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Abstract

Understanding neutrino properties remains a key open question in particle physics. This the-
sis explores how cosmology and astrophysics constrain or support a possible Dirac nature of
neutrinos and probe neutrino interactions with dark matter (DM).

Explaining a Dirac mass for neutrinos requires new fields and symmetries. These lead to an
experimentally constrained excess in ∆Neff from production of right-handed neutrinos in the
early Universe. We develop a Monte Carlo-based scheme for integrated Boltzmann equations
and apply it to Dirac neutrino models. First, we study Z ′ extensions, finding them subject to
strong and generic constraints from ∆Neff that are only avoided if the thermal history of the
Universe was non-standard or it reheated to Treh � mZ′ .

We also introduce a Dirac-Type-I seesaw family as a unified framework of Dirac seesaws and
a generalization of the Majorana Type-I seesaw family. We study two minimal UV completions
with a spontaneously broken global symmetry yielding the Diracon as a Nambu-Goldstone
boson. The production of light degrees of freedom is suppressed compared to gauged models,
which leads to weaker bounds from ∆Neff in direct comparison. Astrophysical and laboratory-
based flavor observables involving the Diracon and complementary to ∆Neff are identified.
Minimal Dirac models with a global symmetry appear as a viable alternative to a gauge sym-
metry, due to the strong and generic constraints we find on the latter.

In a separate study, we turn to astrophysical tests of neutrino-DM interactions. We in-
vestigate the upscattering of MeV-scale DM by the diffuse supernova neutrino background
(DSNB), focusing on model dependence and improved flux attenuation modeling. The strength
of neutrino-DM interactions preferred by cosmological data is below current experimental sen-
sitivities. We discuss the role of DSNB upscattering in probing such interactions and its wider
implications for DM direct detection. Unlike cosmological tests, upscattering offers a direct
experimental window into neutrino-DM interactions.
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Zusammenfassung

Viele Neutrinoeigenschaften sind weiterhin ungeklärt. Diese Arbeit untersucht, wie kosmol-
ogische und astrophysikalische Beobachtungen Hinweise auf eine mögliche Dirac-Natur von
Neutrinos liefern und wie sich ihre Wechselwirkungen mit Dunkler Materie (DM) untersuchen
lassen.

Das Erzeugen von Dirac-Massen für Neutrinos erfordert neue Felder und Symmetrien. Diese
führen zur Produktion rechtshändiger Neutrinos im frühen Universum und zu einem messbaren
Überschuss in ∆Neff . Wir entwickeln ein Monte-Carlo-basiertes Verfahren zur Lösung integri-
erter Boltzmann-Gleichungen und wenden es auf Dirac-Neutrinomodelle an. Zunächst unter-
suchen wir Z ′-Erweiterungen und zeigen, dass diese starken und generischen Einschränkungen
unterliegen, die nur vermieden werden können, wenn das frühe Universum vom Standardmodell
abwich oder die Wiederaufheiztemperatur bei Treh � mZ′ lag.

Wir generalisieren das Konzept der Type-I Seesaw Familie als kompakte Beschreibung ver-
schiedener Seesaw-Modelle auf den Dirac-Fall. Zwei minimale, UV-vollständige Modelle mit
spontan gebrochener globaler Symmetrie und dem Diracon als Nambu-Goldstone-Boson wer-
den analysiert. Die Produktion leichter Freiheitsgrade ist hier im direkten Vergleich gehemmt,
wodurch diese Modelle mit Messungen von ∆Neff verträglicher erscheinen. Komplementäre
flavor-verletzende Observablen im Labor und in der Astrophysik werden identifiziert. Mini-
male Dirac-Modelle mit einer globalen Symmetrie bieten sich als eine Alternative an, um die
starken und generischen Einschränkungen für Varianten mit Eichsymmetrien zu umgehen.

In einer separaten Studie wenden wir uns astrophysikalischen Tests von Neutrino-DM-
Wechselwirkungen zu. Wir untersuchen die Aufwärtsstreuung von DM im MeV-Bereich durch
den diffusen Supernova-Neutrinohintergrund (DSNB) mit Fokus auf Modellabhängigkeit und
verbesserter Modellierung der Abschwächung des DM-Flusses in Materie. Wechselwirkungen
von Neutrino und DM, wie sie von kosmologischen Daten nahegelegt werden, liegen unterhalb
experimenteller Empfindlichkeiten. Wir analysieren die Rolle der DSNB-Aufwärtsstreuung
beim Testen solcher Wechselwirkungen sowie ihre Bedeutung für den Nachweis von Dunkler
Materie. Im Gegensatz zu kosmologischen Tests bietet die Aufwärtsstreuung einen direkten
experimentellen Zugang zu Neutrino-DM-Wechselwirkungen.
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Chapter 1

Introduction

After proposing the existence of a new, feebly interacting, and neutral particle to explain the
energy spectrum of β-decay, Wolfgang Pauli is said to have remarked in 1930 that “I’ve done a
terrible thing today, something which no theoretical physicist should ever do. I have suggested
something that can never be verified experimentally.” [6]. Only around 26 years later, Pauli
was proven wrong. F. Reines and C. L. Cowan found the neutrino in the inverse β-decay
ν̄e + p→ e+ + n, utilizing a nuclear reactor as a ν̄e source [7].

Once feared as practically undetectable, neutrinos are now routinely measured. Just a
decade after the first direct neutrino detection, the HOMESTAKE experiment observed so-
lar neutrinos [8, 9], establishing the solar neutrino problem, which was later confirmed by
Kamiokande and Super-Kamiokande [10–12], and the Sudbury neutrino observatory (SNO) [13,
14].

From the 1990s, various experiments began to show evidence of neutrino flavor transforma-
tions and oscillations. In 1998, Super-Kamiokande (SK) hinted at first evidence for flavor os-
cillations in atmospheric neutrinos [15–18] and later in reactor neutrinos in Double Chooze [19,
20] and Daya Bay [21, 22]. KamLAND and others firmly established neutrino flavor oscilla-
tions [23], and experiments like T2K marked the beginning of the precision era for neutrino
oscillation parameters [24, 25] and global fits [26–28].

More recent advances include the detection of coherent elastic neutrino nucleus scattering
(CEνNS) [29, 30]. Next-generation facilities like the Jiangmen Underground Neutrino Ob-
servatory (JUNO) [31], Hyper-Kamiokande (HK) [32], and the Deep Underground Neutrino
Experiment (DUNE) [33], which are currently under construction, will push the experimental
landscape to new levels of precision.

What once made Pauli doubt that the neutrino could ever be detected is still a limiting
factor when studying neutrinos in Earth-bound experiments – the feebleness of their interaction.
Novel neutrino-matter interactions are predicted by many models beyond the standard model.
However, this is anything but guaranteed. Parameters like detector scale and exposure time
are, in principle, in our control, but more often than not, there are external constraints on the
experiments we can pursue. Even then, sources of neutrinos available to us are limited in their
luminosity and at the energy frontier.

At this point, cosmological and astrophysical observations become crucial. Many Earth-
bound experiments already utilize neutrinos from the heavens, such as solar neutrinos, but
also high-energy neutrinos of known and unknown astrophysical sources are routinely studied
in terrestrial detectors. Similarly, neutrinos from galactic supernovae as well as the diffuse
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supernova neutrino background (DSNB) are in reach, both with important consequences for
fundamental neutrino physics and astrophysics [34, 35]. But Earth-bound detection facilities
remain a limiting factor.

This is where we take the neutrinos from the heavens one step further and turn astrophysical
systems themselves into a neutrino laboratory. Ideas revolving around these indirect probes of
new physics are at the heart of astroparticle physics. These systems typically provide competi-
tive limits from a combination of strong neutrino fluxes and dense host systems, or potentially
large volumes, and thus partially compensate for small neutrino interactions by an effectively
increased number of available targets. A particularly difficult to study benchmark case is inter-
actions between neutrinos and dark matter (DM). Many models of extended neutrino sectors
predict such interactions, and testing them necessarily requires the use of cosmological and
astrophysical probes.

By now, neutrinos are not only measured and studied for their own sake, but they provide
valuable input on astrophysics, too. With the supernova SN1987A and only around O(10)

detected events [36, 37], it paved the way for establishing the standard picture of neutrino driven
core collapse supernovae [38]. A future supernova observation will not only improve insights on
supernova physics but also fundamental neutrino physics. Observing astrophysical events like
neutron star mergers in electromagnetic radiation, gravitational waves, and neutrinos heralds
the beginning of true multi-messenger astronomy [39].

On cosmological scales, the large scale structure as well as global properties of the Universe
can be used to constrain neutrino physics. Recently, cosmological neutrino mass limits were
improved by DESI to

∑
mν < 0.064 eV [40]. This new result is stronger than the current

best limit from the laboratory by KATRIN, which constrains the effective mass in β-decay
mβ < 0.45 eV [41], and cosmology begins to put pressure on the inverted mass hierarchy, and
there is even a mild tension with the minimal expectation from flavor oscillations in normal
mass ordering.

Beyond neutrino masses, cosmology also constrains abundances of light additional degrees
of freedom in the early Universe, and therefore, light right-handed neutrinos and their inter-
actions. Early results already disfavored a fourth light neutrino flavor [42, 43], and limits
continuously tightened to a current ∆Neff ' 0.17 from either CMB only [44, 45] or CMB and
BBN combinations [46, 47]. At the current stage, both the presence of light neutrinos and
other particles are strongly constrained from measurement and the precise prediction for the
SM [48–51]. Cosmology effectively constrains neutrino properties from the large volumes under
consideration. Indeed, the effect of neutrinos in cosmology is small but measurable because of
the integrated effect of neutrinos on cosmological evolution at the global and the perturbative
level. Thus, cosmological time and length scales allow for a compensation of small neutrino
interactions, gravitational, weak, or otherwise.

Despite the enormous experimental and theoretical progress since inception and first de-
tection, neutrino physics remains among the most active fields in (astro-)particle physics. The
Standard Model (SM) of particle physics predicts massless neutrinos. When extending the SM
to allow for massive neutrinos compatible with oscillation data, neutrino masses can be of either
Dirac or Majorana type. Observation of neutrinoless double beta decay [52, 53] could clarify
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this situation, but it remains unobserved thus far. As it is generally believed that differences
between Dirac and Majorana neutrinos are neutrino mass suppressed [54], there is no clear ex-
perimental indication as to what option is preferred at the moment. Indeed, both options have
been and continue to be studied widely. Important early contributions to Majorana masses are
e.g. Refs. [55–63].

Historically, the Dirac option received less coverage, but gained more popularity in recent
years and is now a very active field of research, see for instance Refs. [64–105] for a non-
exhaustive collection of recent studies. These models routinely predict other properties of
neutrinos, such as non-standard interactions among neutrinos or with other SM particles, or
interactions with the elusive DM. All these additional predictions serve as potential observables
to discriminate between different proposed models.

In this thesis, we advance the study of neutrinos in cosmology and astrophysical systems.
The focus here is not on well-established standard properties of neutrinos, such as their mass,
but rather to assess the potential of cosmology and, to a lesser extent astrophysics, to con-
strain and possibly distinguish between different well-motivated models of neutrino masses and
interactions.

Of particular interest to us are models of Dirac neutrinos. Observing neutrinoless double
beta decay would clarify the question of the nature of neutrinos. However, it has not been
observed thus far, and even if neutrinos are Majorana in nature, it may be possible that rates
are observationally inaccessible to us. This motivates us to study the Dirac hypothesis in
light of the aforementioned advantages of cosmological and astrophysical probes. Perhaps it is
possible that we can compensate for the neutrino mass suppressed difference between the two
by looking for other signatures that could be attributed to Dirac neutrinos. While it is not
possible to conclusively prove the Dirac nature of neutrinos from such an observation, just as
we cannot infer the Dirac nature from non-observation of 0νββ-decay, it can nevertheless be a
clue towards a possible Dirac nature.

Models of Dirac neutrinos typically have two desirable features. Just as in the case for
Majorana neutrinos, we wish for a natural explanation of the smallness of neutrino masses,
e.g. by a seesaw mechanism. The introduction of light right-handed neutrinos also raises the
question of why a Majorana mass term for them is absent. Indeed, right-handed neutrinos
are SM gauge singlets, and therefore, nothing forbids them from having a Majorana mass a
priori. Usually, this issue is addressed by protecting the Dirac nature by symmetry. This can
be done either by a global symmetry [106–112] or a gauge symmetry [43, 113–116]. In either
case, extended models generically contain new interactions and light degrees of freedom, such
as right-handed neutrinos, and for the global symmetry option, potential Nambu-Goldstone
bosons. Therefore, we identify an excess in the effective number of neutrinos ∆Neff as a strong
hint for light new physics and a suggestive clue to a possible Dirac nature of neutrinos.

In this thesis, we study a gauged U(1)B−L as a benchmark for generic Z ′ extensions that
protect the Dirac nature and compute the strongest limits on such extensions thus far. The
constraints we find are generic and strong, but sensitive to the underlying cosmology. We focus
on the intertwined relationship between cosmology and Dirac neutrinos, and study the role of
non-standard cosmological histories. We highlight how constraints can be generically avoided
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when moving to non-standard thermal histories, or how in return Dirac neutrinos would equip
us with a unique probe of the otherwise inaccessible pre-BBN era, if they are protected by a
gauge symmetry.

We also introduce the notion of a Dirac Type-I seesaw family that generalizes an analo-
gous result from Majorana neutrinos and offers a unified framework to systematically study
different Dirac seesaw models. Two minimal realizations with a global symmetry that protects
the neutrino nature are studied in more detail. We find that flavor observables and cosmology
provide complementary results. Moreover, results for such minimal models with global sym-
metries tend to be less generic, and constraints are weaker than for their gauged variants in
direct comparison. We find that cosmological signatures are essentially suppressed by the im-
posed seesaw condition, and conjecture that similar results can be expected for other minimal
models. This seems like an appealing alternative to protect the Dirac nature and also avoid
generic bounds from gauged variants, however, we also acknowledge the conjectured breaking
of global symmetries by gravity. We discuss possible implications for the Dirac hypothesis more
generally in light of the generic constraints on gauged variants.

In an additional research project, we investigate interactions between DM and neutrinos
irrespective of the neutrino nature. Different cosmological data sets show a slight preference for
such interactions [117–120]. However, they are only probed indirectly, and degeneracies between
cosmological parameters make definitive conclusions difficult. When considering an MeV-scale
DM candidate, it is possible to directly study such interactions. We utilize the concept of
boosted dark matter (BDM) [121] and apply it to upscattering by the diffuse supernova neutrino
background (DSNB). Here we pivot towards toy models that mimic realistic interactions, and
we highlight the importance of model-dependent interactions and attenuation of dark matter
fluxes beyond boosting by the DSNB. This analysis embeds well into a larger active body of
research that studies neutrino-DM interactions by upscattering of dark matter from different
neutrino sources [122–130]. It is not only a building block towards a more complete picture of
neutrino-DM interactions, but also for the landscape of BDM more generally.

This thesis is structured as follows: In Chapter 2, we discuss neutrinos in the SM and beyond
with a focus on massive neutrino phenomenology, and an extended discussion of why neutrino
masses hint at physics beyond the standard model (BSM). Chapter 3 addresses how neutrinos
shape cosmological and astrophysical environments. In Chapter 4, we develop a Monte Carlo
approach for solving integrated Boltzmann equations. We use it in Chapter 5 to study Dirac
neutrinos protected by a gauged U(1)B−L. We provide the strongest limits on such scenarios
thus far and address the symbiotic relationship between cosmology and neutrino physics. In
Chapter 6, we introduce the Dirac Type-I seesaw family. We study the phenomenology of
two minimal realizations that protect the Dirac nature through a global symmetry and find
complementarity between cosmology and flavor observables. Chapter 7 considers upscattering
of MeV-scale dark matter by the DSNB. We highlight the strong model dependence of limits
in such upscattering scenarios and identify upscattering more generally as a unique and direct
probe of dark matter-neutrino interactions. We conclude in Chapter 8.
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Chapter 2

Neutrinos in the Standard Model
and beyond

In this Chapter, we give a high-level overview of the Standard Model of particle physics with
a particular focus on leptons and specifically neutrinos. We also work out how neutrinos point
towards BSM physics, and outline some well-motivated extensions in the neutrino sector. The
presentation at hand is by no means complete, nor does it attempt to be. It is rather intended
to make the present thesis a self-contained work, and perhaps more importantly, we wish to
motivate aspects of the research undertaken during the preparation of this thesis.

2.1 Neutrinos in the Standard Model

The Standard Model of particle physics is a gauge theory based on the gauge group GSM =

SU(3)C × SU(2)L × U(1)Y . With the exception of gravity, as described by the theory of
General Relativity (GR), the forces arising from the SM suffice to explain close to all phenomena
occurring in the realm of particle physics. The strong interaction is connected to the color gauge
group SU(3)C and is often referred to as quantum chromodynamics (QCD). Its gauge bosons
are the eight massless gluons, coupled to the color charged quarks, and strong interactions
play a supreme role in the structure of the material world. However, as far as neutrinos are
concerned, they are uncharged under the color group and, therefore, we do not study QCD in
more detail here.

The part of the SM that is most important to us here is the gauge group SU(2)L×U(1)Y ,
and the theory is also referred to as the Glashow-Salam-Weinberg theory [131–133]. It is a
chiral theory, since SU(2)L only couples to left chirality, and also the U(1)Y charges differ

Fields SU(3)C SU(2)L U(1)Y

QL =

(
uL
dL

)
3 2 1/3

L =

(
νL
eL

)
1 2 −1

uR 3 1 4/3

dR 3 1 −2/3

`R 1 1 −2

Table 2.1: Fields of the SM and charge assignments under the gauge group.
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between left- and right-handed fields. The presence of chiral gauge interactions forbids explicit
mass terms due to gauge invariance, a problem that is resolved by the Brout-Englert-Higgs
mechanism (or Higgs mechanism for short) [134–136]. A scalar doublet under SU(2)L undergoes
spontaneous symmetry breaking and develops a vacuum expectation value (VEV), which in
return grants an effective mass to fermions and gauge bosons due to their couplings to the
Higgs field.

We start by reviewing the Glashow-Salam-Weinberg or simply electroweak (EW) theory
with a particular focus on the leptonic sector, and then follow with a detailed summary of
neutrinos in the SM.

2.1.1 Electroweak theory

We identify the electroweak part of the theory as the Lagrangian density

L ⊃ Lgauge + Lfermion + Lscalar + LYukawa , (2.1)

where gauge includes gauge field kinetic terms, fermion refers to the fermionic kinetic terms as
well as their gauge interactions, scalar is the Higgs doublet associated kinetic terms and scalar
potential and finally, Yukawa refers to the Yukawa interactions between the fermions and the
Higgs field.

The EW part contains the correct fields and interaction structure required to explain obser-
vations, but it comes with a rather severe shortcoming. Experimental results show that the EW
gauge bosons are massive, and only the photon is consistent with being massless. Moreover,
mass terms in Lfermion are not consistent with gauge invariance. Indeed, it is obvious that left-
and right-handed fermion fields transform under different representations of SU(2)L × U(1)Y .
An explicit mass term mf̄f = m(f̄LfR+ f̄RfL) is manifestly not gauge invariant – a mass term
written as such is a doublet under SU(2)L.

The resolution of this problem comes from the Brout-Englert-Higgs mechanism, which
postulates the spontaneous breakdown of electroweak symmetry

SU(2)L × U(1)Y → U(1)EM , (2.2)

where U(1)EM is the unbroken abelian group of quantum electrodynamics (QED) with one
massless gauge boson that is identified as the photon. The spontaneous breaking results from
the Higgs field H developing a non-zero VEV.

In the SM, the scalar part of the Lagrangian,

Lscalar = (DµH)†(DµH)− µ2H†H − λ(H†H)2 , (2.3)

is compatible with the gauge charge assignment. For µ2 > 0, the potential describes an EW
doublet of mass µ, however, if µ2 < 0 the situation changes. The potential is of “Mexican hat”
type, and the ground state of the potential no longer coincides with zero field value. Instead,
the minimum is at some 〈H〉 6= 0, and interactions of other fields with the Higgs doublet give
rise to masses.
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To reproduce the correct low energy theory, the VEV should be in the neutral component,1

i.e.

H =

(
GW

1√
2
(v + h+ iGZ)

)
, 〈H〉 = 1√

2

(
0

v

)
, (2.4)

where we made manifest the degrees of freedom of the complex scalar doublet by introducing the
auxiliary parametrization in terms of the complex scalar GW , and the two real scalars h and GZ .
Our notation already suggests that three of the four degrees of freedom are not physical, but
rather, they are the would-be Nambu-Goldstone bosons giving rise to the longitudinal modes
of the massive EW gauge bosons. It is straightforward to work out the mass of the physical
scalar degree of freedom h by expanding the potential accordingly. We find m2

h = −2µ2, which
may be used to replace µ2.

It becomes evident that the remaining scalar degrees of freedom are not physical if we
choose a different parametrization of the Higgs doublet.2 We write in terms of real fields ζi, h

H = exp (iζi/vτi)

(
0

1√
2
(v + h)

)
, (2.5)

where i = 1, 2, 3 and τi are the generators of SU(2)L. It is no coincidence that the exponential in
this parametrization resembles a gauge transformation. In fact, it can readily be gauged away,
which corresponds to going to the unitary gauge that makes the physical degrees of freedom
manifest. We can observe that they must become the longitudinal modes of the massive gauge
bosons, by showing that indeed, the gauge bosons are massive upon developing a VEV in the
Higgs doublet. Consider the kinetic terms

(DµH)†(DµH) ⊃ v2

8

[
g2W 1

µW
1µ + g2W 2

µW
2µ +

(
gW 3

µ − g′Bµ
) (
gWµ3 − g′Bµ

)]
, (2.6)

which, due to non-zero VEV, give rise to a gauge boson mass matrix. We identify the physical
gauge bosons by their mass eigenstates, which is obtained by a simple field space rotation. The
physical bosons are

W±
µ =

1√
2
(W 1

µ ∓W 2
µ) , (2.7)

Zµ = cos θWW
3
µ − sin θWBµ , (2.8)

Aµ = sin θWW
3
µ + cos θWBµ , (2.9)

1After all, the ground state of our Universe seemingly respects electromagnetic charges.
2Equivalence of the theories is guaranteed by field re-parametrization invariance, and the h of the “radial”

Higgs is not to be confused with the Cartesian h. However, both choices give rise to exactly the same S-matrix
and therefore are equally good choices of the physical Higgs.
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where sin θW = g′/
√
g2 + g′2 and cos θW = g/

√
g2 + g′2. The gauge boson masses are

M2
W =

g2v2

4
, (2.10)

M2
Z = (g2 + g′2)

v2

4
, (2.11)

M2
A = 0 . (2.12)

Thus, we observe that the Higgs mechanism gives rise to two massive, physical gauge bosons,
associated with weak interactions, and one massless boson that is identified as the photon.

Since the Higgs field is a doublet under SU(2)L, we can have Yukawa terms between left-
handed doublets and right-handed singlets under SU(2)L. We define a conjugate Higgs field
H̃ = −iτ2H?, and the most general Yukawa terms we can write in the SM are given by

LYukawa = −Y u
ij Q̄iLH̃ujR − Y d

ijQ̄iLHdjR − Y `
ijL̄iH`jR + h.c. (2.13)

The indices i, j run over the generations and we note that, in general, nothing forbids Yukawa
couplings across generations, i.e. the Yij are arbitrary complex matrices.

Due to the Higgs field VEV, the fermions acquire mass terms of the form

LYukawa ⊃ −Y u v√
2
ūLuR − Y d v√

2
d̄LdR − Y ` v√

2
¯̀
L`R + h.c. (2.14)

The mass matrices M = Y v/
√
2 are in general neither symmetric nor hermitian, though they

can be diagonalized by biunitary transformations such that

S†MT = M̂ , (2.15)

where M̂ is diagonal and with positive eigenvalues. Correspondingly, we denote by û etc. the
mass basis rotated fields that are eigenstates of the mass matrix.

Let us ignore the leptonic part for the time being, after all, it is somewhat simpler due to
the absence of νR in the SM. Instead, we study the charged current interaction between up-
and down-type quarks mediated by the physical W -boson. The gauge basis eigenstates relate
to the mass basis eigenstates by uL = SuûL and dL = Sdûd. Then, the charged current

Jµ = ūLγ
µdL = ¯̂uLγ

µ
[
S†
uSd

]
d̂L (2.16)

is not diagonal in the mass basis – we observe mixing between different quark flavors in charged
current interactions. We capture the mixing by defining the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [137, 138]

VCKM = S†
uSd . (2.17)

The implications for quark physics are enormous, and we will not touch here on the plethora
of phenomena associated with the quark mixing.

If it were not for the absence of νR in the SM, the same pattern of lepton mixing and mass
generation could occur. Without the right-handed neutrino, we only generate a mass term for
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the charged leptons, and the issue of simultaneous diagonalization does not arise. Hence, we
should not expect mixing in the lepton sector.

However, neutrino oscillations are an experimental reality. They do not strictly prove that
neutrinos are massive, but the observed E/L dependence of oscillations and all other exper-
imental observations are well fit by neutrino masses. We note that alternative explanations
are possible [139], but nevertheless, the existence of at least two massive neutrino states is
generally accepted and considered the simplest explanation of observation (see also Ref. [140]).
In the next section, we explore in more detail why the SM cannot accommodate a non-zero
neutrino mass, and why neutrino flavor oscillations, and by extension neutrino masses as the
generally accepted explanation, can be considered a herald of BSM physics.

2.2 Phenomenology of massive neutrinos

In this section, we discuss some of the phenomenological implications of neutrino masses. For
more details, see e.g. Ref. [141]. As we discussed before, neutrino flavor oscillations do not
strictly prove the existence of neutrino masses. The global experimental landscape, however, is
well described by the presence of neutrino masses, and it is generally assumed that neutrinos
are massive with experimentally determined mass difference values of [28]3

∆m2
21 = 7.50+0.22

−0.20 × 10−5 eV2 , (2.18)∣∣∆m2
31

∣∣ = 2.55+0.02
−0.03 × 10−3 eV2 . (2.19)

Since the sign of ∆m2
31 is unknown, there are two different possible mass orderings called

normal ordering (NO) and inverted ordering (IO),

m1 < m2 < m3 (NO) and m3 < m1 < m2 (IO) . (2.20)

Despite its smallness, the mass splitting plays an important role for the phenomenology of
massive neutrinos. The absolute scale of neutrino masses is still unknown, but tight upper
limits exist showing that neutrinos are expected to have masses below eV scale. The Karlsruhe
Tritium Neutrino (KATRIN) experiment provides the most stringent upper bound from the
laboratory by means of direct measurement of the β-decay spectrum endpoints, finding [41]

mβ < 0.45 eV (90%CL) , (2.21)

for the effective electron anti-neutrino mass mβ =
∑

i |Uei|m2
i visible in the experiment.

Indirect cosmological probes are even stronger. Here, we must acknowledge the inherent
difficulty of inferring neutrino masses from cosmological data due to model dependence and
parameter degeneracies. We discuss how cosmology is sensitive to neutrino masses in more

3We quote here best-fit values for normal mass ordering from global fits, see also the following discussion.
The best-fit for inverted mass ordering is slightly different.
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detail in Sec. 3.2.2. The current cosmological bounds by DESI [40] and ACT [44] give∑
mν < 0.064 eV (95%DESI) , (2.22)∑
mν < 0.089 eV (95%ACT) , (2.23)

but the minimal sum of neutrino masses inferred from flavor oscillations should be approxi-
mately

∑
mν > 0.06 eV for NO and

∑
mν > 0.1 eV for IO. This is already in tension with

IO and suggests that even for NO the absolute scale of neutrino masses cannot significantly
exceed the mass splitting.

2.2.1 Dirac and Majorana masses

Let us consider a massive fermion, tentatively called ν, but the discussion that follows is general.
We discuss the Dirac mass term, as we already encountered it for the other SM fermions. Such
a mass term in the Lagrangian is of the form

L ⊃ −mν̄ν = m(ν̄L + ν̄R)(νL + νR) , (2.24)

so it couples the left- and the right-handed components of ν, and a massive field requires the
existence of both, νL and νR. However, combining two distinct Weyl spinors νL and νR to form
a Dirac spinor is not the only way to include a mass term.

Another option comes from the observation that the particle-anti-particle conjugated field
defined by ν → νc = Cν̄T , C = iγ2γ5 implies (νL)

c = (νc)R, i.e. it is right-handed.4 Thus,
instead of having a distinct right-handed Weyl spinor, we can replace νR with the right-handed
(νL)

c to build
ν = νL + eiφ(νL)

c , (2.25)

with an arbitrary phase factor eiφ. It can be used to construct a mass term of the form in
Eq. (2.24), but with νR replaced by the conjugate of νL.

The particle-anti-particle conjugate of ν is νc = e−iφν, and so particle and anti-particle
coincide up to a phase factor. Similar to a real scalar field, particle and anti-particle coin-
cide and, therefore, this Majorana field is neutral and cannot carry electric or color charges.
In addition, we note that a Majorana field is constructed only from one independent Weyl
spinor. It contains only two degrees of freedom, whereas a Dirac spinor is constructed from
two independent Weyl spinors with a total of four internal degrees of freedom.

2.2.2 Lepton mixing

As was the case for the quark sector discussed before, the non-vanishing neutrino masses give
rise to mixing in the lepton sector. The computation is completely analogous and will not be
repeated here. The mixing matrix is referred to as the (Pontecorvo-)Maki-Nakagawa-Sakata
matrix ((P)MNS matrix) [142, 143]. A subtle difference can arise due to the possibility of

4We note here that for chiral fields, charge conjugation and particle-anti-particle conjugation are in general
distinct. See e.g. discussions in Ref. [141].
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Majorana neutrinos, in which case two additional Majorana phases that cannot be rotated
away appear. The PMNS matrix can be parametrized as [144]

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.26)

where cij = cos θij , sij = sin θij , and θij are the mixing angles. We include the CP-violating
phase δ, and in the case of Majorana neutrinos, we multiply Eq. (2.26) from the right bye

iη1/2 0 0

0 eiη2/2 0

0 0 1

 , (2.27)

containing the Majorana phases η1,2 that cannot be absorbed.

