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Abstract

Mycoplasma pneumoniae, a genome-reduced pathogenic bacterium, is as an ideal model
for studying the concept of a minimal cell. This organism benefits from a long history
of analyses that encompass many biological processes and molecular types, providing
a comprehensive foundation for computational studies. The advent of high-resolution
cryogenic electron tomography (cryo-ET) has placed M. pneumoniae in a unique position
to bridge in-situ imaging with bioinformatics and systems biology. This unprecedented
direct visual access to protein complexes and other macromolecular assemblies presents
novel opportunities and challenges. While some large and abundant molecular components
can be readily identified in the tomograms, deciphering their functions requires sophisti-
cated computational approaches that make use of the wealth of existing data. The recent
introduction of AlphaFold2 has revolutionized the field of structural biology by providing
high-confidence structural models for virtually every protein. In this thesis, I leverage this
new paradigm to annotate the function of a newly identified protein complex observed
exclusively in M. pneumoniae cryo-ET data. I show that access to protein structures dramat-
ically improves the accuracy of functional annotations, particularly when structures are
segmented into their constituent domains. One of the largest macromolecular assemblies
in the cell is the ribosome, with its many interacting partners. Utilizing a novel cryo-ET
dataset that captures the abundances of intermediate states of ribosomes engaged in protein
synthesis, I build a kinetic model of the translation-elongation cycle. Furthermore, I develop
and implement a generalizable method to calibrate the kinetic rates of biological processes
by integrating cryo-ET data with know rates from a reference system. This thesis advances
structural bioinformatics by designing innovative analytical frameworks downstream of
cryo-ET. These frameworks enable a better annotation of the function of proteins from their
structure, as well as a better understanding of the dynamics of molecular processes from
static cryo-ET snapshots.

3





Zusammenfassung

Mycoplasma pneumoniae, ein genomreduziertes pathogenes Bakterium, ist ein ideales Modell
zur Untersuchung des Konzepts einer minimalen Zelle. Dieses Organismus profitiert von
einer langenGeschichte vonAnalysen, die viele biologische Prozesse undMolekültypen um-
fassen und eine umfassende Grundlage für computergestützte Studien bieten. Der Aufstieg
der hochauflösenden cryo-ET hat M. pneumoniae in eine einzigartige Position gebracht, um
in-situ Bildgebung mit Bioinformatik und Systembiologie zu verbinden. Dieser beispiellose
direkte visuelle Zugang zu Proteinkomplexen und anderen makromolekularen Strukturen
bietet neue Möglichkeiten und Herausforderungen. Während einige große und reichlich
vorhandene molekulare Komponenten in den Tomogrammen leicht identifiziert werden
können, erfordert die Entschlüsselung ihrer Funktionen anspruchsvolle rechnergestützte
Ansätze, die den Reichtum an vorhandenen Daten nutzen. Die kürzliche Einführung von
AlphaFold2 hat das Gebiet der Strukturbiologie revolutioniert, indem es hochzuverlässige
Strukturmodelle für praktisch jedes Protein bereitstellt. In dieser Arbeit nutze ich dieses
neue Paradigma, um die Funktion eines neu identifizierten Proteinkomplexes zu annotieren,
der ausschließlich in M. pneumoniae cryo-ET-Daten beobachtet wird. Ich zeige, dass der Zu-
gang zu Proteinstrukturen die Genauigkeit funktioneller Annotationen erheblich verbessert,
insbesondere wenn Strukturen in ihre konstituierenden Domänen segmentiert werden.
Eine der größten makromolekularen Strukturen in der Zelle ist das Ribosom mit seinen
vielen interagierenden Partnern. Unter Verwendung eines neuartigen cryo-ET-Datensatzes,
der die Häufigkeiten von Zwischenzuständen von Ribosomen erfasst, die an der Proteinsyn-
these beteiligt sind, erstelle ich ein kinetisches Modell des Translations-Elongationszyklus.
Darüber hinaus entwickle und implementiere ich eine verallgemeinerbare Methode zur
Kalibrierung der kinetischen Raten biologischer Prozesse, indem ich cryo-ET-Daten mit
bekannten Raten aus einem Referenzsystem integriere. Diese Arbeit fördert die strukturelle
Bioinformatik, indem sie innovative analytische Rahmenwerke im Anschluss an cryo-ET
entwirft. Diese Rahmenwerke ermöglichen eine bessere Annotation der Funktion von Pro-
teinen aus ihrer Struktur sowie ein besseres Verständnis der Dynamikmolekularer Prozesse
aus statischen cryo-ET-Schnappschüssen.
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1 Introduction

1.1 Mycoplasma pneumoniae as a minimal cell model for systems

biology

Mycoplasma pneumoniae is a pathogenic bacterium characterized by a small cell size and
the lack of a cell wall. The first report concerting this bacterium came in 1941 from Eaton,
Beck, and Pearson [1], who recovered it from the sputum of patients with a form of atyp-
ical pneumonia. Initially, the so-called Eaton agent was thought to be a virus due to the
challenges associated with its cultivation [2]. Moreover, the lack of a cell wall also makes
several classes of antibiotics ineffective. Eventually, in the 1960s, Chanock, Hayflick, and
Barile [3] managed to grow it in cell-free medium. Its inoculation to volunteers confirmed
it as the etiological agent for atypical pneumonia in humans. The first genome sequencing
of M. pneumoniae was performed in 1996 in Heidelberg University [4]. It revealed a size of
816,394 base pairs with an average G+C content of 40.0%. The first modern annotation of
the gene locations and functions came four years later from the Bork group at the European
Molecular Biology Laboratory (EMBL) [5]. The reduced size of M. pneumoniae’s genome,
which encodes for only about 700 proteins, together with its pathogenic lifestyle, make
it relatively difficult to grow the bacterium in the lab. Indeed, it lacks many biosynthetic
pathways, divides relatively slowly (every 6-20 hours), and depends on a rich culture
medium for survival [6]. Another peculiarity is that it uses a non-standard genetic code,
where UGA is not a stop codon, but is translated to tryptophan. Imaging studies revealed
that the cells have a slightly elongated and asymmetrical shape, with a length of around
1µm–2µm and a thickness of about 0.1µm–0.2µm [7].

For the past almost 30 years,M. pneumoniae has been a constant presence at the EMBL. Its
appeal stemsmainly from the exceptionally small size of its genome and cell volume. Indeed,
although its sister species, Mycoplasma genitalium, is the smallest known autonomously
replicating organism in Nature [9], pneumoniae is already close to being a minimal cell, i.e. a
cell that contains only the bare minimum to sustain autonomous life. As such, Mycoplasmas
are ideal model organisms to answer fundamental biological questions. Their role in this
niche is strengthened by studies that tried to further reduce their genome artificially and
culminated with the top-down creation of a synthetic cell inspired by Mycoplasma mycoides
capri [10]. JCVI-syn3, the name given to the artificial cell created at the J. Craig Venter
Institute, contains only 473 genes (149 of which, almost one third of the total, have unknown
function). Moreover, the relative simplicity of these organisms has stimulated the creation
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Figure 1.1: Figure from Thornburg et al. [8].
The authors developed a catalogue of all
cellular process at the level of individual
biochemical reactions. Using genomic, pro-
teomic, and metabolomic data to determine
an initial cell state, they used a reaction-
diffusion equation system to simulate the
evolution of the cell state over time.

of computational whole-cell models. Some of the issues and potential rewards of this
approach were already discussed in 2007 by Betts and Russell [11]. Karr et al. [12] built
a heterogeneous model of all biological processes in Mycoplasma genitalium, and Maritan
et al. [13] complemented this model by adding structural information for the full proteome.
Thornburg et al. [8] finally constructed a 3D dynamic spatial and temporal kinetic model
of JCVI-syn3A which revealed connections between metabolism, genetic information, and
cell growth (fig. 1.1).

At EMBL, M. pneumoniae has been chosen to answer important questions in various
fields of biology. In 2000, its genome was reannotated with more modern approaches,
adding valuable information [5]. In 2006, Seybert, Herrmann, and Frangakis [14] visual-
izedM. pneumoniae cells for the first time at the high magnification achievable with cryo-ET.
In 2009, a series of three landmark studies analyzed its metabolism, gene expression, and
protein-protein interactions [15, 16, 17]. This was a collaboration among the groups of
Peer Bork, Anne-Claude Gavin, Rob Russell, and Luis Serrano. The researchers involved in
this collaborations went on to dissect key biological processes including post-translational
modifications [18], regulation by transcription factors and environmental stimuli [19], and
translation by ribosome profiling [20], to name a few examples. Recently, M. pneumoniae
became an important model organism for in cell structural biology, thanks to work in the
Mahamid group at EMBL, when the structure of the expressosome (a transient complex
between the ribosome and RNA polymerase) and the structure of ten ribosome interme-
diates of the translation-elongation cycle were reconstructed to near-atomic resolution by
cryo-ET [21, 22].

Traditionally, M. pneumoniae has been classified in the Mollicutes class [23], a name that
captures the “soft skin” of this group of bacteria. Most bacteria in this group are pathogens
of animals or plants, living either on or in the host’s cells, and they have special nutritional
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needs. Due to their marked small size and behavioural differences from other known
bacteria, they have been classified in their own phylum, Mycoplasmatota (formerly known
as Tenericutes) [24]. However, some researchers would place this clade under the Bacillati
phylum [25, 26], and some argue that it is not even a monophyletic group [27, 28]. In
2018, Gupta et al. [28] proposed sweeping changes to the nomenclature of Mollicutes,
including renaming Mycoplasma pneumoniae to Mycoplasmoides pneumoniae. These changes
were initially rejected by the International Committee on Systematics of Prokaryotes [29],
but after the original authors appealed again in 2020 [30], the new names are starting to
gain traction and have been adopted in the NCBI and GTDB databases [24, 26]. Although
their taxonomic classification is controversial, most studies point to the Bacillota phylum
as the closest relative of Mollicutes. Thus, interestingly, although the lack of a cell wall
makes them Gram-negative, their close relatives are Gram-positive. The current hypothesis
is that mycoplasmas originated from bacilli, rapidly adapting to the pathogenic lifestyle
and reducing their genome [31]. These evolutionary changes, including the adoption of
the new genetic code, are quite dramatic and must have led to profound rearrangements
and adaptations throughout the whole genome.

1.2 Cryogenic electron tomography (cryo-ET) as entry point for in

situ biology

cryo-ET is an imaging method based on transmission electron microscopy (TEM). By ac-
quiring multiple images of the same sample tilted at various angles, typically ranging from
−70° to 70°, it is possible to reconstruct a 3D image, the tomogram, from the series of 2D
projections. This method is particularly valuable for studying cells frozen in a near-native
state[32, 33]. Indeed, the sample often consists of whole cells or even multicellular organ-
isms such as C. elegans, as opposed to purified molecules [34]. This avoids the limitation of
traditional structural methods like X-ray crystallography, which requires orthologous ex-
pression, purification, and crystallization, and can be challenging for large macromolecular
complexes and membrane proteins. In recent years the field of cryo-EM has experienced
a surge of interest, mainly due to technical innovations in the machines that generate the
electrons (field emission gun (FEG)) and in the instruments that detect the electrons after
they have crossed the sample, as well as software innovation. These evolutions have led to
the so-called “resolution revolution” [35].

A key guiding principle of methods such as cryo-ET is the hope that understanding
the structure can improve the understanding of the function of a biomolecular entity. For
example, macromolecular X-ray crystallography and cryo-EM were instrumental in reveal-
ing the mechanism by which the ATP synthase works, since the structure of the complex
clearly suggests how rotational movement can be coupled with chemical synthesis [37].
Moreover, capturing a dynamic process at different time points in different cells can give a
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Figure 1.2: Size scales of biology (image from rsscience.com.) Room-temperature electron
microscopy is limited because the samples have to be fixed and stained, butmodern cryo-EM
on purified and frozen samples can already achieve real atomic resolutions, with hallmark
papers showing 1Å [36].

glimpse into the dynamics of the biological process. What makes cryo-ET especially useful
is that it allows biologists to probe life at different scales (fig. 1.2). For example, whole-cell
tomograms let us look at big structures like organelles inside cells, giving a bird’s eye view
of how cells are spatially organized. But techniques such as subtomogram averaging can
enhance the resolution of specific macromolecules up to near-atomic detail. Since the cells
are kept intact, it is possible to not only examine the individual macromolecular complexes
of interest, but also the broader context in which they are embedded, including other
macromolecules or organelles with which they interact. Although I have never practiced
cryo-ET myself, my work largely builds upon results obtained with this technique. This
section is meant to provide an overview of the main principles in cryo-ET (see Cryo-Electron
Tomography: Structural Biology in situ by Förster and Briegel [38] for a reference).

As TEM requires placing the sample in a vacuum, sample preparation is a critical step.
Freezing is an obvious way of dealing with hydrated samples in a vacuum, but it comes
with a cost: the ice crystals could damage the biological structures and/or hinder their
visualization. Thus, rapid freezing is essential to preserve biological structures in a glass-like
state, avoiding crystal growth. Improving the vitreous quality of ice was a breakthrough for
which Jaques Dubochet, among others, was awarded the Nobel Prize in Chemistry in 2017.
Currently, samples are typically plunge-frozen in liquid ethane, although high-pressure
freezing is required for some of the thicker samples. Importantly, plunge-freezing and
high-pressure freezing leave the cells almost in their native conditions, making sure that
the molecules move as little as possible.
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Once the samples are frozen, the tilt series can be collected and the tomograms recon-
structed. Modern electron microscopes operate at energies of 200keV to 300keV. Higher
energy electrons can penetrate thicker samples, but also lead to aberrations due to beam-
induced motion of the atoms in the sample. Thus, sample thickness is one of the most
important variables that influence the quality of the reconstruction. For optimal results,
the sample shouldn’t be thicker than 100nm to 200nm, especially because the thickness
will increase dramatically at higher tilt angles. For some samples, it is therefore necessary
to use a precisely targeted beam of gallium ions to make the sample thinner, a technique
called focused ion beam (FIB) milling. The ion beam removes layers of biological material
from the specimen, exposing the interesting structures underneath the surface. In the case
of our model organism, Mycoplasma pneumoniae (M. pneumoniae), however, FIB milling is
not necessary, since the thickness of the cells does not exceed 200nm (see also section 1.1).
This makes it possible to capture the whole cell in the microscope’s field of view, which is
not possible for larger cells.

After reconstructing the tomograms, they can be analyzed using a variety of methods.
Here, we will focus on methods to extract and enhance the resolution of single macro-
molecules, which in this context are also referred to as “particles”. Often, one of the first
steps in a cryo-ET pipeline is particle picking, which consists in identifying the coordinates
of the macromolecules of interest within the tomograms. This can be performed manually,
which ensures high accuracy but is time-consuming, or automatically using template match-
ing algorithms that detect particles based on their similarity with a user-provided known
structure. These algorithms compute the cross-correlation at each voxel in the tomogram
with a known 3D reference structure rotated in all possible orientation. Modern algorithms
can also rely on deep learning to increase the accuracy of partickle picking [39]. In practice,
all of these modalities are used iteratively in order to extract as many particles as possible
from the tomograms. The particle picking process produces the bounding boxes for the
particles of interest, which are then fed into the next step: subtomogram averaging.

Sutomogram averaging is designed to enhance the resolution of the structure recon-
structed from the picked particles. By aligning and averaging multiple copies of the same
macromolecule, the noise from the individual images tends to cancel out, and we are left
with a clear structure. If the particle is known to have some symmetry, this fact can be
exploited to achieve an even higher resolution. Often, the structure reconstruction achieves
near-atomic resolution, i.e. below 4Å. Such resolution allows structural biologists to build
atomic models into the density.

Butmostmacromolecules are not rigid andmotionless, and cryo-ET can be used to capture
conformational dynamics through a process calledmultibody-refinement [40]. Inmultibody
refinement, the macromolecular structure is divided into two or more regions of interest,
often separated by a relatively flexible interface. Then, the particles are aligned only on one
region, leaving the others free. This reveals the multiple conformations and shapes taken
by the particle, highlighting some of the possible movements of the structure. Multibody
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refinement is particularly useful for studying flexible molecules such as molecular machines
and ion channels.

One additional analysis, which is key to resolving multiple states of the same complex, is
particle classification. It consists of clustering similar structures into groups which then
are averaged and refined separately, under the supervision of the researcher. This method
enables the identification of different conformations of a protein (e.g. the open and closed
states of an ion channel), as well as the differentiation of distinct molecules bound to the
same macromolecular assembly. For example, Xue et al. [22] classified ribosomes into 10
intermediate states of the translation elongation cycle, whereby in each state the ribosome
interacts with a unique set of molecules or exhibits a different relative rotation of its subunits.
Such classification will also form the foundation of the project described in chapter 4.

As any experimental method, cryo-ET comes with some limitations. One of the main
issues in cryo-ET is the anisotropy in the reconstruction due to the missing wedge. Due to
the thickness of the sample, the tilt series needs to stop at 60°–70°. Therefore, the imaging
process leaves out a wedge-shaped volume, introducing artifacts and leading to a decreased
resolution along the 𝑧 axis (parallel to the beam path) compared to the 𝑥-𝑦 plane.

Moreover, although time-resolved approaches are starting to emerge [41], cryo-ET still
mostly provides a static snapshot of the sample. Any dynamical processes are therefore chal-
lenging to investigate. chapter 4 addresses this limitation directly, making use of biology’s
other microscope: mathematics [42].

cryo-ET’s ability to span multiple scales makes it complementary to other structural biol-
ogy techniques. While single-particle methods such as cryo-EM and X-ray crystallography
provide high-resolution reconstructions of purified molecules, cryo-ET excels at studying
cellular structures within their native environment, allowing us to probe the interactions
and broader context of a biological process. Any limitations in the resolution are more
than compensated by the ability to investigate cells in their native state, without the need
to purify the components or crystallize the molecules. This is particularly relevant for
studying large complexes, integral membrane proteins, and macromolecular assemblies,
all of which will be relevant in the next chapters of this thesis. In summary, cryo-ET offers
a powerful multiscale framework for structural biology, bridging cellular and atomic levels
of organization.

1.3 The AlphaFold2 revolution

Predicting the structure of a protein from its sequence alone has been a longstanding dream
of structural and computational biologists. One of the initial assumptions was that proteins
would acquire the conformation with the least free energy. Cyrus Levinthal famously
estimated that the degrees of freedom in the bond angles and lengths between the atoms in
a single protein easily lead to over 1 × 10300 possible conformations [43]. Although it is in
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Figure 1.3: Number of structures deposited in the protein data bank (PDB) over the
years [44].

principle possible to calculate the conformational energy of a structure from the position of
its atoms, sequentially probing each conformation is clearly unfeasible for computational
approaches as it would take an enormous amount of time. On the other hand, proteins in
Nature fold into their native conformation in about one millisecond, a mismatch known as
Levinthal’s paradox. For decades, the field made incremental progress by recognizing the
hierarchical andmodular nature of protein folding. First, it is easier to predict the secondary
structure than the tertiary structure directly. Second, proteins tend to organize in modular
units called domains, and it is possible to recognize the same domain in different proteins,
even if the proteins themselves are not directly related.

The computational methods for protein structure prediction lagged behind experimental
techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy,
and, more recently, cryo-EM, even though the experiments are labor intensive and time
consuming. Although the number of protein structures deposited yearly in the protein data
bank (PDB) has grown steadily (section 1.3), the number of experimentally resolved struc-
tures (250 thousand) is still tiny compared to the number of available protein sequences
(250 million in UniProt [45]). Indeed, compared to resolving the structure of a protein,
obtaining its sequence is much cheaper and easier. Methods like metagenomics have in-
creased even more the boundaries of what is possible to obtain by genome sequencing,
uncovering billion of distinct sequences [46, 47], whereas the number of resolved protein
structures has been stuck orders of magnitudes below.

Most of the approaches to protein structure prediction are based on one of the unifying
principles of biology: evolution. The key idea is that proteins which are neighbors in
sequence space should also have a similar structure. Indeed, structure has proven to be even
more evolutionary conserved than sequence [48, 49]. This means that once the structure of
a protein is known, it can be propagated to proteins with a similar sequence [50]. The same
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ideas inspired the classification of proteins into families and superfamilies, either based
on their structure [51, 52] or their domains [53]. For years, the state-of-the-art method
for predicting protein structure has been homology modelling [54]. Briefly, the process
involves selecting a suitable template (a homologous protein of known structure), aligning
sequences, and building a 3D model by copying structural elements from the template,
using the sequence alignment as the reference. Homology modeling is most reliable when
sequence identity exceeds 30%.

Everything changed in 2020, when the second version of AlphaFold was released. The
Critical Assessment of Structure Prediction (CASP) programmewas initiated by JohnMoult
in 1994 as a biyearly challenge to track the progress of structure predictionmethods [55]. For
13 editions, progress was incremental. In 2018 a neural-network based model, AlphaFold,
outperformed homology-modelling approaches, but only by a small margin. In 2020, at
CASP 14, AlphaFold2 achieved a ground-breaking median backbone accuracy of 0.96 Å
rmsd95 (C𝛼 root-mean-square deviation at 95% residue coverage), which is comparable to
experimental methods [56].

Interestingly, this breakthrough came from DeepMind, a company that in 2014 was
acquired by Google. DeepMind had already gained recognition for developing artificial
intelligence (AI) models capable of mastering complex games such as Go and Starcraft,
demonstrating the potential of artificial intelligence in solving complex problems [57, 58].
With AlphaFold, DeepMind ventured into scientific territory, revolutionizing the field of
protein structure prediction. In 2024, Demis Hassabis (co-founder and CEO of DeepMind),
John Jumper (scientist and lead author of AlphaFold2), and David Baker (biochemist and
computational biologist) were awarded the Nobel Prize in Chemistry.

The deep-learning architecture employed by AlphaFold is completely novel in the field
of structure prediction. A key innovation is the use of attention mechanisms, which allow
the model to effectively capture relationships between distant residues in the sequence,
leading to a better understanding of the protein folding constraints. Additionally, the
model integrates evolutionary information by computingMSAs, which allow it to recognize
conserved residues and structural motifs. Unlike previous approaches that rely on multiple
intermediate steps, sometimes requiring manual intervention, AlphaFold is an end-to-end
framework, where the network is trained to predict the final protein structure rather than
an intermediate result that should then be refined. Moreover, the software was released in
2021 with an open source license for academic use, meaning that everyone in the scientific
community could use the trained model to predict their protein structures of interest,
as well as re-train or fine-tune the model. This has enabled the creation of a database
of computationally predicted protein structures that, at last, rivals the size of sequence
databases: the AlphaFold protein structure database, created in 2022 by a partnership
between EMBL-EBI and DeepMind, now hosts predicted structures for 200 million proteins,
covering most of UniProt [59, 60]. AlphaFold represented a paradigm-shift in fields such
as drug discovery, protein function analysis [61], and protein design [62, 63].
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Some of the limitations of this technology are as follows. First, AlphaFold2 was not
trained to predict interactions with other proteins or small molecules, a drawback that
was addressed with the release of AlphaFold-multimer first [64] and, more recently,
AlphaFold3 [65]. Second, AlphaFold still largely relies on MSA, so, while it can predict
novel folds that are not in the PDB [66], it still struggles to predict the structures of “orphan”
proteins (i.e. sequences without many relatives).

An introduction on the field of protein structure prediction would not be complete
without mentioning an alternative strategy to the AlphaFold approach. ESMFold [67] uses
a language model based on the transformer architecture [68] trained on protein sequences
to predict the structure without the need of a multiple sequence alignment. This greatly
speeds up the inference and allowed researchers to predict the structure of more than 600
million proteins from metagenomes in MGnify [46].

Although not everything in biology is a protein, having access to high-quality protein
structures in a matter of minutes rather than months or years has opened up many new
research avenues. In this thesis, AlphaFold features prominently especially in chapter 2,
where it was the starting point that enabled the project.

1.4 Modelling in biology

Jeremy Gunawardena defines models in biology as “accurate descriptions of our pathetic
thinking” [69]. Although provocative, this definition captures the notion that models are
not intended to be perfect representations of reality. Rather, they serve as a reflection of our
current understanding and assumptions about a given system. Through models, we can
leave out all the details that are irrelevant and focus on the minimal set of assumptions that
we believe in, asking whether they are enough to describe the key features of the system.
After establishingwhat is important, themodelling process entails following semi-automatic
mathematical steps to get to the logical conclusions.

Models can also guide our intuition, often revealing surprising results. Analytic and
quantitative approaches shed light on questions that would otherwise be much harder or
impossible to tackle. For example, consider the problem of cell size control, discussed by
Rhind [70]. There are three classes of models that can explain how cells know how big they
are and maintain size homeostasis, referred to as timer, sizer, and adder. The timer model
posits that cells grow for a fixed amount of time each cell cycle, then divide. In the sizer
model, cells grow until they reach a certain size, which triggers the division. According to
the adder model, cells accumulate a fixed amount of mass (one half of the cell’s target size)
before dividing. All three mechanisms could explain how cells maintain size homeostasis
across many cell cycles, but only two of them are robust to noise. In the timer model, big
cells grow faster and small cells grow slower, amplifying existing differences and leading
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to heterogeneous populations.1 Another example is provided by Rosenfeld and Alon [71],
who show that increasing the degradation rate of a protein leads to faster response time
when external stimuli occurs. This comes at the cost of increased protein production, which
could be seen as a futile cycle or an evolutionary mis-adaptation. These examples show
how quantitative analyses can provide compelling explanations for phenomena that might
be confusing

Another benefit of adopting the mathematical language is that seemingly unrelated
phenomena are actually expressed in the same way. Allostery provides a great example, as
nicely written by Phillips [72],

A wide variety of different biological phenomena are mediated by molecules
that can exist in two different conformational states, one that we will dub the
active state and the other the inactive state. A crucial feature of these molecules
is that they can bind a ligand that has different binding affinities for the active
and inactive states, thereby biasing the relative probabilities of these two states.
By speaking the language of mathematics, it is possible to unite phenomena
as diverse as the Bohr effect in hemoglobin, the accessibility of genomic DNA
to DNA-binding proteins, the response of chemotaxis receptors to changes
in chemoattractant concentration, the analysis of mutants in quorum sensing,
and the induction of transcription factors. […] all of these phenomena can be
described by a single equation that parameterizes their activity as a function
of ligand concentration, revealing a deep unity that is hidden from view when
these problems are discussed verbally, although many theoretical challenges
remain.

Models lead to simple narratives that are nonetheless accurate. In fact, simplification is a
strict requirement, and its role in science has been profusely discussed, sometimes under
the heading of “map-territory relation”. Korzybski [73] wrote “a map is not the territory it
represents, but, if correct, it has a similar structure to the territory, which accounts for its
usefulness”. Another statement often heard is George Box’s “all models are wrong (but
some are useful)”. Physics has a tradition of developing progressively more general models
that describe natural phenomena in ever greater detail, but also becoming increasingly
complex. Older and simpler models are not dismissed; rather, they are still taught for their
pedagogical value and even used in practice whenever the simplification leads to negligible
errors.

Finally, one of the most celebrated powers of models is prediction. When done correctly,
modelling allows making quantitative predictions about experiments that were never made
before. When these predictions are successful, it is a powerful indication of the correctness
of the theory. Although less impressive, predictive power can also be achieved by fitting

1This assumes that cells grow exponentially, i.e. their growth rate is proportional to their size. The available
evidence strongly leans towards exponential growth.
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the parameters of a model to the observed data. This “fitting” approach is criticized by
some [69], but it underlies the whole field of machine learning and has led to many success
stories, including AlphaFold itself. The usefulness of such predictions is that they can spare
researchers from performing complex or expensive experiments. It goes without saying
that any prediction should undergo experimental validation before being trusted. The same
is true for other types of analysis, including pure descriptive studies: evaluating claims
from multiple perspective is always a good thing. Modelling is another point of view that
sometimes can be useful. Predictive modelling serves as an additional perspective that can
in many cases provide valuable insights.

In modelling, one of the primary objectives is the identification of the most important
entities in a given system and the description of their interactions. In its essence, a model
can be as simple as drawing a schematic diagram on a piece of paper. But the real power
comes when the entities and interactions are quantified mathematically, which enables the
application of quantitative reasoning to derive meaningful insights and predictions. As
Phillips [72] argues, quantitative data demands quantitative reasoning, and data in biology,
from high-throughput sequencing to imaging, is becoming increasingly quantitative. A
quantitative mindset is just another tool in the scientist’s belt, which can lead to better
explainability and predictability of biological systems. In this thesis, I apply these principles
to develop a model of the translation elongation cycle in chapter 4.

1.5 Aims of this thesis

In this thesis, I report the work I have done with M. pneumoniae, which leverages new data
and computational tools that recently became available. This work is going to be multidisci-
plinary, reflecting my mixed background and interests. In chapter 2, in a tight collaboration
with Rasmus K. Jensen (a post-doctoral researcher in the Mahamid group), I use structural
bioinformatics to annotate the function of proteins forming a newly-discovered dome-
shaped membrane complex that is prominently visible in the cryo-ET data. In chapter 3,
drawing from lessons learned in the previous chapter for improving functional annotation,
I aggregate and harmonize almost all known data about M. pneumoniae, design interactive
visualizations to explore them, and develop a workflow based on structural homology
at the domain level to greatly speed up the annotation of the still unknown part of the
proteome. Finally, in chapter 4, I develop a kinetic model of the translation-elongation cycle
from static snapshots obtained by cryo-ET and implement a method for the estimation of
the unknown transition rates from cryo-ET steady-state distributions and biochemical data
in a different organism.
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2 Phylogenetic analysis of a family of hitherto

uncharacterized membrane proteins

assembling into a dome-shaped complex

2.1 Introduction

cryo-ET (section 1.2) has emerged as a powerful technique in structural biology, particularly
for the visual exploration of life at different scales. Since this method preserves biological
samples in their native state by embedding them in vitreous ice, it is particularly suitable
for the visualization of large complexes and molecular interactions. In bioinformatics, some
of the biggest breakthroughs were enabled by switching from targeted, hypothesis-driven
methods to unbiased, shotgun approaches. For example, consider mRNA quantification.
The targeted approach would be a traditional microarray, which contains a predefined
number of probes, thereby limiting the analysis to only those sequences that are present in
the array. On the other hand, RNA shotgun sequencing (RNAseq) is an unbiased approach,
since all the RNA is sequenced. Another example is metagenomics. Here, the targeted
approach would be the isolation of pure bacterial cultures consisting of one microorganism
only, whereas the metagenomic approach is based on pooling all the DNA from a sample
and trying to reconstruct its composition later on. cryo-ET stands in a similar position
compared to traditional structural methods like X-ray crystallography: we don’t just look
at one molecule or complex in isolation, we look at everything that is in a cell, including
therefore the native context. The challenge, then, is to infer the “molecular sociology” from
what we can see in the tomograms [74].

As we have seen, this is especially true for M. pneumoniae, since the whole cell can in
principle fit in a single 3D tomogram acquired at high resolution (original pixel size of
1Å–2Å) without the need for sample milling. However, one of the major difficulties is the
identification of cellular components and macromolecular complexes from the images. The
visual recognition of molecular complexes from the noisy tomograms is indeed a difficult
skill to master. Even with the help of template matching [76] or deep-learning segmentation
approaches [39], it is still impossible to identify all of the cell’s molecules. First, for small or
low-abundant molecules, the signal-to-noise ratio is still too low; second, even for some of
the biggest complexes, there are no suitable templates. Nevertheless, the visual exploration
of tomograms can still be a fruitful endeavor. The starting point for the project described
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Figure 2.1: Top: slice of a tomogram of
M. pneumoniae highlighting an interesting
and uncharacterized membrane protein
complex, often highly abundant near the
attachment organelle (AO). This figure also
illustrates that a single cell can almost fit in
the field of view of the electron microscope.
Moreover, it shows how difficult it is for the
untrained eye to identify molecules in the
tomograms. Although some of the bigger
structures such as themembrane, the attach-
ment organelle, and ribosomes are easily
spotted, many macromolecular assemblies
require sophisticated methods such as tem-
plate matching or neural-networks. A com-
prehensive retrieval of the particles of inter-
est can only be achieved by a combination
of automated tools and manual curation.
Bottom: density map of the dome complex
reconstructed by subtomogram averaging.
Figure from Jensen et al. [75] (our preprint
on bioRxiv).
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in this chapter was the spotting of a large membrane complex located at the outer cell
surface in some of the M. pneumoniae tomograms (see fig. 2.1). The complex resembled a
large dome or cage, and it showed pseudo 3-fold symmetry, with a symmetry-breaking
transmembrane component. It was observed that this complex was relatively abundant,
with a count per cell of around 40 particles. Moreover, in some instances, ribosomes were
found in close proximity to these complexes, together with the Sec-translocation machinery
(one of the most important extracellular transport systems in bacteria [77]). In cells treated
with chloramphenicol, an antibiotic that binds to the ribosome and blocks protein synthesis,
the number of ribosomes interacting with the unknown complexes was noticed to increase.
Besides these facts, all gathered from the visual exploration of the tomograms, nothing was
known about the nature of the complexes. The biggest question concerned the function
of the extracellular dome. The rest of this chapter is dedicated to how I helped identify
some of the proteins in the complexes, finding out their likely function, and analyzing
their evolutionary history. This work was done in collaboration with Rasmus K. Jensen, a
post-doctoral researcher in the group of Julia Mahamid, with contributions from Chistian J.
Somody, PhD student in the group of Peer Bork.

2.2 The major dome proteins (MDPs): MDP436, MDP444, MDP489

As a first step to try and identify the proteins of the extracellular dome, Rasmus Jensen
performed a membrane-shaving experiment. This involved using a protein cleavage agent
(either trypsin or proteinase K) to break off the extracellular portion of membrane proteins,
followed by peptide quantification in the supernatant bymass-spectrometry. The abundance
of the peptides obtained from the treated culture were compared with those obtained from
a control culture where the cleavage agent was not added. Secreted proteins shouldn’t
change their abundance compared to the control, but membrane proteins are expected
to increase after introducing the cleavage agent. This initial experiment generated a list
of candidate proteins, which were then manually curated and filtered. This left only 113
compatible proteins.

Shortly after the membrane shaving experiment, in the summer of 2021, the open-source
version of AlphaFold2, which had just won the CASP challenge (see section 1.3), was
released. AlphaFold often achieves an accuracy comparable to experimental methods such
as X-ray crystallography, and indeed it proved an invaluable tool for this project. Using
the AlphaFold2 software, it was possible to obtain structure predictions for all 113 candi-
date protein. Subsequently, Rasmus Jensen used PowerFit [78], a software that determines
the optimal placement of a protein structure inside a cryo-ET density by performing an
exhaustive cross-correlation search of the three translational and three rotational degrees
of freedom of the model in the density. From this rigid-body fitting analysis, three proteins
stood out: MPN436, MPN444, andMPN489. At that time, they were completely uncharacter-
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Figure 2.2: Cross-links involvingMDP436, MDP444, andMDP489 (left to right). Screenshot
from MycoWiki [83].

ized lipoproteins, only showing sequence similarity to other proteins of unknown function
in M. genitalium. Based on their sequence features, they were annotated as membrane
lipoproteins. According to InterPro [79, 80], they were known to harbor a PFAM domain
of unknown function, DUF3713 [81] and a few disordered regions. This domain is only
present in the Mycoplasmoidaceae family, and the proteins in this group range from 92 to
1225 amino acids long. There is one fully conserved residue, S, which could be functionally
important. AsM. pneumoniae is clinically relevant, its infections were also investigated from
the medical point of view. zhang_2016, after analyzing several strains, found that these
three lipoproteins are hypervariable, suggesting a possible role in the evasion of the host’s
immune system. Although these proteins are present in the STRING database [82], no
physical interactions are reported for them.

