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Lymphoid neoplasms (LNs) are heterogeneous malignancies arising from lymphoid cells, displaying diverse clinical and molecular
features. Although LNs are collectively frequent, individual subtypes are rare, posing challenges for genetic association studies.
Indeed, genome-wide association studies (GWAS) explained only a fraction of the heritability. Shared genetic susceptibility and
overlapping risk factors suggest a partially common etiology across subtypes. We employed a multi-trait GWAS strategy to improve
discovery power by leveraging pleiotropy among LN subtypes. We defined LN phenoclusters based on cell of origin, somatic
mutation profiles, and approved therapeutic agents. Using data from three large cohorts—the UK Biobank, Million Veteran
Program, and FinnGen—we analyzed 31,937 LN cases and 1.2 million controls across 8 individual subtypes and 7 phenoclusters. We
replicated the novel associations in two independent cohorts (All of Us and the Prostate, Lung, Colorectal, and Ovarian Cancer
Screening Trial) with 2892 LN cases and 165,791 controls. We identified 76 genome-wide significant loci for individual subtypes or
subtype clusters, including 20 novel associations. We identified the subtypes contributing to each locus, putative candidate causal
variants, and genes underlying the associations, and found enrichment of specific cell types, biological processes, and drugs
associated with LN risk genes. Overall, this study identified new LN genetic risk loci and candidate genes, providing insights that
may inform novel therapeutic approaches.
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INTRODUCTION
Lymphoid neoplasms (LNs) are a diverse group of malignancies
arising from lymphoid cells at various stages of differentiation.
While individual LN subtypes are rare, together they comprise
more than 60 clinically distinct entities and rank among the most
common cancers worldwide [1]. Risk factors for LNs include
inherited genetic variants, viral infections, environmental expo-
sures, and immune dysregulation [2]. Despite their heterogeneity,
shared susceptibility across subtypes has been observed—
including familial clustering—suggesting overlapping etiological
pathways [3].
Genome-wide association studies (GWASs) identified shared

and subtype-specific loci for several LN entities [4–6]. However,
these findings explain only a limited portion of heritability. For
instance, GWAS heritability estimates range from 15.6% for
multiple myeloma (MM) [7] to 34% for chronic lymphocytic
leukemia (CLL) [8], falling short of heritability estimates from
family and twin studies [9]. This “missing heritability” may reflect
undetected additive effects, gene–gene or gene–environment
interactions, or shared variants with modest effect sizes across
related subtypes [10]. Power analyses suggest that sample sizes of
50,000 to over 1 million cases would be required to explain 80% of
GWAS heritability for different cancers [11]—a scale that remains
infeasible for most individual LN subtypes.

To address these limitations, multi-trait GWAS methods have
been proposed as a powerful alternative [12–14]. These
approaches exploit pleiotropy—where a genetic variant influences
multiple traits—to increase statistical power by aggregating
biologically related phenotypes. In the context of LNs, many
subtypes share molecular features, therapeutic agents, and
developmental origins, suggesting the potential for pleiotropic
risk variants.
We hypothesized that grouping LN subtypes into biologically

informed “phenoclusters” could improve the discovery of
shared and subtype-specific genetic loci. We included CLL,
diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL),
Hodgkin lymphoma (HL), monoclonal gammopathy of unde-
termined significance (MGUS), MM, mantle cell lymphoma
(MCL), marginal zone lymphoma (MZL), peripheral T-cell
lymphoma (PTCL), and lymphoplasmacytic lymphoma/Walden-
ström macroglobulinemia (LPL-WM). We constructed phe-
noclusters using hierarchical clustering based on three
biological and clinical criteria: cell of origin [15–18], somatic
mutation profiles, and approved therapeutic agents. We then
applied both hypothesis-driven (phenocluster-based) and
hypothesis-free (ASSET) multi-trait GWAS frameworks across
large biobank cohorts, analyzing over 31,000 LN cases and 1.2
million controls.
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METHODS
An overview of the study design is presented in Fig. 1, with detailed
descriptions of each analytical step provided in the Supplementary
Information. The complete computational pipeline, including scripts and
workflows used for replication of all analyses and figures, is publicly
available at https://github.com/biomguler/LN_Phenocluster/.

Construction of LN phenoclusters using hierarchical clustering
To group LN subtypes based on shared biological and clinical features, we
performed hierarchical clustering using three modalities:

1. Cell-of-origin data were curated from the published literature
[15–18], assigning each LN subtype to a major developmental
lineage (i.e., B cell, plasma cell, and T cell).

2. Somatic mutation profiles were obtained from the cBioPortal
database and converted into a binary matrix representing the
presence or absence of mutations in 22,417 genes for each subtype
(Supplementary Data 1).

3. Drug usage profiles were derived from the Open Targets
Platform and transformed into binary matrices to indicate
whether a given drug was approved for each LN subtype
(Supplementary Data 2).

Each clustering was performed using Ward’s minimum variance method
and Jaccard similarity coefficient, appropriate for binary data. Phenocluster
definitions were guided by both algorithmic structure and biological
interpretability (Supplementary Figs. 1–4).
An additional phenocluster including all LN subtypes was created to

account for their shared hematopoietic origin.

Study populations and association testing
We conducted GWASs for individual LN subtypes and derived phenoclus-
ters using three large, population-based cohorts: the UK Biobank (UKB), the
Million Veteran Program (MVP), and FinnGen. Cohort description, data
acquisition, and selection of cases and controls are extensively described in
the Supplementary Information and Supplementary Tables 1–3. Summary
statistics from each cohort were meta-analyzed using inverse-variance
weighted fixed-effects models implemented in METAL [19]. We focused on
only European ancestry due to a lack of statistical power for other
ancestries.

Phenotype selection and association testing
We selected eight individual LN subtypes and seven phenoclusters for
association analysis, retaining only phenotypes with ≥100 cases to

Fig. 1 Study design and graphical summary of the methods. A comprehensive pipeline for identifying and characterizing multi-trait genetic
signals associated with LN. The pipeline encompasses four organized steps: (1) LN phenoclustering, integrating somatic mutation data
(cBioPortal; TCGA and non-TCGA datasets), drug information (Open Targets), and putative cell-of-origin annotations based on cell types,
employing Ward’s clustering method to define subtype relationships; (2) Identification of genetic risk loci leveraging large biobank cohorts
(UKB, MVP, and FINNGEN), through both hypothesis-free association analysis (SubSETs/ASSET approach) and hypothesis-driven phenocluster-
informed analysis for identification of subtype-specific and pleiotropic loci across LN subtypes; (3) Characterization of multi-trait signals,
illustrated with an example locus (LN phenocluster, 16q23.1, rs56143602), involving multi-trait colocalization (HyPrColoc), reported and newly
identified association for subtypes, and identification of consensus contributor subtypes (CLL, MM primary); and (4) Replication and functional
assessment, incorporating independent cohort meta-analysis (PLCO and AoU), fine-mapping (SuSiE), candidate gene prioritization using
FLAMES (Fine-mapped Locus Assessment Model of Effector genes), functional annotation (FUMA: MAGMA, molQTL, Open Target), and
detailed gene-based enrichment analyses to reveal LN biology and druggable genes.
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minimize bias from case imbalance. In UKB, association testing was
performed using REGENIE v3.2 [20], adjusting for age (at diagnosis for
cases; at recruitment for controls), sex, genotyping array, and the first ten
principal components (UKB Data-Field 22009) [21].
For FinnGen and MVP, phenocluster-level summary statistics were

constructed by meta-analyzing available subtype-level results. Exceptions
included the broad LN phenotype and MM-MGUS phenocluster, for which
full summary statistics were directly available (Supplementary Table 4).

