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Abstract

This dissertation advances the field of causal inference by developing and evaluating Graph
Neural Network (GNN)-based methods for estimating Individual Treatment Effects (ITE),
leveraging causal graph structures to improve predictive accuracy. Traditional ITE esti-
mation approaches often fail to account for dependencies among covariates, limiting their
performance, particularly in data-scarce scenarios. To address this, we propose two novel ar-
chitectures, GNN-TARnet and GAT-TARnet, which integrate structural causal models with
GNNs to explicitly model these dependencies. We evaluate the proposed methods on syn-
thetic datasets with known causal structures, established benchmarks such as IHDP and
JOBS, and real-world randomized controlled trial data from the PerPAIN consortium. Per-
PAIN is a German research initiative focused on developing personalized treatment strate-
gies for chronic musculoskeletal pain. Our models consistently outperform non-structural
baselines, achieving lower √εPEHE in low-data settings while remaining competitive with
state-of-the-art approaches when data is abundant. The practical application to the Per-
PAIN trial, which tests tailored psychological interventions based on patient pain profiles,
highlights the utility of GNN-based ITE estimation in real-world treatment allocation and
demonstrates superior performance compared to clustering-based strategies. Key contribu-
tions of this work include a peer-reviewed publication, open-source software, and a web
application for patient stratification, bridging theoretical innovation with practical tools for
personalized decision-making. Future extensions of this work include incorporating time-
series modeling to broaden applicability across dynamic domains and reducing the computa-
tional burden to enhance scalability. Another important direction is the creation of publicly
available datasets in which features are causally dependent on each other and on the out-
come. Such datasets can support more rigorous validation and foster the development of
improved GNN-based methods for causal effect estimation.
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Zusammenfassung

Diese Dissertation treibt das Gebiet der kausalen Inferenz voran, indem sie auf Graph Neu-
ral Network (GNN) basierende Methoden zur Schätzung individueller Behandlungseffekte
(ITE) entwickelt und bewertet und dabei kausale Graphstrukturen nutzt, um die Vorhersage-
genauigkeit zu verbessern. Herkömmliche ITE-Ansätze vernachlässigen oft Abhängigkeiten
zwischen Kovariaten, was insbesondere bei begrenzter Datenverfügbarkeit die Leistung
mindert. Zur Lösung dieses Problems schlagen wir zwei neue Architekturen vor: GNN-
TARnet und GAT-TARnet. Diese kombinieren strukturelle Kausalmodelle mit GNNs, um
Kovariatenabhängigkeiten explizit zu modellieren. DieMethoden werden auf synthetischen
Datensätzen mit bekannten Kausalstrukturen, auf etablierten Benchmarks (IHDP, JOBS)
sowie auf realen Daten aus einer randomisierten kontrollierten Studie des PerPAIN Konsor-
tiums evaluiert. PerPAIN ist eine deutsche Forschungsinitiative zur Entwicklung personal-
isierter Therapien für chronischemuskuloskelettale Schmerzen. UnsereModelle übertreffen
nicht-strukturelle Baselines und erreichen niedrigere√εPEHE in datensparsamen Szenarien.
Bei größeren Datensätzen bleiben sie mit aktuellen Verfahren konkurrenzfähig. Die Anwen-
dung auf PerPAIN, in der psychologische Interventionen anhand individueller Schmerzpro-
file getestet werden, zeigt den praktischen Nutzen unserer Ansätze und übertrifft Clustering-
basierte Zuweisungsmethoden. Wesentliche Beiträge dieser Arbeit sind eine begutachtete
Publikation, Open-Source-Software sowie eineWebanwendung zur Patientenstratifizierung.
Diese verbinden theoretische Innovation mit praxisnahen Werkzeugen für personalisierte
Entscheidungen. Zukünftige Arbeiten sollten Zeitreihenmodelle einbeziehen, um dynamis-
che Anwendungen zu unterstützen, und die Rechenkosten senken, um die Skalierbarkeit zu
verbessern. Zudem ist die Entwicklung öffentlich zugänglicher Datensätze mit kausalen
Abhängigkeiten zwischen Merkmalen und Ergebnissen ein wichtiger Schritt zur besseren
Validierung und Weiterentwicklung GNN-basierter ITE-Methoden.
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Chapter 1

Introduction

1.1 Observational Studies and RCTs

Causal inference is essential in fields such as social science, medicine, and epidemiology
for understanding cause-and-effect relationships [4, 5]. Estimating the individual treatment
effect (ITE) is critical for personalizing treatment decisions and improving outcomes. ITE
measures the difference in outcomes for a given individual under treatment versus control
conditions, offering insights beyond population-level averages [6]. This can be estimated
using data from randomized controlled trials (RCTs) [7] or observational studies [8]. RCTs
assign participants to treatment or control groups at random, ensuring covariate balance
and minimizing confounding [9]. More complex designs, like that of the PerPain consor-
tium [10], combine randomization with stratification algorithms to personalize treatment.
While this approach aims to improve targeting, it introduces risks such as misclassification
or insufficient capture of relevant patient characteristics [11].

In contrast, observational studies lack randomization, which introduces potential biases
like confounding and selection bias [12]. To address this, causal inference methods such
as propensity score matching, inverse probability weighting, and covariate adjustment have
been developed to approximate RCT conditions [13, 14]. Modern methods go further by
modeling non-linear covariate-outcome relationships using machine learning techniques,
thus enhancing inference robustness from observational data [15]. While RCTs remain the
gold standard, they face limitations in cost, ethics, and scalability [16, 17]. Non-linearities
and small sample sizes further complicate analysis [18]. Observational studies, despite their
imperfections, offer a complementary approach when paired with advanced techniques to
recover individualized effects [19, 20].

1



2 Importance of ITE Estimation

1.2 Importance of ITE Estimation

ITE estimation enables personalized decision-making by identifying how specific individ-
uals respond to interventions. Unlike average treatment effect (ATE) estimates, which de-
scribe population-level trends, ITE highlights outcome heterogeneity, crucial in domains
like precision medicine, education, and policy design [6]. For instance, ITE can help deter-
mine which patients will benefit most from a therapy or which students will respond best to
a specific educational intervention.

Accurate ITE estimation is vital: errors can lead to ineffective treatments or wasted
resources. While RCTs establish causality through randomization, they often overlook
individual variation and face practical constraints [16]. Conversely, real-world observa-
tional data are abundant but require sophisticated techniques to account for confounding
and bias [13]. Recent advances in machine learning have addressed these challenges, though
traditional models often struggle with complex covariate dependencies. This motivates the
need for methods that can incorporate structural knowledge.

1.3 GNNs for ITE Estimation

Graph Neural Networks (GNNs) provide a compelling framework for leveraging relational
structures in data. Unlike standard neural networks, which treat inputs as independent,
GNNs process data represented as graphs, where nodes correspond to entities (e.g., co-
variates) and edges reflect relationships among them [21,22]. This makes them particularly
well-suited for modeling the intricate dependencies present in causal systems [23]. For
ITE estimation, GNNs can incorporate structural information from causal graphs, allowing
models to explicitly encode the influence pathways among variables. This capacity to ag-
gregate and propagate information across nodes offers a substantial advantage in settings
where treatment effects depend on complex interactions, such as in healthcare or policy
applications.

1.4 Objectives and Scope of the Thesis

This thesis advances ITE estimation by proposing GNN-based models that leverage causal
graph structures. Specifically, we introduce two novel architectures, GNN-TARnet and
GAT-TARnet, that extend the TARnet framework [24] by incorporating graph-based rea-
soning. These models aim to improve prediction accuracy, especially in data-scarce envi-
ronments, by capturing relational dependencies ignored by traditional methods [25]. This
work builds on our prior research published in IEEE Access [1], where we introduced GNN-
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TARnet and demonstrated its efficacy on benchmark and synthetic datasets. It also extends
the preprint [3], which surveys deep learning approaches for ITE estimation and proposes
automatic hyperparameter optimization strategies. These foundations are now contextual-
ized with theoretical analysis and real-world validation.

We investigate how GNNs embed causal relationships and support counterfactual rea-
soning, bridging structural causal models (SCMs) [26] with deep learning. Empirically, we
evaluate our models across benchmark datasets (IHDP, JOBS), synthetic data (SUM), and
real-world RCT data from the PerPain consortium [10]. Though focused on personalized
treatment, our findings generalize to broader applications requiring individualized decision-
making.

1.5 Hypothesis and Research Question

Hypothesis: Incorporating causal graph structures into GNN-based ITE estimation im-
proves predictive accuracy compared to models that do not leverage such structures, espe-
cially when training data is limited. GNNs reduce model complexity by explicitly modeling
interactions among covariates [27, 28].

Research Question: How does the integration of causal graph structures with GNNs af-
fect the accuracy of ITE estimation across datasets with varying data availability, compared
to traditional methods that ignore structural relationships? This question seeks to assess
whether our approach offers consistent benefits in both data-rich and data-scarce settings
and how it compares to clustering-based strategies in personalized treatment allocation [10].

1.6 Contributions

This thesis contributes to the field of ITE estimation through methodological innovation,
empirical validation, and practical application:

1. GNN-BasedMethods: WeproposeGNN-TARnet andGAT-TARnet, integrating graph
neural networks into TARnet to exploit relational dependencies among covariates for
more accurate ITE estimation.

2. Theoretical and Empirical Validation: We provide theoretical motivation within
the potential outcomes framework and validate our models on:

• Benchmark datasets (IHDP, JOBS),

• A synthetic dataset (SUM) with known graph structure,

• Real-world RCT data from the PerPain consortium [10].



4 Thesis Outline

3. Real-World Application: In collaboration with PerPain, we processed RCT data,
designed a clustering algorithm for treatment stratification, and compared treatment
allocation based on GNN-predicted ITEs versus clustering-based approaches.

4. Open-Source Tools: We released code and tools in a public CodeOcean capsule1,
including:

• Model implementations and evaluation scripts,

• Synthetic data generators with graph structures,

• A web application for patient clustering.

5. Published Work: Our research appears in a joural paper and a preprint:

• A. Sirazitdinov, M. Buchwald, V. Heuveline and J. Hesser, “Graph Neural Net-
works for Individual Treatment Effect Estimation,’’ in IEEE Access, vol. 12,
pp. 106884–106894, 2024, doi: 10.1109/ACCESS.2024.3437665.

• A. Sirazitdinov, M. Buchwald, J. Hesser, and V. Heuveline, “Review of Deep
Learning Methods for Individual Treatment Effect Estimation with Automatic
Hyperparameter Optimization,” December 2022.

1.7 Thesis Outline

This thesis is organized into several chapters to systematically present the development,
validation, and implications of our GNN-based method for ITE estimation. Below is an
outline of the structure:

Chapter 2: Background and Literature Review provides the foundational context
for this thesis. It begins by distinguishing correlation from causation and introduces core
concepts in causal inference, including ITE estimation and its associated challenges. The
chapter then discusses the identifiability assumptions necessary for causal inference and
explores classical andmodern machine learning techniques, including DNNs, VAEs, GANs,
and Transformers, used for ITE estimation. Structural tools such as BNs, SCMs, and GNNs
are introduced, highlighting their relevance in encoding and utilizing causal structures. The
role of the do-operator in modeling interventions is explained, followed by a discussion of
causal discovery algorithms for inferring DAGs from data. The chapter concludes with a
comprehensive review of existing methods for ITE estimation, including classical statistical
approaches, deep learning models, and meta-learners.

1https://codeocean.com/capsule/4645832/tree

https://codeocean.com/capsule/4645832/tree
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Chapter 3: Materials andMethods details the methodology proposed in this thesis for
ITE estimation using GNNs and Graph Attention Networks (GATs). The chapter begins by
formally defining the problem of ITE estimation in observational settings, introducing the
role of DAGs in modeling structural dependencies. It then elaborates on the architecture and
message-passing mechanisms of GNNs and GATs, including intervention modeling aligned
with the do-operator from structural causal models. The chapter introduces two novel ar-
chitectures, GNN-TARnet and GAT-TARnet, which integrate graph-based reasoning into
treatment-agnostic representation learning. To support implementation and experimenta-
tion, a custom Python library is presented, enabling training, evaluation, and hyperparameter
tuning. The chapter further describes four datasets: JOBS, the synthetic SUM dataset, and
the real-world PerPain dataset used for evaluation, detailing data generation, structure, and
relevance to causal inference. Finally, hyperparameter optimization strategies, including
Random Search, Hyperband, and Bayesian optimization, are explained and applied to both
the proposedmodels and thirteen baseline methods to ensure a fair performance comparison.

Chapter 4: Results evaluatesGNN-TARnet andGAT-TARnet across benchmark (IHDP,
JOBS), synthetic (SUM), and real-world (PerPain) datasets. It outlines implementation de-
tails and compares model performance to baseline methods using standard causal inference
metrics.

Chapter 5: Discussion analyzes the results, highlighting our contributions, such as
improved ITE estimation in data-scarce scenarios, and comparing our GNN-basedmethod to
state-of-the-art approaches. We discuss the potential of ourmethods to enhance personalized
treatment allocation, as well as their limitations, and offer directions for future research.

Chapter 6: Summary and Conclusion summarizes our work, reiterating the signifi-
cance of integrating GNNs with causal inference for ITE estimation. It recaps key findings
and contributions and concludes with reflections on the broader impact of this research in
healthcare and causal analysis.





Chapter 2

Background and Literature Review

2.1 Background

This section introduces the foundations of causal inference with a focus on ITE estimation.
It also discusses core assumptions, key challenges, and modern machine learning methods
such as deep neural networks, variational autoencoders, GANs, and Transformers. Struc-
tural approaches such as Bayesian networks, structural causal models, and graph neural
networks are also discussed, along with causal discovery techniques and intervention mod-
eling, laying the groundwork for the thesis’s GNN-based approach.

2.1.1 Correlation vs. Causation

The distinction between correlation and causation is fundamental in understanding relation-
ships between variables [29]. Correlation refers to a statistical association in which changes
in one variable are linked to changes in another [30]. However, this does not imply a cause-
and-effect relationship. In contrast, causation describes a direct connection where one vari-
able actively influences another, meaning that changes in the cause directly result in changes
in the effect [31]. Understanding this difference is critical for drawing accurate conclusions
and designing effective interventions [6].

The nature of the relationship between variables further distinguishes correlation from
causation. Correlation describes the strength and direction of a relationship between two
variables, which can be positive, negative, or nonexistent [32]. For example, taller peo-
ple tend to weigh more, illustrating a positive correlation. In contrast, causation implies
a directional influence, where one variable directly affects another [29]. For instance, ad-
ministering a vaccine reduces the risk of disease, demonstrating a causal relationship [33].
Beyond simple examples, consider education and income: higher education correlates with
higher income, but causation requires isolating education’s effect from confounders like so-

7
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cioeconomic background [34]. This distinction underscores the importance of discerning
whether a relationship is merely associative or truly causal.

The implications of correlation and causation differ significantly. Correlation indicates
a pattern or association between variables but does not provide evidence of an underlying
mechanism or explain why the relationship exists [30]. On the other hand, causation offers
actionable insights by identifying the mechanism through which one variable directly influ-
ences another [7]. This distinction is crucial for guiding decisions and developing effective
interventions based on a clear understanding of cause-and-effect relationships [35]. In pol-
icy, mistaking correlation (e.g., urban density and crime rates) for causation could lead to
misguided urban planning, whereas causal evidence supports targeted interventions [36].

One of the most frequent errors in interpreting data is assuming that correlation implies
causation [37]. Such assumptions can lead to erroneous conclusions and poor decision-
making. For example, consider the observation that ice cream sales and drowning incidents
both increase during the summer. While these two events are correlated, it would be in-
correct to conclude that eating ice cream causes drowning. Instead, a third variable, hot
weather, influences both and drives the observed relationship [12]. Similarly, a study might
find that regions with more hospitals have higher cancer rates, but this reflects population
density, not hospitals causing cancer [38]. These examples highlight the importance of con-
sidering external factors that might explain a correlation, avoiding ineffective or harmful
actions [39].

Confounders are variables that influence both the independent and dependent variables,
creating spurious associations [12]. For example, studies may observe that coffee drinkers
tend to live longer. While this correlation is evident, it may be driven by confounding fac-
tors such as socioeconomic status or health consciousness, which are related to both coffee
consumption and longevity [38]. To establish a causal relationship, it is essential to isolate
the effect of the variable of interest from these confounders. This can be achieved through
experimental designs such as RCTs [9], or through statistical techniques like propensity
score matching [13] and instrumental variables [40] in observational studies, ensuring ro-
bust causal inference [6].

Researchers use a variety of methods to distinguish correlation from causation, ranging
from experimental designs to advanced observational techniques [6]. Correlation is typically
measured using statistical tools such as Pearson’s correlation coefficient or Spearman’s rank
correlation [32], quantifying the strength and direction of relationships but not causality
[30]. Causal methods, like regression discontinuity [41] or difference-in-differences [42],
leverage natural experiments to infer causation, complementing RCTs and offering practical
alternatives when randomization is infeasible.
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2.1.2 Challenges in ITE Estimation

ITE estimation is a fundamental task in causal inference, aiming to determine the difference
in outcomes for a given individual under different treatment conditions [7]. The goal is to
compute the potential outcomes as:

ITE = E[Y (1)− Y (0)|X], (2.1)

where Y (1) and Y (0) are potential outcomes under treatment and control, and X denotes
covariates. Despite advancements [29], ITE estimation faces challenges in data quality,
model specification, bias, and interpretability.

The fundamental problem of causal inference is the inability to observe both Y (1) and
Y (0) for any individual [31], requiring statistical inference of counterfactuals with inherent
uncertainty. RCTs mitigate this via randomization, but observational studies face selection
bias and confounding [6]. Selection bias arises when treatment assignment correlates with
outcome-affecting covariates, while confounding occurs with unmeasured factors influenc-
ing both treatment and outcome [12]. Methods like propensity score matching [13], inverse
probability weighting [14], and deep latent confounder models [43] address these, but un-
measured confounding persists as a challenge, necessitating sensitivity analyses [39].

Data quality issues such as missing data, measurement errors, and small sample sizes
hinder ITE estimation [20]. High-dimensional covariate spaces exacerbate overfitting and
sparsity [18], while covariate shift misaligns training and test distributions [44]. Modern
solutions include domain adaptation [45] and transfer learning [46], enhancing generaliz-
ability. The focus of ITE on heterogeneity contrasts with the uniformity of ATE [47], defined
as:

ATE = E[Y (1)− Y (0)], (2.2)

requiring subgroup analysis [25], though overfitting risks remain [11].

Evaluation of ITE results is complex without ground truth counterfactuals [48]. Syn-
thetic datasets [19], semi-synthetic approaches, and RCT benchmarks assess performance
via metrics like PEHE [49]. Model misspecification in traditional methods (e.g., linear
regression [50]) biases estimates, while deep learning offers flexibility [24] but demands
computational resources and tuning [51]. Interpretability, crucial in high-stakes fields like
healthcare, is limited in complex models, prompting advances in explainable artificial intel-
ligence (AI) [52, 53]. Fairness in ITE estimation, critical for equitable outcomes, requires
bias mitigation techniques [54], yet defining fairness remains context-dependent [55].
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2.1.3 Identifiability Assumptions

The potential outcomes framework, as articulated by Rubin [56], provides a foundational
structure for causal inference by defining theoretical outcomes for an individual under dis-
tinct scenarios: one where the individual receives a specific treatment and another where
they do not. This framework delineates three key concepts: actual outcomes, which are the
observed results for an individual given the treatment they received; potential outcomes,
which refer to the hypothetical results under each possible treatment; and counterfactual
outcomes, the unobserved results corresponding to the treatment not received, meaning the
opposite of the actual scenario. This distinction is critical because it underscores the inherent
challenge in causal inference: we can observe only one outcome for any given individual,
leaving the counterfactual forever hypothetical.

To enable unbiased and generalizable estimation of ITE from observational studies,
rather than randomized experiments, a set of critical identifiability assumptions must be
satisfied [57]. These assumptions, consistency, exchangeability, positivity, the Stable Unit
Treatment Value Assumption (SUTVA), and unconfoundness bridge the gap between the-
oretical causal effects and empirical estimation, allowing researchers to infer causal rela-
tionships from non-experimental data. Each assumption addresses a specific aspect of the
data-generating process and imposes constraints that, if violated, could undermine the va-
lidity of ITE estimates.

The first assumption, consistency [57], posits that the potential outcome for an individual
under the treatment they actually received aligns exactly with their observed outcome. In
other words, if a patient receives a particular treatment, the outcome observed for that patient
is precisely the potential outcome associated with that treatment. This assumption ensures
that the treatment effect is well-defined and eliminates ambiguity arising from variations in
how a treatment might be applied or interpreted. For instance, consistency would be violated
if the same treatment label (e.g., “surgery”) encompassed meaningfully different procedures
across individuals, leading to discrepancies between potential and observed outcomes.

The second assumption, exchangeability, asserts that the treatment is sufficiently well-
defined and uniform such that its application does not introduce hidden variation across indi-
viduals or contexts. Often interpreted as a form of conditional independence, exchangeabil-
ity implies that, conditional on observed covariates, the distribution of potential outcomes
is the same across treated and untreated groups. This assumption is essential for ruling out
unobserved confounding factors that could systematically differ between treatment groups,
thereby ensuring that comparisons between treated and untreated individuals are fair and
meaningful.

Next, the positivity assumption requires that every individual in the population of interest
has a non-zero probability of receiving each possible treatment under consideration [58].
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This condition ensures that there are no subgroups defined by observed covariates for which
treatment assignment is deterministic (i.e., always or never treated). For example, if a certain
demographic group is systematically excluded from receiving a treatment due to policy or
practice, positivity would be violated, rendering ITE estimation impossible for that group.
Positivity thus supports the generalizability of causal estimates across the population and
prevents extrapolation beyond the support of the data.

The SUTVA combines two interrelated principles: consistency (as described above) and
the absence of interference between units [59]. The “no interference” component stipulates
that the potential outcomes for one individual are unaffected by the treatment assignments
of others. For instance, in a study of a contagious disease treatment, if the treatment status
of one patient (e.g., vaccination) influences the infection risk of another, SUTVA would
be violated. Similarly, in social interventions, spillover effects, where the treatment of one
person indirectly affects the outcome of another, can invalidate this assumption. By assum-
ing both consistency and no interference, SUTVA ensures that the treatment effect for an
individual can be isolated and attributed solely to their own treatment status.

Finally, the assumption of unconfoundness, particularly crucial in observational data
settings, asserts that there are no unobserved variables that simultaneously influence both
the treatment assignment and the outcome, beyond those already accounted for in the ob-
served covariates. Also known as ignorability, this assumption allows researchers to treat
the observed data as if it were generated from a randomized experiment, conditional on
the covariates. For example, if an unobserved factor like socioeconomic status affects both
a patient’s likelihood of receiving a treatment and their health outcome, and this factor is
not included in the model, unconfoundness would fail, leading to biased ITE estimates.
Achieving unconfoundness in practice often requires careful selection of covariates based
on domain knowledge and causal diagrams, such as those proposed by Pearl [57].

Together, these assumptions form the theoretical backbone of ITE estimation from ob-
servational data. While they enable causal inference in the absence of randomization, their
validity is not directly testable and must be justified based on the study design, data col-
lection process, and substantive knowledge of the domain. Violations of any one assump-
tion, whether due to inconsistent treatment definitions, hidden confounders, or interference,
can introduce bias or limit the scope of the conclusions drawn from the analysis. As such,
sensitivity analyses and robustness checks are often employed to assess the plausibility of
these assumptions in a given context, ensuring that ITE estimates remain credible and inter-
pretable.
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2.1.4 Multilayer Perceptrons

Multilayer Perceptrons (MLPs) are multi-layer architectures that learn hierarchical feature
representations from raw data, forming a cornerstone of modern machine learning [51]. An
example of MLP with three hidden layers is illustrated in Figure 2.1. The MLP processes
data through interconnected nodes, where each layer applies a linear transformation fol-
lowed by a non-linear activation σ, such as ReLU

σ(x) = max(0, x). (2.3)

Mathematically, for an input x ∈ Rd at the input layer, a hidden layer l + 1 computes

h(l+1) = σ(W (l)h(l) + b(l)), (2.4)

where h(l) is the output of the previous layer,W (l) and b(l) are learnable weights and biases,
and σ is the activation function. This process propagates through h1, h2, and h3 to produce
the final outputs at the output layer. Training optimizes a loss function, such as the Mean
Squared Error (MSE):

L =
1

n

n∑
i=1

(yi − ŷi)2, (2.5)

using backpropagation and gradient descent [60], where yi is the real outcome and ŷi is the
predicted outcome.

In causal inference, MLPs excel at modeling complex, non-linear relationships between
covariates X , treatments T , and outcomes Y . Methods like TARnet [24] leverage MLPs
with two branches to estimate potential outcomes (E[Y 1|X] and E[Y 0|X]) for ITE estima-
tion.

