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“You know,” said Arthur thoughtfully,
“all this explains a lot of things.
All through my life I’ve had this strange unaccountable feeling
that something was going on in the world, something big, even sinister,
and no one would tell me what it was.”

“No,” said the old man,
“that’s just perfectly normal paranoia.
Everyone in the Universe has that.”

— Douglas Adams, “ Hitchhiker’s Guide to the Galaxy “





ABSTRACT

Quantum many-body systems driven far from equilibrium can show universal self-similar scal-
ing dynamics associated with an approach to a non-thermal fixed point. The characterisation of
non-equilibrium universality classes remains an open problem. In this thesis, we investigate the
far-from-equilibrium dynamics of a one-dimensional spin-1 Bose gas. First, we study its micro-
scopic dynamics, identifying rogue waves in the velocity fields, which form real-time instantons in
the transverse spin. Their statistics lead to an additional scaling exponent governing the time evo-
lution of a characteristic timescale. We derive a low-energy effective field theory of the spin-1 gas,
taking the form of a double sine-Gordon model for the spinor phase. This model accounts for the
subdiffusive and diffusion-type scaling observed in the full microscopic theory. It demonstrates
that scaling dynamics at non-thermal fixed points go beyond simple domain-size growth processes
and connects the type of scaling behaviour to the occupation of the minima of the sinusoidal po-
tential by the double sine-Gordon field. Numerical as well as experimental results support the
validity of the effective model. Furthermore, we investigate the symmetry content of the spin-1
gas using symmetry witnesses derived from Ward identities. We show that the dynamical restora-
tion of symmetry from an explicitly symmetry-broken state occurs long before thermalisation. We
further demonstrate that different quenches can lead to two distinct non-thermal fixed points, each
associated with a different emergent symmetry. Finally, three-dimensional simulations of a quasi-
one-dimensional condensate reconcile the long-standing discrepancies between experimentally
and numerically observed scaling exponents. These findings contribute to a deeper understand-
ing of non-equilibrium physics, establishing a double sine-Gordon non-equilibrium universality
class to which the spin-1 Bose gas belongs to, and underline the role of emergent symmetries in
determining the non-thermal fixed point the system approaches.

vii



ZUSAMMENFASSUNG

Quanten-Vielteilchensysteme, die weit aus dem Gleichgewicht getrieben werden, können eine
universelle, selbstähnliche Skalierungsdynamik aufweisen, die mit einem nicht-thermischen Fix-
punkt in Verbindung steht. Die Charakterisierung solcher Universalitätsklassen außerhalb des
Gleichgewichts ist ein offenes Problem. Diese Arbeit untersucht die Dynamik eines eindimen-
sionalen Spin-1 Bose Gases fernab vom Gleichgewicht. Die mikroskopische Dynamik des Ga-
ses wird analysiert, in der Kaustiken in den Geschwindigkeitsfeldern entstehen, die Echtzeit-
Instantonen im transversalen Spin formen. Die Statistik der Instantonen lässt auf einen zusätzlichen
Skalierungsexponenten schließen, der die Zeitentwicklung einer charakteristischen Zeitskala be-
stimmt. Eine effektive Feldtheorie des Spin-1 Bose Gases bei niedrigen Energien wird hergeleitet,
was die Form einer erweiterten Sine-Gordon Theorie in der Spinorphase aufweist. Das effektive
Modell gibt sowohl das subdiffusive als auch das diffusionsartige Skalierungverhalten der vol-
len mikroskopischen Theorie wieder. Aus der hergeleiteten Theorie wird geschlossen, dass die
Skalierungsdynamik aufgrund eines nicht-thermischen Fixpunktes ein Phänomen ist, das über
Domänenvergrößerungsprozesse hinausgeht. Der Wert des Skalierungsexponenten wird mit der
Besetzung der Minima des periodischen Potentials durch das Sine-Gordon Feld verbunden. Nu-
merische sowie experimentelle Ergebnisse bestätigen die Reduzierung der Dynamik auf das ef-
fektive Modell. Weiter wird der Symmetrieinhalt des Systems mithilfe von Ward-Identitäten un-
tersucht und damit gezeigt, dass die dynamische Wiederherstellung der Symmetrie aus einem ex-
plizit symmetriegebrochenen Zustand viel schneller ist als die Thermalisierung. Es wird zudem
gezeigt, dass durch unterschiedliche Anfangsbedingungen zwei verschiedene nicht-thermische
Fixpunkten erreicht werden können, die jeweils mit einer anderen emergenten Symmetrie ver-
bunden sind. Mit Hilfe dreidimensionaler Simulationen eines quasi-eindimensionalen Rubidium-
kondensats wird die langjährige Diskrepanz zwischen den experimentell gemessenen und nume-
risch beobachteten Skalierungsexponenten erklärt. Die Ergebnisse dieser Arbeit tragen zu einem
tieferen Verständnis der Nichtgleichgewichtsphysik bei, indem sie eine erweiterte Sine-Gordon
Universalitätsklasse außerhalb des Gleichgewichts etablieren, zu der das Spin-1 Bose Gas gehört,
und die Rolle emergenter Symmetrien bei der Bestimmung des nicht-thermischen Fixpunkts un-
termauern.
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1INTRODUCTION

מכוון תמיד לא גמור, לא
כאן מתחיל הזה השיר

– Ehud Banai, ”Yotze El Ha’Or”

The study of relaxation dynamics of closed quantum many-body systems quenched far away from
equilibrium has seen increased interest in recent years. Physical settings include the evolution of
the early universe after the inflation epoch [8–10], thermalisation and hadronisation of a quark-
gluon plasma [11, 12], as well as the relaxation of ultracold atomic quantum gases in extreme
conditions studied in table-top experiments [13–15]. A great variety of different scenarios has
been proposed and observed, such as prethermalisation [16–23], generalised Gibbs ensembles [13,
21, 24–28], critical and prethermal dynamics [29–32], decoherence and revivals [33], dynamical
phase transitions [34–38], many-body localisation [39–43], relaxation after quantum quenches in
quantum integrable systems [44–46], wave turbulence [47–50], superfluid or quantum turbulence
[51–54], universal scaling dynamics and the approach of a non-thermal fixed point [53–58], and
prescaling in the approach of such a fixed point [59–62]. The broad spectrum of possible phenom-
ena occurring during the evolution reflects many differences between quantum dynamics and the
relaxation of classical systems.

Out of the many intriguing observed phenomena, the universal scaling dynamics of closed
quantum many-body systems far from equilibrium has garnered special attention in modern re-
search. This thesis investigates the self-similar scaling dynamics associated with an approach to a
non-thermal fixed point, using numerical simulations of an ultracold spin-1 Bose gas. The central
objective of this thesis is to deepen our understanding of universal non-equilibrium phenomena,
with particular emphasis on the identification and characterisation of universality classes far from
equilibrium.

Generally, universal scaling dynamics associated with a non-thermal fixed point is signalled by
the self-similar spatio-temporal scaling of order-parameter correlations in the system. This frame-
work significantly reduces the complexity of the time evolution far from equilibrium, where the
dynamics of the two-point correlators can now be described by a universal scaling function and
two universal exponents alone. Such an approach seeks to describe non-equilibrium universal
phenomena as a generalisation of the notion of universality in equilibrium, where critical slow-
ing down is observed near a phase transition, corresponding to a fixed point in the renormalisation
group flow. In recent years, the research of non-equilibrium universality has seen extensive theo-
retical [17, 59, 60, 63–96], as well as experimental research [6, 18, 27, 31–33, 49–57, 97–101],
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2 introduction

exploring the nature of universal spatio-temporal scaling of correlations, to a large part in the field
of ultracold atoms, thus underlining the importance of universality in non-equilibrium physics. Al-
though self-similar scaling behaviour can emerge from a plethora of physical phenomena, such as
the conserved redistribution of collective excitations or the dynamics of topological excitations,
the effective description remains universal, governed by only a few parameters. The universal
nature of this phenomenon hence enables the study of otherwise experimentally inaccessible sys-
tems by investigating more controllable platforms, such as ultracold Bose gases.

Ultracold Bose gases offer many advantages as an experimental platform for exploring non-
equilibrium dynamics in quantum many-body systems. Their high degree of experimental control
makes them ideal quantum simulators, serving as well-controlled toy models to study fundamental
physics under conditions that are often challenging to realise in other settings. Unlike high-energy
systems, such as the quark-gluon plasma, where non-equilibrium dynamics must be resolved on
extremely short timescales and measurements are typically limited to asymptotic output states,
ultracold Bose gases allow direct and time-resolved access to equal-time correlation functions.
This is possible in tabletop experiments, as opposed to the vast and highly specialised infrastruc-
ture required for particle accelerators in high-energy physics. The extraction of non-equilibrium
equal-time correlations is enabled by the ability to repeat ultracold atom experiments with high
precision, maintaining a high degree of control over experimental parameters such as atom num-
ber, temperature, and interaction strength. In particular, interaction strength can be finely tuned
using Feshbach resonances, providing a powerful tool for probing how universal certain dynam-
ical features truly are [101]. Furthermore, the ability of modern experiments to imprint spatial
defects, such as solitons or vortices, opens a direct route to studying the influence of topological
excitations on universal dynamics.

As in all fundamental theories in modern physics, symmetries play a central and crucial role
in the description of the non-equilibrium dynamics of the system as well. Dating back to 1918,
Emmy Noether had derived one of the most important aspects of symmetry, stating that each
continuous symmetry of a physical model is associated with a conservation law [102]. Each con-
servation law is then associated with a conserved charge and current which obey a continuity
equation. On the quantum level, Noether’s theorem can be generalised, where now the continu-
ous symmetries of the system imply a set of relations between correlations of the system. These
are known as the Ward-Takahashi identities [103], or, for the non-Abelian case, as Slavnov-Taylor
identities [104, 105]. However, in contrast to equilibrium, non-equilibrium physics require a sub-
tle distinction between the symmetries of the quantum state and that of the microscopic model.
This distinction raises important questions about the role of emergent symmetries, including the
possibility of (asymptotically) restoring symmetries that are explicitly broken at the microscopic
level.

Knowledge of the underlying (or emergent) symmetry of the system is crucial information for
the derivation of effective field theories. These encapsulate the dominant mechanisms governing
the non-equilibrium dynamics of the system. Quantum many-body systems, such as the spin-1
Bose gas handled in this thesis, often consist of many degrees of freedom, making a full ana-
lytical investigation of their non-equilibrium physics challenging. However, the universal scaling
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dynamics often arises from only a subset of these degrees of freedom. For such cases, one may
derive an effective theory for the relevant degrees of freedom from the microscopic model, thus
simplifying the analytical analysis substantially. For example, in U(𝑁) symmetric ultracold Bose
gases, density fluctuations are strongly suppressed in the low-energy limit, while fluctuations in
the complex phases dominate the dynamics, which show a rich excitation spectrum [106]. The
low-energy effective theory of these models takes the form of a Luttinger liquid, where an an-
alytical kinetic theory approach was able to predict the universal scaling exponents governing
the self-similar scaling of correlations. Therefore, the reduction of a system’s description to its
low-energy effective theory may open a path to deeper analytical insights on the underlying mech-
anisms behind the universal behaviour.

In this thesis, we present numerical and analytical studies of the spin-1 Bose gas driven far
out of equilibrium by a quench across a second-order phase transition from the polar phase to
the easy-plane ferromagnetic phase, where the system is known to exhibit self-similar scaling
of transverse spin correlations in one and two dimensions [55, 75, 77]. We show numerical sim-
ulations of the one-dimensional spin-1 Bose gas and observe the existence of rogue waves in
the transverse spin degree of freedom. We employ the framework of propagating wavefronts in
random media, where the noisy potential arises from the time-evolving spin-interaction terms
of the underlying equations of motion. We find that, when considering additionally the spatio-
temporal scaling of correlations, this framework gives rise to a second exponent which governs
the coarsening of a timescale in the system. Furthermore, the rogue wave events are shown to be
associated with topological real-time instanton defects, which take the form of vortices in space
and time. To better understand these dynamics, we derive a low-energy effective theory for the
system in the easy-plane phase, in the form of a double sine-Gordon model for the so-called spinor
phase. This effective theory captures both types of scaling behaviours observed in the spinor gas,
representing a significant simplification of the underlying complexity. Finally, using derived sym-
metry witnesses, we demonstrate the restoration of symmetry in the easy-plane phase from an
initially symmetry-broken state. We explore the implications of this restoration for the system’s
non-equilibrium dynamics and propose the existence of a symmetry crossover, i.e., a transition
in the effective symmetry that emerges when quenching to different points within the same quan-
tum phase, or in other words, within the same microscopic symmetries of the Hamiltonian. We
connect this crossover with two distinct scaling behaviours.

This thesis contributes to a deeper understanding of universal self-similar scaling dynamics far
from equilibrium by employing effective descriptions to find the dominant mechanisms and ad-
dressing long-standing puzzles in the field. In particular, we find that the effective mapping of the
spinor gas to a double sine-Gordon model places the universal dynamics into a sine-Gordon-type
non-equilibrium universality class. It delivers an explanation for the anomalously slow scaling
dynamics of the spinor gas and substantiates the difference between domain-size growth and self-
similar scaling due to a non-thermal fixed point. Furthermore, we establish a direct connection
between the dynamically emergent symmetry and distinct scaling behaviors. Finally, this work
bridges the gap between experimental and numerical results obtained for the self-similar scaling
in the one-dimensional spinor gas, offering an explanation as to the cause of this discrepancy.
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outline of the thesis
This thesis is organised in four parts, each covering a certain aspect of the far-from-equilibrium
dynamics of the spin-1 Bose gas.

The first part introduces the theoretical background for this thesis.
Chapter 2 discusses the theoretical concepts for the various subjects in this thesis, starting with

a comprehensive review of non-thermal fixed points. Then, the spin-1 Bose gas is introduced: its
basic properties, mean-field description and various excitations. The theory of topology is briefly
outlined. Finally, equal-time functional methods for non-equilibrium physics are presented.

Chapter 3 describes the numerical methods used for simulating the spin-1 Bose gas and the
double sine-Gordon model. The concept of mass parallelisation on graphics processing units is
briefly discussed.

In the second part, we consider the post-quench universal dynamics of the spin-1 Bose gas from
the perspective of microscopic and effective theories.

Chapter 4 investigates the appearance of rogue wave excitations in the universal post-quench
dynamics of the spin-1 gas. Their dominant timescale and its connection to the scaling of the
correlations is studied. Then, the existence of real-time instantons in the system is discussed,
showing that they follow the same spatial and temporal scaling given by the rogue waves.

Chapter 5 showcases that the double sine-Gordon model accounts for subdiffusive (i.e., slow)
as well as diffusion-type scaling. It is derived as a low-energy effective model for the spinor phase
of the spin-1 gas. Using this derivation, it is shown that pattern coarsening as seen in non-thermal
fixed points can be a more intricate process than simple domain-size growth. The subdiffusive
scaling is connected to the field configuration spreading across the sinusoidal potential.

In the third part, we turn to the discussion of symmetry identities and the aspects of symmetry in
the far-from-equilibrium dynamics of the spin-1 Bose gas.

Chapter 6 explores the role of effective symmetries in non-equilibrium. Using a set of sym-
metry identities for a spontaneously broken SO(2) symmetry, it is shown that the dynamical
restoration of symmetry in the system on the level of lower-order correlation functions occurs
on a timescale which is much faster than the equilibration timescale. This approach is used to
identify spontaneous symmetry breaking far from equilibrium on experimental data.

Chapter 7 presents results from work in progress, connecting to the subjects discussed in this
thesis. A possible symmetry crossover in the spin-1 Bose gas is discussed, showcasing that the
quench parameter controls the emergent symmetry and with it, the scaling behaviour. Finally,
dimensional considerations are shown to significantly alter the scaling behaviour of the system
within the quasi-one-dimensional regime, thus reconciling the long-standing discrepancy between
theory and experiment.

In the fourth and final part, we summarise and give an outlook for the future in Chap. 8.



Part I

THEORETICAL BACKGROUND





2THEORETICAL CONCEPTS

멈춰서도괜찮아
아무이유도모르는채달릴필요없어

– BTS, ”Paradise”

In this chapter, we briefly introduce and discuss the core theoretical concepts relevant for this
thesis. The aim of this chapter is not to rigorously derive the methods used in this thesis, but to
rather give a comprehensive overview of the key ideas of the employed frameworks. We begin
by introducing the concept of non-thermal fixed points in Sect. 2.1. In Sect. 2.2, we shift our dis-
cussion to the main characteristics of the physical system with which we probe non-equilibrium
dynamics of quantum many-body systems: the spin-1 Bose gas. There, we concentrate on the
mean-field description of the system, discussing the mean-field phase diagram and the relevant
quantum phase transition we will be utilising to bring the system out of equilibrium. We give the
main results of Bogoliubov theory in the polar and easy-plane phases, discussing the dispersion
relation for quasiparticle excitations for the two phases. We continue by introducing the relevant
SU(2) subspaces, giving a useful tool for visualising the spin-1 gas dynamics. In Sect. 2.3, we
briefly discuss the concept of topology, homotopy groups and winding numbers, giving the rele-
vant examples of the spin-1 gas and the resulting instanton defects. We conclude this chapter by
introducing the analytical framework of the equal-time functional methods of non-equilibrium dy-
namics in Sect. 2.4, deriving general symmetry identities with which we can probe the symmetry
content of quantum many-body systems.

2.1 non-thermal fixed points
A great part of the work done in this thesis was made with the aim to further the understanding of
non-equilibrium universality, predominantly by considering the phenomenon of self-similar scal-
ing of correlations far from equilibrium. Such power-law scaling of correlations has been observed
in a variety of contexts, including wave-turbulence [47, 48], pattern coarsening dynamics [107]
and driven-dissipative systems [108]. The plethora of systems which exhibit scaling has drawn
researchers to search for a unifying framework to better handle this phenomenon and understand
its implications. One such framework hypothesises the existence of so-called non-thermal fixed
points (NTFP). In this section, we take it upon us to provide a detailed introduction to the concept
of non-thermal fixed points, further going over recent developments in this field of research. This
short introduction is based on [7], with some parts, such as the figure captions, taken verbatim.

7
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Figure 2.1: Schematics of a non-thermal fixed point, based on the ideas of a renormalisation group flow. For
a range of initial conditions, a system brought out of equilibrium can approach an hypothesised
non-thermal fixed point during its time evolution towards equilibrium. In the vicinity of such
a fixed point, the system experiences a slowing down in the time evolution, (indicated by the
tightly packed purple arrows) where correlation functions 𝐶 (𝑘 , 𝑡) show self-similar scaling
behaviour in space and time according to𝐶 (𝑘 , 𝑡) = 𝑡𝛼 𝑓s (𝑡𝛽𝑘), with a universal scaling function
𝑓s which depends on momentum alone. The scaling evolution is characterised by two universal
scaling exponents 𝛼 and 𝛽. Figure taken and adapted from [116].

The concept of non-thermal fixed points aims at generalising the well-known and celebrated
concept of renormalisation group theory (RG) to a non-equilibrium framework [63, 109–113]. In
equilibrium, or near it, the structure of the system is, in the RG framework, investigated under
various spatial (or momentum) resolutions, i.e., the variation of the spatial scale upon which the
system is observed [114, 115]. Considering correlation functions of the system, such as the two-
point correlation function of two spatial points with a distance 𝑥 between them, one finds that
near a phase transition, the correlations retain their shapes, yet rescale according to 𝐶 (𝑥; 𝑠) =
𝑠𝜁 𝑓s(𝑥/𝑠), with some universal scaling function 𝑓s. Hence, near or at criticality, the shape of the
function does not depend on the resolution with which we observe the system. The exponent 𝜁
is said to be universal for a class of systems, constituting a universality class, which is typically
associated with the symmetry of the underlying Hamiltonian.

Quantitatively, in RG, one derives a so-called renormalisation flow, i.e., a set of differential
equations which determine the change of the system with the spatial resolution. These differential
equations show how the various couplings in the system’s action change with the scale. One can
then perform a fixed-point analysis, i.e., find where the differential equations vanish. There, the
flow is said to stop, meaning that at every scale, the correlations of the system remain unaltered.
At the fixed point, the system is scale independent and the universal scaling function takes the
form of a pure power law. We note however that for realistic finite systems, there is always a
scale present, such that a system can only approximately approach the fixed point. Performing
a linearised analysis about the fixed points, one obtains, after some linear algebra, the scaling
exponents of the various correlations w.r.t. the couplings. For further details, we refer the reader
to [117, 118].
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The generalisation of this approach to non-equilibrium physics leads to the consideration of
real time 𝑡 as the scale parameter. Adapting the same concepts as equilibrium RG, there should
be some functional flow, where one may find a so-called non-thermal fixed point. Near such a
fixed point, the correlations of the system scale self-similarly in time as 𝐶 (𝑥, 𝑡) = 𝑡 𝛼̃ 𝑓s(𝑡−𝛽𝑥)
with now two universal exponents 𝛼̃ and 𝛽. In this case, one observes that a length scale of the
system, the correlation length of the correlation function, scales as a power-law in time ℓΛ(𝑡) ∼ 𝑡𝛽 ,
i.e., the patterns in the system grow in size in time.

The strength of such a framework lies within its universal nature. It allows us to characterise
various systems according to their non-equilibrium universality class, reducing the microscopic
often very intricate and analytically inaccessible dynamics into a finite set of parameters given
by the universal scaling function and the two universal exponents. Hence, should various systems
belong to the same universality class, one is able to learn about one system while investigating the
other, allowing for the study of experimentally inaccessible systems, such as the Universe, with
the help of a tabletop experiment, e.g., an ultracold Bose gas.

In the following, we give a relevant example to gain better intuition to the notion of NTFPs in
the area of ultracold gases: the three-dimensional one-component Bose gas after a strong cooling
quench. The cooling quench here means that the initial condition of the occupation number 𝑛(0,k)
reflects a box distribution with some cutoff momentum scale 𝑄, above which it vanishes

𝑛(0,k) = 𝑛0Θ(𝑄 − |k|). (2.1)

This constitutes an extreme non-equilibrium initial condition, where the mode distribution is over-
occupied in particular modes in contrast to the equilibrium distribution. Such an overpopulation
results in a transport process of particles into lower momenta, i.e., towards the condensate, while
the energy is transported to higher wavenumbers, see Fig. 2.2. This transport process is then
captured by a universal function depending on momentum alone, which asymptotically reaches
a power law. Interestingly, the transport in the infrared (IR) and ultraviolet (UV) result in a bi-
directional scaling behaviour, meaning that there are two sets of universal exponents govern-
ing the transport of particles in the IR and energy in the UV, respectively. Each range of mo-
menta shows the scaling of the occupation number w.r.t. some reference time 𝑡ref according to
𝑛(𝑘 , 𝑡) = (𝑡/𝑡ref)𝛼𝑛s( [𝑡/𝑡ref]𝛽𝑘), where the exponents 𝛼 and 𝛽 now govern the transport of par-
ticles and energy, respectively. The values of the scaling exponents 𝛼 and 𝛽 are constrained by
global conservation laws in the underlying self-similar dynamics in the vicinity of a NTFP. Such
laws lead to a relationship between the exponents, for example, quasi-particle conservation in the
IR implies 𝛼 = 𝑑𝛽, for 𝑑 spatial dimensions.

The fact that, at later times, the entire transport process can be captured by a simple power-
law behaviour in space and time reflects the universal nature of the time-evolution of the system,
which exhibits the same behaviour, regardless of the exact initial condition. This behaviour can
emerge from very different underlying physical configurations and processes, such as the con-
served redistribution of quasiparticle excitations, e.g., as in weak wave turbulence [119, 120] but
also by the reconfiguration of spatial patterns like magnetisation domains [121, 122] or by the an-
nihilation of (topological) defects populating the system [65, 72]. Hence, even though the notion
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Figure 2.2: Sketch of self-similar scaling in time and space close to a non-thermal fixed point on a dou-
ble logarithmic scale. The time evolution of the occupation number momentum distribution
𝑛(𝑘 , 𝑡) of a Bose gas for two different times 𝑡 is shown (solid and short-dashed line). Start-
ing from an extreme initial distribution marked by the blue long-dashed line, being the result
of a strong cooling quench, a bidirectional redistribution of particles in momentum space oc-
curs as indicated by the arrows. Particle transport towards zero momentum as well as energy
transport to large momenta are characterised by self-similar scaling evolutions in space and
time according to 𝑛(𝑘 , 𝑡) = (𝑡/𝑡ref)𝛼𝑛s ( [𝑡/𝑡ref]𝛽𝑘), with universal scaling exponents 𝛼 and 𝛽,
in general, different for both directions. Here, 𝑡ref is some reference time within the temporal
scaling regime. The infrared transport (red arrow) conserves the particle number which is con-
centrated at small momenta when 𝜅 ≥ 𝑑. In contrast, the energy, being concentrated at high
momenta, where 𝜅′ ≤ 𝑑 + 2, is conserved in the redistribution of short-wavelength fluctuations
(purple arrow). Figure taken and adapted from [119].

of universality implies the characterisation of a system using only a few macroscopic parameters
such as scaling exponents and the universal scaling function, the understanding of the microscopic
processes governing the scaling of the system gives valuable insight into the possible types and
characteristics of various non-equilibrium universality classes.

We note that pattern coarsening is also discussed thoroughly within the framework of phase-
ordering kinetics [107], i.e., the dynamics after a quench across a phase transition. There, scaling
laws are derived via the use of general phenomenological models stemming from the dynamics
of domain walls of conserved and non-conserved fields in two or more spatial dimensions. These
models make use of either diffusion-type equations, accounting for the scaling of a dominant
length scale in the system with 𝛽 = 1/2, or Cahn-Hilliard equations, accounting for conserved re-
distributions of excitations resulting in 𝛽 = 1/4. The concept of non-thermal fixed points, though,
goes beyond such theories, which it is expected to include as well.

Finding, characterising and understanding non-equilibrium universality classes, especially with
regard to their self-similar scaling behaviour, is the subject of extensive research in experiment
and theory and is largely an open problem. A major challenge in researching non-equilibrium phe-
nomena comes from the fact that, in contrast to equilibrium studies, where only asymptotic in-
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and output states are considered, non-equilibrium quantum field theories are formulated as initial
value problems, with the initial density matrix playing a crucial role in the subsequent dynam-
ics of the system. As a consequence, the derivation and solution of the full equations of motion
for correlation functions out of equilibrium is a highly complicated and analytically cumbersome
task, which requires the derivation and solution of equations of motion of unequal-time quantities
known as Kadanoff-Baym equations [123].

Recent theoretical studies of non-thermal fixed points have tried to overcome the challenging
nature of this problem, developing various frameworks to investigate and better understand non-
equilibrium physics. Analytically, a large-N kinetic theory approach is used, based on the deriva-
tion of a Boltzmann-type equation for the occupation number distribution 𝜕𝑡𝑛(k, 𝑡) = 𝐼 [𝑛] (k, 𝑡)
of 𝑁-component field theories, where 𝐼 [𝑛] is a scattering integral containing the occupation num-
ber self-energy, which can handled in a non-perturbative manner using a 1/𝑁 expansion of the
two-particle irreducible (2PI) effective action for large-𝑁 [124]. This approach has been able to
successfully predict scaling exponents observed in numerical studies [71, 119, 120]. In particu-
lar, the application of this approach to a derived low-energy effective theory for multi-component
U(𝑁) symmetric Bose gases has yielded the correct scaling exponents [106]. As a consequence,
the use of analytically accessible effective models derived from the full microscopic theory al-
lows one to pinpoint the relevant mechanisms underlying the scaling evolution and investigate
the theory in a simplified manner. An especially interesting result derived from a kinetic theory
concerns the scaling analysis for sine-Gordon-type theories. There, a resummation of the 2PI ef-
fective action considering infinite-order vertices has shown that, depending on the spread of the
field configuration, two possible scaling solutions exist within the same system [85]. We finally
note that a key aim for the analytical handling of NTFP sees the development of a functional
renormalisation group theory encapsulating the flow to a non-thermal fixed point. Such a theory
would provide a powerful tool to find NTFPs a priori on the grounds of symmetries, ultimately
mapping all possible fixed points a system can reach. First steps into such a theory were made in
[125], using the single-component Bose gas as a platform.

Numerical simulations of non-equilibrium dynamics provide an alternative means of investi-
gating scaling phenomena far from equilibrium. In addition to confirming analytical predictions,
they are able to expand upon the existing analytical framework and reveal phenomena which go
beyond the analytical predictions. Such phenomena, such as distinctly subdiffusive scaling ex-
ponents, result from the dynamics of non-linear and topological excitations in the system. The
aforementioned kinetic theory approach generically assumes the absence of such excitations to
make predictions for the universal scaling behaviour of the system, concentrating on scaling
phenomena driven by wave excitations manifested as, e.g., compressible phase fluctuations in
Bose gases [106]. Numerical simulations of strong quenches give rise to strong non-linear and
topological excitations dynamically, allowing for the discovery of new scaling solutions and the
controlled investigation of strong excitations in the system. In various numerical studies, far-
from-equilibrium universal scaling was observed in relativistic O(𝑁) theories, as well as non-
relativistic U(𝑁) theories. A special focus of these numerical studies lies on understanding the
difference between scaling phenomena associated with non-linear wave propagation, and the scal-
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ing associated with the dynamics of topological defects. For example, in a two-dimensional single-
component Bose gas it was found that for two different ensembles of vortex defects, two different
scaling solutions are obtained. One subdiffusive with 𝛽 = 1/5 and one with diffusion-type scal-
ing 𝛽 = 1/2 [72]. The former exponent was attributed to three-body-collision dynamics inside
tightly packed vortex clusters, whereas the latter exponent was attributed to simple diffusion-
type dynamics of random vortices. These findings were expanded to include the two-dimensional
dipolar gas as well, showing the universal nature of this scaling phenomenon [96]. In relativistic
O(𝑁) theories, the use of persistent homology underlines the importance of topological defects
in the possible scaling solution found in the system [86]. Recently, the role of quantised Kelvin
waves in the scaling dynamics of an O(1) system in two and three spatial dimensions was dis-
cussed [87]. As a final, and very relevant example, the one-dimensional spin-1 Bose gas was
found to exhibit bi-directional scaling of transverse spin correlations with a distinctly subdiffu-
sive exponent 𝛽 = 1/4 [75]. In contrast to the aforementioned systems, the correlations of a spin
observable scale self-similarly and not the occupation number connected with the density of the
condensate. In two dimensions, spin vortices in the spinor condensate were also found to give rise
to self-similar scaling with 𝛽 = 1/2 [77].

Experimentally, ultracold atom experiments show self-similar scaling after a quench of the
system through a continuous phase transition. The investigation of a three-dimensional Bose gas
after a cooling quench has shown self-similar scaling with exponents 𝛽 ≈ 0.34 and 𝛼 ≈ 3𝛽 = 1.15
[54], while for the one-dimensional case, self-similar scaling with an anomalously slow exponent
𝛼 = 𝛽 ≈ 0.1 was found [56]. The numerical prediction of two distinct scaling behaviors depending
on the distribution of vortices in a two-dimensional Bose gas was experimentally confirmed [53].
Utilising a quasi-one-dimensional spinor condensate, self-similar scaling far from equilibrium
was shown for the system after a quench from the polar phase to the easy-plane phase with an
exponent of 𝛽 = 1/2 [55]. Recently, the same experiment has shown the possibility of several
basins of attraction for various NTFPs within the same Hamiltonian. These basins are connected
to different initial conditions, each leading to dynamics exhibiting different scaling behaviors [6].

To summarise, the scaling behaviour with time as a dynamical scaling parameter is found in
many systems far from equilibrium. The spatio-temporal scaling of correlations is reminiscent
of critical slowing down in equilibrium at a continuous phase transition, where correlations are
shown to rescale in space as a power law in time. To a certain extent, slowed-down dynamics
and scaling in the evolution time can be seen as a generalisation of the notion of universality in
equilibrium critical phenomena, extending it into non-equilibrium systems. The main focus of
this thesis is to deepen the understanding of NTFPs by investigating their connection to emergent
symmetries in the dynamics of the system, using the knowledge to derive underlying effective
theories which allow us to gain valuable insight into the mechanisms and characterisation of non-
equilibrium universality classes.
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2.2 spin-1 bose gas
The far-from-equilibrium dynamics of multi-component spin-1 gases has been a subject of ex-
tensive numerical as well as experimental study due to the spin-dependent interactions present
in the system, which give rise to intricate, non-trivial and unexplained phenomena in the non-
equilibrium time evolution of the system. In this thesis, we use the spin-1 Bose gas as a platform
to investigate, in detail, phenomena ranging from distinctly slow (or subdiffusive) scaling, to uni-
versal dynamics of rogue waves, as well as the restoration of symmetry in a time-evolving system
out of equilibrium.

In the following, we briefly introduce the theoretical description of the spin-1 Bose gas. We
give the Hamilton operator and discuss its terms in Sect. 2.2.1, followed by a discussion of the
mean-field description, including the mean-field phase diagram in Sect. 2.2.2. We then continue
to outline an effective low-dimensional description in Sect. 2.2.4. We give the main results of
the Bogoliubov analysis of the spin-1 gas in the polar and easy-plane phases in Sect. 2.2.5 and
conclude with a brief visual representation of the triplet state on two SU(2) subspaces. For an
exhaustive review of spinor condensates, we refer the reader to [126, 127].

2.2.1 the model hamiltonian of the spin-1 gas

The spin-1 gas is described by a triplet state 𝚿̂(x, 𝑡) =
(
Ψ̂−1(x, 𝑡), Ψ̂0(x, 𝑡), Ψ̂1(x, 𝑡)

)𝑇
, where

each component represents one of the three magnetic sub-levels 𝑚F ∈ {−1, 0, 1} of the 𝐹 = 1
spin manifold. The three bosonic field operators, corresponding each to their respective magnetic
sub-level, satisfy the bosonic commutation relations[

Ψ̂𝑖 (x, 𝑡), Ψ̂ 𝑗 (y, 𝑡)
]
=

[
Ψ̂
†
𝑖
(x, 𝑡), Ψ̂†

𝑗
(y, 𝑡)

]
= 0, (2.2)[

Ψ̂𝑖 (x, 𝑡), Ψ̂†
𝑗
(y, 𝑡)

]
= 𝛿𝑖 𝑗 𝛿(x − y). (2.3)

The Hamiltonian of the spin-1 Bose gas of particles with mass 𝑀 reads as follows

𝐻̂ =

∫
dx

{
𝚿̂
†(x, 𝑡)

[
− ℎ̄2

2𝑀
∇2 +𝑉 (x) + 𝑞 𝑓 2

𝑧

]
𝚿̂(x, 𝑡)

+1
2
𝑐0 : 𝑛̂2(x, 𝑡) : +1

2
𝑐1 : F̂ 2(x, 𝑡) :

}
, (2.4)

where :: denotes normal ordering and we have defined the number density operator

𝑛̂(x, 𝑡) = 𝚿̂
†(x, 𝑡)𝚿̂(x, 𝑡), (2.5)

accounting for density-density interactions with coupling strength 𝑐0 and the spin density operator

F̂ = 𝚿̂
†(x, 𝑡) · f · 𝚿̂(x, 𝑡), (2.6)
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where the vector f = ( 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧) contains the three generators of the 𝔰𝔬(3) Lie algebra in the
three-dimensional, 𝐹 = 1 fundamental representation

𝑓𝑥 =
1
√

2

©­­­«
0 1 0

1 0 1

0 1 0

ª®®®¬, 𝑓𝑦 =
i
√

2

©­­­«
0 −1 0

1 0 −1

0 1 0

ª®®®¬, 𝑓𝑧 =

©­­­«
1 0 0

0 0 0

0 0 −1

ª®®®¬. (2.7)

The spin density operator is a SO(3) symmetric interaction term, breaking the U(3) symmetry
of a spin-1 Hamiltonian subject to density-density interactions alone. It describes spin changing
collisions with a coupling strength 𝑐1, which in turn lead to an especially intricate non-linear dy-
namic in the system. Allowing for scattering channels with even total spin only, the two couplings
constants are given, assuming pure contact interactions, by

𝑐0 =
4𝜋ℎ̄2(𝑎0 + 2𝑎2)

3𝑀
, 𝑐1 =

4𝜋ℎ̄2(𝑎2 − 𝑎0)
3𝑀

, (2.8)

where 𝑎F are the corresponding 𝑠-wave scattering lengths for the 𝐹 = 0 and 𝐹 = 2 channels,
respectively. The quadratic term containing 𝑞 denotes the contribution from the quadratic Zeeman
shift, governing the detuning between the 𝑚F = 0 and the 𝑚F = ±1 components. The spin-
changing collisions and the quadratic Zeeman terms break the U(3) symmetry of the Hamiltonian
into either a U(1)𝜙 ×SO(3) 𝑓 symmetry for 𝑐1 ≠ 0 and 𝑞 = 0, or a U(1)𝜙 ×SO(2) 𝑓 symmetry for
𝑐1 ≠ and 𝑞 ≠ 0, where all symmetries are to be understood as global symmetries. The subscripts
𝜙 and 𝑓 denote that the symmetry lives in the condensate or spin sector, respectively. Note that
strictly speaking, a term linear in 𝑓𝑧 representing the linear Zeeman effect should also appear in
the Hamiltonian. This term can be absorbed into the fundamental fields by considering a rotating
frame of reference.

Finally, the term 𝑉 (𝑥) accounts for an external trapping potential, which must be present in
every realistic experimental setting. The exact shape of the potential is determined by the trap
geometry and can take on several forms, where most common trap utilised is an harmonic trap,
leading to a spatially inhomogeneous Thomas-Fermi density profile.

2.2.2 mean-field description

In this thesis, we mainly study the far-from-equilibrium dynamics of the spinor gas by means
of numerical simulations. We employ a semi-classical, Monte-Carlo method known as the trun-
cated Wigner approximation. Semi-classical methods make use of a mean-field description to
propagate the classical equations of motion of the fields, whilst sampling quantum noise which
is added to the initial condition, see Sect. 3.3 for more details. To guarantee the validity of such
an approximation, one must ensure high occupations of the wave function, weak interactions in
the Hamiltonian and very low temperature [128].
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In the following, we outline the mean-field description of the spin-1 Bose gas. We plug in the
mean-field values of the quantum operators in Eq. (2.4),𝜓𝑚F (x, 𝑡) =

〈
Ψ𝑚F (x, 𝑡)

〉
=
√
𝜌𝑚F𝑒

i𝜑𝑚F ∈
C, where 𝜌𝑚F and 𝜑𝑚F denote the density and the complex phase of the wave function, respec-
tively.

The mean-field spin-1 Hamiltonian then reads

𝐻 =

∫
dx

{
ψ∗(x, 𝑡)

[
− ℎ̄

2𝑀
∇2 +𝑉 (x) + 𝑞 𝑓 2

𝑧

]
ψ(x, 𝑡) + 1

2
𝑐0𝑛

2(x, 𝑡) + 1
2
𝑐1F

2(x, 𝑡)
}

, (2.9)

where the operators 𝑛(x, 𝑡) andF (x, 𝑡) are defined as the mean-field analog to Eq. (2.5) and (2.6),
respectively. The mean-field spin operators are defined as

𝐹𝑥 =
1
√

2

[
𝜓∗0 (𝜓1 + 𝜓−1) + c.c.

]
, (2.10)

𝐹𝑦 =
i
√

2

[
𝜓∗0 (𝜓1 − 𝜓−1) + c.c.

]
, (2.11)

𝐹𝑧 = |𝜓1 |2 − |𝜓−1 |2, (2.12)

where c.c. stands for the complex conjugate. Lastly, we obtain the classical equations of motion,
the spin-1 Gross-Pitaevskii equations (GPEs) via a variation of Eq. (2.9) w.r.t. the conjugate field

iℎ̄𝜕𝑡𝜓𝑚F (x, 𝑡) = 𝛿𝐻

𝛿𝜓∗𝑚F

, (2.13)

yielding a set of three coupled non-linear differential equations

iℎ̄𝜕𝑡ψ(x, 𝑡) =
[
− ℎ̄2

2𝑀
∇2 +𝑉 (x) + 𝑞 𝑓 2

𝑧 (x, 𝑡) + 1
2
𝑐0𝑛(x, 𝑡) + 1

2
𝑐1F (x, 𝑡) · f

]
ψ(x, 𝑡). (2.14)

2.2.3 mean-field phase diagram

The U(3) symmetry breaking terms, given by 𝑞 and 𝑐1, respectively, give rise to rich dynamics
in the system, as the particle interchange between the various magnetic sublevels and the strength
of the detuning of these collisions result in a phase diagram spanned by the two couplings. In
other words, the terms containing 𝑞 and 𝑐1 are energy scales determining the ground state of
the system, i.e., the preferred spin configuration. The resulting mean-field phase diagram for a
homogenous gas exhibits four ground states of the system, each representing a different quantum
phase separated by first-order quantum phase transition lines, with the exception of the phase
transition between the easy-plane and polar phase, which is of second order.