Association analysis based on subsets (ASSET)
To complement the phenocluster-based approach in a hypothesis-free
manner, we employed ASSET [14]. ASSET is a subset-based meta-analysis
framework that systematically evaluates all possible combinations of traits
to detect association signals, accounting for heterogeneity in genetic
effects.
We performed both one-sided and two-sided ASSET analyses across ten

LN subtypes: CLL, DLBCL, FL, HL, MGUS, MM, MCL, MZL, PTC, and LPL-WM.
Subtypes were included if individual GWAS summary statistics were
available from at least one cohort, with MCL and PTCL included based on
data from FinnGen only.
One-sided ASSET was used to identify subsets of subtypes that showed

associations in the same direction, either risk-increasing or risk-decreasing.
Two-sided ASSET allowed for directional heterogeneity, enabling the
detection of loci with opposite effects across subtypes by combining
association signals using a chi-squared test.

Testing global genetic correlation
To quantify the shared genetic architecture among LN subtypes and
phenoclusters, we estimated genome-wide genetic correlations using
linkage disequilibrium score regression (LDSC), implemented with the
LDSC v1.0.1 software [22]. Summary statistics from genome-wide associa-
tion analyses of individual LN subtypes and phenoclusters were processed
using the munge_sumstats.py utility provided in the LDSC package.
Analyses were restricted to HapMap3 variants, following recommended
best practices to ensure reliability of heritability and correlation estimates.
Variants with a minor allele frequency (MAF) below 5% were excluded

from the analysis. In addition, we removed variants located within the
extended major histocompatibility complex (MHC) region on chromosome
6 (25–35Mb), due to the complex linkage disequilibrium patterns that can
bias correlation estimates in this region. Bivariate genetic correlations were
calculated between each pair of traits, and statistical significance was
determined using a Bonferroni-corrected threshold of P ≤ 0.005, account-
ing for ten unique subtypes tested.

Definition of independent loci and genomic regions
To define independent genome-wide significant (GWS) loci, we applied the
clumping procedure implemented in PLINK [23] using a P-value threshold
of 5 × 10−8, an R² threshold of 0.01, and a physical distance window of 1
megabase (Mb) around the index variant (command: -- clump -p1 5e-8
--clump-p2 5e-8 --clump-r2 0.01 --clump-kb 10000) and merged those loci
with lead SNPs within 1 Mb of each other to obtain the final independently
significant loci. For analyses involving individual LN subtypes, novel loci
were defined as those not previously reported for the same subtype.
Specifically, a locus was considered novel if its lead single-nucleotide
polymorphism (SNP) was located outside a ±1 Mb window from any
known lead variant and exhibited low LD (pairwise R² < 0.01) with
previously reported associations, as detailed in Supplementary Table 5.

Identification of driver-subtypes and pleiotropic loci
To identify the specific LN subtypes contributing to multi-trait association
signals and to classify pleiotropic loci, we used a three-step integrative
strategy combining phenocluster-based and subset-based findings. First,
we applied Hypothesis Prioritization in Multi-Trait Colocalization (HyPrCo-
loc), a Bayesian framework that detects colocalized association signals and
infers likely causal variants shared across traits. HyPrColoc groups traits
based on shared regional association patterns and computes a posterior
probability (PP) of colocalization for each cluster [24]. Analyses were
conducted using default parameters, with prior.1 set to 1 × 10−4 and
prior.c to 0.02, and with the branch-and-bound search algorithm enabled.
Subtypes with regional PP values greater than 0.7 were designated as
“primary contributors”, while those with lower support were labeled as
“supportive contributors”.

Second, we examined subtype-specific GWAS results at each multi-trait
locus. Subtypes were classified as primary contributors if they reached
genome-wide significance (P < 5 × 10−8) and as supportive contributors if
they showed suggestive significance (5 × 10−8 < P < 1 × 10−6). These
annotations were based on results reported in Supplementary Table 6.
Third, we cross-referenced all identified loci with previously reported

subtype-specific risk loci. If a subtype exhibited suggestive significance at a
locus and had been previously implicated in association with a lead SNP
located within ±500 kb and in LD (R² ≥ 0.01), it was also considered a
primary contributor
By merging primary, supportive, and previously reported contributors,

we generated a final list of associated subtypes for each locus. Loci were
categorized as pleiotropic if two or more primary subtypes were
implicated, as non-pleiotropic if only one primary contributor was
identified, and as “potentially pleiotropic” if no clear primary or supportive
contributor could be assigned. This classification allowed us to dissect the
subtype-specific vs shared genetic basis underlying multi-trait associations.

Replication of novel loci
We attempted replication of novel associations using summary statistics
from two independent cohorts: the All of Us (AoU) Research Program [25]
and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening
Trial [26]. For individual LN subtypes, replication was limited to CLL, MM
and MGUS, for which data were available with sufficient statistical power in
AoU and/or PLCO. Supplementary Table 4 shows LN phenotype definitions
and case-control numbers.
For loci identified through phenocluster- or ASSET-based analyses, we

selected subtypes for replication based on their contributor status. If the
novel signal involved one or two contributing subtypes, replication was
performed using single-subtype data or a subtype-specific meta-analysis
within the replication cohort. If a locus involved three or more contributing
subtypes, or if no specific contributors could be confidently assigned,
replication was conducted using a broad LN phenotype, defined in AoU
and PLCO as a composite of all available LN subtypes.
Meta-analysis of discovery and replication data was performed using

inverse-variance weighted fixed-effects models implemented in METAL
[19].
A locus was considered replicated if the effect direction was concordant

with the discovery analysis, the effect size was of similar magnitude, and
the combined meta-analysis reached genome-wide significance.

Statistical fine-mapping
To identify putative causal variants within associated loci, we performed
statistical fine-mapping using the SuSiE (Sum of Single Effects) method [27]
with both individual subtypes and phenocluster-level GWAS results. For
each GWS locus, we defined a ±500-kilobase (kb) region around the lead
SNP as the input window. LD reference matrices were generated using
genotype data from 337,491 unrelated British participants of European
ancestry in the UKB [28], ensuring population-matched LD structure for
accurate posterior inference.
We used the susieR package (version 0.12.35) in R with default

parameters. We required 95% credible sets to achieve a posterior inclusion
probability (PIP) coverage of at least 0.95, with a minimum pairwise LD
threshold of R² ≥ 0.5 to ensure variant correlation within sets. Loci located
within the extended MHC region were excluded from fine-mapping. Seven
of the fine-mapped loci did not yield credible sets and were excluded from
downstream interpretations.