2.1.5 Generative Adversarial Networks and Variational Autoencoders

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [61], are a class
of generative models that learn to produce realistic data through a competitive framework.
GANs consist of two neural networks: a generator G, which synthesizes data from random
noise z ∼ p(z), and a discriminator D, which distinguishes real data x ∼ pdata(x) from
generated samplesG(z). These networks are trained adversarially via a minimax objective:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (2.6)

The discriminator maximizes its classification accuracy, while the generator minimizes the
discriminator’s ability to detect fakes, converging when G approximates the true data dis-
tribution.
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Figure 2.1. The example MLP comprises an input layer i with inputs labeled “Input 1”,
“Input 2”, …, “Input n”, followed by three hidden layers h1, h2, and h3, each containing
a predefined number of nodes, and an output layer o with outputs labeled “Output 1”, …,
“Output n”. The dots between the hidden units indicate the potential for additional hidden
units.

Variational Autoencoders (VAEs), proposed by Kingma and Welling [62], offer an al-
ternative generative approach by learning a probabilistic latent space. VAEs consist of an
encoder, which maps input x to a latent distribution q(z|x) (typically Gaussian, parame-
terized by mean µ and variance σ2), and a decoder, which reconstructs x from samples
z ∼ q(z|x). Training optimizes a variational lower bound:

L = Ez∼q(z|x)[log p(x|z)]−DKL(q(z|x)||p(z)), (2.7)

balancing reconstruction accuracy and regularization via the KL-divergence to a prior p(z)
(e.g.,N (0, 1)).Unlike GANs, VAEs provide a structured and interpretable latent space, mak-
ing them particularly useful for tasks like data imputation and distribution modeling. In
causal inference, VAEs have been extended to models such as CEVAE [43], which uses the
VAE framework to infer latent confounders and thereby improve estimates of individual
treatment effects in the presence of unobserved confounding.

2.1.6 Transformers

Transformers, introduced by Vaswani et al. [63], are attention-based architectures designed
to model long-range dependencies, initially for natural language processing (NLP). Un-
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like recurrent neural networks (RNNs), Transformers process inputs in parallel, using self-
attention to weigh element importance. Given an input matrix X ∈ Rn×d, where n is the
sequence length and d is the feature dimension, the model computes queries Q = XWQ,
keysK = XWK , and values V = XW V through learned linear projections. Self-attention
is then computed as

Attention(Q,K, V ) = softmax(
QK⊤
√
dk

)V, (2.8)

where dk is the key dimension. Multi-head attention enhances this by applying attention
across multiple subspaces, improving expressiveness and scalability.

Beyond NLP, the ability of Transformers to capture contextual relationships has influ-
enced graph learning, notably through Graph Attention Networks (GATs) [64], which adapt
self-attention to weight node neighbors dynamically. In causal inference, Transformers hold
potential for modeling temporal or relational confounders, though their direct use remains
limited compared to MLPs. Our work draws inspiration from this paradigm: the exten-
sion of GNN-TARnet, GAT-TARnet (Section 3.1.5), incorporates GAT layers to enhance
ITE estimation by adaptively weighting features within causal DAGs. While Transformers
themselves are not applied here, their attention mechanism informs our approach, bridging
MLPs’ flexibility with graph structure awareness.

2.1.7 Integral Probability Metrics

Integral Probability Metrics (IPMs) quantify differences between probability distributions
and have become valuable in causal inference for aligning treated and untreated groups,
effectively mimicking conditions of RCTs. Commonly used IPMs include MaximumMean
Discrepancy Squared (MMDSQ) and Wasserstein distance.

The MMDSQ measures the squared difference between expectations of distributions p
and q in a reproducing kernel Hilbert space (RKHS):

MMDSQ(p, q) = ∥Ex∼p[ϕ(x)]− Ey∼q[ϕ(y)]∥2H , (2.9)

where ϕ is a feature mapping into the RKHS, associated with a kernel function such as the
Gaussian kernel [65].

The Wasserstein distance, also known as the Earth Mover’s Distance, quantifies the
minimal cost required to transform one probability distribution into another by optimally
transporting mass between them. In optimal transport theory [66], the first-order Wasser-
stein distance between probability measures p and q, defined on a metric space X ⊆ Rd, is
formally defined as:

W (p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ
[
∥x− y∥

]
, (2.10)
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where Π(p, q) denotes the set of all joint distributions (couplings) with marginals p and q,
and ∥ · ∥ typically refers to the Euclidean norm. The marginals p and q are obtained by
integrating the joint distribution γ(x, y):

p(x) =

∫
γ(x, y) dy, q(y) =

∫
γ(x, y) dx. (2.11)

2.1.8 Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models that encode the joint probabil-
ity distribution of a set of variables using a directed acyclic graph (DAG). They represent
statistical relationships, whether causal or associative, through directed edges and enable
efficient probabilistic inference by factorizing the joint distribution into local conditional
probability distributions (CPDs). Widely applied in domains such as medical diagnosis,
fraud detection, and decision support systems, BNs offer a structured approach to reasoning
under uncertainty [67]. Formally, a Bayesian Network is defined by a set of random vari-
ablesX1, X2, ..., Xn, each represented as a node in a DAGG = (V,E), where edges denote
dependency relations. Each node Xi is associated with a conditional probability function
P (Xi|pai), where pai are its parent nodes. This factorization allows BNs to model complex
probability distributions efficiently, avoiding the need to store an exponential number of
parameters. A key strength of BNs is their ability to perform probabilistic reasoning based
on partial observations. Using Bayes’ theorem:

P (H|E) = P (E|H)P (H)

P (E)
,

where H is the hypothesis and E is the evidence, posterior probabilities can be computed
given observed data. For small or tree-structured BNs, exact inference methods like variable
elimination or belief propagation are feasible [67]. However, inference in general BNs is
NP-hard, especially for large, densely connected graphs, necessitating approximate meth-
ods such as Monte Carlo techniques, Markov Chain Monte Carlo (MCMC), or variational
inference for scalability in high-dimensional settings [68].

BNs excel at answering associational queries, such as predicting the probability of a
disease given symptoms, but they do not inherently distinguish between correlation and
causation. This limits their ability to address causal queries, such as estimating treatment
effects, without additional frameworks like those introduced in SCMs, which are discussed
in the next subsection. Learning BN structures from observational data poses challenges:
multiple DAGs can represent the same probabilistic relationships, latent confounders may
introduce biases, and the combinatorial search space grows rapidly with high-dimensional
data. Structure learning employs constraint-based methods (e.g., the PC Algorithm [69]),
score-basedmethods (e.g., Bayesian Information Criterion, BIC [70]), or hybrid approaches.
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2.1.9 Structural Causal Models

Structural Causal Models (SCMs), introduced by Judea Pearl [29], provide a mathematical
framework for representing and reasoning about causal relationships, building on proba-
bilistic foundations like those of BNs introduced in the previous section. Unlike BNs, which
prioritize probabilistic dependencies [68], SCMs explicitly model causal mechanisms. An
SCM comprises endogenous variables X = {X1, X2, . . . , Xn} (observed factors), exoge-
nous variables U (latent sources of variation), and structural equations:

Xi = fi(pai, Ui), (2.12)

where pai are the parent nodes of Xi in a causal DAG, and fi is a function encoding causal
mechanisms [29]. A probability distribution P (U) over exogenous variables introduces
uncertainty, aligning with BNs’ probabilistic factorization but emphasizing causality. The
DAG structure formalizes conditional independence assumptions, enabling precise causal
analysis [69].

SCMs face practical challenges: specifying the causal graph requires domain knowl-
edge and is error-prone [35], unmeasured confounders can bias estimates [12], andmodeling
complex systems is computationally intensive [71]. Unlike data-driven methods, traditional
SCMs rely on predefined relationships, limiting adaptability to high-dimensional data [24].
However, their ability to handle interventions (e.g., via the do(·) operator) distinguishes
them from BNs, offering a framework for causal queries central to our ITE estimation. Re-
cent research integrates SCMs with GNNs [28], enabling data-driven causal discovery and
scalable inference via message-passing [27,72]. This hybrid approach enhances SCMs’ ap-
plicability in healthcare (e.g., personalized treatment), economics, and social sciences [73],
directly informing our method’s causal structure.

2.1.10 Graph Neural Networks

GNNs have emerged as powerful tools for analyzing graph-structured data, evolving from
foundational models to advanced applications, as reviewed by Wu et al. [23]. Early GNNs,
such as recurrent models by Scarselli et al. [21], paved the way for tasks like traffic predic-
tion [74, 75] and scene graph generation [76], while spatial methods like GCN by Kipf and
Welling [72] scaled applications to online shopping recommendations [77] and drug dis-
covery [78]. Modern variants, including GATs [64] and GraphSAGE [79], handle diverse
graphs [23,80]. Unlike BNs, which focus on probabilistic inference, or SCMs, which model
causality, GNNs excel at learning representations from graph data, often prioritizing corre-
lations over causality [81], except in works like Zhai et al.’s causal advertising model [82].

Efforts to infer causal effects with structural information bridge SCMs and GNNs. Zeče-
vić et al. [28] showed that interventions on GNNs align with interventions on SCMs, a
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principle we adapt for ITE estimation, enhancing data representation over BN-style associ-
ational models. Wein et al. [83] predicted brain dynamics, and Chu et al. [84] estimated
treatment effects, both leveraging subject-related graphs, unlike our intra-subject focus.
Non-convolutional method by Parafita et al. [85] contrasts with our convolutional GNN
approach.

2.1.11 The Do-Operator and Causal Interventions

Causal inference, as we explore in this thesis, seeks to reveal cause-and-effect relationships
beyond statistical patterns, a goal formalized by do-operator introduced by Judea Pearl
within SCMs [29]. The do-operator, written as do(X = x), represents an intervention
that fixes a variable X to a value x, breaking its natural dependencies in the causal graph.
This lets us estimate the causal effect of X on an outcome Y , distinct from observational
conditioning. While P (Y |X = x) reflects correlations, P (Y |do(X = x)) captures the
effect of deliberately setting X , a key step in ITE estimation.

The strength of the do-operator is its handling of confounding, a major hurdle in causal
inference. Imagine a DAG where a confounder Z influences both treatment T and outcome
Y (i.e., Z → T and Z → Y ), alongside T → Y . The observational P (Y |T = t) blends T ’s
causal effect withZ’s confounding impact. Applying the do-operator,P (Y |do(T = t)), cuts
the Z → T edge, isolating T ’s effect on Y . This is formalized by the backdoor adjustment:

P (Y |do(T = t)) =
∑
z

P (Y |T = t, Z = z)P (Z = z), (2.13)

where summing over Z corrects for confounding, assuming Z meets the backdoor criterion
[29]. This ensures causal effects are identifiable, vital for accurate ITE estimation [6].

In ITE estimation, the do-operator supports the potential outcomes framework, central
to our work [56]. The do-operator helps by modeling interventions on T , letting us estimate
P (Y |do(T = 1)) and P (Y |do(T = 0)) from the graph. In our GNN approach, this means
altering the graph structure. for example removing edges into T during node updates, to
predict these distributions. The do-operator shines in both randomized controlled trials and
observational data. In RCTs, randomization mimics do(T = t) by eliminating confounding,
making P (Y |T = t) = P (Y |do(T = t)) [9]. In observational studies, without such control,
it guides methods like propensity score matching [13] or our GNN framework. Its role in
GNNs, explored in Section 3.1.4.

2.1.12 Causal Discovery Techniques

Bayesian Networks, SCMs, and GNNs all rely on connectivity information to model rela-
tionships between variables, making the acquisition of such structures a critical step in causal



18 Background

inference. This process, known as causal discovery, seeks to infer the underlying DAG that
represents causal relationships from observational data. Several widely used algorithms
have been developed to address this challenge, each with distinct assumptions and method-
ologies. Notable among these are the Linear Non-Gaussian AcyclicModel (LiNGAM) [86],
the Peter-Clark (PC) algorithm [69], and the Greedy Equivalence Search (GES) [87]. These
techniques form the backbone of many causal inference frameworks, including those em-
ployed in our GNN-based ITE estimation approach. For a comprehensive review of these
and other methods, see Glymour et al. [73]. Below, we detail each method, highlighting
their mechanisms, assumptions, and relevance to our work.

LiNGAM [86] is a constraint-based approach that leverages the non-Gaussianity of noise
distributions to identify causal structures. LiNGAM assumes that the data-generating pro-
cess follows a linear model, where each variable Xi is a linear combination of its parent
variables plus an independent, non-Gaussian error term:

Xi =
∑
j∈pai

aijXj + ϵi, (2.14)

where pai denotes the parents ofXi, aij are coefficients, and ϵi is a non-Gaussian noise term
with zero mean. Unlike traditional Gaussian models, where causal directionality is uniden-
tifiable due to symmetry, LiNGAM exploits the asymmetry of non-Gaussian distributions
(e.g., via higher-order moments like skewness or kurtosis) to determine the direction of
edges. The algorithm employs Independent Component Analysis to separate the observed
variables into independent sources, reconstructing the DAG by estimating the mixing matrix
A. LiNGAM’s strength lies in its ability to provide a unique DAG under the non-Gaussian
assumption, making it particularly useful for datasets where noise deviates from normality.
However, its reliance on linearity and non-Gaussianity limits its applicability to nonlinear
systems or datasets with Gaussian noise, necessitating validation against alternativemethods
in practice.

PC algorithm [69], named after its developers Peter Spirtes and Clark Glymour, is an-
other constraint-based method that infers causal structures by testing conditional indepen-
dence among variables. It begins with a fully connected undirected graph and iteratively re-
moves edges based on statistical tests (e.g., Fisher’s z-test for continuous data or chi-squared
tests for discrete data) that identify when two variables Xi and Xj are independent given
a conditioning set S. Formally, if Xi ⊥ Xj|S, the edge between Xi and Xj is removed.
Once the skeleton (undirected graph) is established, the algorithm orients edges using rules
such as the collider rule: if Xi → Xk ← Xj and Xi and Xj are not adjacent, Xk is a
collider, fixing the directionality. The PC algorithm assumes causal faithfulness, meaning
all independencies in the data reflect the DAG structure, and causal sufficiency, meaning
no unmeasured confounders exist. Its computational efficiency and flexibility with both
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continuous and categorical data make it a cornerstone of causal discovery. However, its
sensitivity to sample size and test accuracy can lead to spurious edges or incomplete graphs,
particularly in small or noisy datasets, requiring stability techniques like multiple runs or
bootstrapping [73].

GES [87] adopts a score-based approach, optimizing a goodness-of-fit score to search for
the DAG that best explains the data. GES uses a two-phase greedy search: the forward phase
adds edges to maximize a score, e.g., Bayesian Information Criterion (BIC), starting from
an empty graph, while the backward phase removes edges to refine the structure, converging
to a local optimum within the Markov equivalence class of DAGs. The BIC, for instance,
balances model fit and complexity:

BIC = −2 ln(L) + k ln(n), (2.15)

where L is the likelihood of the data given the model, k is the number of parameters, and
n is the sample size. Unlike constraint-based methods, GES does not rely on conditional
independence tests, making it robust to statistical errors in small samples. It assumes the
data is generated by a DAG and that the scoring function is consistent, meaning it identi-
fies the true structure as n → ∞. GES excels in settings where a probabilistic model, for
example, BN, is specified, offering a globally optimized structure rather than the locally
constrained output of PC or LiNGAM. However, its computational complexity grows with
the number of variables, and it may struggle with high-dimensional datasets unless paired
with dimensionality reduction techniques.

These causal discovery techniques underpin the connectivity information used in BNs,
SCMs, and GNNs. BNs model joint probability distributions over variables, with edges rep-
resenting conditional dependencies inferred via methods like PC or GES [29]. SCMs extend
this by incorporating causal mechanisms, often requiring DAGs from discovery to simulate
interventions like the do-operator, critical for ITE estimation [73]. GNNs, as employed in
our GNN-TARnet and GAT-TARnet, leverage these DAGs to propagate information across
nodes, enhancing predictive power by encoding structural relationships [23]. In our work,
we use all tree methods to discover the causal graphs if they are missing.

2.2 Review of ITE Estimation Methods

Papers were sourced via Google Scholar using keywords “Causal Inference” and “Individual
Treatment Effect,” supplemented by Li et al.’s review [15].
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2.2.1 Classical Methods for Causal Effect Estimation

Estimating causal effects, particularly the ITE for individual i defined as

ITEi = Yi(1)− Yi(0), (2.16)

where Yi(1) and Yi(0) are potential outcomes under treatment and controll, is a cornerstone
of causal inference, especially in observational studies where RCT data are unavailable [7].
Unlike RCTs, which ensure random treatment assignment to eliminate confounding, obser-
vational studies require methods to adjust for biases introduced by non-random treatment
allocation. Classical approaches, rooted in the potential outcomes framework, include re-
gression adjustment (notably linear regression), matching, propensity score techniques, and
forest-based methods like Random Forests and Causal Forests. These methods operate on
observed data (Xi, Ti, Yi), whereXi are covariates, Ti is the binary treatment (1 for treated,
0 for control), and Yi is the observed outcome, aiming to balance covariates and estimate
ITE [6].

Regression adjustment, with linear regression as its simplest form, models the outcome
Y as a function of treatment and covariates. The linear model is typically:

Y = β0 + β1T + β2X1 + · · ·+ βp+1Xp + ϵ,

where β0 is the intercept, β1 estimates the average treatment effect (ATE), β2, . . . , βp+1 ad-
just for confounding covariates, and ϵ ∼ N(0, σ2) is random error [88]. ITE is derived
as ˆITEi = Ŷi(1) − Ŷi(0) = β̂1, with counterfactuals Ŷi(1) = β̂0 + β̂1 + β̂2Xi1 + · · ·
and Ŷi(0) = β̂0 + β̂2Xi1 + · · · , assuming a constant effect across individuals [6]. This
method excels in RCTs or settings with fully observed confounders and linear relationships,
offering interpretability and computational efficiency. However, its reliance on correct
model specification (linearity, homoscedasticity) and the absence of unmeasured confound-
ing (Y (0), Y (1) ⊥ T |X) often fails in observational data with nonlinear effects, interac-
tions, or high-dimensional covariates, risking bias and overfitting [12, 18].

Matching methods counter confounding by pairing each treated individual (Ti = 1) with
an untreated counterpart (Tj = 0) based on covariate similarity, using metrics like Euclidean
or Mahalanobis distance on X [89]. ITE is estimated as ˆITEi = Yi − Yj for matched
pairs, averaging over multiple matches if applicable. By approximating RCT-like balance,
matching reduces bias but requires sufficient overlap (positivity: 0 < P (T = 1|X) <

1) and precise covariate measurement. Variants like coarsened exact matching (CEM) bin
covariates for robustness [90]. Limitations arise when matches are scarce or unmeasured
confounders persist, undermining causal validity [8].

Propensity score methods estimate g(X) = P (T = 1|X), often via logistic regression,
and use it for matching, stratification, or inverse probability of treatment weighting (IPTW)
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to balance groups [13]. IPTW estimates ITE as:

ˆITEi =
TiYi
g(Xi)

− (1− Ti)Yi
1− g(Xi)

,

assuming exchangeability, positivity, and consistency [6]. This approach simplifies high-
dimensional covariate adjustment but shares matching’s vulnerabilities to unmeasured con-
founding and positivity violations, where extreme g(X) values destabilize weights [91].

To overcome rigidity of the linear regression, forest-based methods employ ensemble
learning for flexibility. Random Forests (RF), developed by Breiman [92], build multiple
decision trees on bootstrapped samples, splitting on random feature subsets. For ITE, RF
fits separate models for treated and control groups (T-Learner [93]), predicting Ŷi(1) and
Ŷi(0) to compute ˆITEi = Ŷi(1)− Ŷi(0). RF captures nonlinearities (e.g., Y = X2

1T +X2)
and interactions, reducing overfitting via averaging [18]. However, it lacks native causal
adjustment, relying on external balancing (e.g., propensity scores), which may falter with
strong confounding [13].

Causal Forests (CF), advanced by Wager and Athey [25], refine RF for heterogeneous
treatment effects. CF splits trees to maximize treatment effect variance within leaves, esti-
mating ˆITEi as:

ˆITEi =
1

|LT |
∑
j∈LT

Yj −
1

|LC |
∑
j∈LC

Yj,

where LT and LC are treated and control units in leaf L containing i. “Honest” splitting,
which separates tree-building and estimation samples, reduces bias, and CF offers confi-
dence intervals via asymptotic normality [25]. CF excels at ITE heterogeneity and high-
dimensional data but assumes unconfoundedness and positivity, with computational com-
plexity rising in sparse or noisy settings [94]. Recent advances, like Bayesian Additive
Regression Trees (BART) [95], enhance flexibility and uncertainty quantification [19].

hese classical methods, including regression adjustment, matching, propensity scores,
and forest-based approaches, provide robust baselines for causal effect estimation in con-
trolled, low-dimensional settings. Yet, they can struggle with structural covariate dependen-
cies (e.g., X1 → X2 → Y ), limitations our GNN-based approach addresses by encoding
DAG relationships.

2.2.2 Deep Learning Methods for ITE Estimation

Most of the deep learning methods for ITE estimation can be categorized into three primary
classes, as outlined in the comprehensive review by Li et al. [15]. These classes include
representation-based methods, covariate-confounding learning methods, and GAN-based
methods for counterfactual generation. In addition to these, we categorize meta-learners
separately due to their distinct approach andmethodological differences, which diverge from
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the specialized frameworks of the other three classes. Each category reflects a unique strat-
egy for addressing the core challenge of ITE estimation, namely, inferring causal effects at
the individual level from observational or experimental data, while addressing issues such
as confounding, distributional imbalance, and counterfactual prediction.

Representation-based methods are among the most widely used approaches for ITE es-
timation, making this a dynamic and active research area with frequent advancements and a
steady stream of new publications. Thesemethods are termed “representation-base” because
they transform the original covariates, which describe individuals or units in the dataset,
into a hidden representation space, effectively re-encoding the information into a new, of-
ten lower-dimensional form. This transformation aims to distill the most causally relevant
aspects of the data while filtering out noise or irrelevant variation. The distinguishing fea-
ture of these methods lies in how they manipulate features within this hidden representation
space to enable accurate and robust treatment effect estimation.

Some representation-based methods, such as TARNet [24], adopt a straightforward ap-
proach by constructing a shared neural network architecture for both treated and untreated
groups without explicitly altering the hidden representation beyond this structural design.
In contrast, other methods prioritize minimizing the discrepancy between the distributions
of treated and untreated groups within the representation space, thereby approximating the
balance achieved in a RCT. This balancing act reduces bias due to covariate imbalance and
enhances the reliability of causal inferences. Notable examples of such methods include
BNN (Balancing Neural Network) [48], which uses balanced representations to adjust for
confounding; DCN-PD [96], a deep counterfactual network with propensity dropout; CFR
(Counterfactual Regression) [24], which enforces domain-invariant representations; SITE
[97], focusing on sufficient representation learning; ACE [98], an adaptive causal estimator;
DragonNet [99], which integrates treatment propensity into the architecture; BWCFR [100],
a balanced Wasserstein CFR variant; CFR-Weight [101], which emphasizes generalization
across domains; and CITE [102], leveraging contrastive learning for improved representa-
tions. Alternatively, methods like DKLITE [49] take a different tack by clustering factual
data around counterfactual representations, using kernel-based techniques to enhance the es-
timation of causal effects. This diversity within the representation-based class underscores
its flexibility and ongoing evolution as researchers refine techniques to address specific
challenges in ITE estimation.

GAN-based methods, as their name suggests, harness the power of GANs to either gen-
erate counterfactual outcomes or balance distributions within the latent space, offering a
data-driven solution to the problem of unobserved counterfactuals. In this framework, a gen-
erator learns to produce realistic counterfactuals, representing what would have happened
under an alternative treatment, while a discriminator evaluates their plausibility, creating an
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adversarial training dynamic that refines the model’s predictions. This approach is partic-
ularly advantageous in settings with complex or high-dimensional data, where traditional
methods may struggle to model counterfactuals effectively. Prominent examples include
GANITE [103], which generates individualized treatment effects directly; ABCEI [104],
an adversarial balancing method for causal effect inference; CETransformer [105], which
integrates transformer architectures with GANs for enhanced counterfactual modeling; and
CBRE [106], a cycle-consistent approach that ensures coherence between factual and coun-
terfactual predictions. By simulating unobserved scenarios, GAN-based methods provide a
powerful tool for ITE estimation, though their reliance on adversarial training can introduce
challenges related to stability and computational complexity.

Covariate-confounding learning methods focus on explicitly addressing the role of con-
founding variables, which are covariates that influence both treatment assignment and out-
comes, within observational data. These methods aim to disentangle true causal effects
from spurious correlations by modeling latent variables or hidden confounders that might
otherwise bias the estimation process. For instance, CEVAE (Causal Effect Variational Au-
toencoder) [43] employs a variational approach to infer latent confounders from proxy vari-
ables, while TEDVAE [107] extends this idea to treatment effect estimation with disentan-
gled representations. Other methods, such as DerCFR [108], distinguish confounders from
non-confounders by learning deconfounded representations tailored to causal inference. Al-
ternatively, approaches like DONUT (Deconfounded Neural Treatment) [109] enforce or-
thogonality constraints between the outcomes and treatment assignment, ensuring that the
model isolates the treatment’s direct effect. This class of methods is particularly critical in
real-world settings where randomized experiments are infeasible, and confounding poses a
persistent threat to valid inference.