2.2.3 Neutrino oscillations

For a coherent mixture of mass eigenstates, the mismatch between flavor and mass eigenstates
allows for flavor oscillations. It turns out that in the case of neutrinos, coherent states are
realized in weak interactions, and the microscopic properties allow for flavor oscillations to
manifest on macroscopic scales.

In the following, we derive the probability of flavor oscillations να → νβ. We shall distin-
guish neutrino flavor states by indices α = e, µ, τ and mass eigenstates by i = 1, 2, 3. The result
is standard, but our derivation takes inspiration from Ref. [145], which gives a comprehensive
presentation and addresses many of the misconceptions about neutrino flavor oscillations at a
depth and detail we cannot present here.

We begin by quoting the master formula for the probability of a neutrino in flavor state
|να〉 to be detected in the state |νβ〉 after traveling distance L,

Pνα→νβ (L) = |〈νβ(L)| να〉|2 =

∣∣∣∣∣∑
i

Uβie
−im

2
i

2E
LU?αi

∣∣∣∣∣ =∑
i,j

UαiU
?
βiU

?
αjUβj e

−i
∆m2

ij
2E

L , (2.28)

where ∆m2
ij = m2

i − m2
j , L is the baseline, and Uαi indicates elements of the lepton mixing

matrix. The result is commonly derived by describing neutrinos incorrectly as plane waves and
although the obtained result is correct, it comes with conceptual problems [145].

In the following, we sketch a simplified but more rigorous derivation from quantum me-
chanics using finite wave packets. We recall that for a free particle, we have

Ψ(~x, t) =

∫
d3p

(2π)3
Ψp e

i~p·~x−iEt , (2.29)

where Ψ(~x, t) = 〈x| Ψ〉 is the wave function in coordinate space and Ψp is the momentum
distribution.
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We consider a neutrino produced in flavor state |να〉, which is a superposition of mass
eigenstates |νi〉 with their respective wave functions, i.e.

|να(~x, t)〉 =
∑
i

U?αiΨi(~x, t) |νi〉 , (2.30)

and for oscillations in vacuum Ψi(~x, t) obeys the free Schrödinger equation. Likewise, the
detected neutrino state should also be described as a wave packet. The oscillation amplitude
is given by

〈νβ(L)| να〉 =
∑
i

U?αiUβi

∫
d3pΨ?(β)

p Ψα
p e

−iEit+i~p·~L , (2.31)

which after integrating out time t, as we remain agnostic about the precise time of production,
gives rise to the transition amplitude for a given baseline L. Note that in order to compute
the transition probability, we need to prescribe the shape of the wave function – which is a
priori not known to us. It will include information about uncertainty in energy and momentum
of the produced and detected states and allows for an analysis of coherence and decoherence
phenomena associated to flavor oscillations, for example, by adopting a Gaussian wave packet.5

For a Gaussian momentum space distribution centered around ~p′ and with spread σp, the
coordinate space wave function can be written analytically as

Ψ(~x, t) =
1

(2πσ2p)
3/4

exp

(
−(~x− vgt)

2

4σ2x

)
ei~p

′~x−iEt , (2.32)

where σx = 1/(2σp) is the spatial width of the wave packet. For the oscillation probability
with relativistic mass eigenstates, we find [145, 147]

Pνα→νβ (L) ∝
∑
i,j

UαiU
?
βiU

?
αjUβj e

−i
∆m2

ij
2E

L e−∆E2
ij/8σ

2
E e−L

2/l2coh , (2.33)

which coincides with Eq. (2.28) up to normalization and the two exponential factors. However,
their meaning is rather intuitive, and without going into too much detail, we briefly highlight
their significance. For more details, see Refs. [145, 147].

The exponential damping factors describe deviations from coherence conditions in produc-
tion, propagation, and detection. The first factor relates a production and detection process
dependent energy uncertainty σE to differences in the energy of the mass eigenstates ∆Eij . For
∆Eij/σE � 1, this inherent uncertainty in production and detection is large against the energy
difference of the mass eigenstates, and coherence is not violated by production and detection.

Likewise, if the baseline is small against the coherence length scale

lcoh = 2
√
2

2E2∣∣∣∆m2
ij

∣∣∣σx , (2.34)

the separation of wave packets remains small against the spatial spread of the packets. It is
5This still does not solve the issue of correct normalization of the wave functions, which has to be introduced by

hand, see e.g. Ref. [145]. These conceptual problems can be solved by a fully self-consistent QFT description [146].
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a theoretical distance over which coherence for flavor oscillations is maintained. As long as
L� lcoh holds, damping is negligible and oscillations take place.

2.2.4 Matter effects and adiabatic flavor conversion

When traveling through a medium, neutrinos are subject to forward scattering. This interac-
tion generates an effective mean potential. When considering SM matter only, due to charged
current interactions, a potential difference between (anti-)electron flavors and the non-electron
flavors is generated. This effect is known as the Mikheyev-Smirnov-Wolfenstein (MSW) ef-
fect [148, 149].

Naively, we may be inclined to believe that this effective mean potential of first order in
GF is negligible when compared to typical neutrino energies. However, it is important to note
that the potential need only be relevant when compared to the differences in kinetic energies,
which are of order ∆m2/2E, and so matter effects on flavor can be of great importance.

Applying a Fierz transformation, the Hamiltonian of charged current interactions can be
written as

HCC ⊃ GF√
2
[ēγµ(1− γ5)e] [ν̄eγ

µ(1− γ5)νe] . (2.35)

We obtain a matter-induced mean potential by averaging out the electron contribution, i.e.
〈HCC〉 = ν̄eVeνe, and it can be shown that for an unpolarized, zero net momentum medium
with electron number density ne, the effective potential is given by [141]

Ve =
√
2GFne . (2.36)

Similarly, neutral current potentials can be obtained. In an electrically neutral medium, proton
and electron contributions cancel and only the neutron induced part Vn = −GFnn/

√
2 remains.

It is evident how the generated potential is not flavor universal due to the charged current part,
and therefore we obtain an additional contribution to the mixing between mass and flavor states.
The eigenstates of propagation in medium are different from the mass eigenstates in vacuum.

In many situations, it suffices to study an effective two flavor system, since we have a
strong hierarchy in the mass squared differences. We can approximately neglect the oscillations
resulting from the smaller mass squared difference ∆m2

21 �
∣∣∆m2

31

∣∣. Then, we study the system
defined by νe and νx, where νx is a combination of νµ and ντ . Let us consider the time evolution
in the flavor basis [141]

i
d

dt

(
νe

νx

)
=

[(
−∆m2

4E cos 2θ ∆m2

4E sin 2θ
∆m2

4E sin 2θ ∆m2

4E cos 2θ

)
+

(√
2GFne 0

0 0

)](
νe

νx

)
, (2.37)

where we neglect all flavor universal contributions to the potential, since only potential dif-
ferences between the flavors are important here. The first part of the Hamiltonian defines
the mass eigenstates in vacuum, the second term gives the mixing contribution in medium.
The medium dependent mixing also affects flavor oscillations in medium, which are in general
different when compared to oscillations in vacuum.
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Of particular importance is the so-called adiabatic flavor conversion. Let us consider a
medium that gradually varies in density as neutrinos propagate. Let us also consider a neutrino
that is an eigenstate of Eq. (2.37) initially. Upon propagation, the matter potential varies. If
the change is sufficiently slow, the state can adjust adiabatically to the changing background.
Thus, it remains in its initial mass eigenstate. However, the potential and therefore mixing
and the flavor composition of that eigenstate changes. We do not discuss this effect in more
detail here, but note that it was later identified as the correct solution to the solar neutrino
problem, which was the unexpected appearance of µ and τ flavors from the sun and a reduced
flux of νe compared to theoretical prediction (e.g. Ref. [141] for a pedagogic overview).

Neutrinos in the sun are produced in an extremely dense environment, and due to the matter
potential νe ' νm holds, where νm is one of the mass eigenstates at that density. The condition
of adiabaticity is fulfilled in the sun and the neutrino initially produced as νe moves outward.
It remains in the propagation eigenstate νm, therefore changing its flavor composition leading
to the apparent mismatch in the observed neutrino flux. We note here that this adiabatic flavor
conversion is non-oscillatory in nature, see e.g. detailed discussions in Ref. [140].

2.2.5 Neutrinoless double beta decay

It is well known that for some nuclei a double beta (2νββ) decay is possible. This process
is higher order in weak interactions and therefore long-lived. It is only observable in nuclei
where ordinary β-decay is kinematically forbidden. A special case arises when lepton number
is explicitly violated and neutrinoless double beta decay (0νββ) becomes possible.

We will not discuss this process here in great detail, and instead refer to e.g. Ref. [53] for a
review. However, we want to give some overview here as it is a unique signature for determining
the nature of neutrinos, and is connected to the motivation of some of the research projects
undertaken for this thesis. This process can only occur for a Majorana neutrino as we will see
below and, therefore, it would be a key observation for establishing the nature of neutrinos,
and its ongoing non-observation motivates some of the projects undertaken in this thesis.

If 0νββ occurs, the nuclear recoil is typically negligible and so we have a unique experimental
signature where the electrons/positrons have a discrete energy spectrum and their sum is the
total energy released in the process. We show a possible corresponding diagram in Fig. 2.1,
where 0νββ is directly mediated by lepton number violating Majorana neutrinos. This diagram
is not the only way to have 0νββ. Many extended BSM theories allow for such a decay, but
they do not need to be connected to Majorana neutrinos directly [150].

The significance of this decay mode becomes clear when we take into account the Schechter-
Valle-black-box theorem [52]. It guarantees that, if there exists a diagram leading to 0νββ, it
implies that we also always generate a Majorana mass term for neutrinos involving the same
process. Thus, if 0νββ is observed, neutrinos cannot be Dirac particles.

It is noteworthy that the mass term guaranteed by the black-box theorem is only 4-loop.
If 0νββ is mediated by a different process from Fig. 2.1, we could have Dirac neutrinos up
to 3-loop before we generate the Majorana mass term. It is possible then that right and left
components are nearly degenerate, and while fundamentally Majorana, they experimentally
appear as almost Dirac-like. This option is often referred to as pseudo-Dirac neutrinos [151].
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Figure 2.1: Feynman diagram for 2β0ν violating lepton number ∆L = 2.

If 0νββ is mediated by SM weak interactions, the amplitude scales as

A0νββ ∝
∑
i

U2
eimi . (2.38)

Here we omitted the in general complicated nuclear part of the matrix element. The amplitude
is explicitly neutrino mass suppressed, which makes the experimental observation challenging.
The appearance of U2

ei over |Uei|2 is no coincidence, and potentially significant cancellations
in the amplitude are possible. Therefore, even non-observation 0νββ cannot rule out the
possibility that neutrinos are Majorana fermions.

2.2.6 Helicity and chirality

The subtle difference between helicity and chirality for massive but light neutrinos has caused
some confusion in the literature. We use this opportunity to briefly highlight important dif-
ferences, as it is also relevant to avoid some misconceptions regarding research topics in this
thesis. Although a standard text book problem, we highlight here the two recent Refs. [152,
153], which address the problem for light neutrinos in great detail.

We first begin by briefly reviewing helicity and chirality [154]. Helicity is the projection
of particle spin on the direction of motion, ~Σ · p̂, where p̂ = ~p/ |~p| and ~Σ is the spin operator
acting on a Dirac spinor Ψ. It has eigenvalues λ = ±1.

The helicity operator obeys [
~Σ · p̂, H

]
= 0 , (2.39)

so it commutes with the (free) Dirac Hamiltonian and is a good quantum number and conserved
for a particle. However, it is manifestly not Lorentz-invariant, so it is a good quantum number
only in a fixed frame of reference. This statement holds irrespective of the mass of ψ. We can
use the helicity operator to define a helicity projection operator

P∓ =
1

2

(
1∓ ~Σ · p̂

)
, (2.40)

that projects onto eigenstates of definite helicity.
Chirality on the other hand is Lorentz invariant, as it is related to representations of the

Lorentz group. We can project out left- and right-handed components of a Dirac spinor by
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defining a projection operator
PL/R = (1∓ γ5)/2 . (2.41)

However, it is straightforward to show that [γ5,H] ∝ m, so unless m = 0, chirality is not a
good quantum number. In the limit m = 0, helicity and chirality coincide, and particles of
negative helicity are identical with left-handed chirality and vice versa.

Let us consider Dirac neutrinos. For finite mass, the left-handed weak interaction produces
a neutrino that is a combination of positive and negative helicity eigenstates, where, due to
typical energies mν � Eν , the admixture of the opposite helicity is strongly suppressed. The
wrong helicity neutrino is an almost sterile state under weak interactions, as its interactions
are now suppressed by the admixture of the left-handed chirality. This phenomenon has been
studied in context of energy loss in astrophysical systems that results from production of wrong
helicity neutrinos in weak interactions [155–157].

Later in this thesis, we will frequently refer to the production of νR in models of Dirac
neutrinos. While this is common jargon, it is important to clarify the matter to avoid confusion
about its meaning. The models we will introduce have interactions that explicitly couple to
νR. In a similar fashion to how weak interactions coupled to νL produce predominantly ν−, the
νR-coupled interactions give rise to primarily νR ∼ ν+ because of neutrino mass suppression.
Thus, the actually produced state is mostly sterile under weak interactions. For simplicity,
we will usually refer to νR being produced and cosmological abundances of νR even though
chirality is not a good quantum number. The admixture is negligibly small and of no particular
significance for any result we derive.

2.3 Massive neutrinos are new physics

We want to conclude this Chapter by motivating why the existence of neutrino masses implies
BSM physics. To this end, we first highlight how we cannot accommodate neutrino masses
in the SM. We continue with some comments regarding the direction of BSM physics that
neutrino masses point to.

2.3.1 No neutrino masses in the SM

It seems deceptively simple to claim the SM should include νR and write down appropriate
Yukawa couplings such that upon symmetry breaking a Dirac neutrino mass matrix that is
consistent with oscillation data is generated. One may wish to argue on grounds of “symmetry”
that, just as for the quark sector, the inclusion of right-handed neutrinos would resolve the
apparent mismatch between the quark and lepton sectors. However, we stress here that there
is no fundamental reason to believe in the necessity of such an extension. The existence of
right-handed quark fields is required to cancel gauge anomalies in the SM. The right-handed
neutrinos would be true singlets under the SM gauge group, and we have no grounds for arguing
based on internal consistency of the theory.

Moreover, the true singlet νR would have to come without any Majorana mass terms,
although they are true SM singlets, and unless any extended symmetry forbids their presence,



2.3. Massive neutrinos are new physics 17

we have no reason to assume their absence. The masses of the active neutrinos are small
compared to those of the other fermions, and it would be desirable for a model of neutrino
masses to explain this aspect of the flavor puzzle.

While not pressing per se, the introduction of small Yukawa couplings ∼ 10−12 to be
consistent with neutrino mass bounds motivates additional structures in the neutrino mass
sector. In either case, the presence of a Dirac mass term for neutrinos not only points to new
physics beyond the SM (at least two νR), but also motivates additional components to explain
the absence of Majorana masses.

The other possibility would be that of Majorana masses. Consider the Majorana mass term

L ⊃ 1

2
ν̄cLMνL + h.c. = 1

2
ν̄TLCMνL + h.c. , (2.42)

where νL = (ν1L, ν
2
L, ν

3
L)
T . The mass term has weak isospin I3 = 1, and therefore is part of

an isotriplet operator made from lepton doublets with ∼ (3,−2). However, the SM does not
contain an isotriplet Higgs field and thus, such an operator can at most be generated at loop
level, if at all. Indeed, the celebrated dimension five Weinberg operator [158],

L5 =
λ

Λ
(LTCiτ2~τL)(H

T iτ2~τH) , (2.43)

is the lowest order operator to give rise to Majorana masses for neutrinos, here written in
the form to contract the iso-triplet bilinear to the iso-triplet Higgs composite operator. The
Weinberg operator breaks lepton number ∆L = 2 and therefore B − L, as indeed it should,
since Majorana mass terms break lepton number. Thus, unsurprisingly, we cannot create this
or similar operators at higher order or even non-perturbatively in the SM.

Before we move to rather generic considerations of neutrino masses (slightly) beyond the
SM, we note the possible role that gravity plays in neutrino mass generation. It is conjectured
that gravity breaks all global symmetries, and hence B − L, if not gauged in any extension,
will be broken by gravity too. It would be an enticing option to consider mass generation by
means of a theory of quantum gravity, in which a small Majorana mass of the neutrino would
be connected to Planck-scale physics.

2.3.2 Neutrino masses slightly beyond SM

We established that neutrino masses cannot be generated in the SM alone and necessarily call
for an extension of the SM field content or symmetry group. In the following, we study more
carefully a general mass matrix for neutrinos and point to certain strategies for generating
small masses for the active neutrinos.

Let us consider νL = (ν1L, ν
2
L, ν

3
L)
T active neutrino flavors, and m singlet fermions NR =

(N1
R, ..., N

m
R ) that we may refer to as sterile neutrinos. The general mass term can be written

as

−L ⊃ 1

2

(
νL (NR)c

)(ML MD

MT
D MN

)(
(νL)

c

NR

)
+ h.c. (2.44)
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νL νL

〈H〉 〈H〉

NR

(a) Type-I/III

νL νL

〈H〉 〈H〉

∆

(b) Type-II

Figure 2.2: Neutrino mass generating diagrams for the Type-I/III seesaw (left) and Type-II seesaw
(right). For Type-I/III, the heavy fermion NR is either a singlet/triplet under SU(2)L, and the scalar

∆ in the Type-II mechanism is a triplet.

A few comments are in order. As we have argued before, the SM does not induce ML, but
extensions of the SM may generate it, e.g. if there is an electroweak triplet. The matrix MN

is a m ×m symmetric Majorana mass matrix, and MD is an arbitrary 3 ×m matrix. Upon
diagonalization, we obtain the diagonal neutral lepton mass matrix M̂, which should contain
the three light active neutrino flavors, and possibly additional sterile neutrinos. We note here
that, only if ML = MN = 0, i.e. no Majorana masses are present, the active neutrinos are
Dirac in nature.

There exists a variety of models that give rise to a neutral lepton mass matrix as we
show in Eq. (2.44). Here, we briefly explore the options for generating a mass matrix from the
Weinberg operator in Eq. (2.43) at tree level by enlarging the SM. We therefore do not consider
a loop generated Weinberg operator, nor do we discuss mass generation from other higher order
effective operators. There exist three tree-level realizations that give rise to small Majorana
masses for the active neutrinos, and they are called seesaw mechanisms of Type-I [55–58],
Type-II [59–62], and Type-III [63]. They are all based on the observation that the operator
in Eq. (2.43) combines two doublets in different ways by means of the SU(2) completeness
relation to form triplets/singlets under SU(2)L. The seesaw mechanisms correspond to different
triplet/singlet extensions of the SM that can be used to provide a UV-completion of Eq. (2.43)
(or its equivalent other contractions) at tree level.

The Type-I and Type-III seesaws realize the operator by connecting two LH operators
through their singlet (Type-I) and triplet (Type-III) components through a fermion multiplet.
Neutrino masses can be suppressed from heavy masses of the respective multiplets. The Type-II
seesaw is conceptually different, as it connects operators ∼ LL and ∼ HH with a scalar triplet.
Then, EWSB induces a small VEV for the neutral component of the triplet. The suppression of
the VEV due to large masses in the scalar triplet leads to small neutrino masses. We illustrate
all three seesaw mechanisms by their mass generating diagram in Fig. 2.2.

It will be instructive to study this in more detail. As an example, we consider the Type-I
seesaw with a neutrino mass matrix

Mν =

(
0 MD

MT
D MR

)
. (2.45)

This neutrino mass matrix defines an entire family of Type-I seesaws that can be studied in
generality, and it is possible to show that many alternative seesaw realizations belong to this
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family [159].
Apart from assuming the matrix in Eq. (2.45), we assume the hierarchy (MDM

−1
R )ij � 1,

which allows for a perturbative diagonalization of Eq. (2.45) and guarantees small Majorana
masses mν � ΛEW. Note that this does not necessarily imply (MD)ij/(MR)ij � 1. Therefore,
the seesaw expansion is not inconsistent with low scales in the mass matrix, giving rise to
low-scale variants of the Type-I seesaw such as the linear [160–162] and inverse seesaws [163,
164], and a review on low-scale seesaws can be found in Ref. [165]. The matrix M is symmetric
and admits a Takagi decomposition M̂ = UTMU , which diagonalizes M with non-negative
entries on the diagonal. Since U is unitary, we decompose

U =

(
Ul 0

0 Uh

)(√
1− PP † P

−P † √
1− P †P

)
, (2.46)

where P is a 3×mmatrix, and Ul/h are 3×3 andm×m and unitary. This parametrization allows
to first block diagonalize M into a light and a heavy sector, and subsequently diagonalize the
blocks independently through Ul/h. Finding the exact matrix to diagonalize a given mass matrix
is a difficult problem, however, the assumed seesaw hierarchy allows for a perturbative block
diagonalization. We expand in powers of ε ∼ MDM

−1
R , i.e. P =

∑
n Pn, where Pn = O(εn).

At leading order,
√
1− PP † =

√
1− P †P = 1 + O(ε2). If we perform the block diagonal

transformation at leading order, we obtain conditions on P for demanding the off diagonal
blocks to vanish at this order. This gives

P =M?
D(M

−1
R )† +O(ε2) , (2.47)

and we find the block diagonal mass matrix

Mblock =

(
−MDM

−1
R MT

D 0

0 MR

)
+O(ε2) . (2.48)

We obtain the well-known neutrino mass formula for the Type-I seesaw

Mν = −MDM
−1
R MT

D +O(ε2) , (2.49)

which is explicitly suppressed by the potentially high scale fermion mass matrix. We note here
that Ul, which diagonalizes the light neutrino mass matrix, can be identified with the PMNS
matrix Eq. (2.26) at this order of the seesaw expansion. We will refer back to these results when
we discuss the formal analogies between the Type-I seesaw family here and the generalization
to a Type-I Dirac seesaw family in Chapter 6.
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Chapter 3

How neutrinos shape the Universe

Despite their feeble interactions, neutrinos play an important role in virtually all aspects of
how the Universe appears to us. They are abundantly created in stars, determine the dynamics
of supernovae, and on even larger scales, affect the large scale structure and ultimately global
expansion of the entire Universe – no observation could be reconciled without the crucial role
neutrinos play in all of these systems.

The following Chapter attempts to give an (ultimately incomplete) overview of the role
neutrinos play on the cosmic stage. We try to be as self-contained as possible, and focus in
particular on systems and concepts important for this thesis. Occasionally, we will not shy
away from exploring some topics beyond what is strictly needed in this thesis, so that we can
truly appreciate the prime position of neutrinos in cosmology and astrophysics, and also to
motivate future directions beyond what has been explored in this thesis.

3.1 An early Universe primer

We begin with a few remarks on the early Universe by establishing some terminology of the
ΛCDM model and the timeline of the early Universe, followed by an introduction to cosmolog-
ical Boltzmann equations tailored to our needs in later Chapters of this thesis. The treatment
is by no means complete, and for an exhaustive overview, we refer to standard textbooks (e.g.
Ref. [166]) on the subject.

3.1.1 The ΛCDM model

The cosmological standard model, or ΛCDM model for its main unknown ingredients, models
the Universe as homogeneous and isotropic on large scales. The metric describing such a
spacetime is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ

)
. (3.1)

The spatial curvature parameter k is consistent with a flat (k = 0) Universe by observation,
so we only work in the limit of k = 0 [42]. Fortunately, the ten Einstein equations related to
this metric simplify considerably, with only two independent equations remaining. They are
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referred to as the Friedmann equations,(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
, (3.2)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (3.3)

where the dot denotes derivatives with respect to the time coordinate, and we define the
Hubble expansion parameter H = ȧ/a. We made the cosmological constant explicit instead of
absorbing it into the energy momentum tensor. Spatial homogeneity and isotropy also enforce a
perfect fluid form for the energy-momentum tensor Tµν = diag(−ρ, p, p, p), and from ∇µT

µν = 0

a continuity equation,
ρ̇+ 3H(ρ+ p) ≡ ρ̇+ 3H(1 + w)ρ = 0 , (3.4)

is obtained. We also defined the equation of state parameter w = p/ρ. The dilution of an
energy density with expansion follows directly from Eq. (3.4),

ρ ∝ a−3(1+w) . (3.5)

Important equation of states are that of radiation w = 1/3 with ρrad ∝ a−4, non-relativistic
matter w ≈ 0 with ρmat ∝ a−3, and vacuum energy w = −1 with ρvac = const.

3.1.2 A brief timeline of the early Universe

It is generally assumed that the early Universe, after a likely early phase of exponential ex-
pansion from cosmic inflation, was dominated by radiation energy density. While we only
have a clear indication of radiation domination around the time of Big Bang nucleosynthesis
(BBN), this remains one of the key assumptions that is commonly made when studying the
early Universe. Non-standard scenarios, where the Universe was not always in a radiation dom-
inated phase between inflation and BBN, are also subject of interest and in many instances
well motivated.

Assuming that the Universe was as hot as T � 100GeV initially, thermal corrections
restore EW symmetry and only when the Universe cools down to T ∼ 100GeV, the Higgs
field develops a vacuum expectation value that leads to EWSB and generates masses for SM
fermions and gauge bosons.

At temperatures near T ∼ 200MeV, the strong interaction becomes confining and free
quarks and gluons disappear from the SM plasma to form hadrons and mesons. The leftovers
of this transition are the protons and neutrons, which later form the primordial elements.

Neutrinos decouple at around T ∼ 1MeV and proceed to free-stream, shortly followed by
electron-positron annihilation at T ∼ 0.5MeV, which heats up the plasma once again. Since
neutrinos have decoupled at this stage, we find that relic neutrinos and the primordial photons
have differing temperatures.

BBN takes place down to temperatures as low as T ∼ 100 keV. In a delicate balance of
different processes, the primordial abundance of mostly hydrogen and helium (and traces of
some heavier elements) is set by nuclear reactions.
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We find the Universe transitioning from the radiation dominated era to the matter domi-
nated era, where DM and baryonic matter take the lead, at around T ∼ 1 eV, before photons
decouple at T ∼ 0.3 eV. Electrons and protons recombine to form neutral hydrogen, and pho-
tons free-stream until today and are observable to us as the cosmic microwave background
(CMB), leaving a detailed imprint of the Universe in the moment of last-scattering.

At even lower temperatures, and depending on the unknown value of the neutrino masses,
at least two of the three active neutrino mass eigenstates cool down enough to become non-
relativistic. They act as a subdominant, warm DM component and influence structure forma-
tion. We will explore the role of (massive) neutrinos on the CMB and structure formation in
Sec. 3.2.

3.1.3 Cosmological Boltzmann equations

A coherent picture of the evolution of the Universe from its early hot and dense state to the
diverse observations of the current epoch emerges in the language of thermodynamics, applied to
a FLRW Universe. The tools of choice to track the abundance of species and their interactions
in the primordial particle soup are phase space distributions. Here, particles are described
by statistical ensembles, and the central object of interest for a species φ is its phase space
distribution or phase space density fφ(t, ~x, ~p), which is a function of time, physical coordinate
~x, and physical momentum ~p.

The phase space density can be interpreted as a particle number density in phase space,
i.e. dN = gφfφ(t, ~x, ~p)

d3p
(2π)3

d3x [167]. The evolution of the phase space distribution is given
by the Boltzmann equation, which can be written abstractly as L̂(fφ) = Ĉ(fφ), where L̂ is
the Liouville operator that encodes the change of the phase space distribution in absence of
particle interactions, and the collision operator Ĉ captures changes coming from microphysical
interactions.

We can understand the Liouville operator as the change of the phase space distribution
along a world-line xµ(λ) of particle φ,

L̂(fφ) =
dfφ
dλ

=
∂fφ
∂xµ

dxµ

dλ
+
∂fφ
∂pi

dpi

dλ
, (3.6)

where λ is the affine parameter of the world line. This definition of the Liouville operator
holds in any spacetime. The computation for the FLRW metric is a standard result, see e.g.
Ref. [168]. In a homogeneous and isotropic FLRW Universe, we find

L̂(fφ) = Eφ
∂fφ
∂t

−HEφp
∂fφ
∂p

, (3.7)

where t is cosmic time, and p is the modulus of the spatial part of physical momentum.
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To complete the Boltzmann equation, we need the collision operator for particle φ in a bath
that may contain additional particle species ψi. It can be written as [166]

Ĉ(fφ) =
∑
φ∈i,f

∫
dΠi1 ...dΠindΠf1 ...dΠfm(2π)

4 δ(4) (Σ pi − Σ pf )

×
(
|Mi→f |2 fi1 ...fin f̄f1 ...f̄fm − |Mf→i|2 ff1 ...ffm f̄i1 ...f̄in

)
.

(3.8)

Here we wrote i, f for the initial and final states that contain n and m particles, respectively.
We sum over all initial and final states that contain at least one particle φ, and integrate
over the phase space of all participating particles. Here dΠ = d3p

(2π)32E
is the phase space

element, and (2π)4δ(4) (Σ pi − Σ pf ) accounts for energy momentum conservation. The phase
space distribution of ψ is fψ. We denote as f̄ψ = (1 ± fψ) the final state distribution, which
includes the effect of finite density in the final state. The sign depends on whether particle ψ is
a boson (+) or fermion (−), and its effect is known as Bose enhancement and Pauli blocking,
respectively.

A few comments regarding the matrix element Mi→f for the reaction i → f are in order.
In general, the phase space distributions for the same particle, but with different internal
configurations, such as different spin states, are different. However, in many situations and all
those we are interested in, the different internal degrees of freedom have identical distributions
in phase space. Thus, instead of treating them separately, we can combine the reactions.

In this convention, the matrix element is summed over initial and final spin states, not
averaged. For n identical particles in the initial or final state, the phase space integration
overcounts physically identical configurations that only differ by mere exchange of identical
particles [166]. This can be remedied with a symmetry factor 1/n!, which we absorb in the ma-
trix element in our convention. Thus, the matrix element we use for Boltzmann equations is, in
general, different from typical matrix elements used in unpolarized cross section computations
and other observables that require an averaging of internal degrees of freedom.

