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Summary

Understanding the dynamic principles that enable the brain to flexibly adapt be-
havior in changing environments remains a central challenge in neuroscience. In
this thesis, I address this question through the lens of dynamical systems recon-
struction. I use a reconstruction method, specifically targeted for non-autonomous
neural dynamics from multiple single-unit recordings in the rodent medial prefrontal
cortex (mPFC) during a probabilistic rule-learning task. To this end, I employ a
parameter-evolving piecewise-linear recurrent neural network (pePLRNN), which
explicitly incorporates time-dependent changes in the underlying dynamical system
(DS). This approach enables the reconstruction of non-autonomous DSs from non-
stationary data to characterize of how the neural dynamics evolve across learning.

The approach was first validated on benchmark systems and task-trained RNNs,
where it successfully reconstructed the underlying DS. When trained on the hidden
state trajectories of RNNs solving artificial rule-learning tasks, the pePLRNN un-
covered the dynamic mechanisms by which these networks implemented the learning
process.

Applied to electrophysiological recordings from the mPFC of rats, the model suc-
cessfully reconstructed the non-stationary neural dynamics underlying rule learning.
The trained model-generated neural trajectories that exhibited the same decoding
properties as the original data. Change points (CP) detected in model-generated tra-
jectories aligned with those observed in the recorded activity. Simulations of neural
trajectories under experimental conditions reproduced the behavioral distributions
of animals for both rule types.

Analyzing the trained pePLRNN as a functional surrogate model revealed that
both rules were implemented via a single stimulus-dependent attracting region that
guided neural transients toward the correct decision. During learning, this attract-
ing region, along with the trial-specific parameters and latent neural trajectories,
exhibited abrupt changes that preceded the behavioral change point.

This work establishes a principled framework for reconstructing non-autonomous
DS directly from empirical data and demonstrates how their analysis as surrogate
models can reveal dynamic principles underlying the neural computations supporting
cognitive flexibility.






Zusammenfassung

Immer noch ist eine zentrales Problem der Neurowissenschaften diejenigen dynamis-
chen Prinzipien zu verstehen, die es dem Gehirn ermdglichen, Verhalten flexibel an
wechselnde Umgebungsbedingungen anzupassen. In dieser Arbeit gehe ich dieser
Frage nach, indem ich die nicht-autonome neuronale Dynamiken aus multiplen
Einzelzellableitungen aus dem medialen préfrontalen Kortex (mPFC) von Ratten,
wahrend sie einer probabilistischen Regel-Lernaufgabe ausfiihrten, rekonstruiere.
Zum Einsatz kommt dabei ein parameter-evolvierendes, stiickweise lineares rekur-
rentes neuronales Netzwerk (pePLRNN), das zeitabhéngige Verinderungen im zu-
grunde liegenden dynamischen System (DS) explizit modelliert. Dieser Ansatz
ermoglicht die Rekonstruktion nicht-autonomer dynamischer Systeme aus nicht-
stationdren Daten, um zu charakterisieren, wie sich die neuronale Dynamik iiber
das Lernen hinweg entwickelt.

Zunichst wurde der Ansatz an Benchmark-Systemen sowie an rekurrenten neu-
ronalen Netzwerken (RNNs) validiert, die auf kiinstliche Regel-Lernaufgaben trainiert
worden waren. Dabei konnten die zugrundeliegenden dynamische Systems erfolgre-
ich rekonstruiert werden. Beim Training auf die latente Zustandsdynamik dieser
RNNs rekonstruierte das pePLRNN die dynamischen Mechanismen, mit denen die
Netzwerke den Lernprozess realisierten.

Angewendet auf elektrophysiologische Daten aufgenommen im medialen prafrontalen
Kortex von Ratten, rekonstruierte das Modell erfolgreich die nicht-stationéren neu-
ronalen Dynamiken, die dem Regel-Lernen zugrunde liegen. Die vom Modell gener-
ierten neuronalen Trajektorien wiesen dieselben Dekodierungseigenschaften auf wie
die Originaldaten. Zudem traten die im Modell detektierten Strukturbriiche an
denselben Zeitpunkten auf wie in den aufgezeichneten neuronalen Aktivitaten. Simulierte
Trajektorien unter experimentellen Bedingungen reproduzierten die beobachteten
Verhaltensverteilungen der Tiere fiir beide Regeltypen.

Die Analyse des trainierten pePLRNN als funktionelles Surrogatmodell zeigte,
dass beide Regeln durch eine gemeinsame, stimulusabhéngige Attraktorregion umge-
setzt wurden, die neuronale Transienten in Richtung der korrekten Entscheidung
lenkte. Im Verlauf des Lernprozesses verdnderten sich diese Attraktorregion, die
versuchsspezifischen Parameter sowie die latenten neuronalen Trajektorien abrupt —
und zwar bereits vor dem beobachteten Verhaltenswechsel.

Diese Arbeit etabliert ein systematisches Verfahren zur Rekonstruktion nicht-
autonomer dynamischer Systeme direkt aus empirischen Daten und zeigt, wie deren
Analyse als Surrogatmodelle grundlegende dynamische Prinzipien neuronaler Berech-
nungen offenlegen kann, die kognitive Flexibilitdt ermoglichen.
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Preface

7. Wovon man nicht sprechen kann, muss man schweigen ("Whereof one cannot
speak, thereof one must be silent") — with this final proposition, Ludwig Wittgen-
stein, in the Tractatus Logico-Philosophicus [260|, attempted to delineate the bound-
aries of meaningful representational language. He specifically divided the set of pos-
sible cases into those that can be expressed using formal language and those that
cannot. Later, Alfred Tarski demonstrated in his undefinability theorem that, for
any sufficiently expressive formal language, the concept of "truth in this language"
cannot be defined within the language itself [236]. This established the necessity
of a metalanguage for certain statements that lie beyond the limits of what can be
meaningfully expressed. These thought-provoking philosophical contributions open
the door to a central question in neuroscience: Is the answer to the question "How
does the human brain work?" within the realm of what can be expressed and under-
stood by the human brain itself? If so, what would be the nature of such an answer?
Although I cannot provide an answer to these questions in this thesis, I aim to illu-
minate a small segment of the path from our current understanding in neuroscience
to the point where we may be able to resolve these questions.
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1 Introduction

The central aim of this thesis is to uncover the dynamical principles that enable
cognitive flexibility. To this end, the this thesis integrates concepts from multiple
disciplines, including systems neuroscience, dynamical systems theory, and machine
learning (ML), to establish dynamical systems approach for discovering the gov-
erning governing rules underlying the inherent non stationary process behind rule
learning. To understanding which neural systems and how they reorganize their
activity to adapt behavioral to changing environmental conditions. I begin by in-
troducing the neurobiological and physiological basis, the neural substrate of rule
learning, specifically in the medial prefrontal cortex (mPFC) and its role in regu-
lating flexible behavior. This section introduces the relevant anatomical circuits,
neuromodulatory systems, and molecular processes that support switching between
behaviors. The following section introduces dynamical systems theory (DST) as a
formal language for describing neural processes in terms of state space trajectories,
vector fields, and attractor structures. ML is then introduced as a methodological
toolkit for extracting latent structure from high-dimensional data. Special empha-
sis is placed on recurrent neural networks (RNNs), which have been used in neu-
roscience to simulate and interpret dynamic computations in neural circuits. The
final section then presents the theoretical underpinnings of dynamical systems recon-
struction (DSR) that led to the specific modeling framework employed in this thesis:
the parameter-evolving piecewise-linear recurrent neural network (pePLRNN).

1.1 The Neural Basis of Rule Learning - Cognitive Flexibility

One of the most fundamental conditions for survival, for any organism with a nervous
system, is the ability to adapt, develop, or switch behavior in accordance with
the continuously changing environmental context it is confronted with ([99, 148,
77, 47, 62]). This adaptation of behavioral policies to changes in environmental
circumstances, stimulus contingencies, or task rules is called cognitive flexibility.
Changes in behavioral policy or the acquisition of new rules often occur abruptly
rather than gradually, appearing as sudden transitions between distinct behavioral
modes (|9, 84, 62]). Cognitive flexibility, as an executive function, is evaluated with
behavioral requiring a shift in behavioral policies or response strategies (|96, 74,
70, 156]). In humans, cognitive flexibility is often tested with the Wisconsin Card
Sorting Test (WCST), which requires participants to infer and flexibly shift between
categorization rules (e.g., color, shape, number) based on feedback (|96, (170} |133]).
With lesion studies it was possible to linked the regions of the dorsomedial frontal
lobe to substantial impairments during this task, bringing prefrontal circuits and
their role in mediating behavioral shifts and error-driven updating into focus (|157,
230, 234]).

Rodent models have provided more insights into the neural basis of cognitive
flexibility, particularly within the mPFC (|17, 62, 153, 30, 97, |16, 7]). Especially
the prelimbic (PL) subregion has been mainly associated with strategy switching
and behavioral adaptation (|175, 184, 95, 62, 204, 7]). In the attention set-shifting
task, rats must shift their attention between stimulus dimensions (e.g., from odor



to visual cues) to obtain a reward (|16, 87]). Lesions in the PL selectively impair
shifts between stimulus dimensions while maintaining intra-dimensional shifts (|16,
185, 74, |44]).

Reversal learning tasks that specifically require updating stimulus-reward as-
sociations, also engage other prefrontal regions like the orbitofrontal cortex (OFC)
(1162199, 174]). While the OFC is mainly associated with value updating stimulus-
outcome pairs ([211]), PL lesions intensify perseverative errors in contexts requiring
multiple reversals or hierarchical strategy shifts indicating that PL is critical not only
for implementing new rules, but also for maintaining changes in behavioral policies
(]186, 72, 163]). Under changing reward contingencies, naive animals flexibly switch
between behavioral strategies. However, lesions or inactivation of the PL impairs
this flexibility, leading to perseveration on previously leanred strategies (|175, 74]).
This type of impairment can be distinguished from that induced by infralimbic (IL)
lesions, which decrease the ability to supress previously learned strategies (|186, 7]).
Such that PL supports the selecting and stabilizing new behavioral rules, while IL
facilitates the suppression of outdated responses and conflict rules (|175, |7]).

The rodent’s PL is considered homologous the dorsal anterior cingulate cortex
(dACC) in huamns (|15, 100, 242]). Different studies in humans have identified
that the dACC is largely involved during strategy shifts and flexible behavior. (|22,
203, 123]). Across different species there is a continuity in behavioral effects when
PL functions (or it homologies) are impaired, causing perseverative behavior, a
decreased tendency to switching between rules and in general less adaptability to
changing enviornmental contingencies (|74, 69, 139, 67, 62, 72,175, 16, 204]).

Circuit-level mechanisms of flexible rule switching At the circuit level, PL
networks show rapid reconfigurations during behavioral transitions, especially when
currently executed strategies are not matched by expexted outcome (|72, 74} 62,
10, 122 130]). Neurons in PL undergo abrupt changes in firing rates during behav-
ioral transition periods, briefly entering a state of high-variability that is associated
with exploration of alternative strategies (|62]). Neural recordings have shown that
these changes align with behavioral CPs (]|62]): as animals switch from a previously
reinforced rules, neural variability in PL increases, before stabilizing again when a
new rule representation is formed (|62, 122, 130]). This pattern indicates that PL
activity could encode uncertainty about the present rule and controls the transition
between exploitation and exploration ([130]). Single-unit studies have found that
neurons of the PL and the dACC respond specifically to negative feedback, error
signals, or conflicting experience, often before behavioral adjustment occurs (|166),
62, 239, 165, [122, 193, 141, |140]). Deep-layer (layer V) pyramidal projection neu-
rons play a specific role in cognitive flexibility. Suppressing these deep-layer (but
not superficial) PL neurons disrupts set-shifting, while activating them enhances
adaptive rule switching (]225]).

Beyond its internal dynamics, PL interacts with subcortical areas to control rule-
dependent behavior. Connections from PL to the striatum, especially the nucleus
accumbens (NAc) (|74, 72, |18, 73]), modulate the updating of action-outcome as-
sociations. Chemogenetic activation of the PL-NAc pathway improves set-shifting
performance by reducing perseverative errors, while inhibiting this pathway impairs



strategy switching (]198, (164, 180]). In additon PL has strong reciprocal connections
to the mediodorsal (MD) thalamus which also contributes to flexible rule shifting
(J176]). Inactivating the MD thalamus impairs the ability to shift to new rules but
has no effect on simple reversal learning, suggesting that this structure supports
higher-order context inference (|159]).

At the cellular level PL contains glutamatergic pyramidal neurons (mainly in lay-
ers II/IIl and V) and various types of GABAergic interneurons, including parvalbumin-
positive (PV) and somatostatin-expressing cells (|7]). Dopaminergic projections
from the ventral tegmental area regulate these circuits through different receptor
types: PL pyramidal cells mostly express D1-type receptors (|88]), while D2 re-
ceptors appear on both a small number of pyramidal cells and several classes of
interneurons (|216, (160, 161, 71]). D1 activation generally increases excitability and
promotes rule preservation through stable recurrent activity (|75, 71]), while D2
signaling enhances network flexibility (|212} 71]).

Pharmacological interventions confirm that both receptor types (D1 and D2)
are necessary: blocking one of the two dopaminergic receptors (D1 or D2) in PL
causes significant impairment in set-shifting, resulting in behavioral perseveration
(I71]). In contrast, excessive activation of these receptors shows no improvement in
performance, suggesting an optimal dopaminergic level near baseline is optimal for
flexible behavior (|71]).

Norepinephrine from the locus coeruleus (LC) also regulates the mPFC through
a; and ay adrenergic receptors on pyramidal cells and interneurons (|173]). Acute
stress causes NE levels to rise in the mPFC, and its effects on cognitive flexibility de-
pend on the specific receptor subtype engaged, while as activation enhances network
stability and signal-to-noise ratio, excessive aq-activation induces distractibility and
cognitive inflexibility (|173, 151]).

Chronic stress or pharmacological overactivation of NE pathways produces be-
havioral impairments similar to PL lesions (|151]).

Plasticity in PL circuits are observed during updating internal rule representa-
tions and are affected by acute stress (|[117, [116]). Blocking N-methyl-D-aspartate
(NMDA) receptors in PL prevents the acquisition of new rules but does not im-
pair the execution of already acquired behaviors, indicating that NMDA-dependent
plasticity specifically supports updating rather than maintaining rule representa-
tions (]226]).

In summary, cognitive flexibility arises from a distributed circuit where PL ini-
tiates rule shifts after negative or conflicting sensory feedback, OFC supports value
reassignment during reversals, IL stabilizes new policies by inhibiting previously
learned strategies, and fronto-striato-thalamic loops coordinate changes in action
selection. Behavioral flexibility depends on interactions between excitatory and
inhibitory dynamics, neuromodulatory input, and synaptic plasticity in the PL.
Dopamine and norepinephrine regulate the PL, by affecting the stability of the cur-
rent rule representations and allowing a reconfiguration to new rules. This dynamic
tuning gives PL the ability to act as a flexible behavioral controller responsible for
adaptive behavior. Disrupting PL, or homologous region in humans, consistently
impairs adaptive switching across species and tasks, showing its conserved role in
regulating cognitive flexibility.



While neurobiological analyses reveal which brain regions and circuits are essential
for flexible behavioral control, they do not yet provide a formal language to describe
how these circuits organize and coordinate their activity over time to implement
the cognitive computations necessary for switching behavioral policies. In other
words, knowing the anatomical substrate is necessary but not sufficient to explain
the computational mechanisms that drive behavioral transitions and rule-learning.
Therefor, I next introduce DST as a mathematical framework for describing the
temporal evolution of complex systems, such as, neural circuits.

1.2 Dynamical Systems

DSs and their mathematical description by DST build a core foundation to under-
stand the physiological and computational processes underlying the complex func-
tions of the brain [114, 108, 109, 195, 258, 60, 246, 229]. DST describes how the
state of a system evolves in time and as such offers a rich toolbox to describe,
analyze, predict and ultimately understand what natural forces drive a system to
transition from one state to another. Many phenomena that can be observed from
day to day can be described in terms of the systems dynamics. DST is used to
describe system in a variety of different topics: the climate [90], or weather (where
the famous Lorenz attractor [136] originates), the flow of traffic (as described by
the Lighthill-Whitham-Richards (LWR) model [132]), social sciences [243] and the
complex functions of the brain and neurons (|114} 60, 108, 109, 66]).

DS describe the evolution of state variables over time, most generally formulated
as ordinary differential equations of the form

dx
&~ k(x())

where x(t) € RY denotes the system’s state vector at time ¢, and f : RY — RY
defines the system’s vector field determining its dynamic evolution (|114, 229]). In
discrete time, DS are defined through iterated mappings of the form

Xir1 = F(Xt>7

where x;, € R denotes the state vector at discrete time ¢, and F : RV — RV
is a deterministic function. The evolution of the system is governed by repeated
application of this map, such that for an initial condition xq, the trajectory is given
by

x; = FY(xy),

where F® denotes the t-fold composition of F with itself. Formally defined in [181]
(adapted from ST of |60]): Let R C RY be an open subset of RY, and let the vector
field f € C'(R) define the continuous-time dynamics via the differential equation
x = f(x(t)). A DS is defined as a continuously differentiable map ¢ : R x R — R,
called the flow, satisfying the following properties for all x € R and all s,t € R:

L. ¢o(x) =x (identity at zero time),
2. ¢s11(%) = ¢s(d1(x)) = di(04(x)) (group property),



3. d_i(Pe(x)) =x (invertibility).

While DS are often defined in continuous time, empirical observations like spike
times or calcium fluorescence signals are typically sampled at discrete time intervals
(|85, 1177, |41]), thus, leading to the discrete-time formulation, where the continuous
flow is approximated by a time-At¢ map. Specifically, given samples x;, = x(kAt),
the discrete system is defined by a mapping FA; such that

X1 = Far(xx),

which approximates the integral of the continuous vector field over the interval
[, tx + At]. The Poincaré map (|182]) reduces the continuous system to a discrete
map by recording successive intersections of trajectories with a lower-dimensional
cross-section of the state space (|237]). This enables analysis of orbit stability and
qualitative dynamics via fixed-points of the induced map.

State Space Representations

The central concept of DST lies in the idea of a state space, the space RV that
contains all dynamical variables required to fully describe the system at any given
time ¢ ([114, 54, 259, 155, |60, 229, 246]). Each point x(t) € RY in state space
represents a unique configuration of the system’s state, such that its further evolution
is completely determined by its current position and the vector field (see Figure 1A
for as illustration) ([114, 229, 259]). The vector field is a deterministic function f,
which defines temporal evolution of states over the whole state space (|114, 54, 259])
(compare with Figure for an illustration). The path of a state in state space is
called the trajectory (see Figure [IB and C) (|181]). The vector field itself gives rise
to dynamical phenomena such as attractors and repellers ([229, 114, 181]).

Figure 1: Illustration of neural state dynamics in state space and time
A Three-dimensional neural state space defined by coordinates (uq, us, uz). Coordi-
nates in state space correspond to the local firing rates. B Illustration of a trajectory
in state space, as temporal sequence of states. C The initial condition together with
the vector field define the trajectory. Different initial conditions lead to different
trajectories. (D) Schematic illustration of the flow field, the geometric structure
that governs the temporal evolution of all trajectories.

Attractors, Repellers and Stability

Formally, as defined in [181], an attractor A C R of a DS is a closed, invariant set
for which there exists an open neighborhood U4 O A such that for all x € U, the



trajectory ¢;(x) remains in U for all ¢ > 0 and converges to A as t — oo, i.e.,
lim ¢ (x) € A.
t—00

Moreover, A qualifies as an attractor if it contains at least one trajectory whose
orbit is dense in A. Note that while stable fixed-points, limit cycles, or more com-
plex invariant manifolds can serve as attractors, not all w-limit sets are attracting.
For instance, a saddle point may be the w-limit set of a few trajectories without
attracting a full neighborhood (|229]). Attractors can take various forms, including
fixed-points, limit cycles, or more complex sets such as strange attractors (which
will be introduced in more depth in later sections) (|114, 229, |54]). Conversely, a
repeller is an invariant set from which nearby trajectories diverge over time (|114,
229, 54]). These invariant sets divide the state space into regions of convergent or
divergent behavior and fundamentally shape the long-term dynamics of the system
(|114, 229, 259, |181]).

Cycles and Chaos

Fixed-point attractors are just one specific form of attractors. There are far more
complex attractors including closed periodic trajectories known as limit cycles. A
stable limit cycle is defined as a periodic solution ~(t) of the system’s dynamics for
which all nearby trajectories x(t) satisfy lim; o, dist(z(t),v(t)) = 0, with dist(-,-)
denoting a suitable metric in state space (|229]). In DS models of single neurons
limit cycles are often associated with regular spiking ([114]).

Figure [2p illustrates this phenomenon in a 2D single-neuron model. Here, the
trajectory in the (V) R)-state space (representing membrane voltage and a refrac-
tory variable) converges toward a stable limit cycle, producing sustained oscillatory
dynamics.

At the network level, limit cycle attractors have also been implicated in orga-
nizing rhythmic neural activity, for instance in the central pattern generator (|126),
189, [144]). These oscillations emerge intrinsically from recurrent excitation and
inhibition (|31]). Neural recordings during slow-wave sleep show low-dimensional
oscillatory dynamics, functionally connecting such attractors with memory consoli-
dation during sleep (|31]).

Neural dynamics may also show chaotic behavior, forming strange attractors,
that attract nearby trajectories. Chaos is widely characterized by its boundedness
to a specific region while being sensitive to initial conditions (|76, 227]). More
formally, chaos is defined by the exponential diverging trajectories of initially close
initial conditions. This phenomenon can be quantified by the mazimum Lyapunov
exponent Amax ([229, 181, (120, 4]). For two initially very close states x(t) and
x(t) + 0x(t), chaos is indicated if

1 dx(t
Amax = lim  lim  ~1In (M) > 0.
t—00 [|62(0)]| -0 t |02 (0)||

This positive exponent reflects the system’s sensitivity to initial conditions, im-
plying that even minimal perturbations can lead to rapid divergence of trajectories.



While A\.x = 0 characterizes marginally stable limit cycles and Ay, < 0 corre-
sponds to convergence toward fixed-points, chaotic systems operate at the edge of
predictability, with information about past states degrading exponentially over time
([220, 120, ]).

In transitions between sleeping- and awake sate chaotic dynamics have been
observed (|248]). From a computational perspective, chaotic attractors extend the
dynamical repertoire of neural systems ( ) They enable amplification of
small inputs, and support separation of internal trajectories in recurrent systems

([149. 150)).

d

— R-nullcline —R_,-nullcline

inh

V-nullcline [ 1 R__-nullcline

fo— Lo
® initial state ® initial state /—\
/

—z,-nullcline
z,-nullcline
® initial state

3
N — 2
1

J stim

t

Figure 2: Illustration of DS phenomena in low-dimensional neural models
a The top panel illustrates the state space of a two-dimensional single-neuron model
with voltage V and a refractory variable R . The trajectory (blue) converges to a
stable limit cycle, reflecting rhythmic spiking behavior. The shading encodes the
local magnitude of change. Nullclines (orange and yellow) mark the states where the
temporal derivative of either V or R is zero. Their intersection defines an unstable
fixed point, from which nearby trajectories diverge and are attracted to the sur-
rounding limit cycle. The bottom panel shows the corresponding time series of the
neuron’s state variables as the system progresses along the limit cycle. b The state
space and vector field of a Wilson—Cowan-type neural population model illustrating
the bistable dynamics underlying working memory. Each point represents a unique
pair of excitatory and inhibitory population firing rates (Rexe, Rinn). External inputs
drive transitions (blue trajectory) between two stable fixed-points attractors located
at the intersections of the nullclines (orange and yellow). Their respective basins
of attraction are separated by a boundary (grey line). The central fixed point is
unstable, with trajectories diverging from it along the horizontal axis, as indicated
by the vector field. ¢ A two-dimensional linear neural ODE system producing a line
attractor, formed by the exact overlap of its nullclines. Depending on stimulus mag-
nitude, the system evolves from a common initial condition toward different points

along this line, enabling memory encoding by converging to a stimulus-dependent
states. Adapted from



Bifurcations

Up to this point, we have examined isolated dynamic phenomena of DSs under fixed
parameter settings. But what happens when a system’s parameters can change?
The system’s behavior may undergo a qualitative transformation. This type of
phenomenon is known as a bifurcation [229, 114]. As a system parameter is varied
smoothly, the structure of trajectories in state space may shift abruptly: attractors
can emerge, disappear, or change their stability [229, 114,60, 4|. This means that the
geometry and topology of the vector field f(x) that governs the dynamics is altered
in a way that fundamentally changes how trajectories evolve over time (|114, 229,
60]).

These transitions are relevant for how neuronal systems work. A well-known
example is the shift from resting state to spiking activity in a neuron as input
current increases. In this case, a stable fixed point loses its stability and gives
rise to a limit cycle, i.e., repetitive spiking (|114, 66, 196, 58|). Which type of
bifurcation underlies this change (e.g., saddle-node, Hopf, or homoclinic) determines
the neuron’s response properties and its functional role in the circuit ([114]). This
principle, is not only theoretical, but is used in electrophysiological recordings to
characterize cell type by their response (|129]). These differences have been linked
to real transitions in cortical neurons under NMDA modulation (see Figurd3), where
the same cell can exhibit bursting, chaotic firing, or regular spiking depending on
the level of NMDA-conductance. [58, 55|.
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Figure 3: Dynamical regimes and bifurcations a A three-variable biophys-
ical neuron model with NMDA-modulated input exhibits distinct dynamical
regimes depending on NMDA conductance (gnupa). Increasing gnvpa drives tran-
sitions from bursting to chaos to regular spiking, reflecting bifurcations that alter
the system’s attractor structure. b Bifurcation diagram of the biophysical neuron
model from a, showing how different NMDA conductance parameter gnypa influence
the inter-spike interval (ISI) distribution. Panels (1)—(3) indicate the corresponding
parameter values to the regimes illustrated in (a). (Figure adapted from [59])

Non-Autonomous Dynamical Systems

The DSs and their specific phenomena that have been discussed so far were all
autonomous meaning that their governing vector field is time-invariant, such that
the evolution of the state depends solely on the current state and not explicitly on
time. A much more realistic class of DSs in neuroscience are non-autonomous DSs
in which the vector field depends explicitly on time, i.e.,

x = f(x,1),

with f : RV x R — RY. The explicit dependence of the vector field on time ¢,
introduces an additional degree of freedom into the evolution of the system (|125,



6]), breaking the time-invariance of autonomous DS. In these systems the initial
time ty and current time ¢ are required to specify the solution. A simple example
(here adapted from [125]) is given by the scalar ODE

T =—2tz,

which yields solutions of the form x (¢, ty, o) = g e~(#=1)  Since the solution cannot
be expressed purely as a function of ¢ —ty, the system is non-autonomous (125, 6]).
The flow, in these systems, is described by a two-parameter family of mappings

o(t,t0,%0) : R x R x RY — RY,

representing the state at time t resulting from an initial condition xy at time t,.
This family satisfies the identity condition

¢(t07 t07 XO) = Xo,

and a generalized composition rule (also known as the Chapman—Kolmogorov or
causality property [[125, 6]]),

d(t2, o, X0) = P(t2, t1, d(t1,t0,%x0)) for all tg <ty <to.

This formalism generalizes the one-parameter flow ¢; of autonomous systems, and
reflects the loss of semigroup structure in ¢ — ¢y when time explicitly enters the
dynamics (]125, 6]).

To retain some of the structural advantages of autonomous systems, one common
strategy is to augment the state space by including time itself as an additional state
variable. This results in the extended system

x=f(x,7), 7=1,

evolving on the augmented state space (x,7) € RY x R. The resulting dynamics
form an autonomous flow in a higher-dimensional space, which often is referred to as
a skew-product flow. This enables the application of standard tools from autonomous
systems theory, such as the definition of invariant sets or the analysis of stability
properties ([125, 6, 156]).

However, the augmentation introduces new challenges: since the time variable
7 increases monotonically and without bound, standard asymptotic concepts (like
global attractors or invariant measures) require generalization. For example, a time-
varying system might possess a moving equilibrium x*(¢) or a non-stationary periodic
orbit, whose shape and location evolve as a function of time. Such time-varying
attractors are now represented as geometric objects that remain invariant under the
skew-product flow (|125, 6]). These issues are typically addressed using concepts
like pullback or forward attractors. A forward attractor A* is defined as a set that
attracts all trajectories as the initial time t; — —oo, holding the current time ¢
fixed. In other words, trajectories initialized far in the past will approach A* by
time ¢, regardless of the specific starting point within some bounded set ([125]).

This concept is closely related to the pullback concept, which considers a time-
indexed family of sets {A(t)} C RY that evolves continuously with ¢. For each
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current time ¢, the set A(t) attracts all trajectories initialized arbitrarily far back in
time. If the system becomes asymptotically periodic, A(t) will inherit that periodic-
ity; if it becomes stationary, the family A(t) converges to a fixed set; otherwise, A(t)
continues to deform dynamically with time. Unlike forward attractors, pullback
attractors (|89]) do not assume any uniform convergence over future times, mak-
ing them better suited for describing systems under ongoing or irregular external
changes (]|125]).

To gain an understanding of the instantaneous configuration of system states at
a given time ¢, forward and pullback attractors do not provide a good description.
Therefore, the concept of a snapshot attractor was introduced (]200]).

A snapshot attractor characterizes the distribution of states at a fixed time ¢,
obtained by evolving a bounded set of initial conditions B(ty) from some starting
time ty < t. Formally, for a non-autonomous system governed by

x = f(x,1),
the snapshot attractor at time ¢ is defined as the image set

Asnap(t) = {X(t;t()aXO) | Xo € B(tO)}a

where x(t;tg,%o) denotes the trajectory initialized at xo € RY at time t;, and
evolved forward to time ¢t. In the limit t; — —oo, this ensemble converges to a
time-dependent distribution that reflects the system’s transient structure at time ¢
([125)).

Snapshot attractors can be seen as temporal slices through a pullback attractor.
While pullback attractors track how groups of trajectories settle into sets as time
progresses, snapshot attractors capture the geometric configuration of the vector
field at a specific moment providing an analysis concept to track changes in local
vector fields across time. This distinction between different non-autonomous attrac-
tors is particularly relevant for neuroscientific phenomena, where brain dynamics are
driven by time-varying internal and external factors (like circadian rhythms, energy
homeostasis, or learning and plasticity).

Types of Non-Autonomous Dynamics When considering non-autonomous
DSs in neuroscience, it is especially useful to distinguish between different causes
of non-autonomy, namely parameter non-stationarity (also referred to as parame-
ter drift systems) and input-driven non-autonomy. In DSs with input-driven non-
autonomy, the system evolves under the influence of external inputs. This case can
be modeled by

X = f(X7 S(t)),

where s(t) is an exogenous input signal. Here, s(t) could represent sensory stimuli,
task events, or other structured perturbations that directly modulate the system’s
state trajectory without altering the autonomous update equations themselves.

In contrast, for DSs with parameter non-stationarity, the parameters of the sys-
tem vary as a function of time. This can be commonly written as

x = f(x; 0(1)),
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where the time-dependent parameter vector 6(¢) modulates the underlying vector
field. These parameters can typically represent intrinsic system properties. In neu-
roscience,i.e. these can for instance represent synaptic coupling weights which may
change due to external influences or internal adaptive processes like learning, mem-
ory formation, or short-term plasticity (|2, 50, 48, 219, 99, 145, 241, 215, |265]).

While both cases involve an explicit dependence on time, they can be interpreted
differently in how they modify the system: parameter non-stationarity changes the
geometry of the vector field itself, in other words the inner rules, while input-driven
non-stationarity modifies the trajectory within a fixed dynamical structure.

In more general cases, both forms of non-stationarity maybe present. These
hybrid systems combine time-varying parameters and external inputs:

x = £(x;0(1)) + g(x) u(t),

and are particularly relevant in neuroscience, where internal adaptation and external
stimulation interact with each other.

These two sources of non-autonomy can each induce transitions into qualitative
distinct dynamical regimes, and must be jointly considered when reconstructing or
interpreting the underlying system. Fast variability in observed neural trajectories is
frequently driven by task-related or other environmental inputs, modeled as external
input signals signals s(t) that perturb the latent state x () of the system. Such in-
puts can push the system state across separatrices into new basins of attraction. In
perceptual decision-making tasks, for example, a brief or noisy stimulus can displace
the trajectory from a neutral fixed point toward a decision-specific attractor, effec-
tively encoding alternative choices (|250, 261, 249]). Or in working memory where
once the memory cue (external input) vanishes, the system sustains the information
via an attractor state ([61]).

In contrast to external input-driven non-autonomy, neuromodulation, for in-
stance can introduce slow changes to the system’s intrinsic parameters 6(t), thereby
reshaping the vector field f(+; #) itself. Neurotransmitters like acetylcholine, dopamine,
or serotonin modify cellular excitability (|168|), synaptic connectivity ([105]), or even
gene expression (]197]) over minutes to hours shifting the qualitative structure of
attractors in the system.

A concrete example is cholinergic modulation in prefrontal cortex. Increased
acetylcholine can broaden neuronal tuning curves, reduce spontaneous drift, and
stabilize memory-related activity patterns (|19]). Computational models of working
memory circuits have shown that enhancing excitability via acetylcholine reduces
diffusion of persistent activity bumps resulting in more stable attractors (|61]).

Dopaminergic modulation in frontal-striatal circuits similarly alters the structure
of the DS regulating choice behavior. By up-regulating gain or modifying effective
connectivity, dopamine can bias the system toward a particular attractor (choice)
without presenting any immediate input, reflecting internal state variables like mo-
tivation or reward expectation (|167]).

Plasticity as Structural Reconfiguration. While neuromodulation may alter
internal parameters episodicaly (|143|), synaptic plasticity like Hebbian learning
(199]), spike-timing-dependent plasticity (|68]) or simply memory formation (|158,
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35,(119]) can change the network circuitry over longer timescales. These mechanisms
can be interpreted as the core of parameter non-stationarity in neural systems,
reshaping the system’s dynamics through changes in synaptic weights.

In the motor cortex, learning a new movement sequence can be interpreted as
reconfiguration of the attractor structure (|112]). Initially, neural trajectories may
be irregular or disorganized across state space. With practice, synaptic changes
induce a coherent neural trajectory encoding the motor pattern (|1]).

Developmental processes may as well induce slow parameter drift. Maturation
of connectivity, myelination, or aging may all influence the internal parameters.

Internal parameter changes can be also be observed as systematic drifts in firing
rates across time. For different plasticity mechanisms are thought to cause a drift
in firing rates (|205, 45, 48]). In addition studies have decomposed trial-to-trial
variability into components of slowly, varying low-dimensional, parameters rather
than attributing all variance to fast noise (|206, 40]).

In sum, DST proofs to be a very versatile tool for understanding neural activity
patterns in terms of their temporal organization. It offers a powerful formal lan-
guage that even under complex conditions like the influence of external stimuli and
internal adaptation processes, can provide rich analysis tools that help to identify ab-
stract concepts. Capturing such complexity requires models to account for transient
and structural changes in the observed data. Connecting the abstract DST with
empirical data motivated the integration of machine learning methods, which offer
general-purpose tools for constructing data-driven dynamical models. The following
section introduces core concepts from ML for modeling neural phenomena.

1.3 Modeling Neural Activity
Machine Learning Principles

Within the following paragraphs I want layout the foundation of ML concepts and
the basic terminology that is needed to understand how ML together with DST can
be used in neuroscience to understand biological phenomena.

Learning Paradigms ML tasks are usually grouped by data type and model ob-
jective. The first category is supervised learning, in which a dataset D = {(z;, v;) }¥,
of feature—label pairs is provided, and the goal is to learn a function f : X — )Y
from a hypothesis class H that minimizes the prediction error on unseen samples
(|244]). The learning objective is to minimize the expected risk

R(f) = Eg@ylL(f(2),9)],

where L(-, ) denotes a task-specific loss function (|244]). Since the true distribution
is unknown, the expected risk is approximated by the empirical risk

N
. 1
R(f) =5 D LU (), ws),
i=1
which is minimized during training. For regression, L is typically the squared loss;

for cla§siﬁcati0n, cross-entropy loss is usually used (). Generalization is achieved
when R(f) =~ R(f), meaning the model performs well on unseen data (|94, 54]).
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In unsupervised learning, only features {x;} are available without explicit labels
(194} 54]). Here the objective is to uncover some form of latent structure in the data
or to have a probabilistic model py(z) that captures the data-generating process
(|54, 94]). Therefore most commonly the log-likelihood is optimized:

L(0) = Zlogpe(:vi),

or equivalently the negative log-likelihood is minimized. Unsupervised learning in-
cludes objectives like clustering (finding groups in the data), or feature learning via
autoencoders, which minimize a reconstruction loss such as Y, [|z; — g(f(x:))|%,
where f and g are encoder and decoder mappings (|94]). The goal is to model the
empirical distribution Py (x) by learning compressed or constrained latent represen-
tations.

A third distinct type of ML is reinforcement learning (RL). Here an agent learns
through sequential interaction with an environment to maximize its return(|233,
232, 47]). At each time step, it observes a state s, selects an action a ~ m(als),
receives a scalar reward r, and transitions to a new state s’. The goal is to maximize
the expected return

T
J(m) = E[Ro], where R;= nyT’trT,
T=t1

with v € (0, 1] denoting the discount factor. Unlike supervised settings, there are
no direct targets, such that learning is driven by reward signals. The key objective
here is to identifying which past actions contributed to observed rewards. Common
approaches include policy gradient methods (REINFORCE, [257]) and value-based
algorithms ([|252|) that propagate reward information backward to optimize the pol-
icy (]256]).