Meta-learners [93] constitute a general framework for estimating potential outcomes,
that is, what would happen under different treatment conditions, using data associated with
a treatment. The term “general” reflects their flexibility, as they can incorporate virtually
any machine learning algorithm as a base learner at their core, adapting these models to
the task of ITE estimation. This adaptability distinguishes meta-learners from the more
specialized approaches of the other classes. Key examples include the S-learner [93], which
uses a single model to predict outcomes for all treatment conditions; the T-learner [93],
which trains separate models for treated and untreated groups; the X-learner [93], which
builds on the T-learner by incorporating propensity scores and refining estimates in a two-
stage process; and the R-learner [110], which reframes ITE estimation as a residual learning
problem to improve robustness. By leveraging pre-existing algorithms and tailoring them
to causal inference, meta-learners offer a practical and widely applicable solution, though
their performance often depends heavily on the choice and quality of the base learners.
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The following sections detail the key features and drawbacks of these methods, orga-
nized by their category and year of development. This structure provides a chronological
perspective on advancements in the field, tracing the evolution of ITE estimation techniques
from early foundational work to cutting-edge innovations. By highlighting methodological
breakthroughs alongside inherent limitations, such as computational demands, assumptions
about data distributions, or sensitivity to model specification, this organization aims to offer
a balanced and comprehensive overview of the state of the art in ITE estimation.

2.2.3 Representation-based Methods

One of the earliest methods leveraging deep learning for representation learning in counter-
factual inference was BNN, introduced in June 2016 by Johansson et al. [48]. In this work,
the authors conceptualized the causal inference problem as a domain adaptation task, aiming
to minimize the distributional discrepancy between treated and untreated groups to achieve
balanced representations. The proposed model employed a fully connected neural network
where the initial layers transformed input data into a latent representation space. These rep-
resentations, concatenated with the treatment assignment, were subsequently used to predict
the factual outcomes. The loss function comprised two components: a term quantifying the
discrepancy between the treated and untreated distributions and the MSE between the ob-
served and predicted outcomes. A notable strength of this approach was its ability to jointly
optimize representation learning and outcome prediction. However, a limitation arose from
the model design, which used a single branch for predicting outcomes for both treated and
untreated groups. Since the treatment assignment is merely concatenated with the latent rep-
resentation, there existed a risk that themodel might not effectively incorporate the treatment
assignment during outcome prediction.

In June 2017, Alaa et al. [96] proposed the Deep Counterfactual Network with Propen-
sity Dropout (DCN-PD) method. In this approach, data first passes through fully connected
layers, referred to as representation layers, and subsequently through multitask learning
branches. These branches treat the estimation of potential outcomes as two separate but
related learning tasks. To address the issue of selection bias in observational studies, the
authors introduced propensity score learning layers. These layers compute the propensity
score, which is then used to determine the probability of dropout. Specifically, as the score
deviates further from 0.5, the dropout probability increases. This mechanism ensures greater
focus on overlapping regions of the data distribution, thereby mitigating the influence of
outliers on the estimated outcomes. However, we identify the complexity of the dropout
scheme as a limiting factor, posing challenges in its practical implementation and poten-
tially affecting the scalability of the approach.
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In August 2017, architectures utilizing representation layers followed by treatment-
specific branches garnered significant attention and were adopted in several methodologies,
notably Counterfactual Regression (CFR) and TARnet (Treatment Agnostic Representation
Network), as introduced by Shalit et al. [24]. These approaches share a common structure
but differ in their handling of hidden representations. CFR networks focus on minimizing
the distributional discrepancy between treated and untreated populations using metrics such
as the Wasserstein distance (CFR-Wass) and Maximum Mean Discrepancy (CFR-MMD).
By doing so, these methods effectively reduce covariate and distributional imbalances, im-
proving the quality of ITE estimation. However, CFR-Wass can become computationally
expensive on large datasets, while CFR-MMD may struggle with extremely unbalanced
treatment and control groups, limiting its robustness under such conditions. In contrast,
TARnet does not explicitly address distributional discrepancies in its design, making it less
robust in addressing covariate imbalance. Nevertheless, its simpler architecture results in
improved computational efficiency, making it a practical choice for scenarios with fewer
concerns about covariate imbalance.

In December 2018, Yao et al. [97] introduced the SITE (Similarity-preserved Individu-
alized Treatment Effect) method, a novel approach designed to enhance ITE estimation. The
key strength of the method lies in its ability to preserve local similarity within the data while
simultaneously balancing distributions. Additionally, SITE incorporates a mechanism to
focus on extreme case samples within each mini-batch, which can improve performance in
scenarios with limited overlap or challenging data distributions. However, a notable draw-
back of SITE is its tendency to underperform when the data exhibits strong overlap between
treated and untreated groups. In such cases, the emphasis of the method on extreme cases
may become less relevant, leading to suboptimal results.

In October 2019, Shi et al. [99] proposed an extension of the TARNet architecture by in-
troducing a separate branch dedicated to propensity score computation, resulting in a model
named DragonNet. This approach is based on the assumption that the treatment effect is
independent of covariates, where covariates are used exclusively for outcome prediction
rather than treatment assignment. The primary drawback of DragonNet compared to TAR-
Net is its increased model complexity, which may pose challenges in terms of computational
efficiency and implementation.

In November 2019, Yao et al. [98] introduced the ACE (Adaptively Similarity-Preserved
Representation Learning) method, representing a significant improvement over the SITE ap-
proach for causal effect estimation. ACE enhances representation learning by incorporating
similarity information from the original feature space. It achieves this by minimizing the
distance between treated and untreated groups while simultaneously optimizing a similarity
loss. This similarity loss ensures that the structural fidelity of the learned representation
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space aligns with the original feature space, which is critical for robust causal inference.
The primary drawback of the ACE method is the added computational overhead, which
may limit its efficiency in large-scale applications.

In August 2020, Zhang et al. [49] proposed DKLITE (Deep Kernel Learning for In-
dividual Treatment Effect estimation), a novel method aimed at minimizing counterfactual
variance in treatment effect estimation. This approach uses clustering to align counterfactual
data with factual representations, effectively addressing covariate shift. Notably, DKLITE
avoids relying on IPM for balancing representations between treatment and control groups,
which is a common strategy in comparable methods. A key drawback of DKLITE is its
sensitivity to kernel choice and parameter settings, which can significantly impact its per-
formance and robustness.

In the same month, Johansson et al. [101] introduced CFR-Weight, a method that em-
ploys the MMDSQ metric to balance the distributions of treated and untreated groups. This
balancing is weighted by the propensity score, building on a mechanism previously imple-
mented in DragonNet. The authors assert that this weighting approach yields more reliable
results, particularly in settings with significant treatment assignment imbalance. However,
the effectiveness of the method is sensitive to errors in propensity score estimation, which
can adversely affect its performance and reliability.

In April 2022, Li and Yao [102] proposed CITE (Contrastive Individual Treatment Ef-
fects Estimation), a contrastive learning framework specifically designed for causal infer-
ence. This method utilizes self-supervision within the data to create balanced and predic-
tive representations while integrating causal prior knowledge to improve the reliability of
causal inference. The primary drawbacks of CITE are its architectural complexity and its
reliance on the estimated propensity score, which can introduce vulnerabilities if the propen-
sity scores are inaccurately estimated.

In March 2023, Tesei et al. [111] introduced BCAUSS (Balancing Covariates Auto-
matically Using Self-Supervision), an improved version of Dragonnet designed to perform
effectively under challenging conditions, such as violations of the positivity assumption.
This enhancement aims to address scenarios where treatment assignment probabilities de-
viate significantly from uniformity, ensuring robust causal effect estimation in the presence
of such complexities. The primary drawback of BCAUSS is its increased computational
cost. This arises from the need to load the entire training set to compute the auto-balancing
self-supervised term, which can be a significant limitation for large-scale datasets.

A concise summary of the strengths and limitations of the representation-based methods
is provided in Table 2.3 offering a clear and comparative overview, aiding in understanding
the trade-offs associated with each approach as well as the code availability.
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2.2.4 GAN-based Methods

In 2018, significant progress was made in leveraging Generative Adversarial Networks
(GANs) [112] for ITE estimation. In April, Yoon et al. [103] introduced GANITE (Genera-
tive Adversarial Network for Inference of Individualized Treatment Effects), a novel method
that uses an adversarial training framework to model potential outcomes under alternative
treatments. GANITE explicitly generates proxies for counterfactual outcomes, which are
then used to train its ITE estimator. However, a key drawback of GANITE is its complex
training process, which arises from the inherent challenges of training adversarial networks.

In the same month, Du et al. [104] proposed ABCEI (Adversarial Balancing-based rep-
resentation learning for Causal Effect Inference), a method leveraging adversarial learning
to balance covariate distributions in the latent space. Unlike traditional methods, ABCEI
does not rely on specific assumptions regarding the treatment assignment mechanism. To
mitigate potential information loss during representation learning, the approach incorporates
a mutual information estimator designed to preserve essential predictive information from
the original covariates. This integration enhances robustness of the method to treatment se-
lection bias and improves its overall efficacy. However, the complexity of the method is a
notable drawback.

In July 2021, Guo et al. [105] introduced CETransformer (Casual Effect estimation
model via Transformer based representation learning), a transformer-based model designed
to address two critical challenges in treatment effect estimation: selection bias and the ab-
sence of counterfactual outcomes. This method employs transformer-based representation
learning, utilizing a self-supervised transformer to capture intricate correlations among co-
variates through self-attention mechanisms. Furthermore, an adversarial network is incor-
porated to balance the distributions of treated and control groups within the representation
space, mitigating biases and enhancing the robustness of the model.

In April 2022, Zhou et al. [106] proposed the CBRE (Cycle-Balanced REpresentation
learning for counterfactual inference)method, which employs adversarial training to balance
the representations of treatment and control groups, thereby reducing confounding bias. The
authors assert that their approach preserves data integrity through an “information loop,”
minimizing information loss and enabling robust causal inference. However, a potential
concern with CBRE pertains to its application in scenarios characterized by nonlinear de-
pendencies between covariates and the outcome. Specifically, the tendency of the method to
map treated and untreated units closely in the hidden space can result in a loss of outcome-
discriminative information, which, in turn, may obscure critical distinctions necessary for
accurate treatment effect estimation. We highlight a similar concern in the context of the
CETransformer approach. Summary of the methods is presented in the Table 2.1.
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2.2.5 Covariate-Confounding Learning Methods

In December 2017, Louizos et al. [43] introduced the Causal Effect Variational Autoencoder
(CEVAE), representing a pioneering effort to integrate Variational Autoencoders (VAEs)
into the domain of causal inference. This method adapts VAEs to DAGs and defines a
generative process underlying the observed data. Specifically, CEVAE models the joint
distribution of covariates, treatment, and outcomes conditioned on latent variables, offering
a robust framework to address causal effect estimation. By leveraging the expressiveness of
VAEs, the approach facilitates the modeling of complex distributions and provides a prin-
cipled solution for handling hidden confounding variables in causal inference. The method
is, however, sensitive to the choice of the hyperparameters.

TEDVAE [107] was an improvement over CEVAE introduced in May 2021. Unlike
CEVAE it disentangles latent confounders into independent components based on their type,
namely binary or continuous which in the end improves their interpretability. The biggest
drawback of themethod is an additional computational overhead due to this disentanglement
process.

In October 2021, Hatt et al. [109] proposed the DONUT (Deep Orthogonal Networks
for Unconfounded Treatments) method, which seeks to improve average treatment effect
estimation by formalizing unconfoundedness as an orthogonality constraint between out-
comes and treatment assignment. This constraint is implemented as a regularization term
within the loss function, guiding the model to predict outcomes that are orthogonal to the
treatment assignment, thereby improving bias reduction in observational data. The limiting
factor of this method might be scenarios with high noise or weak confounding. The authors
also avoided specifying the importance of the orthogonality constraint to the ITE estimation.

In April 2020, Hassanpour and Russel [113] proposed DRCFR, an algorithm aimed at
enhancing treatment effect estimation from observational data. DRCFR disentangles the
factors influencing treatment selection from those driving outcome determination. By first
identifying representations of these distinct underlying sources, the algorithm leverages this
disentangled knowledge to mitigate the impacts of selection bias. A disadvantage of this
methods is that correct disentanglement was not guaranteed.

In February 2022, Wu et al. [108] proposed the DerCFR method, which advances treat-
ment effect estimation by disentangling confounders from non-confounders in observa-
tional data guaranteeing correct disentanglement. By selectively balancing confounders,
the method reduces biases introduced by irrelevant features. The primary disadvantage of
this approach is its reliance on the quality of the disentanglement process, as any inaccu-
racies in separating confounders from non-confounders can negatively impact the results.
Summary of the methods is presented in the Table 2.2.
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2.2.6 Meta-learners

In March 2019, Künzel et al. [93] introduced the S-Learner, T-Learner, and X-Learner
frameworks for ITE estimation. These meta-learning algorithms are highly versatile, ca-
pable of utilizing any predictive algorithm, including neural networks, as their foundational
models. Subsequently, in September 2020, Nie and Wager presented the R-Learner, a meta-
learner framework designed to provide a robust approach to ITE estimation. The main
strength of meta-learners is their flexibility, allowing any machine learning model as a base
learner to fit different datasets. The S-Learner is simple and efficient for small data, the T-
Learner captures differences between groups, the X-Learner improves accuracy in uneven
datasets, and the R-Learner handles confounding well, especially in observational studies.

However, meta-learners have limitations. The S-Learner struggles when treatment ef-
fects vary a lot or groups differ greatly, risking biased results. The T-Learner splits data,
which can lead to overfitting if one group is small, and assumes the models are indepen-
dent, which may not hold. The X-Learner shares the small-sample issues of the T-Learner
and relies on tricky weighting that can fail if off. The R-Learner depends on accurate initial
steps, and mistakes there can weaken results, plus tuning it can be hard. All meta-learners
rely on a good base model, and they are not handling networked data well without extra
help. Summary of the methods is presented in the Table 2.4.
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Table 2.1. GAN-Based Methods

Method Key Features Strengths Limitations Year Framework
GANITE [103] Generates

counterfactual
outcomes using
a generative
adversarial
network.

Strong
performance in
counterfactual
generation.

Complex training
process with
adversarial
networks.

2018 Tensorflow 1.15

ABCEI [104] Incorporates
mutual
information
estimation in
adversarial
training.

Retains essential
predictive
information from
covariates.

Relies on robust
mutual
information
estimators.

2020 Tensorflow 1.4

CETransformer [105] Captures
complex
correlations
using
self-attention
mechanisms.

Scalable to
high-dimensional
data.

Prone to loss of
information
critical for
outcome
prediction.

2021

CBRE [106] Uses adversarial
training for
balanced
representations.

Effective in
addressing
confounding bias.

Prone to loss of
outcome-
discriminative
information.

2022 Tensorflow 1.4
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Table 2.2. Covariate-Confounding Learning Methods

Method Key Features Strengths Limitations Year Framework
CEVAE [43] Adapts

Variational
Autoencoders to
causal DAGs;
models joint
distribution
conditioned on
latent variables.

Handles hidden
confounding;
models complex
distributions.

Sensitive to
hyperparameter
selection.

2017 Pytorch

TEDVAE [107] Disentangles
latent
confounders into
binary and
continuous
types.

Improved
interpretability
through
structured latent
space.

Computational
overhead from
disentanglement.

2021 PyTorch

DONUT [109] Enforces
orthogonality
between
outcome and
treatment via
regularization.

Reduces bias in
ATE estimation
under uncon-
foundedness.

May
underperform
with high noise or
weak
confounding.

2021 PyTorch

DRCFR [113] Disentangles
treatment-
related and
outcome-related
latent factors.

Mitigates
selection bias
through separate
representation.

No guarantee of
correct
disentanglement.

2020 TensorFlow 1.13

DerCFR [108] Selectively
balances
confounders
after
disentangling
from non-
confounders.

Guarantees
correct
confounder
disentanglement.

Depends on
disentanglement
quality.

2022 TensorFlow 1.15
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Table 2.3. Representation-Based Methods

Method Key Features Strengths Limitations Year Framework
BNN [48] Balances

treated/untreated
groups using a neural
network.

Effective in
high-dimensional data.

Limited flexibility in
model architecture.

2016 Unavailable

DCN-PD [96] Disentangled
representation learning
for treatment
estimation.

Reduces confounding
effects.

Complex training
process.

2017 Pytorch

TARNet [24] Treatment-agnostic
representation network.

Simple architecture,
computationally
efficient.

Less robust in
addressing covariate
imbalance.

2017 Tensorflow 0.12

CFR-Wass [24] Uses Wasserstein
distance for balancing
distributions.

Reduces covariate
imbalance effectively.

Computationally
expensive for large
datasets.

2017 Tensorflow 0.12

CFR-MMD [24] Uses Maximum Mean
Discrepancy for
distribution alignment.

Robust distributional
balancing.

May struggle with
extreme
treatment/control
imbalances.

2017 Tensorflow 0.12

SITE [97] Preserves local
similarity while
balancing distributions.

Focuses on extreme
cases in data.

May underperform
with well-overlapping
data.

2018 Tensorflow 1.7

DragonNet [99] Uses a propensity score
branch to enhance
balancing.

Explicitly addresses
selection bias.

Increased model
complexity.

2019 Tensorflow 1.13

ACE [98] Combines similarity
preservation with
structural fidelity.

Retains original feature
space structure.

Computational
overhead.

2019

DKLITE [49] Minimizes
counterfactual variance
using kernel-based
representations.

Effective for covariate
shift handling.

Sensitive to kernel
choice and parameter
settings.

2020 Tensorflow 1.14

CFR-Weight [101] Incorporates propensity
score weighting in
balancing.

Improved balance for
imbalanced treatment
scenarios.

Sensitive to errors in
propensity score
estimation.

2022

DerCFR [108] Disentangles factors
influencing
treatment/outcome.

Reduces selection bias. Sensitive to
disentanglement
quality.

2022 Tensorflow 1.15

CITE [102] Contrastive
representation learning
for treatment effect
estimation.

Improves
representation learning.

Sensitive to errors in
propensity score
estimation.

2022 TensorFlow 1.0

BCAUSS [111] Addresses positivity
assumption violations.

Robust under extreme
treatment imbalances.

Additional
computational cost.

2023 Tensorflow 2
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Table 2.4. Meta-Learners

Method Key Features Strengths Limitations Year
S-Learner [93] Uses a single

model for
outcome
prediction,
combining
covariates and
treatment.

Simple to
implement and
interpretable.

Limited
adaptability in
highly
heterogeneous data.

2019

T-Learner [93] Fits separate
models for
treated and
untreated
groups.

Flexibility in
estimating
treatment-specific
outcomes.

May overfit when
the sample size is
small in either
group.

2019

X-Learner [93] Imputes missing
outcomes to
refine treatment
effect estimates.

Handles treatment
effect heterogeneity
well.

Requires an
additional step for
imputing
counterfactuals.

2020

R-Learner [110] Uses Robinson
decomposition
to decouple
treatment and
outcome
modeling.

Robust handling of
covariates affecting
both treatment and
outcomes.

Requires careful
model specification
for reliable results.

2020





Chapter 3

Materials and Methods

3.1 Method

In this section, we present our proposed method for estimating ITE using GNNs. We first
provide a detailed description of our methodology, including the architectural design and
theoretical motivation behind employing GNNs for ITE estimation. Following this, we
introduce the datasets used for training and evaluation, highlighting their key characteristics
and relevance to our study.

3.1.1 Problem Formulation

Consider a dataset derived from observational studies, denoted as D = {[xi, yi, ti]}Ni=1,
where each tuple corresponds to an individual observation. Here, xi ∈ X ∈ RM repre-
sents a vector of M -dimensional covariates capturing features such as demographic infor-
mation, clinical measurements, or socioeconomic factors. The binary treatment indicator
ti ∈ T ∈ {0, 1} denotes whether the i-th individual received the treatment (ti = 1) or was
assigned to the control group (ti = 0). The outcome yi ∈ Y can be either discrete (e.g.,
binary indicators like survival or disease remission) or continuous (e.g., blood pressure or
test scores), reflecting the response variable of interest. This dataset is typical of real-world
observational studies where treatment assignment is not randomized, introducing potential
confounding and necessitating causal inference techniques to estimate treatment effects ac-
curately.

Additionally, assume the data generation process is described by a weighted DAG G =

(V,E), which provides a structural representation of the relationships among variables.
The vertices V ∈ RM correspond to the covariates, treatment, and outcome variables—
collectively representing theM features plus ti and yi. The directed edges E ∈ RK capture
causal or associative dependencies between these variables, with K being the number of

35
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edges. The structure of the DAG is encoded by an adjacency matrix A ∈ RM×M , where
each element aij indicates the presence (non-zero) or absence (zero) of a directed edge from
node vi to node vj . Corresponding edge weights are stored in a weight matrixW ∈ RM×M ,
where wij quantifies the strength or influence of the relationship if aij ̸= 0. Since G is a
DAG, A is constrained to be an upper triangular matrix under a suitable ordering of nodes,
ensuring acyclicity: for each edge vi → vj , i < j [29]. This structure reflects a hierarchical
data generation process, where vi is a parent of vj if wij ̸= 0, implying that vi directly in-
fluences vj . In practice,Gmight be partially known from domain expertise or learned from
data, and its incorporation aims to model dependencies that affect treatment assignment and
outcomes.

The primary objective is to estimate the ITE, specifically the Conditional Average Treat-
ment Effect (CATE), for each individual based on their covariates. The CATE is formally
defined as:

τ(xi) = E[Y 1 − Y 0|X = xi], (3.1)

i where Y 1 and Y 0 are the potential outcomes, representing what yi would be if the i-th in-
dividual were treated or untreated, respectively, conditioned on their covariate vector xi [7].
These potential outcomes are counterfactual in nature: only one is observed for each indi-
vidual (yi = tiY

1 + (1− ti)Y 0), and the other must be inferred. To enhance this estimation
by accounting for relational dependencies within the data, we extend the definition to incor-
porate the graph structure via the adjacency matrix A:

τ(xi) = E[Y 1 − Y 0|X = xi, A]. (3.2)

This formulation posits that the treatment effect depends not only on covariates of an in-
dividual but also on the network of dependencies encoded in A [27]. For example, if A
indicates that certain covariates influence treatment assignment or mediate the outcome,
including A provides additional context that may reduce bias and improve estimation ac-
curacy. This is particularly relevant in settings like healthcare systems, where interactions
between variables can play a significant role.

To evaluate the performance of a model estimating τ(xi), we employ several metrics.
First, the Precision in Estimating Heterogeneous Effect (PEHE) quantifies the accuracy of
individual-level predictions:

ϵPEHE =
1

N

N∑
i=1

(τ(xi)− τ̂(xi))2, (3.3)

where τ̂(xi) is the estimated ITE of the model for an individual i [19]. This metric com-
putes the mean squared error between true and estimated treatment effects, emphasizing the
model’s ability to capture heterogeneity across individuals. A lower ϵPEHE indicates better
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precision in estimating variable treatment effects, which is critical for personalized decision-
making.

Second, we assess the Absolute Error of the Average Treatment Effect (ϵATE), which
measures the accuracy of the aggregated treatment effect across the population:

ϵATE =

∣∣∣∣∣ 1N
N∑
i=1

(τ(xi)− τ̂(xi))

∣∣∣∣∣ . (3.4)

Unlike PEHE, which focuses on individual errors, ϵATE evaluates the bias in the average
effect, providing a single scalar that reflects how well the model estimates the overall treat-
ment impact. A small ϵATE suggests that the model’s estimates are unbiased on average,
even if individual predictions vary in accuracy.

Third, we compute the policy risk (Rpol), which assesses the expected loss when treat-
ment decisions are made based on the model’s ITE predictions. Following [49], it is defined
as:

Rpol = 1− E[Y 1|π(X) = 1]P (π(X) = 1) + E[Y 0|π(X) = 0]P (π(X) = 0), (3.5)

where the treatment policy π(X) is:

π(X) =

1 if Y 1
RCT − Y 0

RCT > 0,

0 otherwise.

Here, Y 1
RCT− Y 0

RCT represents the true treatment effect from a RCT setting, used as a bench-
mark to define an optimal policy. Rpol measures the regret of assigning treatments based
on τ̂(xi), penalizing incorrect decisions (e.g., treating when the effect is negative). A lower
policy risk indicates better alignment between the model’s recommendations and optimal
outcomes.

Finally, we evaluate the error in the Average Treatment Effect on the Treated (ATT), as
outlined by [4]:

ϵATT =

∣∣∣∣∣ATT− 1

|T |
∑
i∈T

τ(xi)

∣∣∣∣∣ , (3.6)

where ATT = |T |−1
∑

i∈T yi − |C ∩ E|−1
∑

i∈C∩E yi is the true ATT, with T as the treated
group,C as the control group, andE as a randomized subset if available. This metric focuses
on the treated population, comparing the true average effect among those who received
treatment to the estimate of a model, providing insight into accuracy for this subgroup.

Together, these metrics, including PEHE, ϵATE, policy risk, and ϵATT, offer a compre-
hensive evaluation framework, balancing individual precision, population-level accuracy,
decision-making utility, and subgroup performance.
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3.1.2 Graph Neural Networks

GNNs [23] are neural networks designed to process and learn from graph-structured data.
They consist of multiple graph convolutional layers [114], which take as input the embed-
dings of node values, the adjacency matrix A, and, in weighted graphs, the weight matrix
W . These components collectively define the structure of the graph and the relationships
between nodes. GNNs iteratively update the state of each node by aggregating information
from its neighbors, making them powerful tools for tasks involving relational data, such
as social networks, molecular structures, or causal graphs [72]. Unlike traditional neural
networks that assume independent data points, GNNs leverage the inherent connectivity of
graphs, enabling them to capture dependencies and patterns that span across nodes.