Easy-axis phase

For ferromagnetic interactions, i.e., 𝑐1 < 0 and a negative quadratic Zeeman shift 𝑞 < 0, the
system shows a spontaneously broken Z2 symmetry w.r.t. the magnetisation in 𝐹𝑧 direction. This
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Figure 2.3: Mean-field phase diagram of the spin-1 Bose gas in absence of a trapping potential and ⟨𝐹𝑧⟩ =
0. Note that this implicitly accounts for the degeneracy of the ground state in the easy-axis
phase. For 𝑐1 > 0 and 𝑞 > 0, the system is in the polar phase, whereas for 𝑐1 > 0 and
𝑞 < 0, the system is in the antiferromagnetic phase. The first-order quantum phase transition
occurs at 𝑞 = 0. For ferromagnetic interactions, i.e., 𝑐1 < 0, three phases exist. In case of
𝑞 > 2𝜌̃ |𝑐1 | = 𝑞c, the system is still in the polar phase. Lowering 𝑞 across the second-order
transition line, 0 < 𝑞 < 𝑞c, the system finds itself in the easy-plane phase. Note that 𝑞 = 𝑞/𝑞c.
For 𝑞 < 0, it is in the easy-axis phase, where the first-order transition is at 𝑞 = 0.

leads to an arbitrarily chosen ground state which is fully magnetised in the 𝐹𝑧 = ±1 direction.
The spinor thus reads

ψF = 𝑒i𝜃√︁𝜌̃

©­­­«
1

0

0

ª®®®¬ , or ψF = 𝑒i𝜃√︁𝜌̃

©­­­«
0

0

1

ª®®®¬ , (2.15)

where 𝜃 is a global U(1) phase of the system and 𝜌̃ is the homogeneous mean-field total density
of the condensate.

Anti-ferromagnetic phase

For 𝑐1 > 0 and 𝑞 < 0, the condensate is in a state of complete symmetric occupation of the
𝑚F = ±1 modes, thus leading to a vanishing total magnetisation ⟨|F |⟩ = 0. The spinor takes the
form

ψAF =
√︁
𝜌̃

©­­­«
𝑒i𝜑1

0

𝑒i𝜑−1

ª®®®¬ . (2.16)
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Polar phase

For 𝑐1 > 0, and 𝑞 > 2𝜌̃ |𝑐1 | =: 𝑞c, the system is characterised by a macroscopic occupation of the
𝑚F = 0 component, also leading to a vanishing total magnetisation ⟨|F |⟩ = 0:

ψP = 𝑒i𝜃√︁𝜌̃

©­­­«
0

1

0

ª®®®¬ . (2.17)

Easy-plane phase

Lastly, As the system approaches 𝑞 = 𝑞c from the polar phase, the spin changing collisions
become resonant, allowing for scattering processes which transfer particles from the 𝑚F = 0
component to the 𝑚F = ±1 components. At this point, the system undergoes a second-order
phase transition into the easy-plane phase. Therefore, for 𝑐1 < 0 and 0 < 𝑞 < 𝑞c, the SO(2)
symmetry of the system is spontaneously broken [126, 129], leading to a redistribution of atoms
between the components. In the mean field, we expect symmetric occupations of the 𝑚F = ±1
components with a relative phase, 𝜑L = (𝜑1 − 𝜑−1)/2, known as the Larmor phase, and a finite
occupation of the 𝑚F = 0 mode. The ground state reads

ψEP =
√︁
𝜌̃
𝑒i𝜃/2

2

©­­­«
𝑒i𝜑L

√︁
1 − 𝑞/𝑞c

𝑒−i𝜑s/2
√︁

2(1 + 𝑞/𝑞c)
𝑒−i𝜑L

√︁
1 − 𝑞/𝑞c

ª®®®¬. (2.18)

Notice that we have defined the phase of the 𝑚F = 0 component to be the so-called spinor phase
𝜑s = 𝜑1 + 𝜑−1 − 2𝜑0, after taking out a global phase 𝜃 = 𝜑1 + 𝜑−1. This specific choice of
variables serves the discussion in Chap. 5. In the easy-plane phase, the dynamics of the system
are restricted to the 𝐹𝑥-𝐹𝑦 plane, and the system exhibits no magnetisation in the 𝐹𝑧 direction.
The spontaneously broken SO(2) symmetry (which is isomorphic to U(1)) leads to a complex
scalar order parameter known as the transverse spin

𝐹⊥ = 𝐹𝑥 + 𝑖𝐹𝑦 =
√

2
(
𝜓∗1𝜓0 + 𝜓

∗
0𝜓−1

)
, (2.19)

with a 𝑞-dependent mean-field spin length

|𝐹⊥ |/𝜌̃ =

(
1 − 𝑞2

)1/2
, (2.20)

with

𝑞 =
𝑞

𝑞c
=

𝑞

2𝜌̃ |𝑐1 |
= 1 − 4𝑛

𝜌̃
, 𝑛 =

〈
|𝜓−1 |2 + |𝜓1 |2

2

〉
. (2.21)
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2.2.4 one-dimensional description

The focus of this thesis lies on the quasi-one-dimensional spinor Bose-Einstein condensate (BEC).
The term quasi-one-dimensional refers to the experimental reality that quantum gases in realis-
tic settings can only take an effectively one-dimensional form, keeping the transversal extent of
the system minimal. Numerically, we have the freedom of choice to either simulate a true one-
dimensional setting by considering only a one-dimensional numerical grid, or to recreate the
experimental setting by simulating a highly anisotropic three-dimensional grid, elongating the
BEC along the longitudinal direction (here chosen to be 𝑥). Simulating a true one-dimensional
system requires an adjustment of the aforementioned mean-field description to accommodate for
the change in dimensionality.

Experiments typically employ a strong harmonic trap, setting the transversal trap frequencies
to be large enough, such that an effectively one-dimensional description is suitable. Consider a
harmonic potential

𝑉 (x) = 1
2
𝜔2
⊥𝑟

2 + 1
2
𝜔2
∥𝑥

2, (2.22)

where 𝑟 = 𝑦2 + 𝑧2, and 𝜔⊥,∥ are the harmonic trap frequencies in the transverse and longitudinal
direction, respectively. The condition for an effective one-dimensional description is

ℎ̄𝜔⊥ ≫ 𝜌̃ |𝑐0 |, 𝜌̃ |𝑐1 |. (2.23)

Alternatively, we may write down the criterion in terms of the density healing length 𝜉 = (2𝑀𝜌̃𝑐0)−1/2

and the spin healing length 𝜉s = (2𝑀𝜌̃ |𝑐1 |)−1/2, by demanding that the oscillator length in the
transverse direction 𝑎⊥ =

√︃
ℎ̄

𝑀𝜔⊥
be much smaller than the relevant length scales

𝑎⊥ ≪ 𝜉, 𝜉𝑠. (2.24)

This effectively freezes the dynamics in the transverse direction. By further demanding that the
longitudinal trap frequency 𝜔∥ is much smaller than the transverse trap frequency 𝜔⊥, we achieve
an elongated trap geometry. When these conditions are satisfied, the wave-function in the trans-
verse directions can be treated as being in the ground state of the harmonic oscillator, i.e., takes
the form of a Gaussian. We can then perform the Gaussian integrals in the transverse directions
and obtain the GPE with modified density and spin couplings

𝑐1𝐷
0,1 =

𝑐0,1

2𝜋𝑎2
⊥

. (2.25)

2.2.5 bogoliubov theory

In the following, we give a brief introduction into the spin-1 Bogoliubov theory, i.e., a beyond-
mean-field theory encapsulating small field fluctuations, here in the absence of trapping poten-
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tials. Expanding the Hamiltonian (2.4) to second order in the fields at non-vanishing momenta
𝑘 ≠ 0, we obtain an eigenvalue problem known as the Bogoliubov de-Gennes equations. Solving
these equations, i.e., diagonalising the second-order Hamiltonian in momentum space, leads to
quasi-particle dispersion relations for the various degrees of freedom of the spin-1 Bose gas. In
particular, we concentrate on both the polar and easy-plane phase dispersions. We begin with the
polar phase Bogoliubov spectrum, for which we now give a short outline of its derivation. For a
more detailed discussion, see Ref. [126].

First, we write the wave functions of the magnetic components as

𝜓̂𝑚F =
1
√
Ω

∑︁
k

𝑎̂k,𝑚F𝑒
𝑖kx, (2.26)

where Ω denotes the volume of the system and the coefficients 𝑎̂k,𝑚F are the bosonic annihila-
tion operators of the 𝑚F-th magnetic sub-level with wave vector k. Demanding that most of the
particles are found in the condensate, i.e., in the |k| = 0 mode, we can write the fixed particle
number as a sum of creation and annihilation operators, where we consider the occupation of
higher modes to be very small

𝑁0 +
∑︁
k≠0

∑︁
𝑚F

𝑎̂
†
k,𝑚F

𝑎̂k,𝑚F = 𝑁 . (2.27)

We now define annihilation and creation operators of the spin degrees of freedom via superposi-
tions of the fundamental operators as

𝑎̂k, 𝑓𝑥 =
1
√

2
(
𝑎̂k,1 + 𝑎̂k,−1

)
, 𝑎̂k, 𝑓𝑦 =

i]
√

2
(
𝑎̂k,1 − 𝑎̂k,−1

)
, (2.28)

and plug these operators into the Hamiltonian, expanding up to second order

𝐻̂BdG =
Ω𝜌̃2𝑐0

2
+

∑︁
k≠0

[
(𝜖𝑘 + 𝜌̃𝑐0)𝑎̂†k,0𝑎̂k,0 +

𝜌̃𝑐0
2

(
𝑎̂
†
k,0𝑎̂

†
−k,0 + 𝑎̂k,0𝑎̂−k,0

)
(2.29)

+
∑︁

𝑓= 𝑓𝑥 , 𝑓𝑦

{
(𝜖𝑘 + 𝑞 + 𝜌̃𝑐1)𝑎̂†k, 𝑓 𝑎̂k, 𝑓 +

𝜌̃𝑐1
2

(
𝑎̂
†
k, 𝑓 𝑎̂−k, 𝑓 + 𝑎̂k, 𝑓 𝑎̂−k, 𝑓

)}]
,

where 𝜖𝑘 = ℎ̄2𝑘2/2𝑀 and 𝜌̃ = 𝑁/Ω is the homogeneous density. The obtained Hamiltonian can
now be diagonalised in momentum space by solving the Bogoliubov de-Gennes equation, thus
defining new quasi-particle annihilation and creation operators as

𝑏̂k,0 =

√︄
𝜖𝑘 + 𝜌̃𝑐0 +𝜔k,0

2𝜔k,0
𝑎̂k,0 +

√︄
𝜖𝑘 + 𝜌̃𝑐0 −𝜔k,0

2𝜔k,0
𝑎̂
†
−k,0 , (2.30)

𝑏̂k, 𝑓 =

√︄
𝜖𝑘 + 𝑞 + 𝜌̃𝑐1 +𝜔k, 𝑓

2𝜔k, 𝑓
𝑎̂k, 𝑓 +

√︄
𝜖𝑘 + 𝑞 + 𝜌̃𝑐1 −𝜔k, 𝑓

2𝜔k, 𝑓
𝑎̂
†
−k, 𝑓 , (2.31)
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with energy eigenvalues 𝜔k,0 and 𝜔k, 𝑓 . We then obtain the Bogoliubov de-Gennes Hamiltonian
in the polar phase

𝐻̂BdG = 𝐸0 +
∑︁
k≠0

[
𝜔k,0𝑏̂

†
k,0𝑏̂k,0 +𝜔k, 𝑓

(
𝑏̂
†
k, 𝑓𝑥

𝑏̂k, 𝑓𝑥 + 𝑏̂
†
k, 𝑓𝑦

𝑏̂k, 𝑓𝑦

)]
, (2.32)

with

𝜔k,0 =
√︁
𝜖k (𝜖k + 2𝜌̃𝑐0) , (2.33a)

𝜔k, 𝑓 =
√︁
(𝜖k + 𝑞) (𝜖k + 𝑞 + 2𝜌̃𝑐1) (2.33b)

and 𝐸0 is the ground state energy, which is regarded as a constant. We therefore obtain two dis-
persion relations, one for density phonons (2.33a) and one for transverse spin excitations (2.33b).
Notice that the quasi-particle spectrum corresponding to density phonons is gapless, and due
to 𝑐0 > 0 does not give rise to any dynamical instabilities as we quench 𝑞. In contrast to that,
the transverse spin spectrum is a gapped spectrum which can become imaginary when 𝑞 < 𝑞c,
thus indicating the phase transition between the polar phase and easy-plane phase. As we quench
the system through the phase transition, dynamical instabilities will arise due to the Bogoliubov
spectrum becoming imaginary, leading to unstable 𝑘 modes in the transverse spin which grow ex-
ponentially. Such instabilities are the seed for the emergent structure in the post-quench dynamics
of the system.

The easy-plane phase, on the other hand, shows a different dispersion relation. The spontaneous
breaking of SO(2) and U(1) symmetry leads to the appearance of two Goldstone modes and
a gapped mode. Solving the Bogoliubov de-Gennes equations for an easy-plane ferromagnetic
condensate, we find the following dispersion relations

𝜔𝑘,0 =
√︁
𝜖𝑘 (𝜖𝑘 + 𝑞) , (2.34a)

𝜔𝑘,±1 =

√︃
𝜖2
𝑘
+ (𝑐0 − 𝑐1) 𝜌̃𝜖𝑘 + 2( 𝜌̃ |𝑐1 |)2(1 − 𝑞2) ±Λ𝑘 , (2.34b)

Λ𝑘 =

√︃
[(𝑐0 + 3𝑐1) 𝜌̃𝜖𝑘 − 2( 𝜌̃ |𝑐1 |)2(1 − 𝑞)]2 + 4𝑐1(𝑐0 + 2𝑐1) 𝜌̃2𝑞2𝜖2

𝑘
. (2.34c)

The two Goldstone modes 𝜔𝑘,0 and 𝜔𝑘,−1 correspond to excitations in the Larmor phase 𝜑L and
global phase 𝜃, respectively, while the gapped mode corresponds to excitations in the transverse
spin length, in particular excitations of the spinor phase 𝜑s. Notice that density fluctuations may
also give rise to transverse spin length excitations, yet in the low-energy regime of an ultracold
Bose gas, they are rendered subdominant compared to excitations of the complex phases. A visual
representation of the excitations can be obtained from the transverse spin contribution in Eq. (2.9)
which takes the form of a champagne bottle type potential landscape [130]. There, the Larmor
phase, taking the role of a Goldstone mode, explores the valley of the transverse spin potential
landscape, and the spinor phase, acting as a massive Higgs-type mode, goes up and down the
valley.
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Figure 2.4: Spin and spin-nematic spheres. (Left) the spin-nematic sphere spanned by {𝐹⊥,𝑄⊥,𝑄0}. Mean-
field single-mode trajectories are plotted on the surface. Near the fixed point of the Hamilto-
nian flow, the trajectories (red) oscillate about the mean transverse spin length. In black, the
separatrix is shown. Beyond the separatrix, trajectories run across the sphere (purple). Such
trajectories allow, e.g., for interpolation solutions like phase kinks in the spinor phase 𝜑s
which describes the orientation angle in the 𝐹⊥-𝑄⊥ plane. (Right) The spin sphere spanned
by {𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧}. In the easy-plane phase, the dynamics lead to the filling of the ring in the 𝐹𝑥-
𝐹𝑦 plane due to the spontaneously broken SO(2) symmetry, with the orientation at each spatial
point, i.e., the Larmor phase 𝜑L, chosen spontaneously. The thickness of the ring shows that
𝐹𝑧 fluctuations are small as well as the spin length fluctuations are small.

2.2.6 su (2) subspaces

After having introduced the spin-1 gas in and beyond the mean field, we turn our the discussion to
the full set of spin-1 observables. A spin-1 state can be fully represented by the 𝔲(3) Lie algebra,
constructed by eight generators, where we have already introduced three of these generators as
the spin matrices (2.7). The remaining five are known as the nematic (or quadrupole) operators,
defined as

𝑄̂𝑖 𝑗 = 𝑓𝑖 𝑓 𝑗 + 𝑓 𝑗 𝑓𝑖 −
4
3
𝛿𝑖 𝑗 . (2.35)

A full characterisation of the density matrix of any state in the spinor system must include all
8 operators. Notice that in this section, we denote operators as Ô𝑖 and their mean-field value as
O = ψ†Ô𝑖ψ.

Three relevant quadrupole operators, which span several important SU(2) subspaces are given
by

𝑄̂𝑥𝑧 =
1
√

2

©­­­«
0 1 0

1 0 −1

0 −1 0

ª®®®¬, 𝑄̂𝑦𝑧 =
𝑖
√

2

©­­­«
0 −1 0

1 0 1

0 −1 0

ª®®®¬, 𝑄̂𝑧𝑧 =

©­­­«
2
3 0 0

0 − 4
3 0

0 0 2
3

ª®®®¬. (2.36)
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For convenience, we shift the 𝑄̂𝑧𝑧 operator by a constant to center it around the𝑚F = 0 component,
thus defining a new operator

𝑄̂0 = −1
3

13 − 𝑄̂𝑧𝑧 =

©­­­«
−1 0 0

0 1 0

0 0 −1

ª®®®¬ , 𝑄0 = 𝜌0 − 𝜌1 − 𝜌−1. (2.37)

We now further define the transverse spin and transverse quadrupole operators for a given Larmor
phase, i.e., the spin orientation in the 𝐹𝑥-𝐹𝑦 plane,

𝐹̂⊥ = cos(𝜑L) 𝑓𝑥 + sin(𝜑L) 𝑓𝑦 , (2.38)

𝑄̂⊥ = cos(𝜑L)𝑄̂𝑦𝑧 − sin(𝜑L)𝑄̂𝑥𝑧 . (2.39)

The so-defined three operators fulfil the SU(2) commutation relations under the assumption that
the probabilities of finding particles in the 𝑚F = ±1 states are equal, i.e., ⟨𝐹𝑧⟩ = 0 [131], which
is the case for the polar and easy-plane phases [126]. Hence, in addition to the spin commutation
relations for the spin matrices [ 𝑓𝑖 , 𝑓 𝑗] = 2i𝜖𝑖 𝑗𝑘 𝑓𝑘 , the following identities hold

[𝑄̂0, 𝑄̂⊥] = 2i𝐹̂⊥, [𝐹̂⊥, 𝑄̂0] = 2i𝑄̂⊥, [𝑄̂⊥, 𝐹̂⊥] = 2i𝑄̂0. (2.40)

With that, we obtain two SU(2) subspaces, which can be represented on their respective SO(3)
spheres. The visualisation of the spin state in this manner is helpful in understanding the processes
in the post-quench dynamics of the spinor gas. In the following, we give a short visual overview
of the states on these two spheres (see Fig. 2.4), while a detailed discussion is found in Chap. 4
and Chap. 5.

A state in the polar phase can be seen as a coherent distribution beginning on the north pole of
the spin-nematic sphere (left panel of Fig. 2.4), while the spin configuration is in the origin of the
spin sphere (right panel of Fig. 2.4), reflecting an SO(2) symmetric state. The main discussion
point in this thesis, though, is dynamics in the easy-plane phase, concentrating on the dynamics
of both the Larmor and spinor phases, each representing the orientation angle in the 𝐹𝑥-𝐹𝑦 and
𝐹⊥-𝑄⊥ planes, respectively. On the spin sphere in the easy plane, one finds a well defined 𝑞 depen-
dant transverse spin length with an arbitrarily chosen orientation in the 𝐹𝑥-𝐹𝑦 plane, reflecting
the spontaneously broken SO(2) symmetry. In particular, after a quench from the polar phase, the
field probability distribution results in a thin torus distribution, where 𝐹𝑧 excitations are strongly
suppressed, see purple distribution on the right panel of Fig. 2.4. To gain intuition as to the dy-
namics on the spin nematic sphere, we compute mean-field single-mode trajectories of a particle
subject to a Hamiltonian given by the spin-interaction term of Eq. (2.4), See Ref. [131, 132] for
more details. We obtain two possible fixed points, corresponding to the 𝑞-dependent transverse
spin length. Other than the fixed points, we find two kinds of possible trajectories on the sphere:
closed oscillations about the fixed points, shown as red lines in Fig. 2.4 and ’runaway’ open trajec-
tories shown as purple lines in Fig. 2.4 which traverse the sphere. Hence, in the easy-plane phase,
we expect the probability distribution of the field configuration to be centred around the fixed
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points, reflecting weak fluctuations of the spin length. We note though that the open trajectories
give rise to the possible formation of, e.g., phase defects in the spinor phase such as phase kinks
interpolating between the two fixed points.

2.3 topology
As often discussed in the context of pattern coarsening and phase-ordering kinetics, topological
excitations play a central role in the analysis of scaling phenomena. Often, the redistribution and
annihilation of these objects leads to the time evolution of a dominant length scale in the system,
typically identified as the mean defect distance [53, 72, 86, 87, 96]. In the following, we briefly
outline the concepts of topology and apply them to the spin-1 gas to obtain the possible topological
excitations in the system. Here, the symmetry, or rather the broken symmetry of the system plays
a major role. For a comprehensive discussion of the topic, we refer the reader to Ref. [133, 134].

2.3.1 homotopy theory

Homotopy groups are fundamental constructs in topology. Broadly speaking, they classify equiv-
alence classes of continuous maps from spheres into a topological space 𝑌 , often based at a point
in a space 𝑋 . Concretely, let 𝑋 and𝑌 be two manifolds without boundary. Two maps Ψ1 : 𝑋 ↦→ 𝑌 ,
Ψ2 : 𝑋 ↦→ 𝑌 are called homotopic if there exists a continuous map

Ψ̃ : 𝑋 × [0, 1] ↦→ 𝑌 , (2.41)

with a parameter 𝜏 in the interval [0, 1] such that Ψ̃|𝜏=0 = Ψ1 and Ψ̃|𝜏=1 = Ψ2. In other words,
two maps are said to be homotopic if they may be continuously deformed into each other. Such
a relation represents an equivalence relation, and hence a set of homotopic maps constitute an
homotopy class. Since most of the discussions in this thesis concentrate on a one-dimensional pe-
riodic system, we define the base manifold 𝑋 to be the unit circle S1. We further denote the set of
homotopy classes of based maps Ψ : S1 ↦→ 𝑌 by 𝜋1(𝑌 ), commonly referred to as the fundamental
homotopy group. The identity element is the constant map S1 ↦→ 𝑦0, where 𝑦0 a fixed base point
on the manifold𝑌 . If every loop in𝑌 can be continuously deformed to 𝑦0, then 𝜋1(𝑌 ) is said to be
homotopic to the identity element, and the group is trivial, which is denoted by 𝜋1(𝑌 ) = 0. A rel-
evant physical example of such a construction would be field configurations in the system, which
can be continuously mapped to the ground state of the system. Such field configurations may be
long-lived and highly non-linear, but they are not protected by any topological considerations.

This thesis mainly discusses broken SO(2) or U(1) symmetries. Hence, we now specify 𝑌 to
also be the unit circle S1, the manifold of the aforementioned Lie groups. One can show that the
fundamental homotopy group is given by

𝜋1(S1) = Z, (2.42)
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where each homotopy class is characterised by one integer also known as a winding number. For
completeness, we give a central result concerning possible homotopy classes:

𝜋𝑛 (𝑆𝑚) �


Z if 𝑚 = 𝑛 ≥ 1

0 if 𝑚 > 𝑛 ≥ 1.
(2.43)

Geometrically speaking, one is not able to wrap an𝑚 sphere by going over an 𝑛 sphere with 𝑛 < 𝑚.
The case of 𝑛 > 𝑚 is not trivial and should be investigated for each case by itself. This relation, for
example, shows the existence of spin vortices in the Larmor phase of a two-dimensional spin-1
Bose gas in the easy plane.

2.3.2 homotopy groups of the spin-1 bose gas

To find the possible homotopy groups of the spinor BEC, we must consider the so-called vacuum
manifold of each phase of interest. That is, the manifoldV spanned by the possible ground-state
field configurations. Mathematically speaking, the field configuration defines a map from the unit
sphere 𝑆𝑑−1, where 𝑑 is the spatial dimension, to the ground-state submanifoldV ⊂ R𝑛

𝜓 : 𝑆𝑑−1 ↦→ V. (2.44)

Hence, the homotopy class determining the topological nature of a field 𝜓 is given by 𝜓 ∈
𝜋𝑑−1(V).

Notice that given a single ground state, the manifold V is a single point, meaning that the
homotopy class is necessarily the trivial one. This is the case for a symmetric system (e.g., a
Bose gas above the critical temperature, or the spinor gas in the polar phase). If the symmetry
is spontaneously broken, the ground state manifold takes a non-trivial configuration, typically a
𝑛 − 1-sphere in many physical systems. Thus, the homotopy group is given by 𝜋𝑑−1(𝑆𝑛−1). This
heavily restricts the possible topological excitations in the system given its dimensionality and
possible ground states, as seen in Eq. (2.43).

The spin-1 gas quenched from the polar phase to the easy-plane phase results in a spontaneously
broken SO(2) symmetry in spin space. Furthermore, since we consider dynamics at zero temper-
ature, we find ourselves with a spontaneously broken U(1) symmetry, reflecting condensation.
Hence, the order parameter manifold, or manifold of broken symmetries, is

VEP = S1
𝑓𝑧
×𝑈 (1)𝜙, (2.45)

where the index 𝑓𝑧 indicates that the broken symmetry is w.r.t. the spin in 𝑧 direction, i.e. rotations
in the 𝐹𝑥-𝐹𝑦 plane, governed by the Larmor phase 𝜑L. Therefore, in one spatial dimension, we
find field configurations in the Larmor phase with non-trivial winding numbers, as given by the
homotopy group

𝜋1(VEP) = Z. (2.46)
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This winding number constitutes a topological charge, which can be derived by a conserved
topological current constructed from the spatial variation of the order parameter. For a one-
dimensional system, the topological current 𝑗 𝜇 associated with the phase field 𝜑L(𝑥) can be
defined as

𝑗 𝜇 =
1

2𝜋
𝜖 𝜇𝜈𝜕𝜈𝜑L, (2.47)

where 𝜖 𝜇𝜈 is the antisymmetric Levi-Civita tensor in two dimensions and 𝜇 and 𝜈 denote indices
going over time and space. The conservation law 𝜕𝜇 𝑗

𝜇 = 0 follows identically, reflecting that the
winding number is a topological invariant independent of the system’s dynamics. Integrating the
zeroth component of this current over space yields the winding number 𝑄w,

𝑄w =

𝐿∫
0

d𝑥 𝑗0 =
1

2𝜋

𝐿∫
0

d𝑥 𝜕𝑥𝜑L ∈ Z, (2.48)

where 𝐿 is the size of the system. Hence, 𝑄w counts how many times the phase 𝜑L winds around
the circle S1 as one moves along the spatial dimension. This integer classifies the distinct homo-
topy classes seen above and is robust against continuous deformations, serving as a fundamental
descriptor of topological excitations.

2.3.3 instantons

In the previous section, we discussed the conservation of topological charges. While this is gen-
erally true in equilibrium, this does not necessarily hold true for non-equilibrium physics. In
equilibrium, time is Wick-rotated into the imaginary plane, taking on a periodic nature. Hence,
the topology of a space-time manifold is fundamentally changed, as the time dimension is now a
standard Euclidean dimension.

In a Euclidean space-time manifold, topological defects named instantons exist, which, in imag-
inary time, interpolate between field configurations with different winding numbers. Due to the
Euclidean nature of the system, the instanton charge is conserved like any other topological defect
defining a winding number. In Minkowskian dynamics, time is a set with open boundary condi-
tions, changing the topology of the space-time manifold. As a consequence, if one would be able
to analytically continue the imaginary time instanton solution into real time, one would experi-
ence a change in winding number in the dynamics of the system, i.e., the topological charge is
not conserved in real time. In this thesis, we discuss the appearance of real-time instantons in the
post-quench dynamics of the spinor gas, as they appear as a result of rogue-wave excitations in the
Larmor phase. In the following, we briefly outline the concepts of instantons using an imaginary-
time Yang-Mills theory, i.e., pure gauge theory, to better acquaint ourselves with the notion of
this special topological defect.
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Consider a pure gauge field

𝐴𝜇 = −i𝑈 (x)𝜕𝜇𝑈†(x), (2.49)

where𝑈 (x) is an element of the Lie group of interest. We impose a condition that the pure gauge
𝑈 (x) reaches a constant value at spatial infinity to compactify the configuration space, allowing us
to consider the gauge transformations as maps between spheres, as we have previously discussed.
Consider the Euclidean Yang-Mills action

𝑆𝐸 =
1
4

∫
d𝑑𝑥𝐹𝜇𝜈𝐹

𝜇𝜈 , (2.50)

where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. Pure gauge fields as defined by Eq. (2.49) minimise the Yang-Mills
action and thus represent a vacuum state. A pure gauge field with winding number 𝑛 can be defined
by a pure gauge transformation 𝑈𝑛 (x), for example:

𝑈𝑛 (x) = exp
(
i𝜋𝑛

x

|x|T
)
, (2.51)

𝐴
(𝑛)
𝜇 = −i𝑈𝑛 (x)𝜕𝜇𝑈†𝑛 (x), (2.52)

where T are the generators of the gauge group. Gauge transformations with𝑈𝑛 (x) connect phys-
ically equivalent configurations via continuous transformations, thus equating the field config-
urations in the sense of an homotopy class. A continuous transformation from distinct vacuum
states 𝐴(𝑛)𝜇 to 𝐴

(𝑚)
𝜇 with 𝑚 ≠ 𝑛 without leaving the pure gauge is, in fact, not possible. Therefore,

any transformation interpolating between two such vacua must overcome an energy barrier, since
the Yang-Mills action is minimised by pure gauges. Such transformations can be interpreted as
tunnelling events between various possible pure gauge vacua of the system, separated by some
potential barrier. These are known, in imaginary time, as instantons. The instanton charge is given
by the change of the winding number of the gauge field coming and going to infinite imaginary
time 𝑄I = 𝑄w(𝜏 = ∞) −𝑄w(𝜏 = −∞) ∈ Z. Therefore, an instanton is simply a phase kink in
the imaginary time direction, which now acts as an additional spatial dimension. The direct ana-
lytical continuation into real-time is non-trivial and, in general, not always possible, hence little
is known about the dynamics of instantons in real time.

Returning to our discussion of the one-dimensional spin-1 gas, a pure SO(2) gauge field, which
is isomorphic to U(1), can be constructed using 𝑈 (𝑥) = exp(i𝜑L(𝑥)), which in turn gives rise
to the gauge field 𝐴𝜇 = 𝜕𝜇𝜑L, leading to winding numbers as in Eq. (2.48). An instanton in this
context is seen as the change of the winding number of the Larmor phase in (imaginary) time.

2.4 non-equilibrium quantum field
theory

In the previous sections, we have briefly introduced the physical system which we investigate
and discussed its topological properties. We mentioned the notion of symmetry and underlined
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its importance regarding a renormalisation flow or possible topological excitations in the sys-
tem. In the following, we would like to lay down the foundation for an analytical formulation
of non-equilibrium physics, which will be crucial for the derivation of symmetry identities akin
to Noether’s theorem. In Sect. 2.1, we mentioned the importance of the initial condition for the
far-from-equilibrium dynamics of any system. In other words, the symmetry on the level of the
observables is important for the possible subsequent dynamics. It is exactly this notion which we
would like to investigate further in chapters 6 and 7.

2.4.1 equal-time formulation

In non-equilibrium physics, one extends the notion of the Feynman path integral to take its values
on a so-called Schwinger-Keldysh contour, inspired by the unitary time evolution in the interac-
tion picture. There, the time evolution is seen as an evolution on a closed contour spanning from a
time 𝑡0 to a time 𝑡 and back, thus doubling the degrees of freedom in the system, as the field values
on each time branch must be considered separately [123]. In the Schwinger-Keldysh formalism,
correlation functions often include terms which are non-local in time. Such correlations, whilst
accessible numerically when one has access to the entire time-evolution of the fundamental fields,
are experimentally difficult to access. Many experiments in ultracold atoms make use of destruc-
tive measurements to extract data from their system, with the consequence that only snapshots in
time are available and the time series is only represented statistically.

It is hence more instructive to employ an equal-time formulation for non-equilibrium quantum
field theory, deriving correlations which are local in time [135]. This formulation is equivalent
to the Schwinger-Keldysh formalism and is based upon the time evolution of the density matrix,
or its Wigner functional [136]. In the following, we aim to give a brief overview of this approach
and use it to derive the Ward-Takahashi identities for a quantum field theory.

We begin by introducing the non-equilibrium equal-time generating functional

𝑍𝑡 [𝐽𝜑 , 𝐽𝜋] = Tr
{
𝜌̂𝑡 exp

[∫
𝑥

𝐽𝜑 (𝑥)𝜑(𝑥) + 𝐽𝜋 (𝑥)𝜋(𝑥)
]}

, (2.53)

where 𝐽𝜑 and 𝐽𝜋 are source terms, 𝜌̂𝑡 is the system’s density matrix at time 𝑡, and 𝜑 and 𝜋 are
canonically conjugate fields. This generating functional, in analogy to the Schwinger-Keldysh
formalism, allows for a functional integral representation

𝑍𝑡 [𝐽𝜑 , 𝐽𝜋] =
∫
D𝜑D𝜋W𝑡 [𝜑, 𝜋] exp

[∫
𝑥

𝐽𝜑 (𝑥)𝜑(𝑥) + 𝐽𝜋 (𝑥)𝜋(𝑥)
]
, (2.54)

where we define the Wigner functional as

W𝑡 [𝜑, 𝜋] =
∫
D 𝜑̃

〈
𝜑 − 𝜑̃

2

����𝜌̂𝑡 ����𝜑 + 𝜑̃

2

〉
exp

[
−i

∫
𝑥

𝜋(𝑥)𝜑̃(𝑥)
]
. (2.55)

The transformation of the density matrix to the Wigner functional is called a Weyl transformation,
or Weyl symbol. Generally, such a transformation connects quantum operators with a classical
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phase-space function, which then gives a natural functional integral form. From the discussion
above, we may conclude that knowledge of the time evolution of the Wigner functional, beginning
from some initial density matrix 𝜌̂0, allows one to access all the correlations of the system via the
generating functional (2.54). Unfortunately, as in many cases, the time-evolution of the Wigner
functional is a highly complex problem, forcing us to resort to approximation methods. One such
method, the truncated Wigner approximation, is discussed in Chap. 3 in more detail.

From the generating functional, one may derive arbitrary correlation functions by taking func-
tional derivatives w.r.t. the source terms, ultimately setting them to zero, e.g.

𝛿2𝑍𝑡

𝛿𝐽𝜑 (𝑥)𝛿𝐽𝜑 (𝑦)

����
𝐽𝜑 ,𝐽𝜋=0

= ⟨𝜑(𝑥)𝜑(𝑦)⟩ , (2.56)

which is equivalent to taking an expectation value as usual, Tr{ 𝜌̂𝑡𝜑(𝑥)𝜑(𝑦)}. We further define the
equal-time Schwinger functional, which is the generating functional for connected correlations

𝐸𝑡 [𝐽𝜑 , 𝐽𝜋] = log 𝑍𝑡 [𝐽𝜑 , 𝐽𝜋]. (2.57)

Finally, we define the one-particle irreducible (1PI) effective action via a Legendre transform as

Γ𝑡 [Π,Φ] = sup
𝐽𝜑 ,𝐽𝜋

[∫
𝑥

𝐽𝜑Φ(𝑥) + 𝐽𝜋Π(𝑥) − 𝐸𝑡 [𝐽𝜑 , 𝐽𝜋]
]

, (2.58)

where Φ and Π are the expectation values of the fundamental fields in the presence of the sources
𝐽𝜑 and 𝐽𝜋 . Equations (2.57) and (2.58) define the quantum equations of motion as

𝛿Γ𝑡 [Φ]
𝛿Φ

����
Φ=Φ𝐽

= 𝐽𝜑 (𝑥),
𝛿𝐸𝑡 [𝐽]
𝛿𝐽 (𝑥)

����
𝐽=𝐽𝜑

= Φ(𝑥). (2.59)

2.4.2 symmetry transformations

The celebrated Noether’s theorem states that each continuous symmetry of a Hamiltonian or La-
grangian, induces a conservation law, each with its own conserved current and charge. Broadly
speaking, the quantum field theory analog of these conservation laws are known as the Ward-
Takahashi identities. They are derived as identities, or restrictions on the level of correlation
functions calculated from the action of the quantum field theory in question. In contrast to the
derivation of such identities in equilibrium field theory, non-equilibrium dynamics contain con-
tributions stemming from the initial condition. In order to understand the consequences of these
contributions, we consider an infinitesimal continuous transformation given by:

𝜑̃𝑎 = 𝜑𝑎 + i𝜖𝑘F 𝑎
𝑘 , 𝜋̃𝑎 = 𝜋𝑎 + i𝜖𝑘P𝑎

𝑘 . (2.60)

with F 𝑎
𝑘

and P𝑎
𝑘

being the generators of the transformation group and the index 𝑎 represents
the components of the fields. Plugging the transformation into Eq. (2.54), we see that the source
terms transform as 𝐽𝑎𝜑

𝑎 → 𝐽𝑎 (𝜑𝑎 + i𝜖𝑘F 𝑎
𝑘
) and that the Wigner functional must also obtain
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some change which is not further specified. Assuming the functional integral measure does not
change under the symmetry transformation, we can pull the logarithm of the Wigner functional
into the exponential and expand everything to first order in 𝜖𝑘 . We then use that 𝜖𝑘 is arbitrary
and obtain the non-equilibrium equal-time Ward-Takahashi identities〈[

𝛿 logW𝑡

𝛿𝜑(𝑥) + 𝐽
𝑎
𝜑 (𝑥)

]
F 𝑎
𝑘 [𝑥;Ω] +

[
𝛿 logW𝑡

𝛿𝜋(𝑥) + 𝐽
𝑎
𝜋 (𝑥)

]
P𝑎
𝑘 [𝑥;Ω]

〉
W𝑡 ,𝐽𝜑 ,𝐽𝜋

= 0, (2.61)

where we have introduced the field Ω = (𝜑1, ..., 𝜑𝑛, 𝜋1, ..., 𝜋𝑛) and the average is to be understood
with respect to the functional integral in the presence of the sources 𝐽𝑖 and Wigner functional.
Note that Eq. (2.61) is equivalent to the Ward-Takahashi identities one could derive from the
Schwinger-Keldysh formalism, where they are derived from the conserved Noether current of the
action.

At this stage, the question arises as to the distinction between the symmetry of the system, and
the symmetry of the initial density matrix, which in turn gives rise to the symmetry of the observ-
ables. There are several cases to consider, the first being where both the initial condition and the
system respect the same symmetry. In this case, it is possible to show that the unitary time evo-
lution of the system will never break the initial symmetry of the Wigner functional [125]. Hence,
the change of the Wigner functional in Eq. (2.61) will vanish at all times, and one obtains a set of
symmetry identities connecting correlation functions. Plugging the quantum equations of motion
Eq. (2.59) into Eq. (2.61), allows us to obtain arbitrary orders of correlation function identities
from the derivatives of the quantum effective action Γ[Ω] or of the Schwinger functional 𝐸𝑡 [𝐽].
Such relations allow for the construction of symmetry witnesses, which quantify the symmetry
content of a dynamical system.

Such witnesses are useful for the interesting case where the initial density matrix, i.e., the ini-
tial condition, explicitly breaks the symmetry of the Hamiltonian. In this case, the symmetry will
never be truly restored, as shown rigorously in [125]. Yet, the symmetry can be approximately
restored during the time evolution of the Wigner functional, a fact which would be represented by
how well the symmetry identities are fulfilled. Such questions may seem abstract, yet the impor-
tance of symmetry is fundamental: it tells us about the possible excitations in the system and hints
at the underlying effective theory governing the dynamics. The latter is especially relevant when
trying to identify the dominant mechanisms and possible universality classes of a system far from
equilibrium. Such an underlying effective theory, connected to the symmetry of the dynamics as
well as the system itself, would in principle be able to define a non-equilibrium universality class.
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Half algorithm, half deity
Glitches in the code or gaps in a strange dream

Tell me you guessed my future and it mapped onto your fantasy

– Vessel, ”Ascenionism”

In the following chapter, we briefly overview the numerical methods used in the simulations
done for this thesis. These methods are an essential tool for the study of systems that are analyti-
cally inaccessible far from equilibrium. We begin by introducing a pseudo-spectral method used
for solving the spin-1 GPE in Sect. 3.1. There, we introduce the discretisation of the spin-1 field
on a one-dimensional lattice and then discuss the splitting scheme and integration step used in
the course of this thesis. Then, in Sect. 3.2 we very briefly present a second solver, the leapfrog
algorithm, used to solve the double-sine Gordon model. Then, we outline the truncated Wigner
approach to obtain beyond-mean-field results from classical equations of motion in Sect. 3.3.
Finally, we introduce and briefly dive into the main optimisation tool used in this thesis: mass
parallelisation on graphics processing units in Sect. 3.4.