Other information about these proteins can be extracted from the literature. In particular,
an in-cell cross-linking experiment [21] found several interactions involving the major
dome proteins, as reported in fig. 2.2. Proteomics studies determined the per-cell copy
numbers of these proteins: 57 for MPN436, 48 for MPN444, and 48 for MPN489 [83]. A
transposon insertion screening [84] identified them as essential, meaning also that knock-
out experiments were out of the question as they would kill the cells. Furthermore, these
three proteins are part of a paralogous group of 9 proteins in M. pneumoniae: MPN436,
MPN442, MPN444, MPN485, MPN439, MPN438, MPN440, MPN437, MPN489. Table 2.1
summarizes other properties of these proteins that can be extracted from their sequence,
and fig. 2.3 shows their sequence identities.

Given these data, the goals of the project were two: identifying the remaining members
of the complex, and functionally characterizing the proteins.

2.3 Detection of remote homology with PrsA using hhblits

The first approach I tried was to use BLAST+ [85] and HMMER [86] against several refer-
ence databases to look for homologous proteins. The reference sequence databases included
NCBI’s non-redundant database (all non-redundantGenBankCDS translations+PDB+Swis-
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Figure 2.4: Proportion of MAGs in which the MDPs are found, relative to the total number
of MAGs from each environment.

sProt+PIR+PRF, excluding environmental samples fromWGSprojects), theUniProtKB/Swis-
sProt database [87], and the Bork group’s ownnon-redundant species-clustereddatabase [88].
However, no hits besides the already known uncharacterized proteins in the Mycoplas-
moidaceae family were reported. I also searched for these proteins in the SPIRE database [47],
a large pool of annotated metagenomic sequences. Although the hits were also unchar-
acterized, we could perhaps find some information by looking at the environment from
which the samples were collected. This analysis showed that the three proteins are mostly
found in the digestive, respiratory, and reproductive tracts of animals, as well as in some
hydrotermal vents (fig. 2.4). These are typical environments where Mycoplasmas are found,
so, if anything, it was just a confirmation that these genes are mycoplasma-specific. Rea-
soning that a profile-based search tool would be better suited to look for remote sequence
similarity, I turned to another sequence search tool: the HH-suite [89].

Profile-based sequence similarity tools like PSI-BLAST [90] and HMMER [86] increase
the sensitivity of sequence searches by using a probabilistic representation of a group of
related sequences [91]. This representation can be either a positional score matrix (for PSI-
BLAST) or a hidden Markov model (for HMMER). These methods capture the conserved
features of sequence families, while being relatively tolerant of insertions and deletions.
While PSI-BLAST and HMMER are designed around the comparison between profiles and
sequences, the newer HH-suite goes one step further by comparing profiles against profiles.
Since profiles encode more information than single sequences, the HH-suite tools often
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Table 2.2: Hits annotated as “Foldase protein PrsA”. The results were obtained using HH-
suite version 3.3.0 against the UniRef30_2021_03 [92], a database of clustered and annotated
sequence profiles. Two iterations were performed, and the top 250 hits with a probability
score of at least 20% were retained.

Query Prob. E-val Score A.L.a Id b Simc UniRef100 ID Taxon

MPN436 86.57 1.50 59.28 103 26% 0.362 A0A022N5X4 Enterococcus mundtii CRL35
MPN436 82.15 3.60 55.82 71 18% 0.245 A0A061C0Y0 Lactobacillus delbrueckii
MPN436 64.51 20.00 50.14 74 15% 0.192 A0A023CS66 Parageobacillus genomosp. 1
MPN444 91.24 0.43 60.45 106 13% 0.227 A0A0D6UDC7 Lactobacillaceae
MPN444 90.08 0.56 62.65 113 12% 0.216 A0A061C0Y0 Lactobacillus delbrueckii
MPN444 86.51 1.50 59.61 106 14% 0.288 A0A022N5X4 Enterococcus mundtii CRL35
MPN444 79.50 4.80 55.50 119 13% 0.190 A0A011RL10 Alkalibacterium sp. AK22
MPN444 73.80 9.30 53.24 78 15% 0.213 A0A023CS66 Parageobacillus genomosp. 1
MPN489 87.78 1.00 60.39 109 14% 0.182 A0A022N5X4 Enterococcus mundtii CRL35
MPN489 78.93 5.50 54.38 102 17% 0.284 A0A061C0Y0 Lactobacillus delbrueckii
MPN489 78.45 5.40 54.75 118 18% 0.299 A0A023CS66 Parageobacillus genomosp. 1

aAlignment length
bPercent identity
cSimilarity

outperform the others, especially for retrieving homologous sequences with low similarity
(in the range of 20%-30% sequence identity).

Using hhblits, an HH-suite tool optimized for speed, I was indeed able to find some
significant hits that had not been previously reported. Table 2.2 shows the hits annotated as
“Foldase protein PrsA” for the three MDPs and some methodological details. Although the
E-values are relatively high, the hhblits-computed probability of homology is close to 90%
in many cases, and PrsA is the highest-scoring target excluding uncharacterized proteins.
This provided a strong indication that PrsA deserved further investigation.

PrsA is a bacterial lipoprotein that plays a significant role in protein folding and se-
cretion processes [93]. It is predominantly found in Gram-positive bacteria, where it is
anchored to the inner membrane and assists in the proper folding of secreted proteins,
thereby ensuring their stability and functionality. PrsA contains two distinct domains: the
surA domain and the PPIC domain, each contributing to its chaperone activity. The surA
domain is homologous to the SurA protein of Escherichia coli. This domain is responsible
for recognizing and binding to the substrates of PrsA. The PPIC (peptidyl-prolyl cis-trans
isomerase) domain, on the other hand, is responsible for catalyzing the isomerization
of proline residues, supporting protein folding. This was highly suggestive of a putative
function for the uncharacterized M. pneumoniae proteins, since they are also membrane
lipoproteins and could reasonably be involved in secretion and/or protein folding, also in
light of their interaction with ribosomes and the Sec-translocation machinery.
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2.4 Confirmation of the homology of key domains by FoldSeek and

DALI

In order to confirm the homology, we reasoned that we should look at the structure more
in detail. While the AlphaFold-predicted structures for all M. pneumoniae proteins, and
the database of UniProt structures had recently been released, we were lacking a tool to
efficiently perform structure-based similarity searches. Although it has been possible to
align two structures and calculate the TM-score for a long time, the process was too slow
to be used with the AlphaFold UniProt database. Fortunately, around that time, FoldSeek
became available [94]. FoldSeek is designed to compare large sets of protein structures
quickly and accurately. It transforms complex 3D protein structures into simpler sequences
using a special 3D interaction (3Di) alphabet, which captures how different parts of the
protein interact in space. This allows FoldSeek to use fast sequence alignment methods,
similar to those used for DNA, to find similarities between proteins. This approach makes it
thousands of times faster than older methods like DALI [95, 96] or TM-align [97], while still
being sensitive enough to catch important structural similarities. The tool can be run either
in local- or global- alignment mode, and it is particularly effective with globular proteins.
DALI (Distance-matrix ALIgnment) is another computational tool used for comparing pro-
tein structures [96]. It operates by constructing distance matrices that capture the pairwise
distances between all residues in the protein structures being compared. By aligning these
matrices, DALI can detect structurally similar regions and suggest evolutionary relation-
ships. In the end, these two tools were instrumental in confirming the homology between
the MDPs and PrsA.

I started by developing a workflow using hhblits and FoldSeek designed to increase the
reach of our similarity search, hoping to find distantly related proteins that did have a
functional annotation. hhblits gave us some unexpected hits for the three main proteins
of interest. These hits can be seen as the neighbors of the MDPs in sequence space. With
the idea of expanding the set of hits one layer further, I developed a workflow that runs
FoldSeek on the hhblits hits, finding their neighbors in structure space. The final set of
FoldSeek hits represents the neighbors of the neighbors of the original queries, and although
it potentially contains many false positives, this approach could be useful to extend the
homology search as far as possible from the original query, while still maintaining a high
degree of either sequence or structure similarity. Developing this workflow presented some
interesting technical challenges, so I will briefly describe it here (but see also section 3.9 in
chapter 3 for a more sophisticated and successful workflow). Indeed, the “hits” from hhblits
are not simple sequences, but hiddenMarkov model (HMM) profiles generated by a cluster
of related sequences. Each profile is generated by a multiple sequence alignment (MSA) of
the sequences in the cluster, and one sequence is chosen as the representative of the cluster.
Thus, if the hhblits hit was, say, UniRef100_A0A023CS66, and the alignment with the query
started at position 30 and ended at position 100, I would perform the following steps:
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Figure 2.5: Top 50 hhblits hits for MPN444. The plot shows the local alignment between
MPN444 and the target proteins: the 𝑥-axis represents the coordinates along MPN444, and
each segment represents the extent of the alignment. Proteins with a given name are labelled
with text. The segments are colored by homology probability, as calculated by hhblits. The
encircled targets fall in the last third of the protein, denoting the potential presence of a
structured domain.

• Retrieve the full MSA for cluster UniRef100_A0A023CS66;
• Map the coordinates of the alignment, 30–100, to the corresponding coordinates of

the representative sequence (say, 20–70, due to gaps in the alignment);
• Fetch the PDB structure for the representative from the UniProt AlphaFold database;
• Extract the hit residues, 20–70, from the PDB;
• Submit the filtered structure to FoldSeek.

For this workflow,we usedHH-suite v3.3.0 against UniRef30_2021_03 [92], and FoldSeek v3-
915ef7d against the Alphafold_Uniprot50 database (UniProt predicted structures clustered
at 50% identity) [56, 60], in both cases with the default significance thresholds for inclusion.
The Nextflow [98] file for the workflow is available on GitHub (fmarotta/netcutter).

In the end, the workflow didn’t succeed in procuring more hits than those we already
knew. However, looking at where the hits for MPN444 fall (fig. 2.5) suggested that the
homology with PrsA was limited to the first third of the protein. On the other hand, a few
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Table 2.3: Manually defined domains in the three main MDPs. Six domains were identified
in each protein. The table shows the residue ranges of the domains.

MPN436 MPN444 MPN489
Domain 1 54–159 53–160 56–166

Domain 2 159–222, 574–627 161–228, 511–570 156–222, 543–605,
641–650

Domain 3
224–233, 273–285,
306–360, 471–478,
515–535

229–239, 277–369,
466–510

222–233, 281–293,
328–384, 455–462,
515–531

Domain 4 818–937 759–884 856–915, 957–992

Domain 5 955–962, 1037–1063,
1162–1179

903–913, 1035–1059,
1211–1245

1012–1020, 1119–1149,
1235–1245, 1272–1278

Domain 6 1065–1143 1105–1167 1163–1232

Figure 2.6: A The six expert-curated domains in MPN444. B Domain architecture of the
three MDPs. Figure made in collaboration with Rasmus Jensen.

high-scoring hits fell in the last third of the protein (encircled in red in fig. 2.5). This could
potentially indicate the presence of another structured domain towards the C-terminus of
the protein.

Based on these results, Rasmus Jensen made a more refined analysis using FoldSeek and
DALI. Leveraging his expertise in structural biology, he manually identified six domains in
each of the MDPs (table 2.3 and fig. 2.6). Importantly, these domains were not necessarily
contiguous in the sequence of the protein, but skipped the disordered regions. Then, each
of these cut-out domains was submitted individually to FoldSeek and DALI. The results
showed that domains 1 and 4 were significantly similar to a surA domain, while domains 3
and 6 were significantly similar to a PPIC domain. Both these domains are found in PrsA.
Interestingly, the domain architecture (fig. 2.6 B) also suggested an internal duplication as
a possible origin for the MDPs.
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Figure 2.7: A FATCAT alignments between the N- and C-terminal surA domains of each
MDP. B Corresponding FATCAT metrics including: p-value, root mean squared deviation
(RMSD), number of twists for the flexible alignment, and overall FATCAT score. Figure
made in collaboration with Rasmus Jensen.

2.5 Internal duplication of the MDPs revealed by FATCAT

TheMDPs are large proteins, consisting of around 1300 amino acids each. I had long hypoth-
esized that they could have arisen from a duplication, also given that the two halves of the
protein structures look similar. The domain architecture consisting of two surA-PPIC blocks
seemed to go in the same direction. To perform amore quantitative analysis, I used FATCAT
(Flexible structure AlignmenT by Chaining Aligned fragment pairs allowing Twists), an
algorithm designed to align protein structures by identifying and optimizing a series of
aligned fragment pairs (AFPs) between two proteins [99]. It employs a dynamic program-
ming approach to iteratively refine the alignment, accounting for flexibility through the
introduction of twists, which are small, localized conformational changes that accommodate
structural variations. FATCAT enhances the detection of structural similarities by allowing
slight deviations from rigid-body alignment, which is just what we needed since the MDPs
in M. pneumoniae are interspersed with disordered fragments that do not contribute to the
overall structure of the domains.

We submitted the N-terminal and C-terminal surA domains of each protein for compar-
ison to the FATCAT web server. We tried both flexible and rigid alignment. The results,
shown in fig. 2.7, showed that the N- and C-terminal regions are highly similar, lending
support to the hypothesis that a duplication of PrsA led to the MDPs.

2.6 Phylogenetic tree of the MDP family of proteins and their

distant homologs

Although we are now reasonably confident about the similarity between the MDPs and
PrsA, we cannot be certain that the original function is conserved. Some hints towards
the conservation of function emerged when we discovered an interesting crystallographic
and enzymatic study of PrsA in B. subtilis by Jakob et al. [93]. This article investigates the
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Figure 2.8: C: Superposition of the SurA domains from B. subtilis (gray) andM. pneumoniae
(teal). D The PPI domains from B. subtilis (gray) and M. pneumoniae (salmon), and their
superposition, highlighting the key active residues. Figure made in collaboration with
Rasmus Jensen.

structure of the peptidyl-prolyl cis-trans isomerase (PPI) domain of PrsA, which belongs
to the Parvulin family. The domain was shown to harbor a few active residues, including
His200 and Asp155, supported by other conserved residues such asMet173, Phe177, Thr195,
Tyr197, and His123. Rasmus Jensen extracted the corresponding domain from MPN444
and superimposed it to the PrsA domain from B. subtilis, showing that most of the key
residues, including the histidine and aspartate, are present fig. 2.8. This suggested that the
original isomerase functionmight be retained inMPN444, but the result would be evenmore
compelling if these residues were conserved inmultiple proteins. Furthermore, the presence
of nine paralogs in M. pneumoniae signals an interesting evolutionary history for this family
of proteins. Thus, as a next step, I extended the analysis from M. pneumoniae to the whole
Mycoplasmoidaceae family, with the goal of investigating how widespread and conserved the
catalytic residues are. I built a phylogenetic tree and performed a reconciliation analysis to
infer the most likely duplication and loss events that led to the copy-number distribution of
the paralogs across mycoplasmas. The multiple sequence alignment (MSA) also revealed
that some key catalytic residues are conserved in at least one of the paralogs in every
mycoplasmatota species except for the Ureaplasma genus.

Phylogenetic tree reconstruction consists in the inference of evolutionary relationships
among organisms or genes, represented as branching diagrams known as phylogenetic
trees [100]. Each branching point indicates divergence from a common ancestor, while the
leaves represent extant entities. Typically, phylogenetic trees are inferred from multiple
sequence alignments, using specific mathematical models of the evolution of biological
sequences. The fundamental principle is that the degree of similarity between biological
entities is indicative of the recency of their shared ancestry. There are many methods for
inferring phylogenetic trees, including parsimony, maximum likelihood, and Bayesian
methods. Here, I have only used statistical models based on maximum likelihood, i.e.
methods that try to find the most likely evolutionary history given the current observed
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data.
It is possible to build trees either at the species level or at the gene level [101]. Due to

events like duplications, losses, and horizontal gene transfers, the evolutionary history of a
gene does not necessarilymirror that of the species [102]. For the same reason, it is important
to use single-copy marker genes when reconstructing species trees [26]. A reconciliation
analysis can sort out the discrepancies and infer the evolutionary events that gave rise
to the extant occurrences of genes across species. This process involves “embedding” the
gene tree within the species tree, recognizing events like duplications, losses, and lateral
transfers, again using probabilistic models or optimization methods [103]. Gene-species
tree reconciliation is an ideal tool to investigate the evolutionary history of the MDP family.

The first step was selecting the species. I decided to restrict the analysis to the Mycoplas-
moidaceae family, since theMDP genes are only found there. This family contains 24 genomes
in NCBI RefSeq [104]. In light of the remote homology with PrsA, I also included four
outgroup species which are among the closest relatives of M. pneumoniae, are very well
studied, and contain the PrsA gene: E. coli, B. subtilis, L. cremoris, and S. pneumoniae. An
outgroup is a more distantly related group of organisms that serves as a reference group
when determining the evolutionary relationships of the ingroup, the set of organisms
under study [105]. Outgroups are important for the rooting of phylogenetic trees, hence
for assessing the direction of the flow of time in an otherwise time-reversible model [106].
The list of genome accessions used for the species tree is included in table A.1. For each of
these genomes, NCBI already provides the annotation through the prokaryotic genome
annotation pipeline (PGAP) [107], so I just downloaded the annotated protein sequences
as well. I used the NCBI datasets command-line utility to download the genomes.

The next step was building the species tree. I could have used a pre-built one, such as
the one generated by the Gene Taxonomy Database (GTDB) project [26], but that tree uses
the FH strain of M. pneumoniae, whereas we work with the M129 strain. So, for consistency,
I decided to build the tree from scratch, using however the same methods as the GTDB.
GTDB aims to standardize bacterial taxonomy by relying on genomic sequences to classify
the species. At a high level, the process used by GTDB to build the phylogenetic tree of more
than 60.000 bacterial genomes is as follows. First, a set of 120 marker genes is chosen such
that they are highly conserved and present in single-copy in the highest possible number
of genomes. The sequences of the corresponding proteins are extracted, concatenated,
and aligned using HMMER [86]. Finally, the tree is built using FastTree [108], which is
based on an approximate maximum likelihood method. Conveniently, GTDB provides a
software toolkit, GTDB-Tk, to reproduce the construction of their database [109]. I used the
command gtdbtk identify to extract the reference 120 single-copy marker genes from the
downloaded genomes, then gtdbtk align to produce a multiple sequence alignment for
each gene and concatenate them into a single alignment. I then used FastTree v2.1.11 to
construct the phylogenetic tree [108], with parameters –lg –gamma. Finally, the tree was
rooted with the ape package in R, using E. coli as the outgroup, as it is known to be distantly
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related to bacilli and mycoplasmas.
Subsequently, I needed to build the gene tree and perform the reconciliation. TheGeneRax

software can perform both steps at the same time [102], but it needs an MSA as a starting
point. I used the jackhmmer program fromHMMER version 3.3.2 to extract the homologous
genes to MPN436, MPN444, and MPN489 in the genomes of the Mycoplasmoidaceae family.
Jackhmmer was run separately for each protein, then the targets were combined in a single
list. To these, PrsA proteins from the outgroups were added. MPN436, MPN444, and
MPN489 are large proteins (for prokaryotic standards), consisting of around 1300 amino
acids. On the other hand, PrsA is relatively short, around 400 amino acids. Furthermore,
PrsA aligns well only to the N-terminal region of theMPN proteins. The difference in length
makes it challenging for alignment tools like MAFFT [110] and MUSCLE [111]. Thus, the
N-terminal and C-terminal regions were aligned separately. For the N-terminal region, I
extracted residues 1-941 of MPN444, aligned all other proteins (including PrsA) to this
subset of residues, and discarded the segments that aligned beyond residue 941 of MPN444.
For the C-terminal region, I used the segments that were excluded from the N-terminal
alignment. The two alignments were then concatenated row-wise. All alignments were
made with MAFFT version 7.520 using the linsi option, which is supposed to give the
most accurate results [110]. These manual steps were motivated by prior knowledge that
the structures of the SurA and PPI domains align at specific residues (fig. 2.8).

Trimming the alignment by removing columns with too many gaps can improve the
quality of the phylogenetic tree reconstruction [112]. I used trimAL version 1.4.1 with the
--automated1 option [113]. trimAL can use a variety of algorithms to decide which columns
to omit. The gappyout algorithm uses the distribution of gaps in the alignment to choose a
cutoff and remove the columns with a higher proportion of gaps. The strict method is the
same as gappyout, but it also removes columns that are redundant because they are similar to
one another. The automated1method uses a heuristic to choose between strict and gappyout,
and is optimized for reconstruction of phylogenetic trees with the maximum likelihood
method. The trimmed alignment was given as input to GeneRax v2.0.4, using LG+G
as substitution models and parameters --per-family-rates -r UndatedDL [102]. After
building the gene tree using a maximum likelihood method, GeneRax uses a joint model
of sequence substitution and duplication/loss to evaluate the alternative reconciliation
topologies, using subtree pruning and regrafting (SPR) to explore the tree space.

The final outcome is a reconciliation between the gene tree and the species tree, repre-
senting the most likely sequence of duplication, speciation, and loss events that can explain
the current copy-number distribution of the genes across the species (fig. 2.9). Although
the gene names are not shown in the plot, my analysis revealed, for example, that among
the nine paralogs in M. pneumoniae, three are the “long” isoforms MPN436, MPN444, and
MPN489; one, MPN485, likely arose from a duplication of MPN489, and five (MPN437,
MPN438, MPN439, MPN440, and MPN442) likely arose from repeated duplications of
MPN436. This would be consistent with the genome loci occupied by these proteins. More
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Figure 2.9: Left: the evolutionary history of PrsA and its relatives in the Mycoplasmoidaceae
family. The black outline indicates the species tree, and the colored lines indicate the proteins.
The lines are colored to indicate whether the catalytic residues are conserved (orange) or
not (blue). Right: corresponding multiple sequence alignment of three selected regions:
306-351, 535-541, and 881-891, highlighting the conservation of the active residues.
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Figure 2.10: Density of the dome complex obtained by subtomogram averaging and protein
structures obtained by AlphaFold2. The figure shows that the structures fit well and can
explain the density. In some regions, the resolution of the density is high enough that the
individual alpha-helices can be recognized.

interestingly, examining the multiple sequence alignment at the positions corresponding to
the putative active residues in MPN444, we notice that these residues are conserved from
PrsA in all species possessing homologs of the MDPs, with the exception of the Ureaplas-
mas. This provided strong evidence of selective pressure to maintain the function of the
PPI domain. When a species contains multiple paralogous copies of the proteins, at least
one of the copies has the active residues, raising questions about whether multiple different
proteins are needed to assemble the dome complex, rather than just one as a homo trimer.

2.7 Detection of an atypical thioredoxin domain in MPN523

Another challenge in the project was the identification of the other components of the dome
complex. Indeed, MPN436, MPN444, and MPN489 form the extracellular part of the dome,
but the complex also has a transmembrane part (fig. 2.1). The recently acquired cross-
linking dataset [21] was again instrumental for identifying the proteins that occupy the
transmembrane part. MPN444 and MPN489 were both cross-linked to SecDF (MPN396),
which is part of a large prokaryotic protein export complex. In most prokaryotes, the
complex includes SecA, D, E, F, G, H, Y, and YajC. In B. subtilis andM. pneumoniae, however,
SecD and SecF are fused in a single peptide [114]. Further analysis (from Rasmus Jensen
and Liang Xue) of the cryo-ET densities of the dome complex revealed transmembrane
structures that can be attributed to SecDF, SecY, SecE, and SecG (fig. 2.10). Moreover, an
analysis of a cryo-ET dataset acquired after treating the cells with chloramphenicol showed
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Figure 2.11: D Structure alignment between MPN523 (orange) and a thioredoxin from
Aeropyrum pernix, the top FoldSeek hit. E Detail of the classic CXXC motif in the thiore-
doxin and the large disordered insertion in MPN523. F Phylogenetic tree of the MPN523-
thioredoxin family, showing the presence/absence of the CXXC residues.

that SecA also interacts with the dome complex through SecDF from the intracellular side.
Chloramphenicol is known to inhibit protein synthesis by blocking the ribosome, and
tomograms acquired in such condition showed an enrichment in ribosomes interacting
with the dome complex. This observation aligns with the known function of SecA, which
binds to the nascent peptide as it exits the ribosome. SecA guides the peptide, along with
the ribosome, towards the rest of the export complex, promoting its secretion. SecA is visible
also in the untreated cells, but its resolution becomes higher in the chloramphenicol-treated
data set. The interaction between SecA and the dome complex via SecDF suggests a direct
role in the translocation process, although the dome complex is clearly different from the
classic prokaryotic Sec complex.

An additional finding in the cross-linking data set was that one of the partners ofMPN436
is MPN523, another uncharacterized protein. Again, a cursory HMMER search revealed no
significant hits besides other uncharacterized proteins. However, after removing a large
disordered insertion and submitting a clean structure to FoldSeek, we found that it bears
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Figure 2.12: Gene-species tree reconciliation for the thioredoxin-MPN523 family.

significant similarity with a thioredoxin-like protein containing the characteristic CXXC
motif typically found in Dsb chaperones (see fig. 2.11 D and E, which show the similarity
between MPN523 and thioredoxin). However, MPN523 does not have the CXXC motif,
suggesting that it may have lost the thioredoxin function. At first, I tried to obtain an
HMM profile from the FoldSeek hits with probability score greater than 50%. However,
the resulting multiple sequence alignment had too many gaps and was of poor quality.
Thus, I resorted to another structure similiarity search tool: DALI [96]. I submitted the
structure of MPN523 (without the disordered region) to the DALI webserver, and run a
search with default parameters against the protein data bank (PDB). The result was a set
of 88 pairwise alignments between MPN523 and thioredoxins from PDB. These pairwise
alignments were merged into a single multiple sequence alignment using the residues
of MPN523 as reference. From the alignment, I used hmmbuild and hmmsearch from
HMMER v3.3.2 to build a profile and search for hits among the same genomes used in
the phylogenetic analysis for MPN436, MPN444, and MPN489. This sequence database
included 24 genomes from the Mycoplasmoidaceae family plus the four outgroups: E. coli,
B. subtilis, L. cremoris, and S. pneumoniae. hmmsearch found considerably more hits, and,
importantly, it captured both conventional thioredoxins (such as Dsb) and the relatives
of MPN523. It should be pointed out that M. pneumoniae has one annotated thioredoxin,
TrxA (MPN263). This new HMM profile captures both TrxA and MPN523, recognizing a
similarity that was previously undetected. Figure 2.11 F shows that the proteins without
the CXXC motif all belong to one clade, except for one protein in E. coli, which is unrelated.
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Figure 2.12 shows the reconciliated phylogenetic tree of this thioredoxin family. One of the
benefits of a reconciliated tree is that it immediately shows whether two genes are orthologs
or paralogs [115]: if the node that split them most recently is a speciation event, they are
orthologs, whereas if the node is a duplication event, they are paralogs. The reconciliation
was performed as described in section 2.6. Frommy analysis, we can conclude that MPN523
is orthologous to DsbD in E. coli. Moreover, the split between MPN523 and TrxA happened
before the divergence between E. coli and the bacilli/mycoplasmas clade.

2.8 Co-occurrence of the MDPs across species

One of the methods to investigate the function of unknown proteins is to study their ge-
nomic neighborhood conservation and co-occurrence [82, 116]. The biggest challenge in
this case was the severe lack of significantly similar proteins in reference databases. We tried
several state-of-the-art tools and services, including STRING [82], EggNOG [117], fast.ge-
nomics [118], and MGNIFY [46], but none of them was helpful as they couldn’t recognize
any similar proteins to theMDPs. Eventually, I came across NetCutter (Müller andMancuso
[119]) and immediately liked its approach. Although the analysis was inconclusive, like
many others that I performed, I will still describe it here for posterity.

NetCutter is designed around containers and entities, aiming to find groups of entities
that occur in the same container more (or less) often than expected by random chance. For
example, for a gene co-occurrence analysis, the orthologous classes would be the entities,
and the genomes would be the containers. In order to perform a statistical analysis of
co-occurrence, we need to know the probability of occurrence of each orthologous class
individually in each genome according to a null distribution. NetCutter introduced a
novel approach based on edge-swapping to obtain the null distribution. The problem is
modelled as a bipartite graph where an entity is connected to a container if it is present
in that container. The authors investigate different methods to randomize the graph, and
show that a strategy where the containers of two items are swapped, provided that the
containers didn’t already contain the other item, is a good approximation for the null
distribution obtained by generating a complete permutation set of the bipartite graph.
Thus, the process for computing the null distribution involves repeatedly swapping the
edges in this way, counting how many times an entity occurs in each list, and dividing
that number by the number of randomizations. This gives an estimate of the probability of
occurrence of each entity in the lists. Importantly, this randomization scheme preserves
the number of connections of each node, so it takes into account that some entities are
potentially connected to many more containers than other entities. Once the individual
occurrence probabilities are obtained, the co-occurrence probabilities under the null model
are computed using the Poisson-Binomial distribution [120], a variation of the Binomial
distribution which accounts for the fact that the containers have different numbers of items.
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The p-value for the observed co-occurrence is calculated using such distribution. Since the
reference implementation of NetCutter was only available as an old Java package and I
wasn’t able to make it run, I reimplemented the algorithm in an open-source R package,
which is freely available on GitHub.

I then set out to apply this method to find genes that co-occur with the dome complex
genes. I used the same set of genomes that I used in the phylogenetic analysis: the Mycoplas-
moidaceae family and four “outgroups” (see section 2.6). First, I identified the orthologous
classes by running an all-vs-all phmmer search (from HMMER v3.3.2). Proteins A and B
were connected in a graph using the following normalized score:

𝑆(𝐴, 𝐵)𝑆(𝐵, 𝐴)
𝑆(𝐴, 𝐴)𝑆(𝐵, 𝐵) (2.1)

where 𝑆(𝑋, 𝑌) is the score assigned by phmmer when 𝑋 is the query and 𝑌 is the target.
This normalization scheme produces a number between 0 and 1. The score of an HMMER
alignment depends on many factors, including the length of the proteins and the amino
acid composition. Dividing by the score of the alignment of the query with itself (𝑆(𝐴, 𝐴))
provides a normalized score that measures how close the actual hit (𝐵) is to the query.
Using both the scores of 𝐴 vs 𝐵 and 𝐵 vs 𝐴 is necessary because the scores will, in general, be
different, but we need a symmetric similarity measure. The edges of the graph are filtered
using a threshold of 1 × 10−4 on the normalized scores. Then, the Louvain algorithm [121]
as implemented in the R igraph package [122] is used to find clusters. Each cluster was
identified as an orthologous class.

I built the matrix of occurrence of orthologous classes in the genomes and applied
NetCutter, but, in the end, no meaningful enrichments were observed.

2.9 Discussion

Much of bioinformatics heavily relies on sequence similarity to propagate annotation, a prac-
tice rooted in the principle that orthologous sequences—those originating from a speciation
event—likely share similar functions. Lack of sequence annotation and fast evolutionary
rates make this process challenging. Recent advances, particularly the development of
AlphaFold (Jumper et al. [56], see also section 1.3), have revolutionized bioinformatics by
enabling high-accuracy protein structure prediction from the amino acid sequence alone.
This means that the same principle of annotation transfer through similarity can be trans-
lated from sequence to structure. Since structure is more conserved (and more directly
related to the protein’s function) than sequence [49], structure-based homology methods
have a great potential to expand the functional annotation of proteins.

This project started before tools like FoldSeek were available, and finding sequence
similarity proved extremely challenging. Despite my efforts to decompose the proteins’
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sequences into what we thought were their domains (similar to what PFAM does), the
number of hits didn’t increase. I attribute these challenges mainly to two factors: the rapid
evolutionary changes that characterized the birth of the Mycoplasma clade, and the fact
that structure is more fundamental than sequence.

Mycoplasmas are well-known for their rapid evolutionary rate [123, 31]. They are thought
to have diverged around 65 million years ago from the lineage of bacilli, clostridia, strep-
tococci, and lactobacilli [124]. This divergence was accompanied by dramatic changes
including extreme genome reduction and loss of the cell wall, likely as adaptations to the
parasitic, host-associated lifestyle. Moreover, Mycoplasmas have a different genetic code
from that of most other bacteria: one of the stop codons, UGA, actually codes for trypto-
phan. The loss of a stop codon, together with the rapid genome reduction and lifestyle
change, could have meant that many adjacent genes became fused into single proteins.
Consequently, the genome sequence has undergone substantial changes, making sequence
similarity searches more difficult.

Despite the success of sequence-based domains databases like PFAM [81], domains are
really structural entities, and trying to infer them from sequence alone does not work in
every case. This project provided a great example for this principle, since the structure was
instrumental in confirming the homology and the internal duplication. In order to find the
appropriate domains, we had to remove several “insertions”—bits and pieces that didn’t
alter the structure of the domain, but were interspersed within the sequence of the genes,
breaking the sequence continuity of the domains.

Without the help of cryo-ET, this complex would have been much more difficult to
identify and characterize structurally and functionally. Indeed, targeted approaches, while
excellent for investigating deeper something that we already know, are not suited to discover
something that we don’t already expect. On the other hand, the possibility of looking at
whole cells at such high resolution opens up the possibility of simply exploring what is out
there.

Our approach integrated advanced cryo-ET imaging with computational bioinformatics,
harnessing the predictive power of AlphaFold to enable structure-similarity searches across
protein databases. By combining these structural insights with functional characterization
and evolutionary analysis, we aimed to not only identify the proteins within the complex
but also elucidate their roles and origins.
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3 Aggregation, cleaning, and visualization of

M. pneumoniae data and development of a

web interface

3.1 Introduction

Due to the importance of M. pneumoniae as a model organism, as well as its medical rele-
vance, a wide array of data about this organism has been collected and published. Various
high-throughput “omics” experiments [125], including DNA sequencing, RNA sequencing,
mass spectrometry quantification of proteins, post-translational modifications profiling,
metabolic modelling, and regulatory network analysis. However, the heterogeneity and
fragmentation of these data poses a significant challenge for researchers aiming to conduct
integrated systems-level analyses. For someone starting a new project, even knowing what
is already available is not immediate and requires deep literature reviews. This motivated
me to create a unified, computationally accessible, and user-friendly framework that not
only aggregates these data but also enhances their utility through interactive visualization
and dynamic analysis tools. Such a framework would empower researchers to derive novel
biological insights, stimulate hypothesis generation, and accelerate discoveries.

A primary obstacle in utilizing M. pneumoniae data is identifying and accessing relevant
datasets. Data are often scattered across numerous publications, buried in supplementary
files, or presented in formats that are not amenable to computational analysis. For instance,
datasets embedded in PDF documents or graphical figures require labor-intensive manual
extraction or specialized software for data recovery. Even when data are available in tabular
form, they are typically static, lacking interactivity or searchability.

