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Zusammenf assung

Die volumetrische Mikroskopie liefert bislang ungeahnte Einblicke in Zellen und subzelluldre
Strukturen unterschiedlichster biologischer Gewebe. Die Analyse dieser komplexen Daten-
sdtze erfordert jedoch robuste Segmentierungsmethoden, die Mehrkanal-Informationen opti-
mal ausnutzen und gleichzeitig den Bedarf an Expertenannotationen reduzieren. In dieser
Dissertation stelle ich skalierbare Workflows vor, die den Umfang aufwéndiger manueller
Annotationen reduzieren und zugleich die Segmentierungsgenauigkeit unter realistischen
Bildgebungsbedingungen verbessern.

Zunichst prasentiere ich GoNuclear, eine vielseitige Toolbox zur dreidimensionalen (3D)
Segmentierung von Zellkernen in Pflanzengeweben, die mit dem kostengiinstigen und breit
einsetzbaren DNA-bindenden Farbstoff TO-PRO-3 markiert wurden. Anders als genetisch
kodierte Marker, die aufwandige genetische Transformationen erfordern, ldsst sich TO-PRO-3
direkt auf fixierte und geklarte Gewebeproben anwenden, was insbesondere die Kernsegmen-
tierung in Nicht-Modellorganismen stark vereinfacht. Durch Integration von menschlich un-
terstlitzten Annotationen und sorgféltig kuratierten Datensédtzen ermoglicht GoNuclear eine
prézise Segmentierung auch bei schwachen und verrauschten Signalen sowie eine gute Gen-
eralisierbarkeit auf verschiedene Gewebe und Farbetechniken. Dadurch werden nachfolgende
Analysen wie Kontrolle der Kerngrofie, Kern-zu-Zell-Volumenverhéltnisse und rdaumliche
Genexpressionsanalysen erleichtert.

Im Folgenden beschreibe ich wesentliche Verbesserungen an PlantSeg, einer auf Deep Learn-
ing basierenden Toolbox zur 3D-Gewebesegmentierung. Version 2.0 bietet eine interaktive,
napari-basierte Benutzeroberfldche, Integration in den Biolmage Model Zoo, Unterstiitzung
bei spérliche Instanzsegmentierung, automatische Optimierung von Patch- und Halo-Grofsen
sowie leistungsfahige Korrekturwerkzeuge. Diese Erweiterungen ermoglichen eine prazise
Segmentierung sowohl von Zellen als auch Zellkernen in komplexen Mikroskopiedaten und
machen fortgeschrittene rechnergestiitzte Methoden fiir die wissenschaftliche Gemeinschaft
leichter zuganglich.

Danach stelle ich SPOCO vor, eine einbettungsbasierte Methode zur Instanzsegmentierung,
die nur minimale Annotationen benétigt. Durch gezieltes Transferlernen iibertragt SPOCO
Modelle, die mit wenigen annotierten Datensitzen trainiert wurden, effizient auf neue Bildge-
bungsbereiche. Dadurch reduziert sich der Annotationsaufwand erheblich, wahrend die Seg-
mentierungsqualitédt erhalten bleibt. Zusitzlich zeige ich Verbesserungen der Recheneffizienz
durch Dimensionsreduktion und neuartige Clustering-Strategien auf und etabliere SPOCO
damit als praktikable Losung fiir grofiangelegte Analysen.

Schliefillich zeige ich, wie mehrkanalige Bildanalysen von Mikroskopiedaten die
Segmentierungs- und Tracking-Genauigkeit deutlich verbessern konnen. Durch die In-
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tegration komplementdrer chemischer Farbungen, multipler Bildgebungsmodalititen,
zeitlicher Sequenzen und unterschiedlicher biologischer Strukturen in einem einzigen Daten-
satz erhohen diese Strategien sowohl die Genauigkeit als auch die Interpretierbarkeit von
Segmentierungsergebnissen, insbesondere bei herausfordernden Bildgebungsbedingungen.

Insgesamt tragen diese Beitrdage zur Weiterentwicklung der 3D-Segmentierung von
Mikroskopiedaten bei, indem sie den Annotationsaufwand verringern und zugleich die
Segmentierungsleistung unter realistischen Bedingungen verbessern. Diese Arbeit liefert
praxisnahe und benutzerfreundliche Losungen fiir prézise, grofiskalige biologische Analysen
und eroffnet neue Moglichkeiten zur Untersuchung entwicklungsbiologischer Prozesse,
zelluldrer Architektur und Morphogenese in einer Vielzahl pflanzlicher und tierischer
Systeme.

Abstract in German kindly proofread by Jonas Hellgoth.



Abstract

Volumetric microscopy reveals unprecedented details of cells and subcellular structures across
diverse biological tissues. However, harnessing these complex datasets requires robust seg-
mentation methods that maximise the use of multi-channel information while minimising the
need for expert annotation. In this thesis, I introduce scalable workflows that reduce reliance
on extensive expert labelling while enhancing segmentation accuracy under realistic imaging
conditions.

First, I present GoNuclear, a versatile toolkit for three-dimensional (3D) nuclear segmentation
of plant tissues stained with the affordable, broadly applicable DNA-binding dye TO-PRO-
3. Unlike genetically encoded markers, which require laborious transformations, TO-PRO-3
can be directly applied to fixed and cleared tissues, greatly simplifying nuclear segmentation
in non-model species. By leveraging human-in-the-loop annotations and carefully curated
datasets, GoNuclear provides accurate segmentation from weak, noisy signals and generalises
effectively across diverse tissues and staining modalities. This enables downstream analyses
such as nuclear size control, nuclear-to-cell volume ratios, and spatial gene expression.

Next, I describe substantial enhancements to PlantSeg, a deep-learning-based toolkit for 3D
tissue segmentation. Version 2.0 features an interactive napari-based interface, integration
with the Biolmage Model Zoo, sparse instance segmentation support, automatic optimisa-
tion of patch and halo sizes, and powerful proofreading tools. These improvements enable
the accurate segmentation of both cells and nuclei in complex microscopy volumes, making
advanced computational methods more accessible to the scientific community.

I then introduce SPOCO, an embedding-based instance segmentation method requiring min-
imal annotations. Through targeted transfer learning, SPOCO adapts models trained on lim-
ited annotated datasets to new imaging domains, significantly reducing annotation require-
ments while preserving segmentation quality. I also demonstrate computational efficiency
gains through dimensionality reduction and novel clustering strategies, establishing SPOCO
as a practical solution for large-scale analyses.

Finally, I show how multi-channel bioimage analysis can substantially improve segmenta-
tion and tracking accuracy. By integrating complementary chemical stains, multiple imaging
modalities, temporal sequences, and various biological structures into a single dataset, these
strategies enhance both the accuracy and interpretability of segmentation outcomes, particu-
larly under challenging imaging conditions.

Together, these contributions advance 3D bioimage segmentation by minimising annotation
burdens and improving segmentation performance under realistic conditions. This work pro-
vides practical, user-friendly solutions for precise, large-scale biological analyses, opening
new avenues for the investigation of developmental biology, cellular architecture, and mor-

Xix
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phogenesis in a wide range of plant and animal systems.
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Chapter 1

Introduction to Bioimage Segmentation

Bioimage segmentation—the task of delineating cellular or subcellular structures in mi-
croscopy data—is central to advancing modern biological and biomedical research. Rapid
progress in imaging modalities, ranging from confocal and light-sheet microscopy to electron
and synchrotron-based X-ray imaging, has unlocked the ability to generate complex, high-
dimensional datasets at increasingly high throughput. Yet, extracting meaningful biological
insights from these data hinges on the development of robust and scalable computational
methods.

At EMBL, my research has focused on addressing core challenges in bioimage segmentation,
spanning three interconnected dimensions:

1. Algorithm Development. I contributed to the design and optimisation of segmentation
algorithms, bridging classical image processing techniques and modern deep learning.
Notably, I worked on Sparse Object-Level Supervision for Instance Segmentation (SPOCO)
[1], which reduces annotation demands in instance segmentation tasks, and advanced
multi-channel segmentation strategies across several projects, including the GoNuclear
toolkit for 3D nuclei segmentation [2]. These contributions are detailed in chapter 4,
section 2.3, and chapter 5.

2. Software Engineering. I co-developed and improved several open-source bioimage
analysis tools, including GoNuclear, PlantSeg 2.0, and Cellpose. My work focused on
ensuring that sophisticated segmentation algorithms are accessible, reproducible, and
deployable in real-world biological workflows. Further information is provided in sec-
tion 2.2, section 3.2, and subsection 5.2.2.

3. Applied Bioimage Segmentation. I applied segmentation techniques to a wide range
of biological datasets and imaging modalities. Examples include planarian regeneration
videos recorded with commercial cameras (subsection 5.2.1); 3D confocal microscopy
of Arabidopsis ovules capturing cell walls and nuclei (subsection 2.3.1, section 5.3); 3D
confocal volumes of mouse fibroblasts labelled for actin and synthetic linkers (subsec-
tion 5.1.1); mitochondria in mouse and human cells imaged via electron microscopy
(section 4.2); and dynamic segmentation of cell membranes and nuclei in Drosophila
embryo gastrulation with two-photon microscopy (subsection 5.2.2).

In what follows, I outline the broader field of bioimage analysis, highlighting its unique chal-
lenges and the need for specialised computational approaches. I then situate my own contri-
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butions within the existing landscape of segmentation algorithms and software. It has been a
privilege to collaborate on these projects, and I hope that the resulting tools and methods will
continue to advance the field of bioimage analysis.

1.1 Bioimaging and Bioimage Analysis

1.1.1 Bioimaging Data

Modern biological imaging spans diverse scales, contrast mechanisms, and spatiotem-
poral resolutions. Researchers routinely customise microscopes—or devise new imaging
protocols—to observe a vast array of samples: from entire organs to ultrastructures within
single cells. Confocal, two-photon, and light-sheet microscopes generate volumetric and time-
lapse data with optical sectioning; electron microscopy reaches nanometre-scale resolution;
synchrotron-based X-ray imaging offers unique contrast for large samples; and even common
commercial cameras capture morphological details of model organisms in motion.

This variety in instrumentation and experimental conditions produces highly heterogeneous
datasets. Imaging runs can essentially become custom protocols, often collecting data in mul-
tiple dimensions (2D, 3D, multi-channel, time-lapse). Such diversity poses a core obstacle in
bioimage analysis: resolution, contrast, and signal-to-noise ratio differ widely across labora-
tories and experiments. Any automated method must contend with heterogeneity in both
imaging modality and biological content.

One might wonder how imaging modalities affect bioimage analysis. In the era of deep
learning, diversity can paradoxically lead to scarcity of data for each experiment, and yet
the bioimaging data itself is often treated simply as tensors. In practice, trade-offs also ex-
ist among imaging quality, photo-toxicity, financial constraints, and experimental design. A
bioimage analyst must master the art of bootstrapping analyses under varying constraints:
data quality, biological requirements, computational resources, and human effort. Sometimes
one can help shape the imaging experiment; other times, data arrive as a given. Consequently,
every bioimage project is a unique interplay between the biological question, the imaging
modality, and computational methods. As a growing expert in the field, I continue to adapt
to these challenges and opportunities.

1.1.2 Bioimage Analysis

Bioimage analysis comprises a broad set of computational techniques to extract meaningful
biological information from microscopy data. Common tasks include:

* Image Enhancement and Restoration (e.g. denoising, deconvolution, resolution en-
hancement),

* Segmentation (delineating cytoplasm, nuclei, membranes, organelles),
* Tracking (following cells or subcellular compartments over time),

* Morphological and Intensity Quantification (measuring shape descriptors, intensity
distributions, spatial organisation),
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Figure 1.1: Bioimages across Scales 1/4: Confocal Microscopy of a Plant Organ. Arabidopsis ovules
serve as an excellent model for constructing 3D digital organs, thanks to their immobile cells and
well-defined architecture. Accurate segmentation of both nuclei and surrounding cells enables in-
depth analyses of cellular and subcellular organization throughout development. (A-1) shows weakly
stained TO-PRO-3 nuclei, underscoring the need for precise 3D instance segmentation to measure
morphological features and nuclear-to-cell volume ratios (N/C), which vary across ovule tissues and
developmental stages. (A-2) illustrates segmentation overlays from StarDist and U-Net; tools such
as GoNuclear and MorphoGraphX further facilitate cell type-specific insights and quantitative map-
ping [2]. This figure is from chapter 2.

Figure 1.2: Bioimages across Scales 2/4: Confocal Microscopy of a Mammalian Cell. High-fidelity
segmentation of the cell surface is critical for investigating membrane-cortex attachment, which governs
processes such as shape regulation, migration, and division. Shown here are 3T3 mouse fibroblasts im-
aged with genetically engineered linker proteins that tether the actin cortex to the plasma membrane,
enabling the study of linker length and membrane viscosity effects on actin organization. Due to sub-
stantial noise in the actin channel, conventional methods often fail to produce accurate segmentations.
(B-1) depicts the negative (non-cell) channel, which provides a complementary noise profile and guards
against overfitting during training. The resulting segmentation (B-2), generated by the “initial plus”
deep-learning model, enhances surface delineation and underpins subsequent morphological and bio-
physical analyses of membrane-cortex coupling. This figure is from subsection 5.1.1.



4 CHAPTER 1. INTRODUCTION

Figure 1.3: Bioimages across Scales 3/4: Two-Photon Microscopy Video of a Gastrulating Insect Em-
bryo. Live imaging of Drosophila gastrulation reveals a rapidly changing cellular environment in which
both membranes and nuclei must be segmented and tracked in 3D. (C-1) shows a two-photon mi-
croscopy slice of the membrane channel, illustrating pronounced noise and signal loss; (C-2) presents
the final segmentation, achieved via a pipeline that integrates Noise2Void denoising, boundary predic-
tion in PlantSeg, and Ultrack for tracking. This approach ensures temporally consistent, high-fidelity
cell instance segmentation, aiding inquiries into whether nuclei supply mechanical energy to power
tissue morphogenesis. This figure is from subsection 5.2.2.

Figure 1.4: Bioimages across Scales 4/4: Camera Video of Multiple Regenerating Planarian Organ-
isms. Time-lapse recordings of regenerating Phagocata velata fragments document distinct movement
patterns linked to different regenerative strategies. In (D), the 3D visualization of the stacked frames re-
veals individually segmented fragments using a boundary-based volumetric approach. Transforming
the temporal sequence into a 3D volume and applying standard segmentation methods (e.g. water-
shed and GASP) effectively reframes tracking as 3D instance segmentation. This technique enhances
temporal coherence, simplifies fragment identity assignment, and supports quantitative evaluations of
morphological changes and motion during regeneration. This figure is from subsection 5.2.1.
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* Registration and Fusion (aligning images from different modalities, time points, or
views),

* Classification (assigning biological labels to objects or image regions).

Among these, segmentation is often the pivotal first step, determining the spatial extent of bio-
logical structures for all subsequent analyses. Accuracy here underlies countless downstream
applications, from quantifying cell morphology and tissue architecture to studying nuclear
mechanics and multimodal data fusion (e.g. aligning fluorescence and electron microscopy
volumes). Despite many advances, segmentation remains challenging due to noise, blur,
heterogeneous backgrounds, and the diversity in shape and intensity profiles of biological
structures.

1.2 Historical Perspective: From Handcrafted Techniques to Deep
Learning

Segmentation in bioimaging has evolved substantially over the past decades. Early approaches
relied on handcrafted methods such as thresholding, edge detection, and region-growing. Al-
though sometimes effective, these heuristics often required extensive domain expertise and
dataset-specific tuning. The advent of classical machine learning methods—notably Random
Forest classifiers [3]—offered improvements over fully handcrafted pipelines by replacing
manual rule design with trainable classifiers. Tools like ilastik [1] popularised this paradigm:
users annotate a few pixels, and the system classifies the entire image based on engineered
features (e.g. intensity, texture, edges). While such approaches still rely on feature engineer-
ing, they enable rapid annotation and interactive semantic segmentation.

The real turning point began around 2014—2015, when GPUs and open-source frameworks
(e.g. TensorFlow, PyTorch) enabled training of deep neural networks. A defining moment for the
bioimage community was the introduction of the U-Net architecture [5], which delivered end-
to-end learning of hierarchical representations from relatively small datasets. This spurred an
explosion of deep learning-based methods, rapidly outperforming traditional segmentation
in many microscopy contexts.

Even so, the widespread heterogeneity of imaging protocols, along with limited availability of
high-quality annotations, has compelled the community to develop domain-specific adapta-
tions of deep learning, novel training strategies, and software frameworks specifically geared
toward bioimaging.

1.3 Machine Learning for Bioimage Segmentation

1.3.1 Key Neural Network Architectures in Bioimage Analysis

In modern bioimage segmentation, two main classes of deep architectures predominate: Con-
volutional Neural Networks (CNNs) and Vision Transformers (Vils). These are frequently wrapped
in an autoencoder-style encoder—decoder structure (e.g. U-Net) to handle high-dimensional
input data.
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Convolutional Neural Networks (CNNs). CNNs use learnable filters to capture local spatial
relationships in images. For bioimage segmentation, models often adopt an encoder—
decoder U-Net design [5], in which skip connections preserve high-resolution details.
Variants such as 3D U-Net handle volumetric data, and residual blocks can further refine
performance. Many tools, including PlantSeg [6], StarDist [7], and Cellpose [5], employ
CNN-based backbones, often augmented with specialised post-processing to convert
semantic predictions into instance masks.

Vision Transformers (ViTs). First popularised in natural language processing, Transformers
have gained traction in image tasks by replacing local convolutional operations with
global attention [9]. ViTs require larger datasets to learn meaningful representations,
as they lack the inherent inductive biases (such as locality and translation invariance)
characteristic of CNNs. Within bioimage analysis, domain-specific ViT models—like
USAM [10]—have begun to appear, but the scarcity of large-scale 3D or multi-channel
bioimage datasets, coupled with the computational cost of training ViTs on volumetric
data, has limited their use primarily to 2D contexts.

In practice, many modern approaches combine features from both CNNs and Transformers,
typically within an autoencoder-based framework that encodes data into a latent space and
reconstructs at full resolution. This overarching structure continues to dominate bioimage
segmentation pipelines. In my work, I primarily rely on CNN-based architectures for three
reasons: first, the inherent inductive bias of convolutions aligns with the spatial nature of
biological data and the goal of analysis tasks; second, the scarcity of large-scale, high-quality
training datasets hampers the effective use of ViTs (section 1.6); and third, the computational
demands of ViTs are often prohibitive for high-dimensional bioimaging tasks (section 5.2).

1.3.2 Learning Paradigms in Deep Bioimage Analysis

Deep learning methods can be categorised based on how they obtain supervision from data:

Supervised learning. Models are trained on annotated datasets with pixel- or voxel-level
ground truth. A canonical example is U-Net, which requires manually segmented
images for training. Tools such as ilastik, PlantSeg, StarDist, Cellpose, and pnSAM all
rely on supervised learning paradigms [4, 6-8, 10].

Self-supervised learning (SSL). Models extract training signals directly from wunlabelled
data. In bioimaging, popular SSL-based denoising methods include Noise2Noise [11],
Noisez2Self [12], and Noise2Void [13]. SSL has also gained traction in representation
learning for morphological profiling, with methods such as Cytoself [14], SubCell [15],
cellular MAEs [16], and Cell-DINO [17].

Unsupervised learning. These models uncover latent structures in unlabelled data. While
purely unsupervised segmentation rarely achieves high-precision results, SSL methods
are technically unsupervised but often evaluated against annotated ground truth. For ex-
ample, MorphoFeatures [18] extracts rich morphological descriptors in an unsupervised
manner. Some approaches like Cell-DINO [17] learn embeddings solely for exploratory
analysis, but are still framed as self-supervised in practice.
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Semi-supervised learning. A hybrid approach leveraging both labelled and unlabelled data,
where a small annotated subset steers the model while unlabelled data refine its repre-
sentations and act as regularisation.

Weakly supervised learning. This approach mitigates annotation bottlenecks by relying on
coarse or partial labels—such as bounding boxes, scribbles, or object-level tags. SPOCO
[1] exemplifies instance segmentation guided by sparse object-level annotations (chap-
ter 4).

Active learning. A human-in-the-loop (HITL) approach where the model queries the most
informative or uncertain samples for annotation. Although GoNuclear [2] does not im-
plement active querying, it does incorporate HITL workflows: segmentation errors are
reviewed externally by myself and put into auxiliary images that guide expert correc-
tions (section 2.3). This pragmatic setup reduces annotation effort while incrementally
improving performance.

Transfer learning and domain adaptation. Pretrained models from large-scale datasets (e.g.
ImageNet [19]) are fine-tuned with a small number of labelled bioimage samples. This
is especially beneficial when annotated data are scarce. For instance, Cellpose 2.0 [5]
supports user corrections for fine-tuning, and PlantSeg 2.0 plans to adopt a similar fea-
ture. In SPOCO, I systematically explored transfer learning strategies for sparse instance
segmentation (section 4.2).

Reinforcement learning (RL). Though rare in segmentation, RL has been used for tasks like
landmark detection and interactive refinement. It operates by maximising rewards with-
out explicit labels, but can be slow and unstable. Given these limitations, RL remains
niche in bioimage analysis [20].

Over the course of my PhD, I mainly relied on supervised methods—further enhanced by trans-
fer learning to accommodate heterogeneous biological experiments—and integrated weakly
supervised strategies to reduce manual labelling. While unsupervised learning does appear in
some contexts, it often needs even larger datasets to discern biologically meaningful struc-
tures without annotations. Moreover, without ground truth, it is difficult to confirm whether
a model is capturing relevant biological features or simply reflecting technical artifacts. Thus,
if a reliable set of annotations is already available, supervised methods generally offer a more
straightforward and precise path to actionable results.

1.4 Semantic, Instance, and Panoptic Segmentation
Segmentation tasks can be categorised by the granularity of object delineation:

Semantic segmentation assigns each pixel (or voxel) to a predefined class (e.g. “cell,” “back-
ground,” etc.) but does not distinguish between individual objects of the same class.
Figure 1.2 illustrates semantic segmentation of the cell surface in 3T3 mouse fibroblasts.

Instance segmentation identifies and labels each object individually (e.g. each cell or nucleus
receives a unique ID), making it essential for object counting, morphological analysis,
and cell tracking. Figure 1.1 and Figure 1.3 show instance segmentation examples in
Arabidopsis ovules and Drosophila embryos.
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Panoptic segmentation unifies semantic and instance segmentation by assigning every pixel
both a class label and, if applicable, an instance identifier. In my experience, panop-
tic segmentation is uncommon in bioimaging. Biologists typically focus on specific
structures of interest in light microscopy images, rather than exhaustively chemically
labelling or digitally annotating all object classes. Including more classes increases an-
notation burden, often requiring significant expert effort. Moreover, boundaries between
objects are frequently scale-dependent and context-specific, complicating consistent la-
beling across datasets.

Most of my research has targeted instance segmentation, where each cell, nucleus, or organelle
must be distinctly identified. While semantic models are generally simpler, many biological
questions do need to be investigated with instance-level knowledge. For example, under-
standing the morphodynamics of Arabidopsis organs or the interplay between cells and nuclei
during Drosophila embryo gastrulation.

The Challenge of Instantiation in Deep Learning. A subtle but important challenge in deep
learning-based instance segmentation is that instantiating, or explicitly separating, individual
objects is not differentiable. In purely semantic segmentation, each pixel is assigned a class
label, which integrates naturally into gradient-based optimisation. However, identifying dis-
crete object instances typically requires non-differentiable post-processing.

SPOCO [1] addresses this by learning pixel embeddings that implicitly encode object bound-
aries, enabling a “soft” notion of objecthood and fully end-to-end training, but requiring
clustering of embeddings to get instances. Cellpose [3] predicts spatial vector fields that guide
each pixel toward the centre of its corresponding object, grouping pixels via flow integration.
StarDist [7] instead predicts radial distances along fixed rays and reconstructs star-convex
polygons or polyhedra around high-confidence object centres. PlantSeg [6] predicts bound-
ary probability maps and applies graph-based partitioning algorithms to segment individual
objects.

Each of these methods sidesteps the non-differentiability of instance enumeration through
carefully designed representations and post-processing pipelines.

1.5 Challenges and Data Scarcity

Deep neural networks thrive on abundant labelled data, yet bioimaging commonly suffers
from data scarcity in crucial ways:

* Expensive Expert Input. Generating pixel- or voxel-level ground truth in 2D, 3D, or
even 4D requires substantial manual effort from domain experts—typically biologists
involved in bioimage analysis. Reliable annotation often demands specialised knowl-
edge, such as interpreting electron microscopy stacks, understanding the effects of spe-
cific chemical stains, or being familiar with cellular biology at microscopy scale, which
significantly increases both the time and cost of dataset curation.

¢ Inter-Lab Variability. Differences in sample preparation protocols, microscope configu-
rations, biological specimens, and research objectives hinder the standardisation needed
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for large-scale generalisation. While repositories like the Biolmage Archive [21] host
vast collections of imaging data, the underlying heterogeneity remains a major chal-
lenge. Even relatively large datasets—such as LiveCell [22], TissueNet [23], and Deep-
Bacs [24]—often fail to produce models that generalise to custom lab conditions. This
is evident throughout this thesis: methods like Cellpose [25], Mesmer [23], and uSAM
[10], despite being trained on diverse datasets, struggle with the real-world variability
present in the bioimages I analyse.

In my case specifically, the mismatch is even more pronounced: I primarily work with
multi-channel, volumetric data, whereas nearly all publicly available large-scale datasets
are 2D. Although tools like Cellpose and uSAM are technically capable of processing
3D inputs, their architectures and training procedures are fundamentally based on 2D
representations. Without genuine 3D training data, their performance on true volumetric
segmentation remains inherently limited.

Researchers have responded with creative training paradigms to reduce reliance on dense
labels:

¢ Self-Supervised Learning. Denoising methods (Noise2Noise [11], Noise2Self [12]) ob-
viate the need for “clean” ground truth. Morphological feature learning (Cytoself [14])
extracts useful embeddings from unlabelled data.

¢ Large Pretrained Models. CNN-based Cellpose [5] and Mesmer [23] train on sizable,
annotated datasets. Transformer-based frameworks like uSAM [10] employ prompt-
based workflows for broad generalisation.

* Weak and Sparse Labels. SPOCO [1] achieves instance segmentation with partial or
sparse annotations, reducing labeling burden.

* Transfer Learning. Models trained on one dataset are fine-tuned on another, with fewer
annotated data. This is particularly useful when data are scarce or when the target
domain differs from the source domain. I explored transfer learning strategies in SPOCO
to improve instance segmentation performance (section 4.2).

* Multi-Channel Exploitation. Combining multiple imaging channels can improve seg-
mentation accuracy. As shown in chapter 2 and chapter 5, cross-channel cues may reduce
annotation overhead by providing complementary signals.

Given the variety of imaging contexts, data scarcity will persist. A guiding theme of this thesis
is to leverage whatever data and annotations are available in the most effective way possible.

1.6 The Field of Bioimage Analysis

Although deep learning has become pervasive in biomedical research, bioimage analysis still
occupies a relatively niche position compared to more standardised subfields like medical
imaging (Figure A.6). For instance, Figure 1.5 shows that only 146 papers using the specific
term “bioimage” (or “bio-image”) appeared in 2024 on PubMed, whereas broader keywords
(e.g. “biomedical image” or “bioimaging”) yielded thousands of hits. This discrepancy arises
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partly because microscopy-based research often appears under varied terminologies depend-
ing on the biological context, and partly because the core challenges of bioimage analysis
differ significantly from those in clinical imaging.

In bioimage analysis, questions and datasets revolve around experimental, often custom, mi-
croscopy techniques applied to highly heterogeneous biological samples, from single proteins
to entire organisms. By contrast, biomedical image analysis typically addresses standardised,
regulated clinical modalities such as CT, MRI, and ultrasound. While methods can sometimes
transfer between the two domains, they rarely do so without substantial adaptations. The
heterogeneity of imaging protocols at institutes like EMBL, where each project has its own
labelling strategy or microscopy modality, further complicates the development of universally
applicable solutions.

This inherent variety also helps explain why there is no single, dominating approach to bioim-
age segmentation analogous to DeepMind’s AlphaFold in protein structure prediction. Dur-
ing a visit to EMBL Heidelberg in 2022, Sir Demis Hassabis noted that problems ripe for
large-scale deep learning typically satisfy three conditions:

1. A vast combinatorial search space,
2. A clearly defined objective function, and

3. Either an enormous annotated dataset or a high-fidelity simulator.

Although biological images are abundant, consistent pixel-level annotations are not, and the
diversity of sample preparation and imaging protocols defies a single unifying framework.
There simply is no large-scale universal simulator or database for arbitrary bioimage segmen-
tation, and the number of unique imaging contexts is enormous.

In light of these challenges, I have focused on creating robust and flexible software tools and
algorithms that can be adapted to various subdomains. This includes methods for sparse
labelling and transfer learning to reduce annotation requirements (chapter 4), multi-channel
and interactive segmentation for zero-shot scenarios (chapter 5), support for a wide range of
staining and imaging conditions (chapter 2), and extending dense segmentation approaches
toward more universal solutions (chapter 3). Such strategies embrace rather than avoid the
inherent diversity of bioimaging tasks, facilitating broader applicability across different exper-
imental setups.

1.7 Existing Segmentation Software and Limitations

1.7.1 A Spectrum of Generalisation

A range of open-source tools implement segmentation algorithms at different points on the
spectrum from specialised to general-purpose:

ilastik [1] employs Random Forests in a user-friendly, interactive setup, but it does not in-
clude large pre-trained models. It excels at rapid annotation for simpler tasks but may
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Figure 1.5: PubMed Bioimage Publication Counts (2000-Present). Counts include publications with
the keywords “bioimage” and “bio-image.” Statistics as of 23 March 2025.

struggle with complex data. Due to its “shallow” capacity, it is highly robust; however,
it saturates quickly compared to “deep” methods.

Cellpose [5] relies on a U-Net-like CNN architecture that predicts both cell probability maps
and directional flow fields from cell centers to boundaries, enabling robust instance
segmentation. It comes with pre-trained models (e.g., for cells and nuclei) and allows
user fine-tuning on new data.

StarDist [7] approximates objects with star-convex polygons (2D) or polyhedra (3D), excelling
with roundish or potato-shaped structures such as nuclei. Its strong shape constraints,
however, may limit performance on samples with irregular shapes or variable sizes.

PlantSeg [6] couples CNN-based boundary predictions with graph partitioning, making it
well-suited for 3D volumes without explicit shape constraints. It provides pre-trained
3D models and can be fine-tuned or extended as needed.