3.1 solving the spin-1 gpe
In order to numerically solve the spin-1 GPE, we employ a pseudo-spectral splitting scheme, also
known as the split-step-Fourier method. In the following, we introduce the grid discretisation in
one dimension and detail the integration step, over which we iterate.

3.1.1 gpe on a discrete one-dimensional grid

The equations of motion (2.14) must first be discretised in order to be solved numerically. In our
one-dimensional description of the GPE, the wave functions ψ(𝑥) take their values on a discrete
grid of 𝑁g grid points. We define the grid spacing as Δ𝑥𝑔 = 𝐿/𝑁g, where 𝐿 is the physical
size of the system. Accordingly, the time scale is given by 𝜔𝑔 = ℎ̄/𝑀Δ𝑥2

𝑔. We hence define the
dimensionless numerical quantities as

𝑥 =
𝑥

Δ𝑥𝑔
, 𝑡 = 𝜔𝑔𝑡, 𝑐0,1 =

𝑐0,1

ℎ̄𝜔𝑔Δ𝑥𝑔
, 𝜔̄∥ ,⊥ =

𝜔∥ ,⊥
𝜔

, 𝑞 =
𝑞

ℎ̄𝜔
, 𝜓̄𝑚F =

√︁
Δ𝑥𝑔𝜓𝑚F . (3.1)

For the rest of this thesis, we will omit the bars and discuss quantities in their numerical units,
unless specified otherwise.

31
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We utilise a sinusoidal discretisation of momentum space, in order to obtain an implementation
which is equivalent to finite differences methods. To do so, we compute the discrete numerical
Laplacian via a discrete Fourier transform (DFT). Decomposing the wave function into plane
waves with wave number 𝑘 , we obtain the Laplacian for 𝜓𝑚F (𝑥 𝑗) = 𝜓

𝑗
𝑚F as

𝑘2𝜓
𝑗
𝑚F = Δ𝜓

𝑗
𝑚F =

𝜓
𝑗+1
𝑚F − 2𝜓 𝑗

𝑚F + 𝜓
𝑗−1
𝑚F

Δ𝑥2
𝑔

. (3.2)

Upon inserting the wave expansion for the wave function in Eq. (3.2), we obtain the lattice mo-
menta

𝑘𝑛 =
2

Δ𝑥g
sin

(
𝜋𝑛

𝑁g

)
, (3.3)

where 𝑛 ∈ [−𝑁g/2 + 1, 𝑁g/2]. This definition leads to a denser momentum spacing in the ultra-
violet (UV) and a nearly linear spacing in the infra-red (IR).

3.1.2 split-step fourier

In this section, we give a brief outline of the integration scheme used to propagate all simulations
done with the spin-1 Bose gas. For a more detailed discussion, we refer the reader to [137, 138].
Generally, a Schrödinger-type time evolution following a classical equation of motion of the form

i
𝜕𝜓

𝜕𝑡
= H𝜓, (3.4)

with some differential operator H , can be decomposed into the kinetic part D containing the
differential operator and a part containing the non-linear terms N

H = D +N . (3.5)

The formal solution of the Schrödinger-type equation is given by the application of the time-
evolution operator𝑈 (𝑡) = exp[−iH 𝑡] to the initial condition. We consider a single small discrete
time step Δ𝑡, where the time evolution takes the form

𝜓(𝑥, 𝑡 + Δ𝑡) = 𝑒−iΔ𝑡H𝜓(𝑥, 𝑡) = 𝑒−iΔ𝑡 (D+N)𝜓(𝑥, 𝑡). (3.6)

The Matrices D and N are, in general, non-commuting operators. Hence, the time evolution
operator is a numerically costly matrix multiplication, on the order of 𝑁2

g . The efficiency of the
algorithm comes from taking advantage of the spectral properties of the operator. If one is able to
split the operator into two operators, one containing the kinetic part and the other containing the
parts in position space, one is able to diagonalise the kinetic operator by Fourier transforming the
expression. This reduces the numerical complexity to that of simple scalar multiplication on the
order of 𝑁g. To achieve such a construction, one splits the exponential operator using the Baker-
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Campbell-Hausdorff formula, neglecting the second order term, thus considering an error of the
order O(Δ𝑡2),

𝜓(𝑥, 𝑡 + Δ𝑡) =
(
𝑒−iΔ𝑡D

) (
𝑒−iΔ𝑡N

)
𝜓(𝑥, 𝑡) + O(Δ𝑡2). (3.7)

The kinetic part D in Fourier space takes the simple form D = 𝑘2

2 in the unitless description.
We now turn to applying the above method to the spin-1 Bose gas. The spin-1 Gross-Pitaevskii

equations are given by

𝑖ℎ̄𝜕𝑡𝜓1 =

[
− ℎ̄2

2𝑚
∇2 +𝑉 (𝑥) + 𝑞 + (𝑐0 + 𝑐1) ( |𝜓1 |2 + |𝜓0 |2)

+ (𝑐0 − 𝑐1) |𝜓−1 |2
]
𝜓1 + 𝑐1𝜓

∗
−1𝜓

2
0, (3.8)

𝑖ℎ̄𝜕𝑡𝜓0 =

[
− ℎ̄2

2𝑚
∇2 +𝑉 (𝑥) + (𝑐0 + 𝑐1) ( |𝜓1 |2 + |𝜓−1 |2)

+ 𝑐0 |𝜓0 |2
]
𝜓0 + 2𝑐1𝜓

∗
0𝜓−1𝜓1, (3.9)

𝑖ℎ̄𝜕𝑡𝜓−1 =

[
− ℎ̄2

2𝑚
∇2 +𝑉 (𝑥) + 𝑞 + (𝑐0 + 𝑐1) ( |𝜓−1 |2 + |𝜓0 |2)

+ (𝑐0 − 𝑐1) |𝜓1 |2
]
𝜓−1 + 𝑐1𝜓

∗
1𝜓

2
0. (3.10)

Promoting Eq. (3.4) to a matrix equation generalises the aforementioned arguments also to a set
of differential equations such as the spin-1 GPE. The non-linear part of the spin-1 GPE contains
coupling between the various components, making the propagation in real space non-trivial. The
propagation of the kinetic term, on the other hand, remains the same. We employ the following
splitting scheme for the spin-1 GPE:

i𝜕𝑡𝜓𝑚F (𝑥, 𝑡) = −1
2
∇2𝜓𝑚F (𝑥, 𝑡), (3.11a)

i𝜕𝑡𝜓𝑚F (𝑥, 𝑡) =
[
𝑉 (𝑥) + 𝑓𝑚F ( |𝜓0 |2, |𝜓1 |2, |𝜓−1 |2)

]
𝜓𝑚F (𝑥, 𝑡), (3.11b)

i𝜕𝑡ψ(𝑥, 𝑡) = 𝑆[ψ(𝑥, 𝑡)]ψ(𝑥, 𝑡), (3.11c)

where Eq. (3.11a) is the kinetic part, 𝑓𝑚F in Eq. (3.11b) is a function containing all the terms
which do not change the single-component densities and Eq. (3.11c) contains the spin-changing
collisions, denoted by the matrix 𝑆[ψ(𝑥, 𝑡)].

The integration of the kinetic part ist straight forward in Fourier space. Hence, using fast Fourier
transforms (FFTs), we may transform the field to momentum space and propagate it with a mul-
tiplicative factor, transforming it back after the kinetic integration step

𝜓𝑚F (𝑥 𝑗 , 𝑡𝑛+1) = ℱ
−1

{
𝑒
−iΔ𝑡 𝑘2

𝑗
/2
ℱ

[
𝜓𝑚F (𝑥 𝑗 , 𝑡𝑛)

]}
, (3.12)
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where ℱ [· · · ] denotes a Fourier transform. We then integrate a half-step in the ’diagonal’ part

𝜓𝑚F (𝑥 𝑗 , 𝑡𝑛+1) = 𝑒−i[𝑉 (𝑥 𝑗 )+ 𝑓𝑚F ( |𝜓0 (𝑥 𝑗 ,𝑡𝑛 ) |2, |𝜓1 (𝑥 𝑗 ,𝑡𝑛 ) |2, |𝜓−1 (𝑥 𝑗 ,𝑡𝑛 ) |2 )]Δ𝑡/2𝜓𝑚F (𝑥 𝑗 , 𝑡𝑛). (3.13)

We now turn to the spin-changing collisions part, which in matrix form reads

𝑖𝜕𝑡ψ(𝑥, 𝑡) = 𝑆ψ(𝑥, 𝑡) = 𝑐1

©­­­«
0 𝜓∗−1𝜓0 0

𝜓−1𝜓
∗
0 0 𝜓∗0𝜓1

0 𝜓0𝜓
∗
1 0

ª®®®¬ψ(𝑥, 𝑡), (3.14)

where we have omitted the spatial and time dependence inside the matrix for brevity. For the
integration of the off-diagonal part, we neglect that the matrix 𝑆(𝑥, 𝑡) does not commute with
itself at various time steps. This leads to the approximation of a Dyson ordered time series using
a simple Euler step to approximate the integral

ψ(𝑥 𝑗 , 𝑡𝑛+1) ≈ exp
{
−i

∫ 𝑡𝑛+1

𝑡𝑛

d𝑡 𝑆[ψ(𝑥 𝑗 , 𝑡)]
}
ψ(𝑥 𝑗 , 𝑡𝑛)

≈ exp
{
− i

2
(
𝑆[ψ(𝑥 𝑗 , 𝑡𝑛)] + 𝑆[ψ(𝑥 𝑗 , 𝑡𝑛+1)]

)
Δ𝑡

}
ψ(𝑥 𝑗 , 𝑡𝑛)

≈ exp
[
−i

1
2

(
𝑆[ψ(𝑥 𝑗 , 𝑡𝑛)] + 𝑆[ψ̃(𝑥 𝑗)]Δ𝑡

) ]
𝜓(𝑥 𝑗 , 𝑡𝑛), (3.15)

with ψ̃ = ψ − i𝑆ψ. We note that this approximation constrains the accuracy of the algorithm to
remain on the order of O(Δ𝑡2), even though we are using a three-way splitting scheme, which
usually would give accuracy up to order O(Δ𝑡3). The propagation thus takes the form of a 3 × 3
matrix multiplication

ψ(𝑥 𝑗 , 𝑡𝑛+1) = 𝑒i𝑐1ΛΔ𝑡ψ(𝑥 𝑗 , 𝑡𝑛), (3.16)

Λ =
1
2

©­­­«
0

[
𝜓∗−1𝜓0 + 𝜓̃∗−1𝜓̃0

]
0[

𝜓∗0𝜓−1 + 𝜓̃∗0𝜓̃−1
]

0
[
𝜓∗0𝜓1 + 𝜓̃∗0𝜓̃1

]
0

[
𝜓∗1𝜓0 + 𝜓̃∗1𝜓̃0

]
0

ª®®®¬. (3.17)

We define 𝑎 = 1
2
[
𝜓∗−1𝜓0 + 𝜓̃∗−1𝜓̃0

]
, 𝑏 = 1

2
[
𝜓∗0𝜓1 + 𝜓̃∗0𝜓̃1

]
and 𝜆 =

√︃
|𝑎 |2 + |𝑏 |2 and obtain the

integration step of the off-diagonal part (3.11c)

ψ(𝑥, 𝑡𝑛+1) =
©­­­«
|𝑎 |2 cos(𝜆𝑐1Δ𝑡 )+|𝑏 |2

𝜆2 −i𝑎 sin(𝜆𝑐1Δ𝑡 )
𝜆

𝑎𝑏
cos(𝜆𝑐1Δ𝑡 )−1

𝜆2

−i𝑎∗ sin(𝜆𝑐1Δ𝑡 )
𝜆

cos(𝜆𝑐1Δ𝑡) −i𝑏 sin(𝜆𝑐1Δ𝑡 )
𝜆

𝑎∗𝑏∗ cos(𝜆𝑐1Δ𝑡 )−1
𝜆2 −i𝑏∗ sin(𝜆𝑐1Δ𝑡 )

𝜆

|𝑎 |2+|𝑏 |2 cos(𝜆𝑐1Δ𝑡 )
𝜆2

ª®®®¬ψ(𝑥, 𝑡𝑛). (3.18)

Upon performing this step, we propagate an additional half-step in the diagonal part in real
space (3.13).
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3.2 solving the double sine-gordon
equation

In Chap. 5, we simulate the dynamics of the double sine-Gordon model obeying the equations of
motion

¥𝜑 = 𝑐2
sΔ𝜑 − 𝜆 sin(𝜑) + 𝜆s sin(2𝜑). (3.19)

In this case, we must numerically integrate a second-order partial differential equation. A broad
range of well-established integrators exist for the solution of such differential equations, with
various degrees of accuracy. It might seem even cynical then, that we would choose the simple
leapfrog algorithm, yet its ease of implementation, efficiency, accuracy and symplectic nature are
of great advantage.

The leapfrog algorithm is a second order symplectic integrator. Its symplectic nature is espe-
cially practical when dealing with Hamiltonian systems such as Eq. (3.19), as it obeys the same
mathematical structure. As a consequence, the algorithm intrinsically conserves the total energy
of the system. We note that, even though well-known algorithms such as the celebrated fourth
order Runge-Kutta (RK4) algorithm have a higher accuracy, they, in general, lead to a loss of en-
ergy with each integration step, which is undesirable when dealing with closed quantum systems.
Furthermore, being fourth order, the computation costs of the RK4 algorithm are significantly
higher than those of the leapfrog algorithm. Since we here simulate dynamics for very long times,
these computational costs are an important factor.

Before we continue to the integration scheme, we first discretise the field on a grid with a grid
spacing of 1, 𝜑(𝑥) = 𝜑(𝑥 𝑗) ≡ 𝜑 𝑗 . Then, we make use of simple finite differences methods to
discretise the spatial derivative term for one and two dimensions. The Laplacian hence reads

1D: Δ𝜑 = 𝜑 𝑗+1 + 𝜑 𝑗−1 − 2𝜑 𝑗 , (3.20a)

2D: Δ𝜑 = 𝜑 𝑗−1,ℓ + 𝜑 𝑗+1,ℓ + 𝜑 𝑗,ℓ−1 + 𝜑 𝑗,ℓ+1 − 4𝜑 𝑗,ℓ . (3.20b)

The concept of the integration scheme is based on simple Euler half-time steps, alternating be-
tween the field 𝜑(𝑥 𝑗 , 𝑡𝑛) ≡ 𝜑

𝑗
𝑛 and its conjugate momentum ¤𝜑(𝑥 𝑗 , 𝑡𝑛) ≡ ¤𝜑 𝑗

𝑛. A single integration
step of the discretised fields takes the form

¤𝜑 𝑗

𝑛+1/2 = ¤𝜑 𝑗

𝑛−1/2 +
[
−𝜆 sin

(
𝜑
𝑗
𝑛

)
+ 𝜆s sin

(
2𝜑 𝑗

𝑛

)
+ Δ𝜑𝑛

]
Δ𝑡 , (3.21)

𝜑
𝑗

𝑛+1 = 𝜑
𝑗
𝑛 + ¤𝜑 𝑗

𝑛+1/2 · Δ𝑡. (3.22)

This integration scheme gives an error of the order O(Δ𝑡2), and when parallelised on graphics pro-
cessing units, especially utilising shared block memory, the efficiency is increased substantially
(see Sect. 3.4.2).
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3.3 truncated wigner approximation
In our discussion of far-from-equilibrium functional methods in Sect. 2.4, we used the Wigner
functional to compute the equal-time correlation functions of the dynamical system. Therefore,
knowledge of the Wigner functional at time 𝑡 encapsulates the full state of the system at that
time and gives access to observables. The time evolution of the Wigner functional is governed by
the so-called Moyal equation, a generalisation of the famous von Neumann equation. The Moyal
equation is, in general, not analytically solvable and one must resort to approximation methods
to be able to recover beyond-mean-field results for closed quantum many-body systems. In the
following, we briefly outline the concepts and approximations considered in the truncated Wigner
method for the numerical simulation of quantum many-body systems. For a comprehensive review
of the subject, we refer the reader to [139].

We begin by considering the equations of motion for the quantum mechanical density matrix,
given by the von Neumann equation

iℎ̄
𝜕 𝜌̂

𝜕𝑡
=

[
𝐻̂, 𝜌̂

]
. (3.23)

Applying the Weyl transform to this equation yields the equations of motion for the Wigner func-
tional (2.55)

iℎ̄
𝜕W
𝜕𝑡

= 2𝐻𝑊 sinh
[
Λ

2

]
W, (3.24)

where 𝐻𝑊 is the Weyl symbol of the Hamiltonian of the system and we defined

Λ =
∑︁
𝑗

←−−−
𝜕

𝜕𝜓 𝑗

←−−−
𝜕

𝜕𝜓∗
𝑗

−
−−−→
𝜕

𝜕𝜓 𝑗

−−−→
𝜕

𝜕𝜓∗
𝑗

, (3.25)

where the arrows above the differential operators indicate the direction on which they operate. In
order to solve this equation, we perform a series expansion of the hyperbolic sine in Λ, truncating
the series at some relevant order. For large occupancies, i.e., large modulus of the wave function,
one can show that it is sufficient to truncate the series at leading order [139]. Thus, one arrives,
at leading order, at the classical Liouville equation

iℎ̄
𝜕W
𝜕𝑡

= {𝐻𝑊 ,W}𝑃, (3.26)

where {·, ·}𝑃 denotes the Poisson brackets. We note that in the case of non-linear Schrödinger
equations with quartic interactions, such as the spin-1 model, the series would be exact at third
order already, since all higher orders vanish after taking more than three derivatives of the field.
On the other hand, this is not the case for the sine-Gordon model where the non-linearity persists
in all orders due to the cosine potential.
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The Liouville equation, as it stands, may be solved by the method of characteristics, bringing
the equations of motion of the Wigner function into a familiar Schrödinger-type time evolution
for the fundamental field

iℎ̄
𝜕𝜓

𝜕𝑡
=

𝜕𝐻𝑊

𝜕𝜓∗
. (3.27)

Hence, rather than time-evolving the full Wigner function, we evolve an ensemble of mean-field
classical field configurations in time according to Eq. (3.10), with added quantum noise which is
drawn from the Wigner distribution in the initial condition. Therefore, Eq. (3.27) traces the path
of a single such realisation of the fields. In the relevant case of a Bose-Einstein condensate, the
initial state is given by a coherent state, where the Wigner function is a positive definite probability
distribution function, taking the form of a Gaussian distribution with a variance of half a particle.
The quantum dynamics beyond the mean field are then recovered by considering observables after
averaging over many independent truncated Wigner realisations.

3.4 parallelisation on graphics
processing units

All simulations discussed in this thesis have been performed using high-level parallelisation on
graphics processing units (GPUs). In the following section, I would like to very briefly introduce
fundamental concepts related to GPU computing, highlighting their strengths, limitations and
key characteristics. This overview is not intended to be an exhaustive or technical treatment of
the hardware, but rather a concise introduction to the key ideas we exploit in our research. While
this section is not directly tied to the physical discussion in this thesis, the technical developments
presented in this section played a crucial role in enabling the scale of the simulations presented.
The achieved performance gains are the result of constant optimisation efforts carried out over
several years, beginning from C.-M. Schmied’s work [140]. I chose to include this aspect to high-
light the considerations that went into achieving the current performance. Such aspects, while
often behind the scenes, were essential to supporting the scientific results.

3.4.1 central processing units

First, in order to understand the advantages of computing on a GPU, we must consider the basic
architecture of a central processing unit (CPU). The CPU, also called the host in the context
of GPU accelerated computing, is the primary component responsible for executing instructions
within a computer. Its architecture is designed to handle a variety of tasks with a very strong
single-threaded performance. Plainly speaking, the CPU excels at executing a single task quickly
and sequentially, rather than many small tasks in parallel.

A CPU consists of one or more processing cores, each capable of executing instructions in-
dependently and sharing a unified memory space for instructions and data. Each core contains
an arithmetic logic unit (ALU) for executing mathematical operations (such as addition, multi-
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Figure 3.1: Moore’s law, stating that the number of microtransistors doubles every two years, and with it
the computation power of CPUs (blue dots) doubles every eighteen months. In recent years,
difficulties in sustaining Moore’s law on CPUs has led to the focus shifting towards GPUs. The
appearance of GPU powered computing is said to continue Moore’s law (green dots), hence
dubbing this development colloquially as Huang’s law, after Nvidia CEO at the time of writing,
Jensen Huang. Figure is taken and adapted from [141]

plication and comparison), control logic for instruction sequencing and branching, and a set of
so-called registers, i.e. small and fast memory locations, allowing for very fast storage and fetch-
ing of variables and hence the rapid execution of arithmetic operations.

A central feature of CPU performance lies in its memory hierarchy. Modern CPUs include
several layers of cache, typically called L1, L2, and L3 caches. The cache hierarchy sees them to
be progressively larger but slower, to compensate for the high latency of accessing main memory
(RAM). This hierarchy is not exclusive to the CPU, also a GPU makes use of a similar hierarchy
and the concept remains the same: The memory hierarchy can be likened to a storage system with
varying access speeds. Accessing data from RAM is relatively slow, comparable to retrieving an
item from a distant storage room in a large facility. In contrast, L1 cache operates like a small,
back-room storage area, readily accessible for frequently used data. Registers represent the fastest
form of storage, analogous to tools immediately available to a worker on their tool-belt, requiring
minimal effort to access, but cannot contain much data.

While CPUs are particularly well-suited for serial calculations involving strong dependencies
between computation steps, their sequential nature poses a certain drawback. Although modern
CPUs support multi-threading and can execute multiple tasks in parallel (e.g., using OpenMP
or MPI across cores or nodes), the total number of cores is still relatively limited, often ranging
from 4 to 64 in typical research hardware. This makes the CPU ideal for simulation tasks that are
either too irregular or too sequential for massive parallelisation but still demand high precision
and stability. This drawback, stemming from physical and architectural limitations, has made it
increasingly difficult to sustain the famous Moore’s Law, which states that the number of tran-
sistors on a chip doubles approximately every two years, implying a near doubling of processing
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砀㈀

Figure 3.2: Architecture of a Nvidia A100 GPU streaming multiprocessor. The FP64 cores can access a
small register for fast storage. Cores within the SMs that are assigned to a block gain access to
a shared memory cache for optimised memory access. Figure taken and adapted from [144].

power every eighteen months [142, 143]. In recent years, attention has shifted toward the use of
GPUs, which offer massive throughput via massive parallelism, thereby continuing the exponen-
tial growth in performance, as illustrated in Fig. 3.1. This trend has been colloquially referred
to as Huang’s Law, named after Nvidia CEO, at the time of writing, Jensen Huang. Accelerated
computing on GPUs has attracted significant attention, driven by advances in machine learning
and artificial intelligence, which have in turn fuelled the development of increasingly powerful
GPU architectures.

3.4.2 graphics processing units

While the CPU excels at performing complex, sequential computations with high flexibility, the
GPU, also called the device, is designed around the fundamentally different principle of massive
parallelism. This architectural difference makes GPUs especially well-suited for physics simula-
tions involving large datasets and operations that can be performed independently across many
elements, such as solving the spin-1 GPE on a spatial lattice using the truncated Wigner approx-
imation, as done in this thesis. Here, the parallelisation occurs on two levels: First, the use of
pseudo-spectral methods enables parallel execution of local, independent operations across the
spatial grid. Second, the truncated Wigner realisations are independent of one another, allowing
them to be computed in parallel as well.
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Figure 3.3: Memory hierarchy of a GPU. Multiple SMs, each containing their own shared memory perform
the tasks, they can access a L2 cache to exchange information if needed, though this is rather
small. Further memory can be accessed via the global device memory.

A GPU consists of a vast array (∼ 103) of smaller processing cores, organised into groups called
streaming multiprocessors (SMs) (See Fig. 3.2). Each core is individually much less powerful than
a CPU core in the sense of, e.g., processing power of double precision floating point operations
(FP64), but due to their high degree of parallelism, they can achieve much higher throughput when
performing the same operation over many data points, thus massively accelerating the program
executed.

GPUs operate using a hierarchical model of parallel execution, built around the concepts of
threads, blocks, and grids: A thread is the smallest unit of execution and performs the operations
for a single data element (e.g., computing the forward integration step on a single spatial point via
multiplication). Threads are grouped into blocks, which can share fast on-chip shared memory
and can synchronise with each other. Blocks are organised into a grid, allowing for the execution
of thousands of threads in parallel.

One of the key advantages of this type of block and grid architecture is how memory is han-
dled. While CPUs rely heavily on the aforementioned large, hierarchical caches to reduce latency
for memory access, GPUs are designed for high-bandwidth memory access. They benefit from
efficient memory sharing, where threads read or write adjacent data in memory at the same time.
The most prominent advantage comes from the so-called shared memory within a block. Shared
memory resides on-chip and is shared among all threads in a thread block. It is much faster than
global memory and enables data exchange between threads in the same block. In the context of
our simulations, for example, using the leapfrog algorithm (see Sect. 3.2), shared memory is es-
pecially valuable for reusing data across threads, such as storing portions of a grid that multiple
threads need to access. This can dramatically reduce the number of slow global memory accesses
in finite difference methods, where a block of threads can load neighbouring cell values (as seen
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in Eq. (3.20)) into shared memory once, then perform multiple operations on that data locally,
minimising expensive reads from global memory. However, shared memory is relatively small
(typically 48–100 KB per block on modern GPUs at the time of writing) and must be managed
carefully. It is explicitly controlled by the user, unlike caches, which are managed automatically
by hardware.

Furthermore, each thread also has access to a small number of registers, which are the fastest
form of memory but are private to the thread and extremely limited in size. These are used for
storing temporary values during execution, much like registers in CPUs. Lastly, at the top level,
a GPU provides global memory (DRAM), which is large (∼ 80GB for the Nvidia A100 used
in simulating the data for this thesis), but relatively slow to access compared to other types of
on-chip memory.

One must keep in mind, however, that with all the great advantages of mass parallelisation and
incredible speed due to such memory management, this model also imposes some limitations.
GPUs are less efficient at handling tasks with heavy control flow, irregular memory access, or
deep interdependencies between operations, areas where the CPUs offer much better performance.
As such, optimal use of a GPU often involves reformulating simulation problems to emphasise
independent operations. An especially helpful analogy is to compare the use of a GPU to that
of an elevator: while it can transport ten people to the upper floors efficiently, it does not make
the trip any faster for just one person. Many integrators of partial differential equations offer an
optimal factorisation of the computational problem. In our case, the split-step Fourier method
makes heavy use of fast fourier transforms which are a perfect example of an algorithm that can
be executed swiftly and independently for each grid point.

Writing a program to be executed on the device is a process of constant optimisation and there
are a few factors one has to take into account. First, there is no automatic communication between
the host and the device in the sense of memory transfer. The user has to manually allocate and
manage memory on the device and copy any data from the host onto the device and back. This
memory allocation and transfer is the slowest process possible in GPU accelerated programs. One
must take extra care to minimise memory transfer between the host and the device as to assure
that the bulk of the program is executed on the GPU without interruption.

Secondly, the correct settings of block sizes and grid sizes is also crucial for the efficiency of
the program. The optimal size of a block and a grid are a priori not clear. This is a parameter
which should be optimised via testing and is individual to each problem. In our case, where we
distribute the threads across a one-dimensional spatial grid with many parallel realisations, we
connect the device grid size to the size of the spatial grid and number of parallel truncated Wigner
realisations, e.g. for the spatial dimension, gridsize =

⌈
𝑁g

blocksize

⌉
. The block size, though, has no

universal rule and has to be optimized individually for each problem.
In summary, GPU-powered computing has become a significant tool for accelerating numeri-

cal simulations. In the context of this thesis, the use of GPU accelerated computing substantially
improved the performance of our simulations. Utilising Ampere architecture GPUs (A100) to par-
allelise one-dimensional simulations across the spatial grid, as well as for executing independent
truncated Wigner runs, resulted in a speed-up of ∼ 102 compared to CPU computations.
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MICROSCOPIC AND EFFECTIVE THEORIES





In this part, we thoroughly study the dynamics of the spin-1 Bose gas after a quench from the
polar phase to the easy-plane phase from the perspective of its microscopic behaviour and de-
rive an effective description for its macroscopic behaviour. The quench through the second-order
phase transition was first simulated and analysed by C.-M. Schmied et al. [75]. There, self-similar
scaling of the transverse spin order parameter was observed, persisting for several orders of mag-
nitude in time. The resulting scaling exponents were numerically predicted to be 𝛼 = 𝛽 ≈ 1/4.
The Rubidium BEC experiment performed by M. Prüfer et al. [55] studied the same quench in a
quasi-one-dimensional spin-1 condensate with an elongated cigar-shaped trap geometry. By util-
ising their novel readout scheme [145], the experiment is able to spatially resolve the spin in 𝑥

and 𝑦 direction simultaneously, allowing them to calculate equal-time spatial correlation func-
tions of the transverse spin. This led to the experimental observation of self-similar scaling in the
spin condensate, albeit with a different scaling exponent 𝛽 ≈ 1/2. We would like to note here
that the readout scheme employed by the experiment is not restricted to resolving only spins. The
quadrupole operators, and with them also the spinor phase can also be experimentally extracted
in this way, see [131, 145] for more details. The discrepancy between the numerical and experi-
mental results is a long-standing problem and the effort to reconcile these differences led to the
detailed study of the dynamics post-quench done in this thesis, in part to better facilitate a theory
which encapsulates both options. We note that the explanation for this discrepancy is given in the
next part, in Chap. 7.

In Chap. 4, we first investigate the microscopic dynamics of the one-dimensional spin-1 gas
post-quench, concentrating on isolating the excitations which give rise to the shape of the order
parameter spectrum. We observe the presence of extreme rogue wave events in the velocity fields
of the Larmor phase of the spinor gas and study their statistics with regards to the universal scal-
ing dynamics found in the system. We find that the scaling of the characteristic length scale is
distinctly different from the scaling of the characteristic timescale, presenting two mutually de-
pendent scaling exponents governing the time evolution of their respective scales. The exponent
for the timescale is extracted utilising the framework of rogue wave propagation in disordered
media, which is found to accurately describe the statistics. We then examine the emerging topo-
logical defects in the system, which take the form of space-time vortices, or real-time instantons
in the Larmor phase. These excitations seem to give rise to the spatial structure seen in the order-
parameter correlation function.

Remarkably, we find that the system continues to exhibit self-similar scaling of the transverse
spin correlations even in the absence of the topological defects. Consequently, we conjecture
that these excitations are a proxy for the true underlying mechanism. Therefore, in order to sift
through the wide range of excitations present in the noisy dynamic post-quench, a low-energy
effective theory is derived in Chap. 5, taking the form of a sine-Gordon-type model for the spinor
phase. We show that this effective model reproduces the self-similar scaling dynamics of the
spin-1 Bose gas in one and two dimensions. In light of this, this part of the thesis presents a shift
in focus from the investigation of excitations of the Larmor phase, to the study of sine-Gordon
type excitations in the spinor phase as a prime mechanism for scaling. Our results mark a notable

45



development in the research of non-equilibrium universality, pointing towards a sine-Gordon-type
universality class, to which the spin-1 Bose gas in the easy-plane belongs to. Such a universality
class is of particular interest, since the sine-Gordon model is a fundamental model appearing in
many contexts, including false vacuum decay [146–148], dynamics of Coulomb gases and spin
chains [149–151].
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4UNIVERSAL DYNAMICS OF
ROGUE WAVES IN A SPIN-1
GAS

I’m a mess mess mess mess mess mess mess mess
I’m a mess mess mess mess mess mess mess mess

– Huh Yunjin, ”Eve, Psyche & the Bluebeard’s Wife”

In this chapter, we numerically investigate the microscopic phenomena present during the post-
quench dynamics of the spin-1 gas. Recall that isolated many-body systems far from equilib-
rium may exhibit scaling dynamics with universal exponents indicating the proximity of the time-
evolution to a non-thermal fixed point (NTFP). Here, we find universal dynamics connected with
the occurrence of extreme wave excitations in the mutually coupled magnetic components of a
spinor gas which propagate in an effectively random potential comprised of the spin interaction
part of the spin-1 Gross-Pitaevskii equation (GPE). The frequency of these rogue-waves is af-
fected by the time-varying spatial correlation length of the potential which is a reflection of the
aforementioned universal scaling dynamics, thus giving rise to an additional exponent 𝛿c ≃ 1/3
for temporal scaling, which is different from the exponent 𝛽𝑉 ≃ 1/4, characterising the scaling of
the correlation length ℓ𝑉 ∼ 𝑡 𝛽𝑉 in time. As a result of the caustics, i.e., focusing events, real-time
instanton defects appear in the Larmor phase of the spin-1 system as vortices in space and time.
The temporal correlations governing the instanton occurrence frequency scale as 𝑡 𝛿I . This sug-
gests that the universality class of a NTFP could be characterised by different, mutually related
exponents defining the evolution in time and space, respectively.

The chapter is organised as follows: In Sect. 4.1.1, we describe the numerical preparation of
the system, explaining the quench parameters and the initial condition used in all the discussed
simulations in this chapter. Then, Sect. 4.1.2 describes the short-time dynamics of the system
during its approach to the self-similar scaling regime, expanding upon the various excitations
present in the system by discussing the spin and spin-nematic spheres as visualisation tools. Fur-
thermore, in Sect. 4.2 we discuss the appearance and characterisation of rogue-wave events in
the velocity fields of the magnetic components of the spin-1 gas. Thereupon, we give a sketch
of a general derivation of the underlying timescale to first caustics in Sect. 4.2.1, followed by a
generalisation to Bogoliubov excitations in the spin-1 gas subject to a random potential given by
the spin interactions detailed in Sect. 4.2.2. After deriving the rogue wave timescale, we discuss
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the effect of the spatio-temporal scaling of the order-parameter correlations on the coarsening of
this timescale and provide a numerical analysis to support this in Sect. 4.2.3. We discuss the ap-
pearance of instantons, i.e. topological excitations, resulting from the rogue waves in the Larmor
phase in Sect. 4.3. We investigate their structure and characterisation w.r.t. both spin and spin-
nematic spheres in Sect. 4.3.1. We then study their spatio-temporal scaling in Sect. 4.3.2. Finally,
we provide a short discussion and outlook in Sect. 4.4.

The content of this chapter is taken and adapted from [1]. I stress that some parts are taken
verbatim from the publication, yet the content was reorganised and expanded upon to better ac-
commodate the context of this thesis, especially regarding work done post-publication. Note also,
that to ensure consistency across this thesis, the notation was slightly altered as well.

4.1 post-quench dynamics of the spin-1
gas

The dynamics of the spin-1 Bose gas after a quench from the polar phase to the easy-plane phase
exhibit rich structure formation and non-equilibrium behaviour which is yet to be fully understood.
The universal self-similar scaling phenomenon attributed to the vicinity of the system’s time
evolution to a NTFP is a hallmark of this particular quench. A better understanding of phenomena
emerging during the far-from-equilibrium dynamics presents a unique opportunity to shed light
onto the underlying mechanisms driving these processes. Hence, to gain valuable insight into
such possible scaling mechanisms, we perform a detailed analysis of the microscopic excitations
present in the system, with the intention of better understanding the universality class to which
the spin-1 Bose gas belongs to and its characteristics.

In the following discussion, we normalise all observables with respect to the total density 𝜌̃

of the spinor condensate, i.e., ψ̄(𝑥, 𝑡) = ψ(𝑥, 𝑡)/
√
𝜌̃. In further discussions, we omit the bar and

all observables are to be understood as normalised quantities unless specified otherwise. Further-
more, distances are given in units of the spin healing length 𝜉s = (2𝑀𝜌̃ |𝑐1 |)−1/2 and time is given
in units of spin-collision time 𝑡s = 2𝜋/(2𝑀𝜌̃ |𝑐1 |).

4.1.1 initial condition

We consider a quench from the polar (𝑐1 < 0, 𝑞 > 2𝜌̃ |𝑐1 |) to the easy-plane phase (𝑐1 < 0,
0 < 𝑞 < 2𝜌̃ |𝑐1 |), where we expect the spin degrees of freedom to be dominantly oriented in the
𝐹𝑥-𝐹𝑦-plane, giving rise to a complex scalar order parameter, the transverse spin

𝐹⊥ ≡ 𝐹𝑥 + i𝐹𝑦 = |𝐹⊥ |𝑒i𝜑L . (4.1)

Recall that 𝜑L = (𝜑1 − 𝜑−1)/2 is the Larmor phase as introduced in Sect. 2.2.3. We simulate
a condensate of 3 · 106 Rubidium atoms on a 4096-point grid subject to periodic boundary con-
ditions, corresponding to a length of 𝐿 = 220𝜇m ≈ 550𝜉s. Prior to the quench, the atoms are
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prepared in the mean-field polar phase, which is characterised by a full macroscopic occupation
of the 𝑚F = 0 component 𝜓0(𝑥) = 1, while the 𝑚F = ±1 magnetic levels are empty, leading to an
overall zero magnetisation. Upon initialisation, we add quantum noise to the Bogoliubov modes
of the initial state

ψ(𝑥) =
©­­­«
0

𝜌̃

0

ª®®®¬ +
∑︁
𝑘

©­­­«
𝑎𝑘,1𝑒

i𝑘𝑥

𝑎𝑘,0𝑢𝑘𝑒
i𝑘𝑥 − 𝑎∗

𝑘,0𝑣𝑘𝑒
−i𝑘𝑥

𝑎𝑘,−1𝑒
i𝑘𝑥

ª®®®¬, (4.2)

where the functions 𝑎𝑘,𝑚F are complex Gaussian random variables with a variance of half a par-
ticle

⟨𝑎∗𝑘,𝑚F
, 𝑎𝑘′,𝑚′F⟩ =

1
2
𝛿𝑚F,𝑚′F𝛿𝑘,𝑘′ , (4.3)

and 𝑢𝑘 and 𝑣𝑘 are the Bogoliubov mode functions defined as

𝑢𝑘 =

√︄
𝑘2 + 𝑐0

2
√︁
𝑘2(𝑘2 + 2𝑐0)

+ 1
2

, 𝑣𝑘 =

√︃
𝑢2
𝑘
− 1, (4.4)

as seen in [75] . Subsequently, we quench the quadratic Zeeman shift through the second-order
phase transition to a final value of 𝑞f = 0.9 𝜌̃ |𝑐1 |. The dynamics are simulated utilising truncated
Wigner simulations as introduced in Sect. 3.3. The simulations are performed in an experimentally
realistic parameter regime for 87Rb, i.e., |𝑐1 | ≪ 𝑐0, albeit in the absence of a trapping potential
and with an increased homogeneous density as to ensure the validity of the truncated Wigner
approximation.

4.1.2 short-time dynamics

Following the quench, Bogoliubov instabilities lead to a fast build-up of strong excitations in
the relative phases between the different magnetic components. It is instructive to study the short-
time dynamics from the point of view of two SO(3) spheres: the spin sphere and the spin-nematic
sphere, recall Sect. 2.2.6.

The initial condition can be seen as a coherent distribution beginning on the north pole of the
transverse spin-nematic sphere (see left panel of Fig. 2.4). As the system is quenched through
the second-order phase transition between the polar phase and easy-plane phase, the effective
potential landscape changes. On the spin-nematic sphere, the fixed point at 𝑄0 = 1 becomes
unstable, and two additional fixed points appear at the equilibrium mean-field value of the trans-
verse spin length. This change of potential landscape leads to a squeezing dynamic on the spin-
nematic sphere [131], as the phase-space distribution begins to spread across the separatrix (see,
e.g. Fig. 5.5), before finally settling down into the fixed points of the spin-nematic sphere. The
bifurcation of the probability distribution function on the spin-nematic sphere manifests itself as
all manner of strong spin-wave excitations or as quasi-topological excitations.
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Figure 4.1: Time evolution (a) of the spin length |𝐹⊥ | of the transverse spin 𝐹⊥ = 𝐹𝑥 + i𝐹𝑦 and (b) the
Larmor phase 𝜑L = arg(𝐹⊥). The spin speed of sound 𝑐s = ( 𝜌̃ |𝑐1 |/2𝑀)1/2 is depicted by the
black and red dashed lines. (c) The coarsening of spin-wave patterns seen mostly in the Larmor
phase is reflected by the spatio-temporal scaling (4.6) of the structure factor (4.5) with universal
exponents 𝛽 = 0.26(6) and 𝛼 = 0.28(6) ≃ 𝑑𝛽 in 𝑑 = 1 spatial dimension and universal scaling
function 𝑓s (𝑘). The scaling exponents confirm, within the error bounds, the findings of [75].