Functional annotation of variants
To explore the molecular mechanisms underlying the identified associa-
tion signals, we performed functional annotation of fine-mapped variants
using the Ensembl Variant Effect Predictor (VEP, version 113) [29]. This
included annotation of variant consequences, predicted functional effects,
and overlap with known regulatory elements.
We also integrated cis-molecular quantitative trait locus (molQTL) data

to assess the regulatory activity of credible set variants. These included
expression (eQTLs), splicing (sQTLs), protein (pQTLs), transcript usage
(tuQTLs), and single-cell expression QTLs (sceQTLs), sourced from multiple
large-scale databases including the eQTL Catalog [30], Open Targets
Platform [31], eQTLGen Consortium [32], and the UKB Pharma Proteomics
Project [33]. We focused on QTLs derived from hematopoietic tissues and
whole blood.
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Locus to gene mapping
To prioritize candidate effector genes at associated risk loci, we applied a
multi-pronged locus-to-gene mapping strategy integrating statistical,
functional, and regulatory evidence. First, we used FLAMES (Fine-mapped
Locus Assessment Model of Effector Genes), a machine learning-based
framework that aggregates diverse genomic annotations to predict the
most likely effector gene per locus [34].
Second, we conducted gene-based association testing using MAGMA [35],

as implemented in FUMA (version 1.5.2) [36]. MAGMA integrates GWAS
summary statistics and gene location to compute a gene-level test statistic.
Genome-wide significance for MAGMA analyses was defined at a Bonferroni-
corrected threshold of P= 2.63 × 10−6, corresponding to 19,010 tested genes.
Third, we used the Open Targets Locus2Gene scoring framework [37] to

identify the most likely gene(s) at each locus based on proximity,
functional consequence, and regulatory evidence from fine-mapped
variants.
Fourth, we integrated cis-molecular QTL annotations from the previously

described molQTL databases. Genes were considered supported if they
were significantly regulated by variants within the 95% credible set.
Each gene was given a score of 1 if it was prioritized by a given method

and of 0 if not. Scores across methods were averaged to generate a
composite prioritization score per gene. Genes with support from multiple
independent lines of evidence were flagged as high-confidence candi-
dates for functional follow-up.

Enrichment analysis identified genes and drug targets
To investigate the biological relevance and translational potential of the
prioritized genes, we conducted a series of enrichment analyses focusing
on tissue specificity, functional pathways, and therapeutic targeting. We
first performed tissue- and cell-type-specific enrichment analysis using the
Web-based Cell-type Specific Enrichment Analysis (WebCSEA) tool [38].
This tool evaluates gene expression patterns across 1355 human tissues
and cell types and provides both nominal and permutation-based P-values
for enrichment. Analyses were performed separately for the full set of
prioritized genes, as well as the subset derived exclusively from novel loci.
To explore functional protein–protein interactions (PPIs), we queried the

STRING database (version 12) [39]. Enrichment for Gene Ontology (GO)
biological processes was assessed using STRING’s built-in annotation
framework. Terms were considered significantly enriched if they met a
false discovery rate (FDR) threshold of <0.05, and a minimum of two genes
in the enrichment set was required to prevent false enrichment signals.
To assess therapeutic relevance, we investigated drug–gene interactions

(DGI) using the Drug–Gene Interaction Database (DGIdb) [40]. Identified
gene–drug pairs were annotated with Anatomical Therapeutic Chemical
(ATC) codes from DrugBank. We then tested for enrichment of ATC first- and
second-level categories using Fisher’s exact test, with significance defined at
FDR < 0.05 relative to the full set of ATC annotations in DrugBank.
In parallel, we queried Open Targets for known drug interactions

involving our prioritized genes, focusing on agents with approved or
investigational indications based on ChEMBL annotations [41]. For each
gene–drug pair, we manually obtained data on clinical status and
indication using DrugBank and ClinicalTrials.gov to determine relevance
to LN. Genes located in the MHC region were excluded from all enrichment
and interaction analyses.

RESULTS
Hierarchical clustering of LNs
We performed hierarchical clustering using three independent
criteria. Cell-of-origin-based clustering grouped LN subtypes into
three major categories: B cell–derived neoplasms (Cell-B), plasma
cell–derived neoplasms (Cell-P), and T cell–derived neoplasms
(Cell-T). The specific subtype composition of each group is
provided in Supplementary Table 4. Due to the limited sample
size of the Cell-T group and the small number of cases per
individual subtype (PTCL= 49, MF= 65, SS= 2), Cell-T was
excluded from downstream analyses.
Somatic mutation-based clustering was performed using binary

profiles of 22,417 somatically mutated genes in LN subtypes. This
yielded three clusters: Soma-G1, Soma-G2, and Soma-G3, which
was excluded due to low sample size. The composition of Soma-
G1 and Soma-G2 clusters is detailed in Supplementary Fig. 3.

Drug-based clustering, using shared approved treatment
profiles, identified three groups. However, only Drug-G1 was
retained for further analysis. The other two groups—Drug-G2
(comprising MF and SS) and Drug-G3 (comprising HCL and MZL)—
were excluded due to small sample sizes (Supplementary Fig. 4).
The extended results for the phenoclusters are given in the
Supplementary Information.

GWAS of individual LN subtypes and phenoclusters
Following subtype selection and phenocluster construction across
the discovery cohorts, we performed genome-wide meta-analyses
for eight individual LN subtypes and seven phenoclusters, using a
shared control group (Supplementary Table 4).
In parallel, we conducted subset-based association testing

(ASSET) to identify pleiotropic loci across ten LN subtypes: eight
available across cohorts and two additional subtypes—MCL and
PTCL—which were analyzed using FinnGen data only.
Genomic inflation was not observed for any phenotype. All test

statistics were well-calibrated, with genomic inflation factors
λgc ≤ 1.1 (Supplementary Table 7), indicating no substantial
population stratification or systematic bias across analyses.

Identified risk loci from individual LN subtypes meta-analysis
Genome-wide meta-analyses for eight individual LN subtypes
across the discovery cohorts yielded a total of 49 independent
GWS loci (P < 5 × 10−8) totaling 65 associations (some loci have
been counted multiple times if they are GWS for more than one
subtype), of which 20 represented novel associations not
previously reported for the corresponding subtype (Supplemen-
tary Table 6 and Fig. 2b, blue circle).
To validate our novel findings, we conducted replication

analyses using independent datasets from the PLCO and AoU
cohorts where data were available. Replication results for the
novel loci are summarized in Supplementary Table 6 and
presented in Table 1. Among the nine novel CLL loci, eight
achieved genome-wide significance in the combined meta-
analysis, with the strongest replication observed for 10q22.1
(rs142239370, PRF1) and 10q23.33 (rs11187157, HHEX). The locus
at 10q23.33 has previously been reported as novel and pleiotropic
for non-HL subtypes [4], while our analysis revealed it as specific
for CLL. Several additional CLL loci, including 3q28 (LPP) and
12q24.22 (MAP1LC3B2), showed consistent effects and replicated
with low heterogeneity. For MGUS, all four novel loci replicated
with consistent direction of effect, including 6p25.3 (rs115116856,
EXOC2/IRF4), a rare variant with a strong effect (OR= 2.14,
P= 1.76 × 10−13). The protective variant at 2p23.3 (rs7577599,
DTNB) also replicated with high confidence. The novel MM locus at
1q23.1 (rs56179914, CD5L/FCRL3) was directionally consistent in
the replication cohort, though statistical power was limited.
Replication could not be pursued for newly identified loci in FL,

DLBCL, HL, and LPL-WM due to the absence of suitable subtype-
specific data in external cohorts. Nonetheless, all GWS loci from
the discovery meta-analyses were subsequently incorporated into
the subsequent multi-trait analyses.