USAM [26] adapts a prompt-based “Segment Anything” approach for microscopy images.
Users provide prompts (e.g., points, boxes, or polygons) to guide the segmentation.
While it aspires to generalise across microscopy modalities, its performance often ne-
cessitates modality-specific fine-tuning, and user interaction remains crucial in many
cases.

No universal panacea has emerged. Tools typically perform best on data resembling their
training domain. The quest for broad generalisation is ongoing, often requiring complex
post-processing or user feedback.
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1.7.2 Open-Source Ecosystem and Ongoing Challenges

A notable strength of the bioimage analysis community is its culture of open-source develop-
ment. Most methods are released with code, often in Python, and pre-trained models are
increasingly common. However, many real-world issues—undocumented dependencies, label
export bugs, channel misalighments—remain absent from polished publications. Applying
these methods often requires “tinkering under the hood” to make them work in practice.

Throughout my PhD, I have:

Led the development of PlantSeg 2.0, transforming it into a user-focused, interactive
segmentation tool (section 3.2, section A.2).

¢ Created the GoNuclear project, releasing robust nuclear segmentation models for StarDist
and PlantSeg (chapter 2).

¢ Integrated Biolmage.IO support into Cellpose, PlantSeg, and StarDist (section 2.2), en-
abling FAIR model sharing and deployment.

¢ Identified and fixed critical bugs in Cellpose, Ultrack, and pytorch-3dunet (section 2.2,
subsection 5.2.2).

Each of these tools targets slightly different user bases and application domains, but none
works perfectly out of the box. The reliability and reproducibility of segmentation methods
often depend less on the algorithms themselves than on how well they are implemented,
maintained, and deployed. Iterative debugging and community-driven improvements remain
essential.

It is not always as grand or sophisticated as it appears. Cellpose would mistakenly normalise
cell signals using the nuclear channel and invert the wrong one; StarDist, despite its popular-
ity for nuclear segmentation, lacked a publicly available 3D model; Ultrack export corrupted
tracking results; pytorch-3dunet, one of the most widely used 3D U-Net implementations, in-
troduced border artefacts due to incorrect input padding; PlantSeg’s proofreading tool allowed
correcting Al errors but lacked an undo button for human mistakes; ilastik, the widely used
interactive labelling tool, would lose annotations upon reopening; and Segment Anything for
Microscopy (WSAM), a prompt-based tool, initially failed to segment anything from microscopy
images when using point prompts. This was largely because the original Segment Anything
codebase hides its training scripts. However, uSAM is now capable of segmenting with any
box prompts from nothing. To make matters worse, some bugs are not even reproducible and
require manual recovery.

It often feels chaotic: no software works exactly as advertised, and even their names can
mislead. Nevertheless, I genuinely appreciate the efforts behind these tools and have enjoyed
the years spent digging into their code. I personally identified and resolved most of the issues
mentioned above, and I hope my contributions have helped make these tools more robust and
usable for the community.

Beyond developing GoNuclear (chapter 2) and PlantSeg 2.0 (chapter 3), I have contributed
to several widely used open-source tools. My work on Cellpose, StarDist, and Biolmage.IO is
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detailed in section 2.2; my contributions to PlantSeg and magicgui in section 3.2 and section A.2;
and my fixes for Ultrack in subsection 5.2.2.

Closing Remarks. Bioimage analysis stands at the intersection of computational in-
novation and biological discovery. As this thesis will demonstrate, methodological
advances—grounded in domain knowledge and robust software—can push the limits of what
is measurable and knowable from biological images. The following chapters will explore
these developments in depth, addressing both the practical and conceptual challenges of
modern bioimage analysis.
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Chapter 2

GoNuclear: A deep learning-based toolkit for 3D nuclei
segmentation

TO-PRO-3 is a commercially available DNA-binding dye that can be directly applied to fixed
and cleared plant tissues without the need for genetic transformation. This makes it espe-
cially valuable for 3D nuclear segmentation in both model and non-model species, including
plants for which no transformation protocols exist. In contrast, genetically encoded nuclear
markers such as H2B:tdTomato offer high signal clarity but require stable transformation and
the generation of transgenic lines, limiting their applicability to a small number of species
with well-established protocols. This practical distinction has significant implications for gen-
eralisability, motivating the development of segmentation models that can handle weak, noisy
signals such as those from TO-PRO-3 staining.

Summarised in Figure 2.1, this study addresses key challenges in 3D nuclear segmentation by
integrating biological insights with technical innovations. My contributions include:

1. A high-quality 3D nuclear dataset with reliable annotations: I leveraged algorithmic
bias to guide the semi-automated annotation of a multi-channel dataset using a human-
in-the-loop (HITL) strategy. This dataset provides high-quality training data for 3D
nuclear segmentation in weakly stained tissues.

2. Open-source software tools for training and inference: I developed run-stardist [27],
a scalable and accessible software for training StarDist [7] models and performing in-
ference, enabling accessible workflows for researchers. Additionally, I co-developed
PlantSeg 2.0 (chapter 3, [25]) and enhanced CellPose [29].

3. Optimisation and benchmarking of 3D nuclear segmentation models: I systemati-
cally explored the impact of key training configurations—including object size varia-
tions, 2D /3D rotation augmentation, voxel (an)isotropy, backbone architecture changes

'The GoNuclear study published in Development [2] was co-first-authored by me (Qin Yu) and two biology-
focused collaborators, Athul Vijayan and Tejasvinee Mody. This chapter, while overlapping with that work, in-
cludes substantial unpublished content, omitting my co-authors” biological analyses and focusing on my method-
ological contributions. I did not perform wet-lab work, imaging, or morphological/biological analyses. However,
I'led the human-in-the-loop (HITL) strategy and was solely responsible for developing the software infrastructure,
training deep-learning models, and conducting model evaluations. All model predictions, segmentations, and
evaluation scores presented in the figures and tables—whether made in IATEX or adapted from the paper—are my
work. The text has been revised to accurately reflect my contributions.

15
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in StarDist, and different 3D information merging strategies in CellPose—to refine train-
ing protocols. The resulting models were quantitatively assessed under these conditions
and qualitatively benchmarked across diverse datasets and imaging modalities to iden-
tify their strengths and limitations in 3D nuclear segmentation.

4. Two widely applicable deep learning models for 3D nuclear segmentation: I provided
robust, high-accuracy models that generalise well across diverse datasets, imaging tech-
niques, and staining protocols from both plant and animal tissues. These models address
key limitations in existing tools and offer reliable solutions for 3D nuclear segmentation.

Collectively, these contributions address fundamental challenges in data availability, software
development, and model generalisation, establishing a scalable framework for accurate 3D
segmentation and bioimage analysis. Moreover, this work enables downstream analyses of
cellular and nuclear features in complex tissues, supporting advanced biological investiga-
tions such as nuclear-to-cell volume ratio quantification, spatial gene expression dynamics,
and their roles in tissue morphogenesis and organ development using platforms like Mor-
phoGraphX [30].

2.1 Introduction

2.1.1 Biological Motivation

An important practical motivation for this study stems from the need to perform nuclear seg-
mentation in plant tissues without relying on transgenic lines. TO-PRO-3 is a commercially
available DNA stain that is compatible with cleared plant samples and can be applied directly
to fixed tissues, making it accessible across a broad range of species, including those with-
out established transformation protocols. In contrast, genetically encoded nuclear markers
such as H2B:tdTomato provide strong, uniform nuclear labelling but require stable genetic
transformation and the generation of transgenic lines. These constraints limit their use to a
few model species and restrict the generalisability of segmentation tools trained exclusively
on transgenic datasets. Thus, models capable of handling weak, noisy signals—such as those
from TO-PRO-3—are essential for expanding the applicability of 3D nuclear segmentation
across diverse plant systems.

Tissue morphogenesis is a highly intricate, multi-scale process culminating in the formation
of organs or tissues with specific sizes, shapes, and characteristic 3D cellular architectures. Re-
cent advances in imaging and image processing technologies have enabled the development
of 3D digital organ models at cellular resolution, particularly from fixed and cleared tissues.
These models have proven invaluable in elucidating the feedback mechanisms between molec-
ular regulatory circuits and cellular architecture during tissue and organ development. Plants
serve as ideal systems for constructing 3D digital organs due to their immobile cells and
clearly defined cellular structures, which are readily observable using advanced microscopy
techniques.

Digital 3D models of plant organs have been instrumental in advancing our understanding
of developmental processes such as embryo, root, and ovule development [31—41]. These
models allow single-cell analyses in 3D and have yielded fundamental insights into plant
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Figure 2.1: Overview of the GoNuclear Project. (A) human-in-the-loop (HITL) Ground Truth Gen-
eration section 2.3. The noisy raw image is initially unsegmented, while the clear raw image can be
approximated using Cellpose’s nuclei model. Biology experts proofread this segmentation to create an
initial ground truth for training Cellpose, StarDist, and PlantSeg. Initial StarDist models improved upon
errors in the ground truth but remained inadequate. I identified mismatches between predictions and
targets, enabling experts to refine segmentations into gold standard ground truth, while silver ground truth
was discarded, as only false positives and over-segmentation could be corrected. (B) Systematic Eval-
uation of Training Conditions. I trained Cellpose and fine-tuned its nuclei and cyto2 models under
two configurations: (i) 2D XY slice training with 3D stitching and (ii) isotropic XY, YZ, ZX training
with flow prediction and merging. StarDist ResNet and PlantSeg were trained using (i) anisotropic
input, (ii) isotropic input with Z-axis rotation augmentation, and (iii) isotropic input with 3D rotation
augmentation. I explored multi-scale StarDist training to optimise objectness, while PlantSeg, being
boundary-based, was not trained across scales. A final comparison between StarDist ResNet and U-
Net was conducted using optimal configurations. All methods were rigorously evaluated using N-fold
cross-validation. (C) Model Generalisation and Dissemination. I trained platinum models using the best
configurations and full dataset, demonstrating robustness across diverse datasets, imaging modalities,
and staining techniques in plant and animal tissues. Final models and gold ground truth were pub-
lished on Findable, Accessible, Interoperable and Reusable (FAIR) platforms. I enhanced and extended
all the aforementioned software to enable this project. Figure created by Q. Yu.
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biology. However, a critical limitation of current 3D digital models is the absence of integrated
nuclear size and shape information within the cellular framework. Such integration is crucial
for studying biological processes like nuclear size control [412] and spatial gene expression
regulation. For instance, analyzing the nuclear-to-cell volume (N/C) ratio provides important
clues about cellular differentiation and functionality. Additionally, spatial gene expression
patterns can be assessed with cellular resolution using ratiometric nuclear reporters driven
by gene-specific promoters [13]. These insights underscore the need for robust 3D nuclear
segmentation and the ability to link nuclear architecture with surrounding cells in tissue-
specific contexts.

2.1.2 Technical Motivation

In recent years, significant advancements have been made in 3D cell segmentation using ma-
chine learning-based software such as CellPose [29], PlantSeg [6], StarDist [7], and others
[39, 44—47]. These tools, combined with platforms like MorphoGraphX [30, 48], have enabled
the creation of 3D digital organs with cellular resolution, offering powerful capabilities for
tissue-level analyses. However, these computational pipelines face limitations when applied
to challenging datasets, such as weakly stained or noisy nuclear signals commonly encoun-
tered in plant tissues.

Protocols based on the tissue-clearing reagent ClearSee have greatly facilitated tissue clear-
ing, enabling the visualization of cell walls and nuclei using cytological dyes without re-
quiring transgenic plants [49-52]. ClearSee is also compatible with fluorescent protein-based
reporters, making it an indispensable tool for imaging deeper tissues. A notable application
of ClearSee-based protocols is the development of a 3D digital reference atlas of Arabidopsis
ovule development [10], where cell walls were stained with SCRI Renaissance (SR2200) [50,

] and nuclei were labelled with TO-PRO-3 [54, 55]. Although this atlas provided detailed
insights into the ovule’s cellular architecture, it lacked integrated nuclear size and shape infor-
mation. Furthermore, nuclear segmentation using TO-PRO-3 poses challenges due to variable
staining intensity, scatter, and photobleaching in deeper tissue layers.

Existing machine learning-based segmentation tools are not readily applicable to weakly
stained plant nuclei. Pre-trained models like those in PlantSeg [6] and CellPose [29] fail to
generalise to such datasets, while 3D StarDist [7] requires training and lacks publicly available
pre-trained models. The absence of high-quality 3D ground truth datasets, essential for train-
ing robust models, exacerbates the challenge. Annotation of these datasets is labor-intensive,
even for high signal-to-noise ratio (SNR) images, creating a significant bottleneck in the work-
flow.

2.2 Developing Tools for Nuclear Segmentation

Instance segmentation of cell nuclei is a long-standing challenge in both biological and com-
puter vision research. Advances in fluorescence, microscopy, and computer science have made
imaging more accessible and creative. Yet, the ever-growing volumes and diversity of data
still require robust computational tools for processing and analysis. During my PhD, deep
learning methods have increasingly dominated the field of bioimage analysis, offering a wide
range of software choices. The choice of tool depends on imaging modality, data quality, re-
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quired analysis, and computational resources. In this section, I explain why I focused on three
specific software frameworks—StarDist, PlantSeg, and Cellpose—outline my contributions to
each, and describe the additional components I built to enable 3D nuclear segmentation in the
GoNuclear study.

Despite the range of existing packages for bioimage analysis, at the time of this study (and
likely still), no other 3D nuclear instance segmentation tools were available. Even recent large
models, such as microSAM, remain limited to 2D segmentation. The computer vision and
deep learning communities typically target natural images, which are high in signal-to-noise
ratio (SNR), multi-channel (e.g. RGB), and two-dimensional, leaving a gap for specialised 3D
instance segmentation in low-SNR biological data.

To address this shortfall, I assessed three prominent frameworks: StarDist, PlantSeg, and
Cellpose. Their respective methods, along with other relevant software, are described in
section 1.7. A core principle in scientific and engineering disciplines is to leverage existing
solutions rather than reinventing them. Therefore, I opted to adapt these tools instead of
creating entirely new methods. Each tool employs a deep learning approach based on U-Net-
like architectures but differs in its segmentation strategy:

* StarDist provides a semantic foreground probability map and models each instance as
a star-convex, “potato-shaped” object.

* Cellpose approaches segmentation as a vector field estimation problem, predicting the
direction to the nearest instance center for each pixel. Objects of a predefined size are
delineated from these vectors.

¢ PlantSeg focuses on enhancing instance boundaries, using them to partition the image
into segments.

Each framework also has both theoretical and practical limitations:

¢ StarDist struggles with irregularly shaped or heterogeneous objects of varying sizes.

* Cellpose relies on a size-based object detection mechanism and does not offer a true 3D
architecture, due to high computational demands for volumetric data.

¢ PlantSeg is tuned for dense segmentation, which complicates sparse nuclear segmenta-
tion. It tends to segment all tissue components, including cytoplasm and empty space.

Furthermore, none of these tools had been trained on data using the staining protocols
adopted in this study, rendering their existing pre-trained models unsuitable for my datasets.
However, deep learning-based methods can be retrained when annotated data are available.
Thus, my collaborators and I took on the intertwined tasks of generating adequate training
datasets and adapting or extending these software tools to meet the requirements.

section 2.3 covers how the initial training data were produced by my collaborators and how
both data and software were optimised by me for the experimental setup, while section 2.5
details the final model architecture, training strategies, and associated experiments. The re-
mainder of this section concentrates on my software engineering contributions that facilitated
the GoNuclear study and improved accessibility for the broader research community.
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2.2.1  Extending PlantSeg to Sparse Instance Segmentation

(All PlantSeg-related features discussed here are summarised in section 3.2.)

PlantSeg is a powerful platform for 3D instance segmentation, but its usability has historically
been a bottleneck, especially for researchers with limited programming experience. Even
users comfortable with coding often found it challenging to exploit all its features. My con-
tributions primarily targeted improving accessibility and user-friendliness by: developing a
graphical user interface (GUI) in Napari for interactive, real-time feedback (subsection 3.2.1);
automating inference parameter selection (subsection 3.2.3); extending proofreading tools for
segmentation corrections (subsection 3.2.4); creating modern documentation to guide new
users through the software functionalities (subsection 3.2.6).

For GoNuclear, my most critical PlantSeg extension was implementing a nuclei-guided seg-
mentation strategy (subsection 3.2.5). This involved enabling multi-channel output to support
sparse instance segmentation, a feature not previously available in PlantSeg. I also integrated
the Biolmage Model Zoo into PlantSeg (subsection 3.2.2), allowing users to run models from
different deep learning frameworks without leaving a single environment. Moreover, I ex-
perimented with combining predictions from different models; for instance, using StarDist’s
semantic foreground probability to refine PlantSeg-based segmentations. In future iterations,
BioImage.IO may provide modular post-processing capabilities, with PlantSeg acting as an
integration hub that unifies multiple segmentation pipelines and workflows.

2.2.2 Simplifying StarDist Training, Inference and Sharing

Introducing run-stardist. A key component of GoNuclear is the run-stardist package, a
configuration-based command-line interface (CLI) for training and applying StarDist models.
Although StarDist is often integrated into interactive environments like Jupyter Notebook or
graphical user interfaces (e.g. Napari and Image]J/Fiji), it initially lacked a built-in CLI.

Other tools, such as PlantSeg and Cellpose, include CLI support for training and batch
processing, which is crucial for large-scale experiments on computational clusters without
a graphical interface. To fill this gap, I developed run-stardist, allowing StarDist to be
trained and applied via the command line, and making it straightforward to deploy on high-
performance computing clusters.

Notably, StarDist (without this enhancement) has fewer than one thousand GitHub stars at
the time of writing, whereas pytorch-3dunet, which supports batch processing, has more than
twice as many. The popularity of command-line tools underscores the demand for automated
workflows and large-scale data processing. For GoNuclear, run-stardist enabled rigorous
model comparisons and systematic batch processing.

I designed run-stardist as a minimal wrapper around StarDist, taking inspiration from
pytorch-3dunet but focusing on usability. Installation requires only one conda command,
and both training and inference share a unified configuration file:

train-stardist --config CONFIG_PATH
predict-stardist --config CONFIG_PATH
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It also integrates with Weights & Biases [56] for Machine Learning Operations (MLOps), facil-
itating scalable training and seamless collaboration. Supported input formats include Tagged
Image File Format (TIFF) and Hierarchical Data Format version 5 (HDF5), covering most com-
mon uses; OME-Zarr [57] support is planned. Documentation can be found in [27].

Enabling FAIR Model Sharing. After successfully training and deploying models, it is im-
portant to share them. A principal outcome of my work in [2] was providing the first FAIR
[55] 3D StarDist model to the broader bioimage community, offering a pre-trained solution
that circumvents the need for new staining and imaging.

Biolmage.IO is emerging as a standard for sharing models in bioimage analysis, but it re-
mains technical for newcomers. To facilitate model sharing, I contributed to both StarDist and
Biolmage.IO, addressing two issues in StarDist and one in Biolmage.IO.*

2.2.3 Integrating Cellpose with BioIlmage.IO

Cellpose is among the most popular tools for bioimage instance segmentation. Although its
core models are 2D, they can be extended to 3D datasets by averaging predictions across
multiple dimensions (X, Y, and Z). While general-purpose Cellpose models struggled with
the challenging nuclear stain, the fine-tuned models I developed offer improved performance
for specific scenarios. These models serve as a convenient off-the-shelf option for researchers
who work in 2D or cannot take full advantage of the 3D “platinum” models from StarDist
and PlantSeg.

Despite Cellpose’s wide adoption, many scientists remain unaware of its existence. Biolm-
age.]O aims to function as a central repository for discovering such tools, yet Cellpose was
never included. I spearheaded the effort to integrate Cellpose into Biolmage.lO, resolving
technical issues that had previously deterred similar attempts. Although Biolmage.IO has sig-
nificant funding and an ambitious roadmap, its rapid development has led to multiple bugs
and evolving specifications, complicating model integration.

The main problems I identified in BioImage.IO, which affected Cellpose support, included:

1. The neural network specification did not allow nested iterables, whereas Cellpose out-
puts a tuple containing tensors and a list of tensors.

2. Ongoing changes to the specification resulted in inconsistent or misleading records.*

3. The verification process was cumbersome and prone to bugs, hindering reliable model
validation across multiple formats.”

4. The upload workflow was flawed, preventing new model contributions.®

>GitHub - stardist/stardist/pull /254

3GitHub - bioimage-io/spec-bioimage-io/issues/615
4GitHub - bioimage-io/spec-bioimage-io/issues/598
5GitHub - bioimage-io/core-bioimage-io-python/issues/396
8GitHub — bioimage-io/bioimageio-uploader /issues /92


https://github.com/stardist/stardist/pull/254
https://github.com/bioimage-io/spec-bioimage-io/issues/615
https://github.com/bioimage-io/spec-bioimage-io/issues/598
https://github.com/bioimage-io/core-bioimage-io-python/issues/396
https://github.com/bioimage-io/bioimageio-uploader/issues/92
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Additional complications arose from the interplay between Cellpose networks and the hard-
ware.” Nonetheless, by collaborating with the Biolmage.IO team, I resolved critical bugs and
successfully released the first Cellpose model through Biolmage.IO.

Beyond Biolmage.IO integration, I made important modifications to Cellpose itself:

1. The CPnet class (Cellpose net) did not comply with Biolmage.lO specifications; I ex-
tended its core class to standardise its output and refactored its weight-loading mecha-
o 8
nism.

2. Cellpose lacked export tools for Biolmage.IO; I developed and documented this feature,
positioning Cellpose as a long-term partner of ]3iolmage.IO.8’9

3. I fixed intensity inversion and channel normalization bugs within Cellpose.*”

4. 1 fixed the flow fields saving and improved storage efficiency for segmentation results
by 99.5%.'"*2

Through these developments, Cellpose has become more accessible and better aligned with
emerging community-driven standards for bioimage analysis, providing researchers with a
viable tool for a diverse range of segmentation tasks.

2.3 From Initial Data to High-Quality Ground Truth

This section corresponds to (A) in Figure 2.1. subsection 2.3.1 describes the starting point of
this project and how my collaborators generated the initial dataset. subsection 2.3.2 details
the iterative refinement process that I led, applying a HITL approach to improve segmentation
accuracy.

2.3.1 Initial Data

As discussed in the technical motivation of this study, a previous effort to create a digital
3D reference atlas of Arabidopsis ovules [10] did not achieve instance-level segmentation of
TO-PRO-3-labelled nuclei. This limitation arose from challenges such as inconsistent staining
intensity, signal scatter, and photobleaching in deeper tissue layers, which hindered accu-
rate nuclear segmentation. Initial attempts using PlantSeg’s pre-trained models (confocal_-
3D_unet_ovules_nuclei_dslx and lightsheet_3D_unet_root_nuclei_dslx) failed to produce
high-quality nuclear segmentations suitable for ground truth data. Consequently, Cellpose
[5, 29] was employed for 3D nuclear segmentation due to its existing nuclei model. While
Cellpose generated segmentation results, it exhibited significant errors in detecting and de-
lineating nuclear boundaries, particularly for TO-PRO-3-stained nuclei (Figure 2.2 C). These
issues were likely caused by the weak, diffuse nature of TO-PRO-3 staining and its variability,

7GitHub - bioimage-io/ collection/issues /79, bioimage-io/ collection/issues/84
8GitHub — MouseLand / cellpose/pull /988
9GitHub - MouseLand/cellpose/pull/1011

°GitHub - MouseLand/cellpose/pull/981

"GitHub - MouseLand/cellpose/pull/1103

GitHub - MouseLand /cellpose/pull/1131


https://github.com/bioimage-io/collection/issues/79
https://github.com/bioimage-io/collection/issues/84
https://github.com/MouseLand/cellpose/pull/988
https://github.com/MouseLand/cellpose/pull/1011
https://github.com/MouseLand/cellpose/pull/981
https://github.com/MouseLand/cellpose/pull/1103
https://github.com/MouseLand/cellpose/pull/1131

2.3. FROM INITIAL DATA TO HIGH-QUALITY GROUND TRUTH 23

especially in deeper tissue layers. Moreover, the absence of signal in nucleoli created artifacts,
with nuclei appearing as though their surfaces were extruded into holes (Figure 2.2 A).

To address these challenges, my collaborators employed advanced staining strategies and op-
timised sample preparation to establish a more reliable 3D ground truth dataset for model
training. A transgenic Arabidopsis line was developed expressing a translational fusion of
the fluorescent protein tdTomato to histone H2B, driven by the UBIQUITIN10 (UBQ) pro-
moter (pUBQ::H2B:tdTomato). This transgenic line provided strong, uniform nuclear labeling.
Ovules from the line were fixed, cleared, and triple-stained with TO-PRO-3 for nuclei, SR2200
for cell walls, and H2B:tdTomato for robust nuclear signals, producing three distinct imaging
channels (Figure 2.2 A, B).

The strong H2B:tdTomato signal enabled segmentation using the Cellpose nuclei model.
However, while the segmentation captured general nuclear features, it required expert proof-
reading to correct segmentation errors such as over- and under-segmentation and missed
nuclei. These errors highlighted the inherent limitations of Cellpose in generalising to weakly
stained, diffuse datasets (Figure 2.2 C). In contrast, the SR2200-labelled cell wall channel was
segmented with high accuracy using PlantSeg’s generic_confocal_3D_unet model (Figure 2.2
E), as this PlantSeg model was specifically designed for such tasks.

Although exhaustive corrections were impractical, the human-proofread nuclear segmenta-
tions from the strong H2B:tdTomato channel provided a robust basis for developing an initial
ground truth. This dataset addressed challenges associated with weak TO-PRO-3 signals and
variable nuclear features, forming the foundation for subsequent advancements in nuclear
segmentation workflows. Details of the datasets are summarised in Table 2.1 and Table 2.2
and visually depicted in Figure 2.2 A, D. For detailed information on sample preparation
and imaging, please refer to my collaborators’ sections in [2]: Plant work and transformation,
Recombinant DNA work, Clearing and staining of ovules, and Microscopy and data acquisition.

Dataset Ovule ID Stage Cell/Nucleus Count Voxel Size (xyz pm)

N1 1135 3-V 1118 0.126 x 0.126 x 0.284
N2 1136 3-IV 1487 0.127 x 0.127 x 0.284
N3 1137 3-V 1849 0.126 x 0.126 x 0.284
Ny 1139 3-1II 1536 0.126 x 0.126 x 0.279
N5 1170 2-I1 3961 0.126 x 0.126 x 0.279

Table 2.1: GoNuclear Training and Testing Datasets. Datasets represent confocal 3D z-stacks of
Arabidopsis ovules at various developmental stages. Each dataset is assigned an ID and a dataset
number for reference in model training workflows, as outlined in Table 2.3. Each dataset contains three
raw 3D volumes, referred to as ‘channels,” detailed in Table 2.2.

2.3.2 Iterative Ground Truth Generation

Using the initial ground truth—human-proofread nuclear segmentations from the strong
H2B:tdTomato reporter channel—as the target and the weak, noisy nuclei channel as input,
I trained three sets of 3D segmentation models for Cellpose, StarDist, and PlantSeg. The
goal was to identify the best-performing model for segmenting the weak TO-PRO-3-stained
nuclei and ideally conclude the project without further iterations. However, as discussed in
section 2.7, a more creative or at least strategic approach to training data selection could have
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Figure 2.2: The GoNuclear Dataset 1/2: Initial Data. (A) A weak TO-PRO-3 channel with noisy
nuclear staining. (B) A strong H2B:tdTomato channel providing clear nuclear signals. (C) Pretrained
Cellpose models, nuclei (bottom) and cyto3 (top), fail to segment nuclei accurately due to weak
staining and variable signal intensity. (D) Initial ground truth segmentations generated using Cellpose
nuclei applied to the strong H2B:tdTomato channel. Scale bars: 20 um. Figure continues.
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Raw Channel  Stain Modality Voxel Size (xyz pm)
noisy nuclei TO-PRO-3 Confocal 0.126 x 0.126 x 0.28
clear nuclei H2B:tdTomato Confocal 0.126 x 0.126 x 0.28
wall SR2200 Confocal 0.126 x 0.126 x 0.28
Label Channel Software Model Voxel Size (xyz pm)
initial nuclei Cellpose nuclei on clear 0.126 x 0.126 x 0.28
plantseg cells  PlantSeg generic_confocal_3D_unet onwall 0.126 x 0.126 x 0.28

Table 2.2: GoNuclear Initial Channels in Arabidopsis Ovule Datasets. The five datasets (N1-N5)
listed in Table 2.1 each contain three raw channels: a noisy nuclei channel with weak signals from TO-
PRO-3, a clear nuclei channel with strong signals from H2B:tdTomato, and a cell wall channel stained
with SR2200. These channels are illustrated in Figure 2.2 A, B. Nuclei and cells are segmented into
instances using respective software models: the clear nuclei channel is segmented with the nuclei
model from Cellpose, resulting in initial ground truth (Figure 2.2 D), while the cell wall channel is
segmented using the generic_confocal_3D_unet model from PlantSeg, producing highly accurate cell
instances (Figure 2.2 E).

PlantSeg

Cell Segmentation = y Ground Truth

20 20

Figure 2.2: The GoNuclear Dataset 2/2: Final Ground Truth. (E) PlantSeg segmentation of the
SR2200-labelled cell wall channel. (F) The final refined ground truth, derived from an initial StarDist
ResNet segmentation of the noisy TO-PRO-3 channel. Scale bars: 20 um.

been beneficial if further investigation had been anticipated.

Quantitative benchmarking against the initial ground truth was not meaningful, as it only
measured discrepancies between models without indicating whether they represented im-
provements. Although I conducted an evaluation, it was not used for model selection. But
the substantial mismatch between most models and the initial ground truth are obvious and
suggested that the latter was likely insufficiently accurate. Therefore, I initiated an iterative
HITL cycle to further refine the ground truth.

The next step involved selecting a model to generate segmentations for manual proofreading.
Possible improvements could be applied either to the segmentation itself or to the initial
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ground truth. The initial Cellpose models included fine-tuned nuclei and cyto2 models,
as well as models trained from scratch. The StarDist models were tested with both ResNet
and U-Net backbones, while PlantSeg and StarDist models were compared under isotropic
and anisotropic input conditions to ensure fairness with Cellpose. Notably, only Cellpose
benefited from isotropic voxel sizes in this initial training phase, as explored in section 2.5.

Recognising that my StarDist models introduced segmentation improvements, I generated
segmentations and provided them—along with auxiliary images and quantitative mismatch
reports—to my biologist collaborators for proofreading. To streamline corrections, I identified
segmentation instances that lacked 50% overlap with any instance in the initial ground truth,
organising these discrepancies into Excel files and highlighting differences visually in image
files.

Proofreading required balancing effort and accuracy, a trade-off that is difficult to quantify.
While the manually corrected StarDist segmentations were not perfect, they reduced over-
segmentation errors. StarDist, which converts semantic predictions into instance segmenta-
tions of smooth, star-convex objects, demonstrated robustness to errors in the initial ground
truth. In cases where correcting the initial StarDist segmentation required less effort than
tixing the original ground truth, I prioritised the corrected StarDist segmentations.

