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Abstract

We develop a functional integral formalism for classical many-body systems based
on the Klimontovich equation, which governs the exact evolution of the N-particle
phase-space density without loss of microscopic information. Since no assumptions
are made on the exact form of the initial state, this formalism is well suited to
describe out-of-equilibrium systems. The formalism is discussed in detail and com-
pared to alternative approaches. Analytical solutions to the tree-level equations for
homogeneous systems are presented. Importantly, a first application to cosmic large
scale structure formation is given, and numerical results are discussed. We present
one-loop results for the density fluctuation power spectrum which agree well with
results from numerical simulations and conventional approaches.

Zusammenfassung

Wir entwickeln einen Funktionalintegral-Formalismus fiir klassische Vielteilchen-
systeme, der auf der Klimontovich-Gleichung basiert. Diese beschreibt die exakte
zeitliche Entwicklung der N-Teilchen-Phasenraumdichte, ohne mikroskopische Infor-
mationen zu verlieren. Da keine Annahmen tiber die genaue Form des Anfangszus-
tands gemacht werden, eignet sich der Formalismus besonders gut zur Beschreibung
von Nichtgleichgewichtssystemen. Wir prasentieren den Formalismus im Detail und
vergleichen ihn mit alternativen Ansétzen. Analytische Losungen der Tree-level-
Néaherung fiir homogene Systeme werden présentiert. Eine erste Anwendung auf die
Entstehung grofirdumiger kosmischer Strukturen wird vorgestellt und numerische
Ergebnisse werden diskutiert. Insbesondere zeigen wir Ein-Schleifen-Ergebnisse fiir
das Leistungsspektrum der Dichtefluktuationen, die gut mit numerischen Simulatio-
nen und etablierten Methoden tibereinstimmen.
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Introduction

The central object of this thesis is the development and application of methods for
the study of in- and out-of-equilibrium classical many-body systems. The range of
applicability for such methods ranges from laboratory systems such as plasmas to
cosmic structure formation. To study such systems, numerical N-body simulations
have become the standard method. These are, however, computationally expensive,
especially for systems with long-ranged interactions, and heavily tailored to each
particular application. Although they can successfully reproduce results for those
systems they were designed to simulate, they are not suitable as a general framework
to gain a fundamental understanding of many-body physics.

The general idea is, therefore, to establish an analytical approach for the study
of classical N-particle systems based on the path integral formulation of classical
mechanics. This functional integral formulation provides a general framework which
allows us to describe systems in- and out-of-equilibrium and makes the application
of non-perturbative methods from quantum field theory to classical systems possible.
Our main interest is then to study the structure formation and evolution in terms
of n-point correlation functions of the Klimontovich phase-space densities in the
context of cosmology.

The universe today is incredibly rich in structure: From galaxies that accumulate
to clusters and filaments up to the celebrated cosmic web. However, high redshift
observations of the Cosmic Microwave Background (CMB) reveal that the structures
once emerged from a nearly perfectly homogeneous matter distribution, with only
tiny fluctuations present. The study of cosmic large scale structure formation is
thus the study of how these initial fluctuations have evolved into the structures we
observe today. So far, numerical N-body simulations provide the most accurate
results for cosmic structure formation. They are built on the simple idea of prop-
agating particles according to Newtonian dynamics. Although they reproduce the
observable structures in accordance with available observational data, they come
expectedly with high computational cost and offer only limited insight into the
underlying physical processes governing cosmic structure formation. Thus, to develop
a deeper theoretical understanding, numerical simulations have to be complemented
by analytical approaches.

The prospect of newly available data from current and next generation surveys
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such as Euclid, LSST and SDSS [1, 2, 3] has sparked a renewed interest in progressing
existing analytical methods for the description of structure formation, which are
needed in order to analyze the available data. The most prominent approaches,
such as SPT, EFT or EFTofLSS [4, 5, 6, 7, 8, 9, 10, 11], are based on the set of
hydrodynamical equations obtained from the Vlasov equation by taking its moments
with respect to the momentum. As this procedure results in an infinite hierarchy of
coupled differential equations, since each moment depends on the next-higher one, a
truncation must be introduced to close this hierarchy. A typical truncation procedure
is to use the single-stream approximation (SSA) which neglects the shear tensor
appearing in the second moment of the Vlasov equation, i.e., the energy-momentum
tensor. This truncation is well-justified, if a quasi-equilibrium is assumed, where the
system can be fully described by its collisional invariants and transport effects are
absent. However, as recent works suggest, this assumption may not hold for cosmic
structure formation so that higher moments of the Vlasov equation have to be taken
into account [12, 13, 14, 15]. Doing so, however, requires the introduction of initial
conditions for higher moments of the Vlasov equation which cannot be assumed
to be Gaussian and which cannot be inferred as easily from measurements of the
Cosmic Microwave Background as is the case for the density and velocity field. In
addition, there is no longer a valid justification to truncate the hierarchy of moments
at a specific order since the assumption of a quasi-equilibrium clearly no longer holds.
It is, therefore, desirable to work with the full phase-space information of the system
and to avoid introducing a truncation based on the moments of the distribution.
In this thesis we present two approaches based on the path-integral formulation of
classical mechanics which allow us to do that.

In the early 1930s, Bernard Koopman [16] and John von Neumann [17] constructed
an operatorial formulation of classical mechanics, in close analogy to the then newly
established formalism of quantum mechanics. A few decades later, this idea was
generalized by Martin, Siggia, and Rose [18]—mnow known as the MSR formalism—to
more general deterministic and stochastic systems. Functional integral methods were
subsequently introduced by Janssen and DeDominicis [19, 20, 21], who were able
to reproduce and further generalize the results of MSR to systems with arbitrary
deterministic and stochastic forces, therefore referred to as the MSR/JD formalism.
Building on these developments, Gozzi et al. [22, 23] extensively studied and pioneered
a systematic path-integral formulation of classical Hamiltonian mechanics, directly
grounded in the Koopman-von Neumann framework. The underlying idea behind all
these developments was to apply the wealth of existing functional methods—most
prominently the Dyson-Schwinger equations of motion—to classical systems [24]
with the goal of formulating classical statistical mechanics in the same language, and
with the same generality and rigor, as quantum field theory [18]. After providing a
basic introduction to classical statistical mechanics in 2, we briefly summarize the
path-integral formalisms of KvN and MSR/JD in 3.

We use the KvN path-integral formulation in chapter 4 to derive a formal solution
to the Liouville equation [25] and set up a perturbation theory which allows us to
compute unequal-time correlation functions of the Klimontovich phase-space density.
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The idea behind this perturbative approach is the propagation of individual particles
along their respective trajectories and the inclusion of particle interactions order by
order in the interaction potential. This is, of course, not a novel idea and bears a
resemblance to the resolvent theory developed by [26], the theory developed by [27,
28] and corresponds to the idea of the Kinetic Field Theory approach developed and
extensively studied by [29, 30, 31]. It is clear that such a perturbative approach can
be insufficient to deal with realistic systems as the convergence of such a perturbation
theory is too slow. We, therefore, take this perturbative approach as a starting point
for the derivation of a field theory which allows us to resum certain effects.

The path integral formulation of chapter 4 makes it convenient to develop a
resummed field theory for microscopic particles by applying a Hubbard-Stratonovich
transformation (HST) [32, 33] to the generating functional in chapter 5. The HST
leads to an effective field theoretic description which contains the full statistics of
the microscopic system in its vertices. Such an approach was first explored in [34,
35], but was derived differently. While this approach allows us to resum certain
microscopic effects and yields viable results for cosmic large-scale formation, its
vertex structure poses a major difficulty.

The main result of this thesis is developed and presented in chapters 6 and 7.
Building on the methods described in [21, 36, 37] a new approach based on the
path-integral of classical mechanics and the Klimontovich equation is developed.
Instead of microscopic particle trajectories, this field theory is directly built on the
dynamics of the fields themselves. In chapter 6 we first provide an intuitive derivation
for the new field theory and make the connection to the resummed field theory of
chapter 5. Next, in chapter 7 we then present a technical and complete derivation of
the theory and derive the associated Dyson-Schwinger equations. The specification
of the formalism to statistically homogeneous and isotropic systems is presented in
chapter 8, where analytical solutions are discussed.

After providing a basic introduction to cosmology in chapter 9 and specifying the
dynamics and initial conditions for the ensemble of cosmic particles in the Universe
in 10, we finally present the results for the density-fluctuation power spectrum up
to first-loop order and the tree-level result for the bispectrum 11 obtained in the
frameworks developed in this work.
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Path Integrals for Classical N-Particle
Systems - Particle Picture






General Concepts of Classical
Statistical Mechanics

In this first chapter we briefly recap the most important concepts of classical statistical
dynamics that we are going to use throughout this work. We first introduce the
statistical ensemble as a whole, discuss the interparticle interactions and free motion,
before turning to the probabilistic description, including the concept of correlations
and the dynamical evolution equations. Throughout the whole chapter we follow [26,
38, 37], and we reference further literature when appropriate.

2.1. Hamiltonian Mechanics of N Particles

We consider a classical dynamical system composed of IV identical point-like particles
confined to a volume V C R3. The instantaneous spatial state of the system is
specified by the positions q; € V,j =1 ..., N of all particles at a given time ¢. The
space of all such possible position configurations defines the configuration space of
the system,

Q = {(d, ..., dn)| G € VCR’, } CRW. (2.1)

In order to describe the exact microscopic state, one has to additionally include
the particles’ conjugate momenta p; € R?, such that each particle is characterized
by its six-dimensional phase-space coordinate' x; = (q;,p;), 7 = 1,...,N. The
coordinates (q;, pj) are often referred to as the canonical variables. At any given
time ¢, the exact microstate of the system is therefore entirely specified by the set
{xj}évzl of particle phase-space coordinates which together constitute a point in a
6 N-dimensional combined phase-space, which we will refer to as I'-space,

I'= {(Xl,Xg7 c. ,XN)’ X; = (aj76j)7 aj eV C RS, |3j S R3} C RGN . (22)

Therefore, any point {x;} € I' represents a specific microscopic configuration of the
system.

Due to the indistinguishable nature of the particles, most quantities of interest,

Tn general, §; and p; are the generalized positions and momenta of the Hamiltonian system.
They can additionally represent internal degrees of freedom, if the particles under consideration
are not strictly point-like.
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such as the Hamilton function, depend on the entire particle ensemble. Therefore, to
simplify notation and avoid excessive indexing, following [29] we collect all quantities
with a particle index into multi-particle tensors, i.e.,

N

=D Ail) @ej, (2.3)

where e; is the N-dimensional canonical unit vector in RY. This allows us to collect
the coordinates of I'-space into a single object, x = (X, xa, ..., Xy), representing the
state of the system. Furthermore, the scalar product between two tensor-valued
objects A and B decomposes as

N

N
Z i ®e) - (B;®ej) Z AiBjei-ej => AB;. (2.4)

= 7yi=1
=i

Functions depending on all particle positions can be compactly written as F'(x,t)
and the integration measure on ['-space is given by

dNx = d*Nqd*Np = dgdp = dx. (2.5)

The time evolution of the system is then given by a trajectory x(t) in I'-space.
Thus, in order to understand the time evolution of the system as a whole we need to
understand the dynamical laws governing the motion of the individual particles. In the
Hamiltonian description of classical mechanics these dynamics are fully determined
by the (possibly time-dependent) Hamiltonian function H(x,t), which, in many
physical systems, corresponds to the total energy. More precisely, the individual
trajectories are subject to the Hamiltonian equations of motion

d d

4 ) =V H({xht), 25 (t)=-VsH({x;}t), j=1....N. (26)

Introducing the canonical symplectic structure

0 15,3 66
w= e R™%, (2.7)
_13><3 O

the above equations can be brought into a compact form,
x](t):wvxj H({Xj},t), jzl,...,N, (28)

where V., = (Vg, Vﬁj)T denotes the gradient on the single-particle phase space.
Bundled together in the tensorial notation, we find

x(t) = w-V, H(x, 1), (2.9)
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where w is the N-particle generalization of the symplectic structure,
w:w®1NxN. (210)

Supplemented by a suitable initial configuration xV = x(t = ¢) at initial time
t® the solution to the equations of motion (2.9) exists and is unique?. The initial
configuration x) € T is then mapped to xq(t) € " at a later time ¢ > t® under the
Hamiltonian flow,

o T =T, xV s xg(t) =0, (xD, D), with & =id. (2.11)
We call x(t) the classical trajectory in T'-space. Importantly, the flow is symplectic,
{meq)il(x(i)at(i))r w- {meq)il(x(i)at(i))} =w, (2.12)

which in turn implies that the flow is also volume preserving,
det (V0 @ (xW,t0)) = 1. (2.13)

This statement is famously known as the Liouville theorem, which is a cornerstone
of classical statistical mechanics.

The total time derivative of a sufficiently smooth function f(x,t) : I' x R — R,
depending on the canonical variables of all N particles, is given by

d T - 0
G (0. 0) =V F O 1)%(0) + 5 f (%, 1)

(2.14)
=V, f(x,t)-w-V H(x,t) + gtf(x, t),

where we applied the chain rule and inserted the Hamiltonian equations of motion
(2.9)3.

2Here and in the following we assume that all functions are sufficiently smooth, such that no
problems arise from a purely mathematical point of view.

3At this point, standard textbooks usually introduce the N-particle Poisson bracket between two
functions f(x,t) and g(x,t) as

N
{00,900} = 3 (VI Fx1) - Vg, 9(x,8) = VI g(x,8) - Vi, F(x,)) (2.15)
j=1
such that the total time derivative becomes:

d 0
af(x,t):{f(x,t),H(x,t)}+&f(x,t),. (2.16)

Throughout this thesis, we use the symplectic structure w rather than the Poisson bracket for
notational convenience. Both are, of course, equivalent and related via

{f(x,),9(x, 1)} = Vy f(x,1)-w-Vyg(x,1). (2.17)
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We conclude this short summary of classical mechanics by emphasizing again
that the Hamiltonian equations of motion (2.9) are fully deterministic: once the
Hamiltonian function H(x,t) is specified and supplemented by an initial particle
configuration x| the evolution of the system is uniquely determined. Accordingly,
there is one and only one trajectory through each individual point in I'-space. In the
next two sections we, therefore, discuss the specific form of the Hamiltonian function
and the subtleties concerning the initial configuration in more detail.

2.1.1. The N-particle Hamiltonian Function

In most physically relevant systems, the Hamiltonian H(x,t) is too complex to
allow for a closed-form solution of the equations of motion. Therefore, one usually
decomposes H(x, t) into an exactly solvable part Hy(x,t) and a residual part Hiy(x,t)
which accounts for interactions,

H(x,t) = Ho(x,t) + Hine(x, 1) . (2.18)

Typically, this latter part arises from an external potential or, in the case of multi-
particle systems, from inter-particle interactions. This decomposition allows to
incorporate the interactions in a given approximation procedure around the exact
solution which hence serves as a reference trajectory in the formulation. Let us first
discuss the dynamics given by Hy(x,t), before considering the more complex case
involving interactions.

Free Hamiltonian To enable an analytic treatment, we assume that Hy(x,t) is
quadratic in the phase-space coordinates. This structure ensures that the correspond-
ing Hamiltonian equations of motion are linear and can, in principle, be solved using
the method of Green’s functions. More specifically, we demand that

Hy(x,t) = ;XT-A(t)-X, (2.19)

where the symmetric, possibly time dependent matrix A(t) contains information
about the free motion, and may also receive harmonic contributions that may be
included in the exactly solvable dynamics. Since the particles are indistinguishable,
the contributions to A(t) have to be the same for all particles, i.e.,

At) = A(t) ® Lyxy - (2.20)

Throughout this work we will refer to Hy(x,t) as the free Hamiltonian, meaning
the exactly solvable part of the dynamics, regardless of whether it describes purely
non-interacting or including harmonic motion. The corresponding free Hamiltonian
equations of motion are then given by

xOt) =w- A(t) - xO(t), (2.21)

which, due to their linearity, admit a solution in terms of a retarded Green function
for a free particle G(t,t"). It maps the initial phase-space coordinate x) to the
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(0

later coordinate xd)(t) at time ¢ according to

V(1) = G(t,t0) . xD . (2.22)

cl

Clearly, the free-particle Green function is identical for every particle,
G(t,t') =Gt t) @ 1yxn, with Gt 1) O —1), (2.23)

where the Heaviside function ensures the causal propagation of particles. The
single-particle Green function can generally be decomposed into four 3 x 3 blocks,

Y9qq (t7 t,)13><3 gqp(tv t,)13><3
gpq(tat/)13x3 gpp(tat/)l?)x?)

G(t,t) = ( ) ot —t), (2.24)

where the ¢’s describe the mapping of the phase-space positions and momenta at
earlier times to the ones at later times. We find for the components of the respective
trajectory,

G5(6) =0uo (14" + g1, 175
. j=1,...,N. (2.25)

Pi () =pa(t, t(i))a}I) + Gpp (1, t(i)>5j(1)

Therefore, solving the equations of motion directly for the components gq(t,t') is
equivalent to solving for the full Green’s function G(¢,t'). In order to establish
a connection between the particle Green function G(t,t') and the matrix A(t),
one finds, by substituting the formal solution (2.22) into the equations of motion
(2.21), that the retarded Green’s function satisfies the inhomogeneous symplectic
flow equation

lgf“" A(t)] Gt 1) = 0p (t— 1) Loweon, GUEE) =0 (t<t). (2.26)

The general solution to the above equation is given by the time-ordered exponential,
A t -
G(t,1') = T exp [ | diw- A(t)}@(t—t’). (2.27)
t/

Since this form is usually quite complicated to handle due to the generally non-
commutative structure of the generator w - A(t), we can employ a Magnus expansion
[39] which replaces the above time-ordered exponential by a true matrix exponential,

G(t,t") = exp {Q(t, t’)} ot —t), (2.28)
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where the matrix operator Q(t t') is given by a series expansion of nested commutators
of w-A(t), i.e., Qt, ") = >, Q,(t, t'). The first terms read

Ot 1) = tltdtlw-A(tl) (2.29)
/t/ dtl/t dtg w A tl) w - A(tg)] (230)
Oyt ) :é /;dt1 /ﬂ“ dt /f dtg([w-A(tl),[w-A(tQ),w-A(tg)]] (2.31)

+lw - Alts), [w - Alty), w - A(tl)]}) (2.32)

with the matrix commutator [A, B] = A+ B — B - A. In particular, if w - A(t)
commutes with itself at different times, the solution is given by

G(t.t) = exp [ : dfew - A(t)] ot — 1. (2.33)

The Green’s function, being derived from a Hamiltonian flow (2.26), possesses several
important properties that are analogous to the general properties of the Hamiltonian
flow (2.12) and (2.13). First, it is symplectic, i.e.,

G'(t,t) w-Gtt)=w, Vt>t, (2.34)

which reflects the preservation of phase-space volume and the canonical structure un-
derlying the free Hamiltonian evolution. An immediate consequence of symplecticity
is that the determinant of G is unity,

det (G(t, 1) =1, Vi>t. (2.35)
Moreover, the Green function satisfies the additivity property,
G(t,t") =Gt t) -G "), Yi>t >1t". (2.36)

This property follows directly from the uniqueness of solutions to the linear equations
of motion and reflects the fact that evolving the system in two steps is equivalent to
evolving it in one. This concludes our discussion of the free motion.

Interacting Hamiltonian Moving on to the interacting part, we recall that it will
generally be a function of all N particles,

Hig(x,t) = Hine (21, ..., TN, ). (2.37)

Since the particles are identical and therefore indistinguishable, Hiy (21, ..., zN, 1) is
necessarily symmetrical under any permutation of the particles, i.e., Vi,7 =1... N,
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we have
Hmt(l’l,...,xi,...,ZL’j,...,J]N,t) = Hmt(l’l,...,xj,...7ZEZ',...,ZL’N,t>7 (238)

and may thus be uniquely decomposed as

N

N

1

Hine( Z 1(xi,, 1) 2' Z Vo (Xiy s Xin, t) + ..+ on (21, .. N, t) . (2.39)
=1 " iria=1

The functions vy are non-additive symmetric functions of k variables and are referred
to as k-particle potentials*. The indistinguishability of the particles implies that v,
must be identical for each particle, and likewise for vy and all higher-order interaction
potentials. The combinatorial prefactor % compensates the overcounting of particle
pairs in the summation. In almost all cases of interest® v, = 0 for k > 2, which is
what we are going to assume throughout this work. Thus, we find

N

1
1nt Z’Ul Xz, 2| Z UQ(Xi,Xj,t). (240)

i#j=1

The single-particle potential v;(z;,t) describes the influence of a time-dependent
external potential on the motion of particles, for instance due to an external electric
or magnetic field. In general, it can depend on the particle position and momentum.
The possibly time-dependent two-particle potential vy(x;, z;,t), on the other hand,
governs the pairwise interactions between particles. Typical examples would be the
Newtonian gravitational interaction potential or the Lennard-Jones potential.

With the dynamical evolution governed by the Hamiltonian function now estab-
lished, we next turn to the discussion of initial conditions, which are required to
uniquely determine the system’s trajectory through phase space.

2.1.2. The N-Particle Phase-Space Density

Given the exact positions and momenta of all particles at some initial time ¢t
the deterministic nature of the Hamiltonian equations of motion ensures that their
values at any late time are uniquely determined. However, for systems with a very
large number of particles, N > 1, this microscopic information is neither practically
accessible, nor is it necessary. In most cases one is not interested in the precise
state of every individual particle, but rather in collective phenomena, such as density
correlations or phase-transitions, that are properties of the particle ensemble as a
whole. This gives rise to the idea of a probabilistic description of the system. Instead
of specifying the exact microstate of the system, one investigates the probability of

4In the above decomposition we have neglected the zero-particle potential vy which has to be a
constant and thus does not appear in the equations of motion.

5In practice, one rarely encounters an explicit three-particle interaction as a fundamental term
in the classical Hamiltonian. Those effects usually emerge as effective contributions from
underlying two-body potentials. Nonetheless, extending our phase-space formalism to include
such higher-order k-particle potentials is straightforward.
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finding the system in a given microscopic configuration. One therefore introduces the
N -particle Liouville phase-space density distribution (from here on called Liouville
phase-space density) on(x,t) at time ¢ on I'-space. It is always non-negative and
normalized to unity,

on(x,1) >0 ¥ x,¢, and /dGNx on(x,1) =1, (2.41)
T

where the integration runs over the whole I'-space. Thus, gy (x,?)dx describes the
probability of finding the system in the infinitesimal volume dx around the specific
microstate x. We may therefore see the position x in the 6 N-dimensional phase-space
as a random variable with probability distribution oy (x,t). The fact that particles
can neither be destroyed nor created in the full I'-space, combined with the volume
preserving property of the Hamiltonian flow (2.13), implies that the phase-space
density must remain constant along the trajectories of the system. In other words,
the total time derivative of pn(x,?) must vanish. From the general expression (2.14)
for the time evolution of functions in phase-space, we deduce the N-particle Liouwville
equation,

0
0= pr on(x,t) + V. on(x,t)w-V,H(x,t), (2.42)
which may be written as
0 ~
aQN(X’t) = L(t) on(x,t), (2.43)
with the Liouvillian A
L(t) =V]H(x,t)w-V,. (2.44)

Inserting the decomposition of the Hamiltonian function (2.18) into free and inter-
acting dynamics, we find the analogous decomposition of the Liouvillian,

A

L(t) = Lo(t) + Lin(t). (2.45)

The Liouville equation can be interpreted as a 6 N-dimensional continuity equation
describing the conservation of the total probability density in I'-space. The knowledge
of the Liouville phase-space density at a given time ¢, thus, provides us with the
complete information about the system’s macroscopic state. In the next section we
will therefore define how actual macroscopic quantities can be computed from it.

Before concluding, we note that the Liouville equation, due to its linearity, admits
the formal solution,

on(x,t) = U(t,19) oQ(x),  with oJ(x) = on(x,t=tD).  (2.46)

The operator U (t,tW) is called the time-evolution operator of the Liouville equation
and is given by

A . A t A

U(t,tV) = Texp[ ) dtlﬁ(tl)] : (2.47)

t(

where 7 is the time-ordering operator necessary if the Liouvillian is explicitly time-
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dependent. The Liouville propagator describes the deterministic time evolution of
the entire phase-space distribution. Thus, once an initial phase-space density is
specified the statistical state of the system is, in principle, exactly known at all later
times. However, the exact form of the Liouville propagator (2.47) is too abstract
to be practically useful. Hence, we need to find a different approach to solving the
Liouville equation. The standard approach summarized in the forthcoming sections is
based on the idea of reducing the number of relevant degrees of freedom and deriving
differential equations similar to the Liouville equation (2.42) that approximate the
exact evolution.

2.2. Observables and Expectation Values

The previous discussion makes it clear that one has to distinguish between the
microscopic description of the system and the macroscopic description. While
the former contains the detailed particle-level dynamics and is therefore generally
inaccessible to our measurements, the latter provides a coarse-grained view of the
system that does not rely on the exact microscopic state.

In order to connect both levels of description we first introduce the concept
of (microscopic) dynamical functions that represent a specific physical property
associated with the microscopic degrees of freedom. On a mathematical level, a
dynamical function is defined as a function b(x) = b(z1,...,zy) on the full 6.V-
dimensional phase space which, thus, depends on the exact microscopic configuration®.
The same reasoning as for the interacting Hamiltonian (2.39) leads to the general
decomposition

N 1 N
b(l‘l, ce ,.ZEN) = bo—l- Z bl(le)"i_g Z bz(l’il,xb)—i-. . .+bN($1, ce ,.CCN), (248)

i1=1 t i1 #ie=1

where by is symmetric, non-additive function of s phase-space coordinates. Therefore,
we refer to by as the irreducible s-particle contribution to the dynamical function b
as it involves information of s distinct particles. In general, we will be interested in
dynamical functions with only a small number of irreducible s-particle contributions.
The dynamical functions generally exhibit strong fluctuations that are due to the
discrete nature of the particle description.

We can now define the macroscopic observable associated to the dynamical function
b(x) by taking the ensemble average over the Liouville phase-space density at time ¢,

B(t) = (b(x)) = / dx b(x)on (x, 1) . (2.49)

We, thus, sum over multiple realizations of the microscopic quantity b(x), weighted
by the respective probability at time ¢. Importantly, in the above picture, the time

SHere, we assume for simplicity that the dynamical functions are not explicitly time-dependent,
i.e., their time-dependence solely arise via the particle trajectories.
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dependence of the observable B(t) is contained in the Liouville phase-space density,
such that we can refer to the above description as the Schréidinger picture in close
analogy to quantum mechanics. We may just as well consider the case where the
phase-space density 953 (x1) is specified at initial time t®) once and for all, and let
the particles evolve along their respective Hamiltonian trajectories, which explicitly

enter the dynamical function itself. In that picture, the time evolution is given by

B(t) = / dxb(xalt:x,19)) o0 (x ), (2.50)

where we made the parametric dependence of the classical trajectory on the initial
conditions explicit, (cf. (2.11)). In the latter picture, the time evolution is contained
in the microscopic degrees of freedom and thus in the dynamical functions, while the
probability density remains constant in time. Ensemble averaging then corresponds
to drawing multiple realizations of the initial particle coordinates and evolving each
along its respective trajectory. Thus, randomness enters only in the initial uncertainty
of the particle positions. We will refer to this picture as the Heisenberg picture of
statistical mechanics. Both pictures are, of course, equivalent”. Throughout this
work, we will generally adopt the intuition of the Heisenberg picture, specifying an
initial Liouville density and describing the evolution of the system via the resulting
approximate particle trajectories.

2.2.1. The Klimontovich Phase-Space Density

Our main macroscopic observables of interest are the local densities, which associate
a physical quantity, such as mass, momentum, or energy, to a specific region in
physical space. These local densities are typically continuous® functions. In contrast,
the corresponding microscopic dynamical functions are highly discontinuous, as
they depend on the exact positions and momenta of individual particles which are
discretely distributed in physical space. To bridge the microscopic and macroscopic
descriptions, we introduce the p-space, as opposed to the 6 N-dimensional I'-space,
as the six-dimensional phase space of a single particle, spanned by coordinates®

"Indeed, from the general time-evolution of a function in phase-space, described by (2.14), we find
for the dynamical function and equation similar to Liouville’s equation,

d .
Hx() = —LOb(x(1)).

We note the important sign difference compared to the Liouville equation (2.43). The equivalence
between the two pictures can be made explicit by a partial integration over phase space, assuming
that the N-particle Liouville density vanishes sufficiently rapidly at infinity. This yields

Lb(x(t))ﬁ(t)gzv(x,t) = /

r

(—Lwix(e) on(x.1).. (2.51)

showing that the time evolution can equivalently be assigned either to the phase-space density
or to the dynamical observables [26].

8When considering boundaries in physical space, the local densities are given by piece-wise
continuous functions.

9In order to make the distinction between the coordinates in p- and I'-space clear, we denote
coordinates in I'-space by sans serif letters, e.g., x = (g, p). This will avoid confusion when the
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r = (¢,p). A microstate of the system can now equivalently be represented by N
points in p-space, corresponding to the N particles. The microscopic number density
of particles at a given u-space coordinate x is given by the Klimontovich phase-space
density ®¢(x,t), defined as

N

Dp(z,t) =D 0p (x —x(t)) , (2.52)

i=1

where every particle contributes a term dp (z — x;(t)), meaning that either particle
7 is not located at x and does not contribute, or it is located at x and contributes
an infinite amount due to the point-like nature of the particles. It is clear that @
is a highly discontinuous object, with a sharp peak at every particle position, that
contains the full phase-space information. It maps the 6 N-dimensional I'-space to
the six-dimensional p-space. The corresponding macroscopic density is obtained by
averaging @ over the whole particle ensemble. We define the one-particle reduced
phase-space density at time t and position z as,

filz,t) = (Pf(x,t)) = /dx;&) (x —x;(t)) on(x,1), (2.53)

which describes the expected number of particles in an infinitesimal volume around
the point z in p-space at time ¢t. The function f; is smooth by construction and
forms the starting point for a coarse-grained macroscopic description. Note, that by
its definition, fi(x,t) is normalized as

/ % fi(z,t) = N. (2.54)

Many local densities can now be derived from ®; or f;, respectively. At each point ¢
and time t of physical space, the local physical densities can generally be defined as
the momentum average of a function Fp(q, ) w.r.t. the one-particle phase-space
density fi(z,1),

O(.t) = [ d*pFold. ) 1(@.7.1). (2.55)

Here, the function Fip(q, p) encodes the physical quantity that one wishes to measure
at ¢. An important class of local densities are those for which the function Fp only
depends on the momentum p, Fp(q,7) = Fo(p). These represent the important
moments of the momentum distribution. For instance, we define the physical particle
number density p(q,t), the momentum density ﬁ(q_’, t) and the stress-energy density

p-space coordinates will get external labels.
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tensor T(q,t) as

p(q,t) = / &’p fi(,1) (2.56)
fi(d.0) = [ @ppfile,0) (2.57)
T(d.t) = [ @pFeifiet). (2.58)

The respective microscopic dynamical functions are then defined as

Do(7,t) = Y- Folpi(t)) oo (7 — Gi(1) | (2.59)
such that
O(3.1) = (@o(@.1) = [ d*p Fo(@) ((,1)) (2.60)

Thus, both, ®; and f;, will play a fundamental role during the course of this work.
We will generally not only be interested in the local average of a given observable at
¢, but more generally how different observables measured at different positions are
related to each other. This brings us to the next section.

2.2.2. Correlations

One of the most important concepts of statistical mechanics is that of correlations.
Let us therefore note that the one-particle reduced phase-space density f; describes
the probability of finding a single particle at the phase-space coordinate x independent
of the other particles. It is a one particle effect, which can clearly be seen from its
dynamical function ®;, where there is only one particle index which is summed over.
In order to understand how two densities at different positions are related, we have
to average over the product of two ®’s. We define the two-point phase-space density
correlation function!® (or simply two-point correlation function) as

éff<x17 L2, t) = <(I)f($17 t)q)f<x27 t)>

- / dx 3 0p (21 — (1)) 0p (22 — x;(1)) on(x,1)  (2.61)

ig=1
=0p (x1 — x2) fi(z1,t) + folz1, 22, 1)

The first term is the single-particle contribution to the two-point correlation function
and arises from the ¢ = j part of the double sum. It describes the effect of picking
the same particle twice and is thus proportional to the one-particle reduced phase
space density fi;. For the second term, we have defined the two-particle reduced

0We added a “bar” on C here to distinguish these equal-time correlation functions from the
unequal-time correlation functions introduced later.
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phase-space density fo as

fo(z1, 9, 1) = < > bp (z1 —xi(t)) 0p (2 — xj(t))> . (2.62)

i#j=1

It describes the joint probability of finding two distinct particles at the specified
phase-space coordinates. Clearly, if the particles are completely independent, the
resulting probability distributions are too, and we find that the joint probability f,
factorizes,

fg(l’l, T, t) = fl(l'l, t)fl(QTg, t) s (263)

which describes an uncorrelated distribution of particles. In general, however, we
expect that interactions among particles induce deviations of f, from the above
product: Every particle influences the behavior of its neighboring particles, hence
creating correlations. In order to measure correlations we define the true two-particle
correlation

Ga(x1, 2, t) = folw1,20,t) — fi(x1,t) fi(a, 1), (2.64)

measuring the correlation between particles at x; and z,. With the help of go we
can define the connected part of the two-point correlation function (2.61) as

éff(xhx%t) = <(pf($1,t)(1)f(l‘2,t)>c
= <q)f(‘r17t>q)f<x27t)> - <q)f(x17t)> <C1)f(l‘2,t)> (265>
=0p (21 — 22) f1(1,t) + ga(w1, T2, 1),

where the subscript “c” denotes the connected part of the correlation function.

With the above motivation we can now introduce the general form of our main
statistical quantities of interest. First, we define the s-particle reduced phase-space
density! as

fs(@1, .., 26, 1) :=< > H op (2, —xin(t))> , (2.66)
i17#..#is=1 n=1

describing the joint probability of finding s distinct particles located at xq, ..., x.
Clearly, the normalization of the Liouville density implies the following normalization

'We adopt a definition that differs from the conventional one often found in the literature, where
the reduced s-particle distribution function is defined as

N!

fS(Xl,...,XS7t) = m

/dXS+1 . dXN QN(X,t) .

This expression describes f; as the marginalized probability distribution for finding any s
particles at phase-space positions xi,...,xs. The alternative definition used in the main text is
mathematically equivalent but formulated to more directly support an interpretation in terms
of correlation functions.
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for the s-particle reduced densities,

/d6x1...desfs(xl,...,l'S,t)_(]V_S)!. (267)
For an uncorrelated state, fs decomposes into a product
fs(zi, .z t) = [ filzast), Vs. (2.68)
n=1

In order to distinguish a correlated from an uncorrelated state, we decompose f;
into irreducible s-particle reduced correlation functions gs. This can be achieved by
subdividing the set {1, ... s} into all possible non-empty disjoint subsets. Interpreting
each subset as representing a group of mutually correlated particles, statistically
independent of the other subsets, we obtain the required decomposition'?. For
instance, for s = 2 and s = 3, we find!?

fo(@1, w9, t) = fi(w1,t) fi(22,1) + g2(21, 22, 1)
fa(@1, o, w3, t) = fi(x1,t) fi(xe, t) fi(ws, t) + fi(z1,t)ga(22, 23, 1)

+ fi(ze,t)g2(1, 23, t) + fi(xs, t)ga(21, 22, 1)

(2.69)

+ g3(x1, T2, T3, 1) .

Analogously, we can describe the system by analyzing the k-point correlation func-
tion'

C_'fmf(l’l, e ,[L’k,t) = <q)f($1,t> Ce (I)f(l‘k,t)>

kN (2.70)
= [axT[ 3 0o (a0 —xi,(6)) ow(x.1).
n=1 i,=1
which decomposes into s-particle reduced densities as
C’fﬂf(l’l, e ,Ik,t) = ...+ fk(ZL‘l, e ,I’k,t> s (271)

where the ellipses stand for all s-particle contributions with s < k. They reflect the
possibility of randomly picking the same particle multiple times. For instance, for

12We refer to [26] for a comprehensive and complete discussion of the decomposition of f into
correlation patterns.

13Clearly, for s = 1 the decomposition is trivial and a g; is not introduced.

4Note that in contrast to the s-particle reduced densities (2.66), the k-point correlation function
does not exclude summation over same indices.
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k = 3 we find
C7fff($1, Tg, x3,1) =0p (1 — x2) Ip (1 — 3) fi(z1,1) + Op (x1 — x2) fa(xy, 23, 1)
+ 0p (w1 — x3) fa(@1, T2, t) + Op (22 — x3) fa(w1, 22, 1)

+ f3(w1, v2, 23, 1) .

(2.72)
We will generally refer to these s-particle contributions with s < k as shot-noise
effects, as they arise due to the discrete nature of the particles. This discreteness
is reflected by the sharp Dirac-delta peak that accompanies them. They will play
an important role in the description of particle collisions. The connected part of
the correlators C #..r has a similar representation in terms of s-particle correlation
functions g,

éfmf(dil, e ,xk,t) = <(I)f<$1, t) Ce (I)f(lik,t»c
(2.73)

:"'+gk($17"'7xk’t>7

where the ellipses again represent the corresponding connected shot-noise contri-
butions. Although the distinction between the density correlation functions C_’f ¥
and G .., and the s-particle reduced densities f; and g, may appear redundant at
first, this distinction becomes crucial in later chapters. In particular, even for an
uncorrelated state where g, = 0 for all s > 1, the connected correlation functions
still include a lowest-order shot-noise term that arises from the self-correlation of
individual particles.

In some cases it will be useful to define the connected correlators for specific local
densities at hand. For instance if one requires the correlation between the particle
density at x; and the momentum density at x5. We therefore define

é(’)l...ok (Jl; cee 7(?;67 t) = <q)(91 (Jla t) cee (I)Ok (q_;m t)>c (274)
= /d3p1 s dgpk: F(91 (ﬁl) ce FOk(ﬁk)éff(xh cee 7mk7t) 3

where the last equality shows how these are related to the connected Klimontovich
phase-space density correlators. This makes the deep role played by the Klimontovich
phase-space density manifest.