Existing databases and resources partially address this problem. Large-scale databases
such as UniProt [45] and InterPro [79] provide comprehensive annotation about existing
proteins and domains. BV-BRC [126] (formerly PATRIC) integrates several data modalities,
but many important M. pneumoniae data points from the literature are missing. Other re-
sources focused specifically onM. pneumoniae, also strive to aggregate different sorts of data
types. The literature mentions two websites: MyMPN [127] and Mycowiki [83]. MyMPN,
developed at CRG (Centre for Genomic Regulation) in Barcelona, is not accessible anymore.
Mycowiki, developed at the Universty of Goẗtingen, hosts data about protein annotation,
protein-protein interaction from cross-linking, gene expression across conditions, protein
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abundance across conditions, metabolic reactions, and homologous genes in different or-
ganisms. However, the data is not comprehensive, and exporting the data from the website
often doesn’t work as expected. For instance, the metabolic network is only available as an
SVG image, which is good for visual exploration, but prohibitive for someone who wants
to reanalyze the network using computational tools, which expect the network as a list of
edges in a CSV file, for example.

Thus, I decided to recreate a web-based resource that could address some of these
limitations. In particular, my guiding principles were as follows:

FAIR principles Data should be Findable, Accessible, Interoperable, and Reusable [128].
Data aggregation Collecting data from different resources and aggregating them in one

place makes exploration easier.
Interactivity Navigating across genes and across data modalities should be as easy as

possible.
Scalability and extendability The resource could be extended to other model organisms

for which similar data and analyses are available.

To achieve FAIRness, I strive to include data from all existing literature, allowing users
to easily discover what is available without the need for extensive literature searches and
reviews. Furthermore, I ensure that all data is downloadable in standard formats, such as
TSV (tab-separated values) or plain text files, ensuring compatibility with all bioinformatic
tools and allowing third parties to reproduce or extend the existing analyses. As regards
the aggregation of data, multiple sources often provide similar types of information. For
instance, protein annotation data is available from UniProt, as well as from resources
like eggNOG [129] and KEGG [130]. Additionally, all these sources, along with InterPro,
provide data on protein sequence domains from PFAM [81]. By aggregating data from these
diverse resources into a single platform, one can glance at the annotation and compare
them in a gene-centric way, without having to jump to multiple websites. Interactivity
is a key feature of this resource, enabling users to seamlessly navigate across genes and
data modalities. Often, the same analysis can be applied to different genes. By providing
an interactive tool that allows users to select and visualize specific genes, information is
conveyed much more efficiently than with a static table or figure. This interactivity allows
researchers to quickly obtain insights and make informed decisions based on the data.
The framework is also designed with scalability and extendability in mind. While initially
focused on a specific set of data, the resource is built to accommodate expansion to other
model organisms for which similar data and analyses are available. This flexibility ensures
that as new data becomes available or as research interests evolve, the resource can grow
and adapt to meet the needs of the scientific community.

By adhering to these guiding principles, my web-based resource aims to provide a
comprehensive, user-friendly platform that facilitates data exploration and analysis of
M. pneumoniae data. In the next sections, I will describe the different data modalities and
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Figure 3.1: Mycoboard genome viewer.

features that the website provides. A project to annotate the uncharacterized proteins
exploiting structure-based homology at the domain level will also be presented. Since the
initial idea was to develop a dashboard for Mycoplasma pneumoniae, I called it Mycoboard.

3.2 Genome annotation

The landing page for Mycoboard is a genome viewer. By default, it shows five tracks:
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) peaks and regions of
open chromatin, annotated CDS (protein-coding sequences), annotated transcripts and
non-coding RNAs, annotated operons and sub-operons, and transposon insertions from
different experiments. This arrangement is meant to give an overview of data that is re-
lated to the genome and can be associated with specific coordinates on the bacterium’s
chromosome. First and foremost, the annotation of known genes, operons, and transcripts
is highlighted. Second, data from experiments that measured DNA-binding proteins, chro-
matin accessibility, and transposon insertion sites can be conveniently displayed. Users can
navigate to specific coordinates or jump to a gene of interest through a panel on the left
(fig. 3.1).

The ChIP-seq experiment was performed in the landmarkwork by Yus et al. [19], with the
goal of reconstructing the gene regulatory network ofM. pneumoniae. ChIP-seq uses specific
antibodies to isolate DNA-associated proteins and sequence the bound DNA [131]. As such,
it provides insights into the binding sites of transcription factors, DNA polymerases, RNA
polymerases, and other DNA binding proteins that structurally support the chromosome.
The experiment identified 23 DNA-binding proteins, their binding sites, and the sequence
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Figure 3.2: Detailed view of the staircase-like decay in gene expression for Operon 2: from
gyrB to yabD, the color changes from yellow (high expression) to green (mid-low expres-
sion).

motifs that they recognize. Furthermore, Yus et al. [19] performed a DNase footprinting
assay [132], which identified 428 sites as “protected regions”, which usually correspond to
one or more of the ChIP-seq peaks. The DNase footprinting assay consists in treating cell
extracts with a DNase I enzyme, followed by sequencing of the partially digested nucleic
acids; the regions that can be sequenced are those that remain intact because DNA-binding
proteins protected them from the DNase. In my visualization, the DNA binding proteins
and protected regions (denoted POD) are shown somewhat artistically as bubbles along
the DNA double strand. The size of the bubble is proportional to the height of the peak
in the ChIP-seq data: a higher peak means that more reads were mapped to that position,
signifying a greater binding or presence of the protein at that locus. Often, multiple proteins
are found to bind the DNA at the same position. For example, around 15 proteins are found
near the replication origin, including dnaA, well-known for its role in bacterial chromosome
replication. To prevent overcrowding, the 𝑦-coordinate of the bubbles is randomly jittered.

The next track shows the coding sequences, depicted as arrows pointing in the direction
of the DNA strand they are in: CDS on the plus strand point to the right, while on the minus
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strand they point to the left. If there is any overlap between the sequences, the downstream
gene is shifted along the 𝑦-axis. By default, the CDS are coloured according to their function
category, but the user can choose to change the colors according to their molecular weight,
essentiality, RNA expression, protein copy number, protein half-life, or subcellular location.
The RNA expression coloring is useful to visualize the well-known staircase-like decaying
of expression in polycistronic operons (fig. 3.2) [16].

Next, we have two tracks showing transcripts and operons. Three main studies have
analyzed gene expression in M. pneumoniae [16, 133, 19]. The detection of transcripts from
either microarrays or RNA sequencing allowed researchers to reconstruct operon bound-
aries. Furthermore, Junier et al. [133] measured gene expression in several conditions,
calculated the correlation matrix between pairs of genes, and applied a hierarchical clus-
tering constrained to respect the linear organization of the genome. The resulting clusters
capture multiple levels of co-transcriptional organization, from sub-operon to large-scale
genomic domains. These studies also show that multiple transcript isoforms, characterized
by different termination or starting sites, is relatively common, particularly due to the
phenomenon of transcriptional read-through [134]. The transcripts track also shows non-
coding RNAs, which contribute to the regulation of gene expression [135, 19]. It is believed
that non-coding RNAs can bind to other transcripts by RNA base-pair complementarity
and interfere with their translation or functioning.

Last, we have the transposon insertions track. The data come from transposon sequencing
and essentiality studies [136, 137, 84]. Briefly, M. pneumoniae cells were transfected with a
library of transposons, DNA sequences that can integrate in the bacterium’s chromosome
at random positions [138]. These sequences also carry some antibiotic-resistance genes so
the cells that contain them can be selected. The idea of these studies is that if a transposon
integrates within an essential gene, thereby disrupting its function, the cells will not survive.
Thus, after several days of culture, when the DNA of the surviving cells is sequenced, the
transposable elementswill be identified only at the loci that are not essential for survival. The
plot shows the number of inserted transposons at each genomic position. As the genomic
coverage of the transfection is high (as high as 1.5bp resolution [136]), regions where no
insertions are detected are likely to be essential, while regions where many insertions are
found are likely to have little to no impact on the fitness. The data from different experiments
was normalized for the total number of insertion sites identified, so that each experiment
contributes approximately the same signal.

By having this information on the same page, one can get an initial idea of what is going
on in any genomic region of interest.
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Figure 3.3: Partial view of the Annotation section for dnaN (MPN001). The table is longer
than shown here, but the screenshot has been truncated for space economy.

3.3 Protein viewer

The second page of Mycoboard focuses on individual proteins, showing their physical
properties and functional annotations from four different sources. This page also integrates
the Mol* viewer [139] to browse the AlphaFold2-predicted structure of the protein. Fur-
thermore, there is a visualization of the regions, domains, post-translational modifications,
and other features that can be mapped to specific coordinates on the protein chain.

As regards the annotation, our sources are Mycowiki [83], UniProt [45], KEGG [130],
and EggNOG [117]. The Mycowiki website provides physical properties like molecular
weight and isoelectric point, curated functional annotation and enzyme class (EC number),
and essentiality. To this, we add some additional information from the literature, including
RNA quantification [19], protein copies per cell, and protein half life (from Burgos et al.
[140]). From UniProt, we include the protein name, function description, subcellular loca-
tions, pathways, catalytic activities, and subunits. From KEGG, we have module, pathway,
motifs (PFAM domains), and orthologs. EggNOG provides COG and NOG orthologous
groups [141, 117], Gene ontology terms [142], enzyme class (EC number), KEGG trans-
porter class, and CAZy category for carbohydrate metabolism [143]. The fact that some
of the information is redundant, in the sense that it is provided by multiple sources, is
intentional. At the end of the day, all these tools are based on the usual principle: building
a database of sequences with known annotation, and using similarity search to find hits
that are similar to the query protein. Nevertheless, each tool uses different methods and
heuristics to obtain their annotations, hence comparing the differences can balance their
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Figure 3.4: The AlphaFold2-predicted structure, predicted aligned error (PAE), and anno-
tated sequence features of dnaN (MPN001).

strengths and weaknesses. Moreover, this data would normally be scattered in several
websites or journal articles. Collecting them so that they can be viewed at a glance better
reflects the interests of my colleagues who work on M. pneumoniae and me. We are often
interested in a single protein, and the ability to view it from multiple angles is very useful.
Conversely, databases like UniProt aremore concernedwith covering all the known proteins
in a uniform way.

The next section of the protein page is an actual protein viewer, showing the structure
and all features that can be mapped to the protein’s sequence (fig. 3.4). The structure, which
comes from the AlphaFold database [60, 56], is shown in a custom Mol* plugin (fig. 3.4)
[139]. At the time of development, the only “off-the-shelf” option to use Mol* in Shiny [144]
was the shiny.molstar package from Appsilon. However, it didn’t have all the features I
needed. Specifically, it didn’t allow changing the coloring of custom regions of the protein’s
representation. Thus, I had to develop my own plugin (in TypeScript) and integrate it with
Shiny (code is available on GitHub https://github.com/fmarotta/molstar-shiny). Next to
the protein structure, the PAE is also shown. This plot is part of the output of AlphaFold2,
and it shows the expected positional error at residue 𝑋, measured in Ångströms, if the
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predicted and actual structures were aligned on residue 𝑌. The PAE plot can sometimes be
helpful in identifying the domains of the protein [145].

The main visualization is the regions and domains viewer. This panel shows features
along the protein sequence. As for the annotation, these features also come from multiple
sources. The Encyclopedia of Domains (TED) [146] is a recent project which, leveraging
the large amount of protein structures in the AlphaFold database, used machine learning
to segment the individual domains. Although it is not the first attempt at domain segmen-
tation [147], it is so far the best and most comprehensive effort. The domains identified by
TED have reasonably high quality, although they don’t always agree with what a human
expert like Rasmus would say. This is a crucial innovation compared to classic, sequence-
based domain-family databases such as PFAM [81]. Sequence-based domains can only be
continuous along the protein’s sequence, and all sequence similarity search tools penalize
gaps in the alignment, making it nigh impossible to detect domains that are discontinuous.
I experienced this issue first-hand in the dome-complex project (chapter 2). Structural
domains do not have this limitation: the peptide chain of a domain can be interrupted by a
large disordered loop, or even by a different domain, before coming back and continuing
to fold into the former domain. Thus, many TED domains are not continuous along the
amino-acid sequence. This is one of the reasons why TED captures 365 million domains,
around 100 million of which were undetected by sequence homology methods. Another
reason is that structure is, according to some estimates, 3–10 times more conserved than
sequence [49], allowing structure-based similarity methods to capture more distantly re-
lated proteins into the same family. TED domains and, if available, their CATH number,
are displayed as the first track (fig. 3.4).

Next, we combine features from UniProt with features extracted from the literature.
The main reference is Chen et al. [135], who measured lysine acetylation. Thus, in this
track, we show post-translational modifications, signal peptides, disordered regions, and
high-confidence domain annotations.

Next, we show a track from InterPro [79], a resource that already integrates data from
more than 10member databases. So far, these databases rely solely on protein sequences, and
they utilize predictive models—such as profile hidden Markov models (HMM), position-
specific scoring matrices, and regular expressions—to search similar sequences and assign
potential functions. This is the same principle used to annotate protein functions, but in this
case, the output also consists of precise coordinates along the protein sequence, denoting,
for example, the start and end of the domain.

The next track is from DSSP [148], and it shows the position of helices, sheets, and
turns. Last, we show the predicted local distance difference test (pLDDT), another metric
provided by AlphaFold2 that measures confidence in the local structure, estimating how
well the prediction would agree with an experimental structure.
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3.4 Gene expression analysis and visualization

Gene expression is a fundamental process that sits midway between the genome, which
carries the information or functional potential, and the final active molecules in the cell,
proteins, which determine the phenotypes of the cell. It is a highly regulated process, and
M. pneumoniae is known for utilizing several non-conventional regulatory mechanisms,
such as DNA supercoiling, non-coding RNAs, codon adaptation, and GC content [19].
By studying gene expression patterns, we can gain a deeper understanding of the adap-
tive responses of M. pneumoniae to environmental changes. Mycoboard faithfully reports
the results from Yus et al. [19], a landmark study which identifies regulatory proteins,
reconstructs the regulatory network, and provides insight into alternative regulatory mech-
anisms. Moreoever, I downloaded the raw RNAseq data and reanalyzed them, enriching
the original results with new analyses.

The group of Luis Serrano performed over 150 RNAseq experiments, collecting data
from more than 50 environmental conditions or perturbations. Some of the perturbations
consist in the over-expression or knock-out of putative regulatory genes (introduced in
the cells through plasmids). Other perturbations consist in modifying the temperature
or growth medium. Yet others entail administering a drug. By analyzing the changes
that M. pneumoniae experiences after being subject to these conditions, we can learn a lot
about the regulatory patterns in the cell. One of the main conclusions of the study is that
alternative mechanisms, not mediated by transcription factors, are widespread.

I processed these data as follows. First, the IDs of the samples deposited in the European
Nucleotide Archive (ENA) [149] were collected from the article by Yus et al. [19] and
integrated with the IDs communicated by Marc Weber, a researcher in the group of Luis
Serrano. Marc Weber’s input was instrumental in annotating the conditions under which
each experiment was performed. I used the nf-core fetchngs pipeline [98, 150] to download
the FastQ files from ENA [149]. This tool requires only the sample IDs as input, and
automatically downloads the sequencing data and metadata. Then, I used the nf-core
rnaseq workflow version 3.5 [98, 150], a state-of-the-art pipeline to count gene/isoform
abundances and perform extensive quality controls. The workflow processes raw data from
FastQ inputs, performs basic quality checks, trims the adapters from the reads, aligns the
reads to the reference genome, and generates relative gene counts, performing additional
quality-control on the results. The pipeline is built using Nextflow, a workflow tool to run
tasks across multiple compute infrastructures in a very portable manner. It also comes
with docker containers making installation trivial and results highly reproducible. The
input to this workflow consisted of a Fasta file for the reference M. pneumoniae genome,
downloaded from NCBI under accession GCF_000027345.1, a general feature format (GFF)
file with the genome annotation, and the raw reads in FastQ format. I crafted the GFF
to include all protein-coding sequences and all known non-coding RNAs. The only non-
default parameters I specified are --skip_bbsplit and --skip_rseqc. BBsplit is a tool used
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Figure 3.5: PCAplot of the gene expressionmatrix, before and after applying SVA correction
with one surrogate variable. The PCA is obtained from the variance-stabilized gene counts.

in metagenomics to remove non-reference genome reads. RSeQC is used to identify strading
information in RNAseq. Both tools were deemed not useful for our purposes and omitted
from the workflow.

The output of the rnaseq workflow was a file with the count of reads aligned to each
gene, whether protein-coding or non-coding, for each experiment, including all biological
replicates. The gene expression matrix is a basic starting point for further analyses, and
is also available to download as-is in Mycoboard. Although the raw reads are available
in the ENA, and in principle anyone could reproduce the analysis, starting the analysis
from scratch is tedious and sometimes prohibitive. Thus, having access to the precomputed
counts matrix is a step forward in the direction of reproducibility of results and flexibility
in allowing other people to create their own downstream analysis. Moreover, reanalyzing
the data allowed me to include non-coding RNAs in the analysis of differentially expressed
genes, while the original study focused on coding sequences.

For the differential expression analysis, I used DESeq2, a state-of-the-art method that
provides a comprehensive framework for analysing gene expression data (and more) [151].
Some conditions, due to the large-scale changes that they induce, were removed from
the analysis to avoid artifacts that are not due to gene regulation, but to global effects
of the perturbations. These conditions are: treatment with novobiocin, an antibiotic that
inhibits the DNA gyrase gyrB and causes global decrease in the expression of all genes;
glucose starvation, which also causes widespread drop in gene expression; and experiments
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Figure 3.6: Heatmap of gene expression across conditions. Each row is a gene, and the cells
of the heatmap are colored according to the TPM.

involving the knock-out or over-expression of MPN545 (ribonuclease 3), which degrades
RNA. Moreover, we restricted the analysis to genes that are at least 150 bp long and have a
count of more than 5 reads in at least 2 samples. Before running the differential expression
analysis, it is important to remove batch effects and unwanted variation due to technical
artifacts [152]. I used the SVA method, as implemented in the SVA bioconductor package,
to address this issue. The package’s automated analysis didn’t find any significant batch
effect or technical artifacts, but we still applied the SVA method assuming one surrogate
variable. Based on the PCA plots, the effect of the transformation was very minor (fig. 3.5).

I then used the DESeq2 bioconductor package to find differentially expressed genes.
Specifically, I computed the log2 fold-change (and associated standard error and P-value) of
each gene in each condition, with respect to the “Control” condition. Rather than computing
the average fold-change “manually”, I used DESeq2 because of its rigorous statistical
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Figure 3.7: The transcriptome profile for three genes: MPN001, MPN002, and MPN003.
The top part shows the TPM count across conditions. The points and solid line are the
point-estimates, while the shaded ribbon shows the standard deviation. The bottom plot
shows the correlations among conditions. Each condition is identified by a vector of 𝑛 genes,
and we compute the correlation matrix from these vectors. High values indicate that the
expression of all genes changes in the same way for both conditions; low values indicate
that some genes have different trends.

framework. Indeed, it employs a model based on the negative binomial distribution, which
correctly handles biological replicates and accounts for biological variability across the
whole data set [151]. Thus, its estimates are more accurate and less prone to biases like
library size differences. The estimated fold-changes and their standard errors, together
with the base mean in the control condition, were used to reconstruct the gene counts in
each condition. These new values differ from the original counts in that the experiments
(biological replicates) pertaining to the same condition are aggregated, based on theDESeq2
estimates of fold-change and standard error. The new gene counts were converted to TPM,
which normalizes the count by the length of the gene and the total size of the library,
allowing for natural cross-condition comparisons [153]. Figure 3.6 shows a heatmap of the
gene expression matrix.

For Mycoboard, I provide a visualization of the expression profile of a group of genes.
Users can select any number of genes, either coding or non-coding, and look at how
their expression changes across conditions (fig. 3.7, top panel). Furthermore, it could be
interesting to compare the similarity of the conditions with respect to the expression of the
selected genes. The bottom panel of fig. 3.7 shows the Pearson correlation matrix between
samples.

A complementary view of the same data can also be displayed (fig. 3.8). Here, the data
is the same, but the genes, rather than the conditions, are on the 𝑥 axis. The correlation
matrix is also computed for the genes, using the vector of their expression across conditions.
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Figure 3.8: The transcriptome profile for the genes:MPN001–MPN011. See also fig. 3.7. Here,
the genes MPN003-MPN009, which are in the same operon, are more highly correlated
among themselves than with the other genes. The top plot also shows the staircase-like
decay of expression within operons.
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This view quantitatively highlights groups of genes that are potentially co-regulated, for
example because they are in the same operon, or because they need to be in the same
protein complex. Users can also select a subset of conditions of interest through a menu on
the right of the page.

3.5 Signalling and regulation

The next page in Mycoboard shows “signalling and regulation”. Here, the source of data is
again Yus et al. [19], but instead of reanalyzing the data, we simply reuse what the authors
of the study have reported. In particular, two key experiments were performed. First, they
identified 23 high-confidence transcription regulators. Strains that overexpressed these
proteins, as well as transposon or dominant-negative point mutant strains, were used to
assesswhich genes significantly change their expression as a response to the over-expression
or knocking-out of these regulators. Detecting these changes allowed the authors to identify
the target genes that are modulated by each of the regulators. Second, they exposed the
cells to 37 environmental perturbations, observing significant changes in gene expression
for 31 of them. By analyzing which genes exhibit an alteration in their expression, it is
possible to infer which genes are affected by each perturbation.

The final gene regulatory network, including 23 regulators (among which 9 are transcrip-
tion factors), is shown in fig. 3.9.

Figure 3.10 shows the genes whose expression is significantly altered upon treatment
with the antibiotic Spectinomycin.

Together, these two graphs, the gene regulatory network and the network of responses to
perturbations, could provide insights into the function of uncharacterized proteins, as I
will show later in a case study section 3.10.

3.6 Metabolic network

Metabolic modeling offers a quantitative framework to decipher the complex interplay of
reactions that drive growth and homeostasis in the cell. The first study which I integrated is
Yus et al. [15], who manually curated 189 reactions catalyzed by 129 enzymes. More recent
studies, namely wooke_2013 and Gaspari et al. [6], obtained improved metabolic models
that include more reactions, their free energies (important to assess the direction of the
reaction), and their fluxes. The data from Gaspari et al. [6] are also available in Mycoboard.
For example, fig. 3.11 shows how the guanine metabolism is displayed. This visualization
was obtained with the Escher software [6, 154].
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Figure 3.9: Gene regulatory network as reconstructed in Yus et al. [19]. Regulators are
shown in yellow, while targets are green. Blue arrows denote upregulation, while red
arrows denote downregulaton.
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Figure 3.10: The genes whose expression is modulated by the antibiotic Spectinomycin.
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Figure 3.11: Detailed view of the guanine metabolic pathway from Gaspari et al. [6]. The
color of the arrows is proportional to the flux of the reaction; gray reactions are not active
in the baseline condition.
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3.7 Protein-protein interaction networks

At the time of writing, two large-scale experiments investigated protein-protein interactions
in M. pneumoniae. One is Kühner et al. [17], who used TAP. TAP is a technique used to
isolate protein complexes from cells. A protein of interest is tagged at the C-terminus with
a protein sequence that includes three parts: a calmodulin binding peptide, a protease
cleavage site, and two Protein A domains, which bind to IgG [155]. The cell extract is first
combined with agarose beads covered in IgG, then the first part of the TAP tag is cleaved,
and a second filtering is performed, this timewith agarose beads covered in calmodulin. The
beads are separated by centrifugation, which is gentle enough to preserve the interactions
between the protein of interest and its partners. For the 2009 study, the assay was performed
for the whole M. pneumoniae proteome, collecting thousands of potential interactions. Each
candidate interaction was given a socio-affinity score representing the strength of the
interaction. Finally, the complexes were called by using the clique percolation algorithm on
interaction network. Clique percolation starts by identifying all the 𝑘-cliques, and it proceeds
by merging them if they share 𝑘 − 1 nodes. Importantly, this method allows nodes to be part
of multiple communities. Indeed, one of the findings of that study was the high number of
“moonlighting” proteins, i.e. proteins that are part of multiple complexes. Despite the two
sequential purification steps, TAP still remains a relatively noisy method, where unrelated
proteins have a good chance of being purified. Moreover, membrane proteins are typically
underrepresented due to the challenges associated with their solubility.

The second study is O’Reilly et al. [21], who used in-cell cross-linking followed by
mass-spectrometry. First, interacting proteins are chemically linked with cross-linkers that
covalently bind to specific amino acid residues. The cross-linked protein complexes are
then digested into peptides and analyzed using mass spectrometry to detect cross-linked
peptides, which provide information about the spatial proximity of the interacting residues.
By analyzing the mass spectrometry data, it is possible to infer the interaction sites and map
the protein interaction network within the complex, and also to reconstruct the topology of
the complex.

In Mycoboard, the protein-protein interaction viewer has three components. First, I show
a summary plot of abundance vs mass for the known or predicted complexes (fig. 3.12).
For some homomultimeric, and most heteromultimeric complexes, the stoichiometry of
subunits is not known. Hence, the masses and abundances are only meant as an indication.
For heteromultimeric complexes, the abundance is estimated as the median of the com-
ponents, while the mass is estimated as the sum of the components. For homomultimeric
complexes, the abundance is the abundance of the protein divided by the number of sub-
units, while the mass is the mass of the protein multiplied by the number of subunits. This
plot should help structural biologists to prioritize uncharacterized protein complexes for
further investigation. Indeed, in the tomograms, it is more likely to identify structures that
are large and very abundant.
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Figure 3.12: Summary of the homo- and hetero-multimeric complexes from the TAP exper-
iment. The complexes are arranged by abundance vs mass to facilitate the prioritization of
complexes that are either very abundant or very large. The histograms to the top and to
the right show the distribution of mass and abundance, respectively, for homo- (blue) and
hetero- (orange) multimeric complexes. Abundance is expressed in copies/cell, while mass
is in dalton.
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Figure 3.13: Detailed view of four TAP complexes. Heteromultimers are colored in red,
homomultimers in blue, and their member proteins in gray. Users can change the color of
proteins.
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The second visualization shows all the complexes that were detected in the TAP exper-
iment as a graph. The full graph is too big to show here, but fig. 3.13 presents a small
corner consisting of four complexes. In this visualization, I don’t depict the interactions
between proteins directly. Rather, I build a bipartite graph with nodes for both proteins
and complexes, and edges can only exist between a protein and a complex.

Last, I show a graph of the protein-protein interactions captured by the cross-linking
mass-spectrometry experiment [21]. The data come from a combination of two cross-linking
agents, BS3 or DSSO, filtered at 5% false discovery rate (FDR). Users can visualize the full
network and color proteins by several features, including molecular weight, essentiality,
protein copies, RNA expression, and function category (fig. 3.14).

3.8 Integrating all data modalities in a knowledge graph

So far, I have discussed each experiment in isolation. This is also the prevalent approach
in the literature, where one article typically focuses on one data modality: protein-protein
interactions, RNAseq, or metabolism. However, the cell is made of molecules, and they
interact based on the laws of physics and chemistry irrespective of how we humans label
them. Proteins can bind DNA or RNA, be modulated by ions, interact with metabolites, and
so on. Thus, I advocate for a view where we strive to make a census of all the components
of the cell and how they are related to each other, rather than analyzing each class on its
own. This view does not preclude a multi-level approach. On the contrary, a hierarchical
approach is likely to be the only way to tackle such complex systems. What I mean by
this is that we recognize that the components can be broken down into smaller parts in a
reductionist approach, but treating the high-level components as units in their own right
is sometimes necessary. For example, proteins can be broken down as polymers of amino
acids, amino acids can be seen as a group of atoms, atoms are made of subatomic particles.
When we analyze a biological system such as M. pneumoniae, we don’t have to necessarily
think about electrons and quarks, but we can study the behavior of proteins treating them
as coherent units. Abstractions like this are crucial in modelling and science in general. The
very difficult part is to decide which levels of abstraction are important in our view of the
system, and find out how they are related. To tackle this problem, I developed an integrated
knowledge graph of all available data for M. pneumoniae.

A knowledge graph (KG) is a structured representation of data and its relationships,
essentially a semantic database [156]. It organizes information by representing entities
(nodes) and their relationships (edges), allowing for deeper understanding and better
search capabilities. In this regard, it needs to be built on top of an ontology, which serves
as the schema for the KG. The importance of ontologies in modern biology can hardly
be overstated [157], as exemplified by projects such as the Gene Ontology [142]. They
provide a structured approach to organizing knowledge by standardizing terminology
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Figure 3.14: Cross-links inM. pneumoniae. The proteins are colored according to essentiality.
E: essential; NE: not essential; F: reduced fitness phenotype; NA: missing data.
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and encoding relationships such as “is_a” and “part_of”, which enable hierarchical and
transitive connections between concepts. This standardization addresses the challenge
of navigating heterogeneous biological data, where inconsistent descriptors (e.g., “bud
development” versus “limb morphogenesis”) hinder efficient data retrieval and reasoning.
The Gene Ontology, established in 1998, exemplifies this by classifying gene products
across cellular component, molecular function, and biological process domains, providing
a consistent nomenclature that is friendly to both humans and computers [142]. The Gene
Ontology classification is also hierarchical, which enables analyses such as finding enriched
terms among the differentially expressed genes between two conditions [158]. Developing
an ontology is hard because biological knowledge needs to be embedded in it. A quick
literature search retrieves several examples of bespoke biological ontologies and knowledge
graphs developed for the life sciences [159, 160, 161, 162, 163]. Recently, ontologies and
knowledge graphs are growing more and more popular, also thanks to projects such as the
Open Biological and Biomedical (OBO) foundry [164], which promotes the development
of interoperable ontologies.

The relationship between an ontology and a knowledge graph is akin to the relationship
between a database schema and its content. In this analogy, the ontology provides the
structured framework or schema, while the knowledge graph serves as the container that
holds the actual data, organized according to this framework. This structured organization
of data offers several advantages. Firstly, it simplifies querying processes. By filtering
based on specific entities and/or their relationships, we can efficiently extract relevant
information, much like using semantic web technologies such as SPARQL [165]. This
capability is particularly valuable in navigating the complex and interconnected data typical
of biological systems. Moreover, graphs lend themselves very well to the visualization of
data. Traditionally, knowledge graphs have been widely used by Google to aid searches
and answer user queries that asked questions in natural language [166]. The slogan used
by Google was “things, not strings”, since the knowledge graph approach helps computers
reason about concepts rather than their human language representation. Similarly, it is
conceivable to develop a search engine for biological data that answers questions leveraging
M. pneumoniae data.

Secondly, the structured nature of knowledge graphs and the integration of multiple
modalities facilitates advanced analyses. Recent advancements in graph neural networks
enable sophisticated tasks such as node classification and link prediction [167]. These
methods can be leveraged to predict interactions within the biological system, such as
protein-protein interactions, thereby enhancing our understanding of cellular processes.

Lastly, knowledge graphs can also support simulation approaches. A whole-cell model
of JCVI-syn3a, an artificial minimal cell built from Mycoplasma mycoides, has already been
built [8]. Such model uses cryo-electron tomograms for the cell geometry and ribosome
distributions, and relies on kinetic models of around 2,000 reactions to capture the unfolding
over time of DNA replication, transcription of all 493 genes, translation and degradation of
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Table 3.1: List of entities in our knowledge graph and their associated instance count.

Entity N

chromosome 1
curated_function 46
gene 1107
gene_ontology 362
kegg_pathway 60
metabolic_complex 5
metabolic_reaction 181
metabolite 208
operon 664
perturbation 20
protein 735
suboperon 856
TAP_heteromultimer 116
TAP_homomultimer 78
TED_domain 1266
transcript 945

all 452 mRNA, tRNA charging, and cell growth. A prerequisite for developing whole-cell
models is the knowledge of all the components of the system and all possible reactions. At
the same time, whole-cell models depend on quantitative rules and differential equations
that, while indispensable for modelling changes over time, are not optimized for query
and visualization. By abstracting the rules governing such a minimal cell system into a
knowledge graph, it becomes possible to visualize and explore the data in a qualitative
way that is sometimes easier to reason about. Thus, whole-cell modelling and knowledge
graphs complement each other.

M. pneumoniae, with its reduced genome, is already close to being a minimal cell, with
only roughly 700 protein coding genes. It serves as a good starting point for making a
census of all the entities in a cell and all the ways they can interact among each other.
In this work, I established the first steps for the analyses described above. Specifically, I
designed an ontology based on the available data forM. pneumoniae and built an associated
knowledge graph. The whole graph is part of Mycoboard, where it can be downloaded
and conveniently visualized. In total, it consists of 6650 entities and 19265 relationships.
Tables 3.1 and 3.2 show the design of the M. pneumoniae ontology. For the entities, I settled
on 16 classes that in my opinion represent the most useful levels of abstraction, based
on the available data and the expected analyses that we could perform. Importantly, the
graph mixes concrete physical entities such as chromosome, proteins, and metabolites, with
more abstract entities such as genes, along with completely made-up concepts like KEGG
pathways and functional categories [130]. Although we will never find a physical KEGG
pathway in the cell, aggregating the proteins that are annotated as belonging to the same
pathway is extremely useful. In the graph, those proteins will be all linked to the KEGG
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Table 3.2: List of relationships in our knowledge graph and their associated instance count.

From To Relationship N

TAP_heteromultimer chromosome binds_DNA 1
TED_domain protein is_in_protein 1266
gene chromosome is_at_locus 1107
gene gene downregulates_expression_of 498
gene gene upregulates_expression_of 562
gene gene ncRNA_overlaps 352
gene operon is_in_operon 1092
gene protein produces 737
gene suboperon is_in_operon 1092
gene transcript is_in_transcript 1374
metabolic_complex metabolic_reaction catalyzes 6
metabolite metabolic_reaction is_reactant_in 718
operon chromosome is_at_locus 664
perturbation gene downregulates_expression_of 1289
perturbation gene upregulates_expression_of 1357
protein TAP_heteromultimer is_in_complex 482
protein TAP_homomultimer is_in_complex 78
protein chromosome binds_DNA 23
protein curated_function involved_in_function 733
protein gene_ontology belongs_to_gene_ontology 1108
protein kegg_pathway belongs_to_kegg_pathway 623
protein metabolic_complex is_in_complex 22
protein metabolic_reaction catalyzes 125
protein protein cross-links 1154
protein transcript is_translated_from 1001
suboperon chromosome is_at_locus 856
transcript chromosome is_at_locus 945
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Figure 3.15: Knowledge graph view centered on the protein dnaN (MPN001).

pathway node through a “belongs_to_pathway” relationship. Therefore, those proteins
will all be connected by a maximum distance of 2 in the network space, forming a cluster of
interrelated entities. It then becomes possible to reason about the group of proteins as a
cohesive unit. Mixing different levels of abstraction is one of the strengths of the knowledge
graph.

With the relationships, I tried to capture some basic molecular biology and to include
as much of the available data as possible. Thus, we have relationships between genes and
transcripts (“is_in_transcript”) and between transcripts and proteins (“is_translated_from”)
tomodel the central dogma ofmolecular biology. But we also have relationships that capture
the fact that some entities are located in a precise subregion of a bigger entity. For example,
protein domains are located in proteins; genes are part of operons, which are located on the
chromosome. Other relationships capture dynamic processes (such as metabolic reactions)
or physical links (protein-protein interactions). Navigating the graph by traversing existing
relationships is a powerful way to discover new and potentially unexpected connections.