On the other hand, on the spin sphere we observe the sudden formation of a ring-like dis-
tribution in the 𝐹𝑥-𝐹𝑦 plane due to spontaneous breaking of SO(2) symmetry. We also notice
very weak fluctuations in the 𝐹𝑧 directions, rendering them subdominant. The resulting exci-
tations in the transverse spin manifest as various spin textures, where, due to the immediate
spontaneous symmetry breaking of SO(2) symmetry, patches of causally disconnected regions
of approximately equal order parameter form. These patches are separated by strong almost
domain-wall-like excitations in the Larmor phase, whereas the spin length only fluctuates weakly
(cf. Fig. 4.1a, b). Recall that excitations in the Larmor phase correspond to massless Goldstone
bosons, allowing the Larmor phase to fluctuate strongly, exploring the valley of the potential. In
contrast, excitations in the radial direction on the spin sphere, i.e., Higgs-type modes, are gapped
spinor phase excitations, which live on the spin-nematic sphere in the 𝐹⊥-𝑄⊥ plane. There, the
potential landscape allows the spinor phase to fluctuate weakly around the fixed points, resulting
in small fluctuations in the spin length.

It is important to note at this point that the mass gap of the spinor phase dispersion relation is
still on the order of the spin interaction energy, allowing for events where the spinor phase can
locally tunnel from one fixed point to the other, thus making the overall fluctuations of the spinor
phase large as well, should one spatially unwind the phase. More details can be found in Chap. 5.

Lastly, we recall that the short-time dynamics starting from 𝑄0 = 1 and quickly reaching
𝑄0 ≪ 1, implies that also large density fluctuations are present in the system at very early times,
as the particles redistribute from the 𝑚F = 0 component to the 𝑚F = ±1 components. The system
quickly relaxes into a state where the bulk of the dynamics happen within the relative phases of
the complex fields, reflecting the process of spatial redistributions of bosons under the interaction-
induced constraint of a nearly constant total density 𝜌̃, due to |𝑐1 | ≪ 𝑐0 [75]. These dynamics
reflect the system’s attempt to adjust to the new quantum phase, as it strives to reach long-ranged
order via a reduction of the number of the aforementioned causally disconnected patches.



4.2 caustics in the spinor gas 51

4.1.3 self-similar scaling due to ntfp

As reported in Ref. [75], the patterns seen in the transverse spin, during the late-time evolution,
cause the structure factor

𝑆𝐹⊥ (𝑡, 𝑘) = ⟨𝐹⊥(𝑡, 𝑘)†𝐹⊥(𝑡, 𝑘)⟩ (4.5)

to scale in time and (momentum) space according to the universal form

𝑆𝐹⊥ (𝑡, 𝑘) = (𝑡/𝑡ref)𝛼 𝑓s( [𝑡/𝑡ref] 𝛽𝑘) . (4.6)

Here 𝑓s is a universal scaling function, which depends only on the momentum 𝑘 , 𝑡ref is a reference
time within the scaling interval and the scaling exponents 𝛼 = 0.28(6) and 𝛽 = 0.26(6) are, within
errors, related by 𝛼 = 𝑑𝛽, 𝑑 = 1, ensuring the momentum integral over 𝑆𝐹⊥ (𝑡, 𝑘) to be conserved,
see Fig. 4.1c. This is understood to signal the approach of a non-thermal fixed point characterised
by the quoted universal scaling exponents as well as the scaling function 𝑓s(𝑘). Universality here
means that, within a certain range of initial conditions and parameter values chosen, the time
evolution leads to the same kind of scaling behaviour in time and space, irrespective of the details
of the initial condition and the details of the chosen parameter values. We emphasise that the
microscopic reason for the observed scaling exponents quoted above is unknown to date.

4.2 caustics in the spinor gas
While utilising the notion of universality to obtain a macroscopic theory is the main aim of cur-
rent research into NTFPs, a possible path to understanding and categorising the various univer-
sality classes lies within the investigation of microscopic dynamics in order to isolate the relevant
mechanisms underlying the scaling evolution. As we have seen, the noisy dynamics of the spinor
gas post-quench exhibits many forms of excitations, one of which can be investigated thoroughly
using the notion of caustics and rogue waves, i.e., events of extreme intensity arising from the
focusing of wave-fronts propagating through noisy media.

We observe that the highly excited system in its post-quench time evolution generates focusing
of magnetic excitations into momentaneous rogue waves in the 𝑚F = 0 density, giving rise to
density dips in the 𝑚F = ±1 modes, and thus to rogue-wave-like peaks in the velocity fields
v𝑚F ∼ 𝜕𝑥𝜑𝑚F (Fig. 4.2). These rogue waves can be characterised as caustics [152–159], which
are signalled by the scintillation index

𝑆v (𝑡) =
⟨|vL |2⟩𝑥〈
|vL |

〉2
𝑥

− 1 (4.7)

as rare extreme events in the velocity fields, where ⟨· · ·⟩𝑥 denotes the spatial average and vL =

2𝜕𝑥𝜑L = v1 − v−1. At times where the system shows strong phase kinks, we expect a strong
sudden rise in the scintillation index (see Fig. 4.3b). We observe that at certain times, a localised
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Figure 4.2: (a) Time evolution of the relative fluctuations | |Ψ0 |2/⟨|Ψ0 |2⟩𝑥 −1| of the𝑚F = 0 field amplitude
around the spatial average ⟨|Ψ0 |2⟩𝑥 . Caustics show up as spikes in the relative density. (b)
Magnification of a set of caustics demonstrating this spatio-temporal correlation. The deviation
of the density |Ψ0 |2 from its average is shown in blue to red color scale. Overlayed on top are the
velocity spikes |v±1 |, demonstrating the correlation of a rise in density with the phase defects in
the magnetic side modes. (c) The total density being approximately flat implies that the spikes
seen in panel (a) correlate with dips in the magnetic side modes 𝑚F = ±1.

wave in the velocity field of the 𝑚F = 1 component meets a different localised wave in the velocity
field of the 𝑚F = −1 component. When the two waves meet, they create a spike in the velocity
field associated with the Larmor phase vL, resulting in a rogue wave in the transverse spin de-
gree of freedom. The importance of the rogue wave excitations appearing during the post-quench
dynamics lies within the understanding of their statistical properties.

4.2.1 universal statistics of rogue waves in random media

An important question typically considered in the theory of caustics in random media concerns the
relation between the temporal and spatial scales characterising the frequency of the occurrence of
rogue waves and their mean separation in space, respectively. To this end, one determines, starting
from some random initial state, the mean time to first caustics on the basis of the spatio-temporal
correlations of the random noise potential. We give here a rough sketch of the derivation of the
time to first caustics as presented by the arguments of [152–155] in order to gain intuition into
this process, before we present the spin-1 case in the next section.

The time to first caustics is inferred from the solution of the classical equations of motion of
point particles in the random potential 𝑉 ,

𝑑𝑥(𝑡)/𝑑𝑡 = 𝑝𝑥 (𝑡)/𝑚 , 𝑑𝑝𝑥 (𝑡)/𝑑𝑡 = −𝜕𝑉 (𝑥, 𝑡)/𝜕𝑥 , (4.8)

i.e., integrating over time, from

𝑥(𝑡) = 𝑥0 +
𝑝0
𝑚
(𝑡 − 𝑡0) −

∫ 𝑡

𝑡0

d𝑡′
∫ 𝑡 ′

𝑡0

d𝑡′′
𝜕𝑉 (𝑥, 𝑡′′)

𝜕𝑥
, (4.9)
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Figure 4.3: Characteristics of caustics in the system after a quench. (a) Excerpt of the space-time evolution
of phase defects in the system. The phase gradients v1 = 𝜕𝑥𝜑1 (purple to green) and v−1 =

𝜕𝑥𝜑−1 (red to blue) show the formation of rogue-wave-like excitations in the condensate which
focus on a singular point marked by the cross. (b) The scintillation index 𝑆v (𝑡), Eq. (4.7), around
a rogue wave at 𝑡 = 0. The blue solid line shows the scintillation profile averaged over ∼ 103

(not normalised) rogue waves. The dashed line depicts 𝑆v (𝑡) for the single truncated Wigner
run in (a).

with 𝑥0 = 𝑥(𝑡0), 𝑝0 = 𝑝𝑥 (𝑡0) defining the initial position and momentum. This is equivalent to
considering the motion of particles with large linear velocity 𝑝𝑦/𝑚 in a weak two-dimensional
random potential 𝑉 (𝑥, 𝑦), in the paraxial approximation, 𝑝𝑦 ≫ 𝑝𝑥 . Choosing 𝑥0 = 𝑝0 = 0, the
mean squared variation of rays at time 𝑡 results as

〈
𝑥(𝑡)2

〉
=

∫ 𝑡

𝑡0

d𝑡′
∫ 𝑡

𝑡0

d𝑡′
∫ 𝑡 ′

𝑡0

d𝑡′′
∫ 𝑡 ′

𝑡0

d𝑡′′
〈
𝜕𝑉 (𝑥, 𝑡′′)

𝜕𝑥

𝜕𝑉 (𝑥′, 𝑡′′)
𝜕𝑥′

〉����
𝑥=𝑥′

, (4.10)

where the average is taken over many realisations of the noise potential.
In the theory of caustic formation, the temporal correlations are often assumed to be Markovian,

i.e., proportional to a delta-distribution in the relative time,

𝐶𝑉 (𝜏) = ⟨𝑉 (𝑥, 𝑡)𝑉 (𝑥, 𝑡 + 𝜏)⟩ = 𝑉2
0 (𝑡)𝜏0 𝛿(𝜏) , (4.11)

with some time constant 𝜏0. Furthermore, the spatial correlations of the potential typically show
some Gaussian or exponential fall-off, e.g.,

𝐶𝑉 (𝑟) = ⟨𝑉 (𝑥, 𝑡)𝑉 (𝑥 + 𝑟, 𝑡)⟩ = 𝑉2
0 (𝑡) e

−𝑟/ℓ𝑉 (𝑡 ) . (4.12)

We note that the analysis is not restricted to these forms of correlations. It can be shown that any
correlation function 𝐶𝑉 (𝑟, ℓ𝑉 ) with a characteristic fall-off scale can be used in this derivation.
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Finally, the time to first caustics 𝑡c is estimated by evaluating the noise correlator, integrate it
over time, and demand that the variance at time 𝑡 = 𝑡0 + 𝑡c is on the order of the correlation length
squared ℓ2

𝑉
of the noise. This condition implies that caustics occur as the result of focusing of rays

originating from a window around the focusing point the size of which corresponds to the scale
on which the potential varies. From Eq. (4.10) one thus finds the scaling relation

𝑡c ∼ ℓ
4/3
𝑉

. (4.13)

4.2.2 derivation of rogue-wave scaling in the spin-1 gas

In the spin-1 Bose gas considered here, all particles belong to one of the three magnetic sublevels.
The underlying timescale of caustic focusing of strong wave excitations can be described in the
framework of a stochastic non-linear Schrödinger equation (NLSE) [160–162]. Specifically, the
system follows the classical field equation:

i𝜕𝑡𝚿 =

[
− 𝜕2

𝑥

2𝑀
+ 𝑞 𝑓 2

𝑧 + 𝑐0𝑛 + 𝑐1F · f
]
𝚿 . (4.14)

Due to the strong density-density interactions and the disordered behaviour of the spin-changing
term, as seen in Fig. 4.1a,b, the last term of Eq. (4.14) can be considered as a fluctuating weak
random potential added to a NLSE when neglecting backreaction,

𝑉 (𝑥, 𝑡) ≡ 𝑐1F (𝑥, 𝑡) · f = 𝑐1

©­­­«
𝐹𝑧 𝐹∗⊥ 0

𝐹⊥ 0 𝐹∗⊥

0 𝐹⊥ −𝐹𝑧

ª®®®¬(𝑥, 𝑡). (4.15)

Hence, it comprises the spin-spin coupling, which, together with the quadratic Zeeman shift ∼
𝑞 𝑓 2

𝑧 , breaks the U(3) symmetry of the model by lifting the energy degeneracy and allowing for
spin-changing collisions. Therefore, in order to estimate the time to first caustics, the full three-
component equation needs to be taken into account. The matrix potential 𝑉 (𝑥, 𝑡), due to |𝑐1 | ≪
|𝑐0 | and its non-linear dependence on the fluctuating fields, effectively takes the role of a weak
noise which causes the spin-wave excitations to form caustics, as they propagate in time.

Analogously to the above introduced arguments of [152–155], we estimate the time to first
caustics in a semi-classical way. Assuming the excitations leading to caustics are dominated by
Goldstone-type excitations which redistribute particles within single magnetic sublevels while
the total density 𝜌̃, subject to the density-density interactions 𝑐0 𝜌̃

2 remains nearly constant, we
aim to estimate the time to first caustics from the time evolution of the fields capturing the three
sublevels. Note that all assumptions made during the derivation will be numerically justified in
the next section.
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We consider a caustic at some time 𝑡0 in sublevel 𝑚, which is described by a distribution of the
deviation 𝛿Ψ𝑚(𝑥, 𝑡0) ≡ Ψ𝑚(𝑥, 𝑡0) − ⟨Ψ𝑚⟩ from a stationary mean value ⟨Ψ𝑚⟩, peaked around a
position 𝑥0, with width

⟨[𝑥 − 𝑥0]2⟩𝑚,𝑡0 =

∫
d𝑥 (𝑥 − 𝑥0)2 |𝛿Ψ𝑚(𝑥, 𝑡0) |2∫

d𝑥 |𝛿Ψ𝑚(𝑥, 𝑡0) |2
≃ 𝜉2

s (4.16)

being on the order of the spin healing length, as can be inferred from Fig. 4.2. The task is to
estimate the temporal increase of the variance ⟨[𝑥(𝑡) − 𝑥0]2⟩𝑚 due to the evolution in the noisy
potential formed by the other magnetic components. For this, we need to estimate the time evolu-
tion of the field starting from the caustic peak 𝛿Ψ𝑚(𝑥, 𝑡0).

This evolution is governed by the Hamiltonian (2.4), which can be split into a Bogoliubov
mean-field (MF) part and the rest, 𝐻 = 𝐻MF + 𝛿𝐻𝑉 , where the Bogoliubov MF term, which is at
most quadratic in the fields Ψ𝑚, gives rise to a coherent background evolution. As we can neglect,
to a good approximation, Bogoliubov fluctuations of the total density 𝜌̃, the main contribution
will arise from the gapless spin-wave excitations present in the easy-plane phase. Furthermore, as
the width of the caustic peak is on the order of the spin healing length, wave numbers contributing
to the packet are 𝑘 ≲ 𝑘 𝜉s ∼ 1/𝜉s. Hence, the evolution with 𝐻MF causes the wave packet to (split
and) move, without dispersing, at the speed 𝑐s = ( 𝜌̃ |𝑐1 |/2𝑀)1/2,

𝑈
†
MF(𝑡, 𝑡0)𝛿Ψ𝑚(𝑥, 𝑡0)𝑈MF(𝑡, 𝑡0) ≃ 𝛿Ψ𝑚(𝑥 − 𝑐s [𝑡 − 𝑡0], 𝑡0)𝜙𝑚(𝑥, 𝑡) . (4.17)

Here 𝑈MF(𝑡, 𝑡0) = exp
(
−i

∫ 𝑡

𝑡0
d𝑡′𝐻MF

)
, and we neglect possible weak effects from dispersion in

higher wave numbers. While the time evolution shifts the position of the wave packet, it in general
also involves fast phase oscillations with a frequency on the order of ∼ 𝜔(𝑘 𝜉s), which are taken
into account by the, not further specified, multiplicative factor 𝜙𝑚(𝑥, 𝑡) which takes the form of
a complex oscillating function of norm |𝜙𝑚(𝑥, 𝑡) | ≲ 1, cf. Fig. 4.2.

Besides this coherent propagation of the packets with the speed of sound, the wave packet
spreads out due to the motion in the noisy background potential which enters the interaction
Hamiltonian 𝐻𝑉 (𝑡) =

∫
d𝑥 Ψ†𝑚(𝑥)𝑉𝑚𝑛 (𝑥, 𝑡)Ψ𝑛 (𝑥) and thus the beyond-MF part 𝛿𝐻𝑉 = 𝐻𝑉 −

𝐻𝑉 ,MF. Note that we neglect beyond-MF contributions from the density-density interactions ∼
𝑐0 𝜌̃

2 and that the potential 𝑉 is taken to represent a time-varying background potential despite
the fact that the field operators Ψ𝑚 are evaluated at the fixed initial time 𝑡0. The resulting beyond-
MF Hamiltonian encodes the noisy background, which fluctuates on lengths scales set by the
fluctuations of 𝐹𝑧 and 𝐹⊥, cf. Eq. (4.15).

Taking ℓΛ ≫ 𝜉s, we can Taylor expand the noise potential at the position of the caustic peak to
first order around a constant background,

𝑉 (𝑥, 𝑡) = 𝑉 (𝑥0, 𝑡) + 𝜕𝑉

𝜕𝑥

����
𝑥=𝑥0

(𝑥 − 𝑥0) + . . . , (4.18)

and neglect the constant term, which causes the MF evolution to be corrected essentially to include
a non-zero width of the dispersion.
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The time-evolution operator𝑈 (𝑡, 𝑡0) = exp
(
−i

∫ 𝑡

𝑡0
d𝑡′𝐻

)
can be split into a fast mean-field part

and a slow evolution caused by 𝑉 ,

𝑈 (𝑡, 𝑡0) = 𝑈MF(𝑡, 𝑡0)

× exp
[
−i

∫ 𝑡

𝑡0

d𝑡′𝑈†MF(𝑡
′ − 𝑡0)𝛿𝐻𝑉 (𝑡′)𝑈MF(𝑡′ − 𝑡0)

]
. (4.19)

Combining the above expressions, we can now calculate the approximate broadening of the trav-
elling wave packet due to the external noise 𝑉 ,〈
[𝑥 − 𝑐s(𝑡 − 𝑡0) − 𝑥0]2

〉
𝑚,𝑡

≃ N−1
𝑚

∫
d𝑥 [𝑥 − 𝑐s(𝑡 − 𝑡0) − 𝑥0]2

{
|𝛿Ψ𝑚(𝑥 − 𝑐s [𝑡 − 𝑡0], 𝑡0) |2

+ 𝛿Ψ∗𝑚(𝑥 − 𝑐s [𝑡 − 𝑡0], 𝑡0)
∫

d𝑡′ d𝑡′′
〈
𝜕𝑉𝑚𝑙 (𝑥′, 𝑡′)

𝜕𝑥′
𝜕𝑉𝑙𝑛 (𝑥′′, 𝑡′′)

𝜕𝑥′′

〉
𝑉

����
𝑥′=𝑥′′=𝑥0

𝛿Ψ𝑛 (𝑥 − 𝑐s [𝑡 − 𝑡0], 𝑡0)

× [𝑥 − 𝑐s(𝑡 − 𝑡′) − 𝑥0] [𝑥 − 𝑐s(𝑡 − 𝑡′′) − 𝑥0]
}

, (4.20)

whereN𝑚 =
∫

d𝑥 |𝛿Ψ𝑚(𝑥, 𝑡0) |2 is a normalisation, the mean value ⟨· · · ⟩𝑉 denotes averaging over
the noise potential and we have dropped terms linear in𝑉 , as they vanish when taking this average.
We have also neglected any fast rotating phases, which will play a role in any single realisation
of the potential but are expected to average out in the mean. Note that the covariance of the noise
involves a matrix product of the potential, which takes the form

𝐶𝑉 (𝑟) = ⟨𝑉 (𝑥, 𝑡)𝑉 (𝑥 + 𝑟, 𝑡)⟩𝑉 (4.21)

=

〈 ©­­­«
𝐹𝑧 (𝑥)∗𝐹𝑧 (𝑥 + 𝑟) + 𝐹⊥ (𝑥)∗𝐹⊥ (𝑥 + 𝑟) 0 𝐹⊥ (𝑥)∗𝐹⊥ (𝑥 + 𝑟)∗

0 𝐹⊥ (𝑥)𝐹⊥ (𝑥 + 𝑟)∗ + c.c. 0

𝐹⊥ (𝑥)𝐹⊥ (𝑥 + 𝑟) 0 𝐹𝑧 (𝑥)∗𝐹𝑧 (𝑥 + 𝑟) + 𝐹⊥ (𝑥)𝐹⊥ (𝑥 + 𝑟)∗

ª®®®¬
〉
𝑉

.

On average, the off-diagonal elements of this matrix vanish due to the recovery of the sponta-
neously broken SO(2) symmetry of the spin configuration in the easy plane, when averaging
over many realisations of the potential, see the circle-shape histogram shown in the upper panel
of Fig. 4.7d. Considering a spatial correlation with a characteristic fall-off scale ℓ𝑉 and Marko-
vian temporal correlations, we may integrate over 𝑡′′, which thereby is set equal to 𝑡′. Finally, the
spatial averaging done by integrating over 𝑥 evaluates (4.20) to become

〈
[𝑥 − 𝑐s(𝑡 − 𝑡0) − 𝑥0]2

〉
𝑚,𝑡 ≃ 𝜉2

s

{
1 + 𝜋

3
𝑉2

0,𝑚
ℓ𝜏𝑐s𝑡

3

ℓ2
𝑉

}
. (4.22)
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Figure 4.4: Statistics of caustics after a quench. (a) PDF of the local Larmor velocity vL = 2𝜕𝑥𝜑L =

𝜕𝑥 (𝜑1 − 𝜑−1) for different times. The PDF takes the form of a Rayleigh exponential distribution
(grey dashed line fit) with a heavy tail. The extreme events are characterised as those with an
amplitude larger than 2vc, where vc is the scale velocity, representing the mean of the upper
tertile of events. The inset shows that vL > 2v𝑐 at the focusing time (see Fig. 4.3). (b) The
probability of finding an extreme event as a function of time. A power law decay 𝑡−𝛿c , with
𝛿c = 0.332(3) is found. The inset shows the deviation of the fit from the data divided by the
data point error.

For times 𝑐s𝑡 ≫ 𝜉s, the term ∼ 𝑡3 dominates the width. Hence, as discussed above for the case of
classical particles, demanding that the variance (4.22), at the time 𝑡 = 𝑡c to first caustics, is on the
order of ℓ2

𝑉
, one obtains again the scaling relation for the mean time to first caustics,

𝑡c ∼
(
𝑉2

0,𝑚ℓ𝜏𝑐s

)−1/3
ℓ

4/3
𝑉

. (4.23)

4.2.3 rogue wave statistics in truncated wigner simulations

We now turn to the numerical investigation of the coarsening dynamics of caustics in the spin-1
gas post-quench. Note that, as before, we characterise the intensity of caustics by means of the
gradient of the Larmor phase.

It is well known that the probability distribution function (PDF) of intensities shows a long-
tailed behaviour when rogue waves are present in the system [163–165]. Constructing such a
PDF of the Larmor phase velocity field, we obtain a heavy-tailed Rayleigh exponential form, thus
confirming the presence of rogue waves in the Larmor phase, see Fig. 4.4a. Furthermore, the PDF
of ln vL as shown in Fig. 4.5a corroborates that the formation of caustics in the system is charac-
terised by the propagation of coherent waves in a random background [154], hence justifying
our assumption in the previous section. From the PDF, one obtains a scale velocity of significant
waves, vc, as the mean of the upper tertile of the PDF. The criterion for rogue waves is then cho-
sen to include those with an amplitude vL > 2vc, as is conventionally done in literature [165].
Fig. 4.4d shows that the probability of such rare events to occur decays in time as a power law,
𝑃(vL , 𝑡 |vL > 2vc) ∼ 𝑡−𝛿c , with a new exponent 𝛿c = 0.332(3).
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Figure 4.5: Statistics of caustics in the spin-1 gas. (a) PDF of ln vL showing a Rayleigh exponential distri-
bution with a heavy tail, in accordance with quantum dynamics of coherent wave packets [154].
(b) Time evolution of the scintillation index averaged over all realisations on a double logarith-
mic scale. The scintillation index decays over time, confirming the decrease in the occurrence
of rogue wave events.

In order to explain the appearance of this new exponent, we study the statistical properties of
the random potential (4.15). Recall that for propagation in random media, the time needed for the
waves to focus, i.e., the mean time to caustics 𝑡c, depends only on the correlation length and on
the strength of the fluctuations of the random medium, as derived in the previous section. Our nu-
merical simulations find that the diagonal elements of Eq. (4.21) exhibit, to a good approximation,
correlations of exponential form in the diagonal elements

⟨Tr[𝑉 (𝑥, 𝑡)𝑉 (0, 0)]⟩ = 𝑉2
0 exp

[
− 𝑥/ℓ𝑉 (𝑡)

]
, (4.24)

with fluctuation strength 𝑉0 and a correlation length scale ℓ𝑉 .The off-diagonal elements of the
correlation matrix vanish due to the recovery of SO(2) symmetry when averaging over statistical
realisations. The recovery of SO(2) symmetry also results in a vanishing mean for the noise
potential ⟨𝑉⟩ = 0. Thus, we find that the fluctuations of the Larmor phase and thus of 𝐹⊥ dominate
the correlations while those of 𝐹𝑧 can be neglected. Furthermore, The temporal correlations show
a nearly Markovian character (4.11), as is seen in Fig. 4.6b, where we fit a Lorentzian to the 𝜏-
dependence,

𝐶𝑉 (𝜏) =
𝑉2

0 (𝑡)
1 + [𝑐s𝜏/ℓ𝜏 (𝑡)]2

, (4.25)

with ℓ𝜏 (𝑡) constant in time.
In contrast to the standard case studied in the context of caustics, the intricate non-linear inter-

actions between the components of the condensate cause the correlation length ℓ𝑉 to dynamically
scale in time. This is a manifestation of the spatio-temporal scaling of the structure factor of the
transverse spin (4.5), as seen in Fig. 4.1c. There, the infrared wave number 𝑘Λ ∼ ℓ−1

Λ
marking the

onset of the plateau in the structure factor scales as 𝑘Λ ∼ 𝑡−𝛽Λ , in accordance with the self-similar
scaling of the spectra. Therefore, the universal scaling of the structure factor is reflected in the
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Figure 4.6: (a) Correlation function 𝐶𝑉 (𝑟) =
〈∫

d𝑥 𝑉 (𝑥, 𝑡)𝑉 (𝑥 + 𝑟, 𝑡)
〉

of the random potential term in
Eq. (4.15). 𝐶𝑉 (𝑟) takes the form of an exponential function exp(−𝑟/ℓ𝑉 ) with a time varying
characteristic correlation length ℓ𝑉 ∼ 𝑡 𝛽𝑉 , with 𝛽𝑉 = 0.252(3) ≃ 𝛽 (upper inset). The lower
inset shows the potential is weak in comparison to density fluctuations. (b) Temporal correlation
function 𝐶𝑉 (𝜏) =

〈∫
d𝑥 𝑉 (𝑥, 𝑡)𝑉 (𝑥, 𝑡 + 𝜏)

〉
. The correlation shows a fast decaying Lorentzian

with constant correlation time ℓ𝜏 .

coarsening of the length scale which characterises the size of the coarsening patterns in the Lar-
mor phase ℓΛ(𝑡) ∼ 𝑡 𝛽Λ . The correlation length of the noise term Eq. (4.15) is then associated with
ℓΛ, since the diagonal elements of Eq. (4.21) are given by the Fourier transform of the transverse
spin structure factor. Our numerical simulations confirm that the noise correlation length scales
with ℓ𝑉 ∼ 𝑡𝛽𝑉 with 𝛽𝑉 = 0.252(3) (see Fig. 4.6a), hence corroborating 𝛽𝑉 ≃ 𝛽Λ within the error
bounds. Thus, the temporally growing correlation length scales as a power law in time with an
exponent 𝛽𝑉 ≃ 1/4, implying, according to Eq. (4.23), that the mean time to caustics scales in
time as 𝑡c ∼ 𝑡 𝛿c , with 𝛿c = 4𝛽𝑉/3 ≃ 1/3.

Our results support the interpretation that a caustic in one of the magnetic sublevels is caused
by the fluctuating potential, the respective other components effectively represent for its time
evolution. While the non-linear coupling present in the three-component system eventually gives
rise to the dynamics seen, a separation into single modes evolving in a fluctuating background
formed by the respective other ones, allows for a basic characterisation of the observed relation
between the temporal and spatial scales.

4.3 instantons in the spin-1 gas
4.3.1 instanton structure and characterisation

The extreme events investigated in the previous section give rise to an interesting topological
phenomenon in the Larmor phase of the spin-1 gas. We observe that at the intersection of phase
kinks, where a strong rogue wave in the Larmor phase occurs, we witness a vortex in space-
time, which gives rise to a change in the system’s winding number, thus taking on the form of
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Figure 4.7: Structures and defects in the time evolution of the Larmor phase after a quench (units chosen
as in Fig. 4.4). (a) Time evolution of the winding number 𝑄w for the run shown in panel (b). (b)
Space-time evolution of the Larmor phase of the transversal spin 𝐹⊥ = |𝐹⊥ | exp[𝑖𝜑L] across
the entire system in a single truncated-Wigner (TW) run, with the spin speed of sound 𝑐s =√︁
𝜌̃ |𝑐1 |/2𝑀 (dashed line). In the strongly fluctuating system, vortex structures in space and

time are observed, as the phase wraps around one point (cf. zoom in panel (c)). Instantons
(orange) and anti-instantons (black), each cause an integer jump in the winding number 𝑄w (𝑡).
(c) Structure of the real-time instanton. In the upper panel, the averaged |𝐹⊥ | profile of a defect
located at 𝑥0 at time 𝑡0 is depicted. The lower panel shows the vortex-like nature of the defect
in more detail, around which the Larmor phase winds by 2𝜋. (d) The lower panel shows the
corresponding intersection of two rogue waves in v±1 at the position of the instanton, recall
Fig. 4.4a. The upper panel exhibits the temporal evolution (bright to dark pink) of the 𝐹⊥ field
configuration in spin space, within the window shown in the lower panels. The outer circle
represents a histogram (black to bright red color code) of spin orientations in the 𝐹𝑥-𝐹𝑦 plane
averaged over 100 TW runs.

an instanton in real time. Instantons are of strong relevance in fundamental studies of quantum
field theory and matter [166, 167], as well as various applications, including false vacuum decay
[168–170]. Phenomena closely related to the real-time instantons we study here include coherence
vortices [171] and phase slips [172–176].

One such instanton is shown in Fig. 4.7c at a time 𝑡 ≃ 132 𝑡s and position 𝑥 ≃ 271 𝜉s. In
Fig. 4.7a, b, we identify the direct correlation between a jump in the system’s winding number
and the appearance of such a vortex or anti-vortex structure in space-time. In the upper panel of
Fig. 4.7d, we demonstrate that the defect manifests itself as a trajectory of the field configuration
in the vicinity of this point propagating through the center of the transversal spin plane (or the
spin sphere), causing a local reduction in spin length.

Interestingly, the trajectory on the spin sphere implies a sharp jump in the Larmor phase at
the core of the space-time vortex. In contrast, this event does not show a topological character
on the spin-nematic sphere. There, the field configuration leaves the 𝐹⊥-𝑄⊥ plane and acquires a
non-zero 𝑄0 value, allowing it to connect to the opposite side of the sphere via a trajectory near
the pole, see red curve in Fig. 4.8. Although the trajectory on the spin-nematic sphere exhibits
a smooth interpolation between 𝜑s ≈ 0 and 𝜑s ≈ 2𝜋, the corresponding path on the spin sphere
involves a sudden 𝜋 jump in the Larmor phase. This occurs since neighbouring points must now
instantaneously flip their spin orientation to the opposite direction. Despite lacking any topologi-
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Figure 4.8: Instanton trajectory on the spin and spin-nematic spheres. (a) Trajectories in time for various
spatial distances (yellow to green) from the instanton origin on the spin-nematic sphere. Far
away enough from the instanton, the trajectories remain fluctuating near the fixed point. At the
origin (red line, 𝑥 = 0), the instanton trajectory goes over to the other side in time, by leaving
the 𝐹⊥-𝑄⊥ plane and passing near the north pole of the sphere. (b) The same trajectories are
shown on the spin sphere. As seen in Fig. 4.7, the trajectory in the origin of the instanton goes
through the center of the spin sphere, thus creating a strong phase kink in the Larmor phase.

cal nature in the spinor phase, such processes are crucial to the formation of topological defects
in the Larmor phase, as they push the field value to the next Riemann sheet. In Chap. 5 we shall
see that these processes are a hallmark of the underlying effective model of the spin-1 gas in the
easy plane.

As a result of this 𝜋 jump, the Larmor phase wraps into the next Riemann sheet, giving rise to
a change of the overall winding number of the Larmor phase,

𝑄w =
1

2𝜋

∫ L

0
d𝑥 𝜕𝑥𝜑L ∈ Z , (4.26)

where L is the length of the system. With the help of a plaquette algorithm correlating jumps
in the Larmor phase and dips in the spin length, we localise the instantons in space and time,
allowing us to probe their statistics.

4.3.2 instanton statistics following rogue wave statistics

During the evolution of the system following the quench, the density of (anti-)instantons decreases,
and the probability of the system producing a topological defect reduces as it attempts to settle
to a state with constant winding number, see the lower panel of Fig. 4.9a. We recall that such
a reduction in instanton density is already signalled in Fig. 4.4 by the decreasing rogue-wave
probability.

Due to the topological nature of these defects, they are robust and easily distinguishable from
the noisy background, enabling us to isolate them from the plethora of excitations found in the
system, thus making them a dependable observable to probe the system’s dynamics. To extract
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Figure 4.9: Statistics of the instantons after a quench. (a) Short-time Fourier transform (STFT) of the wind-
ing number 𝑄w (𝑡) (main panel, color scale), exhibiting a Gaussian fall-off for small frequen-
cies (up to the grey dashed line in the inset) STFT[𝑄w] (𝑡) ∼ exp

{
−𝜔2/[2Γ2 (𝑡)]

}
(inset), with

width decreasing as Γ(𝑡) ∼ 𝑡−𝛿I , 𝛿I = 0.34(1) as seen in (c), confirming power-law coarsening
dynamics of the governing timescale of 𝑄w as seen in (b). The lower panel shows the time
evolution of the winding number 𝑄w for a single realisation.

the instanton probability decay, we first calculate the winding number 𝑄w(𝑡) over time for each
truncated Wigner realisation and perform a short-time Fourier transform (STFT) of 𝑄w(𝑡) over
time windows of width Δ𝑡STFT = 70 𝑡s, averaging over ∼ 103 realisations. The time window for
the STFT was chosen such that it still contains the largest timescale in the system to avoid numer-
ical artefacts. The resulting transform STFT[𝑄w] (𝑡,𝜔) is shown in color scale in Fig. 4.9a. We
observe a down-chirp in the frequencies of the instanton appearances. At each time, the winding
number jumps display a frequency spectrum with an approximate Gaussian fall-off (cf. inset of
Fig. 4.9a)

STFT[𝑄w] (𝑡,𝜔) ∼ exp{−𝜔2/[2Γ2(𝑡)]} , (4.27)

with frequency scale Γ which is extracted via a least-squares fit. We find Γ to be decreasing in
time as Γ(𝑡) ∼ 𝑡−𝛿I , with 𝛿I = 0.34(1) (see Fig. 4.9b). Hence, by identifying the appearance of
instantons as indicators of rogue-wave events, this analysis confirms the scaling of the underlying
mean time to caustics within the error bounds.

To investigate the behaviour of the underlying spatial coarsening of the system, we recall the
vortex structures shown in Fig. 4.7 giving rise to a length scale in 𝜑L via strong wave excitations
that result from the defect. After such an event, strong kinks in the Larmor phase give rise to the
domains of approximately equal order parameter. The detection of these Larmor phase textures
and their propagation through the condensate is done with the help of the topological current
𝑗0 = 𝜕𝑡𝜑L. To quantify the spatial and temporal correlations of these defects, we identify their
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Figure 4.10: (a) The PDF of spatial defect separation is found to fall off exponentially, 𝑃(𝑟, 𝑡) ∼
𝐴(𝑡) exp[−𝑟/𝜁 (𝑡)], with mean distance ⟨𝑟⟩ (𝑡) ∼ 𝑡 𝛽I , increasing from early times (yellow)
to later times (black), exhibiting power-law coarsening with exponent 𝛽I = 0.26(1) (lower
panel of (b) ). The lower panel shows the difference of the data to the fit function divided by
the standard deviation of each data point. (b) The upper panel shows the chosen threshold of
the current J (𝑥, 𝑡) = |𝜕𝑥𝜑L | · (⟨|𝐹⊥ |⟩𝑥 − |𝐹⊥ |) for defect detection which corresponds to the
top decile of amplitude.

positions by weighting the current with dips in the spin length, which results in the topological
current

J (𝑥, 𝑡) = |𝜕𝑥𝜑L(𝑥, 𝑡) | · [⟨|𝐹⊥ |⟩𝑥 − |𝐹⊥(𝑥, 𝑡) |] . (4.28)

where ⟨· · ·⟩𝑥 denotes the spatial average.
In order to calculate a characteristic length scale at each time, we utilise peak detection algo-

rithms on the topological current J , setting the peak values to be in the upper 10th percentile of
its distribution function, ensuring that we detect extreme events, cf. the upper panel of Fig. 4.10b.
In Fig. 4.10a, we depict the probability of the spatial separation of defects in the system, i.e., of
the instantons of either charge. The resulting PDF exhibits a spatially exponential decay 𝑃(𝑟, 𝑡) ∼
𝐴(𝑡) exp[−𝑟/𝜁 (𝑡)] with the mean separation increasing according to ⟨𝑟⟩ (𝑡) =

∫
d𝑟 𝑟 𝑃(𝑟, 𝑡) ∼ 𝑡 𝛽I

with an exponent 𝛽I = 0.26(1), cf. the lower inset of Fig. 4.10b, corroborating the results obtained
in [75]. We thus find, within the error bounds, the relation 𝛿c = 4𝛽𝑉/3 in the spatio-temporal scal-
ing of the real-time instantons, which introduce a scale into the order parameter 𝐹⊥.

4.4 conclusion and outlook
In this chapter, we have numerically investigated the microscopic dynamics of the spin-1 gas after
a quench from the polar phase to the easy-plane phase. We observed the emergence of extreme
rogue wave events in the velocity field of the Larmor phase, rising as a result of the propagation of
Goldstone excitations through the disordered spin-changing dynamics, which act as an effectively
random potential.
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We analysed the statistics of rogue-wave events over time, and found that the probability of
finding a rogue wave decays as a power law with a new exponent 𝛿𝑐 = 1/3. To explain the ap-
pearance of this new exponent, we performed an analytical derivation of the time to first caustics,
generalising the arguments of [152–155] to Bogoliubov excitations of coherent wave packets in
the spin-1 gas. We saw that the timescale, being only dependent on the correlation of the noisy
background, is found to scale as 𝑡𝑐 ∼ ℓ

4/3
𝑉

. Interestingly, due to the intricate non-linear dynam-
ics, self-similar scaling of the transverse spin correlations are observed in the dynamics. This
phenomenon is captured by a coarsening of a correlation length of the transverse spin correla-
tions in time with an exponent 𝛽 = 1/4. The aforementioned derivation of the noisy potential
shows that the diagonal elements of the correlation matrix are the only non-vanishing elements,
and consist of precisely the transverse spin correlations. Hence, we obtain a time-varying corre-
lation length ℓ𝑉 ∼ 𝑡𝛽 which can be plugged into the varying timescale of mean time to caustics
𝑡𝑐 ∼ 𝑡4𝛽𝑉/3 ∼ 𝑡1/3 ∼ 𝑡 𝛿𝑐 , thus explaining the appearance of this new exponent.

This result showcases that a non-thermal fixed point could be characterised by distinct, yet mu-
tually connected scaling exponents, each governing the coarsening of the length– and timescales,
respectively. Similarly, kinetic theory approaches used to obtain scaling exponents connect the ap-
pearance of the dynamical exponent 𝑧 governing the dispersion relation 𝜔(𝑘) ∼ 𝑘 𝑧 of the relevant
excitations with the scaling of spatial scales. Such arguments usually predict 𝛽 = 1/𝑧 [120], which,
e.g., for a standard diffusion type scaling, governed by free quasiparticle excitations would give
𝛽 = 1/2. The connection of spatial and temporal scaling in our case may imply either a different
dispersion relation, or that such arguments do not hold for the subdiffusive scaling in the presence
of topological and highly non-linear excitations. A better understanding of this connection could
aid possible analytical investigations aiming at predicting scaling exponents.

The focusing events in the Larmor phase velocity fields are observed to lead to a change in the
overall winding number of the system in the Larmor phase, thus taking the form of an instanton
in real-time. Such events are localised defects and can be observed as space-time vortices. The
topological nature of these defects makes them easy to distinguish from the background, thus
isolating the relevant excitation from the plethora of spin-textures present in this highly excited
system, making them a reliable probe for the dynamics of rogue waves.

