data
distribution during testing P (X, Y). Sometimes these are called source domain and target
domain, respectively. The situation P (X,Y) # P (X,Y) corresponds to dataset shifts.
In the general Machine Learning (ML) literature, a few special shifts can be identified
when factorizing the joint distribution in one of two ways: P(X,Y) = P(Y|X)P(X) or
P(X,Y) = P(X|Y)P(Y). Following the nomenclature by Moreno-Torres et al. (2012), these
elementary shifts are:

o Covariate shift: It refers to a situation where the feature distribution changes but the
mapping from x to y remains identical: Pi(X) # P (X) and P (Y1X) = P (Y1X).

e Prior shift: Here, only the output distribution is affected while the conditional
distribution remains unchanged: Py (Y) # Pi.(Y) and P (X]Y) = P (X]Y).

e Concept shift: This is the challenging setting in which the conditional distributions
between training and testing differ while the marginals stay the same: P (X) = P (X)
and P (Y[X) # P (Y|X) or P (Y) = P,.(Y) and Py (X|Y) # P (X]Y).

In practice, combinations of these shifts can make generalization even harder.

Towards a more practical description and a better understanding of these distribution
shifts in the context of medical imaging, Castro et al. (2020) took a causality perspective and
introduced an unobserved variable Z, which represents the physical reality of a subject’s
anatomy. An image X is then a noisy measurement of specific anatomical properties.
The dependency structure between image X, label Y and anatomy Z can be visualized
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as a directed graph, which reflects the factorization of the joint distribution. For image
segmentation, the causal dependency is usually Z - X — Y, corresponding to a joint
distribution of

P(X,Y,Z) = P(Z)P(X|Z)P(Y|X) (1.4)

Analogously to the elementary shifts above, each factor can differ between training and
testing domain D, resulting in three basic types of shifts for medical image segmentation
(fig. 1.4). These correspond roughly to the prior, covariate, and concept shifts above, and
are mathematically defined as:

e Population shift (P,.(Z) # P, (Z)), which means that there are anatomical differ-
ences between the patient populations during training and deployment, for example
in terms of age, sex or genetics.

e Acquisition shift (P.(X|Z) # P (X|Z)), which is commonly encountered when
the patient population is identical but the imaging acquisition process changes
between training and testing, for example due to differences in scanners, protocols,
or modalities.

e Annotation shift (P (Y|X) # P (Y1X)), which occurs if the annotation on the testing
set is performed differently than on the training data. It can be caused by changes in
the annotation protocol or differences between individual human annotators.

As before, in practice often multiple shifts occur simultaneously. For other tasks than image
segmentation, the causal dependency structure may look different and the interpretation
of the shifts changes, but since this thesis focuses on segmentation, the reader is referred
to Castro et al. (2020) for more details on this topic. Categorizing distribution shifts in the
way above helps to design datasets for studying individual shifts and develop approaches
for tackling them.

How do such shifts arise in practice? Two frequent reasons are sample selection bias
and non-stationary environments (Moreno-Torres et al. 2012). Sample selection bias means
that the training data represents only a subset of the target population because some
cases are not selected for training, for example due to image/annotation quality control or
inclusion criteria in a clinical study. If these selection procedures are not replicated during
deployment, the resulting data distribution can be shifted. Non-stationary environments
describe the situation of the distribution changing over time, for instance due to new
imaging equipment, change of labeling guidelines, or epidemics. Both selection bias and
non-stationary environments can easily occur when models are developed on data from
some hospitals and deployed in other hospitals, which is the federated data scenario
investigated in this thesis.
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Figure 1.4: Probabilistic model and examples for distribution shifts encountered in medical
image segmentation. The graphical model has random variables for the unobserved patient
anatomy (Z), the observed image (X), and observed label (Y). Shifts between the training
and testing domain are introduced by the domain indicator D. For population shift, only
the patient population changes, for example through age differences. Acquisition shifts can
be caused by changes in scanners or acquisition protocols. Annotation shifts can occur, for
instance, if training images are annotated manually, whereas a semi-automatic workflow
is used for the data the model is tested on.

1.2.3 Predictive Uncertainty Estimation

Shifts in the data distribution between the training and testing phases can lead to mistakes
when segmenting images, both for humans and algorithms. However, while humans often
notice such shifts as an anomaly and are able to express uncertainty in their segmentation
(for example saying “I am unsure if this part belongs to the ROI because of an artifact in
the scan”), deep learning models do not possess the inherent capability to estimate or
explain their confidence. This section briefly describes how the notion of uncertainty can
be formalized for general supervised learning problems and how uncertainty estimates
can be used in practice. Individual methods for uncertainty quantification are described
in the related work section 1.3.2.

In Bayesian statistics, a model for the data is specified as a likelihood p(ylx, #), which
defines the data-generating process as a function of the model parameters 6, and a prior
distribution p(8), which expresses the initial belief about which parameters are probable
before observing any data (Gal 2016). Given a set of training data X with associated
ground truths Y, this prior belief is updated, resulting in the posterior distribution

p(YIX,0)p(0)

0X,Y) =
PO ) = V%)

(1.5)
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Here, the numerator contains the likelihood evaluated over the whole dataset, while the
denominator is called the model evidence and requires integration over all parameters:

p(YIX) = fpmx, 0)p(0) do (1.6)

In Bayesian inference, a prediction on a new data point x* is performed by integrating
over all possible parameter values, weighting their contribution by how likely they are
according to the posterior distribution:

plylx*, X, Y) = fp(ylx*,H)p((?lX,Y) do (1.7)

The final prediction is usually chosen as 77 = argmaxp(y|x*, X, Y) and its uncertainty is
quantified by the spread of the distribution. Interestingly, eq. (1.7) also provides an intu-
ition about the sources of uncertainty. Aleatoric uncertainty is captured by the first term
in the integral and describes inherent randomness in the data (from the perspective of the
model). In semantic segmentation, for example, most images contain ambiguous regions
near the boundary of a structure of interest, which will be labeled slightly differently by
independent annotators. The second factor in the integral of eq. (1.7), in contrast, stems
from the uncertainty of the model parameters that were estimated from the available train-
ing data, often called epistemic uncertainty. Collecting more data can in principle reduce
this uncertainty, as it restricts the posterior to a smaller region of probable parameters. An
intuitive explanation of aleatoric and epistemic uncertainty is provided in fig. 1.5 for a
two-dimensional classification example. Applying Bayesian inference in practice is not
trivial, because solving the integrals in the predictive distribution and model evidence from
egs. (1.6) and (1.7) analytically is only possible for simple models. Variational inference
and Monte Carlo (MC) sampling can help to find approximations (Gal 2016), but they are
not discussed here. Instead, it is assumed that an approximate predictive distribution in
the form of the average of M MC samples is available:

1 M
Plyle) = 37 ) pyl, 09) (1.8)
k=1

While the predictive distribution is the most complete representation of uncertainty,
often scalar uncertainty measures are useful in practice. Among the many possible mea-
sures, three are used in the experiments for this thesis: The softmax response, predictive
entropy, and mutual information.

e The softmax response (also known as maximum softmax) quantifies how much
probability mass is spread around the mode of the predictive distribution. It is

12



1.2. Background

X2
X2

X1 X1

Figure 1.5: Illustration of two sources of uncertainty in model predictions in a two-
dimensional, artificial example for a binary classification task, where blue circles belong to
the negative class and orange crosses to the positive class. The dashed black line is the
optimal decision boundary based on the true data distributions. Left: Aleatoric uncertainty
is inherent in the data generation process, so any model should have lower confidence
for data points like the red star, which are near the class boundary. Right: Epistemic
uncertainty is rooted in the limited knowledge about the best model parameters, and
can be reduced with more data. To illustrate this, 100 logistic regression models were
titted using scikit-learn (Pedregosa et al. 2011) based on the scarce training data. As their
decision boundaries (gray lines) vary, the classification of a new sample at the location of
the red star has high uncertainty.

defined via the maximum probability across classes c:
Usr=1- maxp(y = clx™*) (1.9)

e Predictive entropy is a measure from information theory that describes how close
the distribution is to a uniform distribution:

Upg = =) _Ply = clx") logp(y = clx") (1.10)

e Mutual information was adapted for uncertainty estimation from information theory
as well, capturing the shared information between prediction and model parameter
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posterior. It is defined as

1 M
Upr = Upg — i Z Zp(y = clx*, 0% logp(y = clx*,05). (1.11)
=17

This measure has been associated with epistemic uncertainty (Gal 2016).

The uncertainty measures above were proposed for image classification, but for a segmen-
tation model they can also be computed per pixel. In the rest of this thesis, uncertainty and
confidence are often used as antonyms, so all the uncertainty scores above can be inverted
to get a confidence score.

Uncertainty estimates can be applied in the context of segmentation in several ways:
Pixel-wise uncertainty maps can be used to interpret the model’s output, which requires
that the predictive probabilities are close to the empirical frequencies in the data (also
known as calibration). For other downstream tasks, confidence scores are needed on the
image level, so that pixel-level uncertainty estimation methods have to be extended with
adequate aggregation methods. Prominent image-level applications include:

e Out-of-distribution (OOD) detection, which aims to identify samples that are outside
the support of the training data distribution. Uncertainty quantification methods are
used for OOD detection under the assumption that uncertainty is higher for unusual
samples than for in-distribution data.

e Failure detection, which is tightly bound to a specific supervised task (like segmen-
tation), with the goal of identifying erroneous predictions. If uncertainty scores are
higher for low-quality predictions than for accurate ones, they can be filtered out.

e Active learning, a process in which data annotation and learning alternate, to make
the labeling more efficient. Typically, an initial model is trained on a few labeled
examples, and more samples are iteratively annotated thereafter. Selecting the most
informative samples for annotation can be based on uncertainty scores.

These downstream applications can be used to evaluate the quality of uncertainty estimates,
but each requires a specific evaluation methodology and may prefer different uncertainty
methods (Kahl et al. 2024). This thesis focuses on failure detection, for which detailed
evaluation methodology is presented in section 2.2.2.

1.2.4 Medical Image Analysis Competitions

In the field of medical image analysis, cutting-edge segmentation algorithms are often
compared in international competitions, also known as challenges. All participants in
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a challenge receive the same training data and try to develop the best algorithm for a
specific medical image analysis task chosen by the organizing team. Testing data is not
released to avoid overfitting. Challenges are an established method to fairly compare
algorithms, with image segmentation of different structures as the most common task
(Maier-Hein et al. 2018). Since one part of this thesis represents an analysis of the results
for such a challenge (section 3.1), detailed background information is provided here on
how these competitions are organized. While Maier-Hein et al. (2020) presented a template
for comprehensive, structured reporting of essential design components, the concepts of
challenges are described here more concisely from a practical viewpoint.

Before the competition takes place, an organizing research team has to prepare the
challenge, which includes defining which image analysis task should be solved and what
the required inputs and outputs of challenge submissions are. The organizers then collect
imaging data and coordinate their annotations. The final challenge dataset consists of
several cases, which comprise imaging and non-imaging data that serve for training or
evaluating the submissions. For example, in a brain tumor segmentation challenge one or
more MRI scans together with the ground truth segmentation make up one case. During
the challenge preparation, it is also decided how to evaluate algorithms and how to compare
them. Details on these assessment methods will be given further below when describing
the challenge results analysis.

After the preparations, the actual competition begins, which is subdivided into a
development phase and a testing phase. During the development phase, participants
optimize their algorithmic solutions to the challenge task based on the training set and
competition rules provided by the organizers. Sometimes evaluation on a separate public
validation set is offered, so that participants obtain feedback on how well they do compared
to others on a preliminary, public leaderboard.

At the end of the development phase, all participants submit their algorithms to the
organizers. The successful submissions are then evaluated on a previously unseen test
set. The essential components for assessing submissions are metrics, which quantify
the performance of individual algorithms on the test set, and a ranking strategy, which
compares the performance of different teams and determines the winners. For semantic
segmentation, metrics are usually computed per case in the test set, but for other tasks like
object detection or classification, some metrics take in the results on the whole dataset at
once. Examples of segmentation metrics are the DSC and the NSD, which were introduced
in section 1.2.1.3. One or more metrics can be computed, to evaluate different performance
aspects relevant for the challenge task. Based on the table of metric values for each
submission and test case, which represent the challenge results data, there are different
ways how to arrive at a ranking. If the challenge results contain values for multiple
metrics, rankings are usually computed for each metric first and later combined. A detailed

15



Chapter 1. Introduction

description of ranking methods can be found in (Maier-Hein et al. 2018; Wiesenfarth et al.
2021); here only the two most common strategies for computing a ranking of a single
metric are briefly summarized:

1. Aggregate-then-rank approach: Metric values are aggregated across test cases for each
submission first, for example through averaging. Teams are then ranked according
to their aggregated values.

2. Rank-then-aggregate approach: First, all submissions are ranked on each test case
individually. The resulting per-case ranks are then aggregated to arrive at a final
ranking score.

While aggregate-then-rank methods are most intuitive, the rank-then-aggregate procedure
allows handling cases more easily for which individual submissions did not produce
an output. In general, however, both methods are valid choices and potential ranking
differences resulting from them should be discussed in the challenge results analysis. In
particular, ranking stability should be investigated (Maier-Hein et al. 2018) to assess how
much randomness in the test data selection affects the ranking. Apart from determining
the challenge winner, challenge organizers usually also perform analyses that characterize
and compare submissions, deriving general insights into which solutions worked and, if
possible, why.

In summary, challenges are a large joint effort by organizing and participating teams. As
a challenge attracts independent participants developing diverse methods for the same task
and fairly evaluates their submissions, the challenge results at the end of the competition
represent a comprehensive picture of the current state of the art.

1.3 Related Work

As DL-based segmentation algorithms improve, they become more attractive for real-
world clinical deployments, in which robustness is essential for a trustworthy operation.
Hence, a growing number of studies focus on evaluating and improving the robustness of
segmentation models when confronted with distribution shifts, which is also the context
of this thesis. This section summarizes the related work, starting in section 1.3.1 with a
description of methods and benchmarks that focus on the generalization task. After that,
section 1.3.2 provides an overview of the previous work on uncertainty estimation in the
tield of medical image analysis, failure detection as a downstream task, and the current
state of benchmarks.
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Disclosure

Section 1.3.1 is based on the manuscript summarizing the FeTS challenge, which
has been accepted for publication (Zenk et al. 2025a), so portions of the text
resemble the original manuscript text.

Section 1.3.2 is derived from a previously published article (Zenk et al. 2025b), so
portions of the text resemble the original manuscript text, in accordance with the
publisher’s license.

If parts of the text replicate sections from the corresponding manuscripts, this is
explicitly stated beforehand.

1.3.1 Generalization

This section starts with a description of the problem settings in which generalization to
distribution shifts is usually studied, and reviews relevant recent approaches. After that,
previous efforts for benchmarking model generalization and applications of federated
evaluation are described, with a focus on their relation to the benchmark developed in this
thesis.

1.3.1.1 Problem Setting and Approaches

Generalizing to data distributions that differ from the training distribution but remain
conceptually similar enough to perform image classification or segmentation, is a critical
challenge in both medical image analysis and the broader field of computer vision. These
data distributions are often referred to as domains. Background information on which
distribution shifts are expected between domains in medical imaging was given in sec-
tion 1.2.2. In a typical setup, the training data originates from one or more source domains,
while the testing data belongs to distinct target domains. Various formulations with dif-
ferent constraints have been explored to solve this challenging generalization problem,
as summarized by Zhou et al. (2023). One such setting is domain generalization, where a
prediction model is trained solely on source domain data with the goal of achieving low
prediction error on unseen target domains, ensuring effective generalization. Another
approach is test-time adaptation, which assumes access to a limited amount of unlabeled
data from the target domain during model deployment. This data can be used to tune the
model on the target data distribution. A related setting, unsupervised domain adaptation, also
utilizes unlabeled data from the target domain but assumes that training data from the
source domain remains available during adaptation. However, in the context of deploying
pretrained models in medical applications, sharing training data along with the model is
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often unrealistic. Consequently, unsupervised domain adaptation is not further considered
in this thesis. Lastly, transfer learning is an approach that adapts the model using a small
amount of labeled data from the target domain. While transfer learning is promising for
many applications, obtaining annotated target domain samples for segmentation tasks is a
labor-intensive process. Therefore, this thesis rather focuses on generalization techniques
like domain generalization and test-time adaptation, which do not rely on labeled target
domain data.

Comprehensive surveys on popular approaches to domain generalization in natural
image classification can be found in the articles by Gulrajani and Lopez-Paz (2021) and
Zhou et al. (2023). Here, only general strategies from the surveys are repeated instead of
referencing individual methods. Algorithms from the medical domain are described in the
next paragraph. A frequent goal is to ensure that neural networks learn robust, domain-
invariant features. This is achieved by introducing self-supervised auxiliary training
objectives or by aligning feature distributions across source domains. Such methods
encourage the model to focus on generic features rather than relying on domain-specific
shortcuts, thereby improving its ability to classify samples from unseen domains. Another
widely used technique is data augmentation, which mitigates overfitting and, to some
extent, simulates potential domain shifts during training by applying diverse and realistic
image transformations in the data-loading pipeline.

In the medical image computing domain, many works developed advanced data aug-
mentation techniques. For instance, increasing the number or magnitude of augmentations
applied to training samples has been shown to enhance generalization performance in
semantic segmentation (Full et al. 2020; Zhang et al. 2020). More complex augmentation
strategies have been proposed as well, such as leveraging transformations in the latent
space (Chen et al. 2021) or simulating causal interventions with strong photometric trans-
formations (Ouyang et al. 2023). The latter method also explicitly encourages the model
to learn domain-invariant features by applying two such augmentations to the same image
and aligning the two resulting predictive distributions of the model. Test-time adaptation
is another common strategy in medical imaging. For example, Karani et al. (2021) adapt
a normalizer block that precedes the main segmentation model. The parameters of this
block are fine-tuned such that the main segmentation model’s output becomes plausible
under an implicit prior learned during training via a denoising auto-encoder. This method
effectively transforms target domain images to resemble those from the source domain.
Similarly, He et al. (2021) introduced shallow adaptor blocks at each stage of a U-Net
architecture, which are adjusted at test time using auto-encoders that capture the training
distribution across various feature levels. A more detailed overview of relevant methods
for domain generalization and test-time adaptation in medical imaging is provided in Yoon
et al. (2024).
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1.3.1.2 Robustness Benchmarking Efforts

New generalization methods require careful validation of established benchmarks. This
section describes previous benchmarking efforts and highlights research gaps, which are
relevant for this thesis because it also presents a benchmarking study on generalization to
unseen institutions.

In the general ML community, domain generalization methods were tested in various
settings, introducing distribution shifts through artificial corruptions (Hendrycks and Di-
etterich 2019), independent dataset collections (Gulrajani and Lopez-Paz 2021) or realistic
shifts occurring in real-world applications (Koh et al. 2021). Synthetic image transfor-
mations that introduce distribution shifts are also used in medical image segmentation
to study generalization capabilities (Chen et al. 2021; Boone et al. 2023) or uncertainty
estimation on OOD samples (Gonzélez et al. 2022; Ng et al. 2023). Furthermore, distribu-
tion shifts are present in multi-centric datasets, which are often constructed by combining
multiple public datasets from different sources (Liu et al. 2020; Wang et al. 2020b; Ogier
du Terrail et al. 2022; Korevaar et al. 2023).

While these works use publicly available datasets and define standardized train-test
splits, another group of studies implements benchmarks in the framework of international
competitions, also known as challenges, which invite participants to develop their own
algorithm and use standardized datasets, often keeping the testing data private for a
fair comparison (details in section 1.2.4). Brain tumor segmentation algorithms have
been studied in the challenge setting for almost a decade, resulting in large, multi-centric
datasets today (Menze et al. 2015; Bakas et al. 2019; Baid et al. 2021), but the evaluation
did not focus on the generalization to unseen medical centers before the work performed
in this thesis. This kind of robustness was explicitly considered in other competitions,
using images from different geographical sites and scanners for cardiac segmentation,
mitosis detection, and fetal brain annotation (Campello et al. 2021; Aubreville et al. 2023;
Payette et al. 2024), for example. However, the diversity in their testing data was limited
to two unseen domains, arguably due to the difficulty of collecting large, multi-centric
datasets. The results of the three above-cited competitions identified data augmentation
and ensembling as success factors for generalizing to new institutions or scanners.

1.3.1.3 Federated Evaluation for Medical Image Analysis

Research can benefit from sharing data and medical images between institutions, but there
are also high hurdles associated with it, such as patient privacy and a lack of standardization
(Bell and Shimron 2024). Federated workflows can help to overcome some of them, by
keeping the data decentralized at each owner’s institution and sending around algorithms
instead. For validating models on large-scale data, the collaborative, multi-site evaluation
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Table 1.1: Comparison of related work for evaluating generalization on unseen institutions.
The subset of all previous work that is most relevant to this thesis is shown. Existing works
either perform a federated evaluation of individual algorithms after federated learning
(above the gray line) or evaluate on centralized data for benchmarking competitions.
The benchmark presented in this thesis (marked with *) is the first to employ federated
evaluation in a competition, which allows scaling up the number of cases from unseen
domains/institutions significantly, to test the robustness of segmentation models “in the
wild”.

Paper Task #unseen #cases Compe- Fed.
domains unseen  tition? evalua-
domains tion?
Dayan et al. (2021) Classification 3 1503 X v
du Terrail et al. (2023)  Classification 2 157 X v
Dou et al. (2021) Obj. Detection 3 55 X v
Pati et al. (2022a) Segmentation 6 590 X v
Aubreville et al. (2023)  Obj. Detection 2 51 v X
Campello et al. (2021)  Segmentation 2 64 v X
Malinin et al. (2022) Segmentation 2 99 v X
Payette et al. (2024) Segmentation 2 80 4 X
Zenk et al. (2025a)* Segmentation 26 2253 v 4

of models (federated evaluation) is especially interesting. In the context of mobile devices,
Wang et al. (2019b) and Paulik et al. (2021) describe experiments and a technical system,
respectively, in which federated evaluation serves to determine the best hyperparameters
for personalizing ML models to devices of individual users. Studies on federated learning
for medical image analysis applications routinely perform federated evaluation, often also
setting aside individual institutions for external validation of generalizability (Dayan et al.
2021; Dou et al. 2021; Pati et al. 2022a; Ogier du Terrail et al. 2023). While practical hurdles
often prevent federated learning from being established across a large consortium of real
medical centers (Bujotzek et al. 2024), federated evaluation alone can be significantly
simpler to implement and offers opportunities for benchmarking real-world robustness
independently of federated learning (Karargyris et al. 2023).

Conclusion Cross-site generalization is an important research problem in medical image
segmentation and has gained attention in recent years. Although many methods aim to
tackle it, they have so far only been benchmarked on datasets from a few institutions, as
shown in table 1.1. Federated evaluation workflows have the potential to overcome this
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limitation, but have not been used in biomedical competitions before the research reported
in this thesis.

1.3.2 Failure Detection

Various approaches share the common goal of identifying cases where model predictions
are likely to be erroneous, including uncertainty estimation, segmentation quality estima-
tion, and distribution shift or OOD detection. Typically, uncertainty estimation operates
at the pixel level, whereas quality estimation and distribution shift detection are focused
on the image level. Transitioning from pixel-level to image-level metrics can be achieved
through confidence aggregation techniques. This section is organized accordingly, begin-
ning with pixel-level methods, followed by aggregation strategies, and concluding with
image-level approaches. The latter methods are further sub-categorized into methods for
segmentation quality estimation and distribution shift detection. Finally, a section about
benchmarking efforts for failure detection is included, to point out how the benchmark
presented in this thesis fills a gap in the previous work.

1.3.2.1 Pixel-level Confidence Methods

In a recent survey, Lambert et al. (2024) summarized existing work on uncertainty quan-
tification methods used in medical image analysis. From those, the most popular methods
that are applicable to segmentation networks are described here.

As a fundamental baseline, confidence maps can be computed directly from the softmax
probabilities of segmentation models based on deep learning, for example by using the
probability of the predicted class or by calculating the entropy of the predictive distribution
(as described in section 1.2.3). Guo et al. (2017) found, however, that neural network
predictions are often overconfident when being wrong, and proposed temperature scaling
of the probabilities as a simple solution. This initiated extensive research on how to improve
the networks’ calibration, which is the property that the probability of being correct and
the predicted probability p are close on average across a large data sample.

More advanced methods rely on Bayesian deep learning, which is based on the idea
that uncertainty can be better estimated when taking into account the full posterior of
the model parameters given the training data (see section 1.2.3 for details), instead of
relying on a point estimate, as done by deterministic neural networks. In Bayesian neural
networks (NNs), parameters do not have fixed values but are assigned a probability
distribution, for example a normal distribution with learnable mean and variance (Blundell
et al. 2015) or a distribution on a rank-1 subspace (Dusenberry et al. 2020). Since exact
Bayesian inference is intractable with large neural networks, approximations like variational
inference are usually employed. Gal and Ghahramani (MC-Dropout 2016) proposed
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one of the most popular uncertainty estimation methods so far, finding that training
networks with Dropout layers (Srivastava et al. 2014) approximates Bayesian inference.
Their method uses MC samples obtained by keeping Dropout activated during prediction
to estimate the uncertainty. Due to its simplicity and flexibility, adaptations to medical
image segmentations are abundant (Roy et al. 2019; Hoebel et al. 2020; Jungo et al. 2020;
Kwon et al. 2020; Mehrtash et al. 2020; Nair et al. 2020).

A common alternative to Bayesian NNs are ensembles (Lakshminarayanan et al. 2017).
After training multiple models with different random initialization, their averaged pre-
dictions on test samples can improve the accuracy and simultaneously provide pixel
uncertainties from their prediction probabilities via entropy or mutual information, for
example. Although multiple networks have to be trained for an ensemble, the method is
simple to implement and its confidence estimates have been shown more reliable than those
of other methods even in settings with distribution shifts (Ovadia et al. 2019). Therefore,
ensemble uncertainty was also applied to medical image segmentation, for example by
Mebhrtash et al. (2020) and Hoebel et al. (2022).

Another approach to pixel-level uncertainty estimation utilizes test-time augmentation
(Wang et al. 2019a). From each test sample, this method generates multiple versions using
image transformations. By feeding each version into the segmentation model and reversing
the applied transformations, multiple predictions are obtained. Similar to an ensemble,
the consensus prediction can be more accurate than individual predictions, and pixel-level
uncertainty can be estimated from the predictive distributions. Kahl et al. (2024) found
that test-time augmentation primarily models epistemic uncertainty.

While the methods above were based on discriminative NN, generative segmentation
models have been explored for estimating aleatoric uncertainty. Kohl et al. (2018) proposed
to combine a U-Net with a conditional Variational autoencoder (VAE), which allows
sampling from a distribution of plausible segmentations that reflect the ambiguity in the
ground truth and variation between different raters. Towards the same goal, Monteiro
et al. (2020) suggested learning a low-rank multivariate normal distribution over the logit
space instead, which benefits efficiency.

Evidential deep learning takes yet another approach to uncertainty estimation by
introducing distributional uncertainty as an additional component besides aleatoric and
epistemic uncertainty. These methods model the predictive distribution explicitly with
a Dirichlet distribution. By parametrizing the Dirichlet with a neural network, they can
produce uncertainty estimates in a single forward pass (Malinin and Gales 2018; Sensoy
et al. 2018). This approach was mostly applied to natural image classification so far, but
also transferred to brain tumor segmentation by Zou et al. (2022).
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1.3.2.2 Pixel Confidence Aggregation Methods

The aggregation of pixel-level uncertainties into an image-level score is necessary for
detecting whether the segmentation as a whole is erroneous, yet it has received limited
attention in the literature. A simple baseline is the mean confidence over the entire image
or only the foreground (Mehrtash et al. 2020; Gonzélez et al. 2022), which is sometimes
replaced with the sum or log-sum (Nair et al. 2020; Czolbe et al. 2021).

One study on brain tumor segmentation (Jungo et al. 2020) compared various ag-
gregation techniques. Apart from a simple averaging baseline, the authors developed
methods based on prior knowledge about typical uncertainty maps and also investigated
how automatically extracted features of the confidence maps can improve aggregation.
These features describe the texture and shape (among others) of a region of interest and are
also called radiomics features (Griethuysen et al. 2017). The results demonstrated that the
latter methods, learning from radiomics features, improved failure detection performance.

In the comprehensive evaluation of uncertainty methods by Kahl et al. (2024), three
aggregation methods were used: (i) a simple sum of uncertainties, (ii) patch-based aggre-
gation, which sums uncertainties for each patch in a sliding window fashion and computes
the maximum uncertainty across all patches, (iii) threshold-based aggregation, which
averages all pixel uncertainties above a threshold that is tuned on the validation set. The
last two methods are meant to address the inherent bias of mean uncertainty towards
images with large foreground regions.

1.3.2.3 Image-level Failure Detection Methods

Segmentation Quality Estimation For segmentation algorithms in clinical use, quality
control is essential for a safe and trustworthy operation. As the true segmentation is usually
not available in such settings, many methods aim to estimate the segmentation quality in
terms of metrics such as DSC without access to the ground truth.

Formulated as a regression task, various ML methods can be applied to solve it based
on suitable training data. Early approaches trained support vector machine regressors
on handcrafted features of the segmented region (Kohlberger et al. 2012). More recently,
teatures were learned directly from the raw data while training deep neural networks to
regress target quality measures like the DSC scores (Robinson et al. 2018). As failure cases
with low segmentation quality are rare, this work also balanced the training distribution
of target DSC scores to avoid biases towards high values. These regression networks were
further refined with a decoder network and a secondary training objective that aim at
predicting the pixel-wise segmentation error map (Qiu et al. 2023), for example.

Reverse classification accuracy (RCA Valindria et al. 2017) involves fitting a “reverse”
segmentation model based on a single predicted segmentation, which is evaluated on
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a reference database of images with ground truth. The authors hypothesize that the
accuracy of the predicted segmentation is correlated with the best accuracy achieved on
the reference database by the reverse model because a good predicted segmentation should
transfer at least to some samples. The reverse segmentation model can be freely chosen, but
registration-based approaches worked best in the experiments by Valindria et al. (2017).
As this method requires registering each prediction to the complete set of reference images,
it is computationally expensive.

Generative models have also found application in the context of segmentation quality
estimation. Wang et al. (2020c) proposed a method that leverages a VAE (Kingma and
Welling 2013) trained on pairs of images and their corresponding ground truth masks, thus
learning a model of good-quality segmentations. For a test sample, the method encodes
an image-mask pair and optimizes their latent representation. Decoding the optimized
representation yields a surrogate image and mask from the manifold of good-quality
segmentations. The true segmentation metrics are then approximated with the metrics
calculated between original and surrogate mask. Xia et al. (2020) and Li et al. (2022)
combine a generative model with a comparison/difference module that is similar to a
regression network. The generator is trained to synthesize images based on ground truth
segmentation masks. For the difference module, two heads for image-level and pixel-level
quality estimation are then trained on the features of a Siamese network that encodes
both the original and synthetic images. During test time, predicted masks are fed into the
generator, which can result in artifacts in the synthetic image if the mask is inaccurate. The
difference module can map these inconsistencies to quality estimates.

The methods described above are model-agnostic, meaning they can be applied to
segmentation masks generated by any algorithm, including those produced manually
by humans. While this versatility is advantageous, it also has potential limitations: The
quality estimation method itself may fail due to biases in its training data, and a model-
specific quality estimator may achieve superior performance. An alternative approach by
DeVries and Taylor (2018) tailors a quality regression network to a segmentation model
that provides pixel confidence maps by incorporating the confidence map as an additional
input. This method could also be interpreted as a confidence aggregation technique.
Another example method builds on MC-Dropout, which generates multiple predictions
for each test sample. Roy et al. (2019) propose calculating various uncertainty measures
based on these Monte Carlo samples. For example, segmentation metrics like the DSC can
be computed between each pair of predictions, with the average across all pairs serving as
a quality estimate.

Distribution Shift Detection As explained earlier, deep neural networks tend to fail
more often when the testing data does not originate from the same data distribution as
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the training data. Therefore, detecting distribution shifts has been explored as another
approach to failure detection, based on the assumption that predictions on OOD samples
cannot be trusted. Numerous works on OOD detection have been published in the ML
community (Salehi et al. 2022).

In the field of medical image segmentation, distribution shift detection is often im-
plemented as density estimation of the training data distribution. Confidence scores can
be obtained by evaluating the likelihood of a test sample under the probabilistic model.
The approaches differ primarily in the choice of features for density estimation and the
probabilistic models employed. For example, Liu et al. (2019) train a VAE on ground truth
segmentations and the likelihood approximated by the VAE loss serves as confidence score.
They also fit a linear model that maps these scores to segmentation metrics to make this
method applicable for segmentation quality estimation, but this is not strictly required for
OOD detection. Alternatively, Graham et al. (2022) proposed to extract image features
with a VQ-GAN (Esser et al. 2021) and estimate probability density with a transformer net-
work. Another method leverages the latent representations produced by the segmentation
network for the training set. A multivariate Gaussian is fitted to these latent features, and
uncertainty is quantified as the Mahalanobis distance of a test sample from the training
distribution (Gonzélez et al. 2022).

1.3.2.4 Benchmarking Efforts for Failure Detection

This thesis does not focus on individual failure detection methods but rather compares
several recent methods on multiple datasets, covering different anatomical regions and
target structures. This section illustrates the need for such a benchmark, which is also
summarized in table 1.2.

In the field of image classification, Jaeger et al. (2022) developed the first comprehensive
benchmark for failure detection on natural images, recommending a risk-coverage analysis
as a unifying evaluation protocol. For medical images, studies on failure detection on
multiple datasets with and without distribution shifts (Bernhardt et al. 2022; Bungert et al.
2023) showed that no confidence estimation method could reliably outperform a simple
softmax baseline.

For medical image segmentation, existing benchmarking studies are limited to a specific
anatomical region or a subset of methods. Jungo et al. (2020) evaluate pixel confidence
methods in the tasks of uncertainty calibration, error localization, and failure detection
(after confidence aggregation) on a single brain tumor dataset without distribution shifts.
Mehrtash et al. (2020) considered distribution shifts in two of three datasets but did not
include image-level methods, as they concentrated on the calibration of pixel confidence
methods, investigating failure detection only as a secondary task. Hoebel et al. (2022)
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Table 1.2: Comparison of related studies with benchmarking character. The benchmark
presented in this thesis (marked with *) is the only one that evaluates both image-level
methods and a range of pixel-level + aggregation combinations for failure detection on
multiple datasets with distribution shifts. Only medical datasets are counted and datasets
with shift may also include some cases without shift in the test set. (v') in the methods
columns means that only a single method was investigated. The evaluated tasks are failure
detection (FD), out-of-distribution (OOD) detection and calibration (calib.). Img/cls/pxl
refers to image-/class-/pixel-level for FD.

Paper Methods # Datasets Task

Image- Pixel- Ag- no with FD OOD Calib.
level level greg. shift shift

Jungo et al. (2020) X v v 1 0 im X v
Mehrtash et al. (2020) X v ) 1 2 cls X v
Mehta et al. (2022) X v X 1 0 pX X X
Hoebel et al. (2022) (V) v (V) 0 2 im v/ X
Malinin et al. (2022) - - - 0 1 im X X
Li et al. (2022) v v X 0 1 im, px X X
Ng et al. (2023) X X () 0 1 cls X v
Adams et al. (2023) v X ) 1 1 cls X X
Vasiliuk et al. (2023) v v () 0 2 X v X
Kahl et al. (2024) X 4 v 0 1 im v v
Zenk et al. (2025b)* v/ v/ v 1 5 im v X

experimented with two datasets that had different pathology characteristics in the test split
and compared only a single image-level and aggregation method. Segmentation quality
methods for the single application of cardiac segmentation were evaluated separately on
the pixel- and image-level by Li et al. (2022), but no aggregation methods were considered.
Another benchmark for the heart region had dataset shifts in the test set and did not
consider image-level methods (Ng et al. 2023). Recently, Adams and Elhabian (2023)
evaluated failure detection methods on two organ segmentation tasks. However, only one
of the datasets had distribution shifts and the method selection was restricted to pixel
confidence methods with a single aggregation (sum). Vasiliuk et al. (2023) evaluated
a similar task as OOD detection, incorporating two datasets with distribution shifts as
OOD characteristics. Their evaluation does not allow in-distribution failure detection
benchmarking, though. Finally, the comprehensive evaluation of uncertainty estimation
methods by Kahl et al. (2024) examined multiple downstream tasks—among them failure
detection—on one medical and one nonmedical dataset. They focused on the subset of
methods with pixel-level uncertainty and aggregation, if necessary for the downstream
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task.

Beyond the research studies above there are also two international competitions that
are related to segmentation failure detection. The BraTS challenge 2020 (Mehta et al. 2022)
evaluated uncertainty estimation methods for brain tumor segmentation, but their metric
was compatible only with pixel-level methods and the challenge dataset did not include
distribution shifts. The Shifts Challenge 2022 (Malinin et al. 2022) addressed distribution
shifts in the test data, evaluating robustness and failure detection for lesion segmentation
in the context of Multiple Sclerosis and another nonmedical dataset. A meta-analysis of
the submitted approaches has not yet been published so far.

1.4 Objectives and Contributions

The motivation and related work sections (sections 1.1 and 1.3) showed that robustness in
medical image segmentation can be approached through methods for generalization or
failure detection, and that existing evaluation efforts for both categories usually compare
algorithms on small research datasets in individual segmentation tasks, covering only a
fraction of realistic distribution shifts. The overall goal of this thesis is to build large-scale
benchmarks and to develop evaluation methodology which allows comparing state-of-
the-art methods in generalization and failure detection. The objectives and contributions
below are described separately for these two approaches to robustness.

1.4.1 Generalization

Validating the robustness of medical image segmentation methods to realistic distribution
shifts is essential for clinical translation, yet public benchmarking competitions have so
far been restricted to small-scale evaluations, involving one or two institutions/scanners
not seen during training (Campello et al. 2021; Aubreville et al. 2023; Payette et al. 2024).
Therefore, the objective of this thesis” part on generalization was to develop a large-scale,
multi-institutional benchmark that assesses how well segmentation algorithms generalize
to a diverse data distribution of images acquired in clinical routine at many sites, thus
estimating performance “in the wild”.

Contributions Work for this part of the thesis focused on the task of brain tumor seg-
mentation in multi-modal MRI, which is difficult due to the heterogeneous shape and
appearance of these tumors. An international competition was conducted, in which seg-
mentation algorithms developed by external participants were evaluated on a large test
dataset from 32 institutions, by implementing a federated evaluation workflow. The idea
behind federated evaluation is to send segmentation algorithms to many collaborating
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institutions that agreed to evaluate these models on their local data, which circumvents
the high hurdles for sharing medical images and allows leveraging large, decentralized
multi-centric datasets. Research performed for this thesis represents the first benchmarking
competition to evaluate models in a federated environment, thus establishing a large-scale
evaluation paradigm that has the potential to close the gap between research and clinical
validation.

Research questions (RQs) investigated in the federated evaluation study:

RQ 1.1: Do current brain tumor segmentation algorithms generalize “in the wild”?

RQ 1.2: Which algorithm and dataset characteristics affect generalization?

RQ 1.3: Which practical hurdles are associated with federated evaluation?

1.4.2 Failure Detection

Models can also become more robust and trustworthy if they are able to indicate potential
errors in their predictions. The task of detecting failures has motivated various methods
related to uncertainty and quality control, but incompatible evaluation protocols have
prevented a comprehensive comparison so far (Jaeger et al. 2022). The second part of this
thesis aimed to fix this shortcoming, by developing a benchmark that compares diverse
approaches towards the shared goal of segmentation failure detection on a wide range of
medical imaging datasets with realistic distribution shifts.

Contributions In a first step, existing, unstandardized evaluation protocols were com-
pared and essential requirements for failure detection evaluation were derived. Based on
these, a unifying protocol was proposed that served as the basis for a large-scale benchmark
of failure detection approaches. This study is the first to jointly evaluate methods from
three major fields: uncertainty estimation, distribution shift detection, and segmentation
quality estimation. A special focus of the benchmark was on confidence aggregation
methods, which aggregate pixel-level confidence maps into image-level confidence scores.
Although the aggregation strategy is an important component of many failure detection
methods, it received little attention so far. To cover a broad spectrum of segmentation tasks
with realistic failure sources, five publicly available CT and MRI datasets for organ and
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lesion segmentation were employed in the benchmark. Distribution shifts were introduced
in the test set by using data from different institutions, scanners or with different tumor
type prevalence.

Research questions (RQs) investigated in the failure detection study:

RQ 2.1: What are best practices and pitfalls related to the evaluation of segmentation
failure detection?

RQ 2.2: Which failure detection algorithms are reliable across multiple datasets?

RQ 2.3: How to aggregate pixel-level confidence into image-level scores for failure
detection?

1.5 Outline

Each of chapters 2 to 4 is split into two subsections, which describe the work performed
for this thesis on the topics of generalization and failure detection, respectively.

The generalization part starts with section 2.1, describing the materials and methods
for the international competition organized in the context of this thesis. This includes
the datasets, infrastructure, and evaluation methodology used for the study, as well as
statistical analyses. The results of the competition and summarizing analyses are reported
in section 3.1. Practical experiences from implementing a federated evaluation workflow are
also part of the results. Section 4.1 discusses the generalization capabilities of algorithms
submitted to the benchmark, as well as limitations and possible improvements of the
federated study design.

Moving on to the failure detection part, section 2.2 contains detailed information on the
proposed evaluation protocol, alongside a description of the datasets and methods used
for the segmentation failure detection benchmark. Section 3.2 reports experimental results
for the benchmark, showing that segmentation failures occur particularly in datasets with
distribution shifts and that some methods compared in the benchmark are able to detect
failures robustly. These results are interpreted and compared to findings from related
work in section 4.2. Limitations of the benchmark and alternative evaluation frameworks
are discussed, too.
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Returning to the overarching topic of segmentation model robustness, the overall
conclusions of the generalization and failure detection studies are described in section 4.3.
Finally, a summary of this thesis is provided in chapter 5.
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2 Materials and Methods

This chapter describes the methodology for the benchmarking studies on the generaliza-
tion of segmentation methods and failure detection. In section 2.1, the methodology of the
Federated Tumor Segmentation (FeTS) Challenge is presented, addressing generalization,
and in section 2.2, the approach for comparing state-of-the-art failure detection methods.

Disclosure

Section 2.1 is based on the manuscript summarizing the FeTS Challenges, which
has been accepted for publication (Zenk et al. 2025a) and is partially based on a
preprint by the same authors (Pati et al. 2021). Therefore, portions of the text in
this section resemble these original manuscript texts.

Section 2.2 is derived from a previously published article (Zenk et al. 2025b), so
portions of the text resemble the original manuscript text, in accordance with the
publisher’s license.

If parts of the text replicate sections from the corresponding manuscripts, this is
explicitly stated beforehand.

2.1 Generalization

As argued in the introduction, it is usually unknown how state-of-the-art algorithms based
on deep learning generalize to data from medical institutions that did not contribute to
the training data. The approach taken in this thesis to benchmarking the generalization
capability of segmentation models is an international competition, also known as challenge,
which is the standard of fair and reproducible method comparison in medical image analy-
sis (Maier-Hein et al. 2018). General background information on challenges is provided in
section 1.2.4. In the Federated Tumor Segmentation (FeTS) challenge reported here, teams
from around the globe could use standardized training data to develop their methods,
which were subsequently evaluated on federated testing data. Brain tumor segmentation
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was chosen as the specific medical segmentation task for the challenge, because it is a
complex but also well-studied segmentation problem, meaning that the performance of
existing methods is already close to inter-rater agreement when evaluated on data from
institutions that also provided training data (Bakas et al. 2019). The FeTS challenge aimed
to determine how these models fare on larger datasets from many institutions unseen
during training. This section provides details on the challenge organization, datasets,
evaluation methodology and technical infrastructure.

2.1.1 Challenge Organization

The FeTS Challenge took place in two consecutive years: 2021 and 2022, referred to as
FeTS21 and FeTS22, respectively, in the following. In both years, the challenge consisted of
two tasks: Task 1 focused on federated learning while Task 2 focused on generalization
in the wild. As I was the main organizer of Task 2 while others were responsible for
Task 1, this thesis exclusively describes work on Task 2. The challenge designs of FeTS21
and FeTS22 (Bakas et al. 2021; Bakas et al. 2022) were accepted as official challenges at
the medical image computing and computer assisted intervention (MICCAI) conference
after a peer-review process, to make sure best practices are followed (Maier-Hein et al.
2020). Both challenges were divided into three phases: In the development phase (about 3
months), participants received multi-centric data for model training and validation. In
the submission phase, concurrent with the last month of the development phase, partici-
pants obtained instructions on how to prepare their algorithm for test set evaluation and
summarized their approach in a scientific paper. Finally, in the evaluation phase (about 2
months) the organizers ran the federated evaluation on the official, decentralized test data.

2.1.2 Datasets
2.1.2.1 Data Sources and Characteristics

The data used in the FeTS challenges originated from two sources: The Brain Tumor Seg-
mentation (BraTS) challenge (Menze et al. 2015; Bakas et al. 2017; Bakas et al. 2019; Baid
et al. 2021) and the FeTS federated learning initiative (Pati et al. 2022a). A retrospective,
multi-institutional cohort was provided by these data sources, containing patients diag-
nosed with primary brain tumors (gliomas). Each case corresponds to a single anonymized
patient and comprises four multi-parametric magnetic resonance imaging (MRI) scans:

e Native T1-weighted (T1)
e Contrast-enhanced T1-weighted (T1-Gd), with gadolinium-based contrast agents

o T2-weighted (T2)
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Table 2.1: Statistics of the training, validation and test cases for the FeTS challenges 2021
and 2022. Source refers to the context in which the data was originally collected, namely
the BraTS challenges and the FeTS-initiative (FeTS-I). Information on the number of
institutions in the validation set could not be shared by the BraTS organizers. Institutions
in the test set were unseen during training, except 385 test cases from 6 institutions in
FeTS22 that contributed to both training and test set. The number of cases increased
significantly from 2021 to 2022, and so did the diversity of test cases, in terms of the number
of contributing institutions. Abbreviations: img = image, ref = reference segmentation.

Source #cases #institutions Accessible by

FeTS21 Training  BraTS20 341 17 public (img, ref)
Validation BraTS20 112 n/a public (img), organizers (ref)
Testing FeTS-1 796 22 data owners (img, ref)
FeTS22 Training  BraTS21 1251 23 public (img, ref)
Validation BraTS21 219 n/a public (img), organizers (ref)
Testing FeTS-I 2625 32 data owners (img, ref)

e Fluid Attenuated Inversion Recovery (FLAIR)

The patients were scanned in standard clinical practice before surgery. An overview of
the number of cases used for training, validation, and testing can be found in table 2.1.
As the image analysis task of the challenge is segmentation, a reference segmentation of
tumor subregions was available for each case. Details on the annotations can be found in
section 2.1.2.3. For each training case, challenge participants additionally received meta-
information about the originating institution in the form of an anonymized institution
identifier, resulting in the institution partitioning of the training data shown in fig. 2.1.

The goal of the FeTS challenge was to test brain tumor segmentation algorithms “in
the wild”, so diversity is an essential characteristic of the test dataset and a prerequisite
for evaluating algorithmic robustness. Diversity is quantified here first and foremost in
geographical terms. In FeTS21, a total of 22 institutions contributed to the test set, repre-
senting four different continents. The vast majority of cases were collected in institutions in
North America and Europe. The FeTS22 challenge further increased size and heterogeneity,
featuring test data from 32 institutions around the globe (fig. 2.2). Compared to the BraTS
2021 challenge (Baid et al. 2021), which is one of the largest multi-centric datasets available
for medical image segmentation, the test dataset of FeTS22 adds 24 federated institutions
and 2116 test cases, which correspond to four times more cases than BraTS21 (table 2.2).
This underlines the contribution towards real-world generalization benchmarking of the
FeTS challenge.

For the FeTS22 test set, additional meta-data was shared by most contributing institu-
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Figure 2.1: Partitioning of training and test sets by geographically distinct institutions.
As different institutions contributed to the training and test sets, institution IDs are not
consistent between subplots and are therefore not printed. While training cases (upper
row) originated mostly from one or two institutions, the test cases (lower row) were dis-
tributed among a diverse federation of institutions. The overall number of cases increased
significantly from FeTS21 (left) to FeTS22 (right).

tions with the organizers. This included information about the patient population (fraction
of male/female patients, fraction of patients with isocitrate dehydrogenase (IDH) muta-
tions, and age statistics) as well as information about the acquisition settings (scanner
model, field strength, acquisition plane, MRI coil). From this institution-level meta-data
gathered along with the imaging data, diversity can also be expressed in terms of pop-
ulation and acquisition characteristics. Patient population differences are visualized in
fig. 2.3. Overall, the fraction of female and male subjects in the test set was 36% and 55%,
respectively, and for 9% of patients no information about sex/gender was available. The
population age varied between 7 and 94 years, with an average of 59 years. Mutations
in genes that encode IDH play a role in the genesis and treatment of gliomas (Han et al.
2020). In the FeTS22 test set, information on the IDH status was available for 67% of
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Figure 2.2: Geographical distribution of the participants, as well as training and testing
institutions in the FeTS22 challenge. Training data was collected and shared with the
participants, while the testing data remained distributed during the challenge. From
the perspective of geographical diversity, FeTS22 represents a significant step towards
evaluation “in the wild”. Figure adapted from (Zenk et al. 2025a).

Table 2.2: Comparison of geographical diversity between the test sets of the BraTS 2021
(Baid et al. 2021) and FeTS challenges. While BraTS21 already accumulated a large, multi-
centric dataset, FeTS21 added many new institutions and test cases. FeTS22 further scaled
up the size considerably and also boosted diversity by including new continents. Note
that BraTS21 is a subset of the FeTS22 test set, so the difference between the corresponding
column pairs represents the increase through the use of a federation.