In summary, the full set of s-point correlation functions C_'fm § or equivalently
the s-particle reduced densities fs, contains all the information encoded in the full
N-particle phase-space density on(x,t). We have, thus, simply restructured the
complexity contained in gy(x,t). The advantage, however, lies in the fact that by
studying the time evolution of the reduced densities f,, we can now systematically
introduce approximations in order to reduce the complexity of the full N-particle
system.
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2.3. The Klimontovich Equation and the BBGKY
Hierarchy

Since the Klimontovich phase-space density plays a similar role in p-space as the
Liouville equation in I'-space, we can derive an evolution equation for ®;, analogous
to the Liouville equation, formulated purely in terms of p-space coordinates [40]. To
that end, we first note that the time dependence of ®(z,t) enters only implicitly
through the trajectories of individual particles. We, therefore, find from (2.14) for
the time derivative of ®((x,t) given in (2.52),

8 N
gcbf(xl, t1) => V. 0p(z1—xi(t)) - w- Vi, H(x,1), (2.75)
1 i=1

where the N-particle Hamiltonian function reads (c.f. (2.19) and (2.39))

N

N 1 N
25 X - A(t) - xi + v (xt Z 2(Xi5 X5, 1) - (2.76)
i=1

=1

Inserted into (2.75), we find

0
8Tq)f($1,t1) = — V;Crlq)f(.%'l,tl) W A(t1> o V;Ilq)f(xlytl) W Vzlvl(xl,tl)
1

- /d6ZC2V;ﬁrl(I)f(£C17t1) W Vxl?)g(l'l, Ta, t)(I)f(.TQ,tl) s (277)

where we have replaced the particle coordinates x by the p-space coordinates z
using the Dirac-delta distributions of ® ;. The resulting equation can be compactly
written as

(2.78)

ﬁg)(tl) = VIIUQ(II,ZE%t) ‘W Vg, .

Equation (2.78), thus, describes the time evolution of the Klimontovich phase-space
density ®; in terms of a set of linear and nonlinear operators. The left-hand side
contains the free evolution operator ﬁ(o), which generates the Hamiltonian flow
associated with the free Hamiltonian (cf. (2.19)), and the one-particle interaction
operator £, which accounts for the influence of external fields acting independently
on each particle. Both of these terms are linear in ®; and hence do not induce
correlations, as they do not couple the phase-space densities at different positions.

15Note that the differential operators now act on the p-space coordinates .
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The right-hand side, in contrast, contains a nonlinear term involving the two-particle
interaction operator ﬁ(Q), which governs the effects of pairwise interactions. This
term introduces a coupling between the fields ®;(xq,¢) and ®s(x2,%1), such that
the density at position xs acts as a source for the interaction potential vy(x1, 2, t1),
affecting the evolution of the density at x;. As a result, this term is responsible for
the generation of correlations between particles through their mutual interactions.
Equation (2.78) is known as the Klimontovich equation'®. Tt is an exact represen-
tation of the microscopic dynamics in u-space and contains the same information
as the N-particle Liouville equation (2.42). In this sense, it can be interpreted as
the p-space counterpart of the Liouville equation, describing the evolution of the
microscopic density field rather than the full probability distribution in I'-space.
The Klimontovich equation will play a central role in the developments presented in
chapters 6 and 7.

In order to systematically analyze and structure the macroscopic information
contained in (2.78) we take the ensemble average on both sides and find, with the
definitions (2.53) and (2.62),

0 A A N
ET L (1) — E?)(tl)] fi(z, ) = /d%z LY () folar, za,th) . (2.79)
1

This equation governs the evolution of the continuous one-particle probability density
f1(z1,t1), which describes the probability of finding a particle at phase-space coordi-
nate x; at time ¢;. In contrast to the Klimontovich equation (2.78), however, it is not
closed, as the two-particle reduced phase-space distribution fs(x1,z2,%;) enters on
the right-hand side. This matches the intuition that in the presence of two-particle
interactions, the evolution of the one-particle distribution fi(x1,t;) depends on the
probability of simultaneously finding another particle at z5. Since this information
is encoded in the two-particle distribution function fo(z1, x9,t1), the evolution of f;
cannot be closed at the level of f; alone. Thus, we have to complement (2.79) by an
evolution equation for fo(x1,x9,t1). To derive this next equation, we apply a partial
time derivative to expression (2.62) and use the product rule, following analogous
steps to those used above, to arrive at

[£ -3 {20wm) + 25%1)}] falwr, 2, t1) =

i=1

(2.80)
2 A
/dGZL‘g Z {Egg)(tl)}fé(ﬂjlnya x?ntl) :
=1

Again, the left-hand side represents the free streaming of particles and interactions
with an external potential. The operators £(© and £ are now applied to both
particles at x; and x5. The right-hand side introduces the three-particle reduced
distribution f3(z1,x9,x3,t;) through the two-particle interaction operators L@,

6Named after Yuri Lvovich Klimontovich, who extensively studied this equation in the context of
non-equilibrium plasma dynamics [41].
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reflecting interactions between each of the two particles at xq, x5 and a third,
external'” particle at x3. As with the first equation for f;, this equation is not closed,
and its evolution depends on the next distribution in the hierarchy, f3. Clearly, this
recursive structure gives rise to a hierarchy of coupled equations for the reduced
phase-space distributions, known as the BBGKY hierarchy'® (c.f. [42, 43, 44]).
The s-th member of this hierarchy can be computed similarly to the above and reads

{8@“ - Z {ﬁ§o>(t1)+ﬁ§1>(t1)}] Folan, ... mety) =

=1

(2.81)
/d6x8+1 Z {ﬁz('(23+1)<t1)}fs+1(5’71> vy Lgy Lsyq, t1> .
i=1

Each equation in the hierarchy thus describes the time evolution of the s-particle
reduced distribution fs(x1, ...,z t1) and involves the (s+1)-particle distribution fy,4
on the right-hand side. The left-hand side describes the free streaming of particles
including the influence of an external potential. The integral on the right-hand side
of (2.79), (2.80) and (2.81) respectively, is usually referred to as the collision integral,
describing the interaction between any of these s particles and an external particle
from the group of the other, not measured, particles.

In literature, one often also encounters the BBGKY hierarchy in terms of the
irreducible correlation functions g, as they contain the full non-redundant information
of the correlation structure of the system. These can be found by inserting the
decomposition of the s-particle reduced densities f, into s-particle correlations g;
(c.f. (2.69)) into the above BBGKY equations. For instance, for f; one finds

0

T LY (1) — ﬁgl)(tl)l filwy,th) = /d6$2 L3 () fi(zr. ) fi(w2, 1)
(2.82)

+/d6x2 ﬁg)(t1)g2($17$2at1)

Clearly, the BBGKY hierarchy, as it stands, is exact and does not introduce any
approximation nor simplifications of the system. It retains the full complexity of the
Liouville equation and only closes after the N-th iteration of the above procedure,
where the full phase-space density'® fy reappears. One main focus of kinetic theory
therefore is to find systematic truncation procedures that break the full hierarchy
down to a closed set of only the lowest few members of the hierarchy. In the next
section we briefly review the most common of these approaches.

I"Here, external means that the particle at x3 is not included in the two-particle density f», but
enters as an interaction partner in the evolution equation.

8Named after the authors who first derived it, Bogolioubov, Born, Green, Kirkwood, and Yvon, in
alphabetically, but not chronological order, [26].

9Tn fact, fn only differs from the Liouville phase-space density on by a combinatorial prefactor
N! taking care of particle permutations.
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2.4. Important Truncations of the BBGKY Hierarchy

In practice, it is necessary to truncate the BBGKY hierarchy by introducing a closure
relation, i.e., a prescription that expresses a higher-order reduced density by a lower-
order one, such that the hierarchy terminates after few iterations. These closure
relations often rely, among other conditions, on the assumption that the irreducible
correlation functions g, obey an intrinsic ordering in terms of an appropriately chosen
parameter \ [38],

gs ~ O(N°). (2.83)

The choice of an adequate parameter is highly non-trivial and represents a central
task in kinetic theory. In order to not get out of scope of this thesis, we focus
exclusively on the most “natural” choice of a weakly coupled system since it will be
important for the long-range interactions covered later in this work.

Let us, therefore, assume that the two-particle potential multiplies a small dimen-
sionless coupling parameter,

vo (1, T2, t) = Avg(21, Xa, 1) (2.84)

and assume A < 1. In order to find the corresponding ordering of the correlation
functions, we note that in order to satisfy the normalization (2.67) (even if A=0), to
leading order the one-particle reduced density must be independent of A,

fl(l’l, tl) ~ O()\O) . (285)

On the other hand, in order to create correlations between two particles?” at least one
interaction is needed. Similarly, the irreducible correlation between three particles
requires at least two interactions, thus

gQ(xla I, t) ~ O()\l) ) and generaﬂy gs(xlv vy Lgy t) ~ O()\S—l) ) (286>

to leading order. This is the ordering of the correlations that we were looking for.
Let us now study the lowest orders in more detail.

2.4.1. Free Streaming

In the simplest case, A = 0 or order \°, there are no inter-particle interactions. We
refer to this case as the free streaming of the particles, and we also neglect the
external potential, such that the equations are analytically solvable. Clearly, each
equation of the BBGKY hierarchy closes individually and thus, no correlations are
created or destroyed. In particular, we find for f; the following linear initial value

20Here, we must assume that the state was uncorrelated initially, or respects the above ordering
with respect to A, which is necessary for the ordering considerations to work.
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problem

9 A0 ] _
—— — Ly (t1)| fi(wr, 1) = 0
latl (2.87)

filzr,ty =t0) = fl(i)(xl) :
It can easily be \ieriﬁed that the retarded Green function to the above linear differential
operator [0, — L] is given by

D07R($1, tl, Ta, tz) = 5]) (ill'l — G(tl, tg) . SL’Q) @(tl — t2) s (288)

since

0 A

[8t — [’gO) (tl)] D[)}R(xl, tl, T, tg) = (SD (.’L’l — 1’2) (SD (tl — t2) . (289)
1

In the above Green function, G is the retarded particle propagator (2.24) that

describes the free propagation of a particle in u-space located at x5 at time ¢5 to the

phase-space coordinate z; at a later time ¢;. Causality is ensured by the Heaviside

function. Thus, the solution to (2.87) is found to be

fi(zy, ) = /d6$2 DO,R(xbtlaant(i))fl(i)(xl)
(2.90)

:fl(i)(G—l(tl,t(i)) 1) Ot — 75(1)) ’

where in the second line we used that det(G) = 1, since the free particle propagator
is symplectic (2.34). We have thus solved the complete free system: The phase-space
density at time ¢; at the coordinate z; corresponds to the phase-space density at
initial time t® at the position where the particle was initially located. This position
is given by tracing the trajectory backwards in time. The free case is constructed
such that this trajectory is exactly known and given by (2.22). We will refer back to
this free theory multiple times, as it serves as the reference case around which the
subsequent discussions are built.

2.4.2. The Vlasov Equation

To next order in the coupling, we collect all terms in the evolution operator for f;
that are at most linear in A\. Since the two-particle interaction operator satisfies
L® ~ )\ the two terms on the right-hand side of equation (2.82) scale as

LOf i~ and LP gy~ A2, (2.91)

Neglecting the subleading correlation term go, we obtain the Viasov equation (c.f. [45]),
which reads

8(21 — LO(t) — ﬁgl)(tl)l fi(zy,t) = /d%z LY (1) filzn,t) fi(as,th) . (2.92)

This equation plays a central role in the study of weakly coupled systems and, as we
will argue in chapter 8, governs the N — oo limit of long-range interacting systems
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such as Coulomb and gravitational systems—the latter being the primary focus of
our application in chapter 11. It will therefore be essential to understand the physics
underlying (2.92). First, the most obvious property of the Vlasov equation is the
absence of the two-particle correlation go. It is therefore a closed equation for the
one-particle reduced density f;. The role of the two-particle interaction potential
can be seen by expanding the last term of (2.92) to find

/dﬁiﬁz ﬁg%)(tl)fl(lflatl)fl(x%tl) = V;@(ﬂflﬂfl) “w - Vo, fi(w, ), (2.93)

where we defined the mean two-particle potential

Talrh) = [ @ filws, t)ea(an, @, 1) (2.94)

It represents the value of a potential at phase-space position x; sourced by a particle
at xo and averaged over all possible positions zo weighted by the respective density
fi(z2,t1). The Vlasov equation (2.92) may therefore be written as

0 A
67 — Lgo)(tl) - Vl—l (Ul(l‘htl) +@2(l’1,t1)) W V$1‘| fl(lL'l,tl) = 0. (295)
1

In this form, the effect of the mean interaction potential appears as an additional
effective external field, determined self-consistently by f; through equation (2.94).
The Vlasov equation is therefore often referred to as the mean field equation. Any
change in the distribution function instantaneously modifies the mean field, which in
turn feeds back into the dynamics. As a result, the Vlasov equation is a nonlinear
partial differential equation, and finding its solutions requires dealing with this
self-consistent feedback loop. Throughout this work we will develop methods to deal
with such situations.

Historically, the Vlasov equation is obtained by introducing a closure relation
via the famous Stosszahlansatz fo(x1,x9,t1) ~ fi(x1,t1)f1(z2,11) in order to close
the BBGKY hierarchy. In this work, we choose to present a different derivation
based on a perturbative expansion, as it allows one to derive evolution equations
which go beyond the assumption of molecular chaos systematically as we shall see in
Section 2.4.3.

Another remarkable feature of (2.92) is its clear resemblance to the Klimontovich
equation (2.78). The former can be obtained from the latter by taking the ensemble
average of the Klimontovich equation as shown in (2.82) and neglecting the collision
integral?! containing two-particle correlations go on the right-hand side of the equation,
thus, “replacing” the exact microscopic density ®; by the averaged mean phase-space
density f.

2n the context of the Boltzmann equation, often, both terms on the right-hand side of (2.82)
are referred to as the collision integral C[f] since it is assumed that there are no long-range
interactions and particles interact only via collisions. Throughout this thesis, however, we only
consider the second term on the right-hand side of (2.82) as the collision integral.
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Closure Term A Term B Term C Term D
Landau X - - -
Lennard-Balescu X - X -
Boltzmann X X - -

Table 2.1.: Terms kept (x) and neglected (-) in (2.96) for the Landau, Lennard-
Balescu and Boltzmann closure condition. All terms are of order 2. The
last term is always neglected due to g3 = 0. Table taken from [37].

2.4.3. Including Collisions

Before concluding, let us note that neglecting correlations, as we did in the derivation
of the Vlasov equation, is not always justified. When interactions become stronger,
the linear approximation in the coupling strength A may no longer be valid. If the
interactions between individual particles remain weak enough, one possibility is to
go to next-to-leading order in the perturbative expansion. At order A2, this requires
incorporating the two-particle correlation function g, which accounts for binary
collisions between particles. The evolution equation for g is given by

2
[aatl - Z {ﬁz(‘O)(tl)“'ﬁgl)(tl)}} g2(x1, 0, 1) = 2522)(751) fi(z,t1) fi(xa, ty)

=1 Y
+ ‘CA§22) (tl)gQ(xla T2, tl)

B

—|—/d6x3 Z{ (2) }<f1($17t1)92($2,$3>t1)

(2.96)

+ fi(ze, t1)ge(1, 23, t1) + fi(xs, t1)ga(21, T2, t1)>

C

+/d6 { (tl)}gz(fhx%x?ﬂtl) .

D~O(X3)

Keeping only the first term on the right-hand side of (2.96), leads to the well-known
Landau equation, which describes the collisional evolution of weakly coupled plasmas
with long-range Coulomb interactions where X is the strength of the potential.

One can derive other kinetic equations by solving the second equation of the
BBGKY hierarchy go (2.96), in a self-consistent manner. Truncating the hierarchy
at this level by neglecting the three-particle correlation g3, and using appropriate
assumptions about the structure of go, one obtains different kinetic equations depend-
ing on the physical regime and interaction range: the Boltzmann equation emerges
for dilute gases with short-range interactions, where collisions are rare but strong and
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A is the density parameter A = pl3, with particle density p and correlation length /.
The Lennard-Balescu equation, on the other hand, arises in weakly coupled plasmas,
with long-range Coulomb interactions, where collective effects and dynamical screen-
ing are essential and are not described by the Landau equation. In this context A

corresponds to the plasma parameter A = - ,f; = with the mean inter-particle distance

a= ,5_% and temperature 7". Table 2.1 provides an overview of the closure conditions
for these three cases.

Our main application will deal with systems, where particle collisions are negligible.
Nevertheless, we will present all derivations in full generality, so that collisional
effects—whenever relevant—can be incorporated within the same framework. Ref-
erences to such effects will be made at appropriate points throughout the main
text.

2.5. Unequal Time Correlation Functions

As we have seen, the time evolution of the system can be equivalently described
through the hierarchy of reduced phase-space densities f,, governed by the BBGKY
hierarchy, or through the equal-time correlation functions of the Klimontovich phase-
space density C_'fm 7, which can be expanded in terms of the reduced densities, as
discussed in (2.71). While for equal-time observables both descriptions are essentially
equivalent and the distinction may appear unnecessary, this changes when we consider
unequal-time correlation functions. In that case, it becomes more practical and
physically transparent to work directly with the correlation functions of the phase-
space density itself.

Let us therefore introduce the natural generalization of the equal-time correlation
functions C._ s and their connected components G, and define their unequal-time
counterparts as

Cfmf(.rl,tl, RN ,Q?k,tk) = <(I)f<l'1,t1) RN (I)f(iljk,tk» s (297)

and
Gfmf(xl, tl, e ,xk,tk) = <(I)f(l’1,t1) e (I)f(xk,tk»c y (298)

respectively. Completely analogously to (2.74), we define the connected correlation
functions for arbitrary local densities Oy (q1,t1), ... Ok(Gr, tx), as

Go,..o (@it s Gy ti) = (Po, (G1, 1) - .. Po, (G, tr)),
(2.99)
= /d3p1...d3ka@1(ﬁ1)...F@k(ﬁk)Gf”_f(l‘l,tl,...,Ik,tk).

From the discussion in Section 2.2 it is clear that working in the Heisenberg picture of
the statistical system will be more appropriate, since the time evolution is contained
in the microscopic trajectories themselves rather than in the Liouville phase-space
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density®?. Thus, the expectation value (2.97) is computed according to

Cfmf(.’ﬂl, tl, vy Ty tk) = /dx(i)q)f,d(:cl, Ifl) e (I)f,cl(xka ka) Qgif)(x(l)) s (2100)

where @ denotes the Klimontovich phase-space density that contains the classical
particle trajectories, and therefore parametrically depends on the initial conditions,

N
(I)ﬁcl(flfl,tl) = (I)f(l'l, xcl(tl; X(i),t(i))) = ZdD (iL‘l — Xi,cl<t1; X(i), t(l))) . (2101)

i=1

The physical intuition behind equation (2.100) is to draw particles from an initial
phase-space density distribution and to evolve them up to their respective time,
averaging over all possible initial configurations. We therefore have to discuss the
explicit form of the initial Liouville phase-space density in more detail.

2.6. N-particle Initial Conditions from a Correlated
Density Field

Let us first assume that the initial phase-space density is exactly known in terms
of a continuous single-particle density distribution function fl(l)(x) = fi(x,tY) on
p-space?®. From the discussion in Section 2.2 and the normalization (2.54), we infer

P

as the normalized probability of finding particle j inside the 1nﬁn1te31mal volume
d6 ) around the point x() given the phase-space density fl( ) at that point. We
now iterate through all N partmles and distribute them in a stat1st1cally independent
way according to the above probability density. This procedure is commonly referred
to as Poisson sampling, since each particle is drawn independently from the same
probability-density function. As a result, the number of particles found within a given
region of space follows a Poisson distribution in the limit of large N?4. We refer to
[30] for more details. Since the individual particles are picked independently of each
other, the joint probability for the whole ensemble, i. e., the Liouville phase-space
density is given by

i i 1 i i
(")) = ~ (x{)dox (2.102)

fv[ ]1[ My (2.103)

22We refer the reader to the elaborate discussion in [26] for an alternative treatment of unequal-time
objects with generalized reduced distribution functions which is, of course, equivalently possible.

23As we have discussed before, the physically measurable quantities are (piece-wise) continuous
functions on R3. Thus, from a practical point view, one would typically start from a set of
macroscopic local densities O(7) such as the physical particle number density or the momentum
density. In chapter 9 we will consider such a scenario. However, for our conceptual discussion
here, it is sufficient to assume the full phase-space density fl(i)(x) to be known.

24More precisely, this corresponds to a binomial point process with fixed particle number N, which
approaches a Poisson point process in the limit N — oo with appropriately rescaled density, see
[30] for more details.
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This describes an uncorrelated state at initial time, which is clearly expected from a
statistically independent random process.

In realistic scenarios, however, the initial phase-space density fl(i) (x) is itself only
known on a statistical level, i. e., as a random field with associated probability density

functional P| Fu ] In this case, equatlon (2 102) must be understood as a conditional
probability, given a realization of fl ( j( ), and the full ensemble is obtained by

marginalizing over P| f1 ],

/Df”HP

(") PLAY]. (2.104)

Here, D fl(i) is the functional integration measure running over all possible continuous
realizations of the density profile fl(l)(x). Thus, the total Liouville phase-space density
reads

i i 1 i N i i i
W) = o5 /fo) IT A7 eP[P]. (2.105)
j=1

where we have used (2.102). Inserting the Liouville phase-space density (2.105) into
the definition (2.66), we find

(i) _ b (i) x o
f (e, .. xs) = NN /dx 2-17527515—1 }_[15]3 /Df )P[fl }
(2.106)

N‘ i i i i
= v = ] PR @) A P[] (2.107)

With the moments and cumulants of the probability functional 73{ fl(i)} defined in
the usual way as

s w) = (0@ @), = [ PR e P[]
(2.108)
and

¥y, ... ) = <f1(i)(x1) .. fi)(x’f)>c,p , (2.109)

we immediately see that for large N the s-particle reduced distribution function f;
corresponds to the s-point correlation function 07(38 ),

N!

N (N —3)! C (@1, yxy) "2 O (e, yey) . (2.110)

fs(i)(xl, Ce ) =

Equivalently, the s-particle reduced correlation function g, corresponds to the s-
point connected correlation function, i.e., the cumulant Gg). Thus, subtracting the
disconnected part yields

90 (1, ) = G (xy, .. 3y). (2.111)
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We, thus, find that the uncertainty in the initial field fl(i) is imprinted on the
reduced particle correlations, even though the particles are sampled independently.
In this sense, the initial statistical fluctuations of the density field act as a seed for
correlations in the particle ensemble. These initial correlations must therefore be
carefully distinguished from those that arise dynamically due to the two-particle
interactions.



Functional Integrals for
Deterministic Systems

The central challenge that arises in most physically relevant systems, is that they
are not exactly solvable, due to the often very complicated structure of interactions
between the underlying degrees of freedom, and therefore require an approximative
treatment. A natural strategy is to separate the known, exactly solvable dynamics,
from the unknown contributions and to systematically include the latter into the
description. In quantum mechanical systems a powerful tool to achieve this separation
is famously provided by the path integral approach for which many advanced methods
have been developed. At first glance, such an “integrate over all possible paths”-
approach seems contradictory to classical determinism which lacks the superposition
principle of quantum mechanics. However, as we will see, classical mechanics may
be reformulated in a way that is both, elegant and practically useful, enabling us
to apply well-established methods from quantum and statistical field theory in the
upcoming chapters within a classical context.

3.1. The Koopman-von Neumann Formulation of
Classical Mechanics

One of the most important properties—if not the most important property—of
the Liouville equation is its linearity, which introduces a grain of simplicity into
an otherwise highly complex theory. Indeed, it is the linearity that allows us to
write down the formal solution in terms of a time-evolution operator (c.f. (2.43)).
This is strongly reminiscent of the well-known structure of the Schrédinger equation
which, therefore, hints at a formal unified description of both, classical and quantum
mechanics. This was first observed by Koopman [16] in the early 1930s and later
formalized by von Neumann [17] and is today known as the Koopman-von Neumann
formulation of classical mechanics. It presents an axiomatic derivation of classical
mechanics and in particular the Liouville equation. Based on this description we
can introduce the idea of a path-integral formulation of classical mechanics [22, 23,
46, 47]. Let us therefore summarize the key thoughts underlying the Koopman-von
Neumann formalism following [48].
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3.1.1. Axiomatic Derivation of Liouville’s Equation - The
Koopman Operator

Consider an abstract Hilbert space H, together with the inner product
(-] : HxH—C. (3.1)

The elements of the Hilbert space, |¢)) € H are physically interpreted as probability
density amplitudes. The basic construction of the Koopman-von Neumann theory
now emerges by imposing the following operator axioms:

1. The physical state of the system is represented by a normalized vector |¢)) € H,
with (¢|¢) = 1.

2. The observables are represented by hermitian operators O:H-H acting on
the states. The expectation value of a given observable at time ¢ associated to

the state [1)(t)) € H is given by (O) = (¥(£)|Of¥(1)).

3. The probability of measuring an observable @ at time ¢ with the result O is
given by P(O) = | (¢(1)|O) |?, where |O) € H solves the eigenvalue problem
0|0) = 0|0).

4. The state space of a composite system is given by the tensor product of the
Hilbert spaces of the respective subsystems.

Importantly, these axioms do not differ from the axiomatic derivation of quantum
mechanics. Let us now deduce the implication of the above axioms to our classical
system. First, we postulate that the time evolution is determined by a unitary
operator U (t, t(i)), the time-evolution operator, such that

lp(t)) = U D) [wD)),  with Ut tD) = T4 (¢,tD). (3.2)

Stone’s theorem [49] implies the unique existence! of an operator K , the generator
of time translations, satisfying

0 ~ . NN )
aU(t,t@)) = —iK U(t,tY), (3.3)
or equivalently,

U(t,t0) = ¢ 11K (3.4)

We will now deduce the explicit form of K. Introducing the operators (? and ﬁ'
referring to the observable of position and momentum respectively, we impose the
FEhrenfest theorem [50], i.e., that the Hamiltonian equations of motion hold for the

'To be more specific, Stone’s theorem requires that time evolution is governed by a strongly
continuous one-parameter group of unitary operators, i.e., Vt € R, the operator U; is unitary,
Vit,s € R we have Ugyy = UUp and Vip € R, [¢) € H, we have tlir? Ulyp) = Uy, |0).

—to
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expectation values of c? and ﬁ,

dt dt
4 : ) B (3.5)
3 (7) = L WOIFl0) = — (VaH(@.D)) -
Equation (3.3) then implies by the chain rule
—i([K.q]) = (Vo (@.9))
(3.6)

A([K5]) = (VH @)

Since the above set of expectation values have to hold for arbitrary states [1(t)), we
find the following set of commutator relations for the generator K,

~i|K,q| =V, H (q,p)
o o (3.7)
[ = - v i)

There is now an obvious difficulty regarding the operator K. From a classical
mechanical perspective, we demand the simultaneous measurability of position and
momentum,

0] =o0. (3.8)

However, if the generator K depends on position and momentum only, K=K (c?, ﬁ),
it is not possible to realize (3.7) in a non-trivial way, since any commutator of K
with q 7 and p respectively vanishes identically. To bypass this problem, we introduce
two further operators called Xq and X, on which K may depend. The extended
commutator algebra now reads

(3.9)

By standard procedures of non-commutative operators [48], these commutator rela-
tions can be used to derive the following differential equation for K = K(q, X4, D\ Xp),

(3.10)
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The solution for K is then found to be?

A

K(G, X 7. Xp) = Vo H (€.0) Xy = Vo H (4.5) - X (3.11)

The operator K, which generates the time evolution, is called the Koopman operator?.
As we can see, the new operators )%’q and )AZ,, each introduce one of the equations of
motion in (3.5). In this operatorial language, they are referred to as Bopp operators
[51, 52] and act like operatorial Lagrangian multipliers.

3.1.2. Recovering Liouville’s Equation

In order to make the above abstract construction more concrete and to simplify the
physical interpretation, let us choose a specific representation of the above algebra
over the Hilbert space

H = L3P, dz) = {¢ Poc| [dalp@)? < oo} , (3.12)

of complex-valued, square-integrable functions defined over the particle phase-space?

P with measure dz, and inner product
W16) = [ dw v (@)o(a). (3.13)

Since (? and }%’ commute for the classical system, (3.8), we can simultaneously work
in the combined ¢ and p’ eigenbasis, represented by

(x| =(q.p] = (7l ® (] (3.14)

These form an orthonormal eigenbasis, and we find the usual relationships,

—

7ﬁ>7

| —

7)) =]

!

0) = Plap),

>
ST

(3.15)
1= [ dqdp|ip)@pl (@775 = oo (@— )0 (=)

In this phase-space representation the state of the system is given by a classical wave
function,

U(z,t) =g, p,t) = (.0 9(1)) - (3.16)

2The general solution to the above equations includes an undetermined additive function f (q:’, ﬁ) to
K. However, it does not affect the dynamics, and we set it to zero here to recover the classical
dynamics [48].

3Here, we have chosen to put the ¥ operators on the right of the Hamiltonian function. As one
can easily verify, inserting the commutation relations and interchanging the order does not alter
the Koopman operator due to the divergence free Hamiltonian flow. However, this order will
play a crucial role when it comes to the discretization to obtain the path integral formulation.

“We assume that the particle phase space is P C R® with the usual flat measure on RS.
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Clearly, in the c? and ﬁ eigenbasis the operator algebra (3.9) can be represented by

A
—

(=4q, P=7, Xq= —iVg, Xp= —iV,, (3.17)

where position and momentum operators become multiplicative operators, while the
additional operators X, and X, become differential operators. The time evolution of
the classical wave function in this representation is given by

0

V@ Pt = K@), (3.18)

where the Koopman operator K takes the form
K =i(VsH(§.P) Vs — Vs H(GP) V). (3.19)

The classical wave function evolves according to (3.2). In the phase-space represen-
tation, we therefore find

Wz 10y = /d%(i) Uz, 40120 10y (2@ 10y (3.20)
where the phase-space matrix element of the time-evolution operator is defined as

Uz, 4030 10y = (3010t 0y (3.21)

Let us now define the real-valued probability density in the usual way as

o(x,t) = [¥(z,t)* = [(¥(t)])|*. (3.22)

Importantly, the second axiom implies for the expectation value of an operator

0 =0(2),

(0) =(w(®)|0@)[ (1)) (3.23)
= [ % (w(®)|0@) ) el ®) (3.24)
— [ &2 0@)ola,1), (3.25)

which is thus consistent with the definition of expectation values in statistical
mechanics (2.49). Furthermore, the Koopman operator is only first order in the
derivatives. We therefore easily find the evolution equation for the probability density
o(z), 5

Eg(x,t) = —iKo(x,1). (3.26)
Compared to (2.42), we deduce the relationship

A,

K =iL, (3.27)
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between the Koopman operator and the Liouville operator. We have thus deduced
Liouville’s equation from an axiomatic construction on a Hilbert space where classi-
cality enters via the commutation of the position and momentum operators. The fact
that the evolution equation for the classical wave function ¢ (x,t) and the associated
probability density o(x,t) are identical, implies that both are evolved by the same
propagator. In the phase-space representation we therefore find

o(a9,19) = [ @O U, 10]20,19) o2, 1) (3.28)

where U(z® ¢® |20 D) is given by (3.21). In view of (2.47) we can see that
U (a:(f),t(f)]x(i), t(i)) corresponds to the phase-space representation of the Liouville
propagator in this time-independent case. We have thus fully recovered the main
evolution equations of classical mechanics in this Hilbert space formulation.

In conclusion, the Koopman-von Neumann formulation elegantly unifies classical
and quantum mechanical descriptions by recasting the deterministic Liouville equation
into a unitary evolution on a Hilbert space, similar to the Schrédinger equation in
quantum theory. Indeed, the above formalism can be used to derive the Schrodinger
equation in exactly the same way. As we have seen, classicality enters the derivation
solely via the classical commutator relation (3.8). If one instead postulates the
quantum mechanical commutation relation, [q:, ﬁ } = ih, one can analogously derive
the Schrodinger equation from these general axioms [48]. Although the latter is
intrinsically probabilistic, while classical mechanics is deterministic at the level of
individual trajectories, these parallels become very useful when it comes to the
description of statistical N-particle systems, which share the intrinsic probabilistic
description of quantum mechanics as we have seen in chapter 2. This insight motivates
the application of quantum mechanical methods in order to study the dynamics
of N-particle systems. One particularly powerful tool in this context is the path
integral formalism, which—based on the Koopman-von Neumann framework—can be
constructed in direct analogy to its quantum mechanical counterpart. We therefore
review the main steps in the next section.

3.1.3. Path Integral Representation and the Koopman-von
Neumann Propagator

With the previous motivation of describing classical and quantum mechanics in a
unified language, we now turn to the functional-integral formulation associated with
our operatorial Koopman-von Neumann construction. In principle, we can follow the
same steps as in the usual quantum mechanical description by applying the Trotter
product decomposition to the phase-space matrix element (3.21). For that approach,
we refer to the appendix of [53]. Instead, we follow [47] and present a related but
different construction of the classical-mechanical functional integral, which is more
closely related to the general discretization procedure that we will use throughout
this work.
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The starting point of our construction is the transition amplitude (3.21),
Uz®, 0|20 $0) = (g0 ] 0O 20y (3.29)

Consider the evolution of the initial state | V) by an infinitesimal time step ¢, and
apply the phase-space operator & on that evolved state. To first order in € we find,
using the commutation relation (3.7) and (3.9), the relation

xe—lEle > e —ieK 4 |$ >_|_ [:ﬁ,e—iek} |$(i)> (330)
=aWeT K 20) —ic 2, K] o7 |20) (3.31)
= pDemicK |20) + e w- VxH(x(i))e_iEK | 2) (3.32)
_ (x(i) Lew- VwH(:E(i))) o ieK |2 (3.33)
~ w6, 2@, t0) e i K | 7Oy (3.34)

where we expressed the commutation relations (3.7) in terms of the symplectic
structure (2.7) and identified the first order approximation to the classical trajectory,

za(e, 20 t0) ~ 20 4 ei(t®) = 20 4 e w .V, H () (3.35)

in the last line. This equation thus implies that the state e~iek | @) is an eigenstate
of & with corresponding eigenvalue (e, 3, %), Extending this result to finite time
shifts, we obtain A

e 1K 20 = |z g (t®, 2@ D)) (3.36)

The orthogonality property of the eigenstates of Z, given by (3.15) implies

(z® |e—i(t<f)—t“))f?|x(i)> = (2O |2q(t®, 20 D)) = 513( (H) —xd(t(f),x(i),t(i))) :
(3.37)
which confirms the intuitive expectation that the transition amplitude from the
initial state 2 at time ¢t to the final state (¥ at time ¢\ is only non-vanishing
if (0 is located on the classical trajectory at time t®. We have thus found the
important relation

U(x(f),t(f) |x(i),t(i)) — op (x(f) _ xcl(t(f),x(i),t(i))) ’ (3.38)

which is a point-wise comparison between the given microscopic position z(, and
the expected position zq(t®, 20, ¢0). We will now use this result as a startmg point
for our path integral derlvatlon Clearly, the propagator U(z® +® |z 1) satisfies
the Chapman-Kolmogorov equation,

U(z®, 1020 0y = /dﬁx U(z9, 1Dz, ) Uz, |z, D) (3.39)

which corresponds to decomposing the time evolution into two steps: first propagating
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the system to an intermediate configuration x at time ¢, and then to the final
configuration (| integrating over all such intermediate states. This procedure can
be used to split the evolution into N steps, t) = tngr >ty > ... >t >t = @,
The Dirac-deltas then ensure that at every time step the particles can be found on
the respective classical trajectories. We find®

N N
U(z®, 020 +0) = [H/dxj} I Uzjs, tialzsn ty) - (3.40)
j=1 J=0

In the continuum limit N — oo we may then formally represent the result as
)
Uz®, 1020 10) = / D dp [a(t) — za(t; z, V)] | (3.41)
2()

where the functional Dirac-delta distribution dp[z(t) — zq(t; 2@, tD)] gives weight 0
to all trajectories but the classical one, with fixed end points at () and z¥. This
enforces that only the full classical trajectory as a whole contributes to the path
integral. The classical trajectory is defined as the unique solution to

=0, with &[z]= g:L’(t) —w- -V, H(z). (3.42)

Ele] T=Tq dt

Rather than working directly with the full classical trajectory—which is generally
not known in closed form—it is more convenient to enforce the dynamics via the
equations of motion. We therefore rewrite the propagator as

U(z®, 100 40y — / Da o [E]]] (3.43)

which singles out the classical trajectory as the root of £[z]. The transition from
(3.41) to (3.43) involves a change of variables that, strictly speaking, requires the
inclusion of a functional Jacobian determinant. While this determinant turns out
to be constant in the case of symplectic dynamics, this is not true in general. We
postpone a more detailed discussion of this point to the next section, where we
address the general case, and in particular to the appendices, where we explicitly
compute the Jacobian and show that it is unity for symplectic systems. Replacing
the Dirac-delta distribution by its functional Fourier representation finally ends up
with
2 o)
U(z®, 1020 0y = /DxDX exp i/dt x(t)" - &[], (3.44)
o) £(0)

where we introduced the doublet x = (x4, X;) as Fourier dual variables to z = (¢, p).
Equation (3.47) is the final result of the Koopman-von Neumann path integral
representation of the classical time-evolution operator. The final density can now be

5This is often referred to as the compounded Chapman-Kolmogorov equation.
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obtained following (3.28) as

20
on (29 t0) = /dx(i) /Dx Dy eis[z’X]gN(a:(i),t(i)). (3.45)

2

With the “classical action”,

S, x] = / dt x(O)T - E[] (3.46)

It is straightforward to show [47], that the usual path-integral representation of
expectation values of observables O(t) = O(z(t)), given by

(O1(t1) - -~ Orl(te)) = /dx(f) /dx(i)QN(l'(i),t(i))x
2

x [ DaDXOi(t) - Ou(ty) exp
)

iS[z, x|

matches the definition of expectation values in the Heisenberg picture (2.50).

