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Abstract

In this thesis, the coordinate scaling method, previously developed for the nu-

merical solution of the time-dependent Schrodinger equation, is generalized for the

numerical treatment of the time-dependent Dirac equation (TDDE) and has been

applied for the atomic ionization problem in relativistically strong laser fields. To

enable the use of the scaling method in relativistic settings, the Foldy-Wouthuysen

(FW) transformation is employed within the quasiclassical approximation, reducing

TDDE to the square root Klein-Gordon-like equation. The method has been tested on

the example of a 1D problem of the 1D atom exposed to a laser field, demonstrating

its computational advantage over the standard direct implementation of the TDDE

solution, especially in the case of an applied non-uniform mesh. Next, the method

in the 2D form has been applied to investigate the strong field ionization of an atom

in a XUV laser field in the stabilization regime in the nondipole domain. The pulse

duration effect leading to the periodic modulation of the ionization yield has been

revealed with the numerical solution and intuitive explanations have been advanced

in both dipole and nondipole cases.

Zusammenfassung

In dieser Doktorarbeit wird die Koordinatenskalierungsmethode, die zuvor für die

numerische Lösung der zeitabhängigen Schrödingergleichung entwickelt wurde, für

die numerische Behandlung der zeitabhängigen Diracgleichung (ZDG) verallgemein-

ert und für das Problem der Atomionisation in relativistisch starken Laserfeldern

angewendet. Um die Skalierungsmethode in relativistischen Umgebungen nutzen

zu können, wird die Foldy-Wouthuysen (FW)-Transformation innerhalb der quasik-

lassischen Näherung verwendet, wodurch ZDG auf die Quadratwurzel einer Klein-

Gordon-ähnlichen Gleichung reduziert wird. Die Methode wurde am Beispiel eines

1D-Problems eines 1D-Atoms getestet, das einem Laserfeld ausgesetzt ist. Dabei

zeigte sich ihr rechnerischer Vorteil gegenüber der standardmäßigen direkten Imple-

mentierung der ZDG-Lösung, insbesondere im Fall eines verwendeten nicht-uniformen

Gitters. Anschließend wurde die Methode in der 2D-Form angewendet, um die Stark-

feldionisation eines Atoms in einem EUV-Laserfeld im Stabilisierungsregime im Nicht-

Dipolbereich zu untersuchen. Der Impulsdauereffekt, der zur periodischen Modula-

tion der Ionisationsausbeute führt, wurde mit der numerischen Lösung aufgedeckt

und es wurden intuitive Erklärungen sowohl für Dipol- als auch für Nicht-Dipol-Fälle

vorgelegt. 1

1Die Zusammenfassung wurde mit hilfe von DeepL Übersetzer übersetzt.
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Chapter 1

Introduction

Strong-field ionization is the basic process triggering phenomena in attoscience [1, 2].

With the present advancement of laser techniques, intensities approaching 1023 W/cm2

have been attained [3], and intensities allowing the relativistic regime are routinely

achievable. In a relativistically strong laser field, the electron oscillatory velocity ap-

proaches the speed of light, which for infrared lasers, with a wavelength of about 1µm,

is the case at a laser intensity exceeding 1018 W/cm2 [4]. The experimental investi-

gation of the relativistic strong-field ionization has already quite long history [5–11].

Recently, the high-precision measurement technique allowed even to observe nondipole

(weakly relativistic) effects at lower intensities [12–17].

Generally, strong field ionization is governed by two independent parameters [18],

which can be chosen to be the Keldysh parameter γ =
√
Ip/2Up and ζ = Up/ω, where

Ip is the ionization energy of the atom, and Up = E2
0/(4ω

2) is the free electron oscilla-

tory energy in the laser field, where E0 is an electric field strength, and ω is the laser

frequency. Depending on these parameters the ionization can be broken down into

a few regimes. In low frequency infrared or mid-infrared laser fields when ℏω ≪ Ip,

the strong field ionization is dubbed as multiphoton ionization at low laser intensities

when γ > 1 and the ionization occurs by the absorption of multiple photons. This

regime is perturbative when γ ≫ 1. Vice versa, for the large intensities γ ≪ 1, the so

called tunnel ionization unfolds, in which an electron tunnels through the combined

effective atomic-laser potential. Tunneling ionization is fully nonperturbative process.

The strong field ionization is significantly modified in a high frequency regime

ℏω > Ip. While the parameters γ and ζ still delimit the nonperturbative regime

γ < 1 and/or ζ > 1, the physical interpretation of underlying phenomena is modi-

fied. In particular, it is known that at high laser frequencies the atomic stabilization

3



4

phenomenon occurs, whereby the ionization rate decreases as the laser intensity in-

creases. The latter takes place the free electron oscillation amplitude in a laser field

α = E0/ω
2 exceeds the atomic potential size ∼ aB, with the Bohr radius aB. In the

systems, studied in the thesis, ℏω ≫ Ip and Up spans from Up ∼ Ip to Up ≫ Ip.

This allows us to observe a wide range of the phenomena, including the stabilization

regime in the dipole cases, which breaks by the influence of the nondipole effects.

The nondipole effect is the relativistic v/c effect which includes the influence of the

laser magnetic field on the process dynamics. It enters into play when the parameter

ξ = E/(cω) ∼ 1, i.e. when the free electron oscillatory velocity in the laser field

becomes comparable with the speed of light.

It is worth noting that the single active electron approximation (SAE) approxima-

tion [18] is quite popular for the theoretical and numerical treatment of strong field

ionization phenomena, capturing in many cases the main essence of the processes

while neglecting electron correlation effects during ionization [19]. In this work we

will discuss the ionization of hydrogen-like ions, such as He+, Li2+ or Be3+, when

SAE is an exact approach.

While analytical theories for the treatment of strong-field processes in the relativis-

tic regime are available, such as the imaginary-time method [20], and the strong-field

approximation [21], they have known limitations, not including the Stark-shift and

atomic polarization, which becomes important when approaching the over-the-barrier

ionization regime, see e.g. [22–24], and numerical solutions of the Dirac and Klein-

Gordon equations are highly desirable [25] which, however, are computationally very

demanding in practice. Indeed, the treatment of solutions with both negative and

positive energies requires a very small numerical propagation time step ∆t ∼ ℏ/mc2,
with the speed of light c, the electron mass m, and the Planck constant ℏ. Moreover,

in the case of relativistic ionization, one expects ionized electrons to have large mo-

menta p ∼ mc, accommodating of which requires a small spatial step size of the grid

∆x ∼ ℏ/mc. These two circumstances complicate the numerical solution and have

been addressed from different perspectives.

Over time, different techniques to solve time-dependent Dirac equation (TDDE)

have been developed, such as the pseudo-spectral method and method of character-

istics, see e.g. Ref. [26] for the comparison. To reduce computational efforts, time

integrating procedures of 4th order were developed [27–32]. For the investigation

of spin effects in strong laser fields with highly-charged ions in a weakly relativis-
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tic regime, direct numerical solution of Pauli equation was applied [33–35]. Direct

solutions of TDDE for a simple 1D relativistic ionization problem are analyzed in

Refs. [36, 37]. The 2D case, including spin effects, has been also treated in different

ways, using the split-operator pseudo-spectral approach [24, 38, 39], Krylov-Arnoldi

type integrator [40], and applied for the comparison of solutions of the TDDE and

Klein-Gordon equation (KGE) in the high frequency regime [41,42].

In recent years, increasing computing power enabled 3D simulations within dif-

ferent direct approaches via separation into radial and angular components of the

wavefunction. In Ref. [43], a time-dependent close-coupling method was developed.

An approach based on the spectral expansion in field-free eigenstates, where the radial

wavefunctions are expressed on a B-spline basis, was applied in Ref. [44]. In Ref. [45]

an envelope approximation was elaborated to include multipole effects from the full

laser field. A procedure based on the relativistic generalization of the matrix iteration

method was proposed in Ref. [46]. In Ref. [47], a modified generalized pseudospec-

tral (GPS) method was used. A direct solution of TDDE in the high-intensity x-ray

regime was obtained in Ref. [48].

Some of the methods were aimed at the reduction of computational complex-

ity by introducing alternatives to the direct solving of TDDE. Among them are ap-

proaches, employing the KGE [22] or square root Klein-Gordon equation (SKGE) [49].

In Ref. [50], it was proposed to evolve the envelope of the wave function, rather than

solving standard TDDE. Other approaches harnessed methods, previously proved use-

ful for the solution of the time-dependent Schrodinger equation (TDSE), to facilitate

the solution of TDDE. For instance, in [51] a method of complex coordinate scal-

ing [52] was employed for the solution of TDDE. The use of the method of absorbing

potentials [53] was discussed for TDDE in Ref. [54].

However, one of the advantageous approaches to TDSE, namely, the so-called

method of scaled coordinates, has not been so far implemented in the relativistic

realm. The method was firstly introduced in a different context in Ref. [55] and

later elaborated for a strong-field ionization problem via TDSE in Refs. [56–58]. The

method consists of two steps. First of all, one introduces an ansatz with a kinetic

phase, resembling a free solution, which cancels out the highly oscillating phase of the

numerical solution. As a result, rather than solving TDSE for a highly oscillating wave

function, one solves a TDSE-like equation for a presumed smooth function. Second, a

time-dependent coordinate scaling is applied, aiming to gradually expand the simula-
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tion box. Thus, the approach of the scaled coordinates resolves the two problems that

are similar in relativistic and nonrelativistic cases: high oscillations of the wavefunc-

tion and limited size of the simulation area. One more advantage of the method is

the direct access to the spectrum, as the coordinate dependence of the wavefunction

in far-field mimics the asymptotic momentum distribution. However, the extension

of the scaling method to the relativistic regime meets an additional problem. The

relativistic wavefunction contains fast oscillations corresponding to the virtual tran-

sitions between positive and negative energies, which should be coped with to reduce

the TDDE solution to the numerical simulation of the slow oscillating wavefunction.

In this thesis an author numerically investigates the ionization process of a one

electron two-dimensional atom in a relativistically strong field of a plane electromag-

netic wave. In order to accomplish this task, the method of scaled coordinates for

the application to TDDE was developed. The method utilizes a previously known

Foldy-Wouthuysen (FW) transformation, which is implemented in the quasiclassi-

cal approximation, derived by Silenko [59–61], reducing TDDE to the square-root

Klein-Gordon-like equation. This transformation makes it possible to remove virtual

transitions between positive and negative energies and to enable removing fast os-

cillations in the wavefunction. Such an application of FW in Silenko’s form to the

relativistic ionization problem was proposed for the first time and was thoroughly

tested on the 1D example. Also, an efficiency of the proposed approach was examined

in comparison to the regular procedures to the TDDE and SKGE solving, establishing

the possible advantages.

The developed approach was applied to the solution of the two dimensional ioniza-

tion. This part of the work has a few components. First, an influence of the non-dipole

effects was examined and singled out from the pure relativistic effects, such as mass

shift. Second, a dependence of the ionization probability on the pulse duration was

studied. The study reveals, that the probability oscillates with the length of the pulse

in both dipole and non dipole cases. However, it was proven, that these oscillations

have different root causes, which were identified for the both cases. In addition, two

simple models were presented to explain and estimate oscillations.

The structure of the thesis is the following. Chapter 2 begins with the presenta-

tion of the general approach to ODE and PDE time integration. Later, this theory

is applied in the existing manner to the solution of both non relativistic and rela-

tivistic ionization problems. For the both cases, the minimal reproducible algorithms
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and their comprehensive analyses are given. In Chapter 3, the scaling coordinates ap-

proach is derived for the relativistic case and applied to the one dimensional ionization

problem with respect to the standard direct solution of TDDE and TDSE. Chapter 4

deals with the application of the method, developed in Chapter 3, to the ionization

of the two dimensional atom. The dependence of the ionization on the field strength

in both dipole and nondipole case is presented and analyzed. Also, the dependence of

the ionization probability on the laser pulse length is revealed and explained.





Chapter 2

Numerical treatment of

time-dependent dynamics

2.1 Mathematical foundations of the time integra-

tion

Many physical problems are described by partial differential equations (PDEs). Al-

though the particular form of such equations might be different, they still might belong

to the same class. For example, time-dependent Schrodinger (TDSE), time-dependent

Dirac (TDDE) and even heat equations are the so called parabolic equations. If we

want to understand, how a certain system or a property evolves with time, we must

write down an initial value problem (IVP) for such an equation and solve it. The

numerical methods for the solution can be written in a general way for the entire

classes and later specified for the particular cases. In this chapter, we will start from

the general IVP for an ordinary differential equation (ODE) and then focus on the

methods for the numerical treatment of the TDSE and TDDE.

Let us start with a simple IVP, which an ODE combined with an initial condition

on function ψ ψ̇(t) = H(t)ψ(t)

ψ(0) = ψ0

(2.1)

in which H is an operator. If the operator H does not depend on variable t, i.e.

H(t) = H0, then the solution of Eq. (2.1) is given by an exponent

ψ(t) = etH0ψ0. (2.2)

However, if the operator H depends on time H(t) ̸= H0, then the solution becomes

more sophisticated. In order to clarify this question, we can solve Eq. (2.1) iteratively.

9
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First, we apply an integral operator to the both sides of Eq. (2.1)

ψ(t)− ψ(0) =
∫ t

0

H(t′)ψ(t′)dt′ (2.3)

and move ψ0 to the right part

ψ(t) = ψ0 +

∫ t

0

H(t′)ψ(t′)dt′, (2.4)

which yields an integral equation. Second, we use Eq. (2.4) to express ψ(t′) in the

integral

ψ(t) = ψ0 + ψ0

∫ t

0

H(t′)dt′ +

∫ t

0

H(t′)dt′
∫ t′

0

H(t′′)ψ(t′′)dt′′. (2.5)

Third, we can continue this procedure by inserting Eq. (2.4) into Eq. (2.5)

ψ(t) = ψ0 + ψ0

∫ t

0

H(t′)dt′ + ψ0

∫ t

0

H(t′)dt′
∫ t′

0

H(t′′)dt′′+

+

∫ t

0

dt′
∫ t′

0

dt′′
∫ t′′

0

H(t′)H(t′′)H(t′′′)ψ(t′′′)dt′′′.

(2.6)

Let us take a closer look at the term∫ t

0

H(t′)dt′
∫ t′

0

H(t′′)dt′′ =

∫ t

0

dt′
∫ t′

0

H(t′)H(t′′)dt′′. (2.7)

Here we have to deal with an integration over the triangle t′′ ∈ [0, t′], t ∈ [0, t],

which can be converted to more useful integration over the square t′, t′′ ∈ [0, t] via an

introduction of a so called time-ordering operator τ

τH(t′)H(t′′) =

H(t′)H(t′′), t′ > t′′

H(t′′)H(t′), t′ ≤ t′′.
(2.8)

With this operator, we can express an integral over the square as two integrals over

the triangle

τ

∫∫
[0,t]2

H(t′)H(t′′)dt′dt′′ =

∫ t

0

dt′
∫ t′

0

H(t′)H(t′′)dt′′ +

∫ t

0

dt′′
∫ t′′

0

H(t′′)H(t′)dt′ =

= 2

∫ t

0

dt′
∫ t′

0

H(t′)H(t′′)dt′′.

(2.9)

The same procedure can be applied to all the other terms of Eq. (2.6), providing

us with a series, which is, due to its similarity to Taylor’s series of exponent, is by

definition called ”time ordered exponent”

ψ(t) =

[
1 + τ

∞∑
n=1

1

n!

∫
[0,t]n

H(t1)...H(tn)dt1...dtn

]
ψ0 ≡ τetH ψ0 (2.10)
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In principle, a series Eq. (2.10) is not fast to compute. However, the exponent can be

represented as Magnus expansion, which can be written as

τ exp [tH] = exp

[
∞∑

m=1

Ωm(t)

]
(2.11)

A few first Ωm(t) terms of Magnus expansion are known in analytical form, but for

our purposes we can right down just the first two of them

Ω1(t) =

∫ t

0

H(t′)dt′ (2.12)

Ω2(t) =
1

2

∫ t

0

dt′
∫ t′

0

[H(t′), H(t′′)]dt′′. (2.13)

The terms of higher orders contain combinations of commutators of operators H(t)

at different times. It is clearly seen, that if operator H commutes with itself for all

times t′ ∈ [0, t], then the solution for the problem Eq. (2.1) is provided just be the

very first Magnus term

ψ(t) = exp

[∫ t

0

H(t′)dt′
]
ψ0. (2.14)

For a more complicated case [H(t1), H(t2)] ̸= 0, one can still simplify the procedure.

We can notice, that for the problem Eq. (2.1), a solution can be given by an evolu-

tionary operator

ψ(t1) = U(t1, 0)ψ0 (2.15)

If we are interested in a solution at later time t2 > t1, then we can formally write

down the solution as

ψ(t2) = U(t2, t1)ψ(t1) = U(t2, t1)U(t1, 0)ψ0. (2.16)

Dividing an interval [0, t] into N small subintervals with a step size ∆t = t/N

and noticing, that an evolution operator U is given by the time ordered exponent

Eq. (2.10), we arrive to the following solution of the problem Eq. (2.1)

ψ(t) =
[
τe∆tH

]N
ψ0. (2.17)

The Eq. (2.17) provides us with an efficient way to numerically calculate the solution.

Indeed, the first Magnus term for each τe∆tH can be calculate via, for example, a

midpoint rule

Ω1(∆t) =

∫ tn+∆t

tn

H(t′)dt = H

(
tn +

∆t

2

)
∆t+O(∆t3), tn ∈ [0, t] (2.18)
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Spectacularly, the second Magnus term Eq. (2.13) turns out to be of O(∆t3) order

small

Ω2(∆t) =
1

2

∫ tn+∆t

tn

dt′
∫ t′

0

[H(t′), H(t′) + (t′′ − t′)H ′(t′)] dt′′ ∼ O(∆t3) (2.19)

Hence, remaining only the first Magnus term, we can write down the solution of

problem Eq. (2.1) as

ψ(t) = exp

[
H

(
t− ∆t

2

)
∆t

]
. . . exp

[
H

(
3∆t

2

)
∆t

]
exp

[
H

(
∆t

2

)
∆t

]
ψ0+O(∆t2)

(2.20)

The question to address now is how to apply our individual propagator e∆tH to

a function ψ. In principle, from the numerical point of view, we should choose an

appropriate basis, in which operator H becomes a matrix and function ψ becomes c

column-vector. Then, we can calculate the resulting matrix exponential by one of the

existing approaches [25]. The simplest case is when H is a diagonal matrix, then

e∆tHψ =


e∆tH1 0 0

0
. . . 0

0 0 e∆tHn



ψ1

...

ψn

 (2.21)

Also, when H is diagonalizable by a matrix F , that is H = FAF−1, then it is easy to

show, that

e∆tHψ = F


e∆tA1 0 0

0
. . . 0

0 0 e∆tAn

F−1


ψ1

...

ψn

 (2.22)

If the matrix is not diagonalizable or the matrix F is complicated itself, then more

general approaches can be used. On of the most popular is a Crank-Nicolson scheme,

which is a special case of Padé approximant methods:

e∆tHψ =

(
1 +

∆t

2
H

)(
1− ∆t

2
H

)−1

ψ +O(∆t3) (2.23)

the disadvantage of this approach is a need to calculate an inverse matrix. Apart from

direct methods, such as Crank Nicolson, there exist iterative methods. One of the

most famous of them is a Krylov subspace method.

One more way is a splitting approach. It is based on the idea, that an operator H

can be decomposed as H = T+V , where each of parts can be relatively easy diagonal-

ized. However, since T and V are matrices, one must use Baker–Campbell–Hausdorff

formula to decompose a matrix exponential

e∆tH = e∆tT · e∆tV · e∆t2[T,V ]/2 · . . . (2.24)
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Of course, computing this infinite series, involving commutators, is not computation-

ally efficient. Therefore, one can use one of the numerous simplified expressions, whose

comprehensive analysis can be found in [62]. One of such possibilities is a second order

Verlet formula

e∆t(T+V ) = e
∆t
2
V e∆tT e

∆t
2
V +O(∆t3) (2.25)

more precisely, the error term in Eq. (2.25) is

O(∆t3) =
(

1

12
[T, [T, V ]] +

1

24
[V, [T, V ]]

)
∆t3. (2.26)

An advantage of the splitting approach in application to the problems of quantum

mechanics is described in the next section.