As a result, I discarded the re-proofread initial ground truth (the "silver ground truth") in
favour of the manually corrected StarDist segmentations, which I designated as the "gold
ground truth." This dataset served as the foundation for training final segmentation models
under various conditions.

In section 2.5, I outline the exact training process, including dataset preparation, parameter
selection, and model optimisation. Using the "gold ground truth" and the weak TO-PRO-
3-stained nuclei, I trained multiple 3D models—including those implemented in PlantSeg,
Cellpose, and StarDist—to identify the best-performing configuration.

Finally, two robust and widely applicable platinum models are proposed where all five
datasets (N1-N5) were used for training final robust models: PlantSeg_3Dnuc_platinum
and StarDist-ResNet_3Dnuc_platinum. I provide these two platinum models through the
Biolmage Model Zoo for FAIR use within different client tools of our community. For
reproducibility, I also provide the full bundle of models I trained: initial, gold, and platinum,
to be downloaded from Biostudies repository S-BIAD1026 (Table 2.4).

2.4 Quantitative Evaluation Strategy and Metrics

2.4.1 Evaluation Strategy: N-Fold Cross-Validation

n-fold cross-validation is a widely used technique in machine learning and statistics for eval-
uating model performance while making efficient use of limited data. It involves partitioning
the dataset into n equally sized subsets (or “folds”), iteratively training the model on n-1 folds
while testing on the remaining fold. This process is repeated n times, each time using a dif-
ferent fold for testing. By averaging performance across all # iterations, this method provides
a more reliable estimate of a model’s generalisation ability and reduces the risk of overfit-
ting to a specific train-test split. The approach originates from classical statistical resampling
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techniques, where it was introduced to improve model robustness by mitigating variance in-
troduced by data partitioning. Compared to simple train-test splits, n-fold cross-validation
ensures that every data point is used for both training and validation, thereby maximising the
efficiency of limited datasets.

To systematically evaluate the segmentation performance of PlantSeg, StarDist, and Cellpose
models, I employed a fivefold cross-validation strategy for both initial and gold training phases.
Each iteration involved training on three images, validating on a fourth, and testing on the
fifth. This configuration facilitated a robust assessment of segmentation quality across varying
conditions and training regimes (Table 2.3).

5-fold scoring Testing  Training 1 Training 2 Validation Training 3
Model 1 N1 N2 N3 Ny N5
Model 2 N2 N3 Ny N5 N1
Model 3 N3 N4 N5 N1 N2
Model 4 N4 N5 N1 N2 N3
Model 5 N5 N1 N2 N3 Ny

Final training  Validation Training 1 Training 2 Training 3 Training 4

Platinum model N1 N2 N3 N4 N5

Table 2.3: Fivefold Cross-Validation Training Strategy. N1-N5 represent image datasets used for
training, validation, and testing. Each fold ensures a comprehensive assessment by rotating the testing
dataset while training on the remaining samples. The final “Platinum model” is trained using all
datasets except for one held-out validation set.

This evaluation strategy ensures a rigorous assessment of model performance, mitigating
bias from any single train-test split. The final “Platinum model” was trained on all datasets
except for a dedicated validation set, serving as the ultimate benchmark for segmentation
quality. By adopting this systematic approach, I ensured the reliability and robustness of
model comparisons across different training regimes.

2.4.2 Evaluation Metrics: Average Precision and Intersection over Union

To quantitatively assess and compare model performance, I use mean Average Precision
(mAP) as the primary evaluation metric, following [59]. Given the diverse AP definitions
in the literature [60], I ensure transparency by making the evaluation code publicly available
in [27].

Intersection over Union (IoU), also known as the Jaccard index, quantifies the overlap between
a predicted mask and the corresponding ground-truth mask. It is computed as the ratio of
the intersection to the union of these masks and is expressed on a scale from o to 1. A value
of 1 indicates a perfect match at the pixel level, while 0.5 signifies that the correctly matched
pixels are equal in number to the sum of false positives and false negatives.

The precision of a segmentation result at a given IoU threshold t is defined as:

TP(t)
TP(t) + FP(t) + FN(t)’

precision(t) =
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where:

e TP(t) is the number of predicted objects correctly matching a ground-truth object with
an IoU above t,

* FP(t) is the number of predicted objects that do not correspond to any ground-truth
object,

* FN(t) is the number of ground-truth objects missing from the segmentation.

To obtain a comprehensive measure of segmentation quality, I compute the Average Precision
(AP) over a range of IoU thresholds:

M
Aptridtitm _ 1M Z precision(t;),

i=1
where M is the number of IoU thresholds, spanning from t; to tp in increments of At.

Unlike conventional AP calculations, which evaluate a single model over multiple images,
my approach evaluates five models, each tested on one image, and averages their scores.
Consequently, the mean AP (mAP) is computed as:

N
1 t1:At:t
mAP = Z1 APtiAtim
1=

where N is the total number of images and models.

For evaluation, I use two primary AP metrics:

e Detection Score: The fivefold average precision at 50% IoU, denoted as mAP>°.

¢ Instance Segmentation Score: The fivefold average precision computed over the range
{50%, 55%, . . ., 95%} IoU, denoted as mAP>%23 or simply mAP.

This approach ensures a rigorous assessment of model performance across varying levels of
segmentation quality, encompassing both object detection and instance segmentation accuracy.

2.4.3 Evaluating Model Performance Gains from HITL

To assess the impact of HITL on segmentation performance, I compared models trained with
initial versus gold datasets.

Model performance was quantified using fivefold AP scores (Table 2.5). With the experts’
decision that the gold ground truth is indeed the better ground truth, the mAP measured big
difference indicate that all segmentation methods greatly benefited from the HITL-enhanced
gold training. PlantSeg and StarDist-ResNet outperformed Cellpose-Finetune-nuclei against
the gold ground truth, demonstrating superior segmentation precision compared to their ini-
tial counterparts.
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In total, the evaluation included 15 (3 x 5) initial models and 30 (6 x 5) gold models (Table 2.4).
Performance metrics were computed for each, with mAP scores reported alongside standard
deviations. The final results (Table 2.5 and Table 2.6) provide a comparative analysis of differ-
ent segmentation strategies, illustrating the performance gains achieved through HITL effort.

For comprehensive performance quantification, detailed AP score breakdowns are available

in Table A.4.
Model name Software Algorithm Version  Count
1 PlantSeg_3Dnuc_initial PlantSeg UNet GASP Initial 5
2 StarDist-ResNet_3Dnuc_initial StarDist  ResNet Initial 5
3 Cellpose-Finetune-nuclei_3Dnuc_initial Cellpose Finetune nuclei Initial 5
4 PlantSeg_3Dnuc_gold PlantSeg  UNet GASP Gold 5
5 StarDist-ResNet_3Dnuc_gold StarDist  ResNet Gold 5
6 StarDist-UNet_3Dnuc_gold StarDist  UNet Gold 5
7 Cellpose-Finetune-nuclei_3Dnuc_gold  Cellpose  Finetune nuclei Gold 5
8 Cellpose-Cyto2_3Dnuc_gold Cellpose  Finetune cyto2 Gold 5
9 Cellpose-Scratch_3Dnuc_gold Cellpose  Train from scratch Gold 5
10 PlantSeg 3Dnuc_platinum PlantSeg UNet GASP Platinum 1
11 StarDist-ResNet_3Dnuc_platinum StarDist  ResNet Platinum 1

Table 2.4: List of Key Models. Model from each category—initial, gold, and platinum—are available
for download from the BioStudies repository (S-BIAD1026).

Tool Model Version mAP + STD (5-fold)
PlantSeg UNet GASP Initial 5740 £ 7.70
PlantSeg UNet GASP Gold 78.80 = 1.98
StarDist ResNet Initial 67.61 £ 6.50
StarDist ResNet Gold 7833+ 1.73
Cellpose Finetune nuclei Initial = 43.64 + 12.88
Cellpose Finetune nuclei Gold 51.96 + 12.51

Table 2.5: Performance comparison between initial and gold models. Mean AP values indicate
improvements in segmentation quality after HITL refinement.

Tool Model mAP + STD (5-fold)
PlantSeg UNet GASP 78.80+ 1.98
StarDist  ResNet 7833+ 1.73
StarDist ~ UNet 7825+ 1.84
Cellpose Finetune nuclei 51.96 £12.51
Cellpose  Finetune cytoz 51.05+12.93
Cellpose Trained from scratch 51.26 +13.75

Table 2.6: Performance Comparison of Gold Model Training. The test dataset was segmented using
each listed method, and the mean average precision (mAP) was recorded. All models were evaluated
against the same ‘gold ground truth’ for consistency. Training configuration files are available alongside
the model releases.
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2.5 An Empirical Study of Training Conditions

This section corresponds to (B) in Figure 2.1. To identify optimal configurations for 3D seg-
mentation of weakly stained nuclei, I systematically varied training inputs and parameters
for PlantSeg, StarDist, and Cellpose. Specifically, I examined how (i) anisotropic vs. isotropic
image resampling, (ii) rotation augmentations, (iii) dimensional “merging” in Cellpose, (iv)
StarDist object-size considerations, and (v) StarDist backbone architectures affected segmen-
tation outcomes.

Tables 2.7 and 2.8 summarise these experiments and highlight how specific training choices
influence final model performance. Through this empirical study, I identified “sweet spots”
for PlantSeg and StarDist in challenging 3D conditions, culminating in two final platinum
models that offer broad applicability. My overarching goal was to clarify each tool’s behaviour
under these circumstances, pinpoint optimal configurations for segmenting weakly stained
Arabidopsis thaliana ovule nuclei, and provide general guidelines for training robust 3D nuclear
segmentation models.

2.5.1 Isotropy, Anisotropy, and 3D Augmentation

A key question in 3D nuclear segmentation is whether resampling images to isotropic voxel
sizes or applying 3D rotation augmentation improves model performance. In this study, con-
focal stacks were acquired with anisotropic voxel spacing, where the z-axis is typically coarser
than x and y. Some methods, such as Cellpose, recommend isotropic input for stable perfor-
mance, whereas others, like PlantSeg and StarDist, can directly process anisotropic 3D data
but may still be influenced by voxel anisotropy. Moreover, while 3D rotation augmentation
might theoretically enhance orientation-invariant feature learning, it can introduce padding
artifacts. To systematically investigate these factors, I trained and evaluated models under dif-
ferent training—inference pairings (e.g., original-original vs. isotropic—isotropic) and examined
how each tool responded to voxel resampling and 3D rotation.

PlantSeg and StarDist: Isotropy and 3D Rotation. Because PlantSeg performs semantic
boundary segmentation, it is relatively insensitive to the size or shape of individual nuclei.
Training with the original anisotropic data consistently gave the highest segmentation accu-
racy (mAP ~ 79%), whereas resampling to isotropic voxel sizes reduced performance by about
10% (Table 2.7). Similarly, StarDist obtained its best results (=~ 78% mAP) when trained and
tested on anisotropic data. StarDist requires carefully setting its grid parameter to match the
typical object size to the network’s receptive field; forcing isotropic resampling adds artifacts
and disrupts this balance, lowering accuracy.

I also tested whether 3D rotation augmentation could improve generalisation in PlantSeg and
StarDist. As shown in Table 2.7, there was no performance benefit. My interpretation is
twofold: (i) at the object level, the training data already encompassed natural variability in
nuclear orientation, making explicit 3D rotation redundant; and (ii) at the voxel level, applying
3D rotation after isotropic resampling requires padded boundaries, artificially distorting local
features rather than improving model robustness. Consequently, I did not use 3D rotation
augmentation in my final gold or platinum models.
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Cellpose: Training, Isotropy, and Dimensional Merging Strategies. Unlike PlantSeg or
StarDist, Cellpose is inherently a 2D model, even when applied across multiple orthogonal
planes for 3D segmentation. Owing to its size-sensitive object detection mechanism, Cellpose
requires isotropic input so that nuclei appear at a consistent scale across slices. I explored
several strategies to determine the best way to train and apply Cellpose:

¢ 2D anisotropic slicing and stitching: Training on xy slices in their original anisotropy
and then stitching the 2D outputs into 3D; this yielded moderate performance.

¢ 2D isotropic slicing along all three axes: After resampling the volumes to isotropic
voxels, I prepared 2D slices from the xy, yz, and zx planes, which gave the best Cellpose
results.

To study these setups in detail, I trained three classes of Cellpose models: (i) fine-tuned
nuclei, (ii) fine-tuned cyto2, and (iii) models trained from scratch. Training inputs included
original anisotropic xy slices or isotropic xy, yz, and zx slices, and inference was carried out
by (i) segmenting 2D xy planes and stitching them, (ii) segmenting the raw 3D volume while
specifying anisotropy, or (iii) segmenting manually resampled isotropic 3D volumes. Prepro-
cessing volumes to isotropic voxel sizes for both training and inference raised Cellpose’s mAP
from 43.6% to 52% (Table 2.7), but accuracy still lagged behind PlantSeg and StarDist.

Notably, models fine-tuned from pre-trained weights and those trained from scratch achieved
similar performance. Although only five volumes (four for gold models) were available, the
thousands of 2D slices provided enough examples for effective training regardless of model
initialization. Nevertheless, Cellpose could not match PlantSeg and StarDist performance,
even though Cellpose was key in my initial HITL process.

Summary. These experiments show that resampling 3D data to isotropic voxel sizes is un-
necessary—and can even be detrimental—for 3D-native methods like PlantSeg and StarDist.
In contrast, Cellpose benefited from isotropic resampling but still fell short of PlantSeg and
StarDist in final accuracy. Additionally, slicing along all three axes emerged as the best prac-
tice for Cellpose training, yet the method remains fundamentally 2D. Similarly, 3D rotation
augmentation offered no improvements for PlantSeg or StarDist, reinforcing the advantage of
training with native anisotropic volumes for segmenting weakly stained nuclei. Overall, these
findings illustrate the importance of tailoring both preprocessing and augmentation strategies
to each segmentation framework.

2.5.2 Optimising Scale, Backbone, and Patch Size

StarDist and Cellpose are both sensitive to object size due to their architectural and algo-
rithmic constraints. Cellpose estimates a dynamics flow field, which depends on object size,
while StarDist represents each nucleus as a star-convex shape of relatively fixed dimensions.
In contrast, PlantSeg segments a semantic boundary class, which theoretically should be less
sensitive to object size. However, my investigation beyond the scope of this chapter suggest
that voxel size during inference can still influence PlantSeg’s performance. Unlike Cellpose,
which estimates object size dynamically during inference, StarDist does not include an ex-
plicit mechanism to adjust for varying object sizes in new inputs. Therefore, I systematically
evaluated how object size affects StarDist performance.
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Tool + Inference Condition Training Isotropy Inference Isotropy mAP + STD (%)
PlantSeg + GASP Original Original 78.80+ 1.98
PlantSeg + GASP Isotropic Isotropic 68.25+ 1.85
PlantSeg + GASP Isotropic 3D Rotation Isotropic 68.42+ 2.03
StarDist ResNet + default Original Original 7833+ 1.73
StarDist ResNet + default Isotropic Isotropic 65.79+ 0.93
StarDist ResNet + default Isotropic 3D Rotation Isotropic 62.78+ 1.61
Cellpose nuclei + 2D stitched  Original XY Planes Original XY Planes 26.80+ 4.94
Cellpose nuclei + 3D isotropy Original XY Planes Original 3D 43.64+12.18
Cellpose nuclei + 3D isotropy Isotropic XY, YZ, ZX Planes Original 3D 42.27+£10.56
Cellpose nuclei + 3D Isotropic XY, YZ, ZX Planes Isotropic 3D 51.96+12.51

Table 2.7: Model performances under isotropic vs. original voxel dimensions. Segmentation accu-
racy for PlantSeg, StarDist, and Cellpose when trained and tested on data in either native anisotropic
or resampled isotropic form. Mean AP values are reported against human-proofread ground truth.

Impact of Object Size on StarDist. StarDist segmentation accuracy is closely tied to how
well the nuclei fit within the network’s receptive field. If the nuclei are too large, segmentation
accuracy decreases due to insufficient context within the field of view. As shown in Table 2.8,
StarDist ResNet models trained and tested with input downsampled by 0.5 x 0.25 x 0.25
achieved higher mAP than those using 1 x 0.5 x 0.5. This aligns with expectations, as ob-
jects must be smaller than the field of view of StarDist’s backbone to be segmented accurately.
The U-Net backbone proved more robust when object sizes were mismatched, though the best
absolute results came from ResNet with optimal input scaling.

Backbone Selection for StarDist. StarDist offers a choice of U-Net or ResNet backbones.
My findings suggest that:

* ResNet often achieves higher mAP when nuclei size is tuned to the receptive field.

* U-Net is more robust to moderate object-size mismatches, yet it typically yields a slightly
lower ceiling on mAP.

Since I could control the approximate scale of nuclei during training and inference, I opted
for the ResNet backbone in the final “platinum” StarDist model (section 2.6).

Patch Size Considerations. Patch-based training is crucial for large volumes under limited
GPU memory. My experiments showed that so long as each patch includes entire nuclei and
enough context, StarDist and PlantSeg perform robustly. Patch size alone had less impact
than ensuring consistent object size within the network’s receptive field.

2.5.3 Performance of Gold Models

I performed both quantitative and qualitative evaluations of the resulting “gold” models.
Table 2.6, Figure 2.3, and Figure 2.4 highlight their accuracy and depict representative instance
masks.
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Tool + Inference Condition Patch Size Scale Factor mAP + STD (%)
PlantSeg + GASP 192 x 368 x 368 Original 76.96+ 2.29
PlantSeg + GASP 9% x 96 x 96 Original 78.80+ 1.98
StarDist U-Net + default 9% x 96 x 9% 05 x025x025 7825+ 1.84
StarDist U-Net + default 9% x 9%6x 9% 1 x05 x05 7579+ 0.97

StarDist ResNet + default 192 x 368 x 368 0.5 x 0.25x 0.25 77.63+ 1.69
StarDist ResNet + default 96 x 96 x 96 05 x025x0.25 7833+ 1.73
StarDist ResNet + default 192 x 368 x 368 1 x 05 x05 6732+ 1.95
StarDist ResNet + default 96 x 96 x 96 1 x 05 x05 6970+ 2.99

Table 2.8: Influence of patch size and voxel scaling on model performance. Comparing PlantSeg
and StarDist with both U-Net and ResNet backbones under various patch sizes and scale factors. mAP
scores and standard deviations are shown.

PlantSeg. PlantSeg produces a foreground prediction (a nuclear center map) and a bound-
ary prediction (a nuclear envelope map), both visuallised in Figure 2.3 C. Although PlantSeg
was designed for dense tissue segmentation, it can easily be adapted to sparsely labelled nu-
clei: The boundary prediction is segmented into superpixels by watershed algorithm and the
superpixels are grouped by Generalised Algorithm for Signed graph Partitioning (GASP) [61]
into an instance segmentation. The foreground prediction can be used in between watershed
and agglomeration steps to filter out false positives in superpixels as well as to filter out false
positives in the final instance segmentation. For further details, see subsection 3.2.5.

StarDist. StarDist-ResNet and StarDist-UNet predict a foreground probability (Fig-
ure 2.3 E,G) which is post-processed into an instance segmentation (Figure 2.3 EH). By fitting
star-convex shapes, these models produce smooth, uniform masks with excellent separation
between nuclei. Elongated nuclei may shrink slightly in the probability map and can be
under-segmented if the star representation underestimates their extent. In this project, I
found StarDist-ResNet (after adjusting grid size) provided the cleanest segmentations and
minimal merges. Minor over-segmentation or under-segmentation is still possible but easily
resolved by manual split/merge corrections.

Cellpose. Because Cellpose is fundamentally 2D, it relies on isotropic preprocessing and
a diameter parameter (default 30 for cyto2 models, 17 for nuclei). Even when fine-tuned
or trained from scratch, Cellpose performance remained lower than StarDist or PlantSeg, as
shown by Figure 2.3 B and Table 2.6. Nevertheless, it proved invaluable in jump-starting the
initial ground-truth annotations when no human-proofread dataset was available.

Summary of Gold Model Evaluations. With the exception of Cellpose, all gold models per-
formed exceptionally well on weakly stained nuclei. They avoided artifacts such as extruded
“nucleolar holes” and yielded higher mAP scores. Figure 2.4 also shows relatively small vari-
ance across the StarDist and PlantSeg cross-validations, confirming their robustness. In more
challenging data, a simple combination of smoothing and well-chosen voxel scaling often suf-
ficed to match the networks” expected size distribution. This gave a solid basis for producing
the final, broader-coverage “platinum” models (see section 2.6).
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Figure 2.3: Qualitative Comparison of Gold Model Outputs (1/2). (A-B) gold Cellpose model:
predicted flow field (blue, lower panel), semantic foreground (yellow, upper panel), and final instance
segmentation. (C-D) gold PlantSeg model: boundary probability (white) and nuclear foreground prob-
ability (gray), plus final instance segmentation. Scale bars: 20 pm.

2.6 Widely Applicable 3D Nuclear Segmentation Models

Because PlantSeg_3Dnuc_gold and StarDist-ResNet_3Dnuc_gold emerged as the top-
performing approaches, I used all five datasets (N1-N5) to train two final platinum models:
PlantSeg_3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum.  These 3D platinum
models are released via the Biolmage Model Zoo, and I provide the GoNuclear repository*3
for batch processing using either pipeline.

To confirm the broad applicability of these platinum models, I tested them on diverse, often
challenging 3D nuclear datasets (different tissues, species, and imaging modalities). These

Bhttps://github.com/kreshuklab/go-nuclear
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Figure 2.3: Qualitative Comparison of Gold Model Outputs (2/2).  (E-F) gold StarDist ResNet:
foreground probability and instance segmentation. (G-H) gold StarDist U-Net: foreground probability
and instance segmentation. U-Net prediction is slightly noisier. Scale bars: 20 pm.

included:

o Antirrhinum majus ovule nuclei (TO-PRO-3-stained, cleared),

* Arabidopsis thaliana ovule nuclei (DAPI-stained, cleared),

* Live Arabidopsis sepal nuclei expressing pATML1:mCitrine-ATML1 [62],
* Live Cardamine hirsuta leaf nuclei expressing pChCUC2g::Venus [63],

e Fixed, cleared Arabidopsis shoot apical meristem (SAM) expressing pFD:3xHA-
mCHERRY-FD [64, 65],

* A BlastoSPIM dataset of early mouse embryos (H2B-miRFP720-labelled, SPIM-imaged)
[66].
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Figure 2.4: Cellpose comparison and average precision scores for all trained models. Fivefold mAP
curves for PlantSeg (I), StarDist ResNet (J), StarDist U-Net (K), Cellpose cyto2 (L), Cellpose nuclei (M),
and Cellpose scratch (N). Shade indicates standard deviation. Figure adapted from [2] Fig. S1. Values by
Q. Yu. Layout by A. Vijayan.

Both platinum models yielded comparable, high-quality results (Figure 2.5), even though
these samples varied greatly in staining intensity, anisotropy, and resolution. Light prepro-
cessing (e.g. mild smoothing, scaling) was often sufficient to bring the data into a domain
compatible with the trained networks (Table 2.9). The nuclear segmentations provided an
excellent foundation for subsequent morphological or fluorescence quantifications.

I segmented the above-mentioned datasets using the StarDist-ResNet and PlantSeg platinum
models after image preprocessing (Table 2.9). The preprocessing was required to ensure the
datasets to be segmented matched the training datasets in nuclear size and quality. I observed
that the nuclei of all mentioned datasets could be properly 3D segmented using the proposed
models (Figure 2.5). In addition, I could 3D segment nuclei of noticeable size differences in
mature Arabidopsis leaf tissue with guard cell nuclei exhibiting a volume of 33.7 & 5.87 um?>
(mean =+ s.d.) and palisade mesophyll cell nuclei a volume of 92.7 + 13.92 um?>. Further, even
though the models were trained on cleared, high-resolution datasets, they are capable of seg-
menting nuclei from low resolution datasets as well, for example the Cardamine leaf nuclei and
mouse embryo nuclei from live samples. A precise segmentation of the pChCUC2g::Venus nu-
clear signal further allows for quantification of the number of pChCUC2g::Venus-expressing
nuclei along with signal quantification if required. The StarDist-ResNet platinum model could
also segment more taxing datasets with high variation in intensities after applying some pre-
processing. The results demonstrate the broad applicability of the platinum models in 3D
segmentation of nuclei of different tissues and species.

Overall, the PlantSeg_3Dnuc and StarDist-ResNet platinum models show consistently high
performance for 3D nuclear segmentation in diverse plant and animal datasets. By combining
improved sample preparation, a carefully assembled training set, and advanced deep learning
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Figure 2.5: Wide applicability of the StarDist-ResNet platinum model across diverse plant and
animal tissues. (A, F) Antirrhinum majus ovule nuclei stained with TO-PRO-3. (B, G) Arabidopsis thaliana
ovule nuclei stained with DAPI. (C, H) Arabidopsis sepal nuclei expressing the pATML1::mCitrine-
ATML1 reporter. (D, I) Cardamine hirsuta leaf nuclei expressing the pChCUC2g::Venus reporter. (E, ])
Mouse blastocyst nuclei expressing the H2B-miRFP720 reporter. (A-E): raw images, (F-J): segmentation
results. Insets highlight nuclear details. Scale bars: 10um (full organ views); 5um (insets). Figure
adapted from [2] Fig. 3. The sources of (A-E) are explicitly cited in section 2.6; (F-]) were contributed by Q. Yu.
Figure layout by A. Vijayan and Q. Yu.

frameworks, GoNuclear overcomes the challenges of weak or noisy staining and paves the way
for comprehensive, high-throughput analysis of nuclear structure and function.

2.7 Outlook

The GoNuclear models have demonstrated strong performance in 3D nuclear segmentation
across various biological datasets and imaging modalities. The GoNuclear GitHub repository,
including the run-stardist package, has been fully documented and has attracted community
contributions. The GoNuclear dataset will continue to be a valuable 3D training resource for
future research, and the ground truth generation approach demonstrated in this chapter serves
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Organism Organ Nuclear Stain/Fluorescence Microscopy

Arabidopsis thaliana ~ Shoot apical meristem pFD:3xHA-mCHERRY-FD  CLSM, gox 1.25NA Gly objective, cleared sample

Cardamine hirsuta ~ Leaf pChCUCa2g::Venus CLSM, 16x 0.6NA water dipping objective, live sample
Antirrhinum majus ~ Ovule TO-PRO-3 iodide CLSM, 63x 1.3NA Gly objective, cleared sample
Arabidopsis thaliana  Ovule DAPI CLSM, 63x 1.3NA Gly objective, cleared sample
Arabidopsis thaliana  Sepal pATML1:mCitrine-ATML1 ~ CLSM, 20x 1.0NA Water objective

Mouse Early embryo H2B-miRFP720 SPIM

Arabidopsis thaliana  Mature leaf 2 pUBQ::H2B:tdTomato CLSM, gox 1.25NA Gly objective, cleared sample

Raw Data Voxel Size (nm) Post-processing

0.242 x 0.242 x 0.4 Median filtering
0.498 x 0.498 x 0.5 Upsampled to 0.125 x 0.125 x 0.25

(table continues) 0.126 x 0.126 x 0.33 Downsampled to 0.25 x 0.25 x 0.33; smooth 2 x
0.063 x 0.063 x 0.27 Downsampled to 0.25 x 0.25 x 0.28; smooth 2 x
0.276 x 0.276 x 0.8 Autobright; smooth 3 x
0.208 x 0.208 x 2 Downsampled in x,y to 0.6 x 0.6 x 2
0.15 x 0.15 x 0.25 Median filtering (1 x 1 x 1)

Table 2.9: Datasets used to demonstrate broad applicability of the proposed 3D nuclear segmenta-
tion approach. Summaries of tissue/organ, label type, microscopic method, raw voxel size, and any
preprocessing needed before applying the platinum models.

as a successful example of initiating image analysis from challenging conditions. However,
several avenues for further research and development can enhance its applicability, robustness,
and usability. This section outlines key directions for future improvements and extensions.

Expanding Benchmarking and Validation The original goal of providing the GoNuclear
models was to enable morphodynamics studies for my plant biology collaborators. Fortu-
nately, these models have proven to be useful across a wide range of biological datasets and
have been published following FAIR principles. This ensures that future challenging 3D nu-
clear segmentation tasks worldwide can start from an established baseline rather than from
scratch. However, the GoNuclear models have not yet been tested on public datasets in a
quantitative manner. While they have already been validated within the plant biology com-
munity, additional benchmarking against publicly available nuclear segmentation datasets
could help convince a broader audience of their utility. For instance, evaluating GoNuclear
models on the Cell Tracking Challenge datasets [67] could provide a direct comparison against
state-of-the-art nuclear segmentation tools across diverse imaging conditions and cell types.

Improving Training Strategies Since expert proofreading was required to refine segmenta-
tion results, each training iteration was conducted as if it were the final round. Ideally, if
the initial ground truth had been sufficiently accurate—an unknown factor until model con-
vergence and testing—the project could have concluded earlier. The GoNuclear models were
always trained with the noisy, challenging nuclear channel as the sole input to ensure direct
applicability to such data. However, had I anticipated the need for an iterative HITL strategy
as illustrated in Figure 2.1 (A), I would have explored alternative input-output combinations
to enhance the gold ground truth, even if those models were not directly applicable to the
original nuclear channel.

Future improvements could explore:

* Training new nuclear segmentation models using a broader set of nuclear datasets, in-
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cluding both plant and animal samples, to enhance cross-domain generalisation.

* Experimenting with different input combinations, such as the pixel-wise sum of multiple
nuclear imaging channels alongside the gold ground truth, to improve signal robustness.

¢ Adopting a multi-channel training approach by incorporating all available imaging and
ground truth segmentation channels to leverage additional information.

¢ Conducting hyperparameter tuning and architectural search to optimise network depth,
receptive field size, and augmentation strategies.

Optimising StarDist for Large-Scale Volumes StarDist-ResNet has proven to be highly ef-
fective for 3D nuclear segmentation, but it faces challenges when applied to very large vol-
umes due to hardware (random access memory (RAM)) limitations. A potential enhancement
involves implementing an additional layer of stitching for extra-large volumes. Initially, dur-
ing the development of run-stardist, I implemented a custom stitching approach with the
assistance of Constantin Pape. However, this was later removed in favor of StarDist’s built-in
stitching, which was deemed sufficient for most cases. Revisiting this aspect could further
improve scalability for large datasets.

