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Abstract

Accurate quantification of country-scale fossil fuel CO2 (∆ffCO2 ) emissions is essential
for monitoring efforts to mitigate climate change. This thesis employs the regional isotope
budget approach (RIBA) to calculate ∆ffCO2 observations based on flask, CO, and inte-
gral samples, and assesses their constraint on top-down fossil emission estimates within a
Bayesian inversion framework. Flasks provide a limited number of precise hour-long obser-
vations, CO-based estimates are less precise but recorded every minute, and integral sam-
ples yield reliable two-week averages. The coverage of currently available 14CO2 data from
the Integrated Carbon Observation System (ICOS) infrastructure mainly includes Germany
and nearby regions. When comparing to the emission inventories by the Global Carbon
Project (GCP) and the Emissions Database for Global Atmospheric Research (EDGAR),
corresponding winter emissions estimated from the atmospheric data differ by 0–4% from
GCP but by 10–14% fromEDGAR, reducing the discrepancy between theGCP and EDGAR
inventories from 21% to about half. Incorporating∆ffCO2 observations decreases the GCP
inventory uncertainty by 30% in the Germany+ domain. Uncertainty analysis indicates that
biases in 14CO2 background are critical for the RIBA. A background bias of 2‰ results in
estimated flux variations of 20%. Since integral-based samples have lower requirements for
hourly-specific model transport, they are found to be the most suitable proxy for constrain-
ing trends and seasonal fossil fuel emissions. They effectively track trends and align with
realistic expectations derived from bottom-up inventories. Flask-based estimates perform
equally well if sampled more frequently than weekly, but demand more analytical resources.
CO-based estimates are found to be less suitable due to their additional dependence on CO
background estimates and unmodeled air chemistry. The two main recommendations for
ICOS to monitor country-scale fossil emissions and their trends are: (a) diversifying Euro-
pean 14CO2 background observations to reduce bias risk, and (b) prioritizing integral 14CO2

sampling.
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Zusammenfassung

Eine genaue Quantifizierung der fossilen CO2 Emissionen (∆ffCO2 ) auf Länderebene ist
für die Überwachung der Bemühungen zur Eindämmung des Klimawandels entscheidend.
Diese Arbeit verwendet den regionalen Isotopenhaushaltsansatz (RIBA), um∆ffCO2 Beo-
bachtungen auf der Grundlage von Flask-, CO- und Integralproben zu berechnen, und bew-
ertet deren Auswirkungen auf Top-down-Schätzungen fossiler Emissionen innerhalb eines
Bayes’schen Inversionssystems. Flasks liefern eine begrenzte Anzahl präziser eine Stunde
langer Beobachtungen, CO-basierte Schätzungen sindweniger präzise, werden jedochminüt-
lich aufgezeichnet, und Integralproben liefern zuverlässige Zwei-Wochen-Durchschnittswer-
te. Die Abdeckung der 14CO2 Daten aus der Infrastruktur des Integrated Carbon Observa-
tion System (ICOS) umfasst hauptsächlich Deutschland und benachbarte Regionen. Beim
Vergleich zu den Emissionsinventaren des Global Carbon Project (GCP) und der Emissions
Database for Global Atmospheric Research (EDGAR)weichen die entsprechendenWintere-
missionen, die aus den 14CO2 Daten abgeleitet wurden, um 0–4% vom GCP, aber um 10–
14% von EDGAR ab, wodurch die Diskrepanz zwischen den GCP- und EDGAR-Inventaren
von 21% auf etwa die Hälfte reduziert wird. Durch die Einbeziehung von∆ffCO2 Beobach-
tungen wird die Unsicherheit des GCP-Inventars im Bereich Deutschland+ um 30% ver-
ringert. Die Unsicherheitsanalyse zeigt, dass Bias in den 14CO2 Hintergrundwerten für
RIBA von entscheidender Bedeutung sind. Ein Hintergrund-Bias von 2‰ führt zu abgeleit-
eten Flussvariationen von 20%. Da integralbasierte Proben geringere Anforderungen an den
stundenspezifischen Modelltransport stellen, erweisen sie sich als der am besten geeignete
Proxy für die Ermittlung von ∆ffCO2 . Sie verfolgen Trends effektiv und stimmen mit
realistischen Erwartungen überein, die aus Bottom-up-Inventaren abgeleitet wurden. Flask-
basierte Schätzungen funktionieren bei einer häufigeren Probenahme als wöchentlich ebenso
gut, erfordern jedoch mehr analytische Ressourcen. CO-basierte Schätzungen sind auf-
grund ihrer zusätzlichen Abhängigkeit von CO-Hintergrundschätzungen und nicht model-
lierter Luftchemie weniger geeignet. Die beiden wichtigsten Empfehlungen für ICOS zur
Überwachung der fossilen Emissionen und ihrer Trends auf Länderebene lauten: (a) Diver-
sifizierung der europäischen 14CO2 Hintergrundbeobachtungen zur Verringerung des Bias-
Risikos und (b) Priorisierung der Integralprobenahme von 14CO2 .
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Chapter 1

Introduction

1.1 Motivation

According to the Copernicus Climate Change Service and the World Meteorological Orga-
nization (WMO), 2024 marked the warmest year on record, with the global average tem-
perature surpassing 1.5◦C above pre-industrial levels for the first time since records be-
gan (Copernicus Climate Change Service & World Meteorological Organization, 2025). A
broad and robust scientific consensus, underpinned by extensive evidence including Charles
David Keeling’s pioneering work at Mauna Loa Observatory in 1958 (Hofmann et al., 2009;
Lan & Keeling, 2025), which documented the increasing atmospheric CO2 concentration,
firmly establishes human activities as the primary driver of this observed warming (Lynas
et al., 2021).

In response to the urgent threat of climate change and to mitigate its profound effects on
ecosystems and human society, the international community adopted the Paris Agreement in
2015 under the auspices of the United Nations Framework Convention on Climate Change
(UNFCCC) (UNFCCC, 2015). This landmark agreement sets a central goal to limit the in-
crease in the global average temperature to ”well below 2◦C” above pre-industrial levels,
while pursuing efforts to restrict the increase to an aspirational target of 1.5◦C. To ensure
accountability and track progress towards these ambitious targets, member nations of the
UNFCCC are mandated to submit yearly National Inventory Reports (e.g. Grubb, 2019).
These reports are compiled using ”bottom-up” methodologies and consumption statistics,
adhering to standardized guidelines provided by the Intergovernmental Panel on Climate
Change (IPCC) (IPCC, 2006). The rigorous evaluation of these anthropogenic carbon ac-
tivities is crucial for informing policy, setting emission reduction targets, and assessing the
efficacy of mitigation strategies.

Despite these commitments, current projections indicate a significant shortfall in achiev-
ing the Paris Agreement’s goals. The latest evaluation of Nationally Determined Contribu-
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2 Motivation

tions and proposed legislative changes, as outlined in the International Energy Agency’s
(IEA) Announced Pledges Scenario (IEA, 2024), projects the average global temperature
increase by 2100 to be approximately 1.7◦C above pre-industrial levels. More concerning,
an analysis of policies already implemented or currently being developed, presented in the
IEA’s Stated Policies Scenario, forecasts an increase of 2.4◦C by 2100. To contextualize
these projections, the IPCC estimated in 2021 the remaining global carbon budget from
the beginning of 2020 necessary to limit global warming to the Paris Agreement targets
(Masson-Delmotte et al., 2021). According to these estimations, a carbon budget of 400 Gt
CO2 offers a 67% likelihood of limiting the global temperature increase to 1.5◦C. How-
ever, with current global emissions in the order of 35 Gt CO2 per year (Friedlingstein et al.,
2024), this amount diminishes quickly.

This underscores the critical importance of reliable greenhouse gas (GHG) emissions re-
porting. However, the ”bottom-up” approach currently employed in these national reports,
which relies on multiplying activity data by emission factors, is inherently susceptible to
systematic errors and constitutes a significant source of uncertainty (Super et al., 2020; So-
lazzo et al., 2021). Key challenges include inconsistent data quality, incomplete reporting,
and the inherent difficulty in accurately separating anthropogenic emissions from the natural
variability of carbon sinks (Andres et al., 2012; Friedlingstein et al., 2024). These limita-
tions necessitate the development and application of independent verification methods for
GHG emissions.

Independent verification of GHG emissions is crucial for assessing the effectiveness of
mitigation strategies. Inverse atmospheric modeling offers a ”top-down” approach for in-
dependently validating national emission inventories (e.g. Rödenbeck et al., 2003; Bergam-
aschi et al., 2015; Basu et al., 2020). These models leverage atmospheric concentration data
to infer surface fluxes, using Bayesian statistics (Bayes, 1763) to update initial estimates
from inventories with real-world observations. This method is crucial for verifying the ef-
ficacy of climate policies and identifying potential reporting discrepancies (Friedlingstein
et al., 2024).

The success of inverse modeling is contingent on reliable, high-quality data, which is
provided by infrastructures like the Integrated Carbon Observation System (ICOS, ICOS
RI, 2020). The ICOS Atmosphere network ensures high-precision and intercompatible
data across its stations through standardized measurement protocols, centralized calibra-
tion against international reference standards, and rigorous quality control. The resulting
standardized datasets are essential for modeling applications. A key scientific tool for val-
idation is radiocarbon (14C ), an ideal tracer for distinguishing fossil fuel CO2 (∆ffCO2 )
from biogenic sources (Levin et al., 2003; Levin & Rödenbeck, 2008; Graven, 2015; Turn-
bull et al., 2015; Li et al., 2025). These observations are particularly valuable on regional
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and continental scales for monitoring the effectiveness of emission reduction efforts and
disentangling anthropogenic from ecosystem-driven carbon fluxes. This can be achieved
for example through a regional isotope budget approach (Levin et al., 2003; Maier et al.,
2023).

1.2 Objectives and structure

This thesis investigates the information content of existing 14CO2 observations conducted
within the ICOS Atmosphere network, with a focus on assessing their potential to constrain
fossil fuel CO2 emissions at the country to continental scale. Rather than aiming for a full
and policy-ready quantification of actual emissions—which would require multiple trans-
port models and a broad ensemble of prior inventories—I deliberately use a single atmo-
spheric transport model (STILT, Lin et al., 2003) and a limited set of inventories to isolate
and compare the relative performance of different ∆ffCO2 proxies. These include 14C -
based flask and integral estimates as well as 14C-calibrated CO-based proxies (Maier et al.,
2023). Because my focus is on the comparative signal strength and consistency of these
proxies across the existing ICOS network, these results are expected to be largely indepen-
dent of the specific model or inventory used. In addition, to evaluate which of the proxies are
most promising for use in inversion frameworks (CarboScope, Rödenbeck et al., 2003), I
assess key uncertainty drivers—such as the influence of background 14CO2 variability—on
the detectability of fossil fuel signals. The ultimate goal of this work is to inform future de-
cision making on ICOS network development, and sampling strategy, thereby strengthening
the long-term capacity of ICOS to monitor fossil CO2 emissions across Europe.

This thesis is structured as follows. Chapters 2 and 3 provide the theoretical andmethod-
ological framework for the regional isotope budget approach, detailing the specific tools and
models used. Chapter 2 includes also a description of the ICOS measurement network and
the different proxies investigated. Chapter 4 discusses the information content of the obser-
vational data series and the effects of measurement errors in a series of synthetic studies. In
Chapters 5, 6, and 7, I present the results of regional inversions based on flask-, CO-, and
integral-based ∆ffCO2 estimates. I use findings from previous chapters to evaluate proxy
effectiveness in reproducing core features of emission fluxes, such as seasonality or trend,
and investigate the effects of various uncertainties on the posterior estimates. Chapter 8
discusses the main problems of the regional isotope budget approach and compares the in-
version results of the proxies for the overlapping time period. Finally, Chapter 9 evaluates
the potential of the investigated proxies within the ICOS network and offers recommenda-
tions for improving future monitoring strategies. The appendix contains additional figures
for corresponding evaluations.





Chapter 2

Carbon cycle and 14C observations

2.1 Natural carbon cycle and anthropogenic disturbance

The carbon cycle (Fig. 2.1) is a biogeochemical process in-between the Earth’s biosphere,
geosphere, hydrosphere, and atmosphere. Cycling carbon between these reservoirs sets the
foundation for life on Earth (Archer, 2011). This cycle comprises fast and slow exchange
processes. Fast (biological) carbon cycles occur on the time scales from days to years, e.g.
moving carbon between the atmosphere and biosphere. Slow (so-called geological or deep)
carbon cycles, spanning millions of years, transport carbon through the Earth’s crust, soil,
ocean, and atmosphere (Archer, 2011). The ocean, representing the largest active carbon
reservoir on the Earth’s surface, plays a major role as a sink of atmospheric carbon. The ter-
restrial and oceanic biospheres interact with atmospheric carbon by removing CO2 through
photosynthesis and releasing it back during respiration, driving atmospheric CO2 seasonal-
ity (Canadell et al., 2021). In general, the atmosphere acts in the short term as a carbon sink
by accumulating carbon from natural and anthropogenic sources and distributing it to other
reservoirs over time. In the atmosphere, carbon exists mainly as carbon dioxide (CO2 ) and
methane (CH4), both potent greenhouse gases. Although CH4 has a higher greenhouse effect
per volume, CO2 contributes more significantly to radiative forcing due to its higher con-
centration and longer atmospheric lifespan (≈ 9-12 years and over 1000 years, respectively)
(Ciais et al., 2013; Szopa et al., 2021).

In an undisturbed state, the preindustrial carbon cycle maintained a long-term equilib-
rium, with fluxes between reservoirs largely balancing out (Archer, 2011). However, human
activities have significantly perturbed the natural carbon cycle during the last two centuries,
notably through land use changes and the extraction and combustion of fossil fuels, i.e. coal,
petroleum, and natural gas (Friedlingstein et al., 2024). Since the Industrial Revolution and
particularly after World War II, massive amounts of geospheric carbon have been redis-
tributed, increasing atmospheric carbon, mainly as CO2 , by 52% compared to preindustrial
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6 Natural carbon cycle and anthropogenic disturbance

Figure 2.1. Schematic representation of the global carbon cycle disturbances, including
estimated gross fluxes (Gt C yr−1) and reservoir stocks (Gt C). Anthropogenic perturbations
are shown atop the natural carbon cycle. All numbers are from Canadell et al., 2021, except
for coastal carbon stocks, which are from Price and Warren, 2016. Figure adapted from
Friedlingstein et al., 2024.

levels: 422 ppm in 2024 compared to approximately 278 ppm in 1750 (Friedlingstein et al.,
2024). This has led to global warming and other effects such as a reduction in ocean pH,
which fundamentally altered marine chemistry and endangered marine ecosystems (Doney
et al., 2009).

However, evenwith the current unprecedented disturbance of the natural carbon cycle by
human activities, the Earth system will eventually establish a new equilibrium, with atmo-
spheric CO2 levels approaching preindustrial concentrations over vast timescales (Archer
et al., 2009). These long-term processes are predominantly governed by the ocean carbon
pump, which would take thousands to millions of years to absorb most of the excess atmo-
spheric carbon and store it as dissolved inorganic carbon, with a fraction eventually being
incorporated into carbonate sediments (Archer et al., 2009). Unfortunately, the time scales
involved are far too long to mitigate the immediate and pressing impacts of climate change
on human societies, highlighting the need for immediate climate action (Lee et al., 2024).

In contrary to the natural long-term equilibrium processes described above, the atmo-
spheric CO2 concentrations could be influenced rather fast by changing anthropogenic forc-
ing. However, it is first necessary to determine which part of the overall CO2 signal was
caused by anthropogenic emissions. The extraction of the fossil signal from the total CO2

concentration proves to be challenging due to the significant influence of the biosphere on
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Figure 2.2. The natural origin and distribution of 14C. Its atmospheric concentration has
been altered by the addition of 14C depleted CO2 from fossil fuel combustion and the pro-
duction of 14C from nuclear fission and fusion reactions. Figure from Mook, 2000.

atmospheric CO2 concentrations, with, for example, the photosynthetic removal signal be-
ing more than 10 times higher compared to the fossil signal in high summer (Maier et al.,
2023). Radiocarbon 14C , a radioactive carbon isotope, serves as a crucial tracer for distin-
guishing fossil fuel-induced carbon fluxes from ecosystem fluxes (Levin et al., 1989, 2003;
Levin & Rödenbeck, 2008; Graven, 2015; Turnbull et al., 2015).

14C is naturally produced in the transitional zone between the lower stratosphere and
the upper troposphere (Libby, 1946; Mook, 2000). This occurs through a nuclear reaction
where atmospheric nitrogen interacts with thermal neutrons, which are themselves generated
by high-energy cosmic-ray protons that react with atmospheric molecules (Fig. 2.2). The
newly formed 14C rapidly oxidizes to 14CO and 14CO2, mixing with atmospheric CO2 and
participating in all CO2 exchange processes. In an undisturbed natural carbon cycle, there
is a balance between the production of 14C from cosmic rays and its radioactive decay
(half-life of ∼5700 years, Be et al., 2013).

Industrialization marked the first significant anthropogenic disturbance to the natural
14C/12C ratio. Fossil fuels, formed millions of years ago, are devoid of 14C due to its short
half-life compared to the age of the fuels. Consequently, fossil fuel combustion dilutes the
natural 14C/12C ratio in rapidly exchanging carbon reservoirs, including the atmosphere, the
upper oceans and the biosphere. This phenomenon is known as the Suess effect and was
already reported in the 1950s (Suess, 1955, start of the series in Fig. 2.3).

A second major disturbance to the atmospheric 14C levels was caused by extensive
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Figure 2.3. Influence of the nuclear weapons testing on the atmospheric 14C concentration
in the northern and the southern hemisphere. First signs of Suess effect can be seen as values
below 0‰ in the early 1950s. Figure from Levin et al., 2010.

nuclear weapons testing from 1956 until the 1963 Nuclear Test Ban Treaty (Levin & Rö-
denbeck, 2008; Levin et al., 2010). Atmospheric tests doubled the 14C/12C ratio in the tro-
posphere due to additional 14C production from thermal neutron reactions (Fig. 2.3). Sub-
sequent uptake of this bomb-produced 14CO2 into fast-exchanging reservoirs masked the
decline caused by the Suess effect for several decades (Levin & Rödenbeck, 2008; Levin
et al., 2010). Although nuclear power plants still act as a source of anthropogenic 14C
(Knaack, 2025), more recently, fossil fuel CO2 emissions have again become the main
driving force that contribute to changes in atmospheric 14C levels (Levin & Rödenbeck,
2008; Levin et al., 2010).

2.2 Isotopic composition of carbon, fractionation and 14CO2

units

The chemical element carbon 6C has three natural isotopes with different number of neu-
trons and hence different masses: 12C, 13C and 14C.

The isotopic composition of a carbon reservoir can be described by the isotopic ratio of
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a rare isotope to an abundant one:

iR =
abundance of rare isotope

abundance of abundant isotope
(2.1)

Instead of reporting absolute isotope ratios, it is common practice to express them using
the δ notation, which quantifies the relative deviation of an isotope ratio in a sample from
that of a defined standard. Given that such deviations are typically small, the δ values are
reported in ‰:

δ =

(

iRSample

iRStandard

− 1

)

1000h (2.2)

The standard reference material for δ13C measurements is Vienna Pee Dee Belemnite
(VPDB) with the 13C/12C ratio of 1.12372% (Mook, 2000).

The definition of δ14C was adapted to the nature of the measurement of 14C. Due to the
low abundance of the 14C isotope, for a long time the only reliable method to determine
its content was the low-level decay counting with the anti-coincidence configuration of the
radiation detectors (Anderson et al., 1951; Libby, 1955; Kromer &Münnich, 1992). Hence,
the ratios iR in Eq. 2.2 are replaced with specific activity A (per gram of carbon). The
absolute internationally defined standard specific activity of 14C Aabs is equal to 95% of the
specific activity of the National Bureau of Standards (NBS) oxalic acid, corrected for decay
loss since 1950 (Aabs = 0.95 · 0.238 Bq/gC, Stuiver & Polach, 1977). The δ value of a
sample δ14CS with its specific activity AS is equal to:

δ14CS =

(

AS

Aabs

− 1

)

1000h (2.3)

The introduction of the Accelerator Mass Spectrometry (AMS) measurement technique
allowed direct calculation of 14R so that both the general δ notation (Eq. 2.2) and the specific
activity (Eq. 2.3) definitions can be used if related to the isotopic ratio of the NBS oxalic
acid reference material (Bonani et al., 1987; Hammer et al., 2017).

Differences in isotopic properties lead to fractionation effects, for example, during phase
transitions, which must be taken into account.

Differences in isotopicmasses lead to changes in themass-dependent physical and chem-
ical properties of carbon isotopologues (Mook, 2000), which in turn causes fractionation,
i.e., separation of isotopologues, in physical and chemical processes. Mass-dependent frac-
tionation processes are mainly differentiated into equilibrium and kinetic fractionation. For
example, in a kinetic fractionation process, molecules containing the lighter isotope 12C
might diffuse through a medium or chemically react slightly faster than those containing
14C due to the lower velocities of heavier molecules with the same thermal energy, leading
to the separation of isotopologues. Equilibrium fractionation, on the other hand, is typically
characterized by an enrichment of heavier isotopes in certain phases of matter due to higher
binding energies and stronger chemical bonds (Mook, 2000).
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Every exchange process between compounds or changes in the state of matter, for exam-
ple evaporation or melting, results in fractionation effects (Mook, 2000). These are quan-
tified by a fractionation factor α comparing isotopic ratios iR in compound of state A with
that in B:

iαA/B =
iRA

iRB

(2.4)

For carbon, the relative mass difference of 13C to 12C is twice as small as between
14C and 12C. Thus, the fractionation of 14C to 12C is routinely given as the square of the
same effect between 13C and 12C (Eq. 2.5) (Stenström et al., 2011). Although there is some
experimental evidence suggesting that this power factor is closer to 1.9 (Stuiver &Robinson,
1974; Fahrni et al., 2017), by convention a normalization factor of 2 is still used.

14αA/B = 13α2
A/B (2.5)

To make different 14C measurements independent of fractionation processes and there-
fore compatible with each other, a normalization factor based on the δ13C value of each
sample (δ13CS) was introduced to account for fractionation. By convention, samples are
normalized to a δ13C value of −25h w.r.t. VPDB (Stuiver & Polach, 1977). The normal-
ized activity ASN of a 14C sample is equal to:

ASN = AS











(

13C
12C

)

δ13C=−25
(

13C
12C

)

Sample











2

= AS

(

1− 25

1000

)2

(

1 +
δ13CS

1000

)2
= AS







0.975

1 +
δ13CS

1000







2

(2.6)

Combining this normalization with Eq. 2.3 results in the ∆ notation following the defi-
nition of Stuiver and Polach, 1977, which is used in this study:

∆14CS =

(

ASN

Aabs

− 1

)

1000h =







AS

Aabs







0.975

1 +
δ13CS

1000







2

− 1






1000h (2.7)

2.3 ICOS 14CO2 measurements

This section provides a brief introduction to the Integrated Carbon Observation System
(ICOS) and its atmospheric network for 14CO2 observations. It describes the collection and
analysis of the two different 14CO2 sample types — integrated and flask samples. Finally,
an overview of the time periods covered by the data sets available for this work is given.

The Integrated Carbon Observation System (ICOS ERIC, 2025) is a European research
infrastructure supported by 16 member states, established in 2008 and formalized as a Euro-
peanResearch Infrastructure Consortium (ERIC, EuropeanCommission, Directorate-General
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for Research and Innovation, 2025) in 2015. ICOS quantifies greenhouse gas concentrations
in Europe and its surrounding regions. ICOS operates nearly 200 observation stations in the
fast-cycling carbon reservoirs of the atmosphere, ecosystems, and oceans. The observations
are conducted by the national ICOS networks and coordinated from the ICOS Head Office
in Helsinki, as well as domain-specific Thematic centers and central laboratories. ICOS
data and results are made openly available via a central ICOS data portal. More details on
the structure, objectives, and operation of ICOS can be found in Heiskanen et al., 2022.

The scientific mission of ICOS is to deliver long-term, high-quality observations essen-
tial to understanding the European carbon cycle and anthropogenic greenhouse gas emis-
sions, thus supporting climate change mitigation efforts. At atmospheric stations, ICOS em-
phasizes strict adherence to data quality and compatibility, ensuring that the measurements
align with the standards established by the WMO for greenhouse gas observations (ICOS
RI, 2020). To guarantee data consistency at its stations, ICOS employs standardized in-
strumentation, measurement protocols, and data processing procedures defined in the ICOS
Atmosphere Station Specifications Handbook (ICOS RI, 2020). This high level of har-
monization is essential to prevent systematic biases across the observation network, which
could otherwise be misinterpreted by atmospheric inversion models as artificial greenhouse
gas sources or sinks.

The design of the ICOS Atmospheric Network aims to achieve spatially homogeneous
coverage throughout Europe, minimizing significant spatial gaps. However, as a nationally
funded European research infrastructure, coverage is limited to the territories of member
countries. Priority is given to continental tall tower stations to improve estimates of land-
based greenhouse gas fluxes, which exhibit considerable spatio-temporal variability due to
natural and anthropogenic fluxes. A smaller subset of coastal and mountain stations is added
to capture the inflow of greenhouse gases to the European continent and serve as clean-air
background reference sites. The locations of the ICOS stations are selected to minimize
the direct influence of strong anthropogenic surface emissions. Key guidelines for station
selection recommend a nominal spacing of approximately 300 km between stations, with
a minimum distance of 50 km. Furthermore, it is recommended to avoid complex terrain
and significant anthropogenic sources (e.g. urban areas) within 40 km – particularly if lo-
cated upwind relative to prevailing winds – to ensure compatibility with current atmospheric
transport models. A minimum tower height of 100 meters above ground level is required
for the top observational level to increase the representativeness of the station. All stations
undergo a two-step labeling process to ensure the adherence to ICOS specifications, data
transfer protocols, and quality standards (ICOS RI, 2020).

ICOS atmosphere stations use commercially available instruments for continuous high-
resolution measurements of, e.g., CO2 , CH4, CO, and main meteorological parameters.
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These instruments undergo rigorous testing at the Atmosphere Thematic Center (ATC) in
France before deployment (Kwok et al., 2015). Calibration gases for in situ measurements
are prepared and calibrated at the Flask and Calibration Laboratory (FCL) in Jena, Germany,
ensuring compatibility within the ICOS network and traceability toWMO calibration scales.

ICOS atmospheric stations are classified into two types: Class 1, equipped for com-
prehensive mandatory measurements that include integrated 14CO2 and flask sampling, and
Class 2, which conducts only a subset of Class 1 measurements without flask analysis and
14CO2 observations. For our analysis, only Class 1 stations are relevant due to their capac-
ity to collect 14C samples in the form of flask samples and/or integrated samples. Fig. 2.4
shows the locations of the subset of ICOSClass 1 stations that have a sufficiently long 14CO2

observation record to be used in the current study. The ICOS Class 1 sub-network covers
northern France, the Benelux countries, Germany, and parts of Scandinavia. The station
coordinates and heights of the intake lines used for the 14CO2 sampling are summarized in
Table 2.1.

2.3.1 ICOS 14CO2 flask samples

Flask sampling in the ICOS network serves three main purposes: independent quality con-
trol for in situ observations of greenhouse gases, providing data on atmospheric components
not continuously monitored, and collecting samples for 14CO2 analysis to determine fossil
fuel CO2 (∆ffCO2 ). 3 L glass flasks with 1.5 bar pressure are collected every third day,
typically between 11:00 and 15:00 local time, from the highest intake of a station. Each
sample represents a one hour integrated mean, collected during well-mixed atmospheric
conditions (wind speeds > 2 ms−1) to ensure a well-defined footprint. The ICOS-approved
automatic flask sampler, developed by Max Planck Institute for Biogeochemistry in Jena, is
used for this purpose. The FCL analyzes the collected flask samples for various atmospheric
constituents (e.g. Jordan & Brand, 2003; Van der Laan et al., 2009), while precise 14CO2

analysis is conducted at the Karl Otto Münnich Central Radiocarbon Laboratory (CRL) in
Heidelberg. The ICOS flask sampling strategy is further detailed in Levin et al., 2020.

Analyzing trace amounts of 14CO2 in 3 L flask air samples requires specialized prepa-
ration and measurement techniques. The initial step involves extracting CO2 from the air
mixture. The traditional cryogenic freezing method with liquid nitrogen, which was used for
the samples analyzed in this study, is an effective technique, but labor intensive in its nature
(Lux, 2018). Subsequent to extraction, the gaseous CO2 must be reduced to solid graphite, a
critical prerequisite for high-precision AMS measurements. This reduction typically occurs
through a Bosch reaction (CO2+2H2 → C+2H2O), catalyzed by materials such as iron or
cobalt (Němec et al., 2010). This preparation enables the AMS analysis of 14C from just a
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Figure 2.4. Map of ICOS Atmosphere Class 1 stations. Stations with both integrated and
flask measurements are marked with a cross. Stations with only integrated samples are
marked with a triangle. In situ CO observations are available at all Class 1 stations. The tag
for the European marine background station Mace Head (MHD) is indicated in pink.

few liters of air, making it suitable for samples collected by the ICOS 14CO2 flask sampling
network.

All 14C flask measurements in this study were performed using the Mini Radiocarbon
Dating System (MICADAS) at the Curt-Engelhorn-Center for Archaeometry in Mannheim
(Kromer et al., 2013). The MICADAS (Fig. 2.5, Synal et al., 2007; Wacker et al., 2010;
Synal, 2022) is a low energy 200 kV AMS device designed for high precision analysis of
14C, directly measuring 14C/12C ratios. Its architecture comprises a sample extraction unit,
two mass spectrometers separated by a particle accelerator, and multiple detectors. Graphite
samples are loaded onto magazines and automatically fed into the ion source, where a Cs+

beam ionizes the graphite to C− ions. These ions are then selected by a first mass spectrom-
eter and injected into a tandem accelerator. Within the tandem accelerator, a stripper gas
simultaneously converts negative ions to positive ions and fragments interfering molecules
(e.g. 13CH−), crucial for the unambiguous detection of 14C. The accelerated ion beam then
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Table 2.1. ICOS stations with CO2 , ∆14C , and CO measurements, including correspond-
ing heights used in this study.

Station, ID Lon (◦) Lat (◦) Station height Intake height
country code (m a.m.s.l.) (m a.g.l.)

Cabauw, NL CBW 51.97 N 4.93 E 0 207
Gartow, DE GAT 53.07 N 11.44 E 70 341
Hohenpeißenberg, DE HPB 47.80 N 11.01 E 934 150
Hyltemossa, SE HTM 56.10 N 13.42 E 115 150
Jungfraujoch, CH JFJ 46.55 N 7.98 E 3572 14
Karlsruhe, DE KIT 49.09 N 8.43 E 110 200
Křešín u Pacova, CZ KRE 49.57 N 15.08 E 534 250
Lindenberg, DE LIN 52.21 N 14.12 E 73 98
Mace Head, IE MHD 53.33 N -9.90 E 0 15
Norunda, SE NOR 60.09 N 17.48 E 46 100
Observatoire pérenne
de l’environnement, FR OPE 48.55 N 5.50 E 390 120
Ochsenkopf, DE OXK 50.03 N 11.81 E 1022 163
Pallas, FI PAL 67.97 N 24.12 E 565 12
Saclay, FR SAC 48.72 N 2.14 E 160 100
Schauinsland, DE SSL 47.91 N 7.91 E 1205 12
Steinkimmen, DE STE 53.04 N 8.46 E 29 252
Svartberget, SE SVB 64.26 N 19.77 E 269 150
Trainou, FR TRN 47.96 N 2.11 E 131 180

passes through a second mass spectrometer, separating the isotopes into distinct beams for
current measurements of 12C and 13C. A final energy charge filter isolates 14C ions, which
are then counted by a single particle detector using a gas ionization chamber, ensuring high
specificity and precision in the 14C event detection. This setup allows for an accurate 14C
analysis from small amounts of carbon derived from air samples.

2.3.2 Two-week integrated 14CO2 samples

In addition to flask sampling, Class 1 stations also collect two-week integrated samples from
the same height as flask samples through chemical absorption of CO2. This involves contin-
uous pumping of ambient air through a rotating glass tube containing a NaOH base solution
and filled with Raschig glass rings to increase the contact surface between the solution and
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Figure 2.5. Schematic layout of the MICADAS AMS device. The red line illustrates the
pathway of measured 14C through the system. In blue, the pathway of other elements with
atomic masses 12, 13, or 14 is shown. Reproduced from Synal, 2022.

pumped air, ensuring a high absorption rate of CO2 (Levin et al., 1980). These integrated
samples are then sent to CRL in solution form, where the absorbed CO2 is extracted from
NaOH by adding half-concentrated H2SO4 (40%) to the sodium carbonate solution.

Subsequently, these samples are measured using gas proportional counting in the Hei-
delberg low-level counting (LLC) laboratory, using an anticoincidence shield to minimize
interference from cosmic rays (Libby, 1955; Schoch et al., 1980). Samples for LLC typi-
cally require larger sample amounts compared to flasks (around 25 m3 of atmospheric air)
and longer counting periods due to 14C’s long half-life of 5700 years (Be et al., 2013) and
low natural abundance (≈ 10−10%, Schuur et al., 2016). The CRL’s counting facilities
are described in depth by Kromer and Münnich, 1992. LLC is a mature and powerful tech-
nique central to radiocarbon dating, and its results have shown good overall agreement with
international AMS laboratories (Hammer et al., 2017).
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2.3.3 ICOS 14CO2 samples used in this work

Table 2.2 lists an overview of the 14CO2 ICOS data series that were used in this thesis
(Levin et al., 2024; Emmenegger et al., 2025b; Frumau & Hensen, 2025a; Hatakka, 2025a;
Heliasz & Biermann, 2025a; Kubistin et al., 2025k, 2025d, 2025b, 2025c, 2025l, 2025a;
Larmanou et al., 2025a; Lehner & Molder, 2025a; Marek et al., 2025a; Ramonet et al.,
2025a, 2025c, 2025e; Schmidt et al., 2025). In chapters 5 to 7, three different ∆ffCO2

estimation approaches will be analyzed in view of their suitability for the inversion of fossil
CO2 fluxes within the ICOS network. The three approaches examined are introduced in
detail later and are based on 14CO2 information from flask samples or integral samples, and,
in one of the estimates, additionally on themeasurement of CO concentrations (Emmenegger
et al., 2025a; Frumau & Hensen, 2025b; Hatakka, 2025b; Heliasz & Biermann, 2025b;
Kubistin et al., 2025e, 2025f, 2025g, 2025h, 2025i, 2025j; Larmanou et al., 2025b; Lehner
& Molder, 2025b; Marek et al., 2025b; Martin, 2025; Ramonet et al., 2025b, 2025d). The
ICOS CO data series used in this work are therefore also listed in Table 2.2.
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Table 2.2. Observation availability for ∆14C and CO at the investigated stations. Dates in
brackets note the∆ffCO2 availability if components other than∆14C (e.g., nuclear correc-
tion, see Sect. 3.1) were not available for the period. Utilization in corresponding inversions
is marked by: F - flask, C - CO-based, I - integral (suitability of the individual flask stations
for CO-based inversion is discussed in Sect. 6.2.3). (*) KIT is used only in sensitivity
studies due to potential 14C contamination.

Site ∆14C integrals ∆14C flasks CO in situ Inversion set

CBW 09.05.11 (17.12.14) - 13.01.22 - 30.09.21 - F C I
06.11.24 (03.01.24) 13.12.24 22.04.25

GAT 20.05.21 - 01.07.21 - 11.04.17 - F C I
05.01.25 (09.01.24) 03.12.24 10.04.25

HPB 18.02.15 - 28.08.19 - 18.07.19 - F C I
14.08.24 (20.12.23) 06.12.24 22.04.25

HTM 30.07.15 - 28.11.20 - 24.03.20 - F C I
07.02.24 (09.01.24) 10.11.24 22.04.25

JFJ 23.07.86 (22.12.14) - 28.11.20 - 12.12.16 - F X I
09.12.24 (25.12.23) 09.01.24 22.04.25

KIT* 01.02.18 - 26.06.19 - 26.06.19 - X X X
27.09.21 01.12.24 22.04.25

KRE 29.03.17 - 21.12.23 - 12.04.17 - F C I
11.12.24 (10.01.24) 15.11.24 22.04.25

LIN 15.03.18 - 07.09.20 - 11.08.20 - F C I
17.12.24 (02.01.24) 18.11.24 22.04.25

MHD 09.10.00 - - - X X I
17.10.22

NOR 26.05.15 - 02.06.21 - 01.04.17 - F X I
04.02.25 (09.01.24) 20.10.24 (14.12.23) 22.04.25

OPE 25.03.11 (15.12.14) - 09.09.20 - 18.08.16 - F C I
20.01.25 (08.01.24) 06.11.24 22.04.25

OXK 21.04.21 - 02.06.21 - 25.09.19 - F X I
03.02.25 (06.06.23) 03.11.24 (20.12.23) 22.04.25

PAL 14.12.17 - 03.10.22 - 16.09.17 - F X I
13.03.24 (03.01.24) 03.12.24 (03.12.23) 22.04.25

SAC 11.05.18 - 29.04.19 - 31.05.17 - X X I
13.11.24 (22.11.23) 03.08.22 22.04.25

SSL 09.12.76 (22.12.14) - - - X X I
10.06.24 (18.12.23)

STE 13.07.19 - 01.07.21 - 22.07.19 - F C I
20.09.24 (01.01.24) 01.12.24 22.04.25

SVB 09.02.16 - 03.06.21 - 01.06.17 - F X I
11.02.25 (21.12.23) 01.11.24 (01.12.23) 22.04.25

TRN 17.11.07 (09.12.14) - - - X X I
28.05.24 (11.01.24)





Chapter 3

Methods

3.1 The regional isotope budget approach for ∆ffCO2 es-
timation

The regional isotope budget approach (RIBA) is a well-established technique for the esti-
mation of recently added CO2 from fossil fuel burning and cement production (∆ffCO2 ) at
regional or continental scales (Levin et al., 2003; Turnbull et al., 2006; Levin et al., 2011;
Turnbull et al., 2015; Berhanu et al., 2017; Major et al., 2018; Zhou et al., 2020; Maier
et al., 2023). This method exploits the fact that the combustion of 14C -free fossil fuels
causes a difference in ∆14C measurements between a ”clean” background and an observa-
tion site. This measurement-based top-down approach provides an independent estimate of
recently added∆ffCO2 concentrations, which, combined with atmospheric transport inver-
sions (Sect. 3.2.2), can be used to study bottom-up fossil CO2 emission inventories. The
RIBA is discussed in great detail along with its fundamental assumptions and shortcomings
in Maier et al., 2023, to which I refer the interested reader. In the following, I present the
basic concept of RIBA.

A measured CO2 signal (Cmeas) at an observation site can be broken down as the sum of
different CO2 contributions (Levin et al., 2003; Turnbull et al., 2006; Maier et al., 2023):

Cmeas = Cbg + Cff + Cresp + Cphoto(+Cocean + Cstrato) (3.1)

The background contribution (Cbg) is the largest, representing the globally increasing
and well-mixed hemispheric CO2 concentration influenced by all global CO2 fluxes (e.g.,
Mauna Loa CO2 record, Lan & Keeling, 2025). Other contributions to the measured CO2

signal originate from recent fossil fuel combustion and cement production (Cff or∆ffCO2 ),
biosphere respiration (Cresp), and photosynthesis uptake (Cphoto) within the observational
site’s catchment area. In addition, stations may be influenced by oceanic fluxes (Cocean) and
stratospheric air intrusions (Cstrato).

19
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As discussed in Sect. 2.2, the ∆-notation allows a direct comparison of different reser-
voirs by correcting for radioactive decay and accounting for mass-dependent isotopic frac-
tionation via δ13C normalization. Thus, the sum of products of individual CO2 contribu-
tions and their characteristic isotopic∆ signatures is a conserved quantity (Tans et al., 1993).
Consequently, a balance equation similar to Eq. 3.1 can be written for ∆14C :

Cmeas ·∆14Cmeas = Cbg ·∆14Cbg + Cff ·∆14Cff + Cresp ·∆14Cresp + Cphoto ·∆14Cphoto

(+Cocean ·∆14Cocean + Cstrato ·∆14Cstrato) + Cmeas ·∆14Cnuc (3.2)

Here, the additional ∆14Cnuc is the expected contribution to ∆14Cmeas from nuclear fa-
cilities, with negligible influence on overall CO2 concentrations.

Nuclear installations emit 14C to the atmosphere primarily in the forms of 14CO2 or
14CH4. Although 14CH4 does not affect the ∆ffCO2 calculations in the regional isotope
budget approach, 14CO2 does so by increasing atmospheric 14C and therefore potentially
masking fossil signals. Thus, accounting for nuclear 14C emissions is necessary, which will
be discussed further in Sect. 3.1.3. Another source of 14CO2 which needs to be accounted
for in RIBA is the release of 14C through biospheric heterotrophic respiration (Caldeira
et al., 1998; Randerson et al., 2002; Naegler & Levin, 2009b). Historical atmospheric nu-
clear weapon testing significantly increased ∆14C in the atmosphere, nearly doubling its
concentration (Naegler & Levin, 2006) in the 1960s. Since then, much of this excess has
been assimilated by other carbon reservoirs, including the biosphere. 14C -enriched CO2

(in comparison to modern atmosphere) respired from decomposing organic material with
long reservoir times (e.g., in soils) can also mask fossil signals. This requires a biospheric
correction, which is discussed in Sect. 3.1.2.