2.2 Time integration in the non relativistic quan-

tum mechanics

2.2.1 The basics

In quantum mechanics, a problem Eq. (2.1) is usually written in the formiℏψ̇(r, t) = H(r, t)ψ(r, t)

ψ(r, 0) = ψ0(r)
(2.27)

Depending on the particular setting, the way the Hamiltonian H looks like might be

different. Non relativistic problems of time-dependent quantum mechanics, which also

include ionization problems, are described by the Hamiltonian

H =
1

2m

(
p− e

c
A(r, t)

)2

+ V (r), (2.28)

written in the velocity gauge. Here, V (r) denotes central potential of the atom core,

which is usually Coulomb-like. The laser field is included by the vector potential

A(r, t). The kinetic term T = 1
2m

(
p− e

c
A
)2

is written with the usage of the canoni-

cal momentum p←→ −iℏ∂r for the sake of simplicity.

In principle, the problem Eq. (2.27) with the Hamiltonian Eq. (2.28) can be nu-

merically solved with the usage of any method from section 2.1. Before diving into

details, it makes sense to introduce a so called ”minimal reproducible example”, i.e.
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a simple procedure, which delivers the solution ψ(r, t) of Eq. (2.27) with a predeter-

mined accuracy. Therefore, let us exhibit some basic ideas in a simple case of a 1D

dipole (i.e. A(t) ̸= A(x, t)) problem

H =
1

2m

(
px −

e

c
A(t)

)2

+ V (x). (2.29)

To discretize the Hamiltonian Eq. (2.29), one may introduce a uniform grid {x1 . . . xNx}
with Nx nodes and a spatial step size ∆x. In this case, operators px ←→ −i∂x and

p2x ←→ −∂2xx can be discretized using, for instance, finite differences:

f ′(xi) =
f(xi+1)− f(xi−1)

2∆x
+O(∆x2) (2.30)

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

∆x2
+O(∆x2) (2.31)

Then, the kinetic part of the Hamiltonian Eq. (2.28) becomes

T = − ℏ2

2m∆x2



−2 1 0

1 −2 1
. . . . . . . . .

1 −2 1

0 1 −2


+i
e

c
A(t)

ℏ
m∆x



0 −1 0

1 0 −1
. . . . . . . . .

1 0 −1
0 1 0


+

e2

2mc2
A(t)2+O(∆x2)

(2.32)

and the potential term V (x) is a simple diagonal matrix. As a result, the entire

Hamiltonian H = T + V comprises of a tridiagonal matrix. Such a matrix can be

efficiently inverted via Thomas algorithm, making it possible to use Crank Nicolson

method to propagate the solution.

While focusing on propagation of the wave function, we should never forget, that

the problem Eq. (2.27) also requires boundary conditions on r in order to be well-

posed. Here comes the contradiction: on the one hand, the size of the simulated

area must ideally be infinite; on the other, computer memory can store only a limited

number of the grid nodes Nx. Therefore, one must reasonably choose a simulation

box of the size Lx and impose relevant boundary conditions. From the point of view

of physics, we should define the behavior of the system on the boundaries of such a

box. In our simple example Eq. (2.32), we implicitly introduced zero boundary con-

ditions. Indeed, sub- and over-diagonal elements of the matrices in Eq. (2.32) with

indices {1, 0} and {Nx, Nx + 1} are not written explicitly and thus considered to be

0. Overall, the topic of boundary conditions is of crucial importance for the solution

of the ionization problem and will be discussed in detail in Section 2.2.3.
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The procedure to solve the problem Eq. (2.27) with the Hamiltonian Eq. (2.29)

wouldn’t be complete without an error analysis. Indeed, so far we have introduced

two parameters ∆x and ∆t, which define the accuracy of computations.

An error term, proportional to ∆x2, comes from the discretization of the deriva-

tives Eq. (2.30) and makes the scheme a second-order with respect to ∆x. Although

the convergence order is now clear, a particular choice of the value ∆x = Lx/Nx

requires a bit more of analysis. Intuitively, we must have enough grid nodes Nx to

resolve the oscillations of the wave function ψ. Formally speaking, we can employ

Fourier analysis to be more precise. A well-known relation between the step size of

the spatial grid ∆x and a maximum momentum pmax, which can be resolved on the

corresponding grid in Fourier space, reads pmax = ℏπ/∆x. In practice, it leads to

the choice ∆x = Lx/Nx ≪ ℏπ/pmax, where pmax can be estimated beforehand. For

instance, as pmax = max
[
e
c
A(t)

]
.

An error term, proportional to ∆t2, comes from the two different sources. Firstly,

midpoint integration rule and an abandoned second Magnus term deliver an error

O
(
∆t2Ḧ(t)

)
, which basically depends on how fast the Hamiltonian changes with

time. In Eq. (2.29) the only term depending on time t is a vector-potential A(t).

Then, knowing its frequency ω, we can estimate ∆t ≪ 1/ω. As can be seen, such a

condition is relatively weak for the typical laser frequencies (ω ≈ 0.05 a.u. for the red

laser and even for the ω ≈ 2 a.u. x-ray laser). Secondly, we introduce a global er-

ror term O (∆t2H2) when approximating matrix exponential in Crank Nicolson form

Eq. (2.23). This condition is more severe, than the first one, because it involves a

module of the Hamiltonian. Therefore, ∆t can be estimated as ∆t < mℏ/p2max. A

detailed analysis of the accuracy of the Crank Nicolson method can be found in [25].

2.2.2 Split operator approach

Of course, there are other algorithms, which may outperform the basic scheme, men-

tioned above. Since the Hamiltonian Eq. (2.28) consists of kinetic T and potential

parts V , the respective problem Eq. (2.27) can be solved via the split operator ap-

proach, which has a few distinctive features in this case. Namely, we can notice, that

the kinetic term T is diagonal in the momentum space. Switching to the momen-

tum space from the coordinate space can be done very efficiently via Fast Fourier

Transformation (FFT) [63]. This move allows us not to discretize the derivatives

Eq. (2.30), because now, recalling the property Eq. (2.22), we can write down the
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matrix exponential for the kinetic part of the Hamiltonian as

e−iT∆t/ℏψ = F


e−i∆t(p1−A(t))2/(2mℏ) 0

. . .

0 e−i∆t(pNx−A(t))2/(2mℏ)

F−1


ψ1

...

ψn

 (2.33)

with F being a matrix of the Fourier transform, such that ψ̂(p) = Fψ(x). Then,

according to the split operator approach Eq. (2.25), an elementary propagation step

becomes

e−iH∆t/ℏψ(x, t) = e−i∆t
2ℏ V (x) F−1 e−i∆t

(px−A(t))2

2mℏ F e−i∆t
2ℏ V (x) ψ(x, t). (2.34)

Eq. (2.34) is easy to deal with, because all the matrix exponentials there are in fact

ones of diagonal matrices in respective spaces. This means, that the computing of the

each matrix exponential becomes trivial (Eq. (2.21)) and an approximation of ma-

trix exponential in any way (such as Crank Nicolson Eq. (2.23)) is no longer needed.

Naturally, the computational complexity of the quantum evolution cannot disappear

traceless. The transitions from the coordinate space x to the momentum p and back

are done via the FFT operator F . Computing an application of the operator F to

the function ψ is now the most time and resources computing part of the algorithm.

Regarding the boundary conditions, they are now also implicitly set via the Fourier

transformation. Indeed, the discrete (or fast, which nowadays is the same matter)

Fourier transform implies, that the function being transformed is periodic. Therefore,

although we do not set the boundary conditions explicitly, they are essentially periodic,

because transformations F and F−1 are used at the each time step of the propagation.

Let us now examine in detail the accuracy and limitations of the split operator

approach. First, the approach clearly has a better convergence with respect to the

spatial step size ∆x. Indeed, now we do not need an approximation of the derivatives

Eq. (2.30), because in the momentum space a derivative transforms into a simple

multiplication. It is known [25, 64], that such spectral methods enjoy ”infinite or-

der” or ”exponential” convergence O
(
(1/Nx)

Nx
)
∼ O

(
(∆x)Nx

)
. Of course, we still

have a condition, which bounds a maximum resolved momentum with the step size

∆x = ℏπ/pmax. However, due to the very fast convergence, a condition for the par-

ticular choice ∆x is not that strict ∆x ≤ ℏπ/pmax. In practice, it means that for the

spectral methods the number of grid points Nx is at least a few times smaller, then

for finite differences methods.

Second, an error, related to the time step ∆t, again comes from the two sources.

An error from the mid-point integration is the same as in the previous case and yields
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a condition ∆t≪ 1/ω. Unlike in the Crank Nicolson method, we do not have an error

due to the approximation of an individual elementary matrix exponential. Instead,

we have an error Eq. (2.26) from the omitted terms while splitting the Hamiltonian

Eq. (2.29)

O(∆t3) ∼ p2max∆t
3. (2.35)

which for the entire interval of integration [0, t] gives O(∆t2) ∼ p2max∆t
2. Hence, the

condition on ∆t≪ maB/pmax.

As one can see, the splitting operator approach does not demand very small step

sizes ∆x and ∆t. The main complexity of the method comes from the back and forth

Fourier transformations of the wave function ψ. However, FFT complexity scales as

O(Nx logNx), which is pretty moderate. Moreover, modern implementations of the

FFT are very efficient and can be used in a simple and straightforward manner. All

these facts make the splitting operator approach an efficient tool for the time propa-

gation of the TDSE.

The splitting operator approach can be utilized for more complicated systems,

too. Let us consider a 2D system, exposed to the plane electro-magnetic wave. The

non-dipole Hamiltonian of such a system reads

H =
1

2m

(
px −

e

c
A(t, z)

)2

+
1

2m
p2z + V (r). (2.36)

Let us divide the kinetic part T = T0 + T1 + T2 into a few sub-parts

T0 =
1

2m
(p2x + p2z) (2.37)

T1 = −2
e

mc
A(z, t)px (2.38)

T2 =
e2

mc2
A(t, z)2 (2.39)

Here, the term T1 does not involve spatial derivatives of A(z), because operators px

and A(t, z) commute. If we define the 2D Fourier transform as ψ̂(px, pz) = F2ψ(x, z)

and the 1D as ψ̃(px, z) = Fxψ(x, z) and ψ̃(x, pz) = Fzψ(x, z), then the split operator

approach can be written as

e−iH∆t/ℏψ(x, z, t) = e−i∆t
2ℏ V (r) F−1

2 e−i∆tT0/ℏ Fx e
−i∆tT1/ℏ Fz e

−i∆tT2/ℏ e−i∆t
2ℏ V (r) ψ(x, t).

(2.40)

The estimations for the ∆x and ∆t, which were made earlier, remain valid also for

the 2D case.
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Although the Hamiltonian Eq. (2.36) and the splitting method Eq. (2.40) are

mathematically correct, they are not flawless from the perspective of physics. The

thing is, that non dipole effects A = A(z) start manifesting themselves when the laser

field becomes relativistically strong. As a rule, it is believed that such a regime is

entered, when a ponderomotive (i.e. the nonrelativistic cycle-averaged quiver energy)

energy Up becomes comparable to the to the electron’s rest energy

Up

mc2
=

e2E2

4m2c2ω2
∼ 1 (2.41)

Of course, for such parameters electron’s motion can no longer be described in terms

of non relativistic equations, such as TDSE. Therefore, a relativistic description is

necessary, which implies an introduction of the Dirac equation or some other approx-

imate approaches, such as Foldy-Wouthuysen equations (Section 3.1.2).

2.2.3 Initial and boundary conditions

So far, we have mentioned the question of the boundary conditions very briefly. How-

ever, this aspect is not of less importance, than the time propagation itself. In order

to define correct boundary conditions, one should first understand the physics of the

ionization problem.

At the initial moment, the system usually consists of a one electron atom at rest.

The atom is characterized by the central potential, which is usually Coulomb-like. The

initial state is taken as a ground state of the respective potential. Such initial state can

be numerically computed by means of various techniques. One of the opportunities is

an imaginary time propagation. This approach can be implemented via the methods,

described above, such as Crank Nicolson or split operator approaches. The cornerstone

of the method is a formal change of the variable t→ −iτ in Eq. (2.27)ℏψ̇(r, τ) = −H(r)ψ(r, τ)

ψ(r, 0) = ψ0(r)
(2.42)

The solution to the Eq. (2.42) can be expanded into the series

ψ(r, τ) =
∑
n

anψn(r)e
−τEn/ℏ (2.43)

where ψn are eigenstates Hψ = Enψ and En are respective energies. Since the ground

energy is E0 < En, then after the evolution with some imaginary time τ all the terms

will be small, comparing to the a0ψ0(r)e
−τE0/ℏ. Hence, we can extract ψ0(r) from the
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simulation results.

Other approaches consider stationary Schrödinger equation Hψ = Eψ as a bound-

ary value problem (BVP). Such mathematical problems have been extensively studied

and as of today, there are many methods and programmes to solve general BVP. For

instance, there is a MATLAB package MATSLISE [65], which is designed to solve

Sturm-Liouville problem numerically. Conveniently, a stationary Schrödigner equation

is a particular case of the general Sturm-Liouville problem. The programme MAT-

SLISE implements constant reference potential perturbation method (CP-method),

which allows us to obtain ground states even for the slow decaying potential like

V (r) ∼ 1/r.

With the initial wave function ψ0(r) at hand, we are ready to turn on the laser.

The electro-magnetic field in a velocity gauge is introduced via the vector potential

A(r, t), which is for the case of the plane wave is represented as

A(r, t) = exA0 · f
(
ω
(
t− z

c

))
· sin

(
ω
(
t− z

c

))
, (2.44)

where f is a smooth envelope function. There are some conditions on the vector-

potential A. First, the envelope function f must turn on and turn off the field

relatively slowly. If f is a Gaussian, then its standard deviation τ must be τ > 2π/ω

and the time of the turn on and off must be at least a few τ . Second, usually an

integral
∫∞
−∞A(t)dt = 0. Such a condition is justified by the fact, that a classical free

electron trajectory in dipole case is given by the formula

α(t) =
e

mc

∫ t

−∞
A(t′)dt′. (2.45)

Therefore, if we want to study electron’s motion in a potential V , then it is useful to

have a ”free electron’s” offset to be zero. For the propagating laser wave, the condition

should be fulfilled: ∫ ∞

−∞
E(t′)dt′ = 0. (2.46)

During the interaction with the laser field Eq. (2.44), electron’s motion consists

of two main components. Along the x axis, an electron experiences a quiver motion

with a frequency ω due to the periodic electric field E = −1
c
Ȧ(t). Along the z axis,

an electron drifts under the influence of the Lorenz force. In principle, in the absence

of the central potential V , the drift has a constant average speed vz [66]

vz = c
a20/2

1 + a20/2
≈ c

2
a20, (2.47)
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where a0 is a non dipole parameter a0 = E/(ωc) = eA/(mc2). Although, it also

experiences small oscillations with frequency 2ω. If the potential V is present, then

electron’s motion is also influenced by the Coulomb force −∇V and the trajectory

could become oscillating with a period, much larger than 2π/ω. If we consider an

electron not as a point-like particle, but as a wave packet, then during the interaction,

the packet scatters, rescatters on the central potential and spreads. However, looking

ahead, the most impact on the ionization have a turn on and turn off stages. Right

after the interaction, an electron tends to scatter on the potential center, leaving most

of the ionized part to travel into the −z direction. To sum up, an electron remains

quite localized during the interaction phase, but the ionized part of the wave function

travels infinitely after the end of the pulse.

For most of the applications (such as a calculation of the ionization spectrum),

one must perform the simulation for some long time after the end of the pulse. For

the cases, addressed in this thesis, it is about 15 − 30τ . The problem is, that the

simulation box is finite, but the motion of the ionized electron is infinite. As a result,

a long grid size is required to accommodate the full ionized wavepacket, especially

at high laser intensities. However, the large grid size makes it hard to store the grid

in the computer memory and makes computations slow. For instance, if the split

operator approach is used, then the computing time grows as N logN , where N is

a total number of the grid nodes. Therefore, a special attention must be aimed on

the boundary conditions, so that they correctly keep the dynamics of the electron

throughout the simulation and the simulation box size remains reasonable.

One of the straightforward approaches to the boundary conditions is to introduce

an imaginary absorbing potential VA

V (r) = −1

r
+ iVA(r) (2.48)

which absorbs the wave function on the edges of the simulation box [53]. This allows

us to enforce zero or periodic boundary conditions. So, an absorbing potential VA

must be localized near the boundaries and have a smooth turn on, so that the wave-

function, approaching the edge of the box, is not reflected from VA.

Another possible approach is a complex coordinate scaling [52]. An idea of the

method is a smooth introduction of the complex phase θ into the coordinate x, starting
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from the certain (in general, large) distance R0

x→

x, |x| < R0

eiθ(x±R0)∓R0, ∓x > R0

(2.49)

Such scaling is also sometimes referred as a ”perfect absorber”.

However, both methods, mentioned above, has disadvantages. Although they sup-

press a non-physical reflection of the wavefunction from the boundaries, the dynamics

of the system will be lost, if an ionized electron reaches the boundary. Moreover, as

can be seen from the analysis of the free Hamiltonian, the moving wavepacket far from

the potential center after the end of the pulse can be propagated as

ψ̂(p, t) = e−i(t−t0)p2/(2mℏ)ψ̂(p, t0). (2.50)

Hence, the wave packet acquires an additional phase, proportional to the time of prop-

agation t, which demands more grid nodes in physical space in order to resolve the

oscillations. Therefore, a method of scaling coordinates was introduced. The method

tackles both the kinematic oscillations and an infinite motion of the wavefunction.

2.2.4 Scaling coordinates method

The large range of the electron motion in the continuum after ionization is han-

dled within the framework of the scaling coordinates by the introduction of a time-

dependent coordinate scaling x = R(t)ξ, between the real space coordinate x, and a

computational coordinate ξ, the scaling factor R(t) satisfying conditions

R(0) = L, R(t) −−−→
t→∞

vt, (2.51)

where L is an initial box size and the parameter v should be chosen to correspond to

the characteristic velocity (e.g. the group velocity) of the ionization wavepacket. In

general, the particular choice of the intermediate time dependence of R(t) is arbitrary.

One of the common choices is [56]:

R(t) =

L , t < t0
4
√
L4 + v4(t− t0)4 , t ≥ t0

(2.52)

where t0 is scaling’s turn-on time. As a result of the scaling and the constant expansion

R(t) of the grid, the ionized wavepacket never reaches the boundary at a given rather
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small grid, which allows one to enforce any of the simple boundary conditions. More-

over, with a good choice of the parameters one can achieve a stationary wavepacket

in the computational space ξ. How fast the wavepacket becomes stationary can be

regulated by the parameter v, to be equal or greater than the fastest group velocity

in the system.

The disadvantage of the coordinate scaling is that the core potential V (ξR(t))

shrinks in computational space ξ. Hence, the number of grid nodes inside the core

of the potential decreases with time. However, to resolve the dynamics of the bound

state wavefunction correctly, the grid must always have a certain minimal amount of

knots near the core. For this reason, either one has to have an excessive amount of

knots at the beginning of the simulation, such that at the end there is a sufficient

number of nodes near the core to sustain the potential V . Alternatively, this problem

can be overcome by employing a non-uniform mesh, or by dynamical adding of knots.

The key idea of dealing with fast oscillations of the wavefunction due to the non-

relativistic kinetic phase, was representing the wave function as a product of the fast

oscillating f(x, t) part and the smooth evolving one ϕ(x, t) [56–58]:

ψ(x, t) = ϕ(x, t)f(x, t), (2.53)

and in Fourier space

ψ̂(p, t) = Φ̂(p, t)f̂(p, t), (2.54)

such that a Fourier transform f̂ of f

f̂(p, t) −−−→
t→∞

e−i p2

2ℏm t, (2.55)

approaches a solution of the free electron TDSE as t→∞. In order to derive f(x, t),

one can write down the Fourier integral:

ψ(x, t) =
1

2πℏ

∫ ∞

−∞
Φ̂(p, t)e−

i
2mℏp

2te+
i
ℏpxdp. (2.56)

Since we consider Eq. (2.53) as an ansatz with two, in principle, arbitrary functions, it

is sufficient to estimate the integral Eq. (2.56) using stationary phase approximation

(SPA) [67]. The integrand in Eq. (2.56) has a saddle-point p0 at large t: p0 = mx/t,

and SPA yields

ψ(x, t) ∼ Φ̂
(mx
t
, t
)
e

i
2ℏtmx2

+O

(
1√
t

)
, t→∞ (2.57)
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When R/t is replaced with Ṙ in the latter expression, it will read in scaled coordinates

as

ψ(Rξ, t) ∼ Φ̂
(
mṘξ, t

)
e

i
2ℏmRṘξ2 +O

(
1√
t

)
, t→∞ (2.58)

Thus, providing the fast oscillating term:

f(ξR, t) ∼ ei
m
2ℏRṘξ2 . (2.59)

The choice of the phase above intuitively corresponds asymptotically (t→∞) to the

kinetic phase of (mv2/2ℏ)tξ2, with the characteristic velocity v. It is also seen from

Eqs. (2.51) and (2.57), that

ξ −−−→
R→vt

p

mv
. (2.60)

Thus, the coordinate dependence of the wavefunction of the electron ionized part re-

peats the photoelectron asymptotic momentum distribution. This allows us to access

the spectrum |Φ̂| directly from the wavefunction |ψ| with the substitution (2.60).