Universal Approximation Theory A key result in theoretical ML is the Uni-
versal Approximation Theorem (UAT, [135]), which establishes that neural networks
(NNs) can approximate arbitrary functions within a wide range of function classes
(|43, [111} |37]). Here NNs means a group of artificial neurons in a layer (|146]).
Specifically, for any continuous function f defined on a compact subset K C R",
and for any € > 0, there exists a feedforward NN with a single hidden layer, finite
width £, and a non-polynomial activation function o(+) such that the network output
g(x) satisfies

sup | f(z) —g(z)| <e,
zeK

where g(z) = Co(Ax+D), for suitable weight matrices A, C' and bias vector b (|111]).
This result was independently proven by Cybenko and Hornik in 1989 for sigmoid
activation functions([43, 111]), and later generalized to a wider class of nonlinear-
ities (|37]). The main intuition here is that hidden units work as tunable basis
functions to approximate the desired function. For instance, sigmoidal activations
can approximate step functions, which can then be linearly combined to construct
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piecewise-constant or piecewise-linear approximations of any continuous target func-
tion (|37]). The rational here is that compositions of affine transformations with
nonlinear activation functions densely span the space C'(K), and thereby demon-
strating the universal approximation quality of a network. Most importantly, the
UAT only guarantees the existence of an appropriate set of weights (in the limit
case). It does not provide a method for finding these parameters, nor does it specify
a minimal width of the network required for an accurate approximation. In prac-
tice, this means that sometimes very wide networks have to be used to accurate
approximate complex functions(|13]). A problem that motivated the use of deep
architectures to distribute representational complexity across many hidden layers
((13)).

RNNs, used in the context of sequence modeling and time series analysis, also
exhibit this property .

Recurrent Neural Networks RNNs (|202, 64]) form a class of important dy-
namical models. They are designed to process sequential input by maintaining an
internal hidden state that evolves over time (|94]). In their standard discrete-time
form, RNNs update a hidden state vector h; € R™ according to the recurrence

ht+1 = ¢(Wht + USt + b), (1)

where s; € R™ is the external input at time ¢, W € R"*" the recurrent weight ma-
trix, U € R™™ the input weight matrix, b € R™ a bias vector, and ¢(-) a nonlinear
activation function applied elementwise (e.g., tanh, ReLU) (|94, 54|). This nonlinear-
ity enables complex temporal transformations and attractor dynamics beyond linear
regimes. An output z; = Vh; + ¢ can be defined via an output weight matrix V'
and bias ¢, allowing for either sequence-to-sequence or sequence-to-label mappings,
depending on whether outputs are taken at each time step or only at the final step.

RNNs can be interpreted as a deep feedforward network unrolled over time, where
the hidden state h; evolves according to a shared nonlinear transition ¢ function. In
principle, they can approximate any trajectories of an arbitrary finite-dimensional
DS over any finite time horizon (|37, |78,/124]). This was formally proven by Funa-
hashi and Nakamura (1993)|78|,who showed that for any continuous-time DS gov-
erned by & = F(x), there exists a discrete-time RNN of the form x;,, = f(z;) that
can approximate the system’s trajectory to arbitrary precision, provided the net-
work has sufficient capacity (|78|). Extending this result, Siegelmann and Sontag
proved that RNNs with rational weights and nonlinear activations are computation-
ally universal, capable of simulating a Turing machine ([220]).

RNNSs are typically trained using BPTT [253], which unfolds the recurrence over
T time steps, resulting in a deep feedforward network with shared weights across
layers (|202, 94, 54]). A loss function L = 37, L®(x;, x¥) is minimized with respect
to parameters {W,U,V, ...}, with gradients computed by traversing the unrolled
computational graph in reverse temporal order ().

Gradients for W accumulate across time:

oL <&
—— = &(h-)', (2)
W 2
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where 0, = (e, + W' d,41) ® ¢(a;) is the backpropagated error, and ¢, = L® /0h,
denotes the local output error (|94]).

However, BPTT suffers from vanishing and exploding gradients for large T,
as a result of repeated multiplication by the Jacobian J; = diag(¢'(a;))W during
training. If the spectral norm of J; is less than (or greater than) one, gradients
decay (or grow) exponentially over time (|106, 14, 179]). This issue is analogous to
instability in deep feedforward networks and is particularly concerning when learning
long-range dependencies ([106, (14, 179]).

To address the "vanishing and exploding gradient" problem, gated architectures
as the Long Short-Term Memory (LSTM, [107]|) extends the vanilla RNN with a
memory cell ¢; and three gating variables i;, f;, o, that control input, forgetting,
and output flow ([107]):

i = J(Uist + Wihy—1 + bi)7 (3)
Je=0(Ugsse + Wyhiy + by), (4)
0y = 0 (Upst + Wohi—1 +b,), (5)
¢, = tanh(Ue.sy + Wehy 1 + be), (6)
= ft©ci1+ 1 O, (7)
hy = 0y ® tanh(c¢y). (8)

The additive memory update helps prevent vanishing gradients by preserving
information over time when f; ~ 1 and i, &~ 0 ([107]).

The GRU provides a simpler alternative with fewer gates and no separate mem-
ory cell. It uses a reset gate r, and an update gate z; (|38, 39]):

ry = o(Upsy + Wiohy_1 + b,), (9)
zp =0(U,sy + W,ohi_1 + b,), (10)
hy = tanh(Ups, + Wi (ry © hy—1) + bp), (11)
hy=(1—-2)0h1+20 h. (12)

Both LSTM and GRU architectures enable stable gradient propagation across
time and support learning of long-term dependencies, which vanilla RNNs often fail
to capture (]106} 107, 39]).

These gated RNN models provided a major advancement toward robust sequence
learning architectures in both ML and neuroscience.

Recurrent Neural Networks as Dynamical Systems RNNs create a con-
nection between ML and DST (|60]). When considered with or without external
inputs, a vanilla RNN can be described as a discrete-time nonlinear DS. From this
perspective, training an RNN corresponds to constructing a DS that can generate
the desired trajectories by tuning parameters W, U, and b. After training, all tools
from DTS could be in principle used to analyze and interpret the network’s internal
dynamics (]|60]). All fundamental concepts from DST (like fixed-points, attractors,
stability, limit cycles, and chaos) apply to RNNs. In particular, nonlinear RNNs can
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support multiple fixed-points x* satisfying h* = ¢(Wh* + b). The local stability of
such fixed-points is determined by the Jacobian

J = diag(¢/(Wh* + b))W, (13)

which governs how small perturbations d, evolve via the linearized dynamics d;,1 ~
Jo;. If the spectral radius of J is less than 1, the fixed point is locally asymptotically
stable; otherwise, the point may be repelling or saddle-like (|229, 54]). Nonlinear
RNNs can also generate limit cycles, i.e., closed trajectories {h,} satisfying x;,r = x;
for some T" > 0, which act as attractors for nearby trajectories. In contrast, linear
systems only support non-attracting cycles under the condition that all eigenvalues
are purely imaginary (VA € eig(J) : R(\) = 0).

RNN might be analyzed for a number of properties or dynamic phenomena to
insights about their computation:

¢ Fixed-point analysis: Identify equilibrium states and assess their local sta-
bility. Stable fixed-points often correspond to memory states or decision at-
tractors (|250, |178]).

e Attractor structure: Characterize the geometry of attracting sets like man-
ifolds, cycles, or chaotic regimes that might have a representative function.

e Limit cycle analysis: Detect and quantify periodic attractors using tools
such as SCYFI (]63]).

e Controllability and reachability: Analyze whether input-driven trajecto-
ries can access relevant regions of state space.

Understanding RNNs through the lens of DSTs (and vice versa) has become central
in computational neuroscience, where DST provides a formal framework to analyze

trained models in terms of attractor landscapes or phase space geometry (|60, 231,
11]).

Recurrent Neural Networks in Neuroscience

Early Recurrent Neural Network Models The use of RNNs in theoretical neu-
roscience was linked to the development of attractor-based memory models. A key
contribution came from Hopfield, who proposed a fully recurrent network with sym-
metric connections that functioned as a content-addressable memory system (|110]).
In this framework, the network’s activity converges toward stable fixed-points that
represent stored memory patterns, enabling reconstruction of complete patterns from
partial cues (|110]). This model established a mechanistic link between recurrent
dynamics and associative memory, and was later extended to continuous-valued
neurons (|251]).

These attractor dynamics were used as models for cortical memory function,
opening the possibility for theoretical analyses of storage capacity, stability con-
ditions, and retrieval performance (|5]). Beyond discrete point attractors, models
were generalized to support continuous attractors (such as line attractors) which
have been proposed to explain graded persistent activity observed in oculomotor
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integration tasks (|217]). Such structures enable representation of continuous vari-
ables (e.g., spatial location or head direction) via activity patterns constrained to
low-dimensional manifolds embedded within the network’s state space.

At the same time, early studies also investigated learning mechanisms in RNNs.
Williams and Zipser introduced the real-time recurrent learning algorithm, an online
method for computing exact gradient updates in continuous-time RNNs (|257]).
Applying this framework to model oculomotor control ([217]), they demonstrated
that gradient-based adaptation could train a small recurrent circuit to function as
an integrator, maintaining stable activity over extended durations. Despite these
advances, the practical use of gradient-based training was still limited due to high
computational cost and vanishing gradients in long sequences.

As a result, most RNNs used in neuroscience during this period were analytically
constructed rather than learned. Ring attractor models for head-direction cells (|221,
190, 223, 208]) and bump attractor models for grid and place coding in spatial
navigation circuits highlight this approach (|147, 29, 86]). These models provided
mechanistic hypotheses for how stable internal representations could emerge from
structured recurrent connectivity, but they did not offer a general framework for
task-driven learning.

In the early 2000s, the development of continuous-time RNNs (CTRNNSs, |78|)
further strengthened the conceptual bridge between DST and neural computation ([224,
131]). These models explicitly formulated RNNs as systems of coupled differential
equations, aligning more naturally with the continuous temporal dynamics of biolog-
ical neurons. CTRNNs were analyzed using tools from nonlinear dynamics demon-
strating the diverse behaviors that such networks could produce (|224, |131]). This
perspective supported the interpretation of neural computation as the evolution of
trajectories in state space, shaped by recurrent feedback.

Architectural and Algorithmic Advances in RNNs After 2000, several key
innovations improved the usability of RNNs to model cognitive functions. The
development of reservoir computing (|115]) circumvented the instability of training
recurrent connections directly (|263]). Two frameworks (Echo State Networks (|115])
and Liquid State Machines (|138])) proposed fixing the recurrent weight matrix
with random initialization and training only the output layer (|115, 138]). These
models rely on a high-dimensional, nonlinear reservoir to map inputs into state-
space trajectories, from which a linear decoder extracts task-relevant signals (]115,
138]).

Within the Liquid State Machine framework, cortical microcircuits were intro-
duced as dynamic reservoirs which can sustain and transform temporal information
through intrinsic activity (|137]).

Standard RNN architectures were improved by innovations directly targeting
the problems of optimizing these architectures. The introduction of LSTM net-
works ([107]) addressed the vanishing gradient problem through gating mechanisms
that regulate information flow across time (|107]). These mechanisms allow rele-
vant information to be retained across long sequences. Originally developed in ML,
LSTMs inspired parallel developments in neuroscience, particularly for modeling
working memory and cognitive control. The gating functions in LSTM units have
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been likened to biological processes such as basal ganglia-mediated gating of pre-
frontal representations (|171]) or thalamocortical routing of contextual input (|228]).

RNNs as Computational Models for Cognitive Functions With more pow-
erful architectures and training methods, RNNs have increasingly been used as mech-
anistic models for cognitive computations (|142, 222, 264, 247, 191, 82|). Rather
than assuming specific circuit structures, these models are trained to perform cog-
nitive tasks, and their resulting dynamics are analyzed to identify potential neural
mechanisms. An important study demonstrating the effectivity of this approach was
conducted by Mante et. al. 2013 [142], in which a RNN was trained on a context-
dependent sensory integration task similar to the one performed by primates. The
trained network revealed a novel hypothesis: selection and integration of sensory in-
puts in prefrontal cortex occur through a single dynamical process in which context
adjusts "selection vectors" that determine which inputs persist along line attrac-
tors and which are canceled through orthogonal relaxation dynamics (|142|). This
prediction was later confirmed by neurophysiological recordings from primate PFC
circuits (|[8]).

Working memory has been a focus for such modeling (|11, (188, 98]). Neural
recordings from PFC during memory tasks show persistent activity patterns inter-
preted as signs of attractor dynamics (|42, 61, 81, 80]). Traditionally, these were
modeled using handcrafted circuits with stable fixed-points or line attractors (|154,
79, |81, 161]). RNNs trained on working memory tasks often discover similar solu-
tions through optimization. Binary working memory tasks tend to create discrete
attractors (|178]), while continuous memory tasks produce line or ring attractors on
low-dimensional manifolds (|113,218]).

RNN models have also been important in decision-making domains (250, (3, 91]).
Many perceptual and value-based decisions require accumulating noisy evidence
over time, a computation naturally supported by recurrent architectures (|249|).
Early models showed that mutual inhibition in RNNs can implement winner-take-
all dynamics for categorical choice (|250]). Similarly, Carnevale et al. (2015) (|32])
used RNNSs to propose a mechanism of how the premotor cortex dynamically adjusts
decision-making criteria under temporal uncertainty.

In more recent years RNNs have been used extensively to generate new hy-
pothesis about a variety of neural computations mechanism. Studies focused on
timing and the parametric control of neural dynamics. Wang et al. |247] proposed
that trained RNNs can implement flexible timing through smooth modulation of
internal trajectories. Beiran et al. [12] showed that when inputs are coupled to a
low-dimensional contextual signal, networks generalize timing behavior by interpo-
lating between previously learned input regimes. Remington et al. [191] further used
RNNs to show that interval and task context adjusted the system’s initial condi-
tion and input, shaping the geometry of cortical trajectories across trials during a
sensorimotor timing.

Beyond single-task training, RNNs have been used to model computational pro-
cesses of multitasking. RNNs trained on many tasks at the same time developed
units with mixed selectivity (similar to prefrontal neuron; (|194]), encoding combina-
tions of task-relevant variables such as rule, context, or evidence. This phenomenon
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was shown to be robust across architectures and training regimes (|264]). Dubreuil
et al. (|51]) further explored how population structure within RNNs influences com-
putational dynamics during multitasking. They demonstrated that tasks requiring
flexible input-output mappings benefit from non-random structures composed of
multiple subpopulations. Driscoll et al. (]49]) introduced the concept of dynamical
motifs (low-dimensional trajectory patterns) that were selectively recruited across
tasks and supported generalization across multiple tasks.

Analysis Tools for Analyzing Trained RNNs from neuroscience The in-
tegration of RNNs into neuroscience has been accompanied by the development of
tools to analyze their internal dynamics. In theory trained RNNs are fully inter-
pretable by DST, in practice, however they often show high-dimensional, complex
behavior that makes their mechanistic understanding difficult (|231]). To address
this, DST methods have been adapted to analyze RNN models (|60]; and see above).
One approach is fixed point analysis, which aims to identify and characterize the
fixed point structure embedded in trained networks (231, 63]). Sussillo and Barak
(]231]) introduced a numerical method to locate fixed-points and linearize the local
dynamics around them, allowing the extraction of eigenvalues for stability analysis.
This provide important information about the local geometry of the state space
and helps characteristic timescales of dynamic modes. While the method presented
by Sussilo and Barak relied on numerical computations, certain RNN models, like
PLRNNs([53, 127, 128, 24, 104, 63, 152, 101, 23, 26, 210|), can be analytically an-
alyzed for n-cycles with specific algorithms (SCIFY; (|63]). Perturbation analysis
offers another perspective on RNN computations. By introducing small pertur-
bations to the internal states and observing the divergence or convergence of the
trajectory, one can empirically map the flow field of the system and identify attrac-
tion basins (|33]). This technique prompting followup experiments in neuroscience
where brief simulations or optogenetic perturbations test the stability and flexibility
of circuit dynamics (|172|). RNNs can be analyzed for their Lyapunov spectrum
(|65} 1245]), to investigate chaotic phenomena.

From Biologically Inspired RNNs to Dynamical System Reconstruction.
So far RNNS have used as important tools to generate hypothesis about compu-
tational mechanisms, sometimes with specific neurobiological priors (|222]). These
modeling efforts share a powerful strategy: train a recurrent model to perform a
task, then analyze its internal dynamics as if it were a biological circuit. If the
model replicates known neural phenomena, it serves as a plausible mechanistic hy-
pothesis. If it differs, it still offers a testable alternative that can guide empirical
research. Despite their success (|60, 11]), these models being trained on task per-
formance, serve primarily to generate hypotheses about the dynamic principles of
neural computation, rather than directly providing information about the DST un-
derlying empirical neural data (|60]). This approach marks a conceptual shift: from
using RNNs as abstract models of computation, to train them to capture the same
geometrical and temporal properties as the DS underlying the observed neural ac-
tivity. The objective changes from prediction to identification. The next section
develops the foundation for DSR.

20



1.4 Dynamical Systems Reconstruction

At the core of DSR lies the principle that an observed time series contains implicit
information about the hidden state variables of the system ( ) Considering a
deterministic DS described by z = f(z) in continuous time or z, 1y = f(z;) in discrete
time, where z € R? denotes the full state vector of the system. In neuroscience, this
might correspond to membrane voltages, synaptic conductance, or other internal
variables. In practice, these internal states are not directly accessible. Instead,
one records an output signal x(t) = h(z(t)), representing a (possibly vector-valued)
observation of the underlying dynamics ( )

Takens’ embedding theorem (m) provides a foundational result for recovering
the system’s geometry from such partial observations. Under generic conditions on
the measurement function h, a time-delay embedding of a single scalar time series
x(t) can reconstruct the topological structure of the original state space ([235} [120]).
Specifically, one constructs a delay vector

x(t) =[xt),z(t+7),z(t+27),...,2(t+ (m — 1)7)] (14)
using a fixed lag 7 and embedding dimension m. Takens (1981) (|235|) proved that,
for deterministic systems of dimension d, if m > 2d + 1, the map z(t) — x(¢)
is an embedding of the original attractor(see Figur). That is, it is one-to-one
and differentiable, preserving the dynamical degrees of freedom of the system (see
Figur, for an illustration of )

a

original =1 =10

X;

Figure 4: Ilustration of DSR and delay embedding a Delay embeddings of
the original systems trajectory from a single observable (e.g., membrane voltage
Vi) into a higher-dimensional space using delayed versions of the signal, such as
(Vi, Vi, Vi_ar). Correct choice of delay 7 is critical: a too small 7 compresses
trajectories, too large distorts them. b Topological equivalence requires that the
embedding map preserves the structure of the original system (left). Violations
occur when the mapping is not one-to-one (center) or when its Jacobian becomes
singular (right), distorting local geometry. Adapted from
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This result ensures that the sequence of observations contains sufficient informa-
tion to recover the geometry of the underlying system, assuming generic observability
([120]). It builds on Whitney’s embedding theorem ([254]) and implies that a topo-
logically faithful reconstruction of the system is possible from scalar observations
alone. The key requirement is that the recorded signal must be sufficiently sensitive
to all components of the hidden state (|120]).

If certain internal variables never influence the output z(t), then they are un-
observable and cannot be recovered (|213, 214]). However, in neural recordings,
even single-unit recordings typically reflect a mixture of state variables (also known
as mixed-selectivity; [194]), making the system at least weakly observable in many
practical settings.

Classical results such as those by Sauer, Yorke, and Casdagli (1991) extended
Takens’ theory to include multi-dimensional observations and fractal attractors
(J209]). These results showed that an embedding dimension greater than twice
the correlation dimension Ds of the attractor suffices to reconstruct its topology.
Taken together, these theoretical insights ensure that, under appropriate sampling
conditions and observability assumptions, the geometry of a system’s state space
can in principle be recovered from recorded data (|120, 54]).

However, while delay embedding enables the detection of qualitative features
such as fixed-points or periodic orbits, it remains non-parametric ([120]). Therefore
it, only provides a geometric reconstruction of the attractor but does not yield an
explicit generative model of the underlying system.

Dynamical Systems Reconstruction with Generative Models

To move from purely qualitative and geometrical reconstruction to a generative
model capable of reconstructing the underlying DS from data, multiple approaches
have been explored (|54, 28, 34, 127, 24, 60, 36, (102]). The main idea behind all
these approaches lies in the objective of approximating the the latent DS with a suit-
able function capable of extracting the governing equations of directly from observed
data. One line of work focuses on directly approximating the vector field from the
observed time series. Sparse Identification of Nonlinear Dynamics (SINDy) |28, 34],
address this challenge by approximating the vector field of the system as a sparse
linear combination of preselected basis functions (contained in a function library),
regularized by LASSO regression (|238|). This leads to a set of analytically tractable
differential equations that can provide interpretable insights into the system’s mech-
anistic structure. But only when the time series was actually generated by func-
tions contained in the predefined library. However, the reconstruction performance
of SINDy entirely depends on the expressiveness of the chosen function library and
breaks down when the true DS cannot be adequately represented by the function
library. A more general but less interpretable approach uses NNs to parameterize
the vector field. Neural ordinary differential equations (neural ODEs; [36]) model
the system as a continuous-time flow, and the evolution of underlying dynamics are
inferred via numerical integration. This enables handling of irregular sampling and
provides smooth latent trajectories, but at the cost of high computational demands
(192]). They are also not ideal for for reconstructing high-dimensional systems with
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complex dynamics, especially because they cannot model functions requiring topo-
logical changes in state space (|52]).

(. ) ( ) ( )
Underlying Data Generating Observation | Recurrent Neural Network Trajectories Simulated by
Dynamical System Observations Models for Approximating DS Recurrent Neural Network
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Figure 5: Conceptual framework for DSR with RNNs observed data For
DSR, RNNs are trained on observed time series from an unknown DS to recover
its underlying latent dynamics. Observations like calcium traces, spike counts, or
behavioral responses are measurements linked to the latent DS via the specific ob-
servation models that define their conditional distributions. Once trained, the RNN
can reproduce trajectories with the same geometric and temporal structure as the
original system. In DSR the main goal is to have a good approximation of the whole
vector field underlying the latent DS (adapted from [60].

RNNs offer a practical alternative to both SINDy (|28, 34]) and neural ODEs
(36]) for reconstructing DSs directly from neural data (|60]). RNNs do not require a
predefined function library and can approximate arbitrary nonlinear transition func-
tions through their universal approximation property(|37, |78, |124]). In contrast to
neural ODEs, they operate in discrete time and do not rely on numerical integration,
avoiding high computational costs and numerical instability. Their state evolution
directly captures sequential dependencies, making them well-suited for modeling
DSR. In contrast to the RNNs from the previous section??, RNNs for DSR are not
trained on an artificial cognitive task but directly on data in the form of uni-modal
(|53} 1127, 24]) or multi-modal data (|128, 27, 25]), with specialized encoder mod-
els (]128, 24]). After training, the RNN can generate data that exhibits the same
temporal and geometrical properties like underlying data-generating system (see
Figure??). However, applying vanilla RNNs to DSR introduces challenges. Stan-
dard training algorithms such as BPTT (|253]) suffer from the exploding-vanishing
gradient problem (]106]). To control these limitations, specialized trained algorithms
have been developed (|152, 24, 104]). Approaches such as teacher forcing, where
observed data periodically replace model-generated states during training (Sparse
teacher forcing; |24, 152|), help to stabilize the latent dynamics and prevent diver-
gence (|152]). An alternative to sparse teacher forcing is generalized teacher forcing
(|104]), where model-generated and observed states are continuously interpolated
throughout training. This approach is particularly effective as the interpolation
factor can be dynamically adapted over time to control for exploding gradients
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during training (|104]). Additionally, explicit regularization terms have been in-
troduced that penalize deviation from expected long-term behaviors, for instance
the manifold-attractor regularization [210|. These improvements in training RNNs
on noisy, or chaotic data. Form the basis for the pePLRNN framework further
developed in this work.

Model Validation in DSR

Reconstructing a DS is not about fitting the observed time series data with a low
prediction error ([127,/60, 24, 27]). In case of chaotic systems the prediction error is
inherently meaningless, due to the sensitivity property of the chaotic system (|127,
262|) and can even lead to misleading conclusions about the quality of the recon-
struction (see Figurd6/A). Therefore, multiple criteria are used to validate DSR model
(|1127,160]) on empirical data. A better suited test is whether invariant measures and
the qualitative structures of the true system can be reproduced by the DSR model
(|235, 60, 27]). An invariant measure introduced by Koppe et al. (2019)(|127]) is
based on the Kullback—Leibler divergence (refered to as the state space distance)
between the spatial distribution of model-generated states and the distribution of
true states (|127, 24, 27, 60]). A good reconstruction has a small KL divergence
(see Figur), indicating the model spans the same regions in state-space with
similar frequency (|127, 24, 27, 60]). A power spectrum comparisons can be used
for validating the temporal properties of the reconstructed system (for instance the
Hellinger or Wasserstein distance; [60]). This ensures the model has captured the
correct temporal componets of the true system. The qualitative structure can be
assessed by comparing topological features like the number and type of attractors
(|24, 63]). A concept sometimes invoked here is topological conjugacy (235} [120]).
Two systems are considered equivalent if there exists a continuous invertible change
of coordinates mapping one system’s trajectories to the other’s (see Figure@; [209,
120]).
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Figure 6: Reconstruction measures for chaotic system a The Mean-squared
error (MSE) is inadequate for evaluating DS reconstruction in chaotic systems, as
small initial differences lead to diverging trajectories despite underlying dynamical
similarity. b Geometric measures such as state-space distance (Dssp) better capture
reconstruction quality by comparing the overall structure of true and generated tra-
jectories. Low MSE may mislead if the reconstructed system mimics only superficial
features (e.g., frequency), while high MSE may still arise despite correct dynamic
geometry. Adapted from

Practical Challenges

Reconstructing the neural dynamics from neuro-physiological recordings poses a far
greater challenge than well-behaved systems such as the Lorenz attractor (|136]).
Neural systems present several complicating factors that violate key assumptions

(i.e. time invariance, noise free and fully observed; [120]) of classical DSR ([60]
120]) and require methodological adaptation.

1. Partial Observability
In neuroscience, datasets rarely contain all relevant state variables. For in-
stance, electrophysiological recordings may capture the activity of only a small
subset of neurons in a larger circuit, while functional Magnetic Resonance
Imaging (fMRI) signals represent spatially averaged activity from millions of
neurons. This results in a many-to-one projection from the true state space
to the observable signal.

2. Noise and Stochasticity
Neural signals are inherently noisy, with variability arising from thermal fluc-
tuations, probabilistic synaptic transmission, instrumentation noise, and un-
observed modulatory inputs . This noise can obscure the structure of the
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underlying attractor, inflate dimensionality estimates, and invalidate deter-
ministic reconstruction theorems.

3. Non-Stationarity
Parameters governing the neural dynamics drift over time due to learning,
changes in physiological condition, or external influences. This violates the
assumption of stationarity, i.e., that the system is governed by a time-invariant
function f.

1.5 Aim of this Thesis

The current gap across all related fields is that no existing model is capable of
reconstructing the non-autonomous DS underlying non-stationary neurophysiolog-
ical data while incorporating both conceptual forms of non-stationarity, namely,
external sensory inputs and internal parameter reconfigurations. This means there
is no model available that accurately takes the natural conditions of learning into
account. Moreover, there is a lack of specific validation criteria for assessing the
reconstruction quality of a non-autonomous DSR model trained on neurophysio-
logical data. To date, no effective framework exists for analyzing such models to
gain mechanistic insights into the DS principles underlying rule learning in the ro-
dent brain. Filling these gaps is the central aim of this thesis, to bridge the gap
between experimental neuroscience and DSR by presenting a mechanism in the
language of DST for rule learning in the rat’s mPFC, reconstructed from highly
noisy, non-stationary multiple single-unit recordings. To achieve this, I employ the
parameter-evolving piecewise-linear recurrent neural network (pePLRNN) to recon-
struct non-stationary time series data as a piecewise-stationary system. This is done
by introducing snapshot parameters (or time-dependent parameters) to the exist-
ing autonomous formulations of PLRNNs [53, 127, 210, [128, 24, 104, 25, 23| 27|,
which, together with the consideration of external inputs, allow for capturing the
two most abundant sources of non-stationarity in neural data. I demonstrate that
the pePLRNN can serve as a functional surrogate for non-stationary ground truth
data and the recorded MSU data by proposing a set of validation criteria that ac-
count explicitly for the non-stationary in the observed data. Using this surrogate
framework, I show that rule-learning in all animals follows a common mechanism: a
single stimulus-dependent attracting region that guides the neural trajectory during
task performance toward the correct decision. I further analyze how these attract-
ing regions evolve over the course of learning. Finally, I demonstrate that even
small changes in task design can significantly affect the dynamic mechanism used
to solve the task and that modeling assumptions of external input can influence
the reconstruction outcome. Taken together, this thesis aims to provide a general
advancement in the understanding of neural systems as non-autonomous DSs.
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2 Methods

2.1 Behavioral Task and Neural Recording
Animals

For the experimental protocol, six male adult Sprague-Dawley rats (Charles River,
Sulzfeld, Germany) were used that were 8 weeks of age upon acquisition. The rule
switching task began when animals reached 4-6 months of age. Initially, animals
were housed in standard macrolon cages (55 x 33 x 20 cm) with group housing (4
animals per cage). Following silicon probe implantation, animals were individually
housed in identical cages with custom-designed protective lids to prevent implant
damage or displacement. To maintain consistent motivational states during exper-
imental sessions, Dr. Florian Bahner established a controlled feeding regimen (20
g per animal daily, provided after the experimental sessions) that allowed animals
to develop a normal weight gain while ensuring sufficient motivation during ex-
periments. Water was provided ad libitum throughout the experimental timeline.
The housing facility maintained a controlled 12-hour light/dark cycle (07:30-19:30
light phase), with all experimental procedures conducted exclusively during the light
phase. All experimental protocols adhered to national and international ethical stan-
dards for animal research, were conducted in compliance with the German Animal
Welfare Act, and received prior approval from the appropriate regulatory authority
(Regierungsprésidium Karlsruhe, Germany; approval number G4-16).

Behavioral Training Protocol

Rats were trained systematically to perform the probabilistic rule switching task.
Initially, rats were trained to press levers for reward in a standard operant cham-
ber (21 x 29 x 24 cm), while the main task was conducted in a larger custom-
made chamber (30 x 48 x 41 cm). The experimental apparatus featured two re-
tractable levers positioned on either side of a central food delivery tray, with cue
lights mounted above each lever and a house light in the upper corner. All chambers
provided light and sound isolation, with constant background ventilation noise to
minimize external distractions.

The task implementation was controlled through MedPC-IV software with cus-
tom MedStat Notation code (MedAssociates Inc.). During initial training phases,
correct responses were rewarded with 80 ul of sweetened condensed milk (Milchmad-
chen, Nestlé), while the main task utilized 45 mg food pellets (BioServ) as rewards.

The rule-switching paradigm was adapted from [74], with a modification: rather
than deterministic reward feedback, probabilistic reinforcement was implemented
(80% reward probability for correct responses, 20% for incorrect responses) to in-
crease task complexity and better approximate real-world decision contexts.

Rats were initially trained to respond equivalently to both levers when presented
individually prior to the task. Animals first learned a visual discrimination rule
(VR), in which reward delivery was conditioned on pressing the lever located beneath
an illuminated cue light. Training continued until animals reached a predefined
performance criterion of at least 80% correct responses.
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On the day following VR acquisition, animals began each session with the VR as
a baseline performance block until reaching the performance criterion of 80% correct
responses after performing at least 30 trials. A rule switch, without any explicit cue
to the animal, was implemented, requiring animals to learn a Spatial Rule (SR).
Under the SR, rewards were delivered for pressing a specific lever side (left or right),
independent of cue light location - the cue-to-place shift.

A rule was considered to be learned when an animal reached a performance
threshold of at least 80% correct responses within the last 20 trials. Each rule
condition was maintained for a minimum of 20 and a maximum of 250 trials. After
reaching the performance criterion, the rule was switched again on the following day;,
starting with a SR baseline block followed by the visual rule (VR), thereby forming
a place-to-cue shift. Each animal completed a total of six such rule transitions.

Individual trials followed a fixed temporal structure. At trial onset, a single
cue light was randomly activated on either the left or right side of the chamber.
After a delay of 3 seconds, both levers were extended into the chamber. Animals
had a 10-second response window in which to press one of the levers. The cue light
remained on for the whole delay and response period until the animals made a choice
or the response period was over. Correct responses were probabilistically rewarded
with an 80% chance of pellet delivery, whereas incorrect responses yielded a 20%
chance of reward. Trials with no response within the response window were scored as
omissions. Following each trial, levers were retracted and a fixed inter-trial interval
of 20 seconds was imposed before the onset of the following trial.

Surgery

Six animals underwent surgical implantation of microelectrodes after they had ac-
quired the ability to respond equivalently to the individual presentation of both
levers. The 64-channel silicon probes (chronic P1-probe; 4 shanks, 16 channels per
shank; Cambridge NeuroTech, Cambridge, UK), mounted on a nano-Drive micro-
drive system (Cambridge NeuroTech), were implanted into the right prelimbic region
of the mPFC. The center of the probe array was positioned at stereotaxic coordinates
anterior-posterior (AP) +3.0mm, mediolateral (ML) +0.6 mm, and dorsoventral
(DV) —3.0mm from the cortical surface. Surgeries were performed under isoflurane
anesthesia (2.0-2.5%). A bone screw placed above the cerebellum served as ground
reference.

Electrodes were moved only when signal quality deteriorated. Electrode place-
ment within the prelimbic cortex was verified histologically. Animals were deeply
anesthetized and transcardially perfused with 4% buffered formalin. The entire
head, with electrodes in it, was stored in formalin for three weeks to preserve the
electrode tracks. Brains were extracted and sectioned using a vibratome. This
procedure enabled visualization of electrode tracks without the need for additional
staining.

Electrophysiology

Animals were allowed to recover for a minimum of seven days before being habituated
to the recording setup and reintroduced to the behavioral environment through
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additional training sessions. The set-shifting paradigm started no earlier than 14
days following electrode implantation.

Neuronal activity was recorded simultaneously from multiple single units using
a 64-channel RHD2164 amplifier connected to an RHD2000 USB interface board
(Intan Technologies LLC, CA, USA). Channels were digitized at 16-bit resolution,
sampled at 30kHz, and band-pass filtered between 0.1 Hz and 7500 Hz. Behav-
ioral event time stamps—including cue light onset, lever presentation, and lever
presses—were transmitted from the Med Associates behavioral control system to
the Intan acquisition system, allowing precise alignment of behavioral events with
neural recordings.

Raw Data Acquisition and Preprocessing

Raw electrophysiological data were preprocessed prior to spike sorting. Signals were
band-pass filtered between 600 and 6000 Hz using a Butterworth filter (implemented
via the filtfilt function in MATLAB). To suppress global noise and remove shared
artifacts, the median signal across all channels was subtracted at each time point.

Spike detection and automatic sorting were performed using the Klusta soft-
ware suite (https://github.com/kwikteam/klusta), followed by manual curation
in Klustaviewa (https://github.com/klusta-team/klustaviewa; Rossant et al.,
2016 |201]). During manual curation, putative units detected by individual tem-
plates were inspected and discarded if classified as noise based on non-physiological
waveform shapes or pattern of activity across channels.

Units with low-amplitude spikes, waveform heterogeneity, or evidence of refrac-
tory period violations were labeled as multi-unit activity and excluded from further
analysis. To identify potential redundancies, each unit was compared to spatially
adjacent clusters and merged when justified by waveform similarity, spike train cor-
relations, or drift patterns. Additionally, units were excluded if more than 1% of
interspike intervals (ISIs) were shorter than 2ms. Units passing all criteria were
considered to represent the spiking activity of single neurons.

Spike convolution and unit filtering

The following preprocessing of spike data and unit selection was implemented and
conducted by myself. Raw spike times were transformed into continuous firing rate
estimates to be learned by the DSR model. Spike times were organized into a matrix
S € R¥XT where each row corresponds to a unit i and each entry marks a spike
time in milliseconds. For each unit, inter-spike intervals were computed and used to
estimate a unit-specific kernel width. The standard deviation of these intervals was
scaled by a fixed factor oy, = 1 to obtain

0; = Ogcale * Std(ASi)a

where As; denotes the inter-spike intervals for unit i. Each spike was convolved with
a Gaussian kernel to generate a time-continuous firing rate:

Ki(tba t) =

1 (ty — t)?
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ri(t) = Ki(t,t),
teS;
with §; denoting the spike times of unit . Each unit was separately convolved and
standardized afterwards.

Units with low firing rates for the entire session were excluded from further
analysis. Units were excluded if their single-trial-averaged firing rate was below
1Hz in 30% of all trials. This filtering procedure ensured that only active units
contributed to the model reconstruction.

Stable Performance Periods

Stable performance periods for each rule were defined as the final 20 trials before
the rule change, during which behavioral accuracy was at least 80%, and the last 20
trials of the recording session. In two sessions, the second performance period was
shifted to earlier trials because of the animal’s disengagement from the task. For
dataset 10, the stable period was shifted by 25 trials, and for dataset 17 by 23 trials,
ensuring that only trials with task engagement were included.

Behavioral Performance Evaluation for Cue-Choice Association

To determine whether the cue stimulus influenced the choice of the animal during
the two rule conditions, I used a chi-squared test of independence on the behavioral
choices and the cue stimulus. This test was applied to behaviorally stable periods
(see Methods of each session. Omission trials were excluded from the analysis.

The test evaluates whether the distribution of behavioral choices is independent
of the cue stimulus location. Let the set of binary stimulus values be denoted by
S € {0,1} and the corresponding binary choice values by C' € {0, 1}, for a given
rule condition. A 2 x 2 contingency table is constructed from the joint counts of

stimulus—choice pairings:
Noo  To1
)
nio N1t

where n;; represents the number of trials with stimulus S = ¢ and choice C' = j.
Under the null hypothesis cue and choice are independent, in which case the expected
frequencies E;; for each cell are computed as
N N
N
where n;. and n.; are the marginal sums and NV is the total number of trials.
The chi-squared statistic is then given by

L (n, — B2
2= Z Z (ni EijEw) :

1
i=0 j=0

Eij =

with one degree of freedom. Statistical significance was assessed using a two-tailed

test at v = 0.05. If the null hypothesis of independence was rejected (p < «), the be-

havior was classified as VR behavior, otherwise (in case of significance), the behavior

was labeled as SR behavior. The test was conducted using the scipy.stats.chi2_contingency
function from the SciPy library.



Dataset Inclusions

In total I obtained 24 sessions for analysis. Two of the 24 sessions were excluded: one
due to a technical error, another because the animal disengaged from the task for
an extended period. On average, a session lasted 1 h 29 min 4+ 42 min and comprised
193 4 95 trials. In each session, 41 4+ 15 units were recorded.