In Mycoboard, I provide interactive visualizations of subsets of the knowledge graph,
where users candecide to focus onparticular entities (figs. 3.15 and 3.16). For computationally-
oriented researchers, download of the raw data structures is also offered. The entities are
represented as an R data.table object with four columns: id, type, label, and properties. The
“properties” column is a nested list that contains a variable number and type of elements
depending on the type of entity. Similarly, the relationships table has four columns: from,
to, relationship, and properties, where from and to contain the entity IDS, and “properties”
is again a list with variable number of elements depending on the relationship type. For
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Figure 3.16: Knowledge graph view centered on an abstract entity, amino acid metabolism.
The view shows all the proteins that are directly related. Navigating the graph allows users
to explore indirectly related entities and discover novel connections.
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example, the relationship “is_at_locus” between gene and chromosome has the start and
end coordinates as properties, but these properties are not present in other relationships.

3.9 A new approach to the functional annotation of the

M. pneumoniae proteome

Despite the vast amount of sequencing data generated by modern high-throughput tech-
nologies, the functional characterization of proteins remains a significant bottleneck in the
field of molecular biology. As of now, a substantial proportion of proteins remain unchar-
acterized, meaning their functions are not well understood. For example, in the protein
universe study [168], which generously defined the functional annotation of a protein based
on how much it is covered by InterPro [79], 27% of proteins are completely mysterious, and
even for proteins that are covered, many InterPro domains are DUFs (domain of unknown
function). Even in the artificial cell JCVI-syn3, almost one third of the genes have unknown
function [10]. This gap arises because while sequencing technologies have advanced rapidly,
allowing for the identification of protein-coding genes at an unprecedented scale, the ex-
perimental methods required to elucidate protein function, such as biochemical assays,
structural biology, and genetic studies, are labor-intensive, time-consuming, and often
require specialized expertise. Additionally, many proteins may have context-dependent
functions or participate in complex interactions that are challenging to replicate and study
in vitro. Consequently, the disparity between the number of sequenced genes and the num-
ber of functionally characterized proteins continues to widen, highlighting the need for
innovative approaches and technologies to bridge this gap and fully leverage the potential
of genomic data.

This field, like many others, has recently been shaken by AlphaFold (see section 1.3).
Indeed, it is generally thought that structure is more conserved than function [49]. Thus,
transferring function through structural similarity rather than sequence similarity should
extend our reachmuch further, allowing us to annotate proteins that bear very low sequence
similarity with those that have already been experimentally characterized. And this is true,
but, as it still took a disproportionate amount of time and effort for us to discover anything
interesting about the Dome complex proteins in chapter 2, it is clear that this method has
some limitations. In this section, I propose a new method for the functional annotation of
proteomes, a method that is enabled by recent advances that all stemmed from AlphaFold
and incorporates the lessons learned from the Dome complex project.

Functional annotation has been one of the most prominent areas of bioinformatics, and
many clever techniques have been developed to tackle this problem (see Price and Arkin
[118] for a recent review). Many tools have been developed by pioneers like Peer Bork
[82, 117, 53]. Direct sequence or structure similarity with a protein of known function is
of course the best-case scenario and can be addressed with the EggNOG mapper [169],

82



but it doesn’t always happen. One can then look at more or less indirect evidence, such
as predicting the subcellular location of the protein [170], looking at the environments or
biomes where the protein is found [47, 46], or finding a conserved gene neighborhood
around the protein of interest and hoping that the neighbor genes belong to a known
pathway [82].

Themethod I propose is enabled by a recently published large-scale protein domain anno-
tation: The Encyclopedia of Domains (TED), which was ultimately enabled by AlphaFold.
I described TED in section 3.3, since it is also part of the protein viewer in Mycoboard. For
the Dome complex project, after identifying the remote homology with PrsA, we confirmed
this hit by cutting the domains and submitting them individually to FoldSeek [94]. In that
case, our collaborator Rasmus Jensen, a structural biology expert, had to manually identify
the domains and cut them out of the PDB file. Here, I developed a workflow that automates
the process of retrieving the individual domains and submitting them to both FoldSeek
and hhblits for homology detection. First, I downloaded the UniRef30 database version
2023_02 [92], to be used as the reference database for hhblits, and the Alphafold/UniProt50
database (AlphaFoldUniProt Protein Structure Database clusteredwithMMseqs2 at 50% se-
quence identity and 90% bidrectional coverage) for FoldSeek [171, 60]. Then, I downloaded
the PDB files of the protein structures in M. pneumoniae from the AlphaFold database and
the coordinates of the TED domains. I used a custom script to trim the PDB files into the
domains, and also save the amino acid sequences of the domains to separate FASTA files.
Then, I run hhblits on each domain sequence against the UniRef30 database, and FoldSeek
on each domain structure against the AlphaFold/UniProt50 database. The PDB files of the
FoldSeek hits for each domain are also downloaded and given to FoldMason [172], a pro-
gram that makes multiple structure alignments. The trick used by FoldMason is the same
of FoldSeek: the protein structure is represented with a special alphabet where each letter
captures a specific pattern of residue interactions. I wrote this workflow in Snakemake [173],
a Python-based workflow manager inspired by Make.

The final outputs are a table of hits from hhblits, a table of hits from FoldSeek, and a
multiple structure alignment from FoldMason. These visualizations are also integrated in
Mycoboard, where users can select a particular protein and a domain within it (figs. 3.17
and 3.18). Since the tables contain many hits, manually going through them is tedious.
Thus, I integrated an AI summary (fig. 3.19) that uses ChatGPT [174] to generate a succinct
representation. Large language models (LLMs) like ChatGPT excel at summarizing text
and aggregating data [175]. In this case, I give the model the description and probability
score of all the hits by hhblits and FoldSeek for each domain, and prompt it to give a
consensus description for the domain based on the description of the hits. The LLM is
asked to give not only a consensus, but also an alternative description based on other
hits that might be relevant, a confidence score representing how strongly they feel about
their response, a longer text detailing their reasoning process, and pointers to potentially
interesting hits thatmight be relevant despite having a lower score. The results are requested
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Figure 3.17: The domain viewer in Mycoboard begins with a visualization of the TED
domains using the Mol* plugin. Then, it shows the known regions and domains from
UniProt, InterPro, and DSSP, as in section 3.3.

automatically on demand, using the OpenAI API, when the Mycoboard page is accessed
for the first time. Some prompt engineering is still needed to tune the responses, but overall
the summary seems to make sense for the hits we tried. A more traditional approach to
propagate annotation is to simply use the top-scoring well-characterized hit, as in Ruperti
et al. [61]. However, using an LLM allows us to consider not just one, but multiple hits, and
realize when they occur multiple times, which is also a strong sign of potential homology.
Furthermore, another strength of the LLM approach is that it should be able to recognize
multiple variations of the same name (like “DNA polymerase III subunit beta” and “DNA
polymerase III beta subunit”). The LLM can also use its biological knowledge to generalize
the terms and suggest interesting hits, although hallucination is always possible [176].

FoldMason also offers an interactive HTML document with visualizations of the struc-
tures and the alignment [172]. Based on its alignment, I also developed a view that shows
the known UniProt and InterPro domains corresponding to the position of the query do-
main (fig. 3.20). The advantages of using a structure-based alignment should be clear.
Firstly, structure is more conserved than sequence [49], and it is also most often what deter-
mines the function of a domain, making it potentially easier to find the correct alignment.
Moreover, a structure-based alignment can ignore disordered loops and linker regions
that might be misaligned by looking just at the sequence. One of the exciting applications
of structural alignments is improving phylogenetic trees, which need to use high-quality
alignments as a starting point.
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Figure 3.18: Results from HHblits and FoldSeek for dnaN (MPN001) as seen in Mycoboard.
By default, the first 10 rows are shown, but users can navigate the tables interactively.

Figure 3.19: The summary generated by ChatGPT from the HHblits and FoldSeek hits for
dnaN (MPN001).
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Figure 3.20: Screenshot of the integrated alignment view. On top of the MSA, the query
protein’s annotations and its secondary structure from DSSP are shown.

3.10 Annotating an uncharacterized family of oxidoreductases

The workflow I developed and made available through an interactive website has enabled
the discovery of a potential new family of oxidoreductases in M. pneumoniae, which I will
mention here as a case study. The M. pneumoniae genome hosts a 14-member paralogous
family of uncharacterized membrane lipoproteins, according to Mycowiki [83]: Mpn011,
Mpn012,Mpn054,Mpn148,Mpn271,Mpn369,Mpn411,Mpn466,Mpn467,Mpn505,Mpn639,
Mpn649, Mpn650, Mpn654. Of these, 8 proteins (Mpn011, Mpn012, Mpn148, Mpn271,
Mpn369, Mpn466, Mpn505, and Mpn649) have “SgcJ/EcaC family oxidoreductase” as a
FoldSeek hit, with probability score of at least 70%, and Mpn639 has it with a probability
score of 21.4%. The SgcJ/EcaC family oxidoreductases are enzymes that play a crucial role
in the biochemical pathways involving redox reactions, where they facilitate the transfer of
electrons between molecules. These enzymes are part of the larger oxidoreductase family,
which is responsible for catalyzing oxidation-reduction reactions often essential for various
metabolic processes. In general, they have an NFT2-like fold with a characteristic beta-sheet
surrounded by some alpha-helices (fig. 3.21). More specifically, the SgcJ/EcaC family is
involved in the biosynthesis of specialized metabolites, such as antibiotics and other sec-
ondary metabolites, by modifying specific substrates through oxidation or reduction. This
modification often alters the chemical structure and biological activity of the compounds,
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Figure 3.21: The structure of MPN271.

contributing to their activity. The activity of these oxidoreductases is vital for the produc-
tion of bioactive compounds with potential pharmaceutical applications, as well as for
maintaining cellular redox balance and metabolic homeostasis. For example, two proteins
from UniProt that are annotated in the same family are ksi from Comamonas testosteroni
(P00947) and ecaC from Streptomyces coelicolor (Q8KVU1). Both seem to be steroid-delta
isomerases, which are active in lipid metabolism, although the evidence for ecaC is less
strong.

As a first analysis, I can simply use the relationships table of my knowledge graph
(section 3.8) and filter for the IDs of these proteins, and all the information is atmy fingertips.
For example, Mpn012 cross-links Mpn376, another uncharacterized membrane protein.
Mpn011, Mpn148, and Mpn466 are found in the same TAP complex, “Complex 4”, which
also includes proteins gmk, alaS, and holA (related to DNA metabolism), nrnA (related
to RNA metabolism), and def (a protein synthesis factor). Almost all these proteins in
this paralogous family (Mpn011, Mpn012, Mpn271, Mpn411, Mpn466, Mpn467, Mpn505,
Mpn650, Mpn654) are downregulated upon cold shock perturbation. Six of them are
downregulated by PrkC, a putative serine/threonine kinase.

While perhaps this is not enough to claim that we know for sure the role of these proteins
in the cell, we could obtain a lot of information extremely quickly. It is interesting that our
domain-based FoldSeek approach identified 8 paralogous proteins belonging to the same
family. AlthoughM. pneumoniae is a genome-reduced bacterium, it appears to contain many
duplicated genes. This was also the case for the major dome proteins (MDPs) in chapter 2.

Another interesting case study is Mpn153. In Mycowiki [83], it is annotated as uvrD,
involved in DNA synthesis/modifications/repair/conformation. In E. coli, uvrD is involved
in the post-incision events of nucleotide excision repair and methyl-directed mismatch
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repair, and probably also in repair of alkylated DNA, according to UniProt. However, our
workflow identifies czcA fromMycoplasmoides gallisepticum as a hit for each of the 5 domains
of Mpn153. The czcA protein is associated with heavy metal transport.

3.11 Discussion

Minimal cells offer a unique perspective into the fundamental mechanisms of life. By elimi-
nating non-essential components and retaining only those necessary for cellular reproduc-
tion, the complexity of the system, though still significant, becomes more comprehensible.
Initiatives such as the whole-cell modeling of JCVI-syn3A [8] demonstrate the feasibility of
cataloging and characterizing the behavior of all components within a minimal cell, albeit in
a simplified manner. M. pneumoniae, with its reduced genome, closely approximates a min-
imal cell while also possessing clinical significance, making it a valuable model organism.
Despite extensive study, the functions of at least one-third of its genes remain unidentified.
In this chapter, I described the development of a portal designed to access and visualize the
available data, and a new workflow for the annotation of proteins based on TED domains,
hhblits, and FoldSeek.

The workflow that submits individual domains to FoldSeek and hhblits proved useful.
The main reasons why this approach works are two. First, by focusing on the domains,
we can avoid insertions, disordered regions, and discontinuous sequences that would
cause gaps in the sequence alignment. Having too many gaps in the sequence alignment
makes it hard for sequence-based search tools to recognize hits, but querying each domain
individually doesn’t have this issue. Second, a protein can be seen as a group of domains
with precise spatial arrangement; as such, clearly, there are many more ways to combine
domains than there are domains. Thus, while a protein (i.e. a particular combination of
domains) might be specific to a clade or even a single organism, the domains it is made
of have a higher chance of existing elsewhere, and are thus easier to detect. For the dome
complex proteins of chapter 2, their combination of domains, repeated twice, is only found
in a handful of species, but the individual domains, as we now know, are shared with surA
and prsA proteins. Of course, there are also limitations. One of the biggest ones is that, even
knowing the function of most domains in the protein, we often cannot pinpoint the exact
role of the protein in the cell. This is especially true for generic domains such as “DNA
helicase”. Another limitation is that, while the overall domain structure might be extremely
conserved, even just one amino acid change in the active site is enough to prevent the usual
functioning of the domain.

Ideally, this approach should be complemented by other strategies, although I believe
it is not yet fully automatable. One of the strategies I envision is to incorporate JESS, a
geometric hashing algorithm that can identify catalytic residues from a known template
inside a protein structure [177, 178], together with a database of known active sites such as

88



M-CSA [179]. Then, I would be able to look for known active sites across all the protein
structures in M. pneumoniae, potentially lending some evidence to the annotations derived
by structure or sequence similarity.

A brief note on an unsuccessful approach. I obtained the proteomes from a limited
selection of genomes within the Mycoplasmoidaceae family, along with four outgroup
species (the same dataset used in section 2.6), and segmented all proteins in these species
into their TED domains. Additionally, I constructed datasets using HHblits and FoldSeek
that were restricted to these domains. Contrary tomy initial hypothesis, the search outcomes
were frequently inferior to those obtained using the complete UniRef30 or AlphaFoldDB
databases. Given that HHblits and FoldSeek inherently perform local alignments, it is
possible that segmenting both the query and target databases into domains was excessively
aggressive.

The design of an effective user interface for data exploration is a critical component in
bioinformatics research, as it significantly influences the accessibility and interpretability
of complex datasets. Traditional methods of data presentation, such as Excel spreadsheets
or static PDF documents, can be cumbersome for researchers to navigate, often requiring
substantial effort to extract meaningful insights. These formats lack the intuitive engage-
ment necessary for efficient data analysis. In contrast, an interactive interface that allows
users to dynamically explore data by, for example, clicking to switch between different
protein structures or alignments, can transform the experience into a more engaging and
game-like process. This approach not only enhances user engagement but also facilitates
a more intuitive understanding of the data, potentially attracting a broader audience to
bioinformatics by lowering the barrier to entry andmaking data explorationmore accessible
and enjoyable.
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4 A kinetic model for translation elongation

from in-situ static cryo-ET data

4.1 State of the art and project overview

Biological systems often rely on molecular machines to perform useful tasks [180]. One of
the fundamental processes in molecular biology is protein synthesis, which underlies all
known forms of life and is critical for the proper functioning, growth, and development of
cells. This process, known as translation, is carried out by the ribosome, a highly complex
molecular motor [181]. Although protein synthesis is a highly regulated multistep process,
arguably one of the most important and time-consuming steps is the so-called elongation
cycle, where the ribosome decodes one by one the codons of the underlyingmRNAmolecule
and adds the corresponding amino acid to the nascent peptide chain. Investigating the
ribosome elongation cycle not only expands our basic understanding of molecular biology
but also offers potential insights into antibiotic mode of action and development, disease
mechanisms, and biotechnological applications. The kinetics of the chemical reactions
or physical motions in a motor’s cycle can be experimentally investigated in vitro or in
model organisms, but it is difficult to generalize them to the in vivo system or to a different
organism.

For decades, the individual steps of the translation elongation cycle have been studied
with a variety of biochemical methods in vitro, mostly for the model organism E. coli [182,
183, 184, 185]. These experiments were complemented and enriched by X-ray crystallogra-
phy and cryogenic electron microscope (cryo-EM) studies, which elucidated the structure
of the ribosome’s intermediate states and the binding sites of its partner molecules. More
recently, time-resolved cryo-EM studies, such as Fischer et al. [186] and Dashti et al. [187],
mapped the energy landscape of the process at equilibrium. These studies combine the
time dimension of the biochemical experiments with the structural dimension and enable
the reconstruction of the continuous trajectories of the ribosome along the free-energy
landscape. Classic biochemical and cryo-EM studies share a key limitation: they have to
be performed outside the living cell, sometimes in a special buffer or in the presence of
drugs which stall the ribosome in a particular state or even slow down the whole translation
process.

In the last few years, the “resolution revolution” experienced in cryo-EM thanks to
improved sample preparation protocols and more powerful microscopes, has enabled
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Figure 4.1: Example of a tomo-
graphic slice of a M. pneumoniae
cell. AO: attachment organelle;
PM: plasma membrane. Example
ribosomes are circled. Advanced
reconstruction techniques enable
the classification of each ribosome
in a distinct conformational class
representing an intermediate in
the translation-elongation cycle.
Each class is identified by which
tRNAs and elongation factors are
bound to the ribosome, as well as
the relative rotation of the small
and large ribosomal subunits. Fig-
ure from Xue et al. [22]

the investigation of translation in situ, under near-native conditions (see section 1.2). In
particular, in the model organism Mycoplasma pneumoniae (M. pneumoniae), whose small
size makes thinning the samples superfluous, more than 10 distinct conformational classes
have been resolved in near-atomic detail [22, 188]. The aggregation of tomograms from
hundreds of cells also provided an accurate picture of the occupancy distribution of each
of these states, i.e. the proportion of ribosomes in each class at the steady state (fig. 4.1).

In parallel to the biological experiments, numerous theoretical models of the elongation
cycle have been proposed to shed light on key aspects of the process that would be otherwise
inaccessible. Success stories include the calculation of competition between aa-tRNA species
[189], the prediction of rates in vivo from the measured rates in vitro [190, 191], the
calculation of thermodynamic properties of the cycle [192], and potential explanations for
the 2-1-2 vs 2-3-2 pathways of E-site tRNA dissociation [193]. The starting point for this
project was the observation that, despite the high resolution achievable with cryo-ET, so
far, this method could only obtain static snapshots of translation in situ. Thus, we set out
to develop a theoretical framework under which the dynamics of this biological process
could be investigated.

Many biological processes, including translation elongation, can be understood in terms
of a reaction network [194]. This is a formal framework for modeling and analyzing bio-
chemical processes by representing them as a set of chemical reactions or conformational
changes occurring among a collection of species. In these networks, nodes typically cor-
respond to molecular species, such as proteins, nucleotides, or other biochemical entities,
while the directed edges correspond to the reactions, denoting the transformation from
reactants to products. There are two main objects of interest:

92



• The concentration of each species (as a function of time)
• The rates of the reactions

A chemical reaction network with 𝑛 species can be conveniently described by a system of
𝑛 differential equations, each describing the change in concentration of one species over
time. A classic example is an enzymatic reaction where substrate, 𝑆, and enzyme, 𝐸, first
bind to form an intermediate complex 𝑆𝐸, then the substrate is converted to product, 𝑃,
and the enzyme is recycled. In this system we have the following reactions:

1. 𝑆 + 𝐸
𝑘1−⇀↽−
𝑘2

𝑆𝐸 ,

2. 𝑆𝐸
𝑘3−→ 𝑃 + 𝐸 ,

where 𝑘1, 𝑘2, and 𝑘3 are the rate constants of the reactions. Such system is said to fol-
low Michaelis-Menten kinetics. Letting [𝑋] denote the concentration of 𝑋 at time 𝑡, the
differential equations corresponding to this system are:

⎧{{{{
⎨{{{{⎩

d[𝑆]
d𝑡 = −𝑘1[𝑆][𝐸] + 𝑘2[𝑆𝐸]

d[𝐸]
d𝑡 = −𝑘1[𝑆][𝐸] + (𝑘2 + 𝑘3)[𝑆𝐸]

d[𝑆𝐸]
d𝑡 = 𝑘1[𝑆][𝐸] − (𝑘2 + 𝑘3)[𝑆𝐸]

d[𝑃]
d𝑡 = 𝑘3[𝑆𝐸] .

(4.1)

Even in apparently simple systems, the interplay between species concentrations and
reaction rates gives rise to complex dynamic behavior, such as steady states, oscillations,
and bifurcations [195]. In the context of translation elongation, the species are the distinct
conformations of the ribosome, or its complexes with elongation factors, tRNA, and amino
acids. The process can be seen as a sequence of reaction steps that include the binding
of tRNA to the ribosome, peptide bond formation, and the translocation of the ribosome
along the mRNA strand. Each step in this sequence constitutes a transformation that can
be quantitatively modeled to elucidate the dynamics of the process (see section 4.2 for a
description of reaction networks using more advanced technical tools).

In an ideal scenario, we would be able to experimentally measure as many parameters as
possible to gain a comprehensive understanding of the elongation process. However, we
are faced with several challenges. The first challenge is selecting an appropriate system
for conducting experiments. By “system,” I refer to either a defined in vitro solution or a
model organism, such as E. coli. Each system, particularly living organisms, presents unique
complexities and specific characteristics that complicate experimental procedures. Most
methods to study the kinetics of reactions in real time, such as stopped flow [196], only
work in solution. To date, the only comprehensive experimental investigations of the rates
in translation elongation have been conducted in vitro [182, 183, 184, 185]. Replicating these
experimental procedures in another system in vivo would be a formidable and resource-
intensive task, and alas, there is often little to no incentive to replicate existing results.
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Consequently, it is easier for researchers to rely on indirect measurements associated
with the underlying biological processes. For example, in E. coli, it has been relatively
straightforward to determine the average time required for a ribosome to complete a
single elongation cycle by measuring the incorporation of radioactively labeled amino
acids into a protein [197]. In the case of M. pneumoniae, an indirect measurement came
to us not through biochemical methods but via cryo-ET. Thanks to the efforts from Julia
Mahamid’s group, we now have data on the steady-state concentrations of ribosomes
in various elongation states (see fig. 4.1) [22]. The information provided by the steady-
state distribution in M. pneumoniae alone is not enough to completely characterize the
process. This is primarily because the process operates far from thermodynamic equilibrium,
requiring a constant supply of energy that is ultimately provided by the hydrolysis of GTP
and the formation of the peptide bonds. Consequently, understanding our in situ data
requires putting the translation elongation cycle in the appropriate context and recognizing
that the process is influenced by many external factors, including the energy state of the
cell and the concentrations of elongation factors and tRNA molecules. Non-equilibrium
thermodynamics is still an active field of research [198]. My model will primarily focus on
a kinetic perspective, trying to elucidate the rates of the transitions.

The experimental steady-state distribution in M. pneumoniae cannot be directly used to
calculate the rates, as there are infinitely many sets of rates that can produce the same
steady-state distribution. Therefore, estimating the rates from cryo-ET data falls into the
category of inverse problems [199]. (Conversely, the corresponding forward problem,
which involves estimating the steady-state distribution from known rates, is totally feasible,
see section 4.2.) Thus, we need to invoke additional assumptions, additional data, or both,
in order to solve the problem.

In a fully uncharacterized system, where experimental data is entirely absent, reaction
rates may take any value. Each conducted experiment introduces a new constraint that
reduces the set of feasible reaction rates. Although these constraints are often insufficient
to pinpoint a unique solution, they are instrumental in refining our understanding of the
system. Such constraints allow us to narrow down the parameter space and ensure that our
estimates are compatible with the current experimental data. Future experimental efforts
have the potential to introduce additional constraints and could, in principle, continue to
do so until reaching a singular solution. Meanwhile, generating even a preliminary estimate
of the rates remains beneficial, as it can inform the design of subsequent experiments.

A prominent and ubiquitous method of addressing such inverse problems involves
employing optimization techniques [200]. These techniques aim to determine an optimal
solution from the potentially infinite set of possibilities. The primary challenge, therefore,
lies in determining an appropriate optimality criterion. The central hypothesis of this project
is that reaction rates in an uncharacterized system can be estimated using rates from a
well-characterized “reference” system. Specifically, we define the optimal rates as those that
minimize the kinetic distance metric [190] relative to the reference system. In order to honor
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the constraints imposed by the experimental data, our method is based on a constrained
minimization of the kinetic distance.

In this chapter, I develop a comprehensive model of the translation elongation cycle,
which accounts for all the states that have been observed so far and recapitulates many of
the features that ribosomes are known to possess. This process can be described as a cycle,
in the sense that after going through a series of reactions, the system returns to an initial
condition over and over again (once for each amino acid). Two most important properties
of this system are the total elongation time, defined as the average time to return to the
same state, and the steady-state distribution, defined as the proportion of time spent in each
state in the limit of time going to infinity. I describe a method to estimate the kinetics of
the elongation cycle in a system where direct experimental data is not available, leveraging
a reference system where the kinetics have been elucidated and using only indirect data
in the uncharacterized system. Such indirect data describes an aggregate property of the
target system, such as the total elongation time or the steady-state distribution. I apply this
strategy to estimate the rates of the transitions in the M. pneumoniae elongation cycle from
the steady-state distribution of intermediates, using data from E. coli. I envision such model
as a starting point for further modelling and analyses of not just the elongation cycle, but
also other biological processes studied at high detail by cryo-ET.

The biggest inspiration for this project came from the PhD thesis of Sophia Rudorf,
who later became my collaborator and mentor (see refs. [190, 191]). In that work, she
developed a simpler model and approach to estimate the rates for E. coli in vivo using the
rates measured in vitro as a reference [190, 191]. The idea is that, although we don’t have
complete information for the in vivo system, we can assume that it is reasonably similar to
the in vitro system. After all, the in vitro system consists of ribosomes and other molecules
purified from the living cells. Hence, we can transfer information from the known in vitro
system to the unknown in vivo one. However, from measurements in the in vivo system,
we know that the total elongation time is different from the one measured in vitro. To keep
this difference into account, we need to slightly modify the rates. One option would be
to linearly rescale them, but this is not satisfying because we have no guarantee that all
rates change in the same way when going from vitro to vivo. Thus, Rudorf introduced
the kinetic distance, a metric that measures the distance between two systems and can be
interpreted as an approximate distance between the energy barriers of the reactions in the
process [190]. Byminimizing the kinetic distance of the in vivo rates to the in vitro rates, while
enforcing the constraint that the elongation time in vivo be equal to the measured value, we
achieve a non-linear update of the rates that satisfies the experimental measurements in the
most parsimonious way possible. This approach is reminiscent of the Bayesian paradigm in
statistics (see the book byHoff [201]), where new data is combinedwith old knowledge (the
prior distribution) to produce an updated state of knowledge (the posterior distribution).

Compared to the original Rudorf model, mine adds 24 new states and 14 new rates
or rate constants. It is also a re-implementation completely from scratch. The addition of
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the new states makes it possible to map some recently identified intermediate states onto
the model, as well as to include reactions that were reported only after the original study.
Specifically, my expanded model captures six translocation states rather than one, allowing
me to investigate the interplay between ribosomes and EF-G. These new translocation
states have been recently reported in both biochemical [185] and structural studies [22]. It
also captures both 2-1-2 and 2-3-2 pathway simultaneously, which better reflects current
knowledge and data [193, 22]. On the other hand, since the Rudorf model introduced
important innovations and is still considered state of the art [202], I decided to keep all
of its features, rather than making a simpler model tailored to our own cryo-ET data. In
doing so, I kept my model implementation very modular and generalizable, so that in the
future it can be extended into a framework for addressing not just translation elongation,
but other biological processes as well.

All the data and code to reproduce these results are available in our EMBL internal Git-
lab instance (https://git.embl.org/grp-bork/riborates), which also contains Systems
Biology Markup Language (SBML) files that describe the models. After the submission
of the thesis and associated manuscript, I plan to make everything open source. In the
meantime, I am happy to provide access to the repository upon request.

4.2 Introduction to Markov processes

This section provides an overview of continuous-time Markov chains (CTMCs), focusing
on their application to chemical reaction networks and in particular to the translation-
elongation cycle of ribosomes. Although thismaterial is covered in numerous textbooks [203,
204] and has already been applied to several biological processes [192, 205, 206], I will give
a brief introduction to make the thesis self-contained and make sure that the methods I
used are justified. I will start by describing classic ordinary differential equations (ODEs)
systems and show how they are equivalent to CTMCs when viewed from a probabilistic
point of view [207].

The mathematical modeling of reaction networks centers on the concentrations of the
involved chemical species and how these concentrations evolve over time. The time evolution
can be described through systems of ODEs. These ordinary differential equations are
deterministic and capture the overall macroscopic behavior of the system by focusing on
the average concentrations of the species. While ODE-based models are useful in many
contexts, they also have some limitations, particularly when dealing with systems where
the number of molecules of certain species is small. In such scenarios, random fluctuations
at the molecular level can become significant, leading to deviations from the average
behavior predicted by ODEs. Furthermore, many biochemical systems exhibit intrinsic
noise, which plays a crucial role in their function and regulation. Deterministic models, by
their very nature, are unable to account for this inherent stochasticity. Finally, at a more
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𝑖

𝜔1,𝑖

𝜔2,𝑖

𝜔𝑖,3

𝜔𝑖,4

Figure 4.2: An example state 𝑖 involved in four reactions, two of which produce 𝑖 (𝑅1,𝑖 and
𝑅2,𝑖) and two of which consume 𝑖 (𝑅𝑖,3 and 𝑅𝑖,4). Each arrow represents a reaction, and the
arrow’s label denotes the rate of the reaction.

conceptual level, it is often convenient to shift perspective and adopt the point of view
of a single ribosome moving through the reaction network. At the single-ribosome level,
concentrations are not relevant anymore: we view the ribosome as a finite-state machine that
jumps from state to state in the reaction network. These considerations motivate the need for
a probabilistic framework for reaction networks, where the focus shifts from deterministic
concentrations to the probability of the system being in a specific state. In this context, a
state is a given intermediate conformation of the ribosome (or a bundle of ribosome and
other molecules such as elongation factors and tRNAs).

Following Gillespie [207] and Toral [208], we can briefly derive the probabilistic equa-
tions as follows. In the ODE setting, if a reaction 𝑅 that produces 𝑖 occurs at rate 𝜔, the
concentration of 𝑖 in the time interval [𝑡, 𝑡 + d𝑡) will increase (deterministically) by 𝜔d𝑡.
In the probabilistic framework, the rate is interpreted as the probability that an individ-
ual particle will change state. Consider a system with 𝑁 states labelled 1, 2, … , 𝑁 and 𝑀
reactions where a reaction from state 𝑖 to state 𝑗 is denoted 𝑅𝑖,𝑗 and occurs at rate 𝜔𝑖,𝑗. If
a reaction does not occur, we set its rate to 0. Let 𝑃𝑖 be the probability that a particle be
in state 𝑖. The probability that the particle jump from state 𝑖 to state 𝑗 in the time interval
[𝑡, 𝑡 + d𝑡) is then 𝜔𝑖,𝑗d𝑡 + 𝑜(d𝑡2), where 𝑜(d𝑡) denotes terms that go to zero with d𝑡 faster
than d𝑡 (these terms capture the cases where multiple jumps occur in the interval d𝑡). If
we focus on a given state 𝑖 produced in reactions 𝑅1,𝑖, 𝑅2,𝑖, … and consumed in reactions
𝑅𝑖,3, 𝑅𝑖,4, … (fig. 4.2), we have

𝑃𝑖(𝑡 + d𝑡) = 𝑃𝑖(𝑡) ⎛⎜⎜
⎝

1 −
𝑁

∑
𝑗=1

𝜔𝑖,𝑗d𝑡⎞⎟⎟
⎠

+ ⎛⎜⎜
⎝

𝑁
∑
𝑗=1

𝑃𝑗(𝑡)𝜔𝑗,𝑖d𝑡⎞⎟⎟
⎠

+ 𝑜(d𝑡) (4.2)

One possibility is that no reaction occurs in the interval [𝑡, 𝑡 + d𝑡), which happens with
probability 1 − ∑𝑁

𝑗=1 𝜔𝑖,𝑗d𝑡. Then, the probability that the system be in state 𝑖 equals the
probability that it was already in state 𝑖. This is captured by the first term of eq. (4.2).
Another possibility that influences 𝑃𝑖 is that the system was in state 𝑗 and exactly one
reaction from 𝑗 to 𝑖 occurred. This is captured by the second term of eq. (4.2). The 𝑜(d𝑡) term
captures all the cases where multiple reactions occur, for example starting from 𝑖, going to 𝑗,
and then back to 𝑖. These situations happen with probability smaller than d𝑡 as d𝑡 goes to
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zero. Thus, if we compute the probability change 𝑃𝑖(𝑡 + d𝑡) − 𝑃𝑖(𝑡), divide by d𝑡, and take
the limit for d𝑡 → 0, we obtain the differential equation

d𝑃
d𝑡 𝑖

(𝑡) = −𝑃𝑖(𝑡)
𝑁

∑
𝑗=1

𝜔𝑖,𝑗 +
𝑁

∑
𝑗=1

𝑃𝑗𝜔𝑗,𝑖 (4.3)

The system of such differential equations for each state 𝑖, together with the constraint
that ∑𝑖 𝑃𝑖(𝑡) = 1, is also known as the chemical master equation. Given appropriate initial
conditions, this equation can be solved to obtain the probabilistic evolution of the system
over time.

Interestingly, this formulation of themaster equation satisfies the definition of a continuous-
time Markov chain (CTMC), a stochastic process where the future state of the system
depends only on its current state and not on the sequence of events that preceded it. This
property is called the Markov property or “memoryless” property. The processes we are
concerned with are “continuous-time” because the transitions can happen at any time point,
not just at discrete time intervals. They are also “discrete-valued”, since there are only
finitely many states. An intuitive way to see CTMCs is as follows. Suppose that a process
in state 𝑖 can jump to states 𝑗, 𝑘, and 𝑙 with rates 𝜔𝑖,𝑗, 𝜔𝑖,𝑘, and 𝜔𝑖,𝑘, respectively; when the
process reaches state 𝑖, an exponential random variable with parameter 𝜆 = 𝜔𝑖,𝑗 +𝜔𝑖,𝑘 +𝜔𝑖,𝑘
defines the time the process will spend in state 𝑖. After the time elapses, the process instantly
jumps to state 𝑗 with probability

𝜔𝑖,𝑗

𝜆 , or to state 𝑘 with probability 𝜔𝑖,𝑘
𝜆 , or to state 𝑙 with

probability 𝜔𝑖,𝑙
𝜆 .

Switching from ODEs to CTMCs has at least two key advantages when describing bio-
logical processes. First, the stochastic nature of CTMCs allows us to understand and model
cell-to-cell variability (a chemical ODE can be understood as the average approximation of a
CTMC). Second, it becomes possible to reason in terms of individual particles and calculate,
among other properties, the trajectory of individual particles and their first-hitting times,
i.e. the time it takes for a particle to reach, for the first time, state 𝑗 starting from state 𝑖. The
average first hitting times will play an important role in my model of the elongation cycle.

A CTMC can be conveniently characterized by its infinitesimal generator matrix, usually
denoted 𝐐, a square 𝑁 × 𝑁 matrix with non-diagonal entries 𝑞𝑖,𝑗 = 𝜔𝑖,𝑗, and with diagonal
entries 𝑞𝑖,𝑖 = − ∑𝑁

𝑗=1 𝜔𝑖,𝑗. In the following, I will describe four concepts which are applied
in the model of the elongation cycle.