As a result, the function f(x, t) incorporates high kinetic oscillations of the wave-

function, and the presumably smooth function ϕ(x, t) fulfills the following equa-

tion [58]:

iℏ
∂ϕ

∂t
=

[
− ℏ2

2mR2

∂2

∂ξ2
+ V (Rξ, t) +

m

2
RR̈ξ2

]
ϕ. (2.61)

The latter equation has two distinctive features, apart from the shrinking central po-

tential V (Rξ, t). Namely, an additional localized in time potential m
2
RR̈ξ2 and the

decreasing with time kinetic term ℏ2
2mR2

∂2

∂ξ2
. The additional potential does not posses

any computational difficulties as long as R̈(t) is smooth (see Eq. (2.52)). In turn, the

disappearing as 1/R(t)2 kinetic term guarantees, that the envelope function ϕ(Rξ, t)

eventually becomes stationary and approaches Φ̂(mṘξ, t) as R(t)→ vt.

The latter equation can be numerically evolved with much smaller number of spa-

tial grid nodes than the original TDSE. This is achieved by the fact that the function

ϕ(x, t) is smooth comparing to the original function ψ(x, t) and, consequently, we no

longer need a small step size ∆x to resolve its oscillations. Also, the total length of the

box L is no longer should be large, because any wave packet with the group velocity

vg is stuck at the position. An example of the evolution of the free Gaussian package

in scaled coordinates is demonstrated in [56,57].
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2.3 Time integration in the relativistic quantum

mechanics

2.3.1 Time-dependent Dirac Equation

In case of the large laser intensities, i.e. larger than 1018 W/cm2, the relativistic

description of the ionization becomes absolutely necessary. This can be done by means

of the Relativistic Quantum Mechanics. An evolution of the wavefunction, describing

the one electron atom interacting with the field A(r, t), is governed by time-dependent

Dirac equation (TDDE)

iℏψ̇(r, t) =
[
mc2β + cα

(
p− e

c
A(t)

)
+ V (r)

]
ψ(r, t) (2.62)

Although Eq. (2.62) formally has the same appearance as Eq. (2.27), it has a more

complicated structure. First of all, TDDE governs both particles with positive (elec-

trons) and negative (positrons) energies. Therefore, the wave function ψ(r, t) is no

longer a scalar function, but a vector. In 1D, where the spin is naturally absent, ψ(r, t)

is a two-component vector (spinor). In 2D and 3D both electrons and positrons have

a spin, so this degree of freedom is taken into account by the further expansion of

ψ(r, t), making it a 4-component vector (bispinor). This is why coefficients α become

4× 4 matrices

αx =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , αy =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 αz =


0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

 (2.63)

β =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , (2.64)

which also satisfy certain commutative relations

α2
i = β2 = 1, {αi, αj} = 2δi,j, αiβ + βαi = 0. (2.65)

Also, matrices αi can be written by means of Pauli matrices σi

αi =

(
0 σi

σi 0

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.66)
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In case of the free Hamiltonian in Eq. (2.62), i.e. when V = 0 and A = 0, one can

write down the free solutions of TDDE

χ̂u,d
+ =

1√
2E(E +mc2)

(
su,d(E +mc2)

su,dcσ · p

)
e−imc2

ℏ t
√

1+ p2

m2c2

χ̂u,d
− =

1√
2E(E +mc2)

(
−su,dcσ · p

su,d(E +mc2)

)
ei

mc2

ℏ t
√

1+ p2

m2c2 .

(2.67)

where indices + and − denote positive or negative energy states, indices u and d

correspond to spin up and spin down states, respectively. Vectors su and sd are

orthogonal two-component unit vectors

su =

(
1

0

)
, sd =

(
0

1

)
(2.68)

and E denotes a classical relativistic energy-momentum relation

E = mc2
√

1 +
p2

m2c2
. (2.69)

In 1D case Eq. (2.62) simplifies due to the absence of spin and can be written as

iℏψ̇(x, t) = mc2

[
1 0

0 -1

]
ψ + c

[
0 1

1 0

](
−iℏ ∂

∂x
− e

c
A(t)

)
ψ + V (x)ψ, (2.70)

with the positive and negative energy state components of the 1D relativistic wave-

function ψ(x, t). 1D TDDE has a well-known plane wave solution in the case of a free

electron with V (x) = 0, and A(t) = 0, with the time-dependent parts:

χ̂+ =
1√

2E(E +mc2)

(
E +mc2

cp

)
e−imc2

ℏ t
√

1+ p2

m2c2

χ̂− =
1√

2E(E +mc2)

(
−cp

E +mc2

)
ei

mc2

ℏ t
√

1+ p2

m2c2 .

(2.71)

As we may notice, χ̂+ and χ̂− are orthogonal, which makes their time-independent

parts a good basis for the general solution of Eq. (2.70). Hence, a general solution

ψ̂(x, t) of the 1D TDDE can be presented as

ψ̂(p, t) = f̂e(p, t)
1√

2E(E +mc2)

(
E +mc2

cp

)
+ f̂p(p, t)

1√
2E(E +mc2)

(
−cp

E +mc2

)
(2.72)

where scalar functions f̂e(p, t) and f̂p(p, t) describe electron’s and positron’s compo-

nents of the total wave function ψ̂(p, t). Since χ̂+ and χ̂− are orthogonal, the squared

module of the wavefunction

|ψ̂(p, t)|2 = |f̂e(p, t)|2 + |f̂p(p, t)|2 (2.73)
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As in the case of 1D TDSE, it makes sense to present a numerical minimal re-

producible example of the solution of Eq. (2.70). We start with the initial condition

ψ(x, 0). If we consider light atoms, such as H or He, then we may use the same

procedure, as described in Sec. 2.2.3, because relativistic effects in case of the small

nuclear charge Z ≪ 137 do not manifest themselves for the ground state. Let us call

such a ground state ψg(x). We assume that at the initial moment t = 0 there are now

positrons in our system, so an initial wave function is

ψ̂(p, 0) =

(
ψ̂1(p)

ψ̂2(p)

)
= ψ̂g(p)

1√
2E(E +mc2)

(
E +mc2

cp

)
(2.74)

with E = mc2
√

1 + p2

m2c2
. It is easy to see, that in the non relativistic limit p ≪ mc

the second component is small comparing to the first one. Now, having both ψ̂1(p)

and ψ̂2(p) at hand, we are ready to start the time evolution.

Let us first regroup terms from the Hamiltonian in Eq. (2.70) into an interaction

part Hi and a free-particle H0 parts

Hi = −c

[
0 1

1 0

]
e

c
A(t) + V (x) (2.75)

H0 = mc2

[
1 0

0 -1

]
− ic

[
0 1

1 0

]
ℏ
∂

∂x
(2.76)

At the first glance, H0 looks simple. The term βmc2 just rotates the phases of the

respective wavefunctions by ±mc2, while the term σxpxc contains just a first derivative

with the respect to x. However, unlike to the TDSE case, now we need to take into

account, that β and σx are matrices and, moreover, [β, σx] = 2σx. Therefore, we are

not going to split H0 further, but work with it as with a single entity. Since H0 is

Hermitian, it can be diagonalized by the matrix of its eigenvectors. Such vectors have

been already written in Eq. (2.71). Hence, diagonalization matrix Q is

Q =
1√

2E(E +mc2)

[
E +mc2 −cp

cp E +mc2

]
(2.77)

and

QTH0Q = Eβ. (2.78)

Recalling the property Eq.(2.22), we can now write down the evolution operator as

e−i∆tH0 = QT e−i∆tβE/ℏQ (2.79)

where e−i∆tβE/ℏ is a simple diagonal matrix.
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Handling Hi is also non trivial due to the presence of σx. Although parts with

−σxeA(t) and V (x) commute and Hi can be further split into Hi = HA + HV , the

part HA requires some more attention. In fact, if we expand an evolution operator

e−i∆tHA into a series by definition

e−i∆tHA =
∞∑
k=0

(ieA(t)∆t)kσk
x (2.80)

and use the property

σ2k
x = 1, σ2k+1

x = σx for k > 0 (2.81)

then it turns out, that

e−i∆tHA =

[
cos(e|A(t)|∆t) −i sin(e|A(t)|∆t)
−i sin(e|A(t)|∆t) cos(e|A(t)|∆t)

]
. (2.82)

The general formula for the 3D case can be found in [25]. So, having Eq. (2.79) and

Eq. (2.82) at hand, we are ready to write down a one propagation step for the full

Hamiltonian Eq. (2.70) using the split operator approach

e−i∆tHℏ = e−i∆t
2ℏ V e−i∆t

2ℏ HA QT e−i∆tβE/ℏQ e−i∆t
2ℏ HAe−i∆t

2ℏ V . (2.83)

It is, of course, absolutely necessary to estimate an error of the Eq. (2.83) and find

suitable spacial ∆x and time ∆t step sizes. Regarding ∆x, an error analysis is the

same as for the TDSE. Again, we have ∆x ≤ π/pmax. In the relativistic case, it is

reasonable to consider pmax ∼ mc. Although ∆x turns out to be small for the rela-

tivistic problem, it is not drastically different from the TDSE case.

For the ∆t, the situation is different. In many works [25, 36, 37], an estimation

∆t ≤ ℏ/(mc2) is usually postulated. Actually, this estimation has both mathematical

and physical ground. From the mathematical point of view, we can turn to the error

term Eq. (2.26). Since matrices σx and β do not commute, we have

[H0, [H0, Hi]] ∼ mc3p (2.84)

Then, estimating p ∼ mc, we have for the global error O(m2c4∆t2). As we may say, a

condition on the time step ∆t ≤ ℏ/(mc2) is much more severe, than for TDSE. This

makes the numerical solution of the TDDE so demanding. Spectacularly, that the

condition on the ∆t hold even if there is no external field A(t). As an example, one

may introduce a Klein tunneling. In a simulation of this experiment, a wavepacket

comes from the left to the step-like potential of the large amplitude eV ≈ mc2. In

this case, relativistic effects become important and the packet can tunnel through the
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potential. From the point of view of physics, an interaction between the states with

negative and positive energies complicates the procedure. In the relativistic case, such

interaction unfolds even if there were no positrons initially, via the virtual states.

2.3.2 Foldy-Wouthuysen transformation

Over the years, numerous efforts of the community have been directed towards the

reducing the computational complexity of TDDE. One of the approaches was fo-

cused on finding the alternatives to the direct solving of TDDE. Among them are

approaches, employing the Klein-Gordon (KGE) [22] or square root Klein-Gordon

equation (SKGE) [49]. In this regard, a method, based on the Foldy-Wouthuysen

(FW) transformation [68], would be of the interest. Indeed, FW transformation natu-

rally removes an interaction between the positive and negative energy solutions, which

would allow to use larger time step size ∆t. Besides, FW Hamiltonian has a block-

diagonal structure, so it correctly describes spin interactions. However, an exact form

of the FW transformation in case of the applied external time-dependent field is un-

known. Although, there have been developed different methods on the obtaining of

approximate FW Hamiltonians. Until recent times, only approximation for the weak

field have been known [59]. That changed with Silenko’s approach, who managed

to derive and approximate FW Hamiltonian for the arbitrary strong external time-

dependent fields within a quasi-classical approximation [59–61, 69]. To be precise, in

Silenko’s form, all the terms of the zeroth and first order in ℏ are exact, while some

of the ℏ2 terms are also presented.

Let us present the main formulae, leading to the FW transformation in Silenko’s

form. To begin with, we can write Dirac’s Hamiltonian as

HD = βmc2 +O + V (2.85)

where operators

O = cα
(
p− e

c
A(r, t)

)
, V = V (r)

βV = V β, βO = −Oβ.
(2.86)

The key idea is to introduce a unitary operator such that

ψFW = UFWψ = eiSFWψ. (2.87)

Eriksen [70] proposed a condition, eliminating the ambiguity in the definition of UFW

βSFW = −SFWβ ⇐⇒ βUFW = U †
FWβ. (2.88)
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With such an operator UFW , FW Hamiltonian becomes

HFW = U

(
HD − iℏ∂t

)
U−1 + iℏ∂t. (2.89)

Although Erikson [70] found an operator UFW , which satisfies the condition Eq. (2.88),

its form in general case of the time-dependent external field is very complicated.

Therefore, the Hamiltonian Eq. (2.89) was found only as a v/c expansion, which

limits its applications only to the weak field cases. Not a long time ago, Silenko

proposed [69] the following operator UFW

U =
βϵ+ βmc2 −O√
(βϵ+ βmc2 −O)2

β (2.90)

U−1 = β
βϵ+ βmc2 −O√
(βϵ+ βmc2 −O)2

, (2.91)

which yields another type of the FW Hamiltonian and where

ϵ = mc2
√
1 +

O2

m2c4
. (2.92)

Hence, in a case of electron, exposed to the external field, the operator UFW becomes

U =
βϵ+ βmc2 −O√

2ϵ(ϵ+mc2)
β (2.93)

For the 1D case, the further simplification yields

U =
1√

2ϵ(ϵ+mc2)

[
ϵ+mc2 (p− e

c
A)c

−(p− e
c
A)c ϵ+mc2

]
(2.94)

U−1 =
1√

2ϵ(ϵ+mc2)

[
ϵ+mc2 −(p− e

c
A)c

(p− e
c
A)c ϵ+mc2

]
(2.95)

Applying an operator Eq. (2.93) in Eq. (2.89), we receive an approximate FW

Hamiltonian

HFW = βϵ+ V − 1

8

{
1

ϵ(ϵ+mc2)
, [O, [O,F ]]

}
+O(λ2) (2.96)

where λ = ℏ/(mc) and

F = V − iℏ∂t, O = c
3∑

n=1

αn

(
pn −

e

c
An(r, t)

)
, ϵ = mc2

√
1 +

O2

m2c4
. (2.97)

The Hamiltonian Eq. (2.96) is not exact. Actually, terms proportional to zeroth and

first order of ℏ are exact and satisfy Erikson condition. However, not all the operators

of the ℏ2 terms are presented. Appendix A is focused on the analysis of the omitted
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term and show, that such an approximate Hamiltonian is sufficient for the ionization

regimes, discussed in this thesis. An operator O can be further expanded in ϵ

ϵ = mc2

√
1 +

(
p− e

c
A(x, t)

)2
m2c2

− eℏ
m2c3

Σ · B, (2.98)

where Σi are 4× 4 matrices are defined as follows

Σi =

(
σi 0

0 σi

)
. (2.99)

Also, the term with anti-commutator can be expanded in a more familiar way

1

8

{
1

ϵ(ϵ+mc2)
, [O, [O,F ]]

}
= −eℏ

8

{
1

ϵ(ϵ+mc2)
, [Σ · (p× E− E× p)− ℏ∆V ]

}
,

(2.100)

which is useful for the comparison of Eq. (2.96) with Pauli equation [71] or for the

analysis of the order of the approximation Appendix A.

In fact, with the Hamiltonian Eq. (2.96) an equation Eq. (2.27) splits into the two

independent parts, which dramatically simplifies the solution. As we may see, the

resulting 4 × 4 matrices in Eq. (2.96) are β, βΣi and αiαj. All of them are block-

diagonal and do not mix up solutions for the positive and negative energies. So, one

of the parts of Eq. (2.96) governs an evolution of electrons both with spin up and spin

down, and the other one of positrons. Indeed, now there are no explicit transitions

between the positive and negative energy states. In FW representation, the virtual

states are covered implicitly via the transformation UFW , because an original Dirac

wavefunction ψ = U−1
FWψFW can always be restored from the FW wavefunction. Let

us show, how to calculate any original Dirac observable, using the FW function ψFW .

In 1D, we first transform ψFW to ψ by means of Eq. (2.94)

ψ̂(p, t) =

(
ψ̂1

ψ̂2

)
= U(p, t)

(
ψ̂+
FW

ψ̂−
FW

)
(2.101)

Now, having ψ as a spinor (ψ1, ψ2)
T , we can present it in form of Eq. (2.72)(

f̂e(p, t)

f̂p(p, t)

)
= Q

(
ψ̂1(p, t)

ψ̂2(p, t)

)
(2.102)

where matrix Q is defined in Eq. (2.77). Thus, any observable can be written by

definition as

⟨W ⟩(t) =
∫ ∞

−∞
Ŵ (p, t)

(
|fe(p, t)|2 + |fp(p, t)|2

)
dp. (2.103)
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Hence, we obtain an alternative Eq. (2.96) to govern relativistic ionization and calcu-

late corresponding observables. Of course, the Hamiltonian Eq. (2.96) is not exact.

However, as an analysis in Appendix A shows, it can be reliably utilized for the sys-

tems, considered in this thesis. Moreover, previous studies [46, 72] show, that if the

ground state consists of only electrons, then spin effects are negligible even for rela-

tivistically strong A(t).

Regarding the evolution of the ψFW function, we must distinguish dipole A(t) and

non dipole A(r, t) regimes. In the dipole case, an evolution operator with the HFW

can be constructed in the usual manner. Just as with TDSE or TDDE, we split the

operator into the kinetic Hk and potential V parts

Hk = βϵ− 1

8

{
1

ϵ(ϵ+mc2)
, [O, [O,F ]]

}
, (2.104)

and rewrite the Eq. (2.25) as

e−i∆tHFW /ℏ = e−i∆t
2ℏ V (x) F−1 e−i∆tHk/ℏ F e−i∆t

2ℏ V (x) (2.105)

where F denote respective Fourier transformation. However, in the non dipole case,

the situation becomes much less trivial. Indeed, the square root term ϵ, as well as the

other terms, containing ϵ, are pseudo spectral operators and lack a space, in which

they have a diagonal matrix representation. In order to overcome this problem, a few

approaches were suggested [49,73]. It is also worth noting, that such an obstacle was

observed not only in quantum physics, but for instance, in oceanology [74] . There-

fore, while working with nondipole case, we must rely on one or another workaround.

One of such ways, closely related to the scaling coordinates approach, is developed in

Chapter 3.

In practice, the solution of the FW equation is less computationally demanding,

than TDDE. Indeed, as was mentioned previously, the main complexity of TDDE

stems from the transitions between positive and negative energy states. Or, in other

words, due to the presence of the terms with matrices αi in the Hamiltonian Eq. (2.85).

FW Hamiltonian Eq. (2.96) completely resolves this problem by the decoupling of the

negative and positive energy states. Hence, the condition on ∆t is weaker, than

for TDDE. Analyzing the commutator in the error term Eq. (2.26) we come to the

conclusion, that ∆t≪ maB/pmax. The condition on ∆x remains the same and ∆x ≤
ℏπ/pmax.





Chapter 3

The Development of the

Relativistic Scaling Coordinates

Method

3.1 The relativistic scaling method

3.1.1 Time-dependent coordinate scaling

In this chapter, the scaling method for the relativistic strong field ionization prob-

lem generalizing the nonrelativistic method for TDSE [56] is developed. The scaling

method is designed to overcome two key hurdles: (1) A long grid size is required to

accommodate the full ionized wavepacket, especially at high laser intensities; (2) The

growing electron momenta in the ionized electron wavepacket demand a small grid

step size for a good precision. The third hurdle specific for the relativistic case to

be addressed is: (3) During the propagation of the wavefunction, there are virtual

transitions between the positive and negative energy states, even in the regime when

the real pair production is suppressed.

The coordinates scaling x = R(t)ξ in the relativistic case is in the following applied

identically to the nonrelativistic one presented in Sec. 2.2.4. Namely, Eqs. (2.51) and

(2.52) are used. As a result, the hurdle (1) is tackled by the expansion R(t) of the

physical space x with time.

Let us develop the prototype of the relativistic scaling method on the example of a

1D problem. In the relativistic case our starting point is a 1D TDDE Eq. (2.70) with

the positive and negative energy state components of the 1D relativistic wavefunction

33
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ψ⃗, the atomic potential V (x), the laser vector potential A(t), and the electron charge

e. As was mentioned in Sec. 2.3.1, 1D TDDE has a well-known plane wave solution

Eq. (2.71) in the case of a free electron with V (x) = 0, and A(t) = 0.