GNNs are versatile and can operate on both directed and undirected graphs, adapting
their aggregation mechanisms to the topology of the graph [79]. However, in the context
of this work, we focus on DAGs, which impose a specific constraint: the absence of cycles
ensures a hierarchical structure where information flows in a single direction, from parent
nodes to child nodes [69]. Consequently, we assume that update of each node relies solely
on information from its parent nodes, reflecting the causal or dependency relationships en-
coded in the DAG. This restriction aligns with applications like causal inference, where the
directionality of influence is critical, and distinguishes GNNs on DAGs from their use on
undirected or cyclic graphs, where bidirectional or recursive information flow might occur.

Node Update Mechanism

The forward pass for node updates in GNNs involves three primary steps: message prepara-
tion, aggregation, and update, as outlined by Gilmer et al. [115]. These steps form the back-
bone of how GNNs process and propagate information across the graph. In the message
preparation step, information from parent nodes is refined to create meaningful signals for
the target node. This process begins by taking the embedding of each parent node, typically
a vector representation capturing its features, and passing it through a learnable function
such as a linear transformation or a neural network layer. The output is then multiplied by
the corresponding edge weights from the weight matrixW , which modulate the influence of
each parent based on the strength or relevance of their connection. For instance, in a causal
DAG, a higher weight might indicate a stronger causal link, allowing the model to prioritize
more impactful relationships.

Next, in the aggregation step, the preparedmessages from all parent nodes are combined
into a single representation. Common aggregation methods include summation, which adds
the weighted messages; averaging, which normalizes their contribution; or selecting the
maximum value, which emphasizes the most prominent signal [116]. The choice of ag-
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gregation depends on the task. Summation might suit scenarios where cumulative effects
matter, while maximum aggregation could highlight dominant influences. For DAGs, this
step ensures that the node integrates information only from its upstream dependencies, re-
specting the acyclic structure and avoiding feedback loops.

In the update step, the aggregated messages are merged with the existing representa-
tion of the node to produce its new state. This integration can take various forms, such as
element-wise multiplication or addition, followed by processing through several fully con-
nected layers to capture complex interactions and refine the embedding of the node [64].
Alternatively, more sophisticated approaches concatenate the message representations and
pass them through a Gated Recurrent Unit (GRU), as explored by Chung et al. [117], Li et
al. [118], and Battaglia et al. [119]. GRUs introduce a memory-like mechanism, allowing
the node to selectively retain or discard information from its parents, which are particularly
useful for modeling sequential or hierarchical dependencies in DAGs. Assuming a new
node value hi ∈ RF , where F is the dimensionality of the input features, depends on the
values calculated in the previous step, the update rule for node embedding di can be written
as [120]:

hi = ϕ

(
di,
⊕
j∈Ni

wijψ(dj)

)
, (3.7)

where Ni is the set of parents of node i, ψ and ϕ are learnable functions (e.g., neural net-
works), wij is the edge weight between nodes i and j, and

⊕
denotes the aggregation opera-

tion (e.g., sum, mean, or max). This formulation encapsulates the iterative nature of GNNs,
where each layer refines node representations by incorporating neighborhood information,
tailored to the directed structure of the DAG.

The power of GNNs lies in their ability to learn rich, context-aware representations by
iteratively refining node states across multiple layers [22]. In the context of DAGs, this pro-
cess mirrors the propagation of causal effects, makingGNNswell-suited for tasks like causal
inference or treatment effect estimation [27]. However, their effectiveness depends on the
quality of the input graph structure and the choice of aggregation and update mechanisms,
which must be carefully tuned to the specific problem domain.

3.1.3 Graph Attention Networks

Graph Attention Networks (GATs) [64] are a specialized variant of GNNs that leverage self-
attention mechanisms to assign varying levels of importance to neighboring nodes. Unlike
traditional GNNs that treat all neighbors equally or rely on fixed aggregation rules [72],
GATs dynamicallyweigh the contributions of neighbors based on their relevance to the target
node. This adaptability makes GATs particularly effective for tasks where the influence of
neighboring nodes varies significantly, such as social network analysis, citation networks, or
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biological graphs [23]. GATs operate on a graphG = (V,E), where V is the set of nodes and
E is the set of edges, with each node i ∈ V associatedwith a feature vector di ∈ RF , whereF
represents the dimensionality of the input features. The model updates node representations
by iteratively processing these features through graph attentional layers, refining them layer
by layer to capture complex relational patterns.

Node Update Mechanism

Each graph attentional layer begins by applying a shared linear transformation to the input
features of every node, a step that prepares the data for subsequent attention computations.
This transformation is defined by a learnable weight matrixW ∈ RF ′×F , which projects the
original feature vectors from dimension F into a new feature space of dimension F ′:

d′i = Wdi. (3.8)

This projection allows GATs to emphasize or suppress certain aspects of the input features,
tailoring them to the task at hand [79]. The next step involves computing the importance
of each neighboring node j to a given node i using a shared attention mechanism, inspired
by transformer models [63]. The raw attention score eij quantifies this importance and is
calculated as:

eij = LeakyReLU
(
a⊤[d′i∥d′j]

)
, (3.9)

where a ∈ R2F ′ is a learnable parameter vector, ∥ denotes concatenation of the transformed
feature vectors d′i and d′j , and LeakyReLU introduces non-linearity with a small negative
slope to retain gradient flow for negative inputs [121]. To incorporate the graph structure,
the attention mechanism is masked, meaning attention scores are computed only for j ∈ Ni,
the neighborhood of node i (including i itself in self-attention settings).

These raw attention scores are then normalized across the neighbors using the softmax
function to produce attention coefficients:

αij =
exp(eij)∑
k∈Ni

exp(eik)
. (3.10)

The normalized coefficients αij represent the relative importance of node j to node i, sum-
ming to 1 over the neighborhood Ni [64]. Using these coefficients, the features of neigh-
boring nodes are aggregated to compute the updated feature vector for node i. To stabilize
training and enhance the representational capacity of the model, GATs employ multi-head
attention, a technique borrowed from transformers [63]. In this approach, K independent
attention mechanisms (heads) are applied, each with its own weight matrix W k and atten-
tion coefficients αkij . For intermediate layers, the outputs of these heads are concatenated to
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form the final representation:

hi = ∥Kk=1σ

(∑
j∈Ni

αkijW
kdj

)
, (3.11)

where σ is a non-linear activation function, such as the Exponential Linear Unit (ELU)
[122], αkij are the attention coefficients computed by the k-th attention head, andW k is the
corresponding weight matrix. This multi-head mechanism allows GATs to model diverse
relationships within the graph, improving both stability and expressiveness [116], though it
increases computational complexity for large graphs.

3.1.4 Intervention on GNN and GAT

Figure 3.1. Causal graphs before (left) and after (right) intervention on node T [1].
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Figure 3.2. The GNN-TARnet architecture [1].

GNNs and GATs are powerful frameworks for modeling relational data, using message-
passing mechanisms to capture dependencies within graph structures [23]. Applying these
models to causal inference, especially for estimating ITE, requires specific modifications to
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Figure 3.3. The GAT-TARnet architecture with two GAT layers each consisting of two GAT
heads.
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Figure 3.4. GNN block structure [1].

account for interventions, similar to those described in SCMs [29]. In typical GNN archi-
tectures, node features hi are updated through aggregation of information from neighboring
nodes. However, causal interventions, such as setting a treatment variable exogenously,
demand a different approach: the update rules must reflect the effect of the “do” operator,
which breaks the link between a node and its natural causes [73]. Zečević et al. [28] intro-
duced a strategy to achieve this by intervening on a node dk, removing all of its incoming
edges. This operation simulates the SCM intervention do(dk), effectively fixing the value
of dk independent of its parents. Such a modification ensures that downstream effects of
the intervened node are propagated without confounding from prior dependencies, which is
essential for accurate treatment effect estimation [27].

Under an intervention on node dk, Zečević et al. redefine the neighbor set as

Mi = {j | j ∈ Ni, j /∈ pai if j = k}, (3.12)

where pai denotes the set of parents of node i. When i = k (the intervened node), the
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set becomesMk = ∅, effectively removing all incoming edges. The node representation
is then set to hk = ϕ(dk, 0), reflecting the isolation induced by the intervention. For any
downstream node (i ̸= k),Mi excludes the original parents of dk if dk ∈ Ni, ensuring that
information propagates without confounding. The modified message-passing update rule is
defined as:

hi = ϕ

(
di,
⊕
j∈Mi

wijψ(dj)

)
, (3.13)

whereMi is dynamically adjusted based on the intervention target. This approach enforces
causal consistency in the data-generating process represented by the graph, aligning the
GNN framework with the principles of SCMs [69].

For GATs, interventions adapt the multi-head attentionmechanism, which weighs neigh-
bor contributions dynamically [64]. Under intervention on dk, the neighbor set shifts toMi,
excluding dk’s parents: if i = k,Mk = ∅, and hk = ∥Kk=1σ(0); otherwise,Mi omits dk’s
confounded inputs. The intervened rule is:

hi = ∥Kk=1σ

(∑
j∈Mi

αkijW
kdj

)
. (3.14)

This formulation preserves the ability of the attention mechanism in GATs to prioritize rel-
evant neighbors while enforcing the semantics of causal interventions, providing greater
flexibility than fixed-weight graph neural network architectures [23].

The intervention mechanism operationalizes the do(dk) operator introduced by Pearl
[29], which is critical for estimating individual treatment effects. This is achieved by con-
structing a graph that includes covariates and outcomes, and by severing all incoming edges
to the treatment node T (see Fig. 3.1). This assumption implies that T directly influences
the outcome Y without mediation by its original parents (such as confounders), aligning
with the potential outcomes framework proposed by Rubin [7]. For example, in a covariate
graph defined byX → T → Y and a confounder structure Z → T and Z → Y , performing
an intervention on T removes the edge Z → T , thereby isolating the effect of T on Y . Fig-
ure 3.1 illustrates the structure of the graph before and after intervention, highlighting edge
removal and the propagation of unconfounded effects.

In practice, these intervention-based rules allow graph-based models to simulate coun-
terfactual “what-if” scenarios. This functionality underpins the methods introduced in Sec-
tion 3.1.5, where the proposed architectures based on graph neural networks and graph at-
tention mechanisms estimate treatment effects. By redefining the neighbor setMi under
intervention, these models achieve consistency with causal DAGs [69], enabling isolation
of the direct effect of a treatment on an outcome while blocking confounding paths. This ap-
proachmirrors the counterfactual reasoning used in SCMs, where the intervention do(T = t)

induces a modified model to predict Y under hypothetical treatment values [29].
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3.1.5 GNN-TARnet and GAT-TARnet

With the above assumptions, we introduce methods called GNN-TARnet (Graph Neural
Network Treatment Agnostic Representation Network) and GAT-TARnet (Graph Attention
Treatment Agnostic Representation Network) which integrate information about causal rela-
tionships among covariates to predict ITE. Thesemethods follow a design similar to TARnet,
proposed by Shalit et al. [24]. We chose TARnet as the foundation for our method due to its
simplicity and robust performance compared to other models on existing datasets [3]. No-
tably, we did not base our approach on architectures that reduce distributional discrepancy
between treated and untreated groups, such as CFR-Wass [24], as we aimed to isolate the
effect of incorporating DAGs into ITE estimation without introducing additional complex-
ity. Although our approach could be extended to include discrepancy reduction techniques,
this is beyond the scope of this thesis.

The primary distinction of GNN-TARnet andGAT-TARnet fromTARnet lies in the com-
putation of the hidden representation prior to branching (see Fig. 3.2). In GNN-TARnet,
we employ graph convolutional layers [114] instead of fully connected layers, and in GAT-
TARnet we use the graph attention layers consisting of several concatenated graph attention
heads (see Fig. 3.3).

To train the networks, we minimize the following loss function:

L = E
[
(1− T )(µ0(X,A)− Y )2 + T (µ1(X,A)− Y )2

]
. (3.15)

The loss function L represents the expected value E, calculated as the average squared dif-
ferences between the observed outcome Y and the estimated outcomes µ0 and µ1 under
control and treatment conditions, respectively. These differences are weighted by the prob-
abilities of not receiving treatment, (1− T ), and receiving treatment, T . The network takes
as input the covariates X and the adjacency matrix A. Since edge weights W for GNN-
TARnet are rarely available, we set them to a default value of one. Initially, the covariates,
which also serve as node values in the graph, are passed through embedding layers. In this
step, the original covariate information is combined with the trained neural network weights
and transformed to match the embedding dimension required by the GNN or GAT layers.
Each covariate is assigned an independent embedding, achieved by reshaping the covariates
to add an extra dimension before embedding. The resulting embeddings and edges are then
processed through a GNN block (see Fig. 3.4) or through the GAT layers.

The GNN block extracts node indices and identifies causal parents from the adjacency
matrix. Parent representations ϕpa are gathered from the node representations using these
parent indices. In the next step, parent messages are prepared by passing the parent rep-
resentations through fully connected layers without bias [115]. Messages from the parent
nodes are then aggregated [115]; in our case, they are summed for each node. Finally, the
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node representations are updated with the aggregated messages from the parents by adding
or multiplying them and then passing them through fully connected layers [119]. Each GAT
layer consists of multiple GAT heads [64] that can be stacked together. Within each GAT
head, the input features are first linearly transformed using a learnable weight matrix. At-
tention scores are then computed that capture the importance of features from neighboring
nodes. These attention scores are used to perform a weighted aggregation of the neighboring
node features. Additionally, we incorporated skip connections [123] after each GNN block
and GAT layers, as these, in our observations, can improve the performance of the models.

Following these steps, we obtain a vector representing the updated node embeddings. If
the adjacency matrix between X and Y is known, we condition on the nodes that directly
influence Y , flatten the hidden representations, and pass them through treatment-specific
branches. In cases where only an identity graph is available, we assume an equally weighted
influence of all nodes on the outcome variable and condition on all available nodes. Impor-
tantly, interventions based on the do-operator are applied only during inference. During
training, the model uses the covariates X and their graph structure A, without including
the treatment T in the graph. At inference time, we simulate counterfactual outcomes by
exogenously setting T and blocking any upstream influences, in line with the semantics of
do(T = t). This allows the model to estimate potential outcomes in a way that reflects
structural causal assumptions. Finally, the loss is computed, and the weights of the entire
system are updated through backpropagation.

3.1.6 Software Library for Causal Inference

To operationalize our methodology for ITE estimation using GNNs, as detailed in the pre-
vious sections, we developed a custom Python library encapsulated in the CausalModel
class. This library serves as a flexible and extensible framework for training, evaluating,
and analyzing causal inference models across diverse datasets, with a particular emphasis
on supporting our GNN-TARnet and GAT-TARnet architectures [1]. Below, we outline its
core functionalities, design principles, and its role in facilitating the experiments presented
in Chapter 4.

The CausalModel class is initialized with a parameter dictionary specifying the dataset
(e.g., IHDP, JOBS, SUM), model type, number of trials, and outcome type (binary or con-
tinuous). To ensure reproducibility, a critical aspect of causal inference research, it in-
cludes a static method, setSeed, which configures deterministic behavior across Tensor-
Flow, NumPy, and the random number generators of Python by setting seeds and enforcing
single-threaded execution.

The library features robust data handling capabilities, implemented through special-
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ized loaders (e.g., load_ihdp_data, load_jobs_data, load_sum_data). These meth-
ods retrieve datasets from predefined file paths, preprocess features using standardization
via StandardScaler from the scikit-learn library, and structure the data into dictionaries
containing covariates (X), treatments (t), observed outcomes (y), and potential outcomes
(µ0, µ1). For instance, the SUM dataset loader supports variable training sizes, enabling
ablation studies on sample size effects (Section 3.2.2), while the GNN-specific loader ac-
commodates folder-based data structures reflecting varying edge counts. This preprocessing
ensures consistency across datasets, addressing challenges like scale differences andmissing
values inherent in observational data [56].

The training and evaluation pipeline of the library is centered around the method called
train_and_evaluate, designed to be overridden bymodel-specific subclasses, which com-
putes performance metrics such as PEHE and ATE error. Dataset-specific evaluation meth-
ods iterate over trials or folders, storing results in NumPy arrays or CSV files for persistence
and subsequent analysis. Beyond standard metrics, the library supports advanced evaluation
through policy risk and cumulative gain analysis. The find_policy_risk method com-
putes policy value and risk. The define_tuner method integrates with Keras Tuner [124]
to optimize hyperparameters using strategies like Hyperband or Random Search, as detailed
in Section 3.3. In summary, the CausalModel library provides a comprehensive toolkit for
causal inference, tailored to our GNN-based ITE estimation framework. Its modular design
supports experimentation across synthetic (e.g., SUM) and real-world (e.g., IHDP, PerPain)
datasets, ensuring robust and reproducible analysis. The outputs, including the library’s
metrics and plots, inform the results and discussions in Chapter 4, demonstrating its pivotal
role in this dissertation.

3.2 Datasets

Our primary objective is to assess the performance of our GNN-based ITE estimation strat-
egy, specifically GNN-TARnet and GAT-TARnet (Section 3.1.5), across a variety of scenar-
ios and datasets, testing its robustness and efficacy under diverse conditions. This section
outlines the datasets employed and the methodology for applying our approach, spanning
theoretical datasets with explicit feature relationships and real-world datasets with prede-
fined covariate interactions. We investigate two central hypotheses: (1) that a GNN-based
model, leveraging a DAG to encode structural causal relationships, performs comparably
to state-of-the-art ITE estimation methods (e.g., TARnet [24]) on datasets with known or
inferred causal structures; and (2) that incorporating such structural information enhances
ITE estimation accuracy in real-world applications, particularly where traditional methods
falter due the low amount of data, as exemplified by the PerPain consortium data [10].
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A core challenge in validating causal inference models is the unobservability of counter-
factual outcomes (Yi(1) and Yi(0)) in real-world data, as only one outcome is observed per
individual [7]. To address this, we evaluate our algorithms on publicly available benchmark
datasets: the Infant Health and Development Program (IHDP) [19,24,125] and JOBS [126],
detailed in Section 3.2.1. However, these datasets lack accompanying causal graphs, lim-
iting their ability to test structural modeling directly. To fill this gap and rigorously assess
our first hypothesis, we designed an artificial dataset, SUMmation (SUM), with a layered
DAG structure where covariate relationships are explicitly defined (Section 3.2.2). SUM
computes covariate values as sums of parent nodes and generates potential outcomes under
controlled conditions, mimicking real-world causal dynamics for precise evaluation. Ad-
ditionally, we apply our method to real data from the PerPain consortium (Section 3.2.3),
targeting our second hypothesis by refining treatment assignments through ITE estimation,
leveraging inferred causal structures to enhance personalization in chronic pain manage-
ment [10].

3.2.1 Existing Datasets

In this section we describe dataset often used in the literature for comparison of the methods.
These are often semi-artificial or real datasets with available potential outcomes.

IHDP

The IHDP dataset stems from a randomized controlled trial under the Infant Health and
Development Program [125], comprising 747 preterm infants with very low birth weights.
It includes 25 covariates, such as parental demographics (e.g., maternal age, education),
socioeconomic factors (e.g., income), and infant characteristics (e.g., birth weight, gesta-
tional age). The treatment variable denotes participation in an intensive childcare program,
involving regular home visits by healthcare professionals over three years, aimed at improv-
ing cognitive development. Counterfactual outcomes, in this case cognitive test scores, are
synthetically generated using probabilistic models, following Hill’s methodology [19]. In
“Setting A” (IHDPA), outcomes are linear functions of covariates, e.g.,

Y (t) = β0 + β1X1 + · · ·+ β25X25 + γt+ ϵ, (3.16)

with ϵ ∼ N(0, 1). In “Setting B” (IHDPB), the control outcome (Y (0)) incorporates nonlin-
earity via an exponential function, e.g., Y (0) = exp(βX) + ϵ, while Y (1) remains linear,
introducing complexity in treatment effect heterogeneity. Both settings feature a class im-
balance, with approximately 18% of samples (135 instances) in the treatment group. We
adopt 100 simulated IHDP datasets per setting, each split into training (60%), validation
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(20%), and test (20%) sets during hyperparameter tuning, deviating from Shalit et al.’s
63/27/10 split [24]. Post-tuning, we retrain on the full training set (80%) to optimize test
performance, a modification our experiments show improves generalization. We also scale
the outcome variable with the standard scaler as we noticed that it can improve performance
of the models. For the dataset we report the mean and standard error of√ϵPEHE and ϵATE for
the training as well as the test sets.

JOBS

The JOBS dataset, introduced by Dehejia and Wahba [126], combines data from the Na-
tional Supported Work Program RCT and an observational study, totaling 3,212 instances.
It features 8 covariates, including demographic details (e.g., age, race) and financial met-
rics (e.g., 1974–1975 earnings), with treatment defined as participation in a professional job
training program and employment status as the outcome. The RCT subset (approximately
480 treated instances) provides a “ground truth” for causal effects, while the observational
component introduces real-world confounding. With only 10% of samples (321 instances)
in the treatment group, JOBS exhibits significant imbalance, challenging model robustness.
Following Shalit et al. [24], we generate 100 random train/test splits (80/20) to mitigate
this imbalance and ensure reliable performance assessment, averaging results across splits
to reduce variance in ITE estimates. For the dataset we report the policy riskRpol and ϵATT.

To uncover the causal structure of IHDP and JOBS, we apply causal discovery methods,
highlighted in section 2.1.12, namely LiNGAM, GES, and PC. To find the edges between
covariates X and the observed outcomes Y we combine them into a dataset {X,Y }. We
designate Y as a sink node (no outgoing edges), reflecting its role as an effect rather than
a cause, and run the algorithms to generate an adjacency matrix A. Non-zero elements
in A define directed edges, stored as tuples (parent, child), with edges to Y removed to
enforce its sink status. Indices of nodes influencing Y are recorded separately for condi-
tioning in GNN-TARnet/GAT-TARnet. If discovery fails (e.g., due to insufficient sample
size or independence), we default to an identity graph (A = I), assuming no inter-covariate
relationships, testing our method’s robustness to minimal structural information [1].

3.2.2 Artificial Dataset

The SUMmation (SUM) dataset is a synthetic dataset engineered to assess our GNN-based
ITE estimation strategy, specifically GNN-TARnet and GAT-TARnet, by leveraging a pre-
defined DAG to test our hypothesis: that structural modeling enhances performance com-
parable to state-of-the-art methods (e.g., TARnet [24]). Its graph structure is inspired by
Bayesian networks in the bnlearn repository [2], which feature layered architectures with
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Figure 3.5. An example of the Bayesian model “Insurance” [2].

no intra-layer connections. In these networks, nodes in one layer serve as the sole parents
of nodes in the next, ensuring a unidirectional causal flow. Typically, the number of root
nodes (first layer) equals or exceeds the child nodes per root in subsequent layers, and the
layer preceding the output (leaf) nodes is substantially smaller, often comprising 20-30% of
the total node count, thereby concentrating the flow of causal influence through a smaller
subset of nodes. The bnlearn graphs exhibit average node degrees of 2 in smaller networks
(e.g., 10-20 nodes) and approximately 3 in larger ones (e.g., 50-100 nodes), with a maxi-
mum in-degree of 13, as seen in complex models like “insurance” (Fig. 3.5) [127]. SUM
adopts these characteristics, constructing a layered DAG to simulate realistic causal rela-
tionships under controlled conditions. The dataset is built in two phases: generating the
graph structure and assigning node values, detailed in the following subsubsections.
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Creating Layered Graph

Suppose we are given a number of layers l. To create the first layer of the graph G, we
generate a range of length r + 1, which contains consecutive integer values from zero to r.
Thus, r + 1 defines the total number of root nodes. We then store this array as a value in a
dictionary L, where the layer number serves as the key. Each subsequent dictionary entry
stores ranges of length k, starting with the values immediately following the last element of
the array in the previous layer. For this dataset, k is a random number between three and
eight, except in the final layer, where the number of nodes m is set to 0.3 times the total
number of nodes in all previous layers combined.

The nodes in each new layer serve as potential children of the parent nodes in the previ-
ous layer. The pseudocode for generating the dictionary L, which stores the graph layers, is
provided in Algorithm 1. To complete the construction of graphG, we create edges between
individual parent nodes and k children nodes, where k is uniformly selected from a range
of zero to the previously defined k. Finally, all nodes in the output layer are connected to
every node in the preceding layer, ensuring that each internal graph node has both a parent
and a child.

The scalar m was selected so that the number of output nodes is always greater than
two but significantly less than the total number of nodes in previous layers. We set r as a
random value between ten and 20 to ensure that the number of root nodes always exceeds
the number of k nodes in the next layer. The parameter k was chosen to keep the average
node degree within a range similar to that in the bnlearn repository. By selecting parameters
k, r, and m in this manner, we achieve graphs with structural properties resembling those
in the bnlearn repository.