Furthermore, I neglect the potential influence of oceanic fluxes (Cocean ·∆14Cocean), since
my primary focus is on measurements carried out on the European continent, where due to
the location of the background station, all oceanic influences should already be incorpo-
rated into the background signal (Sect. 3.1.1). Due to the regional scale of my investigation,
I assume that the contribution of stratospheric air enriched with 14C does not change sig-
nificantly in the European domain and is therefore already incorporated into Cbg ·∆14Cbg.
Small latitudinal changes in the concentration of 14C in Europe (Lingenfelter, 1963) are
neglected.

Fossil fuels, millions of years old, are devoid of 14C, therefore, their ∆14C signature is
equal to -1000‰. This allows for a direct calculation of Cff from Eq. 3.2. However, both
biospheric components (photosynthesis and respiration) are often uncertain and are typically
not known separately. Using Eq. 3.1, I can eliminate Cphoto from Eq. 3.2. As suggested by
Maier et al., 2023 for the ICOS stations, ∆14Cphoto is set to the on-site measured ∆14C
signature as it represents local biosphere that is photosynthesized. The∆-notation accounts
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for the fractionation between the reservoirs. Consequently, the Cff for the ICOS sites can be
written as:

Cff = Cbg ·
∆14Cbg −∆14Cmeas

∆14Cmeas + 1000h
+ Cmeas ·

∆14Cnuc

∆14Cmeas + 1000h

+ Cresp ·
∆14Cresp −∆14Cmeas

∆14Cmeas + 1000h
(3.3)

Cmeas in flasks is measured directly by FCL (see Sect. 2.3) and for two-week integral
samples it is set to an average of co-measured in situ CO2 during the integration period at
the corresponding intake height.

In the following, I will describe the individual contributions to Eq. 3.3, including the
estimation of the marine background (Sect. 3.1.1), the biospheric component (Sect. 3.1.2),
and the correction for potential nuclear contamination (Sect. 3.1.3). Note that background
estimation and nuclear corrections have been improved compared to the methods described
by Maier et al., 2023.

3.1.1 Choice and construction of the 14CO2 background time series

The RIBA estimates excess concentrations of∆ffCO2 at measurement stations relative to a
“clean” background site. The choice of this background reference is crucial, as the resulting
∆ffCO2 estimates are directly proportional to the difference in ∆14C (or ∆CO) between
the observation and the reference site.

3.1.1.1 Mace Head (MHD) as background site for Europe

Previous analyses showed that the majority of STILT footprints for a subset of nine ICOS
stations in 2018 exited the domain over the Atlantic Ocean, making Mace Head (MHD;
53.33◦ N, 9.90◦ W, 5 m a.s.l.) a suitable marine background station for the European do-
main (Maier et al., 2023). Therefore, MHDwas used as the default background site in earlier
studies (Maier et al., 2024b, 2024a). To ensure that MHD measurements reflect uncontam-
inated marine air, a wind sector filter (190◦–300◦ and > 4 m/s) is applied to remove local or
continental pollution.

As the RIBA uses only one background reference regardless of wind direction, this will
introduce biases, especially for air masses entering Europe from nonwestern boundaries. To
assess this, a sensitivity analysis was performed during this PhD project, simulating three
virtual stations at high, mid, and low latitudes of the eastern STILT domain boundary. Us-
ing the global TM3 model driven by GCP emissions with European emissions in the STILT
domain (16◦W - 36◦E and 32◦N - 74◦N, see Sect. 3.2.1) set to zero, I calculated the accumu-
lated∆ffCO2 concentrations for the virtual stations on the eastern boundary of the modeled
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Figure 3.1. The offsets of fossil CO2 concentration with respect to MHD due to the emis-
sions from outside of European domain (see Fig. 2.4). Panels (a) and (b) show the data
from a virtual station at mid-latitudes of the eastern boundary (EASTmid), for all hours
with biweekly means (a) as well as for 13h UTC data only (b). Panels (c) and (d) depict the
analogous data for the easternmost ICOS station Křešín (KRE), Czechia. Mean offsets and
standard deviations in the legends are in ppm. Adapted from (Maier et al., 2023, Fig. 3)

European domain, and the residual concentrations of ∆ffCO2 were calculated by subtract-
ing the MHD time series from these. Figure 3.1 shows the residual∆ffCO2 concentrations
at the virtual station at mid-latitudes (EASTmid, 55◦ N, 34◦ E, 150 m a.g.l.) and at the east-
ernmost ICOS ∆14C station Křešín (KRE, 49.57◦ N, 15.08◦ E, 250 m a.g.l.). These results
have been developed as part of this PhD project and have already been incorporated into the
publication by Maier et al., 2023.

The residual∆ffCO2 signals demonstrate that a non-negligible offset of around 0.6 ppm
∆ffCO2 arises when MHD is used as the background for stations at the eastern boundary of
the modeled European domain, particularly for easterly inflow. However, at KRE the mean
offset has decreased to essentially zero (-0.09±0.28 ppm). Compared to a mean ∆ffCO2

signal of 2.4 ppm for integral-based measurements (Sect. 7.2.1), this offset poses a bias
of about 4% and loses its relevance further the more westward the stations are located.
Following Maier et al., 2024a, the absolute bias is neglected in the RIBA, but the MHD
background uncertainty was increased by 0.28 ppm∆ffCO2 (or 0.64‰ in∆14C) to reflect
this representativeness error. No significant latitudinal gradient was found along the three
virtual stations at the eastern boundary.
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3.1.1.2 Construction of a smoothed MHD-based ∆14C background

Until 2022, the ∆14C background time series was constructed from biweekly integrated
samples at MHD. To fill temporal gaps, suppress short-term noise, and ensure continuity,
data was smoothed using the ccgcrv algorithm (Press et al., 1988; Thoning et al., 1989).
This method fits a long-term trend using a quadratic polynomial and captures seasonality
via harmonic functions. A low-pass filter in Fourier space is applied to the residuals and
added back to restore inter-annual variations.

Due to the biweekly sampling frequency and relatively high measurement uncertainty,
short-term variations were not included. The resulting smoothed MHD-based background
served as the main background estimate in earlier phases of this PhD.

However, in the late 2022, ∆14C sampling at MHD was suspended due to safety is-
sues with the tower to which the inlet system and the meteorological observations were
attached. This period coincided with an expected increase in stratospheric∆14C input after
the 2020 solar minimum (Clette & Lefèvre, 2015), with a typical delay of ∼2 years due to
stratosphere–troposphere exchange (Holton et al., 1995). These developments motivated
the construction of an updated and more robust background estimate.

3.1.1.3 Northern hemispheric background construction from multiple stations

To extend the ∆14C background estimate and improve its representativeness, I derived a
mean inter-annual trend from multiple Northern Hemisphere clean-air stations: Alert, CA
(ALT, Levin & Hammer, 2022), Jungfraujoch, CH (JFJ), Mace Head, IE (MHD), Niwot
Ridge, US (NWR, operated by National Oceanic and Atmospheric Administration, NOAA,
Miller et al., 2025), Pallas, FI (PAL), and Svartberget, SE (SVB). Flask or integrated mea-
surements were smoothed using ccgcrv, and offsets relative to MHD (2014–2022) were
calculated and subtracted to align all 14CO2 time series to MHD’s latitudinal level.

The resulting trend series were averaged to produce a mean Northern Hemisphere∆14C
trend, which reflects the large-scale stratospheric influence and mitigates the effect of data
gaps at individual stations. A Gaussian filter with σ = 50 days was applied to remove edge
artifacts from station-specific start and end dates. Linear extrapolation was used to extend
the mean trend into the final quarter of 2024. The background uncertainty was increased
from 2.1‰ to 2.4‰ in this period to account for the extrapolation. The seasonal cycle was
adopted from the long-term mean seasonal pattern observed at MHD (2000–2022).

Figure 3.2 illustrates this new northern hemispheric background, as well as the key data
for its construction. Panels (a)–(d) show the station-specific inter-annual trends in compar-
ison to MHD; panel (e) compares the resulting background curve (green line, uncertainty
in gray shading) to the previously used background of MHD only from Maier et al., 2023
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Figure 3.2. Comparison of different NorthernHemisphere∆14C background trends. Panels
(a)-(d): Inter-annual∆14C trend of clean air sites extracted using ccgcrv smoothing routine
used to calculate mean northern hemispheric trend. The offset to the mean MHD trend is
noted in the legend. Panel (e): Comparison of the∆14C background curve used in this study
(green line with gray shading representing uncertainty) against the background estimation
fromMaier et al., 2023 (yellow line) and individual MHD∆14C integral values (black line).

(yellow) and the individual ∆14C samples from MHD (black line).

The influence of enhanced natural ∆14C production becomes evident in 2022-2024,
where less steep slopes can be observed at several background stations (JFJ, PAL, SVB).
In addition, the late MHD samples show a tendency to exceed the background estimate.
Although the assumption of fast meridional mixing justifies the use of a mean trend for the
Northern Hemisphere (Warneck, 1999), the robustness of long-term station-specific latitu-
dinal offsets for this particular period is uncertain. As can be seen in panels (a) - (d) of
Figure 3.2, the latitudinal offsets are not constant in time. Furthermore, the fixed seasonal
cycle of MHD makes the background estimate less sensitive to short-term changes. This is
exemplified by the difference between the northern hemispheric 14C background (green)
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and theMHD-based background (yellow) in panel (e) in Figure 3.2. Thus, a potential bias in
the∆14C background, particularly in the years 2023–2024 without the MHD observations,
cannot be ruled out.

3.1.2 Biospheric correction

As stated previously, a significant correction in∆ffCO2 calculations using the regional iso-
tope budget approach RIBA involves biosphere respiration, which is enriched in 14CO2 rel-
ative to today’s atmospheric CO2. The 14CO2 enrichment in the plant’s assimilated biomass
results from higher atmospheric 14CO2 levels in the past caused by nuclear bomb testing
in 1960s (Fig. 2.3, Levin et al., 2022). Thus, the enrichment of heterotrophically respired
CO2 varies with the age of the respired biomass. This additional 14CO2 masks the∆ffCO2

signal.

The isotopic signature of respiration, ∆14Cresp, varies between autotrophic and het-
erotrophic processes. Earlier studies estimated heterotrophic ∆14C signatures using mean
terrestrial carbon residence times (Turnbull et al., 2006). Fieldmeasurements indicate∆14Csoil

values of 48.2-56.7‰ in boreal forests in 2012 (Palonen et al., 2018) and a mean∆14Cresp of
32.0 ± 7.4‰ in tropical rainforests for year 2019 (Chanca, 2022), consistently tens of per-
mil higher than contemporary atmospheric ∆14C signatures (approximately 30‰ in 2012
and 2‰ in 2019 for the northern hemisphere, see Fig. 3.2). In this thesis, I used the method
suggested by Maier et al., 2023, i.e., the approximated autotrophic ∆14Cresp signature with
background air values, while the ∆14C signature of the heterotrophic respiration contribu-
tions were modeled assuming a mean age distribution of the biomass pools (e.g., Naegler
and Levin, 2009a).

The Vegetation Photosynthesis and RespirationModel (VPRM,Mahadevan et al., 2008)
coupled with STILT was used to simulate Cresp for ICOS sites. These simulations show
higher Cresp signals in summer than in winter, typically ranging from 2 to 8 ppm at ICOS
sites. The respiration correction is particularly crucial for ICOS sites with low ∆ffCO2

signals and strong biospheric influence. In winter, respiration and fossil CO2 signals are
comparable in magnitude (Cresp/Cff ≈ 1), leading to less than 5%∆ffCO2 masking assum-
ing realistic 14Cresp enrichment of below 40‰ relative to ambient air. For summer, however,
this effect can reach nearly 20%∆ffCO2 masking due to the much higher biospheric signals
(Cresp/Cff ≈ 6) assuming the same 14Cresp enrichment (Maier et al., 2023). An uncertainty
of 100% is assumed for the respiration component, resulting in an overall biospheric cor-
rection contribution to the expected uncertainty of∆ffCO2 of less than 0.5 ppm for typical
ICOS sites (Maier et al., 2023).
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3.1.3 Nuclear correction

Estimating ∆ffCO2 from 14C measurements requires accounting for 14C emissions from
nuclear facilities (Kuderer et al., 2018). The ICOS Carbon Portal provides a dedicated
Jupyter notebook to calculate the so called nuclear contributions (∆14Cnuc) at each ICOS
Class 1 site resulting from all European nuclear facilities. This tool maps 3-hourly Stochas-
tic Time-Inverted Lagrangian Transport (STILT, see Sect. 3.2.1) model footprints from each
ICOS station with annual mean 14CO2 emissions from the European Radioactive Discharges
Database (Maier et al., 2023; RADD, 2025). This methodology, assuming constant annual
discharge rates (Maier et al., 2023), introduced systematic biases because nuclear power
plants (Boiling Water Reactors, BWRs; and Pressurized Water Reactors, PWRs) exhibit
time-dependent emission profiles (Knaack, 2025). This often led to overestimation of PWR
(∼22%) and underestimation of BWR discharges (∼20%), biasing ∆ffCO2 estimates near
such facilities (Knaack, 2025).

Recent advancements by Knaack, 2025 addressed these biases using simplified reactor
type-specific time-dependent 14CO2 discharge profiles which are based on reactor-specific
operating conditions. This approach utilizes annual 14CO2 discharge data (Laemmel et al.,
2025), hourly electricity generation, and refueling outages (Entso-E, 2025). For BWRs, the
hourly discharge rate of 14CO2 correlates with the energy production rate and was therefore
calculated from the annual energy production data and the annual discharge rates. During
periods of no energy production, a specific zero energy 14CO2 production rate is applied.
Samples taken at the start of refueling outages are flagged due to potentially large unknown
14C releases during reactor depressurization. For PWRs, the approach uses annual 14C
discharge data and outage periods, assuming that 23% of the 14C discharge is 14CO2 (the
rest being 14CH4). The normal operational baseline discharge is 10-40% of the mean annual
rate depending on the reactor type and is set to 37% (median over available reactor data),
although newer data suggest that this could be an overestimation by ∼15%, leading to a
positive bias in the PWR nuclear correction (∼40%, not published). However, since the
PWR component is not large (∼20% of total nuclear influence), this error in total should
be rather small. During refueling outages, discharge is assumed to double the annual mean,
with a significant spike (50 times the annual average) at the onset of depressurization due to
rapid 14C release. For the ICOS flasks samples on average, this methodology has reduced
the estimates of ∆ffCO2 by 0.28 ppm, correcting a slight overestimation of the previous
average annual discharge rates. An uncertainty of 100% is applied to the modeled ∆14Cnuc

contributions to account for the inherent temporal and transport uncertainties. Due to data
availability, this method corrects only for nuclear influence inside the European domain. I
assume that the background station captures all external nuclear contributions, thus account-
ing for them during the ∆ffCO2 calculation.
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Beyond methodological improvements for nuclear power plants, the analysis shows that
the La Hague nuclear fuel reprocessing site is the dominant contributor of 14C to almost
all ICOS stations, accounting for approximately 40% of all nuclear corrections at the ICOS
sites (Knaack, 2025). This highlights the critical need for a more rigorous investigation
of its specific 14CO2 discharge characteristics to further enhance the accuracy of ∆ffCO2

estimation. The finalized data flagging procedure in this study involves: 1) dropping values
without nuclear correction, 2) flagging data with revision or maintenance flags indicating
a high unknown contamination risk, 3) dropping flasks with high nuclear contributions (>
2‰), and 4) discarding flasks with values significantly higher than the background (> 2

times the 14C measurement error plus background error), indicating potential unaccounted
nuclear influence.

3.2 Transport model and Bayesian inversion

In situ measurements of atmospheric mole fractions are crucial for understanding the spatial
distribution and magnitude of greenhouse gas sources and sinks. However, atmospheric
transport significantly alters these surface influences, mixing them across vast regional and
continental areas. Trace gas concentrations within the Planetary Boundary Layer (PBL) are
particularly sensitive to surface emissions. The highly inhomogeneous patterns of sources
and sinks in the near-field of a measurement site cause large variability in the measured
concentration data. Given that the PBL ventilates in about four days (Cotton et al., 1995),
this near-field surface area can be extensive, potentially covering hundreds to thousands of
kilometers (regional to continental scales) with which the air in the PBL interacts before
being observed. Therefore, accurate atmospheric transport models are essential to connect
observed trace gas concentrations to surface emissions and sinks.

The PBL’s mixing behavior changes significantly between day and night (Fig. 3.3). Dur-
ing the daytime, convective turbulence drives the formation of a well-mixed layer. As sunset
approaches, thermal convection and turbulence diminish, thus, a ”residual layer” forms that
retains the properties of the formerly mixed layer. Throughout the night, a stable bound-
ary layer forms, growing upwards from the ground, transitioning smoothly into the residual
layer (Stull, 2012). Current atmospheric transport models represent the daytime mixed layer
relatively accurately (Trusilova et al., 2010), often leading to a preference for daytime over
nighttime sampling for applications in inverse modeling. A critical implication for trace
gas measurements is that daytime surface emissions mix into a much larger air volume than
nighttime emissions. This means that nighttime measurements, despite their challenges,
offer higher sensitivity to regional surface fluxes. Lagrangian particle dispersion models
offer a potential solution by simulating turbulence and capturing subgrid-level transport
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Figure 3.3. The Planetary Boundary Layer (PBL) in high-pressure regions typically consists
of three main parts: a turbulent mixed layer during the day, a less turbulent residual layer
that holds air from the former mixed layer, and a stable boundary layer that forms at night
with sporadic turbulence. Adapted from (Stull, 2012).

processes.

3.2.1 STILT

The Stochastic Time-Inverted Lagrangian Transport model (STILT, Gerbig et al., 2003; Lin
et al., 2003), a Lagrangian particle dispersion model (Zannetti, 1990), was the main atmo-
spheric transport model used in this study. STILT determines the upstream influence re-
gion, or ”footprint,” of atmospheric measurement sites by tracking an ensemble of particles
(e.g., 100 particles hourly) backward in time (Fig. 3.4) from receptors (observation sites).
Convolving these footprints with surface fluxes (e.g., emission inventories) simulates at-
mospheric tracer concentrations at observation stations (forward or FWD simulations). The
back-trajectories are calculated using meteorological fields and a stochastic representation
of turbulent motions, potentially resolving subgrid processes as particle locations are calcu-
lated without grid cell restrictions. These back-trajectories are computed for 10 days or until
particles exit the defined model domain (”stilt03” domain in CarboScope notation: 16◦W
- 36◦E and 32◦N - 74◦N). Particles in the PBL are aggregated to footprints with a speci-
fied grid resolution (e.g., 0.25◦ x 0.25◦). STILT is driven by meteorological fields from the
fifth generation of the European Center for Medium-Range Weather Forecasts (ECMWF)
atmospheric reanalysis (ERA5, Soci et al., 2024). This approach addresses challenges from
”near-field” variability and complex PBL dynamics, which often hinder traditional gridded
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Figure 3.4. Comparing backward and forward time simulations for atmospheric transport.
A single backward release of particle ensemble from a receptor (e.g. measurement site)
identifies its potential spatio-temporal source region. In contrast, forward time simulations
are computationally far more extensive as those require multiple particle releases from the
entire domain to achieve the same. An empirical test of STILT model reversibility verified
this by comparing particle counts in source/receptor boxes from backward and forward runs,
accounting for air density differences. Adapted from (Lin et al., 2003).

models, by simulating turbulence and capturing subgrid-scale transport via a Markov chain
process for turbulent velocity statistics (Lin et al., 2003). This receptor-oriented framework
is particularly suitable for representing the ICOS ground-based network of tall towers.

A critical aspect of STILT simulations involves the management of boundary conditions.
For particles leaving the European model domain, concentrations are set to zero, completely
neglecting all fluxes outside the domain. This procedure on the model side mimics the cal-
culations of ∆ffCO2 estimates using the RIBA, where the clean MHD marine background
curve is subtracted from the data (Sect. 3.1). As discussed in Sect. 3.1.1, this assumption
holds only for air masses originating from the western boundary, but Maier et al., 2023
showed that the representativeness bias for other boundaries is rather small.

Although STILT robustly derives footprints and simulates concentrations, transportmodel
errors, including the accuracy of the underlying meteorological data, pose significant chal-
lenges for inverse modeling. As discussed in Lin and Gerbig, 2005, these errors can arise
from various sources, including inadequate PBL dynamics representation and advection un-
certainties. Past quantification approaches, such as comparing multiple atmospheric models
or analyzing residuals between simulated and observed tracer time series, have limitations.
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For example, collaborative model development can lead to similar parameterizations, and
residual analysis often confuses transport errors with assumed tracer flux errors (Gerbig et
al., 2008). Gerbig et al., 2008 further highlighted that vertical mixing uncertainty propa-
gating into the mixing ratio uncertainties of CO2 can be around 3 ppm, while advection
errors during active vegetation periods can contribute up to 5 ppm, substantially exceeding
typical measurement uncertainties. To mitigate these transport errors, Gerbig et al., 2008
outlined three main strategies: quantifying and propagating the errors via application of
typical transport tracers (e.g. Radon-222, Gachkivskyi et al., 2025; Maier et al., 2025), im-
proving the transport model, or employing less sensitive approaches. However, since the
main focus of this study is to evaluate observation data content within the same inversion
system, I concentrate on afternoon hours (for flasks and CO-based ∆ffCO2 ), which typi-
cally exhibit the lowest transport-related errors (Geels et al., 2007; Peng et al., 2023), or
assume the transport processes aggregated over longer periods of time are representative
of mean atmospheric conditions (integral- and CO-based ∆ffCO2 , see Sect. 3.2.2.1). Ad-
ditionally, I use different ratios of model-data mismatch uncertainty to prior uncertainty to
investigate its effect on the inversion system (parameter µ, Sect. 3.2.2).

3.2.2 CarboScope inversion system

The forward model, a crucial component in inverse problems, translates GHG fluxes e.g.
from emission inventories (in this study fromGCP or EDGAR, Sect. 3.2.3) into atmospheric
concentrations at a observation sites. In GHG inversions, this typically involves atmospheric
transport models (e.g., STILT, Sect. 3.2.1) that simulate GHG transport, mixing, and obser-
vation at measurement sites, considering atmospheric dynamics like winds, convection, and
turbulence. These forward simulations (FWD) are represented as:

cmod = Af + cini (3.4)

whereA is a transport matrix that relates surface fluxes (f ) to modeled concentrations (cmod),
and cini accounts for initial or background concentrations (Rödenbeck, 2005a).

However, both transport models and emission inventories are prone to errors (Lin &
Gerbig, 2005; Gerbig et al., 2008; Super et al., 2020), which requires independent vali-
dation of simulations. This validation can be achieved by estimating surface fluxes from
measured ambient GHG concentrations, posing a classic inverse problem: deducing cause
from observed quantities. The fundamental relationship is expressed as:

cmeas = cmod + ϵ (3.5)

where cmeas represents themeasured concentrations and ϵ indicates errors (model-data-mismatch).
The fluxes that I aim to retrieve are parameterized in the CarboScope system using a linear
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flux model:
f = ffix + Fp (3.6)

Here, ffix is an a-priori (prior) flux estimate (typically in fossil fuel inversions from an
emission inventory), the matrix F contains prior data on flux uncertainties and correlations
(defining the a-priori covariance matrix Qf ,pri =

1

µ
FFT, where µ is a scaling factor), and

p is a dimensionless vector parameter representing adjustments to this prior (Rödenbeck,
2005a). This parameterization defines the a-priori probability distribution of fluxes, assum-
ing p has an a-priori mean of zero and unit variance. The total modeled concentration then
becomes:

cmod = cmod,fix +AFp,with (3.7)

cmod,fix = Affix + cini (3.8)

To find the optimal value of the parameter p, a Bayesian inversion is used. Bayes’ the-
orem (Bayes, 1763; Joyce, 2003), a fundamental principle of probability theory, describes
the probability of an event given its probabilistic dependence on another event and the like-
lihood of that other event. It combines prior information with new observations to yield
revised (posterior) information. Formally, for events A (e.g., flux estimation of emission
inventory) and B (e.g., observations), Bayes’ theorem states:

P (A|B) =
P (B|A)P (A)

P (B)
(3.9)

where P (A|B) is the posterior probability of A given B, P (B|A) is the probability of B
given A (as given by the model), P (A) is the prior probability of A before considering ob-
servations B (e.g. from prior uncertainty), and P (B) is the likelihood of observing B (e.g.
from measurement errors). This theorem is widely applied across various fields, including
inverse problems, where it refines estimates of underlying physical states using observa-
tional data.

The following section is adapted from Rödenbeck, 2005a. In the context of inverse
problems, as implemented in the CarboScope inversion system (Rödenbeck et al., 2003;
Rödenbeck et al., 2023; Maier et al., 2025), Bayes’ theorem is defined as:

P (p|m) =
P (m|p)P (p)

P (m)
(3.10)

wherem = cobs−cmod represents theModel-Data-Mismatch (MDM)withQm as its covari-
ance matrix. If the true value of p is known, MDM is attributed solely to random errors in
measured andmodeled concentrations, with a zeromean, leading to a (conditional) probabil-
ity distribution ofm proportional to exp(−1

2
mTQ−1

m m). Furthermore, from the definition
of p, its (unconditional) probability distribution P (p) is proportional to exp(−µ

2
pTp). The
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scaling factor µ (being 1 in the base setup) scales the impact of a-priori constraints (the ratio
between a-priori and data constraints determining how strongly the solution is regularized
by a-priori information). µ was introduced for ease of sensitivity tests, as the overall mag-
nitudes of both Qm and the a-priori flux covariance matrix Qf ,pri are often ill-determined
in reality. With this, I define a cost function J :

J = − ln (P (p|m)) (3.11)

=
1

2
mTQ−1

m m+
µ

2
pTp+ C (3.12)

where C is an additive constant that contains all p-independent terms (e.g., P (m) and nor-
malization). As seen from Eq. 3.12, J is constructed from two essential components: a data
constraint termmTQ−1

m m, which penalizes largeMDM andwhere the inverse of the covari-
ance matrix Q−1

m acts as a weighting factor (smaller uncertainties lead to larger penalties),
and an a-priori flux constraint (µ

2
pTp), which regularizes the problem by penalizing large

deviations of p from its a-priori expectation value (zero).
The goal of the inversion is to find the most probable value of p given the observed

MDM.Hence, ⟨ppost⟩ is found bymaximizingP (p|m)with respect topwhich is equivalent
to minimizing the cost function J :

∂J

∂pT

∣

∣

∣

∣

∣

p=⟨ppost⟩

= 0 (3.13)

The cost function is numerically minimized using an iterative conjugate gradient algorithm
(Rödenbeck, 2005a).

Formally, after inserting the previous equations into Eq. 3.12 and taking the derivative,
the optimal parameter values (ppost) are calculated:

ppost = A−1b where A = FTATQ−1
m AF+µ1 and b = FTATQ−1

m (cobs − cmod,fix)

(3.14)
Consequently, the posterior fluxes (fpost) in the original notation are (Rödenbeck, 2005a):

fpost = ffix + F(FTATQ−1
m AF+ µ1)−1FTATQ−1

m (cobs − cmod,fix) (3.15)

3.2.2.1 Averaging intervals and data-density weighting

Integrated samples represent the average atmospheric ∆ffCO2 signal over approximately
two-week periods. To align these with the model output, the∆ffCO2 value of each integra-
tion period was assigned to all individual hours during this period. On the model side, each
integrated sample was then divided into ”averaging groups,” where hourly MDM values
were replaced by weighted averages over the corresponding period for cost function cal-
culations (Rödenbeck, 2005b, update 14.007). Crucially, the MDM vector length and the
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original hourly MDM errors are preserved. This technique was also applied to CO-based
∆ffCO2 estimates. Maier et al., 2024b demonstrated that one-week averaging of hourly
CO-based ∆ffCO2 data substantially reduces MDM spikes caused by faulty point source
emission representation (e.g. due to transport model errors).

Additionally, when comparing inversions using different data types (e.g., flasks and inte-
grated samples), it is crucial to prevent samplingmethod differences from disproportionately
shifting data constraints in one of the inversions. This effect is evident in the contribution
of MDM to the cost function J (J∗, Rödenbeck, 2005a):

J∗ =
1

2

N∗

∑

i=1

(cobs,i − cmod,i)
2

σ2
i

(3.16)

where the sum is over all individual values in the considered period. If σ2
i are approximately

equal, J∗ increases proportionally toN∗, which on a weekly scale is typically 1 (or less) for
flasks, 7 × 5 for CO-based data (afternoon hours only) or 7 × 24 for integrals (per week).
Without adjustment, inversions with higher data density would experience disproportion-
ately stronger data constraints simply due to larger data volume.

To mitigate these differences, I employed data density weighting. As described by Rö-
denbeck, 2005a, this technique ensures that all observations within a specified interval (typ-
ically one week, the time scale of synoptic weather patterns) contribute the same constraint
as a single observation per week. This method artificially increases the MDM error based
on the number of observations in the surrounding time interval:

σ∗
i =

√
N∗ · σi (3.17)

This can also prevent sites with high-density continuous measurements from disproportion-
ately influencing inversion results compared to, for instance, flask sites, if used within the
same inversion. In this study, it leads to more comparable results of different proxies. Addi-
tionally, this method approximately accounts for temporal correlations between consecutive
observations within a typical timescale of synoptic events (one week). More details on data
density weighting are available in Rödenbeck, 2005a.

3.2.2.2 Used parameters and degrees of freedom

I used the standard CarboScope approach of exponentially decaying spatial correlation in
longitudinal and latitudinal directions, which can be interpreted as spatial smoothing of the
previously uncorrelated a-priori flux regions (pixels) (Rödenbeck, 2005a). In the inversions
of this study, a relatively large spatial correlation length (compared to the extent of the
investigated area, Sect. 4.2) of approximately 380 km in both directions was used, though
this is comparable to previous setups for the European domain (Rödenbeck et al., 2023;
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Maier et al., 2025). This choice aligns with the study’s goal of resolving country-level
emissions and temporal variability rather than small-scale spatial structures. The full spatial
and temporal resolution of the resulting fluxes (model pixels and daily time steps) are not
the primary quantities of interest of this study and are furthermore not well constrained
by the available data. Therefore, the spatial aggregation primarily focuses on Germany
and surrounding areas, as this region is best constrained by the measurement data currently
available (Sect. 4.2).

Time correlations can be introduced by convolving the time series with a pulse response
function. In CarboScope, this is implemented in the frequency domain (Fourier series),
where the time correlations become a weighting pattern among the Fourier terms. As a
temporal correlation filter, I used the one corresponding to a truncated triangular response
function that linearly rises/falls away from the central peak and reaches zero at±1/νlow in the
time domain. This function represents a low-pass filter applied to the Fourier decomposition
of time series in the frequency domain, removing frequencies equal to or higher than νlow

(Rödenbeck, 2005a). Filters are referred to here in the format ”FxT”, with ”F” and ”T”
denoting the ”Filter” and ”Truncated triangular” properties, whereas ”x” defines the cut-off
frequency: νlow = x/yr. In synthetic studies a range of temporal correlation lengths was
explored, from biweekly (CarboScope notation would be ”Filt24T”) through five-yearly
(”F0.2T”) to a single temporal parameter for the entire period (”GLT”) (Rödenbeck, 2005a).
Synthetic studies demonstrated that a half-yearly correlation length (”F2T”, Sect. 4.4) yields
optimal inversion results and allows for investigation of the seasonal cycle in the ∆ffCO2

data.

In the CarboScope inversion system, transport model uncertainties are chosen depend-
ing on a observation site type. For the ICOS sites used in this study, a single station type
(continental tall towers) was assumed, with an associated transport error of 1 ppm. While
this classification is largely valid, it might slightly underestimate the error for certain high-
altitude locations (e.g., JFJ or OXK) due to more complex transport processes. Furthermore,
as described in Sect. 3.2.1, this assumed transport error may be significantly underestimated.
However, it is challenging to disentangle the influence of emission inventory and transport
errors, which are not well known, on the posterior fluxes. Consequently, instead of increas-
ing the prescribed transport error, a range of scaling parameters µ (see Sect. 3.2.2), in the
form of different ratios of MDM uncertainty to prior uncertainty, were investigated. For
simplicity, the measurement error for all measurements is uniformly set to 1.5 ppm, a value
consistent with typical uncertainties in 14C-based ∆ffCO2 measurements. All STILT and
CarboScope calculations carried out in this thesis were done using the fourth High Perfor-
mance Computer System for Earth System Research (HLRE-4) ”Levante” (DKRZ, 2025).
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3.2.3 Apriori Information

According to the United Nations Framework Convention on Climate Change (Grubb, 2019),
countries are required to report their greenhouse gas emissions to ensure transparency, ac-
countability, and progress toward climate goals, whichwere further disaggregated into spatio-
temporal data sets of the emission fluxes. Accurate and high spatio-temporal resolution of
these fossil estimation products coupled with precise atmospheric transport models is cru-
cial for reliable simulation of atmospheric CO2 concentrations. This thesis utilizes two such
datasets. The Global Carbon Project - Gridded Fossil Emissions Dataset (GCP-GridFED,
or GCP, Jones et al., 2021) was used as the main emission inventory product in all sensitiv-
ity runs. In addition, the Emissions Database for Global Atmospheric Research (EDGAR
v4.3.2 or EDGAR, Janssens-Maenhout et al., 2019) was used in Bayesian inversions with
unmodified priors to provide a comparison basis with the GCP results (see Sect. 5.2.4, 6.3.4
and 7.2.4).

The GCP-GridFED (Jones et al., 2021) is designed to be consistent with the annual
national emission estimates compiled by the Global Carbon Project for its annual Global
Carbon Budget (Friedlingstein et al., 2024). The methodology involves scaling an existing
gridded monthly emission distribution (specifically, EDGAR v4.3.2 for 2010) to match the
national annual totals from GCP’s National Annual Emissions (GCP-NAE) dataset, which
is based on the United Nations Framework Convention on Climate Change (UNFCCC) na-
tional submissions, International Energy Agency (IEA) energy statistics, and global cement
production data. For recent years (from 2019 onward), GCP incorporates dynamic monthly
seasonality from datasets like Carbon Monitor and applies corrections for inter-annual cli-
mate variability or global events, such as the COVID-19 pandemic. The resulting data are
available with 0.1◦×0.1◦ spatial resolution and monthly temporal resolution, interpolated to
daily fluxes.

EDGAR (Janssens-Maenhout et al., 2019) is a globally derived anthropogenic emis-
sion inventory. It incorporates updated annual energy statistics from the IEA and British
Petroleum on fossil fuel consumption. Then these national-level emissions are spatially
and temporally disaggregated based on fuel type, emission category, and country-specific
emissions using the COFFEE method (Steinbach et al., 2011). EDGAR provides data at a
0.1◦×0.1◦ spatial grid and an hourly temporal resolution.

Both GCP-GridFED and EDGAR represent state-of-the-art products with global cover-
age of fossil CO2 emissions, guided by IPCC methodologies (IPCC, 2006). They can be
used with the STILT transport model and the CarboScope inversion system when aggre-
gated to a 0.25◦×0.25◦ grid. The fundamental distinction between the two products lies in
their construction philosophies. EDGAR is a self-contained bottom-up inventory with na-
tional and gridded emissions calculated directly from activity data and emission factors. In
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Figure 3.5. Fossil CO2 fluxes for the Area of Constraint (AoC, 5◦E - 16◦E and 47◦N -
56◦N, see Sect. 4.2) from the GCP and EDGAR emission inventories. Panel (a) shows the
emissions for the investigated time period with 14 days smoothed EDGAR emissions. Panel
(b) shows zoom-in over 2 weeks with hourly EDGAR emissions as they were used in the
inversion.

contrast, GCP-GridFED is a ”constrained” gridded product, designed to align gridded fossil
CO2 emissions with the national annual totals of the Global Carbon Project. This leads
to differences in national total emission fluxes and their spatio-temporal distribution (Fig.
3.5). For the investigated region (5◦E - 16◦E and 47◦N - 56◦N, see Sect. 4.2), EDGAR ex-
hibits 11-19% higher annual fluxes in 2014-2024 compared to GCP annual means, with the
largest difference during the COVID pandemic (2020 and 2021). Mean summer EDGAR
emissions are typically closer to GCP estimates (EDGAR 3-15% higher) than winter fossil
fluxes (EDGAR 15-23% higher).

Uncertainties in GHG budgets can hinder the understanding of modeling results. The
gridded GCP product adopts error estimates from the Global Carbon Budget (Friedlingstein
et al., 2024), specifying a 5% uncertainty (1σ) for the 42 Annex I countries reporting an-
nually to the UNFCCC and a 10% uncertainty for other countries. EDGAR estimates the
uncertainty in global total anthropogenic CO2 emissions at ±4.5% (1σ), with lower uncer-
tainties for EU15 countries at 2.5% (Janssens-Maenhout et al., 2019). However, as shown in
Fig. 3.5, the annual emission difference for the Area of Constraint (AoC, Sect. 4.2) between
these products exceeds their combined uncertainty estimates.
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Furthermore, Super et al., 2020 highlighted that significant uncertainties arise when total
national fossil emissions are disaggregated into regional resolutions, with the uncertainty for
the entire AoC expected to be around 1%, but increasing to 40% for grid cell disaggregation.
Although GCP uses 5-10% uncertainties for its gridded emissions, Jones et al., 2021 note
that spatially averaged uncertainties from disaggregating national emissions to grid cells
can range from 20% to 75% (1σ) at spatial resolutions from 1 km to 1◦. This is attributed to
incomplete proxy data coverage (e.g., unmapped point sources), poorly constrained nonlin-
earities (e.g., emission intensity differences between rural and urban areas of equal density),
shortcomings in continuous proxy values (e.g., poorly constrained population density), or
inappropriate spatial representativeness.

In conclusion, the uncertainties of emission inventories are not fully known, especially
at the grid scale with sub-annual temporal resolution. These facts should be considered
when evaluating posterior results and comparing them to emission inventories. Similar to
the treatment of transport errors, the parameter µ (Sect. 3.2.2) is used to scale prior errors
and investigate their effects on the posterior.

3.2.4 Evaluation Matrix

Beyond the Bayesian inversions performed with unmodified priors, which utilized my best
estimate for the prior information and uncertainty, a set of inversion experiments called the
Evaluation Matrix was performed utilizing specifically modified priors. The goal of the
Evaluation Matrix design was to investigate the influence of the observations on certain
features of the posterior fluxes compared to the GCP inventory. The Evaluation Matrix
approach investigates this systematically by removing these pieces of information from the
prior. The inversion algorithm then inferred the missing flux component solely from the
provided observational data. Flux components describing main features of the emission
field were analyzed: seasonality and inter-annual trends of fossil fluxes, as well as absolute
and annual∆ffCO2 emissions. For each component analysis, a specific modified prior was
constructed based on the GCP inventory. The appropriate CarboScope inversion system
filter and the characteristics of these modified priors are noted in Table 3.1. The modified
priors used in this study are shown in Figure 3.6 and are described in the following. To
give the inversion flexibility to compensate for the modifications to the priors, the prior
uncertainty was increased to 40% for the experiments of the Evaluation Matrix inversions
(see Sec. 4.5). The analysis method of the Evaluation Matrix for each of the four flux
components was designed as follows.

The seasonality of the ∆ffCO2 flux can be described with two parameters, the ampli-
tude and the phase of the seasonal cycle. The modified prior for this analysis called the
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Figure 3.6. Modified priors used in this study, calculated based on the GCP inventory
(Sect. 3.2.3) utilizing an appropriate time correlation CarboScope filter (Sect. 3.2.2.2). For
descriptions and intended usage see Tab. 3.1.

Table 3.1. Description of the priors used in the sensitivity study and and their intended use.
The name refers to the designation used throughout this thesis. All modified priors are based
on the GCP inventory and are calculated by applying the corresponding Carbo Scope filter.

Prior
name

Carbo Scope
notation

Characteristic Application

GCP None Global Carbon Project ∆ffCO2

inventory
Optimal Bayesian In-
version

Trendless
Prior

-Filt52TdZs Mean seasonal cycle with re-
moved inter-annual trend

Analysis of the inter-
annual trend

Seasonless
Prior

-Filt4Tma Inter-annual trend with short-term
variability, no seasonal cycle

Analysis of the season-
ality

Smoothed
Prior

Filt4Txx GCP with removed short-term
variability

Analysis of the devia-
tions from GCP

Flat Zero
Prior

LT ×0 Removed all time dependence,
zero emissions, present spatial
emission pattern

Analysis of the data
driven inversion

Flat 200p
Prior

LT ×2 Two times mean ∆ffCO2 emis-
sions over the time period, no tem-
poral features

Analysis of the data
driven inversion

Seasonless Prior was calculated by removing the seasonal cycle from the GCP prior and
provides the inversion system with only the inter-annual trend and the short-term variabil-
ity information (Fig. 3.6 yellow solid line). The posterior fluxes as well as the undisturbed
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GCP flux were divided by the Seasonless Prior to evaluate and compare their seasonality.
The relative amplitudes of the winter maximum and the summer minimum as well as their
positions were compared.