Before concluding our brief summary of the Koopman-von Neumann formalism,
we state the general results for the full time-dependent N-particle system. While
the derivation follows the same conceptual steps as in the single-particle case, it
is mathematically more involved, requiring a generalization of Stone’s theorem to
time-dependent generators [54]. We therefore omit the details here and present
only the final result. In the next section, we provide a more general derivation that
does not rely on the underlying Hilbert space structure and is better suited for our
purposes. The N-particle Liouville propagator is given by

< #(6)
U(x® 1 0)xO 0y = /DXDX exp i/dt xt)-E[x,t]| , (3.47)
x(® #(0)

where the classical trajectory is defined as the unique solution to

=0, with &[x,t]= gx(t) —w-V,H(x,t). (3.48)

Elx, t
[x, 1] X=Xc1 dt

The time evolution of the full N-particle Liouville density is hence given by

< o)

on(xD 10y = /dx(i) /DXDX exp i/dt x®)-E[x, ]| on(xV, ). (3.49)
x(0) £(0)

In chapter 4 we will use this equation as a starting point for a perturbative expansion.
Last but not least, ensemble averages of observables are computed analogously to
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(3.50) as
(O(t1) -~ Oxlty)) = / dx® / dx® o (x, 1)) ¢ (3.50)
x(0)
x [ DXDX Ou(x(1)) -+ Ou(x(t) exp [iSTx,x] |
x(0)
where the associated action is defined as
+(f)
Sx, x] = / dt x()T-Ex, 1] (3.51)

(i)

The Koopman-von Neumann construction has shown us that it is possible to
artificially enlarge the algebra of operators in order to encode the equations of motion
within a Hilbert space framework, even if the underlying degrees of freedom commute.
At the level of the path integral, this translates into the insertion of functional Dirac
delta distributions that enforce the deterministic evolution of the underlying degrees of
freedom. This naturally raises the question whether such a construction is generally
possible for arbitrary dynamical systems that involve a deterministic evolution
subject to stochastic elements, such as random initial conditions or external noise
without relying on the abstract Hilbert space construction. The answer lies in the
Martin-Siggia-Rose (MSR) formalism [18] and its generalization, the Martin-Siggia-
Rose-Janssen-De Dominicis (MSR/JD) path integral [55, 19, 20], which implements
these ideas and provides a functional framework that generalizes the operatorial
Koopman-von Neumann construction to a broader class of classical systems.

3.2. Path Integrals for General Stochastic Theories

We first start with the general construction of the MSR/JD functional integral for a
general stochastic differential equation. Hereby we follow [21]. In the second part,
we specialize to the case, where stochasticity only enters via the initial probability
distribution, which is the special case relevant for our application.

3.2.1. The MSR/JD-Path Integral Construction
Consider a general real, n-component, classical field

Yo : RN = R"

X =(t,z) = Yo (X) = ,(t, x)

representing the fundamental degree of freedom of some physical theory. We assume
its evolution is governed by the Langevin-type equation,

9
ot

(3.52)

Vo(X) = Fo[tb] +na(X) (3.53)
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where for the moment we set the initial value of 1, to zero, wa(t(i)) = 0, and move the
discussion of initial conditions to the end of this section. The stochastic noise 7,(x) is
drawn from a not necessarily Gaussian probability functional P[n(X)]. Our goal will
be to construct a functional representation of the time evolution of the field 1 (X)
evolving under the combined action of the space and time dependent force or drift
term F,[¢] = F,(¢(X), X) which contains linear and non-linear couplings of the fields,
and the stochastic noise 7,(x). We present here the compact, continuum-notation
form of the derivation which conveys the key conceptual ideas of the subsequent
construction. However, all functional treatments require a specific definition of
the underlying discretization procedure in order to acquire a well-defined meaning.
Therefore, we provide a rigorous discretized derivation of the functional integral in
appendix B.

Following [21, 56], we first treat (3.53) as a deterministic equation of motion for
with a given fixed realization of the noise 7,(X). Let us therefore denote the general,
n-dependent solution of (3.53) by ,,(X). For a given function 7,(X), the exact
value of an observable O(v) is therefore given by O(¢,), which we write as

O(ty) = [ DY OW) by [¢a(X) = un(X)] (3.54)

where the functional Dirac-delta distribution singles out the specific solution v,,. We
can now insert the equation of motion (3.53), by performing a change of variables in
the Dirac-delta distribution®,

65{1 [1/]]
oy (X)

5 [a(X) — thun(X)] = det[ ] b (.10 (3.56)

Here, 1), is the unique solution to

0

Ealv)|,_, =0, with &[] =

Y=y Va(X) = Fu(¥(X), X) = n4(X). (3.57)

Inserted into (3.54), we find

(3.58)

Ol = [ DuOw) b€l det [ 7L

0p(X)
The determinant on the right-hand side represents the functional Jacobian that

emerged form the above change of variables. Its explicit form is highly dependent
on the underlying discretization procedure, and we refer to appendix B for a more

6This corresponds to a functional generalization of the familiar identity for real scalar functions
f :R — R with a simple root at zq, given by

0(x —xo) = 6(f()) [ f' ()], (3.55)

which relates the composition of the Dirac-delta distribution with a function to the Dirac-delta
distribution of the corresponding zero. In the functional case, the derivative gets promoted to a
Jacobian determinant.
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detailed discussion. From our functional approach, the ambiguity related to the
functional Jacobian can be inferred from [24],

O] ] _ i[5 O OFu[9(X). X]
det [51/117()()] = det 5,11,& - (wb()] (3.59)
caofio- (3] PRI

which can be rewritten as

O€aly] 0] SRV (X). X]
det LWb(X)] ~ exp {tr log léab - l@t] W” . (3.61)

The inverse of the time derivative operator is clearly given by the Heaviside function,
since 20(t —t') = ép(t—t). Thus, by replacing the logarithm by its series
representation, only the first term gives a non-vanishing result, since O(t — t')O(t' —

t) = 0. We thus find

det [ 55;’;@([;@)] ~ exp [—@(0) Try [ ;i“g])u , (3.62)

which clearly depends on the way how ©(0) is regularized. This is tightly connected
to the underlying stochastic discretization procedure. In the main text, we will adopt
the convenient It6 discretization prescription which amounts to setting ©(0) = 0.
In that case, the above determinant yields an irrelevant constant and can safely be
absorbed into an overall normalization constant. We can now replace the functional
Dirac-delta distribution op [E])]] by its functional Fourier representation, and obtain

O(wn):N/DwaDvﬁa () el Jx V(O Elv] (3.63)
=N / DY D, O(1)e! I PG e =Falb(X).X] (X)) (3.64)

The auxiliary field @ZA), which has been introduced as a Fourier conjugate field to
1, clearly plays the same role as y in the Koopman-von Neumann formalism and
enforces the equations of motion. Indeed, it can be shown, that the kinetic coupling
between z/J and w in the exponent translates into a commutator relation between the
corresponding w and 1 operators in the respective operatorial theory. This was in
fact the way MSR originally introduced the auxiliary field. In the above derivation
we kept all fields deterministic. To obtain an expectation value for the observable
O(1,), we average over the respective probability distribution and obtain

(OWy) = [ Diu Dy D1, O(w) Sy (3.65)
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where we identified the action
N N 0
S0l = [ 33) (a0 = BWCOX) - 0] . (366)

We will investigate the physical role of the auxiliary field 12 in the actual application
in the next chapters. However, at this point we can already see that it plays an
essential role in carrying the statistics of the theory, since the n-functional integration
yields

/Dm o1 fx Ya(X)na(X) Ply] = ana] 7 (3.67)

which is the moment-generating functional w.r.t. the probability distribution P[n].
This will be exploited in chapters 5 and 6. Equation (3.65) can be used as a starting
point for a functional treatment of the underlying stochastic theory. One therefore
conveniently introduces the full moment-generating functional

Z[J, j] _ /Dwa Diza D, eiS[¢7¢]+ifX Ja(X)da(X)H [ Ja(X)ta(X) Pln]. (3.68)

3.2.2. Stochastic Initial Conditions

Let us now turn to the case more relevant for our purposes, where the dynamics are
purely deterministic, and the only source of randomness lies in the initial conditions.
These are characterized by a probability distribution P[], where ¢@ denotes
the initial configuration of the field. The associated initial value problem for the
dynamical evolution is then given by

%¢a(t7m) = Fa[¢]

(3.69)
Yot =10 2) = pD(z).

To make contact to the MSR/JD construction, we note that the above initial value
problem is equivalent to

2upa(t,x) = Fau] + 0p (t = 10) 4 ()

(3.70)
Yot <tW )= 0.

This system has a jump discontinuity at t = ¢t( initializing the desired value of the
field ). The equivalence between both systems (3.69) and (3.70) can be seen by
integrating the latter over a small interval [t0) — ¢ () 4 ¢],

t®4e a t@4e t®4e
[ atgute) = [ @R+ [ as(E-0) 0@, @1
t() —e t() —e t() —¢

from which we find

@Da(t(i) +e,x)= O(e) + e (x), (3.72)
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where the force term contributes to order € by the boundedness of F'. In the limit
¢ — 0 we therefore recover the correct initial condition ¢, (t = t® 2) = ¢ (z).
We may thus follow the same steps as before to find the appropriate generating
functional, simply by replacing the noise 7,(t, z) by dp (t - t(i)) ¥® (z) which thus
acts as a noise localized at initial time with space-dependent value v))(z). The result
therefore is

Z[J,J] = / Dify Dy DD S+ [ T+ [y a(X)0alX) pLy@) - (3.73)
with the associated action

Sl i) = [ aX) (lX) = B 00, X) =05 (1= ) (o)) . 370
This will be the starting point of our discussion in chapter 6.

We have now assembled all relevant pieces for a functional integral description of
the N-particle system. In the next section, we will apply this framework directly to
the microscopic trajectories to propagate the initial N-particle Liouville phase-space
density evolving under a general time-dependent Hamiltonian. In particular, the
MSR/JD formalism yields a functional representation of the N-particle time-evolution
operator U (t®,¢®), suitable for systematic perturbative analyses.



4 Formal Solution to Liouville’s
Equation

In this chapter, we will present a formal solution to the Liouville equation based
on the path-integral construction of chapter 3. A similar result was derived by
[25] without the usage of path-integrals. The resulting perturbation theory will
allow us to compute unequal-time correlation functions of the Klimontovich phase-
space density in a perturbative manner. The general idea is based on propagating
individual particles along their respective trajectories and to include interactions
between particles order by order in the interaction Hamiltonian Hj,;. Although using
a slightly different approach, our results will be qualitatively and quantitatively
similar to [31].

4.1. Dyson-Series Expansion of the Liouville
Propagator

Having discussed the path-integral representation of the Liouville propagator for
N-particle systems in chapter 3, we can now derive a formal solution to the Liouville
equation which propagates the initial Liouville phase-space density to a final one.
We start from (3.49),

on (x0, 1) — / dx U7 (x® ¢ O[x0) 10D ()

o) (0

:/dx(i) /DXDX exp i/dt x(t)T-E(x,1) Qﬁ\if)(x(i))

x(1) () <4' 1)

<

:/dx(i) /Dx Dx eiS[X’X]QS\i,)(x(i)),
x(1)

where we have introduced the action S[x, x| in the last line. In most cases, the path
integral above cannot be solved exactly, as this would correspond to solving the
N-body problem. We, therefore, must rely on approximation schemes. One such
example is the perturbation theory around the free evolution, which we discuss in
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the following. To that end, let us begin by splitting the equations of motion into a
free and an interacting part,

E(x,t) =x —w-VHy(x,t) — w-VHin(x, 1) = Eg(x, 1) + Eine (X, 1), (4.2)

where Hy(x,t) is the free Hamiltonian, generally defined by (2.19) and Hiy(x,t) is
the interacting Hamiltonian,

Hlnt

l\D\»—t

N
Z o(zi, z4,t) (4.3)

which, for simplicity, contains only two-particle interactions. Accordingly, we define
the free and interacting parts of the action as,

Solx, x] = x " (t)-Eo(x,t) and  Six,x] = x " (t)-Eims(x,1) . (4.4)
Following the usual procedure from quantum mechanics, we replace the exponential
containing the interaction part by its series expansion and find

X(f)
U(x®, 1 0]x® ¢®) = / Dx Dy S0k +iSim [
x()

x(®)

] xS Gl 4

|
2 n—0 n.

=3 Un(x®, (0]x®, (0
n=0

where U, is referred to as the n-th order propagator and is defined as

<)
U, (x® 0 |x® @) = —/DxDxe‘Sﬂ[x"] (Smt[x X]) (4.6)

NG| ()

in )
= m / Dx DX elSO[X,X] / dtl R dtn (Xf-gmt(xl’ tl)) . (X;—Lr'gint(xna tn)) ,
‘x(i) t(i)

where we introduced the shorthand notation x, = x(t,) and x, := x(¢,). The n-th
order propagator can now be computed order by order in n.
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4.1.1. Free Theory
The free theory is obtained by setting n = 0, for which we find

<(0) o
Up(xP, t®]x® 0 :/DXDX exp i/dt x(t)"-Eo(x, 1) (4.7)
x(0) #0)

x(®)
= / Dxop [Eo(x, 1)] = dp (x — x(¢D;xD ¢D)) - (4.8)
x(1)

In going from the first to the second line, we performed the functional x-integration,
which yields a Dirac-delta distribution enforcing the classical equations of motion
Eo(x,t). We then replaced these equations by their solution, the free classical
trajectory x\) (¢®; x®, ¢®)  according to (3.41) and (3.43). We, hence, find for the
free propagator,

Uo(xD, t0x® 10 = g, (x(f) — G, t(i))-x(i)) o@th — W), (4.9)

where we made use of the fact that the exact expression for the free trajectory is
known, and given by (2.22), with the free particle retarded Green function G/(t®, ™).
The Heaviside function is included to ensure the causal propagation of the density.
We can now exactly solve the freely evolved density,

o) (x0,1) = [ ax? Uy(x9, 101,190 (x) (4.10)

= oV (G} x1), (4.11)

where we used det(G) = 1 to solve the argument of the Dirac-delta distribution for
x® and introduced the shorthand notation G, = G(t4,tp). The time-evolved density
is obtained by evaluating the initial density g?v) at the pre-image of the final phase-
space point x¥) under the map defined by the free particle propagator G : x® — x®,
i.e., by tracing the trajectories backwards in time to their initial positions. We note,

that this is the I'-space formulation of the free-streaming discussed in section 2.4.1.

4.1.2. Interacting Theory

For n > 0, we need to evaluate expressions of the form (4.6). We, therefore, note
that the following holds:

«® £+

i / Dx Dy ¢Sl / dts (x] -Emlxih)) = / dxdty U (£[1) Lo (£1) Up(1]1)
x(® "o
(4.12)
where we identified the interaction Liouvillian defined in (2.45) and used the ab-
breviation U(a|b) = U(X,, ta|Xs, tp). This can be easily verified by discretizing the
path integral, including a breakpoint at x;, and replacing the auxiliary field x; by
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—iV, acting on the free propagator on its right. Repeating the steps for every action
insertion in expression (4.6), we find

() ts
U, (£li) = / dx,dt, .. / dx,dty Up(£1n) Lins (1) Up(nn — 1) Lang(tnr) ..
() +() (4.13)

A

oo Ling (1) Up (1)

Note that at n-th order there are n! possibilities of time-ordering n interactions

which, thus, cancels the % prefactor in (4.6). We then obtain a Born-type series

representation of the N-particle Liouville propagator. In particular, U, is subject to
the following recurrence relation,
()
Un(f]i) = /dxndtn Uo(f]n)ﬁint(tn) Up_1(nli). (4.14)
+(1)
Inserted into the series representation of the propagator (4.5), we find the integral
equation solved by the Liouville propagator,
()
U(Eli) = Uo(£[i) + [ dxsclty Up(E[1) Eie (1) U (1] (4.15)
(i)
Upon integration over the initial distribution, this leads to an integral equation of
Lippmann-Schwinger type for the full phase-space density,
()
on (xD 10y = o (x® 4Oy 4 / dxydty Up(xD, t0)xy, t1) Line (t1) o (x1,£1) . (4.16)
+()
Integrating the above equation over the full final phase space and using the normal-
ization of the py and QES), we arrive at the normalization condition!,
()
0= / dxldtl ﬁint(tl) QN(Xl, tl) . (417)

+(1)

Furthermore, this condition has to hold for every individual particle and at any order
of perturbation theory.

Since the free propagator consists of a Dirac-delta distributions, we can explicitly
solve the integrals over the ensemble in (4.13). Consider, for instance, the first order

'This equation can be equivalently verified upon integration by parts and making use of the
anti-symmetry of the symplectic structure in combination with the fact that the phase-space
density vanishes at the boundaries of phase space.
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correction to the full Liouville density which, inserting ﬁint(t), reads

t(£)
gg\l,)(x(f), t) = /Xm /dt16D (X(f) — Gfl'X1> Vleint(xla tl)-w-Vxl Qg\lf) (Gﬂl'xl) .
+()
(4.18)
The gradient on the right-hand side acts on the inner argument x;. We find

Va0V (Gitxi) = G -V, 00 (y) =Gy, VN (G x),  (4.19)

y:Gl_zl X1

where the notation V,, indicates that the gradient acts on the full argument evaluated
at Gy;'+x;. A similar reasoning has been used by [25] in order to extract the inner
derivative. The notation G~ indicated that we are using the inverse transpose.
Accordingly, equation (4.18) can be re-written as

t(£)
Qg\}) (x(f)’ t) = /dtlvx(f) Hint(GJTll'x(f)a tl)'w'Gl_iT.vx(f) Qg\lf) (G;il.x(f)) ) (420)
+(1)

where we performed the integration over x; using the Dirac-delta distribution on the
left-hand side of (4.18)%. We compactify the notation by introducing the operator

Sv0Lb(vxg) = ‘§<ta7 2fl);vxc) = w'G;bT'vxg ) (421)

which, importantly, is defined to only act on objects with the same time-label t.
The final first-order correction then reads

()
oW (x® 1) = / A1 Vo Hint (G x D 11)-81 (Vo) ol (x D, #0) . (4.22)
(i)

This equation can be interpreted as a scattering of the incoming free density with
the interacting part of the Hamiltonian which carries the two-particle potential. The
freely evolved density is, thus, deformed once by the interaction. The corresponding
first order correction to the Liouville propagator, therefore, reads

t(®)
V(91O 19) = [ a0 0 Hiaa (G x 0, 11)-81:(F i) U(x D, 10]x, 1),

(1)
(4.23)

We can repeat similar steps for the second-order correction to the density, which is

2We also replaced Vy, Hint(x1,t1) by Vi, Hint(X1,%1), which is trivial but makes sure to avoid
collecting a matrix G'y; when applying the derivative.
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given by

t(®

Q( ® 40 /dxz/dtz(SD — Gf2'X2) VXQHint(x27t2)'w'vaQS\lf)(x27t2)-
(i)
(4.24)
This equation can now be solved similarly to the one above, however, care has to
be taken when applying the phase-space gradient acting on g%) (X2, t2), which can
now either act on the interacting Hamiltonian H;,, or the initial density in (4.22).
For each case we collect a different particle propagator. The overall result may be

brought into the form

+(f) to

o (xV,t0) /dtz /dh( w0 Hint (G 3 -x®  5)- [SQZ(Vx(f))+S21(Vx(f))}>

+(1) +(@)

o o (4.25)
X (Vx<f> Hin (G X, tl)'su(me)) o (x®,¢0).

Since the operators (4. 21) can only act on an object with the same time-label ¢, in
the above expression S1; and Ss; both act on the initial phase-space density, while
S, acts on the interacting Hamiltonian with the time argument ¢;. At second order,
thus, two possible processes can occur: Either the classical evolution is affected
twice by an interaction with an unperturbed trajectory resulting in a second order
differential operator acting on g( ) or the classical evolution is affected once by a
perturbed trajectory that has already been deflected once due to a former interaction
with Hi,. This results in a single derivative acting on the free evolution and a single
derivative acting on the interaction Hj, itself. This can now be generalized to the
following expression,

()

o (x ¢0) /dt /dtn 1- /dt1>< (4.26)

X H [ w0 Hint (G oy Xt a)s > S’(n—a)b(Vx(f))] o (x®, ¢y

We introduce the n-th order scattering operator S, given by

() tn

- /dtn/ n—1 - /dtl H |: x(f)Hmt f(n a) Z S'(n a)b x(f>)] 5

t(® (@ @
(4.27)

where ¢, =t which allows us to express the total Liouville phase-space density as

oN i b 0y, (4.28)



4.2. Unequal-Time Correlation Functions 63

The above equation shows how the total Liouville phase-space density arises from
the free evolution as a deformation caused by interactions. It represents the general
solution to the Liouville equation, reduced to all possible combinations of interaction
processes that might happen at n-th order, yielding a series representation in terms
of differential operators. The solution now only consists of evaluating time integrals
for all possible interactions. Similarly, we find for the n-th order propagator

U, (x tO)x0 10y = & Uy(xD O [xD D) (4.29)

4.2. Unequal-Time Correlation Functions

We are now ready to compute arbitrary expectation values by inserting the respective
operators into the functional integration as shown in (3.50),

Crp(zrtr, i ty) = /dx(i)/DxDx(I)f(xl,tl)---@f(xk,tk)eiS[X’X]gg\i,)(x(i)).
() (4.30)

There are, in principle, several ways to proceed now: The strategy pursued in [29, 31|
is to define a generating functional by introducing external sources for the fields x(t)
and x(t) and to represent the observables as functional derivatives with respect to
those sources. This allows the operators to be pulled out of the functional integration,
in close analogy to how expectation values are obtained in quantum field theory.
However, this method becomes cumbersome in our case, since the observables of
interest—most notably the Klimontovich phase-space density—are non-polynomial
functionals of the microscopic fields. In particular, the Klimontovich phase-space
density is defined as a sum over Dirac-delta functions of the microscopic particles,
which makes it non-analytic in the fundamental degrees of freedom. To apply the
functional derivative technique, one must first express the Klimontovich density in
terms of its Fourier representation, where each Dirac-delta function is written as
an exponential function of the microscopic fields. These exponentials then act as
translation operators on the sources in the generating functional, shifting the source
fields at the point of insertion. This effectively re-introduces the operator insertions
as modifications of the background source configuration.

We will, however, follow a different path more closely related to how unequal-time
correlation functions of macroscopic quantities are computed in kinetic theory [26].
Let us therefore, again, split the functional integration (3.50) at the respective
operator insertions. We find

Cfmf<l’1, tl, e ,I‘k,tk> = /dX1 s kadX(i)(I)f(l’l,tl)U(X17t1|X2,t2) Ce
(4.31)

U (X1, bt [ X 1) @ (0, 1) U (g, e X, t(i))gg\if)(x(i)) .

The system is, thus, evolved from an initial configuration at time ¢! to each operator
insertion, using the full N-particle propagator U(x,, t,|X,_1,t.—1). The perturbation
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a) b)

A
A

Figure 4.1.: A schematic diagram representation of the terms up to second order
in perturbation theory for the mean Klimontovich phase space density
Cy(x1,t2) is given. In a) we present the free theory (4.32), in b) the first-
order perturbation theory (4.35) and in ¢) the second-order perturbation
theory. The filled circles represent positions in phase space. Interactions
are depicted as arrows. The direction of the arrows indicates that, for
instance, in b) a force is acting on the one-particle distribution at phase
space position z; labeled 1. All phase space positions are connected by
a dotted line, representing the respective initial s-particle phase space
density. The two diagrams on the left in ¢) arise from the shot-noise
contributions when evaluating the second-order expression. Figure taken
from [57].

theory now consists of expanding the respective full propagators in a series expansion
as discussed in the previous section and collecting the terms of a given order in the
interaction. For instance, the one-point phase-space density correlation function at
zeroth order, corresponding to free propagation, is trivially given by

O (1, t1) = / dx,dx D @ (1, ) Up (xq, t1]xD, 1) o) (x D) (4.32)

=G - a), (4.33)

which reproduces the standard result (2.90) and where Gy, = G(t,, 1) is the 6-
dimensional analogue to the shorthand notation introduced in (4.10). To first order
in the interaction potential, we have to evaluate the expression

V(1) = / dx;dxD @ (1, 1)U (xq, 11 ]x D, 1) o) (x D) . (4.34)

Inserting the definitions of ®; (2.52) and the first-order Liouville propagator U;
(4.23), and solving the remaining integrals, we find

P @1,t0) = [ dwadty Vo, 0a(Gig -1, 22, 12)- 514(Vi) 57 (G121, Gy o2) , (4.35)
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a) b)

Figure 4.2.: All diagrams up to the second order in perturbation theory for the
Klimontovich two-point correlation Cfy are represented. We list in a)
the free theory (4.37), in b) the first-order perturbation theory (4.38)
and in ¢) the second order perturbation theory.

where the operator o _
Sab (V) =w - G - Vo, (4.36)

corresponds to (4.21) in p-space. Although the resulting expression appears complex,
its structure follows a s%(stematic scheme: As expected, v9 only couples two particles,
such that of the full g]\l,) only the two-particle reduced initial phase-space density
remains after integration over the initial phase-space coordinates. The interaction
describes how the free evolution of the particle at z; is affected by an interaction
with a particle at z9 at time t5. Note that particle 1 is evolved up to the final time
t1, while particle 2 is only propagated up to the time of interaction ¢, inside fy. The
latter particle position is then integrated over the whole phase-space volume. We
illustrate the processes contained in (4.35) graphically in figure 4.1.

Analogously, the free evolution of the two-point phase-space density correlation is
given by

O (1,1, w0, t2) = Op (21 — Gha - w2) FINGT - a0) + fO(GTE - 20, Gt - wa) , (4.37)

where both particles at x; and o are freely evolved to their respective final times ¢;
and ty. The first term corresponds to the one-particle contribution accounting for
the possibility of picking the same particle, but at different times. For the first-order
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correction to the two-point phase-space density we have to evaluate

CJ(%“) (xbtla T2, t2) =

/dxldXde(i) (I)f(.Tl, tl)Ul (Xl, t1|X2, tg)q)f(l’g, tQ)U()(Xg, t2|X(i), t(l)>Qg\lf) (X(l))

+/dX1dX2dX(i) <I>f(x1,t1)U0(x1,t1|x2,t2)<I>f(a:2,t2)U1(x2,t2|x(i),t(i))gg\i,)(x(i)),
which, after integration, can be brought into the form

CJ(C? (xla tl? T2, t2) =

t(£)
/d{ﬁ’”1 va(Gt -, Gy e ) - Su(Vay) £ (G- 0, Gt - )
(1)

+ (1« 2)
(4.38)
()
[ dtsdag Vo, (G- w1, ta) - (Vi) £ (G, Gyl w2, G )

(i)
+ (14 2),

where we have neglected the correction to the one-particle contribution. The first and
second terms represent the interaction between the two external particles 1 and 2 and,
therefore, correspond to a collision, i.e., a connected correlation that is being created
due to an interaction. These terms arise due to the identification of the interacting
particle index in the sum contained in Hj,; with one of the external particle indices.
The third and fourth terms, on the other hand, correspond to interactions with an
internal particle 3. We provide a graphical representation of these terms in figure 4.2.
Going to second-order in perturbation theory, the number of terms increases rapidly.
We therefore only give a graphic representation of the second-order perturbation
theory in 4.1 and 4.2 to illustrate the different processes which can occur.

With the systematic approach presented in this chapter we could, in principle,
compute unequal-time correlation functions to arbitrary order in the interaction
potential. However, as we have just seen, the number of terms—and their combina-
torial complexity—grows rapidly, even at low orders. Moreover, at higher orders, all
contributions are treated on equal footing, without a natural hierarchy to distinguish
physically relevant terms from subdominant ones. As we will see in chapter 11, this
will lead to a very slow convergence of the perturbation series in practice, making
this approach more valuable as a theoretical tool than as a method for efficient
computation. However, the path-integral construction of the propagator and the
representation of expectation values established here will serve as a foundation for the
framework developed in the next chapter, where path integral methods are applied
to systematically reorganize and resum the perturbation theory presented here.



Resummed Field Theory for
Microscopic Particles

Despite being the most straightforward approach, the perturbation theory presented
in chapter 4 is not very suitable for realistic applications due to the vast number of
diagrams that have to be evaluated and the slow convergence of such a perturbative
approach. The goal of this chapter is, therefore, to convert the particle-based
description to a field theory which contains the full microscopic information. Such a
field theory can either be obtained by artificially introducing new, macroscopic fields
via a Dirac-delta function as shown in [34], or based on the Hubbard-Stratonovich
transformation (HST), well-known from equilibrium statistical mechanics [57]. The
latter approach, in addition, provides a physical understanding for the transition
from the particle-based to a field-theory description. In order to perform the HST,
we will first construct a generating functional and then bring it into a quadratic form.
Similar approaches have already been successfully applied.

5.1. Construction of the Field Theory

Before we begin with the construction of the generating functional of the theory,
let us introduce a compactified notation which will increase readability of lengthy
expressions later on. First, let us introduce the combined variables X = (z,t),
bundling the phase-space and time coordinates. We will also abbreviate

/X ::/de t:)odt. (5.1)

If the variable is indexed, we may also write (1) = (X;) = (x1,t;). In addition, we
introduce the convention

A(1,2)B(2) = /X A(X1, X2)B(Xa), (5.2)

which implies the integration over variables of the same index. In the following we
will further compactify the notation as needed. A summary of the notation used in
this thesis can be found in Appendix A.
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5.1.1. Construction via a Modified Hubbard-Stratonovich
Transformation
Consider expression (3.50) for the computation of phase-space density correlation

functions. Alternatively, these can also be obtained from the following generating
functional,

211 = / dx / DxDxel SEXHr 027 (X) pl0) () (5.3)
x (1)

such that the phase-space density correlation functions are given by

B Sk Z1J4]
0Jp(1). 0 dp(R) |y

Cr p(1,...,k) (5.4)

However, in this form, the generating functional is not yet useful, since the Klimon-
tovich phase-space density ®(X) couples non-trivially to the microscopic degrees of
freedom. We will, therefore, have to decouple the particle dynamics from the field
itself. For this purpose, we introduce the response field ® as a partner field to the
Klimontovich phase-space density ®;. It is defined as

(I)B(l) = —1;X1(t1) W - inéD (Xl(tl) - Il) . (55)

With its help, we can bring the interaction part of S[x, x| into the more convenient
form,

N
iSint[X, X] = —1/ Z Xi-W - invg(xi,xj,t)
H) FI=1
(5.6)
= Op(1)v2(1,2)04(2)

= ®p(1)dp (1 —2) Pf(2),

where we defined vy(1,2) := vo(xy, z2,t1)dp (t1 — t2) and the Dirac-delta function is
written as dp (1 — 2) = dp (X; — X2) = 0p (21 — 22) Op (£ — t2). In the last equality
we, furthermore, introduced the dressed response field @5 ([34]) as

By(1) = /X ® (X )va(X, X1) . (5.7)

We can now treat the fields ®; and ®p as components of a field doublet o =
(®;, )7 = (3, ®;)7T where—for reasons that will become clear shortly—we
interchanged the position of ®; and ®p. Similarly, we define a source doublet
J, but place the source J; in the first component, setting J = (J;,0)", where Jp = 0,
since there is no physical source for the B-field. To keep the expressions compact,
we introduce the Greek indices such that we can write the components as

A (X), with «e€{f B} (5.8)
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for any field A(X). We can then rewrite the interaction term including the source as

ol Sinc DX+ T (124 (1) _ o (Ba(D)+Ta(1))oas(1,2)(35(2)+75(2)

_ N 5.9
b ou(ines), o
with the self-inverse matrix o, defined as
- 0 op (1 —2)
as(1,2) = (513 (1—2) 0 ) . (5.10)

In the last line of (5.9), we have employed the De Witt notation which introduces
the Latin index a = (o, X) such that we can compactly write

A, = Au(X). (5.11)

Having brought the generating functional into a quadratic form, we can now proceed
with our main task to decouple the microscopic degrees of freedom from the fields.
To this end, we employ a well-known procedure from condensed matter physics
and equilibrium statistical mechanics. We, thus, perform a modified Hubbard-
Stratonovich transformation!, which essentially amounts to rewriting the above
integral as a path integral over an auxiliary field W(X). This field will then be
independent of the microscopic details. More precisely, we write,

Y

e%(&)a‘f'«]a)o'ab(éb‘iﬂ]b) :N/D\Ij e—%\I/a[o'fl]ab\Ilb-f—\I’a(Ja"F&’a)

where the field doublet ¥, (X) = (¥;(X), ¥p(X)), conjugate to &, (X), has been
introduced. The full generating functional now reads

2] =N / Dy 3l e 7 g, (5.12)

with
Z,5[¥] = / dx® 0% (x1) / DxDx exp |iSo[x, x] + ¥, P,
x(1)

. (5.13)

Note, that the macroscopic fields W (X)) and ¥z(X) are independent of microscopic
degrees of freedom, but couple linearly to CTD(X ) and consequently to the Klimontovich
phase-space density ®; and the response field ®p in Z; 5. This identifies Z 5 as the
generating functional of free f-B correlation functions, as one can easily verify by
taking functional derivatives of Z; 5 w.r.t. ¥y and Wp. The generating functional
Zy 4, thus, contains the full microscopic statistics. Introducing the associated

'We call it a “modified” Hubbard-Stratonovich transformation since the conventional way to apply
this transformation is to invert the potential to obtain a differential operator governing the
dynamics of the conjugate field theory. Our approach, however, absorbs the potential into the
field components such that the resulting dynamics for the new field are trivial.
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cumulant generating functional
Woalt) =1n |Z,5(9]].
we can bring (5.12) into the compact form
) = N [ Dwe sl et vt Woalt], (5.14)

The functional W, 3[¥] has the following series expansion,

[e%S) 1 T s
WO,&’[\I’] = ZO @ Hl \DB(m) H \ij(n) G;O)fBB<1, M A 1/, e S,) (515)
r,s= ] m= n’'=1

where integration over same indices is implied and which introduces the free mixed
f-B cumulants cho) BB containing r phase-space densities and s response fields,

G oL 1) = (@p(1) - Dp(r) (1) -+~ Bp(s)) . (5.16)

Note, that the mean has to be taken w.r.t. the free microscopic action as is clear
from (5.13). The cho) BB cumulants thus generalize the pure f cumulants discussed
at the end of section 2.5 by including the response field. We discuss their form and
physical meaning in section 5.2.1.

5.2. Resummed Field Theory

Together with (5.15), equation (5.14) defines the action of a statistical field theory
where the generating functional has the form

Z[) = N [ Do SWH Y — 7 [ DpenSMSalitate - (57)

where we defined the free action containing all? contributions up to quadratic order
in the fields,

SolW] = Wu(1) |1 - G3] (1,2) Uy(2) — Ws(1)GY (1)

1
— 5 V(UG (1,2) .

(5.18)

The remaining terms define the self-interactions of the fields and are contained in
the interacting part

[T 9| G sty -1, ') (5.19)

n’/=1

IT ws(m)

m=1

2Note that there exists no pure ®z-field cumulant. See the following discussion for more details.



5.2. Resummed Field Theory 71

Introducing the inverse tree-level propagator,

B 0 1-G! .
[A 1L (L2)=1{. o o'F | (1,2), with GE)(1,2) = G{J(2,1), (5.20)
g 1-Ggp Gy

we can write the quadratic part of the action (5.18) as
1
Sol¥] = S Wa(1) [AT] (1,2)W5(2) — Us(D)GY(1). (5.21)
Note, that by construction we have the correspondence

<(I)f(1) e (I)f<k)> = 5Jf<1) 6 .5Jf(k)

(5.22)
= (U (1)... Wy (k)

which makes the contact between the Klimontovich phase-space density correlators
and the correlation functions of the auxiliary fields. We may now apply the usual
field theoretic methods in order to compute correlation functions. We therefore
extend the source J to contain an additional response component, J = (J¢, Jp)
and replace the fields ¥y and ¥ in (5.19) by the functional derivative w.r. t. their
respective source field, to find the usual expression

217 = N exp l— S léif ;]BH 2], (5.23)

where Zy[J] is defined to contain the quadratic part of the action,?
Zo[J] = N / DU DU e~ SolV+Juva (5.24)

The above path integration for the tree-level generating functional can be performed
analytically and yields

Zo[J] = exp [; Ja(1)Aap(1,2) J5(2) + Jr(1)Ags(1,2) GS&”(Q)] , (5.25)

where the tree-level propagator has the components

A At
Aws(1,2)= [T 7). (5.26)
ABf 0
The inversion relation
/X (AT (X0, X)A6(X, X2) = bp (X1 = Xz) Lasca, (5.27)

3The normalization N' = N"N is chosen such that Z[0] = 1 = Z,[0].
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implies the following equations for the components of the tree-level propagator,

Ass(1,2) = [1 - Ggfg]_lu, 2, (5.28)
Algf(l, 2) = Aﬂg(2, 1) , (529)
Apr(1,2) = Ags(1,1) GYH1.2) App(2,2) . (5.30)

We have thus developed a field-theoretic formulation of the N-particle system, in
which the phase-space density and the response field (5.7) serve as the fundamental
degrees of freedom. This framework is particularly well-suited for applying functional
methods to compute the correlation functions of the Klimontovich phase-space density,
using the correspondence relation (5.22). In the following, we will demonstrate how
one-loop corrections are computed and examine the overall structure of the resulting
field theory. Before proceeding, however, we first clarify the physical roles of both,
the propagators and the interaction vertices, beginning with the latter.

5.2.1. Free Cumulants

As we have seen above, the free f-B cumulants play the role of fundamental building
blocks of the field theory, as they appear in both, the propagators and the vertices.
They contain information on the microscopic degrees of freedom. Let us therefore
illuminate their physical role in more detail.