2.2 Computational Modeling Framework
Dynamical Latent Space Model

To reconstruct DS where the underlying system’s parameters cannot be assumed to
be stationary, I used a modified version of the clipped shallow piecewise-linear re-
current neural network (cIshPLRNN) from |104]. This model, called the parameter-
evolving PLRNN (pePLRNN) reconstructs latent dynamics directly from non-stationary
time series data X € R?*" by introducing time-varying connectivity matrices, de-
noted as ng) and Wék) linked to a specific temporal segment X*, called a trials, of
larger time series, the session. The system dynamics are governed by the equations:

zep1 = Azg + WP [¢ (w;@ 2+ h2> _ ¢<W§’“) ztﬂ Yh +Cs,  (15)

x; = Lz, (16)
where z, € RM represents the latent states at time ¢, and A € RM*M is a diagonal
matrix encoding their intrinsic time constants. The trial-dependent connectivity pa-
rameters, ng) € RM*L and Wék) € REXM facilitate the modeling of non-stationary
dynamics as changes in the flow field. Here, ¢(-) corresponds to the ReLU activa-
tion function, while h; € R™ and hy, € R* serve as bias terms. External inputs,
s; € RY, are integrated into the model via the linear transformation C € RM*U,
The observable data x, € R are obtained through an identity mapping of the latent
states.

Overall, the pePLRNN is characterized by the parameter set

o={A WY _ wfh owl w9 by hy, CY.

Model Training

The DS model described by equations [15] and [16] is trained using a training pro-
tocol based on Generalized Teacher Forcing (GTF), sub-sequence sampling, and
an annealing schedule as detailed in [104]. GTF is an advanced training protocol
to allow for a controlled gradient propagation during training. Essentially it in-
terpolate the model prediction with a teacher-forcing signal from the data. This
practically controls the cumulative product of Jacobians during model training ef-
fectively preventing exploding gradient [104]. The exact training protocol with all
hyperparameters can be found in the sectionl Let x;.r denote the observed time
series segmented into K trials. The training procedure is composed of the following
steps:
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Annealing Schedule During training, GTF is applied by interpolating between
the predicted latent states z;, and the data-derived ground truth states z{™e:

7z = (1 —a)z; + az™,
with the annealing parameter « initialized at 0.5. It is then exponentially decayed
to 0.1 during the first 10% of training epochs and further to 0.001 over the remaining
epochs.

Sub-sequence Sampling. At each epoch, sub-sequences of length T are ran-
domly sampled from the full time series. Each sub-sequence is defined as

tpitp+T

where t, € {1,...,T — T } is selected randomly. These sub-sequences are arranged
into batches of size S, with each sub-sequence aligned to the corresponding trial-
dependent weight matrices ng) and Wék).

Adaptive Gaussian Noise. To enhance model robustness, adaptive Gaussian
noise is added to each sub-sequence igp )T For each sub-sequence, the standard devi-
ation is computed along the specified dimension, and noise is drawn from a standard
normal distribution. This noise is then scaled by both a noise level parameter n and
the computed standard deviation.

Teacher Forcing Initialization. For each sub-sequence in the batch, an initial
teacher signal is generated by mapping the observed data to the latent space via
Equation Specifically, the initial latent state is set as

2" = 1%%  for all ¢,

which provides a data-driven initialization for the latent dynamics.

State Propagation. The initial latent state zgp ) is used to initialize the model,
and subsequent latent states are propagated according to the model dynamics:

Zl(tp) = Fy (igli)l)v

where Fjy denotes the nonlinear update defined by the model equations.

Reconstruction and Loss. The latent state predictions are mapped back to the

observation space as

P 10,

The reconstruction loss is quantified by the mean squared error (MSE) between the
true sub-sequences {)Ncﬁp )} and the predicted sub-sequences {)Acﬁp )}:

T

1
e = 57y 21 2

p=1 t=2

2
%) _ 5@
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Optimization and Regularization. The loss function Lygsg is minimized via
BPTT |253] using the RAdam [134] optimizer with an initial learning rate of 1073,
decayed to 10~ after 80% of the training epochs. Regularization terms are incor-
porated to enforce smoothness and continuity in the trial-dependent connectivity
matrices. Specifically, the regularization loss for these matrices is defined as

K
A1 k k
L = 2= S (W3 + (W) 3)
k=1
\ K
2 k k-1 k k-1
2 > (W = WD+ Wi — w3
k=2
\ K
3 k k—1 k—2
+ 2 S (1w — 2w Wi
k=3

k k—1 k—2
+ W — 2wl 4 W2,

The diagonal matrix A is regularized toward the identity matrix using an Lg
penalty:
La=M[lA-T|5.

Standard L2 regularization is also applied to the bias terms h;, hy, and the input
matrix C:
2 2 2
Lweights =X\ (||h1||2 + ||h2H2 + HCHF) :

The total regularization loss is given by
Lreg = LW + LA + Lweightsa

which is combined with the reconstruction loss to form the overall objective function
minimized during training.

External Inputs

To provide the model with information about external influences that can result in
perturbations of the autonomous dynamics reconstructed by the model, an external
input matrix Sk) was specifically designed for each data set and trial segment. The
specific design for each experiment can be found in Section [5|

Trajectory Generation from the Trained pePLRNN

To simulate latent trajectories from a trained pePLRNN, the model is initialized
with a latent state zg € R, an external input matrix S = [So, - - - ,ST]T e RV,
and a time T" € N. For each time step ¢t = 0,...,T — 1, the latent state is recursively
updated using Equation [15], with model parameters © fixed to the trial-specific set
corresponding to the desired condition.

The resulting latent trajectory Z = [zo,...,z7]" € RT*M evolves under the
influence of the external inputs S, starting from the specified initial condition z.
The observable trajectory X = [Xq,...,Xy]' is then obtained via the observation
equation [16]
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Detailed conditions for each experiment on initial conditions, simulation length,
and external input design are provided in Section [5|

2.3 Artificial Rule-Learning Task

I developed an artificial rule-learning task that mirrors the sequential structure of the
animal’s behavioral task as an artificial sequence-to-sequence task. I implemented
two distinct versions of the original behavioral task: one that mimics the exact
structure of the task (the cue remains present until the choice is made) and another
that requires maintaining a memory of the cue by introducing a delay period. Each
task variant distinguishes between the two rule conditions, denoted as the visual
(VR) and the SR, and incorporates a parameter (fixing) to control whether the
network is explicitly instructed to maintain a representation during the stimulus or
delay phase.

Temporal Structure and Binning. FEach trial is discretized into time bins,
where one bin represents 50ms in real time (to match the sampling of the neural
data used for reconstruction). The task is segmented into several phases:

1. Start Phase: A baseline period lasting 60 bins (3 seconds) at beginning of
each trial.

2. Cue/Sample Phase: In the version replicating the exact task structure, a
cue is presented for 60 bins (3 seconds). In the memory variant, the cue is
presented for a shorter period of 20 bins (1 second).

3. Memory Phase (Memory Variant Only): An additional phase of 100
bins (5 seconds) is introduced, during which the cue must be maintained in
working memory.

4. Choice Phase: In the exact structure, the choice phase is randomly drawn
from a specified range (10 to 110 bins). In the memory variant, the decision
phase is shorter, varied randomly (e.g., 20 to 50 bins).

5. Reward Phase: A reward cue is presented over 10 bins (0.5 seconds).
6. Reset Phase: A final period of 60 bins (3 seconds).

In both task versions, the total trial duration is 300 bins (15 seconds).

Task Variants and Rule Conditions. Two primary task variants are used:

e Exact Task Structure: In this variant, the cue is continuously present from
the cue onset the until the end of the choice phase.

e Memory-Dependent Task: This variant introduces a delay phase between
the cue and choice phases, thereby requiring to maintain a memory of the cue
information during the delay period.
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Within each variant, there are three types of trials, two for the VR and one for
the SR:

e VR: In VR trials, the cue information (e.g., left or right visual stimulus) is
associated with a specific network output label during the choice phase (1 or
2). In all other trial phases, the output label is required to be 0.

e SR: In SR trials, there is only one output label during the choice phase disre-
garding the cue input (1). Again in all other trial phases the required network
output label is 0.

An additional parameter, fizing, is used to explicitly require an output during
the stimulus or delay phase of the task. In the case of the VR, the network is
required to maintain a stimulus-specific output: trials with a right-cue are labeled
with output 3, and trials with a left-cue are labeled with output 4 during the delay
period. In contrast, under the SR, both cue conditions are labeled identically with
output channel 3, regardless of cue identity.

Inputs Inputs
cue left
cue right
choice period
1 - reward : BE
Behavior Behavior
4.0 ] 4.0 ]
3.0 ] ) 3.0
2.0 1 (ilhqlce l_e{l"]t 2.0 ]
1.0 . M choice right 1.0 — :
0.04 . - . ' resting 0.0 . -y '—I '
0 150 3000 150 300 0 150 3000 150 300
time [A.U] time [A.U]

Figure 7: Artificial task structure example A Example of the temporal struc-
ture of two VR trials (left cue [left panel|] and right cue [right panel|). External
inputs (cue, choice reward signals) and required behavioral output (rest and choice)
are aligned. During trials of the VR the required behavioral outputs during the
choice phase are different (left cue requires output of 2 and right cue an output of
1). B Illustration of the temporal structure of two example trials during SR (left cue
[left panel] and right cue [right panel]). Same as in A inputs and required behav-
ioral output are aligned. During SR trials the required behavioral output is same,
regardless of the input cue.

Randomness and Omission Trials I incorporate several sources of randomness:

e Phase Duration Variability: The durations of the decision phase in the
exact task, and both the memory and decision phases in the memory variant
are randomly sampled for each trial within a predefined ranges (see above).

e Omission Trials: With a probability of 33%, a trial is designated as an
omission trial, in which no cue is presented and no decision is required. In
these trials, the label for the entire trial is set to 0.
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Input and Label Encoding Each trial is represented as a multidimensional ar-
ray, where each time bin contains four input channels corresponding to specific task
events:

e Cue Channels: Two channels encode the cue (left and right). Activation of
channel 1 indicates a left cue, while channel 2 indicates a right cue.

e Decision Cue Channel: Channel 3 signals the decision period.
e Reward Cue Channel: Channel 4 indicates the reward period.

Additive Gaussian noise &, ~ N(0, 0.1I) was applied to the input.

Jat B
Inputs Inputs
——d cue left mend™ -
DU s WY cue l'lght M
 ana| S, choice period — } n
[T | NS PR | R— reward / : _'_""""“‘Jll""‘""“""’.
Behavior Behavior
4.04 fixing left 4.0
3.0 fixing right 3.0
2.0 choice left 2.0
1.04 choice right 1.04
0.04s . s . ' resting 0.0 . + Ly . .
0 150 3000 150 300 0 150 3000 150 300
time [A.U] time [A.U]
C D
Inputs Inputs
real™\, cue left P L
U o cue right e | =1
' S choice period e e
=i\ | sy reward : - = Lrmreeerflose,
Behavior Behavior
4.0 ] fixing left 4.0 1
3.0 : fixing right 3.01 .
2.04 : (lzlhoice lell';t 2.0 | l ]
1.0 - choice right 1.0 1
0.0 : —— , 1 . resting  0.01s . — i-l .
0 150 3000 150 300 0 150 3000 150 300
time [A.U] time [A.U]

Figure 8: Artificial task structure for fixing and memory (A, B) Temporal
structure example of two VR (A) and two SR (B) trials (for left cue and right
cue). External inputs (cue, choice reward signals) and required behavioral output
(rest and choice) are aligned. VR and SR trials require an additional fixing output
after cue onset for the final choice. The required choice phase outputs are different
depending on the cue (left cue requires output of 2 and right cue an output of 1).
(C, D) Conceptually similar illustration as in A and B. But for trials of the task
variant requiring memory. C depicts and example of VR trials (left and right) and
D an example of SR trials. Here the cue input is only given for 20 time bins instead
of the continuous input until the end of the choice phase.
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2.4 The Task-Trained RNN

To model learning of the artificial rule-learning task, I implemented a simple RNN
that maps the sequential inputs to the desired output labels as described above
(see Sect. . The model is composed of two main modules: a one-layer RNN
that processes the temporal sequence and a fully connected shallow decoder that
produces the final output.

I used a standard one-layer vanilla RNN with tanh activation. At each time step
t, the hidden state is updated as

ht = tanh (Wih Xy + bih + Whh ht—l + bhh) s

where x; € R%» is the input vector, h, € R9idden js the hidden state, Wy, €
Réniaden¥din i5 the input-to-hidden weight matrix, Wiy, € RhiddenXdniaden jg the hidden-
to-hidden weight matrix, and by, by, € R%idden are the respective bias terms.

The hidden state was initialized as

hy ~ N(0, 0.1%T).

The output of the RNN for each time step is then passed through a fully con-
nected shallow decoder. The decoder computes

}A’t = W2 ReLLU (Wl ht + b1) + b2,

where y; is the predicted output at time ¢.

Sequential Training Procedure for the RNN The RNN model was trained
sequentially on the two rule conditions, first the VR, then the SR, to simulate a
learning process between the two rules.

Stage 1: VR. The network was first trained on VR trials by minimizing a
total loss function composed of a cross-entropy loss over the output sequence and a
regularization term applied to the hidden states. Let Lcg denote the cross-entropy
loss and h; € RM the hidden state at time t. The regularization term was defined
as

1

T

]~

L,=c [a - max{—hy, 0} + b - max{h,, 0}*],

t

Il
—

=)

with scalar coefficients a = 10,b = 1,¢ = 10 € R,. The total loss was then
L=2Lcg+ L.

All network parameters were optimized using the Adam optimizer with a learning
rate of 107* and a weight decay of 1075, until the total loss £ < 10™* or a maximum
of 5000 training epochs was reached.
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Stage 2: SR. The second training phase began from the final parameter state
of the VR training. To isolate the contribution of internal dynamics, only the RNN
parameters associated with the hidden states (Wyy, and byy,) were updated while
keeping the decoder and input weights fixed. Training again minimized the same
loss function L, using the same optimizer and hyperparameters. Model training
checkpoints were saved per training epoch to track the learning process of network
adaptation from the VR to the SR.

2.5 Analysis Techniques
Behavioral Output Error for Task-Trained RNIN and Reconstruction

I quantified the behavioral error of the task-trained RNN and its corresponding
reconstruction model over all trials and time bins. For the reconstructed model, the
original task-trained RNN’s output decoder (see Sect. was used to transform
the reconstructed hidden state trajectories into the correct output space. For both
models, the output vectors o, € R® were converted into class predictions by applying
the softmax function followed by an argmax operation:

7y = arg max (softmax(oy)) .
The behavioral error was then computed as the mean proportion of mismatches
between predicted and true class labels across all trials and time points:

K Ty

1 1 (K L
Error = EZTZHL%S £y,

=1 "k =1

where K is the number of trials, 7T}, the number of time bins in trial £, and I the
indicator function.

Linear Discriminant Analysis for Decoding

I used Linear Discriminant Analysis (LDA) for all decoding experiments as classifi-
cation model. In all presented experiments LDA was always used in the binary case
which justifies the following specifications. LDA estimates class-specific means p.
and a common covariance matrix ¥, with set equal class priors 7. = 0.5 to address
small sample sizes and potential class imbalance. The class-specific discriminant
function is defined as:

1
dclw) = 278 e — oI X7 e + log ..
Each sample z is assigned to the class with the maximum discriminant score:

g = argmax 0.(x).
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Discriminant Vector The discriminant vector w determines the direction in the
feature space that optimally separates the class means while minimizing within-class
scatter. It is computed as:

w=3"(u — po),

and defines the axis along which samples are projected to achieve maximal class
separation.

Decision Boundary. In the binary case, the decision boundary is a hyperplane
orthogonal to the discriminant vector w. This boundary is defined by the set of
points x for which the two class scores are equal:

1
6(z) =ba(z) = w'a= §wT(,u1 + p2).

The vector w determines the orientation of the boundary, and the intercept term
depends on the average of the class means projected along w.

Discriminant Score For binary classification with classes ¢ = 1,2, the discrim-
inant score represents the signed distance metric of a sample x from the decision
boundary:
1
S(z) =w'z — §wT(

A positive score assigns x to class 1, while a negative score assigns it to class 2. This
scalar projection reduces high-dimensional state representations to a single discrim-
inant axis, providing a principled metric for quantifying the degree and direction of
class separation.

pa + fiz).

Cross-Validation for Classification Accuracy To assure statistical reliability
of LDA-based classification results, I used a leave-one-out cross-validation procedure.
Specifically, in each of N = 100 iterations, the dataset (X,y) was partitioned into
a training and a test set leaving one sample out. Feature vectors in the training set
were standardized, using the training mean ji,., and standard deviation o an:

X - ,utrain

Otrain

X, scaled —

LDA was then fitted using the scaled training data. The model’s classification
accuracy was computed on the test set and stored for that iteration.

Equal class priors 7, = 0.5 were used throughout. The final decoding accuracy
was the mean accuracy over the N cross-validation iterations:

N
1
Accuracy = N g score;.
i=1
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Time-Resolved Decoding of Task Variables

To assess how neural representations of task variables evolved throughout the av-
erage trial in different rule contexts, I used a sliding window approach based on
the cross-validated LDA described in Section Sliding window decoding was
restricted to trials from behaviorally stable periods of the visual and SR, (see Meth-
ods ?7? for exact trial definitions). Omission trials were excluded from the analysis.

Neural activity was averaged over a 5-bin sliding window, advancing in steps of
one bin from time point ¢ = 20 to ¢ = 200. For each trial ¢, at time ¢, the neural
state vector x;(t) € RY is:

4
_ 1
Xi,t = 5 kZ:OXl(t + k‘),

At each window position ¢ (for the group of considered behaviorally stable trials),
I assessed the decoding accuracy of the following task variables:

e cue site (left vs. right),
e choice (left vs. right),

e reward outcome (delivered vs. omitted).

Cross-Validated Decoding of Task Variables in Stable Periods

To quantify the encoding of task-relevant variables in MSU activity during behav-
iorally stable trials, T used the cross-validated LDA framework described in Sec-
tions Classification accuracy was evaluated for the three variables: cue site,
choice, and reward outcome. All analyses were again restricted to stable performance
periods of the visual and SR, excluding omission trials (see Methods ?7).

For each trial, neural activity was temporally averaged over the most informative
time window as determined by the time-resolved decoding analysis in Section [2.5]
Decoding accuracy was quantified for all included sessions.

Decoding Accuracy of Model-Generated Trajectories

To assess whether the pePLRNN-generated trajectories captured task-relevant neu-
ral firing rate patterns, I used the same cross-validated LDA framework described
in Sections to both recorded and model-generated neural trajectories. Clas-
sification accuracy was evaluated for cue site, choice, reward and rule type.

For this analysis, all trials were included. Neural state vectors were averaged over
the same most informative time window determined by the time-resolved decoding
analysis (Section . The time window used for the decoding analysis of rule
type was the same as for the decoding analysis of choice. Decoding accuracy was
computed for recorded and generated data across all sessions.

Robust Behavioral Decoding Framework

To enable a quantitative comparisons of neural states across rules in terms of their
choice-related encoding, I developed a robust linear decoding framework based on

LDA (see Sections for behavioral classification.
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The decoding task presented three principal challenges: (a) non-stationarity in
the underlying neural activity across trials and rule periods, (b) a high-dimensional
feature space due to the large number of recorded units relative to the limited
number of behaviorally stable trials, and (c¢) a strong choice imbalance during the
SR period, where only one choice remains reinforced.

To address these challenges, I trained an LDA on neural states of the choice
phase during behaviorally stable trials of the VR, where both choices occur and are
rewarded. This ensured that the decoder captured neural patterns associated with
both left and right responses. The trained decoder was then tested on trials from
the stable period of the SR, where only one response was rewarded.

To optimize the decoder’s generalization across rules, I employed a stepwise unit
elimination strategy. Let the full set of recorded units be denoted by

U= {Ul,UQ, c. ,’LLd}.
For each unit u; € U, a reduced subset was created by removing that unit:

Uy = U\ {u}.

The decoding accuracy A(U_;) was then computed for each subset. The unit w;-
whose removal was associated with the greatest increase in decoding accuracy was
identified as:

Jjr=arg max A(U_;).

This unit was removed from the set for the next iteration:
U<+ U\A{uj},

this procedure was repeated until only two units were left. At each step, decoding
accuracy was tracked to identify the optimal subset post-hoc:

Uoptimal g Ua

which maximized decoding accuracy across both rule conditions. In cases of equal
accuracy, the larger subset was preferred to retain maximal neural coverage.

State space analysis

Fixed point extraction of task-trained RNNs To extract fixed-points from
trained task-trained RNNs, I used the fixed-point finder algorithm introduced by
Golub et al. |93] (https://github.com/mattgolub/fixed-point-finder). This
approach identifies points x* in the network’s state space that satisfy the condition

f(x*) = x",

where f(-) denotes the recurrent update function of the RNN.

Candidate points for optimization were generated by sampling from the network’s
state space. Samples were drawn from actual hidden states encountered during task
execution to ensure coverage of dynamically relevant regions. These candidates
served as initialization points for the optimization procedure.
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For each candidate x, a fixed-point loss function was defined as

L(x) = [[f(x) = x|,
quantifying the deviation from the fixed-point condition. This loss was minimized
using gradient-based optimizers (Adam or L-BFGS), and optimization proceeded
until convergence or a predefined iteration limit was reached. A point x* was ac-
cepted as a fixed point if L(x*) < ¢, with € set to a small threshold.
To assess the local stability of identified fixed-points, the Jacobian matrix

of
J =
3X
was computed at each converged location. The spectral radius of p(J) was used to
determine stability: fixed-points were classified as stable if p(J) < 1, if p(J) > 1

they were classified as unstable.

Fixed Point Extraction from the pePLRNN fixed-points z* € RM of the
pePLRNN are defined by the condition z;,, = z; = z*, where the system dynamics
follow:

Ziy1 = AZt + W§k) [@(W;k)zt + hg) — QD(Wék)Zt)] + hl + CSt.

Due to the piecewise-linear nature of the ReLU nonlinearity ¢(x) = max(0,z),
all fixed-points were computed by exhaustively enumerating the 22¢ possible linear
subregions of the latent space, characterized by binary diagonal matrices:

D, = diag[¢/(Wiz" + )], D, = diag[y/(W2")].

Each pair (D;,D3) defines a linear subregion in which the fixed point equation
reduces to a solvable system:

[I — (A + Wg(Dl — Dg)Wl)] A W2D1h1 + hg.

Solutions z* were kept only if their subregion matched the original pair used to
derive the solution.

The local stability of each fixed point was determined by evaluating the Jacobian
matrix

J = A+ Wy(D; — D)W,

at z*. fixed-points were classified as stable if the spectral radius p(J) < 1.

To examine input-driven attractor dynamics, fixed point extraction was repeated
for a set of discrete external input vectors s € RY, each corresponding to a task-
specific condition. For each input, the effective bias was modified as h), = hy +
Cs, and the fixed point computation was applied. The following external input
configurations were used:

so =1[0,0,0,0]" (baseline)
=[1,0,0,0]" (cue right)
so =1[0,1,0,0]" (cue left)
=[1,0,1,0]" (response right)
=[0,1,1,0]"  (response left)
=[0,0,0,1]" (reward)
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Vector Field Projection and Visualization To visualize the latent flow field
of the pePLRNN model in a low-dimensional projection, I computed vector fields
over a principal component plane fitted to a reference trajectory.

To define a projection plane, I applied principal component analysis (PCA) to
the simulated trajectory {z;}._,, and extracted the first two principal components.
A square meshgrid of size n X n was constructed in this 2D subspace, covering the
region (z,y) with added margin scale, and then lifted back into the full latent space
via inverse PCA transformation:

Zgrid = PCA™! (meshgrid%y) )

Each lifted grid point z € RM was then evolved for one time-step using the
pePLRNN dynamic equation

The 2D first-order difference vectors between the projected original and advanced
grid points was computed:

(Az, Ay) = PCA(Z") — PCA(z).

These differences define the direction and magnitude of the arrows of the flow field
in the PC plane. For visualization, the vector lengths were normalized by

n(z,y) = (Ac? + Ay?) ™,

and each component was rescaled as Ax < n - Ax, Ay < n- Ay, resulting in the
normalized vector fields U(z,y), V(z,y).
This procedure was used to generate flow field visualizations shown in Figure 77.

Attractor State Space Visualization To visualize cue-specific attractor dy-
namics in section3.2.3] latent state trajectories were projected onto a low-dimensional
discriminant subspace derived from the robust choice decoder of the respective ses-
sion (specified in . Let W € RV*% denote the matrix of LDA scalings, where N
is the number of selected units and C' the number of classes. Columns of W were or-
thonormalized using the Gram-Schmidt process to gain U € RY*¢ | from which the
first d = 2 columns defined the projection matrix P € RV*¢. For each trial type,
trajectories x(V(¢) € RY were extracted over a fixed time interval t € [tyart, tstop] and
(1)

projected via x;.:(t) = P "x¥(t), yielding d-dimensional representations. A subset

of trajectories was (ré)mdomly selected and plotted together with mean trajectories
_ R _(i
Xproj(t) = % D et X proj (t).

Change Point Detection

PARCS PARCS model was used to detect CPs in time series via paired adaptive
regression splines, following the framework of |240|. Data were first transformed
using the cumulative sum (CUSUM) procedure, whereby the CUSUM-transformed
time series y = {y;}_, was computed as

t

Y = Z(:UT - <$>)7

=1
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with (x) denoting the arithmetic mean of the original time series z. The PARCS
algorithm then approximated y by a piecewise linear function whose bending points
correspond to candidate CPs.

In a forward stage, spline pairs h(c) and h_(c) centered at candidate CPs ¢
were sequentially added to a linear regression model. The coefficients were estimated
using least squares by minimizing the MSE:

T

1 .
MSE = ?Z(yt —yt)Q.

t=1

A subsequent backward pruning procedure removed redundant spline pairs until
a model with a predefined number M of CPs remained. These were then ranked
according to their contribution to the explained variance.

To assess statistical significance, a block-permutation bootstrap procedure was
applied. An Hy-conform time series x, was generated by regressing out the fitted
PARCS model and inverting the CUSUM transformation. For each candidate CP
Cm, & test statistic was defined as

S = ‘Ber +Bfm) ;

quantifying the magnitude of bending at that point. B bootstrap samples were
generated by permuting blocks of size k, preserving temporal dependencies. For
each sample, the test statistic was recomputed, yielding an empirical distribution
function (EDF). A CP was kept if its observed test statistic exceeded the (1 — «)-
quantile of the EDF; otherwise, it was rejected. The final model was refit using only
significant CPs, and regression coefficients were re-estimated accordingly. PARCS
was specifically used to detect one change point.

Sigmoidal Modeling of Behavioral Set Shifting I modeled binary choice be-
havior as a nonhomogeneous Bernoulli process with a time-varying success proba-
bility governed by a sigmoid. Each trial ¢ € {1,..., N} yielded a binary outcome
z; € {0,1} drawn from Bernoulli(s(¢;)), where

s(t;)) =m+ d
ST e

Here, m is the baseline rate, d the amplitude of the transition, a the inverse
slope, and ¢ the inflection point. This parametrization ensures s(¢;) € [0,1] and
captures abrupt shifts in behavior.

Parameters were estimated p = (m,d,a,c) by minimizing the negative log-

likelihood:

N
L(p) = =Y _wilogs(ty) + (1 — ) log(l - (1),

i=1

subject to the constraints:

0<m<1, 0<d<1—-m, a>0, 0<c<1
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MATLAB’s fmincon with the SQP algorithm was used for constrained optimiza-
tion. Initial values were set heuristically: cq was chosen as the point of maximal
cumulative deviation from the mean response, my and dy were derived from pre-
and post-transition means, and ay = 0.07 (see Appendix for initial value evaluation,
ap = 0.07 gave the highest average log-likelihood of L(p) = 82.55 for all datasets)
was fixed.

Rule Bias Detection

I quantified the initial rule bias of animals at the beginning of experimental sessions
through the analysis of choice probabilities during early trials. For each experimental
dataset (n = 18), smoothed choice probability estimates were computed separately
for left-cue and right-cue trial conditions. The estimation procedure involved:

Psmooth<a’5) = g * 1at=a,st=3 (17)

where G represents a Gaussian kernel with o = w/4 (with window size w = 6),
1 is the indicator function identifying trials where action a was selected in stimulus
condition s, and % denotes the convolution operation.

Initial rule bias was classified by analyzing the first five trials in each cue con-
dition. I computed the mean action probability matrix P € R**? where element
P; , represents the probability of selecting action a € {left, right} given stimulus
s € {left-cue, right-cue}:

P P(left|left-cue)  P(right|left-cue)

~ | P(left|right-cue) P(right|right-cue) (18)

Based on this matrix, initial biases were categorized into four distinct types:

o Visual-rule biased: P(left|left-cue) > P(right|left-cue) and P(left|right-cue) <
P(right|right-cue)

o Right-rule biased: P(left|left-cue) < P(right|left-cue) and P(left|right-cue) <
P(right|right-cue)

o Left-rule biased : P(left|left-cue) > P(right|left-cue) and P(left|right-cue) >
P(right|right-cue)

o Confused/mized strategy: P(left|left-cue) < P(right|left-cue) and P(left|right-cue) >

P(right|right-cue)

These classifications were compared with the required initial rule to assess whether
animals demonstrated rule-consistent biases.

Sliced Wasserstein Distance The sliced Wasserstein distance (SWD) was used
to compare empirical distributions of latent state trajectories. Given two sets of
samples A, B € R™? the SWD was computed by projecting both sets onto multi-
ple random directions v, € S, and averaging the one-dimensional Wasserstein-1
distances across projections.
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For each projection direction, the samples were sorted to compute the empirical
quantiles, and the one-dimensional Wasserstein distance was computed as:

n

~ 1
Wi(Ay, By) = - >

=1

)

where A, = Avy and By, = Bvy.
The final distance was obtained by averaging over all projection directions:

K
1 N oA
SWD(A, B) = — > " Wi(Ar, By).
k=1

In the implementation, K = 512 projections were used, divided across four ran-
dom samples of 128 directions each. Direction vectors were drawn from a standard
normal distribution and normalized to unit norm. This method follows standard
practices for estimating SWD as described in |21].

Effective Functional Connectivity Estimation To extract an estimates of
effective functional connectivity from a trained model, latent trajectories are gener-
ated. For each time point along a trajectory, the local Jacobian 8221 is computed
at time ¢ taking the form:

Jo= A+ W diag [ (W2 + ha) = o (Wi )| Wil (19)

Letting D; denote the diagonal indicator matrix encoding the local subregion, the
expression simplifies to:

Jy=A+wHpwk. (20)

To capture the cumulative effect of local interactions across time, the time-
ordered product of Jacobians is computed for each trajectory:

T
Jor = [ i (21)
t=1

This matrix summarizes the net influence of latent unit interactions across the tra-
jectory. Averaging J.g across multiple generated trajectories gives the estimate of
effective functional connectivity for a specific condition and distribution of initial
conditions:

N
;o4 (i
Jer = 2 JY. (22)

To focus on the most dominant interaction patterns, I thresholded each J.g by
retaining the top 10% of absolute weight magnitudes (excluding diagonal elements).
The resulting binary matrix was interpreted as a connectivity graph.

To compare effective functional connectivity structure across trials, I computed
pairwise Jaccard similarity between thresholded adjacency graphs. For trials ¢ and
j, the similarity was defined as:

BN Ey|

— 23
|E; U E;|’ (23)

Jaccard(i, j)
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where E; and E; are the sets edges from trials 7 and j, respectively. This produced
a symmetric similarity matrix for each session.

To test whether effective functional connectivity reorganized during learning,
trial-wise similarity matrices were separated into clusters by the behavioral change
point (CP) for each session. From each similarity matrix S € RV*N T extracted
two key cluster means based on the CP index c:

e The pre-CP similarity fipre-cp, computed as the mean similarity between all
trials before and after the CP (ie.,i <¢, j > ¢),

e The post-CP similarity fipost-cp, calculated as the mean of the similarity for
all trials occurring after the CP (i.e., i,7 > c and j > ).

2.6 Statistical Methods
Paired Statistical Tests

To evaluate whether real-values data differed significantly between two conditions,
I applied a two-sample (independent) ¢-test across trials or sessions. The null hy-
pothesis assumed equal population means. The test statistic and corresponding
p-value were computed using scipy.stats.ttest_ind, assuming unequal variances
by default (equal_var=False).

Statistical Testing for Bounded Measures

Unless stated otherwise, all statistical comparisons involving bounded variables (i.e.
decoding accuracies, correlation coefficients and similarity) were performed using
the Wilcoxon rank-sum test. This non-parametric test compares two independent
samples drawn from distributions that may deviate from normality, particularly
when the data are bounded within a fixed interval (e.g., [0, 1]).

The test was implemented using the scipy.stats.ranksums function in Python,
which computes the rank-sum statistic and the associated p-value for the null hy-
pothesis that both samples originate from the same distribution. A significance level
of a = 0.05 was used unless stated otheriwse.

All tests were two-sided unless otherwise noted. When reporting results, the test
statistic and corresponding p-value are indicated in the text or figure captions where
relevant.

Statistical Testing of Discriminability Values

To evaluate whether discriminant scores were significantly different from zero, I
applied a one-sample paired t-test across trials or sessions. The null hypothesis
assumed a population mean of zero. The test statistic and corresponding p-value
were computed using scipy.stats.ttest_1lsamp.
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Correlation Analysis of Reconstructed and Ground-Truth Trajectories

To assess the similarity between reconstructed and ground-truth trajectories, I com-
puted trial-wise Pearson correlation coefficients across all latent or observed dimen-
sions. This metric was used for neural data and task-trained RNNs.

Let x*) € RT*N and %®) € RT*¥ denote the true and reconstructed trajectories
of trial k, where T is the number of time bins and N the number of units. For each
unit j, the Pearson correlation coefficient between the true and reconstructed time
series was computed:

(k)

Tj — COIT (X]

) %)
Y ¥ N

The trial-wise mean correlation was then obtained by averaging over all units:

1 N
k) _ * (k)
rk) = N;rj .

To compare between distributions of datasets the mean across trials was calcu-
lated to obtain a mean correlation value per dataset.

Shuffle Distribution Generation

To generate the shuffled reference distribution in Sectio CPs were randomly
sampled across the trial sequence. For each shuffled configuration, block similarity
was computed using the same procedure described in Section2.5|
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3 Results

The Results section is divided into two main parts. In the first part, I introduce the
pePLRNN as framework for reconstructing non-stationary DS directly from data. I
test this approach by reconstructing benchmark DS with parameter non-stationarity.
This includes the logistic map and the bursting neuron model (s. Methods5, [55]),
two examples of DS which undergo bifurcations as their parameters change. 1 then
use the pePLRNN to reconstruct hidden state trajectories of task-trained RNNs
trained on a sequence-to-sequence version of the rule-learning task performed by
the animals (see Method, to further validate the modeling approach and show
how a computational dynamic mechanism can be extracted from the trained model.
I then show how specific experimental design choices can affect the computational
dynamic mechanism used by task-trained RNNs to solve the rule-learning task.
Therefor, two task variants are considered: one directly mirroring the conditions
of the animal experiment, and another explicitly requiring the use of memory to
solve the task. For each variant, I used the pePLRNN to reconstruct the hidden
state dynamics of task-trained RNNs. I then use the trained pePLRNN as surrogate
model to extract and characterize distinct components of the computational dynamic
mechanism. I further show with the two task variants in a cross-condition experiment
how reconstruction outcomes are influenced by system properties and experimental
assumptions, specifically the external input design matrix provided to the model.

In the second part, I then use the pePLRNN to reconstruct MSU recordings from
the prelimbic mPFC of rats performing the rule-learning task (see Methodg2.1). The
trained models successfully reconstruct neural firing rate profiles for both rules and
capture key characteristics of the neural recordings and the animal’s behavior. I
first employed the trained models as surrogate systems for the underlying neural
dynamics to investigate the computational mechanisms used during stable task per-
formance periods (see Method. Analysis of the stable periods under each rule
showed a monostable, input-driven mechanism underlying the decision-making pro-
cess of the task. Each rule has a distinct pattern of stimulus-dependent attracting
regions that guide the neural trajectories toward the correct behavioral response.
With simulations I confirmed that, in the absence of external inputs, the autonomous
system is monostable, exhibiting no evidence of multistability. This indicates that
task-performance relies on stimulus-dependent attracting regions rather than intrin-
sic multistable attractor system. Building upon the analysis of stable performance
periods, I then investigated how stimulus-dependent attractors, model parameters,
and neural activity changed on a trial-by-trial basis during learning. All three quan-
tities exhibited abrupt transitions, indicating shifts in the underlying neural dynam-
ics. CPs extracted from the model dynamics consistently preceded behavioral CPs.
To further characterize the evolving functional organization of units, I derived a
method to estimate trial- and context-specific functional connectivity by simulating
network activity and analyzing the resulting state-dependent weight matrices. This
approach revealed that functional connectivity patterns formed distinct similarity
clusters aligned with behavioral transitions, and that these functional connectivity
patterns themselves underwent abrupt changes during learning.
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3.1 Reconstruction of Benchmark Systems and Task-Trained
RNNs

The Parameter-Evolving PLRNN

Modeling non-autonomous DSs from empirical non-stationary time series requires
capturing time-dependent changes in the underlying vector field. Classical DSR
approaches typically assume fixed parameters, resulting in a time-invariant vector
field. To track non-stationarity, the current approach approximates non-autonomous
system dynamics by allowing the model parameters to change across discrete tem-
poral segments. Specifically, the observed time series is divided into segments with a
distinct parameter set assigned to it, I call this parameter set snapshot parameters.
This piecewise constant parameterization enables the model to locally approximate
the DS with a snapshot vector field, which is a autonomous DS itself. The resulting
framework is designed to captures temporal changes in the vector field by tracking
time-dependent parameter reconfigurations. The model specified in [15] provides a
tractable and interpretable method to approximate non-autonomous systems, specif-
ically with parameter non-stationarity. These snapshot parameters are regularized
with sparsity regularization lambda, and a continuity prior lambdas. The continuity
prior effectively regulate how much change in parameters is allowed for consecutive
temporal segments.