3.2 Neutrinos in the early Universe

At early times, where temperatures satisfy T � MeV, weak interactions were efficient and
neutrinos thermalized with the remaining SM particles. In the epoch after EW symmetry
breaking, interactions of neutrinos with the thermal bath proceed via effective Four-Fermi
interactions dictated by the Fermi constant GF . While the details of the underlying interactions
are involved, including charged current induced flavor effects, we can identify the Fermi constant
as the relevant scale of interaction strength. From dimensional analysis, we infer an interaction
rate

Γweak = 〈σv〉n ∼ G2
FT

5 , (3.9)

which is to be compared with the Hubble rate H ∼
√
GT 2, where G is Newton’s constant,

and we dropped order one factors and the effective number of relativistic degrees of freedom,
which is also O(1) for T ∼ MeV. Equating the two rates gives the decoupling temperature of
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neutrinos

Tdec ∼

(√
G

G2
F

)1/3

∼ MeV , (3.10)

thus implying that neutrinos decouple from the SM around that temperature. From there
on, the relic neutrinos interact predominantly through their gravitational interaction, which,
despite its feebleness, leaves traceable imprints on the appearance of the Universe to us, thus
allowing us to study primordial neutrinos directly from cosmological observations.

3.2.1 Neutrino decoupling and ∆Neff

While the thermal history of the Universe at T � TBBN ∼ 1MeV is mostly unprobed, our
previous estimate suggests that the active neutrinos have been in thermal equilibrium with
the SM at these temperatures. They subsequently decoupled at temperatures T ∼ MeV.
Therefore, the ΛCDM model generically predicts the existence of a large abundance of relic
neutrinos.

Crucially, neutrinos decouple when they are relativistic, and so they approximately maintain
their equilibrium Fermi-Dirac distribution [168]. The decoupling takes place prior to e+e−

annihilation, and the total radiation density after decoupling and e+e− annihilation can be
written as

ρrad = ργ

(
1 +

7

8

(
11

4

)4/3

Neff

)
, (3.11)

where ργ is the energy density of photons and Neff parametrizes additional light relics including
neutrinos. The numerical prefactor is obtained from separate entropy conservation in the
photon and the neutrino sector when e+e− annihilate. We call Neff the effective number of
neutrino species, since it normalizes the energy density to that of one active neutrino flavor.
Thus, in the SM and in the instantaneous decoupling approximation, the prediction is Neff = 3.

In reality, the decoupling process of neutrinos is neither instantaneous nor universal among
flavors, as electron flavors also undergo charged current interactions. Moreover, finite temper-
ature effects and QED corrections to weak processes give a small but significant contribution.
A more precise value of Neff can be computed by solving the relevant Boltzmann equations.
All of the above combined, the current theoretical prediction [48–51]1 is

Neff = 3.044 + ∆Neff , (3.12)

where we separate any possible deviation from the theoretical prediction by defining the excess
in the effective number of neutrinos ∆Neff. A deviation from the expected null result on ∆Neff

is a powerful probe of non-standard neutrino properties that affect the decoupling process, or
signals the presence of additional light degrees of freedom. The idea to use ∆Neff to probe
additional light relics is old and predates the precision era of cosmological measurements [169–
171].

1Here we omit the theoretical uncertainty and slightly older concurring studies that prefer Neff = 3.045. The
effect of this uncertainty on later results is negligible.
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Figure 3.1: Left: Effective relativistic degrees of freedom of the SM as a function of SM temperature
for entropy, energy density, and pressure. Values from Ref. [172]. Right: Contributions to ∆Neff from an
additional light real scalar, Weyl fermion, and light but massive vector boson, computed from Eq. (3.13).
For comparison, we show current and forecasted limits on ∆Neff. Details on these values are discussed

in the main text.

If extra light degrees of freedom are present and in chemical equilibrium with the SM at
early times, their relic abundance can be estimated from their decoupling temperature. This
gives a correction to the effective neutrino number [43]

∆Neff ' 0.027 gx

(
106.75

g?(Tdec)

)4/3

. (3.13)

We write gx for the (effective) internal degrees of freedom for a new light species x, i.e. gx = 1

for a real scalar or gx = 7/8×2 for a Weyl spinor. Fig 3.1 illustrates both, the effective degrees
of freedom of the SM as well as excess contributions to ∆Neff from selected new light relics.

Excess radiation in the early Universe is observationally accessible at BBN and from the
CMB, and to a lesser extent also in large scale structure data. The former constrains the
total radiation budget through the primordial element abundances that can be computed from
Boltzmann equations (see Ref. [173] for a review). Thus, BBN provides a measurement of any
deviation in the expected radiation budget at that time.

The determination from the CMB is less direct and happens at lower temperatures. Here,
excess radiation affects the CMB spectrum in a complicated manner. In simplified terms, it
is in particular the experimentally very precise determination of the angular scales of acoustic
peaks and the CMB damping tail [174]. However, these effects can be compensated for by
parameter degeneracies in the CMB. Thus, the effect of neutrinos can be masked, as some
effects are compensated by varying less strongly constrained parameters. It is not possible
to fully eliminate the effect of extra radiation by parameter degeneracies. Therefore, CMB
ultimately does provide a constraint on extra radiation. We illustrate this in Fig. 3.2.

While early measurements of ∆Neff were not yet precise enough to put stringent limits
on BSM physics, the situation improved with Planck providing the competitive limit ∆Neff <

0.285 at 95% C.L. [42, 43]. The recent data release six of the Atacama Cosmology Telescope
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Figure 3.2: Illustration of the effect of ∆Neff 6= 0. We show the relative change of the CMB power
spectrum compared to ∆Neff = 0. For simplicity, we neglect neutrino masses. The presented values
correspond to the case of three thermalized Dirac neutrinos, and a ruled out benchmark value ∆Neff = 1
for illustration. Cosmological parameters are fixed to the Planck best-fit otherwise, apart from a rescaling
of the matter density by α = (1 + 0.2271Neff). This keeps the well-constrained redshift of matter-
radiation equality fixed, and the difference between the spectra results from a change in the damping
scale and the direct effect of neutrino perturbations. For more details on this, see the discussion in

Chapter 5.3 in Ref. [175]. Spectra computed with CLASS [176].

(ACT) [44, 45] tightened the limit to ∆Neff < 0.17 at 95% C.L. Using the full primary CMB data
from ACT in combination with large and medium scale data from earlier Planck measurements,
this provides the strongest CMB-only limit on relativistic degrees of freedom.

Joint CMB+BBN analyses corroborate this result. Bringing together the data from dif-
ferent cosmological epochs, limits of ∆Neff < 0.180 [46] and ∆Neff < 0.163 [47] at 95% C.L.,
respectively, were found. A partial data set of SPT-3G polarization and lensing data in junc-
tion with earlier Planck, ACT and BAO data, finds Neff = 2.86 ± 0.13 (∆Neff < 0.076),
Neff = 2.83 ± 0.13 (∆Neff < 0.046), and Neff = 2.89 ± 0.23 (∆Neff < 0.306) when allowing for
extended ΛCDM+Neff, ΛCDM+Neff +

∑
mν , and ΛCDM+Neff + Yp fits, respectively [177].2

While these values should be taken with some caution due to combining different experiments
and cosmological eras, they provide a strong indication that additional light relics are disfa-
vored by data. Future surveys will only tighten these bounds unless a positive detection is
made.

Indeed, the forecasted sensitivities of currently operating and other planned experiments
anticipate ambitious limits. The Simons Observatory (SO) [178] and SPT-3G [179] expect to
reach ∆Neff < 0.12 at 95% C.L. eventually. The CMB-S4 proposal [180] aims to reach ∆Neff <

0.06 at the same C.L. Notably, futuristic proposals such as CMB-HD [181] aim to surpass the
2We provide these heuristic limits on ∆Neff by adding the 2σ uncertainty to the mean value, and subtracting

the theoretical expectation of Neff = 3.044.
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important ∆Neff = 0.027 threshold of a single Nambu-Goldstone boson in equilibrium with the
SM prior to EWSB (see also Fig. 3.1).

3.2.2 Neutrino masses in cosmology

Although not central to this thesis, we will give a short overview of how neutrino masses affect
the CMB and, perhaps more importantly, large scale structure formation for two reasons. First,
neutrinos do play a vital role, and cosmic structure as we observe it cannot be explained without
a relic neutrino background that provides feedback on the gravitational structure formation.
Second, recent surveys of CMB and, in particular, large scale structure data give strong bounds
on the sum of neutrino masses.

Current limits disfavor IO and even put some pressure on NO in light of the minimal
neutrino mass required for oscillation experiments. DESI [40] and ACT [44] quote neutrino
mass bounds as strong as ∑

mν < 0.064 eV (95%DESI) , (3.14)∑
mν < 0.089 eV (95%ACT) . (3.15)

Even though we do not make direct use of this probe here, it is clear how it provides valuable
input on neutrino mass model building, especially should the disfavoring of IO continue. This
also triggered considerable interest in the community and attempts to either resolve such a
possible discrepancy or to put extra scrutiny on the cosmological parameter inference have been
undertaken, e.g. Refs. [182, 183]. In the following, we briefly discuss how these cosmological
probes test the neutrino mass due to their effect on large scale structure, and possible pitfalls
when inferring parameters. For a detailed discussion, we refer to Refs. [175, 184].

The leading effect of massive neutrinos on the CMB and on large scale structure is of
the same origin. Crucially, neutrinos are relativistic during photon decoupling and, therefore,
they contribute as radiation before the CMB formed. Thus, they contribute to the radiation
budget when determining matter-radiation equality, ρb + ρcdm = ργ + ρν . However, some
time after recombination at least two neutrinos transition to the non-relativistic regime and
they participate as a warm dark matter candidate in structure formation. Thus, maintaining
the well-constrained matter-radiation equality, an increase in neutrino mass corresponds to an
increase in total matter today, as at least two neutrinos have turned non-relativistic by today.

Moreover, once neutrinos turn non-relativistic, they affect the expansion rate through the
slower decay of energy density with expansion. This means the Hubble rate decreases slower,
and structure formation is further hindered by the change in background evolution. In addition,
the increase in expansion rate leads to more prominent photon damping, thus reducing the
photon diffusion damping scale observable in the CMB spectrum.

At last, the scale of free-streaming for neutrinos depends on the neutrino mass. This scale
determines the sizes of structures that are eradicated by the kinematic impossibility to confine
or keep out neutrinos on these length scales. This change in the underlying neutrino density
perturbations propagates through gravity to other species and therefore affects large scale
structure and the CMB.
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This is by no means a complete picture, but it should give a good indication as to how
neutrinos affect the very appearance of the Universe today. It also clarifies how the era of
precision cosmology allows us to put such substantial bounds on the neutrino mass. We do
not discuss here possible parameter degeneracies or other systematic issues that may arise in
cosmological probes. They are not relevant to the central topics of this thesis.

3.3 Neutrinos in the late Universe

3.3.1 Supernovae

Core-collapse supernovae (CCSNe) are among the most violent and energetic processes that
take place in the Universe. As massive stars transition to the fusion of increasingly heavier
elements, the fusion process becomes energetically disfavored. The radiation pressure that orig-
inally supported the stellar structure ceases to stabilize the system, and gravitational collapse
leads to the formation of a dense central object, such as a neutron star or a black hole. The
shockwave of the collapsing star lunges stellar debris out into the Universe, and for a brief pe-
riod only, a supernova may outshine entire galaxies in photons alone. However, almost ∼ 99%

of the binding energy of the progenitor star is lost by the release of up to ∼ 1058 neutrinos [185].
The physics of CCSNe is complex, and we can by no means give a satisfactory overview

of the related hydrodynamics that is still an active field of research. We focus on the most
important aspects from the view of neutrino physics and refer to the comprehensive review in
Ref. [38, 185] for more details and other aspects.

Simulations reveal that the complicated dynamics of CCSNe can only be accounted for
by neutrinos, as they not only carry away most of the energy but also provide feedback on
the explosion itself. This is corroborated by the superior role that the supernova SN1987A
in the Large Magellanic Cloud played in establishing the standard picture of CCSN physics.
The detection of some O(10) neutrinos [36, 37] gave first indications of the underlying CCSN
physics as well as providing valuable input on (B)SM physics related to neutrinos.

While many of the details of the resulting neutrino spectrum ultimately depend on the
underlying progenitor star, some universal properties can be found. We can identify three
simplified but distinct emission regimes over the course of the CCSN event [38, 186].

1. The neutronization burst originates from the collapse shock wave as it moves outward
through the degenerate (iron) core, breaking up heavy nuclei and releasing neutrons and
protons in the process. A phase of rapid electron capture of free protons and nuclei
leads to an enormous release of νe, but the extremely dense environment keeps neutrinos
trapped in the collapsing star. Once the shock crosses the neutrino sphere, the neutrinos
trapped within this region can escape. This shock breakout gives rise to the characteristic
νe burst.

2. During the accretion phase, neutrinos provide additional support for the outflowing shock,
and an explosion that ejects stellar debris is triggered. The dense core accretes and heats
up material, and annihilation of primarily e+e− produces neutrinos of all flavors. The
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Figure 3.3: Left: Supernova neutrino luminosity as a function of time post bounce. Simulation data
for a 27M� progenitor star used also in Ref. [38]. The initial neutronization burst is clearly visible,
followed by the accretion phase. The cooling phase is not visible and starts at even longer times after
core bounce. Right: Fluence as the time integrated neutrino flux observed at Earth, based on the same

simulation and an assumed distance of 10 kpc. Computed using SNEWPY [189].

signal tends to be dominated by (anti-)electron flavors, as non-electron flavor neutrinos
can only be created in neutral current interactions.

3. Finally, the Kelvin-Helmholtz cooling phase is the longest stage and releases the most
neutrinos due to its longer duration. The proto-neutron star at the center of the explosion
cools down. It is said to de-leptonize, as the cooling releases neutrinos of all flavors. With
progressing cooldown, the neutrino luminosity continuously decreases. The emission can
last for considerable times, but typically becomes weak compared to initial neutrino fluxes
after about ∼ 10 s post bounce.

Fortunately for us, the neutrino energy spectrum as found by numerical simulations is well
described by a simple analytic fit for each flavor [187, 188]

Fν(E, t) ∝
(

E

〈Eν(t)〉

)α(t)
exp

(
−(1 + α(t)E)

〈Eν(t)〉

)
, (3.16)

and the fit parameter α(t) satisfies 〈
E2
ν

〉
〈Eν〉2

=
2 + α(t)

1 + α(t)
. (3.17)

Called the pinching parameter, α describes the deviations to a Maxwell-Boltzmann distribution
(α = 2), e.g. α ≈ 2.3 corresponds to a Fermi-Dirac distribution with zero chemical potential.

For many applications, it is sufficient to consider the time integrated neutrino spectrum or
fluence. It is dominated by the cooling stage, and can be approximated by Eq. (3.16) using an
effective time averaged pinching parameter and effective time averaged energy parameter. We
illustrate the time dependence of neutrino emission and the fluence from a CCSN simulation
in Fig. 3.3.
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We note here in passing the complexity of neutrino flavor phenomena in supernova explo-
sions, again referring to Ref. [38] for details. Neutrinos are not only copiously produced in a
CCSN but also influence the explosion dynamics. The extreme densities of nuclei, electrons,
and also neutrinos provide feedback on flavor distributions through matter effects and neutrino
self-interactions. Neutrino densities can be so high as to themselves forming a background for
neutrinos to propagate through, leading to non-linear effects. The other matter densities result
in neutrinos being subjected to matter effects, and the ultimately observable neutrino flavor
spectrum contains corrections from the MSW effect [190].

In many CCSN simulations, it is found that the matter profile that neutrinos traverse
is sufficiently slowly changing, such that neutrino propagation is adiabatic and subject to
adiabatic flavor conversion (see Ref. [190] and Sec. 2.2.4).

3.3.2 Diffuse supernova neutrino background

CCSNe occur with a rate of about ∼ 1/s in the entire observable Universe. The integrated flux
of all past CCSNe that took place throughout cosmic history is known as the diffuse supernova
neutrino background, or DSNB for short. It is expected to be a persistent, nearly isotropic flux
of incoming neutrinos with energies E ∼ O(10MeV), that remains undetected for now (see
Refs. [34, 35] for reviews).

Detection of the DSNB is considered a key objective for current and upcoming neutrino
facilities, such as Super-Kamiokande (SK) [191], Hyper-Kamiokande (HK) [32], JUNO [31],
and DUNE [192]. It is anticipated that, due to enrichment with gadolinium and the thereby
increased sensitivity, SK could possibly detect the DSNB within the next decade [193–195].
Current experimental upper bounds on the DSNB flux are usually less than an order of mag-
nitude weaker than theoretical expectations [191, 196]. Future experiments like Theia [197],
and facilities for the study of CEνNS may have the potential to also detect the DSNB and
perform precision measurements [198–200]. The timely detection of the DSNB is therefore
not only likely, but highlights its importance within astro- and astroparticle physics and gives
credibility to its potential to probe BSM physics [122, 201–208].

The DSNB spectrum is computed by adding the individual neutrino emission spectra Fν(E)

of all past CCSN. For simplicity, we adopt the approximately thermal Fermi-Dirac distribution
for the fluence, corresponding to α ≈ 2.3 in Eq. (3.16). The reason is that the total neutrino
output is dominated by the cooling stage, and hence the DSNB is predominantly fueled by these
quasi-thermal neutrinos. We parametrize in terms of an effective temperature parameter [34]

Fν(E) =
Etot
ν

6

120

7π4
E2

T 4
ν

1

eE/Tν + 1
. (3.18)

Here, Etot
ν = 3×1053 erg is the total emitted neutrino energy. Unless stated otherwise, we take

Tνe = 6.6MeV, Tν̄e = 7MeV, and Tνx = 10MeV, where νx ≡ νµ,τ [122] which is on the higher
end of viable temperatures. Generally, this parameter is constrained from non-observation
of the DSNB flux by SK [196]. Recent studies like Ref. [209] prefer smaller values of the
temperature, but we do not adopt these values here.
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Figure 3.4: Differential spectrum of the diffuse supernova neutrino background (DSNB) as we adopt
it here. We separate the spectrum by flavor, showing νe (blue), ν̄e (orange), and νx (green). Shaded
regions indicate the uncertainty estimated from the star formation rate. We adopt the effective Fermi-
Dirac parametrization with temperature parameters explained in the main text. Adiabatic flavor MSW

conversion for NO is adopted here. Published in Ref. [1].

We have to account for redshift, since neutrinos of past CCSNe travel cosmological distances.
To obtain the rate, we need to weigh with the rate of CCSNe at any given time in cosmic history.
The DSNB spectrum for a given neutrino flavor can be written as [34, 210]

Φν(E) =

∫ zmax

0

dz

H(z)
RCCSN(z)Fν(E

′)|E′=E(1+z) , (3.19)

where H(z) = H0

√
Ωm(1 + z)3 +ΩΛ is the Hubble rate as a function of redshift. The upper

integration bound is the maximum redshift of supernovae we take into account, i.e. the time
at which we have enough star formation to fuel the DSNB with CCSNe. In this thesis, unless
stated otherwise, we assume zmax ' 6, in agreement with Ref. [122].

We can estimate the rate of CCSNe with the star formation rate (SFR) RSFR(z). The SFR
itself is rather difficult to compute, and it is informed by cosmological structure formation in
the non-linear regime. We will adopt the empirical fitting formula of Ref. [211] (Ref. [212] for
a more recent measurement), and take the otherwise difficult to model star formation rate as
a given input. The adopted parametrization is

RSFR(z) = R0,SFR

[
(1 + z)−10α +

(
1 + z

B

)−10β

+

(
1 + z

C

)−10γ
]−1/10

, (3.20)

and the fitting parameters are R0,SFR = 0.0178M�yr
−1Mpc−3, α = 3.4, β = −0.3, γ = −3.5,

and B = (1 + z1)
1−α/β, C = (1 + z1)

(β−α)/γ × (1 + z2)
1−β/γ .

The SFR rate only captures the total rate at which mass is converted to stars per unit
volume at any given redshift. We need to account for the mass distribution and also for
stars being too heavy or too light to end up in a CCSN. The initial mass function ψ(M)

models the distribution of stellar masses. We adopt the well-established power-law scaling
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ψ ∝M−2.35 [213] and following Ref. [202] write

RCCSN ' RSFR ×

∫ 50M�
8M�

ψ(M)dM∫ 100M�
0.1M�

Mψ(M)dM
. (3.21)

The integration bounds are chosen such that we normalize to all stars up to a mass of M ∼
100M�, and we include stars in a range from 8− 50M� to undergo CCSN. Stars above 50M�

are expected to collapse to black holes directly [201], so we do not include them. The effective
fraction of stars to undergo CCSN is obtained by performing the integral in Eq. (3.21), and we
find 0.007/M�. Thus, we arrive at

RCCSN ' 0.007

M�
×RSFR . (3.22)

When performing BSM studies with the DSNB, we expect it to be sufficient to consider the neu-
trino spectra to be subject to adiabatic MSW flavor conversions (see also Sec. 2.2.4 and 3.3.1).
We justify this due to the large uncertainty of up to ∼ 40% in the CCSN rate, which possibly
obscures more subtle effects of supernova physics [210].

We show an example spectrum for the flavors in Fig. 3.4. Here, we assume NO of masses.
Since we also assume MSW conversion, this implies νe is mostly associated with ν3, and the ν̄e
with the lightest state ν̄1 [190]. The aforementioned uncertainty from the CCSN rate is also
shown.
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Chapter 4

The Monte Carlo approach to
Boltzmann equations

In this Chapter, we present an alternative approach to integrated Boltzmann equations. Key
feature of this implementation is the Monte Carlo integration of the collision operator. Com-
monly employed solution schemes often rely on a number of approximations to deal with
the involved collision operator. These include neglecting the effect of final state statistics,
i.e. Bose enhancement and Pauli blocking, relativistic effects, and simplified prescriptions for
backreactions. While the aforementioned effects can be taken into account, the expressions are
complicated and somewhat inconvenient to work with. Implementations are numerous in the
literature, and some examples include Refs. [214–217].

The available schemes are usually also limited to 2 → 2 processes or fewer particles and not
readily extended to general m→ n processes. The Monte Carlo approach is an alternative. It
is exact on the level of integrated Boltzmann equations, thus all relativistic effects as well as
corrections from final state occupation are taken into account. We will see that the implemen-
tation is straightforward and convenient, as the central object encoding the underlying particle
model is the Lorentz-invariant matrix element. More importantly, when going to larger m→ n

processes, the increasing dimension of the phase space integrals is best dealt with by Monte
Carlo integration over traditional numerical integration.

In the following, we first develop the general framework for brute force Monte Carlo inte-
gration of collision operators in general, where we use Ref. [218] as a starting point. While we
use the formalism for calculating the energy densities of light relics in later Chapters, we note
here that the entire approach is general and not limited to light relics. Indeed, the formalism
can readily be adapted for computations of DM abundances, yields from leptogenesis, or any
other quantity that is connected to moments of the Boltzmann equation.

We proceed with a brief discussion of finite temperature effects and how leading effects can
be taken into account, and at last address the problem of s-channel resonances, mediators in
thermal equilibrium, and the issue of over counting. We clarify some of the underlying issues
and offer possible prescriptions to remedy these problems.

4.1 General framework

Let us consider the following scenario, where we augment the thermal history of the SM by
an additional species φ. The generalization to multiple new species is straightforward. Here,
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φ need not be a single new particle. Within good approximation, it will often be possible to
cluster different new degrees of freedom into a single effective species with gφ internal degrees
of freedom. For example, light right-handed neutrinos νR can be considered a single effective
fluid, but also new fermions tightly coupled with a mediator particle can form such an effective
fluid, similar to the effective baryon-photon fluid approximation in cosmology. In the same
spirit, we treat the SM plasma as an effective species with g(ρ)(T ) internal degrees of freedom.
We show the derivation for the first moment of the Boltzmann equation, i.e. the energy density,
but the procedure can readily be adapted for any other moment.

The thermal history of the Universe is augmented by

dρφ
dt

= −3Hρφ(1 + wφ) + C(ρ)
SM→φ , (4.1)

dρSM
dt

= −3H(ρSM + PSM)− C(ρ)
SM→φ , (4.2)

with
H2 =

8πG

3
(ρSM + ρφ) . (4.3)

Here, wφ is the equation of state parameter of species φ, and C(ρ)
SM→φ is the integrated collision

operator, here for energy density ρ. In its most general form, it can be written as

C(ρ)
SM→φ =

∑
φ∈i,f

∫
dΠi1 ...dΠindΠf1 ...dΠfm(2π)

4 δ(4) (Σ pi − Σ pf )

∆Eφ ×
(
|Mi→f |2 fi1 ...fin f̄f1 ...f̄fm − |Mf→i|2 ff1 ...ffm f̄i1 ...f̄in

)
.

(4.4)

The notation follows Eq. (3.8), but Eq. (4.4) contains the additional integration over dΠ1. The
factor ∆Eφ is related to the moments we consider. Here, we deal with energy transfer from
or to the φ-sector, and ∆Eφ is the difference between the initial and final state energies of all
occurring φ. For number densities, we would include the multiplicity of number density change
in the process, and for yet other moments of the Boltzmann equation, we need to introduce
the appropriate phase space weighting factor for that quantity. The matrix element is denoted
by Mi→f , and we adopt the symmetry factor convention discussed in Sec. 3.1.3.

We assume that the SM particles maintain internal thermal equilibrium at all times.1 The
effective SM plasma can be characterized by a well-defined thermodynamic temperature, and
energy density and pressure can be written as

ρSM =
π2

30
g(ρ)T

4 , PSM =
π2

90
g(P )T

4 . (4.5)

Here we made manifest the subtle difference between g(ρ) and g(P ) that can occur during freeze-
out of plasma constituents or phase transitions [219]. Numerical values for all subsequent
analyses are from Ref. [172].

1This is a reasonable approximation for the isolated SM. While not possible within the framework as we
adopt it here, it would be interesting to study the situation where BSM physics, such as resonant enhancement,
causes brief violations of the equilibrium assumption.
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By considering integrated Boltzmann equations, we lose information on the underlying
phase space distributions. By assumption, the SM remains in equilibrium, and the appropriate
equilibrium distributions can be substituted by inverting Eq. (4.5). However, we do not have
explicit knowledge of the phase space for species φ, but argue in the following that we can also
use equilibrium distributions to good approximation (see also Refs. [114, 218]).

First, we consider the limiting case of negligible φ abundance and thermal equilibrium
between φ and the SM is never attained. Then, fφ � 1 and f̄φ ' 1 holds. The backreaction
and final state occupation effects are negligible, and the abundance of φ is set by freeze-in
production [220]. The only phase space distributions we are sensitive to are the SM ones,
which are exactly known in this case.

The other limiting case is thermal equilibrium between φ and the SM. The initial phase space
distribution of φ follows equilibrium up until decoupling and freeze-out of φ. The prescription
is therefore exact up to spectral distortions that are induced by the decoupling process (see
e.g. discussion in Ref. [218]). Close to thermalization of φ, the exact shape of the phase space
distribution is important, but this is a narrow window in Eφ/T . Thus, the prescription we
adopt can be thought of as a smooth interpolation.

The framework as presented can readily be extended to general m→ n processes, however,
we restrict our use to 1 ↔ 2 and 2 ↔ 2 processes, as we can often anticipate higher particle
number processes to face extra suppression from additional powers of couplings or suppression
from limited phase space. As far as the implementation is concerned, we first perform some
integration steps analytically by eliminating the energy-momentum conserving δ-distribution.
The remaining integrations are rewritten in a way suitable for Monte Carlo integration. We
illustrate how to implement the collision operator for the Monte Carlo scheme in Appendix A
for 1 ↔ 2 and 2 ↔ 2. The generalization to m↔ n processes is straightforward.

4.2 Thermal corrections

A dense plasma induces finite temperature and density corrections to fields, and particles have
their dispersion relations and couplings modified by in-medium corrections. A full treatment at
the level of thermal quantum field theory is possible, but for our considerations unnecessarily
complicated as we tend to work in regimes where these corrections are subdominant. For a
recent pedagogical introduction, see Ref. [221].

Therefore, for our goals it suffices to consider thermal masses [217, 222, 223]. We understand
thermal masses as a prescription to capture the leading thermal effects without resorting to a
full thermal QFT treatment. In principle, we could also prescribe other thermal couplings in
interactions, but it is usually less important than the finite temperature correction on masses.
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Prior to EWSB, the thermally induced masses for fermions are chiral due to the chiral
nature of their interactions. Thus, left- and right-handed fermions have [223]

m2
l,L =

m2
Z + 2m2

W +m2
l

2v2H
T 2 , (4.6)

m2
l,R =

m2
Z −m2

W + 1
2m

2
l

2v2H
T 2 , (4.7)

m2
q,L =

1

6
g2sT

2 +
3m2

W + 1
9(m

2
Z −m2

W ) +m2
u +m2

d

2v2H
, (4.8)

m2
u,R =

1

6
g2sT

2 +
4
9(m

2
Z −m2

W ) + 1
2m

2
u

2v2H
, (4.9)

m2
d,R =

1

6
g2sT

2 +
1
9(m

2
Z −m2

W ) + 1
2m

2
d

2v2H
, (4.10)

before EWSB, and after EWSB, the mass from the Higgs mechanism dominates. It is subject
to a small thermal correction for leptons and quarks [217]

∆m2
l =

1

8
e2T 2 , (4.11)

∆m2
q =

1

6
g2sT

2 . (4.12)

Here, we restrict ourselves to corrections from SM fields only. In Chapter 5, we consider an
additional gauged U(1), and the corresponding Z ′ will also give a thermal correction unless we
consider regimes in which the Z ′ is no longer part of the plasma, or corrections are negligible
for other reasons, e.g. small couplings.

Likewise, all gauge bosons in the plasma receive an effective thermal mass. It can be written
for a gauge boson G at leading order as [217]

m2
G =

1

6
g2GT

2(NV +NS +
NF

2
) , (4.13)

where NV,S,F is the number of vector, scalar, and fermionic fields in the bath and coupled to
G.

At last, thermal corrections to the Higgs effective potential, and possibly other scalar fields
in extended models, are of great importance. This is less due to direct thermal corrections on
mass terms, but more so due to the theory fundamentally changing between the two phases.
The different phases give rise to different regimes in which processes are to be taken into account
or not. For example, the presence or absence of trilinear scalar vertices can determine whether
a decay is fundamentally allowed or not.