Number of test cases Number of institutions
BraTS21 FeTS21 FeTS22 BraTS21 FeTS21 FeTS22

Continent
Africa 0 0 17 0 0 1
America (North) 319 508 1053 5 12 14
America (South) 0 15 166 0 3 4
Asia 47 0 339 1 0 3
Australia 0 20 96 0 1 1
Europe 143 253 954 2 6 9
Total 509 796 2625 8 22 32
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patients, with most of them having the wild type (60%) and mutations being present
only in a minority (7%). Finally, the heterogeneity of MRI scanning equipment can be
quantified as the number of scanner models utilized: The 19 institutions who reported the
corresponding information used 21 different scanner models in total, from four different
vendors (Siemens, GE, Philips, Hitachi). Other differences in the acquisition settings
included magnetic field strength (1.5T or 3T), acquisition plane (axial or sagittal) and
use of different MRI coils.
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Figure 2.3: Patient population in terms of sex, IDH status, and age across 32 institutions that
contributed test datasets to FeTS22. Some institutions could not provide any metadata and
some only incomplete metadata, which leads to missing values in the diagrams. Overall,
the populations are similar with respect to age, sex, and IDH status, but exceptions exist,
for example, institution 2 with a high proportion of mutated IDH, and on average younger
patients. Figure adapted from (Zenk et al. 2025a).
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2.1.2.2 Preprocessing

All images used for this challenge were preprocessed during the BraTS challenges and
the FeTS initiative, using the same preprocessing pipeline previously published through
the Cancer Imaging Phenomics Toolkit (CaPTk, Davatzikos et al. 2018) and the FeTS tool
(Pati et al. 2022b). It consisted of the following steps: First, all input MRI scans are rigidly
registered to the SRI-24 anatomical atlas (Rohlfing et al. 2010) using the greedy diffeomor-
phic registration algorithm (Yushkevich et al. 2016). The scans were also resampled to a
common spatial resolution of 1 mm3. After that, a skull-stripping method based on deep
learning (Thakur et al. 2020) was employed to extract the brain from the scans, which
removes irrelevant signal and prevents facial re-identification of patients.

2.1.2.3 Annotations

The segmentation targets of the FeTS challenge are represented as masks, which assign
each voxel to one of four classes, originally defined by Bakas et al. (2019) and Baid et al.
(2021):

1. Enhancing tumor (ET) delineates the hyperintense signal of the T1-Gd sequence
compared to T1. Neighboring vessels and sulci are not included. Class label: 4

2. Edema (ED) describes the peritumoral edematous and invaded tissue. It is hyperin-
tense in the T2 and FLAIR sequences. Class label: 2

3. Necrotic core/necrocyst (NCR) consists of necrotic or cystic structures that are often
located within the enhancing rim for high-grade gliomas. They appear hypointense
in T1-Gd. Class label: 1

4. Background (BG) is defined as any tissue or surroundings that do not belong to the
labels above. Class label: 0

In the first BraTS challenge, class label 3 was defined as the non-enhancing tumor, but it
was later merged with NCR (Bakas et al. 2019). Figure 2.4 shows an example case with
segmentation.

Annotations of these classes were performed on the preprocessed scans, following
a clinically approved protocol (Bakas et al. 2019; Baid et al. 2021). Annotators received
detailed guidelines on the radiologic appearance of each tumor substructure based on
specific MRI sequences. They could choose their preferred annotation tool and perform the
annotation either manually or semi-automatically, by combining automated segmentation
with manual refinement.
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Figure 2.4: Training case example from FeTS22 along with its reference segmentation.
One case consists of the four MRI sequences shown in the upper row. The lower row
overlays the reference segmentation mask on the images. ED is best seen in the T2/FLAIR
modalities, while ET and NCR are visible as contrast enhancements and hypointense
regions, respectively, when comparing T1 and T1-Gd. The case shown here was chosen to
illustrate the tumor labels and is easy to segment, but the variable appearance of gliomas
makes this task more difficult in other cases.

The annotators differed between the BraTS and FeTS subsets of data (subsets are
defined by “source” in table 2.1). For the BraTS data, each case was assigned to an
annotator-approver pair. Annotators varied in experience, while approvers were experi-
enced neuroradiologists with over 13 years of experience with glioma. Approvers reviewed
and iteratively refined the annotations with the help of annotators until they were deemed
of satisfactory quality for public release. For data from the FeTS federation, the annotation
was done during the FeTS initiative (Pati et al. 2022a). Neuroradiology experts at each
site created the reference segmentations with the tool of their choice following the BraTS
annotation protocol (Bakas et al. 2019). However, the strong recommendation was to
use a semi-automatic approach with predictions from three state-of-the-art brain tumor
segmentation models, namely DeepMedic (Kamnitsas et al. 2017), nnU-Net (Isensee et al.
2021a), and DeepScan (McKinley et al. 2018), which were ensembled using the STAPLE
algorithm (Warfield et al. 2004). These models were included in the toolkit provided to
the data contributors, to facilitate the semi-automatic workflow (Pati et al. 2022a).
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2.1.3 Annotation Quality Control

The FeTS challenge annotations were created by a diverse set of annotators using different
tools, due to the federated nature of the challenge. Hence, it is important to quantify
the quality and heterogeneity in the reference annotations. Although (Pati et al. 2022a)
performed basic checks on the integrity of the annotations (making sure there were no
unexpected label values) and identified problematic clients during federated learning
based on their validation scores, they did not perform a systematic quality control in the
federated data, because it was infeasible in the federated setting.

After the FeTS22 challenge, however, a part of the test data (1201 patients from 16
institutions) was shared with the organizers, so that a thorough quality control could
be performed. Due to the lack of automated tools, I reviewed every available test case
visually by looking for issues with the reference segmentation (such as inaccuracies,
inconsistent labeling style, missing labels) or the underlying images (such as corruptions
or artifacts). Based on this inspection, the quality of each case was classified as acceptable,
borderline, or insufficient. Individual examples were discussed with a clinician scientist
and a neuroradiologist. If the image was not corrupted and the reference segmentation
accurate, the corresponding case received the “acceptable” quality label. Samples with
“insufficient” quality contain major annotation errors or strong image artifacts that make
segmentation impossible. The “borderline” label was introduced for cases in which the
annotation has a few minor inaccuracies or in which it could not be decided without
an official BraTS annotator whether the segmentation is consistent with the annotation
protocol. Cases with insufficient quality were excluded from the challenge evaluation,
resulting in a reduction of the total number of test cases from 2750 to 2625, which is the
number reported in table 2.1.

2.1.4 Performance Assessment Methods

During the official challenge evaluation, the predicted segmentations of every submission
were compared to the reference segmentation for performance assessment. Following the
evaluation protocol of previous BraTS challenges (Bakas et al. 2019; Baid et al. 2021), the
tumor structure labels from section 2.1.2 were converted into nested tumor subregions
before evaluation because they reflect the clinical application task better (tumor volumetry,
for instance). The final tumor regions for evaluation were:

e Whole tumor (WT), the union of all tumor structures (ED, NCR and ET)
e Tumor core (TC), the union of NCR and ET

e Enhancing tumor (ET), equivalent with the tumor label.
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2.1.4.1 Metrics

The same two metrics as in the BraTS challenges were computed between the predicted
segmentation and the reference segmentation, separately for each tumor region, specifi-
cally:

Dice similarity coefficient (DSC) is a measure of spatial overlap between the predicted
masks (Y) and the provided reference (Y), ranging from 0 (worst) to 1 (best). The
definition from section 1.2.1.3 is repeated here for clarity:

2YnyY
C_|m|

= = 21
Y1+ Y] -

Hausdorff distance (HD) is the largest distance between the boundary of the predicted
segmentation and the boundary of the reference segmentation, so lower values are better.
In the FeTS challenge, the 95" percentile (pcys) of the HD is calculated, which is more
robust to outlier pixels that can arise from noisy annotations:

HDgs5(Y,Y) = max {pc% aA,Y), pcos d(y,?)} , (2.2)
ey yey
where d(a, B) = min,c 4 |la — b|| is the distance of point a to the set of boundary points B.
Combining overlap-based and distance-based metrics is desirable in segmentation eval-

uation, as they are sensitive to different segmentation characteristics and hence complement
each other (Maier-Hein et al. 2024).

2.1.4.2 Ranking

Beyond the purpose of benchmarking, a challenge is also an international competition
and therefore needs official winners. Hence, a challenge ranking was computed based on
the metric values for DSC and HD measured on all test cases for all evaluated algorithms
(submissions by participating teams). The ranking method designed for the FeTS challenge
tried to stay close to the ranking method of previous BraTS challenges while also taking
into account the federated nature of the test data in the FeTS challenge, as well as its goal of
benchmarking cross-institution generalization. Therefore, all algorithms were ranked per
institution first using a rank-then-aggregate method (Maier-Hein et al. 2018; Wiesenfarth
et al. 2021), similar to previous BraTS challenges, and then a consensus ranking between
all institutions was calculated. Specifically, for each institution k among the K institutions,
the algorithms were first ranked on all N test cases, considering the three tumor regions
and two metrics. This resulted in Ny - 3 - 2 rankings for each algorithm at institution k. If an
algorithm did not produce a valid segmentation for some test case (for example because
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an error occurred during prediction), it was assigned the worst rank for the corresponding
case-specific ranking. Next, the average rank across all test cases within institution k was
computed, for each region-metric combination, which yielded 3 - 2 rankings per institution.
The final rank of an algorithm was determined by averaging all K - 3 - 2 of its per-institution
ranks. If there were ties in any ranking, they were resolved by assigning the minimum rank.
Note that institutions with more test cases did not have a higher weight in this ranking
method than smaller institutions. This was intentional, as institutions may have different
distribution shifts, and submissions to the challenge should generalize to every institution
equally.

2.1.5 Statistical Analyses

Every challenge ranking is based on a finite sample of test data, so it raises questions about
whether the ranking differences between specific methods are statistically significant.
Therefore, it is best practice to also analyze the stability of challenge rankings (Maier-Hein
et al. 2018), which provides insights into how robust the ranking is to randomness in
the data selection. For FeTS22, a bootstrap analysis was performed to produce blob plots
(Wiesenfarth et al. 2021), which visualize the distribution of ranks each algorithm achieved
across the bootstrap samples. In FeTS21, the significance map from (Wiesenfarth et al. 2021)
was adapted by summing the number of significant comparisons for each algorithm pair
across all sub-rankings, each of which is based on an individual institution-metric-tumor
region combination. The one-sided Wilcoxon signed rank test at 5% significance level with
adjustment for multiple testing according to Holm was employed for each comparison.

2.1.6 Technical Infrastructure

The main technical systems required by the FeTS challenge were:

e Challenge website. Required functionality: Convey information about the challenge
to (potential) participants and provide a forum for answering questions.

e Submission platform. Required functionality: Allow participants to submit challenge
contributions (the inference algorithms) and test their functionality.

e Federated evaluation system. Required functionality: Distribute the participants’
submissions to the test data contributors’ institutions, run the inference procedure,
and collect results in the form of segmentation metrics. Figure 2.5 visualizes this
federated evaluation workflow, which is a core component of the FeTS Challenge.
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In the following, details of the system design and implementation are described. While
the overall design was similar for FeTS21 and FeTS22, there were differences in the imple-
mentation details, which are briefly highlighted along the way.

Challenge website For FeTS21, a custom GitHub page (https://fets-ai.gith
ub.io/Challenge/) was used as an information portal, and GitHub discussions as a
forum. In the following year (FeTS22), the Synapse platform (https://www.synapse.
org/fets) served both purposes.

Submission platform Instructions on how to create a submission were provided through
a GitHub repository (https://github.com/FeTS-AI/Challenge/tree/main/
Task_2). Participants could then submit their inference code as containerized applications
to a container registry. In FeTS21, Singularity images (Kurtzer et al. 2017) were pushed
to a GitLab container registry (https://gitlab.hzdr.de/), while in FeTS22 Docker
images (Merkel 2014) could be uploaded to the Synapse container registry. Each team
could only submit once for the final test set evaluation, but the submission platform allowed
them to debug the containers before that. In FeTS22, for instance, all submissions were
checked in an isolated environment on cloud computing infrastructure at the DKFZ by the
following procedure:

1. Convert the Docker image to a Singularity image file, as Docker was not supported
by the IT departments of some data contributors.

2. Perform a compatibility test of the submission using the same evaluation software as
in the testing phase. This consisted of evaluating the container on a small subset of
the training data.

3. During the compatibility test, measure the GPU memory consumption and inference
time. These were limited to 11 GB and 180 seconds per case, which was necessary to
ensure that all submissions could be evaluated in the federation.

4. Report the results of the tests (metric values in case of success or error messages)
back to the participants and, if successful, upload the Singularity image to cloud
storage.

Federated Evaluation System In FeTS21, a custom Python script was integrated in the
FeTS tool (Pati et al. 2022a), which had to be installed locally by the data contributors.
In FeTS22, the MedPerf tool (Karargyris et al. 2023) was used for the evaluation. A
benchmark in MedPerf comprises the steps of data preparation, inference, and evaluation,
which were customized for the FeTS Challenge and implemented in an MLCube (https:
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//github.com/mlcommons/mlcube). The inference step was modified by each
participant to run their model. After installing the MedPerf client and dependencies
locally, the benchmark was run at each institution and the results (metric values for each
submission) sent back to the challenge organizers. Meta-data was transferred manually in
FeTS22, but this can technically also be done when setting up the MedPerf client.

Model distribution Local evaluation
4 ) ( )
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Figure 2.5: Diagram of the federated evaluation workflow used in the FeTS Challenge. The
workflow consists of four steps: (1) segmentation models (colored cubes in the diagram)
are sent from the benchmarking server (cloud) to the participating institutions (hospitals),
which also hold the data (cylinders) for the test set. (2) At each institution, the local
evaluation pipeline is run, which computes performance metrics for each model on each
test case. Optionally, meta-data is collected in a privacy-preserving manner. (3) The
metrics and meta-data results are sent back to the benchmarking server. (4) At the central
server, the organizers combine the results from all institutions and perform a ranking of
the evaluated models as well as additional analyses. Note that only three institutions and
models are shown here as an example, but in the FeTS22 Challenge there were 32 hospitals
and 41 models.
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2.2 Failure Detection

Even robust automatic segmentation algorithms can fail on difficult cases or data with
distribution shifts, so a mechanism to detect potential errors and notify the user is a crucial
complementary component. This section focuses on automatic failure detection methods,
as manual controls are expensive and do not scale to the continuously increasing amount of
imaging data acquired. Since there is currently no standardized framework for evaluating
failure detection methods, sections 2.2.1 and 2.2.2 revisit the task definition and propose
an evaluation methodology to fill that gap. A benchmark is then designed by additionally
selecting appropriate datasets (section 2.2.3), a self-configuring segmentation method
(section 2.2.4), and diverse failure detection methods (section 2.2.5) from previous work.
Details on the implementation and adaptations of individual methods are provided in the
respective subsections.

2.2.1 Task Definition

Following the definition of failure detection for segmentation by Zenk et al. (2025b),
consider a segmentation model, f : X — {/, which generates a segmentation § = f (x) based
on a three-dimensional image sample x € R91*#%2*_This study assumes failure detection
is performed with a confidence scoring function (CSF) that provides a confidence score x for
each sample:

g:%xgx}ﬁ—ﬂl{, S, 7,f) =x, (2.3)

where #{ is the space of segmentation models and higher x implies higher confidence in
the prediction. Many CSFs only use a subset of these inputs, for example they can be
independent of f and only use image and segmentation (x and #/). Other CSFs could even
integrate f and g in the same model, but this is not the case for the methods studied in the
remainder. Failure detection requires making a decision on whether to accept i, which
means in practice whether to use it for downstream analyses. The final model prediction
is accepted if the confidence score exceeds a threshold 7:

fx), ifgx,f(x),f)=>7

(2.4)
abstain, otherwise.

grof(x) :{

This formulation interprets failure detection as a selective prediction task (Jaeger et al.
2022). An operating point for the rejection threshold 7 can be found before testing using a
calibration procedure as in (Geifman and El-Yaniv 2017).
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2.2.2 Evaluation

To answer RQ 2.1 on page 29, this part describes the evaluation methodology for failure
detection developed in this thesis. Failure detection aims to avoid risks associated with
inaccurate segmentations. Here, a risk function R(i) quantifies this risk. Higher risk values
correspond to segmentations with more severe errors, but the concrete choice of risk
function can vary depending on the application. One option could be, for example, a
discrete risk function that assigns labels of “high”, “medium”, and “low” risk to predictions.
In this study, however, segmentation metrics m were used as continuous risk functions,
assuming that ground truth masks y are available, which is reasonable for benchmarking
purposes. In the case that higher values of m indicate better segmentation quality and m is
upper-bounded by 1 (for example the DSC score), the risk function can be defined as:

R(@,y) =1-—m,y) (2.5)

Note that ground truth data y was only required for evaluating the performance of failure
detection methods in this thesis, but of course, the confidence scores produced by these
methods did not depend on the ground truth.

2.2.2.1 Requirements and Pitfalls in Current Practice

An evaluation protocol for failure detection that measures progress in a realistic setting
has to fulfill certain requirements, which were derived in this thesis based on theoretical
considerations and related work. Furthermore, common evaluation pitfalls were identified,
to highlight potential issues in current practice. The text in the following paragraphs,
describing four requirements and pitfalls, was taken from (Zenk et al. 2025b). The original
text was written by me and only slightly modified here to match the style of this thesis.

Requirement R1: Evaluate the failure detection task directly and allow comparison of all
relevant solutions. Similar to how (Jaeger et al. 2022) argued for classification, a variety
of proxy tasks for segmentation failure detection has been studied, each of them with their
own metrics and restrictions, although failure detection is the commonly stated goal. To
allow a comprehensive comparison and avoid excluding relevant methods, metrics are
needed that summarize failure detection performance.

Pitfalls in current practice: A popular proxy task is out-of-distribution (OOD) detection
(Gonzélez et al. 2022; Graham et al. 2022). While OOD detection certainly is useful, it
is not identical to failure detection. For example, when applying a segmentation model
to a new hospital, all samples are technically OOD, but only some of them might turn
out to be failures. Vice versa, in-distribution samples can also result in failures. Another
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commonly studied task is segmentation quality estimation, which phrases failure detection
as a regression task of segmentation metric values (Kohlberger et al. 2012; Valindria et al.
2017; Robinson et al. 2018; Liu et al. 2019; Li et al. 2022; Qiu et al. 2023). Although close
to the task definition in section 2.2.1, it is slightly more restrictive, as confidence scores
need to be on the same scale as the risk values. This kind of “calibration” can be desirable
for some applications or to compute metrics like mean absolute error (MAE), but failure
detection only requires a monotonous relationship between risk and confidence and the
evaluation should not be restricted to methods that output segmentation metric values
directly.

Requirement R2: Consider both segmentation performance and confidence ranking.
Following Jaeger et al. (2022), in practice arguably the performance of the whole segmen-
tation system matters, i.e., segmentation model and CSF. A desirable system has low
remaining risk after rejection based on thresholding the confidence score, which can be
achieved through (a) the CSF assigning lower confidence to samples with higher risk, i.e.,
better confidence ranking, or (b) avoiding high risks in the first place, i.e., better segmen-
tation performance. These aspects cannot be easily disentangled, because the CSF might
require architectural modifications that adversely impact segmentation performance, such
as the introduction of dropout layers. The evaluation metric should hence consider both
aspects. Beyond the choice of metric, this requirement also implies that a fair comparison
between failure detection methods uses the same segmentation model for different CSFs,
if possible.

Pitfalls in current practice: Most related works use metrics that ignore the segmentation
performance aspect and focus on confidence ranking (Robinson et al. 2018; Liu et al. 2019;
Jungo et al. 2020; Li et al. 2022), such as area under the receiver operating curve using
binary failure labels (AUROC;) and Spearman correlation coefficient (SC). As a side
effect in the case of continuous risk definitions, exclusively considering confidence ranking
while neglecting absolute risk differences can also lead to unexpected evaluation outcomes.
Consider an example with four test samples resulting in risk values of {0.1,0.5,0.7,0.72}
and perfect confidence ranking, i.e., the first sample has the highest confidence and so
on. Switching confidence ranks between the first two samples has the same effect on the
Spearman correlation as switching the ranks of the last two, but the first switch is more
problematic from a failure detection perspective. This issue is, for example, relevant in
scenarios where there is a group of test samples with similar, low risks and a smaller
number of samples with higher, more variable risks, which is likely to happen in a failure
detection scenario where failures are rare.
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Requirement R3: Support flexible risk definitions. In contrast to image classification,
there is no universal definition of what makes a segmentation faulty. The risk function de-
pends ultimately on the specific application and can in particular be continuous. Therefore,
a general evaluation protocol for failure detection, as required for a benchmark, should be
flexible enough to support different choices.

Pitfalls in current practice: Several papers use a threshold on the Dice score to define failure
(DeVries and Taylor 2018; Chen et al. 2020; Jungo et al. 2020; Lin et al. 2022; Ng et al.
2023), resulting in a binary risk function, which is reasonable if the specific application
has a natural threshold. For many existing datasets, however, such a threshold cannot
be determined easily, for instance when inter-annotator variability is unknown. In these
cases, a continuous risk function like the (negative) DSC can avoid information loss and
discontinuity effects. Hence, a general-purpose evaluation metric should be applicable to
both discrete and continuous risk functions, which is not given for some popular metrics
like area under the receiver operating curve (AUROC) for binary failure labels.

Requirement R4: Consider realistic failure sources. CSFs should be primarily judged
on how successful they are in detecting realistic failures. These can happen for numer-
ous reasons, but distribution shifts in data from different scanners and populations are
especially important, as they are likely to be encountered in real-world applications. The
data used for evaluating CSFs should hence reflect these failure sources, ideally covering
different types of dataset shifts.

Pitfalls in current practice: While earlier works focused on in-distribution testing (DeVries
and Taylor 2018; Chen et al. 2020; Jungo et al. 2020), there has been a development towards
including test datasets from different centers or scanners in the evaluation (Mehrtash et al.
2020; Gonzélez et al. 2022; Li et al. 2022; Ng et al. 2023). Some studies augment their
test dataset with “artificial” predictions that are not produced by the actual segmentation
model, for example by corrupting the segmentation masks or using auxiliary (weaker)
segmentation models (Robinson et al. 2018; Li et al. 2022; Qiu et al. 2023). While this
practice has the benefit of testing the CSF on a wide range of segmentation qualities, it may
not be ideal for a benchmark on failure detection: Firstly, it contradicts R1, because only
methods can be tested on the artificial test data that are independent of the segmentation
model, excluding lines of work like ensemble uncertainty (Lakshminarayanan et al. 2017)
or posthoc (Gonzélez et al. 2022) methods, although they are usually applicable in failure
detection scenarios. Secondly, the additional samples might put more emphasis on failure
cases that would never occur in a realistic setting, decreasing the influence of practically
relevant cases in the evaluation. It is important to note that realistic artificial images, unlike
artificial predictions, can circumvent these drawbacks and meet requirement R4.
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Table 2.3: Metric candidates for segmentation failure detection compared from the per-
spective of the requirements (R1-R3) from section 2.2.2.1. Segmentation performance is
only taken into account by AURC, which also fulfills all other criteria. Abbreviations: area
under the receiver operating curve using binary failure labels (AUROC;), mean absolute
error (MAE), Pearson correlation coefficient (PC), Spearman correlation coefficient (SC),
area under the risk-coverage curve (AURC). Table adapted from (Zenk et al. 2025b).

Metric Required Considers Considers Compatible with
confidence confidence segmentation  binary/continu-
scale (R1) ranking (R2) risk (R2) ous risk (R3)

AUROC;  ordinal/real yes no yes/no

MAE same as risk no no no/yes

PC real implicitly no yes/yes

SC ordinal/real yes no yes/yes

AURC ordinal/real yes yes yes/yes

2.2.2.2 Evaluation Protocol

Different protocols and metrics have been used in previous work to evaluate error detection
or related tasks like segmentation quality estimation. To find out which metrics are
most appropriate for the failure detection task definition from section 2.2.1, the most
common metrics are compared in table 2.3 with respect to the requirements R1-R3 from
section 2.2.2.1. The risk-coverage analysis (El-Yaniv and Wiener 2010), summarized by
the scalar performance metric area under the risk-coverage curve (AURC), is the only
one that fulfills all requirements and was hence used as the main evaluation protocol.
Jaeger et al. (2022) recently recommended AURC for evaluating failure detection methods
in the context of image classification. This thesis extended its application to semantic
segmentation tasks.

In the benchmarking experiments from section 3.2, the DSC was used as the risk
function, averaging it over all K foreground classes of a dataset:

K
R(@,y) =1-) DSCI(H =k),1(y = k) (2.6)
k=1

Here, I denotes the indicator function, transforming the multi-class label map into a binary
map for each class. In section 3.2.3, the normalized surface dice (NSD) (Nikolov et al. 2021)
is used instead of DSC to study the impact of the chosen risk function. NSD measures
deviations from the predicted segmentation boundary to the ground truth, while DSC
focuses on the volumetric overlap. Each experiment in the benchmark yielded a risk score
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Figure 2.6: Example for the risk-coverage curve based on synthetic data. Left: The sim-
ulated experimental data consists of confidence scores and risks for each sample. For
each possible confidence threshold, predictions for samples above the threshold would be
accepted (green), while for low-confidence samples the model abstains from outputting a
prediction (red). Right: Measuring the selective risk for each confidence threshold results
in a risk-coverage curve, which can be summarized with the AURC. Figure adapted from
Zenk et al. (2025b).

r; and a confidence score «; for each test case x; (i = 1,...,N). The risk-coverage curve
was obtained by varying a confidence threshold 7, which would in practice determine
which samples are considered erroneous. For each threshold, the selective risk R, and the
coverage C were measured:

N
NIk >
Ry(T) = izt 1052 D) , (2.7)

Zﬁ\il [(x; > T)

1
C(1) = 5 Z I(x; > T) (2.8)

Intuitively, Ry quantifies the remaining risk after removing low-confidence samples, while
C represents the fraction of retained samples. Failure detection is a trade-off between
these two. To illustrate the risk-coverage curve, fig. 2.6 shows an example computed from
artificial experiment results.

The area under the risk-coverage curve (AURC) can be used to summarize a whole
curve into a scalar value, which facilitates comparing multiple methods concisely. In-
tuitively, it corresponds to the average selective risk (for example the average 1 — DSC
risk) across varying confidence thresholds. In general, lower AURC values indicate better
performance. There are two natural reference values for AURC: For a method that assigns
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random confidence scores, the AURC is identical to the average overall risk, computed
as AURC,,q = }_;7;/N. In contrast, an optimal confidence method results in scores that
perfectly order the risk values, meaning x; < x; = r; = r; V i, j. The corresponding optimal
AURC can be determined computationally. AURC was implemented for the experiments
(section 3.2) by adapting the publicly available implementation from (Jaeger et al. 2022) to
the segmentation task, such that it is compatible with the continuous risk function. While
AURC is the main metric in this benchmark, the effect of using alternative metrics like SC

or PC will also be investigated in section 3.2.3.

2.2.3 Datasets

The criteria guiding the dataset selection for the benchmark were:

1. Public availability: This guarantees that the results can be reproduced by others and
new work can build upon this benchmark.

2. 3D imaging modalities: class imbalance and higher hardware requirements make
these images particularly challenging to segment.

3. Distribution shifts between training and test set: In practice, errors occur more
frequently when distribution shifts are present, so a realistic evaluation scenario
should incorporate them (R4 from section 2.2.2.1).

4. Previous work: existing results from previous works on datasets that meet the criteria
above are helpful in discussing this study’s results.

In total, six datasets with computed tomography (CT) and magnetic resonance imaging
(MRI) scans were used to compare failure detection methods. Three additional datasets
with different imaging modalities were studied to test the generalization capabilities of the
methods beyond CT/MRI. Training and test sets were created from the original datasets
by splitting them on a patient level, so that all images of one patient (if there are multiple)
are guaranteed to be in the same split. Details on the number of training and test cases are
provided in table 2.4, and a small set of CT/MRI example images is depicted in fig. 2.7.
Additional data samples are printed in appendix A.2. For model development, each
training set was further subdivided in a cross-validation manner into five folds, which
use 20% of the cases for validation and 80% for training. All datasets are described below,
with a short reason for inclusion in the benchmark. The following paragraphs (six dataset
descriptions) are taken from Zenk et al. (2025b). They have been originally written by me
and were slightly modified here to match the style of this thesis.
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Table 2.4: Summary of datasets used in this study. The #Testing column contains case num-
bers for each subset of the test set separated by a comma, starting with the in-distribution
test split and followed by the shifted “domains”. The number of classes includes one count
for background. Datasets below the separating line are not part of the main benchmark;
instead, they were included to explore how the insights on CT/MRI transfer to other
modalities. Table adapted from (Zenk et al. 2025b).

Dataset #Classes #Training #Testing Modality Shift in test set

Brain tumor (2D) 2 939 313,313 x 4 MRI 4 Artificial corruptions
Brain tumor 4 235 50, 50 MRI Higher prevalence of LGG
Heart 4 190 60, 190, 100, 100 MRI Unseen scanner vendors
Prostate 2 26 6,30,19,13,12,12 MRI Unseen institutions

Covid 2 160 39, 50, 20 CT Unseen institutions
Kidney tumor 4 367 122 CT -

Echocardiography 3 80 55 3D-Us -

Retinal fluids 4 34 6,6,24 OCT Unseen scanner

Optic cup/disc (2D) 3 640 160, 101, 159 RGB Unseen institutions

Brain Tumor (2D)

Despite being 2D, this simplified version of the FeTS 2022 dataset (Menze et al. 2015;
Bakas et al. 2017; Zenk et al. 2025a) was included in the benchmark, as it allows for quick
experimentation. Data preparation for each case consisted of cropping the original images
around the brain, selecting only the axial slice from the 3D images with the largest tumor
extent, and resizing that slice to 64 x 64 pixels. Each case has four MRI sequences: T1,
T1-Gd, T2, FLAIR. All publicly available cases were split randomly into a training and a
test set. To introduce shifts in the test set, four artificial corruptions were applied to each
test case using the torchIO library (Pérez-Garcia et al. 2021), producing four additional
corrupted versions per test case: affine transforms, bias field, spike and ghosting artifacts.
Due to the low image resolution, only the whole tumor region was used as a label for this
dataset.

Brain Tumor

The BraTS 2019 dataset (Menze et al. 2015; Bakas et al. 2017; Bakas et al. 2019) contains
information about the tumor grade (high-grade glioma (HGG), or low-grade glioma
(LGG)) for each training case. To simulate a population shift with more LGG cases during
testing, all publicly available cases were split into a training and a test set, such that there
are 167 HGG and 26 LGG cases in the training set and 50 cases for each grade in the testing
set. Note that LGG cases are often harder to segment (Bakas et al. 2019). Each case consists
of four MR sequences (T1, T1-Gd, T2, FLAIR). The labels for this dataset are nested tumor
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regions: WT, TC, and ET. The hierarchical ordering is ET C TC C WT. A similar dataset
is used in (Hoebel et al. 2022), but here a few LGG cases were included during training to
make the setup more realistic.

Heart

The M&Ms dataset (Campello et al. 2021) provides short-axis MRI data from four scanner
vendors. For the training set, only samples from vendor B were included, while the testing
set comprised 30 patients from vendor B and data from the remaining three vendors. Each
patient contributes two images, corresponding to the end-diastolic and end-systolic phases,
respectively. The labels in this dataset include the left ventricle, the right ventricle, and
the left ventricular myocardium. Although this dataset was also employed in (Kushibar
et al. 2022), a different data split was applied here, motivated by the findings of (Full et al.
2020), which indicate that generalization from vendor B to vendor A poses the greatest
challenge.

Prostate

This dataset is a collection of two data sources: The prostate dataset from the Medical
Segmentation Decathlon (Simpson et al. 2019; Antonelli et al. 2022) was employed for
training and in-distribution testing. Additional testing data was provided by (Liu et al.
2020), which includes data prepared from (Bloch et al. 2015; Lemaitre et al. 2015; Litjens
etal. 2023). Segmentation performance was evaluated using the T2 MRI sequence, focusing
solely on the whole prostate label. This setup aligns with the approach in (Gonzélez et al.
2022), with one difference: The 'RUNMC institution in (Liu et al. 2020) also contributed
data to the training set (Simpson et al. 2019; Antonelli et al. 2022), so it was excluded from
this benchmark to avoid duplicates.

Covid

This dataset is a collection of three data sources: The COVID-19 CT Segmentation Challenge
dataset (Clark et al. 2013; An et al. 2020; Roth et al. 2022) was split into 39 cases for testing
and 160 for training. Additional test cases were drawn from (Morozov et al. 2020) and (Jun
et al. 2020). The dataset includes a single foreground label representing lesions associated
with COVID-19. This setup followed the configuration from (Gonzélez et al. 2022).

Kidney Tumor

The publicly available CT scans and annotations from the KiTS23 dataset (Heller et al.
2021; Heller et al. 2023) were randomly divided into training and test sets. While the test
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set does not include an explicit distribution shift, it contains a sufficient number of difficult
cases suitable for evaluating failure detection. The same three nested regions as defined in
the challenge were used as labels: kidney + cyst + tumor, cyst 4+ tumor, and tumor.

Non-CT/MRI Datasets

This benchmark’s main focus was on CT and MRI imaging data, as these are the most
common modalities used in medical image segmentation (Maier-Hein et al. 2018). To in-
vestigate how the insights on CT/MRI transfer to other modalities, the following additional
datasets were explored:

e Echocardiography (Carnahan et al. 2021): Published through the MVSeg Challenge
2023, this dataset contains 3D-ultrasound (US) images of the heart and annotations
for the two mitral valve leaflets. All scans were acquired at the same hospital and
with the same scanner model, so there is no distribution shift at test time and cases
were split randomly between training and test set.

e Retinal fluids (Bogunovic et al. 2019): Optical coherence tomography (OCT) is a
popular modality in ophthalmology to image the retina. The RETOUCH challenge
provided this dataset, which was acquired from three different scanners. Two scan-
ners were included in the training set, while the third was only part of the test
set. Three types of retinal fluids were annotated in the images, which have high
inter-annotator variability (mean DSC = 0.73 according to Bogunovi¢ et al. (2019)).

e Optic disc/cup (2D) (Fumero et al. 2011; Sivaswamy et al. 2015; Orlando et al. 2020):
As an additional 2D dataset, this collection of three fundus photography RGB-image
datasets was used in previous work on domain generalization (Wang et al. 2020b).
The segmentation targets are two nested regions: optic cup C optic disc. Models
were trained only on one of the subsets (Orlando et al. 2020) and the other two were
unseen before testing.

Example images are shown in fig. 2.8. Results on these additional datasets are reported in
section 3.2.2, while results for the CT and MRI datasets can be found in section 3.2.1.
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Covid Kidney tumor Heart Brain tumor Brain tumor (2D)

Prostate

Figure 2.7: Example images from the CT/MRI datasets. Two pairs of (image, ground
truth) from the test set are shown per dataset. The left pair is an in-distribution sample
while the right pair is a sample with distribution shift. For the kidney tumor dataset, there
is no distribution shift. Consistent windows were used for the CT datasets.
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Echocardiogr.

Retinal fluids

Optic disc/cup

Figure 2.8: Example images from the non-CT/MRI datasets used for the benchmark. Two
pairs of (image, ground truth) from the test set are shown per dataset. The left pair is
an in-distribution sample while the right pair is a sample with distribution shift. For the
echocardiography dataset, there is no distribution shift.

224 Segmentation Algorithm

A system capable of segmentation failure detection consists of a segmentation algorithm
and a failure detection method. For some failure detection methods, modifications on the
segmentation algorithm are required; these are detailed in section 2.2.5. Here, the default
segmentation model is described.

2.24.1 Preprocessing

Image and segmentation preprocessing was performed using the nnU-Net library (Isensee
et al. 2021a). Their pipeline includes the following steps:

1. Cropping to the nonzero image part, to remove irrelevant background.

2. Intensity normalization. By default, each sample and imaging modality is normal-
ized independently. The mean and standard deviation across all voxels are computed
to normalize all intensities x by (x — p) /0 (z-score normalization). For CT images,
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nnU-Net clips intensities to the 0.5 and 99.5 percentiles of the foreground inten-
sity distribution before applying z-score normalization. The percentiles, mean and
standard deviation are computed across the entire dataset in this case.

3. Resampling to a common image spacing. For each spatial image dimension, the
median spacing is used as the target spacing. Images are by default interpolated
with third-order splines, and segmentations with linear interpolation (plus argmax).
Some special cases with strong anisotropies are handled differently; details can be
found in (Isensee et al. 2021a).

For the brain tumor 2D dataset, only z-score normalization was used, as it was cre-
ated from 3D data using a data preparation pipeline that already included cropping and
resampling.

2.2.4.2 Network Architecture and Training

The segmentation networks employed in this study are based on the U-Net architecture
(Ronneberger et al. 2015). Below, the architecture and training procedure are described in
detail, and a summary of hyperparameters is provided in table 2.5.

The default U-Net implementation contains multiple stages, each of which consists of a
convolution block containing two convolutional layers, followed by instance normalization
(Ulyanov et al. 2017) and a leaky rectified linear unit (ReLU) activation function. In an
ablation study (section 3.2.2.2), residual connections (He et al. 2016) were added to each
convolution block, and the number of blocks per stage increased to three. Both network
configurations are visualized in fig. 2.9. Within each stage, the stride and kernel size for
the convolutions were adapted to the dataset automatically, based on the spacing and
size of image patches fed into the network. The number of output channels was set to
the dataset-specific number of classes. Dropout was applied selectively at the end of each
stage for the five innermost stages, with a dropout rate of 0.5, following Kendall et al.
(2016). This setup facilitated the use of test-time Dropout, without excessively regularizing
the network. For the brain tumor 2D dataset, a U-Net implementation from the MONAI
framework (Cardoso et al. 2022) was used, with 5 stages, two residual units per stage, and
a dropout rate of 0.3 after each convolutional layer.

As large volumetric images are problematic to fit into limited graphics processing unit
(GPU) memory, patches (meaning smaller cutouts) were extracted from the preprocessed
data using nnU-Net’s data loading functionality and put into the network. The patch
size was configured automatically. During training, the sum of the Dice loss and cross-
entropy (CE)* was employed as the loss function, and the networks were optimized until

*For some datasets (brain tumor, kidney tumor, and optic disc/cup), the target structures are hierarchical,
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Figure 2.9: Schematic of the segmentation network backbone (U-Net). Left: Overview
of the network, with the usual stride-2 convolutions (52) for downsampling, transposed
convolutions for upsampling, and skip connections. The output block consists of a single
convolutional layer with kernel size 1 (K1). The depth of the network depends on the
dataset; here, a network with four stages is shown. On the right, a detailed view of the
convolution blocks is depicted. The dashed lines indicate components that are only present
for residual blocks, not in the default convolution block. Two special cases are described in
this figure with superscripts: # This convolutional layer is only present in residual blocks
that change the feature dimension. ® Dropout is activated only in the lowest five U-Net
stages.

the validation loss plateaus using the stochastic gradient descent (SGD) optimizer with
Nesterov momentum. The batch size was maximized for each dataset given the available
GPU memory. Data augmentations included rotations, scaling, Gaussian noise, Gaussian
blur, brightness, contrast, simulation of low resolution, gamma correction, and mirroring,
except for the brain tumor (2D) dataset. For this special case, only mirroring augmentations
were used to make the network susceptible to artificial corruptions.

2.2.4.3 Inference Procedure

Test-time prediction (also called inference) was conducted using the dataset-specific
preprocessing parameters from the respective training set. For datasets with 3D images,
sliding window inference was performed on individual test cases. Patches were sampled
from the preprocessed images in a sliding window manner with an overlap of 50%, and
predictions for all patches were averaged using a Hann-window weighting scheme (Pérez-
Garcia et al. 2021). This approach assigns greater weight to central voxels in the patch

overlapping regions. In this case, sigmoid functions were applied after the network’s output layer instead of
softmax and the binary CE was used in the loss.
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Pixel-level Confidence Q
»1 confidence aggregation
(section 2.2.5.1) (section 2.2.5.2)
Prediction model 0.84

(section 2.2.5.1)

Segmentation backbone Image-level confidence
(section 2.2.4) (section 2.2.5.3)

\ 4

Figure 2.10: Overview of the components involved in failure detection. The prediction
model is based on an exchangeable segmentation backbone and generates segmentation
probabilities and masks. These are then used by the failure detection methods to produce
confidence scores, which can be derived either directly at the image level or by aggregating
pixel-level confidence maps. This pipeline structure follows Kahl et al. (2024) and extends
it by image-level methods. Table 2.6 summarizes all confidence aggregation and image-
level confidence methods implemented for the benchmark. The depicted image, mask and
confidence score are not from real experiments but created just for illustration purposes.

while reducing the influence of boundary voxels, thereby mitigating edge artifacts. In
the case of 2D datasets, inference was completed with a single forward pass through the
network.

2.2.5 Failure Detection Methods

In the formulation from section 2.2.1, failure detection involves outputting a confidence
score for each sample, which can be used to filter the model predictions. This can be
implemented on a high level either by producing these (image-level) scores directly
based on the complete case data or by first generating a pixel confidence map, which
is aggregated in a second step to the confidence score. Figure 2.10 gives an overview of
the failure detection method components described here and shows how this translates
to the structure of this section. All methods in this benchmark are combinations of the
components described here. The main goal behind which methods to include in the
benchmark was to evaluate a wide range of approaches applicable to the failure detection
task, while also considering the popularity in related literature and the feasibility of re-
implementation, which may be limited by method complexity or the lack of a public official
source code. A comprehensive discussion of the method selection is included in section 4.2.
All methods were implemented in PyTorch (Paszke et al. 2019).
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Table 2.5: Hyperparameters for the segmentation and failure detection methods used
in the failure detection benchmark. Abbreviations: CC: connected components, (B)CE:

(binary) cross-entropy. Table adapted from (Zenk et al. 2025b).

Method Parameter Default value Changes for
brain tumor 2d
Segmentation
U-Net loss function Dice + (B)CE Dice
optimizer SGD + momentum (0.99) AdamW
learning rate 0.01 0.001
learning rate decay  polynomial (exponent 0.9) -
weight decay 0.00003 0.00001
batch size 2 (heart: 4) 32
normalization layer instance batch
Pixel confidence
MC-Dropout Number of samples 10 (kidney: 5) -
Deep ensemble Number of samples 5 -
Pixel confidence aggregation
Non-boundary- boundary width 4
weighted
Patch-based patch size 103 102
RF (simple fea- boundary width 4
tures)
connectivity for CC 3 2
Image-level failure detection
Quality regres- loss function L2
sion
optimizer AdamW
learning rate 0.0002
learning rate decay  cosine
weight decay 0.0001
batch size 2 (heart: 4) 32
Mahalanobis Max. feature dim. 10000
VAE loss function BCE + B - KL-div.
B 0.001
optimizer Adam
learning rate 0.0001
learning rate decay -
batch size 6 32
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2.2.5.1 Prediction Model and Pixel-level Confidence

Kahl et al. (2024) distinguish between the prediction model, which is responsible for the final
predicted pixel-wise class scores, and the uncertainty measure, which computes a pixel-wise
confidence map based on the prediction model’s output. Importantly, the prediction model
can also be used by image-level failure detection methods (section 2.2.5.3). Here, three
different prediction models from this benchmark are presented, along with the uncertainty
measures applied to each of them.

Single network This simple baseline uses the output of a single U-Net as the prediction.
Confidence maps are computed from softmax probabilities through one of two uncertainty
measures: the predictive entropy (PE) and the maximum softmax per pixel, defined in
background section section 1.2.3.

MC-Dropout (Gal and Ghahramani 2016) This prediction method generates multiple
samples by activating dropout layers at test time. Inference is repeated M times (with
different active subnetworks randomly sampled through dropout), which results in M
softmax maps. For this study, the default is M = 10; only for the kidney tumor dataset
it is reduced to M = 5, due to the long inference times required for these large image
volumes. All M probability maps are averaged to obtain the final prediction, and a pixel
confidence map is computed with one of two uncertainty measures: either the PE of the
probabilities averaged across samples or the mutual information (MI) of the whole sample
of probabilities.

Deep ensemble (Lakshminarayanan et al. 2017) This method also generates multiple
prediction samples but uses an ensemble of networks instead of dropout. In this benchmark,
the ensemble consists of five networks trained with different random seeds on the same
data. In contrast to Lakshminarayanan et al. (2017), adversarial training is not used for
simplicity, following previous application to medical images (Mehrtash et al. 2020). As for
MC-Dropout, the pixel-wise mean over the output probabilities of all ensemble members
serves as the final prediction, and confidence maps are computed with the PE and MI
uncertainty measures.

Some datasets (brain tumor, kidney tumor) have overlapping regions as outputs, so the
segmentation network probabilities were produced by a sigmoid function for each region.
To derive a single-channel confidence map from this prediction, a confidence map for each
region was computed first, using the uncertainty measures described above, and these
were aggregated across regions by taking the minimum confidence per pixel.

60



2.2. Failure Detection

2.2.5.2 Aggregation of Pixel-level Confidence

The previous section described methods that output a real-valued pixel confidence map
in addition to the actual segmentation. To decide whether the predicted segmentation as
a whole should be accepted or flagged as potentially erroneous by the failure detection
system, aggregation methods are required, which take in the pixel confidence map and
output a scalar confidence score. Each implemented method is described below and also
summarized in table 2.6. Detailed hyperparameters are listed in table 2.5.

Mean This naive baseline simply averages all pixel confidence values.

Foreground mean Identical to mean above, but averages only pixel confidence values
inside the predicted foreground region.

Non-boundary-weighted (Jungo et al. 2020) Often, the model confidence is low at the
boundaries between two predicted classes, because of inherent uncertainty in the exact
boundary location. Jungo et al. (2020) and Kahl et al. (2024) observed that this can result
in an undesired correlation between mean confidence and object size, as the boundary is
longer for larger objects. To fix this, the boundary pixels are excluded from confidence
aggregation. Specifically, a region around the boundary (4 pixels wide) is removed from
the confidence map before computing the mean.

Patch-based (Kahl et al. 2024) This method shares the same motivation as the non-
boundary-weighted aggregation, but uses a different approach to avoid the object size
bias. First, confidence scores are computed in a sliding-window manner for patches of a
fixed size, by averaging confidence across pixels in the patch. As in (Kahl et al. 2024), a
patch size of 10 was used for D-dimensional images The resulting patch-level confidence
scores are aggregated by using the minimum confidence among all patches as the final
confidence score, based on the idea that any low confidence region may indicate an error.

The methods explained so far are simple and computationally inexpensive, but this
may limit their ability to aggregate complex confidence map patterns. An alternative are
learning-based aggregation methods that require training a model on suitable data. In
this benchmark, two such methods are included:

Regression forest (RF) trained on radiomics features (Jungo et al. 2020) The idea
behind this method is to learn the relation between the confidence map and a segmentation
risk (in the sense of section 2.2.1) through supervised learning. Jungo etal. (2020) proposed
to extract hand-crafted radiomics features (Gillies et al. 2015) from the confidence map and
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use the DSC scores for the associated prediction to fit a regression forest (RF). Radiomics
features are usually computed on a region of interest (ROI) in the image (for example, on
a lesion), but for this application they are determined by thresholding the confidence map.
The threshold is tuned on a validation set, as described by Jungo et al. (2020). In this study,
the feature extractor implemented in the pyradiomics library (Griethuysen et al. 2017)
is used with default parameters, and z-normalization is applied. If individual radiomic
features are not defined in special cases for confidence maps, missing values are imputed
using the ‘mean’ strategy. Regression forests are then fitted using the scikit-learn library
(Pedregosa et al. 2011), with the DSC for each class and the generalized DSC (Crum et al.
2006) as targets. The final confidence score is the mean over the estimated per-class DSCs.

Regression forest (RF) trained on simple features (Zenk et al. 2025b) Developed within
the scope of this thesis, this is a simplification of the previous method. It does not require
the definition of a ROI and replaces radiomics features with five simpler, hand-crafted
features:

1. Mean confidence in the predicted foreground

2. Mean confidence in the predicted background

3. Mean confidence in the boundary region

4. Foreground size relative to the whole image size

5. Number of connected components in the predicted foreground

Each of these features intuitively contains information about important confidence map or
prediction characteristics, which may be helpful to estimate the prediction quality. The
configuration of the RF is identical to the method trained on radiomics features.

To fit regression forests on simple or radiomics features, a training set with examples
of (prediction, confidence map, target DSC score) is required. This requirement is in
practice not easily fulfilled for medical imaging datasets with notoriously small size. In
this benchmark, the cross-validation outputs of running the inference procedure for pixel
confidence methods on each validation split were used to create the required training data
for the regression forests while leveraging all available samples.

2.2.5.3 Image-level Confidence

Confidence scoring methods that do not require pixel confidence maps are also valid
approaches for the failure detection task. Four methods were implemented for this study
(table 2.6 gives an overview and table 2.5 lists detailed hyperparameters):
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Pairwise DSC (Roy et al. 2019) This approach requires a segmentation model to output
a set of M > 1 plausible predictions for each example. The DSC is computed between each
pair of predictions, and the final confidence score is defined as the mean of all pairwise
DSC values. MC-Dropout or deep ensembles are used in this study to produce M discrete
segmentation masks. As DSC is computed for each class separately, another average over
classes is necessary for datasets with multiple foreground classes to arrive at image-level
confidence scores.