Reconstruction of Benchmark Systems

To validate the ability of pePLRNN to reconstruct DS with parameter non-stationarity,
I first evaluated the model’s reconstruction performance on two benchmark sys-
tems: the logistic map and a bursting neuron model ([55]|). The logistic map is a
one-dimensional discrete system exhibiting a sequence of bifurcations as its control
parameter varies, going from a stable fixed-points to periodic oscillations and finally
to chaotic behavior. In contrast, the bursting neuron model represents a continuous-
time system with multiple intrinsic time scales, producing fast spiking activity but
also slower oscillations. I chose these systems because of their simplicity and the fact
that both exhibit well-known bifurcations, providing a ground-truth test cases for
the model’s ability to capture multiple abrupt qualitative shifts in system behavior
as well as multiple time scales.

The model reconstructs both systems with their the main dynamic features. For
the bursting neuron model and the logistic map, pePLRNN accurately captures the
distinct dynamic regimes and time scales (Figure [9A-B).

The bifurcation diagram reconstructed from the pePLRNN matches the ground-
truth bifurcation diagram of the logistic map, accurately capturing the transition
points of the different dynamic regimes (Figure @p)

To reflect parametric non-stationarity, the pePLRNN was trained (see Sect.
simultaneously across multiple dynamical regimes, with each regime assigned a dis-
tinct set of connectivity matrices Wl(k) and WQ(k) linked to specific segments of the
time series.
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Figure 9: Benchmark system reconstructions demonstrate the capacity
of the pePLRNN to recover dynamic mechanisms with parameter non-
stationarity. A Reconstruction of the bursting neuron model under three distinct
dynamical regimes: quiescent, bursting, and tonic firing. Blue traces represent the
ground-truth simulated system, while red traces show the pePLRNN reconstruction.
Each regime is characterized by distinct current dynamics (I, I,) and membrane
potentials (V'), which are faithfully captured by the model. B Reconstruction of
the logistic map under three parameter settings corresponding to fixed-point, pe-
riodic, and chaotic behavior. Ground-truth trajectories (blue) and reconstructed
trajectories (red) closely align across different regimes. C Bifurcation diagram of
the logistic map, illustrating the correspondence between true and reconstructed bi-
furcation structures across a range of control parameter values. The reconstructed
bifurcation pattern (red) accurately tracks the emergence of periodic windows and
the onset of chaos observed in the ground-truth system (blue).
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3.1.1 Reconstruction of Rule-Learning Task-Trained RNNs

To further validate the models ability to reconstruct the non-stationary neural dy-
namics underlying rule learning, I used the pePLRNN to reconstruct the hidden
state trajectories from simple RNNs trained on an artificial version of the animal’s
rule-learning task (Figure . In the artificial task, the simple RNN received struc-
tured input sequences representing cue presentation, decision period, and reward
feedback, and was trained to generate the corresponding output sequences encoding
behavioral responses. The two rules were implemented by requiring different out-
put sequences from the RNN for each rule. To simulate rule learning, the simple
RNN was first trained on the VR paradigm with all parameters free to train. After
learning the VR, the trained RNN was retrained on the SR, this time allowing only
parameters associated with hidden states to be updated, while all other parame-
ters were fixed (see Methods2.4] for details). This ensured that learning the SR was
implemented completely via changes in hidden state dynamics.

After training, hidden state trajectories of the task-trained RNNs were sampled
during the VR, learning period between VR and SR, and the fully trained SR phases
(see Methods for exact details). Hidden state trajectories together with the associ-
ated inputs were used to train pePLRNNs to reconstruct the hidden state dynamics
of the task-trained RNNs (see Figure[10A).

The pePLRNN accurately reconstructed the hidden dynamics underlying the
rule-learning task in the simple RNN, for both stable rule phases as well as during
the learning period (see Figure for two example trials from the test set). Val-
idation on newly generated artificial trials showed high correlations between true
and reconstructed trajectories (Figure ), demonstrating robust generalization
on unseen data. In addition, fixed-points extracted from the reconstructed system
closely matched those of the original task-trianed RNN across all stable and learning
conditions (see Figure ) The pePLRNN reconstructed dynamic objects of the
original system across all conditions without being explicitly trained on them. The
model also preserved the original system’s geometry, as illustrated by the example
in full state space, generated from unseen test data (Figure ) Behavioral out-
puts decoded from the reconstructed dynamics matched those of the original task-
trained RNN without any direct training on task labels (Figure ) Together, this
validated the model reconstruction as a functional surrogate and shows that the
approach works.
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Figure 10: Reconstruction of hidden state dynamics from an artificial rule-
learning task. A Illustration of the training protocol: the vanilla RNN was first
trained on the VR, then retrained over a learning period on the SR. Hidden states
were sampled from task-trained RNN trial simulations of VR, learning period, and
SR phases. These hidden state data sampel served as dataset to train the pePLRNN.
B Reconstruction performance on the test set: comparison of true (blue) and re-
constructed (red) hidden state trajectories. Top row shows task inputs including
cue presentation, choice period and reward. Middle row displays hidden state tra-
jectories, demonstrating close agreement between true and reconstructed dynamics.
Bottom row depicts behavioral outputs. Vertical dashed lines separated two distinct
trials. C Comparison of fixed-points extracted from true and reconstructed systems,
showing close overlay over all phases. D Three-dimensional (full) state space repre-
sentation of true and reconstructed trajectories during left- and right-cued trials. E
Mean behavioral prediction error shows comparable decoding performance between
the original RNN and the reconstructed system. Note that the scale is at 1072
meaning both achieve over 99% behavioral accuracy during stable performance pe-
riods. F Correlation analysis for training, and test sets.
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Extracting the Computational Dynamic Mechanism from the Reconstruc-
tion Model

After validating the model’s ability to reconstruct the underlying system, I used the
trained pePLRNN as a surrogate system to investigate the dynamic computational
mechanisms generating the RNN’s behavioral output. I introduced a case distinction
based on the external inputs to analyze the dynamics in different trial phases.

In the first case, the RNN receives no external inputs and thus evolves au-
tonomously. In the second and third cases, the cue input is activated, correspond-
ing to the presence of left or right cues. In the fourth and fifth cases, both cue and
choice period inputs are active, while in the sixth case, the reward input is active.
These conditions are formally represented by six external input vectors .S;:

SO - [0707 070]T7 Sl - [1707070]T7 SQ - [07 17070]T7
Ss=[1,0,1,0]", S, =10,1,1,0]", S5;=10,0,0,1]".

Each S; can be interpreted as a new effective bias on the latent dynamics. With this,
I interpret the input-driven cases as six distinct autonomous systems and analyze
how the additional bias term influences the system attractor geometry and stability:

(I, if s, &~ Sy
hy + CSy, if s, =~ S
(k) (k) (k) hl + CSQ, if St = 52
o = (05 ) o (075)) o
hy +CSs, if s, = S5

\hl + 085, if St =~ S5

For each case 5;, I extract the FPs exhaustively to obtain the full view on fixed
point attractors of the system. For every case, the system exhibited exactly one
stable fixed point acting as a global attractor. Depending on the external input
configuration, the location of the stable fixed point changes within the latent state
space, thereby guiding the trajectory toward task-relevant regions.

The behavioral output linked to each fixed point showed a clear functional dis-
tinction between the trial phases. In the autonomous phase (Sp), the system stays
in a resting state and produces a neutral output (decoded as 0; see Figure ??B).
During the cue phases (S7, Ss), the fixed point shifts to different regions in state
space, but the behavioral output stays unchanged. The system produces only in
the decision phases (Ss3, S4) distinct outputs, corresponding to left (2) and right (1)
choice. Finally, in the reward phase (S5), the trajectory is guided back toward the
resting state, and the behavioral output returns to 0.

During the transition from visual to SR, the locations of the fixed-points changed
across all input conditions (see Figure ??C). Only in the choice-right case, a change
in behavioral output decoding occurred - from a left choice to a right choice - cor-
rectly implementing the SR. Hence implementing the SR is realized in the RNN’s
dynamics by shifting the input-driven attractors in state space.
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Figure 11: Reconstructed computational dynamics of task-trained RNNs
as input-driven fixed point transitions in state space. A Flow fields of re-
constructed dynamics projected onto first two principal components across different
task stages. Top row depicts a left trial sequence, while bottom row shows a right
trial sequence with corresponding FPs, and red lines show generated trajectories
from the reconstructed model. The autonomous system (leftmost panels) has one
FP marking the resting state (black). With external inputs corresponding to either
left or right cue (second column), the system’s dynamics change, creating a new
fixed-points (orange) that attract trajectories in a cue-specific manner. During the
choice phase (third column), the FP location changes again, creating choice-specific
states (cyan). Finally, during the reward phase (rightmost panels), the FP location
changes again guiding the trajectory back in the vicinity of the resting state FP. B
Behavioral decoding (resting behavior: 0, right choice: 1 and left choice 2) of all
FPs shows that only the choice-phase FP discriminate behavioral output.
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Figure 11: C Trial-wise locations of fixed-points in latent space (depicted only for
one unit) for each external input condition. Across all conditions, fixed-points shift
during learning the SR. For all input conditions, except the choice-left condition,
behavioral output decoding stays the same for all trials. Only for the choice-left
condition the behavioral output decoding changes from left choice to right choice.

3.1.2 The Influence of Memory on the Computational Mechanism be-
hind Rule Learning

To assess how task-specific features influence the underlying computational dynam-
ics, I compared two variants of the original rule-learning task. In both cases, the
network was required to produce a distinct output during the cue and choice phases,
thereby requiring the network to keep internal representation of the cue. In the first
task variant, a continuous cue input was presented until the end of the choice period,
similar to the structure of the original animal task. The second variant introduced
a memory component: the cue was presented briefly, followed by a delay period
without input, after which the correct choice output had to be produced based on
the stored cue.

Both variants were reliably learned by the task-trained RNNs (error rate <1%),
and the pePLRNN accurately reconstructed the hidden state dynamics for both
variants. Reconstructed trajectories, behavioral outputs, and stable fixed point
locations in the autonomous case showed high agreement with those of the original
task-trained RNNs (Figure fF), validating the reconstructed models as surrogate
models.
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Figure 12: Reconstruction of hidden dynamics and attractor structure
across task variants with and without memory requirement. A Example
test trial from the task variant without memory. Top: input; middle: hidden state
trajectories from the original task-trained RNN (blue) and pePLRNN reconstruction
(red); bottom: behavioral outputs (neutral output: 0, cue right: 3, cue left: 4, right
decision: 1, left decision: 2). Continuous cue input is present until the end of the
decision phase. B Test trial example from the memory-dependent task variant.
Cue input is presented only for 20 time bins, followed by a delay period with no
inputs. The network has to maintain internal cue representation until the decision is
required. C Behavioral error of the two task variants. Both task variants are learned
with less than 1% error rate. Reconstructed models achieve comparable results as
the original task-trained RNN. D Correlation comparison between the reconstructed
hidden state trajectories and the reconstructed trajectories for both task variants
for test and train set. There is no significant difference between the train set and
the test set for both task variants. E Comparison of stable fixed-point locations
between the task-trained RNN and pePLRNN reconstructions for the no-memory
task. fixed-points are extracted from autonomous period. F Same as in E, but
for the memory task. In both task conditions fixed-points from the reconstructed
system align with the fixed-points extracted from the original task-trained RNN.

In the autonomous case, the attractor structure differs between the two task vari-
ants. During the VR, the continuous-input condition exhibits a single stable fixed
point corresponding to a neutral behavioral output (0). In contrast, the memory-
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dependent variant produces three stable fixed-points: one associated with neutral
output and two representing internal cue representation, decoded as outputs 3 and
4 (Figure 13A-B). This difference is consistently observed across all trained RNNs
and their reconstructions.

When the SR is learned, the attractor structure in the continuous-input variant
stays qualitatively the same. The fixed point changes location over the course of
learning, but there is no change in the number of fixed-points or the behavioral
output decoding. In the memory variant the number of stable fixed-points decreases.
The attractor encoding the cue that is no longer needed for solving the SR disappears
during learning (Figure —D). This change in number of attractors reflects a
bifurcation during learning the SR.
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Figure 13: Attractor structure behavioral decoding across trials for both
task variants in the autonomous regime. A Fixed point locations for the
continuous-input task variant, projected onto the latent space and colored by behav-
ioral output (resting: 0, internal cue 3 or 4). Only a single attractor associated with
neutral output is present across trials. B Same as A, but for the memory-dependent
task variant. Three distinct fixed-points are reconstructed under autonomous con-
ditions: one reflecting the resting state and two corresponding to internal cue rep-
resentations. After learning the SR the number of stable fixed-points decreased by
one, marking a bifurcation event during learning. C Number of stable fixed-points
extracted from the autonomous system across trials during the VR for the original
RNN. D Same as C, but for the pePLRNN reconstruction. The reconstructed model
reproduces the number of fixed-points in both task conditions correctly.
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3.1.3 Input Design Matrix Influences Reconstruction Outcome

To examine how assumptions about the structure of external inputs influence the
result of DS reconstruction, I performed a cross-condition analysis using the two
variants of the rule-learning task introduced earlier. Here, I reconstructed the hid-
den state trajectories of the RNN trained on the continuous-input task providing
impulse-based cue inputs (similar to the inputs from the memory task). In contrast,
the hidden states of the RNN trained with impulse-cue inputs were reconstructed
using continuous-cue inputs.

The cross-input reconstruction showed a clear qualitative differences in attractor
structure depending on the input configuration used during training. When recon-
structing the continuous-input RNN with impulse-based cue inputs, the model ex-
hibited three stable fixed-points in the autonomous conditions, compared to only one
in the original system (Figure ) The reconstructed attractor geometry matches
more closely with the one of the memory task than the true continuous-input model.
Conversely, when the impulse-trained RNN was reconstructed using continuous in-
puts, the resulting model recovered only a single fixed point during the VR, failing
to reconstruct the three original attractors that encoded internal cue representations
(Figure [14B). In both cases, the mismatch in attractor count was accompanied by
a shift in behavioral decoding matching again the task variant with other input
structure.

These structural changes were also reflected in other reconstruction metrics. For
the continuous-input RNN, impulse-based reconstruction led to a significant increase
in behavioral prediction error and a decrease in correlation between reconstructed
and original hidden state trajectories (Figure ) In contrast, reconstruction of
the impulse-trained RNN with continuous inputs showed no significant differences

in these measures (Figure [14D).

29



A B

[[® true FP @ reconstructed FP_® behavior 0 behavior 3@ behavior 4 |

10{ VR | | SR o] VR | SR 10{ VR | | SR 10{ VR | 'SR
1 ﬂ* | —m_- ] | | | ﬂlr
—_ | —_ | — —
F 00 {— 2 0.0 1 b 00| = 0.0 1 |
= | I = I I = I I = I |
1 —— 1 I I 1 Iu 1 ﬂ
~1.0 ! ! -1.0 ! ! -1.0 { ! ! -1.0 A ] ,
0 50, 100 0 50, 100 0 50 100 0 50 100
trials trials trials trials
1.0 VR | ; SR 1.0 A VR ; | SR 1.0 VR ; | SR 1.0 VR ‘ | SR
1 -* | c— T —— | | _ e, |
: | : ™ | : Ny F— = H -l
Eoo-_ﬂ' I Z 0.0 [ I = 0.0 I I £0.0 1 w |
| | = I 1 = | | = I |
] e I I | M 1 ﬂ_
-1.0 4 ‘ ! -1.0 f : -1.0 ! [ -1.0 1 ] ,
0. 100 0 50, 100 0 50 100 0 50 100
trials trials trials trials
= le-2 . " = le-2 ns ns 4
=} 1 1.04 ™1 =} 1.04
.5 2.0 —_ 5 2.0 ? =
= g = = g n3 —_—
B 157 g 2 1.5 = &
= < = = L
= 208 = = 0.84 5
510 % g == 51 0] £ 52
[ o [ & g
= =] .
$0.5 0.6 § 0.5 0.61 S1— —
g g
0.0+—5r— . . — 0.0+ T T " " " e
orig. chan. const imp const imp orig. chan. imp const imp const true recon true recon

recon recon recon recon

const const imp imp imp imp const const

Figure 14: Swapping input assumptions alters attractor structure and re-
construction quality. A Reconstruction of hidden states from a continuous-input-
trained RNN using impulse-like inputs. Left: reconstructed fixed-points (top) and
corresponding behavioral decoding (bottom) over trials. Right: fixed-points (top)
and behavioral decoding (bottom) from the original continuous-input task-trained
RNN. The reconstruction shows three distinct attractors instead of one, and behav-
ioral decoding matches the memory task profile. B Reconstruction of hidden states
from an impulse-trained RNN using continuous inputs. Left: reconstructed fixed-
points (top) and behavioral decoding (bottom). Right: corresponding ground-truth
dynamics from the original impulse-trained RNN. The reconstruction shows a single
fixed point during the VR instead of three. C Reconstruction error analysis for the
continuous-input task. Left: mean behavioral prediction error increases significantly
when reconstructed with mismatched impulse inputs (p < 0.01). Right: correlation
between reconstructed and true hidden states for all input-model combinations (al-
ways on test data). The imp—imp (impuls inputs with reconstruction model trained
with impulse inputs) condition shows a significant drop in correlation compared to
the matched const—const condition (p < 0.05). D Same analysis as in C but for
the memory task. Despite a structural mismatch in attractors, behavioral error and
correlation remain stable across the two aligned input combinations. EE Comparison
of the number of stable fixed-points in the autonomous regime between the original
and reconstructed models for each input condition. Differences in attractor count
illustrate the strong influence of input assumptions on the reconstructed system’s
geometry.
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3.2 Reconstructing the Neural Dynamics of Rule-Learning
Rodents from Neural Measurements

3.2.1 Animal behavior

Six rats were trained in a probabilistic rule-shifting paradigm, a modified version
of the task described by [74] (training and experiment conducted by Dr. Florian
Béhner). Prior to the experimental recordings, animals were exclusively trained
on the VR to establish baseline task performance. The paradigm required animals
to flexibly switch between two rules: the previously learned VR and a novel SR.
During VR, animals learned to associate visual cues (left or right cue light) with the
correct lever press to obtain probabilistic rewards (80% reward probability for rule-
aligned responses, 20% for inconsistent responses). After reaching a performance
criterion of 80% correct responses over the last 20 trials, the rule was switched to
the SR without explicitly providing a cue to the animals. In the SR, reinforcement
depended only on the lever side, independent of the visual cue (Figure . In
subsequent recording sessions, animals needed to perform alternating rule-switches
to further test their cognitive flexibility. Sessions alternated between rule-switches
from VR to SR and from SR back to VR. Animal learning behavior showed individual
variability in switching between rules, learning speed, and persistence of learned rules
(see Figure[16)). Behavioral performance across 22 analyzed sessions showed that in
18 sessions, animals successfully transitioned between the VR and the SR. In four
sessions the animal failed to switch from the SR to the VR performing only the
SR, and one session in which the animal failed to switch from the VR to the SR

(Figure [16]A).
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Figure 15: Probabilistic rule-learning paradigm. Each trial began with the
presentation of a left or right cue light for 3 s, followed by a 10 s choice phase. If the
animal did not make a choice within the 10 s time window, the trial was counted
as an omission. Reward delivery followed the choice phase. Initially, the first rule
(VR) determined reward outcomes; after reaching criterion, the task shifted to the
second rule (SR) without explicit cueing.

Single trial behavioral performance for individual animals shows the abrupt tran-
sitions during rule learning. After the unannounced rule change, individual trial
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outcomes (gray dots) fluctuated between correct and incorrect responses. After this
learning period, behavioral performance showed an abrupt transition toward correct
responses rather than a gradual improvement. Smoothed convolution of outcomes
(gray trace) and the fitted sigmoidal behavioral model (black line) illustrate this
behavior in Figure for two examples. I used the sigmoidal behavioral model to
extract these points of abrupt performance increase as behavioral CP. Comparing
behavioral performances of different experimental phases confirmed these abrupt
changes in behavior across sessions. Performance dropped significantly after the
rule change (p < 0.001), then remained low during the learning period (before the
behavioral CP), and increased significantly only after the behavioral CP (p < 0.01;
Figure [16E).

Animals showed different individual performance trajectories based on their ini-
tial rule bias. To investigate this, I categorized sessions according to the initial
response pattern of the animals (Figure ) Of the 18 valid sessions, nine started
with a correct initial bias and nine with an incorrect bias (Figure [L6F). Animals
3 and 5, started with the wrong initial bias in all their sessions, while others var-
ied (Figure 16H). Animals with correct initial rule bias reached the rule-change
performance criterion significantly faster than animals with incorrect initial bias
(Figure [16C). After the rule change, however, the number of trials required to reach
the behavioral CP was not significantly affected by the initial bias (Figure )
For most animals the behavioral CP occurs within 50 trials after the rule change

(Figure [16G).
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Figure 16: Behavioral performance and learning dynamics during rule
switching. (A) Session outcomes categorized by rule performance. (B) Repre-
sentative examples of trial-by-trial behavior during rule switching. Gray dots: indi-
vidual trial outcomes; gray line: smoothed convolution; black line: fitted sigmoidal
behavioral change point model. (C) Number of trials until rule-change performance
criterion was reached, split by initial rule bias. (D) Number of trials to the behav-
ioral change point after rule change, split by initial rule bias. (E) Accuracy com-
parisons across different experimental stages: before rule change, after rule change,
before behavioral CP, and after behavioral CP. (F) Fraction of sessions with correct
versus incorrect initial rule bias. (G) Distribution of learning periods until the be-
havioral change point was reached. (H) Animal-specific initial bias across sessions.
Gery indicates correct rule bias and light grey incorrect rule bias.

Direct Neural Decoding and Robust Choice Decoding Framework

Before starting with model reconstructions, I analyzed the neural recordings directly
to investigate differences in the encoding of task-relevant information between the
visual and SR.

Decoding task-related labels from whole-trial average firing rates showed that
most trial-specific variables, such as choice and reward, could be decoded equally
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well during both the VR and the SR. In contrast, stimulus (cue site) decoding
exhibited a strong rule-dependent difference: during the VR, stimulus identity could
be robustly decoded from MSU activity, whereas during the SR, stimulus decoding
dropped to chance level (Figure[17C).

To resolve the temporal structure of encoding during a trial, I computed decoding
accuracies of stimulus and choice across all time bins (within a trial) during the
stable performance periods. During the VR, decoding accuracy for both choice and
stimulus rose after cue onset, peaked during the choice period (approximately 3—4
seconds after cue onset), and then declined again (Figure[I7A). In contrast, during
the SR, stimulus decoding remained at chance level throughout the trial, while choice
information could be reliably decoded at all times, including before cue onset and
after the choice phase (Figure[17B).

These results show how stimulus and choice encoding changes across rules: while
both are encoded in the neural states during the VR, the stimulus encoding disap-
pears during the SR, whereas choice-encoding remains of stable for both rules.
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Figure 17: Dynamic decoding probabilities of stimulus and choice. (A)
Decoding accuracy of stimulus and choice from neural recordings during VR per-
formance. Aligned at cue onset (time 0). (B) Decoding accuracy of stimulus and
choice from neural recordings during SR performance. Aligned at cue onset (time 0)
as well. Cue stimulus is non-inferable from neural recorded data. (C) Comparison
of decodability between VR and SR trial markers. Only for stimulus decoding a
significant drop is observed during the SR (p < 0.05).

To establish a reference frame for comparing neural states across rules in terms
of their choice encoding, I developed a robust choice decoding framework based on
the selection of a subset of recorded units that provides the best decoding accu-
racy for both rules. An LDA (see Methods) was trained on neural states of the
choice phases of VR trials during the stable performance period and tested on the
stable performance period of the SR trials, ensuring robust decoding for both rules
(Figure [18A).

Since decoding behavior from neural states of both rules with one decoder comes
with specific challenges , a subset of units was selected through a stepwise elimination
procedure that maximized decoding accuracy for both rules (Figure ) The subset
of units achieving the highest decoding accuracy while preserving the largest number
of units was selected. This subset consistently had a significantly better decoding
accuracy than the full population, achieving almost perfect choice decoding for both
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rules(p < 0.05; Figure [180).
The resulting robust choice decoder provides a consistent discrimination mea-

sure for neural states between choices for both rules, thereby making neural states
comparable. Moreover, the robust choice decoder can also be used to decode behav-
ior from model-generated neural trajectories, thereby providing numerous analysis
possibilities on the basis of behavioral features.
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Figure 18: Robust choice decoding framework. (A) Illustration of the training
concept. Trials from the stable performance period of the VR serve as training
set for the linear classifier. Decoding accuracy of the classifier is evaluated on the
stable performance period of the SR. (B) Illustration of unit subset. A subset of
units in the full population changes their mean firing rate such that the stationarity
assumption of the linear classifier is violated. Therefore, only the units that maintain
consistent choice representations across both rules are selected. (C) Comparison of
decoding accuracies between the full unit population and the selected subset. The
selected subset is significantly better in decoding choices from both rules than the
full population (p < 0.05).

3.2.2 PLRNN Reconstructions of Neural Activity

To assess whether the pePLRNN provided a valid reconstruction of the neural data,
I defined a set of model evaluation criteria adapted to the specific challenges of
experimental paradigm and the structure of the data. These challenges include the
non-stationarity of the underlying system, noise inherent to neuronal activity, and
the influence external inputs (like cue stimulus or decision phase). The model was
evaluated by the following criteria:

1. accurate reconstruction of training data, reflected in correlation between model-
generated trajectories and recorded activity,

2. preservation of task-relevant information, measured as decoding accuracy com-
parison for task variables between the reconstructed trajectories and the orig-
inal data trajectories,

3. appropriate tracking of non-stationarity over time, assessed through agreement
between inferred CPs from generated and recorded trajectories,

4. generalization to unseen data, evaluated via reconstruction performance on
held-out trials,
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5. physiological plausibility of long-term simulations, requiring the absence of
unrealistic attractor such as isolated fixed-points in the autonomous regime.

These evaluation criteria serve both as internal validation of the model’s fit and
as basis for interpreting the reconstructed dynamics in the context of cognitive
flexibility.

After training, the pePLRNN generated neural trajectories solely by providing
the trial-individual initial condition as well as the trial-specific external inputs: cue
presentation, choice period and reward delivery (see section .

The reconstructed activity closely followed the recorded neural signals, captur-
ing both slow and faster time scales of units activity as well as input-driven and
autonomous activity patterns (Figure ) Across all sessions, the pePLRNN gen-
erated neural trajectories that aligned well with the original recordings. Importantly,
the reconstructed trajectories captured the dynamics of neural trajectories of both
rule conditions, indicating that the model implemented the task-dependent shifts in
neural activity.

To assess whether simulated trajectories and recorded neural activity exhibit the
same decoding properties for task-relevant information, I used LDA (see Methods
to decode trial-specific features: cue site, choice, reward, and rule type. As
shown in Figure [19C, there was no significant difference in decoding accuracy be-
tween the recorded and reconstructed population activity. Except for the cue site
where the model performed better than the recorded data, likely because the site of
the cue is specifically provided to the model as external input.
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Figure 19: DSR model accurately reconstructs neural activity and asso-
ciated metrics. A Examples of recorded (blue) and reconstructed (red) neural
activity traces from test data. Showing that the pePLRNN captures both slow
fluctuations and rapid transitions in the data. B Distribution of Pearson correla-
tion coefficients between each reconstructed trace and its corresponding recorded
trace versus the distribution of inter-trial correlations among recorded traces. Cor-
relations for reconstructed-to-recorded pairs are significantly higher (p < 0.001). C
Choice-decoding accuracy obtained from recorded and reconstructed population sig-
nals, showing no significant difference (mean + SEM; n.s.,) for any category but cue
site (p < 0.05). D Alignment of neural change-point times detected in reconstructed
versus recorded data. Scatter of generated (gen) versus true (true) transition times
falls along the unity line (dashed), with R? = 0.98, indicating near-perfect tempo-
ral agreement. Right panel: the boxplot shows that the mean of the distribution
of trial-differences between recorded and generated neural CPs is not significantly
different from zero (n.s).

Simulating Trial Transient

Before analyzing how the neural dynamics during the learning period change on a
trial-by-trial basis, I first focused on the two behaviorally stable performance periods
(see Method for details) to characterize how the neural dynamics of both rules
are reconstructed by the model.

To validate the model’s ability to reproduce rule-specific behavior during be-
haviorally stable performance periods, I used the trained pePLRNN as a surrogate
model for the neural dynamics to generate distributions of neural trajectories under
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experimental conditions (see Method for exact details). Neural trajectory distri-
butions were generated from rule-specific initial condition distributions for the four
experimental conditions: VR with right-cue stimulus, VR with left-cue stimulus, SR
with right-cue stimulus, and SR with left-cue stimulus (Figure 20/A).

To obtain the behavioral readout associated with each generated trajectory I used
the robust behavioral decoder (see Method to transform generated trajectories
into the decision discrimination space. Considering the final state of each trajectory
as the choice-determining state, I obtain distributions of choice discrimination values
associated with each experimental condition (Figure 20B). These distributions of
choice discrimination values directly translate to behavioral choices, simply by their
sign.

The model accurately replicated the desired behavioral patterns for both rules
across all datasets. During the VR, the cue stimulus determined the choice outcome,
producing a highly significant separation in choice discrimination values. In contrast,
during the SR, the model-generated trajectories are decoded as a single choice output
regardless of cue stimulus (Figure ) The behavioral distributions predicted by
the model showed a high correlation with empirical behavioral data during stable
rule periods (see Figure 20D, Spearman’s p = 0.79).

Since the SR changes the reward contingencies of either site rather than directly
specifying a left or right choice, I introduced two new categories to describe the
two cue and choice alternatives: the SR extinguished site SRES, where responding
is not reward (under the SR, and the SR reinforced site (SRRS), which continues
to be rewarded with same reward probability during the SR. Introducing these new
categories allows me to standardize further analyzes and directly compare animals
trained with a SR reinforcing left choices to those with a SR reinforcing right choices.
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Figure 20: Model-generated trial transients and recovery of behavioral
statistics from random initial conditions. A Representative trajectories sim-
ulated by the fitted pePLRNN in choice-discrimination value space, under spatial-
reinforced (left) and spatial-extinguished (right) conditions during the visual-rule
(VR) and spatial-rule (SR) epochs. B Distribution of simulated trajectory end-
points for the trials shown in A, demonstrating that the model settles into dis-
tinct decision locations corresponding to each rule condition. C Summary of tran-
sient discrimination-value distributions across all sessions. The shift of choice-
discrimination value distribution of the SRES-condition from VR to SR is highly
significant (p < 0.0001). This shift is larger than the initial difference between
choice-discrimination value distributions SRES and SRRS during the visual rule
(p < 0.001). D Comparison of behavioral choice probabilities during stable rule
periods: empirical data versus model predictions, with Spearman’s p = 0.79
(p < 0.0001), indicating that the model recovers the observed choice statistics.

In case the animal did not perform both rules correctly the model accurately
capture this divergent behavior(see Figurd21(C)
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Figure 21: The pePLRNN captures behavior of sessions, in which the
animals performed only the SR A Example discrimination-value trajectories
from a session in which the animal performed only the SR. B Summary across all
exclusively-SR sessions (n = 3): Both distributions lie significantly on the same side
of the decision boundary.

3.2.3 Shifts in Stimulus-Dependent Attracting Regions as a Mechanism
for Rule-Learning

The transient dynamics during each trial phase are influenced by input-dependent
attractors. Similar to the case distinction made for the reconstruction of task-
trained RNNs, I separately analyzed the two cue conditions of the two rules to
identify case-specific attractors, with the same approach used in section3.1.1} Long-
term simulations were used to identify sets of converged states that are linked to an
attracting region (see Method. During the VR, trajectories of two different cue
conditions converge toward distinct attractors with distinct behavioral decoding.
For instance, right-cue stimuli led to trajectories converging in an attracting region
decoded as a right choice, while left-cue stimuli trajectories converged in a left-
choice-decoded attracting region (Figure , left panel).

The transition from the VR to the SR results in a significant shift in the loca-
tion of the cue-dependent attracting region associated with the SRES. The choice
discrimination value of the SRES cue attracting region shifts significantly toward
the attracting region associated with the SRRS. This effect is significant across all
sessions(p < 0.05; Figure 22C). In contrast, the cue-dependent attracting region
associated with the SRRS site does not show significant shift compared between the
visual and SR.

Despite the change in discrimination value, the cue-specific attracting regions
for SRE and SRR remain distinct during the SR. They are located in separate
regions in state space, as illustrated in the two-dimensional projection of converging
trajectories (Figure 22D).

However, these case-specific attracting regions are never reached by the neural
trajectory within the behavioral reaction times of the animals. These attracting
regions primarily influence the transient trajectories rather than serving as endpoints
during behaviorally relevant periods.
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Figure 22: Cue attracting region dynamics change across rules. A Example
discrimination-value trajectories evoked by left- (blue) and right- (red) cues during
the visual-rule (VR) and spatial-rule (SR) epochs. The horizontal dashed line marks
the decision boundary and shaded bars indicate cue presentation. B Boxplots of
trajectory endpoints (attracting region locations) immediately after cue offset for
the SR reinforced (left) and SR extinguished (right) sites. The SR-extinguished
attracting region is systematically shifted toward the reinforced-site location. C
Summary across all sessions showing the mean endpoint shift of the SR-extinguished
attracting region relative to the reinforced-site location(p < 0.05), demonstrating
a significant cue-dependent remapping. D State-space projection of the four cue
attracting regions—VR left, VR right, SR left, SR right—in the D;—D, plane. Each
mean trajectory (large marker) and its surrounding points indicate the robustness
and separability of the cue-dependent attracting region states.

Change in the Neural Flow is the Main Cause for Change in Behavior

I examined how the two central components of neural dynamics, the initial condi-
tion and the parameters, each contribute to differences in the distributions of choice
discrimination values, representing behavioral outcome distributions. Both compo-
nents are rule-specific, potentially affecting the neural trajectory and the resulting
behavior.

To distinguish the effects of initial conditions and the parameters, I performed
a cross-condition simulation experiment. Trials were simulated for both stimulus
conditions (reinforced or extinguished cue site during the SR), swapping initial con-
ditions and dynamic parameters (Figure ) In the aligned condition, where both
initial condition and dynamic parameters match the rule, the increase in choice
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discrimination value (toward the SRRS) was asymmetric: the SRES cue site dur-
ing the SR exhibited a significantly larger increase compared to the reinforced site
(Figure [23B).

To isolate the role of the initial condition, I fixed the dynamic parameters and
varied only the initial conditions across simulations. This had little to no effect on
the choice discrimination value distribution across recorded sessions (Figure [23C).
In contrast, there was a highly significant increase in the distribution of choice
discrimination values when the initial condition was fixed and the parameters were
exchanged. (Figure ) Again, the shift was significantly larger for the spatial-rule
extinguished cue site compared to the reinforced cue site.

This together shows that the change in parameters is the main factor for the
change in behavioral outcome.
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Figure 23: Isolating the roles of initial condition and parameters in
discrimination-value shifts. A Schematic of the eight simulation conditions,
combining the rule-specific (VR: V or SR: S), the rule-specific initial conditions
(same as for the parameters: V or S), and stimulus conditions (reinforced: R or ex-
tinguished: E), labeled as VVE (to read as: VR parameters - VR initial condition -
extinguished cue site), VVR, VSE, VSR, SVE, SVR, SSE, SSR. B Shifts in transient
discrimination-value of the spatial-rule extinguished vs. the reinforced site when
both parameters and initial condition are aligned: the shift of the extinguished-site
is significantly larger than the shift of reinforced-site (p < 0.01). C Discrimination-
value shifts for swapping the initial conditions (holding parameters fixed) show no
significant differences from zero (n.s., one-sample t-test), across all sessions. D
Across all simulations, the increase in discrimination value induced by the parame-
ter change (with fixed initial condition) is significantly larger than zero (p < 0.05).
The shift of the extinguished site is significantly larger compared to the reinforced
site.

No Sign of Multistability

To investigate whether the transition between rules is implemented mainly as a
shift of input-dependent attracting regions (an input-dependent monostable mecha-
nism), or by multiple attracting regions in the autonomous regime(a multistable
mechanism), I tested whether multiple attracting regions could be identified in
the autonomous regime of stable performance periods of both rules. Therefore,
I searched for task-relevant attracting region candidates for each rule separately,
using long-term autonomous simulations to find distinct sets of convergence states
as sign for distinct attracting regions. These simulations were initialized with either
the endpoints of cue-driven transients or directly with states of the input-dependent
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cue-attracting regions representing distributions of task-relevant states for each rule.
For comparison, I generated long-term simulations initialized with the same initial
conditions used for generating the cue-driven transient or the cue-attracting region
coming from the resting state distribution. These simulations initialized with rest-
ing states show that there is at least one rule-specific attracting region, containing
the neural states of periods in which the animal is not engaged in the task (see
F igur and see Figur. This resting state attracting region changes location
in state space when the animal transitions from one rule to the other as shown in
Figure (cue-driven transients) and Figure (as A1/A2). To find additional
attracting region candidates, I used the endpoints of cue-driven transients as ini-
tial conditions. Regardless of the cue-driven initial condition, all trajectories of one
rule converged to similar rule-specific sets of states (Figure ) Comparing the
distributions of converged states of trajectories with cue-driven initial condition to
the distribution of converged states of trajectories without cue-driven initial condi-
tion showed no significant difference in choice discrimination value within one rule
(n.s.; Figure ) Moreover, comparing the same distributions for their difference
in location in state space to the rule-specific resting state using the Wasserstein
distance showed uniformly low to no difference in all cases. (Wilcoxon signed-rank,

n.s.; Figure [25C).
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Figure 24: Trajectories with input-driven initial condition converge to rest-
ing state attracting region. A Example of trajectories in choice discrimination
value space. Each initialized from one of the four cue-driven transient state dis-
tributions (VR-left, VR-right, SR-left, SR-right). All trajectories (colored) with
cue-driven initial condition rapidly converge to the resting state attracting region
(black). B Boxplots of the difference in discrimination value between the distribu-
tion of converged states and the distribution of resting states for each initialization
for all sessions. Means of the distributions across conditions are not significantly
different each other (n.s.). C Wasserstein distances between the distribution of con-
verged states and the distribution of resting states for each initialization, showing
uniformly low distances (n.s. for all comparisons among all possible pairs), confirm-
ing the similarity between sets of converged states. Resting state attracting regions
of each rule are in different locations in state space. D Two-dimensional state-space
projection of converged trajectories in the D;—Dy plane. The four trajectories with
cue-driven initial condition (colored markers) overlap with the trajectories with rest-
ing state initial condition.