Generating Node Values

After constructing the graph, we generated node values as follows. Values for nodes in the
first layer were sampled uniformly at random between 0 and 1. For nodes in subsequent lay-
ers, values were computed as the sum of their parent nodes. The values of nodes in the final
layer influenced the outcome generation. To make the data resemble observational studies,
we assigned treatment based on outcome node values. First, we calculated the average value
of all outcome nodes across all subjects. For each subject, if the mean of its outcome nodes
exceeded this overall average, the treatment was set to one; otherwise, it was set to zero.
Formally, for the k-th subject xk in a dataset withN subjects and a set O of all node indices
influencing the outcome node o, treatment tk is assigned as:
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Algorithm 1 Generate Layers
1: Given: number of layers l
2: m← 0.3

3: Initialize an empty dictionary L
4: r ← random number between 10 and 20
5: L[0]← range of length r + 1 from 0 to r
6: for i← 1 to l do
7: if i = l then
8: k ← ⌊m× (

∑l−1
j=0 length(L[j]))⌋

9: else
10: k ← random number between 3 and 8
11: end if
12: L[i]← range of length k starting from the last element of L[i− 1] + 1

13: end for

tk =

1, if 1
n

∑
j∈O xk,j >

1
n·N
∑N

i=1

∑
j∈O xi,j

0, otherwise,
(3.17)

where O = {j | j ∈ pao, j = 1, . . . ,M}. The outcomes were generated as the sum of the
output node values in the case of treatment and the mean of the output node values in the
case of no treatment. Figure 3.6 shows an example of a graph from the SUM dataset with
two layers.

The SUM dataset was used to examine the importance of using a causal graph versus
an identity graph. We ran experiments with training sets containing 16, 32, 64, and 128
subjects, with up to four graph layers. These values were chosen to demonstrate model
performance across different scenarios and complexities. Increasing the numbers beyond
these values does not significantly change overall model performance. The test set was
fixed and contained 120 data points. Additionally, we report the performance of TARnet on
this dataset.

Node Masking

By design, GNN-TARnet relies on nodes that influence the outcomes to make predictions,
where these nodes correspond to the embedding values of input variables processed through
GNN layers. Theoretically, if we know all nodes influencing the outcome and no other
nodes influence them, training can be significantly simplified. To assess the accuracy of
causal discovery methods in identifying such influential nodes in existing datasets, as well
as to investigate any underlying structure, we mask the values of covariates identified as
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Figure 3.6. DAG for SUM dataset with two layers. Nodes in the output layer are marked
as gray, potential outcomes as green, and the nodes of layers zero and one are blue. Not all
edges and nodes are presented [1].

influencing the outcome by replacing them with zeros.

Our assumption is that if the causal discovery method correctly identifies all nodes in-
fluencing the outcome, and no additional nodes influence the outcome, the prediction result
should be equivalent to replacing all values in the dataset with zeros. We report the perfor-
mance of GNN-TARnet (LiNGAM) on datasets where either all covariates are masked with
zeros or only the covariates influencing the outcome are replaced by zeros.

In the SUM dataset, we mask all covariate values corresponding to nodes in the last layer
of graph G by replacing them with zeros, while preserving the original graph structure.
Note that masked output nodes are not counted as a layer; this increases the difficulty of
inference, as otherwise, one could simply train a model on variables influencing the outcome
and disregard all other variables to obtain optimal predictions.
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Figure 3.7. Personalized Pain Therapy aims to treat patients based on their individual char-
acteristics.

3.2.3 Disclosed Dataset

Overview of the PerPain Trial

Chronic musculoskeletal pain (CMSP) frequently persists despite adequate medical treat-
ment of underlying musculoskeletal disorders, largely due to the presence of psychological
comorbidities and complex psychobiological mechanisms. These factors can independently
maintain pain beyond its initial physical cause, significantly impairing overall well-being
and quality of life of a patient. Recognizing this multifaceted nature, the PerPain consortium
was established with the primary goal of enhancing therapeutic outcomes for CMSP patients
by identifying distinct subgroups characterized by specific pain-maintenance mechanisms
and subsequently tailoring individualized therapeutic interventions accordingly.

At the beginning of the PerPain trial, patients with CMSP underwent an extensive initial
screening process based on predefined eligibility criteria. Patients who qualified proceeded
to a comprehensive baseline assessment involving multiple standardized questionnaires de-
signed to capture critical psychological, behavioral, and functional dimensions related to
chronic pain. After data collection, rigorous preprocessing was performed, including careful
identification and removal of statistical outliers to ensure high-quality data. Subsequently,
baseline scores for each patient were computed as either the sum or average of questionnaire
responses. The computed baseline outcome measure for the i-th questionnaire is denoted as
Ybasei .

Following baseline assessments, eligible participants were randomized into one of two
study arms: a personalized treatment allocation group, where assignments were guided by
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a decision-making algorithm integrating unsupervised clustering with XGBoost classifica-
tion, and a random allocation group, which served as a control condition. In the random al-
location group, algorithm recommendations were deliberately ignored, and treatments were
instead randomly assigned. This approach allowed rigorous evaluation of the effectiveness
and added value of personalized therapeutic assignments. After several weeks of interven-
tion, patients underwent a follow-up assessment, yielding end-of-treatment outcome data
that corresponded directly to baseline measures. These end-of-treatment scores for the i-th
questionnaire are represented as YEoTi . The comparison between personalized and random
allocations provided essential insights into the benefits of tailored interventions for CMSP.

The following subsections offer detailed descriptions of the interventions and explain
the allocation algorithms used to guide personalized treatment assignments.

PerPain Trial Interventions

The PerPain Trial involved three tailored therapeutic programs, each specifically adapted to
patient profiles identified during baseline assessment. These interventions targeted essen-
tial psychological and behavioral dimensions implicated in chronic musculoskeletal pain,
differing clearly in their approach, intensity, and mode of delivery. Comprehensive inter-
vention descriptions, therapist training protocols, and session contents have been thoroughly
documented in prior literature [10]. Participants received one of three treatments based on
their identified characteristics: Emotional Distress Tailored Therapy (EDTT), Pain Extinc-
tion and Retraining Therapy (PERT), or Ecological Momentary Diary Intervention (EMDI).

EDTT provided individualized face-to-face psychotherapy designed for participants ex-
periencing significant emotional distress or trauma-related symptoms. EDTT integrated
core principles from Eye Movement Desensitization and Reprocessing (EMDR) along with
trauma-focused cognitive-behavioral therapy (CBT) methods, bilateral sensory stimulation
(e.g., guided eye movements), and dual-attention tasks [128]. Its primary objective was
facilitating the processing of distressing memories, reducing emotional reactivity, and al-
leviating emotional pain. Therapy sessions, guided by a structured manual, lasted approx-
imately 100 minutes each, delivered weekly over 12 weeks. The effectiveness of EDTT
in reducing emotional distress and improving pain-related outcomes has been validated by
previous studies [129, 130].

PERT was developed as a group-based intervention specifically targeting patients ex-
hibiting dysfunctional pain behaviors or maladaptive coping responses. Based on CBT
principles, PERT aimed to retrain maladaptive behaviors, encourage greater activity en-
gagement, and foster improved social interactions. Structured behavioral exercises, role-
playing, and video feedback were integral components of each session. Each therapy group
consisted of approximately five to six patients, with sessions held weekly for 100 minutes
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over 12 weeks. Additionally, two individual sessions were provided, and spouse or part-
ner involvement was actively encouraged. Prior evidence has demonstrated the efficacy of
PERT in improving patient outcomes and influencing brain activation patterns among highly
dysfunctional patients [131].

EMDI utilized a smartphone-based platform specifically for patients with lower psy-
chological distress and higher functional abilities. Participants engaged in daily logging of
positive activities using a dedicated smartphone application, supported by frequent notifica-
tions to encourage sustained engagement. This intervention aimed to shift patient attention
away from pain and toward meaningful, rewarding daily activities, thereby promoting be-
havioral activation and emotional self-regulation. Diary entries and responses to smartphone
prompts were collected daily throughout the 12-week intervention period. Previous research
has supported the efficacy of EMDI in reducing pain and stress levels while enhancing mood
and overall engagement in meaningful activities [132].

All three interventions were rigorously standardized to ensure consistency and compara-
bility across treatment groups. Therapists delivering EDTT and PERTwere trained psychol-
ogists who underwent specialized training, and adherence to manualized treatment protocols
was closely supervised. This careful matching of interventions to patient characteristics was
central to achieving optimal therapeutic effectiveness and generating actionable insights for
future personalized pain management strategies.

Allocation Algorithm

For personalized treatment allocation within the randomized controlled trial, we selected
key outcome variables derived from the West Haven-Yale Multidimensional Pain Inventory
(MPI-D) questionnaire [133], following themethodology described byRudy and Turk [134].
In addition to the psychological and behavioral constructs captured by the MPI-D, demo-
graphic covariates, specifically age and gender, were also included. The selected variables
represent key dimensions of pain experience and psychosocial functioning: Pain Severity
(PS), Interference (I), Life Control (LC), Affective Distress (AD), Social Support (S), Pun-
ishing Response (PR), Solicitous Response (SR), Distracting Response (DR), and General
Activity (GA). Each of these variables is measured on a numeric scale ranging from 0 to 6,
representing the intensity or frequency of the respective trait. Age was recorded in years,
while gender was encoded as a binary variable (0: male, 1: female).

To perform clustering, we used a previously available datasets provided by the consor-
tium partners, which included the MPI variables along with demographic data. Subjects
with missing data were excluded from the analysis. The final combined dataset consisted
of 461 participants: 189 men (average age: 49 years) and 272 women (average age: 51
years). Before clustering, all variables were standardized using Z-score normalization, and
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Figure 3.8. Description of the PerPain trial.

the data were randomly permuted to mitigate ordering effects. Clustering was carried out
using the kmeans algorithm in R, with the number of clusters set to three, consistent with
the structure proposed in earlier literature [134]. The clustering procedure was initialized
with 16 random centroids. To facilitate interpretation and comparison with previous studies,
we computed standardized T-scores (mean = 50, standard deviation = 10) for each variable
after clustering.

The analysis yielded three distinct patient profiles: Dysfunctional, characterized by high
Pain Severity and low General Activity; Distressed, marked by high Affective Distress and
low Social Support; and Copers, defined by low Pain Severity, high Life Control, and high
General Activity (see Figure 3.9).
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Figure 3.9. Mean T-scores for each cluster and variable.

To assign new patients to one of the identified clusters, we trained a predictive model us-
ing Gradient Boosted Decision Trees, implemented via the xgbTreemethod from the caret
package in R. The model was optimized using 16-fold cross-validation and a grid search for
hyperparameter tuning. To evaluate performance, we randomly split the combined dataset
into training (75%) and test (25%) subsets. On the test set, the classifier achieved an ac-
curacy of 97%. Following this evaluation, the model was retrained on the full dataset and
saved for future use.

To classify a new case, the model requires the outcomes from the MPI-D questionnaire
along with age and gender as inputs. It then returns the predicted cluster (i.e., treatment
group) along with the associated likelihood score. For interpretability, we also provide a
visual comparison of the current subject’s profile with the average profile of each cluster
from the combined dataset (see Figure 3.10).

New Treatment Assignment using ITE Estimators

Upon completion of the trial, evaluation results indicated no statistically significant differ-
ence in Pain Severity (PS), the primary outcome measure, between patients treated accord-
ing to the personalized algorithm and those assigned randomly (3.19±1.01 for personalized
allocation versus 3.26 ± 0.93 for random allocation). This absence of significant findings
may primarily be attributed to the relatively small sample size available for the final analy-
sis; initially, 105 participants were enrolled and randomized, but due to attrition during the
trial period, only 87 patients remained and provided end-of-treatment (EoT) data.

Given these outcomes, we explored a crucial research question: could alternative treat-
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Figure 3.10. Comparison of prediction with a mean subject from each category.

Figure 3.11. How the new treatment assigned to RCT participants based on the trial results.

ment assignments informed by ITE estimation methods have yielded improved therapeutic
results compared to the original allocation strategies? To investigate this, we conducted a
post-hoc analysis employing ITE estimation techniques. Specifically, we treated the RCT
data as observational, allowing us to estimate counterfactual outcomes for individual pa-
tients.

Treatment assignments were reassessed based on predicted EoT outcomes, YEoTpred ,
compared to baseline scores, Ybase. The individual treatment effect was explicitly defined
as follows:

ITE = YEoTpred − Ybase. (3.18)
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Subsequently, each patient was hypothetically reassigned to the treatment predicted to
produce the greatest individual benefit according to these ITE estimations. Figure 3.11 il-
lustrates the complete pipeline from initial patient screening through to the newly generated
treatment assignments.

In the following subsections, we detail the methodological procedures used, includ-
ing the identification and preparation of relevant input variables and the construction of
causal graphs essential for implementing advanced graph-based neural network methods,
namely GNN-TARnet and GAT-TARnet. Additionally, we included traditional ITE estima-
tion methods, specifically TARnet [24] and T-Learner [93], for comparative analysis. Given
that our data originate from a randomized controlled trial, treatment groups were already bal-
anced by design. Thus, more advanced balancing methods such as CFRNet [24] (e.g., using
Wasserstein distances to achieve distributional balance) were unnecessary in this context.

Variable Selection

Each questionnaire completed by participants yields a final score, which is calculated as
an aggregate of the individual item responses. These aggregate scores, also referred to as
composite scores, were used to assess their association with the primary outcome variable,
Pain Severity (PS) at the EoT, as measured by the MPI-D questionnaire. Since not all ques-
tionnaire scores exhibited equal levels of correlation with the outcome, a variable selection
step was necessary to identify the most informative features.

We propose a score-level variable selection approach, in which all individual question-
naire items (subscores) are retained if the corresponding overall score is found to be sig-
nificantly correlated with the outcome. To quantify the relationship between questionnaire
scores and Pain Severity, we computed the Pearson correlation coefficient [135] for each
score. The five scores with the highest absolute correlation to the outcome were selected
for further analysis.

To promote model interpretability and reduce the risk of overfitting, we excluded any
questionnaire scores that were based on more than six individual items. This threshold was
chosen as a compromise between preserving predictive power and maintaining a parsimo-
nious feature set. Following this filtering step, we identified the individual questionnaire
items (subscores) that contributed to the selected scores. These subscores formed the input
feature set for our network.

The final selected variables corresponded to the following subscores:

• Intensity, from the Chronic Pain Rating Scale [136],

• Sexual Abuse, from the Childhood Trauma Questionnaire (CTQ) [137],

• Perceived Helplessness, from the Perceived Stress Scale (PSS) [138],
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• Behavioral, from the Somatic Symptom Disorder 12 (SSD-12) [139],

• Belief in Illness, from the Whiteley-7 scale [140].

In total, the resulting dataset comprised 87 patients and 21 selected features. To ensure
robustness, we performed 200 random splits of the data into training and validation sets
using different random seeds. For each split, we reported the average MSE on both the
training and validation sets.

After identifying the best-performing model, we combined the training and validation
sets (66 patients total: 45 in training, 21 in validation) and retrained the model on this com-
bined data. The final evaluation of the treatment assignment strategy was then conducted
on the held-out test set, consisting of 21 previously unseen patients.

Extending Models to Handle Multiple Treatments

Let xi ∈ RM denote the vector of input features for patient i, and let yi ∈ R represent the
factual outcome, specifically the end-of-treatment Pain Severity score YEoT. The treatment
assignment is denoted as Ti ∈ {0, 1, 2}, corresponding to the three possible interventions:
EDTT (t = 0), EMDI (t = 1), and PERT (t = 2). Using the potential outcomes frame-
work [56], and given a dataset D = {(xi, yi, Ti)}Ni=1, our goal is to estimate the potential
outcomes ỹi,0, ỹi,1, and ỹi,2 for each patient under all three treatments, including the un-
observed counterfactuals. We then assign a new treatment T̃i to each patient based on the
largest expected gain relative to their baseline value Ybase,i:

T̃i = arg max
t∈{0,1,2}

(ỹi,t − Ybase,i) . (3.19)

Because the data originate from an RCT, we can estimate the conditional expectation
of potential outcomes µ̃t(xi) = E[ỹi,t | xi] using supervised learning techniques without
requiring distribution balancing. We evaluate prediction quality using the MSE, defined as:

ϵerror =
1

3

2∑
t=0

1

Nt

N∑
i=1

wt(Ti) (µ̃t(xi)− yi)2 , (3.20)

whereNt =
∑N

i=1wt(Ti) is the number of patients who received treatment t, andwt(Ti) is a
binary weighting function (defined below) that selects only patients who received treatment
t. Additionally, we apply a two-sample Kolmogorov-Smirnov test [141] to verify that the
distributions of predicted and factual outcomes are statistically similar, and to ensure that
the new treatment assignment strategy yields different allocation patterns compared to the
original randomization.
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Uncertainty Computation

Following the approach of Durso-Finley et al. [142], we incorporate uncertainty estimation
into TARnet, GNN-TARnet, and T-Learner by modifying these models to predict both the
mean and variance of a Gaussian distribution for each potential outcome of the treatment.
We assume the potential outcome under treatment t is distributed as:

ỹi,t ∼ N (µ̃t(xi), σ̃
2
t (xi)). (3.21)

The output layer of each model is modified to produce two values per treatment: the
predicted mean µ̃t(xi) and standard deviation σ̃t(xi). For a single sample (xi, yi) under
treatment Ti = t, the negative log-likelihood of the observed outcome is:

Li = − log p(yi | xi) =
1

2
log(2πσ̃2

t (xi)) +
(yi − µ̃t(xi))2

2σ̃2
t (xi)

. (3.22)

Averaging over all samples, the negative log-likelihood becomes:

L =
1

N

N∑
i=1

Li. (3.23)

To enhance robustness, we combine this probabilistic losswith anMSE loss term ϵerror,i =

(yi − µ̃Ti(xi))2, resulting in a hybrid loss:

L =
1

N

N∑
i=1

[αLi + (1− α)ϵerror,i] , (3.24)

where α ∈ [0, 1] controls the trade-off between uncertainty calibration and point prediction
accuracy. To generalize this to the multi-treatment setting (Ti ∈ {0, 1, 2}), we define the
multi-treatment hybrid loss as:

Lmulti =
1

N

2∑
t=0

N∑
i=1

wt(Ti) [αLt,i + (1− α)ϵt,i] , (3.25)

where:

• Lt,i is the negative log-likelihood of the outcome for treatment t and patient i,

• ϵt,i = (yi − µt(xi))2 is the squared error,

• wt(Ti) = δTi,t is a binary indicator for treatment membership.

For implementation convenience and continuity with prior sections, we define wt(Ti)
using the equivalent polynomial forms:

w0(Ti) = 0.5T 2
i − 1.5Ti + 1, (3.26)
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w1(Ti) = −T 2
i + 2Ti, (3.27)

w2(Ti) = 0.5T 2
i − 0.5Ti. (3.28)

This formulation ensures that only the factual treatment contributes to the loss for each
sample, while the model still learns parameters for all three treatment arms. This approach
allows the network to learn accurate and calibrated estimates of both factual and counter-
factual outcomes with quantified uncertainty.

Our implementation, developed in TensorFlow, supports efficient scaling and extends
binary-treatment architectures to multi-treatment scenarios. Updated architectures of T-
Learner, TARnet, and GNN-TARnet with built-in uncertainty modeling are visualized in
Figures 3.12-3.14.
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Figure 3.12. The GNN-TARnet architecture with multiple treatments and Uncertainty.

Causal Graph Generation

GNN-TARnet or GAT-TARnet require deterministic causal graph for best performance.
Data from PerPain RCT is a compilation of multiple questionnaires that collect informa-
tion about different aspects of the health of the patient. Each questionnaire has a final score.
We propose to create a graphG based on the answers that make up the final score of the ques-
tionnaires. First, we concatenate the input features corresponding to the answers to baseline
questionnaires with the baseline outcome scores of the same questionnaires. Such outcomes
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Input

Figure 3.13. The TARnet architecture with multiple treatments and Uncertainy.

are manually computed as summations or averagings of the questionnaire responses, which
can be error-prone. To avoid using manually computed outcomes, we replace the values
of the baseline scores with zeros. We assume that GNN-TARnet and GAT-TARnet will be
able to impute the values. After that, we create an adjacency matrix and store its elements
as an array of tuples. The first element of the tuple is the index of an input feature, and the
second element is the index of the corresponding baseline score. The tuple corresponds to
the parent-child relationship in a causal graph. Figure 3.15 shows an example of a causal
graph for the case of M = 4 replies to answers coming from two different questionnaires
Q = 2. We call the nodes containing the answers to the baseline questions the input nodes,
and the direct children of the nodes the hidden nodes. We call the nodes hidden because
they correspond to zero-valued features and only updated via the GNN blocks during the
training.

3.3 Hyperparameter Optimization

This section introduces hyperparameter optimization techniques to determine optimal net-
work configurations for our proposed GNN-TARnet and GAT-TARnet architectures (Sec-
tion 3.1.5), ensuring robust ITE estimation across diverse datasets (Section 3.2). For a
comprehensive comparison with existing methods, we also apply these techniques to thir-



64 Hyperparameter Optimization

Input

Figure 3.14. The TLearner architecture with three treatments and the Uncertainty.

teen established ITE estimation approaches published before 2022: S-Learner, T-Learner,
R-Learner, X-Learner [93], TARNet [24], CEVAE [43], TEDVAE [107], Dragonnet [99],
DKLITE [49], GANITE [103], CFR-Weight, CFR-Wass, and CFR-MMDSQ [24] .We focus
on these methods due to several strategic considerations. First, they represent foundational
paradigms in causal inference, spanning meta-learners, representation-based models, and
generative approaches, which are widely validated as benchmarks in the field [3]. Second,
their pre-2022 publication ensures a stable, well-documented baseline, avoiding bias toward
newest, less-tested innovations. This enables a fair evaluation of whether our GNN-based
methods offer genuine advancements or if optimized legacy models can achieve comparable
performance. Finally, optimizing these older methods highlights the potential of modern
tuning techniques to revitalize established frameworks, providing a transparent and equi-
table benchmarking framework for GNN-TARnet and GAT-TARnet [1].

Hyperparameter optimization involves training multiple model instances with varied pa-
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Figure 3.15. An example graph for a dataset consisting of four covariates from two different
questionnaires (blue), two hidden nodes representing the questionnaire scores (grey) and
three outcome nodes (green).

rameter configurations, evaluating their performance on a validation set, and selecting the
configuration with the lowest validation loss, typically MSE for ITE tasks. Numerous op-
timization strategies exist [143]; we leverage the Keras Tuner library [124] for its flexi-
bility and efficiency, employing three techniques: Random Search, Hyperband [144], and
Bayesian Optimization. These methods balance exploration (searching diverse configura-
tions) and exploitation (refining promising ones), optimizing hyperparameters like learning
rate, layer depth, and node embedding size for our GNN-based models, while adapting to
the architectural specifics of the thirteen baselines.

Random Search

Random Search evaluates a fixed number of hyperparameter configurations sampled ran-
domly from a predefined search space. Users first specify ranges for each parameter , such
as learning rate ∈ [10−4, 10−2], number of fully connected layers ∈ [1, 10] for TARnet, or
hidden dimensionality for treatment specific branches ∈ [16, 512] for TARnet. The tuner
then randomly selects a configuration, trains the model (e.g., for 50 epochs), and assesses
validation loss. This process iterates until a budget (e.g., 10 trials) is exhausted, identifying
the configuration with the best performance. The strength of Random Search lies in its unbi-
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ased exploration, avoiding assumptions about parameter interactions, making it suitable for
diverse architectures like S-Learner or CFR-MMDSQ. However, its efficiency diminishes
in high-dimensional spaces, as it lacks guided refinement [145].

Hyperband

Hyperband integrates Random Search with early stopping to enhance resource efficiency. It
begins by training a large pool of randomly sampled configurations (e.g., 200) for a minimal
epoch count (e.g., 5). After evaluating validation loss, it retains the top-performing fraction
(e.g., top 50%), training these for additional epochs (e.g., 10), and repeats this halving pro-
cess until a few configurations (e.g., 1-5) complete full training (e.g., 50 epochs). The best
hyperparameters are those of the final top performer. The main advantage of the Hyperband
is its ability to discard underperforming models early, exploring more configurations within
a fixed computational budget than Random Search, though it assumes early performance
predicts final outcomes, which can be a potential limitation for slow-converging models.

Bayesian Optimization

Bayesian Optimization constructs a probabilistic surrogate model, typically a Gaussian Pro-
cess, of the hyperparameter-performance relationship, guiding the search toward high-performing
regions. It starts with a prior distribution over parameters (e.g., uniform for learning rate,
discrete for layer count) and evaluates an initial set of configurations (e.g., 10 trials). Using
Bayes’ rule, it updates the posterior based on validation loss, balancing exploration (untested
regions) and exploitation (promising areas) via an acquisition function (e.g., Expected Im-
provement). New configurations are sampled from the posterior, and the cycle repeats (e.g.,
50 iterations) until convergence. Bayesian Optimization can excel in efficiency over Ran-
dom Search by leveraging prior evaluations, though it requires careful prior specification
and can struggle with discrete or high-dimensional spaces [146].

In subsequent subsections, we detail the application of these techniques to thirteen base-
lines, providing insights into search spaces, optimization outcomes, and comparative perfor-
mance, illuminating the role of tuning in advancing ITE estimation across methodologies.