Quality regression (Robinson et al. 2018) Failure detection is closely related to estimat-
ing the value the risk function takes on for unseen examples. As deep neural networks
can learn to approximate arbitrary functions, they can also be trained to predict the seg-
mentation risk (or quality) directly for a given image and prediction. Assuming that
segmentation quality is measured with continuous segmentation metrics, this approach
can be thought of as a regression task. The quality regression network gets tuples of
(image, prediction) as input, and segmentation quality is the target variable. Note that this
approach differs from the RF methods from section 2.2.5.1 in the type of inputs and the
regression model. In this study, segmentation quality is measured by computing the DSC
with the ground truth for each foreground class, so the network outputs multiple quality
estimates, which are averaged to derive a scalar confidence score. The architecture of the
regression network follows the segmentation network’s dataset-specific encoder but adds
residual connections to each stage. Global average pooling and a linear layer are appended
after the bottleneck for producing the quality predictions. As in (Robinson et al. 2018),
the L2 loss is the training objective, which is optimized with AdamW (Loshchilov and
Hutter 2019). Similar to the random forests used for confidence aggregation, predictions
of a segmentation model have to be generated before training a quality regression network.
Using segmentation model predictions on its training set would severely overestimate
the quality on unseen data, so the cross-validation predictions of a single segmentation
network are used instead. Preprocessing for the quality regression network comprised the
following steps: (1) normalize the image with the z-score and transform the prediction
mask to one-hot encoding. (2) crop the raw data to a dataset-specific bounding box around
the foreground (during testing, the predicted foreground is used); (3) resize the image
and prediction by a factor of 0.5 if necessary to train on a GPU with 11 GB memory. The
data augmentation pipeline for the resulting patches included randomized zoom and
mirroring for image and prediction, as well as Gaussian noise and intensity scaling for the
images only. As the target DSC qualities of validation predictions were on average still
high, additional pseudo-predictions with lower segmentation quality were introduced, by
randomly (probability of 1/3) corrupting segmentation masks with affine transformations.
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Mahalanobis-distance (Gonzélez et al. 2022) This method follows the approach of
dataset shift (or OOD) detection by modeling the training data distribution as a multi-
variate Gaussian distribution over high-dimensional feature space. Specifically, in the first
step, feature representations of all patches in the training data are extracted by a pretrained
segmentation network, using the outputs of the last convolutional layer in the bottleneck.
The dimensionality of these feature maps is reduced through iterative average pooling
until it is below a certain threshold (in this study 10000). Finally, a Gaussian distribution
is fitted to the flattened features. During testing, features are extracted in the same way
for each sliding-window patch and a confidence score is computed as the Mahalanobis
distance between the patch and the Gaussian training distribution. Patch confidences are
aggregated in a sliding window manner following Gonzalez et al. (2022).

Variational autoencoder (VAE) (Liu et al. 2019) Also treating failure detection as an
OOD detection problem, this method is based on the idea that segmentations in medical
images often have a characteristic shape. Deviations from this shape may indicate errors
in the prediction. A VAE is trained on the ground truth segmentations of the training
set to learn the distribution of characteristic shapes. The confidence score for unseen test
samples is computed as the scalar loss value of the VAE, which is a lower bound of the
likelihood the VAE assigns to this prediction.

The VAE consists of an encoder, which is a sequence of [convolution (kernel size 3,
stride 2), instance norm, leaky ReLU]-blocks, and a symmetric decoder with transpose
convolutions. The number of feature maps per block is [32, 64, 128, 256, 512] (or [16, 32,
64, 128, 256, 512] for the Covid and Kidney tumor datasets). In the bottleneck, the feature
space is projected to 1D by a fully connected layer with output dimension 512, which
is twice the latent representation dimension. On a high level, the B-VAE’s loss function
(Higgins et al. 2016) for an example x can be written as the weighted sum

LVAE(x) = Lreconstruction<x) + IB ' LKL<x) ’ (29)

where the second term is the Kullback-Leibler divergence between approximate posterior
and prior distribution, which has a regularizing effect on the total loss. As the training data
are binary segmentation masks for this failure detection method, binary CE is used as the
reconstruction loss. Data preprocessing for the VAE consisted of the following steps: (1)
convert the segmentation mask (ground truth during training, prediction during testing)
to one-hot encoding. (2) crop the input mask to a dataset-specific bounding box around
the foreground (during testing, the predicted foreground is used); (3) resize the mask by
a factor of 0.5 if necessary to train on a GPU with 11 GB memory. The data augmentation
pipeline for the resulting patches included randomized affine and mirroring transforms.
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Table 2.6: Overview of failure detection methods included in the benchmark. Confidence aggregation methods from
section 2.2.5.2 are colored dark blue and image-level methods from section 2.2.5.3 are light blue. Each method computes
confidence scores based on different inputs (img: imaging data, seg: predicted segmentation, seg xM: set of Monte Carlo
samples of predicted segmentations, conf. map: confidence map). These inputs are processed by a CSF, which sometimes
includes a model with learnable parameters. The output column provides a brief summary of what is produced by the
methods and how. Each method in this overview is combined in the benchmark with a prediction model (and pixel

confidence method if applicable) from section 2.2.5.1.

Method Input Model Output (brief summary)

img seg seg conf.

xM map

Mean X — Mean confidence
Foreground mean X X — Mean confidence (exclude predicted background)
Non-boundary X X — Mean confidence (exclude predicted boundary)
Patch-based X — Min. patch confidence (mean per patch)
RF (radiomics features) X  Regression forest Regressed DSC based on radiomics features
RF (simple features) X X  Regression forest Regressed DSC based on 5 heuristic features
Pairwise DSC X — Mean DSC between all pairs of segmentations
Quality regression X X DNN Regressed DSC
Mahalanobis X Gaussian distr. ~ Mahalanobis distance to training distribution
VAE (seg) X VAE log likelihood of segmentation (VAE loss)
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3 Results

Following the structure of the materials and methods part, section 3.1 in this chapter
reports results for the benchmarking studies on the robustness of brain tumor segmentation
models, the Federated Tumor Segmentation (FeTS) Challenges. The work on benchmarking
segmentation failure detection methods across multiple datasets and realistic distribution
shifts is presented in section 3.2, providing insights into which methods perform reliably
across datasets.

Disclosure

Section 3.1 is based on the manuscript summarizing the FeTS Challenges, which
has been accepted for publication (Zenk et al. 2025a), so portions of the text
resemble the original manuscript text.

Section 3.2 is derived from a previously published article (Zenk et al. 2025b), so
portions of the text resemble the original manuscript text, in accordance with the
publisher’s license.

If parts of the text replicate sections from the corresponding manuscripts, this is
explicitly stated beforehand.

3.1 Generalization

The goal of the studies in this section was to assess the generalization capabilities of
brain tumor segmentation algorithms when evaluated on data from institutions that
did not contribute to the training data. Dataset shifts, such as differences in acquisition
or population, are expected to occur in this setting and could lead to model failures.
Towards that goal, two international competitions were organized in consecutive years
(the FeTS challenges 2021 and 2022) and their results were analyzed to answer the research
questions (RQs) introduced in section 1.4:
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RQ 1.1: Do current brain tumor segmentation algorithms generalize “in the wild”?

RQ 1.2: Which algorithm and dataset characteristics affect generalization?

RQ 1.3: Which practical hurdles are associated with federated evaluation?

The two iterations of the challenge, which took place in 2021 and 2022, are presented
in section 3.1.1 (FeTS21) and in section 3.1.2 (FeTS22), respectively. Both challenges share
the same concept, but FeTS22 was a larger study in terms of dataset size and number of
evaluated algorithms, so the results of FeTS21 are kept short here, and the focus lies on the
scientific insights and practical experiences gained from FeTS22.

3.1.1 Results of the FeTS challenge 2021 (Pilot Study)

This challenge was the first to evaluate submissions in a real-world federation of institutions,
that is, with geographically distributed testing data. It can, therefore, be seen as a pilot
study, which was extended in the following year’s FeTS challenge 2022 (section 3.1.2).
Although the results of the two years are overall consistent, a short description of the main
results from 2021 is given below for completeness.

3.1.1.1 Participating Teams

In total, 14 teams registered for the challenge and made submissions on the validation
set. From those, 4 teams prepared a submission to the generalization benchmark, out
of which one was not functional, so eventually 3 algorithms were evaluated on the test
dataset. The description of the three individual contributions below is a summary of the
teams’ publications and adapted from Zenk et al. (2025a).

Team Alpaca (Nalawade et al. 2021) trained a model with federated learning (McMa-
han et al. 2017) and developed a new weight-aggregation logic based on the average
validation Dice similarity coefficient (DSC) scores of each training institution. Hyperpa-
rameters used for training the network were selected based on the performance of the
previous round of federated training. For the first 5 rounds, the learning rate was set to
1073 and the number of epochs per round to 10. In each round after that, if the calculated
average DSC was 0.5 < DSC < 0.8, the learning rate was changed to 10~* and the epochs
per round to 5. If the DSC was larger than 0.8, the learning rate was further reduced to
107°.
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Team CUHK (Yin et al. 2021) extended the nnU-Net segmentation method that won
the BraTS 2020 challenge (Isensee et al. 2021b) with a test-time adaptation mechanism,
to dynamically adjust the model parameters at test time, thus compensating for distribu-
tion shifts due to the varying image acquisition conditions. They adapted an approach
from image classification (Wang et al. 2020a), which notes that higher entropy of model
predictions usually reflects a notable domain shift. Therefore, the unsupervised objective
for model parameter adaptation was the minimization of the prediction entropy of test
samples.

Team MBI (Pawar et al. 2021a) proposed orthogonal encoder-decoder convolutional
neural networks (CNNs) for brain tumor segmentation in two stages. An orthogonal
network is an ensemble of three networks trained on axial, sagittal, and coronal 2D slices.
Training and prediction were performed in two stages: in stage-I, a coarse segmentation
for the whole 3D volume was predicted slice-wise using an orthogonal U-Net. In stage-II,
the labels from stage-I were used to crop the whole tumor region, and seven orthogonal
networks were used to predict a fine segmentation label for the region of interest. The final
segmentation label was estimated using the averaged probability of all eight predictions.
Heavy data augmentation, consisting of geometric transformation and random contrast,
was used to avoid overfitting and improve the generalization.

3.1.1.2 Challenge Results

To answer RQ 1.1 (page 68), the segmentation metric values for all models and 21 insti-
tutions are shown in fig. 3.1. The institution with ID 22 is not included, as a technical
issue made its results incorrect. The two best teams achieved good performance, both
in terms of DSC and Hausdorff distance (HD), for most of the institutions. However, a
few outlier institutions (07, 11, 19) had lower median performance, which indicates a lack
of generalization. Even in the institutions that reported high median performance, there
were individual cases with worse metric values, most prominently institution 10.

Comparing the ranking of the different algorithm submissions in fig. 3.2 (left) shows
that the team CUHK won most of the subrankings. Each subranking was computed for
one metric measured for a single tumor region at one institution, for example ranking all
models by DSC for the whole tumor (WT) region in institution 01. The ranking stability
analysis (fig. 3.2, right) confirms the clear ranking: The submission by the team Alpaca
was significantly inferior to the others in most subrankings, and CUHK had a significant
advantage over MBI in 24 of the 126 subrankings.
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Figure 3.1: Distribution of metric values for each institution and participating team of
the FeTS21 challenge. The mean over tumor regions is reported for DSC and HD, and for
HD, values were clipped to 100 for clarity. These results clearly show the performance
differences between the teams. While the best algorithm (team CUHK) performs well on
the majority of institutions, failures occur for individual institutions (especially IDs 07, 11
and 19) and test cases.

70



3.1. Generalization

Subranking distribution Significance matrix
120 Team -
mEm CUHK g 0 0 0
100 s MBI <
B Alpaca
80
€ —
5 < 3 0
S 60 2
40
v~
20 5 0 24
O
0
1 2 3 CUHK MBI Alpaca
Rank Team

Figure 3.2: Ranking statistics for the FeTS21 challenge. Left: The distribution of the
subrankings (126 in total, one for each combination of the 21 institutions, 3 tumor regions,
and 2 metrics) shows that CUHK secures most first positions and Alpaca is consistently
third. Right: For each subranking, a significance test is performed and the number of
significant pairwise comparisons is added. This confirms that CUHK's performance is
significantly superior to MBI. Figure adapted from (Zenk et al. 2025a).

3.1.1.3 Practical Experiences and Conclusions

As a pilot study for federated evaluation in a challenge setting, one goal of FeTS21 was to
gather experiences and identify areas for improvement. Here the main issues encountered
during the challenge organization are summarized, including comments about improve-
ments in the following challenge iteration (FeTS22).

Regarding the technical implementation, one observation was that the submission
system consisted of too many parts and did not use a standard challenge platform, making
it hard to use for challenge participants. Moreover, upload speeds for singularity images
were a bottleneck for some participants. This motivated using a new, established challenge
platform for FeTS22 (synapse.org). During the federated evaluation, several problems
were encountered, mostly related to GPU compatibility but also caused by incomplete
installations or data issues. Although the evaluation system was tested before installing it
in the institutions, the heterogeneity of IT systems and personnel led to unexpected issues
in the federation. Therefore, the software testing was extended significantly in FeTS22 by
also involving a subset of data contributors in the federation prior to the actual evaluation
to find solutions to common issues.

Finally, the challenge analysis of FeTS21 and, consequentially, insights from it were
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limited because no additional information apart from the segmentation metric results was
available due to the federated evaluation. Meta-data about the institutions or individual
cases would have been helpful, as would access to a subset of images for which the
algorithms perform badly. In FeTS22, both institution-level meta-data and individual test
set images could be used for the analysis.

3.1.2 Results of the FeTS challenge 2022
3.1.2.1 Participating Teams

The challenge attracted the interest of 35 registered teams, of which 6 teams submitted to
the generalization benchmark. As one failed the compatibility test described in section 2.1.6,
eventually 5 submissions were admitted to the federated evaluation (IDs: F01-05). To
increase the algorithmic diversity, I additionally converted 36 algorithms submitted to the
BraT$S 2021 challenge to include them in the challenge analysis (IDs: B01-B36). This was
possible because the training data was identical for FeTS22 and BraTS 2021 (as mentioned
in section 2.1). Submissions B01-B36 are described in their respective publication; the
appendix contains a list of references in table A.2. A summary of the five official contribu-
tions, FO1-F05, is presented in the following five paragraphs, which are taken from (Zenk
et al. 2025a). The original text was written by me based on the participants” papers and
slightly adapted here to match the style of this thesis. Algorithm characteristics for all
submissions are also analyzed in section 3.1.2.5 and summarized in table 3.1.

Team Sanctuary (F01) (Jiang et al. 2022) based their submission on the nnU-Net
contribution for BraTS 2020 (Isensee et al. 2021b), extending it with test-time adaptation
through batch normalization (BN) statistics. Unlike the conventional approach of collecting
and freezing BN statistics during training, their method leverages test data information to
dynamically correct internal activation distributions, thus addressing domain shift issues.
In their approach, BN statistics are recalculated based on the batch at prediction time.
Notably, the algorithm utilized a batch size of 1 during testing. Furthermore, the team
employed an ensemble strategy involving six models trained on distinct training data folds.
Each of these models underwent adaptation using test-time BN.

Team Graylight Imaging (F02) (Kotowski et al. 2022) built upon the 3D nnU-Net
framework, incorporating a customized post-processing step specifically designed for the
tumor core (TC) region and previously used in (Kotowski et al. 2021). The post-processing
method named FillTC relabels voxels surrounded by TC to necrotic core/necrocyst (NCR).
This iterative post-processing is sequentially applied to each 2D slice, first in the axial
direction and subsequently in the coronal and sagittal directions. The rationale behind this
approach is grounded in clinical expertise, suggesting that significant tumors typically lack
voids of healthy tissue. Furthermore, if a given region is surrounded by NCR or enhancing
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tumor (ET), it is deemed to be part of the TC.

Team NG research (F03) (Ren et al. 2021) adapted their submission from the BraTS
2021 challenge, which makes heavy use of model ensembling. The ensemble comprises
five models of diverse architectures, which are combined with mean softmax: three are
based on U-Net (Ronneberger et al. 2015), one on HRNet (Wang et al. 2021), which
is a CNN that maintains multi-resolution branches, and one on CoIR (Xie et al. 2021),
which combines convolutional and self-attention blocks in the encoder. Their models were
refined by several strategies: Randomized data augmentations, including affine transforms,
mirroring, and contrast adjustment, were employed during training to enhance model
robustness. Furthermore, a post-processing step was integrated that selectively discarded
ET predictions falling below a specified volume threshold.

Team vizviva (F04) (Peiris et al. 2022) employed an encoder-decoder architecture
based on volumetric vision transformers. In this setup, the encoder partitions a 3D scan
into patches, subsequently processing them through layers that amalgamate the outputs
of 3D Swin transformer blocks (Liu et al. 2021) and 3D CSwin transformer blocks (Dong
et al. 2022). For the decoder, 3D Swin transformer blocks and patch expansion layers
are utilized to reconstruct the processed information. The training strategy involved a
combination of cross-entropy and Dice loss. Additionally, to bolster the model’s resilience
against adversarial examples, virtual adversarial training introduces an extra loss term.

Team HPCASUSC (F05) (Shi et al. 2022) used a 3D U-Net model and added improve-
ments inspired by (Isensee et al. 2021b). They used region-based training, which uses
the WT, TC and ET regions as labels during training instead of NCR, ED and ET. Further,
they increased the batch size to 24 and used batch normalization layers instead of instance
normalization. Data augmentation consisted of random mirroring, rotation, intensity shift,
and cropping.

3.1.2.2 Findings from the Annotation Quality Control

While dataset diversity was the central goal of the FeTS challenge, it also bore risks with
respect to the annotation process. Each institution contributing data to the test set also
generated the reference segmentation independently, which complicates annotation quality
control. Fortunately, a subset of institutions shared their datasets with the FeTS challenge
organizers after the federated evaluation, allowing to perform quality control on the
annotations for 1201 cases from 16 institutions. The main goal of the quality control
was to quantify the frequency of annotation errors and estimate whether they affect the
challenge results. In total, 125 cases (10.4 %) were identified by visual examination to
have insufficient quality, with a median of 5 erroneous samples per institution. These
were subsequently not used for the challenge ranking and analysis. The observed errors
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were diverse and differed between the institutions: Individual reference segmentations
appeared to be inaccurately hand-drawn, some resembled an extremely noisy automatic
segmentation, and others were completely empty. Apart from segmentation mistakes,
another reason for exclusion was the quality of imaging data: In some cases, errors during
registration or skull-stripping prevented an accurate segmentation. Furthermore, for one
institution, 11 duplicated scans were found.

The most consistent annotation errors between institutions, however, were related
to bright blood products. When bleeding occurs near the tumorous brain region, this
often appears as hyperintensities in both native T1-weighted (T1) and contrast-enhanced
T1-weighted (T1-Gd) sequences. According to the official annotation protocol, however,
the ET region should only contain the enhancements that are not hyperintense in T1. In 43
cases, this convention was not obeyed and T1-Gd hyperintense regions were labeled as
ET irrespective of their appearance in T1. Figure 3.5 (c) shows an example case with this
erTor.

A second common issue is the subjective delineation of the TC region. This occurs
because the official TC definition also includes non-enhancing tumor components, which
can be difficult to differentiate from edematous or infiltrated areas. Since the inter-annotator
discrepancies caused by this are in line with the annotation protocol, cases with large TC
parts, possibly interpreted as non-enhancing tumor regions, were not considered errors.
However, it is worth mentioning that 46 cases could potentially fall into this category. One
example is shown in fig. 3.5 (d).

For the two most salient issues described above, similar cases could also be found in
the training set, highlighting a prevalent issue in the field of medical image segmentation:
the reference segmentations used for algorithm evaluation may not always represent the
ground truth, which is usually inaccessible for radiological images. Furthermore, annota-
tors are known to disagree with each other (or even themselves at different time points),
resulting in inter- and intra-rater variability in creating these reference segmentations. For
the BraTS challenge, the median inter-rater agreement has been estimated previously to
DSC scores of 0.87, 0.86 and 0.77 for the WT, TC and ET regions (Menze et al. 2015).

In conclusion, the annotation quality control revealed two issues that occurred consis-
tently across institutions. However, about 90 % of the inspected test cases had acceptable
segmentations, and figs. A.3 and A.4 in the appendix show there are only minor differ-
ences in the rankings and DSC distributions, respectively, before and after quality control.
Although it is possible that annotation quality differs in the part of the test set that could
not be shared, these results provide an estimate for the frequency of potential annotation
errors and suggest that they do not considerably affect the challenge results.
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3.1.2.3 Challenge Analysis

To find out whether current brain tumor segmentation algorithms generalize “in the
wild” (RQ 1.1 on page 68), 41 models were evaluated on test cases from 32 institutions
using federated evaluation. Figure 3.3 shows the mean DSC values per institution and
model, revealing that the top models achieved good results with mean DSC scores around
0.9 for most institutions. However, there were also some sites on which the DSCs were
considerably worse, for example institution IDs 12, 15, 16 and 24. Note that the top models’
scores were largely consistent within each institution (column in the heatmap of fig. 3.3),
which indicates that they shared a lack of generalization to the institutions with lower
performance. These trends were less pronounced but similar for the HD metric; the
corresponding diagram can be found in the appendix (fig. A.1). Another observation
from these results is that there were six institutions for which not all algorithms could be
evaluated due to technical reasons (details in section 3.1.2.6). This illustrates a different
aspect of robustness: Even though the algorithm might generalize to the dataset at these
sites, technical compatibility can still prevent successful deployment in federated systems.

While fig. 3.3 gives a high-level picture of the challenge results for all models, it does not
contain information about the performance for individual test cases. Figure 3.4 provides
additional insights: The upper part reveals a lack of robustness of the top 20 models by
highlighting considerable gaps between average-case generalization, measured by median
DSC across cases, and worst-case generalization, measured by the 10th percentile DSC.
Moreover, and surprisingly, the models did not necessarily generalize better on institutions
represented in the training set than on those not contributing to training set cases. The
lower part of fig. 3.4 focuses on the best model, showing that there were outlier cases with
low DSC for most institutions, which can be considered failures. This is also observed
when looking at DSC of individual tumor regions instead of the mean (fig. A.2 in the
appendix). Together, these findings suggest that case-specific failure sources exist, which
might be distinct from the institution-level distribution shift.

3.1.2.4 Qualitative Failure Case Analysis

One conclusion from the previous section was that segmentation algorithms might fail on
individual samples, although they perform decently on the majority of cases from a given
institution. This raises the question of what common failure sources are in the dataset. To
gain a clearer picture and find a qualitative answer to the aspects of dataset characteristics
in RQ 1.2 (page 68), a visual review was performed for a subset of test samples for which
the ensemble of the 15 best methods obtained poor segmentation metric values. This
analysis was only possible on samples the organizers had access to, which correspond
to those used for annotation quality control (see section 3.1.2.2). The following points
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Figure 3.3: Aggregated challenge results of the FeTS22 challenge for each evaluated model
and institution. Each tile in the heatmaps represents the DSC value of a single model,
averaged over all test cases and tumor regions of one institution. The values were clipped
at 0.5 and white tiles indicate evaluation runs that failed due to technical issues. Models
are sorted by mean DSC (bar plot on the left) and institutions by their test set size (bar
plot at the top). The best models achieved similar performances within each institution, as
apparent from the vertical structures in the heatmap. However, for some institutions the

performance of all models dropped, indicating a lack of robustness. Figure adapted from
(Zenk et al. 2025a).
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Figure 3.4: Average-case and worst-case performance of the top 20 algorithms in FeTS22
(top), and case-level challenge results of the top-ranked algorithm (bottom) for each
institution of the test set. While most institutions were not seen during training, some also
contributed (different) cases to the training set (“seen during training”). Top: For each
institution and the 20 best-ranked models, the median and 10th percentile of DSC (mean
across the three tumor regions) are shown as a measure for average-case and worst-case
performance, respectively. Low values for the median or a large gap to the 10th percentile
indicate robustness issues, which occurred in several institutions. Bottom: Detailed results
for one model, where each gray dot represents the DSC score for a single test case. Despite
the high median performance for most institutions, there were often individual cases with
reduced performance, even for institutions seen during training. Figure adapted from
(Zenk et al. 2025a).
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describe the most frequent failure cases for each tumor region:

o WT: T2-hyperintensities were sometimes labeled as edema (ED), although they are
caused by other pathologies. Figure 3.5 (a) shows an example where the prediction
segments one half of the symmetrical hyperintensity near the ventricles, although it
is far from the enhancing tumor.

e TC: The evaluated models occasionally labeled “random” parts near the ET region as
NCR, despite little evidence in the imaging data for necrotic or cystic tissue (fig. 3.5
(b, d)). This is likely due to the inherent ambiguity in non-enhancing tumor regions,
which were a separate label in BraTS challenges before 2017 but were later merged
into the NCR label (Bakas et al. 2019). Similar issues were observed during the
annotation quality control (section 3.1.2.2).

e ET: Small contrast enhancements were sometimes not detected, especially if they
were distant from the main tumor (fig. 3.5 (b)). A second common mistake related
to ET happened for cases in which part of the tumor is hyperintense both in the T1
and T1-Gd sequences (fig. 3.5 (c)). The ET label should then only contain the areas
which are enhanced compared to T1, but often the prediction covered the whole
T1-Gd hyperintense region. Some reference segmentations of the training set also
contain the latter flaw, which is discussed in more detail in section 3.1.2.2.

Another known failure source in brain tumor segmentation is small tumor region size,
which mostly affects the TC and ET regions. Especially DSC is overly sensitive to minor
differences in segmentation masks when the target objects are small (Reinke et al. 2021).
In cases with low-grade gliomas, TC or ET can even be absent completely. The BraTS
convention for these cases is that a prediction obtains perfect scores if it is also empty (DSC
=1, HD = 0) and worst scores if it is non-empty (DSC = 0, HD = 373.15). In the FeTS22 test
set, the number of cases with empty reference regions was 1 (WT), 49 (TC) and 117 (ET),
which corresponds to about 4.5 % of all cases. Figure 3.6 illustrates that also cases with
small, non-empty tumor regions were difficult to segment for state-of-the-art models. The
two-dimensional histogram compares region volume in the reference segmentation with
the achieved segmentation metrics for the top 10 models evaluated in the FeTS challenge.
While noisy DSC values are expected for small tumor regions, the HD values also show
an increase in outliers for small regions, which indicates that localizing these lesions is
still challenging.

3.1.2.5 Challenge Ranking

The official challenge ranking, presented at the medical image computing and computer
assisted intervention (MICCAI) conference 2022, was computed based on the results of
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the five original FeTS submissions on all institutions and is reflected in their model IDs,
FO1-F05. In a second, extended ranking, the 36 models converted from the BraTS 2021
challenge (B01-B36) were added. Institutions with IDs 2, 10, 13, and 17 were excluded
from this ranking, as many BraTS models could not be evaluated on them due to technical
issues. In the extended ranking, the best original FeTS submissions were pushed back to
the ranks 7 to 9, and the BraTS models took the top positions instead; they hence represent
the state of the art in terms of generalizability. Ranking stability with respect to randomness
in test data selection was analyzed by recomputing the ranking for 1000 bootstrap samples
in fig. 3.7. It shows that the ranking was more stable for the DSC metric than for HD.
Furthermore, the ranking order depended on the tumor region and metric, which suggests
that the teams optimized different aspects of their algorithm.

As a qualitative summary of the teams” algorithmic design choices, table 3.1 contains
descriptions of salient algorithm characteristics for all submissions, and the extended
ranking. The differences between the submissions mainly affected the network architecture,
post-processing, and the number of models in the ensemble. With respect to the question
of which algorithm characteristics affect generalization (RQ 1.2 on page 68), no single
characteristic stood out among the top teams, but a few trends could be observed: U-Net
variants were still the most popular network architectures and achieved very good results
without requiring extensions like attention blocks or residual connections. This point is
supported by the fact that implementing the algorithm in the nnU-Net framework (Isensee
et al. 2021a) increased the chances for a top position: 9 of the 20 top submissions were
(partially) based on nnU-Net, while within the lower-ranked half of submissions none
used its self-configuring capabilities. Other popular design choices were using model
ensembling and removing implausibly small predicted regions in a post-processing step.
The only algorithm that adapted to distribution shifts was model FO1, which recomputed
the batch normalization statistics at test time. However, it was superseded in the ranking
by the BraTS 2021 models, which did not have access to information about the training set
partitioning. Therefore, the FeTS challenge could not clarify if there is a better way to use
multicentric training data for enhancing algorithmic robustness than simply training on
the pooled data.
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Figure 3.5: Examples of common segmentation errors. For each case (row), the three most
relevant MRI sequences are shown. The depicted segmentation masks are the predictions
of the best model (ID: BO1) in (a, b) and the reference segmentation in (c, d), respectively.
(a) False positive ED prediction. The symmetric hyperintensity is caused by a pathology
that is not related to the tumor. (b) A small contrast enhancement is missed, separate from
the larger tumor in the lower right. (c) Blood products are bright in T1 and T1-Gd, so they
can be confused with ET. This issue occurs in some reference segmentations and test set
predictions. (d) The segmentation of non-enhancing TC parts (labeled as NCR here) is
difficult and often differs between annotators. Figure adapted from (Zenk et al. 2025a).
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Figure 3.6: 2D-Histograms of true region size versus segmentation metrics for all test cases,
accumulated over the predictions of the ten best models. Each row shows a different tumor
region (TC and ET), whereas the columns correspond to two metrics (DSC and HD). HD
was clipped to 100, and the color bars apply per column. The WT region is not shown as
it is usually quite large, and this figure focuses on the effect of small tumor volumes. In
all four panels, these small regions result in a wider distribution of DSC and HD values.
In the extreme case of regions with zero size, the metrics become binary, which explains
the accumulations at these points in the diagram. While DSC is known to be noisy for
small regions, HD shows that it is harder for the models to localize them correctly. Figure
adapted from (Zenk et al. 2025a).
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Figure 3.7: Ranking stability for each region and metric evaluated in the FeTS22 challenge,
based on 1000 bootstrap samples. The size of the circular markers is proportional to the
fraction of bootstrap samples for which an algorithm occupied a specific rank. Black crosses
denote the median rank across bootstrap samples. For clarity, only the top 15 models are
shown in the final ranking order, and the official FeTS submissions are colored. The ranking
based on DSC is usually more stable than for HD, and the differences between the tumor
regions indicate that the algorithms have distinct strengths.
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Table 3.1: Extended ranking and algorithm characteristics of all models evaluated in the FeTS Challenge 2022. Algorithm
characteristics were extracted from the participants” method description papers. The keywords in the table are described
in more detail in appendix A.3. ’-" denotes that nothing was reported for this field. Abbreviations: CNN = convolutional
neural network, CE = cross-entropy, VAT = virtual adversarial training. Table adapted from (Zenk et al. 2025a).

Model Rank Architecture Loss Post-processing Ensemble nnU-Net
ID size
BO1 1 U-Net, larger encoder CE, batch Dice, region- ET (small to NCR) 10 yes
based
B02 2 U-Net, larger encoder, multi- focal loss, jaccard, - 30 no
scale skip block region-based
B04 3 U-Net CE, Dice, TopK, region- - 5 yes
based
B07 4 U-Net, residual blocks, trans- CE, Dice ET (small to NCR) 3 yes
former in bottleneck
B05 5 U-Net CE, Dice ET (drop disconnected), 5 yes
TC (fill surrounded), WT
(drop small components)
B03 6 U-Net, larger encoder CE, batch Dice, region- ET (small to NCR) 5 no
based
F02 7 U-Net CE, Dice TC (fill surrounded) 5 yes
FO1 8 U-Net CE, Dice, region-based ET (small to NCR) 5 yes
F03 9 CoTlr, HR-Net (CNN), U-Net, U- multi, region-based ET (small to NCR) 5 yes +
Net++ other
B09 10 U-Net, larger encoder, residual Dice, focal loss ET (small to NCR) 5 no
blocks
B06 11 HNF-Net (CNN), attention CE, genDice, region- ET (small to NCR) 5 no
based
B08 12 U-Net, multiple encoders CE, Dice, region-based ET (small to NCR) 4 no

—table continued on next page—
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Model Rank Architecture Loss Post-processing Ensemble nnU-Net
1D size
B10 13 U-Net CE, Dice, generalized - 8 no
Wasserstein Dice
B12 14 U-Net, larger encoder, residual Dice, region-based ET (small to NCR) 4 no
blocks
B11 15 U-Net, modality co-attention, CE, region-based ET (drop small compo- - no
multi-scale skip block, trans- nents)
former in bottleneck
B17 16 U-Net CE, Dice, region-based ET (convert to NCR based 10 yes +
on auxiliary network), other
drop small components
B14 17 U-Net CE, Dice, batch Dice, ET (small to NCR) 15 yes +
region-based other
B16 18 U-Net batch Dice, region- ET (small to neighboring 5 no
based label), drop small compo-
nents
B15 19 - - - - -
B13 20 HarDNet (CNN) CE, Dice, focal loss, - 3 no
region-based
B19 21 U-Net, attention Dice, region-based - 1 no
B18 22 U-Net, attention CE, Dice, region-based - 1 no
B21 23 - - - - -
B22 24 U-Net, multiple decoders CE, Dice, region-based TC (remove outside of 1 no
WT), drop small compo-
nents, morph. closing
B20 25 2-stage, 2D, CNN, U-Net, U- Dice - 29 no
Net++, residual blocks
B23 26 CNN, neural architecture search  CE, Dice, region-based - 5 no

—table continued on next page—
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Model Rank Architecture Loss Post-processing Ensemble nnU-Net

1D size

FO05 27 Swin Transformer CE, Dice, VAT, region- - 1 no

based

F04 28 U-Net Dice, region-based - 1 no

B36 29 U-Net CE, Dice - 1 no

B26 30 2D, U-Net, attention, residual CE, Dice - - no
blocks

B27 31 U-Net, attention, residual blocks  Dice, region-based - 5 no

B25 32 2D, U-Net, residual encoder Dice - 1 no

B24 33 2-stage, U-Net, residual blocks CE, Dice, region-based ET (small to NCR) 5 no

B28 34 2D, U-Net, residual encoder, CE, Dice, region-based - 1 no
transformer

B30 35 2-stage, U-Net = = 1 no

B29 36 U-Net, multi-stage BCE fill holes 1 no

B31 37 2D, U-Net++ Dice, boundary dis- - 3 no

tance

B32 38 2-stage, CNN, Graph NN CE - 1 no

B35 39 CNN, larger encoder, residual Dice, boundary, region- ET (small to NCR) 1 no
blocks based

B33 40 2D, U-Net Dice - 1 no

B34 41 - - - - -
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Chapter 3. Results

3.1.2.6 Practical Experiences with Federated Evaluation

The FeTS challenge was the first to employ federated evaluation in a challenge bench-
marking setting. Consequently, various practical problems concerning its organization or
implementation had to be solved. Here, the most important experiences are described and
put in a general context (“lessons learned”), to answer RQ 1.3 (page 68) and aid other
researchers in the future with similar projects.

The federated evaluation demanded significant amounts of time and coordination,
especially for setting up the software and resolving technical issues at federated site.
While the challenge participants developed their algorithms in the training phase, the
evaluation system was already tested on a small subset of institutions. This allowed for
finding solutions to common problems encountered during these preliminary tests, which
could later speed up the troubleshooting during the large-scale setup. In the official test
set evaluation phase, a compatibility test was conducted once at each institution, which
consisted of sanity checks on the local data and running the complete evaluation pipeline
using a reference model. The reference model was based on a nnU-Net submission to
a previous BraTS challenge (Isensee et al. 2021b). To identify potential issues with the
software and the data, the compatibility test was run for a standardized toy dataset and for
the local test data, respectively. Eventually, setting up the evaluation system at each site
took from a few days to several weeks. Running the actual evaluation was fast compared to
the time spent on evaluation system setup: On a single-GPU reference hardware, executing
the evaluation pipeline for all 41 models on 100 cases required 86 hours. In the real-world
federation, however, the inherent heterogeneity of IT systems led to diverse technical issues
during setup and evaluation, which required remote support from the organizers to resolve.
Coordinating the troubleshooting with each institution’s representative through shared
log files, emails or video calls resulted in slow feedback loops, making communication
the primary bottleneck in the FeTS challenge. This significantly extended the duration of
the complete evaluation process (including setup), which ranged from a few weeks to
half a year. In conclusion, the practical hurdles and organizational effort of conducting a
large-scale federated evaluation should not be underestimated, and extensive technical
monitoring and support are likely necessary.

One particularly frequent issue within the FeTS challenge was compatibility with
the heterogeneous GPU hardware in the federation. As a countermeasure, a specific
base docker image compatible with all common GPU models available at the time of the
challenge was recommended for official challenge submissions. However, this recommen-
dation was not followed by the 36 models adapted from docker images submitted to the
BraTS 2021 challenge, as their base images were chosen before the FeTS challenge took
place. Consequently, the official challenge submissions did not encounter errors related
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to GPU compatibility at any institution, whereas some BraTS submissions could not be
run everywhere, resulting in the missing model evaluations from fig. 3.3. This experience
highlights that the (GPU) hardware present in a federation needs to be assessed early on,
to determine effective compatibility solutions that can be used by challenge participants
and guarantee a successful federated evaluation.

Finally, for a federated challenge such as FeTS, case-specific meta-data for the challenge
test set can facilitate advanced analyses beyond pure ranking and segmentation metric
values. In the FeTS challenge, meta-data was only available at the institution level, which
could be used for a descriptive data analysis. To identify failure sources, however, case-
specific information about the tumor region size and (limited) data sharing were more
helpful. As data sharing is usually not easily done in federated setups, the experiences
from the FeTS challenge suggest that additional meta-data on the patient level should be
collected for the test set to facilitate deeper insights.
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3.2 Failure Detection

The goal of this study was to compare methods that can notify the user when a segmentation
model’s prediction is suspected to contain errors. To this end, the following RQs were
posed in the introduction:

RQ 2.1: What are best practices and pitfalls related to the evaluation of segmentation
failure detection?

RQ 2.2: Which failure detection algorithms are reliable across multiple datasets?

RQ 2.3: How to aggregate pixel-level confidence into image-level scores for failure
detection?

A unified evaluation protocol was presented in section 2.2.2, which addresses RQ 2.1 and
allows benchmarking a variety of methods from section 2.2.5. The results of this large-scale
benchmark are reported in Section 3.2.1, providing answers to research questions (RQs)
2.2 and 2.3. Section 3.2.2 shows extensions to the original benchmark that investigate
how failure detection methods are impacted by the network architecture or dataset size
and whether they generalize to other imaging modalities. Finally, section 3.2.3 presents
an analysis of the evaluation protocol and clarifies how the results change if alternative
protocols are used, thereby providing quantitative results for RQ 2.1.

3.2.1 Failure Detection Benchmark Results

This part initially reports results for the segmentation performance obtained on the six dif-
ferent datasets that were used for benchmarking failure detection methods (section 3.2.1.1)
to illustrate that the segmentation models produce enough failures that can be detected.
Based on this foundation, results for the two classes of failure detection methods are pre-
sented, first for methods based on the aggregation of pixel confidence maps (section 3.2.1.2)
and then for methods that perform image-level confidence scoring directly (section 3.2.1.3).
An overall comparison of the two classes is integrated in the latter section.

3.2.1.1 Segmentation results

Following the methodology from section 2.2.4, five U-Nets with different random seeds
were trained for each of the five cross-validation folds, resulting in 25 models per dataset
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Figure 3.8: Test set segmentation performance measured by DSC, of a single U-Net trained
on the first fold of the training data. Boxes are laid over scores for individual test cases
(gray points), showing the median and interquartile range (IQR) of the DSC distribution,
while whiskers extend to the 5th and 95th percentiles, respectively. Each dataset includes
samples originating from the same distribution as the training set (in-distribution, ID) and
samples exhibiting a dataset shift. Typically, performance was higher on in-distribution
samples compared to those affected by a distribution shift; however, notable exceptions
were observed, such as in the Kidney tumor dataset (which lacked distribution shifts) and
the Covid dataset, where several in-distribution failure cases were also present. Figure
adapted from (Zenk et al. 2025b).

from section 2.2.3. Most datasets contain samples with distribution shifts in their test
set to simulate a realistic deployment scenario with unseen data characteristics at test
time. As fig. 3.8 shows, failures occurred more frequently for samples with dataset shifts,
but the kidney tumor and Covid datasets show that low DSC score segmentations were
also found for in-distribution samples. These results reflect the performance of a single
U-Net, which is usually inferior to ensembling multiple predictions. Figure 3.9 visualizes
the performance gains from using an ensemble of networks or MC-Dropout, which were
trained on the same data as the single network baseline. While the improvements from
MC-Dropout were negligible, the ensemble could increase the mean DSC by +0.008 for
the brain tumor 2D dataset (single net: 0.833), +0.011 for the brain tumor dataset (single
net: 0.785), -0.002 for the heart dataset (single net: 0.791), +0.016 for the kidney tumor
dataset (single net: 0.834), +0.009 for the Covid dataset (single net: 0.628) and +0.045
for the prostate dataset (single net: 0.566). Individual samples exhibited much larger
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Figure 3.9: Performance difference (DSC scores) on the test set between a single network, a
model that averages the predictions of multiple forward passes through the same network
with enabled test-time dropout (MC-Dropout), and an ensemble containing four additional
models trained independently on the same data. The median DSC differences are larger
for Ensemble than for MC-Dropout, but overall still small compared to the deltas on
individual test cases. Most distributions for the Ensemble are skewed toward positive
values, indicating that it can already avoid some failures by improving the segmentation
performance.

differences (in both directions), turning a failure case into a successful prediction and vice
versa. Hence, such differences should not be neglected when evaluating failure detection
methods, which is captured by evaluation protocol requirement R2 from section 2.2.2.1. For
this reason, whenever possible, comparisons between failure detection methods in the next
sections are made based on the same underlying prediction model, for which the options
are single network, MC-Dropout, or Ensemble. Although the suggested risk-coverage
analysis and the area under the risk-coverage curve (AURC) metric allow a fair comparison
even between different prediction models, any such comparison is transparently reported
in the following because a difference in AURC can be due to enhanced failure detection
performance or better segmentation performance by the prediction model.

3.2.1.2 Pixel confidence aggregation Methods

The segmentation performances from the previous section determine the risks associated
with each prediction. Failure detection methods try to output a confidence score that
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Figure 3.10: Comparison of aggregation methods from section 2.2.5.1 in terms of AURC
scores for all datasets (lower is better). Each colored dot corresponds to a single exper-
iment, meaning a prediction model + aggregation method, trained on one fold of the
training data. PE was used as a pixel-wise uncertainty. Gray “~” markers visualize values
for the random/optimal confidence baselines, which differ between the models trained on
different folds due to their varying segmentation performance (section 2.2.2.2). Aggre-
gation methods based on regression forests (RF) show performance advantages on most
datasets but fail catastrophically on the prostate dataset, possibly due to the small training
set size. Figure adapted from (Zenk et al. 2025b).

estimates that risk. This section focuses on the family of methods that aggregate pixel con-
fidence maps (section 2.2.5.1). Evaluating the AURC metric for all aggregation methods
based on the confidence maps produced by a deep ensemble results in the experimental
data shown in fig. 3.10. The best-performing aggregation method among those that do
not require training (mean, foreground mean, non-boundary, patch-based) differed be-
tween the datasets. On four of six datasets, all of these methods improved upon random
confidence scores, but for the kidney tumor and Covid datasets, some of them outper-
formed this baseline only marginally. The two methods based on DSC regression through
a regression forest (RF), which is trained on features of the prediction and confidence
map, achieved lower (better) AURCs on five of six datasets. However, the Prostate dataset
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Figure 3.11: Ranking distribution obtained through bootstrapping (N = 1000) for ag-
gregation methods, compared between two different prediction models (single net and
ensemble). The bootstrapped ranks for all six datasets are combined in this figure to
provide an overview across datasets. Here, the area of each circular marker is proportional
to the ranking count across bootstrap samples, and the black crosses indicate the median
rank. There are only small differences between the ranking distributions when using a
single network or ensemble. Mean and foreground-mean are usually worst, while failure
detection methods based on a regression forest (RF) work best.

exemplifies an important exception, as their performance dropped to the random level on
it. A possible explanation for this behavior is the small training set size for the prostate
dataset (N = 26), which may have been insufficient to train a generalizable regression
forest on the simple/radiomics features.

Figure 3.10 focuses on the performance of different confidence aggregation methods
based on the predictions of a deep ensemble and confidence maps derived from them
via predictive entropy. Both of these components—in the language of section 2.2.5.1, the
prediction model and pixel-wise uncertainty measure—can be modified to check how
robust the results are with respect to a particular choice. Changing the prediction model
from an ensemble to a single network did not alter the overall aggregation method ranking
by much (fig. 3.11), suggesting that aggregation methods can be transferred to different
pixel confidence methods. On average, mean confidence or mean foreground confidence
were at the two last ranking positions, suggesting that they are a weak baseline, even though
they are commonly used. The two pixel-wise uncertainty measures for ensembles explored
in this study were predictive entropy (PE) and mutual information (MI). Comparing the
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Table 3.2: AURC scores (x100) on the test sets for different pixel-level uncertainty measures
(PE and MI) and aggregation methods, averaged across five prediction models trained on
different folds. The best AURC (lower is better) is highlighted for each dataset row. Each
prediction model is an ensemble of five networks. Performance gains by switching from
PE to MI are largest for the kidney, Covid, and prostate datasets.

Aggregation — mean foregr. mean | non-boundary | patch-based
Dataset | MI PE MI PE MI PE MI PE
Brain tumor (2D) | 8.8 8.9 11.0 11.1 9.1 9.1 8.4 8.4
Brain tumor 14.0 16.6 12.4 12.5 13.3 13.6 13.8 14.0
Heart 136 138 145 146 |126 125 13.0 133
Kidney tumor 12.8 14.3 13.3 14.5 13.1 13.7 12.5 13.3
Covid 30,5 331 345  36.1 27.7 303 324 353
Prostate 231 234 | 227 234 |231 234 229 233

AURC:s of four aggregation methods based on these two measures showed that MI had a
slight advantage on most datasets.

3.2.1.3 Image-level methods

Moving on to failure detection methods that do not require a pixel confidence map (sec-
tion 2.2.5.3), fig. 3.12 shows that the pairwise DSC achieved consistently the best AURC
scores. It is applicable to any prediction method that produces multiple samples, such as
deep ensembles or MC-Dropout. While ensembles worked overall best in the experiments
reported here, pairwise DSC also performed well in combination with MC-Dropout, high-
lighting its flexibility and robustness. The second-best image-level failure detection method
was the quality regression network. However, it revealed weaknesses in the prostate and
Covid datasets. For the prostate dataset, this behavior was similar to the regression forests
from the previous section, It could be due to the small training set size (N = 26), which
may not have been enough to train a generalizable regression network. The Mahalanobis
and VAE-based methods achieved significantly worse AURCs on most datasets than the
aforementioned methods. As the Mahalanobis method was proposed for a single network,
it suffered the disadvantage of using a weaker prediction model. AURC still allowed to
tairly compare it to other methods, as it considers both segmentation performance and
failure detection, which cannot be disentangled in practice either (see section 2.2.2.1).
The VAE rarely performed better than the random baseline, indicating that it is either
unsuitable for failure detection or difficult to adapt to new datasets.

The evaluation protocol developed within this thesis also enabled a comparison between
the methods based on pixel confidence map aggregation in the previous section and the
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Table 3.3: AURC scores (x100) on the test sets for different failure detection methods.
Mean and standard deviation (std) are computed across five prediction models trained
on different folds. A color map is applied on each ‘mean’ column, ranging from light
yellow (worse) to dark green (best). PE was used for pixel uncertainty. Mean foreground
aggregation and RF (radiomics features) were not included in the comparison, as they are
similar to mean aggregation and RF (+ simple features), respectively. In this comprehen-
sive comparison, pairwise DSC can also outperform methods based on pixel confidence
aggregation. The quality regression network (the second-best image-level method) and the
RF achieve comparable failure detection performance, switching ranks between datasets
frequently. Abbreviations: Ens.: Ensemble, Single: Single network.

Brain-2d Brain Heart Kidney Covid Prostate
mean std mean std mean std mean std mean std mean std

03 | 166 04 0.7 143 05 331 15 pwkxam 0.8

Ens. + mean

Ens. 4+ non-boundary 0.1 0.4 05 137 02 7303 1.2 kK (.8
Ens. + patch-based 0.3 0.3 06 133 06 353 15 ppckl 1.0
Ens. + RF (simple features) 0.1 0.2 0.7 mxe 0.3 02 365 22
Ens. + Quality regression 0.6 0.2 0.6 EECHEN 0.4 1.1 F8028 1.3
Ens. + pairwise DSC : 0.1 0.1 05 Ky 0.2 0.3 |psxug 0.6
Single + Mahalanobis 133 04 1.7 06 151 09 07 337 24
Ens. + VAE (seg) 120 05 225 12 193 29 147 06 374 1.1 gl 09

image-level methods above. A selection of these methods is shown in table 3.3, and ranking
stability is analyzed in section 3.2.3 (fig. 3.17). Pairwise DSC worked consistently best
across datasets and was, hence, the overall winning algorithm for this benchmark. The best
aggregation method from section 3.2.1.2 was a RF trained on simple features. Compared
to the image-level methods presented here, it was closest to the performance of a quality
regression network. This makes intuitive sense because both are regression models that
learn to estimate the true DSC score. It is interesting to see, however, that the RF was
competitive or even better on individual datasets, given that it operates on only five features.

To understand the strengths and weaknesses of the best-performing method, pairwise
DSC, a deeper analysis of this method’s results is provided in the following. This analysis
focuses on its calibration, which means in this context that the pairwise DSC between
ensemble predictions ideally is a good approximation of the true DSC, computed between
ground truth and prediction. Although failure detection relies on the ranking of confidence
scores, not their calibration, these two goals are closely related if the DSC is used as a risk
function. Figure 3.13 shows that pairwise DSC was correlated with true DSC but also that
it tended to overestimate the latter, especially on the Covid dataset. For all datasets, there
were samples with high pairwise DSC and low true DSC, which are the practically most
problematic because they are failures that would not be detected as such.
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Figure 3.12: Comparison of image-level failure detection methods from section 2.2.5.3 in
terms of AURC scores for all datasets (lower is better). Each colored marker corresponds
to a single experiment, meaning a prediction model + aggregation method, trained on one
fold of the training data. The marker shape represents differences in prediction models.
Gray “-” markers visualize values for the random/optimal confidence baselines, which
differ between the models trained on different folds due to their varying segmentation
performance (section 2.2.2.2). Pairwise DSC performs clearly best across all datasets. The
lowest AURCs are achieved in combination with the ensemble, but MC-Dropout also yields
good results. Quality regression networks are usually the next-best option, but they show
a performance drop on the Covid and Prostate datasets. Figure adapted from (Zenk et al.
2025b).