Performing a short-time Fourier transform on the winding number 𝑄w(𝑡), we observe a down-
chirp in the STFT spectrum, implying the decay in frequency of these events. The near-Gaussian
fall-off of the frequency spectrum is shown to change its characteristic frequency scale as Γ ∼
𝑡−0.34(1) thus confirming the change in timescale of the rogue-wave appearance.

Furthermore, we investigated the spatial length scale of defect separation, as an instanton event
brings about strong excitations in the transverse spin akin to domain walls. We obtain an exponen-
tial decay of defect separation probability with a changing length-scale over time ⟨𝑟⟩ (𝑡) ∼ 𝑡1/4,
confirming once more the spatio-temporal scaling of correlations as seen in the spectra of the
transverse spin.

Our results present us with an important insight into the underlying mechanisms of the observed
subdiffusive scaling. The investigation of the correlations shows that the scaling happens even
when instantons are not present in the system, which happens at around 𝑡 ≳ 400𝑡s. This implies
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that instantons are mere proxy excitations, i.e., excitations that are carried by the dynamics, but
not driving it. This substantiates the hypothesis that the subdiffusive scaling observed in the spinor
gas is not topologically driven. The topological excitations in the Larmor phase make it possible
to observe the length-scale and its coarsening in the transverse spin spectra, but the underlying
reason for scaling must be a different one. In the next chapter, we discuss a possible explanation
given by considering the dynamics of the spinor phase as the relevant degree of freedom. This
shift in focus is already signalled by the structure of instantons in the spin-nematic sphere, where
it is not of topological nature, but rather a strong non-linear excitation of the spinor phase. Should
the spinor phase give rise to the scaling dynamics, then the instantons in the gas will follow the
same scaling behaviour.





5DOUBLE SINE-GORDON
UNIVERSALITY CLASS OF
THE SPIN-1 BOSE GAS

All my designs, simplified.

– Steven Wilson, ”Arriving Somewhere but not Here”

In the previous chapter, we have seen the universal scaling dynamics of the spin-1 Bose gas. The
presence of instanton defects in the system was discussed thoroughly, however a microscopic
explanation to the scaling dynamics was yet to be identified. The development of a theory of
coarsening resting on the microscopic properties of the system is a central long-standing problem
in the research of far-from-equilibrium physics. Such a theory would allow the identification of
the interaction mechanisms underlying a possible overarching universality class of the associated
scaling dynamics. In quantum systems, this is complicated by the existence of non-linear and
topological excitations due to the compact nature of phase degrees of freedom. In this chapter,
we show that the double sine-Gordon model as a non-compact low-energy effective model of the
spin-1 Bose gas accounts for subdiffusive coarsening dynamics, identifying field configurations
spread over multiple wells of the sinusoidal potential as a precondition for the slow scaling. This
is in contrast to diffusion-type scaling which the model is known to exhibit as well, where field
configurations are seen to not extend over more than two wells. Experimental observations of
a spinor BEC support these characteristics, thus constituting a platform for the investigation of
sine-Gordon dynamics. Our results point to a path towards a classification of pattern coarsening
in many-body systems on the basis of microscopic models.

This chapter is structured as follows: In Sect. 5.1, we give a brief introduction into the state
of current research and the need for low-energy effective theories. We then proceed to discuss
the subdiffusive scaling behaviour of the double sine-Gordon (DSG) theory in Sect. 5.2, and
show that domain-size growth is not enough to explain subdiffusive coarsening. We show that the
DSG also shows diffusion-type scaling in one spatial dimension, characterised by the occupation
of only two minima. The DSG is then shown to be a low-energy effective theory of the spin-1
Bose gas in the easy-plane phase in Sect. 5.3, where we differentiate between a lowest-energy
theory at vanishing momentum 𝑘 = 0 and a theory at finite momenta. We compare numerical
and experimental results in Sect. 5.4 and show that the DSG reproduces also the diffusion-type
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scaling found in a spinor Bose gas in two spatial dimensions. Finally, we conclude with a short
discussion and give an outlook at future projects stemming from this chapter in Sect. 5.5.

This chapter is taken and adapted from Ref. [2]. I stress that many parts are taken verbatim
from the publication, yet the overall structure was reordered and the content was expanded upon
to better fit the context of this thesis. This work was a theoretical and experimental collaborative
effort. All numerical simulations and numerical data analysis were performed by me. The key
idea of the analytical calculations as well as the calculations themselves were performed by me
and A.-M. Glück. The experimental data was measured and analysed by Y. Deller, A. Schmutz,
F. Klein and H. Strobel.

5.1 introduction
The extensive study of universal phenomena far from equilibrium focusing on coarsening and
phase-ordering kinetics has yet to develop a unifying scaling theory to account for these phe-
nomena. Such a theory should ideally result from the underlying microscopic dynamics of the
considered system, e.g., as a reduction to effective, relevant degrees of freedom. It would poten-
tially lead beyond generalized diffusion models currently used to explain pattern coarsening in
systems with two or more spatial dimensions. Such a framework would provide a scaling theory
defining the universality class the coarsening process belongs to. A growing demand, as well as
the potential for advancing such a framework is underlined by the extensive recent experimen-
tal [6, 18, 27, 31–33, 49–57, 97–101] and theoretical efforts [17, 59, 60, 63–96] exploring the
nature of universal space-time scaling, to a large part in the field of ultracold atoms.

Coarsening and phase-ordering kinetics generically mean that order increases in a self-similar
manner, characterised by the spatio-temporal scaling of order-parameter correlations. For exam-
ple, in spinor quantum gases, which is the main focus of this thesis, subdiffusive, i.e, scaling
with an exponent 𝛽 < 1/2, as well as diffusion-type (𝛽 = 1/2) coarsening has been found in
the structure of magnetic order. The task in question is to isolate the relevant degrees of freedom
and their interactions that account for the specific scaling dynamics, thus possibly expanding
upon the understanding of scaling dynamics in non-equilibrium systems. For multi-component
Bose gases with interaction suppressed density fluctuations and U(𝑁) symmetric interactions
only, a low-energy effective theory (LEEFT), takes the form of a non-linear Luttinger-liquid type
model of the phase excitations [106]. Assuming the absence of topological excitations, this ef-
fective theory makes it particularly easy to analytically account for the scaling exponents [106],
which are confirmed numerically [120] and experimentally [6, 55], while their direct derivation
from the full non-linear Schrödinger model is analytically cumbersome [119, 120]. If the pattern
coarsening, however, involves topological excitations, one must take into account the compact
phase of the quantum field in the statistical description of scaling. This is in particular the case
for multi-component systems allowing inter-species exchange, such as spinor gases. There, non-
linear excitations prevail, such as the instantons seen in Chap. 4, thus preventing an analytical
scaling analysis so far [75, 77]. Hence, the reduction to an effective model explaining pattern
coarsening is desirable, which accounts for the topological excitations in the underlying system.
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5.2 double sine-gordon dynamics
In this section, we investigate the far-from equilibrium dynamics of the DSG model. To do so,
we numerically simulate the DSG dynamics in one spatial dimension using a truncated Wigner
approach [177], subsequently integrating the classical equations of motion with a simple leapfrog
algorithm as introduced in Sect. 3.2.

5.2.1 subdiffusive scaling in 1+1d

Consider the DSG model with real-valued Lagrangian density

L =
1
2
¤𝜑2 −

𝑐2
s

2
(∇𝜑)2 + 𝜆 cos 𝜑 + 𝜆s sin2 𝜑 , (5.1)

with the free speed of sound 𝑐s and DSG couplings 𝜆 and 𝜆s. From the Lagrangian (5.1), we can
compute the classical equations of motion, reading

¥𝜑 = 𝑐2
sΔ𝜑 − 𝜆 sin 𝜑 + 𝜆s sin(2𝜑). (5.2)

In order to achieve subdiffusive self-similar scaling far from equilibrium, we simulate a one-
dimensional system with a numerical grid comprising of 𝑁g = 4096 points with 5 · 105 particles.
We further choose the couplings as 𝜆 = 4 · 10−4 = 10𝜆s and 𝑐s = 0.0262 in numerical units. We
initialise our fields in a general non-equilibrium momentum distribution chosen according to

𝜑(𝑥, 0) = 𝜑0 +
∞∫

−∞

d𝑘
2𝜋

√︄
𝑓𝑘 + 1/2
𝜔𝑘

𝑐𝑘ei𝑘𝑥 , (5.3)

¤𝜑(𝑥, 0) = ¤𝜑0 +
∞∫

−∞

d𝑘
2𝜋

√︁
( 𝑓𝑘 + 1/2)𝜔𝑘𝑐𝑘ei𝑘𝑥 , (5.4)

where 𝜔𝑘 =
√
𝑘2 +𝑀2, 𝑀2 = 𝜆 − 2𝜆s and the noise coefficients 𝑐𝑘 , 𝑐𝑘 satisfy the relations〈

𝑐𝑘𝑐
∗
𝑘′
〉
= 2𝜋𝛿(𝑘 − 𝑘 ′), ⟨𝑐𝑘𝑐𝑘′⟩ =

〈
𝑐∗𝑘𝑐
∗
𝑘′
〉
= 0 . (5.5)

The latter constitutes the truncated Wigner noise for the numerical simulation of the system. The
initial momentum distribution 𝑓𝑘 is chosen as a distinctly non-equilibrium distribution

𝑓𝑘 =


const. |𝑘 | < 𝑄,

0 elsewhere,
(5.6)

resulting in an initial condition for the structure factor of the fundamental field 𝑆(𝑘 , 𝑡) = ⟨|𝜑(𝑘 , 𝑡) |2⟩
reflecting a box distribution in momentum space with cutoff 𝑄 (Fig. 5.1a, blue line). We then cen-
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Figure 5.1: Subdiffusive self-similar scaling evolution near a non-thermal fixed point of the DSG model
in (1+1)D. (a) Time evolution of the structure factor 𝑆(𝑘 , 𝑡) = ⟨|𝜑(𝑘 , 𝑡) |2⟩ of the real scalar
field. The initial 𝑆(𝑘 , 0) (blue line) is a box with cutoff 𝑄. At long times, the redistribu-
tion of excitations towards the IR leads to a power-law shape 𝑆(𝑘 , 𝑡) ∼ 𝑘−𝜅 at large wave
lengths. (b) The collapse of the curves to the universal scaling function according to 𝑆(𝑘 , 𝑡) =
(𝑡/𝑡ref)𝛼𝑆( [𝑡/𝑡ref]𝛽𝑘 , 𝑡ref) = (𝑡/𝑡ref)𝛼−𝜅𝛽𝑘−𝜅 , to the reference time 𝑡ref = 412/(𝑄𝑐s), with 𝑐s
denoting the free speed of sound, exhibits the spatio-temporal scaling of the correlator in the
regime of low wave numbers, 𝑘 ≪ 𝑘 𝜉s = (2𝑀𝜌̃ |𝑐1 |)1/2 ≈ 4𝑄, with a resulting subdiffusive
exponent 𝛼 = 𝛽 = 0.28(3), and with 𝜅 ≃ 2.0. The inset shows the residuals of the spectra
w.r.t. the reference spectrum, calculated as the relative difference of the rescaled spectra and
the spectrum at 𝑡ref , with the equal distribution of errors confirming the self-similarity of the
scaling. (c) Likelihood function of the scaling exponent 𝛾 = 𝛼 − 𝜅𝛽 = (1 − 𝜅)𝛽, from which
the error of the exponents was extracted. The inset shows the center and width of the likelihood
function for different reference times.

ter the distribution around ⟨𝜑⟩ = 𝜋, i.e., at a maximum of the cosine potential. This allows the
system to randomly decay to the adjacent and further minima, accumulating in either of them at
later times.

After the initial redistribution of particles to the various momenta, a pure power-law emerges
in the infrared (IR), i.e., a fractal form reflecting the long-wave behaviour of the field in a single
truncated Wigner realisation, as is generally expected for the correlator of a phase angle for sym-
metry reasons, as argued in [106, 125]. At sufficiently late times, in our case 𝑡 ≳ 412/(𝑄𝑐s), the
system enters a self-similar scaling regime, with the structure factor exhibiting the pure power-law,
𝑆(𝑘 , 𝑡) ∼ 𝑘−𝜅 ∼ 𝑘−2. Due to the shape of the universal scaling function being a pure power-law,
we cannot independently determine the two scaling exponents 𝛼 and 𝛽. Considering the conser-
vation of the momentum integral over 𝑆(𝑘 , 𝑡) for the scaling regime, we may set 𝛼 = 𝑑 · 𝛽 = 𝛽 for
𝑑 = 1. This brings the scaling function to an especially simple form, allowing for the rescaling of
the spectra with only one exponent. Hence, we may rescale using

𝑆(𝑘 , 𝑡) = (𝑡/𝑡ref)𝛼 𝑓s( [𝑡/𝑡ref]𝛽𝑘 , 𝑡ref) = (𝑡/𝑡ref)𝛼−𝜅𝛽𝑘−𝜅 (5.7)

by means of fitting 𝛾 = (1 − 𝜅)𝛽. We find 𝛼 = 𝛽 = 0.28(3) (see Fig. 5.1b), confirming distinctly
subdiffusive (𝛽 < 1/2) scaling. The inset of Fig. 5.1c shows the independence of the exponent of
the reference time.
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Figure 5.2: Defect coarsening in the dynamics of the DSG. (a) (upper panel) Excerpt of the time evolu-
tion of the DSG field 𝜑 in a single TW run with full system length 𝐿 = 122𝑄−1. For better
visibility, we plot it modulo 4𝜋. Domain walls are detected and denoted by orange markers.
(lower panel) A function Φ(𝑥) (red) is constructed by jumping by 2𝜋 (−2𝜋) for each detected
(anti-)kink. A function Φ̃(𝑥) = cos(Φ(𝑥)/2) (blue) alternates between ±1 for each detected
defect, regardless of their signs, encoding the length-scale of domains alone. The blue curve
is scaled and shifted for better visibility. The fundamental field 𝜑 is shown in grey. (b) Spatio-
temporal evolution of defect correlations. The spatial correlation in Fourier space is calculated
as 𝑆Φ (𝑘 , 𝑡) = ⟨Φ(𝑘)Φ(−𝑘)⟩ and averaged over 103 realisations. In the IR, the correlation func-
tion shows, within the error bounds, the same scaling evolution as the spectra in Fig. 5.1. Upper
inset: Residuals, i.e., the relative difference of the rescaled spectra and the reference spectrum
at 𝑡ref = 412/(𝑄𝑐s). Lower inset: Snapshots of the unscaled data. (c) Spatio-temporal evolution
of domain sizes. We extract the IR length-scale associated with domain walls ℓd (cf. yellow to
black dashed lines in lower inset) from the correlation function 𝑆Φ̃ (𝑘 , 𝑡) = ⟨Φ̃(𝑘)Φ̃(−𝑘)⟩ and
observe a power law coarsening with 𝑡0.41(1) , differing from the scaling of the spectra in (b).

5.2.2 domain growth versus coarsening dynamics

In the short-time DSG dynamics, the system decays from the initial position on the maximum of
the potential into the various minima of the periodic potential, with domains of the respective field
values, corresponding to their respective minima, forming dynamically. Relatively sharply defined
cross-over regions are found separating them, as seen in Fig. 5.2a. In the typical handling of phase-
ordering kinetics, the argument for 𝑑 ≥ 2 spatial dimensions, considering either conserved or non-
conserved fields, generically associates the coarsening dynamics with the deformation and hence
growth of domain-sizes in the system [107]. These dynamics are governed by a simple diffusion-
type or Cahn-Hilliard equation governing the transport of field values and thus the dynamics of
the domain walls in the system. Therefore, it is instructive to investigate the time evolution of
these domains in our system. Note that for 𝑑 = 1 dimensions, there is no such intuitive picture
and no generalised diffusion model of this sort was derived to date.

To further understand the coarsening mechanisms in one spatial dimension, we investigate
the spatial configuration of the aforementioned domains by constructing a function Φ(𝑥), which
jumps by 2𝜋 (−2𝜋) at each kink (anti-kink), thus isolating the effects of the domains themselves
from other excitations, see Fig. 5.2b. The structure factor of Φ, 𝑆Φ(𝑘 , 𝑡) = ⟨Φ(𝑘)Φ(−𝑘)⟩, is
found to exhibit a power-law spectrum with 𝜅 ≈ 2 in the IR. Using the same rescaling algorithm
as in Fig. 5.1, we obtain the scaling exponents 𝛼 = 𝛽 = 0.24(4) (cf. Fig. 5.2b). The residuals
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in the upper inset of Fig. 5.2c indicate that this scaling is concentrated in the IR and that thus
fluctuations across separate wells of the potential contribute to the universal dynamics of the full
fundamental field.

We emphasise, though, that Φ(𝑥) encodes more than the size of the domains seen in Fig. 5.2a.
It captures the sequence of orientations of the kinks and thus the rescaling of the fractal pattern of
steps as illustrated by the black and red lines in the lower panel of Fig. 5.2a. Hence, it embodies
the overall long-wave structure of the DSG field spreading over many minima, which is possible
due to the periodic symmetry of the non-compact DSG potential. The importance of this becomes
clear when reducing the field to an alternating function Φ̃(𝑥) = cos(Φ(𝑥)/2), which alternates
between ±1 and thus encodes the domain length only. We construct the structure factor 𝑆Φ̃(𝑘 , 𝑡) =〈
Φ̃(𝑘)Φ̃(−𝑘)

〉
and extract from it the mean domain length ℓ𝑑 at each time, by fitting a function

𝑓s = 1/[1− (𝑘/𝑘𝑑)2] with 𝑘𝑑 = 2𝜋/ℓ𝑑 to the spectra (see inset of Fig. 5.2c). The evolution of the
domain-size length scale exhibits a power-law evolution in time ℓ𝑑 ∼ 𝑡0.41(1) with an exponent
distinctly different from 𝛽, governing the coarsening of the fundamental field spectra, see Fig. 5.2c.
This shows that the subdiffusive coarsening of the DSG field is a more intricate phenomenon than
domain coarsening and underlines the relevance of the long-range structure of 𝜑, which spreads
over several to many minima of the sinusoidal potential.

5.2.3 diffusion-type scaling in the (1+1)d dsg

As a contrast to the subdiffusive scaling discussed above, the DSG model in 𝑑 = 1 spatial di-
mensions is found to also exhibit diffusion-type self-similar dynamics of the field correlations.
For this, we perform a further simulation with different parameters for the DSG Lagrangian. We
chose the couplings such that the potential landscape now shows a local maximum at ⟨𝜑⟩ = 2𝜋Z,
degenerate global maxima at (2Z + 1)𝜋 and degenerate minima between them. We intialise the
field with a momentum box distribution as before, yet in this case centered around ⟨𝜑⟩ = 0. This
results in a decay to the adjacent minima, but since the field is initialised on a local maximum, the
system does not have enough energy to overcome the potential barrier given by the global maxima,
hence constraining the dynamics to the two neighboring minima. As a result, the model reduces
to an effective 𝜑4 model (see inset of Fig. 5.3a) for which diffusion-type scaling behavior is well
known. Here, the correlations take the form of a universal scaling function with a plateau, show-
casing the length scale of the binary domains which have formed in the dynamics. This allows us
to rescale the spectra as in Fig. 4.1, determining the scaling exponents independently from one
another. We find self-similar scaling of the fundamental field correlations with 𝛼 = 0.53(5) and
𝛽 = 0.52(4), see Fig. 5.3. We hence conclude that the fractal pattern found in Fig. 5.1 which was
the result of the field configurations being able to spread across many minima of the sinusodial
potential defines its own distinct scaling behavior, other than when the field only occupies two
minima.

We note that subdiffusive and diffusive scaling do not imply that the evolution is governed by
a simple diffusion-type equation as is it is often chosen for the phenomenological description
of pattern coarsening. There, a diffusion equation is used to describe self-similar scaling with
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Figure 5.3: Self-similar scaling of the DSG model in (1+1)D with only two minima occupied. (a) Unscaled
structure factor 𝑆(𝑘 , 𝑡) = ⟨𝜑(𝑘 , 𝑡)𝜑(−𝑘 , 𝑡)⟩ of the DSG dynamics, starting from the momentum
box indicated by the blue line. The form differs from that of Fig. 5.1 and shows a plateau, hinting
at a dominant coarsening length scale in the system. The inset shows the PDF (blue bars), which
is centered only around two minima of the shown bare potential (red). (b) Rescaled structure
factor. Using the same algorithm as in Fig. 5.1, we obtain diffusion-type scaling exponents
𝛼 = 0.53(5) and 𝛽 = 0.52(4), obeying 𝛼 = 𝑑𝛽 within errors, here for 𝑑 = 1. The inset shows
the residuals with an even distribution implying strict self-similarity. (c) Inverse 𝜒2 distribution
showing the most likely distribution. The inset shows the stability of scaling w.r.t. the reference
time, with the dashed line indicating the value 0.5.

𝛽 = 1/2, reflecting the combination of a first-order time derivative with a second-order spatial
derivative, and, e.g., the Cahn-Hilliard equation governs scaling with 𝛽 = 1/4, as it contains a
fourth-order spatial derivative as a result of an additional conservation law. We emphasise, though,
that the diffusion-type as well as the subdiffusive scaling observed in our numerics and considered
in this thesis is not to be identified automatically with pattern coarsening phenomenologically or
microscopically described by either of these diffusion-type equations. We rather point out that
the description we aim at, in line with the microscopic description of the scaling close to a non-
thermal fixed point, results in a description of the corresponding scaling on the grounds of the
full non-linear evolution of the system. This typically requires an effective-theory description as
introduced in the present work as well as a (non-)perturbative approach to the scaling analysis of
such a model.

Such a scaling analysis was performed by [85, 178] on sine-Gordon-type models, utilising
a kinetic theory approach and non-perturbative two-particle irreducible (2PI) resummation. It
was found that, assuming both models admit scaling solutions, they both show solutions of the
diffusion-type as well subdiffusive scaling, depending on the number of occupied minima. This
can be easily understood by considering that for dynamics containing only a few minima, the
dominant vertices are 2→ 2 vertices as in a 𝜑4 theory. When many minima are occupied, the full
non-linearity comes into play, making 𝑛→ 𝑛 vertices with large 𝑛 more relevant, thus altering the
scaling behaviour. Our numerics support this distinction, and the obtained scaling exponents are
close to the analytical prediction of 𝛽 = 1/(𝑑 + 1) for subbdifusive and 𝛽 = 1/2 for diffusion-type
scaling. The discrepancy between the numerical results and analytics, though, is a subject to be
investigated and goes beyond the scope of this thesis.
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5.3 low-energy effective theory
In the following, we derive the DSG model as a low-energy effective model of the spin-1 Bose gas.
As mentioned above, the derivation of such a model leads to a significant reduction of complexity
of the problem, isolating the relevant degrees of freedom leading to universal scaling dynamics in
the spinor system. We integrate out the interaction-suppressed density fluctuations in the spin-1
Lagrangian to obtain low-energy effective theories for the spinor and Larmor phase, respectively.
We show that we obtain two kinds of theories: one lowest-energy theory at vanishing momenta,
and a theory at momenta near the spin healing length. With this derivation we show that the
far-from equilibrium dynamics of the spin-1 Bose gas in the easy-plane phase belongs to a sine-
Gordon-type non-equilibrium universality class.

The spin-1 Lagrangian is given by

L =
i
2

(
𝜓∗𝑎𝜕𝑡𝜓𝑎 − 𝜓𝑎𝜕𝑡𝜓
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)
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(𝜓∗𝑎 𝑓 𝑖𝑎𝑏𝜓𝑏)2 , (5.8)

where summation over the same indices is implied and once more 𝜓𝑎 represent the magnetic sub-
levels with 𝑚F = 𝑎 ∈ {−1, 0, 1}. Here and in the following we suppress the space-time arguments
of all fields for brevity. The magnetic field components can be expressed in terms of their respec-
tive densities 𝜌𝑚𝐹

and phase angles 𝜑𝑚𝐹
as 𝜓𝑚𝐹

=
√
𝜌𝑚𝐹

exp
{
i𝜑𝑚𝐹

}
. Rewriting these by means

of the total density 𝜌̃, as well as the mean side-mode density 𝜌 and 𝑧-magnetisation 𝐹𝑧 = 2𝜖 ,

𝜌̃ = 𝜌−1 + 𝜌0 + 𝜌1 , 𝜌 =
𝜌1 + 𝜌−1

2
, 𝜖 =

𝜌1 − 𝜌−1
2

, (5.9)

and of the overall phase 𝜃, the Larmor phase 𝜑L, and the spinor phase 𝜑s,

𝜃 = 𝜑1 + 𝜑−1 , 𝜑L = (𝜑1 − 𝜑−1)/2 , 𝜑s = 𝜃 − 2𝜑0 , (5.10)

yields

𝜓±1 =
√
𝜌 ± 𝜖 ei(𝜃/2± 𝜑L ) , 𝜓0 =

√︁
𝜌̃ − 2𝜌 ei(𝜃 − 𝜑s )/2 . (5.11)

We proceed by inserting the expressions (5.11) into the Lagrangian (5.8), which gives

L = − 𝜌̃

2
( ¤𝜃 − ¤𝜑s

)
− 2𝜖 ¤𝜑L − 𝜌 ¤𝜑s

− 𝜌̃ − 2𝜌
8𝑀

(∇𝜃 − ∇𝜑s)2 −
𝜌

4𝑀
(∇𝜃)2 − 𝜌

𝑀
(∇𝜑L)2 −

𝜖

𝑀
∇𝜑L ∇𝜃 (5.12)

− 1
8𝑀

{
(𝜌 − 𝜖) [∇ ln(𝜌 − 𝜖)]2 + (𝜌 + 𝜖) [∇ ln(𝜌 + 𝜖)]2 + ( 𝜌̃ − 2𝜌) [∇ ln( 𝜌̃ − 2𝜌)]2

}
− 2𝑞𝜌 − 𝑐0

2
𝜌̃2 − 2𝑐1

[
−2𝜌2 + 𝜖2 + 𝜌𝜌̃ +

√︁
𝜌2 − 𝜖2( 𝜌̃ − 2𝜌) cos 𝜑s

]
.
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In the regime of low-energy excitations, density fluctuations are strongly suppressed. Hence, we
assume the density fields to be given by their mean-field background values with small fluctua-
tions added,

𝜌̃(x, 𝑡) = 𝜌̃ = const. , 𝜌(x, 𝑡) = 𝑛 + 𝛿𝜌(x, 𝑡) , 𝜖 (x, 𝑡) = 𝜖 + 𝛿𝜖 (x, 𝑡) , (5.13)

where 𝑛 = const. and, in the easy-plane phase of the spin-1 gas, the mean-field background
solution of the density difference is 𝜖 = 0.

Before inserting this ansatz, we rewrite the terms in Eq. (5.12) which contain time and spatial
derivatives in such a way that the coupling of the overall phase to the Larmor and spinor phases
takes the following form,

L = − 𝜌̃

2

[
¤𝜃 −

(
1 − 2𝜌

𝜌̃

)
¤𝜑s + 4

𝜖

𝜌̃
¤𝜑L

]
− 𝜌̃

8𝑀

[
∇𝜃 −

(
1 − 2𝜌

𝜌̃

)
∇𝜑s + 4

𝜖

𝜌̃
∇𝜑L

]2
− 𝜌

4𝑀

(
1 − 2𝜌

𝜌̃

)
(∇𝜑s)2

− 𝜌

𝑀
(∇𝜑L)2 +

2𝜖2

𝑀𝜌̃
(∇𝜑L)2 −

𝜖

𝑀

(
1 − 2𝜌

𝜌̃

)
∇𝜑L ∇𝜑s (5.14)

− 1
8𝑀

{
(𝜌 − 𝜖)−1 [∇(𝜌 − 𝜖)]2 + (𝜌 + 𝜖)−1 [∇(𝜌 + 𝜖)]2 + ( 𝜌̃ − 2𝜌)−1 [∇( 𝜌̃ − 2𝜌)]2

}
− 2𝑞𝜌 − 𝑐0

2
𝜌̃2 − 2𝑐1

[
−2𝜌2 + 𝜖2 + 𝜌𝜌̃ +

√︁
𝜌2 − 𝜖2( 𝜌̃ − 2𝜌) cos 𝜑s

]
.

By setting the total density to be constant, we imply a conservation law in our system. Such a
density conservation is connected with a U(1) current, which for Schrödinger-type equations is
defined as

j = − i
2𝑀

(
𝜓∗𝑎∇𝜓𝑎 − c.c.

)
=

𝜌̃

2𝑀

[
𝜃 −

(
1 − 2𝜌

𝜌̃

)
𝜑s + 4

𝜖

𝜌̃
𝜑L

]
(5.15)

=
𝜌̃

2𝑀

[
𝜃 −

(
1 − 2𝑛

𝜌̃

)
𝜑s + 4

𝜖

𝜌̃
𝜑L

]
+ O(𝛿𝜌, 𝛿𝜖) . (5.16)

In the last step, we have written the total U(1) Noether current in the mean field. The consequences
of this conservation law hence become clear, when writing out the continuity equation

𝜕𝑡 𝜌̃ − ∇j = 0. (5.17)

Considering a constant total density, and that the global phase 𝜃 does not contain topological
excitations, which is a fair assumption when considering homogeneous density, the continuity
equation then reads

∇𝜃 =

(
1 − 2𝑛

𝜌̃

)
∇𝜑s + 4

𝜖

𝜌̃
∇𝜑L + O(𝛿𝜌, 𝛿𝜖). (5.18)
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We now redefine the total phase by shifting it, as given by the continuity equation, by the spinor
and Larmor phases, each multiplied with a constant, as

𝜃 → 𝜃 = 𝜃 −
(
1 − 2𝑛

𝜌̃

)
𝜑s + 4

𝜖

𝜌̃
𝜑L . (5.19)

Inserting (5.13) and (5.19) into (5.14), one finds that, in leading order, the spinor and Larmor
phases decouple from the total phase, leaving only couplings between the gradients of the phases,
which are linear in 𝛿𝜌 and 𝛿𝜖 ,

L = − 𝜌̃

2
¤̃𝜃 − 𝛿𝜌 ¤𝜑s − 2𝛿𝜖 ¤𝜑L

− 𝜌̃

8𝑀
(
∇𝜃

)2 − 𝑛

4𝑀

(
1 − 2𝑛

𝜌̃

)
(∇𝜑s)2 −

𝑛

𝑀
(∇𝜑L)2 (5.20)

− 𝛿𝜌

4𝑀

[(
1 − 4𝑛

𝜌̃

)
(∇𝜑s)2 + 4(∇𝜑L)2 + 2∇𝜃 ∇𝜑s

]
− 𝛿𝜖

𝑀

[
∇𝜃 ∇𝜑L +

(
1 − 2𝑛

𝜌̃

)
∇𝜑L ∇𝜑s

]
− 1

8𝑀

{
(∇𝛿𝜌)2

𝜌̃ − 2𝑛 − 2𝛿𝜌
+ 2(𝑛 + 𝛿𝜌)
(𝑛 + 𝛿𝜌)2 − (𝛿𝜖)2

[
(∇𝛿𝜌)2 + (∇𝛿𝜖)2

]
− 4𝛿𝜖
(𝑛 + 𝛿𝜌)2 − (𝛿𝜖)2

∇𝛿𝜌 ∇𝛿𝜖
}

− 2𝑞𝛿𝜌 − 2𝑐1

[
( 𝜌̃ − 4𝑛)𝛿𝜌 − 2𝛿𝜌2 + 𝛿𝜖2 +

√︁
𝜌2 − 𝛿𝜖2( 𝜌̃ − 2𝑛 − 2𝛿𝜌) cos 𝜑s

]
− 2𝑞𝑛 − 𝑐0

2
𝜌̃2 − 2𝑐1𝑛 ( 𝜌̃ − 2𝑛) .

At this point, we see that the coupling of the global phase translates into a coupling of the two
phases to each other. Interestingly, these couplings only happen on the level of the spatial gradients
and are a pure beyond-mean-field effect. Numerical simulations using pure mean-field dynamics
indeed confirm the decoupling of the phases from each other, unless one of the phases causes the
spin orientation to flip its sign. Then, the other phase must also self-consistently accommodate
this change via a 𝜋 or 2𝜋 jump, as seen in Sect. 4.3.1.

Approximating the above Lagrangian now to leading order in the density fluctuations, neglect-
ing terms of O(𝛿𝜌𝛼∇𝛿𝜌𝛽∇𝛿𝜌𝛾), as well as terms of order O(𝛿𝜌𝛼∇𝜑𝛽∇𝜑𝛾), with 𝛿𝜌𝛼,𝛽,𝛾 ∈
{𝛿𝜌, 𝛿𝜖}, 𝜑𝛽,𝛾 ∈ {𝜃, 𝜑s, 𝜑L}, we can write it in the following form,

L = L𝜃 + L0 + L1 + L2 + O(𝛿𝜌𝛼∇𝛿𝜌𝛽∇𝛿𝜌𝛾 , 𝛿𝜌𝛼∇𝜑𝛽∇𝜑𝛾) , (5.21)



5.3 low-energy effective theory 77

with

L𝜃 = − 𝜌̃
2
¤̃𝜃 − 𝜌̃

8𝑀
(
∇𝜃

)2 , (5.22a)

L0 = − 𝑛

𝑀
(∇𝜑L)2 −

𝑛

4𝑀

(
1 − 2𝑛

𝜌̃

)
(∇𝜑s)2 − 2𝑞𝑛 − 𝑐0

2
𝜌̃2 − 2𝑐1𝑛( 𝜌̃ − 2𝑛) (1 + cos 𝜑s) , (5.22b)

L1 =

(
− ¤𝜑s − 2𝑞 − 2𝑐1( 𝜌̃ − 4𝑛) (1 + cos 𝜑s) , −2 ¤𝜑L

) ©­«𝛿𝜌𝛿𝜖 ª®¬ , (5.22c)

L2 = (𝛿𝜌 , 𝛿𝜖) ©­«
∇2

4𝑀𝑛

𝜌̃

𝜌̃−2𝑛 + 4𝑐1(1 + cos 𝜑s) 0

0 ∇2

4𝑀𝑛
− 𝑐1 [2 + (2 − 𝜌̃/𝑛) cos 𝜑s]

ª®¬ ©­«𝛿𝜌𝛿𝜖 ª®¬ . (5.22d)

As we disregard fluctuations of the total density, we may also neglect the contribution L𝜃 , which
in the chosen approximation decouples from the remaining Lagrangian. Thus, the approximated
Lagrangian takes the form of

L = L0 + J · δρ + 1
2
δρ𝑇 ·G−1 · δρ + O(𝛿𝜌3, 𝛿𝜖3) , (5.23)

where δρ = (𝛿𝜌, 𝛿𝜖)𝑇 and

J = (− ¤𝜑s − 2𝑞 − 2𝑐1( 𝜌̃ − 4𝑛) (1 + cos 𝜑s),−2 ¤𝜑L) , (5.24)

G−1 =
©­«
∇2

2𝑀𝑛

𝜌̃

𝜌̃−2𝑛 + 8𝑐1(1 + cos 𝜑s) 0

0 ∇2

2𝑀𝑛
− 2𝑐1

(
2 +

(
2 − 𝜌̃

𝑛

)
cos 𝜑s

)ª®¬ . (5.25)

The quadratic form allows us to integrate out the density fluctuations by carrying out the Gaussian
integrals for 𝛿𝜌 and 𝛿𝜖 according to

𝑍 =

∫
D𝛿𝜌D𝛿𝜖 D𝜑sD𝜑L exp

{
i
∫
𝑡 ,𝑥

(
L0 + δρ𝑇J + 1

2
δρ𝑇G−1 · δρ

)}
= 𝐶

∫
D𝜑sD𝜑L exp

{
i
∫
𝑡 ,𝑥

[
L0 − 1

2
JTGJ

]
− 1

2
log detG−1

}
︸                                                      ︷︷                                                      ︸

= exp{i𝑆eff}

,

and collecting the result in the effective action

𝑆eff =

∫
𝑡 ,𝑥

[
L0 − 1

2
JTGJ

]
+ i

2
log detG−1 . (5.26)



78 double sine-gordon universality class of the spin-1 bose gas

Furthermore, neglecting irrelevant constant terms in L0, this procedure yields the following real
part of the effective Lagrangian, where the denominators containing derivatives are implied to
denote the respective Green’s functions:

ReLeff = − 𝑛

𝑀
(∇𝜑L)2 −

𝑛

4𝑀

(
1 − 2𝑛

𝜌̃

)
(∇𝜑s)2 − 2𝑐1𝑛( 𝜌̃ − 2𝑛) cos 𝜑s (5.27)

− 1
2


¤𝜑2

L
∇2

2𝑀𝑛
− 2𝑐1 [2 + (2 − 𝜌̃/𝑛) cos 𝜑s]

+ [ ¤𝜑s + 2𝑞 + 2𝑐1( 𝜌̃ − 4𝑛) (1 + cos 𝜑s)]2
∇2

2𝑀𝑛

𝜌̃

(𝜌̃−2𝑛) + 8𝑐1(1 + cos 𝜑s)

 .

The imaginary part is given by

ImLeff =
1

2Δ𝑡 (Δ𝑥)𝑑
ln

(
(1 + cos 𝜑s) [2 + (2 − 𝜌̃/𝑛) cos 𝜑s]

2 (4 − 𝜌̃/𝑛)

)
, (5.28)

where Δ𝑡 and Δ𝑥 are the time- and length scales relevant for regularisation, defined by
∑

𝑡 ,𝑥 =

(Δ𝑡)−1(Δ𝑥)−𝑑
∫
𝑡 ,𝑥 . As such, they are related to the system’s volume in Fourier space. Moreover,

we have normalised the imaginary part to vanish at 𝜑s = 0, using that overall constants do not
change the generating functional. As this imaginary term only leads to an overall damping of 𝑍 ,
we will focus on discussing the real part in the following.

It is, furthermore, useful to express the Lagrangian in terms of dimensionless space, time, and
energy density,

x =
x̄
𝑘 𝜉s

, 𝑡 = 𝑡
2𝑀
𝑘2
𝜉s

, Leff = L̄eff 𝜌̃
𝑘2
𝜉s

2𝑀
, (5.29)

where the spin healing wave number is defined as

𝑘 𝜉s = (2𝑀𝜌̃ |𝑐1 |)1/2 . (5.30)

In terms of 𝑥, 𝑡 and 𝑞, cf. Eq. (2.21), the real part of the effective Lagrangian in the easy-plane
phase, i.e., for 𝑐1 < 0, 0 < 𝑞 ≤ 1, takes the form

Re L̄eff = − 1
8

[
4(1 − 𝑞) (∇𝑥̄𝜑L)2 +

1
2
(1 − 𝑞2) (∇𝑥̄𝜑s)2 − 2(1 − 𝑞2) cos 𝜑s

]
− 1

2

{
1 − 𝑞

∇2
𝑥̄ + 1 − 𝑞 − (1 + 𝑞) cos 𝜑s

(𝜕𝑡𝜑L)2

(1 − 𝑞2)/8
∇2
𝑥̄ − (1 − 𝑞2) (1 + cos 𝜑s)

[𝜕𝑡𝜑s + 4𝑞 − 2𝑞(1 + cos 𝜑s)]2
}

. (5.31)

For our low-energy effective theory, we consider only momenta which are much lower than the
healing momentum of the system. Hence, we will eventually omit the momentum dependence of
L2, such that the matrix elements of the Green’s function G are given by the respective inverses
of the matrix elements of G−1, Eq. (5.25). Yet, the resulting effective theory would be divergent



5.3 low-energy effective theory 79

for 𝜑s = 𝜋 and, depending on the ratio 𝜌̃/𝑛 and thus 𝑞, in general also at different values of
0 < |𝜑s | < 𝜋. This can be seen as a manifestation of a constraint for the system: the spinor phase
𝜑s cannot ‘hop’ between degenerate ground states across the entire system. In the following, we
will argue that, despite this constraint, there can be nevertheless such hopping between adjacent
minima as long as this occurs locally, i.e., in higher momentum modes of the field.

We may now consider two limiting cases: A lowest-energy theory of very low momenta 𝑘 ≈ 0,
where the field configuration is concentrated around 𝜑s ≈ 2𝜋𝑁 , with 𝑁 ∈ Z, and a theory around
the spin healing momentum 𝑘 = 𝑘 𝜉s , where we can also perform the expansion around 𝜑s ≈ 𝜋𝑁 .