Integration with ITE Estimation Methods

S-Learner

S-Learner or single learner uses a single estimation function µ(·). In our case we use a
MLP with nfc consecutive fully-connected layers each having nhid parameters, where nfc
is the number of layers and nhid is the number of hidden units in the MLP. As input it takes
covariates X concatenated with an observed treatment T . It learns to predict the factual
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outcomes, thus we are using a MSE between the predicted values Ȳ = µ(X,T ) and the real
outcomes as the loss functions:

LS = E[(Ȳ − Y )2], (3.29)

where E means averaging over the all subjects in the batch. During inference, the causal
effect is calculated as τ(xi) = µ(xi, 1) − µ(xi, 0), where the treatment T is set to 1 or 0,
respectively to all subjects. For S-Learner we optimize the number of hidden units nhid and
fully connected layers nfc while keeping the batch size bs and learning rate lr constant.

T-Learner

T-Learner estimates treatment response surfaces using MLPs for each unique treatment
value. In the binary case, two causal estimators, µ0(xi) = E[Y 0|X = xi, ti = 0] and
µ1(xi) = E[Y 1|X = xi, ti = 1], are trained on the covariates and outcomes of subjects
receiving the corresponding treatment [93]. The loss function for the T-Learner is defined
as:

LT = E[(1− T )(µ0(X)− Y ))2 + T (µ1(X)− Y )2]. (3.30)

For T-Learner we tune each estimator separately. We are searching for number of hid-
den units n0

hid, n
1
hid, number of fully connected layers in the treated and untreated branches

n0
fc, n

1
fc, as well as batch sized bs0, bs1 and learning rates lr0, lr1 independently from each

other.

X-Learner

Like the T-Learner, the X-Learner [93] also estimates µ0(xi) and µ1(xi) using MLPs. After
that, the imputed treatment effects are computed as: D0

i := µ1(x
0
i ) − y0i and D1

i := y1i −
µ0(x

1
i ), where x1i , x0i , and y1i , y0i are the observed covariates and outcomes for the treated

and untreated, respectively. Next, one estimates τj(xi) = E[Dj|X = xi]with j ∈ 0, 1 using
again MLPs in our case because of dependence on the factual outcomes. Finally, the CATE
is inferred from

τ(X) = g(X)τ0(X) + (1− g(X))τ1(X), (3.31)

where the propensity score g(X) = E[T |X] is the probability of receiving treatment T for
a given set of covariates X .

For X-Learner we search the number of hidden units nµ0hid and n
µ1
hid, layers n

µ0
fc and n

µ1
fc ,

and batch sizes bsµ0 and bsµ1 for the response functions µ0 and µ1. The number of hidden
units, layers, and batch size for the imputed treatment effects d0 and d1, and, finally, the
number of hidden units nghid, layers n

g
fc, and batch size bsg for the propensity score network

g.
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R-Learner

The R-Learner [110] also learns to estimateµ(xi) and g(xi)withMLPs. Themain difference
is that the CATE estimator τ(xi) is additionally trained using neural networks. The loss is
originated from Robinson [147] decomposition and is given by:

LR = E
[((

Y − µ(X)
)
−
(
T − g(X)

)
τ(X)

)2
]. (3.32)

The Robinson decomposition reformulates the original problem of estimating the treatment
effect as a regression task by removing the influence of covariates on both the treatment and
the outcome [148]. For R-Learner we are looking for batch sizes bsµ, bsg, and bsτ , number
of fully connected layers nµfc, n

g
fc, and nτfc, and finally number of hidden units n

µ
hid , n

g
hid,

and nτhid for each of the networks µ, g, and τ .

Counterfactual Regression

The Counterfactual Regression is a name given by Shalit et al. [24] to developed by them
representation-based algorithms. As mentioned earlier, the CFR algorithms work by chang-
ing the representation of the initial data. In case of the CFR data is transformed into a latent
space using MLP, after that an algorithm tries to reduce the distribution shift between the
treated and the untreated patients. This is done using distance-based IPM. The IPM can
either be a Wasserstein distance, MMDSQ, or no metric at all. The corresponding methods
are denoted as CFR-Wass, CFR-MMDSQ, and TARent. After the latent space the informa-
tion is passed through the treatment specific branches represented by MLPs. In case of a
binary treatment the number of MLPs is equal to two. The loss of the general CFR network
is presented below:

LCFR = LT + α IPM(ϕ(X|T = 0), ϕ(X|T = 1)), (3.33)

where α > 0 is a regularization term that balances the group distributions. The first part
aligns with the loss of the T-Learner (3.30), where µ0(·) and µ1(·) represent the outcomes of
the treatment-specific branches. The second part is an additional loss term that minimizes a
distance-based IPM between the two latent distributions ϕ(X|T = 0) and ϕ(X|T = 1). A
variant of CFR with α = 0 corresponds to TAR-Net. For TAR-Net we tune the number of
hidden units in layers in the representation network nfc, nhid as well as, unlike the original
paper, the number of hidden units in layers in the treatment specific branches n0

fc, n0
hid, and

n1
fc, n1

hid. We also tune the dimensionality of the representation space nouthid before branching
to see its influence on the results. In case of CFR-Wass and CFR-MMDSQ we are looking
for the same parameters as in TAR-Net.
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DragonNet

In DragonNet [99], the hidden representation is balanced using the propensity score [13],
g(X), which is computed through an additional branch. This approach is designed to min-
imize error propagation into the outcomes. A weighted Cross-Entropy (CE) loss with a
hyperparameter α > 0, between g(X) and the actual treatment assignment T , is added to
the objective loss LT to form the DragonNet model loss LDN:

LDN = LT + αCE(g(X), T ). (3.34)

In the case of DragonNet, in addition to the parameters of the TAR-Net, we also optimize
the parameters of the propensity score branch, specifically the number of fully connected
layers ngfc and the number of hidden units h

g
hid.

Weighted CFR

CFR-Weight [101] uses the MMDSQ metric to balance the distributions of treated and un-
treated patients, weighted with the propensity score estimated similarly to DragonNet. Ac-
cording to the authors, the weighting mechanism enhances reliability when treatments are
assigned with significant imbalance. The algorithm of this method is similar to CFR, ini-
tially transforming the covariates into a latent space. Following this, the propensity score
g(X) is computed. The treatment-specific representations of the data are then multiplied
by their corresponding propensity scores. Subsequently, the MMDSQ distance between
the distributions of treated and untreated samples is calculated, with their equality enforced
during model training. For CFR-Weight, we optimize the same parameters as in the case of
DragonNet.

DKLITE

At first, DKLITE [49] transforms the input via MLP ϕ into a latent space z. After that the
resulting vector is passed through a kernel function. Next, the mean and variance of the
hidden space distribution are computed and used to calculate the variance and likelihood
losses, Lvar and Llike, respectively. A reconstruction loss, Lrec, is computed as the mean
squared error (MSE) between the input data X and the network output ϕ−1. The final loss
function is expressed as:

LDKLITE = Llike + α1 Lvar + α2 Lrec, (3.35)

where α1 > 0 and α2 > 0 are hyperparameters. For DKLITE we are looking for the number
of fully-connected layers and hidden units for decoder and encoder: nencfc , ndecfc , nenchid , ndechid.
The dimensionality of latent space nzhid was set to 80 as we found this value to be the best.
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GANITE

GANs [112] use competing networks to achieve the desired results in classification or re-
gression by coupling their loss objectives. Typically GANs consist of two networks trained
at the same time in a competitive manner by coupling their loss objectives. The first net-
work is called a generator and the second one is a discriminator. The goal of the generator
is to create samples similar to the ones from the target distribution. The discriminator learns
to distinguish between the generated and the real samples. As the generator improves, the
discriminator has more problems in distinguishing the real and generated samples. This
principle was used by Yoon et al. [103] to generate counterfactual outcomes. Their method
called Generative Adversarial Nets for Inference of Individualized Treatment Effects (GAN-
ITE) consists of two blocks. In the first block, the generatorGCF (X,Y, T ) imputes missing
counterfactual outcomes Ỹ = {Ỹ 0, Ỹ 1} using covariates X , treatment T , and factual out-
comes Y as input. At the same time, the discriminator DCF (X, Ȳ ), where Ȳ = {Y, Ỹ } is
a vector of both factual and generated outcomes, is trained to maximize the probability of
correctly identifying the factual outcomes Ȳ . The loss function is presented below:

LD = −L(DCF )

LG = MSE(Y, Ỹ ) + αL(DCF ),
(3.36)

where α > 0 is a hyperparameter. The second block called GITE(X) is then trained to
predict potential outcomes using the learned counterfactual outcomes with only covariates
X as input. The loss function for the ITE-block is presented below:

LITE = MSE(Ŷ 1 − Ŷ 0, Ȳ 1 − Ȳ 0). (3.37)

With the hyperparameter optimization algorithms we are looking for the number of hid-
den units and layers for generator ngfc, n

g
hid, discriminator ndfc, ndhid, and inference network

nifc0 , n
i
hid0

, nifc1 , and n
i
hid1

. Additionally we are looking for batch size and learning rates for
inference network bsi, lri, and generator network bsg, lrg.

CEVAE

Variational autoencoder (VAE) is a probabilistic graphical model with a Bayesian founda-
tion, approximating the observed distribution p(X|Z) (decoder) conditioned on latent vari-
ables Z, which are sampled from the latent posterior distribution q(Z|X) (encoder). Both
the decoder and encoder are trained simultaneously to maximize the Evidence Lower Bound
(ELBO) [149]. In the context of causal inference, VAEs are adapted to DAGs and define
the process by which observations are generated. CEVAE [43] samples the proxy covariate
distribution p(X|Z), the binary treatment distribution p(T |Z), and the outcome distribution
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p(Y |T, Z) from hidden variables. The inference network learns the posterior approximation
through the complete input set, q(Z|X,Y, T ). The overall training objective is determined
by maximizing the variational lower bound of the model, with the addition of auxiliary dis-
tributions q(T |X) and q(Y |X,T ). The loss function for CEVAE is presented below:

LCEVAE =Eq(Z|X,Y,T )[logp(X,T |Z) + logp(Y |T, Z)

+ logp(Z)− logq(Z|X,Y, T )]

+ logq(T |X) + logq(Y |X,T ).

(3.38)

In the case of CEVAE we are searching for number of fully connected layers and units for
decoder and encoder networks transforming: outcomes y: nyfc, n

y
hid, covariatesX: nXfc, nXhid,

and treatment T : nTfc, nThid to latent space and back.

TEDVAE

TEDVAE [107] was based on the ideas of CEVAE. However, unlike CEVAE, which learns a
combined latent representation to inferX , Y , and T , TEDVAEdisentangles the latent factors
into three independent components: ZT , ZY , andZC . The instrumental factorZT influences
only the treatment assignment, ZY affects only the outcome, and ZC acts as a confounding
factor, influencing both the treatment and the outcome. Each disentangled factor is repre-
sented not by a single value but by a distribution, which is learned through separate encoders:
qT (ZT |X), qC(ZC |X), and qY (ZY |X). The parameters for each distribution are generated
by fully connected neural networks. The TEDVAE inference model consists of a decoder
pX(X|ZT , ZC , ZY ) reconstructing X , two disjoint decoders pY (Y |T = 1, ZC , ZY ) and
pY (Y |T = 0, ZC , ZY ) predicting counterfactual outcomes, and a decoder pT (T |ZT , ZC)
recovering the assigned treatment. The loss of the TEDVAE is presented below:

LTEDVAE =LELBO(X,Y, T )

+ αT EqT qC [logpT (T |ZT , ZC)]

+ αY EqY qC [logpY (Y |T, ZY , ZC)],

(3.39)

where αT > 0, αY > 0 are hyperparameters, and LELBO(X,Y, T ) is:

LELBO =EqT qCqY [logpX(X|ZT , ZC , ZY )]

−DKL(qT (ZT |X)||pT (ZT ))

−DKL(qC(ZC |X)||pC(ZC))

−DKL(qY (ZY |X)||pY (ZY )).

(3.40)

Here, qT (ZT |X), qC(ZC |X), and qY (ZY |X) are Gaussian or Bernoulli distributions, de-
pending on whether the outcome variable is continuous or binary. The mean and variance
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of these distributions are parameterized by neural networks. The priors pT (ZT ), pC(ZC),
and pY (ZY ) are represented by Gaussian normal distributions. The Kullback-Leibler diver-
gence (KL divergence), denoted by DKL, is used to measure the difference between these
posterior distributions and their corresponding priors. For TEDVAE we a searching for the
number of hidden layers and units for the encoder nencfc , nenchid and decoder ndecfc , ndechid as well
as the learning rate lr.



Chapter 4

Results

In this chapter we present the results of comparison between GNN-TARnet, GAT-TARnet
and other models. We also present results on the artificial SUM dataset and the disclosed
PerPain dataset. For clarity, we present the results in separate sections for clarity.

4.1 Implementation Details

Existing and Artificial Datasets

We evaluate the performance of the proposed graph-based ITE estimation models, includ-
ing both GNN-TARnet and GAT-TARnet, using different graph construction strategies. For
GNN-TARnet, we consider the identity (ident.) graph (GNN-TARnet (ident.)), as well as
graphs derived from the previously mentioned causal discovery algorithms: LiNGAM [86]
(GNN-TARnet (LiNGAM)), PC [69] (GNN-TARnet (PC)), and GES [87] (GNN-TARnet
(GES)). The GAT-TARnet model is evaluated using the same graph construction methods
to ensure a consistent comparison. These models are benchmarked against established treat-
ment effect estimators, including meta-learners such as SLearner and TLearner [93], as
well as representation learning methods like CFR-Wass [24], TEDVAE [107], and GAN-
ITE [103]. The evaluation focuses on identifying the strengths and limitations of the pro-
posed graph-based architectures when applied to standard tabular benchmarks, specifically
the JOBS, IHDPA, and IHDPB datasets.

For GNN-TARnet, we optimize the number of layers and hidden units in the treatment-
specific branches using the random search hyperparameter optimization algorithm from the
Keras Tuner library [124]. The search space was defined as follows: the number of hidden
units in the treatment-specific branches, n0

hid and n1
hid, ranged from 16 to 256 in increments

of 16, while the number of fully connected layers, n0
fc and n1

fc, varied from 2 to 10 in steps of
1. The optimal hyperparameters selected for the IHDPA, IHDPB, JOBS, and SUM datasets
are summarized in Table 4.1. In this table, ngnnhid denotes the number of hidden units and

73
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Table 4.1. Parameters of GNN-TARnet model.

n0
fc n1

fc n0
hid n1

hid ngnnfc ngnnhid bs lr

IHDPA 4 6 96 240 4 128 64 1e-4

IHDPB 4 6 208 240 4 128 32 1e-4

JOBS 5 6 240 176 2 16 64 1e-2

SUM 2 2 16 16 2 16 2 1e-3

Table 4.2. Parameters of GAT-TARnet model.

n0
fc n1

fc n0
hid n1

hid nattheads nattlayers bs lr

IHDPA 4 6 96 240 2 2 64 1e-4

IHDPB 4 6 208 240 2 2 64 1e-4

JOBS 4 6 240 176 2 2 64 1e-2

SUM 2 2 16 16 2 2 2 1e-3

ngnnfc represents the number of fully connected layers in the GNN block, with bs indicating
the batch size and lr the learning rate.

For GAT-TARnet, we set the number of layers and hidden units in the treatment-specific
branches to match the optimal configurations found for GNN-TARnet (see Table 4.1). This
ensures a consistent comparison between the two architectures. In addition to these shared
parameters, two attention-specific hyperparameters were introduced: the number of atten-
tion heads, nattheads, and the number of attention layers, nattlayers. These were fixed at nattheads = 2

and nattlayers = 2 across all datasets. The complete configuration of GAT-TARnet for the
IHDPA, IHDPB, JOBS, and SUM datasets is presented in Table 4.2, with bs denoting batch
size and lr the learning rate.

For the IHDPA, IHDPB, and JOBS datasets, all models were tuned on the first sub-
dataset using the Random Search Tuner from Keras [124], supplemented by TensorFlow
callback functions such as EarlyStopping and ReduceLROnPlateau to enhance training ef-
ficiency and performance. We used the Stochastic Gradient Descent (SGD) optimizer [150]
with a momentum of 0.9, as it performed better empirically on all considered models than
the ADAM optimizer [151] on the tested datasets. Since the graph structures for IHDPA,
IHDPB, and JOBS were unknown, the graph adjacency matrix A was identified using the
LiNGAM algorithm from the LiNGAM package [152], as well as the PC and GES algo-
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rithms from the causalai library [153]. Neural network parameters were initialized with
values drawn from the normal distributionN (0, 0.052). Optimal parameters for other mod-
els were selected according to the procedure outlined in the previous chapter and reported
in the Appendix. All computations were performed on a system with an NVIDIA GeForce
RTX 2060 SUPER, an AMD Ryzen 7 3800X 8-core processor, and 32 GB of RAM.

Disclosed Dataset

All models were trained using the SGD optimizer [150]. Model parameters were tuned us-
ing 200-fold cross-validation, and final performance was evaluated on a held-out test set not
used during training or validation. For GNN-TARnet, the model included 58 hidden units
following the embedding layer. The treatment-specific branches were configured with 60,
100, and 64 hidden units, respectively. The number of fully connected layers was set to 4 in
the graph neural network block, and to 5, 2, and 10 in the treatment-specific branches. Ran-
dom normal kernel initialization and a linear activation function were used in the treatment-
specific branches. Within the graph layers, both the combination and aggregation types
were implemented as summation operations. For GAT-TARnet, we used 4, 8, and 2 layers
for treatment-specific branches with 48, 60, and 68 hidden units respectively. Additionally,
the attention mechanism was configured with nattheads = 2 and nattlayers = 2.

For TARnet, the shared representation block consisted of 10 fully connected layers with
102 hidden units. The treatment-specific branches included 4, 5, and 3 layers with 120, 72,
and 72 hidden units, respectively. The learning rate was set to 1× 10−4. For the T-Learner,
the architecture consisted of 4, 5, and 3 fully connected layers with 52, 104, and 120 hidden
units, respectively.

All model configurations were determined using the random search hyperparameter op-
timization algorithm from the Keras Tuner library [124], with a validation split of 0.2. The
search space was reduced compared to that used for the existing datasets to minimize the
risk of overfitting. We searched the number of layers in the treatment-specific branches be-
tween 2 and 10. The number of hidden units was selected from the interval between 4 and
128 with a step of 4. Experiments were conducted on a system equipped with an NVIDIA
GeForce RTX 2060 SUPER GPU, an AMD Ryzen 7 3800X 8-core processor, and 32 GB
of RAM.

4.2 Existing Datasets

The comparison results between GNN-TARnet and other models are presented in Table 4.3
and Table 4.4. The results indicate that the proposed method performs comparably with
other approaches.
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Table 4.3. Comparison of models Rpol and
√
ϵPEHE on different datasets. The best-

performing models are highlighted in bold.

JOBS(Rpol) IHDPA(
√
ϵPEHE) IHDPB(

√
ϵPEHE)

Train Test Train Test Train Test

SLearner 0.22± 0.00 0.23± 0.01 0.41± 0.03 0.43± 0.04 2.14± 0.04 2.30± 0.06

TLearner 0.22± 0.00 0.23± 0.01 0.50± 0.01 0.53± 0.02 1.87± 0.05 2.01± 0.06

RLearner 0.22± 0.00 0.24± 0.01 0.58± 0.06 0.59± 0.06 2.29± 0.06 2.40± 0.07

XLearner 0.22± 0.00 0.23± 0.01 0.70± 0.06 0.72± 0.07 1.95± 0.05 2.07± 0.06

TARnet 0.22± 0.00 0.23± 0.01 0.37± 0.01 0.39± 0.01 1.84± 0.04 1.99± 0.05

CFR-Wass 0.28± 0.00 0.28± 0.01 0.37± 0.03 0.38± 0.04 1.97± 0.04 2.10± 0.05

CFR-MMDSQ 0.21± 0.00 0.25± 0.01 0.53± 0.02 0.54± 0.03 1.83± 0.04 1.97± 0.05

CFR-Weight 0.23± 0.00 0.25± 0.01 0.49± 0.03 0.51± 0.03 1.89± 0.04 2.02± 0.05

Dragonnet 0.24± 0.00 0.26± 0.01 0.37± 0.01 0.39± 0.02 1.85± 0.04 2.00± 0.05

DKLITE 0.21± 0.00 0.23± 0.01 0.34± 0.02 0.36± 0.03 2.24± 0.06 2.40± 0.06

TEDVAE 0.19± 0.00 0.23± 0.01 0.52± 0.03 0.56± 0.05 2.01± 0.04 2.16± 0.05

CEVAE 0.22± 0.00 0.23± 0.01 0.83± 0.08 0.83± 0.08 2.51± 0.06 2.62± 0.06

GANITE 0.24± 0.00 0.25± 0.01 0.51± 0.06 0.53± 0.07 2.53± 0.08 2.63± 0.09

GNN-TARnet (LiNGAM) 0.22± 0.00 0.23± 0.01 0.40± 0.02 0.42± 0.03 2.12± 0.09 2.29± 0.11

GNN-TARnet (GES) 0.22± 0.00 0.23± 0.01 0.46± 0.04 0.48± 0.04 2.31± 0.08 2.48± 0.09

GNN-TARnet (PC) 0.22± 0.00 0.23± 0.01 0.49± 0.06 0.51± 0.07 2.78± 0.15 2.99± 0.17

GNN-TARnet (ident.) 0.22± 0.00 0.23± 0.01 0.53± 0.01 0.54± 0.02 1.85± 0.04 1.98± 0.05

GAT-TARnet (LiNGAM) 0.25± 0.00 0.25± 0.01 0.43± 0.02 0.46± 0.02 2.10± 0.09 2.24± 0.09

GAT-TARnet (GES) 0.28± 0.00 0.29± 0.01 0.46± 0.04 0.48± 0.04 2.16± 0.09 2.31± 0.09

GAT-TARnet (PC) 0.22± 0.00 0.23± 0.01 0.53± 0.06 0.57± 0.07 2.52± 0.14 2.69± 0.15

GAT-TARnet (ident.) 0.30± 0.00 0.30± 0.01 0.67± 0.02 0.70± 0.03 1.90± 0.05 2.05± 0.05

Table 4.3 compares the performance of GNN-TARnet and GAT-TARnet to a range of
baseline and state-of-the-art models across three datasets: JOBS, IHDPA , and IHDPB. On
the JOBS dataset, GNN-TARnet variants (LiNGAM, GES, PC, and identity graphs) con-
sistently achieve test scores around 0.23, performing on par with strong baselines such
as TARnet and Dragonnet. While TEDVAE reports the lowest policy risk on this dataset
(0.23±0.01), GNN-TARnet remains highly competitive. GAT-TARnet models, on the other
hand, show greater variance, with test scores ranging from 0.23 to 0.30. GAT-TARnet (PC)
matches the top performers, but its other variants, especially those using identity or GES
graphs, exhibit reduced accuracy.

On the IHDPA dataset, GNN-TARnet (LiNGAM) demonstrates solid performance with
a test error of 0.42 ± 0.03, closely following TARnet and Dragonnet, both of which report
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Table 4.4. Comparison of models ϵATT and ϵATE on different datasets. The best-performing
models are highlighted in bold.

JOBS(ϵATT ) IHDPA(ϵATE) IHDPB(ϵATE)

Train Test Train Test Train Test

SLearner 0.22± 0.00 0.23± 0.01 0.09± 0.01 0.10± 0.01 0.24± 0.03 0.26± 0.04

TLearner 0.15± 0.00 0.17± 0.01 0.09± 0.01 0.11± 0.01 0.18± 0.03 0.22± 0.04

RLearner 0.15± 0.00 0.17± 0.01 0.11± 0.01 0.13± 0.01 0.31± 0.05 0.33± 0.04

XLearner 0.21± 0.00 0.22± 0.00 0.10± 0.01 0.13± 0.02 0.24± 0.03 0.27± 0.04

TARnet 0.15± 0.00 0.16± 0.01 0.09± 0.01 0.10± 0.01 0.19± 0.03 0.23± 0.03

CFR-Wass 0.09± 0.02 0.12± 0.02 0.10± 0.01 0.10± 0.01 0.33± 0.05 0.36± 0.05

CFR-MMDSQ 0.15± 0.01 0.16± 0.02 0.09± 0.01 0.10± 0.01 0.22± 0.03 0.24± 0.04

CFR-Weight 0.18± 0.01 0.20± 0.02 0.09± 0.01 0.10± 0.01 0.21± 0.03 0.24± 0.04

Dragonnet 0.21± 0.02 0.23± 0.03 0.09± 0.01 0.10± 0.01 0.21± 0.03 0.26± 0.03

DKLITE 0.19± 0.01 0.20± 0.02 0.09± 0.01 0.09± 0.01 0.23± 0.03 0.27± 0.04

TEDVAE 0.16± 0.00 0.17± 0.01 0.09± 0.01 0.11± 0.01 0.22± 0.03 0.25± 0.03

CEVAE 0.16± 0.01 0.17± 0.02 0.11± 0.01 0.14± 0.02 0.25± 0.03 0.30± 0.04

GANITE 0.28± 0.02 0.30± 0.02 0.15± 0.02 0.16± 0.02 0.37± 0.05 0.41± 0.06

GNN-TARnet (LiNGAM) 0.12± 0.00 0.14± 0.01 0.09± 0.01 0.10± 0.01 0.24± 0.02 0.28± 0.04

GNN-TARnet (GES) 0.12± 0.00 0.14± 0.01 0.09± 0.01 0.11± 0.01 0.24± 0.03 0.26± 0.04

GNN-TARnet (PC) 0.12± 0.00 0.14± 0.01 0.09± 0.01 0.10± 0.01 0.31± 0.04 0.34± 0.05

GNN-TARnet (ident.) 0.12± 0.00 0.14± 0.01 0.09± 0.01 0.11± 0.01 0.19± 0.02 0.23± 0.03

GAT-TARnet (LiNGAM) 0.32± 0.02 0.34± 0.02 0.10± 0.01 0.11± 0.01 0.24± 0.02 0.28± 0.04

GAT-TARnet (GES) 0.12± 0.01 0.14± 0.02 0.10± 0.01 0.11± 0.01 0.24± 0.03 0.26± 0.04

GAT-TARnet (PC) 0.36± 0.02 0.37± 0.02 0.11± 0.01 0.13± 0.01 0.31± 0.04 0.34± 0.05

GAT-TARnet (ident.) 0.30± 0.00 0.19± 0.01 0.12± 0.01 0.14± 0.02 0.20± 0.03 0.24± 0.03

slightly lower errors. The best results are obtained by DKLITE (0.36 ± 0.03), indicating
room for further optimization of GNN-TARnet in this setting. GAT-TARnet (LiNGAM)
achieves comparable results but does not significantly outperform simpler baselines. The
trend continues on the IHDPB dataset, where GNN-TARnet (ident.) performs especially
well, matching or surpassing many baselines with a test error of 1.98± 0.05. Notably, this
is on par with TARnet and better than methods such as DKLITE and CEVAE. However,
GNN-TARnet (PC) underperforms significantly on IHDPB, likely due to the limitations of
structure learning in high-dimensional settings. Similarly, GAT-TARnet shows inconsistent
results: while some variants like GAT-TARnet (LiNGAM) maintain competitive accuracy,
others (e.g., PC and identity) perform poorly, with test errors exceeding 2.60.