The inter-annual trend in the measurement data was analyzed using the so-called
Trendless Prior (green dashed line in Fig. 3.6), which only contains the mean seasonal cycle
and the short-term variability of the GCP inventory with the inter-annual trend removed.
Similarly as for the analysis of the seasonality, the resulting posteriors were divided by the
Trendless Prior. The slopes of the linear regressions of the absolute and relative flux esti-
mates were compared to the inter-annual trend of the GCP.

The absolute and annual mean ∆ffCO2 emissions were analyzed using two different
modified priors, the Flat Zero Prior and the Flat 200p Prior (pink solid line and brown dashed
line, respectively, in Fig. 3.6). For the Flat Zero Prior, I calculated the mean pixel-wise
emissions of the GCP inventory over the whole investigated time period and then multiplied
it by zero. However, it is important to note that the Flat Zero Prior (and later the Flat 200p
Prior) constructed this way retained the pixel-wise time-averaged prior uncertainties of the
original GCP inventory with higher uncertainty in high emission regions. The Flat 200p
Prior was calculated in the sameway as the Flat Zero Prior, but the emissions weremultiplied
by the factor of two instead of zero, amounting to 200% of the GCP mean.

The posteriors of these inversions were then aggregated to annual mean ∆ffCO2 emis-
sions and compared to the GCP inventory yearly means. This last step in the postprocessing
was done to mimic the national emission total before they are disaggregated in spatial and
temporal domains, because the disaggregation causes additional errors in the emission in-
ventories.

Additionally, I used Root Mean Square Deviation (RMSD) to compare the not aggre-
gated posterior emissions of the Flat Zero and Flat 200p Priors with the smoothed variant
of the GCP inventory (the Smooth Prior, blue dashed line in Fig. 3.6). This was done to
facilitate a fair comparison, as the applied time-correlation parameter ”F2T” (Sect. 3.2.2.2),
which only allowed for the seasonal oscillations in the data-driven posterior adjustments to
the prior (see Sect. 4.4), none of the short-term variability of the GCP inventory could be
reproduced by the inversion. This allowed me to quantify the overall difference between
the data-driven inversions and this inventory.

It should be emphasized that the inversions based on the real data do not have an objec-
tive truth to compare with, restricting the evaluation of the flux features to the potentially
biased GCP inventory (Super et al., 2020). To determine the significance of the calculated
data-driven posterior deviations from the GCP inventory, this Evaluation Matrix was also
applied to the synthetic data inversions (Sect. 4.1) with known truth (Sect. 4.6). The Evalua-
tion Matrix experiments with synthetic data show the magnitude of the expected deviations
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based only on the measurement data errors without the transport error effects. Comparing
the corresponding Evaluation Matrix results from real and synthetic measurement data al-
lows us to assess how the deviations in the real-data posterior compare to those expected
solely from observational uncertainties, under the idealized assumption of zero model un-
certainty.



Chapter 4

Sensitivity studies

4.1 Synthetic Runs

Before analyzing∆ffCO2 inversion results based on actual observational data, it is essential
to investigate the validity range of key inversion parameters, such as the spatial and temporal
domains in which robust conclusions can be drawn ormeaningful variability can be detected.
To establish this range, sensitivity analyses were carried out in the form of so-called syn-
thetic inversion runs. In synthetic runs, the same parameters are used as in regular real-data
inversions, but instead of working with the measurement data, synthetic∆ffCO2 values are
utilized. Synthetic ∆ffCO2 data are generated from forward (FWD) runs of the transport
model (Sect. 3.2.1) employing ∆ffCO2 emission fluxes from bottom-up emission invento-
ries (e.g. from GCP or EDGAR, Sect. 3.2.3), such that the true fluxes behind these data is
known. With that, the posterior flux estimates of the synthetic inversions can be analyzed
through comparison with their known truth. By setting the measurement uncertainties of the
synthetic data to zero and using the same transport model in the FWD runs (Sect. 3.2.1) as
in the inversion process, thereby eliminating transport model uncertainties, one can assess
the performance of the inversion and its dependence on inversion parameters in an ideal-
ized setting. Additionally, the prior fluxes of the synthetic inversions can be modified (e.g.,
removed seasonal cycle or altered inter-annual trend) to test the inversion system’s abil-
ity to reproduce the modified features from the available data. Furthermore, the impact of
measurement uncertainties on the inversion results can be assessed by randomly perturbing
data obtained from the FWD runs. This enables to quantify the variability in the posterior
∆ffCO2 fluxes that arises solely from observational errors. This variability represents one
of the two key components required to evaluate any deviations between prior and poste-
rior fluxes in inversions based on real data. The second source of variability stems from
transport and representation errors in the model. However, since I use the same transport
model for forward simulations and inversion, this component cannot be evaluated within
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current framework. Nevertheless, conducting the sensitivity studies enables a well-founded
determination of the most critical inversion parameters based on the characteristics of the
observational network: its spatial and temporal coverage and its associated measurement
uncertainties.

To simplify the interpretation of the sensitivity experiments, I define a truth recovery
rate ρ of the synthetic inversion runs similar to Rödenbeck et al., 2023:

ρ (x, y, t) =
f ffCO2

post (x, y, t)− f ffCO2

pri,manip (x, y, t)

f ffCO2

true (x, y, t)− f ffCO2

pri,manip (x, y, t)
· 100% (4.1)

where f ffCO2

i (x, y, t) denotes the ∆ffCO2 fluxes for the posterior (index ’post’), the ma-
nipulated prior (i = pri,manip) and the known truth (i = true). The truth recovery rate ρ is
100% when the posterior flux completely reconstructs the known truth and 0% when the
posterior flux remains the same as the manipulated prior flux.

4.2 Analysis of the Area of Constraint

One of the most important parameters for the interpretation of the atmospheric modeling
results is the spatial Area of Constraint (AoC). In this study, I use the samples collected by
the ICOSmeasurement network (Sect. 2.3) and are restricted by its spatial extent. Therefore,
I must determine which area can be best examined within the given station distribution.

Similarly to previous studies using the RIBA (Levin & Rödenbeck, 2008; Maier et al.,
2024b) the greater investigation domain of this study is the European domain with bound-
aries of 16◦W - 36◦E and 32◦N - 74◦N. However, within this domain, the AoC is limited
to the surroundings of the ∆14C sampling locations of the ICOS measurement network.
The ICOS network provides decent coverage across western Central Europe and some of
Northern Europe (Tab. 2.1) but the network does not provide information about Southern
and Eastern Europe (Fig. 2.4). In addition, the temporal data coverage resulting from the
measurement frequency and length of the time series plays an important role in the inversion
results, which will be discussed in a later chapter (Sect. 4.3).

To investigate the spatial coverage of the ICOS network and define a suitable AoC, sev-
eral synthetic studies were conducted for each of the ∆ffCO2 proxies and evaluated using
the previously defined ρ metric (Eq. 4.1). Figure 4.1 shows the spatial distribution of ρ
for the temporally averaged posterior ∆ffCO2 fluxes in 2022. The year 2022 was chosen
because it contains a homogeneous observation coverage for all three proxies compared to
the other years. For the AoC tests, synthetic observation data were derived from a forward
run using the GCP inventory. The data coverage in these synthetic AoC studies corresponds
to the real data coverage to conduct the AoC studies as close to reality as possible. These



Analysis of the Area of Constraint 43

synthetic observations have then been inverted using the Flat Zero Prior (Sect. 3.2.4) with
prior uncertainties of either 40% or 4% as input. It is worth reiterating here that the varying
uncertainties of the prior are interpreted by the inversion algorithm as weighting that deter-
mines the relative influence of the prior information compared to the observational data. The
posterior fluxes may differ from the prior by several times the specified prior uncertainty. To
best match the synthetic data availability with the real measurement data, the AoC runs for
different proxies use different station sets. The CO-based∆ffCO2 approach uses the small-
est set- CBW, GAT, HPB, HTM, KRE, LIN, OPE, STE (Tab. 2.1). Stations JFJ, NOR,
OXK, PAL, and SVB have been added to the flask-based inversion. The integral-based run
uses both of these sets, plus TRN, SSL, SAC and MHD stations. As to the reasons why not
all flask collecting stations are used in the final CO-based inversions, see Sect. 6.2.3.

Figure 4.1 shows that the AoC is centered in those regions where the footprint of the
ICOS stations overlaps. The truth recovery rate ρ decreases with increasing distance from
the center of the ICOS observation network. For prior uncertainty of 40%, the AoC sen-
sitivity tests for the three ∆ffCO2 proxies reach 100% truth recovery in the center of the
ICOS network. With lower prior uncertainty, ρ decreases to values of about 50-60% in the
center of the ICOS network, but the shape of the AoC remains similar. The general pat-
terns for the three∆ffCO2 proxies are similar, which is expected since all runs use the same
core station set. The AoC is more limited in the case of the CO-based synthetic inversion,
since it uses the smallest station set. The differences caused by the different time coverage
of the different ∆ffCO2 proxies (i.e., flasks provide ∆ffCO2 values for one hour, integrals
provide 2-weekly 24h means, and CO-based∆ffCO2 stands for weekly afternoon hours) do
not seem to influence synthetic AoC sensitivity tests. However, this may be different for
inversions with real data, as by definition the sensitivity tests are not impacted by transport
errors, and all types of sampling will lead to correct values without any bias. The result
figures for other years can be found in the Appendix (Sect. A.1).

The AoC test runs with the prior uncertainty set to 40% give an overly optimistic picture
of the potential recovery area, as there is no inherent bias in these synthetic runs. With
the transport and measurement errors in the system, only regions with a high density of
observations can be constrained with the necessary confidence. Therefore, I have chosen
the center of the ICOS network with the boundaries of 5◦E - 16◦E and 47◦N - 56◦N as the
AoC for this study (black square in Fig. 4.1) and it roughly coincides with the borders of
Germany and Benelux. Within the AoC, all sensitivity studies achieve a high degree of truth
recovery rate even in tests with a lower prior uncertainty of 4%. No reliable constraints can
be made for areas outside the AoC, and all future investigations will be restricted to this
AoC. This region will be referred to either as AoC or Germany+ domain.
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(a) Flasks-based ffCO2, 40% PRI uncer. (b) Flasks-based ffCO2, 4% PRI uncer.

(c) CO-based ffCO2, 40% PRI uncer. (d) CO-based ffCO2, 4% PRI uncer.

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure 4.1. Temporally averaged truth recovery rate ρ maps of the AoC tests for the year
2022 for all ∆ffCO2 proxies: flask-based (panels (a) and (b)), CO-based (panels (c) and
(d)), and integral-based (panels (e) and (f)). The Flat Zero Prior (Sec. 3.2.4) was used in
all runs with different prescribed prior uncertainty (PRI uncer.): 40% (panels (a), (c) and
(e)) and 4% (panels (b), (d) and (f)). The truth recovery rate ρ ranges from 0%, where the
emissions were not changed in the posterior compared to the prior, to 100%, where the truth
could be entirely recovered. Stations marked with X are used in all setups, circles - only
in flask-based and integral-based runs, and triangles only in integral-based inversions. The
region of maximum truth recovery (5◦E - 16◦E and 47◦N - 56◦N) is marked with a black
square and covers mainly Germany and Benelux.
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4.3 Analysis of the data density

The ICOS measurement network not only restricts the spatial domain of the reliable inver-
sion results, but also restricts the temporal period of the investigation. For example, in 2019
there are only a few stations with flask samples (1 flasks per month on average in 3 stations
in 2019, compared to 2 flasks monthly in 14 sites in 2022, Tab. 2.2), which is not enough to
support the AoC defined in the previous chapter (Sect. 4.2). In addition, there may be time
periods with different sampling frequencies, which would also lead to a varying data con-
straint. In this chapter, I investigate which time periods have the necessary data coverage
to provide meaningful inversion results and which time periods cannot be analyzed because
of insufficient data coverage.

First, the sampling periods for each of the three ∆ffCO2 proxies are discussed in more
detail.

The monthly sampling frequency for flask samples is shown in Figure 4.2. In the years
2019 and 2020, only HPB, KIT, and SAC have flask measurements, with more stations start-
ing flask sampling in 2021. Figure 4.2 clearly shows the highly inhomogeneous sampling
pattern, with generally more samples available in winter than in summer. The year 2024
stands out with the highest sampling rates for the majority of the stations (approximately 1
flask every 3 days). These additional flasks were collected as part of the CORSO project
(Levin et al., 2024). The JFJ, NOR, OXK, PAL, SAC and SVB stations do not have any
∆ffCO2 values in 2024 due to the missing nuclear correction (Sect. 3.1.3). As the STILT
footprints normally used for the calculation of nuclear corrections were not yet available, the
nuclear corrections for the stations included in the CORSO program were calculated using
FLEXPART (Bakels et al., 2024).

The days per month with CO-based∆ffCO2 values available at ICOS stations that were
investigated in this study and passed the preliminary quality check (Sect. 6.2.3) cover nearly
the entire investigation period starting at the end of 2019 (Fig. 4.3). The only significant
exception is the delayed start of the data series from the CBW station, for which data are
only available starting from the end of 2021.

Figure 4.4 shows that the collection of integrated∆14C samples started earlier than the
collection of the flask samples. However, because of the lack of the nuclear correction (Sect.
3.1.3) needed for the calculation of ∆ffCO2 , no ∆ffCO2 values are available for 2014 and
2024. Two major increases in the number of stations with available ∆ffCO2 values can be
observed: one around 2018 when sampling started at KRE, PAL and SAC stations, and
the other in 2021 when GAT, LIN and OXK stations were added to the network. Due to
the sampling nature of the integrated ∆14C measurements, the stations with integral-based
∆ffCO2 values probe all atmospheric situations equally during the sampling period, result-
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Figure 4.2. Monthly number of flask samples collected at the ICOS stations with available
∆ffCO2 values in the time period covered by this study. The higher number of observations
in 2024 is attributed to the CORSO project (Levin et al., 2024). The bar at the bottom
indicates the network-wide mean monthly availability of flask-based estimates per station.

ing in a homogeneous temporal coverage, but with only one value for the entire measure-
ment period. Thus, stations with an integrated sample collection implemented have almost
complete coverage until 2021. In the following time period, more stations were added to
the network, but on average ∆14C data are available only for every second sample due to
a limit in the capacity for integrated sample analysis (these ”missing” samples will be mea-
sured as soon as the additional analysis capacity becomes available). This variation in the
availability of the∆ffCO2 data can lead to unexpected changes in the data constraint of the
inversion system. This illustrates the need for further analysis of the data constraint using
the synthetic inversions.
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Figure 4.3. Monthly CO-based ∆ffCO2 availability in days at the ICOS stations in the
time period covered by this study. The bar at the bottom indicates the network-wide mean
monthly availability of CO-based estimates per station.

In the following, a series of synthetic runs were performed to determine a coherent time
period with sufficient data coverage in the ICOS network for each∆ffCO2 proxy to reliably
constrain the AoC (Sect. 4.2). Here, the GCP inventory was used as known truth and the
Flat Zero Prior (Tab. 3.1) as input. I can use the synthetic run test for this purpose, as the
synthetic data was constructed to have the same temporal coverage as the real data for the
corresponding proxy (Sect. 4.1). The standard station set was used for each proxy as defined
in Table 2.2. The posterior fluxes were spatially aggregated to the chosen AoC (Sect. 4.2)
and the ρmetric (Eq. 4.1) was applied. Figure 4.5 shows the time series of the truth recovery
rate ρ in the upper part with the meanmonthly data availability presented as a heat map in the
lower part for the three∆ffCO2 proxies in separate panels. For each proxy, the results were
presented with different prior uncertainties, i.e. different weightings between prior and data
constraint. The application of different prior uncertainties aims to discern various aspects
of the influence of data coverage on ρ, however, they should contain the same information.
For the case of 40% prior uncertainty, I expect a high level of ρ even with very limited data.
A recovery rate lower than 100% will indicate a severe lack of data. The cases of 10% and
4% prior uncertainty would show more structure in ρ, allowing one to distinguish between
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Figure 4.4. Monthly ∆ffCO2 availability based on the integral ∆14C samples at the ICOS
stations in the time period covered by this study. The absence of observations in 2014
and 2024 can be attributed to the missing nuclear corrections needed for the calculation of
∆ffCO2 . The bar at the bottom indicates the network-wide mean monthly availability of
integral-based estimates per station.

periods with different data constraints. I do not expect the corresponding posteriors to reach
the recovery rate of 100%, as a deliberately wrongful prior with low uncertainty will exert
a strong influence on the posterior. Regarding the prior uncertainty of only 1%, periods of
higher ρ would point to the time periods of best data coverage for the given proxy.

As the Flat Zero Prior was used, the inversion model does not have prior information
about seasonality. To allow the inversion to make changes in the temporal domain, a time
correlation filter of F2T was applied to the inversion, which allows for the resolution of the
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seasonal cycle but none of the shorter frequencies (Sect. 3.2.2.2). More on the appropriate
time filters can be found in Section 4.4. This is the reason for the short-term variability in
Figure 4.5, where the posterior with the highest prior uncertainty of 40% oscillates around
the recovery rate of 100% with an amplitude of approximately 5%, slightly but consistently
overestimating the truth due to the application of the Flat Zero Prior (see Sect. 4.6.3).

Figure 4.5, panel (a), depicts the temporal development of the truth recovery rate ρ for
synthetic flask-based ∆ffCO2 data. The posterior of the inversion run with a 40% prior un-
certainty achieves full truth recovery (∼100%) for the entire period except for the year 2019.
It shows that in the absence of any transport or measurement errors and with low restriction
by the prior (i.e., prior uncertainty of 40%) the inversion system needs only one or two data
points per month per station to reconstruct the truth. The effect of the number of samples on
ρ is most clearly visible for the prior uncertainty of 4%, where the increase in the number
of flask samples in winter 21/22 to 3-5 flasks per month and station leads to a significant
increase in the recovery rate from an average of 25% up to 50% and above. The winters of
2022 and 2023 have slightly higher ρ values compared to the corresponding summers due to
the respectively lower sampling rate in the summers. 2024, the year of the CORSO project
(Levin et al., 2024) and thus the year of a significantly increased number of flask samples,
shows another maximum in the truth recovery rate, only to fall again at the end of 2024, due
to the decreasing number of flasks, as flask analysis has not yet progressed so far and the
boundary effect as no data for 2025 is available yet. Based on these findings, I conclude that
the higher sampling frequency improves the inversion results and that the inversion system
has a sufficient level of flask-based data availability starting from November 2021.

The truth recovery rate of CO-based synthetic inversions (Fig. 4.5, panel (b)) for the
prior uncertainty of 4% shows consistently high values throughout the entire analysis period
due to the steady availability of CO data. All ρ values show an increase in the second half
of 2021 when the CBW station started CO measurements. Comparing the absolute values
of the recovery rate for posteriors with the prior uncertainty of 4% between the flask- and
CO-based inversions, I can see that flask-based results have on average higher ρ values
due to the larger number of measurement sites included in the inversion. Nevertheless, for
CO-based∆ffCO2 inversions, the time frame from January 2019 to the end of 2025 will be
investigated in the further examinations, because the increase in 2021 is not as significant
as for the flask-based proxy.

As with other proxies, synthetic inversion based on integral samples with prior uncer-
tainty of 40% rapidly reaches full truth recovery as long as there are at least few data points
available (Fig. 4.5, panel (c)). In this case, ρ is already maintained at about 100% in the sec-
ond quarter of 2015 and stays at this level until the drop in 2024 caused by missing analysis
results of samples. At lower prior uncertainties, one can see a structure in the recovery rate
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line that correlates with the data coverage. From the second half of 2015 to the beginning of
2018 the ρ metric fluctuates around the average of 40% in the case of 4% prior uncertainty.
In the second half of 2018, as more stations come online, the next plateau of truth recovery
rate is reached at values of approximately 60% until they drop in the second half of 2023
due to the absence of data. In this case, it is not clear which time period has sufficient data
coverage for the inversion system. The segment from July 2018 to July 2023 clearly has
greater data availability and should be considered as the main analysis period. Neverthe-
less, the period from July 2015 to July 2018 should not be discarded, as it still may possess
sufficient truth recovery and may provide useful information about the inventory; however,
it should be treated with more care.

4.4 Optimization of temporal correlation length

An essential model parameter that influences the posterior fluxes is the level of temporal
flexibility allowed in the inversion system - i.e., the degree of smoothing applied to the
fluxes over time. In the synthetic runs, any short-term variations in the flux field can theo-
retically be resolved by the inversion if the data density is sufficient and if a high temporal
flexibility of the posterior flux is permitted. However, in reality, measurement and trans-
port errors within the modeling system set limits. In the CarboScope modeling framework,
the temporal flexibility of the posterior is determined by the characteristic frequency of the
filter used in the Fourier space to construct the temporal variability of the posterior (Sect.
3.2.2.2). With real data, high degrees of temporal freedom can, however, lead to overfitting
of the observations, causing additional variability of the posterior fluxes, which the inversion
generates by optimizing signals that are below measurement uncertainties. Conversely, too
strict regularization in the time domain - for instance, allowing no changes to the temporal
trend compared to the prior - will result in suboptimal utilization of the data’s information
content, skewing the Bayesian inversion towards the prior. For these reasons, this parameter
is essential for producing a robust and informative posterior.

This sensitivity experiment aims to determine the optimal degree of temporal regular-
ization of the posterior fluxes under varying levels of measurement uncertainty. To this
end, synthetic pseudo-datasets were constructed by adding random, normally distributed er-
rors to the otherwise error-free synthetic pseudo observations used in the previous section.
Three standard deviations - 1.5 ppm, 3 ppm and 4.5 ppm - were selected to represent the
uncertainty ranges of the∆ffCO2 proxies considered in this study: ∆14C based (Sect. 3.1),
CO based (Sect. 6.3.1), and a high-end uncertainty scenario, respectively. For each error
scenario, three independently perturbed datasets were generated, yielding a total of nine
synthetic datasets.
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Figure 4.5. Truth recovery rate ρ in the AoC for the whole time period of the conducted
study for three ∆ffCO2 proxies: flask-based ∆ffCO2 (panel (a)), CO-based ∆ffCO2 (panel
(b)), and integral-based ∆ffCO2 (panel (c)). The runs with different prior uncertainties are
represented by colored continuous and dashed lines in each plot. The mean recovery rate
over the whole time period for each line is noted in the legend (av.). The color bars in the
lower part of each panel denote mean monthly data availability for each proxy (for station-
wise data availability see Figures 4.2 - 4.4).
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Figure 4.6. Original and perturbed synthetic data from three example sites: CBW (a), HPB
(b), and HTM (c). Original synthetic values from a GCP inventory FWD run mimicking
the integral sampling intervals (black line) are shown with perturbed synthetic data at 4.5
ppm (purple), 3 ppm (gray), and 1.5 ppm (orange). The legend provides the actual mean
synthetic-perturbed mismatch and standard deviation in ppm for each series. The color
bar at the bottom indicates the network-wide mean monthly availability of integral-based
estimates per station.

Because the perturbations were generated randomly, each pseudo-dataset differs. Al-
though an ideal approach would involve a large-scale Monte Carlo analysis with thousands
of datasets, this was not feasible due to computational limitations. The analysis focused on
comparing posterior results derived from the same pseudo-observations but with varying
temporal regularization of the inversion system. Also due to computational limits, only the
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integral-based synthetic proxy was analyzed, with the assumption that results for the other
proxies would yield similar conclusions due to the inherent absence of the transport errors
in these studies.

Figure 4.6 displays the original and perturbed synthetic data for the CBW, HPB and
HTM stations, using one representative pseudo-dataset from each of the three perturbation
scenarios. As expected for purely statistical noise, the mean bias relative to the original
signal remains close to zero. The standard deviations of the deviations align well with the
nominal values of the respective perturbations, confirming the intended error characteristics.

The perturbed synthetic data sets were used in an inversion using the Flat Zero Prior
(Tab. 3.1 and a 40% prior uncertainty, ensuring a high weight on the data compared to the
prior information. Ten temporal correlation lengths ranging from F24T (cutoff frequency
of 24/yr, approx. biweekly correlation length) to F0.2T (cutoff frequency of 0.2/yr, about
5 year correlation length) and GLT/Global (one global degree of temporal freedom) were
tested, resulting in a total of 30 inversions.

Figure 4.7 shows the resulting posterior ∆ffCO2 fluxes for the representative perturbed
data sets depicted in Figure 4.6. In each panel, only five of the ten temporal correlation
lengths tested are shown. As expected, the posteriors derived from datasets with lower
noise levels reproduce the truth (GCP) more accurately (panel (c)), while those based on the
high-perturbation scenarios exhibit substantial deviations from the truth (panel (a)).

A closer inspection of the F12T posteriors (green dashed lines in Figure 4.7) reveals
considerable variability at the annual scale, leading to unrealistic emission patterns—even
in the low-uncertainty case (panel (c)). This behavior clearly indicates overfitting to noise.
Reducing the frequency content via lower harmonic filters leads to smoother posteriors,
as each inferred value incorporates information from a broader temporal window. In the
high-noise cases (panels (a) and (b)), the overall shape of the posterior remains similar to
the truth but is consistently biased toward higher emissions—a direct result of the random
distribution of positive deviations in these specific pseudo-observations. The GLT filter
(brown dashed line), by contrast, yields a posterior equivalent to a long-term average, since
each observation contributes uniformly across the entire analysis period.

The posterior fluxes of these runs were then compared to the truth fluxes via the root
mean square deviation (RMSD). Only the period of the highest data constraint for the integral-
based samples (01.07.2018 - 01.11.2023) was considered for the calculation of the RMSD’s.
It is assumed that an insufficient number of degrees of freedom will result in a high RMSD,
as the posterior cannot adequately reflect the information content of the data. As temporal
flexibility increases, the RMSD is expected to decrease, since the posterior can increas-
ingly align with the underlying truth. However, beyond a certain point, the RMSD will
rise again due to overfitting of the noise in the error-prone data. Identifying the minimum
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Figure 4.7. Analysis of different time correlation filters in dependence of the perturbation
strength (Fig. 4.6). The black solid and dashed lines are respectively the truth (GCP) and
the Flat Zero Prior that was used as input. The colored lines denote the posteriors that
were generated using the same perturbed data set and prior uncertainty of 40%, but different
time correlation filters, ranging from GLT (one global degree of temporal freedom) to F12T
(cutoff frequency of 12/yr, Sect. 3.2.2.2).The color bar at the bottom indicates the network-
wide mean monthly availability of integral-based estimates per station.

in the RMSD curve thus reveals the optimal time correlation length—corresponding to a
characteristic frequency filtering in the Fourier domain.

The RMSD’s between the true values and the posteriors with F24T filter (Fig. 4.8) reach
the highest levels among all tested cases, as the variability is mainly caused by the added
pseudo-variability of the synthetic data. As the degrees of freedom decrease, the RMSD
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Figure 4.8. Root Mean Square Deviation (RMSD) between the truth and the respective
posteriors over the time period with the highest data constraint (01.01.2018 - 01.07.2023).
Each data point was calculated as themean of three RMSD’s, whichwere based on posteriors
done with the same time correlation filter and data with the same nominal perturbation but
different de facto biases due to the randomized nature of the pseudo-data creation. Errors
are the standard deviation of the three corresponding RMSD’s. The colored lines denote the
three different random, normally distributed perturbations.

also decreases. For the case with 4.5 ppm random, normally distributed perturbation, the
lowest RMSD is achieved with the Global filter with no flexibility at all. The RMSD for
the 3 ppm perturbation reaches a local minimum at F2T, then rises, and finally decreases
again, with the Global filter remaining the absolute minimum. Only the RMSD curve for
the 1.5 ppm perturbation follows the expected pattern. It initially decreases due to reduced
overfitting of the error-prone data, then reaches the absolute minimum at F2T, reflecting
the seasonal oscillation of the true data and ignoring any short-term variability. Ultimately,
it increases again because of the loss of contained information in the data by the posterior
(missing seasonality).

High uncertainty in the data suggests the need to reduce the flexibility of the poste-
rior. For observations with high error, longer time-period averaging is necessary to prevent
overfitting, as the random error dominates the higher frequency information. Conversely,
reducing the random errors allows for the extraction of short-term information. Based on
this synthetic study, the optimal range of the temporal degrees of freedom for the 4.5 ppm
case is on the scale of inter-annual variability (i.e., F0.5T or lower in Fig. 4.8), with no
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possibility of resolving any seasonality. The set with 3 ppm nominal perturbation already
allows for the investigation of seasonality. The 1.5 ppm case may be suitable for examining
short-term variability up to seasonal resolution (F4T to F2T in Fig. 4.8).

However in reality the mismatch between model and actual atmospheric transport could
lead to additional uncertainty. This will reduce the effective information content of the
data and suggest further regularization of the inversion. Nevertheless, the seasonal signal
may be strong enough to be elevated from the noise and is an important parameter of the
climate system. Therefore, I will apply F2T time correlation filter in following inversions
if not stated otherwise. In time-space the F2T filter corresponds to the temporal correlation
of 6 months. This will allow for the investigation of the seasonal patterns and minimize
the overfitting caused by the errors. Unfortunately, it will prohibit investigations of any
variability on the shorter time scales.

4.5 Used prior uncertainty

Before analyzing inversions using actual atmospheric measurements as basis, one has to
define the range of the tolerable prior uncertainties. Here I want to differentiate between two
cases with different aims. First, the case where the information content of the measurements
should be extracted to the full extent minimizing influence of the prior information. This is
done with the aim to achieve a completely data driven inversion. Usually in such inversions
a strongly modified prior is used to investigate a specific facet of the inversion system or
data properties. Second, the case where beside the measurements, the weight of the prior
information is used as attributed to it in literature, to achieve a posterior corresponding to
optimal prior and data inputs.

In terms of synthetic inversion to achieve a completely data driven posterior, the in-
version system should be able to reconstruct the known truth with very little or even no
information from the prior. As it was shown in figure 4.5 that this can be already accom-
plished with the prior uncertainty of 40%, virtually independent of the variability in the data
density. Theoretically, one could increase the uncertainty further to achieve even greater
independence from the prior and it would work with the synthetic data, having no trans-
port or measurement induced bias between the sampling sites. However in Bayesian terms
this would be equal to decreasing the measurement errors, and hence forcing the inversion
system to reduce the model-data-mismatch even further. Because of this, with the real mea-
surements there is again a risk that the inversion system will start to overfit the error prone
measurement data. Thus I conclude that 40% prior uncertainty provides enough flexibility
to the inversion system for the cases where the posterior should be driven by the data.

If the goal of the specific analysis is to find the optimal posterior considering best es-
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timated uncertainties of unmodified prior emissions and observational data, then I need to
refer to the published values for prior uncertainties. As already discussed in the section 3.2.3
the nominal uncertainty of the total fossil CO2 emissions for the Germany and surroundings
is 1% as reported by Super et al., 2020, whereas the uncertainty for this area reported for
the emission inventories used in this study is 5% for the GCP (Jones et al., 2022) and 2.5%
for EDGAR (Janssens-Maenhout et al., 2019). However during the inversion procedure
the total emission is disaggregated in the temporal and spatial domains with uncertainty for
each grid cell rising to 20-75% (Super et al., 2020; Jones et al., 2022). In this study I do not
analyze the emissions grid-wise, but rather investigate the AoC as a whole. But all model
calculations are performed on gird cell level, what may lead to an increase in model-data-
mismatch due to the discrepancies in the emissions between inventory and reality in the
local catchment areas of the measurement sites. To account for this, I will use 4% prior
uncertainty as conservative estimation in the inversions with unmodified priors (Sect. 5.2.4,
6.3.4 and 7.2.4), which is within reasonable error margins for emission inventories and is
even lower than discrepancies in cross-inventory comparison (Sect. 3.2.3). For other inver-
sions, to account for the disaggregation errors and to achieve data-driven posteriors, 40%
prior uncertainty will be applied.

4.6 Application of the Evaluation Matrix on the perturbed
synthetic data

As previously described in Section 3.2.4, the EvaluationMatrix is a set of experiments devel-
oped to investigate key features of the posterior fluxes estimated by the inversion framework.
This approach will be applied to all real data inversions for the different ∆ffCO2 proxies
(see Sections 5.2.2, 6.3.2 and 7.2.2). However, because real data inversions lack an objec-
tive emission truth, an evaluation measure is needed to determine the significance of the
differences between the real data Evaluation Matrix posteriors and the GCP inventory used
in the Evaluation Matrix. In this chapter, I therefore apply the Evaluation Matrix to poste-
rior fluxes derived from perturbed synthetic integral data constructed from a known truth,
i.e. the GCP inventory. To simulate the influence of measurement uncertainties of differ-
ent magnitudes, the same perturbed synthetic data sets were used as in Section 4.4 (Fig.
4.6). However, to increase the statistical significance of the resulting posterior variability,
the number of pseudo-data sets for the random normally distributed perturbation of 1.5 ppm
that represents the expected uncertainty of the∆14C-based∆ffCO2 data was increased from
n = 3 to n = 30. These 30 pseudo-data sets were used to derive the estimated variability of
the Evaluation Matrix results but are not shown in the figures. The number of pseudo-data
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sets for nominal perturbations of 3 ppm and 4.5 ppm was not increased to reduce the com-
putational load on the inversion system. These results thus provide an indication of how the
Evaluation Matrix parameters change with increasing random uncertainty of the measure-
ments. Furthermore, assuming that for synthetic posteriors with no inherent transport model
errors, perturbations have a greater effect than sampling routine differences, this synthetic
study was conducted solely with integral data to further reduce the computational load. The
results are presumed applicable to other ∆ffCO2 proxies during periods of high data con-
straint.

4.6.1 Seasonal cycle of ∆ffCO2 emission trend derived from synthetic
inversions

Figure 4.9 shows the absolute posterior∆ffCO2 fluxes resulting from the application of the
Evaluation Matrix seasonal cycle investigation on perturbed synthetic data in the AoC (see
Sect. 3.2.4). For this investigations, I used the Seasonless Prior (Fig. 3.6) with 40% prior
uncertainty. Similarly to the analysis of the time-correlation filters, the posteriors calcu-
lated using the perturbed synthetic data with a nominal error of 4.5 ppm (panel (a)) deviate
strongly from the truth. For all three experiments performed, both amplified amplitudes
and shifted maxima and minima positions of the seasonal cycle can be observed. As the
magnitude of the perturbation decreases to 3 ppm (panel (b)) and 1.5 ppm (panel (c)), the
visible deviation of the seasonal cycle’s phase and amplitude from the truth decreases as
well, especially in the period from mid-2018 to mid-2023 corresponding to the period with
the highest data density (Sect. 4.3).

To extract and visualize the amplitude and phase of the seasonal cycle, the posteriors
and the truth were divided by the Seasonless Prior. The resulting relative seasonal cycles
are depicted in the Figure 4.10. The position of the maxima and minima of the posteriors
are marked with orange and purple circles. The corresponding extrema of the GCP truth are
marked by diamonds. In some years, the shape of the seasonal cycle was distorted to such
a degree that not all extrema corresponding to the truth could be identified in the posteriors.
This is particularly evident in the posteriors with nominal perturbation of 4.5 ppm (panel
(b)), but also present in some instances of the posteriors with nominal perturbation of 3
ppm (e.g. the absent 19/20 winter maximum for the ”3 ppm ver 1” line in panel (c)). All
corresponding extrema could be identified in the three depicted posteriors with a nominal
perturbation of 1.5 ppm. However, seven of thirty calculated posteriors had missing at least
one extremum (not shown).

The summer andwinter extremawere analyzed separately. Due to lower fossil emissions
in summer but the same nominal perturbations applied to the synthetic data, I expect summer
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Figure 4.9. Analysis of the seasonality derived from perturbed synthetic data (Fig. 4.6).
Panels (a-c) show absolute ∆ffCO2 fluxes in the Germany+ domain for decreasing pertur-
bations: 4.5 ppm (a), 3 ppm (b), and 1.5 ppm (c). The truth (GCP, black solid line) is shown
alongside the Seasonless Prior (black dashed line) that was used as input. The three colored
lines represent posteriors with a 40% prior uncertainty, derived from synthetic datasets with
the same nominal perturbation. Red lines indicate the main investigation period (01.07.18-
01.07.23), with the dashed red line marking the secondary analysis period (from 01.07.15).
The color bar at the bottom shows the network-wide mean monthly availability of integral-
based estimates per station.

fluxes to be more influenced by the perturbation due to the lower signal to noise ratio (SNR).
Similar effect is observed in the real measurements, with comparable measurements errors
during the whole year but lower ∆ffCO2 signals in summers.

Table 4.1 and 4.2 display the positions of winter maxima and summer minima for the
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Figure 4.10. Analysis of the seasonality derived from perturbed synthetic data (Fig. 4.6)
relative to the Seasonless Prior. Panels (a-c) show relative ∆ffCO2 fluxes in the Germany+
domain for decreasing perturbations: 4.5 ppm (a), 3 ppm (b), and 1.5 ppm (c). The truth
(GCP, black solid line) is shown alongside the Seasonless Prior (black dashed line) that was
used as input. The three colored lines represent posteriors with a 40% prior uncertainty, de-
rived from synthetic datasets with the same nominal perturbation. Orange and purple circles
mark the maxima and minima of the posteriors, with corresponding truth extrema marked
by diamonds. Red lines indicate the main investigation period (01.07.18-01.07.23), with the
dashed red line marking the secondary analysis period (from 01.07.15). The color bar at the
bottom shows the network-wide mean monthly availability of integral-based estimates per
station.

truth and correspondingmean positions for the posteriors averaged over available inversions
with the same nominal perturbations (Date columns). Additionally, the columns ∆ and σ

show the mean difference between means and the truth as well as standard deviation of the
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differences. The first three rows correspond to the period with lower data constrain and
were stated for the completeness. The measure for the significance of the deviation from
the truth will be derived from the period between 01.07.2018 and 01.07.2023. The statistics
of the last row was calculated by averaging over all maxima or minima across all extrema
positions of the given random perturbation for this period. This was done to further increase
the statistical significance of ∆ and σ with the assumption that these deviations were not
correlated but caused by the same effect.

For the perturbation scenario with a nominal standard deviation of 1.5 ppm, based on
30 independent realizations, the mean deviation in the timing of seasonal extrema relative
to the true fluxes is already very close to zero. This confirms that random noise largely
averages out when a sufficient number of realizations is used. Furthermore, the associated
standard deviation of the extrema positions lies between 35 and 41 days, providing a robust
first-order estimate of the uncertainty in seasonal timing introduced by observational noise
at this error level.

In contrast, for the 3.0 ppm and 4.5 ppm perturbation scenarios, only three realizations
were performed. Consequently, the resulting mean deviations and standard deviations are
not statistically significant and should be interpreted purely as indicative figures. Nonethe-
less, the results qualitatively align with expectations: both the mean offset and the standard
deviation of the extrema positions increase with higher levels of observational noise.

As already observed in the Fig. 4.10, higher nominal perturbation usually led to higher
∆ and σ values. Even for the 1.5 ppm posteriors, the variance of the position around the
truth is usually higher than one month. Furthermore, as expected, the variability of the
summer minima (Table 4.2) were slightly higher then σ of the winter maxima for all three
nominal perturbations. This supports the assumption that summer fluxes are more severely
influenced by the random uncertainty of the data in comparison to the winter fluxes.

Table 4.3 and 4.4 contain the statistical evaluation of the posterior amplitudes for winter
and summer relative to the Seasonless Prior. They have similar structures as Table 4.1 and
4.2. The relative mean amplitude of the runs with the same nominal perturbation normalized
with the Seasonless prior are displayed in the Mean columns, with ∆ and σ depicting the
mean difference to the truth, i.e. the GCP inventory, and the standard deviation of the dif-
ferences, respectively. The last row contains the statistics over the high data density period
2018-2023. Note that, the amplitude of the GCP seasonal cycle relative to the Seasonless
Prior is increasing over time, from 0.90 in summer 2015 to 0.87 in summer 2023 and from
1.10 in winter 15/16 to 1.13 in winter 22/23. This is not caused by an increase in the ab-
solute amplitude of the seasonal cycle of the inventory but by the overall decreasing fossil
fluxes over the investigated time period (see Figure 3.6). As this effect is small, I ignored
its influence on the ∆ and σ values in this tests.
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Table 4.1. Annual positions of flux winter maxima for the GCP (Date) and corresponding
mean posterior positions (Date) from synthetic data with same nominal perturbation. ∆ and
σ represent the mean difference and standard deviation of differences between correspond-
ing maxima and the truth in days. The first three rows cover the secondary investigation
period (from 2015-2018), while the next five rows cover the primary period (from 2018-
2023). The last row provides overall statistics for all primary investigation period maxima
sharing the same nominal perturbation. (*) 1.5 ppm statistics based on thirty perturbed
datasets instead of three and were used later for the quantitative analysis in the real-data
inversions.