2.8 Conclusion

This study presents GoNuclear, a deep learning-based toolkit for 3D nuclear segmentation,
addressing key challenges in nuclear segmentation by integrating biological insights with
technical innovations. My contributions include the development of a high-quality, annotated
3D nuclear dataset using a HITL approach, open-source software tools for model training and
inference, optimisation of segmentation models through systematic benchmarking, and the
provision of robust deep-learning models applicable to diverse imaging datasets.

By leveraging existing deep-learning frameworks such as StarDist, PlantSeg, and Cellpose,
I developed workflow enhancements that extend the capabilities of these tools for weakly
stained, noisy nuclear signals. In particular, the introduction of run-stardist facilitates scal-
able training and inference of StarDist models, while modifications to PlantSeg enable its
application to sparse nuclear segmentation tasks. Additionally, integrating Cellpose with
Biolmage.IO improves model accessibility and deployment. These software contributions en-
sure that GoNuclear remains a widely applicable and easily deployable toolkit for researchers
working on 3D nuclear segmentation.

A systematic evaluation of training configurations demonstrated that model performance is
highly sensitive to voxel anisotropy, training augmentation strategies, and object-scale consid-
erations. Notably, PlantSeg and StarDist-ResNet models performed optimally when trained
with anisotropic voxel sizes, without requiring isotropic resampling or 3D rotation augmen-
tation. In contrast, Cellpose benefited from isotropic input but remained constrained by its
2D nature, leading to lower segmentation accuracy compared to the other methods. My find-
ings underscore the importance of tailoring preprocessing and training strategies to specific
segmentation frameworks to achieve the best performance.

Through iterative refinement of training data and segmentation models, I generated
two widely applicable 3D nuclear segmentation models: PlantSeg_3Dnuc_platinum and
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StarDist-ResNet_3Dnuc_platinum. These models demonstrate high generalisation capabil-
ities across various plant and animal datasets, encompassing different imaging modalities,
tissue types, and staining protocols. Their robust performance, validated through extensive
benchmarking and application to diverse biological datasets, highlights their potential for
broader use in nuclear morphometrics, spatial transcriptomics, and tissue morphogenesis
studies.

Looking ahead, future improvements could include expanding benchmarking efforts on pub-
licly available datasets, refining training strategies by integrating additional imaging modal-
ities, and optimising segmentation pipelines for large-scale volumetric imaging. Moreover,
implementing adaptive model selection and dynamic inference strategies could further en-
hance the usability and scalability of GoNuclear for high-throughput biological applications.
By providing accessible, reproducible, and scalable deep-learning models, this work lays a
foundation for advancing 3D nuclear segmentation and facilitating quantitative analyses in
complex biological systems.



Chapter 3

PlantSeg 2.0 : Powerful, User-Friendly Tissue Segmentation

3.1 Introduction

Quantitative analysis of plant morphogenesis demands precise 3D segmentation of cellu-
lar structures within complex volumetric microscopy datasets. Despite advances in imag-
ing technologies, accurately delineating individual cells in densely packed tissues remains a
formidable challenge. Traditional segmentation pipelines often struggle with balancing com-
putational efficiency, algorithmic robustness, and usability. These limitations hinder the study
of dynamic processes such as tissue growth, cell division, and mechanical interactions, where
accurate geometric and topological representations are essential.

PlantSeg 1.0 emerged as a pivotal solution, combining convolutional neural network (CNN)
with graph-based partitioning to achieve high-quality segmentations across diverse plant tis-
sues and imaging modalities. Its modular architecture allowed flexibility in boundary predic-
tion and agglomeration workflows, supported by a suite of algorithms including Multicut and
GASP. However, reliance on configuration files and limited interactivity imposed technical
barriers, particularly for researchers without computational expertise. Furthermore, manual
parameter tuning for patch-based inference and the absence of integrated proofreading tools
constrained reproducibility and scalability.

PlantSeg 2.0 addresses these challenges through a comprehensive redesign focused on usabil-
ity, performance, and extensibility. Central to this update is the integration of Napari, an
interactive visualization platform, which enables real-time parameter adjustment, multi-layer
visualization, and direct proofreading within a unified interface. The software now sup-
ports multi-channel data processing, leveraging nuclear markers via GoNuclear to enhance
cell segmentation accuracy through guided agglomeration. Integration with the Biolmage.IO
Model Zoo grants access to a growing repository of pre-trained models, ensuring compatibil-
ity with community standards and cutting-edge architectures. Underlying technical advance-
ments—including automatic patch and halo size optimization, robust metadata handling, and

t“PlantSeg 1.0” refers to the first official release, version 1.0.1, which was published alongside the paper [6].
“PlantSeg 2.0” refers to the upcoming official release of version 2.0.0, which had not yet occurred at the time
of thesis submission. “PlantSeg v1” encompasses all versions based on the configuration-file-based PlantSeg 1.0
framework, ranging from 1.0.1 to 1.4.3. “PlantSeg v2” includes all versions based on the Napari-based interactive
framework introduced in PlantSeg 1.5.0, covering versions 1.5.0 through the pre-release versions 2.0.0a (alpha)
and 2.0.0b (beta), up to the final 2.0.0 release. Versioning follows PEP 440 - Version Identification and Dependency
Specification [68].
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Export Layer

Select layer 1170_label_gold
Voxel size 100 1,00

Set Voxel Size

Select layer 1170_label_gold

Shape: (241, 763, 1672), Voxel size: (0.28, 0.13, 0.13) um, Type: segmentation, Layout: ZYX

INPUYOUtPUL! Preprocessing Segmentation Postprocessing _ Proofreading

Figure 3.1: PlantSeg 2.0 - Interactive Napari Interface. Upon opening a hierarchical file format (e.g.
HDF5 or Zarr), PlantSeg automatically detects available groups and datasets. Metadata such as voxel
size is extracted and displayed for biologically scale-aware processing. The image appears in the Napari
viewer for interactive exploration in 2D and 3D. Left: Layer list and controls. Right: PlantSeg widgets
for on-the-fly configuration; results are shown in the central viewer. Nearly all figures in this thesis are
screenshots from the PlantSeg 2.0 GUI running in Napari.

a refactored codebase—eliminate manual configuration bottlenecks while improving segmen-
tation fidelity. Enhanced documentation and tutorials further lower entry barriers, empower-
ing researchers to adopt advanced computational workflows with minimal overhead.

By bridging the gap between algorithmic sophistication and user-centric design, PlantSeg 2.0
establishes a new benchmark for accessible, scalable bioimage analysis. This chapter details
the methodological and technological innovations driving these improvements, demonstrating
their collective impact on developmental biology and broader applications in volumetric tissue
segmentation.

3.1.1  Overview of PlantSeg 2.0

This section provides a walkthrough of a typical PlantSeg 2.0 workflow using the GUI, which
can subsequently be exported into a configuration file for batch processing on distributed
systems.

Launching the Interactive PlantSeg GUI: PlantSeg’s GUI offers an interactive platform to
monitor segmentation processes, providing immediate feedback and opportunities for trial
and error. Users can visualize the output at each step, adjust parameters, and proceed accord-
ingly. However, this interactive mode requires user presence to monitor and manually execute
steps. Once the desired output is achieved, the GUI allows users to export a configuration file
that records all steps and parameters, enabling headless mode execution for subsequent runs.
To launch the GUI, execute the following command in the terminal: plantseg --napari.
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Opening an Image File: Within the GUI, users can open image files using the “Open File”
button. Supported file formats include TIFF, HDF5, and Zarr, with options for 2D or 3D
(volumetric) images containing multiple channels. Upon opening, the image is displayed in
the Napari viewer. The voxel size is extracted from the metadata of the file and stored in the
PlantSegImage object to ensure scale-aware processing. Figure 3.1 shows the initial step of
loading a dataset into PlantSeg.

Pre-processing Images for Prediction: Before running prediction models, users can enhance
image quality through pre-processing. Available operations include Gaussian smoothing,
rescaling, cropping, and image-pair manipulation. Parameters for these steps are adjustable
via GUI widgets, with results displayed in the Napari viewer for inspection.

Rescaling addresses voxel size differences between user images and model training data.
¢ Cropping removes irrelevant background regions to focus on areas of interest.
¢ Image-pair operations combine multi-channel images creatively, depending on the task.

* Gaussian smoothing enhances boundary and foreground prediction accuracy for certain
neural networks.

For instance, smoothing may refine membrane boundaries, while rescaling adapts spatial
resolutions to the model’s requirements. Experienced users can just know what to do, while
less experienced users can rely on the interactive graphical interface to explore the effects
of different preprocessing and parameters on the images. Then they can choose the best
parameters for their dataset and batch process the rest of the images once the workflow is
finalised and exported as a configuration file.

Predicting Boundaries from Images: At the core of PlantSeg lies the boundary prediction
step, where deep learning models delineate object boundaries. These boundaries serve as
input for subsequent image partitioning. While raw images can be directly used as boundary
maps if they exhibit sufficient contrast, the prediction step enhances boundary visibility or
generates auxiliary representations such as foreground probability maps.

PlantSeg supports a range of pre-trained models, including 2D- and 3D-UNets, and integrates
seamlessly with external frameworks like PyTorch and TensorFlow via compatibility with the
Biolmage Model Zoo. Additionally, PlantSeg extends its support to specialised models such
as StarDist and Cellpose, enabling diverse outputs like foreground probability maps (as in
StarDist) or flow maps (as in Cellpose). Users can select models via the prediction widget,
which automates model loading and determines optimal halo and patch shapes. Inference is
executed on user-specified hardware, and the prediction results are visualised in the Napari
viewer, allowing flexible downstream usage such as generating binary masks or instance-
specific outputs. This modular design empowers users to tailor prediction outputs to their
segmentation objectives, ensuring adaptability across various imaging modalities and sample

types.
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Segmenting Images Using Boundaries: Predicted boundaries, or any high-contrast bound-
ary images, can be transformed into instance segmentations through PlantSeg’s two-stage
process, comprising the "Boundary to Superpixels" watershed step and the "Superpixels to
Instance Segmentation" agglomeration step. The watershed algorithm [69], leveraging the
distance transform of the boundary predictions, first segments the image into superpixels.
Subsequently, an agglomeration method, such as Generalised Agglomerative Clustering of
Signed Graphs (GASP) [61], Mutex Watershed [70], or Multicut [71], merges these superpixels
into final instances. The selection of the appropriate segmentation strategy depends on dataset
characteristics, with Multicut providing globally optimal partitions and GASP offering com-
putational efficiency. By combining robust boundary detection with graph-based partitioning,
PlantSeg ensures accurate cell segmentation across diverse datasets and imaging modalities.

Postprocessing

Image  1135_raw_noisy Segmentation 1135_raw_noisy_PlantSeg_3Dnuc_platinum_1_dt_watershed_gasp
Sigma | Background label 0

Run Gaussian Smoothing Relabel Instances

Select layer 1135_raw_noisy Segmentation 1135_raw_noisy_PlantSeg_3Dnuc_platinum_1_dt_watershed_gasp
Rescale mode To model voxel size Treat 0 as instance

Reference model PlantSeg_3Dnuc_platinum Set Biggest Instance to Zero

Interpolation order ® Nearest Linear Bilinear
Segmentation 1135_raw_noisy_PlantSeg_3Dnuc_platinum_1_dt_watershed_gasp_bg0

Rescale Image Foreground 1135_raw_noisy_PlantSeg_3Dnuc_platinum_0
Threshold
Image or Label 1135_raw_noisy
Remove Objects with Low Foreground Probability
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Figure 3.2: PlantSeg 2.0 - Image Pre-processing and Post-processing. Left: Pre-processing widgets
allow users to interactively apply operations such as denoising (Gaussian blur), cropping, rescaling,
and multi-channel image combination. All operations are non-destructive and visualised in real time.
Auxiliary functions help automatically determine optimal parameters, reducing user effort. The wid-
gets are highly customisable to suit different datasets and tasks. Right: Post-processing widgets enable
segmentation refinement. Users can remove the largest instance (typically background), eliminate false
positives by filtering objects with low foreground probability, and improve semantic accuracy using
multi-channel input. These tools extend PlantSeg from dense tissue segmentation to general-purpose
instance segmentation. For example, combining nuclear and cell channels allows automatic splitting or
merging of cells based on the assumption that each contains exactly one nucleus. Manual corrections
are also supported via the proofreading tool (Figure 3.6).
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Post-processing Segmentations: After generating instance segmentations, users can refine
results through post-processing steps:

* Remove background: The “Set Biggest Instance to Zero” widget removes the largest
instance, typically representing background.

* Eliminate false positives: The “Remove Object with Low Foreground Probability” wid-
get excludes regions with low mean foreground probability.

¢ Split/merge cells using nuclei: This widget uses nuclei segmentation or probability
maps to refine cell instances, assuming each cell contains exactly one nucleus.

Post-processed segmentations are displayed in the Napari viewer for visual verification.

Proofreading Segmentations: For manual refinement of imperfect automated results, users
can employ the "Proofreading" widget. This tool supports splitting and merging instances
in 2D and 3D, with undo/redo functionality and the ability to save/load proofreading states.
Note that manual proofreading steps are not recorded in the configuration file and are specific
to individual sessions.

Exporting Results and Workflow: Once segmentation results meet user expectations, they
can be exported along with the workflow as a configuration file. This file documents all steps
and parameters used in the GUI, allowing replication of the process in headless mode for
batch processing or distributed systems.

3.2 Key Features in PlantSeg 2.0

PlantSeg 2.0 represents a substantial update to the platform, designed to improve usability,
extend functionality, and enhance compatibility with community standards. This major re-
lease features a redesigned graphical user interface for seamless interactive image processing
and introduces several important tools and improvements. I contributed to this release by
implementing the following key features:

¢ Interactive Napari Interface: I co-developed a Napari-based GUI to provide an interac-
tive platform for real-time visualization and proofreading. This integration significantly
enhances usability and user experience, enabling researchers to explore and interact with
their data efficiently.

¢ Integration with Biolmage.IO Model Zoo and Core: I enabled the use of all models
from the Biolmage.IO Model Zoo, ensuring broad compatibility with community stan-
dards and future expansion.

* Proofreading Tools: I co-developed built-in tools for efficient human correction of 3D
segmentations, enabling faster, more accessible, and accurate automated corrections.
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* GoNuclear Support: I integrated GoNuclear to utilise multi-channel data, combining
cell and nuclear information for improved segmentation results. For nuclear segmenta-
tion itself, I developed a strategy to extend PlantSeg’s capabilities from densely packed
3D volumetric images to 3D images with sparse nuclei.

e Automatic Patch and Halo Size Finders: I implemented algorithms to automatically
determine a good pair patch and halo sizes, reducing user effort and optimising com-
putational resource usage.

* Documentation Website: I developed a comprehensive online resource to assist users
in understanding and effectively applying PlantSeg’s features.

3.2.1 Interactive Napari Interface

PlantSeg 1.0 was widely recognised for its powerful segmentation capabilities, but its user
interface was limited to two options: a Python API supporting only prediction and segmenta-
tion functions, and a configuration file-based interface requiring users to manually edit YAML
files in a text editor or PlantSeg’s classic GUIL. The Tk-based GUI merely served as a configu-
ration editor without real-time image visualization, forcing users to check outputs in external
software like Fiji or Napari. This cumbersome workflow leads to slower iteration cycles and
reduced productivity. Given the trial-and-error nature of bioimage analysis, the lack of inter-
activity in PlantSeg 1.0 significantly hampered usability.

To address these limitations, PlantSeg 2.0 integrates Napari as its primary graphical interface,
providing a powerful, interactive platform for image visualization, annotation, and analysis.
I developed several widgets® and co-developed the rest, enabling real-time user interaction
with processed results.

Napari is a Python-based, open-source image viewer designed for multi-dimensional bioim-
age analysis. Positioned as a potential successor to Fiji, it benefits from Python’s dominance
in scientific computing, enabling seamless integration with libraries such as NumPy, PyTorch,
and Biolmage.IO. Built on the Qt framework, Napari offers a responsive, user-friendly graph-
ical interface with GPU-accelerated rendering and native support for n-dimensional and 3D
data. Its extensible plugin system fosters innovation by allowing developers to expand its
functionality, making it a dynamic tool for the bioimage community. As a community-driven
project with financial backing from the Chan Zuckerberg Initiative, Napari ensures long-term
sustainability through active development and user-driven improvements.

Integrating Napari with PlantSeg presented challenges, as both Napari and its backend, Qt,
are powerful yet complex tools. PlantSeg uses magicgui to create widgets that bridge Python
functionality with the Qt-Napari interface. However, not all essential Qt features are covered
by magicgui. For instance, I collaborated with the founder of Napari to contribute a separator
element3 to magicgui, improving dropdown menu organization in the Napari interface—an
enhancement that benefits all magicgui users and potentially all Napari-based app developers.

?A Napari widget is an interactive graphical component that extends Napari’s functionality by providing a user
interface for specific tasks, such as image processing, segmentation, annotation, or parameter tuning. Widgets
allow users to interact with their data through intuitive controls (e.g., sliders, buttons, dropdowns) rather than
writing code.

3GitHub pyapp-kit/magicgui - feature: Add Separator to ComboBox PR #638


https://github.com/pyapp-kit/magicgui/pull/638
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® Bioimage 10 Zoo

Figure 3.4: PlantSeg 2.0 - Biolmage Model Zoo Integration. ~Demonstration of the first Cellpose
model in the Biolmage Model Zoo on official Cellpose test data. I integrated Cellpose and Biolm-
age.JO*> and uploaded the philosophical-panda model to the z00° (see section 2.2). Top: first chan-
nel of the 2-channel raw image, followed by the 3D flow field and higher-order feature channels.
PlantSeg 2.0 can execute any model following the BioImage.lO specification and visualise its outputs.
Future Biolmage.lIO Core updates will provide direct postprocessing for Cellpose and StarDist; in the
meantime, these predictions can be used for semantic segmentation or as references for manual proof-
reading. An additional example of Biolmage.IO usage in PlantSeg appears in Figure 3.3 (A).

By leveraging Napari, PlantSeg 2.0 significantly improves interactivity and usability. Re-
searchers can explore multi-dimensional images, adjust contrast, and interact with segmenta-
tion results in real time. Napari’s layering capabilities allow users to overlay raw data, prob-
ability maps, and segmentations, while built-in editing tools, such as brushing and region
selection, enable direct manual corrections. These features streamline segmentation work-
flows, improving both efficiency and research outcomes.

Integrating Napari provides PlantSeg with a modern, high-performance visualization plat-
form that lowers technical barriers and enhances bioimage segmentation workflows. With
its interactive capabilities and growing adoption within the bioimage analysis community,
Napari positions PlantSeg as a more accessible and effective tool for scientific discovery.

4GitHub - MouseLand/cellpose/pull /988
5GitHub - MouseLand/cellpose/pull/1011
8GitHub — bioimage-io/spec-bioimage-io/pull /604


https://github.com/MouseLand/cellpose/pull/988
https://github.com/MouseLand/cellpose/pull/1011
https://github.com/bioimage-io/spec-bioimage-io/pull/604
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3.2.2 Integration of Biolmage.IO

PlantSeg 1.0 was released with a range of pre-trained models, including 2D and 3D U-Nets,
to support diverse segmentation tasks. However, the field of bioimage analysis is rapidly
evolving, with new models and architectures emerging regularly. To ensure PlantSeg remains
at the forefront of innovation and maintains compatibility with the latest advancements, I
integrated the Biolmage.IO Core and Biolmage Model Zoo into PlantSeg 2.0.

Biolmage.IO is an open-source initiative that standardises the exchange of deep learning mod-
els for bioimage analysis. It provides a unified format for packaging, sharing, and executing
models across different frameworks and platforms, bridging the gap between model devel-
opers and end-users. By adopting Biolmage.lO, PlantSeg gains access to a vast repository
of pre-trained models, enabling users to leverage cutting-edge architectures and workflows
seamlessly. This integration broadens the range of available segmentation models and allows
users to experiment with state-of-the-art approaches tailored to their specific datasets.

To integrate Biolmage.IO into PlantSeg, I implemented a streamlined interface that allows
users to directly access and import models from the repository. This required adapting
PlantSeg’s backend to accommodate Biolmage.IO’s model specification standards, including
support for ONNX and TensorFlow SavedModel formats. Additionally, I added functional-
ity for automatically downloading models and their metadata, verifying compatibility, and
configuring input/output parameters.

As a result, PlantSeg 2.0 offers a user-friendly pipeline where researchers can browse Biolm-
age.lO for relevant models and apply them to their data effortlessly. This integration enhances
the flexibility and power of PlantSeg, providing users with an expanding library of models
while ensuring ease of use.

3.2.3 Automatic Patch and Halo Shape Finders

In neural network-based bioimage segmentation, inference refers to applying a trained model
to new data in order to generate segmentation predictions. For large 3D biological sam-
ples—such as plant tissues imaged at cellular resolution—processing the entire volume in
a single pass is often impractical due to hardware memory constraints, typically limited by
the amount of VRAM available on GPUs. Although modern GPUs can have several giga-
bytes of memory, volumetric microscopy datasets can exceed these capacities by tens or even
hundreds of gigabytes. Moreover, as input data propagates through the network during in-
ference, additional intermediate representations (e.g., feature maps in CNNs) are generated,
further increasing the overall memory footprint. Consequently, the volume must be divided
into smaller patches, each processed independently. After segmenting each patch, the resulting
outputs are combined (stitched) to form the final segmentation mask for the entire volume.

A key challenge in patch-based processing arises near patch boundaries. Convolutional neural
networks typically require contextual information around each voxel for accurate predictions.
Near edges, that context is truncated, leading to boundary artifacts such as abrupt transi-
tions in the predicted intensities or labels. To mitigate these artifacts, it is common to add a
halo—an overlapping margin around the patch boundaries. This additional region provides
extra context to the network, producing smoother and more accurate predictions along patch
edges.
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Choosing appropriate patch and halo dimensions is critical. Larger patches offer more contex-
tual information but increase memory usage, potentially slowing down inference or requiring
specialised high-memory GPUs. Conversely, smaller patches reduce memory load but require
more patches to cover the volume, increasing overhead and possibly missing broader spatial
structures. Likewise, a halo that is too small fails to eliminate boundary artifacts, while an
excessively large halo duplicates computations unnecessarily.

An automatic patch and halo shape finder addresses these trade-offs by analyzing both the 3D
volume and the available hardware resources—particularly GPU memory capacity—and de-
termining shapes that maximise segmentation quality while staying within memory limits.
This automation spares users from manual parameter tuning, ensuring final segmentation
results are both accurate (via sufficient context) and practical (fitting within hardware con-
straints).

Previous Implementation in PlantSeg 1.0. Running 2D and 3D U-Nets to predict boundary
probabilities has always been at the core of PlantSeg. In PlantSeg 1.0, users were required to
specify the model, device, patch shape, and stride size for the network prediction step. The
software would then split the input volume into patches of the chosen shape, apply mirrored
padding to these patches, perform inference, and stitch the results together to produce a full-
volume segmentation.

Through my investigation, I identified two major issues with this workflow:

1. Complex Configuration: Users needed a thorough understanding of both the model
architecture and their computational environment to select suitable patch shapes and
stride sizes.

2. Flawed Padding Strategy: PlantSeg 1.0 employed a mirroring strategy at patch borders
instead of providing genuine neighboring context, which introduced tiling artifacts and
exacerbated boarder-related issues. This approach misled developers into undervaluing
the necessity of a proper halo region, leading them to omit it from the configuration in
favor of a expedient but suboptimal solution using stride parameters. Consequently, this
decision inadvertently perpetuated boundary artifacts in the resulting segmentations.

During my exploration of these artifacts, I found that the incorrect border mirroring was the
primary cause. Prior to this bug, PlantSeg 1.0 had included a halo-based design with a fixed,
albeit suboptimal, parameter determined by empirical trial and error on a particular image
set. Over time, as PlantSeg grew in popularity—its core inference package pytorch-3dunet
amassed around 1800 GitHub stars” and over 9500 Anaconda downloads®?, and PlantSeg
itself was cited by roughly 200 publications'®, the subtlety of this bug allowed it to go un-
noticed. Although such a suboptimal or technically incorrect implementation may not have
immediately undermined scientific findings, it did degrade segmentation fidelity and limited
the tool’s broader applicability. Once I fixed this bug, PlantSeg’s segmentation results became
more accurate, reliable, and suitable for a wider range of imaging data and tasks.

7GitHub Star History - wolny/pytorch-3dunet

8Anaconda.org - conda-forge/packages/pytorch-3dunet

9Anaconda.org - awolny/packages/pytorch-3dunet
°Google Scholar - Citation of [6] by 2024


https://star-history.com/#wolny/pytorch-3dunet&Date
https://anaconda.org/conda-forge/pytorch-3dunet/files
https://anaconda.org/awolny/pytorch-3dunet/files
https://scholar.google.de/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=12452808186306663145&scipsc=&as_ylo=&as_yhi=2024
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Figure 3.5: PlantSeg 2.0 - Fixing Tiling Artefacts. Both images are semantic foreground prediction of
nuclei output from the same network, but with different input padding strategies. Patch shape, stride,
and halo sizes are the same in both cases. Left: Tiling artefact caused by mirror-padding in PlantSeg v1
and pytorch-3dunet, historically mitigated by enlarging the patch size as much as hardware permitted.
Right: Halo-based padding in PlantSeg 2.0 eliminates these artefacts. The required halo (at least
half the model’s receptive field) and optimal patch size are automatically determined from the model
architecture, image dimensions, and hardware limits, ensuring accurate predictions for 2D and 3D
datasets.

Automatic Halo Shape Finder. A major new feature I introduced in PlantSeg 2.0 is the
automatic halo shape finder, which builds on the theoretical framework of Majurski et al. [74].
To guarantee artifact-free pixel classification, the halo must be at least half the network’s
receptive field. My implementation aggregates spatial contributions from each convolutional
kernel along the longest path through the network, accounting for the kernel’s stride and the
amount of downsampling and upsampling at each layer.

Let U-Net be described by a sequence of convolutional layers ¢ =0, ..., N —1, each associated
with a level 1., and let each convolution use a square kernel (k. x k¢). The level 1. is the
difference between the number of max-pooling layers and the number of up-convolution layers
encountered from the input to layer c. The required halo size for such a network can be
computed by Equation 3.1:

N-1 K
Halo = Z 2t {ZCJ (3.1)
c=0

While this equation aligns with the receptive field framework of [75], it provides a U-Net-
specific decomposition, enabling analysis of how each layer contributes to the receptive field.
In PlantSeg’s default models of classes UNet3D and UNet2D, which use a fixed kernel size of 3
for all convolutional layers'', the formula further simplifies to Equation 3.2:

"PlantSeg’s UNet models are customiable in terms of kernel size, but such customisation is not exposed in any
user interface.
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N—1

Halo = Z 2l (3-2)
c=0

This summation effectively captures the expansions and contractions (downsampling and up-
sampling) that occur along the network’s encoder-decoder pathway. Algorithm 1 demon-
strates how PlantSeg implements this halo calculation.

Algorithm 1 Compute Halo Size for U-Net

Require: unet: a U-Net model (UNet2D or UNet3D)
Ensure: halo: computed halo size (integer)
1: function CompPUuTEHALO(UnNet)

2: level < 0; halo < 0

3: for layer textbfin unet do

4 if layer is MaxPool then

5 level < level 41 > Encoder: increase depth
6: else if layer is Upsampling then

7: level < level —1 > Decoder: decrease depth
8: else if layer is Conv then

9: halo + halo + 2'¢vel x {kernel s1§e(lay er)J > Kernel size 3 in default models
10: end if
11: end for
12: return halo

13: end function

Automatic Patch Shape Finder. Another critical enhancement I made in PlantSeg 2.0 is the
automatic patch shape finder, which determines an optimal patch shape for inference based on
(1) the model architecture and the theoretical minimum halo it requires, (2) the available GPU
memory, and (3) the dimensions of the input volume. Previously, users manually configured
the patch shape, which required a nuanced understanding of the interaction between GPU
memory, network architecture, and image size. By automating this step, PlantSeg removes
both guesswork and the risk of out-of-memory (OOM) errors.

Determining memory usage for a particular input shape is nontrivial. Packages like torchinfo
[76], pytorch_memlab [77], or pytorch_modelsize [78] attempt to estimate memory usage by
executing inference with a test input. If the test input is too large, the process triggers an
OOM error. Because frameworks like PyTorch create dynamic computation graphs (whose
intermediate activation sizes depend on runtime data), this trial-and-error approach is often
the only way to gauge a model’s memory footprint without explicit analytic formulas.

PlantSeg’s solution is to probe for a maximal feasible patch shape via a series of forward
passes, stopping when the GPU memory limit is exceeded. Specifically:

¢ 3D U-Net models: A binary search is performed over a range of isotropic patch sizes of
the form (16 x 1, 16 x 1, 16 x ), with n spanning from a lower bound (e.g. 2) up to an
upper bound (e.g. 50).
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¢ 2D U-Net models: A linear, decrementing search is used for 2D patch shapes (16 x
n, 16 x n), starting from a maximum (e.g. 200) with a step size (e.g. 20) and halting once
an acceptable size that fits the GPU is found.

After finding the approximate maximum feasible patch shape, PlantSeg compares it to the
actual volume dimensions and adjusts if necessary. The function find_patch_and_halo_-
shapes ensures that if the volume is smaller than the largest feasible patch size in one or more
dimensions, it can stretch the patch to match the volume in those dimensions. Halo margins
are only applied along dimensions that truly require tiling (i.e. when the maximum possible
input size is smaller than the volume). This strategy makes full use of GPU memory without
unnecessary overhead.

Algorithm 2 outlines the logic for reconciling the maximum feasible patch size b, the full
volume size a, and the minimum required halo h into an optimal patch-halo configuration
(b’,h").

Algorithm 2 Compute Optimal Patch and Halo Shape Pair.

Require: a = (aj,ay, az)’: Shape of the full 3D sample volume.
Require: b = (by,b,,b 3)T: Maximum feasible patch shape for the hardware.
Require: h = (hq,hy, h3)": Minimum required halo size per side.
Ensure: b’ = (b}, b5,b4)T: Optimal patch shape for the sample and hardware.
Ensure: h’ = (h{,h}, h})T: Corresponding halo size per side.

1: function CompUTEPATCHHALOPAIR(a, b, h)

2 di < 1{b; > ai} > indicator 1{P} is 1 if proposition P is true, else 0.
3 hi « (1—d;) -hy > add halo only if b; < a;.
4 Ng+1'a, Np+1'b >1' = (1,1,1).
5 b’ < min(a,b) > Vi. [min(a,b)l; = min(as, by).
6:  if Ny > N, then >Np =Ny = 1'd=3
7: b’«+a h'«o.