Overall, GNN-TARnet demonstrates stable and competitive performance across datasets,
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particularly when using reasonable graph structures such as LiNGAM or identity matrices.
In contrast, GAT-TARnet tends to be more sensitive to graph structure quality and dataset
complexity, performing well in some cases but lacking robustness in others.

4.3 Artificial Dataset

Figure 4.1. Dependency of number of layers and √ϵPEHE for different number of samples
in the training set.

As illustrated in Figure 4.1, on the artificial dataset, the model using a real graph out-
performed its counterpart using an identity graph when the number of training samples was
small. As the training set size increased, the performance of GNN-TARnet with the iden-
tity graph steadily improved and eventually surpassed that of the model using real graphs.
This pattern held consistently across datasets with varying depths (i.e., different numbers of
layers). TARnet struggled to match the performance of GNN-TARnet under conditions of
limited data, particularly when fewer than 128 samples were available, due to the presence
of masked covariates, which posed a considerable challenge to accurate outcome estima-
tion. Notably, the use of an identity graph in GNN-TARnet required more training samples
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to achieve parity with the performance of GNN-TARnet using the actual graph, especially as
the number of layers increased. Among all models, GAT-TARnet with the real graph demon-
strated the second-best performance when the training sample size was 16. However, unlike
other models, its performance plateaued and did not show significant improvement once the
number of training samples exceeded 64.

4.4 Disclosed Dataset

From Table 4.5, we observe that both GNN-TARnet and GAT-TARnet significantly outper-
form the T-Learner and TARnet on the validation portion of the disclosed dataset. While
the performance difference between GNN-TARnet and GAT-TARnet is not statistically sig-
nificant, a two-sample Kolmogorov-Smirnov test [154] indicates that the predicted factual
outcomes of GNN-TARnet are not significantly different from the actual outcomes, with
a p-value of 0.99. Furthermore, an additional Kolmogorov-Smirnov test confirms that the
outcomes resulting from reassigning treatments based on the highest average treatment ef-
fect are significantly different from the original assignment (p-value = 0.04). This level of
alignment with actual outcomes was not observed for the predictions of the other methods.
In terms of ATE, the original RCT-based assignment yields an ATE of 0.53± 1.11. In con-
trast, using the proposed strategy, which assigns treatment based on the highest predicted
effect, the estimated ATE increases to 1.04 ± 0.75, indicating a substantial improvement.
The results of applying GNN-TARnet, the best-performing model on the validation set, to
the test set are shown in Figure 4.5. The model predicts PERT to yield superior treatment
effects compared to alternative methods for the majority of participants. Subfigures in Fig-
ure 4.2 present the sorted treatment effects of EDDT predicted by GNN-TARnet on both
the test and training sets as well as their standard deviations. Most real outcomes fall within
one standard deviation of the predictions, demonstrating that GNN-TARnet effectively es-
timates the effects of this treatment. Similar trends are observed for EMDI and PERT, as
illustrated in Figures 4.3 and 4.4, respectively.

ϵtrainerror ϵvalerror

T-Learner 1.22± 0.01 2.33± 0.08

TARnet 1.37± 0.01 1.94± 0.06

GNN-TARnet 1.62± 0.02 1.70± 0.05∗

GAT-TARnet 1.62± 0.02 1.71± 0.05∗

Table 4.5. Performance of the models on the train and validation sets, where ∗ indicates
significantly better results.
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Figure 4.2. Combined Plots with Uncertainty Bands for GNN-TARnet on the train set (left)
and test set (right) of the EDTT treatment. The shaded area denotes the uncertainty of the
predicted treatment effects represented by the solid line. Observed treatment effects are
marked by dots. It can be seen that most of them are located inside of the uncertainty area.

Figure 4.3. Combined Plots with Uncertainty Bands for GNN-TARnet on the train set (left)
and test set (right) of the EMDI treatment. The shaded area denotes the uncertainty of the
predicted treatment effects represented by the solid line. Observed treatment effects are
marked by dots. It can be seen that most of them are located inside of the uncertainty area.
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Figure 4.4. Combined Plots with Uncertainty Bands for GNN-TARnet on the train set (left)
and test set (right) of the PERT treatment. The shaded area denotes the uncertainty of the
predicted treatment effects represented by the solid line. Observed treatment effects are
marked by dots. It can be seen that most of them are located inside of the uncertainty area.

Figure 4.5. Effects of the proposed by GNN-TARnet treatments vs original treatments on
the test set.





Chapter 5

Discussion

5.1 State-of-the-Art Comparison

Unlike TARnet or CFR, which rely on feature vectors alone, GNN-TARnet incorporates
structural relationships (e.g., covariate dependencies) via graph convolutions, enhancing
representation learning for ITE. This bridges graph-based learning with traditional causal in-
ference on non-networked data. Unlike TEDVAE and CEVAE other covariate-confounding
learning methods, our methods relies on causal graphs rather than grouping or disentan-
gling variables by the influence type such as only influencing treatment, only influencing
outcomes and influencing both treatment and the outcomes. If causal graphs are available
these dependencies can be used for the ITE estimation without learning them.

While inspired by TARnet, our approach differs fundamentally from it by using graph-
based layers to model structural covariate dependencies instead of fully-connected layers.
Our method is designed to efficiently leverage connectivity information among covariates
for ITE estimation. It can be used in scenarios when not enough training data is available.
Other researchers have also used the power of GNNs to work with limited data. Panagopou-
los et al. proposed UMGNET, a GNN framework for uplift modeling in e-commerce, reduc-
ing the training set size from 70%− 80% to 5%− 20% by leveraging bipartite user-product
graphs and active learning [156]. However, the method was not directly used for ITE esti-

Connected Subjects Connected Features
GIAL [84] DCGs [85]

NN-CGC [155] UMGNET [156]
GNN-TARnet, GAT-TARnet

Table 5.1. Methods for estimating ITE using information about connectivity between sub-
jects and within features of a single subject.
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Figure 5.1. DAG of CEVAE (left) and TEDVAE (right) [3].

mation and thus different from our approach.
Parafita and Vitrià [85] proposed Deep Causal Graphs (DCGs). In contrast to tradi-

tional estimand-based methods, deriving query-specific formulas (e.g., back-door adjust-
ment [85]), DCGs propose a general model using SCMs with Deep Causal Units (DCUs)
to estimate any identifiable causal query, whether observational, interventional, or counter-
factual, on arbitrary DAGs. Leveraging Normalizing Flows and a Graphical Conditioner,
DCGs model complex distributions and scale efficiently. GNN-TARnet and GAT-TARnet
models, built upon the TARnet architecture [24], share similarities with DCGs in utilizing
graph structures but diverge in scope andmethodology. While DCGs aim for query-agnostic
generality, our approach focuses specifically on ITE estimation by predicting potential out-
comes with GNNs. GNN-TARnet exploits structural relationships in a DAG (e.g., derived
via the causal discovery algorithms, Section 3.2.1) to enhance ITE accuracy. Unlike DCGs,
which model full joint distributions with expressive flows, our method prioritizes outcome
prediction rather than explicitly modeling all variables or latent confounders.

Chu et al. [84] introducedGraph InfomaxAdversarial Learning (GIAL) for ITE andATE
estimation on networked data with imbalanced structures combining GCN/GAT, structure
mutual information, and adversarial learning using imbalance as a confounder proxy. Unlike
our method it is designed to work with connected subjects and thus is different from our
approach.

Pros and Vitrià [155] introduced Neural Networks with Causal Graph Constraints (NN-
CGC)which is similar to our approach leverages causal graphs for ITE estimation. NN-CGC
integrates causal constraints into existing architectures (e.g., TARNet, BCAUSS), enforcing
a distribution

fY (X) ∼ fY (f(Pa(Y )\{T}), f(Gx1), . . . , f(Gxn)) (5.1)

to reduce bias. In contrast, our GNN-TARnet and GAT-TARnet replace fully-connected
layers of TARnet with GNN or GAT layers to process covariate relationships via an ad-
jacency matrix. While NN-CGC offers robustness and broad applicability, its complexity
limit flexibility. Our approach offers computational efficiency and strong performance on
small, structured datasets. The list of methods sorted by their type of interaction is presented
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in the Table 5.1

5.2 Existing Datasets

Webegin by evaluatingGNN-TARnet on the IHDPA dataset. For this dataset, GNN-TARnet,
using a graph obtained with the LiNGAMmethod, outperformed the model using an identity
graph. However, the results were not as favorable as those achieved by CFR-Wass.

Unexpectedly, GNN-TARnet performed better with an identity graph than with a graph
estimated by causal discovery methods on the IHDPB dataset. This anomaly suggests that
the complex nonlinear relationships between covariates and the outcome in IHDPB present
a challenge for the causal discovery algorithm, negatively impacting the results of GNN-
TARnet when using the inferred graph. These findings indicate that, in cases where esti-
mating the causal graph is particularly challenging, using an identity graph may be a viable
alternative approach.

Table 5.2. The results of GNN-TARnet (LiNGAM) on various datasets, comparing cases
where either all data or only nodes influencing outcomes Y are masked with zeros.

Train Test

IHDPA (masked infl. Y ) 1.75± 0.35 1.75± 0.35

IHDPA (masked ALL) 1.94± 0.41 1.89± 0.39

IHDPB (masked infl. Y ) 4.57± 0.18 4.60± 0.20

IHDPB (masked ALL) 4.67± 0.18 4.67± 0.21

JOBS (masked infl. Y ) 0.30± 0.00 0.30± 0.00

JOBS (masked ALL) 0.30± 0.01 0.30± 0.01

In IHDPA and IHDPB, only a few randomly selected nodes are designed to influence
the outcomes. This suggests that the causal discovery method did not identify all influen-
tial nodes; if it had, the results would have been the same when masking either the nodes
influencing the outcomes or all nodes with zeros. However, as shown in Table 5.2, this was
not the case. In the JOBS dataset, on the other hand, masking only the nodes influencing
the outcomes produced almost identical results to masking all nodes with zeros, indicating
that the causal discovery method successfully identified most outcome-influencing nodes.
This led to results comparable to other those obtained with TARnet. This also suggests that
other nodes appear to neither directly affect outcomes nor influence those that do. Overall,
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for all three existing datasets, there appear to be no significant causal relationships among
the features. This lack of connectivity likely contributes to the suboptimal performance of
GNN-TARnet and GAT-TARnet on these datasets.

Figure 5.2. Two-dimensional T-SNE visualization of the latent space learned by the
DKLITE model.

The results from existing datasets support our hypothesis that GNN-TARnet can com-
pete with state-of-the-art methods in causal inference. This is unsurprising, as our approach
builds upon the TARnet structure by preserving treatment-specific branches while enhanc-
ing it with the capability to incorporate causal graphs. However, the performance could have
been even stronger if the actual adjacency matrices, with accurately defined nodes influenc-
ing the outcome, were available. The quality of the adjacency matrix is crucial, as it has
a substantial impact on model effectiveness and can lead to either improved or diminished
performance.

In order to find out why the DKLITE performed better than GNN-TARnet and GAT-
TARnet on the IHDPA dataset we made a plot of its hidden representation with reduced
dimensionality to two using T-SNE algorithm (Figure 5.2). This indicates that for an optimal
performance on this dataset, a model should project its hidden representation to a line-like
structure. This can be confirmed by setting the hidden dimension of the TARnet before
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branching to one. The results in Table 5.3 confirm our theory. This supports the conclusion
that another reason why GNN-TARnet and GAT-TARnet did not show the best performance
is the multi-dimensional structure of their hidden spaces.

Table 5.3. Comparison of the results on the IHDPA dataset of DKLITE and the TARnet
having one as an output of the representation layers.

√
ϵPEHE ϵATE

Train Test Train Test

DKLITE 0.34± 0.02 0.36± 0.03 0.09± 0.01 0.09± 0.01

TARnet 0.28± 0.02 0.31± 0.03 0.09± 0.01 0.09± 0.01

5.3 Artificial Dataset

For the SUM dataset, GNN-TARnet outperformed TARnet, even with the presence of zero-
masked nodes that influence the outcome. GNN-TARnet adjusts the values of these nodes to
be equal to the sum of their parent nodes. When using summation as the parent aggregation
and node update function, an update step for a node douti = 0 that influences the outcome in
the SUM dataset with one layer is presented below.

houti = ϕ(douti +
∑
j∈Ni

ψ(dj)) = ϕ(
∑
j∈Ni

ψ(dj)) = (10)

= wϕi (
∑
j∈Ni

wψj dj)) + bϕi = (11)

=
∑
j∈Ni

dj. (12)

In Equation (10), houti represents the updated value of the masked node, dj is the j-th parent
of the node douti , where j is an index from the set Ni of parent node indices. The functions
ϕ and ψ correspond to the update and prepare functions from the GNN block (Figure 3.4).
In Equation (11), wϕi and b

ϕ
i are the weight and bias of the update function ϕ, while w

ψ
j is

the weight for the aggregate function ψ. Assuming that weights and biases were correctly
identified during training as one and zero, respectively, Equation (12) shows that the updated
masked node values are indeed equal to the sum of their parents.

Since the outcomes of the SUM dataset are calculated as the sum or average of nodes
influencing the outcomes, knowing the values of these nodes renders ITE estimation trivial.
This effect is particularly pronounced when the number of training samples is low. When
a sufficient amount of data is available, however, the fully connected layers of TARnet can
learn any relationship between features, matching the performance of GNN-TARnet.
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5.4 Disclosed Dataset

From Figure 3.2 we can see that our algorithm recommends EDDT for most patients. When
the other treatment outcomes are close to the predictions for EDDT, the differences are
not significant. From the results, we can say that assigning EDDT to all patients seems
to be a viable strategy, which warrants validation in future studies. We believe that the
new treatment assignment strategy using GNN-TARnet can potentially be applied to all
types of data coming from RCTs with a similar design as the PerPain RCT. This means
that there should be randomization into personalized and non-personalized groups, followed
by treatment assignment using clustering or some other baseline algorithm, as was done
in the PerPain RCT. Applying this strategy to existing datasets can help determine if the
original treatment assignment algorithmworkedwell or if there is a need to use an alternative
approach. Our approach may not be applicable to pure RCTs without treatment assignment
personalization.

5.5 Potential

Our proposed methods, GNN-TARnet and its extension GAT-TARnet, demonstrate strong
potential for estimating ITE, delivering competitive performance across a variety of datasets,
even when relying on estimated causal graphs. On benchmark datasets such as IHDP (747
samples) and JOBS (3,212 samples), GNN-TARnet effectively integrates GNNs with TAR-
net to leverage DAGs, resulting in precise ITE estimates. For instance, on the IHDPA dataset
with a LiNGAM-estimated graph, it achieves√ϵPEHE = 0.42, comparable to state-of-the-art
models like TARnet and the S-Learner. On the IHDPB variant, it achieves one of the best
performances even when using a simple identity graph, further showcasing its robustness.

On the synthetic SUM dataset (16-128 training samples), GNN-TARnet demonstrates
strong performance in data-scarce settings. This sample efficiency stems from the ability of
GNNs to propagate structural dependencies, mitigating overfitting risks commonly observed
in traditional deep models such as TARnet.

When applied to real-world datasets like PerPain [10], GNN-TARnet and GAT-TARnet
significantly outperform both TARnet and the T-Learner in terms of prediction error, while
the difference between GNN-TARnet and GAT-TARnet was not significant. Importantly,
we also show that our methods can also be extended to handle multiple treatments and un-
certainty estimation, which are critical features for broader adoption in practical scenarios.

Collectively, these findings underscore the suitability of GNN-TARnet for real-world ap-
plications, particularly in fields such as healthcare (e.g., personalized medicine), economics,
and policy-making, domains where small-sample causal inference is essential and experi-
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mental data are limited. Its ability to deliver accurate ITE estimates withminimal datamakes
it a valuable tool for informed decision-making in resource-constrained environments.

5.6 Limitations

The primary limitation of the proposed method lies in its dependency on the quality of the
causal graphs. This is because an incorrectly specified graph can significantly reduce the
performance of the methods, as observed in the IHDPA and IHDPB datasets. Therefore, if
no graph information is available and the training set is sufficiently large, methods that do
not depend on graph information may be more beneficial and computationally efficient. It
is also important to note that our approach requires more computational resources than other
methods, which could limit its applicability in certain contexts. This is due to the increased
number of parameters that scales with the number of features as a result of feature embed-
ding. However, by computing the outcomes using only a subset of nodes that influence
the outcomes, the method can handle relatively large input spaces, which is advantageous
compared to other methods and makes it feasible for ITE estimation.

Another drawback of the proposed method is that the new treatment assignment strat-
egy for the disclosed dataset needs to be verified in a new RCT because not all potential
outcomes are available. However, an RCT can be designed in such a way that subjects in
the personalized group are first treated with an original treatment assignment strategy, and
after the first results, the treatment assignment is redefined using the proposed algorithm.
Treatments for subjects in the randomized group should also be adjusted accordingly. An
RCT that is updated in this way may be more beneficial for the treated subjects, as they may
receive treatment that is more tailored to their needs. We also note that our algorithm is
designed to assume a normal distribution of outcomes. Otherwise, one would have to com-
pute uncertainties using alternative methods, such as bootstrapping [157], nonparametric
statistics [158], or Bayesian inference [159].

5.7 Future Work

Future extensions, such as incorporating time-series modeling, hold promise for further ex-
panding the applicability of our methods across a wider range of domains. Reducing the
computational burden of our methods is another exciting avenue for future work. Finally,
creating publicly available datasets where features are causally dependent on each other
and the outcome is an important topic, as it can lead to better data validation and foster the
development of improved GNN-based methods for causal effect estimation.





Chapter 6

Summary and Conclusion

This dissertation has explored the advancement of ITE estimation through the development
and validation of GNN-based methods that leverage causal graph structures. The primary
objective was to enhance the precision of ITE estimation, particularly in scenarios with lim-
ited training data, by incorporating structural dependencies among covariates. This chapter
synthesizes the key findings, highlights the contributions, and reflects on the broader impli-
cations of this work for causal inference and personalized decision-making, particularly in
healthcare applications.

6.1 Key Findings

The research began with the hypothesis that integrating causal graph structures into GNN-
based models would improve ITE estimation accuracy compared to traditional methods that
ignore such relationships. This hypothesis was tested across a range of datasets: synthetic
datasets with controlled causal graphs, benchmark datasets such as IHDP and JOBS, with
derived causal graphs, and real-world data from the PerPain consortium [10]. The proposed
models, GNN-TARnet and GAT-TARnet, extend the TARnet framework [24] by embedding
graph-based learning, enabling the capture of covariate dependencies encoded in DAGs.

Empirical results, detailed in Chapter 4, demonstrate that GNN-based methods outper-
form non-structural baselines in data-scarce scenarios. For instance, on synthetic datasets
where the true causal graph is known, GNN-TARnet achieved lower √ϵPEHE values com-
pared to standard neural networks, indicating superior accuracy in predicting individual
treatment effects. On real datasets such as PerPain, the method showed competitive perfor-
mance, particularly when combined with hyperparameter optimization strategies informed
by our review [3]. These findings validate the hypothesis that structural information simpli-
fies model training and enhances outcome estimation when data is limited, while matching
the performance of state-of-the-art methods in data-rich settings.

91
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A significant practical outcomewas the application to the PerPain RCT, where the GNN-
based approach improved treatment allocation compared to clustering-based method. By
predicting potential outcomes and assigning treatments based on optimal predictions, the
method offered a more robust framework for personalized chronic pain management.

6.2 Contributions

This thesis contributes to causal inference in several ways. First, it introduces novel GNN-
based architectures, GNN-TARnet and GAT-TARnet, which integrate SCMs [29] with deep
learning. The GNN-TARnet model was evaluated and validated in a peer-reviewed pub-
lication [1], demonstrating its efficacy on synthetic and benchmark datasets. Second, the
co-authored preprint [3] provides a comprehensive review of deep learning methods for
ITE estimation, proposing automatic hyperparameter optimization, a strategy that enhanced
the performance of our models. Third, the practical contribution to the PerPain consortia, in-
cluding data processing and the development of a clustering web application, demonstrates
the practical utility of this research in real-world settings. The forthcoming publication on
this work will further substantiate its impact. Finally, the open-source release of our imple-
mentation ensures reproducibility and fosters further development, in the spirit of scientific
transparency and collaboration.

Theoretically, this work bridges SCMs with GNNs, advancing the understanding of how
relational data can inform counterfactual reasoning [28]. Practically, it offers a tool for per-
sonalized treatment strategies, with implications beyond healthcare to fields like education
and policy analysis.

6.3 Implications and Future Directions

The integration of GNNs with causal inference has significant implications for personal-
ized decision-making. In healthcare, accurate ITE estimation can optimize treatment plans,
reducing costs and improving patient outcomes. The success of GNN-TARnet in the Per-
Pain context suggests potential scalability to other complex RCTs or observational studies
where covariate relationships are critical [47]. Beyond medicine, the methodology could
inform targeted interventions in social sciences or economics, where heterogeneous effects
are prevalent [6].

However, limitations remain. The reliance on accurate causal graphs poses a challenge,
as real-world graph estimation can be noisy or incomplete [73]. Scalability to large datasets
and computational efficiency also warrant further investigation. Future research could ex-
pand the method to time-series data and create more datasets with causally dependent fea-
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tures.
In conclusion, this dissertation establishes a robust foundation for GNN-based ITE es-

timation, demonstrating the advantage of leveraging structural knowledge. By combining
theoretical innovation with practical tools, it advances the precision and applicability of
causal inference, paving the way for future graph-based machine learning research in per-
sonalized decision-making.