Winter
GCP 1.5 ppm* 3 ppm 4.5 ppm

Date Date ∆ σ Date ∆ σ Date ∆ σ

15/16 27.12 13.01 16 35 17.11 -40 26 12.03 75 59
16/17 29.12 28.12 -1 56 23.11 -36 76 05.02 38 79
17/18 30.12 07.01 8 33 11.02 42 48 09.02 40 156

18/19 28.12 25.12 -3 31 24.01 27 77 15.01 18 82
19/20 30.12 01.01 -3 48 24.11 -35 13 25.10 -66 66
20/21 01.01 07.01 6 42 21.12 -10 18 04.02 35 73
21/22 08.01 05.01 -3 25 22.01 14 31 05.05 117 45
22/23 11.01 05.01 -6 35 04.01 -6 12 01.04 81 18

Global mean over winters 18/19 - 22/23

N.A. N.A. N.A. -1 35 N.A. 0 47 N.A. 44 87

Similar to the analysis of the seasonal extrema positions, the amplitudes of the posterior
fluxes show an expected increase in deviation from the true values with higher nominal
measurement uncertainties. While this general trend is apparent, the limited number of
realizations for the 3.0 ppm and 4.5 ppm scenarios does not allow for statistically robust
conclusions. For example, the standard deviation (σ) of the amplitude deviations in summer
for the 4.5 ppm scenario is lower than that of the 3.0 ppm case — and even lower than the
winter counterpart of the 4.5 ppm case, which contradicts the expected pattern.

Another notable observation also for the 1.5 ppm perturbations is a tendency for am-
plitudes to be slightly overestimated in winter and underestimated in summer. However,
these deviations remain small compared to their corresponding standard deviations (σ =
0.08 for winter and σ = 0.10 for summer) and are therefore not statistically significant. If
these patterns are not the result of random noise, they may suggest an asymmetric influence
of measurement errors on the inversion system. At this stage, however, my limited analysis
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Table 4.2. Annual positions of flux summer minima for the GCP (Date) and corresponding
mean posterior positions (Date) from synthetic data with same nominal perturbation. ∆ and
σ represent the mean difference and standard deviation of differences between correspond-
ing minima and the truth in days. The first three rows cover the secondary investigation
period, while the next five rows cover the primary period. The last row provides overall
statistics for all primary investigation period maxima sharing the same nominal perturba-
tion. (*) 1.5 ppm statistics based on thirty perturbed datasets instead of three and were used
later for the quantitative analysis in the real-data inversions.

Summer
GCP 1.5 ppm* 3 ppm 4.5 ppm

Date Date ∆ σ Date ∆ σ Date ∆ σ

2015 04.07 25.07 21 52 08.07 4 4 07.07 3 57
2016 03.07 30.07 27 62 05.04 -89 60 15.07 12 16
2017 04.07 22.07 17 81 10.07 5 43 12.06 -23 169

2018 04.07 21.07 17 71 07.07 3 49 25.07 21 117
2019 29.06 05.07 6 56 26.05 -34 1 22.04 -68 33
2020 01.07 01.07 0 43 14.06 -16 41 29.07 29 41
2021 09.07 11.07 2 29 28.06 -12 80 25.08 47 122
2022 07.07 29.06 -8 24 13.07 7 13 11.10 97 22
2023 04.07 03.07 -1 45 24.06 -10 49 03.09 61 0

Global mean over summers 2018 - 2023

N.A. N.A. N.A. 0 41 N.A. -9 51 N.A. 34 96

does not provide sufficient evidence to support such a conclusion and further investigation
would be required.

Summarizing the finding of this chapter, a phase deviation of about 35-40 days and an
amplitude difference of 8%-10% relative to the Seasonless Prior can be estimated by the
statistical errors of the thirty 1.5 ppm perturbed synthetic inversion runs. Summer fluxes
are slightly more impacted by the random uncertainties. These characteristic values were
used in the sections 5.2.2.1, 6.3.2.1 and 7.2.2.1 to compare the GCP extrema positions and
amplitudes to the real data inversions.
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Table 4.3. Amplitudes of flux winter maxima for the GCP (Value) and corresponding mean
posterior positions (Mean) from synthetic data with same nominal perturbation relative to
the Seasonless Prior. ∆ and σ represent the mean difference and standard deviation of
differences between corresponding maxima and the truth. The first three rows cover the
secondary investigation period, while the next five rows cover the primary period. The last
row provides overall statistics for all primary investigation period maxima sharing the same
nominal perturbation. (*) 1.5 ppm statistics based on thirty perturbed datasets instead of
three and were used later for the quantitative analysis in the real-data inversions.

Winter
GCP 1.5 ppm* 3 ppm 4.5 ppm

Value Mean ∆ σ Mean ∆ σ Mean ∆ σ

15/16 1.10 1.14 0.04 0.10 1.08 -0.02 0.35 1.38 0.28 0.32
16/17 1.10 1.13 0.03 0.11 1.22 0.12 0.10 1.57 0.47 0.35
17/18 1.10 1.15 0.05 0.07 1.18 0.08 0.11 1.50 0.40 0.21

18/19 1.10 1.13 0.03 0.08 1.34 0.24 0.15 1.54 0.44 0.20
19/20 1.12 1.10 -0.02 0.09 1.27 0.15 0.16 1.68 0.56 0.12
20/21 1.12 1.15 0.03 0.06 1.27 0.15 0.02 1.39 0.28 0.10
21/22 1.12 1.16 0.04 0.07 1.18 0.07 0.05 1.47 0.35 0.17
22/23 1.13 1.15 0.02 0.08 1.25 0.13 0.14 1.42 0.30 0.12

Global mean over winters 18/19 - 22/23

N.A. 1.12 1.15 0.03 0.08 1.26 0.15 0.13 1.49 0.37 0.18

4.6.2 Inter-annual ∆ffCO2 emission trend derived from synthetic in-
versions

For the investigation of the inter-annual trends, the posterior fluxes were calculated using the
Trendless Prior featuring a mean seasonal cycle (Tab. 3.1) and synthetic data with various
magnitude of perturbation (1.5 - 4.5 ppm, Fig. 4.6). The prior uncertainty was again set to
40% to ensure that the posterior fluxes are mainly data-driven. However, for this sensitivity
test the temporal correlation was increased to reduce the posteriors flexibility in the time
domain. For this, I used two different frequency filters: F1T and F0.5T. F1T corresponds
to one degree of freedom per year and F0.5T to one degree of freedom every two years
(Sect. 3.2.2.2). These two time-correlation filters offer enough flexibility to replicate the
inter-annual trend without significantly changing the mean seasonal cycle included in the
Trendless Prior. The F1T filter offers more flexibility, allowing the inversion system to
adjust shorter periods in the posteriors compared to F0.5T. The allowed flexibility of the
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Table 4.4. Amplitudes of flux summer minima for the GCP (Value) and corresponding
mean posterior positions (Mean) from synthetic datawith same nominal perturbation relative
to the Seasonless Prior. ∆ and σ represent the mean difference and standard deviation of
differences between corresponding minima and the truth. The first three rows cover the
secondary investigation period, while the next five rows cover the primary period. The last
row provides overall statistics for all primary investigation period maxima sharing the same
nominal perturbation. (*) 1.5 ppm statistics based on thirty perturbed datasets instead of
three and were used later for the quantitative analysis in the real-data inversions.

Summer
GCP 1.5 ppm* 3 ppm 4.5 ppm

Value Mean ∆ σ Mean ∆ σ Mean ∆ σ

2015 0.90 0.88 -0.02 0.11 0.68 -0.22 0.14 0.52 -0.38 0.34
2016 0.90 0.90 0.00 0.09 0.72 -0.18 0.11 0.61 -0.29 0.29
2017 0.90 0.84 -0.06 0.10 0.76 -0.14 0.15 0.70 -0.20 0.34

2018 0.90 0.89 -0.01 0.09 0.78 -0.12 0.24 0.95 0.06 0.09
2019 0.89 0.88 -0.01 0.09 0.98 0.09 0.21 0.98 0.09 0.21
2020 0.88 0.86 -0.02 0.12 0.87 0.00 0.09 1.03 0.15 0.13
2021 0.88 0.84 -0.04 0.10 1.07 0.19 0.10 0.90 0.02 0.15
2022 0.88 0.85 -0.03 0.09 0.78 -0.10 0.10 0.90 0.02 0.15
2023 0.87 0.88 0.01 0.08 0.88 0.01 0.03 1.04 0.17 0.00

Global mean over summers 2018 - 2023

N.A. 0.88 0.86 -0.02 0.10 0.89 0.01 0.18 0.96 0.07 0.15

F1T filter might be too high for the investigations of the inter-annual trend but it can serve
as indicator whether observed changes were caused by some shorter-term deviations or by
a genuine trend. The posteriors for the 3 ppm and 4.5 ppm perturbations (three data series
for each perturbation) are presented here to show the influence of the higher measurement
errors, but are not evaluated quantitatively. The trend variations of the 1.5 ppm perturbation
posteriors (30 in total) will serve as comparison measure for the real data inversions (Sect.
5.2.2.2, 6.3.2.2 and 7.2.2.2).

Figure 4.11 shows absolute posterior fluxes for the Germany+ domain with the F0.5T
filter (F1T is not shown). Posteriors with the nominal 1.5 ppm perturbation successfully
recovered the truth trend. As noted in the section 4.6.1, the 4.5 ppm inversions overestimate
the truth fluxes but still show signs of the downward trend after 2020. These features were
especially evident in the figure 4.12, which depicts the posterior fluxes relative to the Trend-
less Prior. The residual short-term variability of the truth (black line in Fig. 4.12), such as
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Figure 4.11. Analysis of the inter-annual trends derived from perturbed synthetic data (Fig.
4.6). Panels (a-c) show absolute ∆ffCO2 fluxes in the Germany+ domain for decreasing
perturbations: 4.5 ppm (a), 3 ppm (b), and 1.5 ppm (c). The truth (GCP, black solid line) is
shown alongside the Trendless Prior (black dashed line) that was used as input. The three
colored lines represent posteriors with a 40% prior uncertainty and ”F0.5T” time correlation
filter (Sect. 3.2.2.2), derived from synthetic datasets with the same nominal perturbation.
Red lines indicate the main investigation period (01.07.18-01.07.23), with the dashed red
line marking the secondary analysis period (from 01.07.15). The color bar at the bottom
shows the network-wide mean monthly availability of integral-based estimates per station.

the sharp emission reduction during the 2020 COVID-19 lockdown, cannot be reconstructed
with given reduced degrees of freedom in the temporal domain.

To provide a comparison for real-data inversions, I calculated the linear regression slopes
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Figure 4.12. Analysis of the inter-annual trends derived from perturbed synthetic data (Fig.
4.6) relative to the Trendless Prior. Panels (a-c) show relative ∆ffCO2 fluxes in the Ger-
many+ domain for decreasing perturbations: 4.5 ppm (a), 3 ppm (b), and 1.5 ppm (c). The
truth (GCP, black solid line) is shown alongside the Trendless Prior (black dashed line) that
was used as input. The three colored lines represent posteriors with a 40% prior uncertainty
and ”F0.5T” time correlation filter (Sect. 3.2.2.2), derived from synthetic datasets with the
same nominal perturbation. Red lines indicate the main investigation period (01.07.18-
01.07.23), with the dashed red line marking the secondary analysis period (from 01.07.15).
The color bar at the bottom shows the network-wide mean monthly availability of integral-
based estimates per station.

for thirty posterior time series corresponding to the 1.5 ppm perturbation (Tab. 4.5). I fo-
cused on the standard deviation of these slopes as a measure of the system’s sensitivity to
observational errors. As this analysis used only synthetic data based on integral samples, the
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period of the calculated regression was adapted to the real datasets of integral-based, CO-
based, and flask-based∆ffCO2 . For the integral-based inversions the integral’s main inves-
tigation period (01.07.2018–01.07.2023, 5 years) will be used for the linear regression. For
the CO-based inversions, the usual period, over which the real data inversions are calculated
(01.01.2019 - 01.01.2025, 6 years, Sect. 4.3), does not possess high enough data density in
the integral-based data (colorbar in Fig. 4.11). Therefore, 01.07.2017–01.07.2023 (6 years)
period was used instead. Similarly, for the flask-based inversions (with usual real data in-
version range of 01.11.2021-01.01.2025) linear regressions over 01.07.2020 - 01.07.2023
(3 years) period were used here for the estimation of the variability of slopes. This period is
2 month shorter compared to the real flask period to minimize the effect of the COVID-19
rapid flux drop in the middle of 2020. As in these synthetic there are no transport errors, I
expect that the perturbation will have the dominant effect on the posteriors, rendering the
effects of the shifted time periods negligible.

The absolute slopes for the 5- and 6-year periods overestimate the GCP-based trend,
which might be a result of the still not sufficient number of realizations in terms of Monte-
Carlo simulations (Tab. 4.5, upper half). The 3-year period, however, corresponds well with
the truth. The F1T slope is slightly smaller than the F0.5T slope, but this difference is not
significant.

The standard deviations of the slopes are significantly different across the periods. The
shortest 3-year period shows the largest variation (0.60 Tmol/yr for F0.5T and 0.73 Tmol/yr
for F1T), 2–3 times larger than the variations for the 5- and 6-year periods (0.24–0.31
Tmol/yr). This demonstrates that short time series are more susceptible to observational
errors when calculating posterior trends. The 5-year period’s variability is also 25% higher
than the 6-year period’s. The emission reduction trends based on the fluxes relative to the
Trendless Prior (Tab. 4.5, lower half) show the same patters.

4.6.3 Absolute and annual mean ∆ffCO2 emissions derived from syn-
thetic inversions

This sensitivity test explores the capability of the inversion system to estimate the absolute
and annually aggregated fossil CO2 emissions for the AoC, using both the Flat Zero Prior
and the Flat 200p Prior as input (not shown) with F2T time-correlation filter and 40% prior
uncertainty. Synthetic integral-based data with 1.5-4.5 ppm perturbation magnitudes (Fig.
4.6) were used as input data for the inversions. Aswith the previous analysis, the quantitative
measure for the deviations due to the observational errors (for comparison with the real data
inversions, Sect. 5.2.2.3, 6.3.2.3 and 7.2.2.3) are derived from the thirty 1.5 ppm perturbation
posteriors. Due to the inability of the posteriors to reproduce the short-term variability of
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Table 4.5. Slopes of linear regressions for GCP and posterior fluxes in the Germany+ do-
main. Posterior estimates were derived from 30 synthetic datasets with a 1.5 ppm perturba-
tion, using a Trendless Prior and F0.5T and F1T temporal correlation filters. Mean posterior
slopes are shown with their standard deviations in parentheses. For GCP, the value in paren-
theses represents the slope error. The upper and lower halves of the table show trends for
absolute fluxes (Fig. 4.11) and fluxes relative to the Trendless Prior (Fig. 4.12), respec-
tively, for 3-, 5-, and 6-year periods.

Flux type
01.07.20- 01.07.17- 01.07.18-
01.07.23 01.07.23 01.07.23

Absolute trend [Tmol/yr]

GCP -0.54(0.08) -0.87(0.03) -0.74(0.04)
F05T (mean, #30) -0.54(0.60) -1.01(0.24) -0.90(0.30)
F1T (mean, #30) -0.49(0.73) -0.98(0.24) -0.88(0.31)

Relative trend [%]

GCP -1.9(0.1) -3.2(0.1) -2.8(0.1)
F05T (mean, #30) -2.0(2.2) -3.8(0.9) -3.4(1.1)
F1T (mean, #30) -1.8(2.7) -3.7(0.9) -3.3(1.2)

the truth, the posterior absolute fluxes were compared to the Smooth Prior (Tab. 3.1).

Figure 4.13 and 4.14 depict the absolute and relative to the Smooth Prior fluxes in the
Germany+ domain. Similar to the analysis in section 4.6.1, the posteriors for the higher
nominal perturbations show increased amplitude and shifted positions of the extrema.

The average RMSD’s between the posteriors and the truth in the main investigation
period (Tab. 4.6) represent characteristic values for the deviations from the truth induced
solely by the observational errors in these synthetic runs, and as expected they increase with
higher perturbation magnitude. The relative RMSD of 11%±2% can be already caused by
the perturbations of 1.5 ppm magnitude.

Panels (a) to (c) in Fig. 4.15 show the annual mean fluxes of the truth (in black) as well
as the three example posterior fluxes in colored lines which I have obtained when using
the Flat Zero Prior as input. As expected the annual mean posterior fluxes deviate stronger
from the true annual mean flux with increasing random uncertainty in the pseudo-data. It
can also be noted that the annual mean fluxes of the posteriors for all perturbation levels
show a tendency to positive biases.

Tables 4.7 and 4.8 summarize the average relative deviations of the annual mean fluxes
across all realizations of the perturbed pseudo-data, grouped by perturbation level and by
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Figure 4.13. Analysis of the absolute emissions derived from perturbed synthetic data (Fig.
4.6). Panels (a-c) show absolute ∆ffCO2 fluxes in the Germany+ domain for decreasing
perturbations: 4.5 ppm (a), 3 ppm (b), and 1.5 ppm (c). The truth (GCP, black solid line)
is shown alongside the Flat Zero Prior (black dashed line) that was used as input and the
Smooth Prior (orange solid line) that was used for comparison. The three colored lines
represent posteriors with a 40% prior uncertainty, derived from synthetic datasets with the
same nominal perturbation. Red lines indicate the main investigation period (01.07.18-
01.07.23), with the dashed red line marking the secondary analysis period (from 01.07.15).
The color bar at the bottom shows the network-wide mean monthly availability of integral-
based estimates per station.

the two applied Flat priors (Zero and 200p), each relative to the true values. Based on these
results, the positive bias of the posterior fluxes estimated using the Flat Zero prior is evident.
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Figure 4.14. Analysis of the emissions derived from perturbed synthetic data (Fig. 4.6)
relative to the Smooth Prior. Panels (a-c) show relative ∆ffCO2 fluxes in the Germany+
domain for decreasing perturbations: 4.5 ppm (a), 3 ppm (b), and 1.5 ppm (c). The truth
(GCP, black solid line) is shown alongside the Flat Zero Prior (black dashed line) that was
used as input and the Smooth Prior (orange solid line) that was used for comparison. The
three colored lines represent posteriors with a 40% prior uncertainty, derived from synthetic
datasets with the same nominal perturbation. Red lines indicate the main investigation pe-
riod (01.07.18-01.07.23), with the dashed red line marking the secondary analysis period
(from 01.07.15). The color bar at the bottom shows the network-wide mean monthly avail-
ability of integral-based estimates per station.

A symmetrical negative bias is observed in the posterior fluxes derived with the Flat 200p
prior. To further examine this bias behavior—referred to in the following as the “over- and
undershoot” effect, additional inversions (not shown) were conducted using Flat 50p, 100p
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Table 4.6. Means and standard deviations of the RMSD between the synthetic perturbed
posterior fluxes and the truth relative to the Smooth Prior. Three nominal perturbations
were used to simulate the measurement errors of various degrees. Two different priors were
used as an input to the inversions: the Flat Zero Prior and the Flat 200p Prior (Tab. 3.1).
Only the fluxes in the period from 01.01.2018 to 01.07.2023 were considered for the RMSD
calculations. (*) 1.5 ppm statistics based on thirty perturbed datasets instead of three and
were used later for the quantitative analysis in the real-data inversions.

Prior
1.5 ppm* 3 ppm 4.5 ppm

Mean Std Mean Std Mean Std

Zero 0.11 0.02 0.19 0.04 0.32 0.04
200p 0.11 0.02 0.16 0.06 0.29 0.02

and Flat 150p priors, corresponding to 1/4, 1/2 and 3/4 of the Flat 200p prior fluxes. The re-
sults revealed a linear and symmetric response in the posterior fluxes: as the prior emissions
increased, the posteriors increasingly underestimated the truth; conversely, lower priors led
to overestimation. The posterior derived from the Flat 100p prior aligned most closely with
the truth, within the expected range of variability caused by the measurement perturbations.
Interestingly, similar behavior was later identified by other CarboScope modeling teams for
different trace gases, following my inquiry on this matter. This suggests that the over- and
undershoot phenomenon may be a fundamental property of this inversion system. However,
it appears tomanifest only in sensitivity studies with extreme and intentionallyminimal prior
constraints. In realistic inversions with well-informed priors, this effect does not appear to
be relevant and is unlikely to introduce a significant bias in the final flux estimates.

Despite the systematic biases observed in the Flat Zero and 200p sensitivity tests, I main-
tain their use, as they are best suited to investigate the information content of the observa-
tions. To account for the over- and undershoot behavior observed in the sensitivity tests,
both the mean deviation from the truth and its standard deviation were used to evaluate the
real-data posteriors.
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Table 4.7. Mean annual emissions of the synthetic perturbed integral-based posteriors rel-
ative to the truth (GCP) using the Flat Zero Prior. The means and the standard deviations
were calculated from the sets of the posteriors with the same nominal perturbation. The last
row provides the statistics over the years 2018-2023. (*) 1.5 ppm statistics based on thirty
perturbed datasets instead of three and were used later for the quantitative analysis in the
real-data inversions.

Year
1.5 ppm Zero* 3 ppm Zero 4.5 ppm Zero

    Mean   Std   Mean   Std   Mean   Std

2018 1.08 0.05 1.11 0.11 1.24 0.16
2019 1.06 0.06 1.20 0.14 1.37 0.08
2020 1.06 0.07 1.12 0.01 1.25 0.17
2021 1.06 0.06 1.20 0.04 1.16 0.07
2022 1.05 0.05 1.06 0.09 1.22 0.10
2023 1.09 0.05 1.08 0.09 1.21 0.09

Global mean over 2018 - 2023

Total 1.07 0.06 1.13 0.11 1.24 0.14

Table 4.8. Mean annual emissions of the synthetic perturbed integral-based posteriors rel-
ative to the truth (GCP) using the Flat 200p Prior. The means and the standard deviations
were calculated from the sets of the posteriors with the same nominal perturbation. The last
row provides the statistics over the years 2018-2023. (*) 1.5 ppm statistics based on thirty
perturbed datasets instead of three and were used later for the quantitative analysis in the
real-data inversions.

Year
1.5 ppm 200p* 3 ppm 200p 4.5 ppm 200p

    Mean   Std   Mean   Std   Mean   Std

2018 0.95 0.05 0.98 0.11 1.11 0.16
2019 0.95 0.06 1.09 0.14 1.26 0.08
2020 0.94 0.07 1.01 0.01 1.13 0.17
2021 0.94 0.06 1.08 0.04 1.04 0.07
2022 0.94 0.05 0.95 0.09 1.12 0.10
2023 0.93 0.05 0.93 0.09 1.06 0.09

Global mean over 2018 - 2023

Total 0.94 0.06 1.01 0.11 1.12 0.14
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Figure 4.15. Annual mean ∆ffCO2 emissions derived from synthetic integral-based inver-
sions. Panels (a)-(c) display yearly flux values in Germany+ domain, with decreasing per-
turbations: panel (a) - 4.5 ppm, panel (b) - 3 ppm, panel (c) - 1.5 ppm. Truth (black solid
line) and the Flat Zero Prior (black dashed line) are shown alongside posterior results (col-
ored lines) derived from the perturbed data. Prior uncertainty is 40%. Red lines indicate
the main investigation period (01.07.18-01.07.23), with the dashed red line marking the
secondary analysis period (from 01.07.15). The color bar at the bottom shows the network-
wide mean monthly availability of integral-based estimates per station.



Chapter 5

Flask-based ∆ffCO2 inversions

5.1 Introduction and motivation

Flask samples offer several advantages for estimating ∆ffCO2 signals. First, the semi-
automated sampling routines implemented in ICOS flask samplers allow for the evalua-
tion of specific events or meteorological conditions. Furthermore, ICOS has developed
advanced tools that use forecasted back-trajectories, which automatically trigger the sam-
pling system (ICOS RI, 2020). This enables air masses originating from predefined areas
of interest to be sampled, allowing for highly targeted data collection. Similar techniques
can be used to avoid air masses that were potentially contaminated by nuclear facilities, en-
suring that nuclear corrections remain small compared to continental or regional changes
in the ∆14C content of the sampled air mass. This approach was recently implemented
during the CORSO project (Levin et al., 2024), which increased 14CO2 observations at 10
central western ICOS stations by a factor of five for the year 2024. As described in ICOS RI,
2020, most of the flasks were collected in the afternoon hours. The afternoon period is cho-
sen to reduce the model-data-mismatch related to the transport model error, as atmospheric
transport models generally exhibit their best performance during this time of day (Geels
et al., 2007; Peng et al., 2023). Finally, the same air samples can be evaluated for other
∆ffCO2 proxies such as CO (Sect. 6), nitrogen oxides (NOx) (Lopez et al., 2013; Jäschke,
2021; Rosendahl, 2022), and Atmospheric Potential Oxygen (APO) (Pickers et al., 2022;
Rödenbeck et al., 2023), which allows for a cross-validation of other∆ffCO2 estimates with
14C-based ∆ffCO2 estimates.

Despite the advantages mentioned above, flask-based ∆ffCO2 series also have limita-
tions. A primary drawback is the short integration time of one hour. If the model transport
deviates from real atmospheric conditions during this sampling hour, it can inflate the error
in the model-data-mismatch (MDM) and potentially skew the results of the inversion. Maier
et al., 2024b recently demonstrated that, in the case of semi-urban inversions, misalignment

75
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between the modeled and actual meteorology severely impairs the model’s ability to accu-
rately represent individual hours, effectively preventing the use of flask-based 14CO2 ob-
servations. However, at ICOS stations, which are intentionally located at greater distances
from local emission hotspots, meteorologically-drivenmodel-data-mismatches are expected
to be significantly smaller. In addition, if such an MDM is caused by statistical errors rather
than systematic bias, a sufficiently high number of samples will remedy this disparity, as
statistical MDM will average out to zero. The standard 14CO2 flask analyzing frequency in
(ICOS RI, 2020) is one hourly sample every two weeks, though in reality this is often less
frequent, especially in summer as can be seen in flask coverage overview in Section 4.3.
Such a sampling frequency is lower as the typical duration of the synoptic weather condi-
tions, that are usually on the timescale of 2-5 days, or up to 10 days for some large scale
events (Garreaud & Aceituno, 2007; Franzke et al., 2020). Thus, there is a high probability
that the sampled flasks belong to systematically different atmospheric conditions, poten-
tially sampling different catchment areas. As a consequence, this infrequent sampling leads
to the posterior results of the inversion system relying on individual flasks, thereby limiting
the resilience of the inversion system to errors. This underlines the importance of projects
like CORSO (Levin et al., 2024), within which the sampling frequency was increased to
about one flask every third day, increasing the robustness of the inversion results.

In this chapter, I first compare the observed flask-based ∆ffCO2 concentrations with
the forward-modeled ∆ffCO2 signals (Sect. 5.2.1). This provides a first qualitative insight
into the consistency between the observations and the modeled fossil CO2 patterns. I then
present the key characteristics of the posterior fossil fuel CO2 fluxes over the Germany+
domain as derived from the flask-based ∆ffCO2 observations using the Evaluation Matrix
(Sect. 5.2.2). Thereafter, the sensitivity of the posterior results to the ∆14C background
assumptions (Sect. 5.2.3.1) is investigated and I assess the influence of individual measure-
ment sites (Sect. 5.2.3.2). This allows for the identification of the most reliable subsets of
observations and time seasons for constraining fossil fuel emissions. Finally, I perform two
full Bayesian inversions using the unmodified GCP and EDGAR prior fluxes, along with
their best-estimate uncertainties, to derive optimized fossil fuel emissions for the constraint
area (Sect. 5.2.4).

5.2 Results for flask-based ∆ffCO2 estimates

5.2.1 Forward runs and model-data-mismatch

First, I compare the∆ffCO2 derived from the flask observations with the forward simulated
∆ffCO2 concentrations (FWD) calculated as described in Section 3.2. The GCP inventory



Results for flask-based ∆ffCO2 estimates 77

2022 2023 2024 2025
0

5

10

15

20

25
ffC

O 2
 [p

pm
]

CBW
Simulated
Avg.: 5.0 ppm

Measurements
Avg.: 4.9 ppm

10 0 10
Model-Data-Mismatch [ppm]

0

10

20

30

Co
un

t

Std.: 3.6 ppm

2022 2023 2024 2025
0

5

10

15

20

25

ffC
O 2

 [p
pm

]

HPB
Simulated
Avg.: 2.0 ppm

Measurements
Avg.: 2.7 ppm

10 0 10
Model-Data-Mismatch [ppm]

0

10

20

30

Co
un

t

Std.: 2.0 ppm

2022 2023 2024 2025
0

5

10

15

20

25

ffC
O 2

 [p
pm

]

HTM
Simulated
Avg.: 1.9 ppm

Measurements
Avg.: 2.1 ppm

10 0 10
Model-Data-Mismatch [ppm]

0

10

20

30

Co
un

t

Std.: 1.6 ppm

Figure 5.1. The flask-based ∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 concentrations based on theGCP inventory (green triangles) for three examplemea-
surement sites, CBW, HPB and HTM. Observed and simulated ∆ffCO2 concentrations are
connected by dashed lines. Average concentrations over the depicted time period are given
in the legend. The right panels show the model-data-mismatch distribution and its variance
is given in the legend. The red dashed lines show the 3 σ range of the mean uncertainty of
the observational data. The shown time period has the highest data density (01.11.2021 -
01.01.2025, Sect. 4.3).

was used for fossil emissions in the FWD runs. The simulated concentrations are given for
the exact sampling times and locations of the observations.

Figure 5.1 shows the measured and simulated data for three example observational
sites. Corresponding figures for the other stations are in the appendix (Sect. A.2). These
sites were chosen as they represent different types of catchment areas monitored by the
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ICOS stations. Cabauw (CBW) site usually measures elevated levels of ∆ffCO2 in com-
parison to other stations in the network due to its proximity to Rotterdam, situated about
20 km to the west of CBW (see Fig. 2.4). The average observed ∆ffCO2 concentration
in CBW is 4.9 ppm which is very well reproduced by the GCP-based forward modeled
∆ffCO2 concentrations averaging to 5.0 ppm. Although the observed and modeled mean
values agree well, the MDM standard deviation of 3.6 ppm is three times larger than the
average uncertainty of the ∆ffCO2 observations and corresponds to about 70% of the mea-
sured average∆ffCO2 signal. The Hyltemossa (HTM) station in Sweden is located far away
from major emission sources and shows lower ∆ffCO2 signals. Here too, the observed and
FWD modeled ∆ffCO2 concentration agree well, with 2.1 ppm and 1.9 ppm respectively.
Corresponding to the smaller overall signal, the standard deviation of the MDM also de-
creases, but remains proportionally comparable to CBW at around 75%. In contrast to the
the former two stations, Hohenpeißenberg (HPB) site is situated at 934 m a.s.l., within a
more complicate topography in the German Alpine foothills (see Tab. 2.1) causing addi-
tional challenges for the transport model. This is reflected in the larger deviation between
the observed and the FWD modeled mean ∆ffCO2 concentration of 2.7 ppm and 2.0 ppm
respectively. The standard deviation of the MDM remains also for this stations at 75% of
the observed ∆ffCO2 signal.

The statistics of the observed and simulated ∆ffCO2 flask data in the ICOS network is
shown in Table 5.1. For stations in central Europe, excludingHPB, the averages of simulated
(X̄sim) and observed (X̄obs)∆ffCO2 during the depicted time period from 2021 to 2024 agree
quite well with each other compared to absolute signals. This relatively small FWD MDM
already highlights two key findings. First, the GCP prior fossil CO2 emissions are already in
reasonable agreement with the observations, even before optimization through the inversion
algorithm; secondly, the applied STILT transport model performs quite well on average.
Larger deviations are found between the modeled and observed concentrations of HPB,
which have previously been attributed to its location in complex terrain. The Scandinavian
stations NOR, SVB, and PAL show decreasing concentrations of ∆ffCO2with increasing
latitude, leading to a higher MDM relative to the overall signal.

The variance (σsim−obs) of MDM is higher than the 1 σ uncertainty of the observations
and correlates, for the non-background stations in central Europe, with the ∆ffCO2 signal
strength. The proportion of data points with an MDM that exceeds three times the mean
observational uncertainty (|X̄sim − X̄obs|> 3ē in Tab. 5.1) also increases with the mean
concentrations of∆ffCO2 . This suggests that the MDM arises not only from observational
uncertainties but also from uncertainties in atmospheric transport and sensitivity to emis-
sions. This again emphasizes the importance of the model’s representativeness on an hourly
timescale, which remains a key challenge for flask samples, as discussed in Section 5.1. The
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Table 5.1. Statistics of the observed and simulated∆ffCO2 concentrations of the flask sam-
ples in the ICOS network from 2021 to 2024. X̄obs and X̄sim depict mean observed and
simulated signals for the corresponding site. X̄sim - X̄obs and σsim−obs stand for the mean
model-data-mismatch (MDM) and its standard deviation. ē and SNR denote mean obser-
vation error and mean Signal-to-Noise Ratio for a single observation. |X̄sim − X̄obs|> 3ē

shows the approximate portion of the data with higher absolute MDM then triple of the ē.
(*) KIT was not used in regular inversions, only in sensitivity studies.

Site X̄obs X̄sim X̄sim - X̄obs σsim−obs ē |X̄sim − X̄obs|> 3ē SNR
[ppm] [ppm] [ppm] [ppm] [ppm] [%] [rel.]

CBW 4.9 5.0 0.1 3.6 1.2 20% 4.1
GAT 2.1 2.1 0.0 1.8 1.1 10% 1.9
HPB 2.7 2.0 -0.7 2.0 1.2 10% 2.2
HTM 2.1 1.9 -0.2 1.6 1.2 0% 1.7
JFJ 0.8 0.7 -0.1 1.7 1.3 0% 0.6
KIT* 4.6 5.0 0.4 4.1 1.3 20% 3.6
KRE 1.5 1.5 0.1 1.4 1.2 0% 1.2
LIN 4.0 3.7 -0.3 3.1 1.2 20% 3.3
NOR 1.1 1.1 0.0 1.6 1.3 0% 0.8
OPE 2.6 2.2 -0.4 2.5 1.2 10% 2.1
OXK 3.6 3.3 -0.3 2.2 1.3 10% 2.8
PAL -0.0 0.2 0.2 0.9 1.2 0% -0.0
STE 3.9 3.3 -0.6 2.3 1.2 1% 3.3
SVB 0.7 0.2 -0.5 1.4 1.3 0% 0.6

mean signal-to-noise ratio (SNR) is generally low, with few remote stations having an SNR
lower than 1. This underscores the sensitivity of the ∆14C data to the measurement errors
investigated in Section 4.6.

All stations shown in Table 5.1 were used in the regular inversion except the KIT site.
This site was excluded due to the high probability of∆14C contamination from research ac-
tivities on the campus of the Karlsruhe Institute of Technology. Such a∆14C contamination
would mask some of the ∆ffCO2 signal, potentially leading to a higher MDM and hence to
lower fossil fluxes in the posteriors. Efforts were made to sample flasks only during wind
conditions that would avoid the influence of the campus sector, but due to its immediate
proximity, this was not possible. The effect on the posteriors when including the KIT site
in the data set was investigated in Section 5.2.3.2.
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5.2.2 Application of the Evaluation Matrix to the flask-based inver-
sions

The flask-based ∆ffCO2 inversions were analyzed according to the set of experiments de-
scribed in Section 3.2.4 to assess the information content of the observation data. The dif-
ferences between the GCP emission inventory assumed to be the truth in the Evaluation Ma-
trix and the resulting posterior fluxes were classified using the results of the corresponding
integral-based sensitivity experiments applied to the perturbed pseudo-data sets in Section
4.6. As noted there, I assume that sampling routine differences can be neglected for the syn-
thetic inversions with no inherent transport model errors, and the results from those sections
are applicable for flask-based inversions as well.

5.2.2.1 Seasonal cycle of ∆ffCO2 emission trend derived from flask-based inversions

The posterior fluxes derived from flask-based ∆ffCO2 observations for the Germany+ do-
main, estimated using the Seasonless Prior and a prior uncertainty of 40%, are shown in
Figure 5.2. Panel (a) displays the absolute posterior fluxes in comparison to the GCP prior.
Notably, the posterior fluxes before November 2021 exhibit unrealistic seasonal structure
and absolute values due to the limited availability of flask data, which leads to overfitting
of isolated model–data-mismatches. The summer minimum of 2021 is missing in the pos-
terior. Due to the six-month time correlation applied in this study (F2T, see Sect. 4.4), this
anomaly influenced the emission maximum in 21/22 winter, preventing a robust analytical
determination of its phase and amplitude. Nonetheless, visual inspection indicates that the
posterior winter maxima align closely with the GCP inventory in both amplitude and phase.

Panel (b) of Figure 5.2 shows the fluxes normalized to the Seasonless Prior, used to
quantitatively describe the seasonality in Table 5.2. The amplitude of the posterior winter
maxima matches that of the GCP inventory within 10%. This is slightly above the expected
range based on the 1.5 ppm synthetic error scenario (8%; Tab. 4.3) derived for the 30 random
perturbation of the true GCP flux. The phase shifts for all winter maxima remain within the
uncertainty range derived from the synthetic studies (35 days; Tab. 4.1).

The positions of summer minima also occur within the expected temporal uncertainty
range (41 days; Tab. 4.2). While the posterior minimum for summer 2022 agrees well in
amplitude with the GCP value, the subsequent years — 2023 and 2024 — show progres-
sively deeper summer minima, with the 2024 value approximately 30% below the GCP.
These deviations are unlikely to be driven solely by data sparsity: while flask availability
was indeed lower in 2023, the summer of 2024 was well-sampled across the network (see
bottom color bar in Fig. 5.2) due to intensified sampling under the CORSO project (Levin
et al., 2024).
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Figure 5.2. Results of the seasonal cycle investigation of the ∆ffCO2 flux estimation de-
rived from flask-based inversions in the Germany+ domain. Panel (a) shows the absolute
and panel (b) the relative to the Seasonless Prior∆ffCO2 fluxes. The GCP inventory (black
solid line) and the Seasonless Prior used as input (black dashed line) are shown alongside
posterior results (green line). Orange and purple circles mark the maxima and minima of
the posterior, with corresponding GCP extrema marked by diamonds. Red line indicates
the main investigation time frame starting on 01.11.2021. The lower section of the figure
depicts the corresponding timeline of mean monthly flask sample number per station as a
heat map.

A possible explanation lies in the definition of the∆14C background used in the calcu-
lation of the ∆ffCO2 observations. As described in Section 3.1.1, the current ∆14C back-
ground is based on a combination of trends from multiple clean air sites in the Northern
Hemisphere and the seasonality derived from previous years of the MHD ∆14C data. The
discontinuation of the MHD time series may thus have introduced biases, especially in sum-
mer, when the signal-to-noise ratio is lower. This issue is discussed in more detail in Section
5.2.3.1, where the uncertainty of the∆14C background and its impact on posterior fluxes is
systematically assessed.
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Table 5.2. Positions (”Date” columns) and relative to the Seasonless Prior amplitudes (
”Ampl.” columns) of the seasonal extrema extracted from the GCP inventory and the nor-
malized posterior using flask-based ∆ffCO2 data as well as the difference between them.

Season
GCP Flask-based ∆ffCO2 Posterior - GCP

Date
Ampl.

Date
Ampl. Phase shift Ampl. diff.

[rel.] [rel.] [days] [rel.]

Winter 21/22 08.01 1.12 N.A. N.A. N.A. N.A.
Winter 22/23 11.01 1.12 11.12 1.02 -31 -0.10
Winter 23/24 28.12 1.13 09.01 1.13 12 0.00

Summer 2022 07.07 0.88 03.07 0.78 -4 -0.10
Summer 2023 04.07 0.87 12.06 0.69 -22 -0.18
Summer 2024 04.07 0.86 22.07 0.58 18 -0.28

5.2.2.2 Inter-annual ∆ffCO2 emission trend derived from flask-based inversions

The inter-annual ∆ffCO2 emission trend of the flask-based inversion posteriors was exam-
ined using the Trendless Prior (Tab. 3.1). As stated before (Sect. 3.2.4 and 4.6), the Trendless
Prior has a mean seasonal cycle but no inter-annual trend. The prior uncertainty in this sen-
sitivity test was set to 40%. The absolute posterior fluxes (panel (a)) and the fluxes relative
to the Trendless Prior (panel (b)) for the Germany+ domain are depicted in Figure 5.3. As
described in Section 3.2.4, the temporal correlation was increased to one year (F1T) and two
years (F0.5T) to limit the flexibility of the posteriors to inter-annual trends.

The ∆ffCO2 emission trends of the posteriors resemble the GCP inventory trend much
closer then the absent trend of the constructed Trendless Prior. This confirms that the down-
ward trend of the GCP inventory is also contained in the flask-based observations. As de-
picted in Figure 5.3, the relative posterior trends suggest even stronger emission reductions
compared to the inventory. However, as follows from the analysis of the differences be-
tween posterior and GCP seasonal cycles (Sect. 5.2.2.1), only the summer half-years show
significantly lower emission values compared to the GCP summer fluxes. This is visible in
the run of the posterior curve based on the F1T filter shifting the 23/24 winter flux closer to
the GCP inventory and summer 2023 and 2024 fluxes even further away from it.