8: else if 1'd = 2 then > Exactly two dimensions of b exceed a.
9: let (i,j, k) be a permutation of (1,2, 3)

10: let b; > a; and b; > q;

11 (bi, bj, by) + (ai, aj, [Np/(aiqj)])

12 else if 1'd = 1 then > Exactly one dimension of b exceeds a.
13: let (i,j, k) be a permutation of (1,2, 3)

14: let b; > a;

15: (bi, by, bx) « (ai, [v/Nv/ai], [Nv/ai])

16:  elseif 1'd = 0 then > Vi. by < ai; Np < Ng.
17: b’ b

18: end if

190 b'+Db'—h’ > subtract halo from the effective patch.
20: return b’, h’

21: end function

By automating both patch and halo shape selection, PlantSeg 2.0 significantly simplifies net-
work inference, removing the guesswork traditionally involved in tiling configurations. The
result is a more robust, efficient, and user-friendly segmentation pipeline that accommodates
a wide range of hardware setups and imaging datasets.
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3.2.4 Human Proofreading

Proofreading is a critical step in the segmentation workflow, enabling users to correct errors
and refine results to achieve higher accuracy. Once a segmentation is generated in PlantSeg,
it can be further improved either automatically, using post-processing steps (as detailed in
subsection 3.2.5), or manually through proofreading. Manual proofreading allows users to
directly interact with the segmentation, ensuring more precise outcomes.

PlantSeg 2.0 introduces a dedicated proofreading widget that empowers users to interactively
adjust and refine segmentations. This tool significantly enhances the quality of the final output
and, once integrated with the training/finetuning widget, will allow users to generate new
training data and fine-tune PlantSeg models using their corrections.

The proofreading widget builds upon the original tool developed for PlantSeg Tools [79]. In
this workflow, users can make corrections by drawing strokes with the brush tool in Napari in
2D. PlantSeg interprets these strokes as seeds and uses them to perform splitting and merging
operations on 2D and 3D segmentations. These adjustments are made relative to a reference
probability map or a raw image with well-defined boundaries. Specifically:

Merging: If the seeds share the same color, the corresponding objects will be merged.

Splitting: If the seeds have different colors, the corresponding objects will be split.

While the original proofreading tool was effective, users reported two key limitations: the lack
of an undo/redo function and the inability to save or load proofreading states. To address
these issues, I enhanced the widget by introducing undo/redo functionality, allowing users
to easily revert or repeat their edits. Additionally, I implemented support for saving and
loading proofreading states, enabling users to pause their work and resume later without
losing progress.

3.2.5 Nuclear Segmentation and Nuclei-Guided Cell Segmentation

The integration of cell and nucleus segmentation represents a major advancement in
PlantSeg’s capabilities, driven by the growing availability of datasets where both cells
and nuclei are stained and imaged. Accurate nuclear instance segmentation, combined
with semantic boundary segmentation from the cell channel, enables new workflows in
PlantSeg. For example, the lifted multi-cut agglomeration algorithm (accessible via the
"LiftedMultiCut" option in the "Superpixels to Instance Segmentation” widget) can improve
cell instance segmentation. Additionally, the "Split/Merge Instances by Nuclei" widget in
PlantSeg’s post-processing steps allows users to refine existing cell instance segmentation by
leveraging nuclear instance segmentation as a reference. During proofreading, users can also
cross-reference either segmentation to correct the other, enhancing accuracy.

Light microscopic images present three common scenarios for instance segmentation:

Non-touching instances separated by empty spaces: These can be handled straightfor-
wardly by thresholding the foreground prediction from neural network during
post-prediction steps.
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Figure 3.6: PlantSeg 2.0 - Interactive Proofreading Tool. An example of imperfect neural network
outputs demonstrates how PlantSeg’s proofreading widget fixes under- and over-segmentation. (A-
1) shows a raw cell-wall image, while (A-2) is its probability map with faint boundaries and low-
confidence edges that become more visible in (A-3) using different contrast settings. These uncertain
boundaries can cause both over-segmentation (imaginary boundaries splitting single cells) and under-
segmentation (merged cells). Instead of tuning or switching models, users can employ the interactive
proofreading tool (shown at the top), painting a single ID to merge instances or multiple IDs to split
them; (B-2) shows the result. (C-1)-(C-3) depict a noisy nuclear channel with boundary and foreground
predictions. The foreground map clarifies the true signal (C-3), aiding manual fixes; (D-1) and (D-2)
illustrate how referencing the foreground can reveal and correct errors that are not readily visible
in the raw image alone. These approaches provide a straightforward yet powerful way to refine 3D
segmentations in a 2D interface.

Densely packed, touching instances without gaps: PlantSeg was originally designed for this
scenario, as exemplified by the segmentation of cells in plant ovules. These cases are
challenging because instances cannot be directly obtained from the semantic foreground
mask from neural networks.
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Mixed cases with both touching and non-touching instances: These scenarios, such as nu-
clei segmentation in noisy plant tissue images, are more complex. My extensions to
PlantSeg enable it to effectively address these cases. Furthermore, accurate nuclear seg-
mentation can be used to improve the instance segmentation of cells in the same tissue.

PlantSeg’s original boundary-based approach was designed to amplify biological structure
boundaries and use graph-based algorithms for instance segmentation. This method excels
in densely packed 3D volumetric images, such as cells in plant tissues, where each cell wall
separates two adjacent cells. Background, which borders the outermost tissue boundary, is
easily identified and excluded. Predicting cell foregrounds in such scenarios would result in
a single, large connected mask for the entire tissue. Instead, PlantSeg focuses on boundary
segmentation to partition individual cells effectively.

Boundary-based segmentation becomes less effective when instances are not densely packed,
such as nuclei separated by cytoplasm or extracellular spaces. In these cases, gaps between
objects may be misclassified as part of the objects, leading to inaccurate segmentation. In
[6], PlantSeg v1 successfully segments cell instances in leaf images because the gaps between
cells are small and can be filtered out based on size. However, when segmenting nuclei, the
gaps can be larger than the nuclei themselves, rendering the previous approach ineffective. To
overcome this limitation, I introduced a dual-channel neural network output, incorporating
both a boundary channel and a foreground channel.

In the foreground channel:

* Pixels inside nuclei are predicted as foreground (value close to 1).
* Pixels on nuclear membranes are predicted as boundary (value close to 1).
* All other pixels are classified as background (value close to 0).

This foreground channel enables direct segmentation of non-touching nuclei via thresholding.
For touching nuclei, a more robust workflow involves:

1. Applying the watershed algorithm on the boundary channel to generate superpixels.
2. Filtering superpixels by their mean foreground probabilities.

3. Agglomerating the filtered superpixels into instances using algorithms like GASP.

This pipeline significantly improves robustness and enables accurate segmentation of nuclei
in 3D volumetric images, even under challenging conditions.

The dual-channel network I trained — capable of predicting boundary and foreground chan-
nels for nuclei across various biological samples imaged with diverse light microscopy tech-
niques — is fully integrated into PlantSeg. Users can run inference directly through PlantSeg’s
prediction API or Napari widget. This model was published as part of GoNuclear, detailed in
chapter 2.

To filter superpixels by their mean foreground probabilities, I developed a foreground-guided
false positive removal function, available in both PlantSeg’s Python API and Napari widget.
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This function can be applied before and/or after the agglomeration step. One critical issue it
addresses is the merging of instance superpixels with background superpixels during agglom-
eration, due to weak boundary in the raw image or in the predicted boundary segmentation.
Running this function on superpixels prior to agglomeration prevents such errors, ensuring
cleaner segmentation outputs.

By integrating cell and nucleus segmentation, PlantSeg 2.0 provides researchers with powerful
tools to analyze complex biological datasets, enabling workflows that were previously difficult
or impossible to achieve.

Figure 3.7: PlantSeg 2.0 - Sparse Instance Segmentation Using Foreground Filtering. Demonstration
of two sparse instance segmentation pipelines on a noisy nuclear channel using PlantSeg. (A-1) Raw
input with low signal-to-noise ratio; (A-2) cleaner nuclear image from the same sample (shown for
reference only, not used in processing). (B-1) Boundary prediction from A-1; (B-2) foreground pre-
diction from A-1. (C-1) Watershed on B-1, overlaid with boundary prediction; (C-2) result of filtering
C-1 using the foreground mask B-2, overlaid with B-2. (D-1) GASP agglomeration on C-1; (D-2) GASP
on C-2, both overlaid with B-1. (E-1) D-1 with the largest instance (background) removed; (E-2) D-2
with background removed. The baseline pipeline (A-1 — B-1 — C-1 — D-1 — E-1) performs instance
segmentation without foreground filtering. The enhanced pipeline (A-1 - B-1 — C-1 — C-2 — D-
2 — E-2) applies foreground filtering twice, yielding more accurate segmentation of sparse and weakly
stained nuclei.

3.2.6 Documentation

Documentation is a crucial component of any software project, serving as the bridge between
developers and users. This is particularly true for PlantSeg, where the primary users are
advanced biologists aiming to process microscopic images for scientific discoveries. Many of
these users lack formal coding experience, making accessible and well-structured documen-
tation essential. While a user-friendly and intuitive interface is important, it cannot alone
guarantee the scientific rigor and reliability that researchers require. The documentation for
PlantSeg provides clear and comprehensive guidance on installing, configuring, and effec-
tively using the tool for bioimage segmentation tasks. It ensures that users, regardless of their
technical expertise, can understand the software’s capabilities and seamlessly integrate it into
their workflows. High-quality documentation is vital for fostering user adoption, simplify-
ing troubleshooting, and encouraging community contributions. By thoroughly documenting
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PlantSeg, I empower researchers to unlock its full potential while ensuring scalability and
adaptability for future advancements.

To address the documentation needs of PlantSeg, I created a dedicated website that signifi-
cantly improved upon the incomplete repository wiki [S0]. The legacy wiki briefly described
an outdated configuration-creation interface that had been deprecated in PlantSeg v2. Recog-
nising the limitations of GitHub wikis, I decided to migrate the documentation to Jupyter
Book [81]. This migration was driven by several shortcomings of GitHub wikis, including: (1)
lack of efficient and usable search functionality, (2) inability to version control alongside the
codebase, (3) absence of responsive design for small screens, (4) lack of support for generating
Python API or Napari widget documentation from code, and (5) inability to integrate Jupyter
Notebooks. Jupyter Book addressed these challenges effectively, allowing me to provide a
more robust documentation framework.

However, as the needs of PlantSeg evolved, I decided to migrate from Jupyter Book to Mk-
Docs, specifically using the Material for MkDocs theme [52, 83]. While Jupyter Book excels in
integrating executable code blocks and computational content, these features were unneces-
sary for PlantSeg’s documentation. Instead, I prioritised a modern and aesthetically pleasing
design combined with fast and efficient static site generation. Material for MkDocs offered the
perfect balance, providing a professional appearance, advanced search capabilities, responsive
design, and robust customization options that better aligned with the documentation needs
of PlantSeg v2.

The documentation and migration processes presented challenges. For instance, automatically
capturing screenshots of the Napari widget interface was not straightforward but proved
essential for helping users relate the documentation to the software’s interface. To achieve this,
I manually adjusted Qt—the backend of Napari, a cross-platform application development
framework—with the assistance of the bioimage analysis community'.

By the time of writing, the documentation had evolved from an 11-page plain Markdown-
based wiki (21 pages were planned, but 10 remained empty) to a 31-page modern website
(with only 2 empty pages due to unfinished features in PlantSeg v2). It is version-controlled
alongside the codebase and hosted using GitHub Pages, enabled by a custom GitHub Actions
workflow for building and deployment. Users can easily navigate the documentation site,
search efficiently for relevant information, and adjust the theme, with widget screenshots dy-
namically adapting to the selected theme. Python API and Napari widget documentation are
automatically generated from the codebase, ensuring consistency and accuracy. The site also
includes detailed installation instructions, troubleshooting guides, and contribution guide-
lines, empowering users to leverage PlantSeg effectively for their research. The improved
documentation has received positive feedback from users, highlighting its clarity, organiza-
tion, and user-friendly design. By enhancing the documentation, I have contributed to mak-
ing PlantSeg more accessible, user-friendly, and reliable, ultimately supporting the scientific
community in advancing their research through bioimage analysis.

Scientific Community Image Forum - Where is url("theme_{{ id }}:/drop_down_50.svg") from Napari?
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Figure 3.8: PlantSeg 2.0 - Automated Documentation Infrastructure. Documentation for PlantSeg 2.0
is generated automatically using GitHub Actions, which also handle package builds and testing. Any
changes to the API or graphical interface are immediately propagated to the documentation site, en-

suring consistency and up-to-date guidance for users.
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3.3 Advancements Behind the Scenes

I also contributed to extensive architectural and technical improvements in PlantSeg that,
while less visible to end users, are critical to the software’s functionality, reliability, and
maintainability. The architecture of PlantSeg is now organised into three hierarchical lay-
ers: functionals, tasks, and widgets. Additionally, core PlantSeg objects, such as ModelZoo,
PlantSegImage, and VoxelSize, encapsulate data and metadata into structured and organised
forms. My specific contributions included:

* Multi-Channel and Inter-Channel Support: I led the development of multi-channel
data support and co-developed PlantSegImage, a module for managing data and meta-
data manipulations throughout user-defined workflows. This infrastructure enables the
integration of GoNuclear and supports post-prediction and post-segmentation opera-
tions, such as Lifted Multicut and automated false-positive removal, leveraging multi-
channel data.

* Voxel Size Support: I co-developed the VoxelSize class to handle voxel size informa-
tion, enhancing metadata handling. This improvement ensures segmentation results are
spatially accurate and biologically meaningful by incorporating scale-awareness into the
processing pipeline.

¢ PlantSeg Model Zoo and Biolmage.IO Model Zoo Support: As part of the core
PlantSeg modules, I designed the ModelZoo class for managing models using object-
oriented programming principles. = This work enabled streamlined and reliable
prediction and segmentation workflows, both with native PlantSeg inference and
Biolmage.IO Core inference.

¢ Automatic Halo Computation and Padding Fixes: I implemented algorithms for auto-
matic halo size computation in UNet models and resolved critical padding bugs. These
enhancements eliminated tiling artifacts and significantly improved segmentation accu-
racy across all PlantSeg models.

* Hierarchical Functional Structure: I co-developed the functional-task-widget frame-
work, enabling modular software development. This framework improved typing, log-
ging, and input/output handling, ensuring that the codebase remains maintainable,
scalable, and robust.

3.4 Outlook

At the time of writing, PlantSeg v2 is nearing completion. The release of version 2.0.0a0 marks
the successful transformation of PlantSeg into a modern, user-friendly, and powerful Napari-
based bioimage segmentation tool. With version 2.0.0bo, BioImage.IO Core and the Model Zoo
have been fully integrated, enhancing accessibility to state-of-the-art deep learning models.
The upcoming release of version 2.0.0 will introduce human-in-the-loop training capabilities,
further extending PlantSeg’s functionality. The official release and publication of PlantSeg
v2 are expected in the coming months, representing a significant milestone in the software’s
development. Moving forward, I will continue to contribute to its maintenance and further
advancements.
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Chapter 4

Domain Adaptation and Efficient Clustering: Boost-
ing Instance Segmentation Under Sparse Object-Level
Supervision

Instance segmentation is a fundamental task in computer vision, especially in biomedical
imaging, where precisely delineating similar individual objects (e.g., cells, organelles, or
anatomical structures) is crucial. Traditional instance segmentation models often require large
collections of densely annotated data, a requirement that is particularly challenging in mi-
croscopy and other biomedical contexts, where expert labels are time-consuming and expen-
sive to obtain.

To alleviate this constraint, Sparse Object-Level Supervision for Instance Segmentation with Pixel
Embeddings (SPOCO) [1] was developed. SPOCO reduces the dependency on dense annota-
tions by enabling effective learning from sparsely annotated object instances. This advantage
is especially relevant in biomedical imaging, where annotation costs can be prohibitively high
and dataset sizes are often limited.

My primary contribution to the SPOCO framework focuses on designing and implement-
ing transfer learning strategies within this sparsely supervised paradigm. Transfer learn-
ing is crucial in medical and biological imaging scenarios, where annotated samples may be
scarce, yet models must generalise effectively across diverse domains. I developed a transfer
learning framework that enables domain adaptation with minimal supervision by leverag-
ing pre-trained models, fine-tuning on sparse target-domain annotations, and incorporating
an instance-level consistency loss. Experimental results demonstrated significant improve-
ments in segmentation accuracy across multiple datasets, including both light and electron
microscopy images.

Additionally, I explored the post-processing of pixel embeddings to improve efficiency and
segmentation accuracy. My investigations focused on:

'The SPOCO study, published at CVPR 2022 [1], was co-authored by me (Qin Yu) and led by my former
colleague Adrian Wolny. This chapter, while based on that publication, includes substantial unpublished content
and focuses exclusively on my methodological contributions, omitting co-authors” parts. Specifically, I did not
originate the differentiable instance selection or the consistency loss; however, I led the transfer learning strategy
and conducted the systematic model evaluation and clustering method comparisons across diverse datasets. The
text has been revised to accurately reflect my contributions. I have also added new insights not included in the
original paper.
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¢ PCA for Embedding Dimensionality Reduction: I demonstrated that projecting 16D
pixel embeddings into a lower-dimensional PCA space (typically 4-6 principal compo-
nents) can substantially reduce clustering computational cost while maintaining or even
improving segmentation accuracy. The first few principal components encapsulate most
of the variance in the embeddings, making it possible to discard the remaining, less
informative dimensions without degrading clustering performance.

¢ Comparison of Clustering Methods: I evaluated multiple clustering approaches for
embedding-based instance segmentation, identifying trade-offs between segmentation
accuracy and computational efficiency. While Mutex Watershed is the fastest method, it
sacrifices accuracy. Mean Shift, after simple filtering, emerges as the most semantically
precise clustering method. HDBSCAN and consistency clustering offer robust results
but with higher computational costs.

¢ PCA-Projected Embeddings as Input for Instance Segmentation: By treating the three
leading PCA components as RGB channels, I explored the feasibility of using the Seg-
ment Anything Model (SAM) [54] to segment PCA-transformed embeddings instead of
applying clustering. My results indicate that SAM can achieve reasonable instance seg-
mentation from PCA-projected embeddings, particularly in cases where the objects are
well separated. However, because PCA removes spatial coherence, the occlusion-aware
advantages of high-dimensional embeddings are not fully preserved. Despite this, SAM
remains computationally efficient and a viable alternative for simpler instance segmen-
tation tasks.

My research highlights that embedding-based instance segmentation can be optimised
through both dimensionality reduction and efficient clustering methods, and the high-
dimensional embedding itself is redundant for post-processing though just enough for
model training. Moreover, PCA-transformed embeddings can serve as direct input for
instance segmentation models like SAM, offering a practical alternative for scenarios where
computational efficiency is a priority. These insights expand the versatility of SPOCO, demon-
strating its potential for large-scale biomedical image analysis while reducing annotation and
computational burdens.

4.1 Sparse Object-Level Supervision for Instance Segmentation
with Pixel Embeddings

4.1.1 Embedding-Based Instance Segmentation

Instance segmentation with pixel embeddings [55] offers a conceptually distinct approach
compared to classical proposal-based or recurrent methods. Rather than predicting instance
masks or bounding boxes directly, a neural network maps each pixel into an n-dimensional
embedding space, where pixels of the same instance cluster together, and pixels of different
instances lie farther apart. A post-processing step then clusters the pixel embeddings to re-
construct distinct instance masks in the original image space.

A core innovation in embedding-based segmentation is the introduction of discriminative losses
that encourage desired properties in the embeddings:
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¢ A variance term that pulls embeddings of the same instance closer together.

¢ A distance term that pushes embeddings of different instances apart.

¢ A regularization term that prevents uncontrolled divergence of embeddings.

These forces are typically margin-based or “hinged,” activating only when embedding dis-
tances are within a specified threshold. Unlike methods that rely on large sets of propos-
als or iterative region-refinement, embedding-based instance segmentation directly learns a
permutation-invariant representation well-suited for separating multiple objects, even when
labels are partial or weak.
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Figure 4.1: Discriminative Loss Functions. A schematic view of pixel-embedding instance segmenta-
tion. Each pixel is mapped to a point in feature space so that pixels of the same instance lie close to
each other, while embeddings of different instances are far apart. The final step clusters pixels using
a fast post-processing method. Top: input image, learned embeddings in 2D, and clustered output.
Bottom Left: pixel embeddings forming clusters in embedding space. Bottom Right: illustration of
the pull force (encouraging intra-cluster compactness) and the push force (encouraging inter-cluster
separation) up to a specified margin (dotted circles). Figure adapted from [55].

In biomedical imaging, embedding-based methods excel because: (i) fine-grained, pixel-level
annotations are often expensive to obtain; (ii) objects may appear blurred or overlapping; and
(iii) robust generalization is required despite limited training data. SPOCO leverages these
embedding-based ideas, adding additional mechanisms to cope with sparse annotations and
transfer across domains.
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PCA-projected output distance map predicted mask

Figure 4.2: Differentiable instance selection for non-spatial embedding networks.. An anchor pixel
is chosen randomly or based on the ground-truth instance. A distance map in the embedding space
from that anchor to all pixels forms a soft mask of the instance. Figure adapted from [1], originally
created by A. Wolny.
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Figure 4.3: Overview of training procedure.. Two augmented views of an input image pass through
two embedding networks f(-) and g(-). For labelled objects (blue dots), each anchor’s instance is ex-
tracted (Fig. 4.2), and an instance loss aligns the prediction with the ground truth. For unlabelled
regions (yellow triangles), pairs of corresponding instances from f(-) and g(-) must match via a consis-
tency loss. Figure adapted from [1], created by A. Wolny and Q. Yu.

4.1.2 Sparse Object-Level Supervision

SPOCO [1] addresses the high cost of dense annotations by requiring only sparse object-level
supervision. Rather than labeling every pixel, one only needs to label a small fraction of objects
in each training image. Three key ideas underlie SPOCO’s performance:

Sparse Supervision: SPOCO can learn from partial instance labels (a small subset of labelled
objects per image) in a “positive unlabelled” setting, well-suited to biomedical images
where many objects in a large field of view remain unlabelled.

Differentiable Instance Selection: Through a novel approach, SPOCO samples “anchor pix-
els” associated with labelled instances. A distance map in the embedding space then
forms a soft mask for the corresponding instance. Because this mask selection is differ-
entiable, instance-level losses can be applied end-to-end.

Consistency Loss for Unlabelled Regions: To avoid drift in unlabelled regions, SPOCO im-
poses a consistency loss that enforces similar embeddings across augmented views. Con-
sequently, unlabelled pixels help stabilise the embedding space, enhancing discrimina-
tive features.
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Figures 4.2 and 4.3 illustrate the differentiable selection procedure and the overall workflow,
respectively. These ideas allow SPOCO to achieve state-of-the-art instance segmentation re-
sults in both 2D and 3D biomedical datasets, all while reducing the need for dense, labor-
intensive annotations.

4.2 Transfer Learning in SPOCO

Within the SPOCO framework, my primary contribution focused on enhancing the transfer
learning methodology to further boost model performance and adaptability across different
datasets.

30 um s 30 pm

2D slice

v

| a

p
!

raw input embeddings segmentation ground truth

Figure 4.4: LM segmentation in standard and transfer learning settings.. Top) samples from the 3D
Ovules (left) and Stem (right) datasets; Middle) segmentation of a selected patch (A) from the source
domain; Bottom) output of the source (Ovules) network fine-tuned with 1% of instances from the target
(Stem), and the corresponding segmentation of a selected patch (B). Figure adapted from [1], originally
created by Q. Yu and A. Wolny.

4.2.1 Transfer Learning Methodology

The transfer learning strategy in SPOCO extends the model’s capabilities by fine-tuning pre-
trained models on new target domains using minimal additional training data. Key compo-
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Figure 4.5: EM segmentation in the transfer learning setting.. Top) samples from the source (VNC,
left) and target (MitoEM, right) datasets; Middle) the input image and the RGB-projected embed-
dings: trained on VNC only, VNC-pretrained + MitoEM@o.05-finetuned without embedding consis-
tency, same but with embedding consistency, trained on MitoEM only; Bottom) ground truth and
predicted segmentations. Figure adapted from [1], originally created by Q. Yu and A. Wolny.

nents include:

Source Domain Pre-training: Models are initially trained on fully annotated datasets in a
source domain, such as the Arabidopsis ovule dataset, where comprehensive ground
truth is available.

Target Domain Fine-Tuning: The pre-trained models are then adapted to new target domains
using sparse annotations. This fine-tuning leverages SPOCO’s weakly supervised frame-
work, where only a small fraction of the available target-domain objects are labelled. The
goal is to align and adapt the learned pixel embeddings from the source domain to the
target, preserving or improving segmentation quality.

Consistency Loss Integration: To stabilise training and enhance performance in the target
domain, the consistency loss is employed. This term ensures consistent pixel embed-
dings across augmented views, which is critical for accurate segmentation with sparse
annotations.
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4.2.2 Results and Impact

Incorporating transfer learning into SPOCO significantly boosted segmentation accuracy
across diverse, challenging datasets, including both light microscopy (LM) and electron
microscopy (EM):

Segmenting Cells in Light Microscopy Datasets: When transferring from the Arabidopsis
ovule dataset to the stem dataset, segmentation accuracy almost doubled with just 5%
of target-domain annotations, relative to models trained only on the source domain.

Segmenting Mitochondria in Electron Microscopy Datasets: For EM data, fine-tuning on
the MitoEM dataset with just 1% of annotated objects yielded a 1.5-fold improvement
in mean average precision (mAP) compared to models trained on the source domain
alone.

These results underscore the versatility of SPOCO’s transfer learning framework and its suit-
ability for scenarios where dense annotations are impractical.

Method AP@o.5 mAP

@o.01 0.368 & 0.022 0.247 £ 0.022
@o.01 w/0o Ly con 0.306 £ 0.014 0.210 + 0.008
@o.05 0.398 & 0.007 0.277 £ 0.006

@o.05 w/o Ly con

0.319 &£ 0.002

0.227 + 0.002

@o.10
@o.10 w/0 Ly _con

0.389 + 0.013
0.301 £ 0.012

0.268 =+ 0.007
0.212 &£ 0.007

Table 4.1: Ablation of the consistency term Ly; .o in the transfer learning setting with 1%, 5%, 10%
of ground truth objects (target domain).. Average precision for MitoEM mitochondria segmentation
is reported. The VNC dataset serves as the source domain. Mean + SD are reported across 3 random
samplings of instances from the target dataset.

Method ARand error
Stem only 0.074
Ovules only 0.227

Ovules+Stem@o.01
Ovules+Stem@o.05
Ovules+Stem@o.1
Ovules+Stem@o.4
Ovules+Stem@0.8

0.141 & 0.002
0.109 + 0.002
0.106 & 0.004
0.093 *+ 0.003
0.090 =+ 0.003

Table 4.2: Evaluation on a 3D LM dataset in a transfer learning setting. The Ovules dataset acts as
the source domain, Stem as the target.. Performance is shown as Adapted Rand Error (ARand); lower
is better. Mean £ SD are reported across 3 random samplings of instances from the target dataset.
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4.3 Efficient and Alternative Embedding Processing

As outlined in [1], one primary limitation of the original SPOCO framework is the absence of
a universal clustering algorithm capable of consistently partitioning pixel embeddings into in-
stance masks across diverse benchmarks. Multiple clustering algorithms have been proposed,
yet none emerges as a clear winner in all scenarios. In this section, I examine several clustering
methods and evaluate how dimensionality reduction, via principal component analysis (PCA),
can boost both computational efficiency and, in some cases, segmentation accuracy. I also in-
vestigate whether the Segment Anything Model (SAM) [84] can serve as a universal clustering
strategy for PCA-projected embeddings.

My experiments reveal that the 16-dimensional pixel embeddings used in SPOCO are essential
during training but become somewhat redundant for post-processing steps such as clustering.
During training, the discriminative loss encourages embeddings of the same instance to clus-
ter tightly, while forcing those of different instances apart in a high-dimensional space where
all directions are treated equally. This flexibility is necessary to accommodate the simulta-
neous forces of attraction and repulsion. In contrast, during post-processing, the embedding
space is already well-structured, and each dimension contributes little to the task of separating
instances. This structured feature space can thus be compressed into a lower-dimensional sub-
space with minimal information loss. A parallel yet fundamentally different observation was
made in [86], where the authors introduce learnable “register” tokens in Vision Transformers
(ViTs) to provide explicit computational storage. In both cases, redundancy in representational
space is repurposed for computational utility, albeit in different architectural contexts.

4.3.1 Clustering Methods for Pixel Embeddings

Numerous clustering methods have been proposed to convert dense pixel embeddings into
instance masks. Each method offers its own balance of segmentation quality, computational
overhead, and robustness.

HDBSCAN. A hierarchical density-based algorithm that detects clusters by examining local
density variations. This approach is suitable for crowded or overlapping objects because it
can adapt to different instance sizes and filter out noise points. However, its high computa-
tional cost can be prohibitive for large datasets, and parameter tuning (min_size, etc.) can be
challenging.

Mean Shift. Mean Shift is a mode-seeking algorithm that moves each pixel embedding to-
ward the nearest local density peak, grouping pixel embeddings into coherent clusters. How-
ever, for embeddings with lower quality, it can over-segment near object boundaries and is
computationally expensive relative to density-based approaches like HDBSCAN.

Consistency Clustering. Consistency clustering augments Mean Shift by requiring that sta-
ble regions be consistent between multiple augmented embeddings. By validating cluster
assignments across pairs of transformations, it reduces over-segmentation but increases com-
putational time.
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Affinity-Based Clustering (Mutex Watershed). This graph-partitioning method models
pixel relationships through an affinity graph, incorporating both short- and long-range
connections. Mutex Watershed runs much faster (often thousands of times faster) than
HDBSCAN or Mean Shift, although its segmentation quality is slightly lower in weakly
supervised settings.

Since no single method prevails in all benchmarks, selecting a clustering approach depends
on the trade-off between computational speed and segmentation precision.

4.3.2 Embedding Dimensionality Reduction

SPOCO produces 16-dimensional pixel embeddings, which can be expensive to cluster, espe-
cially for large datasets. Dimensionality reduction can substantially cut computational costs.
However, it must preserve the essential features for distinguishing instances. Here, I explore
PCA to maintain segmentation accuracy while reducing dimensionality.

PCA for Dimensionality Reduction. Principal component analysis (PCA) is a well-
established technique for reducing the dimensionality of high-dimensional data while
preserving most of its variance. It performs a linear transformation that reorients the original
embedding space along orthogonal axes of maximal variance, known as principal components.
Actual dimensionality reduction occurs only when a subset of these components is retained.
Although many alternative dimensionality reduction methods exist, PCA strikes a particu-
larly effective balance between simplicity, computational efficiency, and a non-destructive
transformation, making it especially suitable for the aims of this study.