Consequently, we expect to absorb the relativistic kinetic phase of the wavefunction

employing the ansatz of Eq. (2.54) with

f̂±(p, t) −−−→
t→∞

e∓imc2

ℏ t
√

1+ p2

m2c2 , (3.1)

where the corresponding coordinate dependent wavefunction f±(x, t) is derived from

f̂±(p, t) via inverse FT. Unfortunately, there is no exact analytical form of the inverse

FT for the right-hand part of Eq. (3.1), and we will carry out approximate FT using

SPA:

f±(x) =
1

2πℏ

∫ ∞

−∞
e∓imc2

ℏ t
√

1+ p2

m2c2 e+i pxℏ dp. (3.2)

The saddle-point in relativistic case is p0 = ± mx√
t2−x2/c2

and, employing SPA, we obtain

f±(x) ∝ e∓imc2

ℏ

√
t2−x2

c2 , t→∞. (3.3)

The latter in the computational coordinate reads

f±(Rξ) ∝ e∓imc2

ℏ

√
t2−R2

c2
ξ2 , t→∞. (3.4)

The highly oscillating functions f±, in contrast to the nonrelativistic one of Eq. (2.59),

have restricted validity region inside the light cone x < ct. Moreover, oscillations of

f± become infinite at x → ct. To have a consistent f± in the full simulation box

x ∈ [−L,L] and throughout the entire simulation time t ∈ [0, tF ], we modify Eq. (3.4).

One of the ways to do that is to make an analogy to Eq. (2.59)

f±(Rξ) ∼ e∓imc2

ℏ t
√

1− Ṙ2

c2
ξ2 , (3.5)

where the singularity is not reached because the characteristic scaling velocity v is

smaller than speed of light c. Yet, it is more practical to introduce an additional factor

β(t), which hinders approaching the singularity. It does not only relax the singularity,

but also incorporates an information about the initial wavefunction, making (3.6) a

better approximation for intermediate times of the interaction:

f±(Rξ) ∼ e∓imc2

ℏ

√
t2−R2

c2
β2ξ2 , β(t) =

ut√
1 + u2t2

, u = 2ℏw2. (3.6)

The parameter w can be chosen so that it reflects an information about the initial

wavefunction ψ(x0, 0), particularly, the width of ψ(x0, 0). To do that, we choose
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parameter w such that ψ(x0, 0) = e−w2x2
0 = 1/2. The condition on the light cone then

becomes
x

c

u√
1 + u2t2

< 1. (3.7)

The formula Eq. (3.6) does not include the effect of the vector potential A(t). The

effect of the vector potential is incorporated by the following procedure:

Algorithm 1 The procedure of the phase φ calculation at each time step ∆t

1: Take the exact phase in momentum space φ̂ = ∓
t∫
0

√
1 +

[p− e
c
A(t′)]2

c2
dt′

2: Calculate a critical point x0(p) = −dφ̂
dp

3: Calculate the phase as φ(x)|x=x0(p) = φ̂(p) + px0(p)

4: Rescale x′ = β(t)x and obtain values φ(x′) via interpolation.

In principle, this procedure implements inverse FT of the fast oscillating function

f̂±(p, t) via SPA at each ∆t and then introduces factor β(t) in Eq. (3.6). Hence, the

conditions for the application of procedure 2 are the same as for regular SPA via

Eq. (3.2).

The property of the scaling method of Eq. (2.60), allowing one to obtain the pho-

toelectron asymptotic momentum distribution via far-field coordinate wavefunction,

is still applicable in the relativistic case. An expression for ξ in this case also includes

a relativistic factor

ξ −−−→
R→vt

p

mv

1√
1 + p2

m2c2

. (3.8)

Although the formulae for the fast oscillating part of the wavefunction in the nonrel-

ativistic Eq. (2.59) and relativistic Eq. (3.6) cases look similar, the further procedure

of the phase cancellation is very different and demands an introduction of a special

transformation which we discuss next.

3.1.2 Foldy-Wouthuysen transformation

In the nonrelativistic case, the transformation of Eq. (2.59) eliminates the fast oscillat-

ing phase of the TDSE solution. In the relativistic case, the similar transformations of

f± via Eq. (3.6) do not remove high-oscillating components in the wavefunction com-

pletely. This is because the coupling between the positive and negative components

of the wavefunction with phases of opposite sign induces highly oscillating terms in

the wavefunction. Therefore, it makes sense to employ FW transformation to derive

two decoupled equations of evolution in a form
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iℏ ˙̂
ψ±(p, t) = HFW±ψ̂±. (3.9)

The FW transformation in Silenko’s form is explicitly calculated using a quasiclas-

sical ℏ expansion. It will allow us to obtain relativistic Hamiltonian up to ℏ2-order.
In principle, this renders possible to take spin and spin-orbit effects into account for

2D case, if needed. For the 1D case, FW Hamiltonian in Silenko’s form Eq. (2.96)

reads

HFW± = ±ε+ V (x) +HDW +O
(
λ2
)

ε = mc2
√

1 +
(p− e

c
A(t))2

m2c2
, HDW =

ℏ2

8m

{
mc2

ε(ε+mc2)
, V ′′(x)

}
.

(3.10)

where λ ≡ ℏ/mc is the electron Compton wavelength. Here we have no terms, pro-

portional to λ, because spin is naturally absent in the 1D case. The Darwin term

HDW has the order λ2, while the other terms ∼ λ2 are omitted because of additional

smallness, see Appendix A.1. Note that in 2D case spin-orbit coupling terms will ap-

pear at λ2-order. From the computational point of view, solving Eq. (3.10) does not

require a very small time step ∆t ∼ λ/c. Such a relief is possible due to the absence

of terms, mixing positive and negative energies as in Eq. (2.62).

Regarding an application of scaling coordinates method, the main difficulty now

is an action of the square-route operator ϵ from Eq. (3.10) on a function ψ. FT of the

operator ϵ reads

F−1 [ϵ] = −mc2 1
π

K1(|x|/λ)
|x|

e+ixℏ
e
c
A(t)
mc , (3.11)

where K1 denotes the modified Bessel function of the second kind. In coordinate space

we have

F−1
[
ϵψ̂
]
= −mc2 1

π

∫ ∞

−∞

K1(|x− x0|/λ)
|x− x0|

e+i
x−x0

ℏ
e
c
A(t)
mc ϕ(x0, t)f(x0, t)dx0 (3.12)

in which we applied the ansatz of Eq. (2.54). This convolution-type integral has two

distinctive features:

(1) the modified Bessel function of the second kind K1(|x|) has a discontinuity at

point x = 0, K(|x|) −−→
x→0

∞. Moreover, the integral
∫∞
−∞

K1(|x|)
|x| dx does not converge,

which complicates an analysis of Eq. (3.12), in particular, one cannot straightforwardly

apply a stationary phase approximation.

(2) Although the Bessel function K1(|x|) is non-zero for all x ∈ R, it decays

exponentially fast via K(|x|/λ) −−−−→
x/λ→∞

e−|x|/λ.



The relativistic scaling method 37

Thus, the core function K1(|x−x0|/λ)
|x−x0| has a compact support of size λ. Using two

considerations above, we expand function ϕ(x0, t) in Eq. (3.12) at point x = x0 into a

Taylor series

F−1
[
εψ̂
]
≈ mc2

[
ϕT0(x, t)− iλϕ′T1(x, t)−

λ2

2
ϕ′′T2(x, t) +O

(
λ3/λ3e

)]
(3.13)

in which

T0 = F−1

[√
1 +

(p− e
c
A)2

m2c2
f̂

]
, T1 = F−1

p− e
c
A

mc

1√
1 +

(p− e
c
A)2

m2c2

f̂

 ,
T2 = F−1

[(
1 +

(p− e
c
A)2

m2c2

)− 3
2

f̂

]
,

(3.14)

and ϕ′ ∼ 1/λe Next, we take a closer look at f̂ in Eq. (3.14). Since it is presumed to be

a high-oscillating component of the wave function, we represent it as f(x, t) = eiφ(x,t)

with phase φ corresponding to Eq. (3.6) in the case of A(t) = 0, or to the procedure

of Algorithm 1, if A(t) ̸= 0. Since the phase φ(x) is presumed to be smooth on the

scale of λ, we expand φ into a Taylor series at point x = x0

f(x0, t) = eiφ(x0,t) ≈ eiφ(x,t)−iφ′(x,t)(x−x0)

[
1 +

i

2
φ′′(x, t)(x− x0)2 +O

(
λ2

λ2l

)]
, (3.15)

where λl is the laser wavelength and the omitted terms are estimated using Eq. (3.6)

as

φ(n)(x− x0)n ∼ φ(n)λn =

(
λ

c

1

t

)n−1

· φ̃(x, t)(n), n ⩾ 2 (3.16)

with φ̃ being a dimensionless time-dependent function. The series (3.15) is valid

within the following simulation box

x = R(t)ξ <
ct

β

√
1−

(
β2

2t̃

)2/3

, (3.17)

with the dimensionless time t̃ = tωl/(2π).

For instance, in the case of w ≈ 0.5 a.u., which corresponds to the ground state

of hydrogen, ωl = 1 a.u., and the initial box size L = 10/w, x ∈ [−L,L], two of the

many options to choose scaling parameters are

R(t) =
4
√
L4 + v4(t− t0)4, t0 ≈ 0.7, v ≲ 0.985c or t0 = 0, v ≲ 0.95c. (3.18)

Such a choice of parameters would guarantee, that the box x obeyed the condition

(3.17) throughout the entire simulation and allowed to track wave packages with group

velocities smaller than v.
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Substituting Eq. (3.15) into (3.14), we obtain

T0(x, t) ≈ eiφ
√
1 + λ2

(
φ′ − e

cℏ
A
)2 [

1− i

2
λ2φ′′

[
1 + λ2

(
φ′ − e

cℏ
A
)2]−2

]
+O

(
λ2

λ2l

)
(3.19)

One can write similar formulae for T1(x, t) and T2(x, t) (Appendix A.2). As a result,

we obtain an expression for F−1
[
εψ̂
]
, involving the wavefunction ϕ(x, t) and the phase

φ(x, t). In this way the equation for the wavefunction ϕ(x, t) is obtained

iℏ∂tϕ = mc2
[
T̄0(x, t)− iλT̄1(x, t)∂x −

λ2

2
T̄2(x, t)∂

2
xx

]
ϕ+ V (x)ϕ+ ℏφ̇ϕ+O

(
λ2/a2B

)
,

(3.20)

where T̄k = e−iφTk, k = 0, 1, 2, . . . . In scaled coordinates ξ = x/R(t) Eq.(3.20) reads

iℏ∂tϕ =mc2
[
T̄0(ξR, t)− iλT̄1(ξR, t)

1

R
∂ξ −

λ2

2
T̄2(ξR, t)

1

R2
∂2ξξ

]
ϕ+ V (ξR)ϕ

+ℏϕ

[
φ̇− Ṙ

R
ξ∂ξφ

]
+ iℏ

Ṙ

R
ξ∂ξϕ+O

(
λ2/a2B

)
.

(3.21)

In estimating the error in Eqs. (3.20) and (3.21), we assumed that the function ϕ

is low-oscillating. As we show in the next section, this could be violated for the

scattered parts of ψ, which will increase the error for the weak tails of the wave func-

tion. The full Dirac equation after the scaling procedure is presented in Appendix A.1.

3.1.3 Free wave packet propagation

Let us illustrate the relativistic scaling method on a simple example of the propaga-

tion of a Gaussian wave packet. In Fig. 3.1, the simulation of the motion with a group

velocity vg = 0.2c = 27.4 a.u. without applying the scaling method is depicted. A

simulation box with a length L = 400 a.u. is used, and snapshots of the wave packet

from T = 0 to T = 5 a.u. are made. To compare, the same motion is shown in

Fig. 3.2, but with the scaling being turned on. There, the expansion parameter of the

scaling method, Eq. (2.52) of the paper is vm = 120 a.u.

Although we can clearly see, that vg < vm, nevertheless the wave packet is stuck at

a certain point ξs. We can estimate the point ξs, where the wave packet stops, using

the mapping between the physical coordinate x and the computational coordinate ξ:

x = R(t, v) ξ ≈ vmt ξ.

As ξ ∈ [0, 1] by definition, the scaling method for the simulation works for the case

of v < vm, where v is the typical (maximal) velocity involved in the wave packet, and
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there is no other condition imposed on the velocity v. With a rough estimate v ∼ vg,

we arrive at the condition

ξs ∼ vg/vm.

For the parameters of Fig. 3.2, ξsL = 27.4/120 ≈ 91.3 a.u., which is in accordance

with Fig. 3.2. The scaling method works well for any vm > |vg|, even when vg < 0, as

illustrated in Figs. 3.1-3.4.

Figure 3.1: The wave packet e−(0.53x)2+ix0.2c in coordinate space moving to the right,

with snapshots at at different times. No scaling is applied.

Figure 3.2: The wave packet e−(0.53x)2+ix0.2c moving to the right. Scaling is ON with

the parameter vm = 120 a.u.



40 The relativistic scaling method

Figure 3.3: The wave packet e−(0.53x)2+ix0.2c moving to the right with the

group velocity vg = 0.2c. Scaling is ON with different parameters vm =

120 a.u., 100 a.u., 80 a.u., 0 a.u.. The snapshot is taken at time T = 5 a.u. De-

pending on vm, the packet stops at different coordinates ξsL.

Figure 3.4: The wave packet e−(0.53x)2+ix0.1c moving to the right and a wave packet

e(−(0.53x).2)−ix0.1c moving to the left, with vg = 0.1c and vg = −0.1c, respectively.

Scaling is ON with different parameters vm = 120 a.u., 100 a.u., 80 a.u.. The snapshot

is taken at time T = 5 a.u.

We can conclude that the coordinate scaling method is not limited to processes

with a single asymptotic characteristic velocity of the electrons. The scaling param-

eter vm should be larger than the maximum physical velocity involved in the system
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and it describes how fast the wave packet becomes localized at a certain coordinate.

3.2 Relativistic ionization in 1D

In order to show the advantage of the proposed method with respect to the direct

solution of the Dirac equation, and discuss the possible disadvantages, we perform a

few simple 1D simulations. Let us consider the interaction of a 1D atom with a strong

laser field described by the 1D Dirac equation

iℏ∂tψ = {mcσx[px −
e

c
A(t)] + V (x) +mc2σz}ψ, (3.22)

with the Pauli matrices σx, σz, and the atomic potential V (x) = e−|x|−e−ϵ|x|

|x| with

ϵ = 10−3 (the direct solutions of the Dirac equation for the similar problems are given

in Ref. [36,37]). The atom is exposed to two-cycle laser pulse

A(t) = A0 sin(ωt) sin2(t/4)
[
θ(2π − t) + θ(t− 2π) exp

(
−4 · 1.774 · (t/π − 2)2

)]
,

(3.23)

which grows as a sin2 and finally switched off as exp(−x2), with θ being Heaviside

function.

For numerical solution of the scaled equation Eq. (3.21), the following numerical

procedures are used. For the time propagation of Eq. (3.21) a simple split operator

approach Eq. (2.25) [62, 75, 76] is used, with V (ξR) being the potential part and the

rest of the Eq. (3.21) being the kinetic part. Note, that calculating the action of

kinetic matrix exponential on the wave function is not straightforward. Indeed, on

the one hand, in Eq. (3.21) we have terms, proportional to the products f(ξ) · ∂ξ
or f(ξ) · ∂2ξξ. On the other hand, we prefer to employ the spectral method to calcu-

late derivatives due to their faster convergence [63, 64, 77]. As a result, there is no

explicit analytical expression for the kinetic operator in Fourier space. Therefore, we

use Krylov subspace methods to calculate the kinetic matrix exponential. In particu-

lar, we employ Krylov subspace propagation [40] based on Arnoldi decomposition [78].

For the spatial discretization, the scaling approach allows us to use a non-uniform

mesh. Since we cancel the kinetic phase, the spatial step size ∆x = R∆ξ can be small

at large distances x, unlike in TDSE or TDDE simulations. Indeed, in latter cases we

do not remove oscillations and do not apply the scaling, thus, we must have a small

step size ∆x throughout the entire simulation and entire simulation box. However, we
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still have two conditions on ∆x at x = 0. First, there must be always at least a few

grid nodes at the very core of the potential in order to resolve it throughout the entire

simulation. Second, any effects, caused by scattering or rescattering on the potential,

also must be resolved. Thus, we also claim ∆x = π/pmax. For the large distances it

is reasonable to take ∆x ∼ π/(R(t)pmax), at t→∞. Taking the considerations above

into account, we choose a map function from xnon-uni = m(xuni) to be

m(x) = asinh

(
x

max(x)
sinh(1.35)

)
· max(x)

1.35
(3.24)

Since the map function m(x) is known analytically, we can calculate any derivatives

on the uniform grid, and then transfer the results to the non-uniform grid via m−1(x).

As a first test, we calculate an average coordinate ⟨x⟩. The result for the peak

electric field F = ωA0/c = 100 a.u. is depicted on Fig. 3.5. Here, we observe that

the relativistic wave package achieves smaller group velocities compared to the non-

relativistic one, due to the presence of relativistic factor. As a result, the relativistic

one remains closer to the core throughout the simulation. The entire trajectory is

shown in the inset. As a reference on the main canvas, we use a numerical solution of

SKGE. Also, we plot a trajectory, obtained via a direct solution of TDDE as in [25],

and a trajectory, obtained via the method discussed. One can see, that the latter two

converge as a time step ∆t is getting smaller. It is also worth to note, that the scaling

method allows us to use a much smaller time step to achieve the same accuracy of

the calculation of ⟨x⟩. This is because the main obstacle to efficiently solve Dirac

equation is the laser-induced transitions between positive and negative energy states.

In the method of scaling coordinates, these transitions are implicitly covered by the

FW transformation. Note, that we have also calculated the ionization probabilities

for different parameters F (Table 3.1). As was expected, an ionization in the 1D

relativistic case is suppressed, compared to the nonrelativistic one.

In order to show, how the transition between states with positive and negative

energies influences the trajectory, the share of negative energy states P−(t) is plotted

in Fig. 3.6. Here the notation from Ref. [37] is employed, where the authors notice,

that P−(t) almost does not depend on the potential V (x). Indeed, this fact becomes

clear, when one consider the process from the point of view of FW transformation, for

which operator UFW does not include a central potential V (x), although being solely

responsible for the energy transitions.

We see that the scaling method performs well in calculations of average charac-
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Method
F = 50 a.u.,

a0 = 0.18

F = 100 a.u.,

a0 = 0.36

F = 200 a.u.,

a0 = 0.72

Ionization prob.

TDSE 0.16 0.31 0.47

Dirac 0.15 0.28 0.39

Method 0.15 0.28 0.39

⟨x⟩
TDSE 5.36 11.42 21.67

Dirac 5.36 10.36 15.18

Method 5.36 10.36 15.17

Table 3.1: Ionization probabilities and an average coordinate of the wave packet ⟨x⟩
after the end of the pulse, comparing the TDSE, the TDDE and the scaling method.

The laser frequency is ω = 2 a.u., F = ωA0/c is the peak electric field, and a0 =
F
cω

the relativistic field parameter.
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Figure 3.5: Electron trajectory ⟨x⟩, calculated via the scaling method (dotted lines

with full asterisks), standard TDDE (solid lines with empty cycles), and SKGE

(dashed line with empty squares) . The laser field is F = 100 a.u. and the frequency

ω = 2 a.u. The entire trajectory is shown in the inset. The trajectory, calculated

via the scaling method, converges faster and requires a larger time step ∆t. The

supplementary table A.1 is given in Appendix A.3.
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teristics such as ⟨x⟩ or P−(t). Let us further discuss the description of the space-time

wave function and the electron spectrum after the interaction. In Fig. 3.7 the wave

function in coordinate space after interaction is shown at t = 9.425 a.u. One can

clearly see an agreement between the wave functions calculated via the direct solu-

tion of the Dirac equation [25] and that via the scaling method for the main region

of the wave function, centered around the origin. However, one could also see two

high-energy peaks, running away from the center, whose Dirac and FW versions do

not coincide, although their magnitudes are damped by a factor of 10−8. These parts

of the wave function correspond to the scattering on the core which have a phase

deviating from the phase φ introduced via Eq.(3.6). As a result, the wave function ϕ

in Eq. (3.15) is no longer smooth in those regions, leading to the only semi-relativistic

description of the these small peaks.

The question arises why the scaling method accuracy is deteriorated for the scat-

tered part of the wavepacket. The matter is the change of the phase of the wavepacket

at scattering, which is discussed in more detail in Appendix A.4. In the scaling

method, the phase of the wave function originating from the kinetic propagation is ac-

curately canceled, irrespective of the range of the velocities involved in the wavepacket.