The general f-B cumulant is defined as the connected correlation function (5.16),
G g (Lo 1) = (@y(1) - @y (1) @6(1) - Bs(s) . (5.31)

The prescription of how these cumulants are computed is essentially described in
chapter 4. Although, the computation appears to simplify at first glance, since
the above cumulants are computed w.r.t. the free theory, it actually describes
interaction processes, since the response field (5.7) contains the potential. The
simplest cumulants to interpret are therefore clearly the pure ®;-field cumulants,
as they correspond to freely evolved k-point density clusters propagating the initial
correlations. If one or more ®x-fields are present, however, the expressions become
more involved. First, we note that in order to solve the respective path integral, we
will have to replace the x field contained in ®z by the corresponding differential
operator —iVy, similarly to (4.12). It then follows from the normalization condition
(4.17) that no ®p-field may appear together with the latest time in (5.31). In
particular, this implies that all pure ®p-field cumulants must vanish identically,

GW (1,...,8) =0, (5.32)
and leads to the causality rule,

GO gLyl ) =0, if 35€[l,....8]ts>tViel,... .
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The physical significance of the above rule and the role played by the mixed cumulants
is best understood with a specific example at hand. Let us, therefore, discuss the free
Ggfg cumulant since it appears in the propagator. By the above rule, we first find

GA(1,2) o O(t —t). (5.34)

Inserted into the respective path integral expression and after solving the Dirac-delta
distributions similarly to the perturbative approach presented in chapter 4, we find
the somewhat familiar expression

GYA(L,2) = V,, 0a(G - 21,20, 1) - $1(Vay) AU GT - 21Ot — 1), (5.35)

where S1;(V,,) is the scattering operator in p-space defined in (4.36). The above
expression strongly resembles the first-order perturbative expression (4.35). Thus,
chog describes the microscopic process in which the freely evolved one-particle reduced
density is deformed by an interaction originating from a particle at x5 which is,
importantly, not connected to the density at x;. In that sense, the cumulants act
as building blocks, that have to be linked together in order to represent physical
processes. The causality rule (5.33) states that interactions can only affect the future
evolution of a phase-space density. If there is no density to act upon, the respective
contribution vanishes. This can be generalized to higher-order mixed cumulants
as follows: Gg?,)‘meB(l, e85, 17 -+ ') describes the response of the freely evolved
s-point cumulant to r interactions at times ¢/, - - - ,t,» with external particles located
at xy,--+ ,x,. The cumulant thus consists of a differential operator acting on the
freely evolved pure f cumulant,

0 N 0
G sl s, U ) = D-GP (1, s). (5.36)

Importantly, due to (5.33) the cumulant introduces a time flow from the external
particles sourcing the interaction to the densities being deflected. We, therefore, find
that the cumulants have an internal time-ordering, generalizing the time ordering
enforced by the Heaviside function found in (5.35). The explicit form of the above
differential operator is, of course, highly non-trivial, as the discussion in 4.1.2 suggests.

5.2.2. Propagators and Feynman Diagrams

We now turn to the interpretation of the propagator equations (5.28) and (5.30).
We first note, that the inverse in (5.28) is to be understood in the functional sense,
i.e., as the solution of the integral equation

/X [1()(1,)21) = GOX, X)) Ags(X, Xa) = 1(X0, Xs). (5.37)

By making the ansatz

Ags(X1,Xo) = 1(X1, Xo) + App(X1, Xo) | (5.38)



74 5. Resummed Field Theory for Microscopic Particles

Xy

X1 X2

.

L

Figure 5.1.: Graphical illustration of the processes contributing to the causal propa-
gator Ayp (left panel) and to the statistical propagator Ay (right panel).
Phase-space densities sourcing the interactions are presented in gray.
Dashed lines indicate the connected part of the correlation between these
points.

we find that the corresponding integral equation for A B is given by
Ass(X1, Xs) = GO(Xy, Xa) + /X GO(Xy, X)A (X, X). (5.39)

Due to the Heaviside function in (5.35) we also find A ;5(X;, X3) o< ©(t; —t5), which
preserves the causal propagation. We therefore call Asz(1,2) and Ags(1,2) the
retarded and advanced causal propagators, respectively, and define the Feynman
diagrams,

App(1,2) & —— | (5.40)

App(1,2) 2 v | (5.41)

where the direction of the time-flow is from the dotted end to the solid end. Equation
(5.39) is of Volterra-Fredholm type and has to be solved numerically in general if no
further symmetry assumptions are made. By iterating (5.39) we find the Neumann
series representation of the causal propagator,

Aps(1,2) = 1(1,2) + G1(1,2) + G111, 1) GYR(A,2) + - (5.42)
=2 [G;(g}”(l,z). (5.43)
n=0

The interpretation of the causal propagators, therefore, is the following: each GSPg,
describes how a one-point phase-space density responds to an incoming interaction,
which is sourced by a phase-space density that has itself already been influenced by
an earlier interaction. This process can repeat arbitrarily many times within the time
interval [¢1,t5]. Figure 5.1 provides a graphical representation of this iteration. Thus,
objects involving Az propagators are, by construction, non-perturbative in terms of
the microscopic interaction potential as they involve an analytical or a numerical
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resummation of the interaction series (5.42). We have therefore found a systematic
resummation of the perturbative expansion discussed in the previous chapter.

Similarly, we find an interpretation of the propagator (5.30): Two initially corre-
lated phase-space densities, described by chof), source the interaction chain included
in the Asp propagators which we described above. The two external densities at
X; and X, thus remain fully connected, see Figure 5.1. Since Ay, thus, carries
statistical information, we refer to it as the statistical propagator and equip it with
its own Feynman diagram,

Apr(1,2) = Aps(1,1) GYH1.2) App(2,1) 2 —e—. (5.44)

The ch(})—cumulant is represented by the solid dot, and the two solid lines are
shorthand representations of the retarded and advanced propagators Az and Apy.
By means of (5.38), equation (5.30) can be expanded such that

Apr(1,2) = GV (1,2) + Ags(1,1)GT)(1,2) + GV (1,2)Ags(2,2) 515
5.45
+ Ags(l, I)G;‘?(I,Q)Agf(i, 2).

Since there is no pure Ggg—cumulant, we also have Agg = 0.

Last but not least, the vertices GS:O) 5.5 describe how r interactions affect the
future evolution of a connected s-particle cluster. We, therefore, represent vertices
by the following Feynman diagram,

GV g p(L.m )= e (5.46)

The solid line are attached to incoming interaction chains, while the dashed lines
represent outgoing interactions, sourced by the cumulant itself. Importantly, due to
the rule in (5.33) there has to be at least one outgoing line, representing the density
that is being deflected, meaning that there is no sink in the time flow. Conversely,
a pure phase-space density cumulant cho) s will only source outgoing interaction
chains. We can now understand the general construction of a Feynman diagram. All
components of the diagram, i.e., propagators and vertices, are attached to each other
such that the densities of one component act as sources for the response functions
of another. This ensures a continuous time flow, which can only terminate at the
external phase-space densities. Within vertices, the time flow can split or merge,
indicating how a single density influences the future evolution of multiple densities
or is affected through interactions with multiple densities from the past.

5.2.3. One Loop Corrections

With the generating functional (5.17) at hand, we can now compute loop-corrections
to the propagators. The most straightforward approach is to use equation (5.23)
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Figure 5.2.: A graphical representation of the first loop appearing in the one-loop
self-energy contribution (5.49). The dashed lines connecting the phase-
space points at the base of the diagram represent the connected part of
the correlation between those points. For clarity, we do not explicitly
depict the gray phase-space points taking part in the interactions.

and to apply the functional derivatives order by order in the couplings, i.e., the free
cumulants. Note, that we have an infinite tower of mixed vertices. The only restriction
is set by the causality rule (5.33). Neglecting all tadpole contributions* we find that
to one-loop order there exist two different topologies of diagrams that contribute to
the loop correction coming from the three- and four-point self-interactions, given by

—O— and Q . (5.47)

In fact, the highest vertex contributing to a loop correction at s-loop order is a 2s + 2-
point self-interaction, as it connects all propagator lines to the same vertex yielding
generalizations of the diagram on the right in (5.47). Having determined the possible
topologies at a given loop-level, one can now construct all contributing diagrams
by inserting the respective vertices appearing in the action (5.19) and connecting
them with the respective propagator. For our one-loop example, the three- and four
point vertices are Gggc)f , chof)B , G%B , ch[})fg , Ggfof)BB , GE%BB. The one-loop corrected
propagators are, thus, given by

G (1,2) = App(1,2) + App(1,3)S55°(3,4) Ay (4, 2)
+ AfB(lv B)E}IBOOI)(?’? 4)Aff(47 2)
o (5.48)
+ AfB(L 3)Eff p(g’ 4>A6f(47 2) ;
G}l;;opu, 2) = Agp(1,2) + Agp(l, 3)2}2@(3, 4)As5(4,2),

where we have defined the self-energy corrections Z}IEOP and Z}IJ?OP at one-loop order.
Keeping the above Feynman rules in mind, they can be expressed by the following

4These contributions are present in general. However, in [58] it was shown that such tadpoles
vanish for homogeneous systems, which are our main systems of interest.
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set of diagrams

SEeP(1,2) &
s
SRS (5.49)

E}IBOOP(L 2) = O + ; <. + k\

(5.50)

As one can see, the number of diagrams contributing to a given loop order grows
quickly. The physical process underlying a given diagram can be interpreted similarly
to the tree-level propagators. In Figure 5.2 we show a schematic representation of

the first loop-diagram in 2}1})01’.

In conclusion, we have seen how an actual field theoretic formulation can be
constructed out of the N-particle generating functional (5.3). In contrast to the
latter, the fundamental degrees of freedom are the phase-space density ¥, and the
response field Wy, which have been decoupled from the microscopic particles by
the modified Hubbard-Stratonovich transformation. The resulting tree-level and
loop diagrams encode microscopic particle-interaction processes, where the simplest
is being resummed withing the tree-level propagators. This offers a fundamental
advantage over the perturbation theory presented in the previous chapter. However,
the infinite tower of interaction vertices renders any approximation scheme highly
non-trivial. Furthermore, as the cosmological application in chapter 11 shows, already
the one-loop diagrams exhibit severe numerical cancellations among the different
loop contributions. In the next chapter we will therefore present a different approach
which restructures the physical processes in a more convenient way.
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6 Statistical Field Theory
Approach to the Klimontovich
Equation

In the last chapter we have seen how to construct a field theoretic approach out of the
N-particle description of the Liouville equation. However, due to the construction of
the field theory, the particle interaction is encoded in an infinite tower of vertices.
This is both, counterintuitive and impractical. Since we are ultimately interested
in the dynamics of the Klimontovich phase-space density field, we will map the
dynamics of microscopic particles to the dynamics of the field itself, given by the
Klimontovich equation (2.78). This approach not only simplifies the vertex structure
considerably, but also facilitates the comparison to conventional approaches. The
basic concepts are covered by [59, 21].

6.1. The Klimontovich Equation as a Stochastic
Differential Equation

Let us first recast the Klimontovich equation (2.78) into a form that is more suitable
for our field-theoretic application. Since (2.78) is deterministic, specifying <I>§fl) () =
P f(x,t(i)) completely fixes its evolution in terms of the u-space coordinates, and

microscopic details enter only through the initial ensemble gg\i,) (x). In that sense,
the evolution is naturally decoupled from the microscopic degrees of freedom which
therefore only enter the dynamics through the initial statistical distribution of the
particles. To make this explicit, we introduce a new field variable W (X)) = W(z, 1),
which evolves according to the Klimontovich equation, once its initial configuration
is appropriately initialized as <I>§cl). Clearly, Vt > t® we have U (z,t) = ®(r,t) due
to the uniqueness' of the solutions to (2.78). Using the same phase-space and time
variables (1) = X; = (x1,t;) as in chapter 5 and employing the condensed notation
for integrals over X, as described in appendix A the stochastic evolution equation of

LAlthough this redefinition of variables is trivial, it will make the comparison to the particle
approach in chapter 5 easier, since the field ¥, exactly correspond to the auxiliary field ¥y
after the Hubbard-Stratonovich transformation. We will postpone further discussion to the end
of this chapter.
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the phase-space density in p-space is described by

0

(1) = UO(1,2)0(2) = F[Yg;1) +60(1), (6.1)

where we defined ®0(1) = ®0(X,) = oy, (t; — t0) ®D(xy). The drift term F[W; 1]
is a functional of ¥ and a function of the coordinates X and is defined by

FU;, 1] = UD(1,2)04(2) + UP(1,2,3)0(2)T4(3), (6.2)

where we recall that integrations are implied. Here, we formally decoupled the
interaction operators defined in (2.78) from the field ¥, by including appropriate
Dirac-delta distributions. In particular, we defined

UO(X1, Xo) = L (t)0p (X1 — Xo)

UD(X1, Xo) = L8P (4)6p (X1 — Xo) (6.3)

A

U(2)(X1, XQ,Xg) = ,Cg)(tl)(SD (Xl - X3) (SD (tl - t2) .

Since (ID( (1) =N, 6p(ay —x(tD)) =N, 6p (o — xgi)) any solution to (6.1) will
parametrlcally depend on all particle positions at the initial time, represented by x.
We will therefore denote the general solution to (6.1) by W s(x1,t1; x@). Once the
solution W s 401 (X1; x(i)) is known, the correlation functions of the phase-space density
are obtained as

Cfmf(Xl, e ,Xk> = <\Ilf7sol<X1; X(i)) . \IIJ{SO](Xk; X(l))> (64)
- / dx® o (x OV (X xD) W (X x@) . (6.5)

The form of equation (6.1) is now well suited for a functional treatment within the
MSR/JD framework. This will be the main goal of the current chapter. Before
that, however, let us discuss how perturbations in the field configuration affect the
evolution of the system.

6.2. Response to Perturbations

Fluctuations arising from uncertainty in the initial field configuration propagate
through the system and influence the evolution of the phase-space density. It is
therefore essential to understand how the system responds to such perturbations.
Let us therefore add a function K (1) on the right-hand side of (6.1), that serves as
a small space and time dependent perturbation,

Dy p(1,2)¥4(2) = F[Wy, 1]+ @9(1) + K(1). (6.6)

We denote the general solution of (6.6) by W£_(1;x%) indicating, that it is also
a functional of the perturbation K. The physical solution is ultimately recovered
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setting K = 0. The free evolution is characterized by the linear differential operator
on the left-hand side,

0
D()_}{(Xla X2> = [815 — E (ZL’l, tl)‘| 5D (Xl — XQ) . (67)
1
The free retarded propagator of this theory, denoted as Dy p(1,2) is defined as the
Green function to the above linear differential operator

D()_,]l%(lvi)DO,R(LQ) = 1(172) ) (68)
where of course, 1(1,2) = dp (X; — X»). Clearly, the solution is given by
DO,R(Xla Xg) = 5D ([El — G(tl, tg) . ZL’Q) @(tl — tg) s (69)

where G is the free particle propagator defined in (2.22). We can analogously
define the free advanced propagator of this theory by interchanging the arguments of
Do r(1,2),1.¢e

Do .a(1,2) = Do r(2,1). (6.10)

Thus, under the free evolution, the density at x5 evolves under its free trajectory up
to z; at time ¢;. Retardation is again enforced by the Heaviside function. Equation
(6.6) can now formally be solved by

\ij sol(Xl;x(i)) = \P;O)(Xl) + /X D07R(X17X2) [F [\II?,SOI(XQ;XO))} + K(XQ)] ’ (611)
where ‘11500) represents the free solution to the Klimontovich equation,

\II;O) (Xl, X(i)) = « DQ,R<X1, X2)5D (tQ — t(l)) (I)Scl) (ZL'Q)
2

(6.12)
=0 (G (t1,t9) - 21) Ot — ).

Equation (6.11) is a non-linear Volterra-Fredholm integral equation of the second
kind?2. The causal structure of the linear Green function (6.9) implies that the
time integration on the right-hand side of (6.11) represents a memory integral,
i.e., the full solution W (z1,¢1;xW) requires the knowledge of the full history of
U (@, t; xW) for all times ¢ < ¢;. In order to understand how the perturbed solution
\Iffcfsol(:cl, t1;x1) deviates from the unperturbed solution W . (xy,;;xd); we expand
(6.11) in a Volterra series,

P (X0 3 on /Xh RV X L XK (X). K () (6.13)

in terms of the perturbation K(z,t). Equation (6.13) can be obtained by iterating
(6.11) and represents a functional Taylor series expansion around K = 0. The

2The Fredholm part, corresponding to the integration over the phase-space coordinates, can in
principle be performed explicitly due to the Dirac-delta distribution in the free Green’s function.
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Volterra kernels R(™ describe how the system at time ¢ responds to perturbations at
earlier times tq,ts,...,t,. They are therefore known as the response functions of the
system and are defined as the n-th functional derivative of the perturbed solution
w.r.t. to the perturbation K,

: S (X x0)
RM(X; X1, .., Xy x) ool (X X7)

T OK(X)) ... 0K(X,) (6.14)

K=0

Thus, they generally also depend on the initial field configuration. In particular, the
lowest order ' '
ROX;xV) = W (X xD) (6.15)

is the unperturbed solution. Because the evolution is causal, meaning that a
perturbation at any given time can only influence the system’s future, the response
functions R(™ naturally vanish for perturbations applied at times later than ¢. This
causality ensures that the memory integrals in the Volterra series only involve past
perturbations. If the perturbation is small (6.13) can be approximated by the
lower-order response functions. For instance, we find?

‘ SO (X .x(i))
RO(X,: X, xD) = fosol\-2 1,
( 15423 X ) 5 ( 2)

K=0

which describes the linear response of a perturbation at time ¢; to the solution at
time ¢. The second order Volterra kernel

. SPUE (X xW
R (X; X, Xo;xV) = sl Xix7)

0K (X1)0K(X3) ’ (6.17)

K=0

on the other hand, contains the information of how two perturbations at (z1,%;)
and (z9,ty) affect the solution at time ¢. It thus describes a non-linear response
of the system. Similar interpretations hold for the higher order response functions.
Importantly, a given response function vanishes, if the time of a given perturbation
is later than the time at which the density is evaluated,

ROX: Xy, .., XxW)y =0, ifIke{l,....n}:tp>t. (6.18)

For our statistical description we will be interested in the averaged response function
which is defined as

R X, X)) = (RO X, Xx D)) (6.19)

3We recall that we are working in the Ito discretized theory, i.e., ©(0) = 0.
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where the average is defined over the initial particle distribution. Most prominently,
we define the full retarded propagator as the averaged linear response function?

Gr(X1, Xs) = RW(X1; X,) = < Pl (X1;x )‘

A > x Ot —ts).  (6.20)

K=0

It will play an essential role in the forthcoming discussion as it generalizes the free
causal propagator (6.9) to the fully interacting statistical theory.

6.3. Generating Functional

With the above discussion we are now able to construct a field theoretic treatment
of the Klimontovich equation (6.1). We are ultimately interested in the computation
of unequal time correlators of the phase-space density, which are defined as

Crog (X1, oo, X0) = (U (X x®) - \p;fsol(xk;x<i>)>‘ (6.21)

K=0

_/dx or (1))\I,fsol<X1;x(i))...\ijsol(Xk;x(i))‘ . (6.22)
K=0

where U (X ;xM) represents the general solution to (6.6) as discussed in the
previous section. While we could have immediately set K = 0 and worked with the
unperturbed solution of (6.1), temporarily retaining the perturbation K lets us give
a clear physical interpretation to our fundamental fields. Only at the end do we

send K — 0 to recover the actual correlation functions. It is convenient to define
the moment-generating functional Z[Jy, K| as

Z[J;, K] = < Tr (T o 1X() /dx )e sV, Pl (1xV) (6.23)

The above physical correlators of the phase-space density can now be obtained by
taking functional derivatives of (6.23) w.r.t. J¢(1) at vanishing source J;(1) and
perturbation K,

5k Z[J;, K]

Crglleosh) = 57 (6.24)

Jr=0=K

Clearly, by the deﬁnition of (6.23) and the normalization of the initial phase-space
density, [ dx® (x(l)) = 1, the generating functional is normalized according to

Z[J;=0,K]=1, (6.25)

independent of the perturbation K. Following the procedure outlined in 3.2.2,
we may now replace \Iffcfsol(l; x@) in the exponential of (6.23) with a general field

“4In the literature of solid state physics, G is called the susceptibility of the medium, describing
the average responds to an external perturbation.
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WU ¢(1) by introducing the appropriate functional Dirac-delta distribution enforcing the
equation of motion (6.1) to obtain the MSRJD functional integral of the Klimontovich
equation,

2[J;, K] = /D\IlfD\I/B exp [~S[Wy, Wp] + Jp(1) W, (1) + K(1)¥5(1)] x
(6.26)
/dx /QN exp ‘I’B(l)q)?)(l)} ,

where we extracted the terms depending on the initial microscopic particle configu-
ration (I>§c)( ). The remaining terms containing the dynamics are stored in S and
read

810 1, W] =5 (1) Dy b1, 2 1(2) — Up(1) FT,1]. (6.27)

Note that the exponent in (6.26) differs from the exponent in (3.73) by a factor of
(—1i). Following [21] we conveniently absorbed this factor into the auxiliary field ¥p
making it a genuinely imaginary field. For reasons that will become clear in the
subsequent discussion we will refer to it as the response field. Next, we can write
the remaining integral over the initial conditions as an exponential. Let us therefore
expand the exponential according to,

/dx >/QN Jexp [Ws(1)8(1)] (6.28)
Zi, - Up(n / dx® o (xDeP (1) dP(n)  (6.29)
i i, L Usm)CY (1, n) (6.30)

=zZ0[wp], (6.31)

(i)

where we identified the series expansion of the generating functional of initial ®;’-
correlators

P (X1, .\ X, [H(SD (tx — 10 )1 OV (@1, @), (6.32)

in the last line. Note that the Dirac-delta distributions localize the correlators
at initial time. In principle, we could perform the time integration to obtain the
initial value of the response field \I/%). However, it will be convenient to keep the
general time dependence in Vg while keeping the localization at initial time in mind.
The response field ¥ thus acts as a conjugate field to the phase-space density ®;.
Similarly, as in (5.14) we can use the associated cumulant generating functional
WO [Wg] to write the entire integral over the initial conditions as an exponential,

Jax [ox(x)yexp [wp()@(1)] = 20[ws) = VW, (6.33)



6.3. Generating Functional 87

where WW[W ] is defined via its series representation,
Ly (i)
Z_j 7' L Up(n)GY (1, n), (6.34)

with the initial phase-space density cumulants GSCI) #(1,...,n) defined analogously to
(6.32),

G (X1, X [HaD(k—t )] GO (@, 1) (6.35)

It is clear from (6.26) that the perturbation K, introduced in equation (6.6), in order
to study the system’s response to local fluctuations, acts as a source for the response
field. We therefore conveniently define J5 = K and find the final expression for the
generating functional for the Klimontovich equation,

ZJs, Jp| = /qufDqJBe*S[‘va‘lfBHJf(1)‘I’f(1)+JB(1)\PB(1). (6.36)

This generating functional lays the cornerstone for the subsequent formalism. Writing
out all the integrals, the associated action is defined as

S[W;, U] :/X Vs [Pk = U] (X, X))

1

2 JX1,X2,X3

UP (X1, Xo, X3)Wp(X1)W(Xp) Wy (Xs) (6.37)

_;M/XX GV (X1, X)) Up(X) . Wp(X,).

We thus end up with a two-component field theory, where the coupling functions
UM (1,2) and UP(1,2,3) carry the external potential and the two-particle inter-
actions and thus couple to one and two phase-space densities, respectively. For
convenience, we have symmetrized the latter and defined

UP(1,2,3) = UP(1,2,3) + UP(1,3,2) (6.38)

The pure ¥ p-field couplings in the last line of (6.37) define a possibly infinite tower
of spurious vertices that are due to the arbitrarily complicated structure of the
initial conditions, which describe how a given set of densities is connected by the
cumulants of the initial statistics. The Dirac-delta distributions in (6.35) ensure that
the spurious interactions are localized at the initial time t®. Note, that only response
fields are attached to the initial couplings, which will restrict the possible diagrams
emerging from the above field theory. Furthermore, there is no pure W ¢-field coupling,
which is due to the causal structure of the theory as will become clear in the next
sections.

Since the initial vertices also contain terms that are linear and quadratic in the
fields, it will be convenient for the later discussion to separate those terms from the
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higher order initial cumulants. We therefore define the dynamical action Sp[V] as

SplW] =Up(1) [Dyf, — U] (1,2)¥(2)

— UP(1,2,3)Wp(1)W;(2)W(3) (6.39)
~GP()Up((1) — 21!G§3}<1, 2)U5(1)U5(2).

The residual couplings, containing the initial non-Gaussian structure are collected in

Sz[¥],

Z Gf (L n)Up(1)... Up(n), (6.40)

such that the total action splits into

S[¥] = Sp[¥] + Sz[¥]. (6.41)

Let us briefly summarize and comment on the above construction. Starting from
the exact Klimontovich field equation (6.6) which contains the full information of
the N-particle statistics, we were able to construct an action from which correlation
functions can be derived in the usual (quantum) statistical field theoretic way, i.e., as
averages weighted by a factor e™. The price we have to pay, however, is a doubling
of the fundamental degrees of freedom: instead of a single field ¥ ¢, we now have both
V¢ and V. This doubling also increases the number of fundamental correlators,
for instance, we now encounter mixed correlation functions such as (¥y... Up).
Note also, that the interpretation of the action (6.37) as an actual action for the
dynamics of ¥y and Up has to be taken with a grain of salt as the field ¥z does not
represent a physical degree of freedom. Its role will be clarified in the next section
and relates, as already suspected, to the system’s response properties. Furthermore,
the action (6.37) is generally complex due to its origin in the Dirac-delta distribution
enforcing the classical evolution equation, such that the factor e is neither real nor
non-negative. However, integrating out the response field, results in a well-defined
probability distribution for Wy.

6.4. Mixed Correlation Functions and Cumulants

Before continuing the technical development of the field theory, let us take a moment
to discuss the physical properties of the correlation functions derived from the above
generating functional. Clearly, the pure f-correlation functions are those of the
physical phase-space density. We therefore have to understand the role of the response
field ¥ . As already mentioned, the field ¥ g does not represent a physical degree of
freedom. This is clear from the observation that (6.25) implies that

(Tp(Xy).. . Up(X,))| =0, (6.42)

J§=0
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In particular, the expectation value for ¥p vanishes, (Vp(X)) ‘J 0= 0, and it
=

has no own independent dynamics. However, despite the fact that it has only been
introduced as a Lagrangian multiplier in order to enforce the dynamics for Wy, it
allows for a clear interpretation in terms of the system’s response functions, as
discussed in section 6.2. Restoring the perturbation K = Jp (see the discussion
above (6.36)), we find for the expectation value of the phase-space density with
perturbation K,

<\If§{,sol(1;x(i))> - w e (0:49)
— [ DU DU (1) e ST (6.44)
:/mffme Uy (1) e Svs el <1 + K (1)¥p(1)

1 2 (6.45)
o (KOws) )

We thus obtain a series expansion similar to (6.13). Taking functional derivatives
w.r.t. K, we find

5n‘11;<,sol<1)
<5K(1’) 0K (1)

>‘ :/D\Iffm/Be*Sva‘I’B] () Up(1)... Up(n'), (6.46)
K=0

and thus the interpretation of the mixed Cyp._p correlation function in terms of the
response functions (6.19),

Crp.p(1,1,... .n)=R™11,... n), (6.47)

describing the averaged influence of n fluctuations at X; to X,, onto the phase-space
density at X. The generalization to arbitrary mixed cumulants is straightforward:
The mixed correlation function

/ / 6nf+nBZ[va JB]
1,... 1, ... =
Cf"'fB"'B( ’ ACERS » "B ) (5Jf(1)...5Jf<nf>5JB(1/)...5JB<TLB,) J=0

represents the averaged influence of np fluctuations on ny densities. The causality
rule (6.18) now translates into the statement

CfmemB(l, N 1,, .. ,7’LB/) =0 ifdk e {1, .. ,HB} ctp > tVs € {1, e ,nf} .
(6.48)
Most prominently, the mixed two-point correlation function corresponds to the full
retarded propagator,

(Ur(H)Up(2)) = Gr(1,2) x Ot —t2). (6.49)
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We can now naturally define the general mixed cumulant as the connected part of
the above correlation functions,

GfmemB(l, Ce ,nf, 1/, R ,nB’) = <\Iff<1) .. .@f(ﬂf)qu(l/) . \I/B(’I”LB/)>C . (650)

Clearly, by (6.42) only the ¥, part of a given correlation function decomposes.
Having the above discussion in mind, we can, from this point on, treat ¥, and ¥z on
equal footing and analyze the field theory defined by the generating functional (6.36)
by standard procedures. As a reminder, we will make use of DeWitt’s condensed
notation defined in appendix A and already used in chapter 5 and write a = («, X,,)
where Greek indices refer to the respective density or response component of ¥,
with o = {f, B}.

6.5. Bare Theory

We start by discussing the general properties and physical implications of the field
theory defined by the generating functional (6.36),

Z[J] = /D\If exp [~S[U] + J, U] , (6.51)

where the action admits the formal expansion around® ¥ = 0,

< " S[]
S[¥] = E - S W Wy, . with SV = —5\Ija1 ST, . (6.52)
n= " lw=0

and we define the bare n-point vertices by its coefficients S . More precisely,
we distinguish between the bare n-point dynamical vertices S’(D’rff)ll-nan and the bare
n-point initial vertices Sgg \..a,,» corresponding to contributions from the dynamics
and the non-Gaussian initial conditions, respectively. We define the free® propagator

Aq as the inverse of the functional Hessian of the above action,
S Ao = Gap . (6.53)

In order to systematically organize the theory, it will be convenient to split the
dynamical action even further, such that,

S[] = So[¥] + S [¥] + S7[¥] . (6.54)

The free action Sy is defined to contain the above inverse free propagator and the
initial mean field. Explicitly, it reads

1
Sol W] =5 W, Ag'] W+ SpL (6.55)

SWe emphasize this because, in what follows, we will distinguish between expansions around zero
and non-trivial field configurations.

SEven though the propagator receives contributions from the external potential, we will refer to it
as the free propagator.
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where
0
Spon(X1) = ( 0 ) (6.56)
-Gy (X1)
The interaction action S;,; contains the two-particle interactions and is defined as
1
Sur V) 1= i SPuVals Ve (6.57)

Inserting this decomposition into the generating functional, enables us to rewrite the
latter in the usual way

Z[J] :/qu = S0[W]=Sin[W]-Sz[¥]+ J; ¥, (6.58)
— o (Sint+87) /D\IJ e~ Sol¥l+ Ji ¥, (6.59)
:e*(SAmt‘FSI)ZOI:J] , (660)

where Sy and 87 denote the corresponding operators obtained by replacing the
fields ¥, by functional derivatives with respect to the source J. The free generating
functional is Gaussian and can be solved analytically,

ZO[J] _ N’eé(Ja—SSL)Ao,ab(Jb—ngb) : (6.61)

where A is a normalization constant. In order to study the above generating
functional (6.58), whether perturbatively or non-perturbatively, it is essential to
understand the precise structure of the free propagators, as it encodes the fundamental
dynamical properties of the field theory.

6.5.1. Free Propagators and Resummation of the External

Potential
Let us start by analyzing the simple case of the free theory, where only the external
potential is present, and particle interactions are neglected, that is, Sy, — 0, or
equivalently, U®® — 0. Although this case is principally trivial, it will serve as an
intuitive toy example to build up physical intuition for the more general formalism

introduced in the later chapters. In this limit, the generating functional becomes
exactly solvable by analytical methods, even if we allow for arbitrary initial conditions.

The associated generating functional is
Z[J] = e 57 Z,]J], (6.62)

with Zy given by (6.61). The inverse free propagator can be obtained from (6.37)
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upon functional differentiation around vanishing field ¥ and has the components

B 0 Dy —UW
A LB (1,2) = Dol v i) (1,2). (6.63)

The inversion can be performed by solving the functional matrix equation
[ AT X) - Al(X, Xa) = 6 (X — X2) L. (6.64)

The matrix structure of A is clearly given by

Ao s Don Norr Aor
Ao = ( — , (6.65)
AO,Bf 0 A(],A 0

where the coefficients are subject to the evolution equations

Dok —UM] (1, 1)A0s(1,2) = 1(1,2), (6.66)
No,a(1,2) = Ag,r(2,1), (6.67)
(Do = U] (1,1) 80 44(1,2) = GF}(1,2)A0.4(2,2). (6.68)

Since Dy }% describes the free time evolution, these equations can bee seen as averaged
equations of motion. The first equation identifies Ay as the retarded Green

function to the differential operator [DO_, ]1% —-U (1)], i.e., the free evolution with
external potential. The causal structure of Dy p is thus inherited by Ag r, and we
will therefore refer to Ag r and Ag 4 as the free retarded and free advanced causal
propagators respectively. On the other hand, the equation of motion for As; can be
solved by multiplication from the left with Ag g

Nosr(1,2) = Do (1, 1)GYHT, 2)A0,a(2,2). (6.69)

Thus, Ay sy arises as the propagation of an initial two-point fluctuation under the
influence of an external potential. We will therefore refer to A ss as the free statistical
propagator.

With the explicit structure of the propagators at hand, we can evaluate the
Gaussian part of the generating functional Zy[.J],

Z[J] = exp ;Jaamow(mm(m + J;(1) Aop(1,2)GP )] . (6.70)

The source for the response field Jz only appears to linear order in the generating
functional. This, together with the fact that only Jp-derivatives appear in the action
Sz, make the structure quite remarkable, since the full non-Gaussian theory is exactly
solvable. Every functional derivative w.r.t. Jp in Sz brings down a term Jy - Ag sp
from Z,, effectively replacing the derivative operator in Sz. We find for the full
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generating functional

1
Z[ =exp 57T Do = Jp- Do Splp+ SelJp- Mosl] . (6.71)

It is worthwhile to briefly analyze equation (6.66) in more detail, as it exhibits a
form that will reappear throughout our discussion. Rewriting (6.66), we find

Agr(1,2) = Dyp(1,2) = UW(1,2),, (6.72)

which can be recognized as a Dyson-type equation for the retarded propagator.
Suppressing the explicit phase-space and time indices for brevity, its formal solution
can be expressed as

Aor(1,2) = Do r(1,2) + Do r(1,1) UM(T,2) Ay r(2,2)

0 . (6.73)
=Dor - (U(l) 'DO,R> :

n=0

where the second line shows the resummation of an infinite series of multiple scatter-
ings off the external potential. The crucial observation is that the causal propagator
Ao, g non-perturbatively resums all orders of the external potential U (). Consequently,
Ao g provides an exact solution for the full response of the system to the presence of
an external field. Equation (6.73) is a prototypical non-perturbative equation and
will reappear frequently throughout the following chapters. In general, one has to
rely on numerical methods to solve such equations.

6.5.2. Bare Feynman Diagrams

It will be convenient to introduce Feynman diagrams in order to schematically
represent equations. The basic building blocks are given by the free propagators and
the bare vertices. Since we have two fundamental fields, there will be two types of
lines. In general, we will represent the response field Wz by a dashed line and the
phase-space density field W, by a solid line. The diagrammatic representation of a
bare vertex with r density and s response field is in general given by

S](f.J_r;;._B(l,...r, U,...8) = o | (6.74)
where the gray lines are truncated propagators, indicating which end of a respective

propagator is attached. In particular, the non-vanishing vertices are given by

8}2(1,2): 102 SI(1,2)= 1.0 2 (6.75)
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for the inverse free causal and statistical propagators,
SY(1)= 1.0 (6.76)

for the initial mean field, and

S51,(1,2,3)= 1.4 (6.77)

3

for the interaction vertex. All higher order initial vertices are analogously represented
by
2
S, k)= 1 (6.78)

Next, the free causal propagators have the representation

A07R(1,2) = A07fB(172) = 11— 2, (679)

AO,A(l,Q) = A07Bf(1,2) = 1------- 2, (680)

where the dashed and solid ends indicate the response and phase-space density field,
respectively. The time flow in a causal propagator is thus always from the dashed
end to the solid end. We note, that the inversion relation between the free causal
propagator Ag sp and S(D%)B s can be represented as

o— =1 (6.81)
o — =1 (6.82)

Last but not least, we represent the statistical propagator by
Nosr(1,2) = 1—e—2 = 1——0-—2 | (6.83)

where the left-hand side diagrammatically illustrates its decomposition into causal
propagators: a Gaussian initial fluctuation, represented by the vertex, is propagated
forward in time along both branches. As a result, the time flow in Ay ¢ is outward-
oriented at both ends.

When constructing a given diagram, the legs of the free propagators are connected
to the appropriate legs of the interaction vertices. The causal structure of the theory
is encoded in the orientation of the free propagator, which flows from its dashed to
its solid end, representing the causal propagation of a perturbation from an earlier to
a later time. Importantly, since the interaction vertices never contain only W -legs,
there is always at least one outgoing dashed line. This ensures that perturbations
cannot simply disappear within a diagram—any perturbation that enters must
propagate further. In this way, the structure of the vertices and propagators enforces
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a continuous causal time flow, consistent with the causality rule described by (6.48).

6.6. The Background Field Approximation

We yet have to incorporate the missing two-particle interaction vertex Sg’} 7> neglected
in the above description. This term will induce a non-trivial coupling between the
response field Ui and the phase-space density Wy, such that the full generating
functional will no longer be analytically solvable. Nonetheless, in order to study an
ensemble of N mutually interacting particles, we will have to develop methods in
order to describe the whole system.

The most naive approach would be to pull the S, interaction part out of the
functional integration by replacing the fields with appropriate functional derivatives
as indicated in (6.60). Expanded in this way, the interactions are treated as small
fluctuations around the free dynamics with an external potential discussed in the
previous section. However, this would neglect the possible back-reaction of the
manifestly non-trivial mean background, Wy := (¥) # 0, to the dynamics. Already
at initial time we evidently have a non-trivial mean background which is hidden
in G?) # 0. This background will therefore evolve in time, and is expected to
affect the evolution of the fields themselves, similarly to an external potential,
discussed in section 6.5.1. In order to incorporate those effects into our description
we perform a background field approximation which is sometimes also called mean
field approximation. Let us therefore expand the system around the classical mean
by writing

Wo(X) = T o(X) + VLX), (6.84)

where @SEOCEM@ is the classical” expectation value and W9 (X) is the fluctuation around
it. The former is defined by the stationarity requirement

0= (6.85)

Vo X) | o

U=¥gim

and describes the deterministic evolution of the initial mean field. The variation
with respect to W, leads to a simple constraint,

0= E](:“(I)CEM,B ) (686)

which states that the classical response field vanishes in accordance with (6.42).

“In this context, “classical” refers to the deterministic solution of the underlying statistical theory,
analogous to the classical limit in quantum field theory—that is, the solution obtained without
incorporating statistical fluctuations. We have added the subscript “EoM” here to indicate
that the solution satisfies the classical equation of motion, where the right-hand side of the
stationarity condition vanishes. While this distinction is not strictly necessary at this point, it
will become important later, when we introduce background fields in the presence of external
sources. The “EoM” label will then serve to distinguish the source-free solution from the general
mean field.
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On the other hand, the functional derivative with respect to ¥pg yields the actual

evolution equation for the mean field \I/gBM e

- —(0) 1 —=(0) —=(0)
0= AO,JIBf(la 2)‘1’E0M,f(2)+5(pl,)3(1>+ §S(D3,)Bff(1a 2,3) Vo, £(2) Yo (3), (6.87)

which represents a non-linear equation for the classical phase-space density. In
general, this equation cannot be solved analytically, and one must rely on numerical
methods. However, in chapter 8, we consider a special class of systems that admits
an analytical solution.