To apply PCA to the SPOCO embeddings, one projects the original 16-dimensional embed-
ding vectors into a new 16-dimensional space of principal components. Selecting the first
N components, which capture the most variance, effectively “projects” embeddings into a
lower-dimensional subspace. If N is chosen so as to retain sufficient discriminative informa-
tion, segmentation remains accurate while the computational cost decreases. Identifying an
optimal N involves balancing these two objectives.

For visualisation, embeddings were always PCA-projected into three dimensions and repre-
sented as RGB images in the SPOCO paper. This technique proved so intuitive and effective
that it was frequently cited independently of the main segmentation method. As shown in
Figure 4.4 and Figure 4.5, PCA-projected embeddings provide valuable insights into the clus-
tering of pixel embeddings and their role in instance segmentation. More intriguingly, these
3D PCA-projected embeddings often resemble segmentation masks, which led me to investi-
gate whether they could be directly utilised for instance segmentation.

Hypothesis and Potential Applications. I hypothesised that the 16-dimensional pixel em-
beddings are somewhat redundant, which can be transformed into a smaller subset of crucial
dimensions for instance separation. By applying PCA, these key features could be distilled
into the leading principal components. In principle, focusing on the first few principal com-
ponents might not only reduce computational cost but also remove noise, improving cluster-
ing robustness. Moreover, if the 3D PCA-projected embeddings retain enough discriminative
structure, they could be fed directly into instance segmentation modules that takes RGB input,
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for instance, SAM or other classical algorithms.

4.3.3 Application to the CVPPP Dataset

To test these ideas, I applied PCA-based dimensionality reduction to the CVPPP dataset,
known for plant images with overlapping leaves (Figure 4.6 and Figure 4.7). In the original
SPOCO workflow, clustering was done only on the full 16-dimensional embeddings. My ex-
periments address whether compressing these embeddings into fewer principal components
can preserve or even improve segmentation quality while markedly accelerating clustering.
Results confirm the trade-offs between dimensionality reduction and segmentation perfor-
mance, showcasing the potential of PCA-based embeddings as a more lightweight yet accurate
alternative for instance segmentation.

Raw Image Instance Masks Raw Image Instance Masks
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Figure 4.6: CVPPP Training Dataset. Left to right: raw RGB photo of plant #147 in the CVPPP
dataset, the corresponding instance masks, raw RGB photo of plant #149 in the CVPPP dataset, the
corresponding instance masks. In plant 147, the occluded leaf on the left (only a narrow portion is
visible) is carefully annotated as a separate instance, whereas some smaller leaves in the centre are
combined into a single instance. In plant 149, the bottom occluded leaf is annotated as a separate
instance, but the middle leaf is merged, and smaller instances are annotated separately.
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Figure 4.7: CVPPP Testing Dataset and SPOCO Embeddings. Left to right: raw RGB photo of
plant #93 in CVPPP, the corresponding binary foreground (semantic) mask, the RGB PCA-projected
embeddings from the SPOCO@o.1 model, and the RGB PCA-projected embeddings from the fully
supervised SPOCO model. The test dataset does not provide instance masks.

The key difference between the N dimensions of pixel embeddings and the N dimensions of
principal components lies in their roles and transformations. Pixel embeddings are directly
influenced by the discriminative loss during training, meaning that they are actively pulled
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Figure 4.8: Clustered CVPPP Pixel Embeddings by Method. Segmentation (instance masks) of plant
#93 from the CVPPP test set, obtained using SAM, consistency clustering, mean shift, HDBSCAN, and
Mutex Watershed. The first row shows results for the fully supervised SPOCO model; the second row
shows results from SPOCO trained with only 10% of the instance masks. Clusters are filtered by size
and other shape-based heuristics.

closer within instances and pushed apart between different instances in the high-dimensional
embedding space. This process structures the embedding space in a way that ensures spa-
tial relationships between pixels correspond to instance identities, but it does not necessarily
compress the data—each dimension remains equally informative for clustering.

In contrast, principal components are statistical transformations of the original embedding
space that capture the directions of maximal variance. Instead of being learned to optimise in-
stance discrimination, PCA identifies the most important axes of variation within the dataset,
compressing the feature representation by aligning embeddings with these dominant variance
directions. As shown in Figure 4.9, the signal-to-noise ratio across the original embedding di-
mensions is relatively uniform, meaning that each dimension contributes equally to defining
instance relationships. However, Figure 4.10 reveals that the signal-to-noise ratio in the prin-
cipal components is not uniform—variance is concentrated in the first few components, while
later components contain increasingly less informative details.

This observation led me to hypothesise that only a small subset of principal compo-
nents—specifically, the first 4—6—would be necessary to retain the key instance-discriminative
information required for clustering. By discarding the remaining components, it should
be possible to substantially reduce computational costs without sacrificing segmentation
accuracy. This hypothesis was qualitatively validated in Figure 4.11 and Figure 4.12, where
clustering results using reduced PCA embeddings closely matched those obtained with the
full 16-dimensional pixel embeddings. Quantitative evidence can be found in the next section.
This finding suggests that PCA can serve as an effective dimensionality reduction tool for
embedding-based instance segmentation, making clustering more efficient while preserving
accuracy.

Furthermore, this insight motivated an exploration of using PCA-projected embeddings as
input for instance segmentation models like SAM. Since PCA reduces dimensionality while
preserving instance structure, treating the first three principal components as pseudo-RGB
channels for SAM segmentation is a logical extension. However, as discussed in subsec-
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tion 4.4.4, PCA projection removes spatial coherence to some extent, limiting SAM’s ability
to fully leverage the occlusion-aware advantages of embedding-based segmentation. Nev-
ertheless, SAM remains computationally efficient and offers a complementary approach to
clustering methods like Mutex Watershed when working with PCA-transformed embeddings.

These experiments suggest that substituting the original 16D embeddings with a smaller num-
ber of PCA components is a viable strategy for large-scale or time-sensitive applications. In
principle, one could also treat the 3D PCA-projected embeddings like ordinary RGB channels
and feed them into another segmentation model (e.g., SAM), though the inherent spatial co-
herence of the original high-dimensional embeddings is partially lost. I return to this point in
Section 4.4.4.

4.4 Benchmarking and Comparative Analysis of Embedding Pro-
cessing

This section compares various clustering algorithms for SPOCO embeddings, focusing on
both computational efficiency and segmentation accuracy. I further assess whether PCA can
compress 16D embeddings without degrading results. Lastly, I compare embedding-based
clustering approaches with the Segment Anything Model (SAM) [84], highlighting trade-offs
between speed and accuracy.

4.4.1 Computational Efficiency Assessment

The standard SPOCO pipeline clusters 16-dimensional embeddings to derive instance masks,
but clustering in high-dimensional spaces can be computationally heavy. To mitigate this, I
applied PCA to reduce dimensionality before clustering, then measured runtime with four
clustering algorithms under different numbers of principal components.

Figure 4.15 confirms that runtime grows with embedding dimensionality for all methods,
especially for HDBSCAN, mean shift, and consistency clustering. Mutex Watershed remains
faster, though it yields coarser segmentation. Crucially, using only four or five principal
components significantly cuts runtime with little or no accuracy loss.

Additionally, I tested SAM on GPU. SAM took only a few seconds per image, faster than most
clustering methods except Mutex Watershed. However, as shown later, SAM’s segmentation
accuracy also falls between that of Mutex Watershed (fastest but less accurate) and the more
computationally demanding clustering methods.

4.4.2 Evaluation Metrics and Strategies

The CVPPP dataset provides raw RGB images, instance masks, and semantic masks in the
training set, while the test set includes only raw RGB images and semantic masks. To evaluate
the segmentation accuracy of clustering methods, I use the Symmetric Best Dice (SBD) metric.
Since the best-performing SPOCO models—those trained on all available training data—are
used for evaluation, there is no instance mask as ground truth for direct comparison.
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Although quantitative scores are commonly reported in publications for rigour, they can some-
times obscure the actual understanding of methods and results. This is because no ground
truth annotation is perfectly accurate for precise benchmarking. While it is useful to approxi-
mate how well a method aligns with the available annotations, the absolute difference between
a segmentation and a given ground truth becomes less informative when both are close to the
actual biological truth. Errors in annotation, segmentation, and evaluation contribute to dis-
crepancies that may not necessarily reflect meaningful differences. Figure 4.6 illustrates this
point: while the official ground truth instance masks accurately classify pixels as belonging to
leaves, they often fail to correctly distinguish between individual leaf instances.

To ensure a meaningful evaluation, I compare the clustered embeddings, or instance segmen-
tations, against the ground truth semantic masks. This approach allows assessment of how
well the segmentation captures leaf regions, which is sufficient for the scientific discussion in
this section.

For the comparison with SAM segmentation, instead of evaluating against semantic masks, I
compare SAM’s output with segmentations produced by the clustering methods to highlight
differences in instance-level segmentation. The key distinction between SAM and clustering-
based methods is that SAM operates on 2D RGB images and does not inherently account
for occlusions or overlapping instances. In contrast, clustering methods leverage 16D pixel
embeddings, which provide a spatially meaningful representation of instances and are specif-
ically designed to handle occlusions. Since these 16D embeddings are projections of 2D in-
stances into a high-dimensional space, they encode instance relationships more effectively.
The instance-level SBD metric highlights these differences.

The Symmetric Best Dice (SBD) metric is used to estimate the average leaf instance segmenta-
tion accuracy. It is derived from the Dice-Serensen coefficient, a statistical measure of similar-
ity between binary or semantic segmentation masks. Given two multi-instance segmentations,
A and B, where A ={A1,A;,...,Am}and B ={By,B;,..., BN} represent the sets of instances
in segmentations A and B, respectively, the Dice coefficient between two instances A; and B;
is defined as:

_2|AiﬁBj|_ 2TP
~|A4+Bjl  2TP+FP+FN

DiCG(Ai, Bj)

where TP (true positives), FP (false positives), and FN (false negatives) denote the overlap and
misclassification areas.

The best Dice score for each instance in A with respect to B is:

DA = M ]:r?,ax,N DiCC(Ai, B])

i=1

Similarly, the best Dice score for each instance in B with respect to A is:

N
1 )
Dg = N Z] i:r1r,1‘a.1i<rvl Dice(Ay, Bj)
iz
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The final SBD score is computed as:

SBD(A,B) = min (DA, Dg)

For semantic masks, the SBD reduces to:

SBD(A, B) = Dice(A1,B)

It is worth noting that the Dice coefficient is conceptually similar to, but different from, Inter-
section over Union (IoU), which I introduce in subsection 2.4.2. Additionally, in the context of
semantic mask comparison, the Dice coefficient is mathematically equivalent to the F1 score.

4.4.3 Impact of PCA-Projected Embeddings on Clustering Methods

In the original SPOCO paper [1], clustering was performed using the full 16-dimensional em-
beddings. One of my key aims was to investigate whether dimensionality reduction, specifi-
cally via PCA, could preserve or even improve the clustering performance while substantially
reducing computational overhead. To this end, I systematically evaluated four clustering algo-
rithms—mean shift, consistency clustering, HDBSCAN, and mutex watershed—using PCA-
projected embeddings with varying numbers of principal components.

Dimensionality Reduction Benefits. As illustrated in Figure 4.10, Figure 4.13 and Fig-
ure 4.15, PCA can compress the original 16-dimensional embeddings into fewer components
without sacrificing key instance-discriminative information. By selecting only the first N
principal components—where N typically ranges from 4 to 6—it is possible to achieve
near-optimal instance segmentation results while substantially cutting down clustering time.
This speed-up is most pronounced for HDBSCAN and mean shift, both of which become
prohibitively slow in higher dimensions. Even mutex watershed, already fast relative to other
methods, also benefits from the lower dimensionality.

Algorithmic Observations. Figure 4.13 and Figure 4.14 illustrate that each clustering
method has distinct pros and cons:

Mean Shift Often over-segments small boundary fragments, but a simple post-processing fil-
ter can remove these tiny clusters, thereby yielding top-tier accuracy. Mean Shift requires
only 4—5 PCA components for near-optimal performance.

Consistency Clustering Achieves the highest raw accuracy (without extra filtering) but at
considerable computational expense. Reducing to 4-5 PCA components lowers runtime
but still leaves it slower than other methods.

HDBSCAN Includes a built-in minimum cluster size, filtering out noise or boundary arti-
facts, so it often needs less manual filtering. However, it remains computationally heavy
relative to mutex watershed. PCA helps significantly, especially for embeddings trained
with fewer annotations (e.g., SPOCO®@o.1).
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Mutex Watershed Extremely fast but prone to merging occluded leaves or capturing back-
ground noise as small clusters. Limiting dimensionality to 4-5 PCA components pro-
vides a good speed/accuracy trade-off.

Overall, PCA-based dimensionality reduction integrates seamlessly with SPOCO’s pixel em-
beddings and clustering pipeline. Even a small subset of principal components typically
captures enough information for high-quality segmentations and faster runtimes.

4.4.4 Segment Anything vs. High-Dimensional Clustering Methods

In addition to classic clustering algorithms, I explored the feasibility of using the Segment
Anything Model (SAM) [84] as a post-processing tool for PCA-projected embeddings.
Whereas SAM operates directly on RGB images and can segment an unconstrained variety
of objects, its generic approach may overlook occluded instances in scenes with overlapping
structures. By contrast, pixel embeddings from SPOCO explicitly encode instance identity
within a high-dimensional space, which is crucial for resolving occlusions. However, once
embeddings are PCA-projected, they are no longer spatially structured in a way that preserves
occlusion-aware properties. This loss of spatial coherence fundamentally limits SAM’s ability
to leverage the occlusion-handling strengths of embedding-based methods. However, SAM
itself resolves occlusions to some extent as shown in Figure 4.8 SPOCO-SAM segmentation:
both parts of the occluded leaf on the bottom right is identified as the same instance (not just
the colour but the actual instance label values are the same).

Adapting SAM to PCA-Projected Embeddings. A practical way to harness SAM for in-
stance segmentation is to treat the three leading principal components of a SPOCO embedding
as if they were standard RGB channels. This setup effectively “prompts” SAM to find objects
in the PCA-projected space. While the original embeddings maintain spatial coherence, PCA
transforms them into a new coordinate system where instance-related pixels may no longer
form contiguous regions. Although SAM interprets PCA-projected embeddings purely as a
colour-based segmentation task, it does recognise that spatially disconnected regions might
belong to the same instance.

Comparison with Clustering Methods. Figure 4.16 measures the similarity (via the
instance-level metric SBD) between SAM-generated masks and those obtained from HDB-
SCAN, mean shift, consistency clustering, or mutex watershed. The results, corroborated by
Figure 4.15, reveal the following:

* SAM is computationally efficient, running faster than mean shift, HDBSCAN, or con-
sistency clustering, but still slower than mutex watershed. This might be improved by
unified memory architectures which is growing in popularity in recent years.

* On simple 2D structures where object instances are well-separated, SAM performs com-
parably to clustering-based methods on PCA-projected embeddings. Segmentation de-
tails could be improved with SAM derivatives such as SAM-HQ [57].
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¢ Unlike embedding-based methods, SAM does not inherently model occlusions. In PC
space, instance structure is no longer spatially coherent. However, SAM still tries to
distinguish between overlapping objects.

e Among the four clustering methods, mutex watershed’s results resemble SAM most
closely.

4.5 Conclusion

SPOCO addresses the high annotation demands typical of instance segmentation by leverag-
ing sparse, object-level supervision and embedding-based methods. My contributions focus
on transfer learning, extending SPOCQO’s usefulness across diverse imaging modalities, and on
efficient embedding post-processing strategies. Through extensive experiments on the CVPPP
dataset, I demonstrate that:

¢ PCA-Based Dimensionality Reduction preserves or even enhances segmentation qual-
ity while substantially reducing clustering time.

¢ Choice of Clustering Algorithm depends on the specific balance between speed and
accuracy. Mean Shift (with simple filtering) and Consistency Clustering yield the best
results at the expense of computational cost, while Mutex Watershed is exceptionally
fast but less precise.

¢ Segment Anything (SAM) applied to PCA-projected embeddings can be a practical,
lightweight alternative for simpler 2D scenarios, though it may struggle in complex
scenes with severe occlusions.

Overall, these findings highlight SPOCO’s adaptability: from training with minimal object-
level labels to harnessing PCA and clustering algorithms, it achieves high-quality instance
segmentation in biomedical settings where dense annotations are prohibitively expensive.

4.6 Challenges and Future Directions

While SPOCO has demonstrated remarkable versatility and efficiency in instance segmenta-
tion, several challenges and opportunities remain that warrant further exploration.

Hierarchical Embeddings for Topological Constraints. The current SPOCO framework
could be extended to support the joint segmentation of multi-channel datasets. For instance,
in the GoNuclear dataset (Figure 2.2), which captures both cell walls and nuclei, a hierar-
chical embedding strategy could be beneficial. Instead of training separate networks for
each channel, a single embedding model could simultaneously enforce both instance-level
grouping and hierarchical constraints. Specifically, embeddings could be structured so that
(i) all pixels belonging to the same cell cluster together onto a high-dimensional sphere, and
(ii) nucleus embeddings nest within their corresponding cell embeddings. This hierarchical
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approach would facilitate accurate cell segmentation through conventional clustering while
simplifying nucleus segmentation by restricting it to cell-specific embedding regions.

For a broader discussion on multi-channel segmentation strategies and algorithms, see chap-
ter 5.

Accessibility and User-Friendliness. Unlike GoNuclear (chapter 2) and PlantSeg (chap-
ter 3), SPOCO does not currently offer a user-friendly interface or pre-trained models for
easy adoption. As an advanced deep-learning framework primarily aimed at experienced
users, it lacks the accessibility features that would enable wider adoption by biologists and
researchers. However, the training and transfer learning capabilities of SPOCO could be in-
tegrated into the PlantSeg pipeline to provide a more accessible and user-friendly interface.
This integration is planned for the release of PlantSeg 2.0.

Additionally, while Mutex Watershed is available in a separate repository, its incorporation
into SPOCO would streamline the clustering workflow and enhance usability. This integration
is a planned future development.

SAM-HQ as an Alternative Clustering Method. Recent advances in foundational segmen-
tation models, such as SAM-HQ [87], present an opportunity to explore alternative cluster-
ing strategies for PCA-projected embeddings. Building upon the original Segment Anything
Model (SAM), SAM-HQ produces segmentation masks with significantly improved spatial ac-
curacy, sharper object boundaries, and enhanced fine-grained details. Although this method
incurs slightly increased computational costs due to its refined segmentation process, the
trade-off may offer substantial improvements in segmentation quality.

Future work will involve evaluating SAM-HQ's effectiveness as a clustering method for PCA-
projected embeddings to determine its feasibility as an alternative to traditional embedding-
based clustering approaches. If successful, SAM-HQ could still reduce computational de-
mands while boosting segmentation accuracy.

These future directions highlight the continued evolution of embedding-based instance seg-
mentation. By enhancing the hierarchical structure of embeddings, improving accessibility
through integration with user-friendly pipelines, and leveraging advances in generalised seg-
mentation models, SPOCO can be further refined to meet the needs of diverse biomedical
imaging applications.
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Consistency Mean Shift HDBSCAN Mutex Watershed

16 PC 10 PC 5 PC

Original

Figure 4.11: Qualitative Comparison: Number of Principal Components for the Fully Supervised
SPOCO Model. Each column shows a different clustering method (consistency clustering, mean shift,
HDBSCAN, or Mutex Watershed) applied to the first N principal components (N = 3,4,5,10, 16).

Reducing dimensionality to only 4-5 components preserves most of the segmentation quality while
cutting computational cost.
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Figure 4.12: Qualitative Comparison: Number of Principal Components for SPOCO®@o.1. Similar to

Fig. 4.11, but using a SPOCO model trained with only 10% of the instance masks. Clustering remains
relatively robust even at lower dimensionalities (N =4 or 5).
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Figure 4.13: Pixel Embedding Clustering Accuracy. SBD(ground truth, binary segmentation) is plotted
for the SPOCO@o.1 model (left) and the fully supervised SPOCO (right). Increasing the number of
PCA components does not necessarily improve semantic accuracy. Notably, 4—5 components already
suffice in most cases. A version with error bars is in Figure A.5.
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Figure 4.14: Pixel Embedding Clustering Accuracy (Filtered). Same as Figure 4.13, but filtering out
small boundary artifacts for Mean Shift greatly boosts its performance, making it the highest-scoring
clustering method. SAM has lower semantic accuracy than the embedding-based methods, though it
remains much faster than all except Mutex Watershed.
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Figure 4.15: Pixel Embedding Clustering: Computational Efficiency. The left plot shows SPOCO@o.1
(trained with 10% of instance masks), the right plot shows the fully supervised SPOCO. In both,
higher dimensionality inflates runtime for HDBSCAN, mean shift, and consistency clustering. Mutex
Watershed is consistently faster, and SAM (on GPU) completes each image in seconds, about an order
of magnitude slower than Mutex Watershed but far faster than the other algorithms. A linear-scale
version is in Figure A 4.
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Figure 4.16: Clustering Similarity with SAM. Y-axis: SBD(SAM instance segmentation, clustering results).
Smaller fragments and hollow instances are removed. Left: SPOCO®o.1; Right: fully supervised
SPOCO. For high-quality embeddings, SAM’s instance masks are moderately close to those of the
embedding-based methods. Among the four, Mutex Watershed resembles SAM most closely.
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Chapter 5

Multi-Channel Bioimage Analysis: Strategies and Algo-
rithms for Leveraging Additional Information

Multi-channel bioimage analysis provides additional dimensions of information, substantially
improving the accuracy and interpretability of biological image analysis. This chapter presents
advanced strategies for leveraging multi-channel data, including complementary chemical
stains, multiple imaging modalities, temporal information, and combined biological struc-
tures within single samples. Each section demonstrates how innovative algorithmic strategies
exploit these additional data channels to enhance segmentation and tracking tasks in bioimag-

mng.

5.1 Multi-Label Bioimage Segmentation: Exploiting Complemen-
tary Chemical Stains

In bioimage analysis, the term “label” can signify different concepts depending on the con-
text—it may refer either to a chemical stain or to a ground-truth annotation. Here, I use
“label” to denote a chemical stain that highlights specific biological structures or molecules
in light microscopy images. In multi-label bioimage segmentation, multiple chemical stains
are employed to highlight either the same structure or distinct structures within the same
biological sample. By integrating the complementary information across these channels, seg-
mentation performance can be improved, leading to more precise structural delineation and
deeper biological insights. In subsection 5.1.1, I demonstrate how leveraging the distinct noise
profiles of different channels enhances the segmentation of cell surfaces. In subsection 5.1.2
and chapter 2, I present how paired fluorescence stains facilitate both ground-truth generation
and the design of human-in-the-loop (HITL) workflows.

5.1.1 Multi-Channel Noise Mitigation for Cell Surface Analysis

In this project, I aim to perform semantic segmentation of cell surfaces within 3D multi-
channel images. Although there is currently no established method for accurately segmenting
the cell surface, I will demonstrate how leveraging multi-channel information can achieve
high-quality results for subsequent surface analyses. Traditional image processing methods
often fail to provide reliable segmentations, particularly under significant noise in the actin
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channel. While ilastik can be quickly trained with a few expert annotations from collabora-
tors, its segmentations are typically noisy. Despite this imperfect starting point, I used these
preliminary ilastik outputs to train deep neural networks.

The adage “rubbish in, rubbish out” remains true: using noisy ilastik labels leads to models
that reproduce this noise. However, by introducing another channel with a distinctly differ-
ent noise profile, I prevented the network from overfitting to the actin-channel noise when
segmenting new volumes. As a result, the multi-channel approach demonstrates an effective
strategy for attaining high-quality cell surface segmentations.

Biological Motivation: Membrane-cortex attachment is crucial for processes such as cell mi-
gration, division, and development, as well as for maintaining cell shape and polar-
ity. The actin cytoskeleton is a dynamic network of filaments regulated by numerous
actin-binding proteins. Additionally, various proteins of different sizes can serve as
membrane-cortex attachment proteins. To study the effect of linker size in cells, ge-
netically engineered linkers of varying lengths were developed; these linkers appear
to influence actin cortex polarization and membrane curvature in a dose- and length-
dependent manner. Moreover, membrane viscosity also seems to affect their distribu-
tion. Together, these factors necessitate high-fidelity, detailed 3D analyses of the cell
surface. Traditional 2D or spherical projections of 3D data are insufficient, motivating
the use of comprehensive 3D semantic segmentation.

Technical Motivation: When segmenting the actin channel with ilastik, the results are often
noisy due to significant signal disturbances. Furthermore, the negative channel lacks
clear detail. This study investigates how deep learning models can be employed to
improve segmentation accuracy.

Data. [ currently have 9 volumetric datasets, each with three channels (actin, linker, and
environment) and three versions of labels:

¢ Raw Channels: Imaged by Ruben Tesoro Moreno, containing the following channels:

Negative: Anything not part of the cell
Linker: Artificial linkers tethering actin to the membrane

Actin: Actin filaments inside the cell
* Label Channels:
Ilastik: Created by manually annotating the actin channel in ilastik. These segmenta-

tions are noisy but served as initial training data for deep learning models.

Initial: Produced by running an early model on the negative channel and thresholding
its combined foreground and boundary probabilities at 0.5. Used for a second
round of experiments and initial validation steps.

Initial-thin: Generated by applying the “initial plus” model on the negative channel
and thresholding the foreground at o.5. Used for a third round of experiments.



5.1. MULTI-LABEL BIOIMAGE SEGMENTATION 89

(A) actin ) (C) linker

(E) v1 plus segmentation (F) v2 mix-label segmentation

Figure 5.1: Multi-Channel 3D Images, Label, and Outcome. (A-C) multi-channel 3D images of actin,
negative, and linker. Negative channel is inverted for visualisation. (D) ilastik segmentation. (E) v1
plus model segmentation. (F) v2 mix-label model segmentation. Scale bars: 5 pm.

Training Strategies. Iinvestigated a series of training strategies and their outcomes, as sum-
marised in Table 5.1. Initially, I received 4 volumes with three channels (negative, linker, actin)
and the ilastik label. To test whether a model could learn to ignore out-of-distribution noise,
I first trained the “initial” model with only the negative channel as input and the ilastik seg-
mentation as label. Once this model produced promising results, I convinced collaborators to
acquire 5 additional volumes under the same imaging conditions.

Subsequently, I trained 14 more models with various combinations of:

1. Different numbers of volumes (4 vs. 9) with ilastik labels;
2. Incorporating segmentations from the initial model as new training labels;
3. Validating against only the initial model’s segmentation;
4. Adding the original actin channel as an additional input;

5. Testing whether the same training/validation set but different random seeds could pro-
duce different results;

6. Training with mixed labels (both ilastik and initial) in the same dataset.

Results. Qualitative comparisons (Figure 5.2) show that:

1. Training with more volumes (9 instead of 4) labelled with ilastik does improve segmen-
tation results.
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Figure 5.2: Qualitative Comparison of Cell Surface Models. The first column shows vi models
trained solely on ilastik segmentations. The second column shows v2 models trained on initial or
mix-label segmentations. The third column includes models using both actin and negative channels
(“mix-raw”). Training configurations are detailed in Table 5.1. Scale bars: 5pum.
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N | Label Raw — negative negative + actin (mix-raw)

4 ilastik initial inttial mix-raw

9 ilastik initial plus initial mix-raw plus

9 ilastik initial plus val initial mix-raw plus val

9 initial second (val) second mix-raw (val)

9 ilastik +initial second mix-label second mix-raw mix-label

9 ilastik +initial second mix-label rand second mix-raw mix-label rand

9 ilastik +initial second mix-label val second mix-raw mix-label val

9 ilastik +initial second mix-label rand val second mix-raw mix-label rand val

Table 5.1: All Actin Models. Terminologies: the initial(-round) model is trained with 4 pairs of
(negative, ilastik). plus models are initial models trained with 5 more pairs. val models only use
the initial model’s segmentation for validation. mix-raw models add the actin channel as input.
mix-label models are second(-round) models using both the initial and ilastik labels. rand models
use a randomised file-path order (with an ilastik label first), whereas the other models alternate be-
tween initial and ilastik labels. For further details, see Table A.3.

2. Even when using the same training/validation sets, the training process can be unstable;
random seeds often produce noticeably different segmentations (Figure 5.3).

3. Adding the actin channel as an extra input (“mix-raw”) can degrade performance com-
pared to using negative-only inputs, suggesting the differing noise profile complicates
the learning task.

4. Validating exclusively against initial model outputs can harm performance, possibly
because it constrains the training objective to match imperfect segmentations.

5. Combining ilastik and initial labels (“mix-label”) does not consistently improve model
quality.

These observations suggest that more volumes are still needed to sufficiently fill the model’s
capacity and stabilise training. Moreover, providing a channel with a different noise profile
than the labels (as the negative channel does) helps the network learn to ignore the original
label noise.

After evaluating multiple models, I may chose the “initial plus” model for detailed surface
analysis. Although it loses some resolution in thin regions such as filopodia and lamellipo-
dia, its overall accuracy across the surface is superior. By contrast, models such as “second
mix-label” generate thicker, overfilled segmentations that compromise fine surface details.
Collaborators specialising in surface analysis recommended prioritising specificity to avoid
overestimating surface features, even at the cost of losing some finer structures.

Next Steps. This is an ongonig project. Next, I will further refine the “initial plus” model to
better capture filopodia and lamellipodia resolution by training on additional volumes. These
new datasets will again use the negative channel as input and updated thresholded outputs
of the “initial plus” model as labels, as shown in Table 5.2. This strategy is expected to yield
the most accurate cell surface model for further analyses.

After producing the final model, I will use its segmentations for downstream studies
of membrane-cortex attachment. Software packages including u-shape3D, u-signal3D,
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(A) actin (B) negative

Figure 5.3: Qualitative Comparison under Identical Conditions. When training the same dataset with
different random seeds, the resulting models can produce visibly different segmentations. Scale bars:
Spm.

and u-unwrap3D [88-90] will be employed to quantify and investigate membrane-cortex
interactions in 3D.

N | Label Raw — negative

>9 initial plus third val
>9 ilastik + initial plus third mix-label
>9 ilastik + initial plus third mix-label val

Table 5.2: Future Actin Models. “Third”-round models use additional (negative, initial plus) pairs.
“Mix-label” indicates including both ilastik and initial plus labels. “val” models are validated only
against initial plus segmentations. For naming conventions, see Table A.3.

5.1.2 GoNuclear: Paired Fluorescence Staining for Nuclear Segmentation

This strategy is exemplified in chapter 2 and summarised in Figure 2.1.