The phase cancellation and related inaccuracies arises when the wave packet acquires

an additional scattering phase. In this case the kinetic phase cancellation is described

only in an approximated manner in our method applying the Taylor-expansion in

Eq.(3.19). Consequently, this deficiency limits the scenarios where the method can

be applicable. The method will not be efficient for the investigation of recollision

effects. However, taking into account that the role of rescattering is suppressed in the

relativistic ionization problem [79,80], this difficulty is in fact not a limiting factor for

the relativistic strong field ionization problem, where superponderomotive accelera-

tion during above-threshold ionization [11,81], as well as quantum processes including

spin effects can happen during the direct ionization step [82].

One of the ways to overcome this problem is to introduce a more advanced method

for the calculation of the integral of Eq. (3.12). For instance, rather than expanding

into the Taylor series, one could apply the expansion into a short Fourier series, local-

ized near the core of the Bessel function K1(|x|). Such an approach is similar to the

Short-time Fourier Transform and would allow retaining high-frequency components

of the function ϕ(x, t), making use of the locality of K1(|x|) at the same time.
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Figure 3.6: The share of negative energy states P−(t) [37] during the interaction. The

laser field intensities used are F = 50; 100, 200 a.u. and the frequency ω = 2 a.u.

The results for the direct TDDE simulation and scaling coordinates method nearly

coincide.
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Figure 3.7: Electron density ρ = ψψ∗, calculated via the scaling method (blue),

standard TDDE (red), and standard TDSE (green). The laser field is F = 100 a.u.

and the frequency ω = 2 a.u.
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The electron energy spectrum after the interaction, resembling the one from [36],

is shown in Fig. 3.8. Although we see an agreement for the spectrum, which corre-

spond to the kinetic motions of the wave density, the small peaks corresponding to

the scattering are overestimated in the FW case.

Regarding the computational efficiency of the method, we would like to empha-

size its computational strengths and weaknesses. First, one is able to use larger ∆t,

which is a few orders larger than the one needed for the regular solution of TDDE

(see Fig. 3.5). Second, it is possible to use a non-uniform mesh with step size ∆x

larger than π/mc outside the core of the potential, which reduces the total number

of grid nodes. However, the process of calculating a kinetic exponent on each ∆t via

Krylov-Arnoldi method is more computational demanding, than a simple propagation

via a diagonal matrix exponent as in a regular TDDE. Our pessimistic estimation of

a speed-up, comparing to the standard approach, is moderate (2-4 times faster). For

example, given a ∆t = 10−4, we obtain corresponding results, depicted in Figs. 3.5-

3.8, in 190 minutes on a PC, while obtaining the Dirac solution with ∆t = 5 · 10−6

takes 580 minutes, which yields 3 times acceleration. However, here we should note,

that one can suggest different underlying criteria for the efficiency. For instance, if we

use a deviation of the average coordinate as a metric alone (Table 1), then the results

are more advantageous. Indeed, we can see a quadratic convergence for the standard

TDDE (every ∆t/2 yields ∼ deviation/4, as was expect with the split-operator ap-

proach) and the level of deviation ∼ 0.02 must be achieved only with tcomp ≈ 2233

minutes, which is 2233/190 ≈ 11 times slower, than the proposed method. Of course,

there will still be a disagreement between the scattered and rescattered parts, which

occurs because of the approximation discussed in 3.1.2. However, if those effects are

considered negligible, then we can use this estimation as a measure of computational

efficiency.

It is also important to note, that we use a very simple implementation of Krylov-

Arnoldi method and, if this stage of the algorithm is improved (such as using the

restarted Krylov subspace method or other advanced techniques), then the method

is likely to receive a greater speed-up. The details on computations can be found in

Appendix A.2.
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Figure 3.8: Momentum distribution after the interaction via ρ̂ = ψ̂ψ̂∗, calculated via

the scaling method (blue), standard TDDE (red), and standard TDSE (green). The

laser field is F = 100 a.u. and the frequency ω = 2 a.u.

3.3 Conclusion

In this chapter, the coordinate scaling method for the numerical treatment of the

atomic ionization problem in relativistically strong laser fields was developed. Here,

the scheme of the relativistic generalization and the study of its performance is carried

out for the case of the 1D ionization problem, which is extended straightforwardly to

the 2D case in Chapter 3. The relativistic problem requires the application of an

additional Foldy-Wouthuysen transformation along with the scaling method to avoid

fast oscillation of the wave function due to the virtual transitions to negative energies.

To do that, the quasiclassical approximation method, recently developed by Silenko,

was invoked, in contrast to the more common v/c-approximation used in textbooks.

For relativistic strong field ionization problem, the quasiclassical approximation is

relevant as proved by seminal analytical results of Perelomov-Popov-Terent’ev (PPT)

theory, see review [20]. PPT theory employs the electron quasiclassical (WKB) wave

function in the continuum in laser and Coulomb fields, matching it with the bound

wave function. The scaling method employs the same strategy: the initial state is

described by the bound state wave function, while the propagation quasiclassically,

which is a good approximation if the electron de-Broglie wavelength is smaller than

the laser wavelength. Furthermore, the method can be applied in the more common
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v/c-expansion version. Here, it will allow to discuss nondipole problems in weakly

relativistic laser fields up to the order of v2/c2, including spin effects and spin-orbit

coupling at ionization.

The accuracy of the results of the scaling method is proved in this chapter on a

concrete example in the main region of the wave function. The sources of the inac-

curacy on the tails of the wave function are analyzed. The computational advantage

of the relativistic scaling method over the standard numerical TDDE [25] solution is

demonstrated.



Chapter 4

Pulse duration effect in the

nondipole x-ray strong field

ionization in stabilization regime

4.1 Introduction

For a free electron in a strong laser field the nondipole and relativistic effects are

negligible if the classical strong field parameter is small [4]:

a0 =
eA0

mc2
=

E0

mcω
≪ 1, (4.1)

where A0 is a magnitude of the electromagnetic vector potential, E0 is an electric field

strength and ω is a laser frequency. This is also the case in strong field ionization.

The condition of Eq. (4.1) is easier to violate at low frequencies, for instance, a0 = 1

is achieved in infrared laser fields with a wavelength λ = 1000 nm at a laser intensity

I = 1018 W/cm2, while for x-rays λ = 10 nm, this would require I = 1022 W/cm2.

However, recent advancement of strong laser technique in XUV and x-ray domain, in

particular, the development of XFEL facilities in DESY, SLAC, and other places over

the world, raised hopes to achieve nondipole interaction a0 > 0.1 with x-rays.

In high-frequency laser fields ℏω > Ip, the strong field ionization in the dipole

domain can enter into the so-called stabilization regime [83]. When the electron os-

cillation amplitude in the laser field α = eE0/mω
2 exceeds the atomic size, α ≫ aB,

and the electron oscillation frequency is larger than the atomic frequency (ℏω > Ip),

the average effect of the atomic potential on the electron tends to be described by a

quasi molecular potential with two potential centers [84]. This regime is characterized

by the property that the ionization probability does not increase with increasing laser

49
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field strength, i.e., the ionization is stabilized. The photoelectron spectrum also has

a distinctive symmetry. It is known that the nondipole effects tend to suppress the

stabilization [85–87], and remarkably, all these properties are no longer valid for the

nondipole case [88].

An ionization in nondipole regime, i.e. with nondipole parameter a0 ≳ 0.1, turns

out to have distinctive features. To begin with, the entire wave function experi-

ences a shift in the propagation direction [88], due to the relativistic drift induced

by v × B Lorentz force, which breaks the symmetry of the system [89]. One more

distinctive feature is related to the photoelectron spectrum. The numerical calcula-

tions of the TDSE in a x-ray field [90] reveal, that the spectrum looses its symmetry

along the propagation direction, similar to the above-threshold ionization in infrared

fields [91, 92]. The same effect was observed in [93] for the x-ray laser with a0 ≈ 0.07

and the length of the pulse 10 optical cycles (OC). An interesting interplay between

the nondipole and Coulomb fields has been observed in [94], where authors numeri-

cally solve TDSE within the Kramers-Hennerberg frame for the 3−15 OC long pulses

with a0 ≈ 0.08 − 0.16. The angular photoelectron spectrum in these cases has two

distinctive features. Firstly, two lobes, which in the dipole case are perpendicular to

the wave propagation direction z, tend to bend towards the direction opposite to the

laser propagation, −z. The reason for this are Coulomb forces. An electron, ejected

to the z direction, is not only a subject to the electromagnetic forces, which do not

change the momentum at the end of the pulse. It also experiences and influence of

the Coulomb force ∇V (r), which is directed as −z. Secondly, there appears a new,

third lobe, directed parallel to −z. A later Ref. [93] also shows similar results for

the x-ray laser with a0 ≈ 0.07 and 10 OC long pulse. Both [94] and [93] were fo-

cused on the analysis of the dominant low energy spectrum. Also, in [90] it is shown

that the nondipole effects manifest themselves for the ATI peaks, too. In partic-

ular, it was shown, that nondipole corrections for the photoelectron energy spectra

are small, but the shift of the lobes is again clearly visible for the angular distribution.

Since nondipole effects imply, that an electron moves relativistically fast, it is rea-

sonable to take into account relativistic effects, which was done in [46] and [72] by

numerically calculating full TDDE. In [46], an author shows the presence of relativis-

tic effects for the x-ray laser with a0 ≈ 0.05 − 0.15, however, it turns out, that the

spin effects are at least a few orders of magnitude smaller, then spin independent

ones. In [72], authors again thoroughly confirm findings of [94], [90], [93] in the fully

relativistic framework.
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However, despite a great attention to the nondipole ionization, a matter of the de-

pendence of ionization probability on the pulse duration largely remained untouched.

The ionization in laser pulses of different durations is discussed in Ref. [93, 94], but

only for a very limited number of pulse lengths (3, 5, 10, 15 optical cycles). In this

chapter, a comprehensive analysis of the question is presented via the study of a wide

range (0-45 optical cycles) of the pulse lengths. It turns out, that the ionization yield

oscillates with respect to the pulse duration both in dipole and nondipole cases. More-

over, there are two different mechanisms, responsible for this behavior. An analysis

of the low energy spectra and the influence of the oscillations on it are also presented,

as well as the classical dynamics of the electron. For the sake of clarity and com-

parability with the previous results, all the results are calculated for the x-ray laser

and a0 ≈ 0.06 − 0.40. We also employ a parameters scaling, which was previously

described in detail in [72].

4.2 Theoretical considerations for the 2D case

4.2.1 Scaling coordinates approach in 2D

The are two main differences between the FW expressions for the 1D Eq. (3.10) and

2D cases. First, in 2D case spin dependent terms naturally arise. Second, non dipole

effects become necessary in 2D case. Both of them arise from the fact, that the vector

potential depends now on the coordinate

A = A(t, z)ex. (4.2)

Therefore, an O2 term in Eq. (2.96) is expanded as

ϵ = mc2

√
1 +

(
px − e

c
A(t, z)

)2
m2c2

+
p2z
m2c2

− eℏ
m2c3

Σy ·By (4.3)

where magnetic field B = ∇×A = ∂zA(t, z)êy and Σ is defined in Eq. (2.99). Since

we presume ∂zA(t, z) ∼ ωA(t, z)/c (see Appendix A.1), then the square root Eq. (4.3)

can be expanded further as

ϵ = mc2ϵ0(p, t)−
eℏ
2mc

1

ϵ0(p, t)
Σy ·By +O

(
ℏ2ω2

mc2
a20

)
(4.4)

where

ϵ0(p, t) =

√
1 +

(
px − e

c
A(t, z)

)2
m2c2

+
p2z
m2c2

(4.5)



52 Theoretical considerations for the 2D case

with the relativistic field parameter a0 = eA/(mc2). As a result, there are no more

matrices inside the square root ϵ0, which simplifies calculations. However, the variables

from different coordinate spaces, namely momenta px and pz are still mixed with the

regular coordinate z. In order to overcome this hurdle and clarify, how to treat the

square root, we can expand it into a Taylor series. To do that, we write down ϵ0(p, t)

as

ϵ0(p, z, t) =
√

1 +X(p, z, t) = 1 +
1

2
X(p, z, t)− 1

8
X(p, z, t)X(p, z, t) + . . . (4.6)

note, that the term X2(p, t) produces terms, proportional to ∂zA(t, z) and ∂
2
zzA(t, z)

and so on. Thus, it makes sense to single out the terms by the different orders of

∂nzA(t, z) and then roll back the expanded expressions (in other words, to inverse

Eq. (4.6))

ϵ0 =

√
1 +

(
−iℏ∂x − e

c
A(t, z)

)2
m2c2

− ℏ2∂2zz
m2c2

=

√
1 +

(
−iℏ∂x − e

c
A(t, z̃)

)2
m2c2

− ℏ2∂2zz
m2c2

−

− i

2

ℏ
m2c2

e

c

∂A(t, z)

∂z
·

[(
−iℏ∂x − e

c
A(t, z̃)

)
mc

(−iℏ∂z)
mc

][
1 +

(
−iℏ∂x − e

c
A(t, z̃)

)2
m2c2

− ℏ2∂2zz
m2c2

]−3/2

+

+O
(
ℏ2ω2

m2c4
a20

)
, z̃ = z

(4.7)

Here the designation z̃ = z means, that derivative operators do not act on A(t, z). In

Eq. (4.7) we omit terms, proportional to (∂zA(t, z))
2 and ∂2zzA(t, z), because they are

ℏ2ω2/(m2c4) small.

The question to address now is how to act with the operator ϵ0 in form Eq. (4.7)

onto a wavefunction ψ, written as ψ = ϕeiφ (Eq. (2.53)). To do that, we can expand

the first term into Taylor series Eq. (4.6) and then group the terms with the same

order of λ = ℏ/(mc) back. As a result, we obtain an expression, similar to the 1D

case Eq. (3.13)√
1 +

(
−iℏ∂x − e

c
A(t, z̃)

)2
m2c2

− ℏ2∂2zz
m2c2

ϕ(x, z) eiφ(x,z) = ϕT0(x, z, t)−

− iλ
[
ϕ′
xT1,x(x, z, t) + ϕ′

zT1,z(x, z, t)

]
−

− λ2

2

[
ϕ′′
xxT2,xx(x, z, t) + 2ϕ′′

xzT2,xz(x, z, t) + ϕ′′
zzT2,zz(x, z, t)

]
+O

(
λ3/λ3e

)
.

(4.8)

where we presume, that ϕ′ ∼ 1/λe and λ/λe ≪ 1, i.e. function ϕ does not contain
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large relativistic oscillations. The second term can be written in the same manner[(
−iℏ∂x − e

c
A(t, z̃)

)
mc

(−iℏ∂z)
mc

][
1 +

(
−iℏ∂x − e

c
A(t, z̃)

)2
m2c2

− ℏ2∂2zz
m2c2

]−3/2

=

= ϕW0(x, z, t)− iλ
[
ϕ′
xW1,x(x, z, t) + ϕ′

zW1,z(x, z, t)

]
+O

(
λ2/λ2e

) (4.9)

where we omit λ2 terms, because the coefficient by the term in Eq. (4.7) is propor-

tional to ℏω/(mc2) itself. The functions T (x, z, t) and W (x, z, t) can be found in

Appendix A.2.

Recalling Eq. (2.96) and using Eq. (4.3),(4.7), it is possible to write down FW

Hamiltonian for the 2D case in the similar way

HFW = βmc2ϵ0−
eℏ
2mc

1

ϵ0
βΣy·By+V+

eℏ
8m2c4

{
1

ϵ0(ϵ0 + 1)
,
[
Σ · (π × Ẽ− Ẽ× π)− ℏ∆V

]}
+O(λ2/a2B)

(4.10)

where

π = p− e

c
A, Ẽ = ∇V − 1

c
Ȧ. (4.11)

With the Hamiltonian Eq. (4.10) it is possible to write a FW governing equation,

similar to the Eq. (3.21).

One more question to address is a calculation of the smooth (i.e. φ≫ φ′(t, x, z)λ)

phase φ(t, x, z). In the 1D case it could be done by means of the Algorithm 1. How-

ever, in 2D case the situation is more complicated, because we no longer can include

the effects from the vector potential A into the phase by using the kinetic momentum

π = p− e
c
A instead of the canonical p. Thus, we no longer know the exact phase in

the momentum space φ̂(p, t) of the electron for the V = 0 case and consequently un-

able to deduce the phase φ(x, t) Of course, there is a workaround for such a problem.

After all, the phase φ(x, z, t) should not necessary be exact, it is enough, if it absorbs

just most of the kinetic relativistic oscillations.

Let us consider SKGE for the electron, exposed to the laser fieldiℏψ̇(x, z, t) = ϵ0ψ(x, z, t)

ψ(x, z, 0) = ψ0(x, z)
(4.12)

where ϵ0 is defined in Eq. (4.5). Using Eq. (4.7), we can write down

iℏψ̇(x, z, t) =

√
1 +

(
−iℏ∂x − e

c
A(t, z̃)

)2
m2c2

− ℏ2∂2zz
m2c2

ψ(x, z, t) +O
(

ℏω
mc2

a0

)
(4.13)



54 Theoretical considerations for the 2D case

where z̃ = z in the same sense, as in Eq. (4.5), i.e. ∂z(A(z̃) · f(z)) = A(z)f ′(z). One

can think of z̃ as of point, at which we expand A(z) into the Taylor series. Thus, if

we consider z̃ to be a parameter, then A(z̃) is not affected by the FT: {x, z} → px, pz.

If so, then we are able to write Eq. (4.14) as

iℏψ̇(x, z = z̃, t) = F−1


√

1 +

(
px − e

c
A(t, z̃)

)2
m2c2

+
p2z
m2c2

ψ̂(px, pz, t)

+O
(

ℏω
mc2

a0

)
.

(4.14)

Then, the ”solution” becomes

ψ(x, z = z̃, t) = F−1

exp
− i

ℏ

∫ t

0

√
1 +

(
px − e

c
A(t′, z̃)

)2
m2c2

+
p2z
m2c2

dt′

 ψ̂(px, pz, t)

+O( ℏω
mc2

a0

)
.

(4.15)

Of course, the expression Eq. (4.15) is useless for the real calculations. Indeed, in

order to calculate the solution for the just one point (x, z) in space, one must conduct

the corresponding time integration in the entire space {px, pz}. So, if the coordinates

(as well as the corresponding momentum space) are discretized on the grid with N2

nodes, then the number of operations to calculate the solution at every point scales as

∼ N2 ·N2 logN , which is inappropriate even for small N = 100. However, Eq. (4.15)

provides us with a very useful insight regarding the phase in momentum space φ̂

φ̂(px, pz, z̃, t) = −
∫ t

0

√
1 +

(
px − e

c
A(t′, z̃)

)2
m2c2

+
p2z
m2c2

dt′. (4.16)

Since we consider ℏω ≪ mc2 and φ̂ to be smooth, then it is enough to calculate

Eq. (4.16) for a few reference values z̃ and then interpolate to obtain φ̂(px, pz, z, t) for

any z. Interpolation can be done via, for example, splines, or with Chebyshev polyno-

mials, because we are free to choose reference nodes z̃. Then, the algorithm becomes 2.

In fact, the Algorithm 2 provides us with a decent choice of the phase φ. On

Fig. 4.1 the module of the smooth envelope function ϕ̂(p) and the wave function ψ̂(p)

are presented. One can clearly see, that ϕ̂(p) is more narrow, than ψ̂(p), and located

closer to the origin. That means, that in the coordinate space function ϕ(x) is much

more smooth, than the wavefunction ψ(x).

4.2.2 Spectrum calculation

The calculation of the photoelectron spectrum has been in the focus of the community

for many years. The methods to solve this problem range from projecting onto the
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Algorithm 2 The procedure of the phase φ calculation at each time step ∆t

1: Calculate φ̂(px, pz, z̃, t) =
t∫
0

√
1 +

(px− e
c
A(t′,z̃))

2

m2c2
+ p2z

m2c2
dt′ for every reference value

z̃ ∈ [−Lz, Lz].

2: Interpolate φ̂(px, pz, z̃, t) to get φ̂(px, pz, z, t).

3: Calculate critical points x0(px, pz) = − ∂φ̂
∂px

and z0(px, pz) = − ∂φ̂
∂pz

.

4: Calculate the phase as φ(x)|x=x0(p) = φ̂(p)px0(p).

5: Rescale x′ = β(t)x and z′ = β(t)z. Since the set of points {x0, z0} is non uniform

and does not make up a grid but rather a mesh, it complicates an interpolation

φ(x, z)→ φ(x′, z′). One can use different technics for the solving of optimization

problem in order to interpolate from the 2D non uniform mesh to the other non

uniform mesh.