A linear regression analysis of emission estimates starting from 01.11.2021 revealed
a consistent negative trend. For absolute fluxes, the GCP model estimated a decrease of
–1.6±0.1 Tmol/yr, whereas the F1T and F0.5T posteriors showed a stronger decline at
–2.1±0.1 Tmol/yr and –2.2±0.1 Tmol/yr, respectively. This pattern is consistent when
looking at relative trends. The GCP showed a –5.1%/yr decrease compared to –6.9%/yr
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Figure 5.3. Results of the inter-annual trend analysis for the flask-based inversions. Panel
(a) shows the absolute and panel (b) the relative to the Trendless Prior∆ffCO2 fluxes in the
Germany+ domain. The GCP inventory (black solid line) and the Trendless Prior (used as
input, black dashed line) are shown alongside posterior results for F1T (green solid line)
and F0.5T (yellow dashed line) filters. The straight lines show linear regressions of the
correspondingly colored flux curves. Red line indicates the main investigation time frame
(from 01.11.21). The lower section of the figure depicts the corresponding timeline of mean
monthly flask sample number per station as a heat map.

(F1T) and –7.2%/yr (F0.5T). It’s important to note that these deviations from the GCP’s
trend estimate are within the expected range of variation caused by measurement errors
over three-year period, which are estimated to be approximately ∼0.6 Tmol/yr for F0.5T
and ∼7 Tmol/yr for F1T (Sect. 4.6.2).

These findings demonstrate that flask-based inversions could be a viable method for
the estimation of inter-annual trends in the future, provided that the previously discussed
potential bias in the 14C background estimation (see Sect. 5.2.2.1) is corrected for a longer
time series.
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Figure 5.4. Results of the analysis of absolute and annually aggregated emission fluxes
for the flask-based inversions in the Germany+ domain. Panel (a) shows the absolute and
panel (b) the relative to the Smooth Prior∆ffCO2 fluxes. Panel (c) shows yearly aggregated
emissions from the panel (a). The Flat Zero and the Flat 200p Priors (used as inputs, re-
spectively, purple and grey dashed lines) as well as the Smooth Prior (orange solid line) are
shown alongside posterior results (green solid and yellow dashed lines). Red line indicates
the start of main investigation time frame (from 01.11.21). The color bar indicates the mean
monthly availability of integral-based estimates per station.

5.2.2.3 Absolute and annual mean∆ffCO2 emissions derived from flask-based inver-
sions

This sensitivity test for absolute and annually aggregated mean fluxes for the Germany+
domain for the flask-based ∆ffCO2 data set uses the Flat Zero and Flat 200p Priors (Tab.
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Table 5.3. Annual mean ∆ffCO2 emissions of flask-based posteriors relative to the GCP
inventory for the full years in the main investigation time frame starting on 01.11.2021.

Prior 2022 2023 2024

Flat Zero 0.94 0.88 0.88
Flat 200p 0.92 0.87 0.83

3.1), each with a prior uncertainty of 40%. The inversion system is thus provided with
minimal prior information to ensure data-driven posteriors. Figure 5.4 depicts the resulting
posterior ∆ffCO2 fluxes compared to the GCP fluxes.

As already discussed in the analysis of the seasonality (Sect. 5.2.2.1), the summer min-
ima are significantly more pronounced in the posteriors compared to the GCP, suggesting
a much steeper mean downward trend (Fig. 5.4, panel (a)). However, the magnitude of the
winter emissions generally corresponds to the GCP fluxes.

The RMSD between the posteriors and the Smooth Prior (to avoid the influence of the
short-term variability in the GCP, see Sect. 3.2.4) relative to the latter is equal to 0.10 for
the Zero posterior and 0.12 for the 200p posterior for the main investigation period. These
values are on the upper edge of the GCP deviation tolerance of approximately 0.10 that
could be caused by measurement errors in the order of 1.5 ppm (Sect. 4.6.3). Nevertheless,
there are hints to a seasonal dependence of the observed mismatch, that could be attributed
to a potential bias in the 14C background in 2022 and 2023 (Sect. 5.2.3.1).

Table 5.3 shows the numeric values of the mean annual posterior fluxes relative to the
GCP inventory. For 2022, where the ∆14C background should still be closely aligned with
the MHD background, the flask-based ∆ffCO2 observations reproduce the annual mean
emissions from the GCP inventory to 94% or 92%, respectively. As expected from the
findings in the previous subsections, the increasing underestimation of summer emission
minima consequently leads to an increasing underestimation of annual mean flux values.

Within the main investigation period, the Flat Zero and the Flat 200p priors show the
highest discrepancy in the year 2024, the year with the highest data density (Fig. 5.4). As
discussed in Section 4.6.3, such an enhanced sensitivity to different model inputs is probably
caused by some systematic but yet unknown feature of the inversion system that is indepen-
dent of the origin of the data, as it was observed in the posteriors based both on synthetic and
real data. Based on the correlation observed here, though rather speculative, I might suggest
that the high data density in 2024 may interact with the model in a way that it becomes more
sensitive to this systematic effect compared to the other investigated periods.
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5.2.3 Uncertainty investigation for the flask-based ∆ffCO2 inversions

5.2.3.1 Sensitivity of the posterior fluxes to the European∆14C background estimate

The European∆14C background plays a pivotal role in calculating the∆ffCO2 values (Sect.
3.1.1). In this section I investigate how sensitive the inversion results are to the biases in
the ∆14C background estimation. There are two main reasons why the actual atmospheric
∆14C background may deviate from the background estimated in Sect. 3.1.1, especially
during the time period covered by the flask observations.

First, the year 2020 marked the most recent solar minimum (Clette & Lefèvre, 2015).
During such periods of low solar activity, the reduced solar magnetic shielding allows a
greater flux of galactic cosmic rays to penetrate the atmosphere of the Earth. This leads
to an increased production of ∆14C in the stratosphere. Given the typical stratosphere–
troposphere exchange timescale of approximately two years (Holton et al., 1995), an effect
in atmospheric ∆14C concentrations and seasonality is expected to manifest around 2022.

Second,∆14C measurements at the Mace Head (MHD) station on the west coast of Ire-
land – the single most important station to quantify the European∆14C background estimate
– were discontinued in spring 2022 due to safety-related issues at the sampling tower.

Unlike measurement errors, which affect specific samples, or instrument-induced sys-
tematic errors, which may affect individual sites, biases in the background influence the
entire measurement network simultaneously. To analyze the influence of the background
biases, the ∆14C background curve was shifted by ±2‰. This range approximately cor-
responds to the span of the the ∆14C background uncertainty from the ccgcrv smoothing
routine (Sect. 3.1.1). The flask-based∆ffCO2 inversion using the Flat Zero prior with a prior
uncertainty of 40% was repeated using two biased∆14C backgrounds. The other inversion
parameters were not changed.

The positive offset of the∆14C background resulted in higher∆ffCO2 values, leading to
a higher flux estimation for the AoC (Fig. 5.5). The negative shift in the∆14C background
had the opposite effect. On average, these changes to the background led to a 20% increase
or decrease in the flux estimation during the investigation period relative to the mean flux.
These changes are significant and much higher than the inventory uncertainty (∼1-5%, Sect.
3.2.3), and greater than the deviations that could be induced by the typical measurement
errors (e.g. Sect. 4.6.3). This indicates that the inversion system is highly sensitive to biases
in the background and that the accurate background ∆14C data are absolutely crucial for
robust flux estimations based on the regional isotope budget approach.

The inversion system is symmetrically affected by the±2‰biases, as can be seen from
the good agreement of the +2‰ posterior compared to the -2‰ posterior, which was re-
flected along the x-axis after subtraction of the Standard posterior (Fig. 5.5, panel (b)). Dis-



Results for flask-based ∆ffCO2 estimates 87

2019 2020 2021 2022 2023 2024 2025
0

10
20
30
40
50

ffC
O 2

 F
lu

x 
[T

m
ol

/y
r] (a)GCP

Flat Zero
Standard
14C background + 2

14C background - 2

2019 2020 2021 2022 2023 2024 2025

5
0
5

10
15

ffC
O 2

 F
lu

x 
[T

m
ol

/y
r] (b)Standard

14C background + 2
14C background - 2
Reflection of 14C background - 2

2019 2020 2021 2022 2023 2024 2025

Mean Monthly Flask Availability per station

0 2 4 6

Figure 5.5. Results of the sensitivity analysis of the flask-based inversions to the ∆14C
background estimate. The GCP inventory (black solid line) and the Flat Zero Prior (used as
input, black dashed line) are shown alongside posterior results based on the standard ∆14C
background (green line), the background with a ∆14C offset of 2‰ (yellow line) and -2‰
(blue line). Red line indicates the main investigation time frame starting on 01.11.2021.
Panel (a) shows the absolute flux values. Panel (b) depicts the difference between the Stan-
dard posterior and the flux estimations based on the shifted background. The blue dashed
line shows the reflection of the blue line along the x-axis.

crepancies arise only at the boundaries of the investigated period and during the period with
lower data density.

The key observation for flask-based posterior fluxes is that a constant bias in the ∆14C
background leads to seasonally varying deviations in flux space. A ±2‰ shift in the ∆14C
background results in symmetric flux changes of 10-15% in winters and 25-30% in sum-
mers, relative tomean flux. This increased summer sensitivity arises from the lower absolute
∆ffCO2 signals during these months, making a given change in ∆14C proportionally more
impactful, even when the absolute ppm change is similar. This finding is consistent with
the previously observed pattern that flask-based posterior fluxes match the GCP inventory
more closely in winter than in summer. At the same time, the posterior with +2‰ back-
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Figure 5.6. Results of the sensitivity analysis of flask-based ∆ffCO2 inversions on indi-
vidual measurement stations. The panel shows posterior ∆ffCO2 fluxes for the Germany+
domain based on flask-derived estimates using a Flat Zero prior with 40% prior uncertainty.
The standard posterior (green solid line) is compared to leave-one-out setups where individ-
ual ICOS stations were excluded (other lines), as well as a configuration including the KIT
site (yellow dashed line). The GCP inventory (black solid line) and the Flat Zero prior (black
dashed line) are shown for reference. The color bar indicates the mean monthly availability
of flask-based ∆ffCO2 data per station.

ground bias closely tracks the GCP emissions for the Germany+ domain in the last years of
the investigated period (considering the ”overshoot” effect from the Flat Zero Prior, Sect.
4.6.3). This can potentially suggest that there might be a systematic bias in the European
14C background estimate constructed in Section 3.1.1 after measurements at the MHD site
were discontinued.

5.2.3.2 Influence of individual stations on the flask-based posterior

To further investigate the inversion results, I evaluated the influence of individual ICOS
measurement stations on the posteriors. Significant changes in posteriors upon station re-
moval or addition may indicate an unstable inversion system. Such reliance on a single
station suggests suboptimal station density or systematic differences (e.g., erroneous atmo-
spheric transport, biased measurements, representation errors).

Figure 5.6 displays posteriors calculated using the Flat Zero Prior (40% prior uncer-
tainty) and the F2T time correlation filter and various sets of measurement stations. The
Standard posterior (green solid line) utilizes the standard flask-based inversion station set
(Tab. 2.1). Other inversions excluded one of the stations from the core set or included the
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KIT station.

Generally, posteriors with different station sets closely resemble the standard case, in-
dicating that the measurement data from different stations do not contradict each other and
provide some overlap in the data coverage both spatially and temporally. The current station
set establishes a stable inversion systemwith reliable posteriors. However, minor deviations
from the Standard posterior are observed.

Including the KIT station resulted in lower summer flux values and an earlier summer
minima in 2023 and 2024. Due to the higher number of flask samples and generally higher
∆ffCO2 signals, KIT provided additional constraint on the seasonal cycle during periods of
low data coverage (before 2022), leading to high posterior dependence on this station. As
mentioned previously,∆14C contamination of unknown magnitude in immediate proximity
to the KIT station is suspected due to the incineration of slightly radioactive waste at the KIT
campus which might sometimes contain 14C . The resulting posterior with KIT included
supports this assumption as the ∆14C source would mask a portion of the ∆ffCO2 signal
leading to the lower estimated fluxes (as visible e.g. in Fig. 5.6 in summer 2023 and 2024)
and validate the exclusion of the KIT site from the core station set.

At the start of the main investigation period, i.e. from Nov. 2021 to Jun. 2022, STE
significantly influences posterior calculations, leading to lower emissions upon its removal.
Located centrally in the Germany+ domain, STE and LIN stations constrain a vital area and
provide a high sample number during these periods (Fig. 4.2). These features could explain
the high reliance of the posteriors on these sites. However, considering that these deviations
are minor compared to expected deviations from 1.5 ppm measurement errors (e.g. Sect.
4.6.1), these stations were retained to maintain data constraint. This evaluation highlights
the need for more stations with high sample numbers.

5.2.4 Flask-based Bayesian inversions with unmodified GCPand EDGAR
priors

This section presents the results from two Bayesian inversions using flask-based ∆ffCO2

estimates and state of the art priors and accounting for the findings in the previous sections.
The GCP inventory with daily resolution and the hourly EDGAR emission inventory served
as prior information (Sect. 3.2.3). A 4% prior uncertainty (relative to the GCP fluxes) was
assigned to both unmodified inventories, consistent with reported uncertainties for larger
domains (Janssens-Maenhout et al., 2019; Jones et al., 2022). Given the previous observa-
tions of noticeably low summer posterior fluxes (e.g., Sect. 5.2.2.1) and their susceptibility
to biases in the ∆14C background (Sect. 5.2.3.1), this analysis focused on winter months
(November - February). The 2024/25 winter was excluded to avoid boundary effects.
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Figure 5.7. Wintertime fossil fuel emissions in the Germany+ domain from Bayesian inver-
sions using flask-based ∆ffCO2 estimates and two different prior inventories: GCP (solid
lines/bars) and EDGAR (dashed lines/hatched bars). Panel (a) shows smoothed daily (GCP)
and hourly (EDGAR) prior and posterior fluxes; non-winter periods are shaded in gray. Win-
ter periods are defined as November to February. Panel (b) displays the corresponding mean
fluxes per winter season. The trends estimated from the mean winter emissions are shown
as solid and dashed lines in the respective colors. The color bar indicates the mean monthly
availability of flask-based estimates per station.

Figure 5.7 illustrates the prior fluxes as well as the inversion results for the period with
sufficient data density (Sect. 4.3) for the Germany+ domain. The grayed out periods in panel
(a) indicate the summer periods which are not included in the evaluation of this experiment.
Table 5.4 outlines the numerical values of these inversions. The EDGAR inventory shows
considerably larger fossil fluxes in winter compared to the GCP, while both agree in sum-
mer. Both posteriors indicate lower emissions than their corresponding priors. The GCP
posterior shows emissions for Germany+ domain 0.2-1.9 Tmol/yr (1-9%) lower than the
GCP inventory. The EDGAR posterior flux reductions are greater, ranging from 3.1 to 4.9
Tmol/yr (10-17%) relative to EDGAR. The difference between the two posterior flux es-
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Table 5.4. Left side: Winter mean∆ffCO2 emissions (in Tmol/yr) and their 1σ uncertainty
(in parentheses) for the Germany+ domain, based on different prior inventories (GCP and
EDGAR) and the respective flask-based Bayesian inversion posteriors. Right side: Relative
deviations of winter mean ∆ffCO2 emissions from the GCP for the corresponding winter
seasons. Winter periods refer to November through February of the indicated winter season.

Flux type
Absolute fluxes, [Tmol/yr] Deviation from GCP, [%]

2021/22 2022/23 2023/24 2021/22 2022/23 2023/24

GCP Prior 24.8(0.9) 23.5(0.8) 22.2(0.8) 0(4) 0(4) 0(4)
GCP Posterior 24.6(0.4) 21.9(0.5) 20.3(0.5) -1(2) -7(2) -9(2)

EDGAR Prior 30.4(1.0) 28.6(1.0) 26.9(0.9) 23(4) 22(4) 21(4)
EDGAR Posterior 27.3(0.5) 23.7(0.5) 23.0(0.6) 10(2) 1(2) 4(3)

timates is notably smaller than between corresponding prior fluxes. For the investigated
winters, the GCP-EDGAR inventories difference ranges from 21-23% (relative to GCP),
while the posterior difference is 8-13%, with EDGAR prior and posterior showing higher
emissions than their GCP counterparts. Even with realistic prior uncertainties, the inversion
significantly reduces posterior fluxes beyond 4% uncertainty, particularly for the EDGAR
inventory, suggesting strong data constraints and data-driven results. It remains uncertain
to what extent the lower posterior emissions compared to the two priors are still affected
by a potentially biased 14C background. Although this bias has a much lesser extent in the
winters than during the summers, 1.5 Tmol/yr (2022/23) and 1.9 Tmol/yr (2023/24) emis-
sion differences between GCP prior and posterior could be explained by a 14C background
bias of 1-2‰ (see Sect. 5.2.3.1). Nevertheless, one can conclude that the optimized fluxes
correspond more closely with GCP than with EDGAR, suggesting that EDGAR probably
overestimates winter emissions.

The posterior uncertainty was reduced by 0.3 to 0.5 Tmol/yr, or 30-50% relative to the
prior uncertainty (Tab. 5.4). Only for the winter of 2022/23 the mean posterior emissions
were in the 3σ confidence range of each other, suggesting that the initial discrepancy be-
tween the priors was not completely eliminated by the inversion.

Emission reduction trends in priors and posteriors were also compared as slopes of lin-
ear fits for mean winter emissions (Fig. 5.7, panel (b)). Over three years, GCP suggests a
yearly 1.32(0.03) Tmol/yr flux reduction in the Germany+ domain, while EDGAR suggests
a 1.73(0.01) Tmol/yr annual reduction. The uncertainty of the trend in both inventories is
very low ranging between 0.5 and 2%, due to a nearly constant emission reduction rate re-
ported by the inventories. The posteriors suggest similar but slightly higher emission reduc-
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tion trends: 2.1(0.3) Tmol/yr for GCP posterior and 2.1(0.9) Tmol/yr for EDGAR posterior.
The uncertainties of the posterior emission trends are around 15% and 40%, respectively.

Three years might be too short period for a reliable validation of mean winter emission
trends. Variations in the posterior flux estimates, e.g., due to uncertainties in the underly-
ing ∆ffCO2 data, further complicate this. The higher trend of emission reduction observed
in the posteriors, compared to the priors, could also be attributed to a potential bias in 14C
background estimation, even for winter fluxes. Overall, data-driven posteriors suggest lower
emissions in the Germany+ domain, with absolute emission values closer to the GCP inven-
tory.



Chapter 6

14C calibrated CO-based
∆ffCO2 inversions

6.1 Introduction and motivation

As discussed in Section 2.1, 14C is a potent proxy for the identification of fossil CO2 . How-
ever, it has limitations. ∆ffCO2 estimates from 14C measurements suffer from low tempo-
ral resolution (typically one data point per week or month) and sparse spatial coverage due
to the resource-intensive nature of ∆14C sample collection and analysis. Continuous 14C
observation techniques are in the early stages, with current working prototypes exhibiting
approximately six times lower accuracy than conventional methods (Galli et al., 2013; Mc-
Cartt et al., 2015; Fleisher et al., 2017; Delli Santi et al., 2022; Jiang & McCartt, 2024),
bringing them slowly toward a useful option for ground-based measurement networks, but
up to now no field deployment has been carried out.

Additional proxies that are co-emitted during fossil fuel combustion, the so-called co-
emitted species, can provide additional or denser temporal∆ffCO2 information, bridging the
gaps between individual 14C samples or serving as∆14C-calibrated∆ffCO2 proxies. These
species are often more readily available from continuous, in situ, or remote sensing mea-
surements. Prominent examples include direct measurements of NOx and CO (e.g., Palmer
et al., 2006; Levin & Karstens, 2007; Lopez et al., 2013; Konovalov et al., 2016; Goldberg
et al., 2019; Jäschke, 2021; Rosendahl, 2022; Maier et al., 2024a; Scarpelli et al., 2024)
or combined O2 and CO2 proxies such as Atmospheric Potential Oxygen (APO) (Pickers
et al., 2022; Rödenbeck et al., 2023), which can be used to deduce ∆ffCO2 emissions from
concurrent oxygen consumption.

During the past two decades, efforts to continuously measure fossil CO2 using CO as
a co-emitted proxy have mainly focused on urban environments and are well-established
(e.g., Gamnitzer et al., 2006; Levin & Karstens, 2007; Vogel et al., 2010, 2018). However,
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ICOS atmospheric Class 1 stations (ICOS RI, 2020) are located to measure predominantly
regional background air masses, resulting in significantly lower signals compared to urban
environments. (Maier et al., 2024a) demonstrated for one station (OPE) that, given a suffi-
cient data density, this approach is also applicable to an ICOS station. Furthermore, in his
study, the application of CO-based ∆ffCO2 data significantly improved inversion results
for the estimation of semi-urban Rhine valley emissions compared to flask-based inversion
(Maier et al., 2023).

This provides motivation to investigate whether CO-based ∆ffCO2 estimates can also
be applied to the entire ICOS network and used to constrain the inversions. However,
as outlined in previous studies and most explicitly in Maier et al., 2024a, CO is not an
ideal co-emitted ∆ffCO2 proxy. The ideal co-emitted proxy has a constant emission ratio
to ∆ffCO2 for all combustion processes, no non-fossil sources, and a similar atmospheric
residence time to CO2 . None of these properties are true for CO. However, in the urban and
semi-urban use case of the CO proxy, the shorter CO lifetime and the non-fossil sources lead
to a non-dominant additional source of uncertainty, and the varying ∆CO/∆ffCO2 emis-
sion ratios average out over longer periods of time. If the atmospheric ratio is derived from
representatively collected flask samples at a given station, it captures the station-specific ef-
fective CO/∆ffCO2 ratio, with its associated uncertainty reflecting the observed variability.

The following chapter investigates the benefit of extending the application of 14C -
calibrated CO-based ∆ffCO2 estimates to the ICOS network (Sect. 2.3). I determine the
CO-based ∆ffCO2 data for all suitable ICOS sites and estimate the fossil CO2 emissions in
the Germany+ domain (Sect. 6.2). The ”Evaluation Matrix” experiment set (Sect. 6.3.2) is
thereby kept identical to those used for flask-based (Sect. 5) and integral-based (Sect. 7) in-
versions to allow for a comparison of all three ∆ffCO2 estimates in Sect. 8. Additionally, I
investigate the sensitivity of the CO-based inversions to variation of several core parameters
(Sect. 6.3.3). The final step involves two Bayesian inversions, performed with the unmod-
ified GCP and EDGAR prior fluxes and their respective realistic prior uncertainties (Sect.
6.3.4).

6.2 CO-based ∆ffCO2 estimations

I calculated 14C-calibrated CO-based∆ffCO2 data usingmethods from (Maier et al., 2024a).
Flasks with determined∆ffCOflask

2 values were analyzed for excess CO (∆COflask) against
the marine background (MHD, see Sect. 6.2.1). I then calculated a station-specific average
atmospheric∆COflask /∆ffCOflask

2 ratios (⟨Rflasks⟩) from all afternoon samples, neglect-
ing any spatiotemporal variability in the ratios (except for several stations where wind de-
pendent ratios need to be applied, see Sect. 6.2.2.2). These ratio are applied to hourly in
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situ excess CO concentrations (against the same background) to estimate hourly CO-based
∆ffCOhourly

2 :

∆ffCOhourly
2 =

∆COhourly

⟨Rflasks⟩
(6.1)

6.2.1 CO background

In addition to the need to determine representative atmospheric ∆CO/∆ffCO2 ratios, the
CO-based ∆ffCO2 approach requires a representative background value of CO against
which the local CO enhancement can be determined. As seen for the effects of the 14C
background, biases in the estimation of the European background have significant effects
on the ∆ffCO2 estimates.

For the determination of the effective atmospheric∆CO/∆ffCO2 ratio it is crucial that
the CO and 14C excesses are determined with respect to the same representative Euro-
pean background. Thus, similar to the 14C background (Sect. 3.1.1), the marine sector
of the MHD station was chosen to estimate the CO background concentration of clean air
masses prior to their arrival in Europe. However, in summer the atmospheric lifetime of CO
(approximately two months (Khalil et al., 1999)) is considerably shorter than that of 14C
or CO2 and is comparable to hemispheric mixing times (Schlesinger & Bernhardt, 2020).
Therefore, unlike 14C , the CO background was derived solely from MHD CO data, rather
than using a hemispheric trend. Unlike (Maier et al., 2024a), who based their CO back-
ground estimate on the weekly MHD CO flasks from the NOAA measurement network
(Petron et al., 2022), I used in situ CO measurements collected by the University of Galway
(Martin, 2025) with applied marine sector wind selection criteria. I chose the selection cri-
teria to match those for MHD 14C integral sampling (wind speed >4 m/s, sector 190°-300°).

From this selected data set, daily afternoon averages (12h-16h) were calculated and
smoothed using the same ccgcvr fitting routine that was used for the∆14C data (Press et al.,
1988; Thoning et al., 1989). I choose the same fitting parameters for the CO as for the∆14C
background, except for short-term variability filtering. Due to its short lifetime and higher
variability, sub-annual CO variations need to be retained.

To determine the optimal short-term frequency cut-off for smoothing the marine MHD
afternoon CO record, a variational approach was employed. The idea was to vary the
smoothing window between 10 and 200 days and evaluate for each setting how well the
resultingMHDCO background correlates with the lower envelope of CO observations from
all available ICOS stations. I estimated the lower envelope of the ICOS stations as the 10th
percentile of in situ CO data in a moving 10 day window. Panels (a) and (b) in Figure 6.1
depict the CO in situ records for two ICOS stations Lindenberg (LIN, panel (a)) and Pal-
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Figure 6.1. Results of the optimal short-term frequency cut-off determination for the MHD
CO background. Panels (a) and (b) display in situ CO data (blue line) from LIN and PAL
stations, respectively, alongside with their lower 10th percentile of in situ CO data over a
10-day moving window (black line) and the MHD CO background curve with a 75-day
short-term variability cut-off (green line). Panels (c) and (d) share a common legend. Panel
(c) shows the absolute Pearson correlation, while Panel (d) shows the correlation normalized
to its mean, between the ICOS station’s lower 10th percentile and the MHD CO background
curve for various short-term variability cut-offs. The cut-off yielding maximal correlation
is noted in the legend.

las (PAL, panel (b)) together with their lower envelope estimates given by the black lines
in both panels. The optimal cut-off frequency is identified as the one yielding the highest
absolute Pearson correlation across all stations in the network (see Fig. 6.1, panel (c)). De-
pending on the station’s general CO signal levels, the correlations range between 0.5 and
0.9, with higher values typically observed at more remote or less polluted sites. The nor-
malized Pearson correlations (Fig. 6.1, panel (d)) indicate a plateau in the correlation curves
for most stations, ranging from approximately 40 to 110 days. The average cutoff over all
stations of 75 days was selected for the final CO background curve and is depicted in green
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in panels (a) and (b) in Figure 6.1.
Before 2024 MHD was not a classified ICOS station and therefore did not use calibra-

tion cylinders from the ICOS FCL. As a result, the MHD CO measurements had an offset
compared to the internationalWMOCOX2014A scale. I estimated this offset to be constant
at 15.16 ppb using MHD CO flask measurements from the NOAA network (Schuldt et al.,
2025), which are also reported on the WMO CO X2014A scale (NOAA Global Monitoring
Laboratory, 2024). All MHD in situ CO data have been corrected for this offset prior to the
construction of the MHD CO background curve (solid green lines in Fig. 6.1, panels (a) and
(b)).

The residual standard deviation of the in situ CO concentrations around this constructed
MHD CO background with a cut-off frequency of 75 days is 10.3 ppb. Similar to the 14C
background (Sect. 3.1.1), additional uncertainty of the background estimate comes from un-
suitability of the MHD estimate to serve as background for air masses entering the European
domain through all domain boundaries other then western. The∆ffCO2 representativeness
uncertainty was estimated as 0.28 ppm by (Maier et al., 2024a). For CO, they recalculated it
using the CO/∆ffCO2 emission ratio of roughly 18 ppb/ppm in 2020 for the Eastern bound-
ary taken from the TNO emission inventory, resulting in an additional contribution to the
CO background uncertainty of 0.28 ppm · 18 ppb/ppm = 5.04 ppb. Together with the resid-
ual CO standard deviation, this results in a final error estimate of the CO background of 11.5
ppb.

6.2.2 ∆CO to ∆ffCO2 ratios

6.2.2.1 14C calibrated ∆CO/∆ffCO2 ratios

The ∆CO / ∆ffCO2 ratios were calculated using a modified version of the method used by
(Maier et al., 2024a).

∆COand∆ffCO2were determined as excess concentrations above their corresponding
background (Sect. 3.1.1 and 6.2.1) from all suitable flask samples. ∆ffCO2 data from flasks
was calculated according to the procedure described in Sect. 3.1. Only flasks collected
during afternoon hours (11:00-18:00) were used for the ∆CO /∆ffCO2 ratio determination,
with the exception of JFJ station, for which only nighttime samples (22:00-4:00) were con-
sidered since it is a high-elevation mountain site. For HTM, STE, and LIN stations, the
respective flasks were separated into two sets based on prevailing wind sectors during sam-
pling, and ∆CO /∆ffCO2 ratios were calculated independently for each of the wind sectors
(Sect. 6.2.2.2), accounting for heterogeneous distributions of CO and ∆ffCO2 sources.

Maier et al., 2024a recommend using the slope of the regression line between∆COand
∆ffCO2 for unbiased ⟨Rflasks⟩ estimates (black dashed lines in Fig. 6.2 or in Sect. A.3), in
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contrast to methods considering error-weighted means or medians. The regression line for
each site was calculated using the weighted total least squares algorithm (Krystek & Anton,
2007; Wurm, 2021), which accounts for uncertainties in both ∆COand ∆ffCO2 . The re-
gression intercept was set to zero, assuming the MHD backgrounds for CO and 14CO2 are
representative for ICOS sites under well-mixed, clean air conditions.

In addition to the Maier et al., 2024a method, outliers were removed from the flask
pool during the calculation of ⟨Rflasks⟩ using the Interquartile Range (IQR) method, also
known as Tukey’s Fences (Tukey et al., 1977). First, ⟨Rflasks⟩ was calculated as described
above. This ratio was then used to determine the CO-based ∆ffCO2 . The 25th (Q1) and
75th (Q3) percentiles of the differences between 14C-based and CO-based∆ffCO2 estimates
(∆∆ffCO2) were calculated for each station’s entire flask pool. The IQR (Q3 − Q1) was
then determined. Outliers were defined as observations outside the range

[Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)]

with k being some non-negative constant, usually 1.5 or 3, depending on the strictness of
the desired flagging. Here, I used k = 3, which roughly corresponds to the 4.5σ criteria for
Gaussian distributions, to ensure that only a small fraction of flasks were removed.

If outliers were detected, the sample furthest from the linear regression line was iden-
tified, considering applicable uncertainties. For each flask, the distance d to the regression
line, taking into account individual uncertainties, was calculated as:

di =

√

σ2
∆∆ffCO2

+RMSD2
∆∆ffCO2

|∆∆ffCO2|i
(6.2)

where σ∆∆ffCO2
is the combined error of ∆∆ffCO2 uncertainty (based on measurement er-

rors), and RMSD∆∆ffCO2
is the root mean square deviation of∆∆ffCO2, representing vari-

ability of the data around the regression line between 14C- and CO-based∆ffCO2 estimates
(e.g. panels (b) and (d) in Fig. 6.2. A low d value indicates a large difference between two
∆ffCO2 estimates relative to their errors. The flask with the lowest d value was removed,
and ⟨Rflasks⟩ recalculated. The whole procedure was iteratively repeated until no outliers
were found by the IQR method. This process flagged only 3% of all flasks in the network
(e.g. red crosses in Fig. 6.2).

The final ratios and statistics for each station are presented in Table 6.1. The RMSD
between 14C -based and CO-based ∆ffCO2 in flasks (Fig. 6.2, panels (b) and (d)) quanti-
fies the uncertainty of the resulting CO-based ∆ffCO2 time series. This RMSD reflects
the vertical scattering of the 14C-based and CO-based ∆ffCO2 data around their regression
line, which has by construction a slope of 1 (as the mean ⟨Rflasks⟩ was used for CO-based
∆ffCO2 calculations). The resulting uncertainty represents the uncertainty of the mean
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Figure 6.2. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (calculated slopes are de-
noted in legend). Panels (a) and (c) display ∆COand ∆ffCO2 values from flasks (black
circles with error bars) and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4)
for CBW and GAT stations, respectively. Flagged flasks (red crosses) were excluded from
the regression according to IQR outlier identification. In panels (b) and (d), ∆COflask was
converted into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD of the corresponding data repre-
sents variability caused either by measurement errors alone (synthetic data, yellow circles
with error bars, see Sect. 6.2.3) or by both measurement errors and ratio variability in the
station’s catchment area (real data, Obs. RMSD).

⟨Rflasks⟩, caused by combined variability in the ∆COand ∆ffCO2 relationship within the
station’s catchment area and measurement errors.
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Table 6.1. ∆COand ∆ffCO2 ratios and their uncertainties derived from flask observations
(⟨Rflasks⟩) and STILT-TNO model estimates (⟨Rmodel⟩, see Sect. 6.2.4) as well as coeffi-
cient of determination of the linear regression (R2) for the flask-based ratios. Number of
flask that were used for the calculation of the corresponding ratios as well as number of
flagged flasks is listed. RMSD between 14C-based and CO-based ∆ffCO2 in flasks is used
as the uncertainty of the resulting CO-based ∆ffCO2 time series. ⟨Rmodel⟩ were derived
from TNO inventory (Dellaert et al., 2019) and weighted with STILT footprints according
to the procedure described inMaier et al., 2024a (see Sect. 6.2.4). (*) stations were excluded
from inversions (see Sect. 6.2.3). (†) stations were used only in sensitivity studies (see Sect.
6.3.3).

Station
Num. flasks ⟨Rflasks⟩ R2

RMSD ⟨Rmodel⟩
(flag) [ppb/ppm] [ppm] [ppb/ppm]

CBW 159 (2) 7.81 (0.22) 0.79 2.25 5.57 (0.03)
GAT 141 (1) 11.25 (0.61) 0.48 1.61 7.80 (0.03)
HPB 251 (0) 10.67 (0.41) 0.38 2.02 11.16 (0.07)
HTM (all)† 191 (0) 14.30 (0.53) 0.51 1.76 9.43 (0.04)
HTM (wind sec. 1) 74 (0) 11.82 (0.57) 0.64 1.81 9.43 (0.04)
HTM (wind sec. 2) 49 (0) 20.11 (1.40) 0.52 1.57 9.43 (0.04)
JFJ* 63 (4) 5.71 (2.71) -0.22 3.69 9.07 (0.04)
KIT† 228 (3) 8.04 (0.21) 0.65 2.52 7.10 (0.04)
KRE 114 (0) 18.85 (1.32) 0.32 1.17 9.80 (0.05)
LIN (all)† 248 (1) 14.82 (0.31) 0.49 2.67 6.05 (0.05)
LIN (wind sec. 1) 103 (4) 9.81 (0.35) 0.71 1.98 6.05 (0.05)
LIN (wind sec. 2) 69 (0) 20.91 (0.64) 0.45 2.54 6.05 (0.05)
NOR* 58 (2) 28.07(4.55) -2.28 1.53 10.33 (0.04)
OPE 203 (2) 10.80 (0.37) 0.70 1.75 9.12 (0.05)
OXK* 73 (0) 11.09 (0.63) 0.11 2.53 8.93 (0.04)
PAL* 13 (0) 31.62 (20.88) -1.95 0.87 10.59 (0.05)
SAC* 26 (0) 7.83 (0.46) 0.73 3.45 4.65 (0.02)
STE (all)† 236 (4) 10.18 (0.28) 0.43 2.40 7.28 (0.03)
STE (wind sec. 1) 36 (0) 20.30 (1.03) 0.22 2.46 7.28 (0.03)
STE (wind sec. 2) 125 (3) 8.63 (0.30) 0.54 2.34 7.28 (0.03)
SVB* 32 (0) 13.97 (3.26) -0.55 1.67 10.05 (0.04)
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6.2.2.2 Wind sector dependent ratios

A heterogeneous distribution of emission sources (e.g. transport, industry) in the station’s
catchment area can cause systematic patterns in the∆COand ∆ffCO2 ratios (e.g., Jäschke,
2021; Rosendahl, 2022), potentially biasing the mean ⟨Rflasks⟩ estimate and the resulting
CO-based ∆ffCO2 data. To address spatial emission heterogeneities in the catchment ar-
eas of the ICOS sites, I developed a wind sector-based correction for the ∆CO–∆ffCO2

relationship.
First, I examined whether the ratio varied systematically with wind direction and speed

using concurrent meteorological data (Fig. 6.3, panels (a) and (b)) (Heliasz & Biermann,
2024; Kubistin et al., 2024b, 2024a). This revealed wind-direction-dependent differences
in the ratio for LIN (Fig. 6.3), HTM, and STE (Sect. A.4) stations. Next, I analyzed the
wind direction distributions at each site to identify characteristic flow sectors associated with
distinct ∆CO /∆ffCO2 ratios (Fig. 6.3, panel (c)). The preliminary sector boundaries were
defined and the flask samples with valid meteorological data were assigned accordingly.

For each sector, I calculated the mean ratio (⟨Rflasks⟩) and R2 of a linear fit. Sector
boundaries were iteratively optimized to maximize R2 (Fig. 6.3, panels (d) and (e)). Final
sector definitions were:

• STE: 30◦–80◦, remainder;

• HTM: 120◦–280◦, remainder;

• LIN: 135◦–315◦, remainder.

This method significantly improved the correlation at all three sites and stabilized the
∆CO /∆ffCO2 estimates. It enabled inclusion of stations like LIN, previously excluded due
to exceeding the allowable ⟨Rflasks⟩ variability (see Sect. 6.2.3). The impact on inversion
performance is discussed in Sect. 6.3.3.3.

6.2.3 Station selection criteria

The core assumption for calculating 14C-calibrated CO-based∆ffCO2 data from in situ CO
observations is the existence of a characteristic ⟨R⟩ at each site (or two with wind selection;
Sect. 6.2.2.2) that can be reliably estimated from 14C-flask measurements. This method can
be applied to all sites meeting these criteria. However, if ⟨R⟩ cannot be reliably estimated,
e.g., due to low∆ffCO2 signals or high spatio-temporal variability, the method is not appli-
cable. In the following section, I define a quantitative criteria for station suitability for this
approach.
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Figure 6.3. Selection of appropriate wind sectors for calculating wind-dependent ∆CO to
∆ffCO2 ratios at LIN station. Panels (a) and (b) display the complete flask dataset, while
panels (d) and (e) show the dataset split by mean wind direction during sampling (excluding
flasks with missing meteorological data), along with linear regressions (black dashed line,
slope in legend) for corresponding flask pools. Color gradients in panels (a), (d), and (e)
indicate mean wind direction, and in panel (b), mean wind speed during flask sampling.
Panel (c) illustrates the distribution of wind conditions during flask sampling. Red lines
denote the boundaries of the wind sectors used to divide the flask dataset into two groups.
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First, I quantify the ratio variability caused by measurement errors using a Monte-Carlo
experiment, similar to Maier et al., 2024a. I calculated ”ideal” ∆COvalues from the av-
erage ⟨R⟩ and 14C -based ∆ffCO2 data. Perturbations were then applied to these ”ideal”
data by drawing two random number sets from Gaussian distributions with zero mean and
σ equal to typical measurement errors of∆COand 14C-based∆ffCO2 . The perturbed ratio
was recalculated and applied to the ∆COdata. Finally, I calculated the Root Mean Square
Deviation (RMSD) between this error-prone CO-based ∆ffCO2 and the initial 14C -based
∆ffCO2 data. This procedure was repeated 10,000 times to obtain the mean RMSD over
all runs. This synthetic RMSD (RMSDsynth, Tab. 6.2, Fig. 6.2, right panels, yellow dots)
represents variability solely from measurement errors, uninfluenced by possible ratio vari-
ability due to catchment area inhomogeneities (as only one ratio was used for all synthetic
data sets).

To assess whether ∆ffCO2 signals are sufficient for reliable ⟨R⟩ estimation, I define a
threshold based on station-specific RMSDsynth normalized by the mean ∆ffCOflask

2 signal
(RMSDsynth

norm ). If RMSDsynth
norm exceeds the value of 1 (RMSDsynth

norm > 1), error-induced varia-
tion surpasses the mean signal, indicating that ⟨Rflasks⟩ will be highly sensitive to measure-
ment errors and therefore unreliable. I use RMSDsynth (estimated from 10,000 datasets)
instead of RMSD calculated from measurement data (RMSDmeas) because RMSDmeas is a
single realization and can vary in small flask sets due to the statistical nature of measure-
ment errors. The stations excluded by this criterion are SVB, NOR, PAL and JFJ (Tab. 6.2,
marked with (*)), i.e., all remote stations with low fossil fuel contributions.