For the sake of completeness, we state here briefly the result for the effective Higgs potential
in the high temperature limit µ2H/T 2 � 1 at one loop [224],

Veff,T ' D(T 2 − T 2
0 )φ

2 − ETφ3 +
λ(T )

4
φ4 , (4.14)

where φ is the classical field value. The parameters in the equation are given in Ref. [224] and
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are fully determined by SM parameters, notably mW , mZ , and mt. In the high temperature
regime, EW symmetry is restored and the minimum is at φ = 0. The Higgs doublet acquires
an effective thermal mass

m2
H(T ) =

d2Veff,T
dφ2

∣∣∣∣
φ=0

' 2D(T 2 − T 2
0 ) . (4.15)

As the temperature drops, the potential develops a new minimum at φ 6= 0, and it is possible to
find approximate relations for the VEV and the mass of the physical Higgs boson as a function
of temperature, see e.g. Ref. [224], although they break down for T � T0.

4.3 Resonances

We address the issue of a mediator in the s-channel going on-shell, leading to a resonant
enhancement of the production cross section. Besides the singular behavior of the propagator,
we also face the problem of over counting if the mediator goes on-shell. The problem worsens
if the mediator also happens to be in thermal equilibrium with the plasma [217, 222, 225]. In
this case, the problem essentially amounts to the decay of thermalized mediators, the inverse
decay and subsequent decay of the mediator, and the on-shell production in the 2 → 2 process,
being physically indistinguishable. Computation of the abundance requires both the 2 → 2

process with possibly resonant enhancement, as well as the decay of the mediator to be taken
into account. Naively adding these contributions, however, will lead to a double counting of
physically equivalent processes. In this section, we expand on a prescription adapted from
Ref. [217] to consistently take these processes into account and lay out how over-counting can
be avoided.

4.3.1 The narrow width approximation

Let us consider a scalar field φ that mediates the process ψψ̄ → σσ̄. We adopt the Breit-Wigner
propagator to model the unstable mediator,

1

(s−m2
φ)

2
−→ 1

(s−m2
φ)

2 +m2
φΓ

2
φ

, (4.16)

and make the assumption that Γφ � mφ holds. Then, we can adopt the narrow width approx-
imation (NWA)

1

(s−m2
φ)

2 +m2
φΓ

2
φ

' π

mφΓφ
δ(s−m2

φ) , (4.17)

which is exact in the limit Γφmφ → 0. Physically, we make the assumption that the particle
width is small against its mass, and so only a narrow width of momenta gives rise to on-shell
production. Away from the resonance, the resonance peak quickly decays, and the 2 → 2

amplitude will only receive negligible contributions from the finite width of φ.
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The squared amplitude for ψψ̄ → σσ̄ in the NWA readily factorizes to the amplitudes of
decay and inverse decay of the mediator [217]

∣∣Mψψ̄→σσ̄

∣∣2 = ∣∣Mψψ̄→φ

∣∣2 |Mφ→σσ̄|2

mφΓφ
πδ(s−m2

φ) . (4.18)

This factorization is exact for a scalar mediator, but a complete factorization is, in general, not
possible for non-scalar particles. In such cases, production and decay are correlated due to the
spin or polarization states of the mediator [226, 227].

However, it is possible to introduce a decorrelated matrix element by averaging out the spin
or polarization correlations. First, we observe that the matrix element for the same process
but with a vector mediator in unitary gauge can be written as

∣∣Mψψ̄→σσ̄

∣∣2 ∝ ∣∣∣∣∣Mµ

ψψ̄→φ

(
gµν −

kµkν

m2
φ

)
Mν

φ→σσ̄

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ

Mµ

ψψ̄→φ
ε?µ(k, λ)εν(k, λ)Mν

φ→σσ̄

∣∣∣∣∣
2

,

(4.19)

where εµ(k, λ)Mµ
φ→σσ̄ is the partial amplitude for the decay of φ with polarization vector

εµ(k, λ). The NWA for a vector resonance is obtained by neglecting the correlation from
polarizations of the vector resonance, and then averaging over the polarization states∣∣∣∣∣∑

λ

Mµ

ψψ̄→φ
ε?µ(k, λ)εν(k, λ)Mν

φ→σσ̄

∣∣∣∣∣
2

→ 1

3

∑
λ,λ′

∣∣∣Mµ

ψψ̄→φ
ε?µ(k, λ)

∣∣∣2 ∣∣εν(k, λ)Mν
φ→σσ̄

∣∣2 .
(4.20)

A completely analogous observation can be made for fermions. There, the NWA is found by
neglecting the spin-spin correlations from production and decay, and averaging over the spin
states of the fermionic mediator. Schematically, we can summarize this as

|Mi→f |2 ∝
∣∣Mi→φ(/k +mφ)M2

φ→i

∣∣2 ∝ ∣∣∣∣∣∑
s

Mi→φ us(k)ūs(k)Mφ→f

∣∣∣∣∣
2

→ 1

2

∑
s,s′

|Mi→φ us|2 |ūs′Mφ→f |2 .
(4.21)

For sufficiently inclusive processes, e.g. the total cross section from unpolarized initial states,
it can be shown that the exact amplitude and the NWA are in good agreement [227]. We
anticipate that matrix elements in the collision operator amount to sufficiently inclusive process.
Indeed, prescribing f = 1 for the phase space distributions recovers the definition of the total
cross section up to possible symmetry factors. Since we typically assume production from a
thermal bath and we prescribe identical phase space distributions for all internal degrees of
freedom, we do not expect new sources of correlation and the general conclusion should still
hold.
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4.3.2 Mediators in thermal equilibrium

Returning to our toy model of ψψ̄ → σσ̄ via an s-channel φ, we now address the complication
of φ being in thermal equilibrium with ψ. We assume that ψ, ψ̄ form the thermal bath that φ
is in equilibrium with. We follow Ref. [217] in our analysis of the resonant ψψ̄ → σσ̄ reaction.
Assuming that the mediator is in thermal equilibrium and fσ � 1, so we can neglect the
backreaction, we reorganize the integrals in the collision operator to find

Cψψ̄→σσ̄ =

∫
dΠψdΠψ̄dΠσdΠσ̄ (2π)

4 δ(4)(pψ + pψ̄ − pσ − pσ̄)

×
∣∣Mψψ̄→φ

∣∣2 |Mφ→σσ̄|2

2EφmφΓφ
πδ(Eψ + Eψ̄ − Eφ)fψfψ̄f̄σf̄σ̄

=

∫
dΠψdΠψ̄

2π δ(1)(Eψ + Eψ̄ − Eφ)

4EφΓφmφ

∣∣Mφ→ψψ̄

∣∣2 fψfψ̄
×
∫
dΠσdΠσ̄ (2π)

4 δ(4)(pψ + pψ̄ − pσ − pσ̄) |Mφ→σσ̄|2 f̄σf̄σ̄ .

(4.22)

We observe that the last line in Eq. (4.22) resembles the decay width of φ → σσ̄ with four
momentum pφ = pψ + pψ̄, but weighted with phase space densities fσ and fσ̄. Indeed, the
expression can be understood as a decay width in medium, and so we define

Γ̂φ→σσ̄ =
1

2mφ

∫
dΠσdΠσ̄ (2π)

4 δ(4)(pσ + pσ̄ − pφ) |Mφ→σσ̄|2 f̄σf̄σ̄ , (4.23)

and reserve the hat for distinguishing quantities in vacuum and in medium.
Regarding the ψ-related integrations in Eq. (4.22), we multiply by f̄φ/f̄φ = 1 and introduce

a dummy integration d3pφ δ(3)(pψ+pψ̄−pφ) to complete to the full four momentum conserving
delta distribution. Since we assume thermal equilibrium between φ and ψ, we also exploit the
relation fφf̄ψf̄ψ̄ = fψfψ̄f̄φ to find

Cψψ̄→σσ̄ =

∫
dΠψdΠψ̄dΠφ

2π δ(4)(pψ + pψ̄ − pφ)

4EφΓφmφ

∣∣Mφ→ψψ̄

∣∣2 fφ
f̄φ
f̄ψf̄ψ̄

×
∫
dΠσdΠσ̄ (2π)

4 δ(4)(pψ + pψ̄ − pσ − pσ̄) |Mφ→σσ̄|2 f̄σf̄σ̄ .
(4.24)

Notice that we brought the ψ-integrations in the same form as the σ-integrations before. Re-
arranging terms and switching the roles of σ and ψ, we finally arrive at

Cψψ̄→σσ̄ =

∫
dΠσdΠσ̄dΠφ (2π)

4 δ(4)(pσ + pσ̄ − pφ) |Mφ→σσ̄|2 fφf̄σf̄σ̄
Γ̂φ→ψψ̄

f̄φΓφ
. (4.25)

It is important to clarify the physical meaning of this result. By assuming on-shell produc-
tion and thermal equilibrium for the mediator, we arrived at an expression for the collision
operator Cψψ̄→σσ̄ that resembles the production from mediator decay up to the weight factor
Γ̂φ→ψψ̄/(f̄φΓφ). Indeed, the general expectation is that decay from equilibrium and on-shell
production are physically equivalent if equilibrium is also maintained by the exact same in-
verse decay. In accordance with Ref. [217], we identify Γφ = f̄−1

φ

∑
f Γ̂φ→f as the correct width
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for the Breit-Wigner propagator in the plasma, where f includes all final states regardless of
whether they are in equilibrium or not. The expression Eq. (4.25) then coincides with the
mediator decay up to a rescaling involving the decay widths. This can be traced back to a
deviation of the distribution of φ from the equilibrium form in the presence of decays into
non-equilibrated final states [217]. The distribution is no longer set by cancellations of decay
and inverse decay rates of plasma particles, but rather between plasma particles and also the
decay into out-of-equilibrium final states.

For a mediator not in thermal equilibrium, we can perform an analogous computation,
however, we cannot use the relation fφf̄ψf̄ψ̄ 6= fψfψ̄f̄φ, and fφ � 1 can be used instead. The
expression readily simplifies to

Cψψ̄→σσ̄ =

∫
dΠψdΠψ̄dΠφ (2π)

4 δ(4)(pψ + pψ̄ − pφ)
∣∣Mψψ̄→φ

∣∣2 B̂rφ→σσ̄ . (4.26)

Again, the hat indicates that B̂rφ→σσ̄ is the branching ratio in the medium that includes
final state occupations. Thus, in this limit, resonant production simplifies to inverse decay
of mediators weighted by the branching ratio in the medium. Note that even if production
of σσ̄ proceeds in the freeze-in regime, we can be sensitive to final state effects from plasma
constituents as their decay widths and, therefore, the above branching ratio, are subject to
Pauli blocking or Bose enhancement.
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Chapter 5

Cosmology of Dirac neutrinos with a
Z ′

Models of Dirac neutrinos with an additional gauge symmetry and the respective gauge boson,
here referred to as a generic Z ′ boson, are well-motivated and have been studied widely in the
literature. These models include, but are not limited to, gauge symmetries that protect the
Dirac nature. For an incomplete list of recent examples of such models, see Refs. [70–72, 76,
87, 96].

It is well-known that, in principle, these models are strongly constrained from cosmological
excess radiation due to gauge interactions coupled to the right-handed neutrino.1 Previous
limits focusing specifically on a gauged U(1)B−L were competitive with laboratory and collider
constraints [43, 113, 114, 116]. Since then, cosmological bounds have tightened, and an update
on these limits is needed. Although these studies were pushing towards precision, they still rely
on a few simplifications regarding the implementation of the relevant Boltzmann equations.

A more pressing issue is the underlying assumptions regarding cosmology. The validity
of limits and forecasts relies on the Universe reaching temperatures of the order of the gauge
boson mass. While not necessarily troubling when limits probe masses on the order of ∼ 1TeV

as we may perfectly envision a hot big bang reaching such temperatures, the issue becomes
more apparent when considering forecasts for future experiments. Here, masses mZ′ � TeV

and even up to the GUT scale appear testable. However, the effect of reheating and modified
thermal histories in general on these limits has not been carefully studied before.

In the following, we will systematically study deviations from changing cosmological as-
sumptions. We first introduce the B−L benchmark model, and briefly discuss how the results
we find are generic and apply to a wide range of models that introduce new gauge interactions.
We update previous constraints with the new ACT limit on ∆Neff < 0.17, finding the strongest
limits on such models thus far. For this, we utilize the framework we developed in Chapter 4,
and in the process also eliminate some of the approximations made in previous implementa-
tions. We then turn to the systematic study of non-standard cosmologies in Dirac neutrino
models with gauge interactions.

1We only consider an exact Dirac nature of neutrinos here. However, our results also apply to light right-
handed neutrinos in the Majorana case, as long as mνR < TCMB and the νR contribute as cosmological radiation
at that time. In particular, this includes Pseudo-Dirac neutrinos with a small mass-splitting between active and
sterile neutrinos.
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5.1 A minimal B-L model

Many gauge group extensions to protect the Dirac nature of neutrinos exist. Our benchmark
model is a U(1)B−L extension, and we will discuss how bounds translate approximately to other
Z ′ models by a rescaling of the gauge coupling. While other representatives for a Z ′ extension
are perfectly fine candidates, we consider a B − L extension particularly well motivated. It
arises as a building block of more involved models, that e.g. also account for the presence
and production of DM candidates. Moreover, the introduction of three right-handed neutrinos
with suitable charge assignment automatically renders B−L anomaly free and makes it a good
candidate for a gauged symmetry.

5.1.1 Particle content

The model of gauged U(1)B−L we adopt here is minimal. We introduce only the three necessary
generations of νR for gauge anomaly cancellation and the massive gauge boson. In particular,
we remain agnostic of the origin of the Z ′ mass. Both a Stueckelberg mass or a massive gauge
boson from a broken U(1)B−L is feasible, provided that the spontaneous breaking violates
∆(B − L) 6= 2 as to forbid a Majorana mass term. The relevant addition to the SM Lagrangian
is given by

L ⊃ 1

4
F ′
µνF

′µν +
1

2
m2
Z′Z ′

µZ
′µ + g′Z ′

µ

∑
f∈SM

Q
(f)
B−Lf̄γ

µf + g′Z ′
µQ

(νR)
B−Lν̄Rγ

µνR , (5.1)

where f ∈ SM runs over all SM fermions including νL. The gauge charges are 1/3 for quarks
and −1 for leptons. Without any additional fields charged under B − L, the charges of νR are
either Q(νR)

B−L = −1 or Q(νR)
B−L = −4,−4, 5 to make a consistent theory. We will only consider the

former charge assignment, but discuss the other option in light of other Z ′ extensions. We note
in passing that this charge assignment allows for Dirac neutrino masses directly from a Yukawa
term with the SM Higgs doublet, although we stay agnostic also about the precise mechanism
giving rise to neutrino masses. All constraints we obtain are either unaffected or conservative
when adding additional fields, as their effect on ∆Neff is either negligible or additional channels
for populating the νR abundance are introduced.

Equation (5.1) is not necessarily complete for an unbroken B − L and should contain a
kinetic mixing term L ⊃ ε

2YµνF
′µν . Note that this term will inevitably be generated from

radiative corrections, so its absence cannot be justified. However, limits we derive are expected
to be only marginally altered by the presence of gauge boson mixing. Any exact cancellation
from destructively interfering amplitudes is fine tuned and not stable under running. Moreover,
in the high mass regimes we are predominantly interested in, it is the mixing to the Z that is
expected to be relevant. Due to the chiral nature of weak interactions, an exact cancellation
with a vector-like interaction poses no problem. Thus, kinetic mixing will at most provide a
minor correction to limits obtained, and such corrections can be approximately absorbed in an
effective coupling that is probed.
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The total decay width in vacuum is given by [114]

ΓZ′ =
g2

12π
mZ′

3 +

mZ′>2mf∑
f 6=ν

Q2
B−L

Nc(f)

(
1 +

2mf

mZ′

)√
1−

4m2
f

m2
Z′

 , (5.2)

where the factor 3 comprises the contribution of left- and right-handed neutrinos. We neglect
the complications of hadronization and assume decay into free quarks only.

5.1.2 Cosmology

Computations are performed within the framework developed in Chapter 4. We do not distin-
guish between νR and ν̄R, but instead treat the right-handed neutrinos as an effective fermion
fluid with gνR = 3× 2 internal degrees of freedom [43, 114, 218, 228]. Thus, we effectively take
Eq. (4.2) with φ = νR. The collision operator is calculated from a single process ff̄ → νRν̄R,
but we note that we have possible on-shell Z ′ contributions. Since the process is resonantly
enhanced, the rate of the on-shell contribution dominates over the 2 → 2 process due to the
additional suppression in the coupling constant. Moreover, we explicitly checked whether Z ′

thermalizes with the SM from ff̄ ↔ Z ′, which applies for almost all of parameter space we
consider. Thus, unless T . mZ′ , the (inverse) decay involving Z ′ dominates over 2 → 2 scat-
tering. We generically avoid the issue of overcounting, since 1 → 2 processes dominate unless
they are kinematically forbidden.

For temperatures below the gauge boson mass, decays become inefficient, and 2 → 2 pro-
cesses start to take over. We can address this similarly to Ref. [222] by cutting the resonant
region. The error we introduce is marginal, as we checked explicitly, since the 2 → 2 process
is relevant only in a region where the now cut resonant regime is kinematically inaccessible
anyways. This limit is only relevant for UV sensitive freeze-in at temperatures much below
the gauge boson mass, or if we consider the decoupling process from the SM plasma, again at
temperatures smaller than the boson mass.

The effect of (quasi-)elastic scattering, such as f νR → f νR is negligible. Deep in the
freeze-in limit, fνR � 1 and scattering is suppressed by the phase space densities. Thus, it
can only play a role when the νR density becomes relevant. When fully coupled, however, the
energy transfer is subdominant compared to the s-channel process and will not have a resonant
enhancement.

5.1.3 Results

We present an overview of the current experimental constraints on a heavy Z ′ with light right-
handed neutrinos in Fig. 5.1, in particular constraints from collider searches as well as previous
cosmological limits. We include the updated limit for ∆Neff = 0.17 from DESI DR6 that we
compute, as well as a refined forecast for the benchmark value ∆Neff = 0.06 also calculated
here.

We provide an exact limit based on this benchmark value by tracking the energy density
throughout the decoupling process without additional assumptions beyond the prescribed phase
space distributions. We also include thermally corrected masses before and after the EW phase
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Figure 5.1: Constraints on U(1)B−L gauge bosons in presence of light right-handed neutrinos. The
upper black curve corresponds to ∆Neff = 0.17, excluded by ACT [45] at 95% C.L. and disfavored by
BBN+CMB combinations [46, 47]. The lower black curve is a benchmark value ∆Neff = 0.06 for future
CMB surveys. We show forecasts and Planck+BBN limits from Refs. [114](grey dashed) and [43](blue
dashed). We show complementary limits from ATLAS [229], the Drell-Yan process in ATLAS [230, 231],
recasted LHCb limits [231, 232], and dark photon decays from BaBar [231, 233]. For comparison, we
also show the projected reach of FCC-hh for Z ′ searches from Ref. [234]. Figure published in Ref. [2].

transition, in accordance with the results of Sec. 4.2. In comparison to the results of Refs. [218,
235], which use a simplified prescription for the backreaction term, no final state statistics,
and no thermal effects, we find percent level corrections. This is in agreement with analytic
estimates of the uncertainty done in those References.

The constrained value ∆Neff ' 0.17 implies a decoupling temperature of the three right-
handed neutrinos of about Tdec ∼ 40GeV from Eq. (3.13) if thermal equilibrium between
the SM and νR has been established at higher temperatures. For sufficiently small gauge
boson masses, the inverse decay is still efficient at T < 40GeV and can maintain equilibrium
for longer. Consequently, limits are much stronger due to the resonant enhancement. We
transition to freeze-in production, since we cannot have νR thermalized below 40GeV for even
smaller masses. Since the freeze-in is also dominated by the resonantly enhanced inverse decay
channel, limits remain strong in this low mass regime.

The CMB-S4 forecast (∆Neff = 0.06) computed here is consistent with the result from
Ref. [114], which we also show for comparison. The inclusion of thermal masses and final state
statistics provides a minor correction. In the freeze-in regime, decays to fully thermalized SM
fermions are subject to Pauli blocking from final state statistics and receive a minor reduction,
however, decays to νR are not. Therefore, the in medium branching ratio receives a small
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enhancement, and accordingly, we can expect a small boost to νR production. Taking all effects
into account, corrections do not generally exceed the percent level. We note the presence of a
disagreement of up to ∼ 10% above mZ′ ∼ 1GeV when compared to the previous forecast. We
cannot reproduce this discrepancy, even when fully replicating the approximations from that
study, and attribute this mismatch to numerical difficulties in Ref. [114].

Some extra care is needed for very small gauge couplings in the low mass regime. Here, the
Z ′ can be cosmologically long-lived ΓZ′ . H. Produced gauge bosons redshift as matter and
therefore slower than the ambient radiation bath and the extra right-handed neutrinos. The
energy they inject into νR as well as SM fermions upon decay is enhanced [114, 236, 237]. We
explicitly checked this by tracking the energy density of a non-relativistic Z ′. For the masses
and couplings shown in Fig. 5.1, this only provides a minor correction of sub percent level that
becomes largest close to mZ′ ∼ 1GeV, in agreement with similar estimates from Ref. [114].

5.1.4 Probing Dirac neutrinos up to the GUT scale?

The forecasts we compute are not limited to the parameter values shown in Fig. 5.1 – indeed,
they can be safely extrapolated to much higher masses, as confirmed by explicit computation.
Curiously, we find that mZ′ ∼ ΛGUT ∼ 1016GeV implies that a gauge coupling g′ ∼ O(1) is
close to future experimental limits. This seems to suggest that GUT scale physics is testable in
∆Neff surveys, and perhaps more importantly, natural realizations with gauge coupling values
g′ ∼ O(1) are accessible and will be tested on all scales up to ΛGUT.

Such a prospect deserves extra scrutiny, and it is important that we recall the explicit
and implicit assumptions made in the computation. Experiments like CMB-S4 and others
probe the regime ∆Neff < 0.14, i.e. if we have three light νR, they can never attain thermal
equilibrium with the SM prior to the electroweak phase transition. However, we make the
implicit assumption of reheating to at least Treh ∼ mZ′ , which for mZ′ ∼ ΛGUT is in tension
with limits on the scale of inflation [238]. Thus, unless we wish to break with the inflationary
paradigm in a rather drastic manner, it seems unlikely that GUT scale realizations of a Z ′ in
conjunction with light right-handed neutrinos are testable by ∆Neff alone.

A similar consideration applies to limits at smaller masses, too. It shows that the limits
found here need to be thought of jointly with the underlying cosmological assumptions. The
initial reheating is just as important as any secondary phase of reheating that could possibly
dilute a primordial νR abundance. Turning the argument around, if we were to establish the
Dirac nature of neutrinos otherwise, the Z ′ limits turn into a powerful test of the thermal
history of the Universe long before BBN – an era that is notoriously difficult to probe. In
the next section, we focus on the effect of the reheating temperature and some frequently
considered non-standard thermal histories on the limits of our model.

5.2 Cosmology revisited

We begin with a few general remarks on how non-standard thermal histories affect ∆Neff for
light νR models, before considering in more detail the effect of lowered reheating temperatures,
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extra relativistic degrees of freedom in the Universe, phase transitions and vacuum energies,
and an early matter dominated era.

Let us assume that couplings are sufficiently large to keep the three νR in thermal equi-
librium with the SM at high temperatures, so that they decouple at some lower temperature.
Then, whatever process may inject entropy into the SM plasma will not affect ∆Neff, as any
injection is quickly equilibrated between the two sectors. It is only after decoupling of the right-
handed neutrinos that changes to the SM plasma remain isolated and affect the ratio ρνR/ρSM

and thus ∆Neff. Although it is feasible that production of νR falls into a non-standard era,
e.g. an early matter era, we do not consider this case in detail. Since we know the Universe
must have been radiation dominated around the time of BBN, this itself implies any such non-
standard period must be accompanied by a second phase of reheating. If the νR population is
decoupled, this will imply a dilution of νR abundances, possibly beyond detection thresholds.
Therefore, changes to ∆Neff in such scenarios are predominantly set by processes after such a
second phase of reheating. It is worthwhile to consider the effect of lowered reheating temper-
atures on the production process for the sake of an outright lowered reheating temperature,
as well as accommodate for non-standard thermal histories accompanied by a second phase of
reheating.

From ∆Neff ∝ ρνR/ρSM, and ρ ∝ s4/3, we can define an entropy dilution factor connecting
the thermal baths before and after entropy injection, Ds = Safter/Sbefore. The effect of entropy
injection can be written as

∆Neff → ∆Neff ×
(
Ds,νR

Ds,SM

)4/3

. (5.3)

We usually assume negligible entropy injection into the νR sector and set Ds,νR = 1. Eq. (5.3)
provides a convenient way to rescale limits if additional entropy is being injected. We provide
approximate expressions for the dilution factors in various modified thermal histories, which
enables the recasting of our limits for entropy injection after νR production. If the secondary
reheating event is dominant in any given cosmology, and Ds � 1 holds, the limits for explicitly
lowered reheating temperatures we compute later in this section will apply.

Many modified thermal histories can be parametrized by means of a fiducial energy density
ρφ, with possibly time dependent equation of state parameter wφ, a decay rate Γφ, and the
fraction κ of energy density injection into the SM and νR sector. Moreover, we need to specify
the amount of energy density in φ, e.g. by specifying the ratio ρφ/ρSM at some initial time. In
many cases, this is done by defining a time of equality, at which ρφ = ρSM holds.
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This parametric family of cosmologies includes, among others, variations of early dark
energy, an early matter era, and more. Our master equations containing ρφ are,2

dρφ
dt

+ 3H(1 + wφ)ρφ = −Γφρφ , (5.4)

dρSM
dt

+ 3H(ρSM + PSM) = (1− κ)Γφρφ − Cff̄→νRν̄R
, (5.5)

dρνR
dt

+ 4HρνR = Cff̄→νRν̄R
+ κΓφρφ . (5.6)

We do not solve the system explicitly within a given modified cosmology, but rather take the
equations as the starting point of a more general discussion of how the modifications alter
νR-genesis.

5.2.1 Extra degrees of freedom

An extended theory may contain other degrees of freedom that are thermalized with the SM
at high temperatures. In terms of the ρφ parametrization, this corresponds to a radiation-
like extra density that is tightly coupled to the SM, and has g(s)φ internal degrees of freedom.
During freeze-out, the comoving entropy of the SM+φ plasma is conserved, and its temperature
increases. The dilution factor is given by

Ds =

g(s)SM + g
(s)
φ

g
(s)
SM

 , (5.7)

if φ becomes non-relativistic after νR-genesis. Any disappearing degrees of freedom from be-
fore νR production do not affect ∆Neff. It is evident that, unless there is a large number of
degrees of freedom freezing out after the abundance of right-handed neutrinos has been set,
the dilution factor is small and detection prospects are not severely affected. Notably, even the
initial presence and complete disappearance of the entire spectrum of many supersymmetric
extensions [239] would dilute the energy density of νR by little more than a factor two. This
does not pose a severe challenge to the limits we put.

5.2.2 Phase transitions and other early dark energies

A phase of early dark energy, or a (strong) first order phase transition, is characterized by a
stage of vacuum energy domination. In the language of the fiducial energy density ρφ, we adopt
an equation of state parameter wφ = −1, which at a later time proceeds to decay with rate
Γφ into an intermediate matter-like component with equation of state wφ = 0. Thus, such a
period is characterized by an initial radiation-like era, followed by an episode of vacuum energy
domination, before reheating to SM and other final states during an entropy injection phase.

Depending on the details of the injection, such a phase may either be prolonged due to
a slowly decaying matter-like intermediate stage, or almost instantaneous if the decay rate

2In general, it is expected that Γφ = Γφ(wφ) for wφ > 0, i.e. the effective width can be energy dependent for
(semi-)relativistic matter. We do not consider this subtle effect here.
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dominates over the Hubble rate. The analytic estimates of this section follow Ref. [240], with
the appropriate changes made to apply results to our scenario.

The stage of vacuum domination starts once ρφ = ρrad ' ρSM holds. It transitions into
the entropy injection phase at temperature Te, when the evolution of the SM plasma ceases to
be adiabatic due to the injected energy. The injection phase concludes once the SM evolves
adiabatically and radiation-like again at temperature Tr and can approximately be defined
from Γφ = H. However, decay of the vacuum-like component may be triggered at temperature
Te and if Γφ � H(Te) holds, the decay is very efficient and can be considered instantaneous to
good approximation.

The latter case is particularly simple to estimate. Assuming that injection into right-handed
neutrinos is negligible, we readily estimate the dilution factor by adding the vacuum energy to
the SM energy at Te to find Tr. This gives the dilution factor

Ds =
T 3
r

T 3
e

=

(
1 +

30∆V

π2g(ρ)T 4
e

)3/4

' (1 + α)3/4 , (5.8)

where α = ∆V/ρSM(Te) denotes the ratio of vacuum to SM radiation energy at Te.3

In case that the intermediate matter-like stage is long-lived, the estimate changes somewhat,
and since the matter-like component redshifts slower than its radiation counterpart, injection
is enhanced. Such a situation might occur during a phase transition, where the field oscillates
around a new minimum and these oscillations decay slowly compared to the Hubble rate.

Adopting the result from Ref. [240], we find

Ds =

(
90

8π3g(ρ)(Tr)

)3/4(2

5
ΓφMP

)1/2(8π∆V

3

)
1

T 3
e

. (5.9)

However, we anticipate that in most situations of interest the instantaneous approximation
gives a good estimate, and an extended period of e.g. long-lived oscillations may better be
captured by an early stage of matter domination altogether.

In either case, it is evident from Eq. (5.8) and (5.9) that, unless the vacuum energy dom-
inates significantly prior to its decay, the νR abundance and hence ∆Neff is not diluted by
more than a factor O(1). Any stronger vacuum energy will likely dilute right-handed neutrinos
beyond detection, unless reheating into the νR sector is also present. Such a situation requires
a more careful analysis, and like the explicit production during such a stage, will likely involve
solving the system in Eq. (5.6). In case of strong dilution, considering a secondary phase of νR
production starting from the lowered second reheating temperature will provide conservative
limits.