To gain intuition about the behavior of ensemble + pairwise DSC, fig. 3.14 shows
qualitative results for a few selected failure cases from each dataset. In the Brain tumor
(2D) dataset example, ensemble predictions consistently included a false-positive region
in the posterior part of the brain, likely due to bias field artifacts. The ensemble members
also disagreed on the extent of the actual tumor, resulting in low pairwise DSC. For the
3D brain tumor sample, cases of low-grade glioma (LGG) frequently exhibited inherent
ambiguity in the tumor core region (orange), which resulted in inconsistent ensemble
predictions and a reduced pairwise DSC.

In the heart example, segmentation errors occurred despite the clear visibility of the
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Figure 3.13: Scatter plot of confidence scores produced by ensemble + mean pairwise
DSC versus true DSC scores for all datasets. Data samples marked with ‘x” are visualized
in detail in fig. 3.14. The correlation between the two quantities is clearly visible, but the
pairwise DSC also tends to overestimate the true DSC, especially for the Covid dataset.
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target regions. Variability between ensemble members was primarily observed in the
right ventricle (green) region, while under-segmentation of the myocardium (orange)
was not captured. Consistent false positives in the orange region further indicate that
ensemble members often made similar mistakes, leading to potential issues with pairwise
DSC reliability.

For the Kidney tumor CT image, the ensemble consistently made errors, such as
segmenting masses beyond the kidneys or identifying additional kidneys. These obvious
errors covered large regions and resulted in high inter-model agreement, making these
failures harder to detect with pairwise DSC.

In the lung CT scan, the ensemble identified the rough location of Covid lesions, but
their extent often deviated from the ground truth. The largest lesion was relatively consis-
tent across ensemble members, leading to over-optimistic DSC scores. This observation
was characteristic of the Covid dataset, as shown by fig. 3.13, and might point towards an-
notation inconsistencies between the training and test sets due to differences in annotators
across the three subsets of the Covid data.

In the Prostate dataset, significant differences in acquisition techniques between training
and test sets resulted in diverse image appearances and severe segmentation errors. In
this example, the presence of an endorectal MR coil, which was absent during training,
made ensemble predictions unstable. Due to the variability in predictions, the pairwise
DSC was low, and these failures remain detectable.
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Figure 3.14: Qualitative analysis of ensemble predictions on all datasets (rows). Each row
shows a failure case, together with the reference (ground truth), the ensemble prediction,
and individual masks of its members, trained with different random seeds. The ensemble
members often disagree in test cases with segmentation errors, which leads to low pairwise
Dice as desired. However, all examples also contain regions where all ensemble members
consistently predict a faulty segment. If such regions are large, as for the kidney tumor,
they can result in an unnoticed failure. Figure adapted from (Zenk et al. 2025b).
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3.2.2 Extensions of the Benchmark

While the results shown so far focused on the high-level question “Which failure detection
method works best?”, the benchmark proposed in this study can be easily extended to
answer more questions on particular components of the failure detection system. Three
examples are reported in this section, investigating how the results generalize to datasets
from other medical imaging modalities than computed tomography (CT) and magnetic
resonance imaging (MRI), how sensitive the methods are to changes in the segmentation
backbone network, and how performance is affected when reducing the training set size.

3.2.2.1 Results on non-CT/MRI Datasets

As failure detection is also relevant for other modalities than CT and MRI, the comparison
between different methods is extended here to include the additional datasets from sec-
tion 2.2.3. Segmentation performance (fig. 3.15) revealed distinct patterns across datasets.
The heart ultrasound (US) dataset achieved relatively high and consistent DSC scores,
with only a few low-DSC failure cases, likely due to the absence of distribution shifts in
the test set. In contrast, the optical coherence tomography (OCT) dataset exhibited low
mean DSC scores, with a median DSCs for in-distribution cases only marginally above
out-of-distribution (OOD) cases, which may be due to high inter-annotator variability.
Finally, the large 2D optic disc/cup training set apparently did not prevent drops in DSC
caused by distribution shifts in the test set.

The failure detection results (table 3.4) on the additional datasets were similar to
the CT/MRI datasets: the pairwise DSC method consistently outperformed the other
approaches. Among the remaining methods, performance differences were minor when
comparing within the same prediction model, that is, a single network or ensemble. A
notable deviation from previous results was that the Mahalanobis method ranked second
for the heart ultrasound dataset, potentially indicating that samples with low DSC for this
dataset exhibited characteristics of OOD samples. For the OCT dataset, the variance across
different training folds was high, which can be explained by the small size of the training
and test sets.

These observations suggest that the heart ultrasound dataset did not contain enough
failure cases and that the OCT dataset was too small for reliable failure detection evaluation,
so neither of them was included in the main benchmark. The 2D optic disc/cup dataset
has the advantage that it can be used for fast experimentation, similar to the brain tumor
2D dataset, so it can be recommended for future benchmarking efforts.
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Figure 3.15: Segmentation performance for all test cases (gray points), measured by
DSC, of a single U-Net trained on the first fold of the training data. Boxes show the
median and IQR of the distribution, while whiskers extend to the 5th and 95th percentiles,
respectively. Two datasets also include samples with distribution shifts besides the samples
that originate from the same distribution as the training set (in-distribution, ID). While the
Optic cup/disc dataset displays a clear performance gap between the ID and distribution
shift subsets, the heart US dataset has only a few failure cases. DSC scores have high
variance for the OCT dataset. Figure adapted from (Zenk et al. 2025b).

Table 3.4: AURC scores (x100) for the same methods as in table 3.3, but with three datasets
from different modalities (US, OCT and fundus RGB photograph). Mean and standard
deviation (std) are computed across five prediction models trained on different folds. The
color map applied to each ‘mean’ column ranges from light yellow (worse) to dark green
(best). PE was used for pixel uncertainty. Pairwise DSC outperforms the other methods by
a clear margin on these additional datasets, while the differences between the remaining
methods” AURCs scores are smaller. Table adapted from (Zenk et al. 2025b).

Heart-US  OCT-fluids Optic c/d
mean std mean std mean std

Ensemble + mean 149 02 2.4 BROSE 0.1
Ensemble + non-boundary 146 02 2.6 ECEan 0.1
Ensemble + patch-based 150 03 29 ECkEN 0.2

23 103 05
2.6 96 05

Ensemble + RF (simple features) 154 0.3
Ensemble + Quality regression 152 04

Ensemble + pairwise DSC JEX (.2 3.5 0.1
Single net + Mahalanobis [l 02 387 52 103 03
Ensemble + VAE (seg) 154 0.1 2.4 967 0.2
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Table 3.5: AURC scores (x100) of failure detection methods with different segmentation
backbones on the heart and kidney tumor datasets. The default, residual encoder, and wide
U-Net backbones are included for the heart dataset, but the wide U-Net ran out of memory
for the kidney tumor dataset. Mean AURC are computed across three prediction models
trained on different folds. A color map is applied within each dataset block (6 x 3 cells for
heart, 6 x 2 cells for kidney), ranging from light yellow (worse) to dark green (best). Only
minor changes in the ranking order can be observed when switching between backbones,
with the pairwise DSC consistently dominating. Absolute differences in AURC between
backbones are small on the heart dataset, but the residual encoder improves the scores
significantly on the kidney dataset. Table adapted from (Zenk et al. 2025b).

Dataset: Heart Kidney tumor
Backbone: default residual wide | default residual
Failure detection method

Single net + mean 14.8 16.8 17.1 16.0 14.6
Single net + Mahalanobis 15.1 14.4 16.0 14.8 16.5

Single net + RF (simple features)
Ensemble + Quality regression
MC-Dropout + pairwise DSC
Ensemble + pairwise DSC

3.2.2.2 Influence of the Segmentation Backbone

The segmentation backbone can have two different effects on failure detection performance:
On the one hand, the segmentation accuracy can be improved with suitable architectures,
which also reduces the overall risk of failures and, simultaneously, AURC. On the other
hand, switching the network architecture also has an effect on the feature representations,
which might, in turn, affect the confidence scores of some failure detection methods.

An extensive evaluation of different backbone architectures is beyond the scope of this
thesis, but to demonstrate how the proposed benchmark can be used for studying the
impact of network architectures, two variants of the default backbone were compared on
the heart and kidney tumor datasets. The default backbone was a U-Net, while the variants
were: (i) A “wide” U-Net, which doubles the number of filters per convolutional layer
of the default. (ii) A residual encoder U-Net, which has a larger encoder with residual
connections, as described in section 2.2.4. Due to graphics processing unit (GPU) memory
limitations, the wide U-Net could not be trained on the kidney tumor dataset.

The results reported here were obtained by averaging the test set scores of three inde-
pendent runs, which were trained on different folds of the training data. The effect of the
architecture on the segmentation performance was mixed: For the heart dataset, the default
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U-Net achieved the best performance (mean DSC = 0.784), while the variants suffered
performance drops (mean DSC = 0.780 for the wide U-Net and 0.761 for the residual
encoder U-Net). Overfitting or lack of OOD robustness are possible reasons for these
drops. The situation was reversed for the kidney tumor dataset, for which the residual
encoder U-Net boosted the mean DSC to 0.868, compared to 0.833 for the default U-Net.
Some of this gain can be attributed to the increased patch size for the residual encoder
U-Net on the kidney tumor dataset.

Evaluating the failure detection results revealed that the clear differences in DSC scores
on the heart dataset did not directly translate to AURC values. The RF and quality re-
gression methods apparently could compensate for the additional failures, and pairwise
DSC even slightly outperformed the default U-Net. On the kidney tumor dataset, AURC
decreased for all methods except Mahalanobis when using residual encoder U-Nets, as ex-
pected based on the better segmentation performance. Although some methods swapped
ranks for different architectures, for example quality regression and MC-Dropout + pair-
wise DSC on the kidney tumor dataset, the overall ranking obtained in the main benchmark
was largely stable across backbones. This suggests that the segmentation backbone affects
most failure detection methods similarly.

3.2.2.3 Influence of the Training Set Size

The success of deep learning models critically depends on the amount of training data,
yet small sample sizes are common for medical image segmentation datasets. Failures
occur more frequently in applications with scarce training data, making failure detection
methods especially important for them. This section reports the results of experiments on
the impact of the training set size on the failure detection methods. The heart dataset was
chosen for this purpose, as it has large training and test sets and also small image shapes,
allowing for fast experimentation. The number of training cases was halved iteratively
from the original 152 down to a minimum of 8 scans, which correspond to 4 patients, as
the heart dataset has two scans per patient.

Figure 3.16 shows how the segmentation and failure detection performance evolved
with varying training set size. A single fold was trained for each method. DSC scores
remained high even with 38 training cases but dropped below this number, especially
for samples with distribution shift. Although the AURC also worsened with few training
samples for the pairwise DSC method, the difference to the optimal AURC stayed small.
Especially the Mahalanobis and RF methods, but also the quality regression network
suffered from small training sets, falling behind the single network + mean baseline in
the ranking for 8 training cases. This is additional evidence of the weakness of quality
regression and RF with small training sets, which was also observed in the main benchmark.
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Figure 3.16: Experimental results obtained when varying the number of training samples
in the heart dataset, while keeping the test set fixed. Top: AURCs for different failure
detection methods. Different colors represent the methods and different markers the
underlying prediction model. The random and optimal performance baselines are marked
with gray horizontal markers. Bottom: DSC values for a single U-Net trained on datasets
with varying sizes. The test set consists of in-distribution (ID) and distribution-shifted
cases. Performance worsens for both AURC and DSC with smaller training sets, but
pairwise DSC stays close to the optimal baseline. Figure adapted from (Zenk et al. 2025b).
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Figure 3.17: Ranking distribution plots based on 1000 bootstrap samples, compared be-
tween different risk functions (mean DSC, binarized mean DSC, and mean NSD). The
results of all training set folds and datasets were accumulated. The circle area is propor-
tional to the frequency with which a method occupies the corresponding rank on the
y-axis. Black “x’-markers indicate median ranks. The method order is consistent between
all sub-plots and identical to the ranking order based on the mean DSC risk. Overall, the
ranking distributions are similar for the three risk functions, but the variance in the ranking
distributions is higher for binarized DSC and NSD. This shows that the choice of failure
detection method is only moderately affected by the risk function changes introduced here.
Figure adapted from (Zenk et al. 2025b).

3.2.3 Analysis of the Evaluation Protocol

While the previous sections focused on which failure detection method works best, here
a closer look is taken at the evaluation protocol described in section 2.2.2.2, which is a
central contribution of this benchmark. The evaluation protocol mainly relies on two
components: the risk function, which measures the degree of failure/risk associated with a
segmentation mask, and the failure detection metric, which summarizes the experimental
data of confidence scores and risks into a scalar measure of performance. For both of these
components, alternatives to the methodology chosen for the benchmark are investigated
here.

First, the benchmark ranking is recomputed after switching the risk function. The
original risk function was 1 — DSC (see eq. (2.6)), which was substituted with two al-
ternatives before re-running the evaluation pipeline: (a) Binarized DSC converted the
continuous risks based on DSC into binary failure/success labels, by applying a dataset-
specific (manually chosen) threshold. (b) normalized surface dice (NSD) replaced the
DSC with the NSD metric, which is a boundary-based metric for segmentation tasks that
is complementary to DSC. Evaluating the same experiments with these risk functions

104



3.2. Failure Detection

yielded bootstrapped ranking distributions shown in fig. 3.17. For most methods, the
median ranks stayed constant across risk functions; in a few cases, changes of at most 1
rank occurred. The higher variance in the ranking distributions for binarized DSC and NSD
risks indicate lower ranking stability, however. The main conclusion from this analysis is
that the proposed evaluation protocol allows to choose the risk function flexibly, and that
the benchmark’s findings are robust to moderate changes in the risk function.

The second part of this analysis focuses on failure detection metrics. While this bench-
mark used AURC as the main metric, alternatives from the literature are the Pearson
correlation coefficient (PC) and Spearman correlation coefficient (SC). Notably, SC only
considers the correlation between confidence and risk ranking. Table 3.6 compares the
benchmark results when evaluating these three failure detection metrics. The same subset
of methods as in table 3.3 is shown for clarity. Within the groups of three columns for each
dataset, the relative performance differences between methods (visible in the color map)
were similar between AURC, PC and SC. While individual deviations existed, the method
identified as best in the benchmark, pairwise DSC, also achieved the highest scores for
the alternative metrics. Hence, the choice of failure detection metric seems to have little
impact on the overall benchmark ranking. However, weaknesses of metrics that are purely
based on the confidence ranking (such as SC) while ignoring segmentation performance
can have consequences in special cases. Figure 3.18 demonstrates, for example, that SC
favored a single network as the prediction model over an ensemble when quality regression
was used as a failure detection method, although the ensemble achieved lower risk for
virtually all coverage levels. In contrast, the AURC was lower (better) for the ensemble,
as expected from the risk-coverage curve. The same trend was found across datasets for
the quality regression method (table 3.6). This observation confirms the importance of
considering segmentation performance in a fair failure detection evaluation, as initially
argued in requirements R2 from section 2.2.2.1.

The analysis in the previous two sections replaced the risk function or failure de-
tection metric in the evaluation pipeline. This final analysis revisits requirement R1 in
section 2.2.2.1 and determines the effect of evaluating a different but seemingly similar
task. OOD detection is such a proxy task, which is often used for evaluating new methods,
although failure detection is explicitly stated as its goal. To evaluate OOD detection, test
set samples were labeled as OOD and in-distribution (ID), so that classification metrics
like area under the receiver operating curve (AUROC) could be applied. The confidence
scores of the evaluated methods were then used for classification. For four datasets from
this benchmark, OOD labels could be created by treating samples with distribution shifts
as OOD and the rest as ID. Applying this evaluation protocol on the experimental data
resulted in the scores depicted in fig. 3.19, which produced a completely different rank-
ing than the failure detection results. One of the worst methods in terms of AURC, the

105



Chapter 3. Results

Single net + Quality regression

0.175 (AURC = 0.098, SC = -0.666)
(8} 0.150 Ensemble + Quality regression
] (AURC = 0.091, SC = -0.648)

|
—, 0.125
=
2
= 0.100
<]
2
S 0.075
2
A
0.050
0.025
0.0 0.2 0.4 0.6 0.8 1.0
Coverage

Figure 3.18: Comparison of the risk-coverage (RC) curves of two failure detection methods
that differ only in the prediction model (single net versus ensemble). Solid lines are the
mean over five repetitions of the experiment, which trained prediction models on different
folds. Faint lines depict RC curves of individual runs. SC values seen in the legend assign
better performance to the single net model. At the same time, AURC favors the ensemble,
raising the question of which metric better captures the practically relevant performance
aspect. The RC curves show that the ensemble is superior for virtually all coverage levels,
which suggests that AURC is better suited to compare failure detection methods that use
different prediction models.

Mahalanobis detector, now achieved the highest AUROC values across datasets. This illus-
trates that OOD and failure detection are indeed distinct tasks which require specialized
evaluation protocols.
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Table 3.6: Comparison of the failure detection metrics AURC, Spearman correlation coeffi-
cient (SC), and Pearson correlation coefficient (PC) for different failure detection methods.
Due to space limitations, the six datasets are distributed over two sub-tables. Values are
averaged across 5 training folds, and background color coding is applied per column,
ranging from light yellow (worst) to dark green (best). Within each dataset group, the
colors are similar between the failure detection metrics, which indicates that the benchmark
results do not change significantly when using these alternative, correlation-based metrics.
In particular, pairwise DSC remains the best-performing method. Abbreviations: Single =
Single network; Ens. = Ensemble. Table adapted from (Zenk et al. 2025b).

Dataset
Metric
Method

Brain tumor (2D)

AURC

PC

SC

Brain tumor
AURC

PC

Heart

SC ‘AURC PC SC

Ens. + mean

Ens. + non-boundary

Ens. + patch-based

Ens. + RF (simple features)
Single + Quality regression
Ens. + Quality regression
Ens. + pairwise DSC
Single + Mahalanobis

Ens. + VAE (seg)

0.133
0.120

-0.596
-0.489
-0.611
-0.686

-0.501
-0.432
-0.697
-0.126
-0.028

-0.693
-0.619
-0.737
-0.787

-0.821
-0.314
-0.392

0.166

0.225

-0.258

-0.441
-0.741
-0.786
-0.759
-0.812
-0.470
0.174

-0.300
-0.569
-0.489
-0.797
-0.862
-0.840
-0.884
-0.491
0.222

-0.356
-0.358  -0.137

0.193

Dataset

Method

Kidney tumor

AURC

PC

SC

AURC

Covid
PC

SC

Prostate

‘ AURC  PC SC

Ens. 4+ mean

Ens. + non-boundary

Ens. + patch-based

Ens. + RF (simple features)
Single + Quality regression
Ens. + Quality regression
Ens. + pairwise DSC
Single + Mahalanobis

Ens. + VAE (seg)

0.143
0.137
0.133
0.104
0.098
0.091
0.084

-0.264
-0.305
-0.203

-0.001
-0.056
-0.135

0.331

-0.603
-0.440
-0.421
-0.664
-0.370

-0.600

-0.374
-0.355
-0.708
-0.426

0.234 -0.792
0.234 -0.785
0.233 -0.802
-0.066  -0.065
-0.388 -0.443
0.230 -0.735 -0.811
-0.346  -0.390
-0.333 EEIKER
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Figure 3.19: Comparison of OOD-AUROC scores for all datasets and different failure
detection methods (higher is better). Each experiment was repeated using 5 folds, cor-
responding to the different markers per method. Compared to the main benchmark, the
kidney tumor and brain tumor datasets were excluded because they do not contain samples
with distribution shifts in the test set. The dashed black line indicates random performance.
Single net + Mahalanobis consistently achieves the highest scores, while the best method
for failure detection, pairwise DSC, clearly falls behind in the ranking. This suggests that
OOD and failure detection are distinct tasks. Figure adapted from (Zenk et al. 2025b).

108



4 Discussion

Two aspects of the robustness of medical image segmentation methods were studied
in this thesis: their ability to generalize to unseen hospitals and to estimate how reliable
the predicted segmentation is, in particular also flagging potential failures. The discussion
below follows this structure, focusing first on the generalization aspect (section 4.1) and
then on failure detection (section 4.2).

Disclosure

Section 4.1 is based on the manuscript summarizing the FeTS Challenges, which
has been accepted for publication (Zenk et al. 2025a), so portions of the text
resemble the original manuscript text.

Section 4.2 is derived from a previously published article (Zenk et al. 2025b),
so portions of the text resemble the original manuscript, in accordance with the
publisher’s license.

If parts of the text replicate sections from the corresponding manuscripts, this is
explicitly stated beforehand.

4.1 Generalization

The FeTS Challenges 2021 and 2022 were the first competitions to evaluate submitted
algorithms in a real-world federation, keeping the test data decentralized. In 2022, 41
models were evaluated in the medical image analysis task of brain tumor segmentation
at 32 institutions to test their robustness on diverse datasets. The 2021 challenge was a
preceding pilot study on a smaller scale (3 models on 22 institutions), so the discussion
here focuses on the findings from 2022.
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4.1.1 Interpretation of the Challenge Results

From the perspective of the research questions (RQs) formulated initially (page 28), the
challenge results can be interpreted as follows.

RQ 1.1 concerns generalization “in the wild”, which first raises the question of how
closely the FeTS Challenge approximates an “in the wild” scenario or, equivalently, how
wide was the range of possible clinical application cases covered. Although the geographi-
cal diversity was high, the majority of patients still originated from North America and
Europe. The metadata collected from the federation showed a diverse patient population
in terms of age, sex, and genetic tumor variants, as well as a variety of image acquisition
settings covering different scanner models and protocols. Given that 9 and 14 independent
institutions from Europe and North America (table 2.2 and fig. 2.2) contributed to the
test sets, respectively, it is plausible that the FeTS Challenge simulates an “in the wild”
scenario at least in these regions. The main interest of RQ 1.1 was the generalization of
brain tumor segmentation algorithms, which was quantified in section 3.1.2.3 in terms of
segmentation metrics, finding that the models generalized well to most institutions but also
showing a consistent performance drop at a small subset of institutions (fig. 3.3). Moreover,
the average-case performance ranged from 0.84 to 0.98 across the evaluated institutions,
while the worst-case performance ranged from 0.37 to 0.96 (fig. 3.4). Determining the
targeted performance level based on human inter-rater variability would require multiple
annotators for each patient, which was not feasible for the FeTS Challenge. As a rough
estimate, in a previous challenge on brain tumor segmentation (Menze et al. 2015), the
authors measured a mean inter-rater variation of 0.78 Dice similarity coefficient (DSC).
Hence, based on the experimental results, worst-case robustness was problematic at 13
of 32 institutions, demonstrating that brain tumor segmentation is still not solved “in the
wild” (RQ 1.1).

RQ 1.2 asked how algorithm and dataset characteristics influence generalization. Due
to the competition format of the study, algorithm characteristics could only be extracted
from the participants’ reports, and ablation studies were difficult to implement. There-
fore, specific components of the algorithms that improved generalization could not be
isolated. Common characteristics among the top-ranked teams included the use of 3D
U-Nets, especially implementations based on nnU-Net. Ensembling methods and brain
tumor-specific post-processing were also associated with performance gains. The initial
hypothesis of the FeTS challenge was that the institution partitioning information provided
for the training data would be beneficial for developing generalizable models, as it contains
information about distribution shifts. However, only one team developed a method that
explicitly addressed such shifts, while the rest trained their models on the pooled training
data without considering its multi-institutional nature. Further studies are needed to de-
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termine whether domain generalization or test-time adaptation methods can improve the
robustness of brain tumor segmentation algorithms. Regarding dataset characteristics, the
challenge results showed that segmentation performance on institutions that contributed
to the training data was, surprisingly, similar to or even worse than the results on unseen
institutions. There could be two reasons for this: (a) The data from unseen institutions
was so similar to data from training institutions that there was no generalization gap, or
(b) differences in annotation style and quality led to noise in the segmentation metrics,
obscuring differences in generalization. The annotation quality control experiments, which
covered about half of the test cases, provided some evidence that annotation mistakes were
not a major issue in the test dataset. It is plausible, however, that the segmentation metric
values are slightly optimistic because of the semi-automatic annotation procedure. In this
procedure, nnU-Net was part of a model ensemble that produced an initial mask, which
was later refined by local experts. The refined reference segmentations are likely biased
toward this model, which is very popular among challenge participants. In fact, this issue
is not specific to the FeTS challenge and highlights the importance of annotation quality
control. Assuming that annotation differences between institutions only had a minor effect,
the challenge results and qualitative analysis of individual predictions (section 3.1.2.3)
did not identify institution-specific dataset characteristics that led to failures. Instead, they
found associations between performance drops and properties of individual test cases.
In the FeTS challenge, only qualitative properties of failure cases were determined. To
systematically study case-specific failure modes (as done in Rofs et al. (2021), for example),
additional meta-data collection or annotation is necessary.

RQ 1.3 aimed at the previously unknown practical hurdles of federated evaluation
when used for image analysis competitions. While section 3.1.2.6 described specific hur-
dles, here federated competitions are compared to traditional ones, for which the test
data is centralized at the organizers’ institution. The comparison is structured according
to the efforts required before, during, and after the official competition period. In the
preparation phase, after defining the challenge mission and evaluation, data must be
collected, annotated, and quality controlled. While data collection and annotation can
be parallelized and scaled more easily for federated challenges, quality control is signifi-
cantly harder due to the limited access to raw data and the large number of independent
annotators. Additional federated infrastructure increases the workload compared to a
centralized setup. Executing a federated challenge involves higher organizational and
technical hurdles than centralized challenges. Algorithm submissions must be compatible
with diverse hardware systems, and coordinating a federated evaluation via personal
communication can become a bottleneck. For the FeTS Challenge, the duration varied
widely between different collaborators (from a few weeks to 6 months), mostly determined
by their responsiveness. After the ranking is computed based on the raw challenge results,
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the analysis of federated and centralized competitions is similar, as long as no access to
the imaging data is required. If the latter is federated, qualitative analyses of individual
failure modes are much more difficult than with centralized data. Maintaining a federated
benchmark over multiple years is attractive because the initial setup costs are amortized.
However, changes in hardware, staff, or regulations may require additional efforts by
organizers and are more likely when multiple collaborators are involved. In conclusion,
federated competitions require additional effort and time in all challenge phases. If these
hurdles can be overcome, a federated design allows scaling up the test dataset size and
diversity considerably. Therefore, federated evaluation may be best suited for a future
type of “phase 2” challenge, which is organized after the performance in a medical image
analysis task has saturated on small research datasets, to focus on algorithmic robustness
on a large scale. Finally, federated challenges are also valuable in that they establish col-
laborative networks, which can provide long-term research output beyond the original
competition setting.

4.1.2 Comparison to Related Work

The FeTS challenge is a direct extension of the long-standing BraTS challenge series (Menze
et al. 2015; Bakas et al. 2019; Baid et al. 2021) towards benchmarking generalization in
unseen hospitals. Bakas et al. (2019) found good median in-distribution generalization,
but also outliers that highlight a potential lack of robustness. They speculated that these
outliers might vanish if more training data is added, but the FeTS challenge showed
that such failure cases still occur when training on a large cohort of 1251 patients. The
latest instance of the BraTS challenge (Bakas et al. 2024) continued the line of work on
generalization to distribution shifts started with the FeTS Challenge, but no results have
been published so far. Common segmentation errors of automated segmentation methods
observed in previous BraTS challenges (Bakas et al. 2019; Baid et al. 2021) persisted in the
FeTS challenge. The two most prominent issues found in this study (bright blood products
and unclear non-enhancing tumor core) have not been described in detail so far, and their
presence in the training data was found during the annotation quality control of the FeTS
challenge, which is an important step towards future data cleaning efforts.

As detailed by the related work section 1.3.1, there are a few other international compe-
titions that focus on generalization across different clinics. The M&Ms challenge (Campello
et al. 2021) evaluated methods on data acquired at new centers with different scanners.
However, they investigated the task of cardiac segmentation and chose the conventional
approach, in which multi-centric data is collected centrally. Consequently, their dataset
was significantly smaller: the test set comprised 160 test cases from six centers, of which
two centers (64 cases) did not contribute to the training data. The advantage of their
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central collection is that the number of test samples per scanner vendor was more balanced.
The M&Ms challenge found that state-of-the-art segmentation models with strong data
augmentation are currently still superior to methods for domain/test-time adaptation,
which agrees with the FeTS challenge results. The MIDOG challenge by Aubreville et al.
(2023) focused on the task of detecting cells undergoing division (mitosis) in whole slide
images acquired in digital pathology. Despite the different image analysis task and imaging
modality, its goal to evaluate the robustness of algorithms when applied to data from dif-
ferent scanners is similar to the FeTS challenge’s objective. In addition to the four scanners
in the training set, two more scanners were used for testing. As in the FeTS challenge, there
was not a single algorithmic design choice that dominated the ranking, and ensembling
of model outputs appeared to be beneficial. A third benchmark on out-of-distribution
generalization focused on fetal brain tissue segmentation in in-utero magnetic resonance
imaging (MRI) scans (Payette et al. 2024). As in the preceding competitions, the test set
was small compared to the FeTS challenge, with two in-distribution hospitals (80 cases)
and two out-of-distribution hospitals (80 cases). Similarly to the FeTS challenge results,
they found that the top teams achieved comparable performance on hospitals seen and
unseen during training, respectively. This lack of apparent generalization gap was par-
tially explained by the heterogeneous image quality, which varied both for in-distribution
and out-of-distribution samples. Data augmentation and using nnU-Net configurations
were reported as an effective strategy in the FeTA challenge, in agreement with the FeTS
challenge results. Overall, several trends from related work were confirmed in the FeTS
challenge on a significantly larger scale, in terms of test set size and diversity.

Practical hurdles for federated image analysis workflows have rarely been reported
or were not based on real-world experiences. Recently, Bujotzek et al. (2024) published a
guide to real-world federated learning for radiology, which also describes related practical
hurdles. Although federated learning is arguably even more challenging than federated
evaluation, as it involves multiple rounds of communication and local model training
in addition to regular evaluation runs, parts of the infrastructure and workflows are
similar. The experiences from the FeTS challenge confirm several of the hurdles reported in
(Bujotzek et al. 2024), such as inconsistencies in annotations, varying duration of federated
workflows, and high debugging efforts. Moreover, the competition format of the FeTS
Challenge led to the special situation that many participants contributed algorithms, which
caused compatibility issues at some institutions. This is less of a concern for federated
learning studies that include only a small team of algorithm developers, but a crucial
aspect for federated competitions. Overall, the congruence with findings from (Bujotzek
et al. 2024) highlights that the practical problems identified in the FeTS challenge are
common for federated projects, calling for the development of new solutions to existing
organizational, infrastructure, and data quality hurdles.
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4.1.3 Limitations and Future Work

As a pioneering project in combining competitions with federated data, the FeTS challenge
also has limitations that could be tackled in future work.

The number of original algorithms submitted to the challenge was low (three in 2021
and five in 2022). Although 36 additional algorithms were evaluated in 2022, they were
previously published models developed without the multi-centric generalization objective
in mind. Therefore, the methodological innovation through the FeTS challenge was small.
Two potential avenues for increasing the participation are: (i) make the training data more
interesting for researchers; (ii) better convey the challenge’s concept to the community.
Regarding (i), many participants join a challenge because of the novel datasets published
with it. The FeTS challenge re-used the BraTS challenge training data and added institution
partitioning files (section 2.1). Although the high number of registrations in FeTS22 (35)
suggests that the challenge data stirred interest in the research community, it appears
that only a few (6 teams made submissions) found it promising enough to compete in
the challenge. Extending the imaging data or meta-data, or balancing the partitioning
could provide additional incentives for researchers to engage in the generalization task.
Regarding (ii), the FeTS challenge combined the generalization task (Task 2) reported
here with a simulated federated learning task (Task 1). As these tasks require different
methods, separating the two into independent challenges may increase visibility and help
attract more participants. Future challenges with multi-site generalization evaluation
should therefore stress the generalization aspect more than the federated aspect in publicly
communicated material such as the title or webpage.

The federated test data used for the competition was large and geographically diverse,
but meta-data was only available in the form of site-specific statistics. This limited the
insights that could be gained from the challenge results. Gathering case-specific meta-data
can be valuable for quantifying distribution shifts and dataset diversity in real-world use
cases, which helps with designing benchmarks like the FeTS challenge and estimating
performance in real-world clinical deployments more accurately. Collecting such meta-
data in a challenge is also useful for analyzing the data characteristics that are related
to the generalization capabilities of segmentation models. As patient-specific meta-data
can contain personal information, privacy-preserving methods may be required for such
investigations in the future. Furthermore, qualitative analyses on individual subjects (such
as an error analysis) are especially difficult in a federation without direct data access, so
tools and agreements for secure remote visual data inspection or limited data sharing
would be helpful.

As described in section 3.1.2.6, setting up the federated infrastructure for FeTS and
running the federated evaluation required the combined efforts of multiple institutions
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over several months or even years, when considering the previous work (Pati et al. 2022a)
that enabled the FeTS challenge. This high initial cost is an obstacle for future, similar en-
deavors. Streamlining federated workflows, for example through enhanced error reporting
and debugging tools, could facilitate faster, more efficient implementation of federated
challenges. Tools for data curation and quality control are important building blocks in
federated projects, too. Quality control is also needed for annotated segmentation masks.
In the visual inspection performed for the FeTS challenge (section 3.1.2.2), 10 % of the
checked samples were excluded due to annotation quality issues, some of which high-
lighted inconsistencies that are also present in the training set, calling for future actions
to homogenize the annotations for brain tumor segmentation tasks. For about half of the
federated test data, quality control was restricted to automatic sanity checks, which should
in the future be replaced with visual inspection, possibly guided by automatic quality
estimation methods.

4.2 Failure Detection

The benchmark design from section 2.2 unified the evaluation of methods that were
previously studied separately but serve the same purpose of failure detection. This enabled
the comparison of a wide range of algorithms, based on pixel confidence aggregation or
image-level failure detection, on multiple medical imaging datasets (section 3.2).

4.2.1 Interpretation of the Benchmark Results

First, the results obtained in this benchmarking study are interpreted in relation to the
three research questions (RQs) posed in the introduction (section 1.4, page 29).

RQ 2.1 asked about best practices for the evaluation of segmentation failure detection.
To approach this question systematically, requirements for the evaluation protocol were
derived in section 2.2.2.1, based on theoretical considerations and pitfalls observed in
related works. These requirements were adapted from Jaeger et al. (2022), to align them
with the practical needs of failure detection for medical image segmentation. The proposed
evaluation protocol based on the area under the risk-coverage curve (AURC) was identified
as the best fit for benchmarks that evaluate a wide spectrum of failure detection methods.
Quantitative analyses from section 3.2.3 confirmed that the AURC fulfills requirement R2,
while other metrics like Spearman correlation coefficient (SC) violate it in certain cases,
which can lead to method recommendations that do not meet practical needs. As different
metrics capture different aspects of performance, it is usually a good idea to evaluate
methods with multiple metrics. Evaluating Pearson correlation coefficient (PC) and SC
in addition to AURC did not yield new insights, however, in this benchmark. Using out-
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of-distribution (OOD) detection as an alternative task formulation, in contrast, changed
the method rankings significantly, which showed that failure detection is a different task
that requires a separate evaluation methodology (requirement R1). Requirement R3 is
motivated by the fact that the risk function should be adapted to the specific medical
application in which failure detection is used. Evaluation protocols that can incorporate
different risk functions are beneficial for benchmarking studies such as this part of the
thesis, as they allow investigating how a change in the risk function impacts the results. The
analysis in section 3.2.3 showed only small ranking differences when varying risk functions,
but in general such analyses could provide insights into which methods perform robustly.
The last requirement (R4) demands using realistic failure sources for failure detection
evaluation. This thesis implemented failure sources as distribution shifts in the test sets,
which resulted in a clear segmentation performance drop, as expected (section 3.2.1.1).
While most of the shifts originated from multi-centric data collection, it is difficult to
quantify how realistic the setup was. As overall similar failure detection results were
obtained for the Brain tumor 2D dataset with artificial shifts, it may also be worth studying
realistic, synthetic data as a preliminary testbed for failure detection.

RQ 2.2 is central for all benchmarks, ultimately asking: Which method performs best?
Within the scope of this project, the answer is clear. The pairwise DSC method robustly
ranked first across all evaluated datasets and metrics when combined with an ensemble of
segmentation models. While the ensemble helps to avoid segmentation errors in the first
place, the pairwise DSC quantifies the agreement within the ensemble, which proved to be
beneficial for detecting failures. Simplicity is a major strength of this method because it can
be easily transferred to alternative segmentation model architectures (section 3.2.2.2) or
potentially even to different risk functions, by replacing DSC with alternative segmentation
metrics. Segmentation quality regression models (based on a deep neural network or on a
regression forest) also showed potential on some datasets, but they revealed weaknesses in
scenarios with small training sets. Hence, incorporating multiple datasets in the benchmark
with different characteristics is crucial to finding generalizable failure detection methods
and identifying potential failure modes, thereby improving their practical applicability.

RQ 2.3 focused on the subset of methods that aggregate a pixel confidence map,
which have been studied less extensively than image-level failure detection methods.
The naive baseline of averaging the confidence scores across all pixels was among the
worst-performing methods, as expected from their bias towards object size (Jungo et al.
2020; Kahl et al. 2024). Although methods that proposed remedies to this bias (patch-based
and non-boundary aggregation) obtained slightly better failure detection results in this
benchmark on average, their performance was unstable across datasets and could not
compete with the best methods. Learning to estimate the risk function from patterns in the
confidence map using regression forest (RF) turned out to improve AURC scores compared
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to the simpler methods above. While the original method by Jungo et al. (2020) used
radiomics to extract features from the confidence map, a variant proposed in this thesis
relied on simpler features extracted from the confidence map and the predicted segmen-
tation. This simple method achieved consistently higher performance in the benchmark,
which suggests that the confidence maps alone from current methods may be suboptimal
for failure detection, and that features of the predicted segmentation mask can provide
additional useful information. Similar to the overall benchmark results, evaluating confi-
dence aggregation methods on multiple datasets was important, as it exposed performance
drops of RF-based methods on datasets with few training samples. Furthermore, none of
the aggregation strategies were competitive with image-level failure detection methods
across datasets, so developing a robust combination of pixel confidence and aggregation
methods remains an open problem.

4.2.2 Comparison to Related Work

Although this benchmarking study is the first to comprehensively compare a diverse set
of methods across several datasets, previous results for individual methods and datasets
exist, which are compared to the results from section 3.2 in this section.

Regarding the evaluation protocol, a few alternative metrics to AURC have been used
previously. Malinin et al. (2022) proposed “error-retention” curves, which essentially
only differ from risk-coverage curves in the detail that the selective risk is computed by
averaging the actual risk values for samples below the confidence threshold and replace
the risk of samples above the threshold with the risk of an oracle prediction (usually zero).
In the low-coverage region (for example, 5 %), the selective risk in error-retention curves is
typically low due to the majority of oracle predictions (for example, 95 %) being averaged,
which leads to high-confidence-high-risk predictions having less impact than for AURC.
Since the risk-coverage curve more intuitively handles high-confidence samples and is an
established, well-studied evaluation method for selective classification as well as failure
detection (El-Yaniv and Wiener 2010; Jaeger et al. 2022), this benchmark opted for AURC as
the main metric. Recently, however, Traub et al. (2024) brought forth theoretical arguments
that AURC over-emphasizes the importance of high-confidence samples, and proposed a
generalized AURC, which handles these samples identically to the error-retention curve.
An analysis equivalent to risk-coverage curves was employed by Ng et al. (2023), but they
chose a binary risk function defined via manual thresholds on a segmentation metric.
For specific applications with a well-defined failure threshold, this is reasonable, but the
benchmark in this thesis prefers a continuous risk function as argued in requirement
R3 from section 2.2.2.1. Finally, Galil et al. (2023) recommended using the maximum
coverage at a predefined, target risk level (or vice versa, minimum risk at a predefined,
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target coverage level) as an alternative to AURC. For example, in a specific application, the
goal could be to accept as many automatic segmentations as possible (maximize coverage)
while limiting the expected risk among the accepted samples to an equivalent of mean
DSC > 0.9. Methods with larger coverage for this risk constraint would then be preferable
for the application. This benchmark used publicly available datasets that do not come
with a natural target risk, so AURC appears advantageous in that it avoids noise through
arbitrary constraints.

Pairwise DSC was originally proposed by Roy et al. (2019), who used it in conjunction
with MC-Dropout. The combination with ensembles of neural networks has been explored
by a few other works. Hoebel et al. (2020) and Hoebel et al. (2022) reported the Pearson
correlation coefficient (PC) between pairwise and true DSC on a similar brain tumor
dataset, based on different prediction models. The results from Hoebel et al. (2022)
agree with this thesis in the finding that pairwise DSC tends to overestimate true DSC
scores. Differences were observed in the comparison of prediction models: Ensembles
achieved worse scores in their experiments than MC-Dropout, whereas ensembles were
slightly superior in this thesis. Although the numbers are not directly comparable due to
differences in the experimental setup, such as different test sets, segmentation models and
MC-Dropout hyperparameters, this discrepancy is worth examining further. Unfortunately,
the referenced paper does not provide public source code, in contrast to this benchmark,
making a detailed comparison currently difficult. Results by Ng et al. (2023) on a cardiac
MRI dataset indicate that a slight modification of the pairwise DSC in combination with
an ensemble performs best, in agreement with this benchmark. While these results from
the related work were obtained on individual datasets, this benchmark evaluates failure
detection methods across six different CT and MRI datasets, as well as initial results on
three other modalities.

Aggregating pixel confidence maps for failure detection has been studied by Jungo
et al. (2020) and Kahl et al. (2024). This benchmark confirmed the results of experiments
performed by Jungo et al. (2020) on a brain tumor dataset, which showed that advanced
aggregation methods clearly outperformed the mean confidence baseline. However, their
best-performing method, the RF trained on radiomics features, was inferior in this bench-
mark’s experiments to a simplified method also based on RFs proposed in this thesis.
The failure modes of both methods for small training sets are a novel finding from this
benchmark, too. Kahl et al. (2024) examined uncertainty for segmentation in a wider
sense, instead of focusing on failure detection in medical imaging datasets, so their re-
sults are hard to compare to this benchmark. One shared finding is that the performance
ranking of simple aggregation methods, such as mean confidence over the whole image,
non-boundary region, or sliding window patches, is unstable across datasets.

Quality regression networks are a popular method and have been studied for individual
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medical applications, such as cardiac segmentation (Robinson et al. 2018; Li et al. 2022) and
brain tumors (Qiu et al. 2023). The different dataset setups prevent a direct comparison to
this benchmark’s results, in particular the common practice of not specifying a concrete
segmentation model whose failures should be detected but rather building a test set
containing predictions from different models of varying (often balanced) quality. This
style of test set was not used in this thesis for the reasons described in requirement R4 of
section 2.2.2.1. However, balancing the training set with such techniques could potentially
improve the failure detection performance of quality regression networks. It was not
implemented in this thesis because no reference implementation was published by the
aforementioned papers. An additional finding from this benchmark that was not reported
in the related work so far is the potential weakness of quality regression networks with
small datasets and/or large distribution shifts, which are possible explanations for the
performance drop on the Prostate and Covid datasets in this benchmark.

In this benchmark, results with OOD detection metrics turned out vastly different from
those obtained with failure detection metrics, which confirms observations from recent
work (Lennartz and Schultz 2023) and generalizes them to a larger set of datasets. The
Mahalanobis method proposed by Gonzélez et al. (2022) showcases this discrepancy in
particular, as it excelled in OOD detection but demonstrated limited utility for failure
detection in this benchmark. Similar results on the relation of OOD and failure detection
were also found recently for medical image classification (Anthony and Kamnitsas 2025).
Their analysis also highlighted that failure detection may not be the only goal in practice,
because OOD artifacts can in some cases result in correct predictions, although the model
used a shortcut to arrive at it. As this is usually not desired, a combination of OOD and
failure detection methods can be beneficial.

4.2.3 Limitations and Future Work

The method selection for this benchmark aimed to include a wide variety of approaches to
failure detection. Popularity in the related work (as reviewed by Lambert et al. (2024)) was
another criterion for selecting baselines. As segmentation uncertainty, quality estimation,
and OOD detection are active research fields with numerous publications, it was not
possible to include all relevant methods. Integrating more algorithms was also hindered
by the lack of public source code and insufficient reporting of experimental setups in the
corresponding papers, which made reproducing results from the related work difficult.
For example, from recently published works mentioned in the related work section 1.3.2,
only two came with a complete codebase (Lennartz and Schultz 2023; Kahl et al. 2024),
whereas three published incomplete code (Jungo et al. 2020; Gonzalez et al. 2022; Qiu et al.
2023), which missed a subset of methods, important steps in the dataset preparation or
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data loading pipeline, respectively. The majority of works did not release any reference
implementation (Robinson et al. 2018; Liu et al. 2019; Mehrtash et al. 2020; Wang et al.
2020c; Li et al. 2022; Ng et al. 2023). This benchmark study publishes the complete source
code for all methods and experiments* so that the research community can expand the
large but limited failure detection method collection.

Similar to the method selection, more datasets could be added to the benchmark. While
failure detection is also important for in-distribution data, the most challenging scenarios
are datasets with realistic distribution shifts between training and test set, so collecting such
datasets is a promising future direction. Orthogonal to a larger dataset collection, detailed,
dataset-specific analyses are a future perspective. Failure source analysis was limited
in this study to qualitative results (fig. 3.14), whereas in-depth, quantitative analyses
are necessary to answer the question of why models make errors. These might help to
find limitations and potential improvements of current segmentation or failure detection
methods. A final limitation of the datasets used in this benchmark is the possibility of
annotation shifts between training and test sets. As in all comparisons of segmentation
models, such shifts should be avoided, because they can lead to noisy segmentation metric
results, which will also affect failure detection scores. Systematic annotation shifts are not
expected for the brain tumor, heart, and kidney tumor datasets, which were annotated
with standardized protocols and used in international competitions before. In contrast, the
Covid and prostate datasets are composed of several independently annotated datasets
from different sources, making annotation inconsistencies more likely. The ranking stability
analysis (fig. 3.17) suggests that potential noise from annotation shifts did not have an
impact on the main insights from this benchmark, but an investigation into annotation
consistency for the aforementioned datasets could be valuable.

Failure detection as defined in this thesis is a practically important task, but not the
only purpose of segmentation uncertainty estimation. Other downstream tasks include
OOD detection, active learning, probability calibration, and ambiguity modeling (Kahl
et al. 2024). Even when focusing on failure detection, there are different levels on which it
can be applied: While this study evaluated methods that provide one confidence score per
case, in some applications one confidence score per class (in a multi-class segmentation
task) or one per pixel would be ideal. Fortunately, the evaluation protocol used here can
be adapted easily to these alternative confidence granularity levels. For class-level failure
detection, the risk function needs to be defined for each class separately, which is often
easy, as segmentation metrics are usually defined per class. Not all methods from this
benchmark can be trivially adapted to this setting, though. Pixel-level failure detection
boils down to the classification failure detection task studied by Jaeger et al. (2022), which
can also be evaluated using AURC with a binary risk function. In this task formulation,

*https://github.com/MIC-DKFZ/segmentation_failures_benchmark
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none of the image-level methods from section 2.2.5.3 are applicable anymore.

Ultimately, the goal of failure detection methods is to support the integration of au-
tomatic segmentation methods in real clinical workflows by reducing their error rate
and increasing trust in the predictions. While this study focused on failure detection
performance measured through metrics like AURC, other considerations may be equally
important for practical implementations. After selecting the best failure detection method
for a specific application, it is necessary to determine the optimal operating point for the
detector, which was not investigated in this benchmark. How to choose a confidence thresh-
old for rejecting predictions has been studied under the assumption of an in-distribution
test set (Geifman and El-Yaniv 2017), but controlling the expected risk in scenarios with
distribution shifts, which are common in real-world deployments, is an open problem.
Another practically relevant aspect is the efficiency of failure detection methods, which is
crucial for time-critical or resource-limited scenarios sometimes encountered during de-
ployment. For extremely resource-limited setups, confidence aggregation methods based
on a single network prediction may be the only feasible option, at the cost of significantly
lower failure detection performance compared to the best methods from the benchmark.
Pairwise DSC appears as the best trade-off, as it achieves the highest failure detection
scores and adds only minor computation workload compared to the prediction model.
Although it cannot be applied to a single network, running an ensemble of five networks
is still feasible for many applications. Future research could try to reduce the inference
costs of an ensemble while generating similar predictive distributions.

4.3 Overall Conclusions

This thesis investigated the robustness of deep learning algorithms for medical image
segmentation in two benchmarking studies on generalization and failure detection, respec-
tively. The first study evaluated how state-of-the-art brain tumor segmentation algorithms
generalize on images from more than 2500 test patients, which were distributed among 32
institutions in an international federation, by sending the models to the data owners instead
of collecting the data centrally. The FeTS Challenge was the first competition to use such
a large-scale federated evaluation, highlighting its potential as a tool for comprehensive
generalization benchmarking in medical image analysis but also the significant practical
hurdles in conducting federated experiments. While the average-case segmentation accu-
racy was high, the competition results also revealed a lack of robustness, in the sense that
the worst-case performance at many institutions was still not satisfactory.