Second, to confirm that the input-dependent cue-attracting region states them-
selves do not converge to distinct sets of states, I repeated the long-term autonomous
simulations with initial conditions directly from the cue-attracting regions. Again,
all trajectories of one rule converged to similar rule-specific sets showing no sig-
nificant differences in location or discrimination value compared to the respective
rule-specif set of resting states (n.s.; Figure —C). The overlap in state space be-
tween the trajectories with and without special initial conditions is illustrated as
two-dimensional projections in Figure (cue-driven transients) and Figure )
(cue-attracting region states).
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Figure 25: Absence of multistability under autonomous dynam-
ics—decision states are stimulus-driven. A FExample of discrimination value
of trajectories of long-term simulations, each initialized from one of the four cue-
attracting region distributions (VR-left, VR-right, SR-left, SR-right). Trajectories
from all conditions converge to the resting state limit set (black). B Boxplots of the
difference in discrimination value between the distribution of converged states and
the distribution of resting states for each initialization for all sessions. Means of the
distributions across conditions are not significantly different from zero (one-sample
t-test, n.s.). C Wasserstein distances between the distribution of converged states
and the distribution of resting states for each initialization, showing uniformly low
distances (Wilcoxon signed-rank, n.s. among each other), confirming the similarity
between sets of converged states. D Two-dimensional state-space projection of con-
verged trajectories in the D;—D, plane. The four trajectories from cue-attracting
region initial condition (colored markers) overlap with the mean trajectories.

Together, these results demonstrate that, in the autonomous regime of each rule,
all trajectories generated from task-relevant states converge to a single rule-specific
resting state attracting region. Among the tested conditions, there is no evidence
for multistability in autonomous regime for any of the two rules. Importantly, there
remains a substantial separation in state space between the resting state attracting
regions of the two rules across sessions and animals.

3.2.4 Trial-to-Trial Analysis Reveals Abrupt Transitions

After analyzing the dynamic features of the two rules during stable performance
periods, I next investigate how model parameters and attracting region structure
change on a trial-by-trial basis after the rule change. With this analysis I demon-
strate the temporal structure underlying the transition between rules.
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The core feature exploited here are the trial-specific connectivity matrices W7 and
W,. Treating the trial-specific connectivity matrices as a time series allows tracking
the evolution of weights during learning (Figure ) For each session, a significant
change point in the composite connectivity parameters (W®* = Wl(k)Wék),k =
1,..., K) was detected, consistently preceding the behavioral change point (Fig-
ure ) In addition, I validated that trial-specific parameters do not encode trial-
specific events such as cue site, choice, or reward, but mainly reflect the underlying
rule identity (Figure ) Hence, trial-specific parameters are not overfitting single-
trial trajectories but capture the more global structure of the session.

Complementing this, I tracked the evolution of cue-attracting region position in
choice discrimination space (Figure 26B). CPs in the discrimination value of cue-
attracting regions were also detected to be prior to the behavioral change point
(Figure ) After the cue-attracting region change point, the mean choice dis-
crimination value for trials associated with the SRES increased significantly (Fig-
ure ) Additionally, the location of the cue attracting region in discrimination
space increased significantly after the cue-attracting region change point across all

sessions; Figure [26][).
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Figure 26: Change points and alignment of model, neural, and behav-
ioral change-points. A Example of trial-by-trial evolution of connectivity matrix
Wk = WFWY (single weight evolutions, standardized and sorted by their linear
slope). Vertical lines mark change-points: rule change (rule CP), parameter-change
(W CP), neural-change (neural CP), and behavioral change (beh CP) point. B
Example of trial-by-trial evolution of cue-attracting region location (in choice dis-
crimination value space), with CP markers demonstrating temporal alignment of
attracting region location change. C Decoding accuracy of W* k = 1,...,K for
single-trial events (cue-site, choice, reward, rule); only the rules can be decoded
above chance (p < 0.001). D—F Scatterplots of change-point relations (all aligned
by the respective rule CP): (D) W CPs vs. beh CPs, (E) neural CPs vs. beh CPs,
(F) cue-attracting region CPs vs. beh CPs G Boxplots of trial-lag distributions
beh CP — {W CP, neural CP, cue CP} (median + IQR). H Paired comparison of
transient discrimination values averaged across ten trials before vs. after the cue-
attracting region CP (p < 0.05). I Comparison of cue-attracting region location
shift before vs. after cue-attracting region CP (p < 0.05).
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Units Reorganize their Effective Connectivity after the Behavioral Change
Point

Following the analysis of trial-by-trial changes in model parameters, cue-specific at-
tracting region locations, and neural trajectories, I next investigate whether effective
connectivity among units also changes during the transition between the two rules.
Therefor, I developed a method to extract effective unit connectivity from trained
models on a trial-by-trial basis.

Effective connectivity patterns were extracted by generating short trajectories
from a distribution of trial-specific initial states. The product of Jacobians along
each trajectory was computed to capture the cumulative local effective connectivity
among units. Averaging across trajectories gave an estimate of the mean effective
connectivity for each trial (see Sect. for details). From each resulting connectiv-
ity matrix, the top 10% of the absolute weight values were retained to construct a
graph of the most dominant effective unit connections.

I used the Jaccard similarity index of effective connectivity graphs between tri-
als, to measure how effective connectivity changes between trials (see Figure for
examples). Effective connectivity patterns became significantly more similar across
trials after the behavioral change point compared to before (p < 0.001, Wilcoxon
signed-rank test; Figure ) Comparing the similarity after the behavioral change
point to a shuffle distribution generated from random CPs confirmed that the be-
havioral change point indeed marked a distinct similarity cluster. This cluster was
significantly more similar than any random subdivision (p < 0.01; Figure ) In
contrast, no significant differences were found when comparing the similarity cluster
of trials before the behavioral change point with trial after the behavioral change
point to the shuffle distribution of random subdivisions (n.s.; Figure 27D).
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Figure 27: Effective connectivity similarity increases after rule transition.
A Trial-wise similarity matrices of functional connectivity patterns derived from
simulated trajectories for three sessions. Connectivity was estimated from trial
simulations (specified in Sectio. Each matrix shows pairwise Jaccard similarity
of effective connectivity between trials. The behavioral change point separates these
similarity matrices into clusters distinct clusters. B Mean functional connectivity
similarity before and after the behavioral change point across all sessions. Similarity
is significantly higher after the change point (p < 0.001). C Mean similarity after the
behavioral change point compared to a shuffle distribution based on random CPs.
Similarity after the behavioral change point is significantly higher than expected by
chance (p < 0.01). D Mean similarity before the behavioral change point compared
to the corresponding shuffle distribution. No significant difference is found (n.s.),
suggesting that the increase in similarity is specific to the post-behavioral-change-
point phase.
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4 Discussion

The central aim of this PhD thesis was to uncover the dynamical computational
mechanisms underlying rule learning by reconstructing the underlying non-autonomous
DS with the pePLRNN directly from non-stationary data. Analyzing the trained
pePLRNN as a functional surrogate model enabled the use of DST to describe how
changes in behavior can be explained in terms of changes in temporal local vec-
tor field governing the neural state space. Given that rule learning in animals is
an inherently non-autonomous and non-stationary process, approximating the dy-
namics through time-dependent parameters while also considering sensory stimuli
provide the use of case distinctions to model parts of the time-dependent process as
autonomous DS. Before reconstructing the neural data, I find that the pePLRNN
is capable of reconstructing a broad spectrum of dynamical phenomena, ranging
from fixed-point attractors, complex limit cycles to chaotic regimes in both discrete-
and continuous-time systems. Multiple bifurcations within a single dataset can be
accurately reconstructed. I use a series of methods to show that the pePLRNN
can be used as functional surrogate model for extracting dynamic implementations
of computational mechanisms in task-trained RNNs. Treating time-dependent pa-
rameter and external inputs as independent cases provides a twofold decomposition
of non-autonomous dynamics into temporally local autonomous cases (snapshot pa-
rameters) and cases driven by external inputs. Each combination of these cases
can be independently analyzed as autonomous DS in terms of their attractor struc-
ture. The model accurately reconstructs the non-stationarity of continuously learn-
ing task-trained RNNs, as shown by the agreement of stable attractor- and trajec-
tory reconstructions across stationary and non-stationary periods. The pePLRNN
reconstructed the neural dynamics underlying rule learning in the rat’s mPFC on a
trial-to-trial basis directly from data. To validate reconstructions, I define a set of
criteria that ensure the model captures the task-relevant dynamic features, the non-
stationary components and generates physiologically plausible long-term behavior.
After training, the model generates trajectories that capture both the decoding char-
acteristics and the non-stationarity of the original data. I used a robust decoding
framework for decoding choices from neural trajectories across non-stationary rule
conditions. I demonstrate that the pePLRNN can accurately recover the behavioral
distribution of animals during stable performance periods under both rules using the
robust choice decoder on model-generated trajectories. PePLRNN simulations for
both task and rule conditions reveal that the main dynamic mechanism behind rule
learning is a shift in the state space localization of stimulus-dependent attracting
regions. This location shift of the attracting region was further validated as the
primary mechanism, by showing that changes in the initial condition distribution
have no significant impact on the resulting behavioral distribution. Furthermore,
the reconstructed systems showed no sign for multistability, indicating that both
rules are implemented as single attracting regions that depend on stimulus and rule
context.

Trial-to-trial analyses of the reconstructed dynamics reveal that neural dynamics,
snapshot parameters, attracting region locations, and behavior all undergo abrupt
transitions during learning, rather than gradual adaptations. These transitions in
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neural and dynamical variables consistently precede the behavioral change point.
Using the behavioral change point as a reference, I demonstrate that the model-
derived effective connectivity is organized into distinct similarity clusters, separated
by the behavioral CP.

Using task-trained RNNs, I further show that the specific experimental structure
influences the implementation of the computational mechanism used to encode the
two rules. In the case of a continuous, low-noise stimulus until decision, the un-
derlying mechanism is a single, stimulus dependent attracting region that shifts in
location. In contrast, the same task structure incorporating a delay period between
stimulus and choice is implemented as a multistable attracting region mechanism.
This finding holds not only for the task-trained RNNs but also for pePLRNN-based
reconstructions. Swapping input conditions, such that data from the continuous
stimulus task are reconstructed assuming a delay period, yields a dynamical mech-
anism identical to the one inferred from the RNN trained on the delay task. Con-
versely, reconstructing the memory task under continuous cue input conditions leads
to the single attracting region mechanism.

4.1 Advancing Dynamical Systems Reconstruction with pe-
PLRNN

The pePLRNN introduced in this thesis provides an extension of DSR to the non-
autonomous domain. Classical DSR methods typically rely on the assumption of
time-invariance ([120, 209]), where the geometry of the vector field are governed by
fixed set of parameters (229} |120]). Such an assumption fails to hold the context of
this experiment, where the underlying neural DS evolves in response to unexpected
feedback, or in general biological systems which natural experience contextual mod-
ulation or drifts, and ongoing internal or external fluctuations (see Sect. ??). The
pePLRNN addresses this limitation by explicitly modeling time-dependent param-
eters, thereby enabling the reconstruction of non-stationary neural systems from
empirical time series.

The central idea of the model is the formulation of non-autonomous dynamics
as a sequence of temporally local autonomous systems. These local systems, snap-
shot vector fields, approximate the time-dependent vector field within specific time
segments, regularized by a continuity prior to enforce smooth transitions between
consecutive parameter regimes. This piecewise-smooth decomposition together with
consideration with the external-input term allows for a precise dissection of non-
autonomy into two distinct sources: The first is temporal changes in internal system
parameters (e.g., reflecting plasticity), and (2) modulation by external inputs (e.g.,
stimulus-driven perturbations). The model thus enables a functional separation of
the different sources of non-stationary into internally and externally induced tran-
sitions. This structure further allows for a hierarchical case distinction effectively
constructing a tree of dynamical regimes, isolating the effects different sources of
non-stationarity. Each separate regime can then be analyzed using standard tools
from autonomous DST, compared to others to determine

Importantly, the pePLRNN can reconstruct latent dynamics across qualitatively
different regimes, including systems undergoing bifurcations, oscillations, or chaotic
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behavior. This would not be possible with a time-invariant parameter formulation,
which would necessarily collapse qualitatively distinct transitions into a single av-
eraged dynamical regime. The model thereby preserves topological and geometric
properties of the system that would otherwise be lost with standard reconstruction
techniques. The pePLRNN also functions as a generative model. After training, it
allows for simulation of latent trajectories under varying initial conditions, external
inputs, or parameters. These simulations can be used to extract distributions over
behavioral outcomes, enabling direct comparison to empirical distributions. More-
over, the principle of using snapshot parameters (piecewise constant approximations
to a time-dependent parameter trajectory) is not restricted to this model class. In
fact, this approach can be applied to a wide range of recurrent neural network archi-
tectures. Moreover, the snapshot parameter principle is also not fixed to the internal
parameters of system. It is also possible, for instance, to consider the parameters
of an input-mapping function with snapshot parameters. As such, the snapshot
parameter formulation represents a broadly applicable extension to existing models
for analyzing non-autonomous systems Overall, the pePLRNN provides a flexible
and interpretable framework for reconstructing and analyzing non-autonomous DS,
by disentangle different sources of non-autonomy into separate autonomous DSs.

Role of Hyperparameters for Reconstruction The reconstruction perfor-
mance of the pePLRNN is primarily regularized by the two hyperparameters: the
global L2 penalty A; and the continuity prior A\y. While A\; enforces parameter spar-
sity by penalizing large magnitudes across all weights, Ay regulates the temporal
smoothness of the evolving parameters, thereby controlling the model’s capacity
to capture non-autonomous transitions in system dynamics. This method approx-
imating the time-dependent parameter trajectory resembles the principles of the
Whittaker—Henderson smoothing for time series data (originally discovered by |20]
and later rediscovered by [255] together with [103]).

A low value of Ay enables high flexibility in parameter variation across time seg-
ments, allowing the model to fit rapid dynamical changes. However, this increases
the risk of overfitting, particularly under conditions of limited or noisy data. In con-
trast, large Ay values suppress temporal variability in parameters, effectively biasing
the model toward stationary or mean-regime dynamics. This regularization strat-
egy can obscure genuine bifurcations and distort latent trajectory structure if im-
posed too strongly. Additionally, Ay determines the temporal resolution of the snap-
shot vector fields. Smaller values lead to on over representation of single-trajectory
features, while larger values smooth over dynamical details. The continuity prior
thereby introduces a bias that implicitly defines the model’s sensitivity to structural
change. For instance, if Ay is too small, trial-dependent parameters will also adjust
to trial-specific features like the stimulus or reward. Furthermore, if the continu-
ity prior is too little, the model can be under-constrained with respect to the data
leading to inconsistent state space geometry across consecutive temporal segments.
Thereby artificial transitions in state space geometry might be introduced. The
reason here is likely that the amount of data is too little for each parameter set to
constrain the solution space enough. Conversely, a too large continuity prior could
result in an underfitting of specific temporal-segments, like fitting only the neural
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dynamics associated with the most abundant rule of the session. Importantly, con-
tinuity in parameter space does not imply continuity in vector field geometry: small
parameter shifts near bifurcation points may still yield large qualitative changes in
system behavior. Thus, Ay acts as a temporal filter on time-dependent parameters
which promotes coherence in the geometry of consecutive reconstructed snapshot
vector fields by constraining parameter evolution to a smooth path in parameter
space.

Together, \; and \; define the expressivity and stability of the pePLRNN. Their
careful tuning is essential to achieving reconstructions that are both dynamically
rich and interpretable, while avoiding degenerate or over-constrained solutions.

Importantly, the continuity prior of the pePLRNN functions analogously to
Whittaker—-Henderson smoothing applied to the parameter trajectory. This form
of smoothing corresponds to a zero-phase filter, meaning that it treats future and
past events symmetrically (see Appendi. As a result, when the continuity prior
is active, abrupt transitions in the parameters are systematically broadened in time,
resulting in reduced magnitude but temporally extended transitions that are sym-
metric around the transition point. In effect, this introduces a violation of causal
structure, as future parameter values influence those assigned to earlier time points.
However, this smoothing does not alter the actual location of the underlying change
point in the trajectory.

4.2 Reconstruction of Ground Truth Data

Reconstruction of Benchmark Systems The reconstruction of controlled bench-
mark systems is an important evaluation of the pePLRNN’s ability to reconstruct
qualitatively distinct dynamical regimes from observational data. Using synthetic
time series derived from the logistic map across a range of parameter values, I
demonstrated that the pePLRNN can reconstruct a coherent series of vector fields
that reproduce same bifurcation structure of the original system. This includes the
recovery of fixed-points, periodic n-cycles, and chaos and their transition among
each other. By reconstructing the different dynamic regimes of the DS underlying
the bursting neuron model (]55]), I further show that the pePLRNN can reconstruct
multiple complex limit-cycles and chaos from continous time systems with multipel
time scales. These results confirm that the model is capable of representing DSs
with both continuous and abrupt changes in structure, as required for modeling
non-stationary phenomena.

Reconstruction accuracy depend on the regularization imposed by the continuity
prior As. Low values of Ay allow for more abrupt changes in parameter space, which
led to overfitting and failure to recover consistent bifurcation structure. High values,
in contrast, enforced smooth parameter evolution across time but constrained the
system toward stationarity. This reduced the model’s ability to reflect qualitative
regime changes. Only within an intermediate range did the regularization allow
sufficient flexibility for reconstructing transitions between dynamical regimes while
maintaining coherence in the parameter evolution.

This balance reflects an inherent trade-off between model expressivity and tem-
poral consistency. The continuity prior acts as a constraint that restricts the space
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of admissible solutions to those with gradual parameter evolution. However, conti-
nuity in parameter space does not imply continuity in the vector field. Particularly
near bifurcation points, small parameter changes may correspond to large struc-
tural differences in the dynamics. Therefore, even small violations of the continuity
assumption can result in discontinuities at the level of latent trajectories.

The reconstructed bifurcation diagram of the logistic map illustrates that the
model is capable of mapping the structure of a DS across different qualitative
regimes, provided that regularization is appropriately tuned. Beyond the logistic
map, further simulations with continuous-time systems confirmed the model’s ca-
pacity to recover both simple and complex attracting region geometries, including
cycles and chaotic trajectories. These results extend previous findings on stationary
PLRNNs ([53, 127, 128, 210, 24} 104} 102, 23, 25, 27]) and show that time-varying
parameter formulations allow the reconstruction of non-stationary systems with rich
internal structure.

Together, these benchmark reconstructions demonstrate that the pePLRNN pro-
vides a tractable and in-principle usable approach for reconstructing DSs with non-
stationarity from observational data alone. This establishes the model as a viable
tool for the systematic recovery of computational dynamics in settings where ground
truth mechanisms are either known or can be controlled analytically.

The Artificial Rule Learning Task The main objective of creating the ani-
mal rule learning task as artificial sequence-to-sequence paradigm described in Sec-
tion was to construct a fully controlled environment in which the DSR of a
learning processe could be systematically tested. This approach enabled access to a
known and analyzable ground truth system, serving two purposes. At first, as addi-
tional validation of the pePLRNN reconstruction abilities, and second, the analysis
and exploration of candidate mechanisms underlying the behavioral requirements of
the specific task structure (changing behavior over the whole session, implementing
the correct decision policy on single-trial level). Three task variants were considered,
all with certain specifications to test different factors. The first version had contin-
uous stimulus inputs until the end of the decision period replicating the original
experimental structure without additional constraints. The second version also had
continuous stimulus inputs but required the RNN to produce a choice-specific out-
put during the stimulus period, thereby enforcing an internal representation of the
intended choice (referred to as "fixing"). The third version introduced a temporal
delay between stimulus and choice periods, while maintaining the fixing constraint.
With this version I wanted to test how the absence of constant choice predictor forces
the network to stabilize internal. In other words requiring the RNN to be able to
retain memory. All task variants incorporated randomized components (including
noisy inputs, variable stimulus durations, and randomized choice timing) to prevent
overfitting. The use of explicit output requirements during the stimulus and delay
phases was inspired by the work of Rajalingham et al. (]187]) and served two goals:
first, to examine whether enforcing such outputs already induces changes in internal
dynamics (compared to no fixing requirement); and second, to support the training
of RNNs on the tasks with memory demands.
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Reconstruction of Task-Trained RNNs To investigate whether the pePLRNN
can be used in principle to uncover a dynamic computational mechanism in a fully
controlled environment, I reconstructed DS underlying the hidden state trajectories
of RNNs trained on the artificial the rule-learning task that replicates the experimen-
tal structure without further constraints. The pePLRNN cloud be fully validated
as surrogate model under these condtions. Reconstruction results, almost identi-
cal, to the task-trained RNN show that the computation underlying each single-rule
behavior is implemented via input-driven dynamics. In this regime, each specific
configuration of external inputs guides the hidden state trajectory toward a single
attractor associated with the correct output indicating that when external informa-
tion is continuously available, the system does not require internal memory traces or
multistablity to implement the task. The continuous external input to RNN could
be understood in two ways, first it acts as prefect predictor (or regressor). It provide
the correct input to system in the moment where the output is required, hence the
RNN can simply act feedforward network maping input to output. And secondly the
constant input is also a constant forcing factor, hence requiring asymptotic stability
of the system under all input conditions. The reconstructed snapshot vector fields
from the pePLRNN revealed no qualitative changes in the internal geometry for
all external-input and task conditions (no inputs-driven and no internal parameter-
related bifurcation). This shows that the computational mechanism used by the
task-trained RNN under continuous input conditions relies on exogenous signals to
produce correct outputs, allowing a purely feedforward implementation of behavior.

Dissecting Computational Mechanisms from Task-Trained RNNs The
pePLRNN framework enables to systematically isolate the contribution of DS vari-
ables, potentially contributing to the process of learning, into two distinct categories,
namely changes in initial conditions and changes in system parameter. Since pa-
rameters of input-mapping, and the decoder are fixed during training.

To test the ability of the pePLRNN to uncover computational mechanisms, I
used it to reconstruct the hidden state dynamics from vanilla RNNs trained on the
artificial rule-learning task (see Sect. [2.3). Fitting the pePLRNN to the hidden
state dynamics of task-trained RNNs enabled the reconstruction of snapshot vector
fields across different learning stages, from VR, over the learning period to to SR.
The pePLRNN successfully reconstructed distinct attractors associated with each
rule and each external input condition using the case distinction as analysis tool.
The attractor locations reconstructed by pePLRNN changed systematically during
the learning period, aligning with behavioral transitions. Decoding the behavioral
meaning of input-dependent attractors provided a principled mapping between task
phase, vector field geometriy and behavioral output.

Importantly, the model also revealed that learning the SR be simple relocation
of the stimulus-dependent attractors. In tasks driven by continuous input streams,
the system remained monostable, relying on external signals rather than internal dy-
namics to implement behavior. In contrast, tasks with impulse-like input required
sustained internal states and thereby induced bifurcations in the autonomous dy-
namics. These results clarify how task structure shapes the computational strategy
deployed by the system and confirm that the pePLRNN can flexibly adapt to either
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regime.

Finally, these reconstructions demonstrate that the pePLRNN can act as a func-
tional surrogate for the original artificial agent, capable ofboth its latent compu-
tational architecture and its behavioral output distribution. This positions the
pePLRNN not only as a tool for retrospective DSs reconstruction but also as a
generative model capable of simulating the mechanisms underlying cognitive tran-
sitions.

4.3 Influence of Task Design on Dynamical Mechanism

Specific experimental conditions can have a large impact on the underlying dynami-
cal mechanism. The major difference between the two artificial task structures (the
one with the continuous input and the one with impulse input) the RNNs were
trained on is that, while in the continuous-input case the system does not need a
stable attractor representation of the stimulus, as the stimulus continuously acts
as external driving forces providing stabilizing the system at the correct location
in state space to produce the correct behavioral output. In contrast, in the case
with impulse input, an internal attractor structure representing the two cue stimuli
is needed, as the stimulus information needs to be stabilized over the delay period
without external input in order to implement the task correctly. This shows that
by introducing a memory requirement, the qualitative implementation of the dy-
namic mechanism changes completely. In the continuous input case, no bifurcation
is needed to implement the transition, as a stimulus context is sufficient to imple-
ment both rules of the task (again as if the RNN acts as feedforward network).
While in the memory case, there is a bifurcation during the leanring period toward
the SR in the autonomous regime

4.4 Animal Behavior and Decoding

Animal behavior during the rule-learning experiment showed substantial variability
in initial rule-bias and behavioral adaptation. While all animals showed at least once
a successful rule switch, their individual behavior at the beginning of the experiment
(the bias with which animals approached the first few trials of the session) was not
uniform: some used the last rule of their previous session, while other simply sicked
to the SR (as initial guess) once introduced and one animal consistently had the
wrong rule bias, starting always with the first rule of its previous session. While the
population of animals is too small to draw statistical conclusions about this effect,
it provides a hint that animals might use different strategies to solve the task and
develop a model about the meta-structure of the experiment, and that behavior
of consecutive sessions might not be independent from each other. Further these
initial rule biases could reflect internally maintained rule-specific representations
that are stable across sessions. The task can thus be interpreted as probing not only
learning during the session, but also strategy selection under uncertainty about the
next presented rule.

Behavioral transitions were not gradual. Instead, animals showed abrupt shifts
in behavioral performance. This finding further supports the long-lasting idea of
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sudden behavioral shifts accompanied by sudden insights in the prefrontal cortex
activity associated with rule switching [62, 9, 83].

Comparison between VR and SR performances showed that the SR was more
persistent across sessions. This may reflect its structural simplicity: correct re-
sponses could be achieved by ignoring the cue in a substantial fraction of trials,
reducing the need to maintain stimulus-specific mappings. Despite this asymmetry,
animals never adopted globally maladaptive strategies, such as consistently choosing
the opposite response. Behavior remained structured, rule-contingent, and sensitive
to the current reward mapping.

Cue encoding was selectively reduced during SR execution. Neural representa-
tions of the cue stimulus were present during the VR but became indistinguishable
across cue types during the SR. This suggests a rule-specific reconfiguration of stim-
ulus representations in the underlying neural dynamics. The same cue inputs were
either treated as behaviorally neutral or functionally collapsed into a common latent
representation during the SR.

Construction and Application of the Robust Behavioral Decoder A par-
ticularly important result for analysis is that neural populations undergo significant
shifts in firing rate during the learning. This change in mean firing rate presents a
fundamental challenge for decoding behavior and other task-relevant variables. Non-
stationarity violates the assumptions of many commonly used statistical models,
including linear classification or linear regression, both of which require stationarity
in the underlying distribution (|14]). As a consequence, the decoding properties of
neural trajectories cannot be meaningfully compared across rules without account-
ing for this shift. To address this issue, I constructed a robust choice decoder. This
decoder enables the comparison of neural states across both rules in terms of their
choice decoding. The decoder is first trained to linearly separate neural states of the
two different choices during the VR. This linear boundary is then used to select the
units with stable choice decoding properties for both rule. This decoder provides a
robust metric (the discrimination score) for comparing neural states for their choice
decoding properties across rules.

There are several reasons why this approach was chosen. First, the periods of
stable behavioral performance are relatively short, meaning that the available data
for training a decoder under the assumption of stationarity is limited. This places
the analysis near the sparse data regime. As a result, nonlinear models such as
multilayer perceptrons are not applicable, as the number of available samples is
insufficient to determine a stable decision boundary or a consistent discrimination
metric. Second, training a decoder on the full population would explicitly violate
the stationarity assumption, potentially corrupting the output of the model. Third,
the structure of the task causes an additional constraints on decoder construction.
Only the VR provides a valid train set to train a decoder for both choices, as during
the SR only one choice is reinforced. This means that decoder training during the
SR would require either the inclusion of incorrect responses or, in some cases, would
not be possible at all due to the absence of responses to the SRES. With out the
robust choice decoder, I would either use a decoder under violated assumptions, or
if using two decoders for the separate rule have a complete under representation of
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responses of the SRES.

4.5 Reconstruction of Neural Data

Validity Conditions and Model Properties Applying the pePLRNN to neu-
ral recordings requires careful consideration of when a reconstruction can be inter-
preted as valid. Unlike the synthetic case, the true underlying DS is unknown, and
no ground truth trajectories (except the ones used in training) are available for com-
parison. For this purpose I introduced a list criteria (see Sect. that ensures
that model accurately captures the neural dynamics of rule-learning animals. As a
brief reminder this list was: (i) reconstruction accuracy, (ii) preservation of task-
relevant information, (iii) representation of non-stationarity, (iv) generalization to
unseen data, and (v) plausibility of latent dynamics, excluding fixed point solutions.
Each criterion fulfills a specific purpose. The first criterion simply tells us that the
model can indeed fit the data. And thus is not fundamentally under-parameterized
or over-regularized, this criterion does not provide any information about if the
regularization might be too low. The second criterion is connected with the first
one (as it requires a high correlation with the original data) and tells us in addi-
tion if model reconstructions encode task-information as good as the original data.
The third criterion is used to make sure that the non-stationarity is correctly cap-
tured. If the smoothness constrain would be too high this would potentially result
in a obscuration of the changes in neural dynamics. Thus this criterion can pro-
vide information if the smoothness constrain is too high. The fourth one asses that
the model can generalize on periods of approximate parameter stationarity. This
is necessary because classical ML validation techniques, such as train-test splits
(cross-validation; [14]), cannot be used in the conventional way (|14]) in this context
due to the inherent non-stationarity of neural data from learning animals. Since
parameter evolution (i.e., synaptic plasticity [118|) is part of the learning process,
temporal generalization becomes ill-defined. This prohibits the use of conventional
test sets, as parameter values at time ¢ do not predict those at time ¢, without any
further assumptions. To address this, I identified behaviorally stable periods be-
fore the rule transitions where parameter changes can be reasonably assumed to be
minimal. Within these segments, the assumption of approximate stationarity allows
for evaluating reconstruction quality by comparing simulated and observed trajec-
tories of held-out trials. However, this assumption is fragile as internal physiological
processes such as heartbeat or breathing, fatigue, or strategy shifts may introduce
latent non-stationarities, without directly impacting behavioral performance. Thus,
any comparison must remain constrained to time intervals where behavioral out-
put is consistent and accurate. The validation on unseen data provides information
whether regularization in general is to low as a too low regularization will lead to
over fitting.

Each criterion addresses a distinct aspect of model validation. The first criterion
evaluates whether the model can accurately fit the observed data. This ensures that
the model is neither fundamentally underparameterized nor excessively regularized.
However, this measure does not indicate whether the regularization strength is too
low, which could result in overfitting.
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The second criterion is closely related, as it also requires high correlation between
reconstructed and original data. In addition, it assesses whether task-relevant in-
formation encoding (such as stimulus, choice, or rule identity) is preserved in the
model reconstructions. This ensures that the model does not merely reproduce
surface-level firing patterns but also retains structured variability aligned with be-
haviorally meaningful dimensions.

The third criterion evaluates whether the model adequately captures the non-
stationarity in the latent dynamics. If the smoothness constraint is set too high, it
may suppress abrupt trial-wise changes and obscure dynamic transitions in the latent
vector field. This criterion therefore provides insight into whether the continuity
prior imposes excessive contains.

The fourth criterion test how well the reconstructed system generalizes to unseen
data segments, under the important assumption of approximate parameter station-
arity. Standard validation techniques (such as train-test splits) cannot be applied
in this context [14] due to the inherent non-stationarity of neural activity in learn-
ing animals. Because parameter evolution (for example through synaptic plasticity
[118]) is part of the learning process, temporal generalization becomes ill-defined.
Parameter values at time ¢ cannot be assumed to be the same at a later time ¢’ with-
out additional assumptions. To make validation possible, I used the behaviorally
stable periods (see Sect. preceding the rule change where parameter changes
could be assumed minimal. Within these intervals, held-out trials were used to
evaluate reconstruction quality by comparing observed and simulated trajectories
in terms of their correlation. This assumption is fragile, as internal physiological
processes (such as respiration, arousal, fatigue, or strategy shifts) may introduce la-
tent non-stationarity that does not directly affect the observed behavior. Validation
was therefore restricted to periods in which behavioral output was both stable and
accurate. This criterion provides information whether the continuity prior is too
little, since this will impair generalization by overfitting the training data.

The fifth criterion concerns the physiological plausibility of the reconstructed
limit set structure. Specifically, reconstructions yielding fixed point attractors (dur-
ing long-term simulations) were excluded. From a physiological perspective, fixed
point attractors are unlikely to represent realistic neural population dynamics (|60]),
as cortical systems exhibit continuous variability in firing rates ([192]), even if ani-
mals as not engaged in any task ([169]). Inherent neuronal noise (|46]) and physio-
logical processes prevent convergence to a fixed-point equilibrium states under nat-
ural conditions (except death). Moreover, fixed point attractors fail to capture the
temporal and geometric structure typically observed in neural trajectories ([60]).
Unfortunately absence of a dedicated validation dataset for estimating long-term
autonomous dynamics imposes additional constraints. Generating such a dataset
would theoretically require isolating the animal from all structured sensory inputs
during an awake state, without employing pharmacological or technical interventions
that could alter neural dynamics. Even under such conditions, physiological fluc-
tuations (i.e. breathing [|121]] heartbeat [[207]]) would likely induce non-stationary
neural activity. Additionally the representational drift Consequently, validation ap-
proaches based on comparisons of limit set properties, such as state space distance
or power spectra (|127, 24, 60|) for autonomous systems, are not applicable here.
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Additionally, the interpretation of limit sets requires long simulation horizons well
beyond individual trial durations, raising further questions about their functional
relevance in this experimental context. Taken together, this justifies the exclusion of
fixed-point solutions and supports the requirement that the reconstructed dynamics
show a nontrivial long-term structure.

The pePLRNN trained on neural recordings satisfies all the above criteria (de-
fined in sectio necessary for interpreting it as a functional surrogate model.
First, it accurately reproduces observed neural activity patterns, with high correla-
tion between recorded and reconstructed signals. Second, the decoding properties
of the reconstructed latent states are consistent with those of the original data.
Third, CPs in the reconstructed parameters align with observed behavioral tran-
sitions, confirming the model’s capacity to track non-stationarity. Fourth, the re-
constructed dynamics generalize to short segments of unseen data, validating the
model’s internal structure under mild extrapolation. Lastly, the latent trajectories
do not converge to fixed-points, which aligns with known biological constraints and
supports the plausibility of the learned dynamics.

The model exhibits a further key property: it captures neural dynamics across
different time scales, including slow drifts as well as rapid trial-specific transitions.
This temporal flexibility enables the simulation of neural trajectories under varying
conditions, allowing for many interventions and hypothesis testing.

The last step in model validation, transition almost to analysis is the generation
of trial simulations that capture the behavioral distribution of the animal.

Reconstruction of Dynamic Mechanisms Underlying Rule Learning The
reconstruction of dynamic computational mechanisms underlying rule learning is the
central contribution of this work. To resolve this question, I subdivided the problem
into five analytical components: (1) How are the two behavioral rules represented
during stable performance periods? (2) What latent dynamic structures guide the
neural trajectory toward rule-consistent decisions? (3) How do these structures
differ between the two rules? (4) Could an alternative mechanism involving multi-
stability explain the observed changes? (5) How do these dynamic changes evolve
on a trial-by-trial basis during learning?

Across all animals, model reconstructions show a shared computational mech-
anism. During stable behavioral performance, both rules were implemented via
stimulus-dependent attracting regions that modulated the transient neural trajec-
tory. In the VR, the neural trajectory was directed toward distinct regions in state
space depending on the stimulus identity, leading to different decisions. Under the
SR, there are still stimulus-specific attracting regions, but both stimuli guided the
trajectory toward the same decision.

During the transition period between rules, stimulus-specific attracting regions
shifted their location in state space, and with them shifted the modulation of the
neural trajectory. The shift, in terms of their behavioral decoding, was not sym-
metric across stimuli: the attracting region associated with the SRES underwent a
significantly larger displacement than the region associated with the SRRS.

To test whether the rule-specific changes in behavioral distribution are influ-
enced by the change in initial condition distributions (i.e., changes in resting states
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across rules), I compared trajectory distributions generated with identical parame-
ters but with rule-specific initial conditions. Simulating trajectories with different
initial conditions had little to no effect. Instead, changes in the effective connectivity
parameters were required to reproduce the observed rule-specific change trajectory
distribution. Analysis of the autonomous regime (without any external inputs) re-
vealed no evidence of multistability. Long-term simulations consistently converged
to a single rule-specific attracting region, even when initialized from widely sep-
arated points in state space.Furthermore, although the position of this attracting
region (in the autonomous regime) shifted during learning, this shift occurred along
the decision boundary and did not alter behavioral outputs alone. These findings
diverge from classical theories of decision making based on multistable attractor
networks. The absence of multiple stable states indicates that rule representation,
in this specific experiment, is not implemented through coexisting decision states
in the autonomous regime. Instead, flexible behavior is achieved through context-
dependent relocation of a single stimulus-dependent attracting region.

At first sight, these results might be interpreted as diverging from established
theories of decision making |250, 249]. In the existing literature, decision making is
often modeled using either drift diffusion processes or RNNs [249]. In these stud-
ies, RNNs implement perceptual decision-making through multistable attracting
dynamics [249, 261]. Both approaches represent the idea of an integrator mecha-
nisms that enables the accumulation of evidence form noisy signals toward a decision
threshold. However, these models are typically based on classical perceptual deci-
sion making tasks, such as the random dot motion paradigm, in which subjects or
agents must integrate noisy sensory inputs [249| over time to execute the correct
decision. In other words, these models incorporate the conditions in which there is
uncertainty over the actual stimulus. In contrast, the decision-making part during
single trials of the rule-learning task (presented ), does not involve this type of noisy
stimulus integration. Each cue stimulus is unambiguous and fully presented to the
animal. Therefore it is plausible that the brain implements a different computa-
tional strategy in this context, one that dynamically guides the neural trajectory
toward the correct response without the need of further internal stabilization of the
stimulus information. In addition, the attracting regions determined by long-term
simulations are in general not reached during real trials, simply because behavioral
decisions occur substantially earlier. This observation further supports the idea that
the modulation of the transient trajectory is more relevant to decision-making than
convergence into a attracting region (|57]).