Lowest-energy theory

We first turn to the former. In this case, we assume

𝑘2 ≪ 4𝑘2
𝜉s

, i.e. 0 ≈ 𝑘̄2 ≪ 4 , (5.32)

𝑘̄ = 𝑘/𝑘 𝜉s , such that we can effectively neglect the Laplacian term in the denominators in the
second and third lines of Eq. (5.31). The dynamics of the spin-1 gas in the easy-plane phase are
then characterised by a weakly fluctuating spin length, which corresponds to 𝜑s fluctuating around
one of its mean values 2𝜋𝑁 , with 𝑁 ∈ Z, i.e., to a fully elongated spin vector in the 𝐹𝑥-𝐹𝑦-plane.
Therefore, we can use

1 + cos 𝜑s = 2
[
1 − sin2(𝜑s/2)

]
(5.33)

and expand the denominators in the effective Lagrangian in powers of sin2(𝜑s/2) up to order
sin4(𝜑s/2). Moreover, together with this assumption and motivated by numerical results, we may
also neglect any terms of order ¤𝜑 𝑗 sin2(𝜑s/2) and (∇𝜑 𝑗)2 sin2(𝜑s/2), 𝑗 ∈ {L,s}. With these
approximations, we find that the effective actions for 𝜑L and 𝜑s decouple. For 𝜑s, it takes the
form

Leff
𝜑s = −

1
32𝑐1

¤𝜑2
s −

𝑛( 𝜌̃ − 2𝑛)
4𝑀𝜌̃

(∇𝜑s)2 −
(
2𝑐1𝑛( 𝜌̃ − 2𝑛) − 𝑞2

16𝑐1

)
cos 𝜑s +

𝑞2

32𝑐1
sin2 𝜑s , (5.34)

or, in its dimensionless form

L̄eff
𝜑s =

1
4

[
1
8
(𝜕𝑡𝜑s)2 −

1 − 𝑞2

4
(∇𝑥̄𝜑s)2 + (1 − 2𝑞2) cos 𝜑s −

𝑞2

2
sin2 𝜑s

]
. (5.35)

For 𝜑L, it takes the form

Leff
𝜑L

=
2𝑛
𝑞
¤𝜑2

L −
𝑛

𝑀
(∇𝜑L)2 , i.e. Re L̄eff

𝜑L
=

1 − 𝑞
4𝑞
(𝜕𝑡𝜑L)2 −

1 − 𝑞
2
(∇𝑥̄𝜑L)2 . (5.36)

Thus, the effective theory for the Larmor phase is a quadratic, free model, while the spinor phase
𝜑s is described by a DSG Lagrangian, which exhibits, compared with a pure SG model, a distorted
periodic potential for the phase field. We stress that, in our derivation, the periodic potential
derives from the local spin-spin interactions, in contrast to standard cases, where it is caused by
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a linear coupling due to an external field transverse to magnetisation [146, 179, 180] or results
in a description dual to a 2D Coulomb gas [181–184]. In numerical units, the DSG couplings
are given by 𝜆spin−1 = 1.9 · 10−4 ≈ 5.8𝜆s,spin−1 and 𝑐2

s ≈ 0.01, which is comparable with the
parameters used for the DSG simulations for subdiffusive scaling, see Sect. 5.2.1.

We emphasise that the presence of the sin2 𝜑s term was found to be crucial for achieving scal-
ing behaviour far from equilibrium, even if its relative amplitude is much smaller than that of
the cos 𝜑s term. Truncating the expansion at the leading order would lead to a pure sine-Gordon
model, yet all performed numerical simulations have shown that, in one spatial dimension, the
power spectra remain static in that case. The underlying reason for this behaviour remains unclear.
One possibility is that no suitable initial condition has yet been found which leads to a scaling
solution within the sine-Gordon model. Another possibility is the breaking of classical integra-
bility of the one-dimensional sine-Gordon model by the sin2 𝜑s term. In this thesis, we utilise
semi-classical methods to simulate the dynamics of the quantum system beyond the mean-field
approximation. Such methods take into account quantum fluctuations in the initial condition, yet
the time evolution of a single run follows the classical equations of motion which are integrable
and deterministic. Classical integrable systems are known to generically conserve the shape of
the momentum distribution at all times, due to the infinite conservation laws constraining the
dynamics of the system [185]. This notion is further supported by numerical simulations of the
single-component Bose gas in one spatial dimension governed by an integrable GPE. To date,
there are no known semi-classical simulations exhibiting self-similar scaling, in contrast to re-
sults of the Rubidium experiment in Vienna conducted by S. Erne et al., showing a distinctly
subdiffusive scaling of the single-component Bose gas in one spatial dimension [56].

Theory at non-vanishing momenta

From Eq. (5.31) it becomes clear that the derived DSG model we derived cannot be valid for
𝜑s ≈ (2𝑛 + 1)𝜋, 𝑛 ∈ Z, because, in the limit 𝑘 → 0, the denominator in the terms involving a
shifted ¤𝜑s vanishes in that case. Moreover, for cos 𝜑s = (1 − 𝑞)/(1 + 𝑞), the denominator of the
¤𝜑L-dependent term vanishes, which is possible in the easy-plane phase (0 ≤ 𝑞 ≤ 1). As a result,
long-wave-length fluctuations of the spinor phase, with 𝑘 → 0, will not interpolate between
adjacent minima of the cosine potential, forcing these fluctuations to stay near its minima.

Hence, in order for the DSG model to be applicable for all values of 𝜑s, one needs to con-
sider fluctuations with sufficiently large momenta, such that no divergences can appear in the
above model. Superficially, one can estimate, from the denominator in the spinor-phase depen-
dent terms of (5.27) and (5.31) that, in the easy-plane phase, one needs 𝑘2 ≳ 2𝑘2

𝜉s
in order for the

denominators to be regular throughout. For this estimate, we consider the most basic approxima-
tion, where one replaces the Laplacian in Eq. (5.27) by 𝑘2 ∼ 𝑘2

𝜉s
, (in (5.31) by 𝑘̄ = 𝑘/𝑘 𝜉s = 1)

neglecting therewith that the Green’s function also depends non-linearly on the spinor phase. We
note that in this approximation, we still neglect the coupling of the kinetic terms in Eq. (5.20), in
order to gain intuition to the mechanism behind the momentum dependence. In this very rough
approximation, one thus assumes that only the derivative terms show a momentum dependence,
while cos 𝜑s is taken to be set by its constant mean-field value. After replacing the Laplacian in
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the denominators of Eq. (5.31), ∇2
𝑥̄ → −𝑘̄2 = −1, we may again expand these denominators, how-

ever now about the maxima of the periodic potential in the spinor phase, 𝜑s ≈ (2𝑛 + 1)𝜋, 𝑛 ∈ Z,
and in powers of

1 + cos( [2𝑛 + 1]𝜋 + 𝛿𝜑s) = 2 sin2(𝛿𝜑s/2) (5.37)

up to O(sin4(𝛿𝜑s/2)). Neglecting again any terms of the order ¤𝜑𝑖 (1 + cos 𝜑s) and (∇𝜑𝑖)2(1 +
cos 𝜑s), 𝑖 = s, L, as well as higher than quadratic terms in the derivatives, the theories for 𝜑s and
𝜑L decouple and we yet again obtain a free theory for 𝜑L with

L̄eff
𝜑L

=
1 − 𝑞

16
[
(𝜕𝑡𝜑L)2 − 8 (∇𝑥̄𝜑L)2

]
(5.38)

and a DSG theory for 𝜑s,

Re L̄eff
𝜑s =

1 − 𝑞2

16
[
(𝜕𝑡𝜑s)2 − (∇𝑥̄𝜑s)2

]
+ 𝐴̄𝑅 cos 𝜑s − 𝐵̄𝑅 sin2 𝜑s , (5.39)

with coefficients

𝐴̄𝑅 =
1 − 𝑞2

4

(
1 − 2𝑞2 + 4𝑞2(1 − 𝑞2) + 8𝑞2(1 − 𝑞2)2

)
, (5.40)

𝐵̄𝑅 = 𝑞2 1 − 𝑞2

4

(
1 + 4(1 − 𝑞2) + 4(1 − 𝑞2)2

)
. (5.41)

This again represents a double sine-Gordon Lagrangian, albeit with different ‘couplings’. We
stress, however, that this is a very rough approximation used only to gain intuitive insight into the
effects of the momentum dependence of the DSG couplings and is not intended to constitute a
rigorous derivation.

Nevertheless, we can infer that field configurations in the spinor phase of the spin-1 gas must
interpolate between the minima in a spatially localised manner, on the order of the spin healing
length 𝜉s = (2𝑀𝜌̃ |𝑐1 |)−1/2 only. Such interpolations are indeed observed in the universal scal-
ing dynamics of the full spin-1 model as space-time vortex defects in 𝜑L and 𝜑s, as thoroughly
discussed in Chap. 4. There, recall that the structure factor of the transverse spin was observed
to scale with a distinctly subdiffusive exponent, which the DSG reproduces within the error bars
(See Fig. 5.1 and Fig. 4.1). Our results demonstrate that the DSG dynamics of the spinor phase
alone accounts for the subdiffusive scaling exhibited by the full spin-1 system, while there is no
need to take into account the Larmor and total phases as, e.g., in [106].

Remarkably, we observe that the existence of topological charges, such as winding numbers
seen in the non-equilibrium dynamics of the spin-1 gas, is translated to a non-compact effective
theory, which does not enforce the 2𝜋 periodicity of the phase field 𝜑s. Most importantly, the DSG
model reproduces the subdiffusive scaling of the spinor gas despite the absence of topological in-
formation, thus ultimately allowing for a further analytical study of scaling characteristics, as such
approaches generically require the absence of topological excitations. This further substantiates
the notion that the instanton excitations in the Larmor phase, which give rise to the coarsening
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Figure 5.4: Experimental data after a quench from the polar into the easy-plane phase. (a) Time evolution of
the probability distribution function in the 𝐹𝑥-𝑄𝑦𝑧 plane. The short-time dynamics are charac-
terised by a redistribution along the separatrix, followed by a settling down near the mean-field
expectation value, as seen in the lower right panel. Notice a systematic distortion for long evolu-
tion times compared to Fig. 5.5 which is attributed to a readout calibration error. (b) Probability
distribution function in the transverse spin plane. The ring-shaped distribution of field values
shows that the system is in the easy-plane phase. The spin length |𝐹⊥ | (the radius of the ring)
allows for the estimation of the quadratic Zeeman shift according to |𝐹⊥ | = [1 − 𝑞2]1/2, with
𝑞 = 𝑞/𝑞c = 𝑞/(2𝜌̃ |𝑐1 |).

length scale seen in the transverse spin spectra, merely reflect the true underlying sine-Gordon-
type universality class. In Sect. 4.3.1 we have shown that an instanton in the Larmor phase can
be seen as an interpolating event of the spinor phase from one minimum of the DSG potential to
another. Should these events also follow the spatial and temporal scales given by the DSG, then
the length scale of the transverse spin as seen in the Larmor phase will follow suit.

5.4 comparison with experimental
observations

In the following, we show that the spin-1 Bose gas indeed shows DSG dynamics in the spinor
phase by presenting numerical and experimental evidence. First, we briefly introduce the experi-
mental system and methods that were employed for the acquisition of the experimental data. We
then discuss the probability distribution function of the spinor phase post-quench and compare
the experimental and numerical results supporting our derivation of the DSG model as a LEEFT
of the spin-1 gas.

5.4.1 experimental extraction of observables

We prepare a Bose-Einstein condensate of ∼ 105 87Rb atoms in a quasi-one-dimensional box-like
trapping potential, for more details see [186]. We prepare all atoms in the state 𝐹 = 1, 𝑚F =

0 and initiate spin dynamics by quenching the quadratic Zeeman shift to 𝑞f ≈ 𝜌̃ |𝑐1 | via off-
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Figure 5.5: Spinor phase dynamics after a quench from the polar phase into the easy-plane phase. (a) Short-
time evolution of the spinor phase probability distribution in the 𝐹𝑥-𝑄𝑦𝑧 plane. The upper left
panel gives the visual interpretation of the spinor phase. The dashed black lines in the other
three panels shows the separatrix on the spin-nematic sphere [131]. The distribution across a
separatrix due to Bogoliubov instabilities ultimately leads to a settling of the field configura-
tion in the values corresponding to the full spin orientation (lower right panel of (a)). Time is
given in units of spin healing time 𝑡s = 2𝜋/( 𝜌̃ |𝑐1 |) ≈ 3/(𝑄𝑐s), where𝑄 is the DSG initial-state
momentum-box cutoff and 𝑐s the DSG speed of sound. (b) The theoretical probability distri-
bution function extracted via the angle in the 𝐹𝑥-𝑄𝑦𝑧 plane compared to the experimental one.
The figure shows a larger occupation between the periodic potential minima, due to the method
of extraction.

resonant microwave dressing. The observables are extracted from the measured atomic densities
by employing a POVM-readout, see [145]. We extract the one-dimensional spatial profiles of 𝐹𝑥

and𝑄𝑦𝑧 simultaneously in every experimental realisation. Many repetitions give rise to the phase-
space distributions depicted in Fig. 5.4a. We bin the data according to the optical resolution of
≈ 1 𝜇m and treat each bin as a separate point in the phase space spanned by 𝐹𝑥 and 𝑄𝑦𝑧 .

The system is initialised in a symmetric coherent state and, for short evolution times up to 0.5s,
the measured distributions in 𝐹𝑥 and 𝑄𝑦𝑧 follow the so-called separatrix of the corresponding
mean-field phase space trajectories [132], cf. Figs. 5.5a and 5.4a. For long evolution times, the
system settles into a distribution with non-zero mean transversal spin length 𝐹⊥, which can also
be seen in Fig. 5.4b in the phase-space spanned by 𝐹𝑥 and 𝐹𝑦 , reflecting also the numerical
distribution found in the upper panel of Fig. 4.7d. The dynamics of the measured phase-space
distributions are in good qualitative agreement with the numerical simulations, as can be seen by
comparing Fig. 5.5 and Fig. 5.4.

We estimate the value of 𝑞f from the data shown in Fig. 5.4b by assuming that the configuration
of the system has relaxed close to the mean-field ground state for late times. The positions of the
minima of the mean-field potential in the easy-plane phase depend on 𝑞 via |𝐹⊥ |min = [1− 𝑞2]1/2.
As the distribution in 𝐹⊥ has a maximum at |𝐹⊥ | ≈ 0.75 at time 𝑡 = 19s, we estimate 𝑞 𝑓 ≈ 𝜌̃ |𝑐1 |.
Note that, in contrast to the numerical data shown in figure Fig. 5.5, the measured phase-space
distribution in 𝐹𝑥 and 𝑄𝑦𝑧 is systematically tilted from the 𝐹𝑥-axis for late evolution times. We
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Figure 5.6: Probability distribution histogram (blue bars) of the spinor phase 𝜑s after a quench from the
polar phase to the easy plane. (Upper left panel) Numerical result. After preparing the sys-
tem in the polar phase, 𝑞i > 2 𝜌̃ |𝑐1 |, we quench the quadratic Zeeman shift to 𝑞f = 0.9 𝜌̃ |𝑐1 |,
after which 𝜑s settles quickly into the minima of its effective potential (red crosses), thus un-
derlining the reduction to the DSG model. This potential is extracted in a Boltzmann approx-
imation as 𝑉eff (𝜑s) ∼ − ln(𝑃(𝜑s)). The solid grey line is the analytical expression Eq. (5.34).
Notice a small mean-field shift which forms dynamically and raises the potential for higher
𝜑s. We observe the occupation of many minima of the effective DSG potential. (Lower left
panel) Experimentally extracted distribution of 𝜑s, having prepared ∼ 105 atoms in a quasi-
one-dimensional cigar-shaped trap with hard walls in the longitudinal direction, in the 𝑚F = 0
state with quadratic Zeeman shift 𝑞i ≫ 2𝜌̃ |𝑐1 | and quenching to 𝑞f ≈ 𝜌̃ |𝑐1 |. The cor-
responding oscillating effective potential (red crosses) is evaluated after an evolution time
𝑡 = 19s ≈ 38 𝑡s = 38 · 2𝜋/( 𝜌̃ |𝑐1 |) ≈ 115 (𝑄𝑐s)−1. The pedestal of the histogram can be
attributed to the employed measurement scheme. The dashed line shows the theoretical PDF
using the same extraction method as in the experiment, and taking into account a systematic
calibration offset. The upper and lower right panels show the spatial configuration of 𝜑s for
three different realisations denoted each by a different shade of blue. One observes that the
field configuration interpolates between the DSG minima via localised phase kinks that cause
the field to spread over several minima.

attribute this tilt to a systematic calibration error in the readout scheme. As a result, the readout
axes are not perfectly orthogonal, which induces a distortion of the experimental distributions.
For the spinor-phase histogram shown in Fig. 5.6 this leads to a shift of ≈ 0.083(3) 𝜋 and was
taken into account by shifting the numerical curve accordingly (dashed line in Fig. 5.6).

5.4.2 dsg dynamics of the spinor phase

Fig. 5.6 (left panels) show the post-quench long-time probability distribution function (PDF) of
the spatially resolved spinor phase profiles inferred from 103 truncated Wigner (upper) and 140
experimental runs (lower panel). The PDF is localised at multiples of 2𝜋, corresponding to the
minima of the effective DSG potential. We conclude that the approximation of small 𝜑s − 2𝜋Z,
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Figure 5.7: Self-similar scaling of the DSG model in (2+1)D. (a) Time evolution of the structure factor
𝑆(𝑘 , 𝑡) = ⟨|𝜑(𝑘 , 𝑡) |2⟩. The initial condition (blue line) is a box with cutoff 𝑄. The redistribu-
tion of excitations in the system leads to a power law in the IR, for momenta greater than a
characteristic scale 𝑘Λ (𝑡) ∼ 𝑡−𝛽 . The inset shows the probability distribution histogram 𝑃(𝜑)
of the DSG field, demonstrating the occupancy of only two adjacent minima of the DSG po-
tential in the simulations. (b) The collapse of the curves to the universal scaling function, with
reference time 𝑡ref = 100 (𝑄𝑐s)−1, shows the spatio-temporal scaling of the correlator with
exponents 𝛼 = 0.98(20) and 𝛽 = 0.51(7). The inset shows the residuals of the spectra w.r.t. the
reference spectrum. The equal distribution of errors confirms self-similarity of the evolution.
(c) Inverse 𝜒2 distribution showing the most likely scaling exponents. Notice the proximity of
the scaling exponents to the 𝛼 = 𝑑𝛽 = 2𝛽 line. The inset shows the stability of the scaling of
𝛼 (red) and 𝛽 (blue) w.r.t. the reference time. The blue and red dashed lines show the value 0.5
and 1, respectively.

chosen in the derivation of the LEEFT (5.34), is experimentally confirmed, thus underlining the
reduction of the dynamics to a DSG model. Note that the experimental histograms show proba-
bilities for the field configuration to take on a value at (2𝜋 + 1)Z, in contrast to the numerical
results. To explain this, we consider the experimental method for extracting the spinor phase. In
Sect. 2.2.6, we discussed several SU(2) subspaces of the spin-1 manifold. Particular subspaces,
under the assumption of ⟨𝐹𝑧⟩ = 0, are {𝐹𝑥 ,𝑄𝑦𝑧 ,𝑄0} and {𝐹𝑦 ,𝑄𝑥𝑧 ,𝑄0}. For brevity, we con-
strain the discussion here to the former subsphere. The extraction of the spinor phase can be done
by numerically directly accessing the complex phases of the fundamental fields. Yet, one may
also employ the spin-nematic sphere and read out the orientation of the field in the 𝐹𝑥-𝑄𝑦𝑧 plane.
The latter is the procedure which is implemented in the experiment. It is important to note that
the full spinor phase dynamics is given only by considering both spin-nematic spheres simultane-
ously, thus eliminating the effect of the Larmor phase (as discussed in Sect. 2.2.6). By performing
the readout of the coordinates in only one sphere, we obtain a non-vanishing probability of field
configurations around 𝜑s ≈ 𝜋. Fig. 5.5b showcases that numerically implementing this proce-
dure reproduces the pedestals obtained from the experimental data in theory, see also the black
dashed line in the lower left panel of. Fig. 5.6, corroborating a distribution of the experimental
data according to the double sine-Gordon model.

The logarithm of the PDF, which in equilibrium is proportional to the free energy of the system,
provides an estimate of the effective potential, coinciding qualitatively for the simulated and mea-
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Figure 5.8: Time evolution of the spatial patterns of the DSG model in (2+1)D. Snapshots of the 2D system
at 4 different evolution times 𝑄𝑐s𝑡 ∈ {0, 312, 625, 938} of the coarsening evolution. In the
initial state, the spinor phase is randomly distributed about 𝜑 = 𝜋, the value at a maximum
of the DSG potential, fluctuating according to the box distribution shown in the left panel of
Fig. 5.7. The system early-on develops closed domains where 𝜑 fluctuates around either of the
two values 0 and 2𝜋. With time proceeding these domains grow in size and eventually merge.

sured distributions. Most importantly, we find field configurations to spread over many minima
of the periodic potential, as exemplarily shown in the right panels for 3 realisations each.

5.4.3 scaling evolution according to the two-dimensional dsg model

In contrast to the one-dimensional case, scaling dynamics resulting in a diffusion-type exponent in
a two-dimensional spin-1 system [77] has been attributed to the dynamics of spin vortex patterns.
To compare with this setting, we simulate the DSG model in two dimensions with couplings
𝜆 = 1.6 = 100𝜆s in numerical units, preparing again a momentum box of DSG field about a
mean value ⟨𝜑⟩ = 𝜋 chosen at a maximum of the cosine potential. An analysis of the ensuing
evolution of the 𝜑 distribution in this case reveals that the DSG field 𝜑 is concentrated mainly
across two minima of the periodic effective potential, see inset of Fig. 5.7a. This corresponds to
the formation of spin-type magnetic domains as seen in Fig. 5.8b. At long evolution times, these
domains coarsen, i.e., grow in size, corresponding to universal dynamical scaling evolution with
𝛽 ≈ 0.5, cf. Fig. 5.7. The time evolution and scaling collapse of the spectra 𝑆(𝑘 , 𝑡) are shown in
Figs. 5.7a,b. The presence of a weak plateau in the spectra allows us to rescale the spectra while
optimising 𝛼 and 𝛽 independently, with larger errors on 𝛼 than 𝛽 due to the smallness of the
plateau, see panel c. We obtain 𝛽 = 0.51(8), 𝛼 = 0.98(20) ≃ 𝑑𝛽 and 𝜅 = 2.76(1), corroborating
the spin-1 results from [77] within the error bounds. Once more we find indications that the spread
of the DSG field across the potential is crucial for the type of scaling found in the system.

5.5 conclusion and outlook
In this chapter, we have shown that the universal dynamics of the intricate spin-1 Bose gas after
a quench of the quadratic Zeeman shift from the polar phase to the easy-plane phase can be re-
captured by a real scalar field theory, which takes the form of a double sine-Gordon model for
the spinor phase degree of freedom. This effective description is consistent with numerical and
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experimental observations regarding the probability distribution function of 𝜑s. In our derivation,
we have shown that we may obtain two sets of models: one lowest-energy model for low wave-
numbers and a model for momenta on the order of the spin healing momentum. We have shown
that the model naturally constrains the hopping between the degenerate minima of the periodic
potential to happen in a highly localised manner on the order of the spin healing length, reflecting
the reality seen in numerics and experiment. The far-from-equilibrium dynamics of the effective
model shows pattern coarsening in the IR regime of wave numbers 𝑘 ≪ 𝑘 𝜉s , of the subdiffu-
sive (𝛽 < 1/2), as well as the diffusion type (𝛽 = 1/2), consistent with previous findings of [1,
75, 77] for the full spin-1 gas. The subdiffusive and diffusion-type scaling are associated with
field configurations spreading over many, or few minima of the sinusoidal potential, respectively.
These results corroborate analytical findings of Refs. [85, 178]. Our results are crucial to the un-
derstanding of the dominant mechanisms leading to self-similar scaling far from equilibrium. The
reduction to a non-compact field theory of a single real scalar field, advances our efforts towards
the identification of far-from-equilibrium universality classes. They open a path for classifying
subdiffusive [53, 56, 72, 78, 87, 187] vs. diffusion-type scaling [53, 55, 71, 77, 81, 100, 101, 120]
also in other systems.

The appearance of the (double) sine-Gordon model as an effective model for many systems may
constitute an overarching non-equilibrium universality class to which the aforementioned systems
belong to, thus underlining the strength of a universal description for far-from-equilibrium dynam-
ics. It is worth noting that the sine-Gordon model has a natural connection to the description of
vortex dynamics, particularly in the context of the Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion [180, 181, 188]. The emergence of this model in a setting where topological defects and their
redistribution play a central role is unlikely to be coincidental. However, establishing a general
non-equilibrium framework that connects a compact model such as the XY model to the non-
compact sine-Gordon model, an approach which is well known in equilibrium studies, is a highly
non-trivial task and lies beyond the scope of this thesis.

Our results furthermore open up the possibility to use the spin-1 Bose gas for experimentally in-
vestigating fundamental sine-Gordon dynamics. Currently, the experiment developed a new mea-
surement scheme, enabled through the derivation of this effective theory, aimed at calibrating
and stabilising control over the quadratic Zeeman shift (see Chap. 7 for further details). In Ref.
[4], experimental efforts focus on exploring sine-Gordon dynamics by utilising the spinor gas
as a platform. These studies concentrate on the dynamics of quasi-topological excitations, such
as sine-Gordon solitons and their collisions [189], breathers and 𝑛-bounce solutions [190, 191].
These phenomena are hallmark solutions of the sine-Gordon model, and their emergence in the
system provides compelling evidence for the validity of the effective theory in the easy-plane
regime.





Part III

SYMMETRIES





In this part, we explore the importance of symmetry in dynamics far from equilibrium, using the
spin-1 Bose gas as a platform. In equilibrium, the density matrix of a system is proportional to
the exponential of the system’s Hamiltonian, thus naturally obeying the same symmetries as the
Hamiltonian. Therefore, symmetry identities constraining the field configurations on the level of
correlations stem purely from the symmetry of the model. In contrast, the ability to break the
symmetry in non-equilibrium via the introduction of a symmetry-violating initial density matrix
leads to an important distinction of symmetry on the level of the observable and on the level of
the Hamiltonian.

In the broader context of this thesis we have discussed approaches to characterise and identify
non-thermal fixed points, which generically classify systems according to their symmetries. For
example, the symmetry of a system contains valuable information crucial for the development of
effective theories. Yet, the derivation of an effective theory for a system far from equilibrium is es-
pecially challenging, since symmetries in non-equilibrium systems may be a dynamical and emer-
gent quantity. Hence, in order to obtain the effective theory underlying the far-from-equilibrium
dynamics of a system, the emergent symmetry must be considered, in addition to that of the
Hamiltonian.

In Chap. 6, we introduce a method for the extraction of the symmetry content in a dynamical sys-
tem out of equilibrium and apply it to the spin-1 Bose gas in the easy plane. To this end, we derive
a set of Ward-Takahasi identities of spin-operator correlations for a spontaneously broken SO(2)
symmetry. Defining so-called symmetry witnesses, we numerically show that starting from an ex-
plicitly symmetry-broken initial condition of a non-Gaussian density matrix in the easy plane, the
symmetry is dynamically asymptotically restored on a timescale much faster than the equilibra-
tion timescale. We find that lower-order correlations restore the symmetry content rather quickly,
while higher-order correlations retain their memory of the initial state for longer times. Studying
experimental data of a quenched spinor gas, we discuss the spontaneous symmetry breaking in
the context of these symmetry witnesses.

In the final chapter of this thesis, Chap. 7, we present recently obtained results, which have not
been published as of the time of writing. The developed approach to use Ward identities to define
symmetry witnesses allows us to connect two scaling behaviours found in the spin-1 gas to the
underlying symmetry emerging dynamically in the system. The change of the quench parameters
is seen to give rise to a symmetry crossover, where the value of the scaling exponents changes
rapidly due to a different symmetry emerging dynamically. Finally, we show that we are able to
reconcile the discrepancy between numerically observed and experimentally measured results for
the scaling behaviour of the post-quench spin-1 dynamics. We discuss the implications of these
findings on the underlying sine-Gordon effective theory. This chapter is intended to provide a
short, yet detailed outlook, highlighting promising directions for future research.
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6EXTRACTING THE
SYMMETRIES OF
NON-EQUILIBRIUM
QUANTUM MANY-BODY
SYSTEMS

By tomorrow, we forget the remains, we start over
That’s the problem

– Kendrick Lamar, ”The Heart Part 5”

Symmetries play a pivotal role in our understanding of the properties of quantum many-body
systems. While there are theorems and a well-established toolbox for systems in thermal equilib-
rium, much less is known about the role of symmetries and their connection to dynamics out of
equilibrium. This arises due to the direct link between a system’s thermal state and its Hamiltonian,
which is generally not the case for non-equilibrium dynamics. In this chapter, we present a path-
way to identify the effective symmetries and to extract them from data in non-equilibrium quan-
tum many-body systems. Our approach is based on exact relations between correlation functions
involving different numbers of spatial points, which can be viewed as non-equilibrium versions
of (equal-time) Ward identities encoding the symmetries of the system. We derive symmetry wit-
nesses, which are particularly suitable for the analysis of measured or simulated data at different
snapshots in time. To demonstrate the potential of the approach, we apply our method to numerical
and experimental data for a spinor Bose gas. We investigate the important question of a dynamical
restoration of an explicitly broken symmetry of the Hamiltonian by the initial state. Remarkably,
it is found that effective symmetry restoration can occur long before the system equilibrates. We
also use the approach to define and identify spontaneous symmetry breaking far from equilib-
rium, which is of great relevance for applications to non-equilibrium phase transitions. Our work
opens new avenues for the classification and analysis of quantum as well as classical many-body
dynamics in a large variety of systems, ranging from ultracold quantum gases to cosmology.

This chapter is structured as follows: We begin by giving a general introduction to the subject
in Sect. 6.1, followed by a discussion of symmetry transformations in and out of equilibrium in
Sect. 6.2. Next, in Sect. 6.3, we derive a set of symmetry identities for the spin-1 Bose gas in the
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easy plane, finding relations between the correlations of the transverse spin components 𝐹𝑥 and
𝐹𝑦 , with which we define the so-called symmetry witnesses. Thereafter, in Sect. 6.4, we probe
the dynamics of the spin-1 Bose gas in a non-equilibrium setting, having explicitly broken the
symmetry in the initial condition. We observe and discuss the restoration of symmetry in this
non-equilibrium setting and show the dependence of the results on the initial condition. Finally,
we discuss spontaneous symmetry breaking, using experimental data from quench experiments
of the BEC lab by Markus K. Oberthaler in Sect. 6.5.

This chapter is taken and adapted from [3], a collaborative publication including three groups. I
stress that many parts of this chapter are taken verbatim from the publication, yet some parts were
edited and expanded upon to better fit the context of this thesis. The development of symmetry
witnesses and the analytical calculation of the identities were performed by A. N. Mikheev and V.
Noel, whereas key ideas, all numerical simulations and parts of the data analysis were performed
by me. The experimental data was measured by S. Lannig and H. Strobel, and analysed by V. Noel.
This work has also been presented in the dissertation of V. Noel [116].

6.1 introduction
As discussed in Chap. 4 and Chap. 5, the analytical study and analysis of dynamics far from
equilibrium remains a challenging and, to date, largely unsolved problem. To gain a deeper in-
sight to the relevant processes and mechanisms driving the system as it evolves in time towards
equilibrium, various theoretical frameworks are utilised to simplify the dynamics to its essential
components. As emphasised in the course of this thesis, the framework of deriving effective the-
ories is of particular relevance when attempting to classify various models into non-equilibrium
universality classes. Effective theories allow for the extraction of the relevant degrees of freedom
in the dynamics, often mapping the system onto well-known field theories, such as a Luttinger liq-
uid [106] or a sine-Gordon model [2, 147, 148]. Whether symmetries stem from the Hamiltonian
or emerge dynamically from the non-equilibrium time evolution, they constitute, in principle, a
key step towards extracting effective field theories from experimental and numerical data and thus
a better understanding of the underlying non-equilibrium dynamics.

In this chapter, we describe a general pathway for extracting the effective symmetries of non-
equilibrium quantum many-body systems using equal-time correlation functions. The approach
takes into account that the density operator 𝜌̂𝑡 describing a non-equilibrium state at any time 𝑡

may not be directly related to the Hamiltonian 𝐻̂, unlike in thermal equilibrium, where 𝜌̂eq ∼
exp

(
−𝛽𝐻̂

)
for the example of a canonical ensemble. Instead, we exploit that the symmetries can

be classified on the level of observables, i.e., expectation values Tr
[
𝜌̂𝑡 Ô(x1, . . . ,x𝑛)

]
of 𝑛-point

operators Ô(x1, . . . ,x𝑛). We derive exact relations between expectations values of operators in-
volving different numbers 𝑛 of spatial points, which encode the symmetry properties of the system.
Our equations can be viewed as non-equilibrium versions of (equal-time) Ward identities [103].
For the example of a spin-1 Bose gas, we show that extracting the 𝑛-point functions from spa-
tially resolved data allows one to efficiently uncover the presence or absence of a given symmetry.
For this, we define symmetry witnesses and apply our approach to analyse the dynamical effec-
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tive restoration of explicit symmetry breaking. Remarkably, we observe that effective symmetry
restoration can occur long before the system equilibrates, which is a crucial ingredient for the con-
struction of effective theories for non-equilibrium evolutions. Importantly, we also demonstrate
how the method can be used to define and identify spontaneous symmetry breaking even far from
equilibrium, opening up numerous applications for non-equilibrium phase transitions.

While the approach can be used for any analytical or classical simulation technique of quantum
many-body systems, we emphasize that it is particularly well suited for large-scale (analog) quan-
tum simulations based on setups with ultracold quantum gases [192, 193]. These systems can
realise a wide range of Hamiltonians with different symmetries, variable interactions and degrees
of freedom based on atomic, molecular, and optical physics engineering. They offer high control
in the preparation and read-out of the quantum dynamics, with the ability to explore new regimes
even far from equilibrium [54–56] that are otherwise difficult to access directly.

6.2 symmetries and dynamics
For the following discussion, it will be important to distinguish symmetries of a state or den-
sity operator from symmetries of the Hamiltonian that governs the equations of motion [194]. A
Hamiltonian 𝐻̂ is symmetric under the group of transformations 𝐺 if [𝑈, 𝐻̂] = 0 for every𝑈 ∈ 𝐺.
This group can be either discrete or continuous, with 𝑈 forming an (anti-)unitary representation
of 𝐺 on the Hilbert space of the system [195, 196]. In this chapter, we focus on the case of con-
tinuous unitary symmetries. In addition, we assume that the considered continuous symmetries
have the structure of a Lie group, whose elements can be written as

𝑈 = exp(i𝛼𝑘𝑇𝑘) , [𝑇𝑖 ,𝑇𝑗] = i 𝑓𝑖 𝑗𝑘𝑇𝑘 , (6.1)

where 𝑓𝑖 𝑗𝑘 are the structure constants that characterise the underlying Lie algebra, and the oper-
ators 𝑇𝑘 are the generators of the group. For brevity we have restricted ourselves to elements of
𝐺 that are simply connected to the unity element. Since 𝑈 is unitary, the operators 𝑇𝑘 are Hermi-
tian and taken to correspond to physical observables. From Eq. (6.1) it immediately follows that
[𝑇𝑘 , 𝐻̂] = 0, implying that the generators of 𝐺 are conserved quantities.

On the other hand, the state at time 𝑡, described by the density operator 𝜌̂𝑡 , is symmetric under
𝐺 if [𝑈, 𝜌̂𝑡 ] = 0 for every 𝑈 ∈ 𝐺. From this, one also concludes the following rigorous property
for the unitary time evolution of quantum systems described by the von Neumann equation: If
the density operator 𝜌̂𝑡0 explicitly breaks a symmetry of the Hamiltonian 𝐻̂ at some given time
𝑡0, then it cannot be restored on a fundamental level at any other time. Conversely, starting with
a symmetric state and following a unitary evolution respecting the same symmetry, it will never
be explicitly broken.

However, these strict statements are not in conflict with the assertion that typical observables
may show emergent phenomena which involve the effective restoration of an initially broken sym-
metry or vice versa. In this chapter, we will consider expectation values Tr

[
𝜌̂𝑡 Ô(x1, . . . ,x𝑛)

]
of 𝑛-point operators Ô(x1, . . . ,x𝑛) as observables. An effective symmetry still remains a set of
transformations which leave observable properties of the system unchanged, though the set of
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observables becomes restricted in practice, which in our case will be related to finite numbers for
𝑛. For instance, the notion of effective or relevant symmetries for observable properties is at the
heart of macroscopic theories for non-equilibrium evolutions, such as effective kinetic theories
or hydrodynamics describing the long-time and long-distance behaviour of an underlying micro-
scopic many-body system in terms of few-point functions only [12]. In this respect, the discussion
also closely resembles the one concerning thermalisation in closed quantum systems with unitary
time evolution [197].

So far we have distinguished the symmetries of the state from the those of the Hamiltonian
with the possibility of explicit symmetry breaking. However, for many-body systems it is also
important to distinguish an explicit breaking of a symmetry from the phenomenon of spontaneous
symmetry breaking. The latter is crucial, e.g., for our understanding of typical phase transitions
where an order-parameter can be defined to vanish on one side of the transition while taking on a
non-zero value otherwise. Though this is of course well established in equilibrium, the definition
and detection of spontaneously broken symmetries out of equilibrium is much less explored.

Spontaneous symmetry breaking implies that the symmetry of the system’s state is reduced to
a residual symmetry subgroup of 𝐺 without explicit symmetry violation. Generally, the system
will be in a superposition of degenerate states such that the symmetry breaking is not manifest. To
efficiently characterise spontaneous symmetry breaking in terms of an order parameter, one needs
to lift the degeneracy and favour one of the infinitely many symmetry-breaking configurations.
This is typically achieved by adding a small symmetry-breaking perturbation to the Hamiltonian,
such as 𝐻̂ → 𝐻̂ +

∫
𝐽 Ô for a given order-parameter operator Ô. To remove the explicit symmetry

breaking in the end, such a bias is introduced as a limiting procedure. Spontaneous symmetry
breaking is then identified by a non-vanishing expectation value

lim
𝐽→0+

Tr
[
𝜌̂𝑡 Ô(x)

]
= v𝑡 (x) . (6.2)

Crucially, in the case of spontaneous symmetry breaking one finds a non-zero order parameter,
v𝑡 (x) ≠ 0, even in the limit of a vanishing perturbation, 𝐽 → 0+. On the other hand, v𝑡 (x) is
zero in the symmetric state. The choice of an order parameter operator is not unique, although
often suggested by the physics of the spontaneous symmetry breaking. Here, we have restricted
ourselves to cases that can be characterised by a local order parameter. For translationally invariant
systems in space and/or time, the function v𝑡 (x) naturally reduces to a respective constant.

For non-equilibrium systems, there are interesting further options to introduce a symmetry-
breaking bias, e.g., through the choice of an explicit symmetry-breaking state at a given initial
time 𝑡0 with

[𝑈, 𝜌̂𝑡0] ≠ 0 , [𝑉 , 𝜌̂𝑡 ] = 0 , (6.3)

while the symmetry of the Hamiltonian remains unaffected with [𝑈, 𝐻̂] = 0. In this case, the
initial explicit symmetry breaking is not restricted to small perturbations. In situations where
the explicitly broken symmetry gets effectively restored dynamically during the time evolution,
spontaneous symmetry breaking is still signalled by the emergence of a non-zero order parameter
(6.2). Typically, this requires an evolution of the system to sufficiently late times such that the
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initial explicit symmetry breaking is effectively reduced to a small perturbation. In the following
sections, we will employ and discuss how symmetry can be broken through initial conditions in
systems out of equilibrium. Specifically, we will introduce relationships between different 𝑛-point
functions to identify symmetries and to distinguish between explicit and spontaneous symmetry
breaking.

6.3 symmetry identities between
equal-time correlation functions

We are probing the symmetry content of our system via equal-time correlation functions. Since
such correlators can be extracted from measurements at different snapshots in time, they are par-
ticularly convenient for studying cold atom systems and matching theory to experiment. In spinor
Bose gases, a convenient choice of experimentally accessible observables are the spin operators
𝐹̂𝑖 . On a theoretical level, the corresponding equal-time correlation functions can then be conve-
niently extracted from the generating functional

𝑍𝑡 [J ] = Tr
{
𝜌̂𝑡 exp

[∫
d𝑥 J (𝑥) · F̂ (𝑥)

]}
, (6.4)

where 𝜌̂𝑡 is the density matrix of the system in the Schrödinger picture at time 𝑡, not necessarily
normalised to unity. Symmetrically ordered equal-time spin correlation functions are obtained by
taking derivatives with respect to 𝐽𝑖 (𝑥) and setting the latter to zero:

𝑍
(𝑛)
𝑡 ,𝑖1...𝑖𝑛 [0] (𝑥1, . . . , 𝑥𝑛)

𝑍𝑡 [0]
=

1
𝑛!