This finding established a connection to the second benchmark performed in this
thesis, which focused on failure detection methods. Even if a segmentation model makes
mistakes, these methods can help to identify the incorrect predictions, allowing them to
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be filtered out or corrected by a human expert before the erroneous segmentation affects
downstream analyses. The evaluation protocol developed for this study allows a unified
comparison of different approaches to failure detection that were previously studied in
isolation. Together with the open-source benchmark implementation, which includes a
wide variety of method baselines, multiple datasets, and realistic distribution shifts in the
test set, it lays the foundation for future method development. In the benchmark results,
the pairwise DSC method stood out in particular, as it consistently reduced the remaining
error after filtering, across different computed tomography (CT) and MRI datasets. Being
simple and easy to adapt to new segmentation problems, it constitutes a strong baseline
that can be used in future research and practical applications of failure detection, such as
quality control of automated segmentations.

Overall, this thesis introduced innovative benchmarks for assessing the current state of
the art in generalization and failure detection methods for medical image segmentation,
which are complementary approaches for increasing reliability and trust in automatic
segmentations. The thesis also provides a foundation for exploring synergies between the
two tasks in the future. Federated data is not only useful for generalization benchmarking
competitions but also for investigating how failure detection methods improve robustness
in real-world clinical scenarios. Failure detection methods, in turn, can help with annotation
quality control in the preparation of a federated evaluation workflow. They also help to
identify failure modes of segmentation models, fostering the development of generalization
methods that avoid such errors.
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Radiology is at the forefront of adopting artificial intelligence (AlI) solutions in clinical
practice because the steadily increasing need for examinations based on medical imaging
exceeds the growth in the human workforce. Semantic segmentation is an important
component of image analysis pipelines, including applications in computer-aided diagno-
sis, radiation therapy planning, and disease monitoring. Nowadays, deep learning (DL)
algorithms can perform automatic segmentation of various anatomical structures based
on appropriately annotated training datasets. However, these algorithms do not work
perfectly and can especially make mistakes when applied to data that has different char-
acteristics than the data the models were trained on. The discrepancy between training
and testing data characteristics is called distribution shift and frequently occurs when
deploying models in new hospitals. In this thesis, benchmarks were developed for methods
that improve the robustness of segmentation methods to such distribution shifts. Two com-
plementary approaches were studied here: Methods that improve the out-of-distribution
generalization directly or methods that know when they are wrong (failure detection).

Generalization methods were benchmarked in this thesis by organizing an international
competition, also known as a challenge. Such challenges are the gold standard in medical
image analysis for comparing state-of-the-art algorithms, due to their standardized, fair
conditions for all participants. While many competitions are organized each year, they
usually use research datasets that originate from a small set of institutions and scanners.
Therefore, it is unknown how well algorithms generalize to more diverse multicentric
data with distribution shifts that arise in the real world. This thesis introduces the idea of
using federated data in the competition setting, which lowers the hurdles for contributing
data significantly, as the data does not leave the institution where it was acquired. To
perform a federated evaluation, the segmentation algorithms are sent to the institutions in
the federation, and results on their performance are communicated back for analyzing the
robustness. The concept of federated evaluation benchmarks was implemented here in a
competition for the task of brain tumor segmentation, the Federated Tumor Segmentation
(FeTS) Challenge. As the first federated challenge conducted so far, the FeTS Challenge
revealed and partially addressed practical hurdles associated with federated evaluation,
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notably the high organizational effort, the increased difficulty of annotation quality control
compared to conventional challenges, and the constraints on the challenge analysis due to
the lack of direct access to federated data. However, it also highlighted the potential of
federated benchmarks to boost the dataset size and diversity considerably, exemplified by
the testing dataset of the FeTS Challenge, to which 32 international institutions contributed
2625 cases with multi-parametric magnetic resonance imaging (MRI) scans. Evaluating
the 41 segmentation models submitted to the competition on the test data showed that
they obtained good average-case generalization, but also a lack of worst-case robustness
on 13 of the 32 institutions.

Failure detection is important for the reliability of segmentation methods in prac-
tice, so it has been studied from many perspectives, including uncertainty estimation,
out-of-distribution detection, and segmentation quality estimation. Progress in method
development is currently hindered for two reasons: The evaluation protocols used by the
above approaches differ, making cross-comparison of methods towards the same goal of
failure detection difficult. Furthermore, novel methods have often been evaluated only
in a single segmentation task (anatomical region) or not considering distribution shifts,
which leaves questions about their generalizability unanswered. Therefore, the second
part of the thesis addresses these shortcomings, by developing an evaluation protocol
based on a risk-coverage analysis, which allows comparing all relevant methods in failure
detection while avoiding pitfalls in current practice. A benchmark was designed that
implemented the proposed evaluation and compared several, diverse failure detection
methods in experiments with multiple public datasets that contain realistic distribution
shifts. The benchmark results provided insights into how uncertainties on the pixel level
can be effectively aggregated into image-level uncertainties for failure detection. More-
over, an existing, simple method was identified as a strong baseline for future research,
as it consistently outperformed more complicated algorithms across datasets. Due to its
flexibility and efficiency;, it can be easily adapted to new segmentation tasks and practical
applications.

In conclusion, large-scale benchmarking studies were conducted in this thesis, which
test state-of-the-art generalization and failure detection algorithms in scenarios that sim-
ulate performance in real-world deployments. The experiments demonstrated how to
employ multicentric data in centralized and federated form for evaluating robustness to
distribution shifts, revealing common failure sources, and identifying practical algorithms
that are able to generalize to new hospitals and abstain from uncertain predictions. The
code for both benchmarks is made available to the community to foster meaningful method
comparison and progress in robust medical image segmentation algorithms.
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6 Zusammenfassung

Bei der Einfithrung von auf kiinstlicher Intelligenz basierten Losungen in der klinischen
Praxis hat die Radiologie eine Vorreiterrolle, da der stetig wachsende Bedarf an bildba-
sierten Untersuchungen nicht von den verfiigbaren Radiologen gedeckt werden kann. Die
semantische Segmentierung ist eine zentrale Komponente von Bildanalyse-Pipelines und
findet unter anderem Anwendung in der computergestiitzten Diagnose, der Planung von
Strahlentherapien und der Uberwachung von Krankheitsverldufen. Heutzutage kénnen
Deep Learning-Algorithmen verschiedene anatomische Strukturen automatisch segmen-
tieren, mithilfe von entsprechend annotierten Trainingsdatensédtzen. Diese Algorithmen
koénnen jedoch auch Fehler machen, insbesondere wenn sie auf Daten angewendet werden,
die sich in ihren Eigenschaften von den Trainingsdaten unterscheiden. Die Diskrepanz
zwischen den Eigenschaften der Trainings- und Testdaten wird als Distribution Shift be-
zeichnet und tritt hdaufig auf, wenn Modelle in neuen Krankenhdusern eingesetzt werden.
Fiir diese Doktorarbeit wurden Benchmarks fiir Methoden entwickelt, die die Robustheit
von Segmentierungsverfahren gegentiber solchen Distribution Shifts verbessern. Dabei
wurden zwei komplementédre Ansadtze untersucht: Methoden, die die Generalisierung auf
Daten mit Distribution Shifts verbessern, sowie Methoden, die erkennen koénnen, wann sie
falsche Vorhersagen treffen (Fehlererkennung).

Die Benchmarking-Studie zu Generalisierung erfolgte in dieser Arbeit durch die Orga-
nisation eines internationalen Wettbewerbs (auch Challenge genannt). Solche Challenges
gelten als Goldstandard in der medizinischen Bildanalyse fiir den Vergleich von Algorith-
men, da sie standardisierte und faire Bedingungen fiir alle Teilnehmenden bieten. Obwohl
jedes Jahr zahlreiche Wettbewerbe organisiert werden, basieren sie in der Regel auf For-
schungsdatensétzen, die von wenigen Institutionen und Scannern stammen. Daher ist oft
unklar, wie gut die Algorithmen auf multizentrische Daten mit grofserer Diversitdt und rea-
listischen Distribution Shifts generalisieren. Diese Arbeit fiihrt das Konzept ein, foderierte
Daten in Challenge-Settings zu nutzen. Solche Daten verlassen die Institution, in der sie
erhoben wurden, nicht, was die Hiirden fiir die Bereitstellung von Daten erheblich senkt.
Fiir eine foderierte Evaluation werden die Segmentierungsalgorithmen an die Institutionen
im Verbund geschickt, und deren Evaluierungsergebnisse werden zuriickgemeldet, um
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die Robustheit der Modelle zu analysieren. Dieses Konzept wird in einer Challenge zur
Segmentierung von Hirntumoren umgesetzt—der Federated Tumor Segmentation (FeTS)
Challenge. Als erste ihrer Art offenbart und adressiert die FeTS Challenge einige praktische
Herausforderungen der foderierten Evaluation, insbesondere den hohen organisatorischen
Aufwand, die erschwerte Qualitdtskontrolle von Annotationen im Vergleich zu konventio-
nellen Challenges und die eingeschrankte Analysemoglichkeit aufgrund des fehlenden
direkten Zugriffs auf die foderierten Daten. Gleichzeitig zeigt die Challenge aber auch
das Potenzial foderierter Benchmarks, die Grofie und Vielfalt der Testdatenséitze erheblich
zu steigern. Dies wird durch die FeTS Challenge exemplarisch demonstriert, bei der 32
internationale Institutionen insgesamt 2625 Fille mit multiparametrischen Magnetreso-
nanztomographie (MRT)-Scans beisteuerten. Die Evaluierung der 41 in der Challenge
eingereichten Segmentierungsmodelle auf diesen Testdaten zeigte, dass die Modelle im
Durchschnitt gut generalisierten, aber auf Daten von 13 der 32 beteiligten Institutionen in
Einzelféllen Fehler machten, die auf einen Mangel an Robustheit hinweisen.

Die Fehlererkennung ist fiir die Zuverldssigkeit von Segmentierungsmethoden in der
Praxis von grofier Bedeutung und wurde aus vielen Perspektiven untersucht, darunter
Unsicherheitsabschdtzung, Out-of-Distribution-Erkennung und Schiatzung der Segmen-
tierungsqualitdt. Der Fortschritt in diesem Forschungsbereich wird derzeit durch zwei
Probleme behindert: Erstens unterscheiden sich die Evaluationsprotokolle der verschiede-
nen Ansitze, was einen direkten Vergleich der Methoden zur Fehlererkennung erschwert.
Zweitens wurden neue Methoden bisher oft nur fiir ein Segmentierungsproblem (z. B. in
einer anatomischen Region) getestet oder nicht hinsichtlich Distribution Shifts evaluiert,
sodass ihre Anwendbarkeit auf ein breiteres Aufgabenspektrum unklar bleibt. Der zweite
Teil dieser Arbeit adressiert diese Defizite durch die Entwicklung eines Evaluationsproto-
kolls basierend auf einer Risk-Coverage Analyse, welches den Vergleich aller relevanten
Methoden der Fehlererkennung ermdglicht und Schwachstellen bisheriger Ansétze ver-
meidet. Ein Benchmark wurde entwickelt, der diese Evaluationsstrategie implementiert
und verschiedene, diverse Methoden zur Fehlererkennung in Experimenten mit meh-
reren Offentlichen Datensédtzen vergleicht, die realistische Distribution Shifts enthalten.
Die Ergebnisse dieser Studie lieferten Erkenntnisse dariiber, wie Unsicherheitswerte auf
Pixel-Ebene effektiv zu einem Unsicherheitswert auf Bild-Ebene fiir die Fehlererkennung
aggregiert werden konnen. Zudem wurde eine existierende, einfache Methode als starke
Referenz fiir zukiinftige Forschung identifiziert, da sie {iber mehrere Datensétze hinweg
konsistent leistungsfahiger als komplexere Algorithmen war. Dank ihrer Flexibilitat und
Effizienz kann diese Methode leicht an neue Segmentierungsprobleme und praktische
Anwendungen angepasst werden.

Zusammenfassend fiihrte diese Dissertation grofs angelegte Benchmarking-Studien
durch, die modernste Generalisierungs- und Fehlererkennungsalgorithmen in realitdtsna-
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hen Szenarien testen. Die Experimente demonstrieren, wie multizentrische Daten sowohl in
zentralisierter als auch in foderierter Form genutzt werden konnen, um die Robustheit ge-
geniiber Distribution Shifts zu evaluieren. Dabei wurden hdufige Fehlerquellen aufgedeckt
und praxistaugliche Algorithmen identifiziert, die eine gute Generalisierung auf neue
Krankenhéduser ermdglichen und aufierdem signalisieren konnen, wenn Segmentierungen
potenziell fehlerhaft sind. Der Code fiir beide Benchmarks wird der wissenschaftlichen
Gemeinschaft zur Verfligung gestellt, um eine fundierte Vergleichbarkeit von Methoden
zu ermoglichen und den Fortschritt in der robusten medizinischen Bildsegmentierung

voranzutreiben.
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Kapitel 6. Zusammenfassung

128



Bibliography

Adames, J. and S. Y. Elhabian (Aug. 14, 2023). Benchmarking Scalable Epistemic Uncer-
tainty Quantification in Organ Segmentation. por: 10.48550/arXiv.2308.07506.
arXiv: 2308 .07506 [cs, eess].URL: http://arxiv.org/abs/2308.07506
(visited on 10/18/2023). Pre-published (cit. on p. 26).

Adewole, M., ]. D. Rudie, A. Gbadamosi, O. Toyobo, C. Raymond, D. Zhang, O. Omidiji,
R. Akinola, M. A. Suwaid, A. Emegoakor, N. Ojo, K. Aguh, C. Kalaiwo, G. Babatunde,
A. Ogunleye, Y. Gbadamosi, K. Iorpagher, E. Calabrese, M. Aboian, M. Linguraru,
J. Albrecht, B. Wiestler, F. Kofler, A. Janas, D. LaBella, A. F. Kzerooni, H. B. Li, J. E.
Iglesias, K. Farahani, ]. Eddy, T. Bergquist, V. Chung, R. T. Shinohara, W. Wiggins, Z.
Reitman, C. Wang, X. Liu, Z. Jiang, A. Familiar, K. V. Leemput, C. Bukas, M. Piraud,
G.-M. Conte, E. Johansson, Z. Meier, B. H. Menze, U. Baid, S. Bakas, F. Dako, A. Fatade,
and U. C. Anazodo (2023). The Brain Tumor Segmentation (BraTS) Challenge 2023:
Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-africa).
arXiv: 2305.19369 [eess. IV] (cit. onp. 3).

Aerts, H. J. W. L., E. R. Velazquez, R. T. H. Leijenaar, C. Parmar, P. Grossmann, S. Carvalho,
J. Bussink, R. Monshouwer, B. Haibe-Kains, D. Rietveld, F. Hoebers, M. M. Rietbergen,
C.R. Leemans, A. Dekker, J. Quackenbush, R. J. Gillies, and P. Lambin (June 3, 2014).
Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Ra-
diomics Approach. In: Nature Communications 5.1, p. 4006. 1ssN: 2041-1723. por: 10. 1
038 /ncomms5006. urL: https://www.nature.com/articles/ncomms5006
(visited on 12/20/2024) (cit. on pp. 1, 4).

Akbar, A. S., C. Fatichah, and N. Suciati (2021). Unet3D with Multiple Atrous Convo-
lutions Attention Block for Brain Tumor Segmentation. In: International MICCAI
Brainlesion Workshop, pp. 182-193 (cit. on p. 190).

Alam, S., B. Halandur, P. P. Mana, D. Goplen, A. Lundervold, and A. S. Lundervold (2021).
Brain Tumor Segmentation from Multiparametric MRI Using a Multi-encoder U-Net
Architecture. In: International MICCAI Brainlesion Workshop, pp. 289-301 (cit. on p. 190).

AlBadawy, E. A., A. Saha, and M. A. Mazurowski (2018). Deep Learning for Segmentation
of Brain Tumors: Impact of Cross-Institutional Training and Testing. In: Medical

129


https://doi.org/10.48550/arXiv.2308.07506
https://arxiv.org/abs/2308.07506
http://arxiv.org/abs/2308.07506
https://arxiv.org/abs/2305.19369
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/ncomms5006
https://www.nature.com/articles/ncomms5006

Bibliography

Physics 45.3, pp. 1150-1158. 1ssN: 2473-4209. por: 10.1002/mp . 12752. URL: https:
//aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp. 12752 (visited
on 06/16/2020) (cit. on p. 2).

Alexander, R., S. Waite, M. A. Bruno, E. A. Krupinski, L. Berlin, S. Macknik, and S. Martinez-
Conde (Aug. 2022). Mandating Limits on Workload, Duty, and Speed in Radiology.
In: Radiology 304.2, pp. 274-282. 1ssn: 0033-8419. por: 10.1148/radiol.212631. URL:
https://pubs.rsna.org/doi/full/10.1148/radiol. 212631 (visited on
05/31/2024) (cit. on p. 1).

An, P, S. Xu, S. A. Harmon, E. B. Turkbey, T. H. Sanford, A. Amalou, M. Kassin, N. Varble,
M. Blain, V. Anderson, F. Patella, G. Carrafiello, B. T. Turkbey, and B. J. Wood (2020).
CT Images in COVID-19. The Cancer Imaging Archive. por: 10.7937/TCIA. 2020
.GQRY-NC81 (cit. on p. 52).

Anthony, H. and K. Kamnitsas (2025). Evaluating Reliability in Medical DNNs: A Critical
Analysis of Feature and Confidence-Based OOD Detection. In: Uncertainty for Safe
Utilization of Machine Learning in Medical Imaging. Ed. by C. H. Sudre, R. Mehta, C.
Ouyang, C. Qin, M. Rakic, and W. M. Wells. Cham: Springer Nature Switzerland,
pp- 160-170. 1sBN: 978-3-031-73158-7. por: 10 . 1007 /978-3-031-73158-7 _15
(cit. on p. 119).

Antonelli, M., A. Reinke, S. Bakas, K. Farahani, A. Kopp-Schneider, B. A. Landman, G.
Litjens, B. Menze, O. Ronneberger, R. M. Summers, B. van Ginneken, M. Bilello, P. Bilic,
P. E. Christ, R. K. G. Do, M. J. Gollub, S. H. Heckers, H. Huisman, W. R. Jarnagin, M. K.
McHugo, S. Napel, J. S. G. Pernicka, K. Rhode, C. Tobon-Gomez, E. Vorontsov, J. A.
Meakin, S. Ourselin, M. Wiesenfarth, P. Arbeldez, B. Bae, S. Chen, L. Daza, J. Feng, B.
He, F. Isensee, Y. Ji, F. Jia, I. Kim, K. Maier-Hein, D. Merhof, A. Pai, B. Park, M. Perslev, R.
Rezaiifar, O. Rippel, I. Sarasua, W. Shen, ]J. Son, C. Wachinger, L. Wang, Y. Wang, Y. Xia,
D. Xu, Z. Xu, Y. Zheng, A. L. Simpson, L. Maier-Hein, and M. J. Cardoso (July 15, 2022).
The Medical Segmentation Decathlon. In: Nature Communications 13.1 (1), p. 4128.
1ssN: 2041-1723. por: 10.1038/s541467-022-30695-9. urL: https://www.natur
e.com/articles/s41467-022-30695-9 (visited on 02/05/2024) (cit. on p. 52).

Aubreville, M., N. Stathonikos, C. A. Bertram, R. Klopfleisch, N. ter Hoeve, F. Ciompi,
F. Wilm, C. Marzahl, T. A. Donovan, A. Maier, J. Breen, N. Ravikumar, Y. Chung, J. Park,
R. Nateghi, F. Pourakpour, R. H. J. Fick, S. Ben Hadj, M. Jahanifar, A. Shephard, J. Dexl,
T. Wittenberg, S. Kondo, M. W. Lafarge, V. H. Koelzer, ]J. Liang, Y. Wang, X. Long, J.
Liu, S. Razavi, A. Khademi, S. Yang, X. Wang, R. Erber, A. Klang, K. Lipnik, P. Bolfa,
M. J. Dark, G. Wasinger, M. Veta, and K. Breininger (Feb. 1, 2023). Mitosis Domain
Generalization in Histopathology Images — The MIDOG Challenge. In: Medical
Image Analysis 84, p. 102699. 1ssn: 1361-8415. por: 10.1016/j .media.2022.102699.

130


https://doi.org/10.1002/mp.12752
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12752
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12752
https://doi.org/10.1148/radiol.212631
https://pubs.rsna.org/doi/full/10.1148/radiol.212631
https://doi.org/10.7937/TCIA.2020.GQRY-NC81
https://doi.org/10.7937/TCIA.2020.GQRY-NC81
https://doi.org/10.1007/978-3-031-73158-7_15
https://doi.org/10.1038/s41467-022-30695-9
https://www.nature.com/articles/s41467-022-30695-9
https://www.nature.com/articles/s41467-022-30695-9
https://doi.org/10.1016/j.media.2022.102699

Bibliography

URL: https://www.sciencedirect.com/science/article/pii/S1361841
522003279 (visited on 06/26/2024) (cit. on pp. 2, 19, 20, 27, 113).

Badgeley, M. A,, ]. R. Zech, L. Oakden-Rayner, B. S. Glicksberg, M. Liu, W. Gale, M. V.
McConnell, B. Percha, T. M. Snyder, and J. T. Dudley (Apr. 30, 2019). Deep Learning
Predicts Hip Fracture Using Confounding Patient and Healthcare Variables. In: npj
Digital Medicine 2.1 (1), pp. 1-10. 1ssn: 2398-6352. por: 10.1038/s41746-019-0105
-1.urL: https://www.nature.com/articles/s41746-019-0105-1 (visited
on 07/14/2023) (cit. on p. 2).

Bai, W., H. Suzuki, ]. Huang, C. Francis, S. Wang, G. Tarroni, F. Guitton, N. Aung, K. Fung,
S. E. Petersen, S. K. Piechnik, S. Neubauer, E. Evangelou, A. Dehghan, D. P. O'Regan,
M. R. Wilkins, Y. Guo, P. M. Matthews, and D. Rueckert (Oct. 2020). A Population-Based
Phenome-Wide Association Study of Cardiac and Aortic Structure and Function.
In: Nature Medicine 26.10, pp. 1654-1662. 1ssN: 1546-170X. por: 10.1038/s41591-02
0-1009-y. urL: https://www.nature.com/articles/s41591-020-1009-y
(visited on 02/13/2025) (cit. on p. 1).

Baid, U., S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, ]. Kalpathy-
Cramer, F. C. Kitamura, S. Pati, L. M. Prevedello, J. D. Rudie, C. Sako, R. T. Shinohara,
T. Bergquist, R. Chai, J. Eddy, J. Elliott, W. Reade, T. Schaffter, T. Yu, J. Zheng, A. W.
Moawad, L. O. Coelho, O. McDonnell, E. Miller, F. E. Moron, M. C. Oswood, R. Y. Shih,
L. Siakallis, Y. Bronstein, J. R. Mason, A. F. Miller, G. Choudhary, A. Agarwal, C. H.
Besada, . J. Derakhshan, M. C. Diogo, D. D. Do-Dai, L. Farage, J. L. Go, M. Hadji, V. B.
Hill, M. Iv, D. Joyner, C. Lincoln, E. Lotan, A. Miyakoshi, M. Sanchez-Montano, J. Nath,
X. V. Nguyen, M. Nicolas-Jilwan, J. O. Jimenez, K. Ozturk, B. D. Petrovic, C. Shah, L. M.
Shah, M. Sharma, O. Simsek, A. K. Singh, S. Soman, V. Statsevych, B. D. Weinberg, R. J.
Young, I. Ikuta, A. K. Agarwal, S. C. Cambron, R. Silbergleit, A. Dusoi, A. A. Postma,
L. Letourneau-Guillon, G. J. G. Perez-Carrillo, A. Saha, N. Soni, G. Zaharchuk, V. M.
Zohrabian, Y. Chen, M. M. Cekic, A. Rahman, J. E. Small, V. Sethi, C. Davatzikos, J.
Mongan, C. Hess, S. Cha, J. Villanueva-Meyer, J. B. Freymann, J. S. Kirby, B. Wiestler, P.
Crivellaro, R. R. Colen, A. Kotrotsou, D. Marcus, M. Milchenko, A. Nazeri, H. Fathallah-
Shaykh, R. Wiest, A. Jakab, M.-A. Weber, A. Mahajan, B. Menze, A. E. Flanders, and S.
Bakas (Sept. 12, 2021). The RSNA-ASNR-MICCALI BraT$ 2021 Benchmark on Brain
Tumor Segmentation and Radiogenomic Classification. por: 10.48550/arXiv.210
7.02314.arXiv: 2107.02314 [cs].urL: http://arxiv.org/abs/2107.02314
(visited on 06/28/2023). Pre-published (cit. on pp. 3, 19, 32, 33, 35, 37, 39, 112, 189).

Bakas, S., H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K.
Farahani, and C. Davatzikos (Sept. 5, 2017). Advancing The Cancer Genome Atlas
Glioma MRI Collections with Expert Segmentation Labels and Radiomic Features.
In: Scientific Data 4.1 (1), p. 170117. 1ssN: 2052-4463. por: 10 . 1038 / sdata . 2017

131


https://www.sciencedirect.com/science/article/pii/S1361841522003279
https://www.sciencedirect.com/science/article/pii/S1361841522003279
https://doi.org/10.1038/s41746-019-0105-1
https://doi.org/10.1038/s41746-019-0105-1
https://www.nature.com/articles/s41746-019-0105-1
https://doi.org/10.1038/s41591-020-1009-y
https://doi.org/10.1038/s41591-020-1009-y
https://www.nature.com/articles/s41591-020-1009-y
https://doi.org/10.48550/arXiv.2107.02314
https://doi.org/10.48550/arXiv.2107.02314
https://arxiv.org/abs/2107.02314
http://arxiv.org/abs/2107.02314
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117

Bibliography

.117. urL: https://www.nature.com/articles/sdata2017117 (visited on
12/08/2020) (cit. on pp. 32, 51).

Bakas, S., U. Baid, J. Rudie, E. Calabrese, M. Aboian, U. Anazodo, G. M. Conte, J. Albrecht,

H. B. Li, F. Kofler, M. Correia De Verdier, R. Huang, D. LaBella, R. Saluja, L. Gagnon,
M. Aboian, A. Abayazeed, K. Farahani, V. Chung, Z. Reitman, J. Kirkpatrick, C. Wang,
J. Villanueva-Meyer, A. Flanders, M. Aboian, A. Nada, M. Aboian, A. Abayazeed, P.
Lohman, A. Moawad, A. Janas, K. Krantchev, F. Memon, Y. Velichko, E. Schrickel, K.
Link, S. Aneja, R. Maresca, A. Nada, P. Vollmuth, V. M. Pérez, M. W. Pease, D. Godfrey,
S. Floyd, M. Adewole, F. Dako, O. Toyobo, O. Omidiji, Y. Gbadamosi, A. Ogunleye, N.
Ojo, K. Iorpagher, G. Babatunde, K. Aguh, A. Emegoakor, C. Kalaiwo, M. G. Linguraru,
A. F. Kazerooni, Z. Jiang, X. Liu, D. Gandhi, N. Khalili, A. Vossough, A. Nabavizadeh,
J. B. Ware, B. Menze, E. Johanson, Z. Meier, W. Chen, N. Petrick, B. Sahiner, R. Chai,
B. Wiestler, J. E. Iglesias, S. M. Anwar, K. Van Leemput, and M. Piraud (Apr. 2024).
BraTS 2024 Cluster of Challenges (BraTS + Beyond-BraTS). por: 10.5281/zeno
do.10978907. urL: https://doi.org/10.5281/zenodo. 10978907 (cit. on
p. 112).

Bakas, S., S. Pati, M. Sheller, A. Karargyris, P. Mattson, B. Edwards, U. Baid, Y. Chen, R. (

Shinohara, J. Martin, B. Menze, M. Zenk, K. Maier-Hein, R. Floca, A. Reinke, L. Maier-
Hein, F. Isensee, D. Zimmerer, and Y. Chen (Mar. 16, 2022). The Federated Tumor
Segmentation (FeTS) Challenge 2022. In: por: 10.5281/zenodo. 6622476. URL:
https://zenodo.org/records/6622476 (visited on 06/05/2024) (cit. on p. 32).

Bakas, S., M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger,

132

S. M. Ha, M. Rozycki, M. Prastawa, E. Alberts, J. Lipkova, J. Freymann, ]. Kirby, M.
Bilello, H. Fathallah-Shaykh, R. Wiest, J. Kirschke, B. Wiestler, R. Colen, A. Kotrotsou,
P. Lamontagne, D. Marcus, M. Milchenko, A. Nazeri, M.-A. Weber, A. Mahajan, U. Baid,
E. Gerstner, D. Kwon, G. Acharya, M. Agarwal, M. Alam, A. Albiol, A. Albiol, F. J.
Albiol, V. Alex, N. Allinson, P. H. A. Amorim, A. Amrutkar, G. Anand, S. Andermatt, T.
Arbel, P. Arbelaez, A. Avery, M. Azmat, P. B., W. Bai, S. Banerjee, B. Barth, T. Batchelder,
K. Batmanghelich, E. Battistella, A. Beers, M. Belyaev, M. Bendszus, E. Benson, ]. Bernal,
H. N. Bharath, G. Biros, S. Bisdas, J. Brown, M. Cabezas, S. Cao, J. M. Cardoso, E. N.
Carver, A. Casamitjana, L. S. Castillo, M. Cata, P. Cattin, A. Cerigues, V. S. Chagas,
S. Chandra, Y.-J. Chang, S. Chang, K. Chang, J. Chazalon, S. Chen, W. Chen, J. W. Chen,
Z. Chen, K. Cheng, A. R. Choudhury, R. Chylla, A. Clérigues, S. Colleman, R. G. R.
Colmeiro, M. Combalia, A. Costa, X. Cui, Z. Dai, L. Dai, L. A. Daza, E. Deutsch, C.
Ding, C. Dong, S. Dong, W. Dudzik, Z. Eaton-Rosen, G. Egan, G. Escudero, T. Estienne,
R. Everson, ]J. Fabrizio, Y. Fan, L. Fang, X. Feng, E. Ferrante, L. Fidon, M. Fischer,
A. P. French, N. Fridman, H. Fu, D. Fuentes, Y. Gao, E. Gates, D. Gering, A. Gholami,
W. Gierke, B. Glocker, M. Gong, S. Gonzalez-Vill4, T. Grosges, Y. Guan, S. Guo, S.


https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://www.nature.com/articles/sdata2017117
https://doi.org/10.5281/zenodo.10978907
https://doi.org/10.5281/zenodo.10978907
https://doi.org/10.5281/zenodo.10978907
https://doi.org/10.5281/zenodo.6622476
https://zenodo.org/records/6622476

Bibliography

Gupta, W.-S. Han, I. S. Han, K. Harmuth, H. He, A. Hernandez-Sabaté, E. Herrmann,
N. Himthani, W. Hsu, C. Hsu, X. Hu, X. Hu, Y. Hu, Y. Hu, R. Hua, T.-Y. Huang, W.
Huang, S. Van Huffel, Q. Huo, V. HV, K. M. Iftekharuddin, F. Isensee, M. Islam, A. S.
Jackson, S. R. Jambawalikar, A. Jesson, W. Jian, P. Jin, V. J. M. Jose, A. Jungo, B. Kainz,
K. Kamnitsas, P-Y. Kao, A. Karnawat, T. Kellermeier, A. Kermi, K. Keutzer, M. T. Khadir,
M. Khened, P. Kickingereder, G. Kim, N. King, H. Knapp, U. Knecht, L. Kohli, D. Kong,
X. Kong, S. Koppers, A. Kori, G. Krishnamurthi, E. Krivov, P. Kumar, K. Kushibar, D.
Lachinov, T. Lambrou, J. Lee, C. Lee, Y. Lee, M. Lee, S. Lefkovits, L. Lefkovits, J. Levitt,
T. Li, H. Li, W. Li, H. Li, X. Li, Y. Li, H. Li, Z. Li, X. Li, Z. Li, X. Li, W. Li, Z.-S. Lin,
F. Lin, P. Lio, C. Liu, B. Liu, X. Liu, M. Liu, J. Liu, L. Liu, X. Llado, M. M. Lopez, P. R.
Lorenzo, Z. Lu, L. Luo, Z. Luo, ]. Ma, K. Ma, T. Mackie, A. Madabushi, I. Mahmoudi,
K. H. Maier-Hein, P. Maji, C. P. Mammen, A. Mang, B. S. Manjunath, M. Marcinkiewicz,
S. McDonagh, S. McKenna, R. McKinley, M. Mehl, S. Mehta, R. Mehta, R. Meier, C.
Meinel, D. Merhof, C. Meyer, R. Miller, S. Mitra, A. Moiyadi, D. Molina-Garcia, M. A. B.
Monteiro, G. Mrukwa, A. Myronenko, J. Nalepa, T. Ngo, D. Nie, H. Ning, C. Niu, N. K.
Nuechterlein, E. Oermann, A. Oliveira, D. D. C. Oliveira, A. Oliver, A. F. I. Osman,
Y.-N. Ou, S. Ourselin, N. Paragios, M. S. Park, B. Paschke, J. G. Pauloski, K. Pawar, N.
Pawlowski, L. Pei, S. Peng, S. M. Pereira, J. Perez-Beteta, V. M. Perez-Garcia, S. Pezold,
B. Pham, A. Phophalia, G. Piella, G. N. Pillai, M. Piraud, M. Pisov, A. Popli, M. P. Pound,
R. Pourreza, P. Prasanna, V. Prkovska, T. P. Pridmore, S. Puch, E. Puybareau, B. Qian,
X. Qiao, M. Rajchl, S. Rane, M. Rebsamen, H. Ren, X. Ren, K. Revanuru, M. Rezaei,
O. Rippel, L. C. Rivera, C. Robert, B. Rosen, D. Rueckert, M. Safwan, M. Salem, J. Salvi,
I. Sanchez, I. Sdnchez, H. M. Santos, E. Sartor, D. Schellingerhout, K. Scheufele, M. R.
Scott, A. A. Scussel, S. Sedlar, J. P. Serrano-Rubio, N. J. Shah, N. Shah, M. Shaikh, B. U.
Shankar, Z. Shboul, H. Shen, D. Shen, L. Shen, H. Shen, V. Shenoy, F. Shi, H. E. Shin,
H. Shu, D. Sima, M. Sinclair, O. Smedby, J. M. Snyder, M. Soltaninejad, G. Song, M. Soni,
J. Stawiaski, S. Subramanian, L. Sun, R. Sun, J. Sun, K. Sun, Y. Sun, G. Sun, S. Sun,
Y. R. Suter, L. Szilagyi, S. Talbar, D. Tao, D. Tao, Z. Teng, S. Thakur, M. H. Thakur, S.
Tharakan, P. Tiwari, G. Tochon, T. Tran, Y. M. Tsai, K.-L. Tseng, T. A. Tuan, V. Turlapov,
N. Tustison, M. Vakalopoulou, S. Valverde, R. Vanguri, E. Vasiliev, ]. Ventura, L. Vera,
T. Vercauteren, C. A. Verrastro, L. Vidyaratne, V. Vilaplana, A. Vivekanandan, G. Wang,
Q. Wang, C. J. Wang, W. Wang, D. Wang, R. Wang, Y. Wang, C. Wang, G. Wang, N. Wen,
X. Wen, L. Weninger, W. Wick, S. Wu, Q. Wu, Y. Wu, Y. Xia, Y. Xu, X. Xu, P. Xu, T.-L. Yang,
X. Yang, H.-Y. Yang, J. Yang, H. Yang, G. Yang, H. Yao, X. Ye, C. Yin, B. Young-Moxon,
J. Yu, X. Yue, S. Zhang, A. Zhang, K. Zhang, X. Zhang, L. Zhang, X. Zhang, Y. Zhang,
L. Zhang, J. Zhang, X. Zhang, T. Zhang, S. Zhao, Y. Zhao, X. Zhao, L. Zhao, Y. Zheng,
L. Zhong, C. Zhou, X. Zhou, F. Zhou, H. Zhu, ]J. Zhu, Y. Zhuge, W. Zong, ]J. Kalpathy-
Cramer, K. Farahani, C. Davatzikos, K. van Leemput, and B. Menze (Apr. 23, 2019).

133



Bibliography

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation,
Progression Assessment, and Overall Survival Prediction in the BRATS Challenge.
arXiv: 1811.02629 [cs, stat].urL: http://arxiv.org/abs/1811.02629
(visited on 12/09/2020) (cit. on pp. 19, 32, 37-39, 51, 78, 112).

Bakas, S., M. Sheller, S. Pati, B. Edwards, G. A. Reina, U. Baid, Y. Chen, R. ( Shinohara,
J. Martin, B. Menze, S. Albarqouni, M. Bilello, S. Mohan, J. B. Freymann, J. S. Kirb,
C. Davatzikos, H. Fathallah-Shaykh, R. Wiest, A. Jakab, R. R. Colen, A. Kotrotsou, D.
Marcus, M. Milchenko, A. Nazeri, M.-A. Weber, A. Mahajan, U. Baid, P. Vollmuth, M.
Zenk, K. Maier-Hein, D. Zimmerer, A. Reinke, L. Maier-Hein, and J. Kleesiek (Mar. 2,
2021). Federated Tumor Segmentation. In: por: 10.5281/zenodo . 4573128. URL:
https://zenodo.org/records/4573128 (visited on 06/05/2024) (cit. on p. 32).

Beede, E., E. Baylor, E. Hersch, A. Iurchenko, L. Wilcox, P. Ruamviboonsuk, and L. M.
Vardoulakis (Apr. 23, 2020). A Human-Centered Evaluation of a Deep Learning
System Deployed in Clinics for the Detection of Diabetic Retinopathy. In: Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. CHI '20. New York,
NY, USA: Association for Computing Machinery, pp. 1-12. 1sBn: 978-1-4503-6708-0. por:
10.1145/3313831.3376718. urL: https://dl.acm.org/doi/10.1145/331
3831.3376718 (visited on 07/14/2023) (cit. on p. 2).

Bell, L. C. and E. Shimron (Jan. 2024). Sharing Data Is Essential for the Future of Al
in Medical Imaging. In: Radiology: Artificial Intelligence 6.1, €230337. por: 10 . 1148
/ryai.230337.urL: https://pubs.rsna.org/doi/10.1148/ryai.230337
(visited on 01/08/2025) (cit. on p. 19).

Bernhardt, M., F. D. S. Ribeiro, and B. Glocker (June 16,2022). Failure Detection in Medical
Image Classification: A Reality Check and Benchmarking Testbed. In: Transactions on
Machine Learning Research. 1ssn: 2835-8856. URL: https://openreview.net/forum
?1d=VBHULfnOMf (visited on 12/13/2024) (cit. on p. 25).

Bloch, B. N., A. Madabhushi, H. Huisman, J. Freymann, J. Kirby, M. Grauer, A. Enquobabhrie,
C. Jaffe, L. Clarke, and K. Farahani (2015). NCI-ISBI 2013 Challenge: Automated
Segmentation of Prostate Structures (ISBI-MR-Prostate-2013). The Cancer Imaging
Archive. por: 10.7937/K9/TCIA.2015.ZFOVLOPV (cit. on p. 52).

Blundell, C., J. Cornebise, K. Kavukcuoglu, and D. Wierstra (May 21, 2015). Weight
Uncertainty in Neural Networks. In: arXiv. por: 10.48550/arXiv.1505.05424.
arXiv: 1505.05424 [cs, stat].urL:http://arxiv.org/abs/1505.05424
(visited on 09/24/2024) (cit. on p. 21).

Bogunovi¢, H., F. Venhuizen, S. Klimscha, S. Apostolopoulos, A. Bab-Hadiashar, U. Bagci,
M. F. Beg, L. Bekalo, Q. Chen, C. Ciller, K. Gopinath, A. K. Gostar, K. Jeon, Z. Ji, S. H.
Kang, D. D. Koozekanani, D. Lu, D. Morley, K. K. Parhi, H. S. Park, A. Rashno, M. Sarunic,
S. Shaikh, J. Sivaswamy, R. Tennakoon, S. Yadav, S. De Zanet, S. M. Waldstein, B. S.

134


https://arxiv.org/abs/1811.02629
http://arxiv.org/abs/1811.02629
https://doi.org/10.5281/zenodo.4573128
https://zenodo.org/records/4573128
https://doi.org/10.1145/3313831.3376718
https://dl.acm.org/doi/10.1145/3313831.3376718
https://dl.acm.org/doi/10.1145/3313831.3376718
https://doi.org/10.1148/ryai.230337
https://doi.org/10.1148/ryai.230337
https://pubs.rsna.org/doi/10.1148/ryai.230337
https://openreview.net/forum?id=VBHuLfnOMf
https://openreview.net/forum?id=VBHuLfnOMf
https://doi.org/10.7937/K9/TCIA.2015.ZF0VLOPV
https://doi.org/10.48550/arXiv.1505.05424
https://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424

Bibliography

Gerendas, C. Klaver, C. I. Sanchez, and U. Schmidt-Erfurth (Aug. 2019). RETOUCH:
The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. In:
IEEE Transactions on Medical Imaging 38.8, pp. 1858-1874. 1ssn: 1558-254X. por: 10.110
9/TMI.2019.2901398. URL: https://ieeexplore.ieee.org/document/86
53407 (visited on 08/01/2024) (cit. on p. 53).

Boone, L., M. Biparva, P. Mojiri Forooshani, J. Ramirez, M. Masellis, R. Bartha, S. Symons, S.
Strother, S. E. Black, C. Heyn, A. L. Martel, R. H. Swartz, and M. Goubran (Sept. 1,2023).
ROOD-MRI: Benchmarking the Robustness of Deep Learning Segmentation Models
to out-of-Distribution and Corrupted Data in MRI. In: Neurolmage 278, p. 120289. 1ssN:
1053-8119. por: 10.1016/j .neuroimage.2023.120289. urL: https://www.sc
iencedirect.com/science/article/pii/S1053811923004408 (visited on
07/26/2024) (cit. on p. 19).

Brown, T., B. Mann, N. Ryder, M. Subbiah, ]J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, ]. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei (2020). Language Models Are Few-Shot Learners. In: Advances in
Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 1877-1901.
URL: https://proceedings.neurips.cc/paper/2020/hash/1457c0dé6bfc
b4967418bfb8ac142f64a-Abstract.html (visited on 12/19/2024) (cit. on p. 6).

Bujotzek, M. R,, U. Akiinal, S. Denner, P. Neher, M. Zenk, E. Frodl, A. Jaiswal, M. Kim, N. R.
Krekiehn, M. Nickel, R. Ruppel, M. Both, F. Déllinger, M. Opitz, T. Persigehl, ]. Kleesiek,
T. Penzkofer, K. Maier-Hein, A. Bucher, and R. Braren (Oct. 25, 2024). Real-World
Federated Learning in Radiology: Hurdles to Overcome and Benefits to Gain. In:
Journal of the American Medical Informatics Association, ocae259. 1ssN: 1527-974X. por: 1
0.1093/jamia/ocae259. urL: https://doi.org/10.1093/jamia/ocae259
(visited on 11/05/2024) (cit. on pp. 20, 113, 173).

Bukhari, S. T. and H. Mohy-ud-Din (2021). E1D3 U-Net for Brain Tumor Segmentation:
Submission to the RSNA-ASNR-MICCAI BraTS 2021 Challenge. In: International
MICCAI Brainlesion Workshop, pp. 276288 (cit. on p. 190).

Bungert, T. J., L. Kobelke, and P. F. Jager (2023). Understanding Silent Failures in Medical
Image Classification. In: Medical Image Computing and Computer Assisted Intervention —
MICCAI 2023. Ed. by H. Greenspan, A. Madabhushi, P. Mousavi, S. Salcudean, J. Dun-
can, T. Syeda-Mahmood, and R. Taylor. Cham: Springer Nature Switzerland, pp. 400—
410. 1sBN: 978-3-031-43898-1. por: 10.1007/978-3-031-43898-1_39 (cit. on p. 25).

Campello, V. M., P. Gkontra, C. Izquierdo, C. Martin-Isla, A. Sojoudi, P. M. Full, K. Maier-
Hein, Y. Zhang, Z. He, J]. Ma, M. Parrefio, A. Albiol, F. Kong, S. C. Shadden, J. C.

Acero, V. Sundaresan, M. Saber, M. Elattar, H. Li, B. Menze, F. Khader, C. Haarburger,

135


https://doi.org/10.1109/TMI.2019.2901398
https://doi.org/10.1109/TMI.2019.2901398
https://ieeexplore.ieee.org/document/8653407
https://ieeexplore.ieee.org/document/8653407
https://doi.org/10.1016/j.neuroimage.2023.120289
https://www.sciencedirect.com/science/article/pii/S1053811923004408
https://www.sciencedirect.com/science/article/pii/S1053811923004408
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1093/jamia/ocae259
https://doi.org/10.1093/jamia/ocae259
https://doi.org/10.1093/jamia/ocae259
https://doi.org/10.1007/978-3-031-43898-1_39

Bibliography

C. M. Scannell, M. Veta, A. Carscadden, K. Punithakumar, X. Liu, S. A. Tsaftaris, X.
Huang, X. Yang, L. Li, X. Zhuang, D. Viladés, M. L. Descalzo, A. Guala, L. L. Mura,
M. G. Friedrich, R. Garg, J. Lebel, F. Henriques, M. Karakas, E. Cavus, S. E. Petersen, S.
Escalera, S. Segui, ]. F. Rodriguez-Palomares, and K. Lekadir (Dec. 2021). Multi-Centre,
Multi-Vendor and Multi-Disease Cardiac Segmentation: The M Amp;Ms Challenge.
In: IEEE Transactions on Medical Imaging 40.12, pp. 3543-3554. 1ssn: 1558-254X. por:
10.1109/TMI.2021.3090082 (cit. on pp- 2,19, 20, 27, 52, 112).

Cardoso, M. J., W. Li, R. Brown, N. Ma, E. Kerfoot, Y. Wang, B. Murrey, A. Myronenko,
C.Zhao, D. Yang, V. Nath, Y. He, Z. Xu, A. Hatamizadeh, A. Myronenko, W. Zhu, Y. Liu,
M. Zheng, Y. Tang, I. Yang, M. Zephyr, B. Hashemian, S. Alle, M. Z. Darestani, C. Budd,
M. Modat, T. Vercauteren, G. Wang, Y. Li, Y. Hu, Y. Fu, B. Gorman, H. Johnson, B.
Genereaux, B. S. Erdal, V. Gupta, A. Diaz-Pinto, A. Dourson, L. Maier-Hein, P. F. Jaeger,
M. Baumgartner, J. Kalpathy-Cramer, M. Flores, ]. Kirby, L. A. D. Cooper, H. R. Roth,
D. Xu, D. Bericat, R. Floca, S. K. Zhou, H. Shuaib, K. Farahani, K. H. Maier-Hein, S.
Aylward, P. Dogra, S. Ourselin, and A. Feng (Nov. 4, 2022). MONAI: An Open-Source
Framework for Deep Learning in Healthcare. por: 10.48550/arXiv.2211.02701.
arXiv: 2211.02701 [cs]. urL: http://arxiv.org/abs/2211.02701 (visited
on 02/05/2024). Pre-published (cit. on p. 56).

Carnahan, P, J. Moore, D. Bainbridge, M. Eskandari, E. C. S. Chen, and T. M. Peters
(2021). DeepMitral: Fully Automatic 3D Echocardiography Segmentation for Patient
Specific Mitral Valve Modelling. In: Medical Image Computing and Computer Assisted
Intervention — MICCAI 2021. Ed. by M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S.
Speidel, Y. Zheng, and C. Essert. Cham: Springer International Publishing, pp. 459-468.
1sBN: 978-3-030-87240-3. por: 10.1007/978-3-030-87240-3_44 (cit. on p- 53).

Carré, A., E. Deutsch, and C. Robert (2021). Automatic Brain Tumor Segmentation with
a Bridge-Unet Deeply Supervised Enhanced with Downsampling Pooling Combi-
nation, Atrous Spatial Pyramid Pooling, Squeeze-and-Excitation and EvoNorm. In:
International MICCAI Brainlesion Workshop, pp. 253-266 (cit. on p. 190).

Castro, D. C., I. Walker, and B. Glocker (July 22, 2020). Causality Matters in Medical
Imaging. In: Nature Communications 11.1 (1), p. 3673. 1ssnx: 2041-1723. por: 10.1038/s
41467-020-17478-w. URL: https://www.nature.com/articles/s41467-0
20-17478-w (visited on 02/25/2021) (cit. on pp. 2,9, 10).

Chao, P, C.-Y.Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin (2019). Hardnet: A Low Memory
Traffic Network. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (cit. on p. 189).

Chen, C., K. Hammernik, C. Ouyang, C. Qin, W. Bai, and D. Rueckert (July 2, 2021).
Cooperative Training and Latent Space Data Augmentation for Robust Medical

136


https://doi.org/10.1109/TMI.2021.3090082
https://doi.org/10.48550/arXiv.2211.02701
https://arxiv.org/abs/2211.02701
http://arxiv.org/abs/2211.02701
https://doi.org/10.1007/978-3-030-87240-3_44
https://doi.org/10.1038/s41467-020-17478-w
https://doi.org/10.1038/s41467-020-17478-w
https://www.nature.com/articles/s41467-020-17478-w
https://www.nature.com/articles/s41467-020-17478-w

Bibliography

Image Segmentation. arXiv: 2107.01079 [cs, g-bio].urL:http://arxiv.or
g/abs/2107.01079 (visited on 07/19/2021) (cit. on pp. 18, 19).

Chen, X., K. Men, B. Chen, Y. Tang, T. Zhang, S. Wang, Y. Li, and ]. Dai (2020). CNN-Based
Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy.
In: Frontiers in Oncology 10. 1ssN: 2234-943X. urL: https://www.frontiersin.org
/article/10.3389/fonc.2020.00524 (visited on 02/24/2022) (cit. on p. 47).

Cicek, O., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger (2016). 3D U-
Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2016. Ed. by S. Ourselin,
L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells. Cham: Springer International
Publishing, pp. 424-432. 1sBN: 978-3-319-46723-8. por: 10.1007/978-3-319-46723-
8_49 (cit.onp. 6).