Multi-trait approach-based identified risk loci and genetic
overlap
To uncover shared genetic susceptibility across LNs, we applied
both a hypothesis-driven phenocluster framework and a
hypothesis-free subset-based approach (ASSET). These comple-
mentary multi-trait strategies identified 63 independent GWS
associated with LN risk (Supplementary Tables 8–9 and Fig. 2b,
union of the orange and green circles).
To delineate the subtype contributions underlying these signals,

we integrated evidence from single-subtype GWAS (Supplemen-
tary Table 6), multi-trait colocalization using HyPrColoc (Supple-
mentary Table 10), and previously reported LN-associated loci
(Supplementary Table 5). Through this framework, primary and
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supportive contributing subtypes were defined for 55 of the 63
loci (Supplementary Table 11). Of these, 19 loci were primarily
driven by CLL, including five previously identified multi-trait loci.
Twenty-six loci demonstrated pleiotropy, with contributions from
at least two subtypes. Seventeen loci had no clearly assignable
contributor subtype, including nine with supportive subtype
evidence and eight with no identifiable subtype, while one locus
was specific to DLBCL (16p11.2). (Supplementary Tables 11–12).
The distribution of contributing subtypes is shown in Fig. 3a, b,
highlighting both subtype-specific and pleiotropic patterns of
genetic risk across the LN spectrum.
Replication analyses were performed for novel loci with defined

contributors, using corresponding single-subtype data. For signals
involving multiple contributing subtypes (e.g., MM and CLL), we
conducted subtype-specific and/or combined meta-analyses. For
loci with undefined or ≥3 contributors—or where novelty was
observed in any contributing subtype—replication was conducted
using the broad LN phenotype in the PLCO and the AoU. Results
are summarized in Supplementary Table 13, with replicated loci
presented in Table 2.
To further explore genetic architecture, we assessed genome-

wide genetic correlation (rg) among LN subtypes using cross-trait

linkage disequilibrium score regression (LDSC) (Fig. 3c; Supple-
mentary Table 14), revealing a strong genetic correlation between
MM and MGUS (rg= 0.75, SE= 0.14, P= 5.83 × 10−8), consistent
with their known precursor–disease relationship. A moderate but
significant correlation was also observed between MM and CLL
(rg= 0.36, SE= 0.13, P= 4.6 × 10−³), but not between CLL and
MGUS (rg= 0.23, SE= 0.19, P= 0.079). Additionally, CLL showed
significant genetic correlation with the MM-MGUS phenocluster
(rg= 0.37, SE= 0.11, P= 1.10 × 10−³).

Identified causal variants and genes
We performed fine-mapping using the SuSiE framework to prioritize
candidate causal variants across significant loci identified from
single-subtype, phenocluster, and multi-trait analyses. In total, 169
fine-mapping regions across various phenotypes yielded 95%
credible sets (CS), with coverage consistently ≥ 95% (Supplementary
Table 15). The average CS size was nearly 21 variants, though high-
confidence signals were observed at several loci with singleton or
small sets. (Supplementary Tables 15 and 16).
To translate fine-mapped variants into putative effector genes, we

integrated variant-to-gene mapping results from the MAGMA-based
gene-level association testing (Supplementary Tables 17 and 18),

Fig. 2 The single subtype and phenocluster analyses reveal 76 unique LN risk loci. a Summaries of the individual LN subtypes and multi-
trait (phenocluster and ASSET) approach sample sizes, and the detected number of GWS loci. Eight LNs subtypes were meta-analyzed
between the three discovery cohorts, and we identified 49 subtype-specific independent signals. We used jointly analyzed data to create 7
phenoclusters, and the hypothesis-free ASSET approach was employed to identify all possible pleiotropic signals. This captured 63 multi-trait
signals. b Venn diagram of the overlap between 76 unique significant loci across the single-subtype (blue), phenocluster (green), and ASSET
(orange) GWAS. c UpSet plot illustrating the overlap among 76 unique, significant, and independent genetic signals identified in single-
subtype and multi-trait analyses of LNs. Each vertical bar represents the number of signals corresponding to a specific phenotype or
combination of phenotypes. The connected purple lines and dots below the bars indicate the co-occurrence of signals across those
phenotypes or analysis types. For example, the first vertical bar corresponds to 8 loci uniquely associated with CLL, not shared with other
subtypes and not captured by any multi-trait method. The second bar represents seven CLL loci also identified by ASSET, indicating shared
signals between single-subtype and multi-trait analyses.
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regulatory feature annotation and gene prioritization from FLAMES
(Supplementary Table 19), Open Targets’ locus-to-gene scores
(Supplementary Table 20), variant functional predictions from
Ensembl VEP (Supplementary Table 21), and colocalization with
cis-molecular QTLs in blood and hematopoietic cell types (Supple-
mentary Table 22). By integrating evidence from these approaches,
we mapped 131 candidate genes across the 169 loci (Supplemen-
tary Table 23). Gene assignments were made based on scoring
convergence across methods, with summary metrics presented in
Supplementary Table 24 and visualized in Fig. 4.
Among the mapped genes, CASP8, CD70, ELL2, ULK4, SP140, and

C11orf21 were supported by five or more independent lines of
evidence (e.g., FLAMES, SuSiE, MAGMA, molQTLs, and functional
annotations), highlighting them as high-confidence candidate
genes. Of these, CASP8 (chr2q33.1) was the only gene to be
supported by all methods, including expression and splicing QTLs
across multiple tissues, suggesting strong regulatory relevance.
Several loci also revealed strong co-localization between fine-
mapped SNPs and expression effects, such as MYNN, CDKN2A, and
CDCA7L, particularly in blood or hematopoietic-relevant cell types.