Figure 4.1: The comparison of the envelope function |ϕ̂(p)| and the original wave-

function |ψ̂(p)|. Parameters of the field: ω = 14 a.u., E = 400 a.u., a0 = 0.21. (a)

ϕ̂(p) after 8 cycles, (b) ψ̂(p) after 8 cycles, (c) ϕ̂(p) after 30 cycles, (d) ψ̂(p) after 30

cycles
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continuum states with proper asymptotic behavior [72] to advanced techniques, work-

ing with the boundary of the simulation box [95, 96]. Here in this thesis the former

approach is used, because the spreading of the wave function is taken into account by

the coordinate scaling.

The main problem with the projecting onto the continuum states in our case is the

lack of analytic forms for such functions for the soft-coulomb potential in 2D. In order

to overcome it, one can derive the analytic form for the regular Coulomb potential

in 2D and expect, that they coincide with a good degree of accuracy for some large

enough distance r > r0.

The 3D continuum states for the Coulomb potential can be found in [97] and their

relativistic counterparts in [71]. The derivation, used there, can be adopted for the

2D case. If we introduce 2D parabolic coordinates asx = στ

z = (τ 2 − σ2)/2,
(4.17)

then, following the main steps from [97], one can write down an electron’s continuum

state with an energy E = p2/2m as a plane wave combined with the incoming spherical

wave (in a.u.)

w(σ, τ) = 1F1

(
i
Z

p
,
1

2
, ipσ2

)
eip(τ

2−σ2)/2 (4.18)

where 1F1 is a generalized hypergeometric function. In the relativistic case w(σ, τ)

becomes

w(σ, τ) = 1F1

(
iZ

√
1 + p2/(m2c2)

p
,
1

2
, ipσ2

)
eip(τ

2−σ2)/2. (4.19)

The function w(σ) in the non relativistic limit solves the Schrodinger equation

∆w + 2

(
E +

2Z

τ 2 + σ2

)
= 0, (4.20)

however, in the simulations in Chapter 4 the Soft Coulomb potential V [40] is used

instead of the regular Coulomb Vc one. In the parabolic coordinates they read

V (σ, τ) = −3

2

Z√
3/Z2 + σ2+τ2

4

, Vc(σ, τ) = −
2Z

σ2 + τ 2
. (4.21)

If we choose the same nuclear charge Z for both V and Vc, then corresponding w(Z)

does not deliver the solution if we insert V instead of Vc into Eq. (4.20) because

V → −3Z/(2r) and Vc → −Z/r. Therefore, Z used as a parameter to calculate w(Z)
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must be Zw = 2Z/3. The residue (H −E)w for the soft Coulomb He+ atom is shown

on Fig. 4.2.

As we may see, for r0 > 5.0 a.u. the difference becomes negligible. In Chap-

ter 4 the spectrum is usually calculated after the t = 20 a.u. passed after the end of

the laser pulse. That means, that if we exclude an area r < r0, then we omit elec-

trons with velocities v < 0.25 a.u. and, thus, energies E < 0.04 a.u. One can consider

it acceptable, because we are mostly interested in photoelectron energies E > 0.10 a.u.

In practice, it turns out, that functions w(σ, τ) can be replaces by the simple plane

waves. For the systems, studied in Chapter 4 , the spectra, obtained via the projection

onto w states and plane waves turn out to be qualitatively indistinguishable from each

other. This stems from the fact, that the function 1F1 approaches the constant limit,

as the distance from the core r and considered energies E grow.

Figure 4.2: The deviation of the Coulomb scattering state w(r) from the soft Coulomb

scattering state.

4.3 2D quantum relativistic simulations

In this section the question of 2D simulations is addressed and the difference between

nondipole and pure relativistic (such as mass shift) effects. In general, the correspond-

ing versions of an equation of motion (Eqs. (3.20) and (3.21)) are obtained using a
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2D Hamiltonian Eq. (4.10), which has additional terms, comparing to its 1D counter-

part. From the computational point of view, these terms are treated similar to the

square-root term ϵ Eq. (4.8).

As an observable to discuss the ionization probability is chose, since it exhibits

distinctive features in the 2D case. The ionization probabilities are qualitatively dif-

ferent in nonrelativistic and relativistic cases due to the presence of nondipole effects

in the latter, which eliminates the nonrelativistic stabilization phenomenon [98]. Also

the nonrelativistic scaling law with respect to the charge of the atomic core fails in

the relativistic domain and we expect the ionization rate to be different for different

atomic species. As an example, we calculate the results for hydrogen and helium, and

compare them to the 3D simulation by Telnov and Chu [72].

In the 2D simulation, a soft Coulomb potential is used [40,99], as usual in reduced

dimensions.

V (r) = −3

2

Z√
r2 + 3/Z2

(4.22)

with Z = 1− 4 being a nuclear charge. The other parameters, such as the laser field

frequency ω and peak field F were taken from [72] and correspondingly scaled for

different Z [98]. As a consequence, the peak field scales as F (Z) = FZ3, and the

frequency as ω(Z) = ωZ2. In this section, the same short pulse with four periods (τ)

is used as in [72], with A = A(t, z)ex

A(t, z) =
cF

ω
· exp

[
−2 · ln(2) ·

(
t− z/c
τ

)]
· sin

(
ω (t− z/c)

)
. (4.23)

In order to distinguish high-order relativistic effects from the nondipole ones, we

additionally perform a simulation of nondipole TDSE with the following Hamiltonian:

Hnondipole =
1

2

(
px −

e

c
A(t, z)

)2

+
1

2
p2z + V (r). (4.24)

The results of calculations presented in Fig. 4.3 exhibit a few distinguishable features.

First, an influence of the nondipole character of the field is evident. We attribute

the difference between dipole and nondipole calculations to the fact, that ionization

rate is mostly defined by the shift of the wave packet ⟨r⟩ =
√
⟨x⟩2 + ⟨z⟩2 from the

centre of the potential after the end of the pulse. Since the magnetic field is present,

then, due to the Lorentz force induced drift in the laser propagation direction, we

have ⟨z⟩ ≫ ⟨x⟩ after the end of the pulse. Second, we can also notice a difference be-

tween relativistic and nonrelativistic calculations. The ionization probabilities in the

relativistic case are lower than in the nondipole case. This is because the relativistic
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Figure 4.3: Ionization probabilities for ions Z = 1 − 4 in the laser field. Laser

parameters are scaled, the peak field F (Z) = FZ3 and the frequency as ω(Z) = ωZ2.

Dashed lines with stars – nondipole TDSE (4.24) calculations, solid lines with cubes

– relativistic calculations with scaling method, solid line with circles – dipole TDSE

calculations.

mass correction suppresses the drift and the final distance of the wave packet from the

atomic center is decreased. Since the mass shift increases with rising a0, the deviation

of the ionization probability between relativistic and nonrelativistic nondipole cases

grows along with the relativistic field parameter a0 ∼ Z.

Comparing to 3D calculations of Telnov and Chu [72], the results of calculations

presented in Fig. 5 show deviations of the relativistic result from the nonrelativistic

one larger than 10%, for hydrogen at F > 40 a.u., and for helium at F > 25 a.u.

which is in a qualitative accordance with the 3D result of Ref. [72]. The dipole calcu-

lations show stabilization behavior of the ionization rate, which is suppressed in the

relativistic case, again similar to the 3D calculation. While we have coincidence of

the qualitative characteristic features in 2D and 3D cases, the details of the ionization

rate behavior still slightly differ, which stem from the reduced dimension, and using

a soft Coulomb potential in the reduced number of dimensions, rather than a regular

Coulomb potential. These results indicate that the method is applicable in two di-

mensions without additional principal complications. The computational advantage

of the scaling method in the 2D case for TDDE is expected to be similar to that of

the TDSE discussed in Ref. [58].
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Figure 4.4: Trajectory of an electron during the laser pulse. Both TDSE (nondipole)

and ”the method” trajectories are depicted.

4.4 Dipole case

In this section, the ionization probability dependence on the laser pulse duration

is investigated. Let us start with a comparison (Fig. 4.5) of nondipole and dipole

calculations for the following parameters, typical for the stabilization regime: a0 =

0.13, Z = 2, ω = 14 a.u. (381 eV), E = 240 a.u. (I = 2 × 1021W/cm2), γ =

0.12, EZ−3 = 30 a.u., α ≈ 1.22. Here the parameters scaling [72] is employed and

helium (Z = 2) is chosen as a model to have a pronounced Coulomb effect. The laser

vector-potential A has only one component, namely Ax, which is given by the formula

Ax(η) = A0e
−2 ln(2)(η/τ) sin(ωη); η = t− 2τ − z/c, t < 2τ

= A0 sin(ωη); η = t− 2τ − z/c, 2τ < t < NT
2π

ω
+ 2τ

= A0e
−2 ln(2)(η/τ) sin(ωη); η = (t−NT

2π

ω
− 2τ)− z/c, NT

2π

ω
+ 2τ < t

(4.25)

where η = t− z/c for the nondipole and η = t for dipole cases. The duration of turn

on and turn off is regulated by the parameter τ . Between the turn on and turn off,

the pulse consists of a simple plane wave with a period of oscillations T = 2π/ω. In

order to investigate the dependence of the ionization on the length of the pulse, we

can run multiple simulations for the different number NT of periods T in the middle

of the pulse.
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Figure 4.5: Ionization probability in dependence of the laser pulse duration , a0 ≈
0.13, Z = 2, ω = 14 a.u., E = 240 a.u., γ = 0.12, EZ−3 = 30 a.u.; magenta

line – relativistic calculations according to the scaling method, blue line – dipole

approximation, red line – nondipole TDSE. Length of the pulse is T = NT ·2π/ω+6τ .

One can see in Fig. 4.5, that the ionization probabilities exhibit two key features:

the ionization probability oscillates with a number of cycles; the ionization probabil-

ity oscillations are significantly different in dipole and nondipole calculations, both

shape-wise and amplitude-wise.

In the dipole calculation, ionization probability oscillates near an average value

PI ≈ 0.7%. The oscillations seem to have a constant period Tosc ≈ 4 a.u. Further, we

will see the origin of this value and why the frequency of the oscillations is indepen-

dent on the total duration of the respective pulse.

In the nondipole calculations, one can also spot oscillations, which have bigger

amplitude and depend on the total duration of the pulse. Also, the nondipole ef-

fect doubles an ionization probability, making it PI ≈ 1.4%. The mechanism of the

nondipole oscillations is discussed in Section 4.5.

In order to address oscillations of the ionization probabilities with a number of cy-

cles, we focus in this section on the dipole case with smaller field parameter a0 = 0.13.
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A typical function of the ionization probability depending on the pulse duration,

PI(NT ) ≈ 0.5%, is shown in Fig. 4.5. For the corresponding case, the photoelectron

energy spectra are given in Figs. 4.6,4.7. From the analysis of Fig. 4.5, we can no-

tice, that the ionization probability oscillates over the number of additional periods

NT (between switching on and off of the laser pulse) with a period of oscillations

Tosc ≈ 2 · 4.38 cycles = 3.96 a.u.. An origin of this phenomenon can be understood

via the analysis of the spectra in Fig. 4.7, which show the spectra for the pulses with

different number of cycles NT . The chosen pulse durations NT correspond to the local

maxima or minima of the PI from Fig. 4.5. The spectrum is calculated according to

the Sec. 4.2.2 after the interaction of the system with the laser field.

We firstly notice that spectral density at the continuum threshold, energy E = 0,

is vanishing. This corresponds to the fact, that the final ionized part of the wave

function is anti-symmetric (up to 3-4 digits of accuracy). It is in accordance with

the photoelectron energy distribution (PED) scaling at the threshold at high-laser

frequencies [100]. Secondly, one can again see oscillations, whose period depends on

the duration of the pulse. In fact, these oscillations can be explained by the dynamic

interference [101]. Indeed, if we assume, that variables E and t make up a Fourier pair

Et/ℏ, then we expect the energy spectrum to be a Fourier transform of a function

f(t), describing a process of ionization with time:

S(E) =

∫ ∞

0

f(t)eiEt/ℏdt (4.26)

Our suggestion is that ionization unfolds mainly during the pulse turn on and turn

off [101]. Indeed, if the opposite was true, we would expect continuous growth of the

ionization probability with the number of cycles. Then, one can present function f as

f(t) = f1(t) + f1(t− T ), (4.27)

where T is (roughly) a time between the start and the end of the pulse. According to

the properties of the Fourier transform, the radial spectrum in this case is:

S(E) = S1(E) + S2(E)e
iET/ℏ (4.28)

Let us examine parameter T a bit closer. A rough estimation can be given by a simple

assumption, that

T = NT
2π

ω
. (4.29)

However, it also makes sense to take into account, that the ionization function f1(t)

must smoothly become zero after the end of the turn on stage. That means, that the
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Figure 4.6: Photoelectron density in dipole case, a0 ≈ 0.13, EZ−3 = 30 a.u., ω =

14 a.u. Corresponds to ionization probabilities from fig. 4.5.
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Figure 4.7: PED in dipole case, a0 ≈ 0.13, EZ−3 = 30 a.u., e
c
A0 = 17.14 a.u., ω =

14 a.u. Corresponds to ionization probabilities from fig. 4.5.

center of f1(t) is located roughly in the middle of the turn on stage. We estimate this

offset as τ , which is a characteristic of the turn on time. The same logic applies for

the turn off. Hence,

T =
3

2
τ +NT

2π

ω
. (4.30)

the period of modulation of the energy spectrum, given by Eq. 4.30, match those we

can observe in Fig. 4.7. To achieve even better agreement, we need to estimate a

shape of the function f1(t). This can be done again from the analysis of the peaks of

the spectrum. If we take a look at Fig. 4.7, we can see, that the distance between the

peaks E0 ≈ ℏ/T is nearly constant for NT , corresponding to minima, and for every

peak except the first one for NT , corresponding to maxima. Also, one can point out,

that peaks follow an exponential decay in amplitude, i.e. every next peak is n times

smaller, than the previous. The corresponding results can be found in table 4.4:

NT 12 20 28

n = env[S2
1(E + E0)] / env[S2

1(E)] 0.19 0.33 0.45

E0, a.u. 0.9 0.6 0.44

Therefore, we claim, that an envelope of the radial spectrum is

env[S1(E)] = e−const·|E| (4.31)

and

env[S1(E + E0)] / env[S1(E)] = e−const·|E0| ≈
√
n, E0 = ℏ/T. (4.32)

Then, we can get an estimation for the const. It turns out, that const ≈ 1.25τ . Let

us take const = τ for simplicity. Indeed, if we recall a property of Fourier transform

F [f(const · t)] = f̂(t/const), (4.33)
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then it becomes clear, that the const represents a width of the ionization function

f1(t). As was mentioned earlier, this is the parameter τ in accordance with the

energy-time uncertainty relation. As a result,

f1(t) =
1

1 + (t/τ)2
. (4.34)

If we plot a Fourier transform of the function

f(t) =
1

1 + (t/τ)2
+

1

1 + ((t− T )/τ)2
, (4.35)

with T from Eq. (4.30), then we obtain oscillations with the correct frequency for the

minima (NT = 12, 20, 28). However, the position of the very first peak is correct only

for the large NT = 20, 28, because for the small NT the turn on and turn off stages

are still very close to each other. However, the result for maxima fails. The thing is

that for the maxima, Eq. (4.35) with a changed sign delivers correct results

fmax(t) =
1

1 + (t/τ)2
− 1

1 + ((t− T )/τ)2
. (4.36)

Indeed, so far we did not take into account, that ionization at the end of the pulse

might be proportional to the length of the pulse T . We can see, that there is an energy

Ẽ ≈ 0.28 a.u., for which E < Ẽ peaks start rapidly decaying. Then,

ffinal(t) =
1

1 + (t/τ)2
+

1

1 + ((t− T )/τ)2
ei2πTẼ/ℏ. (4.37)

Fig. 4.8 shows a good match between formula Eq. (4.37) and calculated results. Same

applies for the bigger number of additional cycles NT . The only disagreement is a

presence of a zero energy peak E = 0 for the minima (NT = 20). We attribute an

absence of the the peak in the numerical results to the parity conservation, which

cannot be described by the simple model of Eq. (4.37).

With Eq. (4.37) and Fig. 4.8, we are ready to explain oscillations of the ionization

probability in dependence of the laser pulse duration. As we may see, an integral∫ +∞

−∞
|f(t)|2dt = const (4.38)

does not depend on time. Hence, according to Parseval’s theorem, neither does the

total probability of ionization:∫ +∞

0

|S(E)|2dE = const. (4.39)

However, in our simple man model we do not take into account, that the laser field

A(t) breaks the parity of the wave function. As a consequence, the spectrum in
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Fig. 4.8 is nearly zero in a region around E = 0, in accordance to the PED threshold

behavior [100]. In turn, the model predicts a peak at E = 0 for the duration of the

pulses, which correspond to the minima of the ionization. Thus, we can remove the

E = 0 peak in order to restore the parity of the resulting wave function. Of course,

by doing this, we decrease the total probability
∫ +∞
0
|S(E)|2dE. According to the

Eq. (4.37), the zeroth peak appear every ℏ/Ẽ ≈ Tosc, which coincide with the results

of the simulation in Fig. 4.5. Additional straightforward explanation is that the PED

modulation peaks move to higher energy with increasing pulse duration and decrease

with an amplitude following the envelop. Indeed, for all the NT , corresponding to

minima, the first peak is always further, than for the NT , corresponding to maxima,

where it is always located at ≈ 0.22 a.u.

Figure 4.8: PED in dipole case, a0 ≈ 0.13, EZ−3 = 30 a.u., e
c
A0 = 17.14 a.u., ω =

14 a.u. Corresponds to ionization probabilities from fig. 4.5. Dotted lines are obtained

within the framework of a simple model Eq. (4.37).
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Figure 4.9: Ionization probabilities for dipole (blue) and nondipole (red) cases: (a)

a0 = 0.06, e
c
A0 = 8.57 a.u.; (b) a0 = 0.09, e

c
A0 = 12.86 a.u.; (c) a0 = 0.11, e

c
A0 =

15 a.u.
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Figure 4.10: Ionization probability with respect to the duration of the pulse. Each

line represent different a0 parameter. The duration of the pulse is T = NT ·2π/ω+6τ .

4.5 Nondipole case

4.5.1 Interplay between the nondipole drift and Coulomb

force

Ionization probability oscillations in the dipole case are well described by the phe-

nomenon of the dynamic interference. However, moving towards higher laser inten-

sities a0 ≳ 0.1, we observe, that nondipole effects start to play a crucial role. To

begin with, we can compare ionization probabilities for the three different intensities

(Fig. 4.9)

The parameter a0 gradually increases from 0.06 to 0.11 by increasing the laser field

strength E. For the lowest presented a0 = 0.06, we see that ionization probabilities

for the dipole and nondipole case follow the same pattern with the pulse duration and

differ just by a constant. For the intermediate a0 = 0.09, the plots are different by

constant for the short laser pulses NT < 10, but the deviation becomes non trivial for

NT > 18. As regards a0 = 0.11, dipole and nondipole charts are completely different

and follow different patterns.

Increasing the parameter a0 even further up to 0.30, we observe (Fig. 4.10) a
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Figure 4.11: Trajectory of an electron during simulation. Different lines represent

different a0 values. The frequency is ω = 14 a.u.

dramatic change of the ionization probability comparing to the dipole case. For the

a0 = 0.13 the curve is still similar to its dipole counterpart, although a0 = 0.17 ex-

hibits both oscillations and a smooth increase. That said, for a0 > 0.17 ionization

saturation is no longer present. The line a0 = 0.21 is similar to a0 = 0.13, but comes

with a slightly different period of oscillations and roughly 3 times larger ionization

probabilities. For the a0 = 0.29, we see a change of the pattern again. There are no

more large oscillations and the ionization almost gradually increases with the respect

to the pulse duration.