Limit Set Analysis Although an analytical method exists for identifying fixed-
points and periodic limit sets for the clipped shallow variant of the PLRNN (SCYFI,
[63]), this approach did not converge when applied to the trained models. Possible
reasons why SCYFTI did not converge are either the high-dimensional hidden space
of the model (effectively leading to a tool large search space, see Sect. and
section)) or the possible presence of chaotic dynamics, which would be not detected
by SCYFI. Due to these limitations, attracting regions were identified using long-
term simulations. These simulations extended approximately ten times beyond the
duration of an average trial, allowing the system to settle into stable temporal
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patterns.

As a result, the results from these long-term simulations have to be interpreted
as empirical sets or sets in attracting regions, and cannot be interpreted as rigor-
ously defined attractors. Although the formal status of these limit sets cannot be
rigorously confirmed, due to high hidden-dimensional settings required to produce
physiological plausible long-term generations, they nevertheless provide meaningful
insights into the system’s long-term behavior. They provide a practical approxi-
mation to the potentially underlying attractor structure and allow for a qualitative
assessment of convergence patterns and their functional roles in state space.

Trial-wise Transition Dynamics and Change Point Structure Trial-by-trial
analyses of parameter evolution, location of attracting region in decision space, neu-
ral activity, and behavioral output showed significant CPs after the rule change.
These CPs occurred abruptly rather than gradually. Changes in parameters and
neural firing patterns systematically preceded the behavioral transition. These re-
sults support the hypothesis that rule learning is accompanied by sudden transitions
in neural states and moments of sudden insight rather than slow adaptation (|62,
122|). The fact that CPs in parameters, attractor location and neuronal activity
precede changes in behavior aligns with the hypothesis that mPFC undergoes repre-
sentational change before behavioral adaptation ([183]). These early change points
in PL might be interpreted as sign of suspecting change in environmental condition
opening starting a period of high behavioral variability and flexibility.

The Computational Mechanisms of Task-Trained RNNNs vs. Neural Record-
ings Comparing the reconstructed mechanisms from task-trained RNNs and neu-
ral recordings reveals both structural similarities and fundamental differences in
coding. In both systems, behavior under each rule was implemented through input-
driven attractor dynamics. However, the task-trained RNN employed simple fixed
point attractors that acted as strong stabilizing anchors, with rapid convergence
ensuring that each trial phase was represented by a distinct attractor state. In con-
trast, the neural data exhibited no such convergence. The attractors inferred from
recordings were not fixed-points but high-dimensional limit sets, possibly chaotic or
hyperchaotic, and trajectories never settled into a single state within a trial. This
indicates a fundamental divergence: whereas the RNN’s attractors served both as
transient guides and stabilizing endpoints, the attractor-like structures in neural
data modulated trajectory direction without enforcing convergence. This raises the
question of whether specific attractor types (like fixed-points, cycles, or chaos) carry
computational significance beyond defining the regions of state space they direct
activity toward. Furthermore, while the RNN showed a gradual learning trajectory
with smooth transitions in attractor geometry, behavioral learning in animals co-
incided with abrupt attractor shifts (|62, 122]). This supports the view that the
brain relies on qualitatively different mechanisms than gradient-based optimization,
further questioning the functional role of classical attractor structures in neural
computation.
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Connectivity Analysis In addition to state space analysis, the pePLRNN can
also provide structural properties such as an estimate of the effective connectivity
from the reconstructed system. By simulating neural trajectories with a trianed
model, one can compute the cumulative product of Jacobians along each trajectory,
yielding a trajectory-dependent distribution of Jacobians and thereby providing an
estimate of the effective connectivity distribution underlying the simulated dynam-
ics (see Methods . Applying a similarity analysis to extract graph structure, I
found that the behavioral change point significantly separates two distinct clusters
of enhanced similarity across trials. This, in turn, may indicate that the emergence
of similarity clusters reflects the full implementation of the newly learned rule. Even
though other dynamic features such as parameters, attracting regions, and neural
firing rates may have already transitioned past their respective CPs, further reorga-
nization appears to occur that is not readily observable through behavior or other
model-derived features. Analyzing these distributions further can reveal which units
form functional assemblies under specific conditions. Or these matrix-valued distri-
butions can be analyzed in terms of simple distributional properties, like mean and
variance. For instance, if the variance of the effective connectivity distribution is
small, then all trajectories, irrespective of their initial condition, pass trough to the
same linear subregions in states space. In addition they could provide information
about network properties (e.g. sparse vs broadly connected) or graph-theoretic fea-
tures, such as the emergence of clusters or characteristic activity patterns under
varying conditions. Additional properties of the system itself may also be derived.

4.6 Limitations

The pePLRNN framework provides a flexible architecture for reconstructing latent
dynamics from time-series data. However, its expressivity can also introduces biases
linked to model assumptions and input design. These biases can make mechanis-
tic interpretations difficult, especially when external inputs and regularization are
improperly adjusted. Such issues manifest through three primary mechanisms.

Continuity Regularization Bias The continuity prior s, designed to regularize
parameter evolution, plays a dual role in controlling expressivity and introducing
bias. While it reduces overfitting by coupling parameter estimates across time,
strong regularization can suppress genuine dynamical transitions. At the same time,
weak regularization allows the model to overfit input-driven variability, conflating
external modulations with intrinsic state changes. Hence, parameter continuity
imposes structural assumptions that shape the inferred geometry of the latent vector
field, especially in data regimes with limited signal-to-noise ratio. Importantly,
continuity in parameter space does not guarantee continuity in phase space due to
the nonlinearity of the vector field mapping. Small parameter perturbations near
bifurcation points may induce large qualitative shifts in system dynamics, obscuring
true transitions. Thus, regularization may enforce smooth parameter evolution while
simultaneously distorting the underlying flow, introducing ambiguity in mechanistic
interpretation.
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Representation vs. Mechanism Trade-Off A deeper implication of these bi-
ases is the trade-off between representation accuracy and mechanistic faithfulness.
When task structure is offloaded onto input design or continuity priors, the model
risks reconstructing observed data without capturing the system’s true computa-
tional mechanism. This can obscure multistability, bifurcations, or other critical
dynamical features, leading to the false impression of monostability or feedforward
behavior. Without explicit constraints on the hypothesis space, the model may con-
verge on degenerate solutions that prioritize smoothness and input-driven mappings
over genuine latent dynamics. This is especially critical when mechanistic inference
is the primary objective, as it challenges the validity of the inferred trajectories.

Data Availability and Segmentation Constraints Data availability and seg-
mentation choices introduce further constraints. Assigning too much data to a
single parameter set underfits local transitions; too little leads to noisy and unsta-
ble estimates. Sparse data settings exacerbate this problem, limiting expressivity
and convergence. Moreover, continuity priors impose implicit assumptions about
the time scale of learning. If these assumptions mismatch true learning dynamics,
reconstructions may miss critical transitions or overfit transient fluctuations.

Biological Realism and Validation Applying the model to real neural data
poses additional challenges. Ground truth dynamics are unknown, rendering direct
validation infeasible. Standard train/test splits are problematic due to the inherent
non-stationarity of behaviorally recorded data. Approximate stationarity assump-
tions must be made, typically by identifying behaviorally stable periods. Yet these
assumptions are vulnerable to internal factors such as fatigue, motivation, or spon-
taneous strategy changes. Furthermore, the model cannot generalize to future time
points, as it lacks a parameterized formulation of parameter evolution.

Limitations also arise in the identification of limit sets. Analytical methods such
as SCYFI failed due to high latent dimensionality or chaotic dynamics, necessitating
long simulations to infer asymptotic behavior. These limit sets, while informative,
are not analytically validated attractors, constraining their interpretability. Addi-
tionally, such simulations are computationally demanding and scale poorly to longer
recordings.

Identifiability and Mechanistic Faithfulness A critical unresolved issue in
the pePLRNN framework is identifiability. The flexibility of the model allows mul-
tiple parameter configurations to produce similar trajectories, raising concerns about
whether inferred mechanisms reflect genuine system dynamics or optimization arti-
facts. Current implementations lack formal identifiability guarantees or theoretical
bounds on reconstruction uncertainty, limiting confidence in mechanistic interpre-
tations. Future work should prioritize theoretical analyses to constrain model so-
lutions and introduce data-driven model selection strategies to penalize degenerate
mappings.

Influence of Input Structure on Reconstruction The design of the input ma-
trix has a mechanistic impact on the reconstructed DS. When constant input vec-
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tors, instead of impulse vectors are used to reconstruct the hidden state dynamics of
RNNs trained on the impulse-based rule-learning task, then fro are used to encode
task contingencies, the model may not learn more complex autonomous dynamics
by assigning task information directly from external inputs. This creates degenerate
reconstruction in which the model reproduces observed trajectories through input-
driven mappings rather than uncovering the true latent dynamics. As a result, the
reconstruction may appear accurate but fails to reflect the system’s internal mech-
anism. This issue is particularly pronounced when the input matrix provides more
information to the system than the original system has (e.g., the continuous-cue
stimulus for a memory-requiring task). This reduces task-specific constraints from
the internal dynamics. In such cases, the pePLRNN may exploit the increased de-
grees of freedom to optimize a reconstruction that relies on unrealistic assumptions,
effectively bypassing attractor formation. This produces a "mirage" reconstruction:
the model appears to fit the data, yet the inferred mechanism does not correspond
to the one implemented by the biological system. This might introduce a simplic-
ity bias, favoring direct mappings from input to output over internally sustained
computations, even when the latter may have been necessary in the original system.
These findings highlight a critical methodological point: experimental assumptions
and input encoding can fundamentally alter the reconstructed mechanism. If too
much structural information is embedded in the inputs, the reconstruction loses its
diagnostic power to detect latent dynamics. Therefore, input design must be treated
as part of the modeling hypothesis. Reconstructions should be evaluated not only
by their fit to the data but also by whether the underlying architecture imposes
unjustified shortcuts that bias the interpretation of the latent system.
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4.7 Outlook

The possibility of reconstructing non-autonomous DS with the pePLRNN opens the
door to several new experimental and theoretical questions. The results presented
in this thesis point directly to new experiments in which the mechanism discovered
here could be experimentally tested. In this follow-up experiment, animals would
be required to switch flexibly between two rules, where one rule actually explicitly
requires the involvement of working memory while during the other rule the animal
can solely rely on a cue stimulus. This could lead to questions about the mechanism
by which the brain actually recruits working memory when needed and how learning
that information that needs to be kept in working memory is actually implemented.

A direct and important methodological improvement of the pePLRNN would be
an additional model that captures the temporal evolution of snapshot parameters.
This would substantially improve the testability, interpretability, and applicability
of the pePLRNN. Connected to this is the integration of non-autonomous DSR
with control theory to improve the understanding of manipulations and their effect
on neural systems. For instance, closed-loop paradigms, which adjust to the non-
stationary nature of human physiology (e.g. incorporating a model of the neural
drift), could lead to improved applications in brain-machine interfaces or deep brain
stimulation.

From a systems neuroscience perspective, the pePLRNN framework could be ex-
tended to large-scale recordings across brain regions. As rule learning and behavioral
adaptation are complex cognitive functions that involve a distributed network with
the thalamus, striatum, and sensory cortices. Introducing specifically structured
observation models or regularization techniques that reflect biological constraints
could further enhance the interpretability and plausibility of non-autonomous DSR
in neuroscience (]|60]). This would move the analysis beyond local reconstructions
toward a system-wide understanding of cognitive flexibility.

Many of the limitations of current pePLRNN framework can be solved by in-
tegrating multimodality in the current non-autonomous DSR framework. A highly
promising work by Brenner et al. (2023) (|25]) already provides such an integration.
Another perspective brings the idea of hierarchical models developed by Brenner et
al. (2025) (]|26]) originally developed to perform DSR within a group of different
datasets to integrate them into a common model. This can be easily extended to
the temporal segmentation used here in this to infer group level parameters with
a specific time constraint. Both together would result in a powerful framework
accounting for not only non-autonomy but also multimodal data, like behavior.

97






5 Conclusion

The main goal of this PhD thesis was to uncover the dynamical computational mech-
anisms underlying rule learning by reconstructing the underlying non-autonomous
DS with the pePLRNN directly from neural recordings. Analyzing the trained pe-
PLRNN as a functional surrogate model enabled the use of DST to describe how
changes in behavior can be explained in terms of changes in temporal local snapshot
vector field, governing the neural state space. Given that rule learning in animals is
an inherently non-autonomous and non-stationary process, approximating the dy-
namics through time-dependent parameters while also considering sensory stimuli
provided the use of case distinctions to model parts of the time-dependent process as
autonomous DS. This idea of dividing non-autonomy first into two conceptual parts
(input-driven and time-driven non-autonomy) and structuring the model such that
it reflects this division provided as useful simplification of the underlying process.
This was especially possible because both processes (the synaptical changes and
sensory stimulation) work on different time scales. Before reconstructing the neu-
ral data, I demonstrated that the pePLRNN is capable of reconstructing a broad
spectrum of dynamical phenomena, ranging from fixed-point attractors and com-
plex limit cycles to chaotic regimes in both discrete- and continuous-time systems.
Multiple bifurcations within a single dataset can be accurately reconstructed. More-
over, I developed a series of methods that use the pePLRNN as a functional surro-
gate model for extracting dynamic implementations of computational mechanisms
in task-trained RNNs. Treating time-dependent parameters and external inputs as
independent cases provides a twofold decomposition of non-autonomous dynamics
into temporally local autonomous cases (snapshot parameters) and cases driven by
external inputs. Each combination of these cases can be independently analyzed as
autonomous DS in terms of their attractor structure. The model accurately recon-
structs the non-stationarity of continuously learning task-trained RNNs, as shown by
the agreement of stable attractor- and trajectory reconstructions across stationary
and non-stationary periods. The pePLRNN reconstructed the neural dynamics un-
derlying rule learning in the rat’s mPFC on a trial-to-trial basis directly from data.
To validate reconstructions, I defined a set of criteria that ensure the model captures
the task-relevant dynamic features, the non-stationary components, and generates
physiologically plausible long-term behavior. Once trained, the model generates tra-
jectories that replicate both the decoding characteristics and the non-stationarity of
the original data. I developed a decoding framework for robust decoding of choices
from neural trajectories across non-stationary rule conditions. Using this robust
choice decoder applied to the generated trajectories, I demonstrated that the pe-
PLRNN can accurately recover the behavioral distribution of animals during stable
performance periods under both rules. Reconstructions across task and rule con-
ditions reveal that the main dynamic mechanism behind rule learning is a shift
in the state space localization of the stimulus-dependent attracting region. This
location shift constitutes the primary mechanism, since changes in the initial condi-
tion distribution have no significant impact on the resulting behavioral distribution.
Furthermore, the reconstructed systems showed no sign of multistability, indicating
that both rules are implemented as single attracting regions that depend on stimulus
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and rule context. Trial-to-trial analyses of the reconstructed dynamics reveal that
neural dynamics, snapshot parameters, attracting region locations, and behavior all
undergo abrupt transitions during learning, rather than gradual adaptations. These
transitions in neural and dynamical variables consistently precede the behavioral
change point. Using the behavioral change point as a reference, I demonstrated
that the model-derived effective connectivity is organized into distinct similarity
clusters, separated by the behavioral change point. Using task-trained RNNs, I fur-
ther showed that the specific experimental structure influences the implementation
of the computational mechanism used to encode the two rules. In the case of a
continuous, low-noise stimulus until decision, the underlying mechanism is a single,
stimulus-dependent attracting region that shifts in location. In contrast, the same
task structure incorporating a delay period between stimulus and choice is imple-
mented as a multistable attracting region mechanism. This finding holds not only
for the task-trained RNNs but also for pePLRNN-based reconstructions. Swapping
input conditions, such that data from the continuous stimulus task are reconstructed
assuming a delay period, yields a dynamical mechanism identical to the one inferred
from the RNN trained on the delay task. Conversely, reconstructing the memory
task under continuous cue input conditions leads to the single attracting region
mechanism.

To close, the pePLRNN provides a usefull method to expand classical autonomous
DSR to non-autonomous DSR while preserving all handy tools that autonomous
DST provides. It is capable of reconstructing complex phenomena starting from
fixed-points and ending at neural dynamics during rule learning recorded from per-
forming rats. With its special structural properties I was able to discover a dynamic
computational mechanism that explained and observed behavior in animals. It could
also generate new hypothesis about the use of attractors as internal representations
and the possible reliance of the brain on external stimuli. All this and all of the
above, makes this work a valuable contribution on the path to resolving the question
in neuroscience: "How does the human brain work?". Pushing the limits of what
can be said.
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Appendix

Specific Experimental Protocols
Generation of the Bursting Neuron Benchmark System

The bursting neuron model from (|56]) was simulated to generate benchmark data for
model reconstruction. The system consists of one voltage variable and two auxiliary
gating variables governed by the following set of ordinary differential equations:

awv 1
o C I'—g1(V = EL) = gnamoc(V)(V = Ena) — gxn(V — Ek)
—guh(V — Ex) — gnmpase(V)V ], (25)

dn  n(V)—n
B A 26
dt TK ’ ( )
dh  hoo(V)—h

_ 27
dt ™ ’ ( )

with sigmoidal steady-state activation functions defined as:

1
1+ exp (—Vh KK V)
1
1+0.33 eXp(—0.0625V)'

Moo (V) Noo(V) = (28)

1
B
1

hoo(V) = su(V) = (29)

1+ exp (—VhM V)

Integration was performed using the solve_ivp function from SciPy with a rel-
ative tolerance of 107% and absolute tolerance of 10~7. The system was initialized
with Vy = —60, ng = 0.0, and hg = 0.01, followed by a 100-step initialization phase
to stabilize the trajectory. Time series of length T = 1000 were then simulated with
step size At = 0.1.

To introduce non-stationarity in the dynamics, the NMDA conductance param-
eter gyympa was varied across simulations. Three values were used to generate
qualitatively distinct regimes: gyypa = 9.3, 10.3, and 11.3. For each value, one
time series of states [V (¢),n(t), h(t)]" was obtained.

The pePLRNN model for the NMDA Burster experiment was trained using the
following parameters: number of training epochs = 100001, initial teacher forcing
parameter TF_alpha = 0.5, final teacher forcing value TF_alpha2 = 1072, number
of hidden dimensions M = 64, L2 regularization coefficient \; = 107°, temporal
smoothness regularization Ay = 64, batch size = 400, sequence length = 80, and
number of independent runs = 20.

Generation of Benchmark Data from the Logistic Map

Benchmark time series data of the logistic map was generated under different dy-
namical regimes. The logistic map is defined by:

Ti41 = Wft(l - It>7 (30)
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where z; € [0,1] and r € [0,4] is the bifurcation control parameter.

Time series of length T" = 5000 were generated for four distinct parameter values
r € {2.8,3.2,3.5,3.9}, corresponding to qualitatively different dynamical regimes
(one fixed point, 2-cycle, 4-cycle and chaos ). A fixed initial condition xy = 0.5 was
used across all simulations.

The pePLRNN model for the Logistic Map experiment was trained using the
following parameters: number of training epochs = 20001, initial teacher forcing
parameter TF_alpha = (.5, final teacher forcing value TF_alpha2 = 10~2°, number
of hidden dimensions M = 1, L2 regularization coefficient \; = 107°, temporal
smoothness regularization values Ao = 64, batch size = 256, sequence length = 2,
and number of independent runs = 10.

In addition, a bifurcation dataset was generated to test the models ability to
capture transitions in qualitative dynamics across a range of r values. For this, 50
values of r were linearly spaced between 7.,;, = 2.5 and ry.c = 4.0. For each r,
the system was iterated for 1000 transient steps followed by 100 iterations used for
model training. The resulting state vectors {x;} were stored for each r creating the
bifurcation dataset.

The pePLRNN model for the bifurcation dataset of the logistic map was trained
using the following parameters: number of training epochs = 60001, initial teacher
forcing parameter TF_alpha = (.5, final teacher forcing value TF_alpha2 = 102,
number of hidden dimensions M = 8, L2 regularization coefficient \; = 107°, tem-
poral smoothness regularization Ay = 0.1, batch size = 2048, sequence length = 2,
and number of independent runs = 10.

Task-Trained RNN Reconstruction

Task-trained RNNs for the reconstruction experiment of Section3.1.1jand Section3.1.1]
were trained with dpiggen = 3, all other specification apply as in Section2.4]

The best-performing pair of task-trained RNN and its corresponding pePLRNN
reconstruction were selected based on a combined evaluation of trajectory recon-
struction correlation and behavioral accuracy.

Specifically, for each model pair, I computed the mean correlation between true
and reconstructed hidden state trajectories on both the training and test sets, and
the mean behavioral prediction error of the task-trained RNN as well as the behav-
ioral prediction error of the reconstruction model.

The final score combined these measures by summing the two correlation values
and subtracting the four behavioral errors. The model pair with the highest resulting
score was selected.

The pePLRNN model for reconstructing the task-trained RNN dynamics in the
first validation experiment was fitted using the following parameters: number of
training epochs = 50001, initial teacher forcing parameter TF_alpha = 0.5, final
teacher forcing value TF_alpha2 = 1072, number of hidden dimensions M = 10, L2
regularization coefficient \; = 107°, temporal smoothness regularization Ay = 64,
batch size = 200, sequence length = 20, and number of independent runs = 10.

102



Task-Trained RNN Reconstruction With and Without Memory

Task-trained RNNs for the reconstruction experiment of Section3.1.2] and section
were trained with dpgge, = 8, with all other specification applying as in Section2.4]

The pePLRNN model for reconstructing the task-trained RNN dynamics com-
paring with and without memory requirement was fitted using the following pa-
rameters: number of training epochs = 50001, initial teacher forcing parameter
TF_alpha = 0.5, final teacher forcing value TF_alpha2 = 10~2°, number of hidden
dimensions M = 10, L2 regularization coefficient \; = 107°, temporal smoothness
regularization Ay = 64, batch size = 200, sequence length = 20, and number of
independent runs = 10.

Cross-Condition Reconstruction Experiments

For the cross-condition experiment in Sectionf3.1.3] The hidden state dynamics
from taken from Section3.1.2] and remained unchanged. Inputs from the memory
task variant were converted to continues inputs by adding 1 to the cue input channel
active in the respective trial. Continues inputs were converted to impluse inputs by
subtracting 1 from the active cue input channel for the last second.

The pePLRNN model for the reconstruction of task-trained RNNs in the swapped
input experiment was trained with the following parameters: number of training
epochs = 100001, initial teacher forcing parameter TF_alpha = 0.5, final teacher
forcing value TF_alpha2 = 107%°, number of hidden dimensions M = 10, L2 regu-
larization coefficient A\; = 107°, temporal smoothness regularization Ay = 64, batch
size = 200, sequence length = 20, and number of independent runs = 10.

Reconstructions from Recorded Data

For all experimental sessions, spike time were convolved using the procedure de-
scribed in Section2.1l External inputs (see Sect. were constructed for every
trial separately as one-hot encoding signaling the cue light presentation (left cue
and right cue as separate input channels), the lever presentation (as one additional
input channel) and reward presentation (as another input channel).

All reconstructions from recorded neural data were performed using the pe-
PLRNN model configured with the following parameters: number of training epochs
= 100000, initial teacher forcing parameter TF_alpha = 0.5, final teacher forcing
value TF_alpha2 = 0.001, number of hidden dimensions M = 768, L2 regulariza-
tion coefficient A\, = 107°, temporal smoothness regularization \, = 128, batch size
= 256, sequence length = 400, and number of independent runs = 10.

To generate simulations for evaluating model-generated trajectories on unseen
data, animal datasets were reduced to ten trials preceding the rule change point.
Half of the stable behavioral trials (10 trials) were held out as test data. Models were
trained on the reduced dataset with the same configuration as described in Section [5|
To evaluate performance, the trained models were used to generate trajectories for
the first five held-out trials. Trajectories were generated by providing the trial-
specific initial condition and external input sequence.
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True and generated trajectories were compared using unit- and trial-wise Pearson
correlation. These values were averaged across units and trials to obtain dataset-
specific correlation estimates. A comparison distribution was generated by comput-
ing trial-wise cross-correlations (each unit signal being correlated with corresponding
unit signal from the other trial) for all pairs among the five held-out trials. Distri-
butions were compared using a Wilcoxon rank-sum test.

Generation of Transients

To generate transient trajectories for different rule conditions in Section3.2.2] the
following procedure was used. For each behaviorally stable period (see Section ,
neural states from one second before cue onset were extracted from the respective
trials. The sample mean p and covariance matrix ¥ were estimated from these
states. From the resulting Gaussian distribution A (u, X), 500 initial states z((f) ~
N (p, X) were sampled for each rule condition.

These initial conditions were propagated for 500 time steps without input using
the pePLRNN, with Wy, W3 set to the average parameter values of the respective
behaviorally stable period. The resulting state at step 500, zgo)o, served as the initial
condition for generating full trial transients. From each generated initial state, cue-
specific trajectories were then generated by applying the cue input vector s, for
60 time steps, followed by a choice input vector Scneice. The duration of the choice
input was set to the mean reaction time observed in the respective rule condition.

Influence of Rule-Specific Initial Condition and Parameters

To assess the relative influence of initial conditions and parameters on transient tra-
jectories in Section3.2.3, the same procedure described in Section 77 was used. How-
ever, prior to input-driven trial generation, the initial conditions zé’o)o were swapped
between rule conditions. Swapped initial state was then evolved with the parameter
set W1, Wy) of the respective opposite rule for both cue conditions.

Generation of Cue-Driven Long-Term Simulations

To generate cue-specific limit sets, the same initial condition sampling procedure was
used as described in Section ??. For each behaviorally stable period (see Section,
the sample mean g and covariance matrix 3 were estimated from neural states one
second prior to cue onset. From the resulting Gaussian distribution N (u, X), 500
initial latent states z(()i) ~ N (p, X) were sampled per rule condition.

Each initial state was first propagated for 500 time steps without input using
the pePLRNN with parameter matrices W1, Wy set to the average values of the
respective behavioral regime, resulting in the initial state Zélo)o'

From these initial states, cue-specific long-term trajectories were generated by
applying the corresponding cue input vector s.,. continuously for 5000 time steps.

Generation of Long-Term Simulations to Test for Multistability

To generate the limit sets for Sectio the final states of previously generated
cue transients and cue long-term generatedtrajectories (see Sections 7?7 and ?7?) were
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taken as initial conditions. Each of these states was then propagated for 20000 time
steps without any external input.

Trial-by-Trial Trajectory Generation

To generate trajectories on a trial-by-trial basis for Section3.2.4] the same procedure
described in Sections 7?7 and 77 was followed, but instead of each behaviorally stable
period each trial was considered. For each trial, the corresponding parameters ng),
ng) assigned to that trial were used to simulate the dynamics. Initial conditions
were computed individually for each trial like in Sections 77?.

Time Series for Change Point Analysis

For change point analyses in Section3.2.4] of the trial-specific parameters, locations
of attracting regions, and recorded neural states, the time series, fitted by PARCS
(see Sect. [2.5), was considered from the onset of the behaviorally stable period of
the first rule condition to the end of the stable period of the second rule for the
respective experimental session. For the determination of the behavioral change
point as specified in Section2.5] The trial-specific behavioral responses after the
rule change until the end of the respective experimental session were considered.

Connectivity estimation

For analysis of connectivity similarity, connectivity was estimate for every trial by
simulating 500 trajectories (described in sectio. These connectivity estimates
were then thresholded to extract the 5% weights (all other were set to zero). Jaccard
similarty was used to calculate the similarity of effective similarity across trials. To
compute clusters, upper triangles of similarity matrices were extracted and separated
by the CP. Shuffle comparison was done by randomly sampling the CP.
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Rule Learning in Each Session

Correct implementation of rules is tested with chi-squared table test. VR is learned
if chi-squared test is significant such that there is a significant relation between cue
and choice. The SR is learned if there is no significant relation between cue and
choice.

Table 1: Behavioral Table. Asterisks (*) indicate incorrect behavior.
Dataset Rule (1,2) Cue rule learned SR learned

01 excluded - -
02 left, cue 0.0070%* 0.4561%*

03* cue, left 0.0935 0.2104*
04* left, cue 0.0049* 0.0147
05 cue, left 0.0001* 1.0000*
06 cue, left 0.0225* 0.3563*
o7* left, cue 0.1441 1.0000*
08 cue, left 0.0389* 0.1160*
09 left, cue 0.0389* 1.0000*
10 cue, left 0.1047 0.1376*
11 cue, right 0.0014* 1.0000*
12 right, cue 0.0049* 0.5490*
13 cue, right 0.0078%* 0.2846*
14 cue, right 0.0014* 0.2104*
15 right, cue 0.0049* 0.5030*
16 cue, right 0.0022 1.0000*
17 excluded - -

18 cue, right 0.0014* 0.2104*
19 cue, left 0.0013* 0.2104*
20 left, cue 0.0049* 0.2846*
21 cue, left 0.0016* 0.2104*
22 left, cue 0.0045* 0.2104*
23 cue, left 0.0017* 0.4533*
24* left, cue 0.7952 0.2846*
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Proof of Bounded Orbits in a Single Sub-Network

The proof presented below is adapted and expanded from the framework described
in [104]. If p(A) = ||A|| < 1, then every orbit of the clipped shallow PLRNN
sub-network is bounded.

Proof. We consider the dynamics of a single sub-network governed by
z;=Az 1+ W, [¢(W2 Zi—1 + h2) - ¢(W2 Zt—l)] + hy, (31)

where z; € RM is the state vector at time t, A € RM*M is a diagonal matrix, and
W, € RM*L W, € RI*M are connectivity matrices. The bias vectors are h; € RM
and hy, € RY| and the nonlinearity ¢(-) is the ReLU function.

For notational convenience, we define

Y(Z¢-1) = ¢(W2 Zi—1 + h2) - ¢(W2 thl)'
Thus, equation can be rewritten as
7z — AZt_l + W1 ¢(Zt_1) + hl. (32)

Step 1: Bounding the Nonlinear Term. For each component [ € {1,..., L},
by definition,

M M
y(z¢1) = max {0, Z wl(jz) 21+ hg)} — max {O, Z wl(f) zjﬂg,l}.
j=1 j=1

Since the ReLLU function is non-decreasing, it follows directly that
i(ze_1) <BY, foralll=1,... L. (33)

Taking the Euclidean norm, we deduce
(34)

where

Step 2: Recursive Estimation of the Orbit. Let {z,2z,,...,zr,...} be an
orbit of the dynamics . By recursive substitution we obtain

zo = Az, +Wi(z;) + hy,
z3 = A’z + AW (z1) + Wi 9p(z2) + (A + 1) hy,

T-2 T—2
zr =A""z + Y A Wi(zr;) + ) Ay (35)
j=0 Jj=0
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Taking norms on both sides and applying the triangle inequality gives

T2 T2
lze || < [|AN" flzall + WY IAR [ (zr_a-p)] + [l > A (36)
§=0 §=0

Using the bound from , we have

T-2 T-2
lzzll < AN 20l + Fona Wl IALF + [l AP (37)

Jj=0 J=0

Step 3: Convergence of the Series. Since ||A| < 1, the term ||A|7™!

decays to zero as T — 0o, and the geometric series > [|A[” converges to m.
Therefore, taking the limit as T" — oo in yields
- 1 1
lim [z[] < A (W] =770 + [u]] 77— < oo (38)
o0 1—[[A] 1L—J[A]
This result establishes that every orbit of the sub-network described by
remains bounded under the condition ||A| < 1. O

Proof for Whittaker-Handerson Smoother

We have a sequence of parameter matrices {ng), ng)}szl. Define
(k)
vec(W
X(k) = ( 1k ) € Rn,
vec (Wg ))
so that the given penalty

2 EK Wi —wi
1 1
2K 2

can be rewritten as

2 2
o i - wi|
F F

K
22 S0 DI = 22 p
2K P 2 2K F

where
11 0 0
X=(x® x® .. x®), p=|0 b1
: .. 0
0 -~ 0 -1 1

This is ezactly the same form as the discrete Whittaker-Henderson penalty >, ||z, —
z;_1||>. Hence the entire objective

A
: . 2 2 2
min [V - X[} + 22 DX}
is a matrix-valued analogue of the Whittaker smoother min, ||y — x[|3 + A|| Dz||3.
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2.

Proof of Zero-Phase Property

We now show that the resulting smoother operator is symmetric and hence zero-
phase.

(i)

Define the smoother matriz on each row-vector of X by

A2

S = (I+aD'D)! a=——.
Then the fitted sequence is X=9Y.

Note that
(D*D)" = DT (DT = DD,

so DT D is symmetric.

The identity matrix I is symmetric and for any scalar «, so is I +a DT D. Call
this sum A.

If A is symmetric and invertible, then
AT = (AT = (A
so A71 is also symmetric.

Hence
S = (I+aD'D)™!

is symmetric. Any linear operator with a symmetric matrix representation has
zero-phase: it treats past and future data identically and introduces no net
time-shift of CPs.

109



References

[1]

2]

[10]

[11]

[12]

Aamir Abbasi, Rohit Rangwani, Daniel W. Bowen, Andrew W. Fealy, Nathan
P. Danielsen, and Tanuj Gulati. “Cortico-Cerebellar Coordination Facilitates
Neuroprosthetic Control”. In: Science Advances 10.15 (2024), eadm8246. DOI:
10.1126/sciadv.adm8246.

Kyle Aitken, Marina Garrett, Shawn Olsen, and Stefan Mihalas. “The ge-
ometry of representational drift in natural and artificial neural networks”.
In: PLOS Computational Biology 18.11 (2022), e1010716. DOI: 10 . 1371/
journal.pcbi.1010716.

Lars Albantakis and Gustavo Deco. “The encoding of alternatives in multiple-
choice decision making”. In: Proceedings of the National Academy of Sciences
of the United States of America 106.25 (2009), pp. 10308-10313. DOTI: 10.
1073/pnas.0900814106.

Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. Chaos: An Intro-
duction to Dynamical Systems. New York: Springer, 1996. 1SBN: 978-0-387-
94677-5.

Daniel J. Amit. Modeling Brain Function: The World of Attractor Neural
Networks. Cambridge, UK: Cambridge University Press, 1989. ISBN: 978-0-
521-36100-2.

Vasso Anagnostopoulou, Christian Pétzsche, and Martin Rasmussen. Nonau-
tonomous Bifurcation Theory: Concepts and Tools. Vol. 10. Frontiers in Ap-
plied Dynamical Systems: Reviews and Tutorials. Cham: Springer, 2023.
ISBN: 978-3-031-29841-7. DOI: 10.1007/978-3-031-29842-4.

Paul G. Anastasiades and Adam G. Carter. “Circuit organization of the
rodent medial prefrontal cortex”. In: Trends in Neurosciences 44.7 (2021),
pp. 550-563. DOI: 10.1016/j.tins.2021.03.006.

Makoto C. Aoi, Valerio Mante, and Jonathan W. Pillow. “Prefrontal cor-
tex exhibits multidimensional dynamic encoding during decision-making”. In:
Nature Neuroscience 23 (2020), pp. 1410-1420. DOI: 10.1038/s41593-020-
0696-5.

Lisa Aziz-Zadeh, Jason T. Kaplan, and Marco Iacoboni. “"Aha!": The Neu-
ral Correlates of Verbal Insight Solutions”. In: Human Brain Mapping 30.3
(2009), pp. 908-916. DOI: 10.1002/hbm.20554.

Florian Béhner et al. “Species-conserved mechanisms of cognitive flexibility
in complex environments”. In: bioRziv (2022). DOI: 10.1101/2022.11.14.
516439.

Omri Barak. “Recurrent Neural Networks as Versatile Tools of Neuroscience
Research”. In: Current Opinion in Neurobiology 46 (2017), pp. 1-6. DOI: 10.
1016/j.conb.2017.06.003.

Manuel Beiran, Nicolas Meirhaeghe, Hansem Sohn, Mehrdad Jazayeri, and
Srdjan Ostojic. “Parametric control of flexible timing through low-dimensional
neural manifolds”. In: Neuron 111.5 (2023), pp. 739-753.

110


https://doi.org/10.1126/sciadv.adm8246
https://doi.org/10.1371/journal.pcbi.1010716
https://doi.org/10.1371/journal.pcbi.1010716
https://doi.org/10.1073/pnas.0900814106
https://doi.org/10.1073/pnas.0900814106
https://doi.org/10.1007/978-3-031-29842-4
https://doi.org/10.1016/j.tins.2021.03.006
https://doi.org/10.1038/s41593-020-0696-5
https://doi.org/10.1038/s41593-020-0696-5
https://doi.org/10.1002/hbm.20554
https://doi.org/10.1101/2022.11.14.516439
https://doi.org/10.1101/2022.11.14.516439
https://doi.org/10.1016/j.conb.2017.06.003
https://doi.org/10.1016/j.conb.2017.06.003

[13] Yoshua Bengio. “Learning Deep Architectures for AI". In: Foundations and
Trends in Machine Learning 2.1 (2009), pp. 1-127. DOI: 10. 1561/2200000006.

[14] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning Long-Term
Dependencies with Gradient Descent is Difficult”. In: IEEE Transactions on
Neural Networks 5.2 (1994), pp. 157-166. DOI: 10.1109/72.279181.

[15] Lucy K Bicks, Hiroyuki Koike, Schahram Akbarian, and Hirofumi Morishita.
“Prefrontal cortex and social cognition in mouse and man”. In: Frontiers in
psychology 6 (2015), p. 1805.

[16] Joanna M. Birrell and Veronica J. Brown. “Medial frontal cortex mediates
perceptual attentional set shifting in the rat”. In: Journal of Neuroscience
20.11 (2000), pp. 4320-4324. pDOI: 10.1523/INEUROSCI . 20-11-04320.2000.

[17] Gregory B. Bissonette, A. G. Powell, and A. L. Roesch. “Double dissocia-
tion of the effects of medial and orbital prefrontal cortical lesions on atten-

tional and affective shifts in mice”. In: Journal of Neuroscience 28.44 (2008),
pp. 11124-11130.

[18] Amy E. Block, Hooman Dhanji, Sarah F. Thompson-Tardif, and Stan B. Flo-
resco. “Thalamic-prefrontal cortical-ventral striatal circuitry mediates disso-
ciable components of strategy set shifting”. In: Cerebral Cortex 17 (2007),
pp. 1625-1636. DOI: 10.1093/cercor/bh1073.