Functional enrichment and druggability analyses
To interpret the biological functions of the mapped candidate
genes, we conducted Gene Ontology (GO) enrichment analysis for
biological processes across both the full set of 131 genes and the
subset of 78 genes uniquely mapped to novel loci (Supplementary

Table 25). The full gene set revealed strong enrichment in
immune-related pathways, transcriptional regulation, and apop-
tosis (Supplementary Table 25 and Fig. 5a). Additionally, there was
significant enrichment for terms related to transcriptional control
and programmed cell death. Focusing specifically on the novel
loci, the subset of 78 genes exhibited a similar but distinct pattern,
(Supplementary Table 25 and Fig. 5b), suggesting additional
mechanistic contributions to genome stability, transcriptional
control, cell cycle progression, and B cell-specific functions.
To evaluate the cellular context of the identified genes, we

applied single-cell enrichment analysis using WebCSEA on both
the complete set of 131 prioritized genes (Supplementary Table
26 and Fig. 5c) and the subset of 78 genes mapped exclusively to
novel loci (Supplementary Table 26 and Fig. 5d). We observed a
strong and consistent enrichment in immune cell populations,
especially B cells and plasma cells, across a wide range of
anatomical contexts. Additional enrichment was observed for T
cells, innate lymphoid cells, natural killer (NK) cells, and leukocytes.
To assess the therapeutic relevance of the mapped genes, we

performed druggability analysis using DGIdb and ATC code
enrichment. DGIdb analysis revealed 1,358 gene-drug interaction
pairs involving known or investigational compounds (Supplemen-
tary Table 27), with 453 of these interactions linked to ATC-
classified drugs. ATC enrichment analysis (Supplementary Table 28)
demonstrated significant overrepresentation of antineoplastic and
immunomodulating agents (Level 1: L, OR= 9.49, P= 6.8 × 10−6;

Fig. 3 Identified multi-trait signals and individual LN subtypes. a The Miami plot shows signals captured in multi-trait (up) and individual
subtype GWASs (down). b Summary result of pleiotropy assessment and identified contributor subtypes for the multi-trait signals. Each
phenocluster and subtype is shown with distinct colors. The arrows, as an example, link two multi-trait signals on chromosome 22 and their
contributors with individual subtype and multi-trait associations. c The corrplot shows bivariate genetic correlation between subtypes and
phenoclusters. The size and color of the circles show the direction and magnitude of the correlation, while P-values are shown inside.
Significant results after multiple test correction are given in red color.
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Level 2: L01, OR= 13.8, P= 7.7 × 10−7), strongly supporting the
clinical actionability of prioritized genes in oncology and
immunotherapy (Supplementary Table 29). These findings suggest
that many mapped genes, especially those from novel loci, are not
only biologically relevant but also represent plausible candidates
for therapeutic targeting or drug repurposing. In addition to
conventional therapeutic agents, our DGI analysis identified
several environmental and industrial compounds with potential
relevance to lymphoid malignancies. Notably, we observed a high-
scoring interaction between the product of PAX5, a novel CLL-
MGUS locus, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a
known environmental pollutant and the principal toxic compo-
nent of Agent Orange. TCDD has been previously implicated in
lymphomagenesis through its immunotoxic effects and disruption
of B-cell development [42], and reported exposure to TCDD has
been linked to MGUS to MM progression [43]. Moreover, the
identified risk variant, rs12554596, is a reported eQTL of PAX5 in
lymphoblastoid cell lines in multiple sources (Supplementary
Table 22), supporting its regulatory impact.
By using the Open Target Platform, identified approved or trial-

stage compounds for 16 prioritized genes (Supplementary Table
30), further expanding the translational potential of our findings.
Sixteen gene products were identified as targets of drugs either
approved or in clinical trials (Table 3), highlighting their potential
clinical relevance in LN and other malignancies. Among these,
CD19 is the most extensively targeted, with multiple approved
therapies used in the treatment of B-cell malignancies. TP53 and
BCL2 also have several small-molecule inhibitors and oligonucleo-
tide drugs under investigation or approved in hematologic
cancers. ERBB3 is targeted by a variety of antibody-based and
small-molecule inhibitors, mainly in solid tumors, but with
potential implications for LN. Other genes such as MAPK3, CD70,
CD40, CHEK2, and PSENEN are being explored in clinical trials,
often in broader oncologic contexts. Notably, several drug-gene
pairs—including those targeting CASP8, CASP10, KCNQ1, and
HSPA8—are not currently approved nor under clinical evaluation
for LN, representing investigational candidates with potential for
future development in hematologic malignancies.

DISCUSSION
This study represents one of the most comprehensive germline
investigations of LNs to date, integrating large-scale genome-wide
association analyses across multiple cohorts, phenotypic cluster-
ing, fine-mapping, functional annotation, and therapeutic target
discovery. Our integrative approach revealed 76 GWS loci
associated with individual LN subtypes and phenoclusters,
including 20 replicated novel loci, 19 of which associated with
risk of individual subtypes and 12 multi-trait loci. These findings
substantially expand the known genetic architecture of LNs and
offer critical insights into subtype-specific and pleiotropic
susceptibility mechanisms. Importantly, they also uncover biolo-
gical mechanisms central to lymphomagenesis and highlight
multiple avenues for clinical translation.
A key innovation of this study is the use of a hierarchical

phenocluster strategy, which allowed us to transcend traditional
histopathologic boundaries by identifying clusters of LNs with
shared genetic architectures. By incorporating phenotypic cluster-
ing with multi-trait colocalization and GWAS resolution, we
extended these insights to include precursor conditions such as
MGUS and rarer subtypes like LPL-WM, thereby offering broader
biological context and novel subtype-specific loci. Some loci
showed high PP for colocalization with multiple subtypes,
supporting true biological pleiotropy, while others appeared
subtype-specific. CLL emerged as a major contributor to many
multi-trait associations, which could reflect either true biological
pleiotropy or be driven by its relatively higher GWAS heritability
and statistical power compared to other subtypes. ThisTa
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phenocluster-informed approach provides a biologically grounded
framework to interpret shared susceptibility and reveals etiologic
commonalities across clinically distinct LNs.
We prioritized 131 candidate risk genes, supported by

regulatory annotations, molQTLs, and gene-level association
statistics. These genes were significantly enriched in pathways
related to B-cell differentiation, transcriptional regulation, DNA
repair, and immune signaling—core processes known to underpin
lymphomagenesis. Consistent with previous findings from Went
et al., our results reinforce the role of early B-cell developmental
genes such as PAX5 and transcriptional regulators such as BCL11A
and IRF4, the latter having pleiotropic effects across multiple
hematologic malignancies [44]. Notably, single-cell enrichment
analyses localized the expression of prioritized genes to naive and
memory B cells, plasma cells, and innate lymphoid populations,
echoing observations in recent transcriptomic studies that
implicate these compartments in both disease initiation and
progression. Thus, our results offer direct insight into the specific
immune cell contexts in which germline variation may exert
pathogenic effects.
Genetic correlation analysis further underscored biological

connections among LNs. We observed genome-wide correlation
between CLL and MM as previously reported [4, 5], despite their
distinct clinical profiles. This suggests convergent germline
mechanisms that may be therapeutically exploitable. The

exceptionally high correlation between MM and MGUS aligns
with their known precursor-product relationship. These findings
are in line with recent cross-trait studies that identified over-
lapping heritability patterns between plasma cell and lymphoid
disorders, particularly within immune regulatory loci such as ELL2,
TNFRSF13B, and PRKD2 [5, 44]. Together, these results reinforce the
hypothesis that immune-related pathways are key determinants
of both shared and divergent risk across LN subtypes.
Beyond risk genes, our analysis explored the translational

potential of risk genes through DGI mapping. We identified over
1200 DGIs, including 453 involving agents classified under the
ATC system, with significant enrichment for antineoplastic and
immunomodulatory therapies. In particular, we found that 16
gene products are targets of drugs either approved or in clinical
trials. This aligns with previous work demonstrating the
therapeutic relevance of germline GWAS loci in hematologic
cancers [45, 46]. We also identified interactions between risk
genes and environmental toxicants. Of particular interest is
PAX5, a novel locus associated with both CLL and MGUS, which
showed a high-confidence interaction with TCDD—the toxic
component of Agent Orange. TCDD has long been implicated in
immune dysregulation and lymphomagenesis and was recently
shown to increase the risk of MGUS-to-MM progression in a
large cohort of Vietnam-era U.S. veterans [43]. Given PAX5’s
central role in B-cell development, one plausible hypothesis is