4.2.1 Steady-state distribution

For a Markov process, the steady-state distribution, also called stationary distribution
and usually denoted by the vector 𝝅, represents a probability distribution over the states
of the system such that if the process reaches this distribution, it will keep it for ever.
Mathematically, for a CTMC with a generator matrix 𝐐, the steady-state distribution 𝝅
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satisfies the condition 𝝅𝐐 = 𝟎, and the elements of 𝝅 must sum to 1, as they represent
probabilities. Under certain technical conditions (ergodicity), the steady-state distribution
describes the long-term probabilities of finding the system in each possible state after
a sufficiently long period, regardless of the initial state of the system. In the context of
the ribosome translation elongation example, the steady-state distribution would provide
the probabilities of finding the ribosome in each of its conformational states under the
assumption of no perturbation. Not every system has a stationary distribution, but my
model of translation-elongation satisfies the properties of ergodicity, so it is guaranteed to
reach a steady-state. Importantly, the stationary distribution has two interpretations. On
one hand, 𝜋𝑖 is the average proportion of time spent in state 𝑖 by a single particle; on the
other hand, if we have many identically distributed particles and we observe them in a
snapshot at the same time, 𝜋𝑖 is also the expected proportion of particles that we will see in
state 𝑖. The stationary distribution is calculated by solving the linear system 𝝅𝐐 = 𝟎 with
the constraint that ∑𝑖 𝜋𝑖 = 1.

4.2.2 Absorption

An absorbing state is a state in the Markov process from which there is zero probability of
transitioning to any other state. Once the process enters an absorbing state, it remains there
indefinitely. Absorption can be a useful concept for modeling certain types of biological
phenomena, such as irreversible reactions or the formation of stable end products that
cannot be converted back to their reactants within the model’s scope. For the ribosome ex-
ample, one could potentially define an absorbing state representing a translation elongation
intermediate that is blocked by an antibiotic, such as chloramphenicol.

4.2.3 Average first-hitting time

Another important concept is the average first-hitting time. The average first-hitting time to
a specific state 𝑗 from a starting state 𝑖 is defined as the expected amount of time it takes
for the Markov process to reach state 𝑗 for the first time, given that it started in state 𝑖. The
average first-hitting time allows us to quantify the kinetics of reaching specific states within
the system, providing insights into the typical timescales of important events in the process.
In the context of the ribosome translation elongation cycle, I used the average first-hitting
time to calculate the time it takes for a ribosome to complete one full elongation cycle, no
matter which trajectory is taken. We denote 𝜏𝑥→𝑦 the average first-hitting time of state 𝑦
starting from 𝑥. It is also possible to calculate the average first-hitting time for a group of
states 𝑌 = {𝑦1, … , 𝑦𝑛}, rather than a single one; the idea is that we stop whenever we reach
any of the states in the group. The vector of average first-hitting times to states 𝑌 starting
from any state 𝑖 can be computed by solving the following system of linear equations, as
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proven in Norris [203]:
⎧{
⎨{⎩

𝜏𝑖→𝑌 = 0 if 𝑖 ∈ 𝑌
− ∑𝑁

𝑗=1 𝑞𝑖𝑗𝜏𝑗→𝑌 = 1 if 𝑖 ∉ 𝑌 .
(4.4)

A useful generalization for a chain in steady-state is 𝜏𝑋→𝑌, the average first-hitting time of
a group of states 𝑌 starting from any of the states in 𝑋 = {𝑥1, … , 𝑥𝑛}. This can be computed

as
∑𝑛

𝑖=1 𝜋𝑥𝑖𝜏
𝑥
𝑖 →𝑌

∑𝑛
𝑖=1 𝜋𝑥𝑖

. For the model of fig. 4.3, the average time to complete one cycle is defined

as the average first-hitting time to {𝐴𝑐𝑜, 𝐴𝑛𝑟} starting from 0𝐸 plus the average first-hitting
time to 0𝐸 starting from {𝐴𝑐𝑜, 𝐴𝑛𝑟}.

4.2.4 Coarse-graining

Finally, coarse-graining is a technique used to reduce the state space of a Markov process
model by grouping together multiple similar states into a smaller number of effective states.
This has proven crucial for modelling translation elongation: different experiments, due to
different measurement resolution or focus of interest, identify different sets of intermediate
states. Rather than developing a restricted model that contains the intersection of all the
states from the currently available experiments, I decided to create an expanded model
that contains the union of all the states identified so far. This allows me to work with a
single common model onto which the states identified in the various experiments can
be mapped. However, due to limitations in resolving all the intermediates, certain states
become effectively indistinguishable from the point of view of a single experiment. For each
experiment, I can coarse-grain the underlying expanded model to include only the states
that have been observed in that experiment, lumping the states that are indistinguishable
under that particular experiment. It is important to be aware that coarse-graining inevitably
introduces approximations. I mitigate this by relegating the coarse-graining to the very last
step, when I want to compare the theoretical predictions with the experimental data. All
previous calculations are performed using the underlying expanded model.

For the computation of the coarse-grainedMarkov chain, I follow Baez and Courser [209]
and Buchholz [210]. Briefly, given a partition Ω mapping 1, 2, … , 𝑁 to Ω1, … , Ω𝑀, with
𝑀 < 𝑁, we first build the 𝑁 × 𝑀 collector matrix 𝐕 whose entry 𝑖, 𝑗 is 1 if 𝑖 is mapped to 𝑗
and 0 otherwise. Then, we build the 𝑀 × 𝑁 distributor matrix 𝐖, whose entry 𝑖, 𝑗 is 𝛼𝑗 if 𝑗 is
mapped to 𝑖 and 0 otherwise. The purpose of the weight 𝑤𝑖𝑗 is to represent an assumption
about the contribution of state 𝑗 to aggregate state 𝑖. By default, we set 𝛼𝑗 to be the steady-
state probability of state 𝑗, leading to the so-called ideal aggregate. The coarse-grained
matrix 𝐐′ is given by

𝐐′ = 𝐖𝐐𝐕 (4.5)
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4.3 A comprehensive model of the elongation cycle

Our current understanding of translation in prokaryotes is reviewed by Rodnina [211],
and I have tried to capture it in my model. Ribosomes have three sites to which tRNAs can
bind, denoted A, P, and E. Decoding is the step when a loaded tRNA (in ternary complex
with EF-Tu and GTP) binds to the A site and its anticodon is recognized by forming a
Watson-Crick base pairing with the codon on the mRNA. Translocation is the step when
the tRNAs shift from the A and P to the P and E sites (powered by GTP hydrolysis in
cooperation with EF-G), leaving the A site free to accept a new tRNA in the next cycle. Both
these steps consists of several reactions. In between decoding and translocation, the peptide
bond that joins the new amino-acid to the existing chain is formed.

Thus, during the translation elongation cycle, the ribosome is known to progress through
a series of intermediate states that differ either by the structural conformation of the ri-
bosome or by the nature of the tRNAs and elongation factors bound to it. Although the
interconversions among these states are thought to be continuous, certain key moments
have been identified as discrete intermediate states, either due to their extended lifetimes,
or because they represent a unique combination of factors bound to the ribosome at the
same time, or because a key biochemical reaction takes place at those states. To date, a
comprehensive in vitro biochemical study encompassing the entire elongation cycle has
not been performed. However, some studies have focused on isolated steps, particularly
decoding and translocation [182, 183, 184, 185], experimentally investigating the kinet-
ics of the individual transition rates. Conversely, structural studies capable of examining
thousands of ribosomes at high resolution have provided insights into the steady-state
distribution of all intermediate states simultaneously [22, 212], but can yield little to no
information about the kinetics of the process in vivo. Integrating the biochemical studies
with the structural data is therefore a major challenge. I addressed this by developing a
comprehensive model of the elongation cycle, incorporating the states identified at the
single-rate level in the biochemical literature and observed in cryo-EM or cryo-ET analyses,
with special regards for the recent study in M. pneumoniae [22] as it identified states in vivo.
My model builds upon and extends the framework introduced by Rudorf et al. [190] and
Rudorf and Lipowsky [191], henceforth referred to as the Rudorf model. Although the
process of translation also includes initiation and termination steps[211], the model focuses
only on the elongation cycle. All the dynamics of the reaction network will be modelled in
the following sections using the Markov chain framework.

In this section, I provide a detailed description of the model, depicted in fig. 4.3, focusing
on the biological point of view. Since the model is codon-specific, consider a ribosome
about to decode codon 𝑖 (i.e. a ribosome with codon 𝑖 under its A site). It begins with state
0, where the P site of the ribosome is occupied by a tRNA carrying the elongating peptide
chain. In this state, the ribosome is ready to accept in its A site the next aa-tRNA, a tRNA
molecule loaded with the corresponding amino acid. The aa-tRNAs do not bind to the
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ribosome alone, but as part of a ternary complex: aa-tRNA, elongation factor (EF-Tu in
bacteria or EF1A in eukaryotes), and GTP. All ternary complexes compete for binding to the
ribosome, but the stability of the interaction depends onWatson-Crick base pairing between
the codon on the mRNA and the anticodon on the tRNA. Due to the stochastic nature of
molecular motions, all ternary complexes can repeatedly bind to and unbind from the
ribosome [202, 213]. I model this binding as a pseudo-first order reaction that depends only
on the concentration of the aa-tRNA species. Based on experimental evidence [214, 183],
the rate constant is independent of the specific codons and ternary complexes involved.

The codon-anticodon base pairing can be classified as cognate (no mismatches), near-
cognate (onemismatch), or non-cognate (multiple mismatches) [190, 215]. If a non-cognate
ternary complex binds, the system transitions to state 11; if a near-cognate ternary complex
binds, the system moves to state 6; and if a cognate ternary complex binds, the system
transitions to state 1. In the cognate branch, the ribosome and the ternary complex undergo a
series of biochemical and conformational transformations: codon recognition (state 1 to state
2), GTPase activation and GTP hydrolysis (state 2 to state 3), and phosphate release along
with conformational rearrangements of EF-Tu (state 3 to state 4) [216, 217]. Biochemical
studies indicate that the codon recognition step is reversible; however, the subsequent
transitions are not. It is important to note that irreversibility here is intended in a statistical
sense, implying only that the reaction was too slow to be detected under the experimental
conditions. All the rates and rate constants in this branch are taken from Rudorf et al. [190].

Despite the fact that a near- or non-cognate tRNA binds with lower energy, the energy
difference alone is not enough to account for the high fidelity of protein synthesis. As
such, a kinetic proofreading step is necessary [218, 219]. In line with Rudorf et al. [190], I
model fidelity mechanisms both at the codon recognition level and as kinetic proofreading.
Near-cognate ternary complexes are permitted to proceed past the initial binding, in a
separate branch of the state space symmetrical to the cognate branch, with identical rate
constants except for the two states where recognition and proofreading occur. The initial
discrimination takes place in state 7 (the near-cognate equivalent of state 2): theoretically,
the rate of advancing to state 8 should be lower than the corresponding rate to state 3,
while the rate of reverting to state 6 should be higher than the corresponding rate in the
cognate branch. This is indeed the case in E. coli in vitro [190]. The essence of proofreading
mechanisms is to allow thewrong substrate to dissociate faster than the correct one, through
energy dissipation [219]. This is modeled by letting ribosomes in state 9 (or its cognate
equivalent, state 4) regress back to state 0 by releasing the ternary complex. For kinetic
proofreading to function effectively, the rates of exiting states 4 and 9 must differ, and this
is indeed the case in vitro [190].

After the aa-tRNA has been fully accommodated in the A site, the peptide bond is formed
and the ribosome enters the translocation stage, whose steps have been elucidated in detail
in Belardinelli et al. [185]. From this point onward in the model, the cognate and near-
cognate branches are completely symmetric and share the same rates, due to lack of data
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suggesting otherwise. Hence, I will describe only the cognate states, which are denoted by
the “co” suffix to distinguish them from the corresponding near-cognate states, denoted by
the “nr” suffix. Initially, the ribosome oscillates between a non-rotated (state 𝐴𝑐𝑜) and a
rotated (𝐴′𝑐𝑜) state [220, 221]. In the latter, the tRNA heads in the large subunit are tilted
towards the E and P sites, whereas their tails still occupy the P and A sites in the small
subunit, a conformation known as “hybrid” [222]. EF-G can bind to both the rotated and
the non-rotated conformations, but it promotes rotation and prevents the ribosome from
reverting to the non-rotated state [185]. The binding of EF-G coincides with the transition
from states 𝐴𝑐𝑜/𝐴′𝑐𝑜 to states 𝐵𝑐𝑜/𝐵′𝑐𝑜, respectively. Following Belardinelli et al. [185],
I model the association of EF-G as another pseudo first order reaction that depends on
the concentration of EF-G alone, whereas the dissociation happens at a fixed rate. From
state 𝐵′𝑐𝑜, the hydrolysis of GTP induces the transition to state 𝐶𝑐𝑜, and the release of
orthophosphate brings the system to state 𝐷𝑐𝑜. At this point, translocation is essentially
completed, and the tRNAs occupy sites ap/P and pe/E. Dissociation of EF-G brings the
system to state 0𝐸, where tRNAs occupy sites P and E.

State 0𝐸 is a branching point. It is similar to state 0, except that the E site is still occupied by
a tRNA. The precise time at which the E-site tRNA dissociates from the ribosome has been
the subject of a long debate [223]. The twomain possibilities are known as the 2-1-2 pathway,
when the E-site tRNA leaves before the association of the next ternary complex bringing
the system to state 0, and the 2-3-2 pathway, when the tRNA leaves after the association of
the next ternary complex. The former scenario results in ribosomes where only the P site is
occupied, whereas the latter scenario results in ribosomes with all three sites (A, P, and
E) occupied by tRNAs. In the 2-3-2 pathway, the E-site tRNA leaves allosterically together
with EF-Tu after states 4𝐸 or 9𝐸. The Rudorf model modelled these instances as mutually
exclusive possibilities, but recent work suggests that both pathways can occur [193, 22]. The
model includes both pathways simultaneously, and, for lack of data suggesting otherwise,
we assume the same rates hold for the decoding step in both pathways, irrespective of
whether the E-site is occupied or not.

In total, the model has 32 states and a total of 51 possible rates. As some of the rates
are equal between the cognate and near-cognate branches, and between the 2-1-2 and
2-3-2 pathways, in practice only 26 rates are needed. This model allows me to capture
all the states that were observed in our cryo-ET experiment and estimate the rates for an
organism, M. pneumoniae, where they were not directly measured. Note that, while my
model is depicted as a cycle, the state of the system changes from one elongation to the next,
as the ribosome occupies a different position along the mRNA molecule. However, this
looped representation is useful to calculate the properties of the Markov process underlying
the model (see also Rudorf et al. [190]). The fact that cognate, near-cognate, non-cognate,
2-1-2, and 2-3-2 pathways are present in the same unified model also enables us to make
predictions about the fidelity of the process and the relative occurrence of the 2-1-2 vs 2-3-2
pathways of E-site tRNA dissociation. Moreover, as in the Rudorf model, we distinguish
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between free ternary complex concentrations and total tRNA concentrations, allowing us
to model competition between different cognacy levels as well as make predictions about
the codon-specific elongation times (competition between tRNAs was identified as a major
factor affecting codon elongation times). The reactions that lead to the formation of the
ternary complex are modelled separately (see section 4.4.1); for now, we note that what
matters for mass action is not the concentration of tRNA, which is more directly measurable,
but the concentration of ternary complexes. As each ternary complex species can have a
different concentration, the rate of transitions 0 → 1, 0 → 6, 0 → 11, 0𝐸 → 1𝐸, 0𝐸 → 6𝐸 and
0𝐸 → 11𝐸 will depend on the species of ternary complex that binds the ribosome. Therefore,
the rate of one elongation cycle depends on the ternary complex concentration. Since the
codon under the A site has a different set of cognate, near-cognate, and non-cognate tRNAs,
codons will also have different average elongation rates and fidelities.

All the 26 rates have been measured in vitro, but the rates of decoding and translocation
come from different experiments. Those reported for the translocation steps in Belardinelli
et al. [185] are about 20 times slower than the overall translocation rate reported in other
studies, from which the rates of the decoding steps were derived. This discrepancy is likely
due to the fact that decoding has been investigated in the “high-fidelity” buffer [182, 184],
optimized for speed and accuracy with a high concentration of Mg2+ ions, whereas the
translocation rates were measured in a different buffer with a much lower concentration
of Mg2+. To avoid inconsistencies, I linearly scaled the set of translocation rates in vitro
so that the average dwell time in the states (𝐴𝑐𝑜, 𝐴′𝑐𝑜, 𝐵𝑐𝑜, 𝐵′𝑐𝑜, 𝐶𝑐𝑜, 𝐷𝑐𝑜) matched the
translocation time calculated using the decoding rates in previous studies. All rates have
been measured at 37 °C; thus, the estimated rates are also assumed to be valid for this
temperature. The full set of rates in vitro is reported at the end of table A.2.

4.4 Minimization of the kinetic distance

Here, I introduce the method that allows me to estimate the reaction rates in an uncharacter-
ized system where minimal data is available by leveraging known rates from a “reference”
system. In the uncharacterized system, the available data is insufficient to uniquely identify
the rates, but it can induce constraints on them, thereby specifying a space of “admissible”
rates. A prime example of a reference system is the in-vitro E. coli ribosome, since most of the
transition rates in the translation elongation have been experimentally measured, although
in independent experiments. On the other hand, the in-vivo E. coli system is not completely
characterized, as the experimental measurement of the individual rates has proven chal-
lenging. Nevertheless, the average total elongation time for one cycle has been measured,
and ranges roughly between 0.045 s and 0.067 s, depending on the growth medium [224].

In this project, I aim to estimate the translation elongation reaction rates for an in vivo
system. I use data from the target system to constrain the space of admissible rates, and,
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among those, identify the set of rates that minimize the kinetic distance relative to a known
reference system. Given the current state of technological advancements, this approach
likely provides themost accurate estimate available until more precise methods for studying
in vivo reaction kinetics are developed. In the original Rudorf study, the target system was
in vivo E. coli, while the reference system was the in vitro solution with E. coli ribosomes.
In my study, the target system is in vivo M. pneumoniae, while the reference system is the
in vivo E. coli (I show in section 4.4.3 that using a different reference system, including in
vitro E. coli, doesn’t affect the results). Here is some intellectual acrobatics to justify this
approach. In biology, the principle of minimizing the distance between two systems is a
compelling choice for an extremum principle. Indeed, all living systems share a common
ancestor, and biological processes are often well conserved, particularly when evolutionary
divergence is recent [225]. This implies that, in the absence of specific information about a
system, it is reasonable to assume its similarity to other known living systems. Consider
homology modeling, which was the predominant method for predicting protein structures
before the advent of AlphaFold2 [226]. This technique relies on one or more “reference”
or “template” protein structures that have been solved and share sequence similarity with
the protein of interest. The structure of the target protein is then estimated based on the
template structure, using sequence alignment to identify equivalent amino acids. In other
words, the structure information is transferred from the reference to the target protein.
For the kinetic distance minimization approach, we transfer the reaction rates from the
reference system to the target organism. The assumption of similarity comes from the fact
that ribosomes are among the most ancient and conserved molecular machines. Indeed,
ribosomal rRNAs are even used as molecular clocks and universal primers due to their
extremely slow evolutionary rate [227]. Thus, minimizing the kinetic distance is akin to
assuming parsimony or minimal evolution: the translation process has changed minimally,
just enough to account for the differences between the two systems.

The kinetic distance was defined in Rudorf et al. [190] and is here extended to work
not just with rates but also with rate constants in cases where the reactions depend on the
concentration of a molecule. If 𝜔𝑖𝑗 are the rates in the uncharacterized system and 𝜔∗

𝑖𝑗 are
the corresponding rates in the reference system, the kinetic distance is

𝒟 =

√
√√
⎷

∑ ⎛⎜
⎝
ln

𝜔∗
𝑖𝑗

𝜔𝑖𝑗
⎞⎟
⎠

2

(4.6)

In light of the Arrhenius equation, the logarithmic differences ln
𝜔∗

𝑖𝑗
𝜔𝑖𝑗

can be interpreted as
an approximation of the difference between the free energy barriers of the reactions in the
two systems [190]. Since this quantity will occur repeatedly, I’ll introduce a new symbol for
it and call it single-barrier shift: Δ𝑖𝑗 ∶= ln

𝜔∗
𝑖𝑗

𝜔𝑖𝑗
. In the original study, the pseudo first-order rates

that depended on the concentrations of free ternary complexes were not part of the kinetic
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distance, since the rate constant 𝜅𝑜𝑛 was assumed to be the same in both systems. Here,
I relax this assumption and extend the kinetic distance to include reactions that depend
on the concentration of reactants. In this case, the relevant terms of the kinetic distance in
eq. (4.6) take the form (ln 𝜅∗

𝜅 )
2
.

In my model (fig. 4.3) there are 10 pseudo first-order reactions, 6 with rate constant 𝜅𝑜𝑛
and 4 with rate constant 𝜅𝐺. For simplicity, I will denote with the bold 𝝎 the vector of all
rates 𝜔𝑖𝑗 and rate constants 𝜅𝑜𝑛 and 𝜅𝐺. The corresponding vector of rates and rate constants
in the reference system will be denoted 𝝎∗.

The transition rates of the Markov chain in fig. 4.3 can be conveniently collected in a
so-called infinitesimal generator matrix (see section 4.2), denoted 𝐐. Most of the rates are
zero due to the sparse structure of the reaction network; the remaining rates are of the form
either 𝜔𝑖𝑗 or 𝜅𝑖𝑗𝑋, where 𝑋 is the concentration of a reactant (either free ternary complexes
or EF-G). Thus, 𝐐 is not completely equivalent to the vector 𝝎, but it can be calculated
from 𝝎, the concentration of free ternary complexes, and the concentration of EF-G. Since
the concentration of ternary complexes that are cognate, near-cognate, and non-cognate is
codon-specific, the infinitesimal generator matrix is also codon specific. To account for this,
I rely on abstract codon-specific models, as if all the mRNA molecules had only codons
of one kind, and calculate all the properties for that codon. Then, when a property needs
to be compared with actual data that is not codon-specific, the value is averaged over all
codons, weighted by the usage frequency of the codon. Since each codon-specific Markov
chain has a distinct infinitesimal generator matrix, I denote 𝐐𝑖 the infinitesimal generator
of the chain for a ribosome with codon 𝑖 under its A site. All the properties of the system
can be expressed as functions of 𝐐𝑖 using standard Markov chain theory: total elongation
time, first hitting times, stationary distribution, and so on.

For this study, I consider two organisms where the experimental data is adequate: E. coli,
already analyzed by Rudorf et al. [190] and Rudorf and Lipowsky [191], where the total
elongation time is available; and M. pneumoniae, where a coarse-grained steady-state distri-
bution of intermediates is available from cryo-ET analysis [22, 188]. Estimating the rates in
these two systems can be done by constrained minimization:

argmin𝝎 𝒟(𝝎, 𝝎∗) (4.7)
subject to ℎ(𝐐, 𝜽)

Typically, experiments have access to only aggregated data averaged over all codons, so the
constraint, or the function ℎ here, should be a function of all the 𝐐𝑖’s and of other model
parameters such as the codon usages. Here, the parameters are collectively referred to as
the vector 𝜽 (see section 4.4.2).

Notation used throughout the next sections

𝑝𝑖 codon usage frequency
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𝑃̃𝑖,𝑠 stationary distribution for state 𝑠 of a chain with codon 𝑖

̃𝑡𝑖 elongation time of a chain with codon 𝑖

𝜏𝑥→𝑌
𝑖 average first hitting time of states 𝑌 starting from 𝑥 for a chain with codon 𝑖

𝑃𝑖,𝑠 probability of observing a ribosome in state 𝑠 with codon 𝑖

𝐀 cognacy matrix (codons × tRNAs)

𝑇𝑗 free ternary complex (EF-Tu ⋅ GTP ⋅ aa-tRNA) of species 𝑗

𝑇𝑐𝑜
𝑖 total free ternary complex cognate to codon 𝑖

ℛ concentration of ribosome

ℰ concentration of EF-Tu

𝒢 concentration of EF-G

𝐐𝑖 infinitesimal generator of the Markov chain for codon 𝑖

𝝎∗ vector of known rates and rate constants in the reference system

𝝎 vector of rates and rate constants in the uncharacterized system (to be estimated)

Δ𝑖𝑗 single-barrier shift between the target and reference systems for reaction 𝑖 → 𝑗

4.4.1 The tRNA cycle

When the ribosome is in states 0 or 0𝐸, ternary complexes (EF-Tu, GTP, and aa-tRNA) can
bind to it. The state of the ribosome can be further decomposed based on the codon under the
A site. Let𝑅𝑖 denote a ribosomewith codon 𝑖under its A site. As in Rudorf et al. [190],we rely
on a “cognacy matrix” 𝐀 whose entries 𝑎𝑖𝑗 ∈ {cognate,near-cognate,non-cognate} specify
the relationship between codons and tRNAs. Most of the entries in the cognacy matrix are
defined by the genetic code and by the rule of at most one mismatch for near-cognates, but
there can be differences in affinities when multiple tRNAs carry the same amino-acid. In
E. coli, there are 46 species of tRNA, and therefore the same number of ternary complexes.
Any ternary complex 𝑗 can bind to 𝑅𝑖, triggering the transition to either state 1, 6, or 11 (and
their 2-3-2 pathway counterparts 1𝐸, 6𝐸, or 11𝐸), depending on the value 𝑎𝑖𝑗 in the cognacy
matrix. Let 𝑇𝑗 be the concentration of ternary complex of species 𝑗, 𝑋𝑐𝑜

𝑖 = ∑𝑗 𝑇𝑗𝟙cognate(𝑎𝑖𝑗),
𝑋𝑛𝑟

𝑖 = ∑𝑗 𝑇𝑗𝟙near-cognate(𝑎𝑖𝑗), and 𝑋𝑛𝑜
𝑖 = ∑𝑗 𝑇𝑗𝟙non-cognate(𝑎𝑖𝑗), where 𝟙𝑘(𝑎𝑖𝑗) is the indicator

function for 𝑎𝑖𝑗 being equal to 𝑘. In other words, the 𝑋𝑖’s are the total concentration of
ternary complexes that are cognate, near-cognate, and non-cognate to codon 𝑖, respectively.
Then, a ribosome 𝑅𝑖 in state 0 will go to state 1 with probability 𝑋𝑐𝑜

𝑖
𝑋𝑐𝑜

𝑖 +𝑋𝑛𝑟
𝑖 +𝑋𝑛𝑜

𝑖
, to state 6 with

probability 𝑋𝑛𝑟
𝑖

𝑋𝑐𝑜
𝑖 +𝑋𝑛𝑟

𝑖 +𝑋𝑛𝑜
𝑖
, and to state 11 with probability 𝑋𝑛𝑜

𝑖
𝑋𝑐𝑜

𝑖 +𝑋𝑛𝑟
𝑖 +𝑋𝑛𝑜

𝑖
.
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This branching induced by the tRNA species that binds to the ribosome also explains
how the model is codon-specific. It is well-known that different codons have different
elongation speeds [228, 197]. In my model, the different speeds are explained by the
different concentrations of cognate, near-cognate, and non-cognate ternary complexes. The
rates 0 → 1, 6, 11 (and 0𝐸 → 1𝐸, 6𝐸, 11𝐸) follow pseudo-first-order kinetics, i.e. they are
proportional to the total concentration of cognate, near-cognate, and non-cognate ternary
complexes, respectively. This implies that, for a given codon 𝑖, the ribosome 𝑅𝑖 will enter
the cognate branch faster when the concentration of cognate ternary complexes is higher.
Conversely, if the concentration of near- or non-cognate ternary complexes is high (which
in practice is almost certainly the case), the ribosome will “waste time” in the near- and
non-cognate branches, potentially even incorporating the wrong amino acid in the peptide
chain.

Thus, each tRNA molecule goes through different states: initially it is free, then it is
loaded with an amino acid, then this aa-tRNA binds EF-Tu to form a ternary complex,
then this ternary complex binds the ribosome, where the tRNA loses EF-Tu and its amino
acid, and finally it is released back in the cytoplasm as a free tRNA, ready to start again.
We refer to this process, which is distinct but entangled with the translation elongation
cycle, as the tRNA cycle (fig. 4.3 B). Modelling this cycle is important because it allows us
to estimate the concentration of free ternary complex of each species. The concentration
of free ternary complex, in turn, determines the codon-specific transition rates in the
ribosome’s elongation cycle. In the rest of this section, I derive the equations to calculate
the free ternary complex concentrations starting from the total tRNA concentration (which
is available experimentally) and the rates of the reactions in the tRNA cycle. For context,
in M. pneumoniae, the concentration of ribosomes is 7µM [22], the concentration of EF-Tu
is estimated to be 100µM [137], and the concentration of individual tRNA species ranges
from 0.11µM to 14µM [20].

Free tRNAs, as released from the ribosome’s E site, are aminoacylated by the tRNA
synthetase with a constant rate of 𝜔𝑟𝑒 (fig. 4.3 B). Following aminoacylation, they bind
EF-Tu with a pseudo-first order rate constant 𝜅𝑎𝑠𝑠, forming ternary complexes. The ternary
complexes can either get entangled with the ribosome cycle by binding to states 0 or 0𝐸, or
EF-Tu may dissociates from these complexes with rate 𝜔𝑑𝑖𝑠. If the ternary complex binds
to the ribosome and progresses along the elongation cycle, the EF-Tu molecule detaches
from the ribosome immediately after decoding, during transitions 4 → 4∗, 4𝐸 → 4𝐸∗,
9 → 9∗, or 9𝐸 → 9𝐸∗ (fig. 4.3 A). However, the corresponding tRNA will not leave until
at least two elongation cycles later, during transitions 4𝐸∗ → 𝐴𝑐𝑜, 9𝐸∗ → 𝐴𝑛𝑟, or 0𝐸 → 0,
after it will have shifted to the E site. Such tRNA will not be available to form new ternary
complexes as long as it is bound to the ribosome. Thus, each ribosome effectively sequesters
up to three tRNAs, so that the concentration of ternary complexes is always lower than the
concentration of tRNA. For both E. coli and M. pneumoniae, the rates 𝜔𝑟𝑒, 𝜅𝑎𝑠𝑠, and 𝜔𝑑𝑖𝑠 are
estimated as in Rudorf and Lipowsky [191].
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In practice, we need to account for the amount of tRNA of each species that is sequestered
by ribosomes. Due to different codon usages, some tRNA species are sequestered more
than others. Also, due to different elongation rates of different codons, translating a slow
codon will sequester the tRNAs for a longer time. It is a bit messy because the tRNAs stay
on the ribosome for 2-3 elongation cycles, but I will now show that the concentration of
free ternary complex for each species can be derived by knowing the codon usages, the
probabilities of cognate, near-cognate, and non-cognate binding, and the average elongation
times for each codon. To simplify the problem, I decompose the total tRNA concentration
for species 𝑗 into a sum of terms, as in Rudorf and Lipowsky [191]:

𝑇𝑡𝑜𝑡𝑎𝑙
𝑗 = 𝑇𝑗 + 𝑇𝑎𝑐𝑐

𝑗 + 𝑇𝐴
𝑗 + 𝑇𝑃

𝑗 + 𝑇𝐸
𝑗 + 𝑇𝑟𝑒

𝑗 + 𝑇𝑐ℎ
𝑗 , (4.8)

where 𝑇𝑡𝑜𝑡𝑎𝑙 is the total concentration of tRNA molecules of species 𝑗 and is easily accessible
experimentally, 𝑇𝑗 is the concentration of ternary complex available to bind the ribosome,
𝑇𝑎𝑐𝑐

𝑗 is the concentration of tRNA in the process of being accommodated, 𝑇𝐴
𝑗 , 𝑇𝐸

𝑗 , and 𝑇𝐸
𝑗

are the concentrations of tRNA sequestered in the A, P, and E sites, respectively, 𝑇𝑟𝑒
𝑗 is the

concentration of free tRNA before aminoacylation (fig. 4.3), and 𝑇𝑐ℎ is the concentration of
charged tRNA. 𝑇𝑎𝑐𝑐

𝑗 can be further decomposed into 𝑇𝑎𝑐𝑐,𝑐𝑜
𝑗 + 𝑇𝑎𝑐𝑐,𝑛𝑟

𝑗 + 𝑇𝑎𝑐𝑐,𝑛𝑜
𝑗 depending

on the cognacy branch where the ternary complex is accomodating. Similarly, 𝑇𝐴
𝑗 = 𝑇𝐴,𝑐𝑜

𝑗 +
𝑇𝐴,𝑛𝑟

𝑗 . Assuming that both the rates of the ribosome cycle and the concentrations of ternary
complexes 𝑇𝑗 are known, it is possible to calculate the steady-state distribution and the
average elongation time for the Markov chain in fig. 4.3 for each codon using standard
Markov chain theory. Let 𝑃̃𝑖,𝑠 be the steady-state probability for a ribosome with codon 𝑖 to
be in state 𝑠 and ̃𝑡𝑖 be its average elongation time. We can calculate the fraction of ribosomes
with codon 𝑖 in each state if we know the codon usage frequencies 𝑝𝑖. Indeed, the probability
of observing an elongating ribosome with codon 𝑖 under its A site is given by

𝑃𝑖 =
𝑝𝑖 ̃𝑡𝑖

∑𝑖 𝑝𝑖 ̃𝑡𝑖
, (4.9)

i.e. the relative elongation time for codon 𝑖 weighted by the codon usage frequency of 𝑖.
Then, the probability of observing a ribosome with codon 𝑖 in state 𝑠 is given by

𝑃𝑖,𝑠 = 𝑃𝑖𝑃̃𝑖,𝑠. (4.10)

These probabilities can be multiplied by the ribosome concentration ℛ to obtain an estimate
of the absolute concentration of ribosomes in each state for each codon. To simplify the nota-
tion, let us denote by 𝐼𝑐𝑜(𝑗), 𝐼𝑛𝑟(𝑗), and 𝐼𝑛𝑜(𝑗) the sets of codons that are cognate, near-cognate,
and non-cognate for tRNA 𝑗, respectively. Moreover, let 𝑆𝑎𝑐𝑐,𝑐𝑜 = {1, 2, 3, 4, 1𝐸, 2𝐸, 3𝐸, 4𝐸},
𝑆𝑎𝑐𝑐,𝑛𝑟 = {6, 7, 8, 9, 6𝐸, 7𝐸, 8𝐸, 9𝐸}, and 𝑆𝑎𝑐𝑐,𝑛𝑜 = {11, 11𝐸} be the sets of states where ac-
commodation occurs in the cognate, near-cognate, and non-cognate branch, let 𝑆𝐴,𝑐𝑜 =
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{𝐴𝑐𝑜, 𝐴′𝑐𝑜, 𝐵𝑐𝑜, 𝐵′𝑐𝑜, 𝐶𝑐𝑜, 𝐷𝑐𝑜} and 𝑆𝐴,𝑛𝑟 = {𝐴𝑛𝑟, 𝐴′𝑛𝑟, 𝐵𝑛𝑟, 𝐵′𝑛𝑟, 𝐶𝑛𝑟, 𝐷𝑛𝑟} be the set of states
where the A site is occupied by a tRNA (cognate and near-cognate branches), and let
𝑆𝐸 = {0𝐸, 1𝐸, 2𝐸, 3𝐸, 4𝐸, 5𝐸, 6𝐸, 7𝐸, 8𝐸, 9𝐸} be the states where the E-site is occupied.