We turn on the explanation of the differences of the pulse duration dependence of

the dipole and nondipole ionization yield. We know that the main physical ingredient

of the nondipole dynamics is the nondipole drift along the laser propagation direction

induced by the magnetic field of the laser wave. The latter is a quasiclassical effect

and can be characterized by the average coordinate ⟨z⟩ along the laser pulse prop-

agation direction. The dependence of the pulse on the coordinate A(z, t) enables a

new degree of freedom for the electron. The typical trajectories ⟨x(t)⟩, ⟨z(t)⟩ for the
range a0 = 0.13− 0.21 are shown in Fig. 4.11. Regarding ⟨x(t)⟩ we can see, that the

coordinate oscillates with an angular frequency ω and an anti-phase with respect to

A(z, t). The main difference of ⟨x⟩ from the dipole regime becomes visible only for

a0 > 0.17, namely an amplitude of the oscillations starts gradually decreasing. This
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is a purely quantum nondipole effect, arising from the fact, that a quantum electron

is not completely localized in space. Thus, different ’parts’ of an electron are exposed

to the different values A(z, t), which tend to decrease oscillations of an electron in

space with time. For the ⟨z(t)⟩, the situation is less trivial. In case of an absence

of the atomic potential, an electron would experience a drift in z direction with a

speed vz(t) = e2A2
x(t)/(2c). However, owing to the Coulombic potential the electron’s

dynamics varies. For example, in the case of a0 = 0.13, the electron oscillates along

z axis. This happens because the chosen A0 value is not sufficient to overcome a

Coulomb force. For the a0 = 0.17 a drift component is more apparent, although the

trajectory ⟨z(t)⟩ still has local minima and maxima with a frequency much smaller

than ω. As for the a0 = 0.21, the drift component starts to dominate.

The periodic oscillation of the expectation value of ⟨z(t)⟩ for the electron wave

packet during the interaction results in oscillation of ⟨z(t)⟩ at the switching off the

laser field. One could expect that in the stabilization regime when the main ionization

takes place at the switching on and off the laser pulse, the final coordinate oscillation

will yeld different probability of capturing electron by the atomic field, and will result

in the oscillation of the ionization yield. We analyze this point in Fig. 4.12. It turns

out, that the value of ⟨z⟩ after the end of the pulse might serve as a criterion only for

small parameters a0 ∼ 0.1. In Fig. 4.12 we can see that the maximum ⟨z⟩ correspond
to the maximum ionization yield for a0 = 0.09 and a0 = 0.11. On the other hand,

we see that for larger a0 = 0.21 the trajectory is dominated by the drift (Fig. 4.11),

although the ionization probability in Fig. 4.10 still oscillates with the pulse duration.

A better understanding of the ionization in nondipole regime can be found after the

analysis of the spectrum.

The PED in the nondipole case is different from the nondipole one. The PED for

a0 = 0.11 is presented in Fig. 4.13. The PED in the nondipole ionization case is not

explained by the simple model of dynamic interference. By contrast, the nondipole

PED is dominated by a single low energy broad distribution, with a width determined

by the switching on time of the laser pulse τ : ∆E ∼ 1/τ . As there is no interference

in PED corresponding to the pulse duration, we can deduce that the dipole picture of

ionization assuming that the ionization emerges mostly at the switching on and off of

the laser pulse is not valid in the nondipole regime. This is understandable because

the final position of the ionization wave packet is quite far from the core and this point

is not distinguished point for the creation of the continuum ionization wave packet.

Rather, in the nondipole case the ionization wave packet first created at the switching
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Figure 4.12: Final position ⟨z⟩ of an electron after the end of the pulse as a function

of number of additional periods NT in the laser pulse.

on of the laser pulse and afterward it is replenished during all interaction time. This

conclusion can drawn from the results of Ref. [94].

Figure 4.13: PED in the nondipole case; a0 = 0.11, e
c
A0 = 15 a.u.. The dipole PEDs

are shown by solid lines, the nondipole by the dashed ones.

In [94] authors noticed that although the drift velocity in the case of a free electron

vz(t) is along the laser propagation direction, the ionized electron is usually ejected

into the opposite negative −ẑ direction. This counterintuitive behavior is claimed to

be a result of the interplay between the electromagnetic and Coulomb forces. Due to

the drift electron spend more time during the interaction at z > 0 and get the momen-

tum transfer from the Coulomb field in the opposite direction. Moreover, via classical
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Figure 4.14: Distributions of |ψ̂(px, pz)|2 for different durations of the pulse (NT =

0, 10, 20, 30 periods). The parameters are: a0 = 0.21, EZ−3 = 50 a.u., e
c
A0 =

28.57 a.u., ω = 14 a.u. Corresponds to the red line in Fig.4.10 and Fig.4.11.

Monte Carlo trajectory analysis they concluded that the trajectories of ionized elec-

trons which contribute to the anomalous nondipole lobe of the angular distribution

(opposite to the laser propagation direction) will be captured in the case of the dipole

interaction. This means that the asymmetric Coulomb interaction in the nondipole

case leads to additional ionization, creating electrons with anomalous angular distri-

bution.

In our case of a0 = 0.21, an electron is also ejected into the −z direction for

different pulse durations, see Fig. 4.14. In turn, the final position of an electron

right after the interaction gradually increases in +z direction (Fig. 4.11). Thus, we

assume that an ionization along z axis is mostly related to the Coulomb momentum

kick which is acquired by an electron during the interaction. In order to verify this

assumption, we estimate from our simulation the total Coulomb momentum transfer
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to the electron wave packet during the interaction:

⟨pC(t)⟩ = −
∫ t

−∞
dt⟨∇V (r)⟩, (4.40)

with the expectation value of the Coulomb force ⟨−∇V (r)⟩. The evolution of the

Coulomb induced momentum ⟨pCz (t)⟩ with time is depicted in Fig. 4.15(a). The final

value of ⟨pCz ⟩ together with the ionization probability is shown in Fig. 4.15(b). More-

over, if we take a look at the spectrum Fig. 4.14, we see, that the main contribution

comes from pz, corresponding to quasiclassical calculations of ⟨pCz ⟩.

One more argument for the Coulomb kick importance is the fact, that the Coulomb

kick is correlated with the slowing down of the electron motion in z (Fig. 4.16). In-

deed, although the velocity ⟨vz⟩ remains positive during the simulation because of the

drift, it also oscillates, which correspond to the kicks in Fig. 4.15(a).

All the mentioned above confirms the conclusion, that nondipole ionization oscil-

lations are mostly determined and governed by the Coulomb momentum kicks, which

ionize an electron in the direction opposite to the main drift during the pulse duration.

Figure 4.15: (a) Average momentum ⟨pz(t)⟩, induced by coulomb force, with respect

to the time of simulation t and a durations of the pulse; (b) A value of the average

Coulomb induced momentum ⟨pz⟩ after the end of the pulse together with the respec-

tive ionization probability. The parameters are: a0 = 0.21, EZ−3 = 50 a.u., e
c
A0 =

28.57 a.u., ω = 14 a.u.
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Figure 4.16: An average velocity ⟨vz(t)⟩ of an electron as a function of time. Blue

line is a calculated ⟨vz(t)⟩, the red line is an everaged ⟨vz(t)⟩ over the period 2π/ω

of the fast oscillations. The parameters are: a0 = 0.21, EZ−3 = 50 a.u., e
c
A0 =

28.57 a.u., ω = 14 a.u.

4.5.2 Angular distribution

Another interesting question is the photoelectron angular distribution (PAD). The

PAD in the dipole case is relatively simple and depicted in Fig. 4.17. In this regime,

an electron is ejected evenly both in x and −x directions and also symmetrical along

z axis. For the small non zero parameter a0 = 0.11 and rather short pulse duration

(NT = 16) we see, that the spectrum is slightly deformed. However, we can already

spot a new third lobe, which is aimed right into the −z direction. For the longer

pulses, two initial lobes tend to bend into the −z direction and a third lobe keeps

growing.

For the stronger pulse a0 = 0.21 in Fig. 4.18 the difference with the dipole case

is even more noticeable. Just as in Fig. 4.10, the ionization is now dominated by the
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nondipole effects. All the lobes are directed into −z direction. However, all the normal

lobes, apparently originating from the interaction of the fast moving along the x axis,

are only bended in −z, keeping a certain −x. In turn, an anomalous lobe is directed

right to the −z direction and represent the Coulomb kick. The lobe oscillates together

with the total ionization, at least for the adjacent minima and maxima. That reads,

that the length of the lobe is not necessarily proportional to the ionization probabil-

ity for the certain N , but it reflects the derivative of the total ionization probability

function.

For the strongest observed pulse a0 = 0.29, Fig. 4.19, the lobes become more nar-

row. Since the total ionization probability no longer oscillates in this case (it least for

the N concerned), but gradually rises, so does the main lobe. With time, other lobes

tend to bend closer to the anomalous lobe.

Figure 4.17: Angular spectrum for a0 = 0.11, e
c
A0 = 15 a.u. Numbers denote number

of the additional cycles NT . The direction 0o corresponds to the −ẑ direction.
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Figure 4.18: Angular spectrum for a0 = 0.17, e
c
A0 = 28.57 a.u., EZ−3 = 59 a.u.

Numbers denote number of the additional cycles NT . The direction 0o corresponds to

the −ẑ direction.

Figure 4.19: Angular spectrum for a0 = 0.29, e
c
A0 = 40 a.u., EZ−3 = 70 a.u.

Numbers denote number of the additional cycles NT . The direction 0o corresponds to

the −ẑ direction.
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4.5.3 Electron wave packet oscillation in the laser propaga-

tion direction

In this section we analyze the electron wave packet oscillation in the laser propagation

direction z, which yields in the dipole case to the final ⟨z⟩ oscillation and in the

nondipole case to the ⟨pCz ⟩ oscillation, and explain the ionization yield oscillatory

dependence on the laser pulse duration.

Figure 4.20: A comparison of trajectories from 2D classical and 2D quantum simula-

tions. Parameters are a0 = 0.11, ω = 14 a.u., e
c
A0 = 15 a.u.

In order to quantitatively describe the difference in ionization probabilities for the

dipole and nondipole cases for a0 ≈ 0.1, we introduce a simple classical single electron

model, which effectively describe the ionization wave packet dynamics driven by the

laser field in the Coulomb field of the atomic core. To begin, we need to take into

account the quantum nature of an electron. For this purpose, we introduce an effective

atomic potential by means of smoothing the original soft-Coulomb atomic potential

with an original ground state as

Veff(r) =

∫ ∞

0

V (r′)|ψ(r− r′)|2dr′. (4.41)

In our model the effective classical electron moves in the effective potential Veff(r)

driven by the laser field. The effective electron in Veff(0) = −2.5 a.u. has the

same potential energy, as a quantum one. Using Veff as a potential, we launch a

simple classical 2D simulation [102] with an original vector potential A(z, t) and initial
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electron parameters q = 0, p = 0. The result is depicted for a0 = 0.11a.u. in

Fig. 4.20. The trajectory ⟨x(t)⟩ and x(t) nearly coincide in quantum and classical

cases. Indeed, as was mentioned earlier, for a0 ∼ 0.1 nondipole effects do not influence

the quiver motion of an electron along the x axis. In the absence of central potential

and A ̸= A(z) the motion of a classical electron is governed by the formula

α(t) =
e

mc

∫ t

0

A(t′)dt′ =
E(t)

ω2
, (4.42)

and in our case |αmax| = 1.07 a.u., which is in the perfect agreement with Fig. 4.20.

As for the ⟨z(t)⟩, the nondipole interaction plays a more important role. For instance,

one can notice, that the quantum trajectory is slightly not symmetrical with respect

to zero. However, such an effect cannot be resolved within the framework of the

classical simulation. Never the less, the point-like particle still reflects the leading

order of nondipole correction to the trajectory. This yields oscillations of ⟨z(t)⟩ with
a frequency, which is only 20% smaller, than a quantum one.

For a test of our simple effective model, we analyze the time dependence of the en-

ergy comparing TDSE results with the model in Figs. 4.21. Average potential energy

⟨V (t)⟩ for quantum case and V (t) are close to each other and both oscillate slightly

below −2 a.u. value. The total energies are different by the value of 0.5 a.u., which

corresponds to the initial kinetic energy of a quantum electron. As can be seen from

Fig. 4.22, the total kinetic energy of an electron oscillates around 0.5 a.u. through-

out the simulation. In order to incorporate this energy component into the classical

simulation, one could introduce a Bohr orbit and respective initial position q0 and

momentum p0. However, this would bring antisymmetry to the initial conditions of

the problem and would require averaging over many initial q0 and p0, which contra-

dicts with the idea of a simple one-particle classical model.

As was shown in Fig. 4.15, the total ionization is correlated with the Coulomb kick

in the nondipole case. Our simple 2D classical model captures the Coulomb kick, too.

As one can see in Fig. 4.24, the ⟨pz⟩C are very similar. Regarding the amplitude, the

deviation is no more than 20%. The point of the minimum of ⟨pz⟩C is also slightly

shifted, which is explained by the fact, that the frequency of the oscillations in the

classical case is by 20% bigger, than in the quantum one.

Returning to the idea of a simple quasiclassical model of the nondipole ionization,

it is possible to simplify it even further. The fact, that the motion along x axis is nearly

described by Eq. (4.42) even in quantum case, suggests that it is possible to remove
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Figure 4.21: (a) A comparison of total energies in a quantum simulation and 2D model

simulation; (b) A comparison of potential energies in a quantum simulation and 2D

model simulation.

x dimension completely. It can be done by moving into the Kramers-Henneberger

frame, specifically by averaging the potential over the oscillation period 2π/ω

Veff(z) =

∫ 2π/ω

0

V (A0 sin(ωt), z)dt. (4.43)

Averaging of the kinetic term over the period yields just a free particle term. As a

result, we receive a 1D system, which does not explicitly depend on vector potential

A(z, t). The oscillations along z axis can be incorporated via initial conditions. For

example, one can take an averaged over the period value of p2z/2 from the classical 2D

simulation (Fig. 4.23). Then, the initial conditions are

q0 = 0, p0 = ⟨|pz|⟩ = 0.55 a.u. (4.44)

The trajectory obtained via such a 1D simulation is depicted in Fig. 4.23.
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Figure 4.22: Average electron energies with the respect to the simulation time. Quan-

tum simulation, a0 = 0.11, ω = 14 a.u., e
c
A0 = 15 a.u.

Figure 4.23: A comparison of trajectories and energies from 2D classical and 1D

classical simulations. The lines for the 1D case are shifted by τ , which is a laser turn

on value. The parameters are: a0 = 0.11, ω = 14 a.u., e
c
A0 = 15 a.u.
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Figure 4.24: The parameters are: a0 = 0.13, ω = 14 a.u., EZ−3 = 30 a.u.





Chapter 5

Conclusion

In this thesis, a method for the numerical solution of time-dependent Dirac equation is

developed for the aim of treating the strong field ionization in the relativistic regimes.

Our method is based on the coordinates scaling ansazt that absorbs as well the kinetic

propagation phase of the wave function. The method is tested and analyzed on a sim-

ple 1D example of relativistic ionization. As an application of the method, we solve

numerically 2D problem of the strong field ionization of light hydrogen-like atoms in

a high-frequency strong laser field. We have found a new effect that the ionization

probabilities in the stabilization regime oscillate with the laser pulse duration. While

this effect exists as in the dipole regime as well in the nondipole one, the features of

the yield oscillation as well as the underlying physical mechanism are quite different.

Regarding the particular results, in the Chapter 3, the coordinate scaling method

for the numerical treatment of the atomic ionization problem in relativistically strong

laser fields was developed. There, the scheme of the relativistic generalization and the

study of its performance was carried out for the case of the 1D ionization problem.

The relativistic problem requires the application of an additional Foldy-Wouthuysen

transformation along with the scaling method to avoid fast oscillation of the wave

function due to the virtual transitions to negative energies. To do that, the quasiclas-

sical approximation method, recently developed by Silenko, was invoked, in contrast

to the more common v/c-approximation used in textbooks. The accuracy of the re-

sults of the scaling method was proved in the 3rd chapter on a concrete example in

the main region of the wave function. The sources of the inaccuracy on the tails of the

wave function were analyzed. The computational advantage of the relativistic scaling

method over the standard numerical TDDE [25] solution were also demonstrated.

In Chapter 4, the method was used to investigate an ionization process of the 2D

83
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light atoms, exposed to the relativistically strong laser fields. The study revealed, that

the ionization probabilities depend on the exposure time. Moreover, the dependence is

different for the dipole and non dipole regimes, because there are two different mech-

anisms, responsible for the effect. In the dipole case, the oscillations can be explained

by means of the dynamic interference theory. I the non dipole one, the ionization

dominates by the electron drift and its subsequent Coulomb kick.

Also, Chapter 4 brings some insights on how the respective phenomena can be

observed experimentally. It was shown, that oscillating ionization impacts both ra-

dial and angular photoelectron spectrum. As of radial spectrum, the ionization peaks

in the dipole case move as the laser duration increases. In the nondipole case, the

peaks merge and correspond to the energy of the respective Coulomb kick. An angular

spectrum also exhibits different behavior for the dipole and non dipole cases. It was

shown, that in the non dipole case the lobes tend to bend towards the opposite to the

drift direction. Also, the main lube, which has a pure nondipole origin, oscillates in

magnitude together with the total ionization probability.

For the outline, a few possible directions of the further research can be pointed

out. From the computational perspective, a question ”How to efficiently act with a

pseudo-differential operator, such as a square root, onto a wave function?” still re-

mains open. Particularly, an Algorithm 2 can serve as a starting point for the new

research. Regarding the physics studied, one could investigate the systems, in which

spin effects become non negligible. The scaling coordinates approach, in principle,

provides a possibility for such a research. Also, Fig.4.14 depicts an interference of the

wavepacket, which evolves with the duration of the pulse. Describing an origin of this

phenomenon and its main properties is an interesting task to be accomplished in the

future.
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A.1 Appendix A

Dirac equation in 3D reads

iℏψ̇ =

[
βmc2 + c

3∑
n=1

αn

(
pn −

e

c
An(x, t)

)
+ V (x)

]
ψ (A.1)

where β and α1,2,3 are Dirac matrices. FW Hamiltonian with terms up to ℏ2 [59]

HFW = βε+ V (x) +HSO,DW +O
(
λ2
)
,where

ε = mc2

√
1 +

(
p− e

c
A(x, t)

)2
m2c2

− eℏ
m2c3

σ · B , HSO,DW =
ℏ2

8

{
1

ε(ε+mc2)
, [O, [O,F ]]

}
.

F = V − iℏ ∂
∂t
, O = c

3∑
n=1

αn

(
pn −

e

c
An(x, t)

)
(A.2)

In order to show that additional ℏ2-order terms are negligible in case of relativistic

ionization problem with laser frequency ℏω ≪ mc2 and Zα < 1, we analyze leftover

terms from Ref. [59]. We introduce a dimensionless field parameter: a0 = eA0/(mc
2) ∼

p/(mc) with the laser vector potential

A = A0 sin
[
ω
(
t− x

c

)]
. (A.3)

The equation (A.2) is obtained in the quasiclassical limit applying ℏ-expansion [59] and

it is valid without restriction of the field value. However, for the sake of error analysis

and comparison with the common v/c-expansion results [71], let us following Ref. [59],

consider the weak-limit. In this limit, Eq. (A.2) yields the known Hamiltonian with

relativistic corrections [71]:

HFW =

[
mc2 +

1

2m

(
p− e

c
A(x, t)

)2
− p4

8m3c2

]
+ V +HS +HSO +HDW . (A.4)
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Let us estimate the magnitude of spin and spin-orbital terms:

HS = − eℏ
2mc

σ · B ∼ ℏω
2
a0 (A.5)

HSO = HSOI +HSOII = −i
eλ2

8
σ·∇×E + i

eλ2

4
σ · E ×∇ (A.6)

HSOI = i
eℏ2

8m2c2
1

c
σḂ ∼ eℏ2

8m2c2
ω2

c2
A =

ℏ2ω2

mc2
a0 (A.7)

HSOII =
eℏ

4m2c2
σ(∇V )× p+

eℏ
4m2c3

σ · Ȧ× p ∼ λ

4
(∇V )a0 +

ℏω
4
a20 (A.8)

HDW =
λ2

8
∆V (A.9)

Second, we estimate leftover terms in Eqs. (16)-(17) from Ref. [59], which are written

in a weak-field limit in stationary case. Restricting ourselves to the 1D case, the

operators ε and O from [59] become

O = c(px −
e

c
A(x)), ε = V (x) (A.10)

Defining also the terms of Eq. (16) in Ref. [59] via their denominators, we obtain

H512 ∼ λ2eV ′′ [a20 +O (a40)]+O (λ3) (A.11)

Apparently, the term H512 plays a role of relativistic corrections to Darwin term in

terms of parameter a0. The next two terms, which have not been calculated explicitly

in [59], are

H16 ∼
λ2

mc2
e2V ′2 +O

(
λ3
)
, H256 ∼

λ2

mc2
e2V ′2a20 +O

(
λ3
)
. (A.12)

The terms in the latter ∝ λ2, have an additional small factor eV/(mc2) compared to

HDW of Eq. (A.9) and H512. Thus, we conclude that Ref. [59] provides analytical

expressions for the all relevant terms in the order of λ2.