A dual-fluorescence staining approach, wherein one channel exhibits high signal clarity while
the other is noisy but biologically relevant, can be leveraged to train a deep learning model
for segmentation. The high-quality channel provides the ground truth annotations, while the
noisy channel serves as the input for the model. This strategy is particularly advantageous
when the noisy channel suffers from low contrast or substantial background interference,
whereas the high-quality channel is either costly to acquire or unavailable in all experimental
conditions.

In live-cell imaging, obtaining a high-fidelity signal for certain structures is challenging due
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to phototoxicity and photobleaching, which impose constraints on fluorescence intensity
and exposure time. To circumvent these limitations, an alternative approach involves
post-experiment fixation and restaining with more robust fluorophores, higher fluorophore
concentrations, or imaging at higher laser power. Once the biological sample is no longer
viable, it can tolerate stronger chemical treatments, enhancing signal intensity and contrast.
The resultant high-contrast channel facilitates the generation of precise segmentation labels,
which can then be used to train a machine learning model capable of segmenting the weaker
channel acquired during live imaging.

To ensure accurate alignment between the live and post-fixation images, image registration
techniques may be required. However, in the case of rigid biological structures such as plant
tissues, registration is typically not the major bottleneck in image analysis.

5.2 Temporal Signal Integration: Blending Space and Time in Live
Imaging

What is an image or a video? At its core, a 2D image is simply a matrix of pixel values, while a
3D image can be viewed as a stack of 2D images or a tensor of voxel intensities. Beyond three
dimensions, additional axes—such as time or channels—can be appended, resulting in 4D, 5D,
or higher-dimensional datasets. Although we do not perceive space beyond three dimensions,
computational algorithms can theoretically handle such data extensions. A method designed
for 2D or 3D data often generalises to higher dimensions if implemented appropriately.

In this section, I explore how multi-dimensional datasets can be reframed to simplify complex
bioimage analysis tasks. Specifically, in subsection 5.2.1, I reinterpret a 2D time-lapse video
as a 3D volume, enabling tracking to be solved as a segmentation problem using PlantSeg.
In subsection 5.2.2, I segment and track cells in 3D time-lapse microscopy data using Ultrack,
an algorithm that builds upon and extends the classical 3D reconstruction method of Funke
et al. [91] to 4D. While Ultrack leverages modern computational resources to jointly perform
3D segmentation and cell tracking over time, it does not support full 4D segmentation, where
time is treated as an additional spatial axis.

The novelty of my approach lies in the conceptual shift: by treating an N-dimensional video
as an N + 1-dimensional volume, I reduce challenging tracking problems to classic 3D seg-
mentation problems. This stands in contrast to the other methods, [91] and [92], which aimed
to keep the segmentation dimensionality low due to computational limitations at the time.
By capitalising on increased computational power, I adopt the opposite strategy—elevating
problem dimensionality to simplify algorithmic design and implementation.

5.2.1 Treating Tracking of 2D Video of Mobile Planarian as 3D Segmentation

I demonstrate how treating time-lapse video as 3D volumetric data enables robust tracking
of regenerating planarian fragments. This innovative reframing simplifies identity tracking
through direct volumetric segmentation, reducing complexity and improving consistency.

Biological Motivation: Regeneration ability and strategy vary significantly across animal
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species. Phagocata velata, a freshwater planarian, can regenerate via two distinct strate-
gies: blastema-mediated regeneration (where neoblasts proliferate and differentiate to
form a blastema) and cyst-mediated regeneration (where fragments secrete mucus to
encapsulate themselves). The choice between these strategies depends on both intrinsic
and environmental factors, as well as on fragment mobility: mobile fragments typically
form blastemas, whereas immobile ones tend to form cysts. Quantifying how mobility
and morphology correlate with regeneration outcomes requires reliable tracking of
individual fragments in time-lapse videos.

Technical Motivation: Traditional methods that segment each frame and then link objects
across frames can become cumbersome, requiring sophisticated algorithms to maintain
consistent object identities. Handling fragments that disappear and reappear in different
frames further complicates the analysis. In this study, I aim to develop a more robust
framework capable of tracking planarian fragments throughout regeneration, even when
overlap or morphological changes occur.

Data. I worked with time-lapse videos of regenerating planarian fragments kindly provided
by Shuchang Hu from the Vu group at EMBL Heidelberg. These videos were acquired as
sequences of RGB images using consumer cameras. Shuchang achieved satisfactory instance
segmentation for most frames, which serves as a valuable starting point.

Tracking Strategy. Although instance segmentation on a per-frame basis is relatively
straightforward with standard workflows, maintaining consistent tracking over time often
requires extensive human correction. After close inspection, I noticed that the segmentations
themselves are generally reliable, but certain fragments are missing in some frames, causing
tracking disruptions.

My primary research focuses on 3D bioimage analysis, where an additional spatial dimension
often clarifies context for both human observers and computational algorithms. By analogy,
rather than tracking 2D objects frame by frame, I propose to treat the time-lapse video as a
3D volume by stacking frames along the z-axis (time). In this 3D representation, 2D objects in
consecutive frames become continuous 3D objects, making tracking implicit.

Shuchang’s preliminary segmentation allows me to convert the existing instance masks into
object boundaries and then apply watershed and GASP [61] to partition the 3D volume, fol-
lowing standard PlantSeg post-processing for boundary-based segmentation (see chapter 3).
In effect, this reduces the 2D tracking problem to a 3D segmentation problem.

To demonstrate the feasibility of this approach, I first combined the per-frame instance masks
into a boundary map, stacked the frames to create a 3D volume, and applied watershed
and GASP to obtain a partitioned volume whose labels remained consistent through time.
Encouraged by these initial results, I refined the pipeline further, producing boundary maps
directly from raw videos instead of deriving them from instance segmentation. This approach
is more efficient and can help avoid errors introduced by additional intermediate steps.

I used circular region detection (via the Hough Circle Transform) to mask out background
wells, thereby restricting subsequent analysis to the relevant region of interest. A locally
adaptive thresholding-based method then provides a semantic segmentation of worm frag-
ments, from which boundary maps can be generated (e.g., via dilation). Although this step
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sometimes retains the outline of the well border as a ring-shaped artifact, I employ an ero-
sion step to remove extraneous boundaries while still preserving a border for worms near the
wall. After partitioning the resulting boundary map with watershed and GASP, I obtain ro-
bust segmentation labels for each fragment across time, effectively yielding consistent tracking
results.

Discussion. At this stage, I have not employed deep learning or other machine learning
approaches; I fine-tuned the parameters of each step by hand. Nevertheless, I plan to train a
deep learning model to predict boundary maps directly from raw videos, using the existing
3D segmentations as ground truth. Although I treat the stack of 2D frames as a 3D volume, the
data remain fundamentally two-dimensional in each time frame: if fragments truly overlap
in a single frame, there is no straightforward way to assign multiple labels to the same pixel.
Fortunately, such overlaps are rare in this dataset and do not impede the core biological
analysis.

When visualised in 3D, object splits appear as “Y” shapes, while unchanging objects appear as
“1” shapes. Overlapping fragments that separate after a short time would form an “X” shape,
which is clearly different from a split or an intact fragment. In this study, overlapping worms
are rare and the worms do not split, so consistently maintaining an “I” shape is sufficient.
If a label becomes disconnected in the 3D view, I simply remove that label from the video.
This strategy ensures that my final segmentations track individual fragments in a way that
facilitates subsequent morphological and behavioral analyses.

5.2.2 Cell and Nuclear Segmentation in Live Drosophila Embryos: The RIKEN
Dataset

In this subsection, I tackle the complex segmentation and tracking challenges posed by live
imaging of Drosophila embryos, introducing a combined strategy of denoising, boundary pre-
diction, and integer linear programming-based tracking. This approach leverages modern
computational techniques to deliver stable, high-quality tracking in noisy, dynamically chang-
ing conditions.

Biological Motivation: Gastrulation in Drosophila is a highly dynamic process in which a
simple epithelial blastula transforms into a multilayered gastrula, laying the foundation
for the organism’s body plan. A key open question is whether nuclei act as a “battery,”
storing and releasing energy to drive these morphological changes. Investigating this
hypothesis requires high-precision tracking of both nuclear and membrane structures
over time.

Technical Motivation: The 3D time-lapse dataset from the RIKEN Center for Biosystems Dy-
namics Research presents multiple challenges: heavy noise, diminishing signal intensity
along the z-axis, and partially open membranes in early embryonic stages. Furthermore,
ground-truth annotations are only available for a subset of z-slices, making standard su-
pervised learning approaches impractical. These constraints necessitate a robust pipeline
for accurate segmentation and temporally coherent tracking.
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Figure 5.4: A Single Frame of the 2D Video. (A) The raw grayscale “red” channel, (B) the boundary
segmentation, and (C) the resulting instance segmentation for a single frame of the mobile planarian
video.
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Figure 5.5: 3D View of 2D Video of Mobile Planarian. The time-lapse video frames are stacked to
form a 3D volume, where (A) shows a raw frame, (B) shows the corresponding boundary segmentation,
and (C) illustrates the resulting instance segmentation that also acts as a tracking solution through time.
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Data. The dataset consists of live-imaged Drosophila embryos labelled with fluorophores
marking nuclei and cell membranes. Acquired via two-photon microscopy, the image quality
degrades at deeper imaging depths, leading to reduced membrane visibility. Moreover, only
half of the z-slices contain reliable ground truth, requiring selective masking of unreliable
regions during training to prevent biased learning.

Proposed Solutions and Exploration. Initially, I explored whether nuclear instance masks
could serve as seeds for watershed-based segmentation of cell volumes. While theoretically
sound, this approach suffered from under-segmentation and boundary misclassification due
to intense noise and incomplete membrane signals.

I also tested a strategy where dilated nuclear segmentation masks were used as pseudo-cell
instance masks for training a boundary segmentation model. However, qualitative evaluation
revealed that this approach was less accurate than using stitched 2D Cellpose-based segmen-
tations as training labels.

To mitigate the effects of noise, I incorporated denoising with Noise2Void [13], which signif-
icantly enhanced membrane visibility. While deep-learning models can learn to ignore noise
given sufficiently large datasets, the limited and imperfectly annotated data in this case made
explicit denoising a crucial preprocessing step.

Boundary Segmentation and ILP-Based Tracking with Ultrack. My final approach follows
a two-stage pipeline, akin to PlantSeg (see chapter 3). First, I predict boundary probability
maps for the membrane channel. Second, I leverage Ultrack [92], which jointly evaluates
segmentation and tracking by formulating the problem as an Integer Linear Programming
(ILP) optimization problem.

Unlike traditional frame-by-frame linking, Ultrack generates multiple segmentation hypothe-
ses per time step using ultrametric contour maps (UCMs), which encode hierarchical seg-
mentations at different thresholds. The ILP solver then selects the most temporally consistent
segmentation while enforcing biologically plausible constraints such as valid cell divisions
and prohibiting non-physical cell merges. Additionally, Ultrack integrates vector-field regis-
tration to account for motion artifacts, improving the stability of tracking across time.

This formulation significantly reduces the accumulation of tracking errors that arise in con-
ventional linking-based approaches, allowing robust tracking of nuclei and cells even in the
presence of noise and incomplete membranes.

Contributions to Ultrack, GoNuclear, and PlantSeg. To adapt Ultrack for the RIKEN
dataset, I contributed improvements to dependency management'* and tracking data export?.
I also refined GoNuclear (see chapter 2) and integrated PlantSeg for boundary segmentation.
Figures 5.6 and 5.7 illustrate the segmentation challenges and the improvements achieved
through denoising, boundary prediction, and temporal consistency.

*GitHub - royerlab/ultrack/pull/85
2GitHub - royerlab /ultrack/pull /88
3GitHub - royerlab/ultrack/pull/9o


https://github.com/royerlab/ultrack/pull/85
https://github.com/royerlab/ultrack/pull/88
https://github.com/royerlab/ultrack/pull/90
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Figure 5.6: Initial Challenges in Live Drosophila Embryo Video. (A) Two-photon microscopy image
of the cell membrane channel, showing signal degradation at deeper imaging depths. The left side
illustrates poor membrane visibility due to limited z-resolution. (B) Ground-truth segmentation gen-
erated by collaborators using 2D Cellpose, exhibiting frequent over- and under-segmentation due to
noise and incomplete membranes. (C) Nuclear channel with extensive background noise and uneven
signal distribution. (D) Initial nuclear segmentation using GoNuclear.
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(A) Cell Membrane T = oo4 (D) Nuclei Channel T = 024

(B) Membrane Segmentation T = oo4 (E) Membrane Segmentation T = 024

(C) Cell Segmentation T = oo4

Figure 5.7: Improved Segmentation in Live Drosophila Embryo Video. (A, D) Noise2Void (N2V)-
denoised raw membrane and nuclear channels, demonstrating improved contrast and clarity. (B, E)
Predicted boundary maps generated from a model trained only on regions with reliable ground-truth
annotations. Poor-quality slices were masked to prevent their influence on training. (C, F) Final cell
segmentation obtained using Ultrack. The images are cropped to show high-confidence z-slices only.
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5.3 Cross-Channel Prompting: Heuristics for Segment Anything
Model (SAM)*

In multi-channel bioimage analysis, certain imaging channels often exhibit higher signal-to-
noise ratios or better staining specificity, making them easier to segment. By contrast, other
channels—while biologically critical—may suffer from low contrast, noise, or weak signal
intensity, rendering them challenging for direct segmentation. This section introduces cross-
channel prompting, a heuristic-based strategy where annotations from an easily segmentable
channel are used to guide the segmentation of a more difficult channel.

To investigate this approach, I conducted extensive experiments using two large foundation
models for image segmentation: the Segment Anything Model (SAM) [84, 93] and microSAM
(USAM) [10]. Both models have demonstrated strong generalisation capabilities across diverse
image types, yet their application to bioimaging data—especially multi-channel microscopy
images—remains underexplored. Through these experiments, I illustrate both the potential
and limitations of using such models in a cross-channel context.

SAM is a versatile model trained on a broad range of natural images. However, it does not op-
erate in a fully autonomous manner and requires external prompts to delineate specific objects.
Prompts may take various forms, from simple spatial cues such as points and bounding boxes
to more advanced polygonal inputs, as introduced in SAM 2 [93]. SAM’s default strategy for
automated segmentation is the automatic mask generator (AMG), which systematically samples
single-point prompts across a grid over the input image. For each sampled location, SAM
generates one or more segmentation masks, each accompanied by a confidence score. These
proposals are then filtered using non-maximal suppression (NMS) and a confidence threshold
to obtain a set of candidate masks. While AMG offers a fast and interaction-free approach to
generating instance masks, it is highly sensitive to grid density and filtering parameters, and
can produce numerous incomplete or extraneous masks.

In the context of multi-channel bioimages, cross-channel prompting offers a practical solution
to overcome challenges associated with difficult channels. Specifically, I employ annotations
(e.g., bounding boxes or point prompts) derived from a well-segmented reference channel
to guide the segmentation of another channel that is harder to process due to noise, poor
contrast, or biological variability.

The remainder of this section details my implementation of cross-channel prompting on the
multi-channel ovules dataset described in chapter 2. I systematically assess how different
prompting strategies affect segmentation outcomes in SAM and uSAM, comparing auto-
prompting (prompts derived from the same channel) to cross-prompting (prompts derived
from a different channel). These experiments reveal practical considerations for deploying
large segmentation models on bioimage data and highlight scenarios where cross-channel
heuristics can significantly enhance segmentation accuracy.

4At the time of these experiments, SAM [84] was newly released, and pSAM [26] was in early development.
For completeness, my qualitative evaluation of uYSAM has been updated from v1 to vz [10], but the SAM 2 [93] has
not been explored, as it is less biologically relevant here. Scale bars are omitted from the figures in this section;
please refer to Figure 2.2 and Figure 2.2 for relevant size references. I also note two key practical constraints: (1)
SAM resizes inputs to 1024 x 1024 pixels; (2) SAM only processes 2D images.
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Experimental Design. I tested multiple models, including SAM’s base/large/huge models
and pSAM'’s light-microscopy/electron-microscopy variants (both vi and v2). For clarity,
I mainly show results from SAM large and uSAM vz light microscopy large to keep the
comparison somewhat consistent (noting that SAM huge tends to outperform SAM large).
I also tried fine-tuning SAM on the ovules dataset, but the results were no better than the
original pretrained weights—likely due to the difficulty of replicating Meta Al’s full training
recipe. Meanwhile, uSAM is fully open source, but v1 failed entirely for point prompts, so
its point-prompting results are omitted from Table 5.3. More recent models, like SAM-HQ
[57], SAM 2 [93] and uSAM vz [10], do not alter the key conclusions, so I have not re-updated
every entry in the table to reflect them.

I explored three raw channels in the ovules dataset:

e cell wall
® noisy nuclei

¢ clear nuclei
and employed two primary prompting strategies:

* Cross-prompting: Use ground-truth annotations from one channel (e.g. bounding boxes
or point prompts) to segment objects in a different channel.

* Auto-prompting: Use a channel’s own ground-truth annotations to prompt segmentation
in the same channel (for baseline or sanity checking).

I tested bounding-box and point prompts, and also combined all three channels into a single
“RGB-like” image for SAM or puSAM to process simultaneously. The experiments revolve
around four major topics: (1) automatic mask generators, (2) bounding-box prompting, (3)
point prompting, and (4) true multi-channel “RGB” input.

Automatic Mask Generators (AMG). By default, the automatic mask generator (AMG) method
samples single-point prompts across a grid, then filters out or merges overlapping mask pro-
posals. Figure 5.8 shows AMG results on three channels. SAM AMG finds most cells in
the cell wall channel, some nuclei in the noisy channel, and most nuclei in the clearer chan-
nel—though it can also pick up cell-wall structures in the latter. uSAM AMG behaves simi-
larly but often shows improved sensitivity to smaller objects, reflecting its training focus on
microscopy. AMG can be a convenient way to bootstrap large annotation sets with minimal
labor, albeit with typical automated-segmentation caveats (missed objects, partial objects, etc.).

Bounding Box Prompting. Next, I considered bounding-box prompting. Figure 5.9 shows
auto-prompting, where ground-truth bounding boxes from the same channel are used as
prompts; SAM and pSAM both reliably segment the targeted object. Although bounding-box
prompting can seem nearly trivial, Table 5.3 shows that even then, SAM may not always
yield high mAP scores across all instances. For example, on the noisy-nuclei channel, SAM’s
huge model reached ~ 86% mAP>° in some settings, while pSAM v1 achieved ~ 96%.
Given the computational cost and complexity of large foundation models, simpler or more
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(A1) Raw Cell Wall (B1) Raw Noisy Nuclei (C1) Raw Clear Nuclei

(A3) SAM AMG

Figure 5.8: AMG Results in Different Channels. Columns A, B, and C correspond to the cell wall,
noisy nuclei, and clear nuclei channels. Rows 1—2 show raw images and ground truths; rows 3—
compare SAM AMG and pSAM v2 AMG segmentations. While cell walls and nuclei are often detected,
partial or extraneous objects appear as well.
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domain-specific tools (PlantSeg, Cellpose, ilastik) could achieve comparable performance
with lower computational overhead.

Figure 5.10 then illustrates cross-prompting with bounding boxes from a different channel. In
such cases, both SAM and uSAM dutifully force an object mask in each provided box, re-
gardless of whether the channel’s content aligns with it. Sometimes uSAM produces near-
rectangular masks, closely following the bounding box while ignoring image structure. One
can try adjusting bounding-box sizes (Figure 5.11) to better match the scale of objects in the
new channel. For instance, inflating nuclear boxes may help discover entire cells, while shrink-
ing cell boxes might capture nuclei. However, this ad-hoc process undermines the intent that
SAM be “scale-agnostic.” If bounding boxes must be repeatedly resized to coax the model
into a correct result, one might question whether specifically training a segmentation model
per channel is more direct than heavily manipulating prompts.

Point Prompting. Whereas bounding boxes can be easily derived from instance masks, de-
riving accurate point prompts is more nuanced in bioimage segmentation: a positive point
should land inside the target, and negative points should lie outside. However, instance-mask
centroids or random points risk falling on boundaries or ambiguous regions.

Figure 5.12 and Figure 5.13 show various multi-output scenarios where SAM or uSAM returns
multiple top-confidence masks per prompt set. SAM will often ignore negative prompts if
they conflict strongly with its learned representation, whereas pfSAM can be over-swayed by
negative prompts, sometimes chopping away part of an object.

In single-output mode (e.g. retrieving only the highest-scoring mask), both SAM and uSAM
can be more reliable, as seen in Figure 5.14 and Figure 5.15. One positive point plus one well-
placed negative point typically suffices in simpler cases, though pSAM’s bias for microscopy
can yield “fuller” masks (e.g. including a cell wall) than SAM might produce. Whether that
is beneficial depends on the user’s specific segmentation goal (e.g. entire cell vs. cytoplasm
only).

Real Multi-Channel Prompting (RGB Input). Although SAM was primarily designed for
2D RGB images, one could pack the three ovule channels (cell wall, noisy nuclei, clear
nuclei) into a single “RGB” image. As Figure 5.16 shows, AMG on this merged image typ-
ically detects some cell and nuclear structures but can also miss or partially segment them
due to the increased complexity. Bounding-box prompting on an RGB combination can still
produce decent masks, whereas point prompting might yield overly large or unconnected
segments, depending on which channel the model “locks onto.”

Conclusion. Overall, u'SAM—trained specifically on microscopy data—shows more natu-
ral affinity for cell and nuclear structures than the original SAM, which sometimes prefers
large “natural scene” objects (e.g. entire ovules). This makes pSAM particularly appealing for
minimal-interaction workflows (see also subsection 2.3.2), where users only provide a bound-
ing box or point prompt. Still, both methods are constrained to 2D images, complicating
volumetric data analysis. If prompts must be heavily manipulated to “force” cross-channel
segmentation, one might instead prefer a dedicated model trained for that channel.
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Figure 5.9: Bounding Box Prompting (Auto-Prompting). Columns A, B, and C show the cell wall,
noisy nuclei, and clear nuclei channels. Row 1 displays bounding boxes from the same channel’s
ground truth, and rows 2-3 show how SAM and uSAM segment these boxes. This “auto-prompting”
verifies that if a bounding box is accurate, the model can typically recover the object.
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(A3) Cross Bboxes (B3) Cross Bboxes (C3) Cross Bboxes

Figure 5.10: Bounding Box Prompting (Cross-Prompting). Bounding boxes from a different channel’s
ground truth are placed on each image. SAM and uSAM still force a mask within each bounding box,
even if the underlying image content does not match. In some cases, uUSAM produces near-rectangular
masks that follow the bounding box more than the actual image.
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Figure 5.11: Adjusting Bounding Boxes for Cross-Prompting. In these examples, nuclear bounding
boxes are enlarged by 100px in both x and y directions to capture entire cells, while cell bounding
boxes are shrunk by 20 px to better match nuclei. Although this can partially correct scale mismatches,
excessive box manipulation becomes guesswork and undermines SAM’s “any scale” premise.
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(A1) 1+/N- (A2) 1+/N- (A3) 1+/N-

(B2) 1+/1- Near
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Figure 5.12: SAM Point-Prompting Strategies (Multi-Output). Here, we show three different sets of
point prompts for SAM’s multi-output mode: (A) one positive point + multiple negative points; (B)
one positive + one negative in a nearby object; (C) one positive + one negative in a random object. SAM
sometimes ignores negative prompts it deems inconsistent, returning multiple plausible masks.
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(A1-p) 1+/N- (A2-p) 1+/N- (A3-p) 1+/N-

(B2-u) 1+/1- Near

Figure 5.13: uSAM Point-Prompting Strategies (Multi-Output). Using the same prompt sets as in
Figure 5.12, uSAM often reacts more strongly to negative prompts, sometimes “carving out” large
regions. Still, it is generally biased toward segmenting biological structures (e.g. more complete cells),
reflecting its microscopy-oriented training.



110 CHAPTER 5. MULTI-CHANNEL BIOIMAGES

(A1) Auto: 1+/1- (B1) Auto: 1+/1- (C1) Auto: 1+/1-

(B3) Auto: 1+/1-

P J‘.‘;v/ i o

3;

B

Figure 5.14: Single-Output SAM Point Prompting. Columns A, B, and C are the cell wall, noisy nuclei,
and clear nuclei channels. The top three rows show auto-prompting with different numbers of neg-
ative points. The last row demonstrates cross-channel prompts (e.g. nuclear prompts on the cell-wall
channel). SAM often ignores negative points if they conflict strongly with its learned representation.
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(A1-p) Auto: 1+/1- (B1-p) Auto: 1+/1- (C1-p) Auto: 1+/1-

Figure 5.15: Single-Output uSAM Point Prompting. Same structure as Figure 5.14 but using pfSAM
v2. Generally, ©SAM segments more of the cell or nucleus than SAM, reflecting its microscopy-oriented
training. In some cases, this may include regions the user does not wish to label (e.g. cell walls), so
manual curation might still be needed.
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(A) 3-Channel Input (C1) SAM Bboxes (Cells) (C1-p) uSAM Bboxes

Figure 5.16: Combining All Channels into a Single RGB Image. (A) The three ovule channels are
merged into one RGB image for SAM/uSAM to process at once. (B) AMG can only detect some cells
and nuclei simultaneously. (C) Bounding-box prompts remain fairly robust if one has correct boxes for
each target structure. (D) Point prompting can produce mixed masks, depending on which channel’s
features the model emphasises.
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Average Precision 0.5 ... | 0.75 0.8
Base 27.64% | ... | 19.54% | 14.20%

AMG Large 34.37% | ... | 24.87% | 19.86% 22.20%
Huge 35.11% | ... | 24.31% | 19.03%

Base 49.34% | 34.79%

44.47% | 32.96%

Bounding Boxes | Large

Huge 46.83% | 33.40%
Base LM
Bounding Boxes
Huge LM
Base EM
Bounding Boxes
Huge EM 40.11% 66.18%

Table 5.3: Benchmarking SAM Cross-Channel Prompting. This table summarises the performance of
SAM and uSAM v1 on the GoNuclear ovules dataset (chapter 2). Different prompting strategies are
tested on the noisy nuclei channel, and performance is reported as mean average precision (mAP) at
various IoU thresholds.

Next Steps. Future directions could include:

* Deeper testing or fine-tuning of pfSAM v2 (or a specialised “uSAM-HQ,” inspired by
SAM-HQ [57]) on microscopy data.

* Pairing heuristic bioimage workflows (e.g. ilastik) with large foundation models to gen-
erate more informed “smart seeds” for AMG.

¢ Explore the possibility of using SAM 2 models with video segmentation abilities to
segment 3D images by treating them as videos.

Such approaches may further reduce annotation effort while preserving segmentation quality,
especially for large-scale or high-dimensional imaging data.

5.4 Outlook: Context-Aware Segmentation in Multi-Channel
Bioimaging

While multi-channel bioimages inherently contain complementary information across differ-
ent stains or markers, leveraging these additional channels within a single model remains
challenging. In my experiments, straightforward multi-channel, multi-head convolutional
networks yielded only marginal improvements unless the model was explicitly guided to in-
tegrate cross-channel cues. Empirically, pipelines that segment one structure (e.g., nuclei)
to refine another (e.g., cells), and vice versa [2], can effectively exploit inter-channel depen-
dencies. However, truly context-aware modelling within a unified network remains an open
research problem. My experiments with multi-channel, multi-head, and multi-prediction net-
works are detailed in subsection A.1.1.

As a final observation, the scale of training data can precipitate a qualitative shift in perfor-
mance. For instance, DINO [94, 95], a self-supervised model from the broader computer vision
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domain, learns to segment objects without explicit supervision when trained on 1.3 million
images (and 142 million in DINOv2). This illustrates that, given sufficient data, context-aware
segmentation might emerge naturally—even in the absence of hand-crafted guidance.

I propose three avenues for further exploration:

1. Hierarchical Discriminative Loss for multi-channel instance embedding (section 4.6);

2. Inter-Prediction Loss to enforce consistency across predicted channels (subsection A.1.1);
and

3. Topological Constraints, such as containment and exclusion, to encode structural rules into
the segmentation process (subsection A.1.2).

In particular, inter-prediction loss aims to capture how one channel’s segmentation can inform
and refine another by explicitly penalising or rewarding cross-channel consistency. However,
naive formulations risk overexpansion of the predicted regions. Future work could investigate
adaptive normalisation schemes or instance-specific metrics to mitigate such effects.

Topological constraints, on the other hand, address global relationships such as “nuclei must
reside inside cells” or “cell boundaries must be closed”—relationships that are difficult to
learn via local, per-pixel losses alone. Incorporating such constraints into training, possibly
through differentiable instance-level strategies like those explored in chapter 4, may improve
multi-channel performance where structural accuracy or boundary completeness is critical.
Detailed discussions can be found in section 4.6 and subsection A.1.2.

Overall, systematically harnessing the complementary signals in multi-channel data remains
an exciting frontier. By integrating higher-level structural priors, inter-channel dependencies,
and instance-aware constraints, future approaches may achieve more robust and biologically
consistent segmentations across diverse bioimaging modalities.



Chapter 6

The Future of Bioimage Analysis

In summary, bioimage segmentation remains pivotal yet intrinsically challenging. The diver-
sity of imaging modalities, evolving microscopy techniques, and heterogeneous biological con-
texts demand analytical tools that are not only accurate but also generalisable, interpretable,
and adaptive. While deep learning has driven remarkable progress, persistent issues such as
data scarcity, inconsistent imaging protocols, and the inherent complexity of biological sam-
ples preclude any universal solution. My thesis addresses these challenges through novel
algorithmic contributions, robust software engineering, and practical case studies designed to
push the limits of current computational methodologies.

Although I have largely avoided the term “Al” in this thesis—preferring the more precise
nomenclature of deep learning or computer vision—the end of my PhD coincided with the
rise of large language models (LLMs), marking a turning point in the broader Al landscape.
Initially impractical for academic use due to financial and hardware constraints, the release
of efficient and open-source models such as DeepSeek-V3 [96] during my time of writing this
thesis, which employ mixture-of-experts architectures and FP8 quantisation, has changed the
playing field. Beyond text generation, these LLMs demonstrate state-of-the-art capabilities in
reasoning, coding, and tool use, thus offering profound implications for bioimage analysis.

Recent developments suggest that LLMs are being repurposed as multimodal agents capable
of reasoning across image, text, and structured data. For example, the Omega plugin [97]
integrates LLMs into napari, enabling users to issue image-analysis tasks via natural language.
The Biolmage.IO Chatbot [95] extends this vision, coupling LLMs with model repositories to
generate executable code, guide workflows, and perform tool-based reasoning. These systems
illustrate how future human-machine collaboration in image analysis may be mediated by
dialogue rather than scripts or graphical user interfaces.

The emergence of multimodal LLMs (MLLMs) marks a significant frontier [99]. MLLMs inte-
grate multiple inputs—images, text, and omics data—to generate coherent, context-aware out-
puts. Their emergent capabilities allow them to generalise beyond explicit training domains,
while mixture-of-experts and tool-calling modules enable them to handle diverse biological
images, propose hypotheses, and even control instruments.