Chapter 7

Appendix

The tables provide results for all models and different hyperparameters optimization tech-
niques. Below one can also find the used hyperparameters of the mentioned methods.
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Table 7.1. Results and their 95% confidence intervals of the Representation-Based methods
on the IHDBB dataset

IHDPB(
√
ϵPEHE) IHDPB(ϵATE)

Train Test Train Test
TARnet 1.87± 0.04 2.01± 0.05 0.20± 0.03 0.24± 0.04

TARnet-Bayesian 1.86± 0.04 2.01± 0.05 0.19± 0.03 0.24± 0.04

TARnet-Random 1.89± 0.04 2.04± 0.05 0.20± 0.02 0.25± 0.03

TARnet-Hyperband 1.84± 0.04 1.99± 0.05 0.19± 0.02 0.23± 0.03

CFR-MMDSQ 1.88± 0.04 2.01± 0.05 0.22± 0.03 0.24± 0.04

CFR-MMDSQ-Bayesian 1.83± 0.04 1.97± 0.05 0.20± 0.02 0.23± 0.04

CFR-MMDSQ-Random 1.84± 0.04 1.98± 0.05 0.21± 0.03 0.23± 0.04

CFR-MMDSQ-Hyperband 1.97± 0.04 2.10± 0.06 0.22± 0.02 0.26± 0.04

CFR-Wass 1.97± 0.04 2.10± 0.05 0.33± 0.05 0.36± 0.05

CFR-Wass-Bayesian 2.07± 0.05 2.19± 0.07 0.37± 0.06 0.39± 0.06

CFR-Wass-Random 2.10± 0.05 2.23± 0.06 0.43± 0.08 0.46± 0.08

CFR-Wass-Hyperband 1.97± 0.05 2.10± 0.06 0.36± 0.05 0.40± 0.05

CFR-Weight 1.89± 0.04 2.02± 0.05 0.21± 0.03 0.24± 0.04

CFR-Weight-Bayesian 2.14± 0.05 2.26± 0.06 0.21± 0.02 0.25± 0.04

CFR-Weight-Random 1.94± 0.04 2.10± 0.05 0.21± 0.02 0.25± 0.04

CFR-Weight-Hyperband 2.06± 0.05 2.18± 0.06 0.22± 0.03 0.26± 0.04

DragonNet 1.89± 0.04 2.03± 0.05 0.23± 0.03 0.26± 0.04

DragonNet-Bayesian 1.85± 0.04 2.00± 0.05 0.21± 0.03 0.26± 0.04

DragonNet-Random 1.88± 0.04 2.03± 0.06 0.22± 0.03 0.25± 0.04

DragonNet-Hyperband 1.88± 0.04 2.04± 0.05 0.24± 0.03 0.28± 0.04

DKLITE 2.54± 0.05 2.63± 0.07 0.27± 0.03 0.33± 0.04

DKLITE-Bayesian 3.71± 0.15 3.75± 0.16 0.45± 0.06 0.49± 0.07

DKLITE-Random 2.28± 0.05 2.40± 0.07 0.23± 0.03 0.27± 0.04

DKLITE-Hyperband 2.24± 0.06 2.40± 0.06 0.28± 0.03 0.30± 0.04
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Table 7.2. Results and their 95% confidence intervals of the Representation-Based methods
on the JOBS dataset

JOBS(Rpol) JOBS(ϵATT )
Train Test Train Test

TARnet 0.26± 0.00 0.26± 0.01 0.11± 0.00 0.12± 0.01

TARnet-Bayesian 0.29± 0.00 0.29± 0.01 0.10± 0.00 0.12± 0.01

TARnet-Random 0.22± 0.00 0.23± 0.01 0.15± 0.00 0.16± 0.00

TARnet-Hyperband 0.30± 0.00 0.30± 0.01 0.08± 0.00 0.10± 0.01

CFR-MMDSQ 0.21± 0.00 0.26± 0.01 0.15± 0.01 0.16± 0.02

CFR-MMDSQ-Bayesian 0.21± 0.00 0.25± 0.01 0.19± 0.02 0.21± 0.03

CFR-MMDSQ-Random 0.24± 0.00 0.24± 0.01 0.31± 0.03 0.32± 0.03

CFR-MMDSQ-Hyperband 0.22± 0.00 0.25± 0.01 0.17± 0.00 0.18± 0.01

CFR-Wass 0.28± 0.00 0.28± 0.01 0.09± 0.02 0.12± 0.02

CFR-Wass-Bayesian 0.30± 0.00 0.30± 0.01 0.03± 0.01 0.08± 0.01

CFR-Wass-Random 0.28± 0.00 0.29± 0.01 0.11± 0.03 0.15± 0.03

CFR-Wass-Hyperband 0.30± 0.00 0.30± 0.01 0.02± 0.00 0.08± 0.01

CFR-Weight 0.23± 0.00 0.25± 0.01 0.18± 0.01 0.20± 0.02

CFR-Weight-Bayesian 0.26± 0.00 0.27± 0.01 0.19± 0.03 0.20± 0.04

CFR-Weight-Random 0.24± 0.00 0.26± 0.01 0.80± 0.07 0.81± 0.08

CFR-Weight-Hyperband 0.28± 0.00 0.28± 0.01 0.23± 0.05 0.24± 0.05

DragonNet 0.27± 0.00 0.27± 0.01 0.08± 0.00 0.10± 0.01

DragonNet-Bayesian 0.24± 0.00 0.26± 0.01 0.21± 0.02 0.23± 0.03

DragonNet-Random 0.26± 0.00 0.27± 0.01 0.52± 0.08 0.53± 0.08

DragonNet-Hyperband 0.30± 0.00 0.30± 0.01 0.03± 0.01 0.08± 0.01

DKLITE 0.21± 0.00 0.23± 0.01 0.19± 0.00 0.20± 0.01

DKLITE-Bayesian 0.22± 0.00 0.24± 0.01 0.20± 0.00 0.21± 0.01

DKLITE-Random 0.22± 0.00 0.24± 0.01 0.22± 0.00 0.23± 0.01

DKLITE-Hyperband 0.22± 0.00 0.24± 0.01 0.22± 0.00 0.23± 0.01
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Table 7.3. Results and their 95% confidence intervals of the Meta-learners on IHDBA

dataset

IHDPA(
√
ϵPEHE) IHDPA(ϵATE)

Train Test Train Test
SLearner 0.61± 0.06 0.64± 0.07 0.09± 0.01 0.11± 0.01

SLerner-Bayesian 0.48± 0.03 0.50± 0.05 0.09± 0.01 0.11± 0.01

SLearner-Random 0.41± 0.03 0.43± 0.04 0.09± 0.01 0.10± 0.01

SLearner-Hyperband 1.19± 0.04 1.19± 0.05 0.14± 0.01 0.18± 0.02

TLearner 0.65± 0.03 0.68± 0.05 0.10± 0.01 0.13± 0.01

TLearner-Bayesian 0.72± 0.04 0.75± 0.06 0.10± 0.01 0.13± 0.01

TLearner-Random 0.50± 0.01 0.53± 0.02 0.09± 0.01 0.11± 0.01

TLearner-Hyperband 0.74± 0.02 0.77± 0.03 0.10± 0.01 0.14± 0.01

RLearner 0.81± 0.08 0.81± 0.08 0.13± 0.02 0.14± 0.02

RLearner-Bayesian 1.95± 0.41 1.90± 0.40 0.24± 0.05 0.32± 0.08

RLearner-Random 0.58± 0.06 0.59± 0.06 0.11± 0.01 0.13± 0.01

RLearner-Hyperband 0.61± 0.05 0.62± 0.06 0.11± 0.01 0.12± 0.01

XLearner 0.95± 0.09 0.97± 0.10 0.16± 0.02 0.17± 0.02

Learner-Bayesian 0.80± 0.06 0.82± 0.07 0.11± 0.01 0.14± 0.02

XLearner-Random 0.76± 0.05 0.76± 0.06 0.11± 0.01 0.13± 0.02

XLearner-Hyperband 0.70± 0.06 0.72± 0.07 0.10± 0.01 0.13± 0.02
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Table 7.4. Results and their 95% confidence intervals of the Meta-learners on IHDBB

dataset

IHDPB(
√
ϵPEHE) IHDPB(ϵATE)

Train Test Train Test
SLearner 2.69± 0.07 2.77± 0.08 0.28± 0.03 0.33± 0.04

SLearner-Bayesian 2.23± 0.05 2.41± 0.06 0.27± 0.04 0.33± 0.04

SLearner-Random 2.15± 0.04 2.32± 0.06 0.24± 0.03 0.28± 0.04

SLearner-Hyperband 2.14± 0.04 2.30± 0.06 0.24± 0.03 0.26± 0.04

TLearner 1.96± 0.04 2.09± 0.06 0.19± 0.02 0.24± 0.04

TLearner-Bayesian 2.29± 0.06 2.45± 0.07 0.21± 0.03 0.28± 0.04

TLearner-Random 1.87± 0.05 2.01± 0.06 0.18± 0.03 0.22± 0.04

TLearner-Hyperband 2.00± 0.05 2.14± 0.06 0.20± 0.02 0.24± 0.04

RLearner 2.29± 0.06 2.40± 0.07 0.31± 0.05 0.33± 0.04

RLearner-Bayesian 2.55± 0.06 2.64± 0.08 0.36± 0.05 0.39± 0.06

RLearner-Random 2.45± 0.07 2.55± 0.08 0.27± 0.04 0.33± 0.04

RLearner-Hyperband 2.48± 0.07 2.56± 0.08 0.56± 0.07 0.59± 0.08

XLearner 1.95± 0.05 2.07± 0.06 0.24± 0.03 0.27± 0.04

XLearner-Bayesian 2.69± 0.07 2.77± 0.08 0.28± 0.03 0.33± 0.04

XLearner-Random 2.22± 0.05 2.36± 0.06 0.28± 0.04 0.32± 0.05

XLearner-Hyperband 2.13± 0.05 2.29± 0.06 0.24± 0.03 0.29± 0.04
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Table 7.5. Results and their 95% confidence intervals of the Meta-learners on JOBS dataset

JOBS(Rpol) JOBS(ϵATT )
Train Test Train Test

SLearner 0.23± 0.00 0.26± 0.01 0.17± 0.00 0.19± 0.01

SLerner-Bayesian 0.23± 0.00 0.26± 0.01 0.17± 0.00 0.19± 0.01

SLearner-Random 0.22± 0.00 0.23± 0.01 0.22± 0.00 0.23± 0.01

SLearner-Hyperband 0.22± 0.00 0.25± 0.01 0.18± 0.00 0.19± 0.01

TLearner 0.22± 0.00 0.23± 0.01 0.15± 0.00 0.17± 0.01

TLearner-Bayesian 0.27± 0.00 0.28± 0.01 0.07± 0.00 0.10± 0.01

TLearner-Random 0.22± 0.00 0.23± 0.01 0.15± 0.00 0.16± 0.01

TLearner-Hyperband 0.30± 0.00 0.30± 0.01 0.06± 0.00 0.08± 0.01

RLearner 0.23± 0.00 0.25± 0.01 0.16± 0.00 0.17± 0.01

RLearner-Bayesian 0.22± 0.00 0.24± 0.01 0.15± 0.00 0.17± 0.01

RLearner-Random 0.23± 0.00 0.25± 0.01 0.16± 0.00 0.17± 0.01

RLearner-Hyperband 0.23± 0.00 0.25± 0.01 0.17± 0.00 0.18± 0.01

XLearner 0.22± 0.00 0.23± 0.01 0.22± 0.00 0.23± 0.01

XLearner-Bayesian 0.22± 0.00 0.23± 0.01 0.21± 0.00 0.22± 0.01

XLearner-Random 0.22± 0.00 0.23± 0.01 0.21± 0.00 0.22± 0.01

XLearner-Hyperband 0.22± 0.00 0.23± 0.01 0.21± 0.00 0.22± 0.01

Table 7.6. Results and their 95% confidence intervals of Covariate-Confounding methods
on IHDBA dataset

IHDPA(
√
ϵPEHE) IHDPA(ϵATE)

Train Test Train Test
GANITE 0.60± 0.08 0.62± 0.09 0.16± 0.02 0.18± 0.02

GANITE-Bayesian 0.65± 0.06 0.68± 0.07 0.18± 0.03 0.18± 0.03

GANITE-Random 0.71± 0.08 0.71± 0.08 0.20± 0.02 0.22± 0.03

GANITE-Hyperband 0.51± 0.06 0.53± 0.07 0.15± 0.02 0.16± 0.03

CEVAE 0.83± 0.08 0.83± 0.08 0.11± 0.01 0.14± 0.02

CEVAE-Bayesian 0.91± 0.12 0.89± 0.11 0.12± 0.01 0.15± 0.02

CEVAE-Random 0.92± 0.12 0.90± 0.12 0.12± 0.01 0.14± 0.02

CEVAE-Hyperband 0.96± 0.13 0.94± 0.12 0.12± 0.02 0.15± 0.02

TEDVAE 0.57± 0.05 0.61± 0.07 0.09± 0.01 0.11± 0.01

TEDVAE-Bayesian 0.90± 0.06 1.00± 0.08 0.10± 0.01 0.16± 0.02

TEDVAE-Random 0.52± 0.03 0.56± 0.05 0.09± 0.01 0.11± 0.01

TEDVAE-Hyperband 0.66± 0.04 0.70± 0.05 0.10± 0.01 0.12± 0.02
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Table 7.7. Results and their 95% confidence intervals of Covariate-Confounding methods
on IHDBB dataset

IHDPB(
√
ϵPEHE) IHDPB(ϵATE)

Train Test Train Test
GANITE 3.49± 0.10 3.54± 0.11 0.46± 0.06 0.55± 0.08

GANITE-Bayesian 2.68± 0.05 2.77± 0.07 0.30± 0.04 0.36± 0.05

GANITE-Random 2.84± 0.08 2.91± 0.09 0.51± 0.07 0.55± 0.07

GANITE-Hyperband 2.53± 0.08 2.63± 0.09 0.37± 0.05 0.41± 0.06

CEVAE 2.51± 0.06 2.62± 0.06 0.27± 0.03 0.32± 0.04

CEVAE-Bayesian 2.68± 0.07 2.75± 0.08 0.25± 0.03 0.30± 0.04

CEVAE-Random 2.54± 0.06 2.64± 0.07 0.26± 0.04 0.31± 0.04

CEVAE-Hyperband 2.68± 0.07 2.77± 0.09 0.28± 0.04 0.30± 0.05

TEDVAE 2.34± 0.06 2.46± 0.07 0.23± 0.03 0.27± 0.04

TEDVAE-Bayesian 2.01± 0.04 2.16± 0.05 0.22± 0.03 0.25± 0.04

TEDVAE-Random 2.11± 0.05 2.25± 0.07 0.23± 0.03 0.26± 0.04

TEDVAE-Hyperband 2.17± 0.05 2.30± 0.07 0.21± 0.03 0.23± 0.04

Table 7.8. Results and their 95% confidence intervals of Covariate-Confounding methods
on JOBS dataset

JOBS(Rpol) JOBS(ϵATT )
Train Test Train Test

GANITE 0.30± 0.00 0.30± 0.01 0.10± 0.00 0.12± 0.01

GANITE-Bayesian 0.23± 0.00 0.26± 0.01 0.27± 0.00 0.28± 0.02

GANITE-Random 0.24± 0.00 0.25± 0.01 0.28± 0.02 0.30± 0.02

GANITE-Hyperband 0.25± 0.00 0.27± 0.01 0.25± 0.01 0.26± 0.02

CEVAE 0.22± 0.00 0.23± 0.01 0.21± 0.02 0.22± 0.03

CEVAE-Bayesian 0.24± 0.00 0.26± 0.01 2.85± 0.62 2.84± 0.58

CEVAE-Random 0.22± 0.00 0.24± 0.01 0.16± 0.00 0.17± 0.01

CEVAE-Hyperband 0.22± 0.00 0.26± 0.01 0.28± 0.08 0.29± 0.07

TEDVAE 0.20± 0.00 0.24± 0.01 0.16± 0.01 0.17± 0.01

TEDVAE-Bayesian 0.19± 0.00 0.23± 0.01 0.16± 0.00 0.17± 0.02

TEDVAE-Random 0.20± 0.00 0.23± 0.01 0.16± 0.01 0.17± 0.02

TEDVAE-Hyperband 0.20± 0.00 0.24± 0.01 0.17± 0.01 0.19± 0.02
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Table 7.9. Results and their 95% confidence intervals of Representation-Based methods on
IHDBA dataset

IHDPA(
√
ϵPEHE) IHDPA(ϵATE)

Train Test Train Test
TARnet 0.47± 0.11 0.49± 0.03 0.09± 0.01 0.11± 0.01

TARnet-Bayesian 1.23± 0.06 1.28± 0.06 0.11± 0.01 0.18± 0.02

TARnet-Random 0.37± 0.01 0.39± 0.02 0.09± 0.01 0.10± 0.01

TARnet-Hyperband 1.20± 0.05 1.24± 0.06 0.11± 0.01 0.18± 0.02

CFR-MMDSQ 0.53± 0.03 0.55± 0.04 0.09± 0.01 0.11± 0.01

CFR-MMDSQ-Bayesian 0.58± 0.02 0.59± 0.03 0.11± 0.01 0.12± 0.02

CFR-MMDSQ-Random 0.53± 0.02 0.54± 0.03 0.09± 0.01 0.10± 0.01

CFR-MMDSQ-Hyperband 0.59± 0.02 0.62± 0.03 0.11± 0.01 0.12± 0.01

CFR-Wass 0.47± 0.05 0.49± 0.06 0.09± 0.01 0.10± 0.01

CFR-Wass-Bayesian 0.63± 0.02 0.64± 0.03 0.18± 0.03 0.19± 0.03

CFR-Wass-Random 0.37± 0.03 0.38± 0.04 0.10± 0.01 0.10± 0.01

CFR-Wass-Hyperband 0.39± 0.02 0.41± 0.03 0.12± 0.01 0.12± 0.02

CFR-Weight 0.56± 0.05 0.58± 0.06 0.09± 0.01 0.11± 0.01

CFR-Weight-Bayesian 2.15± 0.38 2.10± 0.36 0.47± 0.05 0.55± 0.06

CFR-Weight-Random 0.49± 0.02 0.51± 0.03 0.09± 0.01 0.10± 0.01

CFR-Weight-Hyperband 0.59± 0.03 0.60± 0.04 0.10± 0.01 0.12± 0.01

DragonNet 0.55± 0.02 0.58± 0.03 0.10± 0.01 0.12± 0.01

DragonNet-Bayesian 0.76± 0.04 0.78± 0.05 0.17± 0.04 0.21± 0.04

DragonNet-Random 0.37± 0.01 0.39± 0.02 0.09± 0.01 0.10± 0.01

DragonNet-Hyperband 0.48± 0.01 0.50± 0.03 0.10± 0.01 0.11± 0.01

DKLITE 0.84± 0.15 0.85± 0.15 0.09± 0.01 0.15± 0.02

DKLITE-Bayesian 1.66± 0.38 1.55± 0.36 0.13± 0.02 0.19± 0.04

DKLITE-Random 0.34± 0.02 0.36± 0.03 0.09± 0.01 0.09± 0.01

DKLITE-Hyperband 0.67± 0.22 0.65± 0.19 0.09± 0.01 0.12± 0.02
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Table 7.10. Default and optimal parameters for S-Learner

nfc nhid lr bs

Default

IHDPA 3 300 1e-3 64

IHDPB 3 300 1e-3 64

JOBS 3 300 1e-3 64

Optimal

IHDPA (Random) 7 80 1e-3 64

IHDPB (Hyperband) 9 512 1e-3 64

JOBS (Bayesian) 2 16 1e-3 128

Table 7.11. Default and optimal parameters for T-Learner

n0
fc n0

hid n1
fc n1

hid lr0 bs0 lr1 bs1

Default

IHDPA 3 300 3 300 1e-2 64 1e-2 64

IHDPB 3 300 3 300 1e-2 64 1e-2 64

JOBS 3 64 3 64 1e-2 256 1e-2 256

Optimal

IHDPA (Random) 4 96 4 240 0.01 128 0.01 64

IHDPB (Random) 4 96 10 128 1e-2 128 1e-2 128

JOBS (Bayesian) 2 512 2 512 1e-3 64 1e-3 64
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Table 7.12. Default and optimal parameters for R-Learner

nmufc nmuhid ngfc nghid ntaufc ntauhid lrmu lrg lrr bsmu bsg bsr

Default

IHDPA 3 200 3 100 3 200 1e-3 1e-3 1e-3 32 32 32

IHDPB 3 200 3 100 3 200 1e-3 1e-3 1e-3 32 32 32

JOBS 3 200 3 100 3 200 1e-3 1e-3 1e-3 32 32 32

Optimal

IHDPA (Random) 2 128 5 18 6 32 1e-3 1e-2 1e-3 128 512 32

IHDPB (Bayesian) 3 16 10 8 3 16 1e-2 1e-4 1e-2 128 128 32

JOBS (Baysian) 2 160 2 24 2 512 1e-2 1e-2 1e-3 32 512 32

Table 7.13. Default and optimal parameters for X-Learner

nmu0fc nmu0hid nmu1fc nmu1hid nd0fc nd0hid nd1fc nd1hid ngfc nghid bsmu0 bsmu1 bsd0 bsd1 bsg

Default
IHDPA 3 200 3 200 3 200 3 200 3 200 256 256 512 512 256
IHDPB 3 200 3 200 3 200 3 200 3 200 256 256 512 512 256
JOBS 3 300 3 300 3 300 3 300 3 300 256 256 512 512 256

Optimal
IHDPA (Random) 3 128 4 80 7 176 4 80 3 40 32 32 256 32 64
IHDPB (Default) 3 200 3 200 3 200 3 200 3 200 256 256 256 256 256
JOBS (Hyperband) 2 80 3 80 2 80 2 240 2 56 32 80 32 32 32
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Table 7.14. Default and optimal parameters for TAR-Net

nfc nhid n0
fc n0

hid n1
fc n1

hid lr bs

Default

IHDPA 3 200 3 100 3 100 1e-4 32

IHDPB 3 200 3 200 3 200 1e-4 32

JOBS 3 200 3 200 3 200 1e-2 256

Optimal

IHDPA (Random) 7 192 6 464 4 432 1e-4 32

IHDPB (Random) 4 240 5 240 2 400 1e-4 32

JOBS (Random) 2 16 4 464 4 256 1e-2 1024

Table 7.15. Default and optimal parameters for CFR-Wass

nfc nhid n0
fc n0

hid n1
fc n1

hid lr bs

Default

IHDPA 3 200 3 100 3 100 1e-4 1024

IHDPB 3 200 3 100 3 100 1e-3 1024

JOBS 3 200 3 200 3 200 1e-2 1024

Optimal

IHDPA (Random) 8 208 10 416 4 480 1e-4 1024

IHDPB (Default) 3 200 3 100 3 100 1e-3 1024

JOBS (Random) 4 240 5 240 2 400 1e-2 1024
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Table 7.16. Default and optimal parameters for CFR-MMDSQ

nfc nhid n0
fc n0

hid n1
fc n1

hid lr bs

Default

IHDPA 3 200 3 100 3 100 1e-4 1024

IHDPB 3 200 3 100 3 100 1e-3 1024

JOBS 3 200 3 200 3 200 1e-2 1024

Optimal

IHDPA (Random) 8 208 10 416 4 480 1e-4 1024

IHDPB (Random) 4 240 5 240 2 400 1e-3 1024

JOBS (Bayesian) 3 416 5 128 3 192 1e-2 1024

Table 7.17. Default and optimal parameters for CFR-Weight

nfc nhid n0
fc n0

hid n1
fc n1

hid ntfc nthid bs lr

Default

IHDPA 3 200 3 100 3 100 3 100 1024 1e-4

IHDPB 3 200 3 100 3 100 3 100 1024 1e-3

JOBS 3 200 2 100 2 100 1 1 1024 1e-2

Optimal

IHDPA (Random) 7 192 6 464 4 432 6 406 1024 1e-4

IHDPB (Default) 3 200 2 100 2 100 1 1 1024 1e-3

JOBS (Default) 3 200 2 100 2 100 1 1 1024 1e-2
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Table 7.18. Default and optimal parameters for Dragon-Net

nfc nhid n0
fc n0

hid n1
fc n1

hid ntfc nthid bs lr

Default

IHDPA 3 200 3 100 3 100 1 1 64 1e-4

IHDPB 3 200 3 100 3 100 1 1 32 1e-4

JOBS 3 200 3 100 3 100 1 1 512 1e-3

Optimal

IHDPA (Random) 7 192 6 464 4 432 6 496 64 1e-4

IHDPB (Bayesian) 3 416 5 128 3 192 3 112 32 1e-4

JOBS (Bayesian) 2 192 4 96 7 64 8 336 512 1e-3

Table 7.19. Default and optimal parameters for DKLITE

nencfc nenchid ndecfc ndechid lr bs

Default

IHDPA 2 50 2 50 1e-3 1024

IHDPB 2 50 2 50 1e-3 1024

JOBS 2 50 2 50 1e-4 512

Optimal

IHDPA (Random) 7 80 6 416 1e-3 1024

IHDPB(Hyperband) 9 48 9 512 1e-3 1024

JOBS (Default) 2 50 2 50 1e-3 512
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Table 7.20. Default and optimal parameters for CEVAE

nyfc nyhid nXfc nXhid ntfc nthid lr bs

Default

IHDPA 3 200 3 200 3 200 1e-3 64

IHDPB 3 200 3 200 3 200 1e-3 64

JOBS 3 200 3 200 3 200 1e-3 1024

Optimal

IHDPA (Default) 3 200 3 200 3 200 1e-3 64

IHDPB (Default) 3 200 3 200 3 200 1e-3 64

JOBS (Default) 3 200 3 200 3 200 1e-3 1024

Table 7.21. Default and optimal parameters for TEDVAE

nencfc nenchid ndecfc ndechid lr bs

Default

IHDPA 4 500 4 500 1e-4 1024

IHDPB 4 500 4 500 1e-3 1024

JOBS 4 500 4 500 1e-3 256

Optimal

IHDPA (Random) 8 496 6 448 1e-4 1024

IHDPB (Bayesian) 5 272 3 112 1e-3 1024

JOBS (Bayesian) 3 416 5 128 1e-3 256
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Table 7.22. Default and optimal parameters for GANITE

ngfc nghid ndfc nghid nifc0 nihid0 nifc1 nihid1 bsg bsi lrg lri

Default

IHDPA 5 8 5 5 3 200 3 200 64 64 1e-3 1e-3

IHDPB 5 8 5 5 3 200 3 200 64 64 1e-3 1e-3

JOBS 3 4 3 4 2 100 2 100 128 128 1e-3 1e-3

Optimal

IHDPA (Hyperband) 4 28 3 48 3 200 3 200 64 512 1e-3 1e-4

IHDPB (Hyperband) 9 448 9 160 3 112 2 464 256 256 1e-3 1e-3

JOBS (Bayesian) 9 448 9 160 4 300 4 300 64 64 1e-3 1e-3
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