∑︁
𝜎∈𝑆𝑛

〈
𝐹̂𝑖𝜎1
(𝑥𝜎1) . . . 𝐹̂𝑖𝜎𝑛

(𝑥𝜎𝑛
)
〉
. (6.5)

Here, the prefactor 1/𝑍𝑡 [0] takes care of the density matrix normalisation, 𝑆𝑛 denotes the set of
all permutations of {1, . . . , 𝑛}, ⟨. . .⟩ ≡ Tr{ 𝜌̂𝑡 . . .}, and we have introduced the notation

𝑍
(𝑛)
𝑡 ,𝑖1...𝑖𝑛 [J ] (𝑥1, . . . , 𝑥𝑛) ≡

𝛿𝑛𝑍𝑡 [J ]
𝛿𝐽𝑖1 (𝑥1) . . . 𝛿𝐽𝑖𝑛 (𝑥𝑛)

. (6.6)

The correlation functions (6.5) contain disconnected, lower-order parts. To remove this redun-
dant information and generate connected correlation functions, one can invoke an equal-time
equivalent of the Schwinger functional,

𝐸𝑡 [J ] = log 𝑍𝑡 [J ] . (6.7)
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As an example, a two-point connected symmetric spin correlation function generated by the func-
tional 𝐸𝑡 is given by

𝐸
(2)
𝑡 ,𝑥𝑦 [0] (𝑥1, 𝑥2) =

1
2

〈
𝐹̂𝑥 (𝑥1) 𝐹̂𝑦 (𝑥2) + 𝐹̂𝑦 (𝑥2) 𝐹̂𝑥 (𝑥1)

〉
−

〈
𝐹̂𝑥 (𝑥1)

〉 〈
𝐹̂𝑦 (𝑥2)

〉
, (6.8)

and correspondingly for higher-order correlation functions.
Since the spin operators 𝐹̂𝑖 transform trivially under U(1), we will focus on the SO(2) part and

derive associated symmetry identities between different correlation functions. Following the dis-
cussion in the previous sections, we will assume that the initial state 𝜌̂𝑡0 is also SO(2)-invariant,
ensuring that the symmetry is fully respected on the dynamical level. In this case, the density ma-
trix 𝜌̂𝑡 remains formally symmetric at any time 𝑡 ≥ 𝑡0, even in the case of spontaneous symmetry
breaking. As pointed out above, to address the latter scenario, one has to introduce a symmetry-
breaking bias to the system. In this work, the role of such a bias will be played by the sources 𝐽𝑖
coupled to the spin operators in the definition (6.4) of the generating functional, which will be
addressed in more detail in the following.

From (6.4) we conclude, together with 𝜌̂𝑡 = 𝑈 𝜌̂𝑡 𝑈
−1, where 𝑈 ∈ SO(2), that

𝑍𝑡 [J ] = Tr
{
𝜌̂𝑡 exp

[∫
d𝑥 J (𝑥) ·

(
𝑈−1 F̂ (𝑥)𝑈

)]}
, (6.9)

where we have used the cyclic property of trace and 𝑈−1 exp (𝐴)𝑈 = exp
(
𝑈−1𝐴𝑈

)
.

The spin operators 𝐹̂𝑖 live in the fundamental representation of the rotation group and thus
transform as

𝐹̂𝑖 → 𝑅𝑖 𝑗 (𝜖) 𝐹̂𝑗 = 𝐹̂𝑖 + i𝜖𝑇𝑖 𝑗 𝐹̂𝑗 + O
(
𝜖2

)
, 𝑇 =

©­­­«
0 i 0

−i 0 0

0 0 0

ª®®®¬ , (6.10)

where 𝑅(𝜖) denotes the rotation matrix by an angle 𝜖 about the 𝐹𝑧 axis with its single generator
𝑇 .

Together, Eqs. (6.4) – (6.10) imply 𝑍𝑡 [J ] = 𝑍𝑡 [𝑅−1J ], and likewise 𝐸𝑡 [J ] = 𝐸𝑡 [𝑅−1J ],
where we have used the fact that J ·

(
𝑅F̂

)
=

(
𝑅−1J

)
· F̂ . Taking 𝑅 to be infinitesimal, this

yields 𝐸𝑡 [𝐽𝑥 − 𝜖𝐽𝑦 , 𝐽𝑦 + 𝜖𝐽𝑥] − 𝐸𝑡 [𝐽𝑥 , 𝐽𝑦] = 0. Expanding it to linear order in the rotation angle
𝜖 , we finally derive the master symmetry identity:∫

d𝑥′
[
𝐽𝑥 (𝑥′) 𝐸 (1)𝑡 ,𝑦 [J ] (𝑥′) − 𝐽𝑦 (𝑥′) 𝐸

(1)
𝑡 ,𝑥 [J ] (𝑥′)

]
= 0 . (6.11)

By taking further 𝐽-derivatives one can generate an infinite hierarchy of symmetry identities en-
coding the SO(2) symmetry of the system.

Here and in the following, we assume that the mean field does not break spatial homogene-
ity. To emphasise the distinction between the fields 𝐹̂𝑥 and 𝐹̂𝑦 , we then introduce the notation
(𝐹𝑥 , 𝐹𝑦) → (𝜋,𝜎), (𝐽𝑥 , 𝐽𝑦) → (𝐽𝜋 , 𝐽𝜎), and accordingly ⟨𝜋̂⟩ = 0 and ⟨𝜎̂⟩ = v𝑡 . To allow for
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a spontaneous symmetry breaking scenario, we first explicitly break the symmetry via a linear
source term

∫
d𝑥 𝐽 𝜎̂(𝑥), cf. the discussion in Sect. 6.2:

⟨𝜎̂⟩ = lim
𝐽→0+

𝐸
(1)
𝑡 ,𝜎 [𝐽𝜋 = 0, 𝐽𝜎 = 𝐽] = v𝑡 . (6.12)

The symmetry-breaking case corresponds to v𝑡 ≠ 0, whereas v𝑡 = 0 in the symmetric phase.
For spin systems, this symmetry-breaking term allows for a simple physical interpretation as a
deformation of the initial density matrix, which is discussed in more detail in App. A.2.

Differentiating the master symmetry identity (6.11) once with respect to 𝐽𝜋 we get∫
d𝑥′

[
𝛿(𝑥′ − 𝑥′′) 𝐸 (1)𝑡 ,𝜎 [J ] (𝑥′) + 𝐽𝜋 (𝑥′) 𝐸

(2)
𝑡 ,𝜎𝜋 [J ] (𝑥′, 𝑥′′)

− 𝐽𝜎 (𝑥′) 𝐸 (2)𝑡 ,𝜋𝜋 [J ] (𝑥′, 𝑥′′)
]
= 0 . (6.13)

Setting the sources to (0, 𝐽) and going to Fourier space we obtain

𝐸
(1)
𝑡 ,𝜎 [0, 𝐽] − 𝐽 𝐸̃ (2)𝑡 ,𝜋𝜋 [0, 𝐽] (𝑝 = 0,−𝑝 = 0) = 0 , (6.14)

where we have introduced the notation

𝐸
(𝑛)
𝑡 ,𝑖1...𝑖𝑛 (𝑝1, . . . , 𝑝𝑛) ≡ 2𝜋𝛿

(
𝑛∑︁
𝑖=1

𝑝𝑛

)
𝐸̃
(𝑛)
𝑡 ,𝑖1...𝑖𝑛 (𝑝1, . . . , 𝑝𝑛) . (6.15)

Similarly, differentiating the master symmetry identity (6.11) once with respect to both 𝐽𝜋 and
𝐽𝜎 and then setting the sources to (0, 𝐽) yields

𝐽 lim
𝑞→0

𝐸̃
(3)
𝑡 ,𝜋𝜋𝜎 [0, 𝐽] (𝑞, 𝑝,−𝑝 − 𝑞) = 𝐸̃

(2)
𝑡 ,𝜎𝜎 [0, 𝐽] (𝑝,−𝑝)

− 𝐸̃ (2)𝑡 ,𝜋𝜋 [0, 𝐽] (−𝑝, 𝑝) . (6.16)

Taking the 𝐽 → 0+ limit and using (6.12) and (6.14) we then find

v𝑡 lim
𝑞→0

𝐸̃
(3)
𝑡 ,𝜋𝜋𝜎 (𝑞, 𝑝,−𝑝 − 𝑞)

𝐸̃
(2)
𝑡 ,𝜋𝜋 (𝑞,−𝑞)

= 𝐸̃
(2)
𝑡 ,𝜎𝜎 (𝑝,−𝑝) − 𝐸̃ (2)𝑡 ,𝜋𝜋 (−𝑝, 𝑝) , (6.17)

with 𝐸̃
(𝑛)
𝑡 ≡ 𝐸̃

(𝑛)
𝑡 [𝐽𝜋 = 0, 𝐽𝜎 = 0] . Here, we have taken into account that only the quotient of

𝐸̃
(3)
𝑡 ,𝜋𝜋𝜎 (𝑞, 𝑝,−𝑝 − 𝑞) and 𝐸̃

(2)
𝑡 ,𝜋𝜋 (𝑞,−𝑞) may have a finite 𝑞 → 0 limit. While Eq. (6.17) connects
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two- and three-point functions, additional symmetry identities relating higher-order correlation
functions can be obtained by taking further derivatives:

v𝑡 lim
𝑘→0

𝐸̃
(4)
𝑡 ,𝜋𝜋𝜎𝜎 (𝑘 , 𝑝, 𝑞,−𝑘 − 𝑝 − 𝑞)

𝐸̃
(2)
𝑡 ,𝜋𝜋 (𝑘)

= 𝐸̃
(3)
𝑡 ,𝜎𝜎𝜎 (𝑝, 𝑞,−𝑝 − 𝑞)

− 𝐸̃ (3)𝑡 ,𝜋𝜋𝜎 (𝑞, 𝑝,−𝑝 − 𝑞) − 𝐸̃ (3)𝑡 ,𝜋𝜋𝜎 (𝑝,−𝑝 − 𝑞, 𝑞) , (6.18a)

v𝑡 lim
𝑘→0

𝐸̃
(4)
𝑡 ,𝜋𝜋𝜋𝜋 (𝑘 , 𝑝, 𝑞,−𝑘 − 𝑝 − 𝑞)

𝐸̃
(2)
𝑡 ,𝜋𝜋 (𝑘)

= 𝐸̃
(3)
𝑡 ,𝜋𝜋𝜎 (𝑝, 𝑞,−𝑝 − 𝑞)

+ 𝐸̃ (3)𝑡 ,𝜋𝜋𝜎 (𝑝,−𝑝 − 𝑞, 𝑞) + 𝐸̃ (3)𝑡 ,𝜋𝜋𝜎 (𝑞,−𝑝 − 𝑞, 𝑝) , (6.18b)

and so forth.
Symmetry identities, akin to those derived in the present section, then serve as a manifestation

of the system’s symmetry properties on the level of correlation functions. Since 𝑛-point correla-
tion functions can be readily extracted from numerically simulated data or experimental measure-
ments, the symmetry identities can be explicitly checked. This makes them a powerful tool for
analysing the symmetry content of quantum many-body systems, allowing to determine whether
the symmetry is broken explicitly, spontaneously, or not broken at all.

Based on the above symmetry identities one can introduce symmetry witnesses, which provide
efficient measures of the symmetry content of a given system. In particular, higher-order correla-
tion functions are often difficult to visualise and the introduction of a norm as a measure can be
very convenient. Defining the left- and right-hand sides of (6.17) as

𝑓
(3)
𝑡 ,𝜋𝜋𝜎 (𝑝) = v𝑡 lim

𝑞→0

𝐸̃
(3)
𝑡 ,𝜋𝜋𝜎 (𝑞, 𝑝,−𝑝 − 𝑞)

𝐸̃
(2)
𝑡 ,𝜋𝜋 (𝑞,−𝑞)

,

𝑓
(2)
𝑡 ,𝜋𝜋𝜎 (𝑝) = 𝐸̃

(2)
𝑡 ,𝜎𝜎 (𝑝,−𝑝) − 𝐸̃ (2)𝑡 ,𝜋𝜋 (−𝑝, 𝑝) , (6.19)

we may encode the symmetry content by measuring a distance between the two functions using
the standard 𝐿1-norm, ∥ 𝑓 ∥ = L𝑛

∫
d𝑝1 . . . d𝑝𝑛 | 𝑓 (𝑝1, . . . , 𝑝𝑛) |, with L being the system size

setting the smallest unit of momentum 1/L. To avoid biasing the IR momentum region, where
the correlation functions are typically larger, we normalise the difference by dividing it by double
the average value of | 𝑓 (3) | and | 𝑓 (2) |, which yields

𝑄
(3)
𝜋𝜋𝜎 (𝑡) = lim

𝜀→0+







 𝑓
(3)
𝑡 ,𝜋𝜋𝜎 − 𝑓

(2)
𝑡 ,𝜋𝜋𝜎��� 𝑓 (3)𝑡 ,𝜋𝜋𝜎

��� + ��� 𝑓 (2)𝑡 ,𝜋𝜋𝜎

��� + 𝜀






 . (6.20)

Here, 𝜀 is a regularisation parameter ensuring that 𝑄 (3)𝜋𝜋𝜎 = 0 when 𝑓
(3)
𝑡 ,𝜋𝜋𝜎 = 𝑓

(2)
𝑡 ,𝜋𝜋𝜎 = 0, i.e., in

the absence of both explicit as well as spontaneous symmetry breaking. In practice, the choice of
𝜀 is motivated by the value of statistical error, inevitable in any experimental or numerical setup.
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Note that the normalisation choice implies 0 ≤ 𝑄
(3)
𝜋𝜋𝜎 ≤ 1, with the upper bound following from

the Cauchy–Schwarz inequality.
At each point in time, the quantity 𝑄

(3)
𝜋𝜋𝜎 , which we call a symmetry witness, connects one-,

two-, and three-point correlation functions and quantifies the degree of violation of the symme-
try identity (6.17). Analogously, one can introduce higher-order witnesses 𝑄 (4)𝜋𝜋𝜎𝜎 and 𝑄

(4)
𝜋𝜋𝜋𝜋

using the identities (6.18a) and (6.18b), respectively, characterising the symmetry content with
respect to the higher-order correlation functions. Geometrically, the connected correlation func-
tions characterise the shape and the inner structure of the histograms like the ones depicted in
Fig. 6.1. Such histograms consist of “sub-histograms”, one for each spatial point 𝑥𝑖 , or momen-
tum mode 𝑝𝑖 , in the system. The one-point functions correspond to their positions, the two-point
functions are related to their widths and heights, while higher-order 𝑛-point functions reflect cross-
correlations between the sub-histograms. Symmetry then puts constraints on their allowed shapes
and cross-correlations, and symmetry witnesses represent how well these constraints are satisfied.
The spatial correlation functions can be extracted from numerical simulations or experimentally
by sampling read-outs of the transverse spin 𝐹⊥(𝑥) = 𝐹𝑥 (𝑥) + i𝐹𝑦 (𝑥) [145]. As a result, probing
symmetry properties of the system via exact relations between observable correlation functions
proves to be an effective approach, as demonstrated in the following sections.

6.4 non-equilibrium symmetry
restoration

In the following, we investigate the dynamics of the spin-1 Bose gas as introduced and discussed
in the previous chapters, prepared in an explicitly symmetry-broken state. Whether the initially
explicitly broken symmetry gets effectively restored during the dynamics will be analysed us-
ing the symmetry witnesses introduced above. We employ the truncated Wigner approximation
(TWA), which describes the dynamics for highly occupied systems at not too late times and weak
couplings [139]. The numerical integration of the system is done as in Chap. 4 with the methods
introduced in Chap. 3.

6.4.1 initial condition

We start from an initial state with non-vanishing 𝑛-point spin correlations that violate the SO(2)
rotational symmetry in the 𝐹𝑥-𝐹𝑦 plane. For this we consider the spinor condensate in the mean-
field ground state of the easy-plane phase,

ψEP =
𝑒i𝜃/2

2

©­­­«
𝑒−i𝜑L

√︁
1 − 𝑞

𝑒−i𝜑s/2
√︁

2 + 2𝑞

𝑒i𝜑L
√︁

1 − 𝑞

ª®®®¬ , (6.21)

with 𝑞 = 0.9. The state is characterised by a well-defined spin length and orientation in the
𝐹𝑦 = 1 direction. In addition, we imprint a Gamma distribution function in momentum space in
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Figure 6.1: Histograms of the spin orientations in the 𝐹𝑥-𝐹𝑦 plane normalised by the atom number for
𝑞f = 0.6𝜌̃ |𝑐1 | and averaged over 103 runs. The dash-dotted line represents the average spin
length ⟨|𝐹⊥ |⟩ =

√︁
1 − 𝑞2 ∼ 0.95.

the phases of the fundamental fields, resulting in non-Gaussian statistics in the spinor and Larmor
phases, as to achieve a sizeable explicit symmetry breaking. Concretely, we define

𝑐𝑚F
𝑝 = d𝜁𝑚FΓ(𝑝), (6.22)

where d𝜁𝑚F is a Γ distributed white noise with a variance of half a particle, and Γ(𝑝) is a Gamma
probability distribution function in momentum space. We then Fourier transform the noise 𝑐𝑚F

𝑥 =

F [𝑐𝑚F
𝑝 ] and rotate the fundamental fields by their respective noise terms.

𝜓±1 → 𝜓±1𝑒
±i𝑐1

𝑥 , 𝜓0 → 𝜓0𝑒
−i𝑐0

𝑥 . (6.23)

Notice that the 𝑚F = ±1 components are rotated by the same noise, but with opposite signs, while
the 𝑚F = 0 component is subject to a rotation with an independent noise term. This is equivalent
to

𝜑L = 𝜑̄L + 𝑐1
𝑥 , 𝜑s = 𝜑̄s + 2𝑐0

𝑥 , (6.24)

where 𝜑̄ is to be understood as the background mean-field solution, which is chosen to be 𝜑̄s = 0
and 𝜑̄L = 𝜋/2, i.e., full spin orientation in the 𝐹𝑦 direction. Since we rotate both the Larmor
and spinor phases, we imprint non-Gaussian statistics in the transverse spin degree of freedom,
both in orientation, as well as its length (see upper left panel of Fig. 6.1), without imprinting any
density excitations, thus remaining in a low-energy regime. After imprinting the noise, we quench
the quadratic Zeeman shift from an initial value of 𝑞i = 0.9𝜌̃ |𝑐1 | to a final value of 𝑞f = 0.6𝜌̃ |𝑐1 |,
where we verified that no significant excitations of topological defects are present in the system.

The physical parameters of the simulations aim to resemble a cloud of 87Rb atoms in a one-
dimensional geometry as performed in the experiments [6, 198, 199], the main differences being
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an increased homogeneous density 𝜌̃ compared to the experiment and a purely one-dimensional
setting with no trapping potential. We simulate a cloud of 3 · 106 particles on a numerical grid
containing 𝑁 = 4096 points corresponding to a physical length of 220𝜇m. The spin healing
length is given by 𝜉s = (2𝑀𝜌̃ |𝑐1 |)1/2 = 8 lattice units, and spin-changing collisions occur on
a timescale of 𝑡s = 2𝜋/( 𝜌̃ |𝑐1 |) = 696 in numerical time units. Furthermore, the field operators
are normalised with respects to the total density 𝜓̃𝑚 = 𝜓𝑚/

√
𝜌̃, which results in a normalisation

of the spin vector as well F̃ = F /𝜌̃. In the following, the tilde is omitted and all values are to
be understood as normalised values unless explicitly stated otherwise. Upon extracting the spin
degrees of freedom 𝐹𝑥 and 𝐹𝑦 , we compute the relevant two-, three-, and four-point correlation
functions appearing in the identities (6.17), (6.18a) and (6.18b).

6.4.2 symmetry witnesses post-quench

It is instructive to first examine the probability distribution of local spins in real space by averaging
over many realisations. In Fig. 6.1, we depict a probability density in spin configuration space in
the 𝐹𝑥-𝐹𝑦 plane. From the left graph, one observes that the initial state is characterised by a
sizeable spin length with a rather well-defined orientation. As a consequence, one may separate
two types of excitations for the transversal spin 𝐹⊥: a radial “Higgs”-like mode associated with
perturbations of the spin length |𝐹⊥ |, and a transverse “Goldstone”-like mode associated with
perturbations of the angle 𝜑L, respectively. We would like to note that the fluctuations in the spin
length can be attributed to both density fluctuations, as well as to fluctuations in the spinor phase,
whereas the latter is energetically favourable. Since the state is initialised away from the minimum
of the champagne bottle effective potential (recall Sect. 2.2.6), one observes dynamics in the radial
direction, such that the spin length |𝐹⊥ | acquires a range of values which are also significantly
smaller than the initial one. As seen in the histograms, this occurs predominantly during the
first few characteristic spin-changing collision times 𝑡s. During this time, the non-equilibrium
“Higgs”-like mode explores the inner part of the effective potential, whose non-convex shape is
expected to lead to a fast instability growth of the mode occupancy in a characteristic momentum
range. However, after about ∼ 5 𝑡s, perturbations in |𝐹⊥ | are seen to become more and more
suppressed. Instead, significantly slower dynamics for the transverse mode starts dominating, by
which the spin distribution settles into a banana-like shape as it spreads out around the ring set
by the minimum of the effective potential.

While the histograms indicate the different dominant excitations and timescales of the system,
one needs further information to quantify the initial explicit symmetry breaking and its effective
restoration. For instance, both the left graph of Fig. 6.1 at 0 𝑡s and the right one at 100 𝑡s indicate
configurations with comparable spin length and rather small spread in the radial direction. How-
ever, their transverse extensions along the ring, which represent the “Goldstone”-like fluctuations,
are significantly different. As described in Sect. 6.3, in the absence of explicit symmetry breaking,
there exists a well-defined relation between the spin length and the fluctuations, which we will
use in the following to quantify the symmetry content of the data.
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Figure 6.2: (a) Evolution of the symmetry witnesses 𝑄 (𝑛) for a system prepared in a state which explicitly
breaks the SO(2) symmetry of the Hamiltonian with a subsequent quench from 𝑞i = 0.9𝜌̃ |𝑐1 |
to 𝑞f = 0.6𝜌̃ |𝑐1 |, where 0 ≤ 𝑄 (𝑛) ≤ 1. The value of 𝑄 (𝑛) = 0 corresponds to the absence
of explicit symmetry violation. Here, 𝑄 (3)𝜋𝜋𝜎 is the identity connecting two- and three-point
functions appearing in Eq. (6.17), while 𝑄

(4)
𝜋𝜋𝜎𝜎 and 𝑄

(4)
𝜋𝜋𝜋𝜋 connect three- and four-point

functions. (b) Evolution of the symmetry witness 𝑄 (3)𝜋𝜋𝜎 for three different systems prepared in
a symmetry-broken state. The dark purple curve represents the symmetry witness for a system
that is not quenched initially, while the red- and pink curves correspond to initial quenches,
with the pink one being a stronger quench. The middle curve for 𝑄 (3) shows the same data as
in Fig. 6.2, but only up to 50 𝑡s.

Fig. 6.2 shows the corresponding time evolution of the symmetry witnesses 𝑄 (𝑛) defined in
Eq. (6.20), where 0 ≤ 𝑄 (𝑛) ≤ 1, with 𝑄 (𝑛) = 0 in the absence of explicit symmetry viola-
tion. The index 𝑛 denotes the maximum number of spatial points involved in the correlation
functions probing the symmetries. We show 𝑄

(3)
𝜋𝜋𝜎 based on an identity connecting two- and

three-point functions involving the “Goldstone”-like (𝜋) and “Higgs”-like (𝜎) excitations appear-
ing in Eq. (6.17), while 𝑄

(4)
𝜋𝜋𝜎𝜎 and 𝑄

(4)
𝜋𝜋𝜋𝜋 connect three- and four-point functions based on

Eqs. (6.18a) and (6.18b), respectively.
As seen in Fig. 6.2, the systems starts out in a state that explicitly breaks the SO(2) symmetry

of the underlying Hamiltonian very strongly, with the different 𝑄 (𝑛) rather close to unity. While
the unitary time evolution of the quantum system can never restore the symmetry exactly, one
observes that important observable properties can nevertheless exhibit an effective symmetry
restoration. The different witnesses based on 𝑛-point correlation functions probe more and more
details as 𝑛 increases. Correspondingly, we find that the lowest-order witness shown, 𝑄 (3)𝜋𝜋𝜎 , ap-
proaches zero fastest (purple curve in Fig. 6.2a). In fact, after an initial rapid decrease until times
of a few 𝑡s, the restoration dynamics slows down, and the timescales are in close analogy to those
observed from the histograms in Fig. 6.1.

The higher-order witnesses 𝑄 (4)𝜋𝜋𝜎𝜎 (red curve) and especially 𝑄
(4)
𝜋𝜋𝜋𝜋 (gold curve) exhibit a

comparably slower effective restoration of the initially broken symmetry. While 𝑄 (4)𝜋𝜋𝜎𝜎 , involv-
ing both 𝜎 and 𝜋 excitations, still shows a characteristic two-stage decay, which is relatively fast
at early times and then slowing down at late times, this is much less pronounced in𝑄 (4)𝜋𝜋𝜋𝜋 , which
involves predominantly the slow “Goldstone”-like modes. Nevertheless, all witnesses clearly ex-
hibit the approach towards an effective restoration of the explicitly broken symmetry by the initial
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state. We emphasise that this is much shorter than the timescale on which the approach to thermal
equilibrium is observed, as the power spectrum ⟨|𝐹⊥ |2⟩ starts to develop a thermal tail at higher
momenta around ∼ 1400 𝑡s. This separation of time scales between the effective restoration of an
explicitly broken symmetry and thermalisation may, in principle, be further diminished for suf-
ficiently high-order correlation functions. However, thermalisation time is defined with respect
to characteristic thermodynamic observables that typically do not involve arbitrarily high-order
details since the time-translation invariant thermal state can never be reached on a fundamental
level in systems with unitary dynamics. In practice, emergent theories that effectively describe
dynamical behaviour, such as effective kinetic theories, are based on a reduced set of low-order
correlation functions. In this context, our results demonstrate that effective symmetry restoration
can occur long before the system equilibrates. The situation is reminiscent of thermalisation in
isolated quantum systems, where local observables of the system, prepared in a non-equilibrium
quantum state, eventually behave as if sampled from a thermal distribution. Similarly, while low-
order symmetry witnesses show effective restoration, some higher-order witnesses, which encode
finer statistical details of the system, will show symmetry violations at asymptotically late times.
This is in accordance with the general statement regarding how the symmetry can never be fully
restored by means of a unitary time evolution governed by a symmetric Hamiltonian, cf. Sec. 6.2.

It remains to investigate to what extent the results depend on the details of the initial state. Here
we consider variations in the initial quench of the quadratic Zeeman shift with different strengths,
or with no quench at all. As depicted in Fig. 6.2b, we find that the stronger the quench, the longer
it takes to restore the SO(2) symmetry, and not quenching at all restores it the fastest. The witness
based on the correlation functions from Eq. (6.17), as seen in Fig. 6.2b, corresponds to the middle
red curve, with an initial quench from 𝑞i = 0.9𝜌̃ |𝑐1 | to 𝑞f = 0.6𝜌̃ |𝑐1 |. Quenching stronger than
this, to 𝑞f = 0.3𝜌̃ |𝑐1 |, takes longer to restore the symmetry (light pink curve), and not doing a
quench takes the shortest (dark purple curve). Irrespective of the strength or the presence of the
quench, the correlation functions and the restoration process look qualitatively very similar as
shown in Fig. 6.2a.

The symmetry witnesses provide an efficient means to quantify the symmetry content of the
data. However, further details can be investigated by looking directly at the underlying momentum-
resolved correlation functions in the identity (6.17). In Fig. 6.3, we plot both the left-hand side
(purple curve) and right-hand side (red curve) of Eq. (6.17) for four different time steps. Initially,
we observe that the symmetry is strongly broken signalled by the unequal different 𝑛-point correla-
tion functions. Within the span of a few 𝑡s, these different correlation functions quickly approach
each other, and by ∼ 50 𝑡s, they are nearly equal and the conclusions are as for the symmetry
witnesses discussed before. In addition, one observes from the momentum-resolved correlation
functions that, apart from the initial strong fluctuations at low momenta, an additional peak in
the correlation functions develops at a higher momentum scale. The peak height settles quickly
within a few 𝑡s, during which the “Higgs”-like mode explores the inner part of the effective po-
tential leading to a fast growth of fluctuations as discussed above.

The momenta of the correlation functions entering the identity (6.17) underlying 𝑄 (3) corre-
spond to the momentum-conserving diagonals of the full momentum matrix. Likewise, the iden-
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Figure 6.3: Data for the symmetry identity (6.17) with the correlation functions as a function of momentum
at four different times during the dynamical evolution.

tities for 𝑄 (4) involve momentum-conserving surfaces. As an example, we show the surfaces of
our numerical data corresponding to the symmetry identities (6.18a) in Fig. 6.4a and (6.18b) in
Fig. 6.4b. In both cases, we see strong initial symmetry violation signalled by the different un-
equal 𝑛-point correlator surfaces. The cross-like shape is the dominant feature of these surfaces
and is already present initially, although much stronger in the four-point surfaces. The appearance
of the surfaces becomes gradually more equal with time in both Fig. 6.4a and b, however, we can
visually confirm that it is not as quick as for the momentum-conserving diagonals above. Addition-
ally, restoration is visibly slower for the identity (6.18b) since at 50 𝑡s in Fig. 6.4b the dominant
cross-like features are still at an increased amplitude in the four-point surface compared to the
three-point one. This is consistent with what we have observed from the corresponding witnesses
in Fig. 6.2.

6.5 non-equilibrium spontaneous
symmetry breaking

6.5.1 experimental data

In the previous section, we discussed the explicit breaking of a symmetry of the Hamiltonian by
the initial state, and its effective restoration long before the system equilibrates. However, even if
explicit symmetry breaking is absent or dynamically restored, the symmetry may still be sponta-
neously broken. The notion of spontaneous symmetry breaking, in thermal equilibrium or dynam-
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Figure 6.4: Momentum-conserving surfaces in the symmetry identities (6.18a) and (6.18b), respectively.
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Figure 6.5: (upper panel) Histograms of the experimentally measured spin in the 𝐹𝑥-𝐹𝑦 plane taken from
a quasi-one-dimensional 87Rb experiment [6], normalised by the atom number, for different
evolution times. The dash-dotted line represents |𝐹⊥ | = 0.85. (lower panel) Histogram of the
normalized spin at 𝑡 = 35s. The left and middle figures show four different experimental realisa-
tions, each in different color, before (left) and after (middle) the rotation by the mean phases for
each realization. On the right, the combination of all realisations with mean phase subtracted
is displayed.

ically even far from equilibrium, is a central ingredient for our understanding of phase transitions.
Spontaneous symmetry breaking is signalled by a non-zero order parameter (6.2) using a bias
that does not break the symmetry explicitly in the end.

To analyse spontaneous symmetry breaking out of equilibrium in more detail, in the following
we consider experimental data from measurements of a spinor Bose–Einstein condensate of 87Rb
atoms, recall Sect. 5.4.1 for the experimental methods, and see App. A.1 for further details. The
system is initialised in the |𝐹,𝑚F⟩ = |1, 0⟩ state, i.e., the polar state. Subsequently, the quadratic
Zeeman shift 𝑞, is quenched to a value within the easy-plane phase thereby initiating the dynamics.
In contrast to the initial state investigated in Sect. 6.4 in the context of explicit symmetry breaking,
in the present case there is initially no well-defined spin length, with fluctuations solely in the
𝐹𝑥-𝐹𝑦 plane such that the initial state respects the SO(2) symmetry of the system. The initial
conditions restrict the average longitudinal (𝑧-axis) spin to be zero, and excitations build up in
the 𝐹𝑥-𝐹𝑦 plane. This transversal spin degree of freedom is examined by the spatially resolved
detection of the complex-valued field 𝐹⊥ = 𝐹𝑥 + i𝐹𝑦 [6].

Fig. 6.5 shows histograms of the measured spin orientations in the 𝐹𝑥-𝐹𝑦 plane normalised
by the atom number, at different times. While initially the measured values scatter, such that the
average spin length is practically zero, this changes at later times. The average spin length settles
around |𝐹⊥ | = 0.85 represented by the dash-dotted line in the figure. In this case, the non-zero
average spin plays the role of the order parameter signalling the spontaneous symmetry breaking

108



Figure 6.6: The symmetry witness based on two- and three-point correlation functions extracted from ex-
perimental data. The inset shows the average spin length ⟨𝐹𝑦⟩. The witness𝑄 (4)𝜋𝜋𝜋𝜋 , which is not
shown in order not to overcrowd the plot, gives comparable results to 𝑄

(4)
𝜋𝜋𝜎𝜎 . The error bars

are obtained by bootstrapping and correspond to 80% confidence interval. The spin-changing
collision time is 𝑡s = 2𝜋/(𝑛 |𝑐1 |) ∼ 0.4s for the experimental parameters used in this work.

of the SO(2)-symmetric system. Due to the underlying SO(2) symmetry, one can always align
the expectation value along one of the axes, e.g., ⟨𝐹̂𝑥⟩ = 0, ⟨𝐹̂𝑦⟩ = 𝑣𝑡 , which was done for Fig. 6.5.
The alignment procedure of the spin expectation value for the experimental data is illustrated in
the lower panel of Fig. 6.5. In the left graph, data from four experimental realisations is shown
at late time (𝑡 = 35s). To understand the underlying dynamics leading to these configurations, it
is helpful to consider them as corresponding to the top view of the pictorial representation of the
champagne bottle effective potential. While in each realisation the spin distribution is expected to
acquire a “blob” shape, as marked by the coloured distributions in the lower panel of Fig. 6.5, and
settle in one of the many symmetry-breaking minima, many such blobs will form a symmetric
ring (as in e.g., Fig. 4.7d). Hence, while there is a preferred direction in each experimental realisa-
tion individually, once we average over multiple realisations, the transverse spin is symmetrically
distributed across the ring in the 𝐹𝑥-𝐹𝑦 plane. Correspondingly, one observes the different exper-
imental realisations distributed along the ring as seen in the lower left graph of Fig. 6.5. However,
by rotating each individual realisation by the global phase as shown in the lower middle panel of
Fig. 6.5, there is a non-zero expectation value ⟨𝐹̂𝑦⟩ ≠ 0 and ⟨𝐹̂𝑥⟩ = 0 when averaged over all the
realisations. This is shown in the lower right graph of Fig. 6.5, which gives the average over many
realisations. We emphasise that the global-phase rotation angle maintains translational invariance
since this angle does not introduce any spatial bias, whereas, e.g., rotating by the phase of any
specific point would do so.

While the histograms of Fig. 6.5 illustrate the dynamical build-up of a macroscopic spin length,
a quantitative analysis of spontaneous symmetry breaking requires taking its fluctuations into
account as well. In particular, the fluctuations can be used to distinguish data with underlying
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Figure 6.7: The left- and right-hand sides of the symmetry identity (6.17) using experimental data, with
the momentum-resolved correlation functions at four different times during the dynamical evo-
lution. The error bands represent 80% confidence intervals obtained from bootstrapping.

spontaneous symmetry breaking from situations where a macroscopic spin length arises due to
explicit symmetry breaking, as exemplified on the left of Fig. 6.1. The fluctuations are encoded in
the 𝑛-point correlation functions, which fulfill the symmetry identities for spontaneous symmetry
breaking as derived in Sect. 6.3.

We examine the witnesses𝑄 (3)𝜋𝜋𝜎 and𝑄 (4)𝜋𝜋𝜎𝜎 according to Eq. (6.20) in Fig. 6.6. The minimum
value of these quantities, and any of the higher-order witnesses is zero, which corresponds to a
perfectly symmetric scenario including that of a spontaneously broken symmetric state, while the
upper value is unity corresponding to a maximally and explicitly broken state. One observes that
the value of the symmetry witnesses is clearly much smaller than unity, and near zero within errors.
This indicates the absence of explicit symmetry breaking, which in principle can be improved with
increasing statistics. We also give the average spin length ⟨𝐹𝑦⟩ as an inset on top of the symmetry
witness. The witness is seen to be near zero within errors independent of the magnitude of ⟨𝐹𝑦⟩.
One observes that the magnitude of ⟨𝐹𝑦⟩ settles at later times, representing an order parameter
for spontaneous symmetry breaking.

In order to test the momentum resolved symmetry identity (6.17), we consider the two- and
three-point correlation functions by averaging over many realisations of single-shot measure-
ments of the rotated 𝐹⊥(𝑥). For more details on the data analysis procedure, see App. A.3. We
plot four different time steps in Fig. 6.7 and observe that the left- and the right-hand sides of the
identities are close within experimental errors at all times. Similarly, Fig. 6.8 shows momentum
resolved surface plots for the symmetry identity (6.18a) connecting two-, three-, and four-point
correlation functions calculated from experimental measurements. We emphasise once again that
a priori there is no reason why these different 𝑛-point correlation functions should obey such
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Figure 6.8: Data for the symmetry identity connecting two-, three-, and four-point correlation functions
calculated from experimental measurements. The top four surface plots correspond to the right-
hand side of the identity (6.18a), while the bottom ones correspond to the left-hand side of
the equation. One observes the resemblance of these momentum-conserving surfaces, which
involve different 𝑛-point correlation functions.

equalities, representing a quantitative manifestation of the emergence of spontaneous symmetry
breaking.
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6.6 conclusion and outlook
While symmetries of a Hamiltonian that are explicitly broken by the initial state cannot be re-
stored on a fundamental level in closed quantum systems, we have shown that their effective
restoration can be quantified in terms of symmetry identities for correlation functions. In partic-
ular, our results demonstrate that properties involving lower 𝑛-point correlation functions exhibit
dynamical symmetry restoration earlier than those involving higher-order correlations. Moreover,
our findings for a spinor Bose gas show that an initial explicit symmetry breaking gets restored
on timescales much before the system thermalises. These are important ingredients for effective
descriptions of non-equilibrium evolutions, which are typically based on lower-order correlation
functions, where kinetic theory or Boltzmann equations for single-particle distribution functions
extracted from two-point correlation functions represent a paradigmatic example [106].

Though the correlation functions appearing in the symmetry identities (6.17), (6.18a), and
(6.18b) involve only few spatial points, in general, they also test extremely non-local properties,
such as the ones encoded in their low-momentum behaviour in Fourier space. This is crucial for
the identification of spontaneous symmetry breaking in the presence of a non-vanishing expec-
tation value for the zero mode and condensation phenomena, which we have analysed for the
example of the spinor Bose gas. In particular, our approach is not based on a spatial separation
into subsystems, which can be difficult to define in fundamental descriptions, such as relativistic
and gauge theories implementing local symmetries. Though we have not described the approach
for local symmetries explicitly in this work, the formulation of non-equilibrium (equal-time) ver-
sions of Ward identities for gauge theories [103–105, 200] follows along the same lines as we
described.

Our approach provides a general pathway to extract the symmetry content of non-equilibrium
quantum as well as classical many-body systems based on a hierarchy of 𝑛-point correlation func-
tions. This complements alternative approaches to the question of dynamical symmetry restora-
tion, such as the entanglement asymmetry between spatial subsystems introduced as a measure
of symmetry breaking in quantum systems [201–209], which has also been experimentally ap-
plied [210–212]. It would be interesting to establish a direct link between our symmetry witnesses
based on correlations and the entanglement measure of symmetry breaking for quantum systems.
While our work primarily focused on ultracold atoms, the approach could also give important
further insights into applications and experimental data across various systems, ranging from the
detection of new non-equilibrium phases in condensed matter systems to preheating dynamics in
inflationary early-universe cosmology [12, 197, 213].
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7ASPECTS OF SYMMETRY IN
NON-THERMAL FIXED
POINTS

We’ll ride the spiral to the end
And may just go where no one’s been

– Maynard James Keenan, ”Lateralus”

In the course of this thesis, the underlying symmetries of the spin-1 Bose gas model were used
to investigate various aspects of its dynamics. The spontaneously broken SO(2) symmetry was
explicitly used to derive the possible topological excitations present in the system post-quench,
leading to the study of instantons in the Larmor phase of the system. Furthermore, it was shown
that the consequences of the underlying (emergent) SO(2) symmetry of the dynamics, such as
the suppression of 𝐹𝑧 excitations and restriction of the spinor phase to values of 2𝜋Z, are crucial
considerations for the derivation of the double sine-Gordon model as the effective theory for a
quench from the polar phase into the easy-plane phase. In this rather short chapter, we discuss
two ongoing studies discussing the possible universality classes in the spin-1 system from the
perspective of their emergent symmetries and dimensionalities. We present the main results of
these studies as a short outlook for future work.

Following the results discussed in Chap. 6, we show in Sect. 7.1 that the non-equilibrium dy-
namics at low values of the quench parameter 𝑞f show the recovery of higher effective symmetries,
where symmetry witnesses uncover a behaviour closer to SO(3) or U(3) symmetric models. We
discuss these findings, providing an argument for the existence of distinct non-thermal fixed points
in the spinor gas, each connected to the emergent microscopic symmetry of the dynamics.