Fig. 4 The results of locus to gene mapping. Tile-plot showing the genes identified with different methods. The columns from FLAMES to
tuQTL show data sources that support the link to each gene, and the score column shows the average number of supports.
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that TCDD exposure may alter B-cell maturation or promote
genomic instability in progenitor cells via modulation of AHR
(aryl hydrocarbon receptor) signaling, thereby interacting with
germline variants to enhance susceptibility to transformation.
These findings point to a potential gene–environment axis in LN
risk and warrant further mechanistic investigation. They also
suggest that inherited variation at immune developmental
genes may modify individual responses to environmental
exposures—a concept with potential implications for public
health and precision prevention.
While our study offers several strengths—including large

sample size, robust statistical methodology, and integration of
regulatory and pharmacogenomic annotations—it also has
limitations. All analyses were restricted to individuals of
European ancestry, limiting generalizability to non-European
populations and potentially missing population-specific var-
iants. Disease phenotyping, although harmonized across
biobanks, is subject to variability in diagnostic coding and
clinical ascertainment, which may introduce misclassification
bias. Furthermore, the lack of individual-level data in MVP and
FinnGen constrained our ability to conduct uniform fine-
mapping and joint modeling across all cohorts. Finally, while
our environmental and chemical interaction findings are
compelling, they remain hypothesis-generating and require
further mechanistic validation.

In conclusion, this study reports 20 novel subtype-specific and
shared genetic risk factors for LNs. By linking genetic risk loci to
candidate genes, we highlight their biological relevance—
connecting them to immune cell biology, drug targets, and
environmental exposures. Our results not only inform disease
etiology but also highlight pathways and genes with clear clinical
relevance, offering a resource for future functional studies and a
roadmap for potential therapeutic development in lymphoid
malignancies.

DATA AVAILABILITY
UK Biobank data (genotypes and phenotypes) are available under controlled access
(application number 66591). GWAS summary statistics from this study will be made
available through the GWAS Catalog (accession codes: GCST90624736-
GCST90624750). As the GWAS Catalog does not support analysis-specific outputs
from meta-analyses—such as effect direction and heterogeneity statistics—we have
deposited the complete raw outputs from the meta-analysis, as well as the ASSET
results, in Zenodo. These data are publicly accessible at DOI: 10.5281/
zenodo.15464477. MVP GWAS summary statistics are available in dbGaP
(phs002453). FinnGen v12 summary statistics are available at: https://
www.finngen.fi/en/access_results. All of Us GWAS summary statistics are accessible
to registered users at: https://workbench.researchallofus.org. PLCO summary statistics
are publicly accessible at: https://exploregwas.cancer.gov/. Somatic mutation data are
available via cBioPortal: https://www.cbioportal.org/, and the derived mutation–LN
subtype matrix is provided in Supplementary Data 1. Approved drug data were

Fig. 5 Enrichment of identified genes. a The top fifteen significantly enriched GO biological process categories for all identified genes. b The
top fifteen significantly enriched GO biological process categories for novel identified genes. The horizontal axis shows −log10(FDR), and the
balloon sizes are proportional to the number of genes. c Cell type enrichment results for the top 20 cell types for all identified genes. d Cell
type enrichment results for the top 20 cell types for novel identified genes. Vertical axis: −log10P.
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obtained from Open Targets: https://www.opentargets.org/; the derived drug–LN
subtype matrix is in Supplementary Data 2. UK Biobank LD data were accessed at:
https://registry.opendata.aws/ukbb-ld/. The complete analysis workflow, scripts, and
visualization tools are available in the GitHub repository: https://github.com/
biomguler/LN_Phenocluster.

REFERENCES
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global

Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. https://
doi.org/10.3322/caac.21660.

2. Luo J, Craver A, Bahl K, Stepniak L, Moore K, King J, et al. Etiology of non-Hodgkin
lymphoma: a review from epidemiologic studies. J Natl Cancer Cent. 2022;2:226–34.

3. Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, et al.
Analysis of 153 115 patients with hematological malignancies refines the spec-
trum of familial risk. Blood. 2019;134:960–9. https://doi.org/10.1182/
blood.2019001362.

4. Berndt SI, Vijai J, Benavente Y, Camp NJ, Nieters A, Wang Z, et al. Distinct germline
genetic susceptibility profiles identified for common non-Hodgkin lymphoma
subtypes. Leukemia. 2022;36:2835–44. https://doi.org/10.1038/s41375-022-01711-0.

5. Law PJ, Sud A, Mitchell JS, Henrion M, Orlando G, Lenive O, et al. Genome-wide
association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and
multiple myeloma identifies pleiotropic risk loci. Sci Rep. 2017;7:41071. https://
doi.org/10.1038/srep41071.

6. Tan DEK, Foo JN, Bei J-X, Chang J, Peng R, Zheng X, et al. Genome-wide asso-
ciation study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility
locus in the Chinese population. Nat Genet. 2013;45:804–7. https://doi.org/
10.1038/ng.2666.

7. Went M, Sud A, Försti A, Halvarsson B-M, Weinhold N, Kimber S, et al. Identifi-
cation of multiple risk loci and regulatory mechanisms influencing susceptibility
to multiple myeloma. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-
04989-w.

8. Law PJ, Berndt SI, Speedy HE, Camp NJ, Sava GP, Skibola CF, et al. Genome-wide
association analysis implicates dysregulation of immunity genes in chronic lym-
phocytic leukaemia. Nat Commun. 2017. https://doi.org/10.1038/ncomms14175.

9. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial
risk and heritability of cancer among twins in Nordic countries. JAMA.
2016;315:68–76. https://doi.org/10.1001/jama.2015.17703.

10. Matthews LJ, Turkheimer E. Three legs of the missing heritability problem. Stud
Hist Philos Sci. 2022;93:183–91. https://doi.org/10.1016/j.shpsa.2022.04.004.

11. Zhang YD, Hurson AN, Zhang H, Choudhury PP, Easton DF, Milne RL, et al.
Assessment of polygenic architecture and risk prediction based on common
variants across fourteen cancers. Nat Commun. 2020. https://doi.org/10.1038/
s41467-020-16483-3.

12. Taraszka K, Zaitlen N, Eskin E. Leveraging pleiotropy for joint analysis of genome-
wide association studies with per trait interpretations. PLoS Genet.
2022;18:e1010447. https://doi.org/10.1371/journal.pgen.1010447.

13. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait
analysis of genome-wide association summary statistics using MTAG. Nat Genet.
2018;50:229–37. https://doi.org/10.1038/s41588-017-0009-4.