The second criterion addresses source variability within the station’s catchment area.
Since synthetic data alone cannot estimate this variation, I compare RMSDmeas to its syn-
thetic counterpart, since RMSDmeas incorporates both measurement error and ⟨R⟩ variabil-
ity. If RMSDmeas is more than twice larger than RMSDsynth (RMSDmeas > 2·RMSDsynth),
⟨Rflasks⟩ variability in the catchment area dominates the observed variations in the data,
making the one-ratio approach unsuitable. The JFJ, LIN, PAL and SAC stations were ex-
cluded by this criterion (Tab. 6.2, marked with (†)). Notably, applying wind-dependent
ratios to LIN data reinstated it, since both sectors then fell within criteria boundaries (STE
and HTM both passed, but wind-dependent ratios lead to improvements in the correlation
between ∆COand ∆ffCO2 ).

OXK station (Tab. 6.2, markedwith (+)) is a special case; it was excluded despite passing
both criteria. ∆COand∆ffCO2 from OXK exhibited the lowest correlation in the measure-
ment network (R2 = 0.11, Tab. 6.1 and Fig. A.19, panels (a) and (b)). I speculate, that the
defined criteria failed due to several flasks with high ∆ffCO2 signals appearing anomalous
for this site. Additionally, OXK is a mountain station (1022 m a.m.s.l.) prone to large catch-
ment areas and complex atmospheric mixing. Consequently, OXK was excluded from the
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Table 6.2. Absolute (RMSDmeas) and normalized by mean∆ffCOflask
2 signal (RMSDmeas

norm)
RMSDs between 14C -based and CO-based ∆ffCO2 in flasks, as well as synthetic RMSD
(RMSDsynth and RMSDsynth

norm ). RMSDsynth represent variability induced only by mea-
surement errors, unlike RMSDmeas and normalized RMSDmeas

norm, which are also influenced
by ⟨R⟩ variability. (*) stations were excluded from inversions due to the low signals
(RMSDsynth

norm < 1). (†) stations were excluded from inversions due to the high ⟨R⟩ variability
in the catchment area (RMSDmeas

norm > 2·RMSDsynth
norm ). (+) OXK was excluded due to the low

correlation between ∆COand ∆ffCO2 data (R2 = 0.11, Tab. 6.1) and KIT was excluded
due to the possible 14C contamination.

Station RMSDmeas RMSDmeas
norm RMSDsynth RMSDsynth

norm

CBW 2.25 0.47 1.24 0.26
GAT 1.61 0.77 1.16 0.54
HPB 2.02 0.84 1.26 0.49
HTM 1.76 0.74 1.21 0.54
HTM (wind sec. 1) 1.81 0.52 1.25 0.38
HTM (wind sec. 2) 1.57 0.64 1.25 0.54
JFJ*† 3.69 -18.22 1.44 1.50
KIT+ 2.52 0.55 1.36 0.30
KRE 1.17 0.84 1.22 0.81
LIN† 2.67 0.72 1.27 0.31
LIN (wind sec. 1) 1.98 0.42 1.32 0.28
LIN (wind sec. 2) 2.54 0.54 1.33 0.27
NOR* 1.53 1.54 1.27 1.35
OPE 1.75 0.70 1.28 0.53
OXK+ 2.53 0.69 1.32 0.36
PAL*† 0.87 2.40 1.15 -30.62
SAC† 3.45 0.71 1.42 0.30
STE 2.40 0.60 1.26 0.32
STE (wind sec. 1) 2.46 0.61 1.25 0.26
STE (wind sec. 2) 2.34 0.46 1.32 0.27
SVB* 1.67 1.64 1.34 1.33

standard CO-based inversion station set. KIT station was excluded as well following the ar-
gument of possible 14C contamination made in Section 5.2.1. Its influence on the inversion
system was investigated in Section 6.3.3.2.
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6.2.4 ∆CO / ∆ffCO2 ratios derived from emission inventory

CO-based ∆ffCO2 offers high temporal resolution and the potential for increased spatial
coverage, since in situ CO measurements are mandatory for ICOS Class 2 stations (ICOS
RI, 2020). This would be beneficial if reliable effective atmospheric ∆CO / ∆ffCO2 ratios
were available. Such ratios could be derived from high-resolution, sector-specific emission
inventories or remote sensing, combined with footprint analyses, and estimates of non-fossil
CO sources and CO air chemistry. Although high-resolution bottom-up inventories like
EDGAR (Janssens-Maenhout et al., 2019) and CAMS (Kuenen et al., 2022) could provide
this information, they often have significant uncertainties in the temporal and spatial dis-
aggregation of national signals (Super et al., 2020). This leads to incorrect ratio estimates
(Gamnitzer et al., 2006; Maier et al., 2024a), which highlights the need for observation-
based inventory-independent estimates of ∆CO / ∆ffCO2 emission ratios.

Table 6.1 shows the modeled ratio (⟨Rmodel⟩), calculated using the TNO emission inven-
tory (Dellaert et al., 2019) and weighted by STILT footprints, as described in Maier et al.,
2024a. The STILT-TNO ratios systematically underestimate the measurement-based flask
ratios (⟨Rflasks⟩), resulting in an average ∆ffCO2 overestimation of 22% when applied to
continuous CO measurements, potentially due to not considered CO air chemistry and non-
fossil CO sources in the inventories. Therefore, I conclude that only∆14C-calibrated ratios
(Sect. 6.2.2) currently provide ∆ffCO2with acceptable uncertainties.

6.3 Results for CO-based ∆ffCO2 estimates

6.3.1 Forward runs and model-data-mismatch

Hourly 14C-calibrated CO-based ∆ffCO2 series were calculated as described in Sect. 6.2.
For the inversion system, only afternoon hours were used, as transport models perform best
during this period (Geels et al., 2007; Peng et al., 2023). Following (Maier et al., 2024a),
hourly CO-based ∆ffCO2 data were aggregated weekly to mitigate hourly mismatches be-
tween the transport model and actual meteorological conditions. The impact of these choices
is explored in Sect. 6.3.3. Only stations which had passed the station selection criteria out-
lined in Sect. 6.2.3 were included in this analysis and the inversion setup. Measurement
data were compared to simulations generated using the STILT transport model and the GCP
emission inventory. These forward (FWD) runs (see Sect. 3.2) were calculated at exact
sampling times and locations, and aggregated identically to the measurements.

Figure 6.4 illustrates the forward-simulated and observed ∆ffCO2 concentrations at
three representative ICOS stations (CBW, HPB, and HTM), based on CO-derived estimates.
The corresponding plots for all additional stations are provided in Appendix A.5.
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Figure 6.4. The CO-based ∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three example measurement
sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
RMSD-based measurement error.

Each left panel displaysweekly-averaged∆ffCO2 values, comparing the CO-based sim-
ulations (green triangles) with the observed concentrations (black triangles). The right-hand
panels show the corresponding model–data mismatch (MDM) distributions, where the stan-
dard deviation is given in the top-left corner of each histogram.

Compared to the flask-based results (see Sect. 5.2.1), the variability of the MDM in the
CO-based estimates is significantly reduced—approximately half as large—due to the use
of weekly-averaged rather than instantaneous data, potentially indication better transport
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Table 6.3. Statistics of the measured CO-based and simulated ∆ffCO2 signals in the ICOS
network form 2019-2024. X̄obs and X̄sim depict mean measured and simulated signals for
the corresponding site. X̄sim - X̄obs and σsim−obs stand for the mean model-data-mismatch
(MDM) and its standard deviation. ē and SNR denote RMSD-based observation error and
mean Signal-to-Noise Ratio. |X̄sim − X̄obs|> 3ē shows the approximate portion of the data
with higher absolute MDM then triple of the ē. (*) KIT was not used in regular inversions,
only in sensitivity studies.

Site X̄obs, X̄sim, X̄sim - X̄obs, σsim−obs, ē, |X̄sim − X̄obs|> 3ē, SNR,
[ppm] [ppm] [ppm] [ppm] [ppm] [%] [rel.]

CBW 4.1 4.7 0.6 1.5 2.3 0% 1.8
GAT 1.9 2.3 0.4 1.2 1.6 0% 1.2
HPB 1.6 1.9 0.2 1.2 2.0 0% 0.8
HTM 1.2 1.4 0.2 0.8 1.8 0% 0.7
KIT* 4.9 5.4 0.6 2.5 2.5 0% 1.9
KRE 1.5 2.0 0.5 0.8 1.2 0% 1.3
LIN 2.5 3.3 0.9 1.8 2.7 0% 0.9
OPE 1.8 1.8 0.0 1.1 1.8 0% 1.1
STE 2.9 3.0 0.1 1.2 2.4 0% 1.2

model representativeness of mean weeky signals. Notably, the average observed ∆ffCO2

concentrations in the CO-based estimates are lower than in the flask-based results. This
difference arises from the targeted flask sampling strategy used in the earlier, pre-CORSO
years, which aimed to maximize the∆ffCO2 signal (e.g., by sampling during optimal mete-
orological conditions or high-emission episodes). In contrast, the CO-based estimates rely
on continuous high-frequency COmeasurements and therefore reflect less biased, more rep-
resentative atmospheric conditions.

Interestingly, the MDM in the CO-based approach shows a consistently positive bias
across all stations, with simulated concentrations exceeding the observations. This contrasts
with the flask-based MDM, where the deviations were more symmetrically distributed.

Due to high measurement uncertainty, the Signal-to-Noise Ratio (SNR) is generally low.
Even for high-signal stations like CBW and KIT, SNR is below 2. Furthermore, stations
including LIN, HPB, and HTM have an SNR below 1. The largest MDM is observed at
LIN, suggesting that even with wind-dependent ratios, high ∆CO to ∆ffCO2 variability in
the catchment area might not be fully compensated. This is supported by tests investigating
the influence of individual stations, which also indicate a particularly high influence of LIN
on the inversion system (Sect. 6.3.3.2).
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6.3.2 Application of the Evaluation Matrix to the CO-based inversions

In the following sections, I evaluate core posterior features (e.g. seasonality and inter-annual
trend) extracted from the data, as described in Sect. 3.2.4. This evaluation will classify these
features based on the results from the synthetic application of this experiment set (Sect. 4.6).
Because the synthetic inversions have no inherent transport model errors, I assume sampling
routine differences are negligible. This allows us to apply the results from those sections to
CO-based inversions.

6.3.2.1 Seasonal cycle of ∆ffCO2 emission trend derived from CO-based inversions

The seasonal cycle of posterior fluxes (Fig. 6.5) exhibits a peak-to-peak amplitude 2 to 3
times larger than the GCP inventory. This increase is primarily driven by significantly lower
summer minima, with four summers showing a four-fold greater flux reduction relative to
the Seasonless Prior compared to the GCP (Tab. 6.4). On the other hand, winter fluxes devi-
ate less from the GCP. Relative maxima deviations of winters 20/21, 22/23, and 23/24 from
the GCP are all below 10% relative to the Seasonless prior, showing no significant deviation
based on the synthetic tests (Sect. 4.6.1), while winters 19/20 and 21/22 exhibit a significant
underestimation compared to the GCP fluxes (17% and 11% respectively). All extrema,
except for summer 2024 with phase shift of 54 days (Tab. 6.4), show no significant phase
shift w.r.t. the GCP being lower than expected phase shift variation due to the magnitude of
the measurement errors (35 days for winter and 31 days for summer, Sect. 4.6.1).

The year 2019, including winter 19/20, may be influenced by lower data density than
the rest of the investigation period (colorbar or Fig. 4.5). Beyond this, no clear anomalies
in the posterior can be attributed to data density changes. Extrema positions generally align
with the GCP, except for summer 2024, which may be affected by particularly low fluxes in
the period afterward.

In conclusion, I observe a clear seasonal influence on posterior results, indicating a
strong underestimation of fossil emissions during summer. Winter fluxes are mostly within
range of the GCP considering results of synthetic Evaluation matrix (Sect. 4.6.1), with some
instances of underestimation but no significant phase shifts.

6.3.2.2 Inter-annual ∆ffCO2 emission trend derived from CO-based inversions

Fossil fuel emission trends are investigated using CO-based ∆ffCO2 data. As shown in
Figure 6.6, posterior fluxes from the F1T and F0.5T inversions are compared to the GCP
inventory and a Trendless prior. I quantify the changes in emissions during the main period
by fitting linear trends to the posterior time series.

As seen from Fig. 6.6, the inter-annual posterior trends derived from CO-based∆ffCO2
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Figure 6.5. Results of the seasonal cycle evaluation of the CO-based posterior ∆ffCO2

fluxes. The absolute (panel (a)) and relative to the Seasonless Prior (panel (b)) fluxes in the
Germany domain using CO-based ∆ffCO2 data show the GCP inventory (black solid line),
the Seasonless Prior (used as input, black dashed line) and posterior results (green line).
Orange and purple circles mark the maxima andminima of the posterior, with corresponding
GCP extrema marked by diamonds. The color bar at the bottom indicates the network-wide
mean monthly availability of CO-based estimates per station.

data with F0.5T and F1T are closer to the GCP inventory than the Trendless Prior throughout
all the period. The differences between F1T and F0.5T posteriors are similar to those in
flask-based inversions (Sect. 5.2.2.2), with F1T oscillating slightly around F0.5T.

However, their absolute values are significantly lower compared to the GCP due to un-
derestimated summer fossil fluxes (see Sect. 6.3.2.1). From summer 2021 to winter 2025,
the F0.5T posterior shows a downward trend with a consistent ∼13% offset from the GCP
trend. Fluxes from the first year of the posterior, which coincides with the lowest data den-
sity (Fig. 6.6, colorbar), are 20-40% lower than the GCP estimate.

Linear regression slopes for the entire period are essentially zero for both posteriors
(0.01±0.03 Tmol/yr for F1T and 0.11±0.03 for F0.5T, not shown),implying a significant
discrepancy compared to the downward GCP trend of -0.72±0.01 Tmol/yr. This is larger
than the synthetic estimate for trend variations induced by measurement uncertainty (∼0.4
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Table 6.4. Positions (”Date” columns) and relative to the Seasonless Prior amplitudes
(”Value” columns) of the seasonal extrema extracted from the GCP inventory and the pos-
terior of the CO-based inversion as well as the difference between them. The difference
between the positions is in days.

Season
GCP Flask-based ∆ffCO2 Obs. - GCP

Date
Ampl.,

Date
Ampl., Phase shift, Ampl. diff.,

[rel.] [rel.] [days] [rel.]

Winter 19/20 30.12 1.12 04.01 0.95 5 -0.17
Winter 20/21 01.01 1.12 15.01 1.18 14 0.06
Winter 21/22 08.01 1.12 06.01 1.01 -2 -0.11
Winter 22/23 11.01 1.12 10.02 1.21 30 0.09
Winter 23/24 28.12 1.13 26.01 1.21 29 0.08

Summer 2019 29.06 0.89 08.07 0.49 9 -0.40
Summer 2020 01.07 0.88 02.07 0.48 1 -0.40
Summer 2021 09.07 0.88 15.07 0.51 6 -0.37
Summer 2022 07.07 0.88 21.07 0.55 14 -0.33
Summer 2023 04.07 0.87 03.08 0.47 30 -0.40
Summer 2024 04.07 0.86 27.08 0.72 54 -0.14

Tmol/yr, Sect. 4.6.2).
If the 2019 fluxes are excluded, the posterior trend estimates (F1T: -0.62±0.04 Tmol/yr;

F0.5T: -0.89±0.03 Tmol/yr, Fig. 6.6) align closelywith theGCP trend of -0.56±0.04 Tmol/yr.
Relative fluxes to the Trendless Prior show similar results: a -2.1% GCP emission reduction
rate versus -2.3% (F1T) and -3.4% (F0.5T) for posteriors.

These findings highlight two key points. First, 2019 data density may be insufficient for
reliable posterior results, contrary to the conclusions presented in Sect. 4.3, possibly due to
effects of transport errors, which are not accounted for in the synthetic runs. Second, like
with flasks, CO-based inversions can estimate mean emission trends during periods of high
data density.

6.3.2.3 Absolute and annual mean ∆ffCO2 emissions derived from CO-based inver-
sions

Figure 6.7 depicts the absolute and annually aggregated fossil fuel CO2 fluxes derived from
CO-based inversions for the Germany+ domain. To limit the prior information available to
the inversion system and achieve data-driven posteriors, inversions were conducted using
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Figure 6.6. Results of the inter-annual trend analysis for the CO-based inversions. The
absolute (panel (a)) and relative to the Trendless Prior (panel (b)) fluxes in the Germany+
domain. The GCP inventory (black solid line) and the Trendless Prior (used as input, black
dashed line) are shown alongside posterior results for F1T (green solid line) and F0.5T (yel-
low dashed line) filters. The lines show linear regressions of the correspondingly colored
flux curves, excluding 2019 with the lowest data density. The color bar at the bottom indi-
cates the network-wide mean monthly availability of CO-based estimates per station.

the Flat Zero and the Flat 200p Prior with 40% prior uncertainty (Sect. 3.2.4).
The seasonal and trend features from previous sections are evident in the posteriors (Fig.

6.7, panel (a)), even with low information priors like the Flat 200p and Flat Zero. Consistent
with the seasonality analysis (Sect. 6.3.2.1), summer fluxes are significantly underestimated,
while winter fluxes generally align with the GCP inventory. Except for 2019 and late 2024,
the general trend direction matches the GCP, but low summer fluxes cause a downward
emission offset (Sect. 6.3.2.2). Given high uncertainties and the amplified seasonal cycle,
prominent posterior features like reduced emissions during the COVID-19 lockdown are not
discernible. RMSD values between the Smooth Prior and posteriors (0.19 for the Flat Zero,
0.26 for the Flat 200p) are significantly higher than the potential deviations caused by the
measurement errors (0.11±0.02, Sect. 4.6.3).

Similar to the trend (Fig. 6.6), annual posterior emissions significantly underestimate
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Figure 6.7. Results of the analysis of absolute and annually aggregated emission fluxes
for the CO-based inversions in the Germany+ domain. Panel (a) shows the absolute and
panel (b) the relative to the Smooth Prior∆ffCO2 fluxes. Panel (c) shows yearly aggregated
emissions from the panel (a). the Flat Zero Prior and the Flat 200p Prior (used as inputs,
respectively, purple and grey dashed lines) as well as the Smooth Prior (orange solid line)
are shown alongside posterior results (green solid and yellow dashed lines). The color bar
indicates the mean monthly availability of CO-based estimates per station.

the GCP inventory (Fig. 6.7, panel (c)), falling outside the boundaries defined by the syn-
thetic experiments (0.94±0.06 for the Flat 200p Prior and 1.07±0.06 for the Flat Zero Prior
relative to yearly GCP fluxes). The underestimation from expected values ranges approx-
imately from 10% to 30% (Tab. 6.5), with 2019 and 2020 showing the greatest underes-
timation. Based on the findings from the previous sections, which indicate a systematic
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Table 6.5. Annual mean CO-based posterior ffCO2 fluxes relative to the GCP inventory for
the full years.

Prior 2019 2020 2021 2022 2023 2024

Flat Zero 0.72 0.82 0.89 0.83 0.91 0.95
Flat 200p 0.61 0.71 0.78 0.74 0.81 0.82

underestimation of summer fluxes in the posterior, it is clear that this bias also influences
the annual mean emissions. Notably, the extent of underestimation is more pronounced in
the earlier years of the study period, while the discrepancy decreases over time, with the
smallest deviation observed in 2024. This characteristic is revisited and explained further in
the section discussing the uncertainties related to the CO-based∆ffCO2 proxy (Sect. 6.3.3).

The ”over- and undershooting” posterior patterns observed with the Flat Zero and Flat
200p Priors reoccurred here (Sect. 4.6.3). The difference between the two posteriors ranges
from 9% to 13%, with 2024 exhibiting the largest discrepancy. This difference is consid-
erably higher than that observed in flask-based inversions and closer to the integral-based
synthetic inversions (avg. 13%, Sect. 4.6.3).

6.3.3 Uncertainty investigation

6.3.3.1 Effect of CO-based ∆ffCO2 averaging

As described in Sect. 3.2.2.1, the standard CO-based ∆ffCO2 inversion setup utilizes af-
ternoon hours aggregated on a weekly basis. This procedure, suggested by Maier et al.,
2024b, addresses the transport model’s inability to accurately simulate hour-specific after-
noon ∆ffCO2 concentrations. This deficit results from transport model errors in combina-
tion with spatially heterogeneous emissions in the stations’ catchment areas—particularly
from point sources. The presence or absence of such sources within a station’s footprint can
significantly influence∆ffCO2 concentrations, and discrepancies between real and modeled
atmospheric conditions can lead to substantial model–data mismatches (MDM). Aggregat-
ing the CO-based∆ffCO2 signal to weekly averages mitigates the need for hour-level trans-
port accuracy and instead requires only a reliable estimate of the average impact of these
emission sources. Maier et al., 2024b investigated this effect in Heidelberg, a highly het-
erogeneous urban environment with a high density of nearby point sources. The following
section analyzes this effect on stations within the ICOS network, which are less influenced
by surrounding point sources due to their locations in the hinterland (ICOS RI, 2020).

Similar to patterns observed by Maier et al., 2024b (Figure C2), shorter aggregation in-
tervals lead to lower emissions in the Germany+ domain. Fig. 6.8 shows posterior fossil fuel
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Figure 6.8. Posterior CO-based ∆ffCO2 emissions for the Germany+ domain using a Flat
Zero Prior (black dashed line) with 40% prior uncertainty in dependence of averaging inter-
val. The posterior of the standard setup with weekly averaging is shown as green solid line
along with the GCP inventory as reference (black solid) and posteriors with varying aver-
aging periods: biweekly (yellow dashed line), daily (blue dotted line) and hourly averaging
(pink solid line). The color bar at the bottom indicates the network-wide mean monthly
availability of CO-based estimates per station.

emissions for the Germany+ domain derived using CO-based ∆ffCO2 estimates with vary-
ing temporal aggregation intervals—ranging from hourly to biweekly. All inversions were
performed using a Flat Zero Prior with 40% prior uncertainty. The posterior fluxes exhibit
a strong dependency on the aggregation interval, particularly for shorter periods. Aggrega-
tion windows longer than one week have a negligible influence on the posterior estimates
compared to the standard weekly setup. Notably, a seasonal pattern emerges, with winter
fluxes being more strongly affected by aggregation than summer fluxes. The underlying
reasons for this aggregation- and season-dependent emission reduction are further explored
in the subsequent section.

Standard weekly aggregated∆ffCO2model forward results based on the GCP inventory
are, on average, higher than CO-based ∆ffCO2 concentrations (see Tab. 6.3). This results
in an MDM distribution with a positive mean shift and more positive outliers than negative
ones. This effect leads to a systematic underestimation of the GCP inventory by CO-based
posteriors, as observed previously (see Sect. 6.3.2). Comparing the difference between sim-
ulated (Xsim) and measurement data (Xobs) in weekly aggregated (Tab. 6.6, winter or sum-
mer) and hourly (Tab. 6.7) data, the meanMDM (X̄sim - X̄obs) does not change significantly,
as expected. However, the width of the MDM distribution (σsim−obs) is much higher (about
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Table 6.6. Statistics of the weekly aggregated measured CO-based and simulated
∆ffCO2 signals in the ICOS network form 2019-2024. X̄obs and X̄sim depict mean mea-
sured and simulated signals for the corresponding site. X̄sim - X̄obs and σsim−obs stand for
the mean model-data-mismatch (MDM) and its standard deviation.

Site

Weekly aggregation
Winter (December, January, February) Summer (June, July, August)
X̄obs X̄sim - X̄obs σsim−obs X̄obs X̄sim - X̄obs σsim−obs

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

CBW 5.1 0.9 1.8 2.8 0.0 0.9
GAT 3.0 0.3 1.8 1.3 0.2 0.6
HPB 1.9 0.1 1.4 1.9 -0.3 1.0
HTM 2.2 -0.2 0.9 0.6 0.3 0.4
KRE 2.4 0.3 1.0 1.0 0.5 0.5
LIN 4.4 0.6 2.4 1.4 0.5 0.7
OPE 3.2 -0.8 1.3 1.4 -0.2 0.8
STE 4.2 -0.3 1.5 1.9 0.0 0.8

a factor of 2.3 higher in both summer and winter) for hourly data than for weekly data. Since
neither MDM distribution is centered at zero, a larger σsim−obs increases the frequency and
magnitude of positive deviations in the tails of the distribution. As described in Sect. 3.2.2,
MDM contributes quadratically to the inversion system’s cost function, meaning that large
deviations have a disproportionate influence on the posterior calculation. Consequently, the
broader and more skewed MDM distribution associated with hourly and daily aggregation
leads to systematically lower posterior flux estimates compared to weekly aggregation.

The ratio σhourly
sim−obs/σ

weekly
sim−obs for core summer (Tab. 6.6 and 6.7, right half) is approx-

imately equal to that for core winter (Tab. 6.6 and 6.7, left half). However, the absolute
change from σweekly

sim−obs to σ
hourly
sim−obs in winter is twice as high as in summer, implying a broader

MDM distribution in winter than in summer, and thus a larger reduction in absolute fluxes.
Nevertheless, the flux changes relative to the corresponding period do not exhibit such a
strong seasonal dependence (approx. 5% difference in relative fluxes between summer and
winter).

6.3.3.2 Influence of individual stations on the CO-based posterior

Figure 6.9 shows the results of a leave-one-out sensitivity test for the ICOS stations con-
tributing to the CO-based ∆ffCO2 inversion in the Germany+ domain. Each colored line
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Table 6.7. Statistics of the hourly measured CO-based and simulated ∆ffCO2 signals in
the ICOS network form 2019-2024. X̄obs and X̄sim depict mean measured and simulated
signals for the corresponding site. X̄sim - X̄obs and σsim−obs stand for the mean model-data-
mismatch (MDM) and its standard deviation.

Site

Weekly aggregation
Winter (December, January, February) Summer (June, July, August)
X̄obs X̄sim - X̄obs σsim−obs X̄obs X̄sim - X̄obs σsim−obs

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

CBW 5.2 0.7 5.1 2.7 0.0 2.6
GAT 3.1 0.2 3.2 1.3 0.2 1.3
HPB 1.9 0.1 2.6 1.9 -0.3 1.7
HTM 2.3 -0.2 2.0 0.6 0.3 1.0
KRE 2.5 0.2 2.4 1.0 0.5 1.2
LIN 4.5 0.5 6.5 1.4 0.5 1.7
OPE 3.3 -0.8 2.8 1.4 -0.2 1.4
STE 4.4 -0.3 4.3 2.0 0.0 2.2

represents a posterior flux time series derived by excluding one station at a time from the
inversion setup. The standard setup (green line) includes all stations, while the black solid
and dashed lines show the GCP inventory and the Flat Zero Prior, respectively.

In general, the posterior fluxes are robust against the omission of individual stations,
with only minor variations. However, two stations exhibit a more pronounced impact.

First, the exclusion of LIN (orange dashed line) results in posterior fluxes that show
improved agreement with the GCP inventory, particularly at the beginning and end of the
time series. Additionally, the seasonal cycle becomes more clearly defined. LIN is the only
station for which a wind-sector-dependent CO/∆ffCO2 ratio had to be applied, with sector-
specific ratios differing by more than a factor of two (Tab. 6.2.2). Moreover, LIN displayed
the strongest discrepancies in forward-modeled versus observed CO-based∆ffCO2 signals.
These findings indicate that LIN has a disproportionately strong influence on the inversion
and that the applied correction does not fully account for local emission heterogeneity. Thus,
LIN should be excluded from the CO-based ∆ffCO2 station network used in inversions.

Second, the removal of STE (yellow solid line), another site with awind-sector-dependent
CO/∆ffCO2 ratio, leads to notable changes in the posterior during the early years of the time
series. Although the effect is smaller than for LIN, it still suggests that STE also introduces
some inconsistency due to emission inhomogeneities in its catchment area. The influence
is, however, less systematic and fades toward the later years.
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Figure 6.9. Posterior ∆ffCO2 fluxes for the Germany+ domain based on CO-derived esti-
mates using a Flat Zero prior with 40% prior uncertainty. The standard posterior (green solid
line) is compared to leave-one-out setups, where individual ICOS stations were excluded
(other lines), as well as a configuration including the KIT site (yellow dashed line). The
GCP inventory (black solid line) and the Flat Zero prior (black dashed line) are shown for
reference. The color bar indicates the mean monthly availability of CO-based∆ffCO2 data
per station.

Together, these results underline the limitations of simplified sector-based corrections
for sites affected by complex source environments and highlight the importance of carefully
selecting stations for CO-based inversions.

6.3.3.3 Effect of different treatment of stations with wind-dependent ratios

As described in Sect. 6.2.2.2, wind-dependent ⟨Rflasks⟩ values were applied during CO-
based∆ffCO2 calculations for HTM, LIN, and STE sites to mitigate the impact of emission
source inhomogeneities within the stations’ catchment areas. Due to the novelty of this
procedure and given LIN’s high influence on the posterior (Sect. 6.3.3.2), I evaluated the
impact of this and alternative methods on posterior emissions.

The Standard CO-based inversion setup (Fig. 6.10, green line) for the German+ domain
employs wind-dependent ratios. Alternatively, in the ”NoWind Selection” scenario (yellow
dashed line), HTM, LIN, and STE were treated like other network stations, applying one
mean ⟨Rflasks⟩ across all wind conditions. Additionally, I investigated the posterior effect
of using only data from the wind sector with a lower ⟨Rflasks⟩ (”Only low R sector”, blue
dotted line) or uniformly applying this lower ⟨Rflasks⟩ to the entire data series (”Low R
for all conditions”, pink solid line). These last two investigations were motivated by the
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Figure 6.10. Posterior CO-based ∆ffCO2 emissions for the Germany+ domain. The stan-
dard setup (green solid line) uses the Flat Zero Prior (black dashed line) with 40% uncer-
tainty and wind-dependent ⟨Rflasks⟩ for HTM, LIN, and STE. The figure also shows the
GCP inventory (black solid line) as reference and posteriors from other wind-related sce-
narios: ”No Wind Selection” (yellow dashed line), ”Only low R sector” (blue dotted line),
and ”Low R for all conditions” (pink solid line). The color bar at the bottom indicates the
network-wide mean monthly availability of CO-based estimates per station.

assumption that high ⟨Rflasks⟩ values (above 20, leading to lower CO-based ∆ffCO2 data)
could be influenced by local signals not captured by the transport model or by non-fossil
CO sources near the stations. The ratios used in these investigations are provided in Tab.
6.1.

The ”No Wind Selection” posterior yields, on average, 5% lower emissions than the
Standard setup. In this case, periods with lower ⟨Rflasks⟩ in the Standard setup receive a
higher mean ⟨Rflasks⟩, resulting in lower∆ffCO2 values, and vice versa for periods with ini-
tially higher ⟨Rflasks⟩. While CO-based ∆ffCO2 data for HTM and LIN are nearly evenly
split between two wind sectors (HTM: 42% and 58%; LIN: 44% and 56%), mean HTM sig-
nals were only slightly affected while LIN signals became lower. This leads to a stronger un-
derestimation of the GCP FWD run in the whole German+ domain, as higher∆ffCO2 values
were more significantly impacted by applying the mean ratio in the ”No Wind Selection”
setup. Additionally, 98% of STE data experienced a reduction in CO-based∆ffCO2 values,
as they were initially calculated using a lower ⟨Rflasks⟩ in the Standard setup. This largely
explains the predominantly lower emissions in the corresponding posterior and an even
greater discrepancy with the GCP inventory compared to the Standard setup.

On the other hand, applying the lower ⟨Rflasks⟩ to all wind conditions in the ”Low R
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for all conditions” scenario, as expected, leads to approximately 8% higher fluxes in the
resulting posterior. However, this would only marginally improve the strong summer un-
derestimation of the GCP inventory while increasing the winter discrepancy, potentially
overestimating the influence of high CO yield fossil sources (e.g., heating).

Removing CO-based ∆ffCO2 data from the higher ⟨Rflasks⟩ wind sector in the ”Only
low R sector” setup magnifies the seasonal peak-to-peak amplitude in the posterior. This
might suggest additional seasonality in the transport model, non-fossil CO emissions, or
other unaccounted effects.

Overall, all wind direction influenced posteriors generally lie within a±10%band around
the Standard posterior. This effect is minor compared to effects from investigating other
system properties (e.g., measurement errors, Sect. 4.6). The seasonal effect relative to the
Standard posterior is small for ”Low R for all conditions” and ”No Wind selection” cases
(Fig. 6.10, panel (b)). However, the ”Only low R sector” setup further amplifies the seasonal
amplitude compared to the GCP inventory. This analysis underscores the importance of in-
homogeneities for CO-based∆ffCO2 and confirms wind-selected ratios as a viable option to
reduce their influence. Nevertheless, their effect cannot explain the strong underestimation
of summer fluxes in the Standard setup.

6.3.3.4 Sensitivity of the posterior fluxes to the European ∆14C and CO background
estimates

To assess the sensitivity of the CO-based posterior flux estimates to a possible bias in the as-
sumed European∆14C background, a perturbation experiment analogous to that performed
for the flask-based analysis (Sect. 5.2.3.1) was conducted. Since the same∆14C background
is used to derive both flask- and CO-based∆ffCO2 estimates, its influencemust be evaluated
consistently across proxies.

In this experiment, the European∆14C background was systematically shifted by±2‰.
Based on the perturbed backgrounds, new flask-based ∆ffCO2 estimates were calculated,
which were then used to update the CO/∆ffCO2 ratios. These revised ratios were subse-
quently used to produce continuous biased CO-based∆ffCO2 time series. Finally, two sen-
sitivity inversions were performed using these adjusted input datasets.

The results of this experiment are illustrated in Fig. 6.11. The upper panel shows the ab-
solute posterior fluxes for the unperturbed and perturbed background cases, while the lower
panel highlights the differences relative to the standard inversion. The seasonal asymmetry
in the response is clearly visible.

As in the flask-based case, the posterior fluxes responded symmetrically to the ±2‰
bias in the 14C background, with a magnitude of change in the range of 3–5 Tmol/yr per
±2‰ shift in the background. However, the seasonal pattern of sensitivity differs. For the
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CO-based posterior fluxes, the impact of the background offset is largest during the winter
half-year and smaller during summer. This contrasts with the flask-based posteriors, which
showed the strongest sensitivity during summer and relatively muted response in winter.

For flask and integral samples (see Sect. 7.2.3.1), a ±2‰ 14C background bias directly
affects the ∆ffCO2 values, leading to uniformly positive of negative offsets in absolute
∆ffCO2 estimates. The seasonality in the corresponding tests originates from higher rel-
ative changes of (smaller) summer signals compared to winter. For CO-based∆ffCO2 data,
the 14C background bias changes∆CO/∆ffCO2 ratios. In this case the relative change for
a single station’s CO-based ∆ffCO2 values is constant (as the same ratio is applied to all
∆COvalues), but the absolute signal change is greater in winter due to higher∆CO signals
in this season.

Based on investigations of 14C -based ∆ffCO2 proxies (e.g., Sect. 5.2.2.1 and 7.2.2.1),
I suspect the ∆14C background estimate is biased towards lower values following the dis-
continuation of the MHD data series. The bias appears to be approximately 1‰ in 2023,
increasing to 2‰ in 2024. Unfortunately, most flasks used to calculate ∆CO/∆ffCO2 ra-
tios were collected during the CORSO project (Levin et al., 2024) in 2024. This may have
systematically biased all CO-based ∆ffCO2 estimates. This bias would also explain the
consistently positive MDM observed for CO-based∆ffCO2 across all stations (Sect. 6.3.1),
highlighting the high susceptibility of this and other proxies to background biases.

In contrast to the flask-based ∆ffCO2 estimates, the CO-based approach requires not
only an estimate of the ∆14C background but also of the marine CO background. There-
fore, a second sensitivity experiment was conducted to quantify the influence of potential
biases in the marine CO background on the estimated posterior∆ffCO2 fluxes. Figure 6.12
illustrates the posterior results obtained when shifting the marine CO background by ±15
ppb and recalculating the full chain of CO-based ∆ffCO2 estimates accordingly (including
calculations of new ratios).

Unlike the previously discussed background sensitivity experiments, the effect of the CO
background bias is clearly asymmetric. A reduction of 15 ppb leads to only minor changes
in the posterior fluxes during winter (0–2 Tmol/yr), while summer fluxes are increased by
5–7 Tmol/yr. In contrast, increasing the background by 15 ppb results in a strong summer
reduction of up to 15 Tmol/yr, occasionally pushing posterior fluxes close to or even below
zero. Effect on winter fluxes is minor (0–3 Tmol/yr).

This seasonal asymmetry can be explained by the fact that a fixed background offset
represents a much larger relative change during summer, when the typical CO enhancements
at the ICOS stations are lower (approximately 15 ppb), compared to winter (typically 35
ppb). Thus, the same absolute bias in the background leads to a much stronger relative
distortion of the CO-based signal in summer.
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Figure 6.11. Posterior ∆ffCO2 emissions in the Germany+ domain based on CO-derived
estimates using three different assumptions for the ∆14C background: unmodified (stan-
dard, green), increased by 2‰ (yellow), and decreased by 2‰ (blue). Panel (a) shows the
absolute fluxes, while panel (b) displays the deviations from the standard posterior. The
dashed blue line in panel (b) represents the absolute value. The color bar indicates the mean
monthly data availability in days per station.

This experiment highlights the high sensitivity of CO-based inversions to biases in the
marine CO background. The strong seasonal cycle seen in the standard posterior fluxes may
point to a summer overestimation of the background or suggest that a portion of the marine
background signal does not reach the measurement stations—potentially due to atmospheric
sinks or mixing processes—leading to an effective overestimation of the CO background
during this time of year. Note, that the posterior winter estimates are less sensitive to biases
in the CO background and can, accounting for this additional uncertainty sill be used to
estimate winter fossil emissions in the Germany+ domain.
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Figure 6.12. Posterior fossil fuel ∆ffCO2 emissions for the Germany+ domain based on
CO-derived estimates using a Flat Zero prior and 40% prior uncertainty. Panel (a) shows
posterior fluxes resulting from a standard CO background (green) and from backgrounds
shifted by ±15 ppb (yellow and blue), along with the GCP inventory (black) as reference.
Panel (b) presents the flux differences relative to the standard case. The color bar indicates
the monthly average availability of CO-based estimates per station.

6.3.4 CO-basedBayesian inversions with unmodified GCPand EDGAR
priors

Here, I present results from twoBayesian inversions using unmodified daily GCP and hourly
EDGAR prior fluxes (Sect. 3.2.3), each with a 4% prior uncertainty (relative to the GCP
emissions) consistent with reported uncertainties for larger domains (Janssens-Maenhout et
al., 2019; Jones et al., 2022), and driven by CO-based ∆ffCO2 data. Similar to the flask-
based inversions (Sect. 5.2.4), I focus on winter periods (November - February), excluding
2018/19 and 2024/25 to avoid boundary effects.

The winter prior fluxes as well as the inversion results in the Germany+ domain for the
period with sufficient data density (Sect. 4.3) are depicted in Fig. 6.13 with the summer pe-
riods not being included in the evaluation (the grayed out periods in panel (a)). CO-based
inversions exhibit patterns consistent with flask-based results (Sect. 5.2.4). Posteriors indi-
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Figure 6.13. Wintertime fossil fuel emissions in the Germany+ domain from Bayesian in-
versions using CO-based∆ffCO2 estimates and two different prior inventories: GCP (solid
lines/bars) and EDGAR (dashed lines/hatched bars). Panel (a) shows smoothed daily (GCP)
and hourly (EDGAR) prior and posterior fluxes; non-winter periods are shaded in gray.
Winter periods are defined as November to February. Panel (b) displays the corresponding
winter mean fluxes per winter season. The trends estimated from the mean winter emis-
sions are shown as solid and dashed lines in the respective colors. The color bar indicates
the mean monthly availability of CO-based estimates per station.

cate lower emissions than their corresponding priors (Tab. 6.8 and 6.9): posterior winter flux
adjustments to theGCP range from 0.4-2.7 Tmol/yr (2-10%), while EDGAR adjustments are
3.1-5.8 Tmol/yr (12-23%) in the corresponding posterior. EDGAR winter emissions during
the investigated period are 4.7-5.8 Tmol/yr (20-24%) higher than the GCP prior, over twice
the difference between the posteriors (2.3-2.6 Tmol/yr, 9-11%), with EDGAR posterior val-
ues being consistently higher. Posterior uncertainty was reduced by 0.2 to 0.4 Tmol/yr, or
20-40% relative to the prior uncertainty. Mean winter posterior emissions of both priors
consistently stayed within 3σ confidence range. For the EDGAR inventory, in particular,
the inversion led to a substantial reduction in posterior fluxes, pushing them below 4% prior
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Table 6.8. Winter mean∆ffCO2 emissions (in Tmol/yr) and their 1σ uncertainty (in paren-
theses) for the Germany+ domain, based on different prior inventories (GCP and EDGAR)
and the respective CO-based posterior inversions. Winter periods refer to November through
February of the indicated winter season.