We note here in particular that a BSM induced first order EW phase transition or modified
QCD transitions are unlikely to make significant alterations to our forecasts, since they are
typically expected to fall in the α < 1 regime. For more details, see e.g. the discussion in
Ref. [241].

3We follow a similar notation here as is often used in the phase transition literature [241].
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5.2.3 Early matter dominated era

Next, we consider the effect of an era of early matter domination (EMD). We remain agnostic
as to the origin of such an era and characterize it entirely by its phenomenological descrip-
tion. These non-standard cosmological interludes are widely studied and an active field of
research. The deviations from the radiation dominated Universe can result from a variety of
mechanisms, including the aforementioned field oscillations, but also production of long-lived
particles, the presence of string moduli, and more. Therefore, we instead refer to Refs. [242,
243] for comprehensive and recent reviews on the subject. Indeed, we note here that our results
are independent of the precise workings of the matter dominated era, as we are only sensitive
to the phenomenological consequences of such an interlude. Namely, it is the deviation of the
Hubble parameter and the reheating stage at the end of an EMD that affects our results.

In terms of the fiducial energy density ρφ, we set w = 0 and define Teq through the relation
ρφ = ρrad ' ρSM. This defines a temperature of equality and the beginning of the era of EMD.
Initially, the energy transfer from the matter sector to the radiation sector is inefficient. There-
fore, the SM and all other radiation-like additional sectors continue to evolve adiabatically. Of
course, the Hubble rate evolves differently compared to a standard radiation dominated era.
We find H ∝ a−3/2 ∝ T

3/2
SM in this case [244]. Adiabatic expansion implies ρ ∝ a−4 and there-

fore the ratio ρνR/ρSM remains unaffected. This assumes that νR and the SM are decoupled at
this time and νR-genesis is completed.

Production throughout such an era gives a non-trivial abundance. A few general remarks,
however, can be made. Considering the freeze-in production of νR, it is evident how the ratio
C/H is crucial for the yield that can be obtained. We could, in principle, study this production
by adopting our fiducial cosmology and solving the system of equations explicitly. It turns out
that this is not necessary, as the end of EMD must encompass strong reheating and therefore
dilute νR beyond detection. Only production during the reheating process itself may leave some
traceable amounts of νR. DM production during EMD is widely studied (e.g. [245]), but it is
also known that at least the UV-sensitive freeze-in contribution is negligible in such cases [240].

Eventually, decays of the matter component become efficient in transferring entropy to the
SM. Thus, the SM deviates from adiabatic expansion. Let us assume that φ continues to scale
like matter and is the dominant species in the Universe. It follows that ρSM ∝ a−3/2 and
TSM ∝ g

−1/4
(ρ) a−3/8 holds [244], manifesting the deviation from adiabatic expansion of the SM

plasma.
As alluded to before, we can define the end of EMD by H(Tr) ' Γφ. Physically, it means

the decays become efficient compared to the expansion rate, thus entropy injection from decays
dominates over the adiabatic Hubble expansion – the matter component quickly disappears and
reheats the SM. We can readily estimate the dilution factor that must depend on Teq and Tr

and find [244]

Ds =
Teq
Tr

g(ρ)(Teq)g(s)(Tr)

g(ρ)(Tr)g(s)(Teq)
' Teq

Tr
, (5.10)

which implies dilution is, up to matters of counting the correct degrees of freedom for the
plasma, given by the ratio of temperatures between beginning and end of the matter era.
Therefore, dilution at the end of EMD generically yields Ds � 1. Any primordial abundance
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of νR is diluted beyond detection. As for the vacuum case studied before, we can obtain
conservative bounds by considering production after reheating of the matter era has completed.

5.2.4 Reheating

At last, we consider the situation of a lowered reheating temperature, by which we mean Treh <
mZ′ . This situation is worthwhile to consider for two reasons. First of all, a lowered reheating
temperature from inflation is possible, and in cases where extremely high temperatures are at
play, the possibility of outright overlap of the reheating process with our νR-genesis needs to be
acknowledged. In addition, we find that for many modified thermal histories, enough reheating
to dilute ∆Neff is present. Thus, production after some Treh < mZ′ gives a conservative but
reliable bound.

Low mass scenarios with extremely low reheating temperatures below the EW scale (Treh �
TEWSB) were considered in Ref. [246]. Here we take a different approach. Motivated by the
strong forecasts up to very high scales, we consider a lowered reheating temperature for masses
all the way up to the GUT scale. The dynamics of reheating are involved, and we do not
attempt to incorporate the entire reheating process and possible light relics from this period.
Instead, we neglect the reheating dynamics and simply integrate the evolution equations from
some initial temperature Treh. This gives a conservative limit, as possible contributions from
reheating itself are neglected.

For selected values mZ′ , we show the dependence of ∆Neff on the reheating temperature in
Fig. 5.2. We focus on values that are within reach of near-future and very futuristic colliders,
but also GUT scale physics and in between. In all cases, we observe some general trends. If
the reheating temperature obeys Treh . mZ′ , limits are still shaped by the resonant production
of on-shell gauge bosons and their subsequent decay. As we progress to smaller values in mass
relative to the reheating temperature, limits weaken drastically as we shift away from the
resonant regime, which becomes kinematically inaccessible. Production is dominated by the
UV-sensitive effective operator obtained from integrating out Z ′ in the ff̄ → νRν̄R process.
Thus, the abundance will explicitly depend on Treh, and is to good approximation controlled
by the parameter combination g4T 3

rehMP /m
4
Z′ . For a benchmark value ∆Neff ∼ 0.1, we find

the empirical relations

g ∼ 1.8

(
Treh/mZ′

10−3

)−3/4 ( mZ′

109GeV

)
, (5.11)

Treh
mZ′

∼ 0.05
( mZ′

109GeV

)1/3( g′

0.1

)−4/3

, (5.12)

to estimate parametric dependencies.
Note how, in particular, the seemingly testable high-scale realizations in the GUT regime

or somewhat below are substantially affected. It is clear that reheating temperatures con-
sistent with Planck [238] or somewhat below directly imply g > 1, and we approach the
non-perturbative regime. Even for smaller masses, just going two to three orders of magnitude
below the mass will suppress abundances of νR unless g is close to the non-perturbative regime.
Going to even smaller masses mZ′ ∼ 1000TeV, the conclusions change. Here we would need to
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Figure 5.2: The effect of a lowered reheating temperature for different values of the Z ′ mass. Up to
masses of thousands of TeV, limits can only be significantly weakened for a lowered reheating tempera-
ture. We can still have a Z ′ within reach of future colliders, if there was strong reheating at temperatures
as low as Treh . 100MeV. For larger masses, strong limits on O(1) gauge coupling may be avoided
by having (inflationary or secondary) reheating at temperatures a few orders of magnitude below the
gauge boson mass. We note that for scales as high as the GUT scale, a seemingly natural realization
with O(1) gauge coupling becomes testable. However, reheating to just an order of magnitude below
the mass will suppress any signal from ∆Neff. We note that detectable amounts of νR produced at
the GUT scale require reheating to temperatures in tension with upper limits on the inflationary scale.

Published in Ref. [2].
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Figure 5.3: Irreducible constraints on U(1)B−L gauge bosons in presence of light right-handed neutri-
nos. These limits assume a reheating temperature Treh = 10MeV, which is the minimum value required
for successful BBN and therefore cannot be avoided. We show the same complementary limits as in
Fig. 5.1 for comparison. The upper black curve corresponds to ∆Neff = 0.17, excluded by ACT [45] at
95% C.L. and disfavored by BBN+CMB combinations [46, 47]. The lower dashed curve is a benchmark

value ∆Neff = 0.06 for future CMB surveys.

reheat to temperatures in the GeV range and lower to avoid limits – a regime that is testable
in principle also by collider experiments.

The implications in terms of a lowered reheating temperature are of particular interest
here. We stress again that we should view our benchmark model as a representative of other
Z ′ extensions, and as a building block of more complex models. Such models often incorporate
other features, such as a suitable DM candidate or they account for Dirac leptogenesis [247].
Then, an irreducible νR abundance has profound consequences on the viability of such models,
as the generic bounds can only be avoided by lowered reheating temperatures or non-standard
cosmological interludes – which is a potentially limiting factor for DM production or leptoge-
nesis.

To complement this analysis, we also provide a maximally conservative limit by the re-
quirement that the Universe was radiation dominated at BBN. We assume a minimal reheat-
ing temperature Treh = 10MeV and show these irreducible limits that cannot be avoided in
Fig. 5.3.

5.3 The future of gauge symmetries and Dirac neutrinos

A central issue for models of Dirac neutrinos is how to protect their Dirac nature. A widely
adopted and well-motivated approach from a theoretical perspective is to forbid Majorana
terms by means of a symmetry. Key advantage of the gauge symmetry variant is that the
symmetry and therefore the Dirac nature are expected to remain intact when confronted with
quantum gravity – for global symmetries, there is the possibility of them being broken by
gravity [248].
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Here, we considered a gauged B − L variant that, as long as ∆(B − L) 6= 2, is a well-
suited candidate for such a gauge symmetry protection. However, other Z ′ extensions can
achieve the same feat, and moreover, UV complete models of Dirac neutrinos may just include
any number of gauged U(1) extensions that couple light right-handed neutrinos to other SM
fermions. Thus, the setup we study deserves extra scrutiny, since bounds related to the effective
number of neutrino species ∆Neff are generic and robust even when the complete model contains
additional degrees of freedom.

New constraints from the latest ACT DR6 data release put ∆Neff < 0.17 (95% C.L.)
and the implied constraints on the mZ′ − g′ parameter space surpass previous cosmological
bounds from Planck and BBN by orders of magnitude. Laboratory and collider limits are also
surpassed by orders of magnitude across all mass scales, and even forecasts for the FCC are
barely competitive with these updated cosmological limits. Notably, for the first time, limits
in the previously unexplored regime mZ′ > 4TeV are being placed. We exclude gauge boson
masses of up to mZ′ ∼ 100TeV for g′ ∼ O(1).

Forecasts of future CMB surveys show the enormous potential of ∆Neff to test Dirac
neutrino models. Natural realizations with g ∼ O(1) are subject to strong constraints for
mZ′ . ΛGUT and below, provided the Universe reached temperatures close to the gauge boson
mass and no significant entropy injection occurred between νR-genesis and the formation of
the CMB. Our analysis shows that even if Treh < mZ′ , all but the highest mass scales are
still subject to similarly constraining limits on natural realizations. Moreover, scenarios with
non-standard interludes of the thermal history, or an outright low reheating temperature may
face difficulties when trying to account also for DM abundances or Dirac leptogenesis. A pic-
ture emerges in which the possibility of gauge protected Dirac neutrinos will be put under
strong pressure by future CMB observations if no excess in ∆Neff is detected. Should such a
non-detection prevail, while being put under pressure, the Dirac hypothesis may still be viable.

As shown in our analysis, we need to think about these limits in tandem with the underlying
cosmological assumptions. Thus, a non-observation may be an indication of a non-standard
thermal history. In light of growing cosmological tensions, this may be an attractive option to
address cosmological tensions within a consistent model of Dirac neutrinos. For example, it
is known that extra radiation can at least alleviate the Hubble tension to some degree [249].
Alternatively, solving a cosmological tension may just introduce the change of thermal history
needed so that Dirac neutrinos with a gauge symmetry can evade detection.

If the existence of a Z ′ and a light right-handed neutrino were to be established in the lab-
oratory or it seems plausible from theoretical considerations, we would find ourselves equipped
with a powerful probe of pre-BBN physics – a notoriously difficult to probe era of the early
Universe. We should also stress that, while particularly attractive, a gauge symmetry is not
the only way to protect the Dirac nature of neutrinos. Indeed, a mere global symmetry will
achieve the same. As we do not have a theory of quantum gravity yet, the breaking of global
symmetries, while plausible and well-motivated, is only conjectured, and we do not have a
theory of quantum gravity to precisely quantify the effect of breaking. Indeed, we will address
the possibility of global symmetry protected Dirac neutrinos in the next Chapter. In either
case, future surveys will give valuable limits that either provide us with a possible clue to the
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nature of neutrinos or may even be the herald of a new cosmological paradigm if such a model
can be established in the laboratory.
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Chapter 6

The Dirac Type-I seesaw family

Global symmetries are an attractive feature of Dirac neutrino models. They can forbid the
generation of a Majorana mass term, and in extended models, they can also guarantee DM
stability and more. Global symmetries appear in a variety of shapes, including continuous and
discrete symmetries, exactly or approximately realized and sometimes spontaneously broken.
Recent publications involving Dirac neutrinos and a related global symmetries are numerous
and cannot be completely summarized here. Instead, we refer to Refs. [106–112] for some
selected recent examples.

The case of a spontaneously broken continuous symmetries is particularly interesting. The
associated Nambu-Goldstone boson is physical, and for exact symmetries exists as a massless
degree of freedom. As a light degree of freedom, it can give corrections to ∆Neff and due to the
charge assignment, lepton flavor violation (LFV) in SM particle decays is predicted and offers
additional probes of Dirac neutrino models.

It is well-motivated that gravity breaks all symmetries unless they are gauged [248]. Thus, if
a global symmetry protecting the Dirac nature of neutrinos is explicitly broken by gravitational
effects, the exact Dirac nature may be spoiled and neutrinos end up being Majorana particles.
The only guarantee to avoid this problem is promotion to a gauge symmetry if possible. As
we showed in Chapter 5, Dirac neutrinos with new gauge interactions face strong and generic
constraints from ∆Neff that can only be avoided in a non-standard thermal history. It is natural
to ask if a minimal global symmetry option can avoid bounds, despite possible complications
from quantum gravity.

In the following, we first introduce the Type-I Dirac seesaw family as a generalization of
similar results for the Majorana Type-I seesaw [159]. This is a general result for model building
with applicability beyond the minimal models we study in the following. We discuss two
realizations that have minimal particle content, generate a small Dirac mass, and protect the
Dirac nature with a global symmetry. We proceed to study the phenomenology and cosmology
of these models in great detail and draw general conclusions on the viability of this approach
to Dirac masses and conjecture on consequences for models beyond the Type-I family. We
also discuss our findings in light of the role of gravity in symmetry violation and how minimal
models with global symmetries avoid strong constraints compared to their gauged counterparts.
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6.1 The Type-I Dirac seesaw family

We will study in more detail two models belonging to what we refer to as the Dirac Type-I
seesaw family. This classification is an adaption of the Majorana Type-I seesaw family [159],
which understands a wide class of Majorana mass models as specific realizations of a generalized
framework and that we already introduced in Sec. 2.3.2. Here, we develop a suitable analogue
for the Dirac case, and we make manifest the similarities and differences of the two seesaw
families.

For a model to belong to the Dirac Type-I seesaw family, we require the neutral fermion
mass matrix to be of the form

L ⊃
(
ν̄L N̄L

)( 0 M1

M2 MN

)(
νR

NR

)
+ h.c. ≡

(
ν̄L N̄L

)
M

(
νR

NR

)
+ h.c. , (6.1)

where νL is the active neutrino flavors included in the SM, and νR and NL,R are new BSM
fermions and SM singlets. We tentatively separate νR from NL,R, as the νR coming in nνR 6 3

generations are the light Dirac partners of νL and we consider nN additional generations of
NL,R. We do not consider further the case of nνR > 3, but note that it would still make
for a perfectly consistent theory – the additional νR remain unpaired to the active neutrino
flavors, and consequently can remain massless after neutrino mass generation, with possible
phenomenological consequences.

Moreover, we impose two seesaw conditions
(
M1M

−1
N

)
ij

� 1 and
(
M2M

−1
N

)
ij

� 1 ∀i, j
for a model to belong to the Dirac Type-I seesaw family. We refer to ε1 = O(M1M

−1
N ) and

ε2 = O(M2M
−1
N ) as seesaw expansion parameters, which turn out to be the correct small

parameters for a perturbative mass matrix diagonalization. We also assume that Majorana
mass terms are prohibited by symmetry, such that the light neutrinos are truly Dirac in nature.

The conditions define a generic setup, with virtually infinitely many BSM completions to
realize such a Dirac Type-I seesaw. In the following, we study the generated neutrino mass
matrix in more detail, and illustrate how it generically leads to small Dirac masses Mν � ΛEW.
We define two unitary matrices UL and UR acting on the left-handed and right-handed fermions
by the transformation

U †
LMUR = M̂ = diag (m1,m2, . . . ,m3+nN ) . (6.2)

Here and in the following, we use the hat symbol to denote quantities in the mass basis, and
note that m1,m2,m3 � ΛEW � m4...m3+nN necessarily follows from the seesaw conditions.
The two matrices UL,R are of shape (3+nN )×(3+nN ) and (nνR+nN )×(nνR+nN ), respectively.
We parametrize them as

UL,R =

√13,n − PL,R(PL,R)
† PL,R

−P †
L,R

√
1n − (PL,R)

†PL,R

 (
(U`)L,R 0

0 (Uh)L,R

)
, (6.3)
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and separate the block diagonalization into the light/heavy sectors from subsequent diagonal-
ization of the respective sector. The block rotation matrices of the left light and heavy blocks
are of dimension 3× 3 for (U`)L, and nN × nN for (Uh)L. Similarly, for the right-handed fields
we have (U`)R and (Uh)R of dimensions nνR × nνR and nN × nN , respectively. The auxiliary
matrices PL,R have dimension 3 × nN and nνR × nN . Since in the seesaw expansion we first
block diagonalize into light/heavy sectors, (U`)L can be identified with the usual lepton mixing
matrix inferred from neutrino oscillations at first order in the seesaw expansion.

The block-diagonalization is analogous to the Majorana case that we discussed in detail
in Sec. 2.3.2. We define the auxiliary matrices PL,R in terms of a power series in the seesaw
expansion parameters,

PL,R =
∑
n

P
(n)
L,R , P

(n1+n2)
L,R = O(εn1

1 ε
n2
2 ) ≡ O(εn1+n2

1,2 ) . (6.4)

Then,
√

1− PL,R(PL,R)
† = 1+O(ε21,2) at leading order in the seesaw expansion. When applied

to a general mass matrix of the Dirac Type-I seesaw family from Eq. (6.1), we find at leading
order

M̂block
!
=

(
1 −PL
P †
L 1

)(
0 M1

M2 MN

)(
1 PR

−P †
R 1

)
+O(ε21,2)

=

(
−M1P

†
R − PLM2 M1 − PLMN

M2 −MNP
†
R MN )

)
+O(ε21,2) .

(6.5)

Requiring the off-diagonal blocks to vanish leads to

PL =M1M
−1
N , P †

R =M−1
N M2 . (6.6)

We find for the not yet diagonalized mass matrix of the light neutrinos

Mν = −M1M
−1
N M2 , (6.7)

whereas the heavy fermion mass matrix is given byMN to leading order in the seesaw expansion.
We note that it is convenient to express the model parameter M1 in terms of the physical
parameters MN , U`, and the neutrino masses M̂ν , as well as the model parameters M2 and
U`R,

M1 = −U †
` M̂ν U`RM

−1
2 MN . (6.8)

We can make the analogy to the Majorana seesaw family from Ref. [159] and Sec. 2.3.2 manifest,
by noting that it corresponds to the replacement νR = νcL, NR = N c

L, and, therefore, M2 =MT
1 .

UV-complete realizations of the Dirac Type-I seesaw family differ by means of how the
three mass matrices constituting Mν are generated. In particular, Eq. (6.7) holds regardless
of the details of M1, MN and M2. The NR,L can belong to multiplets of different charges in
any UV-complete realization and the details are not important for a model to belong to this
family. Such models have been realized before, e.g. in Refs. [82, 250–253]. They all constitute
a realization the Dirac Type-I seesaw family.
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At last, we discuss the new physics scales that enter the seesaw relation. To this end, we
first note that

Mν = −ε1M2 , (6.9)

and ε1 simply is a measure of mixing between light SM neutrinos and the heavy BSM fermions.
Since the new fermions are SM singlets and in absence of other new interactions, any new
physics effect arises from this mixing, and hence is similarly suppressed as the active neutrino
masses. However, it is important also to observe that

ε1 ∼
Mν

M2
, (6.10)

i.e. the mixing explicitly depends on M2. It is evident how small mixing in the seesaw expansion
arises from our naive expectations of a high-scale M2. However, it would be perfectly consistent
with all our previously stated requirements to impose also

M2 �M1 �MN . (6.11)

Then, a small Mν is still realized, but the mixing parameter can be sizable. We refer to
the first case with suppressed mixing as high-scale Dirac Type-I seesaw, and the second case
with large mixing as low-scale variant. Out of the large class of UV-completions, we study
two minimal representatives of the Dirac Type-I seesaw in more detail, and in particular their
flavor phenomenology and cosmological probes in case of a global symmetry protecting the
Dirac nature. We highlight the complementarity of the two probes, and also conceptual and
phenomenological differences that arise when compared to the gauged variants. Due to the
minimal nature of the models, the general expectation is that phenomenology is suppressed by
the mixing parameter.

6.2 Minimal realizations

In the following, we study two minimal realizations of the Dirac Type-I seesaw family, which
we will refer to as the canonical and the enhanced model. At the heart of both realizations is a
global and chiral symmetry U(1)D, where first and foremost the charge assignment constitutes
the main difference between the models and is chosen such that all Majorana mass terms are
forbidden and hence the Dirac nature of neutrinos is protected [254]. By chiral, we mean that
charges between left-handed and right-handed fermions can differ, and in particular, we can
arrange for the bilinear ν̄LνR + h.c. to be forbidden at tree-level, hence giving rise to neutrino
masses only from higher-order operators [253].

We introduce a new complex scalar field σ which will spontaneously break U(1)D → Z3, and
the associated exact Nambu-Goldstone boson is referred to as the Diracon. In the canonical
model, we introduce three singlets νR carrying U(1)D charges (−4,−4, 5), and two generations
of NL,R with charges −1, which is required to generate the correct pattern of neutrino masses
to be consistent with oscillation experiments. We note here that introducing the third νR

with charge 5 is not necessary for this. In fact, it completely decouples and remains massless
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Canonical Enhanced
Fields SU(2)L ⊗ U(1)Y U(1)D U(1)D

H (2, 12) 0 0
σ (1, 0) 3 3

L (2,−1
2) -1 -1

νR (1, 0) (−4,−4, 5) 2

NL (1, 0) -1 2

NR (1, 0) -1 -1

Table 6.1: Fields and charge assignments for the two minimal Dirac Type-I seesaw models studied
here. The UD(1) charge of NR is fixed by the M1 term in Eq. (6.1), while that of σ is model-dependent
and sequentially fixes the charges of NL and νR. Here we choose the simplest case with a charge of 3.

due to the charge assignment. However, we chose to include it here explicitly and make the
aforementioned charge assignment motivated by the results of Chapter 5. Such an assignment
makes the UD(1) anomaly-free. Hence, it would be possible to promote it to a gauge symmetry,
the phenomenological consequences of which we studied in Chapter 5, and the two cases can
be compared more directly.

The enhanced model comes with an identical scalar sector, and we introduce three genera-
tions of νR and NL,R each, carrying UD(1) charges 2 in case of νR and 2,−1 for NL,R. Again,
a different choice of charges would be possible, but we motivate this assignment by an appeal
to anomaly-cancellation, so that a direct comparison to the gauged version of the model is
possible. We summarize the models in Tab. 6.1.

We note here that this charge assignment can be identified with B − L. Indeed, since L
and H carry charges −1 and 0 respectively, and the quark sector remains unaffected from this
model, we could indeed make the identification, as was done e.g. in Ref. [66]. However, we
stress here that this identification is not strictly necessary, and we will remain agnostic and
hence continue to refer to D-charge or D-symmetry.

6.2.1 Scalar sector

We consider the most general scalar potential under the symmetry group SU(3)C × SU(2)L ×
U(1)Y × U(1)D for the complex scalar σ, and the EW doublet H

V (H,σ) = −µ2(H†H)− µ2σ(σ
†σ) + λ(H†H)(H†H) + λσ(σ

†σ)(σ†σ) + λHσ(H
†H)(σ†σ) .

(6.12)

We define 〈H0〉 = vH/
√
2 and 〈σ〉 = vσ/

√
2 for the VEVs of the neutral component of H and

σ, respectively. Then, the scalar sector admits a parametrization

H =

(
G+
W

1√
2
(v + SH + iGZ)

)
, σ =

1√
2
(vσ + Sσ + iD) . (6.13)
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Of course, the former is responsible for EWSB, just as the SM EW scalar doublet, while σ
breaks the global U(1)D. The scalar sector separates into a CP-even and a CP-odd sector. In
the former, a mass matrix

M2
S =

(
2v2 λ vσv λHσ

vσv λHσ 2v2σ λσ

)
, (6.14)

gives rise to two massive states SH and Sσ. The matrix is straightforwardly diagonalized by

U †M2
S U =

(
m2
h 0

0 m2
S

)
, with U =

(
cosα sinα

− sinα cosα

)
. (6.15)

We identify two physical mass eigenstates with masses mh and mS , and we redefine the pa-
rameters of the potential in terms of the physical masses and mixing angle α. We find

2v2Hλ = cos2 αm2
h + sin2 αm2

S , (6.16)

2v2σλσ = sin2 αm2
h + cos2 αm2

S , (6.17)

vσvHλHσ = cosα sinα (m2
S −m2

h) , (6.18)

and in the limit α � 1, we readily identify h ' SH as the SM-like Higgs of mh ' 125 GeV,
and an additional massive scalar S with a mass proportional to vσ. Similarly, the charged and
CP-odd states of the doublet H are identified as the would-be Goldstones that give rise to the
longitudinal modes of the electroweak SM gauge bosons G+

W and GZ . The remaining Goldstone
from σ is physical and connected to the spontaneous breaking of UD(1). It is commonly referred
to as the Diracon D [255].

The presence of the massless scalar Diracon constitutes a main difference of global symmetry
protection schemes over protection of the Dirac nature due to a gauge symmetry. Indeed, such
a massless mode is not only affecting ∆Neff if copiously produced in the early Universe, but
due to its connection to a symmetry of the extended lepton sector, it has phenomenological
implications in the high-energy regime. These include contributions to the Higgs invisible
decays, but also rare flavor violating low-energy processes like µ → eD are possible. Both
signatures provide valuable constraints on model parameter space.

6.2.2 Canonical model

The charge assignment of the canonical model (see Tab. 6.1) allows us to write the Lagrangian
density

L ⊃ Y L̄ H̃NR + Y ′N̄Lσ ν
(1,2)
R +MN N̄LNR + h.c. (6.19)

Here we made explicit that, due to U(1)D charges, only two right-handed neutrinos are subject
to Yukawa couplings. Consequently, the Yukawa matrices Y ′ and Y are of dimensions 2 × 2

and 3 × 2, and the heavy mass matrix MN is of shape 2 × 2. A different charge assignment
would allow for ν(3)R to be part of the Yukawa sector. Again, we stress here that this charge
assignment is chosen to make the differences to a gauge protected variant manifest. Especially
cosmological constraints from ∆Neff on this model variant are expected to be weakened, as we
have fewer light degrees of freedom coupled to the SM and, therefore, a smaller contribution to
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the total expansion rate. This model also constitutes a minimal realization in light of oscillation
experiments, as they only require two massive active neutrinos.

Upon symmetry breaking, the above Yukawa sector gives rise to a mass matrix for the
neutral fermions

Mn =

(
0 v√

2
Y

vσ√
2
Y ′ MN

)
. (6.20)

We demand the model to be a realization of the Dirac Type-I seesaw family, and therefore the
hierarchy Y v , Y ′vσ � MN , required for the perturbative seesaw diagonalization, is imposed.
The resulting neutrino mass matrix from Eq. (6.7) reads

Mν =
v vσ
2

Y M−1
N Y ′ , (6.21)

which is of dimension 3 × 2, again making explicit that one of the active neutrinos remains
massless in this model. The corresponding diagrammatic representation of the seesaw mech-
anism is shown in Fig. 6.1. We refer to this model variant as the canonical version, since
the mass generating diagram clearly resembles the Type-I seesaw for Majorana neutrinos. We
note here that neutrino masses are necessarily small as a consequence of the seesaw expansion.
Transforming to the mass basis, we find the useful Casas-Ibarra-like relation

Y =
2

v vσ
U` M̂ν U

†
`R (Y ′)−1MN . (6.22)

We can choose the charged lepton mass matrix M` and the heavy neutral fermion mass matrix
MN to be diagonal, real, and positive. The former works completely analogous to the SM,
where the charged lepton mass matrix can also be made diagonal. The latter follows from
rotating an arbitrary MN into diagonal form, and then absorbing the excess rotations in a
redefinition of the free Yukawa matrices.

Following our discussion around Eq. (6.10), we identify a low-scale regime of the model by
the hierarchy vσ � v, which allows for sizable mixing between the active neutrinos and the
heavy neutral fermions. We expect phenomenological signatures to be stronger in this limit,
due to larger mixing. On the other hand, we approach the high-scale limit for vσ > vH with a
suppressed phenomenology.

6.2.3 Enhanced model

For the enhanced model, we find the Yukawa sector

L ⊃ Y L̄ H̃NR +M2 N̄L νR + Y ′N̄L σNR + h.c. , (6.23)

which, after symmetry breaking, yields

Mn =

(
0 v√

2
Y

M2
vσ√
2
Y ′

)
, (6.24)
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νL
MN

νR

〈H〉 〈σ〉

NR NL

(a) Canonical model

νL
M2

νR

〈H〉 〈σ〉

NR NL

(b) Enhanced model

Figure 6.1: Feynman diagrams for neutrino mass generation for the canonical and the enhanced model.
Both models belong to the Dirac Type-I seesaw family and have formally the same particle content, but

differ in their charge assignments and symmetry breaking patterns.

for the neutral fermion mass matrix. Once more, we impose the seesaw conditions which for
the enhanced model read Y v ,M2 � Y ′vσ. From Eq. (6.7), we find the mass matrix and
Casas-Ibarra-like relation

Mν = − v

vσ
Y (Y ′)−1M2 → Y = −vσ

v
U` M̂ν U

†
`RM

−1
2 Y ′ . (6.25)

A diagrammatic representation is given in Fig. 6.1. The hierarchy required for the seesaw
expansion naturally gives rise to suppressed neutrino masses, even if Yukawa couplings Y and
Y ′ are sizable. Following the discussions near Eq. (6.10), we can identify a low- and high-scale
variant of the model. Here, the low-scale regime is identified as M2 � Y v, which gives rise to
significant deviations from SM phenomenology at low energy scales. The high-scale regime is
given by the opposite limit, and is expected to come with suppressed BSM signatures.