We can now calculate the concentration of tRNAs in each state as follows.

𝑇𝑎𝑐𝑐,𝑐𝑜
𝑗 = ℛ ∑

𝑖∈𝐼𝑐𝑜(𝑗)
∑

𝑠∈𝑆𝑎𝑐𝑐,𝑐𝑜

𝑃𝑖,𝑠
𝑇𝑗

𝑋𝑐𝑜
𝑖

(4.11)

𝑇𝑎𝑐𝑐,𝑛𝑟
𝑗 = ℛ ∑

𝑖∈𝐼𝑛𝑟(𝑗)
∑

𝑠∈𝑆𝑎𝑐𝑐,𝑛𝑟

𝑃𝑖,𝑠
𝑇𝑗

𝑋𝑛𝑟
𝑖

(4.12)

𝑇𝑎𝑐𝑐,𝑛𝑜
𝑗 = ℛ ∑

𝑖∈𝐼𝑛𝑜(𝑗)
∑

𝑠∈𝑆𝑎𝑐𝑐,𝑛𝑜

𝑃𝑖,𝑠
𝑇𝑗

𝑋𝑛𝑜
𝑖

(4.13)

𝑇𝑎𝑐𝑐
𝑗 = 𝑇𝑎𝑐𝑐,𝑐𝑜

𝑗 + 𝑇𝑎𝑐𝑐,𝑛𝑟
𝑗 + 𝑇𝑎𝑐𝑐,𝑛𝑜

𝑗 (4.14)

𝑇𝐴,𝑐𝑜
𝑗 = ℛ ∑

𝑖∈𝐼𝑐𝑜(𝑗)
∑

𝑠∈𝑆𝐴,𝑐𝑜

𝑃𝑖,𝑠
𝑇𝑗

𝑋𝑐𝑜
𝑖

(4.15)

𝑇𝐴,𝑛𝑟
𝑗 = ℛ ∑

𝑖∈𝐼𝑛𝑟(𝑗)
∑

𝑠∈𝑆𝐴,𝑛𝑟

𝑃𝑖,𝑠
𝑇𝑗

𝑋𝑛𝑟
𝑖

(4.16)

𝑇𝐴
𝑗 = 𝑇𝐴,𝑐𝑜

𝑗 + 𝑇𝐴,𝑛𝑟
𝑗 (4.17)

𝑇𝑃
𝑗 = ℛ

𝑇𝐴
𝑗

∑𝑗 𝑇𝐴
𝑗

(4.18)

𝑇𝐸
𝑗 = 𝑇𝑃

𝑗 ∑
𝑖

∑
𝑠∈𝑆𝐸

𝑃𝑖,𝑠 (4.19)

Note that the amounts of 𝑇𝑃
𝑗 depend on which codon was under the A site in the previous

elongation cycle, and is therefore computed as a function of 𝑇𝐴
𝑗 .1 Similarly, 𝑇𝐸

𝑗 is a function
of 𝑇𝑃

𝑗 because the tRNAs that are now in the E site were in the P site during the previous
cycle.

Calculating 𝑇𝑟𝑒
𝑗 and 𝑇𝑐ℎ

𝑗 requires taking into account the reactions in the tRNA cycle
(fig. 4.3 B), as well as the concentration of free (ℰ 𝑓 𝑟) and total (ℰ) EF-Tu. In particular,

𝑑
𝑑𝑡𝑇𝑟𝑒

𝑗 (𝑡) = 𝑇𝐸
𝑗 (𝑡)𝜔𝑤𝑖𝑡ℎ𝐸 − 𝑇𝑟𝑒

𝑗 (𝑡)𝜔𝑟𝑒

𝑑
𝑑𝑡𝑇𝑐ℎ

𝑗 (𝑡) = 𝑇𝑟𝑒
𝑗 (𝑡)𝜔𝑟𝑒 + 𝑇𝑗(𝑡)𝜔𝑑𝑖𝑠 − 𝜅𝑎𝑠𝑠ℰ 𝑓 𝑟(𝑡)𝑇𝑐ℎ

𝑗 (𝑡)

where, 𝜔𝑤𝑖𝑡ℎ𝐸 is the rate at which ribosomes lose the tRNA in their E site, calculated as the
inverse of the average first hitting time of states {0, 𝐴𝑐𝑜, 𝐴𝑛𝑟} starting from state 0𝐸 (denoted

1Every ribosome has a tRNA in its P site. The question is, how many are of species 𝑗? Because we are at steady
state, the number of tRNAs of species 𝑗 that is accommodated at each cycle does not change. Thus, the
number of tRNAs of species 𝑗 in the P site must be proportional to the number of tRNAs of species 𝑗 that
are accommodated in the A site.
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𝜏0𝐸→{0,𝐴𝑐𝑜,𝐴𝑛𝑟}), weighted by codon usage:

𝜔𝑤𝑖𝑡ℎ𝐸 = ⎛⎜
⎝

∑
𝑖

𝑝𝑖𝜏0𝐸→{0,𝐴𝑐𝑜,𝐴𝑛𝑟}
𝑖

⎞⎟
⎠

−1

At steady state, we can derive expressions for 𝑇𝑟𝑒
𝑗 and 𝑇𝑐ℎ

𝑗 :

𝑇𝑟𝑒
𝑗 =

𝜔𝑤𝑖𝑡ℎ𝐸
𝜔𝑟𝑒

𝑇𝐸
𝑗 (4.20)

𝑇𝑐ℎ
𝑗 =

𝜔𝑑𝑖𝑠𝑇𝑗 + 𝜔𝑟𝑒𝑇𝑟𝑒
𝑗

𝜅𝑎𝑠𝑠ℰ 𝑓 𝑟 (4.21)

ℰ 𝑓 𝑟 can be obtained as follows. The total EF-Tu concentration (ℰ), which is known from
experiments, can be decomposed as a sum of three terms: the free molecules (ℰ 𝑓 𝑟), those
that are part of free ternary complexes (whose concentration equals ∑𝑗 𝑇𝑗), and those that
are part of accommodating ternary complexes (∑𝑗 𝑇𝑎𝑐𝑐

𝑗 ). Thus, we can write

ℰ(𝑡) = ℰ 𝑓 𝑟(𝑡) + ∑
𝑗

(𝑇𝑡𝑜𝑡𝑎𝑙
𝑗 (𝑡) − 𝑇𝐴

𝑗 (𝑡) − 𝑇𝑃
𝑗 (𝑡) − 𝑇𝐸

𝑗 (𝑡) − 𝑇𝑟𝑒
𝑗 (𝑡) − 𝑇𝑐ℎ

𝑗 (𝑡)) (4.22)

and substitute the terms from eqs. (4.11) to (4.21) in order to calculate ℰ 𝑓 𝑟 at steady state.
We obtain a quadratic equation of form 𝑎ℰ 𝑓 𝑟2

+ 𝑏ℰ 𝑓 𝑟 + 𝑐 = 0 with coefficients

𝑎 = 𝜅𝑎𝑠𝑠

𝑏 = ℰ − ∑
𝑗

(𝑇𝑡𝑜𝑡𝑎𝑙
𝑗 − 𝑇𝐴

𝑗 − 𝑇𝑃
𝑗 − 𝑇𝐸

𝑗 − 𝑇𝑟𝑒
𝑗 )

𝑐 = −𝜔𝑑𝑖𝑠 ∑
𝑗

𝑇𝑗 − 𝜔𝑟𝑒 ∑
𝑗

𝑇𝑟𝑒
𝑗

As eq. (4.8) must always be satisfied, we can in principle derive the concentration of
free ternary complexes 𝑇𝑗 from the terms 𝑇𝑎𝑐𝑐

𝑗 , 𝑇𝐴
𝑗 , 𝑇𝑃

𝑗 , 𝑇𝐸
𝑗 , 𝑇𝑟𝑒

𝑗 , and 𝑇𝑐ℎ
𝑗 calculated with the

equations above. However, the calculation of these terms presupposes the knowledge of the
transition rates of the Markov chain of fig. 4.3, hence it already presupposes the knowledge
of the concentration of free ternary complexes. In other words, 𝑇𝑎𝑐𝑐

𝑗 , 𝑇𝐴
𝑗 , 𝑇𝑃

𝑗 , 𝑇𝐸
𝑗 , 𝑇𝑟𝑒

𝑗 , and
𝑇𝑐ℎ

𝑗 are all functions of 𝑇𝑗. This gives rise to an implicit equation that can nevertheless be
solved numerically for the 𝑇𝑗’s. Thus, eq. (4.8) should be viewed rather as an update rule
that can be used to calculate new values for the free ternary complex concentrations 𝑇𝑗
starting from some arbitrary values. In turn, with the new values of free ternary complexes,
the rates of the ribosome Markov chain will need to be updated. For this reason, I use an
iterative strategy that alternates the kinetic distance minimization with the calculation of
new values for the free ternary complex concentrations until convergence, starting from
arbitrary initial conditions (see also section 4.4.3). The model produces estimates for both
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Table 4.1: Parameters that affect the model of the translation elongation cycle. See also
table A.2 for the full list and associated values in M. pneumoniae and E. coli.

Symbol Parameter

ℛ Ribosome concentration
ℰ EF-Tu concentration
𝒢 EF-G concentration
𝑝𝑖 Usage frequency of each codon
𝑇𝑡𝑜𝑡𝑎𝑙

𝑗 Total tRNA concentrations for each species
𝐀 Cognacy matrix between codons and tRNA species
𝜅𝑜𝑛 Rate constant for ternary complex binding
𝜅𝐺 Rate constant for EF-G binding
𝜔𝑟𝑒 Rate of tRNA recharging
𝜔𝑑𝑖𝑠 Rate of EF-Tu dissociation from ternary complexes
𝜅𝑎𝑠𝑠 Rate constant of EF-Tu association to charged tRNAs

the codon-specific rates and the free ternary complex concentrations.

4.4.2 Model parameters

On top of the main reaction networks (fig. 4.3), the model depends on the intracellular
concentrations of some key molecules that affect translation elongation (table 4.1). It also
depends on the rates of the reactions in the tRNA cycle. These parameters can vary signif-
icantly from one organism to another and, even within the same organism, factors such
as growth medium, drug treatments, temperature, and stress can influence these values.
Thus, my model describes a whole family of different elongation cycles, assuming that
its parameters are the only influences, and it can adapt to several organisms or growth
conditions. The full set of parameters for the two main systems described in this thesis,
E. coli and M. pneumoniae, are shown in table A.2.

Experiments are often performed under different conditions, identified by a specific set
of parameters. I refer to such sets of parameters simply as conditions. In E. coli, experiments
that measured both the average elongation rates and the other parameters were performed
in four conditions [229, 224]. Each condition is characterized by a different growth medium,
but, for simplicity, I label these conditions by the growth rate of E. coli rather than by
medium composition. Specifically, the doubling rate in these four conditions is 0.7, 1.07,
1.6, and 2.5 doublings/hour, respectively. The model is applied independently for each
condition. In M. pneumoniae, the cryo-ET experiments that measured the in situ steady-
state ribosome intermediates were performed in three conditions: Control (cells grown
in plain rich medium), Chloramphenicol (cells treated with chloramphenicol antibiotic),
and Spectinomycin (cells treated with spectinomycin antibiotic). Chloramphenicol blocks
the formation of the peptide bond [230, 188], spectinomycin binds to the small subunit
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and inhibits the translocation step [230]. Each of these conditions is characterized by
potentially different ribosome concentration, EF-Tu concentration, total tRNA concentration,
and so on. Unfortunately we don’t always have direct experimental measurements for
all the parameters in every condition, so, I integrated the data from additional studies
were the culture medium might be different [231, 19, 137]. In order to understand which
parameters have an impact on the final results and to mitigate potential errors due to
parameter variability, I conducted extensive sensitivity analyses (see section 4.8).

For E. coli, most of the parameter values were sourced from Rudorf and Lipowsky [191]
and the original references cited therein, except 𝜅𝐺 and 𝒢, which are from Rodnina et al.
[222]. For M. pneumoniae, the ribosome concentration was calculated directly from the
number of ribosomes per cell observed in the cryo-ET dataset provided by Xue et al. [22].
The protein copy number of elongation factors EF-Tu andEF-Gwere reported in a proteomics
study by Maier et al. [231], and the concentrations were derived by dividing the moles of
protein by the cell volume, estimated at 0.05 fL. The codon usage frequency was extracted
from the protein coding genes weighted by their mRNA abundance, as measured in RNA
sequencing dataYus et al. [19]. The total tRNA concentrations were recently measured by
Hydro-tRNA-seq inWeber et al. [20]. The cognate relationships between codons and tRNAs
were taken to respect the Mycoplasma genetic code, whereas the near-cognate matches
were obtained by allowing at most one mismatch from a cognate codon, as described in
Kramer and Farabaugh [232]. M. pneumoniae has different tRNAs molecules and even a
different genetic code than E. coli, but the model remains nonetheless applicable to both
species, provided the appropriate parameters are used. The remaining parameters 𝜅𝑜𝑛, 𝜅𝐺,
𝜔𝑟𝑒, 𝜔𝑑𝑖𝑠, and 𝜅𝑎𝑠𝑠 were assumed to be identical to the E. coli values; in some variations of
the model, 𝜅𝑜𝑛 and 𝜅𝐺 were not treated as fixed parameters, but as rates to be estimated
with the minimization method.

4.4.3 Model calibration

As discussed above, the model requires a set of known rates in a reference system and an
experimental constraint in a target system. The rates in the target system are estimated by
constrained minimization of the kinetic distance from the reference system. Ultimately, the
reference rates are extracted from the extensive data from biochemical experiments for the
E. coli elongation cycle in vitro [191, 185, 222].

The constraint changes from system to system and from condition to condition. Table 4.2
summarizes the six systems that I considered in this work. For E. coli, I considered four in
vivo conditions, corresponding to four growth rates (0.7, 1.07, 1.6, and 2.5 doublings/hour),
where the average total elongation time was measured [229, 224]. Thus, the constraint for
these systems is that the total elongation time be equal to 15, 18, 22, and 22 aa/s, respectively.
These are the same conditions that were used in the original work by Rudorf et al. [190].

For M. pneumoniae, I considered three in vivo systems, where coarse-grained stationary
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Table 4.2: Overview of the systems for which I apply my model, and the respective con-
straints and reference rates used in each case.

System Constraint Reference rates

E. coli Growth rate 0.7dbl/h Total elongation time
equal to 15 aa/s in vitro

E. coli Growth rate 1.07dbl/h Total elongation time
equal to 18 aa/s in vitro

E. coli Growth rate 1.6dbl/h Total elongation time
equal to 22 aa/s in vitro

E. coli Growth rate 2.5dbl/h Total elongation time
equal to 22 aa/s in vitro

M. pneumoniae Control Coarse-grained steady-state distribution
as reported in Xue et al. [22] E. coli 0.7dbl/h

M. pneumoniae Chloramphenicol Coarse-grained steady-state distribution
as reported in Xue et al. [188] M. pneumoniae Control

M. pneumoniae Spectinomycin Coarse-grained steady-state distribution
as reported by Dobbs 2025, unpublished data M. pneumoniae Control

Figure 4.4: A Coarse-graining to the states in Xue et al. [22]. States shaded by the same
color correspond to the same state. B Structures of the states identified in Xue et al. [22].
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Table 4.3: Statesmapping in Xue et al. [22] and Rudorf et al. [190]. “NA”means not available,
because that state was not identified in the experiment.

State Counterpart in
Rudorf et al. [190]

Counterpart in
Xue et al. [22]

Counterpart in
Xue et al. [188] Description

0 0 2𝑎 NA P
1 1 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GTP
2 2 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GTP (recognized)
3 3 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GDP+Pi
4 4 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GDP
4∗ 5 3 A,P and a,P P,A
0𝐸 0 1 NA E,P
1𝐸 1 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GTP
2𝐸 2 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GTP (recognized)
3𝐸 3 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GDP+Pi
4𝐸 4 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GDP
4𝐸∗ 5 2𝑒 A,P,E and a,P,E E,P,A
𝐴𝑐𝑜 5 4 and 5 NA P,A (with peptide bond)
𝐴′𝑐𝑜 5 6𝑎 NA P,A (rotated)
𝐵𝑐𝑜 5 6𝑒 NA P,A+EF-G+GTP
𝐵′𝑐𝑜 5 7 NA P,A+EF-G+GTP (rotated)
𝐶𝑐𝑜 5 7 NA P,A+EF-G+GDP+Pi
𝐷𝑐𝑜 5 8 NA E,P+EF-G+GDP

6 6 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GTP
7 7 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GTP (recognized)
8 8 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GDP+Pi
9 9 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GDP
9∗ 10 3 A,P and a,P P,A
6𝐸 6 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GTP
7𝐸 7 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GTP (recognized)
8𝐸 8 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GDP+Pi
9𝐸 9 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GDP
9𝐸∗ 10 2𝑒 A,P,E and a,P,E E,P,A
𝐴𝑛𝑟 10 4 and 5 NA P,A (with peptide bond)
𝐴′𝑛𝑟 10 6𝑎 NA P,A (rotated)
𝐵𝑛𝑟 10 6𝑒 NA P,A+EF-G+GTP
𝐵′𝑛𝑟 10 7 NA P,A+EF-G+GTP (rotated)
𝐶𝑛𝑟 10 7 NA P,A+EF-G+GDP+Pi
𝐷𝑛𝑟 10 8 NA E,P+EF-G+GDP
11 11 3 EF-Tu⋅ tRNA,P P,A+EF-Tu+GTP

11𝐸 11 2𝑒 EF-Tu⋅ tRNA,P,E E,P,A+EF-Tu+GTP
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distributions of elongation cycle intermediates were reported: no perturbation (Control),
chloramphenicol-treated, and spectinomycin-treated [22, 188, and Dobbs 2025, unpub-
lished data]. The 10 structures identified with cryo-ET in unperturbed M. pneumoniae were
mapped to the states in my model as shown in fig. 4.4 and table 4.3. The constraint for
the kinetic distance minimization was that this coarse-grained steady-state distribution be
respected. In the chloramphenicol-treated M. pneumoniae data set, the intermediate states
that were detected are somewhat different from those in the unperturbed study, and the
mapping to the states in my model is shown in table 4.3. For this system, as well as for the
spectinomycin-treated system, I used the estimated rates in unperturbed M. pneumoniae as
reference.

Rather than simplifying the model to only include the cryo-ET structures, I chose to
keep the underlying model as close as possible to the states identified by biochemical
experiments. This makes it easier to map new structures onto my model as they become
available. However, some of the states in the model give rise to structures that are either too
short-lived or structurally indistinguishable at the current cryo-ET resolutions. Therefore,
some of the 10 structures were mapped to more than one state. For example, the cognate
and near-cognate branches of the cycle are highly symmetrical and the conformations taken
by the ribosomes are thought to differ only at the mRNA codon and tRNA species level,
which cannot yet be resolved by cryo-ET. When minimizing the kinetic distance, I constrain
the sum of the steady-state distribution of all the states that map to the same structure to be
equal to the observed proportion of the structure. This approach is reminiscent of Hidden
Markov Models: there is a “real”, latent process that occurs in the cells, but the cryo-ET
experiments cannot identify the latent states directly due to limitations in the resolution
of the experiment; rather, they can identify some states that are indirectly related to the
latent ones. In my model, I try to capture directly the latent process, making sure that it
represents the experimental results when it is coarse-grained.

In general, the constraints are calculated using the theoretical tools described in section 4.2:
first hitting time, stationary distribution, and coarse-graining. For the E. coli models, the
constraint was the total elongation time of one cycle, averaged over all codons. This is
obtained as follows. I start by building the codon-specific transition matrix for codon 𝑖,
𝐐𝑖. I then calculate the average first-hitting time to reach either state 𝐷𝑐𝑜 or state 𝐷𝑛𝑟
starting from 0𝐸, and sum this to the average first-hitting time to reach state 0𝐸 starting
from either 𝐷𝑐𝑜 or 𝐷𝑛𝑟. This sum covers one full cycle starting and ending in state 0𝐸, and
this is how I define the elongation time. Importantly, the elongation time is an average over
all possible paths or trajectories, weighted by the probability of following that trajectory.
After calculating the elongation time for each codon independently, I then calculate the
average over all codon, weighted by the frequency of the codons in the RNA pool. As such,
the calculated elongation time should match what we would observe from an experiment
that measures the incorporation of amino-acids over time, for example with pulse-chase
radioactive labelling as in Sørensen and Pedersen [197].
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In practice, most programming languages for scientific computing have routines to
perform constrained minimization. I implemented the model in the Julia language [233],
and I used the package NLopt for the constrained minimization [234, 235]. This package
expects a function that calculates the objective function to minimize (in this case, I wrote a
function that computes the kinetic distance) and a function that calculates the constraint
(in this case, I wrote a function that calculates the average elongation time as described
above). Both functions take the rates as input, and the constraint can be specified either as
an equality or an inequality. The package then takes care of calculating the optimal rates,
i.e. those that minimize the kinetic distance while making sure that the average elongation
time is equal to the experimentally measured one. Our model is further complicated by the
fact that optimizing the rates leads to a change in the free ternary complex (EF-Tu ⋅ GTP ⋅
aa-tRNA) concentrations, which means that the rates need to be updated again, and so on.
Calculating the free ternary complex concentrations requires solving a non-linear system
of equations, for which I use the NLsolve package [236]. The minimization-recalculation
loop is carried out until convergence.

For fitting the M. pneumoniae models, the general idea is the same. The constraint is that
the steady-state distribution matches the observations from cryo-ET. Again, I first calculate
the codon-specific steady-state distribution from the transition matrix 𝐐𝑖, then average
over all codons, and finally coarse-grain to reduce the states to the observable ones. At
the same time, I also want to enforce high-fidelity in the translation process. Indeed, we
do know that translation is a highly reliable process, making one error every 1000–10 000
amino acids [237]. From cryo-ET, we cannot distinguish between ribosomes bound to
cognate and near-cognate tRNAs. Thus, I cannot estimate the fidelity directly. However,
I can make the model reflect the known error rates by splitting the observed probability
mass for the translocation part of the cycle unevenly between the cognate and near-cognate
branches, allocating 1

1000 of the steady-state mass to the near-cognate states, and the rest to
the cognate states, while still maintaining the coarse-grained probabilities of each state. This
additional constrain, although motivated by biological knowledge, is somewhat arbitrary,
so I investigated the effect of different values of this parameter. The results are shown in
fig. 4.5. The only rates that change dramatically as the fraction allocated to the near-cognate
branch increases are 𝜔𝑇𝑑𝑖𝑠𝑛𝑟 and 𝜔𝑇𝑑𝑖𝑠𝑐𝑜, which are the rates of the dissociation of EF-Tu
in the near-cognate and cognate branch, respectively (panel A). These rates influence the
proofreading step of decoding [218, 219]: as the near-cognate rate gets higher and the
cognate rate gets lower, ribosomes have fewer time to discriminate between cognate and
near-cognate tRNAs, leading to more mistakes. Higher error rates also increases the average
elongation rate (panelB), but at some point the cost for the cell would be too high: allocating
a fraction of 0.02 to the near-cognate branch would lead to an error rate of around 5%, with
potentially disastrous consequences for protein synthesis.

Once the rates have been estimated, it is also possible to calculate the fidelity of the
translation elongation process in a “forward” way. To do so, I rely again on the codon-
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Figure 4.5: Each row corresponds to a different value for the fraction of occupancy allocated
to the near-cognate branch (roughly proportional to the expected error rate), as indicated
in the gray bars on the left. A Estimated single-barrier-shifts, representing the differences
between the rates in M. pneumoniae and E. coli. Each bar corresponds to one rate. B Codon-
specific elongation rates (green bars) and fidelities (red line). Each bar corresponds to one
of the 62 non-stop codons.
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specific steady-state distribution of the Markov chain. I find the total probability mass in
the cognate states after the point of no-return (state 𝐴𝑐𝑜), denoted 𝑃̃𝑖,𝑐𝑜: all the ribosomes
that reach these states will inevitably incorporate the correct (cognate) amino acid.

𝑃̃𝑖,𝑐𝑜 = 𝑃̃𝑖,𝐴𝑐𝑜 + 𝑃̃𝑖,𝐴′𝑐𝑜 + 𝑃̃𝑖,𝐵𝑐𝑜 + 𝑃̃𝑖,𝐵′𝑐𝑜 + 𝑃̃𝑖,𝐶𝑐𝑜 + 𝑃̃𝑖,𝐷𝑐𝑜.

Similarly, I find the total probability mass in the near-cognate states after the point of no-
return (state 𝐴𝑛𝑟), denoted 𝑃̃𝑖,𝑛𝑟: all the ribosomes that reach these states will inevitably
incorporate the near-cognate amino acid.

𝑃̃𝑖,𝑛𝑟 = 𝑃̃𝑖,𝐴𝑛𝑟 + 𝑃̃𝑖,𝐴′𝑛𝑟 + 𝑃̃𝑖,𝐵𝑛𝑟 + 𝑃̃𝑖,𝐵′𝑛𝑟 + 𝑃̃𝑖,𝐶𝑛𝑟 + 𝑃̃𝑖,𝐷𝑛𝑟.

One definition of fidelity is simply 𝑃̃𝑖,𝑐𝑜/(𝑃̃𝑖,𝑐𝑜 + 𝑃̃𝑖,𝑛𝑟). However, sometimes a near-cognate
tRNA can still carry the correct amino-acid, due to the redundancy of the genetic code.
Thus, a better strategy is to decompose the steady-state probability mass of the near-cognate
branch by tRNA, according to their relative concentration, and consider only the contribution
of the tRNAwith thewrong amino-acid. Unless otherwise noted,when Imention the fidelity
I refer to this latter definition.

4.4.4 Dealing with errors: uncertainty estimation and sensitivity analyses

The rates in the reference system and the model parameters are all affected by uncertainty.
The uncertainty comes from different sources of noise and errors. First, any experimental
measurement is subject to errors and statistical noise. These affect any parameter that was
experimentally measured, such as the rates of the in-vitro system and the concentrations of
ribosome, tRNA, and elongation factors. Furthermore, cells grown in different conditions
might have different parameter values for biological reasons. Unfortunately, the experiments
in the literature are rarely so comprehensive as to encompass all the parameters of interest
for the model, so our data necessarily comes from multiple sources. For example, for
M. pneumoniae, the steady-state distribution comes from cryo-ET experiments performed
in the Mahamid lab at the EMBL in Heidelberg [22], but the tRNA concentrations were
measured in the Serrano lab in Barcelona [20]. These labs use different media to grow the
bacteria, so there could be differences. Here, I illustrate the methods I used to estimate
errors and uncertainty. The relevant results for E. coli and M. pneumoniae will be described
in later sections.

To assess the impact of errors and noise in the reference rates, I generated samples of
fictitious values based on the reported standard deviations and fit the model from scratch
using the fictitious values. The purpose of this analysis is to evaluate the robustness of
the estimates as the reference rates are changed. The original rates can be expressed as
𝜔∗

𝑖𝑗 ± 𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the standard deviation for rate 𝜔∗
𝑖𝑗. To generate the fictitious values, I

considered three points for each rate: 𝜔∗
𝑖𝑗 − 𝛿𝑖𝑗, 𝜔∗

𝑖𝑗, and 𝜔∗
𝑖𝑗 + 𝛿𝑖𝑗. Generating all possible 3|𝝎∗|
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combinations would be computationally intractable, so I adopted a Monte Carlo approach
where I take random samples from the set of all combinations. A statistical analysis of the
results obtained with these samples allows me to compute an “uncertainty interval” for my
estimates.

To assess the impact of different biological conditions and of errors in the measurement of
the model parameters, I conducted comprehensive sensitivity analyses. For each parameter
(and for some pairs or triplets), I defined a grid of plausible values and repeated the fit
from scratch for each value in the grid. This allowed me to analyze the robustness of the
estimates to changes in the parameters (see section 4.8).

Whenever minimization and non-linear systems are involved, there is always the risk of
having multiple solutions, possibly dependent on the initial conditions. For this reason, I fit
all themodels 4096 times starting from random initial values for the rates and concentrations
of free ternary complexes. I keep the solution with the smallest kinetic distance, provided
that it was observed at least 30 times in runs that converged without errors. In all cases
I encountered so far, there was only one solution that is observed multiple times, and it
was always the one of smallest kinetic distance. To check for convergence, I employ the
so-called waterfall methodology: the kinetic distance is plotted as a function of the (sorted)
run index, where each run starts from randomized initial conditions, and the presence of
plateaus in the waterfall plot is indicative of convergence [238].

For M. pneumoniae, but not for E. coli, many of the initial conditions lead to invalid runs
due to reaching a state that is physically impossible (e.g., a negative concentration of a
chemical species in the model). This indicates that the model, which is highly non-linear,
is sensitive to the initial conditions. However, for a broad range of initial conditions, the
waterfall plots show that it always converges without errors to the same value. The kinetic
distance between the reference system and the target system is relatively small for E. coli,
where the jump is between the ribosomes in vitro and in vivo. For M. pneumoniae, however,
the jump is from one organism to another, and the kinetic distance across which we need to
minimize is far greater. This is the likely cause of the sensitivity to the initial conditions.

Another source of uncertainty concerns the structure of the model itself, in terms of
which states and transitions should be included. The experimental data in the literature is
still inconclusive about some of the details of the elongation cycle. For example, it is not
clear when the E-site tRNA leaves the ribosome. The existence of a structure with the E-site
occupied but without EF-Tu in the Cm-treated dataset suggests that the E-site leaves after
EF-Tu in the 2-3-2 pathway, and this is the scenario that I have used for the model. However,
this is just one possibility, and it doesn’t exclude that the E-site tRNA could leave early, in
which case the 2-3-2 pathway would merge into the 2-1-2 pathway. I have also developed
variations of the main model to assess the impact of model structure on the results. In total,
I have six variations:

Simple: The original Rudorf model with 12 states (used as control and for replicating the
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original study).
Expanded: An extension of the simple model where states 5 and 10 are replaced by six

translocation states each, and both 2-1-2 and 2-3-2 pathways are present simultane-
ously (the main innovations I introduced).

Free 𝜅𝐺: Same as the expandedmodel, but 𝜅𝐺 is estimated by kinetic distanceminimization
instead of being constant.

Free 𝜅𝑜𝑛 and 𝜅𝐺: Same as the expanded model, but 𝜅𝑜𝑛 and 𝜅𝐺 are estimated by kinetic
distance minimization instead of being constant.

With APE: Same as the “Free 𝜅𝐺” model, but it contains additional states between decoding
and translocation to account for structures without EF-Tu but with the E-site occupied
(the most general model, used throughout this chapter unless otherwise noted).

One pept: Same as the “With APE” model, but the rate of peptide bond formation is the
same for all four cases (cognate, near cognate, 2-1-2, and 2-3-2 branches).

The main conclusions do not change by using different variants, so, in the rest of the thesis,
I focus on the model with APE, which is the most general.

4.5 In-vivo rates for E. coli using the new general model

Compared to the original Rudorf model [191], mine adds 24 new states and 14 new rates
or rate constants. My model captures some recently identified intermediates in the translo-
cation step [185, 22], and could help elucidate the role of EF-G in translocation as well as
the relative proportions of the 2-1-2 and 2-3-2 pathways. In order to leverage these new
features, I need to estimate the in vivo rates for the new model. Since I reimplemented all
calculations from scratch with different methods, it is also necessary to see how my model
compares with the Rudorf model. The comparison is possible by coarse-graining my model
to the Rudorf one, as described in section 4.2. In this section, I replicate that work using my
own model, explore the advantages, and add novel analyses of the relationships between
the parameters.

As in Rudorf and Lipowsky [191], I used four elongation times as constraint, correspond-
ing to four different growth conditions for E. coli: 0.7, 1.07, 1.6, and 2.5 doublings/hour. Here
I only show the results for the 0.7 doublings/hour (see also table A.3), but the results are
the same for the other conditions. When the system is coarse-grained to the Rudorf model,
the rates are not significantly different from those obtained in the original study (fig. 4.6).
Similarly, the estimated concentrations of free ternary complexes are very close to those
obtained with the original Rudorf model. This shows that the kinetic distance minimization
yields robust estimates that are not affected by the presence of additional states and rates.
Furthermore, the original study was successfully replicated using my independent method,
a result that is not always guaranteed in science [239].

One advantage of the present model is that it allows the investigation of the steady-state
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Figure 4.6: Rates and ternary complex concentrations estimated for E. coli. A Single barrier
shifts compared to the in vitro reference elongation cycle. B I coarse-grained my model to
the original states from Rudorf et al. [190] and compared them to the rates estimated with
the original model. This figure shows the single-barrier shifts in a scatter plot, with the
identity line in red. C Estimated ternary complex concentrations in vivo (dark blue) and
measured total tRNA concentrations (light blue). D Scatter plot between the predicted
ternary complex concentrations with my model and with the original Rudorf model, and
identity line in red.
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Figure 4.7: Predicted steady-state distribution (occupancies) in E. coli, grouped by elonga-
tion cycle phase (initiation, decoding, peptide bond formation, or translocation) and by
cognacy branch (cognate [co], near-cognate [nr], non-cognate [no]).

distribution of the elongation cycle intermediates in greater detail (fig. 4.7). For example,
roughly 45% of ribosomes are expected to be found in the 2-3-2 branch (decoding with
the E-site occupied), 33% in the 2-1-2 branch (decoding with a free E-site), and 9% in
the translocation phase. Interestingly, the most prevalent states are 11 and 11𝐸, the states
corresponding to the binding of a non-cognate ternary complex, which account for more
than 40% of the probability mass. These results should be compared with the steady-
state distribution measured by cryo-ET in E. coli; however, a detailed cryo-ET analysis of
ribosomes is not yet available for this organism. I am aware of ongoing efforts from the
group of Julia Mahamid to identify intermediate states in E. coli, and I am looking forward
to exploring those data as soon as they become available.

To explore the relationships between the main variables in the model, I created a matrix
of all the pairwise scatter plots and correlations between the variables of interest. As
expected, there is a strong relationship between the codon-specific elongation times and the
corresponding amount of cognate ternary complex. A high concentration of free ternary
complex will boost the pseudo-first-order reactions that lead from state 0 to 1 and from 0𝐸
to 1𝐸 (cfr. fig. 4.3). Moreover, there is a strong positive correlation between fidelity and
probability of following the 2-3-2 pathway, both of which are strongly negatively correlated
with the elongation time (fig. 4.8).

Since the model has so many parameters, it is interesting to investigate the relationships
between them. This can confirm known facts from biology or even suggest new hypotheses.
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Figure 4.8: Correlations between the main variables in the model across codons. Each black
dot represents one of the 61 non-stop codons in E. coli. In particular, the concentration of
cognate ternary complex (tc_co) shows significant correlation with codon usage (indicating
an evolutionary optimization), elongation rate, fidelity, and probability of following the
2-3-2 pathway.
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Figure 4.9: Relationship between total tRNA concentration (light blue bars), free ternary
complex concentration (light blue bars), average codon usage of the cognate codons (black
dots), and average elongation time of the cognate codons (red dots).

In any case, it helps to understand the inner workings of the model. For example, in fig. 4.9, I
plot the relationship between total tRNA concentration, free ternary complex concentration,
average codon usage, and average elongation time. Codons with higher usage frequencies
also tend to have higher concentration of cognate tRNAs and, hence, faster elongation times.