Flux type
Absolute fluxes, [Tmol/yr]

2019/20 2020/21 2021/22 2022/23 2023/24

GCP Prior 24.8(0.9) 25.1(0.9) 24.8(0.9) 23.5(0.8) 22.2(0.8)
GCP Posterior 22.2(0.7) 24.7(0.6) 22.2(0.6) 22.4(0.5) 20.9(0.6)

EDGAR Prior 30.6(1.0) 30.1(1.0) 30.4(1.0) 28.6(1.0) 26.9(0.9)
EDGAR Posterior 24.9(0.7) 27.1(0.7) 24.6(0.6) 24.9(0.6) 23.3(0.6)

Table 6.9. Deviations of winter mean∆ffCO2 emissions from the GCP for the correspond-
ing winter and their 1σ uncertainty (in parentheses) for the Germany+ domain, based on
different prior inventories (GCP and EDGAR) and the respective CO-based posterior inver-
sions. Winter periods refer to November through February of the indicated winter season.

Flux type
Deviation from GCP, [%]

2019/20 2020/21 2021/22 2022/23 2023/24

GCP Prior 0(4) 0(4) 0(4) 0(4) 0(4)
GCP Posterior -10(3) -2(2) -10(2) -5(2) -6(3)

EDGAR Prior 23(4) 20(4) 23(4) 22(4) 21(4)
EDGAR Posterior 1(3) 8(3) -1(2) 6(3) 5(3)

uncertainties. Consistent underestimation of the prior fluxes can be explained by poten-
tial 14C background bias (see Sect. 8.1), which for the CO-based data would influence the
whole data series through the∆CO/∆ffCO2 ratio. However, the emission reductions in the
EDGAR-based posteriors still would be significant, suggesting potential overestimation of
emission fluxes by the EDGAR inventory in CO-based inversions.

Mean winter emission reduction trends over five years, calculated as linear regression
slopes (Fig. 6.13, panel (b)), generally align between inventories and posteriors. GCP re-
ports an average annual emission reduction of 0.7(0.2) Tmol/yr, while EDGAR suggests a
slightly higher rate of 0.9(0.3) Tmol/yr. Both posteriors indicate slightly lower reduction
rates of 0.5(0.4) Tmol/yr.

Even with a five-year period, posterior emission trend uncertainties remain high, pre-
venting reliable validation of inventory-based mean winter emission trends. Notably, in-
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ventory slope errors are significantly higher here (31% for GCP, 28% for EDGAR) than
for the last three years (2% for GCP, 0.5% for EDGAR, Sect. 5.2.4) due to COVID-related
flux anomalies (sharp decrease in 2020, subsequent increase in 2021, and further reductions
thereafter). Posterior emission trend uncertainties are approximately 84% and 71%. While
high posterior uncertainties might be partially attributed to COVID-induced flux variations,
other factors such as 14C and CO background biases (Sect. 6.3.3.4) and CO to∆ffCO2 ratio
inhomogeneities in station catchment areas (e.g., Sect. 6.3.3.3) also contribute. Neverthe-
less, data-driven posteriors align more closely with GCP than EDGAR, suggesting overall
lower winter emissions in the AoC.





Chapter 7

Integral-based ∆ffCO2 inversions

7.1 Introduction and motivation

Integral sampling represents a third complementary approach for estimating fossil fuel CO2

(∆ffCO2 ) fluxes, alongside flask-based (Sect. 5) and CO-based (Sect. 6) methods. Unlike
flask sampling, which targets specific times or meteorological conditions, integral samplers
continuously collect air for longer periods, usually two weeks. This results in highly repre-
sentative samples that average over full synoptic cycles and diverse atmospheric transport
conditions.

A key strength of this approach is its reduced sensitivity to short-term meteorological
misrepresentation in transport models, since the time-averaged nature of the samples in-
herently smooths out high-frequency variability. This leads to greater robustness in the
posterior estimates, particularly when the number of samples is limited. Moreover, integral
samples are not subject to the selection bias introduced by targeted flask sampling, making
them well suited to derive ∆ffCO2 fluxes on climatological scales.

However, integral sampling also introduces specific challenges. Continuous collection
over long intervals dampens high-frequency signals, thereby lowering the signal-to-noise
ratio (SNR) of fossil fuel enhancements. As a result, small emission events may become
undetectable. Additionally, because sampling is non-selective, the potential for contami-
nation from nuclear power plant emissions is higher compared to targeted flask sampling,
where meteorological filtering can be applied. This increases the nuclear-caused uncertainty
of the ∆ffCO2 estimates.

A distinct feature of integral sampling is that it captures the entire diurnal cycle of at-
mospheric CO2 , including conditions at night and early in the morning that are typically
excluded from atmospheric inversion systems. This improves the representativeness of the
sampled air masses but raises the question of howwell transport models, whose evaluation is
often limited to afternoon observations whenmixing is strongest, can accurately simulate the

127
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∆ffCO2 signal in these time-averaged samples. Since inversion frameworks generally as-
sume that the transport error is smallest during well-mixed afternoon periods, using 24-hour
averaged observations might introduce additional model-data mismatch (MDM), potentially
limiting the interpretability of the results.

In this chapter, I first present a comparison between the observed integral-based∆ffCO2

signals and those simulated using forward atmospheric modeling (Sect. 7.2.1). This analysis
serves as a consistency check between the measured and expected signals. I then apply the
Evaluation Matrix inversion framework, identical to the one used in previous chapters for
flask-based (Sect. 5.2.2) and CO-based (Sect. 6.3.2) data, to derive posterior∆ffCO2 fluxes
over the Germany+ domain (Sect. 7.2.2). The resulting posterior is compared to both flask-
based and CO-based posteriors to assess the strengths and limitations of the integral data set
in constraining fossil fuel emissions. Particular attention is paid to seasonal performance,
spatial representativeness, and the sensitivity of posterior fluxes to key parameters such
as the assumed background concentration (Sect. 7.2.3). Finally, I perform two Bayesian
inversions with unmodified GCP and EDGAR prior fluxes with realistic prior uncertainties
(Sect. 7.2.4).

7.2 Results for integral-based ∆ffCO2 estimates

7.2.1 Forward runs and model-data-mismatch

Two-weekly integral-based ∆ffCO2 estimates for CBW, HPB, and HTM sites (additional
stations in Sect. A.6) are presented in Figure 7.1. These are shown alongside the forward
modeled estimates, calculated using theGCP inventory and the STILT transportmodel (Sect.
3.2.1), and aggregated according to integrated sample times.

Most stations exhibit relatively low MDM between -0.3 ppm and 0.5 ppm, presented
in the Table 7.1 as X̄sim − X̄obs, indicating good correspondence between observation-
based and modeled estimates. However, CBW, LIN, and SAC stations show significantly
higher positive MDM of 1.3 ppm, 1.3 ppm and 3.3 ppm, respectively. Although these
stations are located near major fossil emission areas (CBW – Rotterdam, LIN – Berlin,
SAC – Paris), their measurements suggest much lower integrated ∆ffCO2 concentrations
than the corresponding simulations. For stations with elevated simulated signals, such as
CBW, KIT, and SAC (consistent with flask-based, Sect. 5.2.1, and CO-based, Sect. 6.3.1,
∆ffCO2 observations), the variances of MDM (σsim−obs) are much higher than the mean
measurement errors (ē): 1.8 ppm, 2.7 ppm and 2.6 ppm opposed to 1.4 ppm, respectively.
This suggests a higher sensitivity to transport errors due to their proximity to point sources.
In combination with potentially large heterogeneity of the ∆ffCO2 sources in the catch-
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Figure 7.1. The integral-based∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three example measurement
sites. Corresponding pairs are connected by dashed lines. The average signal over the de-
picted time period is noted in the legend. The panels on the right demonstrateMDMdistribu-
tion including it variance with red dashed lines showing the triple of the mean measurement
error. The chosen time period has the highest data density (01.07.2018 - 01.07.2023, Sect.
4.3).

ment area for LIN (previously noted in flask-based, Sect. 5.2.3.2, and CO-based inversions,
Sect. 6.3.3.2), this could explain the high MDM at these sites. For other stations, mean
measurement errors ē (1.2-1.4 ppm) generally exceed σsim−obs (0.9-1.4 ppm), implying that
measurement errors alone could account for the observed discrepancy between model and
observations (except for HTM with an MDM variance of 1.6 ppm, likely due to a few high
∆ffCO2 outliers). The SNR for most ICOS stations ranges from 1 to 2, but can reach 3.9
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Table 7.1. Statistics of the integral-based observed and simulated ∆ffCO2 concentrations
in the ICOS network from 2018-2023. X̄obs and X̄sim denote mean measured and simulated
concentrations for the corresponding site. X̄sim− X̄obs and σsim−obs denote the mean MDM
and its standard deviation. ē and SNR denote RMSD-based measurement error and mean
Signal-to-Noise Ratio. |X̄sim − X̄obs|> 3ē shows the approximate portion of the data with
higher absolute MDM then the triple of ē. (*) KIT was not used in regular inversions, only
in sensitivity studies.

Site X̄obs X̄sim X̄sim − X̄obs σsim−obs ē |X̄sim − X̄obs|> 3ē SNR
[ppm] [ppm] [ppm] [ppm] [ppm] [%] [rel.]

CBW 4.0 5.3 1.3 1.8 1.4 10% 2.9
GAT 2.1 2.2 0.1 1.1 1.3 0% 1.6
HPB 2.1 2.2 0.1 1.2 1.3 0% 1.6
HTM 1.7 1.6 -0.1 1.6 1.3 0% 1.3
JFJ 0.6 1.0 0.4 1.1 1.3 0% 0.4
KIT* 5.5 5.6 0.1 2.7 1.4 10% 3.9
KRE 2.4 2.3 -0.1 1.0 1.3 0% 1.8
LIN 3.4 4.7 1.3 1.2 1.3 0% 2.6
MHD -0.1 0.1 0.2 0.9 1.2 0% 0.0
NOR 0.4 0.9 0.5 1.0 1.3 0% 0.3
OPE 1.9 2.4 0.5 1.2 1.3 0% 1.5
OXK 2.1 2.5 0.4 1.1 1.3 0% 1.6
PAL 0.6 0.3 -0.3 1.2 1.3 0% 0.5
SAC 2.2 5.5 3.3 2.6 1.4 40% 1.6
SSL 1.7 1.8 0.1 1.2 1.3 0% 1.3
STE 3.2 3.1 -0.1 1.2 1.3 0% 2.4
SVB 0.5 0.4 -0.1 1.0 1.3 0% 0.4
TRN 1.6 2.0 0.4 1.4 1.4 0% 1.1

for KIT or drop below 1 for clean air or background sites (JFJ, MHD, NOR, PAL, SVB).
A comparison of the observed average ∆ffCO2 concentrations for integral-based and CO-
based measurements (Tab. 6.3) reveals a relatively good match for the corresponding sites,
with the exception of LIN.

As with other proxies, KIT station was excluded from the standard inversion station
setup due to potential on-site∆14C contamination, but its influence, as well as that of other
stations, on the posterior will be investigated in Section 7.2.3.2. For the final inversion with
unmodified priors (Sect. 7.2.4), SAC and LIN sites were additionally removed from the core
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station set to avoid any potentially biased sources. The SAC station was excluded because
its high MDM and σsim−obs values suggest potential 14C contamination from the Saclay
Nuclear research facility in its catchment area. The LIN station was removed as it is likely
influenced by large, brown coal power stations, ”Jänschwalde” (approx. 80 km southeast)
and ”Schwarze Pumpe” (approx. 100 km southeast), which are likely not properly resolved
by the transport model (see Sect. 7.2.3.2). These stations were, however, included in the
”Evaluation Matrix” inversions.

7.2.2 Application of the Evaluation Matrix to the integral-based inver-
sions

Following the methodology applied to flask-based (Sect. 5.2.2) and CO-based (Sect. 6.3.2)
inversions, integral-based posteriors were analyzed according to the Evaluation Matrix as
described in Sect. 3.2.4. This analysis aims to assess features such as seasonality and inter-
annual trends of fossil CO2 emissions embedded in the measurement data. Deviations from
the GCP emission inventory were classified for significance using results from the synthetic
experiments (Sect. 4.6).

7.2.2.1 Seasonal cycle of ∆ffCO2 emission trend derived from integral-based inver-
sions

The seasonal cycle of the integral-based posterior depicted in Figure 7.2 (green line) largely
corresponds to the GCP inventory (black line). Significant deviations in the winter emission
maxima are observed only for the 16/17, 19/20, and 22/23 winters, which is reflected in the
calculated relative amplitude difference of over 15% denoted in Table 7.2. For summers
within the main investigation period (01.07.2018 – 01.07.2023), only 2020 and 2023 signif-
icantly deviate from the GCP inventory (relative amplitude difference over 20%). However,
all summer minima in the secondary investigation period underestimate GCP emissions by
25% or more. This potentially suggests that, due to the lower SNR in summer, more data is
required to sufficiently constrain the inversion system. The positions of the extrema are gen-
erally better captured by the measurement data, with only two winter (2018/19 and 2022/23)
and two summer (2015 and 2023) periods showing significantly high deviations from the
GCP extrema positions of 50 days or more, as expected from a 1.5 ppm observational un-
certainty derived in Section 4.6.1 which resulted in a 1σ standard deviation for the position
of the extrema of 35-40 days and a 1σ variation in the value for the relative amplitude of
0.08 to 0.10.

Observed deviations from the GCP inventory could not be attributed to any single mea-
surement site (see Sect. 7.2.3.2). Deviations, such as the high amplitude in winter 16/17
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Figure 7.2. Results of the seasonal cycle evaluation of the integral-based posterior∆ffCO2

fluxes. The absolute (panel (a)) and relative to the Seasonless Prior (panel (b)) fluxes in the
Germany+ domain show the GCP inventory (black solid line), the Seasonless Prior (used
as input, black dashed line) and the posterior results (green line). Orange and purple circles
mark the maxima and minima of the posterior, with corresponding GCP extrema marked by
diamonds. Red lines indicate the main investigation time frame, with a dashed red line for
the secondary analysis period. The color bar at the bottom indicates the network-wide mean
monthly availability of integral-based estimates per station.

and phase shifts in winter 18/19 (coinciding with a local data density minimum, see color
bar in Fig. 7.2) and in summer 2015, could potentially be explained by insufficient data
density. Other deviations may suggest systematic differences between measurement data
and the inventory. For instance, absolute posterior fluxes in winter 19/20 showed values
similar to the GCP inventory of the previous winter 18/19, whereas the GCP depicted a very
skewed winter emission shape in 19/20 due to a much earlier emission decrease caused by
the Covid-19 lockdown. Furthermore, the integral-based posterior suggests overall lower
emissions in the summer with a later minimum compared to the GCP. These unique cir-
cumstances may lead to increased errors in the disaggregation of national totals (assimilated
into emission inventories), as human and economic behavioral patterns significantly differed
from business-as-usual scenarios.
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Table 7.2. Positions (Date) and relative amplitudes (Ampl., relative to the Seasonless Prior)
of the seasonal extrema extracted from the GCP inventory and the posterior of the integral-
based inversion, as well as the difference between them.

Season
GCP Integral-based ∆ffCO2 Posterior – GCP

Date
Ampl.

Date
Ampl. Phase shift Ampl. diff.

[rel.] [rel.] [days] [rel.]

Winter 15/16 27.12 1.10 23.12 1.09 -4 -0.01
Winter 16/17 29.12 1.10 29.12 1.39 0 0.29
Winter 17/18 30.12 1.10 02.02 1.09 34 -0.01

Winter 18/19 28.12 1.10 16.02 1.20 50 0.10
Winter 19/20 30.12 1.12 09.01 1.28 10 0.16
Winter 20/21 01.01 1.12 06.02 1.14 36 0.02
Winter 21/22 08.01 1.12 30.01 1.12 22 0.00
Winter 22/23 11.01 1.12 14.11 0.91 -58 -0.21

Summer 2015 04.07 0.90 07.05 0.62 -58 -0.28
Summer 2016 03.07 0.90 30.06 0.51 -3 -0.39
Summer 2017 04.07 0.90 01.07 0.65 -3 -0.25

Summer 2018 04.07 0.90 05.08 0.82 32 -0.08
Summer 2019 29.06 0.89 27.07 0.90 28 0.01
Summer 2020 01.07 0.88 21.07 0.65 20 -0.23
Summer 2021 09.07 0.88 11.08 0.82 33 -0.06
Summer 2022 07.07 0.88 23.07 0.83 16 -0.05
Summer 2023 04.07 0.87 11.05 0.65 -54 -0.22

Another prominent deviation from the GCP inventory was observed in winter 22/23
and summer 2023. A similar, albeit less pronounced, effect was previously observed in the
flask-based inversions (Sect. 5.2.2.1). There, the winter 22/23 posterior flux maximum was
also shifted to earlier dates with a lower overall amplitude, and the summer 2023 minimum
was considerably lower compared to the GCP. As demonstrated in the previous chapters,
the extrapolation of the marine ∆14C background — and potential biases therein — has
had a significant impact on posterior flux estimates. In Sect. 7.2.3.1, this sensitivity will be
investigated for the integral samples as well.

Overall, taking into account the exceptional circumstances of the COVID-19 pandemic
in 2020 and a potential bias in the extrapolated ∆14C background in 2023, I conclude that
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the position and amplitude of the seasonal cycle in the integral-based ∆ffCO2 posterior do
not significantly deviate from the GCP inventory.

7.2.2.2 Inter-annual ∆ffCO2 emission trend derived from integral-based inversions

The integral-based ∆ffCO2 data provide a valuable foundation for investigating long-term
trends in fossil fuel emissions. Figure 7.3 shows posterior fluxes from the F1T and F0.5T
inversions compared to the GCP inventory and the Trendless prior, analogous to the inter-
annual trend investigation of synthetic data (Sect. 4.6.2). In this section, linear trends are
fitted to the posterior time series to quantify emission changes over the most recent period
(01.07.2018–01.07.2023), with particular attention to the influence of 2023.

For the full period from 2018 to 2023, the trend in absolute fluxes (Fig. 7.3, panel (a))
is negative for all time series but differs in magnitude: GCP shows a moderate decrease of
–0.74±0.04 Tmol/yr, whereas the F1T and F0.5T posteriors indicate significantly stronger
declines of –1.97±0.04 Tmol/yr and –1.88±0.03 Tmol/yr, respectively. The relative trends
(Fig. 7.3, panel (b)) compared to the Trendless Prior yield consistent results: –2.8%/yr for
GCP versus –7.4%/yr (F1T) and –7.1%/yr (F0.5T). Compared to the synthetic studies (Sect.
4.6.2), such difference in the trends is higher than the difference expected just from the influ-
ence of the measurement errors (∼0.3 Tmol/yr). These differences underline a pronounced
sensitivity of the inversions to the data at the end of the time series.

To assess this further, the same trend analysis is repeated excluding the final year 2023
(not shown). For the reduced period (01.07.2018–01.07.2022), the posterior trends in abso-
lute fluxes shift to –1.60±0.06 Tmol/yr (F1T) and –1.73±0.05 Tmol/yr (F0.5T), aligning
more closely with the GCP trend of –0.78±0.06 Tmol/yr. The relative slopes also become
more consistent: –2.9%/yr (GCP), –6.0%/yr (F1T), and –6.5%/yr (F0.5T). The difference
is, however, still higher than the expected variation based solely on the measurement errors
(∼0.3 Tmol/yr, Sect. 4.6.2).

Visual inspection of panels (a) and (b) in Figure 7.3, on the other hand, would generally
support the claim that the integral-base posteriors are suitable for trend analysis: the F0.5T
posterior closely tracks the GCP trend until well into 2022. The sharp downward deviation
starting in 2023 dominates the full-period slope and appears inconsistent with prior behav-
ior. Given the two-year temporal correlation length applied in the F0.5T setup, it is likely
that potential anomalies — such as a biased ∆14C background in 2023 — also affect the
posterior estimates in late 2022. Here is also evident that the difference in the trend slopes
(with excluded last year) comes solely from the high 2019 summer emission estimates in
the posteriors, which can be influenced by the local minimum in the data density (colorbar
in Fig. 7.3).

Taken together, these findings highlight the strong influence of the year 2023 on inferred
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Figure 7.3. Results of the inter-annual trend analysis for the integral-based inversions. The
absolute (panel (a)) and relative to the Trendless Prior (panel (b)) fluxes in the Germany+
domain show the GCP inventory (black solid line), the Trendless Prior (used as input, black
dashed line) and posterior results for F1T (green solid line) and F0.5T (yellow dashed line)
filters. The straight lines show linear regressions of the correspondingly colored flux curves.
Red lines indicate themain investigation time frame, with a dashed red line for the secondary
analysis period. The color bar at the bottom indicates the network-wide mean monthly
availability of integral-based estimates per station.

multi-annual trends and emphasize the need for caution when interpreting trend magnitudes.
The consistency between posterior and GCP trends prior to 2023, especially in the F0.5T
inversion, demonstrates the potential of integral samples to resolve long-term fossil fuel
emission changes — provided sufficient data quality and stable background assumptions.

7.2.2.3 Absolute and annual mean ∆ffCO2 emissions derived from integral-based in-
versions

The absolute and annually aggregated fossil fuel CO2 fluxes derived from inversions based
on integral ∆ffCO2 data are summarized in Figure 7.4. As part of the sensitivity analysis,
inversions were conducted using a Flat Zero and a Flat 200p Prior, each with 40% prior
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Figure 7.4. Results of the analysis of absolute and annually aggregated emission fluxes for
the integral-based inversions in the Germany+ domain. Panel (a) shows the absolute and
panel (b) the relative to the Smooth Prior ∆ffCO2 fluxes. Panel (c) shows yearly aggre-
gated emissions from the panel (a). The Flat Zero Prior and the Flat 200p Prior (used as
inputs, purple and gray dashed lines, respectively) as well as the Smooth Prior (orange solid
line) are shown alongside posterior results (green solid and yellow dashed lines). Red lines
indicate the main investigation time frame (01.07.12-01.07.23), with a dashed red line for
the secondary analysis period (from 01.07.15). The color bar indicates the mean monthly
availability of integral-based estimates per station.

uncertainty. The systematic behavior observed in the synthetic flat-prior experiments, the
so-called over- and undershoot effect (Sect. 4.6.3), emerges again: posterior emissions tend
to overestimate the true values when starting from a low-emission prior (Flat Zero), and
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Table 7.3. Annual mean aggregated posterior integral-based ∆ffCO2 fluxes relative to the
GCP inventory. Here I consider 2018-2022 to be the core evaluation period. 2015 and 2023
are not investigated as the sufficiently high data density was not maintained for the whole
year.

Prior 2016 2017 2018 2019 2020 2021 2022

Flat Zero 0.92 0.97 1.04 1.15 0.99 1.04 0.99
Flat 200p 0.80 0.85 0.91 1.03 0.88 0.92 0.88

underestimate them when starting from a high-emission prior (Flat 200p) (Fig. 7.4, panel
(a)).

To account for this effect, the real-data posteriors were interpreted in the context of the
synthetic benchmark results (not shown). After considering the mean bias observed in the
synthetic experiments (∼7% overestimation for the Flat Zero Prior and ∼6% underestima-
tion for the Flat 200p Prior, Sect. 4.6.3), it becomes clear that even with very limited prior
information in form of the Flat Zero and Flat 200p Priors, the integral-based posterior esti-
mates align remarkably well with the GCP inventory for the years with good data coverage
and available ∆14C background measurements at the MHD station (notably 2018–2022).
Generally, the normalized RMSD for the main investigation period between the posteriors
and the Smooth Prior (0.11 for Flat Zero and 0.13 for Flat 200p) can be entirely explained
by the measurement errors (0.11±0.02 in synthetic experiments, Sect. 4.6.3).

The annual fossil fuel emission estimates generally deviate from the GCP values by
only a few percent (within ±9%) as shown in Table 7.3 and Figure 7.4, panel (c), while a
deviation of approximately 6% can already be expected due to the observational uncertainty
of 1.5 ppm. Larger deviations occur in the years 2016–2017 and 2019. The underestimations
in 2016–2017 coincide with periods of limited data availability. The discrepancy in 2019 is
mainly attributed to a shifted seasonal cycle, particularly the timing of the 2018/19 winter
maximum. In 2020, the year of the COVID-19 lockdown, posterior estimates suggest a
more pronounced drop in fossil emissions than reported in the GCP inventory. Again, the
year 2023 shows particularly low∆ffCO2 emissions, which will be further discussed in the
14C background sensitivity studies (Sect. 7.2.3.1).

In summary, once the systematic prior dependence identified in the synthetic tests is
considered, the integral-based inversions prove to be highly capable of recovering general
and annual fossil emission trends during periods with sufficient observational constraints.
This underscores the utility of integral sampling for assessing absolute fossil CO2 emissions
in the Germany+ domain.
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7.2.3 Uncertainty investigation

7.2.3.1 Sensitivity of the posterior fluxes to the European∆14C background estimate

As discussed in previous chapters, the European ∆14C background is a key component in
the determination of∆ffCO2 values (see Sect. 3.1.1). Its extrapolation beyond spring 2022,
when regular measurements at the Mace Head (MHD) background station were discontin-
ued, introduces a potential source of systematic bias, particularly from 2023 onward. In both
the flask-based and CO-based∆ffCO2 inversions, the possibility of such a bias was consid-
ered as a likely explanation for deviations from inventory trends observed in recent years. In
this section, I systematically assess the sensitivity of the integral-based ∆ffCO2 inversions
to such background uncertainties.

The sensitivity experiment follows the samemethodology as described in Section 5.2.3.1
for flask-based and Section 6.3.3.4 for CO-based inversions, in which the European ∆14C
background curve was shifted by ±2‰, reflecting the approximate uncertainty range in
the background estimate. Inversions were repeated using the Flat Zero Prior and a prior
uncertainty of 40%, with all other parameters kept constant. Figure 7.5 presents the resulting
posterior fossil fuel CO2 fluxes.

Similarly to the results of the flask-based experiment, a positive background offset (+2‰)
leads to elevated ∆ffCO2 values and thus higher inferred fluxes. Consequently, the −2‰
background shift reduces the estimated fluxes. However, the amplitude of this effect is even
more pronounced in the case of integral data. Panel (b) in Figure 7.5 reveals seasonal devi-
ations of up to 10 Tmol/yr in summer, which corresponds to flux differences of more than
40% relative to the seasonal mean. During winter, the flux changes induced by the back-
ground shifts remain smaller but are still substantial, ranging from approximately 5 to 10
Tmol/yr.

The heightened sensitivity of the integral-based inversions can be attributed to the av-
eraging nature of the sampling. As the 14C signal is integrated over two-week periods,
short-term high-concentration episodes are smoothed out, effectively reducing the signal-
to-noise ratio of the∆ffCO2 estimates. As a result, a given absolute bias in∆14C translates
more directly into flux space.

The posteriors respond nearly symmetrically to the ±2‰ background shift, with only
minor deviations occurring near the boundaries of the time series and during periods of
limited data availability. In these cases, the posterior solutions tend to drift towards the
Flat Zero Prior due to the reduced observational constraint. However, during the core in-
vestigation period (2018-2022), the differences between the +2‰ and the mirrored −2‰
posteriors remain small, indicating an approximately linear and symmetric system response
to variations in the ∆14C background.
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Figure 7.5. Sensitivity of the posterior fossil fuel CO2 fluxes derived from integral-based
observations to a ±2‰ shift in the European ∆14C background. Panel (a) shows absolute
fluxes for the GCP inventory (black), the Flat Zero prior (black dashed), and the three pos-
terior scenarios: standard background (green), −2‰ (yellow), and −2‰ (blue). Panel (b)
displays the flux differences between the standard and perturbed posteriors. The dashed
blue line shows the reflected difference of the −2‰ case for comparison. Vertical red lines
indicate the boundaries of the main investigation period. The bottom color bar illustrates
the monthly integral data availability.

These results reinforce the notion of the critical role of the∆14C background in RIBA.
While the magnitude of the impact is already considerable for flask samples (Sect. 5.2.3.1),
it is even more pronounced in the case of integral sampling. This underscores the urgent
need for robust and continuous∆14C background measurements at key sites such as MHD
to ensure the reliability of fossil fuel CO2 flux estimates— especially when using data types
that rely on long sampling periods.

7.2.3.2 Influence of individual stations on the integral-based posterior

The influence of individual stations on the integral-based posterior emissions was assessed
by removing one station’s data from the inversion (or adding it for KIT).Most stations do not
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Figure 7.6. Posterior ∆ffCO2 fluxes for the Germany+ domain based on integral-based
∆ffCO2 estimates using a Flat Zero prior with 40% prior uncertainty. The standard posterior
(green solid line) is compared to leave-one-out setups, where individual ICOS stations were
excluded (other lines), as well as a configuration including the KIT site (yellow dashed
line). The GCP inventory (black solid line) and the Flat Zero prior (black dashed line) are
shown for reference. The color bar indicates the mean monthly availability of integral-based
∆ffCO2 data per station.

exhibit an excessive influence on the posterior results as depicted in Figure 7.6), suggesting
robust data coverage in the Germany+ domain. In the following, I analyze how individual
stations affect the previously observed discrepancies between posteriors and the GCP inven-
tory (Sect. 7.2.2.3) and focus on KIT and LIN, which show significant influence compared
to the rest of the network and did already show discrepancies for the other∆ffCO2 proxies.

The emission maximum in winter 2016/17 is notably influenced by the CBW site (which
suggests 5% lower emissions) and the HTM station (leading to 5% higher flux estimates for
the domain). However, all stations generally agree on elevated emissions during this pe-
riod. If the posterior is indeed biased, the underlying reasons for that have likely affected
the entire measurement network, e.g., an incorrect background for this period or inaccu-
rate atmospheric transport. The same applies to summer flux estimates in the secondary
investigation period.

The LIN site significantly influences the posterior results in the final year, causing an
average 10% decrease in ffCO2 flux estimates. However, this influence supersedes the per-
ceived discrepancy with the GCP inventory. Although excluding LIN data increases pos-
terior fluxes, bringing them closer to GCP after mid-2022, the posterior shape remains dis-
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torted, and the mismatch with GCP increases before 2022. Therefore, LIN data are not
solely responsible for the discrepancy observed in the last year.

LIN’s significant influence on posteriors was also observed in flask-based (Sect. 5.2.3.2)
and CO-based (Sect. 6.3.3.2) inversions, where its exclusion led to higher posterior emis-
sions. This is not surprising given its location east of Berlin, a major emitter, making it
geographically important for constraining the Germany domain, as main air movement is
typically from the west. Although LIN’s mean MDM is high (third highest in the network,
Tab. 7.1), its MDM variation for integrals (σsim−obs) is comparable to other ICOS stations.

Forward model runs match flask-based ∆ffCO2 observations at LIN (Sect. 5.2.1), but
not CO-based (Sect. 6.3.1) or integral-based ∆ffCO2 (Sect. 7.2.1) data. However, flask
data show high MDM variability (σsim−obs), suggesting potential misrepresentation of at-
mospheric conditions by the transport model. LIN is also located northwest of the ”Jän-
schwalde” (approx. 80 km southeast) and ”Schwarze Pumpe” (approx. 100 km southeast)
power plants, Germany’s largest brown coal power plants, which may contribute to high
∆ffCO2 variability. Both integrated fossil proxies show lower ffCO2 concentrations than
the forward model. Maier et al., 2021 demonstrated that incorrect emission levels of point
sources can bias forward model∆ffCO2 estimates, especially at night (relevant for integral
samples), if the source is closer than 50 km to the station. Given their exceptional emission
magnitudes, the aforementioned power plants might bias forward model predictions even
at slightly longer distances. For CO-based∆ffCO2 estimates, these plants can significantly
contribute to the observed variability of the∆CO /∆ffCO2 ratios. The presence of such high
emitters within the LIN footprint could explain its significant influence on the Germany+
domain and raises questions about the ability of current transport models to reliably model
point sources.

Even if its geographic location is excellent for constraining the Germany+ domain, in
light of the high MDM and its variability (Tab. 7.1), potentially pointing to lacking transport
model representativeness, the LIN station was removed from the final inversions with un-
modified priors. Such a high dependence of the posterior on an individual station (≈10%)
makes the posterior highly susceptible to potential biases in that station’s data.

Another prominent outlier from the station set is KIT. If the KIT site is added to the
station set, the posterior experiences an increased seasonal amplitude: higher emissions
in winter and lower in summer in the main investigation period. Although the mean MDM
between simulations andmeasurements is low (0.1 ppm, Tab. 7.1), this site shows the highest
variation of MDM throughout the ICOS network (2.7 ppm) due to its proximity to point
sources and possible ∆14C contamination. As explained previously, posterior fluxes are
highly susceptible to outliers in the MDM. Given that KIT is not essential to constrain the
inversion and introduces a potential bias by increasing the seasonal amplitude, its removal
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from the core station set is hereby justified.

Similarly, the SAC station exhibits the highest absoluteMDM (3.3 ppm) and the second-
highest MDM standard deviation (2.6 ppm) after KIT (Tab. 7.1). This is likely due to
complex emission patterns near Paris and potential on-site 14C contamination from Saclay
Nuclear Research Center, the campus of which harbors the measurement site. Such con-
tamination would mask the∆ffCO2 signal, potentially explaining high MDM. Furthermore,
SAC has only little influence on the fluxes in the Germany+ domain and is not required to
constrain it (Fig. 7.6) as it is located outside of the AoC (Fig. 2.4, Fig. 4.1). These issues
advocate for the exclusion of SAC data from future inversions, including the inversions with
unmodified priors, to avoid potential 14C contamination induced bias.

7.2.4 Integral-based Bayesian inversions with unmodified GCP and
EDGAR priors

This section presents results from two inversion runs based on integral-based∆ffCO2 data,
using the unaltered daily GCP and hourly EDGAR emission inventories as priors (Sect.
3.2.3). A prior uncertainty of 4% (relative to the GCP fluxes) was applied, in line with
literature values for similarly aggregated domains (Janssens-Maenhout et al., 2019; Jones
et al., 2022). Although the systematic anomalous behavior of the summer flux estimates
was not observed in the integral-based inversion so far (Sec. 7.2.2.1), to be consistent with
other investigations of this type (flask-based in Sect. 5.2.4 and CO-based in Sect. 6.3.4), I
focused on winter months (November-February) from 2018-2023, representing the period
with highest data constraint (Sect. 4.3). As discussed in Section 7.2.3.2, the data from SAC
and LIN were excluded from these inversions.

Figure 7.7 depicts the prior ffCO2 fluxes and inversion results in the Germany+ domain.
Consistent with flask-based (Sect. 5.2.4) and CO-based (Sect. 6.3.4) inversions, both poste-
riors indicate lower mean winter fluxes than the corresponding inventories. Both absolute
posterior values are closer to GCP estimates as shown in Table 7.4 and Table 7.5, suggest-
ing a potential EDGAR winter flux overestimation. The GCP prior-posterior difference in
mean winter emissions ranges from 0.5 to 2.9 Tmol/yr, or 2–12%, while for EDGAR, this
difference is significantly higher: 3.1–5.8 Tmol/yr or 12–25%. Posterior mean winter flux
estimates exhibit smaller differences (7–13%) than corresponding priors (16–23%), indi-
cating strong data constraints and data-driven results for the integral-based inversions, par-
ticularly for the EDGAR posterior, where the adjustments are significantly higher than 4%
assumed prior uncertainty. Uncertainty reduction in the posteriors compared to the priors
ranges between 0.2 and 0.3 Tmol/yr corresponding to 20–30% relative uncertainty reduc-
tion. The mean winter posterior emissions are within 2–3σ confidence range of each other
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Figure 7.7. Winter fossil fuel CO2 emissions in the Germany+ domain from Bayesian in-
versions using integral-based ∆ffCO2 estimates and two different prior inventories: GCP
(solid lines/bars) and EDGAR (dashed lines/hatched bars). Panel (a) shows smoothed daily
(GCP) and hourly (EDGAR) prior and posterior fluxes; non-winter periods are shaded in
gray. Winter periods are defined as November through February. Panel (b) displays the
corresponding winter mean fluxes per winter season. The trends estimated from the mean
winter emissions are shown as solid and dashed lines in the respective colors. The color bar
indicates the mean monthly availability of integral-based estimates per station.

for corresponding years.

As noted previously (e.g., Sect. 7.2.2.3), 2022/23 winter emission estimates for both
posteriors show larger deviations from prior fluxes. Mean relative prior-posterior differ-
ences for winters 2018/19–2021/22 are 2–6% for GCP (Tab. 7.5) and 12–17% for EDGAR,
whereas winter 2022/23 shows 12% and 25% deviations, respectively. For the GCP case, the
”missing”∼10% or 2.4 Tmol/yr emissions correspond to a∼1‰bias in the 14C background
(Sect. 7.2.3.1). This hypothesis is supported by the fact that the deviations in the flask-based
inversions could be also explained by 14C background bias of similar magnitude (Sect.
5.2.4).
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Table 7.4. Winter mean ffCO2 emissions (in Tmol/yr) and their 1σ uncertainty (in parenthe-
ses) for the Germany+ domain, based on different prior inventories (GCP and EDGAR) and
the respective posterior inversions using integral-based ∆ffCO2 estimates. Winter periods
refer to November through February of the indicated winter season.

Flux type
Absolute fluxes [Tmol/yr]

2018/19 2019/20 2020/21 2021/22 2022/23

GCP Prior 28.1(1.0) 24.8(0.9) 25.1(0.9) 24.8(0.9) 23.5(0.8)
GCP Posterior 26.9(0.7) 24.3(0.7) 23.6(0.6) 24.2(0.6) 20.6(0.6)

EDGAR Prior 32.6(1.1) 30.6(1.0) 30.1(1.0) 30.4(1.0) 28.6(1.0)
EDGAR Posterior 28.9(0.8) 27.5(0.7) 25.8(0.7) 26.7(0.7) 22.8(0.7)

Table 7.5. Deviations of winter mean ffCO2 emissions from the GCP emission inventory
for the corresponding winter and their 1σ uncertainty (in parentheses) for the Germany+
domain, based on different prior inventories (GCP and EDGAR) and the respective poste-
rior inversions using integral-based ∆ffCO2 estimates. Winter periods refer to November
through February of the indicated winter season.

Flux type
Deviation from GCP [%]

2018/19 2019/20 2020/21 2021/22 2022/23

GCP Prior 0(4) 0(4) 0(4) 0(4) 0(4)
GCP Posterior –4(2) –2(2) –6(2) –2(2) –12(2)

EDGAR Prior 16(4) 23(4) 20(4) 23(4) 22(4)
EDGAR Posterior 3(2) 11(3) 3(2) 8(2) –3(3)

Emission reduction trends were calculated using linear fits of mean winter emissions
(Fig. 5.7, panel (b)). Over five winters, estimated annual emission reductions in the AoC
are 0.9(0.3) Tmol/yr for GCP and 0.8(0.2) Tmol/yr for EDGAR (35% and 25% uncertainty,
respectively). Both posteriors suggest a higher reduction rate of 1.3(0.4) Tmol/yr (30%
trend uncertainty). This higher estimate may be attributed to notably lower 2022/23 winter
emissions. Excluding this winter from the linear fits changes emission trend estimates to
1.0(0.6) Tmol/yr and 0.7(0.4) Tmol/yr for GCP and EDGAR priors, and 0.9(0.5) Tmol/yr
and 0.8(0.4) Tmol/yr for respective posteriors (not shown). These revised estimates do not
differ significantly within respective error boundaries. High uncertainties in prior emission
reduction rates, similar to the CO case (Sect. 6.3.4), potentially relate to COVID-induced
flux variations in 2020–2021. These findings support using integral-based inversions for
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validating mean winter emission trends, once the issues with 14C background are fixed.





Chapter 8

Discussion

This chapter discusses a key limitation of the Regional Isotope Budget Approach (RIBA):
its dependence on a reliable 14C background estimate. The effects of a potential 2023–2024
background bias on the posterior results for different ∆ffCO2 proxies are summarized in
Section 8.1. Section 8.2 compares the inversions results using unmodifiedGCP and EDGAR
priors for flask, integral, and CO-based ∆ffCO2 proxies for the overlapping time frame,
assuming appropriate flux adjustments to counteract the effects of the 14C background bias.

8.1 High 14C background bias dependence of the RIBA

As already mentioned before (see Sect. 5.2.3.1, 6.3.3.4 and 7.2.3.1), a biased 14C back-
ground can substantially affect ∆ffCO2 estimates derived via the RIBA and thus influence
the inversion results. Unfortunately, no 14C samples have been collected at MHD since
summer 2022, rendering the central background station for the European continent unavail-
able for the years with an exceptionally high number of flask samples (Sect. 4.3). Moreover,
this time span coincides with the interval in which I expect the most pronounced changes in
natural 14C production. The 2020 solar minimum (Clette & Lefèvre, 2015) led to increased
stratospheric∆14C production, with expected tropospheric effects around 2022 due to typi-
cal stratosphere-troposphere exchange times (Holton et al., 1995). The change in the natural
14C production is evident by the slight trend adjustments in 2023-2024 seen at the stations
JFJ, PAL and SVB as well as in the last MHD integral samples that are systematically above
the used 14C background estimate (Fig. 3.2). These circumstances motivated the construc-
tion of a 14C background record based on the trends observed at other available Northern
Hemisphere remote stations with no major fossil CO2 sources nearby located at similar lat-
itudes.