We note here that the seesaw expansion also implies a suppression of the bilinear N̄L νR

compared to N̄LNR. While mixing to the SM remains largely unaffected, the interactions
induced from couplings to σ change the phenomenology and, in particular, physics related to
the Diracon. We will find that this structure leads to an enhancement of Diracon related signals
compared to the canonical version. Hence, we refer to it as the enhanced model.

6.3 Phenomenology of the Dirac Type-I seesaw

In the following, we discuss two promising probes of the Dirac Type-I seesaw family in the
laboratory. We focus on Higgs related physics, as well as rare flavor violating decays, most
notably the “golden” signatures µ→ eγ and µ→ eD.

6.3.1 Invisible Higgs decays

Due to their identical scalar sectors, the Diracon contribution to the Higgs invisible decay in
both models is given by [256, 257]

Γ(h→ DD) =
m3
h

32π

sin2 α

v2σ
, (6.26)
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`α `β

γ

νi, Nj

W

Figure 6.2: Feynman diagram relevant for the muon decay µ → eγ. The fermion mediators include
the light and heavy neutral fermions.

and if kinematically possible, also a decay into the radial mode S

Γ(h→ SS) '
(
m2
h + 2m2

S
)2

32πmh

sin2 α

v2σ

√
1− 4

m2
S

m2
h

. (6.27)

The decay into the radial modes must not necessarily contribute to the Higgs invisible decay
width. However, as is evident from our investigation of the Yukawa sectors of both models,
the radial scalar has only tree-level couplings to neutrinos and the Diracon. Hence, its decays
are – to good approximation – invisible.

Thus, we find the limit

Γ(h→ DD) + Γ(h→ SS) < Γinv , (6.28)

where Γinv is the 95% C.L. limit on the invisible Higgs decay and we use Γinv < 0.39MeV [144].
We note here that this scalar sector is not restricted to our Dirac Type-I seesaw family, but
rather provides a universal limit on a large class of models with a broken global Abelian
symmetry.

6.3.2 Lepton flavor violation

Many BSM models introduce new sources of LFV. We consider the processes `α → `β γ and
`α → `β D. More concretely, we are interested in direct searches in muon decays. These
processes receive a 1-loop correction from the BSM neutral fermions that is possibly larger
than the SM contribution.

We illustrate the diagram in Fig. 6.2. We will not perform the full loop calculation here, as
it is a well-known standard result that has been computed in full generality for many possible
loop constituents [258]. Here we start from the result of Ref. [259], which provides a simplified
but exact expression for the case of general neutral fermions in the loop.
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We rewrite the result of Ref. [259] as

Γ(lα → lβγ) =
α3
W sin2 θW
64π2

m5
lα

m4
W

×∣∣∣∣∣∑
i

UiαU
?
iβ

[
F

(i)
1 + F

(i)
2

]∣∣∣∣∣
2

+
mlβ

mlα

∣∣∣∣∣∑
i

UiαU
?
iβ

[
F

(i)
1 − F

(i)
1

]∣∣∣∣∣
2
 ,

(6.29)

where the sum runs over light and heavy neutral fermions in the loop. In the limit mα,β � mW ,
Ref. [259] finds that F (i)

2 becomes negligible over F (i)
1 and for light neutrinos mi � mW holds

and we find F (i)
1 → −7/24. In the limit mi � mW , which applies for the heavy neutral fermions

due to the seesaw limit, we have F (i)
1 → 1/24. Hence, we may separate the sum over i into a

heavy and a light block and find

∑
i

UiαU
?
iβ

[
F

(i)
1 + F

(i)
2

]
=

7

24

∑
i∼light

UiαU
?
iβ +

1

24

∑
i∼heavy

UiαU
?
iβ

=
7

24

∑
i∼all

UiαU
?
iβ −

6

24

∑
i∼heavy

UiαU
?
iβ ,

(6.30)

where to arrive in the second line we have added 0 = (7/24 − 7/24)
∑

i∼heavy UiαU
?
iβ. We

note that from unitarity of the lepton mixing matrix, we have
∑

i∼all UiαU
?
iβ = δαβ, and the

first term does not contribute to LFV. Courtesy of Eq. (6.6), we can write to leading order∑
i∼heavy UαiU

†
iβ = PLP

†
L = M1M

−1
N (M−1

N )†M †
1 . Putting all together, we obtain the master

formula for the branching ratio of the leptonic decays

BR(`α → `β γ) =
α3
W s

2
W

1024π2

(
m`α

mW

)4 m`α

Γ`α

∣∣∣∣(M1M
−1
N (M−1

N )†M †
1

)
αβ

∣∣∣∣2 . (6.31)

The dependence on specific realizations is given by the respective model realizations of M1 and
MN . We focus on the so-called “golden” flavor signal µ → eγ, which is tightly constrained by
the MEG collaboration. They report the current limit [260]

BR (µ→ e γ)current . 1.5 · 10−13 , (6.32)

at 90% C.L. with a projected improvement to reach [261]

BR (µ→ e γ)future . 6 · 10−14 . (6.33)

Interactions of the Diracon with the SM are, apart from its direct coupling to the Higgs,
not present at tree-level. However, mixing of the neutral fermions with SM fermions gives rise
to new gauge interactions of the Diracon at loop-level. The most important contributions come
from W and Z bosons. We illustrate two diagrams in Fig. 6.3. In Ref. [262], the general 1-loop
coupling of Majorons to charged leptons is calculated. The results are readily adapted also to
the case of a Diracon. The interactions are model dependent for any specific realizations, as
they depend on interactions of the Diracon with new fields that mix with SM leptons. More
details on the derivation are presented in Appendix B.
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Figure 6.3: Diagrams contributing to the interactions of the Diracon and charged leptons.

The effective interaction between the Diracon and charged leptons can be written as

L``D = D ¯̀(SLPL + SRPR) `+ h.c. = D ¯̀
(
SPL + S†PR

)
` , (6.34)

where S = SL + S†
R varies between model realizations and is given in Appendix B.

We consider flavor violating as well as flavor conserving couplings, as both can be tightly
constrained [263]. Flavor conserving couplings are predominantly constrained by energy loss
in astrophysical systems. Pulsating white dwarfs on the Diracon-electron coupling [264–266]
constrain the Diracon-electron coupling to approximately |See| < 3.1×10−13. Slightly stronger
still are more recent bounds from the tip of the red giant branch at |See| < 1.6 × 10−13 [267],
and |See| < 1.48× 10−13 [268] The Diracon-muon coupling is constrained by additional energy
loss in supernovae [264, 269–271]. For our analysis, we adopt the numerical values

|Im (Sexp
ee )| < 1.5× 10−13 , (6.35)∣∣Im (Sexp
µµ

)∣∣ < 3.1× 10−9 , (6.36)

and we explicitly write the imaginary part to emphasize that we probe the pseudo-scalar part
of the interaction. The scalar part vanishes, since the Diracon is a true pseudoscalar. The
off-diagonal couplings cause LFV with an invisible final state. In particular, Eq. (6.34) shows
that there is a Diracon analogue to the LFV muon decay, i.e. µ+ → e+D. The decay width
can readily be written as

Γ(`α → `β D) =
m`α

32π

∣∣∣S̃αβ∣∣∣2 , (6.37)

where we defined the shorthand∣∣∣S̃αβ∣∣∣ = (∣∣∣SαβL ∣∣∣2 + ∣∣∣SαβR ∣∣∣2)1/2

. (6.38)

We use the limits put forward by TRIUMF [272]. Translation into couplings of the Diracon
requires a proper addressing of the chiral structures of the interaction. We use the estimated
bounds from Ref. [273]

BR (µ→ eD) . 10−5 . (6.39)
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Future experiments will tighten this bound. In particular, we compare results to the projected
bounds from Mu3e [274, 275] and COMET [276, 277]. We use the values

BR (µ→ eD)Mu3e . 6 · 10−7 , (6.40)

BR (µ→ eD)COMET . 4.6 · 10−9 . (6.41)

LFV in other leptonic decay modes is not studied here, but may offer additional insights.
For example, τ decays would be a perfect candidate, although it is experimentally challenging.
When going beyond 2-body decays, a wide array of decay processes becomes accessible and have
been studied to some extent. To name only a few, the models also give rise to µ → eDγ [262,
273, 278], µ→ eeeD [279] and µ→ eDD. While these are promising targets for future surveys,
we usually expect either additional suppression of the already small branching ratios, or a phase
space suppression of these 3-body decays. Hence, they are not expected to be the dominant
signal for us, but could offer additional hints in the event of a possible signal.

6.4 Cosmology of the Dirac Type-I seesaw

The two models we consider make profound changes to the thermal history of the Universe.
Courtesy of the two (three) light right-handed neutrinos, as well as the exact massless Nambu-
Goldstone boson, these new light degrees of freedom cause observable changes in ∆Neff. Each
model comes with significant complexity, as we introduce many new degrees of freedom, all with
interactions between each other and the SM spectrum. We are explicitly confronted with the
electroweak phase transition and a new phase transition associated with the breaking of U(1)D.
In the following, we introduce some well-motivated simplifications to reduce this complexity.

6.4.1 General setup

As we did in Chapter 5 for the case of νR coupled to a Z ′, we treat the right-handed neutrinos
and anti-neutrinos as a single common species with the same justification as before. In addition,
we make the same ansatz for the new scalar sector. We motivate this as follows. Prior to U(1)D

breaking, the theory has a complex scalar σ with gσ = 2 internal degrees of freedom. After the
phase transition, the two degrees of freedom separate into a massive radial mode S and the
massless Diracon D. Now, we are by assumption generically in the regime λσ � λHσ.1 After
symmetry breaking, the hierarchy of couplings suggests that the radial mode and Diracon are
primarily coupled to each other, and interactions with the SM in comparison are negligible.
Thus, for T � mS we have gσ = 2 degrees of freedom, and if T � mS only the Diracon mode
can be excited. Upon freeze-out of S, we assume negligible energy transfer back to the SM,
and the energy remains confined in the scalar sector.

1Having λHσ � 1 is fine-tuned in light of RG considerations, but necessary to avoid bounds, e.g. Higgs
invisible decay. We consider λσ ∼ O(1) exclusively, again since any small fine-tuned value will not remain stable
under the RG. Hence, albeit fine-tuned, we always resort to the implied hierarchy.
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We add to the standard thermal history two new effective sectors, denoted here νR and σ

and solve the system

dρνR
dt

= −4HρνR + C(ρ)
SM→νR

+ C(ρ)
σ→νR

, (6.42)

dρσ
dt

= −4Hρσ + C(ρ)
SM→σ − C(ρ)

σ→νR
, (6.43)

dρSM
dt

= −3H(ρSM + PSM)− C(ρ)
SM→νR

− C(ρ)
SM→σ . (6.44)

For details on definitions of appearing quantities, we refer to Chapter 4. For each of the two
realizations, we take into account all 1 ↔ 2 and 2 ↔ 2 processes that can be constructed from
all new scalar and Yukawa terms. We separate into four possible regimes, taking into account
all possible phases of the scalar potential, i.e. both scalar sectors can be (un-)broken, or only
one sector respectively. In addition, we include processes from mixing of S with the SM-like
Higgs h in the phase where both symmetries are broken.

6.4.2 Phase transition dynamics

A complete treatment of the double phase transition would require a self-consistent solution
of the scalar field dynamics, and it may be feasible in the framework of lattice computations
of cosmological phase transitions. However, we will see that we do not need to invoke lattice
simulations to capture the important effects of the phase transition here.

A crucial observation is the assumed hierarchy λHσ � λσ, which makes us conjecture a weak
coupling between the EW sector and the σ-sector overall. Corrections to the EW part of the
scalar potential only face portal suppressed contributions, and we thus assume a SM-like phase
transition – we assume here a crossover at T cH ' 160GeV. The σ-transition is somewhat more
involved, as Higgs related thermal corrections can dominate even for small portal couplings if
the associated energy scale is small, i.e. the low-scale regimes.

It is important to note that the details of the phase transition have little effect on the
expected result. Indeed, the dominant effect of the phase transition is its control on the presence
or absence of processes, most importantly decay modes (see also our discussion in Sec. 4.2).
Thus, unless the phase transition coincides somewhat with the peak production in, say decays,
at T ∼ m/3, the details of the phase transition have little impact on the resulting abundance.
We have explicitly varied the onset of the phase transitions and found subdominant effects on
final results. This is confirmed by a similar approach to phase transitions in Ref. [222]. We
highlight that this also means we are agnostic to the order of the phase transition.

We prescribe the following thermal corrections to the scalar potential [280, 281]

−µ2H(T ) ' −µ2H +

(
3

16
g2 +

1

16
g′2 +

1

4
y2t +

1

2
λ

)
T 2 , (6.45)

−µ2σ(T, Tσ) ' −µ2σ +
1

3
λσT

2
σ +

1

6
λHσT

2 . (6.46)

Here, g and g′ are the couplings to W and Z bosons, yt is the top Yukawa and λ is the Higgs
quartic scalar coupling. We define the approximate temperature of the σ-transition T cσ by
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Figure 6.4: Energy release in the σ-phase transition, but normalized to a fictitious ∆Neff =
∆V/ρSM(T c

σ), where T c
σ is the critical temperature we define from Eq. (6.46) and ∆V ∼ λσv

4
σ. This is

the maximum possible increase of ∆Neff due to the phase transition. Except for a small region in the
low-scale model with negative portal coupling, we do not expect a significant correction to ∆Neff from
the phase transition. The non-negligible contributions arise from a relative sign in thermal corrections
that lead to a substantially lowered critical temperature, therefore enhancing the ratio of vacuum energy

to SM energy at that time.

equating absolute values of thermal corrections and the vacuum term in Eq. (6.46).
The phase transition releases energy of the order ∆V ∼ λσv

4
σ that becomes dynamical.

For crossover or similar transitions, we expect this energy to be released as excitations of the
field around the new minimum, and in case of a first order transition, some of the energy
may be transferred to the bubbles and later gravitational waves. We do not make any specific
assumptions here, since we show below that corrections to our numerical results are in either
case subdominant. Due to the suppressed portal coupling, we expect the bulk of it to reheat
the σ-sector and not SM states. If this happens while the hidden sector is coupled to the SM, or
it couples to the SM at some later time, the effect is washed out. If the transition occurs after
decoupling of the sectors (or if it remains in the freeze-in limit), the hidden sector is reheated.
Consequently, we obtain an extra contribution to ∆Neff. Comparing ∆V to the energy density
of σ and the SM at T cσ shows that these corrections are subdominant, unless there is partial
or full cancellation of thermal corrections in Eq. (6.46). We show in Fig. 6.4 that indeed, we
expect small corrections to ∆Neff unless for a negligibly small chunk of parameter space, where
the partial cancellation leads to a large ratio ∆V/ρSM(T cσ).

6.4.3 Process details and the degenerate BSM approximation

In this section, we make further steps to simplify the problem before presenting results for
the cosmologically relevant interactions. Although the grouping of species already poses a
convenient simplification, we still have to include a large number of processes and parameters
to scan, e.g. scalar couplings, mass scales, two Yukawa matrices, and a priori unconstrained
rotation matrices. Performing a full scan over all of these free parameters is numerically costly.
To this end, we employ an approximation we refer to as the degenerate BSM approximation,
which is a convenient way to reduce especially the number of parameters in the Yukawa sector.
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Without loss of generality, we can always choose a basis in which the charged lepton mass
matrix and the heavy neutral fermion mass matrix MN are diagonal. Now we make the ansatz
of a degenerate heavy mass matrix, i.e. MN = mN 1n×n, as well as degenerate M2 = m2 1n×n.
For both models, this implies a diagonal and degenerate Yukawa matrix Y ′ = y′ 1n×n, and
from the Casas-Ibarra-like formulas Eq. (6.22) and (6.25), it follows that Y is diagonal, albeit
not degenerate because the eigenvalues of Mν are not degenerate. From now on, we refer to
the degenerate value of the matrices by the corresponding lower case letters.

Scalar sector

The scalar sector for both models is identical. Since we assume a tightly coupled secluded sector,
the relevant amplitudes involve either the Higgs doublet or the physical Higgs, depending on
phase, and the additional scalars. We provide results for a general theory of three scalars φ,
ϕ, and σ. The 2 ↔ 2 and 1 ↔ 2 amplitudes can generally be written as

A(φφ→ ϕϕ) = λφ2ϕ2 + λφ3λφϕ2P (s,mφ) + λϕ3λφ2ϕP (s,mϕ) + λφ2σλσϕ2P (s,mσ)

+ λ2φϕ2 (P (t,mϕ) + P (u,mϕ)) + λ2φ2ϕ (P (t,mφ) + P (u,mφ))

+ λ2φσϕ (P (t,mσ) + P (u,mσ)) , (6.47)

A(φ→ ϕϕ) = λφϕ2 . (6.48)

Here, P (p,mi) denotes the Breit-Wigner propagator,

P (p,mi) =
1

p2 −m2
i + imi Γi

, (6.49)

since the scalar particles are not stable in general. We denote dimensional coupling constants as
κ and dimensionless couplings by λ. They can readily be obtained by expanding the Lagrangian
and sorting by terms.

For the completely unbroken phase, the theory is straightforwardly read from the potential
in Eq. (6.12). We also need to consider the case where either phase is broken and the other is
unbroken. We find the relevant coupling between Higgs sector and BSM scalars to be

κhσσ̄ = vHλHσ , (6.50)

λh2σσ̄ =
λHσ
2

, (6.51)

(6.52)
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in the case of EWSB but restored U(1)D, and the case of unbroken EW symmetry and broken
U(1)D reads

κHH̄S = vσλHσ , (6.53)

λHH̄S2 = λHσ/2 , (6.54)

λHH̄D2 = λHσ/2 , (6.55)

(6.56)

where we omit all vertices coupling BSM degrees of freedom or the SM Higgs only.
In the completely broken phase, we identify φ = h , ϕ = D ,S, and σ = S ,D. Moreover,

we use only the physical degrees of freedom, such that h = cosαSH + sinαSσ and S =

− sinαSH + cosαSσ, which allows us to collect all relevant terms with correct scalar mixing
from the scalar potential. We summarize all resulting vertices at leading order and use the
shorthand tanβ = v/vσ. Once more, we omit all couplings between S and D only and find

κh2S =
sinα

√
GF

23/4
(
2m2

h +m2
S
)
, (6.57)

κhS2 = −sinα
√
GF tanβ

23/4
(
m2
h + 2m2

S
)
, (6.58)

κhDD = −
sinα

√
GFm

2
h tanβ

23/4
, (6.59)

λh3S =
sinαGFm

2
h√

2
, (6.60)

λh2S2 = −
sinαGF tanβ

(
m2
h −m2

S
)

2
√
2

, (6.61)

λhS3 = −
sinαGFm

2
S tan2 β√
2

, (6.62)

λh2D2 = −
sinαGF tanβ

(
m2
h −m2

S
)

2
√
2

, (6.63)

λhSD2 = −
sinαGFm

2
S tan2 β√
2

. (6.64)

(6.65)

For example, the scattering of two physical Higgs bosons into new scalars is readily found
to be

A(hh→ DD) =

√√
2GF
4

m2
h

sinα

vσ
×[(

2 +
m2

S
m2
h

)
m2

S
s−m2

S + imSΓS
− 1 +

m2
S

m2
h

−
m2
h

s−m2
h + imhΓh

]
,

(6.66)

for annihilation to Diracons and

A(hh→ SS) = −
√√

2GF
4

m2
h

sinα

vσ

[
m2
h + 2m2

S
s−m2

h + imhΓh
+ 1−

m2
S

m2
h

]
, (6.67)



6.4. Cosmology of the Dirac Type-I seesaw 73

for annihilation into the radial mode. Similarly, we can construct all other relevant amplitudes,
including decays, with the effective vertex couplings listed above.

We note here also the partial decay widths of the scalar fields to two scalars

Γ(φ→ ϕϕ) =
κ2φϕ2

8πmφ

√
1−

4m2
ϕ

m2
φ

, (6.68)

and to two fermions in the absence of Dirac matrix structures

Γ(φ→ ψ̄ψ) =
Y 2mφ

8π

(
1− 4

m2
ψ

m2
φ

)3/2

. (6.69)

We use these results to find an approximate total decay width for the BSM fields by using
the sum of the dominant decay widths. For the radial mode S, this usually corresponds to
S → DD, as we assume α� 1 throughout and any SM final state faces suppression by mixing.

Yukawa sector

For the (partially) unbroken case, Yukawa couplings can directly be read off the Lagrangians in
Eqs. (6.19) and (6.23) by expanding terms. In the broken phase, it is convenient to parametrize
the interacting part of the Lagrangian in a way that allows us to handle the canonical and the
enhanced models simultaneously. We consider the general scalar-fermion-fermion interaction

Lint =
(
ν̄L N̄L

)
·

(
0 1√

2
Y Sh

1√
2
Y2 (Sσ + iD) 1√

2
YM (Sσ + iD)

)
·

(
νR

NR

)
+ h.c. (6.70)

Here Sh = h cosα+ S sinα, Sσ = S cosα− h sinα holds, since mixing is present in the broken
phase. The canonical model can be identified as the case where Y2 = Y ′ and YM = 0, whereas
the enhanced model is given by the assignment Y2 = 0 and YM = Y ′.

We are interested in the Yukawa interactions in the mass basis. Therefore, after rotating
the fields accordingly, we find in the mass basis

Lint =
(
ν̂L N̂L

)
· U †

L ·

(
0 1√

2
Y Sh

1√
2
Y2 (Sσ + iD) 1√

2
YM (Sσ + iD)

)
· UR ·

(
ν̂R

N̂R

)
+ h.c. (6.71)

From Eq. (6.3) we use PL = M1M
−1
N , P †

R = M−1
N M2 and UhL = UhR = I at leading order.

Moreover, we neglect interactions manifestly suppressed by the neutrino mass, and find

Lint ⊃ ν̂L U
†
lL

(
Sh

Y√
2
− Sσ√

2
M1M

−1
N YM

)
N̂R + N̂L

Sσ√
2

(
Y2 −M2M

−1
N YM

)
UlR ν̂R + h.c.

(6.72)
This Lagrangian describes the Yukawa interactions between heavy and light fermions in the
mass basis. We summarize all interaction vertices we find in the Yukawa sector for both, the
canonical and the enhanced model, in Tab. 6.2.
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Fields Canonical Enhanced Diracon
NR νL h U †

lLY cosα/
√
2 U †

` Y ( vvσ sinα+ cosα)/
√
2

NR νL S U †
lLY sinα/

√
2 U †

` Y (sinα− v
vσ

cosα)/
√
2

NR νLD 0 −i vvσU
†
` Y/

√
2

NL νR h −Y ′UlR sinα/
√
2 µ

vσ
UlR sinα

NL νR S Y ′UlR cosα/
√
2 − µ

vσ
UlR cosα

NL νRD iY ′UlR/
√
2 −i µvσUlR

Table 6.2: Yukawa couplings in the broken phase after rotation to the mass basis.

We have one additional observation regarding the enhanced model. We can use Eq. (6.25)
to find µ/vσ UlR. This implies

µU`R
vσ

=
1

vH
Y ′ Y −1 U` M̂ν . (6.73)

Here we showed explicitly that this expression is neutrino-mass suppressed. The significance
of this is that some interaction vertices in the enhanced model are directly proportional to this
quantity, and therefore, these interactions are neutrino mass suppressed, which is not manifest
upon first inspection.

6.5 Results

In the following, we discuss the phenomenological and cosmological probes introduced in
Sec. 6.3 and 6.4. We investigate both models separately and put particular focus on the
complementarity of lepton flavor signals and cosmological bounds.

6.5.1 Model I: Canonical model

We perform general scans of LFV processes without additional approximations, but it is in-
structive to first discuss some analytic estimates. In particular, we employ the degenerate BSM
approximation introduced in Sec. 6.4.3. Within this approximation, the interaction of charged
leptons and the Diracon simplifies to

L``D = − iD
96π2

y′2vσ
m2
N

¯̀
[
M` Tr(Y Y †) γ5 + 5M` Y Y

† PL − 5Y Y †M` PR

]
` . (6.74)

This interaction is neutrino mass suppressed. We can make this manifest by considering the
limit mN → ∞ or y′ → 0, both of which yield mν → 0 and from Eq. (6.74) a branching
ratio Br(µ→ eD) → 0. Note that this dependence is in the global prefactor of Diracon-lepton
interaction, i.e. it is not possible to make the limit mν → 0 while maintaining a non-vanishing
interaction as long as the seesaw relation Eq. (6.22) is enforced. Thus, the interaction is
neutrino mass suppressed, which is confirmed in explicit numerical scans.
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Figure 6.5: Parameter scan for the canonical model. We show the branching ratio for µ → eγ, and
an effective parameter for the Yukawa matrix Y ′. This effective parameter is defined such that in the
degenerate BSM approximation, it corresponds to y′vσ/vH . Blue dots represent a general scan over
the entire parameter range allowed by the seesaw expansion and perturbativity. The orange curve
represents the degenerate BSM approximation. Note that it reduces to a simple line, as one of the
neutrinos in the canonical model is exactly massless. All data points shown are consistent with oscillation

parameters [28]. Only a small fraction of points will be tested by MEG and MEG-II, respectively.

For the decay µ → eγ, we use the master formula Eq. (6.31) and employ the degenerate
BSM approximation. We find

BR(`α → `β γ) =
α3
W s

2
W

1024π2

(
m`α

mW

)4 m`α

Γ`α

∣∣∣∣(MνM
†
ν

)
αβ

∣∣∣∣2
m4

2

, (6.75)

which we apply to the canonical model variant

BR(µ→ e γ) =
α3
W s

2
W

1024π2

(
mµ

mW

)4 mµ

Γµ

( √
2

vσy′

)4 ∣∣∣(U`M̂ν M̂ν
T
U †
`

)
21

∣∣∣2 . (6.76)

Recall our discussion of low- and high-scale variants of the models around Eq. (6.10). The
branching ratio for µ→ eγ receives an enhancement in the limit y′vσ � v, which according to
our previous classification corresponds to the low-scale variant.

Likewise, we can use Eq. (6.37) and the result from Appendix B to find an analogous
degenerate BSM expression for the decay to Diracons. We use this to evaluate the ratio of
BR(µ→ e γ) and BR(µ→ eD)

BR(`α → `β D)

BR(`α → `β γ)
≈

(
5

12π3/2α
3/2
w sw

)2(
M2
W

vm`α

)2
y′2

2

m2
2

v2
. 1.02 · 10−14 y′2 . (6.77)
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Figure 6.6: Left: Contributions to ∆Neff from the scalar sector only, and two representative values
vσ/v = 10−4 and vσ/v = 104. Production of Diracons follows freeze-in production in the limit α → 0,
as small mixing implies a suppressed portal coupling at fixed vσ. For larger mixing angles, the scalar
sector couples to the SM, predominantly through SM Higgs related interactions. Low and high-scale
realizations differ in their contribution due to thermalization of the radial mode. In the low-scale regime,
resonant production of Diracons is possible with strongly enhanced limits. Right: Contributions of νR
only, coming from the fermionic sector with mN = 1TeV and vσ/v = 10−3. Grey shaded regions
indicate non-perturbative Y and Y ′ respectively. For small y′, the heavy fermions thermalize due to
increased Y . Subsequently, light degrees of freedom are populated from freeze-in due to small y′. At
larger coupling, νR and D are coupled to the SM due to their interactions with the also coupled heavy
fermions. At even larger values of y′, the heavy fermions fall out of equilibrium and production is again

suppressed. Published in Ref. [3].

In the last step, we require consistency with the MEG-II limit in Eq. (6.32). Thus potential
observation of µ → eγ implies unobservable µ → eD. We could try to improve this ratio
and make both processes accessible at the same time. This would require an increase of
m2 = y′vσ/

√
2, or by the neutrino mass relation Eq. (6.21), a decrease of Y or an increase of

mN . This is disadvantageous for observation of µ → eD and, therefore, we cannot make both
signals simultaneously observable in this model variant. Hence, we conclude that µ → eγ is
the only viable LFV signal for this model.

We present the relation between BR(µ → eγ) and a proxy quantity
√
Tr(Y ′Y ′†)/2vσ/vH

in Fig. 6.5. The latter is chosen such that in the degenerate BSM case, it corresponds to the
degenerate value y′ divided by the new scale vσ. The result confirms that only a small fraction
of realizations lead to observable µ→ eγ and the canonical model mostly evades flavor bounds.

For the cosmological analysis, we fully rely on the degenerate BSM approximation as dis-
cussed in Sec. 6.4.3. In addition, we split the analysis into two limiting cases. Case one assumes
that all contributions to ∆Neff arise from the scalar sector only, i.e. D and possibly S contribute
to ∆Neff. The other limiting case is that of negligible scalar contributions, and ∆Neff is affected
only by processes related to new heavy fermions.

We show two benchmark points in Fig. 6.6. The scalar only limit gives negligible contribu-
tions to ∆Neff, as both the Diracon and the radial mode are only produced from freeze-in in the
regime of small mixing. As mixing increases, we transition to a fully coupled scalar sector. The
internal degrees of freedom depend on whether we find ourselves fully in the low- or high-scale
regimes and on the mass of the radial mode. We observe moderate increases of ∆Neff at most,
as increased couplings can merely move the scalar sector to a lowered decoupling temperature
with moderate increases in ∆Neff. Especially in high-scale variants, contributions flatten out
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Figure 6.7: Limits and forecasts on the scalar sector. We neglect contributions arising from the
Yukawa sector. Current constraints are given by Planck and ACT and tend to be weaker than invisible
Higgs decays with the exception of a small region in the low-scale regime that is dominated by resonant
on-shell radial scalars. CMB-S4 will put constraints on the low-scale realizations of the model, with
high-scale variants largely unconstrained. Only when going to a proposal such as CMB-HD, we start
putting limits on all mass scales, since this experiment would potentially be sensitive to a single Nambu-
Goldstone boson. Note that, to leading order, the sign of α does not affect constraints here. We fix
the scalar self coupling to λσ = 0.1, and show contours of constant |λHσ| for comparison. Published in

Ref. [3].

eventually due to feebleness of the interactions, and larger couplings cannot compensate for
this. Low-scale variants may stay coupled to the SM until significantly lower temperatures. The
regime vσ/v ∼ 10−2 − 10−3 with a light radial mode is particularly interesting, as a resonant
enhancement from on-shell radial modes is possible.