One of the interesting features of themodel is that it is codon-specific. Only the rates of six
transitions in the whole cycle depend on the codon, but this is enough to make the overall
elongation rate codon-specific. These six transitions are those coming out of states 0 and 0𝐸,
as those rates depend on a shared rate constant (𝜅𝑜𝑛) and on the concentration of cognate,
near-cognate, and non-cognate ternary complexes. The relationship between codons and
tRNAs induced by the genetic code is quite complex, but I tried to summarize it in fig. 4.10.
In general, codons whose cognate ternary complexes have a higher abundance will progress
more readily in the forward direction of the elongation cycle. However, the relative usage
of a codon (i.e. its proportion in the total mRNA pool of the cell) is also important. Indeed,
all codons compete for the same pool of free ternary complexes. In the top-right corner
of fig. 4.10, we can observe a correlation between the codon usage probability and the
abundance of cognate ternary complexes (Pearson: 0.51, p-value=2.668 × 10−6). This is
likely an evolutionary adaptation for fast-growing organisms and has been described
before [229]. Such trend is apparent across all codons, but it is also visible within the
families of codons that encode for the same amino-acid. Due to the redundancy of the
genetic code, some codons are synonymous for the same amino-acid. Within a family
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Figure 4.10: Cognacy relationships between codon and tRNAs (bottom left), codon usage
(bottom right), tRNA and ternary complex concentrations (top left), and scatter plot
between the usage probability and the concentration of corresponding cognate ternary
complexes (top right).
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Table 4.4: Summary of the parameters for the E. coli (0.7 dbl/h) and M. pneumoniae (wild
type) models.

Parameter Value in E. coli Value in M. pneumoniae

N. tRNAs 43 35
Total tRNA concentration 209.4µM [191] 110µM [137]
Ribosome concentration 18.57µM [191] 7µM [22]
EF-Tu concentration 152.2µM [191] 100µM [137]
EF-G concentration 10µM [185] 10µM [137]

of synonymous codons, each codon has a different usage frequency (sometimes called
codon usage bias). One of the forces that stimulates the codon usage bias is translational
efficiency [240]. My model can then be used to investigate this phenomenon by making
predictions on the elongation rates. Furthermore, the model makes it is possible to estimate
the overall translation speed of a gene by summing the elongation rate of all the codons in
its sequence.

4.6 Estimation of the rates in M. pneumoniae

Having estimated the rates in E. coli, I then set out to do the same in M. pneumoniae. Re-
cently, the collection of a large cryo-ET dataset enabled the resolution of the structure of 10
intermediate states of the elongation cycle in situ [22]. Such dataset enables us to measure
the relative proportion of each intermediate by taking a snapshot of a large population
of ribosomes at a fixed time. Because the cells were growing undisturbed for a few days
before being imaged in the electronmicroscope, we can assume that the relative proportions
observed are representative of the steady-state distribution. We can thus use this data as the
new constraint in the minimization of the kinetic distance method. This time, rather than
using the rates of translation in vitro, which are not available for M. pneumoniae, I decided
to use the estimated rates in E. coli growing at 0.7dbl/h as a reference. I had the option
of choosing either the E. coli in vitro system or one of the estimated in vivo systems, but I
reasoned that the rates in M. pneumoniae would probably be closer to the E. coli rates in vivo
than those in vitro, so I opted to use the estimated rates of the slowest-growing E. coli system
(0.7 doublings/hour) as the reference system for unperturbed M. pneumoniae. After doing
all the fitting using the 0.7dbl/h as the reference, I investigated the effect of using different
reference systems, and I found that the estimated rates in M. pneumoniae essentially do not
change (fig. 4.11). In fact, surprisingly, the smallest kinetic distance is achieved when the
fastest-growing E. coli, at 2.5 doublings/hour, is used as the reference.

Nevertheless, when using the E. coli rates to estimate those in M. pneumoniae, it is im-
portant to account for the differences between these two organisms. M. pneumoniae has a
different set of tRNAs, and even a different genetic code, where one of the classic stop codons
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Figure 4.11: Estimated rates in M. pneumoniae corresponding to five different reference
systems. The black dashed line crosses the reference rates, while the arrows point to the
estimated M. pneumoniae rates. Since the y-axis is in log scale, the length of the arrows is
proportional to the single barrier shifts Δ𝑖,𝑗, which is also encoded in the arrow’s color.
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Table 4.5: Comparison between the experimentally measured low resolution steady-state
distribution in E. coli, the predicted steady-state distribution in E. coli from my model, and
the measured steady-state distribution in unperturbed M. pneumoniae.

State description E. coli
K-12 30min LB [241]

E. coli
2.5dbl/h [191]

M. pneumoniae
wildtype [22]

P 14% 5.2% 8.5%
E,P,A+EFTu 38% 46% 6.3%
E,P+EFG 48% 8.2% 11%

(UGA) actually codes for tryptophan. While E. coli has 43 distinct tRNAs, M. pneumoniae
has only 35. Since the cognacy relationships, to the best of my knowledge, have not been
accurately determined in mycoplasma, I built the cognacy matrix relying only on the ge-
netic code, assigning to each codon all the tRNAs that carry the corresponding amino
acid. The concentration of ribosomes was estimated directly from the count of ribosomes
in the tomograms [22], whereas the concentrations of EF-Tu and EF-G were obtained by
mass spectrometry as reported in [137]. table 4.4 shows the main parameters used for the
systems described here: the unperturbed M. pneumoniae and the reference E. coli growing
at 0.7dbl/h. Except for the concentration of EF-G, all values are lower in M. pneumoniae,
consistently with the extremely slow growth rate of this organism. These parameters are
sometimes known only as rough approximations; moreover, they heavily depend on the
growth conditions of the culture, and in the literature it is difficult to find two studies that
use exactly the same media. Other parameters (𝜅𝑜𝑛, 𝜅𝐺, 𝜔𝑟𝑒, 𝜔𝑑𝑖𝑠, and 𝜅𝑎𝑠𝑠) are completely
unknown for M. pneumoniae, and I estimate them to be the same as E. coli. I try to miti-
gate these issues by repeating the analysis for different parameter values and assess the
robustness of the predictions (section 4.8), as prescribed in Villaverde et al. [238].

It is also important to investigate differences in the steady-state distribution of elonga-
tion intermediates between these two organisms. So far, the steady-state distribution has
not yet been measured in E. coli at the same level of completeness that was achieved in
M. pneumoniae. There is only one report in the literature for a distribution of intermediates
at very low resolution for two E. coli strains [241]. It could still be interesting to compare
the steady state distribution measured in that study (Khusainov et al. [241]) with the one
measured in M. pneumoniae (Xue et al. [22]) and with the one predicted in E. coli by my
model. Some general limitations do remain. First and foremost, the Khusainov et al. [241]
study identified only three intermediates, compared to 10 in M. pneumoniae. Second, the
distributions for the two strains of E. coli grown under the same conditions, are already
qualitatively quite different, with the P class going from 14% in the K-12 strain to 1% in the
ED1a strain. This suggests that steady-state distributions might be extremely variable even
across strains of the same species, so it wouldn’t be surprising if there were major differ-
ences between E. coli and M. pneumoniae. Third, the growth medium used in Khusainov
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Figure 4.12: Comparison between steady-state distribution of intermediates between E. coli
(estimated in vivo with my model) and M. pneumoniae (measured by cryo-ET [22]). The
E. coli model was constrained to include only the states reported in M. pneumoniae.

et al. [241], LB, is different from the media used to measure the elongation rates in the
studies used to fit my model in E. coli, which could lead to differences in the steady-state
distribution of ribosome intermediates. The comparison between these systems, including
only the three states that are common to all of them, is shown in table 4.5. For my predictions
in E. coli and the observations in M. pneumoniae, the proportions are calculated only from
the states that could be mapped to the corresponding state in Khusainov et al. [241], and
therefore do not add up to 100%.

If we exclude Khusainov et al. [241] and only compare my model’s prediction in E. coli
with the experimental results in M. pneumoniae, we can conduct a more extensive and fair
comparison, since all the states in the model can be mapped to the experimentally resolved
structures. Figure 4.12 shows the abundances of the intermediates in M. pneumoniae, along
with the corresponding abundances for E. coliwhen themodel is coarse-grained to the same
structures. In E. coli, the prevalent states are those in the decoding phase of the elongation
cycle, i.e those when the ribosome is bound to the ternary complex. InM. pneumoniae, on the
other hand, the most abundant states are those just after decoding and before the binding
of EF-G.

Now, given that the steady-state profile is probably different between these two organisms,
I asked what would my model predict about the rates. The lifestyle and growth rate of
these bacteria are quite different, but the differences at the molecular level need not be large.
Furthermore, I was interested in whether the differences, if any, are driven by parameters
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Figure 4.13: A Single-barrier shifts representing the logarithmic difference between the
rates in M. pneumoniae and E. coli. Negative values denote reactions that are faster in
M. pneumoniae; positive values denote reactions that are faster in E. coli. B Single-barrier
shifts mapped onto the elongation cycle model.

like concentration of elongation factors, or rather intrinsic properties of the ribosomes such
as the structure, or perhaps something that we haven’t parametrized in our model like the
ion concentrations.

After applying the kinetic distance minimization using the observed steady state dis-
tribution in M. pneumoniae as constraint, I obtained the estimate shown in fig. 4.13 for the
rates (see also table A.3). The rates of the decoding step (top half of fig. 4.13 B) do not
substantially differ from those in E. coli. However, translocation (bottom half of fig. 4.13
B) is significantly slowed down. Specifically, the M. pneumoniae ribosomes have a ten-
dency to remain in the non-rotated pre-translocation state. For example, the rate of the
counter-clockwise rotation from state 𝐴 to state 𝐴𝑐𝑜 is 900 s−1 in E. coli, but only 100 s−1 in
M. pneumoniae. Conversely, the “reverse” reaction from 𝐴𝑐𝑜 to 𝐴 shifts from 200 s−1 in E. coli
to 8000 s−1 in M. pneumoniae. The binding of EF-G shows a similar pattern, with the rate
constant of binding being 1̃0 times slower, and the rate of unbinding being 5̃0 times faster
in M. pneumoniae compared to E. coli. It is important to note that the model may not have
enough resolution to uniquely identify both the forward and reverse rate of a reversible
reaction. The forward and reverse rate could be scaled differently and still yield a similar
same overall steady-state distribution. This is not just a problem within reversible reactions,
but it affects every reaction. There simply are not enough constraints to uniquely identify
the rates, and this is precisely why we have to use a minimization method. The value of the
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Figure 4.14: Predicted steady-state abundances (occupancies) in M. pneumoniae, grouped
by elongation cycle phase (initiation, decoding, peptide bond formation, or translocation)
and by cognacy branch (cognate [co], near-cognate [nr], non-cognate [no]).

minimization method is that it finds the most parsimonious set of rate changes that can
explain the data.

The steady-state distribution of intermediate states is dominated by state 𝐴𝑐𝑜 (fig. 4.14,
to be compared with fig. 4.7 on page 124). The decrease of the number of ribosomes in
states 11 and 11𝐸 compared to E. coli makes sense in light of the lower concentration of
non-cognate tRNAs in M. pneumoniae. Another noticeable difference is the proportion of
ribosomes in the 2-3-2 branch (states whose name ends in “E”), 20% in M. pneumoniae,
whereas it was 50% in E. coli.

An important question is whether the slower translocation rates are driven by intrinsic
structural properties of the ribosomes or by the concentration of EF-G. Indeed, EF-G binds to
the ribosome exactly at the beginning of translocation. Here, the binding of EF-G ismodelled
as a pseudo-first-order reaction, i.e. the rate is given by the product between a rate constant
𝜅𝐺 and the concentration of EF-G. The model predicts a 𝜅𝐺 of ~800 s−1 µM−1 in E. coli,
and of ~100 s−1 µM−1 in M. pneumoniae (table A.3). The concentration of EF-G is taken to
be 10µM for both organisms (table 4.4). Thus, when we multiply the respective 𝜅𝐺 and
concentration, we get that the rates are ~8000 s−1 in E. coli an ~1000 s−1 in M. pneumoniae,
concluding that the slowdown effect cannot be explained by EF-G concentration alone. In
section 4.8 I test the effect of possible mistakes in the parameter estimates by running a
sensitivity analysis.

As I did for E. coli, I also investigated the relationships between some important model
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Figure 4.15: Correlations between the main variables in the model across codons. Each
black dot represents one of the 62 non-stop codons in M. pneumoniae. In particular, the con-
centration of cognate ternary complex (tc_co) shows significant correlation with elongation
rate, fidelity, and probability of following the 2-3-2 pathway, but not codon usage.
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quantities in M. pneumoniae. Figure 4.15 shows the codon-specific usage bias, elongation
rate, fidelity, probability of going through 2-3-2 pathway, and concentration of cognate, near-
cognate, and non-cognate ternary complexes. We can observe the same positive relationship
between elongation rate, fidelity, and concentration of cognate ternary complexes. However,
the correlation between codon usage and cognate ternary complexes is much lower (0.105
compared to 0.503 in E. coli). This suggests that the ability of ribosomes to find the correct
ternary complex is not under evolutionary pressure, possibly because it is not the limiting
factor in the slow growth rate of this bacterium.

4.7 Experimental validations

Every model prediction should be experimentally validated to make sure that it is sensible.
In this section, I discuss potential ways in which the model described in this chapter has
been or could be validated. Unfortunately, most relevant experiments on the biochemistry
of translation have been done in vitro using E. coli components, whileM. pneumoniae has not
received the same level of attention until recently with the cryo-ET [22, 188] and ribosome
profiling experiments [20]. Moreover, experimental manipulation of M. pneumoniae is con-
siderably more difficult than E. coli due to pathogenicity (S2 class) and lack of established
protocols for genetic manipulation.

In section 4.5 I showed that my generalized model replicates the results of the original
Rudorf model, meaning that the predictions about the elongation rates are essentially
the same. Two in vivo experiments have been used in the original study to confirm the
model’s prediction for E. coli [190]. One measured the relative speed of translation versus
frameshifting, the other used a radioactive pulse-chase strategy tomeasure the incorporation
of amino acids over time. In both cases, the experiment showed good agreement with the
theory.

In M. pneumoniae, such experiments have not been performed, so I had to rely on more
indirect data. The model predicts elongation rates ranging from 0.48 aa/s to 2.55 aa/s, with
an average (weighted by codon usage frequency) of 2.1 aa/s. This value is quite far from the
15 aa/s of the reference E. coli. Importantly, the only constraint in the model is the steady-
state distribution of intermediates, so the model is oblivious to any information about
elongation rate. Yet, this estimate of the average elongation rate is remarkably similar to an
independent estimate made by ribosome profiling [20], where the estimated elongation
rates ranged from 0.55 aa/s to 4.91 aa/s with a weighted average of 1.81 aa/s. Although the
average rates estimated with ribosome profiling and our model are in good agreement, the
codon-specific rates are not. The Pearson correlation between the 62 rates is -0.02 (p-value
0.84). Such discrepancy might be explained by the different growth media used in different
experiments: rich buffer for cryo-ET, and minimal medium for the ribosome profiling.

As another validation of the average elongation rate, Joe Dobbs from the Mahamid
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Figure 4.16: Codon-specific elongation rates predicted inM. pneumoniae, grouped by amino
acid (left), and kernel density estimate of the distribution of elongation rates (right).

Figure 4.17: Three technical replicates of a growth curve experiment hosted in wells E7, E8,
and E9 of a 96-well culture plate. The experiment used a plate reader to measure the pH of
the medium every 2 hours for 72 hours in total. Medium acidification is a strong indicator
of bacterial cell growth. After correcting the data by subtracting the background signal
obtained from a well with pure medium, I processed the data with the growthcurver v0.3.1
package in R, which estimates the growth rate by fitting a logistic curve.
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group and the Microbial Automation and Culturomics Core Facility at EMBL performed a
growth curve experiment, and I analyzed the data. Assuming that the cells grow with an
exponential rate, and also assuming that protein synthesis is the limiting factor for growth,
it is known that the growth rate is directly related to the translation elongation rate [242].
The following relationship can be derived from mass-balance principles:

𝑟𝑔 =
𝑟𝑡ℛ𝛽
𝑁𝑃

(4.23)

where 𝑟𝑔 is the growth rate, 𝑟𝑡 the translation elongation rate, ℛ the concentration of
ribosomes, 𝛽 the fraction of actively translating ribosomes on average, and 𝑁𝑃 the total
number of peptide bonds in the cell. Formycoplasma, the growth culture experiment yields a
growth rate of 0.13 per hour. cryo-ET experiments show that the number of active ribosomes
in the cell is around 250. Andmass spectrometry experiments reveal that the protein content
in this bacterium is about 107gL−1 [231]. Considering a volume of 0.5 fL and an average
amino acid weight of 110Da, we estimate that the total number of incorporated amino acids
(and therefore of peptide bonds) is ~3 × 107. Plugging everything in the equation above, we
get an estimate of 4.4 aa/s. This number is higher than the 2.1 aa/s predicted by my model,
but a few remarks are in order. First, 0.13 is the theoretical maximum rate at which the cells
can grow, assuming unlimited resources and no competition; in typical situations, the rates
would probably be lower. Second, the cells were grown in 96-well plates for the growth
curve experiment, but for cryo-ET, they are grown directly on the grid that is used to hold
the sample in the electron microscope. This different environment may well lead to a lower
growth (and, consequently, elongation) rates.

If, in the future, more experiments are performed in the M. pneumoniae system, that data
can be used to further refine the estimated rates or validate the predictions.

4.8 Sensitivity analysis

Uncertainty quantification are integral parts of the modelling process [238]. In its most
general sense, sensitivity analysis is the study of how the outputs of a system are related to
its inputs. This is a highly nontrivial task, especially in complex non-linear systems with
many parameters. Uncertainty in the inputs does not directly translate in uncertainty in the
predictions. The input parameters are affected by biological noise, biases and limitations of
experimental protocols, different values in different growth conditions, and so on. Sensitivity
analysis is instrumental in evaluating our conclusions, helping us judge which statements
hold true across broad ranges of parameters and which are less robust. Besides mitigating
errors, sensitivity analysis can also provide testable hypotheses about the behaviour of the
system. For example, we could ask “what if” questions such as what would happen if the
concentration of elongation factors was two times higher. The model can thus be used as
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an in silico platform to provide interesting hypotheses. Given that ribosomes are among the
main targets for bacterial antibiotics [230], having access to a comprehensive model of the
elongation cycle could also enable clinical applications.

Due to the complexity of the model and the computational cost of its fitting, analyzing
changes in all parameters at once would prove extremely challenging due to the exponential
increase in the number of parameter combinations. Thus, the general strategy I adopted is to
asses changes in turn for one, two, or at most three parameters, keeping the others constant.
Moreover, I tried to optimize my code as much as possible, and I used parallelization to
run multiple instances of the model at the same time. To manage the large number of runs
(multiple organisms, multiple model versions, multiple conditions, multiple parameters),
avoiding to unnecessarily regenerate the output files unless their inputs had changed, and
further scaling the jobs acrossmultiple compute nodes, I wrote a Snakemakeworkflow [173]
which ended up havingmore than 1000 job steps. In this thesis I will only present the results
for one model version (“with APE”, see section 4.4.3), unless otherwise specified, but the
same general conclusions hold for the other versions.

4.8.1 Steady-state proportions

First, I assessed the impact of variability in the steady-state proportions of ribosomes in
each state. These data are used as hard constraint in the model, meaning that the predicted
steady-state distribution will always exactly match the experimental data, when the model
is coarse-grained. The cryo-ET dataset from Xue et al. [22] contains a total of 355 tomograms.
For simplicity, we can assume that each tomogram contains one cell, and this is indeed
mostly the case. However, sometimes the cell is incomplete, and sometimes there are two
or more cells in the field of view of the microscope. This is, in general, not a problem since
we expect a spatially uniform distribution of ribosomes both within and across cells, so
I will use the terms tomogram and cell interchangeably. The count of ribosomes in each
state exhibits some cell-to-cell variability. Similarly, fluctuations in the concentration of
elongation factors and tRNAs from cell to cell are also to be expected. Moreover, the cells
had not been synchronized, so they were all in different phases of the cell cycle when
they were imaged. To try and understand the effects of such variability, I built cell-specific
models and tried to correlate the estimated rates with other features that can be derived
from the tomograms, such as cell volume and total number of ribosomes.

Figure 4.18 shows histograms of the number of ribosomes in each state across cells. The
average cell has 2̃50 ribosomes in total, but each cell can have a different proportions of
intermediate states. In the previous section, I used the average steady-state distribution as
constraint; here, I repeat the fit independently for each cell and investigate the variability in
the predictions.

After discarding 41 cells where one ormore intermediates could not be detected, I applied
the kinetic distance minimization method to estimate the rates in M. pneumoniae using the
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Figure 4.18: A Histogram of the number of ribosomes per cell across 355 tomograms. B
Histograms of the number of ribosomes in each intermediate state.

Figure 4.19: Variability in single-barrier shifts reflecting the cell-to-cell variability in the
steady state distribution. The colored bars in the background show the estimate with
the average steady-state distribution. The white box plots in the foreground show the
distribution of predicted rates (one dot = one cell).
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Figure 4.20: First two principal components of the steady-state distribution across cells,
colored by cell volume. The insets to the top and right show scatter plots of the components
versus the cell volume, along with a linear regression line, coefficient (𝛽), and p-value.

cell-specific steady-state distribution as the constraint. The model failed to converge for 11
cells, likely due to insufficient number of initial conditions probed. For the 303 cells where
the model was able to estimate the rates, the results are shown in fig. 4.19. Although some
rates show high variability, the overall trend reflects the estimate achieved using the average
steady-state distribution. There are, however, some clusters of tomograms where specific
rates have a different value from the population average.

I then investigated the correlations between the steady state distributions and the cell
volume. For this analysis, it was important to avoid using tomograms containing more than
one cell or only part of a cell. Therefore, I used only a subset of the dataset containing “nice”
cells. This dataset was created by Joe Dobbs (PhD student in the group of Julia Mahamid),
who also calculated the cell volume, and it includes 153 cells. As the steady state distribution
is a complex multidimensional object, I used PCA [243] and considered only the first two
components. These components represent the axes with the most variability. Figure 4.20
shows the first two principal components (bottom left), along with the linear regression of
the volume onto each of them (top and right). No clear association with volume can be
seen.

Although the total number of ribosomes is moderately correlated with the cell volume
(Pearson coefficient 0.45), it seems to be more directly associated with the steady state
distribution. The proportion of ribosomes in state 4 (just before translocation) increaseswith
the total count of ribosomes, while the ribosomes in states 5 (just before translocation) and
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Figure 4.21: Occupancy of the 10 intermediate states versus total count of ribosomes across
153 cells for which the volume is available. Blue line: linear regression, also showing the
coefficient (𝛽) and p-value at the top.

8 (last step of translocation, just before release of EF-G) decrease as the count of ribosomes
increases (fig. 4.21).2 Furthermore, the average elongation rate is negatively correlated
with the total count of ribosomes (Pearson coefficient −0.34, p-value 1.76 × 10−5). Taken
together, these observations suggests that state 4 (mapped to 𝐴𝑐𝑜 and 𝐴𝑛𝑟 in my model)
is a bottleneck for translation elongation, as cells with a higher proportion of ribosomes
in that state have slower elongation rates. The number of ribosomes is also related to the
cell cycle phase: younger cells should have fewer ribosomes than older ones. Interestingly,
the model predicts that older cells have slower elongation rates. Perhaps cells slow down
elongation rate while getting older and preparing to divide, and they may do so by stalling
ribosomes at state 4 with some unknown regulatory mechanism. Unfortunately we don’t
know how the concentrations of EF-G and other parameters change during the cell cycle.

Last, I analyzed how a higher occupancy of a particular state could influence the kinetics
of translation elongation. For each intermediate state from Xue et al. [22], I binned the
steady-state proportion across cells and grouped the single-barrier shifts for each rate
arising from cells within each bin. The full matrix of plots is shown in fig. A.1 We can
appreciate that the steady-state proportion of an intermediate tends to have the biggest
impact on the rates that flow directly into or out of that state. For example, 𝜔𝐸𝐶 is sensitive
to the proportion of ribosomes in state 1 (fig. 4.22). This transition, which “produces”

2Perhaps confusingly, some state names in this study overlap with the state names in Xue et al. [22], see fig. 4.4.
Here I refer to the states in Xue et al. [22]. See also fig. 4.4.
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Figure 4.22: Single-barrier shift for rate 𝜔𝐸𝐶 as a function of the occupancy of state 1.

intermediates of state 1, is faster as the occupancy increases.

4.8.2 Ribosome concentration and EF-G concentration

Next, I assessed the effect of the concentration of ribosomes and EF-G by varying these
parameters in a grid of physiologically relevant values centered on the default estimates
(table 4.4). The ribosome concentration, which is estimated to be 7µM in vivo, has been
probed between 2µM and 8µM. EF-G concentration, which is estimated to be 10µM, from
4.7µM to 64µM.

The elongation rate steadily decreases as the concentration of ribosomes increases (as
also observed in the previous section), while the concentration of EF-G has no effect on the
elongation times (fig. 4.23 B). Overall, the total protein synthesis rate, defined as the product
between the ribosome concentration and the elongation rate, peaks when the ribosome
concentration is around 5µM (fig. 4.23 A). The total protein synthesis rate expresses the
capacity of the cell to synthesize proteins. Note that the profile is slightly skewed: the
decrease in synthesis rate is sharper than the increase, signifying a non-linear relationship
between ribosome concentrations and elongation time. One way to explain this is that when
there are more active ribosomes, more tRNAs are “sequestered”, thus unable to contribute
to the pool of free ternary complexes.

Although EF-G has no effect on the estimated elongation time, it does affect some rates
(fig.A.2). In particular, 𝜅𝐺 (the rate constant for the binding of EF-G) and𝜔𝐵𝐴 (the rate of EF-
Gunbinding) appear to change, across all concentrations of ribosomes, to compensate for the
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Figure 4.23: A Estimated synthesis rate (ribosome concentration times average elongation
rate) as a function of the ribosome concentration. B Elongation rate as a function of the
ribosome concentration (increasing along the columns) and EF-G concentration (increasing
down the rows). Each bar is a codon.

Figure 4.24: Ratio between the estimated rates of EF-G binding and unbinding as a function
of the input value for the concentration of EF-G (𝑥-axis) and ribosome (color).
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Figure 4.25: Variability in single-barrier shifts reflecting changes in the concentration of
ribosomes and EF-G. The colored bars in the background show the estimate with the
assumeddefault concentrations. Thewhite box plots in the foreground show the distribution
of predicted rates (one dot = one combination of ribosome and EF-G concentration different
from the default values).

increased concentration of EF-G: the ratio between the forwarad and reverse reactions,
𝜅𝐺𝒢
𝜔𝐵𝐴

,
is relatively stable between 0.083 and 0.97 despite a 10-fold change in EF-G concentration
(fig. 4.24).

It is important to remark that this analysis tells us how the model fitting procedure reacts
to changes in the input concentration of the parameters. It does not tell us how does the
cell react if we keep the elongation rates fixed and change the concentration of EF-G in vivo.

Although the concentration of EF-G is known only approximately, my sensitivity analysis
shows that the results wouldn’t change much by using a different value. Figure 4.25 shows
boxplots of the rates estimated for all the combination of ribosome concentration and EF-G
concentration that I probed, with the point-estimates in the background. Even assuming
concentrations at the limits of what is physiologically reasonable, the rates of the decoding
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Figure 4.26: Elongation rate as a function of value of the 𝜅𝑜𝑛 rate (increasing along the
columns) and EF-Tu concentration (increasing down the rows). Each bar is a codon.

step are still mostly similar to those in E. coli, while tanslocation is significantly slower.

4.8.3 EF-Tu concentration and 𝜅𝑜𝑛

Other parameters that could have an impact on the estimated rates are related to the binding
of ternary-complexes. These are 𝜅𝑜𝑛, the rate constant of the binding of ternary complexes
to ribosomes in states 0 or 0𝐸; and the concentration of EF-Tu, the elongation factor that
carries the aa-tRNA to the ribosome and provides energy through the hydrolysis of GTP. A
key feature of our model is that the concentration of free ternary complexes (EF-Tu ⋅ GTP ⋅
aa-tRNA) is identified as a parameter on its own right, distinct from the total concentration
of tRNA. Indeed, tRNAmolecules need to be loadedwith an amino acid and bound to an EF-
Tu molecule before being available to bind the ribosome (fig. 4.3 B). Still, the concentrations
of EF-Tu and total tRNA influence the steady-state concentration of free ternary complexes,
and are therefore important parameters to investigate.

Since we have no prior data on the value of 𝜅𝑜𝑛 in M. pneumoniae, I took it to be the same
as E. coli, namely 94 s−1 µM−1. The default values for EF-Tu concentration is 100µM, and for
the total tRNA concentration (summed over all 35 species) 110µM, were reported in Weber
et al. [20] and Miravet-Verde et al. [137]. Here, I fit the model for values of 𝜅𝑜𝑛 ranging from
87 s−1 µM−1 to 250 s−1 µM−1, EF-Tu concentration ranging from 100µM to 220µM (the fit
errors out for values lower than 100), and tRNA concentration from 99µM to 112µM. The
impact of 𝜅𝑜𝑛 on the elongation time is very small but becomes more noticeable at higher
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Figure 4.27: Sensitivity to cognacy matrix. The bars in the background show the default
estimate, while the white boxplots in the foreground show the estimates obtained with
randomized cognacymatrices, which do not deviate significantly from the default estimates.

concentrations of EF-Tu (fig. 4.26). On the other hand, increasing EF-Tu from 100µM to
145µM more than doubles the predicted average elongation rate. Interestingly, no strong
compensatory effects on the rates are apparent for these two parameters, in contrast with
EF-G as discussed above.

4.8.4 tRNA concentrations and cognacy matrix

Finally, I was interested in the sensitivity to the concentration of individual tRNA species
and to the relationships between codons and tRNAs. M. pneumoniae has 35 tRNA species
whose relative concentrations have been measured by Hydro-tRNA-seq in Weber et al. [20].
The cognacy relationships between codons and tRNAs can be inferred from the genetic code.
When two or more tRNAs for the same amino acid are present, the codon-anticodon base
pairing also matters. If codon and anticodon differ only at the third position, a recognition
is still likely (the so-called wobbly base pairing) [244]. If they differ at any other position,
the matching becomes much less likely, but can of course still happen.

To investigate the effect of uncertainty in the specific codon-anticodon binding affinities,
I generated 1000 samples of randomly shuffled cognacy matrices. The shuffling procedure
keeps the genetic code relationships unaltered, but it changes the codon-tRNA assign-
ments when multiple tRNA for the same amino acid are available. As a consequence, any
correlation between codon usage and abundance of cognate tRNAs would be broken. In
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Figure 4.28: Estimated average elongation rate as a function of the total tRNA concentration
(summed over all tRNA species).

M. pneumoniae, such correlation is not as strong as in E. coli (figs. 4.8 and 4.15). Figure 4.27
shows that the model is robust to misspecifications of the cognacy matrix, since the rates
estimated with the 1000 randomized samples closely align with the rates estimated with
the default matrix. Similarly, the elongation rates are barely affected: the mean of the
distribution is 2.2 s−1 and the standard deviation only 0.083 s−1.

The relationship between elongation rate and total tRNA concentration is also non-linear
(fig. 4.28), initially increasing and then starting to decrease after 105µM. This is due to
the fact that non-cognate tRNAs increase faster than cognate tRNAs, leading to higher
competition for the initial binding and requiring more proofreading. Once again, it is
interesting that the default value (which I estimated using data from the literature and I
fixed before doing any sensitivity analysis) is close to the peak of the curve, meaning that it
is close to the optimal value for elongation speed.

4.9 The effect of antibiotics

One of the cryo-ET data sets that was collected included 64 tomograms of cells treated
with Chloramphenicol, an antibiotic that is known to bind ribosomes and inhibit protein
synthesis by blocking the formation of the peptide bond [188]. Moreover, the mechanism of
action seems to be conditional on the sequence of the protein being translated: the inhibition
occurs only when the amino acid to be incorporated is an Ala and the previous amino
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acid in the peptide chain is not a Gly [245]. The steady-state occupancies observed in the
treated data set appear quite different from those found in the unperturbed cells, with some
intermediates vanishing and a new one becoming visible.

One of the potential applications where the model could be useful is in predicting or
simulating the mechanism of action of ribosome antibiotics. As a proof of concepts, I took
an antibiotic with a known mechanism of action, chloramphenicol, for which the cryo-ET
data is available, and fit the model to the observed steady-state distribution. I reasoned
that, if the model could estimate slower rates for the reactions that are indeed inhibited by
this drug, it would be a good indication that the model is capable of suggesting hypotheses
about mechanisms of action. Thus, I applied my model using the steady-state occupan-
cies under chloramphenicol as the constraint and the estimated rates in the unperturbed
M. pneumoniae system as the reference. The presence of extra states that were not reported
in the unperturbed cryo-ET dataset is not a problem for my model, which is general enough
that these new experimental structures can be mapped to its states. However, the fact that
multiple states of the elongation cycle had not been detected in these tomograms posed a
challenge, since using an occupancy of zero would keep the Markov chain stuck in some
absorbing states. Thus, for the undetected states, I estimated their abundance with a value
smaller than the approximate detection limit of intermediate states, but proportional to the
abundances in the unperturbed condition. The model correctly estimates that the rate of
peptide-bond formation undergoes a slowdown of several orders of magnitude (fig. 4.29).

An even better validation would be if we could artificially slow down the rate of peptide
bond formation and reproduce the observed steady-state distribution. I try to do this in
fig. 4.30, where the rate of the chloramphenicol-inhibited reaction is slowed down either
10.000 times compared to the value in the control condition, while the other rates are
left untouched. I then calculate the steady-state distribution and coarse-grain it to the
intermediate states that have been observed. The distributions become more similar, with
the Kullback-Leibler divergence decreasing from 7.1 bits to 0.7 bits.

However, this approach suffers from several limitations. First and foremost, adding
chloramphenicol doesn’t only affect the ribosome in isolation, but it has a deep impact on
the whole cell. Even neglecting potential off-target effects of the drug itself, blocking protein
synthesis is a major stress that triggers the stringent response and its signalling nucleotides,
pppGpp and ppGpp [19, 246]. This, in turn, causes a cascade of signaling and responses
that alters virtually all biological processes. As such, the distance between the reference
system (the unperturbed cells) and the target system is bound to increase dramatically;
the kinetic distance minimization method, like any non-linear system, is likely to become
less and less effective as the distance between reference and target system increases (see
Strogatz and Fox [195] for an introduction to non-linear systems and chaos). Moreover,
changes in the intracellular environment, such as different pH or concentrations of ions,
could also have an effect on the ribosome kinetics. Mg2+ ions, in particular, are known to
be a major factor influencing elongation speed [184]. All these effects make the estimation
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Figure 4.29: Single-barrier shifts estimated from steady-state occupancies of cells treated
with chloramphenicol, which blocks the formation of the peptide bond. The estimated rates
indicate a large slowdown of the corresponding rate in the model.
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Figure 4.30: Comparison of the experimental steady-state occupancies with the occupan-
cies predicted by the model. Top: prediction with the rates estimated in unperturbed
M. pneumoniae. Bottom: prediction with the same rates, except that the rate of peptide bond
formation was artificially slowed down by 10 000 times. The experimental occupancies do
not change, but the predicted distribution becomes more similar to it.

of the rates more difficult, because they are not included as part of the model. Indeed, even
in fig. 4.29, we see that the model predicts a significant slowing down for another rate, the
dissociation of EF-Tu from ribosomes in state 4𝐸, and, even more unexpectedly, it predicts
the speeding up (by almost 2 times) of another rate, 𝜔4,0. Furthermore, the simulation
of the inhibition of the peptide bond formation doesn’t perfectly reproduce the observed
occupancies, suggesting that other, unmodelled effects are at play.