Due to fast meridional mixing that acts on timescales of weeks to months (Warneck,
1999) this mean northern-hemispheric trend should consistently reflect the effect of en-
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hanced stratospheric 14C production. However, it cannot be said with certainty whether
the mean 14C latitude-dependent differences derived from long-term station comparisons
remain valid for this particular period. In addition, the mean seasonality of the used 14C
background was derived from the long-term MHD seasonal cycle, making the background
estimate rigid and unable to reflect potential short-term variations. In summary, it can be
stated that there is in fact a potential for bias in the constructed 14C background, particularly
in the years 2023 and 2024.

The analyses of the 14C background bias sensitivity (Sect. 5.2.3.1, 6.3.3.4, 7.2.3.1)
showed a substantial sensitivity of the posterior fossil flux estimates for all three ∆ffCO2

proxies. In these sensitivity analyses, I investigated the impact of a ±2‰ bias in ∆14C
background on the posteriors of each proxy. For the flask-based inversions, the ±2‰ bias
leads to an ∆ffCO2 emission change of ∼ ±2 Tmol/yr in winter and ∼ ±4.5 Tmol/yr in
summer (approx. 8% and 20% of the corresponding GCP emissions). For the integral-
based inversions, the±2‰bias in∆14C background leads to even larger emission changes
of∼ ±6 Tmol/yr in winter and∼ ±8 Tmol/yr in summer (approx. 22% and 40% relative to
the GCP fluxes). The differing impact of a constant∆14C bias on the two proxies, as well as
on the two seasons, can be explained by the absolute magnitude of the∆ffCO2 enhancement
signal. The smaller the ∆ffCO2 concentrations — for instance, in summer or in integrated
samples compared to flask samples — the greater the relative influence of the background
bias.

CO-based inversions are indirectly influenced by the 14C background through its role
in calculating the ∆CO /∆ffCO2 ratio, which affects the entire CO-based dataset. A ±2‰
bias in the 14C background systematically shifts the derived CO-based ∆ffCO2 concen-
trations, with a more pronounced effect in winter. Although the relative impact per sample
remains consistent, the absolute change in winter∆ffCO2 concentration is greater due to the
larger ∆CO signals. This leads to a higher influence on the posterior estimates in winter of
about ±5 Tmol/yr and only ±3 Tmol/yr in summer. Additionally, CO-based data are also
influenced by CO background biases, directly affecting ∆ffCO2 estimates and leading to
posterior ∆ffCO2 emission changes of 1-2 Tmol/yr in winter and up to 15 Tmol/yr in sum-
mer for±15 ppb CO background biases (∼5-8% and∼60% of the mean annual fluxes in the
Germany+ domain). As discussed in Section 6.3.3.4, most 14C flasks for ratio calculation
were collected in 2024, and are therefore potentially susceptible to a bias in the background.

All three inversion results show indications of a 14C background bias in 2023 and 2024
(see Sect. 5.2.2.1, 6.3.2.1 and 7.2.2.1), coinciding with the data gap at MHD. This suggests
that efforts to remedy this by using global clean air 14C sites for the northern hemispheric
trend estimation were not entirely successful. Especially the observed deviations during
summer in flask-based and integral-based inversions suggest a potential bias of 1‰ in 2023,
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increasing to approximately 2‰ in 2024 (e.g., Sect. 5.2.4 and 7.2.4). These findings under-
score MHD’s critical role as a clean European marine background site and emphasize the
need for its continued 14C data series. The 14C background determination for the years 2023
and 2024 is expected to become more robust once the 14C dataset at MHD is resumed with
the 2025 measurements and additional data from other Northern Hemisphere background
stations are available.

8.2 Fossil fuel CO2 proxies inter-comparison

Sensitivity studies on all three ∆ffCO2 proxies revealed that the phase of the seasonal cy-
cle could be reliably constrained within the expected range of variability caused by proxy-
specific observational uncertainties. However, the amplitude of the seasonal cycle has been
significantly overestimated in recent years for flask-based and CO-based inversions (Sect.
5.2.2.1 and 6.3.2.1). As discussed in the previous section (Sect. 8.1), this overestimation is
most likely due to a growing bias in the 14C background estimate.

Consequently, the results of the sensitivity tests for annual mean emissions derived from
flask-based and CO-based∆ffCO2 data cannot be interpreted meaningfully. In contrast, the
longer data record of the integral samples allows for the assessment of the seasonality as
well as the annual mean fossil emissions during the period before the suspected background
bias. Between 2016 and 2022, the integral-based data enabled the estimation of annual
mean fossil CO2 emissions in the Germany+ domain to within 10% of the corresponding
GCP inventory values — even with minimal prior information (Sect. 7.2.2). This result
strongly demonstrates the extent to which 14CO2 based atmospheric observations alone can
constrain fossil emissions at the regional scale, if the 14C background data is reliable.

When comparing the results of the Bayesian inversions of the different fossil fuel CO2

proxies using unmodified priors, I focused on the winter periods to reduce the influence
of a potentially biased 14C background, although the previous section has shown that even
during winter a background bias cannot be entirely ignored.

To address this, the proxy-specific results presented here are also interpreted under a bi-
ased scenario, where the 14C background is assumed to be negatively biased by 1‰±0.5‰
in 2023 and by 2‰±1‰ in 2024 affecting the flask-based and integral-based posterior
emissions. The upper half of Table 8.1 summarizes the mean GCP prior and posterior win-
ter ∆ffCO2 fluxes for the Germany+ domain across the different proxies. The upper part
shows the unmodified posterior results, while the lower part of the upper half (marked with
*) presents the background bias adjusted results for the last two winters, assuming the 1‰
and 2‰ biases, respectively. Note that for CO-based estimates, the bias correction in 2024
affects all previous years, since the sheer number of samples from 2024 dominates the CO
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Table 8.1. Winter mean∆ffCO2 emissions (in Tmol/yr) and their 1σ uncertainty (in paren-
theses) for the Germany+ domain, based on different prior inventories (GCP and EDGAR)
and the respective posterior emissions based on three ∆ffCO2 proxies: 14C -based flasks
(Fl.) and integrals (Int.) and 14C-calibrated CO-based∆ffCO2 . (*) Emissions are adjusted
for the bias in∆14C background (1‰±0.5‰ in 2023 and 2‰±1‰ in 2024 for Fl. and Int.,
1‰±0.5‰ in all years for CO). ”NA” denotes winters outside of the main investigation
period of the corresponding proxy. Winter periods refer to November through February of
the indicated winter season.

Flux
Proxy

Absolute fluxes, [Tmol/yr]

type 2018/19 2019/20 2020/21 2021/22 2022/23 2023/24

GCP
Prior

- 28.1(1.0) 24.8(0.9) 25.1(0.9) 24.8(0.9) 23.5(0.8) 22.2(0.8)

GCP
Posterior

Fl. NA NA NA 24.6(0.4) 21.9(0.5) 20.3(0.5)
CO NA 22.2(0.7) 24.7(0.6) 22.2(0.6) 22.4(0.5) 20.9(0.6)
Int. 26.9(0.7) 24.3(0.7) 23.6(0.6) 24.2(0.6) 20.6(0.6) NA

Fl.* NA NA NA 24.6(0.4) 22.9(1.0) 22.3(1.5)
CO* NA 24.7(2.0) 27.2(1.9) 24.7(1.9) 24.9(1.9) 23.4(1.8)
Int.* 26.9(0.7) 24.3(0.6) 23.6(0.6) 24.2(0.6) 23.6(2.1) NA

EDGAR
Prior

- 32.6(1.1) 30.6(1.0) 30.1(1.0) 30.4(1.0) 28.6(1.0) 26.9(0.9)

EDGAR
Posterior

Fl. NA NA NA 27.3(0.5) 23.7(0.5) 23.0(0.6)
CO NA 24.9(0.7) 27.1(0.7) 24.6(0.6) 24.9(0.6) 23.3(0.6)
Int. 28.9(0.8) 27.5(0.7) 25.8(0.7) 26.7(0.7) 22.8(0.7) NA

Fl.* NA NA NA 27.3(0.5) 24.7(1.0) 25.0(1.6)
CO* NA 27.4 (2.0) 29.6(2.0) 27.1(1.9) 27.4(1.9) 25.8(1.9)
Int.* 28.9(0.8) 27.5(0.7) 25.8(0.7) 26.7(0.7) 25.8(2.2) NA

to ∆ffCO2 correlation. For CO-based posteriors, I assume a mean 14C background bias of
1‰±0.5‰ and apply positive 2.5±1.3 Tmol/yr correction to all years. The lower half of
Table 8.1 shows the same results, but for the EDGAR prior and posteriors.

Table 8.2 displays the original and bias-adjusted relative deviations with respect to the
winter GCP values. Comparing the winters of 2021/22 and 2022/23, during which posterior
estimates could be derived from all three proxies, I find that in winter 2021/22 – the only
period for which proxies are available and no background bias correction was required (ex-
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Table 8.2. Deviations of winter mean∆ffCO2 emissions from the GCP for the correspond-
ing winter and their 1σ uncertainty (in parentheses) for the Germany+ domain. The GCP
posteriors are based on three ∆ffCO2 proxies: 14C-based flasks (Fl.) and integrals (Int.)
and 14C -calibrated CO-based ∆ffCO2 . (*) Emissions are adjusted for the bias in ∆14C
background (1‰±0.5‰ in 2023 and 2‰±1‰ in 2024 for Fl. and Int., 1‰±0.5‰ in all
years for CO). ”NA” denotes winters outside of the main investigation period of the corre-
sponding proxy. Winter periods refer to November through February of the indicated winter
season.

Flux
Proxy

Deviation from GCP, [%]

type 2018/19 2019/20 2020/21 2021/22 2022/23 2023/24

GCP
Prior

- 0(4) 0(4) 0(4) 0(4) 0(4) 0(4)

EDGAR
Prior

- 16(4) 23(4) 20(4) 23(4) 22(4) 21(4)

GCP
Posterior

Fl. NA NA NA -1(2) -7(2) -9(2)
CO NA -10(3) -2(2) -10(2) -5(2) -6(3)
Int. -4(2) -2(2) -6(2) -2(2) -12(2) NA

Fl.* NA NA NA -1(2) -3(4) -4(7)
CO* NA -0(8) 8(8) -0(8) 6(8) 5(8)
Int.* -4(2) -2(2) -6(2) -2(2) 0(9) NA

cept for CO-based) – the posterior ∆ffCO2 emissions deviate from the GCP inventory by
between 0% and –2%. All three proxies agree within their respective uncertainty ranges.

In contrast, winter 2022/23 is subject to a direct bias correction due to the assumed
downward shift in the 14C background. Here, the bias-adjusted deviations from the GCP
inventory reach 6%. A quantitative interpretation of these differences is not attempted as
they depend directly on the assumed bias magnitude, which is only qualitatively estimated.
However, under these assumptions, all three proxies produce posterior winter emission es-
timates that are consistent with the GCP bottom-up inventory at the±6% level and are also
mutually consistent within that range.

Considering the winter posterior fluxes for the same periods derived using EDGAR
emissions as prior in Table 8.3, I find that for the same period the background bias-adjusted
posteriors of all proxies reduce the EDGAR emissions between -4 and -14%.

Looking at the full time series of the bias-corrected proxy-specific posteriors, flask-
based inversions consistently show excellent agreement with the GCP product, with devi-
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ations ≤ –4%. In contrast, EDGAR-based posteriors are systematically reduced by –7%
to –14% relative to the prior. CO-based posterior fluxes deviate by 0% to +8% from the
GCP prior and by –2% to –11% from EDGAR, although all CO-based priors were assigned
a broader uncertainty of ±8%. The integral-based posteriors also show strong agreement
with the GCP estimates, with deviations generally ranging from 0% to –4%, except in win-
ter 2020/21. During this winter, a COVID-19 lockdown from mid-December to April likely
contributed to a reduction of –6% compared to the GCP prior. However, compared to
EDGAR, the integral-based posteriors consistently show reductions between –10% and –
14% throughout the entire record.

The substantially stronger posterior adjustments relative to the EDGAR prior indicate
that, under the chosen inversion settings andwith prior uncertainties of 4%, the observational
data exert sufficient influence to induce notable changes in the prior fluxes. The posterior
winter fluxes based on the GCP and EDGAR priors differ only by 10%, demonstrating that
the integration of atmospheric observations effectively reduced the average 21% prior dis-
crepancy between the two inventories by half. This demonstrates that within the inversion
framework used in this study, the observational data carry sufficient weight to induce sub-
stantial adjustments to the prior fluxes. The small reduction in GCP winter emissions for the
Germany+ region in the GCP posteriors (0–6%) strongly suggests that GCP provides an ac-
curate representation of the actual winter fossil emissions for this area. Integral-based GCP
posteriors before the suspected 14C background bias also support this, improving the winter
emission estimate withinGCP’s reported 5%uncertainty (Jones et al., 2021), with one poten-
tial COVID-related discrepancy (–6% in winter 2020/21). Bias-adjusted flask-based winter
estimates further confirm this finding. The assimilation of 14CO2 -based ∆ffCO2 produces
better quantified fossil winter emissions of the Germany+ domain, with a mean GCP pos-
terior uncertainty over flasks and integrals of ∼0.6 Tmol/yr (Tab. 8.1), representing an un-
certainly reduction of ∼30% from the prior estimate.

This finding is further supported by the comparison of prior and posterior winter trends,
calculated using the error-weighted linear regressions over thewinter emissions (not shown).
For the winters covered by the integral samples (2018/19 to 2022/23), the GCP prior shows
a trend of –0.9±3 Tmol/yr, while EDGAR reports –0.8±0.2 Tmol/yr. The integral-based
bias-adjusted posterior fluxes are able to confirm these trends, yielding –0.8±0.4 Tmol/yr
when using GCP priors and –0.7±0.3 Tmol/yr for EDGAR priors. In themost recent winters
(2021/22 to 2023/24), the prior trends in the inventories show a significantly stronger de-
cline with reduced inter-annual variability: GCP reports –1.32±0.03 Tmol/yr and EDGAR
–1.74±0.01 Tmol/yr. The flask-based bias-corrected posteriors confirm this sharper re-
duction in fossil emissions, with trends of –1.3±0.3 Tmol/yr when using GCP priors and
–1.1±0.9 Tmol/yr with EDGAR priors. Although the posterior trends carry substantially
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Table 8.3. Deviations of winter mean ∆ffCO2 emissions from the EDGAR for the corre-
sponding winter and their 1σ uncertainty (in parentheses) for the Germany+ domain. The
EDGAR posteriors are based on three ∆ffCO2 proxies: 14C -based flasks (Fl.) and inte-
grals (Int.) and 14C-calibrated CO-based ∆ffCO2 . (*) Emissions adjusted for the bias in
∆14C background (1‰±0.5‰ in 2023 and 2‰±1‰ in 2024 for Fl. and Int., 1‰±0.5‰
in all years for CO). ”NA” denotes winters outside of the main investigation period of the
corresponding proxy. Winter periods refer to November through February of the indicated
winter season.

Flux
Proxy

Deviation from EDGAR, [%]

type 2018/19 2019/20 2020/21 2021/22 2022/23 2023/24

EDGAR
Prior

- 0(3) 0(3) 0(3) 0(3) 0(3) 0(3)

GCP
Prior

- -14(3) -19(3) -17(3) -18(3) -18(3) -17(3)

EDGAR
Posterior

Fl. NA NA NA -10(2) -17(2) -14(2)
CO NA -19(2) -10(2) -19(2) -13(2) -13(2)
Int. -11(2) -10(2) -14(2) -12(2) -20(2) NA

Fl.* NA NA NA -10(2) -14(3) -7(6)
CO* NA -10(7) -2(7) -11(6) -4(7) -4(7)
Int.* -11(2) -10(2) -14(2) -12(2) -10(7) NA

larger uncertainties, they align more closely with the trend reported by GCP. The bias-
corrected CO-based posteriors suggest the lowest decreasing trend of the three proxies for
the 2019/20 to 2023/24 period (–0.5±0.4 Tmol/yr for both priors). Within the uncertainty
ranges, they do not deviate significantly from the prior trends: -0.7±0.2 Tmol/yr for GCP
and -0.9±0.2 Tmol/yr for EDGAR.





Chapter 9

Conclusion

In this concluding chapter, I summarize the main findings of this thesis regarding the suit-
ability of different ∆ffCO2 proxies and inversion configurations to estimate country-scale
fossil fuel CO2 emissions. The results highlight the critical role of 14CO2 background accu-
racy, the structural limitations of the Regional Isotope Budget Approach (RIBA), and the
relative performance of flask-based, CO-based, and integral-based observations. Based on
these insights, I provide recommendations for improving future ICOS sampling strategies
and inversion system design.

9.1 Background diversification

This study underscores the substantial influence that potential biases in the European 14C
background can exert on posterior ∆ffCO2 flux estimates. Therefore, accurate knowledge
of the 14C activity in air masses prior to their arrival on the European continent is essential
for the integrity of the RIBA. The current heavy reliance on a single station, Mace Head
(MHD), is scientifically inadequate, particularly in light of the disproportionate investment
in monitoring continental as opposed to background 14C concentrations. To improve the
robustness and credibility of future inversions, the ICOS atmospheric network is strongly
advised to diversify its 14C background observation sites. This recommendation remains
pressing even if 14C measurements at MHD resume in 2025.

Developing secondary background stations for the European domain should be con-
sidered a high priority. Given that most European air masses originate from the western
boundary, existing Irish ICOS coastal Class 2 stations, such as Valentia Island (51.93°N,
–10.24°E) or Malin Head (55.37°N, –7.34°E), may be suitable secondary sites for clean
marine air. Although there is currently no ICOS coastal station on the western French coast,
the Roc’h Trédudon station operated by Laboratory for Climate and Environmental Sci-
ences (LSCE, 48.41°N, –3.89°E) on the Brittany peninsula represents a valuable non-ICOS
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alternative.

9.2 Alternatives to the RIBA

The RIBA, first introduced by Levin et al., 2003 and further developed by Levin and Röden-
beck, 2008, has proven effective in urban environments such as Heidelberg, DE, where high
∆ffCO2 signals minimize the relative impact of background-related uncertainties. However,
these early studies have already revealed increased uncertainty at more remote sites such as
Schauinsland, DE, where the ∆ffCO2 signals are weaker. As most ICOS stations are lo-
cated similarly in rural or remote areas, they are typically characterized by low ∆ffCO2

concentrations. This renders the entire ICOS network highly susceptible to biases in the 14C
background estimate, as discussed in Section 8.1, and exposes a fundamental limitation of
the RIBA when applied to observations with low fossil signals.

In essence, the RIBA acts as a simplified transport model, assuming a common back-
ground for all observations. In this study, the ∆ffCO2 values derived via the RIBA were
further processed using the STILT model, which explicitly accounts for time- and location-
specific meteorology. When actual atmospheric transport conditions align with the implicit
assumption of RIBA of predominantly westerly wind flow, both models yield consistent
results. As shown by Maier et al., 2024a, this alignment holds for approximately two-thirds
of the time. For the remaining one-third, deviations from assumed meteorology introduce
systematic biases into the RIBA-based ∆ffCO2 estimates. Nevertheless, the spatial gradi-
ents across the network, i.e., the relative differences between stations, remain informative
and usable.

This key limitation can be overcome by implementing coupled atmospheric 14C–CO2

models (e.g. Basu et al., 2020; Gómez-Ortiz et al., 2025), which directly simulate both trac-
ers and no longer rely on pre-calculated ∆ffCO2 values from the RIBA. Such models can
incorporate time-resolved, air-mass-specific background concentrations, and thus eliminate
the need for a single, static background time series. Within the CORSO project, several Eu-
ropean research groups are working towards this goal by integrating the entire atmospheric
14C cycle into existing CO2 transport models and inverse modeling frameworks.

Although these next-generation models offer a path beyond the limitations of the RIBA,
they still require robust and accurate data on the temporal evolution of the European 14C
background. As with global models, European-scale applications must account for addi-
tional 14C-specific influences — such as emissions from nuclear installations outside Eu-
rope, contributions from the stratosphere and air–sea exchange of radiocarbon. Unlike in the
RIBA, these effects are no longer implicitly accounted for but must be explicitly modeled.
Reliable and regionally resolved 14C observations remain therefore an essential foundation
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for any robust fossil fuel CO2 estimation framework.

9.3 Suitability of ∆ffCO2 proxies for inverse modeling of
country-scale fossil fuel CO2 emissions

This thesis evaluated the suitability of three∆ffCO2 proxies— 14C-flask-based, CO-based,
and 14C-integral-based estimates — for use in inverse modeling of country-scale fossil fuel
CO2 emissions. The aim was to inform and improve the ICOS 14CO2 sampling strategy by
identifyingwhich observation types aremost compatible with current inversion frameworks.

To evaluate the proxies, three key criteria were defined:

1. Model representativeness

Representativeness errors occur when the transport model fails to reproduce the actual
atmospheric state at the time and location of sampling. These errors are represented by
the standard deviation of the model-data-mismatch (σsim−obs). High σsim−obs inflates
the inversion cost function and results in biased flux estimates, particularly when the
σsim−obs distribution is not symmetric.

2. Signal-to-noise ratio (SNR)

Higher∆ffCO2 concentrations enhance the robustness of the inversion. The sampling
method and strategy influence the observed ∆ffCO2 concentrations and hence the
SNR.

3. Sensitivity to background biases

Biases in the 14C background strongly affect the RIBA. Although this dependency
can be mitigated by employing coupled 14CO2 –CO2 models, lower ∆ffCO2 signals
inherently increase sensitivity to background errors.

Flask-based ∆ffCO2 estimates. Flask samples yield the highest ∆ffCO2 signals as a
result of the possibility of targeted event-based sampling. This results in favorable SNR,
especially under the standard ICOS flask sampling protocol, which targets afternoon con-
ditions with potentially high ∆ffCO2 . However, this advantage comes at the expense of
model representativeness: the σsim−obs values of the flask samples are typically 40–100%
higher than those of the integral samples at the same sites, except at locations with well-
mixed atmospheric conditions such as HTM and PAL. The low flask sampling frequency
increases the susceptibility of individual flasks to transport model mismatches, particularly
in heterogeneous environments.
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While flasks provide flexibility and allow targeted sampling, they require a high sam-
pling frequency to ensure robustness: ideally, several flasks per synoptic event (2–5 days).
The CORSO campaign (Levin et al., 2024) demonstrated that this is feasible, while biweekly
flask sampling remains inadequate given current modeling limitations. Flask-based inver-
sions were shown to be the least sensitive to 14C background biases due to their higher abso-
lute ∆ffCO2 concentrations per sample. The bias-adjusted winter posterior fluxes showed
good agreement with the GCP emission estimates, while consistently deviating from the
EDGAR inventory by –7% to –14%.

CO-based ∆ffCO2 estimates. CO-based∆ffCO2 estimates, derived from continuous
CO measurements calibrated against 14C samples, offer high temporal resolution and dense
data coverage compared to the other proxies. However, this study showed that the inversion
system does not benefit from such a fine temporal resolution, due to the limited ability of the
transport model to simulate atmospheric conditions accurately at hourly scales. Therefore,
weekly averaging of the CO-based∆ffCO2 estimates was required to reduce the dependence
on hour-specific transport accuracy and thus limit representativeness errors. In fact, σsim−obs

for the CO-based approach was comparable to integral data at most sites (within 20%), with
the exception of LIN, where the ∆CO /∆ffCO2 ratios varied strongly within the footprint.

The CO-based proxy suffers from substantial conceptual limitations. Its reliability de-
pends on both the CO and the 14C background estimates, which introduces a dual sen-
sitivity to background biases. In addition, the unmodeled, seasonally varying CO sinks,
non-fossil CO sources, and poorly constrained emission ratios limit the robustness of CO-
based∆ffCO2 estimates. These problems are particularly relevant at rural ICOS sites, where
signal strengths are low. Although CO-based methods have shown promise in urban-scale
applications (e.g. Levin & Karstens, 2007; Lopez et al., 2013; Maier et al., 2024b), this
study concludes that they are not suitable for continental-scale inversions without a fully
implemented CO chemistry module in a coupled 14CO2 –CO2 model.

Integral-based∆ffCO2 estimates. Integral samples, which represent an average over
twoweeks of continuous sampling, do not require accurate hour-by-hour transportmodeling.
A fair representation of mean atmospheric transport during the integration period is suffi-
cient for the model to replicate observed concentrations. σsim−obs values are significantly
lower than those of the flask samples and comparable to those of weekly averaged CO-based
runs. Although ∆ffCO2 concentrations in integral samples are 20–40% lower than in flask
samples, reduced variability and consistent coverage lead to stable SNR, particularly under
standardized biweekly sampling. While integral-based inversions were most sensitive to
14C background biases between all proxies, this drawback can be mitigated through the use
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of coupled 14CO2 –CO2 models.

In the well-constrained and non-biased 2018–2022 period (presumably, due to the avail-
ability of MHD data), integral-based inversions successfully reproduced key characteristics
of the GCP inventory, including annual mean emissions, seasonal cycles and multi-year
trends, within the limits defined by synthetic studies. Even in Flat Prior sensitivity tests
(Sect. 7.2.2.3), inversion results matched GCP values to within a few percent. The bias-
corrected winter fluxes derived from unmodified prior inversions using integral samples
showed strong agreement with GCP estimates, with deviations of only 0% to –4%, while
systematically indicating lower emissions compared to EDGAR, with reductions between
–10% and –14%.

Conclusion. Each of the evaluated proxies has distinct strengths and limitations. CO-
based∆ffCO2 estimates offer high temporal coverage, but are hampered by dual background
dependencies, unresolved atmospheric chemistry, and poorly constrained tracer relation-
ships. In light of these limitations, CO-based estimates currently represent the least reliable
method to quantify fossil fuel CO2 concentrations within the ICOS network.

Flask-based estimates provide strong signals and sampling flexibility. As demonstrated
in this study, they represent a viable and robust option for estimating country-scale fossil
fuel emissions — provided that the sampling frequency is sufficiently high (at least 2–3
samples per week).

Integral-based∆ffCO2 estimates offer themost favorable balance of strengths andweak-
nesses. While their signal strength is generally lower, making them somewhat more suscep-
tible to background biases, they exhibit superior model representativeness and yield repro-
ducible inversion results across key evaluation metrics.

For future ICOS sampling strategies, particularly when aiming to constrain national- or
continental-scale fossil fuel emissions, it is therefore my recommendation to:

(a) diversify the European 14C background estimation to minimize systematic bias, and

(b) prioritize integral sampling as the default 14CO2 observation method.

This recommendation is supported by the finding that flask and integral samples pro-
duce comparable inversion results, while integral sampling requires four to six times fewer
analyses.
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9.4 Enhancing the ICOS 14C sampling spatial data cover-
age

Figure 4.5 illustrates the data constraint within the Germany+ domain. The increased con-
straint for integral-based inversions in 2018 resulted from the addition of new stations to
the 14C measurement network, as detailed in Section 4.3. Notably, despite only evaluating
approximately every second integral sample from late 2021 to end of 2023, no significant
decrease in data constraint was observed. This suggests that expanding the 14C network
with new stations is more beneficial to the characterization of the European ∆ffCO2 fluxes
than increasing the evaluation frequency at existing sites.

Currently, the reliable data constraint is limited to the Germany+ domain (Sect. 4.2). If
additional 14C measurement funding becomes available, extending 14C integral sampling
to ICOS Class 2 sites could expand the current sampling station set from 18 to 46. This
expansion would presumably broaden the constrained area to encompass Austria, Switzer-
land, Denmark, Eastern France, Central Spain, most of Great Britain, and Italy. Such an
extension would leverage the existing ICOS infrastructure and require relatively simple and
inexpensive instrumentation, such as micro-alkaline CO2 collectors. These meaningful ad-
ditions to European spatial data coverage would advance ICOS toward its goal of providing
robust data to constrain long-term European greenhouse gas emissions.
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Additional figures

A.1 Analysis of region of interest (ROI), 2014-2024
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No flask-based inversion No flask-based inversion

No CO-based inversion No CO-based inversion

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.1. Mean spacial constrain of the inversion in 2014 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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No flask-based inversion No flask-based inversion

No CO-based inversion No CO-based inversion

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.2. Mean spacial constrain of the inversion in 2015 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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No flask-based inversion No flask-based inversion

No CO-based inversion No CO-based inversion

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.

0 20 40 60 80 100

Truth recovery rate , [%]

Mean yearly truth recovery rate, 2016

Figure A.3. Mean spacial constrain of the inversion in 2016 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.4. Mean spacial constrain of the inversion in 2017 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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No flask-based inversion No flask-based inversion

No CO-based inversion No CO-based inversion

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.5. Mean spacial constrain of the inversion in 2018 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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(a) Flasks-based ffCO2, 40% PRI uncer. (b) Flasks-based ffCO2, 4% PRI uncer.

(c) CO-based ffCO2, 40% PRI uncer. (d) CO-based ffCO2, 4% PRI uncer.

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.6. Mean spacial constrain of the inversion in 2019 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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(a) Flasks-based ffCO2, 40% PRI uncer. (b) Flasks-based ffCO2, 4% PRI uncer.

(c) CO-based ffCO2, 40% PRI uncer. (d) CO-based ffCO2, 4% PRI uncer.

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.7. Mean spacial constrain of the inversion in 2020 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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(a) Flasks-based ffCO2, 40% PRI uncer. (b) Flasks-based ffCO2, 4% PRI uncer.

(c) CO-based ffCO2, 40% PRI uncer. (d) CO-based ffCO2, 4% PRI uncer.

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.8. Mean spacial constrain of the inversion in 2021 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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(a) Flasks-based ffCO2, 40% PRI uncer. (b) Flasks-based ffCO2, 4% PRI uncer.

(c) CO-based ffCO2, 40% PRI uncer. (d) CO-based ffCO2, 4% PRI uncer.

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.9. Mean spacial constrain of the inversion in 2023 for three∆ffCO2 proxies inves-
tigated in this study: flask-based (subplots a and b), CO-based (subplots c and d), integral-
based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different prescribed
prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery rate ρ
ranges from 0%, meaning emissions were not change in posterior compared to prior, to
100%, where the truth could be completely recovered. Stations marked with crosses are
used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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(a) Flasks-based ffCO2, 40% PRI uncer. (b) Flasks-based ffCO2, 4% PRI uncer.

(c) CO-based ffCO2, 40% PRI uncer. (d) CO-based ffCO2, 4% PRI uncer.

(e) Integral-based ffCO2, 40% PRI uncer. (f) Integral-based ffCO2, 4% PRI uncer.
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Figure A.10. Mean spacial constrain of the inversion in 2024 for three ∆ffCO2 proxies
investigated in this study: flask-based (subplots a and b), CO-based (subplots c and d),
integral-based (subplots e and f). Flat Zero Prior (3.2.4) was used in all runs with different
prescribed prior uncertainty (subplots a, c, e - 40%, subplots b, d, f - 4%). The truth recovery
rate ρ ranges from 0%, meaning emissions were not change in posterior compared to prior,
to 100%, where the truth could be completely recovered. Stations marked with crosses
are used in all setups, circles - only in flask- and integral-based runs, and triangles only in
integral-based inversions. The region of maximum recovery is marked with black square.
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A.2 Additional flask FWD runs
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Figure A.11. The flask-based∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three measurement sites. Cor-
responding pairs are connected by dashed line. The panels on the right demonstrate model-
data-mismatch distribution. The chosen time period has the highest data density (01.11.2021
- 01.01.2025, Sec. 4.3). The signal averages over this period are depicted in the legend.
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Figure A.12. The flask-based∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three measurement sites. Cor-
responding pairs are connected by dashed line. The panels on the right demonstrate model-
data-mismatch distribution. The chosen time period has the highest data density (01.11.2021
- 01.01.2025, Sec. 4.3). The signal averages over this period are depicted in the legend.
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Figure A.13. The flask-based∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three measurement sites. Cor-
responding pairs are connected by dashed line. The panels on the right demonstrate model-
data-mismatch distribution. The chosen time period has the highest data density (01.11.2021
- 01.01.2025, Sec. 4.3). The signal averages over this period are depicted in the legend.
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Figure A.14. The flask-based∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three measurement sites. Cor-
responding pairs are connected by dashed line. The panels on the right demonstrate model-
data-mismatch distribution. The chosen time period has the highest data density (01.11.2021
- 01.01.2025, Sec. 4.3). The signal averages over this period are depicted in the legend.
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A.3 Additional 14C calibrated ∆CO/∆ffCO2 ratios
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Figure A.15. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panels
(a), (c) and (e) display ∆CO and ∆ffCO2 values from flasks (black circles with error bars)
and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on
bottom right. Flagged flasks (red crosses) were excluded from the regression. In panels
(b), (d) and (f), ∆COflask was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD
of the corresponding data represents variability caused either by measurement errors alone
(synthetic data, yellow circles with error bars, see Sect. 6.2.3) or by both measurement
errors and ratio variability in the station’s catchment area (real data, Obs. RMSD).
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Figure A.16. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panels
(a), (c) and (e) display ∆CO and ∆ffCO2 values from flasks (black circles with error bars)
and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on
bottom right. Flagged flasks (red crosses) were excluded from the regression. In panels
(b), (d) and (f), ∆COflask was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD
of the corresponding data represents variability caused either by measurement errors alone
(synthetic data, yellow circles with error bars, see Sect. 6.2.3) or by both measurement
errors and ratio variability in the station’s catchment area (real data, Obs. RMSD).
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Figure A.17. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panels
(a), (c) and (e) display ∆CO and ∆ffCO2 values from flasks (black circles with error bars)
and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on
bottom right. Flagged flasks (red crosses) were excluded from the regression. In panels
(b), (d) and (f), ∆COflask was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD
of the corresponding data represents variability caused either by measurement errors alone
(synthetic data, yellow circles with error bars, see Sect. 6.2.3) or by both measurement
errors and ratio variability in the station’s catchment area (real data, Obs. RMSD).
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(d)

LIN, wind sec. 1
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(e)

LIN, wind sec. 2

Flasks: 69, R2 = 0.45 
20.9 ± 0.6b) ppb/ppm
Flag: 0
STILT: 4383, R2 = 0.50 
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(f)

LIN, wind sec. 2

R2 = 0.46
0.99 ± 0.03 ppm/ppm
Obs. RMSD = 2.54 ppm
norm. RMSD = 0.54
Synth. RMSD = 1.33 ppm
norm. s.RMSD = 0.27

Figure A.18. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panels
(a), (c) and (e) display ∆CO and ∆ffCO2 values from flasks (black circles with error bars)
and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on
bottom right. Flagged flasks (red crosses) were excluded from the regression. In panels
(b), (d) and (f), ∆COflask was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD
of the corresponding data represents variability caused either by measurement errors alone
(synthetic data, yellow circles with error bars, see Sect. 6.2.3) or by both measurement
errors and ratio variability in the station’s catchment area (real data, Obs. RMSD).
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(f)

SAC

R2 = 0.73
0.96 ± 0.06 ppm/ppm
Obs. RMSD = 3.45 ppm
norm. RMSD = 0.71
Synth. RMSD = 1.42 ppm
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Figure A.19. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panels
(a), (c) and (e) display ∆CO and ∆ffCO2 values from flasks (black circles with error bars)
and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on
bottom right. Flagged flasks (red crosses) were excluded from the regression. In panels
(b), (d) and (f), ∆COflask was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD
of the corresponding data represents variability caused either by measurement errors alone
(synthetic data, yellow circles with error bars, see Sect. 6.2.3) or by both measurement
errors and ratio variability in the station’s catchment area (real data, Obs. RMSD).
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(e)

STE, wind sec. 2

Flasks: 125, R2 = 0.54 
8.6 ± 0.3b) ppb/ppm
Flag: 3
STILT: 4383, R2 = 0.88 
 7.28 ±  0.03 ppb/ppm
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(f)

STE, wind sec. 2

R2 = 0.54
1.00 ± 0.03 ppm/ppm
Obs. RMSD = 2.34 ppm
norm. RMSD = 0.46
Synth. RMSD = 1.32 ppm
norm. s.RMSD = 0.27

Figure A.20. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panels
(a), (c) and (e) display ∆CO and ∆ffCO2 values from flasks (black circles with error bars)
and based on STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on
bottom right. Flagged flasks (red crosses) were excluded from the regression. In panels
(b), (d) and (f), ∆COflask was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD
of the corresponding data represents variability caused either by measurement errors alone
(synthetic data, yellow circles with error bars, see Sect. 6.2.3) or by both measurement
errors and ratio variability in the station’s catchment area (real data, Obs. RMSD).
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(b)

SVB

R2 = -0.33
0.87 ± 0.25 ppm/ppm
Obs. RMSD = 1.67 ppm
norm. RMSD = 1.64
Synth. RMSD = 1.34 ppm
norm. s.RMSD = 1.33

Figure A.21. Calculation of 14C-calibrated CO-based ∆ffCO2 . In all panels, dashed lines
represent linear regressions of the data in corresponding colors (slopes in legend). Panel (a)
displays ∆CO and ∆ffCO2 values from flasks (black circles with error bars) and based on
STILT-TNO modeling (turquoise dots, see Sect. 6.2.4) for station denoted on bottom right.
Flagged flasks (red crosses) were excluded from the regression. In panel (b), ∆COflask

was recalculated into ∆ffCO2 (Eq. 6.1) using ⟨Rflasks⟩. RMSD of the corresponding data
represents variability caused either by measurement errors alone (synthetic data, yellow
circles with error bars, see Sect. 6.2.3) or by both measurement errors and ratio variability
in the station’s catchment area (real data, Obs. RMSD).

A.4 Wind dependent ∆CO to ∆ffCO2 ratios
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(d)
Wind sector 2: <120, >280

Flasks:  74, R2 = 0.64 
11.8 ± 0.6 ppb/ppm
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Figure A.22. Selection of appropriate wind sectors for calculating wind-dependent ΔCO to
∆ffCO2 ratios at HTM station. Panels (a) and (b) display the complete flask dataset, while
panels (d) and (e) show the dataset split by mean wind direction during sampling (excluding
flasks with missing meteorological data), along with linear regressions (black dashed line,
slope in legend) for corresponding flask pools. Color gradients in panels (a), (d), and (e)
indicate mean wind direction, and in panel (b), mean wind speed during flask sampling.
Panel (c) illustrates the distribution of wind conditions during flask sampling. Red lines
denote the boundaries of the wind sectors used to divide the flask dataset into two groups.
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(d)
Wind sector 2: < 30, > 80

Flasks:  36, R2 = 0.22 
20.3 ± 1.0 ppb/ppm
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Figure A.23. Selection of appropriate wind sectors for calculating wind-dependent ΔCO to
∆ffCO2 ratios at STE station. Panels (a) and (b) display the complete flask dataset, while
panels (d) and (e) show the dataset split by mean wind direction during sampling (excluding
flasks with missing meteorological data), along with linear regressions (black dashed line,
slope in legend) for corresponding flask pools. Color gradients in panels (a), (d), and (e)
indicate mean wind direction, and in panel (b), mean wind speed during flask sampling.
Panel (c) illustrates the distribution of wind conditions during flask sampling. Red lines
denote the boundaries of the wind sectors used to divide the flask dataset into two groups.
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A.5 Additional CO-based FWD runs
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Figure A.24. The CO-based ∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three example measurement
sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
RMSD-based measurement error.
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Figure A.25. The CO-based ∆ffCO2 observations (black inverse triangles) and simulated
∆ffCO2 values based on GCP inventory (green triangles) for three example measurement
sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
RMSD-based measurement error.

A.6 Additional integral-based FWD runs
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Figure A.26. The integral-based ∆ffCO2 observations (black inverse triangles) and simu-
lated ∆ffCO2 values based on GCP inventory (green triangles) for three example measure-
ment sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
mean measurement error. The chosen time period has the highest data density (01.07.2018
- 01.07.2023, Sec. 4.3).
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Figure A.27. The integral-based ∆ffCO2 observations (black inverse triangles) and simu-
lated ∆ffCO2 values based on GCP inventory (green triangles) for three example measure-
ment sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
mean measurement error. The chosen time period has the highest data density (01.07.2018
- 01.07.2023, Sec. 4.3).
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Figure A.28. The integral-based ∆ffCO2 observations (black inverse triangles) and simu-
lated ∆ffCO2 values based on GCP inventory (green triangles) for three example measure-
ment sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
mean measurement error. The chosen time period has the highest data density (01.07.2018
- 01.07.2023, Sec. 4.3).
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Figure A.29. The integral-based ∆ffCO2 observations (black inverse triangles) and simu-
lated ∆ffCO2 values based on GCP inventory (green triangles) for three example measure-
ment sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
mean measurement error. The chosen time period has the highest data density (01.07.2018
- 01.07.2023, Sec. 4.3).
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Figure A.30. The integral-based ∆ffCO2 observations (black inverse triangles) and simu-
lated ∆ffCO2 values based on GCP inventory (green triangles) for three example measure-
ment sites. Corresponding pairs are connected by dashed line. The average signal over the
depicted time period are in the legend. The panels on the right demonstrate model-data-
mismatch distribution including it variance with red dashed lines showing the triple of the
mean measurement error. The chosen time period has the highest data density (01.07.2018
- 01.07.2023, Sec. 4.3).
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