The bare theory in section 6.5 was defined as an expansion around vanishing fields

n (6.52). Let us thus now expand the action analogously in a Taylor series around

the non-vanishing classical expectation value \I/ngM,

_ 1
S Wi+ U] = 5 Sy W ) + Z S,
o 1 (6.88)
+ 3 S LY
n=3 n: ’
= So[W%; Ugh] + S [ W% U] + S0 W], (6.89)
where we defined
<) O"S[V]
Soran = 55 50, | (6.90)

v=7

as the n-th order functional derivative w.r. t. the fields evaluated at the non-vanishing
mean background. This stands in contrast to the bare vertices (6.52). In general, s™
will functionally depend on the mean background, which is crucial for the upcoming
analysis. In (6.88) we used that S and S vanish according to the first and the
second equation in (6.85), respectively. Furthermore, we again decomposed the
action into three parts: the quadratic part Sy®, the term containing the interaction
vertex Sg”, denoted by Siy¢, and the infinite tower of initial vertices, denoted by S7.
We can now proceed in the same way as in 6.5. The three parts explicitly read

—(0) 1 -
SolW%: U] = 5\115 a7 g, (6.91)
Sint[‘ljé; ﬁl(ﬂoo)M] S'D ,abc \Ilg \I}i \IJg 9 (692)
_ © 1 —(n
SV = 3 LS (6.93)
n=3 """

8We use the same notation as the free action discussed earlier.
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where we defined the inverse tree-level propagator

0 AgY - =
(A (12 = T ), (6.94)

_ 0),H =(2)
AO,}% - Eg%) SD,BB

which will be analyzed in the next section. In the above equation, the mean field
@SCEM ; enters via
0),H <) 7 (0)
S (1,2) = Splppp(1,2,3) Ty 4(3). (6.95)

which represents the first approximation to the Hartree self-energy as indicated by
the superscript “H” and which will be discussed in general in the next chapter. It
describes the direct influence of the mean field to the evolution. Inserting the above
decomposition of the action into the generating functional and using the invariance
of the path integral measure under the shift (6.84) from ¥ — W% we find

—(0) - 550 1 o s 50 4 5.0 5
Z[J] — eJa YoM, a /’D\I}ée So[¥°5 Vo] —Sint [V ;¥ pom] —Sz [V :‘I’EoMHJa‘I’a_ (696)

This generating functional now includes all statistical fluctuations that induce devia-

tions from the classical mean @SJM defined by the classical equations of motion (6.85).
If a non-vanishing background is present—as is clearly the case in our system—then
incorporating a background field into the approximation improves the convergence
of the perturbative expansion compared to a naive approach that starts from the
generating functional expanded around a vanishing background. This is due to the
fact that in this construction, we explicitly capture part of the interaction within the
quadratic part of the action as can be seen from (6.94). From that point on, we can
either expand the generating functional in a usual perturbative expansion as we will
discuss in the subsequent sections, or follow a more systematic procedure and derive
full equations of motion discussed in detail in chapter 7. For the former approach, the
generating functional is formally written as an asymptotic series by expanding the
exponential containing Sy in a series expansion and pulling it out of the functional
integration by replacing the fields with appropriate functional derivatives. We obtain

> 1
Z —' (6.97)
where the n-th order generating functional is defined as
2] =’ T <_ Si [5’@(&)1\4 ) DO oS0l Tl ] —S[W° T +Ja Vs
0J (6.98)

For the perturbative approach we can then analyze the resulting expressions order
by order in n.
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6.6.1. Tree-Level Theory

As a first step let us study the lowest order approximation that arises from the n =0
term in the above expansion. We therefore define the tree-level generating functional
as,

—(0) —(0) =(0)
Zo[J] —eJa lIIEoM,ae_SI[%;\IIEoM] /D\dee_SO[\I’é;\llEol\ﬂ'i'Ja\Dg ’ (6.99)

where we pulled the terms containing the initial conditions out of the Gaussian
functional integration. Importantly, the functional derivatives w.r.t. J do not act
on the first exponential. We define the tree-level propagator A, as the inverse of
(6.94). It has the same qualitative structure as the propagator in 6.5, however it now

contains contributions from the mean background T 1t reads

A A+p A A
Aas(1,2) = ( o ) (1,2) = ( N OR) (1,2), (6.100)
Bf A

where, demanding

S5 Ae = Guc, (6.101)

the components fulfill a similar set of equations as in (6.66), namely

Aok — =07 (1,T)AR(1,2) = 1(1,2), (6.102)
AL =S (1L D)AL(IL2) = 1(1,2), (6.103)
AL - SO 1 DAL (T,2) = U1, 2)A4(2, 2 6.104
Aok —Zr | (LDA(L,2) = Grp(1,2)Ax(2,2). (6.104)

The first two equations define the causal tree-level propagator as the Green function
to the differential operator that extends the one in (6.66) by the classical mean field.
More precisely, Ag is the retarded causal tree-level propagator and A4 the advanced
one. The third equation defines an equation of motion for the statistical tree-level
propagator. Again, the latter can be solved upon multiplication from the left with
AR)

Ap(1,2) = Ap(1,)GN1,2)A4(2,2). (6.105)

For later purpose, it will be convenient to further simplify the equation for the
retarded tree-level propagator. Since Ag will contain one contribution of pure free-
propagation, it will be sensible to decouple it from those which contain at least one
contribution from the mean background. We make the ansatz,

Ar(1,2) = Ay r(1,2) + Qr(1, 1)Ag r(1,2) (6.106)
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where 2z now contains at least one contribution from the mean background. Plugged
into the above equation we find the respective equation for Qg given by

Qr(1,2) = Ag p(1, DEPF(T,2) + A r(1, DHEO(1,2)05(2,2) (6.107)
=V (1,2) + Vg (1, D2R(1,2), (6.108)

where we defined ) B
V(1,2) = A r(1, 1)59 (1, 2) (6.109)

which describes the free evolution of the mean background interaction. From the
free propagator it inherits a Heaviside function such that we added the subscript “R”
to account for this retardation. Thus, once the mean field equation (6.87) is solved,

one proceeds by computing Vg)), Qg and eventually Ag. Following the same steps
that led to (6.71), the tree-level generating functional now assumes the form

1 _
Zo[J, J5] = exp §JT-A-J+Jf-\If§cO)+SI[Jf-AfB} . (6.110)

6.6.2. Feynman Diagrams for the Tree-Level Theory

We now need to introduce Feynman diagrams for the theory in presence of a non-trivial
background. To distinguish these diagrams from those with a trivial background as
in 6.5, we represent the vertices with non-trivial background by

1 1’

353:%_.3(1,...7", U,...8) = e, (6.111)

where the black dot indicates the presence of the background. However, the only
vertex that differs from the bare theory defined in (6.52) is the inverse tree-level
propagator itself, given by

o . = 0 - — I , (6.112)

where the second diagram on the right-hand side represents the mean interaction
potential Vg where we indicated the mean field

[ =gy (6.113)

coupling to the two-particle interaction vertex. The mean field can be obtained as
the formal solution to equation (6.87), which may be represented as

—e= — -0+ ;< (6.114)
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We can now introduce analogous diagrammatic representations for the tree-level
propagators,

AfB 2 — ,
(6.115)
ABf 2 ....... —_—
such that
— =1 (6.116)
PO— (6.117)

With those rules, equation (6.112) can be rearranged to the following Dyson-Schwinger

like equation,
—_— - . T T_ ...... , (6.118)

Confirming our expectation, we observe that the mean background is resummed in
the same way as the external potential in (6.73). Given a solution for @;0), equation
(6.118) is again a non-perturbative equation resumming part of the contributions

from the two-particle potential,

e e

Importantly, though being a non-perturbative equation, Ap still contains only
tree-level diagrams. All corrections are due to the direct influence of the mean
background to the evolution. This justifies calling it the tree-level propagator. The
inclusion of loop-corrections to Ayp will be discussed in section 6.6.3.

The equation of motion (6.102) for Ag suggests that Ag corresponds to the
retarded Green function of the Klimontovich equation, linearized about the classical
solution @;0), for a given initial density. The statistical objects derived from Zj are
therefore computed in this linearized limit. For instance, the connected part of the
two-point function is given by

<\I[f(X1)\Iff(X2)>zree = Aff = — (6120)

Thus, the statistical tree-level propagator corresponds to the linearized system’s
response to an initial two-point fluctuation, since by (6.105) we find

— .. i (6.121)

Similar equations hold for all higher-order statistical cumulants. We may thus
summarize the discussion by stating that the tree-level theory corresponds to the
bare theory taking into account the non-trivial mean background. Importantly,
the only object that receives contributions from the mean field is the (inverse) free
propagator. For this reason, we will distinguish only between the free propagator
and the bare (or tree-level) propagator. It should thus be understood that, from
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this point onward, we are always working in the presence of a non-trivial mean
background, and that bare quantities refer to their definitions as derived directly
from the classical action S.

6.6.3. Loop Expansion and Perturbation Theory

With the tree-level generating functional at hand, we can now extend the discussion
in order to incorporate higher-order loop corrections. We, therefore, have to apply
the functional derivatives arising in the series expansion (6.97) order by order in n.
Apart from being a tedious calculation, this poses no further conceptual difficulty.

With the Feynman diagrams introduced above, the obtained corrections can be
represented in a simple way, by connecting the statistical and causal tree-level
propagators Ays and Ayp appropriately to the vertices. The interaction vertex Sg’} 7
couples two W fields represented by solid lines to a single response field, represented
by a dashed line. In contrast, the initial vertices only couple to U fields, since they
source initial fluctuation. Therefore, they can only couple to the response end of a
Ayp propagator. Keeping these rules in mind, we find for the expansion of the full
mean background, showing only the terms up to one-loop order,

1
Gy(1) = —et 5 —-- TR (6.122)

The first diagram represents the tree-level value of the mean field, i.e., the classical
solution, while the second diagram corresponds to the one-loop correction to the
classical solution. Importantly, it contains a tree-level propagator, which indicates
the back-reaction of the statistical fluctuations onto the mean field. Of course, the
new mean field is not a solution to the equations (6.85) anymore. In the next chapter
we will study how the action has to be modified in order to obtain the corrected
mean field as a stationarity condition similar to the tree-level case.

We now turn to the loop corrections of the causal tree-level propagator. As
expected from the tree-level analysis, corrections to the mean field will also influence
the response function, which already accounts for the non-vanishing mean field.
Indeed, we find for the lowest order terms,

1 !
I l_ ...... T C\_ ______ 4. . (6.123)

The second diagram on the right-hand side enters the one-loop correction to the
propagator in the same way as the classical mean field does in the tree-level propagator.
As we will see in chapter 7 those contributions correspond to the evaluation of the
propagator on a slightly corrected mean background. It represents a local correction
to the propagator. The third diagram on the other hand, is a non-local correction
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and represents a coupling between different scales of the theory. In chapter 8 when
considering homogeneous systems, those types of diagrams will contain convolutions
that effectively re-distribute structures between different scales and thus modify the
system’s response to perturbations in a non-linear way.

Note, that a diagram of the type

'  S— (6.124)

is forbidden by causality. The upper propagator in the loop is accompanied by
O©(t; — t3), while the lower propagator comes with ©(ty — ;). Since the vertices are
local in time, the full loop will be proportional to ©(t; —t2)O(ts — t;) = 0 indicating
a closed time loop and thus vanishes.

Last but not least, the loop corrections to the connected two-point phase space
density, i. e., the one-loop statistical propagator, are given by

Grp(1,2) =

[ ]
+
[
+

They can be divided into three groups. The first two loop-diagrams correspond to
the one-loop corrections of the causal propagator that transports the information of
an initial two-point fluctuation, G\ 77> represented by the dot on the left leg of the
diagrams. The next two diagrams represent the same structure but symmetrized
on the two external legs. The last three diagrams in contrast, contain the one-loop
corrections to the true statistical fluctuations. They represent vertex corrections
to the bare S\ 5 vertex that are transported with causal tree-level propagators. In
particular the two diagrams in the last line include higher-order contributions from
the initial fluctuations. The ellipses on the right-hand side of (6.122), (6.123) and
(6.125) stand for all higher-order loop-corrections. Clearly, with increasing order of
the perturbative expansion, the number of diagrams to be evaluated quickly becomes
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very large, such that this approach soon becomes impractical. In chapter 7 we will,
therefore, construct a more systematic approach that will allow for a more controlled
approximation.

6.7. Comparison to the Microscopic Picture

Let us recall that the construction of the generating functional (5.14) in chapter 5
was based on the evolution of particle trajectories in I'-space. Thus, the interaction
potential does not directly affect the macroscopic fields, but its effect is instead
transmitted through interactions between different particle trajectories to the fields.
This leads to a complicated structure of the theory where (nearly all) the vertices
are functions of the interaction potential. There is, a priori, no apparent hierarchy
among those vertices that would suggest an appropriate truncation scheme. In fact,
we will see in our application in Section 11.2 that the complicated vertex structure
will lead to cancellations between loop diagrams, indicating that the perturbation
theory should be restructured.

The generating functional (6.96) constructed in this chapter, on the other hand, is
based on the evolution of the macroscopic field itself. Thus, the interaction potential
directly affects the field which is reflected in the vertex structure of the theory. It
has only a single dynamical vertex which carries the interaction potential, while
the rest of the vertices carry only information on initial correlations present in the
system. It is reasonable to expect that interactions will dominate the system, so
that we can neglect all but the dynamical vertex of the theory, and thus truncate
the hierarchy. Later, in our application in section 11.3.1, we will see that this is in
fact a valid assumption.

6.8. (Un)avoidable non-Gaussianity of Initial
Conditions — Vlasov Limit

Up to now we have kept our discussion completely general without making any
assumptions on the explicit form of the initial conditions that define the possibly
infinite tower of spurious initial vertices. From a field-theoretic perspective, this
structure is difficult to handle, as it leads to infinitely many interaction terms
and a rapidly growing number of diagrams at higher orders in the loop expansion.
We are thus led to ask, under which conditions this tower of initial vertices can
be truncated. To be more specific, these vertices encode the connected n-point
correlations of the initial one-particle phase-space density distribution functional
P[fD] from which the realizations are drawn (see Section 2.6). In many physical
systems, it is reasonable to assume that the cumulants of this distribution become
negligible beyond a certain order. Most prominently, a Gaussian distribution is
fully characterized by its first two cumulants, the mean C7(,1 ) and the covariance
Gg), with all higher-order cumulants vanishing. The Gaussian distribution plays
a special role because the central limit theorem suggests that if the initial density
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arises as a superposition of many statistically independent physical processes, the
resulting distribution is Gaussian. Small deviations from Gaussianity can then be
systematically incorporated using an Edgeworth expansion, if necessary. Let us
therefore, for the moment, adopt the reasonable assumption that P[f(] is Gaussian,

with only 079’ and Gg) non-vanishing.

In order to understand the implication on the initial vertices, let us recall that
those are given by the initial cumulants of the Khmontovmh phase-space density
®, see equation (6.35). Even if the continuous density f” (x) is exactly Gaussian,

the discrete phase-space density <I> has non-zero cumulants at every order of the

cumulant expansion, due to the tr1v1al particle self-correlation. Thus, <I>§c) is manifestly

non-Gaussian. Consider for instance, the three-point cumulant G fff(Xl, Xy, X3),
which at initial time is given by

GO (21, 22, 23) = 0p (w1 — @) Op (w1 — 23) Op (1) + Op (21 — 22) GS (29, 73)
+ 0p (29 — x3) Gg) (z3,21) + 0p (x5 — 21) Gg)(l”l,@) , (6.126)

none of which vanishes. Clearly, e 7 cannot even be assumed to be small, as it

is of the same order as CP and G;D . Thus, the cumulants of higher order of the
initial Klimontovich phase-space density (chi) cannot simply be neglected due to the
shot-noise or particle-noise contributions. It can furthermore be shown [60], that
neglecting those higher order contributions leads to inconsistencies in the cumulant
description of the evolution and thus possibly to poor approximations of the system’s
behavior. This is intuitively clear, as the shot-noise contributions arise due to the
discrete particle nature of the system that is necessary to describe collisional processes.

To see this, consider the Klimontovich equation (2.78),
[&1 — ﬁgo)} q)f [L’l,tl /d ZE q)f $1,t1) <I>f(a:2,t1) (6.127)

where £® is the two-particle interaction operator. By means of the Green function
(6.9) it can formally be solved generating an integral equation of the form

0

(I)f(ffl, tl) = (I); )(271, tl)

B o B - (6.128)

+ /d63_71 dt; d°%y Do (21,1, Z1, 1) ‘C%Q (@1, t1) Pp(Z2,t1)

where q);o) is the free solution. Higher order cumulants, G4 ¢, can now be built by
multiplying several copies of this equation and averaging over the initial density.
Upon iteration, one then encounters different combinations of averaged products
of ®; containing the respective Dirac-delta distributions, each of these collapsing
one of the interaction integrals by identifying two of the densities. The resulting
term will then yield a non-vanishing connected correlation between the external

densities in G, which exactly reproduces the collision terms that appears in
the BBGKY hierarchy. Thus, the Dirac-delta distributions and therefore the shot-
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noise contributions are essential to describe particle collisions. If one drops all
shot-noise contributions from the initial vertices, and hence neglects all collision
terms, the perturbative expansion reduces to the collisionless Viasov limit: the
system then evolves in a smooth mean-field potential generated by the continuous
density f; (see our discussion in section 2.4.2). Conversely, keeping those shot-
noise terms restores the full, microscopic dynamics governed by the Klimontovich
equation, in which discreteness and two-body encounters are present. This combined
treatment is of course built on the fact that both the microscopic and macroscopic
descriptions obey a structurally equivalent dynamical equation. Consequently, our
unified formalism simply interpolates between the Vlasov, i.e., mean-field, and
Klimontovich, i.e., collisional, descriptions by turning shot-noise on or off in the
initial cumulants. In what follows we will refer to the “microscopic picture” as the
Klimontovich description, and to the “macroscopic, mean-field picture” as the Viasov
description, where in the latter case only the continuous cumulants of fl(l) appear
in the vertices, making any truncation of the hierarchy much more straightforward.
In particular, if the initial density f; is Gaussian, no additional initial vertex arises
apart from those absorbed into the free action. Last but not least, we mention that
the Klimontovich description can be refined even further by only including certain
classes of shot-noise terms. In that way, one can reproduce familiar descriptions of
kinetic theory as those mentioned in section 2.4.3. A detailed analysis of this has
been done in [37].






7 Formal Development - Full
Statistical Equations of Motion

In the last chapter we have constructed a generating functional Z[.J] that enables
us to compute general arbitrary time correlation functions of the Klimontovich
phase-space density. In section 6.6.3 we have then seen, how corrections to the
classical theory in the presence of a mean background can be organized in a loop
expansion. The goal of this chapter will be to formalize the functional treatment in
a non-perturbative way by working with the full statistical theory without making
any a priori truncation. We will then ultimately derive equations of motion for the
full statistical correlation functions. We follow [61].

7.1. Generating Functionals for the Full Theory

We begin with a brief and structured recap of the key generating functionals in
our statistical field theory. This will prepare for the formal developments in the
subsequent sections.

7.1.1. Correlation Functions and Cumulants

Let us first recap the main objects of interest from which the formal development is
constructed. The generating functional (6.36) has the form

Z[J] = [ Dwe St (7.1)

where the action can be expanded around a general non-vanishing background W,

S =3 80, (e W) (Yo, ~ ) (72)

n=1

with the bare vertices defined as the coefficients 31(1?)% For the following formal
treatment it will be necessary to define all objects more generally with non-vanishing
external current J. We therefore define correlation functions in the presence of an
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external source as . 5 2]
ar..an = ; 7.3
¢ " Z[J]6day .0, (7.3)

where the ﬁ prefactor ensures the correct normalization of the general J-dependent

correlation function!. The physical correlation functions of the phase-space density
and response functions are then obtained at vanishing current, i.e.,

Cal...an = Cal...an . (74)

J=0

In the following we will refer to the physical objects as to lie on the equations
of motion for reasons that will become clear in the subsequent discussion. The
source J will be used to probe the statistical fluctuations around the “true” physical
configuration. In particular, higher order correlation functions can be generated from
lower order correlation functions. To see this, let us define the full mean field in the
presence of an external source as

1 0Z[J]

U, = () = ith Ugoy =¥ .
< > Z[J] 5Ja Y w1 EoM J:(]’ (7 5)

where | Wgom refers to the physical, observable mean field? at vanishing current. Note,
that W is a functional of J. We can now apply a further functional derivative w.r.t. J

to find the relation 5

0J,

where the mean field inside the square brackets compensates for the normalization
factor. This relation can be generalized to

Cap = [ +\Ifa] 7% (7.6)

n 5 o
Cal...an = [ + \Ija¢‘| -1 ) (77)
15

where the 1 on the right-hand side has been added to capture the functional field
derivatives that do not hit the mean field ¥ and therefore vanish. We can apply the
above reasoning to expectation values (O[¥]) of arbitrary operators O[¥]. Provided
these operators admit a well-defined series expansion in terms of the fields, we find

— + \If] 1. (7.8)

Similarly to the discussion in 2.2.2, the above correlation functions are decom-
posable into connected and disconnected pieces. The disconnected parts are simply
products of connected parts of lower degree that do not interact with each other.

1Tt can be shown that the normalization = eliminates so-called vacuum bubbles that have not

2]
external legs attached to a source J

2The tree-level mean field @S(BM is thus only the lowest order approximation to the full mean field.
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Consequently, the correlation functions carry redundant information and one is
typically interested in the study of the connected correlation functions, i.e., the
cumulants®. These can be obtained from a generating functional, which is typically
referred to as the Schwinger functional, defined as

WIJ] = n[Z[J]] . (7.9)

It can be readily verified that the above definition of the Schwinger functional only
produces connected correlators, e. g., for the two-point function we find

P WIJ]
<\I/a1\11a2>c = m = Caray = Ca;Ca, - (7'1())
We therefore define

I"WIJ]
_— 11
Gar ..an 6oy .0y, (7.11)

o S"WIJ]
Coson = b (7.12)

where the first expression refers to the cumulants in the presence of an external
current J, while the latter represents the physical cumulant at vanishing source. We
will represent the full cumulants by the following diagram,

Gr.p.p(l,....r 1 ... 8 = >J LI (7.13)

and similarly for the physical cumulants. Note, that we will make no difference
between the G’s and the G’s on a diagrammatic level. Of particular interest will
be the two-point cumulant G,;, which we call the full propagator of the system in
the presence of external sources. The full physical propagator has the component

decomposition

fo GfB —_—— —0:

Gap = = , (7.14)
Gpr O

with the components Gy, Gyp, and Gy, to which we refer as the full statistical
propagator and the full causal propagators, respectively. Here, Gsp represents the
retarded propagator and Gy the advanced one. Clearly, by (6.42) the physical
component Ggg = 0. Note, that the propagator G,;, can be generated from the mean
field ¥, since

WL ow,

g“"agaﬁzzalg

(7.15)

3In older literature the cumulants are often referred to as the Ursell functions, in honor to Harold
Ursell, who introduced them first in 1927 [62].
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7.1.2. The One-Particle Irreducible Effective Action

Importantly, the Schwinger functional still contains redundant information. Consider
for instance the following two diagrams that contribute to the two-loop correction of
the statistical propagator, in 6.6.3

_<:>4/>_7 and _(D_ (7.16)

The diagram on the left consists of two one-loop subdiagrams connected by a tree-
level propagator. Since both subdiagrams have already been considered at one-loop
level, this composite diagram does not introduce any new information. In contrast,
the diagram on the right cannot be decomposed into known one-loop subdiagrams,
therefore it represents a genuinely new two-loop structure. This brings us to the
concept of one-particle irreducibility. A diagram is called one-particle irreducible
(1PI) if it cannot be separated into two disconnected pieces and one-particle reducible
(1IPR) if it can. Thus, in (7.16) the diagram on the left is 1PR while the diagram on
the right side is 1PI. It will therefore be sensible to include this distinction in the
following considerations. The generating functional for 1PI correlation functions is
denoted by I' and is referred to as the (statistical) effective action®. It is a functional
of the mean field with external currents ¢) and defined as the Legendre-Fenchel
transformation® of the Schwinger functional w.r.t. the currents .J,,

I[7] = SI}p{ /X Ja(xwa()()—wm}: /X TV X)T.(X) = WY, (7.17)

Here JY is a W-dependent current defined by the above supremum requirement.
If the Schwinger functional is a convex, differentiable functional, the supremum is
attained and given by the maximum of the right-hand side of (7.17) which is found
by demanding

T — = IWI[J]
0= 500 {/Y Ts(Y)Ts(Y) — W[J]} - Tol(X) = 575 ) (7.18)
The maximizing current JY is then found by solving
— ow
U, (X) = 1

for J in terms of U. Henceforth, we will simply write .J, instead of JY, with the
understanding that it is always the current which solves (7.19). The above equation
shows that I is indeed a functional of the mean background ¥ with external current.
This stands in contrast to the functionals Z[.J] and W[J]| which are functionals of

4In literature I' is often called the quantum effective action.
SWhen W is differentiable and strictly convex, the supremum in (7.17) is attained and reduces to
the usual (smooth) Legendre transform.
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the source itself. This will turn out to be a major advantage for our treatment. In
order to switch the description from J to W, we will have to express the functional
derivatives w.r.t. J as those w.r.t. W. This can be done using the chain rule,

5 80, 6 5

_0% 9 s 0 7.20
5T, 0J, 00, g“béqu (7.20)

where we used (7.15) in order to insert the source-dependent propagator G.

To understand the physical significance of I', we start by taking a functional
derivative of (7.17) w.r.t. ¥, and find

A L Ju(X), (7.21)

which yields an equation of motion for the source dependent mean field W. It is
therefore referred to as the statistical equation of motion in the presence of an external
current. This equation will enable us to derive relations between the cumulants and
the 1PI correlation functions. In contrast, the physical or observable mean field,
Wy is defined as the configuration at which the external source vanishes, i.e., J = 0.
Thus, evaluating (7.21) at U, = Wga1 4, we obtain

ST [V]

.00 ~0, (7.22)

6ZEE oM

which is the statistical equation of motion for the physical mean field Wggy. Accord-
ingly, the exact physical field configurations are given by stationary points of the
functional T'[¥], showing that " indeed generalizes the classical action S to the full
statistical theory. The current independent equations of motion (7.22) generalize
the tree-level or classical equations of motion (6.85). All objects that are derived
from I' contain the full statistical information. For instance, the coefficients of the
series expansion of § in (7.2), which define the bare vertices of the classical theory

generalize to

T[]
rew - 7 ot 7.23
AL-an W, ... 00, "~ ( )
=(n) §"T[¥]
I == - 7.24
41-n Way .. 0V, | 7 ( )
U=VEoMm

which define the full vertex functions and contain all statistical corrections to the
bare vertices involving n fields. In the presence of a non-trivial mean field, the
physical vertex functions (7.24) functionally depend on Wy similarly to the @gBM

dependence of the tree-level vertices in the background field approximation 6.6. It

can be shown, that only 1PI processes contribute to ngan and fﬁj?an Similarly to



112 7. Formal Development - Full Statistical Equations of Motion

the cumulants, we will represent the full vertices by the following Feynman diagram,

1 1’
Y sl 8) 2 (@ . (7.25)
T 3/
The coefficients can be used to define the vertexr expansion of I' around the physical
saddle point at W,y in analogy to the expansion of the bare action in (7.2),

> Onlra’j) an (Tar = Tportay ) -~ (Yo, = Uporta, ) - (7.26)

In particular, the physical equations of motion (7.22) imply,
=(1) _
I, (X)=0. (7.27)

While the above discussion has been kept completely general, we can already deduce
an important property of the physical vertices T™. The normalization of the
generating functional (6.25) implies W[J; = 0, Jg] = 0 independent of the value of
Jp. Since the physical, source free mean field satisfies

Ugon s # 0, Yo, =0, (7.28)

the definition of the effective action as the Legendre transform (7.17) immediately
gives

[[Wgom] =0, (7.29)

and hence all its physical vertex functions involving only phase-space densities vanish,
=(n) _
Iy p(1,...,m) =0. (7.30)

In other words, statistical fluctuations do not generate any effective physical vertices
composed solely of phase-space density fields. The structure of the classical action
S, in which every vertex necessarily includes at least one response field, is therefore
inherited by the full statistical theory. This ensures that the causality built into the
classical description is preserved. As we will see, this constraint imposes important
restrictions on the class of diagrams that can contribute in the full theory. For
instance, the physical two-point vertex function has the components

o [0 TH 0 -
T = - ~ . (7.31)
r T o o

Another important property can be deduced from the fact that I' and W are
related by a Legendre transform. Taking a functional derivative of (7.21) w.r.t. J,
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we find

5 OT[¥]
5T, 0,

52T (7]
oUW,

= gac = gacrg) - 6(11)7 (732>

where the chain rule (7.20) has been used. We thus found the important relation

1
gab - |:m:| " 5 (733)
i.e., the 1PI two-point vertex function is the inverse of the full propagator of the theory

in the presence of an external current. Evaluated at the physical field configuration,
J =0 and ¥ = Ug, we find analogously

1
Gab - [] . (734)
F(Q) "
This relation now implies a set of equations for the components of G, and fﬁ). We

find
T (1,1)Gyu(1,2) = 1(1,2),
T001,1) Gup(1,2) = 1(1,2), (7.35)
Tor(1,1) Gra(1,2) = —Tpp(1,2) Gis(2,2),

or, on a diagrammatic level

——o-=1 = —o=[0]
Q--0—=1 = . o_:[ o) ]_1 (7.36)
o—0—=-—0+0—,

between the physical propagators and vertices, which generalize the corresponding
relations of the bare and tree-level theory to the full theory. Again, the equation for
the full physical statistical propagator can be solved and yields

Grr(1,2) = —Gyp(1, 1) Tp(1,2) Gpr(2,2), (7.37)

or, diagrammatically
—o— frng ——o.........o_‘ (738)

Grounded on these equations, we can now derive similar relations for higher n-
point vertex functions. For instance, taking a further functional derivative of (7.33)
w.r.t. J, yields

galazas = _galbl ga2b2 Fé??)gbg gb3a3 : (739)

The three-point cumulant thus corresponds to full propagators attached to all
truncated irreducible three-point processes represented by the three-point vertex
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function I'®). Similarly, one can construct higher order cumulants in terms of vertex
functions and lower order cumulants. On the basis of the above discussion, we will
construct an exact systematic treatment in section 7.3 by deriving equations of
motion for each vertex function.

7.2. One-Loop Effective Action

Let us now study the relationship between the full statistical effective action I' and
the classical action &, by computing a first approximation to I'. By its definition, we
can rewrite I' as

T[] = J, ¥, —In { / DY ¢~ SVI+Ja Va (7.40)

We can now perform a shift inside the functional integration, ¥ = W+ ¥ and expand
the action around the true mean-field ¥ in the presence of an external source,

_ _ _ 1 _
SO+ 0] = S(U) + SO W] + - SP[W) W 0 + 0 <(\1/5)3> L (141
Inserted into (7.40), we find
_ _ e _ Mg _1 c@ g6 gs 53
I[¥] =S[¥] - In mee st sl W”b*o((“)] (7.42)

= S[T] + K[9]. (7.43)

Thus, I' corresponds to lowest-order to the classical action. The solution to the
effective equations of motion (7.22) in this approximation clearly matches the tree-
level equations of motion discussed in (6.85). In order to find the first non-trivial
correction to I', we need to solve a functional integro-differential equation for the
correction /C,

e

K[¥] = —In mee a2

This equation has in principle to be solved perturbatively, as K appears on both
sides. However, since K is already of one-loop order at least, we can neglect its
contribution to the path integral on the right-hand side. Neglecting all higher orders
in the fluctuation as well, yields a pure Gaussian functional integral that can be
solved directly,

7] = — et (5) 7] = Do [det (S¥)] = S [ (s®)], (7.45)

and thus the well-known expression for the one-loop effective action,

T[] = S[W] + ;Tr In (8] . (7.46)
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In the above equation, the trace runs over all degrees of freedom in S@. Importantly,
S® functionally depends on the general mean field . We can now compute
corrections to the bare vertices by taking functional derivatives of the above expression
and evaluating on the equation of motion. We find

T[] =SM[T) + ;Tr {Sﬁf’) : [8(”}1] : (7.47)
T2 =s2w) - ;Tr [39) . {Smr LS. [S(m}l] ‘ (7.48)

These equations contain all one-loop processes that contribute to the given vertices.
A discussion of how these equations can be solved for a specific system at hand
will be given in the next chapter. For the remaining of the present chapter, we will
generalize the above logic to find exact equations of motion for the full effective
vertices.

7.3. The Master Dyson-Schwinger Equation

Similar to the BBGKY hierarchy, which couples the s-particle reduced correlation
functions to an infinite® tower of coupled equations, (see section 2.3), a hierarchy
between the full correlation functions and cumulants can be established. This
hierarchy roots in the functional identity

4]
0= DU e [—5\1/ +/Ja\11a}, 7.49
55, P | S+ [ (7.49)
i.e., the vanishing of the functional integral over a total functional derivative. It can
be seen as a general symmetry identity related to the translational invariance of the
functional measure DV, i. e., the invariance under a shift in field space” U, — ¥, +¢,.
Applying the above functional derivative on the exponential, we find the relation

0= <5f£] - Jb> , (7.50)

which enforces the classical equations of motion in the presence of an external current
to hold on average. Following the functional treatment for the computation of
expectation values (7.8), this equation can be written entirely in terms of functional
derivatives,

0S 0 —
J, = 50, l‘l’b— M—F\Pb} -1. (751)

5The tower is infinite in the thermodynamic limit.

"This symmetry requires the measure to be flat, meaning that under the given shift the functional
Jacobian is trivial. This property may fail in cases where the measure is non-flat, for instance
when the field space has a nontrivial metric.
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Inserting (7.21) on the left-hand side and the chain rule (7.20) on the right-hand
side, we find the corresponding equation in the Legendre transformed picture,
oT[v] S
ST5(X)  6U5(X)

[WQ(Y) — /Z ga’y(K Z)é\I/j(Z) —’—EQ(Y) . ]_, (752)

which we will refer to as the (statistical) master Dyson-Schwinger equation [63, 64]
for the 1PI vertex functions. Applying functional derivatives w.r.t. ¥,, we can
derive a coupled tower of equations for the effective vertices I'™, which in turn
by the correspondence (7.33) and (7.39) can be used to derive equations for the
full cumulants themselves. The resulting equations of motion for the full physical
cumulants are then obtained by evaluating the respective Dyson-Schwinger equation
on the equations of motion. As the Dyson-Schwinger equations represent an infinite
tower of coupled equations, exact solutions are almost never possible. Therefore, one
has to rely on approximation procedures. We will discuss these in the next chapter.
However, it is instructive to study the general structure of the Dyson-Schwinger
equations in more detail for our particular theory at hand.

7.4. Dyson-Schwinger Equations for Cumulants of the
Klimontovich Equation

Let us now explicitly compute the right-hand side of (7.52). It will be convenient to
separate the initial vertices from the dynamical vertices in order to easily distinguish
between the Klimontovich description and the special case of a Gaussian Vlasov
description. Let us therefore expand the action as in (6.41),

1 1
S = 85w, + gsgzb U, 0, + gsg;bc U, 0,0, + S7[¥], (7.53)

where again Sz[V] contains all three-point and higher initial cumulants. In the case of
an initially Gaussian Vlasov fluid, this term vanishes. Taking a functional derivative
w.r.t. U, gives

abc

1
SIIY) = Spu+ Spup U+ 5 Spame Vnle + SV (7.54)

Under the averaging process on the left-hand side of (7.52), the product ¥,¥,
becomes

U, 0, = U, Ty + Gup, (7.55)

—Gg.5
V=G24V

and similarly for all higher order monomials in Sz[W¥]. The master Dyson-Schwinger
equation can thus be written as

_ _ 1 _
POMT] = SH) + Spby Ty + gsgg,,c (wc - gbc> + (Stalv]) (7.56)
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or, using the more compact matrix notation,
r([0] = SH W] + Tr [Shon - G + (SEalw]) - (7.57)

This equation is the starting point of the Dyson-Schwinger hierarchy. The first term
on the right-hand side contains the purely classical evolution of the mean field, as
discussed in 6.6. The second term represents loop corrections thereof that arise from
the trace and the full propagator G. It represents a back reaction of the statistical
fluctuation onto the evolution of the mean itself. The third term represents all higher
order statistical fluctuations that arise from the higher order vertices due to the
initial conditions. It generalizes the second term to more complicated loop topologies.
Since it only contains Wy couplings, it vanishes when evaluated on the equations
of motion. However, it generates non-trivial contributions upon taking functional
derivatives. For instance, we consider the next order Dyson-Schwinger equation for
the two-point vertex function that arises by taking a functional derivative w.r.t. Wy,

T[] = S, - ;,Tr[ b G-I -Gl + T (WS . (7.58)
This equation equivalently establishes a relation between the full inverse propagator
on the left-hand side with the inverse tree-level propagator on the right-hand side,
together with the loop correction that involves a full three-point vertex function.
The latter therefore requires the knowledge of the Dyson-Schwinger equation for
I'®). The last term describing the influence of the initial cumulants now contains
an additional field insertion in the expectation value, which is due to the functional
derivative w.r.t. the mean field®. Importantly, the ¥; component of the inserted
field now yields a non-vanishing expectation value, when evaluated on the equations
of motion, as we will discuss momentarily. The Dyson-Schwinger equation for the
three-point vertex function now arises similarly upon taking a further functional
derivative w.r.t. U,

1
FT) =88 [¥) + T[S -6 T G- ]

1
+ Q,Tr[ S -G-T® . g1y G| - ETT[ s§,-g-ri.g| (759

+1) - (wSw]) + 17 - (wS[w]w) TR

As expected, this equation now introduces the effective four-point vertex function.
This infinite hierarchy now extends to all higher vertex-functions. In particular,
for Gaussian initial conditions, the n-th order vertex function I'™ couples to the
(n + 1)-order vertex function I'™*1). The initial vertices introduce even higher vertex

8More precisely, using the inverse chain rule (7.20), one finds

4] 2) 0
— U) =17 —
ov, (o) ab 5.7,

(OW)) =18 (v, 0(W)) .
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functions.