Clark, K., B. Vendt, K. Smith, ]. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt,
M. Pringle, L. Tarbox, and F. Prior (Dec. 1, 2013). The Cancer Imaging Archive (TCIA):
Maintaining and Operating a Public Information Repository. In: Journal of Digital
Imaging 26.6, pp. 1045-1057. 1ssn: 1618-727X. por: 10.1007/s10278-013-9622-7.
URL: https://doi.org/10.1007/s10278-013-9622-7 (visited on 02/05/2024)
(cit. on p. 52).

Crum, W,, O. Camara, and D. Hill (Nov. 2006). Generalized Overlap Measures for Eval-
uation and Validation in Medical Image Analysis. In: IEEE Transactions on Medical
Imaging 25.11, pp. 1451-1461. 1ssn: 1558-254X. por: 10.1109/TMI. 2006 . 880587
(cit. on p. 62).

Czolbe, S., K. Arnavaz, O. Krause, and A. Feragen (2021). Is Segmentation Uncertainty
Useful? In: Information Processing in Medical Imaging. Ed. by A. Feragen, S. Sommer,
J. Schnabel, and M. Nielsen. Lecture Notes in Computer Science. Cham: Springer
International Publishing, pp. 715-726. 1sBn: 978-3-030-78191-0. por: 10.1007/978-3-
030-78191-0_55 (cit. on p. 23).

Davatzikos, C., S. Rathore, S. Bakas, S. Pati, M. Bergman, R. Kalarot, P. Sridharan, A.
Gastounioti, N. Jahani, E. Cohen, H. Akbari, B. Tunc, J. Doshi, D. Parker, M. Hsieh,
A. Sotiras, H. Li, Y. Ou, R. K. Doot, M. Bilello, Y. Fan, R. T. Shinohara, P. Yushkevich, R.
Verma, and D. Kontos (Jan. 2018). Cancer Imaging Phenomics Toolkit: Quantitative
Imaging Analytics for Precision Diagnostics and Predictive Modeling of Clinical
Outcome. In: Journal of Medical Imaging 5.1, p. 011018. 1ssN: 2329-4302. por: 10.1117/1
.JMI.5.1.011018. pmid: 29340286. UrL: https://www.ncbi.nlm.nih. gov
/pmc/articles/PMC5764116/ (visited on 06/06/2024) (cit. on p. 37).

Dayan, I, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z. Abidin, A. Liu, A. B. Costa,
B. J. Wood, C.-S. Tsai, C.-H. Wang, C.-N. Hsu, C. K. Lee, P. Ruan, D. Xu, D. Wu, E.
Huang, F. C. Kitamura, G. Lacey, G. C. de Antonio Corradi, G. Nino, H.-H. Shin, H.

137


https://arxiv.org/abs/2107.01079
http://arxiv.org/abs/2107.01079
http://arxiv.org/abs/2107.01079
https://www.frontiersin.org/article/10.3389/fonc.2020.00524
https://www.frontiersin.org/article/10.3389/fonc.2020.00524
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1109/TMI.2006.880587
https://doi.org/10.1007/978-3-030-78191-0_55
https://doi.org/10.1007/978-3-030-78191-0_55
https://doi.org/10.1117/1.JMI.5.1.011018
https://doi.org/10.1117/1.JMI.5.1.011018
29340286
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764116/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764116/

Bibliography

Obinata, H. Ren, J. C. Crane, J. Tetreault, . Guan, J. W. Garrett, J. D. Kaggie, ]J. G. Park,
K. Dreyer, K. Juluru, K. Kersten, M. A. B. C. Rockenbach, M. G. Linguraru, M. A. Haider,
M. AbdelMaseeh, N. Rieke, P. F. Damasceno, P. M. C. e Silva, P. Wang, S. Xu, S. Kawano,
S. Sriswasdi, S. Y. Park, T. M. Grist, V. Buch, W. Jantarabenjakul, W. Wang, W. Y. Tak,
X. Li, X. Lin, Y. J. Kwon, A. Quraini, A. Feng, A. N. Priest, B. Turkbey, B. Glicksberg,
B. Bizzo, B. S. Kim, C. Tor-Diez, C.-C. Lee, C.-]. Hsu, C. Lin, C.-L. Lai, C. P. Hess, C.
Compeas, D. Bhatia, E. K. Oermann, E. Leibovitz, H. Sasaki, H. Mori, I. Yang, J. H. Sohn,
K. N. K. Murthy, L.-C. Fu, M. R. F. de Mendonga, M. Fralick, M. K. Kang, M. Adil,
N. Gangai, P. Vateekul, P. Elnajjar, S. Hickman, S. Majumdar, S. L. McLeod, S. Reed, S.
Gréf, S. Harmon, T. Kodama, T. Puthanakit, T. Mazzulli, V. L. de Lavor, Y. Rakvongthai,
Y. R. Lee, Y. Wen, E. J. Gilbert, M. G. Flores, and Q. Li (Oct. 2021). Federated Learning
for Predicting Clinical Outcomes in Patients with COVID-19. In: Nature Medicine
27.10 (10), pp- 1735-1743. 1ssn: 1546-170X. por: 10.1038/s41591-021-01506-3.
URL: https://www.nature.com/articles/s41591-021-01506-3 (visited on
12/07/2021) (cit. on p. 20).

Demoustier, M., I. Khemir, Q. D. Nguyen, L. Martin-Gaffé, and N. Boutry (2021). Residual
3d U-Net with Localization for Brain Tumor Segmentation. In: International MICCAI
Brainlesion Workshop, pp. 389-399 (cit. on p. 190).

DeVries, T. and G. W. Taylor (July 2, 2018). Leveraging Uncertainty Estimates for Predict-
ing Segmentation Quality. arXiv: 1807.00502 [cs]. urL: http://arxiv.org/a
bs/1807.00502 (visited on 02/24/2022) (cit. on pp. 24, 47).

Dobko, M., D.-I. Kolinko, O. Viniavskyi, and Y. Yelisieiev (2021). Combining CNNs with
Transformer for Multimodal 3D MRI Brain Tumor Segmentation. In: International
MICCALI Brainlesion Workshop, pp. 232-241 (cit. on p. 190).

Dong, X.,J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, and B. Guo (Jan. 9, 2022).
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
Windows. por: 10.48550/arXiv.2107.00652. arXiv: 2107 .00652. UrRL: http:
//arxiv.org/abs/2107.00652 (visited on 10/30/2024). Pre-published (cit. on
p.73).

Dou, Q., T. Y. So, M. Jiang, Q. Liu, V. Vardhanabhuti, G. Kaissis, Z. Li, W. Si, H. H. C. Lee,
K. Yu, Z. Feng, L. Dong, E. Burian, F. Jungmann, R. Braren, M. Makowski, B. Kainz,
D. Rueckert, B. Glocker, S. C. H. Yu, and P. A. Heng (Mar. 29, 2021). Federated Deep
Learning for Detecting COVID-19 Lung Abnormalities in CT: A Privacy-Preserving
Multinational Validation Study. In: npj Digital Medicine 4.1 (1), pp. 1-11. 1ssn: 2398-
6352. po1: 10.1038/s41746-021-00431-6. urRL: https://www.nature.com/a
rticles/s41746-021-00431-6 (visited on 04/06/2021) (cit. on p. 20).

Druzhinina, P, E. Kondrateva, A. Bozhenko, V. Yarkin, M. Sharaev, and A. Kurmukov
(2021). BRATS2021: Exploring Each Sequence in Multi-modal Input for Baseline

138


https://doi.org/10.1038/s41591-021-01506-3
https://www.nature.com/articles/s41591-021-01506-3
https://arxiv.org/abs/1807.00502
http://arxiv.org/abs/1807.00502
http://arxiv.org/abs/1807.00502
https://doi.org/10.48550/arXiv.2107.00652
https://arxiv.org/abs/2107.00652
http://arxiv.org/abs/2107.00652
http://arxiv.org/abs/2107.00652
https://doi.org/10.1038/s41746-021-00431-6
https://www.nature.com/articles/s41746-021-00431-6
https://www.nature.com/articles/s41746-021-00431-6

Bibliography

U-net Performance. In: International MICCAI Brainlesion Workshop, pp. 194-203 (cit. on
p- 190).

Dusenberry, M., G. Jerfel, Y. Wen, Y. Ma, ]. Snoek, K. Heller, B. Lakshminarayanan, and D.
Tran (Nov. 21, 2020). Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors.
In: Proceedings of the 37th International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, pp. 2782-2792. urL: https://proceedi
ngs.mlr.press/v119/dusenberry20a.html (visited on 09/24/2024) (cit. on
p-21).

Eisenmann, M., A. Reinke, V. Weru, M. D. Tizabi, F. Isensee, T. J. Adler, S. Ali, V. Andrea-
rczyk, M. Aubreville, U. Baid, S. Bakas, N. Balu, S. Bano, J. Bernal, S. Bodenstedt, A.
Casella, V. Cheplygina, M. Daum, M. de Bruijne, A. Depeursinge, R. Dorent, J. Egger,
D. G. Ellis, S. Engelhardt, M. Ganz, N. Ghatwary, G. Girard, P. Godau, A. Gupta, L.
Hansen, K. Harada, M. P. Heinrich, N. Heller, A. Hering, A. Huaulmé, P. Jannin, A. E.
Kavur, O. Kodym, M. Kozubek, J. Li, H. Li, ]. Ma, C. Martin-Isla, B. Menze, A. Noble,
V. Oreiller, N. Padoy, S. Pati, K. Payette, T. Rddsch, J. Rafael-Patifio, V. S. Bawa, S. Speidel,
C. H. Sudre, K. van Wijnen, M. Wagner, D. Wei, A. Yamlahi, M. H. Yap, C. Yuan, M.
Zenk, A. Zia, D. Zimmerer, D. B. Aydogan, B. Bhattarai, L. Bloch, R. Briingel, J. Cho, C.
Choi, Q. Dou, I. Ezhov, C. M. Friedrich, C. D. Fuller, R. R. Gaire, A. Galdran, A. G. Faura,
M. Grammatikopoulou, S. Hong, M. Jahanifar, I. Jang, A. Kadkhodamohammadi, I.
Kang, F. Kofler, S. Kondo, H. Kuijf, M. Li, M. Luu, T. Martin¢i¢, P. Morais, M. A. Naser,
B. Oliveira, D. Owen, S. Pang, J. Park, S.-H. Park, S. Plotka, E. Puybareau, N. Rajpoot,
K. Ryu, N. Saeed, A. Shephard, P. Shi, D. Stepec, R. Subedi, G. Tochon, H. R. Torres,
H. Urien, ]. L. Vilaga, K. A. Wahid, H. Wang, J]. Wang, L. Wang, X. Wang, B. Wiestler,
M. Wodzinski, F. Xia, J. Xie, Z. Xiong, S. Yang, Y. Yang, Z. Zhao, K. Maier-Hein, P. F.
Jager, A. Kopp-Schneider, and L. Maier-Hein (2023). Why Is the Winner the Best? In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 19955-19966. urL: https://openaccess. thecvf.com/content/CVPR2023
/html/Eisenmann_Why_Is_the_Winner_the_Best_CVPR_2023_paper.ht
ml (visited on 01/22/2025) (cit. on p. 172).

Esser, P, R. Rombach, and B. Ommer (June 23, 2021). Taming Transformers for High-
Resolution Image Synthesis. por: 10.48550/arXiv.2012.09841. arXiv: 2012.0
9841 [cs].uUrL: http://arxiv.org/abs/2012.09841 (visited on 09/13/2022).
Pre-published (cit. on p. 25).

Feng, X., H. Bai, D. Kim, G. Maragkos, J. Machaj, and R. Kellogg (2021). Brain Tumor
Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRI. In:
International MICCAI Brainlesion Workshop, pp. 90-96 (cit. on p. 190).

Fidon, L., S. Shit, I. Ezhov, J. C. Paetzold, S. Ourselin, and T. Vercauteren (2021). Generalized
Wasserstein Dice Loss, Test-Time Augmentation, and Transformers for the BraTS

139


https://proceedings.mlr.press/v119/dusenberry20a.html
https://proceedings.mlr.press/v119/dusenberry20a.html
https://openaccess.thecvf.com/content/CVPR2023/html/Eisenmann_Why_Is_the_Winner_the_Best_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Eisenmann_Why_Is_the_Winner_the_Best_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Eisenmann_Why_Is_the_Winner_the_Best_CVPR_2023_paper.html
https://doi.org/10.48550/arXiv.2012.09841
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2012.09841
http://arxiv.org/abs/2012.09841

Bibliography

2021 Challenge. In: International MICCAI Brainlesion Workshop, pp. 187-196 (cit. on
pp. 189, 190).

Full, P. M., F. Isensee, P. F. Jager, and K. Maier-Hein (Nov. 15, 2020). Studying Robustness
of Semantic Segmentation under Domain Shift in Cardiac MRI. arXiv: 2011.07592
[cs, eess].UurL:http://arxiv.org/abs/2011.07592 (visited on03/15/2021)
(cit. on pp. 18, 52).

Fumero, F.,, S. Alayon, J. L. Sanchez, J. Sigut, and M. Gonzalez-Hernandez (June 2011).
RIM-ONE: An Open Retinal Image Database for Optic Nerve Evaluation. In: 2011
24th International Symposium on Computer-Based Medical Systems (CBMS). 2011 24th
International Symposium on Computer-Based Medical Systems (CBMS), pp. 1-6. por:
10.1109/CBMS.2011.5999143. urL: https://ieeexplore.ieee.org/abst
ract/document /5999143 (visited on 09/25/2024) (cit. on p. 53).

Futrega, M., A. Milesi, M. Marcinkiewicz, and P. Ribalta (2021). Optimized U-Net for
Brain Tumor Segmentation. In: International MICCAI Brainlesion Workshop, pp. 15-29
(cit. on p. 190).

Gal, Y. (2016). Uncertainty in Deep Learning. University of Cambridge (cit. on pp. 11,12,
14).

Gal, Y. and Z. Ghahramani (2016). Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning. In: p. 10 (cit. on pp. 21, 60).

Galil, I, M. Dabbah, and R. El-Yaniv (Feb. 23, 2023). What Can We Learn From The
Selective Prediction And Uncertainty Estimation Performance Of 523 Imagenet
Classifiers. por: 10.48550/arXiv.2302.11874. arXiv: 2302.11874 [cs]. URL:
http://arxiv.org/abs/2302.11874 (visited on 01/09/2024). Pre-published
(cit. on p. 117).

Geifman, Y. and R. El-Yaniv (May 23, 2017). Selective Classification for Deep Neural Net-
works. In: urL: https://arxiv.org/abs/1705.08500v2 (visited on 02/11/2022)
(cit. on pp. 44, 121).

Gillies, R. J., P. E. Kinahan, and H. Hricak (Now. 18, 2015). Radiomics: Images Are More
than Pictures, They Are Data. In: Radiology 278.2, p. 563. por: 10.1148/radiol. 20
15151169. pmid: 26579733. urL: https://pmc.ncbi.nlm.nih.gov/article
s/PMC4734157/ (visited on 11/15/2024) (cit. on p. 61).

Gonzalez, C., K. Gotkowski, M. Fuchs, A. Bucher, A. Dadras, R. Fischbach, I. J. Kaltenborn,
and A. Mukhopadhyay (Nov. 2022). Distance-Based Detection of out-of-Distribution
Silent Failures for Covid-19 Lung Lesion Segmentation. In: Medical Image Analysis 82,
p- 102596. 1ssn: 13618415. por: 10.1016/j .media.2022.102596. urL: https://1
inkinghub.elsevier.com/retrieve/pii/S1361841522002298 (visited on
11/02/2022) (cit. on pp. 3,19, 23, 25, 45, 47, 52, 64, 119).

140


https://arxiv.org/abs/2011.07592
https://arxiv.org/abs/2011.07592
http://arxiv.org/abs/2011.07592
https://doi.org/10.1109/CBMS.2011.5999143
https://ieeexplore.ieee.org/abstract/document/5999143
https://ieeexplore.ieee.org/abstract/document/5999143
https://doi.org/10.48550/arXiv.2302.11874
https://arxiv.org/abs/2302.11874
http://arxiv.org/abs/2302.11874
https://arxiv.org/abs/1705.08500v2
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
26579733
https://pmc.ncbi.nlm.nih.gov/articles/PMC4734157/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4734157/
https://doi.org/10.1016/j.media.2022.102596
https://linkinghub.elsevier.com/retrieve/pii/S1361841522002298
https://linkinghub.elsevier.com/retrieve/pii/S1361841522002298

Bibliography

Graham, M. S., P-D. Tudosiu, P. Wright, W. H. L. Pinaya, ].-M. U-King-Im, Y. Mah, ]. Teo,
R. H. Jager, D. Werring, P. Nachev, S. Ourselin, and M. J. Cardoso (June 22, 2022).
Transformer-Based out-of-Distribution Detection for Clinically Safe Segmentation.
In: Medical Imaging with Deep Learning. urL: https://openreview.net/forum
?id=En7660i-CLJ (visited on 08/10/2022) (cit. on pp. 25, 45).

Griethuysen, J. J. M. van, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H.
Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts (Nov. 1, 2017). Computa-
tional Radiomics System to Decode the Radiographic Phenotype. In: Cancer Research
77.21, e104—107. 1ssn: 1538-7445. por: 10.1158/0008-5472.CAN-17-0339. pmid:
29092951 (cit. on pp. 23, 62).

Gulrajani, I. and D. Lopez-Paz (2021). In Search of Lost Domain Generalization. In:
International Conference on Learning Representations. urL: https://openreview.net
/forum?id=1QdXeXDoWtI (cit. on pp. 18, 19).

Guo, C,, G. Pleiss, Y. Sun, and K. Q. Weinberger (July 17, 2017). On Calibration of Modern
Neural Networks. In: Proceedings of the 34th International Conference on Machine Learning.
International Conference on Machine Learning. PMLR, pp. 1321-1330. urL: https:
//proceedings.mlr.press/v70/guol7a.html (visited on 01/26/2022) (cit. on
p-21).

Han, S., Y. Liu, S.]. Cai, M. Qian, J. Ding, M. Larion, M. R. Gilbert, and C. Yang (May 2020).
IDH Mutation in Glioma: Molecular Mechanisms and Potential Therapeutic Targets.
In: British Journal of Cancer 122.11, pp. 1580-1589. 1ssn: 1532-1827. por: 10.1038/s414
16-020-0814-x. URL: https://www.nature.com/articles/s41416-020-0
814-x (visited on 10/30/2024) (cit. on p. 34).

Harari, P. M., S. Song, and W. A. Tomé (2010). Emphasizing Conformal Avoidance versus
Target Definition for IMRT Planning in Head-and-Neck Cancer. In: International
Journal of Radiation Oncology*Biology*Physics 77.3, pp. 950-958. 1ssn: 0360-3016. por:
10.1016/j.ijrobp.2009.09.062. urL: https://www.sciencedirect.com
/science/article/pii/S0360301609033975 (cit.onp.1).

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep Residual Learning for Image Recognition.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770—
778 (cit. on pp. 56, 189).

He, Y., H.-P. Wang, M. Zenk, and M. Fritz (May 1, 2022). CosSGD: Communication-
Efficient Federated Learning with a Simple Cosine-Based Quantization. por: 10. 4
8550/arXiv.2012.08241. arXiv: 2012.08241 [cs].UrRL: http://arxiv.org
/abs/2012.08241 (visited on 12/14/2022). Pre-published (cit. on p. 172).

He, Y., A. Carass, L. Zuo, B. E. Dewey, and J. L. Prince (Aug. 1, 2021). Autoencoder Based
Self-Supervised Test-Time Adaptation for Medical Image Analysis. In: Medical Image
Analysis 72, p. 102136. 1ssn: 1361-8415. por: 10.1016/j .media.2021.102136. URL:

141


https://openreview.net/forum?id=En7660i-CLJ
https://openreview.net/forum?id=En7660i-CLJ
https://doi.org/10.1158/0008-5472.CAN-17-0339
29092951
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.1038/s41416-020-0814-x
https://doi.org/10.1038/s41416-020-0814-x
https://www.nature.com/articles/s41416-020-0814-x
https://www.nature.com/articles/s41416-020-0814-x
https://doi.org/10.1016/j.ijrobp.2009.09.062
https://www.sciencedirect.com/science/article/pii/S0360301609033975
https://www.sciencedirect.com/science/article/pii/S0360301609033975
https://doi.org/10.48550/arXiv.2012.08241
https://doi.org/10.48550/arXiv.2012.08241
https://arxiv.org/abs/2012.08241
http://arxiv.org/abs/2012.08241
http://arxiv.org/abs/2012.08241
https://doi.org/10.1016/j.media.2021.102136

Bibliography

https://www.sciencedirect.com/science/article/pii/S1361841521
001821 (visited on 11/10/2021) (cit. on p. 18).

Heimann, T. and H.-P. Meinzer (Aug. 1, 2009). Statistical Shape Models for 3D Medical
Image Segmentation: A Review. In: Medical Image Analysis 13.4, pp. 543-563. 1ssN: 1361-
8415.por: 10.1016/j.media.2009.05.004. urRL: https://www.sciencedire
ct.com/science/article/pii/S1361841509000425 (visited on 12/18/2024)
(cit. on p. 5).

Heller, N., F. Isensee, K. H. Maier-Hein, X. Hou, C. Xie, F. Li, Y. Nan, G. Mu, Z. Lin, M. Han,
G.Yao, Y. Gao, Y. Zhang, Y. Wang, F. Hou, J. Yang, G. Xiong, J. Tian, C. Zhong, ]. Ma,
J. Rickman, J. Dean, B. Stai, R. Tejpaul, M. Oestreich, P. Blake, H. Kaluzniak, S. Raza,
J. Rosenberg, K. Moore, E. Walczak, Z. Rengel, Z. Edgerton, R. Vasdev, M. Peterson,
S. McSweeney, S. Peterson, A. Kalapara, N. Sathianathen, N. Papanikolopoulos, and C.
Weight (Jan. 1,2021). The State of the Artin Kidney and Kidney Tumor Segmentation
in Contrast-Enhanced CT Imaging: Results of the KiTS19 Challenge. In: Medical Image
Analysis 67, p. 101821. 1ssn: 1361-8415. por: 10.1016/j .media.2020.101821. URL:
https://www.sciencedirect.com/science/article/pii/S1361841520
301857 (visited on 02/05/2024) (cit. on p. 52).

Heller, N, F. Isensee, D. Trofimova, R. Tejpaul, Z. Zhao, H. Chen, L. Wang, A. Golts, D.
Khapun, D. Shats, Y. Shoshan, F. Gilboa-Solomon, Y. George, X. Yang, J. Zhang, ]. Zhang,
Y. Xia, M. Wu, Z. Liu, E. Walczak, S. McSweeney, R. Vasdev, C. Hornung, R. Solaiman,
J. Schoephoerster, B. Abernathy, D. Wu, S. Abdulkadir, B. Byun, J. Spriggs, G. Struyk, A.
Austin, B. Simpson, M. Hagstrom, S. Virnig, J. French, N. Venkatesh, S. Chan, K. Moore,
A.Jacobsen, S. Austin, M. Austin, S. Regmi, N. Papanikolopoulos, and C. Weight (July 4,
2023). The KiTS21 Challenge: Automatic Segmentation of Kidneys, Renal Tumors,
and Renal Cysts in Corticomedullary-Phase CT. por: 10.48550/arXiv.2307.0
1984. arXiv: 2307 .01984 [cs]. urL: http://arxiv.org/abs/2307.01984
(visited on 02/05/2024). Pre-published (cit. on p. 52).

Hendrycks, D. and T. Dietterich (Mar. 28, 2019). Benchmarking Neural Network Robust-
ness to Common Corruptions and Perturbations. arXiv: 1903.12261 [cs, stat].
URL: http://arxiv.org/abs/1903.12261 (visited on 03/02/2021) (cit. on p. 19).

Higgins, I., L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-
chner (Nov. 4, 2016). Beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. In: urL: https://openreview.net/forum?id=Sy2fz
U9g1 (visited on 08/22/2019) (cit. on p. 64).

Hoebel, K., V. Andrearczyk, A. Beers, J. Patel, K. Chang, A. Depeursinge, H. Miiller, and
J. Kalpathy-Cramer (Mar. 10, 2020). An Exploration of Uncertainty Information for
Segmentation Quality Assessment. In: Medical Imaging 2020: Image Processing. Medical
Imaging 2020: Image Processing. Vol. 11313. SPIE, pp. 381-390. por: 10.1117/12. 2

142


https://www.sciencedirect.com/science/article/pii/S1361841521001821
https://www.sciencedirect.com/science/article/pii/S1361841521001821
https://doi.org/10.1016/j.media.2009.05.004
https://www.sciencedirect.com/science/article/pii/S1361841509000425
https://www.sciencedirect.com/science/article/pii/S1361841509000425
https://doi.org/10.1016/j.media.2020.101821
https://www.sciencedirect.com/science/article/pii/S1361841520301857
https://www.sciencedirect.com/science/article/pii/S1361841520301857
https://doi.org/10.48550/arXiv.2307.01984
https://doi.org/10.48550/arXiv.2307.01984
https://arxiv.org/abs/2307.01984
http://arxiv.org/abs/2307.01984
https://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.1117/12.2548722
https://doi.org/10.1117/12.2548722
https://doi.org/10.1117/12.2548722

Bibliography

548722. UrRL: https://www.spiedigitallibrary.org/conference-proce
edings-of-spie/11313/113131K/An-exploration-of-uncertainty-in
formation-for-segmentation-quality-assessment/10.1117/12.2548
722 .full (visited on 11/10/2023) (cit. on pp. 22, 118).

Hoebel, K., C. Bridge, A. Lemay, K. Chang, J. Patel, B. R. M.d, and ]. Kalpathy-Cramer
(Apr. 4, 2022). Do I Know This? Segmentation Uncertainty under Domain Shift.
In: Medical Imaging 2022: Image Processing. Medical Imaging 2022: Image Processing.
Vol. 12032. SPIE, pp. 261-276. por: 10.1117/12.2611867. urRL: https://www.spi
edigitallibrary.org/conference-proceedings-of-spie/12032/1203
211/Do-I-know-this-segmentation-uncertainty-under-domain-shif
t/10.1117/12.2611867 . full (visited on 06/22/2023) (cit. on pp. 22, 25, 26, 52,
118).

Hsu, C., C. Chang, T. W. Chen, H. Tsai, S. Ma, and W. Wang (2021). Brain Tumor Segmen-
tation (BraTS) Challenge Short Paper: Improving Three-Dimensional Brain Tumor
Segmentation Using SegResNet and Hybrid Boundary-Dice Loss. In: International
MICCAI Brainlesion Workshop, pp. 334-344 (cit. on p. 190).

Iglesias, J. E. and M. R. Sabuncu (Aug. 1, 2015). Multi-Atlas Segmentation of Biomedical
Images: A Survey. In: Medical Image Analysis 24.1, pp. 205-219. 1ssn: 1361-8415. por:
10.1016/j.media.2015.06.012. urL: https://www.sciencedirect.com
/science/article/pii/S1361841515000997 (visited on 12/18/2024) (cit. on
p.5).

Isensee, F, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein (Feb. 2021a).
nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image
Segmentation. In: Nature Methods 18.2 (2), pp. 203-211. 1ssn: 1548-7105. por: 10.1038
/s41592-020-01008-z. URL: https://www.nature.com/articles/s41592-
020-01008-z (visited on 03/16/2021) (cit. on pp. 2, 3,7, 38, 55, 56, 79).

Isensee, E., P. F. Jager, P. M. Full, P. Vollmuth, and K. H. Maier-Hein (2021b). nnU-Net
for Brain Tumor Segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction
with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6. Springer,
pp. 118-132 (cit. on pp. 69, 72, 73, 86).

Isensee, F., T. Wald, C. Ulrich, M. Baumgartner, S. Roy, K. Maier-Hein, and P. F. Jager
(2024). nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image
Segmentation. In: Medical Image Computing and Computer Assisted Intervention — MICCAI
2024. Ed. by M. G. Linguraru, Q. Dou, A. Feragen, S. Giannarou, B. Glocker, K. Lekadir,
and J. A. Schnabel. Cham: Springer Nature Switzerland, pp. 488-498. 1sen: 978-3-031-
72114-4. por: 10.1007/978-3-031-72114-4_47 (cit. on pp. 6,7).

143


https://doi.org/10.1117/12.2548722
https://doi.org/10.1117/12.2548722
https://doi.org/10.1117/12.2548722
https://doi.org/10.1117/12.2548722
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11313/113131K/An-exploration-of-uncertainty-information-for-segmentation-quality-assessment/10.1117/12.2548722.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11313/113131K/An-exploration-of-uncertainty-information-for-segmentation-quality-assessment/10.1117/12.2548722.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11313/113131K/An-exploration-of-uncertainty-information-for-segmentation-quality-assessment/10.1117/12.2548722.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11313/113131K/An-exploration-of-uncertainty-information-for-segmentation-quality-assessment/10.1117/12.2548722.full
https://doi.org/10.1117/12.2611867
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12032/1203211/Do-I-know-this-segmentation-uncertainty-under-domain-shift/10.1117/12.2611867.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12032/1203211/Do-I-know-this-segmentation-uncertainty-under-domain-shift/10.1117/12.2611867.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12032/1203211/Do-I-know-this-segmentation-uncertainty-under-domain-shift/10.1117/12.2611867.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12032/1203211/Do-I-know-this-segmentation-uncertainty-under-domain-shift/10.1117/12.2611867.full
https://doi.org/10.1016/j.media.2015.06.012
https://www.sciencedirect.com/science/article/pii/S1361841515000997
https://www.sciencedirect.com/science/article/pii/S1361841515000997
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://www.nature.com/articles/s41592-020-01008-z
https://www.nature.com/articles/s41592-020-01008-z
https://doi.org/10.1007/978-3-031-72114-4_47

Bibliography

Jaeger, P. F,, C. T. Liith, L. Klein, and T. ]. Bungert (Sept. 29, 2022). A Call to Reflect on
Evaluation Practices for Failure Detection in Image Classification. In: The Eleventh
International Conference on Learning Representations. urL: https://openreview
.net/forum?id=YnkGMIhOgvX (visited on 03/21/2024) (cit. on pp. 4, 25, 28, 4446,
48,50, 115,117, 120).

Jia, H., C. Bai, W. Cai, H. Huang, and Y. Xia (2021). HNF-Netv2 for Brain Tumor Segmen-
tation Using Multi-Modal MR Imaging. In: International MICCAI Brainlesion Workshop,
pp- 106-115 (cit. on pp. 189, 190).

Jiang, M., H. Yang, X. Zhang, S. Zhang, and Q. Dou (2022). Efficient Federated Tumor
Segmentation via Parameter Distance Weighted Aggregation and Client Pruning. In:
International MICCAI Brainlesion Workshop, pp. 161-172 (cit. on p. 72).

Jiang, Z., C. Zhao, X. Liu, and M. G. Linguraru (2021). Brain Tumor Segmentation in
Multi-Parametric Magnetic Resonance Imaging Using Model Ensembling and Super-
Resolution. In: International MICCAI Brainlesion Workshop, pp. 125-137 (cit. on p. 190).

Joskowicz, L., D. Cohen, N. Caplan, and J. Sosna (Mar. 1, 2019). Inter-Observer Variability
of Manual Contour Delineation of Structures in CT. In: European Radiology 29.3,
pp- 1391-1399. 1ssN: 1432-1084. por: 10.1007/s00330-018-5695-5. URL: https:
//doi.org/10.1007/s00330-018-5695-5 (visited on 11/23/2020) (cit. on p. 1).

Jumper, ], R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A.]. Ballard, A.
Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,
D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis (Aug.
2021). Highly Accurate Protein Structure Prediction with AlphaFold. In: Nature
596.7873, pp. 583-589. 1ssn: 1476-4687. por: 10.1038/541586-021-03819-2. URL:
https://www.nature.com/articles/s41586-021-03819 -2 (visited on
12/19/2024) (cit. on p. 5).

Jun, M., G. Cheng, W. Yixin, A. Xingle, G. Jiantao, Y. Ziqi, Z. Minqing, L. Xin, D. Xueyuan,
C. Shucheng, W. Hao, M. Sen, Y. Xiaoyu, N. Ziwei, L. Chen, T. Lu, Z. Yuntao, Z. Qiongjie,
D. Guoqiang, and H. Jian (Apr. 20, 2020). COVID-19 CT Lung and Infection Segmen-
tation Dataset. Version Verson 1.0. Zenodo. por: 10.5281/zenodo.3757476. URL:
https://zenodo.org/records/3757476 (visited on 02/05/2024) (cit. on p. 52).

Jungo, A., E. Balsiger, and M. Reyes (2020). Analyzing the Quality and Challenges of
Uncertainty Estimations for Brain Tumor Segmentation. In: Frontiers in Neuroscience
14. por: 10.3389/fnins.2020.00282. UrRL: https://www.readcube.com/ar
ticles/10.3389%2Ffnins.2020.00282 (visited on 11/17/2022) (cit. on pp. 22,
23,25,26,46,47,61, 62,116-119).

144


https://openreview.net/forum?id=YnkGMIh0gvX
https://openreview.net/forum?id=YnkGMIh0gvX
https://doi.org/10.1007/s00330-018-5695-5
https://doi.org/10.1007/s00330-018-5695-5
https://doi.org/10.1007/s00330-018-5695-5
https://doi.org/10.1038/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://doi.org/10.5281/zenodo.3757476
https://zenodo.org/records/3757476
https://doi.org/10.3389/fnins.2020.00282
https://www.readcube.com/articles/10.3389%2Ffnins.2020.00282
https://www.readcube.com/articles/10.3389%2Ffnins.2020.00282

Bibliography

Kades, K., J. Scherer, M. Zenk, M. Kempf, and K. Maier-Hein (2022). Towards Real-World
Federated Learning in Medical Image Analysis Using Kaapana. In: Distributed, Collab-
orative, and Federated Learning, and Affordable Al and Healthcare for Resource Diverse Global
Health. Ed. by S. Albarqouni, S. Bakas, S. Bano, M. J. Cardoso, B. Khanal, B. Landman,
X. Li, C. Qin, L. Rekik, N. Rieke, H. Roth, D. Sheet, and D. Xu. Cham: Springer Nature
Switzerland, pp. 130-140. 1sBn: 978-3-031-18523-6. por: 10.1007/978-3-031-18523
-6_13 (cit. on p. 172).

Kahl, K.-C., C. T. Liith, M. Zenk, K. Maier-Hein, and P. F. Jaeger (Jan. 16, 2024). ValUES: A
Framework for Systematic Validation of Uncertainty Estimation in Semantic Seg-
mentation. por: 10.48550/arXiv.2401.08501. arXiv: 2401.08501 [cs]. URL:
http://arxiv.org/abs/2401.08501 (visited on 01/25/2024). Pre-published
(cit. on pp. 14, 22, 23, 26, 58, 60, 61, 116, 118-120, 173).

Kalidindi, S. and S. Gandhi (Aug. 21, 2023). Workforce Crisis in Radiology in the UK
and the Strategies to Deal With It: Is Artificial Intelligence the Saviour? In: Cureus
15.8, €43866. por: 10.7759/cureus.43866. pmid: 37608900. URL: https://pmc

.ncbi.nlm.nih.gov/articles/PMC10441819/ (visited on 10/22/2024) (cit. on
p-1).

Kamnitsas, K., C. Ledig, V. F. ]. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D.
Rueckert, and B. Glocker (Feb. 1, 2017). Efficient Multi-Scale 3D CNN with Fully
Connected CRF for Accurate Brain Lesion Segmentation. In: Medical Image Analysis
36, pp. 61-78. 1ssN: 1361-8415. por: 10.1016/j .media.2016.10.004. urL: http:
//www.sciencedirect.com/science/article/pii/S1361841516301839
(visited on 09/02/2019) (cit. on p. 38).

Karani, N., E. Erdil, K. Chaitanya, and E. Konukoglu (Feb. 1, 2021). Test-Time Adaptable
Neural Networks for Robust Medical Image Segmentation. In: Medical Image Analysis
68, p. 101907. 1ssN: 1361-8415. por: 10.1016/j .media.2020.101907. urL: https:
//www.sciencedirect.com/science/article/pii/S1361841520302711
(visited on 05/08/2021) (cit. on p. 18).

Karargyris, A., R. Umeton, M. J. Sheller, A. Aristizabal, J. George, A. Wuest, S. Pati, H.
Kassem, M. Zenk, U. Baid, P. Narayana Moorthy, A. Chowdhury, J. Guo, S. Nalawade,
J. Rosenthal, D. Kanter, M. Xenochristou, D. ]J. Beutel, V. Chung, T. Bergquist, ]. Eddy,
A. Abid, L. Tunstall, O. Sanseviero, D. Dimitriadis, Y. Qian, X. Xu, Y. Liu, R. S. M. Goh,
S. Bala, V. Bittorf, S. R. Puchala, B. Ricciuti, S. Samineni, E. Sengupta, A. Chaudhari,
C. Coleman, B. Desinghu, G. Diamos, D. Dutta, D. Feddema, G. Fursin, X. Huang,
S. Kashyap, N. Lane, I. Mallick, P. Mascagni, V. Mehta, C. F. Moraes, V. Natarajan, N.
Nikolov, N. Padoy, G. Pekhimenko, V. J. Reddi, G. A. Reina, P. Ribalta, A. Singh, J. J.
Thiagarajan, J. Albrecht, T. Wolf, G. Miller, H. Fu, P. Shah, D. Xu, P. Yadav, D. Talby,
M. M. Awad, J. P. Howard, M. Rosenthal, L. Marchionni, M. Loda, J. M. Johnson, S.

145


https://doi.org/10.1007/978-3-031-18523-6_13
https://doi.org/10.1007/978-3-031-18523-6_13
https://doi.org/10.48550/arXiv.2401.08501
https://arxiv.org/abs/2401.08501
http://arxiv.org/abs/2401.08501
https://doi.org/10.7759/cureus.43866
37608900
https://pmc.ncbi.nlm.nih.gov/articles/PMC10441819/
https://pmc.ncbi.nlm.nih.gov/articles/PMC10441819/
https://doi.org/10.1016/j.media.2016.10.004
http://www.sciencedirect.com/science/article/pii/S1361841516301839
http://www.sciencedirect.com/science/article/pii/S1361841516301839
https://doi.org/10.1016/j.media.2020.101907
https://www.sciencedirect.com/science/article/pii/S1361841520302711
https://www.sciencedirect.com/science/article/pii/S1361841520302711

Bibliography

Bakas, and P. Mattson (July 17, 2023). Federated Benchmarking of Medical Artificial
Intelligence with MedPerf. In: Nature Machine Intelligence, pp. 1-12. 1ssn: 2522-5839.
por: 10.1038/s42256-023-00652-2. urL: https://www.nature.com/artic
les/s42256-023-00652-2 (visited on 07/18/2023) (cit. on pp. 3, 20, 42,170, 172).

Kazerooni, A. F., N. Khalili, X. Liu, D. Haldar, Z. Jiang, S. M. Anwar, J. Albrecht, M. Adewole,
U. Anazodo, H. Anderson, S. Bagheri, U. Baid, T. Bergquist, A. J. Borja, E. Calabrese,
V. Chung, G.-M. Conte, F. Dako, J. Eddy, I. Ezhov, A. Familiar, K. Farahani, S. Haldar,
J. E. Iglesias, A. Janas, E. Johansen, B. V. Jones, F. Kofler, D. LaBella, H. A. Lai, K. V.
Leemput, H. B. Li, N. Maleki, A. S. McAllister, Z. Meier, B. Menze, A. W. Moawad, K. K.
Nandolia, J. Pavaine, M. Piraud, T. Poussaint, S. P. Prabhu, Z. Reitman, A. Rodriguez,
J. D. Rudie, M. Sanchez-Montano, 1. S. Shaikh, L. M. Shah, N. Sheth, R. T. Shinohara, W.
Tu, K. Viswanathan, C. Wang, J. B. Ware, B. Wiestler, W. Wiggins, A. Zapaishchykova,
M. Aboian, M. Bornhorst, P. de Blank, M. Deutsch, M. Fouladi, L. Hoffman, B. Kann, M.
Lazow, L. Mikael, A. Nabavizadeh, R. Packer, A. Resnick, B. Rood, A. Vossough, S. Bakas,
and M. G. Linguraru (2024). The Brain Tumor Segmentation (BraTS) Challenge
2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCALI BraTS-peds).
arXiv: 2305.17033 [eess.IV] (cit.onp. 3).

Kendall, A., V. Badrinarayanan, and R. Cipolla (Oct. 10, 2016). Bayesian SegNet: Model
Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Un-
derstanding. por: 10.48550/arXiv.1511.02680. arXiv: 1511.02680 [cs]. URL:
http://arxiv.org/abs/1511.02680 (visited on 02/07/2023). Pre-published
(cit. on p. 56).

Kickingereder, P, F. Isensee, I. Tursunova, J. Petersen, U. Neuberger, D. Bonekamp, G.
Brugnara, M. Schell, T. Kessler, M. Foltyn, I. Harting, F. Sahm, M. Prager, M. Nowosielski,
A. Wick, M. Nolden, A. Radbruch, J. Debus, H.-P. Schlemmer, S. Heiland, M. Platten,
A. von Deimling, M. J. van den Bent, T. Gorlia, W. Wick, M. Bendszus, and K. H. Maier-
Hein (May 1, 2019). Automated Quantitative Tumour Response Assessment of MRI
in Neuro-Oncology with Artificial Neural Networks: A Multicentre, Retrospective
Study. In: The Lancet Oncology 20.5, pp. 728-740. 1ssn: 1470-2045, 1474-5488. por: 10. 1
016/51470-2045(19)30098-1. pmid: 30952559. urL: https://www. thelanc
et.com/journals/lanonc/article/PI1S1470-2045%2819%2930098-1/f
ulltext (visited on 10/25/2024) (cit. on pp. 1, 4).

Kingma, D. P. and M. Welling (Dec. 20, 2013). Auto-Encoding Variational Bayes. arXiv:
1312.6114 [cs, stat].urL:http://arxiv.org/abs/1312.6114 (visited on
07/22/2019) (cit. on p. 24).

Kirchhoff, Y., M. R. Rokuss, S. Roy, B. Kovacs, C. Ulrich, T. Wald, M. Zenk, P. Vollmuth, J.
Kleesiek, F. Isensee, and K. Maier-Hein (2024). Skeleton Recall Loss for Connectivity
Conserving and Resource Efficient Segmentation of Thin Tubular Structures. In:

146


https://doi.org/10.1038/s42256-023-00652-2
https://www.nature.com/articles/s42256-023-00652-2
https://www.nature.com/articles/s42256-023-00652-2
https://arxiv.org/abs/2305.17033
https://doi.org/10.48550/arXiv.1511.02680
https://arxiv.org/abs/1511.02680
http://arxiv.org/abs/1511.02680
https://doi.org/10.1016/S1470-2045(19)30098-1
https://doi.org/10.1016/S1470-2045(19)30098-1
30952559
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2819%2930098-1/fulltext
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2819%2930098-1/fulltext
https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045%2819%2930098-1/fulltext
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

Bibliography

Computer Vision — ECCV 2024. Ed. by A. Leonardis, E. Ricci, S. Roth, O. Russakovsky,
T. Sattler, and G. Varol. Cham: Springer Nature Switzerland, pp. 218-234. 1sBn: 978-3-
031-72980-5. por: 10.1007/978-3-031-72980-5_13 (cit. on p. 173).

Kirillov, A., E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollar, and R. Girshick (2023). Segment Anything. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015-4026. UrL:
https://openaccess. thecvf.com/content/ICCV2023/html/Kirillov
_Segment_Anything_ ICCV_2023_paper.html (visited on 12/19/2024) (cit. on
p. 6).

Koh, P. W,, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M.
Yasunaga, R. L. Phillips, I. Gao, T. Lee, E. David, I. Stavness, W. Guo, B. A. Earnshaw,
I. S. Haque, S. Beery, J. Leskovec, A. Kundaje, E. Pierson, S. Levine, C. Finn, and P. Liang
(July 16, 2021). WILDS: A Benchmark of in-the-Wild Distribution Shifts. arXiv:
2012 .07421 [cs]. urL: http://arxiv.org/abs/2012.07421 (visited on
11/30/2021) (cit. on pp. 9, 19).

Kohl, S. A. A, B. Romera-Paredes, C. Meyer, J. De Fauw, J. R. Ledsam, K. H. Maier-Hein,
S. M. A. Eslami, D. J. Rezende, and O. Ronneberger (June 13, 2018). A Probabilistic
U-Net for Segmentation of Ambiguous Images. arXiv: 1806.05034 [cs, stat].
URL: http://arxiv.org/abs/1806.05034 (visited on 08/27/2019) (cit. on p. 22).

Kohlberger, T., V. Singh, C. Alvino, C. Bahlmann, and L. Grady (2012). Evaluating Segmen-
tation Error without Ground Truth. In: Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2012. Ed. by N. Ayache, H. Delingette, P. Golland, and K. Mori.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 528-536. 1sBN:
978-3-642-33415-3. por: 10.1007/978-3-642-33415-3_65 (cit. on pp. 23, 46).

Korevaar, S., R. Tennakoon, and A. Bab-Hadiashar (2023). Failure to Achieve Domain
Invariance With Domain Generalization Algorithms: An Analysis in Medical Imag-
ing. In: IEEE Access 11, pp. 39351-39372. 1ssn: 2169-3536. por: 10.1109/ACCESS. 202
3.3268704. urL: https://ieeexplore.ieee.org/abstract/document/10
105917 (visited on 08/13/2024) (cit. on p. 19).

Kotowski, K., S. Adamski, B. Machura, W. Malara, L. Zarudzki, and J. Nalepa (2022).
Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain
Tumor Segmentation. In: International MICCAI Brainlesion Workshop, pp. 218-227 (cit.
onp.72).

Kotowski, K., S. Adamski, B. Machura, L. Zarudzki, and ]. Nalepa (2021). Coupling nnU-
nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI. In:
International MICCAI Brainlesion Workshop, pp. 197-209 (cit. on pp. 72, 190).

Kurtzer, G. M., V. Sochat, and M. W. Bauer (2017). Singularity: Scientific Containers for
Mobility of Compute. In: PloS one 12.5, e0177459 (cit. on p. 42).

147


https://doi.org/10.1007/978-3-031-72980-5_13
https://openaccess.thecvf.com/content/ICCV2023/html/Kirillov_Segment_Anything_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Kirillov_Segment_Anything_ICCV_2023_paper.html
https://arxiv.org/abs/2012.07421
http://arxiv.org/abs/2012.07421
https://arxiv.org/abs/1806.05034
http://arxiv.org/abs/1806.05034
https://doi.org/10.1007/978-3-642-33415-3_65
https://doi.org/10.1109/ACCESS.2023.3268704
https://doi.org/10.1109/ACCESS.2023.3268704
https://ieeexplore.ieee.org/abstract/document/10105917
https://ieeexplore.ieee.org/abstract/document/10105917

Bibliography

Kushibar, K., V. Campello, L. Garrucho, A. Linardos, P. Radeva, and K. Lekadir (2022).
Layer Ensembles: A Single-Pass Uncertainty Estimation in Deep Learning for Seg-
mentation. In: Medical Image Computing and Computer Assisted Intervention — MICCAI
2022. Ed. by L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li. Vol. 13438. Cham:
Springer Nature Switzerland, pp. 514-524. 1sen: 978-3-031-16452-1. por: 10.1007 /978
-3-031-16452-1_49.urL: https://link.springer.com/10.1007/978-3-0
31-16452-1_49 (visited on 01/02/2023) (cit. on p. 52).

Kwon, Y., J.-H. Won, B. J. Kim, and M. C. Paik (Feb. 1, 2020). Uncertainty Quantification
Using Bayesian Neural Networks in Classification: Application to Biomedical Image
Segmentation. In: Computational Statistics & Data Analysis 142, p. 106816. 1ssn: 0167-9473.
por: 10.1016/j.csda.2019.106816. UrL: https://www.sciencedirect.co
m/science/article/pii/S016794731930163X (visited on 06/27/2023) (cit. on
p- 22).

Lakshminarayanan, B., A. Pritzel, and C. Blundell (2017). Simple and Scalable Predictive
Uncertainty Estimation Using Deep Ensembles. In: Advances in Neural Information
Processing Systems. Vol. 30. Curran Associates, Inc. urL: https://proceedings.ne
urips.cc/paper_files/paper/2017/hash/9ef2ed4b7fd2c810847ffa5f
a85bce38-Abstract.html (visited on 02/15/2024) (cit. on pp. 22, 47, 60).

Lambert, B., F. Forbes, S. Doyle, H. Dehaene, and M. Dojat (Apr. 1, 2024). Trustworthy
Clinical AI Solutions: A Unified Review of Uncertainty Quantification in Deep
Learning Models for Medical Image Analysis. In: Artificial Intelligence in Medicine 150,
p- 102830. 1ssn: 0933-3657. por: 10.1016/j . artmed. 2024 .102830. urL: https:
//www.sciencedirect.com/science/article/pii/S0933365724000721
(visited on 05/29/2024) (cit. on pp. 21, 119).

LeCun, Y., Y. Bengio, and G. Hinton (May 2015). Deep Learning. In: Nature 521.7553
(7553), pp- 436—444. 1ssn: 1476-4687. por: 10.1038/nature14539. urL: https://w
ww.nature.com/articles/nature14539 (visited on 05/15/2020) (cit. on pp. 1,
5,6).

Lemaitre, G., R. Marti, J. Freixenet, ]. C. Vilanova, P. M. Walker, and F. Meriaudeau (May 1,
2015). Computer-Aided Detection and Diagnosis for Prostate Cancer Based on Mono
and Multi-Parametric MRI: A Review. In: Computers in Biology and Medicine 60, pp. 8-
31. 1ssn: 0010-4825. por: 10.1016/j . compbiomed. 2015.02.009. urL: https:
//www.sciencedirect.com/science/article/pii/S001048251500058X
(visited on 02/05/2024) (cit. on p. 52).