14. Bhattacharjee S, Rajaraman P, Jacobs KB, Wheeler WA, Melin BS, Hartge P, et al. A
subset-based approach improves power and interpretation for the combined
analysis of genetic association studies of heterogeneous traits. Am J Hum Genet.
2012;90:821–35. https://doi.org/10.1016/j.ajhg.2012.03.015.

15. Husby S, Grønbæk K. Mature lymphoid malignancies: origin, stem cells, and chroni-
city. Blood Adv. 2017;1:2444–55. https://doi.org/10.1182/bloodadvances.2017008854.

16. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of
B-cell differentiation. Nat Rev Immunol. 2002;2:920–33. https://www.nature.com/
articles/nri953

17. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016
revision of the World Health Organization classification of lymphoid neoplasms.
Blood. 2016;127:2375–90. https://doi.org/10.1182/blood-2016-01-643569.

18. Malcolm TIM, Hodson DJ, Macintyre EA, Turner SD. Challenging perspectives on
the cellular origins of lymphoma. Open Biol. 2016;6:160232. https://doi.org/
10.1098/rsob.160232.

19. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genome-
wide association scans. Bioinforma. 2010;26:2190–1. https://doi.org/10.1093/
bioinformatics/btq340.

20. Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al.
Computationally efficient whole-genome regression for quantitative and binary
traits. Nat Genet. 2021;53:1097–103. https://doi.org/10.1038/s41588-021-00870-7.

21. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank
resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.
https://doi.org/10.1038/s41586-018-0579-z.

22. Bulik-Sullivan, Schizophrenia Working Group of the Psychiatric Genomics Con-
sortium BK, Loh P-R, Finucane HK, Ripke S, Yang J, et al. LD score regression
distinguishes confounding from polygenicity in genome-wide association stu-
dies. Nat Genet. 2015;47:291–5. https://doi.org/10.1038/ng.3211.

23. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015.
https://doi.org/10.1186/s13742-015-0047-8.

24. Foley CN, Staley JR, Breen PG, Sun BB, Kirk PDW, Burgess S, et al. A fast and
efficient colocalization algorithm for identifying shared genetic risk factors across
multiple traits. Nat Commun. 2021;12:764. https://doi.org/10.1038/s41467-020-
20885-8.

25. All of Us Research Program Genomics Investigators. Genomic data in the All of Us
Research Program. Nature. 2024;627:340–6. https://doi.org/10.1038/s41586-023-
06957-x.

26. Machiela MJ, Huang W-Y, Wong W, Berndt SI, Sampson J, De Almeida J, et al.
GWAS Explorer: an open-source tool to explore, visualize, and access GWAS
summary statistics in the PLCO Atlas. Sci Data. 2023;10:25. https://doi.org/
10.1038/s41597-022-01921-2.

27. Zou Y, Carbonetto P, Wang G, Stephens M. Fine-mapping from summary data
with the “Sum of Single Effects” model. PLoS Genet. 2022;18:e1010299. https://
doi.org/10.1371/journal.pgen.1010299.

28. Weissbrod O, Hormozdiari F, Benner C, Cui R, Ulirsch J, Gazal S, et al. Functionally
informed fine-mapping and polygenic localization of complex trait heritability.
Nat Genet. 2020;52:1355–63.

29. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The ensembl
variant effect predictor. Genome Biol. 2016;17:122. https://doi.org/10.1186/
s13059-016-0974-4.

30. Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L, et al. A
compendium of uniformly processed human gene expression and splicing
quantitative trait loci. Nat Genet. 2021;53:1290–9. https://doi.org/10.1038/s41588-
021-00924-w.

31. Buniello A, Suveges D, Cruz-Castillo C, Llinares MB, Cornu H, Lopez I, et al. Open
targets platform: facilitating therapeutic hypotheses building in drug discovery.
Nucleic Acids Res. 2025;53:D1467–75. https://doi.org/10.1093/nar/gkae1128.

32. Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. Large-
scale cis- and trans-eQTL analyses identify thousands of genetic loci and poly-
genic scores that regulate blood gene expression. Nat Genet. 2021;53:1300–10.
https://doi.org/10.1038/s41588-021-00913-z.

33. Sun BB, Chiou J, Traylor M, Benner C, Hsu Y-H, Richardson TG, et al. Plasma
proteomic associations with genetics and health in the UK Biobank. Nature.
2023;622:329–38. https://doi.org/10.1038/s41586-023-06592-6.

34. Schipper M, de Leeuw CA, Maciel BAPC, Wightman DP, Hubers N, Boomsma DI,
et al. Prioritizing effector genes at trait-associated loci using multimodal evi-
dence. Nat Genet. 2025;57:323–33.

35. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219. https://doi.org/
10.1371/journal.pcbi.1004219.

36. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and
annotation of genetic associations with FUMA. Nat Commun. 2017. https://
doi.org/10.1038/s41467-017-01261-5.

37. Mountjoy E, Schmidt EM, Carmona M, Schwartzentruber J, Peat G, Miranda A,
et al. An open approach to systematically prioritize causal variants and genes at
all published human GWAS trait-associated loci. Nat Genet. 2021;53:1527–33.
https://doi.org/10.1038/s41588-021-00945-5.

38. Dai Y, Hu R, Liu A, Cho KS, Manuel AM, Li X, et al. WebCSEA: web-based cell-type-
specific enrichment analysis of genes. Nucleic Acids Res. 2022;50:W782–90.
https://doi.org/10.1093/nar/gkac392.

39. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The
STRING database in 2023: protein-protein association networks and functional
enrichment analyses for any sequenced genome of interest. Nucleic Acids Res.
2023;51:D638–46. https://doi.org/10.1093/nar/gkac1000.

40. Cannon M, Stevenson J, Stahl K, Basu R, Coffman A, Kiwala S, et al. DGIdb 5.0:
rebuilding the drug-gene interaction database for precision medicine and drug
discovery platforms. Nucleic Acids Res. 2024;52:D1227–35. https://doi.org/
10.1093/nar/gkad1040.

41. Zdrazil B, Felix E, Hunter F, Manners EJ, Blackshaw J, Corbett S, et al. The ChEMBL
database in 2023: a drug discovery platform spanning multiple bioactivity data
types and time periods. Nucleic Acids Res. 2024;52:D1180–92.

42. Yoo BS, Boverhof DR, Shnaider D, Crawford RB, Zacharewski TR, Kaminski NE.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the regulation of Pax5 in
lipopolysaccharide-activated B cells. Toxicol Sci. 2003;77:272–9. https://doi.org/
10.1093/toxsci/kfh013.