Finally, let us explicitly state the equations of motion for the key physical quantities,
the physical mean phase-space density Wgon s, the physical causal propagator G g
and the physical statistical propagator G'sf, corresponding respectively to the system’s
linear response function, and its two-point density fluctuation function. The physical
mean field Wi, is obtained by evaluating (7.57) on the equations of motion. Clearly,
the f-component of I'(}) vanishes identically on both sides. By the statistical equations
of motion (7.22) we are thus left with

0=T%3 (1) = 85(1) + = S5 (1,2,3) Gy1(2,3), (7.60)

1
2!
since Sg )B 77 1s the only three-point coupling in the action Sp and the Sz-term drops

out because it only contains W p-field correlators whose physical expectation values
vanish identically by (6.42). Inserting the expression for the action Sp, one finds

0= - @= o0+ .+— <g+ Q (7.61)

This generalizes the tree-level equation (6.87) or its diagrammatic form (6.114) for
the mean background to the full statistical theory. As we can see, its solution is
not independently solvable anymore, but requires knowledge of the full statistical
propagator, to which we turn in the following. Consider next the Dyson-Schwinger
equation for the mixed, two-point vertex function fg}, which can be obtained from
the B f-component of (7.58) evaluated on the equations of motion,

(2 <(2)
I'p (17 2) :SD,Bf(l, 2) -

Soprr(1,1,2)Gs(1,3)G5(2, DT, (3,4 2)}
1 (7.62)
Y] {Sg)Bff( )GfB(L3)Gf3(2,1)fg’gf(§,21, 2)] .

Diagrammatically, this equation can be visualized to

1
..C\,2'<, (7.63)

The first diagram represents the bare two-point vertex. As we have seen in section

6.6 evaluated on a non-trivial mean background, ngB +(1,2) contains the inverse free
propagator and a contribution from the full mean field coupling to the three-point

vertex, i.e.,
o = .o — ? , (7.64)

which generalizes Equation (6.112). Accordingly, we separate the two terms, each
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contributing differently to the full inverse causal propagator, and find

Q@ =  o— — C\ <: (7.65)

The difference between the full inverse causal propagator T B f and the inverse free

propagator SQ B f[ 0] defines the so-called causal self-energy ¥ p¢, which is given by

1 C
Spy ? + C\‘ + o o . (7.66)

As one can see, the causal self-energy splits into two parts. The first, containing the
first diagram on the right-hand side, arises from the full mean field and is local in
time due to the time-local nature of the three-point interaction vertex. The second,
containing the remaining two diagrams, represents a non-local, non-linear correction
to the full causal propagator, such that the total causal self energy decomposes as

where we defined the Hartree self-energy as

Sh (f (7.68)

12

and the Fock self-energy as

= C\‘ S e (7.69)

The nomenclature is based on the respective contributions in quantum field theory.
We will discuss their physical meaning at the end of this section and in the next
chapter. As one can see, the causal self-energy Xz, depends on the full propagators

themselves and additionally the higher order three-point vertices f% ; and fgj)g ;-

While the former has a classical counterpart in Sg s, the latter is not present in the
bare theory. It is effectively generated and of pure statistical nature, i.e., at least
of one-loop order. The explicit equations of motion for the exact linear response
function of the system can be obtained upon multiplication from the right with G¢p
and using the appropriate relation from (7.36). We find

(255 — S5r) (1,1) Gyp(1,2) = 1(1,2), (7.70)

where Aj B 1 1s the inverse free propagator. The formal solution of (7.70) arises upon
multiplication with A sp from the left, and yields the Dyson-Schwinger equation for
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the causal Gy propagator,
GfB:Agny + AO,fB'EBf'GfB (771)

or diagrammatically,
(7.72)

A similar reasoning can be applied for the advanced propagator Gy, such that the
relation Gyp(1,2) = Gps(2,1) holds. Last, but not least, the statistical propagator
G s obeys a similar equation. The BB-component of (7.58) is given by

7@ <) RSE 75 T3 5 T3 (3 7
I'pp(1,2) = S(D,BB<1> 2) — 20 [SD,Bff<1a 1,2) Gyp(1,3) Gpp(2,4) Uypp(3. 4, 2)]

Importantly, only in the BB-component do the terms arising from the initial condi-
tions in Sz contribute. Diagrammatically, we can represent this equation as

OO G

..... (7.74)
0o * .-..:::‘
2 ¢ ne-0
n=2 """ S teiiiast ::'.

------

As we can see, the loop diagrams correct the initial two-point fluctuations represented
by the first diagram on the right-hand side. We therefore define the statistical self-
energy Xgp as

(7.75)

-----

-------
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The solution for the full propagator is then given by the relation (7.37), i.e., by
connecting the statistical self-energy with two causal propagators from the left and
from the right. In order to give a physical interpretation, it is useful to further
decompose the statistical self-energy into two contributions, which we call Spp and
nP B B, defined as

< 1 1
Ypp = a1 + + B . (7.76)
and
o 1 .: ::: e 3
SEE= Y. 4 ne-e-, (7.77)
n=2""
such that B
ZBB == EBB+E%))B (778)

In summary, we have decomposed our system into the causal and statistical self-
energies Y gy and Xpp (c.f. for similar treatments [21, 60, 65]). The former represents
a renormalization of the time-evolution operator, i.e., the Klimontovich operator
itself. Importantly, it inherits the causal structure, such that Y5¢(1,2) x O(t; — t2).
It is responsible for the growth and decay of structures. In particular, the Hartree self-
energy is a time-local instantaneous back reaction of the mean background onto the
evolution of the perturbations. On the other hand, the Fock self-energy represents
the non-Markovian property of the out-of-equilibrium ensemble and consists of
causal memory integrals, that “remember” the full history of the system. In the
plasma physical context, the causal self-energy is also referred to as a resonance
broadening term which can be understood when analyzed in time-frequency domain
as it affects the dispersion relation of the plasma. The statistical self-energy can be
interpreted as a dynamlcally generated effective perturbation that adds to the initial
perturbation G 71- The total fluctuation is then propagated by the linear response
function G¢p. Thus, the statistical self-energy is responsible for mode-coupling and
describes the redistribution of matter Following the literature, we separated the
initial vertices into the term E( . If the initial particle ensemble is drawn from a
Gaussian random field, this term Vanlshes in the Vlasov description, where particle
collisions are neglected. In contrast, nP B B appears in the Klimontovich description,
where it describes random particle noise arising from particle collisions, and thus
generating additional fluctuations. However, if the initial fluid is non-Gaussian, then
Z%% also contributes in the Vlasov description, capturing how higher-order initial
correlations source two-point fluctuations. There is of course a lot more to say about
the physical role played by the self-energies. In particular, in equilibrium they play
an important role in the derivation of fluctuation-dissipation relations [18, 19, 66].

Because each self-energy involves the full three-point effective vertices, which in
turn involve the next higher-order vertices, one must truncate the Dyson-Schwinger
hierarchy. In the next chapter, we consider a special class of systems that allows
for an even more extensive analytical description, and we will develop methods to
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systematically approximate this infinite hierarchy of equations.



8 Statistically Homogeneous and
Isotropic Systems

Finding non-trivial analytic solutions to the above equations is, in almost all physi-
cally relevant cases, impossible. However, as in many physical systems, symmetry
assumptions offer a powerful tool to reduce the number of degrees of freedom and
thus simplifying the mathematical description. In this chapter, we focus on the
scenario where the statistical properties of the system are invariant under translations
and rotations in physical space. While not fully general, these assumptions hold in
many realistic situations, most notably in cosmic structure formation, as discussed
in Chapter 11.

8.1. Statistical and Dynamical Setup

We begin by specifying the fundamental ingredients of our statistically homogeneous
and isotropic system. As established in earlier sections, the statistical properties
of our ensemble are encoded in the initial conditions, which we now revisit under
the constraints of spatial homogeneity and isotropy. We then introduce the class of
interaction potentials, which we will be dealing with and which must be compatible
with these symmetries. Finally, we discuss the particles’ free Green function around
which the approximations are built.

8.1.1. Statistically Homogeneous and Isotropic Initial Conditions

)

For our analytical model, we assume that the initial fluid from which our particles
initial coordinates are sampled is a Gaussian random field. That is, the probability
distribution functional P| fl(l)] is completely characterized by its mean C’g ) and

covariance Gg), defined by
@) = (@), = [ DA 1@ LAY, (8.1)
Gg)(ifl,f@) = <f1(i)(-’f1)f1(i)(932)>

¢, P
(8.2)

— [P 1) 1) PURT = (10 @0)), (10 (a2),,
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All higher order cumulants are set to zero. In addition to Gaussianity, we further
assume that the initial statistics of the one-particle phase-space density distribution
fl(i) is statistically homogeneous and isotropic in physical space. These symmetry
requirements are motivated both, by simplicity, as they considerably constrain the
form of the correlation functions, and by the commonly made assumption that there
is no.yreferred position or direction in space, when averaged over multiple realizations
of fl(1 (x). Technically, we define P| fl(l)] to be statistically homogeneous in space, if
all its correlation functions are invariant under arbitrary spatial translations,

— —

07(7n)<_i +C_’:7 ﬁl? ceey QTL+G’7 ﬁn) = C;n)(ilv ﬁb Tt q_;u ﬁn) ‘v’n, VC_I:E R3' (83)

Analogously, we define statistical spatial isotropy for P| fl(i)], if all its correlation
functions are invariant under arbitrary spatial rotations,

In combination with statistical homogeneity, this implies for the correlation functions
that they can only depend on relative distances ¢;; = |¢ — ;|-

For the resulting particle theory, we find that the only non-vanishing s-particle
reduced initial correlation functions are given by

Al @) =Y (x) (8.5)
9 (2) =GP (21, 25) . (8.6)

The requirement of homogeneity and isotropy further implies, that fl(i) is independent
of the spatial coordinate while g may only depend on the relative separation of the
spatial coordinates. We may therefore write

G 7) =5 (%) (8.7)
géi)(ilvﬁ17§2752>EﬁZgS)(‘q_’l_q_é’?ﬁlaﬁZ)' (88)

Here, p = % is the mean particle density and V' is the volume to which the particles
are confined in configuration space. For normalization reasons, we have pulled a
factor of p* out of g,. Furthermore, we introduced the initial momentum distribution
function which describes the average number density of particles in momentum space
at initial time. From the normalization (2.54), we have that ¢ is normalized to unity,
[dBpeW(p) = 1. A typical example would be a Maxwell-Boltzmann momentum
statistics for particles of mass m at temperature 7T,

1 p?

(i) — T 2mkgT
¥ (ﬂ) (Qka:BT)3/2€ B (8'9)
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8.1.2. Homogeneous and Isotropic Potentials

Next, we turn to the dynamical part of the system and specify the interactions. As
an external potential would spoil homogeneity and in certain cases also isotropy,
we are only left with a two-particle interaction vy. As above, we demand it to
respect spatial homogeneity and isotropy, such that it does not induce preferred
positions or directions throughout all realizations. We will furthermore focus on
the important class of momentum independent interactions. This leaves us with
two-particle interactions of the form

UQ(ZL'l,IQ,t) = ’U2<|(71 — (E’,t) s (810)

where we kept a general time dependence. We will specify to time independent
potentials when appropriate, as time-translationally invariant systems allow for
further analytical treatments. The Fourier transform of the above potential is then
given by o L

va(kiy, b, t) = (27)% bp (Fy + Fa) valk, 1) (8.11)

In real space, we require that the potential decays fast enough towards infinity, such
that the Fourier transform of the two-particle potential does not become singular as
k goes to zero. Equivalently, the integral of the force over real-space must vanish,

0= ku(k)

co= —i [ @aVula). (8.12)
which, by angular integration, is satisfied. Physically, this equation expresses that
the total force derived from the potential vanishes when integrated over all space,
implying the absence of any residual net force.

8.1.3. A Note on Long-Range Interaction Potentials

We are furthermore interested in a special class of systems, namely those governed by
long-range interaction potentials. These systems are characterized by interactions that
decay slowly with distance, such that they are sensitive to the global configuration
of the system. Typical examples are the Coulomb interaction for plasmas or the
Newtonian gravitational potential describing the dynamics of self-gravitating systems.
As the latter describes the evolution of cosmic structures, which we will be dealing
with in chapter 10 and 11, we very briefly mention their main physical properties and
implications here, referring to the vast existing literature [67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77] for detailed studies of their thermodynamical properties. We call a system
long-range interacting, if the system’s total energy scales super-extensively with the
number of particles N. This can be understood as follows: Consider the potential
energy of particle j, U; ~ SN, va(|@ — ;). If the potential has only a finite radius
of convergence, only a finite number of particles will contribute to the above energy.
Provided, that the mean particle number density stays constant, the above potential
energy is independent of the particle number N. In contrast, if the potential is long-
range, every particle will contribute a non-trivial amount to Uj;, such that U; ~ N.
The total energy of the system will therefore scale as E ~ Zj-v:l U; ~ N? and is thus
super-extensive. Since extensivity is required to have a well-defined thermodynamic
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limit, this poses a problem. To guarantee the existence of the thermodynamical
limit in those cases, one usually employs Kac’s prescription [78] and demands that
the coupling of the potential scales as ~ %, such that £ ~ % Zivjzl v;; ~ N, which
restores extensivity. In the case of a self-gravitating fluid, one typically demands
that the mass of the individual particles that sample the fluid, scales as m o % at a
fixed volume V', such that the mean mass density of the fluid stays constant. We
can then define the thermodynamic limit such that

N
p= v~ N — oo, while p,, =mp = const. (8.13)

This will be the thermodynamic limit we will be working with. Importantly, using
the Kac prescription, the potential energy of the individual particle contributions
becomes arbitrarily weak. It can then be shown [77] that the dynamics of the
system approaches the Vlasov dynamics, where the particles only evolve under the
influence of a smooth mean field. Collisional effects scale as gy ~ % and only become
important for finite composite systems. Thus, from here on, we will adopt the Vlasov
description and neglect all shot-noise contributions.

Another important property of such systems is that the potential decay is given by

V(1) ~ 7,1a’ with a<d, (8.14)
where d is the spatial dimension. This is thus too slow to ensure convergence of
the integral (8.12), and therefore formally violates the condition. In the case of the
Coulomb interaction, however, the presence of both positive and negative charges
leads to screening effects that effectively render the potential short-ranged, thereby
restoring the condition. In contrast, gravity involves only attractive interactions
between positive masses, and no such screening mechanism exists. As we will see,
the condition can nonetheless be recovered by subtracting the contribution of the
homogeneous mean background, as discussed in Section 10.1.

8.1.4. Free Particle Green Function

By a similar logic as above, the free part of the Hamiltonian function, defined by
(2.19), should also respect the symmetries of the system. For that reason, Hy(x,t)
cannot be a function of the configuration space coordinates q. The only remaining
degree of freedom of the matrix A(t) is thus a possibly time-dependent mass m(t),

A(t) = (O ?) . (8.15)

Putting all things together, the total Hamiltonian function of the homogeneous and
isotropic system is given by

N =9 N
H(x.t) = U d; — q.:|,1). 8.16
(X, ) ; 2m(t) + i?;l U2(|q q]‘? ) ( )
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The associated free equations of motion are given by (2.21). Importantly, the matrix
w - A(t) is nilpotent, so its commutator vanishes, [w + A(t;),w - A(ts)] = 0 Viy, to.
Following the general derivation in 2.1.1 that led to the form of the free particle
Green function (2.33), we find

gqq(t7 t/> 13><3 gqp<t7 t/> 13><3
0353 gpp(t7t/) 13,3

G(t,t) = ( ) ot —1t), (8.17)

where the non-vanishing components are given by

1

to_
gqq(t, t/) =1 s gpp(t; t/> =1 s gqp(tu t/> = . dt m . (818)

Consequently, the solution to the free classical trajectory is given by

= (i) i)y 7@
) : ai + 9op(t, 1) p; .
xi(t) = G(t,t0) . xD = qp(,) ot —t0), (8.19)
Pi

8.1.5. Fourier-Space Treatment of Correlation Functions

The Hamiltonian function is constructed such that the evolution respects the initial
symmetries of statistical spatial homogeneity and isotropy. As a consequence the
full phase-space density correlation functions exhibit the same shift and rotational
symmetry requirements as defined for the initial state. These symmetries imply that
most integrals we encounter will be convolutions, which naturally motivates a Fourier
space formulation where such expressions reduce to products. We therefore adopt
the Fourier conventions defined in Appendix A and find for the Fourier transform of
the Klimontovich phase-space density,

N e — . —
Dy, 0, h) = Y e REA A0, (8.20)

=1

We will use similar condensed notation for the field theory summarized in the
appendix. In particular, we have the Fourier variables s = (lg, v ) conjugate to
x = (q,p), which we extend to S = (s,t). Importantly, the symmetries imply for the
Fourier transformation of the full phase-space density cumulants

Gr.p(Si,.. . Sn) oc (2m)30p (ki + ...+ k) - (8.21)

This property is inherited by all expectation values that are derived from the Gy ¢’s.
Another reason, why the Fourier space treatment is particularly convenient is that
the moments of the momentum statistics (2.99) can now easily be computed by
applying appropriate derivatives to the general cumulant,

—

(O1(ky 1) ... Onllin, 1)) = Fo,(iV) ... Fo,(iV:) Gy 4(S1,. .., Sn) L 822
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and setting all (-vectors to zero afterwards.

Let us consider the following important example. We define the density fluctuation
as . -
s = P =p (8.23)
p
which measures the local deviation from the homogeneous mean background. To
understand how such local fluctuations at different positions in physical space are
related, we compute its correlation function

GPP(q_)la tla (1’27 t2>

(00, 0)3(da, 1) = =20

1
-5 [ @@ Gy(X1, %), (3:24)
since by definition (p(g,t)) = p. In Fourier-space, we then find the relation

L . . 1 . .
(2m)*0p (lﬁ + kﬁz) Ps(ky,t1,t2) = <5(k’1,t1)5(k‘2,t2)> = ?fo(klaoatla ks,0,15) .

(8.25)

Where we defined the density fluctuation power spectrum P(;(l;, t1,ta). This will be
our main object of interest.

8.2. Field Theory

Let us now collect the main ingredients for our field theoretic treatment of statistically
homogeneous and isotropic systems. Applied to the Klimontovich equation (2.78) it
reads

0

_l’_
oty (tl)

.vﬁ}@f(xl,tl) — [ @, @y, 1) RO (w0,11) = 0, (3.20)
where the two-particle interaction operator is given by
LD() = Vava(ld - @l t) - Vs (). (8.27)

As already indicated, homogeneity and isotropy will make it convenient to work
in Fourier space from the beginning. The Fourier transform of the Klimontovich
equation (8.26) therefore reads

ok
[%_m(tl) . V[l:|q)f<$1ytl>

(8.28)
d3k2 - -
+/ ]’CQ 61 ’Ug(k?g,tl)q)f(k’g,o tl)(I)f(k'l l{fg,fl,tl) = 0

Note, that the density sourcing the interaction has vanishing momentum mode, as
the potential is independent of the momenta. Furthermore, we see how the symmetry
restrictions reduce the number of integrals in the interaction. These characteristics
will simplify the computations considerably. Nevertheless, for the construction it is
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more convenient to restore all missing Fourier integrals for a symmetric field-theoretic
treatment. Defining the inverse free retarded propagator in Fourier space as

A o ki - A
Dll?:[—'vﬂ]lm, 8.29
O,R( ’ ) (9151 m(tl) A ( ) ) ( )
we easily find
Dop(1,2) = b (514 G (tita) - 52) Ot — 1), (8.30)
such that
Dy r(1,3) Dor(3,2) = 1(1,2), (8.31)

where the identity in Fourier space is defined as 1(1, 2) = 6p (51 + s2) 0p (1 — ts). We
furthermore used the notation G~ for the inverse transposed particle Green function.
The advanced propagator is again given by Dy 4(1,2) = Dy (2,1). Furthermore, we
find the symmetric two-particle coupling function given by

A A A 1 A A A A A A
UP(i,2,3) = 5 (U®(1,2,3) +U™(1,3,2)) , (8.32)
with
U (1,2,8) =(2m)°0p (k1 + ka + ks ) (27)%0p (6 + Gs) (27)°0p (62) x
(8.33)
X b(€1, k, t2)dp (t1 — t2) Op (t2 — t3)
b(0y, o, to) = (ks - £y)v (Ko, 1) - (8.34)
With those definitions, we can set up the MSRJD action as described in 6.3,
A A A N 1 A oA A A A A
S[W] =Wp(-1) Dy (1,2) Wy(=2) = SUP(1,2,3)Up(-1) ¥ (=2)0(-3)
. (8.35)
—Up(-1) P (D) - JUs(-1) G 2)Wa(-2),
with the two relevant initial cumulants given by
G (1) ="k, ) = p(2m)° 6o (k1) () (8.36)
GY1(1,2) =g (v, 01, ks, ©) = 7 (27) 0 (K + Kz) G (ky, 61, ). (8.37)

All terms in the action respect the conservation of l;—modes, as enforced by the
respective Dirac-delta distributions. This is an important feature of our system,
which can be compared to momentum conservation in quantum field theory. Therefore,
all mixed cumulants derived from the above action will respect the symmetry®. The
resulting action, corresponds to a field theory with three-point interaction vertex.

IThis can be shown as a Ward identity related to the symmetry transformations described in
section 8.1.1.
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All higher-order cumulants vanish, since we are working in the Vlasov description
and therefore neglect all shot-noise contributions to the initial vertices. Our main
goal will be the computation of the two-point functions for this theory.

8.2.1. Tree-Level Propagators

At tree-level the mean field equation is given by the stationarity condition of the
classical action itself. We find
IS[¥] —(0)

_ _ n-1(7 4 5 i3
0= Sty = Dok 2T e 0) G (D). (8.38)

Importantly, compared to the mean background equation (6.87) for the general system,
the non-linear term vanishes in our present case. By homogeneity, the mean field
must be independent of the position in real space, or @,EoM(lZl, 571, t1) o< (27)3 dp (El>
in Fourier space. Thus, by the condition (8.12) there cannot be two mean fields
coupling to the two-particle interaction vertex, i.e., diagrams of the form

<:, (8.39)

must vanish. The solution to equation (8.38) is clearly given by

—(0) - o d3k:2 d3€2 t N RN Q /7 7
U mon (K1, 1, t1) :/ S 7o /dt2D0,R(k17€17t17k2>£27t2)Gf (K2, la,t2) (8.40)
or )t @t |
tl

=GV(GT (1, 1Y) - 51) (8.41)
=G (K, 7, 8.42
M ( 1, l7tl) . ( . )

Thus, the tree-level mean field corresponds to the freely evolved initial mean field.
Next, we turn to the computation of the tree-level propagators. From the discussion
at the end of (6.6.1), we have to find expressions for V} ) and Qp. The former can be
computed from the first order approximation to the Hartree self-energy (c.f. equation
(6.109)), and reads

Vi (1, 82) = (27)°0p (ky + ka) (27)0p (82) VR (k. 3, 1, 1) (8.43)
]}](:?)<k_17 Zl) tlu t2) = = ﬁb(Zl + gqp(tla t2>k_i) El) t2) 90(1) (Fl + gqp(tla tQ)k_i)@(tl - t2) )
(8.44)

where we extracted the Delta-distributions set by the symmetries. The defining
equation for Qi reads

Qr(S1, 85) = V(81 S5) + /S VO(S,,5) QR(S, Sy) . (8.45)
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Due to the structure of V}(g) it is sensible to similarly decompose €2 as
Qp(S1, 82) = (2m)°0p (K1 + ka) (27)°0p () Qr(k, 01, t1,12) . (8.46)

Inserted into equation (8.45) we finally end up with an integral equation for Q R
which reads

t1
QR(k_iu Zla tla t2) - ]}](3?)<k:_17 Zla tla t2) + /df]}](g)(k_ia ZI: tla t2> QR(]C_L 07 tla t2) (847>

to

Remarkably, the Dirac-delta distributions have completely removed the spatial part
of the integral equation. The solution algorithm is now to first solve the above
integral equation for vanishing ¢-vectors,

t1
Ok, 0,11, 1) :v§$><kj,o,t1,t2)+/dﬂ?}?(/a,o,tl,tg)QR(kZ,o,tl,tQ). (8.48)

t2

Homogeneity has thus reduced the complexity to a one-dimensional integral equation.
This is as far as we can get analytically, in general, for a homogeneous system.
Equation (8.48) is a Volterra integral equation of the second kind. The causal
structure ensured by the Heaviside function enables a very efficient numerical solution,
as, upon time discretization, we simply have to invert a lower triangular matrix via
forward substitution.

In certain rare cases, (8.48) can even be solved analytically. The basic requirement
for this to be possible is that the objects appearing in (8.48) are time-translation
invariant, i. e., only depend on time differences. This requirement is typically fulfilled
if the potential is time independent as well as the Hamiltonian function in (8.16),
which is thus a conserved quantity. In such cases, the integral in (8.48) becomes a
Laplace convolution and may be diagonalized by means of a Laplace transformation.
Defining 7 = t; — t5, we write

t1
On(kr,7) = VO U, 1) + / AV (8, 7) Qr(Er, 7) - (8.49)
to

Applying a Laplace transform on both sides and using the Laplace convolution
theorem, we find

£\l () = £ PR (R, )| () + [P (o)

(2) L {QR(EM )

(2), (8.50)

where z is the Laplace conjugate variable to 7 and L is the Laplace transformation
operator. The above equation can be solved algebraically. Transforming the equation
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back yields the final result for Qp

] epREn)@
QR(kl, T) = E ~ -
V() (2

(7). (8.51)
1-£

Having obtained an expression for Qp, either analytically or numerically, we
can now insert it back into Equation (8.47) to derive the general form of Qp for
non-vanishing ¢. The retarded tree-level propagator then follows from

Ar(1,2) = Do r(1,2) + Qr(1,3)Do r(3,2). (8.52)

Last but not least, we obtain the statistical propagator by the solution of the integrals
(6.105)
App(1,2) = Ag(1,3)GF(3,0)A4(4,2), (8.53)

which can either be done analytically or numerically.

8.2.2. Analytical Toy Model

Let us briefly discuss a model that admits an analytical solution for the tree-level
propagators. We consider the initial mean and covariance to be independent of the
momenta. This corresponds to the low-temperature limit of the above-mentioned
Boltzmann distribution in (8.9). We therefore find

GY(S)) = (2m)°dp (k) o (8.54)
GYH(S1,82) = (2m)%6p (ki + k2) 72 P (k) (8.55)

where only the initial power spectrum P(;(i)(k‘l) contains non-trivial statistics. Next,
we assume our potential and the mass to be time-independent, such that

’Ug(k,t) :’Ug(k‘) (856)

t1 —t
gCIp(tlth) == m 2 ) (8-57)

where m is the constant particle mass. We then find

ti—ty ki 0
2y leI) Ot — 1) . (8.58)

m 1

)}1(%())<E1,Z1,t1,t2) = — pkiva(ky) (
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Solving first for (= 0, we find the Laplace transform

Pk va(ky) (8 — 1)
m

LV (k0,1 — )] (2) =L [ ] (2) (8.59)

P 2 1
= — —kjvg(k1) —
m 102(k1) 22

(8.60)

Using the inverse Laplace transform of the form

E‘l{ -4 }(t) — —VAsin (VAY) , (8.61)

s2+ A

we get a closed expression for (8.51) given by

Qn(k. 0.t — ta) = —w(k)sin (w(k)(tl _ t2)> , (8.62)

with the k-dependent frequency

wk) = ./W. (8.63)

Inserted back into (8.47), we get the general result

QR(E,ZtI — tg) = — [w(k) sin (w(k)(tl — tg))
(8.64)

ky - 4,
L 1Ot — ) .

ki

+ mw(k)? cos (w(k)(t1 — tz))

Equation (8.64) is the general solution of the causal tree-level propagator in the
low-temperature limit of a Boltzmann gas. Interestingly, we see that if the potential is
repulsive, i. e., vy(k) > 0, Qr and thus Ag exhibit oscillatory behavior with frequency
w(k). This can be understood, since in a homogeneous system where the thermal
motion of the particles is negligible, a repulsive inter-particle potential will lead to
a collective oscillating behavior within the system. It arises due to the system’s
response to a local perturbation as it tries to restore homogeneity. For instance,
consider the Coulomb potential,

e? 1

B dme Wl—@"

ve(lq — @) (8.65)

whose Fourier transform is )
e 1
k)= ——. 8.66
velk) =S5 (5.66)
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Inserting this into (8.63) we recover the well-known plasma frequency (or Langmuir

frequency),
)
wik) = /2 = wp. (8.67)

meg

The charged particles, thus, oscillate around their equilibrium position, which is
famously known as plasma oscillations.

On the other hand, if the potential is attractive, vy(k) < 0, we find

wk) = u/ﬂi“‘;)' = i|w(k)|, (8.68)

QnlF. ot~ 1) = [rwuf)r sinh ([w(b)] (11— )

and thus

k-

69)
(el - ¢

+ mlw(k)|? cosh (|w(k:)|(t1 _ t2)>

In this case, the propagator consists of an exponentially growing and an exponentially
decaying part. This is also intuitively clear, as a small deviation from homogeneity
leads to a collapse of structures. Most prominently, consider the attractive Newtonian
gravitational potential,

L Gm?
va(lqi — @) = —m, (8.70)
with Fourier transform G2
TGm
va(k) = — 12 (8.71)

We find the growth rate

w(k) = \/4rGmp = wg . (8.72)

In a homogeneous system with negligible thermal motion, attractive forces such as
the Newtonian gravitational potential lead to exponentially growing structures due
to local perturbations. On a physical level, a local over density in a self-gravitating
gas leads to a collapse of the whole surrounding system and thus to an exponentially
growing perturbation. This result is famously known as Jeans instability. The
frequency we recovered in (8.72) is related to the characteristic timescale of collapse
for a collisionless fluid 7 by 7 = i and is usually referred to as the free-fall collapse
time.

We can finally solve for the statistical propagator (6.105) and find

Apy(Si, S2) = (2m)%0p (Ky + ka2) 0 Py (k) F(S1) F(S), (8.73)
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with

F(#, 5, 1) = cos (w(kl)(tl _ t(i))) — mw(k) sin (w(k:)(t1 _ zz)) Elk'fl . (8.74)

Since, at tree-level we have Gy = Ayy as a first approximation to the two-point
phase-space density correlation function, the time evolution of the power spectrum
can be read off directly from equation (8.25),

Py(k, t1, ts) = P! (kl)cos< (kl)(tl—t(i))> cos (w<k1)<t2—t<i>)). (8.75)

8.3. Truncated Dyson-Schwinger Equations

We now briefly turn to the most commonly used truncation schemes of the Dyson-
Schwinger hierarchy as encountered in quantum field theory. Unlike the perturbative
expansion discussed in section 6.6.3, these provide non-perturbative approximations
that can capture phenomena beyond the reach of perturbative methods. For our
present case, the Dyson-Schwinger equations read

SR !
R S S
O O

8.3.1. 1Pl Resummation and One-Loop Effective Action

Clearly, the most straightforward non-perturbative approximation beyond the tree-
level theory, is given by the one-loop effective action, discussed in 7.2. This amounts
to solving the equations (7.47) and (7.48), which clearly corresponds to closing the
hierarchy (8.76) by replacing all full statistical objects on the right-hand side by
their bare quantities. The solution to the upper equation corresponds to the formal
resummation of the causal one-loop self energies,

GiE =0+ App - SEh - GYE (8.77)
= Az Y (ShY - AfB)n : (8.78)
n=0

This naturally extends the tree-level resummation by capturing the next to leading
order corrections in a non-perturbative way. However, we have to remark that only
the causal self-energy is resummed in this procedure. We will therefore expect an
oscillatory behavior of the full result, depending on the sign of the self energy. Indeed,



136 8. Statistically Homogeneous and Isotropic Systems

similar procedures in the hydrodynamical approaches to the Vlasov equation have
shown that this type of resummation leads to damping effects that, depending on the
particular resummation procedure, arise from Bessel functions or Gaussian damping
on small scales. From a numerical perspective, equation (8.77) again corresponds
to a linear Volterra integral equation for the resummed one-loop causal propagator.
Since, by homogeneity, we find

Sap(1,2) o (2m)*0p (K1 + k2) Ot —t2) (8.79)

the integral equation can be solved numerically upon discretization in time. The
only numerical issue is to solve the inner loop integrations. Once the self-energy
is known for all times, one can use a similar algorithm as for the solution of the
tree-level propagator (8.47). Note, that this procedure will only perform a partial
resummation of the causal self-energies, as the solution for the statistical one-loop
1PI propagator is given by

Gif = ~GJb - Sph-Gyy + Gjh - Sen- Gy (8.80)

Thus, the present procedure does not capture the back-reaction of the statistical self-
energy to the propagation and the mean background. We therefore cannot describe
further mode-coupling effects that are not already present at the perturbative one-loop
level. We will therefore have to extend the approximation scheme.

8.3.2. Self Consistent Hartree-Fock Approximation

We can now extend the previous method such that the back-reaction of the propagator
to the background and vice versa is treated self-consistently meaning, that the value
of the propagator depends on its own history, such that it feeds back onto itself.
The corresponding equations of motion are obtained from the Dyson-Schwinger
equations by replacing the higher-order effective vertices, i.e., I'®, by their tree-
level value, while keeping the propagators exact to this approximation. We thus
obtain a self-consistent feedback mechanism in which the full statistical propagator
is dynamically computed and reenters the evolution equations through the Hartree
and Fock contributions to the causal and statistical self-energies, which in turn
drive the evolution of the propagator. This scheme is commonly referred to as the
self-consistent Hartree-Fock approximation [79, 80, 81]. In that way, the statistical
self-energies are resummed in a non-trivial way. The above system of equations
is more intricate to solve than the previously discussed 1PI resummation, as it
constitutes a set of coupled, non-linear Volterra-Fredholm integral equations. Their
numerical solution therefore requires discretization in both time and Fourier mode k.

8.3.3. Beyond Hartree-Fock - 2Pl Loop Expansion

Last, but not least, let us sketch which further procedures exist beyond the above-
mentioned. One well established formalism known as the Cornwall-Jackiw-Tomboulis-
or 2PI-formalism [82, 83] directly extends the above self-consistent Hartree-Fock
method, and generalizes the 1PI effective action introduced in 7.2. Let us briefly
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summarize the main ideas.

Similarly to the generating functional (7.1) that generates expectation values of
the field ¥, one can introduce a bilocal source K,5(X,Y’) such that

27, K] = [Dexp [—S[\If] T U, ;qf K \yb} (8.81)

WIJ, K] = n[Z[J, K]] | (8.82)
with WILE] o SWILK] 1 .

e A T v ol | (R 2L R (8.83)

One then defines the 2PI-effective action in analogy to the 1PI effective action as a
double Legendre transform w.r.t. the sources J and K,

— — 1 —
Popi[¥,G) = JuWa + 5 Kap (Gay + W, T, — WIJ, K]. (8.84)

By making a saddle-point approximation one can show, that I'sp; can be brought
into the form

Top [V, G| = S[U] — ;Tr (¢! - ;Tr (ATT) - 1] + T[T, 9], (8.85)
where S[V] is the classical action evaluated at the mean field, A=![¥] is the inverse
classical propagator in the presence of the full mean field, and importantly, ['y[V¥, G
is the sum of all 2PI vacuum diagrams, with classical vertices and full propagators
running inside the diagrams. The stationarity conditions for I'yp;, similar to (7.22)
then imply

0— 5F2P1E’; gl | 0
o

_ 6Topr[W, G

i (8.86)

T=Upgo\ =Ugom

G=G e’

While the left-hand equation yields an equation of motion for the mean field, the
right-hand equation yields

oLy

= G '+ AT U]+ —=
0 G '+ [H(sg

gngoM (8.87)
&G = Ail[@] + E[@EOM7 G] )

i.e., the Dyson-Schwinger equation for the exact propagator, where the self-energy is
defined by
oT5[7, G

Z[\I/EoMa G] = 2 59

(8.88)

aZEEOM
G=G
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We now expand I';[¥, G] and consequently Y [Ugq, G in a loop expansion. Because
each loop involves the full propagator GG, the resulting equations are non-perturbative
self-consistency conditions for the full propagator G. At lowest (one-loop) order this
yields the Hartree-Fock approximation discussed above. In this way, the 2PI formalism
systematically extends our previous resummations to arbitrary loop topologies.
Equivalently, one could have derived the same truncated self-consistent system from
the Dyson-Schwinger hierarchy, by retaining only classical vertices in the higher-order
equations for the 1PI effective vertices and then back-substituting them into the
lower equations, thereby generating every diagram topology up to the chosen loop
order.

Let us close the theoretical treatment of our formalism by mentioning that the
2PI formalism may be extended to higher nPI vertex functions [82]. This amounts
to including higher-order Dyson-Schwinger equations. We expect the dominant
contribution to arise from the vertex correction to the 2-particle potential interaction
Sg’} - The leading orders to the Dyson-Schwinger equation (7.59) are in that case
given by

g - .+; { + I (8.89)

The first diagram on the right-hand side corresponds to the classical two-particle
interaction vertex which is being renormalized by the two leading order diagrams
containing only the I vertices. Hence, we expect that these contributions dominate
the next higher order corrections.
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Cosmology

In the following chapters we will present the application of the theoretical framework
developed in Part I and Part II of this thesis to the large-scale structure formation in
the Universe. In this chapter, we aim to provide the basis for understanding the later
results, but also to provide insights into the problems faced in the field of cosmic
large-scale structure formation. Throughout this chapter we follow [84, 85, 86, 87, 4,
5].

9.1. Cosmological Standard Model

Let us begin by discussing the standard model of cosmology which establishes the
accepted views on the physics governing the evolution of the Universe and its matter-
energy content. Cosmology is the study of the Universe and its contents as a whole.
Since the scales which are considered in this field are so vast, the dominant force in
the Universe is gravity.