[19] Bastiaan Bloem, Rogier B. Poorthuis, and Huibert D. Mansvelder. “Choliner-
gic modulation of the medial prefrontal cortex: the role of nicotinic receptors
in attention and regulation of neuronal activity”. In: Frontiers in Neural Cir-
cuits 8 (2014), p. 17. DOI: 10.3389/fncir.2014.00017.

[20] Georg Bohlmann. “Ein Ausgleichungsproblem”. In: Nachrichten von der Gesellschaft
der Wissenschaften zu Géttingen, Mathematisch-Physikalische Klasse (1899),
pp. 260-271.

[21] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. “Sliced
and Radon Wasserstein Barycenters of Measures”. In: J. Math. Imaging Vis.
51.1 (2015), pp. 22-45.

[22] Matthew M. Botvinick, Jonathan D. Cohen, and Cameron S. Carter. “Con-
flict monitoring and anterior cingulate cortex: An update”. In: Trends in
Cognitive Sciences 8.12 (2004), pp. 539-546. DOI: 10.1016/j .tics.2004.
10.003.

[23] Manuel Brenner, Christoph Jirgen Hemmer, Zahra Monfared, and Daniel
Durstewitz. “ Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes
in Dynamical Systems Reconstruction”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2024.

[24] Manuel Brenner, Florian Hess, Jonas M Mikhaeil, Leonard F Bereska, Zahra
Monfared, Po-Chen Kuo, and Daniel Durstewitz. “Tractable Dendritic RNNs
for Reconstructing Nonlinear Dynamical Systems”. In: Proceedings of the 39th

International Conference on Machine Learning. Vol. 162. Proceedings of Ma-
chine Learning Research. PMLR, 2022, pp. 2292-2320.

111


https://doi.org/10.1561/2200000006
https://doi.org/10.1109/72.279181
https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000
https://doi.org/10.1093/cercor/bhl073
https://doi.org/10.3389/fncir.2014.00017
https://doi.org/10.1016/j.tics.2004.10.003
https://doi.org/10.1016/j.tics.2004.10.003

[25] Manuel Brenner, Georgia Koppe, and Daniel Durstewitz. “Multimodal Teacher
Forcing for Reconstructing Nonlinear Dynamical Systems”. In: When Ma-
chine Learning meets Dynamical Systems: Theory and Applications. 2023.

[26] Manuel Brenner, Elias Weber, Georgia Koppe, and Daniel Durstewitz. “Learn-
ing Interpretable Hierarchical Dynamical Systems Models from Time Series
Data”. In: The Thirteenth International Conference on Learning Representa-

tions (ICLR). 2025.

[27] Manuel Benjamin Brenner. “Learning Interpretable Dynamical Systems Mod-
els from Multimodal Empirical Time Series”. Supervised by Prof. Dr. Daniel
Durstewitz. PhD thesis. Heidelberg University, 2024. DOI: 10.11588/heidok.
00035092.

[28] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical
systems”. In: Proceedings of the National Academy of Sciences 113.15 (2016),
pp. 3932-3937. DOIL: 10.1073/pnas.1517384113.

[29] Yoram Burak and Ila R. Fiete. “Accurate Path Integration in Continuous
Attractor Network Models of Grid Cells”. In: PLoS Computational Biology
5.2 (2009), €1000291. DOI: 10.1371/journal.pcbi.1000291.

[30] Timothy J. Buschman and Earl K. Miller. “Goal-direction and top-down
control”. In: Philosophical Transactions of the Royal Society B: Biological
Sciences 369.1655 (2014), p. 20130471. DOIL: 10.1098/rstb.2013.0471.

[31] Gyorgy Buzsaki and Andreas Draguhn. “Neuronal Oscillations in Cortical
Networks”. In: Science 304.5679 (2004), pp. 1926-1929. DOI: 10.1126/science.
1099745.

[32] Francesco Carnevale, Victor de Lafuente, Ranulfo Romo, Omri Barak, and
Natalia Parga. “Dynamic Control of Response Criterion in Premotor Cortex
during Perceptual Detection under Temporal Uncertainty”. In: Neuron 86.4
(2015), pp. 1067-1077. DOI: 10.1016/j .neuron.2015.03.031.

[33] Andrea Ceni, Peter Ashwin, and Lorenzo Livi. “Interpreting Recurrent Neural
Networks Behaviour via Excitable Network Attractors”. In: Cognitive Com-
putation 12.2 (2020), pp. 388-404. DOI: 10.1007/s12559-019-09634-2.

[34] Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton.
“Data-driven discovery of coordinates and governing equations”. In: Proceed-
ings of the National Academy of Sciences 116.45 (2019), pp. 22445-22451.
DOI: 10.1073/pnas.1906995116.

[35] Rishidev Chaudhuri and Ila R. Fiete. “Computational Principles of Memory”.
In: Nature Neuroscience 19.3 (2016), pp. 394-403. DOI: 10.1038/nn.4237.

[36] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Du-
venaud. “Neural ordinary differential equations”. In: Advances in Neural In-
formation Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates,
Inc., 2018, pp. 6571-6583.

112


https://doi.org/10.11588/heidok.00035092
https://doi.org/10.11588/heidok.00035092
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1371/journal.pcbi.1000291
https://doi.org/10.1098/rstb.2013.0471
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
https://doi.org/10.1016/j.neuron.2015.03.031
https://doi.org/10.1007/s12559-019-09634-2
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1038/nn.4237

137]

38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

Tianping Chen and Hong Chen. “Universal Approximation to Nonlinear Op-
erators by Neural Networks with Arbitrary Activation Functions and Its Ap-
plication to Dynamical Systems”. In: IEEE Transactions on Neural Networks
6.4 (1995), pp. 911-917. pOI: 10.1109/72.392253.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua
Bengio. “On the Properties of Neural Machine Translation: Encoder—-Decoder
Approaches”. In: Proceedings of the 8th Workshop on Syntax, Semantics and
Structure in Statistical Translation (SSST-8). Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 103-111.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio.
“Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling”. In: arXiv preprint arXiv:1412.8555 (2014).

Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D.
Foster, Paul Nuyujukian, Stephen I. Ryu, and Krishna V. Shenoy. “Neural
Population Dynamics During Reaching”. In: Nature 487.7405 (2012), pp. 51—
56. DOI: 10.1038/naturel11129.

John P. Cunningham and Byron M. Yu. “Dimensionality reduction for large-
scale neural recordings”. In: Nature Neuroscience 17.11 (2014), pp. 1500—
1509. DOI: 10.1038/nn.3776.

Clayton E. Curtis and Mark D’Esposito. “Persistent activity in the prefrontal
cortex during working memory”. In: Trends in Cognitive Sciences 7.9 (2003),
pp. 415-423. DOI: 10.1016/j.tics.2003.08.009.

George Cybenko. “Approximation by Superpositions of a Sigmoidal Func-
tion”. In: Mathematics of Control, Signals, and Systems 2.4 (1989), pp. 303—
314. DOI: 10.1007/BF02551274.

Jeffrey W. Dalley, Rudolf N. Cardinal, and Trevor W. Robbins. “Prefrontal
executive and cognitive functions in rodents: Neural and neurochemical sub-
strates”. In: Neuroscience € Biobehavioral Reviews 28.7 (2004), pp. 771-784.
DOI: 10.1016/j .neubiorev.2004.09.006.

Geoffroy Delamare, Yosif Zaki, Denise J. Cai, and Claudia Clopath. “Drift of
Neural Ensembles Driven by Slow Fluctuations of Intrinsic Excitability”. In:
eLife 12 (2024), RP88053. DOI: 10.7554/eLife.88053.

Alain Destexhe and Michelle Rudolph-Lilith. Neuronal Noise. Vol. 8. Springer
Series in Computational Neuroscience. New York, NY: Springer, 2012. 1SBN:
978-0-387-79019-0. DOI: 10.1007/978-0-387-79020-6.

Kenji Doya. “Complementary roles of basal ganglia and cerebellum in learning
and motor control”. In: Current Opinion in Neurobiology 10.6 (2000), pp. 732—
739. DOI: |10.1016/30959-4388(00)00153-7.

Laura N. Driscoll, Lea Duncker, and Christopher D. Harvey. “Representa-
tional drift: Emerging theories for continual learning and experimental future
directions”. In: Current Opinion in Neurobiology 76 (2022), p. 102609. DOTI:
10.1016/j.conb.2022.102609.

113


https://doi.org/10.1109/72.392253
https://doi.org/10.1038/nature11129
https://doi.org/10.1038/nn.3776
https://doi.org/10.1016/j.tics.2003.08.009
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.neubiorev.2004.09.006
https://doi.org/10.7554/eLife.88053
https://doi.org/10.1007/978-0-387-79020-6
https://doi.org/10.1016/S0959-4388(00)00153-7
https://doi.org/10.1016/j.conb.2022.102609

[49] Laura N. Driscoll, Krishna Shenoy, and David Sussillo. “Flexible Multitask
Computation in Recurrent Networks Utilizes Shared Dynamical Motifs”. In:
Nature Neuroscience 27.7 (2024), pp. 1349-1363. DOI: 10 .1038/s41593 -
024-01668-6.

[50] Lauren N. Driscoll, Nicholas L. Pettit, Matthias Minderer, Selmaan N. Chet-
tih, and Christopher D. Harvey. “Dynamic reorganization of neuronal ac-
tivity patterns in parietal cortex”. In: Cell 170.5 (2017), 986-999.e16. DOL:
10.1016/j.cell.2017.07.021.

[51] Alexis Dubreuil, Adrian Valente, Manuel Beiran, Francesca Mastrogiuseppe,
and Srdjan Ostojic. “The Role of Population Structure in Computations
Through Neural Dynamics”. In: Nature Neuroscience 25.6 (2022), pp. 783—
794. DOI: 10.1038/s41593-022-01088-4.

[52] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented Neural
ODEs”. In: Advances in Neural Information Processing Systems. Vol. 32. Cur-
ran Associates, Inc., 2019, pp. 3134-3144.

[53] Daniel Durstewitz. “A state space approach for piecewise-linear recurrent
neural networks for identifying computational dynamics from neural mea-
surements”. In: PLOS Computational Biology 13.6 (June 2017), pp. 1-33.
DOI: 10.1371/journal.pcbi.1005542.

[54] Daniel Durstewitz. Advanced Data Analysis in Neuroscience: Integrating Sta-
tistical and Computational Models. Bernstein Series in Computational Neuro-
science. Cham: Springer, 2017. ISBN: 978-3-319-59974-8. DOI: 10.1007/978-
3-319-59976-2.

[55] Daniel Durstewitz. “Implications of Synaptic Biophysics for Recurrent Net-
work Dynamics and Active Memory”. In: Neural Networks 22.8 (2009), pp. 1189—
1200. 18SN: 0893-6080. DOI: 10.1016/j.neunet.2009.07.016.

[56] Daniel Durstewitz. “Implications of synaptic biophysics for recurrent network
dynamics and active memory”. In: Neural Networks 22.8 (2009). Cortical
Microcircuits, pp. 1189-1200. 1SSN: 0893-6080. DOI: https://doi.org/10.
1016/j.neunet.2009.07.016.

[57] Daniel Durstewitz and Gustavo Deco. “Computational significance of tran-
sient dynamics in cortical networks”. In: European Journal of Neuroscience
27.1 (2008), pp. 217-227. DOI: [10.1111/3 .1460-9568.2007 . 05976 .x.

[58] Daniel Durstewitz and Thomas Gabriel. “Dynamical Basis of Irregular Spik-
ing in NMDA-Driven Prefrontal Cortex Neurons”. In: Cerebral Cortex 17.4
(Apr. 2007), pp. 894-908. DOI: 10.1093/cercor/bhk044.

[59] Daniel Durstewitz, Georgia Koppe, and Max Ingo Thurm. “Reconstructing
Computational Dynamics from Neural Measurements with Recurrent Neural
Networks”. In: bioRziv (2022). DOI: 10.1101/2022.10.31.514408.

[60] Daniel Durstewitz, Georgia Koppe, and Max Ingo Thurm. “Reconstructing
Computational Dynamics from Neural Measurements with Recurrent Neural
Networks”. In: Nature Reviews Neuroscience (Oct. 4, 2023). DOI: https :
//doi.org/10.1038/s41583-023-00740-7. published.

114


https://doi.org/10.1038/s41593-024-01668-6
https://doi.org/10.1038/s41593-024-01668-6
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1038/s41593-022-01088-4
https://doi.org/10.1371/journal.pcbi.1005542
https://doi.org/10.1007/978-3-319-59976-2
https://doi.org/10.1007/978-3-319-59976-2
https://doi.org/10.1016/j.neunet.2009.07.016
https://doi.org/https://doi.org/10.1016/j.neunet.2009.07.016
https://doi.org/https://doi.org/10.1016/j.neunet.2009.07.016
https://doi.org/10.1111/j.1460-9568.2007.05976.x
https://doi.org/10.1093/cercor/bhk044
https://doi.org/10.1101/2022.10.31.514408
https://doi.org/https://doi.org/10.1038/s41583-023-00740-7
https://doi.org/https://doi.org/10.1038/s41583-023-00740-7

[61] Daniel Durstewitz, Jeremy K. Seamans, and Terrence J. Sejnowski. “Neuro-
computational models of working memory”. In: Nature Neuroscience 3.Suppl
11 (2000), pp. 1184-1191. DOI: 10.1038/81460.

[62] Daniel Durstewitz, Nicole M. Vittoz, Stan B. Floresco, and Jeremy K. Sea-
mans. “Abrupt Transitions between Prefrontal Neural Ensemble States Ac-
company Behavioral Transitions during Rule Learning”. In: Neuron 66.3
(2010), pp. 438-448. 13SN: 0896-6273. DOI: https://doi.org/10.1016/
j.neuron.2010.03.029.

[63] Lukas Eisenmann, Zahra Monfared, Niclas Alexander Goring, and Daniel
Durstewitz. “Bifurcations and loss jumps in RNN training”. In: NeurlPS 2025.
Nov. 6, 2023. published.

[64] Jeffrey L. Elman. “Finding Structure in Time”. In: Cognitive Science 14.2
(1990), pp. 179-211. 1SSN: 0364-0213. DOI: 10.1016/0364-0213(90)90002-
E.

[65] Rainer Engelken, Fred Wolf, and L. F. Abbott. “Lyapunov Spectra of Chaotic
Recurrent Neural Networks”. In: Physical Review Research 5.4 (2023), p. 043044.
DOI: 10.1103/PhysRevResearch.5.043044.

[66] G. Bard Ermentrout and David H. Terman. Mathematical Foundations of
Neuroscience. Vol. 35. Interdisciplinary Applied Mathematics. New York:
Springer, 2010. 1SBN: 978-0387877075.

[67] David R. Euston, Aaron J. Gruber, and Bruce L. McNaughton. “The role of
medial prefrontal cortex in memory and decision making”. In: Neuron 76.6
(2012), pp. 1057-1070. DOI: 10.1016/j .neuron.2012.12.002.

[68] Daniel E. Feldman. “The Spike-Timing Dependence of Plasticity”. In: Neuron
75.4 (2012), pp. 556-571. DOI: 10.1016/j .neuron.2012.08.001.

[69] Leslie K. Fellows and Martha J. Farah. “Is anterior cingulate cortex necessary
for cognitive control?” In: Brain 128.4 (2005), pp. 788-796. DOI: 10.1093/
brain/awh415.

[70] Xiaoli Feng, Gregory J. Perceval, Wei Feng, and Chao Feng. “High Cogni-
tive Flexibility Learners Perform Better in Probabilistic Rule Learning”. In:
Frontiers in Psychology 11 (2020). Published March 13, 2020, p. 415. DOL:
10.3389/fpsyg.2020.00415,

[71] Stan B. Floresco. “Prefrontal dopamine and behavioral flexibility: Shifting
from an “inverted-U” toward a family of functions”. In: Frontiers in Neuro-
science 7 (2013), p. 62. 1SSN: 1662-453X. DOI: 10.3389/fnins.2013.00062.

[72] Stan B. Floresco, John A. Magyar, Doug M. Ghods-Sharifi, Anthony G. Vex-
elman, and Anthony A. Tse. “Dissociable roles for the nucleus accumbens
core and shell in regulating set shifting”. In: Journal of Neuroscience 26.9
(2006), pp. 2449-2457. DOI: |10. 1523/ INEUROSCI . 4431-05 . 2006.

[73] Stan B. Floresco, Oliver Magyar, Shahrzad Ghods-Sharifi, Corey Vexelman,
and Melissa T. Tse. “Multiple dopamine receptor subtypes in the medial pre-
frontal cortex of the rat regulate set-shifting”. In: Neuropsychopharmacology
31 (2006), pp. 297-309. DOI: 10.1038/sj.npp.1300825.

115


https://doi.org/10.1038/81460
https://doi.org/https://doi.org/10.1016/j.neuron.2010.03.029
https://doi.org/https://doi.org/10.1016/j.neuron.2010.03.029
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1103/PhysRevResearch.5.043044
https://doi.org/10.1016/j.neuron.2012.12.002
https://doi.org/10.1016/j.neuron.2012.08.001
https://doi.org/10.1093/brain/awh415
https://doi.org/10.1093/brain/awh415
https://doi.org/10.3389/fpsyg.2020.00415
https://doi.org/10.3389/fnins.2013.00062
https://doi.org/10.1523/JNEUROSCI.4431-05.2006
https://doi.org/10.1038/sj.npp.1300825

[74]

[75]

[76]
7]

78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

Stan B. Floresco, Maric T. L. Tse, and Sarvin Ghods-Sharifi. “Dopaminergic
and Glutamatergic Regulation of Effort- and Delay-Based Decision Making”.
In: Neuropsychopharmacology 33.8 (July 2008), pp. 1966-1979. 1SSN: 1740-
634X. DOI:10.1038/sj .npp. 1301565.

Stan B. Floresco and Melissa T. L. Tse. “Dopaminergic regulation of in-
hibitory and excitatory transmission in the basolateral amygdala—prefrontal
cortical pathway”. In: Journal of Neuroscience 27.8 (2007), pp. 2045-2057.
DOI: 10.1523/JNEUROSCI.5191-06.2007.

Walter J. Freeman. “The Physiology of Perception”. In: Scientific American
264.2 (1991), pp. 78-85. DOI: 10.1038/scientificamerican0291-78.

Karl Friston. “The free-energy principle: A unified brain theory?” In: Nature
Reviews Neuroscience 11.2 (2010), pp. 127-138. DOI: 10.1038/nrn2787.

Ken-Ichi Funahashi and Yuichi Nakamura. “Approximation of Dynamical
Systems by Continuous Time Recurrent Neural Networks”. In: Neural Net-
works 6.6 (1993), pp. 801-806. DOI: 10.1016/S0893-6080(05)80125-X.

Joaquin M. Fuster. The Prefrontal Cortex. 5th ed. London: Academic Press,
2015. 1SBN: 9780124078154.

Joaquin M. Fuster. The Prefrontal Cortex: Anatomy, Physiology, and Neu-
ropsychology of the Frontal Lobe. 3rd ed. New York: Lippincott-Raven, 1997.
ISBN: 9780781712645.

Joaquin M. Fuster. “Unit activity in prefrontal cortex during delayed-response
performance: neuronal correlates of transient memory”. In: Journal of Neu-
rophysiology 36 (1973), pp. 61-78.

Aniruddh R. Galgali, Maneesh Sahani, and Valerio Mante. “Residual Dy-
namics Resolves Recurrent Contributions to Neural Computation”. In: Nature
Neuroscience 26.2 (2023), pp. 326-338. DOI: 10.1038/s41593-022-01230-2.

Charles R. Gallistel, Stephen Fairhurst, and Peter Balsam. “The Learning
Curve: Implications of a Quantitative Analysis”. In: Proceedings of the Na-
tional Academy of Sciences 101.36 (2004), pp. 13124-13131. pOI1: 10.1073/
pnas.0404965101.

Charles R. Gallistel, Stephen Fairhurst, and Peter Balsam. “The learning
curve: Implications of a quantitative analysis”. In: Proceedings of the National
Academy of Sciences 101.36 (2004), pp. 13124-13131. DOI: 10.1073/pnas .
0404965101.

Yuanjun Gao, Evan W. Archer, Liam Paninski, and John P. Cunningham.
“Linear dynamical neural population models through nonlinear embeddings”.
In: Advances in Neural Information Processing Systems. Vol. 29. 2016, pp. 163~
171.

Richard J. Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils
A. Baas, Benjamin A. Dunn, May-Britt Moser, and Edvard I. Moser. “Toroidal
topology of population activity in grid cells”. In: Nature 602.7895 (2022),
pp. 123-128. DOI: 10.1038/s41586-021-04268-7.

116


https://doi.org/10.1038/sj.npp.1301565
https://doi.org/10.1523/JNEUROSCI.5191-06.2007
https://doi.org/10.1038/scientificamerican0291-78
https://doi.org/10.1038/nrn2787
https://doi.org/10.1016/S0893-6080(05)80125-X
https://doi.org/10.1038/s41593-022-01230-2
https://doi.org/10.1073/pnas.0404965101
https://doi.org/10.1073/pnas.0404965101
https://doi.org/10.1073/pnas.0404965101
https://doi.org/10.1073/pnas.0404965101
https://doi.org/10.1038/s41586-021-04268-7

[87] J. P. Garner, C. M. Thogerson, H. Wiirbel, J. D. Murray, and J. A. Mench.
“Animal neuropsychology: Validation of the Intra-Dimensional Extra-Dimensional
set shifting task for mice”. In: Behavioural Brain Research 173.1 (2006),
pp. 53-61. DOI: 10.1016/j.bbr.2006.06.002.

[88] Patrice Gaspar, Bruno Bloch, and Claude Le Moine. “D1 and D2 receptor
gene expression in rat frontal cortex: Cellular localization in different classes
of efferent neurons”. In: Furopean Journal of Neuroscience 7 (1995), pp. 1050—
1063. po1: 10.1111/35.1460-9568.1995.tb01103.x.

[89] Michael Ghil, Mickaél D. Chekroun, and Eric Simonnet. “Climate Dynam-
ics and Fluid Mechanics: Natural Variability and Related Uncertainties”. In:
Physica D: Nonlinear Phenomena 237.14-17 (2008), pp. 2111-2126. DOI:
10.1016/3 . physd. 2008.03.036.

[90] Michael Ghil and Denisse Sciamarella. “Dynamical systems, algebraic topol-

ogy and the climate sciences”. In: Nonlinear Processes in Geophysics 30.4
(2023), pp. 399-434.

[91] JoshuaI. Gold and Michael N. Shadlen. “The neural basis of decision making”.
In: Annual Review of Neuroscience 30 (2007), pp. 535-574. DOI: 10.1146/
annurev.neuro.29.051605.113038.

[92] Anton Golovanev and Alexander Hvatov. “On the Balance Between the Train-
ing Time and Interpretability of Neural ODE for Time Series Modelling”. In:
Proceedings of the 9th International Conference on Time Series and Fore-
casting (ITISE). University of Granada, 2022, pp. 61-72.

[93] Matthew D. Golub and David Sussillo. “FixedPointFinder: A Tensorflow tool-
box for identifying and characterizing fixed points in recurrent neural net-
works”. en. In: Journal of Open Source Software 3.31 (Nov. 2018), p. 1003.
ISSN: 2475-9066. DOI: 10.21105/joss.01003.

[94] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[95] Stéphanie Granon and Bruno Poucet. “Involvement of the rat prefrontal cor-
tex in cognitive functions: A central role for the prelimbic area”. In: Psychobi-
ology 28.2 (2000), pp. 229-237.

[96] D. A. Grant and E. A. Berg. “A behavioral analysis of degree of reinforcement
and ease of shifting to new responses in a Weigl-type card-sorting problem”.
In: Journal of Exzperimental Psychology 38.4 (1948). Original study introduc-
ing the Wisconsin Card Sorting Test, foundational for research on cognitive
flexibility, pp. 404—411. DOI: 10.1037/h0059831.

[97] Tleana L. Hanganu-Opatz et al. “Resolving the prefrontal mechanisms of
adaptive cognitive behaviors: A cross-species perspective”. In: Neuron 111.7
(2023), pp. 1020-1036. DOI: 10.1016/j .neuron.2023.03.017.

[98] Christopher D. Harvey, Philip Coen, and David W. Tank. “Choice-specific
sequences in parietal cortex during a virtual-navigation decision task”. In:
Nature 484.7392 (2012), pp. 62-68. DOI: 10.1038/nature10918.

117


https://doi.org/10.1016/j.bbr.2006.06.002
https://doi.org/10.1111/j.1460-9568.1995.tb01103.x
https://doi.org/10.1016/j.physd.2008.03.036
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.21105/joss.01003
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1037/h0059831
https://doi.org/10.1016/j.neuron.2023.03.017
https://doi.org/10.1038/nature10918

199]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
New York: Wiley, 1949.

Sarah R Heilbronner, Jose Rodriguez-Romaguera, Gregory J Quirk, Henk J
Groenewegen, and Suzanne N Haber. “Circuit-based corticostriatal homolo-
gies between rat and primate”. In: Biological psychiatry 80.7 (2016), pp. 509—
521.

Christoph Jiirgen Hemmer, Manuel Brenner, Florian Hess, and Daniel Durste-
witz. “Optimal Recurrent Network Topologies for Dynamical Systems Recon-
struction”. In: Proceedings of the 41st International Conference on Machine
Learning. Vol. 235. Proceedings of Machine Learning Research. PMLR, 21-27
Jul 2024, pp. 18174-18204.

Christoph Jiirgen Hemmer, Manuel Brenner, Florian Hess, and Daniel Durste-
witz. “Optimal Recurrent Network Topologies for Dynamical Systems Recon-
struction”. In: Proceedings of the 41st International Conference on Machine
Learning. Ed. by Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp. Vol. 235. Pro-
ceedings of Machine Learning Research. PMLR, 21-27 Jul 2024, pp. 18174~
18204.

R. Henderson. “A new method of graduation”. In: Transactions of the Actu-
arial Society of America 25 (1924), pp. 29-40.

Florian Hess, Zahra Monfared, Manuel Brenner, and Daniel Durstewitz. “Gen-
eralized Teacher Forcing for Learning Chaotic Dynamics”. In: Proceedings
of the 40th International Conference on Machine Learning. Ed. by Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett. Vol. 202. Proceedings of Machine Learning Research.
PMLR, 23-29 Jul 2023, pp. 13017-13049.

Guilherme Shigueto Vilar Higa, Felipe José Costa Viana, José Francis-Oliveira,
Emily Cruvinel, Thainé Soares Franchin, Tania Marcourakis, Henning Ulrich,
and Roberto De Pasquale. “Serotonergic Neuromodulation of Synaptic Plas-
ticity”. In: Neuropharmacology (2024). DOIL: 10.1016/j .neuropharm. 2024 .
109567.

Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. Diplo-
marbeit. Munich, Germany: Technische Universitdt Miinchen, 1991.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.1997.
9.8.1735.

Alan L Hodgkin and Andrew F Huxley. “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve”. In:
The Journal of physiology 117.4 (1952), p. 500.

John J Hopfield. “Neural networks and physical systems with emergent col-
lective computational abilities.” In: Proceedings of the national academy of
sciences 79.8 (1982), pp. 2554-2558.

118


https://doi.org/10.1016/j.neuropharm.2024.109567
https://doi.org/10.1016/j.neuropharm.2024.109567
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

[110]

[111]

[112]

[113]

[114]
[115]

[116]

[117]

[118]

119]

[120]

[121]

[122]

John J. Hopfield. “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities”. In: Proceedings of the National Academy
of Sciences of the United States of America 79.8 (1982), pp. 2554-2558. DOLI:
10.1073/pnas.79.8.2554.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer Feed-
forward Networks are Universal Approximators”. In: Neural Networks 2.5
(1989), pp. 359-366. DOTI: [10.1016/0893-6080 (89) 90020-8.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Ste-
fan Schaal. “Dynamical Movement Primitives: Learning Attractor Models
for Motor Behaviors”. In: Neural Computation 25.2 (2013), pp. 328-373. DOI:
10.1162/NEC0_a_00393.

Vladimir Itskov, David Hansel, and Misha Tsodyks. “Short-Term Facilitation
May Stabilize Parametric Working Memory Trace”. In: Frontiers in Compu-
tational Neuroscience 5 (2011), p. 40. DOI: 10.3389/fncom.2011.00040.

Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

Herbert Jaeger and Harald Haas. “Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication”. In: Science 304.5667
(2004), pp. 78-80. DOI: 10.1126/science.1091277.

Max E. Joffe, Chiaki I. Santiago, Julie L. Engers, Craig W. Lindsley, and
P. Jeffrey Conn. “Metabotropic glutamate receptor subtype 3 gates acute
stress-induced dysregulation of amygdalo-cortical function”. In: Molecular
Psychiatry 24 (2019), pp. 916-927. DOI: 10.1038/s41380-017-0015-z.

Max E. Joffe et al. “Mechanisms underlying prelimbic prefrontal cortex mGlu3 /mGlu5-
dependent plasticity and reversal learning deficits following acute stress”. In:
Neuropharmacology 144 (2019), pp. 19-28. DOI: 10.1016/ j . neuropharm.
2018.10.013.

Caroline M. Johnson, Hilary Peckler, Li H. Tai, et al. “Rule learning en-
hances structural plasticity of long-range axons in frontal cortex”. In: Nature
Communications 7 (2016), p. 10785. DOI: 10.1038/ncomms10785.

Sheena A. Josselyn and Susumu Tonegawa. “Memory Engrams: Recalling the
Past and Imagining the Future”. In: Science 367.6473 (2020), eaaw4325. DOL:
10.1126/science.aaw4325.

Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. 2nd ed.
Vol. 7. Cambridge Nonlinear Science Series. Cambridge: Cambridge Univer-
sity Press, 2004. 1SBN: 978-0521529020.

Nikolaos Karalis and Anton Sirota. “Breathing coordinates cortico-hippocampal
dynamics in mice during offline states”. In: Nature Communications 13.1
(2022), p. 467. DOI: 10.1038/s41467-022-28021-2.

Mattias P. Karlsson, Dougal G. R. Tervo, and Alla Y. Karpova. “Network Re-
sets in Medial Prefrontal Cortex Mark the Onset of Behavioral Uncertainty”.
In: Science 338.6103 (2012), pp. 135-139. DOI: 10.1126/science.1226518.

119


https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.3389/fncom.2011.00040
https://doi.org/10.1126/science.1091277
https://doi.org/10.1038/s41380-017-0015-z
https://doi.org/10.1016/j.neuropharm.2018.10.013
https://doi.org/10.1016/j.neuropharm.2018.10.013
https://doi.org/10.1038/ncomms10785
https://doi.org/10.1126/science.aaw4325
https://doi.org/10.1038/s41467-022-28021-2
https://doi.org/10.1126/science.1226518

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Steven W. Kennerley, Mark E. Walton, Timothy E. J. Behrens, Mark J.
Buckley, and Matthew F. S. Rushworth. “Optimal decision making and the
anterior cingulate cortex”. In: Nature Neuroscience 9.7 (2006), pp. 940-947.
DOI: 10.1038/nn1724.

Masahiro Kimura and Ryohei Nakano. “Learning Dynamical Systems by
Recurrent Neural Networks from Orbits”. In: Neural Networks 11.9 (1998),
pp. 1589-1599. DOI: 10.1016/50893-6080(98)00098-7.

Peter E. Kloeden and Martin Rasmussen. Nonautonomous Dynamical Sys-
tems. Vol. 176. Mathematical Surveys and Monographs. American Mathe-
matical Society, 2011. ISBN: 978-0-8218-6871-3. DOI: 10.1090/surv/176.

Nancy Kopell and G. Bard Ermentrout. “Coupled oscillators and the design of
central pattern generators”. In: Mathematical Biosciences 90 (1988), pp. 87—
109. DOI: 110.1016/0025-5564(88)90038-2.

Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel
Durstewitz. “Identifying nonlinear dynamical systems via generative recur-
rent neural networks with applications to fMRI”. In: PLOS Computational
Biology 15.8 (Aug. 2019), pp. 1-35. DOI: 10.1371/journal.pcbi.1007263.

Daniel Kramer, Philine L. Bommer, Carlo Tombolini, Georgia Koppe, and
Daniel Durstewitz. “Reconstructing Nonlinear Dynamical Systems from Multi-
Modal Time Series”. In: Proceedings of the 39th International Conference
on Machine Learning. Vol. 162. Proceedings of Machine Learning Research.
PMLR, 2022, pp. 11613-11633.

P. Landry, C. J. Wilson, and S. T. Kitai. “Morphological and Electrophysi-
ological Characteristics of Pyramidal Tract Neurons in the Rat”. In: Fxperi-
mental Brain Research 57 (1984), pp. 177-190. DOI: 10.1007/BF00231144.

Kenneth W. Latimer, Jacob L. Yates, Miriam L. R. Meister, Alexander C.
Huk, and Jonathan W. Pillow. “Single-trial spike trains in parietal cortex
reveal discrete steps during decision-making”. In: Science 349.6244 (2015),
pp. 184-187. DOI: 10.1126/science.aaad056.

Xiaoxin Liao and Jun Wang. “Global Dissipativity of Continuous-Time Re-
current Neural Networks with Time Delay”. In: Physical Review E 68.1 (2003),
p. 016118. DOI: 10.1103/PhysRevE.68.016118.

M.J. Lighthill and G.B. Whitham. “On kinematic waves. II. A theory of traffic
flow on long crowded roads”. In: Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences 229.1178 (1955), pp. 317-345.
DOI: 10.1098/rspa.1955.0089.

Chia-Ying Lin and Chih-Lin Huang. “Considerations for using the Wisconsin
Card Sorting Test to assess cognitive flexibility”. In: Journal of Neuroscience
Methods 352 (2021), p. 109089. DOI: 10.1016/j . jneumeth.2021.109089.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu,
Jianfeng Gao, and Jiawei Han. “On the Variance of the Adaptive Learning
Rate and Beyond”. en. In: Apr. 2020.

120


https://doi.org/10.1038/nn1724
https://doi.org/10.1016/S0893-6080(98)00098-7
https://doi.org/10.1090/surv/176
https://doi.org/10.1016/0025-5564(88)90038-2
https://doi.org/10.1371/journal.pcbi.1007263
https://doi.org/10.1007/BF00231144
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1103/PhysRevE.68.016118
https://doi.org/10.1098/rspa.1955.0089
https://doi.org/10.1016/j.jneumeth.2021.109089

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

José G. Llavona. Approzimation of Continuously Differentiable Functions.
Vol. 130. North-Holland Mathematics Studies. Amsterdam: North-Holland,
1986. 1SBN: 978-0-444-55685-5.

Edward N. Lorenz. “Deterministic Nonperiodic Flow”. In: Journal of the At-
mospheric Sciences 20.2 (1963), pp. 130-141. DOI: 10.1175/1520-0469 (1963)
020<0130:DNF>2.0.C0;2.

Wolfgang Maass, Thomas Natschléger, and Henry Markram. “Computational
Models for Generic Cortical Microcircuits”. In: Computational Neuroscience:
A Comprehensive Approach. Ed. by Jianfeng Feng. Chapman & Hall/CRC,
2004, pp. 575-605. 1SBN: 978-1584883771.

Wolfgang Maass, Thomas Natschlager, and Henry Markram. “Real-Time
Computing Without Stable States: A New Framework for Neural Computa-
tion Based on Perturbations”. In: Neural Computation 14.11 (2002), pp. 2531—
2560. DOI: 10.1162/089976602760407955.

Fardad A. Mansouri, Etienne Koechlin, Marcello G. P. Rosa, and Mark J.
Buckley. “Managing competing goals—a key role for the frontopolar cortex”.
In: Nature Reviews Neuroscience 18.11 (2017), pp. 645-657. DOI: 10.1038/
nrn.2017.111.

Farshad A. Mansouri, Mark J. Buckley, and Keiji Tanaka. “Mnemonic Func-
tion of the Dorsolateral Prefrontal Cortex in Conflict-Induced Behavioral Ad-
justment”. In: Science 318.5852 (2007), pp. 987-990. DOI: 10.1126/science.
1146384.

Farshad A. Mansouri, Kenji Matsumoto, and Keiji Tanaka. “Prefrontal Cell
Activities Related to Monkeys’ Success and Failure in Adapting to Rule
Changes in a Wisconsin Card Sorting Test Analog”. In: The Journal of Neu-
roscience 26.10 (2006), pp. 2745-2756. DOI: 10 . 1523 / JNEUROSCI . 5238 -
05.2006.

Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. New-
some. “Context-dependent computation by recurrent dynamics in prefrontal
cortex”. In: Nature 503.7474 (Nov. 2013), pp. 78-84. 1SSN: 1476-4687. DOLI:
10.1038/nature12742.

Eve Marder. “Neuromodulation of Neuronal Circuits: Back to the Future”.
In: Neuron 76.1 (2012), pp. 1-11. DOI: 10.1016/j.neuron.2012.09.010.

Eve Marder and Dirk Bucher. “Central pattern generators and the control
of rhythmic movements”. In: Current Biology 11.23 (2001), R986-R996. DOTI:
10.1016/S0960-9822(01)00581-4.

Stephen J. Martin, Paul D. Grimwood, and Richard G. M. Morris. “Synaptic
plasticity and memory: an evaluation of the hypothesis”. In: Annual Review
of Neuroscience 23 (2000), pp. 649-711. DOI: 10.1146/annurev.neuro.23.
1.649.

Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The Bulletin of Mathematical Biophysics 5
(1943), pp. 115-133. DOI: [10.1007/BF02478259.

121


https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1038/nrn.2017.111
https://doi.org/10.1038/nrn.2017.111
https://doi.org/10.1126/science.1146384
https://doi.org/10.1126/science.1146384
https://doi.org/10.1523/JNEUROSCI.5238-05.2006
https://doi.org/10.1523/JNEUROSCI.5238-05.2006
https://doi.org/10.1038/nature12742
https://doi.org/10.1016/j.neuron.2012.09.010
https://doi.org/10.1016/S0960-9822(01)00581-4
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1146/annurev.neuro.23.1.649
https://doi.org/10.1007/BF02478259

[147] Bruce L. McNaughton, Francesco P. Battaglia, Ole Jensen, Edvard I. Moser,
and May-Britt Moser. “Path integration and the neural basis of the 'cognitive
map””. In: Nature Reviews Neuroscience 7.8 (2006), pp. 663-678. DOI: 10.
1038/nrn1932.