This general behavior is reflected in the constraints we put on the α− vσ/vH -plane, as we
show in Fig. 6.7. For large modulus of the mixing angle, we can put constraints on low-scale
variants of the model. In general, these are not significantly stronger or even weaker than
existing constraints from invisible Higgs decay.

The situation is different for future experiments like CMB-S4. For the anticipated reach of
∆Neff = 0.06, a fully thermalized Diracon and a thermalized light radial mode below the EW
scale are testable. We observe an asymptotic limit for small mixing, which directly follows from
the relation between mixing and portal coupling. Indeed, the decoupling process is determined
by the portal coupling. For the benchmark limit ∆Neff = 0.02 that is the goal of CMB-HD, a
single scalar degree of freedom, even if not fully thermalized above the EW scale, is detectable.

We now consider constraints coming from the Yukawa sector only. Here, we can produce
both the two light νR fields as well as the new scalar particles through their interactions with
the heavy fermions. The neutrino mass relation effectively fixes Y Y ′ ∝ v/vσ. This induces
an effective seesaw relation between the Yukawa matrices Y and Y ′ that gives a characteristic
shape to our exclusion contours. Contributions to ∆Neff fall into three distinct regimes. At
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Figure 6.8: Canonical model constraints under the assumption of negligible scalar mixing α = 0.
Results are shown for a benchmark mN = 1TeV in the degenerate BSM approximation, as discussed
in the main text. The shape of the constraints follows directly from the seesaw-like relation between
the Yukawa matrices and the different production regimes this defines. Details are given in the main
text. ACT based constraints rely on thermalization of the Diracon and two right-handed neutrinos with
the SM, but due to mN = 1TeV we can maintain equilibrium somewhat below the EW scale. We also
indicate limits from MEG and MEG-II computed in the degenerate BSM approximation. In addition,
we show internal consistency conditions, namely, non-perturbative Yukawas and the seesaw expansion

condition, and a non-unitary lepton mixing matrix. Published in Ref. [3]

small y′, we proceed from a freeze-in production of light degrees of freedom from thermalized
heavy fermions. For larger y′, the light degrees of freedom thermalize with the heavy fermions,
which remain in contact with the SM. At even larger Y , the heavy fermions cannot achieve
equilibrium from suppressed interactions, thus secluding the light degrees of freedom from the
SM. They cannot be produced efficiently and ∆Neff is suppressed. The width in parameter
space that defines the window of efficient production is given by the seesaw relation. We
exemplify this general behavior for a benchmark point in Fig. 6.6.

We show limits for selected cases in Fig. 6.8 and Fig. 6.9. The characteristic shape of the
limits can be directly understood from our discussion on the role of the seesaw relation and
Fig. 6.6. For regions of parameter space where cosmological limits are present, they dominate
over LFV. However, the seesaw relation restricts limits to a particular region of parameter
space. LFV observables can partially probe regions inaccessible to cosmology, in particular
regions of extremely small y′.

We note here that cosmology currently provides mostly forecasts. This is because the canon-
ical model has only two coupled νR degrees of freedom as well as a single Nambu-Goldstone
boson.2 Only for relatively light new fermions mN = 1TeV, we have limits from ACT from
thermalization of Diracons and neutrinos below the EW scale. Larger masses do not allow
for such low temperature thermalization. Moreover, constraints shift to larger values of y′ in

2Which in some circumstances contributes as two scalar degrees of freedom due to the structure of the hidden
sector and the hierarchy of couplings.
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Figure 6.9: Canonical model constraints under the assumption of negligible scalar mixing α = 0.
Results are shown for different values of mN and computed in the degenerate BSM approximation. As
before, the shape of the constraints follows directly from the seesaw-like relation between the Yukawa
matrices and the associated production regimes. We also indicate limits from MEG and MEG-II com-
puted in the degenerate BSM approximation, if relevant. Also, theoretical consistency conditions such
as the seesaw expansion and non-perturbative Yukawa matrices are indicated. As we progress to heavier

fermion masses, the required Yukawa couplings also increase. Published in Ref. [3].

general, which again can be understood from the seesaw relation and the leading dependence
of the production amplitudes, here decays of heavy fermions, on the Yukawa matrices.

We provide a combined scan for a benchmark of α = 10−6 in Fig. 6.10. Adding the scalar
contributions can at most increase limits by a moderate amount in the region of parameter
space where limits are strongest. This is simply because the region already features a nearly
thermalized Goldstone mode. However, we can keep the Goldstone coupled to the SM for
longer, hence leading to a moderate increase in limit strength. In regions where Yukawa
contributions to ∆Neff are weak, the limit is dominated by the scalar sector contribution. Thus,
to good approximation, we can separate the two sectors. For any given model realization, we
can therefore apply the limits of each sector independently. This leads at most to a mild
underestimation of limits.

As we already observed in Chapter 5, at first sight and for futuristic proposals, we can probe
high scales for the scalar sector and the new fermions, although we acknowledge here that these
probes are much weaker compared to the results of that Chapter. Indeed, the Dirac nature
of neutrinos and the exact Nambu-Goldstone boson guarantee the existence of multiple light
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Figure 6.10: Results for selected full scans with fixed mixing angle α = 10−6. We show limits for
mN = 1TeV (left) and 100TeV (right). For large values of ∆Neff, limits are slightly stronger when
compared to the case of negligible mixing. For smaller values, here represented by ∆Neff = 0.06,
constraints flatten out as the scalar contribution alone gives the dominant contribution in the low-scale
regime. There is no limit for CMB-HD as it would be ruled out for the chosen mixing angle. Published

in Ref. [3].

degrees of freedom no matter the scale of new physics. These limits are subject to the same
cosmological caveats we discussed for the Z ′ model. Therefore, the same limitations imply, and
we stress again the necessity of reheating to reach temperatures Treh � max(vσ, MN ). We can
use the approximate relation developed in Sec. 5.2 to make the same mapping of limits to the
case of non-standard cosmologies.

While we do not perform a detailed study of lowered reheating temperatures for this model
variant, it is reasonable to assume that the scaling will show great similarity to the gauge boson
case. After all, the shape in Fig. 5.2 seems to originate purely from kinematic considerations.
Hence, moving to reheating temperatures of Treh ∼ 10−2mN/S should delegate this particular
channel to a UV type freeze-in like in the Z ′ case, and going to even smaller values may fully
escape the limits we can place here. Thus, we stress once again that these limits need to be
thought of in tandem with the thermal history.

6.5.2 Model II: Enhanced Diracon model

The enhanced model has no suppressed Diracon interactions. The interaction between charged
leptons and the Diracon is given by

L``D = − iD
32π2vσ

¯̀
[
M` Tr(Y Y †) γ5 + 2M` Y Y

† PL − 2Y Y †M` PR

]
` , (6.78)

where we applied the results from Appendix B to the enhanced model variant.
We again consider LFV in leptonic decays into Diracons as well as the golden signal µ→ eγ.

While all scans are performed with exact formulas, we once more employ the degenerate BSM
approximation to gain some insight and allow for comparison to cosmological results. For
this model, the approximation amounts to a degenerate explicit breaking parameter M2 and
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Figure 6.11: Scans of selected observables related to the Diracon for the enhanced model variant. We
show astrophysical limits from white dwarf and supernova energy loss, as well as laboratory constraints
on LFV in muon decays. Blue dots correspond to general scans, and orange dots to scans employing the
degenerate BSM approximation. All points shown satisfy neutrino oscillation parameters [28] and the
sum of masses bound [40], as well as enforcing internal consistency by requiring that Yukawa matrices
conform with perturbativity and the seesaw expansion as discussed in the main text. Due to the strong
limit of DESI on IO, we restrict the analysis to NO. The degenerate BSM approximation for which
we explicitly compute cosmological limits captures a significant portion of the parameter space that is

covered in an unconstrained scan.

Yukawa matrix Y ′. The resulting branching ratio for decays to Diracons is then given by

BR(µ→ eD) = 4

(
1

8π

)5 m3
µ

v2Γµ

(
mN

m2

)4

∣∣∣(U`M̂ν
2
U †
`

)
21

∣∣∣2
v2v2σ

, (6.79)

where we used the neutrino mass relation Eq. (6.25). Similarly, we adopt the degenerate BSM
result for µ→ eγ for the enhanced model and compare their ratios

BR(µ→ eD)

BR(µ→ e γ)
≈ 2.3 · 108 y′2

(mN

TeV

)2
. (6.80)

It is evident how this ratio can be sizable even for small Yukawa couplings. Thus, searches for
LFV with invisible final states can be more constraining for this model, even though limits on
µ→ eγ are orders of magnitude stronger.
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Figure 6.12: Scan results for the two most promising muon decays with LFV in direct comparison. Blue
corresponds to a general scan and orange to the degenerate BSM approximation. As before, all points
shown are consistent with neutrino flavor oscillation data [28] and the DESI neutrino mass bound [40],
again assuming NO only. Moreover, all data points shown here are compatible with astrophysical energy
loss and satisfy the conditions on perturbativity and the seesaw expansion discussed in the main text.

Decays of charged leptons to Diracon final states constitute an energy loss mechanism in
astrophysical systems. Hence, the quantity See from Eq (6.35) and Eq. (6.34) is of particular
interest. Using the results from App. B, we find in the degenerate BSM approximation

See = i
me

16π2

(
mN

m2

)2 1

v2vσ

[
2
(
U`M̂ν

2
U †
`

)
11

−
∑
i

m2
i

]
. (6.81)

We note that both Eq. (6.79) and (6.81) depend on m2
N/(m

2
2vσ). Hence, we do not expect

them to give much complimentary information.
We show the relation between |See|, |Sµµ|, and BR(µ→ eD) decay in Fig. 6.11 for a general

scan and for the degenerate BSM approximation. The points fall largely on a diagonal, which is
due to the lack of complementary information in the two probes. Stronger cooling also implies
stronger LFV. However, the experimental limits have different reaches in parameter space. For
comparison, we also show the region that is populated by the degenerate BSM approximation,
for which we also find cosmological limits. The width of the region is determined by the lightest
neutrino mass and would shrink to a line for a lightest neutrino with negligible mass.

Fig. 6.12 shows the relation between the two branching ratios µ→ eγ and µ→ eD. Points
in this plot include correct neutrino masses and mixing, a bound on the sum of neutrino masses
from DESI [40], as well as consistency conditions from perturbativity of the Yukawas, and non-
unitarity constraints on the lepton mixing matrix. We generally expect the Diracon decay to
be as accessible as the γ decay. This can also be seen from Eqs. (6.79) and (6.80).
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The enhanced model provides a rich phenomenology and is subject to current and pro-
jected limits. Cosmological signatures, on the other hand, are surprisingly suppressed. While
dominant for the canonical model, the picture changes in the enhanced model. First, we note
that the scalar sectors are identical and the same limits as before apply. One caveat is that
the scale vσ is related to MN in the enhanced model. Thus, the VEV cannot be taken too
low. This pushes us further into the high-scale regime that favors suppressed contributions to
∆Neff and may only ever be probed in futuristic experiments. For more details, see the detailed
discussions of Fig. 6.7 in Sec. 6.5.1.

Even though the enhanced model has three coupled light νR, interactions that may populate
the neutrino sector are neutrino mass suppressed. To see this, we consider the mass basis
interaction terms between heavy fermions and neutrinos,

∑
φ∈{h,S,D}

Cφ
̂̄NLφ

M2

vσ
ν̂R . (6.82)

Here, Cφ specifies couplings and mixing of scalars, but the details are not important for the
general conclusion. Courtesy of the neutrino mass relation Eq. (6.25), we observe that

M2

vσ
= −Y ′Y −1Mν

v
(6.83)

is explicitly suppressed by the neutrino mass. The only compensation for small neutrino mass
could come from sufficiently small Y . However, this would suppress the interaction of heavy
fermions with the SM, see Tab. 6.2, suppressing their abundance and consequently preventing
population of the light sector.

We note that Diracon final states from N decays into SM particles are possible. However,
this does not provide a meaningful enhancement of the cosmological signature. We may capture
the cosmological limit in an effective energy scale for the benchmark ∆Neff = 0.02. Production
predominantly comes from decay of heavy fermions, i.e. is proportional to (Y v/vσ)

2/MN . With
MN = Y ′vσ/

√
2, it follows that

Λ−1
enh =

y2
√
2v2

y′v3σ
≈ 10−15TeV−1 , (6.84)

where the numerical value corresponds to ∆Neff = 0.02 and was determined by solving the
Boltzmann equation. This is an approximate effective limit in the case of negligible scalar
contributions. We show a comparison of this approximate future reach of CMB-HD to the
promising decay µ → eD in Fig. 6.13. Even for such a futuristic experiment, limits would be
expected to be of similar strength as near future flavor observables, albeit to some extent in non-
overlapping regions of parameter space. Therefore, our conclusion stands that flavor observables
are more promising than limits on ∆Neff for the enhanced model. Future cosmological surveys
can yield a level of complementarity.
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Figure 6.13: Comparison of the promising decay µ → eD with an approximate estimate for what a
potential futuristic CMB survey like CMB-HD could probe. It could cover a similar size of relevant
parameter space as current and near future LFV experiments, although we note that non-overlapping
regions of parameter space are being tested. Therefore, cosmology could provide complementary infor-

mation.

6.6 Summary and future directions

Let us summarize the results of this chapter on a technical level, but also in the grander scheme
of the viability of protecting Dirac neutrinos by means of a global symmetry.

We have generalized the notion of a seesaw family from the Type-I seesaw family to that of a
Dirac Type-I seesaw family. This constitutes a generalization of different Dirac-seesaw models
under a unified framework. Further, we considered two minimal extensions of the SM that
belong to this family. Both models feature a new global U(1)D that is spontaneously broken
and gives rise to Dirac neutrino masses. The spectrum of the theory contains a massless Nambu-
Goldstone boson referred to as the Diracon. Smallness of the neutrino mass is further ensured
by a seesaw mechanism. We note here that by making the appropriate charge assignments
to the new heavy fermions and the new scalar, the U(1)D can be identified as B − L, but
our considerations are more general. We make this identification, and moreover assign charges
such that B − L is anomaly free. This makes it suitable for gauging and allows for the direct
comparison with the results from Chapter 5.

Both realizations have the same particle content and scalar potential, but differ in their
symmetry breaking patterns. The canonical model features Diracon interactions with charged
leptons that are neutrino mass suppressed, and the implied LFV observables are suppressed.
Cosmology allows for significant production of two of the right-handed neutrinos and the
Nambu-Goldstone boson. This proceeds predominantly from decays of the heavy fermions
that, in turn, can be produced from their Yukawa interactions in the early Universe. The
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interplay between the production of heavy fermions N is controlled by the Yukawa matrix Y

coupling νL and the Higgs to N . The decay of N into νR is controlled by a second Yukawa ma-
trix Y ′, and they are subject to the neutrino mass relation Mν ∝ Y Y ′. Low-scale realizations
of the canonical model lead to constraints from non-zero contributions to ∆Neff.

The enhanced model has, in some sense, an opposite phenomenology. Production of νR from
the Yukawa sector in the early Universe is explicitly neutrino mass suppressed. Diracons can
be produced copiously, but since this is only a single degree of freedom, it usually avoids even
future projections for ∆Neff. Flavor observables, however, are found to be enhanced, hence
the name of the model. Indeed, the decay µ → eD is even expected to be observed before
the golden signal µ → eγ, although this is not general and the complicated Yukawa structure
allows for a variety of configurations. However, a general picture emerges where flavor is more
constraining than cosmology as far as the enhanced model is concerned.

From a model building perspective, these models are minimal and well-motivated SM ex-
tensions. The complementarity between cosmological probes and flavor observables is striking,
and highlights open directions including collider phenomenology, non-standard neutrino prop-
agation from mixing with heavy fermions, or a continuation of Diracon phenomenology, and
evaluating the possibility of Dirac leptogenesis in the models [247, 282–284].

However, we want to put not only the model studied here into context, but also raise some
points about general models that protect the Dirac nature with a global symmetry. We al-
ready referred to the conjectured breaking of global symmetries by gravity at the beginning
of this Chapter and a possible spoiling of an exact Dirac nature, to e.g a pseudo-Dirac na-
ture, if breaking and the subsequently generated Majorana mass of right-handed neutrinos is
sufficiently small. While neutrinos would end up as fundamentally Majorana in such a case,
the model as such remains an interesting and well-motivated UV-completion, and such grav-
itational effects may also have phenomenological implications, e.g. by promoting the exactly
massless Diracon to a pseudo-Nambu-Goldstone boson. Here, we want to remain agnostic to
the role of gravity and contrast this with what we can infer from Dirac neutrino models based
on our analysis.

Since we adopted anomaly-free models, a direct comparison between the results here and
those of Chapter 5 is possible. Indeed, the gauge variant is subject to generic and strong
constraints from future CMB surveys. The only way to reliably avoid these limits is a non-
standard thermal history. Here, the situation is different. Indeed, we find that a minimal,
realistic model of Dirac neutrinos without additional gauge bosons is only constrained by
cosmology in low-scale regimes, if at all. High-scale realizations show systematically weaker
constraints from ∆Neff. We can attribute this to the smallness of neutrino masses. Interactions
that would populate light degrees of freedom are either explicitly neutrino mass suppressed
or the seesaw relation enforces such a suppression. In other words, the neutrino mass, the
population of light degrees of freedom, and also flavor observables are suppressed by the mixing
of neutrinos with the heavy fermions. This means that cosmological constraints are weaker than
in an otherwise equivalent model where U(1)D is promoted to a gauge symmetry.

We conjecture that other minimal models of Dirac neutrinos face similar issues. If right-
handed neutrinos are minimally coupled, i.e. only the relevant couplings to produce light masses
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are present, we can anticipate that similar mixing-related suppression takes place. While this
would need to be shown on more general terms, it would imply that a large class of models
can hardly be constrained by cosmology or even the laboratory if the new physics is high-scale.
We note, however, that this must not hold in non-minimal models, where phenomenology and
cosmology are affected beyond mixing. Thus, protecting the Dirac nature by a global symmetry,
especially in minimal models, would be an attractive way to escape the stringent bounds from
gauge symmetry protection.
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Chapter 7

Boosted Dark Matter from the
Diffuse Supernova Neutrino
Background

In the last main Chapter of this thesis, we study hypothetical interactions of neutrinos, re-
gardless of whether they are Majorana or Dirac particles, with DM by utilizing the concept
of boosted dark matter (BDM). BDM was originally conceived as a proposal to overcome the
sub-GeV suppression of DM direct detection signals in current noble gas detectors [121, 285].
In this Chapter, we utilize the boosting of MeV-scale DM through upscattering by the DSNB
to study not only DM itself, but also the otherwise difficult to probe neutrino-DM interactions
required for boosting.

DM forms a virialized halo in which the galaxy is embedded. Ambient DM particles move
with velocities of order vDM ∼ 10−3c relative to Earth. For mDM � Mtarget, the recoil energy
is limited by Emax

rec = 2m2
DMv

2
DM/Mtarget. Indeed, supplementing typical DM velocities for a

sub-GeV candidate implies recoil energies in liquid xenon experiments of order keV – too small
to be detected. If a sub-dominant fraction of DM were boosted to energies T � mDMvDM, this
kinematic suppression would be avoided, and even light DM candidates become potentially de-
tectable in currently operating experiments. One might worry that BDM signals are conditional
on additional assumptions. However, the existence of an irreducible boosted sub-component
is often inevitable. Once we assume an interaction channel for detection, say scattering on
nucleons for concreteness, the very same interaction will boost DM in astrophysical systems
where energetic nucleons are present. This was the premise of the original proposals [121, 285],
where DM is upscattered by nuclear cosmic rays (CR).

Thus, the question is not so much whether such a component exists, but whether the
boosted component is of sufficiently large flux and energy to make direct detection in current
experiments feasible. The arguably best studied mechanism for boosting is that of upscattering
by charged cosmic rays [121, 285–299]. Subsequently, other mechanisms for boosting the DM
candidate have been explored. This includes upscattering by neutrinos, and more complicated
dark sectors that allow for inelastic DM interactions or heavy particle decays that produce
boosted populations among others [122, 123, 126, 300–312].

Apart from its DM direct detection application, the proposal of DSNB upscattered DM
fits into a larger body of research regarding neutrino-DM interactions. In addition to the
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widely studied neutrino portal options for DM [313], such interactions have also been studied
extensively in the CMB and other cosmological data [117–120] and are also discussed in context
of persisting cosmological tensions [314].

Some of the aforementioned studies even find a mild preference of neutrino-DM interac-
tions. However, their drawback is that these probes are necessarily indirect. Directly detecting
particles that took part in these interactions is therefore an intriguing possibility to move one
step closer to a direct probe. This includes direct DSNB imprints [315] or detection of the
boosted DM component [122, 123]. The latter is complemented by a wider class of possibilities
to upscatter DM by alternative neutrino sources, including upscattering in the vicinity of a
CCSN [124–130].

In the remainder of this Chapter, we first discuss in detail the boosting, attenuation of
the BDM flux and detection in liquid xenon experiments. We then introduce toy models of
leptophilic DM to study not only BDM from the DSNB but also the role of energy dependence.
We discuss our results in light of the anticipated DSNB detection and implications for neutrino-
DM interactions, and the search for BDM more generally.

7.1 From boost to detection

We begin with some general kinematic considerations that will be useful throughout this section.
Let a particle B of mass mB be at rest initially before scattering on another particle A. Upon
scattering, B is boosted to

TB = Tmax
B

(
1− cos θAB

2

)
, (7.1)

Tmax
B =

T 2
A + 2mATA

TA + (mB +mA)2/2mB
. (7.2)

Here, we denote the kinetic energy of particle i in the laboratory frame by Ti = Ei −mi, and
θ is the scattering angle in the center of mass frame. This expression for the maximum kinetic
energy is what we refer to as the maximum kinetic energy throughout this Chapter.

7.1.1 Upscattering

The flux of BDM upscattered by the DSNB is calculated as the local upscattering rate inte-
grated along all possible line-of-sights from Earth. We use the DSNB spectrum discussed in
Sec. 3.3.2 and presented in Fig. 3.4. Combining the contributions from all possible directions
gives the isotropic1 BDM spectral flux [121–123, 295]

dΦχ
dTχ

=

∫
dΩ

4π

∫
l.o.s.

dl

∫ Emax
ν

Emin
ν

dEν
ρχ(l)

mχ

dΦν
dEν

dσνχ
dTχ

≡ Dhalo

∫ Emax
ν

Emin
ν

dEν
1

mχ

dΦν
dEν

dσνχ
dTχ

. (7.3)

1A small level of anisotropy is expected but neglected here, since our Earth is not located in the center of
the Milky Way.
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In the second equality, we have used that halo dependence and local upscattering rate factorize,
and thus it is convenient to define an effective halo parameter

Dhalo =

∫
dΩ

4π

∫
l.o.s.

ρχ(l)dl . (7.4)

The precise value of the halo parameter is model dependent. A commonly adopted parametriza-
tion of the DM halo is given by the parametric family [316]

ρχ(r) = ρ�

(
r

r�

)−γ (1 + (r�/rs)
α

1 + (r/rs)α

)β−γ
α

, (7.5)

special cases of which include the cored isothermal sphere or the widely used Navarro-Frenk-
White (NFW) profile [317] for (α, β, γ, rs) = (1, 3, 1, 20 kpc), which we will adopt for the
following study. We fix the distance of our Sun to the galactic center to r� = 8.5 kpc and the
local DM density to ρ� = 0.4GeV cm−3. Like Ref. [123], we probed slightly different values
and parametrizations for the halo and find a mild dependence on the effective halo parameter.
Therefore, for the remainder of this study we fix Dhalo = 2× 1025MeV cm−2.

7.1.2 Attenuation

BDM particles may scatter off ambient targets along their line of travel, predominantly inside
the Earth on their way to underground detector sites. This leads to a distortion and attenuation
of the BDM flux at the detector. To take this effect into account, we calculate the mean energy
loss of a single DM particle traveling through a medium and scattering (quasi-)elastically [121,
285, 287],

dTχ
dx

(x) = −
∑
i

ni(x)

∫ Tmax
i

0
dTi Ti

dσiχ
dTi

. (7.6)

We add the contributions from all target species and their respective target densities in the
medium, and determine the energy transfer in a single interaction. We tentatively labeled the
integration variable Ti, since in the case of elastic scattering the energy transfer approximately
equals the recoil energy. In general, effects from binding energies and other inelasticities from
DM and medium need to be taken into account.

Once solutions to Eq. (7.6) of the form Tχ(z, T
0
χ), where T 0

χ is the energy at surface level,
are found, we can transform the BDM flux at the surface of Earth to the one at the detector
site. We invert the solutions to find T 0

χ(Tχ(z), z). The attenuated DM flux is found by a simple
transformation of variables

dΦχ
dTχ

=

∫
dΩ

4π

dΦ0
χ

dT 0
χ

dT 0
χ

dTχ
. (7.7)

We need to take into account that DM particles arriving at the detector from different solid
angles traveled different distances in the medium. The distance traveled for DM coming from a
particular angle β, where β is the angle between the DM path and the line of shortest distance
between detector and the surface of Earth, can be written as [123]

z = −(RE − hd) cosβ(z) +
√
R2
E − (RE − hd)2 sin

2 β(z) , (7.8)
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which we take into account when performing the angular averaging procedure in Eq. (7.7).
It is possible to find approximate solutions to (7.6) [121, 222]. If we assume Tχ � mi and

write dσiχ/dTi = σi/T
max
i , the problem simplifies to

dTχ
dz

= −1

2

∑
i

niσiT
max
i ≈ −

T 2
χ + 2mχTχ

2mχl
, (7.9)

l−1 =
∑
i

niσi
2mimχ

(mi +mχ)2
, (7.10)

with the solution
Tχ(z) = T 0

χ

e−z/l

1 +
T 0
χ

2mχ

(
1− e−z/l

) . (7.11)

This solution, although frequently used, is not applicable here. It relies on two key assumptions
that we cannot guarantee. First, the simple form of the cross section. In more generalized
settings, such an easy form is not obtainable. More severely, finding the solution requires the
assumption of Tχ � mi. We focus on minimal models of leptophilic DM later on and do
not incorporate interactions beyond neutrinos and charged leptons. Therefore, our situation
reduces to that of scattering on electrons in the Earth only. For example, Tχ ∼ Tmax

χ =

E2
ν/(Eν +mχ/2) violates the assumed hierarchy of energies strongly for typical DSNB energies

and mχ ∼ O(1− 10)MeV.
These two considerations naturally lead us to a numerical solution of the problem for

scattering on electrons only. From now on, we assume a constant electron density of ne =

8 × 1023 cm−3 in the Earth [123]. We solve Eq. (7.6) repeatedly for different initial energies
T 0
χ , which gives us a dense grid of T xχ (x, T 0

χ). For fixed z, which is the distance from surface to
detector under a given angle β, we can determine Tχ0 (Tχ) and the Jacobian dTχ

dT 0
χ
(T 0
χ(Tχ, z), z),

and exploit the relation dTχ
dT 0

χ
=
(
dT 0

χ

dTχ

)−1

.

7.1.3 Detection and statistical analysis

We compare our predicted event rates with the published electron recoil data of XENONnT [318],
LZ [319, 320], and PandaX [321, 322]. The differential event rate can be conveniently written
as

dR

dTe
= Ne

∫
dTχ

dΦχ
dT zχ

dσeχ
dTe

, (7.12)

where Ne =Mdet/mXeZeff(Te) is the effective number of electron targets in the detector volume.
It is simply the number of xenon atoms and the effective charge number, i.e. the electrons that
can be ionized upon scattering. Instead of approximating Zeff as a series of step functions, we
simplify to a constant Zeff(Te) ≈ 40, which gives a good approximation for the contribution
from electrons with binding energies Eb < 1.15 keV [323].
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We model the uncertainties of energy reconstruction by convoluting the predicted signal
with a Gaussian shaped energy resolution function

Res(ER, Te) =
1√

2πσ(Te)2
exp

(
−(Te − ER)

2

2σ(Te)2

)
, (7.13)

where Te is the deposited energy and ER is the reconstructed energy. The energy resolutions
are provided by the respective collaborations with σXE/keV = 0.31

√
E/keV+0.0037E/keV for

XENONnT [324], σLZ/keV = 0.323 × 10−1.5
√
E/keV for the LZ experiment [319], and finally

σPA/keV = 0.073+ 0.173E/keV− 6.5× 10−3(E/keV)2 +1.1× 10−4(E/keV)3 for PandaX [321].
Inefficiencies in the reconstruction are captured by a multiplicative efficiency function that is
also published by the collaborations.

We analyze the parameter spaces of interest with a χ2 statistic

χ2 =
∑
Ei

(
Rpred
i (Ei)−Rexp

i (Ei)
)2

σ2i (Ei)
, (7.14)

where the predicted event rate is a total event rate consisting of BDM contributions and
experimental background. We fix the background to the best-fit background model, implying
conservative limits since a simultaneous fit of background and prediction is not performed. The
total uncertainty is

σ2i (Ei) = Rpred
i (Ei) + σ2E(Ei) , (7.15)

where we estimate the event rate uncertainties σi by combining a Poissonian counting error
on the total predicted event rate, including background, with the experimental uncertainty as
published by the collaborations. We exclude regions of parameter space based on a χ2 difference
to the best-fit background model, i.e. ∆χ2 = χ2 − χ2

bkg and reject regions with ∆χ2 > 4.61 at
90% C.L.

7.2 Models and the role of energy dependence

Studies of DM direct detection and BDM detection often employ a constant cross section, where
dσ
dT = σ̄

Tmax
Θ(Tmax − T ). While this is a good approximation for traditional direct detection

searches, the case of BDM is conceptually different. BDM can be (semi-)relativistic upon arrival
in the detector, which means we also probe the energy dependence of the underlying interaction
beyond the deep non-relativistic limit. This effect is expected to be more pronounced in the
case of scattering of BDM on electrons, since the kinetic energy of incoming DM can easily
be of the order or above the mass of the recoil target in this case. First studies suggest that
this effect is indeed significant and alters limits we put on DM parameter space by orders of
magnitude [295].