Researchers have just demonstrated in very recent publications [100] how scaling and fine-
tuning vision-language models (VLMs) on scientific biomedical data (through techniques like
LoRA, FlashAttention-2, and cross-modal projector alignment) substantially improves both
reasoning accuracy and factual consistency in biomedical visual question answering (VQA).
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Their tuned models achieve higher ROUGE scores, reduced hallucination, and stronger align-
ment with ground-truth data than base models. This suggests that, with sufficient domain-
specific adaptation, generalist VLMs can evolve into robust scientific assistants.

In parallel, MicroVQA [101] was introduced when I started to write this chapter, a VQA
benchmark designed to probe scientific reasoning capacities of MLLMSs in microscopy. This
benchmark includes tasks such as expert image interpretation, hypothesis generation, and
experimental design, drawn from real biological practice. State-of-the-art models performed
moderately, revealing that multimodal reasoning in microscopy remains a frontier. Crucially,
errors often stemmed from perceptual failures rather than language or logic, indicating a
pressing need to improve visual representation learning.

A benchmark for evaluating LLMs on code generation for bioimage analysis was proposed
[102]. Using a curated set of Python tasks and unit tests, they assessed functional correctness
across models. While top models (such as GPT-4 and Claude-3) are promising, their study
highlights the need for domain-specific tuning, broader support for scientific libraries (like
scikit-image or pyclesperanto), and benchmarks reflecting real bioimage-analysis work-
flows.

Together, these studies suggest that foundational models and community-driven infrastruc-
ture will co-shape the future of bioimage analysis. Hallucinations, shallow reasoning, and
alignment mismatches remain problematic in scientific contexts, but approaches like retrieval-
augmented generation (RAG) and parameter-efficient fine-tuning (PEFT) can help contain
them, while LoRA offers mechanisms to update specific modules without retraining the en-
tire network. In parallel, open, FAIR resources and active community engagement will be
essential to integrate these Al tools into real-world experimental pipelines.

Ultimately, bioimage analysis is evolving from a niche engineering discipline into a testing
ground for general-purpose scientific Al. The inherent complexity of biological images—
spanning semantic ambiguity, multiscale structure, and imaging artifacts—poses uniquely rig-
orous challenges for machine intelligence. As Al systems become more capable, they should
be guided by domain expertise and developed with the rigor that accompanies experimental
design. Rather than replacing human insight, the path forward lies in amplifying it.



Chapter A

Supplimentary Material

A.1 Context-Aware Segmentation: Using One Biological Structure
to Guide Another

This section extends chapter 5 from the main text, offering theoretical insights, software tools, and
preliminary experiments on multi-channel and multi-head networks with inter-prediction loss, as well
as conceptual foundations for incorporating topological interactions into bioimage segmentation tasks.

This section outlines prospective directions to enhance multi-channel bioimage segmenta-
tion by explicitly modeling context-aware interactions among biological structures. I describe
several conceptual approaches—some of which I have explored in preliminary experiments,
others that remain theoretical—that aim to improve segmentation accuracy by leveraging the
inherent biological context present across multiple data channels.

To integrate multi-channel information and jointly segment different biological structures
within the same sample, I propose three strategies:

1. A hierarchical discriminative loss function for pixel-embedding instance segmentation
of multi-channel images (section 4.6);

2. An inter-prediction loss function for multi-channel, multi-head networks (subsec-
tion A.1.1); and

3. An extended application of topological constraints—containment and exclusion—for
boundary segmentation (subsection A.1.2).

A.1.1 Multi-Channel, Multi-Head Networks

Convolutional neural networks (CNNs) are well-suited for computer vision tasks because
they leverage local receptive fields and weight sharing to capture spatially correlated features,
thereby introducing a spatial hierarchy. By contrast, transformers rely on self-attention mecha-
nisms that naturally handle long-range dependencies and dynamically focus on different parts
of the input. Since transformers are permutation-invariant, they need positional encodings to
maintain information about sequence ordering. Structurally, CNNs offer translation-invariant
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inductive biases, whereas transformers introduce biases aligned with attention-based feature
aggregation.

Multi-Channel Architectures in Bioimage Analysis. In bioimaging, multi-channel data are
extremely common, with each channel representing a distinct marker or stain. I experimented
with multi-channel, multi-head networks that can process multiple input channels and pre-
dict multiple outputs simultaneously. However, my experiments did not reveal substantial
benefits from merging channels in the model architecture unless specific design constraints
were imposed. Qualitative results suggest little improvement in areas that remain difficult
to segment, even though expert human annotators often resolve these regions more easily by
using complementary signals across channels.

In fact, chapter 2 and chapter 3 showcase state-of-the-art multi-channel pipelines that adopt a
two-step process: one channel (e.g., a nucleus channel) is segmented first and is then used to
refine another channel (e.g., a cell channel), and vice versa. In this manner, nuclear segmenta-
tion supports the merging or splitting of cells, while cell segmentation guides the detection or
exclusion of nuclei. But these are not directly integrating the multi-channel information into
the model representation.

From my observations, when fluorescence microscopy is employed and the structures of in-
terest are already distinctly labelled, adding a noisier channel—such as an alternative stain of
the same structure—does not necessarily improve learning. This holds especially true when
annotated training data are scarce, because the less reliable channel can distract the model.
In some bioimage segmentation contexts, a certain degree of overfitting to the primary chan-
nel(s) is even desirable. Similarly, appending a channel for an entirely different structure may
be unhelpful unless the model is explicitly guided to integrate that additional information
meaningfully.

My early experiments on multi-channel, multi-head networks started before 3D multi-channel
datasets (Table A.1) were labelled. Around the same time, Mesmer [23] (a 2D cell-nuclear in-
stance segmentation method) was released as a preprint. Mesmer uses a ResNet50 backbone
with two semantic segmentation heads for joint cell and nuclear predictions. In contrast,
my residual U-Net implementation’ based on pytorch-3dunet [103] is theoretically similar; it
covered architectures 1, 2, 4, and 5 in Table A.2. Rather than duplicating similar published
experiments, I therefore focused on an inter-prediction loss function for enhancing the perfor-
mance of multi-channel, multi-head networks.

Although the field has largely moved away from this specific optimisation strategy, by the
time of writing, Cellpose-style multi-prediction of nuclear and cell flows has been thoroughly
explored [104], yielding only marginal improvements. Should further experiments be con-
ducted, Table A.2 and Table A.1 summarise the relevant architectural variants and bench-
marking datasets, respectively.

Inter-Channel Loss. I next considered a loss function aimed at enforcing consistent inter-
play between different predicted channels. Standard losses such as the Dice loss operate on
each output channel individually, focusing on pixel-wise overlap with the ground truth. In
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Dimension | Dataset 1 | Dataset 2
2D COVID-IF
3D FOR2581 | Sponge
4D RIKEN

Table A.1: Multi-Channel Datasets for Benchmarking Architectures. These datasets can be used to
quantitatively benchmark the architectures: COVID-IF [105], FOR2581/GoNuclear [2], Sponge (pri-
vate), and RIKEN (private) at EMBL.

Input Head 1 | Input Head 2 Output Head 1 Output Head 2
c1 c2 c1 c2 c1 c2 c1 c2
1a | Nuclei Nuclei
ib | Cells Cells
2a | Nuclei | Cells Nuclei
2b | Nuclei | Cells Cells
3 | Nuclei | Cells Nuclei + Cells
4 | Nuclei | Cells Nuclei Cells
Nuclei | Cells Nuclei Cells
2a’” | Nuclei Cells Nuclei
2b” | Nuclei Cells Cells
3" | Nuclei Cells Nuclei + Cells
4" | Nuclei Cells Nuclei Cells
5" | Nuclei Cells Nuclei Cells

Table A.2: Architectures of Baselines. These are architectural variants of the U-Net from [6, ]
for multi-channel, multi-head input and output. Bold entries are covered by my implementation and
experiments. The results of these multi-channel/-head U-Net architectures on multi-channel datasets
are not qualitatively better than single-channel input, single-channel output networks.

semantic segmentation, the Dice loss is typically:

25N g
Lgice(P,G) = 1— N 21:1 pl?\ll )
DiiPi i1 9i

where P is the predicted segmentation and G the ground truth, each consisting of N pixels.
While minimising Lgice(P, G) aligns P with G, it does not constrain how different predicted
channels should interact.

For example, if we want to penalise the overlap between two predicted channels, such as nuclei
P and cell membranes Q, simply setting

Lin’ter-char‘mel = Dice(P/ Q)

and minimising it can inadvertently force both channels to expand while attempting to remain
mutually exclusive. This phenomenon can lead to more background being classified as fore-
ground?, as shown in Figure A.1. My experimentation ended there, but a promising direction
might be an inter-channel loss of the form

N . .
Lir\ter—channel ( P/ Q) = Zfl(_];r(;)ql ’
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Figure A.1: Empirical Investigation of Inter-Channel Loss. Minimising a simple inter-channel Dice
term encourages both channels to expand their predicted foregrounds while attempting to remain
mutually exclusive, inadvertently leading to background regions being misclassified as foreground. C
= Cell, N = Nucleus, FG = Foreground, Label = Ground Truth, Bound = Boundary. Image patches are
taken from a 2-output-head U-Net trained on the 2-channel COVID-IF dataset [105]. Numbers indicate
the training iteration.

where f(P, Q) serves as an appropriate normalization. Selecting or designing such an f(P, Q)
to avoid excessive channel expansion remains an open challenge.

A.1.2 Topological Interaction for Instance Segmentation

It is now clear that a fundamental limitation of many deep learning approaches is their diffi-
culty in capturing topological interactions among different classes. Standard per-pixel losses
do not ensure global structural constraints, such as the requirement that nuclei must reside
inside cells. In subsection A.1.1, I discussed my idea for an inter-channel loss. In related
work, Gupta et al. introduced a topological interaction module that encodes global structure
into deep neural networks [106].

Topological Interactions: Containment and Exclusion. Their key insight is that two impor-
tant topological interactions, containment and exclusion, can be translated into constraints on
allowable adjacent pixel labels. In other words, requiring that one class enclose another (con-
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(A) Topological Interactions (B) Cells and Nuclei (C) Boundary and Foreground

Figure A.2: Illustration of topological constraints in segmentation. (A) Containment and exclusion
constraints: 3 contains « (f — «); « and 'y are mutually exclusive (x < ). (B) Examples of segmen-
tation errors that containment or exclusion alone cannot fix: 1. Containment does not imply existence,
2. Exclusion does prevent nuclei outside cells, but 3. A nucleus overlapping two cells may still satisfy
containment, 4. Semantic topological constraints alone do not fix merged cells. (C) Possible applica-
tion of topological constraints for boundary segmentation in sparse instances; one may artificially add
a boundary class and enforce containment/exclusion to improve segmentation quality.

tainment) or that two classes never touch (exclusion) can be enforced by penalising “illegal”
label pairs. As illustrated in Figure A.2 (A), B contains « means that a pixel labelled & cannot
be adjacent to any label other than o or 3, while o and y being mutually exclusive means
adjacent pixels cannot form the pair («,y) or (v, ).

To implement these constraints purely through convolutional operations, they propose a post-
dilation strategy: each semantic class is dilated, and any overlapping region forms a “critical
region” that should not exist if the global constraints hold. The model is then penalised for
mismatches in these critical regions, effectively encoding local adjacency rules that capture
global structural constraints.

Containment and Exclusion in Multi-Channel Bioimage Instance Segmentation. Al-
though promising, this approach does not straightforwardly extend to instance segmentation
in bioimaging. In many medical segmentation settings, it is sufficient to have one class
enclose another or to enforce mutual exclusivity. However, in bioimage analysis, each cell
often must contain exactly one nucleus, and a network might benefit from learning such
finer-grained constraints when boundary signals are faint or the nuclear stain is weak. As
shown in Figure A.2 (B), certain segmentation errors cannot be corrected by containment or
exclusion alone.

Two main difficulties arise. First, the transition from semantic to instance segmentation is gen-
erally not differentiable, complicating back-propagation of errors. Second, instance matching
(i.e., pairing a particular cell instance with its nucleus) is also not differentiable. Nonethe-
less, progress has been made. For example, the SPOCO framework (chapter 4) employs a
differentiable method for selecting individual instances and applying auxiliary losses at the
instance level, suggesting a possible path to incorporate topological constraints into instance-
level training.

Containment and Exclusion for Boundary Segmentation. Beyond joint cell-nucleus seg-
mentation, topological constraints can also enhance boundary segmentation, as illustrated
in Figure A.2 (C). High-quality boundary delineation is critical for two-stage instance-
segmentation pipelines such as PlantSeg (chapter 3), where accurate boundaries are a
prerequisite for correct instance separation. By enforcing containment constraints between
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boundary and foreground predictions, clearer and more robust boundary segmentation
can be achieved. This is particularly useful in sparse-instance scenarios, such as those in
GoNuclear (chapter 2).

For instance, enforcing a constraint that the cytoplasm must be fully enclosed by the cell
membrane prediction can prevent gaps or inconsistencies in boundary segmentation. Without
such constraints, deep learning models may predict broken or incomplete boundaries, as
observed in Figure A.3. Ensuring that boundaries separate different compartments correctly
is essential for downstream analysis, particularly in cases where precise membrane delineation
is required to infer cell morphology, interactions, or subcellular organization.

In summary, topological interaction constraints offer a promising direction for improving
multi-channel bioimage segmentation, particularly in tasks that demand strong inter-channel
relationships or accurate structural delineations. While formulating these constraints for fully
differentiable instance segmentation remains challenging, further research in this direction
holds significant potential.

(A) Cell Surface Image (B) Closed Membrane Prediction (C) Open Membrane Prediction

Figure A.3: Potential effect of topological constraints on boundary segmentation. = Topological
constraints ensure that the cytoplasm is fully enclosed by the predicted cell membrane, preventing
gaps or inconsistencies. (A) A 2D Z-slice of the inverted negative channel from Figure 5.1. (B) A 2D
example of a mostly well-formed cell boundary prediction from the “vi plus” model in Figure 5.2,
though a small gap remains. (C) A 2D example of a broken cell boundary prediction from the “v2
mix-raw-label val” model in Figure 5.2, where the missing boundary violates containment constraints.

A.2 Contribution to PlantSeg

Since my participation as a core developer of PlantSeg, the rate of GitHub Star acquisition
has increased by 34.34% (Statistics by the end of 2024).

Channel Support

* Backward compatible key & channel params for config pipeline #165

¢ Fix Flow in GUI & Napari: key, channel, LMC in GUI; multi-channel UNet layers in
Napari #184

¢ Headless: Handle multi-channel prediction output and add docs #239

Prediction Support


https://github.com/kreshuklab/plant-seg/pull/165
https://github.com/kreshuklab/plant-seg/pull/184
https://github.com/kreshuklab/plant-seg/pull/239
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¢ feat(pred): check and free VRAM for prediction with oversized patch #2772
¢ Automatic patch shape recommendation #302
¢ Compute best patch and halo shapes by default, reduce user effort #307
¢ Fix size finder and widgets for 2D UNet #313
¢ Improve model filters | Use RadioButtons | Custom modality #314
e fix: allow more runtime errors in find_batch_size() #359
e fix: allow but warn all runtime errors in 3D find_a_max_patch_shape() #361
¢ PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285
- fix(enum): improve use of Enum in prediction widget
fix(prediction)!: properly handle multichannel output in prediction task
fix(task)!: properly handle multiple outputs
feat(widget-pred): create widget for adding custom models
fix(test-zoo): update use of torch.load()

Halo Support

Add validation, adaptation and halo to prediction widgets #211

Fix halo implementation and tiling artefact #220

Fix Tiling Artefact: intensity normalisation was correct #223

Recommend users a halo for U-Nets #252

PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285

— fix(halo): fix halo not used in v2

GoNuclear Support

* Add Zenodo record for generic plant nuclei model #169
¢ Rename generic plant nuclear model for paper submission #193

Biolmage.IO Support

¢ Central model records #216

Fix CYX/CZYX pad/halo, fix io.zarr/tests, fix typing, refactor model load #233
Biolmage.IO Core: Execute PlantSeg-compatible models by nickname #247
Biolmage.IO Core: Improve interface for PlantSeg models #248

Add inference API and task for all Biolmage.IO Model Zoo models #338

Documentation

¢ Add documentation folder and Actions for https://hci-unihd.github.io/plant-seg/ #179
¢ Redirect all Wiki links to new doc and improve READMEs #191

* Documentation: Migrate to MkDocs; update installation, README, and logo #230

* Doc: Data/models, train/add new models, Jupyter Book remnant #240

* Doc: Fix and update rescaling widget screenshot docs #259

* Doc: Add revision date and committer plugins #260

¢ fix: links in docs, docstring warning and theme override #269

e fix(docs): teach Qt to find napari icons #2771

¢ Fix and document distance transform watershed for 2D pmaps/images #318


https://github.com/kreshuklab/plant-seg/pull/272
https://github.com/kreshuklab/plant-seg/pull/302
https://github.com/kreshuklab/plant-seg/pull/307
https://github.com/kreshuklab/plant-seg/pull/313
https://github.com/kreshuklab/plant-seg/pull/314
https://github.com/kreshuklab/plant-seg/pull/359
https://github.com/kreshuklab/plant-seg/pull/361
https://github.com/kreshuklab/plant-seg/pull/285
https://github.com/kreshuklab/plant-seg/pull/211
https://github.com/kreshuklab/plant-seg/pull/220
https://github.com/kreshuklab/plant-seg/pull/223
https://github.com/kreshuklab/plant-seg/pull/252
https://github.com/kreshuklab/plant-seg/pull/285
https://github.com/kreshuklab/plant-seg/pull/169
https://github.com/kreshuklab/plant-seg/pull/193
https://github.com/kreshuklab/plant-seg/pull/216
https://github.com/kreshuklab/plant-seg/pull/233
https://github.com/kreshuklab/plant-seg/pull/247
https://github.com/kreshuklab/plant-seg/pull/248
https://github.com/kreshuklab/plant-seg/pull/338
https://hci-unihd.github.io/plant-seg/
https://github.com/kreshuklab/plant-seg/pull/179
https://github.com/kreshuklab/plant-seg/pull/191
https://github.com/kreshuklab/plant-seg/pull/230
https://github.com/kreshuklab/plant-seg/pull/240
https://github.com/kreshuklab/plant-seg/pull/259
https://github.com/kreshuklab/plant-seg/pull/260
https://github.com/kreshuklab/plant-seg/pull/269
https://github.com/kreshuklab/plant-seg/pull/271
https://github.com/kreshuklab/plant-seg/pull/318
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PlantSeg v2 docs base #320

Recover and document over-/under-seg fix by nuclei #321

PlantSeg v2: Finalise docs #322

¢ Document missing button issue #327

ci(docs): fetch all git history/tags/branches for MkDocs dates #366

Widgets

¢ Add widget: remove objects using a probability map #202
¢ Add important widgets and improve logger further #297
¢ Recover and document over-/under-seg fix by nuclei #321
¢ Add un-/re-do and save-/load-states for proofreading tool #323
¢ Add image pair operation widget/task/functionals/docs #370
¢ PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285
— Proofreading
+ feat(proofread): add proofreading code to new location
+ feat(widget-proofreading): create task and widget for removing false positives
— Segmentation
+ fix(task-seg): fix args and raise in agglomerative seg task
+ fix(widget-seg): fix args name conflict with magicgui
+ feat(widget-seg): create dt-watershed widget
+ feat(widget-seg): create lifted-multicut (LMC) task and widget

Usability

¢ Add option to only run official models in "Try all Available Models" #207

e refactor: use magicgui.types.Separator #311

¢ Fix TIFF default layer name and hide key widget #312

¢ Improve model filters | Use RadioButtons | Custom modality #314

¢ Fix and document distance transform watershed for 2D pmaps/images #318
¢ Fix and integrate lifted multicut widget into agglomeration widget #328

* Refactor and recover widgets: cropping and label processing #330

¢ PlantSeg v2: Final polishment of GUI #326

¢ refactor(GUI): rename and reorder widgets for intuitive sequential flow #331
¢ Fix smart load | Make extension check case-insensitive #368

Maintainability and Reliability

* Add validation, adaptation and halo to prediction widgets #211

¢ Fix Legacy GUI after v1.7.0 #237

¢ Group widgets for batch .hide() / .show() #317

¢ fix: widgets should have optional arg for updating other widgets #362

Refactoring Core

e Create PlantSeg.Core: ModelZoo, PlantSegImage, and VoxelSize #298
— feat(core)!: collect key custom classes into plantseg/core/
— fix(PlantSegImage): fix dataset name (key) mismatch


https://github.com/kreshuklab/plant-seg/pull/320
https://github.com/kreshuklab/plant-seg/pull/321
https://github.com/kreshuklab/plant-seg/pull/322
https://github.com/kreshuklab/plant-seg/pull/327
https://github.com/kreshuklab/plant-seg/pull/366
https://github.com/kreshuklab/plant-seg/pull/202
https://github.com/kreshuklab/plant-seg/pull/297
https://github.com/kreshuklab/plant-seg/pull/321
https://github.com/kreshuklab/plant-seg/pull/323
https://github.com/kreshuklab/plant-seg/pull/370
https://github.com/kreshuklab/plant-seg/pull/285
https://github.com/kreshuklab/plant-seg/pull/207
https://github.com/kreshuklab/plant-seg/pull/311
https://github.com/kreshuklab/plant-seg/pull/312
https://github.com/kreshuklab/plant-seg/pull/314
https://github.com/kreshuklab/plant-seg/pull/318
https://github.com/kreshuklab/plant-seg/pull/328
https://github.com/kreshuklab/plant-seg/pull/330
https://github.com/kreshuklab/plant-seg/pull/326
https://github.com/kreshuklab/plant-seg/pull/331
https://github.com/kreshuklab/plant-seg/pull/368
https://github.com/kreshuklab/plant-seg/pull/211
https://github.com/kreshuklab/plant-seg/pull/237
https://github.com/kreshuklab/plant-seg/pull/317
https://github.com/kreshuklab/plant-seg/pull/362
https://github.com/kreshuklab/plant-seg/pull/298
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- fix(PlantSegImage): improve _load_data(), explicit key, better .zarr check
Test and refactor .core and functionals.dataprocessing #303

Make VoxelSize iterable and array-like, remove .is_valid #310

Fix voxel size unit #343

— fix(I0): allow "micron" as a voxel size unit

— feat(I0): allow Image]-like unit name parsing, related to #288

— fix(VoxelSize): .io.utils is not used by .io but a module for VoxelSize
PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285

Fix File I/O

e fix(widget-I0): temp fix #282 and auto-generate layer name #304
¢ Properly refresh ComboBox choices with functions #305

Logging

¢ Unify and standardise logging in PlantSeg v2 #296

¢ Add important widgets and improve logger further #297

fix(logging): replace deprecated warn()s

feat(logging): unify logging

feat(logging) !: unify logging using simpler logger hierarchy
chore(logging): use module-level logger instead of print()
fix(logging): improve and make compatible vi PlantSeg Napari logger

Typing and Input Checking

¢ Type Fix: np.array is not a type, change to np.ndarray #231
¢ Fix CYX/CZYX pad/halo, fix io.zarr/tests, fix typing, refactor model load #233
¢ Improve use of Enum as widget choices and fix types #256
¢ fix(cropping): use RangeSlider to fix #278 | handle None image #2779
¢ PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285
- Type and Name
+ fix(ImageType): match ImageType to layer type
+ chore(trainer): improve types and variable names
+ chore(zoo): replace constants with Enum
+ fix!: do not use label, labels or _labels for widget names
+ fix(typing): Tuple and List are deprecated, use tuple and list
fix(typing): avoid mixed | and Optional, update docstring
— Axis Order
+ fix (I0): use consistent ZYX axis order, fix #289
+ fix(ImageLayout): change axis order _ XY to __YX, fix #289
+ fix(rescale): fix non-existent ImagelLayout
+ fix(I0): make ZCYX images CZYX at import, fix #294
— Tasks
+ fix(task): avoid unnecessary repetition in layer suggestion
+ fix(task): properly handle None layer suggestion

*


https://github.com/kreshuklab/plant-seg/pull/303
https://github.com/kreshuklab/plant-seg/pull/310
https://github.com/kreshuklab/plant-seg/pull/343
https://github.com/kreshuklab/plant-seg/pull/285
https://github.com/kreshuklab/plant-seg/pull/304
https://github.com/kreshuklab/plant-seg/pull/305
https://github.com/kreshuklab/plant-seg/pull/296
https://github.com/kreshuklab/plant-seg/pull/297
https://github.com/kreshuklab/plant-seg/pull/231
https://github.com/kreshuklab/plant-seg/pull/233
https://github.com/kreshuklab/plant-seg/pull/256
https://github.com/kreshuklab/plant-seg/pull/279
https://github.com/kreshuklab/plant-seg/pull/285
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Testing

* Tests for rescaling widget #258

Test: Fix always-skipped test and misleading name #262

Tests: Fix all existing tests #299

Test and refactor .core and functionals.dataprocessing #303

CI

e Use pre-commit #263

® chore: migrate from bumpversion to bump-my-version #266

e chore(pre-commit): add conventional commits #267

e Use Codecov #300

¢ PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285
— chore(ruff): enable isort (I) for import
— docs(ci): check CI before writing tests for v2

Installation & Environment

* Dev Env: Add Biolmage.IO Core dependency and fix CUDA installation #229
e fix(installation): remove old configs if KeyError | macOS installation #277
¢ Fix version related issues: bump version, comparison and Anaconda upload #333
e fix(env): Pydantic v2.10 causes bioimageio.spec issues #363
¢ Fix and promote PlantSeg v1 installation #364
¢ PlantSeg v2: full codebase refactor with unified task framework, enhanced
prediction/proofreading, and metadata handling #285
— chore(env): improve development environment configuration file
— chore(env): fix environment due to Anaconda’s new policy for EMBL
- chore(env): improve environment configuration with default channel absent

GUI

¢ Napari GUI: Fix voxel size precision, font size, and rearrange widgets #227
¢ fix: avoid reading logo file from docs folder #336
* Match conda recipe and include package_data logo #348

A.2.1 Contribution to PlantSeg by Others
Bug Fixes
e fix: remove_false_positives_by_foreground_probability only works in 3D #353 #354

Training

¢ Add support for training #159

I/O0


https://github.com/kreshuklab/plant-seg/pull/258
https://github.com/kreshuklab/plant-seg/pull/262
https://github.com/kreshuklab/plant-seg/pull/299
https://github.com/kreshuklab/plant-seg/pull/303
https://github.com/kreshuklab/plant-seg/pull/263
https://github.com/kreshuklab/plant-seg/pull/266
https://github.com/kreshuklab/plant-seg/pull/267
https://github.com/kreshuklab/plant-seg/pull/300
https://github.com/kreshuklab/plant-seg/pull/285
https://github.com/kreshuklab/plant-seg/pull/229
https://github.com/kreshuklab/plant-seg/pull/277
https://github.com/kreshuklab/plant-seg/pull/333
https://github.com/kreshuklab/plant-seg/pull/363
https://github.com/kreshuklab/plant-seg/pull/364
https://github.com/kreshuklab/plant-seg/pull/285
https://github.com/kreshuklab/plant-seg/pull/227
https://github.com/kreshuklab/plant-seg/pull/336
https://github.com/kreshuklab/plant-seg/pull/348
https://github.com/kreshuklab/plant-seg/pull/354
https://github.com/kreshuklab/plant-seg/pull/159
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¢ Extend channel selection #212
* Fix h5 export #335
* New export widget #341

Proofreading

¢ Proofreading improvements #355

Headless

¢ Improved Headless + GUI #356

Documentation

e API docs | Docs screenshots | Refactor rescaling | Rearrange widgets #249
¢ Fix docs build in the CI #257

Installation

* Fixes PlantSeg crash on Apple Silicon #2773 #275
¢ Fix performance on Mac #337
¢ fix (#344): update Windows install instructions #347

Removed Features

¢ Add widget manager for extra-pred and extra-seg #221

A.3 Complementary Figures and Tables

N | Label Raw — negative negative + actin (pro)
4 ilastik initial initial-pro

9 ilastik initial plus initial pro plus

9 ilastik initial plus val initial pro plus val

9 initial second (val) second pro (val)

9 ilastik +initial second max second pro max

9 ilastik +initial second max rand second pro max rand

9 ilastik +initial second max val second pro max val

9 ilastik +initial second maxrand val second pro max rand val

Table A.3: All Actin Models with Old Names. This version matches files on EMBL storage. Termi-
nologies: the initial model is trained with 4 pairs of negative-ilastik images as raw-label input; plus
models are initial models trained with 5 more raw-label image pairs; val models are only validated
with segmentation generated from the initial model; pro models use an extra actin channel; max
models are second models using segmentation generated from the initial model in addition to ilastik
labels used in training initial models; rand models have training configurations with randomised
order of file paths where an ilastik label is first, other models have alternating initial-ilastik labels.


https://github.com/kreshuklab/plant-seg/pull/212
https://github.com/kreshuklab/plant-seg/pull/335
https://github.com/kreshuklab/plant-seg/pull/341
https://github.com/kreshuklab/plant-seg/pull/355
https://github.com/kreshuklab/plant-seg/pull/356
https://github.com/kreshuklab/plant-seg/pull/249
https://github.com/kreshuklab/plant-seg/pull/257
https://github.com/kreshuklab/plant-seg/pull/275
https://github.com/kreshuklab/plant-seg/pull/337
https://github.com/kreshuklab/plant-seg/pull/347
https://github.com/kreshuklab/plant-seg/pull/221
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Clustering Execution 'lime for SPOCO@o.1 Clustering Execution 'lime tor SPOCO
250 1 1
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Figure A.4: Pixel Embedding Clustering: Computational Efficiency. The left plot shows SPOCO@o.1
(trained with 10% of instance masks), the right plot shows the fully supervised SPOCO. In both,
higher dimensionality inflates runtime for HDBSCAN, mean shift, and consistency clustering. Mutex
Watershed is consistently faster, and SAM (on GPU) completes each image in seconds, about an order
of magnitude slower than Mutex Watershed but far faster than the other algorithms. An identical plot
with log y scale is in Figure 4.15.

0 SBD against Semantic Ground 'Iruth for SPOCO@o.1 SBD against Semantic Ground Iruth tor SPOCO
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Figure A.5: Pixel Embedding Clustering: Accuracy. SBD(ground truth, binary segmentation) is plotted
for the SPOCO@o.1 model (left) and the fully supervised SPOCO (right). Increasing the number of
PCA components does not necessarily improve semantic accuracy. Notably, 4-5 components already
suffice in most cases. A simplified clear version is in Figure 4.13.
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