9.1.1. Lovelock’s Theorem and Einstein’s Field Equations

In order to describe the dynamical evolution of the Universe, we must turn to a
theoretical framework that accounts not only for the dynamics of the energy and
matter content, but also for the dynamics of spacetime itself. Therefore, instead
of considering a static background as in the Newtonian approach, one promotes
space-time to a four dimensional Lorentzian manifold M?*, i.e., a smooth manifold
equipped with a non-degenerate metric of signature (—, +, +, +), whose metric tensor
g, () is a dynamical field. Consequently, the notion of distance is intrinsically local:
at each point x € M?*, lengths are measured by the infinitesimal line element

ds® = g,,(z)dz"dz” (9.1)

which defines how distances are measured in a neighborhood of z. Here z* =
(20, 2!, 22, 23) is a four-vector with the Greek index y running from 0 to 3, where z"
denotes the time and z* (i = 1,2, 3) denotes the spatial coordinates. To determine
how this dynamical metric responds to and is sourced by the energy density, we

search for appropriate field equations of the form

Dw[g] = T, (9.2)
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where D, [g] is some yet to be specified symmetric second rank tensorial functional
of the metric and its derivatives, and 7T}, is the energy-momentum tensor describing
the energy and matter content of space-time. Physically, this equation states that the
gravitational field dynamics encoded in Dy, [g] is generated by the energy-momentum
tensor of all matter and energy present in spacetime. Although the space of possible
forms seems vast at first sight, we can significantly constrain the form of D, [g]
by imposing a few physically and mathematically well-motivated requirements. In
particular, we demand that the field equations are local and second-order in the
metric derivatives, ensuring that the dynamics is governed by well-posed differential
equations. Furthermore, we demand that D, [g] is identically divergence-free, which is
a mathematical consequence of general covariance under coordinate transformations®,
and necessary for the energy-momentum tensor to be divergence-free. It then
follows from Lowelock’s theorem that in four? dimensions the most general symmetric,
divergence-free, second-rank tensor constructed solely from the metric g,, and its
derivatives up to second order is a linear combination of the Einstein tensor G, and
the metric itself,

1
Duy[g] =« G/Ll/ + Bgul/ =« (R/ﬂ/[g] - §R[g] g,uu) + Bg/u/ ) (93)

where a, 5 € R are the only degrees of freedom in the construction of D, [g]. In the
above equation, R, [g] is the Ricci curvature tensor and R[g] = ¢g"” R, is the Ricci
scalar. Matching the correct Newtonian limit for weak gravitational fields, finally
yields the well-known FEinstein field equations

871G
G+ A gy = —X1T,, (9.4)

A
where A is the cosmological constant, c¢ is the speed of light and Gy is the Newtonian
gravitational constant. These field equations, first derived by Albert Einstein from
the equivalence principle, lie at the heart of the general theory of relativity. They
describe the inherent coupling and mutual influence of spacetime geometry and its
energy and matter content: the energy and matter content evolves according to the
underlying geometry, while the geometry changes according to the energy and matter
distribution. Importantly, Lovelock’s theorem states that the above field equations
are unique up to the choice of the two coupling parameters Gy and A. While the
former is well-known already in Newtonian theory and describes the strength of the
gravitational coupling, the role of the cosmological constant A is less obvious and
will become important in the subsequent cosmological application.

'To be more specific, this follows from the invariance of the corresponding gravitational action
under diffeomorphisms, and can thus be seen as a Noether identity [88].

’Indeed, the number of dimensions is crucial for Lovelock’s theorem to hold in this form. At
higher dimensions, additional degrees of freedom arise in the form of higher-order curvature
invariants, such as the Gauss-Bonnet term, G = R? — 4R, R* + RWQBR’“’“Q, which reduces to
the topological Euler-Characteristic in four dimensions. However, they may nonetheless play a
significant role in quantum corrections to the Einstein equations at short distances, as suggested
by their appearance in low-energy effective actions derived from string theory. [89]
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9.1.2. Space-Time Dynamics of the Universe

The Einstein field equations (9.4) represent a set of coupled, non-linear hyperbolic-
elliptic partial differential equations, that describe the dynamics of the ten metric
degrees of freedom in four dimensions. As such, they are extremely complicated to
solve, unless symmetry restrictions are made.

We assume that our spacetime (M, g) is spatially homogeneous, meaning that M
can be foliated by a one-parameter family of spacelike hypersurfaces >; such that at
each ¢ and for any two points z,y € Y; there exists an isometry f of g which maps =
onto y. Simply put, the geometry is the same at every point on the hypersurface.
We further assume that our spacetime is spatially isotropic around a point x, if there
exists a congruence of time-like geodesics through it with tangent vector u, such
that any two vectors vy, v, € T, M which are orthogonal to v in  can be mapped
onto each other through an isometry f of g while leaving u and x invariant. This
means that if the spacetime is spatially isotropic, observers with four-velocities u
cannot identify a preferred direction. If the spacetime is spatially isotropic around
each point, it is also homogeneous. Together these imply that each X, is a maximally
symmetric 3-manifold. 1t is then a mathematical theorem that these spaces have
constant sectional curvature k, and can thus be split into three classes: spherical or
elliptical geometry, Fuclidean geometry and hyperbolic geometry. The respective line
element is then given by the famous Friedmann-Lemaitre- Robertson- Walker metric,
which in local spherical coordinates reads

ds? = —c*dt* + a(t)? [dx* + Si(x)dQ?] | (9.5)

where dQ? = d#? + sin?(0)d¢? is the usual surface element of the 2-sphere and the
function Sk (x) is given by

11<; sin(vky) for k > 0 (spherical)
for £ = 0 (Euclidean) (9.6)
ﬁ sinh(y/]k|x)  for k < 0 (hyperbolic)

<5

Sk(x) =

Here, x is the radial coordinate with units of length, such that the curvature
parameter k has units of (length)™2. The scale function a(t) controls how these
spatial hypersurfaces expand or shrink over time.

We can now connect to physics by making two fundamental assumptions about
our Universe, known as the cosmological principle: When averaged over sufficiently
large scales, our Universe is spatially homogeneous and isotropic. While isotropy
can be tested through observations, homogeneity cannot and thus relies on the
assumption that our position in the Universe is by no means preferred. If both
hold, the large-scale geometry and evolution of the Universe are described by the
line element (9.5). In order to solve Einstein’s equations, we need to specify the
energy and matter content of our Universe. To satisfy Einstein’s field equations,
the symmetries imply that it must be possible to find local coordinates such that
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the energy-momentum tensor is diagonal. In order to comply with the cosmological
principle, its components cannot depend on the spatial coordinates, which leads to
the conclusion that 7}, corresponds to the energy-momentum tensor of an ideal
fluid. For a comoving observer for whom the symmetries are preserved, this implies
T,, = diag(pc?, P,P,P), where ¢?p and P are the mean energy density and the
mean pressure of the cosmic fluid. With the homogeneous and isotropic metric (9.5)
and the respective energy momentum tensor, the Einstein field equations reduce to a
set of two simple equations, that can be brought into the form

a2 8rGn_ kA

G) =57ty 61
a AnGyN (. 3P Ac?

w30y o

These are the well-known Friedmann equations that govern the evolution of the scale
factor a(t) in dependence of the matter content of our Universe. Typically, the scale
factor is normalized to a(ty) = 1 today.

9.1.3. Cosmic Expansion

The divergence-free nature of the Einstein field equations implies the local conserva-
tion of energy and momentum in general relativity. In the context of a homogeneous
and isotropic FLRW Universe, this conservation law takes the form of the adiabatic
equation, 1 1

3 (@) (1) &) = =P(t) - (alt)’), (9.9)
which can easily be verified using Friedmann’s equations. The meaning of (9.9) is
clear, as the left-hand side represents the change of internal energy within a comoving
volume, while the right-hand side accounts for the work associated with pressure as
the Universe expands or contracts. It thus corresponds to the cosmological version
of the first law of thermodynamics and describes the dilution of energy due to the
cosmic expansion. Assuming a constant equation of states connecting the mean
energy density with the mean pressure of the cosmic fluid,

P=wpc?, (9.10)
(9.9) yields the general solution
5(t) = plto) alt) ). (9.11)

The most relevant cases to us are non-relativistic matter, i.e., cold dust with w,, =0
and ultra-relativistic radiation with w, = %, such that

pm(t) = pm(to) a(t)™,  pr(t) = pr(to) alt)™. (9.12)

Both equations describe how the mean density decreases with cosmic expansion.
Physically, the a=3 scaling of non-relativistic matter can be explained as a pure
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dilution of particle number as the volume grows. The additional factor of a=! for
radiation is a consequence an increase or decrease of the radiation wavelength due to
cosmic expansion. The relative change in wavelength of radiation emitted at time ¢,
and measured at time ty is given by the redshift

o )\0 — )\e . a(to) l/(te)
X alte) v(to) ’

’ (9.13)

and thus v oc a~!. Since the energy of a photon is given by E, = hv with h being
Planck’s constant, we find the additional factor of a~!. Consequently, at very early
times, i. e., small a, radiation dominates the total energy, while at later times matter
takes over.

It is convenient to define the Hubble function,
H(t) = —, (9.14)

representing the relative expansion rate. Today’s value is given by the Hubble
constant, Hy .= H (ty). Furthermore, we define the critical density as

_ 3H(t)?
n 8 GN ’

3H?
er,0 = Perlto) = . 9.15
Pero = Per(to) 87Gn ( )

Per (t) :

Assuming that the total density of the Universe is given by a sum over individual
contributions X, with mean density px, such that the total mean density is given by
Dot = Y.x px, and assuming a constant equation of state Py = wx px ¢, it is often
convenient to introduce the dimensionless (time-dependent) density parameters

x(t)  snGy a(Ltn) _ ke
PO= o "m0t = g
) (9.16)
A 2 StGn Ac? A

QA(t) = 3H(t>2 - 3H(t>2 87TGN - :Ocr(t) '

The last equation already suggests that the cosmological constant A, introduced
earlier as a purely geometrical degree of freedom can in principle be seen as a
contribution to the energy density of the Universe. With these definitions the first
Friedmann equation can be reexpressed purely in terms of the density parameters,
which for H(a = 1) obey the relation

1= Qx(t) + Q(t) + Q). (9.17)

The second equation on the other hand can be brought into the form
H 3
— =0 — - 1 Q 9.18
e k5 ;( + wx) Qx, (9.18)

and describes the acceleration and deceleration of the Universe. Expressed in terms
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of today’s values of the density parameters, the first equation reads

H(t)* = H} <Z Qx0a(t) 30 £ Qa2 + QAD) . (9.19)
X

It is instructive to study a special case, where the above equations are analytically
solvable. We define the Einstein-de Sitter Cosmology as a Universe filled only with
pressureless dust, €2, o = 1. Equation (9.19) then yields

H(t) = Ho\/Qoa™? . (9.20)
From H = Z it then follows

2
3 3
a(t) = (2 QyoHo t> o £ (9.21)
for the scale factor. This analytically solvable cosmology is often used as a toy model
and, as we will see, can in certain circumstances be used to approximate the realistic
case.

9.1.4. The ACDM Paradigm

To our current knowledge, the Universe is exceptionally well described by a spatially
flat (k = 0) FLRW-metric, with dynamics set by a cosmological constant A, radiation
Q2. and matter €2,,. In this setting, the expansion history obeys

H(a)* = Hj (Qr,o a4+ Qpoa’ + QA,O) - (9.22)

One further assumes two contributions to €2,, 0. One is ordinary matter, usually
referred to as baryonic matter, whose density parameter is denoted by €2, o. The
other, describes a form of matter, to which one usually refers to as cold dark
matter, whose existence is postulated, in order to explain the observed structures®
of the Universe. Dark matter is assumed to only interact gravitationally, making it
“dark” to our observation. Furthermore, the attribute “cold” is used to distinguish
those models of non-relativistic dark matter, from models of “warm” dark matter,
describing relativistic constituents. Observational data prefer cold dark matter, and
also indicate that its density parameter 2., is by far the larger contribution to
Q0. Furthermore, it appears that the Universe has recently (z =~ 1) entered a
phase of accelerated expansion, which is assigned to the influence of the cosmological
constant A. Although there exist models that introduce an additional dynamical
fluid to account for the accelerated expansion of the Universe, we have seen that
Lovelock’s theorem provides a natural explanation in the form of a geometrical

3For instance, gravitational lensing suggests the existence of matter at place where no ordinary
matter is observed.
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Parameters Planck2018 This Thesis
Hy[kms™*Mpc™']  67.66 £ 0.42 70
Qo 0.3111 4 0.0056 0.345
Qa0 0.6889 + 0.0056 0.655
U0 0.0489 + 0.0059 0.045
Qeo 0.2607 4+ 0.0061 0.3

ng 0.9665 + 0.0038 1

Table 9.1.: List of cosmological parameters as measured by the Planck stellite [90] and
the set of parameters used throughout this thesis. Since we will compare
our results with those of simulations run with the same parameters and
not observation we are free to deviate from the measurements of [90]. For
instance, we choose a higher value for the Hubble constant as it is favored
by local probes [91].

parameter. We will refer to this contribution as dark energy?*, which constitutes by
far the dominant contribution to today’s energy content. This model is referred to
as the ACDM-model. Measurements of the Cosmic Microwave Background (CMB)
indicate the set of cosmological parameters given in 9.1.

9.2. From Inflation to Today’s Large-Scale Structures

Up to now, we described our Universe as a perfect homogeneous and isotropic fluid.
However, the Universe as we observe it today is rich in complex large-scale structures
such as galaxies, galaxy clusters, and vast cosmic filaments. Those structures have
evolved over billions of years from small-scale density inhomogeneities. Thus, to
understand how today’s structures emerged, one must understand the physics behind
their original seeding and subsequent growth.

0.2.1. Inflation and the Seeds for Initial Structures

It is now widely believed and part of the cosmological standard model that during
the very early epochs, the Universe underwent a phase of rapid accelerated expansion,
known as cosmic inflation. Originally introduced to explain among other conceptual
problems the next-to-perfect flatness and isotropy of the Universe, it also provides
an explanation for small scale initial density perturbations.

During inflation (approximately from 10736s to 107335 after the Big Bang), the
Universe undergoes an accelerated expansion a > 0, which leads to a shrinking
comoving Hubble radius rg,

_ d c
rH:dt(aH(a)) <0, (9.23)

4In some contexts, a distinction is made between a true cosmological constant and more general
dark energy models with dynamical behavior.
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Q,, = 0.345, Q2 = 0.655

—— CAMB z = 1100
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Figure 9.1.: This figure illustrates the scaling of the power spectrum shortly after
Recombination (z=1100) for a ACDM cosmology generated with CAMB
[92]. The limits (9.27) for the large- and small scale behavior of the initial
power spectrum are represented by dashed lines. The matter-radiation
equality scale k., is indicated by the dotted line. The wiggles in the
dark-matter power spectrum around k = 0.3hMpc™' are imprints of
baryonic acoustic oscillations (BAOs).

which characterizes the scale of the observable Universe. If the Hubble radius shrinks
enough, it can explain both the flatness and the isotropy of the Universe we observe
today. If the Hubble radius shrinks below the particle horizon, which defines the
maximum distance that particles can travel during the lifetime of the Universe, then
the observable Universe would have been in causal contact. This would explain
why the Cosmic Microwave Background radiation corresponds to a (near perfect)
black-body radiation with only tiny temperature fluctuations of the order of 107° K.
A shrinking Hubble horizon, would also cause () o m to shrink drastically
in time. As a result, any initial curvature is exponentiafly suppressed, driving the
Universe towards flatness, without the need for fine-tuned initial conditions. In
addition to solving these important theoretical problems, inflation also provides a
mechanism for generating the primordial density fluctuations which allow structures
to form at later times. The simplest model for this inflationary phase is that of
a scalar quantum field, the inflaton, which slowly settles into a minimum of its
potential®>. As a quantum field, the inflaton is subject to microscopic quantum
fluctuations before inflation. During the inflationary phase, quantum fluctuations
whose wavelengths exceed the rapidly shrinking Hubble radius are “frozen” outside
the Hubble horizon as they lose their causal connection. These fluctuations of the
inflaton field translate into curvature perturbations, since space-time is distorted by
its energy content. They can be described by the comoving curvature perturbations R
which is conserved outside the horizon for adiabatic perturbations and is proportional
to the gravitational potential ® in Newtonian gauge. For slow-roll inflation, the

®These models are generally known as slow roll models.
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power spectrum of the comoving curvature perturbations is nearly scale invariant,
Pr(k) oc k™71, (9.24)

with spectral index ng, which is determined by the slow-roll parameters and is
expected to be very close to one. For ny, = 1 one arrives at the perfectly scale-free
Harrison-Zel dovich power spectrum. Current observations indicate that n, = 0.9665,
confirming a slight deviation from scale invariance. Since R is proportional to the
gravitational potential, we can finally relate the power spectrum of the comoving
curvature perturbations Pr to the primordial power spectrum of density fluctuations
PP™™ using Poisson’s equation,

PP (k) oc k* Pr(k) oc k™ +3 (9.25)

After inflation ends, the comoving Hubble radius increases and modes which were
“frozen” outside the horizon, re-enter the horizon during the subsequent radiation
and matter dominated era®. Since the primordial density perturbations in and
outside the horizon grow differently during the radiation dominated era, the initially
nearly scale-free power spectrum (9.25) is changed. While perturbations outside
the horizon continue to grow, perturbations entering the horizon during radiation
domination cannot grow efficiently: they either undergo oscillations in baryonic
matter, or remain nearly constant in dark matter. During matter domination, there
is nothing to suppress growth and matter perturbations grow equally in- and outside
the horizon. A characteristic scale is, thus, set by the comoving wave number at

radiation-matter equality,

g =27 2 | 20 (9.26)

The dark-matter power spectrum well after radiation-matter equality at z ~ 3528,
can be approximated by

PO (k) =

Jorvs—4 k> k?eq ’

In figure 9.1 the initial power spectrum which will be used throughout this thesis is
shown, which follows the characteristic form described by (9.27).

0.3. Cosmic Structure Formation

Having discussed the formation of initial perturbations, we can now turn to their
evolution within the matter dominated epoch at late times. In this section we
present the most conventional approaches to which we will compare our results
in the next chapters. Most of these models rely on a coarse-grained, continuous

6 Actually, inflation is followed by a phase called reheating, during which the inflaton field decays
into other fields in order to fill the Universe with the known types of matter. However, this
mechanism is not well understood today.
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hydrodynamical description of matter, typically treating the cosmic medium as an
ideal and pressureless, self-gravitating fluid. This assumption is justified, if the
system is close to local equilibrium at sufficiently early times, and that local particle
velocities with respect to this equilibrium state are non-relativistic. Given that
cold dark matter dominates the energy density of the Universe throughout most of
its history, and that baryonic physics becomes relevant mostly on small scales, we
restrict our attention here to dark-matter-only models. This simplification allows us
to focus on the pure gravitational dynamics that drive the formation of large-scale
structures.

9.3.1. Eulerian Standard Perturbation Theory

The starting point of standard perturbation theory (SPT) is the Vlasov equation
(2.92),

O fi(x,t) + :: -V filz,t) = [Ve®a(Tt)] - Vi fi(z,t) =0, (9.28)

describing the motion of a collisionless fluid subject to the gravitational potential
O (7, t) which is sourced by the Newtonian Poisson equation,

ABG(F 1) = 47 Gy p(Ft) — A2, p(Ft) = / Epm fi(e,t),  (9.29)

where p,, (7, t) is the local mass density of the fluid. Here z = (7, p’) are the physical
phase-space coordinates. By now it should be clear that the above equation with
its non-linearity introduced by the gravitational interaction in the last term on the
right-hand side of (9.28) is highly non-trivial to solve. The standard approach is to
further reduce the amount of information by taking the first few moment equations
of (9.28). The moments are defined in (2.56), (2.57) and (2.58). In particular, taking
the zeroth and first order moment of (9.28), one arrives at the continuity equation
and the Fuler equation,

1 —
atﬂm(ﬁﬂ + Evf H(Fvw :Oa
' , (9.30)
O, TI(7, 1) + — V- T(7 ) + — (7 1) Vi 0a(7 1) =0,

where ﬁ(F, t) is the momentum density and T'(7, t) is the stress-energy tensor. These
equations appear in the treatment of hydrodynamics and are therefore called fluid
equations. As one can see, the free-streaming term £ - Vi fi(z,t) in (9.28) leads to
each moment equation depending on the next higher-order moment, thereby again
generating an infinite hierarchy that must be truncated to achieve a closed system
of equations. Thus, to find an appropriate truncation to the system (9.30), one
combines the moments p,,(7,t) and II(7, t) to a velocity field (7, ¢) and a velocity
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dispersion tensor (7, t), defined as

U(7 1) =

| om(s8) (9.31)
6(7, 1) R - [(F,t) — 5(7,t) @ T(F, 1)
(7 t) = (7 (7 1) @ U(7,t).

’ mpm(T,t) ’ ’

U(7,t) describes the velocity-field of a mean flow of the fluid and &(7,t) measures
deviations from it. Inserting those definitions into the fluid equations (9.30), we find

1
6t U<F? t) + (17(F7 t) ’ VF) ﬁ(Fa t) + E VF q)G(f; t) +

(9.32)
The simplest possible truncation of this system arises by the single-stream approz-
imation (SSA) in which the effect of the velocity dispersion tensor is neglected,
&(r,t) = 0. Thus, one discards all deviations from the mean macroscopic flow. One
then finds a closed system described by

1
at pm(f: t) + % VF ' (pm(Fv t) U(F7 t)) :Oa
1 (9.33)
Oy u(r,t) + (U(r,t) - Vz)U(r,t) + o Vz®g(r,t) =0.

In the cosmological context, we are working on an expanding background. It is thus
convenient to introduce comoving coordinates ¢ defined by 7(t) = a(t)g(t), in order
to separate the background movement of the flow. The velocity field thus splits into
two components,

—

(7, 1) = O () = @+ a6 = Firanie (@, £) + aTpec(d 1) (9.34)

<

where we defined the Hubble flow Upupbie(q;t) = H(t) T, capturing the background
motion, and the peculiar velocity field Upec(q, ), describing the intrinsic motion of the
fluid. The perturbation theory now arises by describing the density as a fluctuation
field §(g,t) over a mean background p,,(t), with

pm(@,) = pm(t) (14 6(g, 1)) - (9.35)

Additionally, we also split the potential into a mean background density contribution
and a fluctuation, ®q(q,t) = ®a(q,t) + ®4(q7,t), demanding that the fluctuation
4, (g, t) is sourced by the density fluctuations §(q,t) via the Poisson equation

B, BT 1) = 47 Oxa® pu()5(T 1) = 5 HP Q0801 (9.36)
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where we inserted the evolution (9.12) for the mean background matter density.
Inserting (9.35) and (9.34) into (9.33) and subtracting the background evolution
equations, one finally arrives at

9 0(q.t) + Vg (14 0(q,1)) Uhee(q: 1)) =0,
) (9.37)
O 17pec(677 t) + QHUpeC(Cf, t) + (6pec((fa t) ’ sz) ﬁpeC(‘ﬁ t) + ? VJ(I%(Q_; t) =0.

This is the final set of equations from which one can start a perturbation theory. We
have to emphasize again that there has already been made an approximation in the
derivation of (9.37) by assuming 6 = 0 in (9.32). Thus, even when we achieve a full
solution to the above system, we would still rely on the validity of the single-stream
approximation.

Let us now analyze the linear order resulting from the above set of equations,
i.e., we assume 0 < 1 and |tpe.| < 1. The corresponding equations are

0:0(4,t) + Vg - hee(q,) =0,

. (9.38)
Or Tpee(@,1) + 2 H Upee(q, 1) + + — Vg D4(,1) = 0.

Taking a further time derivative of the first equation and combining it with the
second one, we arrive at

025(q,t) + 2 H(t) 0,6(q,t) — ;)Hz(t) Q2 (t)6(q,t) =0, (9.39)

which is the growth equation of linear SPT. It is a linear, second order ODE, where
the coefficients only depend on time. We can therefore make the separation ansatz
§(q,t) = D(t)0(q,tD), to find the corresponding equations for the linear growth

factor D(t),

D) + 2H(E) D(#) - 21{2(@ Q2 (£) D(t) = 0. (9.40)

As a second order differential equation, the general solution for D(t) consists of
two linearly independent modes. A faster growing mode D, (t) describing the
amplification of density perturbations, which is the physically relevant solution for
the study of structure formation and the slower growing mode D_(t), which rapidly
becomes negligible compared to D, (t). For an Einstein-de Sitter Universe with
Q,, =1, we find

3
2

D (a)=a, D_(a) =a" (9.41)

For a ACDM cosmology with exactly vanishing radiation contribution, §2, = 0, there
also exists an analytical solution [93], given by

Fr(i 1 —adw s
SR = SR
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1— Qmo
o is the

fraction of matter energy density at present time. It is furthermore convement to
define the logarithmic derivative of the growth factor w.r.t. the scale factor a as

where o F(a, b; ¢; z) is the Gaussian hypergeometric function, and w =

_dIn(D(a))  a dD
1= ~din(a) ~ D) da’ (9:43)

which describes how fast density perturbations grow relative to the scale factor.
Clearly in an Einstein-de Sitter Universe, we find %n = 1 exactly. For a more general
ACDM model, this is no longer true. However, one can show empirically [94], that
5}’; ~ 1 holds approximately to within 10% accuracy for a long time period. Thus,
settlng b2 — 1 maps a general ACDM cosmology to a simpler Einstein-de Sitter one,
which is a useful approximation for many analytical applications [95].

9.3.2. Path-Integral Formulation of SPT

The path-integral approach presented in chapter 3, can also be used to construct a
generating functional based on the hydrodynamical equations (9.38), as was shown by
[6]. Introducing the rescaled peculiar velocity field . = Upec/H and transforming
to the time-coordinate 1 := In(a), we can write (9.37) as

Oy0(q.n) + Vg (14 6(4,m)) tpec(d:n)) = 0, (9.44)
Lo LS Lo Lo 3 L
ar]upec(Qa 77) + QU;DGC(Qa 77) + (upec(q7 77) : VJ) upec(q, 77) + §Qm(77) 6(q7 77) = 0 : (945)

After taking the divergence of Euler’s equation (9.45), hence dropping any curl
contribution and transforming to Fourier space, and introducing the field doublet

b= (1) (9.4

where we defined the velocity divergence field 6 := V -, we can bring the equations
of motion into the compact form

(0ab0 + Qan(n)) SOb(Ea n) — /E : dp <IZ —ky — /Zz) Yabe (Eh E2) @b(E17 77)%(/22, n) =0.
1,R2

(9.47)
The linear equations of motion are defined by the matrix
Qs (1) ( X - ) (9.48)
ab\1]) = H' ) .
—3Q,(n) 1+ H((:))

where the prime denotes a derivative with respect to 7. The non-zero elements of
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Yabe are given by

7121(162, kl) = 7112(’431, k’2) = w

2 J
(k 222)2 (ky - ko) (549)
N + Ko 1 R
ki, ko) = .
Yoza (K1, k) 2 k2k2
. o H . .
For an EdS cosmology with €,,(n7) = 1 and 77 = —%, the solution of the linear

equations of motion is particularly simple. As discussed in the previous section, any
ACDM cosmology can be mapped to EdS through an appropriate change of variables
to a very good approximation. In this simple case, the linear retarded propagator
g} can be explicitly calculated by solving

(0acOy + Qac(n) 905 (n.1") = dapdp (n — 1) (9.50)

for n > 7. Tt is given by

S = (2 N ew-m - (2 E)ew-n) sy
Gap\":7) = T 3 2 n n 5 3 -3 n n :
where ©(n — 1) is the Heaviside function ensuring causality. The decaying mode
given by the second term can be neglected for large (n — n’). Following the same
procedure detailed in section 3.2.2, the generating functional can be written as [5]

, i 16 —i
Z[J, K] = exp {—1 /dn abe <5K5Jb M) } ZolJ, K] (9.52)

with the generating functional of the free theory given by

1

ZolJ, K| = exp{ — /n/ " {21],1(_1_5’ n/)Pﬁj(k’n"n//)Jb(E’ ")

) ) (9.53)
(=R gty o ' ()| |

where appropriate source fields K, and J, were introduced and P% corresponds to
the initial power spectrum evolved at linear order,

P (k) = gR(n, 0)gi (1, 0) P (k) . (9.54)

As usual perturbative corrections to the free theory are obtained by expanding the
exponential in powers of 7v,,.. We can now read off the Feynman rules from the
generating functional for the three fundamental building blocks of the theory which
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Figure 9.2.: This figure was taken from Blas et al. 2014 [96] and shows the loop-
contributions up to third-loop order for SPT. The two-loop contribution
on small scales exceeds the one-loop contribution. The three-loop contri-
bution finally confirms the suspicion that the loop expansion in SPT is
divergent.

can be represented by the following Feynman diagrams,

e = —ig (g, ), ——O—— = Pyy(k, 0, M) ,
- a
R N R (9.55)
/\ — _17abc(kb> kc)(sD <ka - kb - k;c) .
c b

At one-loop order we then find the following diagrams,

— C’\ . Q ...... — )

However, it has been shown [96] that the perturbative loop expansion does not
converge. Already at second loop-order, the two-loop contribution exceeds the
amplitude of the one-loop correction on small scales. Evaluating the three-loop
correction has confirmed that the perturbation series is divergent. This can be
seen from figure 9.2. Therefore, most effort has gone into finding a better (non-
perturbative) resummation scheme and to go beyond the truncation imposed by the

SSA.

9.3.3. Lagrangian Perturbation Theory

In contrast to Eulerian Standard Perturbation Theory, which deals with continuous
fields such as density and velocity, Lagrangian Perturbation Theory (LPT) is built on
the premises of following the trajectories of particles or fluid elements. The central
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object of LPT is the displacement field \f’(cf, t) which maps the initial particle position
in Lagrangian coordinates ¢ onto the Eulerian particle position # at some later
time ¢,

7(t) = ¢+ 0(g" 1) (9.57)

Starting from the equations for motion for the particle positions (9.57), an evolution
equation for the displacement field (g, ) can be derived, which can then be solved
perturbatively. To linear order in PT, the following solution can is obtained

Vo - TO@GY 1) = —D, (1) 8(77) (9.58)
where D (t) is the linear growth factor obeying (9.40) and 6(g'") is the initial density
contrast. In modern cosmology LPT, and especially second order LPT (2LPT), is
widely used to generate the initial conditions for large numerical N-body simulations.
In fact, we will use this approach to set up the initial conditions for our theoretical
description of large-scale structure formation in chapter 10.

0.3.4. State of the Art in Cosmic Structure Formation

Standard Perturbation Theory as well as Lagrangian Perturbation Theory fail to
correctly describe large-scale structure formation where linear theory is no longer
sufficient. The perturbation series of SPT, for instance, start to diverge at three-loop
order. In addition, both suffer from the so-called shell-crossing problem, which
manifests itself in different ways. In SPT the problem occurs due to the SSA which
implies that the system can be described by smooth density and velocity fields.
However, this assumption breaks down once different streams start to cross. This,
of course, severely limits the range of validity of SPT in the context of non-linear
cosmic structure formation.

Although LPT is technically free of the SSA, it still breaks down once shell-
crossing becomes important. The problem arises due to the computation of the
forces acting on a trajectory in regions where multiple streams cross at the same
Eulerian position. The total gravitational force acting on a fluid element at this
position should, therefore, be the sum of the individual contributions from each
stream. The fluid element should then be accelerated by this total force. Instead, the
LPT solutions only accelerate fluid elements with the gravitational force field of their
individual stream even after shell-crossing [97]. Attempts at rectifying this issue
have, so far, not produced quantitative results which could indicate their success.

Today, numerical N-body simulations provide the most reliable results for cosmic
large-scale structure formation. However, they come with a high computational cost.
In addition, it is not possible to provide a complete coverage of the relevant range of
scales with a satisfactory resolution. And last but not least, numerical simulations
offer only limited insight into the underlying physical processes governing cosmic
structure formation. It is, therefore, inevitable to develop viable analytical methods
for this task.
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Correlated Particles on an Expanding
Space-Time

We will now specialize the theoretical frameworks discussed in Part I and II to the
case of cosmic structure formation. We will model the dark matter distribution in
the universe as a self-gravitating ensemble of N classical particles evolving on an
expanding background. The true nature of dark matter particles is hereby irrelevant.
First, we define the appropriate Hamilton function and interaction potential which
describe the evolution of individual particles on an expanding background. Once
the Hamilton function is defined, the trajectories of the particles are fixed, and the
behavior of the particle ensemble—whether in equilibrium or out-of-equilibrium—is
only determined by its initial state [98, 28, 27, 99]. For self-gravitating systems,
the out-of-equilibrium case is generally the more appropriate description [67, 100,
68]. Influenced by the gravitational potential, the initial state will evolve over time.
We set up a suitable initial phase-space density, which shall contain all relevant
correlations needed for the analysis of cosmic structure formation. We will follow
the derivations presented in [58, 29].

10.1. Particle Trajectories on an Expanding
Background

We begin by describing the dynamics of a point-like test particle of mass m which
move under the influence of gravitational interaction with a density field. The density
field itself consists of IV individual particles of the same mass. The derivation follows
similar steps as the one presented in section 9.3.1. In physical coordinates, the
corresponding Lagrange function reads

. 1 .
L(F,7t) = 5mF? — m®q(7,t), (10.1)
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where the Newtonian gravitational potential ®¢ (7, t) is sourced by the mass density
pm (7, ) through Poisson’s equation (c.f. equation (9.29)),

AT(I)G(F? t) = 47TGNpm<Fa t) - ACQ ) (102)

with the gravitational constant Gy and the cosmological constant A. In order to
separate the background expansion from the peculiar particle motion, we switch to
comoving coordinates 7(t) = a(t)q(t), where the cosmological scale factor a(t) derives
from Friedmann’s second equation (9.8), for a pressureless fluid

8 TN (1) A (10:3)

Here, p,,,(t) denotes the mean mass density, governing the background expansion. In
comoving coordinates the Langrange function (10.1) takes on the form

I 1 - 22 o
£(g.q.t) = 5m (4 + ag)” — m®a(q,1). (10.4)

We apply a gauge transformation by adding a total time-derivative of a function f(¢)
to the Lagrange function in order to bring it into a more convenient form. Specifically,
we choose f(t) = maag?, leading to

2
/ - - d

1

= ifrnaQ(f2 —meg(q,t), (10.5)

where the gravitational potential is redefined as

- 5 1
a(d,1) = ©6(q,1) + Saiiq 2. (10.6)

Its physical interpretation can be inferred from the corresponding Poisson equation,

4 47
Aggaldt) = T (o) = ) = DS pnd@n . (10)
In the above, we inserted Friedmann’s equation (10.3) and used that the mean density
in comoving coordinates is constant in time. Furthermore, the density contrast ¢ is
defined as (g, t) = ”’"(q;i)%. Thus, ¢ (g, t) is only sourced by density fluctuations
which corresponds exactly to the Newtonian limit of general relativity!'. Since we
model the density field by N individual particles, the comoving mass density is given

'This is the so-called Jeans swindle. By “artificially” dropping the infinite contribution from
the mean background, we render the self-gravitating system well-defined. This can be argued
for, as by isotropy, the homogeneous background does not exhibit a force on a test particle.
However, viewed from the perspective of general relativity, this problem does not arise, because
the homogeneous background is itself a solution of the field equations with its own dynamics,
incorporated in the scale factor a, which is not true in the Newtonian case.
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by
Pm(q5t) = mz% (7~ a(t)) - (10.8)

We can, therefore, find the explicit solution for ¢(q,t), given by

S At HOP )Y . (109)

mp = 17— @)l

N TTLGN N 1
7t = - — — = -
Pe@) ==y 2Tl T 8

For later convenience we have expressed the result in terms of the matter-density
parameter €2, and the Hubble function H = % Note, that the dependence on the
particle mass has been replaced by a dependence on the inverse mean particle-number
density. For numerical as well as analytical reasons, it is advantageous to use the
logarithm of the scale factor as the time coordinate. Therefore, we perform the
transformation

n=In(a(t)), dn=H(t)dt, (10.10)
which, applied to the Lagrange function (10.5), yields

. dq 1 dq o
L\q~—n|=:-me*H®n) (—| —m@a(d.n),

dn 2 dn
(10.11)

1
pald.n) = m—pald,n).
H{(n)
We can now construct the corresponding Hamiltonian function for N mutually
interacting particles of equal mass m on this expanding background. We find

=2

anPﬂ? = ’ + 3 el 51_5777)7

g (10.12)
%7

pi(n) = m(n)
m(n) = me* H(n),

where m(n) can be interpreted as a time-dependent mass whose time dependence
arises from the expanding background and the factor of % in (10.12) ensures that
each particle pair contributes only once to the total energy of the system. The pair
potential v (|q; — q;|,n) derives from (10.9) and reads

C3m(n)Qn(n) 1

87 p q; — q;|

va(|di — djl,m) = (10.13)

This is our final result. The scaling of vg ~ % ~ % is consistent with the Kac-
prescription of a long-range interacting potential (c.f. section 8.1.3 and [78, 77]). Thus,
in the thermodynamic limit of infinitely many particles, the Vlasov description will
be the appropriate one for our formalism. As expected, the gravitational interaction

couples to the time-dependent mass factor. Furthermore, in this framework, the
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strength of the gravitational interaction is set by the matter density parameter €2,,(n),
as only matter sources Newtonian gravity. Consequently, its time dependence reflects
the evolution of other components in the universe that dilute the relative strength of
the matter contribution. In a purely matter-dominated universe (Einstein-de Sitter
with Q,, = 1), the only time dependence arises from the friction-like effect of the
expanding background, encoded in m(n). However, when additional components
such as a cosmological constant are present, as in ACDM cosmology, €2,,,(n) < 1, and
the effective interaction weakens over time, suppressing gravitational clustering at
late times.

We recognize the structure of the general homogeneous Hamiltonian function with
time-dependent mass and potential, discussed in section 8.1.4. We can therefore
directly read off the particle Green function as

9aa(m. 1) L3z Gap(n, 1) Laxs
G(n,n') = ( , n1), (10.14)
033 gpp(% n') 1sxs
with . .
9aa(:n) =1, g, 1) =1, gg(n.n) :/ A —— - (10.15)
n m(n

10.2. Initial Conditions for Cosmic Structure
Formation

Having discussed the trajectories of the individual particles, we will now define
a suitable initial phase-space density QS\I,)(q(i) PY) = on(qW, pW n®) describing
the probabilistic distribution of the initial particle positions and velocities for our
statistical system in the cosmological context. As this derivation has already been
presented in [29], we simply state the result here and focus on the relevant discussion

for our application.