We study the specifics of energy dependence and compare to previous limits from DSNB
boosted DM [122, 123], and at the same time, also employ an improved scheme for the treatment
of attenuation. As we demonstrated in Sec. 7.1.2, the commonly employed approximations do
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not apply in the case of light BDM scattering on electrons. For concreteness, we focus on two
representative toy models of ν−DM and e−DM interactions, where the interaction is mediated
by exchange of vector and scalar mediators, respectively.

We note here that this provides a simplified setup, and that the naive realizations of these
models are already constrained in large parts of the relevant parameter space [325–329]. Never-
theless, they serve as a useful testing ground to highlight the necessity of the model-dependent
approach. Moreover, they could serve as part of larger realizations that involve multiple chan-
nels for DM boosting. Thus, they deserve scrutiny as building blocks of more complete models
of neutrino-DM interactions and more generally, boosting of DM. As future DM experiments
improve in sensitivity, bounds from boosting will improve. We also note the relevance with
regard to the irreducibility of a boosted component. Should future surveys find the non-
relativistic bulk component of a light DM candidate, the interactions that lead to detection are
the same interactions that produce an irreducible, albeit sub-dominant, boosted component.
Hence, the search for BDM can offer a valuable cross check.

We note here that we are oblivious to the Majorana or Dirac nature of neutrinos. We will
assume that all additional interactions we introduce couple to νL only. As a reference model, we
compute results under the assumption of a constant, energy-independent cross section. These
limits are expected to differ from previous results insofar as we take into account attenuation
beyond the analytic approximation. Since this approximation is not applicable to begin with,
deviations are expected.

In the first toy model, we couple a fermion singlet χ with a massive vector boson Z ′ that
also couples to charged and neutral leptons,

L ⊃ ge ēγ
µeZ ′

µ + gν ν̄γ
µνZ ′

µ + gχ χ̄γ
µχZ ′

µ . (7.16)

It could easily be integrated into a UV-complete model for gν = ge = g, but varying couplings
are also possible. Unless specifically stated otherwise, we chose equal couplings. The matrix
elements relevant to us are given by

|M|2νχ→νχ =
2 g2νg

2
χ

(t−m2
Z′)2

[
2(m2

χ − s)2 + 2st+ t2
]
, (7.17)

|M|2eχ→eχ =
2 g2eg

2
χ

(t−m2
Z′)2

[
2(m2

e +m2
χ − s)2 + 2st+ t2

]
, (7.18)

for upscattering by neutrinos and interaction with electrons, respectively.
Our second model introduces two scalar mediators Φ0 and Φ−. The relevant interactions

are given by
L ⊃ gν ν̄χΦ

0 − geēχΦ
− . (7.19)

As for the previous model, the couplings to electrons and neutrinos can, in principle, be differ-
ent. Once more, we opt for the assignment ge = gν = g. Possible UV-completions could then
proceed via introduction of a new scalar doublet Φ = (Φ−,Φ0)T . The amplitudes of interest
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Figure 7.1: Event rates for the electron recoil in the three experiments we consider here. We show
the released data and background for XENONnT (left), LZ (middle), and PandaX (right) and also
our theoretical prediction for a benchmark point of σ̄eχ = 10−30 cm2, mediator mass 1MeV and mχ =
0.5MeV. We predict rates for a constant cross section (blue), vector mediated interaction (green),
and scalar mediator (orange). Couplings are chosen such that the mediator models are mapped on
an effective cross section of the same magnitude, i.e. they would have been considered equivalent and

subject to the same constraints. For more details, see the main text. Published also in Ref. [1].

can be written as

|M|2νχ→νχ =g2νg
2
χ

(t−m2
χ)

2

2(t−m2
Φ)

2
, (7.20)

|M|2eχ→eχ =g2eg
2
χ

[
(mχ +me)

2 − t
]2

(t−m2
Φ)

2
. (7.21)

We would like to note a few peculiarities of our scalar toy model. We necessarily require
mχ < mΦ +me

2, as otherwise DM efficiently decays. Moreover, interactions of the new scalar
introduce a conversion of species at each vertex. We note that this gives rise to thresholds on
the t−channel.

7.3 Results

Results from the literature typically assume a constant interaction cross section. To translate
these constraints on specific model parameter spaces, an effective cross section prescription is
used. It is given by [121, 295]

σ̄eχ =
g4

π

µ2eχ
(q2ref +m2

med)
2
, (7.22)

where the reference momentum transfer is most usually taken as qref = αme with fine structure
constant α.

Indeed, this prescription proves useful in the context of traditional direct detection searches,
where all DM is expected to have a similar order of magnitude in kinetic energy Tχ ∼ mχv

2 such
that a suitable reference momentum transfer may be defined. In the case of BDM, however,
the energy spectrum is spread out over orders of magnitude, and incoming DM particles have
kinetic energies that go far above the energies of virialized cold DM. Thus, in addition to the
explicit energy dependence of the underlying interaction, we have an additional distortion of

2Technically it is mΦ− , but for the sake of concreteness and alluding to ideas of UV-completion, we have
implicitly adopted mΦ− = mΦ0 .
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Figure 7.2: Constraints for the vector mediator model. We consider four values of the mediator
mass mZ′ = 0.1 (yellow), 1 (purple), 10 (orange), and 100MeV (blue). Shaded regions are excluded
at 90% C.L. The updated constant cross section computation is shown in black for reference. We also
indicate the effect of attenuation by showing in dashed lines the results without attenuation. Published

in Ref. [1].

limits on parameter space, since we usually map models naively onto an unsuitably defined
reference cross section.

We show examples of the expected signals in the three experiments we consider in Figure 7.1,
where we consider the constant cross section case, as well as models of vector and scalar
mediated interaction that are equivalent in the sense of Eq. (7.22). Here we can already see
a drastic difference in the expected signal, although these benchmark points would usually all
be mapped on the same value of σ̄eχ.

We perform systematic scans of the parameter space spanned by mχ and σ̄eχ for different
masses of the mediator. The ν −DM cross section is fixed to σνχ = σeχ in the case of constant
cross section. For the mediator models, any choice of mediator, DM mass, and effective cross
section implies a coupling constant g =

√
gχge from Eq. (7.22). We use the same value of

coupling for the upscattering of DM by DSNB neutrinos. Note that this almost always implies
σeχ 6= σνχ, contrary to assumptions from previous studies [122, 123]. However, from a point
of view of possible UV-completions, we deem this scenario more plausible and, therefore, of
particular interest for this study.
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Figure 7.3: Constraints for the scalar mediator model. We consider two values of the mediator mass
only, 10 (orange), and 100MeV (blue). Shaded regions are excluded at 90% C.L. The updated constant
cross section computation is shown in black for reference. We also indicate the effect of attenuation by

showing in dashed lines the results without attenuation. Published in Ref. [1].

We show the limits we find in Fig. 7.2 and Fig. 7.3 for the vector and scalar case, respec-
tively. The shaded regions correspond to exclusion at 90% C.L. for fixed mediator masses.
We also show the limits we would find for neglected attenuation in the Earth as dashed lines.
For reference, we show the result for constant cross section. We attribute the differences to
previous results [123], especially in the upper part of the contour, to our improved treatment
of attenuation.

Let us focus on the vector mediator case first. Even in the absence of attenuation, the
effect of mediator mass dependence is very pronounced and the dominant effect on differing
exclusion contours. In general, the energy-dependent limits are stronger in the sense that they
probe smaller values of the effective cross-section. The reason for this is multifold. Being
mindful of plausible UV-completions introduces different cross sections for ν−DM and e−DM
interactions, thus leading to an asymmetry in upscattering, attenuation, and detection. This
could partially be compensated by introducing different cross sections also for the constant
case. However, the underlying energy dependence changes the nature of the interaction quite
significantly, an effect that is enhanced by a misrepresentation of the underlying cross section
in the effective cross section prescription.

For heavy mediator masses, we approach a regime of effectively constant cross section, albeit
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different ones for upscattering and detection. In the intermediate regime, limits change notice-
ably in shape and tend to become weaker at higher DM masses and stronger for smaller values
of DM mass. The light to massless mediator regime is different qualitatively and quantitatively.
Coincidentally, it is the case where the misrepresentation of σ̄eχ is the most pronounced, on
top of the explicit energy-dependence.

Apart from the very light mediator case, we observe the presence of an attenuation ceiling.
Interactions of DM and electrons become so frequent that effectively no BDM particle can
reach the detector site anymore. The location of the attenuation ceiling is almost universal and
largely unaffected by the underlying model parameters. For example, this can be understood
by Eq. (7.6). The details of the energy dependence are smoothed out by integration, and
the energy loss profile we find with Eq. (7.6) is approximately exponential. Thus, any model
dependence is obstructed by these conditions and, therefore, barely noticeable. We conclude
that the energy dependence that arises in a particular model is still important, indeed, it is the
dominant effect on the shape and position of the exclusion contours that we can place.

The situation is different for scalar mediated interactions. Here, the limits are qualitatively
very different from the constant and the vector case. Considerations of DM stability already
limit the available parameter space. Nevertheless, the results show two important features that
deserve a more careful consideration. The inclusion of attenuation has a much more pronounced
effect here. While in the vector case the most noticeable difference was the presence of the
attenuation ceiling, here we find on top of the attenuation ceiling also significantly stronger
limits in the low DM mass case. This can be attributed to interactions with electrons in the
Earth, which scatter BDM to lower energies. Thus, the distortion of the flux will not only
suppress signals, but if it leads to an enhancement of flux in kinetic energy ranges that the
experiments are particularly sensitive to, it leads to a sizable enhancement of limits.

Another concern is the strong enhancement in the limit mχ → mΦ, which is the result of
the mass differences on the vertices and leads to a t-channel resonance. It signals the presence
of unstable states, and it leads to a resonant enhancement of the matrix element.

7.4 Summary and future directions

We conclude that BDM from the DSNB is a unique probe of neutrino-DM interactions. Con-
trary to other studies of DM upscattered by neutrinos, we can utilize the near isotropy and
temporal stability of the DSNB as a cosmological signal of past CCSN. Before discussing the
larger implications of our findings, we summarize several key technical findings of this analysis
concerning not only DSNB upscattered DM but BDM more generally.

First, obtaining reliable limits from BDM implies a strong model dependence of such limits.
This dependence extends beyond energy scaling of the interaction, which can be probed due to
the (semi-)relativistic nature of BDM. More complex interaction types, such as those mediated
by scalars in our toy model, cannot be accurately captured by assuming a constant cross section
at all. Thus, reliable limits on the parameter space of leptophilic BDM can only be obtained on
a model by model basis. However, the energy dependence would also allow for discrimination
between different proposed models in the case of a positive signal.
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Second, the correct modeling of attenuation, especially for BDM, is crucial. Commonly
used approximations fail in the presence of BDM, in particular if DM predominantly interacts
with leptons. The results depend on attenuation in a non-trivial way, leading to suppression
of flux at the detector site, but also to reallocation of DM towards energies beneficial for
direct detection. The correct implementation of the detector overburden remains an issue that
goes beyond studies of BDM and has implications also for more conventional direct detection
searches, yet to a smaller extent.

Here, we considered the mean energy loss of BDM from scattering on electrons in the
Earth without resorting to extra approximations beyond the ballistic ansatz. Our approach
is an improvement to this semi-analytic approximation. The limitations of the mean energy
loss or ballistic approach are known, e.g. Refs. [293, 330] for the case of relativistic BDM and
Refs. [305, 331] for non-relativistic DM. Monte Carlo simulations of the energy loss in medium
constitute an improvement [293, 305, 322, 330, 332]. However, they are computationally costly
and still require simplifications to reduce the computational load. The ballistic ansatz, on
which we improved here, allows us to simplify the problem and it gives good agreement in
many situations [332].

Beyond the technical level, interactions between neutrinos and DM remain an intriguing
possibility. In light of tensions between different cosmological data sets, new physics related
to neutrinos and, in particular, neutrino-DM interactions are regarded as a possible solution
for their reconciliation [314]. We note again the mild preference for such interactions in
CMB [118–120] and Lyman-α data [117]. Interestingly, these studies find similar preferences
for an interaction strength of u ∼ 10−6 − 10−4, where

u =
σν−DM
σThomson

( mDM
100GeV

)−1
, (7.23)

and σThomson ' 6.7× 10−29m2 is the Thomson cross section used for reference. While current
BDM analyses have not yet reached this sensitivity, as we see from our results, ongoing and
future experiments can close this gap. Thus, the possibility of observing DM upscattered by
neutrinos offers a unique window into these interactions, and despite their limitation towards
lighter DM candidates, they, therefore, offer complementary information when constraining the
parameter space of neutrino-DM interactions.

We note here also that such interactions could leave an imprint in the DSNB itself [315],
similar to how upscattering by cosmic rays could leave its imprint in the cosmic ray spectrum.
In addition, detecting the BDM component implies other interaction channels, either electrons
or nucleons, and therefore additional sources of boosting to a wide range of possible kinetic
energies. This motivates future comprehensive studies combining all boosting sources, incor-
porating full energy dependence and propagation effects. Such work should include DSNB
spectral alterations and possible DM-induced modifications of other boosting sources – and to
push current and near future experiments to sensitivities where it might become feasible to
detect a BDM component and perhaps directly probe neutrino-DM interactions as currently
preferred by cosmology.

Experiments with lower detection thresholds will be crucial to establish the connection
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between detecting a boosted component and the bulk abundance of light cold DM. Likewise,
pushing towards lower thresholds allows for the detection of heavier BDM for which upscatter-
ing is less pronounced. We can envision the combination of all sources of boosting for a given
DM model in something akin to a grand-unified spectrum of BDM. A definite prediction of
a persistent, energetic component of DM for a given DM model that, in some circumstances,
is within experimental reach and offers a valuable cross check for traditional direct detection
searches.
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Chapter 8

Summary and Outlook

The absence of neutrino masses in the SM is among the strongest hints of physics beyond
the SM. Due to their feeble interactions, however, their study remains challenging. Although
the situation is not as pessimistic as Pauli had originally feared, and neutrinos have not only
been experimentally established but are also routinely observed in terrestrial detectors, many
questions remain open.

Despite the numerous theoretical ideas to explain neutrino masses and mixing, we do not
have a clear experimental signature favoring or disfavoring any particular ansatz to explain
them. Particularly noteworthy is that we still do not have a clear signal discriminating between
a Majorana or Dirac nature of neutrinos. While observation of 0νββ-decay would clarify the
situation, the inverse is not true – we cannot rule out a Majorana nature even if 0νββ-decay is
not observed any time soon. This is where we turn to cosmology and astrophysics, in the hope
of identifying other smoking gun signatures of a possible Dirac nature of neutrinos. One option
is the extra degrees of freedom of a Dirac neutrino. If a complete model of the neutrino sector
allows for copious production of these light states, it can affect the effective neutrino number
Neff , which is experimentally constrained.

In Chapter 4, we developed a complementary ansatz to solve integrated Boltzmann equa-
tions. These Boltzmann equations can be used to compute the cosmological abundance of
such light particles. We opt for a Monte Carlo integration of the high-dimensional collision
operator. This allows for an approximation-free solution of the integrated Boltzmann equa-
tion, which includes all relativistic and spin-statistical effects. We present a formalism that
is straightforward to implement for different models, and we present prescriptions to include
leading thermal effects, as well as s-channel resonances. The framework is complementary to
existing Boltzmann codes that are often tailored to dark matter relic abundance calculations.
Our implementation is used for energy densities and abundances of light relativistic species,
but it could just as well be used for dark matter relic density, leptogenesis calculations, and
more.

We employed this Boltzmann scheme to study the cosmology of models of Dirac neutrinos.
The focus is on the abundance of light relics, here the light right-handed partners of the SM
neutrino, as well as possible additional light degrees of freedom such as Nambu-Goldstone
bosons. In Chapter 5, we focused on generic extensions that protect the Dirac nature of
neutrinos by a gauged U(1). Our benchmark model is U(1)B−L, but similar limits apply to
other gauge group extensions that couple νR and a subset of SM fermions.
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We present the νR relic abundance in a Z ′-model that includes all relativistic and spin-
statistical effects, a correct treatment of on-shell mediators from resonant production, and
thermal masses as a leading correction. We provide an update of limits for the new CMB-only
limit ∆Neff < 0.17 from ACT. This limit is the strongest limit on νR + Z ′-extensions thus
far. Focusing on mZ′ > 1GeV, we find that for the first time, cosmological limits surpass
laboratory and collider constraints on all mass scales, including the previously untested regime
mZ′ ∼ 100TeV. We also confirm forecasts for future CMB surveys and results indicate that,
for gauge coupling g ∼ O(1), gauge boson masses close to mZ′ ∼ ΛGUT are testable.

These results are deeply entangled with underlying cosmological assumptions. Production
of νR peaks around T ∼ mZ′/3, thus reheating to Treh � mZ′ is required to maximize yield.
We systematically studied the effect of a lowered reheating temperature on ∆Neff and find
that Treh < 10−2mZ′ severely reduces the effectiveness of the production as we transition to
a UV-sensitive effective operator freeze-in. Notably, the seemingly testable GUT scale gauge
boson can no longer yield detectable ∆Neff if upper bounds on the reheating temperature from
inflation are taken into account. For lower masses, constraints can be avoided for a sufficiently
low reheating temperature. We also consider the effect of non-standard thermal histories, in
particular a phase of early matter domination, new degrees of freedom freezing out, and early
phase transitions. We present prescriptions to translate our bounds to such non-standard
cosmologies and the accompanying phase of reheating. The assumption of νR+Z ′ turns ∆Neff

into a powerful probe of pre-BBN cosmology, an otherwise difficult to probe era. We highlight
especially the tremendous implications of a near-future collider signature of such models as a
smoking gun signal for non-standard cosmologies.

In Chapter 6, we generalized the notion of a Type-I seesaw family to the Dirac case. It offers
a unified framework to study a variety of specific seesaw realizations for Dirac neutrino models.
We studied two minimal realizations in more detail. Named the canonical and the enhanced
version, these models have the same particle content but differ in charge assignments. The
Dirac nature is protected by a global U(1)D symmetry. The theory contains an exact Nambu-
Goldstone boson commonly referred to as the Diracon, leading to additional constraints from
flavor observables. We generally note that cosmological limits from ∆Neff are weaker than
what we would expect from their gauged counterpart, based on our analysis in Chapter 5. We
observe that production of νR is usually suppressed either by mixing, explicitly by neutrino
mass, or by a parameter relation induced by the seesaw relation that further suppresses νR
production. Only low-scale variants of the canonical model are within reach of future exper-
iments, and the enhanced version remains virtually invisible to forecasted sensitivities. The
presence of the Diracon is crucial, and leads to LFV that can still probe regions of parameter
space complementary to cosmology.

We anticipate that a similar suppression will occur in other minimal models of Dirac seesaws
with a global symmetry. Especially if contributions to ∆Neff mainly arise from mixing to heavy
fermions, which can be sizable only for low-scale variants in the Type-I family. Still, limits are
generally weaker than for gauged model variants. This makes a global symmetry protection an
attractive alternative to gauged variants despite the conjectured breaking of global symmetries
by gravity, which could potentially spoil an exact Dirac nature.
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Many models that aim to explain the neutrino mass often predict suitable dark matter
candidates and interactions between neutrinos and a dark sector. Some cosmological data sets
prefer such neutrino-dark matter interactions, but evidence remains indirect. In the case of
MeV-scale dark matter candidates, a direct approach is given by upscattering of cold dark
matter by energetic neutrinos. Such boosted dark matter becomes observable with unique sig-
natures in Earth-bound direct detection experiments. The observation of one of the scattering
partners makes a direct probe of neutrino-dark matter interactions feasible.

We turned to such direct probes of neutrino-dark matter interactions in Chapter 7. We
consider MeV-scale DM with interactions to neutrinos and charged leptons. Using the DSNB
as a source of energetic neutrinos with Eν ∼ O(10)MeV, we studied the flux of BDM at
terrestrial laboratories and found that neutrino upscattered BDM leaves unique signatures in
direct detection facilities. Here, the often overlooked energy dependence of the interaction and
overburden effects near the detector plays a crucial role. The results we find can vary by orders
of magnitude when compared to results from standard approximations. This has implications
for BDM beyond upscattering by the DSNB. Especially, the energy dependence will allow for
model discrimination if a signal is to be found.

Current limits are not quite there yet to probe the cosmologically preferred regime. How-
ever, future experiments in combination with imprints on the DSNB from such interactions,
or implications for a local CCSN, may allow us to explore the currently preferred interaction
strength. Combining all of the above aspects could give a promising indication not only for
neutrino-DM interactions, but also towards the nature of DM itself. Upscattering on neu-
trinos beyond the DSNB embeds into a large body of BDM research. Models that generate
neutrino-DM interactions often generate other interaction terms too, which allow for additional
boosting. We highlighted how this creates synergy in searches for BDM, and how the combina-
tion of different sources of upscattering provides a means to discriminate models. The creation
of a small BDM component is inevitable for MeV-scale DM, and would offer a valuable cross
check for the detection of the unboosted bulk component in future low-threshold experiments.

In the end, we want to briefly advocate for the potential that a galactic CCSN could have
beyond neutrino-DM interactions and in light of the other research projects presented in this
thesis. The effect of Dirac neutrinos and other light degrees of freedom in supernovae has
been studied before. In combination with the results of this thesis, however, new opportuni-
ties arise. Supernovae may offer a complementary clue to the Dirac or Majorana nature of
neutrinos. For instance, the presence of light particles in CCSNe is already well-constrained.
However, the models we discussed with regard to the Type-I seesaw family not only have a
Nambu-Goldstone boson, but also potentially large interactions between left- and right-handed
neutrinos or charged leptons with the Diracon. A future galactic CCSN could, therefore, be a
strong indicator in favor or disfavor of such models.

Similarly, we already hinted at how Dirac neutrinos with a new gauge interaction are a
powerful probe of the very early Universe. Different future directions are open, and we only
highlight here the potential of addressing cosmological problems like the Hubble tension in
Dirac neutrino model building, or how solutions to cosmological tensions may offer a natural
way out of the strong projected limits on Dirac neutrino models with a gauge symmetry by
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means of drastically altering the thermal history.
It is by using all of the cosmological and astrophysical laboratories at our disposal that we

can fully utilize the power of astroparticle physics to unravel open fundamental questions in
neutrino physics. From the early thermal history to the messengers of stellar collapse, this
thesis has explored how cosmology and astroparticle physics can be turned into a neutrino
experiment that could give us a clue to the nature of neutrinos, how they interact with dark
matter, and how they fit into a more complete theory of particle physics. As experiment
and observation progress to unprecedented precision, the idea of the Universe as a neutrino
laboratory will continue to evolve, offering both guidance and new insights in the ongoing
attempt to understand this most elusive particle.
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Appendix A

Collision operator

A.1 Implementation

Here we give more details on solving for the collision operator by means of Monte Carlo integra-
tion. To this end, we bring relevant collision operators in a form that is particularly useful for
integration. We use the VEGAS framework [333, 334] for the numerical implementation. Due to
its adaptive sampling strategy, we can quickly achieve convergence for the integrals and reach
a desirable level of numerical precision.

We give the details on 2 → 2 and the 1 → 2 processes, but a generalization to general
m→ n collision operators can be achieved by using the same approach.

A.1.1 2 → 2 processes

We can analytically reduce the collision operator from 12 to 5 dimensions without further
assumptions. A similar parameterization was adopted in Ref. [335], but our implementation
deviates in a number of steps.

We begin with the integral of an arbitrary function on four particle phase space

C(F ) =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4) (p1 + p2 − p3 − p4) F (pi) . (A.1)

Rotational invariance implies it is always possible to go to a coordinate system where ~p1 =

(0, 0, p1)
T , and the angular integration of the first momentum is trivial. Thus, we may write for

the first momentum d3p1 = 4πp21dp1 and for the remaining momenta we adopt the relations ~p2 =
p2(sinβ, 0, cosβ)

T and ~p3 = p3(sin θ cosφ, sin θ sinφ, cos θ)
T . All angles are defined relative to

the direction of ~p1.
After performing the azimuthal integration of p2,

C(F ) =2(2π)2
∫ ∞

0

dp1p
2
1

(2π)32E1

∫ 1

−1
d cosβ

∫ ∞

0

dp2p
2
2

(2π)32E2

∫ 2π

0
dφ

∫ 1

−1
d cos θ∫ ∞

0

dp3p
2
3

(2π)32E3

∫
d3p4

(2π)32E4
(2π)4δ(4) (p1 + p2 − p3 − p4)× F (pi) .

(A.2)
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The next step concerns dealing with the δ. The spatial part is readily eliminated by the
p4-integration, and δ(E1 + E2 − E3 − E4) remains. Here, E4 is a shorthand for

E4 =
√
m2

4 + (~p1 + ~p2 − ~p4)2 (A.3)

=(m2
4 + p21 + p22 + p33 + 2p1p2 cosβ − 2p1p2 cosβ − 2p1p3 cos θ (A.4)

−2p2p3(sinβ sin θ cosφ+ cosβ cos θ))1/2 . (A.5)

The change variables in the δ-distribution,

δ(E1 + E2 − E3 − E4) =
E1 + E2 − E3

2p2p3 sinβ sin θ
δ(cosφ− cosφc) , (A.6)

where

cosφc =
m2

1 +m2
2 +m2

3 −m2
4 + 2(E1E2 − E1E3 − E2E3)− 2p1p2cosβ

2p2p3 sinβ sin θ
(A.7)

The integral over φ is symmetric around φ = π, so we replace
∫ 2π
0 dφ = 2

∫ π
0 dφ. All combined,

we arrive at

C(F ) =4(2π)4
∫ ∞

0

dp1p
2
1

(2π)32E1

∫ ∞

0

dp2p
2
2

(2π)32E2

∫ ∞

0

dp3p
2
3

(2π)32E3

∫ 1

−1
d cosβ

∫ 1

−1
d cos θ

× 1

2E4

E1 + E2 − E3

2p2p3 sinβ sin θ
×Θ(0 6 cos2 φc 6 1)× F (~p1, ~p2, ~p3, ~p4), ,

(A.8)

We understand E4 and ~p4 as functions of the remaining integration variables defined by the
above relations, and note that cosφ = cosφc holds.

The integrations d cosβ and d cos θ are well suited for Monte Carlo integration. We perform
a change of variables, pi = −Λi log xi, where xi is the new integration variable. The dimensional
constant Λi can be chosen freely, but we note that we found good convergence for Λi = O(1−
10)TSM (see also Ref. [218]). Eq. A.8 is the collision integral implemented in our code.

A.1.2 1 → 2 processes

We reduce the 9-dimensional integral to 2, which could also be implemented with traditional
numerical integration. The steps are similar to the previous case.

Again, we chose ~p1 = p1(0, 0, 1)
T , and ~p1 and ~p2 form a plane. We can write ~p2 =

p2(sin θ, 0, cos θ)
T . As before, the spatial part of the δ-distribution eliminates the d3p3 in-

tegration. Momentum conservation now enforced, we have E3 =
√
m2

3 + (~p1 − ~p2)2. After
changing variables in the remaining energy conserving δ-distribution to an angular relation
δ(cos θ − cos θc), where now

cos θc =
m2

3 + p21 + p22 − (E1 − E2)
2

2p1p2
, . (A.9)

Using an indicator function Θ(0 6 cos2 φ 6 1), we restrict integration to physically allowed
kinematics, but explicit bounds could be derived in principle. We find for the final collision
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integral

C(F ) = 8π2
∫ ∞

0

dp1p
2
1

(2π)32E1

∫ ∞

0

dp2p
2
2

(2π)32E2
× 1

2E3

E3

p1p2
× F (pi) . (A.10)

The remaining integrations make use of the same variable transformation as before, i.e. sub-
stituting pi = −Λi log xi.
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Appendix B

Diracon-charged lepton interactions

We follow the notation of Ref. [262], where the original computation for general interactions
of charged leptons and a Majoron generated at the loop-level were discussed. Here, we sketch
the analogous results for charged lepton interactions with a Diracon.

The general interaction is written as [263]

L``D = D ¯̀
β

[
Sβα PL +

(
Sαβ

)∗
PR

]
`α . (B.1)

We write PL,R = 1
2 (1∓ γ5) for the usual chiral projection operators, and denote the charged

leptons as `α,β, where the index indicates the fermion generation. The matrix S has contribu-
tions from both, the Z and W bosons, which we label ΓZ and LW , respectively. Thus,

Sβα =
1

8π2

(
δβα ΓαZ + LβαW

)
, (B.2)

giving rise to both flavor conserving and flavor violating terms.
In the following, we write M` = diag

(
m`e , m`µ , m`τ

)
for the charged lepton mass matrix,

and we write the Lagrangian terms coupling the Diracon to neutrinos in the flavor basis with
corresponding Yukawa matrix Y as

L ⊂ D
(
ν̄L N̄L

)
Y

(
νR

NR

)
+ h.c. , (B.3)

or,
L ⊂ D n̄

(
U †
L Y UR PR + U †

R Y† UL PL

)
n , (B.4)

where n contains all neutral leptons ν and N . Written in this form, we have similar terms as
in Ref. [262] and their results can readily be used by plugging in our definitions. The leading
contributions to ΓαZ and LβαW are found, and we denote by

∑
j∼l and

∑
j∼h the sum over light

and heavy neutral leptons. The leading contributions from W and Z are then given by

ΓαZ ' −im`α

6v2
Im
[

3∑
s=1

(Γss − 2∆ss)

]
, (B.5)

LβαW '
m`β

12 v2
[(
Γ∗
αβ + 8Γβα

)
−
(
2∆∗

αβ + 7∆βα

)]
, (B.6)
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where Γ and ∆ are defined as follows:

Γβα =
∑
k,r

YkrM†
rα

∑
j∼l

(UL)βj

(
U †
L

)
jk
, (B.7)

∆βα =
∑
k,r

Ykr
(
MM†

)
βk

∑
j∼h

(UR)rjm
−1
j

(
U †
L

)
jα
. (B.8)

Interactions between the Diracon and charged leptons at loop level are then fully determined
from charged lepton masses, Diracon Yukawa interactions, and the mixing matrices.
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