Lennartz, J. and T. Schultz (2023). Segmentation Distortion: Quantifying Segmentation
Uncertainty Under Domain Shift via the Effects of Anomalous Activations. In: Medical
Image Computing and Computer Assisted Intervention — MICCAI 2023. Ed. by H. Greenspan,
A. Madabhushi, P. Mousavi, S. Salcudean, J. Duncan, T. Syeda-Mahmood, and R. Taylor.

148


https://doi.org/10.1007/978-3-031-16452-1_49
https://doi.org/10.1007/978-3-031-16452-1_49
https://link.springer.com/10.1007/978-3-031-16452-1_49
https://link.springer.com/10.1007/978-3-031-16452-1_49
https://doi.org/10.1016/j.csda.2019.106816
https://www.sciencedirect.com/science/article/pii/S016794731930163X
https://www.sciencedirect.com/science/article/pii/S016794731930163X
https://proceedings.neurips.cc/paper_files/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://doi.org/10.1016/j.artmed.2024.102830
https://www.sciencedirect.com/science/article/pii/S0933365724000721
https://www.sciencedirect.com/science/article/pii/S0933365724000721
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://doi.org/10.1016/j.compbiomed.2015.02.009
https://www.sciencedirect.com/science/article/pii/S001048251500058X
https://www.sciencedirect.com/science/article/pii/S001048251500058X

Bibliography

Vol. 14222. Cham: Springer Nature Switzerland, pp. 316-325. 1sBN: 978-3-031-43898-1.
por: 10.1007/978-3-031-43898-1_31. urL: https://link.springer.com
/10.1007/978-3-031-43898-1_31 (visited on 10/18/2023) (cit. on p. 119).

Li, K., L. Yu, and P.-A. Heng (May 1, 2022). Towards Reliable Cardiac Image Segmentation:
Assessing Image-Level and Pixel-Level Segmentation Quality via Self-Reflective
References. In: Medical Image Analysis 78, p. 102426. 1ssN: 1361-8415. por: 10.1016/ j
.media.2022.102426.uRrL: https://www.sciencedirect.com/science/a
rticle/pii/S1361841522000779 (visited on 01/04/2023) (cit. on pp. 24, 26, 46,
47,119, 120).

Li, Z., Z. Shen, ]. Wen, T. He, and L. Pan (2021). Automatic Brain Tumor Segmenta-
tion Using Multi-Scale Features and Attention Mechanism. In: International MICCAI
Brainlesion Workshop, pp. 216-226 (cit. on p. 190).

Lin, Q., X. Chen, C. Chen, and J. M. Garibaldi (2022). A Novel Quality Control Algorithm
for Medical Image Segmentation Based on Fuzzy Uncertainty. In: IEEE Transactions
on Fuzzy Systems, pp. 1-14. 1ssNx: 1941-0034. por: 10.1109/TFUZZ.2022.3228332
(cit. on p. 47).

Lin, W.-W,, T. Li, T.-M. Huang, ].-W. Lin, M.-H. Yueh, and S.-T. Yau (2021). A Two-Phase
Optimal Mass Transportation Technique for 3d Brain Tumor Detection and Segmen-
tation. In: International MICCAI Brainlesion Workshop, pp. 400-409 (cit. on p. 190).

Litjens, G., B. van Ginneken, H. Huisman, W. van de Ven, C. Hoeks, D. Barratt, and A.
Madabhushi (June 7, 2023). PROMISE12: Data from the MICCAI Grand Challenge:
Prostate MR Image Segmentation 2012. Version Updated the zip files, fixed some
issues. Zenodo. por: 10.5281/zenodo.8026660. urRL: https://zenodo.org/re
cords/8026660 (visited on 02/05/2024) (cit. on p. 52).

Liu, F, Y. Xia, D. Yang, A. L. Yuille, and D. Xu (2019). An Alarm System for Segmentation
Algorithm Based on Shape Model. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10652-10661. urL: https://openaccess. t
hecvf.com/content_ICCV_2019/html/Liu_An_Alarm_System_for_Seg
mentation_Algorithm_Based_on_Shape_Model ICCV_2019_paper.html
(visited on 08/16/2022) (cit. on pp. 25, 46, 64, 120).

Liu, Q., Q. Dou, and P.-A. Heng (2020). Shape-Aware Meta-learning for Generalizing
Prostate MRI Segmentation to Unseen Domains. In: Medical Image Computing and
Computer Assisted Intervention — MICCAI 2020. Ed. by A. L. Martel, P. Abolmaesumi,
D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, and L. Joskowicz.
Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 475-
485. 1sBN: 978-3-030-59713-9. por: 10.1007/978-3-030-59713-9_46 (cit. on pp. 19,
52).

149


https://doi.org/10.1007/978-3-031-43898-1_31
https://link.springer.com/10.1007/978-3-031-43898-1_31
https://link.springer.com/10.1007/978-3-031-43898-1_31
https://doi.org/10.1016/j.media.2022.102426
https://doi.org/10.1016/j.media.2022.102426
https://www.sciencedirect.com/science/article/pii/S1361841522000779
https://www.sciencedirect.com/science/article/pii/S1361841522000779
https://doi.org/10.1109/TFUZZ.2022.3228332
https://doi.org/10.5281/zenodo.8026660
https://zenodo.org/records/8026660
https://zenodo.org/records/8026660
https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_An_Alarm_System_for_Segmentation_Algorithm_Based_on_Shape_Model_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_An_Alarm_System_for_Segmentation_Algorithm_Based_on_Shape_Model_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Liu_An_Alarm_System_for_Segmentation_Algorithm_Based_on_Shape_Model_ICCV_2019_paper.html
https://doi.org/10.1007/978-3-030-59713-9_46

Bibliography

Liu, Z., Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo (Aug. 17, 2021). Swin
Transformer: Hierarchical Vision Transformer Using Shifted Windows. por: 10.48
550/arXiv.2103.14030. arXiv: 2103.14030. urL: http://arxiv.org/abs/2
103.14030 (visited on 10/30/2024). Pre-published (cit. on pp. 73, 189).

Loshchilov, I. and F. Hutter (Jan. 4, 2019). Decoupled Weight Decay Regularization. arXiv:
1711.05101 [cs, math].urL: http://arxiv.org/abs/1711.05101 (visited
on 03/09/2020) (cit. on p. 63).

Luu, H. M. and S.-H. Park (2021). Extending Nn-UNet for Brain Tumor Segmentation.
In: International MICCAI Brainlesion Workshop, pp. 173-186 (cit. on p. 190).

Ma, J. and J. Chen (2021). Nnunet with Region-Based Training and Loss Ensembles for
Brain Tumor Segmentation. In: International MICCAI Brainlesion Workshop, pp. 421-430
(cit. on p. 190).

Maier-Hein, L., M. Eisenmann, A. Reinke, S. Onogur, M. Stankovic, P. Scholz, T. Arbel,
H. Bogunovic, A. P. Bradley, A. Carass, C. Feldmann, A. F. Frangi, P. M. Full, B. van
Ginneken, A. Hanbury, K. Honauer, M. Kozubek, B. A. Landman, K. Mirz, O. Maier,
K. Maier-Hein, B. H. Menze, H. Miiller, P. E. Neher, W. Niessen, N. Rajpoot, G. C. Sharp,
K. Sirinukunwattana, S. Speidel, C. Stock, D. Stoyanov, A. A. Taha, F. van der Sommen,
C.-W. Wang, M.-A. Weber, G. Zheng, P. Jannin, and A. Kopp-Schneider (Dec. 6, 2018).
Why Rankings of Biomedical Image Analysis Competitions Should Be Interpreted
with Care. In: Nature Communications 9.1, pp. 1-13. 1ssN: 2041-1723. por: 10.1038/s4
1467-018-07619-7. urL: https://www.nature.com/articles/s41467-01
8-07619-7 (visited on 09/19/2019) (cit. on pp. 2, 15, 16, 31, 40, 41, 53).

Maier-Hein, L., A. Reinke, P. Godau, M. D. Tizabi, F. Buettner, E. Christodoulou, B. Glocker,
F.Isensee, J. Kleesiek, M. Kozubek, M. Reyes, M. A. Riegler, M. Wiesenfarth, A. E. Kavur,
C. H. Sudre, M. Baumgartner, M. Eisenmann, D. Heckmann-Notzel, T. Rddsch, L. Acion,
M. Antonelli, T. Arbel, S. Bakas, A. Benis, M. B. Blaschko, M. J. Cardoso, V. Cheplygina,
B. A. Cimini, G. S. Collins, K. Farahani, L. Ferrer, A. Galdran, B. van Ginneken, R. Haase,
D. A. Hashimoto, M. M. Hoffman, M. Huisman, P. Jannin, C. E. Kahn, D. Kainmueller,
B. Kainz, A. Karargyris, A. Karthikesalingam, F. Kofler, A. Kopp-Schneider, A. Kreshuk,
T. Kurc, B. A. Landman, G. Litjens, A. Madani, K. Maier-Hein, A. L. Martel, P. Mattson,
E. Meijering, B. Menze, K. G. M. Moons, H. Miiller, B. Nichyporuk, F. Nickel, J. Petersen,
N. Rajpoot, N. Rieke, J. Saez-Rodriguez, C. I. Sanchez, S. Shetty, M. van Smeden, R. M.
Summers, A. A. Taha, A. Tiulpin, S. A. Tsaftaris, B. Van Calster, G. Varoquaux, and
P. F. Jager (Feb. 2024). Metrics Reloaded: Recommendations for Image Analysis
Validation. In: Nature Methods 21.2, pp. 195-212. 1ssN: 1548-7105. por: 10.1038/s415
92-023-02151-z. URL: https://www.nature.com/articles/s41592-023-
02151-z (visited on 06/06/2024) (cit. on pp. 9, 40).

150


https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/10.48550/arXiv.2103.14030
https://arxiv.org/abs/2103.14030
http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.1038/s41467-018-07619-7
https://doi.org/10.1038/s41467-018-07619-7
https://www.nature.com/articles/s41467-018-07619-7
https://www.nature.com/articles/s41467-018-07619-7
https://doi.org/10.1038/s41592-023-02151-z
https://doi.org/10.1038/s41592-023-02151-z
https://www.nature.com/articles/s41592-023-02151-z
https://www.nature.com/articles/s41592-023-02151-z

Bibliography

Maier-Hein, L., A. Reinke, M. Kozubek, A. L. Martel, T. Arbel, M. Eisenmann, A. Hanbury,
P. Jannin, H. Miiller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider,
and B. A. Landman (Dec. 1, 2020). BIAS: Transparent Reporting of Biomedical Image
Analysis Challenges. In: Medical Image Analysis 66, p. 101796. 1ssn: 1361-8415. por:
10.1016/j.media.2020.101796. URL: https://www.sciencedirect.com
/science/article/pii/S1361841520301602 (visited on 05/08/2021) (cit. on
pp. 15, 32).

Malinin, A., N. Band, Ganshin, Alexander, G. Chesnokov, Y. Gal, M. ]J. E. Gales, A. Noskov,
A. Ploskonosov, L. Prokhorenkova, I. Provilkov, V. Raina, V. Raina, Roginskiy, Denis, M.
Shmatova, P. Tigas, and B. Yangel (Feb. 11, 2022). Shifts: A Dataset of Real Distribu-
tional Shift Across Multiple Large-Scale Tasks. por: 10.48550/arXiv.2107.0745
5.arXiv: 2107.07455 [cs, stat].urL http://arxiv.org/abs/2107.07455
(visited on 04/04/2024). Pre-published (cit. on pp. 20, 26, 27, 117).

Malinin, A. and M. Gales (2018). Predictive Uncertainty Estimation via Prior Networks.
In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc.
urL: https://papers.nips.cc/paper_files/paper/2018/hash/3ea2db5
Oe62ceefceaf70a9d9a56a6f4-Abstract.html (visited on 09/24/2024) (cit. on
p- 22).

Maurya, S., V. Kumar Yadav, S. Agarwal, and A. Singh (2021). Brain Tumor Segmenta-
tion in mpMRI Scans (BraTS-2021) Using Models Based on U-net Architecture. In:
International MICCAI Brainlesion Workshop, pp. 312-323 (cit. on p. 190).

McKinley, R., R. Meier, and R. Wiest (2018). Ensembles of Densely-Connected CNNs with
Label-Uncertainty for Brain Tumor Segmentation. In: International MICCAI Brainlesion
Workshop, pp. 456465 (cit. on p. 38).

McMahan, B., E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas (2017). Communication-
Efficient Learning of Deep Networks from Decentralized Data. In: Artificial Intelligence
and Statistics. PMLR, pp. 1273-1282 (cit. on p. 68).

Mehrtash, A., W. M. Wells, C. M. Tempany, P. Abolmaesumi, and T. Kapur (Dec. 2020).
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical
Image Segmentation. In: I[EEE Transactions on Medical Imaging 39.12, pp. 3868-3878.
1ssN: 1558-254X. por: 10.1109/TMI.2020.3006437 (cit. on pp. 3,22, 23, 25, 26, 47,
60, 120).

Mehta, R., A. Filos, U. Baid, C. Sako, R. McKinley, M. Rebsamen, K. Datwyler, R. Meier,
P. Radojewski, G. K. Murugesan, S. Nalawade, C. Ganesh, B. Wagner, E. F. Yu, B. Fei,
A.]. Madhuranthakam, J. A. Maldjian, L. Daza, C. Gémez, P. Arbelédez, C. Dai, S. Wang,
H. Reynaud, Y. Mo, E. Angelini, Y. Guo, W. Bai, S. Banerjee, L. Pei, M. Ak, S. Rosas-
Gonzélez, I. Zemmoura, C. Tauber, M. H. Vu, T. Nyholm, T. Lofstedt, L. M. Ballestar,
V. Vilaplana, H. McHugh, G. Maso Talou, A. Wang, J. Patel, K. Chang, K. Hoebel, M.

151


https://doi.org/10.1016/j.media.2020.101796
https://www.sciencedirect.com/science/article/pii/S1361841520301602
https://www.sciencedirect.com/science/article/pii/S1361841520301602
https://doi.org/10.48550/arXiv.2107.07455
https://doi.org/10.48550/arXiv.2107.07455
https://arxiv.org/abs/2107.07455
http://arxiv.org/abs/2107.07455
https://papers.nips.cc/paper_files/paper/2018/hash/3ea2db50e62ceefceaf70a9d9a56a6f4-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/3ea2db50e62ceefceaf70a9d9a56a6f4-Abstract.html
https://doi.org/10.1109/TMI.2020.3006437

Bibliography

Gidwani, N. Arun, S. Gupta, M. Aggarwal, P. Singh, E. R. Gerstner, J. Kalpathy-Cramer,
N. Boutry, A. Huard, L. Vidyaratne, M. M. Rahman, K. M. Iftekharuddin, J. Chazalon, E.
Puybareau, G. Tochon, J. Ma, M. Cabezas, X. Llado, A. Oliver, L. Valencia, S. Valverde,
M. Amian, M. Soltaninejad, A. Myronenko, A. Hatamizadeh, X. Feng, Q. Dou, N.
Tustison, C. Meyer, N. A. Shah, S. Talbar, M.-A. Weber, A. Mahajan, A. Jakab, R. Wiest,
H. M. Fathallah-Shaykh, A. Nazeri, M. Milchenko, D. Marcus, A. Kotrotsou, R. Colen,
J. Freymann, J. Kirby, C. Davatzikos, B. Menze, S. Bakas, Y. Gal, and T. Arbel (Aug. 26,
2022). QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in
Brain Tumor Segmentation — Analysis of Ranking Scores and Benchmarking Results.
In: Machine Learning for Biomedical Imaging 1 (August 2022 issue), pp. 1-54. 1ssN: 2766-
905X. por: 10.59275/j.melba.2022-354b. urL: https://www.melba-journa
1.org/papers/2022:026.html (visited on 12/13/2024) (cit. on pp. 26, 27).

Menze, B. H., A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N.
Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M.-A. Weber, T. Arbel, B. B. Avants,
N. Ayache, P. Buendia, D. L. Collins, N. Cordier, J. J. Corso, A. Criminisi, T. Das, H.
Delingette, C. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia,
B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John,
E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R.
Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H.-C. Shin, J. Shotton, C. A. Silva,
N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M. Thomas, N. J. Tustison, G. Unal,
F. Vasseur, M. Wintermark, D. H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes,
and K. V. Leemput (Oct. 2015). The Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS). In: IEEE Transactions on Medical Imaging 34.10, pp. 1993-2024.
1ssN: 1558-254X. por: 10.1109/TMI.2014.2377694 (cit. on pp. 1,19, 32, 51, 74, 110,
112).

Merkel, D. (Mar. 1, 2014). Docker: Lightweight Linux Containers for Consistent De-
velopment and Deployment. In: Linux Journal 2014.239, 2:2. 1ssn: 1075-3583 (cit. on
p-42).

Milesi, A., M. Futrega, M. Marcinkiewicz, and P. Ribalta (2021). Brain Tumor Segmentation
Using Neural Network Topology Search. In: International MICCAI Brainlesion Workshop,
pp- 366-376 (cit. on p. 190).

Miyato, T., S.-i. Maeda, M. Koyama, and S. Ishii (2018). Virtual Adversarial Training:
A Regularization Method for Supervised and Semi-Supervised Learning. In: [EEE
transactions on pattern analysis and machine intelligence 41.8, pp. 1979-1993 (cit. on p. 189).

Moawad, A. W., A. Janas, U. Baid, D. Ramakrishnan, R. Saluja, N. Ashraf, N. Maleki, L.
Jekel, N. Yordanov, P. Fehringer, A. Gkampenis, R. Amiruddin, A. Manteghinejad, M.
Adewole, J. Albrecht, U. Anazodo, S. Aneja, S. M. Anwar, T. Bergquist, V. Chiang, V.
Chung, G. M. Conte, F. Dako, J. Eddy, I. Ezhov, N. Khalili, K. Farahani, J. E. Iglesias,

152


https://doi.org/10.59275/j.melba.2022-354b
https://www.melba-journal.org/papers/2022:026.html
https://www.melba-journal.org/papers/2022:026.html
https://doi.org/10.1109/TMI.2014.2377694

Bibliography

Z.Jiang, E. Johanson, A. F. Kazerooni, F. Kofler, K. Krantchev, D. LaBella, K. V. Leemput,
H. B.Li, M. G. Linguraru, X. Liu, Z. Meier, B. H. Menze, H. Moy, K. Osenberg, M. Piraud,
Z.Reitman, R. T. Shinohara, C. Wang, B. Wiestler, W. Wiggins, U. Shafique, K. Willms, A.
Avesta, K. Bousabarah, S. Chakrabarty, N. Gennaro, W. Holler, M. Kaur, P. LaMontagne,
M. Lin, J. Lost, D. S. Marcus, R. Maresca, S. Merkaj, G. C. Pedersen, M. von Reppert,
A. Sotiras, O. Teytelboym, N. Tillmans, M. Westerhoff, A. Youssef, D. Godfrey, S. Floyd,
A. Rauschecker, J. Villanueva-Meyer, 1. Pfluger, J. Cho, M. Bendszus, G. Brugnara, J.
Cramer, G. J. G. Perez-Carillo, D. R. Johnson, A. Kam, B. Y. M. Kwan, L. Lai, N. U. Lall, F.
Memon, M. Krycia, S. N. Patro, B. Petrovic, T. Y. So, G. Thompson, L. Wu, E. B. Schrickel,
A. Bansal, F. Barkhof, C. Besada, S. Chu, J. Druzgal, A. Dusoi, L. Farage, F. Feltrin,
A.Fong, S. H. Fung, R. I. Gray, L. Ikuta, M. Iv, A. A. Postma, A. Mahajan, D. Joyner, C.
Krumpelman, L. Letourneau-Guillon, C. M. Lincoln, M. E. Maros, E. Miller, F. Moron,
E. A. Nimchinsky, O. Ozsarlak, U. Patel, S. Rohatgi, A. Saha, A. Sayah, E. D. Schwartz,
R. Shih, M. S. Shiroishi, J. E. Small, M. Tanwar, J. Valerie, B. D. Weinberg, M. L. White, R.
Young, V.M. Zohrabian, A. Azizova, M. M. T. Bruseler, M. Ghonim, M. Ghonim, A. Okar,
L. Pasquini, Y. Sharifi, G. Singh, N. Sollmann, T. Soumala, M. Taherzadeh, P. Vollmuth,
M. Foltyn-Dumitru, A. Malhotra, A. H. Abayazeed, F. Dellepiane, P. Lohmann, V. M.
Perez-Garcia, H. Elhalawani, M. C. de Verdier, S. Al-Rubaiey, R. D. Armindo, K. Ashraf,
M. M. Asla, M. Badawy, J. Bisschop, N. B. Lomer, J. Bukatz, J. Chen, P. Cimflova, F.
Corr, A. Crawley, L. Deptula, T. Elakhdar, I. H. Shawali, S. Faghani, A. Frick, V. Gulati,
M. A. Haider, F. Hierro, R. H. Dahl, S. M. Jacobs, K.-c. J. Hsieh, S. G. Kandemirli, K.
Kersting, L. Kida, S. Kollia, I. Koukoulithras, X. Li, A. Abouelatta, A. Mansour, R.-C.
Maria-Zamfirescu, M. Marsiglia, Y. S. Mateo-Camacho, M. McArthur, O. McDonnell,
M. McHugh, M. Moassefi, S. M. Morsi, A. Munteanu, K. K. Nandolia, S. R. Naqvi, Y.
Nikanpour, M. Alnoury, A. M. A. Nouh, F. Pappafava, M. D. Patel, S. Petrucci, E. Rawie,
S. Raymond, B. Roohani, S. Sabouhi, L. M. Sanchez-Garcia, Z. Shaked, P. P. Suthar,
T. Altes, E. Isufi, Y. Dhemesh, J. Gass, J. Thacker, A. R. Tarabishy, B. Turner, S. Vacca,
G. K. Vilanilam, D. Warren, D. Weiss, F. Worede, S. Yousry, W. Lerebo, A. Aristizabal,
A. Karargyris, H. Kassem, S. Pati, M. Sheller, K. E. Link, E. Calabrese, N. hoda Tahon,
A.Nada, Y. S. Velichko, S. Bakas, J. D. Rudie, and M. Aboian (2024). The Brain Tumor
Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on
Pre-Treatment MRI. arXiv: 2306.00838 [q-bio.OT] (cit. on p. 3).

Monteiro, M., L. L. Folgoc, D. C. de Castro, N. Pawlowski, B. Marques, K. Kamnitsas, M.
van der Wilk, and B. Glocker (June 10, 2020). Stochastic Segmentation Networks:
Modelling Spatially Correlated Aleatoric Uncertainty. arXiv: 2006 . 06015 [cs].
URL: http://arxiv.org/abs/2006.06015 (visited on 10/07/2020) (cit. on p. 22).

Mora, A. M., M. Baumgartner, G. Brugnara, M. Zenk, Y. Kirchhoff, A. Rastogi, A. Radbruch,
M. Bendszus, C. L. Sanchez, P. Vollmuth, and K. Maier-Hein (Apr. 27,2024). Curriculum-

153


https://arxiv.org/abs/2306.00838
https://arxiv.org/abs/2006.06015
http://arxiv.org/abs/2006.06015

Bibliography

Learning for Vessel Occlusion Detection in Multi-site Brain CT Angiographies. In:
Medical Imaging with Deep Learning. urL: https://openreview.net/forum?i
d=6TrjwzbBko (visited on 01/22/2025) (cit. on p. 173).

Moreno-Torres, J. G., T. Raeder, R. Alaiz-Rodriguez, N. V. Chawla, and F. Herrera (Jan. 1,
2012). A Unifying View on Dataset Shift in Classification. In: Pattern Recognition 45.1,
pp- 521-530. 1ssn: 0031-3203. por: 10.1016/j .patcog.2011.06.019. urL: https:
//www.sciencedirect.com/science/article/pii/S0031320311002901
(visited on 03/01/2021) (cit. on pp. 9, 10).

Morozov, S. P, A. E. Andreychenko, N. A. Pavlov, A. V. Vladzymyrskyy, N. V. Ledikhova,
V. A. Gombolevskiy, I. A. Blokhin, P. B. Gelezhe, A. V. Gonchar, and V. Y. Chern-
ina (May 13, 2020). MosMedData: Chest CT Scans With COVID-19 Related Find-
ings Dataset. por: 10 . 48550 /arXiv . 2005 . 06465. arXiv: 2005 . 06465 [cs,
eess]. URL: http: //arxiv.org/abs/2005. 06465 (visited on 02/05/2024).
Pre-published (cit. on p. 52).

Nair, T., D. Precup, D. L. Arnold, and T. Arbel (Jan. 1, 2020). Exploring Uncertainty Mea-
sures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation.
In: Medical Image Analysis 59, p. 101557. 1ssN: 1361-8415. por: 10.1016/j .media. 201
9.101557. urL: https://www.sciencedirect.com/science/article/pii
/51361841519300994 (visited on 08/10/2022) (cit. on pp. 22, 23).

Nalawade, S., C. Ganesh, B. Wagner, D. Reddy, Y. Das, F. F. Yu, B. Fei, A.]. Madhuranthakam,
and J. A. Maldjian (2021). Federated Learning for Brain Tumor Segmentation Using
MRI and Transformers. In: International MICCAI Brainlesion Workshop, pp. 444-454
(cit. on p. 68).

Nelms, B. E., W. A. Tomé, G. Robinson, and J. Wheeler (2012). Variations in the Con-
touring of Organs at Risk: Test Case from a Patient with Oropharyngeal Cancer. In:
International Journal of Radiation Oncology* Biology* Physics 82.1, pp. 368-378 (cit. on
p-1).

Ng, M., E. Guo, L. Biswas, S. E. Petersen, S. K. Piechnik, S. Neubauer, and G. Wright (June
2023). Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A
Benchmark Study. In: [EEE Transactions on Biomedical Engineering 70.6, pp. 1955-1966.
1ssN: 1558-2531. por: 10.1109/TBME. 2022.3232730 (cit. on pp. 19, 26, 47,117, 118,
120).

Nguyen-Truong, H. and Q.-D. Pham (2021). Dice Focal Loss with ResNet-like Encoder-
Decoder Architecture in 3D Brain Tumor Segmentation. In: International MICCAI
Brainlesion Workshop, pp. 97-105 (cit. on p. 190).

NHS, E. (Nov. 23, 2023). Diagnostic Imaging Dataset Annual Statistical Release 2022/23.
NHS. urL: https://www.england.nhs.uk/statistics/statistical-work

154


https://openreview.net/forum?id=6TrjwzbBko
https://openreview.net/forum?id=6TrjwzbBko
https://doi.org/10.1016/j.patcog.2011.06.019
https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://doi.org/10.48550/arXiv.2005.06465
https://arxiv.org/abs/2005.06465
https://arxiv.org/abs/2005.06465
http://arxiv.org/abs/2005.06465
https://doi.org/10.1016/j.media.2019.101557
https://doi.org/10.1016/j.media.2019.101557
https://www.sciencedirect.com/science/article/pii/S1361841519300994
https://www.sciencedirect.com/science/article/pii/S1361841519300994
https://doi.org/10.1109/TBME.2022.3232730
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/

Bibliography

-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2
022-23-data/ (visited on 10/25/2024) (cit. on p. 1).

Nikolov, S., S. Blackwell, A. Zverovitch, R. Mendes, M. Livne, J. De Fauw, Y. Patel, C. Meyer,
H. Askham, and B. Romera-Paredes (2021). Clinically Applicable Segmentation of
Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development
and Validation Study. In: Journal of medical Internet research 23.7, €26151. urRL: https
://www.jmir.org/2021/7/e26151/span%5B (visited on 10/29/2024) (cit. on
pp-1,4,8,48).

Ogier du Terrail, J., S.-S. Ayed, E. Cyffers, F. Grimberg, C. He, R. Loeb, P. Mangold, T.
Marchand, O. Marfoq, E. Mushtaq, B. Muzellec, C. Philippenko, S. Silva, M. Telericzuk,
S. Albarqouni, S. Avestimehr, A. Bellet, A. Dieuleveut, M. Jaggi, S. P. Karimireddy, M.
Lorenzi, G. Neglia, M. Tommasi, and M. Andreux (Dec. 6, 2022). FLamby: Datasets
and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings.
In: Advances in Neural Information Processing Systems. Vol. 35, pp. 5315-5334. urL: http
s://proceedings.neurips.cc/paper_files/paper/2022/hash/232eee
8ef411a0a316efa298d7be3c2b-Abstract-Datasets _and_ Benchmarks.h
tml (visited on 07/26/2024) (cit. on p. 19).

Ogier du Terrail, J., A. Leopold, C. Joly, C. Béguier, M. Andreux, C. Maussion, B. Schmauch,
E. W. Tramel, E. Bendjebbar, M. Zaslavskiy, G. Wainrib, M. Milder, J. Gervasoni, J.
Guerin, T. Durand, A. Livartowski, K. Moutet, C. Gautier, I. Djafar, A.-L. Moisson, C.
Marini, M. Galtier, F. Balazard, R. Dubois, ]J. Moreira, A. Simon, D. Drubay, M. Lacroix-
Triki, C. Franchet, G. Bataillon, and P.-E. Heudel (Jan. 2023). Federated Learning for
Predicting Histological Response to Neoadjuvant Chemotherapy in Triple-Negative
Breast Cancer. In: Nature Medicine 29.1, pp. 135-146. 1ssn: 1546-170X. por: 10.1038/s
41591-022-02155-w. URL: https://www.nature.com/articles/s41591-0
22-02155-w (visited on 04/24/2024) (cit. on p. 20).

Orlando, J. L., H. Fu, J. Barbosa Breda, K. van Keer, D. R. Bathula, A. Diaz-Pinto, R. Fang,
P-A. Heng, ]J. Kim, J. Lee, J. Lee, X. Li, P. Liu, S. Lu, B. Murugesan, V. Naranjo, S. S. R.
Phaye, S. M. Shankaranarayana, A. Sikka, J. Son, A. van den Hengel, S. Wang, J. Wu,
Z. Wu, G. Xu, Y. Xu, P. Yin, F. Li, X. Zhang, Y. Xu, and H. Bogunovi¢ (Jan. 1, 2020).
REFUGE Challenge: A Unified Framework for Evaluating Automated Methods
for Glaucoma Assessment from Fundus Photographs. In: Medical Image Analysis 59,
p- 101570. 1ssn: 1361-8415. por: 10.1016/j . media.2019.101570. urL: https:
//www.sciencedirect.com/science/article/pii/S1361841519301100
(visited on 09/25/2024) (cit. on p. 53).

Ouyang, C., C. Chen, S. Li, Z. Li, C. Qin, W. Bai, and D. Rueckert (Apr. 2023). Causality-
Inspired Single-Source Domain Generalization for Medical Image Segmentation.
In: IEEE Transactions on Medical Imaging 42.4, pp. 1095-1106. 1ssn: 1558-254X. por: 10

155


https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2022-23-data/
https://www.jmir.org/2021/7/e26151/span%5B
https://www.jmir.org/2021/7/e26151/span%5B
https://proceedings.neurips.cc/paper_files/paper/2022/hash/232eee8ef411a0a316efa298d7be3c2b-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/232eee8ef411a0a316efa298d7be3c2b-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/232eee8ef411a0a316efa298d7be3c2b-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/232eee8ef411a0a316efa298d7be3c2b-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1038/s41591-022-02155-w
https://doi.org/10.1038/s41591-022-02155-w
https://www.nature.com/articles/s41591-022-02155-w
https://www.nature.com/articles/s41591-022-02155-w
https://doi.org/10.1016/j.media.2019.101570
https://www.sciencedirect.com/science/article/pii/S1361841519301100
https://www.sciencedirect.com/science/article/pii/S1361841519301100
https://doi.org/10.1109/TMI.2022.3224067
https://doi.org/10.1109/TMI.2022.3224067
https://doi.org/10.1109/TMI.2022.3224067

Bibliography

.1109/TMI.2022.3224067. UrRL: https://ieeexplore.ieee.org/abstrac
t/document /9961940 (visited on 07/26/2024) (cit. on p. 18).

Ovadia, Y., E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. V. Dillon, B. Lakshmi-
narayanan, and J. Snoek (Dec. 17, 2019). Can You Trust Your Model’s Uncertainty?
Evaluating Predictive Uncertainty Under Dataset Shift. arXiv: 1906.02530 [cs,
stat].urL: http://arxiv.org/abs/1906.02530 (visited on 01/12/2022) (cit.
on p. 22).

Parampottupadam, S., R. Floca, D. Bounias, B. Hamm, S. Roy, S. Sav, M. Zenk, and K.
Maier-Hein (2024). Client Security Alone Fails in Federated Learning: 2D and 3D
Attack Insights. In: MICCAI Student Board EMERGE Workshop: Empowering Medical
Image Computing & Research through Early-Career Expertise (cit. on p. 173).

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S.
Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala (2019). PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc. urL: https://proceeding
s.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa
9f7012727740-Paper.pdf (cit. on p. 58).

Pati, S., U. Baid, B. Edwards, M. Sheller, S.-H. Wang, G. A. Reina, P. Foley, A. Gruzdeyv,
D. Karkada, C. Davatzikos, C. Sako, S. Ghodasara, M. Bilello, S. Mohan, P. Vollmuth,
G. Brugnara, C. J. Preetha, F. Sahm, K. Maier-Hein, M. Zenk, M. Bendszus, W. Wick, E.
Calabrese, J. Rudie, J. Villanueva-Meyer, S. Cha, M. Ingalhalikar, M. Jadhav, U. Pandey,
J. Saini, J. Garrett, M. Larson, R. Jeraj, S. Currie, R. Frood, K. Fatania, R. Y. Huang,
K. Chang, C. B. Quintero, J. Capellades, ]J. Puig, J. Trenkler, ]J. Pichler, G. Necker, A.
Haunschmidt, S. Meckel, G. Shukla, S. Liem, G. S. Alexander, . Lombardo, J. D. Palmer,
A. E. Flanders, A. P. Dicker, H. L. Sair, C. K. Jones, A. Venkataraman, M. Jiang, T. Y. So,
C. Chen, P. A. Heng, Q. Dou, M. Kozubek, F. Lux, ]J. Michélek, P. Matula, M. Ketkovsky,
T. Koptivovéd, M. Dostél, V. Vybihal, M. A. Vogelbaum, J. R. Mitchell, J. Farinhas, J. A.
Maldjian, C. G. B. Yogananda, M. C. Pinho, D. Reddy, J. Holcomb, B. C. Wagner, B. M.
Ellingson, T. F. Cloughesy, C. Raymond, T. Oughourlian, A. Hagiwara, C. Wang, M.-S.
To, S. Bhardwaj, C. Chong, M. Agzarian, A. X. Falcdo, S. B. Martins, B. C. A. Teixeira,
F. Sprenger, D. Menotti, D. R. Lucio, P. LaMontagne, D. Marcus, B. Wiestler, F. Kofler,
I. Ezhov, M. Metz, R. Jain, M. Lee, Y. W. Lui, R. McKinley, J. Slotboom, P. Radojewski,
R. Meier, R. Wiest, D. Murcia, E. Fu, R. Haas, J]. Thompson, D. R. Ormond, C. Badve,
A. E. Sloan, V. Vadmal, K. Waite, R. R. Colen, L. Pei, M. Ak, A. Srinivasan, J. R. Bapuraj,
A. Rao, N. Wang, O. Yoshiaki, T. Moritani, S. Turk, J. Lee, S. Prabhudesai, F. Morén,
J. Mandel, K. Kamnitsas, B. Glocker, L. V. M. Dixon, M. Williams, P. Zampakis, V.

156


https://doi.org/10.1109/TMI.2022.3224067
https://doi.org/10.1109/TMI.2022.3224067
https://doi.org/10.1109/TMI.2022.3224067
https://doi.org/10.1109/TMI.2022.3224067
https://ieeexplore.ieee.org/abstract/document/9961940
https://ieeexplore.ieee.org/abstract/document/9961940
https://arxiv.org/abs/1906.02530
https://arxiv.org/abs/1906.02530
http://arxiv.org/abs/1906.02530
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Bibliography

Panagiotopoulos, P. Tsiganos, S. Alexiou, I. Haliassos, E. I. Zacharaki, K. Moustakas,
C. Kalogeropoulou, D. M. Kardamakis, Y. S. Choi, S.-K. Lee, J. H. Chang, S. S. Ahn,
B. Luo, L. Poisson, N. Wen, P. Tiwari, R. Verma, R. Bareja, I. Yadav, J. Chen, N. Kumar,
M. Smiits, S. R. van der Voort, A. Alafandji, F. Incekara, M. M. J. Wijnenga, G. Kapsas,
R. Gahrmann, J. W. Schouten, H. J. Dubbink, A. J. P. E. Vincent, M. J. van den Bent,
P.J. French, S. Klein, Y. Yuan, S. Sharma, T.-C. Tseng, S. Adabi, S. P. Niclou, O. Keunen,
A.-C. Hau, M. Vallieres, D. Fortin, M. Lepage, B. Landman, K. Ramadass, K. Xu, S.
Chotai, L. B. Chambless, A. Mistry, R. C. Thompson, Y. Gusev, K. Bhuvaneshwar, A.
Sayah, C. Bencheqgroun, A. Belouali, S. Madhavan, T. C. Booth, A. Chelliah, M. Modat,
H. Shuaib, C. Dragos, A. Abayazeed, K. Kolodziej, M. Hill, A. Abbassy, S. Gamal, M.
Mekhaimar, M. Qayati, M. Reyes, J. E. Park, J. Yun, H. S. Kim, A. Mahajan, M. Muzi,
S. Benson, R. G. H. Beets-Tan, J. Teuwen, A. Herrera-Trujillo, M. Trujillo, W. Escobar,
A. Abello, J. Bernal, J. Gémez, J. Choi, S. Baek, Y. Kim, H. Ismael, B. Allen, J. M. Buatti,
A. Kotrotsou, H. Li, T. Weiss, M. Weller, A. Bink, B. Pouymayou, H. F. Shaykh, J. Saltz,
P. Prasanna, S. Shrestha, K. M. Mani, D. Payne, T. Kurc, E. Pelaez, H. Franco-Maldonado,
F. Loayza, S. Quevedo, P. Guevara, E. Torche, C. Mendoza, F. Vera, E. Rios, E. Lopez,
S. A. Velastin, G. Ogbole, M. Soneye, D. Oyekunle, O. Odafe-Oyibotha, B. Osobu, M.
Shu’aibu, A. Dorcas, F. Dako, A. L. Simpson, M. Hamghalam, J. J. Peoples, R. Hu, A.
Tran, D. Cutler, F. Y. Moraes, M. A. Boss, ]. Gimpel, D. K. Veettil, K. Schmidt, B. Bialecki,
S. Marella, C. Price, L. Cimino, C. Apgar, P. Shah, B. Menze, J. S. Barnholtz-Sloan,
J. Martin, and S. Bakas (Dec. 5, 2022a). Federated Learning Enables Big Data for
Rare Cancer Boundary Detection. In: Nature Communications 13.1 (1), p. 7346. 1ssn:
2041-1723. po1: 10.1038/s41467-022-33407-5. urL: https://www.nature.c
om/articles/s41467-022-33407-5 (visited on 12/14/2022) (cit. on pp. 20, 32,
38, 39,42,115,172).

Pati, S., U. Baid, B. Edwards, M. J. Sheller, P. Foley, G. Anthony Reina, S. Thakur, C. Sako, M.
Bilello, C. Davatzikos, ]. Martin, P. Shah, B. Menze, and S. Bakas (Oct. 12, 2022b). The
Federated Tumor Segmentation (FeTS) Tool: An Open-Source Solution to Further
Solid Tumor Research. In: Physics in Medicine and Biology 67.20. 1ssn: 1361-6560. por:
10.1088/1361-6560/ac9449. pmid: 36137534 (cit. on p- 37).

Pati, S., U. Baid, M. Zenk, B. Edwards, M. Sheller, G. A. Reina, P. Foley, A. Gruzdev, J. Martin,
S. Albarqouni, Y. Chen, R. T. Shinohara, A. Reinke, D. Zimmerer, ]. B. Freymann, J. S.
Kirby, C. Davatzikos, R. R. Colen, A. Kotrotsou, D. Marcus, M. Milchenko, A. Nazeri,
H. Fathallah-Shaykh, R. Wiest, A. Jakab, M.-A. Weber, A. Mahajan, L. Maier-Hein,
J. Kleesiek, B. Menze, K. Maier-Hein, and S. Bakas (May 13, 2021). The Federated
Tumor Segmentation (FeTS) Challenge. arXiv: 2105 . 05874 [cs, eess]. URL:
http://arxiv.org/abs/2105. 05874 (visited on 09/28/2021) (cit. on pp. 31,
171).

157


https://doi.org/10.1038/s41467-022-33407-5
https://www.nature.com/articles/s41467-022-33407-5
https://www.nature.com/articles/s41467-022-33407-5
https://doi.org/10.1088/1361-6560/ac9449
36137534
https://arxiv.org/abs/2105.05874
http://arxiv.org/abs/2105.05874

Bibliography

Paulik, M., M. Seigel, H. Mason, D. Telaar, J. Kluivers, R. van Dalen, C. W. Lau, L. Carlson, F.
Grangqvist, C. Vandevelde, S. Agarwal, J. Freudiger, A. Byde, A. Bhowmick, G. Kapoor,
S. Beaumont, A. Cahill, D. Hughes, O. Javidbakht, F. Dong, R. Rishi, and S. Hung
(Feb. 16, 2021). Federated Evaluation and Tuning for On-Device Personalization:
System Design & Applications. arXiv: 2102.08503 [cs]. urL: http://arxiv.or
g/abs/2102.08503 (visited on 12/08/2021) (cit. on p. 20).

Pawar, K., S. Zhong, Z. Chen, and G. Egan (2021a). Brain Tumor Segmentation Using
Two-Stage Convolutional Neural Network for Federated Evaluation. In: International
MICCALI Brainlesion Workshop, pp. 494-505 (cit. on p. 69).

Pawar, K., S. Zhong, D. S. Goonatillake, G. Egan, and Z. Chen (2021b). Orthogonal-Nets:
A Large Ensemble of 2D Neural Networks for 3D Brain Tumor Segmentation. In:
International MICCAI Brainlesion Workshop, pp. 54-67 (cit. on p. 190).

Payette, K., C. Steger, R. Licandro, P. de Dumast, H. B. Li, M. Barkovich, L. Li, M. Dannecker,
C. Chen, C. Ouyang, N. McConnell, A. Miron, Y. Li, A. Uus, I. Grigorescu, P. R. Gilliland,
M. M. R. Siddiquee, D. Xu, A. Myronenko, H. Wang, Z. Huang, J. Ye, M. Alenya, V.
Comte, O. Camara, ].-B. Masson, A. Nilsson, C. Godard, M. Mazher, A. Qayyum, Y.
Gao, H. Zhou, S. Gao, J. Fu, G. Dong, G. Wang, Z. Rieu, H. Yang, M. Lee, S. Plotka,
M. K. Grzeszczyk, A. Sitek, L. V. Daza, S. Usma, P. Arbelaez, W. Lu, W. Zhang, J. Liang,
R. Valabregue, A. A. Joshi, K. N. Nayak, R. M. Leahy, L. Wilhelmi, A. Déandliker, H. Ji,
A. G. Gennari, A. Jakov¢i¢, M. Klai¢, A. Adzi¢, P. Markovi¢, G. Grabari¢, G. Kasprian, G.
Dovjak, M. Rados, L. Vasung, M. B. Cuadra, and A. Jakab (Feb. 8, 2024). Multi-Center
Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results. por: 10.48550/a
rXiv.2402.09463. arXiv: 2402.09463 [eess]. URL: http://arxiv.org/abs
/2402.09463 (visited on 07/26/2024). Pre-published (cit. on pp. 2, 19, 20, 27, 113).

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-Learn: Machine Learning in
Python. In: Journal of Machine Learning Research 12.85, pp. 2825-2830. 1ssN: 1533-7928. URL:
http://jmlr.org/papers/v12/pedregosalla.html (visited on 04/10/2024)
(cit. on pp. 13, 62).

Peiris, H., M. Hayat, Z. Chen, G. Egan, and M. Harandi (2022). Hybrid Window Attention
Based Transformer Architecture for Brain Tumor Segmentation. eprint: 2209.07704
(cit. on p. 73).

Pérez-Garcia, F., R. Sparks, and S. Ourselin (Sept. 1, 2021). TorchIO: A Python Library
for Efficient Loading, Preprocessing, Augmentation and Patch-Based Sampling of
Medical Images in Deep Learning. In: Computer Methods and Programs in Biomedicine
208, p. 106236. 1ssN: 0169-2607. por: 10.1016/j.cmpb.2021.106236. URL: https:

158


https://arxiv.org/abs/2102.08503
http://arxiv.org/abs/2102.08503
http://arxiv.org/abs/2102.08503
https://doi.org/10.48550/arXiv.2402.09463
https://doi.org/10.48550/arXiv.2402.09463
https://arxiv.org/abs/2402.09463
http://arxiv.org/abs/2402.09463
http://arxiv.org/abs/2402.09463
http://jmlr.org/papers/v12/pedregosa11a.html
2209.07704
https://doi.org/10.1016/j.cmpb.2021.106236
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102

Bibliography

//www.sciencedirect.com/science/article/pii/S0169260721003102
(visited on 02/05/2024) (cit. on pp. 51, 57).

Pnev, S., V. Groza, B. Tuchinov, E. Amelina, E. Pavlovskiy, N. Tolstokulakov, M. Amelin, S.
Golushko, and A. Letyagin (2021). Brain Tumor Segmentation with Self-supervised
Enhance Region Post-processing. In: International MICCAI Brainlesion Workshop,
pp. 267-275 (cit. on p. 190).

Qiu, P, S. Chakrabarty, P. Nguyen, S. S. Ghosh, and A. Sotiras (2023). QCResUNet: Joint
Subject-Level and Voxel-Level Prediction of Segmentation Quality. In: Medical Image
Computing and Computer Assisted Intervention — MICCAI 2023. Ed. by H. Greenspan,
A. Madabhushi, P. Mousavi, S. Salcudean, J. Duncan, T. Syeda-Mahmood, and R. Taylor.
Vol. 14223. Cham: Springer Nature Switzerland, pp. 173-182. 1sen: 978-3-031-43901-8.
por: 10.1007/978-3-031-43901-8_17. urL: https://link.springer.com
/10.1007/978-3-031-43901-8_17 (visited on 10/18/2023) (cit. on pp. 23, 46, 47,
119).

Quifionero-Candela, J., M. Sugiyama, A. Schwaighofer, and N. D. Lawrence (2022). Dataset
Shift in Machine Learning. Mit Press (cit. on p. 9).

RCR (2023). Rer-Census-Clinical-Radiology-Workforce-Census-2023. The Royal College
of Radiologists. URL: https://www.rcr.ac.uk/media/5befglss/rcr-census
-clinical-radiology-workforce-census-2023.pdf (visited on 10/22/2024)
(cit. onp. 1).

Reinke, A., M. Eisenmann, M. D. Tizabi, C. H. Sudre, T. Radsch, M. Antonelli, T. Arbel,
S. Bakas, M. J. Cardoso, V. Cheplygina, K. Farahani, B. Glocker, D. Heckmann-Noétzel,
E. Isensee, P. Jannin, C. E. Kahn, J. Kleesiek, T. Kurc, M. Kozubek, B. A. Landman, G.
Litjens, K. Maier-Hein, B. Menze, H. Miiller, ]. Petersen, M. Reyes, N. Rieke, B. Stieltjes,
R. M. Summers, S. A. Tsaftaris, B. van Ginneken, A. Kopp-Schneider, P. Jager, and L.
Maier-Hein (Apr. 13, 2021). Common Limitations of Image Processing Metrics: A
Picture Story. arXiv: 2104.05642 [cs, eess].UrRL:http://arxiv.org/abs/2
104.05642 (visited on 04/21/2021) (cit. on pp. 8, 78).

Ren, J., W. Zhang, N. An, Q. Hu, Y. Zhang, and Y. Zhou (2021). Ensemble Outperforms
Single Models in Brain Tumor Segmentation. In: International MICCAI Brainlesion
Workshop, pp. 451-462 (cit. on p. 73).

Robinson, R., O. Oktay, W. Bai, V. Valindria, M. Sanghvi, N. Aung, J. Paiva, F. Zemrak, K.
Fung, E. Lukaschuk, A. Lee, V. Carapella, Y. J. Kim, B. Kainz, S. Piechnik, S. Neubauer, S.
Petersen, C. Page, D. Rueckert, and B. Glocker (June 16, 2018). Real-Time Prediction of
Segmentation Quality. por: 10.48550/arXiv.1806.06244. arXiv: 1806.06244
[cs].UrL: http://arxiv.org/abs/1806.06244 (visited on 09/05/2022). Pre-
published (cit. on pp. 23, 46, 47, 63,119, 120).

159


https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://doi.org/10.1007/978-3-031-43901-8_17
https://link.springer.com/10.1007/978-3-031-43901-8_17
https://link.springer.com/10.1007/978-3-031-43901-8_17
https://www.rcr.ac.uk/media/5befglss/rcr-census-clinical-radiology-workforce-census-2023.pdf
https://www.rcr.ac.uk/media/5befglss/rcr-census-clinical-radiology-workforce-census-2023.pdf
https://arxiv.org/abs/2104.05642
http://arxiv.org/abs/2104.05642
http://arxiv.org/abs/2104.05642
https://doi.org/10.48550/arXiv.1806.06244
https://arxiv.org/abs/1806.06244
https://arxiv.org/abs/1806.06244
http://arxiv.org/abs/1806.06244

Bibliography

Rohlfing, T., N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum (May 2010). The SRI24 Multi-
channel Atlas of Normal Adult Human Brain Structure. In: Human Brain Mapping 31.5,
pp- 798-819. 1ssn: 1097-0193. por: 10.1002/hbm. 20906. pmid: 20017133 (cit. on
p-37).