43. Liu LW, Wang M, Grandhi N, Schroeder MA, Thomas T, Vargo K, et al. The
Association of Agent Orange Exposure with the progression of monoclonal
gammopathy of undetermined significance to multiple myeloma: a population-

M. Güler and F. Canzian

14

Blood Cancer Journal          (2025) 15:147 

https://www.opentargets.org/
https://registry.opendata.aws/ukbb-ld/
https://github.com/biomguler/LN_Phenocluster
https://github.com/biomguler/LN_Phenocluster
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1182/blood.2019001362
https://doi.org/10.1182/blood.2019001362
https://doi.org/10.1038/s41375-022-01711-0
https://doi.org/10.1038/srep41071
https://doi.org/10.1038/srep41071
https://doi.org/10.1038/ng.2666
https://doi.org/10.1038/ng.2666
https://doi.org/10.1038/s41467-018-04989-w
https://doi.org/10.1038/s41467-018-04989-w
https://doi.org/10.1038/ncomms14175
https://doi.org/10.1001/jama.2015.17703
https://doi.org/10.1016/j.shpsa.2022.04.004
https://doi.org/10.1038/s41467-020-16483-3
https://doi.org/10.1038/s41467-020-16483-3
https://doi.org/10.1371/journal.pgen.1010447
https://doi.org/10.1038/s41588-017-0009-4
https://doi.org/10.1016/j.ajhg.2012.03.015
https://doi.org/10.1182/bloodadvances.2017008854
https://www.nature.com/articles/nri953
https://www.nature.com/articles/nri953
https://doi.org/10.1182/blood-2016-01-643569
https://doi.org/10.1098/rsob.160232
https://doi.org/10.1098/rsob.160232
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1038/s41588-021-00870-7
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/ng.3211
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1038/s41467-020-20885-8
https://doi.org/10.1038/s41467-020-20885-8
https://doi.org/10.1038/s41586-023-06957-x
https://doi.org/10.1038/s41586-023-06957-x
https://doi.org/10.1038/s41597-022-01921-2
https://doi.org/10.1038/s41597-022-01921-2
https://doi.org/10.1371/journal.pgen.1010299
https://doi.org/10.1371/journal.pgen.1010299
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1038/s41588-021-00924-w
https://doi.org/10.1038/s41588-021-00924-w
https://doi.org/10.1093/nar/gkae1128
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1038/s41586-023-06592-6
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1038/s41588-021-00945-5
https://doi.org/10.1093/nar/gkac392
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1093/nar/gkad1040
https://doi.org/10.1093/nar/gkad1040
https://doi.org/10.1093/toxsci/kfh013
https://doi.org/10.1093/toxsci/kfh013


based study of Vietnam War Era Veterans. J Hematol Oncol. 2024;17:3. https://
doi.org/10.1186/s13045-023-01521-6.

44. Went M, Sud A, Speedy H, Sunter NJ, Försti A, Law PJ, et al. Genetic correlation
between multiple myeloma and chronic lymphocytic leukaemia provides evi-
dence for shared aetiology. Blood Cancer J. 2018;9:1. https://doi.org/10.1038/
s41408-018-0162-8.

45. Sadler MC, Auwerx C, Deelen P, Kutalik Z. Multi-layered genetic approaches to
identify approved drug targets. Cell Genom. 2023;3:100341. https://doi.org/
10.1016/j.xgen.2023.100341.

46. Gordillo-Marañón M, Schmidt AF, Warwick A, Tomlinson C, Ytsma C, Engmann J,
et al. Disease coverage of human genome-wide association studies and phar-
maceutical research and development. Commun Med. 2024;4:195. https://
doi.org/10.1038/s43856-024-00625-5.

ACKNOWLEDGEMENTS
We are grateful to the participants and investigators of the UK Biobank, FinnGen, All of
Us Research Program, and PLCO studies. The All of Us Research Program is supported
by the National Institutes of Health and numerous partner organizations (full grant
details provided above). We also thank the DKFZ Omics IT and Data Management
Core Facility (ODCF) for access to high-performance computing and data
infrastructure. The All of Us Research Program is supported by the National Institutes
of Health, Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2
OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1
OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA #: AOD
16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research
Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24
OD023176; Participant Technology Systems Center: 1 U24 OD023163; Communica-
tions and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners:
1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276.

AUTHOR CONTRIBUTIONS
MG. conceived the study, designed the computational framework, and performed
data analyses. MG and FC contributed to conceptualization and drafted the original
manuscript. All authors reviewed and approved the final version of the manuscript.

FUNDING
MG acknowledges support from a PhD scholarship provided by the Republic of Türkiye
Ministry of National Education. Open Access funding enabled and organized by Projekt
DEAL.

COMPETING INTERESTS
We confirm that the manuscript has been read and approved by all named authors
and that there are no other persons who satisfied the criteria for authorship but are
not listed. We further confirm that the order of the authors listed in the manuscript
has been approved by all of us.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
The UK Biobank study was approved by the North-West Multi-centre Research Ethics
Committee (MREC), with approvals 06/MRE08/65, 11/NW/038, 16/NW/0274, and 21/
NW/0157. The FinnGen study received approval from the Coordinating Ethics
Committee of the Hospital District of Helsinki and Uusimaa (HUS), with statement
number HUS/990/2017. Additional permits were granted by the Finnish Institute for
Health and Welfare (multiple permit numbers, e.g., THL/2031/6.02.00/2017 and
others), the Digital and Population Data Services Agency, the Social Insurance
Institution (KELA), and Findata. The Million Veteran Program is a United States
Department of Veterans Affairs initiative. All MVP research is reviewed and approved
by the VA Central Institutional Review Board (IRB). The All of Us Research Program is
overseen by the National Institutes of Health (NIH). The study protocol and all
participant-facing materials are reviewed and approved by a central IRB, specifically
the All of Us Institutional Review Board. The PLCO trial was approved by the
Institutional Review Boards at the US National Cancer Institute and all participating
screening centers. All participants of all studies provided written informed consent.
We confirm that all methods were performed in accordance with the relevant
guidelines and regulations.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41408-025-01351-4.

Correspondence and requests for materials should be addressed to Murat Güler or
Federico Canzian.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

M. Güler and F. Canzian

15

Blood Cancer Journal          (2025) 15:147 

https://doi.org/10.1186/s13045-023-01521-6
https://doi.org/10.1186/s13045-023-01521-6
https://doi.org/10.1038/s41408-018-0162-8
https://doi.org/10.1038/s41408-018-0162-8
https://doi.org/10.1016/j.xgen.2023.100341
https://doi.org/10.1016/j.xgen.2023.100341
https://doi.org/10.1038/s43856-024-00625-5
https://doi.org/10.1038/s43856-024-00625-5
https://doi.org/10.1038/s41408-025-01351-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Clustering of lymphoid neoplasms by cell of origin, somatic mutation and drug usage profiles: a multi-trait genome-wide association study
	Introduction
	Methods
	Construction of LN phenoclusters using hierarchical clustering
	Study populations and association testing
	Phenotype selection and association testing
	Association analysis based on subsets (ASSET)
	Testing global genetic correlation
	Definition of independent loci and genomic regions
	Identification of driver-subtypes and pleiotropic loci
	Replication of novel loci
	Statistical fine-mapping
	Functional annotation of variants
	Locus to gene mapping
	Enrichment analysis identified genes and drug targets

	Results
	Hierarchical clustering of LNs
	GWAS of individual LN subtypes and phenoclusters
	Identified risk loci from individual LN subtypes meta-analysis
	Multi-trait approach-based identified risk loci and genetic overlap
	Identified causal variants and genes
	Functional enrichment and druggability analyses

	Discussion
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Ethics approval and consent to participate
	ADDITIONAL INFORMATION