Lastly, we recall the discrepancy between the numerical results and experimental observation
of the self-similar scaling of the spin-1 Bose gas. In Sect. 7.2, we present a possible explanation for
this discrepancy and show that it can be solved by dimensional considerations. The quasi-1D cigar-
shaped geometry of the experiment is fundamentally different from a strict one-dimensional grid
with periodic boundary conditions in the sense of possible excitations and topology. We present
numerical simulations utilising a thin box geometry in two and three spatial dimensions, ensuring
that the transversal extent of the condensate is still below a spin-healing length. We find that we
can reproduce the experimental results simply by changing the dimensionality of the grid.
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Figure 7.1: Scaling exponents of the transverse spin structure factor 𝑆𝐹⊥ =
〈
|𝐹⊥ (𝑘) |2

〉
for different values

of 𝑞f colour coded from yellow to black. (a) The exponents are extracted using the growth-rate
of the 𝑘 = 0 mode, fitting a function 𝑆𝐹⊥ (𝑘 = 0) ∼ (𝑡 − 𝑡0)𝛼, with some non-universal constant
𝑡0 and universal exponent 𝛼 [100]. (b) Extracted scaling exponents. We observe a relatively
sharp change in scaling exponent at around 𝑞 ≈ 0.3𝜌̃ |𝑐1 |. The steepness of the crossover implies
the approach to a different NTFP.

7.1 symmetry crossover in the spin-1 gas
In this section, we expand upon the discussion of Chap. 6 to explore the effects of emergent
symmetries in the post-quench dynamics of the spin-1 gas. The type of effective theory governing
the dynamics of the non-equilibrium physics strongly depends on the symmetry of the problem.
For example, we have discussed the derivation of the double sine-Gordon (DSG) theory as an
effective theory governing the post-quench dynamics of the spin-1 Bose gas in the easy plane,
where a spontaneously broken SO(2) symmetry gives rise to the dynamics. It was discussed that
for the derivation of this effective theory, it is crucial that the dynamics are concentrated on the
ring in the 𝐹𝑥-𝐹𝑦 plane.

A question we have posed quite early in this work was the role the symmetries of observables
play, or whether a connection between various non-thermal fixed-points and symmetry is possible.
In [214], it was shown that a quench of the spinor gas into various final values of the quadratic
Zeeman shift 𝑞f , leads to a shift in the scaling exponents. In this work, we perform a more in-depth
study of this phenomenon. To this end, we simulate various quenches from the polar phase into
values 𝑞f ∈ [0.1, 1.5] 𝜌̃ |𝑐1 | in steps of 0.1𝜌̃ |𝑐1 | up to 𝑞f = 0.7𝜌̃ |𝑐1 |, where we go over to steps of
0.2𝜌̃ |𝑐1 |. Notice that the case of 𝑞f = 0 is not included, since this value lies on a first-order phase
transition between the easy-plane and easy-axis phases (see Fig. 2.3), where we do not expect the
system to obey the same symmetries of the easy-plane phase. All simulations were carried out
using the same parameters as in Chap. 4 with the only difference being the quench parameters.
To extract the scaling exponents, we analyze the growth rate of the 𝑘 = 0 mode, which should
grow as 𝑆𝐹⊥ (𝑘 = 0, 𝑡) ∼ (𝑡 − 𝑡0)𝛼 [100], with some non-universal time constant 𝑡0. The spectra
are rescaled with the obtained exponent under the assumption of quasiparticle conservation, i.e.
𝛼 = 𝛽. We confirm the self-similarity of the scaling dynamics within the scaling regime, see
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Figure 7.2: Symmetry witnesses of the spin-1 Bose gas after a quench to various values of 𝑞. For each
quench, the symmetry identities for SO(2) (purple), SO(3) (red) and U(3) (gold) were calcu-
lated and their respective symmetry witnesses were defined. In the middle of the easy plane,
the SO(2) symmetry is the dominant symmetry present in the system, allowing for the recovery
of the DSG model and subdiffusive scaling. For low 𝑞f , the symmetry breaking from the full
U(3) symmetry of the gas is very weak, giving rise to the known diffusion-type exponents as
derived in [106] for U(𝑁) symmetric models. The insets show the two-point spin correlators
𝑆𝑖 (𝑘 , 𝑡) with 𝑖 ∈ {𝑥, 𝑦, 𝑧} for 𝑡 = 100𝑡s. One observes that 𝑆𝑥 and 𝑆𝑦 overlap in all three cases,
while for low 𝑞f values, the 𝑆𝑧 correlator approaches those of the transverse spin.

App. B for details. As seen in Fig. 7.1, for low values of 𝑞f , we obtain self-similar scaling of
correlations with a diffusion-type exponent 𝛼 = 𝛽 ≈ 0.5. Interestingly, around 𝑞f ≈ 0.3𝜌̃ |𝑐1 |,
we observe a jump in the value of the scaling exponent, going over to the subdiffusive value of
𝛼 = 𝛽 ≈ 0.25. The jump in scaling exponents is continuous, yet relatively sharp and we attribute
the width of the jump to the finite size of the system. The sharpness of the jump is an indication of
a crossover event, where the system chooses to flow to one, or the other non-thermal fixed-point,
whereas the obtained scaling exponents in the crossover regime are thought to be a result of mixed
effects. This notion is further substantiated by considering the self-similarity of the spectra. For
values of 𝑞f in the crossover regime, the spectra show a slight deviation from self-similarity,
signalled by the trends in the residuals, see Fig. B.1. Self-similarity is then restored on the other
side of the crossover, indicating that now the system flows close to a different non-thermal fixed
point.

The different scaling behaviors can be connected to different effective symmetries of the dy-
namics. In all cases, the initial condition is SO(2) symmetric. Strictly speaking, in all cases, the
Hamiltonian is also SO(2) symmetric, since all values are within the easy-plane phase, where the
spontaneously broken symmetry is restored when averaging over runs. To investigate the emergent
symmetry content of the system as in Chap. 6, we utilise the Ward identities of SO(2), SO(3) and
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Figure 7.3: Time evolution of a one-dimensional spin-1 Bose gas after a quench from the polar phase into
the easy plane to 𝑞f = 0.1𝜌̃ |𝑐1 |. We observes an abundance of 𝐹𝑧-excitations, which seem
not to be of defect nature. The spin sphere is occupied across its entire surface, thus implying
a higher symmetry than a simple SO(2) symmetry. These sound-wave-type excitations scale
with 𝛽 ≈ 0.5.

U(3) field theories. On the level of the correlators and in the absence of spontaneous symmetry
breaking, these yield

SO(2) : ⟨𝐹𝑥 (𝑥)𝐹𝑥 (𝑦)⟩ =
〈
𝐹𝑦 (𝑥)𝐹𝑦 (𝑦)

〉
, (7.1a)

SO(3) : ⟨𝐹𝑥 (𝑥)𝐹𝑥 (𝑦)⟩ =
〈
𝐹𝑦 (𝑥)𝐹𝑦 (𝑦)

〉
= ⟨𝐹𝑧 (𝑥)𝐹𝑧 (𝑦)⟩ , (7.1b)

U(3) :
〈
𝜓∗1 (𝑥)𝜓1(𝑦)

〉
=

〈
𝜓∗0 (𝑥)𝜓0(𝑥)

〉
=

〈
𝜓∗−1(𝑥)𝜓−1(𝑦)

〉
. (7.1c)

Using Eq. (7.1), we define the symmetry witnesses in a similar manner to Eq. (6.20). Given a
correlation function 𝑆𝑖 (𝑥, 𝑦) = ⟨O𝑖 (𝑥)O𝑖 (𝑦)⟩, where the indices take the value 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧} for
spin correlations (7.1a), (7.1b) and 𝑖, 𝑗 ∈ {−1, 0, 1} for the occupation numbers (7.1c), we define
the witness as

𝑄 =
1
N

∑︁
𝑖 𝑗



|𝑆𝑖 | − |𝑆 𝑗 |




|𝑆𝑖 | + |𝑆 𝑗 |


 , (7.2)

where ∥· · ·∥ denotes the 𝐿1 norm, N = 1 for the SO(2) identity and N = 3 for the SO(3) and
U(3) identities, thus normalizing the witness to unity for maximal symmetry breaking.

For quadratic Zeeman shifts close to the middle of the easy plane, e.g., 𝑞f = 0.9𝜌̃ |𝑐1 |, where we
find subdiffusive scaling, we obtain a clear signal from the symmetry witnesses that the dynamics
are well described by a SO(2) symmetric description. In contrast to that, the SO(3) and U(3)
symmetry witnesses show a clear sign that these symmetries are (explicitly) broken. As we quench
the system into lower values of the quadratic Zeeman shift, the symmetry witnesses reveal an
interesting dynamic. At 𝑞f = 0.1𝜌̃ |𝑐1 |, we see that, while the SO(2) symmetry of the system is
almost exactly preserved in the dynamics, the SO(3) and U(3) symmetries are weakly broken
compared to the 𝑞f = 0.9𝜌̃ |𝑐1 | quench. Hence, even though for both cases we start from a truly
SO(2) symmetric state and quench to a SO(2) symmetric Hamiltonian, we observe different
scaling exponents, each connected to a distinct dynamical symmetry content of the system. For
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lower values of quadratic Zeeman shifts, the scaling comes from the distribution of excitations
over the entire spin sphere, in contrast to the subdiffusive scaling we see for higher 𝑞f . Here,
we observe that excitations in the 𝐹𝑧 direction are no longer energetically heavily suppressed, as
seen in Fig. 7.3. Most importantly, the form of the excitations in 𝐹𝑧 does not seem to be that
of highly localised defects, as they usually spread across multiple healing lengths, see rightmost
panel of Fig. 7.3. The departure of spin configurations from the 𝐹𝑥-𝐹𝑦 plane effectively changes
the topology of the dynamics, as the ground-state manifold is now no longer a unit circle, but a
two-sphere 𝑆2. Therefore, the topology of the system is trivialised (recall Eq. (2.43)) due to the
restorations of higher symmetries. As a result, the excitations on the spin sphere are thought to
be predominantly collective spin excitations, for which a scaling theory has been derived. The
scaling exponent obtained for low 𝑞f values coincides, within error bounds, to the derived and
numerically confirmed exponents for U(𝑁) symmetric systems [106].

7.2 dimensionality dependence of
scaling

As discussed in Chap. 1, a long-standing problem concerning the scaling dynamics of the spin-1
Bose gas quenched from the polar phase to the easy-plane phase has been the discrepancy be-
tween the numerically obtained scaling in (1+ 1)𝑑 dimensions, and the experimentally measured
exponents in a quasi-one-dimensional cloud of Rubidium atoms. Numerical simulations for the
experimental parameters resulted in the distinct subdiffusive scaling for the polar quench [1, 75],
yet the experiment observes diffusion-type scaling of 𝛽 ≈ 1/2 [55].

As seen in Sect. 7.1, a scaling exponent of 𝛽 ≈ 1/2 was numerically observed in the spinor
gas for quenches to very low values of the quadratic Zeeman shift. Recently, experimental im-
provements in the stability of the microwave dressing and high-precision calibration measure-
ments were made to address the possibility of the quadratic Zeeman shift being responsible for
the discrepancy. Such calibration measurements make use of the mapping between the spin-1
gas and the sine-Gordon model derived in Chap. 5. In order to calibrate the 𝑞 = 0 value, the
experiment imprints sine-Gordon solitons in the spinor phase of the condensate and measures
their time evolution. It can be shown that the velocity of sine-Gordon kinks in the spinor gas is
linearly proportional to the quadratic Zeeman shift [4, 215]. Hence, at vanishing quadratic Zee-
man shift, sine-Gordon solitons in the spinor phase are stationary, whereas for higher quadratic
Zeeman shifts they begin to move, thus making it suitable as a precise tuning parameter. These
high precision measurements have confirmed that the quenches performed in [55] were done to
well-defined values of 𝑞, in agreement with the numerically simulated values.

A different hypothesis saw the dimensionality of the system as the culprit. Although the quasi-
one-dimensional condition requires transverse confinement lengths to be smaller than the relevant
healing length, this criterion is not fully satisfied in this experimental platform. The interaction
terms of the Rubidium condensate show a separation of scales between the density and spin terms.
Since the spin-dependent interaction is approximately two orders of magnitude weaker than the
density-density interaction, the associated spin healing length 𝜉s is much larger than the density
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Figure 7.4: Excerpt of the density of the 𝑚F = 0 component of a quasi-one-dimensional condensate in
a three-dimensional box trap. The numerical grid contains 2048 × 32 × 32 grid points. The
extension of the condensate in the transversal direction is about 0.5𝜉s, making the description
in spin space effectively one-dimensional.

healing length 𝜉. In current experiments, the transverse confinement achieved sizes of 𝐿⊥trap ≲ 1
2𝜉s,

thereby realising effective one-dimensionality for the spin sector. However, the density sector can-
not take an effective one-dimensional description, since 𝜉 ≈ 0.07𝜉s. Because the spin and densi-
ties are not fully decoupled, this dimensional crossover may influence the far-from-equilibrium
spin dynamics, possibly altering the observed scaling behaviour.

To test this hypothesis, three-dimensional simulations of the spin-1 Bose gas in a trapped ge-
ometry are needed. However, such simulations are challenging for two primary reasons. First,
the computational cost is substantial: Three-dimensional grids containing three complex fields
demand significant memory resources, particularly when aiming for high resolution along the
longitudinal axis while maintaining sufficiently large transverse dimensions to capture the rele-
vant physics accurately and to avoid any cut-off dependencies and numerical artefacts.

Second, the validity of the truncated Wigner approximation becomes questionable when deal-
ing with strongly inhomogeneous density distributions. The truncated Wigner approximation re-
lies on large mode occupations for its semi-classical treatment to be valid. Yet, in harmonic traps,
the low-density regions near the edges have low mode occupation. This issue is made worse in the
transverse directions, where only a small number of modes are present due to the inhomogeneity
of the numerical grid. In such cases, entire slices of the system, corresponding to low occupied
modes, may be simulated inaccurately.

Fortunately, due to the rapid advancements in GPU technologies, large-scale simulations such
as three-dimensional grids have become more accessible. Modern GPUs (at the time of writing)
boast large memory capacities of between 80 to 92GB per device, as well as an extensive array of
streaming multiprocessors to increase the parallelism. Utilising the power of these developments,
we were able to compute the polar quench in two and three spatial dimensions to obtain new
results.
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Figure 7.5: Self-similar scaling of a quasi-one-dimensional condensate. Simulations of a quench from the
polar phase to the easy-plane phase done for two and three spatial dimensions, see main text
for simulation parameters. A distinct change in scaling behaviour is observed via a change of
dimensionality. Recall that 𝛽 ≈ 0.25 for a pure one-dimensional setting. For a two-dimensional
grid, we obtain 𝛽 = 0.37(9) and 𝛼 = 0.42(12). For a three-dimensional grid, we obtain 𝛽 =

0.48(10) and 𝛼 = 0.62(16). The larger errors on 𝛼 can be attributed to the smallness of the
IR plateau. Notice also the slight deviation from 𝛼 = 𝛽, which we attribute to the extended
dimensionality of the system. The self-similarity of the scaling is confirmed by the residuals
in the lower left panels, whereas the stability of the scaling w.r.t. the reference time is shown
in the lower right panels.

The second challenge was addressed by employing a hard-wall trap in all three spatial dimen-
sions. To minimise boundary effects such as unphysical reflections, the walls are set to be suffi-
ciently soft. Furthermore, the edge of the trap was ensured to be far enough from the ends of the
grid to avoid aliasing artefacts from the Fourier transforms. Utilising a box trap geometry results
in an homogenous density distribution, ensuring the validity of the truncated Wigner method
across the entire condensate. Since we are not interested in the geometry of the trap, but rather
focus on the dimensionality and lack of periodic boundary conditions, this approach proves suf-
ficient. Notice also that the loss of periodic boundary conditions also results in a fundamental
change of the base manifold topology. As a result, one is unable to define a topological charge.

We perform simulations in two as well as three dimensions, choosing a strongly anisotropic
numerical grid to simulate a quasi-one-dimensional setting. In two dimensions, we simulate a grid
of 𝑁 𝑥

𝑔 = 4096 points in the longitudinal 𝑥 direction corresponding to 𝐿 = 220𝜇m = 280𝜉s, and
𝑁

𝑦
𝑔 = 64 in the transverse 𝑦 direction. The grid spacing is determined by the longitudinal direction

alone. The simulated trap contains 5 · 105 Rubidium atoms, which are quenched from the polar
phase to easy-plane phase to a value of 𝑞f = 0.9𝜌̃ |𝑐1 |. The total density 𝜌̃ is to be understood as
the homogeneous density of the trap, which extends to 𝐿𝑥

trap ∼ 240𝜉s in the longitudinal direction
and 𝐿

𝑦

trap = 0.5𝜉s in the transverse direction.
In three dimensions, we choose a grid of 𝑁 𝑥

𝑔 = 2048 points in the transversal direction, again
corresponding to a physical length of 𝐿 = 220𝜇m = 123𝜉s and 𝑁

𝑦
𝑔 = 𝑁 𝑧

𝑔 = 32. We quench a
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Figure 7.6: Symmetry witnesses for a quasi-one-dimensional condensate on a three-dimensional grid. The
symmetry identities for SO(2) (purple), SO(3) (red) and U(3) (gold) were calculated and their
respective symmetry witnesses were defined. As for the one-dimensional case, the SO(2) sym-
metry of the system is almost exactly realised, whereas the witnesses show that SO(3) and
U(3) descriptions of the system are inadequate. The inset shows the spin spectra 𝑆𝑖 (𝑘 , 𝑡) at
𝑡 = 35𝑡s, showing a good overlap in the UV, whereas the IR still remains different, reflecting
the breaking of SO(3) symmetry.

cloud of 3 · 105 Rubidium atoms from the polar phase to the easy plane to a value of 𝑞 = 0.9𝜌̃ |𝑐1 |.
The trap extends to 𝐿𝑥

trap = 108𝜉s in the longitudinal direction and 𝐿⊥trap = 0.5𝜉s in the transversal
direction, as illustrated in Fig. 7.4.

Using the same rescaling algorithm as in Fig. 4.1, we extract the scaling exponents 𝛼 and 𝛽

independently, see Fig. 7.5. For the two dimensional case, we find 𝛼 = 0.41(13) and 𝛽 = 0.36(9),
whereas for the three-dimensional case, we find 𝛽 = 0.48(10) and 𝛼 = 0.62(16), where, due to the
smallness of the plateau, the errors on 𝛼 are larger. We see that with the change of dimensionality,
even though the description of the spin degree of freedom is, in fact, one-dimensional, the scaling
behaviour of the system distinctly changes. Most interestingly, the value obtained for the scaling
in the three-dimensional case corroborates the experimental results as found in [55].

To investigate these results further, we may turn to the two frameworks with which we have
studied the dynamics of the spin-1 gas. Recall that in Chap. 5, we have indicated that the underly-
ing effective model, i.e., the DSG model, can show different scaling exponents depending on the
amount of occupied minima, where a diffusion-type scaling stems from the occupation of very
few minima. The use of the DSG as an effective model for this quasi-one-dimensional descrip-
tion is justified by considering the emergent symmetries of the quench dynamics. Computing the
symmetry witnesses (7.1), we obtain a similar case as in the one-dimensional description, where
the SO(2) symmetry of the system is exactly fulfilled, while the witnesses for SO(3) and U(3)
show strong deviations, on the order of what is seen in the rightmost panel of Fig. 7.2.
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Figure 7.7: Autocorrelation of spinor phase histograms for one- and three-dimensional simulations. At
each time and for each truncated Wigner realisation, the spinor phase probability distribu-
tion function (PDF) is calculated. Then, an autocorrelation of the PDF is calculated, describ-
ing the probability of distances between sine-Gordon minima in configuration space. We ob-
serve weaker occupations for larger distances in the three-dimensional case than for the one-
dimensional space, presenting a possible explanation for the different scaling behaviour.

We study the spread of the spinor phase field configuration across the potential landscape,
focusing on the number of occupied minima. To this end, we calculate a probability distribution
function of the spinor phase field configuration for each truncated Wigner realisation at each time.
Then, we compute the autocorrelation of this function with itself, averaging over the truncated
Wigner realisations. As a result, we obtain a correlation function describing the probability of
minima distances in configuration space, see Fig. 7.7. We obtain a peaked autocorrelation function
for the one- and three-dimensional case. As seen in the left panels of Fig. 7.7, the one-dimensional
case discussed in Chap. 4 and Chap. 5 shows probabilities to obtain field configurations spread
over many minima. The right panels of Fig. 7.7 show the distribution for the three-dimensional
case. There, we see that for earlier times, up to ∼ 50𝑡s, we obtain occupations of up to four minima.
Later, the transport processes in the dynamics lead to a lower probability to occupy more than
three minima. We also notice that the probability to find field configurations spreading over three
minima is reduced by a factor of two w.r.t. the one-dimensional case. To further substantiate this
observation, simulations carried by L. Heck have shown that utilising a spin wave in the spinor
phase, i.e., a linear phase gradient, one can occupy more minima in the sine-Gordon potential
also in the three-dimensional simulations of the quasi-one-dimensional condensate [216]. These
simulations have shown that at later times, up to five minima are strongly occupied at all times.
A scaling analysis revealed that the self-similar scaling of correlations shows a distinctly slower
scaling exponent 𝛽 = 0.35(8), in accordance to our conjecture in Chap. 5.

We would like to note, though, that the underlying reason for the change in scaling exponents
may go beyond simple arguments for sine-Gordon scaling, since the density sector, as mentioned,
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is not strictly one-dimensional. Analytical approaches for the derivation of scaling exponents
must generally take into account the dimensionality of the system [119]. As a consequence, for
our quasi-one-dimensional case, it might not be sufficient to consider the dynamics of the spinor
phase alone, as effects of the density interactions due to a dimensional crossovers might also affect
the scaling behaviour of the system.
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Part IV

CONCLUSION





8CONCLUDING REMARKS

I must lead the way to this conclusion
I let you inherit these words I sing to you

– Jonas Renske, ”The One You are Looking for is Not Here”

8.1 summary
In this thesis, we have thoroughly investigated the post-quench far-from-equilibrium scaling dy-
namics of the spin-1 Bose gas. Using numerical simulations, we analysed the time evolution of
the system, focusing on its microscopic dynamics, dynamical symmetry restoration and scaling
behaviour under various parameters and dimensionalities. Furthermore, we derived an effective
theory characterising the underlying non-equilibrium universality class.

To this end, the system was driven far out of equilibrium using a parameter quench of the
quadratic Zeeman shift 𝑞 into various final values 𝑞f . This quench drives the system across a
second-order phase transition from the polar phase to the ferromagnetic easy-plane phase. The
resulting instabilities in the transverse spin degree of freedom lead to structure formation and,
subsequently, also to self-similar scaling of correlations in time and space.

First, we have studied the microscopic excitations of the spin-1 Bose gas post-quench. We
found that excitations in the form of rogue waves in the velocity fields give rise to topological
real-time instanton excitations in the Larmor phase of the spin-1 gas. Using the topological na-
ture of the instantons, we were able to numerically observe two distinct scaling exponents, each
governing the scaling of the spatial and temporal scales with ℓ𝑉 ∼ 𝑡𝛽 = 𝑡1/4 and 𝑡c ∼ 𝑡 𝛿 = 𝑡1/3,
respectively. This scaling behaviour was described analytically in the framework of rogue waves
in disordered media, where the disorder was given by the spin-changing collision term itself. The
two exponents were found to be mutually connected via 𝛿 = 4𝛽/3. Interestingly, the connection
of exponents governing spatial and temporal scaling is reminiscent of the arguments of kinetic-
theory approaches, where the dynamical exponent 𝑧 governing the dispersion relation 𝜔(𝑘) ∼ 𝑘 𝑧

is connected to the spatial scaling exponent via 𝛽 = 1/𝑧. While previous studies attributed the
observed one-dimensional subdiffusive scaling to the dynamics of topological excitations, our
findings suggest that the coarsening dynamics cannot be explained by these excitations alone. In
particular, an analysis of the system’s dynamics reveals that scaling persists even in the absence
of such excitations after 𝑡 ∼ 400𝑡s.

To better understand this behaviour, we derived a low-energy effective theory for the quenched
spin-1 Bose gas in order to substantially reduce the complexity of the problem and better charac-
terise the underlying universality class. In Chap. 5, we found that the low-energy effective theory
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takes on the form of a double sine-Gordon (DSG) model in the spinor phase 𝜑s in the infrared. The
DSG was found to account for subdiffusive (𝛽 < 1/2) as well as diffusion type (𝛽 = 1/2) scaling
in one and two spatial dimensions, thus reproducing results from the full spin-1 model. Through
this effective description, we have seen that the subdiffusive scaling seen in Chap. 4 and was first
reported in [75], cannot be explained simply by the coarsening of magnetic-type domains, but is
rather a product of the fractal form of the field configuration, underlining the importance of this
highly non-linear model which allows the field to explore multiple minima of the sinusoidal po-
tential. These results are consistent with the findings of Refs. [85, 178], where the type of scaling
was found to be connected to either the occupation of two, or more minima of the cosine potential.
This constitutes a significant step forward in the understanding of the non-equilibrium universal-
ity at play, situating the spin-1 Bose gas within a sine-Gordon universality class, to which many
systems can be mapped onto.

Turning our attention towards symmetry arguments in Chap. 6, we derived symmetry witnesses
for a spontaneously broken SO(2) symmetry, and applied them to investigate the symmetry con-
tent of the non-equilibrium dynamics of the spin-1 Bose gas. Beginning from an explicitly symme-
try broken state in the easy-plane phase, we studied the dynamical asymptotic restoration of sym-
metry in the system with time. We numerically observed that low-order correlation functions show
a fast restoration of symmetry, on timescales much faster than the equilibration timescale. Higher-
order correlations, on the other hand, retain their memory of the initial condition for longer times.
This emphasises the need for the construction of suitable observables when deriving effective
theories, which typically are based on lower-order correlation functions. The role of dynamical
symmetry restoration was further studied in Chap. 7 for quenches to lower values of the quadratic
Zeeman shift, where the system is shown to scale with a diffusion-type exponent. The transition
between the subdiffusive and diffusion-type scaling was observed to happen in a relative sharp
crossover. Derived symmetry witnesses were used to show that, in this case, the system dynam-
ically approaches a more U(3) symmetric case on the level of occupation number correlators.
This suggested that the observed diffusion-type scaling arises from free quasiparticle excitations,
consistent with expectations for U(𝑁) symmetric models.

Finally, using three-dimensional simulations of a quasi-one-dimensional condensate in a box
trap geometry, we have reconciled the long-standing discrepancy between numerical and experi-
mental results for self-similar scaling in the quenched spinor gas. We have furthermore provided
arguments using the derived effective theory for the difference in scaling behaviour.

The work done in this thesis advances our understanding of universal self-similar scaling dy-
namics far from equilibrium, establishing a sine-Gordon-type universality class to which the spin-
1 Bose gas belongs to. In particular, the mapping of the scaling onto a non-compact field theory
shows that even with the loss of topological information, subdiffusive scaling can be achieved
and is not to be identified as domain-size growth alone. Additionally, emergent symmetries were
shown to play a decisive role in determining the type of universal self-similar scaling observed in
the system. The crossover of the system into effectively U(3) symmetric dynamics helps under-
stand the dominant mechanisms, where free quasi-particle excitations are shown to dominate the
dynamics, reducing the problem to an analytically identified scaling solution.
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8.2 outlook
The advancements in the research of non-equilibrium physics presented in this thesis open up a
path to explore interesting phenomena in theory and experiment.

The appearance of two distinct scaling exponents governing the universal scaling dynamics of
the spin-1 Bose gas presents an opportunity for deeper understanding of non-equilibrium univer-
sality. Each exponent characterises the coarsening of spatial and temporal timescales, respectively.
This can be compared with kinetic-theory approaches, where the dispersion relation𝜔(𝑘) ∼ 𝑘 𝑧 of
dominant excitations determines the possible scaling exponent 𝛽. This raises the question: Does
the presence of two mutually connected scaling exponents reflect a modified dispersion relation?
Or does the relation 𝛽 = 1/𝑧 as derived in [109] not hold in the presence of strongly non-linear
or topological excitations? Answers to this question may connect microscopic excitation spectra
with the macroscopic scaling laws in far-from-equilibrium quantum many-body systems.

The derivation of the (double) sine-Gordon model as a low-energy effective theory of the spin-1
Bose gas in the easy plane enables the analytical investigation of self-similar scaling mechanisms
at non-thermal fixed points and possible various scaling solutions. The (double) sine-Gordon
model has been extensively studied over decades, providing a well-established theoretical frame-
work from which we can advance the understanding of its non-equilibrium universality class. For
example, a possible path would be to consider the decay of solitonic defects in the non-integrable
DSG, where this could be linked to the presence of higher harmonics coupling to the phonon spec-
trum of the model. The decay rate of such excitations is thought to depend on which of the higher
harmonics couples most strongly to the phonon modes [217]. The analytical derivation of such a
timescale would prove a major step into deriving non-equilibrium scaling solutions in the DSG
from first principles. Furthermore, the plethora of systems which can be mapped onto the DSG
model allow for an overarching study of its universal properties, especially in the context of sub-
diffusive self-similar scaling, where this behaviour can be directly traced to field configurations
in the DSG.

Experimentally, the results presented in Chap. 5 open up the possibility to use the spin-1 Bose
gas as a platform probing (double) sine-Gordon physics. In Ref. [4], DSG dynamics are studied
in the context of soliton collisions, by imprinting spinor-phase kinks. These kinks are shown to
have the analytical sine-Gordon soilton form and behaviour. There, it is shown that elastic as well
as inelastic collisions allow for the investigation of the DSG excitations. These experiments mark
a significant step towards realising integrable dynamics in quantum many-body systems, while
also offering a direct means to quantify the breaking of integrability via the sin2 𝜑s term in the
DSG model. Furthermore, the insights gained into the preconditions for subdiffusive scaling in the
system suggest a path towards experimentally accessing different scaling behaviours. A possible
approach would be to imprint spinor phase kinks that spread over many minima of the sinusoidal
potential, or the application of a spin wave across the entire system. This may allow the recovery
of the numerically predicted subdiffusive scaling exponents.

The use of symmetry witnesses in quantum many-body systems represents a novel approach
which may be used in the future to better characterise non-equilibrium universality classes on the
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basis of their symmetry content. The derivation and understanding of underlying effective theories
often relies on symmetry arguments and our approach can provide valuable insight into their
development. Applying this framework to other systems exhibiting self-similar scaling, especially
where the causes for the scaling remains unresolved, could offer a deeper understanding of the
relevant mechanisms. In the case of the spin-1 Bose gas, a deeper investigation of the symmetry
crossover observed at lower values of the quadratic Zeeman shift may advance our understanding
of universality in far-from-equilibrium quantum many-body systems.
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Part V

APPENDIX





AAPPENDIX TO CHAPTER 6

a.1 experimental details and analysis
For our analysis, we use data obtained with a 87Rb spinor BEC of ∼ 105 atoms in the 𝐹 = 1
hyperfine manifold with initial state |𝐹,𝑚F⟩ = |1, 0⟩. The atom cloud is contained in a quasi one-
dimensional trapping geometry, which consists of a dipole trap formed by a 1030nm laser beam
with trapping frequencies

(
𝜔∥ ,𝜔⊥

)
= 2𝜋× (1.6, 160) Hz, and with two end caps formed by beams

at 760nm, confining the atoms within the central part of the harmonic potential. The longitudinal
harmonic potential is constant to a good approximation over the employed sizes, leading to a 1D
box-like confinement, with size ∼ 100𝜇m in the measurements used. The atom cloud is subjected
to a uniform magnetic field of 𝐵 = 0.894 G throughout the experiment which leads to a quadratic
Zeeman splitting of 𝑞B ∼ ℎ × 58 Hz. The spin dynamics is controlled via off-resonant microwave
dressing 𝑞 = 𝑞B + 𝑞MW with 𝑞 < 2𝜌̃ |𝑐1 |. The initial quench is implemented by the instantaneous
switching on of the microwave power.

The transverse spin field 𝐹⊥ = 𝐹𝑥 + i𝐹𝑦 readout is obtained via spin rotations and microwave
coupling to the initially empty 𝐹 = 2 hyperfine manifold prior to a Stern–Gerlach pulse and
spatially resolved absorption imaging. For a more detailed account on the experimental setup and
on how the measurements were obtained, see the supplementary material of Ref. [6]. While the
spatial degree of freedom is continuous, it gets discretized in the analysis procedure by the finite
pixel size of the camera and imaging resolution (≈ 1.2𝜇m per three pixels). Our analysis focuses
on the central ∼ 100 pixels of the data, since establishing long-range coherence across the entire
system requires some time.

a.2 physical interpretation of the
symmetry breaking perturbation

Since the spin operators 𝐹̂𝑖 are the generators of the rotational symmetry, they commute with a
symmetric Hamiltonian and consequently with the evolution operator as well. This allows us to
rewrite the generating functional as

𝑍𝑡 [J ] = Tr
{
U (𝑡, 𝑡0) e

∫
d𝑥J (𝑥 ) ·F̂ (𝑥 )/2 𝜌̂𝑡0 e

∫
d𝑥J (𝑥 ) ·F̂ (𝑥 )/2U† (𝑡, 𝑡0)

}
= Tr

{
U (𝑡, 𝑡0) 𝜌̂′𝑡0 (J ) U

† (𝑡, 𝑡0)
}

, (A.1)
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Evolution time [s] Number of realizations
1 68
10 237
12 236
14 237
17 236
20 239
24 238
29 269
35 296
42 298
50 296

Table A.1: Number of experimental realizations

where we have introduced the deformed initial density matrix

𝜌̂′𝑡0 (J ) ≡ e
∫

d𝑥J (𝑥 ) ·F̂ (𝑥 )/2 𝜌̂𝑡0 e
∫

d𝑥J (𝑥 ) ·F̂ (𝑥 )/2 . (A.2)

Note that, provided the sources 𝐽𝑖 are real, the deformed operator 𝜌̂′𝑡0 (J ) is Hermitian. Further-
more, under the same condition, it is also positive semidefinite. Indeed,

⟨𝜓 | 𝜌̂′𝑡0 (J ) |𝜓⟩ = ⟨𝜓J | 𝜌̂𝑡0 |𝜓J ⟩ ≥ 0 , (A.3)

with |𝜓J ⟩ ≡ e
∫

d𝑥J (𝑥 ) ·F̂ (𝑥 )/2 |𝜓⟩, and 𝜌̂𝑡0 is positive semidefinite being a density matrix by as-
sumption. Thus, aside from normalization, 𝜌̂′𝑡 satisfies all the conditions of a physical density
matrix. This suggests a simple interpretation of the equal-time generating functional 𝑍𝑡 [J ] in
the absence of explicit symmetry violations: it represents the evolution of the symmetric density
matrix 𝜌̂𝑡0 that has been deformed by means of linear sources coupled to the spin operators 𝐹̂𝑖 at
the initial time 𝑡0, thus breaking the symmetry.

Let us remark that the above simple physical picture is, to a certain extent, unique for spin
systems. The reason is that the linear-source term that enters the definition of the generating func-
tional 𝑍𝑡 [J ] and serves as a symmetry-breaking perturbation commutes, in this case, with the
symmetric evolution operator U as the spin operators 𝐹̂𝑖 are also generators of the symmetry
group. Nevertheless, provided the linear source J in the definition of 𝑍𝑡 [J ] is coupled to opera-
tors that transform nontrivially under the symmetry group in question, the formalism developed
in this work can still be applied to define spontaneous symmetry breaking in nonequilibrium
systems, albeit lacking the appealing interpretation of the symmetry-breaking perturbation as a
deformation of the initial state.
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a.3 correlation functions
Both experimentally and in truncated Wigner simulations, we have 𝑁𝑠 samples (measurements)
of the spin observable 𝐹𝑖 in datasets

{
𝐹
(𝑠)
𝑖
| 𝑠 = 1, . . . , 𝑁𝑠

}
, from which we infer 𝑛-th order cor-

relation functions as

⟨𝐹𝑖1 · · · 𝐹𝑖𝑛⟩ ≈
1
𝑁𝑠

𝑁𝑠∑︁
𝑠=1

𝐹
(𝑠)
𝑖1
· · · 𝐹 (𝑠)

𝑖𝑛
. (A.4)

The information in all of the 𝑛-point correlation functions is equivalently stored in the generating
functional 𝑍 [𝐽] as described in the context of Eq. (6.5). The truncated Wigner simulations involve
periodic boundary conditions, and while the experimental setup considered is a finite system with-
out periodic boundary conditions, we find approximate translational invariance, which simplifies
the calculation of connected correlators in momentum space. We first perform a discrete Fourier
transform (DFT) for the spin observables 𝐹𝑖 to momentum space

𝐹
(𝑠)
𝑖
(𝑝) = DFT𝑥→𝑝

[
𝐹
(𝑠)
𝑖
(𝑥)

]
≡

𝑁∑︁
𝑗=1

e−i𝑝 𝑗𝐹
(𝑠)
𝑖
( 𝑗) , (A.5)

where 𝑝 ∈ [𝑝𝐿 , 2𝑝𝐿 , . . . , 𝑁𝑝𝐿], 𝑝𝐿 = 2𝜋/𝐿, and 𝐿 is the system size. Subsequently, we com-
pute connected correlation functions in momentum space using the Julia language package Cu-
mulants.jl [218].

We have verified that this procedure gives equivalent results to first computing connected cor-
relators in position space, and then performing the DFT. The former approach, however, is much
more memory-efficient. Indeed, computing higher-order correlation functions requires a consider-
able amount of computer memory: for instance, a four-point cumulant is an 𝑁 × 𝑁 × 𝑁 × 𝑁 array,
so the amount of required memory scales quartically with the system size. At the same time, as
evident from Eqs. (6.18a) and (6.18b), the four-point functions entering the symmetry identities
have one of the momenta set to zero while the three remaining ones have to add up to zero due to
momentum conservation. Therefore, one only needs a two-dimensional momentum-conserving
surface, which can be encoded in an 𝑁 × 𝑁 matrix. By computing correlators directly in momen-
tum space we avoid the need to store the full 𝑁 × 𝑁 × 𝑁 × 𝑁 array, and we can directly extract
the relevant information by computing the two-dimensional momentum-conserving surface. For
our numerical data, we consider correlation functions up to the inverse healing length, where the
truncated Wigner description is expected to be reliable. For the plots, we have binned every 5
data points, while the correlators themselves were calculated on uncoarsened lattices.

Note that since perfect homogeneity and isotropy cannot be experimentally achieved, numerical
artefacts always enter analyses. More specifically, in Eq. (6.17), while 𝐸 (2)𝜋𝜋 (−𝑝, 𝑝) and 𝐸

(2)
𝜎𝜎 (𝑝,−𝑝)

are manifestly real, the three-point function 𝐸
(3)
𝜋𝜋𝜎 (0, 𝑝,−𝑝) has in general a nonzero imaginary

part. However, for the experimental data, the imaginary part is orders of magnitude below the real
part, therefore the magnitude of the correlator is dominated by the contribution from the real part.
We similarly observe this with numerical data, apart from the very early initial times of a few 𝑡s,
where the imaginary part is more pronounced. In this case, and in all other cases, the magnitude
of complex quantities is plotted.
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Figure B.1: Scaling exponents for different values of 𝑞.
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Fig. B.1 shows the self-similar scaling dynamics of the transverse spin structure factor after a
quench from the polar phase to the easy-plane phase for various values of the quench parameter
𝑞. The exponents are extracted using the growth-rate of the 𝑘 = 0 mode, fitting a fuction 𝑆⊥(𝑘 =

0) ∼ (𝑡 − 𝑡0)𝛼, with some non-universal constant 𝑡0 and universal exponent 𝛼 as seen in Fig. 7.1.
The obtained scaling exponents are then used to rescale the transverse spin correlations and the
residuals are calculated to probe the self-similarity of the scaling. For 𝑞 values which are far
enough from the conjectured symmetry crossover, the residuals show no obvious trends and we
conclude that the spectra scale self-similarly with the calculated exponents. For spectra within the
crossover regime, i.e., at about 𝑞 ≈ 0.3𝜌̃ |𝑐1 |, we observe a deviation from self-similarity, hence
substantiating the notion that the self-similar scaling of correlations is due to the vicinity of the
system to two distinct and discrete fixed points.
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STATEMENT ON AI USAGE

AI tools (ChatGPT) have been used to restructure individual sentences, whilst the changes were
done manually and selectively. ChatGPT was used for help in identifying bugs in the simulation
code and generating some code snippets for the figures done with the Mayavi python package. It
was not used in writing code for simulations nor data analysis.
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