Rokuss, M., Y. Kirchhoff, S. Roy, B. Kovacs, C. Ulrich, T. Wald, M. Zenk, S. Denner, F.
Isensee, P. Vollmuth, J. Kleesiek, and K. Maier-Hein (Sept. 20, 2024). Longitudinal
Segmentation of MS Lesions via Temporal Difference Weighting. por: 10.48550/a
rXiv.2409.13416. arXiv: 2409.13416 [eess].UrL: http://arxiv.org/abs
/2409.13416 (visited on 01/22/2025). Pre-published (cit. on p. 173).

Ronneberger, O., P. Fischer, and T. Brox (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer, pp. 234-241 (cit. on pp. 6,7, 56, 73,
189).

Rof3, T., P. Bruno, A. Reinke, M. Wiesenfarth, L. Koeppel, P. M. Full, B. Pekdemir, P. Godau,
D. Trofimova, F. Isensee, S. Moccia, F. Calimeri, B. P. Miiller-Stich, A. Kopp-Schneider,
and L. Maier-Hein (June 17, 2021). How Can We Learn (More) from Challenges? A
Statistical Approach to Driving Future Algorithm Development. arXiv: 2106.09302
[cs].urL: http://arxiv.org/abs/2106.09302 (visited on 06/22/2021) (cit. on
p. 111).

Roth, H. R., Z. Xu, C. Tor-Diez, R. Sanchez Jacob, J. Zember, J. Molto, W. Li, S. Xu, B. Turkbey,
E. Turkbey, D. Yang, A. Harouni, N. Rieke, S. Hu, F. Isensee, C. Tang, Q. Yu, J. Solter,
T. Zheng, V. Liauchuk, Z. Zhou, J. H. Moltz, B. Oliveira, Y. Xia, K. H. Maier-Hein, Q. Li,
A. Husch, L. Zhang, V. Kovalev, L. Kang, A. Hering, J. L. Vilaga, M. Flores, D. Xu, B.
Wood, and M. G. Linguraru (Nov. 1, 2022). Rapid Artificial Intelligence Solutions in a
Pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge. In: Medical
Image Analysis 82, p. 102605. 1ssn: 1361-8415. por: 10.1016/j .media.2022.102605.
URL: https://www.sciencedirect.com/science/article/pii/S1361841
522002353 (visited on 02/05/2024) (cit. on p. 52).

Roth, J.,J. Keller, S. Franke, T. Neumuth, and D. Schneider (2021). Multi-Plane UNet++ En-
semble for Glioblastoma Segmentation. In: International MICCAI Brainlesion Workshop,
pp- 285-294 (cit. on p. 190).

Roy, A. G., S. Conjeti, N. Navab, and C. Wachinger (July 15, 2019). Bayesian QuickNAT:
Model Uncertainty in Deep Whole-Brain Segmentation for Structure-Wise Quality
Control. In: Neurolmage 195, pp. 11-22. 1ssn: 1053-8119. por: 10.1016/j .neuroimag
€.2019.03.042. urL: https://www.sciencedirect.com/science/articl
e/pii/S1053811919302319 (visited on 11/10/2023) (cit. on pp. 22, 24, 63, 118).

Salehi, M., H. Mirzaei, D. Hendrycks, Y. Li, M. H. Rohban, and M. Sabokrou (July 11,
2022). A Unified Survey on Anomaly, Novelty, Open-Set, and Out of-Distribution

160


https://doi.org/10.1002/hbm.20906
20017133
https://doi.org/10.48550/arXiv.2409.13416
https://doi.org/10.48550/arXiv.2409.13416
https://arxiv.org/abs/2409.13416
http://arxiv.org/abs/2409.13416
http://arxiv.org/abs/2409.13416
https://arxiv.org/abs/2106.09302
https://arxiv.org/abs/2106.09302
http://arxiv.org/abs/2106.09302
https://doi.org/10.1016/j.media.2022.102605
https://www.sciencedirect.com/science/article/pii/S1361841522002353
https://www.sciencedirect.com/science/article/pii/S1361841522002353
https://doi.org/10.1016/j.neuroimage.2019.03.042
https://doi.org/10.1016/j.neuroimage.2019.03.042
https://www.sciencedirect.com/science/article/pii/S1053811919302319
https://www.sciencedirect.com/science/article/pii/S1053811919302319

Bibliography

Detection: Solutions and Future Challenges. In: Transactions on Machine Learning
Research. 1ssn: 2835-8856. URL: https://openreview.net/forum?id=aRtjvzvb
pK&referrer=%5BTMLR%5D (%2Fgroup%3Fid%3DTMLR) (visited on 02/15/2024)
(cit. on p. 25).

Saueressig, C., A. Berkley, R. Munbodh, and R. Singh (2021). A Joint Graph and Image
Convolution Network for Automatic Brain Tumor Segmentation. In: International
MICCAI Brainlesion Workshop, pp. 356-365 (cit. on p. 190).

Sensoy, M., L. Kaplan, and M. Kandemir (2018). Evidential Deep Learning to Quantify
Classification Uncertainty. In: Advances in Neural Information Processing Systems. Vol. 31.
Curran Associates, Inc. urL: https: //proceedings.neurips.cc/paper/201
8/hash/a981f2b708044d6fb4a71a1463242520-Abstract.html (visited on
09/24/2024) (cit. on p. 22).

Shah, D., A. Biswas, P. Sonpatki, S. Chakravarty, and N. Shah (2021). Neural Network Based
Brain Tumor Segmentation. In: International MICCAI Brainlesion Workshop, pp. 324-333
(cit. on p. 190).

Shi, Y., H. Gao, S. Avestimehr, and Y. Yan (2022). Experimenting FedML and NVFLARE
for Federated Tumor Segmentation Challenge. In: International MICCAI Brainlesion
Workshop, pp. 228-240 (cit. on p. 73).

Simpson, A. L., M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-
Schneider, B. A. Landman, G. Litjens, B. Menze, O. Ronneberger, R. M. Summers,
P. Bilic, P. F. Christ, R. K. G. Do, M. Gollub, J. Golia-Pernicka, S. H. Heckers, W. R.
Jarnagin, M. K. McHugo, S. Napel, E. Vorontsov, L. Maier-Hein, and M. ]J. Cardoso
(Feb. 24, 2019). A Large Annotated Medical Image Dataset for the Development
and Evaluation of Segmentation Algorithms. arXiv: 1902.09063 [cs, eess].URL:
http://arxiv.org/abs/1902.09063 (visited on 12/04/2020) (cit. on p. 52).

Singh, H. S. (2021). Brain Tumor Segmentation Using Attention Activated U-Net with
Positive Mining. In: International MICCAI Brainlesion Workshop, pp. 431-440 (cit. on
p- 190).

Sivaswamy, J., S. Krishnadas, A. Chakravarty, G. Joshi, and A. S. Tabish (2015). A Com-
prehensive Retinal Image Dataset for the Assessment of Glaucoma from the Optic
Nerve Head Analysis. In: [SM Biomedical Imaging Data Papers 2.1 (cit. on p. 53).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. In: Journal of
Machine Learning Research 15.56, pp. 1929-1958. 1ssn: 1533-7928. urL: http://jmlr.o
rg/papers/vi5/srivastaval4a.html (visited on 12/12/2024) (cit. on p. 22).

Sun, K., Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang
(2019). High-Resolution Representations for Labeling Pixels and Regions. arXiv:
1904.04514 [cs.CV] (cit. on p. 189).

161


https://openreview.net/forum?id=aRtjVZvbpK&referrer=%5BTMLR%5D(%2Fgroup%3Fid%3DTMLR)
https://openreview.net/forum?id=aRtjVZvbpK&referrer=%5BTMLR%5D(%2Fgroup%3Fid%3DTMLR)
https://proceedings.neurips.cc/paper/2018/hash/a981f2b708044d6fb4a71a1463242520-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a981f2b708044d6fb4a71a1463242520-Abstract.html
https://arxiv.org/abs/1902.09063
http://arxiv.org/abs/1902.09063
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1904.04514

Bibliography

Thakur, S., J. Doshi, S. Pati, S. Rathore, C. Sako, M. Bilello, S. M. Ha, G. Shukla, A. Flanders,
A. Kotrotsou, M. Milchenko, S. Liem, G. S. Alexander, J. Lombardo, J. D. Palmer, P.
LaMontagne, A. Nazeri, S. Talbar, U. Kulkarni, D. Marcus, R. Colen, C. Davatzikos,
G. Erus, and S. Bakas (2020). Brain Extraction on MRI Scans in Presence of Diffuse
Glioma: Multi-institutional Performance Evaluation of Deep Learning Methods and
Robust Modality-Agnostic Training. In: Neurolmage 220, p. 117081. 1ssn: 1053-8119.
por: 10.1016/j .neuroimage.2020.117081. urL: https://www.sciencedir
ect.com/science/article/pii/S105381192030567X (cit. on p. 37).

Toennies, K. D. (2017). Guide to Medical Image Analysis. Springer (cit. on p. 4).

Traub, J., T. J. Bungert, C. T. Liith, M. Baumgartner, K. H. Maier-Hein, L. Maier-Hein, and
P.F. Jaeger (Oct. 19,2024). Overcoming Common Flaws in the Evaluation of Selective
Classification Systems. por: 10.48550/arXiv.2407.01032. arXiv: 2407.01032
[cs].URrL: http://arxiv.org/abs/2407.01032 (visited on 01/29/2025). Pre-
published (cit. on p. 117).

Ulrich, C,, F. Isensee, T. Wald, M. Zenk, M. Baumgartner, and K. H. Maier-Hein (2023).
MultiTalent: A Multi-dataset Approach to Medical Image Segmentation. In: Medical
Image Computing and Computer Assisted Intervention — MICCAI 2023. Ed. by H. Greenspan,
A. Madabhushi, P. Mousavi, S. Salcudean, J. Duncan, T. Syeda-Mahmood, and R. Taylor.
Cham: Springer Nature Switzerland, pp. 648-658. 1sBn: 978-3-031-43898-1. por: 10. 10
07/978-3-031-43898-1_62 (cit. on p. 172).

Ulrich, C., C. Knobloch, J. C. Holzschuh, T. Wald, M. R. Rokuss, M. Zenk, M. Fischer, M.
Baumgartner, F. Isensee, and K. H. Maier-Hein (2025). Mitigating False Predictions in
Unreasonable Body Regions. In: Machine Learning in Medical Imaging. Ed. by X. Xu,
Z. Cui, I. Rekik, X. Ouyang, and K. Sun. Cham: Springer Nature Switzerland, pp. 22-31.
1sBN: 978-3-031-73290-4. por: 10.1007/978-3-031-73290-4_3 (cit. on p. 173).

Ulyanov, D., A. Vedaldi, and V. Lempitsky (Nov. 6, 2017). Instance Normalization: The
Missing Ingredient for Fast Stylization. arXiv: 1607.08022 [cs].urL: http://ar
xiv.org/abs/1607.08022 (visited on 11/25/2019) (cit. on p. 56).

Valindria, V. V., I. Lavdas, W. Bai, K. Kamnitsas, E. O. Aboagye, A. G. Rockall, D. Rueckert,
and B. Glocker (Aug. 2017). Reverse Classification Accuracy: Predicting Segmentation
Performance in the Absence of Ground Truth. In: IEEE Transactions on Medical Imaging
36.8, pp. 1597-1606. 1ssN: 1558-254X. por: 10.1109/TMI. 2017 . 2665165 (cit. on
pp- 3,23, 24, 46).

Vasiliuk, A., D. Frolova, M. Belyaev, and B. Shirokikh (Aug. 7, 2023). Redesigning Out-of-
Distribution Detection on 3D Medical Images. por: 10.48550/arXiv.2308.0732
4.arXiv: 2308.07324 [cs, eess].urL:http://arxiv.org/abs/2308.07324
(visited on 10/18/2023). Pre-published (cit. on p. 26).

162


https://doi.org/10.1016/j.neuroimage.2020.117081
https://www.sciencedirect.com/science/article/pii/S105381192030567X
https://www.sciencedirect.com/science/article/pii/S105381192030567X
https://doi.org/10.48550/arXiv.2407.01032
https://arxiv.org/abs/2407.01032
https://arxiv.org/abs/2407.01032
http://arxiv.org/abs/2407.01032
https://doi.org/10.1007/978-3-031-43898-1_62
https://doi.org/10.1007/978-3-031-43898-1_62
https://doi.org/10.1007/978-3-031-73290-4_3
https://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
https://doi.org/10.1109/TMI.2017.2665165
https://doi.org/10.48550/arXiv.2308.07324
https://doi.org/10.48550/arXiv.2308.07324
https://arxiv.org/abs/2308.07324
http://arxiv.org/abs/2308.07324

Bibliography

Wang, D., E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell (Sept. 28, 2020a). Tent: Fully
Test-Time Adaptation by Entropy Minimization. In: International Conference on
Learning Representations. urL: https: //openreview.net/forum?id=uX13b
ZLkr3c (visited on 04/23/2021) (cit. on p. 69).

Wang, G., W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren (Apr. 21, 2019a).
Aleatoric Uncertainty Estimation with Test-Time Augmentation for Medical Image
Segmentation with Convolutional Neural Networks. In: Neurocomputing 338, pp. 34—
45. 155N: 0925-2312. por: 10.1016/j .neucom.2019.01.103. urL: https://www.s
ciencedirect.com/science/article/pii/S0925231219301961 (visited
on 01/11/2023) (cit. on p. 22).

Wang, J., K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang,
W. Liu, and B. Xiao (Oct. 2021). Deep High-Resolution Representation Learning for
Visual Recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
43.10, pp. 3349-3364. 1ssN: 1939-3539. por: 10.1109/TPAMI . 2020 . 2983686. URL:
https://ieeexplore.ieee.org/abstract/document/9052469 (visited on
10/30/2024) (cit. on p. 73).

Wang, K., R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and D. Ramage (Oct. 22,
2019b). Federated Evaluation of On-device Personalization. arXiv: 1910. 10252
[cs, stat].urL:http://arxiv.org/abs/1910.10252 (visited on 05/07/2020)
(cit. on p. 20).

Wang, S., L. Yu, K. Li, X. Yang, C.-W. Fu, and P.-A. Heng (Dec. 2020b). DoFE: Domain-
Oriented Feature Embedding for Generalizable Fundus Image Segmentation on
Unseen Datasets. In: [EEE Transactions on Medical Imaging 39.12, pp. 4237-4248. 1ssN:
1558-254X. por: 10.1109/TMI.2020.3015224. urL: https://ieeexplore.iee
e.org/document /9163289 (visited on 09/25/2024) (cit. on pp. 19, 53).

Wang, S., G. Tarroni, C. Qin, Y. Mo, C. Dai, C. Chen, B. Glocker, Y. Guo, D. Rueckert, and
W. Bai (2020c). Deep Generative Model-based Quality Control for Cardiac MRI
Segmentation. In: vol. 12264, pp. 88-97. por: 10.1007/978-3-030-59719-1_09.
arXiv: 2006 .13379 [cs, eess].URL: http://arxiv.org/abs/2006.13379
(visited on 06/06/2023) (cit. on pp. 24, 120).

Warfield, S. K., K. H. Zou, and W. M. Wells (July 2004). Simultaneous Truth and Per-
formance Level Estimation (STAPLE): An Algorithm for the Validation of Image
Segmentation. In: IEEE transactions on medical imaging 23.7, pp. 903-921. 1ssn: 0278-0062.
por: 10.1109/TMI.2004.828354. pmid: 15250643 (cit. on p. 38).

Wiesenfarth, M., A. Reinke, B. A. Landman, M. Eisenmann, L. A. Saiz, M. J. Cardoso,
L. Maier-Hein, and A. Kopp-Schneider (Jan. 27, 2021). Methods and Open-Source
Toolkit for Analyzing and Visualizing Challenge Results. In: Scientific Reports 11.1
(1), p- 2369. 1ssn: 2045-2322. por: 10.1038/s41598-021-82017-6. URL: https:

163


https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c
https://doi.org/10.1016/j.neucom.2019.01.103
https://www.sciencedirect.com/science/article/pii/S0925231219301961
https://www.sciencedirect.com/science/article/pii/S0925231219301961
https://doi.org/10.1109/TPAMI.2020.2983686
https://ieeexplore.ieee.org/abstract/document/9052469
https://arxiv.org/abs/1910.10252
https://arxiv.org/abs/1910.10252
http://arxiv.org/abs/1910.10252
https://doi.org/10.1109/TMI.2020.3015224
https://ieeexplore.ieee.org/document/9163289
https://ieeexplore.ieee.org/document/9163289
https://doi.org/10.1007/978-3-030-59719-1_9
https://arxiv.org/abs/2006.13379
http://arxiv.org/abs/2006.13379
https://doi.org/10.1109/TMI.2004.828354
15250643
https://doi.org/10.1038/s41598-021-82017-6
https://www.nature.com/articles/s41598-021-82017-6
https://www.nature.com/articles/s41598-021-82017-6
https://www.nature.com/articles/s41598-021-82017-6

Bibliography

//www.nature.com/articles/s41598-021-82017-6 (visited on 03/25/2021)
(cit. on pp. 16, 40, 41).

Wu, H.-Y. and Y.-L. Lin (2021). HarDNet-BTS: A Harmonic Shortcut Network for Brain
Tumor Segmentation. In: International MICCAI Brainlesion Workshop, pp. 261-271 (cit.
on p. 190).

Xia, Y., Y. Zhang, F. Liu, W. Shen, and A. Yuille (Sept. 7, 2020). Synthesize Then Compare:
Detecting Failures and Anomalies for Semantic Segmentation. arXiv: 2003 .08440
[cs].urL: http://arxiv.org/abs/2003.08440 (visited on 02/14/2022) (cit. on
p-24).

Xie, Y., J. Zhang, C. Shen, and Y. Xia (2021). CoTr: Efficiently Bridging CNN and Trans-
former for 3D Medical Image Segmentation. In: Medical Image Computing and Computer
Assisted Intervention — MICCAI 2021. Ed. by M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy,
S. Speidel, Y. Zheng, and C. Essert. Cham: Springer International Publishing, pp. 171-
180. 1sBN: 978-3-030-87199-4. por: 10.1007/978-3-030-87199-4_16 (cit. on pp. 73,
189).

Yan, B. B, Y. Wei, J. M. M. Jagtap, M. Moassefi, D. V. V. Garcia, Y. Singh, S. Vahdati, S.
Faghani, B. J. Erickson, and G. M. Conte (2021). Mri Brain Tumor Segmentation Using
Deep Encoder-Decoder Convolutional Neural Networks. In: International MICCAI
Brainlesion Workshop, pp. 80-89 (cit. on p. 190).

Yang, H., Z. Shen, Z. Li, ]. Liu, and ]. Xiao (2021a). Combining Global Information with
Topological Prior for Brain Tumor Segmentation. In: International MICCAI Brainlesion
Workshop, pp. 204-215 (cit. on p. 190).

Yang, Y., S. Wei, D. Zhang, Q. Yan, S. Zhao, and J. Han (2021b). Hierarchical and Global
Modality Interaction for Brain Tumor Segmentation. In: International MICCAI Brainle-
sion Workshop, pp. 441-450 (cit. on p. 190).

El-Yaniv, R. and Y. Wiener (Aug. 1, 2010). On the Foundations of Noise-free Selective
Classification. In: The Journal of Machine Learning Research 11, pp. 1605-1641. 1ssn:
1532-4435 (cit. on pp. 48, 117).

Yin, Y., H. Yang, Q. Liu, M. Jiang, C. Chen, Q. Dou, and P--A. Heng (2021). Efficient
Federated Tumor Segmentation via Normalized Tensor Aggregation and Client
Pruning. In: International MICCAI Brainlesion Workshop, pp. 433—443 (cit. on p. 69).

Yoon, J. S., K. Oh, Y. Shin, M. A. Mazurowski, and H.-I. Suk (Feb. 15, 2024). Domain
Generalization for Medical Image Analysis: A Survey. por: 10.48550/arXiv. 2
310.08598. arXiv: 2310.08598. urL: http://arxiv.org/abs/2310.08598
(visited on 10/23/2024). Pre-published (cit. on pp. 2, 18).

Yuan, Y. (2021). Evaluating Scale Attention Network for Automatic Brain Tumor Seg-
mentation with Large Multi-Parametric MRI Database. In: International MICCAI
Brainlesion Workshop, pp. 42-53 (cit. on p. 190).

164


https://www.nature.com/articles/s41598-021-82017-6
https://www.nature.com/articles/s41598-021-82017-6
https://www.nature.com/articles/s41598-021-82017-6
https://www.nature.com/articles/s41598-021-82017-6
https://arxiv.org/abs/2003.08440
https://arxiv.org/abs/2003.08440
http://arxiv.org/abs/2003.08440
https://doi.org/10.1007/978-3-030-87199-4_16
https://doi.org/10.48550/arXiv.2310.08598
https://doi.org/10.48550/arXiv.2310.08598
https://arxiv.org/abs/2310.08598
http://arxiv.org/abs/2310.08598

Bibliography

Yushkevich, P. A,, J. Pluta, H. Wang, L. E. Wisse, S. Das, and D. Wolk (2016). Fast Automatic
Segmentation of Hippocampal Subfields and Medial Temporal Lobe Subregions in
3 Tesla and 7 Tesla T2-weighted MRI. In: Alzheimer’s & Dementia 7.12 (cit. on p. 37).

Zech, ]. R, M. A. Badgeley, M. Liu, A. B. Costa, ]. J. Titano, and E. K. Oermann (Nov. 6,
2018). Variable Generalization Performance of a Deep Learning Model to Detect
Pneumonia in Chest Radiographs: A Cross-Sectional Study. In: PLOS Medicine 15.11,
€1002683. 1ssn: 1549-1676. por: 10.1371/ journal . pmed. 1002683. urL: https:
//journals.plos.org/plosmedicine/article?id=10.1371/journal.p
med. 1002683 (visited on 12/03/2020) (cit. on p. 2).

Zeineldin, R. A., M. E. Karar, F. Mathis-Ullrich, and O. Burgert (2021). Ensemble CNN Net-
works for GBM Tumors Segmentation Using Multi-Parametric MRI. In: International
MICCAI Brainlesion Workshop, pp. 473-483 (cit. on p. 190).

Zenk, M., U. Baid, S. Pati, A. Linardos, B. Edwards, M. Sheller, P. Foley, A. Aristizabal,
D. Zimmerer, A. Gruzdev, ]. Martin, R. T. Shinohara, A. Reinke, F. Isensee, S. Parampot-
tupadam, K. Parekh, R. Floca, H. Kassem, B. Baheti, S. Thakur, V. Chung, K. Kushibar,
K. Lekadir, M. Jiang, Y. Yin, H. Yang, Q. Liu, C. Chen, Q. Dou, P--A. Heng, X. Zhang,
S. Zhang, M. I. Khan, M. A. Azeem, M. Jafaritadi, E. Alhoniemi, E. Kontio, S. A. Khan,
L. Michler, 1. Ezhov, F. Kofler, S. Shit, J. C. Paetzold, T. Loehr, B. Wiestler, H. Peiris,
K. Pawar, S. Zhong, Z. Chen, M. Hayat, G. Egan, M. Harandji, E. I. Polat, G. Polat, A.
Kocyigit, A. Temizel, A. Tuladhar, L. Tyagi, R. Souza, N. D. Forkert, P. Mouches, M.
Wilms, V. Shambhat, A. Maurya, S. S. Danannavar, R. Kalla, V. K. Anand, G. Krish-
namurthi, S. Nalawade, C. Ganesh, B. Wagner, D. Reddy, Y. Das, F. E. Yu, B. Fei, A.].
Madhuranthakam, J. Maldjian, G. Singh, J. Ren, W. Zhang, N. An, Q. Hu, Y. Zhang,
Y. Zhou, V. Siomos, A. Rawat, G. Zizzo, S. Kadhe, ]. P. Epperlein, S. Braghin, Y. Wang, R.
Kanagavelu, Q. Wei, Y. Yang, Y. Liu, K. Kotowski, S. Adamski, B. Machura, W. Malara, L.
Zarudzki, J. Nalepa, Y. Shi, H. Gao, S. Avestimehr, Y. Yan, A. S. Akbar, E. Kondrateva, H.
Yang, Z. Li, H.-Y. Wu, J. Roth, C. Saueressig, A. Milesi, Q. D. Nguyen, N. J. Gruenhagen,
T.-M. Huang, J. Ma, H. S. H. Singh, N.-Y. Pan, D. Zhang, R. A. Zeineldin, M. Futrega,
Y. Yuan, G. M. Conte, X. Feng, Q. D. Pham, Y. Xia, Z. Jiang, H. M. Luu, M. Dobko,
A. Carré, B. Tuchinov, H. Mohy-ud-Din, S. Alam, A. Singh, N. Shah, W. Wang, C. Sako,
M. Bilello, S. Ghodasara, S. Mohan, C. Davatzikos, E. Calabrese, J. Rudie, J. Villanueva-
Meyer, S. Cha, C. Hess, ]. Mongan, M. Ingalhalikar, M. Jadhav, U. Pandey, J. Saini, R. Y.
Huang, K. Chang, M.-S. To, S. Bhardwaj, C. Chong, M. Agzarian, M. Kozubek, F. Lux,
J. Michalek, P. Matula, M. Ketkovsky, T. Koptivovd, M. Dostal, V. Vybihal, M. C. Pinho,
J. Holcomb, M. Metz, R. Jain, M. Lee, Y. W. Lui, P. Tiwari, R. Verma, R. Bareja, I. Yadav,
J. Chen, N. Kumar, Y. Gusev, K. Bhuvaneshwar, A. Sayah, C. Bencheqroun, A. Belouali,
S. Madhavan, R. R. Colen, A. Kotrotsou, P. Vollmuth, G. Brugnara, C. J. Preetha, F.
Sahm, M. Bendszus, W. Wick, A. Mahajan, C. Balafia Quintero, J. Capellades, J. Puig,

165


https://doi.org/10.1371/journal.pmed.1002683
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683

Bibliography

Y.S. Choi, S.-K. Lee, J. H. Chang, S. S. Ahn, H. F. Shaykh, A. Herrera-Trujillo, M. Trujillo,
W. Escobar, A. Abello, J. Bernal, ]. Gémez, P. LaMontagne, D. Marcus, M. Milchenko,
A. Nazeri, B. Landman, K. Ramadass, K. Xu, S. Chotai, L. B. Chambless, A. Mistry,
R. C. Thompson, A. Srinivasan, ]. R. Bapuraj, A. Rao, N. Wang, O. Yoshiaki, T. Moritani,
S. Turk, J. Lee, S. Prabhudesai, J. Garrett, M. Larson, R. Jeraj, H. Li, T. Weiss, M. Weller,
A. Bink, B. Pouymayou, S. Sharma, T.-C. Tseng, S. Adabi, A. X. Falcdo, S. B. Martins,
B. C. A. Teixeira, F. Sprenger, D. Menotti, D. R. Lucio, S. P. Niclou, O. Keunen, A.-C.
Hau, E. Pelaez, H. Franco-Maldonado, F. Loayza, S. Quevedo, R. McKinley, J. Slotboom,
P. Radojewski, R. Meier, R. Wiest, J. Trenkler, J. Pichler, G. Necker, A. Haunschmidt,
S. Meckel, P. Guevara, E. Torche, C. Mendoza, F. Vera, E. Rios, E. Lépez, S. A. Velastin, J.
Choi, S. Baek, Y. Kim, H. Ismael, B. Allen, J. M. Buatti, P. Zampakis, V. Panagiotopoulos,
P. Tsiganos, S. Alexiou, I. Haliassos, E. I. Zacharaki, K. Moustakas, C. Kalogeropoulou,
D. M. Kardamakis, B. Luo, L. Poisson, N. Wen, M. Vallieres, M. A. L. Loutfi, D. Fortin,
M. Lepage, F. Morén, J. Mandel, G. Shukla, S. Liem, G. S. Alexandre, J. Lombardo,
J. D. Palmer, A. E. Flanders, A. P. Dicker, G. Ogbole, D. Oyekunle, O. Odafe-Oyibotha,
B. Osobu, M. S. Hikima, M. Soneye, F. Dako, A. Dorcas, D. Murcia, E. Fu, R. Haas,
J. Thompson, D. R. Ormond, S. Currie, K. Fatania, R. Frood, A. L. Simpson, ]J. J. Peoples,
R. Hu, D. Cutler, F. Y. Moraes, A. Tran, M. Hamghalam, M. A. Boss, J. Gimpel, D. Kat-
til Veettil, K. Schmidt, L. Cimino, C. Price, B. Bialecki, S. Marella, C. Apgar, A. Jakab,
M.-A. Weber, E. Colak, J. Kleesiek, J. B. Freymann, ]. S. Kirby, L. Maier-Hein, J. Albrecht,
P. Mattson, A. Karargyris, P. Shah, B. Menze, K. Maier-Hein, and S. Bakas (2025a).
Towards Fair Decentralized Benchmarking of Healthcare AI Algorithms: The Feder-
ated Tumor Segmentation (FeTS) Challenge. Manuscript accepted for publication.
(cit. on pp. 5,17, 20, 31, 35, 36, 51, 67, 68, 71, 72,76, 77, 80, 81, 83, 109, 171, 176, 177, 189,
190).

Zenk, M., D. Zimmerer, F. Isensee, P. F. Jager, ]. Wasserthal, and K. Maier-Hein (2022).

Realistic Evaluation of FixMatch on Imbalanced Medical Image Classification Tasks.
In: Bildverarbeitung Fiir Die Medizin 2022. Ed. by K. Maier-Hein, T. M. Deserno, H. Han-
dels, A. Maier, C. Palm, and T. Tolxdorff. Wiesbaden: Springer Fachmedien Wiesbaden,
pp- 291-296. 1sBN: 978-3-658-36932-3 (cit. on p. 171).

Zenk, M., D. Zimmerer, F. Isensee, J. Traub, T. Norajitra, P. F. Jager, and K. Maier-Hein

166

(Apr.1,2025b). Comparative Benchmarking of Failure Detection Methods in Medical
Image Segmentation: Unveiling the Role of Confidence Aggregation. In: Medical Image
Analysis 101, p. 103392. 1ssN: 1361-8415. por: 10.1016/j .media.2024.103392. URL:
https://www.sciencedirect.com/science/article/pii/S1361841524
003177 (visited on 01/07/2025) (cit. on pp. 17, 26, 31, 44, 45, 48-51, 59, 62, 67, 89, 91,
95, 98, 100, 101, 103, 104, 107-109, 171, 179-188).


https://doi.org/10.1016/j.media.2024.103392
https://www.sciencedirect.com/science/article/pii/S1361841524003177
https://www.sciencedirect.com/science/article/pii/S1361841524003177

Bibliography

Zhang, L., X. Wang, D. Yang, T. Sanford, S. Harmon, B. Turkbey, B. ]. Wood, H. Roth, A.
Myronenko, D. Xu, and Z. Xu (July 2020). Generalizing Deep Learning for Medical
Image Segmentation to Unseen Domains via Deep Stacked Transformation. In: [EEE
Transactions on Medical Imaging 39.7, pp. 2531-2540. 1ssn: 1558-254X. por: 10 . 1109
/TMI.2020.2973595 (cit. on p. 18).

Zhou, K., Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy (Apr. 2023). Domain Generalization: A
Survey. In: [EEE Transactions on Pattern Analysis and Machine Intelligence 45.4, pp. 4396—
4415. 1ssN: 1939-3539. por: 10.1109/TPAMI. 2022.3195549 (cit. on pp. 2,17, 18).

Zhou, Z., M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang (2018). Unet++: A Nested
u-Net Architecture for Medical Image Segmentation. In: Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction
with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pp. 3—11 (cit. on
p- 189).

Zou, K., X. Yuan, X. Shen, M. Wang, and H. Fu (2022). TBraTS: Trusted Brain Tumor
Segmentation. In: Medical Image Computing and Computer Assisted Intervention — MICCAI
2022.Ed. by L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li. Cham: Springer Nature
Switzerland, pp. 503-513. 1sBN: 978-3-031-16452-1. por: 10.1007/978-3-031-16452
-1_48 (cit. on p. 22).

167


https://doi.org/10.1109/TMI.2020.2973595
https://doi.org/10.1109/TMI.2020.2973595
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1007/978-3-031-16452-1_48
https://doi.org/10.1007/978-3-031-16452-1_48

Bibliography

168



Own Contributions
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1. Benchmarking the generalizability of brain tumor segmentation algorithms in the
Federated Tumor Segmentation (FeTS) Challenge

2. Benchmarking failure detection methods for segmentation

Part 1 was conducted in an international cooperation with the Department of Pathology &
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the work was done while he was affiliated with the Center for Biomedical Image Computing
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learning (IML) group at DKFZ. In the following, details on my contribution to the data
acquisition and the data analysis are provided separately for each of the two parts.

169



Own Contributions and Publications

Own share in Data Acquisition

1. The magnetic resonance imaging (MRI) images used in the FeTS Challenge were
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A Appendix

A.1 Additional Results

A.1.1 Generalization

This section contains additional details on the Federated Tumor Segmentation (FeTS)
Challenge 2022 results. Figure A.1 shows a heatmap for the mean Hausdorff distance (HD)
instead of Dice similarity coefficient (DSC). Figure A.2 reports results for individual tumor
regions (whole tumor (WT), tumor core (TC) and enhancing tumor (ET)) of the best
model, which extends the lower diagram in fig. 3.4. To supplement the interpretation of
the annotation quality control results in section 3.1.2.2, figs. A.3 and A.4 compare how the
ranking and per-case DSC distributions would change if quality control was not performed.

A.1.2 Failure Detection

As a comprehensive comparison of all evaluated methods, table A.1 shows mean and stan-
dard deviation of the area under the risk-coverage curve (AURC) metric on the computed
tomography (CT) and magnetic resonance imaging (MRI) datasets used in the benchmark.
It extends table 3.3 with more combinations of prediction model and pixel/image-level
failure detection methods. Figures A.5 to A.7 complement section 3.2.3 by providing a
similar plot as fig. 3.12 but with more methods and alternative metrics, namely Spearman
correlation coefficient (SC) and Pearson correlation coefficient (PC).

A.2 Additional Image Samples from the Failure Detection Bench-
mark

Figures A.8 to A.13 show additional samples from the test sets of each CT/MRI dataset

used for the segmentation failure detection benchmark (section 2.2.3). Each dataset usually

consists of several domains, some of which were seen during training and some are new
in the test set. These are indicated above the images.
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Figure A.1: Aggregated challenge results of the FeTS22 challenge for each evaluated model
and institution. Each tile in the heatmaps represents the HD value of a single model,
averaged over all test cases and tumor regions of one institution. The values were clipped
at 0.5 and white tiles indicate evaluation runs that failed due to technical issues. Models
are sorted by mean HD (bar plot on the left) and institutions by their test set size (bar plot
at the top). The best models achieve similar performances within each institution, which
is apparent from the vertical structures in the heatmap. However, on some institutions the
performance of all models drops, indicating a lack of robustness. Figure adapted from
(Zenk et al. 2025a).
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Figure A.2: Case-level challenge results of the top-ranked algorithm (ID: BO1) for each
institution of the test set. Some Institutions also contributed (different) cases to the training
set (“seen during training”), while others were not seen during training. Each gray dot
represents the DSC score for a single test case. While the median performance is high for
most institutions, there are also often individual cases with reduced performance, even
for institutions seen during training. Comparing the three tumor regions, for TC and ET
there are more outliers, but even the usually large WT region is not always segmented
accurately. Figure adapted from (Zenk et al. 2025a).
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Figure A.3: Effect of annotation quality control (QC) on rankings. Ranking is only com-
pared between the subsets that were quality controlled (1201 cases from which 125 were
excluded in the QC). There are only minor changes in the ranking of up to two positions.
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Figure A.4: Effect of annotation quality control (QC) on the mean DSC distributions
for the best-performing model (ID: BO1). Only results from the institutions that were
quality controlled are shown (1201 from 16 institutions, reduced by 125 cases through
QC). Although for a few institutions (IDs: 12, 22) the low-quality samples coincided with
low-DSC, the DSC distributions before and after QC look similar.
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Figure A.5: AURC scores for all datasets and methods in the failure detection benchmark.
Each colored marker corresponds to a single experiment, meaning a prediction model +
aggregation method, trained on one fold of the training data. The marker shape represents
differences in prediction models. Gray “~” markers visualize values for the random/op-
timal confidence baselines, which differ between the models trained on different folds
due to their varying segmentation performance (section 2.2.2.2). Pairwise DSC is among
the best methods across all datasets, but the absolute correlation varies between datasets.
Quality regression networks are usually the next-best option, but they show a performance
drop on the Covid, Prostate and Brain tumor (2D) datasets. Figure adapted from (Zenk
et al. 2025b).
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Table A.1: AURC scores (x100) on the test sets for all compared failure detection methods
based on three types of prediction models. Mean and standard deviation (std) are com-
puted across five prediction models trained on different folds. A color map is applied on
each ‘mean’ column, ranging from light yellow (worse) to dark green (best). PE was used
for pixel uncertainty. Abbreviations: Ens.: Ensemble, MCD: MC-Dropout Single: Single
network. Table adapted from (Zenk et al. 2025b).

Brain-2d Brain Heart Kidney Covid Prostate
mean std mean std mean std mean std mean std mean std

0.6 0.2 0.6 0.4 1.1 1.3
0.1 03 12 04 05 376 26

Ens. + Quality regression
Ens. + RF (radiomics features)

Ens. + RF (simple features) 0.1 0.2 0.7 0.3 0.2 22
Ens. + VAE (seg) 120 05 225 12 29 06 374 1.1 0.9
Ens. + foreground mean 0.3 0.5 1.1 145 08 1.2
Ens. + mean 03 | 166 | 0.4 07 143 05 0.8
Ens. + non-boundary 0.1 0.4 05 187 02 0.8
Ens. + pairwise DSC 0.1 0.1 0.5 0.2 0.6
Ens. + patch-based - 0.3 0.3 0.6 0.6 1.0
MCD + foreground mean 118 0.6 0.6 09 158 14 22
MCD + mean 06 201 12 05 158 09 2.0
MCD + non-boundary 0.2 0.4 04 146 03 2.1
MCD + pairwise DSC 0.2 0.1 0.4 04 IEEEN 1.2
MCD + patch-based . 0.5 1.0 03 | 138 0.6 1.9
Single + Mahalanobis 133 04 1.7 06 151 09 2.4
Single + Quality regression 0.5 0.2 0.5 1.4
Single + RF (radiomics features) | 11.5 | 0.6 0.3 0.7 5.0
Single + RF (simple features) 0.3 0.3 0.9 45
Single + foreground mean 152 1.0 0.6 . 1.1 29
Single + mean 151 1.3 201 1.3 05 161 038 2.5
Single + non-boundary 148 0.8 PG 0.5 04 148 03 2.3
Single + patch-based 141 13 - 1.1 05 140 08 2.6
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Figure A.6: Pearson correlation coefficient (PC) for all datasets and methods in the failure
detection benchmark. Each colored marker corresponds to a single experiment, meaning
a prediction model + aggregation method, trained on one fold of the training data. The
marker shape represents differences in prediction models. Gray “—” markers visualize
values for the random/optimal confidence baselines, which differ between the models
trained on different folds due to their varying segmentation performance (section 2.2.2.2).
Pairwise DSC performs clearly best across all datasets, often achieving close to optimal
AURC. The results are overall in line with the observations under the AURC metric in
fig. A.5. Figure adapted from (Zenk et al. 2025b).
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Figure A.7: Spearman correlation coefficient (SC) for all datasets and methods in the
failure detection benchmark. Each colored marker corresponds to a single experiment,
meaning a prediction model + aggregation method, trained on one fold of the training data.
The marker shape represents differences in prediction models. Gray “—” markers visualize
values for the random/optimal confidence baselines, which differ between the models
trained on different folds due to their varying segmentation performance (section 2.2.2.2).
Pairwise DSC performs clearly best across all datasets, achieving SCs of -0.7 and higher.
The results are overall in line with the observations under the AURC metric in fig. A.5.
Figure adapted from (Zenk et al. 2025b).
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A.2. Additional Image Samples from the Failure Detection Benchmark

Domain: noshift ~ Domain: ghosting-high Domain: biasfield-high Domain: affine-high ~ Domain: spike-high

Figure A.8: Samples from the test set of the 2D brain (toy) dataset. Each column shows
samples from a different “domain”, which corresponds to an artificial corruption for this
dataset. Figure adapted from (Zenk et al. 2025b).
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Domain: HGG Domain: LGG

Figure A.9: Samples from the test set of the brain tumor dataset. Each column shows
samples from a different “domain”, which corresponds to an artificial corruption for this
dataset. Figure adapted from (Zenk et al. 2025b).
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A.2. Additional Image Samples from the Failure Detection Benchmark

Domain: B Domain: C Domain: A

Domain: D

Figure A.10: Samples from the test set of the heart dataset. Each column shows samples
from a different “domain”, which corresponds to an artificial corruption for this dataset.
Figure adapted from (Zenk et al. 2025b).
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Domain: ID Domain: ID Domain: ID

Figure A.11: Samples from the test set of the kidney tumor dataset. There is only one
in-distribution domain. Figure adapted from (Zenk et al. 2025b).
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A.2. Additional Image Samples from the Failure Detection Benchmark

Domain: ID Domain: mosmed Domain: radiopaedia

[SllCliS]

Figure A.12: Samples from the test set of the prostate dataset. Each column shows samples
from a different “domain”, which corresponds to an artificial corruption for this dataset.
Figure adapted from (Zenk et al. 2025b).
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Domain: ID Domain: HK Domain: 2CVB  Domain: BIDMC Domain: BMC Domain: UCL

Figure A.13: Samples from the test set of the Covid dataset. Each column shows samples
from a different “domain”, which corresponds to an artificial corruption for this dataset.
Figure adapted from (Zenk et al. 2025b).
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A.3 Details on the FeTS Challenge Submissions (Algorithm
Characteristics)

The FeTS challenge 2022 evaluated 41 models in total, from which 5 were official submis-
sions and 36 were originally contributed to the Brain Tumor Segmentation (BraTS) chal-
lenge 2021 (Baid et al. 2021). The five official submissions are described in section 3.1.2.1,
while the 36 BraTS algorithms were described in scientific publications previously (except
three teams that did not submit a paper). Table A.2 lists the corresponding references,
which can provide additional details beyond table 3.1. The following paragraphs elaborate
on the entries for architecture, loss and post-processing, by providing references where
necessary and clarifying certain characteristics. They are taken without modification from
Zenk et al. (2025a):

Architecture The most common backbone used by the submissions was U-Net (Ron-
neberger et al. 2015). Several variations to the basic U-Net were introduced by the teams:
Some used larger encoders, with more filters per convolution or more convolutional blocks
per stage. Adding residual connections to convolutional blocks (He et al. 2016) was also
common. Several algorithms extended the U-Net with different kinds of attention modules.
Examples include inserting a transformer in the bottleneck of the U-Net or re-weighting
feature maps with attention restricted to the channel/spatial dimensions. Some partici-
pants used other convolutional neural networks (CNNs) than U-Net, for instance HR-Net
(Sun et al. 2019), HNF-Net (Jia et al. 2021), U-Net++ (Zhou et al. 2018) and HarDNet
(Chao et al. 2019). Recent hybrid CNN/transformer networks like Colr (Xie et al. 2021),
Swin transformer (Liu et al. 2021) were incorporated in some submissions. Finally, a
few teams utilized skip connection blocks that combined features from multiple stages or
explored splitting the segmentation task into two stages, first segmenting a coarse whole
tumor region and then refining the segmentation of this cropped region.

Loss The most common loss functions were Dice (computed either per sample or per
batch) and cross-entropy. Similar to the Dice loss, some teams optimized differentiable
versions of segmentation metrics (Jaccard index, generalized Dice, boundary distance and
the generalized Wasserstein Dice loss (Fidon et al. 2021)). Two less common loss functions
were TopK loss, which considers only the K pixels with the highest loss, and the focal loss,
which down-weights the loss for pixels that are classified correctly with high softmax scores.
Finally, one team used virtual adversarial training (Miyato et al. 2018) as an auxiliary,
regularizing loss term. Most losses can be calculated either region-based (for each of WT,
TC, ET) or for the exclusive labels (edema (ED), necrotic core/necrocyst (NCR), ET).
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Table A.2: Mapping from model ID to scientific publication for the subset of BraTS 2021
models evaluated within FeTS22. Submissions are listed in ranking order of the BraTS
2021 challenge (top 10 are marked bold). Note that the top 10 here are not identical with
the official BraTS challenge winners, because some top models could not be evaluated in
the FeTS challenge for technical reasons. Table adapted from (Zenk et al. 2025a).

ID Reference | ID  Reference

B01 Luu and Park (2021) B02 Yuan (2021)

B03 Futrega et al. (2021) B04 Ma and Chen (2021)
B05 Kotowski et al. (2021) B06 Jiaetal. (2021)

B07 Dobko etal. (2021) B08 Alam et al. (2021)

B09 Nguyen-Truong and Pham (2021) | B10 Fidon et al. (2021)

B1l Yangetal. (2021b) B12 Jiangetal. (2021)

B13 Wuand Lin (2021) Bl4 Zeineldin et al. (2021)
B15 n/a (team tigerduck) B16 Carré etal. (2021)

B17 Pnev etal. (2021) B18 Fengetal. (2021)

B19 Singh (2021) B20 Pawar et al. (2021b)

B21 n/a (team younet) B22 Bukhari and Mohy-ud-Din (2021)
B23 Milesi et al. (2021) B24 Demoustier et al. (2021)
B25 Shah etal. (2021) B26 Lietal. (2021)

B27 Akbar et al. (2021) B28 Yangetal. (2021a)

B29 Maurya et al. (2021) B30 Linetal. (2021)

B31 Rothetal. (2021) B32 Saueressig et al. (2021)
B33 Yanetal. (2021) B34 n/a (team Team Two)
B35 Hsuetal. (2021) B36 Druzhinina et al. (2021)

Post-processing Techniques that refine a model’s segmentation output based on prior
knowledge specific to the three brain tumor regions were popular in the challenge. Drop-
ping small connected components from the final mask (or replacing them with neighboring
predictions) can help to reduce false positives. Morphological operations like closing or
hole filling were also applied by some teams. Since TC is usually a compact core within
WT, post-processing methods enforced this property, by removing TC parts that extend
beyond WT or filling holes inside TC. Finally, potential confusion between ET and NCR
was counteracted by converting ET output regions to NCR if they are very small (or for
one team, if an auxiliary network suggests this).
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A.4 Dokumentation der verwendeten KI-Hilfsmittel

Kl-basierte Hilfsmittel wurden in der vorliegenden Arbeit fiir folgende Ziele eingesetzt:
e Optimierung von Sprache und Stil
e Beschleunigung von Textiiberarbeitung
e Unterstiitzung bei der Formatierung mit LaTeX

Allgemein wurden bei Verwendung der Hilfsmittel die erzeugten Inhalte genau gepriift
und, falls nétig, angepasst. Im Folgenden ist angegeben, fiir welchen Abschnitt der Arbeit
Kl-basierte Hilfsmittel verwendet wurden und wie, um oben genannte Ziele zu erreichen:

Abschnitt 1.2 Mithilfe von GitHub Copilot wurden LaTeX Tabellen basierend
auf meinen Befehlen umformatiert und Formeln vervollstandigt.

Abschnitte 1.3.2, Textausschnitte wurden ChatGPT mitgeteilt, mit dem Auftrag, mei-

2.1und 3.1 ne detaillierten Stichpunkte auszuformulieren, Freitext sprachlich
zu verbessern oder alternative Formulierungen fiir komplexe Sat-
ze vorzuschlagen. Beim Einarbeiten einzelner Textpassagen aus
eigenen Veroffentlichungen in die Dissertation wurden Vorschldge
von ChatGPT zu alternativen Formulierungen berticksichtigt, um
den bestehenden Text zu {iberarbeiten und auf die Struktur und
den Stil dieser Arbeit anzupassen. LaTeX-Tabellen wurden optisch
aufgewertet mit ChatGPT und GitHub Copilot.

Abschnitte 1.3.1, Textausschnitte wurden ChatGPT mitgeteilt, mit dem Auftrag, mei-

2.2,3.1und 3.2 ne detaillierten Stichpunkte auszuformulieren, Freitext sprachlich
zu verbessern oder alternative Formulierungen fiir komplexe Sat-
ze vorzuschlagen. Beim Einarbeiten einzelner Textpassagen aus
eigenen Veroffentlichungen in die Dissertation wurden Vorschldge
von ChatGPT zu alternativen Formulierungen berticksichtigt, um
den bestehenden Text zu {iberarbeiten und auf die Struktur und
den Stil dieser Arbeit anzupassen.

Abschnitt 4 ChatGPT wurde benutzt, um sprachliche Fehler mit minimalen
Anderungen zu korrigieren.
Abschnitt 6 Die Ubersetzung der englischen Zusammenfassung ins Deutsche

von ChatGPT wurde iiberarbeitet, um diesen Abschnitt zu schrei-
ben. Die englische Zusammenfassung habe ich ohne Hilfsmittel
geschrieben.
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Angaben zu verwendeten Kl-basierten Elek-
tronischen Hilfsmitteln

Zur Dokumentation der verwendeten Hilfsmittel ist der schriftlichen Ausarbeitung
ein besonderer Anhang (Anhang A.4) hinzugefiigt, der eine Liste und Beschreibung aller
verwendeter Kl-basierter Hilfsmittel enthélt. Der besondere Anhang zur Dokumentation
der verwendeten Hilfsmittel erfiillt folgende Kriterien:

1. Auflistung der Ziele, fiir die die KI-basierten Hilfsmittel in der vorliegenden Arbeit
eingesetzt wurden.

2. Dokumentation der Verwendungsweise der KI-basierten Hilfsmittel.

3. Nennung der Kapitel und Abschnitte der vorliegenden Arbeit, in denen die KI-
basierten Hilfsmittel eingesetzt wurden, um Inhalte zu erzeugen.
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