We start from a continuous mass-density field in the early matter-dominated
epoch. The central objects describing the state of a system are the mass density
field p(g) and the peculiar velocity-density field 1o (¢). The cosmological principle,
homogeneity and isotropy on large scales suggests that the statistics of both fields
can be described by a statistically homogeneous and isotropic probability distribution
(c.f. chapter 8). We, therefore, find a constant mean background mass-density and a
vanishing mean velocity of the system. It is suitable to describe the mass-density
field by its fluctuation around the mean background,

PD) = AR (1 +69(q)), with  (59(q)) =0. (10.16)

As predicted by inflationary models and confirmed to high accuracy by observations
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of the temperature fluctuations in the CMB, we assume that the tuple

. 0"(q)
dV(q) = (ﬁ(i)(—»)) (10.17)
q
follows a combined multivariate Gaussian distribution?,
i 1 i D=1 43
P(aD) = 30 OO0 (10.18)

V/(2m)4 det(CO)

where the covariance matrix is the single parameter characterizing the distribution.
It reads

i (i i) (7 \sG) (7 D (g0 ()
o (O GR _ ((0@0@) (0@ @) (10.19)
oy Cfa)  \(10@)00@)) (0G) @ 10))

All the above correlation functions are, due to homogeneity and isotropy, functions of
the relative distance | — @| only. Furthermore, they can all be related to the same
initial matter-density power spectrum, which is defined as the Fourier transform of
i3 (r),

PO(k) = / PO (r)y e T (10.20)

We now have to map the probability distribution (10.18) of the continuous fields 6% ()
and ﬁ(i)(cj') to the corresponding initial phase-space distribution of the canonical
positions and momenta of particles that sample the density field. This follows along
the same lines as described in section 2.6. Note, however, that we are describing
the continuous initial fluid not in terms of the full phase-space density fl(l)(cj’, )
but in terms of its first two momentum moments, 69 (7) and TI¥(7). The logic,
however, stays the same, and we use appropriate conditional probabilities of finding
the respective particle at a certain phase-space position, given a value of the density
and velocity field at that point. The analysis is performed in detail in [29, 58|, and
we find
Oq® pd) = N dtl(?l) (i) @) L0).c0.40) 1 1000
oy (qV, pV) =V /(27)31\7 C(q",t))) exp <—2tp -Co-t) +it)-p > , (10.21)

where, for convenience, we have chosen to represent it as the Fourier transform of
the characteristic function w.r.t. the momentum variables. The function C(qV, tg)),
furthermore, contains all initial density-density and density-momentum correlations

2Technically, this is due to both fields being related to the Laplacian and the gradient of the same
primordial velocity potential which is, in turn, assumed to be a Gaussian random field.
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and reads
N . N 0 N =) =
clat o) = [T (116, -0) + 3 <, IT (16, )
7= TR ik
N , N | N . (10.22)
el > ah T (-G, 80) + -
jk=1 ab=1 =1
]#k a:/éb l¢j7k7a’b
a,b#j.k

where a sum over same indices is implied. The correspondence between the particle
correlations Cé(]l_z;k : C(;(;;k ,C{1 and the covariance matrix (10.19) is established in [29,
58] and reads

C =Cos(la)” — a"]) = Css(lay” — ai")).
Co =Co(la” —a’)) = m(n) Cyz(la” — a)) .
(10.23)
Cope = Cop(1” = @) = m(n?)? Crieri(; — Gl
pipe -— ~pp\l9; k n fei\d; — dkl)
CZE;?) = C]E)p ® (6]‘ ® ek) .

The time-dependent particle mass, evaluated at the initial time, appears because it
relates the initial velocity field to the canonical momenta of the particle ensemble.

From the distribution (10.21) we can now deduce the three lowest-order particle-
reduced phase-space densities, which we represent in Fourier space. We find for the
initial one-particle reduced phase-space density

F2(s1) = p(2m)op (kr)  (01) (10.24)
where the initial momentum distribution function is given by
L 1 . .
oW (61) = exp <—2 m(nV) 02612) (10.25)

and has the same qualitative structure as the Maxwell-Boltzmann distribution (8.9).
Here, we have defined the initial momentum dispersion

dgkf P1
2 6
o= 3/ . (10.26)

p PP

For the two-particle reduced correlation function g, we find analogously,
95 (s1,82) = 9 (27)° O (R + ) Calkr, 01, £2) 9 (01) 0 (52) (10.27)

We have introduced the functions C,, describing all connected phase-space correlations
between n particles at initial time which are obtained from the general expression
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(10.22). For n = 1, this function clearly reduces to C; (Zl) = 1. For n = 2 we get

CQ<E17 Zla ZQ) = /d37?12 o Hkr T2 [(1 + C(;((i;)(hg) — 165(;)(7‘12) . (Z1 — 572)
(10.28)

—

* (65(10 (r12) - gl) (65(;) (112) - fg) )efl‘czgiv)(hz)fz _ 1} '

Analogous expressions can be derived for the initial three-particle reduced correlations
functions gé) and C3 respectively. Note, that the existence of a non-vanishing gé)
not related to the notion of primordial non-Gaussianities in the density and velocity
fields. Instead, it is the consequence of mapping the initial conditions of p( and T
to the continuous initial phase-space density f1 on which the formalism is built.
The expansion of (10.22)—or Cy; and Cj respectively—strongly resembles a Mayer-
cluster expansion. In fact, it has been shown in [30] that the initial distribution
can be constructed diagrammatically by considering all possible density-density,
density-momentum and momentum-momentum correlations between N-particles. In
the absence of those correlations, the initial distribution reduces to an uncorrelated
Boltzmann gas, putting the system in thermal equilibrium initially. The interaction
potential will then drive the system out of equilibrium, which is what we are going
to study next.






]. ]. Results for Cosmic

Large-Scale Structure Formation

Having introduced the theoretical framework based on the particle picture in Part I
and the field theory approach based on the Klimontovich equation in Part II, we
now turn to the discussion of the results for cosmic large-scale structure within these
two descriptions. As we have already established on a theory level, the field theory
description developed in Part II bears a considerable advantage over the particle-
based description in Part I, we primarily present our results in that framework.
However, we will discuss the results for the particle-based approach in order to point
out the difference on a quantitative level.

We will begin by presenting the results for the tree-level theory for the density-
fluctuation power and bispectrum. While the tree-level descriptions will be identical,
we will see that for the bispectrum both frameworks will differ in the number of
diagrams which need to be evaluated. This is, of course, due to the property of the
field theory approach in terms of the Klimontovich equation which contains only one
vertex containing the interaction due to the potential. In contrast, the approach in
Part I has an infinite tower of vertices with no clear hierarchy. This difference will
be even more evident for the one-loop corrections to the power spectrum.

11.1. Tree-Level Results for Cosmic n-Point Statistics

Before presenting the full numerical result, we will consider a case for which analytical
expressions for the tree-level propagators can be found. In this limit, we will also be
able to recover results known from SPT.

In the following derivation we will follow the same lines as in section 8.2.1. There-
fore, we will need the corresponding expression for the freely evolved background
interaction potential f/g) ). Tt can be obtained from the general expression (8.44), in
which we insert the respective potential and momentum distribution function derived
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in the previous chapter. The result is

— —

VR (ks Gy me) = =) Qun(2) | g + gap(m1,712) | %
’ g (11.1)

1 i o B,
x exp | = 5m(n)2(E: + gy, o)

with g,y given by equation (10.15). From this, we can derive the Volterra integral
equation for g, which reads

Ui
QR<k17077]17772) = )N)I(??)Ufhoanh?h) + /dﬁ ]}}(%0)(]{17077717772) QR(kbO?nl?n?) : (112)

72

We further need chi) and chl} which are given by the initial reduced distributions

fl(i) and gg) since we are working in the Vlasov description and thus neglect the
shot-noise contributions. We stress that f}g)) corresponds to the mixed G% cumulant
in the resummed particle field theory of chapter 5. Thus, at tree-level we will obtain
the same analytical as well as numerical results.

Setting the interaction potential U(E, n) = 0, we recover the density-fluctuation
power spectrum in the free theory given by,

PO (v, ta) = Calky, Tiky, —Toky )e—%m(n(ﬂ)?gg/zf(TerT%) 7 (11.3)
where T} and 75 are defined as

Ty = gop(m, 1Y), To = ggp(n2,nV). (11.4)

11.1.1. Analytical Solution for an Einstein-de Sitter Cosmology in
the Large-Scale Limit

In an Einstein-de Sitter (EdS) cosmology (£2,, = 1) our system simplifies considerably,
and we can perform most of the integrations analytically as has been shown in [34].
We briefly present the calculations for this special case in order to illustrate the
structure of the theory in more detail. For instance, we find

H(p) = Hoe ", f(n) = Hye?", (11.5)

which implies,
2Hy 1, 1,
Gap( 1) = = =2 (e72m — 73 | (11.6)

In order to solve the Volterra integral equation, we perform a similar approximation
as in the toy model described in section 8.2.2 and assume that we are only interested

in scales for which k? < % We can then approximate the exponential in Ggp and

Ggﬁ} by 1, and thus neglect the small scale damping. Furthermore, we linearize Cs in
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chl])c in terms of the initial power spectrum as higher order effects will also only be
relevant on smaller scales. In this large-scale limit we can now solve the Volterra
integral equation as described in section 8.2.1 and obtain

- R 3
Qg’LS)(k‘l, Ciymi,m2) = 5 (em—m — ¢ 73m—m)

- o (11.7)
ky -0y [ s, _ 3 30—
m 1k2 1 {62(771 m) 4 5ez(nz m)} ) O — ).
Solving the remaining integrals we find for the statistical propagator
A?}S)(Sh Sa) = p* (2m)*ép (E1 + k;) A;I}S)(Eh 0, by ms) (11.8)
where we defined
ALS) 7 m+nz—2n0 p() 3m k-6
A% (kyy by, by, me) = e Ps'(k1) |1 +e2 T
i
L (11.9)
1, k1l
X [1—e2™” ——| .
The tree-level two-point cumulant is then given by
Gﬁft}ee’ LS)(El,Zl,Zz,ma 72) EA}I}S)(]%;[I;@; My 72) (11.10)

which yields the density-fluctuation power spectrum at tree-level upon setting El =
62 = (0. We find ) )
Pé(tree, LS)(/ﬁ’ m, 772) _ em+n2727,(l)P§(1)(k) ' (11'11)

For equal times, i.e., n = 1 = 12, we can bring (11.11) into the more familiar form,

T "¢ D2 i
PR ) = PO ), (1112
by using that for an EdS cosmology the linear growth factor known from Eulerian
SPT is given by D, (n) = €. The fact, that we reproduce the standard SPT result is
of course no surprise, since we have shown that the tree-level description corresponds
to solving the linearized Vlasov equation over the free evolution, which, as described
earlier, is the approach followed by Eulerian SPT.

Having the full phase-space information at hand in (11.10), we can just as easily
obtain velocity power spectra by taking appropriate derivatives with respect to the
conjugate velocity variables ¢, as described in section 8.1.5. For instance, we directly
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Figure 11.1.: The tree-level result for the density-fluctuation power spectrum Ps(k)
for a standard ACDM cosmology is shown and compared to the result
obtained with linear SPT (11.15). The initial power spectrum was
generated with CAMB [92] at z = 1100 and evolved to z = 0 according

to the tree-level theory. For reference, the non-linear power spectrum as
predicted by numerical simulations (Cosmic Emulator [101]) is shown.

find the expression for the velocity-density power spectrum,

1V€1 1V Gtree LS)(k’l,fl,gz,Ul 72)

p l1=03=0
i (11.13)
— omtm—2n0 M .
kit

kl: i, 772)

—

tree,LS)
plreetS)(

Expressing the above relation in terms of the growth factor for an EdS cosmology,
we again find the familiar result which corresponds to the solution found in Eulerian
SPT for equal times,

Pﬁtree’LS) k = ‘5 . 11.14
2l (k1. m) D+2 (77(1) k% ( )

However, it should be noted that these results are only obtained in the large-scale.
Without this simplifying assumption the evolution of structures is a highly non-linear
process, already at tree-level. In this case, a fully analytical solution is no longer
possible and the integral equations for the causal and statistical propagators have to
be solved numerically as described in the following section.

11.1.2. Numerical Results for the Power Spectrum at Tree Level

In general, the Volterra integral equation (11.2) has to be solved numerically upon
time-discretisation. The causal structure of VI(%O) reduces the matrix equation to
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Figure 11.2.: We show the results for the free evolution as well as the first- and second-
order perturbation theory presented in 4 for the density-fluctuation
power spectrum Ps(k) for a standard ACDM cosmology. For comparison,
the tree-level result is shown whose amplitude is several orders of
magnitude higher than that of second-order PT. The initial power
spectrum was generated with CAMB [92] at z = 1100.

a lower triangular matrix, which can be inverted by forward substitution. After
numerically solving the time-integrals, we find th(e ﬁ;H tree-level result for the statis-
tree

tical propagator Aff(l;l,gl,@, m1,7M2) and thus G, (El,zl,@, N1, 1) from which we
obtain the density-fluctuation power spectrum P\ (ky, 11, 1) according to (8.25).

In figure 11.1 we show the numerical tree-level result for an equal-time density-
fluctuation power spectrum P(;(tree)(/g, n) for a standard ACDM cosmology, evolved
from the time of CMB decoupling at redshift z = 1100 to the present at z = 0 which
was also found in [34, 58]. We compare our result to the free evolution given by
(11.3) and the power spectrum obtained from numerical simulations. For reference,

we also include the linear power spectrum given by

) 7 Di(m) pa
P E n) = =1 pW gy 11.15
5 (k,m) PACOR (k) (11.15)

where D, (n) is the linear growth factor for a ACDM cosmology. For wave numbers
k < 100 h Mpc™1, the tree-level result exactly follows the linear power spectrum P(;(hn).

On these scales 0, ~ 107° and we are well within the regime which is well described by

the large-scale limit < % In this regime, the effects of the exponential damping

are negligible and Qg) as well as the causal propagator Ay are independent of k and
only a time dependent scaling function. On these scales, the amplitudes of initial
density-fluctuations simply grow as a function of time only. In general, however, the
integral equation which is solved in order to find the tree-level evolution, incorporates
non-linear effects in k, leading to deviations from the linear growth on smaller scales.
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Figure 11.3.: The tree-level result for the two diagram contribution (11.16) to the
density-fluctuation bispectrum B(k,k, k) for an equilateral configu-
ration and a standard ACDM cosmology are shown. The order cor-
responds to the order of appearance in (11.16). The initial power
spectrum was generated with CAMB [92] at z = 1100.

For k > 100h Mpc™1, the large-scale limit can no longer be applied, and the tree-level
power spectrum is dominated by the exponential damping due to the initial velocity
dispersion, which prevents structures from growing. As k — oo, the tree-level power
spectrum approaches the free evolution described by (11.3). In Figure 11.2 we present
results from the microscopic perturbation theory described in chapter 4 up to second
order for comparison!. Clearly, such a perturbative expansion is not suitable to
capture relevant effects, as the convergence is too slow. As discussed in chapter 6

the tree-level theory resums all contributions from a non-vanishing background field
described by G(fo).

While the tree-level result correctly reproduces the shape and amplitude of the
power spectrum from numerical N-body simulation on large scales, its amplitude
falls below the N-body results on scales k > 0.1 h Mpc~!. The tree-level theory fails
to capture sufficient gravitational interactions to describe the growth of structures
on smaller scales.

11.1.3. Numerical Results for the Bispectrum at Tree Level

Analogously to the density-fluctuation power spectrum at tree level, we obtain the
tree-level bispectrum by taking appropriate functional derivatives of the tree-level

1See the end of section 2.2 and [57, 102, 31] for technical details and cosmological application.
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Figure 11.4.: The tree-level result for the total density-fluctuation bispectrum
B(k, k, k) for an equilateral, squeezed and flattened configuration for
a standard ACDM cosmology are shown. The results are compared
to the SPT bispectra (dashed-dotted) given by (11.17) for the same
configurations. The initial power spectrum was generated with CAMB
[92] at z = 1100.

generating functional (6.110), which corresponds to the following two diagrams

/ /
GifF(1,2,3) > —ed 4 —ud (11.16)
\ \

While the first diagram contains the dynamical vertex gg)B 74> the second diagram

contains the initial vertex S'g’}ff. The numerical results for both diagrams are
shown in figure 11.3 for an equilateral configuration, and it is immediately obvious
that the contribution due to the initial vertex S’?} ¢ is subdominant and can easily
be neglected. Thus, as expected, the bispectrum is dominated by the interaction
potential. In figure 11.4 the total bispectrum is shown for the three typical (equilateral,
squeezed and flattened) configurations. The results are compared to the respective
tree-level bispectra of Eulerian SPT given by [4],

Bspr(k1, k. ks, m) = 2 Fy(k1, ka) ™ (kv,m) P (ks ) + 2 cycl. perm.,  (11.17)

where

Fy(ky, ky) =

— — — — - =\ 2
5 1 (ki-ky ki-k 2 (ki k
7+2(1 240 2) +(12). (11.18)

2 12 TR

As for the tree-level power spectrum, we observe a damping on small scales, k >
100 h Mpc ™!, which asymptotically approaches the evolution described by the free
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Figure 11.5.: The thirteen individual one-loop contributions are shown here, labelled
by D1 to D13 in the same order as they appear in (5.49) and (5.50).
Dashed lines indicate negative values The initial power spectrum was
generated with CAMB [92] at z = 1100.

0

cumulant G;p)p.
At this point we should note the important difference between the Klimontovich
field theory approach presented in Part I and the particle-based approach of section
5.1: while in the Klimontovich field theory description, we only have two diagram
contributions to the bispectrum, in the particle approach, we find three diagrams,

which correspond to the G/()%)p, GS;)B and GESE); p vertex, respectively. While we can

identify that the contribution of the G/(f;)p is attributed to the initial Ggﬁ} s cumulant,
the other two vertices are contained in the single dynamical vertex of the Klimontovich
field theory. This property of having only a single dynamical vertex will prove to be
an enormous advantage of the Klimontovich field theory as we shall see in the next

sections where we will consider one-loop contributions to the power spectrum.

11.2. Loop Corrections to the Power Spectrum in the
Particle Picture

Let us first discuss the one-loop corrections in the particle picture introduced in
chapter 5. In order to compute the full one-loop correction to the two-point phase-
space density cumulant, one has to evaluate thirteen diagrams that appear in the
self-energy (5.49) and (5.50). This is tedious work, as on top of the thirteen diagrams
that have to be evaluated, each A propagator appearing in the loops or in the
outer legs, consists of two terms, according to (5.38), that have to be integrated
separately. Each self-energy consists of one or two propagators, which are attached
to higher-order cumulants, in a similar manner as in the tree-level computation of
Ayr. We present the result for all individual loop diagrams in Figure 11.5. First of



11.2. Loop Corrections to the Power Spectrum in the Particle Picture 173

10 Q,, = 0.345, Q) = 0.655, 2 =0

tree-level + 1-loop

1-loop

4 |
10 tree-level

—-= CosmicEmu

103 4

102 4

]0] 4

P;(k) [h=3 Mpc?]

100 4

1071 4

-2
0.001 0.01 0.1 1 10
wave number & [h Mpc™]

Figure 11.6.: The tree-level and one-loop contributions for the density-fluctuation
power spectrum Fj(k) for a standard ACDM cosmology at z = 0 are
shown. The initial power spectrum was generated with CAMB [92] at
z = 1100. We compare the full result (tree-level + one-loop) to the
non-linear power spectrum expected from simulations generated with
Cosmic Emulator [101]. Dashed lines indicate negative values.

all, we observe that several diagrams lead to significant corrections on larger scales
which exceed the amplitude of tree-level contribution by an order of magnitude.
This is surprising, as we have seen in section 11.1 that structure growth on larger
scales is fully described by the tree-level theory. However, the one-loop corrections
involve finely tuned cancellations between different diagrams, such that the overall
contribution to the large-scale amplitude shown in figure 11.6 is several magnitudes
below the tree-level contribution.

The loop contributions in figure 11.5 appear in groups which are separated by
orders of magnitude. It is, however, in general not possible to neglect contributions
with lower amplitude, specifically because of the finely tuned cancellations. The
strong cancellations indicate that the perturbative loop-expansion in this approach is
not well-suited to capture the relevant processes and that some kind of resummation
procedure is required. Typically, non-perturbative resummation schemes would be
applied. However, due to the very fine cancellations, the precision which is needed
to evaluate the eight-dimensional one-loop diagrams leads to prohibitively long
computation times and sometimes cannot be reached at all. This leads to numerical
instabilities in the application of (non-perturbative) resummation schemes. Even
going to second-loop order in this approach is numerically challenging.
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Figure 11.7.: The four one-loop contributions containing the self-energy contribu-
tions in (11.19), (11.20) and (11.21) are shown. ‘D1 stat’ refers to the
statistical self-energy (11.20). ‘D1 caus’ and ‘D2 caus’ refer to the two
diagrams resulting from the causal self-energies, in the order they are
displayed in (11.19). Finally, ‘D2 stat’ refers to the diagram associated
with (11.21). The results have been obtained using the analytical prop-
agators derived in section 11.1.1 where we mapped the EdS cosmology
to ACDM. Dashed lines indicate negative values. The initial power
spectrum was generated with CAMB [92] at z = 1100.

11.3. Cosmic Structure Formation in Klimontovich
Field Theory

It now becomes very clear why the single dynamical vertex of the Klimontovich field
theory poses an enormous advantage over the particle-based field theory of chapter 5.
The number of diagrams reduces considerably and, although there are cancellations
between diagrams, they are much less severe. In the following, we will present the
one-loop results for the power spectrum in the framework introduced in chapters 6
and 7. We will also discuss the application of non-perturbative resummation schemes
and the expected results.

11.3.1. Results for the Power Spectrum at One-Loop Order

At one loop-order, there are only four distinct diagrams which have to be evaluated.
Their contributions can be split into the causal self-energy,

] 1
Egggi l + /} , (11.19)
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Figure 11.8.: The full tree-level 4+ one-loop result for the density-fluctuation power
spectrum Pj(k) for a standard ACDM cosmology at z = 0 is shown
and compared to the non-linear power spectrum expected from simula-
tions generated with Cosmic Emulator [101]. One-loop contributions
from the statistical ((11.20) and (11.21)) and causal self-energy (11.19)
contributions are shown separately. The results have been obtained
using the analytical propagators derived in section 11.1.1 where we
mapped the EdS cosmology to ACDM. The initial power spectrum was
generated with CAMB [92] at z = 1100. Dashed lines indicate negative
values.

and the statistical self-energy,

ip) ~ L
Sofy 25 : (11.20)

from the dynamical part of the action. In addition, there is another contribution to
the self-energy which is due to the initial three-point vertex of the action,

Lo, - 1 :'0" 1 '-,.“
DY) 5 ¢ +35 [ (11.21)

In figure 11.7 all four loop-contributions are presented. As expected, the loop-
contribution containing the initial non-Gaussian three-point statistics is negligible. It
can also be observed that the amplitudes of the loop-contributions are well below that
of the tree-level power spectrum on large scales where the evolution is fully captured
by the tree-level theory. As we can see in figure 11.8, the contribution from the
first two diagrams in (11.19) is cancelled by the contribution from (11.20) on small
scales, such that the resulting power spectrum at one-loop order correctly reproduces
the shape of the non-linear power spectrum. Importantly, while the statistical loop
corrections are proportional to convolutions of the initial power spectrum, the causal
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corrections contain products of it, which compete against each other very similarly
to the contributions in standard perturbation theory. Comparing our result against
numerical simulations in figure 11.8 we find deviations of the order of 10% — 20%
on scales & > 0.2h Mpc~!. The result is, of course, identical to the one-loop result
in 11.2, since both approaches are exact reformulations of the same underlying
microscopic physics.

At the one-loop level our numerical results are identical to those of Eulerian SPT
on all relevant scales?. This is, however, not surprising since deviations from the SSA
should appear at second loop-order for the first time. We do not expect that solely
the inclusion of the full-phase space information will be able to close the gap between
numerical simulations and analytical results found at £ > 0.2h Mpc~—!. Instead, it
is far more likely that the physics on these scales is the result of non-perturbative
effects as suggested by [5, 36, 103, 15].

2Taking the damping due to the initial velocity dispersion discussed in 11.1 into account, one
would, of course, observe a damping on small scales for the one-loop result. However, scales
with k > 100h Mpc~! are typically not of interest in cosmology.



Conclusion

Starting from the path-integral construction for classical mechanics based on the KvN
formalism and the MSR/JD formalism, we were able to derive a perturbative solution
for the Liouville equation based on particle trajectories in phase-space. However, as
we know from similar approaches, such a perturbation theory is not applicable to
realistic systems since the convergence is too poor and, typically, relevant physical
effects cannot be captured well enough. This perturbation theory is not new and
has been extensively studied in [29, 102, 31]. The goal was, therefore, to find a
resummation scheme which could, at least partly, resum relevant effects.

In a second step we, therefore, reformulated this particle-based perturbation theory
into a field theory which still contained the full phase-space information of the particle
ensemble using a modified Hubbard-Stratonovich transformation. We also found that
our derivation leads to the same formulation as first found by [34, 35]. In this field
theory formulation we were indeed able to resum parts of the microscopic dynamics.
With the resummed field theory at hand, we were able to set up a perturbative
loop expansion and to produce numerical results for the cosmic density-fluctuation
power spectrum up to one-loop order [58]. Although, we were able to quantitatively
reproduce the one-loop result from Eulerian SPT, we encountered a concerning
feature of the resummed field theory, which is rooted in its very construction. Since
the resummed field theory is merely a reformulation of a perturbative expansion
based on particle-trajectories in I'-space, it is based on resumming perturbations
of particle trajectories that cumulatively lead to a perturbation of the field. This
feature manifests itself in the form of an infinite tower of vertices which contain the
interaction potential. We found—as did [35]—that at one-loop order we already have
to take thirteen loop diagrams into account. The number of diagrams also grows
rapidly with increasing loop order. What is even more concerning, however, are
the finely tuned cancellations between these diagrammatic contributions which we
demonstrated in our cosmological application. These do not allow for a systematic
truncation of the tower of vertices of the resummed field theory. They further
introduce a numerical challenge since the eight-dimensional integrals have to be
evaluated to a very high precision. In addition, we found that the amplitude of several
one-loop diagram contributions exceeds the amplitude of the tree-level contribution
even on scales where the system is already fully described by the tree-level theory.
Our findings, thus, suggest that the resummed field theory has to be restructured in
order to avoid cancellations and ideally to reduce the number of diagrams.
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In Part II of this thesis, we present a new field theory formulation which is no
longer based on the evolution of individual particle trajectories, but on the evolution
of the field, i.e., the Klimontovich phase-space density, itself. By construction, the
perturbative expansion now describes the effect of the interaction potential directly
on the field. We gradually build up the field theory in chapter 6 and show the
connection to the particle picture of chapter 5. In this new formulation we can
also show that the tree-level solution corresponds to the solution of the linearized
Klimontovich equation. We have shown that the particle-noise contributions to the
initial phase-space density cumulants are directly related to particle collisions in the
kinetic sense. Therefore, neglecting those terms reduces the Klimontovich description
to the Vlasov description. Having provided an intuition for the theory in chapter
6, we present a complete and formal development of the field theory in chapter 7.
The novel element of the theory, is that the mean field itself receives corrections due
to interactions during the evolution of the system. We show in chapter 7 that the
most natural formulation of this approach is in terms of an effective action. The
Dyson-Schwinger equations then allows us to obtain n-point correlation functions in
a self-consistent manner.

The vertex structure of this field theory is quite simple, since there is only one
dynamical vertex containing the interaction potential. There is, however, an infinite
tower of vertices which are attributed to initial correlations present in the system,
and are relevant for the description of particle collisions. We can then differentiate
between the Klimontovich and the Vlasov description. The latter describes the
evolution of a collisionless system. If Gaussian initial conditions for this system can
be assumed, the initial vertices stemming from higher order statistics vanish and
only the interaction vertex survives. This is a valid assumption for many systems
that are dominated by the interaction potential. It is, therefore, possible to truncate
the infinite hierarchy by taking only the contributions from the dynamical vertices
into account that are up to quadratic order in the initial statistics. In general,
however, we can treat arbitrarily complicated systems in this manner. Compared
to the approach of chapter 5, the number of diagrams is drastically reduced—even
if the initial vertices are taken into account. At one-loop order, for instance, four
diagrams in total have to be evaluated.

In Part III, we present the application of the formalism of Part I and II to cosmic
large-scale formation. We derive the results for the Klimontovich field theory of Part
I1, as it is our main focus. It should be stressed, that the results of the resummed field
theory for microscopic particles and those of the Klimontovich field theory agree, since
they describe the same exact phase-space evolution. However, the latter field theory
offers—at least in the author’s opinion—a better framework for obtaining them. In
section 11.1 we present the tree-level results for the cosmic density-fluctuation power
spectrum and bispectrum. Up to k < 100h Mpc~! the numerical results agree with
those obtained from linear Eulerian SPT. This is not surprising, as we have shown,
that the tree-level description corresponds to the linearized Vlasov equation, in the
absence of collisions. On smaller scales, & > 100 h Mpc~!, however, we observe a
damping which is due to the velocity dispersion present in the initial conditions that
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are not incorporated in Eulerian SPT. Our main result is the density-fluctuation
power spectrum to first order in the loop expansion. We present them first in the
scope of the resummed field theory of chapter 5 in order to showcase the finely tuned
cancellations between different loop diagrams. Finally, we present the one-loop results
in the framework developed in chapters 6 and 7. We demonstrate that—for this
system—the contribution from the initial three-point vertex can in fact be neglected,
thus offering a systematic truncation of the tower of vertices. The one-loop results
agree with those obtained with one-loop Eulerian SPT. This is not surprising, since
deviations from SPT in the single-stream approximation will start to appear only
at two-loop order. We compare our results from those obtained from numerical
simulations and find very good agreement on large scales, while on smaller scales
k > 0.2hMpc~! our results deviate by 10 — 20%. It is clear that higher-order
corrections are required to correctly reproduce the power spectrum on these scales.
An obvious next step would be, therefore, to compute the next order in the loop
expansion. It is useful in order to quantify the deviations from two-loop Eulerian
SPT, but we do not expect that a simple loop expansion will provide the desired
results. It is far more likely that the missing power on intermediate and small scales
is the result of non-perturbative effects which are not captured by this expansion.

The tree-level approach already suggests that non-perturbative descriptions lie
at heart of structure formation of classical ensembles. Since in contrast to most
quantum field theories, there is no small coupling parameter, a perturbative loop
expansion is difficult to justify, if even possible. The apparent divergence of the
Eulerian SPT approach supports this idea. We have therefore presented the most
natural improvements to the naive loop expansion and hope that in the near future
these will prove fruitful and help describing the evolution of cosmic structures.






“Are You Not Entertained?”

— Maximus Decimus Meridius
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A Summary of Field Theory
Notation

In this appendix we shortly summarize the notations used throughout this work.

A.1. Condensed Notation

Since the equations tend to become very cumbersome, we introduce a unified index
notation to simplify our expressions. We bundle the phase-space coordinates together
with the time variable to a phase space-time coordinate X = (x,t). Integrals over
the whole phase-space and time will be abbreviated as

/X = /d% 7Odt. (A.1)

(i)

Next, our fields will involve two components, Af(X) and Ap(X). We therefore
accumulate both into a field doublet A, (X) whose components will be denoted by
Greek indices, a € {f, B}. To further compactify our notation, we adopt the DeWitt
notation by letting Latin indices represent both the continuous space-time coordinate
and the discrete field index, a = (X, ) and write

A, = A (X). (A.2)

Scalar products will involve integrals and summations over phase space-time X and
components «, which we will abbreviate using the Einstein sum convention,

AB,= ) Ao (X)B,(X). (A.3)
ac{f,B} X

If we further need to integrate only over a subset of the components and therefore
cannot employ the DeWitt notation, we will shorten the equations by implicitly
writing the integrals as

J, AC)B(X) = AWB(). (A4)



186 A. Summary of Field Theory Notation

where

1) = = (21,t1). Similar rules hold in Fourier space, where we generally
write (1) =

( = (s1,t1).

Furthermore, we define the following shorthand notation for functional derivatives
of a functional F[h] w.r.t. to its argument h,(X) as
F = —6"F[h] )

et Shy, ... 0hg,

(
i

\_/

(A.5)



B Discretized Stochastic
Evolution Equations

In this appendix we discuss in more detail the discretization procedure leading to
the MSR/JD generating functional discussed in section 3.2 and used throughout this
work. We essentially follow [104, 21, 19, 59, 105]. To keep the concepts as simple
as possible, we consider a one-dimensional problem, described by the stochastic
differential equation

de(t)

BT Fl@)] + n(t), (B.1)

where F[)(t)] is the locally Lipschitz continuous drift term, and 7(t) is the random
noise, possibly describing the random initial distribution v (t = 0) = @,

B.1. 1to vs. Stratonovich in the Linear Case

As the transition form a continuous to a discretized description leads necessarily
to ambiguities that have to be treated carefully, we begin our discussion with an
exactly solvable toy model that already exhibits all features relevant to our discussion.
Specifically, we consider the linear process,

W i) + K1) + i), (B2)

where, as in the main text, we included a source K (t) in order to probe the response
to fluctuations. The advantage of this model is that it has an analytical solution

%{gl(t) given by

. t ,
wli(n) = e+ [ O () — K(0)]. (B.3)

0
As discussed in the main text, the linear response function of this system is given by

e Ht=t) s
= MOt — 1) ={ O(t) t=0  (B4)
K=0
0 t<t

Rt) =
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The ambiguity now arises, since the value of ©(0) is a priori undefined, and so is the
value of R(t,t), which has a jump discontinuity for equal times. In order to physically
understand the origin of this ambiguity, let us define the associated discretized theory,
by splitting the time interval [0, ¢)] into N steps of size ¢ = %, such that t,, = ne,
forn=1,...,N. We abbreviate ¢,, = 9(t,) and F,, = F(¢(t,)) and similarly for
K(t). Defining n, = [, n(t)dt and setting 1o = W we find for the discretized
version of (B.2),

L )~ s+ Koo) +a( = ptpa + K)+ . (B5)
€ €

There is an ambiguity that arises during the discretization of the dynamical equation
(B.2), since it is a priori not clear at which end of the interval [t, 1, t,] the force term
F(t) and the perturbation K (t) on the right-hand side of (B.2) have to be evaluated.
We have therefore introduced the parameter a € [0, 1] in order to interpolate between
both ends and thus to track the ambiguity till the end. Equation (B.5) can easily be
solved for 1, yielding the updating prescription

14+ (a—1)ue el(l —a)K,,_1 +aK,| +n,
g =1t le— Ve, ddZ o)k [+ (B.6)
1+ ape 1+ ape
(1 —a)Ky—1 +aK,] + 1,

= n— ) B.7
Ctn_1 + 1+ ape (B.7)

with | .
oo Lt (a—1Dpue (B.8)

1+ ape

This recurrence relation can be iterated to yield the following discretized solution

n—1
K = o) f 30 ik el(1 — a)Ky, + aKy1] + mn
sol,n c + c .
Vol Y = 1+ apue

(B.9)
The continuum limit is the obtained by letting ¢ — 0 and N — co. In this limit, the
discretized solution (B.9) converges to the solution (B.3), which can be shown using
the identity
)" B.10
=i 1——) . :
- (5) o

N—oo

The discretized version of the linear response function can be computed to

O (Hap)(t@—Due =M
= S = | n=m . (B.11)
0 n<m
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In the continuum limit, we obtain

e ht=t) s
_ e—y,(t—t')@<t _ t/> — a t=20 , (B12)
0 t<t

I (t)
oK (t') K=0

R(t,t") =

which shows that the ambiguity in choosing the value of ©(0) corresponds to choosing
a specific discretization procedure for the underlying discrete time evolution. Thus,
the value of the response function for equal times depends on the convention employed
when evaluating the right-hand side of (B.2) during the discretization. The most
important conventions are [td, with a = 0 and Stratonovich with a = % The
[t6 prescription is sometimes called pre-point prescription because the force terms
are evaluated on the earlier time of the interval [t,,_1,%,], while the Stratonovich
prescription amounts to evaluating the forces in the middle of the interval. It is
therefore referred to as mid-point prescription. Throughout the main text we use the
It6 convention which amounts to set a = ©(0) = 0, which has important advantages

as we will see.

B.2. The Discretized MSR/JD-Path Integral
We are now ready to turn to the more general case (B.1), whose discretized version

reads
w”_f”‘l = (1—a) (Fn,l - anl) + a(Fn - Kn) + ”?” , (B.13)

where we choose to keep the parameter a general in order to see how the different
discretization prescriptions affect the path integral construction. The associated
generating functional is defined as

N

Z[J, K] = <exp [Z eJthh

n=1

>7> , (B.14)

where (-),, indicates averaging w.r.t. P[n|. Ignoring for the moment this averaging
process, we can write the exponential as

N N N
exp [Z eanbsIgLn] = [ 1T /d@/}n op (@Dn - ¢§§17n>] exp [Z ean/)n] : (B.15)
n=1 n=1 n=1

Assuming a unique solution, we can use the N-dimensional version of the Dirac-delta
identity,

I1 o (vn —0E.) = ‘det | T o) . (B.16)
n=1 n=1
where
g,m YTt 1y (Fucs = Kuot) —a(Fy - K,) = (B.17)

€ €
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corresponds to the discretized equation of motion and J is the Jacobian arising from
the above change of variables. It is defined by

o€, 1
Tom = g0 = ¢

with F’ = g—i. Importantly, we note that 7,,,, = 0 if n < m. Thus, J is an upper
triangular matrix and its determinant is the product of its diagonal entries. We find

<5nm — 5(n_1)m) — (1 — a)F;_lé(n_l)m — aFrlbdnm s (B.18)

det (7) = fi[l T =TI [i - aF;l} _ ;V ﬁl [1 _ aef;;] | (B.19)

n=1

We can now see the advantage of the Itd prescription, as the above determinant
becomes }N and is thus independent of . If one wants to keep the discretization
general, one could now proceed by introducing Grassmann valued fields, in order to
exponentiate the above determinant, which is not constant in general. With this tick
known from gauge theory, one can make the determinant dynamical such that the
Grassmann fields cancel unphysical degrees of freedom. However, we are working in
the It prescription, and therefore find

N 1 N
H 5D (wn - sfgl,n) = 67N H 5D (gn> . (BQO)
n=1 n=1

We can exponentiate the Dirac-delta distribution that contains the discretized
equations of motion by using its Fourier representation,

1 N 1 dN@E SN 4
o Lo (€)= 5 [ Gawe s (B21)

sz[) i€ N b
Jdiese m

where in the second line we absorbed the factor of }N into the exponent, to facilitate
the continuum limit. We see, that nothing is left from the determinant anymore.
Putting everything together, we arrive at

210, K] = [ @ nPln}) [a¥o [ é:;fveiﬁzf_lﬂnsn+zf_lwn, (B.23)

which, under the continuum limit, yields the appropriate MSR/JD action stated in
the main text (c.f. (3.68)).
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