[148] M.-M. Mesulam. “From sensation to cognition”. In: Brain 121.6 (1998), pp. 1013~
1052. DOI: 10.1093/brain/121.6.1013.

[149] Claus Metzner and Patrick Krauss. Dynamical Phases and Resonance Phe-
nomena in Information-Processing Recurrent Neural Networks. 2021.

[150] Claus Metzner and Patrick Krauss. “Dynamics and Information Import in
Recurrent Neural Networks”. In: Frontiers in Computational Neuroscience
16 (2022). 1SSN: 1662-5188. DOI: 10.3389/fncom.2022.876315.

[151] Jamilja A. J. van der Meulen, Ruud N. J. M. A. Joosten, Jan P. C. de Bruin,
and Matthijs G. P. Feenstra. “Dopamine and Noradrenaline Efflux in the
Medial Prefrontal Cortex During Serial Reversals and Extinction of Instru-
mental Goal-Directed Behavior”. In: Cerebral Cortex 17.6 (2007), pp. 1444—
1453. DOI: 10.1093/cercor/bhl057.

[152] Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. “On the Difficulty of
Learning Chaotic Dynamics with RNNs”. In: Advances in Neural Information
Processing Systems. Vol. 35. 2022, pp. 1-12.

[153] Earl K. Miller and Jonathan D. Cohen. “An integrative theory of prefrontal
cortex function”. In: Annual Review of Neuroscience 24.1 (2001), pp. 167—
202.

[154] Earl K. Miller, Cheryl A. Erickson, and Robert Desimone. “Neural mecha-
nisms of visual working memory in prefrontal cortex of the macaque”. In:
Journal of Neuroscience 16.16 (1996), pp. 5154-5167. 1SSN: 0270-6474.

[155] Paul Miller. “Dynamical systems, attractors, and neural circuits”. In: F1000Research
5 (2016), F1000. por: 10.12688/£1000research.7698. 1.

[156] R. K. Miller. “Almost Periodic Differential Equations as Dynamical Systems
with Applications to the Existence of Almost Periodic Solutions”. In: Journal
of Differential Equations 1.3 (1965), pp. 337-345. DOIL: 10 . 1016 / 0022 -
0396 (65)90012-4.

[157] Brenda Milner. “Effects of different brain lesions on card sorting: The role of
the frontal lobes”. In: Archives of Neurology 9.1 (1963), pp. 90-100.

[158] Hannah R. Monday, Thomas J. Younts, and Pablo E. Castillo. “Long-Term
Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contribu-
tions to Brain Function and Disease”. In: Annual Review of Neuroscience 41
(2018), pp. 299-322. DOIL: 10.1146/annurev-neuro-080317-062155.

[159] Sarah Morceau, Angélique Faugére, Etienne Coutureau, and Mathieu Wolff.
“The mediodorsal thalamus supports adaptive responding based on stimulus-
outcome associations”. In: Current Research in Neurobiology 3 (2022), p. 100057.
ISSN: 2665-945X. DOIL: https://doi.org/10.1016/j.crneur.2022.100057.

122


https://doi.org/10.1038/nrn1932
https://doi.org/10.1038/nrn1932
https://doi.org/10.1093/brain/121.6.1013
https://doi.org/10.3389/fncom.2022.876315
https://doi.org/10.1093/cercor/bhl057
https://doi.org/10.12688/f1000research.7698.1
https://doi.org/10.1016/0022-0396(65)90012-4
https://doi.org/10.1016/0022-0396(65)90012-4
https://doi.org/10.1146/annurev-neuro-080317-062155
https://doi.org/https://doi.org/10.1016/j.crneur.2022.100057

[160]

[161]

[162]

[163]

[164]

[165]

166

167]

[168]

[169]

[170]

[171]

Lidija Mrzljak, Clare Bergson, Marie Pappy, Robin Huff, Robert Levenson,
and Patricia S. Goldman-Rakic. “Localization of dopamine D4 receptors in
GABAergic neurons of the primate brain”. In: Nature 381 (1996), pp. 245
248. DOI: 10.1038/381245a0.

Edward C. Muly, Krisztina Szigeti, and Patricia S. Goldman-Rakic. “D1 re-
ceptor in interneurons of macaque prefrontal cortex: Distribution and subcel-
lular localization”. In: Journal of Neuroscience 18 (1998), pp. 10553-10565.

Elisabeth A. Murray and Adriana Izquierdo. “Amygdala and orbitofrontal
cortex lesions differentially influence choices during object reversal learning”.
In: Journal of Neuroscience 27.32 (2007), pp. 8358-8366. DOI: 10 . 1523/
JNEUROSCI.2279-07.2007.

Elisabeth A. Murray and Peter H. Rudebeck. “Specializations for reward-
guided decision-making in the primate ventral prefrontal cortex”. In: Nature
Reviews Neuroscience 19.7 (2018), pp. 404-417. DOI: 10.1038/s41583-018-
0013-4.

Y. Nakamura, Y. Nakamura, A. Pelosi, B. Djemai, C. Debacker, D. Herve,
et al. “fMRI detects bilateral brain network activation following unilateral
chemogenetic activation of direct striatal projection neurons”. In: Neurolmage
220 (2020), p. 117079. DOI: 10.1016/j .neuroimage.2020.117079.

Nandakumar S. Narayanan and Mark Laubach. “Neuronal correlates of post-
error slowing in the rat dorsomedial prefrontal cortex”. In: Journal of Neu-
rophysiology 100 (2008), pp. 520-525. DOI: 10.1152/jn.00075.2008.

Nandakumar S. Narayanan and Mark Laubach. “Top-down control of motor
cortex ensembles by dorsomedial prefrontal cortex”. In: Neuron 52 (2006),
pp. 921-931.

Jérémie Naudé et al. “Dopamine builds and reveals reward-associated latent
behavioral attractors”. In: Nature Communications 15 (2024), p. 9825. DOIL:
10.1038/s41467-024-53976-%.

Susan M. Nicola, D. James Surmeier, and Robert C. Malenka. “Dopaminergic
modulation of neuronal excitability in the striatum and nucleus accumbens”.
In: Annual Review of Neuroscience 23.1 (2000), pp. 185-215. DOI: 10.1146/
annurev.neuro.23.1.185.

Georg Northoff, Niall W. Duncan, and Dave J. Hayes. “The brain and its
resting state activity—Experimental and methodological implications”. In:
Progress in Neurobiology 92.4 (2010), pp. 593-600. 1ssN: 0301-0082. DOI:
10.1016/j.pneurobio.2010.09.002.

Erik Nyhus and Francisco Barcel6. “The Wisconsin Card Sorting Test and
the cognitive assessment of prefrontal executive functions: A critical update”.
In: Brain and Cognition 71.3 (2009), pp. 437-451.

Randall C. O’Reilly and Michael J. Frank. “Making Working Memory Work:
A Computational Model of Learning in the Prefrontal Cortex and Basal
Ganglia”. In: Neural Computation 18.2 (2006), pp. 283-328. DOI: 10.1162/
089976606775093909.

123


https://doi.org/10.1038/381245a0
https://doi.org/10.1523/JNEUROSCI.2279-07.2007
https://doi.org/10.1523/JNEUROSCI.2279-07.2007
https://doi.org/10.1038/s41583-018-0013-4
https://doi.org/10.1038/s41583-018-0013-4
https://doi.org/10.1016/j.neuroimage.2020.117079
https://doi.org/10.1152/jn.00075.2008
https://doi.org/10.1038/s41467-024-53976-x
https://doi.org/10.1146/annurev.neuro.23.1.185
https://doi.org/10.1146/annurev.neuro.23.1.185
https://doi.org/10.1016/j.pneurobio.2010.09.002
https://doi.org/10.1162/089976606775093909
https://doi.org/10.1162/089976606775093909

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Daniel J. O’Shea et al. “Direct neural perturbations reveal a dynamical mech-
anism for robust computation”. In: bioRziv (2022). DOI: 10.1101/2022.12.
16.520768.

Leandro A. Oliveira, Taciana R. S. Pollo, Elinéia A. Rosa, Josiane O. Duarte,
Carlos H. Xavier, and Carlos C. Crestani. “Both Prelimbic and Infralim-
bic Noradrenergic Neurotransmissions Modulate Cardiovascular Responses
to Restraint Stress in Rats”. In: Frontiers in Physiology 12 (2021). 1SSN:
1664-042X. DOI: 10.3389/fphys.2021.700540.

Ingrid R. Olson, Emily L. Von Der Heide, Jennifer J. Alm, Lindsay J. Vyas,
and Sarah C. Tovar-Moll. “Fronto-temporal white matter connectivity pre-
dicts reversal learning errors”. In: Cerebral Cortexr 25.12 (2015), pp. 4923—
4931. DOI: 10.1093/cercor/bhv134.

Catherine Oualian and Pascale Gisquet-Verrier. “The differential involvement
of the prelimbic and infralimbic cortices in response conflict affects behavioral
flexibility in rats trained in a new automated strategy-switching task”. In:
Behavioral Neuroscience 123.5 (2009), pp. 979-991. DOI: 10.1037/a0016663.

Zineb Ouhaz, Bethany A. L. Perry, Koji Nakamura, and Alexander S. Mitchell.
“Mediodorsal Thalamus Is Critical for Updating during Extradimensional
Shifts But Not Reversals in the Attentional Set-Shifting Task”. In: eNeuro
9.2 (2022), ENEURO.0162-21.2022. DOI: 10.1523/ENEURO.0162-21.2022.

Liam Paninski and John P. Cunningham. “Neural data science: Accelerating
the experiment-analysis-theory cycle in large-scale neuroscience”. In: Current
Opinion in Neurobiology 50 (2018), pp. 232-241. DOI: 10.1016/j . conb.
2018.04.007.

Razvan Pascanu and Herbert Jaeger. “A Neurodynamical Model for Working
Memory”. In: Neural Networks 24.2 (2011), pp. 199-207. DOI: 10.1016/j .
neunet.2010.10.003.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of
Training Recurrent Neural Networks” In: Proceedings of the 30th Interna-
tional Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David
McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,
Georgia, USA: PMLR, 17-19 Jun 2013, pp. 1310-1318.

L.M. Peeters, R. Hinz, J.R. Detrez, S. Missault, W.H. De Vos, M. Verhoye, et
al. “Chemogenetic silencing of neurons in the mouse anterior cingulate area
modulates neuronal activity and functional connectivity”. In: Neurolmage
220 (2020), p. 117088. DOI: 10.1016/j .neuroimage.2020.117088.

Lawrence Perko. Differential equations and dynamical systems. Vol. 7. Springer
Science & Business Media, 2013.

Henri Poincaré. “Mémoire sur les courbes définies par une équation différen-
tielle”. French. In: Journal de Mathématiques Pures et Appliquées 7 (1881),
pp. 375-422.

124


https://doi.org/10.1101/2022.12.16.520768
https://doi.org/10.1101/2022.12.16.520768
https://doi.org/10.3389/fphys.2021.700540
https://doi.org/10.1093/cercor/bhv134
https://doi.org/10.1037/a0016663
https://doi.org/10.1523/ENEURO.0162-21.2022
https://doi.org/10.1016/j.conb.2018.04.007
https://doi.org/10.1016/j.conb.2018.04.007
https://doi.org/10.1016/j.neunet.2010.10.003
https://doi.org/10.1016/j.neunet.2010.10.003
https://doi.org/10.1016/j.neuroimage.2020.117088

183

[184]

[185)]

[186]

[187]

188

[189)

[190]

191]

[192]

193]

[194]

Nathaniel James Powell and A. David Redish. “Representational changes of
latent strategies in rat medial prefrontal cortex precede changes in behaviour”.
In: Nature Communications 7 (2016), p. 12830. DOI: 10.1038/ncomms12830.

Gregory J. Quirk and Devin Mueller. “Neural mechanisms of extinction learn-
ing and retrieval”. In: Neuropsychopharmacology 33.1 (2008), pp. 56-72. DOL:
10.1038/sj.npp. 1301555,

Michael E. Ragozzino, Susan Detrick, and Raymond P. Kesner. “Involvement
of the prelimbic—infralimbic areas of the rodent prefrontal cortex in behavioral
flexibility for place and response learning”. In: Journal of Neuroscience 19.11
(1999), pp. 4585-4594. DOI: |10. 1523/ INEUROSCI . 19-11-04585. 1999

Michael E. Ragozzino, Susan J. Mohler, Kenneth R. Prior, and Raymond
P. Kesner. “The role of the dorsomedial striatum in behavioral flexibility for
response and visual cue discrimination learning”. In: Behavioral Neuroscience
117.5 (2003), pp. 1052-1063. DOI: 10.1037/0735-7044.117.5.1052.

Rishi Rajalingham, Aida Piccato, and Mehrdad Jazayeri. “Recurrent Neu-
ral Networks with Explicit Representation of Dynamic Latent Variables Can
Mimic Behavioral Patterns in a Physical Inference Task”. In: Nature Com-
munications 13.1 (2022), p. 5865. DOI: 10.1038/s41467-022-33581-6.

Kanaka Rajan, Christopher D. Harvey, and David W. Tank. “Recurrent Net-
work Models of Sequence Generation and Memory”. In: Neuron 90.1 (2016),
pp. 128-142. 1SSN: 0896-6273. DOI: https://doi.org/10.1016/j.neuron.
2016.02.009.

Richard H. Rand, Arthur H. Cohen, and Philip J. Holmes. “Systems of cou-
pled oscillators as models of central pattern generators”. In: Neural Control
of Rhythmic Movements in Vertebrates. Ed. by Arthur H. Cohen. New York:
Wiley, 1988, pp. 333-367.

A. David Redish, Adam N. Elga, and David S. Touretzky. “A coupled attrac-
tor model of the rodent head direction system”. In: Network: Computation in
Neural Systems 7.4 (1996), pp. 671-685. DOI: 10.1088/0954-898X_7_4_004.

Evan D. Remington, Devika Narain, Eghbal A. Hosseini, and Mehrdad Jaza-
yeri. “Flexible Sensorimotor Computations through Rapid Reconfiguration of
Cortical Dynamics”. In: Neuron 98.5 (2018), 1005-1019.e5. DOI: [10.1016/j.
neuron.2018.05.020.

Alfonso Renart and Christian K. Machens. “Variability in Neural Activity
and Behavior”. In: Current Opinion in Neurobiology 25 (2014), pp. 211-220.
DOI: 10.1016/j.conb.2014.02.013.

Erik L. Rich and Matthew Shapiro. “Rat prefrontal cortical neurons se-
lectively code strategy switches”. In: Journal of Neuroscience 29 (2009),
pp. 7208-7219. DOI: 10.1523/JNEUROSCI.6068-08.2009.

Matteo Rigotti, Omri Barak, Melissa R. Warden, Xiao-Jing Wang, Nathaniel
D. Daw, Earl K. Miller, and Stefano Fusi. “The Importance of Mixed Selec-
tivity in Complex Cognitive Tasks”. In: Nature 497.7451 (2013), pp. 585-590.
DOI: 10.1038/nature12160.

125


https://doi.org/10.1038/ncomms12830
https://doi.org/10.1038/sj.npp.1301555
https://doi.org/10.1523/JNEUROSCI.19-11-04585.1999
https://doi.org/10.1037/0735-7044.117.5.1052
https://doi.org/10.1038/s41467-022-33581-6
https://doi.org/https://doi.org/10.1016/j.neuron.2016.02.009
https://doi.org/https://doi.org/10.1016/j.neuron.2016.02.009
https://doi.org/10.1088/0954-898X_7_4_004
https://doi.org/10.1016/j.neuron.2018.05.020
https://doi.org/10.1016/j.neuron.2018.05.020
https://doi.org/10.1016/j.conb.2014.02.013
https://doi.org/10.1523/JNEUROSCI.6068-08.2009
https://doi.org/10.1038/nature12160

[195]

[196]

[197]

198

[199]

[200]

[201]

[202]

203

[204]

[205]

John Rinzel and G Bard Ermentrout. “Analysis of neural excitability and
oscillations”. In: Methods in neuronal modeling 2 (1998), pp. 251-292.

John Rinzel and G. Bard Ermentrout. “Analysis of Neural Excitability and
Oscillations”. In: Methods of Neuronal Modeling: From Synapses to Networks.
Ed. by Christof Koch and Idan Segev. Cambridge, MA: MIT Press, 1998,
pp. 251-292.

G. S. Robertson, S. R. Vincent, and H. C. Fibiger. “D1 and D2 dopamine re-
ceptors differentially regulate c-fos expression in striatonigral and striatopalli-
dal neurons”. In: Neuroscience 49.2 (1992), pp. 285-296. DOI: 10.1016/0306-
4522(92)90096-K.

T.J.M. Roelofs, J.P.H. Verharen, G.A.F. van Tilborg, L. Boekhoudt, A. van
der Toorn, J.W. de Jong, et al. “A novel approach to map induced activa-
tion of neuronal networks using chemogenetics and functional neuroimaging
in rats: A proof-of-concept study on the mesocorticolimbic system”. In: Neu-
rolmage 156 (2017), pp. 109-118. DOI: 10.1016/j .neuroimage .2017.05.
008.

Edmund T. Rolls, Lisa L. Critchley, Ursula V. Browning, and Frances M.
Inoue. “Orbitofrontal cortex neurons: Role in olfactory and visual association
learning”. In: Journal of Neurophysiology 75.5 (1996), pp. 1970-1981. DOTI:
10.1152/jn.1996.75.5.1970.

F. J. Romeiras, Celso Grebogi, and Edward Ott. “Multifractal Properties of
Snapshot Attractors of Random Maps”. In: Physical Review A 41.2 (1990),
pp- 784-799. 1SSN: 1050-2947. DOI: 10.1103/PhysRevA.41.784.

Cyrille Rossant et al. “Spike sorting for large, dense electrode arrays”. In:
Nature Neuroscience 19.4 (2016), pp. 634-641. DOI: 10.1038/nn.4268.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
Representations by Back-Propagating Errors”. In: Nature 323.6088 (1986),
pp. 533-536. DOI: 10.1038/323533a0.

Matthew F. S. Rushworth, Mark J. Buckley, Timothy E. J. Behrens, Mark E.
Walton, and David M. Bannerman. “Functional organization of the medial
frontal cortex”. In: Current Opinion in Neurobiology 17.2 (2007), pp. 220—
227. DOI: 10.1016/j.conb.2007.03.005.

Eleonora Russo, Tianyang Ma, Rainer Spanagel, Daniel Durstewitz, Hazem
Toutounji, and Georg Kohr. “Coordinated Prefrontal State Transition Leads
Extinction of Reward-Seeking Behaviors”. In: Journal of Neuroscience 41.11
(2021), pp. 2406-2419. 18SN: 0270-6474. DOI: 10 . 1523/ JNEUROSCI . 2588 -
20.2021.

Sadra Sadeh and Claudia Clopath. “Contribution of behavioural variability
to representational drift”. In: eLife 11 (2022), e77907. DOI: 10.7554/eLife.
77907.

126


https://doi.org/10.1016/0306-4522(92)90096-K
https://doi.org/10.1016/0306-4522(92)90096-K
https://doi.org/10.1016/j.neuroimage.2017.05.008
https://doi.org/10.1016/j.neuroimage.2017.05.008
https://doi.org/10.1152/jn.1996.75.5.1970
https://doi.org/10.1103/PhysRevA.41.784
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.conb.2007.03.005
https://doi.org/10.1523/JNEUROSCI.2588-20.2021
https://doi.org/10.1523/JNEUROSCI.2588-20.2021
https://doi.org/10.7554/eLife.77907
https://doi.org/10.7554/eLife.77907

[206] Patrick T. Sadtler, Kristin M. Quick, Matthew D. Golub, Steven M. Chase,
Stephen I. Ryu, Elizabeth C. Tyler-Kabara, Byron M. Yu, and Aaron P.
Batista. “Neural Constraints on Learning”. In: Nature 512.7515 (2014), pp. 423~
426. DOI: 10.1038/nature13665.

[207] Lamia Jammal Salameh, Stephan H. Bitzenhofer, Ileana L. Hanganu-Opatz,
Mathias Dutschmann, and Volker Egger. “Blood pressure pulsations modu-
late central neuronal activity via mechanosensitive ion channels”. In: Science
383.6682 (2024), eadk8511. DOI: 10.1126/science.adk8511.

[208] Alexei Samsonovich and Bruce L. McNaughton. “Path Integration and Cog-
nitive Mapping in a Continuous Attractor Neural Network Model”. In: The
Journal of Neuroscience 17.15 (1997), pp. 5900-5920. DOI: 10. 1523/ JNEUROSCI .
17-15-05900.1997.

[209] Tim Sauer, James A. Yorke, and Martin Casdagli. “Embedology”. In: Journal
of Statistical Physics 65.3—4 (1991), pp. 579-616. DOI: 10.1007/BF01053745.

[210] Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, and
Daniel Durstewitz. “Identifying nonlinear dynamical systems with multiple
time scales and long-range dependencies”. In: International Conference on
Learning Representations. 2021.

[211] Geoffrey Schoenbaum, Matthew R. Roesch, Thomas A. Stalnaker, and Yuji
K. Takahashi. “A New Perspective on the Role of the Orbitofrontal Cortex in
Adaptive Behaviour”. In: Nature Reviews Neuroscience 10.12 (2009), pp. 885—
892. DOI: 10.1038/nrn2753.

[212] Martine R. van Schouwenburg, Marjolein P. Zwiers, Margot E. van der Schaalf,
David E. M. Geurts, Arnt F. A. Schellekens, Jan K. Buitelaar, Robert J.
Verkes, and Roshan Cools. “Frontostriatal involvement in task switching de-
pends on genetic differences in D2 receptor density”. In: Journal of Neuro-
science 30.42 (2010), pp. 14205-14212. po1: 10 . 1523/ JNEURQSCI . 1060 -
10.2010.

[213] Thomas Schreiber and Andreas Schmitz. “Improved Surrogate Data for Non-
linearity Tests”. In: Physical Review Letters 77.4 (1996), pp. 635-638. DOI:
10.1103/PhysRevLett.77.635.

[214] Thomas Schreiber and Andreas Schmitz. “Surrogate Time Series”. In: Physica
D: Nonlinear Phenomena 142 (2000), pp. 346-382. DOI: 10.1016/S0167 -
2789(00)00043-9.

[215] Jeremy K. Seamans and Chen R. Yang. “The principal features and mecha-
nisms of dopamine modulation in the prefrontal cortex”. In: Progress in Neu-
robiology 74.1 (2004), pp. 1-58. DOI: 10.1016/j .pneurobio.2004.05.006.

[216] Susan R. Sesack, Susan W. King, Christine N. Bressler, Stanley J. Watson,
and David A. Lewis. “Electron microscopic visualization of dopamine D2
receptors in the forebrain: Cellular, regional, and species comparisons”. In:
Society for Neuroscience Abstracts. Vol. 21. 1995, p. 365.

127


https://doi.org/10.1038/nature13665
https://doi.org/10.1126/science.adk8511
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1007/BF01053745
https://doi.org/10.1038/nrn2753
https://doi.org/10.1523/JNEUROSCI.1060-10.2010
https://doi.org/10.1523/JNEUROSCI.1060-10.2010
https://doi.org/10.1103/PhysRevLett.77.635
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1016/j.pneurobio.2004.05.006

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

H. Sebastian Seung. “How the Brain Keeps the Eyes Still”. In: Proceedings
of the National Academy of Sciences of the United States of America 93.23
(1996), pp. 13339-13344. DOI: |10.1073/pnas.93.23.13339.

H. Sebastian Seung, Daniel D. Lee, Ben Y. Reis, and David W. Tank. “Sta-
bility of the Memory of Eye Position in a Recurrent Network of Conductance-
Based Model Neurons”. In: Neuron 26.1 (2000), pp. 259-271. DOI: 10.1016/
S0896-6273(00)81155-1.

Denis Sheynikhovich, Satoru Otani, Jing Bai, and Angelo Arleo. “Long-term
memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex:
Role in executive functions”. In: Frontiers in Behavioral Neuroscience 16
(2023), p. 1068271. DOI: [10.3389/fnbeh.2022.1068271!

Hava T. Siegelmann and Eduardo D. Sontag. “On the Computational Power
of Neural Nets”. In: Journal of Computer and System Sciences 50.1 (1995),
pp. 132-150. DOI: 10.1006/jcss.1995.1013.

William E. Skaggs, James J. Knierim, Hemant S. Kudrimoti, and Bruce L.
McNaughton. “A Model of the Neural Basis of the Rat’s Sense of Direction”.
In: Advances in Neural Information Processing Systems 7. MIT Press, 1995,
pp- 173-180.

Hanlin F. Song, Guangyu R. Yang, and Xiao-Jing Wang. “Training excitatory-
inhibitory recurrent neural networks for cognitive tasks: a simple and flexible
framework”. In: PLoS Computational Biology 12.2 (2016), €1004792. DOL:
10.1371/journal .pcbi.1004792.

Pengcheng Song and Xiao-Jing Wang. “Angular Path Integration by Moving
"Hill of Activity’: A Spiking Neuron Model without Recurrent Excitation of
the Head-Direction System”. In: The Journal of Neuroscience 25.4 (2005),
pp- 1002-1014. port: 10.1523/IJNEUROSCI.4172-04.2005.

Eduardo D. Sontag. “A Learning Result for Continuous-Time Recurrent Neu-
ral Networks”. In: Systems & Control Letters 34.3 (1998), pp. 151-158. DOI:
10.1016/S0167-6911(98)00006-1.

Timothy Spellman, Malka Svei, Jesse Kaminsky, Gabriela Manzano-Nieves,
and Conor Liston. “Prefrontal deep projection neurons enable cognitive flex-
ibility via persistent feedback monitoring”. In: Cell 184.10 (2021), 2750—
2766.e17. 1SSN: 0092-8674. DOI: https://doi.org/10.1016/j . cell.
2021.03.047.

Michael R. Stefani, Katherine Groth, and Bita Moghaddam. “Glutamate re-
ceptors in the rat medial prefrontal cortex regulate set-shifting ability”. In:
Behavioral Neuroscience 117.4 (2003), pp. 728-737.

Moira L. Steyn-Ross, D. Alistair Steyn-Ross, and Jamie W. Sleigh. “Chaotic
dynamics underpins the slow oscillation of general anesthesia and nonREM
sleep”. In: BMC' Neuroscience 13.Suppl 1 (2012), F3. DOI: 10.1186/1471-
2202-13-S1-F3.

128


https://doi.org/10.1073/pnas.93.23.13339
https://doi.org/10.1016/S0896-6273(00)81155-1
https://doi.org/10.1016/S0896-6273(00)81155-1
https://doi.org/10.3389/fnbeh.2022.1068271
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1523/JNEUROSCI.4172-04.2005
https://doi.org/10.1016/S0167-6911(98)00006-1
https://doi.org/https://doi.org/10.1016/j.cell.2021.03.047
https://doi.org/https://doi.org/10.1016/j.cell.2021.03.047
https://doi.org/10.1186/1471-2202-13-S1-F3
https://doi.org/10.1186/1471-2202-13-S1-F3

[228] Andrea Stocco, Christian Lebiere, and John R. Anderson. “Conditional Rout-
ing of Information to the Neocortex: A Network Model of Basal Ganglia

Function”. In: Proceedings of the Annual Meeting of the Cognitive Science
Society. Vol. 30. 2008, pp. 234-239.

[229] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering. 2nd ed. Boulder, CO: West-
view Press, 2015. 1SBN: 978-0813349107.

[230] D. T. Stuss, G. P. Levine, M. P. Hamer, R. J. Palumbo, and F. Picton. “Re-
lationship between frontal lobe lesions and Wisconsin Card Sorting Test per-
formance in patients with multiple sclerosis”. In: Neuropsychology 8.1 (1994),
pp- 96-102.

[231] David Sussillo and Omri Barak. “Opening the Black Box: Low-Dimensional
Dynamics in High-Dimensional Recurrent Neural Networks”. In: Neural Com-
putation 25.3 (2013), pp. 626-649. DOI: 10.1162/NECO\_a\_00409.

[232] Richard S. Sutton and Andrew G. Barto. “Reinforcement learning”. In: Jour-
nal of Cognitive Neuroscience 11.1 (1999), pp. 126-134. DOI: 10 . 1162/
089892999563265.

[233] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. Cambridge, MA, USA: MIT Press, 1998. 1SBN: 978-0-262-19398-6.

[234] A. Szelényi, T. K. Kracht, T. Meyer, J. Lange, P. Herholz, and V. P. Schramm.
“Verbal fluency, Trail Making, and Wisconsin Card Sorting Test performance

following right frontal lobe tumor resection”. In: Journal of Neurosurgery
108.1 (2008), pp. 154-158.

[235] Floris Takens. “Detecting Strange Attractors in Turbulence”. In: Dynamical
Systems and Turbulence, Warwick 1980. Ed. by David Rand and Lai-Sang
Young. Vol. 898. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 366-381. DOI: 10.1007/BFb0091924.

[236] Alfred Tarski. “Der Wahrheitsbegriff in den formalisierten Sprachen”. In: Stu-
dia Philosophica 1 (1935), pp. 261-405.

[237] Gerald Teschl. Ordinary Differential Equations and Dynamical Systems. Amer-
ican Mathematical Society, 2012. 1SBN: 978-0-8218-8328-0.

[238] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996),
pp. 267-288. DOI: 10.1111/3.2517-6161.1996.tb02080.x.

[239] Nelson K. B. Totah, Young B. Kim, Hojjatollah Homayoun, and Bita Moghad-
dam. “Anterior cingulate neurons represent errors and preparatory attention
within the same behavioral sequence”. In: Journal of Neuroscience 29 (2009),
pp. 6418-6426.

[240] Hazem Toutounji and Daniel Durstewitz. “Detecting Multiple Change Points
Using Adaptive Regression Splines With Application to Neural Recordings”.
In: Frontiers in Neuroinformatics 12 (2018). 1SSN: 1662-5196. DOI: 10.3389/
fninf.2018.00067.

129


https://doi.org/10.1162/NECO\_a\_00409
https://doi.org/10.1162/089892999563265
https://doi.org/10.1162/089892999563265
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.3389/fninf.2018.00067
https://doi.org/10.3389/fninf.2018.00067

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

253

[254]

Joe Z. Tsien. “Linking Hebb’s coincidence-detection to memory formation”.
In: Current Opinion in Neurobiology 10.2 (2000), pp. 266-273. DOI: 10.1016/
S0959-4388(00)00078-6.

H. B. M. Uylings, H. J. Groenewegen, and Bryan Kolb. “Do rats have a
prefrontal cortex?” In: Behavioural Brain Research 146.1-2 (2003), pp. 3-17.
DOI: 10.1016/j.bbr.2003.09.028.

Robin R. Vallacher and Andrzej Nowak, eds. Dynamical Systems in Social
Psychology. San Diego, CA: Academic Press, 1994.

Vladimir Vapnik. “Principles of Risk Minimization for Learning Theory”.
In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 4.
Morgan Kaufmann, 1992, pp. 831-838.

Ryan Vogt, Maximilian Puelma Touzel, Eli Shlizerman, and Guillaume La-
joie. “On Lyapunov Exponents for RNNs: Understanding Information Propa-
gation Using Dynamical Systems Tools”. In: Frontiers in Applied Mathematics
and Statistics 8 (2022), p. 818799. DOI: 10.3389/fams.2022.818799.

Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy.
“Computation Through Neural Population Dynamics”. In: Annual Review of
Neuroscience 43.Volume 43, 2020 (2020), pp. 249-275. 1SSN: 1545-4126. DOLI:
https://doi.org/10.1146/annurev-neuro-092619-094115.

Jing Wang, Devika Narain, Eghbal A. Hosseini, and Mehrdad Jazayeri. “Flex-
ible Timing by Temporal Scaling of Cortical Responses”. In: Nature Neuro-
science 21.1 (2018), pp. 102-110. DOI: 10.1038/s41593-017-0028-6.

Maxwell B. Wang, Max G’Sell, James F. Castellano, R. Mark Richardson, and
Avniel Singh Ghuman. “A Week in the Life of the Human Brain: Stable States
Punctuated by Chaotic Transitions”. In: Research Square (2023). Preprint.
DOI: 10.21203/rs.3.rs-2752903/v1.

Xiao-Jing Wang. “Decision making in recurrent neuronal circuits”. In: Neuron
60.2 (2008), pp. 215-234. DOI: 10.1016/j .neuron.2008.09.034.

Xiao-Jing Wang. “Probabilistic Decision Making by Slow Reverberation in
Cortical Circuits”. In: Neuron 36.5 (2002), pp. 955-968. DOI: 10 . 1016/
S0896-6273(02)01092-9.

Zhijie Wang and Hong Fan. “Dynamics of a Continuous-Valued Discrete-
Time Hopfield Neural Network with Synaptic Depression”. In: Neurocomput-
ing 71.1-3 (2007), pp. 181-190. 1SSN: 0925-2312. DOI: 10.1016/j .neucom.
2007.01.004.

Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine
Learning 8 (1992), pp. 279-292. DOI: 10.1007/BF00992698.

Paul J. Werbos. “Backpropagation Through Time: What It Does and How
to Do It”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550-1560. DOTI:
10.1109/5.58337.

Hassler Whitney. “Differentiable Manifolds”. In: Annals of Mathematics 37.3
(1936), pp. 645-680. DOI: |10.2307/1968482.

130


https://doi.org/10.1016/S0959-4388(00)00078-6
https://doi.org/10.1016/S0959-4388(00)00078-6
https://doi.org/10.1016/j.bbr.2003.09.028
https://doi.org/10.3389/fams.2022.818799
https://doi.org/https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1038/s41593-017-0028-6
https://doi.org/10.21203/rs.3.rs-2752903/v1
https://doi.org/10.1016/j.neuron.2008.09.034
https://doi.org/10.1016/S0896-6273(02)01092-9
https://doi.org/10.1016/S0896-6273(02)01092-9
https://doi.org/10.1016/j.neucom.2007.01.004
https://doi.org/10.1016/j.neucom.2007.01.004
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/5.58337
https://doi.org/10.2307/1968482

[255] E. T. Whittaker. “On a New Method of Graduation” In: Proceedings of
the Edinburgh Mathematical Society 41 (1922), pp. 63-75. DOI: 10. 1017/
S50013091500077853.

[256] Marco A. Wiering and Martijn van Otterlo. “Reinforcement Learning”. In:
Reinforcement Learning: State-of-the-Art. Ed. by Marco A. Wiering and Mar-
tijn van Otterlo. Vol. 12. Adaptation, Learning, and Optimization. Springer,
2012, pp. 3-42. DOI: [10.1007/978-3-642-27645-3_1

[257] Ronald J. Williams and David Zipser. “Experimental Analysis of the Real-
Time Recurrent Learning Algorithm”. In: Connection Science 1.1 (1989),
pp- 87-111. DOI: 10.1080/09540098908915631.

[258] Hugh R Wilson and Jack D Cowan. “Excitatory and inhibitory interactions in
localized populations of model neurons”. In: Biophysical journal 12.1 (1972),
pp. 1-24.

[259] Hugh R. Wilson. Spikes, Decisions, and Actions: The Dynamical Foundations
of Neuroscience. Oxford: Oxford University Press, 1999.

[260] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Trans. by C.K. Ogden.
London: Kegan Paul, Trench, Trubner & Co., Ltd., 1922.

[261] Kong-Fatt Wong and Xiao-Jing Wang. “A recurrent network mechanism of
time integration in perceptual decisions”. In: Journal of Neuroscience 26.4
(2006), pp. 1314-1328. DOT: [10. 1523/ INEUROSCI . 3733-05 . 2006.

[262] Simon N Wood. “Statistical inference for noisy nonlinear ecological dynamic
systems”. In: Nature 466.7310 (2010), pp. 1102-1104. DOI: 10.1038/nature09319.

[263] Min Yan, Can Huang, Peter Bienstman, Peter Tino, Wei Lin, and Jie Sun.
“Emerging Opportunities and Challenges for the Future of Reservoir Comput-
ing”. In: Nature Communications 15.1 (2024), p. 2056. DOI: 10.1038/s41467-
024-45187-1.

[264] Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T.
Newsome, and Xiao-Jing Wang. “Task Representations in Neural Networks
Trained to Perform Many Cognitive Tasks”. In: Nature Neuroscience 22.2
(2019), pp. 297-306. DOT: 10.1038/541593-018-0310-2.

[265] Robert S. Zucker and Wade G. Regehr. “Short-term synaptic plasticity”.
In: Annual Review of Physiology 64.1 (2002), pp. 355—405. DOI: 10.1146/
annurev.physiol.64.092501.114547.

131


https://doi.org/10.1017/S0013091500077853
https://doi.org/10.1017/S0013091500077853
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1080/09540098908915631
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1038/nature09319
https://doi.org/10.1038/s41467-024-45187-1
https://doi.org/10.1038/s41467-024-45187-1
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1146/annurev.physiol.64.092501.114547
https://doi.org/10.1146/annurev.physiol.64.092501.114547

	Introduction
	The Neural Basis of Rule Learning - Cognitive Flexibility
	Dynamical Systems
	Modeling Neural Activity
	Dynamical Systems Reconstruction
	Aim of this Thesis

	Methods
	Behavioral Task and Neural Recording
	Computational Modeling Framework
	Artificial Rule-Learning Task
	The Task-Trained RNN
	Analysis Techniques
	Statistical Methods

	Results
	Reconstruction of Benchmark Systems and Task-Trained RNNs
	Reconstruction of Rule-Learning Task-Trained RNNs
	The Influence of Memory on the Computational Mechanism behind Rule Learning
	Input Design Matrix Influences Reconstruction Outcome

	Reconstructing the Neural Dynamics of Rule-Learning Rodents from Neural Measurements
	Animal behavior
	PLRNN Reconstructions of Neural Activity
	Shifts in Stimulus-Dependent Attracting Regions as a Mechanism for Rule-Learning
	Trial-to-Trial Analysis Reveals Abrupt Transitions


	Discussion
	Advancing Dynamical Systems Reconstruction with pePLRNN
	Reconstruction of Ground Truth Data
	Influence of Task Design on Dynamical Mechanism
	Animal Behavior and Decoding
	Reconstruction of Neural Data
	Limitations
	Outlook

	Conclusion
	Appendix