Another antibiotic-treated condition for which tomograms are available is Spectinomycin.
This antibiotic binds to the small subunit of the ribosome, but its mechanism is less un-
derstood than for chloramphenicol. Despite the limitations mentioned above, I tried to
repeat the fit using the steady-state distribution under spectinomycin. This time, I added an
additional constraint that all single-barrier shifts should be non-increasing; this forces the
model to fit the data using by only slowing rates down. The model predicts two rates to slow
down the most: the dissociation of EF-Tu and the hydrolysis of GTP during translocation
(fig. 4.31).

4.10 Discussion

In this chapter, I developed a model of the elongation cycle and generalized an approach
based on constrained minimization to estimate the kinetic rates. Time-resolved biochemical
studies in vitro are so far the only reliable way to measure the rates across the whole elonga-
tion cycle. In vivo approaches are considerably more challenging from the experimental
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Figure 4.31: Single-barrier shifts estimated from steady-state occupancies of cells treated
with spectinomycin. The estimated rates indicate a large slowdown of the rate of dissociation
of EF-Tu in the cognate branch, and a slightly smaller slowdown of the rate of GTP hydrolysis
in translocation.

point of view, and so far have not been able to measure rates at the resolution of the indi-
vidual transitions. Rather, even with modern single-molecule fluorescent methods, it has
only been possible to measure the total elongation time, i.e. the time taken by ribosomes to
go through the full cycle and incorporate one amino acid in the nascent peptide chain [247,
248]. Here, I was interested in a finer resolution. cryo-ET data allows us to resolve the
intermediate states in situ, therefore the reaction rates of the individual transitions become
much more interesting. Furthermore, in vitro experiments are typically carried out in con-
trolled conditions, often at or near thermodynamic equilibrium. However, in living cells,
the process is far from equilibrium and the conditions are dynamic. cryo-ET is, so far, the
only window we have into the native cellular environment. As the technology to investigate
single rates in vivo is not yet available, it makes sense to use theoretical models to tackle the
problem; after all, quoting Cohen [42], “mathematics is biology’s next microscope”.

This was a complex project from the technical point of view, and it required cooperation
between biologists and theorists. To summarize, I updated and generalized the method
introduced in Rudorf and Lipowsky [191]. The model of the translation elongation cycle
now includes recently characterized intermediates and reactions. Furthermore, my imple-
mentation is very generic with respect to the constraint and the model structure, meaning
that it can easily be extended to other experiments or even other biological processes. I
also introduced a coarse-graining method that makes it possible to map the states between
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various experiments and models. I initially replicated the original Rudorf model, estimating
the rates for E. coli in vivo using the rates in vitro as reference. Then, I extended the study
to unperturbed M. pneumoniae, using the rates in E. coli as reference, predicting that the
translocation reactions are comparatively slow. The main validation comes from predicting
an average total elongation rate that is consistent with independent experiments. I studied
the effect of changes in parameters, showing that the estimates are overall robust, and
discovering some non-linear relationships between elongation rates and concentration of
ribosomes and tRNAs. Finally, I applied the model to extreme conditions, M. pneumoniae
cells treated with antibiotics that blocks protein synthesis, providing insights into the
mechanisms of action of these drugs.

A potentially hidden assumption is that the same intermediate states and the transi-
tions among them exist in vitro, in E. coli, and in M. pneumoniae. So far, there has been a
remarkable agreement between the states identified by cryo-ET and those reported from
biochemical experiments in vitro. However, mapping experimental structures to the model’s
states is a critical step. The cryo-ET structure reconstruction by subtomogram averaging
and classification (see section 1.2) is still a semi-manual process that requires human in-
tervention. As such, it may include biases, although researchers are extremely careful in
avoiding that. Moreover, ribosomes and their binding partners are thought to undergo
smooth, continuous transitions from one state to the next, whereas in particle classification
(and in mymodel) we collapse the continuum into a set of discrete intermediate states. This
procedure is also affected by uncertainty. Furthermore, since the particle reconstruction and
classification is performed de novo for any new dataset, it is impossible to directly compare
structures from different studies. My model could also help in this regard, by providing a
common ground of consensus intermediate states onto which the experimental structures
can be mapped.

The rates estimated by the model are those that can explain the observed experimental
data with in the most parsimonious way, i.e. requiring the minimal amount of change from
the rates that are known. As my model is not a full molecular dynamics (MD) model, it
doesn’t capture the full physics of the process. Although coarse-grained MD simulations
of ribosomes are becoming increasingly feasible [249], it would be a completely different
project. Here, I focused on a more abstract model that can help elucidate the kinetics of
the process in a rigorous way. The simplifying assumptions made for this model imply
that the estimated rates are to be interpreted only as “effective rates”, that is, they are
approximations of the true rates, potentially depending on unmodelled parameters. Moore
[202] recently reanalyzed the original Rudorf model and raised the important issue that the
rate constants for the steps of elongation seem to vary with growth rate, even within the
same organism (in this case, E. coli). This is true even for those steps that do not depend on
the concentration of ternary complexes or elongation factors, suggesting that ribosomes
in fast-growing cells are different from ribosomes in slow-growing cells. In light of the
effective-rate interpretation, the fact that ribosomes decay into the next state with different

152



rates could be explained by different ion concentrations or different regulatory strategies
in the various growth conditions. Although they are not explicitly modeled, their effect
manifests itself in the different estimates for the rate values.

For my model, I tried to keep the design limited to the features that we could observe
from the tomograms. I focused on capturing as many intermediate states as possible, pro-
vided that they had also been investigated in vitro. However, it is worth mentioning some
features that have not been included. Protein synthesis is a highly regulated process, with
multiple checkpoints before, during, and after [250]. Furthermore, it is entangled with
other biological processes such as transcription [21]. My model only focuses on elongation,
including ternary complexes, EF-Tu, and EF-G. It ignores the effect of frameshifting and
mRNA structure on protein synthesis [251]. Finally, it is known that about 5% of ribosomes
in M. pneumoniae are engaged in polysomes, interacting chains of 2-5 ribosomes that trans-
late the same mRNA molecule in sync [22]. These interactions are known to streamline
the translation process, resolve situation of stale, and increase the overall throughput of
protein synthesis by parallelization [252].

Despite these limitations, the model is the most comprehensive and general abstract
description of the translation-elongation cycle based on Markov chains. Its inclusion of both
cognate and near-cognate branches enables the study of error rates, and it more closely
reflects the underlying biology of the process. Its inclusion of both 2-1-2 and 2-3-2 pathways
enables the investigation of the factors that could influence this choice [253, 193]. Using
biochemical data and cryo-ET, it allows researchers to gain a dynamic understanding of
the system starting from static snapshots. Although the data and the model are specific to
translation-elongation, the same framework can be extended to other biological processes.
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5 Conclusion

Although the trajectory of my PhD has not been linear, it is easy to identify the common
themes that tie my work together. First, the model organismM. pneumoniae. Its resemblance
to the minimal cell made it ideal for a variety of large-scale systems biology experiments.
My supervisors Peer Bork and Luis Serrano had been working on this bacterium since
the year 2000, so a great amount of data was already available. The first landmark in situ
cryo-ET study of M. pneumoniae was published around the time when I joined EMBL [21].
From that study, it became clear that it would be possible to identify large macromolecular
assemblies from the tomograms, in primis ribosomes, RNA polymerases, and GroEL-GroES
complexes, but many more unknown assemblies were also visible. This realization started
a quest to annotate all known complexes and protein-protein interactions in this organism.
One of my very first projects was a random-forest machine learning model to predict
protein-protein interactions from gene expression data. This project didn’t make it in the
final cut of the thesis because it became apparent that structure-based methods would
perform best. Indeed, that was also the time when AlphaFold2 became available, triggering
a global paradigm shift in the field of structural biology. Without AlphaFold, nobody knows
how these projects would have turned out.

The identification of the dome-shaped complex in the tomograms demanded bioin-
formatic analyses, which is how I started to collaborate with Rasmus Jensen. Functional
characterization of unknown proteins is a cornerstone of bioinformatics, a field to which
the Bork group made substantial contributions through the development of tools such as
STRING [82] and EGGNog [117]. Traditional approaches are based on sequence similarity
between the uncharacterized protein and known, well-studied proteins. Such approaches
have again proven useful in this instance, but it wasn’t until we incorporated relatively
novel, structure-similarity based approaches that we could really be confident in our results.
In particular, focusing on core structural domains, deprived of disordered loops, was key
to identifying homologous proteins.

Another activity that I started early on was an attempt to curate the available data for
M. pneumoniae. Large amounts of data are not useful if they are impossible to find, buried
in the supplementary materials of decade-old articles. My interest in the FAIR principles
(Findability, Accessibility, Interoperability, and Reusability, [128]) led me to start working
on a dashboard to present the data to the community working on M. pneumoniae at EMBL.
Gradually, this project evolved into an idea to also aggregate all the data under a unified
framework. Network science has proven an invaluable tool in understanding complex
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systems [254]. Therefore, it was natural to aggregate all data in a unified heterogeneous
network. The potential applications are endless: clustering, simulation of dynamic behavior,
inference of new links, and more.

It is striking that, despite the large amount of sequencing data that is now available (over
25 trillion worth of nucleotides in the ENA [255]), the function of so many genes remains
completely mysterious. In M. pneumoniae, which is considered a well-studied organism, at
least one third of the genes have unknown function. The same goes for the artificial minimal
cell, Syn3A [10]. This suggests the existence of completely new and unexpected biological
processes, which are likely to be as impactful as CRISPR and RNA interference when they
are discovered. The lessons learned from the dome complex project gave me inspiration
to develop an automated pipeline for the annotation of the M. pneumoniae proteome using
the annotation of individual domains. Extending this workflow to other organisms will
provide valuable.

Given this starting point, in retrospect, I should have probably started to go in the
direction of whole-cell modelling early on, inspired by Karr et al. [12] and Thornburg et al.
[8]. Despite my interest in systems biology and mathematical modelling, I was not fully
aware of those developments. Besides, the Mahamid group had a new cryo-ET dataset
that called for a different analysis. Thus, rather than developing a broad, coarse-grained
model of the entire cell, I developed a much more fine-grained model of a specific biological
process, translation elongation. The idea stemmed from the availability of the abundances
of the intermediate states of the elongation cycle. In whole-cell models, protein synthesis
is typically modelled as a polymerization reaction with a uniform rate [8]. My model has
tens of reactions, potentially with codon-specific rates. One of its predictions is that the rate
of the translocation step (after the binding of EF-G) is slower in M. pneumoniae than E. coli,
although it is still challenging to devise an in vivo validation for this claim. The acquisition
of cryo-ET data in E. coli and perhaps new technological developments may allow us to
refine the model in the future. In any case, I envision it as a starting point for bridging the
gap between static snapshots and dynamic behavior, with a framework that can potentially
be extended to other biological processes.

List of scientific contributions

From chapter 2 (manuscript on BiorXiv by Rasmus Jensen et al. [75] in preparation, I am
listed as third author):

• Identification of the remote homology between an uncharacterized protein and the
foldase PrsA;

• Identification of conserved catalytic residues in such protein, confirming its function;
• Phylogenetic analysis of this protein’s family;
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• Implementation of an open-source R package to perform co-occurrence analysis
(https://github.com/fmarotta/netcutter);

• Implementation of an open-source R package to visualize reconciliated phylogenetic
trees (https://github.com/fmarotta/recPhylo);

From chapter 3 (manuscript in preparation as first author):

• Creation of a web app to display and analyzeM. pneumoniae data (the app is available
internally at EMBL, but I plan to open-source it and make it publicly available);

• Development of a Snakemake workflow to split proteins into structural domains,
annotate each domain individually, and aggregate the results (I plan to generalize it
for different species, include some benchmarks, and also make it publicly available
after my thesis submission);

• Implementation of a small R package to bridge the mol* JavaScript library into a Shiny
app (https://github.com/fmarotta/molstar-shiny);

• Implementation of a circular slider plugin for Dash-Plotly (https://github.com/
fmarotta/dash-cisl);

From chapter 4 (manuscript in preparation as first author):

• Design of a comprehensive kinetic model of the elongation cycle based on Markov
chains;

• Implementation of a model calibration method based on constrained minimization in
the Julia programming language (I plan to make the package available open-source,
as well as the SBML file describing the model);

• Formal prediction that inM. pneumoniae the translocation step is slower than in E. coli
(to be verified or disputed);

• Development of a Snakemake workflow to orchestrate more than 1000 jobs reflecting
fitting of the model and sensitivity analysis for various organisms, conditions, and
parameter values;

From chapter B (manuscript in preparation together with the challenge organizers):

• Development of a machine-learning model based on random forest and polygenic
risk scores to predict the risk of high-cholesterol from genetic data and health survey;

Although not described in this thesis, I collaborated in the development of an R package to
analyze the functional composition of a metagenomic sample (published by Zhao, Marotta,
and Wu [256], I am listed as second author):

• Contribution to the software implementation and data visualization
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Table A.1: List of species and genomes included in the phylogenetic trees displayed through-
out chapter 2.

Species name RefSeq genome ID [104]

Bacillus subtilis subsp. subtilis str. 168 GCF_000009045.1
Candidatus Mycoplasma haemobos GCF_001645765.1
Candidatus Mycoplasma haemohominis GCF_902712995.1
Candidatus Mycoplasma haemolamae GCF_000281235.1
Candidatus Mycoplasma haemominutum GCF_000319365.1
Escherichia coli strain K-12 substr. MG1655 GCF_000005845.2
Lactococcus cremoris GCF_000014545.1
Malacoplasma iowae GCF_900660615.1
Malacoplasma penetrans GCF_000011225.1
Mycoplasma haemocanis GCF_000238995.1
Mycoplasma haemofelis GCF_000200735.1
Mycoplasma ovis GCF_000508245.1
Mycoplasma parvum GCF_000477415.1
Mycoplasma suis GCF_000179035.2
Mycoplasma testudinis GCF_000687795.1
Mycoplasmatota GCF_000518305.1
Mycoplasma tullyi GCF_014068355.1
Mycoplasma wenyonii GCF_000277795.1
Mycoplasmoides alvi GCF_000701785.1
Mycoplasmoides gallisepticum GCF_900476085.1
Mycoplasmoides genitalium GCF_000027325.1
Mycoplasmoides pirum GCF_000685905.1
Mycoplasmoides pneumoniae GCF_900660465.1
Streptococcus pneumoniae GCF_000007045.1
Ureaplasma canigenitalium GCF_000712165.1
Ureaplasma diversum GCF_000731915.1
Ureaplasma parvum GCF_000019345.1
Ureaplasma urealyticum GCF_000169535.1
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Table A.2: Parameter values for the two main systems used in the thesis, E. coli growing at
0.7 doublings/hour and M. pneumoniae growing in rich medium. NA means not available
(The tRNA species are different in these two organisms). The values come from multiple
references [191, 185, 19, 22, 20, 137]

E. coli, growth rate 0.7 dbl/h M. pneumoniae, control

General concentrations (µM)
Ribosome concentration 19 7
EF-Tu concentration 150 100
EF-G concentration 10 10

General rate constants (1/(µM s))
κ_on 94 94
κ_G 440 440
ω_re 100 100
ω_dis 0.01 0.01
κ_ass 1 1

Codon usage frequency
AAA 0.047 0.044
AAC 0.028 0.038
AAG 0.013 0.043
AAU 0.0089 0.024
ACA 0.0033 0.0097
ACC 0.027 0.024
ACG 0.007 0.0078
ACU 0.015 0.019
AGA 0.001 0.0052
AGC 0.012 0.0095
AGG 0.0001 0.003
AGU 0.0036 0.019
AUA 0.0009 0.0045
AUC 0.038 0.015
AUG 0.022 0.016
AUU 0.021 0.045
CAA 0.0097 0.034
CAC 0.014 0.012
CAG 0.029 0.014
CAU 0.0088 0.0052
CCA 0.0065 0.013
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CCC 0.0028 0.0085
CCG 0.029 0.0073
CCU 0.0049 0.0086
CGA 0.0012 0.0023
CGC 0.022 0.012
CGG 0.0015 0.0052
CGU 0.034 0.012
CUA 0.0019 0.011
CUC 0.0059 0.013
CUG 0.061 0.0083
CUU 0.0053 0.0096
GAA 0.054 0.043
GAC 0.03 0.021
GAG 0.017 0.015
GAU 0.024 0.029
GCA 0.022 0.017
GCC 0.019 0.016
GCG 0.03 0.013
GCU 0.03 0.028
GGA 0.0025 0.0061
GGC 0.036 0.011
GGG 0.0043 0.0098
GGU 0.039 0.031
GUA 0.017 0.016
GUC 0.011 0.011
GUG 0.02 0.021
GUU 0.033 0.022
UAC 0.016 0.018
UAU 0.01 0.013
UCA 0.0036 0.008
UCC 0.012 0.01
UCG 0.0054 0.0068
UCU 0.014 0.0073
UGC 0.0051 0.0017
UGG 0.0093 0.0057
UGU 0.004 0.0051
UUA 0.0055 0.035
UUC 0.023 0.013
UUG 0.0063 0.02
UUU 0.012 0.037
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UGA NA 0.0048

Total tRNA concentration (µM)
Ala1B 12 NA
Ala2 2.1 NA
Arg2 15 NA
Arg3 2.6 NA
Arg4 2.4 NA
Arg5 1.6 NA
Asn 3.9 NA
Asp1 8.1 NA
Cys 4.9 NA
Gln1 2.7 NA
Gln2 3.1 NA
Glu2 16 NA
Gly1 2.9 NA
Gly2 4.3 NA
Gly3 15 NA
His 2.2 NA
Ile1 11 NA
Ile2 0.56 NA
Leu1 15 NA
Leu2 3.5 NA
Leu3 2.5 NA
Leu4 6.3 NA
Leu5 3.5 NA
Lys 6.8 NA
Met_m 2.6 NA
Phe 3.6 NA
Pro1 2.4 NA
Pro2 2.5 NA
Pro3 1.9 NA
Sec 0.86 NA
Ser1 5.6 NA
Ser2 1 NA
Ser3 4.4 NA
Ser5 2.6 NA
Thr1 0.41 NA
Thr2 2 NA
Thr3 3.7 NA
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Thr4 3.2 NA
Trp 2.8 NA
Tyr1 2.4 NA
Tyr2 3.9 NA
Val1 12 NA
Val2 4.4 NA
MPNt01 NA 8.9
MPNt02 NA 0.92
MPNt03 NA 2.2
MPNt04 NA 6.5
MPNt05 NA 1.1
MPNt06 NA 8.3
MPNt07 NA 0.66
MPNt08 NA 0.19
MPNt09 NA 0.11
MPNt11 NA 3.3
MPNt12 NA 3.9
MPNt13 NA 0.57
MPNt14 NA 2.2
MPNt15 NA 0.46
MPNt16 NA 0.36
MPNt17 NA 0.17
MPNt18 NA 15
MPNt19 NA 0.27
MPNt20 NA 8.4
MPNt21 NA 8.1
MPNt22 NA 2.1
MPNt23 NA 9.3
MPNt24 NA 0.24
MPNt25 NA 0.53
MPNt27 NA 0.92
MPNt28 NA 3.4
MPNt29 NA 3
MPNt30 NA 1.1
MPNt31 NA 0.63
MPNt32 NA 1.9
MPNt33 NA 1
MPNt34 NA 0.56
MPNt35 NA 3.5
MPNt36 NA 8.7
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MPNt37 NA 1.7

Cognacy
Ala1B GCA,GCG,GCU NA
Ala2 GCC NA
Arg2 CGA,CGC,CGU NA
Arg3 CGG NA
Arg4 AGA NA
Arg5 AGG NA
Asn AAC,AAU NA
Asp1 GAC,GAU NA
Cys UGC,UGU NA
Gln1 CAA NA
Gln2 CAG NA
Glu2 GAA,GAG NA
Gly1 GGG NA
Gly2 GGA,GGG NA
Gly3 GGC,GGU NA
His CAC,CAU NA
Ile1 AUC,AUU NA
Ile2 AUA NA
Leu1 CUG NA
Leu2 CUC,CUU NA
Leu3 CUA,CUG NA
Leu4 UUG NA
Leu5 UUA,UUG NA
Lys AAA,AAG NA
Met_m AUG NA
Phe UUC,UUU NA
Pro1 CCG NA
Pro2 CCC,CCU NA
Pro3 CCA,CCG,CCU NA
Sec NA
Ser1 UCA,UCG,UCU NA
Ser2 UCG NA
Ser3 AGC,AGU NA
Ser5 UCC,UCU NA
Thr1 ACC,ACU NA
Thr2 ACG NA
Thr3 ACC,ACU NA
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Thr4 ACA,ACG,ACU NA
Trp UGG NA
Tyr1 UAC,UAU NA
Tyr2 UAC,UAU NA
Val1 GUA,GUG,GUU NA
Val2 GUC,GUU NA
MPNt01 NA GCA,GCC,GCG,GCU
MPNt02 NA AUA,AUC,AUU
MPNt03 NA AGC,AGU
MPNt04 NA ACA,ACC,ACG,ACU
MPNt05 NA UGC,UGU
MPNt06 NA CCA,CCC,CCG,CCU
MPNt07 NA AUG
MPNt08 NA AUA,AUC,AUU
MPNt09 NA UCA,UCC,UCG,UCU
MPNt11 NA GAC,GAU
MPNt12 NA UUC,UUU
MPNt13 NA CGA,CGC,CGG,CGU
MPNt14 NA GGA,GGC,GGG,GGU
MPNt15 NA AGA,AGG
MPNt16 NA UGA,UGG
MPNt17 NA CGA,CGC,CGG,CGU
MPNt18 NA GGA,GGC,GGG,GGU
MPNt19 NA UUA,UUG
MPNt20 NA AAA,AAG
MPNt21 NA CAA,CAG
MPNt22 NA UAC,UAU
MPNt23 NA UGA,UGG
MPNt24 NA UCA,UCC,UCG,UCU
MPNt25 NA UCA,UCC,UCG,UCU
MPNt27 NA CUA,CUC,CUG,CUU
MPNt28 NA AAA,AAG
MPNt29 NA ACA,ACC,ACG,ACU
MPNt30 NA GUA,GUC,GUG,GUU
MPNt31 NA ACA,ACC,ACG,ACU
MPNt32 NA GAA,GAG
MPNt33 NA AAC,AAU
MPNt34 NA CAC,CAU
MPNt35 NA CUA,CUC,CUG,CUU
MPNt36 NA UUA,UUG
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MPNt37 NA AGA,AGG

Reference rates (1/s)
ω off 700 2100
ω rec 1500 3100
ω 2,1 2 2
ω 2,3 1500 1600
ω con 450 510
ω 4,0 1 0.98
ω Tdis_co* 250 330
ω ETdis_co* 250 390
ω pept_co 1000 1100
ω Epept_co 1000 1200
ω 7,6 1100 4000
ω 7,8 7 4.3
ω 9,0 4 6.4
ω Tdis_nr* 0.26 0.27
ω ETdis_nr* 0.26 0.27
ω pept_nr 1000 1000
ω Epept_nr 1000 1000
κ G 810 820
ω B,A 980 970
ω Accw 930 930
ω Acw 160 160
ω Bccw 4600 4700
ω B,C 1600 1700
ω C,D 810 930
ω Gdis 250 360
ω EC 93 91
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Table A.3: Estimated in vivo rates and free ternary complex concentrations for the two
main systems used in the thesis, E. coli growing at 0.7 doublings/hour and M. pneumoniae
growing in rich medium. NA means not available (The tRNA species are different in these
organisms).

E. coli, growth rate 0.7 dbl/h M. pneumoniae, control

Estimated rates (1/s)
ω off 2100 5600
ω rec 3100 7500
ω 2,1 2 2
ω 2,3 1600 1600
ω con 510 480
ω 4,0 0.98 0.96
ω Tdis_co* 330 390
ω ETdis_co* 390 110
ω pept_co 1100 1600
ω Epept_co 1200 2400
ω 7,6 4000 15000
ω 7,8 4.3 2.6
ω 9,0 6.4 11
ω Tdis_nr* 0.27 0.17
ω ETdis_nr* 0.27 0.23
ω pept_nr 1000 1000
ω Epept_nr 1000 1000
κ G 820 97
ω B,A 970 11000
ω Accw 930 110
ω Acw 160 4800
ω Bccw 4700 890
ω B,C 1700 340
ω C,D 930 120
ω Gdis 360 39
ω EC 91 17

Estimated free ternary complex concentration (µM)
Ala1B 5.60 NA
Ala2 0.80 NA
Arg2 9.70 NA
Arg3 2.30 NA
Arg4 2.10 NA
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Arg5 1.40 NA
Asn 1.20 NA
Asp1 4.10 NA
Cys 3.90 NA
Gln1 1.90 NA
Gln2 1.00 NA
Glu2 9.80 NA
Gly1 2.50 NA
Gly2 3.60 NA
Gly3 9.20 NA
His 0.60 NA
Ile1 6.60 NA
Ile2 0.45 NA
Leu1 10.00 NA
Leu2 2.40 NA
Leu3 1.60 NA
Leu4 5.50 NA
Leu5 2.70 NA
Lys 2.50 NA
Met_m 1.00 NA
Phe 1.20 NA
Pro1 1.10 NA
Pro2 1.80 NA
Pro3 0.60 NA
Sec 0.79 NA
Ser1 3.90 NA
Ser2 0.89 NA
Ser3 3.10 NA
Ser5 1.40 NA
Thr1 0.17 NA
Thr2 1.60 NA
Thr3 1.50 NA
Thr4 1.90 NA
Trp 2.00 NA
Tyr1 1.50 NA
Tyr2 2.50 NA
Val1 7.20 NA
Val2 2.80 NA
MPNt01 NA 7.60
MPNt02 NA 0.13
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MPNt03 NA 1.70
MPNt04 NA 5.90
MPNt05 NA 0.94
MPNt06 NA 7.60
MPNt07 NA 0.41
MPNt08 NA 0.028
MPNt09 NA 0.049
MPNt11 NA 2.50
MPNt12 NA 3.20
MPNt13 NA 0.21
MPNt14 NA 2.00
MPNt15 NA 0.43
MPNt16 NA 0.35
MPNt17 NA 0.063
MPNt18 NA 14.00
MPNt19 NA 0.24
MPNt20 NA 7.30
MPNt21 NA 7.20
MPNt22 NA 1.60
MPNt23 NA 9.00
MPNt24 NA 0.11
MPNt25 NA 0.24
MPNt27 NA 0.77
MPNt28 NA 3.00
MPNt29 NA 2.70
MPNt30 NA 0.032
MPNt31 NA 0.56
MPNt32 NA 1.10
MPNt33 NA 0.14
MPNt34 NA 0.29
MPNt35 NA 3.00
MPNt36 NA 7.80
MPNt37 NA 1.60
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Figure A.1: For each intermediate state from Xue et al. [188], I binned the steady-state
proportion across cells and grouped the single-barrier shifts for each rate arising from cells
within each bin. Each column is an intermediate, with the 𝑥-axis showing the occupancy
bins. Each row is a rate, with the 𝑦-axis showing the single-barrier shift.
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Figure A.2: Single-barrier shift change as a function of ribosome concentration (arrow color)
and EF-G concentration (arrow length).
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B The PEGS DREAM Challenge

This chapter is dedicated to a project that I carried out together with Alessandro Lussana,
PhD student at EMBL-EBI. Because it is thematically different from the rest of the the-
sis, it is only reported here in the appendix. Briefly, DREAM Challenges (Dialogue for
Reverse Engineering Assessment and Methods) is a non-profit initiative for advancing
biomedical and systems biology research via crowd-sourced competitions [257]. The PEGS
DREAMChallenge (https://www.synapse.org/Synapse:syn52817032/wiki/624336) lever-
aged data from the Personalized Environment and Genes Study (PEGS) sponsored by
the National Institute of Environmental Health Sciences (NIEHS), which is part of the
National Institutes of Health (NIH). Health, exposure, geospatial, and genomic data are
available for the PEGS cohort. The motivations behind the PEGS DREAM challenge include
understanding disease risk factors, improving disease classification, and promoting method
development. I was nerd-sniped into joining this challenge, and we ended up winning
second place among all competing teams.

Background

Hypercholesterolemia, characterized by elevated levels of LDL cholesterol in the blood,
poses significant risks for cardiovascular diseases such as heart attacks and strokes [258].
As a complex trait influenced by genetics, diet, and lifestyle, its risk factors are challenging
to predict, but large, multimodal data sets provide a unique opportunity to improve disease
classification. Our approach began with a simple model based on the Health and Exposure
(H&E) Survey data, which we focused on first because, unlike other data modalities,
they are available for the whole PEGS cohort, providing the largest possible sample size.
Recognizing that hypercholesterolemia is often linked to other diseases such as diabetes
and hypertension [259], we hypothesized that the H&E profile of an individual, which
provides a glimpse into their overall current health, is likely correlated with high cholesterol.
This first model performed remarkably well for its simplicity, so we decided to complement
it with genetic data as secondary predictors. Single Nucleotide Variants (SNVs) are not
only informative for familiar hypercholesterolemia (caused by mutations in the LDLR,
APOB, and PCSK9 genes) [260], but they also offer insights into the polygenic nature of
hypercholesterolemia in general. By leveraging existing polygenic risk scores, we effectively
borrowed publicly available data from a much larger sample size, thus enhancing the
accuracy of our estimate. We employed a random forest classifier to generate an initial
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Table B.1: Variables removed from the training data set and corresponding reason why.

Removed variable Reason

he_flag8843 Survey metadata
he_phase Survey metadata
he_version Survey metadata
he_bmi_derived Redundant

risk score based on the H&E data, taking advantage of its inherent capability to perform
feature selection. For individuals with available genetic data, we calculated 12 Polygenic
Risk Scores using weights downloaded from the PGS Catalog, and combined them with the
baseline random forest score through logistic regression. To the best of our knowledge, the
logistic regression approach to combine the random forest score with multiple Polygenic
Risk Scores is novel and shows high potential for success in clinical applications.

Methods

Our model makes use of two components from the PEGS data: the Health and Exposure
(H&E) Survey, and the Single Nucleotide Variants (SNVs) genetic data. Below, we describe
the training and prediction procedures.

Training phase

We processed the H&E Survey data as follows. Variables of class ”character” and ”factor”
were deemed too sparse and removed. Binary variables denoting whether another question
was answered, identified by the ”RESPPROV” label in the ”sas_format” field of themetadata
table, were removed as not informative. Additionally, all the variables in table B.1 were
removed as not informative or redundant. The remaining variables of class ”numeric”
were imported as such, those of class ”binary” were parsed as categorical, and those of
class ”ordered factor” were treated as ordered categorical. All missing, skipped, nullified,
unknown, or not applicable answers were left as missing values, and variables with at least
5% of missing data were eliminated. This left us with 3062 observations of 239 variables,
identified by the EPR number.

The response variable for this classification task was ”he_b008_high_cholesterol”, de-
scribed as ”ever diagnosed with high cholesterol”. 33 individuals were missing this in-
formation, and were removed altogether from the training data set. Missing data in the
other fields were imputed as the column median (for numeric variables) or mode (for
categorical). After preprocessing, we trained a random forest soft classifier to predict the
probability of high cholesterol. We also extracted the fitted probabilities for the training
individuals, as they would be needed in a subsequent training step.
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In order to make use of the genetic data, we downloaded 12 sets of weights from the
Polygenic Score Catalog [261] that were associated with hypercholesterolemia (listed in
table B.2). The weights we downloaded were already harmonized and lifted to the GRCh38
assembly of the human genome, the same as the genetic data provided by the PEGS. We
further processed them to remove duplicated records and retain only three columns: SNV
ID, effect allele, and weight. For the ID field, if the variants already had an rsID from dbSNP,
it was used as-is; if not, we generated an ID in the form <chr_name>:<chr_position>, the
same convention used for the PEGS SNV data. We copied the processed weights, together
with the plink2 v5.12 binary [262], as static assets in the Docker container that we submitted
for the challenge.

Table B.2: IDs of the polygenic score weights downloaded from the PGS Catalog.

Polygenic Score

PGS000936
PGS002334
PGS002406
PGS002455
PGS002504
PGS002553
PGS002602
PGS002651
PGS002700
PGS002764
PGS004783
PGS004784

As the PEGS genetic data underwent a thorough QC and have been obtained at 30x
sequencing depth, we did not perform additional filtering or imputations on the SNV data.
We directly ran plink2 to calculate 12 polygenic risk scores for the full training cohort,
translating all dosages to mean zero using the ”center” modifier and using the allele
frequencies computed from the data themselves. The individuals with available genetic
data are only a subset of those who participated in the H&E Survey, leaving us with a PGS
data set of 1515 samples and 12 variables. To this data set, we added as an additional variable
the fitted disease probabilities obtained earlier from the random forest model, matching the
EPR numbers. We then trained a logistic regression classifier on these 13 scores using again
the ”he_b008_high_cholesterol” variable as the response. In principle, the PGS can be used
directly as a measure of disease risk. However, this additional step brought several benefits:
* Detecting which combination of the 12 polygenic scores works better and assigning it more
weight in the final prediction; * Combining the PGS-based predictions with the H&E-based
prediction while regularizing the latter; * Mitigating potential errors due to the wrong effect
allele being reported, which can result in scores with the opposite sign.
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Prediction phase

Having trained the random forest and the logistic classifiers, we went ahead to process
the validation data set. The H&E Survey data were processed as for the training cohort,
except that columns with missing data were not removed to avoid filtering out some of the
variables that were already included in the model. We applied the random forest classifier
and predicted the baseline probability scores for the validation cohort.

For individuals with available genetic data, we calculated the polygenic risk scores with
plink2 as described above, and recreated a data set that combines the PGS with the random
forest predicted probabilities. We used our logistic classifier to predict a refined probability
score for these individuals. This refined score became the final disease probability for
individuals with genetic data, while the baseline score was used for the other individuals.

Conclusion

Our initial strategy was to build a complex model incrementally, starting with a simple
baseline and gradually adding more predictors. However, we found that our first model,
which used only the H&E data, performed remarkably well, despite its simplicity. Adding
the PGS, which is an already established and proved method, with publicly available data
for hypercholesterolemia, was a natural choice and led to an even better performance. In
the limited time we could dedicate to the challenge, we did try to include more predictors
in the model, such as the Exposome Surveys data; we also tested an approach that included
the SNVs falling in genes associated to hypercholesterolemia according to the Open Targets
platform [ochoa_2020]. We believe that, given more time to explore the data and find a
suitable feature selection scheme, these avenues could enhance the predictive performance,
but so far we found that the initial H&E + PGS model was the best one. Another promising
future direction is investigating the effect of methylation; there has been at least one study
which did this [263], highlighting genome-wide methylation profiles as a potentially in-
sightful source of signal. All in all, our model is a testament to the facts that simple models
often outperform complex ones and, when limited resources are available, a small amount
of high quality data can trump vast quantities of convoluted or less relevant data.
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