A.2 Appendix B

Let us introduce a ”shifted phase derivative” function

b = φ′ − e

cℏ
A (A.13)

Then the respective formulae for Eq. (3.20) become

T0(x, t) ≈ eiφ
√
1 + λ2b2

[
1− i

2
λ2φ′′ [1 + λ2b2

]−2
]
+O

(
λ2

λ2l

)
(A.14)

T1(x, t) ≈ eiφ
b√

1 + λ2b2

[
1 + 3

i

2
λ2φ′′ [1 + λ2b2

]−2
]
+O

(
λ2

λ2l

)
(A.15)
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T2(x, t) ≈ eiφ
1[
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]3/2 [1 + 3
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2
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(
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(A.16)

In 2D, the supplementary expressions for the Eq. (4.8) and Eq. (4.9) read

bx = φ′
x −

e

cℏ
A, bz = φ′

z (A.17)

T0(x, z, t) ≈ eiφ
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2
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2
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)
(A.18)

where

M0xx = 1 + λ2b2z, M0zz = 1 + λ2b2x, M0xz = λ2bxbz (A.19)

T1,x(x, z, t) ≈ eiφ
1√
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2
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M1x = λbx(1 + λ2b2z), M1z = λbz(1 + λ2b2x)

M1a = (λ2b2x − 2λ2b2z + 1), M1b = (λ2b2z − 2λ2b2x + 1)
(A.21)
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M2x4 = 3(1 + λ2b2z)(4λ
2b2x − λ2bz − 1), M2xz3 = 3λ2bxbz(3 + 3λ2b2x − 2λ2b2z)

M2z4 = 3(1 + λ2b2x)(4λ
2b2z − λ2b2x − 1), M2x3z = 3λ2bxbz(3 + 3λ2b2z − 2λ2b2x)

M2x2z2 = (2λ4b4x + 2λ4b4z + λ2b2x + λ2b2z − 11λ4b2xb
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(A.23)

W0(x, z, t) ≈ eiφλ2
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[1 + λ2b2x + λ2b2z]
3/2
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(A.24)
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A.3 Appendix C

The programming code for both scaling method and standard TDDE [25] solution,

along with the corresponding data and figures can be accessed via a link: https:

//github.com/arboec/relativistic_ionization_1D

Hardware specifications. For 1D calculations: Intel(R) Core(TM) i7-2600 CPU @

3.40GHz; 16 GB RAM. For 2D calculations: AMD EPYC 9654 96-Core Processor;

1584 GB RAM (shared).

Software specifications. For 1D calculations: MATLAB(R) 2022b; no explicit par-

allelization was used. For 2D calculations: C++, Eigen library was used for matrix-

vector operations; openMP for parallelization; Intel(R) oneAPI Math Kernel Library

for implementing FFT. Bound states for the soft-Coulomb potential were calculated

with MATSLISE package [65].

There are also parameters, which are used in the course of the simulations, but

are not explicitly mentioned in Sec. 3.1.2 or Sec. 3.2. The first of them is a tolerance

ϵtol, used to compute an approximation to the matrix exponent by means of Krylov-

Arnoldi method [78]. The typical for ϵtol value was ϵtol ∼ 10−6−10−8. The second one

is responsible for the frequency of updating a mesh. As was mentioned in Sec. 3.2, in

case of a non-uniform mesh, one can add additional nodes to the mesh, as expansion

factor R(t) grows. However, adding nodes requires an interpolation, which may lead

to the occurrence of numerical artifacts. For the parameters used, we employed a

simple procedure, which triggers mesh refinement every time tnew ref when R(tnew ref) =

1.05 · R(tprevious ref). Such a choice of parameters allows us to keep the magnitude of

artifacts at the level, which does not influence the results of computations.

Method ∆t, a.u. tcomp, minutes ϵtol Diff.·10−2, a.u.

Dirac 10−4 30 - -57.1

Dirac 10−5 290 - 1.10

Dirac 5 · 10−6 576 - 0.28

Dirac 2.5 · 10−6 1194 - 0.07

Scaled FW 10−3 97 10−7 -0.34

Scaled FW 10−4 190 10−6 0.02

Table A.1: A supplementary table to Fig. 3.5. The quantity ”Difference” is defined

as ⟨xDirac⟩ − ⟨xSKGE⟩ or ⟨xFW⟩ − ⟨xSKGE⟩ at the end of simulation.

https://github.com/arboec/relativistic_ionization_1D
https://github.com/arboec/relativistic_ionization_1D
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A.4 Appendix D

Then the question may arise why the scaling method accuracy is deteriorated for

the scattered part of the wavepacket. The matter is the change of the phase of the

wavepacket at scattering. In the scaling method, the phase of the wave function orig-

inating from the kinetic (ballistic) propagation is accurately canceled, irrespective of

the range of this velocities. As was illustrated on Figs. 3.1-3.4, all the components of

the wave function, regardless of their v, will lose their kinetic phase and stop. The

phase cancellation and related inaccuracies arises when the wave packet acquires an

additional scattering phase. In this case the kinetic phase cancellation is described

only in an approximated manner in our method. This is illustrated in Fig. A1 (not

an actual simulation).

In this scenario, a wavepacket impinges from the left (blue) to the localized at

ξ = 0 potential and scatters, producing the transferred wave packet (red) and the

scattered one (green). After the application of the scaling method, see Fig. A2, the

blue and red wave packets are smooth, but the scattered one is not. The latter breaks

the assumption for the expansion of Eq. (3.13).. This happens because the kinetic

phase is not canceled properly, since we rely on the procedure of Algorithm 1.
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phase = e if(x) ,

time = -1
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time = +1

Fig. A1: A scheme of a scattering process (not an actual simulation). No scaling is applied.
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Fig. A2: A scheme of a scattering process (not an actual simulation). Scaling is applied and an

”envelope” function ϕ is depicted.

The procedure is good for the prediction of the ballistic propagation, but does not

include the scattering phase. As a result, the evolution of the scattered part is not

described accurately. Eventually, at asymptotic large times t → ∞, both green and

red packets will stop, because the kinetic phase will prevail. However, the accuracy

of the description will be determined by the accuracy of the applied order of the

v/c-expansion in Eq. (3.13).



Publications

Regarding the content of the Chapter 3, one article has been published in a peer

reviewed journal:

• A. V. Boitsov, K. Z. Hatsagortsyan and C. H. Keitel

Scaling method for the numerical solution of the strong-field ionization problem

in the relativistic regime. Computer Physics Communications, 310: 109511

(2025). doi:10.1016/j.cpc.2025.109511

While another article summarizing the content of the Chapter 4 is in preparation:

• A. V. Boitsov, K. Z. Hatsagortsyan and C. H. Keitel

Relativistic scaling method for the numerical simulation of the x-ray strong field

ionization
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regime. Appl. Phys. Lett., 80:541, 2002.

[35] M. W. Walser, D. J. Urbach, K. Z. Hatsagortsyan, S. X. Hu, and C. H. Keitel.

Spin and radiation in intense laser fields. Phys. Rev. A, 65:043410, 2002.

[36] N J Kylstra, A M Ermolaev, and C J Joachain. Relativistic effects in the time

evolution of a one-dimensional model atom in an intense laser field. Journal of

Physics B: Atomic, Molecular and Optical Physics, 30(13):L449, jul 1997.

[37] M. Boca and V. Florescu. Relativistic effects in the time evolution of an one-

dimensional model atom in a laser pulse. The European Physical Journal D,

46:15–20, 2008.

[38] Guido R Mocken and Christoph H Keitel. Bound atomic dynamics in the mev

regime. J. Phys. B, 37:L275, 2004.

[39] Guido R. Mocken and Christoph H. Keitel. Fft-split-operator code for solving

the dirac equation in 2+1 dimensions. Computer Physics Communications,

178(11):868–882, 2008.

[40] Randolf Beerwerth and Heiko Bauke. Krylov subspace methods for the dirac

equation. Computer Physics Communications, 188:189–197, 2015.

[41] H. G. Hetzheim and C. H. Keitel. Ionization dynamics versus laser intensity in

laser-driven multiply charged ions. Phys. Rev. Lett., 102:083003, 2009.

[42] Heiko Bauke, Henrik G. Hetzheim, Guido R. Mocken, Matthias Ruf, and

Christoph H. Keitel. Relativistic ionization characteristics of laser-driven hy-

drogenlike ions. Phys. Rev. A, 83:063414, Jun 2011.

[43] M. S. Pindzola, Sh. A. Abdel-Naby, F. Robicheaux, and J. Colgan. Single

photoionization of highly charged atomic ions including the full electromagnetic-

field potential. Phys. Rev. A, 85:032701, Mar 2012.



Bibliography 97

[44] Yulian V. Vanne and Alejandro Saenz. Solution of the time-dependent dirac

equation for multiphoton ionization of highly charged hydrogenlike ions. Phys.

Rev. A, 85:033411, Mar 2012.

[45] Tor Kjellsson, Sølve Selstø, and Eva Lindroth. Relativistic ionization dynamics

for a hydrogen atom exposed to superintense xuv laser pulses. Phys. Rev. A,

95:043403, Apr 2017.

[46] I. A. Ivanov. Spin-flip processes and nondipole effects in above-threshold ion-

ization of hydrogen in ultrastrong laser fields. Phys. Rev. A, 96:013419, Jul

2017.

[47] Dmitry A. Telnov and Shih-I Chu. Relativistic ionization dynamics of hydrogen-

like ions in strong electromagnetic fields: Generalized pseudospectral method for

the time-dependent dirac equation. Phys. Rev. A, 102:063109, Dec 2020.

[48] Johanne Elise Vembe, Esther A. B. Johnsen, and Morten Førre. Relativistic

and nondipole effects in multiphoton ionization of hydrogen by a high-intensity

x-ray laser pulse. Phys. Rev. A, 109:013107, Jan 2024.

[49] Lei Geng, Hao Liang, Zi-Yang Lin, and Liang-You Peng. Solving the time-

dependent klein-gordon and square-root klein-gordon equations with krylov-

subspace methods. Phys. Rev. A, 107:053115, May 2023.

[50] Sang Tae Park. Propagation of a relativistic electron wave packet in the dirac

equation. Phys. Rev. A, 86:062105, Dec 2012.

[51] Sølve Selstø, Eva Lindroth, and Jakob Bengtsson. Solution of the dirac equation

for hydrogenlike systems exposed to intense electromagnetic pulses. Phys. Rev.

A, 79:043418, Apr 2009.

[52] Armin Scrinzi. Infinite-range exterior complex scaling as a perfect absorber in

time-dependent problems. Phys. Rev. A, 81:053845, May 2010.

[53] U. V. Riss and H.-D. Meyer. Investigation on the reflection and transmission

properties of complex absorbing potentials. The Journal of Chemical Physics,

105(4):1409–1419, 07 1996.

[54] Tor Kjellsson, Morten Førre, Aleksander Skjerlie Simonsen, Sølve Selstø, and

Eva Lindroth. Alternative gauge for the description of the light-matter interac-

tion in a relativistic framework. Phys. Rev. A, 96:023426, Aug 2017.



98 Bibliography

[55] E A Soloviev and S I Vinitsky. Suitable coordinates for the three-body problem

in the adiabatic representation. Journal of Physics B: Atomic and Molecular

Physics, 18(16):L557, aug 1985.

[56] E. Y. Sidky and B. D. Esry. Boundary-free propagation with the time-dependent

schrödinger equation. Phys. Rev. Lett., 85:5086–5089, Dec 2000.

[57] Z. X. Zhao, B. D. Esry, and C. D. Lin. Boundary-free scaling calculation of the

time-dependent schrödinger equation for laser-atom interactions. Phys. Rev. A,

65:023402, Jan 2002.

[58] Vladimir Roudnev and B. D. Esry. HD+ photodissociation in the scaled coor-

dinate approach. Phys. Rev. A, 71:013411, Jan 2005.

[59] Alexander Ya. Silenko. Comparative analysis of direct and “step-by-step” foldy-

wouthuysen transformation methods. Theoretical and Mathematical Physics,

176:987, 2013.

[60] Alexander J. Silenko. General method of the relativistic foldy-wouthuysen trans-

formation and proof of validity of the foldy-wouthuysen hamiltonian. Phys. Rev.

A, 91:022103, Feb 2015.

[61] Alexander J. Silenko. General properties of the foldy-wouthuysen transformation

and applicability of the corrected original foldy-wouthuysen method. Phys. Rev.

A, 93:022108, 2016.

[62] I.P. Omelyan, I.M. Mryglod, and R. Folk. Symplectic analytically integrable

decomposition algorithms: classification, derivation, and application to molecu-

lar dynamics, quantum and celestial mechanics simulations. Computer Physics

Communications, 151(3):272–314, 2003.

[63] Steven G. Johnson. Notes on fft-based differentiation. MIT Applied Mathemat-

ics, April 2011.

[64] John P. Boyd. Dover Publications, Inc., 2000.

[65] Veerle Ledoux and Marnix Van Daele. Matslise 2.0: A matlab toolbox for sturm-

liouville computations. ACM Transactions on Mathematical Software, 42:1–18,

06 2016.

[66] Edwin M. McMillan. The origin of cosmic rays. Phys. Rev., 79:498–501, Aug

1950.



Bibliography 99

[67] A. H. Nayfeh. Introduction to Perturbation Techniques. Wiley-lnterscience,

N.Y., 1993.

[68] Leslie L. Foldy and Siegfried A. Wouthuysen. On the dirac theory of spin 1/2

particles and its non-relativistic limit. Phys. Rev., 78:29–36, Apr 1950.

[69] Alexander J. Silenko. Foldy-wouthyusen transformation and semiclassical limit

for relativistic particles in strong external fields. Phys. Rev. A, 77:012116, 2008.

[70] Erik Eriksen. Foldy-wouthuysen transformation. exact solution with generaliza-

tion to the two-particle problem. Phys. Rev., 111:1011–1016, Aug 1958.

[71] V. B. Berestetskii, , E. M. Lifshitz, and L. P. Pitevskii. Quantum electrodynam-

ics. Pergamon, Oxford, 1982.

[72] Dmitry A. Telnov and Shih-I Chu. Relativistic ionization probabilities and

photoelectron distributions of hydrogenlike ions in superstrong electromagnetic

fields. Phys. Rev. A, 104:023111, 2021.

[73] Alexander J. Silenko. Leading correction to the relativistic foldy-wouthuysen

hamiltonian. Phys. Rev. A, 111:032210, Mar 2025.

[74] F. D. Tappert and Michael G. Brown. Asymptotic phase errors in parabolic ap-

proximations to the one-way helmholtz equation. The Journal of the Acoustical

Society of America, 99(3):1405–1413, 03 1996.

[75] Mark R. Hermann and J. A. Fleck. Split-operator spectral method for solving

the time-dependent schrödinger equation in spherical coordinates. Phys. Rev.

A, 38:6000–6012, 1988.

[76] Masuo Suzuki. General decomposition theory of ordered exponentials. Proceed-

ings of the Japan Academy, Series B, 69(7):161–166, 1993.

[77] David A Kopriva. Implementing spectral methods for partial differential euqa-

tions. Springer, 2009.

[78] Mikhail A. Bochev. A short guide to exponential Krylov subspace time inte-

gration for Maxwell’s equations. Number 1992 in Memorandum. University of

Twente, Netherlands, September 2012.

[79] S. Palaniyappan, I. Ghebregziabher, A. DiChiara, J. MacDonald, and B. C.

Walker. Emergence from nonrelativistic strong-field rescattering to ultrastrong-

field laser-atom physics: A semiclassical analysis. Phys. Rev. A, 74:033403,

2006.



100 Bibliography

[80] M Klaiber, K Z Hatsagortsyan, J Wu, S S Luo, P Grugan, and B C Walker.

Limits of Strong Field Rescattering in the Relativistic Regime. Phys. Rev. Lett.,

118(9):093001, 2017.

[81] D. F. Gordon, J. P. Palastro, and B. Hafizi. Superponderomotive regime of

tunneling ionization. Phys. Rev. A, 95:033403, 2017.

[82] Michael Klaiber, Enderalp Yakaboylu, Carsten Müller, Heiko Bauke, Gerhard G

Paulus, and Karen Z Hatsagortsyan. Spin dynamics in relativistic ionization

with highly charged ions in super-strong laser fields. J. Phys. B, 47(6):065603,

2014.

[83] Mihai Gavrila. Atomic stabilization in superintense laser fields. Journal of

Physics B: Atomic, Molecular and Optical Physics, 35(18):R147, sep 2002.

[84] A Patel, N J Kylstra, and P L Knight. Effect of laser pulse shapes on the

stabilization of a model atom. 32(24):5759, dec 1999.

[85] M Protopapas, C H Keitel, and P L Knight. Relativistic mass shift effects in

adiabatic intense laser field stabilization of atoms. Journal of Physics B: Atomic,

Molecular and Optical Physics, 29(16):L591, 1996.

[86] L. N. Gaier and C. H. Keitel. Relativistic classical monte carlo simulations of sta-

bilization of hydrogenlike ions in intense laser pulses. Phys. Rev. A, 65:023406,

2002.

[87] Andreas Staudt and Christoph H Keitel. Stabilization of helium in intense high-

frequency laser pulses beyond the dipole approximation. Journal of Physics B:

Atomic, Molecular and Optical Physics, 36(13):L203, jun 2003.

[88] M Protopapas, C H Keitel, and P L Knight. Atomic physics with super-high

intensity lasers. Reports on Progress in Physics, 60(4):389, 1997.

[89] Darko Dimitrovski, Morten Førre, and Lars Bojer Madsen. Strong-field short-

pulse nondipole dynamics. Phys. Rev. A, 80:053412, Nov 2009.

[90] M. Dondera and H. Bachau. Exploring above-threshold ionization of hydrogen

in an intense x-ray laser field through nonperturbative calculations. Phys. Rev.

A, 85:013423, Jan 2012.

[91] Michael Klaiber, Karen Z. Hatsagortsyan, and Christoph H. Keitel. Above-

threshold ionization beyond the dipole approximation. Phys. Rev. A,

71(3):033408, 2005.



Bibliography 101

[92] Michael Klaiber, Karen Z. Hatsagortsyan, and Christoph H. Keitel. Relativistic

ionization rescattering with tailored laser pulses. Phys. Rev. A, 74:051803, 2006.

[93] Zhongyuan Zhou and Shih-I Chu. Multiphoton above-threshold ionization in

superintense free-electron x-ray laser fields: Beyond the dipole approximation.

Phys. Rev. A, 87:023407, Feb 2013.

[94] M. Førre, J. P. Hansen, L. Kocbach, S. Selstø, and L. B. Madsen. Nondipole

ionization dynamics of atoms in superintense high-frequency attosecond pulses.

Phys. Rev. Lett., 97:043601, Jul 2006.

[95] Volker Mosert and Dieter Bauer. Photoelectron spectra with qprop and t-surff.

Computer Physics Communications, 207:452–463, 2016.

[96] F Morales, T Bredtmann, and S Patchkovskii. isurf: a family of infinite-time

surface flux methods. 49(24):245001, nov 2016.

[97] L. D. Landau and E. M. Lifshitz. Quantum Mechanics. Pergamon, Oxford,

1977. Chapt.53.

[98] C. H. Keitel and P. L. Knight. Monte carlo classical simulations of ionization

and harmonic generation in the relativistic domain. Phys. Rev. A, 51:1420–1430,

1995.

[99] Charles W Clark. Closed-form solutions of the schrödinger equation for a class

of smoothed coulomb potentials. Journal of Physics B: Atomic, Molecular and

Optical Physics, 30(11):2517, jun 1997.

[100] Sajad Azizi, Ulf Saalmann, and Jan M. Rost. Zero-energy photoelectric effect.

Phys. Rev. Lett., 134:103201, 2025.

[101] Wei-Chao Jiang and Joachim Burgdörfer. Dynamic interference as signature of

atomic stabilization. Opt. Express, 26(16):19921–19931, 2018.

[102] Molei Tao. Explicit high-order symplectic integrators for charged particles in

general electromagnetic fields. Journal of Computational Physics, 327:245–251,

2016.





Acknowledgements

I am very grateful to my supervisor, Karen Z. Hatsagortsyan, for his continuous

help. Also, I thank Prof. Christoph H. Keitel for providing me with an opportunity

to work in Max Planck Institute for Nuclear Physics and for the review of my thesis.

In addition, I thank Sibel Babacan and Denitsa Dzhigova for their help with organi-

zational matters.

I appreciate a will of Thomas Gasenzer to review my thesis, as well as Christian

Ott and Werner Aeschbach participation in my thesis committee.

I would also like to thank my former supervisors: Kálmán K. Szabó, Vitaly A.
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